Министерство образования и науки

РФ ФГБОУ ВО «Кубанский государственный технологический университет» (ФГБОУ ВО «КубГТУ»)

Межотраслевой институт подготовки и переподготовки специалистов (МИППС)

Кафедра информатики и вычислительной техники
Лабораторные работы по дисциплине
Архитектура вычислительных систем

Выполнил: <u>Студ</u> с	<u>ент группы 17-31</u>	КБС-ПР1 3 курса Бабич М.М
	(фам	илия, инициалы)
Оценка:		
	(OTJ	ично, хорошо)
Рецензент:		
	(подпись)	(фамилия, инициалы)
Преподаватель:_		Бабенко Г.В
	(подпись)	(фамилия, инициалы)
Работа принята: ַ		2020г.
	(дата)	

Содержание

Практическое занятие № 1	3
Практическое занятие № 2	4
Практическое занятие № 3	6

Практическое занятие № 1

Тема: «Перевод чисел из одной системы счисления в другую»

Тип практического занятия: частично-поисковый **Форма организации студентов:** индивидуальная

Цель практического занятия:

-формировать умения по переводу целых и дробных чисел из десятичной системы счисления в различные системы счисления.

Оснащение (оборудование): методические указания по выполнению практического занятия, индивидуальные задания.

Порядок выполнения:

- 1. Перевести данное число из десятичной системы счисления в двоичную, восьмеричную и шестнадцатеричную системы счисления.
 - 2. Перевести данное число в десятичную систему счисления.

Вариант 3

- 1. а) 273; б) 661; в) 156,25; г) 797,5; д) 53,74.
- 2. а) 1100000000_2 ; б) 11010111111_2 ; в) $1011001101,00011_2$; г) $1011110100,011_2$;
 - д) 1017,2₈; e) 111,B₁₆.

1.

a)
$$273_{10} = 100010001_2$$

6)
$$661_{10} = 1010010101_2$$

B)
$$156,25_{10} = 10011100.0100_2$$

$$\Gamma)\ 797, 5_{10} = 1100011101.1000_2$$

д)
$$53,74_{10} = 110101.1011_2$$

2.

a)
$$1100000000_2 = 768$$

B)
$$1011001101,00011_2 = 717.09375$$

$$\Gamma$$
) 1011110100,011₂ = 756.375

д)
$$1017,2_8 = 527.25$$

e)
$$111,B_{16} = 273.6875$$

Практическое занятие № 2

Тема: «Выполнение операций над числами в естественной и нормальной формах»

Тип практического занятия: частично-поисковый. **Форма организации студентов:** индивидуальная.

Цель практического занятия:

-формировать умения по выполнению арифметических операций в различных системах счисления.

Оснащение (оборудование): методические указания по выполнению практического занятия, индивидуальные задания, таблицы по сложению и умножению шестнадцатеричных чисел.

Исходные данные: Правила сложения и умножения шестнадцатеричных чисел представлены в таблицах 1 и 2.

Таблица 1 – Сложение шестнадцатеричных чисел. C D Ε F A В \mathbf{C} D Ε F A В \mathbf{C} D Ε F \mathbf{C} A В D Ε F C Ε F A В D В $\overline{\mathbf{C}}$ D Ε F Α F В $\overline{\mathsf{C}}$ D Е A A В \mathbf{C} D E F \mathbf{C} D F A В E A В C D E F C F A В D E \mathbf{C} E F A A В D $\overline{\mathbf{C}}$ Е F 1A В В D C C D F **A** 1B Ε 1C D D Ε F **A** 1B E E F **A** 1B 1C 1D F **A** 1B 1C 1D 1E

	Таблица 2 – Умножение шестнадцатеричных чисел															
	0	1	2	3	4	5	6	7	8	9	A	В	C	D	Е	F
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
2	0	2	4	6	8	A	С	Е	10	12	14	16	18	1A	1C	1E
3	0	3	6	9	С	F	12	15	18	1B	1E	21	24	27	2A	2D
4	0	4	8	С	10	14	18	1C	20	24	28	2C	30	34	38	3C
5	0	5	A	F	14	19	1E	23	28	2D	32	37	3C	41	46	4B

6	0	6	С	12	18	1E	24	2A	30	36	3C	42	48	4E	54	5A
7	0	7	Е	15	1C	23	2A	31	38	3F	46	4D	54	5B	62	69
8	0	8	10	18	20	28	30	38	40	48	50	58	60	68	70	78
9	0	9	12	1B	24	2	36	3F	48	51	5A	63	6C	75	7E	87
						D										

Продолжение таблицы 2

A	0	A	14	1E	28	32	3C	46	50	5A	64	6E	78	82	8C	96
В	0	В	16	21	2C	37	42	4D	58	63	6E	79	84	8F	9A	A5
C	0	C	18	24	30	3	48	54	60	6C	78	84	90	9C	A8	B4
						C										
D	0	D	1A	27	34	41	4E	5B	68	75	82	8F	9C	A9	B6	C3
Е	0	Е	1C	2A	38	46	54	62	70	7E	8C	9A	A8	B6	C4	D2
F	0		1E	2D	3C	В	5A	69	78	87	96	A5	B4	C3	D2	E1
		F														

Вариант 3

Произвести действия над числами в различных системах счисления:

- 1) $100,101_2+10,11_2$
- 2) 100,101₂–10,11₂
- 3) 10,11₂*1,1₂
- 4) $B3,D_{16}+6A,E_{16}$
- 5) B3,D₁₆–6A,E₁₆
- 6) $2,A_{16}*3,9_{16}$

Выполнить проверку полученных результатов путем их перевода в десятичную систему счисления

1.
$$100,101_2+10,11_2 = 111.011_2$$

 $4.625 + 2.75 = 7.375$

2.
$$100,101_2-10,11_2 = 1.111_2$$

 $4.625 - 2.75 = 1.875_{10}$

3.
$$10,11_2*1,1_2 = 100.0010_2$$

 $2.75*1.5=4.125_{10}$

4.
$$B3,D_{16}+6A,E_{16} = 11E.B_{16}$$

 $179.8125+106.875 = 286.6875_{10}$

5.
$$B3,D_{16}-6A,E_{16} = 48.F_{16}$$

 $179.8125-106.875 = 72.9375_{10}$

6.
$$2,A_{16}*3,9_{16} = 9.5A_{16}$$

 $2.625*3.5625 = 9.3515625_{10}$

Практическое занятие № 3

Тема: «Работа и особенности логических элементов ЭВМ»

Тип практического занятия: частично-поисковый.

Форма организации студентов: индивидуальная.

Цель практического занятия:

– закрепить умения по составлению схем с использованием логических элементов ЭВМ.

1. Содержание занятия: Устный опрос

- 1.1 Дать определение вентиля построить схему и таблицу истинности вентиля НЕ.
- 1.2 Дать определение вентиля построить схему и таблицу истинности вентиля ИЛИ.
- 1.3 Дать определение вентиля построить схему и таблицу истинности вентиля И.
- 1.4 Дать определение вентиля построить схему и таблицу истинности вентиля И-НЕ.
- 1.5 Дать определение вентиля построить схему и таблицу истинности вентиля ИЛИ-НЕ.
- 1.6 Дать определение вентиля построить схему и таблицу истинности вентиля ИСКЛЮЧАЮЩЕГО ИЛИ.
- 1.7 Дать определение триггера. Построить схему и таблицу истинности RS-триггера на вентилях И-НЕ.
- 1.8 Дать определение триггера. Построить схему и таблицу истинности RS-триггера на вентилях ИЛИ-НЕ.
- 1.9 Дать определение полусумматора. Построить схему и таблицу истинности полусумматора.
- 1.10Дать определение сумматора. Построить схему и таблицу истинности сумматора.
- 2. Индивидуальные задания.

Оснащение (оборудование): методические указания по выполнению практического занятия, индивидуальные задания.

Порядок выполнения:

Представить в виде схемы функцию и построить ее таблицу истинности. Произвести проверку путем построения таблицы истинности исходной функции.

$$2.1 f = x \wedge y \vee \bar{x} \wedge \bar{z}$$

$$2.2\,f=y\oplus \bar{x} \wedge \bar{y} \wedge z$$

$$2.3 f = z \lor \bar{y} \land \bar{z} \oplus x$$

$$2.4 f = y \land z \lor \bar{x} \lor \bar{y}$$

$$2.5 \ f = x \wedge y \oplus \bar{x} \wedge \bar{z}$$

$$2.6 f = \bar{y} \oplus (x \lor y \lor \bar{z})$$

$$2.7 f = (x \lor \overline{y}) \oplus x \land z$$

Методические указания: В основе построения компьютеров, а точнее аппаратного обеспечения, лежат так называемые вентили. Они представляют собой достаточно простые элементы, которые можно комбинировать между

собой, создавая тем самым различные схемы. Одни схемы подходят для осуществления арифметических операций, а на основе других строят различную память ЭВМ.

Простейший вентиль представляет собой транзисторный инвертор, который преобразует низкое напряжение в высокое или наоборот (высокое в низкое). Это можно представить как преобразование логического нуля в логическую единицу или наоборот. Т.е. получаем вентиль НЕ.

Соединив пару транзисторов различным способом, получают вентили ИЛИ-НЕ и И-НЕ. Эти вентили принимают уже не один, а два и более входных сигнала. Выходной сигнал всегда один и зависит (выдает высокое или низкое напряжение) от входных сигналов. В случае вентиля ИЛИ-НЕ получить высокое напряжение (логическую единицу) можно только при условии низкого напряжении на всех входах. В случае вентиля И-НЕ все наоборот: логическая единица получается, если все входные сигналы будут нулевыми. Как видно, это обратно таким привычным логическим операциям как И и ИЛИ. Однако обычно используются вентили И-НЕ и ИЛИ-НЕ, т.к. их реализация проще: И-НЕ и ИЛИ-НЕ реализуются двумя транзисторами, тогда как логические И и ИЛИ тремя. Схемы и таблицы истинности основных вентилей представлены на рисунке 1.

Выходной сигнал вентиля можно выражать как функцию от входных.

Транзистору требуется очень мало времени для переключения из одного состояния в другое (время переключения оценивается в наносекундах). И в этом одно из существенных преимуществ схем, построенных на их основе.

$$2.3 f = z \lor \bar{y} \land \bar{z} \oplus x$$

Х	Υ	Z	\bar{y}	$ar{z}$	$z \forall \bar{y}$ (A)	$A \wedge \bar{z}$ (B)	$B \oplus x$
0	0	0	1	1	1	1	1
0	0	1	1	0	1	0	0
0	1	0	0	1	0	0	1
0	1	1	0	0	1	0	0
1	0	0	1	1	1	1	0
1	0	1	1	0	1	0	1
1	1	0	0	1	0	0	1
1	1	1	0	0	1	0	1

