Recurrent Neural Networks (RNNs)

Michel RIVEILL michel.riveill@univ-cotedazur.fr

Motivation

- Humans don't start their thinking from scratch every second
 - ▶ Thoughts have persistence
- Traditional neural networks can't characterize this phenomena
 - Ex: classify what is happening at every point in a movie
 - ▶ How a neural network can inform later events about the previous ones
- ▶ Recurrent neural networks address this issue
 - Some applications
 - ▶ NER Naming Entity Recognition
 - □ Same word may have a different label depending on the context.
 - □ Apple CEO Tim Cook eat an apple
 - ▶ Forcasting Time-series Prediction
- ▶ How?
 - Add state to artificial neurons

What are RNNs?

- Main idea is to make use of sequential information
- ▶ How RNN is different from neural network?
 - ▶ Vanilla neural networks (MLP) assume all inputs and outputs are independent of each other
 - ▶ But for many tasks, that's a very bad idea
- What RNN does?
 - Perform the same task for every element of a sequence (that's what recurrent stands for)
 - Output depends on the previous computations!
- ▶ Another way of interpretation RNNs have a "memory"
 - ▶ To store previous computations

- Vanilla cell
 - y = F(U.X)

- Vanilla cell
 - y = F(U.X)
- ▶ Recurrent cell → use 2 weights matrix
 - Add an internal variable: h
 - The output depends to the current entry and the previous internal variable:
 - $h_t = F(W.h_{t-1}, U.Xt)$
 - ▶ Could be rewritten on $h_t = F(W.[h_{t-1}Xt])$

- Vanilla cell
 - y = F(U.X)
- ▶ Recurrent cell → use 2 weights matrix
 - $h_t = F(W . [h_{t-1}, X_t])$
- Recurrent layer, step by step
 - at each time step
 - A new entry is being supplied
 - And a new output (h_t) is calculated using:
 - \Box The new input X_t
 - $\ \square$ The output of the previous step h_{t-1}

$$h_2 = F(W, h_1, X_2)$$

•
$$h_3 = F(W, h_2, X_3]$$

...

- Vanilla cell
 - y = F(U.X)
- Recurrent cell
 - $h_t = F(W.[h_{t-1}, X_t])$
- Recurrent neural networks are "unrolled" programmatically during training and prediction
 - ▶ All neurons share the same weight matrix

Remember

Remember

RNN in action

Problems with naive RNN

- ▶ RNNs do not learn easily
- Unfolding the network for learning leads to vanishing gradient problems!

From vanilla RNN...

- ▶ The context is close to the word to be predicted
 - Few iterations separate them.
 - No problem

... to LSTM (Long Short Term Memory)

- ▶ The context is far from the word to predict
 - Many iterations separate them!
 - Possible gradient problem

I grew up in France...

I speak French...

From Vanilla to LSTM Cells

- It is necessary to prevent the gradient from disappearing...
- Normally, the network memory is
 - \rightarrow h_t=tanh(W \square [h_{t-1},xt])
 - Involves a single level of processing
 - Creating the risk of the evanescent gradient.

Dealing with the vanishing gradient problem → LSTM cell

(crédit : image modifiée de Michaël Nguyen)

LSTM cell

- Cellule composée de trois "portes": ce sont des zones de calculs qui régulent le flot d'informations (en réalisant des actions spécifiques)
 - Forget gate (porte d'oubli)
 - Input gate (porte d'entrée)

Output gate (porte de sor

- Hidden state (état caché)
- Cell state (état de la cellule
 - Like residual

(crédit : image modifiée de Michaël Nguyen)

LSTM cell (porte oubli / forget get)

LSTM cell (porte entrée / input get)

LSTM cell (état de la cellule / cell state)

LSTM cell (porte de sortie / output gate)

réseau et sert aux prédictions.

LSTM Cells

- Adds a context memory that affects the information flow and its processing (cell state).
- Three gates decide what a cell should

LSTM Cells

▶ Concretely, recurrence in an LSTM cell involves 4 levels of

Naïve RNN vs LSTM

Naïve RNN

Reuse at each step the previous output

LSTM

ht ▶ At each step 3 gate control the use use of Input value, Cell state and previous output ct-I ht **LSTM** ht-I ht-l ht \mathbf{X}^{t} Xt ct is ct-1 added by something c changes slowly h^t and h^{t-1} can be very different h changes faster

GRU – gated recurrent unit

GRU = a light LSTM Cell

$$z_{t} = \sigma (W_{z} \cdot [h_{t-1}, x_{t}])$$

$$r_{t} = \sigma (W_{r} \cdot [h_{t-1}, x_{t}])$$

$$\tilde{h}_{t} = \tanh (W \cdot [r_{t} * h_{t-1}, x_{t}])$$

$$h_{t} = (1 - z_{t}) * h_{t-1} + z_{t} * \tilde{h}_{t}$$

- It combines the forget and input into a single update gate.
- It also merges the cell state and hidden state.
- → This is simpler than LSTM.

Bi-directional RNNs

▶ RNNs can process the input sequence in forward and in the reverse direction

Popular in speech recognition, could be used also with text

RNN cell in Keras

Keras Long Short-Term Memory Cell

- from tf.keras.layers import LSTM
- Main params
 - Units: dimension of output space
 - return_sequences: True or Fall.
 - ▶ If False return only the last output
 - ▶ If True return the full sequence of the output sequence
 - □ Output sequence = hidden state (the vocabulary change regardind documentation)
 - return_state: True or False
 - ▶ If True return 3 values
 - ☐ The full output sequence or only the last one (depend on return_sequences)
 - ☐ The last output sequence
 - □ The cell state
 - If False return nothing
 - stateful: True or False
 - If True, the last state for each sample at index i in a batch will be used as initial state for the sample of index i in the following batch.
 - You have to put shuffle=False in a fit method

F F F F Walked" "Certainly"

return_sequences = False

return_sequences = True

with return_sequences=False,

Dense layer is applied only

once at the last cell

If return_sequences=True

Dense layer is applied to every timestep

Keras Gated Recurrent Unit Cell

- from keras.layers import GRU
- Main params (similar to LSTM)
 - Units: dimension of output space
 - return_sequences: True or False
 - ▶ If False return only the last output
 - ▶ If True return the full sequence of the output sequence
 - □ Output sequence = hidden state (the vocabulary change regardind documentation)
 - return_state: True or False
 - ▶ If True return 3 values
 - ☐ The full output sequence or only the last one (depend on return_sequences)
 - ☐ The last output sequence
 - □ The cell state
 - If False return nothing
 - stateful: True or False
 - If True, the last state for each sample at index i in a batch will be used as initial state for the sample of index i in the following batch.
 - You have to put shuffle=False in a fit method

A basic example

- inputs = Input(shape=(SEQUENCE_SIZE,))
- embedding = Embedding(VOCABULARY_SIZE, EMBEDDING_SIZE, input_length=SEQUENCE_SIZE)(inputs)
- output = LSTM(16, return_sequences=False, activation='relu')(embedding)
- Fit by batch
 - Model.fit(X, y,). ← all item have the same length
- Fit by item
 - For i in range(len(X)): ← could be different length
 - ▶ Model.fit(X[i], y[i], ...)

Some use of RNN → Text Classification / Sentiment analysis

Affect a label to a text

- Classify a
 - restaurant review from Yelp!
 - movie review from IMDB...
 - as positive or negative
- Inputs:
 - Multiple words, one or more sentences
- Outputs:
 - Positive / Negative classification
- "The food was really good"
- "The chicken crossed the road because it was uncooked"

Sentiment analysis

Sentiment analysis

Sentiment analysis

Sentiment analysis - solution 1

retrieve only the last state

Sentiment analysis – solution2

Other possible architecture

Some use of RNN

- → Named Entity Recognition / Part of Speech Tagging
- Affect a label to each word
 - find and classify names in text
 - ▶ Could bean entity: number, country, person, ... (NER)
 - ▶ Could be a function: noun, verb, adverbs, ... (POS)

Some use of RNN

- → Named Entity Recognition / Part of Speech Tagging
- Affect a label to each word
 - find and classify names in text
 - ▶ Could bean entity: number, country, person, ... (NER)
 - ▶ Could be a function : noun, verb, adverbs, ... (POS)

Label representation – BIO tags

- Labels can be for words or groups of words
 - Adam Smith works for IBM , London .
- To represent this, a "BIO" representation is generally used.
 - B beginning of an entity
 - ▶ I continues the entity
 - O word outside the entity
- For example
 - ['Adam', 'Smith', 'works', 'for', 'IBM', ',', 'London', '.']
 - Without BIO: [PER, PER, O, O, ORG, O, GEO, O]
 - ▶ With BIO: [B_PER, I_PER, O, O, B_ORG, O, B_GEO, O]

MLP for NER

Labels are OneHotEncoded

Recurrent neural network for NER

Recurrent neural network for NER (unfolded)

- Activation function for output: softmax
- Labels are OneHotEncoded

Bi directional recurrent neural network for NER

- Activation function for output: softmax
- Labels are OneHotEncoded

Stacked Bi-RNN

- Activation function for output: softmax
- Labels are OneHotEncoded

Bi-RNN + CRF

CRF output activation function

Multi-level encoding char encoding + word encoding

Other use of RNN

→ Sequence2sequence model

- Used for
 - Translation
 - Chathot

LSTM Encoder

LSTM Decoder

Some use of RNN → Input – Output Scenarios

One input One output Single - Single → Feed-forward network One input Many output Single -Image annotation Multiple Many input Many output Multiple -Text classification / Sentiment analysis Single Many input / Many output length(input)!=length(output) Multiple -**Translation** Multiple Chat bot Many input / Many output length(input)==length(output) Named Entity Recognition Part-Of-Speech tagging

Other Useful Resources / References

- http://cs231n.stanford.edu/slides/winter1516_lecture10.pdf
- http://www.cs.toronto.edu/~rgrosse/csc321/lec10.pdf
- R. Pascanu, T. Mikolov, and Y. Bengio, On the difficulty of training recurrent neural networks, ICML 2013
- S. Hochreiter, and J. Schmidhuber, <u>Long short-term memory</u>, Neural computation, 1997 9(8), pp.1735-1780
- ▶ F.A. Gers, and J. Schmidhuber, Recurrent nets that time and count, IJCNN 2000
- K. Greff, R.K. Srivastava, J. Koutník, B.R. Steunebrink, and J. Schmidhuber, <u>LSTM: A</u> search space odyssey, IEEE transactions on neural networks and learning systems, 2016
- K. Cho, B. Van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio, <u>Learning phrase representations using RNN encoder-decoder for statistical machine translation</u>, ACL 2014
- R. Jozefowicz, W. Zaremba, and I. Sutskever, <u>An empirical exploration of recurrent network architectures</u>, JMLR 2015