Задание 3. Автомобиль и топливо

В данной задаче вам предлагается оценить расход топлива для различных видов движения автомобиля. Здесь мы будем рассматривать движение и потребление топлива автомобилем в рамках довольно упрощенной модели, описывающей, однако, основные связи между ключевыми величинами, определяющими данные процессы.

Будем изучать легковой автомобиль массы m=1,5 т, потребляющий топливо плотностью $\rho=710$ кг/м 3 и удельной теплотой сгорания q=44 МДж/кг.

В рамках рассматриваемой модели будем считать КПД постоянным и равным $\eta = 15\%$. Под КПД здесь понимаем долю от энергии, выделившейся при сгорании топлива, которая преобразована двигателем в механическую энергию, затраченную разгон автомобиля, преодоление сопротивления воздуха, обеспечение работы автомобиля, например, электроснабжение (считайте, что на все подобные цели расходуется постоянная мощность $P_1 = 1,0$ кВт)

Силу сопротивления воздуха в данной задаче предлагаем упрощенно считать прямо пропорциональной скорости транспорта $F_C = kv$, где k- размерный коэффициент, который следует принять равным $k=15\frac{H\cdot c}{_M}$.

Основной изучаемой характеристикой в задаче является расход топлива, который будем обозначать символом χ . Под расходом понимается объём топлива, требуемый для преодоления некоторой единицы расстояния $\chi = \frac{V}{L}$, где V — объем использованного топлива, L — пройденный путь. Автомобилисты обычно измеряют расход в «литрах на сотню километров» $(\frac{\pi}{100\,\kappa M})$ — все рассчитанные значения χ вам необходимо указать в данной единице измерения.

1. Простая поездка

Автомобиль движется по прямой горизонтальной дороге с постоянной скоростью.

- 1.1. Расчитайте расход топлива, если скорость автомобиля v = 80 км/ч.
- 1.2. Оказывается, что при некотором значении скорости расход топлива оказывается минимально возможным. Найдите это значение скорости v_0 , а также минимальный расход χ_{\min} .

2. Разгон

Автомобиль, начав равноускоренно двигаться по горизонтальной дороге после остановки, набрал скорость $v_1 = 90$ км/ч за время $\Delta t = 2$ минуты.

- 2.1. Найдите зависимость расхода топлива от времени $\chi(t)$ во время разгона.
- В этом пункте будет также полезным посчитать количество топлива, расходуемое в единицу времени $\psi = \frac{\Delta V}{\Delta c}$. Назовём эту величину ψ «временным расходом топлива», и будем ее измерять в $\frac{\pi}{c}$ (литрах в секунду).
 - 2.2. Найдите зависимость временно́го расхода топлива от времени $\psi(t)$.
 - 2.3.Оцените средний временной расход топлива за весь промежуток времени Δt .
 - 2.4. Оцените средний расход топлива на всем пройденном пути $\langle \chi \rangle$ (в $\frac{\pi}{100 \, \kappa m}$).

3. Подъём в гору

При подъёме в гору даже малого уклона, расход топива значительно возрастает. Автомобиль поднимается в гору с постоянной скоростью по прямой дороге, образующей угол $\alpha = 3^{\circ}$ с горизонтом.

- 3.1. Расчитайте расход топлива, если скорость автомобиля v = 80 км/ч.
- 3.2. При какой скорости v_0 расход топлива минимален и чему он равен ?

4. Постоянный расход

Автомобиль движется из пункта A в пункт B по дороге без поворотов, профиль которой (зависимость высоты от продольной горизонтальной координаты) представлен на рис. 1. Будем полагать, что автомобиль поддерживает скорость движения такой, чтобы расход топлива был всё время постоянным и оставался равным $\chi = 9.7 \frac{\pi}{100 \text{ км}}$. Известно, что скорость всегда была больше 30 км/ч. Также считайте, что скорость в процессе движения меняется очень медленно — так, что ускорением в любой момент времени можно пренебречь.

4.1. Оцените время, которое понадобится автомобилю, чтобы попасть из пункта А в пункт В.

Рисунок 2 - График зависимости высоты уровня дороги от горизонтальной координаты (профиль дороги)

5. Интересно знать

Если выразить расход топлива в единицах СИ вместо предложенной единицы измерения $\frac{\pi}{100 \text{ км}}$, то можно заметить, что χ имеет размерность площади (м²).

5.1 Покажите, какую именно площадь описывает величина расхода топлива, выраженная в единицах СИ (M^2).