CAN bus (Controller Area Network)

Part 1

ECE 2534

CAN bus

- CAN bus is a standard for <u>a</u>synchronous, half-duplex, serial communication
- Originated for <u>automotive</u> applications
- History
 - □ Developed by Bosch in the 1980s
 - □ Became an SAE standard in 1986
 - CAN 2.0 specification was released in 1991
 - □ Since 1996, every car and light truck sold in the US has a built-in debug connector that supports CAN
- 2-wire differential bus
- Bit rates up to 1 Mbit/s (known, fixed rate on any given system)

What is needed in an automobile?

- Deterministic (predictable) behavior, especially for communication latency
- Dependability
- Relatively high speed
- Adaptibility
 - variable network loading
 - network (re)configuration

. . . .

ECU = Electronic Control Unit

- Your car may contain dozens of ECUs
- These ECUs are microcontrollers taking care of many different things
 - engine control
 - antilock breaking system (ABS)
 - power steering
 - windows, doors, mirrors
 - cruise control
- These ECUs need to communicate with one another

CAN bus fundamentals (p.1)

- Communications are driven by events
 - □ Each <u>message</u> gets an identifier (type) and is broadcast on the network
 - All nodes (microcontrollers) connected on the network can receive this message and decide what to do with it

Multiple access

- Any node can communicate when it has something to send
- There is a strict priority in the messages, and higher priority messages will always be transmitted first
- □ When there are collisions (multiple nodes trying to transmit at the same time), only the most important message will be transmitted

CAN bus fundamentals (p. 2)

- Fault detection and confinement
 - The protocol supports reporting of errors, and even has provisions to deactivate nodes that appear faulty
 - "Confinement": keep faults local; don't let them take the bus down
- 2 types of data transfer
 - Data transfers, originating from an event
 - Remote request transfers, when a node is asking for a message of a given type

How to share the bus?

- No node addressing
 - □ Every message has an identifier that reflects a given priority of the message
 - □ The message is captured by all nodes on the CAN network.
 - □ The lower the message identifier number, the higher its priority
- CSMA/CD protocol (Carrier Sense Multiple Access with Collision Detection)

- The 2-wire bus can have one of 2 possible values:
 - □d "dominant"
 - □r "recessive"
- If one transmitter sends *d* and another sends *r* at the same time, the bus will have a value of *d*

Summary

- The CAN protocol is message-oriented, not address-based
- The CAN protocol was optimized for systems that need to transmit/receive relatively small amounts of data, but with high reliability and predictablity
- Every node has an equal chance to gain access to the bus