重庆八中周赛Round#30

时间:2024年5月5日

题目名称	文件名	时间限制	空间限制	题目类型	比较方式
捏斑马	zebra	1000ms	256M	传统题	全文比较
选二吃一	eatone	1000ms	512M	传统题	全文比较
链状闪电	lighting	2000ms	512M	传统题	全文比较
加法	plus	2000ms	512M	传统题	全文比较
寻找序列	sequence	2000ms	512M	传统题	全文比较
弹飞绵羊	sheep	2000ms	512M	传统题	全文比较

编译选项

| 对C++语言 | -O2 -std=c++14 -static | | ------ |

注意事项

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. C/C++ 中函数 main() 的返回值类型必须是 int ,程序正常结束时的返回值必须是 0。
- 3. 选手提交的程序源文件必须不大于 100KB。
- 4. 程序可使用的栈空间内存限制与题目的内存限制一致。

T1 捏斑马 zebra

时间限制:1000ms 空间限制:256M

题目描述

终于放五一啦!在这个的劳动节中,小勤和小达一起来到了重庆动物园,观看里边各式各样的动物。当他们来到斑马馆时,发现小达手里的橡皮泥也正好和斑马一样,呈现出黑白条纹相间的情况,于是,小达就想着能不能选择手里的橡皮泥来捏一个斑马出来呢?说干就干,于是小达就开始了捏斑马的过程。

在最初始的状态下,小达手里的橡皮泥只有黑色和白色,呈现出黑白相间的情况。使用橡皮泥时,小达可以操作0次或很多次,对于每一次操作,小达可以进行如下操作:将橡皮泥从某一个位置分成两个部分,然后将两个部分进行翻转,最后再粘到一起。

举个例子:假如小达手里的橡皮泥最初的颜色排序为"bwbbw",其中,b表示黑色,w表示白色。那么,他可以进行这样的划分:bw|bbw(竖线表示切割的地方),再将两部分翻转,得到wbwbb。

对于制作的斑马而言,小达必须将其颜色呈现出正好每一片区域只有一个颜色的情况(即最终的成品不会有连续两种相同颜色出现)。请问,小达所捏的斑马,能得到的最大的长度是多少?

输入格式

输入一行只包含字母'w'和'b'的字符串s,表示橡皮泥最初始时颜色所呈现的状态

输出格式

输出一个数字,表示能得到的最长的斑马长度

样例

样例输入1

bwwwbwwbw

样例输出1

5

样例解释1

对于第一个样例,整个划分的步骤为:

bwwwbww|bw -> w|wbwwwbwb -> wbwbwwwbw,就得到最长的长度为5(前5个位置)

样例输入2

bwwbwwb

样例输出2

3

数据范围与提示

对于前20%的数据,有 $1 \le |s| \le 50$

对于前50%的数据,有 $1 \le |s| \le 1000$

对于前100%的数据,有 $1 \le |s| \le 10^5$

T2 选二吃— eatone

时间限制:1000ms 空间限制:512M

题目描述

一个盒子里有 N 个球,每个球上都写了一个整数,这个整数介于 1 和 M-1 之间。对于 $i=1,2,\ldots,N$,第 i 个球上写的整数是 A_i 。

只要盒子里还剩两个或更多的球,小勤就会重复以下步骤:

- 首先,随机选择两个球。
- 然后,得到一个分数,该分数是 x^y+y^x 除以 M 的余数,其中 x 和 y 分别是两个球上的整数。
- 最后,随机选择这两个球中的一个吃掉,并将另一个球放回盒子里。

找出小勤能得到的最大可能总分。

输入格式

输入从标准输入以下格式给出:

N M

 $A_1 A_2 \ldots A_N$

输出格式

第1行:1个整数,表示答案。

样例

输入样例1

4 10

4 2 3 2

输出样例1

20

样例说明1

考虑以下场景。下面, $X \mod Y$ 表示非负整数 X 被正整数 Y 除后的余数。

- 1. 从盒子里取第一个和第三个球得分 $(4^3+3^4) \bmod 10 = 5$ 分。然后,吃掉第一个球,把第三个球放回盒子里。现在,盒子里有第二、三和四个球。
- 2. 从盒子里取第三个和第四个球得分 $(3^2+2^3) \mod 10=7$ 分。然后,吃掉第三个球,把第四个球放回盒子里。现在,盒子里有第二个和第四个球。
- 3. 从盒子里取第二个和第四个球得分 $(2^2+2^2) \mod 10 = 8$ 分。然后,吃掉第二个球,把第四个球 放回盒子里。现在,盒子里只剩下第四个球。

这里,小勤总共得到5+7+8=20分,这是可能的最大值。

输入样例2

20 100

29 31 68 20 83 66 23 84 69 96 41 61 83 37 52 71 18 55 40 8

输出样例2

1733

数据范围与提示

- 2 < N < 500
- $2 < M < 10^9$
- $1 \le A_i \le M 1$
- 输入中的所有值都是整数。

T3 链状闪电 lighting

时间限制: 2000ms 空间限制: 512M

题目描述

现在有一排站着 n 只怪物。第 i 个怪物有 a_i 点生命值。

每隔一秒,你可以选择一只**活着的怪物,向它发射一道连锁闪电。闪电会对它造成** k **伤害,同时也会向左(向** i **减少的方向)和向右(向** i **增加的方向)扩散到**只活着的怪物身上,对每只怪物造成 k 伤害。 当闪电到达死亡怪物或行首/行尾时,它就会停止。如果怪物的生命值严格大于 0 ,则视为存活。

例如,考虑以下情况:有三个怪物的生命值分别等于 [5,2,7] 和 k=3 。你可以在 4 秒内将它们全部杀死:

- 向第3个怪物发射连锁闪电,那么它们的生命值为[2,-1,4];
- 向第1怪物发射连锁闪电,则它们的生命值为[-1,-1,4];
- 向第3个怪物发射连锁闪电,则它们的生命值为[-1,-1,1];
- 向第3个怪物发射连锁闪电,则它们的生命值为[-1,-1,-2]。

从 1 到 $\max(a_1, a_2, \ldots, a_n)$ 的每个 k , 计算杀死所有怪物所需的最少秒数。

输入格式

第一行包含一个整数 n ($1 \le n \le 10^5$) ,表示怪物数量。

第二行包含 n 个整数 a_1, a_2, \ldots, a_n ($1 \le a_i \le 10^5$)。 a_i 表示第 i 只怪物的生命值。

输出格式

输出一行 k 个整数,第 i 个整数表示对于从 1 到 $\max(a_1,a_2,\ldots,a_n)$ 的每个 k ,杀死所有怪物所需的最少秒数。

样例

样例输入1

```
3
5 2 7
```

样例输出1

```
10 6 4 3 2 2 1
```

样例输入2

```
4
7 7 7 7
```

样例输出2

```
7 4 3 2 2 2 1
```

样例解释2

对于伤害为 1 的闪电,很显然要劈七下,七次后怪物血量变成 [0,0,0,0],故答案为 7 对于伤害为 2 的闪电,很显然要劈四下,四次后怪物血量变成 [-1,-1,-1,-1],故答案为 4 以此类推即可

样例输入3

```
10
1 9 7 6 2 4 7 8 1 3
```

样例输出3

17 9 5 4 3 3 3 2 1

数据范围与提示

对于 30% 的数据 , $1 \le n \le 5000$ 对于 100% 的数据 , $1 \le n \le 10^5$

T4 加法 plus

时间限制: 2000ms 空间限制: 512M

题目描述

给你一个长度为 2^n 的序列 A_0,A_1,\dots,A_{2^n-1} ,请对于每个 $1\leq K\leq 2^n-1$,找出满足条件的最大 a_i+a_j 并输出:

• $i \text{ or } j \leq K$, $0 \leq i < j < 2^n$ (or 表示按位或运算。)

输入格式

第一行,一个整数N。

第二行 , 2^N 个整数表示序列 A。

输出格式

输出 2^n-1 行,每行一个数字,第 i 行表示 K=i 时上述问题的答案。

样例

样例输入1

```
2
1 2 3 1
```

样例输出1

```
3
4
5
```

样例解释1

对于 K=1 ,只有一种可能 ,答案为 $A_0+A_1=1+2=3$; 对于 K=2 ,可行的 (i,j) 有 (0,1) 和 (0,2)。当 (i,j)=(0,2) 时 , $A_i+A_j=1+3=4$ 是最大值。 对于 K=3 ,可行的 (i,j) 有 (0,1),(0,2),(0,3),(1,2),(1,3),(2,3)。当 (i,j)=(1,2) 时 ,

样例输入2

 $A_i + A_j = 2 + 3 = 5$ 是最大值。

```
3
10 71 84 33 6 47 23 25
```

样例输出2

```
81
94
155
155
155
155
```

样例输入3

```
4
75 26 45 72 81 47 97 97 2 2 25 82 84 17 56 32
```

样例输出3

数据范围与提示

 $1 \leq N \leq 18$, $1 \leq A_i \leq 10^9$

T5 寻找序列 sequence

时间限制: 2000ms 空间限制: 512M

题目描述

有一个长度为 2N的序列 : A_1, A_2, \ldots, A_{2N} 。

每个 A_i 要么是 -1 要么是 $1 \sim 2N$ 之间 (包含端点)的整数。 -1 以外的整数在 A_i 中最多出现一次。

对于 $A_i=-1$ 中的每一个 i ,你都会将 A_i 替换为 1 和 2N (含)之间的一个整数,这样 A_i 就是 $1,2,\ldots,2N$ 的一个排列。然后,你找到一个长度为 N 、 B_1,B_2,\ldots,B_N 、 $B_i=min(A_{2i-1},A_{2i})$ 的序列。

求以 $10^9 + 7$ 为模数 , B_1, B_2, \ldots, B_N 可以是多少个不同的序列。

输入格式

第一行包含一个整数 N 。

第二行 2N 个数字, 表示 A_1, A_2, \ldots, A_{2N} 。

输出格式

输出一个整数,表示不同的"B序列"的数量模 10^9+7 的结果。

样例

样例输入1

```
3
1 -1 -1 3 6 -1
```

5

样例解释 1

有六种方法可以使 A_i 成为 $1,2,\ldots,2N$ 的排列;每种方法的 B_i 都如下所示:

- $(A_1, A_2, A_3, A_4, A_5, A_6) = (1, 2, 4, 3, 6, 5) : (B_1, B_2, B_3) = (1, 3, 5)$
- $(A_1, A_2, A_3, A_4, A_5, A_6) = (1, 2, 5, 3, 6, 4) : (B_1, B_2, B_3) = (1, 3, 4)$
- $(A_1, A_2, A_3, A_4, A_5, A_6) = (1, 4, 2, 3, 6, 5) : (B_1, B_2, B_3) = (1, 2, 5)$
- $(A_1, A_2, A_3, A_4, A_5, A_6) = (1, 4, 5, 3, 6, 2) : (B_1, B_2, B_3) = (1, 3, 2)$
- $(A_1, A_2, A_3, A_4, A_5, A_6) = (1, 5, 2, 3, 6, 4) : (B_1, B_2, B_3) = (1, 2, 4)$
- $(A_1, A_2, A_3, A_4, A_5, A_6) = (1, 5, 4, 3, 6, 2) : (B_1, B_2, B_3) = (1, 3, 2)$

因此 , B_1, B_2, B_3 可以有五种不同的序列。

样例输入2

```
4
7 1 8 3 5 2 6 4
```

样例输出 2

1

样例输入3

```
10
7 -1 -1 -1 -1 -1 6 14 12 13 -1 15 -1 -1 -1 20 -1 -1
```

样例输出3

9540576

样例输入4

```
20
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 6 -1 -1 -1 -1 7 -1 -1 -1 -1 -1 -1 -1 -1 34 -1
-1 -1 -1 31 -1 -1 -1 -1 -1 -1 -1
```

样例输出 4

374984201

数据范围与提示

- $1 \le N \le 300$
- $A_i = -1$ 或 $1 \le A_i \le 2N$ 。
- 如果是 $A_i \neq -1, A_j \neq -1$, 则是 $A_i \neq A_j$ 。($i \neq j$)

T6 弹飞绵羊 sheep

时间限制: 2000ms 空间限制: 512M

题目描述

小达有一款游戏叫做"弹飞绵羊",里面有若干个关卡,我们从0开始为关卡编号。

其中,每一关都有 n 个超级弹力装置,每个弹力装置的弹力系数为 k_i 。弹力装置的作用是弹飞绵羊,准确来说,当一只绵羊到达第 i 个装置时,它会往后弹 k_i 步,到达第 $i+k_i$ 个装置,若不存在第 $i+k_i$ 个装置,则绵羊被弹飞。

当然,游戏是不会这么简单的,现在小达只知道关卡 0 的 n 个超级弹力装置的弹力系数 $k_{0,i}$ 。同时,接下来会发生 q 次事件,事件只有以下两种:

- 1. 给出三个整数 j, x, y , 表示小达知道了下一个关卡除了第 x 个装置 , 其它装置的弹力系数均为关卡 j 装置的弹力系数。而第 x 个装置的弹力系数为 y。
- 2. 给出两个整数 j,x , 你需要求出:若一只绵羊初始在关卡 j 的第 x 个装置上 , 被弹几次后会被弹出。

输入格式

本题部分测试点强制在线。

第一行,三个整数 n,q,type,其中,若 type=0 则表示该测试点不强制在线;若 type=1 时则表示该测试点强制在线,也就是说,你需要将第 1 个事件的 x,y 或第 2 个事件的 x 异或上上一次的答案,特别的,若之前没有询问则不用异或。

第二行有 n 个整数 $k_{0,i}$,表示关卡 0 每个装置的弹力系数。

接下来的 q 行,每行先有一个整数 opt,然后

输出格式

若干行,对于每个第2个事件给出答案。

样例

样例输入1

```
5 5 0
1 1 2 1 1
2 0 3
1 0 3 3
2 1 3
1 0 1 2
2 2 1
```

样例输出1

```
2
1
3
```

样例解释1

每关的装置的弹力系数如下:

关卡 0 装置的弹力系数依次为:11211。
关卡 1 装置的弹力系数依次为:11311。
关卡 2 装置的弹力系数依次为:21211。

对于第三次第2个事件,绵羊初始在关卡2的第1个装置:

- 初始时 x 为 1 , 绵羊被弹到 $x + k_x = 3$.
- 第一次弹飞后 x 为 3 , 绵羊被弹到 $x + k_x = 5$ 。
- 第二次弹飞后 x 为 5 , 绵羊被弹到 $x+k_x=6$ 。
- 第三次弹飞后 x 为 6, 绵羊被弹出。共弹 3次。

样例输入2

5 5 1 1 1 2 1 1 2 0 3 1 0 1 1 2 1 1 1 0 0 3 2 2 0

样例输出2

2 1 3

样例解释2

该组数据满足 type=1 , 解密后的样例 2 输入同样例 1。

数据范围与提示

对于所有测试数据 , $1 \leq n, q \leq 10^5$, $1 \leq k_{0,i} \leq n$, $1 \leq x,y \leq n$.

子任务编号	$n,q \leq$	type =	特殊性质	分值
1	1000	0	无	15
2	10^5	0	A,B	20
3	10^5	0	В	20
4	10^5	0	无	15
5	10^5	1	无	30

特殊性质 ${\bf A}$: 设当前事件前有 i 次第 1 个事件。保证对于所有第 2 个事件均有 j=i。特殊性质 ${\bf B}$: 设当前事件前有 i 次第 1 个事件。保证对于所有第 1 个事件均有 j=i。