水下机器人的组装计划

摘要

近年,随着世界全球化加深,传统的供应关系已经不再适应于当今生产需要,其中 原材料供应是企业供应链的主要环节。本文提出了原材料供应数学模型的基础假设,给 出企业对供应过程中订购与运输方案的建议。

对于问题一,我们通过对供货商供货特征的定量分析,取得描述供应商重要程度的评价指标,建立了基于熵权逼近理想解方法的供应商排序模型。其中,我们主要从供应商的产业规模、供货能力、违约率、波动情况,来衡量此供应商对该企业正常生产的重要性。为了定量并客观地评价每个供应商的重要程度,我们在模型中使用了熵权,以有效避免多因素评价模型当中确定权重时的主观性。通过比较对象与理想解和负理想解的距离,得到出对象与理想解的相似度,最后排序优选确定最重要的50家供应商。

对于问题二,我们建立线性规划模型以对订购方案进行优化,并制定出未来 24 周原材料最经济的订购方案。其中,在供应商的二次优选中,我们注意到每个供应商仅有选择与否两种状态,故采用 0-1 规划取得满足供应需求的最少的 44 家供应商;考虑到原材料储备对保障企业生产的重要意义,制定订购方案前,我们首先应用 LSTM 模型预测选定的供应商的供应水平,确保企业供应链稳定与生产安全,进一步优化订购方案。根据得到的订购方案制定损耗最小的转运方案,最后通过计算机程序仿真,以模拟优化后方案的实施效果。

对于问题三,由于企业为压缩生产成本,尽量多地采购 A 类和尽量少地采购 C 类原材料。我们对问题二中线性规划模型进行扩展,减少生产企业对 C 类原材料供应商的依赖,并将 A 类原材料的采购优先度提高,构建线性规划模型,解出最优采购方案和转运方案。最后由计算机仿真体现方案的实施效果。

对于问题四,我们不再考虑因企业生产技术有限产生的产量上限,而通过优化订购方案、转运方案最大化供应链的供应能力。而通过分析供货数据我们发现,每周转运商的总转运能力远少于供给商的供给能力。因此,我们以对转运商转运方案的优化为主,通过对模型的不断反思与改进,得出了未来 24 周的订购和转运方案。

最后我们对模型进行了中肯的评价和适当的推广。

关键字: TOPSIS 法 熵权法 LSTM 模型 线性规划

原材料是企业重要的经营性资产,是企业维持正常生产经营活动的基础,原材料管理的好坏直接关系到企业的营运资金利用效率,也关系到企业生产经营的持续性^[1]。改良生产企业的原材料管理方案,能提高原材料的周转率,有效降低仓储成本,也有利于保障生产流程的正常运行,在较大程度上加强企业竞争力^[2]。近年来,随着经济的稳步发展,企业在面对新冠疫情冲击的同时,还面临着更大规模、更高强度的竞争,优化原材料管理方案也较以往更具现实意义。

一、问题分析

制造商为了达到每日生产指标,以满足市场需求,需要向供货商(提供企业所需的原材料)提交订单。由于运输、交付等问题,订购的原材料不能直接用于生产,而需先交付物流转运至仓库,以便企业生产时取用。

现实中,供应商在接到订单后,常因为生产能上限和供应优先度等问题调整原材料产量,导致实际按时提供的原料量与生产需要存在出入。而此时制造商已经完成原料采购,不能通过更改之前的订购方案来弥补缺少原料,只能使用已经转移至仓库中的原料进行加工。若原材料库存不足,原材料的缺口会导致生产线停摆,造成严重的经济损失。为了减轻原料供应量波动对生产的影响,生产企业可提前储存一些原料,减轻生产停摆带来的损失。但与此同时,过多的原材料积存会显著增加企业的仓储成本。因此,为了改良生产企业的原材料管理方案,可根据以往交易数据,推测该供应商供应量的波动幅度,以制定出更加灵活的订购方案,削弱仓储成本,为企业带来更大收益。

供应商提供 A、B、C 三种原材料,容易发现,A、B、C 三种类型的原材料在采购单价不相等的同时,生产单位商品的消耗量也是不同的。其中,A 类型和 C 类型原材料生产单位商品的采购费用相等,且略低于 B 类型原材料(由于相差小于 1%,本文暂且忽略),进而认为三者的本征采购单价相等。为了便于研究,本文先对原材料做了等价代换:将其供应量以原材料的商品生产能力表示,采购单价也以本征采购单价表示。为了最大化经济效益,帮助生产企业做出决策,本文建立了供应量可预测的原材料订购、库存方案优化模型。

1.1 问题一

题目中要求对附件一中 402 家供应商进行量化分析,并建立供应商选择的评价指导体系,确定 44 家最重要的供应商。供应商的重要程度受多种因素影响,通过查阅相关文献,利用定量分析的方法,我们选取出适当的指标并根据熵值赋予权重,建立基于熵权逼近理想解方法的供应商排序模型,最后对供应商进行排序优选。

1.2 问题二

题目中要求在问题一结果的基础上,选出能满足企业生产需求的最少供应商,针对这些供应商分别制定最经济的订购方案和损耗最小的转运方案。我们首先利用 0-1 规划选出必要的供应商,同时为了保证原材料供应量充足,我们运用 LSTM 模型预测出转运商的供应水平,并建立了原材料订购方案的线性规划模型。通过对供应过程的计算机仿真,分析订购和转运模型的实施效果。

1.3 问题三

题目中要求在尽量多地采购 A 类和尽量少地采购 C 类原材料的前提下,制定最经济的原材料订购方案和损耗最小的转运方案,并分析方案的实施效果。本文发现,对原材料种类的限制,能通过对问题二模型进行扩展,在订购量分配时体现企业对原材料的偏好,进而通过优化模型制定了订购和转运方案。模型求解后,仍经过计算机仿真,分析模型的优化效果。

1.4 问题四

题目中要求在供应商和转运商有限的情况下,评估企业每周产能的上限。本题取消生产企业每周产能上限的同时,也消除了原材料的库存问题。而通过分析供货数据不难发现,向企业输送的最大供给量主要取决于转运商的转运能力。本问题也转化为在转运商以最大能力运输原材料时,一家供应商每周供应的原材料尽量由一家转运商运输。因此,本文主要对转运商的转运方案进行优化,并据此给出未来 24 周的订购和转运方案。最后我们对模型进行了中肯的评价和适当的推广。