02 Mechatronics Concepts

2025-10-19

Contents

1	Med	chatronics Concepts - Vision-Based Pick and Place System	2
	1.1	Overview	2
	1.2	1. Mechanical Systems	2
		1.2.1 1.1 Robot Manipulator Mechanics	2
		1.2.2 1.2 End-Effector (Gripper) Mechanisms	3
		1.2.3 1.3 Structural Dynamics	3
		1.2.4 1.4 Transmission Mechanisms	4
	1.3	2. Electrical Systems	4
		1.3.1 2.1 Power Systems	4
		1.3.2 2.2 Actuation Systems	4
		1.3.3 2.3 Motor Drives & Controllers	5
	1.4	3. Electronics & Sensors	5
		1.4.1 3.1 Vision Sensors	5
		1.4.2 3.2 Force/Torque Sensors	6
		1.4.3 3.3 Proximity & Limit Sensors	6
		1.4.4 3.4 Encoder Systems	7
	1.5	4. Control Systems	7
		1.5.1 4.1 Control Theory Fundamentals	7
		1.5.2 4.2 Motion Control Architectures	7
		1.5.3 4.3 Force Control	8
		1.5.4 4.4 Real-Time Control Systems	8
	1.6	5. Embedded Systems & Microcontrollers	8
		1.6.1 5.1 Microcontroller Units (MCU)	8
		1.6.2 5.2 Single-Board Computers (SBC)	9
	1.7	6. Signal Processing & Filtering	9
		1.7.1 6.1 Sensor Data Filtering	9
		1.7.2 6.2 Signal Conditioning Circuits	9
	1.8	7. Power Electronics	0
		1.8.1 7.1 Motor Drivers	0
		1.8.2 7.2 DC-DC Converters	0
	1.9	8. System Integration & Interfacing	.0
		1.9.1 8.1 Communication Protocols	.0
		1.9.2 8.2 Hardware Abstraction Layer (HAL)	
	1.10	9. Safety & Fault Tolerance	

	1.10.1 9.1 Safety-Rated Systems	11
	1.10.2 9.2 Fault Detection & Diagnosis	11
1.11	10. Mechatronics System Integration Map	11
	1.11.1 10.1 Subsystem Dependencies	11
	1.11.2 10.2 Signal Flow	12
1.12	11. Mechatronics Concept to Module Mapping	12
1.13	12. Design Considerations & Trade-offs	13
	1.13.1 12.1 Mechanical	13
	1.13.2 12.2 Electrical	
	1.13.3 12.3 Electronics	
	1.13.4 12.4 Control	13
1.14	Summary	13

1 Mechatronics Concepts - Vision-Based Pick and Place System

1.1 Overview

Mechatronics integrates Mechanical Engineering, Electrical Engineering, Electronics, and Computer Science to create intelligent systems. This document outlines all mechatronics concepts applied in the vision-based pick-and-place robotic system.

1.2 1. Mechanical Systems

1.2.1 1.1 Robot Manipulator Mechanics

1.2.1.1 1.1.1 Kinematic Chain

- Concept: Serial/parallel linkage configuration
- Types:
 - Serial manipulator (6-DOF arm: UR5, ABB, KUKA)
 - SCARA (Selective Compliance Assembly Robot Arm)
 - Delta robot (parallel kinematics)
- Application:
 - Workspace coverage analysis
 - Reachability studies
 - Joint limit constraints

1.2.1.2 1.1.2 Degrees of Freedom (DOF)

- Minimum DOF: 3 for positioning + 3 for orientation = 6 DOF
- Redundancy: >6 DOF for obstacle avoidance and singularity handling
- Application: Task-specific DOF selection

1.2.1.3 1.1.3 Link Geometry & D-H Parameters

- Denavit-Hartenberg Convention:
 - Link length (a)
 - Link twist ()

- Link offset (d)
- Joint angle ()

• Application:

- Forward kinematics modeling
- URDF generation

1.2.2 1.2 End-Effector (Gripper) Mechanisms

1.2.2.1 1.2.1 Gripper Types

- Parallel Jaw Gripper:
 - Two-finger, symmetric closure
 - Force transmission through linear actuation
- Suction Gripper:
 - Vacuum-based (for flat, non-porous objects)
 - Venturi effect or vacuum pump
- Adaptive Gripper:
 - Soft robotics, compliant fingers
 - Underactuated mechanisms

1.2.2.2 1.2.2 Gripper Kinematics & Force Analysis

• Grasp Force Calculation:

```
F_grasp = * N (friction force)
Object weight: W = m * g
Minimum normal force: N = W / (2 * )
```

- Gripper Opening Range: Adjustable for object size variation
- Compliance: Spring-loaded fingers for delicate objects

1.2.3 1.3 Structural Dynamics

1.2.3.1 1.3.1 Rigid Body Dynamics

- Equations of Motion:
 - Lagrangian mechanics
 - Newton-Euler recursive formulation
- Inertia Matrix: M(q)
- Coriolis/Centrifugal Forces: C(q, q)
- Gravity Vector: G(q)
- Equation: $M(q)\ddot{q} + C(q,\dot{q})\dot{q} + G(q) =$

1.2.3.2 Vibration Analysis

- Natural Frequencies: Avoid resonance
- **Damping:** Minimize oscillations during motion
- Application: Trajectory planning to reduce vibrations

1.2.4 1.4 Transmission Mechanisms

1.2.4.1 1.4.1 Gears & Reducers

- Harmonic Drive: High reduction ratio, zero backlash
- Planetary Gearbox: Compact, high torque
- Application: Joint actuation with torque amplification

1.2.4.2 1.4.2 Belts & Pulleys

- Timing Belts: Synchronous motion
- Application: Gripper actuation, linear motion stages

1.3 2. Electrical Systems

1.3.1 2.1 Power Systems

1.3.1.1 2.1.1 Power Distribution Architecture

- Input: AC mains (110-240V) or DC supply (24V/48V industrial)
- Power Tree:

Mains AC \rightarrow AC-DC Converter \rightarrow DC Bus (24V/48V)

- → Motor Drivers (servo/stepper)
- → Embedded Controllers (5V/12V regulators)
- → Sensors (3.3V/5V)
- → Vision System (12V)

1.3.1.2 2.1.2 Power Budget

Component	Voltage	Current	Power
6x Servo Motors	48V	10A	480W
Controller (Jetson)	12V	5A	60W
Camera System	12V	2A	24W
Gripper Actuator	24V	3A	72W
Total	-	-	636W

1.3.1.3 2.1.3 Protection Circuits

- Overcurrent Protection: Fuses, circuit breakers
- EMI/EMC Filtering: Noise suppression
- Grounding: Safety earth, signal ground isolation

1.3.2 2.2 Actuation Systems

1.3.2.1 2.2.1 Servo Motors

- Type: Brushless DC (BLDC) or AC servo
- Control: Position, velocity, torque modes

- Feedback: Encoders (incremental/absolute)
- Specifications:
 - Rated torque: 5-20 Nm
 - Speed: 3000 RPM
 - Resolution: 17-20 bit encoders

1.3.2.2 2.2.2 Stepper Motors

- **Type:** Hybrid stepper (1.8° or 0.9° step)
- Advantages: Open-loop positioning, no feedback required
- Disadvantages: Torque drops at high speed, step loss
- **Application:** Gripper actuation (if cost-sensitive)

1.3.2.3 2.2.3 Linear Actuators

- Types:
 - Electric: Ball screw, lead screw
 - Pneumatic: Air cylinders
- Application: Z-axis (vertical) motion, gripper open/close

1.3.3 2.3 Motor Drives & Controllers

1.3.3.1 2.3.1 Servo Drives

- Function: Commutate motor phases, close position/velocity loops
- Control Modes:
 - Position mode (PID)
 - Velocity mode
 - Torque mode
- Communication: EtherCAT, CANopen, Modbus, RS-485

1.3.3.2 2.3.2 Drive Tuning

- PID Parameters: Proportional, Integral, Derivative gains
- Auto-tuning: Some drives support automatic PID calibration
- Application: Minimize overshoot, settling time

1.4 3. Electronics & Sensors

1.4.1 3.1 Vision Sensors

1.4.1.1 3.1.1 RGB-D Cameras

- Models:
 - Intel RealSense D435/D455
 - Microsoft Azure Kinect
 - Orbbec Astra
- Outputs:
 - RGB image (1920x1080 @ 30fps)

- Depth map (aligned to RGB)
- Point cloud (XYZ + RGB)
- Interface: USB 3.0, USB-C
- **Application:** Object detection, pose estimation

- Principle: Triangulation from two camera views
- Calibration: Stereo calibration for disparity-to-depth
- Advantages: Passive, works in all lighting

1.4.1.3 3.1.3 Industrial Cameras

- Type: GigE Vision, USB3 Vision
- Features: Global shutter, high frame rate (60-120 fps)
- Application: High-speed pick-and-place

1.4.2 3.2 Force/Torque Sensors

1.4.2.1 3.2.1 6-Axis F/T Sensor

- Mounting: Between robot flange and gripper
- Measurements: Fx, Fy, Fz, Tx, Ty, Tz
- Resolution: 0.1-1 N force, 0.01-0.1 Nm torque
- Application:
 - Grasp force control
 - Collision detection
 - Contact detection (surface touch)

1.4.2.2 3.2.2 Signal Conditioning

- Amplification: Low-noise amplifiers
- **Filtering:** Low-pass filter (remove high-freq noise)
- Calibration: Zero-offset calibration, load compensation

1.4.3 3.3 Proximity & Limit Sensors

1.4.3.1 3.3.1 Inductive Proximity Sensors

- **Detection:** Metal objects (non-contact)
- Application: Detect gripper jaw position, home position

1.4.3.2 3.3.2 Photoelectric Sensors

- Types: Through-beam, retro-reflective, diffuse
- **Application:** Object presence detection on conveyor

1.4.3.3 3.3.3 Limit Switches

- **Type:** Mechanical, magnetic (hall-effect)
- Application: End-of-travel detection, safety interlocks

1.4.4 3.4 Encoder Systems

1.4.4.1 3.4.1 Rotary Encoders

- Types:
 - Incremental (A/B quadrature, index)
 - Absolute (multi-turn)
- Resolution: 1000-10000 CPR (counts per revolution)
- Application: Joint position feedback

1.4.4.2 3.4.2 Linear Encoders

- Principle: Optical/magnetic scale reading
- Application: Linear stage position measurement

1.5 4. Control Systems

1.5.1 4.1 Control Theory Fundamentals

1.5.1.1 4.1.1 PID Control

- Equation: $u(t) = Kp \cdot e(t) + Ki \cdot e(t)dt + Kd \cdot de(t)/dt$
- Tuning Methods:
 - Ziegler-Nichols
 - Manual tuning
 - Auto-tuning algorithms
- Application: Joint position/velocity control

1.5.1.2 4.1.2 Feedforward Control

- Concept: Compensate known disturbances (gravity, friction)
- Equation: _ff = G(q) + friction_model(\(\dd{q}\))
- Application: Improve trajectory tracking

1.5.1.3 4.1.3 State-Space Control

- Representation: $\dot{x} = Ax + Bu$, y = Cx
- Controllers: LQR (Linear Quadratic Regulator)
- Application: Advanced multi-variable control

1.5.2 4.2 Motion Control Architectures

1.5.2.1 4.2.1 Cascaded Control Loops

Position Loop (outer)
$$\rightarrow$$
 Velocity Loop (middle) \rightarrow Current Loop (inner) 10-100 Hz 1 kHz 10 kHz

1.5.2.2 4.2.2 Trajectory Interpolation

- Point-to-Point: Trapezoidal, S-curve velocity profiles
- Continuous Path: Spline interpolation

• Real-Time: Update setpoints at control frequency

1.5.3 4.3 Force Control

1.5.3.1 4.3.1 Impedance Control

- Equation: $F = M \cdot \ddot{x} + D \cdot \dot{x} + K \cdot x$
- Application: Compliant contact, assembly tasks

1.5.3.2 4.3.2 Admittance Control

- Inverse of Impedance: Compute desired motion from measured force
- Application: Human-robot collaboration, delicate grasping

1.5.4 4.4 Real-Time Control Systems

1.5.4.1 4.4.1 Real-Time Operating Systems (RTOS)

- Examples: RT-Preempt Linux, FreeRTOS, QNX
- Requirements:
 - Deterministic latency (<1 ms jitter)
 - Priority-based scheduling
- Application: Hard real-time control loops

1.5.4.2 4.4.2 Control Frequency Requirements

Control Level	Frequency	Latency Req.
Current Control	$10\text{-}20~\mathrm{kHz}$	<100 μs
Velocity Control	$1-5~\mathrm{kHz}$	<1 ms
Position Control	$100\text{-}1000~\mathrm{Hz}$	$<10~\mathrm{ms}$
Task Planning	1-10 Hz	<100 ms

1.6 5. Embedded Systems & Microcontrollers

1.6.1 5.1 Microcontroller Units (MCU)

1.6.1.1 5.1.1 MCU Selection

- Low-Level Control: STM32, Arduino (gripper, simple I/O)
- Application: PWM generation, encoder reading, I/O interfacing

1.6.1.2 5.1.2 Communication Interfaces

- UART/Serial: Legacy motor controllers
- SPI/I2C: Sensor interfaces
- CAN Bus: Industrial communication
- EtherCAT: High-speed distributed I/O

1.6.2 5.2 Single-Board Computers (SBC)

1.6.2.1 5.2.1 SBC Options

- NVIDIA Jetson (Nano/Xavier/Orin):
 - GPU for AI inference
 - Application: Vision processing, deep learning
- Raspberry Pi:
 - Low cost, general-purpose
 - Application: Lightweight tasks, prototyping
- Industrial PC (x86):
 - High compute, ROS2 master
 - Application: MoveIt planning, system orchestration

1.7 6. Signal Processing & Filtering

1.7.1 6.1 Sensor Data Filtering

1.7.1.1 6.1.1 Low-Pass Filter

- Purpose: Remove high-frequency noise
- Types:
 - Moving average
 - Exponential smoothing
 - Butterworth filter
- Application: Smooth encoder readings, force sensor data

1.7.1.2 6.1.2 Kalman Filter

- Purpose: Optimal state estimation with noisy measurements
- **Application:** Fuse multiple sensors (vision + encoder)

1.7.1.3 6.1.3 Median Filter

- **Purpose:** Remove outliers/spikes
- Application: Depth image denoising

1.7.2 6.2 Signal Conditioning Circuits

1.7.2.1 6.2.1 Amplification

- Instrumentation Amplifiers: High CMRR for differential signals
- Application: Strain gauge, load cell amplification

1.7.2.2 6.2.2 Analog-to-Digital Conversion (ADC)

- Resolution: 12-16 bit
- Sampling Rate: 1-100 kHz
- Application: Force sensor, analog encoder readout

1.8 7. Power Electronics

1.8.1 7.1 Motor Drivers

1.8.1.1 7.1.1 H-Bridge

- Function: Bidirectional current control for DC motors
- Components: MOSFETs, gate drivers
- Application: DC motor speed/direction control

1.8.1.2 7.1.2 Three-Phase Inverter

- Function: Drive BLDC/AC servo motors
- Modulation: PWM (Space Vector Modulation, Sinusoidal PWM)
- Application: High-performance servo drives

1.8.2 7.2 DC-DC Converters

1.8.2.1 7.2.1 Buck Converter (Step-Down)

- Input: $48V \rightarrow Output: 12V/5V$
- Efficiency: 85-95%
- Application: Power embedded systems from main DC bus

1.8.2.2 7.2.2 Boost Converter (Step-Up)

• Application: Battery-powered systems

1.9 8. System Integration & Interfacing

1.9.1 8.1 Communication Protocols

1.9.1.1 8.1.1 Industrial Ethernet

- EtherCAT:
 - Real-time, deterministic
 - Cycle time: <1 ms
 - Application: Servo drive network
- PROFINET, Ethernet/IP: Alternatives

1.9.1.2 8.1.2 Fieldbus

- CAN Bus:
 - Multi-master, robust
 - Application: Distributed sensors/actuators
- Modbus RTU/TCP: Legacy industrial devices

1.9.1.3 8.1.3 USB

- USB 3.0/3.1: Camera data transfer
- USB-Serial: MCU communication

1.9.2 8.2 Hardware Abstraction Layer (HAL)

1.9.2.1 8.2.1 ROS2 Control Framework

- Concept: Standardized interface between controllers and hardware
- Components:
 - Hardware Interface (read/write joint states)
 - Controller Manager
 - Controllers (position, velocity, effort)
- Application: Portable control code across robot platforms

1.10 9. Safety & Fault Tolerance

1.10.1 9.1 Safety-Rated Systems

1.10.1.1 9.1.1 Emergency Stop (E-Stop)

- Category: SIL 2 / PLd (ISO 13849)
- Implementation: Dual-channel, monitored E-stop button
- Action: Power cut to motors, safe state

1.10.1.2 9.1.2 Safety PLCs

- Function: Monitor safety zones, light curtains, door interlocks
- Communication: Safe EtherCAT (FSoE)

1.10.2 9.2 Fault Detection & Diagnosis

1.10.2.1 9.2.1 Sensor Fault Detection

- Methods:
 - Range checks (out-of-bounds values)
 - Redundancy (compare dual sensors)
 - Plausibility checks
- Action: Switch to fallback mode, alert operator

1.10.2.2 9.2.2 Actuator Fault Detection

- Following Error Monitoring: Commanded vs actual position deviation
- Overcurrent Detection: Motor overload
- Action: Stop motion, trigger alarm

1.11 10. Mechatronics System Integration Map

1.11.1 10.1 Subsystem Dependencies

CONTROL SYSTEM (Software)
ROS2 / MoveIt / Vision AI / Task Planner

```
ELECTRICAL POWER

- Power Supply

- Motor Drivers

- Distribution

- ADC/DAC

ELECTRONICS

- Sensors (Camera, F/T, Proximity)

- Signal Cond.
```

ACTUATION (Mechanical)

- Servo Motors → Gearbox → Joints
- Gripper Actuator
- Linkages, Kinematics

1.11.2 10.2 Signal Flow

```
Vision Sensor (RGB-D) → USB 3.0 → Jetson (AI Processing)

↓

Object Pose (x,y,z,roll,pitch,yaw)

↓

IK Solver → Joint Angles (1..6)

↓

Trajectory Planner → Waypoints

↓

Controller Manager → Motor Commands

↓

Servo Drives (EtherCAT) → Motors → Joint Motion

↓

Encoders → Position Feedback → Controller
```

1.12 11. Mechatronics Concept to Module Mapping

Mechatronics Concept	Module/Component	Department
Link Dynamics (M, C, G)	Robot URDF, Dynamics Engine	Mechanical
Gripper Mechanism	Parallel Jaw Gripper, Pneumatic/Electric	Mechanical
Power Distribution	48V DC Bus, Regulators	Electrical
Servo Motor Control	Servo Drives (EtherCAT)	Electrical
Motor Drive	Motor Driver Boards	Electrical
(H-Bridge/Inverter)		
RGB-D Camera	RealSense D435, Vision Pipeline	Electronics
Force/Torque Sensor	ATI F/T Sensor, Data Acquisition	Electronics

Mechatronics Concept	Module/Component	Department
Encoder Feedback	Absolute Encoders, Quadrature Interface	Electronics
PID Control	ros2_control Controllers	Software/Control
Impedance Control	Admittance Controller Node	Software/Control
Real-Time Control Loop	RT-Preempt Kernel, RTOS	Software
EtherCAT Communication	IgH EtherCAT Master, Driver Nodes	Software
Emergency Stop	Safety PLC, E-Stop Circuit	Safety/Elect.
Sensor Filtering	Kalman Filter, Moving Avg Node	Software

1.13 12. Design Considerations & Trade-offs

1.13.1 12.1 Mechanical

- Stiffness vs Weight: High stiffness \rightarrow heavy \rightarrow slower motion
- Backlash: Harmonic drives (zero backlash) vs gearboxes (cheaper, backlash)

1.13.2 12.2 Electrical

- Voltage Selection: Higher voltage \rightarrow lower current \rightarrow less heating, but safety concerns
- Motor Sizing: Continuous vs peak torque requirements

1.13.3 12.3 Electronics

- Camera Resolution vs Frame Rate: Higher res \rightarrow lower FPS
- Sensor Accuracy vs Cost: High-res encoders expensive

1.13.4 12.4 Control

- Sampling Frequency: Higher → better performance, but more compute load
- Model-Based vs Learning-Based: Analytical control (robust) vs RL (adaptive, data-hungry)

1.14 Summary

This vision-based pick-and-place system is a **comprehensive mechatronics integration** spanning:

- Mechanical: 6-DOF manipulator, gripper mechanisms, transmission systems
- Electrical: Power distribution (48V DC bus), servo drives, motor control
- Electronics: RGB-D camera, F/T sensors, encoders, signal conditioning
- Control: PID, impedance control, real-time loops (10 kHz current, 1 kHz velocity)
- Embedded: Jetson for vision, MCU for low-level I/O, EtherCAT for real-time comms

Each subsystem is tightly coupled, requiring cross-disciplinary design and validation.

Next Steps: 1. Create detailed CAD models (mechanical) 2. Design electrical schematics and PCBs 3. Select and procure sensors/actuators 4. Develop control firmware and ROS2 drivers 5. Integrate and test subsystems incrementally

Document Status: Complete **Last Updated:** 2025-10-18 **Author:** Mechatronics Team **Review Status:** Pending Review