

Planning, Learning and **Decision Making**

Lecture 6. Markov decision problems

Sequential decision problems

The household robot

Household robot

Consider the household

Household robot

- Robot moves in the environment, assisting human users
- When at the Hall, receives a request from the Kitchen

A single decision

- We can model the problem as a single decision
- Robot must select among several paths

Path A

Hall → Living room → Hallway 1 → Pantry → Kitchen

Path B

Hall → Hallway 2 → Living room → Hallway 1 → Pantry → Kitchen

Path C

Hall → Living room → Bedroom → Hallway 1 → Pantry → Kitchen

Path D

Hall → Hallway 2 → Living room → Bedroom → Hallway 1 → Pantry → Kitchen

A single decision

- Moving between two rooms takes around 30 seconds
- In steps, with a probability 0.4, it takes around 80 seconds

Decision tree

$$Q(A) = -140$$

$$Q(B) = -190$$

$$Q(C) = -150 \quad Q(D) = -200$$

Observation n. 1

Costs vs. utility

- In many problems, we use **negative utilities**
- E.g., the student problem:
 - We used negative utilities to express loss in grades
- E.g., the robot problem:
 - We used negative utilities to express loss in time

Negative utility = cost

The notion of "goal"

- Cost (or utility) implicitly express the **goal** of the decision maker
- We are the **designers** of such goal: we provide the decisionmaker/agent with a cost (or utility)
- The cost expresses our own preferences (as designers) regarding the behavior of the agent

Observation n. 2

Sequential problems

Sequential problems (like the household robot) are poorly modeled by listing all sequences of actions

Sequence of decisions

The household robot (revisited)

Household robot

Consider the household

Household robot

- Robot moves in the environment, assisting human users
- When at the Hall, receives a request from the Kitchen

One "movement", one decision

Sequence of decisions

At each step, the robot has available a set of actions:

$$\mathcal{A} = \{U(p), D(own), L(eft), R(ight), S(tay)\}$$

Same symbol as before

Sequence of decisions

Motions across a step fail with probability 0.4

Movement of the robot

Sequence of decisions

- At each step, what does the decision of the robot depend on?
 - Position of the robot
 - Cost of outcome (1 whenever not in kitchen)

Example

If the robot is at the Pantry...

Example

• If the robot is in the Living room...

Immediate cost

- The cost used evaluates instantaneously the position/action of the robot
- It does not provide **long term** information
- We will call it the **immediate cost**

Two difficulties:

- 1. How to describe/model such a problem (in general)?
- 2. How to solve it (in general)?

Markov decision processes

Identify the **information** that the decision depends on

Identify the **actions** that the agent can take

Describe the action outcomes

Describe the **goal** of the agent

States

States

- Relevant information for decision making
- We represent the state at time t as x_t
- Set of possible states is \mathcal{X} (finite, most of the time)
- Each step, the agent makes a decision (decision epoch)

Actions

Action

- Means by which the agent influences the "environment"
- We represent the action at time t as a_t
- Set of possible actions is \mathcal{A} (finite)

Dynamics

Dynamics

- Describe how the state evolves as a consequence of the agent's actions
- We assume that it verifies the Markov property

Markov property

Key Property: Markov property

The state at instant t + 1 depends only on the state and action at time step t, i.e.,

$$\mathbb{P}\left[\mathbf{x}_{t+1} = y \mid \mathbf{x}_{0:t} = \mathbf{x}_{0:t}, \mathbf{a}_{0:t} = \mathbf{a}_{0:t}\right] = \mathbb{P}\left[\mathbf{x}_{t+1} = y \mid \mathbf{x}_{t} = x_{t}, \mathbf{a}_{t} = a_{t}\right]$$

Controlled Markov chain

Additional assumptions:

The probabilities $\mathbb{P}\left[\mathbf{x}_{t+1}=y\mid\mathbf{x}_{t}=x,\mathbf{a}_{t}=a\right]$ do not depend on t Transition probability from x to y given a

• For each action $a \in \mathcal{A}$, we store the transition probabilities in a **matrix P**_a

$$[\mathbf{P}_a]_{xy} = \mathbb{P}[\mathbf{x}_{t+1} = y \mid \mathbf{x}_t = x, \mathbf{a}_t = a]$$

Costs

Immediate costs

- Instantaneously evaluates state and action
- Represented as a function $c: \mathcal{X} \times \mathcal{A} \to \mathbb{R}$
- For simplicity, we assume that $c(x, a) \in [0, 1]$

Markov decision process

- Model for sequential decision processes
- Described by:
 - State space, \mathcal{X}
 - Action space, \mathcal{A}
 - Transition probabilities, $\{\mathbf{P}_a, a \in \mathcal{A}\}$
 - Immediate cost function, c

Useful notation

- Sometimes we write:
 - $P(y \mid x, a)$ to denote $[P_a]_{xy}$

Useful notation

- Sometimes we write:
 - **C** to denote the cost matrix, with $[\mathbf{C}]_{xa} = c(x, a)$

$$C = \begin{bmatrix} c(x_1, a_1) & c(x_1, a_2) & \dots & c(x_1, a_M) \\ c(x_2, a_1) & c(x_2, a_2) & \dots & c(x_2, a_M) \\ \vdots & & \ddots & \vdots \\ c(x_N, a_1) & c(x_N, a_2) & \dots & c(x_N, a_M) \end{bmatrix}$$

Useful notation

- Sometimes we write:
 - $C_{:,a}$ to denote the (column) vector with x component c(x,a)

Markov decision process

- States:
 - $\mathcal{X} = \{0, A, B\}$

- Actions:
 - $\mathcal{A} = \{a, b\}$

Transition probabilities:

$$\mathbf{P}_a = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{P}_b = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Cost:

$$\mathbf{C} = \begin{bmatrix} 1 & \frac{1}{2} \\ 0 & 0 \\ 1 & 1 \end{bmatrix}$$

What is the best decision?

- Depends on what "best" means
 - If single decision, then best is b
 - If multiple decisions, then best is a

- A company wants to hire a computer engineer
- After initial trial, N candidates are selected for interview

- Candidates are interviewed sequentially
- Order of the candidates for interview was selected randomly

- Manager must decide, after each interview, whether to hire or not (no second chances)
- Manager knows whether an interviewed candidate is the best so far
- If no candidate has been hired in the meantime, candidate N is necessarily hired

- What are the states?
 - What is relevant for the manager's decision?
 - Current candidate best so far or not
 - How many candidates have been interviewed/are missing
 - State-space:
 - $\mathcal{X} = \{(B, 1), (B, 2), (\neg B, 2), ..., (B, N), (\neg B, N), H\}$ Best so far

- What are the actions?
 - $\mathscr{A} = \{H, \neg H\}$

- Transition probabilities:
 - ... tough!

- Transition probabilities:
 - What is the probability that the (n + 1)th candidate is the best so far?

Probability that the best among first n+1 candidates is candidate n+1?

$$1/(n+1)$$

- Transition probabilities:
 - What is the probability that the (n + 1)th candidate is the best so far?
 - 1/(n+1)
 - What's the probability that the (n + 1)th candidate is **not** the best so far?
 - n/(n+1)

- Cost:
 - ... hiring a guy who is not the best so far incurs maximum cost (clearly, that guy is not the best)
 - ... what about hiring a guy who is the best so far after n interviews?
 - How likely is it that it is not the best overall?

- Cost:
 - ... hiring a guy who is not the best so far incurs maximum cost (clearly, that guy is not the best)
 - ... what about hiring a guy who is the best so far after n interviews?
 - How likely is it that it is not the best overall?
 - (N n) / N

Putting everything together:

Decisions with Markov decision processes

Optimality?

- Given a Markov decision process, $(\mathcal{X}, \mathcal{A}, \{P_a\}, c)$...
 - ... what do we want to do?

Optimality

- What are the "best" actions?
- We need a criterion to compare different ways of selecting actions

Optimality criterion

What is the best action?

If there is a single decision, b is the best!

Discounted cost-to-go

- Assumptions:
 - The agent lives forever (we don't know n. of decisions)
 - There is an inflation rate (costs in the future are not as bad as costs now)
 - Agent wants to pay as little as possible

Discounted cost-to-go

Discounted cost-to-go

- What is the discounted cost-to-go if we always select b?
 - It depends on where we start!

What if we start in A?

$$J(A) = 0 + \gamma 0 + \dots = 0$$

Cost-to-go if we start in A

What if we start in *B*?

$$J(B) = 1 + \gamma 1 + \dots$$
$$= \frac{1}{1 - \gamma}$$

What if we start in 0?

$$J(0) = 0.5 + \gamma 1 + \gamma^2 1 + \dots$$

$$= 0.5 + \gamma (1 + \gamma 1 + \dots)$$

$$= 0.5 + \gamma J(B)^{J(B)}$$

$$= \frac{1}{2} \cdot \frac{1 + \gamma}{1 - \gamma}$$

 What is the discounted cost-to-go if we always select b?

$$\boldsymbol{J} = \begin{bmatrix} \frac{1}{2} \cdot \frac{1+\gamma}{1-\gamma} \\ 0 \\ \frac{1}{1-\gamma} \end{bmatrix}$$

