AGENCY IN GRAPHICAL MODELS OF CONTAGION

ETHAN KELLY

ETHAN KELLY

Email: E.Kelly.1@research.gla.ac.uk

Supervisor: Jessica Enright

Email: Jessica.Enright@glasgow.ac.uk

DEPARTMENT OF COMPUTING SCIENCE SIR ALWYN WILLIAMS BUILDING UNIVERSITY OF GLASGOW G12 8QN

1. Introduction

Much work has been done to understand graph problems, such as the Firefighter Problem (which we refer to simply as FIREFIGHTER), first proposed by Hartnell [2] and surveyed in great detail by Finbow and MacGillivray [1]. This problem and other similar ones, such as The Firebreak Problem (again, referred to as FIREBREAK) have now enjoyed a plethora of results in a purely graph-theoretic context. However, modelling contagion requires relaxing and adapting some assumptions present in the original formulations of these problems. Such assumptions may be that populations are well-mixed (regular graphs) and we have fully predictable outcomes each turn (non-stochastic behaviour). We propose a number of ways to amend these assumptions in this paper to yield a method for contagion modelling that can provide more realistic and contextualised results with agency-specific attributes for each vertex. This may involve providing a defence rating $d \in [0,1]$, where 0 represents a vertex with no protection from the contagion and 1 is a vertex that is fully defended.

2. Background

2.1. **Firefighter.** The following is a decision formulation given by Finbow and MacGillivray for FIREFIGHTER on a tree [1]:

FIREFIGHTER

INSTANCE: A rooted graph (G, r) and an integer $k \geq 1$.

QUESTION: Is there a finite sequence $d_1, d_2, \dots d_t$ of vertices of the graph G such that:

- i d_i is neither burned nor defended at time i,
- ii At time t, no undefended vertex is adjacent to a burning vertex, and
- iii At least k vertices are saved at the end of time t?

2.2. **Agency.**

References

- [1] S. Finbow and G. MacGillivray, *The firefighter problem: A survey of results, directions and questions*, The Australasian Journal of Combinatorics, 43 (2009).
- [2] B. L. Hartnell, Firefighter! an application of domination, in 25th Manitoba Conference on Combinatorial Mathematics and Computing, University of Manitoba in Winnipeg, Canada, 1995.

ETHAN KELLY

 $Email: {\tt E.Kelly.1@research.gla.ac.uk}$

Supervisor: Jessica Enright

Email: Jessica.Enright@glasgow.ac.uk

DEPARTMENT OF COMPUTING SCIENCE SIR ALWYN WILLIAMS BUILDING UNIVERSITY OF GLASGOW G12 8QN