Radix Sort

- The main shortcoming of counting sort is that it is useful for small integers, i.e., 1..k where k is small.
- If k were a million or more, the size of the rank array would also be a million.
- Radix sort provides a nice work around this limitation by sorting numbers one digit at a time.

Consider the unsorted input array as

170	45	75	90	802	24	2	66

Now apply the counting sort on the above input array but in a base 10th manner.

1. First consider the one's place

17 <u>0</u>	4 <u>5</u>	7 <u>5</u>	9 <u>0</u>	80 <u>2</u>	2 <u>4</u>	<u>2</u>	6 <u>6</u>

Counting sort applied

C=	0	1	2	3	4	5	6
	2	0	2	0	1	2	1

Now do C[i] = c[i] + c[i-1] where i = 2 we get

C=	0	1	2	3	4	5	6
	2	2	4	4	5	7	8

Now create output array B of size B[1..n]

Starting reading original array 'A' from right to left

17 <u>0</u> 4 <u>5</u>	7 <u>5</u>	9 <u>0</u>	80 <u>2</u>	2 <u>4</u>	<u>2</u>	6 <u>6</u>
					1	

$$B\left[C\big[A[i]\big]\right] = A[i]$$

B=	1	2	3	4	5	6	7	8
				2				66
C=	0	1	2	3	4	5	6	_
	2	2	3	4	5	7	7	

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
B= 1 2 3 4 5 6 7 8 90 802 2 24 75 66 C= 0 1 2 3 4 5 6 1 2 2 4 4 6 7						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
B= 1 2 3 4 5 6 7 8 90 802 2 24 45 75 66 C= 0 1 2 3 4 5 6 1 2 2 4 4 5 7						
170 45 75 90 802 24 2 66 ↑ $B[C[A[i]]] = A[i]$						
B= 1 2 3 4 5 6 7 8 170 90 802 2 24 45 75 66						
C= 0 1 2 3 4 5 6 0 2 2 4 4 5 7						

Now consider 10th place; consider zero if the number. don't have 10th place

170	90	802	02	24	45	75	66
_							

Again, apply the counting sort for the 10th place, as shown in the grey area, we get

802	2	24	45	66	170	75	90

Now consider 100th place.

<u>8</u> 02	<u>0</u> 02	<u>0</u> 24	<u>0</u> 45	<u>0</u> 66	<u>1</u> 70	<u>0</u> 75	<u>0</u> 90
-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------

Consider zero if the number, don't have 100th place, again, apply counting sort as shown in the grey area, and we get

2 24 4	45 66 7	75 90	170	802
--------	---------	-------	-----	-----

Now the array is sorted

Assignment 2: write the pseudocode of Radix Sort.