

🥇 Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS15070058001

FCC REPORT

Applicant: HUNG WAI PRODUCTS LIMITED

Address of Applicant: Unit 11, 12/F., New Commerce Centre, 19 On Sum Street,

Shatin, Hong Kong

Equipment Under Test (EUT)

Product Name: 15.6" Android touch LCD Media Player

Model No.: DT156-AC4-720, 502-1569ATATM

FCC ID: 2AB6Z-DT156-AC4

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 22 Jul., 2015

Date of Test: 23 Jul., to 26 Aug., 2015

Date of report issued: 26 Aug., 2015

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	26 Aug., 2015	Android player Main board with wireless module (FCC ID: 2AB6Z-1859ATMB) and same antenna were used by the device, only conducted emission and Radiated emission were re-tested.

Prepared by: Sera Yim Date: 26 Aug., 2015

Reviewed by: One Date: 26 Aug., 2015

Project Engineer

3 Contents

		F	Page
1	C	COVER PAGE	1
2	V	/ERSION	2
3		CONTENTS	3
4		EST SUMMARY	
5	C	GENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST MODE	7
	5.4	LABORATORY FACILITY	7
	5.5	LABORATORY LOCATION	7
	5.6	TEST INSTRUMENTS LIST	8
6	Т	EST RESULTS AND MEASUREMENT DATA	9
	6.1	Antenna requirement	9
	6.2	CONDUCTED EMISSIONS	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	20dB Occupy Bandwidth	
	6.5	CARRIER FREQUENCIES SEPARATION.	
	6.6	HOPPING CHANNEL NUMBER	
	6.7	DWELL TIME	
	6.8	PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
	6.9	BAND EDGE	
	_	5.9.1 Conducted Emission Method	
		5.9.2 Radiated Emission Method	
	6.10) Spurious Emission	
	•	5.10.2 Radiated Emission Method	
_			
7	- 1	EST SETUP PHOTO	29
8	E	EUT CONSTRUCTIONAL DETAILS	31

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass*
20dB Occupied Bandwidth	15.247 (a)(1)	Pass*
Carrier Frequencies Separation	15.247 (a)(1)	Pass*
Hopping Channel Number	15.247 (a)(1)	Pass*
Dwell Time	15.247 (a)(1)	Pass*
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass*

Pass: The EUT complies with the essential requirements in the standard.

Pass*: The test data refer to FCC ID: 2AB6Z-1859ATMB.

5 General Information

5.1 Client Information

Applicant:	HUNG WAI PRODUCTS LIMITED
Address of Applicant:	Unit 11, 12/F., New Commerce Centre, 19 On Sum Street, Shatin, Hong Kong
Manufacturer:	HUNG WAI ELECTRONICS (HUIZHOU) LTD.
Address of Manufacturer:	3 rd floor, NO. 3, Minfeng Road, Huinan High and New Technology Industry Park, Huiao Avenue, Huizhou City, Guangdong, China

5.2 General Description of E.U.T.

5 1 111	15 6" Andraid touch I CD Madia Player		
Product Name:	15.6" Android touch LCD Media Player		
Model No.:	DT156-AC4-720, 502-1569ATATM		
Operation Frequency:	2402MHz~2480MHz		
Transfer rate:	1/2/3 Mbits/s		
Number of channel:	79		
Modulation type:	GFSK, π/4-DQPSK, 8DPSK		
Modulation technology:	FHSS		
Antenna Type:	Omni-directional		
Antenna gain:	2.5 dBi		
AC Adapter:	MODEL: PS24A120K2000UD		
	Input: AC 100-240V 50/60Hz 1.0A		
	Output: DC 12V, 2000mA		

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Report No: CCIS15070058001

5.3 Test mode

Transmitting mode:	Keep the EUT in transmitting mode with worst case data rate.
Remark	8DPSK (3 Mbps) is the worst case mode.

The sample was placed 0.8m above the ground plane of 3m chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working with a fresh battery, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

● IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.6 Test Instruments list

Radiated Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017			
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	03-28-2015	03-28-2016			
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016			
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			
5	Amplifier(10kHz- 1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016			
6	Amplifier(1GHz- 18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016			
7	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016			
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016			
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A			
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A			
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	03-28-2015	03-28-2016			
12	EMI Test Receiver Rohde & Schwarz		ESCI	CCIS0002	03-28-2015	03-28-2016			
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016			
14	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	03-28-2015	03-28-2016			
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-08-2015	04-08-2016			

Conducted Emission:										
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)				
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-10-2012	11-09-2015				
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016				
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016				
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016				
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A				

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna of EUT is a reverse-SMA connector, which cannot be replaced by end-user. And the antenna gain is 2.5 dBi.

6.2 Conducted Emissions

 - Contacted Emissions							
Test Requirement:	FCC Part 15 C Section 15.207						
Test Method:	ANSI C63.10:2009						
Test Frequency Range:	150 kHz to 30 MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9 kHz, VBW=30 kHz, S	weep time=auto					
Limit:	Frequency range (MHz) Limit (dBuV)						
	Quasi-peak Average						
	0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50						
	* Decreases with the logarithn	n of the frequency.					
Test setup:	Reference Plane						
	AUX Equipment E.U.T EMI Receiver Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m						
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. 						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Bluetooth (Continuous transm	itting) mode					
Test results:	Pass						
	·						

Measurement Data

Line:

Trace: 5

Site

Condition

: CCIS Shielding Room : FCC PART 15C QP LISN LINE : 15.6" Android touch LCD Media Player : DT156-AC4-720 EUT

Model

Test Mode : BT mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: Viki

Remark

NCMALK	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∇	<u>dB</u>		dBu₹	dBu∜	<u>dB</u>	
1	0.150	47.48	0.27	10.78	58.53	66.00	-7.47	QP
2	0.155	33.68	0.27	10.78	44.73	55.74	-11.01	Average
3	0.200	44.07	0.28	10.76	55.11	63.62	-8.51	QP
1 2 3 4 5 6 7 8 9	0.200	32.24	0.28	10.76	43.28	53.62	-10.34	Average
5	0.481	24.08	0.29	10.75	35.12	46.32	-11.20	Average
6	0.739	34.22	0.22	10.79	45.23	56.00	-10.77	QP
7	1.552	21.83	0.26	10.93	33.02	46.00	-12.98	Average
8	2.023	36.61	0.26	10.96	47.83	56.00	-8.17	QP
9	2.066	21.30	0.26	10.96	32.52	46.00	-13.48	Average
10	3.623	36.97	0.28	10.90	48.15	56.00	-7.85	QP
11	6.186	39.25	0.31	10.82	50.38	60.00	-9.62	QP
12	6.285	30.63	0.31	10.81	41.75	50.00	-8.25	Average

Neutral:

Trace: 7

Site

Condition

: CCIS Shielding Room : FCC PART 15C QP LISN NEUTRAL : 15.6" Android touch LCD Media Player EUT

: DT156-AC4-720 Model Test Mode : BT mode Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: Viki

Remark

Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
MHz	dBu√	<u>dB</u>		dBu₹	dBu₹	<u>dB</u>	
0.220	26.95	0.25	10.76	37.96	52.83	-14.87	Average
0.325	35.85	0.26	10.73	46.84	59.57	-12.73	QP
0.356	24.64	0.25	10.73	35.62	48.83	-13.21	Average
0.499	31.72	0.29	10.76	42.77	56.01	-13.24	QP
0.705	34.62	0.18	10.77	45.57	56.00	-10.43	QP
0.731	26.62	0.18	10.78	37.58	46.00	-8.42	Average
2.636	21.30	0.29	10.93	32.52	46.00	-13.48	Average
2.946	28.00	0.29	10.92	39.21	56.00	-16.79	QP
6.121	27.23	0.27	10.82	38.32	60.00	-21.68	QP
7.893	22.34	0.26	10.84	33.44	50.00	-16.56	Average
18.232	32.97	0.26	10.91	44.14	60.00	-15.86	QP
18.328	24.16	0.26	10.91	35.33	50.00	-14.67	Average
	Freq MHz 0.220 0.325 0.356 0.499 0.705 0.731 2.636 2.946 6.121 7.893 18.232	Read Level MHz dBuV 0.220 26.95 0.325 35.85 0.356 24.64 0.499 31.72 0.705 34.62 0.731 26.62 2.636 21.30 2.946 28.00 6.121 27.23 7.893 22.34 18.232 32.97	Read LISN Level Factor MHz dBuV dB 0.220 26.95 0.25 0.325 35.85 0.26 0.356 24.64 0.25 0.499 31.72 0.29 0.705 34.62 0.18 0.731 26.62 0.18 2.636 21.30 0.29 2.946 28.00 0.29 6.121 27.23 0.27 7.893 22.34 0.26 18.232 32.97 0.26	Read LISN Cable Level Factor Loss MHz dBuV dB dB	Read LISN Cable Level Factor Loss Level MHz dBuV dB dB dB dBuV 0.220 26.95 0.25 10.76 37.96 0.325 35.85 0.26 10.73 46.84 0.356 24.64 0.25 10.73 35.62 0.499 31.72 0.29 10.76 42.77 0.705 34.62 0.18 10.77 45.57 0.731 26.62 0.18 10.78 37.58 2.636 21.30 0.29 10.93 32.52 2.946 28.00 0.29 10.92 39.21 6.121 27.23 0.27 10.82 38.32 7.893 22.34 0.26 10.84 33.44 18.232 32.97 0.26 10.91 44.14	Read LISN Cable Limit Line Read Level Factor Loss Level Line	Read LISN Cable Limit Over Limit Limit

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

FCC Part 15 C Section 15.247 (b)(3)
ANSI C63.10:2009
RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=3MHz, VBW=10MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz)
125 mW(21 dBm)
Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Refer to section 5.7 for details
Non-hopping mode
Refer to FCC ID: 2AB6Z-1859ATMB

6.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2009
Receiver setup:	RBW=30 kHz, VBW=100 kHz, detector=Peak
Limit:	NA
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Non-hopping mode
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB

6.5 Carrier Frequencies Separation

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2009
Receiver setup:	RBW=100 kHz, VBW=300 kHz, detector=Peak
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Hopping mode
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB

6.6 Hopping Channel Number

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2009
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak
Limit:	15 channels
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Hopping mode
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB

6.7 Dwell Time

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2009
Receiver setup:	RBW=1 MHz, VBW=1 MHz, Span=0 Hz, Detector=Peak
Limit:	0.4 Second
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Hopping mode
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB

6.8 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part 15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29-1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

6.9 Band Edge

6.9.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2009
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Detector=Peak
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Non-hopping mode and hopping mode
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB

6.9.2 Radiated Emission Method

0.5.2	Radiated Lillission Met	iiioa				
	Test Requirement:	FCC Part 15 C	Section 15.20	9 and 15.205		
	Test Method:	ANSI C63.10:20	09			
	Test Frequency Range:	2.3GHz to 2.5G	Hz			
	Test site:	Measurement D	istance: 3m			
	Receiver setup:	Frequency	Detector	RBW	VBW	Remark
		Above 1GHz	Peak	1MHz	3MHz	Peak Value
	1.114.	Frague	Peak	1MHz	10Hz	Average Value
	Limit:	Freque		Limit (dBuV) 54.0		Remark Average Value
		Above 1	GHz	74.0		Peak Value
	Test setup:	EUTTurn Table	→ 3m ← 4m		Antenna Horn Ant Spectrum Analyzer Amplif	enna
	Test Procedure:	ground at a 3 determine the 2. The EUT was antenna, whi tower. 3. The antenna ground to de horizontal an measuremer 4. For each sus and then the and the rota maximum resumments. The test-recesus Specified Ba 6. If the emission limit specified EUT would be 10dB margin	B meter cambe e position of the position of the set 3 meters check was mount the manner of the of th	er. The table was a set to Pead aximum Hole as set to Pead aximum Hole aximum	was rotated diation. The interference of a variable of the field one antennal was arrange has from 1 ragrees to 360 at Detect Full Mode. The mode was apped and the missions the one using process to 360 at Detect Full Mode.	r meters above the I strength. Both are set to make the ed to its worst case meter to 4 meters of degrees to find the function and flodB lower than the e peak values of the nat did not have beak, quasi-peak or
	Test Instruments:	Refer to section	5.7 for details	3		
	Test mode:	Non-hopping m	ode			
	Test results:	Passed				

Measurement data

Test mode: G	FSK		Test chan	nnel: Lowest		Remark: Pea	ık	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
2390.00	20.06	27.58	6.63	0	54.27	74.00	-19.73	Vertical
2390.00	21.14	27.58	6.63	0	55.35	74.00	-18.65	Horizontal
Test mode: G	FSK		Test chan	nnel: Lowest		Remark: Ave	erage	
Test mode: G Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Test char Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Remark: Ave Limit Line (dBuV/m)	Over Limit (dB)	Polar.
Frequency	Read Level	Factor	Cable Loss	Preamp Factor		Limit Line	Over Limit	Polar.

Test mode: G	FSK		Test chan	nel: Highest		Remark: Pea	ık	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
2483.50	22.16	27.52	6.85	0	56.53	74.00	-17.47	Vertical
2483.50	22.45	27.52	6.85	0	56.82	74.00	-17.18	Horizontal
Test mode: G	FSK		Test chan	nel: Highest		Remark: Ave	erage	
Test mode: G Frequency (MHz)	FSK Read Level (dBuV)	Antenna Factor (dB/m)	Test char Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Remark: Ave Limit Line (dBuV/m)	Over Limit (dB)	Polar.
Frequency	Read Level	Factor	Cable Loss	Preamp Factor		Limit Line	Over Limit	Polar.

Test mode: π/	/4-DQPSK		Test chan	nel: Lowest		Remark: Pea	ık	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
2390.00	23.45	27.58	6.63	0	57.66	74.00	-16.34	Vertical
2390.00	20.16	27.58	6.63	0	54.37	74.00	-19.63	Horizontal
Toot mades =	// DODO!/		T ()	1 1 1				
rest mode. III	/4-DQPSK		lest chan	nel: Lowest		Remark: Ave	erage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
Frequency	Read Level	Factor	Cable Loss	Preamp Factor		Limit Line	Over Limit	Polar.

Test mode: π	/4-DQPSK		Test chan	nel: Highest		Remark: Pea	ık	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
2483.50	23.06	27.52	6.85	0	57.43	74.00	-16.57	Vertical
2483.50	21.45	27.52	6.85	0	55.82	74.00	-18.18	Horizontal
Test mode: π	/4-DQPSK		Test chan	nel: Highest		Remark: Ave	erage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
2483.50	10.26	27.52	6.85	0	44.63	54.00	-9.37	Vertical
2483.50	10.34	27.52	6.85	0	44.71	54.00	-9.29	Horizontal

Remark:

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 21 of 40

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

Test mode: 81	OPSK		Test chan	nel: Lowest		Remark: Pea	ık	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
2390.00	20.15	27.58	6.63	0	54.36	74.00	-19.64	Vertical
2390.00	20.13	27.58	6.63	0	54.34	74.00	-19.66	Horizontal
To at manda, Of			T ()	1 1		Δ		
Test mode: 81	JPSK		lest chan	inel: Lowest		Remark: Ave	erage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
Frequency	Read Level	Factor	Cable Loss	Preamp Factor		Limit Line	Over Limit	Polar.

Test mode: 8DPSK			Test channel: Highest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
2483.50	22.63	27.52	6.85	0	57.00	74.00	-17.00	Vertical	
2483.50	21.48	27.52	6.85	0	55.85	74.00	-18.15	Horizontal	
Test mode: 8I	DPSK		Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
2483.50	10.35	27.52	6.85	0	44.72	54.00	-9.28	Vertical	
2483.50	10.08	27.52	6.85	0	44.45	54.00	-9.55	Horizontal	

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

6.10 Spurious Emission

6.10.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2009						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Non-hopping mode						
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB						

6.10.2 Radiated Emission Method

6.10.2 Radiated Emission M					1				
Test Requirement:	FCC Part 15 C		9						
Test Method:	ANSI C63.10:2009								
Test Frequency Range:	9 kHz to 25 GHz								
Test site:	Measurement Distance: 3m								
Receiver setup:	Frequency	Detector	RBW	VBW	Remark				
	30MHz- 1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak Value				
	Above 1GHz	Peak	1MHz	3MHz	Peak Value				
	Above 19112	Peak	1MHz	10Hz	Average Value				
Limit:	Freque	ency	Limit (dBuV	/m @3m)	Remark				
	30MHz-8	8MHz	40.0)	Quasi-peak Value				
	88MHz-2	16MHz	43.5	5	Quasi-peak Value				
	216MHz-9	60MHz	46.0)	Quasi-peak Value				
	960MHz-	·1GHz	54.0)	Quasi-peak Value				
	Above 1	IGHz	54.0)	Average Value				
	Above	IGHZ	74.0)	Peak Value				
Test setup:	Above 1GHz								

Test Procedure:	1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
	The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.7 for details
Test mode:	Non-hopping mode
Test results:	Pass

Remark

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8DPSK modulation, and found the GFSK modulation is the worst case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.
- 3. 9 kHz to 30 MHz is noise floor, so only shows the data of above 30MHz in this report.

Measurement data:

Below 1GHz

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL : 15.6" Android touch LCD Media Player : DT156-AC4-720 Condition

EUT

Model Test mode : BT mode

Power Rating: AC120V/60Hz Environment: Temp:25.5°C Huni:55% 101KPa

Test Engineer: Viki

TURNE									
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
_	MHz	dBu∇		<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1	61.562	46.56	12.03	0.71	29.77	29.53	40.00	-10.47	QP
2	155.910	47.82	8.51	1.33	29.17	28.49	43.50	-15.01	QP
1 2 3 4	196.510	51.50	10.57	1.38	28.85	34.60	43.50	-8.90	QP
	417.641	47.78	15.43	2.17	28.81	36.57	46.00	-9.43	QP
5	580.703	44.32	18.14	2.59	29.00	36.05	46.00	-9.95	QP
5 6	758.041	42.81	19.53	3.06	28.43	36.97	46.00	-9.03	QP

Horizontal:

Site Condition EUT : 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL : 15.6" Android touch LCD Media Player : DT156-AC4-720

Model Test mode : BT mode Power Rating : AC120V/60Hz

Environment: Temp: 25.5°C Huni: 55% 101KPa Test Engineer: Viki REMARK:

		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
-	MHz	dBu∜	dB/m	dB	<u>ab</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	72.084	48.03	8.26	0.80	29.70	27.39	40.00	-12.61	QP
2	196.510	49.06	10.57	1.38	28.85	32.16	43.50	-11.34	QP
3	256.521	49.18	12.06	1.64	28.53	34.35	46.00	-11.65	QP
4	426.521	43.70	15.50	2.19	28.83	32.56	46.00	-13.44	QP
5	584.790	42.27	18.19	2.60	28.99	34.07	46.00	-11.93	QP
6	771.449	43.15	19.72	3.10	28.36	37.61	46.00	-8.39	QP

Above 1GHz:

Test channel:			Lowest		Level:		Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	41.05	31.53	10.57	40.24	42.91	74.00	-31.09	Vertical
4804.00	42.06	31.53	10.57	40.24	43.92	74.00	-30.08	Horizontal
Te	st channel	•	Lowest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	33.26	31.53	10.57	40.24	35.12	54.00	-18.88	Vertical
4804.00	31.42	31.53	10.57	40.24	33.28	54.00	-20.72	Horizontal

Test channel:			Middle		Le	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	42.15	31.58	10.66	40.15	44.24	74.00	-29.76	Vertical
4882.00	42.08	31.58	10.66	40.15	44.17	74.00	-29.83	Horizontal
Te	st channel	:	Middle		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	33.26	31.58	10.66	40.15	35.35	54.00	-18.65	Vertical
4882.00	31.45	31.58	10.66	40.15	33.54	54.00	-20.46	Horizontal

Test channel:			Highest		Level:		Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	41.75	31.69	10.73	40.03	44.14	74.00	-29.86	Vertical
4960.00	40.15	31.69	10.73	40.03	42.54	74.00	-31.46	Horizontal
Te	st channel		Highest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	32.56	31.69	10.73	40.03	34.95	54.00	-19.05	Vertical
4960.00	33.45	31.69	10.73	40.03	35.84	54.00	-18.16	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.