Hamilton-Cayley 定理的证明与简单应用

Edited by G.Cui

定理. (Hamilton-Cayley, 1878).

设 \mathbf{A} 是一个 n 阶方阵, $f_{\mathbf{A}}(\lambda) = |\lambda \mathbf{E} - \mathbf{A}|$ 是 \mathbf{A} 的特征多项式, 则 $f_{\mathbf{A}}(\mathbf{A}) = 0$.

证明: \diamondsuit $f_{\mathbf{A}}(\lambda) = |\lambda \mathbf{E} - \mathbf{A}| = \lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_1\lambda + a_0$,

 $B(\lambda) = (\lambda \mathbf{E} - \mathbf{A})^* = \mathbf{B}_{n-1}\lambda^{n-1} + \dots + \mathbf{B}_1\lambda + \mathbf{B}_0$. 其中 $(\lambda \mathbf{E} - \mathbf{A})^*$ 是 $\lambda \mathbf{E} - \mathbf{A}$ 的伴随矩阵, $\mathbf{B}_i (i = 0, 1, \dots, n-1)$ 是 n 阶方阵.

则: $(\lambda \mathbf{E} - \mathbf{A})(\lambda \mathbf{E} - \mathbf{A})^* = |\lambda \mathbf{E} - \mathbf{A}|\mathbf{E}$, 即 $(\lambda \mathbf{E} - \mathbf{A})B(\lambda) = f_{\mathbf{A}}(\lambda)\mathbf{E}$.

比较两侧系数, 得:

$$\mathbf{B}_{n-1} = \mathbf{E}$$
 $\mathbf{B}_{n-2} - \mathbf{A}\mathbf{B}_{n-1} = a_{n-1}\mathbf{E}$
 $\mathbf{B}_{n-3} - \mathbf{A}\mathbf{B}_{n-2} = a_{n-2}\mathbf{E}$
 \cdots
 $\mathbf{B}_1 - \mathbf{A}\mathbf{B}_2 = a_2\mathbf{E}$
 $\mathbf{B}_0 - \mathbf{A}\mathbf{B}_1 = a_1\mathbf{E}$
 $-\mathbf{A}\mathbf{B}_0 = a_0\mathbf{E}$

将各式自上而下分别左乘 \mathbf{A}^n , \mathbf{A}^{n-1} , ..., \mathbf{A}^2 , \mathbf{A} , \mathbf{E} , 然后再相加, 得: $f_{\mathbf{A}}(\mathbf{A}) = 0$.

定理的应用:

- 1. 求 A⁻¹. 设 A 可逆, (待续...)
- **2.** 求 **A**^k. (待续...)