ЛАБОРАТОРНЫЙ ПРАКТИКУМ МЕХАНИКА

Задача №102

КИНЕМАТИКА И ДИНАМИКА ПРЯМОЛИНЕЙНОГО ДВИЖЕНИЯ ТЕЛА ВДОЛЬ СКАМЬИ С ВОЗДУШНОЙ ПОДУШКОЙ

Москва – 2022

Цель работы

Изучение равноускоренного поступательного движения.

Идея эксперимента

Изучение равноускоренного движения проводится на примере движения тела по наклонной плоскости. Использование скамьи с воздушной подушкой позволяет практически полностью устранить трение между движущимся телом и поверхностью наклонной плоскости.

Теоретическое введение. Основные определения

В реальном мире, который и является предметом изучения физики, связи между явлениями, материальными объектами столь разнообразны, что их принципиально невозможно описать во всех деталях. Так же как человек в повседневной жизни пользуется построенными им моделями поведения, общения, модельными (общими) представлениями о происходящих событиях, так и физика при анализе реального мира создает и использует модели физической действительности. При создании моделей принимаются только существенные для данного круга явлений и объектов свойства и связи.

Созданию моделей предшествует формирование понятий, относящихся к объекту исследования. Например, для обозначения физических тел, размеры которых несущественны в условиях данной задачи, вводится понятие «материальная точка».

Тело от счета — тело, относительно которого рассматривается движение других тел.

Система от счета — это совокупность тела от счета, связанной с ним системы координат и часов, синхронизованных в каждой точке пространства.

Система координат — совокупность трех некомпланарных осей, пересекающихся в одной точке с указанием масштаба на них. Декартова система координат — это прямоугольная система координат, оси которой — три взаимно перпендикулярные прямые линии, пересекающиеся в одной точке — начале системы координат.

Часы – прибор для измерения времени, принцип действия которого основан на сравнении длительности исследуемого временного интервала с длительностью выбранного за эталон периодического процесса.

Радиус-вектор — вектор, начало которого лежит в начале системы координат, а конец — в той точке, где в данный момент находится материальная точка.

$$\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k} = \{x, y, z\},\,$$

где **i**, **j** и **k** – орты системы координат $-|\mathbf{i}| = |\mathbf{j}| = |\mathbf{k}| = 1$; x, y, z – координаты материальной точки в выбранной системе координат.

Закон движения — зависимость радиус-вектора от времени или в проекциях на оси координат — координат материальной точки от времени.

$$\mathbf{r} = \mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k} = \{x(t), y(t), z(t)\}$$

Траектория — воображаемая линия в пространстве, по которой движется материальная точка.

Путь – длина траектории от начальной до конечной точки движения.

Перемещение материальной точки $\Delta \mathbf{r}(t)$ — вектор, начало которого находится в начальной, а конец — в конечной точке движения.

Скорость материальной точки — физическая величина, равная отношению перемещения $\Delta \mathbf{r}(t)$ точки за достаточно малый промежуток времени Δt к длительности этого промежутка:

$$\mathbf{v} = \frac{\Delta \mathbf{r}}{\Delta t} = \mathbf{i} \frac{\Delta x}{\Delta t} + \mathbf{j} \frac{\Delta y}{\Delta t} + \mathbf{k} \frac{\Delta z}{\Delta t} .$$

Ускорение материальной точки — физическая величина, равная отношению изменения скорости $\Delta v(t)$ точки за достаточно малый промежуток времени Δt к длительности этого промежутка:

$$\mathbf{a} = \frac{\Delta \mathbf{v}}{\Delta t} = \mathbf{i} \frac{\Delta v_x}{\Delta t} + \mathbf{j} \frac{\Delta v_y}{\Delta t} + \mathbf{k} \frac{\Delta v_z}{\Delta t} .$$

Уравнения кинематической связи – уравнения, связывающие кинематические характеристики тел системы.

Первый закон Ньютона. Существуют такие системы отсчета, относительно которых изолированная материальная точка (удаленная от всех остальных тел) движется равномерно и прямолинейно или покоится. Такие системы отсчета называются **инерциальными**.

Второй закон Ньютона. В инерциальной системе отсчета произведение массы материальной точки на ее ускорение равно сумме всех сил, действующих на эту материальную точку со стороны других тел:

$$m\mathbf{a} = \sum_{i} \mathbf{F}_{i}$$
.

Третий закон Ньютона. Силы взаимодействия двух материальных точек:

1) равны по модулю,

- 2) противоположны по направлению,
- 3) направлены вдоль прямой, соединяющей материальные точки,
- 4) парные и приложены к разным материальным точкам,
- 5) одной природы.

Уравнение движения — второй закон Ньютона, записанный в векторной форме или в проекциях на оси инерциальной системы отсчета:

$$m\mathbf{a} = \sum_{i} \mathbf{F}_{i}$$
 или $egin{cases} ma_{x} = \sum_{i} F_{ix}, \\ ma_{y} = \sum_{i} F_{iy}, \\ ma_{z} = \sum_{i} F_{iz}. \end{cases}$

Законы динамики — это законы Ньютона и законы, описывающие индивидуальные свойства сил.

Схема эксперимента

Рассмотрим поступательное движение тела (тележки) по наклонной плоскости (рис. 1). На тело действуют сила тяжести (со стороны Земли), сила нормальной реакции опоры и сила трения (со стороны опоры).

Рис. 1. Силы, действующие на тело.

В лабораторной (инерциальной) системе отсчета направим ось X декартовой системы координат вдоль наклонной плоскости.

При анализе движения тележки ее можно считать абсолютно твердой. Прямолинейное движение твердого тела является поступательным — все точки тела движутся по одинаковым траекториям, с одной и той же скоростью и ускорением. Поэтому достаточно исследовать движение, например, центра масс.

В проекции на ось Х уравнение движения центра масс имеет вид:

$$ma = mg \sin \alpha - F_{\rm TD}. \tag{1}$$

В настоящей задаче используется воздушная подушка, образуемая при нагнетании воздуха между телом и наклонной плоскостью, на которую тело опирается. В результате контакт между ними пропадает, сила сухого трения между телом и опорой становится практически равной нулю, и остается лишь сила вязкого трения, которая очень мала ввиду малой величины коэффициента вязкости воздуха. Отличительной особенностью вязкого трения является отсутствие трения покоя, благодаря чему тело приходит в движение под действием любой, даже малой, силы.

Поэтому для ускорения тела получим:

$$a = g \sin \alpha \,. \tag{2}$$

В процессе движения ускорение тела не изменяется, такое движение называют равноускоренным.

Для нахождения закона равноускоренного движения необходимо учесть начальные условия. В качестве таковых выберем координату и скорость тела в начальный момент времени:

$$x(t=0) = x_0, \tag{3}$$

$$\upsilon(t=0)=\upsilon_0. \tag{4}$$

Тогда, интегрируя (2) по времени с учетом (4), получим закон изменения скорости тела:

$$\upsilon(t) = \upsilon_0 + at \,. \tag{5}$$

Закон равноускоренного движения тела получим, интегрируя (5) с учетом (3):

$$a(t) = x_0 + v_0 t + \frac{at^2}{2}.$$
 (6)

Исключая из (5) и (6) время, получаем связь скорости с координатой x:

$$v^{2}(x) = v_{0}^{2} + 2a(x - x_{0}), \tag{7}$$

где $a = g \sin \alpha$.

Согласно (7), квадрат скорости тела линейно зависит от его координаты x. При этом на графике угол наклона прямой $v^2(x)$ не будет зависеть от выбранных начальных условий (v_0 , v_0), что позволит определить ускорение тела.

Экспериментальная установка

Скамья с воздушной подушкой представляет собой полую тонкостенную дюралюминиевую *трубу* 1 треугольного сечения, установленную на горизонтальном основании (рис. 2). На концах трубы имеются *регулировочные винты* 4 и 5, позволяющие изменять угол α наклона трубы относительно горизонта. Торцы трубы закрыты заглушками. В одной из заглушек имеется отверстие, соединенное с гибким *шлангом* 2. Через шланг в трубу при помощи компрессора нагнетается воздух, который выходит из нее

Рис. 2. Экспериментальная установка.

множество через маленьких отверстий, просверленных в двух ориентированных гранях трубы, вверх. Между трубой и специально изготовленной тележкой 3 создается воздушная подушка, благодаря которой тележка над скамьей и может «зависает» перемещаться вдоль нее

не следует).

практически без трения.

В работе все необходимые регулировки угла наклона осуществляются с помощью винта 4 (винты 5 регулировать

Рис. 3. Схема экспериментальной установки.

Для измерения временных промежутков в задаче используется датчик времени 6, сигналы с которого запускают и останавливают таймер 7. В датчике излучение от источника падает на приемник — «световые ворота». Если между ними появляется непрозрачный объект, то ворота перекрываются и запускается таймер. Остановка таймера происходит в момент, когда после открытия ворот они повторно перекроются.

Поэтому на тележке имеется специальная насадка с закрепленными на ней двумя тонкими пластинами, расположенными на небольшом расстоянии l друг от друга. Когда тележка проходит мимо датчика времени 6, пластины последовательно перекрывают и открывают световой луч датчика, соответственно запуская и останавливая maйmep 7. Таким образом, таймер 7 фиксирует время t_1 , в течение которого тележка проходит малое расстояние l, равное расстоянию между пластинами (см. вставку на рис. 3). Измеряя время t_1 , можно определить среднюю скорость движения на малом участке пути l:

$$v_i = \frac{l}{t_i}. (8)$$

Поскольку расстояние между пластинами мало, можно считать, что средняя скорость υ_i на интервале времени t_i мало отличается от мгновенной скорости тележки в точке траектории с координатой x_i .

Проведение эксперимента

Упражнение 1. Юстировка скамьи с воздушной подушкой и определение ее параметров.

- 1. С помощью регулировочного винта 4 установить скамью горизонтально (α =0). Для этого включить компрессор, аккуратно установить тележку на скамью и, вращая регулировочный винт, добиться, чтобы тележка не перемещалась по скамье. Устанавливая тележку в разные положения на скамье, убедиться, что тележка остается неподвижной в любом месте¹. Убедиться также, что отсутствует перекосы скамьи в какую-то либо сторону.
- 2. Оценить точность установки горизонтального положения. Для этого, вращая регулировочный винт, определить пределы изменения высоты h_2 , при которых тележка будет оставаться неподвижной. Учесть, что шаг резьбы регулировочного винта 4 равен 1 мм (один оборот винта изменяет высоту на 1 мм).

7

 $^{^{1}}$ Так как у скамьи может быть небольшой прогиб, добиться покоя в любом месте затруднительно. Поэтому действуйте разумно.

3. Измерить линейкой длину основания L между регулировочными винтами, расстояние l (см. рис. 3) между пластинами, определить с помощью весов массу M тележки. Для оценки случайной погрешности измерения каждой величины провести трижды. Результаты записать в табл. 1.

Таблица 1

Параметры установки

X	1	2	3	\overline{X}	$S_{\overline{X}}$	σсист	$\sigma_{ ext{cymm}}$
L(M)							
<i>l</i> (M)							
$M(\Gamma)$							

Обработка результатов

Вычислить средние арифметические значения величин $\bar{L}, \bar{l}, \bar{M}$ и их выборочные стандартные отклонения (оценку случайной погрешности) по формулам

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \qquad , S_{\overline{X}} = \sqrt{\frac{\sum (X_i - \overline{X})^2}{n(n-1)}}$$
 (9)

ГДе X = L, l, M.

С учетом систематической погрешности $\sigma_{\text{сист}}$ (для линейки считать ее равной половине цены деления, для электронных весов — единице последнего разряда) найти суммарную погрешность каждой величины по формуле

$$\sigma_{\text{cymm}} = \sqrt{S_{\overline{X}}^2 + \sigma_{\text{cuct}}^2} \ . \tag{10}$$

Упражнение 2. Анализ закона движения и определение ускорения тележки.

Измерения

- 1. С помощью регулировочного винта установить скамью в наклонное положение, увеличив высоту h_2 на $\Delta h_2 = 3$ мм (три полных оборота регулировочного винта 2).
 - 2. Установить в начало скамьи тележку, придерживая ее рукой.

ВНИМАНИЕ! В последующих экспериментах тележку следует устанавливать в одно и то же начальное положение!

 $^{^2}$ Погрешность определения высоты Δh_2 считать равной $S_{\Delta h2}$ =0,1 мм

- 3. Установить датчик времени на расстояние 20 см от начала скамьи (координата датчика x_1 = 0,2 м).
- 4. Освободить тележку и измерить время t_1 ее прохождения мимо датчика. Повторить измерения 3 раза. Полученные значения записать в табл. 2.

Таблица 2 Эменеримента приные

					Экспериментальные даннь						
x,	n	$\Delta h_2 = 3 \text{ MM}$			$\Delta h_2 = 6 \text{ MM}$			$\Delta h_2 = 9 \text{ MM}$			
		<i>t</i> ,	\overline{t} ,	$S_{\overline{t}}$,	t ,	\overline{t} ,	$S_{\overline{t}}$,	t ,	\overline{t} ,	$S_{\overline{t}}$,	
M		c	c	c	c	c	c	c	c	c	
0,2	1										
	2										
	3										
0,4	1										
	2										
	3										
0,6	1										
	2										
	3										
0,8	1										
	2										
	3										
1,0	1										
	2										
	3										

- 5. Переместить датчик на 20 см ($x_2 = x_1 + 0.2$ м) и повторить измерения в соответствии с п.4. В дальнейшем проводить измерения, каждый раз перемещая датчик на 20 см. Результаты измерений записать в табл. 2.
- 6. Повторить пп. 3 5, при $\Delta h_2 = 6$ мм и $\Delta h_2 = 9$ мм (соответственно 6 и 9 полных оборотов регулировочного винта). Результаты записать в табл. 2.

Обработка результатов

1. Для каждого цикла измерений вычислить среднее арифметическое значение времени прохождения \bar{t} и рассчитать случайную погрешность $S_{\bar{t}}$ среднего арифметического по формулам (9)

Результаты вычислений записать в табл. 2.

2. Для каждого из проведенных измерений вычислить скорость

$$v = \frac{l}{\overline{t}}$$

и квадрат скорости v^2 .

3. Рассчитать погрешность (стандартное отклонение) для квадрата скорости по формуле для косвенных измерений

$$S_{v^2} = \sqrt{\left(\frac{\partial v^2}{\partial l}\right)^2 \cdot S_l^2 + \left(\frac{\partial v^2}{\partial t}\right)^2 \cdot S_{\bar{t}}^2} . \tag{11}$$

После преобразований формулу (11) можно записать в виде

$$S_{v^2} = 2v^2 \cdot \sqrt{\left(\frac{\sigma_{l,\text{cymm}}}{\bar{l}}\right)^2 + \left(\frac{S_{\bar{t}}}{\bar{t}}\right)^2}$$
 (12)

(учтена и систематическая погрешность для l, найденная в упр. 1).

Результаты вычислений в пп. 2, 3 записать в табл. 3.

Таблица 3 Вычисленные значения скорости и квадрата скорости

x,	$\Delta h_2 = 3 \text{ MM}$			$\Delta h_2 = 6 \text{ MM}$			$\Delta h_2 = 9 \text{ MM}$		
(M)	υ,	v^2 ,	S_{y^2} ,	υ,	v^2 ,	S_{v^2} ,	υ,	v^2 ,	S_{v^2} ,
	(M/c)	$(\mathrm{m}^2/\mathrm{c}^2)$	$(\mathrm{m}^2/\mathrm{c}^2)$	(m/c)	$(\mathrm{M}^2/\mathrm{c}^2)$	$(\mathrm{m}^2/\mathrm{c}^2)$	(M/c)	$(\mathrm{M}^2/\mathrm{c}^2)$	S_{v^2} , $\left(\frac{M^2}{c^2} \right)$
0,2									
0,4									
0,6									
0,8									
1,0									

4. В соответствии с соотношением (7) зависимость $v^2(x)$ является линейной:

$$v^{2}(x) = 2ax + (v_{0}^{2} - 2ax_{0}). \tag{13}$$

Для трех значений Δh_2 на одних осях построить графики зависимостей υ^2 от x с указанием погрешностей υ^2 . Провести обработку результатов, используя формулы метода наименьших квадратов - МНК [6] для модели

$$y = Ax + B. (14)$$

Записать в табл.4 найденные с помощью МНК значения коэффициентов A и B и оценки погрешностей σ_A и σ_B .

Из (13)-(14) следует, что наклон A найденной по МНК прямой (коэффициент при x) равен 2a. Тогда для ускорения получим:

$$a = \frac{A}{2}$$
; $\sigma_a = \frac{\sigma_A}{2}$.

Результаты записать в табл. 4.

5. Для трех значений Δh_2 рассчитать значения ускорения по теоретической формуле $a=g\sin\alpha$. Т.к. угол α мал, то $\sin\alpha\approx t g\alpha=\frac{\Delta h_2}{L}$, в итоге

$$a_{\text{Teop}} = g \sin \alpha = \frac{g \cdot \Delta h_2}{L}$$
.

Погрешность $a_{\text{теор}}$ оценивается по формуле погрешности косвенной переменной:

$$S_{a\text{Teop}} = a_{\text{Teop}} \cdot \sqrt{\left(\frac{S_{\Delta h2}}{\Delta h_2}\right)^2 + \left(\frac{S_L}{L}\right)^2}$$
.

Результаты записать в табл. 4. и сравнить с найденными экспериментально.

Таблица 4. **Вычисленные значения параметров движения**

Δh_2	A	$\sigma_{\scriptscriptstyle A}$	В	$\sigma_{_B}$	а	σ_a	a_{reop}	$S_{a\text{Teop}}$
(мм)	$(\mathrm{M/c}^2)$	$(\mathrm{M/c}^2)$	$(\mathrm{m}^2/\mathrm{c}^2)$	$(\mathrm{m}^2/\mathrm{c}^2)$	$(\mathrm{M/c}^2)$	$(\mathrm{M/c}^2)$	$(\mathrm{M/c}^2)$	(M/c^2)
3								
6								
9								

6. Построить на одних осях графики зависимости $a(\Delta h_2)$ и $a_{\rm reop}(\Delta h_2)$. Сделать выводы.

Упражнение 3. **Проверка независимости ускорения тележки от ее массы.**

Измерения

- 1. Установить высоту $\Delta h_2 = 6$ мм (6 полных оборотов регулировочного винта).
- 2. Установить на тележку дополнительный груз массой m_1 (взвесить на весах) и провести цикл измерений по определению ускорения тележки (аналогично упр. 2).
- 3. Повторить измерения для дополнительного груза массой m_2 . Результаты записать в таблицу, аналогичную табл. 2.

Обработка результатов

1. Аналогично обработке результатов в упр.2, найти ускорения и оценить погрешность для тележек массой $(M+m_1)$ и $(M+m_2)$. Результаты записать в таблицу, аналогичную табл. 3. и в табл. 5 (в первой строке указываются значения ускорения для тележки без дополнительных грузов).

Вычисленные значения ускорения

Таблица 5.

			· · · · · · · · · · · · · · · · · · ·	
$M+m_i$	a	σ_a	$a_{ m reop}$	$S_{a\text{Teop}}$
(L)	$(\mathrm{m/c}^2)$	$(\mathrm{M/c}^2)$	$(\mathrm{M/c}^2)$	$(\mathrm{M/c}^2)$

2. Проанализировать полученный результат и сделать вывод с зависимости ускорения от массы тележки.

Основные итоги работы

В результате выполнения работы определяется, является ли движение тела вдоль наклонной плоскости равноускоренным, а ускорение - не зависящим от массы.

Контрольные задания и вопросы

- 1. Какие системы отсчета называют инерциальными? Сформулировать первый закон Ньютона.
- 2. Сформулировать второй закон Ньютона.
- 3. Сформулировать третий закон Ньютона.
- 4. Тело скользит по наклонной плоскости (угол α) при наличии силы трения (коэффициент трения скольжения μ). Найти его ускорение.
- 5. Тело, находящееся у основания гладкой наклонной плоскости (угол α), толкают вверх с начальной скоростью v_0 . Записать закон движения тела и закон изменения его скорости.
- 6. Какую информацию можно получить по найденному при обработке по МНК коэффициенту B? Зависит ли его значение от Δh_2 ? Почему?

Литература

- 1. А. Н. Матвеев. Механика и теория относительности. М. Изд. дом «Оникс 21 век», 2003. 432 с. Гл. 1, 2.
- 2. В. А. Алешкевич, Л. Г. Деденко, В. А. Караваев. Механика. М.: Изд. центр «Академия», 2004. 480 с. Лекции 1 3.
- 3. С. П. Стрелков. Механика. СПб.: «Лань», 2005. 560 с. Гл. 1, 2.
- 4. Д. В. Сивухин. Общий курс физики. В пяти томах. Т. 1. Механика. М.: ФИЗМАТЛИТ / МФТИ, 2005. 559 с. Гл. 1, 2.
- 5. В. С. Русаков, А. И. Слепков, Е. А. Никанорова, Н. И. Чистякова. Механика. Методика решения задач. Учебное пособие. М.: Физический факультет МГУ, 2010. 368 с. Гл. 1, 2.
- 6. Митин И. В., Русаков В. С. Анализ и обработка экспериментальных данных. Учебно-методическое пособие для студентов младших курсов. М.: МГУ. 2002, гл. V.