

ELL100: INTRODUCTION TO ELECTRICAL ENGG.

Lecture 21: Semiconductor Basics and p-n junctions

Instructor: Debanjan Bhowmik

Reference: Chenming Hu's 'Modern Semiconductor Devices for

Integrated Circuits' (only read the relevant parts of Chap. 1, 2,

and 4 qualitatively, don't go into the math)

Conduction in Solids

• Conduction occurs if free electrons are available to carry charge under action of electric field.

Conduction in Solids

- Conduction occurs if free electrons are available to carry charge under action of electric field.
- Depending on availability of free electrons, solids can be categorized into:

Conduction in Solids

- Conduction occurs if free electrons are available to carry charge under action of electric field.
- Depending on availability of free electrons, solids can be categorized into:
 - Conductors: large number of mobile charge carriers.
 - Insulators: Practically no free charge carriers.
 - Semiconductors : Conductivity intermediate of conductors and insulators.

- Two important semiconductors in electronics: Silicon and Germanium.
- They have 4 valence electrons.

 Two important semiconductors in electronics: Silicon and Germanium.

Valence electrons

Covalent bonds

 At room temperature, few electrons gain enough thermal energy to get into conduction band (free electrons).

- At room temperature, few electrons gain enough thermal energy to get into conduction band (free electrons).
- Where there was an electron, there is a 'hole' left now.

- At room temperature, few electrons gain enough thermal energy to get into conduction band (free electrons).
- Where there was an electron, there is a 'hole' left now.
 - Region with free electron has net
 - -ve charge
 - Region with hole has net +ve charge
- Both contribute to conduction

Doping

 The conductivity of a Si/Ge semiconductor can be altered by adding impurity element from the third of fifth column of periodic table.

HI (+3)		IV +4			V (+5)			
5	В	6		C	7	N		
BORON		CARBON			NITROGEN			
10.82		12.01			14.008			
13	Al	14		Si	15	P		
ALUMINUM			SILICON			PHOSPHORUS		
26.97		28.09			31.02			
31	Ga	32		Ge	33	As		
GALLIUM		GERMANIUM			ARSENIC			
69	.72		72.60		,	74.91		
49	In	50		Sn	51	Sb		
INDIUM		TIN			ANTIMONY			
114.8		118.7			121.8			

Doping

 The conductivity of a Si/Ge semiconductor can be altered by adding impurity element from the third of fifth column of periodic table.

- Typical choices: For Silicon
 - Boron, Gallium (trivalent),
 - Phosphorus, Arsenic (Pentavalent)
- A semiconductor without doping
 Is called intrinsic/pure

	III (+3)		IV +4			V (+5)		
ſ	5	В	6		C	7	N	
	BORON 10.82		CARBON			NITROGEN		
,			12.01			14.008		
	13	Al	14		Si	15	P	
	ALUMINUM 26.97		SILICON			PHOSPHORUS		
			28.09			31.02		
	31	Ga	32		Ge	33	As	
	GALLIUM 69.72		GERMANIUM			ARSENIC		
			72.60			74.91		
	49	In	50		Sn	51	Sb	
	INDIUM		TIN			ANTIMONY		
	114.8		118.7			121.8		

Doping – Pentavalent (n-type)

- When a pentavalent atom replaces Si atom in crystal.
- There is an excess free electron Which can go into conduction band (with little thermal energy).

Doping – Pentavalent (n-type)

- When a pentavalent atom replaces Si atom in crystal.
- There is an excess free electron which can go into conduction band. (with little thermal energy).
- Resulting material has negative Charge carriers in electrically neutral material
 n-type semiconductor

Doping – Trivalent (p-type)

- When a trivalent atom replaces Si atom in crystal.
- There only 3 valence electrons are available instead of 4.
- If the remaining unfilled covalent Is filled from neighbouring atom, There is a 'hole' created.

Doping – Trivalent (p-type)

- When a trivalent atom replaces Si atom in crystal.
- There only 3 valence electrons are available instead of 4.
- If the remaining unfilled covalent Is filled from neighbouring atom, There is a 'hole' created.
- Resulting material has positive Charge carriers in electrically neutral material (effectively)
 p-type semiconductor

Junction Diodes

- All semiconductor doped/undoped are bilateral.
- But, if a p-type region placed close to an n-type region, there is difference in carrier concentration.

Junction Diodes

- All semiconductor doped/undoped are bilateral.
- But, if a p-type region placed close to an n-type region, there is difference in carrier concentration.
- Current flows preferentially
 In one direction.
- This device is a

Semiconductor diode.

Junction

• Majority carriers: Main cause of flow of current in a region. (hole in p, electron in n)

•

- Majority carriers: Main cause of flow of current in a region. (hole in p, electron in n)
- Because of the concentration gradient, the majority carriers diffuse across the junction and recombine.

 Diffusion uncovers bound -ve charges in p region (and +ve charge in n region)

- Diffusion uncovers bound -ve charges in p region (and +ve charge in n region)
- This region where the bound charges are uncovered is depletion region.

(depleted of majority carriers An electric field ε is created a depletion region

- Diffusion uncovers bound -ve charges in p region (and +ve charge in n region)
- This region where the bound charges are uncovered is depletion region.
 - (depleted of majority carriers)
- The minority carriers drift due to thermal energy

• There is a charge build up only in the transition region.

- There is a charge build up only in the transition region.
- Creates an electric field and then a "potential hill" VO.

- There is a charge build up only in the transition region.
- Creates an electric field and then a "potential hill" VO.
- Potential hill OPPOSES diffusion and ENCOURAGES drift.

- There is a charge build up only in the transition region.
- Creates an electric field and then a "potential hill" VO.
- Potential hill OPPOSES diffusion and ENCOURAGES drift.
- This potential (Contact Potential) is the 'barrier' required to balance diffusion and drift.
- Vo = few tenths of a volt.

• Forward bias: Connecting of external source (V) with p-type at higher potential than n-type.

- Forward bias: Connecting of external source (V) with p-type at higher potential than n-type.
- The external potential effectively reduces the barrier potential to VO-V.

- Forward bias: Connecting of external source (V) with p-type at higher potential than n-type.
- The external potential effectively reduces the barrier potential to VO-V.
- The process is very sensitive to barrier voltage and a large increase in current occurs for a small decrease in barrier potential. (Exponential Relation)

- Forward bias: Connecting of external source (V) with p-type at higher potential than n-type.
- The external potential effectively reduces the barrier potential to VO-V.
- The process is very sensitive to barrier voltage and a large increase in current occurs for a small decrease in barrier potential.
- Process is sustained by supply of electrons in n region and removal from p region, by ext. battery

pn-Junction – Reverse Bias

 Reverse Bias: p junction is connected to a lower potential than n junction.

pn-Junction – Reverse Bias

- Reverse Bias: p junction is connected to a lower potential than n junction.
- With reverse bias the potential barrier increases.
 - Probability of current by majority carriers decreases exponentially.

pn-Junction – Reverse Bias

- Reverse Bias: p junction is connected to a lower potential than n junction.
- With reverse bias the potential barrier increases.
 - Probability of current by majority carriers decreases exponentially.
- Small amount of reverse bias current due to minority carrier drift.
 - I_r is independent of V

