

Estructuras de datos Arreglos y Mapeo

Facultad de Ingeniería Escuela de Ciencias y Sistemas Estructuras de Datos Ing. Edgar René Ornélyz Tutor Esvin González

Del caos ... al orden

¿Qué es un arreglo?

Arreglos

¿Qué es un arreglo?

Un arreglo es una estructura de datos estática y lineal que tiene un tamaño fijo. Está compuesto por un espacio en memoria contiguo y un grupo de índices para acceder a sus elementos.

Matrices

¿Qué es una matriz?

Una matriz es un arreglo que cuenta con más de una dimensión para almacenar y acceder a sus elementos.

Estas estructuras, a pesar de ser multidimensionales, siguen almacenando sus elementos de forma lineal.

Características de los arreglos

Las principales características de los arreglos en la mayoría de lenguajes de programación son:

- Finitos y estáticos
- Rápido acceso
- Acceso por posición
- Elementos del mismo tipo
- Pueden ser multidimensionales (matrices)
- Pueden anidarse (arreglos de arreglos)

Índices

Los índices en arreglos tradicionales (como en Java, C y otros) son números naturales que sirven para delimitar las posiciones que conforman un arreglo y al mismo tiempo determinan la longitud en cada una de sus "dimensiones".

¿Índices?

En lenguajes como Pascal cada dimensión puede ser compuesta por dos números enteros indicando el inicio y el final de cada dimensión.

En otros lenguajes, como Ruby, Python o PHP, los índices pueden ser textos (keys) y se pueden realizar operaciones "extrañas" con arreglos.

¿Cómo se acceden los elementos de un arreglo?

Mapeo lexicográfico

Para relacionar los arreglos multidimensionales con la memoria lineal y contigua se utiliza el mapeo

int[][] ARR = new int[4][3];

ARR	0	1	2	3
0	0,0	0,1	0,2	0,3
1	1,0	1,1	1,2	1,3
2	2,0	2,1	2,2	2,3

Hoja de Trabajo 1

Comodín Hoja de Trabajo 1

Exoneración de HT1

```
/* 1) Diferencia entre matrices y
arreglos de arreglos */
// 2) Salida del siguiente código
Double[] arr = new Double[5];
for(Double d : arr) {
    System.out.println(d);
// 3) Compila o no compila
float[] arr = \{3.4, 2.5, 1.0\};
// 4) Qué tipo de error lanzará
int[] arr = {3, 14, 16};
int a = arr[3];
```

Hoja de trabajo 1:

Dado el arreglo definido como ARR[2, -1..1, 1..5].

Generar las operaciones matemáticas para acceder a la posición

ARR[0, 1, 2]

Junto a la gráfica de la disposición lógica de los elementos de dicho arreglo y la gráfica de la disposición física de los mismos elementos en memoria.

Resumen

- Los arreglos son rápidos por su direccionamiento
- Los arreglos no son útiles para búsquedas a menos que sus elementos estén ordenados
- Los índices de los arreglos determinan el tamaño y delimitan los "bordes" para cada dimensión

Referencias

- Arreglos -- Programación
 - Disponible en: https://goo.gl/htMZgs
- Arreglos: Vectores y Matrices
 - Disponible en: https://goo.gl/Us2YT7

Gracias por su atención