

0. Introduction

Dirk Schnieders

Intelligence

- > We call ourselves Homo Sapiens
 - Latin: Man the wise
 - Intelligence is important to us
- For thousands of years, we have tried to understand how we humans think
 - How can our brain perceive, understand, predict, and manipulate a world far larger than itself?
- Intelligence is most widely studied in humans, but has also been observed in animals and in plants

Artificial Intelligence

- > AI goes further than just understanding intelligence
 - It attempts to build intelligent entities
 - Computing to act effectively and safely in a wide variety of novel situations
- > AI: science, or engineering?

Why study AI?

AI's impact will be "more than anything in the history of mankind."

Why study AI?

Physics

AI

Historically, researchers have pursued several different versions of AI

- > Let's build machines that ...
 - Think Humanly
 - Act Humanly
 - Think Rationally
 - Act Rationally

A. Think Humanly

- Cognitive Modelling Approach: How do we think?
 - Introspection
 - Psychological experiments
 - o Brain imaging
- ➤ Cognitive science constructs precise and testable theories of the human mind
 - E.g., express a theory as a computer program and compare input-output behaviors to a human
 - If there is a match, some of the programs mechanism could also be operating in humans

A. Think Humanly

- > The human brain is one of the great mysteries of science
 - How does our brain process information?
- The brain consists of nerve cells (aka neurons) and the collection of these simple cells leads to thought, action and consciousness
- The recent development of functional magnetic resonance imaging (fMRI) provides neuroscientists with details of brain activities

A. Think Humanly

- > Brains and digital computers have somewhat different properties
- > A crude comparison of the raw computational resources

	Supercomputer	Personal Computer	Human Brain
Computational units	10^6 GPUs + CPUs	8 CPU cores	10^6 columns
	10^{15} transistors	10^{10} transistors	10^{11} neurons
Storage units	10^{16} bytes RAM	10 ¹⁰ bytes RAM	10^{11} neurons
	10^{17} bytes disk	10^{12} bytes disk	10 ¹⁴ synapses
Cycle time	$10^{-9} { m sec}$	$10^{-9} { m sec}$	$10^{-3} { m sec}$
Operations/sec	10^{18}	10^{10}	10^{17}

➤ Would we be able to achieve the brain's level of intelligence with a computer of unlimited capacity?

- Turing Test Approach: Imitation Game was designed to provide a definition of intelligence
- A computer passes the test if a human interrogator, after posing some questions, cannot tell whether the response come from a human or a computer

B. Act Humanly

- The underlying principles of intelligence are more important than to duplicate an exemplar
- > Consider another field: Artificial Flight
 - The Wright brothers succeeded because they stopped imitating birds and started using wind tunnels and learn about aerodynamics
 - It was not their goal to make "machines that fly so exactly like pigeons that they can fool even other pigeons"

B. Act Humanly

- > Reverse Turing Test
 - Turing test in which the objective / roles have been reversed
 - Interrogator is a computer. Interrogatee is human or computer.
- > CAPTCHA
 - Completely Automated Public Turing test to tell Computers and Humans Apart

finding.

C. Think Rationally

- The "laws of thought" approach
- ➤ What are the laws that guide and underlie our thinking?
- > Greek schools developed various forms of logic
 - Notation and rules of derivation for thoughts
 - Example: Socrates is a man; all men are mortal; therefore,
 Socrates is mortal
- ➤ By 1965, programs existed that could (in principle) solve any solvable problem described in logic notation
- > Problems with this approach
 - How to take informal knowledge and state it in formal terms?
 How about uncertainty?

D. Act Rationally

- > The rational agent approach
 - Act to achieve the best outcome
 - With uncertainty: the best expected outcome
- Advantages over the other approaches
 - More general
 - Correct inference is just one of several possible mechanisms for achieving rationality
 - Rationality is well defined
 - Human behaviour is well adapted only for one specific environment
- Most researchers in AI focus on the general principles of rational agents and how to build them

Rational Agent

- > Agent
 - o agent comes from the Latin *agere*, to do
 - Something that perceives and acts
 - o E.g., robot or softbot
- > Rational Agent
 - Acts to achieve the best outcome or, when there is uncertainty, the best expected outcome
- For any given class of environments and tasks, we seek the agent (or class of agents) with the best performance

Rational Agent

- > AI focuses on the study and construction of rational agents
 - Agents that do the right thing
 - What counts as the right thing is defined by the objective that we provide to the agent
- Like other areas of research
 - Control Theory
 - Operations Research
 - Statistics
 - Economics
- > This is called the standard model

Perfect Rationality

Always taking the exactly optimal action is not feasible in complex environments

Issues with the Standard Model

- The standard model assumes that we will supply a fully specified objective function
 - Difficult in practice
- ➤ Value alignment problem
 - Example
 - Domain: Self-driving car
 - Objective: Reach destination safely
 - Problem
 - Strict goal of safety requires staying in the garage
 - There is a tradeoff between making progress towards the destination and incurring a risk of injury
 - How should this tradeoff be made?

Value Alignment Problem

> Example: Chess

Machine Learning

- An agent is learning if it improves its performance on future tasks
- ➤ Why would we want an agent to learn?
 - If the design of an agent can be improved, why not design the agent with that improvement to begin with?

The Thinking Machine - MIT 1961

http://www.youtube.com/watch?v=aygSMgK3BEM

History of AI - Turing Award Winners

- Marvin Minsky (1969)
- > John McCarthy (1971)
- Edward Feigenbaum and Raj Reddy (1994)
- > Judea Pearl (2011)
- Yoshua Bengio, Geoffrey Hinton, and Yann LeCun (2018)

History of AI - Milestones

- ➤ Inception (1943 1956)
- ➤ Early Enthusiasm (1952 1969)
- ➤ A dose of reality (1966 1973)
- > Expert systems (1969 1986)
- Return of NN (1986 present)
- Probabilistic reasoning (1987 present)
- ➤ Big data (2001 present)
- Deep Learning (2011 present)

The State of the Art

- > Publications
 - AI papers increased 20 fold between 2010 to 2019 to 20,000 a year
- > Conferences
 - Attendance of NeurIPS increased 800% since 2012 to 13,500
- > Industry
 - AI start-ups in the US increased 20 fold from 2010 to 2019
- ➤ Internationalization (in 2019)
 - China publishes more AI papers per year then US and about as many as Europe
 - In citation weighted impact, US is ahead by 50% vs. China

The State of the Art

- > Vision
 - Error rates for object detection improved from 28% to less than 2%
- > Speed
 - Training time for image recognition dropped by a factor of 100 in last
 2 years
 - Amount of computing power used in top AI applications is doubling every few month
- Humans vs. AI (in 2019)
 - AI is better in chess, go, poker, pac-man, jeopardy!, object detection, speech recognition in limited domain, chinese-to-english in restricted domain, Quake III, Dota 2, StarCraft II, many Atari games, Skin cancer detection, prostate cancer detection, protein folding, ...

Benefits of AI

First solve AI, then use AI to solve everything else.

Demis Hassabis, Google DeepMind

Risks of AI

- Lethal autonomous weapons
- > Surveillance
- Biased decision making
- > Impact on employment
- > Safety-critical applications
- > Cybersecurity

Risks of AI - Superhuman AI

- Most experts agree that we will eventually be able to create a superhuman AI
 - An intelligence that far surpases human ability

Risks of AI - The Gorilla Problem

- ➤ About seven million years ago, a now-extinct primate evolved
 - o one branch led to gorillas
 - o another to humans
- Today the gorillas are probably not too happy about the human branch
 - They have no control over their future

Risks of AI - The Gorilla Problem

- ➤ If the gorilla problem is the result of developing AI then we should stop working on it
- ➤ If superhuman AI (aka <u>AGI</u>) were a black box from outer space, we should be careful in opening the box
 - o But it is not, we design the AI systems
 - o If AI does end up taking control, it would be a design failure
- > We need to understand the source of potential failure
 - Philosophical foundations of AI
 - Maybe the most important area of AI research

AI Experts on the AI Apocalypse

- Worried AI experts signed on <u>open letter in March 2023</u> asking all AI labs to immediately pause "giant AI experiments"
- ➤ Where do AI experts stand regarding the probability of AGI and the probability of disaster by AGI?
 - Find out here
 - https://dirk.hk/ai/IEEESpectrumAug2023_1.jpg
 - https://dirk.hk/ai/IEEESpectrumAug2023_2.jpg

Reading

- AIMA: Chapter 1
 - 66 pages available here: https://dirk.hk/ai/AIMA_Chapter_1.pdf
 - Password: Schnieders
- > AIMA: Chapter 2
 - 49 pages available here: https://dirk.hk/ai/AIMA Chapter 2.pdf
 - Password: Dirk
- ➤ The Thinking Machine MIT 1961
 - 53 min video available here: https://dirk.hk/ai/TheThinkingMachine.html