Advanced Methods in Biostatistics I Lecture 5

Martin Lindquist

September 12, 2017

General linear model

• Recall we seek to develop least squares for the general linear model $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$, where

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_{10} & x_{11} & \cdots & x_{1,p-1} \\ x_{20} & x_{21} & \cdots & x_{2,p-1} \\ \vdots & \vdots & \vdots & \vdots \\ x_{n0} & x_{n1} & \cdots & x_{n,p-1} \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{p-1} \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$

Design matrix

 Let X be a design matrix, notationally its elements and column vectors are given by:

$$\mathbf{X} = \begin{bmatrix} x_{11} & \dots & x_{1p} \\ \vdots & \dots & \vdots \\ x_{n1} & \dots & x_{np} \end{bmatrix} = [\mathbf{x}_1 \dots \mathbf{x}_p].$$

• We are assuming that $n \ge p$ and **X** is of full (column) rank.

Least squares

Consider the ordinary least squares criteria:

$$f(\beta) = ||\mathbf{y} - \mathbf{X}\beta||^2$$

• We showed last time that it has the following solution:

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}.$$

Fitted values

The vector of fitted values is given by

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y} = \mathbf{H}\mathbf{y}.$$

- Here the matrix **H** is called the hat matrix.
- **H** is idempotent and symmetric.

Residuals

The vector of residuals is given by

$$\mathbf{e} = \mathbf{y} - \hat{\mathbf{y}} = (\mathbf{I} - \mathbf{H})\mathbf{y}.$$

ullet I - H is idempotent and symmetric.

Residuals

- Note that $(\mathbf{I} \mathbf{H})\mathbf{X} = 0$, making the residuals orthogonal to any vector, $\mathbf{X}\gamma$, in the space spanned by the columns of \mathbf{X} .
- Hence, if an intercept term is included in the model, the residuals must sum to 0.
- Specifically, since the residuals are orthogonal to any column of \mathbf{X} , $\mathbf{e}'\mathbf{J}_n = 0$.

Consider the column space of the design matrix,

$$\Gamma = \{ \mathbf{X}\boldsymbol{\beta} \mid \boldsymbol{\beta} \in \mathbb{R}^p \}.$$

• This *p*-dimensional space belongs to \mathbb{R}^n .

- Consider the vector $\mathbf{y} \in \mathbb{R}^n$.
- Multiplication by the matrix X(X'X)⁻¹X' projects y into Γ.
- That is,

$$\boldsymbol{y} \to \boldsymbol{X} (\boldsymbol{X}'\boldsymbol{X})^{-1} \boldsymbol{X}' \boldsymbol{y}$$

is the linear projection map between \mathbb{R}^n and Γ .

- The vector $\hat{\mathbf{y}}$ is the point in Γ that is closest to \mathbf{y} and $\hat{\boldsymbol{\beta}}$ is the specific linear combination of the columns of \mathbf{X} that yields $\hat{\mathbf{y}}$.
- The vector \mathbf{e} is the vector connecting \mathbf{y} and $\hat{\mathbf{y}}$, and is orthogonal to all elements in Γ , i.e. it lies in Γ^{\perp} .
- It represents the projection of \mathbf{y} onto Γ^{\perp} .

- Note that if **W** is any $p \times p$ invertible matrix, then the fitted values, \hat{y} will be the same for the design matrix **XW**.
- This holds because the spaces $\{\mathbf{X}\boldsymbol{\beta} \mid \boldsymbol{\beta} \in \mathbb{R}^p\}$ and $\{\mathbf{X}\mathbf{W}\boldsymbol{\gamma} \mid \boldsymbol{\gamma} \in \mathbb{R}^p\}$ are the same, since if $\mathbf{a} = \mathbf{X}\boldsymbol{\beta}$ then $\mathbf{a} = \mathbf{X}\boldsymbol{\gamma}$ via the relationship $\boldsymbol{\gamma} = \mathbf{W}\boldsymbol{\beta}$.

- Thus, any element of the first space lies in the second.
- The same argument implies in the other direction, thus the two spaces are the same.
- Any linear reorganization of the columns of X results in the same column space and the same fitted values.

Full row rank case

- In the case where **X** is $n \times n$ of full rank, then the columns of **X** form a basis for \mathbb{R}^n .
- In this case, $\hat{\mathbf{y}} = \mathbf{y}$, since \mathbf{y} lives in the space spanned by the columns of \mathbf{X} .
- All this linear model accomplishes is a lossless linear reorganization of y.

Full row rank case

- This is surprisingly useful, especially when the columns of X are orthonormal (X'X = I).
- In this case, the function that takes the outcome vector and converts it to the coefficients is called a "transform".
- The most well known versions of transforms are Fourier and wavelet.

- Next let's look at the problem from another perspective.
- Let X = [X₁ X₂] be two submatrices of dimension n × p₁ and n × p₂, respectively, and let β = (β'₁ β'₂)'.
- Consider minimizing:

$$||\boldsymbol{y}-\boldsymbol{X}_{1}\boldsymbol{\beta}_{1}-\boldsymbol{X}_{2}\boldsymbol{\beta}_{2}||^{2}.$$

• If we hold β_2 fixed, this would be minimized when

$$\hat{\boldsymbol{\beta}}_1(\boldsymbol{\beta}_2) = (\boldsymbol{X}_1'\boldsymbol{X}_1)^{-1}\boldsymbol{X}_1'(\boldsymbol{y} - \boldsymbol{X}_2\boldsymbol{\beta}_2).$$

 Plugging this result back into the least squares criteria we obtain:

$$\begin{aligned} ||\mathbf{y} - \mathbf{X}_1 \boldsymbol{\beta}_1 - \mathbf{X}_2 \boldsymbol{\beta}_2||^2 \\ &\leq ||(\mathbf{I} - \mathbf{X}_1 (\mathbf{X}_1' \mathbf{X}_1)^{-1} \mathbf{X}_1') \mathbf{y} - (\mathbf{I} - \mathbf{X}_1 (\mathbf{X}_1' \mathbf{X}_1)^{-1} \mathbf{X}_1') \mathbf{X}_2 \boldsymbol{\beta}_2||^2 \end{aligned}$$

- This is equivalent to the least squares problem where the response variable is the residual of y having regressed out X₁, and the explanatory variables the residual matrix of X₂ having regressed X₁ out of every column.
- Our estimate of β_2 will be the regression of these two sets of residuals.

- This illustrates how the estimate of β₂ has been adjusted for X₁, both the outcome and the X₂ predictors have been orthogonalized to the space spanned by the columns of X₁.
- This example helps our interpretation of the regression coefficients and how they are "adjust" for the other variables.

- The estimate of β₂ represents the effect of the explanatory variables, X₂, while controlling for the effects of the other explanatory variables in the model, i.e. X₁.
- Ultimately the interpretation of a coefficient depends on which other variables are included in the model.
- An exception is when variables are orthogonal.

R code

Recall the Swiss fertility data.

```
> v = swiss$Fertilitv
> X = as.matrix(swiss[,-1])
> dim(X)
[1] 47 5
> X1 = X[,1:3]
> X2 = X[.4:5]
> ytilde = (I - X1%*%solve(t(X1)%*%X1)%*%t(X1))%*%y
> X2tilde = (I - X1%*%solve(t(X1)%*%X1)%*%t(X1))%*%X2
> beta2 = solve(t(X2tilde)%*%X2tilde)%*%t(X2tilde)%*%ytilde
> beta2
                     [,1]
Catholic 0.1170662
Infant.Mortality 2.9836617
> beta1 = solve(t(X1)%*%X1)%*%t(X1)%*%(v - X2%*%beta2)
> beta1
                 [,1]
Agriculture 0.1110005
Examination 0.4440591
Education -0.7067362
```

R code

Soultion using lm.

Mean centering

• Before continuing, it is useful to note that the mean centered version of \mathbf{y} , $\mathbf{y} - \mathbf{J}_n \bar{\mathbf{y}}$ can be written as follows:

$$\tilde{\mathbf{y}} = \mathbf{y} - \mathbf{J}_n \overline{\mathbf{y}}
= \mathbf{y} - \mathbf{J}_n (\mathbf{J}'_n \mathbf{J}_n)^{-1} \mathbf{J}'_n \mathbf{y}
= (\mathbf{I} - \mathbf{J}_n (\mathbf{J}'_n \mathbf{J}_n)^{-1} \mathbf{J}'_n) \mathbf{y}.$$

Mean centering

- In other words, multiplication by the matrix $(\mathbf{I} \mathbf{J}_n(\mathbf{J}'_n\mathbf{J}_n)^{-1}\mathbf{J}'_n)$ centers vectors.
- This can be very useful for centering matrices as well.
- For example, if **X** is an $n \times p$ matrix then the matrix $\tilde{\mathbf{X}} = (\mathbf{I} \mathbf{J}_n(\mathbf{J}_n'\mathbf{J}_n)^{-1}\mathbf{J}_n')\mathbf{X}$ is the matrix with every column mean centered.

Partitioning the variability

- Using this result, we now seek to partition the variation in the data into various components.
- For convenience, let us define two projection matrices:

$$\boldsymbol{H}_{\boldsymbol{X}} = \boldsymbol{X} (\boldsymbol{X}' \boldsymbol{X})^{-1} \boldsymbol{X}'$$

and

$$\mathbf{H}_{\mathbf{J}} = \mathbf{J}_{n}(\mathbf{J}_{n}^{\prime}\mathbf{J}_{n})^{-1}\mathbf{J}_{n}^{\prime}.$$

Total sums of squares

Let us define the total sum of squares as

$$SS_{\textit{Tot}} = ||\mathbf{y} - \bar{y}\mathbf{J}_n||^2 = \mathbf{y}'(\mathbf{I} - \mathbf{H}_{\mathbf{J}})\mathbf{y}.$$

 This is an unscaled measure of the total variability in the data.

Residual & Regression sums of squares

 Similarly, given a design matrix, X, we can define the residual sums of squares as

$$SS_{Res} = ||\mathbf{y} - \hat{\mathbf{y}}||^2 = \mathbf{y}'(\mathbf{I} - \mathbf{H}_{\mathbf{X}})\mathbf{y}$$

and the regression sums of squares as

$$SS_{Reg} = ||\hat{\mathbf{y}} - \mathbf{J}_n \bar{\mathbf{y}}||^2 = \mathbf{y}'(\mathbf{H}_{\mathbf{X}} - \mathbf{H}_{\mathbf{J}})\mathbf{y}.$$

Regression sums of squares

- To show the later result first note that $(\mathbf{I} \mathbf{H_X})\mathbf{J}_n = 0$ since **X** contains an intercept.
- Thus, it holds that $\mathbf{H}_{\mathbf{X}}\mathbf{J}_n = \mathbf{J}_n$ and $\mathbf{H}_{\mathbf{X}}\mathbf{H}_{\mathbf{J}} = \mathbf{H}_{\mathbf{J}}$ and $\mathbf{H}_{\mathbf{J}} = \mathbf{H}_{\mathbf{J}}\mathbf{H}_{\mathbf{X}}$.
- Also, note that H_X is symmetric and idempotent.

Regression sums of squares

Now we can perform the following manipulation

$$\begin{split} ||\hat{\mathbf{y}} - \mathbf{J}_{n} \bar{\mathbf{y}}||^{2} &= ||\mathbf{H}_{X} \mathbf{y} - \mathbf{J}_{n} (\mathbf{J}_{n}' \mathbf{J}_{n})^{-1} \mathbf{J}_{n}' \mathbf{y}||^{2} \\ &= ||\mathbf{H}_{X} \mathbf{y} - \mathbf{H}_{J} \mathbf{y}||^{2} \\ &= \mathbf{y}' (\mathbf{H}_{X} - \mathbf{H}_{J})' (\mathbf{H}_{X} - \mathbf{H}_{J}) \mathbf{y} \\ &= \mathbf{y}' (\mathbf{H}_{X} - \mathbf{H}_{J}) (\mathbf{H}_{X} - \mathbf{H}_{J}) \mathbf{y} \\ &= \mathbf{y}' (\mathbf{H}_{X} - \mathbf{H}_{J} \mathbf{H}_{X} - \mathbf{H}_{X} \mathbf{H}_{J} + \mathbf{H}_{J}) \mathbf{y} \\ &= \mathbf{y}' (\mathbf{H}_{X} - \mathbf{H}_{J}) \mathbf{y}. \end{split}$$

Partitioning the variability

Using this identity we can now show that

$$\begin{split} \text{SS}_{\textit{Tot}} &= y'(I - H_J)y \\ &= y'(I - H_X + H_X - H_J)y \\ &= y'(I - H_X)y + y'(H_X - H_J)y \\ &= \text{SS}_{\textit{Res}} + \text{SS}_{\textit{Reg}} \end{split}$$

 Thus the total sum of squares partition into the residual and regression sums of squares. Using this result, we can now define the coefficient of determination

$$R^2 = \frac{SS_{Reg}}{SS_{Tot}} = 1 - \frac{SS_{Res}}{SS_{Tot}}.$$

- This represents the proportion of the total variability explained by our model.
- This is guaranteed to be between 0 and 1.
- High values imply that the explanatory variables are useful in explaining the response and low values imply that the explanatory variables are not useful.

Problems with R²

- Note that SS_{Tot} only depends on the response variable and not on the model formulation.
- Hence, it is equal for all regression models.
- Adding additional explanatory variables to a multiple regression model can only lower SS_{Reg}.

Problems with R²

- Thus, including additional explanatory variables will always lead to an increase in the value of R².
- Since R² can be made large by including more (and sometimes unimportant) explanatory variables, it is sometimes modified to adjust for the number of variables included in the model.
- This allows us to balance model parsimony with explanatory power.

Mean squares

 The ratio of the sum of squares to the 'degrees of freedom' (corresponding to the dimensions of the respective subspaces) gives the mean squares:

$$MS_{Tot} = \frac{SS_{Tot}}{n-1}$$

$$MS_{Res} = \frac{SS_{Res}}{n - p}$$

$$MS_{Reg} = \frac{SS_{Reg}}{p-1}$$

Adjusted R²

 The adjusted coefficient of multiple determination, uses the mean squares instead of the sums of square, i.e.

$$R_a^2 = 1 - \frac{\text{MS}_{\textit{Res}}}{\text{MS}_{\textit{Tot}}} = 1 - \left(\frac{n-1}{n-p}\right) \frac{\text{SS}_{\textit{Res}}}{\text{SS}_{\textit{Tot}}}.$$

Since the term includes the number of model parameters,
 p, it penalizes for model complexity.

R code

```
> fit = lm(y ~ X)
> summary(fit)
Call:
lm(formula = v ~ X)
Residuals:
    Min
            10 Median 30 Max
-15.2743 -5.2617 0.5032 4.1198 15.3213
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
(Intercept) 66.91518 10.70604 6.250 1.91e-07 ***
XAgriculture -0.17211 0.07030 -2.448 0.01873 *
XExamination -0.25801 0.25388 -1.016 0.31546
XEducation -0.87094 0.18303 -4.758 2.43e-05 ***
XCatholic 0.10412 0.03526 2.953 0.00519 **
XInfant.Mortality 1.07705 0.38172 2.822 0.00734 **
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 7.165 on 41 degrees of freedom
Multiple R-squared: 0.7067, Adjusted R-squared: 0.671
F-statistic: 19.76 on 5 and 41 DF, p-value: 5.594e-10
                                       4□ > 4□ > 4 = > 4 = > = 900
```

R code

Computing the sums of square.

```
> anova(fit)
Analysis of Variance Table
Response: v
          Df Sum Sq Mean Sq F value Pr(>F)
         5 5072.9 1014.58 19.761 5.594e-10 ***
Χ
Residuals 41 2105.0 51.34
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
> SSreq = anova(fit)[1,2]
> SSres = anova(fit)[2,2]
> SStot = SSres + SSreg
> 1-SSres/SStot
[1] 0.706735
```