

Final Report

Virtual Internship

Felipe I. Crespo

Agenda

Business Problem Background

Brief EDA

Models

Models Metrics

Chosen Model

Deployment

Final Conclusions

Business Problem Background

Problem Description

- ABC bank is launching a new term deposit product and wants to develop a model to predict whether a customer will buy it or not.
- The model will help the bank target their marketing efforts to customers who are more likely to buy the product.

Dataset Information

- The dataset is related to direct marketing campaigns of a Portuguese banking institution.
- The campaigns were based on phone calls and aimed to sell a bank term deposit.
- Multiple contacts were often required to determine whether a client subscribed to the deposit or not.

Goal

 The goal is to develop a machine learning model that can predict whether a customer will accept the term deposit or not.

Brief EDA

Dataset

```
Rows = 41188 | Columns = 21
```

Feauters

```
['age', 'job', 'marital', 'education', 'default', 'housing', 'loan',
  'contact', 'month', 'day_of_week', 'duration', 'campaign', 'pdays',
  'previous', 'poutcome', 'emp.var.rate', 'cons.price.idx',
  'cons.conf.idx', 'euribor3m', 'nr.employed', 'y'],
```

Assumptions

- The category "Unknown" will be treated as a distinct category and not as a missing value (NaN).
- The dataset may contain outliers in the age and campaign variables.

Distribution of target (%):

```
y
no 88.734583
yes 11.265417
```


Models

	Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC	TT (Sec)
lightgbm	Light Gradient Boosting Machine	0.8970	0.8007	0.3267	0.5767	0.4167	0.3649	0.3829	0.2900
catboost	CatBoost Classifier	0.8973	0.7962	0.3045	0.5855	0.4001	0.3501	0.3728	7.1710
lr	Logistic Regression	0.8231	0.7903	0.6352	0.3458	0.4476	0.3532	0.3764	0.3960
lda	Linear Discriminant Analysis	0.8210	0.7895	0.6352	0.3421	0.4446	0.3492	0.3730	0.1390

Models Metrics

LightGBM

CatBoost

F1 Kappa

	MCC	Карра	F1	Prec.	Kecali	AUC	Accuracy	
0	0.3876	0.3618	0.4098	0.6135	0.3077	0.8087	0.9001	0
1	0.3422	0.3071	0.3529	0.6000	0.2500	0.7903	0.8970	1
2	0.3713	0.3539	0.4063	0.5628	0.3179	0.7916	0.8956	2
3	0.3594	0.3387	0.3903	0.5640	0.2985	0.7834	0.8949	3
4	0.3952	0.3705	0.4187	0.6168	0.3169	0.8196	0.9008	4
5	0.3384	0.3151	0.3663	0.5528	0.2738	0.8065	0.8932	5
6	0.4036	0.3762	0.4230	0.6358	0.3169	0.8057	0.9025	6
7	0.3916	0.3619	0.4083	0.6323	0.3015	0.8020	0.9015	7
8	0.3672	0.3475	0.3992	0.5682	0.3077	0.8066	0.8956	8
9	0.4013	0.3771	0.4251	0.6213	0.3231	0.7930	0.9015	9
Mean	0.3758	0.3510	0.4000	0.5967	0.3014	0.8007	0.8983	Mean
SD	0.0225	0.0231	0.0227	0.0301	0.0217	0.0103	0.0032	SD

8876	0	0.8984	0.8007	0.3108	0.5941	0.4081	0.3584	0.3810
3422	1	0.8994	0.7942	0.2809	0.6149	0.3856	0.3390	0.3701
3713	2	0.8949	0.7858	0.3241	0.5556	0.4094	0.3560	0.3717
3594	3	0.8921	0.7848	0.2769	0.5422	0.3666	0.3143	0.3356
3952	4	0.9025	0.8187	0.3415	0.6236	0.4414	0.3929	0.4144
3384	5	0.8949	0.7977	0.3138	0.5604	0.4024	0.3497	0.3675
1036	6	0.9001	0.7949	0.2985	0.6178	0.4025	0.3551	0.3833
3916	7	0.8928	0.7910	0.2615	0.5519	0.3549	0.3045	0.3299
3672	8	0.8977	0.8090	0.3231	0.5833	0.4158	0.3648	0.3840
1013	9	0.9001	0.7856	0.3138	0.6108	0.4146	0.3661	0.3905
3758	Mean	0.8973	0.7962	0.3045	0.5855	0.4001	0.3501	0.3728
)225	SD	0.0033	0.0104	0.0235	0.0293	0.0239	0.0243	0.0237

	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC
0	0.8315	0.7995	0.6462	0.3614	0.4636	0.3729	0.3951
1	0.8123	0.7691	0.6173	0.3241	0.4251	0.3257	0.3499
2	0.8130	0.7886	0.6451	0.3302	0.4368	0.3384	0.3658
3	0.8030	0.7712	0.5908	0.3062	0.4034	0.2993	0.3225
4	0.8456	0.8227	0.6800	0.3932	0.4983	0.4147	0.4364
5	0.8280	0.7933	0.6431	0.3548	0.4573	0.3651	0.3879
6	0.8248	0.7841	0.6400	0.3490	0.4517	0.3580	0.3814
7	0.8283	0.7993	0.6246	0.3524	0.4506	0.3581	0.3787
8	0.8266	0.8056	0.6677	0.3563	0.4647	0.3724	0.3986
9	0.8179	0.7697	0.5969	0.3299	0.4250	0.3273	0.3476
Mean	0.8231	0.7903	0.6352	0.3458	0.4476	0.3532	0.3764
SD	0.0114	0.0165	0.0269	0.0230	0.0252	0.0305	0.0303
7 8 9 Mean	0.8283 0.8266 0.8179 0.8231	0.7993 0.8056 0.7697 0.7903	0.6246 0.6677 0.5969 0.6352	0.3524 0.3563 0.3299 0.3458	0.4506 0.4647 0.4250 0.4476	0.3581 0.3724 0.3273 0.3532	0.3787 0.3986 0.3476 0.3764

Models Metrics

Models Metrics

LightGBM

Chosen Model

LightGBM

The LightGBM model was selected based on its performance in AUC, which is considered the most reliable indicator for binary classification problems.

Chosen Model

LightGBM

The LightGBM model was selected based on its performance in AUC, which is considered the most reliable indicator for binary classification problems.

Deployment

We deployed the Light GBM Machine Learning Model as a simple API on Heroku, similar to our Week 5 deployment. This API allows for the prediction of bank customer acceptance.

Term Deposit Purchase Prediction

Age
job
marital
education
housing
loan
contact
month
day_of_week
duration
campaign
pdays
previous
poutcome
emp.var.rate
cons.price.idx
cons.conf.idx
euribor3m
nr.employed
Predict

Final Conclusions

- We tested different techniques for handling outliers and missing values, including treating "unknown" as a separate category and applying Weight of Evidence (WOE) treatment. The best results were obtained using these methods, while treating "unknown" as nulls resulted in worse metrics.
- From a range of models tested using Pycaret, our analysis focused on the three topperforming models: LightGBM, Catboost, and Logistic Regression. After thorough consideration, we ultimately chose LightGBM as our final model due to its superior predictive performance.
- While our model showed good performance overall, there may be room for improvement through threshold optimization, particularly for metrics such as precision and recall, which had lower scores.

Thank You

