



38 39



Shared-Memory Multiprocessors

...but systems actually look more like this

• Processors have caches

• Memory may be physically distributed

• Arbitrary interconnect

P<sub>0</sub>
P<sub>1</sub>
P<sub>2</sub>
P<sub>3</sub>

\$ M<sub>0</sub> \$ M<sub>1</sub> \$ M<sub>2</sub> \$ M<sub>3</sub>

Router/interface Router/interface Interconnect

41

40









44 45



**Bus-based Multiprocessor** Simple multiprocessors use a bus All processors see all requests at the same time, same order Memory Single memory module, -or-Banked memory module Bus  $M_0$  $M_1$  $M_2$  $M_3$ 

47









50 51



Cache Coherence and Cache Misses

- · Coherence introduces two new kinds of cache misses
  - Upgrade miss
    - · On stores to read-only blocks
    - · Delay to acquire write permission to read-only block
  - · Coherence miss
  - · Miss to a block evicted by another processor's requests
- Making the cache larger...
  - · Doesn't reduce these type of misses
  - As cache grows large, these sorts of misses dominate
- False sharing
  - Two or more processors sharing parts of the same block
  - But *not* the same bytes within that block (no actual sharing)
  - · Creates pathological "ping-pong" behavior
  - Careful data placement may help, but is difficult

53





## Snooping Bandwidth Scaling Problems

- Coherence events generated on...
  - L2 misses (and writebacks) *actually* last level cache misses
- Problem#1: N2 bus traffic
  - All N processors send their misses to all N-1 other processors
  - Assume: 2 IPC, 2 GHz clock, 0.01 misses/insn per processor
  - 0.01 misses/insn x 2 insn/cycle x 2 cycle/ns x 64 B blocks = 2.56 GB/s... per processor
    - With 16 processors, that's 40 GB/s! With 128 that's 320 GB/s!!
  - You can use multiple buses... but that hinders global ordering
- Problem#2: N<sup>2</sup> processor snooping bandwidth
  - 0.01 events/insn x 2 insn/cycle = 0.02 events/cycle per processor
  - 16 processors: 0.32 bus-side tag lookups per cycle
    - Add 1 extra port to cache tags? Okay
  - 128 processors: 2.56 tag lookups per cycle! 3 extra tag ports?

"Scalable" Cache Coherence



## Part I: bus bandwidth

Replace non-scalable bandwidth substrate (bus)...

...with scalable one (point-to-point network, e.g., mesh)

## Part II: processor snooping bandwidth

- Most snoops result in no action
- Replace non-scalable broadcast protocol (spam everyone)...
- ...with scalable directory protocol (only notify processors that care)

57