What is claimed is:

- 1. A composition comprising a buffer and an effective amount of a $poly(M_1-g-M_2)$ or a salt thereof, wherein:
- 5 (a) each M_1 has the formula (I):

$$\begin{array}{c|c} R_1 & R_3 \\ \hline C & C \\ \hline R_2 & C \\ \hline R_4 & \end{array}$$
 (I)

15

30

10

wherein each A_1 is independently O, S or NX_1 ; each of R_1 , R_2 , R_3 and R_4 is independently H, C_1 - C_{20} alkyl, C_4 - C_{12} cycloalkyl, C_5 - C_{12} aryl, C_4 - C_{12} heteroaryl, -(C_1 - C_{20} alkyl)(C_5 - C_{12} aryl) or -(C_5 - C_{12} aryl)(C_1 - C_{20} alkyl);

each R_5 is independently C_1 - C_{20} alkyl, C_1 - C_{20} heteroalkyl, C_4 - C_{12} cycloalkyl, C_4 - C_{12} heterocycloalkyl, C_5 - C_{12} aryl, C_4 - C_{12} heteroaryl, -(C_1 - C_{20} alkyl)(C_4 - C_{12} cycloalkyl), -(C_4 - C_{12} cycloalkyl)(C_1 - C_{20} alkyl), -(C_1 - C_{20} heteroalkyl)(C_4 - C_{12} cycloalkyl), -(C_4 - C_{12} cycloalkyl)(C_1 - C_{20} heteroalkyl), -(C_1 - C_{20} alkyl)(C_4 - C_{12} heterocycloalkyl), -(C_4 - C_{12} heterocycloalkyl)(C_1 - C_{20} alkyl), -(C_1 - C_{20} heteroalkyl), -(C_1 - C_{20} alkyl)(C_5 - C_{12} aryl), -(C_5 - C_{12} aryl)(C_1 - C_{20} alkyl), -(C_1 - C_{20} heteroalkyl), -(C_5 - C_{12} aryl)(C_1 - C_{20} alkyl)(C_4 - C_{12} heteroaryl), -(C_4 - C_{12} heteroaryl)(C_1 - C_{20} alkyl), -(C_1 - C_2 0 alkyl), -(C_1 - C_2 0 heteroalkyl)(C_4 - C_1 2 heteroaryl), -(C_4 - C_1 2 heteroaryl)(C_1 - C_2 0 alkyl), -(C_1 - C_2 0 alkyl), -(C_1 - C_2 0 heteroalkyl), -(C_1 - C_2 0 alkyl), -(C_1 - C_2 0 heteroalkyl), -(C_1 - C_2 0 alkyl), -(C_1 - C_2 0 heteroalkyl), -(C_1 - C_2 0 alkyl), -(C_1 - C_2 0 alkyl

each X_1 is independently H, C_1 - C_{20} alkyl, C_4 - C_{12} cycloalkyl, C_5 - C_{12} aryl, C_4 - C_{12} heteroaryl, -(C_1 - C_{20} alkyl)(C_5 - C_{12} aryl), -(C_5 - C_{12} aryl)(C_1 - C_{20} alkyl), -(C_1 - C_4 alkyl) $_q$ NH2, -(C_1 - C_4 alkyl) $_q$ CONH2, -(C_1 - C_4 alkyl)NHCONH2, -(C_1 - C_4 alkyl) $_q$ NHCOCH3, where each q is 0 or 1;

35 (b) each M_2 has the formula (II):

$$\begin{array}{c|c}
R_6 & R_8 \\
\hline
C & R_{10} \\
\hline
R_7 & C \\
\hline
R_9 & C
\end{array}$$
(II)

wherein each A₂ is independently O, S or NX₂;

5

30

35

10 each of R_6 , R_7 , R_8 and R_9 is independently H, C_1 - C_{20} alkyl, C_4 - C_{12} cycloalkyl, C_5 - C_{12} aryl, C_4 - C_{12} heteroaryl, -(C_1 - C_{20} alkyl)(C_5 - C_{12} aryl) or -(C_5 - C_{12} aryl)(C_1 - C_{20} alkyl);

each R_{10} is independently H, C_1 - C_{20} alkyl, C_1 - C_{20} heteroalkyl, C_4 - C_{12} cycloalkyl, C_4 - C_{12} heterocycloalkyl, C_5 - C_{12} aryl, C_4 - C_{12} heteroaryl, -(C_1 - C_{20} alkyl)(C_4 - C_{12} cycloalkyl), -(C_4 - C_{12} cycloalkyl)(C_1 - C_{20} alkyl), -(C_1 - C_{20} heteroalkyl)(C_4 - C_{12} cycloalkyl), -(C_4 - C_{12} cycloalkyl)(C_1 - C_{20} heteroalkyl), -(C_1 - C_{20} alkyl)(C_4 - C_{12} heterocycloalkyl), -(C_4 - C_{12} heterocycloalkyl)(C_1 - C_{20} alkyl), -(C_1 - C_{20} alkyl)(C_5 - C_{12} aryl), -(C_5 - C_{12} aryl)(C_1 - C_{20} alkyl), -(C_1 - C_{20} heteroalkyl), -(C_5 - C_{12} aryl)(C_1 - C_{20} alkyl), -(C_1 - C_2 0 heteroalkyl), -(C_1 - C_2 0 alkyl), -(C_1 - C_2 0 heteroalkyl), -(C_1 - C_2 0 alkyl), -(C_1 - C_2 0 heteroalkyl)(C_1 - C_2 0 heteroalkyl), -(C_1 - C_2 0 alkyl), -(C_1 - C_2 0 heteroalkyl), -(C_1

each X_2 is independently H, C_1 - C_{20} alkyl, C_4 - C_{12} cycloalkyl, C_5 - C_{12} aryl, C_4 - C_{12} heteroaryl, -(C_1 - C_{20} alkyl)(C_5 - C_{12} aryl), -(C_5 - C_{12} aryl)(C_1 - C_{20} alkyl), -(C_1 - C_4 alkyl) $_q$ NH $_2$, -(C_1 - C_4 alkyl) $_q$ CONH $_2$, -(C_1 - C_4 alkyl)NHCONH $_2$, -(C_1 - C_4 alkyl) $_q$ NHCOCH $_3$, where each q is 0 or 1;

- (c) provided that at least one M_1 is different from at least one M_2 .
- 2. The composition of claim 1, which further comprises a sieve polymer, or a salt thereof, having a monomer unit that is acrylamide, *N*-acetyl-acrylamide, *N*-2-cyanoethyl-acrylamide, *N*-1,2-dihydroxyethylene-*bis*-acrylamide, *N*-4,4-dimethoxybutyl-acrylamide, *N*-2,2-dimethoxyethyl-acrylamide, *N*-N-dimethyl-acrylamide, *N*-2-hydroxyethyl-acrylamide,

N-hydroxymethyl-acrylamide, N-methoxymethyl-acrylamide, N-3-methoxypropylacrylamide, N-methyl-acrylamide, N-methyl-, N-2,2-dimethoxyethyl-acrylamide, Nmorpholinoethyl-acrylamide, N-2,2,2-trichloro-1-hydroxyethyl-acrylamide, Ntri(hydroxymethyl)-methyl-acrylamide, methacrylamide, N-acetyl-methacrylamide, N-2cyanoethyl-methacrylamide, N,N-1,2-dihydroxyethylene-bis-methacrylamide, N-4,4dimethoxybutyl-methacrylamide, N-2,2-dimethoxyethyl-methacrylamide, N,Ndimethyl-methacrylamide, N-2-glycolic acid methyl ester methacrylamide, N-2hydroxyethyl-methacrylamide, N-hydroxymethyl-methacrylamide, N-methoxymethylmethacrylamide, N-3-methoxypropyl-methacrylamide, N-methyl-methacrylamide, Nmethyl-, N-2,2-dimethoxyethyl-methacrylamide, N-morpholinoethyl-methacrylamide, 10 N-2,2,2-trichloro-1-hydroxyethyl-methacrylamide, N-tri(hydroxymethyl)-methylmethacrylamide, or a mixture thereof.

- The composition of claim 2, wherein the sieve polymer is 3. 15 poly(acrylamide).
 - The composition of claim 2, wherein the sieve polymer is poly(N, N-1)4. dimethyl-acrylamide) and the sieve polymer has a weight-average molecular weight of at least about 3 MDaltons.

5.

- A method for making poly(N,N-dimethylacrylamide), the method comprising polymerizing N,N-dimethylacrylamide in an inverse emulsion comprising an oil phase, an aqueous phase, a surfactant and an initiator to provide the poly(N, N-1)dimethylacrylamide), wherein the poly(N,N-dimethylacrylamide) has a weight-average molecular weight of at least about 3 MDaltons.
- 6. The method of claim 5, wherein the oil phase comprises an aliphatic hydrocarbon having at least about 15 carbon atoms, an aliphatic hydrocarbon having a normal boiling point at or above about 270°C, a silicone oil, a fluorinated hydrocarbon, a liquid perfluoropolyether, or a mixture thereof.
 - 7. The poly(N,N-dimethylacrylamide) product of the method of claim 5.

35

30

20

25

5

8. The composition of claim 1, which further comprises poly(hydroxymethylene), poly(oxyethylene), poly(oxypropylene), poly(oxyethylene-co-oxypropylene), poly(vinyl alcohol), poly(vinylpyrrolidone), poly(2-ethyl-2-oxazoline), poly(2-methyl-2-oxazoline), poly(2-methyl-2-oxazoline), poly(2-ethyl-2-oxazoline), poly(N-acetamidoacrylamide), poly(acryloxylurea), hydroxyethyl cellulose, hydroxymethyl cellulose, or a mixture thereof.

5

15

- 9. The composition of claim 1, wherein the poly(M₁-g-M₂) or a salt thereof has a weight-average molecular weight of from about 150,000 Daltons to about 20 MDaltons.
 - 10. The composition of claim 9, which further comprises a sieve polymer or a salt thereof having a weight-average molecular weight of from about 100,000 Daltons to about 5 MDaltons.
 - 11. The composition of claim 10, wherein the sieve polymer is substantially linear poly(acrylamide).
 - 12. The composition of claim 1, wherein M_1 is:
- N-adamantyl-acrylamide, N-butoxymethyl-acrylamide, N-butyl-20 acrylamide, N-cyclohexyl-acrylamide, N,N-dibutyl-acrylamide, N-3di(butyl)aminopropyl-acrylamide, N,N-diethyl-acrylamide, N-4,4-dimethoxybutylacrylamide, N,N-dimethyl-acrylamide, N-3-(dimethylamino)-propyl-acrylamide, N,Ndipropyl-acrylamide, N-dodecyl-acrylamide, N-2-ethylhexyl-acrylamide, N-isobornylacrylamide, N-methyl-acrylamide, N-methyl-, N-2,2-dimethoxyethyl-acrylamide, N-25 morpholinoethyl-acrylamide, N-octadecyl-acrylamide, N-propyl-acrylamide, N-3-(trimethylammonium)-propyl-acrylamide chloride, N-1,1,3-trimethylbutyl-acrylamide, N-adamantyl-methacrylamide, N-butoxymethyl-methacrylamide, N-butylmethacrylamide, N-cyclohexyl-methacrylamide, N,N-dibutyl-methacrylamide, N-3di(butyl)aminopropyl-methacrylamide, N,N-diethyl-methacrylamide, N-4,4-30 dimethoxybutyl-methacrylamide, N,N-dimethyl-methacrylamide, N-3-(dimethylamino)propyl-methacrylamide, N,N-dipropyl-methacrylamide, N-dodecyl-methacrylamide, N-2-ethylhexyl-methacrylamide, N-isobornyl-methacrylamide, N-methyl-methacrylamide, N-methyl-, N-2,2-dimethoxyethyl-methacrylamide, N-morpholinoethyl-35 methacrylamide, N-octadecyl-methacrylamide, N-propyl-methacrylamide, N-3-

(trimethylammonium)-propyl-methacrylamide chloride, N-1,1,3-trimethylbutylmethacrylamide, or a mixture thereof.

The composition of claim 12, wherein M₂ is: 13.

acrylamide, N-acetyl-acrylamide, N-butoxymethyl-acrylamide, N-4,4-5 dimethoxybutyl-acrylamide, N-2,2-dimethoxyethyl-acrylamide, N-2-glycolic acid methyl ester acrylamide, N-2-hydroxyethyl-acrylamide, N-hydroxymethyl-acrylamide, N-methoxymethyl-acrylamide, N-3-methoxypropyl-acrylamide, N-methyl-acrylamide, N-methyl-, N-2,2-dimethoxyethyl-acrylamide, N-morpholinoethyl-acrylamide, 10 N-2,2,2-trichloro-1-hydroxyethyl-acrylamide, N-tri(hydroxymethyl)-methyl-acrylamide, methacrylamide, N-acetyl-methacrylamide, N-butoxymethyl-methacrylamide, N-4,4dimethoxybutyl-methacrylamide, N-2,2-dimethoxyethyl-methacrylamide, N-2-glycolic acid methyl ester methacrylamide, N-2-hydroxyethyl-methacrylamide, Nhydroxymethyl-methacrylamide, N-methoxymethyl-methacrylamide, N-3-methoxypropyl-methacrylamide, N-methyl-methacrylamide, N-methyl-, N-15 2,2-dimethoxyethyl-methacrylamide, N-morpholinoethyl-methacrylamide, N-2,2,2-trichloro-1-hydroxyethyl-methacrylamide, N-tri(hydroxymethyl)-methyl-

The composition of claim 12, wherein M_2 is: 14.

methacrylamide, or a mixture thereof.

20 N-acetyl-acrylamide, N-butoxymethyl-acrylamide, N-4,4dimethoxybutyl-acrylamide, N-2,2-dimethoxyethyl-acrylamide, N-2-glycolic acid methyl ester acrylamide, N-2-hydroxyethyl-acrylamide, N-hydroxymethyl-acrylamide, N-methoxymethyl-acrylamide, N-3-methoxypropyl-acrylamide, N-methyl-acrylamide, N-methyl-, N-2,2-dimethoxyethyl-acrylamide, N-morpholinoethyl-acrylamide, 25 N-2,2,2-trichloro-1-hydroxyethyl-acrylamide, N-tri(hydroxymethyl)-methyl-acrylamide, N-acetyl-methacrylamide, N-butoxymethyl-methacrylamide, N-4,4-dimethoxybutylmethacrylamide, N-2,2-dimethoxyethyl-methacrylamide, N-2-glycolic acid methyl ester methacrylamide, N-2-hydroxyethyl-methacrylamide, N-hydroxymethyl-30 methacrylamide, N-methoxymethyl-methacrylamide, N-3-methoxypropylmethacrylamide, N-methyl-methacrylamide, N-methyl-, N-2,2-dimethoxyethylmethacrylamide, N-morpholinoethyl-methacrylamide, N-2,2,2-trichloro-1hydroxyethyl-methacrylamide, N-tri(hydroxymethyl)-methyl-methacrylamide, or a mixture thereof.

- 15. The composition of claim 1, wherein the buffer is an aqueous buffer.
- 16. The composition of claim 15, wherein the composition has a pH of from about 5 to about 11.

5

- 17. The composition of claim 15, wherein the composition has a pH of from about 7 to about 10.
- 18. The composition of claim 15, wherein M_1 is N,N-dimethylacrylamide and M_2 is acrylamide.
 - 19. The composition of claim 16, further comprising formamide, urea, pyrrolidone, *N*-methyl pyrrolidone or a mixture thereof.
- 15 20. The composition of claim 16, further comprising urea.
 - 21. The composition of claim 16, further comprising formamide.
 - 22. A capillary containing the composition of claim 1.

20

25

- 23. The capillary of claim 22, wherein the capillary is a capillary tube.
- 24. A method for separating a mixture of biomolecules, comprising:
- (a) contacting the composition of claim 1 with a mixture comprising a biomolecule; and
- (b) applying an electric field to the composition in an amount sufficient to facilitate the separation of a biomolecule from the mixture.
- The method of claim 24, wherein the separation is performed within a capillary tube and two or more biomolecules are polynucleotides.
 - 26. The method of claim 25, wherein the separation has a crossover of at least 400 base pairs.

Poly(N,N-dimethylacrylamide) having a weight-average molecular

27.

weight of at least about 3 MDaltons.