

CURSO DE ENGENHARIA DE SOFTWARE

RELATÓRIO – TRABALHO FINAL QUALIDADE DE SOFTWARE Projeto TERMLT

Equipe:

Antônio Xavier de Sousa Neto

Professora:

Carla Ilane Moreira Bezerra

QUIXADÁ

Março, 2021

SUMÁRIO

1	DESCRIÇÃO DO PROJETO	2
	AVALIAÇÃO DO PROJETO	
	Medição 1 – Antes de refatorar o projeto	
	Detecção dos Code Smells	
	Medição 2 – Após Refatorar Code Smell X	
2.4	Medição 3 – Após Refatorar Code Smell Y Erro! Indicador não definid	do
2.5	Medição Z – Após a refatoração de todos os code smells do projeto	6
3	COMPARAÇÃO DOS RESULTADOS	8
RE	FERÊNCIAS	8
	ÊNDICE A	

1 DESCRIÇÃO DO PROJETO

O projeto selecionado é um projeto Java OO e Web de Código Aberto, é uma ferramenta de gerenciamento de terminologia compatível com SKOS baseada em tecnologias da Web Semântica. Ele permite gerenciar vocabulários consistindo de thesauri e ontologias. Ele também pode gerenciar documentos que usam termos dos vocabulários e analisar os documentos para encontrar ocorrências desses termos. O projeto pode ser encontrado abaixo.

Link do projeto: https://github.com/kbss-cvut/termit

Link do GitHub com os Arquivos:

Tabela 1 – Características do Projeto

Projeto	LOC	# de classes	# de releases
Termlt	27.733	403	5

2 AVALIAÇÃO DO PROJETO

2.1 Medição 1 – Antes de refatorar o projeto

Nessa Seção deve ser incluída a Tabela com a medição das métricas de coesão, acoplamento, complexidade, herança e tamanho, antes do projeto ser refatorado. Para isso será utilizada a ferramenta Understand. A Tabela 2 apresenta a descrição das métricas, faça uma tabela similar.

Tabela 2 – Medição dos atributos antes de refatorar o projeto.

Sistema Coesão Co		Comp	Complexidade			Herança		Acoplamento	Tamanho				
	LCOM2	ACC	SCC	EVG	MaxNet	DIT	NOC	IFANIN	СВО	LOC	CLOC	NIM	CDL
S1 antes da	12355	358	3725	443	179	678	197	513	1651	277173	7585	3253	403
refatoração			4705				1338						
S1 após		337	3585	433	175	652	197	470					
refat. CS	12377		4530				1319		1638				
FE													

S1 após		325	3539	416	168	645	168	513	1651				
refat. CS													
FE E RPB													
	12390		4448				1307		1652	27773	7585	3258	415
S1 após		349	3610	435	178	654	195	481	1676				
refat. CS										27.790	7585	3260	415
FE E RPB	12476		4572				1330						
e IC													
S1 após		334	3584	428	174	666	199	486	1684	27.790	7585	3268	<u>420</u>
refat. CS													
FE E RPB			4520		1351								
e IC e DC	11809												
S1 após													
refat. CS													
FE E RPB													
e IC e DC e													
SS													
	12565		4530		<u>1319</u>				1638	28.000	7585	3268	422
	1		1										

Tabela 3 – Métricas dos atributos internos de qualidade (MCCABE, 1976; CHIDAMBER; KEMERER, 1994; LORENZ; KIDD, 1994; DESTEFANIS et al., 2014)

Atributos	Métricas	Descrição				
G * .	Lack of Cohesion of Methods (LCOM2)	Mede a coesão de uma classe.				
Coesão	(CHIDAMBER; KEMERER, 1994)	Quanto maior o valor dessa métrica, menos coesiva é a classe				
A1	Coupling Between Objects (CBO)	Número de classes que uma classe está acoplada				
Acoplamento	(CHIDAMBER; KEMERER, 1994)	Quanto maior o valor dessa métrica, maior é o acoplament de classes e métodos.				
Complexidade	Average Cyclomatic Complexity (ACC) (MCCABE, 1976)	Média da complexidade ciclomática de todos os métodos.				
Complexidade	(MCCABE, 1970)	Quanto maior o valor dessa métrica, mais complexa são a classes e métodos.				
	Sum Cyclomatic Complexity (SCC) (MCCABE, 1976)	Somatório da complexidade ciclomática de todos os métodos				
	(MCCABE, 1970)	Quanto maior o valor dessa métrica, mais complexos são a classes e métodos.				
	Nesting (MaxNest) (LORENZ; KIDD, 1994)	Nível máximo de aninhamento de construções de controle.				
		Quanto maior o valor dessa métrica, maior é a complexidade de classes e métodos.				
	Essential Complexity (EVG) (MCCABE, 1976)	Mede o grau na qual um módulo contém construtores ni estruturados. Quanto maior o valor dessa métrica mais complexas são classes e métodos.				
Herança	Number Of Children (NOC) (CHIDAMBER; KEMERER, 1994)	Número de subclasses de uma classe.				
rierança	(CHIDAMBER, REMERER, 1994)	Quanto maior o valor dessa métrica maior é o grau de heranç de un sistema.				
	Depth of Inheritance Tree (DIT) (CHIDAMBER; KEMERER, 1994)	O número de níveis que uma subclasse herda de métodos atributos de uma superclasse na árvore de herança. Quanto maior o valor dessa métrica maior é o grau de heranç de um sistema.				
	Bases Classes (IFANIN)	Número imediato de classes base.				
	(DESTEFANIS et al., 2014)	Quanto maior o valor dessa métrica, maior o grau de heranç de um sistema.				
Tamanho	Lines of Code (LOC) (LORENZ; KIDD, 1994)	Número de linhas de código, excluindo espaços e coment rios. Quanto maior o valor dessa métrica, maior é o tamanho d sistema.				
	Lines with Comments (CLOC) (LORENZ; KIDD, 1994)	Número de linhas com comentários.				
	(LORESTE, RIDO, 1779)	Quanto maior o valor dessa métrica maior o tamanho do si tema.				
	Classes (CDL) (LORENZ; KIDD, 1994)	Número de classes. Quanto maior o valor , maior o tamanh do sistema.				
	Instance Methods (NIM) (LORENZ; KIDD, 1994)	Número de métodos de instância. Quanto maior o valor dess métrica maior é o tamanho do sistema.				

2.2 Detecção dos Code Smells

Foram detectadas 308 instâncias de Code Smells, dentre eles estão: Shotgun Sugery, Refuse Parent Bequest, Intensive Coupling, God Class, Feature Envy, Dispersed Coupling e Data Class. Como são muitas instâncias e God Class e Data Class tem apenas 1 detecção. Optamos por escolher pelos outros 5 Smells que foram detectados, abaixo serão escolhidos 40 instâncias dessas 308.

Tabela 3 – Code smells do projeto.

Nome do Code Smell	Quantidade

Refused Parent Bequest	10
Feature Envy	10
Dispersed Coupling	8
Shotgun Sugery	10
Intensive Coupling	2

2.3 Medição 2 – Após Refatorar Code Smell: Feature Envy e Refused Parent Bequest

Os Code Smells Feature Envy e Refused Parent Bequest, foram removidos.do projeto, onde uma porcentagem de cada um foi removida, devido terem muitos deles, Foram Removidos 10 FE e 10 RPB, ficando assim 298 após a retaforação. Para a retirada do FE, foi utilizado a técnica de fatoração de Move Method e Extract Method, onde o Move Method foi utilizado em 8 dos 10 FE, e o Extract em 2.

Logo após para a retirada do RPB, foi utilizado as técnicas de Replace Inherance with Delegation, onde foi retirado as heranças que não era condizentes com as classes e também Extract Super class, onde foram criadas novas classes e delegado os métodos que faziam mais

sentido para elas e depois declarado a herança certa. Onde Replace Inherance foi usada mais vezes que a Extract super class. Depois da fatoração foi medida a qualidade interna, onde pode se notar em comparação a antes da fatoração uma melhora significativa nos atributos de herança e complexidade, onde antes Complexidade era 4695 e agora é 4448 e Herança antes da fatoração era 1388 e agora é 1307. Tivemos também um pouco de melhora em Coesão, e também em acoplamento.

Acredita-se que grande melhora e acoplamento se dá pelos métodos de fatoração e smells refatorados, onde foi movido muitos métodos pra onde eles fariam mais sentidos e removido e criado heranças também que faziam mais sentido.

2.4 Medição 3 – Após Refatorar Code Smell: Intensive Coupling

Na refatoração de Intensive Coupling. Como é um code smell que não existem métodos oficiais de refatoração, porém é um code smell que utiliza os métodos de sua classe excessivamente operações de outra, foi usada a estratégia de refatoração de Move method, onde foi criado um método dentro da classe onde chamava excessivamente esses métodos de outra classe.

2.5 Medição 3 – Após Refatorar Code Smell: Dispersed Coupling

O Dispersed Coupling também é um Code smell que não existem métodos oficiais de refatoração, então , como o Intensive , o Dispersed tem métodos da sua classe que acessam e dependem de muitas operações excessivas de outras classes, também foi usado o Move Method e Extract para criar um método na classe sem precisar chamar de outras ou Mover para a classe certa.

2.6 Medição 4 – Após Refatorar Code Smell: Shotgun Surgery

No caso do Shotgun, foi utilizado as técnicas de refatoração de Move Field e Move method, e alguns casos, alguns getters e setters que estavam na classes e não era utilizados foram removidos, assim removendo esses métodos que não eram utilizados.

2.7 Medição 5 – Após Refatorar Todos os Code Smells

No final, ao refatorar os Code Smells, abaixo na tabela mostrará o comparativo de como o código estava sem refatoração e depois para cada Code Smell.

Complexidade	Herança	Acoplamento
4705	1338	1651
4530↓	1319↓	1638↓
4448↓	1307↓	1652↑
4572↑	1330↑	1676↑
4520↓	1351↑	1684↑
4530↑	1319↓	1638↓
	4705 4530↓ 4448↓ 4572↑ 4520↓	4705 1338 4530↓ 1319↓ 4448↓ 1307↓ 4572↑ 1330↑

Na tabela está o comparativo entre antes da fatoração e depois, e o que melhorou ou piorou dentro do código, o aumenta da coesão no código(seta pra cima), indica um aumento positivo, pois o código está mais coeso após as fatorações, como pode ver na Coluna 1 e 2, após isso a Coesão decai um pouco, e por ultimo sobre novamente, se for compararmos na tabela noacima, a piora da coesão se dá pelo fato após as refatorações dos Smells Dispersed e Intensive Coupling, pelo fato de não haver muita experiência na suas refatorações. A mesma coisa acontece com a Complexidade, ela diminui de forma positiva e depois aumenta na parte da Refatoração do Dispersed e Intensive Coupling, e o mesmo acontece com Herança e por fim acoplamento que no final diminui depois da refatorações de Shotgun Surgery.

Com isso, A coesão melhorou de 12355 para 12565, uma melhora de 2% Em complexidade, houve uma queda de 5%, então melhorou a complexidade do sistema de 4705 para 4530. Herança piorou muito pouco, menos de 2%, de 1338 a 1319 Acoplamento também teve uma piora de 1%, de 1651 para 1638.

Dificuldades e Desafios

As maiores dificuldades apresentadas para fatoração do projeto, foram os code smells de Intensive e Dispersed Coupling, que nunca havia refatorado, e também o sistema em si, que era inglês e todo difícil de refatoração, por ser grande e etc.

3 COMPARAÇÃO DOS RESULTADOS

Leia o artigo:

https://www.sciencedirect.com/science/article/pii/S0950584920301142?casa_token=xcwL1B waRFUAAAAA:wZjXB0Wx-

0FiMSpZSzyi0b7iRe7ZJOr8FdwihzEkvzeQHh0Iz6mxPCF769JgRiZ69TyfI518BP0

Faça uma comparação dos resultados do seu projeto de acordo com esse artigo.

REFERÊNCIAS

AZEEM, Muhammad. Machine learning techniques for code smell detection: A systematic literature review and meta-analysis. Information and Software Technology, v. 108, p. 115-138, 2019.

SABIR, Fatima. A systematic literature review on the detection of smells and their evolution in object-oriented and service-oriented systems. Software: Practice and Experience, v. 49, n. 1, p. 3-39, 2019.

APÊNDICE A

Incluir possíveis documentos que possam ser gerados no desenvolvimento do sistema.