universität freiburg

Information Gain Exploration

Utilizing Full Posterior Maps for Enhanced Exploration

Master – Computer Science

Robot Learning Lab Robin Steiger Lisbon, March 2024

Introduction

- Active Exploration
- Gain-based Exploration
- Full Map Posteriors

Exploration

Robot actively performs actions to gather information during SLAM

Strategies:

- Random Exploration
- Frontier Exploration
- Information-Gain Exploration

Information Gain-based Exploration Using Rao-Blackwellized Particle Filters

Stachniss, Grisetti, Burgard

- Leverage Particle filters for maximizing information gain
- Pose and Map uncertainty
- Theory:
- Entropy:
 - Map: ∀ measurement, ∀ positions, ∀ particles
 - Trade off: Cost vs. Information Gain
- Practice:
 - 1. Draw particle (weight)
 - 2. Predict laser beams
 - 3. Update Map & calculate Entropy
 - 4. Pose Entropy only
 - 5. Add Entropies

Pose: ∀ trajectories

Novelty:

- FMP-Maps
- FMP-Entropy

Information Gain-based Exploration Using Rao-Blackwellized Particle Filters

Formulas

Stachniss, Grisetti, Burgard

1. Information Gain:

- General
$$I(\hat{z}, a_t) = H(p(m, x_{1:t} | d_t)) - H(p(m, x_{1:t}, \hat{x} | d_t, a_t, \hat{z}))$$

- Expected Gain $E[I(a_t)] = \int_{\hat{z}} p(\hat{z}|a_t,d_t) \cdot I(\hat{z},a_t) d\hat{z}$
- Single particle $pprox \int_{\hat{z}} \sum_{p} \omega_t \cdot p(\hat{z}|a_t, m, x_{1:t}, d_t) \cdot p(m|x_{1:t}, d_t) \cdot I(\hat{z}, a_t) d\hat{z}$
- Approximation DrawParticle o Raycasting o UpdateMap o CompareEntropies

2. Entropy

- General $H(p(x_{1:t},m|d_t)) \approx H(p(x_{1:t}|d_t)) + \sum \omega \cdot H(p(m|x_{1:t},d_t))$
- Approximation $H(p(x_t, m|d_t)) \approx H(p(x_t|d_t)) + \sum \omega \cdot H(p(m|x_t, d_t))$

 $\approx ShannonEntropie + MapEntropies \rightarrow$

$$-\sum_{n}\omega \cdot \log(\omega) + \sum_{n}(\omega \cdot -\sum_{c}p(c)\log p(c) + (1-p(c))\log(1-p(c)))$$

Information Gain-based Exploration Using Rao-Blackwellized Particle Filters

Formulas

Stachniss, Grisetti, Burgard

1. Information Gain:

$$I(\hat{z}, a_t) = H(p(m, x_{1:t}|d_t)) - H(p(m, x_{1:t}, \hat{x}|d_t, a_t, \hat{z}))$$

- Single particle $\approx \int_{\hat{z}} \sum_{p} \omega_t \cdot p(\hat{z}|a_t, m, x_{1:t}, d_t) \cdot p(m|x_{1:t}, d_t) \cdot I(\hat{z}, a_t) d\hat{z}$
- Approximation DrawParticle o Raycasting o UpdateMap o CompareEntropies

2. Entropy

- General $H(p(x_{1:t},m|d_t)) \approx H(p(x_{1:t}|d_t)) + \sum \omega \cdot H(p(m|x_{1:t},d_t))$
- Approximation $H(p(x_t,m|d_t)) pprox H(p(x_t|d_t)) + \sum \omega \cdot H(p(m|x_t,d_t))$

$$\approx ShannonEntropie + MapEntropies \rightarrow$$

$$-\sum_{n}\omega \cdot \log(\omega) + \sum_{n}(\omega \cdot -\sum_{c}p(c)\log p(c) + (1-p(c))\log(1-p(c)))$$

Closed-Form Full Map Posteriors for Robot Localization with Lidar Sensors

Luft, Schaefer, Schubert, Burgard

- Traditional map only OCC-probability not uncertainty
- Structures smaller than resolution.
- Reflection Model: $l_{ref} = \frac{\alpha}{\alpha + \beta}$ $\alpha : Hits, \beta : Misses$
- Posterior: $bel(occ) = Beta(\alpha, \beta)$

Closed-Form Full Map Posteriors for Robot Localization with Lidar Sensors

Luft, Schaefer, Schubert, Burgard

- Traditional map only OCC-probability not uncertainty
- Structures smaller than resolution
- Reflection Model: $l_{ref} = \frac{\alpha}{\alpha + \beta}$ $\alpha : Hits, \beta : Misses$
- Posterior: $bel(occ) = Beta(\alpha, \beta)$

$$H(Shannon) = occ \cdot log(occ) + (1 - occ) \cdot log(1 - occ)$$

$$H(Beta(\alpha, \beta)) = ln(Beta(\alpha, \beta)) + (\alpha + \beta - 2) \cdot \psi(\alpha + \beta)$$

$$-(\alpha - 1) \cdot \psi(\alpha) - (\beta - 1) \cdot \psi(\beta)$$

Motivation

- Information gain important!
- Utilizing uncertainty of maps and poses
- Full Map posterior:
 - Half occupied cells
 - More accuracy
 - Fast calculation
- Information Gain
- Using FMP Maps
- In ROS environment

Implementation

- Environment
- Request Cycle

FMP-Explorer

- Setup -

FMP-Explorer

- Request cycle -

same goal?

search frontiers

sending new request

made

progress?

FMP Explorer

Path Calculator MapChangeSimulator

Entropy Calculator

Testing

- Scenarios
- Results

Testing Scenarios

1. Skloster – dining hall

- Big room
- Few small structures

Testing Scenarios

2. Gallery

- Big hall
- Big structures

Testing Scenarios

3. Restaurant

- Winding room
- Many small objects
- Narrow

1. Skloster

2. Gallery

3. Restaurant

1. Skloster

1. Skloster

Resolution: 1 m Tests: 9

1. Skloster Variance

Resolution: 0.1 m Tests: 6

Conclusion

- Interpretation
- Future Work

Conclusion

Interpretation - Ideas

Challenges:

- Computational effort
- Only a bit better
- Unrealistic to use

Advantages:

- Actually working
- Small structures:
 - Significantly better
- Low resolution:
 - Faster
 - Performance still good

For certain scenarios might be an interesting idea to use.

Conclusion

Future Work (present work)

- RoboCup Restaurant Scenario
 - SLAM
 - Serving many customers
- Combining Exploration with Destination
 - Optimization
 - Low resolution
 - Finding most informative path

Thanks for attending :-)

Robin Dominic Steiger
Robot Learning Lab Freiburg
Telefone +49 157 3484 5522
steigerobin@hotmail.de

FMP-Explorer

- Classes -

