ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

FACULTAD DE INGENIERÍA EN ELECTRICIDAD Y COMPUTACIÓN CCPG1001 - FUNDAMENTOS DE PROGRAMACIÓN SEGUNDA EVALUACIÓN - II TÉRMINO 2016-2017/ Febrero 14, 2017

Nombre:		Paralelo:
de manera individual, que puedo usar un lápiz o esferogi recepción del examen; y, cualquier instrumento de comu anterior del aula, junto con algún otro material que se en consultar libros, notas, ni apuntes adicionales a los que s manera ordenada.	, reconozco que el presente examen está diseñado para se ráfico; que sólo puedo comunicarme con la persona respon inicación que hubiere traído, debo apagarlo y depositarlo er cuentre acompañándolo. Además no debo usar calculador se entreguen en esta evaluación. Los temas debo desarrolla er leído y aceptado la declaración anterior. "Como estudian"	sable de la n la parte ra alguna, arlos de
ESPOL me comprometo a combatir la mediocridad y ac	, ,	Firma

TEMA 1. (30 PUNTOS)

Se le ha encargado la tarea del control del tránsito. Para esto, la ciudad será representada siempre por una matriz de 5x5, dividida en cuadrantes y sectores, donde se registrará los valores de las multas generadas. Cada celda de la matriz corresponde a un cuadrante y registrará el total de multas generadas para ese cuadrante. Habrán cinco sectores: Norte, Sur, Centro, Este y Oeste, que agruparán varios cuadrantes, de acuerdo al esquema mostrado a la derecha:

Esta matriz muestra únicamente la distribución de sectores (no debe crear esta matriz)

Norte	Norte	Norte	Norte	Norte
Oeste	Centro	Centro	Centro	Este
Oeste	Centro	Centro	Centro	Este
Oeste	Centro	Centro	Centro	Este
Sur	Sur	Sur	Sur	Sur

Para cumplir con la tarea, deberá implementar lo siguiente:

1. Una función **generaMatriz(listaMultas)** que recibe una lista de tuplas, donde cada tupla es (coordenadaX, coordenadaY, valor_multa), con las coordenadas del cuadrante y el valor de la multa. La función deberá retornar una matriz de Numpy con el valor agregado de las multas generadas para cada cuadrante.

Por ejemplo, para la lista de multas: [(0, 0, 120), (1, 2, 330), (3, 4, 123), (4, 2, 62), (0, 0, 50), (4, 4, 89), (0, 3, 25), (2, 0, 43), (3, 2, 21), (0, 0, 120)]

Nota: las coordenadas empiezan en 0,0 y se pueden repetir en la lista de tuplas.

La función retornará:

290	0	0	25	0
0	0	330	0	0
43	0	0	0	0
0	0	21	0	123
0	0	62	0	89

2. Una función **sectorTop(matriz)** que reciba la matriz generada en el tema anterior, calcule el sector con el valor total de multas más alto y retorne una tupla con el nombre del sector (Norte, Sur, Centro, Este, Oeste) y dicho valor.

Para nuestro ejemplo anterior, la función retornará: ('Centro', 351)

TEMA 2. (60 PUNTOS)

Usted escribirá un programa que ayudará a personas alrededor del mundo a decidir cuál es el país al cual quieren ir a vivir cuando se jubilen. Para ello su programa ofrecerá información sobre el costo de vida usando las métricas descritas debajo.

1.) Escriba la función **cargarDatos(nomFile)** que recibe el nombre de un archivo que en cada línea contiene los siguientes campos "ciudad,metrica,valorDeMetrica" (ver ejemplo). La función retorna un diccionario con la estructura descrita a continuación:

Nota: solo existen dos métricas posibles 'precioCasas' y 'temperatura' y todas las ciudades tienen ambas métricas.

2.) Escriba la función metricaPais(datos, paises) que recibe el diccionario datos con la estructura del diccionario generado en la función anterior y el diccionario paises que tiene como clave el nombre del país y como valor la lista de ciudades para ese país. Esta función calcula el valor promedio de cada métrica por país y retorna un diccionario cuya clave es el país y cuyo valor es otro diccionario con los promedios por métrica. Por ejemplo, para Guayaquil y Cuenca que pertenecen al mismo país se calcula el promedio de las métricas precioCasas y temperatura y se lo asigna al país Ecuador:

```
{"Ecuador": {"precioCasas":125000,"temperatura":25.5},
    "Colombia": {"precioCasas":120000,"temperatura":20} }
```

3.) Escriba la función generaPaises(promedios,metrica,minimo,maximo) que recibe el diccionario promedios con la estructura del diccionario generado en la función anterior, un string denominado metrica que puede ser 'precioCasas' o 'temperatura' y un valor minimo y un maximo para dicha métrica. Esta función busca aquellos países en los cuales el valor de metrica esté entre el valor mínimo y máximo dados como argumento y escribe en un archivo el país y el valor de la métrica separados por coma. El nombre del archivo de salida es el mismo nombre de la métrica con la extensión ".csv". Por ejemplo:

```
generaPaises(proms,"temperatura",23,26) para el ejemplo anterior generaría
el archivo
"temperatura.csv" con el siguiente contenido:
Ecuador,temperatura,25.5
```

TEMA 3 (10 PUNTOS)

```
Dados los conjuntos:
```

 $A = \{1, 2, 3, 4, 5\}$

 $B = \{4, 5, 6, 7, 8, 9\}$

 $C = \{5, 4, 7, 0, 1\}$

 $Y = \{len(A), len(B), len(C)\}$

a. Indique la salida del programa. Justifique su respuesta

 $X = A \mid B$

 $Z = X ^ C$

E = X - C

print(A.issubset(E))

b. Indique la salida del programa. Justifique su respuesta

Y = A & Y

Z = Y - C

print(Z)

---//---

Cheat Sheet. Funciones y propiedades de referencia en Python.

Librería Numpy para arreglos:	para conjuntos :	para cadenas :
np.array((numRows,numCols),dtype=) np.argmax(<i>arreglos</i>) numpy.sum(<i>arreglos</i>) numpy.mean(<i>arreglos</i>) <i>arreglos</i> .sum(axis=1)	union ^ diferencia simétrica - diferencia & intersección	cadenas.islower() cadenas.isupper() cadenas.lower() cadenas.upper() cadenas.split() cadenas.find() cadenas.count()