## Rings and Things



David Ormrod Morley
Balliol College
University of Oxford

A thesis submitted for the degree of  $Doctor\ of\ Philosophy$  Trinity 2020

## Contents

| 1            | Introduction         | 1 |
|--------------|----------------------|---|
|              | 1.1 Thesis Structure | 5 |
| $\mathbf{R}$ | teferences           | 7 |

# List of Notes By David

| 1                     | Expand colloid/procrystals bit                          | 5 |  |  |
|-----------------------|---------------------------------------------------------|---|--|--|
| 2                     | Paragraph to wrap up                                    | 5 |  |  |
| 3                     | Add thesis structure to introduction                    | 5 |  |  |
|                       |                                                         |   |  |  |
|                       |                                                         |   |  |  |
| List of Notes By Mark |                                                         |   |  |  |
| _                     | ast of roces by mark                                    |   |  |  |
|                       |                                                         |   |  |  |
| 1                     | That, Marila and all makes with the common day words at | F |  |  |
| T                     | Test: Mark can add notes with the command \marknote     | Э |  |  |

### 1 | Introduction

The notion of describing amorphous materials as random networks dates back to Zachariasen, who in 1932 sketched a simple diagram of a two-dimensional glass [1]. This configuration, reproduced in figure 1.1a, showed a collection of percolating rings with an absence of long-range order. At the time, Zachariasen's image was intended only as schematic to illustrate the analogous effects in three-dimensional glasses. However, some eighty years later, modern synthesis techniques have led to a range of two-dimensional materials including amorphous carbon, silica and germania which can be considered realisations of Zachariasen's glass [2–6]. These advances may yet represent a watershed moment in chemistry, facilitating the development of a wide range of technologically useful materials with applications including catalysis and gas separation [7–9].

It is clear that understanding the structure of amorphous materials is key to this aim. However, due to the relative recentness of these experimental discoveries, much of the existing theory arises from studies of systems on greater length scales. Specifically, in the second half of the 20<sup>th</sup> century, much work was done on the formation of polycrystals in metals and alloys. By annealing the metal and slicing through the sample, the grains in the polycrystal could be directly imaged; revealing a system of tessellating polygons not dissimilar to an atomic material [10, 11]. Over time it became apparent that the structure of these networks is constrained on a series of different levels.

Firstly the mean ring size (*i.e.* the average number of sides in a polygon) tends to the constant value of six. This is readily explainable via graph theoretic arguments, simply resulting from Euler's formula when each vertex forms part of three edges - as is the case for trivalent atoms or the meeting of three grain boundaries. Intuitively

2. Introduction

from chemistry we know this to be true: a pristine graphene sheet is a hexagonal net and although a Stone-Wales defect introduces pentagons and heptagons, they occur in pairs to preserve the overall mean ring size [12].

The next level of information is then the explicit distribution of polygon sizes, also known as the ring statistics. With the constraint of a fixed mean, the ring statistics were shown to be relatively well defined, following a log-normal or maximum entropy distribution [13–15]. However, the ring statistics alone are not sufficient to fully describe the network topology. This is because the same set of rings can be arranged in a large number of different ways. Consider again Zachariasen's original configuration. Removing one square achieves a mean ring size of six and allows the constituent rings to be arranged as a periodic tiling. Figures 1.1b-1.1d show three such examples tilings.



**Figure 1.1:** Panel (a) shows Zachariasen's glass and panels (b)-(d) three different periodic arrangements based on the glass (with one square removed to satisfy Euler's formula). Moving from panel (b)-(d) there is increased clustering of similar sized rings. The size of the rings are highlighted numerically and by colour.

Whilst they may initially look similar, on closer inspection the three configurations display fundamentally different properties. In figure 1.1b similar sized rings are dispersed throughout the arrangement whilst in 1.1d they are tightly clustered together. Furthermore, given the large number of configurations which may be theoretically possible for any set of ring statistics, only a subset of these

1. Introduction 3

may be physically realisable. Empirically, these are found to be the ones in which large rings tend to be surrounded by smaller rings i.e. similar to 1.1b. Once again, chemical intuition would support this in the context of atomic materials, as strain is minimised by maintaining bond lengths and angles as close to their equilibrium values as possible. This effect was first noticed in polycrystals and quantified through the Aboav-Weaire law [16, 17]. This law claims that the mean ring size about any given ring can be related to the central ring size by a single fitting parameter. Hence the value of this parameter in some way describes the increased tendency of the small rings to be adjacent to large rings. The Aboav-Weaire parameter therefore provides information on the first-order ring correlations, completing the topological description of the network material.

The novelty and potential usefulness of two-dimensional materials makes them a clear candidate for computational study, in order to complement and supplement experimental endeavours. Taking the example of thin silica films, there have already been multiple complementary computational investigations including both ab initio methods and molecular dynamics studies using classical force fields at varying levels of theory [18–25]. In order to perform these simulations, it is necessary to have a starting atomistic configuration. This can be achieved in multiple ways. The most straightforward is to take one of the existing experimental images. These are however limited in size and number and can contain defects or areas which cannot be fully imaged. As a result, computational techniques are often preferable, but generating configurations will the required topological properties (i.e. correct ring statistics and Aboav-Weaire parameter) has proved surprisingly difficult [26, 27]. Therefore, the first part of this thesis will focus on developing methods to generate configurations of two-dimensional networks in which the topological parameters can be tuned in a controllable manner. These configurations can then be used as a seed for further computational studies, removing the reliance for experimental configurations and opening the door for high-throughput calculations which can be speculative and potentially predictive.

4 1. Introduction

However, the scope of this work extends beyond materials modelling. As previously mentioned, much of the original work in this field focussed on polycrystals of metal oxides with some links to foams and Voronoi polygons [28, 29]. It is now clear that these chemical networks fit into a much wider class of two-dimensional physical networks that are ubiquitous in the natural world, emerging across all physical disciplines and length scales. Traditional examples range from the atomic level of ultra-thin materials, through colloids, foams, epithelial cells and all the way to geological rock formations [30–34]. There are however countless more occurrences, with drying blood, stratocumulus clouds, crocodile scales and geopolitical borders all being the subject of studies [35–38]. More intriguingly, although these systems are incredibly physically diverse, they still have similar structures [39]. This is because they can all be mapped onto the same generic system, which can be equivalently described as a collection of tessellating polygons or percolating rings, and hence they are governed by the same fundamental laws. Understanding the behaviours of twodimensional networks is therefore key to a wide range of problems in frontier research, not only the directed synthesis of nano-materials but also for example the control of mitotic division [40, 41]; as well as to curiosities such as explaining the arrangement of the stones in Giant's Causeway or cracking in famous artworks [42, 43].

Furthermore, the continuing expansion and maturity of network science as a field has led to significant advances in the description and characterisation of complex networks. This has largely been driven by interest in networks in the more abstract sense of the internet, social media and neural networks [44–46]. To date, the application of these principles in the physical sciences has mostly been confined to topics such as biological signalling pathways. The second half of this thesis will therefore show how robust metrics from network science can be applied to physical two-dimensional networks to better quantify their structure and replacing the need for empirical measures such as the Aboav-Weaire law. This also has the effect of tying physical two-dimensional networks into the wider field of network science, showing them to be a unique and interesting addition to the area.

1. Introduction 5

As part of this process, more generic methods will be developed to construct two-dimensional networks across a range of potential models, coordination environments and topologies. This will allow a systematic study into the factors which influence the underlying network properties in two-dimensional systems. These will be compared to two further in-depth studies of network forming structures from the physical sciences. Expand colloid/procrystals bit. The first are Voronoi tessellations formed in colloidal monolayers. which can be simulated via hard particle models [47]. The second are the ring structures in so-called "procrystalline" lattices [48]. Paragraph to wrap up

#### 1.1 Thesis Structure

Add thesis structure to introduction Test: Mark can add notes with the command \marknote

#### References

- [1] W H Zachariasen. "The Atomic Arrangement in Glass". In: *J. Am. Chem. Soc.* 54.10 (1932), pp. 3841–3851.
- [2] J. Kotakoski et al. "From point defects in graphene to two-dimensional amorphous carbon". In: *Phys. Rev. Lett.* 106 (2011), p. 105505.
- [3] Alex W. Robertson et al. "Spatial control of defect creation in graphene at the nanoscale". In: *Nat. Commun.* 3 (2012), p. 1144.
- [4] Pinshane Y Huang et al. "Direct Imaging of the a Two-Dimensional Silica Glass on Graphene". In: *Nano Lett.* 12 (2012), pp. 1081–1086.
- [5] Leonid Lichtenstein, Markus Heyde, and Hans Joachim Freund. "Crystalline-vitreous interface in two dimensional silica". In: *Phys. Rev. Lett.* 109 (2012), p. 106101.
- [6] Adrián Leandro Lewandowski et al. "Atomic structure of a metal-supported two-dimensional germania film". In: *Phys. Rev. B* 97 (2018), p. 115406.
- [7] Panagiotis Trogadas, Thomas F Fuller, and Peter Strasser. "Carbon as catalyst and support for electrochemical energy conversion". In: *Carbon N. Y.* 75 (2014), pp. 5–42.
- [8] Yongfu Sun et al. "Ultrathin Two-Dimensional Inorganic Materials: New Opportunities for Solid State Nanochemistry". In: *Acc. Chem. Res.* 48 (2015), pp. 3–12.
- [9] Christin Büchner and Markus Heyde. "Two-dimensional silica opens new perspectives". In: *Prog. Surf. Sci.* 92 (2017), pp. 341–374.
- [10] Paul A Beck. "Annealing of cold worked metals". In: *Adv. Phys.* 3.11 (1954), pp. 245–324.
- [11] C G Dunn and E F Koch. "Comparison of Dislocation Densities of Primary and Secondary Recrystallization Grains of Si-Fe". In: *Acta Metall.* 5 (1957), p. 548.
- [12] A J Stone and D J Wales. "Theoretical Studies of Icosahedra C60 and Some Related Species". In: *Chem. Phys. Lett.* 128.5,6 (1986), pp. 501–503.
- [13] J. Shackelford and B. D. Brown. "The Lognormal Distribution in the Random Network Structure". In: J. Non. Cryst. Solids 44 (1981), pp. 379–382.
- [14] J Lemaitre et al. "Arrangement of cells in Voronoi tesselations of monosize packing of discs". In: *Philos. Mag. B* 67.3 (1993), pp. 347–362.
- [15] Leonid Lichtenstein et al. "The atomic structure of a metal-supported vitreous thin silica film". In: Angew. Chemie Int. Ed. 51 (2012), pp. 404–407.

8 References

[16] D A Aboav. "Arrangement of grains in a polycrystal". In: *Metallography* 3 (1970), pp. 383–390.

- [17] D. Weaire. "Some remarks on the arrangement of grains in a polycrystal". In: *Metallography* 7 (1974), pp. 157–160.
- [18] Torbjörn Björkman et al. "Defects in bilayer silica and graphene: Common trends in diverse hexagonal two-dimensional systems". In: *Sci. Rep.* 3 (2013), p. 3482.
- [19] Andrei Malashevich, Sohrab Ismail-Beigi, and Eric I. Altman. "Directing the structure of two-dimensional silica and silicates". In: J. Phys. Chem. C 120 (2016), pp. 26770–26781.
- [20] Mark Wilson et al. "Modeling vitreous silica bilayers". In: *Phys. Rev. B* 87 (2013), p. 214108.
- [21] Mark Wilson and Harry Jenkins. "Crystalline thin films of silica: modelling, structure and energetics". In: *J. Phys. Condens. Matter* 30 (2018), p. 475401.
- [22] Jin Zhang. "Phase-dependent mechanical properties of two-dimensional silica films: A molecular dynamics study". In: *Comput. Mater. Sci.* 142 (2018), pp. 7–13.
- [23] Franz Bamer, Firaz Ebrahem, and Bernd Markert. "Athermal mechanical analysis of Stone-Wales defects in two-dimensional silica". In: *Comput. Mater. Sci.* 163 (2019), pp. 301–307.
- [24] Projesh Kumar Roy and Andreas Heuer. "Ring Statistics in 2D Silica: Effective Temperatures in Equilibrium". In: *Phys. Rev. Lett.* 122 (2019), p. 016104.
- [25] Nina F. Richter et al. "Characterization of Phonon Vibrations of Silica Bilayer Films". In: *J. Phys. Chem. C* 123 (2019), pp. 7110–7117.
- [26] Projesh Kumar Roy, Markus Heyde, and Andreas Heuer. "Modelling the atomic arrangement of amorphous 2D silica: a network analysis". In: *Phys. Chem. Chem. Phys.* 20 (2018), pp. 14725–14739.
- [27] Avishek Kumar et al. "Ring statistics of silica bilayers". In: *J. Phys. Condens. Matter* 26 (2014), p. 395401.
- [28] D. A. Aboav. "The arrangement of cells in a net. I". In: Metallography 13 (1980), pp. 43–58.
- [29] B. N. Boots. "Comments on "Aboav's Rule" for the Arrangement of Cells in a Network". In: Metallography 17 (1984), pp. 411–418.
- [30] J. C. Earnshaw and D. J. Robinson. "Topological correlations in colloidal aggregation". In: *Phys. Rev. Lett.* 72.23 (1994), p. 3682.
- [31] C Allain and L Limat. "Regular Patterns of Cracks Formed by Directional Drying of a Collodial Suspension". In: *Phys. Rev. Lett.* 74.15 (1995), p. 2981.
- [32] Marc Durand et al. "Statistical mechanics of two-dimensional shuffled foams: Prediction of the correlation between geometry and topology". In: *Phys. Rev. Lett.* 107 (2011), p. 168304.
- [33] Mingming Tong et al. "Geometry and Topology of Two-Dimensional Dry Foams: Computer Simulation and Experimental Characterization". In: *Langmuir* 33 (2017), pp. 3839–3846.

References 9

[34] Lucas Goehring and Stephen W Morris. "Cracking mud, freezing dirt, and breaking rocks". In: *Phys. Today* 67.11 (2014), p. 39.

- [35] D Brutin et al. "Pattern formation in drying drops of blood". In: J. Fluid Mech. 667 (2011), pp. 85–95.
- [36] Franziska Glassmeier and Graham Feingold. "Network approach to patterns in stratocumulus clouds". In: *PNAS* 114.40 (2017), pp. 10578–10583.
- [37] Michel C Milinkovitch et al. "Crocodile Head Scales Are Not Developmental Units But Emerge From Physical Cracking". In: Science (80-.). 339 (2019), pp. 78–81.
- [38] G. Le Caër and R. Delannay. "The administrative divisions of mainland France as 2D random cellular structures". In: *J. Phys. Fr.* 3 (1993), p. 1777.
- [39] G Schliecker and S Klapp. "Why are the equilibrium properties of two-dimensional random cellular structures so similar?" In: *Europhys. Lett.* 48.2 (1999), pp. 122–128.
- [40] William T. Gibson et al. "Control of the mitotic cleavage plane by local epithelial topology". In: *Cell* 144 (2011), pp. 427–438.
- [41] M Kokalj Ladan, P Ziherl, and A Šiber. "Topology of dividing planar tilings: Mitosis and order in epithelial tissues". In: *Phys. Rev. E* 100 (2019), p. 012410.
- [42] D. Weaire and N. Rivier. "Soap, cells and statistics-random patterns in two dimensions". In: *Contemp. Phys.* 50.1 (2009), pp. 199–239.
- [43] J C Flores. "Mean-field crack networks on desiccated films and their applications: Girl with a Pearl Earring". In: Soft Matter 13 (2017), pp. 1352–1356.
- [44] Steven H Strogatz. "Exploring complex networks". In: Nature 410 (2001), p. 268.
- [45] S Boccaletti et al. "Complex networks: Structure and dynamics". In: *Phys. Rep.* 424 (2006), pp. 175–308.
- [46] Albert-László Barabási. "The network takeover". In: *Nat. Phys.* 8 (2012), pp. 14–16.
- [47] Alice L Thorneywork et al. "Two-Dimensional Melting of Colloidal Hard Spheres". In: *Phys. Rev. Lett.* 118 (2017), p. 158001.
- [48] Alistair R Overy et al. "Design of crystal-like aperiodic solids with selective disorder—phonon coupling". In: *Nat. Commun.* 7 (2016), p. 10445.