0.1 Propriété d'Archimède

L'ensemble \mathbb{R} est dit archimédien, i.e. $\forall x \in \mathbb{R}, \exists n \in \mathbb{N}, x < n$

Proposition 0.1

Il existe un unique entier dans \mathbb{Z} , appelé la partie entière E, tel que $E(x) \leq E(x) + 1$

Démonstration 0.1.

Existence: Supposons que $x \ge 0$. Comme \mathbb{R} est archimédien il existe un entier $n \in \mathbb{N}$ tel que x < n.

Ainsi on peut trouver un autre entier $m \in \mathbb{N}$ tel que $n \le x$ et m < n. Il suffit de choisir m comme le plus grand entier inférieur ou égal à x et tel que $m \le x < m+1$

Unicité: Supposons qu'il existe 2 entiers tel que $k \le x < k+1$ et $l \le x < l+1$ Par transitivité, il vient $k \le x < l+1$ et k < l+1,

$$de \ m \hat{e} m e, \ l \leq x < k+1 \ et \ l < k+1 \implies l-1 < k$$

Finalement l-1 < k < l+1 et comme entre les entiers l'entier l-1 et l+1 il n'y a que l, alors k=l

Exemple 0.1.

$$x = 3.14, E(x) = 3.$$

$$x = -12.2, E(x) = -13.$$

Remarque 0.1.

On note parfois $E(x) = [x] = \lfloor x \rfloor$

On note $\{x\}$, la partie fractionnaire (e.g. $\{3.14\} = 0.14$)

0.2 La valeur absolue

Définition 0.1.

Propriétés 0.1

1.
$$|a| \ge 0$$
, $a \le |a|$, $-|a| \le a$, $|-a| = |a|$

2.
$$\sqrt{a^2} = |a|$$

3.
$$|ab| = |a||b|$$

$$4. \ \forall n \in \mathbb{Z}, |a^n| = |a|^n$$

5. si
$$a \neq 0, |\frac{1}{a}| = \frac{1}{|a|}$$
 et $|\frac{b}{a}| = \frac{|b|}{|a|}$

6. Pour $b \ge 0$,

|a| = b, si et seulement si a = b ou a = -b

 $|a| \leq b$ si et seulement si $-b \leq a \leq b$ (beaucoup utilisé pour passer de a à |a|)

 $|a| \ge b$ si et seulement si $a \le -b$ ou $a \ge b$

7.
$$|a+b| \le |a| + |b|$$
 (l'inégalité triangulaire)

8.
$$||a| - |b|| \le |a - b|$$
 (l'inégalité triangulaire inversée)

Les propriétés 1 à 6 sont démontrés par la définition de la valeur absolue Démontrons la proprétée 7.

Démonstration 0.2.

$$\begin{array}{ll} D'apr\`es~(1) & -|a| \leq a \leq |a|~et~-|b| \leq b \leq |b|\\ En~additionnant,~on~obtient~-|a|-|b| \leq a+b \leq |a|+|b|\\ -(|a|+|b|) \leq a+b \leq |a|+|b|~avec~(6)~on~arrive~\grave{a}\\ |a+b| \leq |a|+|b| \end{array}$$

Démontrons la propriétée 8.

Démonstration 0.3.

$$a = a - b + b$$
 et $|a| = |a - b + b| \le |a - b| + |b|$ (propriétée 7)
 $|a| \le |a - b| + |b| \implies |a| - |b| \le |a - b|$
 $de \ m\hat{e}me$,

$$b = b - a + a$$
 et $|b| = |b - a + a| \le |b - a| + |a|$
 $|b| \le |b - a| + |a| \Longrightarrow |b| - |a| \le |b - a|$
 $|b - a| = |-(a - b)| = |a - b|$ et

2

 $|a| - |b| \le |a - b|$ et $|b| - |a| = -(|a| - |b|) \le |a - b|$ Finalement par définition

$$||a| - |b|| = \begin{cases} |a| - |b|, & si |a| - |b| \ge 0 \\ -(|a| - |b|), & si |a| - |b| < 0 \end{cases}$$

 $Ainsi ||a| - |b|| \le |a - b|$

Corollaire: Soit r
 un réel positif $\forall x, a \in \mathbb{R}$, on a $|x-a| < r \implies -r < x-a < r \implies a-r < x < a+r$

Remarque 0.2. La valeur absolue |b-a| représent la distance entre a et b

1 Densité de $\mathbb Q$ dans $\mathbb R$

1.1 Intervalles de \mathbb{R}

Définition 1.1.

On appelle intervalle de \mathbb{R} , tout sous-ensemble I de \mathbb{R} vérifiant $\forall a,b \in I, a \leq b$ et $x \in \mathbb{R}, a \leq x \leq b \implies x \in I$

Remarque 1.1. Un sous-ensemble ou partie I de \mathbb{R} , se note $I \subset \mathbb{R}$

Définition 1.2.

Soient $a, b \in \mathbb{R}, a < b$

On appelle intervalle fermé et borné (ou segment) de $\mathbb R$ tout l'ensemble de la forme

$$[a,b] = \{x \in \mathbb{R} | a \le x \le b\}$$

On appelle intervalle ouvert de $\mathbb R$ tout l'ensemble de la forme $]a,b[=\{x\in\mathbb R|\ a< x< b\}\quad ou\quad]a,+\infty[=\{x\in\mathbb R|\ a< x\}\ ou\quad]-\infty,b[=\{x\in\mathbb R|\ x< b\}$

Remarque 1.2. L'ensemble qui contient aucun élément est l'ensemble vide, noté \emptyset

Remarque 1.3. L'ensemble qui contient un seul élément est le singleton, $not\'e\{a\} = [a, a]$

Remarque 1.4. $x \in [a, b] \equiv \exists t \in [0, 1], x = (1 - t)a + tb$

Définition 1.3.

On dit que V est un voisinage de a si $\exists \epsilon > 0, \ [a - \epsilon, a + \epsilon] \subset V$

Densité 1.2

Théorème 1.1

 \mathbb{Q} est dense dans \mathbb{R} , tout intervalle ouvert, non vide de \mathbb{R} contient une infinité de nombres rationnels

Théorème 1.2

 $\mathbb{R}\backslash\mathbb{Q}$ est dense dans \mathbb{R} , tout intervalle ouvert, non vide de \mathbb{R} contient une infinité de nombres irrationnels

$$\begin{array}{c} \textbf{D\'{e}monstration 1.1.} \\ \textit{On cherche } \frac{p}{q} \in \mathbb{Q}, p \in \mathbb{Z}, q \in \mathbb{N}^* \ \textit{tel que } a < \frac{p}{q} < b \implies aq < p < bq \end{array}$$

comme \mathbb{R} est archimédien, il existe un entier q tel que $q > \frac{1}{h-a} \implies$

$$\frac{1}{q} < b - a$$

Prenons
$$p = E(aq) + 1$$

$$p = E(aq) + 1 \Longrightarrow p - 1 = E(aq) \le aq < E(aq) + 1 = p$$

$$\begin{array}{l} \textit{On divise par q l'inégalité } p-1 \geq aq < p+1 \\ \Longrightarrow \frac{p-1}{q} = \frac{p}{q} - \frac{1}{q} \leq a < \frac{p}{q} \end{array}$$

Ainsi
$$\frac{p}{q} - \frac{1}{q} \le a \implies \frac{p}{q} \le a + \frac{1}{q} < a + (b - a) = b$$

Finalement
$$a < \frac{p}{q} < b$$

Il existe un nombre rationnels $\frac{p}{q}$ compris entre a et b.

On divise l'intervalle]a,b[en $\overset{q}{N}$ sous-intervalles disjoints 2 à 2 $]a,b[=]a,a+\frac{b-a}{N}[\cup]\frac{b-a}{N},a+2\frac{b-a}{N}[$

$$]a, b[=]a, a + \frac{b-a}{N}[\cup]\frac{b-a}{N}, a + 2\frac{b-a}{N}[$$

Donc pour chaque intervalle on peut trouver un rationnels, on peut ensuite faire tendre N vers l'infini pour trouver un infinité de rationnels

Démonstration 1.2.

 $D'apres\ notre\ démonstration\ précédente\ il\ existe\ un\ infinit\'e\ de\ rationnels\ pour$

$$a - \sqrt{2} < \frac{p}{q} < b - \sqrt{2} \implies a < \frac{p}{q} + \sqrt{2} < b$$

On en arrive avec la même logique que la démonstration précédente qu'il existe une infinité d'irrationnels entre deux réels.

2 Bornes sur $\mathbb R$

2.1 Maximum et minimum

Définition 2.1.

Soit A une partie non vide de \mathbb{R} . Un réel M est le plus grand (resp. le plus petit) élément de A si $M \in A$ et $\forall x \in A, x \leq M$ (resp. $\forall x \in A, x \geq m$). Si il existe, le plus grand élément est unique et on le note max A. Si il existe, le plus petit élément est unique et on le note min A.