

Case Study – Chickpea Harvesting

By – Md Javed Momin

Version Used

Data Cleaning : MS Excel 365 Database: MYSQL Server 8.0 Visualization: Power BI

Data Cleaning Steps – Column Renaming

I USED CONCATENATE FUNCTION TO COMBINE TWO CELLS WHERE I COMBINED DISTRICT AND PARAMETERS IN ONE CELL WITHOUT WHICH IT WOULD BE DIFFICULT TO ANALYSE THE DATA.

= CONCATENATE(CELL NUMBER, CELL NUMBER, CELL NUMBER ...)

= CONCATENATE(F2, " ", "-", " ",F3)

OUTPUT: DISTRICT 1 - T2M_MIN

Data Cleaning Steps – Inconsistent Date & Time Values

In Date & Time Column, Inconsistent Data was noticed.

Ex: 01-01-2013 12:00:00 AM and 14-01-2013 00:00

So, I used Flash Fill (Ctrl + E) where I manually entered First Two Rows so that Excel can understand the Pattern and then Used Flash Fill to get Consistent Data Formatting (Only Date Ignoring Time)

Data
Cleaning
Steps:
Extracting
Month No

I Extracted
Month No
which helped
in analysing
the data.

Month No: Excel TEXT Function was used.

=TEXT(B2,"m")

O/P:1

Data Cleaning Steps: Extracting Month Name

I Extracted Month Name which helped in analysing the data.

Month Name: Excel TEXT Function was used.

=TEXT(B2,"MMM")

O/P: Jan

Analysing MAX Temperature

I used Excel's Pivot Functions for Analysing the Data.

I calculated Average MAX Temperature of each district and grouped it by months.

Later, I took the average of those 32 districts and grouped it by months.

Months	Max Temperature (Average)	
Jan		24.07
Feb		28.64
Mar		33.64
Apr		39.1
May		41.65
Jun		39.83
Jul		35.32
Aug		32.89
Sep		33.2
Oct		33.19
Nov		29.46
Dec		25.36

MAX Temperature

 The MAX Temperature was recorded in May having Temperature of 41.65 Analysing MIN Temperature

I used Excel's Pivot Functions for Analysing the Data.

I calculated Average MIN
Temperature of each district and grouped it by months.

Later, I took the average of those 32 districts and grouped it by months.

Months Min Temperature (Average)

Jan	8.38
Feb	11.78
Mar	17.08
Apr	22.60
May	26.82
Jun	28.07
Jul	26.56
Aug	24.78
Sep	23.35
Oct	19.90
Nov	15.08
Dec	10.43

MIN Temperature

• The MAX Temperature was recorded in Jan having Temperature of 8.38

Analysing Rainfall (mm)

I used Excel's Pivot Functions for Analysing the Data.

I calculated Average Rainfall (mm) of each district and grouped it by months.

Later, I took the average of those 32 districts and grouped it by months.

Months	Rainfall (mm) (Average)
Jan	0.33
Feb	0.17
Mar	0.38
Apr	0.25
May	0.63
Jun	2.56
Jul	7.25
Aug	6.21
Sep	2.98
Oct	0.51
Nov	0.25
Dec	0.12

SQL Query: Write a query to find which month got the highest rainfall in the State.

SELECT MONTHNAME, SUM(District1_Rainfall + District2_Rainfall + District3_Rainfall + District4_Rainfall +

District5_Rainfall + District6_Rainfall + District7_Rainfall + District8_Rainfall + District9_Rainfall +

District10_Rainfall + District11_Rainfall + District12_Rainfall+ District13_Rainfall+ District14_Rainfall

District15_Rainfall+ District16_Rainfall+ District17_Rainfall+ District18_Rainfall+ District19_Rainfall+

District20_Rainfall + District21_Rainfall + District22_Rainfall + District23_Rainfall + District24_Rainfall +

District25_Rainfall+ District26_Rainfall+ District27_Rainfall+ District28_Rainfall+ District29_Rainfall+

District30_Rainfall+ District31_Rainfall+ District32_Rainfall)

AS Total_Rainfall FROM WEATHER_DATA

GROUP BY MONTHNAME

ORDER BY Total_Rainfall DESC

LIMIT 1

Yield Prediction

I analysed in Excel as I was unable to perform in Python/R.

I used Linear Regression Method for the same.

The Equation of Line was: y = 5.6702x + 779.35

Here, 'x' represents the numerical years, and 'y' represents the predicted yield.

Years	Yield (kg/Hectare)	X
2013-14	705.1	
2014-15	792.9	
2015-16	842.7	
2016-17	823.1	
2017-18	803.3	
2018-19	922	
2019-20	845.1	
2020-21	704.7	
2021-22	830.38	x=9
2022-23	836.05	x=10
2023-24	841.72	x=11

Power BI Analysis

I analysed the Data in Power BI as well & created meaningful visualizations.

Parameters Analysed:

- A) MIN Rainfall (mm)
- B) MAX Rainfall (mm)
- C) MIN Temperature (Average)
- D) MAX Temperature (Average)
- E) MIN Temperature (Average) by month
- F) MAX Temperature (Average) by month
- G) Average Rainfall (mm) by month
- H) Temperature Vs Rainfall by month

Filters Used: Seasons & Years

