Computer simulations of complex systems

Lab PS I – The Swarm

A simple swarming model

Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I. and Shochet, O., 1995. Novel type of phase transition in a system of self-driven particles. *Physical review letters*, 75(6), p.1226.

Step I

Step II

Step III

Step IV

Summary

new position of bird *i*

$$r_i(t+dt) = r_i(t) + v_0 \begin{pmatrix} \cos \theta_i \\ \sin \theta_i \end{pmatrix} dt$$

Your task

- Simulate swarming model for 5000 birds (0.5p)
- Add a bird of prey (0.5p)

- follows the closest bird
- all birds in a radius r_b run away from it

The (devil in the) details

- you need a fast way of getting the neighbours of bird i
- try to explore tree algorithms:

https://towardsdatascience.com/tree-algorithms-explained-ball-tree-algorithm-vs-kd-tree-vs-brute-force-9746debcd940

one possibility is to use a kd-tree:

KDTree - example

X-Werte	Y-Werte	
	9	1
	3	4
	4	6
	6	5
	2	3
	8	7
	7	9
	9	6
	1	2
	4	5

Division at the median along x

Division along y

Tree structure

Birds tree

from scipy.spatial import cKDTree

periodic boundary conditions

birds_tree = cKDTree(positions,boxsize=[L,L])

dist = birds_tree.sparse_distance_matrix(birds_tree,max_distance=r,output_type='coo_matrix')

this produces a (sparse) matrix with distances between birds (if they are smaller than r)

Other methods in cKDTree

bird_tree.query(x, k)

find k nearest neighbours to point x

bird_tree,query_ball_point(x, r)

Find all points within distance r of point(s) x.

• do not use any loops (except over time) - use numpy.sum to sum over the columns/rows of a matrix

Periodic boundary conditions

Closest periodic image

The images of other particles closest to the red one

vector joining particle (i) and the closest periodic image of (j)

dr=np.remainder(ri - rj + L/2., L) - L/2

Birds

- all fly with the same velocity v₀
- their initial distribution is uniform (both in positions and in orientations)

Bird of prey

- moves with the same velocity v_0 as the birds
- follows the closest bird

$$\theta_p = \theta_{pi} + a\eta_p$$

- all the birds within a range of ${\bf r_b}$ fly away from it, ignoring other birds: $\theta_i = \theta_{pi} + a\eta_i$

Predator interaction radius

Visualization

25

bird of prey

30

matplotlib.pyplot.quiver([X, Y], U, V, [C])

• plots a 2D field of arrows

helps in identifying clusters)

• X, Y define the arrow locations, U, V define the arrow directions, and C optionally sets the color

The details

• take e.g.:

L=32, N=5000-10000, r=1,
$$r_b$$
=4, v_0 =2, a=0.15

- make a movie of several hundred frames
- for task one (w/o bird of prey) check if the system selforganizes after sufficiently long time (all birds flying in the same direction)
- how does the presence of the bird of prey impacts such a selforganization process?

Extra task

 look at the phase transition at the intensity of a noise is changed between 0 and 1

order parameter

$$\chi = \frac{1}{Nv_0} \left| \sum_{i} \vec{v}_i \right|$$

• plot and analyze $\chi(a)$

