Exploratory data analysis on haberman Survival Dataset

Dataset Description:-

https://archive.ics.uci.edu/ml/datasets/Haberman's+Survival

Dataset contains the data of patients age, operation year, positive auxiallry, Survival Status nodes having breast cancer.

Survival Status :-

1 = if Patient survived 5 years or longer

2 = if Patient died under 5 years

OBJECTIVE:-

To classify the Survival status based on the features available in the dataset(i.e Age, operation_year, Positive_auxilary_node)

In [74]:

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
column = ['Age','Year_of_Operation','Positive_Axillary_Nodes','Survival_Status']
data = pd.read_csv('haberman.csv', names = column)
```

In [75]:

data

Out[75]:

	Age	Year_of_Operation	Positive_Axillary_Nodes	Survival_Status
0	30	64	1	1
1	30	62	3	1
2	30	65	0	1
3	31	59	2	1
4	31	65	4	1
5	33	58	10	1
6	33	60	0	1
7	34	59	0	2
8	34	66	9	2
9	34	58	30	1
10	34	60	1	1
11	34	61	10	1
12	34	67	7	1
13	34	60	0	1
14	35	64	13	1
15	35	63	0	1
16	36	60	1	1
17	36	69	0	1

18	2Aīge	8∕ear_of_Operation	Positive_Axillary_Nodes	\$urvival_Status
19	37	63	0	1
20	37	58	0	1
21	37	59	6	1
22	37	60	15	1
23	37	63	0	1
24	38	69	21	2
25	38	59	2	1
26	38	60	0	1
27	38	60	0	1
28	38	62	3	1
29	38	64	1	1
276	67	66	0	1
277	67	61	0	1
278	67	65	0	1
279	68	67	0	1
280	68	68	0	1
281	69	67	8	2
282	69	60	0	1
283	69	65	0	1
284	69	66	0	1
285	70	58	0	2
286	70	58	4	2
287	70	66	14	1
288	70	67	0	1
289	70	68	0	1
290	70	59	8	1
291	70	63	0	1
292	71	68	2	1
293	72	63	0	2
294	72	58	0	1
295	72	64	0	1
296	72	67	3	1
297	73	62	0	1
298	73	68	0	1
299	74	65	3	2
300	74	63	0	1
301	75	62	1	1
302	76	67	0	1
303	77	65	3	1
304	78	65	1	2
305	83	58	2	2

```
Out[76]:
  Age Year_of_Operation Positive_Axillary_Nodes
                                              Survival_Status
0 30
       64
                        1
                                              1
1 30
                        3
       62
                                              1
2 30
       65
                        0
                                              1
3 31
                        2
       59
                                              1
4 31
                        4
       65
                                              1
In [77]:
type (data)
Out[77]:
pandas.core.frame.DataFrame
In [78]:
print(data.shape)
(306, 4)
In [79]:
print(data.columns) #printing the coloumn names in the dataframe
Index(['Age', 'Year_of_Operation', 'Positive_Axillary_Nodes',
       'Survival Status'],
      dtype='object')
In [80]:
type (data.columns)
Out[80]:
pandas.core.indexes.base.Index
In [81]:
data["Survival_Status"].value_counts()
Out[81]:
    225
     81
Name: Survival_Status, dtype: int64
```

Observation:-

In [76]:
data.head()

```
1 = 225/306100 = 73.5% 2 = 81/306100 = 26.47%
```

73% of the points are of Survived people i.e class 1 26% of the points are of died people i.e of class 2

So, it is the case of unbalanced dataset since survival status 1(survived 5 years or more) have 225 data points and survival status 2(died within 5 years) have 81 data points so, it makes somewhat difficult to classify

```
In [82]:
```

data.describe()

Out[82]:

	Age	Year_of_Operation	Positive_Axillary_Nodes	Survival_Status
count	306.000000	306.000000	306.000000	306.000000
mean	52.457516	62.852941	4.026144	1.264706
std	10.803452	3.249405	7.189654	0.441899
min	30.000000	58.000000	0.000000	1.000000
25%	44.000000	60.000000	0.000000	1.000000
50%	52.000000	63.000000	1.000000	1.000000
75%	60.750000	65.750000	4.000000	2.000000
max	83.000000	69.000000	52.000000	2.000000

In [83]:

```
survived_person = data.loc[data["Survival_Status"]==1]
survived_person.describe()
```

Out[83]:

	Age	Year_of_Operation	Positive_Axillary_Nodes	Survival_Status
count	225.000000	225.000000	225.000000	225.0
mean	52.017778	62.862222	2.791111	1.0
std	11.012154	3.222915	5.870318	0.0
min	30.000000	58.000000	0.000000	1.0
25%	43.000000	60.000000	0.000000	1.0
50%	52.000000	63.000000	0.000000	1.0
75%	60.000000	66.000000	3.000000	1.0
max	77.000000	69.000000	46.000000	1.0

In [84]:

```
died_person = data.loc[data["Survival_Status"]==2]
died_person.describe()
```

Out[84]:

	Age	Year_of_Operation	Positive_Axillary_Nodes	Survival_Status
count	81.000000	81.000000	81.000000	81.0
mean	53.679012	62.827160	7.456790	2.0
std	10.167137	3.342118	9.185654	0.0
min	34.000000	58.000000	0.000000	2.0
25%	46.000000	59.000000	1.000000	2.0
50%	53.000000	63.000000	4.000000	2.0
75%	61.000000	65.000000	11.000000	2.0
max	83.000000	69.000000	52.000000	2.0

```
# Survived if Survival_Status = 1
# Died if Survival_Status = 2 or other
data["Survival_Status"] = data["Survival_Status"].apply(lambda x: "Survived" if x == 1 else "Died")
```

UNIVARIATE ANALYSIS

1-D scatter plot is basically plotting taking a feature at a time.

In [89]:

```
# 1-D scatter plot of AGE

data_Survived = data.loc[data["Survival_Status"] == "Survived"];
data_Died = data.loc[data["Survival_Status"] == "Died"];

plt.plot(data_Survived["Age"], np.zeros_like(data_Survived['Age']), 'o')
plt.plot(data_Died["Age"], np.zeros_like(data_Died['Age']), 'o')
plt.legend(['Survived','Died'])
plt.xlabel('Age')
plt.xlabel('Age')
plt.title('1D plot(Age)')
```


In [87]:


```
In [88]:
```

```
# 1-D scatter plot of Positive_Axillary_Nodes
data_Survived = data.loc[data["Survival_Status"] == "Survived"];
data_Died = data.loc[data["Survival_Status"] == "Died"];

plt.plot(data_Survived["Positive_Axillary_Nodes"],
    np.zeros_like(data_Survived['Positive_Axillary_Nodes']), 'o')
plt.plot(data_Died["Positive_Axillary_Nodes"],    np.zeros_like(data_Died['Positive_Axillary_Nodes'])
    , 'o')
plt.legend(['Survived','Died'])
plt.xlabel('Positive_Axillary_Nodes')
plt.title('ID plot(Positive_Axillary_Nodes)')
plt.show()
```


Obervation

Here the data points are overlapping and by plotting by taking a feauture at a time will not make any sense as because we
are not able to identify the classes with the help of features

PDF and CDF

Probability distribution Function

Cummulative distribution function

Now plotting CDF(cummulative distributive function) and PDF(Probability Density function) to visualize what percentage

of dataset is under a limit so that if we classify the class then most of the points are seperable or not

Let say we have to know what percentage of datapoints of Positive_auxillary_nodes is under 10 then we have to use CDF

In [90]:

```
# dies
counts, bin edges = np.histogram(data Died['Age'], bins=20,
                                   density = True)
pdf = counts/(sum(counts))
print(pdf);
print(bin_edges)
cdf = np.cumsum(pdf)
plt.plot(bin edges[1:],pdf)
plt.plot(bin_edges[1:], cdf)
plt.legend(['Survival pdf', 'Survival cdf','Died pdf', 'Died cdf'])
plt.show();
[0.02222222 0.03111111 0.04444444 0.06222222 0.04444444 0.08
 0.04 0.05333333 0.09777778 0.06666667 0.07555556 0.08888889
 0.04888889 0.0444444 0.08
                                    0.03111111 0.02222222 0.04
 0.01333333 0.01333333]
[30. 32.35 34.7 37.05 39.4 41.75 44.1 46.45 48.8 51.15 53.5 55.85
 58.2 60.55 62.9 65.25 67.6 69.95 72.3 74.65 77. ]
[0.02469136 \ 0.01234568 \ 0.04938272 \ 0.07407407 \ 0.12345679 \ 0.07407407
 0.07407407 \ 0.12345679 \ 0.09876543 \ 0.03703704 \ 0.03703704 \ 0.08641975
 0.04938272\ 0.04938272\ 0.03703704\ 0.01234568\ 0.01234568\ 0.01234568
            0.01234568]
0.
[34. 36.45 38.9 41.35 43.8 46.25 48.7 51.15 53.6 56.05 58.5 60.95 63.4 65.85 68.3 70.75 73.2 75.65 78.1 80.55 83. ]
[34.
    Survival pdf
     Survival_cdf

    Died pdf

0.8
      Died_cdf
 0.6
0.4
 0.2
 0.0
  30
          40
                  50
                          60
                                  70
                                         80
In [91]:
counts, bin edges = np.histogram(data Survived['Year of Operation'], bins=20,
                                   density = True)
pdf = counts/(sum(counts))
print(pdf);
print(bin_edges)
cdf = np.cumsum(pdf)
plt.plot(bin edges[1:],pdf)
plt.plot(bin edges[1:], cdf)
# dies
counts, bin edges = np.histogram(data Died['Year of Operation'], bins=20,
                                   density = True)
```

```
pdf = counts/(sum(counts))
print(pdf);
print(bin_edges)
cdf = np.cumsum(pdf)
plt.plot(bin edges[1:],pdf)
plt.plot(bin edges[1:], cdf)
plt.legend(['Survival_pdf', 'Survival_cdf','Died_pdf', 'Died_cdf'])
plt.show();
[0.10666667 0.08 0.
                                   0.10666667 0.
                                                         0.10222222
                                  0.09777778 0.10222222 0.
           0.07111111 0.
                        0.09777778 0.
0.06666667 0.
                                             0.09333333 0.
0.04444444 0.03111111]
[58. 58.55 59.1 59.65 60.2 60.75 61.3 61.85 62.4 62.95 63.5 64.05 64.6 65.15 65.7 66.25 66.8 67.35 67.9 68.45 69. ]
[0.14814815 0.11111111 0.
                                 0.04938272 0.
```

```
0. 0.08641975 0. 0.09876543 0.09876543 0. 0.16049383 0. 0.07407407 0. 0.04938272 0. 0.03703704 0.04938272]
[58. 58.55 59.1 59.65 60.2 60.75 61.3 61.85 62.4 62.95 63.5 64.05 64.6 65.15 65.7 66.25 66.8 67.35 67.9 68.45 69. ]
```


In [92]:

```
counts, bin edges = np.histogram(data Survived['Positive Axillary Nodes'], bins=20,
                                 density = True)
pdf = counts/(sum(counts))
print(pdf);
print(bin edges)
cdf = np.cumsum(pdf)
plt.plot(bin edges[1:],pdf)
plt.plot(bin edges[1:], cdf)
# dies
counts, bin edges = np.histogram(data Died['Positive Axillary Nodes'], bins=20,
                                 density = True)
pdf = counts/(sum(counts))
print(pdf);
print(bin_edges)
cdf = np.cumsum(pdf)
plt.plot(bin edges[1:],pdf)
plt.plot(bin edges[1:], cdf)
plt.legend(['Survival pdf', 'Survival cdf','Died pdf', 'Died cdf'])
plt.show();
```

```
[0.73333333 \ 0.10222222 \ 0.026666667 \ 0.053333333 \ 0.013333333 \ 0.00888889]
0.02222222 0.00444444 0.00888889 0.00888889 0.00444444 0.
0.00444444 0.00444444 0.
0.
           0.00444444]
[ 0.
     2.3 4.6 6.9 9.2 11.5 13.8 16.1 18.4 20.7 23. 25.3 27.6 29.9
32.2 34.5 36.8 39.1 41.4 43.7 46. ]
[0.39506173\ 0.17283951\ 0.0617284\ 0.08641975\ 0.04938272\ 0.08641975
0.01234568 0.03703704 0.0617284 0.01234568 0.
                                                        0.
           0.01234568 0.
                                 0.
                                            0.
                                                        0.
           0.01234568]
0.
    2.6 5.2 7.8 10.4 13. 15.6 18.2 20.8 23.4 26. 28.6 31.2 33.8
[ 0.
36.4 39. 41.6 44.2 46.8 49.4 52.]
```


Box Plot

In [93]:

```
sns.boxplot(x='Survival_Status', y='Age', data=data)
plt.show()
```


In [94]:

```
sns.boxplot(x='Survival_Status', y='Year_of_Operation', data=data)
plt.show()
```


In [95]:

```
sns.boxplot(x='Survival_Status', y='Positive_Axillary_Nodes', data=data)
plt.show()
```


OBSERVATION

- Looking at the box plot, **age** and **year of operation** feature are not useful in this plot, but at the same time **Positive_Axillary_Nodes** is the useful feature.
- Positive_Axillary_Nodes of survived people is lower as compared to died people which is higher, so using this feature we can classify the two classes here, but 50% of the data points in died person and 75% of the data points survived data points have same positive auxiliary nodes which generates error of 50% in the result when we will classify using the

Violen plot

In [28]:

```
sns.violinplot(x="Survival_Status", y="Age", data=data, size=8)
plt.show()
```


In [27]:

```
sns.violinplot(x="Survival_Status", y="Year_of_Operation", data=data, size=8)
plt.show()
```


In [26]:

```
sns.violinplot(x="Survival_Status", y="Positive_Axillary_Nodes", data=data, size=8)
#plt.legend(['Survived', 'Died'])
plt.show()
```


Observation

here as we can see first two violen plots are not useful , but in the third plot we can able to diffentitate using Positive_Axillary_Nodes feature.

Histogram Plot

```
In [81]:
```

```
# AGE
sns.FacetGrid(data, hue="Survival_Status", size=5) \
    .map(sns.distplot, "Age") \
    .add_legend();
plt.show();
```


In [82]:

```
# Year_of_Operation
sns.FacetGrid(data, hue="Survival_Status", size=5) \
   .map(sns.distplot, "Year_of_Operation") \
   .add_legend();
plt.show();
```


In [83]:

```
# Positive_Axillary_Nodes
sns.FacetGrid(data, hue="Survival_Status", size=5) \
    .map(sns.distplot, "Positive_Axillary_Nodes") \
    .add_legend();
plt.show();
```


Observation

- 1) As it is clearly visible that the plots are overlaping and it is extremely difficult to differentiate between the data points
- 2) When we are plotting by taking positive auxillary nodes then we are able to clarify that the patients having higher the positive auxillary nodes will have lesser chances of survival
- 3) But we cannot say clearly because still we are not able to diffentitae betweeen then because of the overlapping histogram

BIVARIATE ANAYSIS

Doing analysis taking two feature at a time

2D Scatter Plot

```
In [13]:
```

```
# Plotting by taking 2 features at a time
data.plot(kind='scatter', x='Year_of_Operation', y='Age')
plt.show()
```



```
In [22]:
```

```
# Plotting by taking 2 features at a time
data.plot(kind='scatter', x='Year_of_Operation', y='Positive_Axillary_Nodes')
plt.show()
```

```
50
```


In [23]:

```
# Plotting by taking 2 features at a time
data.plot(kind='scatter', x='Age', y='Positive_Axillary_Nodes')
plt.show()
```


OBSERVATION:-

• Difficult to classify since we are not able to diffentiate between the two classes, since data points are of same color we have to try some ther technique where each class have different identifying color

Now, Plotting by classifying classes differently

In [14]:

```
sns.set_style("whitegrid");
sns.FacetGrid(data, hue="Survival_Status", size=5) \
    .map(plt.scatter, "Year_of_Operation", "Age") \
    .add_legend();
plt.show();
```


In [15]:

```
sns.set_style("whitegrid");
sns.FacetGrid(data, hue="Survival_Status", size=5) \
    .map(plt.scatter, "Positive_Axillary_Nodes", "Age") \
    .add_legend();
plt.show();
```


In [16]:

```
sns.set_style("whitegrid");
sns.FacetGrid(data, hue="Survival_Status", size=5) \
    .map(plt.scatter, "Year_of_Operation", "Positive_Axillary_Nodes") \
    .add_legend();
plt.show();
```


OBERVATION:-

- By adding legend the two classes are more separable and visible now
- But here the data points are overlapping for survived and died persons so here also classifying the classes based on the features is difficult
- we have to write the code for all the respective pair then we are able to see the result, so now trying to plot using pair plot

Pair plots

Can be used when number of features are high

NOTE: The diagnol elements are the respective PDFs for each feature.

In [77]:

```
plt.close();
sns.set_style("whitegrid");
sns.pairplot(data, hue="Survival_Status", size=4);
                                                                                            :
Age
   68
Year_of_Operation
                                                                                                                                                           Survival_Status
Survived
                                                                                                                                                                Died
   50
 Positive Axillary Nodes
   30
   20
                                                              :
                                                                 60
                                                                                64
                                                                                                                        Positive_Axillary_Nodes
                                                                        Year_of_Operation
```

Observation

- 1) Here by seeing the above pair plot we are not able to diffentiate between the classes
- 2) The Data points are overlapping so it is very difficult to differentiate between the classes
- 3) This maybe due to because of the unbalanced dataset of the classes
- 4) Now, we have to try more possible plots to view if we are able to classify or not

Contour Plot

```
Tn [96]
```

```
sns.jointplot(x="Positive_Axillary_Nodes", y="Age", data = data_Survived , kind="kde");
plt.show();
sns.jointplot(x="Positive_Axillary_Nodes", y="Age", data = data_Died__kind="kde");
```

Nodes 20

In [98]:

```
sns.jointplot(x="Year_of_Operation", y="Age", data = data_Survived , kind="kde");
plt.show();
sns.jointplot(x="Year_of_Operation", y="Age", data = data_Died , kind="kde");
plt.show();
```


OBSERVATION

- 1. The people who died have a mean age of 53.679012 while survived people have mean age of 52.017778, which is very low if we take age as consideration for classification
- 2. The people who have survived have lower auxilary node than of died people Mean Positive auxilary nodes :-
 - Survived = 2.791111
 - Died = 7.456790
- 3. From three features available, if we want to classify datapoints into two classes i.e died(2) and survived(1) people then we can use feature positive auxiliary nodes.
- 4. Because the dataset is inbalanced, it is the one of the reason we are not able to classify.
 - 1(Survived) 225
 - 2(Died) 81
- 5. Bivariate analysis is not useful for classifying the classes