杂谈勾股定理

周晨阳

2022年8月12日

摘要

这是一篇关于勾股定理的小短文。

目录

1	勾股定理在古代	2
2	勾股定理的近代形式	3
参	考文献	4

1 勾股定理在古代

西方称勾股定理为毕达哥拉斯定理,将勾股定理的发现归功于公元前 6 世纪的毕达哥拉斯学派 [1]。该学派得到了一个法则,可以求出可排成直角三角形三边的三元数组。毕达哥拉斯学派没有书面著作,该定理的严格表述和证明则见于欧几里得¹《几何原本》的命题 47:"直角三角形斜边上的正方形等于两直角边上的两个正方形之和。"证明是用面积做的。

我国《周髀算经》载商高(约公元前 12 世纪) 答周公问:

勾广三, 股修四, 径隅五。

又载陈子(约公元前7-6世纪)答荣方问:

若求邪至日者,以日下为勾,日高为股,勾股各自乘,并而开方除之,得邪至日。

都较古希腊更早。后者已经明确道出勾股定理 的一般形式。图 1 是我国古代对勾股定理的一种证 明 [2]。

¹欧几里得,约公元前 330-275 年。

图 1: 宋赵爽在《周髀算经》注中作的弦图 (仿制), 该图给 出了勾股定理的一个极具对称美的证明。

2 勾股定理的近代形式

勾股定理可以用现代语言表述如下

定理 1 (勾股定理) 直角三角形斜边的平方等于两腰的平方和。

可以用符号语言表述为:设直角三角形 ABC,

参考文献 4

其中 $\angle C = 90^{\circ}$, 则有

$$AB^2 = BC^2 + AC^2 \tag{1}$$

满足式 (1) 的整数称为勾股数。第 1 节所说毕 达哥拉斯学派得到的三元数组就是勾股数。下表列 出一些较小的勾股数:

直角边 а	直角边 b	斜边 <i>c</i>	
3	4	5	$a^2 + b^2 = c^2$
5	12	13	

参考文献

- [1] 克莱因. 古今数学思想. 上海科学技术出版社, 2022.
- [2] 曲安京. 商高、赵爽与刘徽关于勾股定理的证明. 数学传播, 20(3), 1998.