Lexicon Formation in Autonomous Robots

DISSERTATION

zur Erlangung des akademischen Grades

Dr. rer. nat. im Fach Informatik

eingereicht an der

Mathematisch-Naturwissenschaftlichen Fakultät II Humboldt-Universität zu Berlin

von
Martin Loetzsch
20/11/1977 Neustrelitz

Präsident der Humboldt-Universität zu Berlin:
Prof. Dr. Jan-Hendrik Olbertz
Dekan der Mathematisch-Naturwissenschaftlichen Fakultät II:
Prof. Dr. Elmar Kulke
Gutachter:
1
2
3

eingereicht am:

Abstract

"The meaning of a word is its use in the language". In the first half of the 20th century Ludwig Wittgenstein introduced this idea into philosophy and especially in the last few decades, related disciplines such as psychology and linguistics started embracing the view that that natural language is a dynamic system of arbitrary and culturally learnt conventions. From the end of the nineties on, researchers around Luc Steels transferred this notion of communication to the field of artificial intelligence by letting software agents and later robots play so-called language games in order to self-organize communication systems without requiring prior linguistic or conceptual knowledge. Continuing and advancing that research, the work presented in this thesis investigates lexicon formation in humanoid robots, i.e. the emergence of shared lexical knowledge in populations of robotic agents. Central to this is the concept of referential uncertainty, which is the difficulty of guessing a previously unknown word from the context. First in a simulated environments and later with physical robots, this work starts from very simple lexicon formation models and then systematically analyzes how an increasing complexity in communicative interactions leads to an increasing complexity of representations and learning mechanisms. We evaluate lexicon formation models with respect to their robustness, scaling and their applicability to robotic interaction scenarios and one result of this work is that the predominating approaches in the literature do not scale well and are not able to cope with the challenges stemming from grounding words in the real-world perceptions of physical robots. In order to overcome these limitations, we present an alternative lexicon formation model and evaluate its performance.

Zusammenfassung

"Die Bedeutung eines Wortes ist sein Gebrauch in der Sprache". Ludwig Wittgenstein führte diese Idee in der ersten Hälfte des 20. Jahrhunderts in die Philosophie ein und in verwandten Disziplinen wie der Psychologie und Linguistik setzte sich vor allem in den letzten Jahrzehnten die Ansicht durch, dass natürliche Sprache ein dynamisches System arbiträrer und kulturell gelernter Konventionen ist. Forscher um Luc Steels übertrugen diesen Sprachbegriff seit Ende der 90er Jahre auf das Gebiet der Künstlichen Intelligenz, indem sie zunächst Software-Agenten und später Robotern mittels sogenannter Sprachspiele gemeinsame Kommunikationssysteme bilden liessen, ohne dass Agenten im Voraus mit linguistischem und konzeptionellen Wissen ausgestattet werden. Die vorliegende Arbeit knüpft an diese Forschung an und untersucht vertiefend die Selbstorganisation von geteiltem lexikalischen Wissen in humanoiden Robotern. Zentral ist dabei das Konzept der "referential uncertainty", d.h. die Schwierigkeit, die Bedeutung eines bisher unbekannten Wortes aus dem Kontext zu erschliessen. Ausgehend von sehr einfachen Modellen der Lexikonbildung untersucht die Arbeit zunächst in einer simulierten Umgebung und später mit physikalischen Robotern systematisch, wie zunehmende Komplexität kommunikativer Interaktionen komplexere Lernmodelle und Repräsentationen erfordert. Ein Ergebnis der Evaluierung der Modelle hinsichtlich Robustheit und Übertragbarkeit auf Interaktionszenarien mit Robotern ist, dass die in der Literatur vorwiegenden selektionistischen Ansätze schlecht skalieren und mit der zusätzlichen Herausforderung einer Verankerung in visuellen Perzeptionen echter Roboter nicht zurecht kommen. Davon ausgehend wird ein alternatives Modell vorgestellt.

Contents

Part I

Introduction