

Grokking the Coding Interview: Patterns for **Coding Questions**

Pattern: Modified **Binary Search**

Pattern: Bitwise XOR

Solution Review: Problem Challenge 3

Pattern: Top 'K'

- 'K' Closest Numbers (medium)
- Maximum Distinct Elements
- Sum of Elements (medium)
- Rearrange String (hard)
- Problem Challenge 1
- Solution Review: Problem Challenge 1
- Problem Challenge 2
- Solution Review: Problem

Solution Review: Problem Challenge 3

Count of Structurally Unique Binary Search Trees (hard)

Given a number 'n', write a function to return the count of structurally unique Binary Search Trees (BST) that can store values 1 to 'n'.

Example 1:

```
Output: 2
Explanation: As we saw in the previous problem, there are 2 unique BSTs storing numbers from 1-
```

Example 2:

```
Input: 3
Output: 5
Explanation: There will be 5 unique BSTs that can store numbers from 1 to 5.
```

Solution

This problem is similar to Structurally Unique Binary Search Trees. Following a similar approach, we can iterate from 1 to 'n' and consider each number as the root of a tree and make two recursive calls to count the number of left and right sub-trees.

Code

Here is what our algorithm will look like:

Time complexity

The time complexity of this algorithm will be exponential and will be similar to Balanced Parentheses. Estimated time complexity will be $O(n*2^n)$ but the actual time complexity ($O(4^n/\sqrt{n})$) is bounded by the Catalan number and is beyond the scope of a coding interview. See more details here.

Space complexity

The space complexity of this algorithm will be exponential too, estimated $O(2^n)$ but the actual will be ($O(4^n/\sqrt{n})$.

Memoized version

Our algorithm has overlapping subproblems as our recursive call will be evaluating the same sub-expression multiple times. To resolve this, we can use memoization and store the intermediate results in a **HashMap**. In each function call, we can check our map to see if we have already evaluated this sub-expression before. Here is the memoized version of our algorithm, please see highlighted changes:

The time complexity of the memoized algorithm will be $O(n^2)$, since we are iterating from '1' to 'n' and ensuring that each sub-problem is evaluated only once. The space complexity will be O(n) for the memoization map.

