Homework 4

Exercise 1: solving the 2D heat equation

Consider the following PDE

$$u_t - \Delta u = 2\pi \left[4\pi \cos(2\pi t) - \sin(2\pi t) \right] \sin(2\pi x) \sin(2\pi y), \quad \forall \mathbf{x} \in \Omega = (0, 1)^2,$$
 (1a)

$$u(\mathbf{x},0) = u_0(\mathbf{x}) = \sin(2\pi x)\sin(2\pi y), \qquad \forall \mathbf{x} \in \Omega = (0,1)^2, \tag{1b}$$

$$u(\mathbf{x},t) = 0 \qquad \forall \mathbf{x} \in \partial \Omega. \tag{1c}$$

Our objective is to obtain the solution at t=1. The exact solution for this problem is given by

$$u = \cos(2\pi t)\sin(2\pi x)\sin(2\pi y)$$

Proceed as follows:

- * Considering backward Euler, obtain the discrete weak formulation of (1).
- * Project the initial condition to obtain $u_h(\mathbf{x}, 0)$. Alternatively, you can find $u_h(\mathbf{x}, 0)$ as follows

$$u_h(\mathbf{x},0) = \sum_j U_j^0 \varphi(\mathbf{x}),$$

where $U_j^0 = u_0(\mathbf{x}_j)$.

* Use the Matlab code to obtain the soltion at t=1 with either quadrilateral or triangular elements. Consider continuous piecewise linear polynomials. Plot and report the solution at t=0.25, 0.5, 0.75 and 1.

<u>Hint:</u> for each time step, we know U^n and we want to find

$$u_h(\mathbf{x}, t^{n+1}) = \sum_j U_j^{n+1} \varphi(\mathbf{x}).$$

Therefore, we must obtain U^{n+1} . Express the problem as a linear algebra problem $AU^{n+1} = F$, where A is a combination of the mass and the stiffness matrices. Solve for U^{n+1} and proceed to the next time step.

About the boundary conditions: the Dirichlet boundary conditions can be imposed by modifying the matrix A as follows. Let i be a boundary node, then impose zeros in all entries $j \neq i$ and one in j = i. For the right hand side F, impose $F_i = u(\mathbf{x}_i, t) = 0$.

Exercise 2: solving the 2D advection equation via the Galerkin method

Consider the 2D advection equation

$$u_t + \mathbf{a} \cdot \nabla u = 0,$$
 $\forall \mathbf{x} \in (0, 1)^2,$ (2a)

$$u(\mathbf{x},0) = \begin{cases} 1, & \text{if } \sqrt{(x-0.25)^2 + (y-0.25)^2} \le 0.15\\ 0, & \text{otherwise} \end{cases}$$
 $\forall \mathbf{x} \in (0,1)^2, \quad (2b)$

$$u(\mathbf{x},t) = 0$$
, in the left and bottom boundaries, (2c)

where $\mathbf{a} = [1, 1]^T$. Our objective is to obtain the solution at t = 0.5. Considering the lumped mass matrix and forward Euler, the Galerkin solution at $t = t^{n+1}$ is given by $u_h(\mathbf{x}, t^{n+1}) = \sum_j U_j^{n+1} \varphi(\mathbf{x})$. The coefficients U_j^{n+1} are obtained from

$$m_i \left(\frac{U_i^{n+1} - U_i^n}{\Delta t} \right) + \sum_j \mathbf{a} \cdot \mathbf{c}_{ij} U_j^n = 0, \tag{3}$$

where $\mathbf{c}_{ij} = \int_{\Omega} \nabla \varphi_j(\mathbf{x}) \phi_i(\mathbf{x}) d\mathbf{x} \in \mathbb{R}^2$. Proceed as follows:

* Obtain the initial condition $u_h(\mathbf{x}, 0)$ via

$$u_h(\mathbf{x},0) = \sum_j U_j^0 \varphi(\mathbf{x}),$$

where $U_i^0 = u(\mathbf{x}_i, 0)$.

* Obtain (pre-compute) the entries of the lumped mass matrix and the entries \mathbf{c}_{ij} . Solve equation (3) at every time step up to t=0.5. Note: for this problem use $\Delta t=0.1\Delta x$. Experiment with the value Δx .

Exercise 3: solving the 2D advection equation via a first-order method

Consider again the 2D advection equation (2). This time, we will use the following first-order discretization

$$m_i \left(\frac{U_i^{n+1} - U_i^n}{\Delta t} \right) + \sum_j \mathbf{a} \cdot \mathbf{c}_{ij} U_j^n - \sum_j d_{ij} U_j^n = 0, \tag{4}$$

where

$$d_{ij} = \begin{cases} \max(\mathbf{a} \cdot \mathbf{c}_{ij}, 0, \mathbf{a} \cdot \mathbf{c}_{ji}), & \text{if } j \neq i, \\ -\sum_{j \neq i} d_{ij} & \text{if } j = i. \end{cases}$$

Proceed as follows:

* Obtain the initial condition $u_h(\mathbf{x},0)$ via

$$u_h(\mathbf{x},0) = \sum_j U_j^0 \varphi(\mathbf{x}),$$

where $U_i^0 = u(\mathbf{x}_i, 0)$.

* Obtain (pre-compute) the entries of the lumped mass matrix and the entries \mathbf{c}_{ij} and d_{ij} . Solve equation (4) at every time step to obtain $u_h(\mathbf{x},t)$ at t=0.5. Note: for this problem use $\Delta t = 0.1 \Delta x$. Experiment with the value Δx .

Exercise 4: solving the 2D advection equation via the Flux Corrected Transport

Following the slides from the course, the high-order method (3) can be written as

$$U_i^{H,n+1} = U_i^{L,n+1} + \frac{1}{m_i} \sum_{j} f_{ij}$$
 (5)

where $u^{L,n+1}$ is the low-order solution (4) and $f_{ij} = -\Delta t d_{ij} (U_j^n - U_i^n)$ is an anti-diffusive flux. The goal of this problem is to apply flux limiters to f_{ij} to guarantee $U^{n+1} \in [0,1]$. The FCT method is given by

$$U_i^{n+1} = U_i^{L,n+1} + \frac{1}{m_i} \sum_{j} \alpha_{ij} f_{ij}$$
 (6)

where α_{ij} are flux limiters computed as follows:

$$\begin{split} R_i^+ &= \begin{cases} \min\left(1, \frac{Q_i^+}{P_i^+}\right), & \text{if } P_i^+ \neq 0, \\ 1 & \text{otherwise} \end{cases} & R_i^- &= \begin{cases} \min\left(1, \frac{Q_i^-}{P_i^-}\right), & \text{if } P_i^- \neq 0, \\ 1 & \text{otherwise} \end{cases}, \\ Q_i^+ &= m_i(U^{\max} - U_i^L), & Q_i^- &= m_i(U^{\min} - U_i^L), \\ P_i^+ &= \sum_j \max(0, f_{ij}), & P_i^- &= \sum_j \min(0, f_{ij}), \end{cases} \end{split}$$

where $U^{\min} = 0$ and $U^{\max} = 1$. Proceed as follows:

* Obtain the initial condition $u_h(\mathbf{x},0)$ via

$$u_h(\mathbf{x},0) = \sum_j U_j^0 \varphi(\mathbf{x}),$$

where $U_i^0 = u(\mathbf{x}_i, 0)$.

* For every time step compute U_i^L , the anti-diffusive fluxes f_{ij} , and the flux limiters α_{ij} . From (6), obtain the solution U^{n+1} . Proceed until the final time t=0.5. Note: for this problem use $\Delta t = 0.1 \Delta x$. Experiment with the value Δx .

<u>Hint 1:</u> Verify that $0 \leq U_i^L \leq 1$, up to machine precision; that is, $\min(U_i^L)$ might be a small negative number, on the order of machine precision. Similarly, $\max(U_i^L)$ might be slightly larger than 1, on the order of machine precision. Once this is verified, do $U_i^L = \max(0, \min(1, U_i^L))$.

<u>Hint 2:</u> the code to implement the FCT method is the same for 1D or 2D problems. Therefore, you can use the 1D Matlab code in the repository.