Network layer, network address, IPv4.

Ing. Yelena Trofimova

Department of Computer Systems Faculty of Information Technology Czech Technical University in Prague ©Yelena Trofimova, 2021

Computer networks, BIE-PSI SS 2020/21, Lecture 3

https://courses.fit.cvut.cz/BIE-PSI/

Contents

- Network layer generally
 - services of network layer
 - addressing
 - types of communication
- IPv4
 - address notation and types
 - ► IPv4 header
 - fragmentation
 - ARP
 - ► ICMP

Link layer x network layer

- Link layer
 - data transfer between "neighboring" devices
 - medium access control
 - flow control
 - error checking
- Network layer
 - data transfer between the source and destination addresses
 - host addresses
 - routing between networks
 - services of varying quality (QoS Quality of Services)

Services of the Network Layer

Goals to be achieved to provide service for the transport layer:

- independence of the forwarding method
- independence of network topology
- provide network numbering schema
- connection-oriented services
- connectionless services connection is carries out at the transport layer

Conectionless service

- block of data from the transport layer is divided into packets
- functions of the end-device: SEND PACKET, RECEIVE PACKET
- packets ("datagrams") are routed individually
- packet header contains address
- router implements some routing algorithm, usually uses the routing table with rows: { dest_addr, link }
- example: IP

Connection-oriented service

- virtual circuits
 - first stage: circuit registration on all routers on the path
 - ▶ all data then is transferred throw this path
 - last stage: deletion of information about the circuit on all routers on the path
- packet header contains a virtual circuit identifier
- row of the routing table: { (link_in, label_in) (link_out, label_out) }
- example: MPLS

Comparison

	Datagram network	Virtual circuits		
path registration	no	yes		
addressing	src/dest addr	label		
state information on the router	no	yes		
routing	individual	only during the path registration		
router failure	small problem	big problem		
QoS & flow control	difficult	easy		
congestion control	difficult	easy		

Addressing

Unique addresses across the network Network

- continuous group of addresses
 - disjoint with another network
- division of address space
 - example: national telephone prefix
- simplification of routing
 - the entire network is represented by a single address from outside
- multilevel layout subnets

Types of addressing

- unicast
- broadcast
- anycast
- multicast

Unicast

- destination: 1 host
- standard in IPv4/IPv6

Broadcast

- destination: all hosts in the local network
- is not routed outside the local network
- uses link layer broadcast addresses:
 Ethernet: FF:FF:FF:FF:FF
- destination IP address contains all 1s in host part of the IP address
- Example: IP address 192.113.147.16/25
 mask 255.255.255.128
 net address 192.113.147.0
 broadcast ???

Broadcast

- destination: all hosts in the local network
- is not routed outside the local network
- uses link layer broadcast addresses:
 Ethernet: FF:FF:FF:FF:FF
- destination IP address contains all 1s in host part of the IP address
- Example: IP address 192.113.147.16/25
 mask 255.255.255.128
 net address 192.113.147.0
 broadcast 192.113.147.127

Anycast

- addressing and routing strategy when several devices have the same address but the the real recipient is just one device within the group
- destination: 1 host in a group
- benefits:
 - load balancing
 - lower latency
- examples:
 - DNS root servers
 - content delivery networks

Multicast

- destination: group of hosts
- multicast addresses: IPv4 class D
 224.0.0.0 239.255.255.255
- IGMP protocol (Internet Group Management Protokol) for hosts registration
- PIM protocol (Protocol Independent Multicast) for multicast routing

IPv4 address

32-bit number

dot-decimal notation: 4 groups of 8 bits=octet(byte)

IPv4 address in dotted-decimal notation

Source: Wikipedia

IPv4 address classes

- classful design is a history, is not used today
 - ► A,B,C = normal IP addresses (unicast)
 - ► D = multicast
 - ► E = reserved

A 0 8 bits 128 2 ²⁴ 0.0.0.0 B 10 16 bits 16384 2 ¹⁶ 128.0.0.0 C 110 24 bits 2097152 2 ⁸ 192.0.0.0 D 1110 224.0.0.0						
B 10 16 bits 16384 2 ¹⁶ 128.0.0.0 C 110 24 bits 2097152 2 ⁸ 192.0.0.0 D 1110 224.0.0.0	class	prefix		networks	hosts	first address
C 110 24 bits 2097152 28 192.0.0.0 D 1110 224.0.0.0	Α	0	8 bits	128	2^{24}	0.0.0.0
D 1110 224.0.0.0	В	10	16 bits	16384	2^{16}	128.0.0.0
	С	110	24 bits	2097152	2^{8}	192.0.0.0
E 1111 240.0.0.0	D	1110				224.0.0.0
	E	1111				240.0.0.0

IPv4 address - CIDR

- CIDR schema (Classless Inter-Domain Routing) RFC1518, RFC1519
- network prefix length is arbitrary classful prefix scheme can only be
 8, 16 or 24 bits
- withdrawal of classes A, B and C
- mask is expressed by the number of bits in network part
- example: network prefix = 18 of "1" bits: 11111111.11111111111111000000.00000000
 CIDR format: /18 = mask 255.255.192.0

Private IP addresses

- free to use in private networks
- not routed in the Internet
- useful for NAT:
 - ▶ we have few IPv4 public addresses
 - network isolation
 - router performs translation of a large number of private addresses to a single (or several) public addresses
- 10.0.0.0/8
 16777216 addrs / 1x class A
 172.16.0.0/12
 1048576 addrs / 16x class B
 192.168.0.0/16
 65537 addrs / 256x class C

IPv4 packet header

Source: https://portunreachable.com/tagged/ip

IPv4 packet header fields I

- version: 4 (IP version 4)
- header length: in 32-bit words
- type of service: for basic QoS
- total length: packet length in bytes
- packet identification: for identification of fragments
- flags: different flags, used for fragmentation
- fragment offset: relative offset of the fragment
- time to live: counter of the hops over routers

IPv4 packet header fields II

- protocol: transport protocol identification
- header checksum: checksum control
- source address: IPv4 address of the source host
- destination address: IPv4 address of the destination host
- options: not often used, some special purposes
- padding: alignment of the header length to 32 bits

Fragmentation

- by MTU (Maximal Transmission Unit), defined by link layer
- packet with length > MTU will be divided to more smaller packets
- fragments are delivered independently
- packet completion (defragmentation) is made on destination host

Recall: ARP

- Address Resolution Protocol RFC826
- resolution of network layer addresses into link layer addresses
 - sending a query: "Who has the IP address x.x.x.x?"
 - response contains the MAC address
- ARP cache on every host
- automatic records expiration
- is used today for IPv4, but was designed to operate with any type of network/link address

ICMP

Internet Control Message Protocol

- send error/information messages
 - type: 4 bits
 - code: 4 bits
- for example:
 - requested service is not available
 - that host or router could not be reached
- types of relevant messages:

Туре	Code	Description
0 – Echo Reply	0	Echo reply
3 - Destination	0	Destination network
Unreachable		unreachable
	1	Destination host
		unreachable
	2	Destination protocol
		unreachable
	3	Destination port
		unreachable
	4	Fragmentation needed and
	_	DF flag set
	5	Source route failed
5 – Redirect Message	0	Redirect datagram for the
	1	Network
	1	Redirect datagram for the host
	2	Redirect datagram for the
	2	Type of Service and
		Network
	3	Redirect datagram for the
	"	Service and Host
8 - Echo Request	0	Echo request
9 - Router Advertisement	0	Use to discover the
10 - Router Solicitation	0	addresses of operational
		routers
11 - Time Exceeded	0	Time to live exceeded in
		transit
	1	Fragment reassembly time
		exceeded
12 – Parameter Problem	0	Pointer indicates error
	1	Missing required option
	2	Bad length
13 – Timestamp	0	Used for time
		synchronization
14 – Timestamp Reply	0	Reply to Timestamp
		message