Theta Functions and Chiral Dirac Fermions

John D Mangual

A spinor is a spin- $\frac{1}{2}$ representation of SU(2). A spinor field on the Torus is a map ψ from the torus $S^1 \times S^1$ to that representation. So the torus spinor ψ is – somewhat oversimplifying – a vector in \mathbb{C}^2 with entries which are functions of θ , ϕ which are the **angles**:

$$\psi = \begin{bmatrix} \psi_1 \\ \psi_2 \end{bmatrix}$$

Geometry without visualization is a moot point, but these are difficult to draw and sadly we must continue. This vector should behave a certain way under the action of SU(2) which here is really the 2×2 unitary matrices. And boundary conditions:

$$\psi(a+2\pi,b)=-e^{2\pi i\theta}\psi(a,b) \quad \text{and} \quad \psi(a+2\pi,b)=-e^{-2\pi i\phi}\psi(a,b)$$

The "chiral Dirac operator with Twisted boundary conditions" is related to the Hamiltonian:

$$H = \sum_{n \in \mathbb{Z}} : b_{n+\theta-\frac{1}{2}}^{\dagger} b_{n+\theta-\frac{1}{2}} : + \left(\frac{\theta^2}{2} - \frac{1}{24}\right)$$

The b,b^{\dagger} are called the raising and lowering operators:

$$\{b_m^\dagger,b_n\}=\delta_{m,n}$$
 and $\{b_m,b_n\}=\{b_m^\dagger,b_n^\dagger\}=0$

These are like infinitely many copies of the Harmonic oscillator, $x, \frac{d}{dx}$ one for each element of \mathbb{Z} . Or maybe like taking e^{imt} for the various Fourier modes.

This deserves a more careful write-up, but the string theory paper doesn't way much more than this. Quickly moves to other Riemann surfaces, which we might need. How does $\mathrm{SL}_2(\mathbb{Z})$ act on this theta function?

$$\sum_{m,n\in\mathbb{Z}} q^{m^2+7n^2}$$

Confusingly this is function of z even though the lattce is $\mathbb{Z} + \sqrt{-7} \, \mathbb{Z}$.

The determinant of the chiral Dirac operator is the theta function.

$$Det(\theta, \phi) = Tr g q^{H}$$

$$= e^{2\pi i \theta \phi} q^{\frac{\theta^{2}}{2} - \frac{1}{24}} \prod (1 + q^{n+\phi - \frac{1}{2}} e^{2\pi i \phi}) (1 + q^{n-\phi - \frac{1}{2}} e^{2\pi i \phi})$$

Sometimes, confusingly, I hear about the Cauchy-Riemann operator. What physicists are calling "spin structure" and "twisted chiral Fermion" looks awfully like the $SL(2,\mathbb{Z})$ action on the cosets of $\Gamma_0(4)$ which there are exactly 6 of them.

References

- (1) S. Lang and H. Trotter, **Continued fractions for some algebraic numbers**, J. Reine Angew. Math. 255 (1972), 112-134. https://eudml.org/doc/151239
- (2) Philipp Fleig, Henrik P. A. Gustafsson, Axel Kleinschmidt, Daniel Persson Eisenstein series and automorphic representations arXiv:1511.04265
- (3) Thomas C. Hull (April 2011). "Solving Cubics With Creases: The Work of Beloch and Lill" (PDF). American Mathematical Monthly: 307âŧ315. doi:10.4169/amer.math.monthly.118.04.307.
- (4) S. Kharchev, A. Zabrodin arXiv:1502.04603 Theta vocabulary I. arXiv:1510.02699 Theta vocabulary II.