Powtovlia

Nielowany Bernsteina: $B_k^n(t) := t^k (1-t)^{n-k}$. (neIN; k = 0,1,...,n), $B_k^n(t) \in \prod_{h=0}^n \prod_{h=1}^n D_{h}$. Dright was noted in $\sum_{k=0}^n B_k^n(t) = 1$ movemy refinitional larger Berieve dang under $P_n(t) := \sum_{k=0}^n W_k B_k^n(t)$ ($t \in [0,1]$, W_k - punkty ha planey in $\mathcal{F}_n(t)$). It $\mathcal{F}_n(t) \in Conv[W_i]$, then $\mathcal{F}_n(t)$ jest punktum ha planey into jakes hombinaria wypuhra punktu hombinaria hombinaria wypuhra punktu $\mathcal{F}_n(t)$ is also hombinaria bundinaria oblingi punktu $\mathcal{F}_n(t)$ in $\mathcal{F}_n(t)$ is algorithm de Casteljan u crosse $\mathcal{O}(n^2)$, tatuo punkturi jeg interputari geometricung. Kombinaria bundinaria: α_0 , $\alpha_1,...$, $\alpha_n \Rightarrow \sum_{i=0}^n \alpha_i = 1$, $W_0,...,W_n$ - punkty hombolie, α_i α_i w_i w_i

Aprolisymagia sterdiniohradiativa na ribione dyskretnym

Rengunjang z interpolagia doceny być ublishou chromy punlikov

Norma stredinohundradora (= 5r D) na abione dyshertnym:

Niech dane bydg parami wine punkty $X:=\{x_0,x_1,...,x_n\}$ over funkcja f ohrestona na X. Norng stedniohhadratory funkcji f na rbione X ornacum symbolem $\|f\|_2$ i definicjemy express:

$$\|f\|_2 := \sqrt{\sum_{k=0}^{N} (f(x_k))^2}$$

1º Norma śvednich hadratoka to funkcja (funkcjonat): ||•||2: F→|R zbisa funkcji

20 Wiasnosii noung (fig-funkqi):

(a)
$$\|f\|_2 = 0 \iff f(x_k) dla k = 0,1,...,N$$

(b)
$$\|\alpha \cdot f\|_2 = \|\alpha\| \cdot \|f\|_2$$
 ($\alpha \in \mathbb{R}$)

Pytane: Jak sprawdruć, ay funkýe f i g sg do sietie podobne (blishe sietie)?

f. Idea: Sprandië, cry 11f-g1/2 jest mate,
jesti tak, to so blisho, jesti nie,
to daleho.

$$||f-g||_2 = \sqrt{\sum_{k=0}^{N} (f(x_k) - g(x_k))^2}$$

Zadame: Aplohsymaja Stedniohradiatoma

Dla danego rbiour $X:=\{x_{01}x_{11},...,x_{N}y\ (x_{i}\neq x_{j}) dla i\neq j\}$ ovar funkcji f observacji na X ($f(x_{k})=:y_{k}\}$ rnalúc talni element $W^{*}\in F$ (F-ustadoug rbisz funkcji) narywany elementem optymalnym dla funkcji f na rbione X is sensie aprohymay: sindivokualiutory, ie

$$\|f - w^*\|_2 = \min_{w \in F} \|f - w\|_2 = \min_{w \in F} \sqrt{\sum_{k=0}^{N} \left(f(x_k) - w(x_k)\right)^2}$$

Purplicaty:

(a)
$$F := \int_{V} W(x) = a : a \in \mathbb{R}^{3} = \prod_{0} - \int_{unliq} \int_$$

Whiosel: Element optymaling dla pominist $(x_{k_1}y_k)$ $(0 \le k \le N)$ is sense aprohymacji sudmishnudratorej to $W^*(x) = a^*$, gdue $a^* = \frac{\sum_{k=0}^{N} (y_k)}{N+1}$ pry zatoreniu, że model obejnieje jedyne funkcje skuje (trn. $F = \Pi_0$).

$$F := \int_{\mathbb{R}} W(x) = ax^{2} : a \in \mathbb{R}^{2}, F \neq \Pi_{2}, ale F \in \Pi_{2}$$

$$Pomany (x_{k}, y_{k}) = (x_{k}, f(x_{k})) (0 \in k \in \mathbb{N})$$

$$Szukamy elementh is ef o wienosci:$$

$$\|f^{-1}x^{k}\|_{2} = \underset{u \in F}{\min} \|f^{-1}u\|_{2}^{2}$$

$$= \underset{u \in F}{\min} \sqrt{\sum_{k=0}^{N} (y_{k} - W(x_{k}))^{2}} = \underset{a \in \mathbb{R}}{\min} \sqrt{E(a)}$$

$$a \in \mathbb{R}$$

$$f(x_{k}) = x_{k}^{2}$$

$$f(x_{k}) =$$

Whiosel: Elevent optymaly w tym wypadlus (1) to:
$$w^{*}(x) = \alpha^{*} x^{*}$$
,

gdie $a^{*} := \frac{\sum_{u=0}^{N} y_{u} x_{u}^{2}}{\sum_{u=0}^{N} x_{u}^{4}}$.

Nasza funkcja to ax^{2} ,

Czyli wendolel ma w punkce (90)

Uwaga: 11 Odstujgce "observacje

Aprolognaja stedhishmedutoka vadu sobie cathran nicite 2 11 Odskýgezno "obserkajami, zhyble uspoterynuk się minimalne rumnia.

Znajdovanie elistrens v flykeji weln ruvennych

POCHODNE CZĄSTKOWE!

np.
$$f(x_1y_1z) = \alpha x^2 + (y-z)^7 + \cos(\frac{x}{y})$$

 $\frac{\partial f(x_1y_1z)}{\partial x} = 2\alpha x + 0 - \sin(\frac{x}{y}) \cdot \frac{1}{y}$
 $\frac{\partial f(x_1y_1z)}{\partial y} = 0 - 7(y-z)^6 + 0$
 $\frac{\partial f(x_1y_1z)}{\partial y} = 0 + 7(y-z)^6 - \sin(\frac{x}{y}) \cdot (-xy^{-2})$

liceure pochodný po daný remenný pry ratoreniu, re porostnie rumenne to stute

Woundier howernym ishurina elistremmus fruheji f welu ruwennych xo, x1,..., x1 jest zeroname sig wszystbich pochodnych czystboych:

$$\frac{\partial f(x_0,...,x_l)}{\partial x_0} = 0$$

$$\frac{\partial f(x_0,...,x_l)}{\partial x_1} = 0$$

$$\frac{\partial f(x_0,...,x_l)}{\partial x_1} = 0$$

Ulitad winan - Mazywang ulitadem winan normalyth

(c) $F := \{ax + b : a_1b \in \mathbb{R}\} \equiv \prod_1$ Formary (xh, yh) $(0 \le h \le N)$,

Therefore (xh, yh) (xh, yh)

XO grander XN

 $\begin{aligned} \|f - \omega^*\|_2 &= \min_{w \in F} \|f - w\|_2 &= \min_{a_1 b \in R} \sqrt{E(a_1 b)} \\ Funkija \quad bight; \quad E(a_1 b) &:= \sum_{k=0}^{N} \left(f(x_k) - w(x_k) \right)^2 &= \sum_{k=0}^{N} \left(y_k - a x_k - b \right)^2 \end{aligned}$

$$\frac{\partial E(a_1b)}{\partial a} = -2 \sum_{k=0}^{N} (y_k - ax_k - b)^{1} x_k = 0$$

$$\frac{\partial E(a_1b)}{\partial a} = -2 \sum_{k=0}^{N} (y_k - ax_k - b)^{1} = 0$$

$$\frac{\partial E(a_1b)}{\partial b} = -2 \sum_{k=0}^{N} (y_k - ax_k - b)^{1} = 0$$

$$\frac{\partial E(a_1b)}{\partial b} = -2 \sum_{k=0}^{N} (y_k - ax_k - b)^{1} = 0$$

$$\frac{\partial E(a_1b)}{\partial a} = -2 \sum_{k=0}^{N} (y_k - ax_k - b)^{1} = 0$$

$$\Rightarrow \begin{cases} a = \frac{(N+1)S_4 - S_1S_3}{(N+1)S_2 - S_1^2} \\ b = \frac{S_2S_3 - S_1S_4}{(N+1)S_2 - S_1^2} \end{cases}$$

$$S_1 := \sum_{k} x_k$$

$$S_2 := \sum_{k} x_k^2$$

$$S_3 := \sum_{k} y_k$$

$$S_4 := \sum_{k} x_k y_k$$

Uniosel: Element optymalny
$$\omega^*(x) = \alpha^*(x) + b^*$$
 (regresja liniswa), gdnie
$$\int \alpha^* = \frac{f(N+1)S_4 - S_1S_3}{(N+1)S_2 - S_1^2}$$

$$b^{*} = \frac{(N+1)S_2 - S_1^2}{(N+1)S_2 - S_1^2}$$

Sytnaga Ogslina:

Wybranzy petne funkcje (pod stutobe) $g_0(x)$, $g_1(x)$, ..., $g_m(x)$ (np. $g_i(x) = x^i$, wholy his $\{g_0, g_1, ..., g_m\} \equiv \prod_m | i | 2a \mod l$ pinginging $F := \{a_0g_0(x) + a_1g_1(x) + ... + a_mg_m(x) : a_0, ..., a_m \in lR\}$.

Dla pomiare (x_u, y_u) $(0 \le h \le N)$ surlary elements optymalized $w \ne F$ o massinosis:

 $\|f-y^*\|_2 = \min \|f-y\|_2 = \min \int_{a_0,...,a_m \in \mathbb{R}} |f(a_0,a_1,...,a_m)|, \quad E - funkýa bígdu,$ $|f(a_0,...,a_m)| = \sum_{k=0}^{N} (y_k - \sum_{i=0}^{\infty} a_i g_i(x_k))^2, \quad \text{Nastypnic surface} \int_{a_0,...,a_m} |f(x_k)|^2 |f(x_k)|$