First-Order Methods in Convex Optimization: From Discrete to Continuous and Vice-versa

Hao Luo (罗浩)

National Center for Applied Mathematics in Chongqing Chongqing Normal University

The 8-th Chinese–German Workshop on Computational and Applied Mathematics

School of Mathematics, Sichuan University

23th-27th Sept., 2024

Collaborators: Long Chen (UCI), Jun Hu (PKU), ZiHang Zhang (PKU, PhD)

Outline

Introduction

From FOM to ODE

From ODE to FOM

Summary

Introduction

From FOM to ODE

From ODE to FOM

Summary

Problem setting

Composite convex optimization (CCO) problem

$$\inf_{x \in \mathbb{X}} F(x) := f(x) + g(Ax)$$
 (CCO)

Assumptions:

- * \mathbb{X} , \mathbb{Y} : Hilbert spaces with inner product $\langle \cdot, \cdot \rangle^{-1}$
- * $A: \mathbb{X} \to \mathbb{Y}$: bounded linear operator
- * $f(g): \mathbb{X}(\mathbb{Y}) \to (-\infty, +\infty]$: CCP ² with constants $\mu_f(\mu_g) \geq 0$
- * Consistent condition: $A\mathbf{dom}\,f\cap\mathbf{dom}\,g\neq\emptyset$
- Linearly constrained optimization (LCO) problem

$$\inf_{x \in \mathbb{X}} f(x) \quad \text{s.t. } Ax = b$$
 (LCO)

Bilinear saddle-point (BSP) problem

$$\inf_{x \in \mathbb{X}} \sup_{y \in \mathbb{Y}} \mathcal{L}(x, y) := f(x) + \langle y, Ax \rangle - g(y)$$
 (BSP)

- Many applications in:
 - TV model (Image processing), Machine learning ...
 - p-Laplacian (Numerical PDEs), Optimal transport, ...

 $^{^{1}\}text{When no confusion arises, we use the same bracket }\langle\cdot,\cdot\rangle\text{ for the inner products on }\mathbb{X}\text{ and }\mathbb{Y}.$

²CCP means closed, convex and proper.

Optimality condition and Algorithm class

First-order optimality conditions:

$$\begin{aligned} & \text{For (CCO)} & & 0 \in \partial f(x^*) + A^* \partial g(Ax^*) \\ & \text{For (LCO)} & & 0 \in \begin{bmatrix} \partial f(x^*) + A^*y^* \\ b - Ax^* \end{bmatrix} \\ & \text{For (BSP)} & & 0 \in \begin{bmatrix} \partial f(x^*) + A^*y^* \\ \partial g^*(y^*) - Ax^* \end{bmatrix} \end{aligned}$$

- ▶ A unified abstract presentation: Finding a zero point $0 \in M(\mathbf{x}^*)$ of a maximal monotone operator $M: \mathcal{X} \to 2^{\mathcal{X}}$.
- We are mainly interested in First-Order Methods (FOM) that produce the iteration sequence $\{x_k\}$ with the access **only** to³

$$abla f/\mathbf{prox}_f, \quad
abla g/\mathbf{prox}_g$$
 or (for $f=f_1+f_2, \ g=g_1+g_2$)
$$abla f_1/\mathbf{prox}_{f_2}, \quad
abla g_1/\mathbf{prox}_{g_2}$$

$$\mathbf{prox}_{f}(x) = \operatorname{argmin} \{ f(y) + 1/2 ||x - y||^2 \}$$

³Here and in what follows, \mathbf{prox}_f denotes the **proximal mapping** of f:

Proximal-gradient methods for (CCO) with A = I

Gradient descent (GD) and Proximal point algorithm (PPA):

$$x_{k+1} = x_k - s\nabla F(x_k), \quad x_{k+1} = x_k - s\nabla F(x_{k+1})^4$$

- Proximal-gradient method (PGM): $x_{k+1} = x_k s(\nabla f(x_k) + \nabla g(x_{k+1}))$
 - * Also known as Forward-Backward Splitting
 - * O(1/k) for convex and $(1-1/\kappa_f)$ for strongly convex

Momentum

- Heavy ball (HB)⁵: $x_{k+1} = x_k s\nabla F(x_k) + \beta_k(x_k x_{k-1})$
 - * Better than GD with $\beta_k \in (0,1)$
 - * Optimal choice of strongly convex case
- ▶ Nesterov accelerated gradient (NAG-1983, NAG-2004):

$$x_{k+1} = \bar{x}_k - s\nabla F(\bar{x}_k), \quad \bar{x}_{k+1} = x_{k+1} + \beta(x_{k+1} - x_k)$$

- * $O(1/k^2)$ with $\beta_k = k/(k+3)$
- * $O(1-1/\sqrt{\kappa_f})^k$ with $\beta_k = (\sqrt{\kappa_f}-1)/(\sqrt{\kappa_f}+1)$
- * Optimal rate
- Proximal gradient version = FISTA
- ► Güler's PPA (SIOPT, 1994)

$$x_{k+1} = \bar{x}_k - s\nabla F(x_{k+1}), \quad \bar{x}_{k+1} = x_{k+1} + \beta(x_{k+1} - x_k)$$

⁴This presentation is equivalent to $x_{k+1} = \mathbf{prox}_{sF}(x_k)$

⁵Polyak, 1964

Augmented Lagrangian methods for (LCO)

Augmented Lagrangian method (ALM)

$$x_{k+1} = \operatorname*{argmin}_{x \in \mathbb{X}} \left\{ \mathcal{L}(x, \lambda_k) + \frac{\sigma}{2} \left\| Ax - b \right\|^2 \right\}, \quad \lambda_{k+1} = \lambda_k + \sigma(Ax_{k+1} - b)$$

- Equivalent to Bregman method and dual PPA
- Linearization (L-ALM) and relaxation (ADMM)
- $lacktriangleq O(1/k^2)$ acceleration with momentum for the dual variable 6
- Acceleration with momentum for the primal variable ⁷
 - * $O(\frac{1}{k})$ for convex and $O(\frac{1}{k^2})$ for strongly convex (Optimal) ⁸
 - * Extension to two block case (Acc-ADMM) ⁹

⁶He and Yuan, 2013; Kang et al. **JSC**, 2013

⁷Xu, **SIOPT**, 2017

⁸Ouyang and Xu, **SIOPT**, 2021

Sabach and Teboulle, SIOPT, 2022; Zhang et al. arXiv:2206.05088, 2022

Primal-dual methods for (BSP)

Extensions of GD and PPA:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - sM(\mathbf{x}_k), \qquad \mathbf{x}_{k+1} = \mathbf{x}_k - sM(\mathbf{x}_{k+1})$$
 Diverge

Extra-gradient method (EGM, with ergodic rate O(1/k)) 10

$$\mathbf{x}_k = \mathbf{x}_k - sM(\mathbf{x}_k), \quad \mathbf{x}_{k+1} = \mathbf{x}_k - sM(\mathbf{x}_k)$$

Primal-dual hybrid gradient method (PDHG) (Preconditioned PPA)

$$\mathbf{x}_{k+1} = \mathbf{x}_k - sQ^{-1}M(\mathbf{x}_{k+1}), \quad Q = \begin{bmatrix} I & -sA^* \\ O & I \end{bmatrix}$$

Also known as the primal-dual proximal splitting (PDPS)

$$\begin{cases} x_{k+1} = \mathbf{prox}_{sf}(x_k - sA^*y_k) \\ y_{k+1} = \mathbf{prox}_{sg}(y_k + sAx_{k+1}) \end{cases}$$

Diverge even for LP (He et al. JMIV, 2017)

 $^{^{10}}$ Ergodic means for the average $ar{\mathbf{x}}_N = \sum_{i=0}^N \, a_i \mathbf{x}_{\,i} / \sum_{i=0}^N \, a_i$

A symmetrized precondition remedy

$$\mathbf{x}_{k+1} = \mathbf{x}_k - sQ^{-1}M(\mathbf{x}_{k+1}), \quad Q = \begin{bmatrix} I & -sA^* \\ -sA & I \end{bmatrix}$$

► This is the Chambolle–Pock (CP) ¹¹

$$\begin{cases} x_{k+1} = \mathbf{prox}_{sf}(x_k - sA^*y_k) \\ y_{k+1} = \mathbf{prox}_{sg}(y_k + sA(2x_{k+1} - x_k)) \end{cases}$$

- \blacktriangleright Optimal ergodic rate: O(1/k) for convex , $O(1/k^2)$ for partially strongly convex and ρ^k for strongly convex
- ▶ Inertial corrected PDPS ¹² (IC-PDPS, with momentum and correction)

$$\begin{cases} \mathbf{x}_{k+1} = \bar{\mathbf{x}}_k - Q_{k+1}^{-1} M(\mathbf{x}_{k+1}) + \underbrace{\widehat{Q}_{k+1}(\mathbf{x}_{k+1} - \mathbf{x}_k)}_{\text{Correction}}, \\ \bar{\mathbf{x}}_{k+1} = \mathbf{x}_{k+1} + \Lambda_{k+1}(\mathbf{x}_{k+1} - \mathbf{x}_k), \end{cases}$$

Optimal nonergodic rate

¹¹ Chambolle and Pock, **JMIV**, 2013 12 Valkonen, **SIOPT**, 2020

Motivation

Almost all FOMs (without momentum) in the form

$$X^+ = \Gamma(s, X)$$

- ► This is very close to Numerical Discretization
- ► Can we have a unified continuous perspective on FOMs?
- ► How about the numerical analysis approach for FOMs?

Introduction

From FOM to ODE

From ODE to FOM

Summary

$O(s^r)$ -resolution framework

Definition 1 (Lu, MAPR, 2022)

Given a FOM $X^+ = \Gamma(s,X)$ with $\Gamma(0,X) = X$, if there is an ODE system

$$X' = \Gamma_0(X) + s\Gamma_1(X) + \dots + s^r\Gamma(X) \tag{1}$$

that satisfies $\|X(s)-X^+\|=o\left(s^{r+1}\right)$ with $r\geq 0$, where X(s) is the solution of (1) with X(0)=X, then we call (1) the $O(s^r)$ -resolution ODE of the FOM $X^+=\Gamma(s,X)$

Theorem 1 (Lu, MAPR, 2022)

Given a FOM $X^+ = \Gamma(s,X)$ with $\Gamma(0,X) = X$ and sufficiently smooth $\Gamma(s,X)$ in both s and X Then its $O(s^r)$ -resolution ODE exists uniquely.

$O(s^r)$ -resolution without momentum

Look at $E(s)=X(s)-X^+=X-\Gamma(s,X)+\int_0^s X'(t,s)\,\mathrm{d}t$ and the Taylor expansion at s=0

$$E(s) = E(0) + E'(0)s + \dots + \frac{E^{(r+1)}}{(r+1)!}s^{r+1} + o(s^{r+1})$$

Essentially, we have $E(0)=E'(0)=\cdots=E^{(j)}(0)=0$. This gives Γ_j

Corollary 1 (Lu, MAPR, 2022)

- (i) The O(1)-resolution ODE of GD, PPA and PGM: $X' = -\nabla F(X)$
- (ii) The O(s)-resolution ODE of GD is $X' = -\nabla F(X) \frac{s}{2}\nabla^2 F(X) \cdot \nabla F(X)$
- (iii) The O(s)-resolution ODE of PPA is $X' = -\nabla F(X) + \frac{s}{2}\nabla^2 F(X) \cdot \nabla F(X)$
- (iv) The O(s)-resolution ODE of PGM is

$$X' = -\nabla F(X) + \frac{s}{2}(\nabla^2 g(X) - \nabla^2 f(X)) \cdot \nabla F(X)$$

Corollary 2 (Lu, MAPR, 2022)

(i) The ${\cal O}(1)$ -resolution ODE of GD, PPA, PDHG, CP and EGM are

$$X' = -M(X)$$

(ii) The O(s)-resolution ODE of GD is

$$X' = -M(X) - \frac{s}{2} \nabla M(X) \cdot M(X)$$

(iii) The O(s)-resolution ODE of PPA and EGM are the same

$$X' = -M(X) + \frac{s}{2}\nabla M(X) \cdot M(X)$$

(iv) The O(s)-resolution ODE of PDHG is

$$X' = -M(X) + \frac{s}{2} \left[\nabla M(X) + \begin{bmatrix} O & O \\ 2A & O \end{bmatrix} \right] \cdot M(X)$$

(iv) The O(s)-resolution ODE of CP is

$$X' = -M(X) + \frac{s}{2} \left[\nabla M(X) + \begin{bmatrix} O & 2A^* \\ 2A & O \end{bmatrix} \right] \cdot M(X)$$

$O(s^r)$ -resolution with momentum

For a general momentum method

$$x_{k+1} = x_k - s\nabla F(x_k) + \underbrace{\beta(s)(x_k - x_{k-1})}_{\text{Momentum}} - \beta(s)s \left[\nabla F(x_k) - \nabla F(x_{k-1})\right]$$

there is No such condition $\Gamma(0, X) = 0$.

Key observation: A hybrid gradient descent transformation

$$\frac{x_{k+1} - x_k + s \nabla F(x_k)}{\sqrt{s}\beta(s)} = \beta(s) \cdot \frac{x_k - x_{k-1} + s \nabla F(x_{k-1})}{\sqrt{s}\beta(s)} - \sqrt{s}\nabla F(x_k)$$

which leads to

$$\begin{cases} x_{k+1} = x_k + \sqrt{s}\beta(s)v_{k+1} - s\nabla F(x) \\ v_{k+1} = v_k + (\beta(s) - 1)v_k - \sqrt{s}\nabla F(x) \end{cases}$$

with
$$\lim_{s\to 0} (\beta(s)-1)/\sqrt{s}=0$$

- ▶ This gives a new system of X=(x,v) that satisfies $X^+=\Gamma(\sqrt{s},X)$ with $\Gamma(0,X)=0$
- The same idea works for other momentum methods with dynamically changing parameters and primal-dual methods

Theorem 2

(i) The O(1)-resolution ODE of HB and NAG with optimal β for strongly convex objective are the same ¹³:

$$\begin{bmatrix} x \\ v \end{bmatrix}' = \begin{bmatrix} v \\ -2\sqrt{\mu}v - \nabla F(x) \end{bmatrix} \iff x'' + 2\sqrt{\mu}x' + \nabla F(x) = 0$$

(ii) The O(1)-resolution ODE of NAG-1983/FISTA for convex objective is

$$\begin{bmatrix} x \\ v \\ \gamma \end{bmatrix}' = \begin{bmatrix} v \\ -\frac{3}{2\sqrt{\gamma}}v - \nabla F(x) \end{bmatrix} \iff x'' + \frac{3}{2\sqrt{\gamma}}x' + \nabla F(x) = 0$$

Since $\gamma = t^2/4$, this gives the Su-Boyd-Candès (JMLR, 2016)

$$x'' + \frac{3}{t}x' + \nabla F(x) = 0$$

¹³ Polyak. 1964; Siegel. 2019; Wilson et al. *JMLR*, 2021; Shi et al., *Math. Program.*, 2022;

(iii) The ${\it O}(1)$ -resolution ODE of NAG-2004 is 14

$$\begin{bmatrix} x \\ v \\ \gamma \end{bmatrix}' = \begin{bmatrix} v \\ -\frac{3+\mu\gamma}{2\sqrt{\gamma}}v - \nabla F(x) \\ \sqrt{\gamma}(1-\mu\gamma) \end{bmatrix} \iff x'' + \frac{3+\mu\gamma}{2\sqrt{\gamma}}x' + \nabla F(x) = 0$$

(iv) The O(1)-resolution ODE of IC-PDPS is 15

$$\begin{bmatrix} \mathbf{x} \\ \mathbf{v} \\ \Upsilon \\ \theta \end{bmatrix}' = \begin{bmatrix} \mathbf{v} - \mathbf{x} \\ -\theta \Upsilon^{-1} \left[S(\mathbf{v} - \mathbf{x}) + M(\mathbf{x}) \right] \\ 2 \mathrm{diag}(S) \Upsilon \\ \theta \end{bmatrix}$$

In second-order form

$$\Upsilon \mathbf{x}'' + [\theta S + \Upsilon] \mathbf{x}' + \theta M(\mathbf{x}) = 0, \quad S = \begin{bmatrix} \mu_f I & A^* \\ A & \mu_g I \end{bmatrix}$$

In component wise

$$\begin{cases} \gamma x'' + (\gamma + \mu_f \theta) x' + \theta \nabla_x \mathcal{L}(x, y + y') = 0 \\ \beta y'' + (\beta + \mu_g \theta) y' + \theta \nabla_y \mathcal{L}(x + x', y) = 0 \end{cases}$$

L., and Long Chen. Math. Program., 2022.

-15 .4

Introduction

From FOM to ODE

From ODE to FOM

Summary

Semi-implicit AGD

For unconstrained minimization problem, we present a compact form of the ${\it O}(1)$ -resolution ODE of NAG-2004 with time scaling:

▶ Semi-implicit scheme for Accelerated Gradient Descent (AGD) ¹⁶

$$\gamma_k \cdot \frac{\frac{x_{k+1} - x_k}{\alpha_k} - \frac{x_k - x_{k-1}}{\alpha_{k-1}}}{\alpha_k} + (\mu + \gamma_k) \cdot \frac{x_{k+1} - x_k}{\alpha_k} + \nabla F(\bar{x}_k) = 0$$

▶ Composite case F = f + g

$$\gamma_k \cdot \frac{\frac{x_{k+1} - x_k}{\alpha_k} - \frac{x_k - x_{k-1}}{\alpha_{k-1}}}{\alpha_k} + (\mu + \gamma_k) \cdot \frac{x_{k+1} - x_k}{\alpha_k} + \nabla f(\bar{x}_k) + \nabla g(x_{k+1}) = 0$$

Lyapunov analysis (optimal rate)

$$\mathcal{E}_k := F(x_k) - F(x^*) + \frac{\gamma_k}{2} \|v_k - x^*\|^2 \le \min \left\{ \frac{L}{k^2}, \left(1 + \sqrt{\frac{\mu_f}{L_f}}\right)^{-k} \right\}$$

¹⁶L.. and Long Chen. Math. Program., 2022/arXiv:1912.09276, 2019; L. Optimization, 2023.

Find $u \in H_0^1(\Omega)$ such that

$$-\Delta u = f \quad \text{in } \Omega = (0,1)^2$$

Use P1 Lagrange element with uniform mesh size $h=2^{-5}$. The DoF is $N=\dim V_h=(1/h+1)^2=1089$.

Restarting

Restarting scheme

Function restart (FR):
$$\frac{\mathrm{d}F(x(t))}{\mathrm{d}t} > 0$$
 O'Donoghue and Candès(FoCM, 2015)
 Gradient restart (GR): $\left\langle \nabla F(x(t)), x'(t) \right\rangle > 0$ O'Donoghue and Candès,(FoCM, 2015)
 Speed restart (SR): $\frac{\mathrm{d} \|x'(t)\|^2}{\mathrm{d}t} < 0$ Su-Boyd-Candès ($JMLR$, 2016)
 Gradient norm restart (GnR): $\frac{\mathrm{d} \|\nabla F(x(t))\|^2}{\mathrm{d}t} > 0$

Restart works very well with the iteration complexity $\sim \sqrt{\kappa}$ This yield the linear rate $\exp\left(-k/\sqrt{\kappa}\right)$

Implicit-explicit AALM

For (LCO), we propose a simplified form of the ${\it O}(1)$ -resolution ODE of IC-PDPS:

$$\begin{split} \gamma x'' + (\mu + \gamma) x' + \nabla f(x) + A^\top y &= 0 \\ \beta y' + b - A(x + x') &= 0 \\ \gamma' - \mu + \gamma &= 0 \\ \beta' + \beta &= 0 \end{split} \tag{APD flow}$$

 Implicit-explicit scheme for Accelerated Augmented Lagrangian Method (AALM) ¹⁷

$$\begin{split} \gamma_k \cdot \frac{\frac{x_{k+1} - x_k}{\alpha_k} - \frac{x_k - x_{k-1}}{\alpha_{k-1}}}{\alpha_k} + (\mu + \gamma_k) \cdot \frac{x_{k+1} - x_k}{\alpha_k} + \nabla f(\bar{x}_k) + \boldsymbol{A}^\top \bar{y}_k = 0 \\ \beta_k \frac{y_{k+1} - y_k}{\alpha_k} + b - A \left(x_{k+1} + (x_{k+1} - x_k)/\alpha_k\right) = 0 \end{split}$$

Lyapunov analysis (optimal nonergodic rate)

$$\mathcal{E}_k := \mathcal{L}(x_k, y^*) - \mathcal{L}(x^*, y_k) + \frac{\gamma_k}{2} \|v_k - x^*\|^2 + \frac{\beta_k}{2} \|y_k - y^*\|^2 \le \begin{cases} Ck^{-1}, & \mu = 0, \\ Ck^{-2}, & \mu > 0. \end{cases}$$

¹⁷ arXiv:2109 12604v2 2023

- For extension to the Hölder case $\nabla f \in C^{0,\nu}$ and application to optimal transport (ODE+AMG+SsN), see Hu et al. (JSC,2023) and L. (JOTA, 2024).
- For the separable case $f(x) = f_1(x_1) + f_2(x_2)$, we have

implicit-explicit schemes for accelerated ADMM; see L. and

Zhang (arXiv:2109.13467v2, 2023).

Semi-implicit APDGS

For (BSP), we have a simplified form of the ${\cal O}(1)$ -resolution ODE of IC-PDPS:

$$\Upsilon \mathbf{x}'' + [S + \Upsilon] \mathbf{x}' + M(\mathbf{x}) = 0$$

$$\Upsilon' - \Sigma + \Upsilon = 0$$
(APDG flow)

 Implicit-explicit scheme for Accelerated Primal-Dual Gradient Splitting (APDGS) ¹⁸

$$\begin{split} \gamma_k \cdot \frac{\frac{x_{k+1} - x_k}{\alpha_k} - \frac{x_k - x_{k-1}}{\alpha_{k-1}}}{\alpha_k} + (\mu_f + \gamma_k) \cdot \frac{x_{k+1} - x_k}{\alpha_k} + \nabla f(\bar{x}_k) + A^\top \bar{y}_k &= 0 \\ \beta_k \cdot \frac{\frac{y_{k+1} - y_k}{\eta_k \alpha_k} - \frac{y_k - y_{k-1}}{\eta_{k-1} \alpha_{k-1}}}{\alpha_k} + (\mu_g/\eta_k + \beta_k) \cdot \frac{y_{k+1} - y_k}{\alpha_k} + \eta_k(\nabla g(\bar{y}_k) - A\bar{x}_{k+1}) &= 0 \end{split}$$

Lyapunov analysis (optimal nonergodic rate)

$$\mathcal{E}_{k} = \mathcal{L}(x_{k}, y^{*}) - \mathcal{L}(x^{*}, y_{k}) + \frac{\gamma_{k}}{2} \|v_{k} - x^{*}\|^{2} + \frac{\beta_{k}}{2} \|w_{k} - y^{*}\|^{2} \leq \begin{cases} \frac{C}{k}, & \mu_{f} = \mu_{g} = 0, \\ \frac{C}{k^{2}}, & \mu_{f} + \mu_{g} > 0, \\ \rho^{k}, & \mu_{f} \mu_{g} > 0, \end{cases}$$

¹⁸ arXiv:2407 20195 2024

Introduction

From FOM to ODE

From ODE to FOM

Summary

Summary

Conclusion:

- * A unified $O(s^r)$ -resolution framework for FOMs
- * A time discretization approach to construct FOMs
- * A Lyapunov function analysis for optimal convergence rate
- * Some numerical illustration with restarting

Future topics:

- * Extension to nonlinear saddle-point problems (General convex optimization with nonlinear but convex constraint)
- * Restarting with uniform convergence rate independent on the condition number (Multilevel + restarting)
- * Restart analysis for the primal-dual dynamics (No descent)
- * Application to nonlinear variational problems (Nonconvex but with special structure) and optimal transport
- Accelerated multiobjective gradient methods

References

A universal accelerated primal-dual method for convex optimization problems. *J.Optim.TheoryAppl.*, 201(1):280-312, 2024.

A unified differential equation solver approach for separable convex optimization: splitting, acceleration and nonergodic rate. arXiv:2109.13467v2, 2023. (Submitted to Math. Comp. Under review)

Jun Hu, Hao Luo, and ZiHang Zhang.

A fast solver for generalized optimal transport problems based on dynamical system and algebraic multigrid. *J.Sci.Comput.*, 97(6): https://doi.org/10.1007/s10915-023-02272-9, 2023.

Hao Luo, and Long Chen.

From differential equation solvers to accelerated first-order methods for convex optimization. *Math. Program.* 195:735–781, 2022.

Hao Luo.

A primal-dual flow for affine constrained convex optimization. **ESAIM Control Optim. Calc. Var.**, 28:33, 2022.

References

Hao Luo.

A continuous perspective on the inertial corrected primal-dual proximal splitting. arXiv:2405.14098v1, 2024.

Hao Luo.

Accelerated primal-dual proximal gradient splitting methods for convex-concave saddle-point problems. arXiv:2407.20195, 2024.

Hao Luo.

Accelerated differential inclusion for convex optimization. *Optimization*, 72(5):1139–1170, 2023.

Hao Luo.

Accelerated primal-dual methods for linearly constrained convex optimization problems. *arXiv:2109.12604*, 2021.

Hao Luo, and Long Chen.

First order optimization methods based on Hessian-driven Nesterov accelerated gradient flow. arXiv:1912.09276, 2019.

Thanks for your listening! Any questions?