

Chap 02 네트워크_2.1 네트워크 기초

2.1 네트워크 기초

네트워크란?

노드와 링크가 서로 연결 or 노드와 링크가 서로 연결되어 있으며 리소를 공유하는 집 합

좋은 네트워크란

- 많은 처리량 처리 가능
- 지연 시간 짧음
- 장애 빈도 적음
- 좋은 보안 갖춤

*노드: 서버, 라우터, 스위치 등의 네트워크 장치

*링크 : 유선 or 무선

2.1.1 처리량과 지연 시간

▼ 처리량

[개념]

- : 링크 내에서 성공적으로 전달된 데이터의 양
- : 얼만큼의 트래픽을 처리했는지 나타냄
- : 많은 트래픽 처리 = 많은 처리량을 가짐

[단위]

: bps(bits per second)

[특징]

: 트래픽, 네트워크 장치 간의 대역폭, 네트워크 중간 발생 에러, 하드웨어 스팩에 영향 받음

▲ 그림 2-2 처리량

*트래픽: 흐르는 데이터의 양

*처리량 : 처리되는 트래픽의 양

*대역폭 : 주어진 시간 동안 네트워크 연결을 통해 흐를 수 있는 최대 비트 수

▼ 지연 시간 (latency)

[개념]

: 요청이 처리되는 시간

: 어떤 메시지가 두 장치 사이를 왕복하는데 걸린 시간

[특징]

: 매체 타입(유선/무선), 패킷 크기, 라우터의 패킷 처리 시간에 영향

네트워크의 분류

1. 형태 기준 분류 ⇒ 트리 / 버스 / 링 / 스타 / 망 토폴리지

2. 규모 기준 분류 ⇒ LAM / MAN / WAN

2.1.2 네트워크 토폴로지와 병목 현상

☑ 네트워크 토폴리지

: 노트와 링크가 배치되어 있는 방식 또는 연결 형태

1) 트리 토폴로지

개념	- 계층형 토폴로지 - 트리 형태로 배치한 네트워크 구성 - 버스 + 스타 토폴로지
특징	- 양방향으로 모든 노드에 데이터 전송 - 분산 처리 시스템의 가장 대표적인 형태
장점	- 네트워크 확장 쉬움- 관리 편함- 통신 선로 짧음- 통신 회선수가 절약
단점	 상위 회선에 문제가 생기면 하위 회선 모두에게 문제 생김 네트워크 확장이 많아지면 트래픽 집중 중앙 지점에서 병목현상 발생 가능 중앙 지점 고장 발생 시 네트워크 마비

2) 버스 토폴로지

개념	- 중앙 통신 회선 하나에 여러 개의 노드 연결
특징	- 근거리 통신망(LAN)에서 사용 - 서로 가까운 거리의 장치들을 연결할 때 적절 - 신호와 관련있는 장치만 반응 - 양방향
장점	- 장치의 추가와 제거가 쉬움 - 장치가 고장나더라도 전체 통신망에 영향x → 신뢰성 좋음 - 가장 적은양의 케이블 상요 - 비용 적게 듬
단점	 장애가 발생 시 발생지의 위치 추적 어려움 단선 등 단순한 장애가 전체 네트워크에 영향 줌 한번에 한 컴퓨터만 전송 가능 연결된 컴퓨터의 수에 따라 네트워크 성능 좌우됨 거래 제약이 심함 스푸핑 가능

*스푸핑

: LAN상에서 송신부의 패킷을 송신과 관련 없는 다른 호스트에 가지 않도록 하는 스위칭 기능을 마비시키거나 속여서 특정 노드에 해당 패킷이 오도록 처리하는 것을 말함

3) 스타 토폴로지

개념	- 중앙에 있는 노드에 모두 연결된 네트워크 구성
특징	- 송신 컴퓨터가 전송한 신호는 허브를 통해 네트워크의 모든 컴퓨터로 보내짐 - Point to point 방식으로 회선 연결 - 모든 장치는 중앙 컴퓨터를 통해서만 데이터 교환
장점	 노드를 추가하거나 에러틑 탐지하기 쉬움 패킷의 충돌 발생 가능성 적음 노드에 장애 발생해도 쉽게 에러 발견 가능 중앙 노드를 제외하고 장애 노드는 다른 노드에 영향 적음 설치와 재구성 쉬움 네트워크 관리 쉬움
단점	- 중앙 노드에 장애 발생시 전체 네트워크 사용 불가 - 설치 비용 고가 (많은 케이블 사용)

4) 링 토폴로지

개념	- 각각의 노드가 양 옆의 두 노드와 연결 → 하나의 연속된 길을 통해 동신하는 망 구성 방식
특징	 데이터는 노드에서 노드로 이동 각가의 노드는 고리 모양의 길을 통해 패킷 처리 각 장치는 고유한 주소 가짐 정보의 흐름은 단방향으로 원을 따라 흐름 각 노드는 데이터의 송수신을 제어하는 엑세스 제어 논리 (토큰) 보유 → 토큰 패싱이라는 방법을 통해 데이터 전송 장애 발견시 데이터가 왔던 경로를 되돌아감
장점	 노드 수 증가해도 네트워크상의 손실 거의 없음 충돌 발생되는 가능성 적음 노드의 고장 발견 쉬움 단방향 통신으로 신호 증폭이 가능하여 거리 제약이 적음
단점	- 네트워크 구성 변경 어려움 - 회선에 장애 발생 시 전체 네트워크에 영향 크게 끼침 - 설치 비용 고가(많음 케이블 사용) - 장애 복구 될 때까지 데이터는 loop를 벗어나지 못함

5) 망(Mesh) 토폴로지

개념	- 그물망처럼 연결되어 있는 구조
특징	- 모든 노드 상호 연결 - 많은 장치와의 통신이 많을때 유리 - 회선에 문제 발생 시 다른 경로를 이용해 데이터 전송 가능 - 통신 선로의 총길이가 가장 긴 네트워크 구조 - 공중통신망에 많이 사용
장점	 한 단말 장치에 장애 발생해도 여러 개의 경로 존재 → 네트워크 계속 사용 가능 트래픽도 분산 처리 가능 컴퓨터들이 각각 1:1로 연결되어 그물 모양 → 안정적 장애에 가장 강하고 가장 안전 가장 빠른 경로 이용 → 가용성과 효율성 뛰어남
단점	- 노드 추가 어려움 - 구축 비용과 운용 비용이 가장 비쌈

☑ 병목 현상

: 병목현상을 찾기 위해 토폴리지는 매우 중요하다

*병목현상

전체 시스템의 성능이나 용량이 하나의 구성 요소로 인해 제한을 받는 현상

2.1.3 네트워크 분류 (규모 기반)

▲ 그림 2-12 네트워크 분류

✓ LAN (Local Area Network)

정의	같은 IP 대역을 사용해 Address Resolution Protocol(ARP)가 닿는 네트워크 매체와 컴퓨터를 묶는 컴퓨터 네트워크
특징	- 같은 건물/캠퍼스/사무실 개인적으로 소유 가능한 규모 - 근거리 통신망 - 전송 속도 빠르고 혼잡x
전송 매체	- 유선 : Ethernet 케이블 - 무선 : Wi-Fi
네트워크 토폴로지	버스형, 링형 주로 사용

Q1) 같은 LAN에 속하다

→ 192.168.1.x/24 의 IP 사용 ∩ Subnet Mask 일치

Q2) Subnet Mask란?

→ IP 주소를 분리하기 위한 비트의 나열 (0비트 : 호스트, 1비트 : 네트워크 부분)

IP 주소 설명

192 · 168 · 123 · 132

11000000 · 10101000 · 01111011 · 10000100

내트워크 ID 호스트 ID

32비트

Q3) ARP란? section 2.4에 나옴

- → 주소 결정 프로토롤(Address Resolution Protocol)
 - *LAN은 ARP 프로토콜을 따른다.
- → 네트워크 상에서 IP 주소를 물리적 주소로 대응시키기 위해 사용

ARP : 수신측의 MAC 주소를 알아내기 위해 송신측이 broadcast하는 request

*매번 ARP 날리지 않고 한번 알아내면 캐시 테이블에 보관 → 이후는 캐쉬 이용

ex) naver 접속 상황

- 1. DNS를 통해 223.130.195.200 파악
- 2. 같은 네트워크에 있지 않음 파악
- 3. 외부로 가기위해 공유기에 접근
- 4. ARP를 통해 mac 주소 알아냄 (접근하기 위한 공유기의)
- 5. mac 주소 알아내면 데이터를 naver로 보내달라고 mac주소를 통해서 요청 보냄
- 6. 라우팅: 공유기에서 naver로 가는 최적의 경로 알아내기 (즉, 공유기는 라우터)

통신의 원리

- 1. 목적지의 ip를 알아야함
- 2. ARP를 이용해 MAC주소 획득 후
- 3. 실제 통신은 MAC 주소 이용

MAN (Metropolitan Area Network)

정의	대도시나 대규모 캠퍼스 등 비교적 넓은 지역을 커버하는 네트워크
특징	- 전송 속도는 평균, LAN 보다 혼잡
전송 매체	- 유선 : 광섬유 케이블, 동축 케이블 - 무선 : Wi-Fi, WiMAX 등
네트워크 토폴로지	버스형, 링, 스타 토폴로지 형 주로 사용

WAN (Wide Area Network)

정의	광역 네트워크
특징	- 여러 지역의 LAN과 MAN을 연결하는 데 사용 - 인터넷은 가장 대표적인 WAN - 전송 속도 낮으며, MAN보다 혼잡 - 구축하고 운영하는 비용 매우 높음
전송 매체	- 유선 : 광섬유 케이블, 동축 케이블 - 무선 : 위성 통신, 마이크로파 링크
네트워크 토폴로지	메시, 트리 토폴로지, 혼합 토폴로지 형 주로 사용

2.1.4 네트워크 성능 분석 명령어

네트워크 병목 현상 주요 원인

- 1. 네트워크 대역폭
- 2. 네트워크 토폴로지
- 3. 서버 CPU, 메모리 사용량
- 4. 비효율적인 네트워크 구성
- ⇒ 네트워크로부터 발생한 문제점인 것을 확인 후 네트워크 성능 분석 해야함.

V Ping

개념	= Packet INternet Groper = 네트워크 상태를 확인하려는 대상 노드를 향해 일정 크기의 패킷을 전송하는 명령어
확인가능 요소	- 해당 노드의 수신 상태 - 패킷 수신 상태 - 도달하기까지의 시간 - 해당 노드까지 네트워크가 잘 연결되어 있는지 확인
특징	- TCP/IP 프토로콜 중 ICMP 프로토콜을 통해 동작 → ICMP or traceroute 차단시 ping 테스팅 불가
테스트 코드	ping [IP 주소 또는 도메인 주소] -n 12 → 12번의 패킷 보내고 받기

netstat

개념	= 접속되어 있는 서비스들의 네트워크 상태 표시
확인가능 요소	- 네트워크 접속 리스트 - 라우팅 테이블 리스트 - 네트워크 프로토콜 리스트
특징	- 주로 서비스의 포트가 열러 있는지 확인할 때 사용
테스트 코드	netstat

v nslookup

개념	= DNS에 관련된 내용을 확인하기 위해 사용
확인가능 요소	- 특정 도메인에 매핑된 IP 확인
특징	
테스트 코드	nslookup
	google.com → google의 DNS 확인

√ tracert

개념	= 목적지 노드까지 네트워크 경로를 확인할때 사용하는 명령어
확인가능 요소	- 목적지 노드까지 가간들 중 어느 구간에서 응답 시간이 느려지는지 등
특징	- tcpdum p를 통해 노드로 오고 가는 패킷을 캡처하는 명령어 존재함 - 네트워크 분석 프로그램 : wireshark, netmon 등이 있음

윈도우 tracert www.google.com 리눅스 traceroute www.google.com

→ google 사이트에 도달하기까지의 경로 추적

2.1.5 네트워크 프로토콜 표준화

네트워크 프로토콜

- = 다른 장치들끼리 데이터를 주고받기 위해 설정된 공통된 인터페이스
- → IEEE 또는 IETF 라는 표준화 단체가 정함

ex)

- IEEE802.3: 유선 LAN 프로토콜로, 유선으로 LAN 구축시 사용되는 프로토콜
- HTTP: 웹 접속시 사용됨. 프로토콜을 통해 노드들은 웹 서비스를 기반으로 데이터 주고 받기 가능