IMO 2001

Washington DC, USA

- Consider an acute-angled triangle ABC. Let P be the foot of the altitude of triangle ABC issuing from the vertex A, and let O be the circumcenter of triangle ABC. Assume that $\angle C \ge \angle B + 30^{\circ}$. Prove that $\angle A + \angle COP < 90^{\circ}$.
- 2 Prove that for all positive real numbers a, b, c,

$$\frac{a}{\sqrt{a^2 + 8bc}} + \frac{b}{\sqrt{b^2 + 8ca}} + \frac{c}{\sqrt{c^2 + 8ab}} \ge 1.$$

3 Twenty-one girls and twenty-one boys took part in a mathematical competition. It turned out that each contestant solved at most six problems, and for each pair of a girl and a boy, there was at least one problem that was solved by both the girl and the boy. Show that there is a problem that was solved by at least three girls and at least three boys.

IMO 2001

Washington DC, USA

- 4 Let n be an odd integer greater than 1 and let c_1, c_2, \ldots, c_n be integers. For each permutation $a = (a_1, a_2, \ldots, a_n)$ of $\{1, 2, \ldots, n\}$, define $S(a) = \sum_{i=1}^n c_i a_i$. Prove that there exist permutations $a \neq b$ of $\{1, 2, \ldots, n\}$ such that n! is a divisor of S(a) S(b).
- 5 Let ABC be a triangle with $\angle BAC = 60^{\circ}$. Let AP bisect $\angle BAC$ and let BQ bisect $\angle ABC$, with P on BC and Q on AC. If AB + BP = AQ + QB, what are the angles of the triangle?
- 6 Let a > b > c > d be positive integers and suppose that

$$ac + bd = (b + d + a - c)(b + d - a + c).$$

Prove that ab + cd is not prime.