

PROJECT-2 REPORT

ON

Credit card Fraud detection

Prepared By:

- Sushant Sharma (22161)
- Lakhan Singh (22080)

Submitted To:

Name: Prof. Naveen Rathi

Dept.: CSE

Department of Computer Science and Engineering
DRONACHARYA COLLEGE OF ENGINEERING
FARUKHNAGAR, GURUGRAM, HARYANA

Problem Statement:

The Credit Card Fraud Detection Problem includes modeling past credit card transactions with the knowledge of the ones that turned out to be a fraud. This model is then used to identify whether a new transaction is fraudulent or not. Our aim here is to detect 100% of the fraudulent transactions while minimizing the incorrect fraud classifications.

What is Credit Card Fraud?

Credit card fraud is when someone uses another person's credit card or account information to make unauthorized purchases or access funds through cash advances. Credit card fraud doesn't just happen online; it happens in brick-and-mortar stores, too. As a business owner, you can avoid serious headaches – and unwanted publicity – by recognizing potentially fraudulent use of credit cards in your payment environment.

Observations

- Very few transactions are actually fraudulent (less than 1%). The data set is highly skewed, consisting of 492 frauds in a total of 284,807 observations. This resulted in only 0.172% fraud cases. This skewed set is justified by the low number of fraudulent transactions.
- The dataset consists of numerical values from the 28 'Principal Component Analysis (PCA)' transformed features, namely V1 to V28. Furthermore, there is no metadata about the original features provided, so pre-analysis or feature study could not be done.
- The 'Time' and 'Amount' features are not transformed data.
- There is no missing value in the dataset.

IMPORTING LIBRARIES:

```
In [1]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from pylab import rcParams
import warnings
warnings.filterwarnings('ignore')
```

READING DATASET:

```
In [2]:
data=pd.read_csv('/kaggle/input/creditcardfraud/creditcard.csv')
In [3]:
data.head()
```

Out[3]:

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	 V21	V22	V23
0	0.0	1.359807	0.072781	2.536347	1.378155	0.338321	0.462388	0.239599	0.098698	0.363787	 0.018307	0.277838	0.110474
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	0.082361	0.078803	0.085102	0.255425	 0.225775	0.638672	0.101288
2	1.0	1.358354	1.340163	1.773209	0.379780	0.503198	1.800499	0.791461	0.247676	-	 0.247998	0.771679	0.909412
3	1.0	0.966272	0.185226	1.792993	0.863291	0.010309	1.247203	0.237609	0.377436	1.387024	 0.108300	0.005274	0.190321
4	2.0	1.158233	0.877737	1.548718	0.403034	0.407193	0.095921	0.592941	0.270533	0.817739	 0.009431	0.798278	0.137458

5 rows × 31 columns

NULL VALUES:

```
In [4]:
data.isnull().sum()

Out[4]:
Time     0
V1      0
V2     0
```

DRONACHARYACollege of Engineering

V3 0 V4 0 V5 0 V6 0 V7 V8 0 V9 0 V10 V11 0 V12 0 V13 V14 0 V15 0 V16 0 V170 V18 V19 0 V20 0 V21 V22 0 V23 0 V24 V25 0 V26 0 V27 0 V28 0 Amount Class Ω dtype: int64

Thus there are no null values in the dataset.

INFORMATION

data.info()

In [5]:

Class

V1 284807 non-null float64 284807 non-null float64 V2284807 non-null float64 V3 V4 284807 non-null float64 284807 non-null float64 V5V6 284807 non-null float64 V7284807 non-null float64 V8 284807 non-null float64 V9 284807 non-null float64 V10 284807 non-null float64 V11 284807 non-null float64 V12 284807 non-null float64 284807 non-null float64 V13 284807 non-null float64 V14 V15 284807 non-null float64 284807 non-null float64 V16 V17 284807 non-null float64 284807 non-null float64 V18 284807 non-null float64 V19 V20 284807 non-null float64 284807 non-null float64 V21 V22 284807 non-null float64 V23 284807 non-null float64 284807 non-null float64 V2.4 V25 284807 non-null float64 V26 284807 non-null float64 V27 284807 non-null float64 V28 284807 non-null float64 Amount 284807 non-null float64

284807 non-null int64

DESCRIPTIVE STATISTICS

```
In [6]:
```

```
data.describe().T.head()
```

Out[6]:

	count	mean	std	min	25%	50%	75%	max
Time	284807.0	9.481386e+04	47488.145955	0.000000	54201.500000	84692.000000	139320.500000	172792.000000
V1	284807.0	3.919560e-15	1.958696	-56.407510	-0.920373	0.018109	1.315642	2.454930
V2	284807.0	5.688174e-16	1.651309	-72.715728	-0.598550	0.065486	0.803724	22.057729
٧3	284807.0	-8.769071e-15	1.516255	-48.325589	-0.890365	0.179846	1.027196	9.382558
V4	284807.0	2.782312e-15	1.415869	-5.683171	-0.848640	-0.019847	0.743341	16.875344

```
In [7]:
```

data.shape

Out[7]:

(284807, 31)

Thus there are 284807 rows and 31 columns.

```
In [8]:
```

data.columns

Out[8]:

FRAUD CASES AND GENUINE CASES

```
In [9]:
```

```
fraud_cases=len(data[data['Class']==1])
```

```
In [10]:
```

```
print(' Number of Fraud Cases:',fraud_cases)
```

Number of Fraud Cases: 492

In [11]:

```
non_fraud_cases=len(data[data['Class']==0])
```

In [12]:

```
print('Number of Non Fraud Cases:',non_fraud_cases)
```

Number of Non Fraud Cases: 284315

In [13]:


```
fraud=data[data['Class']==1]
```

In [14]:

```
genuine=data[data['Class']==0]
```

In [15]:

```
fraud.Amount.describe()
```

Out[15]:

count	492.00000
mean	122.211321
std	256.683288
min	0.000000
25%	1.000000
50%	9.250000
75%	105.890000
max	2125.870000

Name: Amount, dtype: float64

In [16]:

genuine.Amount.describe()

Out[16]:

count	284315.000000
mean	88.291022
std	250.105092
min	0.000000
25%	5.650000
50%	22.000000
75%	77.050000
max	25691.160000

Name: Amount, dtype: float64

EDA

data.hist(figsize=(20,20),color='lime')

DRONACHARYACollege of Engineering

In [18]:

```
rcParams['figure.figsize'] = 16, 8
f,(ax1, ax2) = plt.subplots(2, 1, sharex=True)
f.suptitle('Time of transaction vs Amount by class')
ax1.scatter(fraud.Time, fraud.Amount)
ax1.set_title('Fraud')
ax2.scatter(genuine.Time, genuine.Amount)
ax2.set_title('Genuine')
plt.xlabel('Time (in Seconds)')
plt.ylabel('Amount')
plt.show()
```

Time of transaction vs Amount by class

CORRELATION

In [19]:

```
plt.figure(figsize=(10,8))
corr=data.corr()
sns.heatmap(corr,cmap='BuPu')
```


<matplotlib.axes. subplots.AxesSubplot at 0x7f4c890f89b0>

Let us build our models:

```
In [20]:
```

```
from sklearn.model_selection import train_test_split
```

Model 1:

```
In [21]:
```

```
X=data.drop(['Class'],axis=1)
```

In [22]:

```
y=data['Class']
```

In [23]:

```
X_train, X_test, y_train, y_test=train_test_split(X, y, test_size=0.30, random_state=123)
```

In [24]:

```
from sklearn.ensemble import RandomForestClassifier
```

In [25]:

```
rfc=RandomForestClassifier()
```

In [26]:

```
model=rfc.fit(X_train,y_train)
```


prediction=model.predict(X_test)

```
In [28]:
from sklearn.metrics import accuracy_score
In [29]:
accuracy_score(y_test,prediction)
Out[29]:
0.9995786664794073
Model 2:
In [30]:
from sklearn.linear_model import LogisticRegression
In [31]:
X1=data.drop(['Class'],axis=1)
In [32]:
y1=data['Class']
In [33]:
X1_train,X1_test,y1_train,y1_test=train_test_split(X1,y1,test_size=0.3,random_state=123)
In [34]:
lr=LogisticRegression()
In [35]:
model2=lr.fit(X1 train,y1 train)
In [36]:
prediction2=model2.predict(X1_test)
In [37]:
accuracy_score(y1_test,prediction2)
Out[37]:
0.9988764439450862
Model 3:
In [38]:
from sklearn.tree import DecisionTreeRegressor
In [39]:
X2=data.drop(['Class'],axis=1)
```


In [40]: y2=data['Class'] In [41]: dt=DecisionTreeRegressor() In [42]: X2 train, X2 test, y2 train, y2 test=train test split(X2, y2, test size=0.3, random state=123) In [43]: model3=dt.fit(X2 train,y2 train) In [44]: prediction3=model3.predict(X2_test) In [45]: accuracy_score(y2_test,prediction3) Out[45]: 0.999133925541004 Overall models performed with a very high accuracy. In []: