IE4060 - Robotics and Intelligent Systems Assignment

Semester 1 - 2022

In this assignment, you will program a robot to complete a certain task. This is an individual project conducted in the class (normal lab hours) as well as outside the class.

Total Marks = 100

Task

Step 1

The robot has to navigate through the maze autonomously and find the exit point. You may use any algorithm to do this task. The width of the inside paths of the maze would be 10 inches wider than your robot. The maze may be slightly different at the final demonstration. Marks would be based on the time of completion of the maze.

Marks for Solving the Maze =
$$\frac{20 \times t_{min}}{t}$$

 $t = Time\ taken\ by\ your\ robot\ to\ complete\ the\ maze$

 $t_{min} = Minimum time taken by a robot to complete the maze$

Step 2

The robot may find a straight wall to its right, upon exiting the maze. The wall has two slits which could be opened or closed randomly when performing your demonstration. The robot must identify the number of open slits in the wall while navigating forward to reach the end of the wall.

Step 3

As shown in the diagram, a cylinder with a radius of 1m is placed at the end of the wall and the robot has to detect the cylinder. There will be two paths around the cylinder. The robot must choose the correct path based on the number of open slits detected in the straight wall.

Example: 1 Open slit detected → Choose path 1

The paths are not marked or guided by any means. The robot must be pre-programmed with the two paths to follow. The robot should stop after making a complete rotation around the cylinder.

Marking Grid

Component	Marks
Progress at the preliminary assessment	10
Smooth navigation within the maze	05
Solving the maze	20
Identifying the correct number of open slits	10
Following the trajectory accurately	30
Making a complete rotation around the cylinder	05
Verbal Explanation of the algorithms used	10
Quality of coding	10
Total	100

Progress Guidelines

Date/ Week	Expected Progress Level
25 th April 2022	Announcement of assignment tasks
30 th April 2022	Design a simple maze using Gazebo simulator and navigate the robot through it using teleop operation
7 th May 2022	Choose an appropriate navigation algorithm to navigate the maze
14 th May 2022	Demonstrate the maze solving component of the task
21 st May 2022	Count the number of open slits in the straight wall upon exiting the Maze, Detect the correct navigation path and describe the trajectory
28 th May 2022	Final Demonstration and Viva