Uvod u distribuirane informacijske sustave

Uvod

Sadržaj

- Definicija distribuiranog sustava
- Ciljevi distribuiranih sustava (i problemi)
- Vrste distribuiranih sustava

Zašto distribuirani sustavi?

- Razvoj računarstva zato što se može
- 1945 početak računalne ere
- Do 1985 velika super računala
 - Organizacija si može priuštiti 1 do par komada
 - Svako radi neovisno
- Sredina 1980-ih
 - Jaki mikroporocesori
 - Brže računalne mreže

'45: 1mil\$ - 1 instr/s
'85: 1000\$ - 1 bili instr/s

Dobitak 10¹³

Definicija distribuiranih sustava

- Distribuirani sustav je skup neovisnih računala koji se korisniku predstavljaju kao jedan koherentni sustav (labava karakterizacija)
- Komponente su autonomne
- Korisnicima se čine kao jedan sustav
- Suradnja komponenti

(Ova definicija je dobra jer ne naglašava nikakva ograničenja)

Svojstva distribuiranih sustava

- Distribuiranost (razlike, komunikacija) je skrivena od korisnika
- Unutarnja organizacija također
- Interakcija se odvija identično bez obzira gdje se odvija
- Proširivost(skalabilnost)
- Kontinuirana dostupnost
- Često organizirani u smislu slojeva

Middleware

Ciljevi distribuiranih sustava

 "samo zato što je moguće, ne znači da je dobra ideja"

 O čemu voditi računa da bi distribuirani sustav bio koristan?

Ciljevi

- Dostupnost resursa
- Transparentnost
- Otvorenost
- Skalabilnost

Dostupnost resursa

- Korsinicima i aplikacijama olakšati pristup resursima
- Resursi:printer, pohrana, podaci, disk, web stranice, mreže
- Zašto?
 - Ekonomičnost
 - Kolaboracija
- Sigurnost?
 - Lozinke, broj kartice, privatnost

Transparentnost distribuiranosti

- Transparentan sustav : uspijeva sakriti činjenicu da su procesi i resursi distribuirani
- Korisnicima izgleda kao sustav jednog računala

Vrste transparentnosti

Vrsta transparentnosti	Opis
Pristupa	skriva se način pristupa različit za različite OS, konvencije imenovanja
Lokacije	Gdje se resurs nalazi. Logičko imenovanje reursa (npr url)
Migracije	Resurs se može premjestiti na drugu lokaciju .
Relokacije	Premještanje resursa dok ga se koristi, npr Pomicanje laptopom i prebacivanje na drugi AP
Replikacije	Kopiranje resursa na bližu lokaciju radi učinkovitiosti. Skriva se činjenica da postoji više kopija resursa
Konkurentnosti	Više korisnika istovremeno koristi isti resurs.
Greške	Greške i obnavljanje resursa

Razine transparentnsoti

- Transparentnost nije uvijek jednostavno postići
 - Problem sinkronizacije 7 sati ujutro nije isto na svim lokacijama
 - Prenos poruke na velike udaljenosti
 - Transparentnsost vs. Učinkovitost
 - Kolaborativni dokumenti propagacija izmjene svim korisnicima

Otvorenost

- Otvoren distribuirani sustav: sustav koji nudi usluge prema standardnim pravilima koje opisuju sintaksu i semantiku usluge
- Protokoli definiraju format sadržaj i značenja poruka
- **Sučelja** specifikacije usluge (IDL *Interface Definition Language*)
- Ako je definicija sučelja dobro postavljena, bilo koji proces može zatražiti uslugu
- Dva procesa mogu nuditi istu uslugu, istim sučeljem, ali različitim implementacijama

Specifikacije sučelja

- Dobre specifikacije su
 - Potpune
 - Neutralne
- Omogućavaju
 - Interoperabilnost
 - Portabilnost

Dobar sustav treba biti proširiv

Razdvajanje politike i mehanizma

- Noviji pristup: Sustav realiziran kao skup malih lako zamjenjivih komponenti
- Sučelja su definirani i za unutrašnje komponente
- Više sučelja više mogućnosti prilagodbe
- Skup parametara definira politiku korisnik može uključiti svoju politiku kao komponentu

Skalabilnost

- Mogućnost proširenja
- Dimenzije skalabilnosti:
 - Veličina sustava (broj korisnika, resursa)
 - Zemljopisna
 - Administrativna

Veća skalabilnost lošije performanse sustava

Problemi skalabilnosti

- Centralizirani podaci
- Centralizirane usluge
- Centralizirani algoritmi

Skrivanje čekanja u komunikaciji

Distribucija

Replikacija

- Skrivanje čekanja u komunikaciji
 - Asinkrona komunikacija (handler odgovora)
 - Smanjiti cjelokupnu komunikaciju, prebacivanje provjera podataka na klijentovu stranu

- Distribucija
 - Razdvajanje komponente na dijelove (npr DNS)

- Replikacija
 - Replicirati komponente
 - veća dostupnost,
 - balansiranje opterećenja
 - Keširanje poseban oblik replikacije
 - problem : konzistencija

Zamke

- Tzv. "8 Fallacies, [Peter Deutsch, Sun Microsystems]
 - 1. The network is reliable.
 - 2. Latency is zero.
 - 3. Bandwidth is infinite.
 - 4. The network is secure.
 - 5. Topology doesn't change.
 - 6. There is one administrator.
 - 7. Transport cost is zero.
 - 8. The network is homogeneous.

Vrste distribuiranih sustava

- Sustavi distribuiranog računanja
- Distribuirani informacijski sustavi
- Distribuirani ugradbeni sustavi

Vrste distribuiranih sustava

- Sustavi distribuiranog računanja
 - Cluster
 - Grid
- Distribuirani informacijski sustavi
 - Sustavi obrade transakcija
 - Integracija poslovnih aplikacija
- Distribuirani ugradbeni sustavi
 - Kućni sustavi
 - Sustavi za nadzor zdravlja
 - Senzorske mreže

Cluster

- Paralelno programiranje
- Beowulf
- Homogenost

How to build an ultra cheap beowulf cluster http://www.clustercompute.com/

Grid

Heterogenost

- Fabric layer:
 - sučelje prema lokalnim resursima
- Connectivity layer:
 - komunikacijski protokoli
 - Sigurnosni protokoli
- Resource layer
 - Upravlja jednim resursom
- Collective layer:
 - Upravlja sa više resursa
 - Usluge za pronalazak resursa
 - Mnogo protokola za različite svrhe
- Application layer:
 - Aplikacije koje se izvršavaju unutar virtualne organizacije

http://programmingmore.blogs pot.com/2010/10/gridcomputing-in-java-englishversion.html

Sustav obrade transakcije

- Obrada transakcije = obrada informacija koja se odvija u nekoliko koraka
- Da bi transakcija bila uspješna, svi koraci moraju uspješno završiti
- Ako je jedan korak bio neuspješan, svi se moraju poništiti
- "All-or-nothing"

Sustav obrade transakcije

• ACID:

- Atomic: vanjskom svijetu, odvija se nerazdvojivo
- Consistent: drži se zakona sustava (npr. Zakon očuvanja ukupne količine novca)
- Isolated: konkurentne transakcije se međusobno ne ugrožavaju
- Durable: jednom kada je transakcija gotova, promjena je trajna

Sustavi obrade transakcije

Integracija poslovnih aplikacija

- Aplikacije direktno komuniciraju putem middlewarea
- Modeli komuniciranja:
 - RPC
 - RPC:RMI
 - MoM

Distribuirani sveprisutni sustavi

- Mobilni i ugradbeni uređaju: "nestabilnost je predefinirana"
- Uređaji:
 - Mali
 - Napajani baterijom
 - Bežično povezani

Sve ili dio navedenog

- Sustavi ugnježdeni u okoliš.
 - Nedostatak administrativnog upravljanja

Ugradbeni sustavi

- Prihvaćanje promjena
- Ad-hoc kompozicija
- Dijeljenje
- Prilagodba nalokalni okološ kod promjene položaja za mobilne uređaje
- Pronalaziti usluge
- Prostorna transparentnost nije prioritet

Kućni sustavi

- Automatska konfiguracija (UPnP)
- Privatni prostor

Private House Design

Dimmer Dimmer Dimmer Control Internet Control On\Off Table Mount Touch Screen

Elektronski health care sustavi

Body area network

Senzorske mreže

Distribuirane beze podataka

Zaključak

- Distribuirani sustavi sastoje se od autonomnih računala koji zajedno djeluju kao jedan koherentni sustav
- Ako ih dobro dizajniramo, mogu skalirati
- Cilj skrivanja distribuiranosti
- Različite vrste distribuiranih sustava

Sljedeći put

• Arhitekture distribuiranih sustava