2021 年寒假强基计划备考集训课程讲义(数学)

一、强基计划数学备考要点

序		高考命题	强基、综评、三一	备
号	主题		键词	注
	代数		灵活性高:配方、分解因式	低
1	变形	灵活性低	按目标调结构 参数控制	频
	集合			
2	运算	子集、交集、并集、补集	容斥计数 集合划分 子集极值	低
	与划	Valer action and the	17 (13) (13) (13) (13) (13) (13) (13) (13)	频
	分			
3	函数 与方	函数 函数图像与性质 初等函数	凹凸性与对称性 映射 代数变换	高
3	程	典型函数	特殊函数 抽象函数 函数方程	频
	不等		重要不等式 自建不等式 证明不等	
4	式与	不等式性质 比较大小 解不等式	式 最值探究 代数变形灵活性要求	中
	最值		高	频
	数列	甘未恆人 效关卫世址氏 效识处		产
5	与递	基本概念 等差及其性质 等比数 列及其性质 通项与求和公式	重要恒等式 同构转化求通项 和式变换与求和方法 递推方法	高频
	推	列及共任灰 通项与水和公式	文换与水种方法 选推方法	少只
	向量	基本概念 基本运算 基本定理 数	向量基本定理及其特例 向量与几何	低
6	与几	量积与投影 法向量与距离、夹角	奔驰定理与三角形五心向量表征	频
	何			
7	三角 与变	定义 三角函数图像与性质 三角	三角变换 三角不等式 最值探究 三	中
/) 与发 换	公式合成公式 三角形中求解与证 明	角与几何	频
	复数		三角形式 指数形式 乘方开方 复数	
8	与方	基本概念 代数形式 四则运算 共	与几何 复数与几何 复数与方程 单	高
	程	轭、模与辐角 (概念) 复数与向量	位根	频
		导数与导函数 导数应用(求单调		
	微积	区间、极值、最值与切线) 探究	极限 连续性直观 基于切线与弦线	低
9	分	恒成立问题参数条件 探究带参数	建立不等式 定积分定义 微积分学	频
	/4	函数极值点、零点存在条件 极值	基本定理 积分不等式	
	<u> </u>	点偏离多切线问题		
10	立体	空间几何体结构 位置关系平行与	空间距离 球 体积计算	中与
	几何	垂直论证 空间角与体积求解 直线与方程 圆与方程 圆锥曲线		频
11	解析	国线与方柱 圆与方柱 圆锥曲线 与标准方程 离心率 直线与曲线	圆锥曲线与方程 准线与离心率 多	高
1 1	几何	位置关系	参数计算 动点轨迹方程	频
			整除及其性质 带余除法与辗转相除	
	整数		同余及其性质 完系与约系 数论函	
12	与多	无	数 整除分析 同余分析 欧拉定理	中频
	项式		费马小定理 不定方程 组合数论 多	少贝
			项式信息提取与应用	

13	组合 与概 率	计数基本原理 排列与排列数 组 合与组合数古典概型 几何概型 条件概型 随机变量概率分布	组合恒等式 组合计数 组合极值 集 合划分 子集极值 概率 组合证明推 理判断(简易博弈)	高频
14	几何 与拓 展	无	平行与垂直 全等与相似 导角导比例 共点、共线与共圆	低频
15	大学 先修 课程	无	极限、积分、矩阵、行列式	低频
核心素养		逻辑推理 直观想象 数学运算 数据分析 (部分)	数学抽象(突出) 逻辑推理 数学建模 观想象 数学运算 数据分析(全面)	

二、按两天时间许可与强基元年试题表现构建讲座内容,安排两部分

序	予 照	高考命题	自主命题	备
号	主题	关键词(选材突出灵活性)		
1	集合 运算 与划 分	子集、交集、并集、补集	容斥计数 集合划分 子集极值	低频
2	函数 与方 程	函数 函数图像与性质 初等函数 典型函数	凹凸性与对称性 映射 代数 变换 特殊函数 抽象函数 函 数方程	高频
3	向量 与几 何	基本概念 基本运算 基本定理 数量积 与投影 法向量与距离、夹角	向量基本定理及其特例 向量 与几何 奔驰定理与三角形五 心向量表征	低频
4	微积分	导数与导函数 导数应用(求单调区间、 极值、最值与切线) 探究恒成立问题参 数条件 探究带参数函数极值点、零点存 在条件 极值点偏离多切线问题	极限 连续性直观 基于切线与 弦线建立不等式 定积分定义 微积分学基本定理 积分不等 式	低频
5	组合 与概 率	计数基本原理 排列与排列数 组合与组合数古典概型 几何概型 条件概型 随机变量概率分布	组合恒等式 组合计数 推理与证明 组合极值 集合划分 子集极值 概率 组合几何与图论(简易博弈)	高频
6	几何 与拓 展	无	平行与垂直 全等与相似 导角导比例 共点、共线与共圆 几何定理 圆幂与圆幂定理 根轴与根心 九点圆 变换	低频
核心	核心素养 逻辑推理 直观想象 数学运算 数据分析 (部分)		数学抽象(突出) 逻辑推理 建模 直观想象 数学运算 数据 析(全面)	

三、高校强基计划校考坚持与高考互补性,引领学生整体把握、深度学习.

- 1.强基计划数学备考应试群体属高考成绩优异学生与高联优胜者,因此强基计划数学备 考是优秀考生之间的比拼.这决定强基计划校考不会重复高考题型,试题立意无论是题型还 是内容都会坚持与高考互补,更加全面地检测考生数学知识技能与能力素养.
 - 2.在数学知识技能方面与高考互补.高考面向全体高中生,考试内容对课标有所删减,譬

如反三角函数、复数与积分等,高考考查浅显,甚至不考,强基计划命题会关注考试这方面知识技能,掌握程度如何.除检测内容全面之外,对问题的探究也追求全面立意,譬如清北等著名高校强基校考坚持以不定项选择建构试题,要求对同一情境做多方精准探究,以检测考生娴熟的数学探究能力.

- 3.在数学学习深度、素养积淀上,坚持与高考互补.譬如,高考对数列知识技能的考查,试题立意专注于等差数列与等比数列基础知识与技能,对递推方法关注较弱,强基计划就会侧重检测考生递推能力与同构转化能力考查;再如,高考对集合知识的立意停滞在概念与运算表层,而强基计划则深入考查集合划分与子集极值、构造等组合思维.
- 4.数学以"思维灵活性"、"表达严谨性"、"应用广泛性"为突出特征,然而,新课标注重基础,严重弱化"灵活性",而强基计划命题注重突出灵活性立意试题,检测数学探究必备素养.
- 5.引领拓展、包容多变,这与高考题型稳定少变有明显的互补性,包容数学竞赛、理性 认为数学竞赛是一种深度数学学习,基于数学竞赛试题推陈出新用于检测考生问题解决水 平
- 6.高考不考的平面几何、初等数论、组合数学,强基计划都有较为深入考查几何推理、整数性质与极端性思维方式等组合基本技能.
- **7**.由于强基计划试题立意坚持知识全面与技能深入选拔顶尖人才,因此试题始终坚持创新立意,题目新颖灵活.

四、《强基计划数学备考十五讲》提出各年级学段强基备考策略

- 1.高一年级开始介入"强基计划"数学备考,有利因素是面向高考的常态教学还不十分 紧张,时间比较充裕,因此,可以面向全国高中数学联赛全面学习,既有希望争取更多机会, 又能历练、培育自己时如金的习惯,不利的因素是学生这时高中基础知识积淀不足,需要自己持之以恒,顽强拼搏,自觉拓展知识技能.
- 2.高二年级开始介入"强基计划"数学备考,有利条件是对高中数学知识、技能已有较多积淀,对学习高考之外内容有比较强的理解能力,效率较高,但时间已不足以按照全国高中数学联赛的只是广度与难度系统学习,可以按照本文建构的十五个主题深入、全面学习,具体可以按照本书系统学习、历练、积淀、全面提升.
- 3.高三年级开始迎战"强基计划"数学备考,十分有利的条件是已经学完高考内容,知识技能已经有丰厚的积淀,具备支撑进一步深入学习更多数学知识的条件,但高三教学已经全面进入高考总复习,每天时间都抓得很紧,已经没有更多的时间用于扩展知识性学习,因此,笔者提出高三学生应坚持的"三段式"备考策略:
 - 其一,参加培训,在教师整体引领下,开拓视野,积淀技能;
 - 其二,适应真题训练,培育素养,发展能力;
 - 其三,坚持以《强基计划数学备考十五讲》为蓝本,持续学习、提升.

其中一、二两项应融合进行,听完讲座,立即跟进"以真题适应性训练作为实战演练", 经历实战演练,再及时跟进"学习指导"(真题精析);第三项是指学生应持续学习,保持培训成果,能力得以持续提升.

四、强基计划与高考在知识广度与深度各方互补性都淋漓尽致地表现在《强基计划数学备考十五讲》之中,选用"十五讲"作为持续提升,保持培训、引领成果,是最佳选择.

譬如三角函数主题,高考突出三角函数图象与性质、三角形中的三角问题,三角变换灵活性检测较弱;强基计划则突出考查图象与性质的深入应用,三角变换灵活性.

例 1 基于下图,函数 $y = \sin x \left(0 < x < \frac{\pi}{2} \right)$ 夹在直线 $y = \frac{2}{\pi} x$ 与y = x之间,所以

 $\frac{2}{\pi}x < sinx < x\left(0 < x < \frac{\pi}{2}\right)$; 同理,可建立 $\frac{3}{\pi}x < sinx < x\left(0 < x < \frac{\pi}{6}\right)$.由此可探究 $\frac{1}{4} < sin\frac{\pi}{n} < \frac{1}{3}$ 的正整数n = 10,11,12.

例 2 作三角变换 $sin\pi x - cos\pi x = \sqrt{2}sin\left(\pi x - \frac{\pi}{4}\right)$, 调结构

$$f(x) = \frac{\sin \pi x - \cos \pi x + 2}{\sqrt{x}} = \frac{\sqrt{2} \sin \left(\pi x - \frac{\pi}{4}\right) + 2}{\sqrt{x}},$$

再由对称性转化函数 $f(x) = \frac{\sin \pi x - \cos \pi x + 2}{\sqrt{x}}$ 在闭区间 $\left[\frac{1}{4}, \frac{5}{4}\right]$ 上的最小值等同于函数 $f(x) = \frac{\sin \pi x - \cos \pi x + 2}{\sqrt{x}}$

 $\frac{\sqrt{2}sin\left(\pi x - \frac{\pi}{4}\right) + 2}{\sqrt{x}}$ 在区间 $\left[\frac{3}{4}, \frac{5}{4}\right]$ (递减)上的最小值 $f\left(\frac{5}{4}\right) = \frac{4\sqrt{5}}{5}$,引领读者拓展常态数学学习中基于单调性探究最值的狭隘观点。

例 3(北京大学)设a、 $b \in R$,并且对一切 $x \in R$,都有 $acosx + bcos2x \ge -1$,求a + b的最大值.作者以这样的多参数题材,引领读者探究极端数据,建构优美简捷解法.

解析 一方面,取
$$x = \frac{2\pi}{3}$$
,得 $-\frac{1}{2}a - \frac{1}{2}b \ge -1 \Rightarrow a + b \le 2$,从而 $(a + b)_{max} \le 2$.

另一方面,取 $(a,b) = \left(\frac{4}{3},\frac{2}{3}\right)$,则对一切 $x \in R$,都有 $\frac{4}{3}cosx + \frac{2}{3}cos2x = \frac{4}{3}cosx + \frac{2}{3}(2cos^2x - 1) = \frac{1}{3}(2cosx + 1)^2 - 1 \ge -1$,从而 $(a+b)_{max} \ge \frac{4}{3} + \frac{2}{3} = 2$.

综上, 得 $(a+b)_{max} = 2$.

例 4 求值 $\cos^5\frac{\pi}{9}+\cos^5\frac{5\pi}{9}+\cos^5\frac{7\pi}{9}$,在书中给出三种解法,突出"公式自建"、"构造"、"递推"等,引领学生深入探究,引领深度学习,培育数学素养.此类问题引起广泛兴趣,

譬如 "求值: $sin^410^\circ + sin^450^\circ + sin^470^\circ$ " (清华大学),"求证: $tan^820^\circ + tan^840^\circ + tan^880^\circ = 1070163$."(《叶军工作站》第 149 期问题 A,详见王芝平特级教师数学公众号"平说数学"近期文稿),等等.

例 5 试题(哈工大)函数 f(x) = 1 - acosx - bsinx - Acos2x - Bsin2x,其中常数 a、b、A、 $B \in R$.如果对一切 $x \in R$,都有 $f(x) \geq 0$.求证: $(1)a^2 + b^2 \leq 2$; $(2)A^2 + B^2 \leq 1$. 解析: 2010 年哈尔滨工业大学自主招生试题直接引入第十九届 IMO 第 4 题,原证较繁琐,下面给出笔者新证.

(1) 任取 $x \in R$,有 $f\left(x + \frac{\pi}{2}\right) = 1 + asinx - bcosx + Acos2x + Bsin2x$,由题设,可知

 $f(x) + f\left(x + \frac{\pi}{2}\right) \ge 0$ (两式中x是同一个值),即 $2 + (a - b)sinx - (a + b)cosx \ge 0$, $\forall x \in R$, 所以 $2 - \sqrt{(a + b)^2 + (a - b)^2} \ge 0$,即 $a^2 + b^2 \le 2$.

(2) 任取 $x \in R$,有 $f(x + \pi) = 1 + acosx + bcosx - Acos2x - Bsin2x \ge 0$,再由条件,得 $f(x) + f(x + \pi) \ge 0$,即 $2 - 2Acos2x - 2Bsiin2x \ge 0$,即 $Acos2x + Bsiin2x \le 1$, $x \in R$,所以 $\sqrt{A^2 + B^2} \le 1$,即 $A^2 + B^2 \le 1$.

评注:根据熟知三角公式:任取 $x \in R$,都有

$$\cos x + \cos\left(x + \frac{2\pi}{3}\right) + \cos\left(x + \frac{4\pi}{3}\right) = 0, \quad \sin x + \sin\left(x + \frac{2\pi}{3}\right) + \sin\left(x + \frac{4\pi}{3}\right) = 0,$$

可得 $f(x) + f\left(x + \frac{2\pi}{3}\right) + f\left(x + \frac{4\pi}{3}\right) = 3$, 按题意 $f\left(x + \frac{2\pi}{3}\right) + f\left(x + \frac{4\pi}{3}\right) \ge 0$, 所以得有界性 $0 \le f(x) \le 3(x \in R)$.

等等,引领学生深度学习、思维靓点无处不在,枚不胜举.

例 6 本主题详实讲解反三角函数概念、图象、运算,不出所料,强基元年复旦大学、清华大学分别深入地考查了反三角函数运算:

(复旦大学)
$$arcsin\frac{\sqrt{14}+3\sqrt{2}}{8}+arcsin\frac{3}{4}$$
的值是()A. $\frac{\pi}{3}$ $B.\frac{\pi}{2}$ C. $\frac{2\pi}{3}$ D.以上都不对;

(清华大学)
$$\lim_{n\to\infty}\sum_{k=1}^n\frac{1}{2k^2}=($$
)

A.
$$\frac{3\pi}{4}$$
 $B.\pi$ $C. \frac{3\pi}{2}$ D. 前三个选项都不对.

本书承传了《自主招生数学备考十二讲》的立意思想,但不是该书的再版,也不是其修订,是全新撰写.作者根据强基要求,撰写了"大学先修课程"这个主题,不出所料近期清华大学正式公布《清华大学 2021 年丘成桐数学科学领军人才培养计划招生办法》明确其专业测试,除中学数学全部内容之外,还包括微积分、线性代数、群与群作用的基本概念第一讲集合运算与划分

一、知识要点

•	MMX	''	
要点		关键词	备注
概念	确定性	列举法(无序性,互异性) 描述法 venn 图 空集 有限集	
75亿/公	无限集	专有集合N、 N^* 、 Z 、 Q 、 R 、 C	
子集		子集 真子集 相等 性质	
运算	运算	交集A∩B 并集A∩B 补集C _U A	
心 异	性质	$A \cap B = A \Longleftrightarrow A \subseteq B \Longleftrightarrow A \cup B = A$	
容斥原理		$\left \bigcup_{i=1}^{n} A_{i} \right = \sum_{k=1}^{n} (-1)^{k} \cdot \sum_{1 \le i_{1} < i_{2} < \dots < i_{k} \le n} \left A_{i_{1}} \cap A_{i_{2}} \cap \dots \cap A_{i_{k}} \right $	有限集
集合划分		$A = \bigcup_{i=1}^{n} A_{i}, \ A_{i} \neq \emptyset (1 \le i \le n), \ A_{i} \cap A_{j} = \emptyset (1 \le i < j \le n)$	加法原理
子集极值		子集族极值探究方法 Spenner定理	
方法技能		集合应用 数形结合 二维表格 递推方法 组合分析	
		二维表格 极端性方法与整体处理 发展代数新思维	

详见《强基计划数学备考十五讲》.

二、典例精析

例 1 设a、 $b \in R$, 定义 $A = x, y \mid y = ax + b, x \in Z$, $B = x, y \mid y = 3x^2 + 15, x \in Z$,

 $C= x,y | x^2 + y^2 \le 144$. 问: 是否存在 a、b,满足 $A \cap B \ne \phi$,并且 $a,b \in C$?

例 2 现将正整数数列分成两组,使得两组中均不包含无穷等差数列,则这种分组方法数 ()

A.0 B.1 C. 无穷多 D. 前三个答案都不对

例 3 设M =
$$\left\{ (x,y,z,u) \left| \frac{x-y}{x+y} + \frac{y-z}{y+z} + \frac{z-u}{z+u} + \frac{u-x}{u+x} > 0, x \lor y \lor z \lor u \in D \right\}$$

若D = $\{1,2,3,\dots,10\}$,求M中元素个数[M].

三、课堂练习

1.给定 $n \in N^*$,集合 $S = \{1,2,\cdots,n\}$ 的一组子集 A_1,A_2,\cdots,A_k ,其中任意两个子集互补包含,即对一切 $1 \le i < j \le k$,都有 $A_i \nsubseteq A_j$,并且 $A_i \not\supseteq A_j$.

- (1) 当n = 5时,求 k_{min} ;
- (2) 对 $n \in N^*$, 给出k的最小值f(n);
- (3) 如果集合 $S = \{1,2,3,\cdots,8\}$ 的一组子集 A_1,A_2,\cdots,A_k 中,不存在 3 个子集 A_i,A_j,A_l (1 $\leq i < j < l \leq k$),满足 $A_i \subseteq A_j \subseteq A_l$,或 $A_i \supseteq A_l$,给出 k_{max} .

四、学习指导

(一) 实战演练

1. 己知 $M = \{(x,y)|x^2 + (y-4)^2 = 1\}$, $N = \{(x,y)|\frac{x^2}{9} + y^2 = 1\}$, 任取 $P \in M$, $Q \in N$, 则 $|PQ|_{max} = ($).

A. 6 B.
$$3\sqrt{3} + 1$$
 C. $2\sqrt{7} + 1$ D. $4\sqrt{2} + 1$

2.函数 y = f(x) 的定义域为 D, 若存在 M, 使得对任意 $x \in D$, 都有 $|f(x)| \le M$,

则称函数
$$f(x)$$
 有界. 问: 函数 $f(x) = \frac{1}{x} \sin \frac{1}{x}, x \in \left(0, \frac{1}{2}\right)$ 是否有界? 并证明你的结论.

- 3.已知 $S = \{1,2,3,4,5,6,7\}$ 的一组 3 元子集 A_1 , A_2 , …, A_k 满足 $\left|A_i \cap A_j\right| \le 1$, $\forall 1 \le i < j \le k$, 求 k_{max} .
- 4.求最小的正整数n,使得集合 $S = \{1,2,3,\cdots,24\}$ 的任一n元子集A都含所有 3 个两两互素的元素.
 - 5.求满足下列条件的三元集合组 (A, B, C) 的个数: 其中|X|表示集合 X 中元素个数 .
- (1) $A, B, C \subseteq \{1, 2, \dots, 8\};$
- (2) $|A \cap B| = |B \cap C| = |C \cap A| = 2$;
- (3) |A| = |B| = |C| = 4.

(二)答案

题号	1	2	3	4	5
答案	В	无界	7	17	45360

详见《强基计划数学备考十五讲》.

第二讲 函数与导数

一、知识要点

(一) 基本概念

要		核心				
点		No		备注		
映		$f: A \to B, A \ni x \mapsto y \in B$		A、B ≠ Ø		
射		J.11 / D,11 3 x / y C D		$A \setminus D \neq \emptyset$		
函		$y = f(x), x \in A$		数集 A、B ≠ Ø		
数		$y = f(x), x \in \Pi$		数未 Λ、 D ≠ ψ		
三	 定义域 A: 自变量	对应关系f:定义出元素之	 值域C: 函数	定义域 A 与对应关系		
要	x取值集合			f 决定值域 M		
素	ル牧胆朱口	四即/沙兰,	值的集合	J 沃尼阻域 W		
	函数 $y = f(x), x \in A$ 的图像是指点集					
图	F	$f = \{(x, y) y = f(x), x \in A\}$		函数的直观表现		
像	定义本质(映射)	数形结合基础				
	表现为一条曲线 C,它与任一竖直直线 $x = a$ 至多交于一点.					
形	解析式	曲线	表格	函数思想方法		
态	州平7月 天	四线	(人)	应用广泛		

(二) 基本函数

冊上	核心	自主探究	
要点		图像	性质
常数函数	y = c		
正比例函数	$y = kx(k \neq 0)$		
一次函数	$y = kx + b(k \neq 0)$		
反比例函数	$y = \frac{k}{x}(k \neq 0)$		
一次分式函数	$y = \frac{ax + b}{cx + d} (ad \neq bc)$		
幂函数	$y = x^a$		
指数函数	$y = a^x (a > 0 \perp a \neq 1)$		
对数函数	$y = log_a x (a > 0 \perp a \neq 1)$		
复合函数	y = f(g(x)) 外函数 $y = f(u)$,内函数 $u = g(x)$		

(三) 基本性质

1.单一函数自身性质

要点		核心	备注
单	递增区 间 <i>I</i>	$\forall x_1, x_2 \in I, f(x_1) < f(x_2)$	增函数:在定义域 A 上递增
単 调性	递减区 间 <i>I</i>	$\forall x_1, x_2 \in I, f(x_1) > f(x_2)$	减函数:在定义域 A 上递减
注	几何直 观	增函数图像从左至右上升,减函数图像从	左至右递减

如水板	函数图像关于直线 $x = a$ 对称:	偶函数:图像以 y 轴为
抽刈你	$\forall x \in A, \ f(a-x) = f(a+x)$	对称轴
中心对	函数图像关于点(a,b)对称:	奇函数:图像以原点为
称	$\forall x \in A, \ f(a-x) + f(a+x) = 2b$	对称中心
	(1) $\forall x \in A, \ f(a-x) = f(a+x) \Leftrightarrow f(2)$	a-x)=f(x)
	(2) $\forall x \in A, \ f(m-x) = f(n+x) \iff f\left(\frac{m+n}{2}\right)$	$-x\Big) = f\left(\frac{m+n}{2} + x\right)$
变式	(3) $\forall x \in A$, $f(a-x) + f(a+x) = 2b \Leftrightarrow f(2)$	a - x) + f(x) = 2b
	$(4) \ \forall x \in A, \ f(m-x) + f(n+x)$)=2b
	$\iff f\left(\frac{m+n}{2} - x\right) + f\left(\frac{m+n}{2} + x\right)$	= 2 <i>b</i>
定义	函数以T(≠0)为周期是指:	与对称性不同
	$\forall x \in A, \ f(x+T) = f(x)$	一 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
充分冬	图像有两条竖直对称轴: $x = a$, $x = b(a \neq b)$, 则	有周期 $T=2(a-b)$;
	图像有两个等"高对"称中心: (a,c) , (b,c) ,则不	有周期 $T=2(a-b)$;
IT	图像有对称轴: $x = a$ 与对称中心 $(b,c)(a \neq b)$,则	有周期 $T = 4(a - b)$.
图象	函数图像在区间1上向下凸是指	
	$\forall x_1, x_2 \in I, \lambda f(x_1) + \mu f(x_2) \ge f(\lambda x_1 + \mu x_2), $ 其	建不等式
1 11	中 λ 、 $\mu > 0$ 且 $\lambda + \mu = 1$.	探究最值
图像	函数图像在区间1上向下凸是指	意义重大
上凸	$\forall x_1, x_2 \in I, \lambda f(x_1) + \mu f(x_2) \le f(\lambda x_1 + \mu x_2), $ \sharp	心八王八
	中 λ 、 $\mu > 0$ 且 $\lambda + \mu = 1$.	
	森 变 定 充件 8 8 8 6	軸対称

2.两个函数之间关联关系

	核心	备
		注
	把 $y = f(x)$ 图像向右平移 a 单位,得到函数 $y = f(x - a)$	
	把 $y = f(x)$ 图像向左平移 a 单位,得到函数 $y = f(x + a)$	
a, b	把 $y = f(x)$ 图像向上平移 b 单位,得到函数 $y = f(x) + b$	
> 0	把 $y = f(x)$ 图像向下平移 b 单位,得到函数 $y = f(x) - b$	
	把 $y = f(x)$ 图像向左平移 a 单位,再向上平移 b 单位,得到函数	
	y = f(x+a) + b	
	把 $y = f(x)$ 图像关于直线 $x = a$ 对称,得到函数 $y = f(2a - x)$	
把 $y = f(x)$ 图像关于直线 $y = b$ 对称,得到函数 $y = 2b - f(x)$		
把 $y = f(x)$ 图像关于点 $C(a,b)$ 作中心对称,得到函数 $y = 2b - f(2a - x)$		
	函数 $y = f(x)$ 与 $y = f(-x)$,图象关于 y 轴对称	
特别	函数 $y = f(x)$ 与 $y = -f(x)$,图象关于 x 轴对称	
	函数 $y = f(x)$ 与 $y = -f(-x)$,图象关于原点轴对称	
把 $y = f(x)$ 图像关于直线 $y = x + a$ 对称,得到函数 $y = f^{-1}(x + a) + a$		
把y	$y = f(x)$ 图像关于直线 $y = -x + a$ 对称,得到函数 $y = a - f^{-1}(a - x)$	
4	函数 $y = f(x)$ 与 $y = f^{-1}(x)$,图像关于直线 $y = x$ 对称(互为反函数)	
14.19.1	函数 $y = f(x)$ 与 $y = -f^{-1}(-x)$,图像关于直线 $y = -x$ 对称	
	函数 $y = f(x)$ 的图像如何变换成函数 $y = f(x) $ 的图像?	
其他	函数 $y = f(x)$ 的图像如何变换成函数 $y = f(x)$ 的图像?	
	函数 $y = f(x)$ 的图像如何变换成函数 $y = f(x) $ 的图像?	
	> 0 把) 特别 把) 特例	世 $y = f(x)$ 图像向右平移 a 单位,得到函数 $y = f(x - a)$ 世 $y = f(x)$ 图像向左平移 a 单位,得到函数 $y = f(x + a)$ セ $y = f(x)$ 图像向上平移 b 单位,得到函数 $y = f(x) + b$ > 0

伸缩	A, k > 0	把函数 $y = f(x)$ 图像上各点横坐标伸长 $(k < 1)$ 到或缩短 $(k > 1)$ 到原来的 k 倍,得到函数 $y = f(kx)$ 的图象,把函数 $y = f(x)$ 图像上各点纵坐标伸长到 $(k > 1)$ 或缩短到 $(k < 1)$ 原来的 k 倍,得到函数 $y = kf(x)$ 的图象.	
	复合	$y = f(x) \to y = f(-x) \to y = f(-kx)$	
		$y = f(x) \to y = f(x+1) \to y = f(2x+1) \to y = f(-2x+1)$	
综		或	
合	y = j	$f(x) \to y = f(2x) \to y = f\left(2\left(x + \frac{1}{2}\right)\right) = f(2x + 1) \to y = f(-2x + 1)$	

(四) 典型函数

要点	核心	自主探究
女 点	核心	图像与性质
		奇函数,
	_	递增区间(-∞,-1)、(1,+∞)
双勾函数	$y = x + \frac{1}{x}, \ y = x^3 + \frac{3}{x}, \cdots$	递减区间(-1,0)、(0,1)
	2	在 $(0,+\infty)$ 上, $y_{min}=f(1)$
		$若 f(x_1) = f(x_2), 则 x_1 + x_2 \ge 2$
单勾函数	$y = x^2 + \frac{2}{x}$, $y = x^2 - \frac{2}{x}$, $y = \frac{1}{x^2} + 2x$,	
无勾函数	$y = x - \frac{1}{x}, \cdots$	
一次分式和函	$y = \frac{a_1}{x - b_1} + \frac{a_2}{x - b_2} + \dots + \frac{a_n}{x - b_n}$	
数	$y - x - b_1$ $x - b_2$ $x - b_n$	
绝对值和函数	$y = x - a_1 + x - a_2 + \dots + x - a_n $	

(五) 导数及其应用

要点	关键词	备注
导数	定义一导数 导函数 求导方法——基本导数公式、四则运算、复合运算	
	单调区间-极值-最值-不等式 热点不等式	
ĊЯ	切线-割线-不等式-最值 多切线 凹凸性-不等式-最值	
应用	函数极值点、零点存在的参数条件与性质	
	典型函数 极值点偏移不等式 探究恒成立问题中的参数范围	
方法	差函数 分离参数 比值代换 适度放缩 替换公式 转化化归	
积分	定义 算法——微积分学基本定理 极限直观	
不等式	热点不等式 以导数与积分自建不等式	

详见《强基计划数学备考十五讲》.

二、典例精析

例 1 设 $a_1, a_2, \dots, a_n (n \ge 3)$ 成等差数列,求项数 n 的最大值,使得

$$|a_1| + |a_2| + \dots + |a_n| = |a_1 + 1| + |a_2 + 1| + \dots + |a_n + 1|$$

$$= |a_1 - 2| + |a_2 - 2| + \dots + |a_n - 2| = 507$$
.

例 2 求极限: $\lim_{x\to 1} \frac{x \ln x}{x^2-1}$.

例 3 幂指函数求导:求函数 $y = x^x$ 的导数.

例 4 求函数 $f(x) = \sqrt{x+27} + \sqrt{13-x} + \sqrt{x}$ 的单调区间、极值与最值.

例 5 证明下列不等式:

- $(1)e^{x-1} lnx \ge 1, \ \forall x \in (0, +\infty);$
- $(2)x^2e^x lnx > 1, \ \forall x \in (0, +\infty);$

$$(3)e^{x}lnx + \frac{2}{x}e^{x-1} > 1, \ \forall x \in (0, +\infty).$$

例 6 己知函数 $f(x) = \frac{4}{x^3+4}$.

- (1) 过点A(0,1)作函数y = f(x)图象的切线l, 求l的方程;
- (2) 非负数a、b、c、d满足a+b+c+d=4,求g=af(b)+bf(c)+cf(d)+df(a)的最小值:

例 7 求证:
$$-1 < \frac{1}{2} + \frac{2}{5} + \dots + \frac{n}{n^2 + 1} - \ln n \le \frac{1}{2}, \forall n \in \mathbb{N}^*$$
.

例 8 函数 $f(x) = \frac{\sin x}{2 + \cos x}$,求 a 的取值范围,使得对任何 $x \ge 0$,都有 $f(x) \le ax$.

三、课堂练习

1. 定义在对称数集上的任一函数f(x)都可以表示为一个奇函数与一个偶函数之和 $f(x) = \frac{f(x) - f(-x)}{2} + \frac{f(x) + f(-x)}{2}.$

(1) 由
$$y = \lg(10^x + 1)$$
可得偶函数 $f(x) = \lg(10^x + 1) - \frac{x}{2}(x \in R)$;

(2) 由
$$y = 2^{\frac{x}{2}}$$
可得奇函数 $f(x) = \frac{1}{2} - \frac{1}{2^{x}+1} (x \in R)$.

(3) 由
$$y = x + x^2$$
 可 拓 展 定 义: 奇 函 数 $f(x) = \begin{cases} x(1+x), x \ge 0 \\ x(1-x), x > 0 \end{cases}$, 偶 函 数 $g(x) = \begin{cases} x(1+x), x \ge 0 \\ x(x-1), x > 0 \end{cases}$

2.已知
$$f(x) = \frac{x^2}{x^2 - 100x + 5000}$$
,则 $f(1)+f(2)+\cdots+f(100)$ 的值是______.

3.组合恒等式

- (1) $C_n^1 + 2C_n^2 + \dots + nC_n^n = n2^{n-1}$.
- (2) $2 \cdot 1C_n^2 + 3 \cdot 2C_n^3x + \dots + n(n-1)C_n^nx^{n-2} = n(n-1) \cdot 2^{n-2}$.

(3)
$$C_n^0 + \frac{1}{2}C_n^1 + \frac{1}{3}C_n^2 + \dots + \frac{1}{n+1}C_n^n = \frac{2^{n+1}-1}{n+1}$$
.

4.
$$\lim_{n \to +\infty} \frac{1^p + 2^p + \dots + n^p}{n^{p+1}}$$
,其中实数 $p > -1$

5.
$$f(x) = x \log_2 x + (1-x) \log_2 (1-x), x \in (0,1)$$
.

(1) 求 f(x)的最小值;

(2) 设正数
$$p_i (i=1,2,\cdots,2^n; n \in N^*)$$
满足 $\sum_{i=1}^{2^n} x_i = 1$,求证: $\sum_{i=1}^{2^n} p_i \log_2 p_i \ge -n$.

6.函数 $f(x) = \frac{1+x}{1-x}e^{-ax}$,求 a 的取值范围,使得对任意的 $x \in (0,1)$,恒有 f(x) > 1.

7.设
$$f(x) = x \ln x(x > 0)$$
,解答

(1) 求 f(x) 的单调区间与极值;

(2) 若
$$f(x_1) = f(x_2)$$
且 $x_1 \neq x_2$,求证 $\frac{x_1 + x_2}{2} > \frac{1}{e} > \sqrt{x_1 x_2}$.

四、学习指导

(一) 实战演练

1.求满足 $\frac{1}{4} < \sin \frac{\pi}{n} < \frac{1}{3}$ 的所有正整数之和S的值.

2.函数
$$f(x) = \frac{\sin \pi x}{x^2 - x + 1}$$
,则()

$$A.f(x) \le \frac{4}{3}$$

A. $f(x) \le \frac{4}{3}$ B. 曲线y = f(x)存在对称轴

$$C. |f(x)| \le 5|x|$$

D. 曲线y = f(x)存在对称中心

3.实数a、b、c满足

$$\begin{cases} 2^a + 4^b = 2^c \\ 4^a + 2^b = 4^c \end{cases}$$

求实数c的最小值.

4.定义在 R 上的函数 f(x) 和 g(x) 满足方程 x-f(g(x))=0 有实数解,则 g(f(x))不可能是()

A.
$$x^2 + x - \frac{1}{5}$$
 B. $x^2 + x + \frac{1}{5}$ C. $x^2 - \frac{1}{5}$ D. $x^2 + \frac{1}{5}$

5.求解下列方程: $x^3 + 2\sqrt{11}x^2 + 11x + \sqrt{11} + 1 = 0$.

6.已知函数 $f(x) = ax^2 + bx + c(a \neq 0)$ 没有不动点,判断这个函数是否有稳定点?

7.定义在 R 上的偶函数
$$f(x)$$
满足 $f(x+1) = \frac{1}{2} + \sqrt{f(x) - f^2(x)}$,求 $f(\frac{121}{2})$.

8.定义在(-1,1)上的函数f(x)满足两个条件: ① $f(x) > 0, \forall x \in (-1,0)$; ② $f(x) + f(y) = f\left(\frac{x+y}{1+xy}\right), x, y \in (-1,1)$. 则f(x)为()

A.奇函数

B.偶函数

C.减函数

D.有界函数

9. 设 $a,b \in \mathbb{R}$,已知对任意的实数 x ,有 $a\cos x + b\cos 2x \ge -1$ 恒成立,求 a+b 的最大值 .

10.在 R 上定义的可导非常值函数 f(x)和 g(x)满足: f'(0)=0,并且 $\forall x, y \in R$,都有 f(x+y)=f(x)f(y)-g(x)g(y), g(x+y)=f(x)g(y)+g(x)f(y).求证: $f^2(x)+g^2(y)=1$.

- 11.已知a > 0,且 $a \neq 1$,考虑方程 $a^x = x^a$ 在 $0,+\infty$ 内的根.
- (1) 若方程有唯一实数根,求 a 的取值范围;
- (2) 若方程有两个实数根 x_1, x_2 $0 < x_1 < x_2$, 求证: $x_1 + x_2 > 2e$.
- 12.已知函数 $f(x) = ae^x \frac{1}{2}x^2 b(a, b \in R)$ 有两个极值点 $x_1, x_2,$ 并且 $\frac{x_2}{x_1} \ge 2$,则实数a的取值范围是______.
 - 13.已知函数 $f(x) = \frac{lnx}{x}(x > 0)$.
 - (1) 求f(x)的单调区间、极值与最值;
 - (2) 求a的取值范围,使得函数 $y = log_a x$ 的定义域与值域均是区间[m,n](m < n).
- 14. f(x) 的导函数 f'(x) 连续,并且 f(0) = 0 以及 f'(0) = a,记曲线 y = f(x) 上与点 P(t,0) 最近的点为 Q(s,f(s)),求 $\lim_{t\to 0} \frac{s}{t}$ 的值.

(二)参考答案

题号	1	2	3	4	5	6	7	8	9
答案	33	ABC	c_{min} $= log_2 3 - \frac{5}{3}$	Ь	$-1 - \sqrt{11}, \frac{1 - \sqrt{11} + \sqrt{8 - 2\sqrt{11}}}{2},$ $\frac{1 - \sqrt{11} + \sqrt{8 - 2\sqrt{11}}}{2}$	略	$\frac{2+\sqrt{2}}{4}$	AC	2

题号	10	11	19	13	1./		
K 7	10	11	14	10	17		

答案	略	$\left(-\infty,\frac{1}{e}\right)$	$\left(0,\frac{ln2}{2}\right].$	略	$\frac{1}{1+a^2}$				
----	---	------------------------------------	---------------------------------	---	-------------------	--	--	--	--

详见《强基计划数学备考十五讲》.

第三讲 向量与几何

一、知识要点

要点		核心	备注						
概念	向量 大小 方向 平行与共线 同向与反向 负向量 零向量								
运算	加法与减法 平行四边形法则与三角形法则 数乘向量(大小与方向)								
基本	共线向量基本定理	基底有1个非零向量构成	此切址						
定理	平面向量基本定理	基底由 2 个不共线向量构成	特例极 端重要						
上 生	空间向量基本定理 基底由 3 个不共面向量构成								
坐标 表示	基于向量基本定理建立向量坐标表示,把向量运算表现为代数运算								
数量积	非零向量夹角 数量积定义 运算性质 投影 非零向量单位化								
	坐标算法 夹角、长度与距离								
奔驰	三角形重心及其向量表征 欧拉定理与欧拉线								
定理	奔驰定理与平面划分 三角形五心及其向量表征								
几何	平行与垂直的向量条件 几何中平行与垂直的证明								
应用	几何图形中数量	量积计算,应注重垂直的简化作用							

详见《强基计划数学备考十五讲》

二、典例精析

例 1 $\triangle ABC$ 内部一点 O满足 $\overrightarrow{OA} + 2\overrightarrow{OB} + 3\overrightarrow{OC} = \overrightarrow{0}$,求 $\triangle AOC$ 的面积与 $\triangle ABC$ 的面积之比.

例 2 O为 $\triangle ABC$ 的外心, AB=3, AC=5 ,则 $\overrightarrow{AO} \cdot \overrightarrow{BC} =$.

例 3 正 \triangle ABC 的中心为 O,在其内切圆上任取一点 P,计算 $\left(\overrightarrow{PO}+\overrightarrow{PA}\right)\cdot\left(\overrightarrow{PB}+\overrightarrow{PC}\right)$.

例 4 \triangle ABC 的外心记作 O,若 $\overrightarrow{AO} = \overrightarrow{AB} + 2\overrightarrow{AC}$,求 $sin(\angle BAC)$ 的值.

例5正三棱锥 P-ABC 的侧棱长为l,过其底面中心O 作动平面 α 交线段PC 于点S,

交 PA 、 PB 的 延 长 线 分 别 于 M 、 N , \mathbb{Q}

三、课堂练习

1.求点A(1,-2)关于直线l:3x+4y-20=0的对称点A'.

2.给出 **4** 个向量 \vec{a} 、 \vec{b} 、 \vec{c} 、 \vec{d} ,使得其中任意两个之和与另外两个之和垂直.

3.如图,在 $\triangle ABC$ 中,O为外心,三条高 AD、BE、CF 相交 于点 H, 直线 ED 和 AB 相交于点 M, 直线 FD 和 AC 相交于点 N. (1) 求证: $OB \perp DF$, $OC \perp DE$; (2) 计算 $\overrightarrow{OH} \cdot \overrightarrow{MN}$.

四、学习指导

(一) 实战演练

1.在 $\triangle ABC$ 所在平面上取定一点 O ,则

(1) 计算数量积
$$f = \overrightarrow{BC} \cdot \left(\frac{\overrightarrow{AB}}{|\overrightarrow{AB}| \cos B} + \frac{\overrightarrow{AC}}{|\overrightarrow{AC}| \cos C} \right) = \underline{\qquad}$$

(2) 动点
$$P$$
 满足 $\overrightarrow{OP} = \overrightarrow{OA} + \lambda \left(\frac{\overrightarrow{AB}}{|\overrightarrow{AB}| \cos B} + \frac{\overrightarrow{AC}}{|\overrightarrow{AC}| \cos C} \right) (\lambda \in R)$, 则动点 P 的轨迹过

 $\triangle ABC$ 的;

(3) 动点
$$P$$
 满足 $\overrightarrow{OP} = \frac{\overrightarrow{OB} + \overrightarrow{OC}}{2} + \lambda \left(\frac{\overrightarrow{AB}}{|\overrightarrow{AB}| \cos B} + \frac{\overrightarrow{AC}}{|\overrightarrow{AC}| \cos C} \right) (\lambda \in R)$,则动点 P 的轨

迹过 **∆ABC** 的____

2.向量 \vec{a} 、 \vec{b} 、 \vec{c} 满足 $|\vec{a}| = |\vec{b}| = 1$, $\vec{a} \cdot \vec{b} = -\frac{1}{2}$, $|\vec{a} - \vec{c}| = 60^{\circ}$, 则 $|\vec{c}|$ 的最大值 等于()

(A) 2 (B)
$$\sqrt{3}$$
 (C) $\sqrt{2}$ (D) 1

(c)
$$\sqrt{2}$$

3.圆0的半径为 3,一条弦 AB=4,P 为圆 O 上任意一点, 则 $\overrightarrow{AB} \cdot \overrightarrow{BP}$ 的最大值为(

A.
$$\frac{3}{2}$$
 B. 1 C.2

4. 己知 \triangle ABC,若对任意 $t \in R$, $\left|\overrightarrow{BA} - t\overrightarrow{BC}\right| \ge \left|\overrightarrow{AC}\right|$,则 \triangle ABC一定为(

A. 锐角三角形 B. 钝角三角形 C. 直角三角形 答案不确定

当
$$t_0 \in \left(0, \frac{1}{5}\right)$$
时,求 $\theta = <\overrightarrow{OA}, \overrightarrow{OB} >$ 的取值范围.

(二)参考答案

题号	1	2	3	4	5
答案	(1) 0; (2) 垂心; (3) 外 心	$\left \vec{c} \right _{\text{max}} = 2$	4	直角三角形	$\frac{\pi}{2} < \theta < \frac{2\pi}{3}$

详见《强基计划数学备考十五讲》

第四讲 不等式与最值

一、知识要点

要		核心	备
点		核心	注
概		不等号 不等式 矛盾不等式 条件不等式 (特称量词命题)	
念		绝对不等式(恒成立,全称量词命题)	
性		不等式操作变形依据.	灵
质		重点:不等式两边乘以同一个负数,不等号改变方向	活
求解		发展解不等式新思维 积极主动避免讨论 不被动讨论	性要
	重要不	均值不等式 柯西不等式 排序不等式 幂平均不等式 伯努利不等	求
证	等式	式 绝对值不等式 对数不等式 自建不等式	高
明	证明不 等式	比较法 综合法与分析法 反证法 数学归纳法 调结构 局部不等式 支撑线不等式	_
探	多元最 值	重要不等式 调结构 对称排序 齐次化增设条件 平移增设条件	致
究	复合最 值	应用内层最值放缩,建构目标	

详见《强基计划数学备考十五讲》.

二、典例精析

例 1 设 a > 0 且 $a \ne 1$, $x \in [0,1]$, 比较 $\left| \log_a (1-x) \right| = \left| \log_a (1+x) \right|$ 的大小.

例 3 任取a、b、c > 0,求证:

$$\frac{(2a+b+c)^2}{2a^2+(b+c)^2} + \frac{(a+2b+c)^2}{2b^2+(c+a)^2} + \frac{(a+b+2c)^2}{2c^2+(a+b)^2} \le 8.$$

例 4 设
$$a,b,c>0$$
. 记 $f=\frac{a}{\sqrt{a^2+b^2}}+\frac{b}{\sqrt{b^2+c^2}}+\frac{c}{\sqrt{c^2+a^2}}$,求 f_{max} .

例 5 任给
$$n \in N^*$$
 ,求证: $1 + \frac{1}{2\sqrt{2}} + \frac{1}{3\sqrt{3}} + \dots + \frac{1}{n\sqrt{n}} < 3$.

例 6 函数
$$f(x) = \left|\cos^2 x + 2\sin x \cos x - \sin^2 x + ax + b\right|$$
 在闭区间 $\left[0, \frac{3\pi}{2}\right]$ 上的最大值

M 与参数 a,b 有关,则 M 的最小值是______

例 7 求最大实数m,使得对满足a + b + c = 1的一切正数a, b, c,都有 $10(a^3 + b^3 + c^3) - m(a^5 + b^5 + c^5) > 1$.

三、课堂练习

1.设
$$a,b,c > 0$$
. 记 $f = \frac{a}{\sqrt{a^2 + b^2}} + \frac{b}{\sqrt{b^2 + c^2}} + \frac{c}{\sqrt{c^2 + a^2}}$, 解答

(1) 求证: f > 1;

2.任取
$$x_1$$
、 $x_2 \in (-1,2)$,比较 $f = x_1^2 + x_1x_2 + x_2^2 = g = \frac{3}{2}x_1 + \frac{3}{2}x_2 + 6$ 的大小.

$$3.$$
求出 $1+\frac{1}{2\sqrt{2}}+\frac{1}{3\sqrt{3}}+\cdots+\frac{1}{2020\sqrt{2020}}$ 的整数部分.

4.任取实数
$$x_1 \le x_2 \le x_3 \le x_4 \le x_5$$
, 令 $A = \left(\sum_{i=1}^5 \sum_{j=1}^5 \left| x_i - x_j \right| \right)^2$, $B = \sum_{i=1}^5 \sum_{j=1}^5 \left(x_i - x_j \right)^2$, 则

满足 $A \leq aB$ 恒成立的最小的实数 $a = _____$

四、学习指导

(一) 实战演练

1.比较 log, 3 与 log, 4 的大小.

2.设
$$x \in R$$
, 比较 $f = x^8 - x$ 与 $g = x^5 - x^2 - 1$ 的大小.

3.不等式
$$\frac{x^2+2x+1}{3x^2-2x+1} \le 4x + \frac{4}{3}$$
的解集是______.

4.满足
$$1 + \frac{1}{2\sqrt{2}} + \frac{1}{3\sqrt{3}} + \dots + \frac{1}{n\sqrt{n}} > \frac{3}{2}$$
的所有正整数 n 的集合是______.

5.任取x、y、 $z \ge 0$,且x + y + z = 1,求 $f = (x + 3y + 5z)\left(x + \frac{1}{3}y + \frac{1}{5}z\right)$ 的最小值与最大值.

$$6.$$
求 $y = \sqrt{x} + \sqrt{13 - x} + \sqrt{x + 27}$ 的最大值与最小值.

7.非负实数
$$x$$
, y 满足 $2x + y = 1$,则 $\sqrt{x^2 + y^2} + x$ 有()

A. 最小值
$$\frac{4}{5}$$
 B. 最小值 $\frac{2}{5}$ C. 最大值 1 D. 最大值 $\frac{1+\sqrt{2}}{3}$

8.求
$$f(x, y) = \max\{|x-2y|, |x+1|, |2y-2|\}(x, y \in R)$$
的最小值.

9.设
$$a$$
、 b 、 c 、 $d \ge 0$,且 $a + b + c + d = 4$,求 $f = \frac{a}{b^3 + 4} + \frac{b}{c^3 + 4} + \frac{c}{d^3 + 4} + \frac{d}{a^3 + 4}$ 的最小值.

10.任取非负实数a, b, c,使得a + b + c = 1,求证:

$$2 \le (1 - a^2)^2 + (1 - b^2)^2 + (1 - c^2)^2 \le (1 + a)(1 + b)(1 + c).$$

11.给定整数 $n \ge 3$,实数 a_1, a_2, \cdots, a_n 满足

$$\min_{1 \le i < j \le n} |a_i - a_j| = 1, \ f = \sum_{i=1}^n |a_i|,$$

求 f_{min} .

12.正数x、y、z满足xyz = 1,求

$$f = \frac{x^5 - x^2}{x^5 + y^2 + z^2} + \frac{y^5 - y^2}{y^5 + z^2 + x^2} + \frac{z^5 - z^2}{z^5 + x^2 + y^2}$$

的最小值.

(二) **参考**答案

题号	1	2	3	4	5	6	7	8
答案	$\log_2 3 > \log_3 4$	f > g	$\left[-\frac{1}{4},+\infty\right)$	{3,4,5,}	1, $\frac{9}{5}$	$\sqrt{13} + 3\sqrt{3}$, 11	$1, \frac{4}{5}$	1

题号	9	10	11	12
答案	$\frac{2}{3}$	略	$\left[\frac{n^2}{4}\right]$	0

第五讲 组合与概率

一、知识要点

主题	关键词	备注				
组合基础	计数基本原理 排列与排列数 组合与组合数 组合数性质	常态				
组口至闽	组合恒等式 二项式定理 多项式定理	提升				
	变异型排列与组合——重元排列 重元组合 控距排列 圆排列					
	不定方程非负整数解与正整数解 取整函数计数功能					
组合计数	分类与分步 总控与分离 总控与剔除 递推方法 容斥计数	组				
	化归转化——映射转移、折线方法、对称处理、正难则反,等					
	重建计数对象避免重复计数	合业				
组合证明	分析与推理(只证必要性,不需构造)	学一				
	从函数最值到组合最值——极值与构造	般				
	表征模式:	问				
	构造例子以建构必要性+充分性论证.	题				
组合极值	先证必要性+构造例子支撑充分性.	赵				
	建构两种必要性——建构双向不等关系,确定最值(以例子得以必要					
	性——数据不等式+依推理证明建构必要性——反向数据不等式,两者					
	"="成立)					

详见《强基计划数学备考十五讲》.

二、典例精析

例 1 把 1,2,3,4,5 排成 (a_1,a_2,a_3,a_4,a_5) , 使得 $a_1 < a_2,a_2 > a_3,a_3 < a_4,a_4 > a_5$, 求这种 排列的个数.

例 2 从一个正 9 边形的 9 个顶点中选出 3 个构成一个等腰三 角形的顶点,不同选法种数是()

A.30 B.36 C.42 D.前三个答案都不对

例 3 将 2 个 a 和 2 个 b 共 4 个字母填在如图所示的 16 个小方格内,每个小方格内至多填 1 个字母. 若使相同字母既不相同也不同列,求这种填法成功得概率.

例 4 顺次连接一个正 2016 边形的一些顶点,可得到正多边形的个数是 () A. 6552 B. 4536 C. 3528 D. 2016

例 5 方程 x + y + z = 2013 满足 $x \le y \le z$ 的正整数解(x, y, z)的个数是______.

三、课堂练习

1. 记函数
$$f(x) = [x] + [2x] + [\frac{5}{3}x] + [3x] + [4x](0 \le x \le 100)$$
的值域为 M,求

card M.

- 2.在一次射击比赛中,有8个泥质靶子挂成右图所示成3列,一位神枪手按如下规则打掉所有靶子:
 - (1) 首先选择将要有一个靶子被打掉的一列;
- (2) 然后在被选列中打掉尚存的最下面一个靶子. 求打掉这8个靶子共有多少种不同的顺序.
- 3.一种密码锁的密码设置是在正n 边形 $A_1A_2\cdots A_n$ 的每个顶点处赋值 0 和 1 两个数中的一个,同时在每个顶点涂然红、蓝两种颜色之一,使得任意相邻的两个顶点的数字或颜色中至少有一个相同。问:该种密码锁共有多少种不同的密码设置?

四、学习指导

(一) 实战演练

1.用 2.4.6 三个数字构造六位数,但不允许有两个 2 连续出现,求这种六位数的个数.

2.将 16 个数: 4 个 1, 4 个 2, 4 个 3, 4 个 4 填入一个 4×4 的矩形中,要求每行每列 正好有 2 个偶数,则共有_______种填法.

3.不定方程x + 2y + 3z = 100的非负整数解(x, y, z)个数是()

- 4.在一天的不同时刻,经理把文件交给秘书打印,每次都将文件放在秘书要打文件堆的上面,秘书有时间就从最上方取一份文件打印. 若有 n 次文件,且经理是按 1,2, …, n 的顺序依次交来文件. 问: 秘书打印完这 n 份文件的可能顺序有多少种?
 - 5.求十进制十位正整数n的个数,使得11111|n,并且n的十个数码互不相同.
- 6.用 6 种不同的颜色涂正方体的 6 个面,使得不同的面涂有不同的颜色,求不同的染色方法种数(将正方体任意旋转之后仍然不同的涂色方法,才认为是不同的).
- 7.设圆周上共有 n (n≥6) 个点,其中每两点之间连一条弦,并且任何 3 条弦在圆内都没有公共点. 求这些弦彼此相交共能构成多少个不同的三角形.
 - 8.将n 元钱全部兑换为 1 元和 2 元的纸币, 求不同兑换方法种数.
 - 9.设 a_n 为下述正整数 N 的个数: N 的各位数字之和为n,并且每位数字只能取 1, 3,

或 4. 证明: a_{2n} 为完全平方数.

10.假定你家订了一份报纸,送报人可能在早上 6:30~7:30 之间把报纸送到你家,你父亲离开家去工作的时间在早上 7:00~8:00 之间. 求你父亲在离开家之前能得到报纸的概率.

11. 有序数组 (a_1,a_2,a_3,a_4) 满足 $a_1,a_2,a_3,a_4 \in \{1,2,3,4\}$,其中不同数的个数记作 $N(a_1,a_2,a_3,a_4)$,例如N(1,1,2,2)=2,N(1,2,3,1)=3,则所有数 $N(a_1,a_2,a_3,a_4)$ 的平均值为

A.
$$\frac{175}{64}$$
 B. $\frac{173}{64}$ C. $\frac{87}{32}$ D. $\frac{89}{32}$

12.60 支球队两两比赛,任意两队相互胜率均为 50%,设有两支球队取胜场数相同的概率为 $\frac{p}{a}$,(p,q)=1,求正整数 \mathbf{n} ,使得 $2^n\|q$.

13.一项"过关游戏"规则规定:在第 n 关要抛掷一颗骰子 n 次,如果这 n 次抛掷所出现的点数之和大于 2^n ,则算过关.问:

- (1) 某人在这项游戏中最多能过几关?
- (2) 求他连过前三关的概率.

(注: 骰子是一个在个面上分别标有 1,2,3,4,5,6 点数的质地均匀正方体, 抛掷骰子落地静止后, 向上一面的点数为出现的点数)

(二)参考答案

题号	1	2	3	4	5	6	7
答案	448	44100	884	$\frac{2}{n+1}C_{2n-1}^n$	3456	30	$C_n^3 + 4C_n^4 + 5C_n^5 + C_n^6$

8	9	10	11	12	13
$a_n = \frac{2n+3+(-1)^n}{4} (n \in N^*)$	递推 计数	$\frac{7}{8}$	Α	1714	4, $\frac{100}{243}$

详见《强基计划数学备考十五讲》

第六讲 几何拓展

一、知识要点

要点		关键词			
基础	平行	平行的判定与性质 平行线截比例线段			
	垂直	垂直的判定与性质 等差差幂线定理			
	三角形	三角形全等的判定与性质 中位线 三角形相似的判定与性质			
		三角形内外角平分线定理			
	员	圆的定义与性质 圆内接四边形 圆外切四边形			
	四边形	梯形与中位线 平行四边形 矩形 菱形 正方形			
	问题	等长与等角 全等与相似 三点共线 三线共点 四点共圆			
提升	重要定	梅涅劳斯定理 塞瓦定理 西摩松定理 托来密定理			
	理	欧拉定理 九点圆 圆幂定理 根轴定理 根心定理			
	三角形	重心 外心 垂心 内心 旁心			
	五心				

	阿氏圆	阿婆罗尼斯圆	
新	变换	平移 对称(轴对称与中心对称) 旋转 位似 反演	本书暂
概	调和	调和点列与调和线束 调和四边形及其性质	本ヤ省 不列入
念	等角	等角线及其性质 等角共轭点	11917
其他		解析法 向量法 复数法 三角法	

详见《强基计划数学备考十五讲》

二、典例精析

例 1 如图,在 \triangle ABC 中,P、Q 将其周长三等分,且 P、Q 在边 AB 上,求证: $\frac{S_{\triangle PQR}}{S_{\triangle ABC}} > \frac{2}{9}$.

例 2 如图 1,在四边形 ABCD 中,对角线 AC 平分 $\angle BAD$,在边 CD 上取一点 E,BE 交 AC 于点 F,延长 DF 交 BC 于 G. 求证: $\angle GAC = \angle EAC$.

例 3 如图,在 \triangle ABC 中, $\angle A = 60^{\circ}$,AB>AC,O 是外心,两条高 BE、CF 相交于点 H,

点 M、N 分别在线段 BH、HF 上,且 BM=CN,求 $\frac{MH+NH}{OH}$.

三、课堂练习

1.两个圆内切于 K,大圆的弦 AB 与小圆切于 L,已知AK: BK = 2: 5,AL = 10,则 BL 的长为()

2.在锐角 \triangle ABC 中,BE \bot AC 于点 E,CD \bot BA 于点 D,BC=25,CE=7,BD=15. 若 BE 与 CD 相交于点 H,以 DE 为直径作圆交 AC 于另外一点 F,求 AF 的长度.

C、F、M、N 四点共圆.

3.如图 1,两圆 Γ_1 、 Γ_2 相交于点 A、B,过点 B 的一条 直线分别交圆 Γ_1 、 Γ_2 于 C、D,过点 B 的另一条直线分别 交圆 Γ_1 、 Γ_2 于点 E、F,直线 CF 分别交圆 Γ_1 、 Γ_2 于点 P、 Q,弧 PB、 QB 的中点分别记作 M、N,若 CD=EF,求证:

四、学习指导

(一) 实战演练

- 1. 已知A(2,0)、B(2,1),对⊙0: $x^2 + y^2 = 16$ 上的动点 P,则(2|PA| + |PB|)_{min} = .
- 2.正方形 ABCD 内一点 P 满足AP: BP: CP = 1: 2: 3,则 ∠APB= () A. 120° B. 125° C. 150° D. 前三个答案都不对

3.AB 是⊙O的直径,CO⊥AB,M 为 AC 的中点,CH⊥MB,则下列正确的选项是()A.AM = 2OH B.AH = 2OH C.△ BOH ∽△ BMA D.以上选项都不对

4.AB 为⊙0的一条弦,P 为圆周上一点,OC \bot AB 于 C,PA \cap OC = M,PB 交 OC 延长线于 N,则下列说法正确的有()

A.O、M、B、P 共圆

B.A、M、B、N 共圆

C.A、O、P、N 共圆

D. 前三个答案都不对

5.已知边长为 4 的正△ABC, D、E、F 分别是边 BC、CA、

AB 上的点,且|AE|=|BF|=|CD|=1,联接 AD、BE、CF,交

成 \triangle RQS,点 P 在 \triangle RQS 内及边上移动,点 P 到 \triangle ABC 三边的距离分别为 x、y、z,求 f = xy的最小值.

6.在 \triangle ABC 中,点 A_1 在边 BC 上,点 B_1 在边 AC 上,点 P、Q 分别在线段A A_1 和线段B B_1 上,并且满足 PQ//AB. 在直线P B_1 上 取点 P_1 ,使得点 B_1 严格位于P、 P_1 之间,并且 \triangle P P_1 C = \triangle BAC.类似地,在直线Q A_1 上取点 Q_1 ,使得点 A_1 严格位于点 Q_1 、Q之间,并且 \triangle C Q_1 Q = \triangle CBA. 求证: P、Q、 P_1 、 Q_1 四点共圆.

7.锐角 \triangle ABC 的三边满足a > b > c,求证: \triangle ABC 内接正方形边长的最大值为 $\frac{acsinB}{a+csinB}$.

(二)参考答案

	· · > 4 H M						
题	1	2	3	4	5	6	7
号							
答案	√37	135°	ВС	AC	$\frac{648}{2197}\sqrt{3}$	略	$\frac{acsinB}{a + csinB}$

详见《强基计划数学备考十五讲》

第七讲:复数

一、知识要点

复数与基本概念 代数形式 四则运算 共轭、三角形式 指数形式 乘方开方 复数与方程方程模与辐角 (概念) 复数与向量几何 复数与几何 复数与方程 单位根

1、复数的三角形式 $z = r(\cos \theta + i \sin \theta)(r \ge 0)$ 称为复数的三角形式, r 为模, θ 为辐角,

若 $\theta \in [0,2\pi)$,则称为辐角主值,记作 $\arg z = \theta$ 。有关运算:

$$r_1(\cos\theta_1 + i\sin\theta_1) \cdot r_2(\cos\theta_2 + i\sin\theta_2) = r_1r_2[\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2)]$$

$$\frac{r_1(\cos\theta_1 + i\sin\theta_1)}{r_2(\cos\theta_2 + i\sin\theta_2)} = \frac{r_1}{r_2}[\cos(\theta_1 - \theta_2) + i\sin(\theta_1 - \theta_2)]$$

 $[r(\cos\theta + i\sin\theta)]^n = r^n(\cos n\theta + i\sin n\theta)$

若复数 $z = r(\cos\theta + i\sin\theta)(r \ge 0)$,则它的 n 次方根是以下 n 个复数:

$$\sqrt[n]{r}\left(\cos\frac{\theta+2k\pi}{n}+i\sin\frac{\theta+2k\pi}{n}\right)(k=1,2,\cdots,n-1)$$

- 2、复数的指数形式 $z = re^{i\theta}$, r 为复数的模, θ 为辐角, $e^{i\theta} = \cos\theta + i\sin\theta \Rightarrow e^{i\pi} + 1 = 0$
- 3、复数乘法 $z_1z_2(z_2=r_2(\cos\theta_2+i\sin\theta_2))$ 的几何意义:被乘数 z_1 对应的向量,按逆时针旋转一个角 θ_2 ,再把模变为原来的 r_2 倍。
- 4、复数的模及其性质

 $|z|^2 = z \cdot z$ (其中z 表示复数z 的共轭复数)

5、单位根

三次单位根及其性质: 1, ω , ω 是方程 $z^3 = 1$ 的三个根, 其中 $\omega = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$.

易知
$$1+\omega+\omega^2=0, \omega^2=\overline{\omega}, \overline{\omega}^2=\omega$$

例题分析

例 1: 已知复数 $z_1 = 1 + \sqrt{3}i$, $z_2 = -\sqrt{2} + \sqrt{2}i$,则 $z_1 z_2$ 的辐角主值为_____。

例 2: 将复数 $z = (\sin 75^\circ + i \sin 15^\circ)^3$ 对应的向量按顺时针旋转 15° ,则所得向量对应的复数 为____。

例 3: 若复数 x, y, z 的模长均为 1, 且 $x + y + z \neq 0$, 则 $\left| \frac{xy + yz + zx}{x + y + z} \right|$ 的值为 ()

$$A \times -\frac{1}{2}$$
 $B \times 1$ $C \times 2$ $D \times 无法确定$

例 4、复数满足 $x + \frac{1}{x} = -1$,则 $x^{2017} + \frac{1}{x^{2017}} = ______$

例 5、已知
$$|z_1|=3$$
, $|z_2|=5$, $|z_1-z_2|=7$,则 $\frac{z_1}{z_2}=$ ______

例 6、已知
$$|z|=1$$
,则 $|z^2+z+4|$ 的最小值为_____

例 7、求最小正整数
$$n$$
, 使得 $I = (\frac{1}{2} + \frac{1}{2\sqrt{3}}i)^n$ 为纯虚数,并求出 I .

例 8、已知复数
$$|z|=2$$
,则 $|z-\frac{1}{z}|$ 的最大值与最小值的和为______

- 例 9、在复平面上,满足方程 zz+z+z=3 的复数 z 所对应的点构成的图形是()
- A、圆
- B、两个点 C、线段 D、直线
- 例 10、计算: $\arctan \frac{1}{3} + \arctan \frac{1}{5} + \arctan \frac{1}{7} + \arctan \frac{1}{8} = ($)

- A, $\frac{\pi}{3}$ B, $\frac{\pi}{4}$ C, $\frac{\pi}{5}$ D, $\frac{3\pi}{8}$

例 11、设复数 z 满足 $2|z| \le |z-1|$,则 ()

- A、|z|的最大值为1 B、|z|最小值为 $\frac{1}{3}$ C、z的虚部的最大值为 $\frac{2}{3}$ D、z的实部的最大值为 $\frac{1}{3}$

例 12、 ω 是 $x^5 = 1$ 的一个虚根,则 $\omega(\omega+1)(\omega^2+1) =$ ______

例 13、已知 z 是实部虚部均为正整数的复数,则()

- A、 $\operatorname{Re}(z^2-z)$ 被 2 整除 B、 $\operatorname{Re}(z^3-z)$ 被 3 整除
- $C \times \text{Re}(z^4 z)$ 被 4 整除 $D \times \text{Re}(z^5 z)$ 被 5 整除

例 14、已知关于 z 的方程 $z^{2017} - 1 = 0$ 的所有复数解为 z_i ($i = 1, 2, \dots, 2017$), 则 $\sum_{i=1}^{2017} \frac{1}{2 - z_i}$ ()

- A、是比 $\frac{2017}{2}$ 大的实数 B、是比 $\frac{2017}{2}$ 小的实数
- C、是有理数
- D、不是有理数

例 15、关于 x 的实系数方程 $x^5 + x^4 + ax^3 + bx^2 + cx + d = 0$ 有四个相异的纯虚数根, 求 a,b,c,d 满足的条件。

【适应性练习】

- 1. 已知复数 z 满足 $|2z+\frac{1}{z}|=1$.则 z 的辐角主值的取值范围是______。
- 2. 设复数 $z=\cos\theta+i\sin\theta$ ($0\le\theta\le\pi$),复数 z, (1+i)z, $2\bar{z}$ 在复平面上对应的三个点分别是 P, Q, R, 当 P, Q, R 不共线时,以 PQ, PR 为两边的平行四边形第四个顶点为 S, 则 S 到原点距离的最大值为_____。
- 3. 设复平面上单位圆内接正 20 边形的 20 个顶点所对应的复数依次为 z_1, z_2, \cdots, z_{20} ,则复数 $z_1^{1995}, z_2^{1995}, \cdots, z_{20}^{1995}$ 所对应的不同点的个数是_____。
- 4. 已知复数 z 满足 | z | =1,则 | z+i z+1 | 的最小值为_____。
- 5. 设 $w = \cos \frac{\pi}{5} + i \sin \frac{\pi}{5}$, 则 $(x-w)(x-w^3)(x-w^7)(x-w^9)$ 的展开式为_______。
- 6. 已知 $(\sqrt{3} + i)^{\text{m}} = (1+i)^{\text{n}} (m, n \in N_+)$,则 mn 的最小值是______。
- 7 . 复平面上,非零复数 z_1, z_2 在以 i 为圆心,1 为半径的圆上, $z_1 \cdot z_2$ 的实部为零, z_1 的辐角 主值为 $\frac{\pi}{6}$,则 $z_2 =$ _____。
- 9 . 已知复数 z_1, z_2 满足 $\frac{z_2}{z_1} = \frac{\overline{z_1}}{z_2}$, 且 $Argz_1 = \frac{\pi}{3}$, $Argz_2 = \frac{\pi}{6}$, $Argz_3 = \frac{7}{8}\pi$, 则

- 10 .集合 $A=\{z\,|\,z^{18}=1\}$, $B=\{w\,|\,w^{48}=1\}$, $C=\{zw\,|\,z\in A,w\in B\}$, 问:集合 C 中有多少个不同的元素?
- 11、设a,b,c 为实数, $a,c \neq 0$,方程 $ax^2 + bx + c = 0$ 的两个虚数根 x_1,x_2 满足 $\frac{x_1^2}{x_2}$ 为实数,则

$$\sum_{k=0}^{2015} \left(\frac{x_1}{x_2}\right)^k \stackrel{\text{\rightarrow}}{=} \mp \ ()$$

A . 1

B . 0

 $C \cdot \sqrt{3}i$

- 12、已知复数z满足 $z+\frac{2}{z}$ 是实数,则|z+i|的最小值等于()

- A. $\frac{\sqrt{3}}{3}$ B. $\frac{\sqrt{2}}{2}$ C. 1 D. 前三个答案都不对
- 13. $i \times w = \cos \frac{2\pi}{5} + i \sin \frac{2\pi}{5}$, $P(x) = x^2 + x + 2$, $I = P(w)P(w^2)P(w^3)P(w^4) = ($)
- (A)9(B)10
- (C)11
- (D)12
- 14、设复数 w, z 满足: $|w+z|=1, |w^2+z^2|=4$, 则|wz|的()
- (A)的最小值为 $\frac{5}{4}$
- (B) 的最小值为 $\frac{3}{2}$
- (C)的最大值为 $\frac{5}{2}$
- (D)的最大值为 $\frac{11}{4}$
- 15、已知 z_1, z_2 是实部虚部均为正整数的复数,则 $\frac{|z_1+z_2|}{\sqrt{|z_1\cdot z_2|}}$ ()
- A、有最大值2
- B、无最大值
- C、有最小值 $\sqrt{2}$
- D、无最小值

一、知识要点

立体 几何	空间几何体结构 位置关系平行与垂直论证 空间角与体积求解	空间距离 球 体积计算
解析	直线与方程 圆与方程 圆锥曲线与标准方	圆锥曲线与方程 准线与离心率
几何	程 离心率 直线与曲线位置关系	多参数计算 动点轨迹方程

1、两直线所成的角

(1)
$$l_1$$
到 l_2 的角满足 $\tan \alpha = \frac{k_2-k_1}{1+k_1k_2}$ $(k_1,k_2$ 分别表示直线 l_1 , l_2 的斜率)

(2)
$$l_1 \to l_2$$
 的夹角满足 $\tan \theta = \frac{k_2 - k_1}{1 + k_1 k_2}$

2、过圆
$$(x-a)^2 + (y-b)^2 = r^2$$
上一点 (x_0, y_0) 的切线方程为

$$(x_0-a)(x-a)+(y_0-b)(y-b)=r^2$$

3、圆锥曲线统一定义

平面内与一个定点 F 和一条定直线 l 的距离的比为常数 e 的动点轨迹为圆锥曲线,当 e>1 时,表示双曲线;当 e=1 时,表示抛物线;当 0<e<1 时,表示椭圆.定点称为焦点,定直线称为准线.

4、过圆锥曲线上一点 $P(x_0, y_0)$ 的切线方程

(1) 椭圆的切线:
$$\frac{x_0x}{a^2} + \frac{y_0y}{b^2} = 1$$

(2) 双曲线的切线:
$$\frac{x_0x}{a^2} - \frac{y_0y}{b^2} = 1$$

(3) 抛物线的切线:
$$y_0 y = p(x + x_0)$$

(4) 一般二次曲线:
$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$$
 在切点 $P(x_0, y_0)$ 处的切线方程为:

$$Ax_0x + B\frac{x_0y + xy_0}{2} + Cy_0y + D\frac{x_0 + x}{2} + E\frac{y_0 + y}{2} + F = 0$$
,在切点 $P(x_0, y_0)$ 处的法线方

程为:
$$y-y_0 = \frac{Bx_0 + 2Cy_0 + E}{2Ax_0 + By_0 + D}(x-x_0)$$

5、圆锥曲线的参数方程

(1) 椭圆参数方程
$$\begin{cases} x = a \cos \alpha \\ y = b \sin \alpha \end{cases}$$
 (2) 双曲线参数方程
$$\begin{cases} x = a \sec \alpha \\ y = b \tan \alpha \end{cases}$$

(3) 抛物线参数方程
$$\begin{cases} x = 2pt^2 \\ y = 2pt \end{cases}$$

6、点
$$P$$
 是椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 上异于长轴两端点的任一点, F_1, F_2 是两焦点, $\angle F_1 P F_2 = \theta$, $S_{\Delta F_1 P F_2} = b^2 an \frac{\theta}{2}$,对于双曲线, $S_{\Delta F_1 P F_2} = b^2 \cot \frac{\theta}{2}$. 立体几何部分(了解)

- 1、射影面积公式: $S' = S \cdot \cos \alpha$
- 2、空间余弦定理(三面角公式): 平面 α , β 相交于直线 l , A, D 为 l 上两点,射线 DB 在平面 α 内,射线 DC 在平面 β 内,已知 $\angle BDC = \theta$, $\angle BDA = \theta_1$, $\angle CDA = \theta_2$,且 θ , θ_1 , θ_2 都是锐角, φ 是二面角 $\alpha l \beta$ 的平面角,则 $\cos \varphi = \frac{\cos \theta \cos \theta_1 \cos \theta_2}{\sin \theta_1 \sin \theta_2}$,特别地,当 $\varphi = \frac{\pi}{2}$ 时, $\cos \theta = \cos \theta_1 \cos \theta_2$.
- 3、欧拉公式: V + F E = 2 ($V \times F \times E$ 分别表示凸多面体的顶点个数、面数、棱数) 由此可以得到: 正多面体只有五种(正四、六、八、十二、二十面体) 【例题分析】

已知关于 x, y 的二元二次方程 $3x^2 - 2xy + 3y^2 - 2x - 2y - 1 = 0$,试判断方程所表示的曲线的类型.

1、已知平面上两点 A(4,1), B(0,4), 在直线 l:3x-y-1=0 上找到一点 M, 使得 |MA|-|MB|最大,则点M的坐标为 ,最大值为 . 类似问题: 求一点P,使|PA|+|PB|最小. 2、D, E, F 分别是 $\triangle ABC$ 三边 AB, BC, CA 上的动点,它们分别从 A 、B 、C 出发,各自以 一定的速度向 $B \setminus C \setminus A$ 移动.当 t = 1 时,分别到达 $B \setminus C \setminus A$.则() A、 ΔDEF 的重心是一个定点 B. $S_{\Delta DEF} \ge \frac{1}{4} S_{\Delta ABC}$ C、若 ΔABC 是正三角形,则 ΔDEF 始终保持正三角形 D. $\triangle DEF \sim \triangle ABC$ 3、在坐标平面内,纵横坐标都是整数的点叫做整点,我们用I表示所有直线的集合,M表 示恰好通过一个整点的直线的集合, N 表示不通过任何整点的直线的集合, P 表示通过无 穷多个整点的直线的集合.则下列表达式正确的是(A, $M \cup N \cup P = I$ B, $M \neq \emptyset$ C, $N \neq \emptyset$ D, $P \neq \emptyset$ 4、三条直线 4x + y = 4, mx + y = 0, 2x - 3my = 4 不能围成三角形,则 m = () A, 4 B, $\frac{2}{3}$ C, $-\frac{1}{6}$ D, -1 5、平面上整点到直线 $y = \frac{5}{3}x + \frac{4}{5}$ 的距离中的最小值是 () A、 $\frac{\sqrt{34}}{170}$ B、 $\frac{\sqrt{34}}{85}$ C、 $\frac{1}{20}$ D、以上都不对 6、设曲线 $C: y = x^3 - x$,将 C 沿 x 轴、y 轴正向分别平行移动 a,b 单位长度后得到曲线 C_1 , 下列说法正确的是() A、曲线 C_1 关于点(a,b)对称 B、曲线 C_1 与曲线 C 关于点 $(\frac{a}{2}, \frac{b}{2})$ 对称

D、过平面上任意一点都存在无数条直线l与曲线C恰有一个公共点

C、若 $b = \frac{a^3}{4} - a$,则曲线 C_1 与曲线C有且仅有一个公共点

```
7、已知直线 l: kx - y - 2 = 0 与曲线 C: \sqrt{1 - (y - 1)^2} = |x| - 1,下列说法正确的是(  )
A、曲线C关于y轴对称
B、曲线C关于x轴对称
C、若直线l与曲线C恰有一个公共点,则k=\pm 2
D、若直线l与曲线C有两个不同的交点,则k \in [-2, -\frac{4}{3}) \cup (\frac{4}{3}, 2]
8、已知实数x, y满足x^2 + y^2 - 4x + 1 = 0,则( )
A, x-y \le 2+\sqrt{6} B, x \le \sqrt{3}y
C, x^2 + y^2 \ge 2 + \sqrt{3} D, x^2 - y^2 \ge -1
9、在平面直角坐标系内,过点 P(x,y)(xy \neq 0) 作直线 l 与坐标轴相交所成三角形面积等于
a.则这样的直线l ( )
A、必存在4条
B、必存在3条,但不能确定必存在4条
C、必存在2条,但不能确定必存在3条
D、必存在1条, 但不能确定必存在2条
10、满足(|x|-1)^2 + (|y|-1)^2 < 2的整点的个数是( )
A、16 B、17 C、18 D、19
11、极坐标方程 \rho = \frac{1}{1 - \cos \theta + \sin \theta} 所确定的曲线是 ( )
                  C、双曲线 D、抛物线
         B、椭圆
12、已知椭圆的左右焦点为F_1,F_2,以F_1F_2为直径的圆交椭圆于 4 个不同的点,若这 4 个
点和两个焦点F_1, F_2恰好组成一个正六边形,那么椭圆的离心率(
A, e = \frac{\sqrt{2}}{2} B, e = \frac{\sqrt{3}}{2} C, e = \sqrt{3} - 1 D, e = \sqrt{2} - 1
```

```
13、设双曲线 xy=1的两支为 C_1, C_2,三角形 PQR 顶点位于此双曲线上.则(
```

- A、若PQR是正三角形,P、Q、R三点可能在同一支上
- B、若 PQR 是正三角形, $P \times Q \times R$ 不可能在双曲线的同一支上
- C、若POR 是等腰直角三角形。P、O、R 三点可能在同一支上

D、若
$$PQR$$
是正三角形,且 $P(-1,-1)$ 在 C_2 上, Q 、 R 在 C_1 上,则 $S_{\Delta PQR}=6\sqrt{3}$

14、设
$$A, B$$
 是抛物线 $y = x^2$ 上的不同于原点的两点, O 是坐标原点, 若 $OA \perp OB$, 则()

$$A \setminus |OA| \cdot |OB| \ge 2$$

$$\mathsf{B}, |OA| + |OB| \ge 2\sqrt{2}$$

C、直线
$$AB$$
 过抛物线 $y = x^2$ 焦点 D、 O 到直线 AB 的距离小于等于 1

15 、 已 知 集 合
$$A = \{(x,y) | x^2 + y^2 = 1\}$$
 , $B = \{(x,y) | (x-a)^2 + (y-b)^2 = 1\}$. 若 $A \cap B = \{(x_1,y_1),(x_2,y_2)\}$, 则 ()

A.
$$0 < a^2 + b^2 < 2$$

A,
$$0 < a^2 + b^2 < 2$$
 B, $a(x_1 - x_2) + b(y_1 - y_2) = 0$

C,
$$x_1 + x_2 = a \perp y_1 + y_2 = b$$
 D, $a^2 + b^2 = 2ax_1 + 2by_1$

D.
$$a^2 + b^2 = 2ax_1 + 2by_1$$

$$A$$
、若 $S=4$,则 k 的值唯一

A、若
$$S=4$$
,则 k 的值唯一 B、若 $S=\frac{1}{2}$,则 k 的值有 2 个

$$C$$
、若 D 为三角形,则 $0 < k \le \frac{2}{3}$ D、若 D 为五边形,则 $k > 4$

D、若
$$D$$
为五边形,则 $k > 4$

17、设曲线
$$L$$
 的方程为 $y^4 + (2x^2 + 2)y^2 + (x^4 - 2x^2) = 0$,则()

$$A$$
、 L 是轴对称图形

B、
$$L$$
是中心对称图形

C.
$$L \subset \{(x, y) | x^2 + y^2 \le 1\}$$

C.
$$L \subset \{(x, y) | x^2 + y^2 \le 1\}$$
 D. $L \subset \{(x, y) | -\frac{1}{2} \le y \le \frac{1}{2}\}$

18、设双曲线
$$C_1: \frac{x^2}{a^2} - \frac{y^2}{4} = k(a > 2, k > 0)$$
,椭圆 $C_2: \frac{x^2}{a^2} + \frac{y^2}{4} = 1$.若 C_2 的短轴长与 C_1

的实轴长的比值等于 C_2 的离心率,则 C_1 在 C_2 的一条准线上截得线段的长为()

A,
$$2\sqrt{2+k}$$

A,
$$2\sqrt{2+k}$$
 B, 2 C, $4\sqrt{4+k}$ D, 4

- 19、当实数m变化时,不在任何直线 $2mx+\left(1-m^2\right)y-4m-4=0$ 上的所有点 $\left(x,y\right)$ 形成 的图形的面积为()
- A, 2 B, 4 C, 2π
- 20、已知椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$ 和圆 $O: x^2 + y^2 = b^2$,过椭圆上一点 P 引圆 O 的两 条切线, 切点分别为A,B.
- (1) 若圆O过椭圆的两个焦点,求椭圆的离心率e;
- (II) 若椭圆上存在点 P,使得 $\angle APB = 90^{\circ}$,求椭圆离心率 e 的取值范围;
- (III) 设直线 AB 与 x 轴、 y 轴分别交于点 M , N , 求证: $\frac{a^2}{\left|ON\right|^2} + \frac{b^2}{\left|OM\right|^2}$ 为定值 .

21、 C_{70} 分子是与 C_{60} 分子类似的球状多面体结构,它有 70 个顶点,每个顶点连接三条棱,

各面是五边形或六边形,则 C_{70} 分子中五边形的个数为 $_{1}$,六边形的个数为 $_{2}$

22、半径为 R 的球内部装有四个半径相同的小球,则小球半径 r 的最大值是 ()

$$A = \frac{\sqrt{3}}{2+\sqrt{3}} R$$

B.
$$\frac{\sqrt{6}}{3+\sqrt{6}}R$$

C,
$$\frac{1}{1+\sqrt{3}}R$$

A,
$$\frac{\sqrt{3}}{2+\sqrt{3}}R$$
 B, $\frac{\sqrt{6}}{3+\sqrt{6}}R$ C, $\frac{1}{1+\sqrt{3}}R$ D, $\frac{\sqrt{5}}{2+\sqrt{5}}R$

- 23、若四面体的一条棱长为x,其余棱长均为1,体积是V(x),则V(x)在其定义域上为()
- A、增函数但无最大值
- B、增函数且有最大值
- C、不是增函数且无最大值
- B、增函数且有取入但 直 D、不是增函数但有最大值
- 24、一圆锥正放, 它的高为h, 圆锥内水面高为 $\frac{2}{3}h$, 将圆锥倒放, 倒置后水面高度为_____.
- 25、设扇形的圆心角为 60° ,面积为 6π ,将它围成一个圆锥,则此圆锥的表面积是()

- A, $\frac{11\pi}{2}$ B, 7π C, $\frac{13\pi}{2}$ D, 8π
- 26、一正四棱锥的体积为 $\frac{\sqrt{2}}{3}$,正四棱锥表面积的最小值等于_____.

27、如图, 已知正三棱锥 P-ABC 的侧棱长为 $\sqrt{3}+1$,底面边长为 $\sqrt{2}$, Q 是侧棱 PA 的中点,

一条折线从 A 点出发,绕侧面一周到 Q 点,则这条折线长度的最小值为_____

28、边长为 2 的正方形 ABCD 与正方形 ABEF 所在平面成 60° 的

角,M , N 分别是线段 AC 和 BF 上的点,且 AM = FN ,则线段 MN 长度的取值范围是()

A,
$$[\frac{1}{2},2]$$
 B, $[1,2]$ C, $[\sqrt{2},2]$ D, $[\sqrt{3},2]$

一、知识要点

不等式	不等式性质 比较大小 解不等式	重要不等式 自建不等式 证明不等式 最		
与最值	小寺式性坝 比较入小 胖小寺式 	值探究 代数变形灵活性要求高		
数列与	基本概念 等差及其性质 等比数列	重要恒等式 同构转化求通项 和式变换		
递推	及其性质 通项与求和公式	与求和方法 递推方法		

二、例题分析

- 1、证明:对任意实数 a>1, b>1,有 $\frac{a^2}{b-1} + \frac{b^2}{a-1} \ge 8$.
- 2、设 $\triangle ABC$ 的三内角A、B、C所对的边分别为a、b、c,其周长为 1.

求证:
$$\frac{1}{A} + \frac{1}{B} + \frac{1}{C} \ge 3(\frac{a}{A} + \frac{b}{B} + \frac{c}{C})$$
.

3. 给定正整数 n 和正常数 a ,对于满足不等式 $a_{l}^{2}+a_{n+l}^{2} \leq a$ 的所有等差数列

$$a_1, a_2, a_3, \cdots$$
和式 $\sum_{i=n+1}^{2n+1} a_i$ 的最大值为 ()。

(A)
$$\frac{\sqrt{10a}}{2}(n+1)$$
 (B) $\frac{\sqrt{10a}}{2} \cdot n$ (C) $\frac{\sqrt{5a}}{2}(n+1)$ (D) $\frac{\sqrt{5a}}{2} \cdot n$

4、设n是一个正整数,则函数 $x + \frac{1}{nx^n}$ 在正实半轴上的最小值是 ()。

(A)
$$\frac{n-1}{n}$$
 (B) $\frac{n+2}{n+1}$ (C) $\frac{n+1}{n}$ (D) $\frac{n}{n+1}$

(B)
$$\frac{n+2}{n+1}$$

(C)
$$\frac{n+1}{n}$$

(D)
$$\frac{n}{n+1}$$

5、设 $x_1, x_2, ..., x_n \in R_+$,且 $x_1 + x_2 + ... + x_n = 1$,求证

$$\frac{x_1^2}{1+x_1} + \frac{x_2^2}{1+x_2} + \dots + \frac{x_n^2}{1+x_n} \ge \frac{1}{n+1}$$

6、已知实数 $x_i \in [-6.10]$, $\sum_{i=1}^{10} x_i = 50$, i = 1.2.3,10, 当 $\sum_{i=1}^{10} x_i^2$ 取到最大值时,有 多少个-6?

7、设 a_n 是 $(2-\sqrt{x})^n$ 的展开式中x项的系数 (n=2,3,4...),则极限

$$\lim_{n\to\infty} \left(\frac{2^2}{a_2} + \frac{2^3}{a_3} + \dots + \frac{2^n}{a_n} \right) =$$

(A) 15

- (B) 6
- (C) 17
- (D) 8

8、设 $(1+\sqrt{2})^n = x_n + y_n\sqrt{2}$, 其中 x_n, y_n 为整数, 求 $n \to \infty$ 时, $\frac{x_n}{v}$ 的极限。

9、设数列
$$\{a_n\}$$
中, $a_1=1,a_{n+3}\leq a_n+3,a_{n+2}\geq a_n+2$,则 $a_{2021}=$ ______

10、已知数列 $\{a_n\}$, $\{b_n\}$ 满足 $a_{n+1}=-a_n-2b_n$,且 $b_{n+1}=6a_n+6b_n$,又 $a_1=2,b_1=4$ 。 求:

- (1) a_n, b_n ;
- $(2) \lim_{n\to\infty}\frac{a_n}{b_n} \circ$

11、x, y, z 为正实数, 且 x+y+z=1,则 $\frac{xyz}{(4x+1)(9x+y)(4y+z)(9z+1)}$ 的最大值为 (

- A、 $\frac{1}{24^2}$ B、 $\frac{1}{32^2}$ C、 $\frac{1}{36^2}$ D、前三个答案都不对

12、已知 $x^2 + y^2 + z^2 = 1$, 求 $\sqrt{3}xy + yz$ 的最小值.