

NASA

Technology for Large Space Systems

A Bibliography with Indexes

(NASA-SP-7046(20)) TECHNOLOGY FOR LARGE SPACE SYSTEMS: A BIBLIOGRAPHY WITH INDEXES (SUPPLEMENT 20) (NASA) 183 p CSCL 22B

N89-26037

Unclas 00/18 0219658

NOTE TO AUTHORS OF PROSPECTIVE ENTRIES:

The compilation of this bibliography results from a complete search of the STAR and IAA files. Many times a report or article is not identified because either the title, abstract, or key words did not contain appropriate words for the search. A number of words are used, but to best insure that your work is included in the bibliography, use the words Large Space Structures somewhere in your title or abstract, or include them as a key word.

This supplement is available from the National Technical Information Service (NTIS), Springfield, Virginia 22161 at the price code A09.

TECHNOLOGY FOR LARGE SPACE SYSTEMS

A BIBLIOGRAPHY WITH INDEXES

Supplement 20

Compiled by
Technical Library Branch
and
Edited by
Space Systems Division
NASA Langley Research Center
Hampton, Virginia

A selection of annotated references to unclassified reports and journal articles that were introduced into the NASA scientific and technical information system between July 1 and December 31, 1988 in

- Scientific and Technical Aerospace Reports (STAR)
- International Aerospace Abstracts (IAA).

National Aeronautics and Space Administration Office of Management Scientific and Technical Information Division Washington, DC 1989

INTRODUCTION

This bibliography is designed to be helpful to the researcher and manager engaged in the developing technology within the discipline areas of the Large Space Systems Technology (LSST). Also, the designers of large space systems for approved missions (in the future) will utilize the technology described in the documents referenced herein.

This literature survey lists 694 reports, articles and other documents announced between July 1, 1988 and December 31, 1988 in *Scientific and Technical Aerospace Reports (STAR)*, and *International Aerospace Abstracts (IAA)*.

The coverage includes documents that define specific missions that will require large space structures to achieve their objectives. The methods of integrating advanced technology into system configurations and ascertaining the resulting capabilities is also addressed.

A wide range of structural concepts are identified. These include erectable structures which are earth fabricated and space assembled, deployable antennas which are fabricated, assembled, and packaged on Earth with automatic deployment in space, and space fabricated structures which use pre-processed materials to build the structure in orbit.

The supportive technology that is necessary for full utilization of these concepts is also included. These technologies are identified as analysis and design techniques, structural and thermal analysis, structural dynamics and control, electronics, advanced materials, assembly concepts, and propulsion.

A separate companion document "Space Station Systems Bibliography" (NASA SP-7056) incorporates space station technology not applicable to large space systems. Space station systems technology that is also applicable to large space systems may be documented in both bibliographies.

Robert L. Wright, *Space Systems Division* John Ferrainolo, *Technical Library Branch*

TABLE OF CONTENTS

•	. agc
Category 01 Systems Includes mission and program concepts and requirements, focus missions, conceptual studies, technology planning, systems analysis and integration, and flight experiments.	1
Category 02 Analysis and Design Techniques Includes interactive techniques, computerized technology design and development programs, dynamic analysis techniques, environmental modeling, thermal modeling, and math modeling.	8
Category 03 Structural Concepts Includes erectable structures (joints, struts, and columns), deployable platforms and booms, solar sail, deployable reflectors, space fabrication techniques and protrusion processing.	13
Category 04 Structural and Thermal Analysis Includes structural analysis and design, thermal analysis and design, analysis and design techniques, and thermal control systems.	19
Category 05 Structural Dynamics and Control Includes modeling, systems identification, attitude and control techniques, surface accuracy measurement and control techniques and systems, sensors and actuators.	24
Category 06 Electronics Includes techniques for power and data distribution, antenna RF performance analysis, communications systems, and spacecraft charging effects.	54
Category 07 Advanced Materials Includes matrix composites, polyimide films and thermal control coatings, bonding agents, antenna components, manufacturing techniques, and space environmental effects on materials.	62
Category 08 Assembly Concepts Includes automated manipulator techniques, EVA, robot assembly, teleoperators, and equipment installation.	72
Category 09 Propulsion Includes propulsion concepts and designs utilizing solar sailing, solar electric, ion, and low thrust chemical concepts.	82
Category 10 General Includes either state-of-the-art or advanced technology which may apply to Large Space Systems and does not fit within the previous categories. Publications of conferences, seminars, and workshops are covered in this area.	88
Subject Index	B-1 C-1 D-1 E-1

TYPICAL REPORT CITATION AND ABSTRACT

TYPICAL JOURNAL ARTICLE CITATION AND ABSTRACT

NASA SPONSORED ► A88-13932* California Univ., Los Angeles. ACCESSION NUMBER -- DISTURBANCE AND VIBRATION ISOLATION IN SPACE STATIONS BY MEANS OF MECHANICAL DECOUPLING AUTHOR'S AFFILIATION P. K. C. WANG (California, University, Los Angeles) International Journal of Control (ISSN 0020-7179), vol. 46, Sept. 1987, p. JOURNAL TITLE ---1061-1082. NASA-supported research. refs JOURNAL DATE CONTRACT NUMBERS -(Contract NSF ECS-85-09145) A decoupling approach to disturbance and vibration isolation in large space stations composed of modules interconnected by flexible members is proposed. A simplified mathematical model for the motion of the space station core and a laboratory module with both torsional vibration and translational motion decouplers is used in this study. The dynamic behavior of the model in the presence of decoupler friction is analyzed. Estimates for the maximum excursions of the laboratory module induced by various types of external disturbance are derived. The paper concludes with a simulation study involving the hard-docking of a space shuttle with a space station.

TECHNOLOGY FOR LARGE SPACE SYSTEMS

A Bibliography (Suppl. 20)

JUNE 1989

01

SYSTEMS

Includes mission and program concepts and requirements, focus missions, conceptual studies, technology planning, systems analysis and integration, and flight experiments.

A88-33434*# National Aeronautics and Space Administration. Lyndon B. Johnson Space Center, Houston, TX.

TECHNOLOGY ADVANCEMENTS FOR THE U.S. MANNED **SPACE STATION - AN OVERVIEW**

WILLIAM E. SIMON (NASA, Johnson Space Center, Houston, TX) IN: EASCON '87; Proceedings of the Twentieth Annual Electronics and Aerospace Systems Conference, Washington, DC, Oct. 14-16, 1987. New York, Institute of Electrical and Electronics Engineers, Inc., 1987, p. 75-87. refs

The structure and methodology of the Johnson Space Center (JSC) advanced development program is described. An overview of the program is given, and the technology transfer process to other disciplines is described. The test bed and flight experiment programs are described, as is the technology assessment which was performed at the end of the Phase B program. The technology program within each discipline is summarized, and the coordination and integration of the JSC program with the activities of other NASA centers and with work package contractors are discussed.

National Aeronautics and Space Administration.

Marshall Space Flight Center, Huntsville, AL.

ASTROPHYSICS SPACE OBSERVATORIES - THE NEXT 25 YEARS

S. H. MORGAN, M. E. NEIN, J. HOWELL (NASA, Marshall Space Flight Center, Huntsville, AL), and D. KOCH (Smithsonian Astrophysical Observatory, Cambridge, MA) IN: Reflective optics; Proceedings of the Meeting, Los Angeles, CA, Jan. 15, 16, 1987. Bellingham, WA, Society of Photo-Optical Instrumentation Engineers, 1987, p. 2-23. refs

The design characteristics and performance capabilities of orbiting astrophysical observatory optics are projected from the state-of-the-art to the next 25 years. Attention is given to the possible features of large optical/UV observatories as well as to an advanced gamma-ray observatory that could employ the Space Shuttle's External Tank as its structural basis. It is noted that telescope performance has reached fundamental technological barriers to further progress which demand radical innovations in optical configurations' design.

A88-34552

A88-34537*

POLAR PLATFORM CONFIGURATION AND SERVICING

P. J. CONCHIE and E. P. L. WINDSOR (British Aerospace, PLC, Space and Communications Div., Bristol, England) Aeritalia S.p.A., Columbus Symposium, 3rd, Capri, Italy, June 30-July 2, 1987) Space Technology - Industrial and Commercial Applications (ISSN 0277-4488), vol. 8, no. 1-2, 1988, p. 37-44.

The design concept and operation of the ESA Columbus Polar Platform, a spacecraft intended for ELV (Ariane 5 or Titan 4) launch to an 850-km sun-synchronous orbit and subsequent servicing by the NASA STS, are discussed. The factors influencing the design process are outlined; the system requirements are defined; and the present platform configuration is presented in drawings and described in detail, with reference to power supply (4.0 kW in daylight and 3.0 kW in eclipse), data rates (500 Mb/s via EDRS or 300 Mb/s via NASA TDRSS, plus 300 Mb/s via a direct X-band link), data recording capacity (30 Gb), pointing accuracy (0.03 deg), servicing needs (3 times in 10 yrs), and lifetime (30 yrs). The payload section provides 27 sq m of attachment area for 2500 kg (net) of earth observation, solar terrestrial physics, life science, and communication experiments.

A88-34563

COLUMBUS UTILIZATION STUDIES - ATTACHED PAYLOADS

A. BIELZA and A. ALDAMIZ (Sener, S. A., Las Arenas, Spain) (CNR and Aeritalia S.p.A., Columbus Symposium, 3rd, Capri, Italy, June 30-July 2, 1987) Space Technology - Industrial and Commercial Applications (ISSN 0277-4488), vol. 8, no. 1-2, 1988, p. 159-162.

The types of payload components which could be attached to the main structure of the International Space Station in its IOC stage are discussed, summarizing the results of ESA utilization studies. The basic payload set is listed and briefly characterized; the buildup sequence for the Space Station is reviewed; a payload mission baseline is established on the basis of NASA constraints on the availability of attachment points and Payload Attach Equipments for ESA payloads; and economic aspects are considered. The need to negotiate more clearly defined regulations on attached payloads is indicated, with an emphasis on the implications for space commercialization.

A88-34573* National Aeronautics and Space Administration, Washington, DC

THE INTERNATIONAL SPACE STATION COMPLEX - PROMISE **AND PROBLEMS**

RICHARD E. HALPERN (NASA, Utilization Office of Space Station, Washington, DC) (CNR and Aeritalia S.p.A., Columbus Symposium, 3rd, Capri, Italy, June 30-July 2, 1987) Space Technology - Industrial and Commercial Applications (ISSN 0277-4488), vol. 8, no. 1-2, 1988, p. 213-219.

The current planning status of the International Space Station is reviewed from a NASA perspective, with a focus on aspects affecting the contributions of the international partners ESA, Japan, and Canada. The modifications implied by the shift from the previous double-keel configuration to the current phaseddeployment (Block 1 - Block 2) approach are considered in detail and illustrated with drawings and a table listing the baseline assembly sequence. It is pointed out that the originally proposed non-NASA components can all be accommodated in the new configuration. The need for intermodule commonality of equipment form, fit, and function is discussed, and it is recommended that independent user boards be set up to select and coordinate experiments, and that the user boards of the partners open channels of cooperation and mutual support. T.K.

A88-34574

JAPANESE SPACE STATION PROGRAM

K. HIGUCHI and T. YAMAWAKI (National Space Development Agency of Japan, Space Experiment Group, Tokyo, Japan)

and Aeritalia S.p.A., Columbus Symposium, 3rd, Capri, Italy, June 30-July 2, 1987) Space Technology - Industrial and Commercial Applications (ISSN 0277-4488), vol. 8, no. 1-2, 1988, p. 221-227.

Since May 1985, when Japan first began participating in the Space Station program, the NASDA has been studying the JEM concept and related Space Station system issues in cooperation with NASA, ESA, and Canada. In a parallel activity, the Space Activities Commission Ad Hoc Committee on the Space Station has been discussing Japan's policy for future phases. This paper presents Japan's approach for participating in this program, the concept, the development plan, Japan's candidate sensor for Polar Platform, and the future program for promoting space environment utilization.

A88-35052* National Aeronautics and Space Administration, Washington, DC.

SPACE STATION DEVELOPMENT

EDWIN E. SPEAKER (NASA, Washington, DC) IN: Aerospace century XXI: Space missions and policy; Proceedings of the Thirty-third Annual AAS International Conference, Boulder, CO, Oct. 26-29, 1986. San Diego, CA, Univelt, Inc., 1987, p. 3-11. (AAS PAPER 86-255)

NASA has recently completed an in-depth review of the Space Station Program plan and is considering several changes to the baseline configuration and to the launch and assembly sequence. These configurational changes will facilitate development as well as system operation, although a few more launches are required. However, the new sequence will allow more useful payload activities earlier than previously planned, and will still result in a permanently manned capability by 1994.

Author

A88-35053* National Aeronautics and Space Administration, Washington, DC.

SPACE STATION EVOLUTION

DAVID C. BLACK (NASA, Washington, DC) IN: Aerospace century XXI: Space missions and policy; Proceedings of the Thirty-third Annual AAS International Conference, Boulder, CO, Oct. 26-29, 1986. San Diego, CA, Univelt, Inc., 1987, p. 13-15. (AAS PAPER 86-262)

The Space Station that will be launched and made operational in the early 1990s should be viewed as a beginning, a facility that will evolve with the passing of time to better meet the needs and requirements of a diverse set of users. Evolution takes several forms, ranging from simple growth through addition of infrastructure elements to upgrading of system capability through inclusion of advanced technologies. Much of the early considerations of Space Station evolution focused on physical growth. However, a series of recent workshops have revealed that the more likely mode of Space Station evolution will not be through growth but rather through a process known as 'branching'.

A88-35056

THE COLUMBUS RESOURCE MODULE FOR THE EUROPEAN MAN-TENDED FREE FLYER

KLAUS FAHLENBOCK (Dornier GmbH, Friedrichshafen, Federal Republic of Germany) IN: Aerospace century XXI: Space missions and policy; Proceedings of the Thirty-third Annual AAS International Conference, Boulder, CO, Oct. 26-29, 1986. San Diego, CA, Univelt, Inc., 1987, p. 89-101. (AAS PAPER 86-465)

In April, 1986, it was decided that the ESA Man-Tended Free Flyer (MTFF) would become a dedicated element of the NASA Space Station, with a permanently coupled Resource Module/Pressurized Module configuration. Attention is presently given to the Resource Module's design-driving requirements, the MTFF/Resource Module reference configuration, first and second MTFF versions, and the Space Station configuration incorporating the MTFF.

O.C.

A88-35074

REPORT OF THE NATIONAL COMMISSION ON SPACE - ONE COMMISSIONER'S VIEW

JACK L. KERREBROCK (MIT, Cambridge, MA) IN: Aerospace

century XXI: Space missions and policy; Proceedings of the Thirty-third Annual AAS International Conference, Boulder, CO, Oct. 26-29, 1986. San Diego, CA, Univelt, Inc., 1987, p. 435-440. (AAS PAPER 86-250)

The National Commission on Space has recommended a trippling of the NASA R&D budget, as well as the aggressive development of seven critical technology-demonstration fields: (1) flight research on aerospaceplane aerodynamics and propulsion; (2) advanced rocket technologies; (3) aerobraking maneuvers; (4) long-duration, closed ecosystems; (5) electric propulsion systems; (6) nuclear-electric space power, and (7) space tethers and artificial gravity. Attention is given to the unique consequentiality of scramjet propulsion development for airbreathing launch vehicle propulsion to speeds above Mach 20.

A88-35075* National Aeronautics and Space Administration, Washington, DC.

THE SPACE STATION AND RECOMMENDATIONS OF THE NATIONAL COMMISSION ON SPACE

E. LEE TILTON (NASA, Washington, DC) and THEODORE R. SIMPSON (General Research Corp., McLean, VA) IN: Aerospace century XXI: Space missions and policy; Proceedings of the Thirty-third Annual AAS International Conference, Boulder, CO, Oct. 26-29, 1986. San Diego, CA, Univelt, Inc., 1987, p. 441-446. (AAS PAPER 86-263)

The planned NASA Space Station, and its associated orbit transfer vehicle, are only the first of a series of Space Stations and transfer vehicles that the United States will need to pioneer the space frontier in the 21st century. The initial station and transfer vehicle will develop some of the technology and systems needed for follow-on stations, vehicles, and bases on the moon and Mars.

Author

A88-35081

UPDATE ON SOVIET SPACE ACTIVITIES

MARCIA S. SMITH (U.S. Library of Congress, Washington, DC) IN: Aerospace century XXI: Space missions and policy; Proceedings of the Thirty-third Annual AAS International Conference, Boulder, CO, Oct. 26-29, 1986. San Diego, CA, Univelt, Inc., 1987, p. 479-483.

(AAS PAPER 86-466)

It is noted that the assertion in the 1988 Jane's Spaceflight Directory that the USSR is as much as 10 years ahead of the USA in space technology development may not be generally justified, but is at least arguable in the specific field of manned space operations in earth orbit. Through their space station program, which began in 1971, the Soviets have gained considerable experience in the operation of large platforms and ferry spacecraft, the repair of orbiting spacecraft and their refueling, and the performing of experiments in space conditions.

O.C.

A88-35115* National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

LARGE SPACE SYSTEMS REQUIREMENTS, DEPLOYABLE CONCEPTS, AND TECHNOLOGY ISSUES

U. M. LOVELACE and L. B. GARRETT (NASA, Langley Research Center, Hampton, VA) IN: Aerospace century XXI: Space flight technologies; Proceedings of the Thirty-third Annual AAS International Conference, Boulder, CO, Oct. 26-29, 1986. San Diego, CA, Univelt, Inc., 1987, p. 1019-1034. refs (AAS PAPER 86-394)

This paper summarizes some of the future civil missions requiring large space systems technologies. Antenna, collector, and reflector missions are generalized to define a similar set of system requirements and characteristics. Although many concepts exist for both deployable and space assemblable large structures, four technically mature deployable concepts are reviewed. Two of these concepts are probably applicable to only antenna/collector missions, whereas the other two employ continuous trusses which can be configured for a broad range of planar, linear, or curved structures. Finally, technology problems or needs associated with large deployable systems are reviewed to highlight additional

research and development, both analytical and experimental, required to reduce mission risk.

Author

A88-35131 TRANSITIONING FROM SPACELAB TO SPACE STATION SCIENCE

BYRON K. LICHTENBERG (Payload Systems, Inc., Wellesley, MA) IN: Aerospace century XXI: Space sciences, applications, and commercial developments; Proceedings of the Thirty-third Annual AAS International Conference, Boulder, CO, Oct. 26-29, 1986. San Diego, CA, Univelt, Inc., 1987, p. 1279-1286. (AAS PAPER 86-284)

Space science operations issues are discussed with respect to both the current capabilities of the Spacelab portion of the National Space Transportation System and future requirements for operation of the Space Station. The capabilities and weaknesses of Spacelab are illustrated with examples from the first four flights. Projected operations scenarios for the Space Station are considered, emphasizing the need for system flexibility. Suggestions for the Space Station development include the use of 'telescience' to maximize the efficient use of the crew and the ground investigator team, and the continuation of ground-based experiments and data analysis on archived data.

A88-35877

THE ENVIRONMENT OF EARTH-ORBITING SYSTEMS

H. HAMACHER (DFVLR, Institut fuer Raumsimulation, Cologne, Federal Republic of Germany), B. FITTON (Leiden, Rijksuniversiteit, Sterrewacht, Netherlands), and J. KINGDON (ESA, European Space Research and Technology Centre, Noordwijk, Netherlands) IN: Fluid sciences and materials science in space: A European perspective. Berlin and New York, Springer-Verlag, 1987, p. 1-50. refs

The environment encountered by earth-orbiting spacecraft is characterized with particular reference to microgravity experimentation. A number of disturbances resulting in accelerations that prevent from achieving ideal zero-gravity conditions in spacecraft are identified, and the most dominant disturbances are discussed. Particular attention is given to the gravitational environment of Spacelab and the planned Space Station. The discussion also covers the effects of radiation, atmospheric conditions, high-energy particles, and electric and magnetic fields.

A88-36556

COSM: A SPACE STATION EVAS TEST CHALLENGE

FRANK A. PULLO and ANTHONY C. BEARDSLEY (Grumman Corp., Aircraft Div., Bethpage, NY) IN: AUTOTESTCON '87; Proceedings of the International Automatic Testing Conference, San Francisco, CA, Nov. 3-5, 1987. New York, Institute of Electrical and Electronics Engineers, Inc., 1987, p. 221-226.

The authors present the requirements that must be addressed to develop equipment that will perform the checkout, servicing, and maintenance (COSM) of the extravehicular activity system (EVAS) for manned space on the proposed US Space Station. An overview is presented of COSM operational requirements, and their relationship to an automatic COSM system. The Space Station environment, routine EVA sorties, and singular mission objectives and tasks are examined with respect to system design. The COSM system architecture and the technical approach taken are also examined.

A88-37257#

THE FLINDERS PLATFORM - A LOW-COST MULTIMISSION PLATFORM FOR AUSTRALIA

M. L. PFITZNER (AUSPACE, Ltd., Australia) IN: National Space Engineering Symposium, 3rd, Canberra, Australia, June 30-July 2, 1987, Preprints of Papers. Barton, Australia/Brookfield, VT, Institution of Engineers/Brookfield Publishing Co., 1987, p. 111-115.

The 'Flinders' 3-axis stabilized orbiting platform presently discussed is relatively small and derives its modest cost from the incorporation of several previously developed subsystems. Flinders

is compatible with several Ariane-4 upper stage configurations, and can be applied to a range of orbits, from LEO to GEO. Its possible missions extend to earth observation, mobile communications, astronomical and magnetospheric research, and domestic telecommunications.

O.C.

A88-37398*# General Electric Co., Philadelphia, PA. POTENTIAL GPS USER ARCHITECTURE FOR THE NASA SPACE STATION BASED ON LANDSAT 4/5 EXPERIENCE

DAVID A. KORENSTEIN (General Electric Co., Astro-Space Div., Philadelphia, PA) IN: Institute of Navigation, Technical Meeting, 1st, Colorado Springs, CO, Sept. 21-25, 1987, Proceedings. Washington, DC, Institute of Navigation, 1987, p. 171-175. refs (Contract NAS5-25300)

A Landsat 4/5 GPS system is described which uses an inertial reference attitude control system and precision real-time ephemeris generation to achieve precision earth pointing. The system has application to the validation of the use of GPS for the low earth orbit navigation of the Space Station. The present system consists of a receiver/processor assembly (R/PA), an L-band GPS antenna, a precision oscillator, and the Landsat computer. The R/PA is integrated with a GPS receiver which selects, acquires, tracks, times, and decodes navigation signals from GPS satellites in order to derive ephemerides. Ephemeris estimates were found to be accurate to better than 50 meters.

A88-39077

THE INFRARED SPACE OBSERVATORY (ISO) PROJECT

M. F. KESSLER (ESA, Space Science Dept., Noordwijk, Netherlands) IN: Planetary and proto-planetary nebulae: From IRAS to ISO; Proceedings of the Frascati Workshop, Vulcano Island, Italy, Sept. 8-12, 1986. Dordrecht, D. Reidel Publishing Co., 1987, p. 261-268; Discussion, p. 268, 269.

The ISO, an approved and funded project of ESA, is an astronomical satellite which will operate at wavelengths from 3 to 200 microns. Its cryogenically cooled 60-cm telescope will be equipped with four complementary and versatile focal-plane instruments, which will enable imaging and also photometric, spectroscopic, and polarimetric observations. These instruments are being built by international consortia of scientific institutes and will be delivered to ESA for in-orbit operations. The expected launch date is 1993, and the in-orbit lifetime will be at least 18 months. In keeping with ISO's role as an observatory, two-thirds of its observing time will be made available to the general astronomical community.

A88-39332

WESTERN EUROPEAN SPACE SCIENCE

IAN AXFORD (Max-Planck-Institut fuer Aeronomie, Katlenburg-Lindau, Federal Republic of Germany) Physics Today (ISSN 0031-9228), vol. 41, May 1988, p. 42-52.

An account is given of the national and ESA-coordinated space science research efforts of the West European countries to date, including the substantial portion of these undertaken in collaboration with NASA, such as the Exosat, COS-B, Geos, and ISEE satellites. Program origins, goals, and achievements are discussed for the cases of SPOT, Giotto, Hipparcos, the IUE, Ulysses, Galileo, Rosat, the IR Space Observatory, and the European Retrievable Carrier. Longer-term plans encompass a Solar-Terrestrial Science Program, a Comet Nucleus Sample Return Mission, the Quasat VLBI worldwide network, and the Cassini Saturn probe.

A88-40571

AN ENERGETICS EXPERIMENT ON A SPACE PLATFORM

KYOICHI KURIKI (Tokyo, University, Sagamihara, Japan) and HIROAKI OBARA (Mitsubishi Electric Corp., Tokyo, Japan) Space Power (ISSN 0951-5089), vol. 7, no. 1, 1988, p. 75-89. refs

This paper discusses the Space Flyer Unit (SFU) free-flying platform and the on-board advanced-technology experiments planned for this system in relation to the Space Power Satellite (SPS) technology. Attention is given to the design of the SFU and payload integration, the energy-exploitation experiments, and

to interactive experiments between SFU and SPS. Special consideration is given to the configuration and characteristics and the experimental objectives of a two-dimensionally deployable array and a high-voltage solar array and to electric propulsion experiment, microwave energy transmission experiment, and space experiment with particle accelerators. Design diagrams of the SFU and the various experiments designed for it are included.

A88-43299°#

SPACECRAFT TECHNOLOGY REQUIREMENTS FOR FUTURE NASA MISSIONS

WAYNE R. HUDSON and GORDON I. JOHNSTON (NASA, Washington, DC) AIAA, Space Programs and Technologies Conference, Houston, TX, June 21-24, 1988. 10 p. refs (AIAA PAPER 88-3487)

By working with advanced planners in the NASA Office of Space Science and Applications (OSSA), a spacecraft technology model has been generated that represents the predominant themes of their respective programs for the next twenty years. This set of missions serves as a base from which a few representative and challenging landmark missions have been extracted to serve as a focal point for identifying the most critical technology issues. Each mission requires significant advances in several technology disciplines in order to be feasible. The mission set selected to serve as a technology focus reflects the increased emphasis within NASA on a potential civil space leadership initiative, and include the Geostationary Earth Observing PLatform from the Planet Earth initiative and the precursor Mars Rover and Sample Return mission from the Mars Exploration Initiative. These missions are briefly described and the key technology requirements are discussed.

Author

A88-43964#

A DESCRIPTION OF THE EXPANDABLE PLATFORM

JOSEPH J. MANGAN (Aerospace Industries Association of America, Inc., Washington, DC) IN: Space manufacturing 6 - Nonterrestrial resources, biosciences, and space engineering; Proceedings of the Eighth Princeton/AIAA/SSI Conference, Princeton, NJ, May 6-9, 1987. Washington, DC, American Institute of Aeronautics and Astronautics, 1987, p. 140-147.

The five regular convex polyhedrons, or Platonic solids, are presently used as the geometrical bases of structural frames that can be selected, assembled, and located by computers; they essentially represent redundant shapes that can be expanded or contracted, and are programmed for robotic construction. An account is given of how structural frames predicated on the five solids can be used on the moon and on Mars to solve numerous problems encountered in lunar and planetary base design and in their high speed transportation systems.

A88-43968#

THE SPACE PHOENIX PROGRAM - A PROGRESS REPORT

T. F. ROGERS (External Tanks Corp., Boulder, CO) IN: Space manufacturing 6 - Nonterrestrial resources, biosciences, and space engineering; Proceedings of the Eighth Princeton/AIAA/SSI Conference, Princeton, NJ, May 6-9, 1987. Washington, DC, American Institute of Aeronautics and Astronautics, 1987, p. 171-174.

The primary concern of the Space Phoenix Program is the beneficiation of the discarded, orbiting external tanks (ETs) of the Space Shuttle in order to transform them into safe, sanitary and durable habitable space structures whose volume will be made available to commercial users on a leasing basis. The program is currently drawing upon the interests and capabilities of over 50 universities, in active cooperation with U.S. agencies, and has chosen as its first objective the creation of a general-purpose scientific research facility, 'Labitat', using aforementioned Space Shuttle ETs, in which scientists will be able to both reside and work.

O.C.

A88-44150 THE U.S. SPACE STATION - A QUARTER-CENTURY OF EVOLUTION

PHILIP D. HATTIS (Charles Stark Draper Laboratory., Inc., Cambridge, MA) Technology Review (ISSN 0040-1692), vol. 91, July 1988, p. 28-40.

In October, 1986, NASA Langley's Critical Evaluation Task Force recommended that the Space Station be built in two phases. The relatively modest Phase I station would encompass the central horizontal truss of the dual-keel model, together with all pressurized modules; this would entail 19 Space Shuttle flights over three years. Phase II, for which funding approval would be sought only after substantial progress toward launching Phase I, would use six additional Shuttle flights to put the full dual-keel Space Station configuration in operating order. As Phase I is embarked upon, major programmatic questions remain as to the intersection of military and international interests in the Space Station's design and use.

A88-44613

NASA'S PATHFINDER PLOTS FUTURE US SPACE ACTIVITIES ANDREW WILSON Interavia (ISSN 0020-5168), vol. 43, June 1988, p. 591-593.

NASA's \$850-million 'Pathfinder' project has as its goal the definition and development of generic technologies for future missions beyond earth orbit; these are grouped under the categories of 'exploration', 'operations', 'transfer vehicles', and 'human life support'. Pathfinder will attempt to define advanced capabilities for both manned and unmanned ventures, of which latter may be typified by a Mars sample-return mission by 1998. A Mars mission would entail substantial development of such techniques as aerobraking, in order to reduce spacecraft earth departure masses by up to 50 percent, as well as electric propulsion and controlled-environment life-support systems. O.C.

A88-44741#

THE GAMMA RAY OBSERVATORY (GRO) PROPULSION SUBSYSTEM

J. A. WEATHERLY, R. A. CARLSON, and S. C. HEVERT (TRW, Inc., Space and Technology Group, Redondo Beach, CA) AIAA, ASME, SAE, and ASEE, Joint Propulsion Conference, 24th, Boston, MA, July 11-13, 1988. 8 p. (AIAA PAPER 88-3051)

The Gamma Ray Observatory (GRO) LEO spacecraft's Propulsion Subsystem (PSS) is a large, hydrazine monopropellant system containing over 4000 lbs of fuel to furnish ascent, drag compensation, three-axis stabilization, and controlled reentry power. The PSS uses four 100-lb thrust engines for orbit adjustment and eight 5-lb thrust engines for attitude control. GRO is the first NASA spacecraft to be designed to take advantage of a standardized refueling coupling for on-orbit refueling.

O.C.

A88-48477*# Martin Marietta Corp., Denver, CO. TRANSPORTATION CONCEPTS FOR MARS EXPLORATION

BENTON C. CLARK (Martin Marietta Planetary Sciences Laboratory, Denver, CO) AIAA, Space Programs and Technologies Conference, Houston, TX, June 21-24, 1988. 7 p. refs (Contract NAS8-37126) (AIAA PAPER 88-3494)

The transportation aspects of astronaut travel to Mars are discussed. Alternative types of propulsion are examined, including mainline and ancillary chemical propulsion, electric propulsion, and nuclear thermal rocket propulsion. The possibility of remote propellant production is presented, focusing on the use of lunar liquid oxygen, Phobos propellants and Mars propellant production. Also, the way in which habitat models may be derived from Space Station modules or from other designs capitalizing on larger diameter payload envelopes for heavy-lift launch vehicles is considered.

A88-49820#

THE EUROPEAN LONG-TERM SPACE PLAN

K.-E. REUTER (ESA, Coordination and Monitoring Office, Paris, France) ESA Bulletin (ISSN 0376-4265), no. 54, May 1988, p. 14-29.

A recent proposal for a coherent European space program for

the 1990s and beyond is outlined. The proposed scientific program includes solar terrestrial science research, missions to asteroids and comets, and a spectroscopic observatory for X-ray sources. The earth observing program will involve the use of polar orbiting systems for studying ice, the ocean, coastal processes, and meteorology. The microgravity research program, including the Man-Tended Free Flyer and Eureca, and the telecommunications program are also considered. Other topics discussed include the Space Station and space platforms programs, the space-transportation program, space infrastructure operations, the future ground infrastructure, and organizational and budgetary considerations.

A88-51133 SPACE FOR RENT?

ANDREW LAWLER Space World (ISSN 0038-6332), vol. Y-9-297, Sept. 1988, p. 15-19.

Plans to build an industrial space facility which would consist of a manned, free-flying platform and would be serviced by the Shuttle are discussed. The plan was sponsored by the Space Industries Partnerships, made up of several private aerospace companies. Efforts to gain governmental support for the project are examined, and the possiblities for the future of the plan are considered.

A88-51715#

PROBLEMS AND SOLUTIONS FOR GPS USE BEYOND THE 12-HOUR ORBIT

STANLEY C. MAKI (General Dynamics Corp., Space Systems Div., San Diego, CA) IN: Institute of Navigation, National Technical Meeting, Santa Barbara, CA, Jan. 26-29, 1988, Proceedings. Washington, DC, Institute of Navigation, 1988, p. 187-193. refs

Eight different technological approaches for improving availability of GPS satellites at GEO are evaluated. These approaches are high-gain antenna systems, GPS channel coding, low-noise preamp, filter optimization, GPS satellite acquisition and selection, accurate on-board clock, mission planning, and earth-based GPS transmitters. Three options which stand out as possible solutions are analyzed and simulated: the combination of a high-gain antenna system with an accurate on-board clock, the use of earth-based GPS transmitters, and filter optimization. Performance improvement results and implementation are presented.

A88-52332

TECHNOLOGY DEVELOPMENT MISSIONS CONCEPT DEFINITION STUDY - TDMX 2066 LARGE INFLATABLE/RIGIDIZED STRUCTURES

R. E. GIUNTINI and K. M. SEISER (Wyle Laboratories, El Segundo, CA) IN: Space Congress, 25th, Cocoa Beach, FL, Apr. 26-29, 1988, Proceedings. Cape Canaveral, FL, Canaveral Council of Technical Societies, 1988, p. 5-9 to 5-20.

A preliminary study is presented for a technology development mission (TDMX 2066) to address the definition, feasibility, and requirements for a large inflatable/rigidized hangar for payload servicing on the Space Station. The applications and technology options for inflatable/rigidized structures are examined, including Space Shuttle enhancements, Space Station elements, orbital transfer and satellite systems, and lunar habitats. The concept design, ground logistics, and support requirements for development of the hangar are discussed. STS flight requirements, on-orbit logistics/support resource requirements, and a preliminary evolutionary plan indicating the phases from development to Space Station flight are given.

A88-52337

A RESUPPLY SCENARIO FOR THE COLUMBUS MANTENDED FREEFLYER (MTFF)

H. J. C. KOOPMANN (MBB-ERNO Raumfahrttechnik GmbH, Bremen, Federal Republic of Germany) IN: Space Congress, 25th, Cocoa Beach, FL, Apr. 26-29, 1988, Proceedings. Cape Canaveral, FL, Canaveral Council of Technical Societies, 1988, p. 5-63 to 5-76.

The processes involved in the resupply system for the Columbus Man-tended Free Flyer (MTFF) are discussed. The design characteristics of the MTFF pressurized laboratory module and the resource module are examined. Aspects of the MTFF operations concept are described, including launch and initial activation, mission orbit profile, routine operations, servicing, and rendezvous and proximity operations. MTFF in-orbit servicing tasks and requirements are presented. Upload assessments for Hermes and the Space Station and the processes involved in resupply scenarios are presented.

A88-52362* National Aeronautics and Space Administration. Marshall Space Flight Center, Huntsville, AL.

ORBITAL MANEUVERING VEHICLE SUPPORT TO THE SPACE STATION

WILLIAM E. GALLOWAY (NASA, Marshall Space Flight Center, Huntsville, AL) IN: Space Congress, 25th, Cocoa Beach, FL, Apr. 26-29, 1988, Proceedings. Cape Canaveral, FL, Canaveral Council of Technical Societies, 1988, p. 10-1 to 10-7.

This paper describes the Orbital Maneuvering Vehicle (OMV) and its intended role as a key element of the National Space Transportation System. Various types of missions, operating modes, and performance capabilities for the OMV are described as are typical mission scenarios, with the OMV based at the Shuttle and at the Space Station (SS). Particular emphasis is placed on OMV missions in support of the SS. Retrieval of a spacecraft to the SS for servicing, followed by redeployment of the spacecraft to its operational orbit is typical of SS-based projected missions.

Author

A88-53221° National Aeronautics and Space Administration. Goddard Space Flight Center, Greenbelt, MD.

THE SUPERFLUID HELIUM ON-ORBIT TRANSFER (SHOOT) FLIGHT EXPERIMENT

MICHAEL J. DIPIRRO (NASA, Goddard Space Flight Center, Greenbelt, MD) and PETER KITTEL (NASA, Ames Research Center, Moffett Field, CA) IN: Advances in cryogenic engineering. Volume 33 - Proceedings of the Cryogenic Engineering Conference, Saint Charles, IL, June 14-18, 1987. New York, Plenum Press, 1988, p. 893-900. refs

The SHOOT flight demonstration is being undertaken to verify component and system level technology necessary to resupply large superfluid helium dewars in space. The baseline configuration uses two identical 210 liter dewars connected by a transfer line which contains a quick disconnect coupling. The helium will be transferred back and forth between the dewars under various conditions of flow rate, parasitic heat load, and temperature. An astronaut Extra-vehicular Activity (EVA) is also planned to manually demate and mate the coupling. A number of components necessary for the flight are being developed. These components are described here.

A88-53666*# Stanford Univ., CA.

TELESCIENCE TESTBED PILOT PROJECT - EVALUATION ENVIRONMENT FOR SPACE STATION OPERATIONS

MICHAEL J. WISKERCHEN (Stanford University, CA) and BARRY M. LEINER (NASA, Ames Research Center, Moffett Field, CA) IN: AIAA, Flight Simulation Technologies Conference, Atlanta, GA, Sept. 7-9, 1988, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1988, p. 319-324. (AIAA PAPER 88-4629)

The objectives of the Telescience Testbed Pilot Program (TTPP) are discussed. The purpose of the TTPP, which involves 15 universities in cooperation with various NASA centers, is to demonstrate the utility of a user-oriented rapid prototyping testbed approach to developing and refining science requirements and validation concepts and approaches for the information systems of the Space Station era and beyond. It is maintained that the TTPP provides an excellent environment, with low programmatic schedule and budget risk, for testing and evaluating new operations concepts and technologies.

A88-54573* Control Dynamics Co., Huntsville, AL. **ACES PROGRAM - LESSONS LEARNED**

VICTORIA L. JONES, SALLY C. RICE (Control Dynamics Co., Huntsville, AL), and HENRY B. WAITES (NASA, Marshall Space Flight Center, Huntsville, AL) IN: 1988 American Control Conference, 7th, Atlanta, GA, June 15-17, 1988, Proceedings. Volume 2. New York, Institute of Electrical and Electronics Engineers, 1988, p. 1453-1455.

The ACES Program involved the experimental evaluation of three LSS (large space structures) control design techniques at the LSS GTF (ground test facility) at NASA/MSFC. The three techniques were developed under the ACOSS (active control of space structures) Program specifically for application to LSS. The techniques included FAMESS (filter accommodated model error sensitivity suppression), HAC/LAC (high authority control/low authority control), and positivity. Some of the lessons that have been learned during the course of the ACES program are examined.

A88-54603

ON THE CALTECH EXPERIMENTAL LARGE SPACE STRUCTURE

GARY J. BALAS and JOHN C. DOYLE (California Institute of Technology, Pasadena) IN: 1988 American Control Conference, 7th, Atlanta, GA, June 15-17, 1988, Proceedings. Volume 2. New York, Institute of Electrical and Electronics Engineers, 1988, p. 1701, 1702. Research supported by California Institute of Technology and TRW, Inc.

A large-space-structure experiment developed at the California Institute of Technology is reported. The main thrust of the experiment is to address the identification and robust control issues associated with large space structures by capturing their characteristics in the laboratory. The design, modeling, identification, and control objectives are discussed.

 ${\bf A88\text{-}54851^*\#}$ National Aeronautics and Space Administration, Washington, DC.

GETTING READY TO GO

THOMAS L. MOSER (NASA, Space Station Program Office, Washington, DC) Aerospace America (ISSN 0740-722X), vol. 26, Sept. 1988, p. 16-18.

The reevaluation of the Space Station that has occurred over the past two and a half years is reviewed, and the system development that has been recently initiated is discussed. Upcoming developments with regard to laboratory outfitting, extended duration Orbiter, and logistics operations are summarized. The goals of the first launches are discussed, and the aims of the succeeding manned flights are examined.

A88-55314#

DEMONSTRATION MISSION ON COLUMBUS FOR TECHNOLOGY DEVELOPMENTS

J. PULS (DFVLR, Oberpfaffenhofen, Federal Republic of Germany) and D. KASSING (ESA, European Space Research and Technology Centre, Noordwijk, Netherlands) IAF, International Astronautical Congress, 39th, Bangalore, India, Oct. 8-15, 1988. 7 p. (IAF PAPER 88-002)

The paper deals with the description of technology demonstration missions identified in the European Columbus utilization program. The candidate payloads represent new technologies needed to upgrade the autonomous operational capabilities of the Columbus/ISS infrastructure. The in-orbit demonstration is justified in order to reduce the development risk before the concept is frozen and by the fact that special technical properties cannot be investigated on ground. A survey on the development status is given with an outlook to future activities coordinated by ESA.

A88-55322*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

TECHNOLOGY FORECAST AND APPLICATIONS FOR AUTONOMOUS, INTELLIGENT SYSTEMS

HENRY LUM, JR. (NASA, Ames Research Center, Moffett Field,

CA) and EWALD HEER (Heer Associates, Inc., LaCanada, CA) IAF, International Astronautical Congress, 39th, Bangalore, India, Oct. 8-15, 1988. 10 p. refs (IAF PAPER 88-025)

Significant research products which have emerged from the core program of NASA's Office of Aeronautics and Space Technology (OAST) are discussed. The Space Station Thermal Control System, the Space Shuttle Integrated Communications Officer Station, the Launch Processing System, the Expert Scheduling System for Pioneer Venus Spacecraft, a Bayesian classification system, and a spaceborne multiprocessor system are included. The technology trends which led to these results are discussed and future developments in technology are forecasted.

A88-55337#

THE MANNED SPACE LABORATORIES CONTROL CENTER (MSCC) AT DFVLR - OBERPFAFFENHOFEN, GERMANY

J. KEHR and K. REINEL (DFVLR, Oberpfaffenhofen, Federal Republic of Germany) IAF, International Astronautical Congress, 39th, Bangalore, India, Oct. 8-15, 1988. 18 p. (IAF PAPER 88-087)

The development of an operations concept for manned laboratories is discussed. European space programs are outlined, stressing the Columbus program. The European ground based operations centers and the operational management structure for the ESA are examined. The activities of the Manned Space Laboratories Control Center (MSCC) are described, including planning manned flights, systems and payload operations, and ground support. The three test facilities for in-orbit operations within the MSCC are the European Proximity Operation Simulation Facility, a servicing test facility, and a test facility for large flexible spacecraft control.

A88-55340#

COLUMBUS PRESSURIZED MODULES - A VERSATILE USER-FRIENDLY SPACE LABORATORY SYSTEM

E. VALLERANI, L. D'EMILIANO, and D. BOGGIATTO (Aeritalia S.p.A., Turin, Italy) IAF, International Astronautical Congress, 39th, Bangalore, India, Oct. 8-15, 1988. 11 p. (IAF PAPER 88-097)

The design and features of the Columbus Pressurized Modules (PMs) are presented. The architecture of the PMs are described and illustrated. Racks to house subsytem equipment and payloads, locations for internal maintenance performance, payload accommodation, and resource availability are examined. Also, the roles of the module control station and the general purpose work bench in systems and payload operations support are discussed.

RR

A88-55417#

MULTIMISSION COMMUNICATION SATELLITES

FRANCOIS PANZANI, JACQUES THUERY, and DENIS ROUFFET (Alcatel Espace, Toulouse, France) IAF, International Astronautical Congress, 39th, Bangalore, India, Oct. 8-15, 1988. 11 p. (IAF PAPER 88-426)

The constant availability of new space techniques and technologies has made the design of flexible, multimission satellites possible. This paper discusses the resulting multiplicity of services, and gives user and designer criteria which must be respected in order to make such services viable. Techniques that permit using a single satellite for several different missions by providing the required reconfiguration flexibility are examined. Finally, the French National Telecom 2 satellite, which is an excellent example of a multimission system, is described.

A88-55454#

LUNAR ORBIT SERVICE STATION

H. HERMANN KOELLE (Berlin, Technische Universitaet, Federal Republic of Germany) IAF, International Astronautical Congress, 39th, Bangalore, India, Oct. 8-15, 1988. 5 p. refs (IAF PAPER 88-618)

Facts and arguments supporting an early establishment of a

manned lunar orbiting service station are presented. Ten specific functions of such a facility are defined, and the characteristics of a 50 km altitude lunar orbit are summarized. Twelve elements and subsystems comprising such a service station are given, and some of the design options are mentioned. A list of 17 system criteria enabling the designer, planner, and decision maker to compare alternatives in a rational way to arrive at an optimal solution for the development scenario is presented.

N88-20330# Societe Nationale Industrielle Aerospatiale, Les Mureaux (France). Div. Systems Strategiques et Spatiaux. STUDY ON LONG TERM EVOLUTION TOWARDS EUROPEAN AUTONOMOUS MANNED SPACEFLIGHT (STEAMS) Final Report

M. GRIMARD Paris, France ESA 22 Jun. 1987 169 p (Contract ESTEC-6668/86-NL-PP) (SNIAS-SE/LS/AP-35-073; ESA-CR(P)-2520; ETN-88-91962) Avail: NTIS HC A08/MF A01

It is shown that a medium sized European space station (ESS) is achievable before 2010. This ESS should allow a permanent occupation by 2 to 4-men crews with a 3 months crew exchange cycle. Manned missions should focus on life sciences, materials, and bioprocessing. A coorbiting platform is required for processing in high quality microgravity environment. It will be a Columbus Man Tended Free Flyer or EURECA derivative. The polar infrastructure is independent of LEO manned one (only hardware commonality). Crew safety is a prime driver for the manned ESS and an escape means permanently docked at the station is required: a dedicated Escape Vehicle or Hermes if it can stay docked for a long time. The logistics support of ESS requires a combined use of Hermes and Ariane 5 flights. This implies high costs for the operations due to launch costs (2 to 4 Hermes flights per year and 1 Ariane 5 flight every 9 to 12 months). This first generation ESS does not allow efficient and intensive commercial activities because of the high operational costs. The reduction of these requires the introduction of new launching systems and the implementation in parallel of a 2nd generation manned infrastructure which might be foreseen in the post-2010 vears.

N88-20339*# Martin Marietta Corp., Denver, CO. Astronautics Group.

ORBITAL TRANSFER VEHICLE CONCEPT DEFINITION AND SYSTEM ANALYSIS STUDY. VOLUME 2: OTV CONCEPT DEFINITION AND EVALUATION. BOOK 1: MISSION AND SYSTEM REQUIREMENTS Final Report, Jul. 1984 - Oct. 1985 ALLEN E. KOFAL Jul. 1987 70 p Revised (Contract NAS8-36108)

The mission and system requirements for the concept definition and system analysis of the Orbital Transfer Vehicle (OTV) are established. The requirements set forth constitute the single authority for the selection, evaluation, and optimization of the technical performance and design of the OTV. This requirements document forms the basis for the Ground and Space Based OTV concept definition analyses and establishes the physical, functional, performance and design relationships to STS, Space Station, Orbital Maneuvering Vehicle (OMV), and payloads.

N88-21190*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

A 60-METER ERECTABLE ASSEMBLY CONCEPT FOR A CONTROL OF FLEXIBLE STRUCTURES FLIGHT EXPERIMENT JUDITH J. WATSON and WALTER L. HEARD, JR. Feb. 1988 20 p

(NASA-TM-100497; NAS 1.15:100497) Avail: NTIS HC A03/MF A01 CSCL 22B

A flight experiment which proposes to use a 60-m deployable/retractable truss beam attached to the Space Shuttle to study dynamic characterization and control of flexible structures is being studied by NASA. The concept requires a relatively complex mechanism for deploying and retracting the truss on-orbit.

Development of such a mechanism having a high degree of reliability will be expensive. An alternative method for constructing the truss is discussed requiring no new technology development or complex mechanisms and has already been demonstrated on-orbit. The alternative method proposes an erectable truss beam which can be assembled by two astronauts in EVA. The EVA crew would have to manually assemble the beam from 468 struts and 165 nodes, and install 7 instrumentation platforms with signal and power cabling. The predicted assembly time is 3 hr and 23 min. The structure would also have to be disassembled and restowed following testing, thus 2 EVA days would be required. To allow 25 hr for data collection (probably a bare minimum to accomplish meaningful tests), current Shuttle operations policy dictates a 9-day mission. The design, assembly procedure and issues associated with the alternative concept are discussed.

Author

N88-23826*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

LDR STRUCTURAL EXPERIMENT DEFINITION

RICHARD A. RUSSELL and RICHARD M. GATES (Boeing Aerospace Co., Seattle, Wash.) Jun. 1988 51 p (NASA-TM-100618; NAS 1.15:100618) Avail: NTIS HC A04/MF A01 CSCL 22B

A study was performed to develop the definition of a structural flight experiment for a large precision segmented reflector that would utilize the Space Station. The objective of the study was to use the Large Deployable Reflector (LDR) baseline configuration for focusing on experiment definition activity which would identify the Space Station accommodation requirements and interface constraints. Results of the study defined three Space Station based experiments to demonstrate the technologies needed for an LDR type structure. The basic experiment configurations are the same as the JPL baseline except that the primary mirror truss is 10 meters in diameter instead of 20. The primary objectives of the first experiment are to construct the primary mirror support truss and to determine its structural and thermal characteristics. Addition of the optical bench, thermal shield and primary mirror segments and alignment of the optical components occur on the second experiment. The structure will then be moved to the payload pointing system for pointing, optical control and scientific optical measurement for the third experiment.

N88-23828* National Aeronautics and Space Administration. Langley Research Center, Hampton, VA. SPACE SPIDER CRANE Patent

IAN O. MACCONOCHIE, inventor (to NASA), MARTIN M. MIKULAS, JR., inventor (to NASA), JACK E. PENNINGTON, inventor (to NASA), REBECCA L. KINKEAD, inventor (to NASA), and CHARLES F. BRYAN, JR., inventor (to NASA) 19 Apr. 1988 13 p Filed 30 Sep. 1986 Supersedes N87-15259 (25 - 07, p 874) (NASA-CASE-LAR-13411-1-SB; US-PATENT-4,738,583; US-PATENT-APPL-SN-913432; US-PATENT-CLASS-414-735; US-PATENT-CLASS-414-750; US-PATENT-CLASS-901-1; US-PATENT-CLASS-901-33; US-PATENT-CLASS-180-8.6) Avail: US Patent and Trademark Office CSCL 22B

A space spider crane for the movement, placement, and or assembly of various components on or in the vicinity of a space structure is described. As permanent space structures are utilized by the space program, a means will be required to transport cargo and perform various repair tasks. A space spider crane comprising a small central body with attached manipulators and legs fulfills this requirement. The manipulators may be equipped with constant pressure gripping end effectors or tools to accomplish various repair tasks. The legs are also equipped with constant pressure aripping end effectors to grip the space structure. Control of the space spider crane may be achieved either by computer software or a remotely situated human operator, who maintains visual contact via television cameras mounted on the space spider crane. One possible walking program consists of a parallel motion walking program whereby the small central body alternatively leans forward and backward relative to end effectors.

Official Gazette of the U.S. Patent and Trademark Office

N88-26397*# Bionetics Corp., Hampton, VA. SOME OPERATIONAL ASPECTS OF A ROTATING ADVANCED-TECHNOLOGY SPACE STATION FOR THE YEAR 2025 Contractor Report, May - Nov. 1987

M. J. QUEIJO, A. J. BUTTERFIELD, W. F. CUDDIHY, C. B. KING, R. W. STONE, J. R. WROBEL, and P. A. GARN Jun. 1988 313 p

(Contract NAS1-18267)

(NASA-CR-181617; NAS 1.26:181617) Avail: NTIS HC A14/MF A01 CSCL 22B

The study of an Advanced Technology Space Station which would utilize the capabilities of subsystems projected for the time frame of the years 2000 to 2025 is discussed. The study includes tradeoffs of nuclear versus solar dynamic power systems that produce power outputs of 2.5 megawatts and analyses of the dynamics of the spacecraft of which portions are rotated for artificial gravity. The design considerations for the support of a manned Mars mission from low Earth orbit are addressed. The studies extend to on-board manufacturing, internal gas composition effects, and locomotion and material transfer under artificial gravity forces. The report concludes with an assessment of technology requirements for the Advanced Technology Space Station.

Author

N88-27180*# Axiomatix, Los Angeles, CA.
SPACECRAFT APPLICATIONS OF ADVANCED GLOBAL
POSITIONING SYSTEM TECHNOLOGY Final Report

GAYLORD HUTH, JAMES DODDS, SERGEI UDALOV, RICHARD AUSTIN, PETER LOOMIS, and I. NEWTON DUBORAW, III (Motorola, Inc., Chicago, III.) 31 May 1988 147 p (Contract NAS9-17681)

(NASA-CR-172055; NAS 1.26:172055; R8805-5) Avail: NTIS HC A07/MF A01 CSCL 17G

The purpose of this study was to evaluate potential uses of Global Positioning System (GPS) in spacecraft applications in the following areas: attitude control and tracking; structural control; traffic control; and time base definition (synchronization). Each of these functions are addressed. Also addressed are the hardware related issues concerning the application of GPS technology and comparisons are provided with alternative instrumentation methods for specific functions required for an advanced low earth orbit spacecraft.

B.G.

N88-29849# Societe Nationale Industrielle Aerospatiale, Les Mureaux (France).

INTERIM FLIGHT OPPORTUNITY (IFO). VOLUME 1: EXECUTIVE SUMMARY Final Report

M. H. AENISHANSLIN Paris, France ESA 16 Dec. 1987 65 p Prepared in cooperation with Construcciones Aeronauticas S.A., Madrid, Spain, Saab Space A.B., Goeteborg, Sweden, Erno Raumfahrttechnik G.m.b.H., Bremen, West Germany, Norsk Forsvarsteknologi A/S, Norway, Sener S.A., Madrid, Spain, and Fokker B.V.

(Contract ESA-6272/85-NL-AB) (SE/LS/AP-36-818/CN-VOL-1; ESA-CR(P)-2583-VOL-1; COL-TN-AS-0059-VOL-1; ETN-88-93028) Avail: NTIS HC A04/MF A01

A space platform for a wide variety of missions prior to Columbus space station availability is proposed. It can be launched as spare capacity or as main payload on different launchers into a variety of orbits, where it circles for a limited time and then a subset or the whole reenters in a controlled way for recovery on ground. The general configuration is composed of two separable elements; an expendable part, the bus, and a reentry vehicle (REV). Maximum diameter for the bus is 2 m to have an easy and feasible accommodation on a wide variety of launchers. The REV is dimensioned to be able to provide a payload dedicated volume greater than 0.2 cum and the global mass of the platform is not greater than 1500 kg. The BUS is conceived for two alternatives: a battery powered baseline for a ten-day mission, and an option with solar arrays for a 1-month mission. Subsystems are: structure, thermal control, electrical power, attitude control, data handling, communication, and mechanisms. The REV is composed of

separable units: a propulsion module and a reentry capsule. The subsystem list is similar to the bus with propulsion and recovery systems added.

N88-29850*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

SPACE STRUCTURE (DYNAMICS AND CONTROL) THEME DEVELOPMENT

RICHARD A. RUSSELL and RICHARD M. GATES (Boeing Aerospace Co., Seattle, Wash.) Aug. 1988 32 p (NASA-TM-100597; NAS 1.15:100597) Avail: NTIS HC A03/MF A01 CSCL 22B

A study was made to define the long-range technical objectives and goals for the Space Structure (Dynamics and Control) theme area. The approach was to evaluate ongoing and proposed technology activities such that the technology gaps and voids could be identified. After the technology needs were identified, a set of recommended experimental activities was defined including the technical objectives of each and their relationship.

N88-29856*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

DEFINITION OF COMMON SUPPORT EQUIPMENT AND SPACE STATION INTERFACE REQUIREMENTS FOR IOC MODEL TECHNOLOGY EXPERIMENTS

RICHARD A. RUSSELL and RICHARD D. WAISS (Boeing Aerospace Co., Seattle, Wash.) Aug. 1988 163 p (NASA-TM-100656; NAS 1.15:100656) Avail: NTIS HC A08/MF A01 CSCL 22B

A study was conducted to identify the common support equipment and Space Station interface requirements for the IOC (initial operating capabilities) model technology experiments. In particular, each principal investigator for the proposed model technology experiment was contacted and visited for technical understanding and support for the generation of the detailed technical backup data required for completion of this study. Based on the data generated, a strong case can be made for a dedicated technology experiment command and control work station consisting of a command keyboard, cathode ray tube, data processing and storage, and an alert/annunciator panel located in the pressurized laboratory.

N88-30447# European Space Agency, Paris (France). WITH AN EYE TO THE FUTURE: ESA GENERAL STUDIES PROGRAM 1988

NORMAN LONDDON, ed. and BRIGITTE KALDEICH, ed. Apr. 1988 38 p Original contains color illustrations (ESA-SP-1100; ISSN-0250-1589; ETN-88-93047) Avail: NTIS HC A03/MF A01

The ESA programs concerning end-to-end telematics architecture; long-term evolution of telecommunications services and systems; long-term evolution of Earth observation; microgravity utilization; autonomous orbital capability architecture; in-orbit assembly, servicing, and tending; long-term evolution of space transportation systems; and European ground infrastructure are presented.

02

ANALYSIS AND DESIGN TECHNIQUES

Includes interactive techniques, computerized technology design and development programs, dynamic analysis techniques, environmental modeling, thermal modeling, and math modeling.

A88-34469

AN INTEGRATED COMPUTER AIDED ENGINEERING SYSTEM FOR SPACE STATION DESIGN

R. A. WHALE (SDRC Engineering Services, Ltd., Hitchin, England), M. BAKER, H. D. CHIGER, J. A. HABERMEYER, P. J. HIPOL

(SDRC, Inc., San Diego, CA) et al. IN: Computer applications in spacecraft design and operation. Berlin and New York, Springer-Verlag, 1987, p. 53-76.

A computer-aided engineering tool currently in use at NASA for system engineering and integration analysis of the space station is described. The tool combines spacecraft-specific analysis software called IDEAS (truss synthesizer, rigid body controls, plume impingement, orbital lifetime, orbit heat loads, and life support systems with general purpose interactive graphics, geometric database, solid modeller, and structural and thermal software to obtain an integrated package suitable for space station design. The capabilities and examples of the use of IDEAS are presented.

A88-37278#

METHODS FOR SPACECRAFT SIMULATION IN VIBRO-ACOUSTIC ENVIRONMENTS

P. G. BREMNER and D. C. RENNISON (Vipac Pty., Ltd., Australia) IN: National Space Engineering Symposium, 3rd, Canberra, Australia, June 30-July 2, 1987, Preprints of Papers. Barton, Australia/Brookfield, VT, Institution of Engineers/Brookfield Publishing Co., 1987, p. 232-237. refs

Seemingly quite different modelling approaches to spacecraft design are emerging for acoustic and random vibration environments. The authors endeavor to unify these methods as a single vibro-acoustics field. A good understanding of the theory is necessary to make decisions on cost-effective spacecraft analysis and test strategies. The paper describes three modelling strategies, their inter-relationships and their relative merits or realm of suitability. These are Finite Element Methods, Statistical Energy Analysis and the Power Flow Method. Original work by the authors is presented to demonstrate the application to aerospace structural design problems. Particular attention is drawn to the accuracy and useable frequency range of the different methods, including validation exercises using test data. Test facilities are proposed for the cost-effective simulation of vibro-acoustic environments in a manner appropriate to Australian needs.

A88-39500 SPACE PHOENIX

RANDOLPH H. WARE, THOMAS F. ROGERS, DAVID J. PADUA (External Tanks Corp., DE), and WALTER ORR ROBERTS (University Corporation for Atmospheric Research, Boulder, CO) Space Policy (ISSN 0265-9646), vol. 4, May 1988, p. 143-150. refs

The Space Phoenix Program to develop the Space Shuttle fleet's expended external fuel tanks for scientific and commercial use is discussed. The program is run through cooperation between the federal government and three private organizations, the University Corporation for Atmospheric Research (UCAR), the UCAR Foundation, and the External Tanks Corporation (ETCO). The 27.6 ft X 153 ft external tanks (ETs), which are jettisoned from the Shuttle to eliminate potentially harmful impact, are made of high-grade aluminum and are used to carry 70,000 cu ft of separate, pressurized hydrogen and oxygen. The Space Phoenix Program is studying the commercial and non-profit use of ETs in space for purposes such as manufacturing, research, and storage. One of its major objectives is to try to save ETs and park them in a high-altitude orbit to safeguard their potential value. The program is exploring the possible use of ETs to fulfill the need for space facilities and laboratories, and working to obtain the rights from the government to use, modify, and operate ETs.

A88-40524

SIMULATION - ANTIDOTE TO RISK

LEE DAY and GRAHAM SPEED (Singer Link-Miles, Ltd., Lancing, England) Spaceflight (ISSN 0038-6340), vol. 30, June 1988, p. 240-243.

The use of simulators to reduce risk in space programs is discussed. Simulation is used in system verification during the early phases of a project to substitute for missing system elements, allowing for verification of the overall system design, so that modifications can be made before hardware is manufactured. The

new focus in developing simulators is on training analysis to provide a system tailored to the tasks and characteristics of trainees. This involves a structured progression incorporating only those stages of training found necessary through analysis. A number of simulators are networked in the final stage of training the flight crew, ground controllers, and the mission-related payload user and control personnel. In the development of the Columbus Attached Pressurized Module or the Japanese Experimental Module, software models and hardware mock-ups are linked together so that progressively larger simulations of the system can be performed. Prototype equipment is substituted for the models until the entire system is in place. The need for simulation continues after a mission launch because of the remoteness of support activity from the home base.

A88-40566

DESIGN OF A SOLAR POWER SATELLITE FOR CONSTRUCTION FROM LUNAR MATERIALS

GREGG E. MARYNIAK (Space Studies Institute, Princeton, NJ) and BRIAN TILLOTSON (Space Research Associates, Redmond, WA) Space Power (ISSN 0951-5089), vol. 7, no. 1, 1988, p. 27-36. refs

Solar power satellites may be constructed from materials mined on the moon and transported into free space by means of an electromagnetic catapult called a mass-driver. Both the mass-driver and the chemical processing techniques required to obtain construction materials from lunar soil have been demonstrated in the laboratory. A solar power satellite has been designed for construction from lunar materials. This design requires only 1 percent of its mass from the earth.

A88-42911#

OMV MULTIPLE DEPLOYMENTS OF LIGHTSATS

WILLIAM L. SMITH and JAMES D. WALKER (TRW, Inc., Federal Systems Div., Redondo Beach, CA) AIAA, Space Programs and Technologies Conference, Houston, TX, June 21-24, 1988. 7 p. (AIAA PAPER 88-3518)

The design and capabilities of the NASA Orbital Maneuvering Vehicle (OMV) are reviewed, and the potential value of the Shuttle-borne OMV for deploying lightweight satellites (lightsats) into different orbits is discussed and illustrated with extensive drawings and diagrams. Assuming 100-lb lightsats in extended GAS canisters, the OMV could separate from the Orbiter at 16 mmi and deploy six lightsats each at altitudes 430, 700, and 970 nmi before rejoining the Orbiter at 160 nmi. Also considered are configurations with 8 or 12 200-lb lightsats and the fittings for Titan-4 launch of OMV/lightsat packages.

A88-43969#

A CONCEPT FOR MANNED VARIABLE GRAVITY FACILITIES

J. ALEX GIMARC IN: Space manufacturing 6 - Nonterrestrial resources, biosciences, and space engineering; Proceedings of the Eighth Princeton/AIAA/SSI Conference, Princeton, NJ, May 6-9, 1987. Washington, DC, American Institute of Aeronautics and Astronautics, 1987, p. 175-187. refs

This paper will discuss the needs for and the configurations of an early space platform that will provide artificial gravity. The platform will be a tethered dumbbell capable of rotation to provide artificial gravity levels up to 1-G earth normal with reasonable rotation rates. The facility should be able to provide life support and living quarters for a number of inhabitants, and should allow the study of the long term effects of various 'G' levels on the human body, plants and animals. It also may be able to minimize those problems by providing a 1-G habitat or crewmembers who might 'commute' to and from the workplace. This type of facility should be affordable, manned and operational in a minimum number of flights. It should also be capable of expansion to provide living quarters for those involved in large scale space manufacturing and construction projects.

A88-44898

BALLISTIC DESIGN OF SPACE SYSTEMS [BALLISTICHESKOE PROEKTIROVANIE KOSMICHESKIKH SISTEM]

PAVEL ROMANOVICH POPOVICH and BORIS SERGEEVICH SKREBUSHEVSKII Moscow, Izdatel'stvo Mashinostroenie, 1987, 240 p. In Russian. refs

The general principles of the ballistic design of space systems are examined. It is shown that the ballistic characteristics of various types of spacecraft are largely determined by the combination of tasks to be performed, technical constraints, and physical environment of the particular space mission. The stages of the process of orbital parameter selection are examined, and methods are presented for solving problems of the synthesis of dynamically stable space systems.

A88-46414

AN INTEGRATED APPROACH TO THE MINIMUM WEIGHT AND OPTIMUM CONTROL DESIGN OF SPACE STRUCTURES

N. S. KHOT (USAF, Flight Dynamics Laboratory, Wright-Patterson AFB, OH) IN: Large space structures: Dynamics and control. Berlin and New York, Springer-Verlag, 1988, p. 355-363. refs

Two procedures for the simultaneous optimization of a structural design for both minimum weight and active vibration control are characterized analytically in a brief review. The equations of motion for a typical system are derived, and the formulations of methods based on (1) minimum-weight design with constraints on the closed-loop eigenvalues and (2) minimum-weight design with constraints on the control gain norm are outlined. Numerical results for sample problems analyzed using the active-control algorithm ACOSS-FOUR (Strunce et al., 1980) are presented in tables.

T.K.

A88-46516

TASKS OF THE SIMULATION INSTALLATIONS FOR SPACE FLIGHT OPERATIONS IN THE OPERATIONS CENTER FOR MANNED SPACE LABORATORIES [AUFGABEN DER SIMULATIONSANLAGEN FUER DEN RAUMFLUGBETRIEB IM BETRIEBSZENTRUM FUER BEMANNTE WELTRAUMLABORS] KONRAD REINEL, GERHARD HEIMBOLD, THOMAS LANGE, and BERND SCHAEFER (DFVLR, Oberpfaffenhofen, Federal Republic of Germany) DFVLR-Nachrichten (ISSN 0011-4901), June 1988, p. 5-10. In German.

Test installations being built for orbital applications in the DFVLR operational center for manned space operations are described. The activities, equipment, and personnel of the installations for rendezvous and docking, for servicing, and for large space structures are addressed. The building in which these installations are housed is briefly discussed.

C.D.

A88-46968

INTERACTIVE RADAR ENVIRONMENT SIMULATION MODEL (IRESM)

ROBERT J. HANCOCK, PAUL ANTONIK, FRANCIS G. SHERRILL, JEFFREY A. MCKAY (Simulation Technology, Inc., Greenville, TX), and JOHN C. CLEARY (USAF, Rome Air Development Center, Griffiss AFB, NY) IN: 1987 Annual Summer Computer Simulation Conference, 19th, Montreal, Canada, July 27-30, 1987, Proceedings. San Diego, CA, Society for Computer Simulation, 1987, p. 272-274.

A radar simulation computer program to evaluate various radar system designs and a comprehensive program to evaluate various large aperture antenna designs have been integrated into the Interactive Radar Environment Simulation Model (IRESM). This simulation has been used to evaluate a number of different surface-based radar systems. The IRESM and its components are examined. A detailed signal simulation is presented, which models radar signals as they are generated, propagated through the environment, reflected by scatterers, and processed. A program for the evaluation of electronically-scanned phased array antennas is discussed, which enables the user to perform quick and accurate analyses on a variety of antenna designs.

A88-46982 SIMULATION OF SPACE MANIPULATOR OPERATIONS

C. N. A. PRONK (Nationaal Lucht- en Ruimtevaartlaboratorium,

Amsterdam, Netherlands), A. ELFVING (ESA, Noordwijk, Netherlands), E. ERSUE (ISRA Systemtechnik GmbH, Darmstadt, Federal Republic of Germany), and A. L. LIPPAY (CAE Electronics, Ltd., Montreal, Canada) IN: 1987 Annual Summer Computer Simulation Conference, 19th, Montreal, Canada, July 27-30, 1987, Proceedings. San Diego, CA, Society for Computer Simulation, 1987, p. 845-850. refs (Contract ESA-6482/85)

The requirements for the simulation software of a European robotics operations simulator (Eurosim) are outlined and discussed. Eurosim has to cover a wide range of applications including general research and development; design; development; testing, verification, and qualification; training of human operators; and operations planning support. In an early stage of definition of Eurosim, four main functional subsystems were identified: the simulation subsystem, the image generation subsystem, the real-word operations subsystem, and the supervision subsystem. It is suggested that standards in software development be used, such as modularity, calling standards, and high-level languages to minimize maintenance costs.

A88-46986

ORBITER SERVICER RENDEZVOUS SIMULATION (ORSIM)

AMIEL AMATO and MICKIE D. HOFFMAN (Advanced Technology, Inc., Reston, VA) IN: 1987 Annual Summer Computer Simulation Conference, 19th, Montreal, Canada, July 27-30, 1987, Proceedings. San Diego, CA, Society for Computer Simulation, 1987, p. 964-969. SDIO-sponsored research.

Orbiter Servicer Rendezvous Simulation (ORSIM) is an automated tool that simulates sequential transfer maneuvers of an orbital maneuvering vehicle (OMV) transporting orbital replaceable units from a space-based depot, or logistics platform, to higher altitude SDI sdatellites. ORSIM calculates OMV energy expenditures (velocity changes) and event histories for various combinations of user-selected orbital transfer maneuvers. Additionally, ORSIM determines the optimal configuration/quantities of logistics platforms and OMVs which configuration/quantities of differential nodal precession, given user-prescribed values of the scheduled maintenance cycle and required servicing times. ORSIM is coded in FORTRAN-77 and is resident on an IBM PC/AT.

A88-46987

SDI EXPERIMENT REQUIREMENTS LEAD TO NEW EMPHASIS ON SHUTTLE SIMULATION CAPABILITIES

B. L. HUFFMAN (Teledyne Brown Engineering, Huntsville, AL) IN: 1987 Annual Summer Computer Simulation Conference, 19th, Montreal, Canada, July 27-30, 1987, Proceedings. San Diego, CA, Society for Computer Simulation, 1987, p. 976-978.

On-orbit simulation capabilities at Teledyne Brown's Space Programs Division are described and summarized. The background and history of developments are given along with an explanation of how SDI-related experiments have given new impetus to on-orbit shuttle simulation capabilities. Future enhancements planned the on-orbit simulation are given which describe how it may be used for current and future projects.

A88-50836

EXPONENT DIAGRAM ANALYSIS OF FEEDBACK CONTROL SYSTEMS INCLUDING FLEXIBLE STRUCTURES

HUBERT HAHN IN: International Modal Analysis Conference, 5th, London, England, Apr. 6-9, 1987, Proceedings. Volume 1. Bethel, CT, Society for Experimental Mechanics, Inc., 1987, p. 785-798.

Techniques for the analysis and design of feedback controllers for hydraulic or pneumatic test facilities (for applications such as earthquake, vehicle, and spacecraft testing) are developed and demonstrated. The method is designed to incorporate the effects of structural flexibility and provide better insight into the physics of system behavior; it comprises three main steps: symbolic computation of a characteristic polynomial, exponent-diagram analysis of the symbolic characteristic equation, and higher-order

root-locus computation. These steps are described in detail and illustrated with extensive diagrams, graphs, and tables of numerical data for two sample problems.

A88-51386*# Sterling Software, Palo Alto, CA. **OPTIMUM CONFIGURATION OF HIGH-LIFT AEROMANEUVERING ORBITAL TRANSFER VEHICLES IN VISCOUS FLOW**

CAROL B. DAVIES (Sterling Software, Palo Alto, CA) and CHUL PARK (NASA, Ames Research Center, Moffett Field, CA) of Spacecraft and Rockets (ISSN 0022-4650), vol. 25, May-June 1988, p. 193-201. Previously cited in issue 17, p. 2472, Accession no. A85-37673. refs

A88-52334

WELDING THE SPACE STATION COMMON MODULE

T. J. BOSWORTH, C. M. MILLER, and C. C. GRIFFEE (Boeing Aerospace Co., Seattle, WA) IN: Space Congress, 25th, Cocoa Beach, FL, Apr. 26-29, 1988, Proceedings. Cape Canaveral, FL, Canaveral Council of Technical Societies, 1988, p. 5-34 to 5-41.

The construction of a prototype of the Space Station common module is examined. The prototype is 13.67 feet in diameter and 43.6 feet in length and consists of five basic components: skins, ring frames, gore sections, docking port, and window frame. The design and materials of construction for these components are designed. The variable polarity plasma arc welding process which was used in constructing the prototype is described. The weld requirements and the assembly sequence for building the prototype are considered.

A88-53226* Lockheed Missiles and Space Co., Palo Alto, CA. DESIGN AND TEST OF A MODIFIED PASSIVE ORBITAL **DISCONNECT STRUT (PODS-IV)**

IRAN E. SPRADLEY and RICHARD T. PARMLEY (Lockheed Missiles and Space Co., Inc., Research and Development Div., Palo Alto, CA) IN: Advances in cryogenic engineering. Volume 33 - Proceedings of the Cryogenic Engineering Conference, Saint Charles, IL, June 14-18, 1987. New York, Plenum Press, 1988, p. 935-942. Research supported by Lockheed Missiles and Space Co., Inc. refs

(Contract NAS2-11946)

The design and testing of a modification to the Passive Orbital Disconnect Struts (PODS) III system (designed to reduce support conductance and superfluid-helium-tank dewar weights), PODS IV, are discussed. The PODS IV design was found to achieve a nominal increase of 630-812 percent in side-load resistance over the PODS-III design, with a predicted 15-percent increase in thermal conductance. It is noted that the increase in side-load resistance largely removes the limitation on length of the orbit tube inherent in the PODS III design. The higher resistance of the longer orbit tube results in lower total conductance for the PODS-IV design. R.R.

A88-53664#

SPACE OPERATIONS AND SPACE STATION REAL-TIME SIMULATION

D. HERNANDEZ, A. A. MOLINEROS, and W. C. WAGNER (Rockwell International Corp., Space Transportation Systems Div., IN: AIAA, Flight Simulation Technologies Downey, CA) Conference, Atlanta, GA, Sept. 7-9, 1988, Technical Papers. Washington, DC, American Institute of Aeronautics Astronautics, 1988, p. 304-312. refs (AIAA PAPER 88-4627)

This paper describes the Space Operations and Space Station Simulator, a man-in-the-loop, real-time test bed designed to support the analysis, design, and evaluation of future space systems. The state-of-the-art, distributed, hybrid simulator was developed and built by the Space Tranportation Systems Division of Rockwell International. A high-fidelity facility with prototype Space Shuttle on-board computers and realistic Shuttle and Space Station controls and displays, the simulator is capable of real-time hardware- and human-in-the-loop simulation using embeddded and nonhomogeneous processors, cockpit controls and displays, and out-the-window graphic displays. Presented is an overview of the simulation configuration and capabilities, the hybrid computers and mathematical models, and the hardware and software implementation features. Author

A88-54896#

DESIGN AND DEVELOPMENT OF A COMPUTER CONTROLLED SYSTEM FOR SPACECRAFT STATIC TESTING

M. K. PADMANABHAN, M. V. KANNAN, and S. SHANKAR NARAYAN (ISRO, Structures Div., Bangalore, India) Developments in Mechanics. Volume 14(a) - Midwestern Mechanics Conference, 20th, West Lafayette, IN, Aug. 31-Sept. 2, 1987, Proceedings. West Lafayette, IN, Purdue University, 1987, p.

A typical configuration and detailed outline of the hardware/ software developed for a computer controlled system for the static testing of large spacecraft structures are presented. Software features include gauge installation and checkout, access to on-line strain monitoring during loading and unloading, strain and stress analyses, and various data recording and plotting capabilities. It is noted that the present system eliminates the time delays and errors in measurement and analysis that are normally found in manual/semiautomatic loading setups. The system is shown to be versatile for data acquisition, analysis, and documentation.

N88-20332# Messerschmitt-Boelkow-Blohm G.m.b.H., Ottobrunn (Germany, F.R.). Space Div.
STUDY OF THE OPTIMIZATION OF SATELLITE SYSTEM

DESIGN FOR TRANSFER ORBIT Final Report

BAETZ, K. FETZER, W. FINK, H. HUFNAGEL, H. KELLERMEIER, KLEINAU, W. MUELLER, and H. CHALMERS Raumfahrttechnik G.m.b.H., Bremen, West Germany) Paris. France ESA Apr. 1983 349 p

(Contract ESTEC-4908/81-NL-PP(SC))

(MBB-URV-135; ESA-CR(P)-2518; ETN-88-91960) Avail: NTIS HC A15/MF A01

Geostationary transfer orbit (GTO) characteristics of former geosynchronous satellites; satellite configurations as to GTO requirements; telemetry and telecommand, thermal, power, and attitude control subsystems as to stabilization modes and GTO constraints; and apogee injection strategies (single/multiple burn, steering law) were reviewed. The investigations were confined to 2 Ariane 4 payload classes (2500 kg in GTO, dual-launch and 4200 kg in GTO, single launch), three-axis or slow barbecue stabilization during transfer orbit, and use of a liquid apogee injection system with low thrust level (400 N). A recommendation for an overall system optimization is presented.

N88-24172*# General Electric Co., Philadelphia, PA. Space Div.

THE MULTI-DISCIPLINARY DESIGN STUDY: A LIFE CYCLE **COST ALGORITHM Final Contractor Report**

R. R. HARDING and F. J. PICHI Washington NASA Jun. 1988 30 p

(Contract NAS1-18032)

(NASA-CR-4156; NAS 1.26:4156) Avail: NTIS HC A03/MF A01 CSCL 09B

The approach and results of a Life Cycle Cost (LCC) analysis of the Space Station Solar Dynamic Power Subsystem (SDPS) including gimbal pointing and power output performance are documented. The Multi-Discipline Design Tool (MDDT) computer program developed during the 1986 study has been modified to include the design, performance, and cost algorithms for the SDPS as described. As with the Space Station structural and control subsystems, the LCC of the SDPS can be computed within the MDDT program as a function of the engineering design variables. Two simple examples of MDDT's capability to evaluate cost sensitivity and design based on LCC are included. MDDT was designed to accept NASA's IMAT computer program data as input so that IMAT's detailed structural and controls design capability

can be assessed with expected system LCC as computed by MDDT. No changes to IMAT were required. Detailed knowledge of IMAT is not required to perform the LCC analyses as the interface with IMAT is noninteractive.

Author

N88-24189*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

MTK: AN AI TOOL FOR MODEL-BASED REASONING

WILLIAM K. ERICKSON and MARY R. RUDOKAS /n NASA, Marshall Space Flight Center, Third Conference on Artificial Intelligence for Space Applications, Part 2 p 1-5 Jun. 1988

Avail: NTIS HC A04/MF A01 CSCL 09B

A 1988 goal for the Systems Autonomy Demonstration Project Office of the NASA Ames Research Office is to apply model-based representation and reasoning techniques in a knowledge-based system that will provide monitoring, fault diagnosis, control, and trend analysis of the Space Station Thermal Control System (TCS). A number of issues raised during the development of the first prototype system inspired the design and construction of a model-based reasoning tool called MTK, which was used in the building of the second prototype. These issues are outlined here with examples from the thermal system to highlight the motivating factors behind them, followed by an overview of the capabilities of MTK, which was developed to address these issues in a generic fashion.

N88-24190*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

INTEGRATION OF SYMBOLIC AND ALGORITHMIC HARDWARE AND SOFTWARE FOR THE AUTOMATION OF SPACE STATION SUBSYSTEMS

HUGH GREGG, KATHLEEN HEALEY, EDMUND HACK (Lockheed Engineering and Management Services Co., Inc., Houston, Tex.), and CARLA WONG In NASA, Marshall Space Flight Center, Third Conference on Artificial Intelligence for Space Applications, Part 2 p 7-14 Jun. 1988 Previously announced as N88-15497 (Contract W-7405-ENG-48)

Avail: NTIS HC A04/MF A01 CSCL 09B

Expert systems that require access to data bases, complex simulations and real time instrumentation have both symbolic and algorithmic needs. Both of these needs could be met using a general purpose workstation running both symbolic and algorithmic codes, or separate, specialized computers networked together. The later approach was chosen to implement TEXSYS, the thermal expert system, developed by the NASA Ames Research Center in conjunction with the Johnson Space Center to demonstrate the ability of an expert system to autonomously monitor the thermal control system of the space station. TEXSYS has been implemented on a Symbolics workstation, and will be linked to a microVAX computer that will control a thermal test bed. The integration options and several possible solutions are presented.

N88-24332# Texas A&M Univ., College Station. Dept. of Nuclear Engineering.

A THERMAL EQUILIBRIUM MODEL FOR MULTI-MEGAWATT SPACE PLATFORMS

MARK DAVID DEHART In New Mexico Univ., Transactions of the Fourth Symposium on Space Nuclear Power Systems p 335-338 1987 Sponsored by DOE, Washington, D.C. Avail: NTIS HC A22/MF A01

Due to the current research under the SDI and the SP-100 Project, much work is being done to determine the optimum design for a space based nuclear powered platform. The problem of thermal equilibrium temperature distributions which would be experienced on a multimegawatt platform using a nuclear reactor driven thermodynamic cycle for production of several megawatts of electrical power over extended periods of time, the temperatures to which electronics packages on the platform would be subjected, and what measures needed to ensure that such electronics could survive is addressed. Anticipated electronics used on such a platform may be able to withstand steady state temperatures of up to 600 K, while current high temperature electronics are limited

to 475 K. Therefore, an effort is made to determine the conditions and requirements to be imposed on a platform that would result in temperatures at critical locations between 475 and 600 K. A numerical model was developed to estimate outer surface temperatures and radioisotopes based on radiation heat transfer. In this model, the effects of space, Earth, and Sun are represented by an averaged sink temperature of 250 K.

N88-25371*# Taylor and Associates, Inc., Wrightwood, CA. SPACE STATION ARCHITECTURAL ELEMENTS AND ISSUES DEFINITION STUDY

T. C. TAYLOR, J. S. SPENCER, and C. J. ROCHA May 1986 78 p

(Contract NASA ORDER A-16516-C)

(NASA-CR-3941; NAS 1.26:3941) Avail: NTIS HC A05/MF A01 CSCL 22B

A study was conducted to define the architectural elements and issues of the Space Station. The objective of the study was to identify those questions which require further research and suggest ways in which the research can be undertaken. The study examined five primary topics, asked salient questions and described the merits of alternative solutions.

Author

N88-29411*# National Aeronautics and Space Administration. Marshall Space Flight Center, Huntsville, AL.

AN EXPERT SYSTEM FOR A DISTRIBUTED REAL-TIME TRAINER

STEVEN C. PURINTON and CAROLINE K. WANG In its Second Conference on Artificial Intelligence for Space Applications p 545-554 Aug. 1988

Avail: NTIS HC A99/MF E03 CSCL 14B

The problem addressed by this expert system concerns the expansion of capability of a Real Time Trainer for the Spacelab flight crew. As requirements for more models or fidelity are placed upon the system, expansion is necessary. The simulator can be expanded using a larger processor or by going to a distributed system and expand by adding additional processors. The distributed system is preferable because it is more economical and can be expanded in a more incremental manner. An expert system was developed to evaluate modeling and timing capability within a real time training simulator. The expert system is based upon a distributed configuration. Components of the modeled system are control tasks, network tasks, emulator tasks, processors, displays, and a network. The distributed module expert system (DMES) allows the configuring of processors, tasks, display use, keyboard use, and selection of alternate methods to update the data buffer. Modules can be defined with execution occurring in a specific processor on a network. The system consists of a knowledge front end editor to interactively generate or update the knowledge base, an inference engine, a display module, and a recording module. Author

N88-29852# Dornier-Werke G.m.b.H., Friedrichshafen (Germany, F.B.).

PROCEDURES FOR UPDATING DYNAMIC MATHEMATICAL MODELS, TEST PHASE Final Report

B. CAESAR, E. ERBEN, H. HUENERS, M. LINK, J. MORENO-BARRAGAN, A. SCHUMANN-LUCK, F. VOGEL, and M. WEILAND (Kassel Univ., West Germany) Paris, France ESA Jun. 1987 413 p

(Contract ESTEC-6262/85-NL-PH)

(MEBS-38/87; ESA-CR(P)-2606; ÉTN-88-93036) Avail: NTIS HC A18/MF A01

Procedures for updating and identification of dynamic mathematical models were applied to real hardware problems. Small size (spring-mass, beam) structures, a medium size test structure, a spacecraft antenna module, and a whole spacecraft (MAROTS) were investigated. The small and medium size structures were manufactured, and tested with different test methods to get the modal parameters. The test data of the antenna module and the spacecraft were obtained from the relevant projects. The application of modal parameter identification with procedures working in the time domain and in the frequency domain

(ISSPA) and the correlation of results from different tests indicates the quality of test results in general. The general applicability of ISSPA is demonstrated. A highly formulized update procedure was applied to improve the mathematical models of the tested structures on the basis of modal test data. The advantages and drawbacks of such a method are described. The applicability to standard size spacecraft problems is demonstrated.

N88-30350*# George Mason Univ., Fairfax, VA. Dept. of Computer Science.

PARALLEL AND DISTRIBUTED COMPUTATION FOR **FAULT-TOLERANT OBJECT RECOGNITION**

HARRY WECHSLER In NASA, Goddard Space Flight Center, The 1988 Goddard Conference on Space Applications of Artificial Intelligence p 275-293 Aug. 1988 Avail: NTIS HC A19/MF A01 CSCL 09B

The distributed associative memory (DAM) model is suggested for distributed and fault-tolerant computation as it relates to object recognition tasks. The fault-tolerance is with respect to geometrical distortions (scale and rotation), noisy inputs, occulsion/overlap, and memory faults. An experimental system was developed for fault-tolerant structure recognition which shows the feasibility of such an approach. The approach is futher extended to the problem of multisensory data integration and applied successfully to the recognition of colored polyhedral objects.

03

STRUCTURAL CONCEPTS

Includes erectable structures (joints, struts, and columns), deployable platforms and booms, solar sail, deployable reflectors, space fabrication techniques, and protrusion processing.

A88-35940#

SPACE STATION ERECTABLE TRUSS JOINT EVALUATION

J. H. PEEBLES and K. B. KEMPSTER (McDonnell Douglas Astronautics Co., Huntington Beach, CA) AIAA SDM Issues of the International Space Station, Conference, Williamsburg, VA, Apr. 21, 22, 1988. 9 p.

(AIAA PAPER 88-2448)

The structural and functional suitability of five different joint concepts developed and fabricated as part of an advanced development project for the Space Station program is evaluated. The joints were tested in axial tension and compression to determine their inherent stiffness, damping, and nonlinear characteristics which may have a strong influence on the dynamic behavior of a Space Station or other large space structures such as those proposed for SDI concepts. Ease of operation, maintainability, and reliability of the joint concepts are also addressed. Underwater test results for two of the joints are also described.

A88-35941#

PERFORMANCE ENHANCEMENT OF PASSIVELY DAMPED **JOINTS FOR SPACE STRUCTURES**

JACKY C. PRUCZ and C. C. SPYRAKOS (West Virginia University, Morgantown) AIAA SDM Issues of the International Space Station, Conference, Williamsburg, VA, Apr. 21, 22, 1988. 23 p. refs (AIAA PAPER 88-2450)

This paper presents a theoretical performance analysis of different configurations for passively damped joints that could be used as alternatives to the conventional double-lap configuration. A rational approach is described for predicting the effects of structural interactions between various constituents of a passively damped joint on some of its performance characteristics, including weight, damping, strength, and stiffness in the load transfer direction. Numerical results are described for a rhomblike geometry where the viscoelastic adhesive is enclosed by the elastic joint measurements, and for the application of lateral pressure-tension to the outer adherends of a double-lap jont. A rational methodology for developing innovative joining concepts for space structure is described which can provide enhanced dissipation of vibrational energy without serious penalties in strength, stiffness, or weight characteristics.

A88-35944#

SPACE STATION TRUSS STRUT TUBE DESIGN

KARL B. KEMPSTER and HANK W. BABEL (McDonnell Douglas Astronautics Co., Huntington Beach, CA) AIAA SDM Issues of the International Space Station, Conference, Williamsburg, VA, Apr. 21, 22, 1988. 6 p.

(AIAA PAPER 88-2471)

The paper describes the rationale that led to the current Space Station truss strut tube design. The system-level and derived requirements and the design options developed to satisfy them are discussed. The designs addressed both material and construction options. The selection criteria for evaluating the design options are reviewed and the recommended truss strut tube design is described.

A88-38689*# PRC Kentron, Inc., Hampton, VA. SENSITIVITY ANALYSIS OF A DEPLOYABLE THREE LONGERON TRUSS BEAM DESIGNED FOR MINIMUM MEMBER LOADS DURING DEPLOYMENT

DIRK B. WARNAAR (PRC Kentron, Inc., Hampton, VA) and JERROLD M. HOUSNER (NASA, Langley Research Center, Hampton, VA) AIAA, ASME, ASCE, and AHS, Structures, Structural Dynamics and Materials Conference, 29th, Williamsburg, VA, Apr. 18-20, 1988. 9 p. refs (AIAA PAPER 88-2436)

The significant design variables of a deployable three longeron truss beam, designed for minimum member loads during deployment, are identified and the sensitivity of the load level in the members of the truss beam due to variations of the design variables is established. The analysis of the deployment models, developed in this paper, is carried out using a commercially available computer code, called DADS. Based on the results of the analysis, guidelines are formulated for the design of a deployable three longeron truss beam to achieve minimum loads in the members during deployment. The paper concludes with a brief discussion of the applicability of the approach, taken in this paper, to other truss configurations. Author

A88-41038

A CONTINUUM MODEL FOR THE NONLINEAR ANALYSIS OF **BEAM-LIKE LATTICE STRUCTURES**

D. B. MCCALLEN (Lawrence Livermore National Laboratory, Livermore, CA) and K. M. ROMSTAD (California, University, Davis) Computers and Structures (ISSN 0045-7949), vol. 29, no. 2, 1988, p. 177-179, 181-197. refs

A simple equivalent continuum model has been developed for the geometrically nonlinear analysis of beam-like lattice structures. Two important features of the model are the simplicity of the calculation of the continuum properties and the ability of the continuum to accurately predict the behavior of rigid-joint as well as pin-joint lattices. The equivalence of the continuum and lattice is established by requiring the strain energy of the continuum to equal the strain energy of the lattice for a finite set of assumed deformation modes. It is shown that an additional strain energy term not found in classical Timoshenko beam theory must be included in the continuum strain energy function in order to accurately approximate the behavior of rigid-joint frames. A finite element discretization is applied to the continuum to obtain numerical solutions for the continuum model. By comparison with discrete finite element results for the lattice, the accuracy of the continuum methodology is demonstrated for both static and dynamical problems. For the nonlinear problems studied, the continuum solutions were found to require only a small fraction of the CPU time needed for the discrete finite element solutions.

Author

A88-44839#

A SELF-CONSISTENT TENSION SHELL STRUCTURE FOR APPLICATION TO AEROBRAKING VEHICLE AND ITS AERODYNAMIC CHARACTERISTICS

TAKASHI ABE (Institute of Space and Astronautical Science, Sagamihara, Japan) AIAA, ASME, SAE, and ASEE, Joint Propulsion Conference, 24th, Boston, MA, July 11-13, 1988. 10 p. refs

(AIAA PAPER 88-3405)

A new method determining a tension shell structure for an application to an aerobraking vehicle is proposed. In this method, the tension shell configuration can be determined self-consistently in that the pressure distribution which is used to determine the shell configuration can be consistent with the one appearing on the configuration. The aerodynamic characteristics of the tension shell is also investigated numerically.

A88-45452#

THE HIPPARCOS SOLAR PANELS [DE ZONNEPANELEN VAN HIPPARCOS]

T. KONINK (Fokker Space and Systems, Amsterdam, Netherlands) Ruimtevaart, vol. 37, April 1988, p. 12-14. In Dutch.

The design and test performance of the solar panels for the ESA Hipparcos astrometric satellite are reviewed. The panels are of the type used on MARECS and ECS: 2240 180-micron-thick back-surface-reflecting solar cells are mounted on each 1.69 x 1.29 x 0.023-m Al-honeycomb/CFRP panel, electrically insulated with a 50-micron layer of kapton, and shielded from micrometeorites by a 150-micron protective layer. Three panels are attached with hinges to three of the six side faces of the Hipparcos spacecraft and unfolded after it attains GEO. The cells operate at a fixed voltage of 53 V and produce total power of about 450 W. The panels have passed qualification tests including temperature changes between -170 and +85 C, mechanical loads of 45 g, and impact tests of the hinges, as well as vibration and acoustic tests as part of the Hipparcos flight model.

A88-47964#

TWO-DIMENSIONAL DEPLOYABLE TRUSS STRUCTURES FOR SPACE APPLICATIONS

JUNJIRO ONODA (Tokyo, University, Japan) Journal of Spacecraft and Rockets (ISSN 0022-4650), vol. 25, March-Apr. 1988, p. 109-116. refs

A variable-length diagonal (VLD) member-employing truss that can be folded by elongation of some members and a sliding-hinge, double-fold (SHDF) truss that can be folded upon sliding some of its hinge assemblies are presently compared to existing deployable truss alternatives. It is established that the number of mechanical elements which must be actuated and locked during VLD and SHDF deployment is only about half as many as the number involved in double-fold and biaxial double-fold types. The neccessary conditions for the trusses' folding/deployment are formulated, and the design flexibility of each concept in the formation of a globally curved surface is investigated.

A88-50891

BEAM MODIFICATIONS OF STRUCTURAL SYSTEMS UTILIZING THE RECEPTANCE APPROACH WITH STATIC FLEXIBILITY

R. R. LIN, A. B. PALAZZOLO, R. M. ALEXANDER, and C. H. GERHOLD (Texas A & M University, College Station) IN: International Modal Analysis Conference, 5th, London, England, Apr. 6-9, 1987, Proceedings. Volume 2. Bethel, CT, Society for Experimental Mechanics, Inc., 1987, p. 1557-1564. refs

Structural modification algorithms were developed for reanalyzing a structure subjected to a local change. The goal is to predict the modified system modal parameters using only the experimental data from the original system. Most structural modification methods are based on the eigensolution derivative concept. In this research the modification algorithm consists of adding a beam element to the structure and then predicting not only the new natural frequencies, but also the damping ratios.

Two different algorithms were examined: a damped receptance approach and an eigensolution derivative approach. The results of these two algorithms were compared to those from an ANSYS finite element model. In addition, the effects of including static flexibility in the receptance approach were examined. Experimental tests on a cantilever beam were conducted. The results of the receptance method were excellent, especially when the static deflections were utilized; however, the results of the eigensolution derivative approach were poor if the local modification was large.

A88-54722

A NUMERICAL METHOD FOR THE ANALYSIS OF COUPLING TO THIN WIRE STRUCTURES

ROGER A. DALKE (Electro Magnetic Applications, Inc., Lakewood, CO) IN: IEEE 1988 International Symposium on Electromagnetic Compatibility, Seattle, WA, Aug. 2-4, 1988, Record. New York, Institute of Electrical and Electronics Engineers, Inc., 1988, p. 55-61. refs

(Contract DAAH01-85-D-A015)

A numerical method for determining the response of thin-wire structures to an arbitrary time-varying electromagnetic field is presented. Explicit central-difference techniques are utilized to calculate the vector potential and charge at discrete locations on the wire structure. The scalar potential is obtained by integrating the time-retarded charge distribution over the structure. The unknown current is obtained by solving the discrete equations relating the current and vector potential for each time step. The technique is used to determine the current distribution due to a plane wave incident on a large antenna composed of thin wires. Coupling calculations are in good agreement with well-established numerical methods. This approach is substantially different from existing time-domain integral-equation techniques and allows for easy implementation of wire connections, changes in wire diameter and computer-code optimization by eliminating unnecessary calculations. The technique can be coupled with 3-D finite-difference codes to cover structures that are attached to the wires. The methods described have been used successfully to calculate coupling to a log-periodic antenna.

N88-20347# National Aerospace Lab., Amsterdam (Netherlands). Space Div.

MOVEABLE THERMAL JOINTS FOR DEPLOYABLE OR STEERABLE SPACECRAFT RADIATOR SYSTEMS

A. A. M. DELIL 20 Feb. 1987 16 p Presented at the 17th Intersoc. Conf. on Environmental Systems' European Thermal Control Session, Seattle, Wash., Jul. 1987 Previously announced as A88-21118

(NLR-MP-87016-U; B8725241; ETN-88-91739; AD-B115513L) Avail: NTIS HC A03/MF A01

Ways to handle the heat dissipated by the batteries of the Columbus Polar Platform are discussed. One solution is to equip each battery Orbital Replacement Unit with a dedicated heat pipe radiator. Such a radiator, being stowed during launch, has to be deployed in orbit and might be chosen to be steerable to achieve maximum radiator performance, hence minimum radiator size. The coupling between battery and deployable or steerable radiator has to incorporate a rotatable or flexible thermal joint. Drivers for the design of such joints optimize radiator size, and a small deployment/retraction torque or steering torque. Concepts for moveable thermal joints are described. Possible candidates for near-term application are: the flexible heat pipe; the braided conductor; the hydraulically or mechanically clamped joint; and the low melting point alloy filled, grease filled or (low pressure) gas filled (finned) heat exchanger. Concepts for non-near term applications include the radial heat pipe (condenser rotatable with respect to evaporator); the oscillating hydrodynamic joint (flexible or rotatable); the rollable membrane radiator; and the articulated or split heat pipe. **ESA**

N88-21195# Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt, Cologne (Germany, F.R.).

SOME HIGHLIGHTS ON ROSAT MECHANISMS

P. PAWLOWSKI and H. HEIMERDINGER (Dornier-Werke G.m.b.H., Friedrichshafen, West Germany) In ESA, Proceedings of the 3rd European Space Mechanisms and Tribology Symposium p 21-25 Dec. 1987

Avail: NTIS HC A14/MF A01

The ROSAT antenna boom mechanism (ABM), and telescope door mechanism (TDM) are described. The ABM is a 3.5 m long CFRP tube with 80 mm outer diameter and 4.5 mm wall thickness. It carries an S-band communication antenna at the tip, and a magnetometer for attitude measurements in the middle. It is stowed for launch and released by a kick spring, which causes a 180 deg rotation of the boom. Latching stubs bolted to the hinge bracket fix it in position. The TDM is used to avoid contamination of the gold coated X-ray mirrors before use. In orbit it is opened by a pyrotechnical device/kick spring, by a 90 deg rotation and acts as a sun shade.

N88-21196# European Space Agency. European Space Research and Technology Center, ESTEC, Noordwijk (Netherlands).

THE CTM PROGRAM OF MASTS AND THE CTM ENGINEERING MODEL

M. AGUIRRE, R. BUREO, F. DELCAMPO, and M. FUENTES (Sener S.A., Madrid, Spain) *In its* Proceedings of the 3rd European Space Mechanisms and Tribology Symposium p 27-35 Dec. 1987

Avail: NTIS HC A14/MF A01

A biconvex tube mast that can be flattened and then rolled up around a drum into a small volume package was developed. A drive system pulls the tube by the edges to deploy it. The mast can be manufactured in metal and composite; in both cases a continuous manufacturing method is used, to provide tubes of unlimited length. An engineering model with composite tubes was built and tested with satisfactory results. A qualification model with metal or composite tubes is proposed. Applications include satellite antenna and solar array deployment.

N88-21197# I.A.M. Rinaldo Piaggio, Finale Ligure (Italy). DEPLOYABLE/RETRIEVABLE BOOM: ONE APPLICATION TO TETHERED SATELLITE

P. BECCHI and D. MIRANDA In ESA, Proceedings of the 3rd European Space Mechanisms and Tribology Symposium p 37-46 Dec. 1987

Avail: NTIS HC A14/MF A01

The development, design, and qualification of a telescopic tubular deployable/retrievable boom rated to shuttle requirements for the tethered satellite mission are reviewed. The mechanism includes jettisoning provision and deployable harness for the supported payloads connection. Applications to other payloads and comparisons with other designs are discussed.

N88-21198# Max-Planck-Inst. fuer Physik und Astrophysik, Garching (Germany, F.R.). Inst. fuer Extraterrestrische.

DEPLOYABLE BOOMS AND ANTENNAS ON AMPTE-IRMJ. E. STOECKER and P. PARIGGER *In* ESA, Proceedings of the 3rd European Space Mechanisms and Tribology Symposium p 47-50 Dec. 1987

Avail: NTIS HC A14/MF A01

Two instruments of the AMPTE ion release module satellite were deployed radially by rigid booms with two and one articulated sections respectively, which had to be balanced in the stowed and deployed configuration. Made from carbon and glass fiber, they deflected after deployment and protected the instruments against the locking shock. All boom mechanisms were made from nonmagnetic material. Tests were performed to qualify the booms. Two S-band radiators on top of 1.4 m solid booms were pivoted to the satellite skirt. Both could be oriented either parallel to the spin axis or, after deployment, perpendicular to it. A third S-band radiator was extended axially from the satellite aft end. The extension system was a modified commercial automobile antenna drive. The release mechanism of the 16 canisters which were ejected from the satellite to produce barium and lithium-plasma clouds is described.

N88-21201# Fokker B.V., Amsterdam (Netherlands).

THE DEVELOPMENT STATUS OF THE STRONGBACK ARRAY R. ZWANENBURG In ESA, Proceedings of the 3rd European Space Mechanisms and Tribology Symposium p 65-71 Dec. 1987

Avail: NTIS HC A14/MF A01

A lifesize model of the strongback array (STAR) was built. The model demonstrates the feasibility of this deployable and retractable support structure. Deployment analyses show good correspondence with the test results. The measured bending stiffness of the mast in deployed condition is between 50,000 to 200,000 Nmsq. Stiffness depends on the preload condition and the considered load environment. Mast stiffness may decrease significantly if the mast shape deviates from the ideal deployed condition. A very simple mast layout without a bottom sliding rail is possible for deployments of experiment payloads.

N88-21202# European Space Agency. European Space Research and Technology Center, ESTEC, Noordwijk (Netherlands).

A SEQUENTIALLY DEPLOYABLE STRUCTURE FOR SPACE APPLICATIONS

F. PANIN, M. EIDEN, M. SIERRA, and J. RIVACOBA (Sener S.A., Las Arenas, Spain) In its Proceedings of the 3rd European Space Mechanisms and Tribology Symposium p 73-82 Dec. 1987

Avail: NTIS HC A14/MF A01

A large truss structure which deploys sequentially from the spacecraft was designed, and the deployment was simulated using the Automatic Dynamic Analysis of Mechanical Systems package. The development model of the deployable truss is formed by three bays. When in the deployed configuration, each bay is a cube of 1 m side formed of 2 battens connected by struts. By the use of joints in the middle and at the end of struts, the bay can be folded to a very reduced length. Actuation is achieved by torsional springs in the joints and the deployment is controlled according to a chosen law by the release of retaining cables.

ESA

N88-21203# Societe Nationale Industrielle Aerospatiale, Les Mureaux (France). Space and Strategic Systems Div.

AEROSPATIALE UNFURLABLE REFLECTOR AND ASSOCIATED MECHANISMS

Y. BROUSTET, G. BRAZZINI, and E. JOSEPH-GABRIEL In ESA, Proceedings of the 3rd European Space Mechanisms and Tribology Symposium p 83-89 Dec. 1987

Avail: NTIS HC A14/MF A01

An unfurlable antenna concept, particularly the spring actuated hinge used in truss motorization, is presented. A 9 m reflector consisting of 24 prismatic truss sections with articulated connecting bars and a similar 4 m design are described. Torque characteristics of the hinge are discussed.

N88-21204# Spar Aerospace Ltd., Weston (Ontario). Canadian Space Station Program.

SYSTEM AND CONCEPT DESIGN OF THE SSRMS LATCHING END EFFECTOR

E. QUITTNER, R. VANDERSLUIS, J. RAKHSHA, and I. FARMER In ESA, Proceedings of the 3rd European Space Mechanisms and Tribology Symposium p 93-103 Dec. 1987 Avail: NTIS HC A14/MF A01

The latching end effector of the relocatable Space Station Remote Manipulator System (SSRMS) for the Mobile Servicing Center contribution to the Space Station is presented. The latching end effector, when installed on the two ends (shoulder and wrist) of the symmetrical manipulator arm provides the capability to interchange wrist and shoulder of the arm thus enabling manipulator relocatability. The latching end effector combines the snare and rigidize features of the existing Shuttle RMS end effector, with latching and umbilical electrical power and signal transfer features. Modified, existing, and new components are combined in an assembly of modular, orbit replaceable units. The existing components are enhanced by adding redundancy and orbit-

maintainability provisions. Associated with the above is the power and data grapple fixture. The functions associated with the existing snare/rigidize and the new latching and umbilical elements can be executed independently. The SRMS based end effector and the SSRMS based functions can, therefore, be performed with the existing and the modified grapple fixtures as an interface.

N88-21205# Sener S.A., Madrid (Spain). LATCHING MECHANISMS FOR IOC

F. DELCAMPO In ESA, Proceedings of the 3rd European Space Mechanisms and Tribology Symposium p 105-112 Dec. 1987 Avail: NTIS HC A14/MF A01

Two different latch mechanisms were designed for the IOC experiment in EURECA, to help the antenna pointing mechanism (APM) withstand the flight loads and to increase its first natural eigenfrequency. In both cases, the main objective is to obtain a high stiffness, paying special attention to the structural discontinuities (clamp, hinges, etc.), in order to eliminate the backlash. This is obtained mainly by preloading these discontinuities and by selecting adequate materials to avoid problems of differential CTE that could change the preload in critical areas. The first latching system consists of two overcenter latches driven by a stepper motor through a worm gear reducer. Each of them locks one of the two degrees of freedom of the APM during launch and reentry. The second system has three pyrotechnically released mechanisms which fix the APM during launch.

N88-21211# Societe Nationale Industrielle Aerospatiale, Cannes (France).

THE SPOT SOLAR ARRAY. BOX OPENING MECHANISMS PHYSICAL VAPOR DEPOSITION (PVD)-MOS2: LUBRICATED SLIDES. FUNCTIONAL EVALUATION

J. F. PATIN, J. L. CECCONI, L. DECRAMER, and E. CONDE (Centre National d'Etudes Spatiales, Toulouse, France) *In* ESA, Proceedings of the 3rd European Space Mechanisms and Tribology Symposium p 161-166 Dec. 1987

Avail: NTIS HC A14/MF A01

To estimate in-flight safety margins and to delineate the parameters which influence the friction coefficient, the MoS2 lubrication of the opening mechanism for the stowage box of the SPOT solar array, a set of steel slides restrained by aluminum alloy jumpers, was investigated. Effects of moisture, vacuum, and repeated operations on friction were studied. Measurements on the stowage box slides show low initial dispersions of the friction characteristics; mean reduction of friction effects by 60 percent to be considered for box opening in orbit with respect to the friction values measured in ground tests at 70 percent moisture; and 10 openings as the desirable number of prelaunch operations, with the frictional characteristics thus stabilized still preserved after 24 openings at least.

N88-21212# RCA Aerospace and Defense, Princeton, NJ. Astro-Space Div.

DEVELOPMENT OF AN INTERMODULE CONNECTOR FOR SERVICEABLE SPACECRAFT

A. P. MATTHEWS, S. W. JACKSON, D. W. GROSS, and O. L. REGALADO In ESA, Proceedings of the 3rd European Space Mechanisms and Tribology Symposium p 169-176 Dec. 1987 Avail: NTIS HC A14/MF A01

An Intermodular Connector (IMC) that can be applied universally to all types of spacecraft modules to optimize the remote mating of platform modules was developed. The operating principle is based on gross alignment to put the screw in contact with the floating nut. Once the face plates are together, the screw continues to rotate, drawing the connector plate down. The IMC uses an acme threaded screw mechanism for closure, rigidization, and connector-mating functions. This mechanism, centrally located on a triangular plate, was manufactured in three parts: the motor and gears, the acme threaded screw, and the floating nut. Mechanical models for proof of concept testing were built.

N88-21217# Dornier-Werke G.m.b.H., Friedrichshafen (Germany, F.R.).

DESIGN OF A LINEAR ACTUATOR AND BREADBOARD TEST RESULT

R. G. HOSTENKAMP *In* ESA, Proceedings of the 3rd European Space Mechanisms and Tribology Symposium p 207-210 Dec. 1987

Avail: NTIS HC A14/MF A01

For the set of 15 mechanisms required to control the end positions of the deployable antenna petals of the Far Infrared and Submillimeter Space Telescope, a linear actuator capable of generating submicron steps was designed. The microsteps of a stepper motor are transferred by a spindle to a lever which deflects a slotted circular spring. The resulting diametral change of the spring represents the output stroke of the actuator. By a thermally stable design utilizing conventional material, the actuator is suited for an operational temperature range from 80 C to cryogenic conditions. The design of the linear actuator is described and test results from a breadboard model are reported.

N88-21225# Sener S.A., Madrid (Spain). THE EURECA ANTENNA DEPLOYMENT AND RETRACTION MECHANISMS

M. FUENTES, C. PASCUAL, and R. BUREO *In* ESA, Proceedings of the 3rd European Space Mechanisms and Tribology Symposium p 261-266 Dec. 1987

Avail: NTIS HC A14/MF A01

The design of the Antenna Deployment and Retraction Mechanisms (ADRM) and the qualification test are described. The ADRM consists of a 2 m CFRP boom which is hinged at the S/C mounting interface and latched against the S/C structure at the other end, where the S-band antenna is attached. The hinge is actuated by a dc motor with gear box incorporated, and an external worm gear. The latch that holds the ADRM boom for launch and reentry is an overcentered four bar latch, prestressed by a torsion bar, and opened and closed by a motor identical to the one used in the hinge. Status of ADRM operation phases is monitored by microswitches.

N88-21226# British Aerospace Public Ltd. Co., Stevenage (England). Space and Communications Div.

QUALIFICATION OF THE OLYMPUS REACTION WHEEL
G. J. STURTIVANT In ESA, Proceedings of the 3rd European
Space Mechanisms and Symposium p 267-272 Dec. 1987
Avail: NTIS HC A14/MF A01

Functional (torque) vibration, thermal vacuum, and life tests on the OLYMPUS satellite 10 Nms reaction wheel are summarized. Test equipment and procedures are described. Results are satisfactory.

N88-21227# British Aerospace Public Ltd. Co., Stevenage (England). Space and Communications Div.

DEVELOPMENT AND QUALIFICATION OF THE OLYMPUS ANTENNA POINTING MECHANISM

P. J. LOVETT In ESA, Proceedings of the 3rd European Space Mechanisms and Tribology Symposium p 273-280 Dec. 1987 Avail: NTIS HC A14/MF A01

The OLYMPUS antenna pointing mechanism (APM), a modular mechanical unit which interfaces between antenna reflectors and the spacecraft structure and which is capable of reorientating the reflectors with respect to the spacecraft, is presented. The APM can support reflectors in the launch phase and in the on-station mode. Reorientation of the reflectors is carried out in open loop mode where the APM is repointed upon command from the ground, and in closed loop mode where the APM is required to respond on a continuous basis to RF error signals. In both modes the APMs are controlled by the APM electronics (APME) which generates the required stepping demands for the APM. On OLYMPUS five such APM are controlled by one electronics unit, the APME. These equipments form the antenna pointing subsystem. Four of the mechanisms operate in open loop mode and the fifth can operate both in on and off boresight of a radio frequency

beacon. Test results and design modifications are summarized.

EŞA

N88-21229# British Aerospace Public Ltd. Co., Stevenage (England). Space and Communications Div.

QUALIFICATION TESTING OF THE EUROSTAR SOLAR ARRAY DRIVE MECHANISM (SADM)

I. D. HENDERSON In ESA, Proceedings of the 3rd European Space Mechanisms and Tribology Symposium p 285-294 Dec. 1987

Avail: NTIS HC A14/MF A01

The EUROSTAR satellite communication platform solar array drive power ring unit; baseplate shaft and main bearing assembly; motor and gearbox assembly; signal slip-ring unit; and datum sensors are described. Subassembly; nonoperational; functional; vibration; thermal vacuum; and accelerated life tests are summarized.

N88-21233# European Space Agency. European Space Research and Technology Center, ESTEC, Noordwijk (Netherlands).

DOCKING/BERTHING SUBSYSTEM: DESIGN AND BREADBOARD TEST

N. CABLE and J. HARTMANN (Dornier-Werke G.m.b.H., Friedrichshafen, West Germany) *In its* Proceedings of the 3rd European Space Mechanisms and Tribology Symposium p 317-326 Dec. 1987

Avail: NTIS HC A14/MF A01

Based on a low impact docking concept and a latching mechanism concept, a docking/berthing subsystem and its operations were defined. A set of four breadboard models of the latch were manufactured and locking tests were performed on a four degree of freedom air bearing table. The tests demonstrate feasibility of the low impact docking concept under the test facility conditions.

N88-21237# Pacific Northwest Labs., Richland, WA. FABRIC SPACE RADIATORS

Z. I. ANTONIAK, W. J. KROTIUK, B. J. WEBB, J. T. PRATER, and J. M. BATES Jan. 1988 79 p (Contract DE-AC06-76RL-01830)

(DE88-005569; PNL-6458) Avail: NTIS HC A05/MF A01

Future Air Force space missions will require thermal radiators that both survive in the hostile space environment and stow away for minimal bulk during launch. Advances in all aspects of radiator design, construction, and analysis will be necessary to enable such future missions. Currently, the best means for obtaining high strength along with flexibility is through structures known as fabrics. The development of new materials and bonding techniques has extended the application range of fabrics into areas traditionally dominated by monolithic and/or metallic structures. Given that even current spacecraft heat rejection considerations tend to dominate spacecraft design and mass, the larger and more complex designs of the future face daunting challenges in thermal control. Ceramic fabrics bonded to ultra-thin metal liners (foils) have the potential of achieving radiator performance levels heretofore unattainable, and of readily matching the advances made in other branches of spacecraft design. The research effort documented here indicates that both pumped loops and heat pipes constructed in ceramic fabrics stand to benefit in multiple ways. Flexibility and low mass are the main advantages exhibited by fabric radiators over conventional metal ones. We feel that fabric radiators have intrinsic merits not possessed by any other radiator design and need to be researched further.

N88-21469*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

THE 15-METER DIAMETER HOOP/COLUMN ANTENNA SURFACE CONTROL ACTUATOR SYSTEM

ELVIN L. AHL, JR. and JAMES B. MILLER In its The 22nd Aerospace Mechanisms Symposium, p 1-11 May 1988 Avail: NTIS HC A18/MF A01 CSCL 13E

The design, development, and implementation status of the

Surface Control Actuator System (SCAS) for the Hoop/Column Antenna are described with the primary focus on the design of the mechanical element. The SCAS is an electromechanical system that will automatically adjust the antenna shape by changing the length of control cords. Achieving and maintaining the proper surface shape and smoothness are critical to optimizing the electromagnetic characteristics of the antenna.

N88-21471*# Rexnord Aerospace Mechanisms, Torrance, CA. STRUCTURAL LATCHES FOR MODULAR ASSEMBLY OF SPACECRAFT AND SPACE MECHANISMS

WILLIAM MCCOWN and NEAL BENNETT In NASA. Langley Research Center, The 22nd Aerospace Mechanisms Symposium p 29-44 May 1988

Avail: NTIS HC A18/MF A01 CSCL 13E

Latching techniques are changing from early approaches due to the advent of berthing technology. Latch selection for a given interface may be conducted by evaluating candidate capabilities which meet functional interface requirements. A judgment criteria system is presented along with an example of its use in choosing the Rollerscrew Structural Latch (RSL) for the NASA Flat Plate Interface Prototype (FPIP). Details are given on Rollerscrew operation, design, and development difficulties. A test plan is also outlined for the RSL and FPIP.

N88-21472*# AEC-Able Engineering Co., Inc., Goleta, CA. THERMALLY STABLE DEPLOYABLE STRUCTURE

COLLEEN M. KEGG In NASA. Langley Research Center, The 22nd Aerospace Mechanisms Symposium, p 45-57 May 1988 Avail: NTIS HC A18/MF A01 CSCL 20K

A deployable structure which meets stringent thermal and strength requirements in a space environment was developed. A mast with a very low coefficient of thermal expansion (CTE) was required to limit the movement from thermal distortion over the temperature range of -200 C to 80 C to .064 cm (.025 in). In addition, a high bending strength over the temperature range and weight less than 18.1 kg (40 lbs) was needed. To meet all of the requirements, a composite, near-zero CTE structure was developed. The measured average CTE over the temperature range for the mast was .70 x .000001/C (.38 x .000001/F). The design also has the advantage of being adjustable to attain other specific CTE if desired.

N88-21473*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

THE X-BEAM AS A DEPLOYABLE BOOM FOR THE SPACE STATION

LOUIS R. ADAMS *In its* The 22nd Aerospace Mechanisms Symposium, p 59-66 May 1988 Avail: NTIS HC A18/MF A01 CSCL 22B

Extension of antennas and thrust modules from the primary structure of the space station will require deployable beams of high stiffness and strength, as well as low mass and package volume. A square boom cross section is desirable for interface reasons. These requirements and others are satisfied by the The X-beam folds by simple geometry, using single-degree-of-freedom hinges at simple angles, with no strain during deployment. Strut members are of large diameter with unidirectional graphite fibers for maximum beam performance. Fittings are aluminum with phosphor bronze bushings so that compliance is low and joint lifetime is high. The several beam types required for different applications on the space station will use the same basic design, with changes in strut cross section where necessary. Deployment is by a BI-STEM which pushes the beam out; retraction is by cables which cause initial folding and pull the beam in. Author

N88-21475*# Old Dominion Univ., Norfolk, VA. ON THE DANGER OF REDUNDANCIES IN SOME AEROSPACE MECHANISMS

M. CHEW In NASA. Langley Research Center, The 22nd Aerospace Mechanisms Symposium, p 87-98 May 1988

(Contract NAS1-17993) Avail: NTIS HC A18/MF A01 CSCL 13I

An attempt is made to show that redundancies in some aerospace mechanisms do not generally improve the odds for success. Some of these redundancies may even be the very cause for failure of the system. To illustrate this fallacy, two designs based on the Control of Flexible Structures I (COFS I) Mast deployer and retractor assembly (DRA) are presented together with novel designs to circumvent such design inadequacies, while improving system reliability.

N88-21478*# Toshiba Corp., Kawasaki (Japan). Mechanical Engineering Lab.

DEVELOPMENT OF A MAGNETICALLY SUSPENDED, TETRAHEDRON-SHAPED ANTENNA POINTING SYSTEM KENICHI TAKAHARA, TAMANE OZAWA, HIROSHI TAKAHASHI, SHITTA SHINGU, TOSHIRO OHASHI, and HITOSHI SUGIURA In NASA. Langley Research Center, The 22nd Aerospace Mechanisms Symposium p 133-147 May 1988 Avail: NTIS HC A18/MF A01 CSCL 13I

A magnetically suspended, tetrahedron-shaped antenna pointing system is proposed for use in a multibeam broadcasting satellite system in the future. The structure of this system is presented, along with its design concept and the functional test results which were obtained in a laser tracking system in the laboratory. According to these results, it has been confirmed that the system has many advantages over conventional systems and excellent performance.

N88-21491*# McDonnell-Douglas Astronautics Co., Huntington Beach, CA.

SPACE STATION FULL-SCALE DOCKING/BERTHING MECHANISMS DEVELOPMENT

GENE C. BURNS, HAROLD A. PRICE, and DAVID B. BUCHANAN /n NASA. Langley Research Center, The 22nd Aerospace Mechanisms Symposium p 325-340 May 1988 Avail: NTIS HC A18/MF A01 CSCL 22B

One of the most critical operational functions for the space station is the orbital docking between the station and the STS orbiter. The program to design, fabricate, and test docking/berthing mechanisms for the space station is described. The design reflects space station overall requirements and consists of two mating docking mechanism halves. One half is designed for use on the shuttle orbiter and incorporates capture and energy attenuation systems using computer controlled electromechanical actuators and/or attenuators. The mating half incorporates a flexible feature to allow two degrees of freedom at the module-to-module interface of the space station pressurized habitat volumes. The design concepts developed for the prototype units may be used for the first space station flight hardware.

N88-21493*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA. DEVELOPMENT OF A ROTARY FLUID TRANSFER COUPLING

AND SUPPORT MECHANISM FOR SPACE STATION

O. H. BRADLEY, JR., J. A. COSTULIS, and A. H. PORTER (PRC Kentron, Inc., Hampton, Va.) In its The 22nd Aerospace Mechanisms Symposium p 355-371 May 1988

Avail: NTIS HC A18/MF A01 CSCL 13K

A design was developed for a rotary fluid coupling to transfer coolant fluids (primarily anhydrous ammonia) across rotating joints of the space station. Development testing using three conceptual designs yielded data which were used to establish the design of a multipass fluid coupling capable of handling three fluid circuits. In addition, a mechanism to support the fluid coupling and allow an astronaut to replace the coupling quickly and easily was designed.

N88-23827* National Aeronautics and Space Administration. Lyndon B. Johnson Space Center, Houston, TX.

LOCKING HINGE Patent

CLARENCE J. WESSELSKI, inventor (to NASA) 12 Apr. 1988 9 p Filed 29 Oct. 1986 Supersedes N87-18595 (25 - 11, p (NASA-CASE-MSC-21056-1; US-PATENT-4,736,490; US-PATENT-APPL-SN-934397; US-PATENT-CLASS-16-292; US-PATENT-CLASS-16-296;

The space station configuration currently studied utilizes structures which require struts to be hinged in the middle in the stowed mode and locked into place in the deployed mode. Since there are hundreds of hinges involved, it is necessary that they have simple, positive locking features with a minimum of joint looseness or slack. This invention comprises two similar housings hinged together with a spring loaded locking member which assists in making as well as breaking the lock. This invention comprises a bracket hinge and bracket members with a spring biased and movable locking member. The locking or latch member has ear parts received in locking openings where wedging surfaces on the ear parts cooperate with complimentary surfaces on the bracket members for bringing the bracket members into a tight end-to-end alignment when the bracket members are in an extended position. When the locking member is moved to an unlocking position, pivoting of the hinge about a pivot pin automatically places the locking member to retain the locking member in an unlocked position. In pivoting the hinge from an extended position to a folded position, longitudinal spring members are placed under tension over annular rollers so that the spring tension in a folded position assists in return of the hinge from a folded to an extended position. Novelty lies in the creation of a locking hinge which allows compact storage and easy assembly of structural members

Official Gazette of the U.S. Patent and Trademark Office

N88-23979* National Aeronautics and Space Administration.
Marshall Space Flight Center, Huntsville, AL.

BI-STEM GRIPPING APPARATUS Patent

having a minimal number of parts.

FRED G. SANDERS, inventor (to NASA) 9 Feb. 1988 7 p Filed 3 Jun. 1987 Supersedes N87-25586 (25 - 19, p 2616) (NASA-CASE-MFS-28185-1; US-PATENT-4,723,800; US-PATENT-APPL-SN-056930; US-PATENT-CLASS-294-16; US-PATENT-CLASS-294-106; US-PATENT-CLASS-294-113; US-PATENT-CLASS-294-119.2) Avail: US Patent and Trademark Office CSCL 13I

This invention relates to devices which grip cylindrical structures and more particularly to a device which has three arcuate gripping members having frictional surfaces for gripping and compressing a bi-stem. The bi-stem gripping apparatus is constructed having a pair of side gripping members, and an intermediate gripping member disposed between them. Sheets of a gum stock silicone rubber with frictional gripping surfaces are bonded to the inner region of the gripping members and provide frictional engagement between the bi-stem and the apparatus. A latch secures the gripping apparatus to a bi-stem, and removable handles are attached, allowing an astronaut to pull the bi-stem from its cassette. A tethering ring on the outside of the gripping apparatus provides a convenient point to which a lanyard may be attached.

Official Gazette of the U.S. Patent and Trademark Office

N88-28958* National Aeronautics and Space Administration. Lyndon B. Johnson Space Center, Houston, TX.

EXPANDABLE PALLET FOR SPACE STATION INTERFACE ATTACHMENTS Patent

CLARENCE J. WESSELSKI, inventor (to NASA) 23 Aug. 1988 11 p Filed 13 Nov. 1986 Supersedes N87-18597 (25 - 11, p 1446)

(NASA-CASE-MSC-21117-1; US-PATENT-4,765,114; US-PATENT-APPL-SN-929875; US-PATENT-CLASS-52-646; US-PATENT-CLASS-52-648) Avail: US Patent and Trademark Office CSCL 22B

Described is a foldable expandable pallet for Space Station interface attachments with a basic square configuration. Each pallet consists of a series of struts joined together by node point fittings to make a rigid structure. The struts have hinge fittings which are

spring loaded to permit collapse of the module for stowage transport to a Space Station in the payload bay of the Space Shuttle, and development on orbit. Dimensions of the pallet are selected to provide convenient, closely spaced attachment points between the node points of the relatively widely spaced trusses of a Space Station platform. A pallet is attached to a strut at four points: one close fitting hole, two oversize holes, and a slot to allow for thermal expansion/contraction and for manufacturing tolerances. Applications of the pallet include its use in rotary or angular joints; servicing of splints; with gridded plates; as instrument mounting bases; and as a roadbed for a Mobile Service Center (MSC). Official Gazette of the U.S. Patent and Trademark Office

N88-29180* National Aeronautics and Space Administration. Lyndon B. Johnson Space Center, Houston, TX.

COLLET LOCK JOINT FOR SPACE STATION TRUSS Patent
CLARENCE J. WESSELSKI, inventor (to NASA) 16 Aug. 1988
13 p Filed 1 Apr. 1987 Supersedes N87-25576 (25 - 19, p
2615)
(NASA-CASE-MSC-21207-1; US-PATENT-4,763,459;
US-PATENT-APPL-SN-032818; US-PATENT-CLASS-52-646;
US-PATENT-CLASS-52-648; US-PATENT-CLASS-403-217;
US-PATENT-CLASS-403-171) Avail: US Patent and Trademark
Office CSCL 131

A lock joint for a Space Station has a series of struts joined together in a predetermined configuration by node point fittings. The fittings have removeable inserts. The lock joint has an elongated housing connected at one end to a strut. A split-fingered collet is mounted within the housing to insure reciprocal movement. A handle on the housing is connected to the collet for moving the collet into the insert where the fingers of the collet expand to lock the joint to the fitting.

Official Gazette of the U.S. Patent and Trademark Office

N88-30130*# National Aeronautics and Space Administration.
Langley Research Center, Hampton, VA.
CLEVIS JOINT FOR DEPLOYABLE SPACE STRUCTURES
Patent Application

MARVIN D. RHODES, inventor (to NASA) 28 Jul. 1988 13 p (NASA-CASE-LAR-13898-1; NAS 1.71:LAR-13898-1; US-PATENT-APPL-SN-225427) Avail: NTIS HC A03/MF A01 CSCL 13K

This invention relates generally to pin clevis joints, and more particularly, to zero play pin clevis joints for connecting structural members of a deployable space structure. A joint includes a pin, a tang, and a shackle. The pin is tapered at the same angle as the bores extending through the projections of the shackle and the tang. A spring washer biases the tang onto the tapered sidewall of the pin. The invention solves the free play problem associated with deployable space structures by using a tapered pin which is held in tapered holes by the spring washers.

04

STRUCTURAL AND THERMAL ANALYSIS

Includes structural analysis and design, thermal analysis and design, analysis and design techniques, and thermal control systems.

A88-34539* Space Telescope Science Inst., Baltimore, MD. SPACE TEN-METER TELESCOPE (STMT) - STRUCTURAL AND THERMAL FEASIBILITY STUDY OF THE PRIMARY MIRROR PIERRE Y. BELY (Space Telescope Science Institute, Baltimore, MD), JOHN F. BOLTON, STEVEN P. NEECK (NASA, Goddard Space Flight Center, Greenbelt, MD), and PHILIP J. TULKOFF (Swales and Associates, Inc., Beltsville, MD) IN: Reflective optics; Proceedings of the Meeting, Los Angeles, CA, Jan. 15, 16, 1987. Bellingham, WA, Society of Photo-Optical Instrumentation Engineers, 1987, p. 29-36. refs

The structural and thermal behavior of a ten-meter primary mirror for a space optical/near-IR telescope in geosynchronous orbit is studied. The glass-type lightweighted mirror is monolithic, of the double arch type, and is supported at only three points. The computer programs SSPTA (thermal), NASTRAN (finite element), and ACCOS V (optical) are used in sequence to determine the temperature, deformation, and optical performance of the mirror. A mirror temperature of 130 K or less appears to be obtainable by purely passive means. With a fused silica or standard Zerodur blank, thermally-induced deformation is unacceptable and cannot be fully corrected by an active secondary mirror over the desired field. Either active thermal control or a blank of lower thermal expansion coefficient would be required.

A88-37295# TWO-PHASE THERMAL LOOPS FOR USE IN FUTURE SPACECRAFT

HANS GEORG WULZ and RALF SIEPMANN Dornier-Post (English Edition) (ISSN 0012-5563), no. 1, 1988, p. 49-51.

In the two-phase thermal loops being developed by ESA for high heat-load space transport systems, such as the Space Shuttle and Spacelab, the working fluid is evaporated in the heat-absorbing 'cold plate' elements, whence it flows in vapor form to a radiator-like heat sink to be condensed as the heat is radiated into space. Attention is presently given to the design features and performance capabilities thus far experimentally established for mechanically-pumped, capillary-pumped, and hybrid versions of the two-phase loop. The hybrid thermal loops are especially promising for use aboard satellites with severe microgravity requirements.

O.C.

A88-38672# RELIABILITY EVALUATION ON ON-BOARD SATELLITE ANTENNA DEPLOYMENT MECHANISM

MASAYOSHI MISAWA, SHOJIRO MIYAKE, and TETSUO YASAKA Japan Society for Aeronautical and Space Sciences, Journal (ISSN 0021-4663), vol. 36, no. 410, 1988, p. 125-130. In Japanese, with abstract in English. refs

A procedure is proposed to evaluate the reliability of the antenna deployment mechanism for large satellite antennas. Failure mode and effects analysis is conducted to identify all possible failure modes. The bearing performance and friction are found to be critical. Test results show that the deployment and friction torque distributions can be assumed as normal distributions. The deployment reliability of the ADM is calculated based on these distributions. A method for preventing failure derived from the reduction in bearing clearance is also described.

C.D.

A88-40292* Jet Propulsion Lab., California Inst. of Tech., Pasadena.

SHAPES - SPATIAL, HIGH-ACCURACY, POSITION-ENCODING SENSOR FOR MULTI-POINT, 3-D POSITION MEASUREMENT OF LARGE FLEXIBLE STRUCTURES

N. M. NERHEIM (California Institute of Technology, Jet Propulsion Laboratory, Pasadena) IN. 1987 SEM Spring Conference on Experimental Mechanics, Houston, TX, June 14-19, 1987, Proceedings. Bethel, CT, Society for Experimental Mechanics, Inc., 1987, p. 596-601.

An electro-optical position sensor for precise simultaneous measurement of the 3-D positions of multiple points on large space structures is described. The sensor data rate is sufficient for most control purposes. Range is determined by time-of-flight correlation of short laser pulses returned from retroreflector targets using a streak tube/CCD detector. Angular position is determined from target image locations on a second CCD. Experimental verification of dynamic ranging to multiple targets is discussed.

A88-41414#

CALORIMETRIC MEASUREMENTS OF THERMAL CONTROL SURFACES AT GEOSYNCHRONOUS ORBIT

C. C. ANDERSON and M. M. HATTAR (Aerojet ElectroSystems Co., Azusa, CA) Journal of Thermophysics and Heat Transfer

(ISSN 0887-8722), vol. 2, April 1988, p. 145-151. Previously cited in issue 19, p. 2956, Accession no. A87-43082. refs (Contract F04701-84-C-0034)

A88-42441* Jet Propulsion Lab., California Inst. of Tech., Pasadena.

LONG-LIVED THERMAL CONTROL MATERIALS FOR HIGH TEMPERATURE AND DEEP SPACE APPLICATIONS

ROBIN WHITT and TIM O'DONNELL (California Institute of Technology, Jet Propulsion Laboratory, Pasadena) IN: Materials - Pathway to the future; Proceedings of the Thirty-third International SAMPE Symposium and Exhibition, Anaheim, CA, Mar. 7-10, 1988. Covina, CA, Society for the Advancement of Material and Process Engineering, 1988, p. 1773-1786. (Contract NAS7-918)

Considerable effort has been put into developing thermal-control materials for the Galileo space-craft. This paper presents a summary of these findings to date with emphasis on requirements, testing and results for the post-Challenger Galileo mission. Polyimide film (Kapton), due to its inherent stability in vacuum, UV, and radiation environments, combined with good mechanical properties over a large temperature range, has been the preferred substrate for spacecraft thermal control materials. Composite outer layers, using Kapton substrates, can be fabricated to meet the requirements of severe space environments. Included in the processing of Kapton-based composite outer layers can be the deposition of metal oxide, metallic and/or polymeric thin-film coatings to provide desirable electrical, optical and thermo-optical properties. In addition, reinforcement of Kapton substrates with fabrics and films is done to improve mechanical properties. Also these substrates can be filled with varying amounts of carbon to achieve particular electrical properties. The investigation and material development reported on here has led to improved thermo-gravimetric stability, surface conductivity, RF transparency, radiation and UV stability, flammability and handle-ability of outer layer thermal control materials for deep space and near-sun spacecraft. Designing, testing, and qualifying composite thermal-control film materials to meet the requirements of the Galileo spacecraft is the scope of this paper. Author

A88-42830#

SUPER HEAT PIPE DESIGN CONSIDERATIONS FOR APPLICATIONS TO SPACE-BASED SYSTEMS

F. DOBRAN (New York University, NY) IN: International Symposium on Thermal Problems in Space-Based Systems, Boston, MA, Dec. 13-18, 1987, Proceedings. New York, American Society of Mechanical Engineers, 1987, p. 1-12. refs

Current high heat-transfer-performance heat pipes are reviewed, and a super heat pipe designed to meet the reliability and heat transfer requirements of space-based systems is proposed. It is found that the axial heat transport capacity depends on the working fluid, the vapor flow area, the methods for both vapor introduction into the main core flow of the evaporator and vapor withdrawal from the condenser, and on the lengths of the evaporator, adiabatic, and condensor regions. Methods to suppress the axial heat transport limits are identified, in addition to design considerations for optimal boiling and wicking limits in heat pipes.

A88-42832#

APPLICABILITY OF THE FLOW-NET PROGRAM TO SOLUTION OF SPACE STATION FLUID DYNAMICS PROBLEMS

J. NAVICKAS (McDonnell Douglas Astronautics Co., Huntington Beach, CA) and W. C. RIVARD (Flow Science, Inc., Los Alamos, NM) IN: International Symposium on Thermal Problems in Space-Based Systems, Boston, MA, Dec. 13-18, 1987, Proceedings. New York, American Society of Mechanical Engineers, 1987, p. 19-24. refs

The Space Station design encompasses a variety of fluid systems that require extensive flow and combined flow-thermal analyses. The types of problems encountered range from two-phase cryogenic to high-pressure gaseous systems. Design of such systems requires the most advanced analytical tools.

Because Space Station applications are a new area for existing two-phase flow programs, typically developed for nuclear safety applications, a careful evaluation of their capabilities to treat generic Space Station flows is appropriate. The results from an assessment of one particular program, FLOW-NET, developed by Flow Science, In., are presented. Three typical problems are analyzed: (1) fill of a hyperbaric module with gaseous nitrogen from a high-pressure supply system, (2) response of a liquid ammonia line to a rapid pressure decrease, and (3) performance of a basic two-phase, thermal control network. The three problems were solved successfully. Comparison of the results with those obtained by analytical methods supports the FLOW-NET calculations. Author

A88-42842# APPLICATION OF TWO-PHASE THERMAL TRANSPORT SYSTEMS TO SPACE PLATFORMS

C. E. BRAUN, J. E. FREDLEY, V. J. GILBERTI, and K. HARTSHORN (RCA Aerospace and Defense, RCA Astro-Space Div., Princeton, NJ) IN: International Symposium on Thermal Problems in Space-Based Systems, Boston, MA, Dec. 13-18, 1987, Proceedings. New York, American Society of Mechanical Engineers, 1987, p. 125-134. refs

Increasingly stringent thermal requirements are projected for future spacecraft. Compliance with these requirements necessitates the development of thermal control techniques with capabilities far exceeding those in current use. A fundamental consideration is a heat acquisition, transport and rejection system capable for simultaneously accommodating large heat loads, high heat density sources, long transport distances, and varying operational parameters. This paper presents an overview of two-phase thermal transport systems and major components being developed for implementation in the forth-coming space platform era. Author

A88-42843#

ORBITAL REPLACEABLE UNIT-COLD PLATE DRY THERMAL INTERFACE CONCEPT AND TEST MEASUREMENTS

D. NIKANPOUR (British Aerospace, PLC, Space and Communications Div., Stevenage, England), H. K. SILL, and H. KREEB (Dornier System GmbH, Friedrichshafen, Federal Republic of Germany) IN: International Symposium on Thermal Problems in Space-Based Systems, Boston, MA, Dec. 13-18, 1987, Proceedings. New York, American Society of Mechanical Engineers, 1987, p. 135-139. ESA-supported research. refs

A cold plate to an ORU dry thermal interface design that would meet both the joint thermal performance of 5000 W/sq m K and allow easy replacement in space during repeated in-orbit servicing is proposed. The present concept involves a cylindrical arrangement of flexible outer heat pipes which are pneumatically forced onto a central inner heat pipe. A thin coating of a low melting point alloy on the heat pipes provides a detachable continuous thermal path across the joint and allows the performance requirements to be achieved even in the case of failure of the pressure.

A88-43743#

A FLEXIBLE VARIABLE CONDUCTANCE HEAT PIPE DESIGN FOR TEMPERATURE CONTROL OF SPACECRAFT EQUIPMENT

HAN HWANGBO and T. E. JOOST (MRJ, Inc., Oakton, VA) AIAA, Thermophysics, Plasmadynamics and Lasers Conference, San Antonio, TX, June 27-29, 1988. 7 p. (AIAA PAPER 88-2680)

The paper describes a variable conductance heat pipe design with a flexible joint. The heat pipe is developed for temperature control of high power electronics using a deployable space radiator. The evaporator section of the heat pipe is attached to the baseplate of the electronics. The condenser section of the heat pipe and the reservoir of noncondensible gas are attached to the deployable radiator. During the ascent phase of the flight the radiator is stowed for minimum heat rejection. During the final orbit period the radiator is deployed for full operation. An analytical thermal model of a Flexible Variable Conductance Heat Pipe (FVCHP) is developed to predict the heat transport capacity and the location of the

noncondensible gas front in the heat pipe. Also, transient performance of the FVCHP in an orbital environment with electrical feedback temperature control is predicted. The analysis results indicate that a FVCHP radiator can reject at least twice the heat of a single sided fixed radiator of the same size. Results also indicate that control of the evaporator within 75 + or - 5 F is feasible for a unit with 100 W dissipation using the FVCHP radiator design presented.

A88-43746*# Los Alamos National Lab., NM. DEVELOPMENT OF AN INTEGRATED HEAT PIPE-THERMAL STORAGE SYSTEM FOR A SOLAR RECEIVER

E. KEDDY, J. TOM SENA, M. MERRIGAN (Los Alamos National Laboratory, NM), GARY HEIDENREICH (Sundstrand Corp., Rockford, IL), and STEVE JOHNSON (NASA, Lewis Research Center, Cleveland, OH) AIAA, Thermophysics, Plasmadynamics and Lasers Conference, San Antonio, TX, June 27-29, 1988. 6 p. (AIAA PAPER 88-2683)

An integrated heat pipe-thermal storage system was developed as part of the Organic Rankine Cycle Solar Dynamic Power System solar receiver for space station application. The solar receiver incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain thermal energy storage (TES) canisters within the vapor space with a toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the earth orbit, solar energy is delivered to the heat pipe. Part of this thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of earth orbit, the stored energy in the TES units is transferred by the potassium vapor to the toluene heater tube. A developmental heat pipe element was constructed that contains axial arteries and a distribution wick connecting the toluene heater and the TES units to the solar insolation surface of the heat pipe. Tests were conducted to demonstrate the heat pipe, TES units, and the heater tube operation. The heat pipe element was operated at design input power of 4.8 kW. Thermal cycle tests were conducted to demonstrate the successful charge and discharge of the TES units. Axial power flux levels up to 15 watts/sq cm were demonstrated and transient tests were conducted on the heat pipe element. Details of the heat pipe development and test procedures are presented.

A88-43753#

TWO-PHASE AMMONIA THERMAL BUS PERFORMANCE

TED J. KRAMER, DONALD L. MYRON, and MICHAEL P. MCHALE (Boeing Aerospace Co., Seattle, WA) AIAA, Thermophysics, Plasmadynamics and Lasers Conference, San Antonio, TX, June 27-29, 1988. 13 p. refs (AIAA PAPER 88-2701)

This paper describes the results of a series of tests that explored the performance of an ammonia heat transport system being developed for future spacecraft applications. It was found that the self-controlling system maintained stable evaporative cold plate temperatures over a wide range of heat loads and heat sink temperatures. The ability of the system to control heat load temperatures during burst power inputs to the evaporator was demonstrated. It was shown that the system required no thermal conditioning or special procedures to start; and reached set point control temperatures within 3.5 minutes of startup under heat load. It was also shown that set point temperatures could be changed and set point control maintained during system operation.

Author

A88-43754*# OAO Corp., Greenbelt, MD. A HIGH POWER SPACECRAFT THERMAL MANAGEMENT SYSTEM

J. KU, E. J. KROLICZEK (OAO Corp., Greenbelt, MD), M. E. MCCABE, JR. (NASA, Goddard Space Flight Center, Greenbelt, MD), and S. M. BENNER (TS Infosystems, Inc., Lanham, MD) AIAA, Thermophysics, Plasmadynamics and Lasers Conference, San Antonio, TX, June 27-29, 1988. 12 p. refs (AIAA PAPER 88-2702)

This paper describes the design and test results of an ammonia hybrid capillary pumped loop thermal control system. As a hytbrid. the system can operate as either a passive, capillary pumped loop, or, as a mechanically pumped system. The system is comprised of an evaporator section, a condenser section, 10 meters of liquid and vapor transport lines, a mechanical pump, and a reservoir. In the evaporator section, four capillary pumps are each integrated into three cold plates. The mechanical pump is installed in the liquid line and is in series with the capillary pumps. Testing has demonstrated that in the capillary pumped mode, the HPSTM can acquire and transport a total heat load of between 120 W and 24 kW, with a maximum heat flux density of 4.3 W/sq cm in the evaporator section. In the mechanically pumped configuration. a heat acquisition potential of 50 kW (9 W/sq cm heat flux density) has been demonstrated. The hybrid system still retains the proven capillary capabilities of temperature control, heat load sharing and fluid flow control between evaporator plates, rapid power cycling. and pressure priming recovery of deprimed evaporators.

A88-44785#

ROTATING SOLID RADIATIVE COOLANT SYSTEM FOR SPACE NUCLEAR REACTORS

WALTER J. APLEY (Pacific Northwest Laboratory, Richland, WA) and ALBERT L. BABB (Washington, University, Seattle) AIAA, ASME, SAE, and ASEE, Joint Propulsion Conference, 24th, Boston, MA, July 11-13, 1988. 7 p. refs (Contract DE-AC06-76RL-01830) (AIAA PAPER 88-3189)

The RING power system described in this paper is proposed as a primary or emergency heat rejection system for advanced space reactor power applications. The system employs a set of four (4) counter-rotating, 90 degree offset, coolant-carrying rings. The rings (segmented, corrugated, finned, thin-walled pipes, filled with liquid lithium) pass through a cavity heat exchanger and re-radiate the absorbed heat to the space environment. Author

A88-46402* National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

CONTINUUM MODELING OF LARGE LATTICE STRUCTURES - STATUS AND PROJECTIONS

AHMED K. NOOR and MARTIN M. MIKULAS (NASA, Langley Research Center, Hampton, VA) IN: Large space structures: Dynamics and control. Berlin and New York, Springer-Verlag, 1988, p. 1-34. Previously announced in STAR as N88-14115. refs (Contract NAG1-740)

The status and some recent developments of continuum modeling for large repetitive lattice structures are summarized. Discussion focuses on a number of aspects including definition of an effective substitute continuum; characterization of the continuum model; and the different approaches for generating the properties of the continuum, namely, the constitutive matrix, the matrix of mass densities, and the matrix of thermal coefficients. Also, a simple approach is presented for generating the continuum properties. The approach can be used to generate analytic and/or numerical values of the continuum properties.

A88-46404* Purdue Univ., West Lafayette, IN. MODAL COST ANALYSIS FOR SIMPLE CONTINUA

A. HU, R. E. SKELTON, and T. Y. YANG (Purdue University, West Lafayette, IN) IN: Large space structures: Dynamics and control. Berlin and New York, Springer-Verlag, 1988, p. 71-94. refs (Contract NAG1-642)

The most popular finite element codes are based upon appealing theories of convergence of modal frequencies. For example, the popularity of cubic elements for beam-like structures is due to the rapid convergence of modal frequencies and stiffness properties. However, for those problems in which the primary consideration is the accuracy of response of the structure at specified locations, it is more important to obtain accuracy in the modal costs than in the modal frequencies. The modal cost represents the contribution of a mode in the norm of the response vector. This paper provides a complete modal cost analysis for simple continua such as beam-like structures. Upper bounds are

developed for mode truncation errors in the model reduction process and modal cost analysis dictates which modes to retain in order to reduce the model for control design purposes.

Author

A88-48479#

CRITIQUE OF THE THERMAL DESIGN VERIFICATION PROGRAM FOR A HIGH-POWER COMMUNICATIONS SPACECRAFT

P. C. WISE (General Electric Co., Astro-Space Div., Princeton, NJ), W. H. KELLY (COMSAT Laboratories, Clarksburg, MD), and S. P. SHARMA (COMSAT, Space Communications Div., Princeton, NJ) AIAA, Thermophysics, Plasmadynamics and Lasers Conference, San Antonio, TX, June 27-29, 1988. 8 p. (AIAA PAPER 88-2648)

This paper describes the programmatic and technical trade-offs used to define a thermal-control-subsystem verification-test program for a high-power communications spacecraft employing heat pipes. Benefits derived from a qualification thermal/mechanical model are critically reviewed. An overview of requirements for and constraints on unit- and spacecraft-level testing involving the use of heat pipes is presented. Finally, the test techniques used to measure thermal distortion of the deployed antenna reflector dish are described.

A88-49658

DYNAMIC ANALYSIS OF FINITELY STRETCHED AND ROTATED THREE-DIMENSIONAL SPACE-CURVED BEAMS

M. IURA and S. N. ATLURI (Georgia Institute of Technology, Atlanta) Computers and Structures (ISSN 0045-7949), vol. 29, no. 5, 1988, p. 875-889. refs (Contract F49620-87-C-0064)

The problem of transient dynamics of highly flexible three-dimensional space-curved beams undergoing large rotations and stretches, is treated. The case of conservative force loading, which may also lead to configuration-dependent moments on the beam, is considered. Using the three parameters associated with a conformal rotation-vector representation of finite rotations, a well-defined Hamilton functional is established for the flexible beam undergoing finite rotations and stretches. A Newmark time-integration scheme is used to integrate the semi-discrete finite-element equations in time. Several examples of transient dynamic response of highly flexible beam-like structures including those in free flight, are presented to illustrate the validity of the theoretical methodology.

A88-50339#

OPTIMAL STRUCTURAL DESIGN WITH CONTROL GAIN NORM CONSTRAINT

N. S. KHOT, V. B. VENKAYYA (USAF, Flight Dynamics Laboratory, Wright-Patterson AFB, OH), H. OZ (Ohio State University, Columbus), R. V. GRANDHI (Wright State University, Dayton, OH), and F. E. EASTEP (Dayton, University, OH) AIAA Journal (ISSN 0001-1452), vol. 26, May 1988, p. 604-611. Previously cited in issue 08, p. 1144, Accession no. A87-22363. refs

A 99_50973

COMPARISON OF THEORETICAL AND EXPERIMENTAL MODAL ANALYSIS RESULTS OF A RECTANGULAR THREE DIMENSIONAL FRAME

R. SAMUEL, R. K. RAMANATHAN, S. SHANKARNARAYANAN, and K. H. NAVALGUND (ISRO, Satellite Centre, Bangalore, India) IN: International Modal Analysis Conference, 5th, London, England, Apr. 6-9, 1987, Proceedings. Volume 2. Bethel, CT, Society for Experimental Mechanics, Inc., 1987, p. 1214-1218.

The spacecraft structures are qualified using base excitation on a shaker system whereas experimental modal analysis is done using Single Point Random (SPR) method. Experimental (SPR and base excitation) and theoretical results show good agreement for a simple three dimensional frame with fixed boundary condition and these results are presented in this paper.

Author

A88-53220* Cryolab, Inc., San Luis Obispo, CA.

BAYONET FOR SUPERFLUID HELIUM TRANSFER IN SPACE
G. E. MCINTOSH, D. S. LOMBARD, D. L. MARTINDALE (Cryolab, Inc., San Luis Obispo, CA), and MICHAEL J. DIPIRRO (NASA, Goddard Space Flight Center, Greenbelt, MD) IN: Advances in

Goddard Space Flight Center, Greenbelt, MD) IN: Advances in cryogenic engineering. Volume 33 - Proceedings of the Cryogenic Engineering Conference, Saint Charles, IL, June 14-18, 1987. New York, Plenum Press, 1988, p. 885-891.

(Contract NAS5-29224)

A prototype superfluid helium bayonet for potential space applications has been developed and evaluated with a low heat leak test apparatus. Measured heat leak of the 13 mm (1/2 inch) bayonet pair is 0.21 W at 1.8 K with an uncertainty of +0.09/-0.05 W. Bayonets are fabricated with thin, electron beam (EB) welded tubes which are EB welded to machined nose and flange pieces. Low heat leak structural integrity is provided by a 0.9 mm thickness of filament wound fiberglass-epoxy. Superfluid creep is restricted by KEL-F nose seals which form vacuum-tight extensions to the bayonet cold end pieces.

N88-20599*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

CRYOGENIC FLUID MANAGEMENT TECHNOLOGY WORKSHOP. VOLUME 2: ROUNDTABLE DISCUSSION OF TECHNOLOGY REQUIREMENTS

Mar. 1988 84 p Workshop held in Cleveland, Ohio, 28-30 Apr. 1987

(NASA-CP-10009; E-3987; NAS 1.55:10009) Avail: NTIS HC A05/MF A01 CSCL 20D

The Cryogenic Fluid Management Technology Workshop was held April 28 to 30, 1987, at the NASA Lewis Research Center in Cleveland, Ohio. The major objective of the workshop was to identify future NASA needs for technology concerning the management of subcritical cryogenic fluids in the low-gravity space environment. In addition, workshop participants were asked to those technologies which will require in-space experimentation and thus are candidates for inclusion in the flight experiment being defined at Lewis. The principal application for advanced fluid management technology is the Space-Based Orbit Transfer Vehicle (SBOTV) and its servicing facility, the On-Orbit Cryogenic Fuel Depot (OOCFD). Other potential applications include the replenishment of cryogenic coolants (with the exception of superfluid helium), reactants, and propellants on board a variety of spacecraft including the space station and space-based weapon systems. The last day was devoted to a roundtable discussion of cryogenic fluid management technology requirements by 30 representatives from NASA, industry, and academia. This volume contains a transcript of the discussion of the eight major technology categories.

N88-21492*# Lockheed Missiles and Space Co., Sunnyvale,

AMMONIA TRANSFER ACROSS ROTATING JOINTS IN SPACE MARK H. WARNER In NASA. Langley Research Center, The 22nd Aerospace Mechanisms Symposium p 341-353 May 1988 Avail: NTIS HC A18/MF A01 CSCL 20D

Thermal control of future large space facilities, such as the space station, will require the transfer of anhydrous ammonia across rotating joints with near zero leakage. Anhydrous ammonia is the primary heat transfer fluid aboard the station, providing critical thermal management of habitat and payload systems. The solar radiator joints, as well as the various payload pointing systems, are obvious examples of the need for a reliable fluid transfer device. Low weight, tight temperature control, low parasitic drag torque, long life, and high reliability, in addition to near zero leakage. are important characteristics necessary for the successful operation of such a device. In late 1986, Lockheed initiated a project to develop a Rotary Transfer Coupling (RTC) directed toward space station requirements. Fabrication and assembly of this device is now complete and testing is scheduled. The design and development of the face seal-type rotary fluid coupling that utilizes a unique cover gas concept (an inert gas such as nitrogen) to provide full containment of the ammonia was addressed.

04 STRUCTURAL AND THERMAL ANALYSIS

N88-22321# Boeing Aerospace Co., Seattle, WA. FLOSIN: A FLUID LOOP ANALYZER FOR SINDA

STEVEN M. LUNDE 1988 11 p Presented at the SAE 18th Intersociety Conference on Environment Systems

Avail: NTIS HC A03/MF A01

High-power heat transport systems for large space platforms require the use of complex fluid loops to effectively and efficiently move waste heat energy from source to sink. In particular, use of two-phase heat acquisition and transport systems offers significant advantages such as reduction of pump power, automation of control systems, constant sink temperatures at the load, and flexible load placement. Analytical tools are needed for design analysis and performance prediction of these systems. Moreover, environmental considerations and insulation systems need to be taken into account, especially when subcooling and superheating become important parameters in the overall design. The development and use of FLOSIN, a system-level, two-phase fluid loop analyzer, are discussed. Explained are the modeling approach for systems utilizing Rotary Fluid Management Device (RFMD), Back Pressure Regulating Valve (BPRV), and cavitating venturis. Described are the unique components and special subroutines for processing input and output, for handling flow splits, and for generating Systems Improved Numerical Differencing Analyzer (SINDA) thermal networks.

N88-22406*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

STRUCTURAL ASSESSMENT OF A SPACE STATION SOLAR DYNAMIC HEAT RECEIVER THERMAL ENERGY STORAGE CANISTER

R. L. THOMPSON, T. W. KERSLAKE, and M. T. TONG (Sverdrup Technology, Inc., Cleveland, Ohio.) In its Lewis Structures Technology, 1988. Volume 2: Structural Mechanics p 281-294 May 1988 Previously announced in IAA as N88-31396 Avail: NTIS HC A14/MF A01 CSCL 20K

The structural performance of a space station thermal energy storage (TES) canister subject to orbital solar flux variation and engine cold start up operating conditions was assessed. The impact of working fluid temperature and salt-void distribution on the canister structure are assessed. Both analytical and experimental studies were conducted to determine the temperature distribution of the canister. Subsequent finite element structural analyses of the canister were performed using both analytically and experimentally obtained temperatures. The Arrhenius creep law was incorporated into the procedure, using secondary creep data for the canister material, Haynes 188 alloy. The predicted cyclic creep strain accumulations at the hot spot were used to assess the structural performance of the canister. In addition, the structural performance of the canister hased on the analytically determined temperature was compared with that based on the experimentally measured temperature data.

N88-23182*# Grumman Aerospace Corp., Bethpage, NY.
SOLAR DYNAMIC HEAT REJECTION TECHNOLOGY. TASK 2:
HEAT PIPE RADIATOR DEVELOPMENT Final Report
MARK LEAGUE and JOE ALARIO May 1988 46 p

(Contract NAS3-24665)

(NASA-CR-182141; NAS 1.26:182141) Avail: NTIS HC A03/MF A01 CSCL 20D

This report covers the design, fabrication, and test of several dual slot heat pipe engineering development units. The following dual-slot heat pipes were fabricated and tested: two 6-ft. aluminum heat pipes; a 20-ft. aluminum heat pipe; and a 20-ft. aluminum heat pipe with a four-leg evaporator section. The test results of all four test articles are presented and compared to the performance predicted by the design software. Test results from the four-leg article are incomplete. The methodology for fabricating stainless steel dual slot heat pipes was also studied by performing a tool life test with different single point cutters, and these results are also presented. Although the dual-slot heat pipe has demonstrated the potential to meet the requirements for a high capacity radiator system, uncertainties with the design still exist.

The startup difficulties with the aluminum test articles must be solved, and a stainless steel/methanol heat pipe should be built and tested.

Author

N88-24672*# National Aeronautics and Space Administration. Marshall Space Flight Center, Huntsville, AL.

STRUCTURAL MARGINS ASSESSMENT APPROACH

ROBERT S. RYAN Jun. 1988 56 p

(NASA-TM-100332; NAS 1.15:100332) Avail: NTIS HC A04/MF A01 CSCL 22B

A general approach to the structural design and verification used to determine the structural margins of the space vehicle elements under Marshall Space Flight Center (MSFC) management is described. The Space Shuttle results and organization will be used as illustrations for techniques discussed. Given also are: (1) the system analyses performed or to be performed by, and (2) element analyses performed by MSFC and its contractors. Analysis approaches and their verification will be addressed. The Shuttle procedures are general in nature and apply to other than Shuttle space vehicles.

N88-26389*# National Aeronautics and Space Administration. Goddard Space Flight Center, Greenbelt, MD.

DESIGN AND TESTING OF A HIGH POWER SPACECRAFT THERMAL MANAGEMENT SYSTEM

MICHAEL E. MCCABE, JR., JENTUNG KU, and STEVE BENNER (TS Infosystems, Lanham, Md.) Jun. 1988 109 p Sponsored in part by AF

(Contract NAS5-28626)

(NASA-TM-4051; REPT-88B0167; NAS 1.15:4051) Avail: NTIS HC A06/MF A01 CSCL 22B

The design and test results are presented of an ammonia hybrid capillary pumped loop thermal control system which could be used for heat acquisition and transport on future large space platforms and attached payloads, such as those associated with the NASA Space Station. The High Power Spacecraft Thermal Management System (HPSTM) can operate as either a passive, capillary pumped two phase thermal control system, or, when additional pressure head is required, as a mechanically pumped loop. Testing has shown that in the capillary mode, the HPSTM evaporators can acquire a total heat load of between 600 W and 24 kW, transported over 10 meters, at a maximum heat flux density of 4.3 W/sq cm. With the mechanical pump circulating the ammonia, a heat acquisition potential of 52 kW was demonstrated for 15 minutes without an evaporator failure. These results represent a significant improvement over the maximum transport capability previously displayed in other capillary systems. The HPSTM system still retains the proven capillary capabilities of heat load sharing and flow control between evaporator plates, rapid power cycling, and nonuniform heating in both the capillary and hybrid operating modes. Author

N88-29128# Societe Nationale Industrielle Aerospatiale, Cannes (France).

DEVELOPMENT OF A SPACE DEPLOYABLE RADIATOR USING HEAT PIPES

M. AMDIEU, B. MOSCHETTI, and M. B. TATRY (Centre National d'Etudes Spatiales, Toulouse, France) 25 Mar. 1988 7 p (SNIAS-881-440-104; ETN-88-92874) Avail: NTIS HC A02/MF A01

A space radiator using heat pipes prototype model with a deployable radiator connected to a rotating thermal joint was designed, built, and tested. Performance tests were conducted on the model to measure deployment torque, and verifiy the thermal performance (globally and for each of the components). The good results of these tests show that this radiator can be adapted to all kinds of satellites and space platforms.

N88-29395*# Georgia Inst. of Tech., Atlanta. School of Electrical Engineering.

REASONING ABOUT FAULT DIAGNOSIS FOR THE SPACE STATION COMMON MODULE THERMAL CONTROL SYSTEM G. VACHTSEVANOS, H. HEXMOOR, and B. PÜRVES (Boeing Aerospace Co., Huntsville, Ala.) In NASA, Marshall Space Flight Center, Second Conference on Artificial Intelligence for Space Applications p 403-412 Aug. 1988
Avail: NTIS HC A99/MF E03 CSCL 22B

The proposed common module thermal control system for the Space Station is designed to integrate thermal distribution and thermal control functions in order to transport heat and provide environmental temperature control through the common module. When the thermal system is operating in an off-normal state, due to component faults, an intelligent controller is called upon to diagnose the fault type, identify the fault location and determine the appropriate control action required to isolate the faulty component. A methodology is introduced for fault diagnosis based upon a combination of signal redundancy techniques and fuzzy logic. An expert system utilizes parity space representation and analytic redundancy to derive fault symptoms, the aggregate of which is assessed by a multivalued rule based system. A subscale laboratory model of the thermal control system designed is used as the testbed for the study.

N88-30181*# Lockheed Missiles and Space Co., Sunnyvale, CA.

ADVANCED PLANAR ARRAY DEVELOPMENT FOR SPACE STATION Final Report, 1 Jun. 1985 - 1 Jun. 1987

Jun. 1987 101 p

(Contract NAS8-36419)

(NASA-CR-179373; NAS 1.26:179373; LMSC-F115808) Avail:

NTIS HC A05/MF A01 CSCL 10B

The results of the Advanced Planar Array Development for the Space Station contract are presented. The original objectives of the contract were: (1) to develop a process for manufacturing superstrate assemblies, (2) to demonstrate superstrate technology through fabrication and test, (3) to develop and analyze a preliminary solar array wing design, and (4) to fabricate a wing segment based on wing design. The primary tasks completed were designing test modules, fabricating, and testing them. LMSC performed three tasks which included thermal cycle testing for 2000 thermal cycles, thermal balance testing at the Boeing Environmental Test Lab in Kent, Washington, and acceptance testing a 15 ft x 50 in panel segment for 100 thermal cycles. The surperstrate modules performed well during both thermal cycle testing and thermal balance testing. The successful completion of these tests demonstrate the technical feasibility of a solar array power system utilizing superstrate technology. This final report describes the major elements of this contract including the manufacturing process used to fabricate modules, the tests performed, and the results and conclusions of the tests.

N88-30552# Contraves Corp., Zurich (Switzerland). Space Dept.

FAR INFRARED SPECTROSCOPY TELESCOPE (FIRST) INFLATABLE THERMAL SHIELD, PHASE 1 Final Report

S. KOSE Paris, France ESA Jun. 1987 197 p

(Contract ESA-6324/85-NL-PB(SC))

(SR/FIS/108(87)CZ; ESA-CR(P)-2568; ETN-88-93017) Avail:

NTIS HC A09/MF A01

Inflatable space rigidized structures (ISRS) were assessed for the FIRST satellite thermal shield. The baseline shield configuration, the so called obliquely cut cylindrical shield configuration, has a diameter of 10 m, a maximum height of 10 m, and a cut angle of 30 deg. This shield consists of an ISRS skeleton of tubes of diameter 0.45 m carrying the thermal control layers. The stringent requirements on the thermal control can be met by a 6-layer multilayer insulation, consisting of 2 layers of SAK (1 Mil) and 4-layers of DAM (0.25 Mil). Using the BF3 catalyst, the ISRS structure can be cured in 3 preselected positions with respect to Sun within 9 hr. Curing without catalyst is also possible, but in this case a 90 deg tilt of the satellite and longer cure times (24 hr) must be faced. The first eigenfrequency of the baseline thermal shield in deployed configuration is 2.15 Hz, thus the stiffness requirement is fulfilled. The thermal shield can survive the thermal stresses introduced during the worst operational case. The total

mass lies comfortably within the specified limit of 220 kg. The shield can be well stowed in the allowable volume of the Ariane 4 shroud.

05

STRUCTURAL DYNAMICS AND CONTROL

Includes modeling, systems identification, attitude and control techniques and systems, surface accuracy measurement and control techniques and systems, sensors, and actuators.

A88-33104

EFFECT OF SOLAR PRESSURE ON THE MOTION AND STABILITY OF THE SYSTEM OF TWO INTER-CONNECTED SATELLITES IN AN ELLIPTICAL ORBIT

SACHINDRA KUMAR SINHA (Rajendra Agricultural University, Pusa Samastiupur, India) and R. B. SINGH (Bihar University, Muzaffarpur, India) Astrophysics and Space Science (ISSN 0004-640X), vol. 140, no. 1, Jan. 1988, p. 49-54.

The effect of solar pressure on the motion and stability of a system of two interconnected satellites (such as a manned-space capsule attached to its booster with a flexible and inextensible string near some equilibrium position) is investigated analytically for the case of elliptical orbit. In this model, which is based on the work of Beletsky (1965, 1969), Singh (1973), and Sinha (1987), the equations of motion obtained are nonlinear and nonautomous; the solution of the system was obtained using Bogoliubov et al. (1961) method. The results indicate that the amplitude of the system remains constant up to the order of e-squared (where e denotes eccentricity). If the value of e is very small, the system will always oscillate about the position of equilibrium with tight string-like dumb-bell satellite with changing phase and constant amplitude.

A88-33446*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

SYNTHESIS OF FINE-POINTING CONTROL SYSTEMS FOR LARGE, FLEXIBLE SPACECRAFT

SURESH M. JOSHI (NASA, Langley Research Center, Hampton, VA) IN: EASCON '87; Proceedings of the Twentieth Annual Electronics and Aerospace Systems Conference, Washington, DC, Oct. 14-16, 1987. New York, Institute of Electrical and Electronics Engineers, Inc., 1987, p. 171-176. refs

This paper considers the problem of designing attitude control systems for large space structures (LSS). The difficulties in control systems design, which arise because of special dynamic characteristics of LSS, are described, and methods for overcoming them using two types of controllers are presented. The first type of controller considered is a model-based compensator (MBC), and the second is the 'dissipative' controller which employs output feedback. Based on the numerical and analytical results obtained, the MBC can offer good performance under normal conditions, while the dissipative controller offers more robustness but perhaps reduced performance in situations involving large uncertainties.

Author

A88-34498

LARGE SPACE OPTICAL SYSTEM ACTIVE VIBRATION SUPPRESSION

L. W. HODGE and J. A. BREAKWELL (Lockheed Missiles and Space Co., Inc., Sunnyvale, CA) IN: Structural mechanics of optical systems II; Proceedings of the Meeting, Los Angeles, CA, Jan. 13-15, 1987. Bellingham, WA, Society of Photo-Optical Instrumentation Engineers, 1987, p. 106-113.

Large space optical system vibration suppression is presently undertaken through the assembly of an integrated optics/structures/controls simulation, in order to test the performance of the primary control system. This high authority control/low authority control (HAC/LAC) system's simulated perfor-

mance for a defined suppression requirement encompassed a partially validated FEM model, the requisite optical performance algorithms, and a closed loop HAC/LAC model. The specified -40 dB requirements are met with actuators of minimal, 0.5-lb weight at eight locations, which cause no significant changes in either modal frequency or shape.

O.C.

A88-34500

CONCEPTUAL DESIGN FOR ACTIVE STRUCTURAL CONTROL OF A LARGE OPTICAL SYSTEM

JEROME D. GOTTESMAN, GON-YEN SHEN, and SHIVA S. TRIPATHI (Perkin-Elmer Corp., Danbury, CT) IN: Structural mechanics of optical systems II; Proceedings of the Meeting, Los Angeles, CA, Jan. 13-15, 1987. Bellingham, WA, Society of Photo-Optical Instrumentation Engineers, 1987, p. 126-135. refs

A design for the active structural control of a two-element laser beam expander is described. The lengths of selected struts of a trussed, quadrapod graphite/epoxy structure are monitored and controlled by sensor/actuators using a modal control technique with rate-damping enhancement. The details of structural design, optical arrangement, strut sensors and actuators, and control algorithms are discussed.

A88-34501

MULTIVARIABLE CONTROL LAW ANALYSIS FOR A LARGE SPACE ANTENNA

DALE F. ENNS and DANIEL J. BUGAJSKI (Honeywell Systems and Research Center, Minneapolis, MN) IN: Structural mechanics of optical systems II; Proceedings of the Meeting, Los Angeles, CA, Jan. 13-15, 1987. Bellingham, WA, Society of Photo-Optical Instrumentation Engineers, 1987. p. 136-145. refs

Instrumentation Engineers, 1987, p. 136-145. refs
This paper will discuss control laws for a large space antenna.
The discussion will focus on analysis of the multivariable, closed loop system with respect to nominal performance, robust stability, and robust performance. The analysis employs singular values and structured singular values of multivariable frequency responses. Consistency between the frequency response analysis and time simulations is also presented. A simplified model of a large flexible space antenna was used for the analysis.

Author

A88-34502

AN EXPERIMENTAL TEST-BED FOR VALIDATION OF CONTROL METHODOLOGIES IN LARGE SPACE OPTICAL STRUCTURES

DAVID C. HYLAND (Harris Corp., Government Aerospace Systems Div., Melbourne, FL) IN: Structural mechanics of optical systems II; Proceedings of the Meeting, Los Angeles, CA, Jan. 13-15, 1987. Bellingham, WA, Society of Photo-Optical Instrumentation Engineers, 1987, p. 146-155. refs
This paper reviews an optics/vibration experiment involving the

This paper reviews an optics/vibration experiment involving the Harris Deployable Multi-Hex Prototype - a reflector structure comprising a seven-panel array. Design considerations needed to ensure the emulation of vibration pathologies characteristic of SDI systems are discussed. The key aspects of dynamic complexity, deployability and proper combination of generically distinct vibration suppression methods are emphasized. We describe the experimental setup which follows as a consequence of these considerations. The projected test plan emphasizes combined orchestration of active and passive methods.

A88-34613# MODAL TESTING R&D AT THE COMMUNICATIONS RESEARCH CENTRE

Y. SOUCY, F. R. VIGNERON, and T. STEELE (CDC, Communications Research Centre, Ottawa, Canada) (Canadian Symposium on Aerospace Structures and Materials, 3rd, Ottawa, Canada, June 9-11, 1986) Canadian Aeronautics and Space Journal (ISSN 0008-2821), vol. 34, March 1988, p. 38-47. refs

In the last ten years, novel methods of parameter identification have been developed and modal testing technology has rapidly expanded, primarily as a result of the availability of low-cost, high-performance minicomputers and test equipment. Modal tests are broadly characterizable as phase-resonance and mode-

separation methods; attention is presently given to the latter, in which one or more excitation devices are used to induce structure motions that contain all structural modes of interest. Projects of this kind that are presently discussed include the step-relaxation and driven-base excitation techniques for space structure parameter estimation, the testing of large, flexible space structures, and the evaluation of a substructure coupling method.

O.C.

A88-34736

TIME OPTIMAL SLEWING OF FLEXIBLE SPACECRAFT

JOSEPH BEN-ASHER, JOHN A. BURNS, and EUGENE M. CLIFF (Virginia Polytechnic Institute and State University, Blacksburg) IN: IEEE Conference on Decision and Control, 26th, Los Angeles, CA, Dec. 9-11, 1987, Proceedings. Volume 1. New York, Institute of Electrical and Electronics Engineers, Inc., 1987, p. 524-528. refs

(Contract AF-AFOSR-85-0287)

The time-optimal slewing problem of flexible spacecraft is considered. The system is discretisized by the assumed-modes method, and the problem is solved for a linearized model in reduced state space by parameter optimization. Optimality is verified by the maximal principle. The linear solution is used to obtain time-optimal solutions for the nonlinear problem.

A88-34737

APPROXIMATION IN DISCRETE-TIME BOUNDARY CONTROL OF FLEXIBLE STRUCTURES

J. S. GIBSON (California, University, Los Angeles) and I. G. ROSEN (Southern California, University, Los Angeles, CA) IN: IEEE Conference on Decision and Control, 26th, Los Angeles, CA, Dec. 9-11, 1987, Proceedings. Volume 1. New York, Institute of Electrical and Electronics Engineers, Inc., 1987, p. 535-540. refs (Contract AF-AFOSR-84-0309; AF-AFOSR-84-0393)

The authors consider discrete-time LQG (linear quadratic Guassian) optimal control of flexible structures with boundary control and what normally are unbounded measurement operators. The application of recently developed approximation theory for infinite-dimensional discrete-time LQG problems to this problem is discussed. Numerical results are given for control of a flexible beam.

A88-34749

REDUCED-ORDER COMPENSATION: LQG REDUCTION VERSUS OPTIMAL PROJECTION USING A HOMOTOPIC CONTINUATION METHOD

S. W. GREELEY, D. C. HYLAND, and S. RICHTER (Harris Corp., Government Aerospace Systems Div., Melbourne, FL) IN: IEEE Conference on Decision and Control, 26th, Los Angeles, CA, Dec. 9-11, 1987, Proceedings. Volume 1. New York, Institute of Electrical and Electronics Engineers, Inc., 1987, p. 742-747. refs (Contract F49620-84-C-0038)

The optimal projection method, as solved by a recently developed homotopy continuation algorithm, is considered. Design results obtained by different methods for forty-two design cases are compared with the results of the present method with respect to closed-loop stability. Only the optimal projection method produced stable designs for all cases.

A88-34790#

MOVING BANK MULTIPLE MODEL ADAPTIVE ESTIMATION APPLIED TO FLEXIBLE SPACE STRUCTURE CONTROL

DREW A. KARNICK and PETER S. MAYBECK (USAF, Institute of Technology, Wright-Patterson AFB, OH) IN: IEEE Conference on Decision and Control, 26th, Los Angeles, CA, Dec. 9-11, 1987, Proceedings. Volume 2. New York, Institute of Electrical and Electronics Engineers, Inc., 1987, p. 1249-1257. refs

The feasibility of applying moving-bank multiple-model adaptive estimation algorithms to flexible-space-structure control is investigated. Moving-bank multiple-model adaptive estimation control is an attempt to reduce the computational load associated with the implementation of a full-scale multiple-model adaptive estimator/controller. It is shown that although the use of a moving bank can provide improved state estimation and control

performance, similar performance can be obtained from a fixed-bank estimator with fewer filters than a full bank, accomplished through a coarse discretization that covers the range of parameter variation.

A88-34791

AN ADAPTIVE CONTROL SYSTEM FOR FINE POINTING OF FLEXIBLE SPACECRAFT

T. E. ELIAZOV (Bell Communications Research, Inc., Red Bank, NJ) and F. E. THAU (City College, New York) IN: IEEE Conference on Decision and Control, 26th, Los Angeles, CA, Dec. 9-11, 1987, Proceedings. Volume 2. New York, Institute of Electrical and Electronics Engineers, Inc., 1987, p. 1258-1262. refs

A least-squares algorithm is used to identify simultaneously the unknown states and parameters of a discrete-time lumped-parameter model of the flexible structure. The identified states and parameters form the input to a bang-off-bang control law that, in conjunction with the identification algorithm, results in an adaptive system whose response closely approximates that of a system with known parameters. Simulation studies demonstrate the response achievable with the proposed approach.

A88-34792

SYSTEM IDENTIFICATION FOR SPACE CONTROL LABORATORY EXPERIMENT (SCOLE) USING DISTRIBUTED PARAMETER MODELS

S. A. HOSSAIN and K. Y. LEE (Pennsylvania State University, University Park) IN: IEEE Conference on Decision and Control, 26th, Los Angeles, CA, Dec. 9-11, 1987, Proceedings. Volume 2. New York, Institute of Electrical and Electronics Engineers, Inc., 1987, p. 1263-1268. refs

An infinite-dimensional identification scheme to determine system parameters in large flexible structures in space is presented. The method retains the distributed nature of the structure throughout the development of the algorithm and a finite-element approximation is used only to implement the algorithm. This approach eliminates any problems associated with model truncation used in other methods of identification. The identification problem is formulated in Hilbert spaces and an optimal control technique is used to minimize weighted least squares of error between the actual and the model data. Computer simulation studies are conducted using a shuttle-attached antenna configuration, more (SCOLE), as an example. Numerical results show a close match between the estimated and true values of the parameters. I.E.

A88-34794

ROTATIONAL MANEUVER AND STABILIZATION OF AN ELASTIC SPACECRAFT

SAHJENDRA N. SINGH (Nevada, University, Las Vegas) IN: IEEE Conference on Decision and Control, 26th, Los Angeles, CA, Dec. 9-11, 1987, Proceedings. Volume 2. New York, Institute of Electrical and Electronics Engineers, Inc., 1987, p. 1275-1280.

The question of attitude control and elastic mode stabilization of a spacecraft (orbiter) with beam/tip-mass-type payloads is considered. A three-axis moment control law is derived to control the attitude of the spacecraft. The derivation of the control moments acting on the spacecraft does not require any information on the system dynamics. The control law includes a reference model and a dynamic compensator in the feedback path. For damping out the elastic motion excited by the slewing maneuver, an elastic mode stabilizer is designed. The stabilization is achieved by modal velocity feedback using force and torque actuators located at the payload end of the elastic beam. Collocated actuators and sensors provide robust stabilization.

A88-34796*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

CONTROLLER SYNTHESIS FOR FLEXIBLE SPACECRAFT USING MULTIVARIABLE LOOP-SHAPING AND FACTORIZATION METHODS

SURESH M. JOSHI (NASA, Langley Research Center, Hampton,

VA) IN: IEEE Conference on Decision and Control, 26th, Los Angeles, CA, Dec. 9-11, 1987, Proceedings. Volume 2. New York, Institute of Electrical and Electronics Engineers, Inc., 1987, p. 1288, 1289. refs

The problem of designing fine-pointing controllers is considered for large, flexible space structures using modern multivariable synthesis methods. The first method is an iterative procedure which utilizes frequency-domain singular-value techniques, and is found to yield satisfactory performance and robustness. For the second method, which is based on coprime factorizations, a particular bicoprime is obtained, and the steps in the design process are described. This method is still under development.

A88-34805* Brown Univ., Providence, RI. PARAMETER IDENTIFICATION TECHNIQUES FOR THE ESTIMATION OF DAMPING IN FLEXIBLE STRUCTURE EXPERIMENTS

H. T. BANKS, Y. WANG (Brown University, Providence, RI), D. J. INMAN, and H. CUDNEY, JR. (New York, State University, Buffalo) IN: IEEE Conference on Decision and Control, 26th, Los Angeles, CA, Dec. 9-11, 1987, Proceedings. Volume 2. New York, Institute of Electrical and Electronics Engineers, Inc., 1987, p. 1392-1395. refs

(Contract NAG1-517; AF-AFOSR-84-0398; AF-AFOSR-85-0220; NSF MSM-83-51807; AF-AFOSR-85-01)

The use of spline-based inverse procedures to estimate damping coefficients for flexible structures in distributed-parameter systems is reported. Damping models involving viscous (air) damping and Kelvin-Voigt damping in an Euler-Bernoulli framework are used to analyze data from vibration experiments with composite material beams.

A88-34812

TIME OPTIMAL SLEWING OF A RIGID BODY WITH FLEXIBLE APPENDAGES

G. SINGH, P. T. KABAMBA, and N. H. MCCLAMROCH (Michigan, University, Ann Arbor) IN: IEEE Conference on Decision and Control, 26th, Los Angeles, CA, Dec. 9-11, 1987, Proceedings. Volume 2. New York, Institute of Electrical and Electronics Engineers, Inc., 1987, p. 1441, 1442. refs

The control problem of time-optimal, rest-to-rest, slewing of a rigid body with flexible appendages through a large angle is considered. A finite-dimensional time-optimal slewing problem is proposed as a relaxation of an ill-posed infinite-dimensional time-optimal slewing problem. The optimal control history is shown to have an important time symmetry property. The switching times, final time, and costates at midmaneuver are shown to satisfy a system of nonlinear algebraic equations.

A88-34813

STABILITY AND EQUILIBRIA OF DEFORMABLE SYSTEMS

ANTHONY M. BLOCH (Michigan, University, Ann Arbor) IN: IEEE Conference on Decision and Control, 26th, Los Angeles, CA, Dec. 9-11, 1987, Proceedings. Volume 2. New York, Institute of Electrical and Electronics Engineers, Inc., 1987, p. 1443, 1444. refs (Contract NSF DMS-87-01574; AF-AFOSR-ISSA-87-0077)

The stability of the equilibrium states of a deformable body, consisting of a rigid body with attached flexible rod is considered. By the so-called Energy-Casimir method formal stability is proved for the nontrivial equilibrium with lowest angular velocity.

A88-34822

SPECTRAL ANALYSIS OF A CLASS OF INFINITE-DIMENSIONAL SYSTEMS

RENJENG SU (Colorado, University, Boulder) IN: IEEE Conference on Decision and Control, 26th, Los Angeles, CA, Dec. 9-11, 1987, Proceedings. Volume 2. New York, Institute of Electrical and Electronics Engineers, Inc., 1987, p. 1566, 1567. Research supported by the General Electric Co., Lockheed Corp., Martin Marietta Corp., AT&T, and NSF.

The problem is considered of large-scale systems that arise when a great number of basic structures, each of which can be appropriately modeled by a finite-dimensional dynamics, are

connected, resulting in systems of very high dimensionality. Large-scale systems of this kind have a distinctive characteristic as compared to the dynamics of continuous media resulting from finite-element analysis. To illustrate this point, it is shown that serial connections of an infinite number of springs and masses give rise to dynamics with bounded spectral radii and the eigenvalues spread densely over the bounded region.

A88-34891

DESIGN OF A CONTROLLER FOR MECHANICAL SYSTEMS BY THE GENERALIZED ENERGY FUNCTION

SHINTARO ISHIJIMA (Tokyo Metropolitan Institute of Technology, Hino, Japan), HISATO KOBAYASHI (Hosei University, Koganei, Japan), and ETSUJIRO SHIMEMURA (Waseda University, Okubo, Japan) IN: IEEE Conference on Decision and Control, 26th, Los Angeles, CA, Dec. 9-11, 1987, Proceedings. Volume 3. New York, Institute of Electrical and Electronics Engineers, Inc., 1987, p. 2186-2190. refs

A mechanical system with proportional dynamics is considered. Its dynamics are described by a matrix second-order differential equation; the coefficient matrices have properties such as symmetry and positivity. These properties are used to synthesize a better controller for such a system. The potential and kinetic energy of the system are considered. A concept called a generalized energy function is introduced and used as the basis for discussing observability and controllability. The problem of attitude control using position feedback is treated.

A88-34905

ON THE QUANTITATIVE CHARACTERIZATION OF APPROXIMATE DECENTRALIZED FIXED MODES USING TRANSMISSION ZEROS

A. F. VAZ and E. J. DAVISON (Toronto, University, Canada) IN: IEEE Conference on Decision and Control, 26th, Los Angeles, CA, Dec. 9-11, 1987, Proceedings. Volume 3. New York, Institute of Electrical and Electronics Engineers, Inc., 1987, p. 2283-2288. refs

(Contract NSERC-A-4396)

The coordinate invariant distance between the open-loop eigenvalues and a set of transmission zeros is used to quantify the difficulty of shifting different modes in a system. It is shown that eigenvalues have an affinity for transmission zeros that lie nearby. Consequently, large controller gains are required to move eigenvalues away from such transmission zeros. This type of result is particularly useful for systems such as large flexible space structures, which have transmission zeros in the neighborhood of some system eigenvalues and manifest a great disparity in the mobility of their eigenvalues. Since not all systems have transmission zeros, a second measure of eigenvalue assignability that applies to all systems is introduced. This measure is based on the minimum singular value of a set of transmission zero matrices. The price of this generality is that the measure becomes coordinate-dependent.

A88-34914

MODELLING AND STABILIZATION OF FLEXIBLE SPACECRAFT UNDER THE INFLUENCE OF ORBITAL PERTURBATION

N. U. AHMED and SANG S. LIM (Ottawa, University, Canada) IN: IEEE Conference on Decision and Control, 26th, Los Angeles, CA, Dec. 9-11, 1987, Proceedings. Volume 3. New York, Institute of Electrical and Electronics Engineers, Inc., 1987, p. 2331-2336. refs

The problem of modelling of large flexible spacecraft and their stabilization under the influence of orbital (radial) perturbation is considered. The dynamics of the flexible spacecraft is derived using Hamilton's principle. The equations of motion consist of a coupled system of ordinary differential equations and partial differential equations. The asymptotic stability of the system is proved using Lyapunov's approach. Simple feedback controls are suggested for the stabilization of the system. For illustration, numerical simulations are carried out.

A88-34916* Rensselaer Polytechnic Inst., Troy, NY. MODEL REFERENCE CONTROL OF THE NASA SCOLE PROBLEM

HOWARD KAUFMAN and ABRAHAM MUSALEM (Rensselaer Polytechnic Institute, Troy, NY) IN: IEEE Conference on Decision and Control, 26th, Los Angeles, CA, Dec. 9-11, 1987, Proceedings. Volume 3. New York, Institute of Electrical and Electronics Engineers, Inc., 1987, p. 2341-2343. (Contract NAG1-515)

Model reference controllers have been developed and applied to the linearized Spacecraft Control Laboratory Experiment (SCOLE) roll beam mode equation. When a large-but finite-dimensional approximation to the partial differential equation is used, the resulting control will be finite-dimensional, but possibly not adequately representative for the actual distributed-parameter system. To date the theory for such model reference controllers has been developed; here it is applied to a 16th-order finite-dimensional representation of the flexible and rigid body modes of the SCOLE. Results of the analysis and some preliminary simulation studies are presented.

A88-34917

COMPUTING THE TRANSMISSION ZEROS OF LARGE SPACE STRUCTURES

TREVOR WILLIAMS (NASA, Langley Research Center, Hampton, VA) IN: IEEE Conference on Decision and Control, 26th, Los Angeles, CA, Dec. 9-11, 1987, Proceedings. Volume 3. New York, Institute of Electrical and Electronics Engineers, Inc., 1987, p. 2344, 2345. SERC-supported research. refs

The transmission zeros of a large space structure can be computed by the general-purpose algorithm of A. Emami-Naeini and P. Van Dooren (1982). However, careful use of the special form of the equations of motion of structural dynamics leads to a new method that is about twice as fast as theirs when applied to a damped structure, and at least 60 times as fast for an undamped one.

A88-35102

GROUND-TEST OF SPACECRAFT CONTROL AND DYNAMICS SHERMAN M. SELTZER and MICHAEL A. POPE (Control Dynamics Co., Huntsville, AL) IN: Aerospace century XXI: Space flight technologies; Proceedings of the Thirty-third Annual AAS International Conference, Boulder, CO, Oct. 26-29, 1986. San Diego, CA, Univelt, Inc., 1987, p. 763-785. (AAS PAPER 86-267)

The dynamic behavior and closed-loop control of large space structures are being demonstrated and verified at NASA-Marshall in a new facility that consists of a control torque command-furnishing payload-mounting system to which test articles are connected. The mounting system is in turn attached to a base-excitation system that can simulate the disturbances that are most likely to occur with Space Shuttle Orbiter and Department of Defense payloads. A control computer contains the calibration software, reference system, alignment procedures, telemetry software, and control algorithms. The facility can be extensively modified to emulate various spacecraft configurations.

A88-35116* Martin Marietta Corp., Denver, CO. MEMBER VIBRATION EFFECTS ON LSS BEHAVIOR

CHARLES W. WHITE (Martin Marietta Corp., Denver, CO) IN: Aerospace century XXI: Space flight technologies; Proceedings of the Thirty-third Annual AAS International Conference, Boulder, CO, Oct. 26-29, 1986. San Diego, CA, Univelt, Inc., 1987, p. 1035-1049. refs

(Contract NAS1-7551) (AAS PAPER 86-396)

This paper evaluates the sensitivity of modal characteristics of large deployable lattice-type space structures to joint boundary conditions. The evaluation of joint rotational boundary conditions is accomplished by a review of modal strain energy among elements of the analytic dynamic model. This review shows that space structure designs having no bending energy in lattice members in the low frequency range are insensitive to joint rotational boundary

conditions in that frequency range. Evaluation of joint translation boundary conditions is accomplished by the 'modal freeplay method' which is described in this paper. The modal freeplay method relates modal frequency to joint translational freeplay and to amplitude of applied forces.

A88-35117

DISTRIBUTED AND CONCURRENT COMPUTATION FOR **SPACE STRUCTURES**

JOHN E. HERSHEY, ROBERT F. KUBICHEK, and JAMES E. SCHROEDER (BDM Corp., Boulder, CO) IN: Aerospace century XXI: Space flight technologies; Proceedings of the Thirty-third Annual AAS International Conference, Boulder, CO, Oct. 26-29, 1986. San Diego, CA, Univelt, Inc., 1987, p. 1051-1055. (AAS PAPER 86-397)

An evaluation is made of the development status and prospects of distributed/concurrent real-time computation methods in the control of large space structures, with attention to the subtle interplay between hardware, algorithm, and computer architecture design factors. Current efforts are noted to be developing in distinct, microparallelization and macroparallelization directions. It appears doubtful that any single processor will be sufficient to handle the real-time computational loads associated with such structures.

O.C.

A88-35541

INTERACTIVE STRUCTURAL AND CONTROLLER SYNTHESIS FOR LARGE SPACECRAFT

S. C. MCINTOSH, JR. (McIntosh Structural Dynamics, Inc., Palo Alto, CA) and M. A. FLOYD (Integrated Systems, Inc., Palo Alto, CA) IN: Recent trends in aeroelasticity, structures, and structural dynamics; Proceedings of the R. L. Bisplinghoff Memorial Symposium, Gainesville, FL, Feb. 6, 7, 1986. Gainesville, FL, University Presses of Florida, 1987, p. 283-297. refs (Contract F49620-84-C-0025)

A technique is developed for least-weight optimal design of a tubular-truss space structure, subject to constraints on its natural frequencies and its open-loop disturbance-rejection properties. The disturbance-rejection properties of the structure are measured by disturbance-to-regulated-variable grammians. It is shown how this technique can be embedded in a model-reduction scheme based on internal balancing. The procedure is applied to to a simple 'dumbbell' model and CSDL Model No. 1.

A88-35543

DYNAMIC RESPONSES OF ORTHOTROPIC PLATES UNDER MOVING MASSES

O. P. AGRAWAL (Southern Illinois University, Carbondale, IL) and SUNIL SAIGAL (Worcester Polytechnic Institute, MA) IN: Recent trends in aeroelasticity, structures, and structural dynamics; Proceedings of the R. L. Bisplinghoff Memorial Symposium. Gainesville, FL, Feb. 6, 7, 1986. Gainesville, FL, University Presses of Florida, 1987, p. 313-333. refs

The problem considered is that of heavy masses moving on lightweight rectangular plates of orthotropic materials, slated for use in space structures. The dynamic equation of motion for orthotropic plates which contains singularities in both space and time variables is first presented. The response is expressed as a summation of double series of eigenfunctions. The equation of motion is transformed into an integro-differential equation for modal amplitudes using the Green's function. The Green's function is chosen to satisfy the initial conditions, the boundary conditions, and the transient conditions due to the moving masses. The solution series exhibits a good convergence. The effect of orthotropicity on natural frequencies and dynamic responses is demonstrated.

Author

Jet Propulsion Lab., California Inst. of Tech., A88-36311* Pasadena.

REAL-TIME MODEL-BASED VISION SYSTEM FOR OBJECT **ACQUISITION AND TRACKING**

BRIAN WILCOX, DONALD B. GENNERY, BRUCE BON, and TODD LITWIN (California Institute of Technology, Jet Propulsion Laboratory, Pasadena) IN: Optical and digital pattern recognition; Proceedings of the Meeting, Los Angeles, CA, Jan. 13-15, 1987. Bellingham, WA, Society of Photo-Optical Instrumentation Engineers, 1987, p. 276-281. refs

A machine vision system is described which is designed to acquire and track polyhedral objects moving and rotating in space by means of two or more cameras, programmable image-processing hardware, and a general-purpose computer for high-level functions. The image-processing hardware is capable of performing a large variety of operations on images and on image-like arrays of data. Acquisition utilizes image locations and velocities of the features extracted by the image-processing hardware to determine the three-dimensional position, orientation, velocity, and angular velocity of the object. Tracking correlates edges detected in the current image with edge locations predicted from an internal model of the object and its motion, continually updating velocity information to predict where edges should appear in future frames. With some 10 frames processed per second, real-time tracking is possible.

KALMAN FILTERING FOR SECOND-ORDER MODELS

HAMID R. HASHEMIPOUR (Tau Corp., Los Gatos, CA) and ALAN J. LAUB (California, University, Santa Barbara) Guidance, Control, and Dynamics (ISSN 0731-5090), vol. 11, Mar.-Apr. 1988, p. 181-186. Research supported by Lawrence Livermore National Laboratory. refs (Contract N00014-85-K-0553; NSF ECS-84-06152)

Second-order model' Kalman filter algorithms are developed for systems describable by either linear, second-order matrix differential equations or difference equations. The results obtainable differ from those of standard Kalman filtering for state-space models not only in that error covariances are required in the equations; also, certain error cross-covariances emerge. Proper implementation should be conducted in factorized form.

DYNAMICS OF VISCOELASTIC STRUCTURES

K. J. BUHARIWALA and J. S. HANSEN (Toronto, University, Canada) AIAA Journal (ISSN 0001-1452), vol. 26, Feb. 1988, p. 220-227

A general method is presented for model material damping in dynamical systems. The work is primarily concerned with a dissipation model based on viscoelastic assumptions. Motion equations are formulated in operator form for a structure constructed from an anisotropic, viscoelastic material. The mass, damping, and stiffness operators are developed consistently in the formulation. Basic operator properties are discussed, and orthonormality conditions are derived for the viscoelastic system. Modal identities are derived for a constrained viscoelastic structure. These identities provide useful criteria in order reduction of finite-element models. An example of a viscoelastic beam in pure flexure is illustrated.

A88-38390#

EXPERIMENTAL STUDY OF TRANSIENT WAVES IN A PLANE **GRID STRUCTURE**

WILLIAM L. HALLAUER, JR. and DINESH J. TRIVEDI (Virginia Polytechnic Institute and State University, Blacksburg) (Structures, Structural Dynamics, and Materials Conference, 28th, Monterey, CA, Apr. 6-8, 1987 and AIAA Dynamics Specialists Conference, Monterey, CA, Apr. 9, 10, 1987, Technical Papers. Part 2B, p. 888-899) AIAA Journal (ISSN 0001-1452), vol. 26, Feb. 1988, p. 228-234. Previously cited in issue 14, p. 2174, Accession no. A87-33741. refs

(Contract F49620-85-C-0024; NSF CME-80-14059)

A88-39724

DISTRIBUTED SENSORS AND ACTUATORS FOR VIBRATION CONTROL IN ELASTIC COMPONENTS

J. E. HUBBARD, JR. (Charles Stark Draper Laboratory, Inc.; MIT, Cambridge, MA) IN: NOISE-CON 87; Proceedings of the National Conference on Noise Control Engineering, State College, PA, June 8-10, 1987. Poughkeepsie, NY, Noise Control Foundation, 1987, p. 407-412.

The paper presents data pertaining to the design and implementation of distributed sensing and actuation for one-dimensional structural components which may be used in the design of large space structures for active vibration control. The results apply to an active damper developed at the Massachusetts Institute of Technology which involves the use of polyvinylidene. The system made up of a sensing film, a beam structure, and an actuation film represents an autonomous structure which may be combined with closed loop control strategies to yield 'smart' structural members in more complex systems.

K.K.

A88-40261 INSTRUMENTATION FOR MODAL TESTING OF LARGE SPACE STRUCTURES

DOUGLAS A. HENDERSON and WAYNE YUEN (USAF, Wright Aeronautical Laboratories, Wright-Patterson AFB, OH) IN: 1987 SEM Spring Conference on Experimental Mechanics, Houston, TX, June 14-19, 1987, Proceedings. Bethel, CT, Society for Experimental Mechanics, Inc., 1987, p. 122-127. refs Instrumentation and modal parameter survey requirements for

Instrumentation and modal parameter survey requirements for two 12-m truss beams are described, and problems associated with the ground testing of large space structures are identified. In particular, attention is given to transducer selection and data measurement requirements. Piezoelectric, piezoresistive, and LED sensors are found to meet frequency, dynamic range, and practical usage requirements. Future transducer requirements are reviewed, emphasizing the requirements for low mass velocity sensors, greater proximity probe gap sizes, and improved fiber optics methods.

A88-40269* National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

A COMPARATIVE OVERVIEW OF MODAL TESTING AND SYSTEM IDENTIFICATION FOR CONTROL OF STRUCTURES JER-NAN JUANG and RICHARD S. PAPPA (NASA, Langley Research Center, Hampton, VA) IN: 1987 SEM Spring Conference on Experimental Mechanics, Houston, TX, June 14-19, 1987, Proceedings. Bethel, CT, Society for Experimental Mechanics, Inc., 1987, p. 250-259. refs

This paper presents a comparative overview of the disciplines of modal testing used in structural engineering and system identification used in control theory. A list of representative references from both areas is given and the basic methods are briefly described. Recent progress on the interaction of modal testing and control disciplines is discussed. It is concluded that combined efforts of researchers in both disciplines are required for unification of modal testing and system identification methods for control of flexible structures.

A88-40271 AN ITERATIVE APPROACH TO PARAMETER IDENTIFICATION IN STRUCTURES

L. MEIROVITCH and M. A. NORRIS (Virginia Polytechnic Institute and State University, Blacksburg) IN: 1987 SEM Spring Conference on Experimental Mechanics, Houston, TX, June 14-19, 1987, Proceedings. Bethel, CT, Society for Experimental Mechanics, Inc., 1987, p. 268-273. refs

This paper presents a method for identifying parameters in a truss structure by representing it as a nonuniform continuous beam. The parameters are expanded in terms of linear combinations of known functions multiplied by unknown coefficients. The identification scheme is concerned with the determination of these coefficients. The coefficients are obtained iteratively in a process similar to Gauss' least squares differential correction algorithm. A numerical example involving a tapered truss is presented.

Author

A88-40489 ROBUST CONTROL OF FLEXIBLE STRUCTURES - A CASE STUDY

J. BONTSEMA, R. F. CURTAIN (Groningen, Rijksuniversiteit, Netherlands), and J. M. SCHUMACHER (Centrum voor Wiskunde en Informatica, Amsterdam, Netherlands) Automatica (ISSN 0005-1098), vol. 24, March 1988, p. 177-186. Research supported by the Stichting voor de Technische Wetenschappen. refs

A comparison is made between three partial differential equation models for a flexible beam with different types of damping and varying parameter values. Robust controllers can be designed to stabilize all linear systems whose transfer functions lie within a ball in the L-infinity norm. Given a nominal model for the flexible beam the sets of models that can be stabilized by the same finite-dimensional robust controller are calculated. Author

A88-40773*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

ANALYTIC REDUNDANCY MANAGEMENT FOR SYSTEMS WITH APPRECIABLE STRUCTURAL DYNAMICS

RAYMOND C. MONTGOMERY (NASA, Langley Research Center, Hampton, VA) International Association for Mathematics and Computers in Simulation, World Congress on Scientific Computation, 12th, Paris, France, July 18-22, 1988, Paper. 4 p. refs

This paper deals with analytic redundancy management of systems that have appreciable structural dynamics and require active control. The class of systems considered is large, lightweight spacecraft that have large numbers of distributed sensors and actuators. Both preliminary design and on-line operations are studied. For the preliminary design we deal with the placement of the sensor and actuator components on a highly flexible spacecraft. For on-line operation an analytic redundancy management system based on examination of the residuals of a Kalman filter is considered. A large, flexible grid made of overlapping aluminum bars is used to experimentally evaluate this analytic redundancy management system. Results of the experimental evaluation are included in the paper.

A88-42574 STRUCTURAL VIBRATION OF SPACE POWER STATION SYSTEMS

M. J. CROCKER, P. K. RAJU, E. CHRISTENSEN, N. H. MADSEN, E. GUINDON (Auburn University, AL) et al. IN: Space structures, power, and power conditioning; Proceedings of the Meeting, Los Angeles, CA, Jan. 11-13, 1988. Bellingham, WA, Society of Photo-Optical Instrumentation Engineers, 1988, p. 205-224. Research supported by Auburn University and SDIO. refs (Contract DNA001-85-C-0183)

A new approach to the control of active vibration in large flexible structures based on wave cancellation techniques is reported. A finite element model of the vibratory response of large flexible spacecraft truss structures to systems of applied forces representing machinery forces and maneuvers is developed. Predictions regarding the pointing accuracy and tip displacement of such structures to the assumed force inputs are presented. The optimization of the structures to minimize dynamic response is addressed, and interfacial damping in composite structures is modeled and subjected to finite element analysis.

C.D.

A88-42576

MINIMUM-TIME CONTROL OF LARGE SPACE STRUCTURES

ROBERT L. KOSUT, ANTONIO M. PASCOAL (Integrated Systems, Inc., Santa Clara, CA), MICHAEL L. WORKMAN (IBM, San Jose, CA), and GENE F. FRANKLIN (Stanford University, CA) IN: Space structures, power, and power conditioning; Proceedings of the Meeting, Los Angeles, CA, Jan. 11-13, 1988. Bellingham, WA, Society of Photo-Optical Instrumentation Engineers, 1988, p. 230-241. SDIO-sponsored research. refs

An Extended Proximate Time-Optimal Servomechanism (XPTOS) is developed for the control of a flexible structure with a single structural mode. The resulting control system is closed-loop, and embodies in its structure the characteristics of a time-optimal control law and the fine tracking properties of a properly tuned linear regulator. Simulation results demonstrate the performance

of the XPTOS, and its robustness in the face of uncertain plant parameters.

A88-42577

EXPERIMENTAL INVESTIGATIONS IN ACTIVE VIBRATION CONTROL FOR APPLICATION TO LARGE SPACE SYSTEMS

DAVID C. HYLAND (Harris Corp., Government Aerospace Systems Div., Melbourne, FL) IN: Space structures, power, and power conditioning; Proceedings of the Meeting, Los Angeles, CA, Jan. 11-13, 1988. Bellingham, WA, Society of Photo-Optical Instrumentation Engineers, 1988, p. 242-253.

Vibration control experiments were designed on the basis of a recent survey of large space system concepts and the identified characteristics of ground-based experiments needed to demonstrate capability for future systems. The experiments involve a progression of structural configurations ranging from relatively simple one- and two-dimensional systems to a large-aperture multisegment optical structure. The following experiments are described in detail: (1) the Pendulum Experiment, (2) the Plate Experiment, and (3) the Multihex Prototype Experiment. K.K.

A88-42582

DYNAMICS AND CONTROL OF LARGE SPACE PLATFORMS AND SMALL EXPERIMENTAL PAYLOADS

J. E. COCHRAN, JR., N. G. FITZ-COY, K. KUMAR, and T. S. NO (Auburn University, AL) IN: Space structures, power, and power conditioning; Proceedings of the Meeting, Los Angeles, CA, Jan. 11-13, 1988. Bellingham, WA, Society of Photo-Optical Instrumentation Engineers, 1988, p. 282-296. refs (Contract DNA001-85-C-0183)

A capability developed to study the dynamics and control of space platforms in connection with the generation, conversion and utilization of power in space is described. It is based on the use of both rigid and flexible models of platform configurations which may be rather arbitrary. The principal part of the capability is a digital simulation code which uses the results of analyses of finite element models of platforms to account for their flexibilities. By using the code, the general motion of fairly complex configurations including rotating components may be simulated. The control of gross attitude motion is accomplished via a minimum impulse limit cycle controller. Examples of gross attitude motion and 'fine' motion due to flexibility are presented. Also, to illustrate the versatility of the code, results are presented of simulations of the motion of a small, suborbital, experimental payload which has deployable booms. Another aspect of the overall capability is spotlighted through an example of the attitude dynamics of the experiment carrying suborbital vehicle during boom deployment. Author

A88-43030#

NEW APPROACH TO THE ANALYSIS AND CONTROL OF LARGE SPACE STRUCTURES

G. ADOMIAN (General Analytics Corp., Roswell, GA) AIAA Journal (ISSN 0001-1452), vol. 26, March 1988, p. 377-380. (Contract F49620-87-C-0098)

Orbiting space stations' thermal and structural analysis difficulties arise from the severe requirements of large size, low weight, high stiffness, and minimum mechanical and thermal distortion (millimetric tolerances). Attention is presently given to a decomposition method which solves the systems of multidimensional nonlinear stochastic partial differential equations (or ordinary differential equations, or integrodifferential, or delay differential equations) in space and time, without linearization, discretization, or perturbation.

A88-43203#

INPUT SELECTION FOR A SECOND-ORDER MASS PROPERTY ESTIMATOR

ROBERT F. RICHFIELD (U.S. Army, Redstone Arsenal, AL), BRUCE K. WALKER (Cincinnati, University, OH), and EDWARD V. BERGMANN (Charles Stark Draper Laboratory, Inc., Cambridge, MA) (Guidance, Navigation and Control Conference, Williamsburg, VA, Aug. 18-20, 1986, Technical Papers, p. 57-67) Journal of

Guidance, Control, and Dynamics (ISSN 0731-5090), vol. 11, May-June 1988, p. 207-212. Previously cited in issue 23, p. 3425, Accession no. A86-47409. refs

A88-43206*# State Univ. of New York, Buffalo. MICROPROCESSOR CONTROLLED FORCE ACTUATOR

D. C. ZIMMERMAN, D. J. INMAN (New York, State University, Buffalo), and G. C. HORNER (NASA, Langley Research Center, Hampton, VA) (Structures, Structural Dynamics and Materials Conference, 27th, San Antonio, TX, May 19-21, 1986, Technical Papers. Part 1, p. 243-251) Journal of Guidance, Control, and Dynamics (ISSN 0731-5090), vol. 11, May-June 1988, p. 230-236. Previously cited in issue 18, p. 2617, Accession no. A86-38827.

(Contract NGT-33-183-801; NSF MEA-83-51807; AF-AFOSR-85-0220)

A88-43211*# Illinois Univ., Urbana. VARIABLE-STRUCTURE CONTROL OF SPACECRAFT

ATTITUDE MANEUVERS

THOMAS A. W. DWYER, III and HEBERTT SIRA-RAMIREZ (IIIinois, University, Urbana) Journal of Guidance, Control, and Dynamics (ISSN 0731-5090), vol. 11, May-June 1988, p. 262-270. refs (Contract NAG1-436; NSF ECS-85-16445; N00014-84-C-0149)

A variable-structure control approach is presented for multiaxial spacecraft attitude maneuvers. Nonlinear sliding surfaces are proposed that result in asymptotically stable, ideal linear decoupled sliding motions of Cayley-Rodrigues attitude parameters, as well as of angular velocities. The resulting control laws are interpreted as more easily implemented and more robust versions of those previously obtained by feedback linearization.

Author

88-43212#

ACTIVE VIBRATION CONTROL SYNTHESIS FOR THE CONTROL OF FLEXIBLE STRUCTURES MAST FLIGHT SYSTEM

BONG WIE (Texas, University, Austin) Journal of Guidance, Control, and Dynamics (ISSN 0731-5090), vol. 11, May-June 1988, p. 271-277. Previously cited in issue 22, p. 3549, Accession no. A87-50443. refs

A88-43215#

EVALUATION OF IMAGE STABILITY OF A PRECISION POINTING SPACECRAFT

HARI B. HABLANI (Rockwell International Corp., Seal Beach, CA) Journal of Guidance, Control, and Dynamics (ISSN 0731-5090), vol. 11, May-June 1988, p. 283-286.

A discrete Fourier transform presentation is given for a 'clutter leakage metrics' device, which is a Fourier-integral form available in the electrooptics literature for the evaluation of image stability in precision-pointing telescopes. The metrics encompass the Fourier spectrum of the pointing error, an integration interval, and a differencing operation; these are presently demonstrated for the case of a telescope whose image stability during landmark tracking is disturbed by a neighboring solar array.

O.C.

A88-44670#

AUTONOMOUS FLIGHT CONTROL FOR LOW THRUST ORBITAL TRANSFER VEHICLES

RONALD E. OGLEVIE, THOMAS R. EGAN (Irvine Technology Group, Inc., CA), and JAY P. PENN (Aerospace Corp., El Segundo, CA) AlAA, ASME, SAE, and ASEE, Joint Propulsion Conference, 24th, Boston, MA, July 11-13, 1988. 12 p. (Contract F04701-87-C-0078)

(AIAA PAPER 88-2838)

USAF's Systems Command is evaluating the use of an electric-propulsion OTV (EOTV) for the reduced-cost replenishment of GPS and geosynchronous spacecraft. The EOTV must be capable of highly autonomous navigation, docking, and fault-management operations; it will be so optimally guided as to minimize transfer time, irrespective of the effects of solar occultation and earth oblateness. GPS navigation, cellestially-aided inertial attitude determination, and scanning lidar for docking, will be

incorporated in the EOTV. Software requirements have been determined to lie within the capacity of existing flight-qualified computers.

A88-45227* Jet Propulsion Lab., California Inst. of Tech., Pasadena.

OPTIMAL EXPERIMENT DESIGN FOR IDENTIFICATION OF LARGE SPACE STRUCTURES

D. S. BAYARD, F. Y. HADAEGH (California Institute of Technology, Jet Propulsion Laboratory, Pasadena), and D. R. MELDRUM (Stanford University, CA) Automatica (ISSN 0005-1098), vol. 24, May 1988, p. 357-364. refs

The optimal experiment design for on-orbit identification of modal frequency and damping parameters in large flexible space structures is discussed. The main result is a separation principle for D-optimal design which states that under certain conditions the sensor placement problem is decoupled from the input design problem. This decoupling effect significantly simplifies the overall optimal experiment design determination for large MIMO structural systems with many unknown modal parameters. The error from using the uncoupled design is estimated in terms of the inherent damping of the structure. A numerical example is given, demonstrating the usefulness of the simplified criteria in determining optimal designs for on-orbit Space Station identification experiments.

A88-45467

DETERMINATION OF THE MOTION OF THE SALYUT 6 AND 7 ORBITAL STATIONS WITH RESPECT TO THE MASS CENTER IN THE SLOW SPIN MODE ON THE BASIS OF **MEASUREMENT DATA [OPREDELENIE DVIZHENIIA** ORBITAL'NYKH STANTSII 'SALIUT-6' I 'SALIUT-7' OTNOSITEL'NO TSENTRA MASS V REZHIME MEDLENNOI ZAKRUTKI PO DANNYM IZMERENII]

V. A. SARYCHEV, M. IU. BELIAEV, S. P. KUZ'MIN, V. V. SAZONOV, and T. N. TIAN Kosmicheskie Issledovaniia (ISSN 0023-4206), vol. 26, May-June 1988, p. 390-405. In Russian. refs

A method is proposed for determining the rotational motion of Salyut 6 and 7 in the slow spin mode (with an angular velocity of not greater than about 0.2 deg/s) according to the readings of onboard sensors which measure the geomagnetic frield strength vector and the sun position vector. Particular attention is given to the motion of Salyut-7 with respect to the mass center over long periods of time. It is shown that, several days after the commencement of uncontrolled motion with a small initial angular velocity, the spacecraft is captured into a uniaxial gravity-gradient regime, in which its longitudinal axis undergoes stable oscillations with respect to the local vertical with an amplitude of about 40 deg.

A88-45712* Georgia Inst. of Tech., Atlanta. SINGULAR PERTURBATION ANALYSIS OF THE ATMOSPHERIC ORBITAL PLANE CHANGE PROBLEM

A. J. CALISE (Georgia Institute of Technology, Atlanta) of the Astronautical Sciences (ISSN 0021-9142), vol. 36, Jan.-June 1988, p. 35-43, refs (Contract NAG1-660)

A three-state model is presented for the aeroassisted orbital plane change problem. A further model order reduction to a single state model is examined using singular perturbation theory. The optimal solution for this single state model compares favorably with the exact numerical solution using a four-state model; however, a separate boundary layer solution is required to satisfy the terminal constraint on altitude. This, in general, involves the solution of a two-point boundary value problem, but for a two-state model. An approximation is introduced to obtain an analytical control solution for lift and bank angle. Included are numerical simulation results of a guidance law derived from this analysis, along with comparison to earlier work by other researchers. Author

A88-46041* Brown Univ., Providence, RI. THE IDENTIFICATION OF A DISTRIBUTED PARAMETER MODEL FOR A FLEXIBLE STRUCTURE

H. T. BANKS (Brown University, Providence, RI), S. S. GATES (Charles Stark Draper Laboratory, Inc., Cambridge, MA), I. G. ROSEN, and Y. WANG (Southern California, University, Los Angeles, CA) SIAM Journal on Control and Optimization (ISSN 0363-0129), vol. 26, July 1988, p. 743-762. Previously announced in STAR as N87-19760. refs

(Contract NSF MCS-85-04316; AF-AFOSR-84-0398;

AF-AFOSR-84-0393; NAG1-517; NAS1-17070; NAS1-18107)

A computational method is developed for the estimation of parameters in a distributed model for a flexible structure. The structure we consider (part of the RPL experiment) consists of a cantilevered beam with a thruster and linear accelerometer at the free end. The thruster is fed by a pressurized hose whose horizontal motion effects the transverse vibration of the beam. The Euler-Bernoulli theory is used to model the vibration of the beam and treat the hose thruster assembly as a lumped or point mass dashpot spring system at the tip. Measurements of linear acceleration at the tip are used to estimate the hose parameters (mass, stiffness, damping) and a Voigt-Kelvin viscoelastic structural damping parameter for the beam using a least squares fit to the data. Spline based approximations are considered to the hybrid (coupled ordinary and partial differential equations) systems; theoretical convergence results and numerical studies with both simulation and actual experimental data obtained from the structure are presented and discussed.

A88-46401

LARGE SPACE STRUCTURES: DYNAMICS AND CONTROL

SATYA N. ATLURI, ED. (Georgia Institute of Technology, Atlanta) and ANTHONY K. AMOS, ED. (USAF, Office of Scientific Research, Bolling AFB, Washington, DC) Berlin and New York, Springer-Verlag, 1988, 373 p. For individual items see A88-46402 to A88-46414.

Recent advances in the dynamical design and control theory of large space structures (LSSs) are examined in chapters contributed by leading experts. Topics addressed include continuum modeling of large lattice structures, computational aspects of nonlinearities in the dynamics and control of LSSs, modal cost analysis for simple continua, the transient dynamics of flexible LSSs, control-LSS interaction analysis, the dynamical response of an LSS to pulse excitation, and modeling techniques for openand closed-loop LSS dynamics. Consideration is given to dynamic friction, control of distributed structures, the acoustic limit of structural-dynamic control, active control for vibration damping, a unified theory of reduced-order robust control design, adaptive control of LSSs, and unified optimization of structures and controllers.

A88-46403

NONLINEARITIES IN THE DYNAMICS AND CONTROL OF SPACE STRUCTURES - SOME ISSUES FOR COMPUTATIONAL MECHANICS

S. N. ATLURI and M. IURA (Georgia Institute of Technology, Atlanta) IN: Large space structures: Dynamics and control. Berlin and New York, Springer-Verlag, 1988, p. 35-70. USAF-SDIOsupported research. refs

Semidiscrete computational methods for the dynamical analysis of large space structures (LSSs) and the design of passive or active LSS controllers are described and demonstrated. Strategies for reduced-order structural-dynamic modeling of beam and shell LSSs undergoing large deformation are developed analytically, representing the LSSs as equivalent elastic continua, and applied to truss-and-frame lattice-type LSSs. Particular attention is given to sample problems involving a 12-bay space truss subjected to axial loads, a framed dome loaded at the crown point, and a beam-column lined with piezoelectric material. Extensive diagrams, graphs, and tables of numerical data are provided.

A88-46405

ON THE TRANSIENT DYNAMICS OF FLEXIBLE ORBITING **STRUCTURES**

V. J. MODI and A. M. IBRAHIM (British Columbia, University, Vancouver, Canada) IN: Large space structures: Dynamics and control. Berlin and New York, Springer-Verlag, 1988, p. 95-114. refs

(Contract NSERC-G-1547)

Complex interactions between deployment, attitude dynamics and flexural rigidity are reviewed using a rather general formulation applicable to a large class of space platforms with flexible, extensible members. The governing nonlinear, nonautonomous and coupled hybrid set of equations are extremely difficult to solve even with the help of a computer, not to mention the cost involved. Effectiveness of the versatile formulation is demonstrated through its application to several dynamical situations of contemporary interest involving beam type appendages. Both transient as well as postdeployment phases are considered. Results suggest significant influence of flexibility, inertia, deployment time history and orbital parameters on the system stability. The presence of free molecular and solar radiation induced environmental forces may further accentuate this tendency. The information has relevance to the design of control systems for the next generation of communications satellites with large solar panels; the Orbiter-based experiments such as SAFE, COFS, NASA/CNR tethered subsatellite system, etc.; as well as constructional and operational phases of the proposed space station. Author

A88-46406* Colorado Univ., Boulder. COMPUTATIONAL ISSUES IN CONTROL-STRUCTURE INTERACTION ANALYSIS

K. C. PARK (Colorado, University, Boulder) IN: Large space structures: Dynamics and control. Berlin and New York, Springer-Verlag, 1988, p. 115-131. refs (Contract F49620-87-C-0074; NAG1-756)

This paper surveys computational issues for large-scale simulation of dynamics and controls of space structures, which involve structural elements that are capable of large combined rigid and flexible motions, accurate and efficient treatment of constraints, robust integration of both translational and large rotational motions in the equations of motion, modular interface with active control synthesis packages, and a capability from wave motions to slowly varying transient responses. A particular feature of the present survey is a partitioned solution (or divide-and-conquer) procedure that can handle the numerical solution of multidisciplinary simulation problems by relying on individual modular solution packages that treat each aspect of simulation requirements.

A88-46408

CONTROL OF DISTRIBUTED STRUCTURES

LEONARD MEIROVITCH (Virginia Polytechnic Institute and State University, Blacksburg) IN: Large space structures: Dynamics and control. Berlin and New York, Springer-Verlag, 1988, p. 195-212. refs

The modal or direct-feedback control of distributed structures is considered theoretically, summarizing the results of the author's recent investigations (Meirovitch, 1980, 1987, and 1988; Meirovitch and Baruh, 1983 and 1985; Meirovitch and Silverberg, 1983). The derivations of the equation of motion for a distributed structure and the modal equations are outlined; mode controllability and observability are defined; the closed-loop modal equations are obtained; and particular attention is given to independent modal-space control, pole allocation, optimal control, control by point actuators, control spillover, observation spillover, feedback control, and proportional damping. The optimal choice of gain is shown to be a critical problem in both modal and feedback controls.

A88-46409

THE ACOUSTIC LIMIT OF CONTROL OF STRUCTURAL DYNAMICS

A. H. VON FLOTOW (MIT, Cambridge, MA) IN: Large space structures: Dynamics and control. Berlin and New York, Springer-Verlag, 1988, p. 213-237. Research supported by the Alexander von Humboldt-Stiftung, NSERC, USAF, and DFVLR. refs

This paper investigates the acoustic limit of active control of

structural dynamics; the limit as the control bandwidth includes a very large number of natural modes of the structure. The point is made that in this limit modal analysis cannot provide reasonably accurate models of the structural dynamics, and that control design with respect to modal models is then of questionable value. Alternative modeling approaches are reviewed. A particular wave propagation formalism, applicable to modeling the acoustic response of networks of slender structural members, is described in some detail. Control options designed with reference to this formalism are reviewed, and speculations as to future developments of such control are offered.

A88-46410

ACTIVE CONTROL FOR VIBRATION DAMPING

P. J. LYNCH (USAF, Flight Dynamics Laboratory, Wright-Patterson AFB, OH) IN: Large space structures: Dynamics and control. Berlin and New York, Springer-Verlag, 1988, p. 239-261. refs

Active control laws are developed for an LSS-type structure to damp vibrations. High frequency modeling uncertainties lead to the necessity for a robust control design. The Linear Quadratic Gaussian with Loop Transfer Recovery (LQG/LTR) control design technique is a particular robust design technique selected for use in designing a damping control system. A summary of LQG/LTR is given and numerical example using a two bay truss is presented.

A88-46411

OPTIMAL PROJECTION FOR UNCERTAIN SYSTEMS (OPUS) -A UNIFIED THEORY OF REDUCED-ORDER, ROBUST CONTROL DESIGN

DENNIS S. BERNSTEIN and DAVID C. HYLAND (Harris Corp., Government Aerospace Systems Div., Melbourne, Florida) IN: Large space structures: Dynamics and control. Berlin and New York, Springer-Verlag, 1988, p. 263-302. refs (Contract F49620-86-C-0002; F49620-86-C-0038)

Recent advances in the numerical solution of active-vibration-control problems for large flexible structures are examined in an analytical review, with a focus on the optimal-projection algorithm OPUS (Bernstein, 1986). The fundamental principles of vibration suppression are recalled; the linear-quadratic-Gaussian (LQC) design technique is described; and the operation of OPUS is characterized in detail and illustrated with extensive diagrams and flow charts. In OPUS, the LQG approach is generalized in two different ways to permit simultaneous development of low-order and robust controllers, employing the efficient homotropy algorithm of Richter (1987) in the solution of pairs of Riccati and Liapunov equations coupled by optimal projection and uncertainty terms, respectively. Such an approach is shown to account for all major tradeoffs in the design of practical controllers for large space structures.

A88-46412

ADAPTIVE CONTROL OF LARGE SPACE STRUCTURES - UNCERTAINTY ESTIMATION AND ROBUST CONTROL CALIBRATION

ROBERT L. KOSUT (Integrated Systems, Inc., Santa Clara, CA) IN: Large space structures: Dynamics and control. Berlin and New York, Springer-Verlag, 1988, p. 303-321. refs (Contract F49620-85-C-0094)

An approach is presented to the problem of designing a robust control using on-line measurements. The idea is to use standard methods of parametric system identification to obtain a nominal estimate of the plant transfer function. Nonparametric spectral methods are then used to obtain a frequency domain expression for model uncertainty. If the model uncertainty exceeds a specified frequency bound, which has been predetermined from the nominal model and the performance criteria, then data filters used in the system identification are modified and the procedure is repeated. An analysis is presented which establishes conditions under which the procedure will actually converge to a satisfactory robust design. An example is provided which illustrates the method and supporting analysis.

A88-46413 UNIFIED OPTIMIZATION OF STRUCTURES AND CONTROLLERS

J. L. JUNKINS and D. W. REW (Texas A & M University, College Station) IN: Large space structures: Dynamics and control. Berlin and New York, Springer-Verlag, 1988, p. 323-353. refs (Contract F49620-86-K-0014)

The theoretical basis and performance of methods for the solution of high-dimensional structural control problems are examined, reviewing the results of recent investigations. The emphasis is on robust eigenstructure-assignment methods and optimization methods in which both the controller and selected structural parameters are readjusted to improve robustness. Families of designs displaying the inherent tradeoffs between robustness, small control errors, and small controller inputs are generated, and the use of homotopy methods is shown to improve the convergence of iterative numerical procedures. Diagrams, graphs, and tables of numerical data are provided.

A88-46712# SOME APPROXIMATIONS FOR THE DYNAMICS OF SPACECRAFT TETHERS

A. H. VON FLOTOW (MIT, Cambridge, MA) (Structures, Structural Dynamics and Materials Conference, 28th, Monterey, CA, Apr. 6-8, 1987 and AIAA Dynamics Specialists Conference, Monterey, CA, Apr. 9, 10, 1987, Technical Papers. Part 2A, p. 314-321) Journal of Guidance, Control, and Dynamics (ISSN 0731-5090), vol. 11, July-Aug. 1988, p. 357-364. USAF-sponsored research. Previously cited in issue 14, p. 2116, Accession no. A87-33687. refs

A88-46717# Beijing Inst. of Control Engineering (China). DYNAMICS AND CONTROL OF A SPACE PLATFORM WITH A TETHERED SUBSATELLITE

RUYING FAN (Beijing Institute of Control Engineering, People's Republic of China) and PETER M. BAINUM (Howard University, Washington, DC) (NASA, AIAA, and PSN, International Conference on Tethers in Space, Arlington, VA, Sept. 17-19, 1986) Journal of Guidance, Control, and Dynamics (ISSN 0731-5090), vol. 11, July-Aug. 1988, p. 377-381. Abridged. Research supported by the Ministry of Astronautics of the People's Republic of China, Howard University, and NASA. Previously cited in issue 03, p. 309, Accession no. A87-14074.

A88-47462#

GAME THEORY APPROACH FOR THE INTEGRATED DESIGN OF STRUCTURES AND CONTROLS

S. S. RAO (Purdue University, West Lafayette, IN), V. B. VENKAYYA, and N. S. KHOT (USAF, Wright-Patterson AFB, OH) AIAA Journal (ISSN 0001-1452), vol. 26, April 1988, p. 463-469. USAF-supported research. refs

The problem of design of actively controlled structures subject to constraints on the damping parameters of the closed-loop system is formulated as a multiobjective optimization problem. The structural weight and the controlled system energy are considered as objective functions for minimization with cross-sectional areas of members as design varibles. A computational procedure is developed for solving the multiobjective optimization problem using cooperative game theory. The feasibility of the procedure is demonstrated through the design of two truss structures. Author

A88-47907

ASTRODYNAMICS PROBLEMS OF THE SPACE STATION

J.-P. MAREC, P. BAINUM, J. V. BREAKWELL, C. MARCHAL, V. J. MODI (IAF, Paris, France) et al. Acta Astronautica (ISSN 0094-5765), vol. 17, May 1988, p. 491-494.

The preliminary views of the IAF Astrodynamics Committee on the astrodynamics problems related to the Space Station concept are presented. A brief description of the Space Station system and of its original features is given. Some astrodynamics problems are considered in more detail, concerning attitude motion (modeling, attitude determination and control, and tether applications) and orbital motion (transfer, docking, navigation/positioning/guidance, collision hazards, and data links).

A88-48080

MATHEMATICAL MODELING OF THE DYNAMICS OF A SPACECRAFT WITH ELASTIC COMPONENTS [MATEMATICHESKOE MODELIROVANIE DINAMIKI KOSMICHESKOGO APPARATA S UPRUGIMI ELEMENTAMI] P. A. BELONOZHKO and S. V. TARASOV Kosmicheskaia Nauka

i Tekhnika (ISSN 0321-4508), no. 2, 1987, p. 18-22. In Russian. refs

An analysis is made of the dynamics of a spacecraft which is modeled as a kinematic chain of bodies containing zero-mass elastic components. The modeling procedure takes into account elastic deformations of the components using algebraic relationships which supplement the differential equations describing a system with rigid components.

B.J.

A88-48082

INVESTIGATION OF THE DYNAMICS OF A SYSTEM OF BODIES CONTAINING EXTENDED ELASTIC COMPONENTS IN A CENTRAL FORCE FIELD (K ISSLEDOVANIIU DINAMIKI SISTEM TEL, SODERZHASHCHIKH PROTIAZHENNYE UPRUGIE ELEMENTY. V TSENTRAL'NOM POLF SIL1

UPRUGIE ELEMENTY, V TSENTRAL'NOM POLE SIL] S. S. CHERNIAVSKAIA Kosmicheskaia Nauka i Tekhnika (ISSN 0321-4508), no. 2, 1987, p. 28-31. In Russian.

A mathematical model is developed for a free system consisting of absolutely rigid and elastic extended bodies in a central gravitational field. The model describes the three-dimensional motion of the system in the case of elastic deformations of its components. The solution is represented in the form of an eigenfunction series. As an example, attention is given to the determination of the amplitudes of the elastic vibrations of a plane rectilinear chain of bodies connected by elastic extended rods.

B.J.

A88-48194#

STRESS CONCENTRATION AROUND A PAIR OF CIRCULAR HOLES IN A HYDROSTATICALLY STRESSED ELASTIC SHEET G. M. T. D'ELEUTERIO (Toronto, University, Downsview, Canada) ASME, Transactions, Journal of Applied Mechanics (ISSN

0021-8936), vol. 55, June 1988, p. 488, 489. NSERC-supported research. refs

Kienzler and Duan's (1987) simple, compact expression for the hoop stresses around a circular hole in an infinite sheet that is subjected to a given loading can be used to find approximate expressions for hoop stresses in a sheet that contains a pair of holes. Accurate results are thereby obtainable with virtually no calculations, as is presently illustrated for the subjection of the sheet to a hydrostatic tension at infinity.

O.C.

A88-48957#

SPACE-BASED SYSTEM DISTURBANCES CAUSED BY ON-BOARD FLUID MOTION DURING SYSTEM MANEUVERS

J. NAVICKAS (McDonnell Douglas Astronautics Co., Huntington Beach, CA) IN: AIAA, ASME, SIAM, and APS, National Fluid Dynamics Congress, 1st, Cincinnati, OH, July 25-28, 1988, Technical Papers. Part 3. Washington, DC, American Institute of Aeronautics and Astronautics, 1988, p. 1558-1562. refs (AIAA PAPER 88-3633)

Disturbing forces and moments are calculated using the FLOW-3D finite difference code for a space-based oxygen tank under a suddenly applied settling acceleration for a case with a simultaneous liquid outflow and a case with no such outflow. Results show that the two conditions result in very different dynamic disturbances. The code accuracy is evaluated as part of the calculations and is shown to be adequate. Results also indicate that the storage tank geometry has a significant effect on the resulting disturbances.

A88-49714* Georgia Inst. of Tech., Atlanta. FREQUENCY DOMAIN SOLUTIONS TO MULTI-DEGREE-OF-FREEDOM, DRY FRICTION DAMPED SYSTEMS

A. A. FERRI (Georgia Institute of Technology, Atlanta) and E. H. DOWELL (Duke University, Durham, NC) Journal of Sound and

Vibration (ISSN 0022-460X), vol. 124, July 22, 1988, p. 207-224. refs

(Contract AF-AFOSR-83-0346; NAG3-516)

Dry friction damping has been considered as a means of increasing the passive damping of a variety of systems including large space structures and turbomachinery blades. However, dry friction is highly nonlinear, and hence, analytical investigations are difficult to perform. Here, a multiharmonic, frequency domain solution technique is developed and applied to a multi-degree-of-freedom, dry friction damped system. It is seen that the multiharmonic method is more accurate than traditional, one-harmonic solution methods. The method also compares favorably with time integration. Finally, comparisons are made with experimental results.

A88-49743 COMPATIBILITY OF MICROGRAVITY EXPERIMENTS WITH SPACECRAFT DISTURBANCES

B. FEUERBACHER, H. HAMACHER, and R. JILG (DFVLR, Institut fuer Raumsimulation, Cologne, Federal Republic of Germany) Zeitschrift fuer Flugwissenschaften und Weltraumforschung (ISSN 0342-068X), vol. 12, May-June 1988, p. 145-151. refs

A simple model which permits analysis of the sensitivity of microgravity experiments to residual accelerations has been developed. The results are compared with the disturbance characteristics of typical spacecraft configurations in order to assess compatibility. Experiment sensitivity is characterized by an increasing disturbance tolerance at higher frequencies and a constant limit at low frequencies. The residual acceleration spectra of space structures show quasi-steady and dynamic contributions which vary with orbit attitude and configuration. The calculations are validated by comparison with measured microgravity disturbances during Spacelab flights and are then extrapolated to Space Station operations.

A88-49914# A VARIABLE STRUCTURE CONTROL APPROACH TO FLEXIBLE SPACECRAFTS

WEIBING GAO, MIAN CHENG, and WENLING ZENG (Beijing Institute of Aeronautics and Astronautics, People's Republic of China) Acta Aeronautica et Astronautica Sinica (ISSN 1000-6893), vol. 9, May 1988, p. A274-A280. In Chinese, with abstract in English. refs

The approach of variable structure control strategy is applied to the control problems of large flexible spacecrafts, taking the nonlinear forces into consideration. As the 'assumed modes method' is employed, the measurement technique for obtaining the mode coordinates is studied. After the analysis of a suggested reaching law, the overall nonlinear feedback control law is established. This reaching law guarantees an exponential reaching velocity and a finite reaching time by diminishing the chattering phenomenon. It is assumed that the torque may be more adequate than the force used as control actions.

Author

A88-50095

METHOD FOR THE EXPERIMENTAL DETERMINATION OF THE FREQUENCY CHARACTERISTICS OF AN ELASTIC FLIGHT VEHICLE WITH A DIGITAL CONTROL SYSTEM [METODY EKSPERIMENTAL'NOGO OPREDELENIIA CHASTOTNYKH KHARAKTERISTIK UPRUGOGO LETATEL'NOGO APPARATA S TSIFROVOI SISTEMOI UPRAVLENIIA]

V. M. KUVSHINOV TsAGI, Uchenye Zapiski (ISSN 0321-3429), vol. 17, no. 6, 1986, p. 54-68. In Russian refs

Several frequency-analyzer-based techniques for determining the frequency characteristics of flight vehicles with a digital control system in the elastic-vibration frequency range of the structure are examined. Errors due to the finite measurement time are assessed, and simple relationships for choosing the appropriate measurement time are proposed.

B.J.

A88-50165*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

POLE/ZERO CANCELLATIONS IN FLEXIBLE SPACE STRUCTURES

TREVOR WILLIAMS and JER-NAN JUANG (NASA, Langley Research Center, Hampton, VA) IN: AIAA Guidance, Navigation and Control Conference, Minneapolis, MN, Aug. 15-17, 1988, Technical Papers. Part 1. Washington, DC, American Institute of Aeronautics and Astronautics, 1988, p. 33-40. refs (AIAA PAPER 88-4055)

A practical objective in the control of flexible space structures is to minimize the effects of vibrational dynamics at certain specified points on a structure. State feedback can be used to address this question by creating closed-loop modes which are unobservable at these points, and so do not contribute to the measured response. In the frequency domain, such modes correspond to pole/zero cancellations in the closed loop system. This paper analyzes the problem of pole/zero cancellation in flexible structures, making full use of the second-order form of such systems. An explicit expression is derived for the unique state feedback gain with minimum norm which cancels all open-loop zeros. Furthermore, the properties of the residual poles that remain observable in the closed-loop system are studied, and their stability proven for the case of colocated sensors and actuators.

A88-50167# SENSORS, ACTUATORS, AND HYPERSTABILITY OF STRUCTURES

MICHAEL E. STIEBER (CDC, Communications Research Centre, Ottawa, Canada) IN: AIAA Guidance, Navigation and Control Conference, Minneapolis, MN, Aug. 15-17, 1988, Technical Papers. Part 1. Washington, DC, American Institute of Aeronautics and Astronautics, 1988, p. 51-56. refs (AIAA PAPER 88-4057)

The design of robust adaptive controllers for large space flexible structures with poorly known time-varying nonlinear dynamics is considered in an analytical review, with a focus on the hyperstability (HS) criterion (guaranteeing stability of interconnected systems) and the selection and placement of sensors and actuators. A definition of HS is presented; the properties of hyperstable systems are listed; sufficient and necessary conditions for HS are outlined; conditions on sensor types and placement are summarized; and problems involving absolute positioning, asymptotic HS, and the use of 'nonallowed' sensors are briefly considered. Colocation of sensors and actuators is found to be preferable because it is sufficient (although not necessary) for HS.

A88-50168#

A DISTURBANCE MODEL FOR THE OPTIMIZATION OF CONTROL/STRUCTURE INTERACTIONS FOR FLEXIBLE DYNAMIC SYSTEMS

G. L. SLATER (Cincinnati, University, OH) IN: AIAA Guidance, Navigation and Control Conference, Minneapolis, MN, Aug. 15-17, 1988, Technical Papers. Part 1. Washington, DC, American Institute of Aeronautics and Astronautics, 1988, p. 57-63. USAF-supported research. refs

(AIAA PAPER 88-4058)

This paper deals with a technique for the integrated optimization of structure and control in the design of flexible spacecraft and other flexible systems. This current approach uses the response to dynamic inputs and constraint limits to establish trade-offs between control energy and structural mass. This approach gives a concise variational approach to total system optimization and eliminates the need to specify rather arbitrary trade-offs between control energy and structural mass. Results give an explicit dependency between structural stiffness (hence mass), disturbance magnitude, control energy available and deflection constraints. For the special case of linear controls and quadratic constraints the problem reduces to a standard LQG problem plus a structure optimization. The method is general, however, and can be extended to more general problems such as output feedback, nonlinear controls, and slew optimization.

A88-50169*# DYNACS Engineering Co., Inc., Clearwater, FL. EFFECTS OF NONLINEAR DAMPING IN FLEXIBLE SPACE

ANREN HU (DYNACS Engineering Co., Inc., Clearwater, FL) and LAWRENCE W. TAYLOR (NASA, Langley Research Center, Hampton, VA) IN: AIAA Guidance, Navigation and Control Conference, Minneapolis, MN, Aug. 15-17, 1988, Technical Papers. Part 1. Washington, DC, American Institute of Aeronautics and Astronautics, 1988, p. 64-73. refs (AIAA PAPER 88-4059)

The classical Krylov-Bogoliubov 'averaging' technique is used to study a class of nonlinear damping models, for which the damping force is proportional to the product of positive integer or fractional power of absolute values of displacement and that of velocity. The results are compared with linear viscous damping models. The amplitude decrement of free vibration for a single mode system with nonlinear models depends not only on damping ratio, but also on the initial amplitude, the time to measure the response, frequency of the system, and the powers of displacement and velocity. For the distributed system, the action of nonlinear damping is found to reduce energy of the system as well as to pass energy to higher modes. Experimental evidence such as in Spacecraft Control Laboratory Experiment seems to support the need for nonlinear models.

A88-50170# MODELING OF NON-COLLOCATED STRUCTURAL CONTROL

V. A. SPECTOR (TRW, Inc., Redondo Beach, CA) and H. FLASHNER (Southern California, University, Los Angeles) AIAA Guidance, Navigation and Control Conference, Minneapolis, MN, Aug. 15-17, 1988, Technical Papers. Part 1. Washington, DC, American Institute of Aeronautics and Astronautics, 1988, p. 74-83. Research supported by TRW, Inc. refs (Contract NSF MSM-85-05331) (AIAA PAPER 88-4060)

The generic properties of structural modeling pertinent to structural control are discussed, with emphasis on noncollocated systems. Analysis is performed on a representative example of a pinned-free Euler-Bernoulli beam with end-point inertia and distributed sensors. Analysis in the wavenumber plane highlights the crucial qualitative characteristics common to all structural systems. High sensitivity of the transfer-function zeros to errors in model parameters and sensor locations is demonstrated. The existence of finite right-half-plane zeros in noncollocated systems, along with this high sensitivity, further complicates noncollocated control design. A numerical method for accurate computation of the transfer-function zeros in proposed.

A88-50189*# Ohio State Univ., Columbus. TWO CONTROLLER DESIGN APPROACHES FOR **DECENTRALIZED SYSTEMS**

U. OZGUNER, F. KHORRAMI, and A. IFTAR (Ohio State University. IN: AIAA Guidance, Navigation and Control Conference, Minneapolis, MN, Aug. 15-17, 1988, Technical Papers. Part 1. Washington, DC, American Institute of Aeronautics and Astronautics, 1988, p. 237-244. Research supported by Lawrence Livermore National Laboratory. refs (Contract NAG1-720) (AIAA PAPER 88-4083)

Two different philosophies for designing the controllers of decentralized systems are considered within a quadratic regulator framework which is generalized to admit decentralized frequency weighting. In the first approach, the total system model is examined, and the feedback strategy for each channel or subsystem is determined. In the second approach, separate, possibly overlapping, and uncoupled models are analyzed for each channel, and the results can be combined to study the original system. The two methods are applied to the example of a model of the NASA COFS Mast Flight System.

A88-50191#

A DISTRIBUTED FINITE ELEMENT MODELING AND CONTROL APPROACH FOR LARGE FLEXIBLE STRUCTURES

K. DAVID YOUNG (Lawrence Livermore National Laboratory, IN: AIAA Guidance, Navigation and Control Livermore, CA) Conference, Minneapolis, MN, Aug. 15-17, 1988, Technical Papers. Part 1. Washington, DC, American Institute of Aeronautics and Astronautics, 1988, p. 253-263. refs (Contract W-7405-ENG-48)

(AIAA PAPER 88-4085)

A framework for the design of decentralized controllers for large flexible structures is proposed which integrates the finite element modeling and control design phases. The integrated modeling and control design tasks are distributed among the individual components from which the large flexible structure is contructed using the Controlled Component Synthesis method. The method allows controlled components to be built and assembled into a controlled flexible structure that meets performance specifications. Connections are made between controlled component synthesis and existing large scale system model reduction and decomposition techniques. R.R.

A88-50193*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA

GRAMMIANS AND MODEL REDUCTION IN LIMITED TIME AND FREQUENCY INTERVALS

WODEK GAWRONSKI and JER-NAN JUANG (NASA, Langley Research Center, Hampton, VA) IN: AIAA Guidance, Navigation and Control Conference, Minneapolis, MN, Aug. 15-17, 1988, Technical Papers. Part 1. Washington, DC, American Institute of Aeronautics and Astronautics, 1988, p. 275-285. refs (AIAA PAPER 88-4087)

In this paper the controllability and observability grammians in limited time and frequency intervals are studied, and used for model reduction. In balanced and modal coordinates a near-optimal reduction procedure is developed, yielding the reduction error (norm of the difference between the output of the original system and the reduced model) almost minimal. Several examples are given to illustrate the concept for model reduction of continuous- and discrete-time systems, stable and unstable systems, in limited tim or/and frequency interval. Finally, the model reduction of a flexible truss structure is presented.

A88-50199#

REDUNDANCY CONTROL OF A FREE-FLYING TELEROBOT

DAVID AKIN (MIT, Cambridge, MA) and JOHN SPOFFORD IN: AIAA Guidance, Navigation and Control Conference, Minneapolis, MN, Aug. 15-17, 1988, Technical Papers. Part 1. Washington, DC, American Institute of Aeronautics and Astronautics, 1988, p. 347-357. refs (AIAA PAPER 88-4094)

The 'coordinated control' algorithm allows the simultaneous reduced-order control of a vehicle and its attached manipulator. An entire telerobot system is thereby controlled by commanding the end-effector inertially with respect to the task, through a unified dynamic system treatment which considers the free-flying teleoperator as a redundant manipulator. The coordinated trajectory algorithm is a blend of two modes: (1) gradient pseudoinverse trajectory control, which uses both vehicle thrust and manipulator motion, and (2) reaction-compensation trajectory control, which allows the base to react freely to manipulator interaction torques.

A88-50201#

ATTITUDED TUMBLING DUE TO FLEXIBILITY IN SATELLITE **MOUNTED ROBOTS**

RICHARD W. LONGMAN (U.S. Navy, Naval Research Laboratory, IN: AlAA Guidance, Navigation and Control Washington, DC) Conference, Minneapolis, MN, Aug. 15-17, 1988, Technical Papers. Part 1. Washington, DC, American Institute of Aeronautics and Astronautics, 1988, p. 365-373.

(AIAA PAPER 88-4096)

Future satellite mounted robots will often be required to

manipulate load masses that are not insignificant compared to the satellite mass. These robots will also exhibit structural flexibility because of their size and the need for a light weight design. Here it is shown by simple example, that the structural vibrations induced by robot manipulations will generally try to tumble the spacecraft. The satellite attitude control system will have to compensate for this attitude disturbance. A general formalism is developed to determine the attitude control torque which must be generated to counteract the flexibility effects and the robot motion. The results are useful for analysis and evaluation of attitude control, and with proper instrumentation might serve as the control law in a feedforward control signal.

A88-50209*# Jet Propulsion Lab., California Inst. of Tech., Pasadena.

NASA OFFICE OF SPACE SCIENCES AND APPLICATIONS STUDY ON SPACE STATION ATTACHED PAYLOAD POINTING R. A. LASKIN, J. M. ESTUS, Y. H. LIN, J. T. SPANOS, and C. M. SATTER (California Institute of Technology, Jet Propulsion Laboratory, Pasadena) IN: AIAA Guidance, Navigation and Control Conference, Minneapolis, MN, Aug. 15-17, 1988, Technical Papers. Part 1. Washington, DC, American Institute of Aeronautics and Astronautics, 1988, p. 430-443. refs (AIAA PAPER 88-4105)

A study has been conducted to determine the articulated-pointing requirements of a suite of instruments carried by the NASA Space Station, and define a pointing system architecture accomodating those requirements. It is found that these pointing requirements are sufficiently exacting, and the Space Station's disturbance environment sufficiently severe, to preclude the successful use of a conventional gimbal-pointing system; a gimbaled system incorporating an isolation stage is judged capable of furnishing the requisite levels of pointing performance. O.C.

A88-50233*# Texas Univ., Austin. A NEW MOMENTUM MANAGEMENT CONTROLLER FOR THE SPACE STATION

B. WIE, K. W. BYUN, V. W. WARREN (Texas, University, Austin), D. GELLER, D. LONG, and J. SUNKEL (NASA, Johnson Space Center, Houston, TX) IN: AIAA Guidance, Navigation and Control Conference, Minneapolis, MN, Aug. 15-17, 1988, Technical Papers. Part 2. Washington, DC, American Institute of Aeronautics and Astronautics, 1988, p. 677-687. refs (AIAA PAPER 88-4132)

A new approach to CMG (control moment gyro) momentum management and attitude control of the Space Station is developed. The control algorithm utilizes both the gravity-gradient and gyroscopic torques to seek torque equilibrium attitude in the presence of secular and cyclic disturbances. Depending upon mission requirements, either pitch attitude or pitch-axis CMG momentum can be held constant; yaw attitude and roll-axis CMG momentum can be held constant, while roll attitude and yaw-axis CMG momentum cannot be held constant. As a result, the overall attitude and CMG momentum oscillations caused by cyclic aero-dynamic disturbances are minimized. A state feedback controller with minimal computer storage requirement for gain scheduling is also developed. The overall closed-loop system is stable for + or - 30 percent inertia matrix variations and has more than + or - 10 dB and 45 deg stability margins in each Author loop.

A88-50246#

SYSTEM IDENTIFICATION AND CONTROL OF THE TRUSS EXPERIMENT - A RETROSPECTIVE

MICHAEL S. LUKICH (TRW, Inc., Redondo Beach, CA) IN: AIAA Guidance, Navigation and Control Conference, Minneapolis, MN, Aug. 15-17, 1988, Technical Papers. Part 2. Washington, DC, American Institute of Aeronautics and Astronautics, 1988, p. 821-831. refs

(AIAA PAPER 88-4152)

Research on an experimentally validated system identification and control technology for large space structures is reviewed. Brief synopses of theoretical developments in system identification, multivariable control system design, and passive/active control are given. The emphasis is on the tresults of the truss experiment and the lessons learned from them.

C.D.

A88-50247*# Jet Propulsion Lab., California Inst. of Tech., Pasadena.

ADAPTIVE CONTROL EXPERIMENT WITH A LARGE FLEXIBLE STRUCTURE

CHE-HANG CHARLES IH, DAVID S. BAYARD, SHYH JONG WANG, and DANIEL B. ELDRED (California Institute of Technology, Jet Propulsion Laboratory, Pasadena) IN: AIAA Guidance, Navigation and Control Conference, Minneapolis, MN, Aug. 15-17, 1988, Technical Papers. Part 2. Washington, DC, American Institute of Aeronautics and Astronautics, 1988, p. 832-851. refs (AIAA PAPER 88-4153)

A large space antenna-like ground experiment structure has been developed for conducting research and validation of advanced control technology. A set of proof-of-concept adaptive control experiments for transient and initial deflection regulation with a small set of sensors and actuators were conducted. Very limited knowledge of the plant dynamics and its environment was used in the design of the adaptive controller so that performance could be demonstrated under conditions of gross underlying uncertainties. High performance has been observed under such stringent conditions. These experiments have established a baseline for future studies involving more complex hardware and environmental conditions, and utilizing additional sets of sensors and actuators.

Author

A88-50248# DYNAMICS AND CONTROL OF EXPERIMENTAL TENDON CONTROL SYSTEM FOR FLEXIBLE SPACE STRUCTURE

Y. MUROTSU, H. OKUBO, K. SENDA (Osaka Prefecture, University, Sakai, Japan), F. TERUI, and K. SHINODA IN: AIAA Guidance, Navigation and Control Conference, Minneapolis, MN, Aug. 15-17, 1988, Technical Papers. Part 2. Washington, DC, American Institute of Aeronautics and Astronautics, 1988, p. 852-860. refs (AIAA PAPER 88-4154)

A mathematical model of dynamics for a composite system of a beam/tendon-actuator is developed here using a finite element method. The model is used to design a low-order modal controller. The relation between the dynamics of the tendon actuator and the control system design is investigated for the cases when the rigidity of the tendons is very high and low.

C.D.

A88-50259#

ON-LINE MEASUREMENT CONFIGURATION STRATEGIES FOR DISCRETE-TIME SYSTEMS

YAAKOV OSHMAN (New York, State University, Buffalo) IN: AlAA Guidance, Navigation and Control Conference, Minneapolis, MN, Aug. 15-17, 1988, Technical Papers. Part 2. Washington, DC, American Institute of Aeronautics and Astronautics, 1988, p. 948-957. refs

(AIAA PAPER 88-4168)

This paper introduces a new measurement system optimization technique which can be implemented on-line in time-varying, discrete-time systems. It considers a case in which several measurement subsystems are available, each one of which may serve to drive a state estimation algorithm. However, due to practical implementation constraints, only one of these subsystems can actually be used at a measurement-update. An algorithm is needed, by which the optimal measurement subsystem to be used is selected at each measurement configuration epoch. The approach taken at solving this problem is based on using the square root V-Lambda information filter as the underlying state estimation algorithm. This algorithm continuously provides its user with the spectral factors of the estimation error covariance matrix, which are, in turn, used in this work as the basis for an on-line decision procedure by which the optimal measurement strategy is derived. A numerical example is presented, which demonstrates the performance of the new algorithm.

A88-50261#

GUIDANCE AND CONTROL FOR COOPERATIVE TETHER-MEDIATED ORBITAL RENDEZVOUS

DALE G. STUART (TRW. Inc., TRW Space and Technology Group, Redondo Beach, CA) IN: AIAA Guidance, Navigation and Control Conference, Minneapolis, MN, Aug. 15-17, 1988, Technical Papers. Part 2. Washington, DC, American Institute of Aeronautics and Astronautics, 1988, p. 964-974. refs (AIAA PAPER 88-4170)

This paper presents a viable guidance algorithm for performing a tether-mediated rendezvous, optimizing the rendezvous state such that the minimum total maneuvering effort is required of two vehicles performing the rendezvous. The algorithm's feasibility and practicality are analyzed under near-realistic operating conditions by simulating perturbations of a free-flying pursuit vehicle (PV) from its nominal rendezvous trajectory and then observing the capability of the algorithm to determine corrective maneuvers that would lead to a successful rendezvous. Fuel requirements, time spent within proximity of the target, and thruster failure tolerances are considered. Results indicate that the algorithm performs well even with large PV perturbations. The resulting total fuel cost for both vehicles is less than what would be required by having one vehicle alone perform the rendezvous maneuvers.

A88-50262#

TWO NON-LINEAR CONTROL APPROACHES FOR RETRIEVAL OF A THRUSTING TETHERED SUB-SATELLITE

D. J. PINES, A. H. VON FLOTOW (MIT, Cambridge, MA), and D. C. REDDING (Charles Stark Draper Laboratory, Inc., Cambridge, IN: AIAA Guidance, Navigation and Control Conference, Minneapolis, MN, Aug. 15-17, 1988, Technical Papers. Part 2. Washington, DC, American Institute of Aeronautics and Astronautics, 1988, p. 975-983. refs

(AIAA PAPER 88-4171)

This paper presents an analysis of the dynamics and control of the pitch and roll motion during retrieval of a Tethered Satellite System, consisting of the Space Shuttle Orbiter and the tethered satellite. Two nonlinear control designs are investigated and compared. The first approach uses visual observation of the line of sight angle and phase plane switch logic to generate simple pilotage rules for orbiter pilots. The second uses a controller designed using computational sliding mode techniques. It assumes more precise sensing of system state and would be implemented using the Orbiter and sub-satellite jets. Author

A88-50263#

LIBRATION DAMPING OF A TETHERED SATELLITE USING RATE ONLY CONTROL

W. R. DAVIS and A. K. BANERJEE (Lockheed Missiles and Space Co., Sunnyvale, CA) IN: AIAA Guidance, Navigation and Control Conference, Minneapolis, MN, Aug. 15-17, 1988, Technical Papers. Part 2. Washington, DC, American Institute of Aeronautics and Astronautics, 1988, p. 984-994. refs (AIAA PAPER 88-4172)

A control law specifying tether reel in/out rate based on measurement of tether libration angles and their rates has been formulated and evaluated using a simple model of a tethered satellite. The results indicate that both out-of-plane and in-plane librations can be damped by varying the length of the tether by about 10 percent of its length. Time required to reduce out-of-plane librations by a factor of 10 is less than seven orbital periods. Significant improvement in control of in-plane librations are shown in that these are damped in less than one orbit period. Control of the damped configuration to a nominal desired length is also included. A FORTRAN code for the control logic is given.

Author

A88-50265*# Texas Univ., Austin.

AN APPROXIMATE ATMOSPHERIC GUIDANCE LAW FOR **AEROASSISTED PLANE CHANGE MANEUVERS**

JASON L. SPEYER and EDWIN Z. CRUES (Texas, University, Austin) IN: AIAA Guidance, Navigation and Control Conference, Minneapolis, MN, Aug. 15-17, 1988, Technical Papers. Part 2.

Washington, DC, American Institute of Aeronautics Astronautics, 1988, p. 1006-1014. refs (Contract JPL-956414) (AIAA PAPER 88-4174)

An approximate optimal guidance law for the aeroassisted plane change problem is presented which is based upon an expansion of the Hamilton-Jacobi-Bellman equation with respect to the small parameter of Breakwell et al. (1985). The present law maximizes the final velocity of the reentry vehicle while meeting terminal constraints on altitude, flight path angle, and heading angle. The integrable zeroth-order solution found when the small parameter is set to zero corresponds to a solution of the problem where the aerodynamic forces dominate the inertial forces. Higher order solutions in the expansion are obtained from the solution of linear partial differential equations requiring only quadrature integration.

A88-50266*# Georgia Inst. of Tech., Atlanta. A NEAR OPTIMAL GUIDANCE ALGORITHM FOR **AERO-ASSISTED ORBIT TRANSFER**

ANTHONY J. CALISE and GYOUNG H. BAE (Georgia Institute of Technology, Atlanta) IN: AIAA Guidance, Navigation and Control Conference, Minneapolis, MN, Aug. 15-17, 1988, Technical Papers. Part 2. Washington, DC, American Institute of Aeronautics and Astronautics, 1988, p. 1015-1019. refs (Contract NAG1-660)

(AIAA PAPER 88-4175)

The paper presents a near optimal guidance algorithm for aero-assited orbit plane change, based on minimizing the energy loss during the atmospheric portion of the maneuver. The guidance algorithm makes use of recent results obtained from energy state approximations and singular perturbation analysis of optimal heading change for a hypersonic gliding vehicle. This earlier work ignored the terminal constraint on altitude needed to insure that the vehicle exits that atmosphere. Thus, the resulting guidance algorithm was only appropriate for maneuvering reentry vehicle quidance. In the context of singular perturbation theory, a constraint on final altitude gives rise to a difficult terminal boundary layer problem, which cannot be solved in closed form. This paper will demonstrate the near optimality of a predictive/corrective guidance algorithm for the terminal maneuver. Comparisons are made to numerically optimized trajectories for a range or orbit plane angles.

A88-50280#

PILOTED EARTH POINTING OF A SPINNING **GEOSYNCHRONOUS SATELLITE**

D. D. FITZGERALD, R. B. SHERWOOD, and A. B. SIMMONS (TRW, Inc., Redondo Beach, CA) AIAA, Guidance, Navigation and Control Conference, Minneapolis, MN, Aug. 15-17, 1988. 12 p.

(AIAA PAPER 88-4130)

The development of a ground controlled earth acquisition for geosynchronous satellite is discussed. The satellite's normal attitude control capabilities and the provision available for back-up ground commanding are examined. The theoretical approach used to implement the manual earth acquisition is presented. This implementation consists of several hours of continuous, time-critical, man-in-the-loop commanding. The refinements made to the operation as a result of knowledge gained in the hands-on rehearsals are given.

A88-50362#

AN ALTERNATE TRANSITION FROM THE LAGRANGIAN OF A SATELLITE TO EQUATIONS OF MOTION

S. R. MARANDI and V. J. MODI (British Columbia, University, Vancouver, Canada) IN: AIAA/AAS Astrodynamics Conference, Minneapolis, MN, Aug. 15-17, 1988, Technical Papers. Washington. DC, American Institute of Aeronautics and Astronautics, 1988, p. 79-93. refs

(AIAA PAPER 88-4221)

A procedure is outlined for a conservative system which makes it possible to go from a Lagrangian of a librating system to the corresponding equations of motion in the Eulerian form. The transition does not require a choice of rotational coordinates and makes use of angular velocities and direction cosines directly. The procedure thus synthesizes attractive features of two classical approaches and has far reaching consequences; it is particularly useful in formulating equations of motion for complex flexible systems of contemporary interest. For the case of a satellite with two flexible plate-type appendages, for example, the approach reduced the formulation time to one-third. The basic mathematical concepts are briefly touched upon in the beginning which help explain the subsequent development.

A88-50367#

A SLEW MANEUVER EXPERIMENT OF MISSION FUNCTION CONTROL

HIRONORI FUJII (Tokyo Metropolitan Institute of Technology, Hino, Japan) IN: AIAA/AAS Astrodynamics Conference, Minneapolis, MN, Aug. 15-17, 1988, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1988, p. 130-134. refs (AIAA PAPER 88-4226)

A control algorithm, named 'The Mission Function Control', is experimentally demonstrated and verified its validity on slew maneuver of a flexible space structure model. The mission function control algorithm is to use a Liapunov-type function consists of generalized energy functions. The model is a rigid main body equipped with a flexible beam and is controlled to slew in a horizontal plane by a torque motor attached to the main body. The vibrational motion of the flexible beam is sensed by strain gages as bending moment and shearing force at the root of the beam after analytical reduction of the algorithm. Results of the experiment show simple implementation of the algorithm and such an excellent controlled behavior of the slew maneuver as control robustness.

A88-50383#

ANALYTICAL EXPRESSIONS FOR VIBRATORY DISPLACEMENTS OF DEPLOYING APPENDAGES

A. K. MISRA (McGill University, Montreal, Canada) and S. KALAYCIOGLU IN: AIAA/AAS Astrodynamics Conference, Minneapolis, MN, Aug. 15-17, 1988, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1988, p. 270-277. refs

(AIAA PAPER 88-4250)

For beam-type appendages, solutions are presented for uniform extension rate, exponential extension and deployment where the square of the length varies linearly with time. For tethered systems, an analytical solution is presented for the common exponential deployment (or retrieval). The analytical solutions seem to be quite close to the more expensive numerical solutions. If the length changes, the amplitude of transverse vibration varies as L(exp 1/2) for beam-type and L(exp - 1/4) for tether-type appendages.

Author

A88-50384*# Howard Univ., Washington, DC. THE DYNAMICS AND CONTROL OF THE ORBITING SPACECRAFT CONTROL LABORATORY EXPERIMENT (SCOLE) DURING STATION KEEPING

PETER M. BAINUM and CHEICK M. DIARRA (Howard University, Washington, DC) IN: AIAA/AAS Astrodynamics Conference, Minneapolis, MN, Aug. 15-17, 1988, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1988, p. 278-285. refs

(Contract NSG-1414)

(AIAA PAPER 88-4252)

A mathematical model is developed to predict the dynamics of the proposed orbiting Spacecraft Control Laboratory Experiment during the station keeping phase. The Shuttle as well as the reflector are assumed to be rigid, the mast is flexible and is assumed to undergo elastic displacements very small as compared with its length. The equations of motion are derived using a Newton-Euler formulation. The model includes the effects of gravity, flexibility, and orbital dynamics. The control is assumed to be

provided to the system through the Shuttle's three torquers, and through six actuators located by pairs at two points on the mast and at the mass center of the reflector. At each of the locations, an actuator acts parallel to the roll axis while the other one acts parallel to the pitch axis. It is seen that, in the presence of gravity-gradient torques in the system dynamics, the system assumes a new equilibrium position about which the equations must be linearized, primarily due to the offset in the mast attachment point to the reflector. The linear regulator theory is used to derive control laws for the linear model of the SCOLE including the first four flexible modes. Numerical results confirm the robustness of this control strategy for station keeping with maximum control efforts significantly below saturation levels.

Author

A88-50385#

A POLE PLACEMENT TECHNIQUE FOR VIBRATION SUPPRESSION OF FLEXIBLE STRUCTURES

NELSON G. CREAMER (General Research Corp., Arlington, VA) and JOHN L. JUNKINS (Texas A & M University, College Station) IN: AIAA/AAS Astrodynamics Conference, Minneapolis, MN, Aug. 15-17, 1988, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1988, p. 286-293. refs (AIAA PAPER 88-4254)

A novel pole placement technique is developed for stabilizing an initially undamped (or lightly damped) structure using symmetric 'structural' feedback. The feedback matrices are expressed in terms of prescribed symmetric, positive semi-definite submatrices and unknown scale factors (gain elements). The gain elements are designed to place a set of target eigenvalues at (or near) their desired locations by imposing state space orthogonality conditions which the closed-loop structure must satisfy. A standard linear programming problem is formulated which not only places the target eigenvalues but also minimizes the modal dissipation and potential energy of the target modes and satisfies actuator force limits. In addition, the untargeted, higher frequency modes are guaranteed to be stable due to the positivity of the gain submatrices.

A88-50386#

AN OPTIMAL MANEUVER CONTROL METHOD FOR THE SPACECRAFT WITH FLEXIBLE APPENDAGES

D. LIU, D. M. YANG, W. P. ZHANG (Harbin Institute of Technology, People's Republic of China), and J. XI IN: AIAA/AAS Astrodynamics Conference, Minneapolis, MN, Aug. 15-17, 1988, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1988, p. 294-300. Research sponsored by the National Natural Science Foundation of China. refs

(AIAA PAPER 88-4255)

A maneuver control method for a system of rigid and flexible bodies is presented which can suppress the elastic vibration mode and avoids the two point boundary value problem. The method requires that vibration parameters be determined before optimal controls are applied to the system. The method can be used to restrict or eliminate elastic vibration, liquid sloshing, or pendulum oscillation. The approach can be developed to suppress two of these vibrations simultaneously.

A88-50398#

A FORMULATION FOR STUDYING DYNAMICS AND CONTROL OF THE SPACE STATION BASED MRMS AND ITS APPLICATION

Y. MORITA and V. J. MODI (British Columbia, University, Vancouver, Canada) IN: AIAA/AAS Astrodynamics Conference, Minneapolis, MN, Aug. 15-17, 1988, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1988, p. 401-409. refs

(Contract NSERC-0032682)

(AIAA PAPER 88-4269)

A relatively general formulation for studying dynamics of a flexible Mobile Remote Manipulator System (MRMS), supported by an orbiting flexible platform, is developed using the Lagrangian approach with generalized forces accounting for the environmental effects, damping and control. The flexible members are treated as continua and their flexural deformations are represented by a series of admissible functions. The computational algorithm is so structured as to isolate the effects of various system parameters thus helping in assessment of their relative importance. Appplication of the general formulation, illustrated through several typical MRMS configurations of practical importance, reveals complex interactions between vibrational and librational degrees of freedom, in the presence of MRMS maneuver, over a range of system parameters and initial conditions. Effectiveness of the formulation is also demonstrated through another illustrative example of the SCOLE configuration representing the Shuttle based flexible beam supporting a rigid reflector plate at its end. The information is fundamental to the design of the manipulator and the associated controls system.

A88-50407# TRANSIENT DYNAMICS OF THE TETHER ELEVATOR/CRAWLER SYSTEM

M. COSMO, E. C. LORENZINI (Harvard-Smithsonian Center for Astrophysics, Cambridge, MA), S. VETRELLA, and A. MOCCIA (Napoli, Universita, Naples, Italy) IN: AIAA/AAS Astrodynamics Conference, Minneapolis, MN, Aug. 15-17, 1988, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1988, p. 480-489. refs (AIAA PAPER 88-4280)

This paper describes the dynamics and control of a 4-mass tethered system, attached to the Space Station, for conducting micro-g and variable-g experiments. After deriving the two-dimensional equations of motion by means of the Lagrangian function, the eigenfrequencies and eigenvectors of the system have been computed. Control algorithms have been devised to damp out the fundamental oscillations of the system, namely in-plane libration, lateral deflections, and tethers' longitudinal oscillations. Numerical results show that the control strategies adopted can effectively damp the oscillations excited during transient phases of the system dynamics such as the end of the deployment phase.

A88-50409# OUT OF PLANE MANEUVERING WITH TETHERED SATELLITES

M. D. HAYNES and D. G. BODEN (U.S. Air Force Academy, Colorado Springs, CO) IN: AIAA/AAS Astrodynamics Conference, Minneapolis, MN, Aug. 15-17, 1988, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1988, p. 498-502.

(AIAA PAPER 88-4282)

This paper consists of an investigation into the use of a tethered satellite system to maneuver a parent satellite out of the orbital plane, and return the satellite to its initial orbit. This study is directed at obtaining a more efficient method of enabling the satellite to avoid an inplane intercept. The use of a tethered satellite system instead of a conventional delta v maneuver will result in an overall weight savings, greater simplicity in deployment, and a reusable maneuver capability.

Author

A88-50428#

A FORMULATION FOR STUDYING DYNAMICS OF INTERCONNECTED BODIES WITH APPLICATION

A. C. NG and V. J. MODI (British Columbia, University, Vancouver, Canada) IN: AIAA/AAS Astrodynamics Conference, Minneapolis, MN, Aug. 15-17, 1988, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1988, p. 660-668.

(Contract NSERC-58-0029)

(AIAA PAPER 88-4303)

A relative general formulation for studying the dynamics of spacecraft with interconnected flexible bodies is presented accounting for thermal deformations and transverse vibrations of the structural members. In addition, the shift in the center of mass of the system and the slewing maneuvers of the members are

incorporated. The formulation can be applied to study the U.S. proposed Space Station as well as a large class of present and future spacecraft. An example illustrates application of the formulation. The model under study is a satellite with a central rigid body and a pair of beam-type appendages. The librational and vibrational responses of the system with and without thermal deformation are compared. The results show that in circular orbits, under a critical combination of system parameters and initial conditions, thermal deformation can lead to instability. Author

A88-50429#

A DYNAMICAL STUDY OF THE PROPOSED SPACE STATION TYPE CONFIGURATION

A. SULEMAN and V. J. MODI (British Columbia, University, Vancouver, Canada) IN: AIAA/AAS Astrodynamics Conference, Minneapolis, MN, Aug. 15-17, 1988, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1988, p. 669-680.

(Contract NSERC-A-2181) (AIAA PAPER 88-4304)

The planar libration-vibration interaction dynamics of the proposed Space Station is investigated using a simplified model where the keel and solar panels are represented as beams and the central pressurized modules as a rigid body. Following a Lagrangian analysis of the governing nonlinear nonautonomous and coupled equations of motion, a finite element analysis is used to study the first seven system modes and associated frequencies. A parametric analysis of the system librational and vibrational response is then presented. Finally, a closed-form solution of the simplified nonlinear problem is obtained using the variation of parameters method.

A88-50430# INTEGRATED STRUCTURAL/CONTROLLER OPTIMIZATION OF LARGE SPACE STRUCTURES

SCOT K. MORRISON, YINYU YE, CHARLES Z. GREGORY, JR., ROBERT L. KOSUT (Integrated Systems, Inc., Santa Clara, CA), and MARC E. REGELBRUGGE (Lockheed Research Laboratories, Palo Alto, CA) IN: AIAA/AAS Astrodynamics Conference, Minneapolis, MN, Aug. 15-17, 1988, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1988, p. 681-688. refs

(Contract F29601-86-C-0243) (AIAA PAPER 88-4305)

A method for optimizing the closed-loop disturbance rejection capabilities of a large-space-structure is presented herein. The procedure uses two levels of model reduction, one to an evaluation model, and another to a controlled subspace. The line-of-sight pointing error of optical elements mounted on the spacecraft is used to evaluate the system performance. Optimization results are obtained for both the open-loop and closed-loop system, with several different sets of constraints. The results indicate that combined structural/controller optimization yields superior disturbance rejection qualities than open-loop optimization followed by optimal control implementation.

A88-50431#

DESIGN OF AN ON-BOARD ANTENNA POINTING CONTROL SYSTEM FOR COMMUNICATION SATELLITES

YOICHI KAWAKAMI, HIROSHI HOJO, and MASAZUMI UEBA (Nippon Telegraph and Telephone Public Corp., Radio Communication Systems Laboratories, Kanagawa, Japan) IN: AIAA/AAS Astrodynamics Conference, Minneapolis, MN, Aug. 15-17, 1988, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1988, p. 689-694. (AIAA PAPER 88-4306)

This paper describes system design methods of an on-board antenna pointing control system necessary for communication satellites in the 1990s. Four system configurations were studied for a typical antenna system. The system consists of two reflectors of about 3 meters diameter, and is required to maintain a high pointing accuracy requirement. A new system which consists of two control systems, an attitude control system and an antenna

05 STRUCTURAL DYNAMICS AND CONTROL

drive control system, was selected by the antenna pointing error analysis. New parameters are applied to the control system design in order to estimate interaction between two control systems, and dynamics with a flexible structure was studied for design of both the antenna drive control system and the antenna structures.

Author

A88-50432# ACTIVE CONTROL EXPERIMENT USING PROOF MASS ACTUATORS

T. CRISTLER and R. A. CALICO (USAF, Institute of Technology, Wright-Patterson AFB, OH) IN: AIAA/AAS Astrodynamics Conference, Minneapolis, MN, Aug. 15-17, 1988, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1988, p. 695-703. (AIAA PAPER 88-4307)

An experimental investigation of a vertically suspended cantilevered beam was performed in order to study the control of large space structures. In the present experimental arrangement, control forces were provided by linear proof mass actuators and structural motion was measured using peizoelectric accelerometers. The structure provided six vibration modes in the designated control bandwidth. The simultaneous operation of separate controllers while maintaining overall system stability was demonstrated, along with suppression of a mode from one of the controllers. Although the proof mass actuators were shown to be viable structural control devices, they have limited force output at low frequencies. R.R.

A88-50438*# Columbia Univ., New York, NY. A MATHEMATICAL THEORY OF LEARNING CONTROL FOR LINEAR DISCRETE MULTIVARIABLE SYSTEMS

MINH PHAN and RICHARD W. LONGMAN (Columbia University, New York) IN: AIAA/AAS Astrodynamics Conference, Minneapolis, MN, Aug. 15-17, 1988, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1988, p. 740-746. refs

(Contract NAG1-649) (AIAA PAPER 88-4313)

When tracking control systems are used in repetitive operations such as robots in various manufacturing processes, the controller will make the same errors repeatedly. Here consideration is given to learning controllers that look at the tracking errors in each repetition of the process and adjust the control to decrease these errors in the next repetition. A general formalism is developed for learning control of discrete-time (time-varying or time-invariant) linear multivariable systems. Methods of specifying a desired trajectory (such that the trajectory can actually be performed by the discrete system) are discussed, and learning controllers are developed. Stability criteria are obtained which are relatively easy to use to insure convergence of the learning process, and proper gain settings are discussed in light of measurement noise and system uncertainties.

A88-50440#

ACCOMMODATION OF KINEMATIC DISTURBANCES DURING A MINIMUM-TIME MANEUVER OF A FLEXIBLE SPACECRAFT

YAAKOV SHARONY and LEONARD MEIROVITCH (Virginia Polytechnic Institute and State University, Blacksburg) AlAA and AAS, Astrodynamics Conference, Minneapolis, MN, Aug. 15-17, 1988, 17 p. refs.

1988. 17 p. refs (Contract F33615-86-C-3233)

(AIAA PAPER 88-4253)

This paper is concerned with control of the perturbations experienced by a flexible spacecraft during a minimum-time maneuver. The spacecraft is modeled as a flexible appendage attached to a rigid hub. The perturbations consist of rigid-body deviations and elastic vibration. The vibration is described by a linear, time-varying set of ordinary differential equations subjected to piecewise-constant disturbances caused by inertial forces resulting from the maneuver. The control is carried out during the maneuver period, which is relatively short, and it uses an observer that estimates the controlled state and part of the disturbance vector. The controller is divided into an optimal finite-time linear

quadratic regulator for the reduced-order model and a disturbance-accommodation control that minimizes a weighted norm spanning the full modeled state. The controller is designed to mitigate the effects of control and observation spillover, as well as of modeling errors. The developments are illustrated by means of a numerical example.

Author

A88-50441#

CONTROL OF SPACECRAFT WITH MULTI-TARGETED FLEXIBLE ANTENNAS

LEONARD MEIROVITCH and MOON K. KWAK (Virginia Polytechnic Institute and State University, Blacksburg) AIAA and AAS, Astrodynamics Conference, Minneapolis, MN, Aug. 15-17, 1988. 9 p. refs

(Contract F49620-88-C-0044)

(AIAA PAPER 88-4268)

This paper is concerned with the problem of reorienting the line of sight of a given number of flexible antennas in a spacecraft. The maneuver of the antennas is carried out according to a minimum-time policy, which implies bang-bang control. Regarding the maneuver angular motion of the antennas as known, the equations of motion contain time-dependent terms in the form of coefficients and persistent disturbances. The control of the elastic vibration and of the rigid-body motions of the spacecraft caused by the maneuver is implemented by means of a proportional-plus-integral control. The approach is demonstrated by means of a numerical example in which a spacecraft consisting of a rigid platform and two maneuvering flexible antennas is controlled.

A88-50586#

AERODYNAMIC DESIGN OF A VARIABLE-BEND VEHICLE

G. F. POLANSKY and W. H. RUTLEDGE (Sandia National Laboratories, Albuquerque, NM) IN: AIAA Atmospheric Flight Mechanics Conference, Minneapolis, MN, Aug. 15-17, 1988, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1988, p. 94-102. refs (Contract DE-AC04-76DP-00789) (AIAA PAPER 88-4340)

An examination is made of the use of variable bending as a means of control in supersonic and hypersonic maneuvering vehicles, with a view to the amelioration of the large hinge moments that have thus far prevented their realization. A procedure is devised for the efficient design of a variable-bend geometry vehicle for a given set of system constraints, giving attention to the selection of vehicle parameters which will generate the minimum hinge moments for trimmed flight.

O.C.

A88-50789

INTERNATIONAL MODAL ANALYSIS CONFERENCE, 5TH, IMPERIAL COLLEGE OF SCIENCE AND TECHNOLOGY, LONDON, ENGLAND, APR. 6-9, 1987, PROCEEDINGS. VOLUMES 1 & 2

Conference sponsored by Union College. Bethel, CT, Society for Experimental Mechanics, Inc., 1987, p. Vol. 1, 853 p.; vol. 2, 915 p. For indiv idual items see A88-50790 to A88-50900.

Various papers on modal analysis and testing are presented. The general topics addressed include: experimental case histories, analytical methods, structural dynamics modification, linking analysis and test, processing modal data, modal test methods, seismic topics, modal techniques for rotating machinery, modeling structures, substructuring, and noise/acoustic topics. Also considered are: experimental techniques, vehicular topics, space structures, machinery diagnostics, nonlinear structures, design methods, damping, ship-related topics, transducers and instrumentation topics, finite element analysis, and modal analysis software.

A88-50809

IDENTIFICATION OF A COMPLEX SATELLITE MODEL BY MEANS OF MODAL SYNTHESIS

WERNER SACHS (DFVLR, Institut fuer Aeroelastik, Goettingen, Federal Republic of Germany) IN: International Modal Analysis

Conference, 5th, London, England, Apr. 6-9, 1987, Proceedings. Volume 1. Bethel, CT, Society for Experimental Mechanics, Inc., 1987, p. 468-475. refs

A study conducted in order to answer many of the open questions in the field of modal synthesis, with particular attention given to practical applicability, is summarized. The design of the interfaces, test condition of the substructures, sensitivity of the procedure dependent on the measuring errors, convergence acceleration, interface loading, and damping influences are considered. A new representation of the synthesis algorithm used here is introduced.

A88-50818

SPACE STATION DYNAMIC ANALYSIS

PREM B. D'CRUZ (Structural Dynamics Research Corp., Milford, OH) IN: International Modal Analysis Conference, 5th, London, England, Apr. 6-9, 1987, Proceedings. Volume 1. Bethel, CT, Society for Experimental Mechanics, Inc., 1987, p. 544-547. refs

This paper describes an application example of computer aided engineering techniques used to investigate the structural dynamnic characteristics of one of NASA's proposed Space Station configurations. The example investigations involved predicting vibration levels due to orbit reboost, Space Shuttle berthing and the unbalance force of the control moment gyro. Component mode synthesis was used to assemble and solve the system model of the Space Station. A numerical comparison of two popular component mode synthesis modeling methods, the fixed interface Craig-Bampton method and the free interface residual flexibility method was also performed for this application. Using the systems approach helps to predict and resolve many of the difficult and costly problems due to system level effects early in the product design cycle. SDRC I-DEAS and MSC/NASTRAN, software packages were used for the analysis.

A88-50837

TRANSIENT TESTS FOR SPACE STRUCTURES QUALIFICATION

L. P. BUGEAT and M. R. RAZAFIMAHAROLAHY (Intespace, Toulouse, France) IN: International Modal Analysis Conference, 5th, London, England, Apr. 6-9, 1987, Proceedings. Volume 1. Bethel, CT, Society for Experimental Mechanics, Inc., 1987, p. 799-803. Research supported by CNES and Societe Nationale Industrielle Aerospatiale.

The basic principles and implementation of the spacecraft load-identification and dynamic-qualification methods developed at CNES and described by Imbert et al. (1982), Morand et al. (1985), and Girard and Michel (1982) are reviewed. An open-loop approach based on an equivalent-force formulation and impedance coupling is applied in electrodynamic-shaker tests, and the test data are then used to estimate the severe LF loads on the spacecraft at the cutoff of the first and second stage engines of the launcher. Data from tests on the Arabsat structural model are presented in extensive graphs, demonstrating the feasibility of the method.

T.K.

A88-50860

EFFECT OF AIR MASS ON MODAL TESTS

JOHN FOWLER, NORMAN LAGERQUIST, and HOWARD LEVE (Hughes Aircraft Co., Space and Communications Group, Los Angeles, CA) IN: International Modal Analysis Conference, 5th, London, England, Apr. 6-9, 1987, Proceedings. Volume 2. Bethel, CT, Society for Experimental Mechanics, Inc., 1987, p. 1078-1083.

A 3.2 m 34.7 kg carbon graphite reflector was modal tested in air and in vacuum to assess the effect of air mass. The ability of a mathematical model (NASTRAN) to predict the air mass effect is discussed. The effect of air mass on the fundamental mode shapes is shown to be negligible.

K.K.

A88-50863

SPACE STATION DYNAMIC ANALYSIS METHODS

MARY BAKER and PAUL BLELLOCH (SDRC, Inc., San Diego,

CA) IN: International Modal Analysis Conference, 5th, London, England, Apr. 6-9, 1987, Proceedings. Volume 2. Bethel, CT, Society for Experimental Mechanics, Inc., 1987, p. 1098-1105.

Space Station dynamic characteristics have been studied using realistic Space Station models. With these characteristics as a guide, methods are presented for simultaneously modeling the effects of structural modes, any number of linear continuous time control systems, discrete passive dampers, and spinning bodies. The approach presented includes application of a structural analogy to controls which makes it possible to simulate all the above effects within s single structural dynamics code which is one module of the NASA/SDRC software, IDEAS.

A88-50892* Howard Univ., Washington, DC.

FREQUENCY OPTIMIZATION OF REPETITIVE LATTICE BEAM-LIKE STRUCTURES USING A CONTINUUM MODEL

ROBERT REISS (Howard University, Washington, DC) and K. JAYARAMAN IN: International Modal Analysis Conference, 5th, London, England, Apr. 6-9, 1987, Proceedings. Volume 2. Bethel, CT, Society for Experimental Mechanics, Inc., 1987, p. 1565-1572. refs

(Contract NAG1-383)

A new method for obtaining the maximum frequency design of a beam-like repetitive lattice structure is presented. Using existing techniques, the lattice is first modeled as an equivalent anisotropic Timoshenko beam. The computation of the stiffness and inertial properties of the beam, determined by matching the strain and kinetic energies of the beam with those of the lattice, is facilitated by the repetitive nature of the lattice. The optimum design is obtained by maximizing Rayleigh's quotient using methods of variational calculus. For the problem selected, results show excellent agreement with those obtained by traditional finite-element methods. Moreover, unlike FE methods, cpu time is relatively unaffected by the size of the truss.

A88-50897

IDENTIFICATION OF MULTIPLE-INPUT MODAL PARAMETERS FROM MULTIPLE-FREQUENCY RESPONSE FUNCTION

RUIYAN LIU (National University of Defense Technology, Changsha, People's Republic of China) and ZIJIE FAN IN: International Modal Analysis Conference, 5th, London, England, Apr. 6-9, 1987, Proceedings. Volume 2. Bethel, CT, Society for Experimental Mechanics, Inc., 1987, p. 1645-1650. refs

In this paper a new concept of multiple frequency response function-MFRF is presented. The identification model of multiple-input modal parameters is established from MFRF, and the calculating formula and process are given. The analytical results of two examples show that the proposed method has the advantages of accuracy, consistency and separating closely-space modes, etc. The method can be used perfectly for experimental modal analysis of large or complicated structures. Author

A88-50899

SPATIAL DISTRIBUTION OF MODEL ERROR BASED ON ANALYTICAL/EXPERIMENTAL FREQUENCY DISCREPANCIES

G. DUDLEY SHEPARD (Lowell, University, MA) IN: International Modal Analysis Conference, 5th, London, England, Apr. 6-9, 1987, Proceedings. Volume 2. Bethel, CT, Society for Experimental Mechanics, Inc., 1987, p. 1665-1668.

The intent of modal analysis is to develop a reliable dynamic model of a structure by determining and comparing the analytical and experimental modal properties of frequency, damping and mode shape. In addition to identifying these modal properties it would be desirable to determine spatially which parts of the structure are modeled poorly or well. This information could be used to improve the finite element model. It could also point to faults in the structure and hence help to evaluate mechanical integrity. This paper shows how the pattern of discrepancies in the analytical and experimental test values for the pole and zero frequencies of a structure can be linked to discrepancies in the mass or stiffness of the structural elements.

A88-50979* Texas Univ., Arlington.

PRECISION POINTING OF SCIENTIFIC INSTRUMENTS ON SPACE STATION: THE LFGGREC PERSPECTIVE

C. C. BLACKWELL (Texas, University, Arlington), S. W. SIRLIN, and R. A. LASKIN (California Insitute of Technology, Jet Propulsion Laboratory, Pasadena) IN: NAECON 88; Proceedings of the IEEE National Aerospace and Electronics Conference, Dayton, OH, May 23-27, 1988. Volume 2. New York, Institute of Electrical and Electronics Engineers, 1988, p. 566-573. refs

An application of Lyapunov function-gradient-generated robustness-enhancing control (LFGGREC) is explored. The attention is directed to a reduced-complexity representation of the pointing problem presented by the system composed of the Space Infrared Telescope Facility gimbaled to a space station configuration. Uncertainties include disturbance forces applied in the crew compartment area and control moments applied to adjacent scientific payloads (modeled as disturbance moments). Also included are uncertainties in gimbal friction and in the structural component of the system, as reflected in the inertia matrix, the damping matrix, and the stiffness matrix, and the effect of the ignored vibrational dynamics of the structure. The emphasis is on the adaptation of LFGGREC to this particular configuration and on the robustness analysis.

A88-50980

AEROELASTIC INTERACTIONS WITH FLIGHT CONTROL OF TRANSATMOSPHERIC VEHICLES

ROBERT L. SWAIM (Oklahoma State University, Stillwater) IN: NAECON 88; Proceedings of the IEEE National Aerospace and Electronics Conference, Dayton, OH, May 23-27, 1988. Volume 2. New York, Institute of Electrical and Electronics Engineers, 1988, p. 574-581. refs

The research needed on structural dynamics interactions with rigid body dynamics and stability augmentation systems to allow confidence in vehicle design are discussed. This includes high-temperature-gradient effects on two- and three-dimensional total-vehicle elastic mode shapes and natural frequencies; robust control laws tolerant of wide uncertainties in elastic mode data; and compatible mathematical models for dynamic analysis of structures exhibiting low-frequency shell-type elastic modes. The expected use of metal matrix and carbon-carbon composite materials and ceramics with internally circulated cooling fluid will greatly complicate proper modeling and analysis of these interactions.

A88-52238*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

KNOWLEDGE BASED SYSTEM VERIFICATION AND VALIDATION AS RELATED TO AUTOMATION OF SPACE STATION SUBSYSTEMS - RATIONALE FOR A KNOWLEDGE BASED SYSTEM LIFECYCLE

KEITH RICHARDSON and CARLA WONG (NASA, Ames Research Center, Moffett Field, CA) IN: AAAIC '87 - Aerospace Applications of Artificial Intelligence; Proceedings of the Third Annual Conference, Dayton, OH, Oct. 5-9, 1987. Dayton, OH, AAAIC Conference Secretariat, 1988, p. 306-311. Previously announced in STAR as N88-24192.

The role of verification and validation (V and V) in software has been to support and strengthen the software lifecycle and to ensure that the resultant code meets the standards of the requirements documents. Knowledge-based system (KBS) V and V should serve the same role, but the KBS lifecycle is ill-defined. The rationale of a simple form of the KBS lifecycle is presented, including accommodation to certain critical KBS differences from software development.

A88-52355

REAL-TIME FAULT MANAGEMENT FOR LARGE-SCALE SYSTEMS

H. BIGLARI (Boeing Aerospace Co., Huntsville, AL), C. CHENG, and G. VACHTSEVANOS (Georgia Institute of Technology, Atlanta) IN: Space Congress, 25th, Cocoa Beach, FL, Apr. 26-29,

1988, Proceedings. Cape Canaveral, FL, Canaveral Council of Technical Societies, 1988, p. 9-63 to 9-69. refs

A priori knowledge of failure modes of a system is an indispensable information for design of robust decentralized hierarchical control schemes. In particular inclusion of system faults as part of the process under control provides greater flexibility for self diagnosis and maintenance of real-time systems. By assigning discrete states to the process under control, an 'artificial consciousness' can be created within the controller which allows the controller to exercise selective actions for each given discrete state. This concept has been implemented to control the utility systems of the Space Station Laboratory Simulator.

A88-52639

DYNAMICS ANALYSIS OF A SYSTEM OF HINGE-CONNECTED FLEXIBLE BODIES

MADELEINE PASCAL (Paris VI, Universite, France) Celestial Mechanics (ISSN 0008-8714), vol. 41, no. 1-4, 1987/88, p. 253-274. Research supported by Matra Espace. refs

The subject of this work is the dynamics of flexible space vehicles modeled by a chain of rigid and elastic bodies with tree structure. The aim is to obtain an impedance matrix giving (in the frequency domain) the response of the structure to external forces. It is possible to obtain an expansion of this impedance matrix in terms of an infinite set of modal frequencies (termed constrained modes) and an expansion of the inverse of this impedance matrix in terms of another set of modes. The work is a generalization of the theory of Hugues (1974) and others for systems with star structure.

A88-53420

LOAD DEPENDENT SUBSPACE REDUCTION METHODS FOR STRUCTURAL DYNAMIC COMPUTATIONS

PIERRE LEGER (McGill University, Montreal, Canada) Computers and Structures (ISSN 0045-7949), vol. 29, no. 6, 1988, p. 993-999. refs

The evaluation of the dynamic response analysis of large structures by vector superposition requires in its traditional formulation the solution of a large and expensive eigenvalue problem. A new method of dynamic analysis using load-dependent transformation vectors for systems subjected to fixed spatial distribution of dynamic loads was introduced by Wilson et al. (1982) as an economic alternative to the usual mode-superposition method. Here, new computational variants to generate a load-dependent transformation basis for arbitrary transient loading which are a function of space and time are presented. Numerical applications on a simple structural system are used to show the relative efficiency of the proposed solution procedure over classical solution methods using mode-displacement, mode-acceleration, or the original (fixed) load-dependent reduction method.

A88-53681

LABORATORY FACILITY FOR FLEXIBLE STRUCTURE CONTROL EXPERIMENTS

UMIT OZGUNER, STEPHEN YURKOVICH (Ohio State University, Columbus), JOSEPH W. MARTIN, and PAUL T. KOTNIK (Battelle Memorial Institute, Columbus, OH) (Virginia Polytechnic Institute and State University and AIAA, Symposium on Dynamics and Control of Large Space Structures, 6th, Blacksburg, VA, June 1987) IEEE Control Systems Magazine (ISSN 0272-1708), vol. 8, Aug. 1988, p. 27-33. Research supported by the Digital Equipment Corp. refs

(Contract NSF DMC-85-06143)

A laboratory facility to study various control problems related to flexible mechanical structures is described. Computer, interfacing, and software issues are discussed. A novel proof-mass actuator is presented. A free-free suspended-beam experiment and a skewing-beam experiment are described. Three additional experimental setups at various stages of development are briefly considered.

A88-53785

NECESSARY CONDITIONS OF GEOMETRICAL STABILITY IN TRUSSES WHICH INCLUDE ONE-FORCE MEMBERS

CARL C. VON STETTEN (Stubbins Associates, Inc., Cambridge, MA) SAWE, Annual 1987. 26 p. refs (SAWE PAPER 1776) SAWE, Annual Conference, 46th, Seattle, WA, May 18-20,

Trusses may include three distinct types of members: either compressionally or tensionally stressed one-force members, and two-force members that bear stresses both compressionally and tensionally. Attention is presently given to the nature of those conditions which, according to both theoretical and pragmatic criteria, are more advantageous when trusses are allowed to include one-force members rather than two-force members exclusively. It is found that many systems of joints can be stabilized entirely with one-force members, with negligible effect on the number of members required.

A88-53945

SPATIAL EVOLUTION OF THE RESIDUAL-ACCELERATION VECTOR ON BOARD SPACECRAFT [PROSTRANSTVENNAIA **EVOLIUTSIIA VEKTORA OSTATOCHNYKH USKORENII NA** BORTU KOSMICHESKIKH APPARATOV

V. S. AVDUEVSKII, A. I. LIKHODED, V. V. SAVICHEV, V. B. DUBOVSKOI, S. S. OBYDENNIKOV et al. Kosmicheskie Issledovaniia (ISSN 0023-4206), vol. 26, July-Aug. 1988, p. 621-625.

Levels of small residual accelerations were measured on Salyut 6 and 7, the Progress transport vehicle, and a number of Mir rockets. The results indicate that the conditions necessary for space manufacturing operations on board spacecraft are characterized not only by a reduction in mass forces and accelerations but also by the variable character of these forces and accelerations in time and space. The data obtained were used to assess the possibility of prolonging the service life of Salyut-6.

A88-54401

1988 AMERICAN CONTROL CONFERENCE, 7TH, ATLANTA, GA, JUNE 15-17, 1988, PROCEEDINGS. VOLUMES 1. 2. & 3

Conference sponsored by the American Automatic Control Council. New York, Institute of Electrical and Electronics Engineers, 1988, p. Vol. 1, 863 p.; vol. 2, 919 p.; vol. 3, 841 p. For individual items see A88-54402 to A88-54676.

Various papers on control are presented. The general topics considered include: simulation and computational methods; linear systems and control; control of flexible structures; intelligent control systems; industrial control systems; computer-aided control engineering; robust adaptive control; frequency-domain methods; filtering, estimation, and tracking; optimization of discrete event systems; trajectory control of robot manipulators; digital signal processsing in process control; control of batch processes; robustness of state space models; stable factorization; aircraft and spacecraft guidance; model order reduction; computer networking of real-time control; and advances in automatic control education. Also addressed are: implementation of adaptive and self-tuning controls in machining, eigenvalue/eigenstructure assignment, robust nonlinear control of manipulators, redundant robot control, fault detection, ACES control theory and verification, decentralized control, damage-tolerant flight control systems, neural networks in control, distributed parameter and time-delay systems, and robust stabilization and control. C.D.

A88-54406

THE JITTER BEAM - AN EXPERIMENT DEMONSTRATING POINTING CONTROL ON A FLEXIBLE STRUCTURE

ERIC K. PARSONS (Lockheed Research Laboratories, Palo Alto, IN: 1988 American Control Conference, 7th, Atlanta, GA, June 15-17, 1988, Proceedings, Volume 1, New York, Institute of Electrical and Electronics Engineers, 1988, p. 61-68. refs

An experiment called the jitter beam simulates the interaction of a pointing control system and a flexible structure. Noncolocation of a sensor and an actuator makes control difficult. A linear quadratic Gaussian (LQG) design overcomes the noncolocation problem by use of a bending model, allowing the jitter-beam control to coordinate, with a single torquer, the motions of several points on the structure to achieve the pointing goal. A control bandwidth two times higher than a critical hending frequency is obtained, a factor of ten beyond what a rigid-body design can achieve. The jitter beam experiment resembles small stiff structures like active mirrors. although the control methodology can be extended to large structures and complex systems. The sparse model frequency spectrum of stiff structures simplifies identification, but because bending frequencies are high, sensor noise, actuator saturation, and computational speed constrain performance. In contrast, the low frequencies of large structures make hardware constraints a small concern, but the dense frequency distribution complicates system identification.

A88-54410

PROJECTIVE CONTROLS FOR DISTURBANCE ATTENUATION IN LSS SYSTEMS

R. A. RAMAKER, J. MEDANIC, and W. R. PERKINS (Illinois, University, Urbana) IN: 1988 American Control Conference, 7th, Atlanta, GA, June 15-17, 1988, Proceedings. Volume 1. New York, Institute of Electrical and Electronics Engineers, 1988, p. 89-94.

(Contract N00014-84-C-0149)

A design methodology is presented which addresses three main issues in the control of large space structures: improving the disturbance attenuation of the system, implementing the design as a low-order output feedback controller, and ensuring that the controller is robust to modeling uncertainty. The method developed to solve this problem makes use of projective controls. A frequency-domain characterization of the disturbance attenuation properties of projective controllers is developed to use design freedoms in the controllers to achieve robust disturbance attenuation. A 20-mode example demonstrates the use of this methodology.

A88-54421

USE OF ASSUMED MODES IN EQUATIONS GOVERNING LARGE-DISPLACEMENT ELASTODYNAMIC PLATE BEHAVIOR

R. R. RYAN, R. A. SCOTT (Michigan, University, Ann Arbor), and H. H. YOO IN: 1988 American Control Conference, 7th, Atlanta. GA. June 15-17, 1988, Proceedings. Volume 1. New York, Institute of Electrical and Electronics Engineers, 1988, p. 170-176. Research supported by Mechanical Dynamics, Inc. refs

The dynamic behavior of multibody systems containing structural elements undergoing large overall rotation and translation as well as small elastic deformations is considered. A systematic procedure, using assumed mode functions and von Karman-type strain measures, is developed to properly account for motion-induced structural stiffness variations during arbitrary overall motion. The procedure is compared in terms of accuracy and efficiency with recently developed imbedded geometric constraint methods involving linear strain-displacement relationships and with more conventional multibody techniques. A numerical example involving a simple supported plate attached to a rigid body (floating frame) undergoing a prescribed large-displacement motion is presented. Extensions to complex multibody systems containing various element types are discussed.

A88-54423

IMPROVED METHODS FOR LINEARIZED FLEXIBILITY MODELS IN MULTIBODY DYNAMICS AND CONTROL

R. JONES, W. CIMINO, and W. RUSSELL (Boeing Aerospace Co., Seattle, WA) IN: 1988 American Control Conference, 7th, Atlanta, GA, June 15-17, 1988, Proceedings. Volume 1. New York, Institute of Electrical and Electronics Engineers, 1988, p. 189-194. refs

Simulation of structural response of multi-flexible-body systems by linearized flexible motion combined with nonlinear rigid motion is discussed. The advantages and applicability of such an approach for accurate simulation with reduced computational costs and turnaround times are briefly described, restricting attention to a control design environment. Requirements for updating the linearized flexibility model to track large angular motions are discussed, several update approaches are compared, and an approach that improves on previously published methods is recommended. A simple system undergoing large rotations is used for numerical illustration.

A88-54471* Honeywell, Inc., Clearwater, FL. **OBSTACLES TO HIGH FIDELITY MULTIBODY DYNAMICS SIMULATION**

K. W. LIPS (Honeywell, Inc., Space and Strategic Avionics Div., Clearwater, FL) and R. P. SINGH (DYNACS Engineering Co., Inc., Clearwater, FL) IN: 1988 American Control Conference, 7th, Atlanta, GA, June 15-17, 1988, Proceedings. Volume 1. New York, Institute of Electrical and Electronics Engineers, 1988, p. 587-594. refs

(Contract NAS8-34588)

The authors take a wide ranging look at issues involved in the dynamic modeling of complex, multibodied orbiting space systems. The nature of the multibody problem is reviewed and capabilities and limitations of two major codes (DISCOS, TREETOPS) are assessed. Problem areas that limit accuracy or contribute to uncertainty in the modeling, simulation process are identified. As a specific case, the significance of including, or of not including, second-degree geometric nonlinearity in the elastic displacement field (foreshortening) is evaluated. Conclusions and recommendations are made concerning the direction future development should take to achieve higher-fidelity and more computationally efficient multibody software solutions.

National Aeronautics and Space Administration. A88-54532* Langley Research Center, Hampton, VA.

RAPID MULTI-FLEXIBLE-BODY MANEUVERING **EXPERIMENTS**

JER-NAN JUANG (NASA, Langley Research Center, Hampton, VA) IN: 1988 American Control Conference, 7th, Atlanta, GA, June 15-17, 1988, Proceedings. Volume 2. New York, Institute of Electrical and Electronics Engineers, 1988, p. 1009-1014. refs

Progress at the NASA Langley Research Center in the area of rapid multiple-flexible-body maneuvering experiments is described. The experiments are designed to verify theoretical analyses using control theory for the control of flexible structures. The objective of the maneuvering experiments is to demonstrate slewing of flexible structures in multiple axes while simultaneously suppressing vibration to have acceptable motion at the end of the maneuver. The status of some research activities oriented primarily to the experimental methods for control of flexible structures is presented.

A88-54533

DEVELOPMENT OF A CONTROL ORIENTED MODEL OF A **CANTILEVERED BEAM WITH END-MASS**

UMIT OZGUNER and ERIC BREITFELLER (Ohio State University. Columbus) IN: 1988 American Control Conference, 7th, Atlanta, GA. June 15-17, 1988, Proceedings. Volume 2. New York, Institute of Electrical and Electronics Engineers, 1988, p. 1015-1020. USAF-supported research.

A cantilevered beam configuration with a disk at the end is considered. Active vibration damping is to be accomplished with two sets of double proof-mass actuators mounted on the disk. A mathematical model is developed for control studies, based on a combination of analytical modeling of both the structure and the actuators, with experimental validation and adjustment.

A88-54572* Air Force Wright Aeronautical Labs., Wright-Patterson AFB, OH.

ADVANCED CONTROL EVALUATION FOR STRUCTURES (ACES) PROGRAMS

JEROME PEARSON (USAF, Wright Aeronautical Laboratories, Wright-Patterson AFB, OH) and HENRY WAITES (NASA, Marshall Space Flight Center, Huntsville, AL) IN: 1988 American Control Conference, 7th, Atlanta, GA, June 15-17, 1988, Proceedings. Volume 2. New York, Institute of Electrical and Electronics Engineers, 1988, p. 1448-1452.

The ACES programs are a series of past, present, and future activities at the Marshall Space Flight Center (MSFC) Ground facility for Large Space Structure Control Verification (GF/LSSCV). The main objectives of the ACES programs are to implement control techniques on a series of complex dynamical systems, to determine the control/structure interaction for the control techniques, and to provide a national facility in which dynamics and control verification can be effected. The focus is on these objectives and how they are implemented under various engineering and economic constraints. Future plans that will be effected in upcoming ACES programs are considered.

A88-54574

APPLICATION OF FAMESS TO A LARGE SPACE STRUCTURE **GROUND TEST FACILITY**

R. DENNIS IRWIN (Ohio University, Athens) IN: 1988 American Control Conference, 7th, Atlanta, GA, June 15-17, 1988, Proceedings. Volume 2. New York, Institute of Electrical and Electronics Engineers, 1988, p. 1456-1461.

Filter accommodated model error sensitivity suppression (FAMESS) is applied to the problem of regulating the line-of-sight (LOS) of a laser beam pointing system mounted on a 13-m flexible beam, which is the current configuration of the Marshall Space Flight Center Large Space Structure Ground Test Verification Facility (LSS/GTV). The configuration of the LSS/GTV exhibits many of the pathologies usually associated with large space structures (LSS). The collection of techniques commonly known as FAMESS is used to accomplish the design of the LOS regulating control system for the LSS/GTV. These techniques include decentralization, alpha shifting techniques, model error sensitivity suppression, and filter accommodation. Representative test results are presented and illustrate the dramatic degradation of performance which can be expected when significant system behavior is unmodeled.

A88-54575

EXPERIMENTAL DEMONSTRATION OF THE MAXIMUM ENTROPY/OPTIMAL PROJECTION DESIGN THEORY FOR ACTIVE VIBRATION CONTROL

S. W. GREELEY, D. J. PHILLIPS, and D. C. HYLAND (Harris Corp., Government Aerospace Systems Div., Melbourne, FL) IN: 1988 American Control Conference, 7th, Atlanta, GA, June 15-17. 1988, Proceedings. Volume 2. New York, Institute of Electrical and Electronics Engineers, 1988, p. 1462-1467. refs

Based on a recent survey of large space system concepts and the identified characteristics of ground-based experiments needed to demonstrate capability for future systems, a sequence of vibration control experiments has been designed. experiments involve a progression of structural configurations ranging from relatively simple one- and two-dimensional structures to a large aperture, multisegment optical structure. The experiments have been designed to evaluate a variety of control design methods, including the maximum entropy/optimal projection method. The concepts and status of these experimental activities are reviewed.

A88-54576

RECENT RESULTS IN IDENTIFICATION AND CONTROL OF A **FLEXIBLE TRUSS STRUCTURE**

R. LANE DAILEY and MICHAEL S. LUKICH (TRW, Inc., Redondo Beach, CA) IN: 1988 American Control Conference, 7th, Atlanta, GA, June 15-17, 1988, Proceedings. Volume 2. New York, Institute of Electrical and Electronics Engineers, 1988, p. 1468-1473. refs

Results are presented from an ongoing laboratory experiment in identification and feedback control of TRW's flexible truss structure. H(infinity) and mu-synthesis design methods were used to design high-performance MIMO (multi-input, multioutput) digital control laws for the six-input, four-output system. Noncollated feedback has reduced RMS structural vibration (as measured by the four sensors) by a factor of 48:1 open-loop versus closed-loop

(60:1 on specific outputs). Frequency domain system identification, using FFT (first Fourier transform) transfer function measurements and a Chebyshev polynomial curve fitting method, was the crucial factor in achieving these high performance levels.

A88-54577

IDENTIFICATION OF A FLEXIBLE TRUSS STRUCTURE USING LATTICE FILTERS

MARIBETH D. ROESLER, MICHAEL S. LUKICH (TRW, Inc., Control Systems Engineering Dept., Redondo Beach, CA), FARYAR JABBARI (California, University, Irvine), and J. S. GIBSON (California, University, Los Angeles) IN: 1988 American Control Conference, 7th, Atlanta, GA, June 15-17, 1988, Proceedings. Volume 2. New York, Institute of Electrical and Electronics Engineers, 1988, p. 1474-1482. refs

The size and complexity of next-generation space structures present a formidable challenge for online (adaptive) identification methods. The methods must accommodate a variety of structural changes resulting from on-orbit assembly, spacecraft docking, and time-varying disturbance, which affect the order of the structural system's model. TRW's flexible truss structure was used to demonstrate the feasibility of the least-squares lattice filter for the identification of both a time-invariant and a time-varying system. The results, including natural frequency estimates, frequency responses, and one-step-ahead predictions, show that the lattice filters provide accurate and timely estimates for the different configurations considered, in particular for a two-input two-output plant and a time-varying system.

A88-54583

APPLICATION OF INCLUSION PRINCIPLE TO MECHANICAL SYSTEMS

AJMAL YOUSUFF (Drexel University, Philadelphia, PA) IN: 1988 American Control Conference, 7th, Atlanta, GA, June 15-17, 1988, Proceedings. Volume 2. New York, Institute of Electrical and Electronics Engineers, 1988, p. 1516-1520. Research supported by Drexel University.

(Contract NSF INT-86-12195)

As an attempt to simplify the decentralized control design methodology, the inclusion principle of Ikeda and Siljak (1980) is specifically applied to mechanical systems. It is shown that an expanded system can be obtained, in a matrix second-order form, which includes the original system. Sufficient conditions and transforms of the system matrices are given to guarantee that the original system would be either an aggregation, or a restriction, of the resulting expanded system. A constructive procedure is provided to produce an expanded system which is the best approximation (in a 2-norm sense) of a prespecified structure/dynamics of the expanded system. An example illustrates the methodology.

A88-54587* National Taiwan Univ., Taipei. DECENTRALIZED MODEL REFERENCE ADAPTIVE CONTROL OF LARGE FLEXIBLE STRUCTURES

FU-MING LEE, I-KONG FONG (National Taiwan University, Taipei, Republic of China), and YU-HWAN LIN (California Institute of Technology, Jet Propulsion Laboratory, Pasadena) IN: 1988 American Control Conference, 7th, Atlanta, GA, June 15-17, 1988, Proceedings. Volume 2. New York, Institute of Electrical and Electronics Engineers, 1988, p. 1538-1543. Sponsorship: National Science Council of the Republic of China. refs (Contract NSC-77-0404-E002-28)

A decentralized model reference adaptive control (DMRAC) method is developed for large flexible structures (LFS). The development follows that of a centralized model reference adaptive control for LFS that have been shown to be feasible. The proposed method is illustrated using a simply supported beam with collocated actuators and sensors. Results show that the DMRAC can achieve either output regulation or output tracking with adequate convergence, provided the reference model inputs and their time derivatives are integrable, bounded, and approach zero as t approaches infinity.

A88-54630

LOW AUTHORITY CONTROL OF A COMPOSITE CANTILEVER BEAM IN TWO DIMENSIONS

JOHN A. CONNALLY and JAMES E. HUBBARD, JR. (Charles Stark Draper Laboratory, Inc., Cambridge, MA) IN: 1988 American Control Conference, 7th, Atlanta, GA, June 15-17, 1988, Proceedings. Volume 3. New York, Institute of Electrical and Electronics Engineers, 1988, p. 1903-1908. refs

The authors present theoretical and experimental results on active vibration control of a cantilevered S-glass composite beam using polyvinylidene (PVF2) film as a low-authority distributed control actuator. The beam is approximately 0.25 x 0.25 x 12 inches with a small mass mounted at the free end. The Liapunov stability criterion is used to derive a control algorithm for the active damper based on angular rate feedback of the free end of the beam. The algorithm is stable for all vibrational modes of the beam. Experimental results are presented which show the increase in damping produced by the PVF2 actuators for the first two modes of vibration of the beam. The damping ratio for the first mode was increased from 0.2061 to 0.6588, and the increase for the second mode was from 0.1402 to 0.5482 (with the electromagnetic excitation source oriented in the +y direction).

A88-54639 H(INFINITY) ROBUST CONTROL SYNTHESIS FOR A LARGE SPACE STRUCTURE

M. G. SAFONOV, R. Y. CHIANG, and H. FLASHNER (Southern California, University, Los Angeles, CA) IN: 1988 American Control Conference, 7th, Atlanta, GA, June 15-17, 1988, Proceedings. Volume 3. New York, Institute of Electrical and Electronics Engineers, 1988, p. 2038-2045. Research supported by TRW, Inc. refs.

In a design study involving the use of H(infinity) optimal control theory, an 11-state control law is generated for a 116-state model of a large flexible space structure. A combination of colocated rate feedback, modal truncation, and optimal Hankel-norm model techniques is found to lead to a vastly simplified four-state model for the structure which, by singular-value theory, is proved to be satisfactory for design of a controller whose bandwidth exceeds the natural frequencies of all of the modes of the original 116-state model. Specifications regarding disturbance attenuation, bandwidth, and stability robustness are quantitatively expressed as weighting functions in a mixed-sensitivity H(infinity) optimal-control synthesis problem, the solution to which is computed using the LINF program of Chiang and Safonov (1987).

A88-54640

A ROBUST CONTROL EXPERIMENT USING AN OPTICAL STRUCTURE PROTOTYPE

DAVID C. HYLAND and EMMANUEL G. COLLINS, JR. (Harris Corp., Government Aerospace Systems Div., Melbourne, FL) IN: 1988 American Control Conference, 7th, Atlanta, GA, June 15-17, 1988, Proceedings. Volume 3. New York, Institute of Electrical and Electronics Engineers, 1988, p. 2046-2049. refs

A robust control experiment, called the Multi-Hex Prototype (MHP) experiment, currently in progress is described. A detailed physical description of the experiment's physical apparatus is presented. Sources of modeling error are discussed. A brief description of the approaches to be used for robust control system design and analysis is given.

A88-54643

A FOURIER-BASED OPTIMAL CONTROL APPROACH FOR STRUCTURAL SYSTEMS

VINCENT YEN and MARK L. NAGURKA (Carnegie-Mellon University, Pittsburgh, PA) IN: 1988 American Control Conference, 7th, Atlanta, GA, June 15-17, 1988, Proceedings. Volume 3. New York, Institute of Electrical and Electronics Engineers, 1988, p. 2082-2087.

The authors consider the optimal control of structural systems with quadratic performance indices. The proposed approach approximates each configuration variable of a structural model by the sum of a fifth-order polynomial and a finite-term Fourier-type

series. In contrast to standard linear optimal control approaches which typically require the solution of Riccati equations, the method adopted is a near-optimal approach in which the necessary and sufficient condition of optimality is derived as a system of linear algebraic equations. These equations can be solved directly by a method such as Gaussian elimination. The proposed approach is computationally efficient and can be applied to structural systems of high dimension and/or to structural systems with fixed (or highly penalized) terminal states without numerical difficulties.

A88-54655

VARIABLE STRUCTURE CONTROL OF DECOUPLEABLE SYSTEMS AND ATTITUDE CONTROL OF SPACECRAFT IN PRESENCE OF UNCERTAINTY

ASHOK IYER and SAHJENDRA N. SINGH (Nevada, University, Las Vegas) IN: 1988 American Control Conference, 7th, Atlanta, GA, June 15-17, 1988, Proceedings. Volume 3. New York, Institute of Electrical and Electronics Engineers, 1988, p. 2238-2243. refs

(Contract DAAL03-87-G-0004)

The authors consider control of a class of uncertain nonlinear systems which can be decoupled by state-variable feedback. A variable-structure control (VSC) law is derived such that in the closed-loop system the output variable asymptotically tracks a given output trajectory in spite of uncertainty in the system. Based on this result, a control law is derived for the attitude control of an orbiting spacecraft in the presence of uncertainty using reaction jets. The controlled outputs are the three Euler angles which describe the orientation of the spacecraft relative to an orbital frame. Simulation results are presented to show that in the closed-loop system precise attitude control is accomplished in spite of the uncertainty in the system.

A88-54973#

OPTIMIZATION OF ACTIVELY CONTROLLED STRUCTURES USING MULTIOBJECTIVE PROGRAMMING TECHNIQUES

SINGIRESU S. RAO (Purdue University, West Lafayette, IN) IN: Developments in Mechanics. Volume 14(c) - Midwestern Mechanics Conference, 20th, West Lafayette, IN, Aug. 31-Sept. 2, 1987, Proceedings. West Lafayette, IN, Purdue University, 1987, p. 1215-1221. refs

The design of minimum weight structures with constraints on the damping parameters of the closed loop system in the design of an active control system is considered using multiobjective optimization techniques. The cross sectional areas of the members are treated as design variables. The structural weight and the controlled system energy are considered as objective functions for minimization. The goal programming and game theory approaches are used for the solution of the multiobjective optimization problems. The feasibility of the approaches is demonstrated through the design of two-bar and twelve-bar truss structures.

A88-54989#

TRANSFER MATRIX ANALYSIS OF CABLE-STIFFENED HOOP PLATFORMS

R. G. LOEWY (Rensselaer Polytechnic Institute, Troy, NY) and C. L. ZARETZKY Journal of Spacecraft and Rockets (ISSN 0022-4650), vol. 25, Jan.-Feb. 1988, p. 45-52. refs (Contract AF-AFOSR-83-0348)

A transfer matrix methd is applied to the free-vibration analysis of a series of cable-stiffened hoop platforms, which are often encountered as subassemblies in large space antennas. The method takes advantage of the cyclic symmetry of the structures to reduce significantly the amount of computations necessary to determine natural frequencies and the associated mode shapes. Numerical difficulties, which often arise in transfer matrix analyses of periodic structures, are not encountered with the method presented. Free-vibration characteristics are calculated for equilateral hoop assemblies with from 5 to 11 segments. Properties are chosen to allow comparison with the earlier experiments and calculations of Belvin, and good agreement is shown for that specific, hexagonal hoop platform. Running time comparisons

indicate that the transfer matrix approach provides a promising alternative to finite-element methods for the dynamic analysis of spacecraft structures characterized by slender substructures and repetitive geometry.

Author

A88-55062#

ADVANTAGES OF TETHER RELEASE OF SATELLITES FROM ELLIPTIC ORBITS

GEORGE A. KYROUDIS (TRW, Inc., TRW Space and Technology Group, Redondo Beach, CA) and BRUCE A. CONWAY (Illinois, University, Urbana) Journal of Guidance, Control, and Dynamics (ISSN 0731-5090), vol. 11, Sept.-Oct. 1988, p. 441-448. Previously cited in issue 23, p. 3421, Accession no. A86-47944. refs

A88-55063#

THEORETICAL AND EXPERIMENTAL INVESTIGATION OF SPACE-REALIZABLE INERTIAL ACTUATION FOR PASSIVE AND ACTIVE STRUCTURAL CONTROL

DAVID W. MILLER and EDWARD F. CRAWLEY (MIT, Cambridge, MA) Journal of Guidance, Control, and Dynamics (ISSN 0731-5090), vol. 11, Sept.-Oct. 1988, p. 449-458. refs (Contract F49620-84-K-0010)

Inertial reaction devices are investigated for use as passive vibration absorbers and active control actuators for flexible space structures. Absorbers are designed for one- and two-degreeof-freedom structural representations using three parameter optimization techniques. All three yield nearly identical designs and indicate that inertial devices should be tuned to the lowest mode intended to receive increased damping. The optimal passive components of the control actuator are found to be those of the optimal passive vibration absorber. Proof-of-concept laboratory tests were performed on a quasi-free-free beam using inertial reaction devices that are space-realizable, i.e., conceptually capable of functioning in the space environment. The inertial devices were used as both passive absorbers and tuned actuators. Damping was significantly increased using both passive and passive/active techniques. Additional tests indicated the benefits and limitations of actuator tuning and the necessity of performing realistic experiments using space-realizable hardware.

A88-55067#

TETHERED SUBSATELLITE SWINGING FROM ATMOSPHERIC GRADIENTS

JUNJIRO ONODA and NAOYUKI WATANABE (Tokyo, University, Japan) Journal of Guidance, Control, and Dynamics (ISSN 0731-5090), vol. 11, Sept.-Oct. 1988, p. 477-479.

The mechanism responsible for the instability described by Yuhara et al. (1986) in the in-plane motion of a tethered satellite in LEO is investigated analytically. The equations of motion are derived with a series of simplifying assumptions and linearized; a stability analysis is performed; and numerical results for a 500-kg satellite with drag coefficient 2.2 and projected drag area 10 sq m (including the tether) deployed at altitude 115 km are presented in tables. The instability is shown to result from the action of atmospheric density gradients, with the unstable region depending on the longitudinal rigidity of the tether and the atmospheric drag.

A88-55088*# Jet Propulsion Lab., California Inst. of Tech.,

SINE DWELL OR BROADBAND METHODS FOR MODAL TESTING

JAY-CHUNG CHEN and BEN K. WADA (California Institute of Technology, Jet Propulsion Laboratory, Pasadena) (Structures, Structural Dynamics and Materials Conference, 28th, Monterey, CA, Apr. 6-8, 1987 and AIAA Dynamics Specialists Conference, Monterey, CA, Apr. 9, 10, 1987, Technical Papers. Part 2B, p. 998-1004) AIAA Journal (ISSN 0001-1452), vol. 26, June 1988, p. 733-737. Previously cited in issue 14, p. 2113, Accession no. A87-33752. refs

A88-55371#

CONTROL OF LARGE SPACE STRUCTURES USING REDUCED ORDER MODELS

JAYANT V. RAMAKRISHNAN (Dynacs Engineering Co., Inc., Clearwater, FL), S. VITTAL RAO, and LESLIE R. KOVAL (Missouri-Rolla, University, Rolla) IAF, International Astronautical Congress, 39th, Bangalore, India, Oct. 8-15, 1988. 11 p. refs (IAF PAPER 88-272)

Two reduced-order system modeling methods, the balanced-realization method and the multivariable Routh method, are considered in the context of the control of large space structures via reduced-order controllers. Results of simulations are presented to demonstrate that controllers based on reduced-order models provide efficient control performance, with good correlation between suboptimal and optimal responses. It is noted, however, that the method of model reduction is often problem dependent and that some methods may be more amenable than others for a class of problems.

A88-55375*# Howard Univ., Washington, DC. EFFECT OF NATURAL DAMPING ON THE DYNAMICS AND CONTROL OF A CLASS OF OPTIMALLY DESIGNED STRUCTURES

K. SATYANARAYANA and M. BAINUM (Howard University, Washington, DC) IAF, International Astronautical Congress, 39th, Bangalore, India, Oct. 8-15, 1988. 10 p. Research supported by Howard University and NASA. refs (IAF PAPER 88-288)

In this study the vibration control of large space structures with structural damping is investigated. Emphasis is made on the control of both a class of optimally designed (stepped) structures and also the corresponding uniform structures using a cantilever beam as an example. The open loop and closed loop dynamics are compared and the transient responses are determined to study the effect of damping on the control system design.

A88-55377# STABILITY OF IMPERFECTION-SENSITIVE NONLINEAR SPACE STRUCTURES UNDER STOCHASTIC LOADING

T. S. SANKAR (Concordia University, Montreal, Canada) IAF, International Astronautical Congress, 39th, Bangalore, India, Oct. 8-15, 1988. 7 p. refs (Contract NSERC-A-7104) (IAF PAPER 88-293)

Nonlinear space structures and components subjected to stochastic loading are analyzed by using a quasi-stationary solution to the governing nonlinear stochastic differential equations in phase space to obtain the probability density of the first instability of the system in a specified time of operation. The random loading is modeled as a delta-correlated excitation with a wideband spectra, and the resulting dynamic response is approximated by a Markov process with known initial conditions corresponding to a stable equilibrium state. An expression for the failure probability is derived, and conditions for its validity are defined.

A88-55378#

GENERIC MODEL LABORATORY TESTS FOR LARGE FLEXIBLE STRUCTURE CONTROL

THOMAS LANGE (DFVLR, Wessling, Federal Republic of Germany) IAF, International Astronautical Congress, 39th, Bangalore, India, Oct. 8-15, 1988. 8 p. (IAF PAPER 88-294)

A generic model testing concept for large flexible structures is developed which involves a two-stage test procedure based on the 'ideal' and 'realistic' approaches. The 'ideal' test approach addresses the fundamental problems of structural dynamics vs. control interaction, with hardware imperfections excluded as far as possible. The 'realistic' approach covers unpredicted hardware constraints interfering with the overall system dynamics and is implemented in software in a real-time processor in addition to external filtering and noise suppression. Based on results obtained for a hanging plate, it is suggested that a systematic sequence of

tests be developed which approaches, step by step, the expected generic features of large space structures.

188-55386#

OPTIMAL DEPLOYMENT OF SPACECRAFT APPENDAGES

A. K. MISRA (McGill University, Montreal, Canada) and S. KALAYCIOGLU IAF, International Astronautical Congress, 39th, Bangalore, India, Oct. 8-15, 1988. 7 p. refs (IAF PAPER 88-307)

The existing dynamical analyses of axially moving beams assume a given deployment scheme (usually, uniform deployment rate) and determine the corresponding vibratory response. The present paper, however, attempts to determine deployment schemes so that the vibrations during deployment are minimized. The minimization is carried out using Pontriagin's principle. In this, deployment of a beam-type appendage from a given initial length to a desired final length within a specified duration of time is considered and the square of the displacement, integrated over the length and over the given duration, is minimized. The two point boundary value problem obtained is solved numerically. The vibration during this optimum deployment scheme is much smaller than that during uniform or exponential deployment.

A88-55391#

DYNAMICS OF INTERCONNECTED FLEXIBLE MEMBERS IN THE PRESENCE OF ENVIRONMENTAL FORCES - A FORMULATION WITH APPLICATIONS

V. J. MODI and A. C. NG (British Columbia, University, Vancouver, Canada) IAF, International Astronautical Congress, 39th, Bangalore, India, Oct. 8-15, 1988. 10 p. refs (Contract NSERC-G-1547) (IAF PAPER 88-318)

A relatively general formulation for studying the dynamics of spacecraft with interconnected flexible bodies is presented accounting for thermal deformations and transverse vibrations of the structural members. In addition, the shift in the center of mass of the system and the slewing maneuvers of the members are incorporated. The formulation can be applied to study the U.S. proposed Space Station as well as a large class of present and future spacecraft. An example illustrates application of the formulation. The model under study is a satellite with a central rigid body and a pair of appendages. The satellite response is investigated numerically over a range of system parameters and effect of the thermal deformations assessed. An approximate closed-form (analytical) solution of the problem is also obtained to quickly assess trends and gain better physical appreciation of response characteristics. Author

A88-55393*# Howard Univ., Washington, DC. RAPID SLEWING OF THE ORBITING SPACECRAFT CONTROL LABORATORY EXPERIMENT (SCOLE) USING LQR TECHNIQUES

CHEICK M. DIARRA and PETER M. BAINUM (Howard University, Washington, DC) IAF, International Astronautical Congress, 39th, Bangalore, India, Oct. 8-15, 1988. 9 p. refs (Contract NSG-1414) (IAF PAPER 88-320)

The rotational equations of motion, describing the dynamics of the (rigidized) proposed orbiting Spacecraft Control Laboratory Experiment (SCOLE) during the station keeping phase, are derived using the Eulerian formulation. When the attitude angles (roll, pitch, and yaw) are assumed small, a stability analysis is conducted for the system. It is seen that the pitch equation decouples from the roll and yaw equations when the interface between the mast on the reflector is not offset or the offset is only along the Shuttle roll axis. When a second offset is introduced along the pitch axis of the system and when the gravity-gradient torques are present in the dynamics, the system assumes a new equilibrium position. The linear regulator theory is used to derive a control law for the linear model of the rigidized SCOLE. This law is applied to the nonlinear model of the same configuration of the system and preliminary single axis slewing maneuvers (20 deg amplitude) are simulated. Author

A88-55397#

THE SYSTEM OF THE MIR STATION MOTION CONTROL

V. N. BRANETS, V. P. LEGOSTAEV, and B. E. CHERTOK IAF, International Astronautical Congress, 39th, Bangalore, India, Oct. 8-15, 1988. 9 p.

(IAF PAPER 88-334)

The motion control and navigation system (MCNS) of the Mir station are examined. The tasks of the MCNS are presented, including orientation, control relative to the center of mass, navigation and stabilization. The structure, composition, and operating modes of the MCNS are discussed. In addition, the sensing elements, digital computer complex, and reliability support of the Mir station are described.

N88-20290*# California Univ., Los Angeles. Dept. of Engineering and Applied Science.

CONTROL AUGMENTED STRUCTURAL SYNTHESIS

ROBERT V. LUST and LUCIEN A. SCHMIT Washington NASA Apr. 1988 193 p (Contract NSG-1490)

(NASA-CR-4132; NAS 1.26:4132) Avail: NTIS HC A09/MF A01 CSCL 01C

A methodology for control augmented structural synthesis is proposed for a class of structures which can be modeled as an assemblage of frame and/or truss elements. It is assumed that both the plant (structure) and the active control system dynamics can be adequately represented with a linear model. The structural sizing variables, active control system feedback gains and nonstructural lumped masses are treated simultaneously as independent design variables. Design constraints are imposed on static and dynamic displacements, static stresses, actuator forces and natural frequencies to ensure acceptable system behavior. Multiple static and dynamic loading conditions are considered. Side constraints imposed on the design variables protect against the generation of unrealizable designs. While the proposed approach is fundamentally more general, here the methodology is developed and demonstrated for the case where: (1) the dynamic loading is harmonic and thus the steady state response is of primary interest; (2) direct output feedback is used for the control system model; and (3) the actuators and sensors are collocated. Author

N88-20348# Groningen Rijksuniversiteit (Netherlands). Systems and Control Group.

SIMSAT: SIMULATION PACKAGE FOR FLEXIBLE SYSTEMS. BEAMS IN SPACE M.S. Thesis

MARTIN H. KLOMPSTRA Apr. 1987 61 p

(TW-278; ETN-88-91868) Avail: NTIS HC A04/MF A01

A simulation package (SIMSAT) for flexible systems was developed to study the effects of flexibility, damping, and stabilizing (robust) compensators on these systems. Three partial differential equation models for flexible systems are simulated: Euler-Bernoulli beam with structural damping; Euler-Bernoulli beam with viscous damping; and two Euler-Bernoulli beams with viscous damping connected through a central disk. Possible simulations include simulate the models with or without damping, or connect a compensator to the models (closed loop systems). The SIMSAT calculates the state-evolution w(x,t) of the system, and the input, output, energy, and mean square error corresponding to these. All these calculations can either be shown in numbers (numerical results) or in curves. For the state-evolution two extra graphical facilities are present namely a motion picture and a three dimensional curve. If desired these numerical results and curves can be sent to a printer. The package was developed in Turbo-Pascal for a personal computer with MS-DOS.

N88-20349# Instituto de Pesquisas Espaciais, Sao Jose dos Campos (Brazil).

UTILIZATION OF STRAPDOWN INERTIAL AND NON-INERTIAL SENSORS IN DETERMINATION OF SATELLITE ATTITUDE BY KALMAN FILTERS M.S. Thesis [UTILIZACAO CONJUNTA DE SENSORES INERCIAIS E NAOINERCIAIS EM DETERMINACAO DE ATITUDE DE SATELITES VIA FILTRO DE KALMAN]

VALTAIR ANTONIO FERRARESI Aug. 1987 129 p In PORTUGUESE; ENGLISH summary

(INPE-4313-TDL/280) Avail: NTIS HC A07/MF A01

Four procedures utilizing inertial sensors (gyrometers) and non-inertial sensors (sun and horizon sensors) in the attitude determination of low-orbit artificial satellites are compared. The parameterized state estimation in quaternion is made through the Extended Kalman Filter. The use of the quaternion as state parameterization results in some problems in Kalman Filter application. These problems are due to the error covariance matrix singularity in the parameterized state, which is a difficult condition to be maintained numerically. Four procedures that avoid this difficulty are analyzed. Performance comparison and analysis of these procedures are made through digital simulation.

N88-20902# Lawrence Livermore National Lab., CA. ROBUST DECENTRALIZED CONTROL OF LARGE FLEXIBLE STRUCTURES

S. C. LU, I. K. FONG, S. H. WANG, and S. BUMPUS 17 Nov. 1987 48 p Prepared in cooperation with California Univ., Davis.

(Contract W-7405-ENG-48)

(DE88-005416; UCRL-15980) Avail: NTIS HC A03/MF A01

This report studies the problem of controlling a large flexible structure with robust decentralized feedback control. A decentralized optimal control algorithm is applied to compute the parameters of the robust controller. The proposed method is tested on the ACOSS Model No. 2, which is a realistic evaluation model for active structure control methods. Twelve co-located sensors and actuators are applied in order to suppress vibrations which are caused by two external disturbances. It is demonstrated that the proposed method can stabilize the closed-loop system via decentralized feedback. Other performance measures are also discussed.

N88-21200# Dornier-Werke G.m.b.H., Friedrichshafen (Germany, F.R.)

NUMERICAL SOLUTION OF MULTIBODY SYSTEMS IN SPACE APPLICATIONS

B. SPECHT /n ESA, Proceedings of the 3rd European Space Mechanisms and Tribology Symposium p 59-63 Dec. 1987 Avail: NTIS HC A14/MF A01

A numerical analysis tool for 3D mechanical multibody systems is presented. The method is based on Lagrange's equation with constraints which are enforced by the Lagrange multiplier technique. Kinematic, static, and dynamic analysis modes are available. The in orbit deployment of a large parabolic antenna reflector was simulated. The CPU times for kinematic, quasi-static, and dynamic modes are 7.2, 21, and 32 min respectively on a VAX-750.

N88-21230# Teldix Luftfahrt-Ausruestungs G.m.b.H., Heidelberg (Germany, F.R.).

EVOLUTION OF LARGE MOMENTUM AND REACTION WHEELS

H. HEIMEL In ESA, Proceedings of the 3rd European Space Mechanisms and Tribology Symposium p 297-302 Dec. 1987 Avail: NTIS HC A14/MF A01

Momentum and reaction wheels with diameters of 45 and 60 cm producing angular momentum ceilings of 300 and 1000 Nms are presented. For the 1000 Nms wheel, an engineering model is being built and tested. Design and expected performance data are given. A modular family of flywheels with momentums between 1 and 1000 Nms is also presented.

N88-21240# Instituto de Pesquisas Espaciais, Sao Jose dos Campos (Brazil).

A FEEDBACK DOUBLE PATH COMPENSATING CONTROL STRUCTURE FOR THE ATTITUDE CONTROL OF A FLEXIBLE SPACECRAFT

DECIO CASTILHO CEBALLOS Feb. 1988 8 p Presented at the 5th IFAC/IFIP Symposium on Software for Computer Control,

South Africa, 26-28 Apr. 1988

(INPE-4464-PRE/1239) Avail: NTIS HC A02/MF A01

A Feedback Double Path Compensating (FDPC) control structure is considered for the attitude control of a flexible spacecraft, where vibration modes and modeling errors are present. Parameter optimization is applied for finding the controller so as to have optimized behavior for a high-order model. The fourth-order FDPC controller was tested for the one-axis attitude control of a spacecraft with flexible appendages, whose dynamics were approximated by a fourteenth-order linear invariant model. The FDPC controller was compared with a low-order controller and is shown to be less sensitive to modeling errors.

N88-22065# California Univ., Los Angeles. School of Engineering and Applied Science.

OPTIMAL CONTROL AND IDENTIFICATION OF SPACE STRUCTURES Final Report, 15 Aug. 1984 - 14 Dec. 1987

J. S. GIBSON 21 Dec. 1987 84 p
(Contract AF-AFOSR-0309-84)
(AD-A190033: AFOSR-88-0173TR) Avail: NTIS HC A05/MF A01

(AD-A190033; AFOSR-88-01731H) Avail: NTIS HC A05/MF A01 CSCL 22B

The focus of this research was to develop theoretical and computational tools for optimal control and adaptive parameter identification and control and adaptive parameter systems, primarily large flexible space structures. Approximation results for optimal control of infinite-dimensional systems were drived along with numerical results. Also developed was an approximation theory for discrete-time optimal regulator problems, which included problems with flexible structures as a particular example. GRA

N88-22066# WEA, Cambridge, MA.
WAVE PROPAGATION AND DYNAMICS OF LATTICE
STRUCTURES Final Report, 1 Sep. 1985 - 30 Sep. 1987

JAMES H. WILLIAMS, JR. 1 Oct. 1987 40 p
(Contract F49620-85-C-0148)
(AD-A190037; AFOSR-88-0062TR) Avail: NTIS HC A03/MF A01
CSCL 22B

One of the most attractive structural configurations for large space structures (LSS) for outer space applications is the repetitive lattice concept. Achieving the operational requirements of such structures will necessitate considerable knowledge of the dynamics, control, materials and nondestructive evaluation (NDE) of these structural systems. Wave propagation analyses provide potentially valuable perspectives from which to consider this broad range of analysis, design and synthesis issues. The theoretical and experimental results of a two-year research program on the wave propagation and dynamics of LSS are briefly reviewed. Potential benefits of wave propagation analyses in the vibration, parameter identification, dynamic failure, control and NDE of lattice structures have been identified and are summarized in this report.

N88-22068# Department of the Air Force, Washington, DC. Directorate of Studies and Analysis.
FEEDBACK CONTROL OF DISTRIBUTED PARAMETER

FEEDBACK CONTROL OF DISTRIBUTED PARAMETER SYSTEMS WITH APPLICATIONS TO LARGE SPACE STRUCTURES Final Progress Report, 28 Dec. 1983 - 1 Sep. 1987

MARK J. BALAS 15 Oct. 1987 27 p (Contract AF-AFOSR-0124-83) (AD-A190536; AFOSR-87-2034TR) Avail: NTIS HC A03/MF A01 CSCL 22B

Large space structures exhibit distributed parameter behavior in their dynamics and thus must be described on infinite-dimensional state-spaces. However, the controller algorithm must be finite-dimensional to be implemented. The focus of this research has been to make finite-dimensional approximations of infinite-dimensional controllers which stabilize the distributed parameter system. The investigator has shown conditions under which Galerkin approximation schemes can yield finite-dimensional stabilizing controllers for linear distributed parameter systems.

N88-22070# Clarkson Univ., Potsdam, NY.

NONLINEAR ANALYSIS AND OPTIMAL DESIGN OF DYNAMIC MECHANICAL SYSTEMS FOR SPACECRAFT APPLICATION Final Technical Report, 1 Feb. 1984 - 31 Jul. 1987

K. D. WILLMERT and M. SATHYAMOORTHY Sep. 1987 103

(Contract AF-AFOSR-0076-84)

(AD-A190644; AFOSR-87-2008TR) Avail: NTIS HC A06/MF A01 CSCL 22B

Analysis and optimal design procedures for planar as well as spatial mechanisms frequently used in space structures are developed. A nonlinear finite element procedure, developed originally for planar mechanisms during the initial stages of this research, has been modified considerably to handle complex mechanisms with sliding masses and mechanisms operating at relatively high speeds. The analysis takes into account the effects of geometric and material nonlinearities, vibrational effects and coupling of deformations. Numerical results have been reported for certain mechanism examples. The effects of nonlinearities on the dynamic behavior of mechanisms are significant. Considerable progress has been made in developing a nonlinear finite element procedure for 3-D mechanisms. Numerical results obtained for some example problems show the validity of the current 3-D formulation. A new optimization algorithm has also been developed based on the Gauss method to handle various types of nonlinear constraints with the goal of reducing the number of analyses required to obtain and optimal design. Details of the nonlinear finite element procedures as well as the optimization technique are available in published papers, copies of which are included. goal of reducing the number of analyses required to obtain an optimal design. Complete details of the nonlinear finite element procedures as well as the optimization technique are available in published papers, copies of which are included here in the Appendix.

N88-22071# Air Force Inst. of Tech., Wright-Patterson AFB, OH. School of Engineering.

MOVING-BANK MULTIPLE MODEL ADAPTIVE ESTIMATION APPLIED TO FLEXIBLE SPACESTRUCTURE CONTROL M.S. Thesis

ROBERT W. LASHLEE, JR. Dec. 1987 231 p (AD-A190761; AFIT/GE/ENG/87D-36) Avail: NTIS HC A11/MF A01 CSCL 22D

This investigation focused on the use of moving-bank multiple model adaptive estimation and control (MMAE). Moving-bank MMAE reduces the computational burden of MMAE by implementing only a subset of the Kalman filters (9 filters versus 100 in this research) that are necessary to describe the system to be estimated/controlled. Important to the development of the moving-bank MMAE are the decision logics governing the selection of the subset of filters. The decision logics cover three situations: initial acquisition of unknown parameter values; tracking unknown parameter values; and reacquisition of the unknown parameters following a jump change in these parameter values. This thesis applied moving-bank MMAE to a rotating two bay truss model of a flexible spacestructure. The rotating two bay truss approximated a space structure that had a hub with appendages extending from the structure. The mass of the hub was large relative to the mass of the appendage. The mathematical model was developed using finite element analysis, transformed into modal formulation, and reduced using a method referred to as singular perturbations. Multiple models were developed by assuming that variation occurred in the mass and stiffness of the structure.

N88-22378# Weidlinger Associates, New York, NY. VIBRATIONS OF STRUCTURES WITH PARAMETRIC UNCERTAINTIES Final Report, Jan. 1984 - Sep. 1987 HAYM BENAROYA 31 Oct. 1987 75 p (Contract F49620-84-C-0009)

(AD-A190400; AFOSR-87-1734TR) Avail: NTIS HC A04/MF A01 CSCL 22A

The focus of this research effort has been the study of structural dynamics with parameter and environmental uncertainties. The

motivation for this study rests with the need to understand the dynamics and control of large space structures. Stochastic stability and output stationarity are also studied.

N88-22924# Technische Hogeschool, Delft (Netherlands). Faculty of Aerospace Engineering

MAXIMUM LIKELIHOOD PARAMETER IDENTIFICATION OF **FLEXIBLE SPACECRAFT**

QI PING CHU Mar. 1987 264 p

(LR-508: B8733287: ETN-88-92456) Avail: NTIS HC A12/MF A01

Identifying parameters of a flexible spacecraft model from in-orbit measurements is discussed, emphasizing mathematical modelling of a flexible spacecraft, using finite element analysis, and maximum likelihood parameter estimation, based on system models of reduced order with correlated process and measurement noise. It is shown that finite element analysis can be used to develop mathematical models of finite order of three-dimensional flexible spacecraft in arbitrary orbits. The following parameters in the flexible spacecraft model may be estimated from dynamic response measurements: Young's elasticity modulus, the Poisson ratio, the inertia matrix of the rigid main body and the jet input amplitudes.

N88-22928# Virginia Univ., Charlottesville. Dept. of Electrical Engineering.

VIBRATION CONTROL OF LARGE STRUCTURES Final Technical Report, 1 Jan. - 31 Dec. 1986

ANTHONY K. AMOS Sep. 1987 33 p (Contract F49620-86-K-0009)

(AD-A191358; UVA/525673/MAE88/101; AFOSR-88-0007TR)

Avail: NTIS HC A03/MF A01 CSCL 22A

This is a study of vibration control for large space structures. Advantage is taken of the limiting performance characteristics of dynamic systems. This approach permits large problems with constraints to be analyzed. A modal formulation for the limiting performance was developed in order to enhance the applicability of limiting performance to large structural systems. One effort to develop an optimal control system is based on the limiting performance approach in combination with classical/optimal control limiting-performance/minimum-time solution formulated to achieve the goal of rapid suppression of disturbances. Classical/optimal control studies show that a position loop might be useful in taking care of constraint controllers, such as proof-mass dampers. Finally, to derive feedback control law based on the limiting performance characteristics, parameter identification technique has been under investigation.

N88-23819# Massachusetts Inst. of Tech., Cambridge. Dept. of Aeronautics and Astronautics.

TRAVELLING WAVE CONCEPTS FOR THE MODELING AND CONTROL OF SPACE STRUCTURES Final Report, 1 Mar. 1986 - 31 Oct. 1987

A. H. VONFLOTOW and S. R. HALL 31 Jan. 1988 442 p (Contract F49620-86-C-0039)

(AD-A191235; AFOSR-88-0278TR) Avail: NTIS HC A19/MF A01

This report summarizes 20 months of research into Travelling Wave Concepts for the Modelling and Control of Space Structures. A good portion of the research has focused upon the development of techniques for the modelling of structural response in terms of disturbance propagation. Such models are of interest for several reasons: (1) Understanding the mechanisms that govern the propagation of disturbances through an elastic structure is useful for building intuition, for structural design and for design of active control, (2) Disturbance propagation models have the potential for providing high-fidelity analysis capabilities in response regimes where other techniques are inapplicable. Of considerable interest to the researchers at MIT is the response of elastic spacecraft to disturbances with significant spectral content at frequencies including many (even hundreds) of the spacecraft natural modes of structural vibration; and (3) Elastic disturbance propagation is a classic area of research in applied mechanics, having application

in acoustics, seismology, microwave electronics, transducer design. biological fluid mechanics, design of mechanisms and machines, and many other areas.

N88-23940*# Virginia Polytechnic Inst. and State Univ., Blacksburg. Dept. of Electrical Engineering.

THE LDCM ACTUATOR FOR VIBRATION SUPPRESSION ERIC N. IDE and DOUGLAS K. LINDNER 1988 4 p (Contract NAG1-719)

(NASA-CR-182898; NAS 1.26:182898) Avail: NTIS HC A02/MF À01 CSCL 09C

A linear dc motor (LDCM) has been proposed as an actuator for the COFS I mast and the COFS program ground test Mini-Mast. The basic principles of operation of the LDCM as an actuator for vibration suppression in large flexible structures are reviewed. Because of force and stroke limitations, control loops are required to stabilize the actuator, which results in a non-standard actuator-plant configuration. A simulation model that includes LDCM actuator control loops and a finite element model of the Mast is described, with simulation results showing the excitation capability of the actuator.

N88-23995 Purdue Univ., West Lafayette, IN. CONTINUUM MODELING AND DYNAMIC ANALYSIS OF LARGE TRUSS STRUCTURES Ph.D. Thesis BRAHIM NECIB 1987 163 p

Avail: Univ. Microfilms Order No. DA8729772

Truss Structures such as large space structures consist of a large number of truss members. Full scale finite element analysis which accounts for every member is computationally very expensive. In practice only the lower modes of vibration are of interest; the truss structure may be effectively represented by a continuous model. An extended Timoshenko beam model is derived to represent large truss structures where the extensional, flexural and shear deformations are coupled. Procedures for evaluating the equivalent continuum beam stiffnesses based on a substructure of the original system are presented. A higher order beam finite element based on the Timoshenko beam model is developed. Using this model, a number of truss structures is studied for free and forced vibration. Forces in the individual members obtained using the continuum model are compared with the full scale finite element solution applied to the original structure. Experiments are conducted on a scaled down truss model. Strain responses in members of the truss model due to impact force are measured. Comparison of the experimental results and the Timoshenko beam model is very accurate. Dissert Abstr

Environmental Research Inst. of Michigan, Ann N88-24194*# Arbor.

ORBITAL NAVIGATION, DOCKING AND OBSTACLE AVOIDANCE AS A FORM OF THREE DIMENSIONAL MODEL-BASED IMAGE UNDERSTANDING

J. BEYER, C. JACOBUS, and B. MITCHELL In NASA, Marshall Space Flight Center, Third Conference on Artificial Intelligence for Space Applications, Part 2 p 37-46 Jun. 1988 Avail: NTIS HC A04/MF A01 CSCL 09B

Range imagery from a laser scanner can be used to provide sufficient information for docking and obstacle avoidance procedures to be performed automatically. Three dimensional model-based computer vision algorithms in development can perform these tasks even with targets which may not be cooperative (that is, objects without special targets or markers to provide unambiguous points). Role, pitch, and yaw of a vehicle can be taken into account as image scanning takes place, so that these can be correlated when the image is converted from egocentric to world coordinated. Other attributes of the sensor, such as the registered reflectance and texture channels, provide additional data sources for algorithm robustness. Author

N88-24195*# Alabama Univ., Huntsville. Center for Applied

GENETIC ALGORITHMS FOR ADAPTIVE REAL-TIME **CONTROL IN SPACE SYSTEMS**

J. VANDERZIJP and A. CHOUDRY In NASA, Marshall Space Flight Center, Third Conference on Artificial Intelligence for Space Applications, Part 2 p 47-51 Jun. 1988

Avail: NTIS HC A04/MF A01 CSCL 09B

Genetic Algorithms that are used for learning as one way to control the combinational explosion associated with the generation of new rules are discussed. The Genetic Algorithm approach tends to work best when it can be applied to a domain independent knowledge representation. Applications to real time control in space systems are discussed.

N88-24665# Innovative Sciences, Inc., San Leandro, CA. ELECTROMAGNETIC DAMPING AND VIBRATION ISOLATION OF SPACE STRUCTURES Final Report, 1 Feb. - 30 Sep. 1987 J. K. HULBERT and BRUCE W. MAXFIELD 5 Aug. 1987 66 p (Contract F49620-87-C-0029)

(AD-A191492; AF080722A.DOC; AFOSR-88-0063TR) Avail: NTIS HC A04/MF A01 CSCL 10A

Structures used in the vacuum, zero gravity environment of space are quite different from earth-bound system. Vibrations induced in a space structure by the operation of equipment internal to the structure should, to the greatest extent possible, be dissipated through heat generation so that this vibrational energy is not simply redistributed throughout the structure. The usual restricted fluid flow dashpot damping system has several serious drawbacks when operating within a space environment. Phase 1 proposed the quantitative assessment of electromagnetic damping that results when conducting but non-magnetic body moves through a region of localized magnetic field. It was shown theoretically in the Phase 1 proposal that this damping should depend quadratically upon both the velocity and the magnetic field seen by the moving conducting body. From this, it follows that electromagnetic damping (ED) has the potential for both large energy and power dissipation. Although our initial approximate theoretical estimate predicted strong damping under ideal circumstances, the appropriate partial differential equations (PDE) had not been solved at the onset of Phase 1. Consequently, one could not calculate the damping magnitude that might be realized under practical conditions.

N88-24666# Oklahoma Univ., Norman. Dept. of Mathematics. ESTIMATION AND CONTROL OF DISTRIBUTED MODELS FOR CERTAIN ELASTIC SYSTEMS ARISING IN LARGE SPACE STRUCTURES Final Report, 1 Jul. 1984 - 30 Sep. 1987 LUTHER W. WHITE 30 Sep. 1987 62 p (Contract AF AFOSR-0271-84)

(AD-A192120; AFOSR-88-0245TR) Avail: NTIS HC A04/MF A01 CSCL 22B

The goal of this research was to study estimation and control of elastic systems composed of beams and plates. Specifically, the research considered the problem of locating the optimal placement of controllers on a beam or plate and the problem of controlling general three-dimensional elastic models that incorporate nonlinear friction and contact laws on the boundary conditions. This final report summarizes those results.

N88-24667 State Univ. of New York, Buffalo. LOW AUTHORITY CONTROL OF LARGE SPACE STRUCTURES USING A CONSTRAINED THRESHOLD **CONTROL FORMULATION Ph.D. Thesis**

DAVID C. ZIMMERMAN 1987 208 p Avail: Univ. Microfilms Order No. DA8727761

A new active control strategy for the vibration control of large space structures is presented. In this Low Authority-Threshold Control (LATC) method, the total energy requirement of the active controller is minimized by use of a threshold control formulation and by determining the control which minimizes an appropriate cost functional. The minimization results in a piecewise constant feedback control law and is suited for a distributed processing architecture because the designer is free to choose the allowable feedback structure. LATC is developed for single- and multi-degree of freedom structural models. The necessary conditions which define the optimal control law are determined using variational

methods. Closed form and quasi-closed form solutions are developed to aid in the determination of the optimal control. The effect of observer-induced errors on LATC are investigated. The robustness of the control method in light of modelling errors is addressed. Finally, LATC has been compared with and contrasted to other similar control methods. Dissert, Abstr.

N88-24673# Tokyo Univ. (Japan). Inst. of Space and Astronautical Science.

DYNAMICS OF A FLEXIBLE ORBITING PLATFORM WITH **MRMS**

YASUHIRO MORITA and VINOD J. MODI (British Columbia Univ., Vancouver.) Feb. 1988 79 p (ISSN-0285-6808; ISAS-RN-625) Avail: NTIS HC A05/MF A01

A relatively general formulation for studying dynamics of a flexible Mobile Remote Manipulator System (MRMS), supported by an orbiting flexible platform, is developed using the Lagrangian approach with generalized forces accounting for the environmental effects, damping, and control. The flexible members are treated as continuum and their flexural deformations represented by a series of admissible functions. The highly nonlinear. nonautonomous and coupled equations of motion, being not amenable to any known closed-form solution, are solved numerically. The computational algorithm is so structured as to isolate the effects of various system parameters thus helping in assessment of their relative importance. Effectiveness of the general formulation is illustrated by studying complex interactions between vibrational and librational degrees of freedom in the presence of MRMS maneuver over a range of system parameters and initial conditions. Results suggest that the MRMS maneuver can affect librational and vibrational response substantially and under critical combinations of parameters the system can become unstable. The information is fundamental to the design of a control strategy which, for a flexible system in the presence of generalized forces, has received virtually no attention.

N88-24674 North Carolina State Univ., Raleigh. AUTOMATIC FEEDBACK CONTROL OF A RIGID BODY FOR FINITE DISPLACEMENTS Ph.D. Thesis

SUNIL SHRIKRISHNA KULKARNI 1987 Avail: Univ. Microfilms Order No. DA8800119

A control law for a suspended rigid body with a fixed support is described for large angular displacements. This control law is a function of angular velocities and quaternions, also known as Euler's parameters. Several missions forseen for the next generation of spacecraft require rapid large angle maneuvers followed by extremely accurate attitude acquisition upon completion of each maneuver. The control law is also useful for attitude control for space stations. This control law is also useful for suppressing swinging of translating rapid body with two degrees of freedom. The examples of objects which swing during transport range from a crane unloading cargo from a ship to manipulators handling artillery shells to a robot performing pick and place operations. In general, it is required to attenuate or suppress this swinging during all phases of the transport. Numerical simulations of this automatic feedback control system are made for a rigid body on Earth's surface and in orbit. It is shown that control algorithm is simple to implement and system stability is extremely robust with respect to external disturbances and inertial variations. Mass and inertial variation is eight to one. Dissert. Abstr.

N88-24989# Virginia Polytechnic Inst. and State Univ., Blacksburg. Dept. of Aerospace and Ocean Engineering. EXPERIMENTAL STUDY OF ACTIVE VIBRATION CONTROL Final Technical Report, 30 Jan. 1986 - 31 Aug. 1987 WILLIAM L. HALLAUER, JR. 31 Aug. 1987 71 p (Contract F49620-85-C-0024) (AD-A191454; AFOSR-88-0060TR) Avail: NTIS HC A04/MF A01

Complementary experimental-theoretical studies were conducted on the following subjects related to the dynamics and control of flexible large spacecraft structures: 1) Transient wave propagation - Extensive results are presented for traveling waves in a laboratory structure excited by suddenly applied oscillatory point forces; 2) The dynamics of a thin-walled grid with a ridgid body slewing degree of freedom - The design, theoretical analysis, experimental testing, and experimental, and experimentaltheoretical correlation are reported. Even after much refinement, the finite element model of the relatively simple structure did not satisfactorily predict the measured dynamic behavior; and 3) Active damping and control the slewing gird with the use of structure-borne accelerometers and reaction wheel actuators - The results of an active vibration damping experiment are presented. Also discussed are the serious practical problems encountered in this research and the potential for future experiments with simultaneous control of maneuvering and vibration.

N88-25244*# Old Dominion Univ., Norfolk, VA. Dept. of Mechanical Engineering and Mechanics.

SINGLE-MODE PROJECTION FILTERS FOR MODAL PARAMETER IDENTIFICATION FOR FLEXIBLE STRUCTURES Final Report, for period ending 31 Dec. 1987

JEN-KUANG HUANG and CHUNG-WEN CHEN Feb. 1988

(Contract NAG1-655)

(NASA-CR-182680; NAS 1.26:182680) Avail: NTIS HC A04/MF A01 CSCL 12A

Single-mode projection filters are developed for eigensystem parameter identification from both analytical results and test data. Explicit formulations of these projection filters are derived using the orthogonal matrices of the controllability and observability matrices in the general sense. A global minimum optimization algorithm is applied to update the filter parameters by using the interval analysis method. The updated modal parameters represent the characteristics of the test data. For illustration of this new approach, a numerical simulation for the MAST beam structure is shown by using a one-dimensional global optimization algorithm to identify modal frequencies and damping. Another numerical simulation of a ten-mode structure is also presented by using a two-dimensional global optimization algorithm to illustrate the feasibility of the new method. The projection filters are practical Author for parallel processing implementation.

N88-25748*# Jet Propulsion Lab., California Inst. of Tech., Pasadena.

TECHNOLOGIES FOR ANTENNA SHAPE AND VIBRATION CONTROL

EDWARD METTLER, ROBERT SCHEID, and DANIEL ELDRED In its Proceedings of the Mobile Satellite Conference p 477-482

Avail: NTIS HC A23/MF A01 CSCL 17B

This paper describes the application of advanced control methods and techniques to the second- and third-generation mobile satellite (MSAT) configurations having wrap-rib offset feed construction. The technologies are generically applicable to other designs such as hoop-column and other elastically deformable non-rigid structures. The focus of the discussion is on reflector shape determination and control, dynamics identification, and pointing jitter suppression.

N88-26143 Rensselaer Polytechnic Inst., Troy, NY. ADAPTIVE RESIDUAL MODE FILTER CONTROL OF DISTRIBUTED PARAMETER SYSTEMS FOR LARGE SPACE STRUCTURE APPLICATIONS Ph.D. Thesis

JANG JAMES OUYANG 1987 129 p

Avail: Univ. Microfilms Order No. DA8729317

Modal control is often proposed as a way to design stabilizing low order controllers for Distributed Parameter Systems (DPS). However, it is well known that such controllers, designed from a reduced order modal model, do not necessarily stabilize the actual DPS. It is proved that exponential closed-loop stability can always be achieved by the addition of a very low order Residual Mode Filter (RMF). Due to the uncertainty of modal data for the Large Space Structure (LSS), a real-time adaptive controller was designed and tested successfully via computer simulation. The controller,

implemented in a digital minicomputer, consists of a modal Reduced-Order Model (ROM) controller, a bank of RMFs, and a bank of Frequency Locked Loops (FLLs) with associated bandpass filters for real-time parameter identification. Three DPS examples: a simply supported Euler-Bernoulli beam, a telegraph equation, and a Space Based Laser (SBL) beam expander are presented to illustrate the application of this concept. Dissert. Abstr.

N88-26390# Groningen Rijksuniversiteit (Netherlands). Subfaculteit Wiskunde en Informatica.

L(SUB INFINITY SYMBOL)-APPROXIMATIONS OF COMPLEX **FUNCTIONS AND ROBUST CONTROLLERS FOR LARGE FLEXIBLE SPACE STRUCTURES**

R. F. CURTAIN 1987 24 p

(PB88-186226; TW-281) Avail: NTIS HC A03/MF A01 CSCL 22B

A survey is presented of a theory for a frequency domain design of robust controllers for infinite dimensional systems using L sub infinity approximations. Applications to large flexible space structures are discussed.

N88-26693*# Old Dominion Univ., Norfolk, VA. Dept. of Civil Engineering.

EXPERIMENTAL AND THEORETICAL INVESTIGATION OF PASSIVE DAMPING CONCEPTS FOR MEMBER FORCED AND FREE VIBRATION Progress Report, period ending 31 Dec.

ZIA RAZZAQ and DAVID W. MYKINS Dec. 1987 125 p (Contract NAG1-336)

(NASA-CR-183082; NAS 1.26:183082) Avail: NTIS HC A06/MF A01 CSCL 20K

Potential passive damping concepts for use in space structures are identified. The effectiveness of copper brush, wool swab, and silly putty in chamber dampers is investigated through natural vibration tests on a tubular aluminum member. The member ends have zero translation and possess partial rotational restraints. The silly putty in chamber dampers provide the maximum passive damping efficiency. Forced vibration tests are then conducted with one. two, and three damper chambers containing silly putty. Owing to the limitation of the vibrator used, the performance of these dampers could not be evaluated experimentally until the forcing function was disengaged. Nevertheless, their performance is evaluated through a forced dynamic finite element analysis conducted as a part of this investigation. The theoretical results based on experimentally obtained damping ratios indicate that the passive dampers are considerably more effective under member natural vibration than during forced vibration. Also, the maximum damping under forced vibration occurs at or near resonance.

Author

N88-27183# California Univ., Berkeley. Electronics Research Lab.

NUMERICAL OPTIMIZATION, SYSTEM THEORETIC AND SOFTWARE TOOLS FOR THE INTEGRATED DESIGN OF FLEXIBLE STRUCTURES AND THEIR CONTROL SYSTEMS Annual Technical Report, 30 Sep. 1986 - 29 Sep. 1987

E. POLAK 11 Apr. 1988 6 p (Contract AF-AFOSR-86-0116)

(AD-A192927; AFOSR-88-0405TR) Avail: NTIS HC A02/MF A01 CSCL 01C

This research was motivated by a growing consensus that design specifications for projected controlled flexible aerospace structures, which are becoming larger and more flexible while performance requirements are becoming more stringent, can only be satisfied through an integrated design approach in which one determines simultaneously both structural and control system parameters. The work dealt with nonsmooth optimization techniques for the integrated design of flexible structures and their control systems. Nonsmooth optimization is an ideal tool for integrated design because it allows dynamic constraints and imposes no distinction between control system and structural variables. Major accomplishment include the development and testing of an optimal control algorithm which can be used to solve

both free and fixed time optimal control problems, such as the problem of moving a flexible structure, modeled by a partial differential equation, from an in initial to a final position in minimum time, while guaranteeing upper bounds on the controls and deformations of the structure over the entire maneuver; and laying the ground-work for the frequency domain design of finite dimensional feedback controllers for flexible structures, without resorting to modal truncation and suffering the resulting spillover effects.

N88-27587# European Nuclear Energy Agency, Paris (France). **VIBRATION CONTROL OF LARGE STRUCTURES Final** Report, 1 Jan. 1986 - 31 Dec. 1987 WALTER D. PILKEV 1 Mar. 1988 46 p (Contract F49620-86-K-0009) (AD-A193317; UVA/525673/MAE88/103; AFOSR-88-0369TR) Avail: NTIS HC A03/MF A01 CSCL 13M

This is a study of some fundamental aspects of the structural dynamics and vibration control of large structures. One focus is the development of a limiting performance formulation with minimum settling time which can accept multiple design objectives efficiently. This new formulation is intended to meet the need of rather comprehensive design objectives for the control of large space structures. Another objective of the study is to develop a systematic way of designing a control system based on the limiting performance characteristics. An indirect synthesis method is proposed. It is shown that closed loop control laws can be based on the optimal response trajectories in the time domain. The method is successfully applied to the control of proof-mass actuators.

N88-28083# Societe Nationale Industrielle Aerospatiale, Cannes (France)

LITERAL DYNAMIC MODELING [MODELISATION DYNAMIQUE LITTERALE]

C. GARNIER, P. RIDEAU, and Y. PAPEGAY (Nice Univ., France) 14 Jan. 1988 15 p In FRENCH (REPT-881-440-114; ETN-88-92878) Avail: NTIS HC A03/MF A01

A computer program to create the literal dynamic model of systems composed of articulated flexible structures is presented. The procedure is characterized by the fact that the computing power is used to manipulate equations and algebra expressions till the end, without using numerical approximations. At this stage of development, the program deals with tree structures only. This type of structure is easier to study. The procedure is used to model large space structures of complex geometry. **FSA**

N88-28950*# Smithsonian Astrophysical Observatory, Cambridge,

ANALYTICAL INVESTIGATION OF THE DYNAMICS OF TETHERED CONSTELLATIONS IN EARTH ORBIT Quarterly Report No. 13, 1 Apr. - 30 Jun. 1988

ENRICO C. LORENZINI, GORDON E. GULLAHORN, and ROBERT D. ESTES Jul. 1988 124 p (Contract NAS8-36606)

(NASA-CR-179371; NAS 1.26:179371) Avail: NTIS HC A06/MF A01 CSCL 22B

This Quarterly Report on Tethering in Earth Orbit deals with three topics: (1) Investigation of the propagation of longitudinal and transverse waves along the upper tether. Specifically, the upper tether is modeled as three massive platforms connected by two perfectly elastic continua (tether segments). The tether attachment point to the station is assumed to vibrate both longitudinally and transversely at a given frequency. Longitudinal and transverse waves propagate along the tethers affecting the acceleration levels at the elevator and at the upper platform. The displacement and acceleration frequency-response functions at the elevator and at the upper platform are computed for both longitudinal and transverse waves. An analysis to optimize the damping time of the longitudinal dampers is also carried out in order to select optimal parameters. The analytical evaluation of the performance of tuned vs. detuned longitudinal dampers is also part of this analysis. (2) The use of the Shuttle primary Reaction Control System (RCS) thrusters for blowing away a recoiling broken tether is discussed. A microcomputer system was set up to support this operation. (3) Most of the effort in the tether plasma physics study was devoted to software development. A particle simulation code has been integrated into the Macintosh II computer system and will be utilized for studying the physics of hollow cathodes.

Author

N88-28956# MATRA Espace, Toulouse (France). STUDY OF STANDARD GENERIC APPROACH FOR SPACECRAFT (S/C) AUTONOMY AND AUTOMATION (PHASE 3). BOOK B: AUTONOMY CONCEPT APPLICATION EXAMPLE **Final Report**

Paris, France ESA Nov. 1987 324 p Prepared in cooperation with MBB GmbH, Ottobrunn, Fed. Republic of Germany and Dornier-Werke GmbH, Froedrichshafen, Fed. Republic of

(Contract ESTEC-6358/85-NL-PP(SC)) (ESA-CR(P)-2555-VOL-2; ETN-88-92915) Avail: NTIS HC À14/MF ÀÓ1

A generic system design concept for unmanned spacecraft is applied to EURECA. Allocation of autonomy requirements; system level applications; and subsystems are described. Functional and operational interfaces are discussed. Spacecraft modes of operation and the functional partitioning between the spacecraft and ground control are treated. On-board architecture; functional autonomy and on-board organization, interfaces, and the utilization of a local area network to interconnect the on-board management nodes are outlined.

N88-29794# Iowa Univ., Iowa City. Center for Computer Aided Design.

DYNAMICS OF ARTICULATED AEROSPACE STRUCTURES Final Report, 1 Dec. 1985 - 30 Nov. 1987

EDWARD J. HAUG 22 Apr. 1988 9 p

(Contract AF-AFOSR-0082-86)

(AD-A195685; AFOSR-88-0670TR) Avail: NTIS HC A02/MF A01 CSCL 20K

A unified variational approach to dynamics of flexible multibody systems has been developed and demonstrated on several test problems, including a deployable space structure, flexible manipulators with feedback control, spinning blades, impacting elastic bodies, and variety of mechanisms. A new recursive formulation was developed for dynamics of flexible multibody systems. This new formulation demonstrated in excess of an order of magnitude speed up in computation, compared to the Cartesian coordinate approach, with comparable accuracy and improved stability. A substructuring formulation that accounts for geometrically nonlinear deformation effects in spinning blades and large space structures was developed and demonstrated, using both the Cartesian coordinate and recursive relative coordinate formulations. The substructure technique was further extended to account for contact-impact effects between structural components. A new formulation of translational joints between flexible bodies was developed, to account for deformation due to sliding contacts. GRA

N88-29842# Air Command and Staff Coll., Maxwell AFB, AL SENSOR AND ACTUATOR SELECTION FOR LARGE SPACE STRUCTURE CONTROL

MICHAEL L. DELORENZO Apr. 1988 41 p (AD-A194912; ACSC-88-0725) Avail: NTIS HC A03/MF A01 CSCL 22B

This paper presents an algorithm which aids the controls engineer in specifying a sensor and actuator configuration for regulation of large scale, linear, stochastic systems such as a Large Space Structure (LSS). The algorithm uses a Linear Quadratic Gaussian (LQG) controller, an efficient weight selection technique based upon successive approximation, and a measure of sensor and actuator effectiveness to provide a final sensor and actuator configuration. This configuration enables the closed-loop system to meet output specifications with minimal input power. The

algorithm involves no complex gradient calculations and has proven numerically tractable for large linear models. Additionally, the algorithm provides the controls engineer information on the important design issues of actuator sizing, reliability, redundancy, and optimal number.

N88-29851# California Univ., Los Angeles.

THEORY OF FILTERING AND CONTROL WITH APPLICATION TO CONTROL OF LARGE SPACE STRUCTURES Final Report, 1 Sep. 1983 - 31 Aug. 1987

A. V. BALAKRISHNAN 30 Mar. 1988 8 p

(Contract AF-AFOSR-0318-83)

(AD-A195500; AFOSR-88-0666TR) Avail: NTIS HC A02/MF A01 CSCL 22B

This report summarizes accomplishments under a grant to study modeling. Identification, and control of flexible structures and to study random fields with applications to laser beam distortion in a turbulent field. Research in flexible structures focused on deriving continuum models base upon partial differential equations and derived methods for the solution of the resulting boundary control problems. A robust controller for stabilization based upon the abstract Hilbert-space semigroup formulation was derived as was a stochastic control theory for partial differential equations. A white noise theory for random fields was derived which has applications to laser beam propagation in the atmosphere; in particular, it is used to model the turbulent field.

N88-30124# State Univ. of New York, Albany. Research Foundation.

LASER SENSING FOR IDENTIFICATION AND CONTROL OF DISTRIBUTED PARAMETER SYSTEMS Final Report, 1 Dec. 1986 - 30 Nov. 1987

DANIEL J. INMAN 1 May 1988 17 p

(Contract AF-AFOSR-0099-87)

(AD-A195886; AFOSR-88-0654TR) Avail: NTIS HC A03/MF A01 CSCL 14B

This instrumentation award funded the purchase of a laser vibrometer system, mass computer data storage and data acquisition equipment. This equipment used in conjunction with existing vibration testing and control facilities provides a sophisticated low frequency velocity measurement system for use in identifying the coefficients in partial differential equation models of distributed mass structures. In addition, the vibrometer system provides straightforward and direct velocity feedback for such systems. These flexible structures characteristically have very low natural frequencies which cannot be detected by accelerometers. This system has and is being used to perform tests on models and sub-assemblies of large space structures for the purpose of evaluating existing identification and control strategies as well as to stimulate new research in the area of control, observers (estimators) and identification. Several intense experiments using the laser vibrometer were performed to measure the response of a quasi isotropic cantilevered beam with a removable tip mass excited by an impulse at various locations. This data was collected, stored, and sent to AFOSR researchers at Brown University transmitted using BITNET. The data was analyzed using a spline based estimation procedure, starting with a partial differential equation model of the structure. A clear advantage over modal methods based on a finite dimensional model of the same system was observed.

N88-30134*# Catholic Univ. of America, Washington, DC. Dept. of Electrical Engineering.

ROBUST DESIĞN OF DISTRIBUTED CONTROLLERS FOR LARGE FLEXIBLE SPACE STRUCTURES Final Technical Report

CHARLES C. NGUYEN Sep. 1988 33 p

(Contract NAG5-949)

(NASA-CR-183202; NAS 1.26:183202) Avail: NTIS HC A03/MF A01 CSCL 13I

Independent Modal Space Control (IMSC) method avoids control spillover generated by conventional control schemes such as Coupled Modal Control by decoupling the large flexible space

structure into independent subsystems of second order and controlling each mode independently. The IMSC implementation requires that the number of actuators be equal to that of modeled modes, which is in general very huge. Consequently the number of required actuators is unrealizable. Two methods are proposed for the implementation of IMSC with reduced number of actuators. In the first method, the first m modes are optimized, leaving the last (n-m) modes unchanged. In the second method, generalized inverse matrices are employed to design the feedback controller so that the control scheme is suboptimal with respect to IMSC. The performance of the proposed methods is tested by performing computer simulation on a simply support beam. Simulation results are presented and discussed.

06

ELECTRONICS

Includes techniques for power and data distribution, antenna RF performance analysis, communications systems, and spacecraft charging effects.

A88-33448

KA, C, S FREQUENCY BANDS, MULTI-BEAM DEPLOYABLE ANTENNA SYSTEM FOR LARGE-CAPACITY COMMUNICATION SATELLITE

HIROYUKI KUMAZAWA, ISAO OHTOMO, YOSHIHIDE YAMADA, and TETSUO YASAKA (Nippon Telegraph and Telephone Public Corp., Radio Communications Systems Laboratories, Yokosuka, Japan) IN: EASCON '87; Proceedings of the Twentieth Annual Electronics and Aerospace Systems Conference, Washington, DC, Oct. 14-16, 1987. New York, Institute of Electrical and Electronics Engineers, Inc., 1987, p. 185-191. refs

The design and characteristics of electrical and structural models of a satellite-borne antenna system comprising large 3.5-m and 2.5-reflectors, feeders, and a tower for stowing the 3.7-m ID-class rocket are described. The reflectors, Ka band cluster horns, frequency-selective surfaces, C and S band horns, and the towar are integrally examined for electrical and mechanical performance. Measurement results with a verification model antenna are found to conform to design values.

A88-33629*# National Aeronautics and Space Administration. Lyndon B. Johnson Space Center, Houston, TX.

TELEMETRY HANDLING ON THE SPACE STATION DATA MANAGEMENT SYSTEM

VIRGINIA A. WHITELAW (NASA, Johnson Space Center, Houston, TX) IN: ITC/USA/'87; Proceedings of the International Telemetering Conference, San Diego, CA, Oct. 26-29, 1987. Research Triangle Park, NC, Instrument Society of America, 1987, p. 17-26.

This paper examines the impact of telemetry handling on the design of the onboard networks that are part of the Space Station Data Management System (DMS). An architectural approach to satisfying the DMS requirement for support of the high throughput needed for telemetry transport and for servicing distributed computer systems is discussed. Several of the functionality vs. performance tradeoffs that must be made in developing an optimized mechanism for handling telemetry data in the DMS are considered.

A88-33673

AUTOMATING SATELLITE CONTROL AND TELEMETRY NETWORKS

CONSTANCE J. GOLDEN (Ford Aerospace and Communications Corp., Sunnyvale, CA) IN: ITC/USA/'87; Proceedings of the International Telemetering Conference, San Diego, CA, Oct. 26-29, 1987. Research Triangle Park, NC, Instrument Society of America, 1987, p. 503-508.

Space Station and satellite control applications will require

systems that have generic processing applicable to many different knowledge bases, the ability to learn from experience, the ability to handle situations not encountered before and behave at least as well as an expert would in the same new situation, the ability to respond in real time, and the ability to be formally verified and validated. A knowledge-based system approach that promises to meet all these requirements has been developed, and its applications to several satellite and network control applications are described.

C.D.

A88-35099

THE USE OF ELECTRODYNAMIC TETHERS FOR GENERATING POWER AND THRUST IN SPACE

D. E. HASTINGS and MANUEL MARTINEZ-SANCHEZ (MIT, Cambridge, MA) IN: Aerospace century XXI: Space flight technologies; Proceedings of the Thirty-third Annual AAS International Conference, Boulder, CO, Oct. 26-29, 1986. San Diego, CA, Univelt, Inc., 1987, p. 701-716. (AAS PAPER 86-366)

The concept of an electrodynamic tether is introduced. Such a tether works by inducing a current flow through the tether which closes in the ionosphere. It is shown that an electrodynamic tether used to generate power and thrust compares favorably with fuel cells and rockets. Some of the outstanding physical questions associated with operation of a tether are outlined and recent theoretical work reviewed.

Author

A88-35112

DEPLOYABLE PRECISION REFLECTORS

BERND ABT (Dornier System GmbH, Friedrichshafen, Federal Republic of Germany) IN: Aerospace century XXI: Space flight technologies; Proceedings of the Thirty-third Annual AAS International Conference, Boulder, CO, Oct. 26-29, 1986. San Diego, CA, Univelt, Inc., 1987, p. 989-996. (AAS PAPER 86-298)

Solid panel-based precision reflectors required to serve as antenna collectors by the larger satellites and orbiting radio telescopes, with diameters of up to 12 m, can be launched with existing or near-term-available launch systems without need for EVA for deployment. Attention is presently given to two state-of-the-art composite panel structure deployable antennas, wich illustrate proprietary German expertise in this field: the Multibeam Deployable Antenna for the 30/20 GHz communications payload of a future German satellite, and the Far Infrared and Submillimeter Space Telescope.

A88-35144

AI FOR SPACE MISSIONS

ROBERT W. HOBBS and RICHARD DESJARDINS (Computer Technology Associates, Inc., Lanham, MD) IN: Aerospace century XXI: Space sciences, applications, and commercial developments; Proceedings of the Thirty-third Annual AAS International Conference, Boulder, CO, Oct. 26-29, 1986. San Diego, CA, Univelt, Inc., 1987, p. 1453-1466. refs (AAS PAPER 86-390)

The advantages and possible applications of AI for highly complex, multiple use, high data rate space environments of the 21st century are discussed. Advantages of AI include their ease of duplication and documentation, cost effectiveness, aggregation of the knowledge of several experts, and facilitation of robotics. A major difficulty in their use is the inability to validate systems employing AI techniques. Applications considered include systems design, spacecraft command and control, the control of on-board systems, and the operation of ground data systems. R.R.

A88-35274* Drexel Univ., Philadelphia, PA. SYSTEM ARCHITECTURE OF MMIC-BASED LARGE APERTURE ARRAYS FOR SPACE APPLICATIONS

P. R. HERCZFELD, M. KAM (Drexel University, Philadelphia, PA), R. R. KUNATH, K. B. BHASIN (NASA, Lewis Research Center, Cleveland, OH), and NICK LA PRADE (RCA, RCA Astro-Electronics Div., Hightstown, NJ) IN: Optical technologies for space communication systems: Proceedings of the Meeting, Los Angeles,

CA, Jan. 15, 16, 1987. Bellingham, WA, Society of Photo-Optical Instrumentation Engineers, 1987, p. 164-172. Research supported by the Commonwealth of Pennsylvania. Previously announced in STAR as N87-20468. refs

The persistent trend to use millimeter-wave frequencies for satellite communications presents the challenge to design large-aperture phased arrays for space applications. These arrays, which comprise 100 to 10,000 elements, are now possible due to the advent of lightwave technology and the availability of monolithic microwave integrated circuits. In this paper, system aspects of optically controlled array design are studied. In particular, two architectures for a 40 GHz array are outlined, and the main system-related issues are examined: power budget, synchronization in frequency and phase, and stochastic effects.

A88-35275

KU-BAND (14GHZ) FIBER OPTIC COMMUNICATION LINKS FOR DISTRIBUTED ANTENNAS IN THE SPACE STATION

A. S. DARYOUSH, R. GLATZ, P. R. HERCZFELD (Drexel University, Philadelphia, PA), and M. P. BACCARINI (RCA, Government Communications Systems Div., Camden, NJ) IN: Optical technologies for space communication systems; Proceedings of the Meeting, Los Angeles, CA, Jan. 15, 16, 1987. Bellingham, WA, Society of Photo-Optical Instrumentation Engineers, 1987, p. 173-182. Research supported by the Commonwealth of Pennsylvania and RCA. refs

Fiber optic networks are considered as a viable alternative to the conventional coaxial distribution systems for the Space Station. The multiple access communication subsystem provides 450-750 MHz data signal on offset quadrature phase shift keying (OQPSK) to antenna-mounted electronics. For coherent communication 100 MHz frequency reference signal is transmitted to each module to phase lock a dielectric resonator oscillator at 14.15GHz. Experimental results of phase locked oscillator's spectral purity, synchronized via two commercial fiber-optic links at 1.3 and 0.8 microns are reported. These two fiber-optic links were compared in terms of phase noise degradation. Furthermore, experimental results of fiber-optic link linearity, third-order intermodulation distortion, dynamic range and effect of mixing between data and the frequency reference are reported.

A88-37285#

ANTENNAS FOR DIVERSE REQUIREMENTS

JOACHIM BOUKAMP Dornier-Post (English Edition) (ISSN 0012-5563), no. 1, 1988, p. 12-15.

An account is given of a major German aerospace manufacturer's state-of-the-art methods for development, design, construction, testing and certification of a wide variety of civilian and military communications and radar antennas. Attention is given to reflector antennas for very large aperture/wavelength ratios, slotted waveguide arrays in which the radiating aperture is synthesized by guided structures, and both microstrip arrays and active arrays, for the creation of very large area antennas. Antenna tests and measurements are conducted in an anechoic chamber.

O.C

A88-38098

BEYOND THE DIAMETER-WAVELENGTH-RATIO OF REFLECTOR ANTENNAS - A FILM LENS ANTENNA

YOSHIHIRO CHIKADA (Nobeyama Radio Observatory, Minamimaki, Japan) IN: Radio astronomy from space; Proceedings of the Workshop, Green Bank, WV, Sept. 30-Oct. 2, 1986. Charlottesville, VA, National Radio Astronomy Observatory, 1987, p. 221-224.

The theoretical basis and design concept of a thin-film-lens (TFL) space telescope for mm or sub-mm astronomical observations are discussed. The practical limitations on the size of reflector antennas (currently corresponding to a maximum diameter/wavelength ratio of about 10,000) are pointed out, and the results of Milne (1982) for an 89-cm dipole-array TFL antenna are extended to a much larger scale, stressing that TFLs operate using phase shift rather than delay, have no thickness, and should be relatively easy to fabricate and deploy. The allowable TFL

parameters at different wavelengths are indicated in a graph: good observing qualities should be obtainable with a 30-m TFL for space VLBI in X-band, a 400-m TFL for the 2.6-mm band of CO, and a 1.5-km TFL for the 1.3-mm band of CO.

T.K.

A88-38115

A TECHNIQUE FOR THE MEASUREMENT OF ENVIRONMENTAL LEVELS OF MICROWAVE RADIATION AROUND SATELLITE EARTH STATIONS

W. S. DAVIES and K. H. JOYNER (Telecom Australia Research Laboratories, Clayton) Journal of Electrical and Electronics Engineering, Australia (ISSN 0725-2986), vol. 7, Dec. 1987, p. 274-277. refs

Upper bounds for the levels of environmental microwave radiation measured in the vicinity of large aperture antennas using directive microwave probe antennas are discussed. In addition, the results of several surveys around satellite earth stations are summarized and presented. From the survey results it can be concluded that the environmental levels of microwave radiation outside the immediate vicinity of the antennas are many orders of magnitude below currently accepted exposure standards for members of the general public. As a point of comparison, it was found that the environmental levels of microwave radiation were generally comparable with the combined power densities of FM and TV transmissions measured in Melbourne suburbs.

A88-39423#

DEPLOYABLE 20/30-GHZ MULTI-BEAM ANTENNA FOR FUTURE COMMUNICATIONS SATELLITES

DIETMAR SCHEULEN Dornier-Post (English Edition) (ISSN 0012-5563), no. 2, 1988, p. 60-62.

The West German Multi-Beam Antenna, designated MEA, is a 20/30-MHz device of offset Cassegrain type with an offset paraboloid main reflector with a total of 16 beams. The primary challenge in the design of the reflector used is a surface contour accuracy of 0.2 mm rms, including production and deployment errors as well as thermal deformations in orbit. This high surface accuracy has been obtained by means of the 'replica' technique. The admissible deviations from the given contour were limited to less than 20 microns rms. Attention is given to the mold-forming method.

A88-42585

PRODUCTION OF GROUND STATE ATOMIC OXYGEN IN A MULTIFACTOR STRESS ENVIRONMENT

W. C. NEELY, T. C. YANG, J. P. WEY, E. J. CLOTHIAUX, and S. D. WORLEY (Auburn University, AL) IN: Space structures, power, and power conditioning; Proceedings of the Meeting, Los Angeles, CA, Jan. 11-13, 1988. Bellingham, WA, Society of Photo-Optical Instrumentation Engineers, 1988, p. 313-316.

A system for the production of ground state atomic oxygen was designed with attention given to the use of a generation method in which the O-atom flux could be accurately characterized with respect to the exact identity and the absolute flux of the O-atom species produced. Moreover, the system was designed to permit multifactor stress studies of test samples upon exposure to the O-atom flux. Atomic oxygen generation is discussed as well as multifactor stress capability.

K.K.

A88-43187* Drexel Univ., Philadelphia, PA. OPTICAL TECHNOLOGY FOR SPACECRAFT ANTENNAS

P. R. HERCZFELD (Drexel University, Philadelphia, PA) IN: Fiber optic systems for mobile platforms; Proceedings of the Meeting, San Diego, CA, Aug. 20, 21, 1987. Bellingham, WA, Society of Photo-Optical Instrumentation Engineers, 1987, p. 169-174. Research supported by General Electric Co., RCA, U. S. Navy, and NASA. refs

The issues involved in the design and implementation of high-speed fiberoptic distribution networks for spacecraft antennas are examined. The phased array antennas and antenna remoting are considered. The system requirements for these two generic system types are summarized, and their architectures are described. Optical beamforming of phased arrays is discussed,

including beam control at the T/R module level, optical beam control on the fiber optic distribution network, and optical beamforming in free space.

A88-43715*# Maine Univ., Orono.

A NEW LINEARIZED THEORY OF LAMINAR FILM CONDENSATION OF TWO PHASE ANNULAR FLOW IN A CAPILLARY PUMPED LOOP

Y. K. HSU (Maine, University, Orono), T. SWANSON, and R. MCINTOSH (NASA, Goddard Space Flight Center, Greenbelt, MD) AIAA, Thermophysics, Plasmadynamics and Lasers Conference, San Antonio, TX, June 27-29, 1988. 10 p. refs (AIAA PAPER 88-2637)

Future large space based facilities, such as Space Station, will require energy management systems capable of transporting tens of kilowatts of heat over a hundred meters or more. This represents better than an order of magnitude improvement over current technology. Two-phase thermal systems are currently being developed to meet this challenge. Condensation heat transfer plays a very important role in this system. The present study attempts an analytic solution to the set of linearized partial differential equations. The axial velocity and temperature functions were found to be Bessel functions which have oscillatory behavior. This result agrees qualitatively with the experimental evidence from tests at both NASA Goddard Space Flight Center and elsewhere. Author

A88-44638* Kansas Univ. Center for Research, Inc., Lawrence. DETERMINATION OF THE VERTICAL PATTERN OF THE SIR-B ANTENNA

RICHARD K. MOORE and MEHRZAD HEMMAT (University of Kansas Center for Research, Inc., Lawrence) International Journal of Remote Sensing (ISSN 0143-1161), vol. 9, May 1988, p. 839-847. refs

(Contract JPL-956902)

Determination of the antenna pattern is important for a spaceborne Synthetic Aperture Radar such as Shuttle Imaging Radar-B (SIR-B). For SIR-B the antenna was so large that apart from one section, no complete pattern could be measured on the ground. Attempts were made to measure the pattern while the shuttle was in space by using ground receivers and active radar calibrators. The method used and described is a supplement to these measurements. The vertical pattern of an antenna can be extracted from radar signals returned from regions whose scattering coefficients versus incidence angle characteristics are suitably flat and uniform. The method used shows that the main vertical lobe of the SIR-B antenna is slightly wider than previously reported (6.9 deg at 3 dB points versus 6.2 deg used in radiometric corrections).

A88-46799* Alabama Univ., Huntsville.

ELECTRON BEAM EXPERIMENTS AT HIGH ALTITUDES

R. C. OLSEN (Alabama, University, Huntsville) and H. A. COHEN (W. J. Schafer Associates, Inc., Arlington, VA) (COSPAR, URSI, and IAGA, Plenary Meeting, 26th, Symposium on Active Experiments, 1st, Toulouse, France, June 30-July 11, 1986) Advances in Space Research (ISSN 0273-1177), vol. 8, no. 1, 1988, p. 161-164. Previously announced in STAR as N87-26946. refs

(Contract NAG3-620)

Experiments with the electron gun on the SCATHA satellite produced evidence of beam-plasma interactions, and heating of the low energy electrons around the satellite. These experiments were conducted near geosynchronous orbit, in the dusk bulge, and plasma sheet, with one short operation in the lobe regions, providing a range of ambient plasma densities. The electron gun was operated at 50 eV, with beam currents of 1, 10, and 100 micro-A. Data from electrostatic analyzers and the DC electric field experiment show that the satellite charged to near the beam energy in sunlight, if the beam current was sufficient. Higher ambient densities required higher beam currents. The electrostatic analyzers showed distribution functions which had peaks, or plateaus, at energies greater than the satellite potential. These measurements indicate heating of the ambient plasma at several Debye lengths

from the satellite, with the heated plasma then accelerated into the satellite. It is likely that the ambient plasma is in fact the photoelectron sheath generated by the satellite.

A88-46804 RESULTS FROM A TETHERED ROCKET EXPERIMENT (CHARGE-2)

N. KAWASHIMA, S. SASAKI, K. I. OYAMA, K. HIRAO, T. OBAYASHI (Tokyo, University, Japan) et al. (COSPAR, URSI, and IAGA, Plenary Meeting, 26th, Symposium on Active Experiments, 1st, Toulouse, France, June 30-July 11, 1986) Advances in Space Research (ISSN 0273-1177), vol. 8, no. 1, 1988, p. 197-201. refs

A tethered payload experiment (Charge-2) was carried out as an international program between Japan and the USA using a NASA sounding rocket at White Sands Missile Range. The objective of the experiment was to perform a new type of active experiment in space by injecting an electron beam from a mother-daughter rocket system connected with a long tether wire. The electron beam with voltage and current up to 1 kV and 80 mA (nominal) was injected from the mother payload. An insulated conductive wire of 426 m length connected the two payloads, the longest tether system flown so far. The electron gun system and diagnostic instruments (plasma, optical, particle and wave) functioned correctly throughout the flight. The potential rise of the mother payload during the electron beam emission was measured with respect to the daughter payload. The beam trajectory was detected by a camera onboard the mother rocket. Wave generation and current induction in the wire during the beam emission were also studied.

A88-46805 THEORY OF THE ELECTRODYNAMIC TETHER

C. E. RASMUSSEN (Utah State University, Logan) and P. M. BANKS (Stanford University, CA) (COSPAR, URSI, and IAGA, Plenary Meeting, 26th, Symposium on Active Experiments, 1st, Toulouse, France, June 30-July 11, 1986) Advances in Space Research (ISSN 0273-1177), vol. 8, no. 1, 1988, p. 203-211.

The motion of the long conducting wire of a tethered satellite across the geomagnetic field creates an emf of about 0.1-0.2 V/m along the length of the tether. This emf can be utilized to excite wave modes in the ionosphere ranging in frequency from the magnetohydrodynamic regime to the upper hybrid frequency. The emitted spectrum depends principally upon the size (in the direction perpendicular to the magnetic field) of the moving source. The amplitude of radiated waves having a frequency less than the ion cyclotron frequency has been calculated. The shear Alfven wave is always excited and forms an 'Alfven-wing' structure whose amplitude diminishes as the length of the tether increases. In the near-field zone, the emitted waves propagate along magnetic field lines as packets but disperse into individual Fourier components as the far field is reached. However, as the distance to the far-field zone is at least 10 to the 6th kilometers for typical tether configurations, the shear Alfven wave will be reflected by the earth's ionosphere with accompanying coupling compressional Alfven mode before the far field is reached.

Author

A88-46806

LABORATORY MODEL OF A TETHERED SATELLITE -CURRENT COLLECTION UPON AND SHEATH FORMATION AROUND A CHARGED BODY IN A DRIFTING MAGNETOPLASMA

J.-P. LEBRETON (ESA, Space Science Dept., Noordwijk, Netherlands), C. BONIFAZI, M. SMARGIASSI (CNR, Istituto di Fisica dello Spazio Interplanetario, Frascati, Italy), and R. DEBRIE (CNRS, Laboratoire de Physique et de Chimie de l'Environnement, Orleans, France) (COSPAR, URSI, and IAGA, Plenary Meeting, 26th, Symposium on Active Experiments, 1st, Toulouse, France, June 30-July 11, 1986) Advances in Space Research (ISSN 0273-1177), vol. 8, no. 1, 1988, p. 213-217, 219, 220. refs

The I-V characteristic and the sheath of a Tethered Satellite

laboratory model are investigated in a simulated ionospheric plasma environment with particular emphasis on magnetic field effects. The current collection in the ion regime can be described by a power law: I varies as V exp 0.85 and no magnetic field effect is observed. Strong magnetic field effects are observed in the electron current collection regime which cannot be described by a single power law. In the presence of a magnetic field transverse to the plasma flow, the wake of a highly positively charged body is found sideways the body rather than downstream.

A88-46807* Colorado State Univ., Fort Collins. PLASMA CONTACTOR DESIGN FOR ELECTRODYNAMIC TETHER APPLICATIONS

PAUL J. WILBUR and THOMAS G. LAUPA (Colorado State University, Fort Collins) (COSPAR, URSI, and IAGA, Plenary Meeting, 26th, Symposium on Active Experiments, 1st, Toulouse, France, June 30-July 11, 1986) Advances in Space Research (ISSN 0273-1177), vol. 8, no. 1, 1988, p. 221-224. refs (Contract NGR-06-002-112: NAG9-120)

The plasma contacting process is described and experiments are discussed that suggest the key role that cold ions play in establishing a low impedance plasma bridge that can conduct current in either direction between a contactor electrode and a dilute plasma. A ring cusp contactor is shown to provide from 1000-mA of electron emission to 500-mA of electron collection as its bias relative to a simulated space plasma is varied through an 80-v range.

A88-47970#

ELECTROSTATIC CHARGING AND ARC DISCHARGES ON SATELLITE DIELECTRICS SIMULATED BY ELECTRON BEAM

HARUHISA FUJII, YOSHIKAZU SHIBUYA (Mitsubishi Electric Corp., Amagasaki, Japan), TOSHIO ABE, RITAROH KASAI (Mitsubishi Electric Corp., Kamakura, Japan), and HIRONOBU NISHIMOTO (National Space Development Agency of Japan, Tsukuba) (Space Systems Technology Conference, San Diego, CA, June 9-12, 1986, Technical Papers, p. 156-163) Journal of Spacecraft and Rockets (ISSN 0022-4650), vol. 25, March-Apr. 1988, p. 156-161. Previously cited in issue 19, p. 2741, Accession no. A86-40597. refs

A88-50306

FIBER BASED PHASED ARRAY ANTENNAS

JOEL L. GUGGENMOS and RONALD L. JOHNSON (TRW, Inc., Defense Communications Div., Redondo Beach, CA) IN: Optical technology for microwave applications III; Proceedings of the Meeting, Orlando, FL, May 19, 20, 1987. Bellingham, WA, Society of Photo-Optical Instrumentation Engineers, 1987, p. 70-77. refs

A phased array antenna is a multielement antenna capable of agile electronic beam forming and steering requiring several hundred high frequency, wide bandwidth, interconnections. Conventional distribution methods using waveguide or coax are impractical because they exhibit high attenuation, limited bandwidth, sensitivity to EMI, temperature drifts, and phase instability. Additionally, for large numbers of antenna elements, the size and weight of such systems make them impossible for large scale implementation on communication satellites. RF signal distribution via fiber optic technology is a potential solution to these phased array antenna problems.

A88-50308

COMPARISON OF FIBER OPTIC AND SPACE FEED FOR LARGE APERTURE PHASED ARRAY ANTENNAS

NILS V. JESPERSEN and PETER R. HERCZFELD (Drexel University, Philadelphia, PA) IN: Optical technology for microwave applications III; Proceedings of the Meeting, Orlando, FL, May 19, 20, 1987. Bellingham, WA, Society of Photo-Optical Instrumentation Engineers, 1987, p. 88-91.

Two technologies which are potential candidates for distributing control and intelligence information in large phased array antennas, are space feeding and fiber optic corporate feeding. A comparison of the two technologies is presented in both qualitative and quantitative form. The comparison is embodied in the hypothetical

cases of a V-band and an L-band spaceborne imaging radar. Size, weight, power and performance impacts of the two feeding methods are contrasted.

A88-51341#

SPACECRAFT SURFACE COATING HEAT GENERATION BY CHARGED PARTICULATE OF THE NATURAL SPACE ENVIRONMENT

RICHARD D. JIMENEZ (New Mexico, University; Aerospace Corp., Albuquerque) and MOHAMED S. EL-GENK (New Mexico, University, Albuquerque) ASME, Winter Annual Meeting, Boston, MA, Dec. 13-18, 1987. 9 p. Research supported by the Aerospace Corp. refs

(ASME PAPER 87-WA/HT-13)

Characteristics of charged particulate trapped within the earth's geomagnetic fields are discussed and their interactions with absorbing media are highlighted. Fundamental treatments for determining primary particle energy transfer of energetic protons and electrons to absorbing media are presented and applied to various simulations of particle flux levels. In particular, the heating of a .025 cm thick zinc orthotitanate coating and tantalum substrate by charged particulate is treated and resulting predicted temperatures are presented. Degradation data of spacecraft surface coating materials are presented and some discussion of established and potential degradation mechanisms are featured.

Author

A88-51391#

REAL-TIME, AUTOMATIC VEHICLE-POTENTIAL DETERMINATION FROM ESA MEASUREMENTS - THE DISTRIBUTION FUNCTION ALGORITHM

STANLEY L. SPIEGEL (Lowell, University, MA) and HERBERT A. COHEN (USAF, Geophysics Laboratory, Hanscom AFB, MA) Journal of Spacecraft and Rockets (ISSN 0022-4650), vol. 25, May-June 1988, p. 234-238. refs

(Contract F49620-79-C-0038; AF-AFOSR-85-0015)

A spacecraft-borne electrostatic analyzer's positive ion count measurements at GEO are presently used by a novel technique to ascertain the plasma distribution function, on the basis of which the spacecraft's potential can be inferred with high accuracy and in real time. The method has been found to be highly successful in the test interval containing natural charging events, irrespective of plasma stability. The computational and storage requirements of the technique are suitable for real-time space vehicle potential determination.

O.C.

A88-51392#

SEVERAL SPACECRAFT-CHARGING EVENT ON SCATHA IN SEPTEMBER 1982

H. C. KOONS, P. F. MIZERA, J. L. ROEDER, and J. F. FENNELL (Aerospace Corp., El Segundo, CA) Journal of Spacecraft and Rockets (ISSN 0022-4650), vol. 25, May-June 1988, p. 239-243. Previously cited in issue 08, p. 1059, Accession no. A87-22659. refs

(Contract F04701-85-C-0086)

A88-52333* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

SPACE STATION PHOTOVOLTAIC POWER MODULES

CHARLES A. TATRO (NASA, Lewis Research Center, Cleveland, OH) IN: Space Congress, 25th, Cocoa Beach, FL, Apr. 26-29, 1988, Proceedings. Cape Canaveral, FL, Canaveral Council of Technical Societies, 1988, p. 5-21 to 5-33. refs

Silicon cell Photovoltaic (PV) power modules are key components of the Space Station Electrical Power System (EPS) scheduled to begin deployment in 1994. Four PV power modules, providing 75 KWe of user ac power, form the cornerstone of the EPS; which is comprised of Photovoltaic (PV) power modules, Solar Dynamic (SD) power modules, and the Power Management and Distribution (PMAD) system. The PV modules are located on rotating outboard sections of the Space Station (SS) structure and each module incorporates its own nickel-hydrogen energy storage batteries, its own thermal control system, and some

autonomous control features. The PV modules are a cost-effective and technologically mature approach for providing reliable SS electrical power and are a solid base for EPS growth, which is expected to reach 300 KWe by the end of the Space Station's 30-year design lifetime.

A88-52339

GROUND BASED OPERATIONS SUPPORT BY ARTIFICIAL INTELLIGENCE

RAINER GRUEN and ALBRECHT KELLNER (MBB-ERNO Raumfahrttechnik GmbH, Bremen, Federal Republic of Germany) IN: Space Congress, 25th, Cocoa Beach, FL, Apr. 26-29, 1988, Proceedings. Cape Canaveral, FL, Canaveral Council of Technical Societies, 1988, p. 6-1 to 6-10.

The application of AI as support for ground-based space operations is considered, and the question of the management of large distributed AI-systems within a complex communications environment is addressed. The future European ground infrastructure is discussed, with special attention given to the space station Columbus, the Ariane 5 launcher, the Hermes spaceplane, and the European data relay satellite. Applicability of AI to the areas of cognition, analysis and interpretation, and the synthesis of activity sequences and scheduling is reviewed. Also considered are AI technologies, knowledge management, and system integration.

A88-53470* California Univ., La Jolla. A STUDY OF SCATHA ECLIPSE CHARGING

WEI-WEI LI and ELDEN C. WHIPPLE (California, University, La Jolla) Journal of Geophysical Research (ISSN 0148-0227), vol. 93, Sept. 1, 1988, p. 10041-10046. refs (Contract NGL-05-005-007)

The events of charging of the SCATHA satellite in eclipse were investigated and correlated to the spacecraft surface-averaged and angle-averaged fluxes. It is shown that the large negative vehicle potentials produced in eclipse correlated with the net current due to the high-energy plasma electrons. These potentials also depend on the ion energy, ion current, and the average ion yield. An explanation for this behavior is proposed.

A88-53779

ADVANCED SPACE POWER SYSTEMS

V. L. TEOFILO (Lockheed Missiles and Space Co., Inc., Sunnyvale, CA) SAWE, Annual Conference, 46th, Seattle, WA, May 18-20, 1987. 11 p.

(SAWE PAPER 1762)

A review of electrical power source concepts for application to near term space missions is presented along with a comparison of their weight and area estimates. The power sources reviewed include photovoltaic solar arrays, solar concentrators, radioisotopic thermoelectric generators (RTG), Dynamic Isotope Power Subsystems (DIPS) and nuclear reactors. The solar arrays are found to be the lightest systems in the 1-6 kWe range for a 10 year mission life but they have the largest area of the practicable sources. Solar dynamics has the smallest area of the solar systems and has the lightest mass above 20 kWe of all the solar sources when a closed Brayton cycle power conversion system is used. The DIPS is the lightest weight system from 6 to 11 kWe above which the thermionic reactor is the lightest assuming a 38 foot boom is used to minimize shield weight.

A88-54749

FOCAL-PLANE AND APERTURE-PLANE HETERODYNE ARRAY RECEIVERS FOR MILLIMETER-WAVE RADIOASTRONOMY - A COMPARISON

J. ANTHONY MURPHY (Maynooth College, Ireland) and RACHAEL PADMAN (Mullard Radio Astronomy Observatory, Cambridge, England) International Journal of Infrared and Millimeter Waves (ISSN 0195-9271), vol. 9, Aug. 1988, p. 667-704. refs

Maximization of the throughput of a single large antenna is investigated for the cases of focal plane imaging arrays and aperture plane phased arrays. Trade-offs between these two types

of arrays are considered with respect to field of view, sampling efficiency, and time to map a source. Limits imposed on the number of feed elements in an imaging array by the deterioration in aperture efficiency off-axis are determined. Advantages of the focal plane array over the aperture plane array include simpler electronics and fewer restrictions on the field of view.

A88-54853*# National Aeronautics and Space Administration, Washington, DC.

CONNECTIVITY IS THE KEY

DANA L. HALL (NASA, Space Station Program Office, Washington, DC) Aerospace America (ISSN 0740-722X), vol. 26, Sept. 1988, p. 24-27.

Connectivity that would allow users at home to interact with an experiment in space and with facilities and services worldwide is a primary goal of the international Space Station program. The systems supporting such connectivity, including the Space Station Information System, the Technical and Management Information System, and the Software Support Environment, are discussed here. The primary purposes of each system and their operational data are addressed.

C.D.

N88-20569# National Aerospace Lab., Amsterdam (Netherlands). Space Div.

FEASIBILITY DEMONSTRATION OF A SENSOR FOR HIGH-QUALITY TWO-PHASE FLOW

A. A. M. DELIL 9 Jan. 1987 32 p

(Contract NIVR-2502-N)

(NLR-TR-87009-U; B8729599; ETN-88-91724) Avail: NTIS HC A03/MF A01

Systems to control the liquid flow rates into evaporative cold plates in the two-phase flow heat transport systems for the Columbus Space Platform and the Space Station are discussed. Candidate components for such a control system are sensors monitoring the (very high) mixture quality at the cold plate exit lines, control algorithms, and actuators (valves) to adjust the liquid flow rates. The feasibility of a dedicated sensor is theoretically and experimentally demonstrated. Recommendations for the further development of the sensor are presented.

N88-21243*# Hughes Research Labs., Malibu, CA. SPACECRAFT DIELECTRIC SURFACE CHARGING PROPERTY DETERMINATION Final Report, Sep. 1980 - Nov. 1981 W. S. WILLIAMSON Oct. 1987 84 p

(Contract NAS3-22540)

(NASA-CR-180879; NAS 1.26:180879) Avail: NTIS HC A05/MF A01 CSCL 22B

The charging properties of 127 micron thick polyimide, (a commonly used spacecraft dielectric material) was measured under conditions of irradiation by a low-current-density electron beam with energy between 2 and 14 keV. The observed charging characteristics were consistent with predictions of the NASCAP computer model. The use of low electron current density results in a nonlinearity in the sample-potential versus beam-energy characteristic which is attributed to conduction leakage through the sample. Microdischarges were present at relatively low beam energies.

N88-21251*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

POWER TRANSMISSION STUDIES FOR TETHERED SP-100
DAVID J. BENTS 1988 16 p Proposed for presentation at
the 23rd Intersociety Energy Conversion Engineering Conference,
Denver, Colo., 31 Jul. - 5 Aug. 1988; sponsored by ASME, AIAA,
ANS, SAE, IEEE, ASC and AIChE

(NASA-TM-100864; E-4081; NAS 1.15:100864) Avail: NTIS HC A03/MF A01 CSCL 10B

The tether and/or transmission line connecting the SP-100 to space station presents some unorthodox challenges in high voltage engineering, power transmission, and distribution. The line, which doubles as a structural element of this unusual spacecraft, will convey HVDC from SP-100 to the platform in low Earth orbit, and environment where the local plasma is sufficient to cause

breakdown of exposed conductors at potentials of only a few hundred volts. Its anticipated several years operation, and continuously accumulating exposure to meteoroids and debris, raises an increasing likelihood that mechanical damage, including perforation, will be sustained in service. The present concept employs an array of gas insulated solid wall aluminum coaxial tubes; a conceptual design which showed basic feasibility of the SP-100 powered space station. Practical considerations of launch, deployment and assembly have lead to investigation of reel deployable, dielectric insulated coaxial cables. To be competitive, the dielectric would have to operate reliably in a radiation environment under electrical stresses exceeding 50 kV/cm. The SP-100 transmission line high voltage interfaces are also considered.

N88-21254*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

POWER SYSTEMS FOR PRODUCTION, CONSTRUCTION, LIFE SUPPORT AND OPERATIONS IN SPACE

RONALD J. SOVIE 1988 16 p Proposed for presentation at Space '88, Albuquerque, N. Mex., 29-31 Aug. 1988; sponsored by the American Society of Civil Engineers

(NASA-TM-100838; É-4026; NAS 1.15:100838) Avail: NTIS HC A03/MF A01 CSCL 22B

As one looks to man's future in space it becomes obvious that unprecedented amounts of power are required for the exploration, colonization, and exploitation of space. Activities envisioned include interplanetary travel and LEO to GEO transport using electric propulsion, Earth and lunar observatories, advance space stations, free-flying manufacturing platforms, communications platforms, and eventually evolutionary lunar and Mars bases. These latter bases would start as camps with modest power requirements (kWes) and evolve to large bases as manufacturing, food production, and life support materials are developed from lunar raw materials. These latter activities require very robust power supplies (MWes). The advanced power system technologies being pursued by NASA to fulfill these future needs are described. Technologies discussed will include nuclear. photovoltaic, and solar dynamic space power systems, including energy storage, power conditioning, power transmission, and thermal management. The state-of-the-art and gains to be made by technology advancements will be discussed. Mission requirements for a variety of applications (LEO, GEO, lunar, and Martian) will be treated, and data for power systems ranging from a few kilowatts to megawatt power systems will be represented. In addition the space power technologies being initiated under NASA's new Civilian Space Technology Initiative (CSTI) and Space Leadership Planning Group Activities will be discussed.

N88-21374*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

POWER COMPONENTS FOR THE SPACE STATION 20-KHZ POWER DISTRIBUTION SYSTEM

DAVID D. RENZ 1988 10 p Proposed for presentation at the 23rd Intersociety Energy Conversion Engineering Conference, Denver, Colo., 31 Jul. - 5 Aug. 1988; sponsored by ASME, AIAA, ANS, SAE, IEEE, ACS and AIChE

(NASA-TM-100866; E-4092; NAS 1.15:100866) Avail: NTIS HC A02/MF A01 CSCL 09C

Since 1984, NASA Lewis Research Center was developing high power, high frequency space power components as part of The Space Station Advanced Development program. The purpose of The Advanced Development program was to accelerate existing component programs to ensure their availability for use on the Space Station. These components include a rotary power transfer device, remote power controllers, remote bus isolators, high power semiconductor, a high power semiconductor package, high frequency-high power cable, high frequency-high power connectors, and high frequency-high power transformers. All the components were developed to the prototype level and will be installed in the Lewis Research Center Space Station power system test bed.

Author

N88-21375*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

MULTI-HUNDRED KILOWATT ROLL RING ASSEMBLY EVALUATION RESULTS

DAVID D. RENZ 1988 10 p Proposed for presentation at the 23rd Intersociety Energy Conversion Engineering Conference, Denver, Colo., 31 Jul. - 5 Aug. 1988; sponsored by ASME, AIAA, ANS, SAE, IEEE, ACS and AIChE

(NASA-TM-100865; E-4091; NAS 1.15:100865) Avail: NTIS HC A02/MF A01 CSCL 13B

NASA Lewis Research Center has been evaluating low loss multi-hundred-kilowatt Roll Ring assemblies (an 8 circuit and a 4 circuit) for use on Space Station as the rotating joint power transfer device. In this device ac or dc power is transferred across the rotating joint through compressed rotating flexures. Results and conclusions of the evaluation program are presented.

N88-22939*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

THE APPLICATION OF HIGH TEMPERATURE SUPERCONDUCTORS TO SPACE ELECTRICAL POWER DISTRIBUTION COMPONENTS

PAUL R. ARON and IRA T. MYERS 1988 8 p Proposed for presentation at the 23rd Intersociety Energy Conversion Engineering Conference, 31 Jul. - 5 Aug. 1988; sponsored by ASME, AIAA, ANS, SAE, IEEE, ACS and AIChE

(NASA-TM-100901: E-4153: NAS 1 15:100901) Avail: NTIS HC.

(NASA-TM-100901; E-4153; NAS 1.15:100901) Avail: NTIS HC A02/MF A01 CSCL 10B

Some important space based electrical power distribution systems and components are examined to determine what might be achieved with the introduction of high temperature superconductors (HTS). Components that are compared in a before and after fashion include transformers, transmission lines, and capacitors. It is concluded that HTS has its greatest effect on the weight associated with transmission lines, where the weight penalty could be reduced by as much as 130 kg/kW/km of cable. Transformers, because 28 percent of their mass is in the conductor, are reduced in weight by the same factor. Capacitors are helped the least with only negligible savings possible. Finally, because HTS can relax the requirement to use alternating current in order to reduce conductor mass, it will be possible to generate significant savings by eliminating most transformers and capacitors. J.P.B.

N88-23073*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

CASE STUDY OF ACTIVE ARRAY FEED COMPENSATION WITH SIDELOBE CONTROL FOR REFLECTOR SURFACE DISTORTION

R. J. ACOSTA, A. J. M. ZAMAN, E. A. BOBINSKY, A. R. CHERRETTE, and S. W. LEE (Illinois Univ., Urbana-Champaign.) 1988 7 p Presented at the 1988 AP-S/URSI International Symposium, Syracuse, N.Y., 6-10 Jun. 1988; sponsored by IEEE (NASA-TM-100287; E-3932; NAS 1.15:100287) Avail: NTIS HC A02/MF A01 CSCL 20N

The feasibility of electromagnetically compensating for reflector surface distortions has been investigated. The performance characteristics (gain, sidelobe levels, etc.) of large communication antenna systems degrade as the reflector surface distorts mainly due to thermal effects from a varying solar flux. The techniques described in this report can be used to maintain the design performance characteristics independently of thermal effects on the reflector surface. With the advent of monolithic microwave integrated circuits (MMIC), a greater flexibility in array-fed reflector system design can be achieved. MMIC arrays provide independent control of amplitude and phase for each of many radiating elements of the feed array. It is assumed that the surface characteristics (x,y,z, its first and second derivatives) under distorted conditions are known.

N88-23649*# Colorado State Univ., Fort Collins. Dept. of Mechanical Engineering.

SPACE PLASMA CONTACTOR RESEARCH, 1987 Annual Report, 1 Jan. 1987 - 1 Jan. 1988

PAUL J. WILBUR Jan. 1988 87 p (Contract NAG3-776) (NASA-CR-182148; NAS 1.26:182148) Avail: NTIS HC A05/MF

A01 CSCL 201

A simple model describing the process of electron collection from a low pressure ambient plasma in the absence of magnetic field and contactor velocity effects is presented. Experimental measurments of the plasma surrounding the contactor are used to demonstrate that a double-sheath generally develops and separates the ambient plasma from a higher density, anode plasma located adjacent to the contactor. Agreement between the predictions of the model and experimental measurements obtained at the electron collection current levels ranging to 1 A suggests the surface area at the ambient plasma boundary of the double-sheath is equal to the electron current being collected divided by the ambient plasma random electron current density: the surface area of the higher density anode plasma boundary of the double-sheath is equal to the ion current being emitted across this boundary divided by the ion current density required to sustain a stable sheath; and the voltage drop across the sheath is determined by the requirement that the ion and electron currents counterflowing across the boundaries be at space-charge limited

N88-24321# General Electric Co., Philadelphia, PA. Space Systems Div.

levels. The efficiency of contactor operation is shown to improve

when significant ionization and excitation is induced by electrons

that stream from the ambient plasma through the double-sheath

and collide with neutral atoms being supplied through the hollow

Author

TURBOMACHINERY IN SPACE

cathode.

T. S. CHAN, W. S. CHIU, R. E. TROEGER, and M. SHAH In New Mexico Univ., Transactions of the Fourth Symposium on Space Nuclear Power Systems p 285-288 1987 (Contract F33615-85-C-2544)

Avail: NTIS HC A22/MF A01

The need to supply high levels of electrical power in the multimegawatt (MMW) range for short durations, such as the Strategic Defense Initiative (SDI) missions, is anticipated in future space applications. A potential power subsystem candidate based upon near-term technology is the turbogenerator consisting of a power turbine driving a generator or alternator. Numerous studies have shown that turbogenerators using either nuclear or chemical heat source can provide the burst MMW power at lowest system mass. However, no full consideration has yet been given to other essential issues associated with operating the power subsystem, such as dynamic interactions with the spacecraft, thermal management, fuel storage and control, and effluent management. The status of a 3 year study to assess the feasibility of turbomachinery for space application is presented. The hardware studied includes: the turbine and its components; the electrical generator and power conditioning elements; and the space platform design. The effects, interactions, and performance of all subsystems are analyzed. Author

N88-24392# Los Alamos National Lab., NM. INDIVIDUAL SATELLITE POWER REQUIREMENTS CALCULATED FROM SPECIFIED CONSTELLATION PERFORMANCE

DUANE R. MARR, RUSSELL B. KIDMAN, and W. GREG LACEY In New Mexico Univ., Transactions of the Fifth Symposium on Space Nuclear Power Systems p 85-88 1988 Sponsored by DOE, Washington, D.C. and DOD, Washington, D.C. Avail: NTIS HC A99/MF A01

The development of individual station power requirements in a space-based SDI system needs to be made in the context of the defensive effectiveness of the system as a whole, and not on the maximum effectiveness of the individual platform. It is possible, for instance, that a few platforms with high effectiveness might be a less cost effective way to achieve a given level of performance than a larger number of platforms, each with a lesser effectiveness. In order to make a tradeoff study, one needs to calculate the performance of the defensive system as a whole. Further, total

system power is important because it is a major determinant of the launch resources required. An evaluation of the resource requirements for such a system thus requires a knowledge not only of the individual station power but also of the number of platforms. These are just two of the problems that the computer program DEFENSE can help solve. DEFENSE is a computer simulation of the engagement of a space-based SDI defense against an offensive threat containing hundreds of thousands of objects. Given the characteristics of a defensive platform and the number of such platforms, DEFENSE calculates the performance of the system as a whole. It can thus be used to determine the size of (numbers in) the constellation required for a given level of performance. It can also help optimize the system through the use of tradeoff studies.

N88-24670# European Space Agency. European Space Research and Technology Center, ESTEC, Noordwijk (Netherlands).

SIMULATIONS OF THE ELECTROSTATIC CHARGING OF ESA COMMUNICATIONS SATELLITES

E. J. DALY and W. R. BURKE Dec. 1987 45 p (ESA-STM-239; ISSN-0379-4067; ETN-88-92555) Avail: NTIS HC A03/MF A01

The NASA Charging Analyzer Program (NASCAP) was used to investigate the electrostatic charging of three-axis stabilized satellites in geostationary plasma environments. Capabilities and limitations are discussed and the use of NASCAP in anomaly investigations is described. Three-dimensional charging simulations were performed for eclipse and sunlight conditions, with various plasma environments. The importance of three-dimensional effects is demonstrated. Differential charging on the solar arrays during eclipse and immediately following eclipse are predicted to be significant. Charging is strongly dependent on exposed material parameter values, since these determine the magnitudes of the seven basic components of the current to a surface. The effects of changes in the properties of exposed materials on the charging of the satellite were investigated to identify ways of reducing the differential charging. The associated program MATCHG was also used to investigate material response to charging environments (including laboratory electron beams) at a more basic level, without consideration of the geometrical or photoemission effects. It proves a useful tool in aiding the interpretation and reconciliation of material testing results before a full NASCAP run is undertaken.

N88-25394*# Alabama Univ., Huntsville. Dept. of Electrical and Computer Engineering.

SPACE STATION INDUCED ELECTROMAGNETIC EFFECTS

N. SINGH In NASA, Langley Research Center, A Study of Space Station Contamination Effects p 31-42 May 1988

Avail: NTIS HC A07/MF A01 CSCL 20N

Several mechanisms which can cause electric (E) and magnetic (B) field contaminations of the Space Station environment are identified. The level of E and B fields generated by some of them such as the motion of the vehicle across the ambient magnetic field B(0) and the 20-kHz leakage currents and charges can be controlled by proper design considerations. On the other hand, there are some mechanisms which are inherent to the interaction of large vehicles with the plasma and probably their contributions to E and B fields cannot be controlled; these include plasma waves in the wake and ram directions and the effects of the volume current generated by the ionization of neutrals. The interaction of high-voltage solar arrays with plasma is yet another rich source of E and B fields and it is probably uncontrollable. Wherever possible, quantitative estimates of E and B are given. A set of recommendations is included for further study in areas where indepth knowledge is seriously lacking.

N88-25745*# Jet Propulsion Lab., California Inst. of Tech., Pasadena.

LARGE ANTENNA EXPERIMENTS ABOARD THE SPACE SHUTTLE: APPLICATION OF NONUNIFORM SAMPLING TECHNIQUES

Y. RAHMATSAMII *In its* Proceedings of the Mobile Satellite Conference p 459-464 May 1988
Avail: NTIS HC A23/MF A01 CSCL 17B

Future satellite communication and scientific spacecraft will utilize antennas with dimensions as large as 20 meters. In order to commercially use these large, low sidelobe and multiple beam antennas, a high level of confidence must be established as to their performance in the 0-g and space environment. Furthermore, it will be desirable to demonstrate the applicability of surface compensation techniques for slowly varying surface distortions which could result from thermal effects. An overview of recent advances in performing RF measurements on large antennas is presented with emphasis given to the application of a space based far-field range utilizing the Space Shuttle and the concept of a newly developed nonuniform sampling technique.

N88-25746*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

THE 15-METER ANTENNA PERFORMANCE OPTIMIZATION USING AN INTERDISCIPLINARY APPROACH

WILLIAM L. GRANTHAM, LYLE C. SCHROEDER, MARION C. BAILEY, and THOMAS G. CAMPBELL /n Jet Propulsion Lab., Proceedings of the Mobile Satellite Conference p 465-470 May

Avail: NTIS HC A23/MF A01 CSCL 17B

A 15-meter diameter deployable antenna has been built and is being used as an experimental test system with which to develop interdisciplinary controls, structures, and electromagnetics technology for large space antennas. The program objective is to study interdisciplinary issues important in optimizing large space antenna performance for a variety of potential users. The 15-meter antenna utilizes a hoop column structural concept with a gold-plated molybdenum mesh reflector. One feature of the design is the use of adjustable control cables to improve the paraboloid reflector shape. Manual adjustment of the cords after initial deployment improved surface smoothness relative to the build accuracy from 0.140 in. RMS to 0.070 in. Preliminary structural dynamics tests and near-field electromagnetic tests were made. The antenna is now being modified for further testing. Modifications include addition of a precise motorized control cord adjustment system to make the reflector surface smoother and an adaptive feed for electronic compensation of reflector surface distortions. Although the previous test results show good agreement between calculated and measured values, additional work is needed to study modelling limits for each discipline, evaluate the potential of adaptive feed compensation, and study closed-loop control performance in a dynamic environment.

N88-26396# Aerospace Corp., El Segundo, CA. Space Sciences Lab.

A SEVERE SPACECRAFT-CHARGING EVENT ON SCATHA IN SEPTEMBER 1982

H. C. KOONS, P. F. MIZERA, J. L. ROEDER, and J. F. FENNELL 5 Feb. 1988 30 p

(Contract F04701-85-C-0086)

(AD-A193007; TR-0086A(2940-06)-6; SD-TR-88-12) Avail: NTIS HC A03/MF A01 CSCL 22B

On September 22, 1982, 29 large amplitude electrostatic discharges were detected by the Pulse Analyzer onboard the SCATHA satellite. Seventeen of these pulses exceeded the maximum voltage discrimination level, which was set to 7.4 volts. This was the worst instance of electrostatic discharges encountered to date by the SCATHA satellite. Three different spacecraft anomalies occurred on SCATHA that day, the most serious being a two-minute loss of data. During this same time period, the Surface Potential Monitor experiment aboard the satellite measured the largest differential surface charging observed in the data since the satellite's launch in January 1979.

N88-29375*# National Aeronautics and Space Administration.
Marshall Space Flight Center, Huntsville, AL.
EXPERT SYSTEMS FOR MSFC POWER SYSTEMS

DAVID J. WEEKS *In its* Second Conference on Artificial Intelligence for Space Applications p 215-226 Aug. 1988 Avail: NTIS HC A99/MF E03 CSCL 10B

Future space vehicles and platforms including Space Station will possess complex power systems. These systems will require a high level of autonomous operation to allow the crew to concentrate on mission activities and to limit the number of ground support personnel to a reasonable number. The Electrical Power Branch at NASA-Marshall is developing advanced automation approaches which will enable the necessary levels of autonomy. These approaches include the utilization of knowledge based or expert systems.

N88-29412*# Rockwell International Corp., Canoga Park, CA. Rocketdyne Div.

UTILIZATION OF ARTIFICIAL INTELLIGENCE TECHNIQUES FOR THE SPACE STATION POWER SYSTEM

THOMAS C. EVATT and EDWARD W. GHOLDSTON In NASA, Marshall Space Flight Center, Second Conference on Artificial Intelligence for Space Applications p 555-562 Aug. 1988

Avail: NTIS HC A99/MF E03 CSCL 09B

Due to the complexity of the Space Station Electrical Power System (EPS) as currently envisioned, artificial intelligence/expert system techniques are being investigated to automate operations, maintenance, and diagnostic functions. A study was conducted to investigate this technology as it applies to failure detection, isolation, and reconfiguration (FDIR) and health monitoring of power system components and of the total system. Control system utilization of expert systems for load scheduling and shedding operations was also researched. A discussion of the utilization of artificial intelligence/expert systems for Initial Operating Capability (IOC) for the Space Station effort is presented along with future plans at Rocketdyne for the utilization of this technology for enhanced Space Station power capability.

N88-30182# AEG-Telefunken, Wedel (Germany, F.R.). Space and New Technologies Subdivision.

ALTERNATIVE MODULE CONFIGURATIONS FOR ADVANCED SOLAR ARRAYS ON LOW ORBIT AND EXTENDED LIFETIME MISSIONS (AMOC 2) Final Report

D. GRINGEL, U. HOFFMANN, J. KOCH, F. REISSMANN, and W. SCHMITZ Paris, France ESA 15 Dec. 1987 116 p (Contract ESTEC-5508/83-NL-PB(SC)) (ESA-CR(P)-2581; ETN-88-93026) Avail: NTIS HC A06/MF A01

The applicability of the bifacial solar cell for generators operating in the low earth orbit and having extended life time mission was studied. Two candidate module concepts for flexible roll out and/or fold out solar generator systems were defined. One module concept is characterized by a continuous light transparent substrate and uses a transparent adhesive to glue the solar cells onto the substrate. The other module concept uses a nontransparent substrate with cutouts (windows) in the solar cell area of the substrate so that only small rearside areas of the individual solar cells are covered. The design and the bifacial solar cell technology were improved with regard to their applicability for larger assemblies. A thermal vacuum cycling test on a foldable ATOX resistant window type solar panel assembly confirms design feasibility.

N88-30501# Joint Publications Research Service, Arlington, VA. RELATIONSHIP BETWEEN CHARACTERISTICS OF LOW-ENERGY ELECTRONS AND GEOMAGNETIC DISTURBANCE IN GEOSTATIONARY ORBIT Abstract Only O. S. GRAFODATSKIY, V. I. DEGTYAREV, A. G. KOZLOV, V. I. LAZAREV, O. I. PLATONOV, G. V. POPOV, and M. V. TELTSOV In its JPRS Report: Science and Technology. USSR: Space p 12-13 26 Feb. 1988 Transl. into ENGLISH from Geomagnetizm i Aeronomiya (Moscow, USSR), v. 27, no. 3, May - Jun. 1987 p 494-496

Avail: NTIS HC A04/MF A01

Measurements of low-energy (0.3 to 5.0 keV) electrons made on the Raduga geostationary satellite during a period of low magnetospheric disturbance in April-September 1980 are analyzed.

The spectra of particles in the substorm disturbance region differ from Maxwellian and their fluxes are increased as a result of acceleration of plasma sheet particles from the tail of the magnetosphere in the region 6.6 R sub E. The fluxes and spectra of these particles are complexly and strongly dependent on the level of magnetic disturbance and LT. In order to ascertain the relationship between the observed spectra and the physical processes in the magnetosphere it was assumed that a magnetosphereic distrubance develops in a spatially limited nucleus near the midnight meridian and in its expansion forms the charged particles injection front. The results of measurements of electron fluxes were averaged for fixed hourly LT intervals and the diurnal variations of fluxes of electrons of different energies was determined from these averaged values. The effects of local magnetospheric disturbances and the effects of movements of the plasma sheet edge could be separated. In a particularly quiet magnetosphere there were no regions in the neighborhood of the geostationary orbit where electron acceleration could occur; in the quiet magnetosphere small local disturbances can occur; in a slightly disturbed magnetosphere the frequency and intensity of local disturbances increase. Author

07

ADVANCED MATERIALS

Includes matrix composites, polyimide films, thermal control coatings, bonding agents, antenna components, manufacturing techniques, and space environmental effects on materials.

A88-33018 DESIGN, FABRICATION, AND TESTING OF ROLLED CARBON/EPOXY STRUTS FOR SPACE STATION APPLICATION

RUDY LUKEZ, DAVID R. NELSON (Morton Thiokol, Inc., Brigham City, UT), VOLKER B. TELLER, and HARLEY J. ROCKOFF (Rockwell International Corp., Space Station Systems Div., Downey, CA) IN: International SAMPE Technical Conference, 19th, Crystal City, VA, Oct. 13-15, 1987, Proceedings. Covina, CA, Society for the Advancement of Material and Process Engineering, 1987, p. 536-544.

High-quality carbon/epoxy struts applicable to the proposed NASA Space Station's space structure in virtue of their high stiffness, low voids-content, and low production cost, have been manufactured by means of a novel 'tape-rolling' process. In this process, aluminum foil overwraps serving as protection for the epoxy in the space environment can be easily incorporated. Alternative fabrication methods which were considered and rejected include filament-winding, braiding, and pultrusion.

O.C.

A88-33958

ELECTROTOPOGRAPHIC INVESTIGATION OF THE DEGRADATION DYNAMICS OF DIELECTRIC LAYERS IN SPACE [ELEKTROTOPOGRAFICHESKIE ISSLEDOVANIIA DINAMIKI DEGRADATSII DIELEKTRICHESKIKH SLOEV V OTKRYTOM KOSMOSE]

A. E. KRAVTSOV and M. T. SHPAK (AN USSR, Institut Fiziki, Kiev, Ukrainian SSR) Kosmicheskaia Nauka i Tekhnika (ISSN 0321-4508), no. 1, 1986, p. 69, 70. In Russian. refs

The necessity of collecting data on the degradation of spacecraft structural materials under the effects of space flight factors is substantiated. A technique for the electrotopographic monitoring of defects is described. Results are presented on the degradation dynamics of thin dielectric layers under the effect of space flight factors investigated in the Salyut-7 Electrotopograph experiments.

B.J.

A88-34312* Spectrolab, Inc., Sylmar, CA.
DEVELOPMENT OF 8 CM X 8 CM SILICON GRIDDED BACK
SOLAR CELL FOR SPACE STATION

D. R. LILLINGTON, J. R. KUKULKA, S. M. BUNYAN, G. F. J. GARLICK (Spectrolab, Inc., Sylmar, CA), and B. SATER (NASA, Lewis Research Center, Cleveland, OH) IN: IEEE Photovoltaic Specialists Conference, 19th, New Orleans, LA, May 4-8, 1987, Proceedings. New York, Institute of Electrical and Electronics Engineers, Inc., 1987, p. 489-493. (Contract NAS3-24672)

The 8-cm x 8-cm gridded back cell being developed for the space station photovoltaic array is described. Modeling studies show that the beginning of life power output of 1.039 W per cell may be met by several different configurations, the most promising being either a fielded or nonfielded 2 ohm-cm planar 8-mil cell. Experimental data are presented which show that a thermal alpha of 0.63 is achievable on a planar cell but at the expense of some Isc. Planar cells are found to possess short-circuit currents which are 9 percent lower than on textured cells due to the loss of near-IR radiation by transmission through the cell. Preliminary modeling shows that the efficiency of the textured cell exceeds the planar cell by approximately 9 percent at 25 C but the situation is reversed in orbit due to the high thermal alpha of textured cells (0.82). Experimental data show that the IR absorption in textured cells can be reduced by about 3 alpha points without loss of efficiency by controlling the doping concentration in the diffused layers, thus increasing the efficiency in orbit.

A88-34418* Jet Propulsion Lab., California Inst. of Tech., Pasadena.

TEMPERATURE CHARACTERISTICS OF SILICON SPACE SOLAR CELLS AND UNDERLYING PARAMETERS

B. E. ANSPAUGH, RAM KACHARE (California Institute of Technology, Jet Propulsion Laboratory, Pasadena), and G. F. J. GARLICK IN: IEEE Photovoltaic Specialists Conference, 19th, New Orleans, LA, May 4-8, 1987, Proceedings. New York, Institute of Electrical and Electronics Engineers, Inc., 1987, p. 1194-1200. refs

Silicon space cells, 2 cm x 2 cm, with 10 ohm-cm p-base resistivity, 8-mil base thickness, and no back-surface fields have been investigated over the temperature range from 301 to 223 K by measurements of dark forward and reverse current-voltage characteristics and current-voltage relations under illumination. From dark forward bias data, the first and second diode saturation currents, 101 and 102, are determined and hence the base diffusion length and lifetime of minority carriers as functions of temperature. Lifetime increases exponentially with temperature and is explained by a Shockley-Read-Hall model with deep recombination levels 0.245 eV above the valence band. The I02 variation with temperature follows the Sah-Noyce-Shockley-Choo model except at low temperature where extra transitions raise the value above the predicted level. Reverse bias current at low voltage is a thermally assisted tunneling process via deep levels which are observed in base recombination at higher temperatures. The tunneling effects tend to become independent of temperature in the low-temperature region. These results demonstrate the ability to deduce basic parameters such as lifetime from simple measurements and show that back-surface fields offer no advantage at temperatures below 230 K. The analysis also explains the fall in lifetimes observed as the base conductivity increases, attributing it to native defects (perhaps carbon-oxygen-vacancy complexes) rather than the concentration of base dopant.

A88-34448 FLIGHT QUALIFICATION TESTING OF ULTRATHIN SOLAR CFLIS

R. D. WILLIAMS, S. W. GELB, L. J. GOLDHAMMER, and G. S. GOODELLE (Hughes Aircraft Co., Space and Communications Group, El Segundo, CA) IN: IEEE Photovoltaic Specialists Conference, 19th, New Orleans, LA, May 4-8, 1987, Proceedings. New York, Institute of Electrical and Electronics Engineers, Inc., 1987, p. 1490, 1491.

Characterization and flight qualification testing has been conducted on ultrathin (0.0025-inch) production solar cells. Cells qualified by this test program and subsequently used in the fabrication of a Hughes HS 376 communications satellite represent

the first ultrathin production solar cells to be used as the primary power source of a commercial satellite. Systems tests conducted on that satellite, including the solar panel, recently have been successfully completed. Significant results of the testing included verification of the mechanical integrity of the ultrathin solar cell and confirmation of improved radiation hardness. Improved resistance to radiation degradation is most pronounced at lower fluences, however the superior current collection efficiency of the ultrathin cell design is maintained in significant degree throughout the lifetime of a typical 10-year geosynchronous mission.

A88-35565* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

TRIBOLOGICAL PROPERTIES OF POLYMER FILMS AND SOLID BODIES IN A VACUUM ENVIRONMENT

ROBERT L. FUSARO (NASA, Lewis Research Center, Cleveland, OH) STLE Tribology Transactions (ISSN 0569-8197), vol. 31, April 1988, p. 174-180; Discussion, p. 181. Previously announced in STAR as N87-17906. refs

The tribological properties of ten different polymer based materials were evaluated in a vacuum environment to determine their suitability for possible lubrication applications in a space environment, such as might be encountered on the proposed Space Station. A pin-on-disk tribometer was used and the polymer materials were evaluated either as solid body disks or as films applied to 440C HT stainless steel disks. A 440C HT stainless steel hemispherically tipped pin was slid against the polymer materials. For comparison, similar tests were conducted in a controlled air atmosphere of 50 percent relative humidity air. In most instances, the polymer materials lubricated much better under vacuum conditions than in air. Thus, several of the materials show promise as lubricants for vacuum applications. Friction coefficients of 0.05 or less and polymer material wear rates of up to 2 orders of magnitude less than in air were obtained. One material showed considerable promise as a traction drive material. Relative high friction coefficients (0.36 to 0.52) and reasonably low wear rates were obtained in vacuum.

A88-35945*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

MAST MATERIAL TEST PROGRAM (MAMATEP)

MICHAEL L. CIANCONE and SHARON K. RUTLEDGE (NASA, Lewis Research Center, Cleveland, OH) AIAA SDM Issues of the International Space Station, Conference, Williamsburg, VA, Apr. 21, 22, 1988. 12 p. refs (AIAA PAPER 88-2475)

The MAMATEP program, which is aimed at verifying the need for and evaluating the performance of various protection techniques for the solar array assembly mast of the Space Station photovoltaic power module, is discussed. Coated and uncoated mast material samples have been environmentally tested and evaluated, before and after testing, in terms of mass and bending modulus. The protective coatings include CV-1144 silicone, a Ni/Al/InSn eutectic, and an open-weave Al braid. Long-term plasma asher results from unprotected samples indicate that, even though fiberglass-epoxy samples degrade, a protection technique may not be necessary to ensure structural integrity. A protection technique, however, may be desirable to limit or contain the amount of debris generated by the degradation of the fiberglass-epoxy.

A88-36762*# Virginia Polytechnic Inst. and State Univ., Blacksburg.

DEGRADATION OF GRAPHITE-EPOXY DUE TO ELECTRON RADIATION

C. T. HERAKOVICH, D. J. FOX (Virginia Polytechnic Institute and State University, Blacksburg), and G. F. SYKES (NASA, Langley Research Center, Hampton, VA) ASME, Transactions, Journal of Engineering Materials and Technology (ISSN 0094-4289), vol. 110, April 1988, p. 146-152. refs (Contract NAG1-343)

Experimental results are presented showing that electron irradiation has a variable effect on the properties of graphite-epoxy depending upon the test temperature and the property of interest.

In general, compression properties are improved at cold temperature and degraded at elevated temperature. With the exception of some moduli, tensile and shear properties are degraded at both cold and elevated temperatures. Electron irradiation lowers the glass transition temperature of graphite/epoxy significantly. Property degradation of irradiated materials at the elevated temperature is associated with the reduction in Tg. It is shown that a (0) compression-strength test is the most sensitive test for exhibiting the effects of electron irradiation. Results from tests on neat resin also show that the bulk matrix is degraded after irradiation, and that the correlation between resin and composite response is good.

A88-36982

MEASUREMENTS OF THERMAL CONDUCTIVITY AND THERMAL CONTACT RESISTANCE IN COMPOSITE MATERIALS FOR SPACE APPLICATIONS

M. GIOMMI, F. R. TORRISI (Selenia Spazio S.p.A., Rome, Italy), M. MARCHETTI, and P. TESTA (Roma I, Universita, Rome, Italy) IN: International Conference on Composite Materials, 6th, and European Conference on Composite Materials, 2nd, London, England, July 20-24, 1987, Proceedings. Volume 4. London and New York, Elsevier Applied Science, 1987, p. 4.323-4.334. refs

In the study reported here, a specially designed apparatus was used to measure the thermal conductivity and thermal contact resistance of stainless steel, aluminum, copper, and glass/epoxy and carbon/epoxy composites at pressures up to 28 x 10 to the 6th Pa in the temperature range 30-90 C. The thermal conductivity of the composites tested is found to be essentially independent of the applied pressure; in the range studied, temperature does not play an important role. Thermal contact conductance, however, is found to increase with the applied load.

A88-37000

DAMPING MATERIALS FOR SPACECRAFT VIBRATION CONTROL

JUN FUJIMOTO, RYOSUKE UGO (NEC Corp., Kawasaki, Japan), YOHZOH YAMAMOTO (Mitsui Petrochemical Research Center, Ichihara, Japan), and KAZUHIDE TODOME (NEC Corp., Space Development Div., Yokohama, Japan) IN: International Conference on Composite Materials, 6th, and European Conference on Composite Materials, 2nd, London, England, July 20-24, 1987, Proceedings. Volume 5. London and New York, Elsevier Applied Science, 1987, p. 5.134-5.143. refs

Newly developed constrained shear damping materials for spacecraft vibration control are epoxy based polymers. These materials show high damping capability (tan delta max=1.3-1.8) and have low outgassing (TML less than 1 percent) in a space environment. Damping material SS-37 was applied to the 'Yo-Yo' bracket in the 11th scientific satellite ASTRO-C (Japan). Author

A88-37293#

SOLAR-DYNAMIC ENERGY SUPPLY SYSTEMS FOR SPACE SYSTEMS

ALBERT FRITZSCHE and WOLF-JUERGEN DENNER Dornier-Post (English Edition) (ISSN 0012-5563), no. 1, 1988, p. 41.42

Solar-dynamic spacecraft power-supply systems combine technically known processes of terrestrial power supply systems with a primary solar energy collector suitable for the 1.37 kW/sq m-intensity solar flux. An autonomous solar-dynamic module will encompass a parabolic solar collector, a receiver cavity for heat transfer to a working fluid, a thermal storage system, a thermomechanical converter, a cooler/preheater for use of waste heat, a radiator, an electrical generator, an energy conditioning system, and heliostatic mechanisms for pointing the concentrator.

A88-37343

REFILLING PROCESS IN THE PLASMASPHERE AND ITS RELATION TO MAGNETIC ACTIVITY

XIAO-TING SONG, ROGER GENDRIN, and GERARD CAUDAL (Centre de Recherches en Physique de l'Environnement Terrestre

et Planetaire, Issy-les-Moulineaux, France) Journal of Atmospheric and Terrestrial Physics (ISSN 0021-9169), vol. 50, March 1988, p. 185-195. refs

Plasma density data obtained by the GEOS-2 satellite are used to study the refilling process in the plasmasphere and the relationship between the refilling process and magnetic activity (the Dst index). The average refilling rate of about 25/cu cm per day experimentally deduced for small absolute values of Dst is found to agree well with the corresponding refilling rate predicted using the theory of Lamaire (1985). It is suggested that the observed correlation of refilling rate with Dst index results from the modification of the composition of the topside ionosphere occurring after intense storms.

A88-37466

USE OF MODAL ENERGY DISTRIBUTION IN THE DESIGN OF HONEYCOMB SANDWICH DECKS

M. SAMBASIVA RAO, P. S. NAIR (Indian Space Research Organization, Satellite Centre, Bangalore, India), and S. DURVASULA (Indian Institute of Science, Bangalore, India) Computers and Structures (ISSN 0045-7949), vol. 28, no. 6, 1988, p. 737-743. refs

Through the example of a spacecraft equipment deck, which is generally made of honeycomb sandwich construction, it is shown that modal energy distribution can be used as an effective guideline in improving the deck's frequencies to meet the restrictions imposed upon it. The kinetic energy distribution is employed as a basis for redistributing various packages on the deck. Strain energy distribution is used to identify areas which can be stiffened by bonding 'doublers' on the face sheets and the doubler thickness is obtained from a sensitivity analysis.

A88-38015

'SPACE WEATHER FORECAST' - PREDICTION OF RELATIVISTIC ELECTRON INTENSITY AT SYNCHRONOUS ORBIT

TSUGUNOBU NAGAI (Meteorological Research Institute, Tsukuba, Japan) Geophysical Research Letters (ISSN 0094-8276), vol. 15, May 1988, p. 425-428. refs

Long-term variations in high-energy (greater than 2 MeV) electron flux at synchronous orbit are examined to reveal their close relationship to geomagnetic activity. The electron flux diminishes rapidly in association with an enhancement of geomagnetic activity (storm) and then increases. The flux becomes higher than the pre-storm level and its peak occurs approximately 4-5 days after the enhancement of geomagnetic activity. A linear prediction filter is designed for daily sums of Kp as input data and corresponding daily averages of the electron flux (Log value) as output data. The data are those taken in 1984-1985. This filter can successfully reproduce the electron flux behavior observed not only in 1984-1985 but also in 1978-1981.

A88-40568

PROSPECTS OF INTERCALATED GRAPHITE FIBRE USE FOR ELECTRICAL POWER TRANSMISSION IN SOLAR POWER SATELLITES

SERGE FLANDROIS, CLAUDE MESCHI, and PIERRE DELHAES (CNRS, Centre de Recherche Paul Pascal, Talence, France) Space Power (ISSN 0951-5089), vol. 7, no. 1, 1988, p. 51-56. Research supported by Electricite de France. refs

The properties of different-source carbon fibers which can be used for intercalation with metal chlorides are discussed together with the characteristics (relevant for electrical power transmission) of various intercalated fibers. Special attention is given to the experimental results obtained on graphite fibers intercalated with CuCl2, AlCl3, InCl3, GaCl3, SbCl5, CdCl2, and PdCl2. The products were characterized by SEM, Raman microprobe spectroscopy, and X-ray diffraction, in addition to electrical resistivity measurements, stress-strain traction experiments, and current density tests. The conductivity losses were determined in air and high vacuum at temperatures below 200 C. The results showed that the electrical conductivity of intercalated graphite fibers is below that of Al and Cu. It is considered however that, owing to their superior stability,

low density, and good mechanical properties, intercalated carbon fibers have good prospects for power transmission, particularly in solar power satellites.

A88-41547* National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

SPACE RADIATION EFFECTS ON

POLY(ARYL-ETHER-KETONE) THIN FILMS AND COMPOSITES JOAN G. FUNK (NASA, Langley Research Center, Hampton, VA) and GEORGE F. SYKES, JR. SAMPE Quarterly (ISSN 0036-0821), vol. 19, April 1988, p. 19-26. refs

The purpose of this study was to assess the space durability of poly(aryl-ether-ketone) (PEEK) in the forms of films and graphite fiber reinforced composites. The influence of the film's crystallinity on electron radiation stability was evaluated using X-ray diffraction, DSC, FTIR, and mechanical property tests. The mechanical properties of the composites material were evaluated after electron radiation and after electron radiation followed by thermal cycling simulating 30 years in geosynchronous orbit.

A88-41885

MANUFACTURING OF DAMAGE-RESISTANT COMPOSITE STRUCTURES FOR AEROSPACE APPLICATIONS

ASHOK K. MUNJAL (Aerojet Strategic Propulsion Co., Sacramento, CA) IN: Advanced composites III: Expanding the technology; Proceedings of the Third Annual Conference, Detroit, MI, Sept. 15-17, 1987. Metals Park, OH, ASM International, 1987, p. 53-56. refs

The present discussion of emerging manufacturing methods for the production of damage-resistant composite structures addresses impact, fatigue, and creep damage resistance effects obtainable by identifiable design, materials formulation, and fabrication practices. Damage containment methods encompass stitching of layup plies, interleafing, three-dimensional reinforcements, hybrid materials, and the incorporation of external protection materials. Attention is given to the effects of strength, modulus, strain-to-failure, fracture toughness, and resistance to environmental temperature and humidity.

O.C.

A88-42372

A TECHNIQUE TO EVALUATE COATINGS FOR ATOMIC OXYGEN RESISTANCE

J. B. CROSS (Los Alamos National Laboratory, NM), E. H. LAN, and C. A. SMITH (McDonnell Douglas Astronautics Co., Huntington Beach, CA) IN: Materials - Pathway to the future; Proceedings of the Thirty-third International SAMPE Symposium and Exhibition, Anaheim, CA, Mar. 7-10, 1988. Covina, CA, Society for the Advancement of Material and Process Engineering, 1988, p. 693-702. refs

Space Shuttle flight data has shown that the LEO environment significantly degrades a variety of spacecraft materials. Atomic oxygen, the major constituent of the LEO atmosphere, is primarily responsible for the degradation due to its oxidative ability, high collision energy (approximately 5 eV for a spacecraft traveling at 8 km/sec), and high flux. Atomic oxygen-reactive materials to be used on long-term spacecraft such as Space Station must be coated with an oxygen-resistant coating if they are to survive in LEO for an extended period of time. A technique using oxidation of silver film as an atomic oxygen detector has been developed to evaluate the effectiveness of coatings in protecting substrates which react with atomic oxygen. The paper discusses results from a bare silver and a PTFE Teflon-coated silver sample which show that this technique is viable for detecting atomic oxygen penetration through coatings. A discussion of the advantages and disadvantages of the technique is included. Author

A88-42412* Boeing Aerospace Co., Seattle, WA. EVALUATION OF CHROMIC ACID ANODIZED ALUMINUM FOIL COATED COMPOSITE TUBES FOR THE SPACE STATION TRUSS STRUCTURE

HARRY W. DURSCH (Boeing Aerospace Co., Seattle, WA) and WAYNE S. SLEMP (NASA, Langley Research Center, Hampton, VA) IN: Materials - Pathway to the future; Proceedings of the

Thirty-third International SAMPE Symposium and Exhibition, Anaheim, CA, Mar. 7-10, 1988. Covina, CA, Society for the Advancement of Material and Process Engineering, 1988, p. 1342-1354. refs

This paper describes the development and evaluation of chromic acid anodized (CAA) Al foil as a protective and thermal control coating for graphite/epoxy tubes designed for the Space Station truss structure. Special consideration is given to the development of solar-absorptance and thermal-emittance properties required of Al foil, the development of CAA parameters necessary to achieve these optical properties, and the atomic oxygen and UV testing of CAA Al foil. Results showed that 0.003-in CAA Al foil cocured or secondary bonded to graphite/epoxy tubes with thin epoxy film adhesive retains excellent bond strength and provides a superior protective and thermal control coating to the LEO environment. Processes were developed for CAA Al foils long enough to continuously wrap the 23-ft-long diagonal struts of the Space Station truss structure. Specifications are presented for the processes of chromic acid anodizing of Al foil and for the bonding of anodized Al foil to graphite/epoxy tubes.

A88-42419 GRAPHITE THERMOPLASTIC COMPOSITES FOR SPACECRAFT APPLICATIONS

EDWARD M. SILVERMAN and ROBERT J. JONES (TRW, Inc., TRW Space and Technology Group, Redondo Beach, CA) IN: Materials - Pathway to the future; Proceedings of the Thirty-third International SAMPE Symposium and Exhibition, Anaheim, CA, Mar. 7-10, 1988. Covina, CA, Society for the Advancement of Material and Process Engineering, 1988, p. 1418-1432. refs

Spacecraft application evaluations encompassing dynamic mechanical analysis, flexural and transverse tensile strength, outgassing/condensable volatiles, equilibrium water absorption, damping capability, and the effect of 500 -250 to + 250 F thermal cycles on microcracking, have been conducted for both graphite/PEEK- and graphite/PPS-based prepreg tapes and comingled, bidirectional graphite/PEEK fabrics. SEM analysis results indicate that the higher level of mechanical properties of the PEEK composites may be due to better interfacial bonding than that obtainable with PPS.

A88-42434* National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

THERMAL CYCLING EFFECTS ON THE DIMENSIONAL STABILITY OF P75 AND P75-T300 (FABRIC) HYBRID GRAPHITE/EPOXY LAMINATES

DAVID E. BOWLES (NASA, Langley Research Center, Hampton, VA) and JAMES SHEN (PRC Kentron, Inc., Hampton, VA) IN: Materials - Pathway to the future; Proceedings of the Thirty-third International SAMPE Symposium and Exhibition, Anaheim, CA, Mar. 7-10, 1988. Covina, CA, Society for the Advancement of Material and Process Engineering, 1988, p. 1659-1671. refs

The response of cross-ply P75/934 laminates and hybrid laminates consisting of P75/934 unidirectional tape and T300/934 woven fabric were compared for temperature exposures between + and - 250 F up to a maximum of 250 cycles. The properties monitored included microcrack density, coefficient of thermal expansion (CTE), residual strain, and tensile modulus. Hybrid laminates, with stiffnesses and CTE's comparable to P75/934 cross-ply laminates, demonstrated significantly improved thermal cycling stability in one direction. The hybrid laminates also had predicted longitudinal properties comparable to low angle, off-axis P75/934 configurations, but had significantly higher predicted transverse strengths. T300 Gr/Ep plain-weave fabric laminates were shown to be much less susceptible to thermal cycling damage than T300 Gr/Ep cross-ply laminates. None of the laminates tested exhibited any significant changes in tensile modulus after thermal cycling. Author

A88-42440* Jet Propulsion Lab., California Inst. of Tech., Pasadena.

QUALIFICATION OF ROOM-TEMPERATURE-CURING EPOXY ADHESIVES FOR SPACECRAFT STRUCTURAL APPLICATIONS

ALAIN CARPENTER and TIM O'DONNELL (California Institute of Technology, Jet Propulsion Laboratory, Pasadena) IN: Materials - Pathway to the future; Proceedings of the Thirty-third International SAMPE Symposium and Exhibition, Anaheim, CA, Mar. 7-10, 1988. Covina, CA, Society for the Advancement of Material and Process Engineering, 1988, p. 1761-1772. refs (Contract NAS7-918)

An adhesive-bonding test program is being conducted in order to develop structural adhesives applicable to JPL spacecraft. A noteworthy application for such an adhesive will be JPL's Galileo mission, whose trajectory will involve the circumnavigation of the planet Venus prior to Jupiter rendezvous, and will accordingly require stringent temperature and radiation environment requirements. The baseline adhesive for the test program is the EA 934 room temperature-cure epoxy, which has been widely used as a 'space-qualified' material.

A88-43516*# National Aeronautics and Space Administration. Lyndon B. Johnson Space Center, Houston, TX.

DECISION TIME ON ORBITAL DEBRIS

JOSEPH P. LOFTUS (NASA, Johnson Space Center, Houston, TX), LEE E. TILTON (NASA, Washington, DC), and L. PARKER TEMPLE, III (USAF, Washington, DC) Aerospace America (ISSN 0740-722X), vol. 26, June 1988, p. 16-18.

The problem of orbital debris, especially in LEO is discussed, stressing ways to minimize hazards caused by debris. There are over 7,000 objects making up 2.4 X 10 to the 6th kg of debris in LEO with velocities up to 7 km/sec. The least costly way of minimizing hazards from debris is to make spent rocket stages inert, to preclude failures after their useful life, by insuring that all residual propellants and pressurant gases are vented while the stage is still subject to command. A more costly option is the actively controlled deorbit of spent stages and spacecraft at the end of their useful mission life. The removal of inert stages or spacecraft is too costly to be practical. The least expensive methods of removal are deorbit for altitudes below 25,000 km and placing the object in earth-escape trajectory for objects at higher altitudes. NASA is developing a special radar to measure the existing small-particle debris and its changes over time, and international agreements are expected to set standards of operational practices to minimize debris.

A88-43517*# National Aeronautics and Space Administration. Lyndon B. Johnson Space Center, Houston, TX.

PREDICTING DEBRIS

DONALD J. KESSLER (NASA, Johnson Space Center, Houston, TX) Aerospace America (ISSN 0740-722X), vol. 26, June 1988, p. 22-24.

The probable amount, sizes, and relative velocities of debris are discussed, giving examples of the damage caused by debris, and focusing on the use of mathematical models to forecast the debris environment and solar activity now and in the future. Most debris are within 2,000 km of the earth's surface. The average velocity of spacecraft-debris collisions varies from 9 km/sec at 30 degrees of inclination to 13 km/sec near polar orbits. Mathematical models predict a 5 percent per year increase in the large-fragment population, producing a small-fragment population increase of 10 percent per year until the year 2060, the time of critical density. A 10 percent increase in the large population would cause the critical density to be reached around 2025.

A88-43518*# National Aeronautics and Space Administration. Lyndon B. Johnson Space Center, Houston, TX.

SHIELDING AGAINST DEBRIS

BURTON G. COUR-PALAIS (NASA, Johnson Space Center, Houston, TX) and SHERMAN L. AVANS (NASA, Marshall Space Flight Center, Huntsville, AL) Aerospace America (ISSN 0740-722X), vol. 26, June 1988, p. 24, 25.

The damage to spacecraft caused by debris and design of the Space Station to minimize damage from debris are discussed. Although current estimates of the debris environment show that fragments bigger than 2 cm are not likely to hit the Space Station, orbital debris from about 0.5 mm to 2 cm will pose a hazard, especially on brittle surfaces, such as glass. Spacesuits are being designed to reduce debris caused dangers to astronauts during EVA. About 5 cm of high-strength aluminum are needed to prevent penetration by a 1 cm piece of aluminum with a mass near 1.5 g colliding at 10 km/sec. Because aluminum bumpers have the drawback of metallic debris ejected outward after a hypervelocity collision, the use of nonmetallic materials for bumpers is being studied. Methods of reducing the weight and volume of the shield for the Space Station are also being researched. A space station habitation module using bumpers has a 99.6 percent chance of avoiding penetration during its lifetime.

A88-43765*# Jet Propulsion Lab., California Inst. of Tech., Pasadena.

PARTICLE ADHESION TO SURFACES UNDER VACUUM

JACK B. BARENGOLTZ (California Institute of Technology, Jet Propulsion Laboratory, Pasadena) AIAA, Thermophysics, Plasmadynamics and Lasers Conference, San Antonio, TX, June 27-29, 1988. 9 p. refs (AIAA PAPER 88-2725)

The release of glass beads and standard dust from aluminum and glass substrates under centrifugation (simulating atmospheric pressure, low vacuum, and high vacuum conditions) was measured, with application to the estimation of contaminant particle release during spacecraft launch. For particles in the 10-100 micron range, dust was found to adhere more strongly than glass beads in all the cases considered. For most of the cases, dust and glass beads adhered more strongly to glass than to aluminum at all pressures. The adhesion force for dust on glass at 10 torr was shown to be as small as the value for dust on aluminum.

A88-44004# WELDING IN SPACE - AN OVERVIEW

R. M. RIVETT (Edison Welding Institute, Columbus, OH) IN: Advanced topics in manufacturing technology: Product design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18, 1987. New York, American Society of Mechanical Engineers, 1987, p. 73-77. refs

The fabrication and repair of structures in space will be an important part of any long-term plans to commercialize space. In this paper the alternative joining techniques for use in a space environment are reviewed and their limitations discussed. To date the bulk of the work has been conducted on electron beam welding, arc welding and brazing. However, with the exception of the Soviet program to develop a hand-held electron beam gun, this work has been limited in nature and has mainly studied the influence of micro-gravity and vacuum on the process and the properties of the weld pool. From a review of the published literature it would appear that joining technology has not progressed to the point that a large structure could be fabricated or repaired in space using welding techniques.

A88-45109*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

BEYOND SIMULATION

JOHN G. DAVIS, JR. and SIDNEY C. DIXON (NASA, Langley Research Center, Hampton, VA) Aerospace America (ISSN 0740-722X), vol. 26, July 1988, p. 38-40, 42.

The technological breakthroughs required for the development of fully reusable launch vehicles are reviewed, with a focus on advanced materials and structures. Current proposals favor LH2 as a fuel for both conventional dual-stage rockets, vertical-launch SSTO rockets, and horizontal-launch airbreathing SSTOs; hence large cryogenic tanks and thermal protection (for descent in rockets and ascent in airbreathers) are required. Consideration is given to structural alloys and composites; thermal-protection materials; propellant-tank insulation materials; the design of light but strong tanks, wings, nose caps, and airbreathing-engine structures; and

the problem of hot boundary-layer gases. The need for more accurate and efficient design codes (including dynamic loads and aerothermoelasticity) and for better ground test facilities is stressed.

T.K.

A88-45201

ALUMINUM-LITHIUM ALLOYS: DESIGN, DEVELOPMENT AND APPLICATION UPDATE; PROCEEDINGS OF THE SYMPOSIUM, LOS ANGELES, CA, MAR. 25, 26, 1987

RAMESH J. KAR, ED., SUPHAL P. AGRAWAL, ED. (Northrop Corp., Aircraft Div., Hawthorne, CA), and WILLIAM E. QUIST, ED. (Boeing Commercial Airplane Co., Seattle, WA) Symposium organized and sponsored by ASM International. Metals Park, OH, ASM International, 1988, 470 p. For individual items see A88-45202 to A88-45205.

The present conference on the development status of aluminum-lithium alloys for aerospace applications discussed topics in the availability of these alloys, their fatigue, fracture, and corrosion characteristics, their design criteria, and manufacturing techniques developed for them to date. Attention is given to developments in rapidly-solidified Al-Li alloys, the mechanisms of fatigue crack propagation in commercial Al-Li alloys, the effects of processing on Al-Li microstructures and fracture behavior, and Al-Li exfoliation and stress corrosion cracking behavior. Also discussed are design considerations for novel aerospace vehicle materials, critical Al-Li alloy design factors, the application of Al-Li alloys in naval aircraft, and the superplastic forming characteristics of Al-Li sheet alloys.

A88-45205 SUPERPLASTIC FORMING CHARACTERISTICS AND PROPERTIES OF ALUMINUM-LITHIUM SHEET ALLOYS

MICHAEL J. REYNOLDS (Superform USA, Inc., Riverside, CA), CONSTANCE A. HENSHALL, and JEFFREY WADSWORTH (Lockheed Missiles and Space Co., Inc., Research and Development Div., Palo Alto, CA) IN: Aluminum-lithium alloys: Design, development and application update; Proceedings of the Symposium, Los Angeles, CA, Mar. 25, 26, 1987. Metals Park, OH, ASM International, 1988, p. 357, 359-365, 367-399. Research supported by the Lockheed Missiles and Space Co., Inc.

A process has been developed for ingots of the Al-Li alloy 2090 which imparts the requisite microstructure for superplastic forming. Attention is presently given to representative applications of the alloy and the results of aging studies aimed at determining the T6 condition of 2090 alloy components. No apparent correlation is found between the degree of thinning and the strength developed after aging; the aged alloy exhibits an ultimate tensile strength of 61.8 ksi, with 10.2 percent elongation. Microstructure appeared uniform in both the as-formed and aged conditions, and cavitation was minimal.

A88-46192#

MECHANICAL AND ELECTRICAL CHARACTERISTICS OF TIN WHISKERS WITH SPECIAL REFERENCE TO SPACECRAFT SYSTEMS

B. D. DUNN (ESA, Materials and Processes Div., Noordwijk, Netherlands) ESA Journal (ISSN 0379-2285), vol. 11, no. 4/vol. 12, no. 1, 1987/1988, p. 1-17. refs

Tin-whisker samples have been harvested from the surfaces of tin-plated parts from electronic equipment and subjected to laboratory tests. These whiskers were found to have a low strength (Young's modulus of 8.0-85 GPa and UTS of about 8 MPa). Whiskers with a diameter of 3 microns are capable of carrying a current flow of 32 mA. They remain undisturbed by subjection to either a wide vibration spectrum or to mechanical shocks reaching 200 g. Spark discharges have been shown to emanate from the sides and tips of tin whiskers in vacuum. Unwanted growths can severely jeopardize the reliability of spacecraft subsystems.

Author

A88-47449 RECENT ADVANCES IN AEROSPACE REFRACTORY METAL ALLOYS

J. WADSWORTH, T. G. NIEH, and J. J. STEPHENS (Lockheed Missiles and Space Co., Inc., Research and Development Div., Palo Alto, CA) International Materials Reviews (ISSN 0950-6608), vol. 33, no. 3, 1988, p. 131-150. Research supported by the Lockheed Independent Research and Development Program. refs

The development of refractory metal alloys for aerospace applications is discussed. While refractory metals are prime candidates for many high-temperature aerospace components due to their high melting points and inherent creep resistance, their use is often limited by poor room temperature properties, inadequate oxidation resistance at elevated temperatures, or difficulties associated with joining or welding. Current research on the development of creep resistant niobium and tantalum alloys that are inherently oxidation resistant is described. Examples of novel solid state joining developments in tungsten and molybdenum alloys below and above their recrystallization temperatures are provided.

A88-47966*# National Aeronautics and Space Administration.
Marshall Space Flight Center, Huntsville, AL.

OPTICAL ENVIRONMENT OF THE SPACELAB 1 MISSION

MARSHA R. TORR, J. K. OWENS (NASA, Marshall Space Flight Center, Huntsville, AL), and D. G. TORR (Alabama, University, Huntsville) Journal of Spacecraft and Rockets (ISSN 0022-4650), vol. 25, March-Apr. 1988, p. 125-131. refs

The passing of large orbital vehicles through the space environment often generates such emissions as glows on or near the vehicle surface and halos surrounding the vehicle. These induced emissions may affect observations made with the optical instrumentation carried by the vehicles. The glows' causative mechanisms appear to be a complex function of altitude, time in orbit, materials, insolation, and vehicular size and orientation. Attention is presently given to contamination environment data obtained for the instrument suite carried by the Spacelab 1 Space Shuttle mission.

A88-47969#

TWO-PHASE ALKALI-METAL EXPERIMENTS IN REDUCED

ZENEN I. ANTONIAK (Battelle Pacific Northwest Laboratory, Richland, WA) Journal of Spacecraft and Rockets (ISSN 0022-4650), vol. 25, March-Apr. 1988, p. 146-155. refs (Contract DE-AC06-76RL-01830)

Future space missions envision the use of large nuclear reactors using either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. Current single and multiphase computer codes rely on the presence of gravity - in the fluid momentum equations, in defining their flow regimes, in specific two-phase flow models, or indirectly in the form of correlations obtained from tests conducted in a 1-g field. New flow regime maps, models, and correlations are required if the codes are to be successfully applied to reduced-gravity flow and heat transfer. A literature search of relevant experiments in reduced gravity is reported on here and reveals a paucity of data for such correlations. The few ongoing experiments in reduced gravity are noted. General plans are put forth for the reduced-gravity experiments that will have to be performed, at NASA facilities, with benign fluids. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from the two-phase alkali-metal experiments. Calculations and analyses undertaken here give every expectation that the correlations developed from this data base will provide a valid representation of alkali-metal heat transfer and pressure drop in reduced gravity. Author

A88-47971*# Communications Research Centre, Ottawa (Ontario).

RESULTS OF APPARENT ATOMIC OXYGEN REACTIONS WITH SPACECRAFT MATERIALS DURING SHUTTLE FLIGHT STS-41G

D. G. ZIMCIK (CDC, Communications Research Centre, Ottawa, Canada) and C. R. MAAG (California Institute of Technology, Jet Propulsion Laboratory, Pasadena, CA) (Shuttle Environment and Operations II Conference, Houston, TX, Nov. 13-15, 1985, Technical Papers, p. 181-189) Journal of Spacecraft and Rockets (ISSN 0022-4650), vol. 25, March-Apr. 1988, p. 162-168. Previously cited in issue 03, p. 268, Accession no. A86-14403. refs

A88-49260

RADIATION INSPECTION METHODS FOR COMPOSITES

T. S. JONES, D. POLANSKY, and H. BERGER (Industrial Quality, Inc., Gaithersburg, MD) NDT International (ISSN 0308-9126), vol. 21, Aug. 1988, p. 277-282. refs

Radiography and ultrasonics are the generally selected methods for nondestructive inspection of fiber-reinforced polymer composites used in high-performance applications such as aircraft and space structures. As a result of their application and adaptation in this field, both methods have taken on a number of new aspects. Some of the advances in radiographic inspection techniques reviewed here, together with the various criteria affecting their use in a particular situation. Examples of composites radiography by several different methods are presented.

A88-49996

RESEARCH IN CERAMICS AT THE U.S. NAVAL RESEARCH LAB

DAVID LEWIS, III (U.S. Navy, Naval Research Laboratory, Washington, DC) American Ceramic Society Bulletin (ISSN 0002-7812), vol. 67, Aug. 1988, p. 1349-1356. Navy-supported research. refs

Since 1987, the USN Research Lab's Composites and Ceramics Branch has undertaken work on: (1) high-temperature ceramic-matrix composites, with a view to the formulation of material requirements, processing methods, and characterization techniques (especially in the area of composite interface control); (2) high T(c) ceramic superconductors; (3) the strengthening of ceramics with ordered voids; (4) superconducting delay lines; (5) improved piezoelectric ceramics for active and passive sonars; (6) ceramic fracture mechanics and failure analysis techniques; and (7) rapid solidification processing of materials. Extensive microphotographic illustrations of state-of-the-art materials are presented.

A88-52331° National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH. **TECHNOLOGIES FOR PROTECTION OF THE SPACE STATION**

TECHNOLOGIES FOR PROTECTION OF THE SPACE STATION POWER SYSTEM SURFACES IN ATOMIC OXYGEN ENVIRONMENT

HENRY K. NAHRA and SHARON K. RUTLEDGE (NASA, Lewis Research Center, Cleveland, OH) IN: Space Congress, 25th, Cocoa Beach, FL, Apr. 26-29, 1988, Proceedings. Cape Canaveral, FL, Canaveral Council of Technical Societies, 1988, p. 5-1 to 5-8. refs

Technologies for protecting Space Station surfaces from degradation caused by atomic oxygen are discussed, stressing protection of the power system surfaces. The Space Station power system is described and research concerning the solar array surfaces and radiator surfaces is examined. The possibility of coating the solar array surfaces with a sputter deposited thin film of silicon oxide containing small concentrations of polytetra-fluoroethylene is presented. Hexamethyldisiloxane coating for these surfaces is also considered. For the radiator surfaces, possible coatings include silver teflon thermal coating and zinc orthotitanate.

A88-53126#

ADVANCED COMPOSITES FOR MAGELLAN SPACECRAFT

D. A. STANG (Martin Marietta Corp., Astronautics Group, Denver, CO) AIAA, ASME, SAE, and ASEE, Joint Propulsion Conference, 24th, Boston, MA, July 11-13, 1988. 4 p. (AIAA PAPER 88-3031)

Over 100 composite tubes were built for truss members for the Magellan spacecraft which is to orbit and radar-map the planet Venus. Materials used were unidirectional and woven E-glass, S-2 glass, high-strength high modulus graphite. All were used in the form of epoxy preimpregnated broadgoods. Tube diameters ranged from 1 to 4 inches, and tube construction ranged from five to 21 layers. All tubes were fabricated and cured on aluminum mandrels. Each truss member assembly was proofloaded in axial compression prior to final vehicle assembly. This presentation will focus on the design, fabrication, and testing of three of the graphite/epoxy tube configuration.

Author

A88-54731

UNIQUE BONDING METHODS FOR SPACECRAFT

JOSEPH E. FOS, JR. (Lockheed Missiles and Space Co., Inc., Sunnyvale, CA) IN: IEEE 1988 International Symposium on Electromagnetic Compatibility, Seattle, WA, Aug. 2-4, 1988, Record. New York, Institute of Electrical and Electronics Engineers, Inc., 1988, p. 412-417.

Bonding requirements in general are discussed. The additional factors that are introduced for spacecraft bonding are examined and shown to require methods that are outside of normal bonding techniques. An electronic box in a spacecraft is used to illustrate the problems encountered.

A88-54988*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

ATOMIC-OXYGEN DURABILITY OF IMPACT-DAMAGED SOLAR REFLECTORS

DANIEL A. GULINO (NASA, Lewis Research Center, Cleveland, OH) Journal of Spacecraft and Rockets (ISSN 0022-4650), vol. 25, Jan.-Feb. 1988, p. 39-44. Previously cited in issue 08, p. 1062, Accession no. A87-22417. refs

A88-54990*# National Aeronautics and Space Administration. Marshall Space Flight Center, Huntsville, AL.

VELOCITY DISTRIBUTIONS OF OXYGEN ATOMS INCIDENT ON SPACECRAFT SURFACES

P. N. PETERS, R. C. SISK (NASA, Marshall Space Flight Center, AL), and J. C. GREGORY (Alabama, University, Huntsville) Journal of Spacecraft and Rockets (ISSN 0022-4650), vol. 25, Jan.-Feb. 1988, p. 53-58. refs

(Contract NAGW-823; NAS8-36645)

The angular distributions of oxygen atoms incident on surfaces in low earth orbit have been calculated for a number of ambient gas temperatures. Atom fluxes to surfaces were modeled by integrals over all permitted angles of incidence. Angles of incidence are limited by masking structures, and a number of types of mask were considered. Combustible surfaces exposed to the orbital atmosphere are heavily etched, creating profiles in mask shadows that are sensitive to ambient temperatures. The influence of the angular distributions on the characteristics of etched surfaces is discussed. Profiles measured for a September, 1983 flight were fitted to this model profile with a temperature of 750 + or - 50 K, which agrees with estimates based on solar activity at that time. Applications to sensing ambient temperatures and oxygen atom densities are discussed.

A88-55374#

A FRACTURE CONTROL PLAN FOR COMPOSITE SPACECRAFT STRUCTURES

C. K. H. DHARAN (California, University, Berkeley) IAF, International Astronautical Congress, 39th, Bangalore, India, Oct. 8-15, 1988. 8 p. refs (IAF PAPER 88-282)

Composite spacecraft structures, which are generally designed for high stiffness and dimensional stability, are highly anisotropic and may have low transverse strength and be susceptible to delamination. Here, a fracture control plan for composite spacecraft structures is proposed which uses delamination fracture toughness as the criterion for catastrophic crack propagation and depends on the application of appropriate nondestructive evaluation techniques. The discussion is illustrated by experimental results obtained for graphite/epoxy and glass/epoxy composites. V.L.

N88-21250*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

SPACE STATION SOLAR CONCENTRATOR MATERIALS RESEARCH

DANIEL A. GULINO May 1988 15 p

(NASA-TM-100862; E-4074; NAS 1.15:100862) Avail: NTIS HC A03/MF A01 CSCL 10B

The Space Station will represent the first time that a solar dynamic power system will be used to generate electrical power in space. In a system such as this, sunlight is collected and focused by a solar concentrator onto the receiver of a heat engine which converts the energy into electricity. The concentrator must be capable of collecting and focusing as much of the incident sunlight as possible, and it must also withstand the atomic oxygen bombardment which occurs in low Earth orbit (LEO). This has led to the development of a system of thin film coatings applied to the concentrator facet surface in a chamber designed especially for this purpose. The system of thin film coatings employed gives both the necessary degree of reflectance and the required protection from the LEO atomic oxygen environment.

N88-22225# Joint Publications Research Service, Arlington, VA. SOLAR CELL COVER GLASSES FOR SATELLITES

TOKIO KIMURA In its JPRS Report: Science and Technology. Japan p 31-37 3 Mar. 1988 Transl. into ENGLISH from Ceramics Japan (Tokyo, Japan), Apr. 1987 p 303-308 Avail: NTIS HC A05/MF A01

Since the world's first artificial satellite, Vostok 1, was launched in October 1957, many artificial satellites were launched for many purposes. It is not generally known that such satellites incorporate glass parts which play important roles. Such glass parts include the cover glasses for solar cell systems attached to satellites and the thermal control mirrors for the satellite proper. These glass parts are used to protect satellites from radiation and heat, enabling them to function properly in space where environmental severity is beyond the imagination. Cover glasses will be examined. First, the space environment will be described in connection with the use of cover glasses. Then, the purposes of using cover glasses and the functions required of them covered. Finally, the actual cover glasses are described and the cover glass reliability management explained.

N88-23265# Office National d'Etudes et de Recherches Aerospatiales, Paris (France). Direction Scientifique de la Resistance des Structures.

A NONLINEAR COMPUTATION FOR COMPOSITE STRUCTURES Final Report [UN MODULE DE CALCUL NON LINEAIRE POUR LES STRUCTURES COMPOSITES]

R. GIRARD Mar. 1987 40 p In FRENCH

(Contract DRET-86-34-001)

(ONERA-RT-15/3542-RY-062-R; ETN-88-92141) Avail: NTIS HC A03/MF A01

A procedure based on total Lagrangian implementation, where the nonlinear problem is solved numerically by increment and iteration (Newton method with load increments) is presented. The finite element model is general enough to allow the analysis of large structures built with composite materials. Algorithms and computation strategies are compared.

N88-24754*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

ARC-TEXTURED METAL SURFACES FOR HIGH THERMAL EMITTANCE SPACE RADIATORS

BRUCE A. BANKS, SHARON K. RUTLEDGE, MICHAEL J. MIRTICH, TRACY BEHREND, DEBORAH HOTES, MICHAEL KUSSMAUL, JENNIFER BARRY, CURTIS STIDHAM, THOMAS STUEBER, and FRANK DIFILIPPO (Case Western Reserve Univ., Cleveland, Ohio.) 1988 11 p Presented at the International Conference on Metallurgical Coatings, San Diego, Calif., 11-15 Apr. 1988; sponsored by the American Vacuum Society (NASA-TM-100894; E-4135; NAS 1.15:100894) Avail: NTIS HC

A03/MF A01 CSCL 11F

Carbon arc electrical discharges struck across the surfaces of

metals such as Nb-1 percent Zr, alter the morphology to produce a high thermal emittance surface. Metal from the surface and carbon from the arc electrode vaporize during arcing, and then condense on the metal surface to produce a microscopically rough surface having a high thermal emittance. Quantitative spectral reflectance measurements from 0.33 to 15 microns were made on metal surfaces which were carbon arc treated in an inert gas environment. The resulting spectral reflectance data were then used to calculate thermal emittance as a function of temperature for various methods of arc treatment. The results of arc treatment on various metals are presented for both ac and dc arcs. Surface characterization data, including thermal emittance as a function of temperature, scanning electron microscopy, and atomic oxygen durability, are also presented. The ac arc texturing was found to increase the thermal emittance at 800 K from 0.05 to 0.70.

Author

N88-25390*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

A STUDY OF SPACE STATION CONTAMINATION EFFECTS
M. R. TORR, ed., J. F. SPANN, ed., and T. W. MOOREHEAD, ed.
May 1988 141 p Workshop held in Hilton Head Island, S.C.,
29-30 Oct. 1987 Sponsored by NASA, Washington
(NASA-CP-3002; M-586; NAS 1.55:3002) Avail: NTIS HC
A07/MF A01 CSCL 22B

A workshop was held with the specific objective of reviewing the state-of-knowledge regarding Space Station contamination, the extent to which the various categories of contamination can be predicted, and the extent to which the predicted levels would interfere with onboard scientific investigations or space station functions. The papers presented at the workshop are compiled and address the following topics: natural environment, plasma electromagnetic environment, optical environment, particulate environment, spacecraft contamination, surface physics processes, laboratory experiments and vented chemicals/contaminants.

N88-25391*# Science and Engineering Associates, Inc., Englewood, CO.

NEUTRAL ENVIRONMENT FOR SPACE STATION

R. O. RANTANEN In NASA, Langley Research Center, A Study of Space Space Station Contamination Effects p 1-9 May 1988 Avail: NTIS HC A07/MF A01 CSCL 22B

The results of studies to determine the contamination compatibility of the cross boom and dual keel Space Station configurations with attached payloads are presented. The approach was to define the 3-D configuration of the Space Station and calculate surface-to-surface view factors and solid angles between surfaces and points in an extensive point matrix around the Space Station via a modified TRASYS model. The molecular number column densities along specific experiment lines-of-sight on the cross boom generally meet JSC 30426 requirements. The deposition of contaminants on payload surfaces exceeds the JSC 30426 requirements. These model predictions require updating because of the impact on background brightness predictions. An increase of a factor of 2 to 10 in column densities would result in an unacceptable optical background.

N88-25392*# National Aeronautics and Space Administration. Lyndon B. Johnson Space Center, Houston, TX.

SPACE STATION NEUTRAL EXTERNAL ENVIRONMENT

H. EHLERS and L. LEGER In NASA, Langley Research Center, A Study of Space Station Contamination Effects p 11-17 May 1988

Avail: NTIS HC A07/MF A01 CSCL 22B

Molecular contamination levels arising from the external induced neutral environment of the Space Station (Phase 1 configuration) were calculated using the MOLFLUX model. Predicted molecular column densities and deposition rates generally meet the Space Station contamination requirements. In the doubtful cases of deposition due to materials outgassing, proper material selection, generally excluding organic products exposed to the external environment, must be considered to meet contamination

requirements. It is important that the Space Station configuration, once defined, is not significantly modified to avoid introducing new unacceptable contamination sources.

N88-25393*# Iowa Univ., Iowa City. Dept. of Physics and Astronomy.

CONTAMÍNANT IONS AND WAVES IN THE SPACE STATION ENVIRONMENT

G. B. MURPHY In NASA, Langley Research Center, A Study of Space Space Station Contamination Effects p 19-29 May 1988 Avail: NTIS HC A07/MF A01 CSCL 22B

The probable plasma (ions and electrons) and plasma wave environment that will exist in the vicinity of the Space Station and how this environment may affect the operation of proposed experiments are discussed. Differences between quiescent operational periods and non-operational periods are also addressed. Areas which need further work are identified and a course of action suggested.

N88-25395*# Alabama Univ., Huntsville. Center for Space Plasma and Aeronomic Research.

SPACE STATION CONTAMINATION STUDY: ASSESSMENT OF CONTAMINANT SPECTRAL BRIGHTNESS

D. G. TORR In NASA, Langley Research Center, A Study of Space Station Contamination Effects p 43-59 May 1988

Avail: NTIS HC A07/MF A01 CSCL 22B

The assessment of spectral brightness resulting from the ambient-contaminant interaction requires a knowledge of the details of cross sections and excitation mechanisms. The approach adopted was to utilize the spectral brightness measurements made on Spacelab 1 and on the S3-4 spacecraft to identify source mechanisms, key cross sections and hence, the abundance of contaminant species. These inferred abundances were then used to update the composition comprising the total column concentrations predicted by the Science and Engineering Associates' configuration contamination model for the Space Station and to scale the irradiances to four altitudes: 300, 350, 400, and 463 km. The concentration irradiances are compared with zodiacal natural background levels. The results demonstrate that emissive contamination is significantly more severe than anticipated. It is shown that spectral emissions can become competitive with the zodiacal background up to altitudes as high as 400 km for the vacuum ultraviolet and visible emissions.

M.G.

N88-25396*# Physical Sciences, Inc., Andover, MA. CALCULATION OF SPACE STATION INFRARED IRRADIANCE FROM ATMOSPHERE-INDUCED EMISSIONS

M. E. FRASER, A. GELB, B. D. GREEN, and D. G. TORR (Alabama Univ., Huntsville.) In NASA, Langley Research Center, A Study of Space Station Contamination Effects p 61-69 May 1988 (Contract NAGW-922)

Avail: NTIS HC A07/MF A01 CSCL 22B

The excitation mechanisms and radiance estimates over the 1 to 10 micron region for CO2(v), H2O(v), CO(v), OH(v), NO2(2B-2A) and N2(B3 pi - A3 sigma) are discussed. The infrared irradiance of the Space Station at an altitude of 460 km was estimated. The surface material was presumed to be non-carbonaceous and inert. The determined number densities of the various gases relevant to the Space Station from both ambient and outgassing sources are presented. A model for the production of and emission from the infrared active molecules was constructed that considers two classes of production processes: (1) gas phase excitation of molecules in the near Station environment by collision with ambient flux; and (2) surface processes that lead to molecular excitation. A composite spectrum of all major emitting species shows that the observed irradiance is non-uniform over the 1 to 8 micron region. The comparison of predicted irradiance with the zodiacal background indicates that the Space Station infrared background from atmosphere-induced emissions may be a problem of consequence.

N88-25397*# National Aeronautics and Space Administration. Marshall Space Flight Center, Huntsville, AL.

SPACE STATION PARTICULATE CONTAMINATION ENVIRONMENT

E. R. MILLER and K. S. CLIFTON In NASA, Langley Research Center, A Study of Space Station Contamination Effects p 71-77 May 1988

Avail: NTIS HC A07/MF A01 CSCL 22B

The origin of particulate contamination on the Space Station will mostly be from pre-launch operations. The adherence and subsequent release of these particles during space flight are discussed. Particle size, release velocity, and release direction are important in determining particle behavior in the vicinity of the vehicle. The particulate environment at the principal science instrument locations is compared to the space shuttle bay environment. Recommendations for possibly decreasing the particulate contamination are presented.

N88-25398*# Physical Sciences, Inc., Andover, MA. THE PARTICULATE ENVIRONMENT SURROUNDING THE SPACE STATION: ESTIMATES FROM THE PACS DATA

BYRON DAVID GREEN *In NASA*, Langley Research Center, A Study of Space Station Contamination Effects p 79-90 May 1988

Avail: NTIS HC A07/MF A01 CSCL 22B

The objectives of the Particle Analysis Cameras for Shuttle (PACS) experiment (flown on STS-61C) are described and the experiment results are discussed in reference to the expected Space Station environment. Estimates of the sources of particulates surrounding the Space Station were made based on the existing orbital observations data base. Particulates surrounding the shuttle are mostly event related or from the residual release of mass (dust) brought to orbit from the ground. The particulates surrounding the Space Station are likely to arise from additional sources such as operations, docking, erosion, and abrasion. Thus, scaling of the existing data base to long-duration missions in low-Earth orbit requires analysis, modeling, and simulation testing.

N88-25399*# Science and Engineering Associates, Inc., Englewood, CO.

EFFECTS OF METEOROIDS AND SPACE DEBRIS ON THE PARTICULATE ENVIRONMENT FOR SPACE STATION

W. R. SEEBAUGH In NASA, Langley Research Center, A Study of Space Station Contamination Effects p 91-99 May 1988

Avail: NTIS HC A07/MF A01 CSCL 22B

A large orbiting platform such as Space Station will be subjected to numerous impacts by meteoroids and space debris fragments. These hypervelocity impacts will produce clouds of ejected structural material in the vicinity of the Station. The development of a preliminary model for impact-generated ejecta production which combines the fluxes of meteoroids and space debris fragments with a description of the number of ejecta particles produced by hypervelocity impacts is reported. Modeling results give mean ejecta densities from 30 to 100 percent of the present particulate background limitation of 1 particle 5 microns and larger per orbit per 1 x 10(-5) sr field-of-view as seen by a 1-m-diameter aperture telescope in the 1990's time frame. Projected increases in the space debris flux raise this density to 300 percent of this limitation after 2010. The model is also applied to estimate the vulnerability of metallic claddings on composite structural members to penetration by hypervelocity projectiles, thereby exposing the substrate to atomic oxygen. The estimated annual number of penetrations is from 4 to 8 per square meter of cross-sectional area in the mid 1990's, increasing to more than 40 penetrations per square meter after 2010. Author

N88-25400*# Aerospace Corp., Los Angeles, CA. Chemistry and Physics Lab.

CONTAMINATION OF OPTICAL SURFACES

GRAHAM S. ARNOLD and DAVID F. HALL In NASA, Langley Research Center, A Study of Space Station Contamination Effects p 101-108 May 1988

Avail: NTIS HC A07/MF A01 CSCL 22B

The effect of molecular contamination on Space Station optical surfaces is examined. In particular, contamination of solar voltaic power sources and optical solar reflectors for thermal control or solar dynamic power generation is addressed. The published Space Station requirements for molecular contamination accretion and for the monitoring of such accretion is discussed in the context of the historical performance of space systems. Specific reference is made to the results from the Spacecraft Charging at High Altitudes (SCATHA) ML12 experiment.

N88-25401*# Washington State Univ., Pullman. Dept. of Physics.

SURFACE INTERACTIONS RELEVANT TO SPACE STATION **CONTAMINATION PROBLEMS**

J. T. DICKINSON In NASA, Langley Research Center, A Study of Space Station Contamination Effects p 109-121 (Contract NSF DMR-86-01281)

Avail: NTIS HC A07/MF A01 CSCL 22B

The physical and chemical processes at solid surfaces which can contribute to Space Station contamination problems are reviewed. Suggested areas for experimental studies to provide data to improve contamination modeling efforts are presented.

N88-25402*# Physical Sciences, Inc., Andover, MA. LABORATORY EXPERIMENTS OF RELEVANCE TO THE SPACE STATION ENVIRONMENT

G. E. CALEDONIA In NASA, Langley Research Center, A Study of Space Station Contamination Effects p 123-130 Avail: NTIS HC A07/MF A01 CSCL 22B

It has been found that the interaction between orbital vehicles and the ambient environment produces a contaminant cloud which can cause deletrious effects to spacecraft materials and equipment, create increased radiative backgrounds that would interfere with observational instrumentation, and enhance surface charging. A brief overview of the phenomena that produce the contaminant cloud is presented along with a review of physical data required to characterize it. Laboratory techniques which can be utilized to provide the required data are described. In particular, several oxygen beam apparati are discussed. Author

Naval Research Lab., Washington, DC. N88-25403*# Geophysical and Plasma Dynamics Branch. CONTAMINATION OF THE SPACE STATION ENVIRONMENT BY VENTED CHEMICALS

PAUL A. BERNHARDT In NASA, Langley Research Center, A Study of Space Station Contamination Effects p 131-140

Avail: NTIS HC A07/MF A01 CSCL 22B
Gaseous materials vented from materials and life science experiments on the Space Station may have noticeable effects on the optical or plasma environment. The magnitude of the effects depends on: (1) rarefied gas dynamics; (2) photochemical reactions; and (3) airglow excitation mechanisms. In general, the effects from atomic species can be mitigated, but the disturbances resulting from venting of molecules like SF6, CO2 and C2H2 can be significant. The interaction of molecules with ambient plasma at orbital velocities should be studied with laboratory or space Author experiments.

N88-25474*# Minnesota Mining and Mfg. Co., Saint Paul. DESIGN AND DEMONSTRATION OF A SYSTEM FOR THE **DEPOSITION OF ATOMIC-OXYGEN DURABLE COATINGS** FOR REFLECTIVE SOLAR DYNAMIC POWER SYSTEM **CONCENTRATORS Final Contractor Report**

DONALD J. MCCLURE Jul. 1988 68 p (Contract NAS3-25075)

(NASA-CR-4158; E-4150; NAS 1.26:4158) Avail: NTIS HC A04/MF A01 CSCL 22B

A system for the vacuum deposition of atomic-oxygen durable coatings for reflective solar dynamic power systems (SDPS) concentrators was designed and demonstrated. The design issues pertinent to SDPS were developed by the Government Aerospace Systems Division of the Harris Corporation and are described in NASA-CR-179489. Both design and demonstration phases have been completed. At the time of this report the deposition system was ready for coating of facets for SDPS concentrators. The materials issue relevant to the coating work were not entirely resolved. These issues can only be resolved when substrates which are comparable to those which will be used in flight hardware are available. The substrates available during the contract period were deficient in the areas of surface roughness and contamination. These issues are discussed more thoroughly in the body of the

N88-27233# Martin Co., Denver, CO. Astronautics Group. DAMPING CHARACTERISTICS OF METAL MATRIX COMPOSITES Quarterly Letter Progress Report No. 7, 11 Aug. - 9 Dec. 1987 MOHAN S. MISRA 9 Dec. 1987 7 p

(Contract N00014-85-C-0857) (AD-A193144; MCR-85-721) Avail: NTIS HC A02/MF A01 CSCL 11D

Objectives of Present Research: Metal Matrix Composites (MMC) with enhanced material damping can be potential structural materials to improve significantly the stability, control and reliability of space structures. Objectives of this investigation are: - Identify the mechanisms and sources of damping in continuous fiber reinforced MMC (Gr/Al and Gr/Mg) using in situ characterization techniques. - Determine the role of microstructural parameters (fiber volume, fiber orientation, interfiber spacing, grain size, precipitate morphology) in damping. - Define the role of the fiber matrix interface in damping. - Develop high damping structural materials for space applications.

N88-27341# Societe Nationale Industrielle Aerospatiale, Saint-Medard-en-Jalles (France). Div. Systemes Strategiques et Spatiaux.

REINFORCED PLASTICS: WINDING AND WEAVING **TECHNOLOGIES FOR SPACE PRODUCTS**

J. BOUVARD 1988 12 p in FRENCH (REPT-881-430-103; ETN-88-92851) Avail: NTIS HC A03/MF A01

Multidirectional weaving and filament winding techniques are described and application examples to space structures are presented, including the Ariane 5 booster model, sandwich structures for several spacecraft, solar panel structures, helium containers, pipes, and inserts. It is shown that the space applications of these techniques are growing very fast due to definite weight saving advantages.

N88-28754# Dynamics Technology, Inc., Torrance, CA. LABORATORY FEASIBILITY STUDY OF A COMPOSITE EMBEDDED FIBER OPTIC SENSOR FOR MEASUREMENT OF STRUCTURAL VIBRATIONS Report, Oct. 1987 - Feb. 1988 C. M. DUBE, TOM D. WANG, ROBERT G. MELTON, DAVID W. JENSON, and MIKE KOHARCHIK (Pennsylvania State Univ., University Park.) Feb. 1988 47 p (AD-A194270; DT-8723-01) Avail: NTIS HC A03/MF A01 CSCL 11D

The feasibility is assessed of using fiber optic strain sensors embedded in a composite material to measure the magnitude and frequency of structural vibrations for control of flexible elements. This study demonstrates the ability to embed fiber optic strain sensors in a composite material, determines the performance of these sensors, identifies active control system architectures that are matched to the fiber optic system measurands to damp vibrations of large space structures, and estimates the stability achievable by these methods. A detailed laboratory study was performed using a wide band closed-loop-fiber Mach-Zehnder interferometer to conduct transverse vibration measurements on sub-scale composite elements with embedded fiber sensors. The interferometer detects vibrations by measuring the strain transferred by the composite to the embedded optical fiber. The strain sensor demonstrated the ability to track the vibrations of a cantilever beam over a frequency bandwidth ranging from approximately 5

07 ADVANCED MATERIALS

Hz to almost 1000 Hz. The sensor was unable to detect dc strains because of thermal drift and laser power fluctuations. These factors produced a drift in the dc signal level, which was indistinguishable from static strain measurements. Beyond 1000 Hz, the composite element was unable to follow the drive mechanism. The noise equivalent strain was epsilon is approximately 10 to the minus 10th power.

N88-28833# European Space Agency. European Space Research and Technology Center, ESTEC, Noordwijk (Netherlands). Materials and Processes Div.

THE TECHNICAL REPORTING AND APPROVAL PROCEDURE FOR MATERIALS AND PROCESSES

Oct. 1987 38 p

provided.

(ESA-PSS-01-700-ISSUE-1; ISSN-0379-4059; ETN-88-92781) Avail: NTIS HC A03/MF A01

Details concerning the documentation requirements relevant to obtaining ESA approval for the use of materials and processes in the fabrication of space systems and associated equipment are

N88-28959*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

ASSESSMENT OF THE EFFECTS OF SPACE DEBRIS AND METEOROIDS ENVIRONMENT ON THE SPACE STATION SOLAR ARRAY ASSEMBLY

HENRY K. NAHRA Sep. 1988 11 p Presented at the 20th Photovoltaic Specialists Conference, Las Vegas, Nev., 26-30 Sep. 1988; sponsored in part by IEEE

(NASA-TM-101315; E-4310; NAS 1.15:101315) Avail: NTIS HC A03/MF A01 CSCL 22B

The methodology used to assess the probability of no impact of space debris and meteoroids on a spacecraft structure is applied to the Space Station solar array assembly. Starting with the space debris and meteoroids flux models, the projected surface area of the solar cell string circuit of the solar array panel and the mast longeron, and the design lifetime, the possibility of no impact on the solar array mast and solar cell string circuits was determined as a function of particle size. The probability of no impact on the cell string circuits was used to derive the probability of no open circuit panel. The probability of meeting a certain power requirement at the end of the design lifetime was then calculated as a function of impacting particle size. Coupled with a penetration and damage models/correlations which relate the particle size to the penetration depth and damage, the results of this analysis can be used to determine the probability of meeting the lower power requirement given a degree of redundancy, and the probability of no impact on the solar array mast.

N88-28977# Societe Nationale Industrielle Aerospatiale, Saint-Medard-en-Jalles (France).

CONTRIBUTION TO THE STUDY OF MATERIALS BEHAVIOR IN SPACE ENVIRONMENT

P. PLOTARD and F. ALBUGUES 1988 9 p (SNIAS-881-430-104; ETN-88-92852) Avail: NTIS HC A02/MF A01

Facilities to study dimensional stability and for nondestructive in situ analysis of spacecraft materials and components are described. The simulation takes into account solar UV, vacuum, temperature, thermal cycle, and particle effects, with computed dose evaluation corresponding to selected orbits. Results for kevlar and carbon with epoxy resin matrix composites are presented.

ESA

N88-28978# Societe Nationale Industrielle Aerospatiale, Saint-Medard-en-Jalles (France).

VERY HIGH TEMPERATURE MATERIALS FOR MECHANICAL APPLICATION

V. L. MAGRET and A. HORBONNEAU 1988 5 p (SNIAS-881-430-106; ETN-88-92854) Avail: NTIS HC A02/MF A01

Ceramic composite materials which demonstrate temperature resistance up to 1400 C, and oxidation resistant carbon-carbon

with coating adapted to service temperature were developed for space use. Base on experience in weaving and densification, demonstration parts were manufactured.

N88-29190# European Space Agency. European Space Research and Technology Center, ESTEC, Noordwijk (Netherlands). Materials and Processes Div.

MATERIAL AND PROCESS SELECTION AND QUALITY CONTROL FOR ESA SPACE SYSTEMS AND ASSOCIATED EQUIPMENT

Oct. 1987 26 p

(ESA-PSS-01-70-ISSUE-3; ISSN-0379-4059; ETN-88-92913) Avail: NTIS HC A03/MF A01

The requirements for a material and process selection and control program for space systems and associated equipment in which the use of controlled materials and processes is mandatory are established.

N88-30012# Universidad Autonoma de Madrid, Cantoblanco (Spain). Dept. of Applied Physics.
STUDY OF SECONDARY EMISSION PROPERTIES OF

STUDY OF SECONDARY EMISSION PROPERTIES OF MATERIALS USED FOR HIGH POWER RF COMPONENTS IN SPACE Final Report

L. GALAN, C. MORANTI, F. RUEDA, and J. M. SANZ Paris, France ESA 1988 86 p

(Contract ESTEC-6577/85-NL-PB)

(ESA-CR(P)-2587; ETN-88-93031) Avail: NTIS HC A05/MF A01 Secondary electron emission (SEE) properties of materials used for high power waveguide components in space, particularly on surfaces for space hardware were studied, including Alodine surfaces before and after power conditioning. Surface treatments to aid multipactor suppression for these materials, including methods for surface protection and handling, were examined. If only true SEE is considered, Alodine coatings have better characteristics than TiN, TiC, Cr2O3, and C. The rugosity of Alodine may explain its good properties. No clear correlation between SEE characteristic values and multipactor threshold power is found; smaller SEE is not determinant for obtaining higher multipactor threshold power.

08

ASSEMBLY CONCEPTS

Includes automated manipulator techniques, EVA, robot assembly, teleoperators, and equipment installation.

A88-33433

LARGE SPACE SYSTEM ASSEMBLY OPTIONS

MICHAEL K. BAILY (Martin Marietta Corp., Denver, CO) IN: EASCON '87; Proceedings of the Twentieth Annual Electronics and Aerospace Systems Conference, Washington, DC, Oct. 14-16, 1987. New York, Institute of Electrical and Electronics Engineers, Inc., 1987, p. 61-74.

Methods and techniques used to display various large space structure assembly sequence alternatives are discussed. The launch vehicle performance and requirements definition of the major elements to be assembled and delivered and assembled in orbit are considered along with logistics and module outfitting requirements. A Space Station manifest for each mission, the Shuttle performance parameters, and the dynamic requirements for Station weight, altitude, and system are considered. C.D.

A88-33440

ON-ORBIT ASSEMBLY, INTEGRATION, AND TEST OF LARGE SPACECRAFT - A NEW TECHNIQUE

WALTON CLARK (TRW, Inc., Redondo Beach, CA) IN: EASCON '87; Proceedings of the Twentieth Annual Electronics and Aerospace Systems Conference, Washington, DC, Oct. 14-16,

1987. New York, Institute of Electrical and Electronics Engineers, Inc., 1987, p. 121-126. refs

A new and unique on-orbit assembly, interaction, and test technique designed to decrease the cost of any space-vehicle program without increasing the risk of failure on-orbit is presented. In the new approach, the vehicle is completely assembled on-orbit prior to the activation of any subsystems. Services essential during buildup are provided by a separate autonomous support vehicle. The new technique eliminates the need for multiple configurations of each subsystem and simplifies the on-orbit deployment activity.

A88-33789*# Jet Propulsion Lab., California Inst. of Tech., Pasadena.

TEST PROGRAM TO EVALUATE ESD SUSCEPTIBILITY OF EVA SUIT MATERIAL

PHILIP LEUNG (California Institute of Technology, Jet Propulsion Laboratory, Pasadena) IN: Aerospace Testing Seminar, 10th, Los Angeles, CA, Mar. 10-12, 1987, Proceedings. Mount Prospect, IL, Institute of Environmental Sciences, 1987, p. 105-110. refs (Contract NAS7-918)

This paper presents the details of a test program for the evaluation of the electrostatic discharge susceptibility of extravehicular activity equipment in polar orbits. In this program, laboratory simulation tests were performed to obtain the charging and ESD characteristics of the spacesuit material. The results from the simulation tests were used to generate the parameters for a system level ESD test for the existing EVA equipment. These test parameters were also used as a guide for the selection of the test apparatus.

A88-35111

CONCEPTS AND ISSUES FOR A SPACE TELEROBOT

JIM CHAPEL (Martin Marietta Corp., Denver, CO) IN: Aerospace century XXI: Space flight technologies; Proceedings of the Thirty-third Annual AAS International Conference, Boulder, CO, Oct. 26-29, 1986. San Diego, CA, Univelt, Inc., 1987, p. 971-984. refs

(AAS PAPER 86-302)

The requirement for a dexterous space teleoperator for Space Station activities are presently addressed by a dextrerous space telerobotic servicer concept which will be equivalent in capabilities to an astronaut on EVA duties. The potential benefits derivable from the incorporation of force feedback, compliant teleoperation, predictive displays, computer vision, and supervisory control are discussed. Attention is drawn to the substantial amount of off-the-shelf hardware that is directly applicable to the present telerobotic servicer concept.

A88-35452

HANDGRIP STRENGTH WITH THE BARE HAND AND IN THE NASA SPACESUIT GLOVE

J. RICHARD ROESCH (Human Factors Applications, Inc., Panama City, FL) IN: Human Factors Society, Annual Meeting, 31st, New York, NY, Oct. 19-23, 1987, Proceedings. Volume 2. Santa Monica, CA, Human Factors Society, 1987, p. 786-790. refs

This study examined handgrip strength with the bare and spacesuit-gloved hand, in three hand- and two elbow positions. Sixteen subjects from the suited-subject pool at NASA/Johnson Space Center gripped a hand dynamometer encased in a vacuum chamber designed to simulate the pressure differential of the spacesuit in space. With the bare hand (at one atmosphere), there was an effect for hand position and a hand-position x elbow-position interaction. With the spacesuit-gloved hand, there was only an effect for hand position. Two different pressure differentials were used; the glove at 0.5 psid was responsible for a 35 percent grip decrement (when compared to bare handgrip); the glove at 4.3 psid (normal operating pressure) was responsible for a 42 percent grip decrement. Bare and gloved-handgrips were positively correlated with hand size, body weight, height, and forearm circumference. Post hoc, subjects were grouped by hand size; the four subjects in the XL hand-size group lost an average of 17 percent in grip in the glove at 4.3 psid (when compared to the glove at 0.5 psid); the L group lost 12 percent; the M group lost 9 percent; and the S hand-size group lost less than 1 percent.

Author

A88-35453* Grumman Aerospace Corp., Bethpage, NY. TELEROBOTIC CONTROL OF A DEXTROUS MANIPULATOR USING MASTER AND SIX-DOF HAND-CONTROLLERS FOR SPACE ASSEMBLY AND SERVICING TASKS

JOHN M. O'HARA (Grumman Corp., Grumman Space Systems Div., Bethpage, New York) IN: Human Factors Society, Annual Meeting, 31st, New York, NY, Oct. 19-23, 1987, Proceedings. Volume 2. Santa Monica, CA, Human Factors Society, 1987, p. 791-795. refs

(Contract NAS9-17229)

Two studies were conducted evaluating methods of controlling a telerobot; bilateral force reflecting master controllers and proportional rate six degrees of freedom (DOF) hand controllers. The first study compared the controllers on performance of single manipulator arm tasks, a peg-in-the-hole task, and simulated satellite orbital replacement unit changeout. The second study, a Space Station truss assembly task, required simultaneous operation of both manipulator arms (all 12 DOFs) and complex multiaxis slave arm movements. Task times were significantly longer and fewer errors were committed with the hand controllers. The hand controllers were also rated significantly higher in cognitive and manual control workload on the two-arm task. The master controllers were rated significantly higher in physical workload. There were no significant differences in ratings of manipulator control quality.

A88-35455 CREW-INDUCED LOAD MEASUREMENT FOR SPACE OPERATIONS

RUTHAN LEWIS (Lockheed Engineering and Management Services Co., Inc., Houston, TX) IN: Human Factors Society, Annual Meeting, 31st, New York, NY, Oct. 19-23, 1987, Proceedings. Volume 2. Santa Monica, CA, Human Factors Society, 1987, p. 800-802.

A method has been developed to simulate and measure crew-induced and reactive loads for a variety of intravehicular and extravehicular tasks. The method employs the use of a dynamometer attached to an adjustable support, and a three-axis force/torque platform. Translational and rotational hand/arm forces and torques, and foot reaction forces and torques may be measured simultaneously. The apparatus has been designed for on-orbit and ground-based usage. Beyond explanation of the instrumentation, the presentation will address data on forces effected by crew members, and the applications, implications, and integration of the information with regards to planning space operations and design of crew-interfaced items.

A88-35457* Lockheed Engineering and Management Services Co., Inc., Houston, TX.

HUMAN-TELEROBOT INTERACTIONS - INFORMATION, CONTROL, AND MENTAL MODELS

RANDY L. SMITH and DOUGLAS J. GILLAN (Lockheed Engineering and Management Services Co., Inc., Houston, TX) IN: Human Factors Society, Annual Meeting, 31st, New York, NY, Oct. 19-23, 1987, Proceedings. Volume 2. Santa Monica, CA, Human Factors Society, 1987, p. 806-810. refs (Contract NAS9-17900)

A part of the NASA's Space Station will be a teleoperated robot (telerobot) with arms for grasping and manipulation, feet for holding onto objects, and television cameras for visual feedback. The objective of the work described in this paper is to develop the requirements and specifications for the user-telerobot interface and to determine through research and testing that the interface results in efficient system operation. The focus of the development of the user-telerobot interface is on the information required by the user, the user inputs, and the design of the control workstation. Closely related to both the information required by the user and the user's control of the telerobot is the user's mental model of

the relationship between the control inputs and the telerobot's actions.

A88-35462

A METHOD FOR MEASURING THE EFFECT OF GRIP SURFACE ON TORQUE PRODUCTION DURING HAND/ARM ROTATION

RUTHAN LEWIS (Lockheed Engineering and Management Services Co., Inc., Houston, TX) IN: Human Factors Society, Annual Meeting, 31st, New York, NY, Oct. 19-23, 1987, Proceedings. Volume 2. Santa Monica, CA, Human Factors Society, 1987, p. 898-900

During EVA operations, where time is extremely limited, a grip interface that would cause regripping of a surface or repositioning of the hand to assume a more effective or more comfortable grip must be avoided. This paper presents a method for measuring the effect of grip surface on torque production during rotation by the space-gloved hand during a simulated on-orbit construction operation. An isokinetic dynamometer was used as the measuring device to distinguish human interface differences between various connector surface types; the device was used to test single-joint-effected motions, registering torque and the position of the torque within the range of motion at the joint as a function of applied load. It is shown that this method can be used to simulate the complex resultant of mutiple-joint motion. Controls can be instituted according to the application, so that comparisons of static and dynamic measures can be made between specified conditions.

A88-35942#

DESIGNING SPACE STATION STRUCTURE FOR ASSEMBLY

F. DAVID RIEL (McDonnell Douglas Astronautics Co., Space Station Div., Huntington Beach, CA) AIAA SDM Issues of the International Space Station, Conference, Williamsburg, VA, Apr. 21, 22, 1988. 7 p.

(AIAA PAPER 88-2453)

The principal factors influencing the design of the Space Station, which will be approximately 650 feet wide by 350 feet tall when fully deployed, are examined. In particular, the design of the primary truss structure to be assembled in space is described, and it is shown how the design decisions have been influenced by assembly considerations. The decisions discussed include those related to incremental growth, maintenance, Orbiter capability, EVA capability, and test and verification methods.

A88-42328

ROBOT PATH PLANNING IN SPACE

A. F. BRINDLE, W. KOHN, G. M. LOBDELL, and J. H. ALBERT (Boeing Co., Seattle, WA) IN: Materials - Pathway to the future; Proceedings of the Thirty-third International SAMPE Symposium and Exhibition, Anaheim, CA, Mar. 7-10, 1988. Covina, CA, Society for the Advancement of Material and Process Engineering, 1988, p. 26-34. refs

This project is investigating autonomous path planning for vehicles such as satelllite services operating on orbit. In the spacecraft domain, the problem of planning for obstacle avoidance is compounded by several interesting features, most notably the need to avoid plume impingement. The plume from the thrusters of a robotic vehicle may impose particle contamination or orbit altering forces upon other bodies as the vehicle navigates. The system under development is a hierarchical planner with modules for: (1) waypoint generation based on simple constraint models and heuristics, (2) waypoint realignment or smoothing, (3) generation of a pipe representing feasible trajectories from the robot to the next waypoint, and (4) trajectory planning. The planner is placed within a system which simulates the sensing and control for a vehicle similar to NASA's Manned Maneuvering Unit. This paper discusses the architecture of the planner and the coinstraints which the modules must address.

A88-42642* National Aeronautics and Space Administration. Lyndon B. Johnson Space Center, Houston, TX. ROBOTIC VISION/SENSING FOR SPACE APPLICATIONS KUMAR KRISHEN, OLIN GRAHAM (NASA, Johnson Space Center, Houston, TX), and RUI J. P. DE FIGUEIREDO (Rice University, Houston, TX) IN: 1987 IEEE International Conference on Robotics and Automation, Raleigh, NC, Mar. 31-Apr. 3, 1987, Proceedings. Volume 1. Washington, DC, IEEE Computer Society Press, 1987, p. 138-150. refs

(Contract NAS9-17145; N00014-85-K-0152; NSF DCR-83-18514)

A review is presented of efforts currently in progress at the NASA/Johnson Space Center and Rice University, the accomplishments to date, and some of the anticipated future developments. Both systems and algorithms are discussed. The evolution of future vision/sensing is projected to included the fusion of multisensors ranging from microwave to optical with multimode capability to include position, attitude, recognition, and motion parameters. The algorithms for information extraction are expected to incorporate aspects of intelligence and knowledge for the interpolation and extrapolation of the needed data. The key features of the overall system design will be small size and weight, fast signal processing, robust algorithms, and accurate parameter determination. These aspects of vision/sensing are also discussed.

A88-42657* Jet Propulsion Lab., California Inst. of Tech., Pasadena.

SENSING AND PERCEPTION RESEARCH FOR SPACE TELEROBOTICS AT JPL

DONALD B. GENNERY, TODD LITWIN, BRIAN WILCOX, and BRUCE BON (California Institute of Technology, Jet Propulsion Laboratory, Pasadena) IN: 1987 IEEE International Conference on Robotics and Automation, Raleigh, NC, Mar. 31-Apr. 3, 1987, Proceedings. Volume 1. Washington, DC, IEEE Computer Society Press, 1987, p. 311-317. refs

PIFLEX is a pipelined-image processor that can perform elaborate computations whose exact nature is not fixed in the hardware, and that can handle multiple images. A wire-wrapped prototype PIFEX module has been produced and debugged, using a version of the convolver composed of three custom VLSI chips (plus the line buffers). A printed circuit layout is being designed for use with a single-chip convolver, leading to production of a PIFEX with about 120 modules. A high-level language for programming PIFEX has been designed, and a compiler will be written for it. The camera calibration software has been completed and tested. Two more terms in the camera model, for lens distortion, probably will be added later. The acquisition and tracking system has been designed and most of it has been coded in Pascal for the MicroVAX-II. The feature tracker, motion stereo module and stereo matcher have executed successfully. The model matcher is still under development, and coding has begun on the tracking initializer. The object tracker was running on a different computer from the VAX, and preliminary runs on real images have been performed there. Once all modules are working, optimization and integration will begin. Finally, when a sufficiently large PIFEX is available, appropriate parts of acquisition and tracking, including much of the feature tracker, will be programmed into PIFEX, thus increasing the speed and robustness of the system.

A88-42667

THE SPACE AND TELEROBOTIC CONCEPTS OF DFVLR

G. HIRZINGER (DFVLR, Institut fuer Dynamik der Flugsysteme, Wessling, Federal Republic of Germany) IN: 1987 IEEE International Conference on Robotics and Automation, Raleigh, NC, Mar. 31-Apr. 3, 1987, Proceedings. Volume 1. Washington, DC, IEEE Computer Society Press, 1987, p. 443-449. refs

Concepts are outlined for a robot technology experiment ROTEX the author has proposed to fly with the next Germany spacelab, mission D2 (originally planned for 1988, but delayed for at least two years). It provides a small, six-axis robot inside a space-lab rack, equipped with a multisensory gripper (force/torque, an array of range finders, stereo optical fibers). The robot is supposed to handle a biological experiment, to perform several assembly and servicing tasks, and to grasp floating objects. The authors focus on the man-machine and supervisory control concepts for

teleoperation from the spacecraft and from ground and especially explains the predictive estimation schemes for an extensive use of delay-compensating three-dimensional computer graphics. I.E.

A88-42668*# Oak Ridge National Lab., TN.

TRACTION-DRIVE TELEROBOT FOR SPACE MANIPULATION J. N. HERNDON, W. R. HAMEL, and D. P. KUBAN (Oak Ridge National Laboratory, TN) IN: 1987 IEEE International Conference on Robotics and Automation, Raleigh, NC, Mar. 31-Apr. 3, 1987, Proceedings. Volume 1. Washington, DC, IEEE Computer Society Press, 1987, p. 450-455. NASA-supported research. Previously announced in STAR as N87-22233. refs (Contract DE-AC05-84OR-21400)

The National Aeronautics and Space Administration (NASA) Space Station Program marks the begining of a new era in space utilization and habitation. Extensive use of remote manipulation and robotics to reduce astronaut extra-vehicular activity is expected. Emphasis on teleoperator technology in early Space Station phases, followed by growth of autonomous robotics capabilities, is planned. A new telerobot concept has been developed at Oak Ridge National Laboratory (ORNL) under NASA Langley Research Center sponsorship, to address the technical needs of both teleoperations and telerobotics for these future NASA programs. The concept is based on traction drives, redundant kinematics, modular construction, and a state-of-the-art distributed, hierarchical control system.

A88-42677* Massachusetts Inst. of Tech., Cambridge. ON THE DYNAMICS OF MANIPULATORS IN SPACE USING THE VIRTUAL MANIPULATOR APPROACH

Z. VAFA and S. DUBOWSKY (MIT, Cambridge, MA) IN: 1987 IEEE International Conference on Robotics and Automation, Raleigh, NC, Mar. 31-Apr. 3, 1987, Proceedings. Volume 1. Washington, DC, IEEE Computer Society Press, 1987, p. 579-585. refs

(Contract NAG1-489)

A virtual manipulator (VM) concept has been developed recently for the modeling of manipulators working in space. The authors show that the VM facilitates planning and control of the motions of manipulators mounted on spacecraft, minimizing the degrading consequences of manipulator/vehicle dynamic interactions. I.E.

A88-42903*# Booz-Allen and Hamilton, Inc., Bethesda, MD. OPTIMAL USE OF HUMAN AND MACHINE RESOURCES FOR SPACE STATION ASSEMBLY OPERATIONS

JOSEPH C. PARRISH (Booz-Allen and Hamilton, Inc., Bethesda, MD) AIAA, Space Programs and Technologies Conference, Houston, TX, June 21-24, 1988. 12 p. refs (Contract NASW-4300)

(AIAA PAPER 88-3498)

This paper investigates the issues involved in determining the best mix of human and machine resources for assembly of the Space Station. It presents the current Station assembly sequence, along with descriptions of the available assembly resources. A number of methodologies for optimizing the human/machine tradeoff problem have been developed, but the Space Station assembly offers some unique issues that have not yet been addressed. These include a strong constraint on available EVA time for early flights and a phased deployment of assembly resources over time. A methodology for incorporating the previously developed decision methods to the special case of the Space Station is presented. This methodology emphasizes an application of multiple qualitative and quantitative techniques, including simulation and decision analysis, for producing an objective, robust solution to the tradeoff problem. Author

A88-43976# COMPUTATIONAL TECHNIQUES FOR THE SELF ASSEMBLY OF LARGE SPACE STRUCTURES

ALAN H. BARR, BRIAN VON HERZEN, RONEN BARZEL, and JOHN SNYDER (California Institute of Technology, Pasadena) IN: Space manufacturing 6 - Nonterrestrial resources, biosciences, and space engineering; Proceedings of the Eighth Princeton/AIAA/SSI

Conference, Princeton, NJ, May 6-9, 1987. Washington, DC, American Institute of Aeronautics and Astronautics, 1987, p. 275-282. refs

We present a new computational technique, dynamic constraints, which is potentially applicable to the computer aided design, modeling, and control of the self assembly of large space structures. The technique models the dynamic behavior of mechanical elements, subject to geometric constraints on their final configuration. The constraints are met by applying external forces to the elements of the structure during assembly. The techniques are envisioned as being useful for calculating the strength of rocket impulses for automated docking maneuvers, for smoothly eliminating residual velocities and angular velocities associated with self-assembly, and for other applications where we wish to create homeostatic spatial relationships between space platforms and other structures. The technique will also be useful as a computer aided design tool for these applications.

A88-44526*# SDRC, Inc., San Diego, CA. AN ASSESSMENT OF NOMINAL AND CONTINGENCY ALTITUDE REBOOST SCENARIOS DURING SPACE STATION ASSEMBLY

VINCENT J. BILARDO, JR., JOHN HUDIBURG (NASA, Space Station Program Office, Reston, VA), and LEWIS COLLINS (SDRC, Inc., San Diego, CA) AIAA, Space Programs and Technologies Conference, Houston, TX, June 21-24, 1988. 13 p. refs (AIAA PAPER 88-3501)

The results of an analysis of several reboost scenarios for nominal and contingency SS operations during the Phase I assembly sequence are presented. Space Station program requirements on assembly and operational altitudes are outlined, and essential features of the SS reaction control system are described. A nominal reboost strategy designed to meet the current program requirements is presented. In addition, reboost strategies are developed for several contingency scenarios, including one missed STS mission, and an extended STS outage. It is shown that the time-averaged propellant 'cost' of maintaining altitude is greatest for equivalent continuous-thrusting altitude maintenance; it decreases with increasing reboost/rendezvous time interval to an asymptotic minimum value.

A88-50202#

THE KINETICS AND WORKSPACE OF A ROBOT MOUNTED ON A SATELLITE THAT IS FREE TO ROTATE AND TRANSLATE

RICHARD W. LONGMAN (U.S. Navy, Naval Research Laboratory, Washington, DC) IN: AIAA Guidance, Navigation and Control Conference, Minneapolis, MN, Aug. 15-17, 1988, Technical Papers. Part 1. Washington, DC, American Institute of Aeronautics and Astronautics, 1988, p. 374-381. refs (AIAA PAPER 88-4097)

Satellite mounted robots are considered that manipulate loads whose mass is not negligible compared to the satellite mass. By contrast to previous works on this subject, the satellite is considered free to not only translate, but to rotate as well, in reaction to robot motions. Three basic topics in robotics, the forward kinematics, the inverse kinematics, and the robot workspace, are generalized here for the problem at hand. The generalized versions of the kinematics problems are found to have become dynamics problems instead - their solutions are functions of the whole history of robot motion rather than the final joint angles alone. It is demonstrated that any desired satellite orientation can be obtained for any final robot joint angles. The robot workspace is generated, and found to be a perfect sphere whose radius is a function of the load mass. The workspace is compared to that of a robot on an attitude fixed satellite, and an inertially mounted robot, and found to be larger in many cases.

A88-50862

LARGE TRUSS STRUCTURES

M. SIERRA (Sener-Ingenieria y Sistemas, S.A., Las Arenas, Spain) and M. FUENTES (Sener-Ingenieria y Sistemas, S.A., Madrid,

Spain) IN: International Modal Analysis Conference, 5th, London, England, Apr. 6-9, 1987, Proceedings. Volume 2. Bethel, CT, Society for Experimental Mechanics, Inc., 1987, p. 1091-1097.

The possible use of deployable structures that reach their final configuration in orbit is discussed. The existing concepts of deployable structures are classified into groups. The dynamic behavior of these structures in the fully stowed condition, during the intermediate deployment sequence, and in the fully deployed condition are examined. Four specific deployable trusses from a study made by the ESA are presented and analyzed.

A88-50998

HUMAN FACTORS ANALYSIS OF EXTRAVEHICULAR SERVICING OF PAYLOADS WITHIN THE SPACE STATION SERVICING FACILITY

RAY A. REAUX, REBECCA L. SHANNON, and SYLVIA B. SHEPPARD (Computer Technology Associates, Inc., McLean, VA) IN: NAECON 88; Proceedings of the IEEE National Aerospace and Electronics Conference, Dayton, OH, May 23-27, 1988. Volume 3. New York, Institute of Electrical and Electronics Engineers, 1988, p. 784-788. refs

A series of studies on extravehicular (EV) servicing of payloads was performed for the space station on-orbit assembly. maintenance, and servicing project at Goddard Space Flight Center (GSFC). The studies covered three types of servicing that could be performed in the space station servicing facility: change-out of orbital replacement units (ORUs), on-orbit assembly, and fluid replenishment. Servicing activities were decomposed into functions, subfunctions, and tasks. The tasks were allocated to EV, intravehicular (IV), and ground personnel. The temporal flow of the tasks was described using the computer-human operational requirements analysis system (CHORAS), an inhouse graphic tool that models the role of the human operator in a complex system. Once tasks were defined, detailed analyses were performed to identify the cognitive, sensory, and motor skills, information (data flows), and equipment needed to perform each task. The results of the studies include: a detailed operations concept for space station-based payload servicing, work performance issues, and design recommendations for procedures, equipment, and performance aids. In particular, recommendations for the design of the space station servicing facility and related servicing equipment were specified.

A88-52323

TELEROBOTIC SPACE STATION APPLICATIONS

SCOTT A. HOFACKER (United Technologies Corp., Huntsville, AL), BERNARD J. SCHROER, and ARTHUR HERKERT (Alabama, University, Huntsville) IN: Space Congress, 25th, Cocoa Beach, FL, Apr. 26-29, 1988, Proceedings. Cape Canaveral, FL, Canaveral Council of Technical Societies, 1988, p. 3-9 to 3-14. refs

Issues related to space telerobotics and research concerning the Space Station applications of telerobotics are reviewed. The number of camera views needed for a telerobotic task, black and white vs. color view, the camera position for telerobotic tasks, lighting intensity and position, feedback delays, predictive displays, the types of end effectors needed for space tasks, the number of robot arms necessary, reach considerations, and design for space automation are discussed. The development and use of a space telerobotics laboratory are examined. Also, telerobotics space requirements and applications are listed.

A88-52326

AUTOMATION AND ROBOTICS FOR EXPERIMENT OPERATIONS IN AN ENHANCED MAN TENDED FREE FLYER (EMTFF)

EIKE SCHMIDT (MBB-ERNO Raumfahrttechnik GmbH, Bremen, Federal Republic of Germany) IN: Space Congress, 25th, Cocoa Beach, FL, Apr. 26-29, 1988, Proceedings. Cape Canaveral, FL, Canaveral Council of Technical Societies, 1988, p. 3-38 to 3-46.

As a baseline for investigations into automation and robotics for microgravity experiment operations an enhanced version of the Columbus Man Tended Free Flyer (MTFF) is used. Four relevant experiments are selected as a basis for detailed analysis to derive

typical classes of experiment tasks which have crucial importance for the identification of automation and robotics concepts. The description of the Enhanced MTFF (EMTFF), a definition of a reference payload, and the derivation of a preliminary concept for EMTFF automation is presented in this paper as results of an appropriate study funded by ESA/ESTEC.

Author

A88-52328* National Aeronautics and Space Administration. John F. Kennedy Space Center, Cocoa Beach, FL.

ROBOTIC APPLICATIONS AT KENNEDY SPACE CENTER
DAN WEGERIF, MIKE SKLAR, and RON DESPAIN (NASA,
Kennedy Space Center; McDonnell Douglas Astronautics Co.,
Cocoa Beach, FL) IN: Space Congress, 25th, Cocoa Beach, FL,
Apr. 26-29, 1988, Proceedings. Cape Canaveral, FL, Canaveral
Council of Technical Societies, 1988, p. 3-66 to 3-75. refs

McDonnell Douglas performed a study (1987) to find effective application of robots and their associated technology at the Kennedy Space Center (KSC). Specifically, this study was directed toward the newly planned Space Station Processing Facility (SSPF). Because the Operations and Checkout (O and C) building has a similar charter to that of the SSPF, the O and C was carefully checked for potential robotic applications. Eleven applications were discovered and a trade study developed to rate these applications. Twenty more applications external to the SSPF were found during additional studies. These robotic tasks fall into three major categories including: teleoperated robots for hazardous tasks, mobile robots for repetitive tasks and feedback compensated robots for refurbishment and inspection tasks. This paper highlights some of the requirements for these tasks and others external to the SSPF. Additionally, the resources available at KSC are discussed. Author

A88-52329* National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

AUTOMATION AND ROBOTICS FOR THE SPACE STATION -THE INFLUENCE OF THE ADVANCED TECHNOLOGY ADVISORY COMMITTEE

ROBERT R. NUNAMAKER and KELLI F. WILLSHIRE (NASA, Langley Research Center, Hampton, VA) IN: Space Congress, 25th, Cocoa Beach, FL, Apr. 26-29, 1988, Proceedings. Cape Canaveral, FL, Canaveral Council of Technical Societies, 1988, p. 3-76 to 3-79.

The reports of a committee established by Congress to identify specific systems of the Space Station which would advance automation and robotics technologies are reviewed. The history of the committee, its relation to NASA, and the reports which it has released are discussed. The committee's reports recommend the widespread use of automation and robotics for the Space Station, a program for technology development and transfer between industries and research and development communities, and the planned use of robots to service and repair satellites and their payloads which are accessible from the Space Station.

₹.B.

A88-52330* National Aeronautics and Space Administration. John F. Kennedy Space Center, Cocoa Beach, FL.

SYSTEMS INTEGRATION FOR THE KENNEDY SPACE CENTER (KSC) ROBOTICS APPLICATIONS DEVELOPMENT LABORATORY (RADL)

V. LEON DAVIS and ROSS NORDEEN (NASA, Kennedy Space Center, Cocoa Beach, FL) IN: Space Congress, 25th, Cocoa Beach, FL, Apr. 26-29, 1988, Proceedings. Cape Canaveral, FL, Canaveral Council of Technical Societies, 1988, p. 3-80 to 3-88.

A laboratory for developing robotics technology for hazardous and repetitive Shuttle and payload processing activities is discussed. An overview of the computer hardware and software responsible for integrating the laboratory systems is given. The center's anthropomorphic robot is placed on a track allowing it to be moved to different stations. Various aspects of the laboratory equipment are described, including industrial robot arm control, smart systems integration, the supervisory computer, programmable process controller, real-time tracking controller, image processing hardware, and control display graphics. Topics of research include:

automated loading and unloading of hypergolics for space vehicles and payloads; the use of mobile robotics for security, fire fighting, and hazardous spill operations; nondestructive testing for SRB joint and seal verification; Shuttle Orbiter radiator damage inspection; and Orbiter contour measurements. The possibility of expanding the laboratory in the future is examined.

A88-53665*# Massachusetts Inst. of Tech., Cambridge. A DESIGN METHODOLOGY FOR NEUTRAL BUOYANCY SIMULATION OF SPACE OPERATIONS

DAVID L. AKIN (MIT, Cambridge, MA) IN: AIAA, Flight Simulation Technologies Conference, Atlanta, GA, Sept. 7-9, 1988, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1988, p. 313-318. refs (Contract NAGW-21)

(AIAA PAPER 88-4628)

Neutral buoyancy has often been used in the past for EVA development activities, but little has been done to provide an analytical understanding of the environment and its correlation with space. This paper covers a set of related research topics at the MIT Space Systems Laboratory, dealing with the modeling of the space and underwater environments, validation of the models through testing in neutral buoyancy, parabolic flight, and space flight experiments, and applications of the models to gain a better design methodology for creating meaningful neutral buoyancy simulations. Examples covered include simulation validation criteria for human body dynamics, and for applied torques in a beam rotation task, which is the pacing crew operation for EVA structural assembly. Extensions of the dynamics models are presented for powered vehicles in the underwater environment, and examples given from the MIT Space Telerobotics Research Program, including the Beam Assembly Teleoperator and the Multimode Proximity Operations Device. Future expansions of the modeling theory are also presented, leading to remote vehicles which behave in neutral buoyancy exactly as the modeled system would in

A88-55320#

space.

TELEPRESENCE FOR SPACE APPLICATIONS

G. M. MCKINNON and M. L. KING (CAE Electronics, Ltd., Montreal, Canada) IAF, International Astronautical Congress, 39th, Bangalore, India, Oct. 8-15, 1988. 5 p. refs (IAF PAPER 88-018)

In future space applications, the remote operation of manipulators for maintenance and assembly tasks will take on much greater importance. This paper reviews some of the principal concerns in the field of teleoperation, with particular reference to applications in space. A generalized approach to the control of telemanipulators, and other remote devices is presented. In particular, the remote control of manipulators and the requirements for associated displays are discussed.

Author

A88-55324#

SPACE INSPECTION DEVICE FOR EXTRAVEHICULAR REPAIRS - SPIDER SYSTEM

SIMONETTA DI PIPPO and GIOVANNI SYLOS LABINI (CNR, Rome, Italy) IAF, International Astronautical Congress, 39th, Bangalore, India, Oct. 8-15, 1988. 6 p. (IAF PAPER 88-029)

The main characteristics of the proposed space inspection device for extravehicular repairs (SPIDER) which is being devloped for use in the Space Station environment is discussed. The SPIDER system is an autonomous integrated space robot which uses Al tools and techniques for operational control. The SPIDER is expected to be 150 X 90 cm and weigh about 400 kg. The first phase of the SPIDER program, the development of a teleoperated vehicle for visual inspection is examined in detail. Other phases of the program include autonomous navigation, docking, and repairing.

A88-55436#

EVA SPACE SUITS - SAFETY PROBLEMS

G. I. SEVERIN, I. P. ABRAMOV, and V. I. SVERTSHEK (AN SSSR,

Sovet Interkosmos, Moscow, USSR) IAF, International Astronautical Congress, 39th, Bangalore, India, Oct. 8-15, 1988. 7 p.

(IAF PAPER 88-515)

Design features of semirigid space suits and portable life support systems for the Salyut and Mir space stations are reviewed. Ways of providing system reliability in these suits are highlighted. It is shown that the solution to the problem of EVA safety is found in the selection of the proper design concepts and arrangements, adequate operating modes, proven manufacturing techniques, and comprehensive development test programs.

C.D.

N88-20352*# Jet Propulsion Lab., California Inst. of Tech., Pasadena.

THE SPACE STATION ASSEMBLY PHASE: FLIGHT TELEROBOTIC SERVICER FEASIBILITY. VOLUME 2: METHODOLOGY AND CASE STUDY

JEFFREY H. SMITH, MAX A. GYAMFI, KENT VOLKMER, and WAYNE F. ZIMMERMAN Sep. 1987 161 p (Contract NAS7-918)

A methodology is described for examining the feasibility of a Flight Telerobotic Servicer (FTS) using two assembly scenarios, defined at the EVA task level, for the 30 shuttle flights (beginning with MB-1) over a four-year period. Performing all EVA tasks by crew only is compared to a scenario in which crew EVA is augmented by FTS. A reference FTS concept is used as a technology baseline and life-cycle cost analysis is performed to highlight cost tradeoffs. The methodology, procedure, and data used to complete the analysis are documented in detail. Author

N88-20646*# Massachusetts Inst. of Tech., Cambridge. Dept. of Mechanical Engineering.

THE DYNAMIC CONTROL OF ROBOTIC MANIPULATORS IN SPACE Semiannual Report, 31 Jul. 1987 - 31 Jan. 1988 S. DUBOWSKY 29 Apr. 1988 30 p

S. DOBOWSKY 29 Apr. 1988 30 p (Contract NAG1-801)

(NASA-CR-182710; NAS 1.26:182710; SAR-1) Avail: NTIS HC A03/MF A01 CSCL 13I

Described briefly is the work done during the first half year of a three-year study on dynamic control of robotic manipulators in space. The research focused on issues for advanced control of space manipulators including practical issues and new applications for the Virtual Manipulator. In addition, the development of simulations and graphics software for space manipulators, begun during the first NASA proposal in the area, has continued. The fabrication of the Vehicle Emulator System (VES) is completed and control algorithms are in process of development.

N88-21232# Dornier-Werke G.m.b.H., Friedrichshafen (Germany, F.R.).

A JOINT ACTUATOR DESIGN FOR A ROBOTIC MANIPULATOR

K. PRIESETT In ESA, Proceedings of the 3rd European Space Mechanisms and Tribology Symposium p 311-316 Dec. 1987 Avail: NTIS HC A14/MF A01

A rotary actuator design for space robotic manipulator applications was established. Major characteristics are high torque capability, high stiffness, very low backlash, backdriveability, and high resolution position measurement. The unit is very compact and includes a cyclo drive as the major gear system. However, due to the modular concept, a different gear system could be implemented with only minor changes in the gearbox module. The results of the main trade-offs performed on the gear system are summarized.

N88-21474*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

MOTION SYNCHRONIZATION OF A MECHANISM TO DEPLOY AND RESTOW A TRUSS BEAM

M. LUCY In its The 22nd Aerospace Mechanisms Symposium, p.

67-85 May 1988

Avail: NTIS HC A18/MF A01 CSCL 13E

The functions of the Control of Flexible Structures I (COFS I) deployer and retractor assembly (DRA) are primarily to deploy and retract the Mast I beam, and secondarily to latch, unlatch, and restow the DRA mechanism. The problems associated with the diagonal folding mechanism that retracts the beam is presented, the synchronization requirements critical to the process of restowing the beam is discussed, and a proposed solution to the problem of synchronization between the mechanical systems is presented. In addition, a detailed description is presented of the design and functioning of the DRA.

N88-21489*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

OPERATIONAL EXPERIENCE AND DESIGN RECOMMENDATIONS FOR TELEOPERATED FLIGHT HARDWARE

T. W. BURGESS, D. P. KUBAN (Oak Ridge National Lab., Tenn.), W. W. HANKINS, and R. W. MIXON In its The 22nd Aerospace Mechanisms Symposium p 287-305 (Contract DE-AC05-84OR-21400)

Avail: NTIS HC A18/MF A01 CSCL 131

manipulation) Teleoperation (remote will someday supplement/minimize astronaut extravehicular activity in space to perform such tasks as satellite servicing and repair, and space station construction and servicing. This technology is being investigated by NASA with teleoperation of two space-related tasks having been demonstrated at the Oak Ridge National Lab. The teleoperator experiments are discussed and the results of these experiments are summarized. The related equipment design recommendations are also presented. In addition, a general discussion of equipment design for teleoperation is also Author presented.

N88-22540*# Stanford Univ., CA. Center for Design Research.
DESIGN, DEVELOPMENT AND EVALUATION OF
STANFORD/AMES EVA PREHENSORS Final Report

LARRY J. LEIFER, J. ALDRICH, M. LEBLANC, E. SABELMAN, and D. SCHWANDT May 1988 10 p

(Contract NCC2-295)

(NASA-CR-182688; NAS 1.26:182688) Avail: NTIS HC A02/MF A01 CSCL 05H

Space Station operations and maintenance are expected to make unprecedented demands on astronaut EVA. With Space Station expected to operate with an 8 to 10 psi atmosphere (4 psi for Shuttle operations), the effectivness of pressurized gloves is called into doubt at the same time that EVA activity levels are to be increased. To address the need for more frequent and complex EVA missions and also to extend the dexterity, duration, and safety of EVA astronauts, NASA Ames and Stanford University have an ongoing cooperative agreement to explore and compare alternatives. This is the final Stanford/Ames report on manually powered Prehensors, each of which consists of a shroud forming a pressure enclosure around the astronaut's hand, and a linkage system to transfer the motions and forces of the hand to mechanical digits attached to the shroud. All prehensors are intended for attachment to a standard wrist coupling, as found on the AX-5 hard suit prototype, so that realistic tests can be performed under normal and reduced gravity as simulated by water flotation.

Author

N88-23237*# Army Aviation Systems Command, Cleveland, OH. Structural Dynamics Branch.

MICROGRAVITY MECHANISMS AND ROBOTICS PROGRAM

DOUGLAS A. ROHN In NASA, Lewis Research Center, Lewis Structures Technology, 1988. Volume 1: Structural Dynamics p 143-155 May 1988

Avail: NTIS HC A20/MF A01 CSCL 13I

The primary goal of this program is to produce the motion control tools necessary to enhance and enable a particular NASA mission - space laboratory-based microgravity experiments. To that

end, a spectrum of technology is being developed in the disciplines of precision mechanisms and robotics.

Author

N88-23238*# Carnegie-Mellon Univ., Pittsburgh, PA. Dept. of Mechanical Engineering.

BASE REACTION OPTIMIZATION OF MANIPULATORS WITH REDUNDANT KINEMATICS

C. L. CHUNG and S. DESA *In* NASA, Lewis Research Center, Lewis Structures Technology, 1988. Volume 1: Structural Dynamics p 157-173 May 1988 (Contract NAG3-811)

Avail: NTIS HC A20/MF A01 CSCL 13I

A trajectory generation method for space manipulators is introduced. The approach developed employs a manipulator with redundant kinematics. The method is implemented in two steps. First, the end-effector trajectory is developed to satisfy motion requirements. Next, the joint trajectories are developed to minimize base reactions. The analytical development of this method is described and an example illustrating the method is presented.

Author

N88-24147*# McDonnell-Douglas Astronautics Co., Houston, TX.

ADVANCED EVA SYSTEM DESIGN REQUIREMENTS STUDY
T. G. WOODS In NASA, Ames Research Center, Space Station
Human Factors Research Review. Volume 1: EVA Research and

Development p 85-130 Apr. 1988 Avail: NTIS HC A07/MF A01 CSCL 05H

The results are presented of a study to identify specific criteria regarding space station extravehicular activity system (EVAS) hardware requirements. Key EVA design issues include maintainability, technology readiness, LSS volume vs. EVA time available, suit pressure/cabin pressure relationship and productivity effects, crew autonomy, integration of EVA as a program resource, and standardization of task interfaces. A variety of DOD EVA systems issues were taken into consideration. Recommendations include: (1) crew limitations, not hardware limitations; (2) capability to perform all of 15 generic missions; (3) 90 days on-orbit maintainability with 50 percent duty cycle as minimum; and (4) use by payload sponsors of JSC document 10615A plus a Generic Tool Kit and Specialized Tool Kit description. EVA baseline design requirements and criteria, including requirements of various subsystems, are outlined. Space station/EVA system interface requirements and EVA accommodations are discussed in the areas of atmosphere composition and pressure, communications, data management, logistics, safe haven, SS exterior and interior requirements, and SS airlock.

N88-24191*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

CONNECTING REMOTE SYSTEMS FOR DEMONSTRATION OF AUTOMATION TECHNOLOGIES

R. M. BROWN and R. YEE In NASA, Marshall Space Flight Center, Third Conference on Artificial Intelligence for Space Applications, Part 2 p 15-23 Jun. 1988
Avail: NTIS HC A04/MF A01 CSCL 09B

An initial estimate of the communications requirements of the Systems Autonomy Demonstration Project (SADP) development and demonstration environments is presented. A proposed network paradigm is developed, and options for network topologies are explored.

Author

N88-25155*# Maryland Univ., College Park. Biomechanics Lab. THE EFFICACY OF USING HUMAN MYOELECTRIC SIGNALS TO CONTROL THE LIMBS OF ROBOTS IN SPACE Final Report, 15 Apr. 1987-1988

JANE E. CLARK and SALLY J. PHILLIPS 20 Jun. 1988 289 p (Contract NAG5-895)

(NASA-CR-182901; NAS 1.26:182901) Avail: NTIS HC A13/MF A01 CSCL 05H

This project was designed to investigate the usefulness of the myoelectric signal as a control in robotics applications. More specifically, the neural patterns associated with human arm and

hand actions were studied to determine the efficacy of using these myoelectric signals to control the manipulator arm of a robot. The advantage of this approach to robotic control was the use of well-defined and well-practiced neural patterns already available to the system, as opposed to requiring the human operator to learn new tasks and establish new neural patterns in learning to control a joystick or mechanical coupling device.

N88-25206*# Catholic Univ. of America, Washington, DC. Dept. of Electrical Engineering.

ANALYSIS OF A CLOSED-KINEMATIC CHAIN ROBOT

MANIPULATOR Semiannual Report

CHARLES C. NGUYEN and FARHAD J. POORAN 20 p

(Contract NAG5-780)

(NASA-CR-183031; NAS 1.26:183031) Avail: NTIS HC A03/MF A01 CSCL 09B

Presented are the research results from the research grant entitled: Active Control of Robot Manipulators, sponsored by the Goddard Space Flight Center (NASA) under grant number NAG-780. This report considers a class of robot manipulators based on the closed-kinematic chain mechanism (CKCM). This type of robot manipulators mainly consists of two platforms, one is stationary and the other moving, and they are coupled together through a number of in-parallel actuators. Using spatial geometry and homogeneous transformation, a closed-form solution is derived for the inverse kinematic problem of the six-degree-of-freedom manipulator, built to study robotic assembly in space. Iterative Newton Raphson method is employed to solve the forward kinematic problem. Finally, the equations of motion of the above manipulators are obtained by employing the Lagrangian method. Study of the manipulator dynamics is performed using computer simulation whose results show that the robot actuating forces are strongly dependent on the mass and centroid locations of the robot links.

National Aeronautics and Space Administration. Goddard Space Flight Center, Greenbelt, MD.

DESIGN GUIDELINES FOR ROBOTICALLY SERVICEABLE **HARDWARE**

SCOTT A. GORDON Apr. 1988 23 p

(NASA-TM-100700; NAS 1.15:100700) Avail: NTIS HC A03/MF A01 CSCL 13I

Research being conducted at the Goddard Space Flight Center into the development of guidelines for the design of robotically serviceable spaceflight hardware is described. A mock-up was built based on an existing spaceflight system demonstrating how these guidelines can be applied to actual hardware. The report examines the basic servicing philosophy being studied and how this philosophy is reflected in the formulation of design guidelines for robotic servicing. A description of the mock-up is presented with emphasis on the design features that make it robot friendly. Three robotic servicing schemes fulfilling the design guidelines were developed for the mock-up. These servicing schemes are examined as to how their implementation was affected by the constraints of the spacecraft system on which the mock-up is based. Author

Methodist Hospital, Indianapolis, IN. N88-26031# Research and Development Dept.

THE US SPACE PROGRAMME SPACEWALK/EXTRAVEHICULAR ACTIVITY EXPERIENCE: PAST, PRESENT AND FUTURE

THOMAS P. MOORE In ESA, Proceedings of the Colloquium on Space and Sea p 115-120 Mar. 1988

Avail: NTIS HC A15/MF A01

The history and prospects of extravehicular activity (EVA) in NASA space programs are reviewed. The first EVA in the United States program took place on Gemini 4 in 1965. Lunar exploration was accomplished by 14 two-crewmember EVAs during the Apollo program which began in 1968. The United States' only long duration space flight experience took place in 1973 to 1974 aboard Skylab, with 10 EVAs being performed. Since the beginning of the Space Shuttle program in 1981, there have been 13 two-crewmember

EVAs. Space Station is planned for component construction during EVAs for initial operation during the mid 1990s. Physiological effects on crews, particularly metabolic rate, are mentioned.

N88-26038# Avions Marcel Dassault-Breguet Aviation, Saint-Cloud (France).

SAFETY OF EXTRAVEHICULAR SPACE ACTIVITIES **SECURITE DES ACTIVITES SPATIALES EXTRA-VEHICULAIRES**

JACQUES LALOE In ESA, Proceedings of the Colloquium on Space and Sea p 161-168 Mar. 1988 In FRENCH Avail: NTIS HC A15/MF A01

Factors which influence safety in space missions requiring extravehicular activity (EVA) are recalled. Research and development in EVA techniques are discussed. Life support systems; movement, mobility, and dexterity; interfaces; and crew procedures are considered.

N88-26040# Institut Français de Recherche pour l'Exploitation de la Mer. La Sevne sur Mer.

UNDERWATER SIMULATION FOR SPACE TELEOPERATION J.-L. MICHEL and J.-F. DROGOU In ESA, Proceedings of the Colloquium on Space and Sea p 175-176 Mar. 1988 Avail: NTIS HC A15/MF A01

The use of water to simulate on land the conditions of microgravity encountered in space is reviewed. Neutral buoyancy is achieved underwater on submersibles and remotely operated vehicles but space simulation imposes specifically that the neutral buoyancy has also to be realized particularly on movable parts as telemanipulators. The physical properties of water limits the validity of the simulation to movements with very extremely low speed. Two vehicles realized for NASA are used to simulate vehicle mobility in docking phase and assembling teleoperations in water tanks. Knowing limitations and constraints, simulation in water offers the possibility to evaluate the relative efficiency of operations involving man and teleoperation on complex tasks.

N88-26041# Norwegian Marine Technology Research Inst.,

MARINTEK'S OCEAN BASIN, A TRAINING FACILITY FOR **EXTRAVEHICULAR ACTIVITY?**

TOR EINER BERG In ESA, Proceedings of the Colloquium on Space and Sea p 177-182 Mar. 1988 Avail: NTIS HC A15/MF A01

Equipment and functional requirements for a neutral buoyancy facility for weightlessness simulation are discussed. Time schedule and costs related to modification and upgrading of an ocean basin to become an extravehicular activity training facility for ESA are estimated.

N88-26044# Centre National d'Etudes Spatiales, Toulouse

TASKS FORESEEN FOR SPACE ROBOTS AND AN EXAMPLE OF AN ASSOCIATED ORBITAL INFRASTRUCTURE [TACHES ENVISAGEES POUR LES ROBOTS SPATIAUX ET EXEMPLE D'INFRASTRUCTURE ORBITAL ASSOCIEE]

PIERRE DUTTO In ESA, Proceedings of the Colloquium on Space and Sea p 199-208 Mar. 1988 In FRENCH Avail: NTIS HC A15/MF A01

Robot activities on manned space stations are discussed and permanent installation of robots on automatic space platforms is considered. Robot interventions in dangerous areas such as spaceborne nuclear reactors and platforms subjected to high doses of radiation are treated. Robots on deep space probes are assessed. The actual and envisaged orbital infrastructures of the NASA, USSR, and European space programs are reviewed.

N88-26045# European Space Agency. European Space Research and Technology Center, ESTEC, Noordwijk (Nether-

MAN VERSUS MACHINE: THE ROLE OF ASTRONAUTS IN **EXTRAVEHICULAR ACTIVITY**

E. OLIER In its Proceedings of the Colloquium on Space and Sea p 213-218 Mar. 1988

Avail: NTIS HC A15/MF A01

Extravehicular acitivity (EVA) in NASA and USSR space programs is reviewed and European needs, particularly for the Columbus and Hermes programs, are assessed. It is suggested that remote manipulators and EVA are complementary, although EVA offers advantages once the work site is reached.

National Aeronautics and Space Administration. N88-26398* Lyndon B. Johnson Space Center, Houston, TX.

MOBILE REMOTE MANIPULATOR SYSTEM FOR A **TETRAHEDRAL TRUSS Patent**

CLARENCE J. WESSELSKI, inventor (to NASA) and WILLIAM C. SCHNEIDER, inventor (to NASA) 19 Jul. 1988 15 p Filed 5 Sep. 1986 Supersedes N87-15260 (25 - 07, p 0875) Sponsored

(NASA-CASE-MSC-20985-1; US-PATENT-4,757,767; US-PATENT-APPL-SN-904134; US-PATENT-CLASS-104-49; US-PATENT-CLASS-104-35; US-PATENT-CLASS-104-172.1; US-PATENT-CLASS-244-159) Avail: US Patent and Trademark Office CSCL 05H

The mobile remote manipulator system (MRMS) was initially developed for transit about the trusses of the delta space station; however, it can be utilized just as easily for transit about the trusses of the dual keel station. The MRMS is comprised of a mobile platform having a rail system formed of transversely disposed T-shaped tracks, which engage with guide pins located at the nodes of the trusses. The guide pins form a grid and the tracks are so designed as to permit travel in either of two orthogonal directions. The present invention provides a near-uniform traversing velocity with minimal dynamic loading on the system. Pivoting changers move the platform from one face to another.

Official Gazette of the U.S. Patent and Trademark Office

N88-26678# National Aerospace Lab., Amsterdam (Netherlands). Space Div.

SIMULATION OF SPACE MANIPULATOR OPERATIONS (EUROSIM)

C. N. A. PRONK, A. ELFVING, E. ERSUE, and A. L. LIPPAY 13 Mar. 1987 10 p Presented at the Summer Computer Simulation Conference, Montreal, Quebec, 27-30 Jul. 1987 (Contract ESA-6482/85)

(NLR-MP-87017-U; B8805305; ETN-88-92609; PB88-209747; AD-B119669L) Avail: NTIS HC A02/MF A01

Definition and planning of application software for ESA's European Robotic Operations Simulator are reviewed. Simulation definition and test control software; overall system dynamic model; generic models for the in-orbit infrastructure, including spacecraft, environment, and payload, and mathematical models for the space manipulator system are discussed. A survey of existing models and software completed the requirements study. A plan for further development was specified. ESA

N88-29352*# National Aeronautics and Space Administration, Washington, DC.

SPACE STATION AS A VITAL FOCUS FOR ADVANCING THE TECHNOLOGIES OF AUTOMATION AND ROBOTICS

GIULIO VARSI (Jet Propulsion Lab., California Inst. of Tech., Pasadena.) and DANIEL H. HERMAN /n NASA, Marshall Space Flight Center, Second Conference on Artificial Intelligence for Aug. 1988 Space Applications p 1-6 (IAF-86-62) Avail: NTIS HC A99/MF E03 CSCL 22B

A major guideline for the design of the U.S. Space Station is that the Space Station address a wide variety of functions. These functions include the servicing of unmanned assets in space, the support of commercial labs in space and the efficient management of the Space Station itself; the largest space asset. The technologies of Automation and Robotics have the promise to help in reducing Space Station operating costs and to achieve a highly efficient use of the human in space. The use of advanced automation and artificial intelligence techniques, such as expert systems, in Space Station subsystems for activity planning and

failure mode management will enable us to reduce dependency on a mission control center and could ultimately result in breaking the umbilical link from Earth to the Space Station. The application of robotic technologies with advanced perception capability and hierarchical intelligent control to servicing system will enable the servicing of assets either in space or in situ with a high degree of human efficiency. The results of studies leading toward the formulation of an automation and robotics plan for Space Station development are presented.

N88-29367*# National Aeronautics and Space Administration. Marshall Space Flight Center, Huntsville, AL

MACHINE VISION FOR REAL TIME ORBITAL OPERATIONS FRANK L. VINZ In its Second Conference on Artificial Intelligence

for Space Applications p 141-155 Aug. 1988 Avail: NTIS HC A99/MF E03 CSCL 05H

Machine vision for automation and robotic operation of Space Station era systems has the potential for increasing the efficiency of orbital servicing, repair, assembly and docking tasks. A machine vision research project is described in which a TV camera is used for inputing visual data to a computer so that image processing may be achieved for real time control of these orbital operations. A technique has resulted from this research which reduces computer memory requirements and greatly increases typical computational speed such that it has the potential for development into a real time orbital machine vision system. This technique is called Al BOSS (Analysis of Images by Box Scan and Syntax).

Author

N88-29377*# Boeing Aerospace Co., Huntsville, AL. Space Station Program.

A PLAN FOR TIME-PHASED INCORPORATION OF **AUTOMATION AND ROBOTICS ON THE US SPACE STATION** R. B. PURVES, P. S. LIN, and E. M. FISHER, JR. Marshall Space Flight Center, Second Conference on Artificial Intelligence for Space Applications p 237-245 Aug. 1988 Avail: NTIS HC A99/MF E03 CSCL 22B

A plan for the incorporation of Automation and Robotics technology on the Space Station is presented. The time phased introduction of twenty two selected candidates is set forth in accordance with a technology development forecast. Twenty candidates were chosed primarily for their potential to relieve the crew of mundane or dangerous operations and maintenance burdens, thus freeing crew time for mission duties and enhancing safety. Two candidates were chosen based on a potential for increasing the productivity of laboratory experiments and thus directly enhancing the scientific value of the Space Station. A technology assessment for each candidate investigates present state of the art, development timelines including space qualification considerations, and potential for technology transfer to earth applications. Each candidate is evaluated using a crew workload model driven by crew size, number of pressurized U.S. modules and external payloads, which makes it possible to assess the impact of automation during a growth scenario. Costs for each increment of implementation are estimated and accumulated.

Author

N88-29378*# Boeing Computer Services Co., Seattle, WA. Advanced Technology Center for Computer Sciences. MOTION PLANNING FOR A FREE-FLYING ROBOT

DONALD LEO KAISER and PATRICK J. HAWKINS In NASA. Marshall Space Flight Center, Second Conference on Artificial Intelligence for Space Applications p 247-255 Aug. 1988

Avail: NTIS HC A99/MF E03 CSCL 22B

An investigation is presented of motion planning combining low level control and obstacle avoidance for a free flying robot. This free flying robot is an outgrowth of the concept of an assistant for astronauts on the U.S. Space Station and Shuttle, A motion planner based on the Khatib potential field approach is described. Because of the uncluttered environment in space, it generates a path from representation of known obstacles rather than from a representation of free space. A global planner supplies the low level controller with interim points between the current position

and the desired goal position so that the vehicle does not become trapped by local minima, a phenomenon of the potential field approach. Discussion of the feasibility of this system for space applications is presented.

N88-29385*# Martin Marietta Aerospace, Denver, CO. Space Station Program.

INTELLIGENT RESOURCE MANAGEMENT FOR LOCAL AREA NETWORKS: APPROACH AND EVOLUTION

ROGER MEIKE In NASA, Marshall Space Flight Center, Second Conference on Artificial Intelligence for Space Applications p 319-324 Aug. 1988

Avail: NTIS HC A99/MF E03 CSCL 09B

The Data Management System network is a complex and important part of manned space platforms. Its efficient operation is vital to crew, subsystems and experiments. All is being considered to aid in the initial design of the network and to augment the management of its operation. The Intelligent Resource Management for Local Area Networks (IRMA-LAN) project is concerned with the application of Al techniques to network configuration and management. A network simulation was constructed employing real time process scheduling for realistic loads, and utilizing the IEEE 802.4 token passing scheme. This simulation is an integral part of the construction of the IRMA-LAN system. From it, a causal model is being constructed for use in prediction and deep reasoning about the system configuration. An Al network design advisor is being added to help in the design of an efficient network. The Al portion of the system is planned to evolve into a dynamic network management aid. The approach, the integrated simulation, project evolution, and some initial results are described.

N88-29387*# Georgia Inst. of Tech., Atlanta. CONCEPTS FOR ROBOT MOTION PRIMITIVES REQUIRED FOR SPACE STATION TELEOPERATIONS

JEFFREY L. GROVER and STEVEN A. E. SUCHTING (Boeing Aerospace Co., Huntsville, Ala.) In NASA, Marshall Space Flight Center, Second Conference on Artificial Intelligence for Space Applications p 337-346 Aug. 1988

Avail: NTIS HC A99/MF E03 CSCL 05H

Ground controlled teleoperations are expected to be used to augment Space Station manned extravehicular activities (EVA) and Intravehicular activities (IVA). However, ground controlled teleoperations will encounter communications time delays of from 3 to 8 secs. Time delays greater than 1 sec have been shown to be detrimental to safe and efficient teleoperations. Therefore, concepts must be developed to overcome the hazards and limitations of time delays when performing teleoperations using robots. The concept for robot motion primitives incorporate force/torque and tactile sensor feedback to implement the degree of autonomy required for interactive, ground controlled telerobotics. Several primitives are studied that augment human initiated actions by providing rapid response interaction with the physical environment of a telerobot. These primitives are detailed. They constitute a level of intelligent sensing and reaction required to augment human actions through autonomous interaction with the physical environment. Author

N88-29388*# National Aeronautics and Space Administration. Marshall Space Flight Center, Huntsville, AL.

THE USE OF COMPUTER GRAPHIC SIMULATION IN THE DEVELOPMENT OF ROBOTIC SYSTEMS

KEN FERNANDEZ *In its* Second Conference on Artificial Intelligence for Space Applications p 347-354 Aug. 1988 Avail: NTIS HC A99/MF E03 CSCL 09B

The use of computer graphic simulation techniques to resolve critical design and operational issues for robotic systems is described. Use of this technology will result in greatly improved systems and reduced development costs. The major design issues in developing effective robotic systems are discussed and the use of ROBOSIM, a NASA developed simulation tool, to address these issues is presented. Three representative simulation case studies are reviewed: off-line programming of the robotic welding

development cell for the Space Shuttle Main Engine; the integration of a sensor to control the robot used for removing the Thermal Protection System from the Solid Rocket Booster; and the development of a teleoperator/robot mechanism for the Orbital Maneuvering Vehicle.

N88-29405*# Martin Marietta Aerospace, Denver, CO. Space Station Program.

INTELLIGENT INTERFACE DESIGN AND EVALUATION

FRANK L. GREITZER In NASA, Marshall Space Flight Center, Second Conference on Artificial Intelligence for Space Applications p 489-496 Aug. 1988 Sponsored in part by Martin Marietta Denver Aerospace Independent Research and Development Avail: NTIS HC A99/MF E03 CSCL 09B

Intelligent interface concepts and systematic approaches to assessing their functionality are discussed. Four general features of intelligent interfaces are described: interaction efficiency, subtask automation, context sensitivity, and use of an appropriate design metaphor. Three evaluation methods are discussed: Functional Analysis, Part-Task Evaluation, and Operational Testing. Design and evaluation concepts are illustrated with examples from a prototype expert system interface for environmental control and life support systems for manned space platforms. Author

N88-29408*# Alabama Univ., Huntsville.

PERSONNEL OCCUPIED WOVEN ENVELOPE ROBOT

FRANCIS WESSLING, WILLIAM TEOH, and M. CARL ZIEMKE In NASA, Marshall Space Flight Center, Second Conference on Artificial Intelligence for Space Applications p 513-521 Aug. 1988

Avail: NTIS HC A99/MF E03 CSCL 05H

The Personnel Occupied Woven Envelope Robot (POWER) provides an alternative to extravehicular activity (EVA) of space suited astronauts and/or use of long slender manipulator arms such as are used in the Shuttle Remote Manipulator System. POWER provides the capability for a shirt sleeved astronaut to perform such work by entering a control pod through air locks at both ends of an inflated flexible bellows (access tunnel). The exoskeleton of the tunnel is a series of six degrees of freedom (Six-DOF) articulated links compressible to 1/6 of their fully extended length. The operator can maneuver the control pod to almost any location within about 50 m of the base attachment to the space station. POWER can be envisioned as a series of hollow Six-DOF manipulator segments or arms wherein each arm grasps the shoulder of the next arm. Inside the hollow arms ia a bellow-type access tunnel. The control pod is the fist of the series of linked hollow arms. The fingers of the fist are conventional manipulator arms under direct visual control of the nearby operator in the pod. The applications and progress to date of the POWER system is given.

N88-29409*# Boeing Aerospace Co., Huntsville, AL. Space Station Program.

REMOTE SERVICING OF SPACE SYSTEMS

S. L. COLLINS and R. B. PURVES In NASA, Marshall Space Flight Center, Second Conference on Artificial Intelligence for Space Applications p 523-535 Aug. 1988
Avail: NTIS HC A99/MF E03 CSCL 05H

Space systems are difficult to maintain on orbit. The difficulty arises from the limited ability and availability of the astronaut work force in the hazardous space environment. Remote robotic manipulation can free the astronaut from the hazardous working environment while also increasing the work force. However, remote robotic servicing is not without its own set of problems and limitations, such as communication time delay and unstructured worksites. Tests and test equipment are described which are designed to increase the understanding of the remote servicing problems and to allow development of potential solutions. A half scale satellite mockup was developed for evaluating and improving upon the design of replaceable subsystems, such as batteries and electronic boxes. A servicer system, that includes a six degree of freedom PUMA 560 robot and interchangeable end effectors

(tools), was developed to aid in driving out servicer design requirements. The results include the time delay impact on servicing timelines and requirements for the servicer system. Author

N88-29410*# Boeing Aerospace Co., Huntsville, AL. Space Station Program.

A TELEOPERATED ROBOTIC MANIPULATOR SYSTEM FOR MATERIALS PROCESSING EXPERIMENT SERVICING

STEVEN SUCHTING, R. BYRON PURVES, JEFFREY L. GROVER, and ROY SCRUGGS (Georgia Inst. of Tech., Atlanta.) In NASA, Marshall Space Flight Center, Second Conference on Artificial Intelligence for Space Applications p 537-542 Aug. 1988

Avail: NTIS HC A99/MF E03 CSCL 05H

In 1984 Congress authorized NASA to begin the Space Station Program, and requested that 10 percent of program funds be spent in implementing automation and robotics (A and R) on the Space Station. In response to that request, Boeing established several Independent Research and Development (IR and D) projects to explore possible uses for A and R on the Space Station. One of those projects, and automated materials processing experiment, is discussed. The project uses a teleoperated robot to demonstrate telescience applied to a Chemical Vapor Transport materials processing experiment.

N88-29414*# Martin Marietta Aerospace, Denver, CO. BLACKBOARD ARCHITECTURES AND THEIR RELATIONSHIP TO AUTONOMOUS SPACE SYSTEMS

ALLISON THORNBRUGH In NASA, Marshall Space Flight Center, Second Conference on Artificial Intelligence for Space Applications p 583-589 Aug. 1988

Avail: NTIS HC A99/MF E03 CSCL 09B

The blackboard architecture provides a powerful paradigm for the autonomy expected in future spaceborne systems, especially SDI and Space Station. Autonomous systems will require skill in both the classic task of information analysis and the newer tasks of decision making, planning and system control. Successful blackboard systems have been built to deal with each of these tasks separately. The blackboard paradigm achieves success in difficult domains through its ability to integrate several uncertain sources of knowledge. In addition to flexible behavior during autonomous operation, the system must also be capable of incrementally growing from semiautonomy to full autonomy. The blackboard structure allows this development. The blackboard's ability to handle error, its flexible execution, and variants of this paradigm are discussed as they apply to specific problems of the space environment.

N88-29839# Erno Raumfahrttechnik G.m.b.H., Bremen (Germany,

STUDY OF ROBOTICS SPACECRAFT SERVICING AND ASSEMBLY IN SPACE. VOLUME 1: EXECUTIVE SUMMARY Final Report

Paris, France ESA Feb. 1988 94 p Prepared in cooperation with Sener S.A., Madrid, Spain; Aeritalia S.p.A., Turin, Italy; Fraunhofer Inst. fuer Productionstechnik und Konstruktionstechnik, Berlin, Fed. Republic of Germany and Spar Aerospace Ltd., Ste-Anne-de-Bellevue, Quebec

(Contract ESA-6837/86-NL-PP(SC))

(ESA-CR(P)-2612-VOL-1; ETN-88-93147) Avail: NTIS HC A05/MF A01

The robotics, servicing, and assembly requirements of a microgravity mission and an orbital assembly mission were defined. The microgravity mission is based on the Man-Tended Free Flyer (MTFF) enhanced by additional elements, like an airlock, a multiberthing node, and an unpressurized payload area. The in-orbit assembly mission deals with the buildup of this enhanced version of the MTFF towards a European autonomous Space Station. For the micro-g mission the central transportation robot and a rack-dedicated manipulator are outlined as elements of an overall automation concept for the MTFF operation, while the in-orbit assembly mission identifies a moveable assembly manipulator for handling of modules and large structures.

N88-30298# Selskapet for Industriell og Teknisk Forskning, Trondheim (Norway). Div. of Medical Technology.

STUDY OF HUMAN FACTORS ENGINEERING CRITERIA FOR EXTRAVEHICULAR ACTIVITY (EVA) SYSTEMS, VOLUME 1 Final Report

A. O. BRUBAKK, B. HOLAND, G. BOLSTAD, A. PASCHE, T. SYVERSEN, O. BJORSETH, H. RYVARDEN, H. FATHI, B. BREKKE, O. I. MOLVAER et al. Paris, France ESA 8 Dec. 1987 333 p Sponsored in part by the Royal Norwegian Council for Scientific and Industrial Research, Trondheim, Norway (Contract ESTEC-7016/87-NL-PP(SC))

(STF23-F87025-VOL-1; ESA-CR(P)-2572-VOL-1; ETN-88-93020) Avail: NTIS HC A15/MF A01

Human factors engineering for EVA: anthropometry; physiological and biochemical parameters at 1g conditions; physiological effects of the space environment; structural considerations; procedures; EVA suit design recommendations; EVA airborne support equipment; and EVA operational support equipment was reviewed. Design guidelines for man-machine interfaces for EVA systems are presented. Guidelines for astronaut training for EVA are suggested. Simulation techniques for EVA development studies and training are considered. Training systems reutral buoyancy facilities; and water tanks and diver test systems are discussed.

N88-30357*# Jet Propulsion Lab., California Inst. of Tech., Pasadena.

THE SPACE STATION ASSEMBLY PHASE: SYSTEM DESIGN TRADE-OFFS FOR THE FLIGHT TELEROBOTIC SERVICER

JEFFREY H. SMITH, MAX GYAMFI, KENT VOLKMER, and WAYNE ZIMMERMAN In NASA, Goddard Space Flight Center, The 1988 Goddard Conference on Space Applications of Artificial Intelligence p 381-396 Aug. 1988

(Contract NAS7-918)

Avail: NTIS HC A19/MF A01 CSCL 05H

The effects of a recent study aimed at identifying key issues and trade-offs associated with using a Flight Telerobotic Servicer (FTS) to aid in Space Station assembly-phase tasks is described. The use of automation and robotic (A and R) technologies for large space systems often involves a substitution of automation capabilities for human EVA or IVA activities. A methodology is presented that incorporates assessment of candidate assembly-phase tasks, telerobotic performance capabilities, development costs, and effects of operational constaints. Changes capabilities. in the region of cost-effectiveness are examined under a variety of system design assumptions. A discussion of issues is presented with focus on three roles the FTS might serve: as a research-oriented test bed to learn more about space usage of telerobotics; as a research based test bed having an experimental demonstration orientation with limited assembly and servicing applications; or as an operational system to augment EVA and to aid construction of the Space Station and to reduce the program (schedule) risk by increasing the flexibility of mission operations.

Author

09

PROPULSION

Includes propulsion concepts and designs utilizing solar sailing, solar electric, ion, and low thrust chemical concepts.

A88-33441*# General Dynamics Corp., San Diego, CA.
LONG TERM ORBITAL STORAGE OF CRYOGENIC
PROPELLANTS FOR ADVANCED SPACE TRANSPORTATION
MISSIONS

JOHN R. SCHUSTER (General Dynamics Corp., Space Systems Div., San Diego, CA) and NORMAN S. BROWN (NASA, Marshall Space Flight Center, Huntsville, AL) IN: EASCON '87: Proceedings

of the Twentieth Annual Electronics and Aerospace Systems Conference, Washington, DC, Oct. 14-16, 1987. New York, Institute of Electrical and Electronics Engineers, Inc., 1987, p. 127-133.

A comprehensive study has developed the major features of a large capacity orbital propellant depot for the space-based, cryogenic OTV. The study has treated both the Dual-Keel Space Station and co-orbiting platforms as the accommodations base for the propellant storage facilities, and trades have examined both tethered and hard-docked options. Five tank set concepts were developed for storing the propellants, and along with layout options for the station and platform, were evaluated from the standpoints of servicing, propellant delivery, boiloff, micrometeoroid/debris shielding, development requirements, and cost. These trades led to the recommendation that an all-passive storage concept be considered for the platform and an actively refrigerated concept providing for reliquefaction of all boiloff be considered for the Space Station. The tank sets are modular, each storing up to 45,400 kg of LO2/LH2, and employ many advanced features to provide for microgravity fluid management and to limit boiloff. The features include such technologies as zero-gravity mass gauging, total communication capillary liquid acquisition devices, autogenous pressurization, thermodynamic vent systems, thick multilayer insulation, vapor-cooled shields, solar-selective coatings, advanced micrometeoroid/debris protection systems, and long-lived cryogenic refrigeration systems. Author

A88-33792#

TESTING OF PROPELLANT MANAGEMENT DEVICE FOR 3-AXIS GEOSYNCHRONOUS SPACECRAFT

TSO-PING YEH and DONALD L. BOND (Ford Aerospace and Communications Corp., Palo Alto, CA) IN: Aerospace Testing Seminar, 10th, Los Angeles, CA, Mar. 10-12, 1987, Proceedings. Mount Prospect, IL, Institute of Environmental Sciences, 1987, p. 137-141.

Testing on scale models, components, and subassemblies and on the integrated tank is being used to qualify a propellant tank for Ford Aerospace's new class of geosynchronous satellites. Experimental methods used to simulate fluid behavior, including drop tower and zero-g KC-135 aircraft flights, are discussed and correlated to analytical models. The testing planned during the PMD assembly, tank qualification, and acceptance testing while in the normal one-g environment is discussed.

A88-35100

EXOTIC PROPULSION IN THE 21ST CENTURY

ROBERT L. FORWARD (Hughes Research Laboratories, Malibu, CA) IN: Aerospace century XXI: Space flight technologies; Proceedings of the Thirty-third Annual AAS International Conference, Boulder, CO, Oct. 26-29, 1986. San Diego, CA, Univelt, Inc., 1987, p. 717-744. refs

(Contract F04611-86-C-0039)

(AAS PAPER 86-409)

Possible forms of interplanetary spacecraft propulsion for next-century development and implementation are presented and comparatively evaluated, with a view to the types of technology involved. Both Western and Soviet proposals are discussed. The propulsion system types are (1) laser thermal; (2) 'Skyhook' and 'rotavator' propulsion tethers; (3) proton-antiproton annihilation; (4) solar radiation-pushed light sails; and (5) laser radiation-pushed light sails. Laser-pushed light sails are held to be capable of supporting round-trip interstellar travel.

A88-35943#

DESIGN OF LIGHT-WEIGHT IMPACT RESISTANT PRESSURE VESSELS FOR SPACE STATION FLUID AND PROPULSION SYSTEMS

K. A. MCCLYMONDS, H. W. BABEL, and D. P. RYAN (McDonnell Douglas Astronautics Co., Huntington Beach, CA) AIAA SDM Issues of the International Space Station, Conference, Williamsburg, VA, Apr. 21, 22, 1988. 7 p. Research supported by McDonnell Douglas Astronautics Co. refs (AIAA PAPER 88-2466)

The Space Station requires many gas storage tanks to operate the fluid management and distribution systems, and propulsion systems. Composites are attractive candidates for pressure containment based on their high specific tensile strengths. This work addresses the issues for such tanks and focuses on the critical problem of meeting leak-before-burst requirements for hypervelocity particle impacts. Test data is reported for 30 caliber gunfire and hypervelocity impacts on graphite/epoxy overwrapped bottles with aluminum liners.

A88-41283

BEYOND LOW EARTH ORBIT - A SURVEY OF UPPER STAGES

DAVID W. THOMPSON (Orbital Sciences Corp., Fairfax, VA) IN: Visions of tomorrow: A focus on national space transportation issues; Proceedings of the Twenty-fifth Goddard Memorial Symposium, Greenbelt, MD, Mar. 18-20, 1987. San Diego, CA, Univelt, Inc., 1987, p. 131-136. (AAS PAPER 87-115)

An account is given of foreseeable prospects for relatively near-term supplements to the U.S.'s OTV inventory. This inventory currently encompasses the Payload Assist Module, the Inertial Upper Stage, and the Transfer Orbit Stage (TOS). Prospective systems are the Orbital Maneuvering Vehicle, which is an autonomous modular bipropellant vehicle; the TOS/Apogee and Maneuvering Stage, which would be capable of placing 65,000 lbs into GEO on the basis of derivative technology; the Adaptable Space Propulsion System, which would be compatible with the Titan 4 launcher; the Aeroassist Flight Experiment of NASA's Civil Space Technology Initiative; and the Orbital Transfer Vehicle, which will be both man-rated and reusable.

A88-41287

LEO TO GEO TRANSPORTATION SYSTEM COMBINING ELECTRIC PROPULSION WITH BEAMED MICROWAVE POWER FROM EARTH

WILLIAM C. BROWN (Microwave Power Transmission Systems, Inc., Weston, MA) IN: Visions of tomorrow: A focus on national space transportation issues; Proceedings of the Twenty-fifth Goddard Memorial Symposium, Greenbelt, MD, Mar. 18-20, 1987. San Diego, CA, Univelt, Inc., 1987, p. 195-217. refs (AAS PAPER 87-126)

Transportation of space payloads aboard OTVs from LEO to GEO is presently envisioned with a system combining electric propulsion with beamed microwave power from earth, via a rectenna that both absorbs and rectifies the microwave beam focused on the vehicle by an electronically steerable phased array. The rectenna's mass, at 1 kg/kW, is an order of magnitude lower than other proposed space power sources. The transmitters are located on the equator, and the OTVs are launched into an equatorial-plane orbit, so that the beam can sweep a large angle west-to-east. Microwave OTVs are compared with a nuclear propulsion alternative; these technologies are noted to be complementary for large scale lunar and Martian missions. O.C.

A88-43710#

OPEN-CYCLE CHEMICAL POWER AND THERMAL MANAGEMENT SYSTEM WITH COMBUSTION PRODUCT-FREE EFFLUENT

G. S. HOSFORD, K. WEBER (Sundstrand Corp., Rockford, IL), and R. GIELLIS (Martin Marietta Corp., Denver, CO) AIAA, Thermophysics, Plasmadynamics and Lasers Conference, San Antonio, TX, June 27-29, 1988. 6 p. (AIAA PAPER 88-2625)

Open-cycle chemical prime power sources offer a nonnuclear alternative for satisfying the burst electrical power requirements for space-based multimegawatt power concepts. Although hydrogen-oxygen chemical energy sources require long-term cryogenic storage technology, they have less mass than systems that use fuels and oxidizers that can be stored at temperatures found in the low earth orbit environment. Open-cycle chemical concepts typically exhaust undesirable products of combustion into the environment surrounding space platforms. Innovative

application of thermophysical principles in a new open-cycle chemical power generation concept prevents these combustion products from entering the exhaust gas stream and provides a means of storing them in a liquid state on the platform. This concept eliminates one of the major disadvantages of the open-cycle chemical systems.

A88-43863 HEAVY LIFT HORIZONTAL TAKE-OFF AND LANDING

A. W. SWALES British Interplanetary Society, Journal (ISSN 0007-084X), vol. 41, June 1988, p. 255-261. refs

The growth potential of the Hotol concept as applied to the transport of large heavy structures to orbit is discussed. Special consideration is given to the 'Caret' wind concept, which makes it possible to use athmosphere for lift. A performance analysis of the wing design is presented together with the analysis of the mass budget and fuel requirements for single-stage-to-orbit and two-stage-to-orbit orbiter and glider arrangements. It is shown that such a vehicle is a viable prospect and a good candidate for shared development as an intercontinental transport.

A88-44668*# Jet Propulsion Lab., California Inst. of Tech., Pasadena.

PARAMETRIC STUDIES OF ELECTRIC PROPULSION SYSTEMS FOR ORBIT TRANSFER VEHICLES

R. MANVI and T. FUJITA (California Institute of Technology, Jet Propulsion Laboratory, Pasadena) AIAA, ASME, SAE, and ASEE, Joint Propulsion Conference, 24th, Boston, MA, July 11-13, 1988. 9 p. DOE-DOD-sponsored research. refs (AIAA PAPER 88-2835)

The present parametric tradeoff study for OTV electric propulsion systems encompasses ammonia and hydrogen arcjets as well as Xe-ion propulsion systems with performance characteristics currently being projected for 1993 operation. In all cases, the power source is a nuclear-electric system with 30 kg/kW(e) specific mass, and the mission involves the movement of payloads from lower orbits to GEO. Attention is given to payload capabilities and associated propellant requirements. Mission trip time is identified as the key parameter for selection; while arcjets are preferable for shorter trip times, ion propulsion is more advantageous for longer trip times due to reduced propellant mass fraction.

A88-44698*# National Aeronautics and Space Administration, Washington, DC.

PROPULSION SAFETY ALMOST EQUALS MISSION SAFETY GILBERT L. ROTH (NASA, Washington, DC) AIAA, ASME, SAE, and ASEE, Joint Propulsion Conference, 24th, Boston, MA, July 11-13, 1988. 5 p. refs (AIAA PAPER 88-2881)

Propulsion system hardware and monitoring/control software constitute a given manned or unmanned aerospace system's primary risk-management issue. The present inquiry into the reasons for this dominance attempts to identify development routes to the reduction of propulsion-related management risk issues. A 'life management plan' for propulsion systems would give attention to service life requirements, criteria for the monitoring and evaluation of useful life, a method for the tracking of service life, criteria for hardware reusability and operations inspection, and hardware preassembly screening practices.

A88-44820*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

AN EXPERIMENTAL INVESTIGATION OF THE EFFECT OF TEST-CELL PRESSURE ON THE PERFORMANCE OF RESISTOJETS

D. H. MANZELLA (NASA, Lewis Research Center; Sverdrup Technology, Inc., Cleveland, OH), P. F. PENKO (NASA, Lewis Research Center, Cleveland, OH), K. J. DE WITT, and T. G. KEITH, JR. (Toledo, University, OH) AIAA, ASME, SAE, and ASEE, Joint Propulsion Conference, 24th, Boston, MA, July 11-13, 1988.

8 p. NASA-supported research. refs (AIAA PAPER 88-3286)

The effect of test-cell pressure on the performance of two resistojets was investigated. Tests were conducted in a vacuum facility at pressures ranging from 0.000043 to 0.54 torr for two resistojet configurations: a laboratory model and an engineering model for the Space Station. The tests showed that for each thruster there was a decline in performance when tested in vacuum pressures above 0.001 torr. Measurements were made of surface temperature, thrust, and exit-plane pitot pressure over the range of test-cell pressures. From these measurements, the decline in performance of the laboratory-model resistojet at higher cell pressures was attributed to heat losses due to convection. For the engineering-model resistojet, the decline in performance was found to be a combination of heat loss and an effect of cell pressure on the nozzle flow.

A88-44875#

ALL ELECTRONIC PROPULSION - KEY TO FUTURE SPACESHIP DESIGN

WILLIAM C. BROWN (Microwave Power Transmission Systems, Weston, MA) AIAA, ASME, SAE, and ASEE, Joint Propulsion Conference, 24th, Boston, MA, July 11-13, 1988. 20 p. refs (AIAA PAPER 88-3170)

The all-electronic propulsion system combines the high specific impulse of the ion thruster with beamed microwave power to produce a combined power and propulsion system with a self-acceleration as greater at 0.02 m/sec sq with a specific impulse of 4200. This is more than an order of magnitude greater than that provided by other approaches to electric propulsion in their current state of development, including nuclear and photovoltaic power sources. Associated with this new technology are two requirements for its execution: (1) the space vehicles and earth based transmitters must be based in the equatorial plane; and (2) the vehicles are large in area and have very high thrust levels because of efficiency and cost considerations associated with the microwave beam system. These vehicles, both in size and physical configuration, are different from conventional space vehicles and may have an impact upon future space vehicle design including those using photovoltaic power.

A88-46489*# Jet Propulsion Lab., California Inst. of Tech., Pasadena.

ADVANCED PROPULSION FOR THE MARS ROVER SAMPLE RETURN MISSION

BRYAN PALASZEWSKI and ROBERT FRISBEE (California Institute of Technology, Jet Propulsion Laboratory, Pasadena) AIAA, ASME, SAE, and ASEE, Joint Propulsion Conference, 24th, Boston, MA, July 11-13, 1988. 12 p. refs (AIAA PAPER 88-2900)

The present evaluation of highly detailed advanced propulsion system design concepts for the Mars Rover Sample Return Mission proceeded by comparing a baseline chemical propulsion option with both storable and cryogenic advanced chemical propulsion OTVs. Substantial launch mass reductions and commensurate payload mass increases were obtainable with both advanced chemical and electric propulsion cycles.

A88-48042#

SOLAR THERMAL PROPULSION FOR ORBIT TRANSFER

JAMES M. SHOJI and PATRICK E. FRYE (Rockwell International Corp., Rocketdyne Div., Canoga Park, CA) AIAA, ASME, SAE, and ASEE, Joint Propulsion Conference and Exhibit, 24th, Boston, MA, July 11-13, 1988. 9 p. refs (AIAA PAPER 88-3171)

A preliminary analysis of pressure-fed and pump-fed solar thermal propulsion systems revealed that a pressure-fed system using cold helium is a much simpler system; however, the resulting payload is too great. In the case of a LEO-to-GEO mission, an optimum thrust level was obtained for the solar thermal propulsion system. For the two-engine concepts considered, the optimum

thrust was in the 30 to 45 lbf thrust range. The engine concept providing the higher specific impulse resulted in a lower optimum thrust level. K.K.

A88-48484#

AN ANALYSIS OF ORBIT MANEUVERING CAPABILITIES USING ARCJET PROPULSION

R. J. CASSADY (Rocket Research Co., Redmond, WA) AIAA, SAE, ASME, and ASEE, Joint Propulsion Conference, 24th, Boston, MA, July 11-13, 1988. 6 p. refs (AIAA PAPER 88-2832)

The thermal arcjet thruster is a leading candidate for several geocentric orbit transfer and maneuvering missions. The objective of this paper is to catalog those missions and perform an analysis for a representative case of the various mission types which will serve to illustrate the expanded capabilities provided by arcjet propulsion. Recent literature sources mention arcjets in conjunction with three classes of missions: N-S stationkeeping of geosynchronous satellites, orbit maneuvering of intermediate orbit satellites, and orbit transfer from Low Earth Orbit (LEO) to higher orbits. These will be considered as the baseline set of missions to be analyzed. In addition, the use of arcjet propulsion as an upper stage of a chemical/electric Orbit Transfer Vehicle (OTV) will be considered, as well as other variations on the basic mission set.

A88-48492*# Martin Marietta Corp., Denver, CO. INTEGRATION OF SPACE STATION PROPULSION AND FLUID SYSTEMS

B. A. BICKNELL, D. A. FESTER, and S. C. WILSON (Martin Marietta Corp., Denver, CO) AIAA, SAE, ASME, and ASEE, Joint Propulsion Conference, 24th, Boston, MA, July 11-13, 1988. 12 p. refs (Contract NAS8-36438) (AIAA PAPER 88-3289)

The benefits which would be gained by providing commonality and integration of propulsion and fluid systems associated with various elements of the Space Station are discussed and the results of the integrated propulsion system assessment are presented. The O2/H2 propulsion system with and without resistojets, the integration of O2/H2 systems across the Space Station elements, and an approach for handling waste fluids available for resistojet venting are evaluated. It is shown that major benefits can be gained through commonality and integration. Several systems are recommended, including a gaseous O2/H2 propulsion system with resistojets, a Bosch CO2 reduction process, and pumping electrolysis units.

A88-49750

PERFORMANCE OF FOCUSING MIRROR SYSTEMS FOR THE SOLAR DYNAMIC ENERGY SUPPLY OF SPACE STATIONS [ZUR LEISTUNG KONZENTRIERENDER SPIEGELSYSTEME FUER DIE SOLARDYNAMISCHE ENERGIE VERSORGUNG VON RAUMSTATIONEN]

R. KOEHNE (DFVLR, Institut fuer technische Thermodynamik, Stuttgart, Federal Republic of Germany) Zeitschrift fuer Flugwissenschaften und Weltraumforschung (ISSN 0342-068X), vol. 12, May-June 1988, p. 197-201. In German. refs

Solar dynamic systems consisting of focusing solar collectors and heat engines are attracting increasing interest for space stations because of their high efficiencies. The optical and thermal performances of various collecting mirrors and collecting mirror systems is determined by computer modeling and the effect of manufacturing and tracking errors is indicated. Sufficiently high thermal collector efficiencies from 60 to 75 percent over a 600-1200 C temperature range can be attained with low total error below 4 mrad.

A88-49825#

THE USE OF PYROTECHNICS ON SPACECRAFT

N. CABLE (ESA, Structures and Mechanisms Div., Noordwijk, Netherlands) ESA Bulletin (ISSN 0376-4265), no. 54, May 1988, p. 66-71.

Because of their extremely high energy-to-volume densities,

explosives are an invaluable tool aboard spacecraft for single-operation functions. Highly reliable and safe actuators have been developed to exploit this useful property for a variety of applications, using only standard spacecraft supplies and controls.

Author

A88-50425#

ANALYTICAL MODELS FOR RELATIVE MOTION UNDER CONSTANT THRUST

J. VAN DER HA and R. MUGELLESI (ESA, European Space Operations Centre, Darmstadt, Federal Republic of Germany) IN: AIAA/AAS Astrodynamics Conference, Minneapolis, MN, Aug. 15-17, 1988, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1988, p. 636-644. refs (AIAA PAPER 88-4300)

A general formulation for relative motion is presented allowing for arbitrary perturbing or thrust forces on each of the two satellites. Exact as well as approximate perturbation solutions for the relative motion under constant radial or circumferential forces acting on the subsatellite are established. The validity and usefulness of these solutions is assessed for a few realistic applications related to Eureca rendezvous maneuvering with the Shuttle. The results are of general interest for the fast calculation of relative subsatellite motion under thrust forces.

A88-50671

POSSIBLE VARIANTS OF MICROWAVE-BEAM STRUCTURE FOR SATELLITE SOLAR POWER PLANTS [O VOZMOZHNYKH VARIANTAKH STRUKTURY SVCH-PUCHKA SOLNECHNYKH KOSMICHESKIKH ENERGOSISTEM]

V. A. VANKE, S. K. LESOTA, and A. V. RACHNIKOV Radiotekhnika i Elektronika (ISSN 0033-8494), vol. 33, July 1988, p. 1531-1536. In Russian. refs

An analysis is made of the maximum efficiency of the microwave-beam transmission channel in a satellite solar power system that can be realized for a discrete 10-step amplitude distribution of the transmitting-antenna field. High-efficiency variants of the channel structure are found which are characterized by a high mean field intensity on the receiving antenna and an increased overall level of transmitted power for fixed values of maximum power density on the transmitting and receiving antennas. B.J.

A88-50769

HIGH-TEMPERATURE SOLAR ENERGY SYSTEMS FOR SPACECRAFT POWER AND PROPULSION UNITS [SOLNECHNYE VYSOKOTEMPERATURNYE KOSMICHESKIE ENERGODVIGATEL'NYE USTANOVKI]

OLEG IVANOVICH KUDRIN Moscow, Izdateľstvo Mashinostroenie, 1987, 248 p. In Russian. refs.

The work covers such topics as solar-energy concentrators, concentrator-receiver systems in solar-energy propulsion units, selective absorption as a way to enhance the efficiency of solar energy conversion and the Stirling engine as a solar energy converter. The development of high-temperature solar energy systems for spacecraft power and propulsion units is investigated in detail, with particular attention given to results of ground-based testing.

A88-51139 DEBRIS IN SPACE

TIM FURNISS Flight International (ISSN 0015-3710), vol. 134, July 30, 1988, p. 28-31.

Orbital satellite and debris traffic continues to grow by about 300 items/year in 'permanent' orbits from which satellites cannot directly reenter the earth's atmosphere. There are in addition over 30,000 marble-to-baseball-sized objects, trillions of small paint flakes, and tens of thousands of trillions of still-smaller aluminum oxide dust particles; these are impossible to track, and may in the case of paint flake-sized objects result in the death of an astronaut during EVAs. An evaluation is presently made of the prospects for a debris hazard-exacerbating 'cascade' effect, in which the debris population grows to the point where collisions trigger a chain reaction of fragmentations.

A88-52373

SHUTTLE-C - A SHUTTLE DERIVED LAUNCH VEHICLE

TERRY R. MITCHELL IN: Space Congress, 25th, Cocoa Beach, FL, Apr. 26-29, 1988, Proceedings. Cape Canaveral, FL, Canaveral Council of Technical Societies, 1988, p. 12-1 to 12-12.

The cargo version of the NASA Space Shuttle, designated 'Shuttle-C', uses the main engines, solid rocket boosters, external tanks, and launch facilities of the standard vehicle, replacing the manned Orbiter with an unmanned cargo carrier capable of placing payloads weighing 100,000-150,000 lbs into LEO; this compares with a 65,000-lb capability for the standard Shuttle. Shuttle-C will be used to launch and assemble such structures as those of the Space Station, as well as for the launching of large planetary probe payloads requiring heavy upper stages. Initial operation is projected to lie in the 1994 time-frame.

A88-52374# OPERATIONAL CAPABILITIES OF GENERIC ADVANCED LAUNCH SYSTEM CONCEPTS

B. P. LEONARD and W. A. KISKO (L Systems, Inc., El Segundo, CA) Canaveral Council of Technical Societies, Space Congress, 25th, Cocoa Beach, FL, Apr. 26-29, 1988, Paper. 48 p.

The present study of generic Advanced Launch Systems (ALS) concepts under consideration in the U.S. defines these concepts, and projects the values of their operational parameters on the basis of the launch histories of the Titan and Delta launcher families. Monte Carlo simulations are then conducted to predict their operational characteristics and capabilities; the operational criteria subsequently defined are applied to assess the generic ALS concepts' comparative advantages. It is concluded that an expendable system should have better operational capabilities than a recoverable one.

A88-53101*# Rockwell International Corp., Canoga Park, CA. 25-LBF GO2/GH2 SPACE STATION THRUSTER

L. E. FINDEN, G. L. BRILEY, and R. S. IACABUCCI (Rockwell International Corp., Rocketdyne Div., Canoga Park, CA) AIAA, ASME, SAE, and ASEE, Joint Propulsion Conference, 24th, Boston, MA, July 11-13, 1988. 8 p.

(Contract NAS3-25142; NAS8-36418)

(AIAA PAPER 88-2793)

Multiple 25-lbf oxygen/gaseous hydrogen thruster assemblies for the Space Station propulsion application were designed and fabricated by Rocketdyne and endurance tested at the NASA/ Marshall Space Flight Center. The thrusters incorporate a regeneratively cooled thrust chamber with a nozzle area ratio of 30, a 12-element coaxial injector, an ignition system, and close-coupled propellant valves. The various thruster configurations comprised of mating different injectors and thrust chambers. Over 2 million lbf-sec of impulse was demonstrated at mixture ratios from 3 to 8.4 at vacuum conditions. A thruster was subjected to over 10,000 pulses during which minimum impulse bits of less than 0.5 lb/sec were repeatedly and reliably demonstrated. A total operating time of 25.6 hr was accumulated on the thruster assemblies with one 6.1-hr. continuous firing duration. The thrusters operated between a thrust range of 11.2 and 36.6 lbf. The test results indicate that all major technology issues for long-life gaseous oxygen/gaseous hydrogen thrusters for the Space Station application have been resolved. Author

A88-53163#

FUNDAMENTAL LIMITATIONS ON LOW GRAVITY FLUID GAUGING TECHNOLOGIES IMPOSED BY ORBITAL MISSION REQUIREMENTS

R. JOHN HANSMAN, JR. (MIT, Cambridge, MA) and JERE S. MESEROLE (Boeing Aerospace Co., Kent, WA) AIAA, ASME, SAE, and ASEE, Joint Propulsion Conference, 24th, Boston, MA, July 11-13, 1988. 9 p. Research supported by Boeing Aerospace Co. refs

(AIAA PAPER 88-3402)

The limitations on low gravity fluid gauging technologies imposed by fluid behavior resulting from the orbital environment is investigated. While there are numerous potential techniques, they are all expected to suffer some degradation under certain low gravity conditions. Specific current and proposed low gravity fluid gauging technologies are briefly reviewed. The impact on these technologies of low gravity modes of fluid behavior including: ambiguous orientation, bubble entrapment, sensor wetting, sensor blocking and reduced convection are discussed. Potential techniques to improve low gravity fluid gauging are discussed including Bond number enhancement, tank and sensor design considerations. In addition, system design considerations are discussed including sensor integration, dynamic measurement techniques and mission design concepts.

A88-54696

DIGITAL SEQUENTIAL SHUNT REGULATOR FOR SOLAR POWER CONDITIONING OF ENGINEERING TEST SATELLITE (FTS.V)

SABURO KUWAJIMA, TETSUO SATO, MOTOHIRO KOBAYASHI, TOSHIO OKAMURA (National Space Development Agency of Japan, Tsukuba), NAOKI TSUYA (Mitsubishi Electric Corp., Kamakura, Japan) et al. IN: PESC '88 - Annual IEEE Power Electronics Specialists Conference, 19th, Kyoto, Japan, Apr. 11-14, 1988, Record. Volume 2. New York, Institute of Electrical and Electronics Engineers, 1988, p. 619-625. refs

A digital sequential shunt regulator is presented that regulates the bus voltage of the high-power ETS-V by controlling solar array segments sequentially in an on-off switching manner. To reduce EMI generated from switching surge current, a current-limiting circuit has been designed, and its effectiveness is verified experimentally. Static and dynamic characteristics of the voltage regulation loop are analyzed, and results are in good agreement with experimental results.

A88-55365#

USE OF THE SURFACE TENSION PROPELLANT TANKS IN THE INDIAN SATELLITE INSAT

G. NETTER (MBB-ERNO, Bremen, Federal Republic of Germany) and C. S. PRASAD (ISRO, Liquid Propulsion Systems Centre, Bangalore, India) IAF, International Astronautical Congress, 39th, Bangalore, India, Oct. 8-15, 1988. 10 p. (IAF PAPER 88-237)

The main features of Insat-II, a multipurpose Indian geostationary satellite designed to provide services in communication, TV, and meteorology, are described. The propulsion system is bipropellant, operating on MMH and MON-3 liquids. Particular attention is given to the satellite's passive propellant management devices.

N88-21188*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

SPACE STATION HEAVY LIFT LAUNCH VEHICLE UTILIZATION Technical Memorandum, Jan. - Dec. 1987

L. J. DERYDER Apr. 1988 177 p (NASA-TM-100604; NAS 1.15:100604) Avail: NTIS HC A09/MF A01 CSCL 22B

The use of Heavy Lift Launch Vehicles (HLLVs) for Space Station assembly, logistics, and resupply is explored. Potential HLLVs, including those based on the Titan, and Shuttle-derived vehicles (SDV), are discussed. The baseline Critical Evaluation Task Force (CETF) Space Station assembly sequence is described and compared with assembly options made possible through the use of HLLVs. The issues of cost, dual compatibility with the Space Shuttle Space Transportation System (STS), co-manifesting of payloads with other science missions cargo return, and ground handling and launch facilities are also considered. The main advantage achieved by using HLLVs are simplification of assembly procedures, added resupply capability, and increased assured access to space. The major disadvantages are increased orbital flight operations complexity, higher logistics costs, and additional ground handling/launch facility requirements. Also, there will not be any improvement in return cargo capacity, nor any addition to crew transport capabilities. Finally, the dual STS/HLLV compatibility should be maintained to minimize program risk. HLLV and Orbital

Maneuvering Vehicle design must parallel that of the Space Station.

N88-24154*# Office National d'Etudes et de Recherches Aerospatiales, Toulouse (France).

FAULT DIAGNOSIS IN ORBITAL REFUELING OPERATIONS

GUY A. BOY In NASA, Ames Research Center, Space Station Human Factors Research Review. Volume 4: Inhouse Advanced Development and Research p 89-112 May 1988

Avail: NTIS HC A07/MF A01 CSCL 22B

Usually, operation manuals are provided for helping astronauts during space operations. These manuals include normal and malfunction procedures. Transferring operation manual knowledge into a computerized form is not a trivial task. This knowledge is generally written by designers or operation engineers and is often quite different from the user logic. The latter is usually a compiled version of the former. Experiments are in progress to assess the user logic. HORSES (Human - Orbital Refueling System - Expert System) is an attempt to include both of these logics in the same tool. It is designed to assist astronauts during monitoring and diagnosis tasks. Basically, HORSES includes a situation recognition level coupled to an analytical diagnoser, and a meta-level working on both of the previous levels. HORSES is a good tool for modeling task models and is also more broadly useful for knowledge design. The presentation is represented by abstract and overhead visuals Author

N88-24261*# General Electric Co., Philadelphia, PA. Spacecraft Operation.

NUCLEAR ELECTRIC POWER FOR MULTIMEGAWATT ORBIT TRANSFER VEHICLES

R. D. CASAGRANDE In New Mexico Univ., Transactions of the Fourth Symposium on Space Nuclear Power Systems p 27-30 Sponsored by NASA, Lewis Research Center, Cleveland, Ohio, AFOSR, Bolling AFB, Washington, D.C. and AFRPL, Edwards AFB, Calif.

(Contract F29601-86-C-0238)

Avail: NTIS HC A22/MF A01 CSCL 09C

Multimegawatt nuclear propulsion is an attractive option for orbit transfer vehicles. The masses of these platforms are expected to exceed the capability of a single launch from Earth necessitating assembly in space in a parking orbit. The OTV would transfer the platform from the parking orbit to the operational orbit and then return for the next mission. Electric propulsion is advantageous because of the high specific impulse achieved by the technology, 1000 to 5000 s and beyond, to reduce the propellant required. Nuclear power is attractive as the power system because of the weight savings over solar systems in the multimegawatt regime. and multimegawatts of power are required. A conceptual diagram is shown of an OTV with a command control module using electric thrusters powered from an SP-100 class nuclear reactor power system.

N88-24272# Brookhaven National Lab., Upton, NY. Dept. of Nuclear Energy.

NUCLEAR PROPULSION SYSTEMS FOR ORBIT TRANSFER BASED ON THE PARTICLE BED REACTOR

J. R. POWELL, H. LUDEWIG, F. L. HORN, K. ARAJ, R. BENENATI, O. LAZARETH, G. SLOVIK, M. SOLON, W. TAPPE, J. BELISLE (Grumman Aerospace Corp., Bethpage, N.Y.) et al. In New Mexico Univ., Transactions of the Fourth Symposium on Space Nuclear Power Systems p 73-76 1987 Previously announced as N87-28405 Sponsored by AFRPL, Edwards AFB, Calif.

Avail: NTIS HC A22/MF A01

The technology of nuclear direct propulsion orbit transfer systems based on the Particle Bed Reactor (PBR) is described. A 200 megawatt illustrative design is presented for LEO to GEO and other high V missions. The PBR-OTV can be used in a one-way mode with the shuttle or an expandable launch vehicle, e.g., the Titan 34D7, or as a two-way reusable space tug. In the one-way mode, payload capacity is almost three times greater than that of chemical OTV's. PBR technology statis is described and development needs outlined.

N88-24379# Idaho National Engineering Lab., Idaho Falls. COMPARISON OF A DIRECT THRUST NUCLEAR ENGINE, NUCLEAR ELECTRIC ENGINE AND A CHEMICAL ENGINE FOR FUTURE SPACE MISSIONS

JACK H. RAMSTHALER and TAL K. SULMEISTERS (Martin Marietta Corp., Englewood, Colo.) *In* New Mexico Univ., Transactions of the Fifth Symposium on Space Nuclear Power Systems p 19-22 1988

(Contract DE-AC07-76ID-01570) Avail: NTIS HC A99/MF A01

The need for an advanced direct thrust nuclear rocket propulsion engine was identified in Project Forecast 2, Air Force Systems Command report on its future needs. The AF Astronomical Lab (AFAL) has the responsibility to develop the nuclear engine. The Idaho National Engineering Lab (INEL) will collaborate with Martin Marietta to stage design and mission analyses. Science Applications International (SAIC) will do flight safety analysis. Westinghouse will design the nuclear subsystem, and Rocketdyne the engine. INEL is overall manager for program and test facility design, construction and operation. INEL has produced plans for both engine system and ground test facility. AFAL has funded INEL to perform mission analyses and to evaluate cost, performance and operational advantages for a direct thrust nuclear rocket stage in performing AF Space missions. The Advanced Nuclear Rocket Engine (ANRE), a scaled down NERVA derivative. was used as a baseline for comparison with chemical engines and nuclear electric engines for completion of orbital transfer and maneuver missions. Life cycle costs of the three systems are estimated, based on delivery of a 6350 kg payload from LEO to geosynchronous orbit and back to LEO.

N88-24444# Air Force Astronautics Lab., Edwards AFB. CA. NONCRYOGENIC PROPELLANTS FOR A NUCLEAR ORBIT TRANSFER VEHICLE

RYAN K. HAALAND and ANDREW MARTIN In New Mexico Univ., Transactions of the Fifth Symposium on Space Nuclear Power Systems p 341-344 1988

Avail: NTIS HC A99/MF A01

Recently imposed limitations regarding venting propellants in the STS payload bay may severely limit the capability to place heavier payloads in geosynchronous orbit by not allowing the use of current cryogenic propulsion systems. The two propulsion systems considered represent a wide range of nuclear reactor technology. The Small Nuclear Rocket Engine (SNRE) is derived from the Rover/NERVA program. The particle bed propulsion system represents a yet unproven reactor design offering a significant reduction in mass. Both systems are assumed to have the same operating conditions, approximately 250 Mwt, a chamber temperature of 2770 K, and a chamber pressure of 10.1 MPa. It is concluded that nuclear propulsion systems using various noncryogenic propellants offer a viable option for increasing the payload to GEO capability of the STS. The use of propellants that do not require venting, that is noncryogenic, coupled with a nuclear fission reactor should allow the development of high performance nuclear propulsion systems that meet STS payload safety requirements. A major concern is the effect of the noncryogenic propellants on the reactor concepts. Author

N88-24681# Edgerton, Germeshausen and Grier, Inc., Idaho Falls, ID.

ADVANCED NUCLEAR ROCKET ENGINE MISSION ANALYSIS J. RAMSTHALER, G. FARBMAN, T. SULMEISTERS, D. BUDEN, and P. HARRIS (Rockwell International Corp., Canoga Park, Calif.) Dec. 1987 11 p Presented at the JANNAF Propulsion Conference, San Diego, Calif., 15 Dec. 1987

(Contract DE-AC07-76ID-01570)

(DE88-006797; EGG-M-41087; CONF-871274-1) Avail: NTIS HC

The use of a derivative of the NERVA engine developed from 1955 to 1973 was evaluated for potential application to Air Force orbital transfer and maneuvering missions in the time period 1995 to 2020. The NERVA stge was found to have lower Life Cycle Costs (LCC) than an advanced chemical stage for performing Low

Earth Orbit (LEO) to geosynchronous orbit (GEO) missions at any level of activity greater than three missions per year. It had lower life cycle costs than a high performance nuclear electric engine at any level of LEO to GEO mission activity. An examination of all unmanned orbital transfer and maneuvering missions from the Space Transportation Architecture Study (STAS 111-3) indicated a LCC advantage for the NERVA stage over the advanced chemical stage of fifteen million dollars. The cost advance accured from both the orbital transfer and maneuvering missions. Parametric analyses showed that the specific impulse of the NERVA stage and the cost of delivering material to low earth orbit were the most significant factors in the LCC advantage over the chemical stage. Lower development costs and a higher thrust gave the NERVA engine an LCC advantage over the nuclear electric stage. DOE

N88-28084*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA. SUPERFLUID HELIUM ON-ORBIT TRANSFER (SHOOT)

OPERATONS

P. KITTEL and M. J. DIPIRRO Jul. 1988 19 p Presented at the Space Cryogenics Workshop, Frascati, Italy, 18-19 Jul. 1988 Prepared in cooperation with NASA. Goddard Space Flight Center, Greenbelt, Md.

(NASA-TM-101009; A-88212; NAS 1.15:101009) Avail: NTIS HC A03/MF A01 CSCL 22B

The in-flight tests and the operational sequences of the Superfluid Helium On-Orbit Transfer (SHOOT) experiment are outlined. These tests include the transfer of superfluid helium at a variety of rates, the transfer into cold and warm receivers, the operation of an extravehicular activity coupling, and tests of a liquid acquisition device. A variety of different types of instrumentation will be required for these tests. These include pressure sensors and liquid flow meters that must operate in liquid helium, accurate thermometry, two types of quantity gauges, and liquid-vapor sensors. Author

N88-29845*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

TECHNOLOGY REQUIREMENTS FOR AN ORBITING FUEL **DEPOT: A NECESSARY ELEMENT OF A SPACE INFRASTRUCTURE**

R. M. STUBBS, R. R. CORBAN, and A. J. WILLOUGHBY (Analex Corp., Cleveland, Ohio.) 1988 10 p Presented at the 39th Annual Astronautical Congress of the International AStronautical Federation, Bangalore, India, 8-15 Oct. 1988

(NASA-TM-101370; E-4414; NAS 1.15:101370) Avail: NTIS HC A02/MF A01 CSCL 22B

Advanced planning within NASA has identified several bold space exploration initiatives. The successful implementation of these missions will require a supporting space infrastructure which would include a fuel depot, an orbiting facility to store, transfer and process large quantities of cryogenic fluids. In order to adequately plan the technology development programs required to enable the construction and operation of a fuel depot, a multidisciplinary workshop was convened to assess critical technologies and their state of maturity. Since technology requirements depend strongly on the depot design assumptions, several depot concepts are presented with their effect on criticality ratings. Over 70 depot-related technology areas are addressed.

Deutsche Forschungs- und Versuchsanstalt fuer N88-29862# Luft- und Raumfahrt, Goettingen (Germany, F.R.). Inst. for Experimental Fluid Mechanics.

STUDIES ON ROCKET EXHAUST PLUMES AND IMPINGEMENT EFFECTS RELATED TO THE COLUMBUS SPACE STATION PROGRAM: EXECUTIVE SUMMARY

R.-D. BOETTCHER, C. DANKERT, G. DETTLEFF, and H. LEGGE Paris, France ESA Feb. 1988 82 p (Contract ESA-6829/86-NL-PH(SC)) (DFVLR-IB-222-88-A-12; ESA-CR(P)-2614; ETN-88-93148) Avail:

NTIS HC A05/MF A01

Using a plume impingement computer code, possible proximity impingement situations in the Columbus space station were analyzed. Experiments investigated the plume flow immediately downstream of the nozzle. The impingement effects (shear stress and pressure) were measured on a plate inclined with respect to the plume axis up to perpendicular impingement. This situation is considered as typical during rendezvous and docking maneuvers. **ESA**

N88-29870# R and D Associates, Alexandria, VA. Research Lab.

UNIFIED STUDY OF PLASMA/SURFACE INTERACTIONS FOR SPACE POWER AND PROPULSION Final Report, 15 Jul. 1987 - 29 Feb. 1988

29 Feb. 1988 66 p

(Contract F49620-86-C-0069)

(AD-A195971; AFOSR-88-0600TR) Avail: NTIS HC A04/MF A01

High specific impulse, high specific power devices, such as magnetoplasmadynamic arcjets, laser or microwave propulsion channels, and MHD generators, involve the flow of modest temperature (0.5 to 5 eV) partially ionized gases at speeds of 5 to 20 km per sec. The interactions of such flows with solid surfaces containing, channeling or penetrating the flow provides a principal source of concern for the efficiency and lifetime of high specific power systems. The present report describes a basic research effort that examines the plasma/surface interaction experimentally in an arrangement providing diagnostic access usually unavailable in mission-oriented, device-development projects.

10

GENERAL

Includes either state-of-the-art or advanced technology which may apply to Large Space Systems and does not fit within the previous categories. Publications of conferences, seminars, and workshops are covered in this area.

A88-24817

HIGH TEMPERATURE COATINGS; PROCEEDINGS OF THE SYMPOSIUM, ORLANDO, FL, OCT. 7-9, 1986

M. KHOBAIB, ED. (Dayton, University, OH) and R. C. KRUTENAT, ED. (Avco Specialty Materials Textron, Lowell, MA) Symposium sponsored by the Metallurgical Society. Warrendale, PA, Metallurgical Society, Inc., 1987, 220 p. No individual items are abstracted in this volume.

This book covers a broad spectrum of topics related to high-temperature coatings. Most of the papers deal with coatings for turbine engine applications, while others address methods for applying coatings and the performance and mechanical behavior of a variety of coatings. The application and performance of thermal barrier coatings is addressed. Coating/substrate interactions and the interfacial stability are also extensively discussed in terms of interdiffusion, microstructural stability, formation of various phases, etc. A novel idea for inspection of the integrity of a coating bond is considered, and the use of chromized coatings for protection against stress corrosion cracking in Space Shuttle applications is examined.

A88-33426

EASCON '87; PROCEEDINGS OF THE TWENTIETH ANNUAL ELECTRONICS AND AEROSPACE SYSTEMS CONFERENCE, **WASHINGTON, DC, OCT. 14-16, 1987**

Conference sponsored by IEEE, Armed Forces Communications and Electronics Association, and National Space Club. New York. Institute of Electrical and Electronics Engineers, Inc., 1987, 217 p. For individual items see A88-33427 to A88-33449.

Various papers on space endeavors are presented. The general topics addressed include: U.S. space policy and goals revisited. from earth to orbit and return, science in space, enhanced security from space, and the capabilities of the Space Station. Also discussed are: commercial use of space, general Space Station technology, signal processing technology, leadership in space, and international cooperation and leadership in space.

ITC/USA/'87: PROCEEDINGS OF THE INTERNATIONAL TELEMETERING CONFERENCE, SAN DIEGO, CA. OCT. 26-29.

Conference sponsored by the International Foundation for Telemetering. Research Triangle Park, NC, Instrument Society of America (ITC Proceedings. Volume 23), 1987, 882 p. For individual items see A88-33627 to A88-33693.

Various papers on telemetering are presented. The general topics considered include: International Space Station telemetry, new technology, recording equipment and systems, Voyager-Neptune telemetry, adaptive signal processing, spacecraft telemetry, data acquisition, PCM telemetry, airborne telemetry, telemetry systems, ballistic application, test range instrumentation radars, and unique applications.

A88-33776

AEROSPACE TESTING SEMINAR, 10TH, LOS ANGELES, CA. **MAR. 10-12, 1987, PROCEEDINGS**

and Aerospace Corp. Mount Prospect, IL, Institute of Environmental Sciences, 1987, 270 p. For individual items see A88-33777 to A88-33800.

The conference presents papers on on-orbit experience, aerospace testing effectiveness, test technology issues, requirements, techniques, and facilities. Topics include an analysis of orbital satellite storage, flight problem evaluation for the Space Shuttle Orbiter, on-orbit man/machine interface verification with simulator testing, managing test program risks, refining test effectiveness through cost of quality analysis, single event upset testing at JPL, and testing of satellites after ground storage. Consideration is also given to the thermal testing of space vehicle electronic components, shower water characterization tests, a weightlessness simulation test in the MDAC underwater test facility, and corner acoustic horns in large reverberation chambers. K.K.

A88-33780#

ON-ORBIT, MAN/MACHINE INTERFACE VERIFICATION WITH SIMULATOR TESTING

J. D. HYLTON and R. PULLIAM (Martin Marietta Aerospace Corp., Space Operations Simulator Laboratory, Denver, CO) Aerospace Testing Seminar, 10th, Los Angeles, CA, Mar. 10-12, 1987, Proceedings. Mount Prospect, IL, Institute of Environmental Sciences, 1987, p. 27-33.

The Space Operations Simulator Laboratory at Martin Marietta Denver Aerospace is described in detail. Included in the principal test facilities are the motion base carriage, the large-screen video display, the manipulator development laboratory, the Space Shuttle aft flight deck simulator, target gimbals, and the neutral bouyancy facility. Operational development is discussed with attention given to payload handling, flexible body dynamics, the interactive dynamics of multiple bodies in space, and telesimulation operations.

A88-34465

COMPUTER APPLICATIONS IN SPACECRAFT DESIGN AND **OPERATION**

T. K. S. MURTHY, ED. (Computational Mechanics Institute, Southampton, England) and R. E. MUENCH, ED. (ESA, European Space Operations Centre, Darmstadt, Federal Republic of Berlin and New York, Springer-Verlag, 1987, 196 p. For individual items see A88-34466 to A88-34476.

The papers presented in this volume provide an overview of the use of computer-aided design, manufacture and operation in the aerospace industry. Topics discussed include preliminary design techniques for interplanetary solar-electric propulsion spacecraft, animated computer graphics for spacecraft mission analysis, an integrated computer aided engineering system for space station design, and automatic quality control of meteorological parameters derived from Meteosat imagery. Papers are also presented on expert systems for decision support in military aircraft mission preparation and new tools in support of satellite operation.

A88-34486

STRUCTURAL MECHANICS OF OPTICAL SYSTEMS II: PROCEEDINGS OF THE MEETING, LOS ANGELES, CA, JAN. 13-15, 1987

ALSON E. HATHEWAY, ED. (Alson E. Hatheway, Inc., Pasadena, CA) Conference sponsored by SPIE. Bellingham, WA, Society of Photo-Optical Instrumentation Engineers (SPIE Proceedings. Volume 748), 1987, 242 p. For individual items see A88-34487 to A88-34508. (SPIE-748)

The present conference discusses the support structure for the optics of the Multiple Mirror Telescope (MMT), cophasing and coaligning the MMT, the 11.3-m optical telescope of the Columbus project, CAD techniques for a space-based optical system, solid optics for small and complex optical systems, and optical path-length calculations using finite elements. Also discussed are optomechanical analysis strategies, active vibration suppression methods for a large optical system, a conceptual design for the active control of a large optical system, the flexural rigidity characteristics of lightweight mirrors, the structural analysis of a lightweight aluminum foam core mirror, and the response of large optical mirrors to thermal distributions.

A88-34491

STRUCTURAL INNOVATIONS IN THE COLUMBUS PROJECT -AN 11.3 METER OPTICAL TELESCOPE

WARREN B. DAVISON (Steward Observatory, Tucson, AZ) IN: Structural mechanics of optical systems II; Proceedings of the Meeting, Los Angeles, CA, Jan. 13-15, 1987. Bellingham, WA, Society of Photo-Optical Instrumentation Engineers, 1987, p. 31-37.

The goal of the Steward Observatory's Columbus Project is the construction of an 11.3-m effective aperture telescope by the 500th aniversary of the discovery of America in 1992. The configuration of the telescope is projected to consist of two 8-m diameter F:1 primary mirrors with 14-m center separation; these two mirrors can be supported with a relatively lightweight and simple structure that will facilitate the achievement of high servo performance with modest technology and costs.

A88-34536

REFLECTIVE OPTICS; PROCEEDINGS OF THE MEETING, LOS

ANGELES, CA, JAN. 15, 16, 1987
DIETRICH KORSCH, ED. (Korsch Optics, Inc., Huntsville, AL)
Meeting sponsored by SPIE. Bellingham, WA, Society of Photo-Optical Instrumentation Engineers (SPIE Proceedings. Volume 751), 1987, 157 p. For individual items see A88-34537 to A88-34549.

(SPIE-751)

The present conference discusses prospects for astrophysical space observatories in the next 25 years, a two-mirror three-surface telescope, the structural and thermal feasibility of a 10-m primary mirror space telescope, precision machining implications for optical systems with large off-axis elements, optical wavelength aperture-synthesis interferometry, Space Station lidar measurements with 1.5-m reflective optics, and the performance of phased-array and thinned-aperture optical telescopes. Also discussed are the R-theta diamond-turning system for optical surfaces, diamond-turned Cu mirrors at grazing incidence, the use of visible and IR interferometry in optical testing of large single-point diamond-turned mirrors, the performance of a fast diamond-turned two-mirror colimator, and all-reflecting afocal telescopes.

A88-34551

COLUMBUS III; PROCEEDINGS OF THE THIRD SYMPOSIUM. CAPRI, ITALY, JUNE 30-JULY 2, 1987

Symposium organized by ESA, BMFT, Ministero per il

Coordinamento della Ricerca Scientifica e Tecnologica, and Universita di Napoli; Supported by CNR and Aeritalia S.p.A. Space Technology - Industrial and Commercial Applications (ISSN 0277-4488), vol. 8, no. 1-2, 1988, 251 p. For individual items see A88-34552 to A88-34575.

The current status of the ESA Columbus program for participation in the International Space Station is surveyed in reviews and reports. Topics addressed include Columbus program definition, Columbus utilization, payloads operation, and international cooperation. Particular attention is given to technological and political factors influencing Columbus, the Columbus Pressurized Modules, the role of Eureca in the Columbus scenario, European earth-observation projects from the Space Station Polar Platform, Columbus and the life sciences, Man-Tended Free Flyer utilization aspects, commercial payload opportunities on Columbus, crew activities, the Japanese Space Station program, and a Canadian view of Space Station utilization issues.

A88-35051

AEROSPACE CENTURY XXI: SPACE MISSIONS AND POLICY; PROCEEDINGS OF THE THIRTY-THIRD ANNUAL AAS INTERNATIONAL CONFERENCE, BOULDER, CO, OCT. 26-29, 1986

GEORGE W. MORGENTHALER, ED. (Colorado, University, Boulder) and GAYLE L. MAY, ED. Conference sponsored by AAS. San Diego, CA, Univelt, Inc., 1987, 685 p. For individual items see A88-35052 to A88-35092.

The present conference discusses the NASA Space Station's evolution and development status, the Spacehab testbed, Space Station benefits from tether operations, the Columbus resource module for ESA's man-tended free-flier, global climate research with Topex/Poseidon, the Saenger and Hotol reusable launcher concepts, the Tethered Satellite System, mission analysis and phased development of a lunar base, and extraterrestrial infrastructure design projects. Also discussed are the Galileo mission to Jupiter and the Magellan mission to Venus; future international space programs; ESA, German, and Japanese space exploration plans; future applications of space law, and recent developments in U.S. space policy and law; space science and engineering education; and public and professional attitudes to space exploration in the U.S.

A88-35093

AEROSPACE CENTURY XXI: SPACE FLIGHT TECHNOLOGIES; PROCEEDINGS OF THE THIRTY-THIRD ANNUAL AAS INTERNATIONAL CONFERENCE, BOULDER, CO, OCT. 26-29, 1986

GEORGE W. MORGENTHALER, ED. and W. KENT TOBISKA, ED. (Colorado, University, Boulder) Conference sponsored by AAS. San Diego, CA, Univelt, Inc., 1987, 606 p. For individual items see A88-35094 to A88-35122.

Among the topics discussed are advanced electric propulsion for interplanetary missions, NASA Space Station propulsion, nuclear reactor-based space power systems, electrodynamic tethers for space power and thrust generation, exotic 21st-century spacecraft propulsion, control systems for autonomous operation of the Magellan spacecraft, spacecraft thermal management systems, aerobraking maneuver-related problems, and advanced heavy lift launch vehicles. Also discussed are a space telerobot concept, space-based robotic assembly and maintenance, advanced Al alloys and Al/polymer laminates for aerospace structures, lubrication for space environments, distributed and concurrent computation methods for space structures, and 32-GHz deep space communications.

A88-35526

RECENT TRENDS IN AEROELASTICITY, STRUCTURES, AND STRUCTURAL DYNAMICS; PROCEEDINGS OF THE R. L. BISPLINGHOFF MEMORIAL SYMPOSIUM, UNIVERSITY OF FLORIDA, GAINESVILLE, FL, FEB. 6, 7, 1986

PRABHAT HAJELA, ED. (Florida, University, Gainesville) Symposium sponsored by NSF, USAF, and MIT; Gainesville, FL,

University Presses of Florida, 1987, 424 p. For individual items see A88-35527 to A88-35547. (Contract NSF ECE-86-02170)

The papers contained in this volume provide an overview of the state of the art in the field of aeroelasticity and aeronautical structures, including surveys of well-developed fields of study and new contributions in emerging areas of technology. The subject areas covered include fixed and rotary wing aeroelasticity; aeroelastic considerations in rotating machinery; aeroelastic problems in bridge design; structural analysis and structural dynamics in aerospace applications; aeroservoelastic considerations; and the emerging discipline of optimal structural design. Papers are presented on the whirl flutter of swept tip propfans; aeroelasticity of very light aircraft; structural stability in turbulent flow; and structural tailoring of aircraft performance.

VΙ

A88-36123

SECULAR EFFECTS IN THE TRANSLATIONAL-ROTATIONAL MOTION OF AN ORBITAL STATION WITH ARTIFICIAL GRAVITY [VEKOVYE EFFEKTY V

POSTUPATEL'NO-VRASHCHATEL'NOM DVIZHENII ORBITAL'NOI STANTSII, OBLADAIUSHCHEI ISKUSSTVENNOI TIAZHEST'IU]

D. Z. KOENOV (Tadzhikskii Gosudarstvennyi Universitet, Dushanbe, Tadzhik SSR) Akademiia Nauk Tadzhikskoi SSR, Doklady (ISSN 0002-3469), Vol. 30, no. 7, 1987, p. 417-420. In Russian.

Attention is given to an orbital station which has the form of two spheres of the same radius connected with a long tether; the spheres rotate about an axis passing through their common center of mass. Formulas are derived which show that the form of this station has a substantial effect on the translational motion of the station around the earth. The form of the station does not have any secular effect on the rotational motion of the station about the nutation axis.

A88-36144

OPTIMAL RENDEZVOUS IN A GRAVITATIONAL FIELD WITH LIMITED OBSERVATIONS [OB OPTIMAL'NOI PARITETNOI VSTRECHE V GRAVITATSIONNOM POLE PRI OGRANICHENNYKH NABLIUDENIIAKH]

V. S. NOVOSELOV Leningradskii Universitet, Vestnik, Matematika, Mekhanika, Astronomiia (ISSN 0024-0850), Jan. 1988, p. 67-71. In Russian.

A solution is presented to the model problem of optimizing the rendezvous of space stations moving in coplanar circular orbits. The solution allows for initial position errors and for errors in impulse processing. The stations have equal characteristic velocities, which are minimized together with the duration of angular position observations.

A88-37239

NATIONAL SPACE ENGINEERING SYMPOSIUM, 3RD, CANBERRA, AUSTRALIA, JUNE 30-JULY 2, 1987, PREPRINTS OF PAPERS

Symposium sponsored by the Institution of Engineers of Australia, Australian Space Board, and CSIRO. Barton, Australia/Brookfield, VT, Institution of Engineers/Brookfield Publishing Co. (National Conference Publication, No. 87/8), 1987, 287 p. For individual items see A88-37240 to A88-37282.

The present conference on space engineering considers Aussat's satellite operations, the HOTOL space transport, Australian thoughts on the new reusable launch vehicles, a land-mobile satellite service for Australia, the Australian ERS-1 program, an Australian geosynchronous satellite radio beacon, Europe's 'Esrange', present and future defense satellite communications between the U.S. and Australia, Aussat in-orbit anomalies' correlation with the GEO radiation environment. the Lyman UV space telescope, and low cost exploration of the Sarsat-COSPAS system. Also discussed are the Australian space industry, an international spaceport for Australia, the Endeavour Program, space applications of muon-catalyzed fusion, the

Australian Amateur Radio Satellite, the development status of the Australian Telescope, and Australian availability of oxygen and hydrogen fuel gases.

O.C.

A88-37273#

PROJECT ENDEAVOUR - CANNISTER 2 SUPPORT STRUCTURE

J. A. S. RAJU (Hawker de Havilland Australia Pty., Ltd., Bankstown) IN: National Space Engineering Symposium, 3rd, Canberra, Australia, June 30-July 2, 1987, Preprints of Papers. Barton, Australia/Brookfield, VT, Institution of Engineers/Brookfield Publishing Co., 1987, p. 203-209.

The Canninster 2 element of the 'two-can' Project Endeavour Get-Away Special (GAS) is connected to the telescope-containing first can by a tether and houses the battery, two VCRs, a signal-conversion unit, and a relay-switching unit. The Cannister 2 support structure is designed to locate, support, and thermally insulate these units within the GAS can. The structure's sidewalls are the major structural members, and incorporate integral legs that straddle the battery and are accommodated in the corner recesses of the battery profile.

A88-38077

RADIO ASTRONOMY FROM SPACE; PROCEEDINGS OF THE WORKSHOP, GREEN BANK, WV, SEPT. 30-OCT. 2, 1986

KURT W. WEILER, ED. (U.S. Navy, Naval Research Laboratory, Washington, DC) Workshop sponsored by the National Radio Astronomy Observatory. Charlottesville, VA, National Radio Astronomy Observatory (NRAO Workshop, No. 18), 1987, 341 p. For individual items see A88-38078 to A88-38109.

The scientific aims and technological implementation of planned and proposed space radio observatories are examined in reviews and reports. Observations at mm and submm, cm, dkm, and hm wavelengths are considered, and particular attention is given to astrophysical problems requiring space-based observations; radio astronomy from the moon; coordination of ground, airborne, balloon-borne, and space-based mm and submm astronomy; microwave-background observations at 15-90 GHz, the Large Deployable Reflector, the Space Station mm-wave facility, the use of TDRSS as an orbiting VLBI observatory, and interstellar scattering and resolution limitations. Also discussed are Quasak, Astro-Array, VLBA, solar-system radio astronomy at low frequencies, radio emission from coronal and interplanetary shocks, and Tasmanian LF Galactic background surveys.

T.K.

A88-38097

SELF-CORRECTION OF TELESCOPE SURFACE ERRORS USING A CORRELATING FOCAL PLANE ARRAY

T. J. CORNWELL and P. J. NAPIER (National Radio Astronomy Observatory, Socorro NM) IN: Radio astronomy from space; Proceedings of the Workshop, Green Bank, WV, Sept. 30-Oct. 2, 1986. Charlottesville, VA, National Radio Astronomy Observatory, 1987, p. 215-219. refs

The effects on the performance of a large radio telescope of aberrations such as reflector surface errors, defocussing, coma and pointing errors can be removed if the telescope is equipped with an array feed in its focal plane. If the cross correlations between all possible pairs of array elements are measured, then aberration-free images of radio sources can be obtained. Because of the great cost of building very precise large structures in space, in the future this concept may offer the possibility of a more economical design for a large, high frequency, spaceborn radio telescope.

Author

A88-38304

30 YEARS OF PROGRESS IN SPACE; PROCEEDINGS OF THE THIRTY-EIGHTH INTERNATIONAL ASTRONAUTICAL CONGRESS, BRIGHTON, ENGLAND, OCT. 10-17, 1987

L. G. NAPOLITANO, ED. (Napoli, Universita, Naples, Italy) Congress sponsored by IAF. Acta Astronautica (ISSN 0094-5765), vol. 18, 1988, 398 p. For individual items see A88-38305 to A88-38307.

The present conference gives attention to orbital maneuvering

vehicle capabilities, the impact of launch vehicle constraints on NASA Space Station design and operations, the Office of Space Flight satellite servicing program plan, an end-to-end analysis and demonstration of telerobotics and orbital laboratories, a development scenario for the H-II orbiting spaceplane HOPE, navigation of the Hermes spaceplane, and a postoperational disposal strategy for a space nuclear reactor. Also discussed are combined cycle propulsion systems for hypersonic flight, hybrid boosters for future launch vehicles, nuclear rocket safety, the development history of NASA tracking and data acquisition networks, the Indian remote sensing program, remote mineralogical and vegetation mapping using imaging spectrometry, and solar system colonization and interstellar migration.

A88-38826

'GLAZAR' - AN ORBITAL ULTRAVIOLET TELESCOPE ['GLAZAR' - ORBITAL'NYI UL'TRAFIOLETOVYI TELESKOP]

G. M. TOVMASIAN, IU. M. KHODZHAIANTS, M. N. KRMOIAN, A.
 L. KASHIN, A. Z. ZAKHARIAN (Biurakanskaia Astrofizicheskaia Observatoriia, Byurakan, Armenian SSR; Geneve, Observatoire, Sauverny, Switzerland) et al. Pis'ma v Astronomicheskii Zhurnal (ISSN 0320-0108), vol. 14, April 1988, p. 291-295. In Russian. The ultraviolet telescope Glazar situated on the Quant

The ultraviolet telescope Glazar situated on the Quant astrophysical module of the Mir space station is described. The parameters of the telescope and its star trackers are presented. The scientific program of this space experiment is outlined. Star images obtained with the telescope's detached tracking system after 50 sec of exposure are given.

K.K.

A88-39050

SPACE: COUNTDOWN TO THE FUTURE; NATIONAL SPACE SYMPOSIUM, 3RD, COLORADO SPRINGS, CO, JAN. 20-23, 1987, REPORT

STEVEN D. MITCHELL, ED. Symposium sponsored by the United States Space Foundation, Aerospace Education Foundation, Boeing Aerospace Co. et al. Colorado Springs, CO, United States Space Foundation, 1987, 314 p. No individual items are abstracted in this volume.

Technological and political aspects of the U.S. civilian and military space programs are examined in individual presentations and panel discussions reflecting a wide spectrum of viewpoints. Topics addressed include the current status of SDI, space goals and strategy, launch options and the new emphasis on ELVs, space commercialization, military R&D options, DOD programs, space militarization, the U.S. space program in the year 2000, space law and policy, and space education. Also considered are the current space activities of ESA, the FRG, Japan, China, France, the UK, and Canada.

A88-39424#

REAL-TIME SYSTEMS FOR SPACE APPLICATIONS

ULRICH SCHWAN and HANS-JUERGEN HERPEL Dornier-Post (English Edition) (ISSN 0012-5563), no. 2, 1988, p. 63-65.

A real-time operating system for spacecraft management, in which parallel operation is achieved through the distribution of different tasks to autonomous computers or the assignment of the processing or memory resource of a given computer to different tasks, is a service program which resolves the problem of simultaneity by acting between hardware and application software. Attention is here given to the iRMX86 real-time operating system's application to CO2-removal control in the Columbus space station life-support system, as well as other C programming language-based real-time spacecraft operations systems.

A88-40251

1987 SEM SPRING CONFERENCE ON EXPERIMENTAL MECHANICS, HOUSTON, TX, JUNE 14-19, 1987, PROCEEDINGS

Conference sponsored by SEM. Bethel, CT, Society for Experimental Mechanics, Inc., 1987, 981 p. For individual items see A88-40252 to A88-40301.

The papers presented in this volume provide an overview of current research in the field of experimental mechanics. Topics

discussed include composites, photoelasticity, optical methods in experimental mechanics, fracture, and modal testing and analysis. Other topics include identification of large structures, gaskets and bolted assemblies, strain gage applications, hybrid techniques in fracture and stress analysis, and wave propagation studies using optical techniques.

V.L.

A88-41276* National Aeronautics and Space Administration. Goddard Space Flight Center, Greenbelt, MD. VISIONS OF TOMORROW: A FOCUS ON NATIONAL SPACE TRANSPORTATION ISSUES; PROCEEDINGS OF THE TWENTY-FIFTH GODDARD MEMORIAL SYMPOSIUM, GREENBELT, MD, MAR. 18-20, 1987

GERALD A. SOFFEN, ED. (NASA, Goddard Space Flight Center, Greenbelt, MD) Symposium sponsored by AlAA, AAS, National Space Club, et al. San Diego, CA, Univelt, Inc. (Science and Technology Series. Volume 69), 1987, 338 p. For individual items see A88-41277 to A88-41290.

The present conference on U.S. space transportation systems development discusses opportunities for aerospace students in prospective military, civil, industrial, and scientific programs, current strategic conceptualization and program planning for future U.S. space transportation, the DOD space transportation plan, NASA space transportation plans, medium launch vehicle and commercial space launch services, the capabilities and availability of foreign launch vehicles, and the role of commercial space launch systems. Also discussed are available upper stage systems, future space transportation needs for space science and applications, the trajectory analysis of a low lift/drag-aeroassisted orbit transfer vehicle, possible replacements for the Space Shuttle, LEO to GEO with combined electric/beamed-microwave power from earth, the National Aerospace Plane, laser propulsion to earth orbit, and a performance analysis for a laser-powered SSTO vehicle.

A88-41285 TRAJECTORY ANALYSIS OF A LOW LIFT/DRAG AEROASSISTED ORBIT TRANSFER VEHICLE

ROBERT D. BRAUN (Pennsylvania State University, University Park) IN: Visions of tomorrow: A focus on national space transportation issues; Proceedings of the Twenty-fifth Goddard Memorial Symposium, Greenbelt, MD, Mar. 18-20, 1987. San Diego, CA, Univelt, Inc., 1987, p. 163-174. refs (AAS PAPER 87-123)

This paper presents the results of an undergraduate thesis pertaining to four significant aspects of an aeroassisted orbit transfer vehicle trajectory analysis. The orbital trajectories were simulated by utilizing the computer optimization program POST at the NASA-Langley Research Center. This optimization was based on the spacecraft's known properties and constraints, in particular the vehicle's heating-rate restriction. Through this analysis, the influence of both aerodynamic and astrodynamic parameters on the vehicle's flight path are determined. Additionally, various means of producing the required orbital transfer energy decrement, as well as the tradeoff between the spacecraft's time-of-flight and propellant expended, are studied.

A88-41882

ADVANCED COMPOSITES III: EXPANDING THE TECHNOLOGY; PROCEEDINGS OF THE THIRD ANNUAL CONFERENCE, DETROIT, MI, SEPT. 15-17, 1987

Conference sponsored by ASM International, Engineering Society of Detroit, Society of Plastics Engineers. Metals Park, OH, ASM International, 1987, 408 p. For individual items see A88-41883 to A88-41895.

The present conference discusses topics in the design features and methods, manufacturing processes, secondary fabrication techniques, and materials science aspects of advanced composites. Attention is given to composite structural armor for ground combat vehicles, composite structures for automotive energy management, CAD/CAM of braided preforms for advanced composites, composite automobile bumper beams, preforming for structural applications, the three-dimensional braiding of thermoplastic composite preforms, and recent advancements in

tooling technology. Also discussed are instrument-grade MMCs for imaging IR guidance systems, automated tape layup of a vertical stabilizer fin, the mechanical properties of thermoplastic matrix composites, surface chemistry and adhesion of SMCs, fiber-matrix bonding, and hybrid yarns for high performance thermoplastic composites.

O.C.

A88-42539* National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

PERFORMANCE CONSIDERATIONS FOR THE ASTROMETRIC TELESCOPE FACILITY ON THE PHASE I SPACE STATION KENJI NISHIOKA, ALFRED C. MASCY, CHARLES K. SOBECK, JOEL SPERANS (NASA, Ames Research Center, Moffett Field, CA), and GEORGE D. GATEWOOD (Pittsburgh, University, PA) IN: Optoelectronic technologies for remote sensing from space; Proceedings of the Meeting, Cannes, France, Nov. 19, 20, 1987. Bellingham, WA, Society of Photo-Optical Instrumentation Engineers, 1988, p. 88-96. Previously announced in STAR as N88-14898. refs

The Astrometric Telescope Facility (ATF) is an optical telescope facility of extreme astrometric precision whose principal scientific purpose is the detection and study of planetary systems about nearby stars. With the recent change in the space station program to two phases, the suitability of initial operations from the phase 1 station need to be evaluated. This paper presents the results of such an evaluation for the Astrometric Telescope Facility.

Author

A88-42547

SPACE STRUCTURES, POWER, AND POWER CONDITIONING; PROCEEDINGS OF THE MEETING, LOS ANGELES, CA, JAN. 11-13, 1988

RAYMOND F. ASKEW, ED. (Auburn University, AL) Meeting sponsored by SPIE. Bellingham, WA, Society of Photo-Optical Instrumentation Engineers (SPIE Proceedings. Volume 871), 1988, 368 p. For individual items see A88-42548 to A88-42590. (SPIE-871)

Various papers on space structures, power, and power conditioning are presented. Among the topics discussed are: heterogeneous gas core reaction for space nuclear power, pulsed gas core reactor for burst power, fundamental considerations of gas core reactor systems, oscillating thermionic conversion for high-density space power, thermoelectromagnetic pumps for space nuclear power systems, lightweight electrochemical converter for space power applications, ballistic acceleration by superheated hydrogen, laser-induced current switching in gaseous discharge, electron-beam-controlled semiconductor switches, laser-controlled semiconductor closing and opening switch. Also addressed are: semiconductor-metal eutectic composites for high-power switching. optical probes for the characterization of surface breakdown, 40 kV/20 kA pseudospark switch for laser applications, insulation direction for high-power space systems, state space simulation of spacecraft power systems, structural vibration of space power station systems, minimum-time control of large space structures, novel fusion reaction for space power and propulsion, repetition rate system evaluations, cryogenic silicon photoconductive switches for high-power lasers, multilevel diamondlike carbon capacitor structure, surface breakdown of prestressed insulators, C-Mo and C-Zr alloys for space power systems, magnetic insulation for the space environment.

A88-42829

INTERNATIONAL SYMPOSIUM ON THERMAL PROBLEMS IN SPACE-BASED SYSTEMS, BOSTON, MA, DEC. 13-18, 1987, PROCEEDINGS

FLAVIO DOBRAN, ED. (New York University, NY) and MURRAY IMBER, ED. (New York, Polytechnic University, Brooklyn) Symposium sponsored by ASME and SDIO. New York, American Society of Mechanical Engineers, 1987, 143 p. For individual items see A88-42830 to A88-42843.

The present conference discusses fluid mechanics and heat transfer problems pertaining to space-based systems. Particular attention is given to super heat pipe design considerations for

application to space-based systems, an experimental investigation of low gravity two-phase flow behavior, and the response of a double wall artery heat pipe to pulsed heat loads. Also considered are the Marangoni convection on a germanium float zone, gas liquid flow at microgravity conditions, and ascent and reentry heat rejection concepts for the Hermes space plane. Other topics include conjugating binary solutions for spacecraft thermal control, the application of two-phase thermal transport systems to space platforms, and two-dimensional thermal conduction effects in high-power CW laser target plates.

A88-42909*# George Washington Univ., Hampton, VA. SYSTEMS ANALYSIS OF A LOW-ACCELERATION RESEARCH FACILITY

GARY L. MARTIN (George Washington University, Hampton, VA), MELVIN J. FEREBEE, JR., and ROBERT L. WRIGHT (NASA, Langley Research Center, Hampton, VA) AIAA, Space Programs and Technologies Conference, Houston, TX, June 21-24, 1988. 13 p. refs

(AIAA PAPER 88-3512)

The Low-Acceleration Research Facility (LARF), an unmanned free-flier that is boosted from low-earth orbit to a desired altitude using an orbital transfer vehicle is discussed. Design techniques used to minimize acceleration-causing disturbances and to create an ultra-quiet workshop are discussed, focusing on residual acceleration induced by the environment, the spacecraft and experiments. The selection and integration of critical subsystems, such as electrical power and thermal control, that enable the LARf to accomodate sub-microgravity levels for extended periods of time are presented, including a discussion of the Low-Acceleration Module, which will supply the payload with 25.0 kW of power, and up to 11.8 kW in the low-power mode. Also, the data management, communications, guidance, navigation and control, and structural features of supporting subsystems are examined.

A88-42910*# National Aeronautics and Space Administration. Goddard Space Flight Center, Greenbelt, MD.
MULTIMISSION MODULAR SPACECRAFT (MMS)

EDWARD FALKENHAYN, JR. (NASA, Goddard Space Flight Center, Greenbelt, MD) AIAA, Space Programs and Technologies Conference, Houston, TX, June 21-24, 1988. 6 p. (AIAA PAPER 88-3513)

This paper discusses the design requirements for the low-cost standard spacecraft development which has come to be known as the Multimission Modular Spacecraft (MMS). The paper presents the wide range of launch configurations of the MMS users, the population of programs using the MMS, and the cost effectiveness of the MMS concept. The paper addresses the in-orbit serviceability of the design as demonstrated by the successful SMM repair, and the recent selection of MMS for the Explorer Platform, which features in-orbit payload exchanges.

A88-42912*# Flight Mechanics and Control, Inc., Hampton, VA. ADVANCED SATELLITE SERVICING FACILITY STUDIES

GARRY D. QUALLS (Flight Mechanics and Control, Inc., Hampton, VA) and MELVIN J. FEREBEE, JR. (NASA, Langley Research Center, Hampton, VA) AIAA, Space Programs and Technologies Conference, Houston, TX, June 21-24, 1988. 12 p. refs (AIAA PAPER 88-4200)

A NASA-sponsored systems analysis designed to identify and recommend advanced subsystems and technologies specifically for a manned Sun-synchronous platform for satellite management is discussed. An overview of system design, manned and unmanned servicing facilities, and representative mission scenarios are given. Mission areas discussed include facility based satellite assembly, checkout, deployment, refueling, repair, and systems upgrade. The ferrying of materials and consumables to and from manufacturing platforms, deorbit, removal, repositioning, or salvage of satellites and debris, and crew rescue of any other manned vehicles are also examined. Impacted subsytems discussed include guidance navigation and control, propulsion, data management, power,

thermal control, structures, life support, and radiation management. In addition, technology issues which would have significant impacts on the system design are discussed.

A88-42933*# National Aeronautics and Space Administration.

Ames Research Center, Moffett Field, CA.

SPACE VEHICLE ARPROACH VELOCITY HIDEMANTS HADER

SPACE VEHICLE APPROACH VELOCITY JUDGMENTS UNDER SIMULATED VISUAL SPACE CONDITIONS

RICHARD F. HAINES (NASA, Ames Research Center, Moffett Field, CA) IN: International Symposium on Aviation Psychology, 4th, Columbus, OH, Apr. 27-30, 1987, Proceedings. Columbus, OH, Ohio State University, 1987, p. 44-50. Previously announced in STAR as N88-19094. refs

Thirty-five volunteers responded when they first perceived an increase in apparent size of a collimated, 2-D image of an Orbiter vehicle. The test variables of interest included the presence of a fixed angular reticle within the field of view (FOV); three initial Orbiter distances; three constant Orbiter approach velocities corresponding to 1.6, 0.8, and 0.4 percent of the initial distance per second; and two background starfield velocities. It was found that: (1) at each initial range, increasing approach velocity led to a larger distance between the eye and Orbiter image at threshold; (2) including the fixed reticle in the FOV produced a smaller distance between the eye and Orbiter image at threshold; and (3) increasing background star velocity during this judgment led to a smaller distance between the eye and Orbiter image at threshold. The last two findings suggest that other detail within the FOV may compete for available attention which otherwise would be available for judging image expansion; thus, the target has to approach the observer nearer than otherwise if these details were present. These findings are discussed in relation to previous research and possible underlying mechanisms.

A88-43176 FIBER OPTIC SYSTEMS FOR MOBILE PLATFORMS; PROCEEDINGS OF THE MEETING, SAN DIEGO, CA, AUG. 20, 21, 1987

NORRIS LEWIS, ED. and EMERY L. MOORE, ED. (Litton Industries, Beverly Hills, CA) SPIE-sponsored research. Bellingham, WA, Society of Photo-Optical Instrumentation Engineers (SPIE Proceedings. Volume 840), 1987, 181 p. For individual items see A88-43177 to A88-43187. (SPIE-840)

Various papers on fiber optic systems for mobile platforms are presented, including automotive, shipboard, aircraft, spacecraft, launch, and missile applications. Individual topics addressed include: new plastic optical fiber with polycarbonate core and fluorescence-doped fiber for high-temperature use, lost-cost 1 x 2 fiber optic coupler using plastic fiber, microminiature fiber optic accelerometer, fiber optic circuits for aircraft engine controls, and linear fiber optic data bus for aircraft applications. Also discussed are: comparison of various architectures of microwave fiber optic links - a system-level analysis, rf characteristics of wideband optical link for interconnection of microwave rf subsystems for airborne communications satellite terminals, cable and connector design issues for mobile platform applications, role of fiber optics on commercial aircraft, FO-LAN-based intelligent sensor testbed for propulsion and avionics module, and optical technology for spacecraft antennas. C.D.

A88-43247 SCIENTIFIC AND ECONOMY-ORIENTED SPACE SYSTEMS /REVISED EDITION/

V. S. AVDUEVSKII and G. R. USPENSKII (Narodnokhoziaistvennye i nauchnye kosmicheskie kompleksy, Moscow, Izdateľstvo Mashinostroenie, 1985) Moscow, MIR Publishers, 1988, 440 p. Translation. Previously cited in issue 13, p. 1803, Accession no. A86-29843. refs

A88-43333

SYSTEM EFFECTIVENESS-A KEY TO ASSURANCE

PAUL DICK (General Electric Co., Astro-Space Div., Philadelphia,

PA) IN: Annual Reliability and Maintainability Symposium, Los Angeles, CA, Jan. 26-28, 1988, Proceedings. New York, Institute of Electrical and Electronics Engineers, Inc., 1988, p. 77-85.

The increasing demands for long life and reliability performance in space for communication satellites has focused increased attention on those critical parts, materials, processes, subassemblies, assemblies, and products whose individual performance is essential to the success of the mission. Various case histories, problems, concerns, and uncertainties that arose during the design, manufacture, test, and acceptance of critical items on several communications satellite programs are reported. It is shown how they were resolved by system effectiveness activities. Subsequent corrective action taken is discussed.

A88-43951

SPACE MANUFACTURING 6 - NONTERRESTRIAL RESOURCES, BIOSCIENCES, AND SPACE ENGINEERING; PROCEEDINGS OF THE EIGHTH PRINCETON/AIAA/SSI CONFERENCE, PRINCETON, NJ, MAY 6-9, 1987

BARBARA FAUGHNAN, ED. and GREGG E. MARYNIAK, ED. Conference sponsored by AIAA and Space Studies Institute. Washington, DC, American Institute of Aeronautics and Astronautics, 1987, 412 p. For individual items see A88-43952 to A88-43972, A88-43974 to A88-43993.

The present conference on the colonization and economic exploitation of space considers topics in biomedics, space transportation, nonterrestrial resources, the use of launch vehicle external tanks as structural bases for space habitats, international law and economics considerations, the technological bases of space manufacturing plant and solar power satellites, artificial biospheres and closed-cycle life-support systems, and the social aspects of spaceflight. Attention is given to bone and muscle response to long-duration space missions, the energetics of closed biological life-support systems, a LEO space farm, crew factors in NASA Space Station design, the economic impact of extraterrestrial medicine, beamed energy for spacecraft propulsion, the electric rail rocket, and the extraction of silicon, aluminum, and oxygen from lunar ore.

O.C.

A88-43966#

A JOB FOR SPACE MANUFACTURING

J. W. STRYKER IN: Space manufacturing 6 - Nonterrestrial resources, biosciences, and space engineering; Proceedings of the Eighth Princeton/AIAA/SSI Conference, Princeton, NJ, May 6-9, 1987. Washington, DC, American Institute of Aeronautics and Astronautics, 1987, p. 158-163.

Space habitation will create a need for a general purpose repair, rebuilding, and manufacturing facility. The self-contained 'job shop' concept fits this need. A single, multi-purpose machine tool combined with a large variety of accessories is proposed. This uses existing and proven technology, requiring only some minor adaption for work in space. Also, there is a large experience base of job shop techniques which can be drawn upon. A job shop can modify tools and equipment already in orbit. It can perform production manufacturing for many of the sub-components needed in the construction of additional habitats. This adaptability also provides valuable capacity when Shuttle or other transportation links may experience delays. It creates a 'bootstrapping' capability which can significantly lower manufacturing costs in space. This paper presents specific design aspects which can help achieve Author this goal.

A88-43967#

SPACE STATION TOOL KIT

WILLIAM LEWIS (Washington, University, Seattle), DWIGHT WAHLBERG (California, University, La Jolla), and ARCHIE BREEDEN IN: Space manufacturing 6 - Nonterrestrial resources, biosciences, and space engineering; Proceedings of the Eighth Princeton/AIAA/SSI Conference, Princeton, NJ, May 6-9, 1987. Washington, DC, American Institute of Aeronautics and Astronautics, 1987, p. 167-170.

Since a module-replacement strategy cannot furnish complete coverage of all possible system failures on the NASA Space Station,

an attempt is presently made to identify those tools that may be most efficiently and with the minimum possible mass employed to undertake component-level repairs and maintenance improvisation. This speculative 'tool kit' is intended to demonstrate the possibility of very general purpose tools, as well as to adumbrate the character of prospective on-orbit repairs. Electrical, electronic, piping, structural, and informational components would be encompassed by the kit.

A88-44001

ADVANCED TOPICS IN MANUFACTURING TECHNOLOGY: PRODUCT DESIGN, BIOENGINEERING; PROCEEDINGS OF THE SYMPOSIUM, ASME WINTER ANNUAL MEETING, BOSTON, MA, DEC. 13-18, 1987

PHILIP H. FRANCIS, ED. Symposium sponsored by ASME. New York, American Society of Mechnical Engineers, 1987, 106 p. For individual items see A88-44002 to A88-44007.

Papers on manufacturing technology related to engineering are presented in the fields of product design, bioengineering, and space commercialization. Aspects of product design and bioengineering covered included design issues in mechanical tolerance analysis, computer-aided product design for economical manufacture, gestural control of industrial robots applied to surgical instrument positioning, voice control of manufacturing systems, eye tracking control of robotic systems, and man-machine interaction. Topics in space commercialization include an overview of space commercialization by an aerospace corporation, commercial development of space, power system technology, welding in space, remote sensing technology and applications, commercial materials processing in the space station, and microgravity science and applications projects and payloads.

A88-44527#

COST EFFECTIVENESS OF ON-ORBIT SERVICING FOR LARGE CONSTELLATIONS

WILLIAM ROBERTSON, JACK SLINEY, and JOEL LUNA (Dynamics Research Corp., Systems Div., Arlington, VA) AIAA, Space Programs and Technologies Conference, Houston, TX, June 21-24, 1988. 22 p. refs (AIAA PAPER 88-3519)

This paper examines the cost effectiveness of on-orbit support for large constellations with the use of a space-based support infrastructure, a concept whereby space assets are serviced and repaired in their operational orbits using a space-based support platform and an appropriate servicing subsystem, such as an OMV. The characteristics of a viable on-orbit maintenance and servicing concept are considered together with the systems/subsystems that are necessary to perform on-orbit maintenance and servicing. The cost analyses performed are structured to maintain consistent orbits and balance between the competing support alternatives, using the launch-to-replace concept as a baseline against which the on-orbit support alternatives are compared.

A88-44695*# Martin Marietta Corp., Denver, CO. ORBITAL SPACECRAFT CONSUMABLES RESUPPLY

SAM M. DOMINICK, RALPH N. EBERHARDT, and THOMAS R. TRACEY (Martin Marietta Corp., Denver, CO) AIAA, ASME, SAE, and ASEE, Joint Propulsion Conference, 24th, Boston, MA, July 11-13, 1988. 12 p. Research supported by Martin Marietta Corp. refs

(Contract NAS9-17585) (AIAA PAPER 88-2922)

The capability to replenish spacecraft, satellites, and laboratories on-orbit with consumable fluids provides significant increases in their cost and operational effectiveness. Tanker systems to perform on-orbit fluid resupply must be flexible enough to operate from the Space Transportation System (STS), Space Station, or the Orbital Maneuvering Vehicle (OMV), and to accommodate launch from both the Shuttle and Expendable Launch Vehicles (ELV's). Resupply systems for storable monopropellant hydrazine and bipropellants, and water have been developed. These studies have concluded that designing tankers capable of launch on both the Shuttle and ELV's was feasible

and desirable. Design modifications and interfaces for an ELV launch of the tanker systems were identified. Additionally, it was determined that modularization of the tanker subsystems was necessary to provide the most versatile tanker and most efficient approach for use at the Space Station. The need to develop an automatic umbilical mating mechanism, capable of performing both docking and coupler mating functions was identified. Preliminary requirements for such a mechanism were defined. The study resulted in a modular tanker capable of resupplying monopropellants, bipropellants, and water with a single design.

A88-45034

DATA MANAGEMENT FOR LARGE SPACE SYSTEMS

C. J. SHELFORD (British Aerospace, PLC, Space and Communications Div., Stevenage, England) British Interplanetary Society, Journal (ISSN 0007-084X), vol. 41, July 1988, p. 307-309.

This paper examines the major tasks and features of an on-board data management system (DMS) being currently designed for large space systems. The special features of this DMS will include high damage tolerance, ability to provide communications between a large number of dissimilar data sources and to transfer data at high speed, high flexibility in terms of system operation and growth, and easy maintenance and servicing. A major element of the DMS is the data network which will be implemented as a 'local area network' and which will transport data between users at rates compatible with users' requirements. The network interfaces will be made simple, reliable, and effective and of a complexity consistent with the mission objectives.

A88-46070

SOVIET SPACE ACHIEVEMENTS IN 1985 ACCORDING TO PRESS MATERIALS [OSVOENIE KOSMICHESKOGO PROSTRANSTVA V SSSR, 1985: PO MATERIALAM PECHATI]

R. Z. SAGDEEV, ED. Moscow, Izdatel'stvo Nauka, 1987, 200 p. In Russian. No individual items are abstracted in this volume.

The present work is a compilation of press materials (e.g., TASS reports and newspaper articles) reflecting Soviet achievements in space in 1985. Particular consideration is given to space-flight planning, manned flights, and international cooperation in space.

A88-46776

ACTIVE EXPERIMENTS; PROCEEDINGS OF SYMPOSIUM 1 OF THE TWENTY-SIXTH COSPAR PLENARY MEETING, TOULOUSE, FRANCE, JUNE 30-JULY 11, 1986

G. HAERENDEL, ED. (Max-Planck-Institut fuer Physik und Astrophysik, Garching, Federal Republic of Germany) and M. MENDILLO, ED. (Boston University, MA) Symposium and Meeting sponsored by COSPAR, URSI, and IAGA. Advances in Space Research (ISSN 0273-1177), vol. 8, no. 1, 1988, 301 p. For individual items see A88-46777 to A88-46815.

Recent investigations of the thermosphere, ionosphere, magnetosphere, and solar wind by means of active experiments are examined in reviews and reports. Topics discussed include plasma and neutral-gas injections, electron- and ion-beam injections, vehicle-environment interactions, and active wave experiments. Particular attention is given to the results of the AMPTE experiments, computer simulations of ion-beam propagation, the Charge-2 tethered rocket experiment, opportunities for active wave experiments on the Space Station, and the physical processes involved in ionospheric-heating experiments.

A88-49026

PERSPECTIVES OF SOVIET COSMONAUTICS. I [PERSPEKTIVEN DER SOWJETISCHEN KOSMONAUTIK. I]

RENE LORENZI (Zuerich, Eidgenoessische Technische Hochschule, Zurich, Switzerland) Astronautik (ISSN 0004-6221), vol. 25, Apr.-June 1988, p. 41, 42. In German. refs

Recent Soviet manned space activities are briefly reviewed. The present state of orbital stations is addressed, including the state of the art in their construction. Soviet industrial production

in space is examined, and the role of energy supply and transport systems in present Soviet manned space activities is addressed.

C D

A88-50160

AIAA GUIDANCE, NAVIGATION AND CONTROL CONFERENCE, MINNEAPOLIS, MN, AUG. 15-17, 1988, TECHNICAL PAPERS. PARTS 1 & 2

Conference sponsored by AIAA. Washington, DC, American Institute of Aeronautics and Astronautics, 1988, p. Pt. 1, 590 p.; pt. 2, 582 p. For individual items see A88-50161 to A88-50279.

Theoretical and applications aspects of aircraft and spacecraft guidance, control, and navigation are examined in reviews and reports of recent investigations. Topics addressed include the optimal nonlinear regulator problem, nonlinear control of a twin-lift helicopter configuration, pole/zero cancellation in flexible space structures, modeling of noncollocated structural control systems, maximum-terminal-velocity descent to a point, test results on spaceborne laser radars, two-controller designs for decentralized systems, and reduction of missile navigation errors by roll programming. Consideration is given to eigenspace methods for symmetric flutter suppression, a quaternion feedback regulator for spacecraft eigenaxis rotations, thrust vectoring and poststall capability in air combat, guidance and control for cooperative tether-mediated orbital rendezvous, a high-accuracy CCD sun sensor, and pilot decisionmaking during low-altitude wind-shear encounters.

A88-50352

AIAA/AAS ASTRODYNAMICS CONFERENCE, MINNEAPOLIS, MN, AUG. 15-17, 1988, TECHNICAL PAPERS

Conference sponsored by AIAA and AAS. Washington, DC, American Institute of Aeronautics and Astronautics, 1988, 760 p. For individual items see A88-50353 to A88-50407, A88-50409 to A88-50439.

Papers are presented on precise orbit computations of Lageos, an ideal reference frame for perturbed orbital motion, the celestial mechanics of gravity assist, and a slew maneuver experiment of mission function control. Also considered are an error analysis for a Mars landing, a collision matrix for LEO satellites, Galilean satellite ephemeris improvement using Galileo tour encounter information, and low-thrust power-limited transfer for a pole squatter. Other topics include navigating Neptune, long-term revisit coverage using multisatellite constellations, optimal payload lofting with tethers, and double lunar swingby trajectory design. Papers are also presented on explicit guidance along an optimal space curve, analytical models for relative motion under constant thrust, and a GPS constellation buildup plan.

A88-50590#

AEROASSISTED TRANSFER BETWEEN ELLIPTICAL ORBITS USING LIFT CONTROL

DAVID MISHNE (Rafael Armament Development Authority, Haifa, Israel), JOSEF SHINAR (Technion - Israel Institute of Technology, Haifa), and NAHUM MELAMED IN: AIAA Atmospheric Flight Mechanics Conference, Minneapolis, MN, Aug. 15-17, 1988, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1988, p. 134-141. refs (AIAA PAPER 88-4346)

A transfer between two elliptical orbits, using an atmospheric passage, is considered. In the atmosphere, the lift of the spacecraft is controlled to change the line of apsides of the orbit, without changing other orbital parameters. The maneuver includes three propulsive impulses to bring the spacecraft into and out of the atmosphere and to compensate for the velocity loss during the atmospheric passage. The total velocity change during this maneuver is compared to the velocity change of an optimal two-impulse pure propulsive maneuver and of a drag-only aeroassisted maneuver. It is shown that below a certain line of apside rotation angle the lift-controlled maneuver is more fuel economic than the drag-only maneuver. The lift-controlled maneuver is also more fuel economic than the pure propulsive maneuver, provided that the lift-to-drag ratio of the spacecraft is

greater than 2. The limits to the rotation angle that can be achieved in a single pass are discussed. Numerical examples are presented.

A88-51716*# Mayflower Communications Co., Inc., Wakefield, MA

FEASIBILITY OF USING GPS MEASUREMENTS FOR OMV ATTITUDE UPDATE

TRIVENI N. UPADHYAY, HARLEY RHODEHAMEL (Mayflower Communications Co., Inc., Wakefield, MA), and A. WAYNE DEATON (NASA, Marshall Space Flight Center, Huntsville, AL) IN: Institute of Navigation, National Technical Meeting, Santa Barbara, CA, Jan. 26-29, 1988, Proceedings. Washington, DC, Institute of Navigation, 1988, p. 194-200. refs (Contract NAS8-36363)

This paper presents the results of a feasibility study to determine whether the measurements from GPS satellites can be used to estimate the OMV attitude to an accuracy comparable to the onboard sun sensors, i.e., better than 0.5 degree in each axis. The results documented in this paper demonstrate that OMV attitude can be estimated to an accuracy of 0.1 - 0.5 degree in each axis by processing GPS measurements in an onboard integrated, 17-state GPS/inertial navigation filter. The result is particularly significant for missions of short duration burns where accurate attitude information is needed to minimize guidance and control errors. It is shown that the GPS attitude technique described in this paper can be easily implemented in the current OMV navigation system design. Results reported in this paper are expected to support the goal of developing a fault-tolerant guidance, navigation, and control system offering an improved total navigation performance for the OMV.

A88-52317 SPACE CONGRESS, 25TH, COCOA BEACH, FL, APR. 26-29, 1988, PROCEEDINGS

Congress sponsored by the Canaveral Council of Technical Societies. Cape Canaveral, FL, Canaveral Council of Technical Societies, 1988, 592 p. For individual items see A88-52318 to A88-52373.

Papers are presented dealing with commercial aspects of space, space business, robotics, space station technologies, artificial intelligence applications in space, lunar and Mars exploration concepts, launch vehicles, and systems automation. Topics covered include ground processing of experiments conducted in space, the development of a commercial expendable launch vehicle industry, a small LEO satellite bus, epitaxial thin film growth in space, development of space enterprise, negotiating governmental contracts, robots in Shuttle hardware, telerobotic Space Station applications, simulation of an articulated transporter/manipulator system, welding the Space Station common module prototype, modeling the environment of the Man Tended Free Flyer, and Space Station rapid sample return. Ground operations support by AI, expert system prototype developments, Mars mission profile options and opportunities, launch vehicle operations analyses, space launch systems resiliency, model-based reasoning for knowledge-based software project management, technology advances for Space Shuttle processing, real-time fault management for large-scale systems, information systems for Shuttle processing, orbiter maneuvering vehicle support to the Space Station, and hydrogen-air-steam combustion regimes in large volumes are also discussed.

A88-52335

MODELLING OF THE MICROGRAVITY ENVIRONMENT OF THE MAN TENDED FREE FLYER (MTFF)

W. WOEHLKE (MBB-ERNO Raumfahrttechnik GmbH, Bremen, Federal Republic of Germany) IN: Space Congress, 25th, Cocoa Beach, FL, Apr. 26-29, 1988, Proceedings. Cape Canaveral, FL, Canaveral Council of Technical Societies, 1988, p. 5-42 to 5-52. ESA-supported research. refs

One of the major purposes of the International Space Station (ISS) and MTFF is the performance of experiments and processes in a very low gravity environment. Considering the user's demands

upon the microgravity quality, it appears more and more difficult to meet the corresponding requirements under worst case constraints. In this situation, the availability of an overall model as a tool for the assessment of the microgravity quality is of utmost importance. Based upon a critical review of the microgravity requirement in the time and frequency domain the present paper describes the development of an overall microgravity model to analyze both the low frequency microgravity distrubance sources such as air drag, gravity gradient and S/C dynamic and the high frequency microgravity disturbance sources such as reaction wheels, fluid loops, gyros, etc. The computerization of the comprehensive model exhibits the benefits of a computer aided design and engineering of future orbital systems, such as design optimization on system, subsystem, and assembly level with a quick access to various representations of microgravity performance such as vector fields, amplitude spectra, time profiles and envelopes.

A88-53242

EURECA TICCE - A NINE-MONTH SURVEY OF COSMIC DUST AND SPACE DEBRIS AT 500 KM ALTITUDE

T. J. STEVENSON (Kent, University, Canterbury, England) British Interplanetary Society, Journal (ISSN 0007-084X), vol. 41, Sept. 1988, p. 429-432.

The Eureca-A timeband capture cell experiment is a modest extension of the time honored single foil capture cell technique for recovery of extraterrestrial material. The spacecraft, ostensibly designed for microgravity experimentation in low earth orbit, is the European retrievable carrier which takes advantage of the specific dimensions and payload launch capabilities of the United States Space Transportation System (the Space Shuttle), to provide a low cost reusable platform for missions, with durations of up to 9 months, not requiring celestial pointing. The experiment, of area 0.2 m, will probably return with about 1300 impact sites, each resolvable into a 2-3 day timeband during the flight.

A88-53749

SECOND THOUGHTS ON THE WAY TO THE STATION

DAVID BAKER New Scientist (ISSN 0028-6664), vol. 119, Aug. 25, 1988, p. 41-44.

The development of the Space Station is discussed. The stages of constructing the Station are presented, including an outline of the flights involved and what they would carry. The Station design is described and illustrated, including the elements of the Space Station contributed by Europe and Japan. Economic considerations, the problem of debris in space, and problems which might be caused by a delay during the stages of construction are considered.

A88-54766#

QUASAT - A 50,000 KM-DIAMETER QUASAR PROBE

U. FRISK, A. HAWKYARD, and J. W. CORNELISSE (ESA, European Space Research and Technology Centre, Noordwijk, Netherlands) ESA Bulletin (ISSN 0376-4265), no. 55, Aug. 1988, p. 18-23.

Quasat, an earth-orbiting radio antenna used in conjunction with ground-based VLBI networks to produce radio images at frequencies of 22, 5, 1.6, and 0.3 GHZ, is discussed. The Quasat mission would observe the compact, bright, high temperature objects in the nuclei of galaxies and quasars, in molecular masers, and on the surfaces of active stars in the Galaxy. The operational mission for Quasat is examined and the spacecraft configuration is described, including the radio-astronomy antenna, the spacecraft bus, and the booms which allow for viewing past the radio-astronomy antenna. The operational orbit of Quasat would have an apogee of about 37,000 km, with the space-borne antenna providing interferometer baselines ranging up to about 50,000 km.

A88-54876

DEVELOPMENTS IN MECHANICS, VOLUMES 14(A), 14(B), & 14(C) - MIDWESTERN MECHANICS CONFERENCE, 20TH, PURDUE UNIVERSITY, WEST LAFAYETTE, IN. AUG. 31-SEPT. 2, 1987, PROCEEDINGS

Conference sponsored by Purdue University. West Lafayette, IN, Purdue University, 1987, p. Vol. 14(a), 519 p.; vol. 14(b), 507 p.; vol. 14(c), 502 p. For individual items see A88-54877 to

Papers are presented on beam vibration, turbulent flow, pressure vessels, plasticity, fracture mechanics, stochastics, elastic stability, and space structures and bridges. Also considered are shell vibration, design optimization, plate vibration, numerical methods in fluid mechanics, contact mechanics, constitutive models, turbulent and wake flow, and buckling. Other topics include composite shells, nonlinear vibrations, suspended particles, geomechanics, acoustics, chaotic motion, and dissimilar materials. Papers are also presented on fluid-structure interactions, tribology, thermoelasticity, active vibration control, creep, vehicle and tire mechanics, and residual stresses.

A88-54994#

REDUCING THE COST AND RISK OF ORBIT TRANSFER

JAMES R. WERTZ, THOMAS L. MULLIKIN (Microcosm, Inc., Torrance, CA), and ROBERT F. BRODSKY (TRW, Inc., Redondo Beach, CA) Journal of Spacecraft and Rockets (ISSN 0022-4650), vol. 25, Jan.-Feb. 1988, p. 75-80. Previously cited in issue 08, p. 1059, Accession no. A87-22460. refs

A88-55331#

RISK MANAGEMENT FOR THE SPACE STATION PROGRAM

BAL KRISHAN (McDonnell Douglas Astronautics Co., Huntington IAF, International Astronautical Congress, 39th, Bangalore, India, Oct. 8-15, 1988. 7 p. (IAF PAPER 88-061)

A risk management approach for the Space Station is presented, based on the principle that system acquisition is founded on the interrelation between design, testing, and production. A definition of risk is presented, and risk sources and control are discussed. The architecture of the risk management system is given. The three steps of the system's methodology are risk identification and assessment, risk prioritization, and risk resolution and statusing. A quantitative risk assessment model has been developed, identifying the most sensitive risk items. A production schedule and control system is being established to provide early warning and control of potential problems to ensure smooth transition from design to production and deployment.

A88-55336#

SPACE STATION HABITATION MODULE - PRIVACY AND COLLECTIVE LIFE

DANIELE BEDINI and ROBERTO PINOTTI (Futuro, Florence, Italy) IAF, International Astronautical Congress, 39th, Bangalore, India, Oct. 8-15, 1988. 11 p. refs (IAF PAPER 88-080)

A design for the Space Station habitation module is proposed and illustrated. Problems in designing the module include creating an adaptable configuration, providing a design that will minimize psychological and sociological stress, allowing for an equilibrium between private and collective life. The need for architectural variety and flexibility of architectural elements is examined. The areas of the module are described, noting the possible uses of each section. R.B.

A88-55363#

DEVELOPMENT OF A GENERALIZED COST MODEL FOR LARGE SPACE POWER SYSTEMS

ALBIN D. KAZANOWSKI (Aerospace Corp., Los Angeles, CA) IAF, International Astronautical Congress, 39th, Bangalore, India, Oct. 8-15, 1988. 6 p. refs (IAF PAPER 88-219)

A model for estimating weights and costs of large space electrical power systems is developed. It is valid for solar dynamic systems in the 50-150 kWe range and nuclear systems in the 50-500 kWe range. The model is expected to reduce the cost uncertainty of large space power systems from a factor of 5 to a range on the order of + or - 30 to 50 percent.

A88-55379*# Houston Univ., TX. **IDENTIFICATION OF LARGE STRUCTURES ON ORBIT - A** SURVEY

EUGENE E. DENMAN (Houston, University, TX), JER-NAM JUANG (NASA, Langley Research Center, Hampton, VA), JOHN L. JUNKINS (Texas A & M University, College Station), MANOHAR KAMAT (Georgia Institute of Technology, Atlanta), T. K. HASSELMAN et al. IAF, International Astronautical Congress, 39th, Bangalore, India, Oct. 8-15, 1988. 10 p. USAF-supported research, refs.

(IAF PAPER 88-295)

This paper seeks to provide a brief overview of the somewhat unfamiliar concept underlying system identification especially as it applies to large flexible space structures. Having elaborated on the concept, the authors provide a detailed description of the identification process including model development, experimental validation and final certification. This discussion is followed by a classification of the different identification methods and a brief evaluation of the potential of existing methodology to address special circumstances of large flexible space structures. The paper concludes by making a few recommendations that are deemed necessary to meet the enormous challenges posed by the deployment or erection of large space structures. Author

A88-55390#

FAST GEOSTATIONARY SATELLITE RELOCATION

GIACOMO PORCELLI (INTELSAT, Washington, DC) International Astronautical Congress, 39th, Bangalore, India, Oct. 8-15, 1988. 8 p. refs (IAF PAPER 88-314)

A constrained, minimum-time transfer scheme for relocating a geostationary satellite to a nearby orbital location is described. The scheme is based on orbit tangential and radial thrusting (normally available on geostationary satellites) for the attainment of a direct transfer between the initial and final locations via a continuously powered trajectory. The trajectory determination algorithm is presented first. The algorithm generates the trajectory control requirements, the total relocation time, and the required velocity increments. Curves of relocation time and velocity increment versus the orbital relocation angle, for various acceleration levels, are derived. A comparative discussion of the trade-offs of this approach versus the commonly used impulsive transfer is included. Author

SPACE STATION - HOME AND WORKPLACE IN ORBIT

JERRY GOLDMACHER and JOHN MOCKOVCIAK, JR. (Grumman Horizons (ISSN 0095-7615), vol. 24, no. Corp., Bethpage, NY) 1, 1988, p. 10-15, 17.

The design of the Space Station is examined, focusing on plans for the living quarters. The process for building the station in space is outlined and the construction of a mockup of the habitation module are considered. Problems in designing the living quarters include accounting for the size range of astronauts, providing privacy, noise reduction, creating an area suitable for exercise, and allowing enough storage space. Plans for maintaining a sterile laboratory and providing equipment for personal hygiene are presented. The ability to repair all of the Space Station equipment in place and plans for dealing with emergency situations are discussed.

N88-20329# Joint Publications Research Service, Arlington, VA. FEATURES OF SOYUZ TM SPACECRAFT

YU. SEMENOV and V. TIMCHENKO In its JPRS Report: Science and Technology. USSR: Space p 35-41 6 Apr. 1988 Transl, into ENGLISH from Pravda (Moscow, USSR), 5 Aug. 1987 p 3 Avail: NTIS HC A04/MF A01

The Soyuz TM spacecraft is discussed. The descent module, propulsion system, inertial guidance system, and docking equipment and procedures are described.

 $\begin{tabular}{ll} \bf N88-21193\# & Teldix\ Luftfahrt-Ausruestungs\ G.m.b.H.,\ Heidelberg\ (Germany,\ F.R.). \end{tabular}$

HEMISPHERICAL POINTING MECHANISM DRIVE UNIT

H. H. SCHULTZ In ESA, Proceedings of the 3rd European Space Mechanisms and Tribology Symposium p 11-14 Dec. 1987 Avail: NTIS HC A14/MF A01

A wide angle pointing device for controlling medium sized instrument and antenna payloads in the 10 to 50 kg range for missions requiring angular coverage of at least a hemisphere with a pointing accuracy of the order of 1 arcmin was developed. The drive unit which is the main part of the Hemispherical Pointing Mechanism (HPM) is a lightweight, pancake shaped package. It contains the motor, the reduction gear, the bearing, and the angular encoder. Results of a life test and breadboard model tests are presented. The HPM drive unit demonstrates that it can be used not only in the HPM but also for applications such as antenna pointing, bearing and power transfer, momentum wheel gimballing, control moment gyros, and robotics.

N88-21242*# California Univ., Davis. Dept. of Psychology. INCORPORATION OF PRIVACY ELEMENTS IN SPACE STATION DESIGN Final Report, 1 Jan. - 31 Dec. 1987
ALBERT A. HARRISON, BARRETT CALDWELL, and NANCY J. STRUTHERS 20 May 1988 60 p
(Contract NAG2-431)
(NASA-CR-182748; NAS 1.26:182748) Avail: NTIS HC A04/MF

A01 CSCL 22B Privacy exists to the extent that individuals can control the degree of social contact that they have with one another. The opportunity to withdraw from other people serves a number of important psychological and social functions, and is in the interests of safety, high performance, and high quality of human life. Privacy requirements for Space Station crew members are reviewed, and architectual and other guidelines for helping astronauts achieve desired levels of privacy are suggested. In turn, four dimensions of privacy are discussed: the separation of activities by areas within the Space Station, controlling the extent to which astronauts have visual contact with one another, controlling the extent to which astronauts have auditory contact with one another, and odor control. Each section presents a statement of the problem, a review of general solutions, and specific recommendations. The report is concluded with a brief consideration of how selection, training, and other procedures can also help Space Station occupants achieve satisfactory levels of seclusion.

N88-21468*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

THE 22ND AEROSPACE MECHANISMS SYMPOSIUM

May 1988 416 p Symposium held in Hampton, Va.; sponsored by NASA, Washington, California Inst. of Tech., Pasadena, and LMSC, Sunnyvale, Calif.

(NASA-CP-2506; L-16433; NAS 1.55:2506) Avail: NTIS HC A18/MF A01 CSCL 20K

The proceedings of the symposium, which was held at the NASA Langley Research Center, on May 4 to 6, 1988, are reported. Technological areas covered include space lubrication, bearings, aerodynamic devices, spacecraft latches, deployment, positioning, and pointing. Devices for space station docking and manipulator and teleoperator mechanisms are also described.

N88-21488*# Astro Aerospace Corp., Carpinteria, CA. SPACE STATION MOBILE TRANSPORTER

JAMES RENSHALL, GEOFF W. MARKS, and GRANT Ł. YOUNG In NASA. Langley Research Center, The 22nd Aerospace Mechanisms Symposium p 271-286 May 1988 Avail: NTIS HC A18/MF A01 CSCL 22B

The first quarter of the next century will see an operational space station that will provide a permanently manned base for satellite servicing, multiple strategic scientific and commercial

payload deployment, and Orbital Maneuvering Vehicle/Orbital Transfer Vehicle (OMV/OTV) retrieval replenishment and deployment. The space station, as conceived, is constructed in orbit and will be maintained in orbit. The construction, servicing, maintenance and deployment tasks, when coupled with the size of the station, dictate that some form of transportation and manipulation device be conceived. The Transporter described will work in conjunction with the Orbiter and an Assembly Work Platform (AWP) to construct the Work Station. The Transporter will also work in conjunction with the Mobile Remote Servicer to service and install payloads, retrieve, service and deploy satellites, and service and maintain the station itself. The Transporter involved in station construction when mounted on the AWP and later supporting a maintenance or inspection task with the Mobile Remote Servicer and the Flight Telerobotic Servicer is shown.

Author

N88-22224# Joint Publications Research Service, Arlington, VA. JAPANESE SPACE STATION MODULE

AKIRA B. SAWAOKA *In its* JPRS Report: Science and Technology. Japan p 30-31 3 Mar. 1988 Transl. into ENGLISH from Ceramics Japan (Tokyo, Japan), Apr. 1987 p 297-302 Avail: NTIS HC A05/MF A01

Japan is scheduled to build a space station in the 1990s. It will not be a whole space station, but a space station module to be docked with the NASA space station. The module to be build by Japan is comprised of a space laboratory called JEM (Japanese Experiment Module). The total cost of JEM, including the cost of experimental apparatus to be installed and the expenses for operation in the initial stage, will amount to well over Y300 billion. The JEM will measure about 4 m in diameter and 18 m in length. A total of four modules, including JEM, are scheduled to be docked with the space station proper. The design of the JEM and the goals of the Japanese Space Program are discussed.

N88-23226*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

LEWIS STRUCTURES TECHNOLOGY, 1988. VOLUME 1: STRUCTURAL DYNAMICS

May 1988 463 p Symposium held in Cleveland, Ohio, 24-25 May 1988

The specific purpose of the symposium was to familiarize the engineering structures community with the depth and range of research performed by the Structures Division of the Lewis Research Center and its academic and industrial partners. Sessions covered vibration control, fracture mechanics, ceramic component reliability, parallel computing, nondestructive testing, dynamical systems, fatigue and damage, wind turbines, hot section technology, structural mechanics codes, computational methods for dynamics, structural optimization, and applications of structural dynamics.

N88-23813# Bundesministerium fuer Forschung und Technologie, Bonn (Germany, F.R.).

ARGUMENTS FOR MANNED OR UNMANNED SPACECRAFT ACTIVITIES [ARGUMENTE FUER BEMANNTE UND UNBEMANNTE WELTRAUMAKTIVITAETEN]

19 Oct. 1987 20 p In GERMAN

(REPT-46/87; ETN-88-91949) Avail: NTIS HC A03/MF A01

Arguments for the critical assessment of technology needs to prepare manned spacecraft activities are presented. Studies in materials structure sciences and biosciences are especially required as for the FSLP and D1 missions. This evaluation suggests the possible substitution of man by automation in space experiments. Developments in this field are reviewed.

N88-23823# Science Applications International Corp., McLean, VA

SOVIET SPACECRAFT ENGINEERING RESEARCH

J. F. GARIBOTTI, M. ASWANI, E. F. CRAWLEY, W. C. KESSLER,

K. SOOSAAR, J. D. TURNER, and W. P. WITT Oct. 1987

(FASAC-TAR-3090) Avail: NTIS HC A08/MF A01

The Soviet published literature in spacecraft engineering pertaining to future space systems, including those utilizing large structures is assessed. Topical areas emphasized include advanced structural concepts and associated construction approaches, spacecraft materials, precision pointing and rapid retargeting, geometrically precise structures in the presence of static and dynamic disturbances, and spacecraft vulnerability as it relates to these aspects of spacecraft engineering. The assessment indicates that the Soviets have significant strengths and specialties in spacecraft engineering. The Soviet space station appears to be the principal Soviet large system of the near future, and this will expand and evolve in size and capability. Radio astronomy missions are also genuine drivers for large space structure technology, including space construction capability. In the structural materials area, the Soviets can be expected to develop high quality, structurally efficient fiber-reinforced metal-matrix composites, which will be used to improve the performance and possibly the survivability of future Soviet spacecraft. The technology of control-structure interaction, important in the design of large space-based lasers, is receiving considerably more support, based on the published literature, in the United States than in the Soviet Union.

N88-23929*# Houston Univ., TX. Applied Electromagnetics Lab.

AN INVESTIGATION OF CONFORMABLE ANTENNAS FOR THE ASTRONAUT BACKPACK COMMUNICATION SYSTEM Final Report

STUART A. LONG, DAVID R. JACKSON, JEFFERY T. WILLIAMS, and DONALD R. WILTON 1 Jun. 1988 190 p (Contract NAG9-219)

(NASA-CR-182908; NAS 1.26:182908; TR-88-18) Avail: NTIS HC A09/MF A01 CSCL 17B

During periods of extravehicular activity it is obviously important that communication and telemetry systems continue to function independently of the astronaut. A system of antennas must therefore be designed that will provide the necessary isotropic coverage using circular polarization over both the transmit and receive frequency bands. To avoid the inherent physical limitations to motion that would be incurred with any sort of protruding antenna, it is necessary that the radiator be essentially flush-mounted or conformable to the structure on which it is attached. Several individual antenna elements are needed for the desired coverage. Both the particular elements chosen and their location determine the ultimate radiation pattern of the overall system. For these reasons a two-fold research plan was undertaken. First, individual elements were investigated and designed. Then various mounting locations were considered and the radiation patterns were predicted taking into account the effects of the astronaut's backpack.

Author

N88-24145*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

SPACE STATION HUMAN FACTORS RESEARCH REVIEW. VOLUME 1: EVA RESEARCH AND DEVELOPMENT

MARC M. COHEN, ed. and H. C. VYKUKAL, ed. Apr. 1988 136 p Workshop held at Moffett Field, Calif., 3-6 Dec. 1985 (NASA-CP-2426-VOL-1; A-87163-VOL-1; NAS 1.55:2426-VOL-1) Avail: NTIS HC A07/MF A01 CSCL 06B

An overview is presented of extravehicular activity (EVA) research and development activities at Ames. The majority of the program was devoted to presentations by the three contractors working in parallel on the EVA System Phase A Study, focusing on Implications for Man-Systems Design. Overhead visuals are included for a mission results summary, space station EVA requirements and interface accommodations summary, human productivity study cross-task coordination, and advanced EVAS Phase A study implications for man-systems design. Articles are also included on subsea approach to work systems development and advanced EVA system design requirements.

N88-24146*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

SUBSEA APPROACH TO WORK SYSTEMS DEVELOPMENT

M. L. GERNHARDT, F. R. FRISBIE, and C. E. BROWN In its Space Station Human Factors Research Review. Volume 1: EVA Research and Development p 69-84 Apr. 1988 Sponsored by Oceaneering International

Avail: NTIS HC A07/MF A01 CSCL 05H

Self-contained undersea working environments with applications to space station EVA environments are discussed. Physiological limitations include decompression, inert gas narcosis, high-pressure nervous system, gas toxicity, and thermal limitations. Work task requirements include drilling support, construction, inspection, and repair. Work systems include hyperbaric diving, atmospheric work systems, tele-operated work systems, and hybrid systems. Each type of work system is outlined in terms of work capabilities, special interface requirements, and limitations. Various operational philosophies are discussed. The evolution of work systems in the subsea industry has been the result of direct operational experience in a competitive market.

N88-24148*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

SPACE STATION HUMAN FACTORS RESEARCH REVIEW. VOLUME 4: INHOUSE ADVANCED DEVELOPMENT AND RESEARCH

TRIEVE TANNER, ed., YVONNE A. CLEARWATER, ed., and MARC M. COHEN, ed. May 1988 135 p Workshop held at Moffett Field, Calif., 3-6 Dec. 1985

A variety of human factors studies related to space station design are presented. Subjects include proximity operations and window design, spatial perceptual issues regarding displays, image management, workload research, spatial cognition, virtual interface, fault diagnosis in orbital refueling, and error tolerance and procedure aids.

N88-24150*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA. IMAGE MANAGEMENT RESEARCH

ANDREW B. WATSON In its Space Station Human Factors Research Review. Volume 4: Inhouse Advanced Development and Research p 23-28 May 1988

Avail: NTIS HC A07/MF A01 CSCL 05H

Two types of research issues are involved in image management systems with space station applications: image processing research and image perception research. The image processing issues are the traditional ones of digitizing, coding, compressing, storing, analyzing, and displaying, but with a new emphasis on the constraints imposed by the human perceiver. Two image coding algorithms have been developed that may increase the efficiency of image management systems (IMS). Image perception research involves a study of the theoretical and practical aspects of visual perception of electronically displayed images. Issues include how rapidly a user can search through a library of images, how to make this search more efficient, and how to present images in terms of resolution and split screens. Other issues include optimal interface to an IMS and how to code images in a way that is optimal for the human perceiver. A test-bed within which such issues can be addressed has been designed.

J.P.B.

N88-24151*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

NASA-AMES WORKLOAD RESEARCH PROGRAM

SANDRA HART In its Space Station Human Factors Research Review. Volume 4: Inhouse Advanced Development and Research p 29-76 May 1988

Avail: NTIS HC A07/MF A01 CSCL 05H

Research has been underway for several years to develop valid and reliable measures and predictors of workload as a function of operator state, task requirements, and system resources. Although the initial focus of this research was on aeronautics, the

underlying principles and methodologies are equally applicable to space, and provide a set of tools that NASA and its contractors can use to evaluate design alternatives from the perspective of the astronauts. Objectives and approach of the research program are described, as well as the resources used in conducting research and the conceptual framework around which the program evolved. Next, standardized tasks are described, in addition to predictive models and assessment techniques and their application to the space program. Finally, some of the operational applications of these tasks and measures are reviewed.

N88-24152*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

SPATIAL COGNITION

MARY KISTER KAISER and ROGER REMINGTON In its Space Station Human Factors Research Review. Volume 4: Inhouse Advanced Development and Research p 77-83 May 1988 Avail: NTIS HC A07/MF A01 CSCL 05I

Spatial cognition is the ability to reason about geometric relationships in the real (or a metaphorical) world based on one or more internal representations of those relationships. The study of spatial cognition is concerned with the representation of spatial knowledge, and our ability to manipulate these representations to solve spatial problems. Spatial cognition is utilized most critically when direct perceptual cues are absent or impoverished. Examples are provided of how human spatial cognitive abilities impact on three areas of space station operator performance: orientation, path planning, and data base management. A videotape provides demonstrations of relevant phenomena (e.g., the importance of orientation for recognition of complex, configural forms). The presentation is represented by abstract and overhead visuals only.

N88-24188*# National Aeronautics and Space Administration.

Marshall Space Flight Center, Huntsville, AL.

THIRD CONFERENCE ON ARTIFICIAL INTELLIGENCE FOR SPACE APPLICATIONS, PART 2

JUDITH S. DENTON, comp., MICHAEL S. FREEMAN, comp., and MARY VEREEN, comp. Jun. 1988 66 p Conference held in Huntsville, Ala., 2-3 Nov. 1987; sponsored by NASA, Marshall Space Flight Center, Huntsville, Ala. and Alabama Univ., Huntsville Sponsored by NASA, Wash, 156:2403 PT 3) April: NASA, 456:2403 PT 3) April:

(NASA-CP-2492-PT-2; M-576-PT-2; NAS 1.55:2492-PT-2) Avail: NTIS HC A04/MF A01 CSCL 09B

Topics relative to the application of artificial intelligence to space operations are discussed. New technologies for space station automation, design data capture, computer vision, neural nets, automatic programming, and real time applications are discussed.

N88-24632*# Taylor and Associates, Inc., Wrightwood, CA. SPACE STATION ARCHITECTURAL ELEMENTS MODEL STUDY

T. C. TAYLOR, J. S. SPENCER, C. J. ROCHA, E. KAHN, E. CLIFFTON, and C. CARR Washington NASA Jan. 1987 155 p

(NASA-CR-4027; NAS 1.26:4027) Avail: NTIS HC A08/MF A01 CSCL 01C

The worksphere, a user controlled computer workstation enclosure, was expanded in scope to an engineering workstation suitable for use on the Space Station as a crewmember desk in orbit. The concept was also explored as a module control station capable of enclosing enough equipment to control the station from each module. The concept has commercial potential for the Space Station and surface workstation applications. The central triangular beam interior configuration was expanded and refined to seven different beam configurations. These included triangular on center, triangular off center, square, hexagonal small, hexagonal medium, hexagonal large and the H beam. Each was explored with some considerations as to the utilities and a suggested evaluation factor methodology was presented. Scale models of each concept were made. The models were helpful in researching the seven beam configurations and determining the negative residual (unused)

volume of each configuration. A flexible hardware evaluation factor concept is proposed which could be helpful in evaluating interior space volumes from a human factors point of view. A magnetic version with all the graphics is available from the author or the technical monitor.

N88-25156*# McDonnell-Douglas Astronautics Co., Huntington Beach, CA.

HUMAN PERFORMANCE ISSUES ARISING FROM MANNED SPACE STATION MISSIONS

WILLIAM K. DOUGLAS Washington NASA Oct. 1986 61 p (Contract NAS2-11723)

(NASA-CR-3942; NAS 1.26:3942; MDC-H1363) Avail: NTIS HC A04/MF A01 CSCL 05H

Ten former NASA astronauts were interviewed using a set of 51 questions developed to encourage the contacts to discuss any thoughts, opinions, conclusions, or suggestions which might have evolved since they left the astronaut program. Strict confidentiality was maintained. At least one astronaut from each of the NASA manned space flight programs, excluding the Space Transportation System (Shuttle), was interviewed. The report records the answers to the questions asked, spontaneous comments, and the investigator's own personal evaluations of the material obtained. No statistical analysis of the material was attempted. The professional opinions of these ten experienced astronauts will be of value to persons concerned with the design and operation of manned spacecraft and manned space stations.

N88-26023# Centre d'Essais en Vol, Bretigny-Air (France). Lab. de Medecine Aerospatiale.

SPACE CABIN ATMOSPHERE AND EXTRACURRICULAR SORTIE [ATMOSPHERE D'UNE CABINE SPATIALE ET SORTIE EXTRA-VEHICULAIRE]

HENRI MAROTTE and MARC WEIBEL (Avions Marcel Dassault-Breguet Aviation, Saint-Cloud, France) In ESA, Proceedings of the Colloquium on Space and Sea p 69-76 Mar. 1988 In FRENCH

Avail: NTIS HC A15/MF A01

Conditions which provoke aeroembolism were studied to help design space suits which reduce risks entailed in passing from the terrestrial like conditions of a spacecraft cabin atmosphere to the medium and low pressures of space suits. Design constraints on the suite and its pressurizing system were evaluated, especially for the working conditions of space stations, which require frequent extravehicular activity. Given the limits imposed by denitrogenation, a high pressure (at least 650 hPa) is suggested for the American space station program, whereas for ESA, use of Hermes is compatible with a 450 hPa suit. For intravehicular emergency suits, pressure should be as high as compatible with mobility requirements (bearing in mind the reduced level of physical activity).

N88-27214* National Aeronautics and Space Administration, Washington, DC.

TECHNOLOGY FOR LARGE SPACE SYSTEMS: A BIBLIOGRAPHY WITH INDEXES (SUPPLEMENT 18)

Jun. 1988 162 p

(NASA-SP-7046(18); NAS 1.21:7046(18)) Avail: NTIS HC A07 CSCL 22B

This bibliography lists 569 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1,1987 and December 31, 1987. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems.

N88-27760*# TRW Defense and Space Systems Group, Redondo Beach, CA.

BLOCK ORIENTED SIMULATION SYSTEM (BOSS)

JAIMIE RATCLIFFE 1988 45 p Submitted for publication

(Contract NAS9-17677) (NASA-CR-182947; NAS 1.26:182947) Avail: NTIS HC A03/MF A01 CSCL 09B

Computer simulation is assuming greater importance as a flexible and expedient approach to modeling system and subsystem behavior. Simulation has played a key role in the growth of complex, multiple access space communications such as those used by the space shuttle and the TRW-built Tracking and Data Relay Satellites (TDRS). A powerful new simulator for use in designing and modeling the communication system of NASA's planned Space Station is being developed. Progress to date on the Block (Diagram) Oriented Simulation System (BOSS) is described.

N88-29379*# Alabama Univ., Huntsville. OMV DOCKING SIMULATOR

W. TEOH and J. HAWKINS (Boeing Aerospace Co., Huntsville, Ala.) In NASA, Marshall Space Flight Center, Second Conference on Artificial Intelligence for Space Applications p 257-276

Avail: NTIS HC A99/MF E03 CSCL 14B

The Boeing Orbital Maneuvering Vehicle (OMV) Docking and Proximity Operation System (DAPOS) was completed. The system constructed involves the use of four separate processors. Appropriate software was developed that drives each of these four processors. The hand controller logic coordinates all the activities in the control station, and communicates with the OMV mathematical model. The state vector generated by the model is in turn transmitted to the control station as well as the POLY 2000 (via the ALCYON host computer) for real time graphics generation. The OMV characteristics are stored in a data file which may be easily updated and modified without disturbing the software, thereby making the system very flexible. The current system supports two types of hand controllers. The system was flown by several volunteers, some of whom are airplane pilots. A user manual is also enclosed. Author

N88-29380*# Martin Marietta Aerospace, Denver, CO. Space Station Program.

ARGES: AN EXPERT SYSTEM FOR FAULT DIAGNOSIS WITHIN SPACE-BASED ECLS SYSTEMS

DAVID W. PACHURA, SALEM A. SULEIMAN, and ANDREW P. In NASA, Marshall Space Flight Center, Second Conference on Artificial Intelligence for Space Applications p Aug. 1988 277-282

Avail: NTIS HC A99/MF E03 CSCL 05H

ARGES (Atmospheric Revitalization Group Expert System) is a demonstration prototype expert system for fault management for the Solid Amine, Water Desorbed (SAWD) CO2 removal assembly, associated with the Environmental Control and Life Support (ECLS) System. ARGES monitors and reduces data in real time from either the SAWD controller or a simulation of the SAWD assembly. It can detect gradual degradations or predict failures. This allows graceful shutdown and scheduled maintenance, which reduces crew maintenance overhead. Status and fault information is presented in a user interface that simulates what would be seen by a crewperson. The user interface employs animated color graphics and an object oriented approach to provide detailed status information, fault identification, and explanation of reasoning in a rapidly assimulated manner. In addition, ARGES recommends possible courses of action for predicted and actual faults. ARGES is seen as a forerunner of Al-based fault management systems for manned space systems. Author

N88-29383*# Martin Marietta Aerospace, Denver, CO. A SCHEDULING AND RESOURCE MANAGEMENT SYSTEM FOR SPACE APPLICATIONS

DANIEL L. BRITT, AMY L. GEOFFROY, and JOHN R. GOHRING In NASA, Marshall Space Flight Center, Second Conference on Artificial Intelligence for Space Applications p 303-310 1988

Avail: NTIS HC A99/MF E03 CSCL 05A

Every spacecraft, whether in orbit around the earth or an a deep space flight, has at its disposal limited amounts of the resources for it to accomplish its mission. Activity scheduling is currently a costly, human intensive task which requires a great deal of expertise. It belongs to a class of problems whose complexity increases exponentially with the number of operations. NASA has in the past accomplished this task by using a great deal of manpower, a large number of negotiating sessions, interminable bouts of phone tag, and mountains of paperwork. Lately the situation has improved with the introduction of automated scheduling techniques, but these to date still require expert involvement and fall short in some important ways. A prototype activity scheduler, MAESTRO, is introduced which is capable of meeting the needs of many NASA missions, eventually to include the Space Station. The approach to resource constrained scheduling is first discussed, then the intended domain for MAESTRO is described along with its design and current capabilities. A description of planned enhancements and revisions to the systems is also presented.

N88-29417*# Boeing Aerospace Co., Huntsville, AL. Space Station Program.

A NONLINEAR FILTERING PROCESS DIAGNOSTIC SYSTEM FOR THE SPACE STATION

RAYMOND R. YOEL, M. BUCHNER, K. LOPARO, and ARIF CUBUKCU (Case Western Reserve Univ., Cleveland, Ohio.) In NASA, Marshall Space Flight Center, Second Conference on Artificial Intelligence for Space Applications p 601-604

Avail: NTIS HC A99/MF E03 CSCL 09B

A nonlinear filtering process diagnostic system, terrestrial simulation and real time implementation studies is presented. Possible applications to Space Station subsystem elements are discussed. A process diagnostic system using model based nonlinear filtering for systems with random structure was shown to provide improvements in stability, robustness, and overall performance in comparison to linear filter based systems. A suboptimal version of the nonlinear filter (zero order approximation filter, or ZOA filter) was used in simulation studies, initially, with a pressurized water reactor model and then with water/steam heat exchanger models. Finally, a real time implementation for leak detection in a water/steam heat exchanger was conducted using the ZOA filter and heat exchanger models. Author

N88-29835*# General Dynamics Corp., San Diego, CA. CENTAUR OPERATIONS AT THE SPACE STATION: COST AND TRANSPORTATION ANALYSIS Final Report

10 Aug. 1988 241 p (Contract NAS3-24900)

(NASA-CR-182128; NÁS 1.26:182128; GDSS-SP-88-006) Avail: NTIS HC A11/MF A01 CSCL 22B

A study was conducted to expand on the results of an initial study entitled Centaur Operations at the Space Station. The previous study developed technology demonstration missions (TDMs) that utilized the Centaur G-prime upper stage to advance OTV technologies required for accomodations and operations at the Space Station. An initial evaluation was performed of the cost to NASA for TDM implementation. Due to the potential for commercial communication satellite operation utilizing the TDM hardware, an evaluation of the Centaur's transportation potential was also performed. Author

N88-30301*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

SPACE STATION PROXIMITY OPERATIONS WINDOWS: **HUMAN FACTORS DESIGN GUIDELINES**

RICHARD F. HAINES Mar. 1987 109 p (NASA-TM-88233; A-86185; NAS 1.15:88233) Avail: NTIS HC A06/MF A01 CSCL 06K

Proximity operations refers to all activities outside the Space Station which take place within a 1-km radius. Since there will be a large number of different operations involving manned and unmanned vehicles, single- and multiperson crews, automated and manually controlled flight, a wide variety of cargo, and construction/repair activities, accurate and continuous human monitoring of these operations from a specially designed control station on Space Station will be required. Total situational awareness will be required. This paper presents numerous human factors design guidelines and related background information for control windows which will support proximity operations. Separate sections deal with natural and artificial illumination geometry; all basic rendezvous vector approaches; window field-of-view requirements; window size; shape and placement criteria; window optical characteristics as they relate to human perception; maintenance and protection issues; and a comprehensive review of windows installed on U.S. and U.S.S.R. manned vehicles.

Author

N88-30330*# National Aeronautics and Space Administration. Goddard Space Flight Center, Greenbelt, MD.

THE 1988 GODDARD CONFERENCE ON SPACE APPLICATIONS OF ARTIFICIAL INTELLIGENCE

JAMES RASH, ed. and PETER HUGHES, ed. Aug. 1988 437 p Conference held in Greenbelt, Md., 24 May 1988 Sponsored by NASA, Washington, D.C.

(NASA-CP-3009; REPT-88B0212; NAS 1.55:3009) Avail: NTIS HC A19/MF A01 CSCL 09B

This publication comprises the papers presented at the 1988 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/Goddard Space Flight Center, Greenbelt, Maryland on May 24, 1988. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The papers in these proceedings fall into the following areas: mission operations support, planning and scheduling; fault isolation/diagnosis; image processing and machine vision; data management; modeling and simulation; and development tools/methodologies.

N88-30333*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

A SHARED-WORLD CONCEPTUAL MODEL FOR INTEGRATING SPACE STATION LIFE SCIENCES TELESCIENCE OPERATIONS

VICKI JOHNSON and JOHN BOSLEY (Bionetics Corp., Moffett Field, Calif.) In NASA, Goddard Space Flight Center, The 1988 Goddard Conference on Space Applications of Artificial Intelligence p 33-44 Aug. 1988

Avail: NTIS HC A19/MF A01 CSCL 09B

Mental models of the Space Station and its ancillary facilities will be employed by users of the Space Station as they draw upon past experiences, perform tasks, and collectively plan for future activities. The operational environment of the Space Station will incorporate telescience, a new set of operational modes. To investigate properties of the operational environment, distributed users, and the mental models they employ to manipulate resources while conducting telescience, an integrating shared-world conceptual model of Space Station telescience is proposed. The model comprises distributed users and resources (active elements); agents who mediate interactions among these elements on the basis of intelligent processing of shared information; and telescience protocols which structure the interactions of agents as they engage in cooperative, responsive interactions on behalf of users and resources distributed in space and time. Examples from the life sciences are used to instantiate and refine the model's principles. Implications for transaction management and autonomy are discussed. Experiments employing the model are described which the authors intend to conduct using the Space Station Life Sciences Telescience Testbed currently under development at Ames Research Center. Author

N88-30556# European Space Agency, Paris (France). Space Science Dept.

ESA REPORT TO THE 27TH COSPAR MEETING

V. DOMINGO, U. O. FISK, R. GRARD, P. JAKOBSEN, M. F. KESSLER, J.-P. LEBRETON, R. MARSDEN, A. PEACOCK, A. PEDERSON, M. A. C. PERRYMAN et al. Jun. 1988 148 p Meeting held in Helskinki, Finland, Jul. 1988 Original contains

color illustrations

(ESA-SP-1098; ISSN-0379-6566; ETN-88-93046) Avail: NTIS HC A07/MF A01

The ISEE, IUE, EXOSAT, and Giotto missions are described. The status of the Ulysses, Hubble Space Telescope, HIPPARCOS, ISO, and solar-terrestrial science programs is discussed. The high throughput X-ray spectroscopy mission, submillimeter spectroscopy mission, and the comet nucleus sample return mission are presented. The CASSINI, GRASP, Lyman, Quasat, Vesta, and Giotto extended missions are introduced. The EURECA and Columbus space station programs are reviewed.

N88-30582# Politecnico di Torino (Italy). Dept. of Aerospace Engineering.

ACTIVITIES REPORT OF THE DEPARTMENT OF AEROSPACE ENGINEERING Annual Report, 1986

Dec. 1987 37 p

(ETN-88-91607) Avail: NTIS HC A03/MF A01

Research in aeronautics and astronautics; fluid dynamics and propulsion; structures and materials; and systems engineering and management is summarized.

Typical Subject Index Listing

The subject heading is a key to the subject content of the document. The title is used to provide a description of the subject matter. When the title is insufficiently descriptive of the document content, the title extension is added, separated from the title by three hyphens. The (NASA or AIAA) accession number and the page number are included in each entry to assist the user in locating the abstract in the abstract section. If applicable, a report number is also included as an aid in identifying the document. Under any one subject heading, the accession numbers are arranged in sequence with the AIAA accession numbers appearing first.

ABSORBERS (MATERIALS)

Spacecraft surface coating heat generation by charged particulate of the natural space environment p 58 A88-51341 [ASME PAPER 87-WA/HT-13]

ACCELERATION (PHYSICS)

Systems analysis of a low-acceleration research [AIAA PAPER 88-3512] p 93 A88-42909

Spatial evolution of the residual-acceleration vector on p 43 A88-53945 board spacecraft

ACCELEROMETERS

Active control experiment using proof mass actuators [AIAA PAPER 88-4307] p 40 A88-50432

ACOUSTIC EXCITATION

Methods for spacecraft simulation in vibro-acoustic p 9 A88-37278 environments

ACQUISTIC FREQUENCIES

The acoustic limit of control of structural dynamics A88-46409 p 32

ACTIVE CONTROL

Conceptual design for active structural control of a large p 25 A88-34500 optical system Interactive structural and controller synthesis for large p 28 A88-35541 Experimental investigations in active vibration control

for application to large space systems p 30 A88-42577

Microprocessor controlled force actuator

p 30 A88-43206

Active vibration control synthesis for the control of flexible structures mast flight system p 30 A88-43212 Computational issues in control-structure interaction p 32 A88-46406

The acoustic limit of control of structural dynamics p 32 A88-46409

Active control for vibration damping

p 32 A88-46410

Active control experiment using proof mass actuators p 40 A88-50432 (AIAA PAPER 88-4307) ACES program - Lessons learned p 6 A88-54573 demonstration of maximum entropy/optimal projection design theory for active p 44 vibration control Low authority control of a composite cantilever beam p 45 A88-54630 in two dimensions H(infinity) robust control synthesis for a large space

p 45 A88-54639 A robust control experiment using an optical structure p 45 A88-54640

A Fourier-based optimal control approach for structural Optimization of actively controlled structures using

multiobjective programming techniques p 46 A88-54973

Theoretical and experimental investigation of space-realizable inertial actuation for passive and active p 46 A88-55063 structural control Generic model laboratory tests for large flexible structure

HAE PAPER 88-2941 p 47 A88-55378

Control augmented structural synthesis

p 48 N88-20290 [NASA-CR-4132] Low authority control of large space structures using a constrained threshold control formulation

p 51 N88-24667

Experimental study of active vibration control p 51 N88-24989

Analysis of a closed-kinematic chain robot manipulator [NASA-CR-183031] p 79 N88-25206 p 79 N88-25206

ACTIVE GALACTIC NUCLEI

Quasat - A 50,000 km-diameter Quasar probe p 96 A88-54766

ACTUATORS

Distributed sensors and actuators for vibration control in elastic components p 28 A88-39724 Microprocessor controlled force actuator

p 30 A88-43206

The use of pyrotechnics on spacecraft p 85 A88-49825

Sensors, actuators, and hyperstability of structures [AIAA PAPER 88-4057] p 34 A88-50167 Active control experiment using proof mass actuators I AIAA PAPER 88-43071 p 40 A88-50432 Low authority control of a composite cantilever beam

p 45 A88-54630 in two dimensions investigation Theoretical and experimental space-realizable inertial actuation for passive and active

p 46 A88-55063 structural control Design of a linear actuator and breadboard test result --- far IR telescope p 16 N88-21217

A joint actuator design for a robotic manipulator p 77 N88-21232

The 22nd Aerospace Mechanisms Symposium p 98 N88-21468 INASA-CP-25061

The 15-meter diameter hoop/column antenna surface control actuator system p 17 N88-21469 The LDCM actuator for vibration suppression

[NASA-CR-182898] p 50 N88-23940 Sensor and actuator selection for large space structure control

AD-A194912] p 53 N88-29842

ADAPTIVE CONTROL

Moving bank multiple model adaptive estimation applied p 25 A88-34790 to flexible space structure control An adaptive control system for fine pointing of flexible p 26 A88-34791 spacecraft Adaptive control of large space structures - Uncertainty

estimation and robust control calibration

p 32 A88-46412 Adaptive control experiment with a large flexible

[AIAA PAPER 88-4153] p 36 A88-50247 Identification of a flexible truss structure using lattice p 45 A88-54577

Optimal control and identification of space structures [AD-A190033] p 49 N88-22065 Moving-bank multiple model adaptive estimation applied

to flexible spacestructure control [AD-A190761] p 49 N88-22071

Genetic algorithms for adaptive real-time control in p 50 N88-24195 space systems Adaptive residual mode filter control of distributed parameter systems for large space structure applications

ADHESIVE BONDING

Qualification of room-temperature-curing adhesives for spacecraft structural applications

p 66 A88-42440 Particle adhesion to surfaces under vacuum

I AIAA PAPER 88-2725] p 66 A88-43765

AEROASSIST

Trajectory analysis of a low lift/drag aeroassisted orbit transfer vehicle

[AAS PAPER 87-123] p 92 A88-41285 An approximate atmospheric guidance law for aeroassisted plane change maneuvers

[AIAA PAPER 88-4174] p 37 A88-50265 A near optimal guidance algorithm for aero-assisted orbit

transfer [AIAA PAPER 88-4175] p 37 A88-50266 Aeroassisted transfer between elliptical orbits using lift

control JAJAA PAPER 88-43461 p 95 A88-50590

Optimum configuration of high-lift aeromaneuvering orbital transfer vehicles in viscous flow

p 11 A88-51386

p 37 A88-50265

AEROBRAKING

A self-consistent tension shell structure for application to aerobraking vehicle and its aerodynamic characteristics

[AIAA PAPER 88-34051 p 14 A88-44839

AERODYNAMIC CHARACTERISTICS

A self-consistent tension shell structure for application to aerobraking vehicle aerodynamic characteristics p 14 A88-44839

AIAA PAPER 88-3405] AERODYNAMIC DRAG

Tethered subsatellite swinging from atmosoheric p 46 A88-55067

AERODYNAMIC FORCES

An approximate atmospheric guidance law for aeroassisted plane change maneuvers

[AIAA PAPER 88-4174] **AERODYNAMIC HEATING**

Beyond simulation --- selecting materials for spacecraft p 66 A88-45109

AEROELASTICITY Recent trends in aeroelasticity, structures, and structural dynamics; Proceedings of the R. L. Bisplinghoff Memorial mposium, University of Florida, Gain

nesville, FL, Feb. 6, p 90 A88-35526 Method for the experimental determination of the frequency characteristics of an elastic flight vehicle with a digital control system p 34 A88-50095

Aeroelastic interactions with flight control of transatmospheric vehicles p 42 A88-50980 Lewis Structures Technology, 1988. Volume 1: Structural Dynamics

NASA-CP-3003-VOL-1] p 98 N88-23226

AEROEMBOLISM

Space cabin atmosphere and extracurricular sortie --p 100 N88-26023

AFROMANFILVERING

Optimum configuration of high-lift aeromaneuvering orbital transfer vehicles in viscous flow

p 11 A88-51386

p 64 A88-38015

AERONAUTICS

Activities report of the Department of Aerospace Engineering IETN-88-916071 p 102 N88-30582

AERONOMY

'Space weather forecast' - Prediction of relativistic electron intensity at synchronous orbit

AEROSPACE ENGINEERING

Aerospace century XXI: Space flight technologies; Proceedings of the Thirty-third Annual AAS International Conference, Boulder, CO, Oct. 26-29, 1986

p 90 A88-35093 Recent advances in aerospace refractory metal alloys p 67 A88-47449

AEROSPACE ENVIRONMENTS

Space Station - Home and workplace in orbit	Dynamics of a flexible orbiting platform with MRMS	A numerical method for the analysis of coupling to thin
p 97 A88-55486	[ISSN-0285-6808] p 51 N88-24673	wire structures p 14 A88-54722
Soviet spacecraft engineering research	Numerical optimization, system theoretic and software	Aerospatiale unfurlable reflector and associated
[FASAC-TAR-3090] p 98 N88-23823	tools for the integrated design of flexible structures and	mechanisms p 15 N88-21203
Damping characteristics of metal matrix composites	their control systems	The 15-meter diameter hoop/column antenna surface
[AD-A193144] p 71 N88-27233	[AD-A192927] p 52 N88-27183	control actuator system p 17 N88-21469
The 1988 Goddard Conference on Space Applications	ALKALI METALS	The 15-meter antenna performance optimization using
of Artificial Intelligence	Two-phase alkali-metal experiments in reduced gravity	an interdisciplinary approach p 61 N88-25746
[NASA-CP-3009] p 102 N88-30330	p 67 A88-47969	Technologies for antenna shape and vibration control
Activities report of the Department of Aerospace	ALTITUDE CONTROL	p 52 N88-25748
Engineering (ETN-88-91607) p 102 N88-30582	An assessment of nominal and contingency altitude	ANTENNA FEEDS
[ETN-88-91607] p 102 N88-30582 AEROSPACE ENVIRONMENTS	reboost scenarios during Space Station assembly	Comparison of fiber optic and space feed for large aperture phased array antennas p 57 A88-50308
Tribological properties of polymer films and solid bodies	[AIAA PAPER 88-3501] p 75 A88-44526 ALUMINUM ALLOYS	ANTENNA RADIATION PATTERNS
in a vacuum environment p 63 A88-35565	Space Station truss strut tube design	Determination of the vertical pattern of the SIR-B
Bayonet for superfluid helium transfer in space	[AIAA PAPER 88-2471] p 13 A88-35944	antenna p 56 A88-44638
p 22 A88-53220	Aluminum-lithium alloys: Design, development and	Possible variants of microwave-beam structure for
A design methodology for neutral buoyancy simulation	application update; Proceedings of the Symposium, Los	satellite solar power plants p 85 A88-50671
of space operations	Angeles, CA, Mar. 25, 26, 1987 Book	ANTENNAS
(AIAA PAPER 88-4628) p 77 A88-53665	p 67 A88-45201	System architecture of MMIC-based large aperture
Space spider crane	Superplastic forming characteristics and properties of	arrays for space applications p 55 A88-35274
[NASA-CASE-LAR-13411-1-SB] p 7 N88-23828	aluminum-lithium sheet alloys p 67 A88-45205	ANTIOXIDANTS
Turbomachinery in space p 60 N88-24321	ALUMINUM COATINGS	A technique to evaluate coatings for atomic oxygen
Electromagnetic damping and vibration isolation of	Evaluation of chromic acid anodized aluminum foil	resistance p 65 A88-42372 ANTIREFLECTION COATINGS
space structures [AD-A191492] p 51 N88-24665	coated composite tubes for the Space Station truss structure p 65 A88-42412	Atomic-oxygen durability of impact-damaged solar
AEROSPACE SAFETY	AMMONIA	reflectors p 68 A88-54988
Propulsion safety almost equals mission safety	Two-phase ammonia thermal bus performance	APPENDAGES
[AIAA PAPER 88-2881] p 84 A88-44698	[AIAA PAPER 88-2701] p 21 A88-43753	Analytical expressions for vibratory displacements of
EVA space suits - Safety problems	AMPTE (SATELLITES)	deploying appendages
[IAF PAPER 88-515] p 77 A88-55436	Deployable booms and antennas on AMPTE-IRM	[AIAA PAPER 88-4250] p 38 A88-50383
AEROSPACE SCIENCES	p 15 N88-21198	An optimal maneuver control method for the spacecraft
Transitioning from Spacelab to Space Station science	ANALYSIS (MATHEMATICS)	with flexible appendages
[AAS PAPER 86-284] p 3 A88-35131	Analytical models for relative motion under constant	[AIAA PAPER 88-4255] p 38 A88-50386
AEROSPACE SYSTEMS	thrust	Optimal deployment of spacecraft appendages
Aerospace Testing Seminar, 10th, Los Angeles, CA, Mar. 10-12, 1987, Proceedings p 89 A88-33776	[AIAA PAPER 88-4300] p 85 A88-50425	[IAF PAPER 88-307] p 47 A88-55386
10-12, 1987, Proceedings p 89 A88-33776 Aerospace century XXI: Space flight technologies;	Nonlinear analysis and optimal design of dynamic	APPLICATIONS PROGRAMS (COMPUTERS) Dynamics of a flexible orbiting platform with MRMS
Proceedings of the Thirty-third Annual AAS International	mechanical systems for spacecraft application [AD-A190644] p 49 N88-22070	[ISSN-0285-6808] p 51 N88-24673
Conference, Boulder, CO, Oct. 26-29, 1986	ANALYZERS	APPROACH CONTROL
p 90 A88-35093	FLOSIN: A fluid loop analyzer for SINDA	Space vehicle approach velocity judgments under
Scientific and economy-oriented space systems	p 23 N88-22321	simulated visual space conditions p 93 A88-42933
/revised edition/ Book p 93 A88-43247	ANGULAR DISTRIBUTION	APPROXIMATION
Data management for large space systems	Velocity distributions of oxygen atoms incident on	Approximation in discrete-time boundary control of
p 95 A88-45034	spacecraft surfaces p 68 A88-54990	flexible structures p 25 A88-34737
On the danger of redundancies in some aerospace	ANGULAR VELOCITY	L(sub infinity symbol)-approximations of complex
mechanisms p 17 N88-21475 Sensor and actuator selection for large space structure	Improved methods for linearized flexibility models in	functions and robust controllers for large flexible space structures
control	multibody dynamics and control p 43 A88-54423 Automatic feedback control of a rigid body for finite	[PB88-186226] p 52 N88-26390
[AD-A194912] p 53 N88-29842	displacements p 51 N88-24674	ARC DISCHARGES
AEROSPACE TECHNOLOGY TRANSFER	ANNULAR FLOW	Electrostatic charging and arc discharges on satellite
EASCON '87; Proceedings of the Twentieth Annual	A new linearized theory of laminar film condensation	dielectrics simulated by electron beam
Electronics and Aerospace Systems Conference,	of two phase annular flow in a capillary pumped loop	p 57 A88-47970
Washington, DC, Oct. 14-16, 1987 p 88 A88-33426	[AIAA PAPER 88-2637] p 56 A88-43715	ARC JET ENGINES
AEROSPACE VEHICLES	ANODIC COATINGS	Parametric studies of electric propulsion systems for
Dynamics of articulated aerospace structures	Evaluation of chromic acid anodized aluminum foil	orbit transfer vehicles
[AD-A195685] p 53 N88-29794	coated composite tubes for the Space Station truss	[AIAA PAPER 88-2835] p 84 A88-44668
AEROTHERMOELASTICITY	structure p 65 A88-42412	An analysis of orbit maneuvering capabilities using arcjet
A formulation for studying dynamics of interconnected	ANOMALIES	propulsion [AIAA PAPER 88-2832] p 85 A88-48484
bodies with application [AIAA PAPER 88-4303] p 39 A88-50428	A severe spacecraft-charging event on SCATHA in September 1982	Unified study of plasma/surface interactions for space
AIR MASSES	[AD-A193007] p 61 N88-26396	power and propulsion
Effect of air mass on modal tests in large space	ANTENNA ARRAYS	[AD-A195971] p 88 N88-29870
structures p 41 A88-50860	Ku-band (14GHz) fiber optic communication links for	ARCHITECTURE
AIR NAVIGATION	distributed antennas in the Space Station	System architecture of MMIC-based large aperture
AIAA Guidance, Navigation and Control Conference,	p 55 A88-35275	arrays for space applications p 55 A88-35274
Minneapolis, MN, Aug. 15-17, 1988, Technical Papers.	Antennas for diverse requirements p 55 A88-37285	Space station architectural elements and issues
Parts 1 & 2 p 95 A88-50160	Optical technology for spacecraft antennas	definition study
AIRBORNE/SPACEBORNE COMPUTERS Robotic vision/sensing for space applications	p 56 A88-43187	[NASA-CR-3941] p 12 N88-25371 ARCHITECTURE (COMPUTERS)
		Anchi ec i une (cumpu i ensi
n 74 ARR-49649	Fiber based phased array antennas	
p 74 A88-42642	p 57 A88-50306	Telemetry handling on the Space Station data
p 74 A88-42642 AIRCRAFT CONSTRUCTION MATERIALS	p 57 A88-50306 Comparison of fiber optic and space feed for large	Telemetry handling on the Space Station data management system p 54 A88-33629
p 74 A88-42642 AIRCRAFT CONSTRUCTION MATERIALS Manufacturing of damage-resistant composite structures	p 57 A88-50306 Comparison of fiber optic and space feed for large aperture phased array antennas p 57 A88-50308	Telemetry handling on the Space Station data management system p 54 A88-33629 Potential GPS user architecture for the NASA Space
p 74 A88-42642 AIRCRAFT CONSTRUCTION MATERIALS Manufacturing of damage-resistant composite structures for aerospace applications p 65 A88-41885	p 57 A88-50306 Comparison of fiber optic and space feed for large aperture phased array antennas p 57 A88-50308 Focal-plane and aperture-plane heterodyne array	Telemetry handling on the Space Station data management system p 54 A88-33629 Potential GPS user architecture for the NASA Space Station based on Landsat 4/5 experience
p 74 A88-42642 AIRCRAFT CONSTRUCTION MATERIALS Manufacturing of damage-resistant composite structures for aerospace applications p 65 A88-41885 Superplastic forming characteristics and properties of	p 57 A88-50306 Comparison of fiber optic and space feed for large aperture phased array antennas p 57 A88-50308	Telemetry handling on the Space Station data management system p 54 A88-33629 Potential GPS user architecture for the NASA Space
p 74 A88-42642 AIRCRAFT CONSTRUCTION MATERIALS Manufacturing of damage-resistant composite structures for aerospace applications p 65 A88-41885 Superplastic forming characteristics and properties of aluminum-lithium sheet alloys p 67 A88-45205	p 57 A88-50306 Comparison of fiber optic and space feed for large aperture phased array antennas p 57 A88-50308 Focal-plane and aperture-plane heterodyne array receivers for millimeter-wave radioastronomy A comparison p 58 A88-54749 Case study of active array feed compensation with	Telemetry handling on the Space Station data management system p 54 A88-33629 Potential GPS user architecture for the NASA Space Station based on Landsat 4/5 experience p 3 A88-37398
p 74 A88-42642 AIRCRAFT CONSTRUCTION MATERIALS Manufacturing of damage-resistant composite structures for aerospace applications p 65 A88-41885 Superplastic forming characteristics and properties of aluminum-lithium sheet alloys p 67 A88-45205 AIRCRAFT CONTROL	p 57 A88-50306 Comparison of fiber optic and space feed for large aperture phased array antennas p 57 A88-50308 Focal-plane and aperture-plane heterodyne array receivers for millimeter-wave radioastronomy A comparison p 58 A88-54749 Case study of active array feed compensation with sidelobe control for reflector surface distortion	Telemetry handling on the Space Station data management system p 54 A88-33629 Potential GPS user architecture for the NASA Space Station based on Landsat 4/5 experience p 3 A88-37398 Integration of symbolic and algorithmic hardware and
p 74 A88-42642 AIRCRAFT CONSTRUCTION MATERIALS Manufacturing of damage-resistant composite structures for aerospace applications p 65 A88-41885 Superplastic forming characteristics and properties of aluminum-lithium sheet alloys p 67 A88-45205 AIRCRAFT CONTROL Method for the experimental determination of the	p 57 A88-50306 Comparison of fiber optic and space feed for large aperture phased array antennas p 57 A88-50308 Focal-plane and aperture-plane heterodyne array receivers for millimeter-wave radioastronomy A comparison p 58 A88-54749 Case study of active array feed compensation with sidelobe control for reflector surface distortion [NASA-TM-100287] p 60 N88-23073	Telemetry handling on the Space Station data management system p 54 A88-33629 Potential GPS user architecture for the NASA Space Station based on Landsat 4/5 experience p 3 A88-37398 Integration of symbolic and algorithmic hardware and software for the automation of space station subsystems
p 74 A88-42642 AIRCRAFT CONSTRUCTION MATERIALS Manufacturing of damage-resistant composite structures for aerospace applications p 65 A88-41885 Superplastic forming characteristics and properties of aluminum-lithium sheet alloys p 67 A88-45205 AIRCRAFT CONTROL	p 57 A88-50306 Comparison of fiber optic and space feed for large aperture phased array antennas p 57 A88-50308 Focal-plane and aperture-plane heterodyne array receivers for millimeter-wave radioastronomy A comparison p 58 A88-54749 Case study of active array feed compensation with sidelobe control for reflector surface distortion [NASA-TM-100287] p 60 N88-23073 ANTENNA COMPONENTS	Telemetry handling on the Space Station data management system p 54 A88-33629 Potential GPS user architecture for the NASA Space Station based on Landsat 4/5 experience p 3 A88-37398 Integration of symbolic and algorithmic hardware and software for the automation of space station subsystems p 12 N88-24190 ARGES: An expert system for fault diagnosis within space-based ECLS systems p 101 N88-29380
p 74 A88-42642 AIRCRAFT CONSTRUCTION MATERIALS Manufacturing of damage-resistant composite structures for aerospace applications p 65 A88-41885 Superplastic forming characteristics and properties of aluminum-lithium sheet alloys p 67 A88-45205 AIRCRAFT CONTROL Method for the experimental determination of the frequency characteristics of an elastic flight vehicle with	Comparison of fiber optic and space feed for large aperture phased array antennas p 57 A88-50308 Focal-plane and aperture-plane heterodyne array receivers for millimeter-wave radioastronomy - A comparison p 58 A88-54749 Case study of active array feed compensation with sidelobe control for reflector surface distortion [NASA-TM-100287] p 60 N88-23073 ANTENNA COMPONENTS Development of a magnetically suspended,	Telemetry handling on the Space Station data management system p 54 A88-33629 Potential GPS user architecture for the NASA Space Station based on Landsat 4/5 experience p 3 A88-37398 Integration of symbolic and algorithmic hardware and software for the automation of space station subsystems p 12 N88-24190 ARGES: An expert system for fault diagnosis within space-based ECLS systems p 101 N88-29380 Blackboard architectures and their relationship to
p 74 A88-42642 AIRCRAFT CONSTRUCTION MATERIALS Manufacturing of damage-resistant composite structures for aerospace applications p 65 A88-41885 Superplastic forming characteristics and properties of aluminum-lithium sheet alloys p 67 A88-45205 AIRCRAFT CONTROL Method for the experimental determination of the frequency characteristics of an elastic flight vehicle with a digital control system p 34 A88-50095 AIRCRAFT DESIGN Aerodynamic design of a variable-bend vehicle	p 57 A88-50306 Comparison of fiber optic and space feed for large aperture phased array antennas p 57 A88-50308 Focal-plane and aperture-plane heterodyne array receivers for millimeter-wave radioastronomy A comparison p 58 A88-54749 Case study of active array feed compensation with sidelobe control for reflector surface distortion [NASA-TM-100287] p 60 N88-23073 ANTENNA COMPONENTS Development of a magnetically suspended, tetrahedron-shaped antenna pointing system	Telemetry handling on the Space Station data management system p 54 A88-33629 Potential GPS user architecture for the NASA Space Station based on Landsat 4/5 experience p 3 A88-3798 Integration of symbolic and algorithmic hardware and software for the automation of space station subsystems p 12 N88-24190 ARGES: An expert system for fault diagnosis within space-based ECLS systems p 101 N88-29380 Blackboard architectures and their relationship to autonomous space systems p 82 N88-29414
p 74 A88-42642 AIRCRAFT CONSTRUCTION MATERIALS Manufacturing of damage-resistant composite structures for aerospace applications p 65 A88-41885 Superplastic forming characteristics and properties of aluminum-lithium sheet alloys p 67 A88-45205 AIRCRAFT CONTROL Method for the experimental determination of the frequency characteristics of an elastic flight vehicle with a digital control system p 34 A88-50095 AIRCRAFT DESIGN	p 57 A88-50306 Comparison of fiber optic and space feed for large aperture phased array antennas p 57 A88-50308 Focal-plane and aperture-plane heterodyne array receivers for millimeter-wave radioastronomy - A comparison p 58 A88-54749 Case study of active array feed compensation with sidelobe control for reflector surface distortion [NASA-TM-100287] p 60 N88-23073 ANTENNA COMPONENTS Development of a magnetically suspended, tetrahedron-shaped antenna pointing system p 18 N88-21478	Telemetry handling on the Space Station data management system p 54 A88-33629 Potential GPS user architecture for the NASA Space Station based on Landsat 4/5 experience Integration of symbolic and algorithmic hardware and software for the automation of space station subsystems p 12 N88-24190 ARGES: An expert system for fault diagnosis within space-based ECLS systems p 101 N88-29380 Blackboard architectures and their relationship to autonomous space systems p 82 N88-29414 ARTIFICIAL GRAVITY
p 74 A88-42642 AIRCRAFT CONSTRUCTION MATERIALS Manufacturing of damage-resistant composite structures for aerospace applications p 65 A88-41885 Superplastic forming characteristics and properties of aluminum-lithium sheet alloys p 67 A88-45205 AIRCRAFT CONTROL Method for the experimental determination of the frequency characteristics of an elastic flight vehicle with a digital control system p 34 A88-50095 AIRCRAFT DESIGN Aerodynamic design of a variable-bend vehicle [AIAA PAPER 88-4340] p 40 A88-50586 AIRCRAFT STRUCTURES	Comparison of fiber optic and space feed for large aperture phased array antennas p 57 A88-50308 Focal-plane and aperture-plane heterodyne array receivers for millimeter-wave radioastronomy A comparison p 58 A88-54749 Case study of active array feed compensation with sidelobe control for reflector surface distortion [NASA-TM-100287] p 60 N88-23073 ANTENNA COMPONENTS Development of a magnetically suspended, tetrahedron-shaped antenna pointing system p 18 N88-21478 ANTENNA DESIGN	Telemetry handling on the Space Station data management system p 54 A88-33629 Potential GPS user architecture for the NASA Space Station based on Landsat 4/5 experience p 3 A88-37398 Integration of symbolic and algorithmic hardware and software for the automation of space station subsystems p 12 N88-24190 ARGES: An expert system for fault diagnosis within space-based ECLS systems p 101 N88-29380 Blackboard architectures and their relationship to autonomous space systems p 82 N88-29414 ARTIFICIAL GRAVITY Secular effects in the translational-rotational motion of
p 74 A88-42642 AIRCRAFT CONSTRUCTION MATERIALS Manufacturing of damage-resistant composite structures for aerospace applications p 65 A88-41885 Superplastic forming characteristics and properties of aluminum-lithium sheet alloys p 67 A88-45205 AIRCRAFT CONTROL Method for the experimental determination of the frequency characteristics of an elastic flight vehicle with a digital control system p 34 A88-50095 AIRCRAFT DESIGN Aerodynamic design of a variable-bend vehicle [AIAA PAPER 88-4340] p 40 A88-50586 AIRCRAFT STRUCTURES Dynamics of articulated aerospace structures	Comparison of fiber optic and space feed for large aperture phased array antennas p 57 A88-50308 Focal-plane and aperture-plane heterodyne array receivers for millimeter-wave radioastronomy - A comparison p 58 A88-54749 Case study of active array feed compensation with sidelobe control for reflector surface distortion [NASA-TM-100287] p 60 N88-23073 ANTENNA COMPONENTS Development of a magnetically suspended, tetrahedron-shaped antenna pointing system p 18 N88-21478 ANTENNA DESIGN Large space systems requirements, deployable	Telemetry handling on the Space Station data management system p 54 A88-33629 Potential GPS user architecture for the NASA Space Station based on Landsat 4/5 experience p 3 A88-37398 Integration of symbolic and algorithmic hardware and software for the automation of space station subsystems p 12 N88-24190 ARGES: An expert system for fault diagnosis within space-based ECLS systems p 101 N88-29380 Blackboard architectures and their relationship to autonomous space systems p 82 N88-29414 ARTIFICIAL GRAVITY Secular effects in the translational-rotational motion of an orbital station with artificial gravity p 90 A88-36123
p 74 A88-42642 AIRCRAFT CONSTRUCTION MATERIALS Manufacturing of damage-resistant composite structures for aerospace applications p 65 A88-41885 Superplastic forming characteristics and properties of aluminum-lithium sheet alloys p 67 A88-45205 AIRCRAFT CONTROL Method for the experimental determination of the frequency characteristics of an elastic flight vehicle with a digital control system p 34 A88-50095 AIRCRAFT DESIGN Aerodynamic design of a variable-bend vehicle [AIAA PAPER 88-4340] p 40 A88-50586 AIRCRAFT STRUCTURES Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794	Comparison of fiber optic and space feed for large aperture phased array antennas p 57 A88-50308 Focal-plane and aperture-plane heterodyne array receivers for millimeter-wave radioastronomy A comparison p 58 A88-54749 Case study of active array feed compensation with sidelobe control for reflector surface distortion [NASA-TM-100287] p 60 N88-23073 ANTENNA COMPONENTS Development of a magnetically suspended, tetrahedron-shaped antenna pointing system p 18 N88-21478 ANTENNA DESIGN	Telemetry handling on the Space Station data management system p 54 A88-33629 Potential GPS user architecture for the NASA Space Station based on Landsat 4/5 experience p 3 A88-37398 Integration of symbolic and algorithmic hardware and software for the automation of space station subsystems p 12 N88-24190 ARGES: An expert system for fault diagnosis within space-based ECLS systems p 101 N88-29380 Blackboard architectures and their relationship to autonomous space systems p 82 N88-29414 ARTIFICIAL GRAVITY Secular effects in the translational-rotational motion of an orbital station with artificial gravity p 90 A88-36123 A concept for manned variable gravity facilities
AIRCRAFT CONSTRUCTION MATERIALS Manufacturing of damage-resistant composite structures for aerospace applications p 65 A88-41885 Superplastic forming characteristics and properties of aluminum-lithium sheet alloys p 67 A88-45205 AIRCRAFT CONTROL Method for the experimental determination of the frequency characteristics of an elastic flight vehicle with a digital control system p 34 A88-50095 AIRCRAFT DESIGN Aerodynamic design of a variable-bend vehicle [AIAA PAPER 88-4340] p 40 A88-50586 AIRCRAFT STRUCTURES Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ALGORITHMS	p 57 A88-50306 Comparison of fiber optic and space feed for large aperture phased array antennas p 57 A88-50308 Focal-plane and aperture-plane heterodyne array receivers for millimeter-wave radioastronomy - A comparison p 58 A88-54749 Case study of active array feed compensation with sidelobe control for reflector surface distortion [NASA-TM-100287] p 60 N88-23073 ANTENNA COMPONENTS Development of a magnetically suspended, tetrahedron-shaped antenna pointing system p 18 N88-21478 ANTENNA DESIGN Large space systems requirements, deployable concepts, and technology issues	Telemetry handling on the Space Station data management system p 54 A88-33629 Potential GPS user architecture for the NASA Space Station based on Landsat 4/5 experience p 3 A88-37398 Integration of symbolic and algorithmic hardware and software for the automation of space station subsystems p 12 N88-24190 ARGES: An expert system for fault diagnosis within space-based ECLS systems p 101 N88-29380 Blackboard architectures and their relationship to autonomous space systems p 82 N88-29414 ARTIFICIAL GRAVITY Secular effects in the translational-rotational motion of an orbital station with artificial gravity p 90 A88-36123 A concept for manned variable gravity facilities p 9 A88-43969
AIRCRAFT CONSTRUCTION MATERIALS Manufacturing of damage-resistant composite structures for aerospace applications p 65 A88-41885 Superplastic forming characteristics and properties of aluminum-lithium sheet alloys p 67 A88-45205 AIRCRAFT CONTROL Method for the experimental determination of the frequency characteristics of an elastic flight vehicle with a digital control system p 34 A88-50095 AIRCRAFT DESIGN Aerodynamic design of a variable-bend vehicle [AIAA PAPER 88-4340] p 40 A88-50586 AIRCRAFT STRUCTURES Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ALGORITHMS Moving-bank multiple model adaptive estimation applied	Comparison of fiber optic and space feed for large aperture phased array antennas p 57 A88-50308 Focal-plane and aperture-plane heterodyne array receivers for millimeter-wave radioastronomy - A comparison p 58 A88-54749 Case study of active array feed compensation with sidelobe control for reflector surface distortion [NASA-TM-100287] p 60 N88-23073 ANTENNA COMPONENTS Development of a magnetically suspended, tetrahedron-shaped antenna pointing system p 18 N88-21478 ANTENNA DESIGN Large space systems requirements, deployable concepts, and technology issues [AAS PAPER 86-394] p 2 A88-35115 Beyond the diameter-wavelength-ratio of reflector antennas - A film lens antenna p 55 A88-38098	Telemetry handling on the Space Station data management system p 54 A88-33629 Potential GPS user architecture for the NASA Space Station based on Landsat 4/5 experience p 3 A88-37398 Integration of symbolic and algorithmic hardware and software for the automation of space station subsystems p 12 N88-24190 ARGES: An expert system for fault diagnosis within space-based ECLS systems p 101 N88-29380 Blackboard architectures and their relationship to autonomous space systems p 82 N88-29414 ARTIFICIAL GRAVITY Secular effects in the translational-rotational motion of an orbital station with artificial gravity p 90 A88-36123 A concept for manned variable gravity facilities p 9 A88-43969 Some operational aspects of a rotating
AIRCRAFT CONSTRUCTION MATERIALS Manufacturing of damage-resistant composite structures for aerospace applications p 65 A88-41885 Superplastic forming characteristics and properties of aluminum-lithium sheet alloys p 67 A88-45205 AIRCRAFT CONTROL Method for the experimental determination of the frequency characteristics of an elastic flight vehicle with a digital control system p 34 A88-50095 AIRCRAFT DESIGN Aerodynamic design of a variable-bend vehicle [AIAA PAPER 88-4340] p 40 A88-50586 AIRCRAFT STRUCTURES Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ALGORITHMS Moving-bank multiple model adaptive estimation applied to flexible spacestructure control	Comparison of fiber optic and space feed for large aperture phased array antennas p 57 A88-50308 Focal-plane and aperture-plane heterodyne array receivers for millimeter-wave radioastronomy - A comparison p 58 A88-54749 Case study of active array feed compensation with sidelobe control for reflector surface distortion [NASA-TM-100287] p 60 N88-23073 ANTENNA COMPONENTS Development of a magnetically suspended, tetrahedron-shaped antenna pointing system p 18 N88-21478 ANTENNA DESIGN Large space systems requirements, deployable concepts, and technology issues [AAS PAPER 86-394] p 2 A88-35115 Beyond the diameter-wavelength-ratio of reflector antennas - A film lens antenna p 55 A88-38098 Deployable 20/30-GHz multi-beam antenna for future	Telemetry handling on the Space Station data management system p 54 A88-33629 Potential GPS user architecture for the NASA Space Station based on Landsat 4/5 experience p 3 A88-37398 Integration of symbolic and algorithmic hardware and software for the automation of space station subsystems p 12 N88-24190 ARGES: An expert system for fault diagnosis within space-based ECLS systems p 101 N88-29380 Blackboard architectures and their relationship to autonomous space systems p 82 N88-29414 ARTIFICIAL GRAVITY Secular effects in the translational-rotational motion of an orbital station with artificial gravity p 90 A88-36123 A concept for manned variable gravity facilities p 9 A88-43969 Some operational aspects of a rotating advanced-technology space station for the year 2025
AIRCRAFT CONSTRUCTION MATERIALS Manufacturing of damage-resistant composite structures for aerospace applications p 65 A88-41885 Superplastic forming characteristics and properties of aluminum-lithium sheet alloys p 67 A88-45205 AIRCRAFT CONTROL Method for the experimental determination of the frequency characteristics of an elastic flight vehicle with a digital control system p 34 A88-50095 AIRCRAFT DESIGN Aerodynamic design of a variable-bend vehicle [AIAA PAPER 88-4340] p 40 A88-50586 AIRCRAFT STRUCTURES Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ALGORITHMS Moving-bank multiple model adaptive estimation applied to flexible spacestructure control [AD-A190761] p 49 N88-22071	Comparison of fiber optic and space feed for large aperture phased array antennas p 57 A88-50308 Focal-plane and aperture-plane heterodyne array receivers for millimeter-wave radioastronomy - A comparison p 58 A88-54749 Case study of active array feed compensation with sidelobe control for reflector surface distortion [NASA-TM-100287] p 60 N88-23073 ANTENNA COMPONENTS Development of a magnetically suspended, tetrahedron-shaped antenna pointing system p 18 N88-21478 ANTENNA DESIGN Large space systems requirements, deployable concepts, and technology issues [AAS PAPER 86-394] p 2 A88-35115 Beyond the diameter-wavelength-ratio of reflector antennas - A film lens antenna p 55 A88-38098 Deployable 20/30-GHz multi-beam antenna for future communications satellites p 56 A88-39423	Telemetry handling on the Space Station data management system p 54 A88-33629 Potential GPS user architecture for the NASA Space Station based on Landsat 4/5 experience p 3 A86-37398 Integration of symbolic and algorithmic hardware and software for the automation of space station subsystems p 12 N88-24190 ARGES: An expert system for fault diagnosis within space-based ECLS systems p 101 N88-29380 Blackboard architectures and their relationship to autonomous space systems p 82 N88-29414 ARTIFICIAL GRAVITY Secular effects in the translational-rotational motion of an orbital station with artificial gravity p 90 A88-36123 A concept for manned variable gravity facilities p 9 A88-43969 Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617]
AIRCRAFT CONSTRUCTION MATERIALS Manufacturing of damage-resistant composite structures for aerospace applications Superplastic forming characteristics and properties of aluminum-lithium sheet alloys AIRCRAFT CONTROL Method for the experimental determination of the frequency characteristics of an elastic flight vehicle with a digital control system Aerodynamic design of a variable-bend vehicle [AIAA PAPER 88-4340] AIRCRAFT STRUCTURES Dynamics of articulated aerospace structures [AD-A195685] ALGORITHMS Moving-bank multiple model adaptive estimation applied to flexible spacestructure control [AD-A190761] [AD-A190761] [AD-A190761] [AD M88-22071 The multi-disciplinary design study: A life cycle cost	Comparison of fiber optic and space feed for large aperture phased array antennas p 57 A88-50308 Focal-plane and aperture-plane heterodyne array receivers for millimeter-wave radioastronomy - A comparison p 58 A88-54749 Case study of active array feed compensation with sidelobe control for reflector surface distortion [NASA-TM-100287] p 60 N88-23073 ANTENNA COMPONENTS Development of a magnetically suspended, tetrahedron-shaped antenna pointing system p 18 N88-21478 ANTENNA DESIGN Large space systems requirements, deployable concepts, and technology issues [AAS PAPER 86-394] p 2 A88-35115 Beyond the diameter-wavelength-ratio of reflector antennas - A film lens antenna p 55 A88-38098 Deployable 20/30-GHz multi-beam antenna for future communications satellites p 56 A88-39423 Interactive Radar Environment Simulation Model	Telemetry handling on the Space Station data management system p 54 A88-33629 Potential GPS user architecture for the NASA Space Station based on Landsat 4/5 experience p 3 A88-37398 Integration of symbolic and algorithmic hardware and software for the automation of space station subsystems p 12 N88-24190 ARGES: An expert system for fault diagnosis within space-based ECLS systems p 101 N88-29380 Blackboard architectures and their relationship to autonomous space systems p 82 N88-29414 ARTIFICIAL GRAVITY Secular effects in the translational-rotational motion of an orbital station with artificial gravity p 90 A88-36123 A concept for manned variable gravity facilities p 9 A88-43969 Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 ARTIFICIAL INTELLIGENCE
AIRCRAFT CONSTRUCTION MATERIALS Manufacturing of damage-resistant composite structures for aerospace applications p 65 A88-41885 Superplastic forming characteristics and properties of aluminum-lithium sheet alloys p 67 A88-45205 AIRCRAFT CONTROL Method for the experimental determination of the frequency characteristics of an elastic flight vehicle with a digital control system p 34 A88-50095 AIRCRAFT DESIGN Aerodynamic design of a variable-bend vehicle [AIAA PAPER 88-4340] p 40 A88-50586 AIRCRAFT STRUCTURES Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ALGORITHMS Moving-bank multiple model adaptive estimation applied to flexible spacestructure control [AD-A190761] p 49 N88-22071 The multi-disciplinary design study: A life cycle cost algorithm	Comparison of fiber optic and space feed for large aperture phased array antennas p 57 A88-50308 Focal-plane and aperture-plane heterodyne array receivers for millimeter-wave radioastronomy - A comparison p 58 A88-54749 Case study of active array feed compensation with sidelobe control for reflector surface distortion [NASA-TM-100287] p 60 N88-23073 ANTENNA COMPONENTS Development of a magnetically suspended, tetrahedron-shaped antenna pointing system p 18 N88-21478 ANTENNA DESIGN Large space systems requirements, deployable concepts, and technology issues [AAS PAPER 86-394] p 2 A88-35115 Beyond the diameter-wavelength-ratio of reflector antennas - A film lens antenna p 55 A88-38098 Deployable 20/30-GHz multi-beam antenna for future communications satellites p 56 A88-39423 Interactive Radar Environment Simulation Model (IRESM) p 10 A88-46968	Telemetry handling on the Space Station data management system p 54 A88-33629 Potential GPS user architecture for the NASA Space Station based on Landsat 4/5 experience p 3 A88-37398 Integration of symbolic and algorithmic hardware and software for the automation of space station subsystems p 12 N88-24190 ARGES: An expert system for fault diagnosis within space-based ECLS systems p 101 N88-29380 Blackboard architectures and their relationship to autonomous space systems p 82 N88-29414 ARTIFICIAL GRAVITY Secular effects in the translational-rotational motion of an orbital station with artificial gravity p 90 A88-36123 A concept for manned variable gravity facilities p 9 A88-3969 Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 ARTIFICIAL INTELLIGENCE Automating satellite control and telemetry networks
AIRCRAFT CONSTRUCTION MATERIALS Manufacturing of damage-resistant composite structures for aerospace applications p 65 A88-41885 Superplastic forming characteristics and properties of aluminum-lithium sheet alloys p 67 A88-45205 AIRCRAFT CONTROL Method for the experimental determination of the frequency characteristics of an elastic flight vehicle with a digital control system p 34 A88-50095 AIRCRAFT DESIGN Aerodynamic design of a variable-bend vehicle [AIAA PAPER 88-4340] p 40 A88-50586 AIRCRAFT STRUCTURES Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ALGORITHMS Moving-bank multiple model adaptive estimation applied to flexible spacestructure control [AD-A190761] p 49 N88-22071 The multi-disciplinary design study: A life cycle cost algorithm [NASA-CR-4156] p 11 N88-24172	Comparison of fiber optic and space feed for large aperture phased array antennas p 57 A88-50308 Focal-plane and aperture-plane heterodyne array receivers for millimeter-wave radioastronomy - A comparison p 58 A88-54749 Case study of active array feed compensation with sidelobe control for reflector surface distortion [NASA-TM-100287] p 60 N88-23073 ANTENNA COMPONENTS Development of a magnetically suspended, tetrahedron-shaped antenna pointing system p 18 N88-21478 ANTENNA DESIGN Large space systems requirements, deployable concepts, and technology issues [AAS PAPER 86-394] p 2 A88-35115 Beyond the diameter-wavelength-ratio of reflector antennas - A film lens antenna p 55 A88-38098 Deployable 20/30-GHz multi-beam antenna for future communications satellites p 56 A88-39423 Interactive Radar Environment Simulation Model (IRESM) p 10 A88-46968 Design of an on-board antenna pointring control system	Telemetry handling on the Space Station data management system p 54 A88-33629 Potential GPS user architecture for the NASA Space Station based on Landsat 4/5 experience p 3 A88-37398 Integration of symbolic and algorithmic hardware and software for the automation of space station subsystems p 12 N88-24190 ARGES: An expert system for fault diagnosis within space-based ECLS systems p 101 N88-29380 Blackboard architectures and their relationship to autonomous space systems p 82 N88-29414 ARTIFICIAL GRAVITY Secular effects in the translational-rotational motion of an orbital station with artificial gravity p 90 A88-36123 A concept for manned variable gravity facilities p 9 A88-43969 Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 ARTIFICIAL INTELLIGENCE Automating satellite control and telemetry networks p 54 A88-33673
AIRCRAFT CONSTRUCTION MATERIALS Manufacturing of damage-resistant composite structures for aerospace applications p 65 A88-41885 Superplastic forming characteristics and properties of aluminum-lithium sheet alloys p 67 A88-45205 AIRCRAFT CONTROL Method for the experimental determination of the frequency characteristics of an elastic flight vehicle with a digital control system p 34 A88-50095 AIRCRAFT DESIGN Aerodynamic design of a variable-bend vehicle [AIAA PAPER 88-4340] p 40 A88-50586 AIRCRAFT STRUCTURES Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ALGORITHMS Moving-bank multiple model adaptive estimation applied to flexible spacestructure control [AD-A190761] p 49 N88-22071 The multi-disciplinary design study: A life cycle cost algorithm	Comparison of fiber optic and space feed for large aperture phased array antennas p 57 A88-50308 Focal-plane and aperture-plane heterodyne array receivers for millimeter-wave radioastronomy - A comparison p 58 A88-54749 Case study of active array feed compensation with sidelobe control for reflector surface distortion [NASA-TM-100287] p 60 N88-23073 ANTENNA COMPONENTS Development of a magnetically suspended, tetrahedron-shaped antenna pointing system p 18 N88-21478 ANTENNA DESIGN Large space systems requirements, deployable concepts, and technology issues [AAS PAPER 86-394] p 2 A88-35115 Beyond the diameter-wavelength-ratio of reflector antennas - A film lens antenna p 55 A88-38098 Deployable 20/30-GHz multi-beam antenna for future communications satellites p 56 A88-39423 Interactive Radar Environment Simulation Model (IRESM) p 10 A88-46968	Telemetry handling on the Space Station data management system p 54 A88-33629 Potential GPS user architecture for the NASA Space Station based on Landsat 4/5 experience p 3 A88-37398 Integration of symbolic and algorithmic hardware and software for the automation of space station subsystems p 12 N88-24190 ARGES: An expert system for fault diagnosis within space-based ECLS systems p 101 N88-29380 Blackboard architectures and their relationship to autonomous space systems p 82 N88-29414 ARTIFICIAL GRAVITY Secular effects in the translational-rotational motion of an orbital station with artificial gravity p 90 A88-36123 A concept for manned variable gravity facilities p 9 A88-3969 Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 ARTIFICIAL INTELLIGENCE Automating satellite control and telemetry networks

Space Congress, 25th, Cocoa Beach, FL, Apr. 26-29,	An investigation of conformable antennas for the	Blackboard architectures and their relationship to
1988, Proceedings p 96 A88-52317 Ground based operations support by Artificial	astronaut backpack communication system [NASA-CR-182908] p 99 N88-23929	autonomous space systems p 82 N88-29414
Intelligence p 58 A88-52339	Bi-stem gripping apparatus	D
MTK: An AI tool for model-based reasoning	[NASA-CASE-MFS-28185-1] p 18 N88-23979 Human performance issues arising from manned space	В
p 12 N88-24189	station missions	BALLISTICS
Block Oriented Simulation System (BOSS) [NASA-CR-182947] p 100 N88-27760	[NASA-CR-3942] p 100 N88-25156	Ballistic design of space systems Russian book
Intelligent resource management for local area	ASTRONOMICAL OBSERVATORIES Structural innovations in the Columbus Project. As 11.3	p 9 A88-44898
networks: Approach and evolution p 81 N88-29385	Structural innovations in the Columbus Project - An 11.3 meter optical telescope p 89 A88-34491	BARIUM ION CLOUDS Deployable booms and antennas on AMPTE-IRM
Reasoning about fault diagnosis for the space station	Astrophysics space observatories - The next 25 years	p 15 N88-21198
common module thermal control system p 23 N88-29395	p 1 A88-34537	BASINS (CONTAINERS)
Intelligent interface design and evaluation	Spacecraft technology requirements for future NASA missions	Marintek's ocean basin, a training facility for
p 81 N88-29405	[AIAA PAPER 88-3487] p 4 A88-43299	extravehicular activity? p 79 N88-26041 BAYS (STRUCTURAL UNITS)
The 1988 Goddard Conference on Space Applications of Artificial Intelligence	LDR structural experiment definition [NASA-TM-100618] p 7 N88-23826	Moving-bank multiple model adaptive estimation applied
[NASA-CP-3009] p 102 N88-30330	ASTRONOMICAL SATELLITES	to flexible spacestructure control
A shared-world conceptual model for integrating space	Far infrared spectroscopy telescope (FIRST) inflatable	[AD-A190761] p 49 N88-22071
station life sciences telescience operations	thermal shield, phase 1 SR/FIS/108(87)CZ p 24 N88-30552	BEAM CURRENTS Electron beam experiments at high altitudes
p 102 N88-30333 Parallel and distributed computation for fault-tolerant	ATMOSPHERIC EFFECTS	p 56 A88-46799
object recognition p 13 N88-30350	Tethered subsatellite swinging from atmospheric	BEAM INJECTION
ARTIFICIAL SATELLITES	gradients p 46 A88-55067 ATOMIC BEAMS	Results from a tethered rocket experiment (Charge-2) p 57 A88-46804
Utilization of strapdown inertial and non-inertial sensors in determination of satellite attitude by Kalman filters	Laboratory experiments of relevance to the space station	BEAMS (SUPPORTS)
[INPE-4313-TDL/280] p 48 N88-20349	environment p 71 N88-25402	A continuum model for the nonlinear analysis of
ASSEMBLING	ATTENUATION Projective controls for disturbance attenuation in LSS	beam-like lattice structures p 13 A88-41038
The space station assembly phase: Flight telerobotic servicer feasibility. Volume 2: Methodology and case	systems p 43 A88-54410	Dynamic analysis of finitely stretched and rotated three-dimensional space-curved beams
study	ATTITUDE (INCLINATION)	p 22 A88-49658
[NASA-CR-182690] p 77 N88-20352	Rapid slewing of the orbiting Spacecraft Control Laboratory Experiment (SCOLE) using LQR techniques	Dynamics and control of experimental tendon control
ASTEROIDS Decision time on orbital debris p 66 A88-43516	[IAF PAPER 88-320] p 47 A88-55393	system for flexible space structure [AIAA PAPER 88-4154] p 36 A88-50248
ASTRODYNAMICS	ATTITUDE CONTROL	Analytical expressions for vibratory displacements of
30 years of progress in space; Proceedings of the	An optimal maneuver control method for the spacecraft	deploying appendages
Thirty-eighth International Astronautical Congress, Brighton, England, Oct. 10-17, 1987 p 91 A88-38304	with flexible appendages [AIAA PAPER 88-4255] p 38 A88-50386	[AIAA PAPER 88-4250] p 38 A88-50383
Dynamics and control of large space platforms and small	Utilization of strapdown inertial and non-inertial sensors	Optimal deployment of spacecraft appendages [IAF PAPER 88-307] p 47 A88-55386
experimental payloads p 30 A88-42582	in determination of satellite attitude by Kalman filters	The X-beam as a deployable boom for the space
Ballistic design of space systems Russian book p 9 A88-44898	[INPE-4313-TDL/280] p 48 N88-20349 A feedback double path compensating control structure	station p 17 N88-21473
Singular perturbation analysis of the atmospheric orbital	for the attitude control of a flexible spacecraft	Motion synchronization of a mechanism to deploy and
plane change problem p 31 A88-45712	[INPE-4464-PRE/1239] p 48 N88-21240	restow a truss beam p 77 N88-21474
Astrodynamics problems of the Space Station p 33 A88-47907	Spacecraft applications of advanced global positioning system technology	Bi-stem gripping apparatus [NASA-CASE-MFS-28185-1] p 18 N88-23979
AIAA/AAS Astrodynamics Conference, Minneapolis,	(NASA-CR-172055) p 8 N88-27180	Space station architectural elements model study
MN, Aug. 15-17, 1988, Technical Papers	Robust design of distributed controllers for large flexible	[NASA-CR-4027] p 100 N88-24632
p 95 A88-50352 An alternate transition from the Lagrangian of a satellite	space structures [NASA-CR-183202] p 54 N88-30134	Estimation and control of distributed models for certain elastic systems arising in large space structures
to equations of motion	AUTOMATA THEORY	[AD-A192120] p 51 N88-24666
[AIAA PAPER 88-4221] p 37 A88-50362	Robot path planning in space p 74 A88-42328	Mobile remote manipulator system for a tetrahedral
Analytical expressions for vibratory displacements of deploying appendages	AUTOMATIC CONTROL Automating satellite control and telemetry networks	truss [NASA-CASE-MSC-20985-1] p 80 N88-26398
[AIAA PAPER 88-4250] p 38 A88-50383	p 54 A88-33673	[NASA-CASE-MSC-20985-1] p 80 N88-26398 BEARINGS
A pole placement technique for vibration suppression	Two non-linear control approaches for retrieval of a	The 22nd Aerospace Mechanisms Symposium
of flexible structures [AIAA PAPER 88-4254] p 38 A88-50385	thrusting tethered sub-satellite (AIAA PAPER 88-4171) p 37 A88-50262	[NASA-CP-2506] p 98 N88-21468 BIBLIOGRAPHIES
[AIAA PAPER 88-4254] p 38 A88-50385 A formulation for studying dynamics of interconnected	Knowledge based system verification and validation as	Technology for large space systems: A bibliography with
bodies with application	related to automation of Space Station subsystems -	indexes (supplement 18)
[AIAA PAPER 88-4303] p 39 A88-50428 A dynamical study of the proposed Space Station type	Rationale for a knowledge based system lifecycle p 42 A88-52238	[NASA-SP-7046(18)] p 100 N88-27214 BIOENGINEERING
configuration	Technology forecast and applications for autonomous,	Advanced topics in manufacturing technology: Product
[AIAA PAPER 88-4304] p 39 A88-50429	intelligent systems for space station, shuttle, and interplanetary missions	design, bioengineering; Proceedings of the Symposium,
Dynamics analysis of a system of hinge-connected flexible bodies p 42 A88-52639	[IAF PAPER 88-025] p 6 A88-55322	ASME Winter Annual Meeting, Boston, MA, Dec. 13-18, 1987 p 94 A88-44001
ASTROMETRY	Integration of symbolic and algorithmic hardware and	BIOTECHNOLOGY
Performance considerations for the astrometric	software for the automation of space station subsystems	Space manufacturing 6 - Nonterrestrial resources,
Telescope Facility on the Phase I Space Station p 92 A88-42539	p 12 N88-24190 Connecting remote systems for demonstration of	biosciences, and space engineering; Proceedings of the Eighth Princeton/AIAA/SSI Conference, Princeton, NJ,
ASTRONAUT MANEUVERING EQUIPMENT	automation technologies p 78 N88-24191	May 6-9, 1987 p 94 A88-43951
Personnel occupied woven envelope robot	Space station as a vital focus for advancing the	BODY KINEMATICS
p 81 N88-29408 ASTRONAUT PERFORMANCE	technologies of automation and robotics [IAF-86-62] p 80 N88-29352	The kinetics and workspace of a robot mounted on a satellite that is free to rotate and translate
Simulation - Antidote to risk p 9 A88-40524	Machine vision for real time orbital operations	[AIAA PAPER 88-4097] p 75 A88-50202
NASA-Ames workload research program	p 80 N88-29367	Numerical solution of multibody systems in space
p 99 N88-24151 ASTRONAUT TRAINING	A plan for time-phased incorporation of automation and robotics on the US space station p 80 N88-29377	applications p 48 N88-21200 BOLTED JOINTS
Marintek's ocean basin, a training facility for	Utilization of artificial intelligence techniques for the	Clevis joint for deployable space structures
extravehicular activity? p 79 N88-26041	Space Station power system p 62 N88-29412	[NASA-CASE-LAR-13898-1] p 19 N88-30130
ASTRONAUTICS Visions of tomorrow: A focus on national space	AUTOMATIC FLIGHT CONTROL Method for the experimental determination of the	BOOMS (EQUIPMENT)
transportation issues; Proceedings of the Twenty-fifth	frequency characteristics of an elastic flight vehicle with	Some highlights on ROSAT mechanisms p 14 N88-21195
Goddard Memorial Symposium, Greenbelt, MD, Mar.	a digital control system p 34 A88-50095	The CTM program of masts and the CTM engineering
18-20, 1987 p 92 A88-41276	AUTOMATIC TEST EQUIPMENT COSM: A Space Station EVAS test challenge	model spacecraft mechanism p 15 N88-21196
Activities report of the Department of Aerospace Engineering	CheckOut, Servicing, and Maintenance for ExtraVehicular	Deployable/retrievable boom: One application to tethered satellite p 15 N88-21197
[ETN-88-91607] p 102 N88-30582	Activity System p 3 A88-36556	Deployable booms and antennas on AMPTE-IRM
ASTRONAUTS	AUTONOMY Study of standard generic approach for spacecraft (S/C)	p 15 N88-21198
Incorporation of privacy elements in space station design	Study of standard generic approach for spacecraft (S/C) autonomy and automation (phase 3). Book B: Autonomy	The EURECA antenna deployment and retraction mechanisms p 16 N88-21225
[NASA-CR-182748] p 98 N88-21242	concept application example	BOUNDARY VALUE PROBLEMS
Design, development and evaluation of Stanford/Ames	[ESA-CR(P)-2555-VOL-2] p 53 N88-28956	Theory of filtering and control with application to control
EVA prehensors [NASA-CR-182688] p 78 N88-22540	Expert systems for MSFC power systems p 61 N88-29375	of large space structures [AD-A195500] p 54 N88-29851
[147.57.57. (02.000) P 10 1400-22040	p 01 1100-23373	p 34 (100-2985)

BRACKETS	CERAMIC MATRIX COMPOSITES	Studies on rocket exhaust plumes and impingement
Locking hinge {NASA-CASE-MSC-21056-1} p 18 N88-23827	Research in ceramics at the U.S. Naval Research Lab p 68 A88-49996	effects related to the Columbus Space Station program: Executive summary
BRAYTON CYCLE	Very high temperature materials for mechanical	[DFVLR-IB-222-88-A-12] p 88 N88-29862
Advanced space power systems	application	COMBUSTION PRODUCTS
[SAWE PAPER 1762] p 58 A88-53779	[SNIAS-881-430-106] p 72 N88-28978	Open-cycle chemical power and thermal management
BREADBOARD MODELS Design of a linear actuator and breadboard test result	CERAMICS	system with combustion product-free effluent
far IR telescope p 16 N88-21217	Fabric space radiators	[AIAA PAPER 88-2625] p 83 A88-43710 COMMAND AND CONTROL
Docking/berthing subsystem: Design and breadboard	[DE88-005569] p 17 N88-21237 CHAINS	Definition of common support equipment and space
test p 17 N88-21233	Analysis of a closed-kinematic chain robot manipulator	station interface requirements for IOC model technology
BRIGHTNESS	[NASA-CR-183031] p 79 N88-25206	experiments
Space station contamination study: Assessment of contaminant spectral brightness p 70 N88-25395	CHARGED PARTICLES	[NASA-TM-100656] p 8 N88-29856
BUBBLES	Spacecraft surface coating heat generation by charged	COMMERCIAL SPACECRAFT Space for rent? p 5 A88-51133
Space-based system disturbances caused by on-board	particulate of the natural space environment	COMMUNICATION NETWORKS
fluid motion during system maneuvers	[ASME PAPER 87-WA/HT-13] p 58 A88-51341	Telemetry handling on the Space Station data
[AIAA PAPER 88-3633] p 33 A88-48957	CHECKOUT COSM: A Space Station EVAS test challenge	management system p 54 A88-33629
_	CheckOut, Servicing, and Maintenance for ExtraVehicular	A technique for the measurement of environmental
C	Activity System p 3 A88-36556	levels of microwave radiation around satellite earth stations p.56 A88-38115
	CHEMICAL PROPULSION	stations p 56 A88-38115 Connecting remote systems for demonstration of
CABLES (ROPES)	Open-cycle chemical power and thermal management	automation technologies p 78 N88-24191
Transfer matrix analysis of cable-stiffened hoop platforms p 46 A88-54989	system with combustion product-free effluent	COMMUNICATION SATELLITES
CALIBRATING	[AIAA PAPER 88-2625] p 83 A88-43710	Ka, C, S frequency bands, multi-beam deployable
Adaptive control of large space structures - Uncertainty	Advanced propulsion for the Mars Rover Sample Return Mission	antenna system for large-capacity communication satellite p 54 A88-33448
estimation and robust control calibration	[AIAA PAPER 88-2900] p 84 A88-46489	satellite p 54 A88-33448 National Space Engineering Symposium, 3rd, Canberra,
p 32 A88-46412	Comparison of a direct thrust nuclear engine, nuclear	Australia, June 30-July 2, 1987, Preprints of Papers
CALORIMETERS	electric engine and a chemical engine for future space	p 90 A88-37239
Calorimetric measurements of thermal control surfaces at geosynchronous orbit p 19 A88-41414	missions p 87 N88-24379	Design of an on-board antenna pointing control system
CANADIAN SPACE PROGRAM	CHEMICAL REACTIONS	for communication satellites
System and concept design of the SSRMS latching end	Surface interactions relevant to space station	(AIAA PAPER 88-4306) p 39 A88-50431
effector Space Station p 15 N88-21204	contamination problems p 71 N88-25401 CHEMILUMINESCENCE	Multimission communication satellites [IAF PAPER 88-426] p 6 A88-55417
CANTILEVER BEAMS	Production of ground state atomic oxygen in a multifactor	Qualification testing of the EUROSTAR Solar Array Drive
The identification of a distributed parameter model for	stress environment for reaction testing of materials in	Mechanism (SADM) p 17 N88-21229
a flexible structure p 31 A88-46041 Active control experiment using proof mass actuators	orbiting space vehicles p 56 A88-42585	Simulations of the electrostatic charging of ESA
[AIAA PAPER 88-4307] p 40 A88-50432	CIRCULAR ORBITS	communications satellites
Beam modifications of structural systems utilizing the	Optimal rendezvous in a gravitational field with limited	[ESA-STM-239] p 61 N88-24670
receptance approach with static flexibility	observations p 90 A88-36144 Tethered subsatellite swinging from atmospheric	Large antenna experiments aboard the space shuttle: Application of nonuniform sampling techniques
p 14 A88-50891	gradients p 46 A88-55067	p 61 N88-25745
Development of a control oriented model of a	CLOSED CYCLES	Technologies for antenna shape and vibration control
cantilevered beam with end-mass for large space structures p 44 A88-54533	Analysis of a closed-kinematic chain robot manipulator	p 52 N88-25748
Low authority control of a composite cantilever beam	[NASA-CR-183031] p 79 N88-25206	COMPARISON
in two dimensions p 45 A88-54630	COATINGS Design and demonstration of a system for the deposition	Comparison of a direct thrust nuclear engine, nuclear electric engine and a chemical engine for future space
Effect of natural damping on the dynamics and control	of atomic-oxygen durable coatings for reflective solar	missions p 87 N88-24379
of a class of optimally designed structures	dynamic power system concentrators	COMPENSATION
[IAF PAPER 88-288] p 47 A88-55375	[NASA-CR-4158] p 71 N88-25474	Case study of active array feed compensation with
CAPACITORS The application of high temperature superconductors	COAXIAL CABLES	sidelobe control for reflector surface distortion
to space electrical power distribution components	Power transmission studies for tethered SP-100	[NASA-TM-100287] p 60 N88-23073 COMPONENT RELIABILITY
[NASA-TM-100901] p 60 N88-22939	[NASA-TM-100864] p 59 N88-21251 COGNITION	Mechanical and electrical characteristics of tin whiskers
CAPILLARY FLOW	Spatial cognition p 100 N88-24152	with special reference to spacecraft systems
A new linearized theory of laminar film condensation	COLLISION AVOIDANCE	p 67 A88-46192
of two phase annular flow in a capillary pumped loop [AIAA PAPER 88-2637] p 56 A88-43715	Decision time on orbital debris p 66 A88-43516	Power components for the space station 20-kHz power
CARBON FIBER REINFORCED PLASTICS	Predicting debris p 66 A88-43517	distribution system
Design, fabrication, and testing of rolled carbon/epoxy	Orbital navigation, docking and obstacle avoidance as a form of three dimensional model-based image	[NASA-TM-100866] p 59 N88-21374 On the danger of redundancies in some aerospace
struts for Space Station application p 62 A88-33018	understanding p 50 N88-24194	mechanisms p 17 N88-21475
Space radiation effects on poly(aryl-ether-ketone) thin	COLLOCATION	COMPOSITE MATERIALS
films and composites p 65 A88-41547	Modeling of non-collocated structural control systems	Measurements of thermal conductivity and thermal
Graphite thermoplastic composites for spacecraft	[AIAA PAPER 88-4060] p 35 A88-50170	contact resistance in composite materials for space
applications p 65 A88-42419	COLUMBUS SPACE STATION	applications p 64 A88-36982
CARBON FIBERS Prospects of intercalated graphite fibre use for electrical	Columbus III; Proceedings of the Third Symposium, Capri, Italy, June 30-July 2, 1987 p 89 A88-34551	Advanced composites III: Expanding the technology; Proceedings of the Third Annual Conference, Detroit, MI,
power transmission in solar power satellites	Columbus utilization studies - Attached payloads	Sept. 15-17, 1987 p 92 A88-41882
p 64 A88-40568	p 1 A88-34563	Manufacturing of damage-resistant composite structures
CARBON-CARBON COMPOSITES	The Columbus resource module for the European	for aerospace applications p 65 A88-41885
Very high temperature materials for mechanical	man-tended free flyer	Laboratory feasibility study of a composite embedded
application	[AAS PAPER 86-465] p 2 A88-35056	fiber optic sensor for measurement of structural
[SNIAS-881-430-106] p 72 N88-28978	Real-time systems for space applications p 91 A88-39424	vibrations [AD-A194270] p 71 N88-28754
CARET WINGS	Automation and robotics for experiment operations in	COMPOSITE STRUCTURES
Heavy lift horizontal take-off and landing vehicles p 84 A88-43863	an Enhanced Man Tended Free Flyer (EMTFF)	Advanced composites for Magellan spacecraft
·	p 76 A88-52326	[AIAA PAPER 88-3031] p 68 A88-53126
CARRIER LIFETIME Temperature characteristics of silicon space solar cells	Modelling of the microgravity environment of the Man	Low authority control of a composite cantilever beam
and underlying parameters p 63 A88-34418	Tended Free Flyer (MTFF) p 96 A88-52335	in two dimensions p 45 A88-54630
CENTAUR LAUNCH VEHICLE	A resupply scenario for the Columbus Mantended Freeflyer (MTFF) p 5 A88-52337	A fracture control plan for composite spacecraft structures
Centaur operations at the space station: Cost and	Demonstration mission on Columbus for technology	[IAF PAPER 88-282] p 68 A88-55374
transportation analysis	developments	Thermally stable deployable structure
[NASA-CR-182128] p 101 N88-29835	[IAF PAPER 88-002] p 6 A88-55314	p 17 N88-21472
CENTER OF MASS	The Manned Space Laboratories Control Center (MSCC)	A nonlinear computation for composite structures
Secular effects in the translational-rotational motion of	at DFVLR - Oberpfaffenhofen, Germany	[ONERA-RT-15/3542-RY-062-R] p 69 N88-23265
an orbital station with artificial gravity p 90 A88-36123 Determination of the motion of the Salyut 6 and 7 orbital	[IAF PAPER 88-087] p 6 A88-55337	COMPUTATIONAL FLUID DYNAMICS
stations with respect to the mass center in the slow spin	Columbus Pressurized Modules - A versatile user-friendly space laboratory system	Applicability of the flow-net program to solution of Space Station fluid dynamics problems p 20 A88-2832
mode on the basis of measurement data	[IAF PAPER 88-097] p 6 A88-55340	COMPUTATIONAL GRIDS p 20 A88-42832
p 31 A88-45467	Feasibility demonstration of a sensor for high-quality	Experimental study of transient waves in a plane grid
CERAMIC COATINGS	two-phase flow Space Station	structure p 28 A88-38390
High temperature coatings; Proceedings of the	[NLR-TR-87009-U] p 59 N88-20569	COMPUTER AIDED DESIGN

[NLR-TR-87009-U] p 59 N88-20569 System and concept design of the SSRMS latching end effector --- Space Station p 15 N88-21204

Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312

p 62 A88-34312

High temperature coatings; Proceedings of the Symposium, Orlando, FL, Oct. 7-9, 1986
p 88 A88-24817

Computer applications in spacecraft design and	SIMSAT: Simulation package for flexible systems.	Space manufacturing 6 -
operation p 89 A88-34465	Beams in space	biosciences, and space engi-
An integrated computer aided engineering system for	[TW-278] p 48 N88-20348	Eighth Princeton/AIAA/SSI
Space Station design p 8 A88-34469	Moving-bank multiple model adaptive estimation applied	May 6-9, 1987
Structural innovations in the Columbus Project - An 11.3	to flexible spacestructure control	Advanced topics in manufa
meter optical telescope p 89 A88-34491	[AD-A190761] p 49 N88-22071	design, bioengineering; Proc
Conceptual design for active structural control of a large	Simulations of the electrostatic charging of ESA	ASME Winter Annual Meetin
optical system p 25 A88-34500	communications satellites	1987
An experimental test-bed for validation of control	[ESA-STM-239] p 61 N88-24670	Aluminum-lithium alloys: (
methodologies in large space optical structures	Adaptive residual mode filter control of distributed	application update; Proceedi
p 25 A88-34502	parameter systems for large space structure applications	Angeles, CA, Mar. 25, 26, 19
Sensitivity analysis of a deployable three longeron truss	p 52 N88-26143	
beam designed for minimum member loads during	Block Oriented Simulation System (BOSS)	Active experiments; Procee
deployment	[NASA-CR-182947] p 100 N88-27760	Twenty-sixth COSPAR Plenar
[AIAA PAPER 88-2436] p 13 A88-38689	OMV docking simulator p 101 N88-29379	June 30-July 11, 1986
Modelling of the microgravity environment of the Man	The use of computer graphic simulation in the	AIAA Guidance, Navigatio
Tended Free Flyer (MTFF) p 96 A88-52335	development of robotic systems p 81 N88-29388	Minneapolis, MN, Aug. 15-1
A design methodology for neutral buoyancy simulation	The 1988 Goddard Conference on Space Applications	Parts 1 & 2
of space operations	of Artificial Intelligence [NASA-CP-3009] p 102 N88-30330	AIAA/AAS Astrodynamic
[AIAA PAPER 88-4628] p 77 A88-53665	[NASA-CP-3009] p 102 N88-30330 CONCENTRATORS	MN, Aug. 15-17, 1988, Techr
Optimization of actively controlled structures using	Space station solar concentrator materials research	
multiobjective programming techniques	[NASA-TM-100862] p 69 N88-21250	International Modal Analys
p 46 A88-54973	•	College of Science and Techn
A sequentially deployable structure for space	CONCURRENT PROCESSING Distributed and concurrent computation for space	6-9, 1987, Proceedings. Volu
applications p 15 N88-21202		
The use of computer graphic simulation in the development of robotic systems p 81 N88-29388	structures [AAS PAPER 86-397] p 28 A88-35117	Space Congress, 25th, Co
	· ·	1988, Proceedings
COMPUTER AIDED MANUFACTURING Space Station dynamic analysis p 41 A88-50818	CONFERENCES High temperature coatings: Proceedings of the	1988 American Control Co
Space Station dynamic analysis p 41 A88-50818 The use of computer graphic simulation in the	High temperature coatings; Proceedings of the Symposium, Orlando, FL, Oct. 7-9, 1986	June 15-17, 1988, Proceeding
	b 88 A88-24817	22
development of robotic systems p 81 N88-29388 COMPUTER GRAPHICS	•	Developments in Mechanic
The use of computer graphic simulation in the	EASCON '87; Proceedings of the Twentieth Annual	14(c) - Midwestern Mechanic
development of robotic systems p 81 N88-29388	Electronics and Aerospace Systems Conference, Washington, DC, Oct. 14-16, 1987 p. 88 A88-33426	University, West Lafayette, I
COMPUTER PROGRAMMING		Proceedings
Literal dynamic modeling	ITC/USA/'87; Proceedings of the International	Cryogenic Fluid Managem
[REPT-881-440-114] p 53 N88-28083	Telemetering Conference, San Diego, CA, Oct. 26-29,	Volume 2: Roundtable D
COMPUTER PROGRAMS	1987 p 89 A88-33626	Requirements
The multi-disciplinary design study: A life cycle cost	Aerospace Testing Seminar, 10th, Los Angeles, CA, Mar.	[NASA-CP-10009]
algorithm	10-12, 1987, Proceedings p 89 A88-33776	Lewis Structures Technolog
[NASA-CR-4156] p 11 N88-24172	Computer applications in spacecraft design and	Dynamics
Third Conference on Artificial Intelligence for Space	operation p 89 A88-34465	[NASA-CP-3003-VOL-1]
Applications, part 2	Structural mechanics of optical systems II; Proceedings	Space Station Human F
[NASA-CP-2492-PT-2] p 100 N88-24188	of the Meeting, Los Angeles, CA, Jan. 13-15, 1987	Volume 1: EVA Research and
OMV docking simulator p 101 N88-29379	[SPIE-748] p 89 A88-34486	[NASA-CP-2426-VOL-1]
COMPUTER STORAGE DEVICES	Reflective optics; Proceedings of the Meeting, Los	Third Conference on Arti
Laser sensing for identification and control of distributed	Angeles, CA, Jan. 15, 16, 1987	Applications, part 2
parameter systems	[SPIE-751] p 89 A88-34536	[NASA-CP-2492-PT-2]
[AD-A195886] p 54 N88-30124	Columbus III; Proceedings of the Third Symposium,	A Study of Space Station
COMPUTER SYSTEMS DESIGN	Capri, Italy, June 30-July 2, 1987 p 89 A88-34551	conference
Data management for large space systems	Aerospace century XXI: Space missions and policy;	[NASA-CP-3002]
p 95 A88-45034	Proceedings of the Thirty-third Annual AAS International	The 1988 Goddard Confer
Intelligent interface design and evaluation	Conference, Boulder, CO, Oct. 26-29, 1986	of Artificial Intelligence
p 81 N88-29405	p 90 A88-35051	[NASA-CP-3009] CONFIGURATION MANAGEM
A nonlinear filtering process diagnostic system for the	Aerospace century XXI: Space flight technologies;	Intelligent resource mar
Space Station p 101 N88-29417	Proceedings of the Thirty-third Annual AAS International	networks: Approach and evo
COMPUTER SYSTEMS PERFORMANCE	Conference, Boulder, CO, Oct. 26-29, 1986	CONNECTORS
Intelligent interface design and evaluation	p 90 A88-35093	Development of an in
p 81 N88-29405	Recent trends in aeroelasticity, structures, and structural	serviceable spacecraft
COMPUTER SYSTEMS PROGRAMS SIMSAT: Simulation package for flexible systems.	dynamics; Proceedings of the R. L. Bisplinghoff Memorial	Collet lock joint for space :
	Symposium, University of Florida, Gainesville, FL, Feb. 6,	[NASA-CASE-MSC-21207-1]
Beams in space [TW-278] p 48 N88-20348	7, 1986 p 90 A88-35526	CONSTRAINTS
[TW-278] p 48 N88-20348	National Space Engineering Symposium, 3rd, Canberra,	Optimal structural design
Lewis Structures Technology, 1988. Volume 1: Structural	Australia, June 30-July 2, 1987, Preprints of Papers	constraint
Dynamics	p 90 A88-37239	CONSUMABLES (SPACECRA
[NASA-CP-3003-VOL-1] p 98 N88-23226	Radio astronomy from space; Proceedings of the	Orbital spacecraft consuma
COMPUTER VISION	Workshop, Green Bank, WV, Sept. 30-Oct. 2, 1986	[AIAA PAPER 88-2922]
Real-time model-based vision system for object	p 91 A88-38077	CONTACT RESISTANCE
acquisition and tracking p 28 A88-36311	30 years of progress in space; Proceedings of the	Measurements of therm
Robotic vision/sensing for space applications	Thirty-eighth International Astronautical Congress,	contact resistance in comp
p 74 A88-42642	Brighton, England, Oct. 10-17, 1987 p 91 A88-38304	applications
Sensing and perception research for space telerobotics	Space: Countdown to the future; National Space	CONTACTORS
at JPL p 74 A88-42657	Symposium, 3rd, Colorado Springs, CO, Jan. 20-23, 1987,	Space plasma contactor re
Orbital navigation, docking and obstacle avoidance as	Report p 91 A88-39050	[NASA-CR-182148]
a form of three dimensional model-based image	1987 SEM Spring Conference on Experimental	CONTAMINANTS A Study of Space Statio
understanding p 50 N88-24194	Mechanics, Houston, TX, June 14-19, 1987, Proceedings	A Study of Space Statio conference
Machine vision for real time orbital operations	p 91 A88-40251	[NASA-CP-3002]
p 80 N88-29367	Visions of tomorrow: A focus on national space	Neutral environment for sp
COMPUTERIZED SIMULATION	transportation issues; Proceedings of the Twenty-fifth	reduce on who hine it lot sp
Computational techniques for the self assembly of large space structures p 75 A88-43976	Goddard Memorial Symposium, Greenbelt, MD, Mar.	Space station neutral exter
space structures p 75 A88-43976 Computational issues in control-structure interaction	18-20, 1987 p 92 A88-41276	Space Station Housan exter
	Advanced composites III: Expanding the technology;	Contaminant ions and wa
analysis p 32 A88-46406 Some approximations for the dynamics of spacecraft	Proceedings of the Third Annual Conference, Detroit, MI,	environment
	Sept. 15-17, 1987 p 92 A88-41882	Space station particulate of
tethers p 33 A88-46/12 Interactive Radar Environment Simulation Model	Space structures, power, and power conditioning;	-1
	Proceedings of the Meeting, Los Angeles, CA, Jan. 11-13,	The particulate environment
(IRESM) p 10 A88-46968 Libration damping of a tethered satellite using rate only	1988	station: Estimates from the P
control	(SPIE-871) p 92 A88-42547	
[AIAA PAPER 88-4172] p 37 A88-50263	International Symposium on Thermal Problems in	Effects of meteoroids and s
Space station dynamic analysis methods	Space-Based Systems, Boston, MA, Dec. 13-18, 1987,	environment for space statio
p 41 A88-50863	Proceedings p 92 A88-42829	Contamination of optical s

Fiber optic systems for mobile platforms; Proceedings

p 93 A88-43176

of the Meeting, San Diego, CA, Aug. 20, 21, 1987

Space Operations and Space Station real-time

p 11 A88-53664

[AIAA PAPER 88-4627]

CONTAMINANTS Nonterrestrial resources, ineering; Proceedings of the Conference, Princeton, NJ, p 94 A88-43951 acturing technology: Product eedings of the Symposium, ng, Boston, MA, Dec. 13-18, p 94 A88-44001 Design, development and ings of the Symposium, Los 987 --- Book p 67 A88-45201 edings of Symposium 1 of the ry Meeting, Toulouse, France, p 95 A88-46776 on and Control Conference, 7, 1988, Technical Papers. p 95 A88-50160 s Conference, Minneapolis, nical Papers p 95 A88-50352 sis Conference, 5th, Imperial ology, London, England, Apr. mes 1 & 2 -р 40 А88-50789 pcoa Beach, FL, Apr. 26-29, p 96 A88-52317 onference, 7th, Atlanta, GA, ngs. Volumes 1, 2, & 3 p 43 A88-54401 ics. Volumes 14(a), 14(b), & cs Conference, 20th, Purdue IN, Aug. 31-Sept. 2, 1987, p 97 A88-54876 ment Technology Workshop. Discussion of Technology p 22 N88-20599 gy, 1988. Volume 1: Structural p 98 N88-23226 Factors Research Review. d Development p 99 N88-24145 ificial Intelligence for Space p 100 N88-24188 Contamination Effects p 69 N88-25390 ence on Space Applications p 102 N88-30330 IENT nagement for local area p 81 N88-29385 ntermodule connector for p 16 N88-21212 station truss p 19 N88-29180 n with control gain norm p 22 A88-50339 FT) ables resupply p 94 A88-44695 al conductivity and thermal oosite materials for space p 64 A88-36982 esearch, 1987 p 60 N88-23649 on Contamination Effects --p 69 N88-25390 pace station p 69 N88-25391 ernal environment p 69 N88-25392 aves in the space station p 70 N88-25393 contamination environment p 70 N88-25397 ment surrounding the space ACS data p 70 N88-25398 space debris on the particulate on p 70 N88-25399 Contamination of optical surfaces --- Space Station

p 71 N88-25401

p 70 N88-25400 Surface interactions relevant to space station

contamination problems

CONTINUUM MECHANICS		SUBJECT INDEX
Contamination of the space station environment by	A disturbance model for the optimization of	Robust design of distributed controllers for large flexible
vented chemicals p 71 N88-25403	control/structure interactions for flexible dynamic	space structures
CONTINUUM MECHANICS	systems	[NASA-CR-183202] p 54 N88-30134
An iterative approach to parameter identification in	[AIAA PAPER 88-4058] p 34 A88-50168	A shared-world conceptual model for integrating space
structures p 29 A88-40271	Modeling of non-collocated structural control systems	station life sciences telescience operations
Modal cost analysis for simple continua p 21 A88-46404	[AIAA PAPER 88-4060] p 35 A88-50170	p 102 N88-30333
Theory of filtering and control with application to control	Two controller design approaches for decentralized systems	On the quantitative characterization of approximate
of large space structures	[AIAA PAPER 88-4083] p 35 A88-50189	decentralized fixed modes using transmission zeros
[AD-A195500] p 54 N88-29851	A distributed finite element modeling and control	p 27 A88-34905
CONTINUUM MODELING	approach for large flexible structures	Computing the transmission zeros of large space
A continuum model for the nonlinear analysis of beam-like lattice structures p 13 A88-41038	[AIAA PAPER 88-4085] p 35 A88-50191	structures p 27 A88-34917 A comparative overview of modal testing and system
Continuum modeling of large lattice structures - Status	System identification and control of the truss experiment	identification for control of structures p 29 A88-40269
and projections p 21 A88-46402	- A retrospective [AIAA PAPER 88-4152] p 36 A88-50246	Robust control of flexible structures - A case study
Nonlinearities in the dynamics and control of space	[AIAA PAPER 88-4152] p 36 A88-50246 Dynamics and control of experimental tendon control	p 29 A88-40489
structures - Some issues for computational mechanics p 31 A88-46403	system for flexible space structure	Computational issues in control-structure interaction
Frequency optimization of repetitive lattice beam-like	[AIAA PAPER 88-4154] p 36 A88-50248	analysis p 32 A88-46406 Control of distributed structures p 32 A88-46408
structures using a continuum model p 41 A88-50892	Optimal structural design with control gain norm	Unified optimization of structures and controllers
Continuum modeling and dynamic analysis of large truss	constraint p 22 A88-50339	p 33 A88-46413
structures p 50 N88-23995	Design of an on-board antenna pointing control system	A mathematical theory of learning control for linear
CONTROL 1988 American Control Conference, 7th, Atlanta, GA.	for communication satellites [AIAA PAPER 88-4306] p 39 A88-50431	discrete multivariable systems [AIAA PAPER 88-4313] p 40 A88-50438
June 15-17, 1988, Proceedings. Volumes 1, 2, & 3	Exponent diagram analysis of feedback control systems	[AIAA PAPER 88-4313] p 40 A88-50438 Rapid multi-flexible-body maneuvering experiments
p 43 A88-54401	including flexible structures p 10 A88-50836	p 44 A88-54532
CONTROL CONFIGURED VEHICLES	Aeroelastic interactions with flight control of	ACES program - Lessons learned p 6 A88-54573
A variable structure control approach to flexible	transatmospheric vehicles p 42 A88-50980	Application of inclusion principle to mechanical
spacecrafts p 34 A88-49914 Method for the experimental determination of the	Real-time fault management for large-scale systems	systems p 45 A88-54583 Wave propagation and dynamics of lattice structures
frequency characteristics of an elastic flight vehicle with	p 42 A88-52355 The jitter beam - An experiment demonstrating pointing	[AD-A190037] p 49 N88-22066
a digital control system p 34 A88-50095	control on a flexible structure p 43 A88-54406	Estimation and control of distributed models for certain
Improved methods for linearized flexibility models in	Projective controls for disturbance attenuation in LSS	elastic systems arising in large space structures
multibody dynamics and control p 43 A88-54423	systems p 43 A88-54410	[AD-A192120] p 51 N88-24666
Variable structure control of decoupleable systems and attitude control of spacecraft in presence of uncertainty	Development of a control oriented model of a cantilevered beam with end-mass for large space	Dynamics of a flexible orbiting platform with MRMS [ISSN-0285-6808] p.51 N88-24673
p 46 A88-54655	structures p 44 A88-54533	Automatic feedback control of a rigid body for finite
CONTROL MOMENT GYROSCOPES	ACES program - Lessons learned p 6 A88-54573	displacements p 51 N88-24674
A new momentum management controller for the Space	Application of FAMESS to a large space structure ground	Theory of filtering and control with application to control
Station (AIAA PAPER 88-41321 p 36 A88-50233	test facility p 44 A88-54574	of large space structures [AD-A195500] p 54 N88-29851
[AIAA PAPER 88-4132] p 36 A88-50233 CONTROL SIMULATION	Experimental demonstration of the maximum entropy/optimal projection design theory for active	[AD-A195500] p 54 N88-29851 CONTROLLABILITY
Input selection for a second-order mass property	vibration control p 44 A88-54575	Grammians and model reduction in Ilmited time and
estimator for satellite attitude control	Recent results in identification and control of a flexible	frequency intervals
p 30 A88-43203	truss structure p 44 A88-54576	[AIAA PAPER 88-4087] p 35 A88-50193 CONTROLLERS
Advanced control evaluation for structures (ACES) programs p 44 A88-54572	Application of inclusion principle to mechanical systems p 45 A88-54583	Controller synthesis for flexible spacecraft using
Application of FAMESS to a large space structure ground	On the Caltech experimental large space structure	multivariable loop-shaping and factorization methods
test facility p 44 A88-54574	p 6 A88-54603	p 26 A88-34796
CONTROL STABILITY	H(infinity) robust control synthesis for a large space	Design of a controller for mechanical systems by the
Unified optimization of structures and controllers p 33 A88-46413	structure p 45 A88-54639 Design and development of a computer controlled	generalized energy function p 27 A88-34891 Unified optimization of structures and controllers
On the Caltech experimental large space structure	system for spacecraft static testing p 11 A88-54896	p 33 A88-46413
p 6 A88-54603	Telepresence for space applications	Two controller design approaches for decentralized
CONTROL SYSTEMS DESIGN	[IAF PAPER 88-018] p 77 A88-55320	systems
Synthesis of fine-pointing control systems for large, flexible spacecraft p 24 A88-33446	Control of large space structures using reduced order models	[AIAA PAPER 88-4083] p 35 A88-50189
Large space optical system active vibration	[IAF PAPER 88-272] p 47 A88-55371	Redundancy control of a free-flying telerobot
suppression p 24 A88-34498	Control augmented structural synthesis	[AIAA PAPER 88-4094] p 35 A88-50199 A new momentum management controller for the Space
Reduced-order compensation: LQG reduction versus	[NASA-CR-4132] p 48 N88-20290	Station
optimal projection using a homotopic continuation	Feasibility demonstration of a sensor for high-quality	[AIAA PAPER 88-4132] p 36 A88-50233
method p 25 A88-34749	two-phase flow Space Station [NLR-TR-87009-U] p 59 N88-20569	Integrated structural/controller optimization of large
Design of a controller for mechanical systems by the generalized energy function p 27 A88-34891	Robust decentralized control of large flexible	space structures
generalized energy function p 27 A88-34891 Robust control of flexible structures - A case study	structures	[AIAA PAPER 88-4305] p 39 A88-50430
p 29 A88-40489	[DE88-005416] p 48 N88-20902	Microgravity mechanisms and robotics program
Analytic redundancy management for systems with	Development and qualification of the OLYMPUS	p 78 N88-23237
appreciable structural dynamics for control systems	antenna pointing mechanism p 16 N88-21227 A joint actuator design for a robotic manipulator	Connecting remote systems for demonstration of automation technologies p 78 N88-24191
design p 29 A88-40773	p 77 N88-21232	Genetic algorithms for adaptive real-time control in
Minimum-time control of large space structures	Development of a magnetically suspended,	space systems p 50 N88-24195
p 29 A88-42576	tetrahedron-shaped antenna pointing system	Adaptive residual mode filter control of distributed
On the dynamics of manipulators in space using the virtual manipulator approach p 75 A88-42677	p 18 N88-21478	parameter systems for large space structure applications
Microprocessor controlled force actuator	Soviet spacecraft engineering research [FASAC-TAR-3090] p 98 N88-23823	p 52 N88-26143 L(sub infinity symbol)-approximations of complex
p 30 A88-43206	The efficacy of using human myoelectric signals to	functions and robust controllers for large flexible space
Large space structures: Dynamics and control Book	control the limbs of robots in space	structures
p 31 A88-46401	[NASA-CR-182901] p 78 N88-25155	[PB88-186226] p 52 N88-26390
Control of distributed structures p 32 A88-46408	Adaptive residual mode filter control of distributed parameter systems for large space structure applications	Robust design of distributed controllers for large flexible
Optimal projection for uncertain systems (OPUS) - A	p 52 N88-26143	space structures
unified theory of reduced-order, robust control design p 32 A88-46411	Numerical optimization, system theoretic and software	[NASA-CR-183202] p 54 N88-30134
An integrated approach to the minimum weight and	tools for the integrated design of flexible structures and	Eureca TICCE - A nine-month survey of cosmic dust
optimum control design of space structures	their control systems	and space debris at 500 km altitude p 96 A88-53242
p 10 A88-46414	[AD-A192927] p 52 N88-27183 Study of standard generic approach for spacecraft (S/C)	COSMONAUTS
Game theory approach for the integrated design of	autonomy and automation (phase 3). Book B: Autonomy	Soviet space achievements in 1985 according to press
structures and controls p 33 A88-47462	concept application example	materials Russian book p 95 A88-46070
Critique of the thermal design verification program for	[ESA-CR(P)-2555-VOL-2] p 53 N88-28956	Perspectives of Soviet cosmonautics. I
a high-power communications spacecraft [AIAA PAPER 88-2648] p 22 A88-48479	Concepts for robot motion primitives required for space	p 95 A88-49026 COST ANALYSIS
AIAA Guidance, Navigation and Control Conference,	station teleoperations p 81 N88-29387 Blackboard architectures and their relationship to	Modal cost analysis for simple continua
Minneapolis, MN, Aug. 15-17, 1988, Technical Papers.	autonomous space systems p 82 N88-29414	p 21 A88-46404
Parts 1 & 2 p 95 A88-50160	Space structure (dynamics and control) theme	Development of a generalized cost model for large space
Sensors, actuators, and hyperstability of structures	development	power systems
[AIAA PAPER 88-4057] p 34 A88-50167	[NA\$A-TM-100597] p 8 N88-29850	[IAF PAPER 88-219] p 97 A88-55363

The multi-disciplinary design study: A life cycle cost	Connectivity is the key for ground-space	Spacecraft dielectric surface charging property determination
algorithm {NASA-CR-4156} p 11 N88-24172	station-ground data links p 59 A88-54853	[NASA-CR-180879] p 59 N88-21243
A plan for time-phased incorporation of automation and	Connecting remote systems for demonstration of	DIFFERENTIAL EQUATIONS
robotics on the US space station p 80 N88-29377	automation technologies p 78 N88-24191	Kalman filtering for second-order models
Centaur operations at the space station: Cost and	DATA MANAGEMENT	p 28 A88-36718
transportation analysis	Telemetry handling on the Space Station data	DIFFUSION LENGTH
[NASA-CR-182128] p 101 N88-29835	management system p 54 A88-33629	Temperature characteristics of silicon space solar cells
COST EFFECTIVENESS	Data management for large space systems	and underlying parameters p 63 A88-34418
Solar-dynamic energy supply systems for space	p 95 A88-45034	DIGITAL FILTERS
systems p 64 A88-37293	Image management research p 99 N88-24150	Identification of a flexible truss structure using lattice
Cost effectiveness of on-orbit servicing for large	DATA STORAGE	filters p 45 A88-54577
constellations	Laser sensing for identification and control of distributed	DIGITAL NAVIGATION
[AIAA PAPER 88-35†9] p 94 A88-44527	parameter systems [AD-A195886] p 54 N88-30124	Feasibility of using GPS measurements for OMV attitude
Shuttle-C - A Shuttle derived launch vehicle	DATA SYSTEMS	update p 96 A88-51716
p 86 A88-52373	Al for space missions	DIMENSIONAL STABILITY
COST REDUCTION	[AAS PAPER 86-390] p 55 A88-35144	Thermal cycling effects on the dimensional stability of
Reducing the cost and risk of orbit transfer	DATA TRANSMISSION	P75 and P75-T300 (fabric) hybrid graphite/epoxy
p 97 A88-54994	Connecting remote systems for demonstration of	laminates p 65 A88-42434
COUPLED MODES	automation technologies p 78 N88-24191	Contribution to the study of materials behavior in space
Identification of a complex satellite model by means of	DECISION MAKING	environment
modal synthesis p 40 A88-50809	Computer applications in spacecraft design and	[SNIAS-881-430-104] p 72 N88-28977
A numerical method for the analysis of coupling to thin	operation p 89 A88-34465	DIRECT CURRENT
wire structures p 14 A88-54722	DEEP SPACE	The LDCM actuator for vibration suppression
COUPLINGS	Long-lived thermal control materials for high temperature	[NASA-CR-182898] p 50 N88-23940
Ammonia transfer across rotating joints in space	and deep space applications p 20 A88-42441	DISCRETE FUNCTIONS
p 22 N88-21492	DEFLECTION Structural innovations in the Columbus Project - An 11.3	On-line measurement configuration strategies for
Development of a rotary fluid transfer coupling and	meter optical telescope p 89 A88-34491	discrete-time systems
support mechanism for space station	DEGRADATION	[AIAA PAPER 88-4168] p 36 A88-50259 DISPENSERS
p 18 N88-21493	Electrotopographic investigation of the degradation	Deployable booms and antennas on AMPTE-IRM
COVERINGS	dynamics of dielectric layers in space	p 15 N88-21198
Solar cell cover glasses for satellites	p 62 A88-33958	DISPLACEMENT
p 69 N88-22225	DEGREES OF FREEDOM	Automatic feedback control of a rigid body for finite
CRANES	Theoretical and experimental investigation of	displacements p 51 N88-24674
Space spider crane	space-realizable inertial actuation for passive and active	DISTORTION
[NASA-CASE-LAR-13411-1-SB] p 7 N88-23828	structural control p 46 A88-55063	Theory of filtering and control with application to control
CREEP PROPERTIES	DELAMINATING	of large space structures
Manufacturing of damage-resistant composite structures	A fracture control plan for composite spacecraft	[AD-A195500] p 54 N88-29851
for aerospace applications p 65 A88-41885	structures	DISTRIBUTED PARAMETER SYSTEMS
CREEP STRENGTH	[IAF PAPER 88-282] p 68 A88-55374	System identification for space control laboratory
Recent advances in aerospace refractory metal alloys	DELTA LAUNCH VEHICLE	experiment (SCOLE) using distributed parameter models
p 67 A88-47449	Operational capabilities of generic advanced launch system concepts p 86 A88-52374	p 26 A88-34792
CREW WORKSTATIONS	DEPLOYMENT	On the quantitative characterization of approximate
Space station architectural elements model study (NASA-CR-4027) p 100 N88-24632	Deployable precision reflectors	decentralized fixed modes using transmission zeros
([AAS PAPER 86-298] p 55 A88-35112	p 27 A88-34905 Model reference control of the NASA SCOLE problem
CRYOGENIC COOLING	Large space systems requirements, deployable	Spacecraft COntrol Laboratory Experiment
The superfluid helium on-orbit transfer (SHOOT) flight experiment p 5 A88-53221	concepts, and technology issues	p 27 A88-34916
	[AAS PAPER 86-394] p 2 A88-35115	An iterative approach to parameter identification in
CRYOGENIC EQUIPMENT	Reliability evaluation on on-board satellite antenna	structures p 29 A88-40271
Bayonet for superfluid helium transfer in space p 22 A88-53220	deployment mechanism p 19 A88-38672	Robust control of flexible structures - A case study
Design and test of a modified passive orbital disconnect	Sensitivity analysis of a deployable three longeron truss	p 29 A88-40489
strut (PODS-IV) support system p 11 A88-53226	beam designed for minimum member loads during	Control of distributed structures p 32 A88-46408
CRYOGENIC FLUID STORAGE	deployment	Application of inclusion principle to mechanical
Technology requirements for an orbiting fuel depot: A	[AIAA PAPER 88-2436] p 13 A88-38689	systems p 45 A88-54583
necessary element of a space infrastructure	Two-dimensional deployable truss structures for space	Optimization of actively controlled structures using
[NASA-TM-101370] p 88 N88-29845	applications p 14 A88-47964	multiobjective programming techniques
CRYOGENIC FLUIDS	A 60-meter erectable assembly concept for a control of flexible structures flight experiment	p 46 A88-54973
Cryogenic Fluid Management Technology Workshop.	[NASA-TM-100497] p 7 N88-21190	Feedback control of distributed parameter systems with
Volume 2: Roundtable Discussion of Technology	The development status of the strongback array	applications to large space structures [AD-A190536] p 49 N88-22068
Requirements	spacecraft structure p 15 N88-21201	[AD-A190536] p 49 N88-22068 Laser sensing for identification and control of distributed
[NASA-CP-10009] p 22 N88-20599	Design of a linear actuator and breadboard test result	parameter systems
CRYOGENIC ROCKET PROPELLANTS Long term orbital storage of cryogenic propellants for	far IR telescope p 16 N88-21217	[AD-A195886] p 54 N88-30124
advanced space transportation missions	The EURECA antenna deployment and retraction	DISTRIBUTED PROCESSING
p 82 A88-33441	mechanisms p 16 N88-21225	Distributed and concurrent computation for space
Noncryogenic propellants for a nuclear orbit transfer	Thermally stable deployable structure	structures
vehicle p 87 N88-24444	p 17 N88-21472	[AAS PAPER 86-397] p 28 A88-35117
CURING	Motion synchronization of a mechanism to deploy and restow a truss beam p 77 N88-21474	Low authority control of large space structures using a
Qualification of room-temperature-curing epoxy	DESIGN ANALYSIS	constrained threshold control formulation
adhesives for spacecraft structural applications	Interactive Radar Environment Simulation Model	p 51 N88-24667
p 66 A88-42440	(IRESM) p 10 A88-46968	An expert system for a distributed real-time trainer
	FLOSIN: A fluid loop analyzer for SINDA	p 12 N88-29411 Parallel and distributed computation for fault-tolerant
D	p 23 N88-22321	object recognition p 13 N88-30350
	Space station architectural elements and issues	DIVING (UNDERWATER)
DAMAGE ASSESSMENT		
Thermal cycling effects on the dimensional stability of	definition study	Subsea approach to work systems development
	definition study [NASA-CR-3941] p 12 N88-25371	Subsea approach to work systems development p 99 N88-24146
P75 and P75-T300 (fabric) hybrid graphite/epoxy	[NASA-CR-3941] p 12 N88-25371 Some operational aspects of a rotating	Subsea approach to work systems development p 99 N88-24146 DOMESTIC SATELLITE COMMUNICATIONS SYSTEMS
	[NASA-CR-3941] p 12 N88-25371 Some operational aspects of a rotating advanced-technology space station for the year 2025	p 99 N88-24146
P75 and P75-T300 (fabric) hybrid graphite/epoxy	[NASA-CR-3941] p 12 N88-25371 Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397	p 99 N88-24146 DOMESTIC SATELLITE COMMUNICATIONS SYSTEMS
P75 and P75-T300 (fabric) hybrid graphite/epoxy laminates p 65 A88-42434 Shielding against debris p 66 A88-43518 DAMPING	[NASA-CR-3941] p 12 N88-25371 Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 Advanced planar array development for space station	p 99 N88-24146 DOMESTIC SATELLITE COMMUNICATIONS SYSTEMS National Space Engineering Symposium, 3rd, Canberra, Australia, June 30-July 2, 1987, Preprints of Papers p 90 A88-37239
P75 and P75-T300 (fabric) hybrid graphite/epoxy laminates p 65 A88-42434 Shielding against debris p 66 A88-43518 DAMPING Damping characteristics of metal matrix composites	[NASA-CR-3941] p 12 N88-25371 Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 Advanced planar array development for space station [NASA-CR-179373] p 24 N88-30181	p 99 N88-24146 DOMESTIC SATELLITE COMMUNICATIONS SYSTEMS National Space Engineering Symposium, 3rd, Canberra, Australia, June 30-July 2, 1987, Preprints of Papers p 90 A88-37239 DOORS
P75 and P75-T300 (fabric) hybrid graphite/epoxy laminates p 65 A88-42434 Shielding against debris p 66 A88-43518 DAMPING Damping characteristics of metal matrix composites [AD-A193144] matrix composites p 71 N88-27233	[NASA-CR-3941] p 12 N88-25371 Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 Advanced planar array development for space station [NASA-CR-179373] p 24 N88-30181 DETECTION	p 99 N88-24146 DOMESTIC SATELLITE COMMUNICATIONS SYSTEMS National Space Engineering Symposium, 3rd, Cariberra, Australia, June 30-July 2, 1987, Preprints of Papers p 90 A88-37239 DOORS Some highlights on ROSAT mechanisms
P75 and P75-T300 (fabric) hybrid graphite/epoxy laminates p 65 A88-42434 Shielding against debris p 66 A88-43518 DAMPING Damping characteristics of metal matrix composites [AD-A193144] p 71 N68-27233 DATA ACQUISITION	[NASA-CR-3941] p 12 N88-25371 Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 Advanced planar array development for space station [NASA-CR-179373] p 24 N88-30181 DETECTION Laser sensing for identification and control of distributed	p 99 N88-24146 DOMESTIC SATELLITE COMMUNICATIONS SYSTEMS National Space Engineering Symposium, 3rd, Canberra, Australia, June 30-July 2, 1987, Preprints of Papers p 90 A88-37239 DOORS Some highlights on ROSAT mechanisms p 14 N88-21195
P75 and P75-T300 (fabric) hybrid graphite/epoxy laminates p 65 A88-42434 Shielding against debris p 66 A88-43518 DAMPING Damping characteristics of metal matrix composites p 71 N88-27233 DATA ACQUISITION ITC/USA/'87; Proceedings of the International	[NASA-CR-3941] p 12 N88-25371 Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 Advanced planar array development for space station [NASA-CR-179373] p 24 N88-30181 DETECTION Laser sensing for identification and control of distributed parameter systems	p 99 N88-24146 DOMESTIC SATELLITE COMMUNICATIONS SYSTEMS National Space Engineering Symposium, 3rd, Canberra, Australia, June 30-July 2, 1987, Preprints of Papers p 90 A88-37239 DOORS Some highlights on ROSAT mechanisms p 14 N88-21195 DRY FRICTION
P75 and P75-T300 (fabric) hybrid graphite/epoxy laminates p 65 A88-42434 Shielding against debris p 66 A88-43518 DAMPING Damping characteristics of metal matrix composites p 71 N88-27233 DATA ACQUISITION ITC/USA/'87; Proceedings of the International Telemetering Conference, San Diego, CA. Oct. 26-29.	[NASA-CR-3941] p 12 N88-25371 Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 Advanced planar array development for space station [NASA-CR-179373] p 24 N88-30181 DETECTION Laser sensing for identification and control of distributed parameter systems [AD-A195886] p 54 N88-30124	p 99 N88-24146 DOMESTIC SATELLITE COMMUNICATIONS SYSTEMS National Space Engineering Symposium, 3rd, Canberra, Australia, June 30-July 2, 1987, Preprints of Papers p 90 A88-37239 DOORS Some highlights on ROSAT mechanisms p 14 N88-21195 DRY FRICTION Frequency domain solutions to multi-degree-of-freedom,
P75 and P75-T300 (fabric) hybrid graphite/epoxy laminates p 65 A88-42434 Shielding against debris p 66 A88-43518 DAMPING Damping characteristics of metal matrix composites [AD-A193144] p 71 N68-27233 DATA ACQUISITION ITC/USA/'87; Proceedings of the International Telemetering Conference, San Diego, CA, Oct. 26-29, p 89 A88-33626	[NASA-CR-3941]	p 99 N88-24146 DOMESTIC SATELLITE COMMUNICATIONS SYSTEMS National Space Engineering Symposium, 3rd, Canberra, Australia, June 30-July 2, 1987, Preprints of Papers p 90 A88-37239 DOORS Some highlights on ROSAT mechanisms p 14 N88-21195 DRY FRICTION Frequency domain solutions to multi-degree-of-freedom, dry friction damped systems p 33 A88-49714
P75 and P75-T300 (fabric) hybrid graphite/epoxy laminates p 65 A88-42434 Shielding against debris p 66 A88-43518 DAMPING Damping characteristics of metal matrix composites [AD-A193144] p 71 N86-27233 DATA ACQUISITION ITC/USA/'87; Proceedings of the International Telemetering Conference, San Diego, CA, Oct. 26-29, 1987 p 89 A88-33626 Laser sensing for identification and control of distributed	[NASA-CR-3941] p 12 N88-25371 Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 Advanced planar array development for space station [NASA-CR-179373] p 24 N88-30181 DETECTION Laser sensing for identification and control of distributed parameter systems [AD-A195886] p 54 N88-30124 DIELECTRICS Electrotopographic investigation of the degradation	p 99 N88-24146 DOMESTIC SATELLITE COMMUNICATIONS SYSTEMS National Space Engineering Symposium, 3rd, Canberra, Australia, June 30-July 2, 1987, Preprints of Papers p 90 A88-37239 DORS Some highlights on ROSAT mechanisms p 14 N88-21195 DRY FRICTION Frequency domain solutions to multi-degree-of-freedom, dry friction damped systems p 33 A88-49714 DYNAMIC CHARACTERISTICS
P75 and P75-T300 (fabric) hybrid graphite/epoxy laminates p 65 A88-42434 Shielding against debris p 66 A88-43518 DAMPING Damping characteristics of metal matrix composites [AD-A193144] p 71 N88-27233 DATA ACQUISITION ITC/USA/'87; Proceedings of the International Telemetering Conference, San Diego, CA, Oct. 26-29, 1987 p 89 A88-33626 Laser sensing for identification and control of distributed parameter systems	[NASA-CR-3941]	p 99 N88-24146 DOMESTIC SATELLITE COMMUNICATIONS SYSTEMS National Space Engineering Symposium, 3rd, Carberra, Australia, June 30-July 2, 1987, Preprints of Papers p 90 A88-37239 DOORS Some highlights on ROSAT mechanisms p 14 N88-21195 DRY FRICTION Frequency domain solutions to multi-degree-of-freedom, dry friction damped systems DYNAMIC CHARACTERISTICS Mathematical modeling of the dynamics of a spacecraft
P75 and P75-T300 (fabric) hybrid graphite/epoxy laminates p 65 A88-42434 Shielding against debris p 66 A88-43518 DAMPING Damping characteristics of metal matrix composites (AD-A193144] p 71 N88-27233 DATA ACQUISITION ITC/USA/'87: Proceedings of the International Telemetering Conference, San Diego, CA, Oct. 26-29, 1987 Laser sensing for identification and control of distributed parameter systems [AD-A195886] p 54 N88-30124	[NASA-CR-3941]	p 99 N88-24146 DOMESTIC SATELLITE COMMUNICATIONS SYSTEMS National Space Engineering Symposium, 3rd, Carberra, Australia, June 30-July 2, 1987, Preprints of Papers p 90 A88-37239 DOORS Some highlights on ROSAT mechanisms p 14 N88-21195 DRY FRICTION Frequency domain solutions to multi-degree-of-freedom, dry friction damped systems p 33 A88-49714 DYNAMIC CHARACTERISTICS Mathematical modeling of the dynamics of a spacecraft with elastic components p 33 A88-48080
P75 and P75-T300 (fabric) hybrid graphite/epoxy laminates p 65 A88-42434 Shielding against debris p 66 A88-43518 DAMPING Damping characteristics of metal matrix composites [AD-A193144] p 71 N88-27233 DATA ACQUISITION ITC/USA/'87; Proceedings of the International Telemetering Conference, San Diego, CA, Oct. 26-29, 1987 p 89 A88-33626 Laser sensing for identification and control of distributed parameter systems	[NASA-CR-3941] p 12 N88-25371 Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 Advanced planar array development for space station [NASA-CR-179373] p 24 N88-30181 DETECTION Laser sensing for identification and control of distributed parameter systems [AD-A195886] p 54 N88-30124 DIELECTRICS Electrotopographic investigation of the degradation dynamics of dielectric layers in space	p 99 N88-24146 DOMESTIC SATELLITE COMMUNICATIONS SYSTEMS National Space Engineering Symposium, 3rd, Carberra, Australia, June 30-July 2, 1987, Preprints of Papers p 90 A88-37239 DOORS Some highlights on ROSAT mechanisms p 14 N88-21195 DRY FRICTION Frequency domain solutions to multi-degree-of-freedom, dry friction damped systems DYNAMIC CHARACTERISTICS Mathematical modeling of the dynamics of a spacecraft

DYNAMIC CONTROL SUBJECT INDEX

Compatibility of microgravity experiments with	Dynamic analysis of finitely stretched and rotated	Advantages of tether release of satellites from elliptic
spacecraft disturbances p 34 A88-49743	three-dimensional space-curved beams	orbits p 46 A88-55062
Dynamics and control of experimental tendon control	p 22 A88-49658	A Study of Space Station Contamination Effects
system for flexible space structure	International Modal Analysis Conference, 5th, Imperial	conference
[AIAA PAPER 88-4154] p 36 A88-50248	College of Science and Technology, London, England, Apr.	[NASA-CP-3002] p 69 N88-25390
Large truss structures for space assembly	6-9, 1987, Proceedings. Volumes 1 & 2	Neutral environment for space station
p 75 A88-50862	p 40 A88-50789	p 69 N88-25391
Nonlinear analysis and optimal design of dynamic	Space Station dynamic analysis p 41 A88-50818	Space station neutral external environment
mechanical systems for spacecraft application	Transient tests for space structures qualification	p 69 N88-25392
[AD-A190644] p 49 N88-22070	p 41 A88-50837	Contaminant ions and waves in the space station
Literal dynamic modeling	Space station dynamic analysis methods	environment p 70 N88-25393
[REPT-881-440-114] p 53 N88-28083	p 41 A88-50863	Space station induced electromagnetic effects
DYNAMIC CONTROL	Comparison of theoretical and experimental modal	p 61 N88-25394
Reduced-order compensation: LQG reduction versus	analysis results of a rectangular three dimensional frame	Space station contamination study: Assessment of
optimal projection using a homotopic continuation	p 22 A88-50873	contaminant spectral brightness p 70 N88-25395
method p 25 A88-34749	Beam modifications of structural systems utilizing the	Calculation of space station infrared irradiance from atmosphere-induced emissions p 70 N88-25396
Analytic redundancy management for systems with appreciable structural dynamics for control systems	receptance approach with static flexibility	Space station particulate contamination environment
	p 14 A88-50891	p 70 N88-25397
design p 29 A88-407/3 Transient dynamics of the Tether Elevator/Crawler	Identification of multiple-input modal parameters from	The particulate environment surrounding the space
System	multiple-frequency response function p 41 A88-50897	station: Estimates from the PACS data
[AIAA PAPER 88-4280] p 39 A88-50407	Spatial distribution of model error based on	p 70 N88-25398
Advanced control evaluation for structures (ACES)	analytical/experimental frequency discrepancies	Effects of meteoroids and space debris on the particulate
programs p 44 A88-54572	p 41 A88-50899	environment for space station p 70 N88-25399
The system of the Mir station motion control	Load dependent subspace reduction methods for	Contamination of optical surfaces Space Station
[IAF PAPER 88-334] p 48 A88-55397	structural dynamic computations p 42 A88-53420	p 70 N88-25400
The dynamic control of robotic manipulators in space	Sine dwell or broadband methods for modal testing p 46 A88-55088	Surface interactions relevant to space station
[NASA-CR-182710] p 77 N88-20646	Dynamics of interconnected flexible members in the	contamination problems p 71 N88-25401
Feedback control of distributed parameter systems with	presence of environmental forces - A formulation with	Laboratory experiments of relevance to the space station
applications to large space structures	applications	environment p 71 N88-25402
[AD-A190536] p 49 N88-22068	[IAF PAPER 88-318] p 47 A88-55391	Contamination of the space station environment by
Vibration control of large structures	Control augmented structural synthesis	vented chemicals p 71 N88-25403
[AD-A191358] p 50 N88-22928	[NASA-CR-4132] p 48 N88-20290	Relationship between characteristics of low-energy
Vibration control of large structures	Wave propagation and dynamics of lattice structures	electrons and geomagnetic disturbance in geostationary
[AD-A193317] p 53 N88-27587	[AD-A190037] p 49 N88-22066	orbit p 62 N88-30501
Dynamics of articulated aerospace structures	Nonlinear analysis and optimal design of dynamic	EARTH ORBITS
[AD-A195685] p 53 N88-29794	mechanical systems for spacecraft application	Decision time on orbital debris p 66 A88-43516
DYNAMIC LOADS	[AD-A190644] p 49 N88-22070	Shielding against debris p 66 A88-43518
Load dependent subspace reduction methods for	Lewis Structures Technology, 1988. Volume 1: Structural	Quasat - A 50,000 km-diameter Quasar probe
structural dynamic computations p 42 A88-53420	Dynamics	p 96 A88-54766
DYNAMIC MODELS Spectral analysis of a class of infinite-dimensional	[NASA-CP-3003-VOL-1] p 98 N88-23226	Tethered subsatellite swinging from atmospheric gradients p 46 A88-55067
systems p 26 A88-34822	Continuum modeling and dynamic analysis of large truss	Advanced nuclear rocket engine mission analysis
Ground-test of spacecraft control and dynamics	structures p 50 N88-23995	[DE88-006797] p 87 N88-24681
[AAS PAPER 86-267] p 27 A88-35102	Experimental study of active vibration control	EJECTA
Unified optimization of structures and controllers	[AD-A191454] p 51 N88-24989 Single-mode projection filters for modal parameter	Effects of meteoroids and space debris on the particulate
p 33 A88-46413	identification for flexible structures	environment for space station p 70 N88-25399
Some approximations for the dynamics of spacecraft	[NASA-CR-182680] p 52 N88-25244	ELASTIC BODIES
tethers p 33 A88-46712		Distributed sensors and actuators for vibration control
tethers p 33 A88-46712 Adaptive control experiment with a large flexible	Vibration control of large structures [AD-A193317] p 53 N88-27587	in elastic components p 28 A88-39724
tethers p 33 A88-46712 Adaptive control experiment with a large flexible structure	Vibration control of large structures	in elastic components p 28 A88-39724 Stress concentration around a pair of circular holes in
tethers p 33 A88-46712 Adaptive control experiment with a large flexible structure [AIAA PAPER 88-4153] p 36 A88-50247	Vibration control of large structures [AD-A193317] p 53 N88-27587 Space structure (dynamics and control) theme development	in elastic components p 28 A88-39724 Stress concentration around a pair of circular holes in a hydrostatically stressed elastic sheet
tethers p 33 A88-46712 Adaptive control experiment with a large flexible structure [AIAA PAPER 88-4153] p 36 A88-50247 Libration damping of a tethered satellite using rate only	Vibration control of large structures [AD-A193317] p 53 N88-27587 Space structure (dynamics and control) theme development [NASA-TM-100597] p 8 N88-29850	in elastic components p 28 A88-39724 Stress concentration around a pair of circular holes in a hydrostatically stressed elastic sheet p 33 A88-48194
tethers p 33 A88-46712 Adaptive control experiment with a large flexible structure [AIAA PAPER 88-4153] p 36 A88-50247 Libration damping of a tethered satellite using rate only control	Vibration control of large structures [AD-A193317] p 53 N88-27587 Space structure (dynamics and control) theme development [NASA-TM-100597] p 8 N88-29850 DYNAMICAL SYSTEMS	in elastic components p 28 A88-39724 Stress concentration around a pair of circular holes in a hydrostatically stressed elastic sheet p 33 A88-48194 Dynamics analysis of a system of hinge-connected
tethers p 33 A88-46712 Adaptive control experiment with a large flexible structure [AIAA PAPER 88-4153] p 36 A88-50247 Libration damping of a tethered satellite using rate only control [AIAA PAPER 88-4172] p 37 A88-50263	Vibration control of large structures [AD-A193317] p 53 N88-27587 Space structure (dynamics and control) theme development [NASA-TM-100597] p 8 N88-29850 DYNAMICAL SYSTEMS Stability and equilibria of deformable systems	in elastic components p 28 A88-39724 Stress concentration around a pair of circular holes in a hydrostatically stressed elastic sheet p 33 A88-48194 Dynamics analysis of a system of hinge-connected flexible bodies p 42 A88-52639
tethers p 33 A88-46712 Adaptive control experiment with a large flexible structure [AIAA PAPER 88-4153] p 36 A88-50247 Libration damping of a tethered satellite using rate only control [AIAA PAPER 88-4172] p 37 A88-50263	Vibration control of large structures [AD-A193317] p 53 N88-27587 Space structure (dynamics and control) theme development [NASA-TM-100597] p 8 N88-29850 DYNAMICAL SYSTEMS Stability and equilibria of deformable systems p 26 A88-34813	in elastic components p 28 A88-39724 Stress concentration around a pair of circular holes in a hydrostatically stressed elastic sheet p 33 A88-48194 Dynamics analysis of a system of hinge-connected
tethers p 33 A88-46712 Adaptive control experiment with a large flexible structure [AIAA PAPER 88-4153] p 36 A88-50247 Libration damping of a tethered satellite using rate only control [AIAA PAPER 88-4172] p 37 A88-50263 Spatial distribution of model error based on analytical/experimental frequency discrepancies p 41 A88-50899	Vibration control of large structures [AD-A193317] p 53 N88-27587 Space structure (dynamics and control) theme development [NASA-TM-100597] p 8 N88-29850 DYNAMICAL SYSTEMS Stability and equilibria of deformable systems p 26 A88-34813 On the dynamics of manipulators in space using the	in elastic components p 28 A88-39724 Stress concentration around a pair of circular holes in a hydrostatically stressed elastic sheet p 33 A88-48194 Dynamics analysis of a system of hinge-connected flexible bodies p 42 A88-52639 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC DEFORMATION
tethers p 33 A88-46712 Adaptive control experiment with a large flexible structure [AIAA PAPER 88-4153] p 36 A88-50247 Libration damping of a tethered satellite using rate only control [AIAA PAPER 88-4172] p 37 A88-50263 Spatial distribution of model error based on analytical/experimental frequency discrepancies p 41 A88-50899 Obstacles to high fidelity multibody dynamics	Vibration control of large structures [AD-A193317] p 53 N88-27587 Space structure (dynamics and control) theme development [NASA-TM-100597] p 8 N88-29850 DYNAMICAL SYSTEMS Stability and equilibria of deformable systems p 26 A88-34813 On the dynamics of manipulators in space using the virtual manipulator approach p 75 A88-42677	in elastic components p 28 A88-39724 Stress concentration around a pair of circular holes in a hydrostatically stressed elastic sheet p 33 A88-48194 Dynamics analysis of a system of hinge-connected flexible bodies p 42 A88-52639 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC DEFORMATION Use of assumed modes in equations governing
tethers p 33 A88-46712 Adaptive control experiment with a large flexible structure [AIAA PAPER 88-4153] p 36 A88-50247 Libration damping of a tethered satellite using rate only control [AIAA PAPER 88-4172] p 37 A88-50263 Spatial distribution of model error based on analytical/experimental frequency discrepancies p 41 A88-50899 Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471	Vibration control of large structures [AD-A193317] p 53 N88-27587 Space structure (dynamics and control) theme development [NASA-TM-100597] p 8 N88-29850 DYNAMICAL SYSTEMS Stability and equilibria of deformable systems p 26 A88-34813 On the dynamics of manipulators in space using the virtual manipulator approach p 75 A88-42677 On-line measurement configuration strategies for	in elastic components p 28 A88-39724 Stress concentration around a pair of circular holes in a hydrostatically stressed elastic sheet p 33 A88-48194 Dynamics analysis of a system of hinge-connected flexible bodies Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC DEFORMATION Use of assumed modes in equations governing large-displacement elastodynamic plate behavior
tethers p 33 A88-46712 Adaptive control experiment with a large flexible structure [AIAA PAPER 88-4153] p 36 A88-50247 Libration damping of a tethered satellite using rate only control [AIAA PAPER 88-4172] p 37 A88-50263 Spatial distribution of model error based on analytical/experimental frequency discrepancies p 41 A88-50899 Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471 Procedures for updating dynamic mathematical models,	Vibration control of large structures [AD-A193317] p 53 N88-27587 Space structure (dynamics and control) theme development [NASA-TM-100597] p 8 N88-29850 DYNAMICAL SYSTEMS Stability and equilibria of deformable systems p 26 A88-34813 On the dynamics of manipulators in space using the virtual manipulator approach p 75 A88-42677	in elastic components p 28 A88-39724 Stress concentration around a pair of circular holes in a hydrostatically stressed elastic sheet p 33 A88-48194 Dynamics analysis of a system of hinge-connected flexible bodies p 42 A88-52639 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC DEFORMATION Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421
tethers p 33 A88-46712 Adaptive control experiment with a large flexible structure [AIAA PAPER 88-4153] p 36 A88-50247 Libration damping of a tethered satellite using rate only control [AIAA PAPER 88-4172] p 37 A88-50263 Spatial distribution of model error based on analytical/experimental frequency discrepancies p 41 A88-50899 Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471 Procedures for updating dynamic mathematical models, test phase — spacecraft hardware	Vibration control of large structures [AD-A193317] p 53 N88-27587 Space structure (dynamics and control) theme development [NASA-TM-100597] p 8 N88-29850 DYNAMICAL SYSTEMS Stability and equilibria of deformable systems p 26 A88-34813 On the dynamics of manipulators in space using the virtual manipulator approach p 75 A88-42677 On-line measurement configuration strategies for discrete-time systems [AIAA PAPER 88-4168] p 36 A88-50259	in elastic components p 28 A88-39724 Stress concentration around a pair of circular holes in a hydrostatically stressed elastic sheet p 33 A88-48194 Dynamics analysis of a system of hinge-connected flexible bodies p 42 A88-52639 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC DEFORMATION Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 Dynamics of articulated aerospace structures
tethers p 33 A88-46712 Adaptive control experiment with a large flexible structure [AIAA PAPER 88-4153] p 36 A88-50247 Libration damping of a tethered satellite using rate only control [AIAA PAPER 88-4172] p 37 A88-50263 Spatial distribution of model error based on analytical/experimental frequency discrepancies p 41 A88-50899 Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471 Procedures for updating dynamic mathematical models,	Vibration control of large structures [AD-A193317] p 53 N88-27587 Space structure (dynamics and control) theme development [NASA-TM-100597] p 8 N88-29850 DYNAMICAL SYSTEMS Stability and equilibria of deformable systems p 26 A88-34813 On the dynamics of manipulators in space using the virtual manipulator approach p 75 A88-42677 On-line measurement configuration strategies for discrete-time systems	in elastic components p 28 A88-39724 Stress concentration around a pair of circular holes in a hydrostatically stressed elastic sheet p 33 A88-48194 Dynamics analysis of a system of hinge-connected flexible bodies Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC DEFORMATION Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794
tethers p 33 A88-46712 Adaptive control experiment with a large flexible structure [AIAA PAPER 88-4153] p 36 A88-50247 Libration damping of a tethered satellite using rate only control [AIAA PAPER 88-4172] p 37 A88-50263 Spatial distribution of model error based on analytical/experimental frequency discrepancies Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471 Procedures for updating dynamic mathematical models, test phase spacecraft hardware [MEBS-38/87] DYNAMIC RESPONSE	Vibration control of large structures [AD-A193317] p 53 N88-27587 Space structure (dynamics and control) theme development [NASA-TM-100597] p 8 N88-29850 DYNAMICAL SYSTEMS Stability and equilibria of deformable systems p 26 A88-34813 On the dynamics of manipulators in space using the virtual manipulator approach p 75 A88-42677 On-line measurement configuration strategies for discrete-time systems [AIAA PAPER 88-4168] p 36 A88-50259 A Fourier-based optimal control approach for structural	in elastic components p 28 A88-39724 Stress concentration around a pair of circular holes in a hydrostatically stressed elastic sheet p 33 A88-48194 Dynamics analysis of a system of hinge-connected flexible bodies p 42 A88-52639 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC DEFORMATION Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-5421 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC PLATES
tethers p 33 A88-46712 Adaptive control experiment with a large flexible structure [AIAA PAPER 88-4153] p 36 A88-50247 Libration damping of a tethered satellite using rate only control [AIAA PAPER 88-4172] p 37 A88-50263 Spatial distribution of model error based on analytical/experimental frequency discrepancies p 41 A88-50899 Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471 Procedures for updating dynamic mathematical models, test phase spacecraft hardware [MEBS-38/87] p 12 N88-29852 DYNAMIC RESPONSE On the transient dynamics of flexible orbiting	Vibration control of large structures [AD-A193317] p 53 N88-27587 Space structure (dynamics and control) theme development [NASA-TM-100597] p 8 N88-29850 DYNAMICAL SYSTEMS Stability and equilibria of deformable systems p 26 A88-34813 On the dynamics of manipulators in space using the virtual manipulator approach p 75 A88-42677 On-line measurement configuration strategies for discrete-time systems [AIAA PAPER 88-4168] p 36 A88-50259 A Fourier-based optimal control approach for structural systems p 45 A88-54643	in elastic components p 28 A88-39724 Stress concentration around a pair of circular holes in a hydrostatically stressed elastic sheet p 33 A88-48194 Dynamics analysis of a system of hinge-connected flexible bodies p 42 A88-52639 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC DEFORMATION Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC PLATES Estimation and control of distributed models for certain
tethers p 33 A88-46712 Adaptive control experiment with a large flexible structure [AIAA PAPER 88-4153] p 36 A88-50247 Libration damping of a tethered satellite using rate only control [AIAA PAPER 88-4172] p 37 A88-50263 Spatial distribution of model error based on analytical/experimental frequency discrepancies	Vibration control of large structures [AD-A193317] p 53 N88-27587 Space structure (dynamics and control) theme development [NASA-TM-100597] p 8 N88-29850 DYNAMICAL SYSTEMS Stability and equilibria of deformable systems p 26 A88-34813 On the dynamics of manipulators in space using the virtual manipulator approach p 75 A88-42677 On-line measurement configuration strategies for discrete-time systems [AIAA PAPER 88-4168] p 36 A88-50259 A Fourier-based optimal control approach for structural systems p 45 A88-54643 Analytical investigation of the dynamics of tethered	in elastic components p 28 A88-39724 Stress concentration around a pair of circular holes in a hydrostatically stressed elastic sheet p 33 A88-48194 Dynamics analysis of a system of hinge-connected flexible bodies p 42 A88-52639 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC DEFORMATION Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC PLATES Estimation and control of distributed models for certain elastic systems arising in large space structures
tethers p 33 A88-46712 Adaptive control experiment with a large flexible structure [AIAA PAPER 88-4153] p 36 A88-50247 Libration damping of a tethered satellite using rate only control [AIAA PAPER 88-4172] p 37 A88-50263 Spatial distribution of model error based on analytical/experimental frequency discrepancies Dostacles to high fidelity multibody dynamics simulation p 44 A88-54471 Procedures for updating dynamic mathematical models, test phase spacecraft hardware [MEBS-38/87] p 12 N88-29852 DYNAMIC RESPONSE On the transient dynamics of flexible orbiting structures p 31 A88-46405 Optimal deployment of spacecraft appendages	Vibration control of large structures [AD-A193317] p 53 N88-27587 Space structure (dynamics and control) theme development [NASA-TM-100597] p 8 N88-29850 DYNAMICAL SYSTEMS Stability and equilibria of deformable systems p 26 A88-34813 On the dynamics of manipulators in space using the virtual manipulator approach p 75 A88-42677 On-line measurement configuration strategies for discrete-time systems [AIAA PAPER 88-4168] p 36 A88-50259 A Fourier-based optimal control approach for structural systems Analytical investigation of the dynamics of tethered constellations in earth orbit	in elastic components p 28 A88-39724 Stress concentration around a pair of circular holes in a hydrostatically stressed elastic sheet p 33 A88-48194 Dynamics analysis of a system of hinge-connected flexible bodies Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC DEFORMATION Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC PLATES Estimation and control of distributed models for certain elastic systems arising in large space structures [AD-A192120] p 51 N88-24666
tethers p 33 A88-46712 Adaptive control experiment with a large flexible structure [AIAA PAPER 88-4153] p 36 A88-50247 Libration damping of a tethered satellite using rate only control [AIAA PAPER 88-4172] p 37 A88-50263 Spatial distribution of model error based on analytical/experimental frequency discrepancies p 41 A88-50899 Obstacles to high fidelity multibody dynamics simulation p 44 A88-5471 Procedures for updating dynamic mathematical models, test phase spacecraft hardware [MEBS-38/87] p 12 N88-29852 DYNAMIC RESPONSE On the transient dynamics of flexible orbiting structures Optimal deployment of spacecraft appendages [IAF PAPER 88-307] p 47 A88-55386	Vibration control of large structures [AD-A193317] p 53 N88-27587 Space structure (dynamics and control) theme development [NASA-TM-100597] p 8 N88-29850 DYNAMICAL SYSTEMS Stability and equilibria of deformable systems p 26 A88-34813 On the dynamics of manipulators in space using the virtual manipulator approach p 75 A88-42677 On-line measurement configuration strategies for discrete-time systems [AIAA PAPER 88-4168] p 36 A88-50259 A Fourier-based optimal control approach for structural systems p 45 A88-54643 Analytical investigation of the dynamics of tethered constellations in earth orbit [NASA-CR-179371] p 53 N88-28950	in elastic components p 28 A88-39724 Stress concentration around a pair of circular holes in a hydrostatically stressed elastic sheet Dynamics analysis of a system of hinge-connected flexible bodies p 42 A88-52639 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC DEFORMATION Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC PLATES Estimation and control of distributed models for certain elastic systems arising in large space structures [AD-A192120] p 51 N88-24666 ELASTIC WAVES
tethers p 33 A88-46712 Adaptive control experiment with a large flexible structure [AIAA PAPER 88-4153] p 36 A88-50247 Libration damping of a tethered satellite using rate only control [AIAA PAPER 88-4172] p 37 A88-50263 Spatial distribution of model error based on analytical/experimental frequency discrepancies p 41 A88-50899 Obstacles to high fidelity multibody dynamics simulation Procedures for updating dynamic mathematical models, test phase — spacecraft hardware [MEBS-38/87] p 12 N88-29852 DYNAMIC RESPONSE On the transient dynamics of flexible orbiting structures optimal deployment of spacecraft appendages [IAF PAPER 88-307] p 47 A88-55366 Feedback control of distributed parameter systems with	Vibration control of large structures [AD-A193317] p 53 N88-27587 Space structure (dynamics and control) theme development [NASA-TM-100597] p 8 N88-29850 DYNAMICAL SYSTEMS Stability and equilibria of deformable systems p 26 A88-34813 On the dynamics of manipulators in space using the virtual manipulator approach p 75 A88-42677 On-line measurement configuration strategies for discrete-time systems [AIAA PAPER 88-4168] p 36 A88-50259 A Fourier-based optimal control approach for structural systems Analytical investigation of the dynamics of tethered constellations in earth orbit	in elastic components p 28 A88-39724 Stress concentration around a pair of circular holes in a hydrostatically stressed elastic sheet p 33 A88-48194 Dynamics analysis of a system of hinge-connected flexible bodies p 42 A88-52639 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC DEFORMATION Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC PLATES Estimation and control of distributed models for certain elastic systems arising in large space structures [AD-A192120] p 51 N88-24666 ELASTIC WAVES Experimental study of transient waves in a plane grid
tethers p 33 A88-46712 Adaptive control experiment with a large flexible structure [AIAA PAPER 88-4153] p 36 A88-50247 Libration damping of a tethered satellite using rate only control [AIAA PAPER 88-4172] p 37 A88-50263 Spatial distribution of model error based on analytical/experimental frequency discrepancies p 41 A88-5089 Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471 Procedures for updating dynamic mathematical models, test phase spacecraft hardware [MEBS-338/87] p 12 N88-29852 DYNAMIC RESPONSE On the transient dynamics of flexible orbiting structures p 31 A88-46405 Optimal deployment of spacecraft appendages [IAF PAPER 88-307] Feedback control of distributed parameter systems with applications to large space structures	Vibration control of large structures [AD-A193317] p 53 N88-27587 Space structure (dynamics and control) theme development [NASA-TM-100597] p 8 N88-29850 DYNAMICAL SYSTEMS Stability and equilibria of deformable systems p 26 A88-34813 On the dynamics of manipulators in space using the virtual manipulator approach p 75 A88-42677 On-line measurement configuration strategies for discrete-time systems [AIAA PAPER 88-4168] p 36 A88-50259 A Fourier-based optimal control approach for structural systems Analytical investigation of the dynamics of tethered constellations in earth orbit [NASA-CR-179371] p 53 N88-28950	in elastic components p 28 A88-39724 Stress concentration around a pair of circular holes in a hydrostatically stressed elastic sheet p 33 A88-48194 Dynamics analysis of a system of hinge-connected flexible bodies Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC DEFORMATION Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC PLATES Estimation and control of distributed models for certain elastic systems arising in large space structures [AD-A192120] p 51 N88-24666 ELASTIC WAVES Experimental study of transient waves in a plane grid structure p 28 A88-38390
tethers p 33 A88-46712 Adaptive control experiment with a large flexible structure [AIAA PAPER 88-4153] p 36 A88-50247 Libration damping of a tethered satellite using rate only control [AIAA PAPER 88-4172] p 37 A88-50263 Spatial distribution of model error based on analytical/experimental frequency discrepancies p 41 A88-50899 Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471 Procedures for updating dynamic mathematical models, test phase spacecraft hardware [MEB-38/87] p 12 N88-29852 DYNAMIC RESPONSE On the transient dynamics of flexible orbiting structures Optimal deployment of spacecraft appendages [IAF PAPER 88-307] p 47 A88-55366 Feedback control of distributed parameter systems with applications to large space structures [AD-A190536] p 49 N88-22068	Vibration control of large structures [AD-A193317] p 53 N88-27587 Space structure (dynamics and control) theme development [NASA-TM-100597] p 8 N88-29850 DYNAMICAL SYSTEMS Stability and equilibria of deformable systems p 26 A88-34813 On the dynamics of manipulators in space using the virtual manipulator approach p 75 A88-42677 On-line measurement configuration strategies for discrete-time systems [AIAA PAPER 88-4168] p 36 A88-50259 A Fourier-based optimal control approach for structural systems Analytical investigation of the dynamics of tethered constellations in earth orbit [NASA-CR-179371] p 53 N88-28950 E EARTH (PLANET)	in elastic components p 28 A88-39724 Stress concentration around a pair of circular holes in a hydrostatically stressed elastic sheet Dynamics analysis of a system of hinge-connected flexible bodies p 42 A88-52639 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC DEFORMATION Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC PLATES Estimation and control of distributed models for certain elastic systems arising in large space structures [AD-A192120] p 51 N88-24666 ELASTIC WAVES Experimental study of transient waves in a plane grid structure p 28 A88-38390 ELASTODYNAMICS
tethers p 33 A88-46712 Adaptive control experiment with a large flexible structure [AIAA PAPER 88-4153] p 36 A88-50247 Libration damping of a tethered satellite using rate only control [AIAA PAPER 88-4172] p 37 A88-50263 Spatial distribution of model error based on analytical/experimental frequency discrepancies p 41 A88-50899 Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471 Procedures for updating dynamic mathematical models, test phase spacecraft hardware [MEBS-38/87] p 12 N88-29852 DYNAMIC RESPONSE On the transient dynamics of flexible orbiting structures Optimal deployment of spacecraft appendages [IAF PAPER 88-307] p 47 A88-55386 Feedback control of distributed parameter systems with applications to large space structures [AD-A190536] p 49 N88-22068 Vibration control of large structures	Vibration control of large structures [AD-A193317] p 53 N88-27587 Space structure (dynamics and control) theme development [NASA-TM-100597] p 8 N88-29850 DYNAMICAL SYSTEMS Stability and equilibria of deformable systems p 26 A88-34813 On the dynamics of manipulators in space using the virtual manipulator approach p 75 A88-42677 On-line measurement configuration strategies for discrete-time systems [AIAA PAPER 88-4168] p 36 A88-50259 A Fourier-based optimal control approach for structural systems p 45 A88-54643 Analytical investigation of the dynamics of tethered constellations in earth orbit [NASA-CR-179371] p 53 N88-28950 E EARTH (PLANET) Spacecraft technology requirements for future NASA	in elastic components p 28 A88-39724 Stress concentration around a pair of circular holes in a hydrostatically stressed elastic sheet p 33 A88-48194 Dynamics analysis of a system of hinge-connected flexible bodies p 42 A88-52639 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC DEFORMATION Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC PLATES Estimation and control of distributed models for certain elastic systems arising in large space structures [AD-A192120] p 51 N88-24666 ELASTIC WAVES Experimental study of transient waves in a plane grid structure p 28 A88-38390 ELASTODYNAMICS Mathematical modeling of the dynamics of a spacecraft
tethers p 33 A88-46712 Adaptive control experiment with a large flexible structure [AIAA PAPER 88-4153] p 36 A88-50247 Libration damping of a tethered satellite using rate only control [AIAA PAPER 88-4172] p 37 A88-50263 Spatial distribution of model error based on analytical/experimental frequency discrepancies p 41 A88-50899 Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471 Procedures for updating dynamic mathematical models, test phase — spacecraft hardware [MEBS-38/87] p 12 N88-29852 DYNAMIC RESPONSE On the transient dynamics of flexible orbiting structures p 31 A88-46405 Optimal deployment of spacecraft appendages [IAF PAPER 88-307] Feedback control of distributed parameter systems with applications to large space structures [AD-A190536] p 49 N88-22068 Vibration control of large structures [AD-A191358] p 50 N88-22928	Vibration control of large structures [AD-A193317] p 53 N88-27587 Space structure (dynamics and control) theme development [NASA-TM-100597] p 8 N88-29850 DYNAMICAL SYSTEMS Stability and equilibria of deformable systems p 26 A88-34813 On the dynamics of manipulators in space using the virtual manipulator approach p 75 A88-42677 On-line measurement configuration strategies for discrete-time systems [AIAA PAPER 88-4168] p 36 A88-50259 A Fourier-based optimal control approach for structural systems p 45 A88-54643 Analytical investigation of the dynamics of tethered constellations in earth orbit [NASA-CR-179371] p 53 N88-28950 E EARTH (PLANET) Spacecraft technology requirements for future NASA missions	in elastic components p 28 A88-39724 Stress concentration around a pair of circular holes in a hydrostatically stressed elastic sheet p 33 A88-48194 Dynamics analysis of a system of hinge-connected flexible bodies Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC DEFORMATION Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC PLATES Estimation and control of distributed models for certain elastic systems arising in large space structures [AD-A192120] p 51 N88-24666 ELASTIC WAVES Experimental study of transient waves in a plane grid structure p 28 A88-38390 ELASTODYNAMICS Mathematical modeling of the dynamics of a spacecraft with elastic components p 33 A88-48080
tethers p 33 A88-46712 Adaptive control experiment with a large flexible structure [AIAA PAPER 88-4153] p 36 A88-50247 Libration damping of a tethered satellite using rate only control [AIAA PAPER 88-4172] p 37 A88-50263 Spatial distribution of model error based on analytical/experimental frequency discrepancies p 41 A88-50899 Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471 Procedures for updating dynamic mathematical models, test phase spacecraft hardware [MEBS-38/87] p 12 N88-29852 DYNAMIC RESPONSE On the transient dynamics of flexible orbiting structures [AD-A190536] p 47 A88-55366 Feedback control of distributed parameter systems with applications to large space structures [AD-A190536] p 49 N88-22068 Uibration control of large structures [AD-A191358] DYNAMIC STABILITY	Vibration control of large structures [AD-A193317] p 53 N88-27587 Space structure (dynamics and control) theme development [NASA-TM-100597] p 8 N88-29850 DYNAMICAL SYSTEMS Stability and equilibria of deformable systems p 26 A88-34813 On the dynamics of manipulators in space using the virtual manipulator approach p 75 A88-42677 On-line measurement configuration strategies for discrete-time systems [AIAA PAPER 88-4168] p 36 A88-50259 A Fourier-based optimal control approach for structural systems Analytical investigation of the dynamics of tethered constellations in earth orbit [NASA-CR-179371] p 53 N88-28950 E EARTH (PLANET) Spacecraft technology requirements for future NASA missions [AIAA PAPER 88-3487] p 4 A88-43299	in elastic components p 28 A88-39724 Stress concentration around a pair of circular holes in a hydrostatically stressed elastic sheet Dynamics analysis of a system of hinge-connected flexible bodies p 42 A88-52639 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC DEFORMATION Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC PLATES Estimation and control of distributed models for certain elastic systems arising in large space structures [AD-A192120] p 51 N88-24666 ELASTIC WAVES Experimental study of transient waves in a plane grid structure ELASTODYNAMICS Mathematical modeling of the dynamics of a spacecraft with elastic components Investigation of the dynamics of a system of bodies
tethers p 33 A88-46712 Adaptive control experiment with a large flexible structure [AIAA PAPER 88-4153] p 36 A88-50247 Libration damping of a tethered satellite using rate only control [AIAA PAPER 88-4172] p 37 A88-50263 Spatial distribution of model error based on analytical/experimental frequency discrepancies p 41 A88-50899 Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471 Procedures for updating dynamic mathematical models, test phase spacecraft hardware [MEBS-38/87] p 12 N88-29852 DYNAMIC RESPONSE On the transient dynamics of flexible orbiting structures [DYNAMIC RESPONSE] [IAF PAPER 88-307] p 47 A88-55386 Feedback control of distributed parameter systems with applications to large space structures [AD-A190536] p 49 N88-22068 Vibration control of large structures [AD-A191358] p 50 N88-22928 DYNAMIC STABILITY Vibrations of structures with parametric uncertainties	Vibration control of large structures [AD-A193317]	in elastic components p 28 A88-39724 Stress concentration around a pair of circular holes in a hydrostatically stressed elastic sheet p 33 A88-48194 Dynamics analysis of a system of hinge-connected flexible bodies p 42 A88-52639 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC DEFORMATION Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC PLATES Estimation and control of distributed models for certain elastic systems arising in large space structures [AD-A192120] p 51 N88-24666 ELASTIC WAVES Experimental study of transient waves in a plane grid structure p 28 A88-38390 ELASTODYNAMICS Mathematical modeling of the dynamics of a spacecraft with elastic components p 33 A88-48080 Investigation of the dynamics of a system of bodies containing extended elastic components in a central force
tethers p 33 A88-46712 Adaptive control experiment with a large flexible structure [AIAA PAPER 88-4153] p 36 A88-50247 Libration damping of a tethered satellite using rate only control [AIAA PAPER 88-4172] p 37 A88-50263 Spatial distribution of model error based on analytical/experimental frequency discrepancies p 41 A88-5089 Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471 Procedures for updating dynamic mathematical models, test phase	Vibration control of large structures [AD-A193317] p 53 N88-27587 Space structure (dynamics and control) theme development [NASA-TM-100597] p 8 N88-29850 DYNAMICAL SYSTEMS Stability and equilibria of deformable systems p 26 A88-34813 On the dynamics of manipulators in space using the virtual manipulator approach p 75 A88-42677 On-line measurement configuration strategies for discrete-time systems [AIAA PAPER 88-4168] p 36 A88-50259 A Fourier-based optimal control approach for structural systems Analytical investigation of the dynamics of tethered constellations in earth orbit [NASA-CR-179371] p 53 N88-28950 E EARTH (PLANET) Spacecraft technology requirements for future NASA missions [AIAA PAPER 88-3487] p 4 A88-43299	in elastic components p 28 A88-39724 Stress concentration around a pair of circular holes in a hydrostatically stressed elastic sheet p 33 A88-48194 Dynamics analysis of a system of hinge-connected flexible bodies p 42 A88-52639 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC DEFORMATION Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC PLATES Estimation and control of distributed models for certain elastic systems arising in large space structures [AD-A192120] p 51 N88-24666 ELASTIC WAVES Experimental study of transient waves in a plane grid structure p 28 A88-38390 ELASTICOPNAMICS Mathematical modeling of the dynamics of a spacecraft with elastic components p 33 A88-48080 Investigation of the dynamics of a system of bodies containing extended elastic components in a central force
tethers p 33 A88-46712 Adaptive control experiment with a large flexible structure [AIAA PAPER 88-4153] p 36 A88-50247 Libration damping of a tethered satellite using rate only control [AIAA PAPER 88-4172] p 37 A88-50263 Spatial distribution of model error based on analytical/experimental frequency discrepancies Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471 Procedures for updating dynamic mathematical models, test phase spacecraft hardware [MEBS-38/87] p 12 N88-29852 DYNAMIC RESPONSE On the transient dynamics of flexible orbiting structures p 31 A88-46405 Optimal deployment of spacecraft appendages [IAF PAPER 88-307] p 47 A88-55366 Feedback control of distributed parameter systems with applications to large space structures [AD-A190536] p 49 N88-22068 Vibration control of large structures [AD-A191358] p 50 N88-22928 DYNAMIC STABILITY Vibrations of structures with parametric uncertainties [AD-A190400] p 49 N88-22378 DYNAMIC STRUCTURAL ANALYSIS	Vibration control of large structures [AD-A193317] p 53 N88-27587 Space structure (dynamics and control) theme development [NASA-TM-100597] p 8 N88-29850 DYNAMICAL SYSTEMS Stability and equilibria of deformable systems p 26 A88-34813 On the dynamics of manipulators in space using the virtual manipulator approach p 75 A88-42677 On-line measurement configuration strategies for discrete-time systems [AIAA PAPER 88-4168] p 36 A88-50259 A Fourier-based optimal control approach for structural systems p 45 A88-54643 Analytical investigation of the dynamics of tethered constellations in earth orbit [NASA-CR-179371] p 53 N88-28950 E EARTH (PLANET) Spacecraft technology requirements for future NASA missions [AIAA PAPER 88-3487] p 4 A88-43299 EARTH OBSERVATIONS (FROM SPACE) Scientific and economy-oriented space systems	in elastic components p 28 A88-39724 Stress concentration around a pair of circular holes in a hydrostatically stressed elastic sheet p 33 A88-48194 Dynamics analysis of a system of hinge-connected flexible bodies p 42 A88-52639 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC DEFORMATION Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC PLATES Estimation and control of distributed models for certain elastic systems arising in large space structures [AD-A192120] p 51 N88-24666 ELASTIC WAVES Experimental study of transient waves in a plane grid structure ELASTODYNAMICS Mathematical modeling of the dynamics of a spacecraft with elastic components p 33 A88-48080 Investigation of the dynamics of a system of bodies containing extended elastic components in a central force field
tethers p 33 A88-46712 Adaptive control experiment with a large flexible structure [AIAA PAPER 88-4153] p 36 A88-50247 Libration damping of a tethered satellite using rate only control [AIAA PAPER 88-4172] p 37 A88-50263 Spatial distribution of model error based on analytical/experimental frequency discrepancies p 41 A88-50899 Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471 Procedures for updating dynamic mathematical models, test phase spacecraft hardware [MEBS-38/87] p 12 N88-29852 DYNAMIC RESPONSE On the transient dynamics of flexible orbiting structures [IAF PAPER 88-307] Feedback control of distributed parameter systems with applications to large space structures [AD-A190536] p 49 N88-22068 Vibration control of large structures [AD-A191358] p 50 N88-22928 DYNAMIC STABILITY Vibrations of structures with parametric uncertainties [AD-A190400] DYNAMIC STRUCTURAL ANALYSIS Modal testing R&D at the Communications Research	Vibration control of large structures [AD-A193317] p 53 N88-27587 Space structure (dynamics and control) theme development [NASA-TM-100597] p 8 N88-29850 DYNAMICAL SYSTEMS Stability and equilibria of deformable systems p 26 A88-34813 On the dynamics of manipulators in space using the virtual manipulator approach p 75 A88-42677 On-line measurement configuration strategies for discrete-time systems [AIAA PAPER 88-4168] p 36 A88-50259 A Fourier-based optimal control approach for structural systems p 45 A88-4643 Analytical investigation of the dynamics of tethered constellations in earth orbit [NASA-CR-179371] p 53 N88-28950 E EARTH (PLANET) Spacecraft technology requirements for future NASA missions [AIAA PAPER 88-3487] p 4 A88-43299 EARTH OBSERVATIONS (FROM SPACE) Scientific and economy-oriented space systems /revised edition/ Book p 93 A88-43247 EARTH ORBITAL ENVIRONMENTS The environment of earth-orbiting systems	in elastic components p 28 A88-39724 Stress concentration around a pair of circular holes in a hydrostatically stressed elastic sheet p 33 A88-48194 Dynamics analysis of a system of hinge-connected flexible bodies p 42 A88-52639 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC DEFORMATION Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC PLATES Estimation and control of distributed models for certain elastic systems arising in large space structures [AD-A192120] p 51 N88-24666 ELASTIC WAVES Experimental study of transient waves in a plane grid structure ELASTODYNAMICS Mathematical modeling of the dynamics of a spacecraft with elastic components p 33 A88-48080 Investigation of the dynamics of a system of bodies containing extended elastic components in a central force p 33 A88-48082 Dynamic analysis of finitely stretched and rotated three-dimensional space-curved beams
tethers p 33 A88-46712 Adaptive control experiment with a large flexible structure [AIAA PAPER 88-4153] p 36 A88-50247 Libration damping of a tethered satellite using rate only control [AIAA PAPER 88-4172] p 37 A88-50263 Spatial distribution of model error based on analytical/experimental frequency discrepancies Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471 Procedures for updating dynamic mathematical models, test phase spacecraft hardware [MEBS-38/87] p 12 N88-29852 DYNAMIC RESPONSE On the transient dynamics of flexible orbiting structures p 31 A88-46405 Optimal deployment of spacecraft appendages [IAF PAPER 88-307] p 47 A88-55366 Feedback control of distributed parameter systems with applications to large space structures [AD-A190536] p 49 N88-22068 Vibration control of large structures [AD-A191358] p 50 N88-22928 DYNAMIC STABILITY Vibrations of structures with parametric uncertainties [AD-A190400] p 49 N88-22378 DYNAMIC STRUCTURAL ANALYSIS	Vibration control of large structures [AD-A193317] p 53 N88-27587 Space structure (dynamics and control) theme development [NASA-TM-100597] p 8 N88-29850 DYNAMICAL SYSTEMS Stability and equilibria of deformable systems	in elastic components p 28 A88-39724 Stress concentration around a pair of circular holes in a hydrostatically stressed elastic sheet Dynamics analysis of a system of hinge-connected flexible bodies p 42 A88-52639 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC DEFORMATION Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC PLATES Estimation and control of distributed models for certain elastic systems arising in large space structures [AD-A192120] p 51 N88-24666 ELASTIC WAVES Experimental study of transient waves in a plane grid structure p 28 A88-38390 ELASTODYNAMICS Mathematical modeling of the dynamics of a spacecraft with elastic components p 33 A88-48080 Investigation of the dynamics of a system of bodies containing extended elastic components in a central force p 33 A88-48080 Dynamic analysis of finitely stretched and rotated three-dimensional space-curved beams p 22 A88-49658 Use of assumed modes in equations governing
tethers p 33 A88-46712 Adaptive control experiment with a large flexible structure [AIAA PAPER 88-4153] p 36 A88-50247 Libration damping of a tethered satellite using rate only control [AIAA PAPER 88-4172] p 37 A88-50263 Spatial distribution of model error based on analytical/experimental frequency discrepancies p 41 A88-50899 Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471 Procedures for updating dynamic mathematical models, test phase spacecraft hardware [MEBS-38/87] p 12 N88-29852 DYNAMIC RESPONSE On the transient dynamics of flexible orbiting structures p 31 A88-46405 Optimal deployment of spacecraft appendages [IAF PAPER 88-307] p 47 A88-55366 Feedback control of distributed parameter systems with applications to large space structures [AD-A190536] p 49 N88-22068 Vibration control of large structures [AD-A191358] p 50 N88-22928 DYNAMIC STBILITY Vibrations of structures with parametric uncertainties [AD-A190400] p 9 N88-22378 DYNAMIC STRUCTURAL ANALYSIS Modal testing R&D at the Communications Research Centre structural vibration analysis of aircraft and spacecraft structures p 25 A88-34613 Member vibration effects on LSS behavior	Vibration control of large structures [AD-A193317] p 53 N88-27587 Space structure (dynamics and control) theme development [NASA-TM-100597] p 8 N88-29850 DYNAMICAL SYSTEMS Stability and equilibria of deformable systems	in elastic components p 28 A88-39724 Stress concentration around a pair of circular holes in a hydrostatically stressed elastic sheet Dynamics analysis of a system of hinge-connected flexible bodies p 42 A88-52639 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC DEFORMATION Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC PLATES Estimation and control of distributed models for certain elastic systems arising in large space structures [AD-A192120] p 51 N88-24666 ELASTIC WAVES Experimental study of transient waves in a plane grid structure p 28 A88-38390 ELASTODYNAMICS Mathematical modeling of the dynamics of a spacecraft with elastic components p 33 A88-48080 Investigation of the dynamics of a system of bodies containing extended elastic components in a central force field p 33 A88-48082 Dynamic analysis of finitely stretched and rotated three-dimensional space-curved beams p 22 A88-49658 Use of assumed modes in equations governing large-displacement elastodynamic plate behavior
tethers p 33 A88-46712 Adaptive control experiment with a large flexible structure [AIAA PAPER 88-4153] p 36 A88-50247 Libration damping of a tethered satellite using rate only control [AIAA PAPER 88-4172] p 37 A88-50263 Spatial distribution of model error based on analytical/experimental frequency discrepancies p 41 A88-50899 Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471 Procedures for updating dynamic mathematical models, test phase spacecraft hardware [MEBS-38/87] p 12 N88-29852 DYNAMIC RESPONSE On the transient dynamics of flexible orbiting structures [AD-A190406] p 47 A88-55386 Vibration control of distributed parameter systems with applications to large space structures [AD-A191358] p 50 N88-22928 DYNAMIC STABILITY Vibrations of structures with parametric uncertainties [AD-A190400] p 49 N88-22378 DYNAMIC STRUCTURAL ANALYSIS Modal testing R&D at the Communications Research Centre structural vibration analysis of aircraft and spacecraft structures p 25 A88-34613 Member vibration effects on LSS behavior [AAS PAPER 86-396] p 27 A88-35116	Vibration control of large structures [AD-A193317] p 53 N88-27587 Space structure (dynamics and control) theme development [NASA-TM-100597] p 8 N88-29850 DYNAMICAL SYSTEMS Stability and equilibria of deformable systems p 26 A88-34813 On the dynamics of manipulators in space using the virtual manipulator approach p 75 A88-42677 On-line measurement configuration strategies for discrete-time systems [AIAA PAPER 88-4168] p 36 A88-50259 A Fourier-based optimal control approach for structural systems p 45 A88-4643 Analytical investigation of the dynamics of tethered constellations in earth orbit [NASA-CR-179371] p 53 N88-28950 E EARTH (PLANET) Spacecraft technology requirements for future NASA missions [AIAA PAPER 88-3487] p 4 A88-43299 EARTH OBSERVATIONS (FROM SPACE) Scientific and economy-oriented space systems /revised edition/ Book p 93 A88-43247 EARTH ORBITAL ENVIRONMENTS The environment of earth-orbiting systems p 3 A88-35877 LEO to GEO transportation system combining electric propulsion with beamed microwave power from earth	in elastic components p 28 A88-39724 Stress concentration around a pair of circular holes in a hydrostatically stressed elastic sheet p 33 A88-48194 Dynamics analysis of a system of hinge-connected flexible bodies p 42 A88-52639 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC DEFORMATION Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC PLATES Estimation and control of distributed models for certain elastic systems arising in large space structures [AD-A192120] p 51 N88-24666 ELASTIC WAVES Experimental study of transient waves in a plane grid structure p 28 A88-38390 ELASTODYNAMICS Mathematical modeling of the dynamics of a spacecraft with elastic components p 33 A88-48080 Investigation of the dynamics of a system of bodies containing extended elastic components in a central force field Dynamic analysis of finitely stretched and rotated three-dimensional space-curved beams p 22 A88-49658 Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421
tethers p 33 A88-46712 Adaptive control experiment with a large flexible structure [AIAA PAPER 88-4153] p 36 A88-50247 Libration damping of a tethered satellite using rate only control [AIAA PAPER 88-4172] p 37 A88-50263 Spatial distribution of model error based on analytical/experimental frequency discrepancies p 41 A88-50899 Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471 Procedures for updating dynamic mathematical models, test phase —— spacecraft hardware [MEBS-38/87] p 12 N88-29852 DYNAMIC RESPONSE On the transient dynamics of flexible orbiting structures p 31 A88-46405 Optimal deployment of spacecraft appendages [IAF PAPER 88-307] p 47 A88-55386 Feedback control of distributed parameter systems with applications to large space structures [AD-A190536] p 49 N88-22068 Vibration control of large structures [AD-A191358] p 50 N88-22928 DYNAMIC STABILITY Vibrations of structures with parametric uncertainties [AD-A190400] p 49 N88-22378 DYNAMIC STRUCTURAL ANALYSIS Modal testing R&D at the Communications Research Centre — structural vibration analysis of aircraft and spacecraft structures [AD-REPER 86-396] p 27 A88-35116 Recent trends in aeroelasticity, structures, and structural	Vibration control of large structures [AD-A193317] p 53 N88-27587 Space structure (dynamics and control) theme development [NASA-TM-100597] p 8 N88-29850 DYNAMICAL SYSTEMS Stability and equilibria of deformable systems	in elastic components p 28 A88-39724 Stress concentration around a pair of circular holes in a hydrostatically stressed elastic sheet Dynamics analysis of a system of hinge-connected flexible bodies p 42 A88-52639 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC DEFORMATION Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC PLATES Estimation and control of distributed models for certain elastic systems arising in large space structures [AD-A192120] p 51 N88-24666 ELASTIC WAVES Experimental study of transient waves in a plane grid structure p 28 A88-38390 ELASTODYNAMICS Mathematical modeling of the dynamics of a spacecraft with elastic components p 33 A88-48080 Investigation of the dynamics of a system of bodies containing extended elastic components in a central force p 33 A88-48080 Dynamic analysis of finitely stretched and rotated three-dimensional space-curved beams p 22 A88-49658 Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 ELECTRIC ARCS
tethers p 33 A88-46712 Adaptive control experiment with a large flexible structure [AIAA PAPER 88-4153] p 36 A88-50247 Libration damping of a tethered satellite using rate only control [AIAA PAPER 88-4172] p 37 A88-50263 Spatial distribution of model error based on analytical/experimental frequency discrepancies p 41 A88-50899 Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471 Procedures for updating dynamic mathematical models, test phase spacecraft hardware [MEBS-38/87] p 12 N88-29852 DYNAMIC RESPONSE On the transient dynamics of flexible orbiting structures p 31 A88-46405 Optimal deployment of spacecraft appendages [IAF PAPER 88-307] p 47 A88-55366 Feedback control of distributed parameter systems with applications to large space structures [AD-A190536] p 49 N88-22068 Vibration control of large structures [AD-A191358] p 50 N88-22928 DYNAMIC STABILITY Vibrations of structures with parametric uncertainties [AD-A190400] p 49 N88-22378 DYNAMIC STRUCTURAL ANALYSIS Modal testing R&D at the Communications Research Centre structural vibration analysis of aircraft and spacecraft structures p 25 A88-3613 Member vibration effects on LSS behavior [AAS PAPER 86-396] Recent trends in aeroelasticity, structures, and structural dynamics; Proceedings of the R. L. Bisplinghoff Memorial	Vibration control of large structures [AD-A193317] p 53 N88-27587 Space structure (dynamics and control) theme development [NASA-TM-100597] p 8 N88-29850 DYNAMICAL SYSTEMS Stability and equilibria of deformable systems	in elastic components p 28 A88-39724 Stress concentration around a pair of circular holes in a hydrostatically stressed elastic sheet Dynamics analysis of a system of hinge-connected flexible bodies p 42 A88-52639 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC DEFORMATION Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC PLATES Estimation and control of distributed models for certain elastic systems arising in large space structures [AD-A192120] p 51 N88-24666 ELASTIC WAVES Experimental study of transient waves in a plane grid structure p 28 A88-38390 ELASTODYNAMICS Mathematical modeling of the dynamics of a spacecraft with elastic components p 33 A88-48082 Dynamic analysis of finitely stretched and rotated three-dimensional space-curved beams p 22 A88-49658 Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 ELECTRIC ARCS Arc-textured metal surfaces for high thermal emittance
tethers p 33 A88-46712 Adaptive control experiment with a large flexible structure [AIAA PAPER 88-4153] p 36 A88-50247 Libration damping of a tethered satellite using rate only control [AIAA PAPER 88-4172] p 37 A88-50263 Spatial distribution of model error based on analytical/experimental frequency discrepancies p 41 A88-50899 Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471 Procedures for updating dynamic mathematical models, test phase spacecraft hardware [MEBS-38/87] p 12 N88-29852 DYNAMIC RESPONSE On the transient dynamics of flexible orbiting structures [AD-A190400] p 47 A88-55386 PAPER 88-307] p 47 A88-55386 Vibration control of distributed parameter systems with applications to large space structures [AD-A190536] p 49 N88-22068 Vibration control of large structures [AD-A191358] p 50 N88-22928 DYNAMIC STABILITY Vibrations of structures with parametric uncertainties [AD-A190400] p 49 N88-22378 DYNAMIC STRUCTURAL ANALYSIS Modal testing R&D at the Communications Research Centre structural vibration analysis of aircraft and spacecraft structures (AS-PAPER 86-396] p 27 A88-35116 Recent trends in aeroelasticity, structures, Fib. 6,	Vibration control of large structures [AD-A193317] p 53 N88-27587 Space structure (dynamics and control) theme development [NASA-TM-100597] p 8 N88-29850 DYNAMICAL SYSTEMS Stability and equilibria of deformable systems	in elastic components p 28 A88-39724 Stress concentration around a pair of circular holes in a hydrostatically stressed elastic sheet Dynamics analysis of a system of hinge-connected flexible bodies p 42 A88-52639 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC DEFORMATION Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC PLATES Estimation and control of distributed models for certain elastic systems arising in large space structures [AD-A192120] p 51 N88-24666 ELASTIC WAVES Experimental study of transient waves in a plane grid structure p 28 A88-38390 ELASTIC WAVES Mathematical modeling of the dynamics of a spacecraft with elastic components p 33 A88-48080 Investigation of the dynamics of a system of bodies containing extended elastic components in a central force field p 33 A88-48082 Dynamic analysis of finitely stretched and rotated three-dimensional space-curved beams December 1943 A88-5421 ELECTRIC ARCS Arc-textured metal surfaces for high thermal emittance space radiators
tethers p 33 A88-46712 Adaptive control experiment with a large flexible structure [AIAA PAPER 88-4153] p 36 A88-50247 Libration damping of a tethered satellite using rate only control [AIAA PAPER 88-4172] p 37 A88-50263 Spatial distribution of model error based on analytical/experimental frequency discrepancies p 41 A88-5089 Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471 Procedures for updating dynamic mathematical models, test phase	Vibration control of large structures [AD-A193317] p 53 N88-27587 Space structure (dynamics and control) theme development [NASA-TM-100597] p 8 N88-29850 DYNAMICAL SYSTEMS Stability and equilibria of deformable systems	in elastic components p 28 A88-39724 Stress concentration around a pair of circular holes in a hydrostatically stressed elastic sheet Dynamics analysis of a system of hinge-connected flexible bodies p 42 A88-52639 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC DEFORMATION Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC PLATES Estimation and control of distributed models for certain elastic systems arising in large space structures [AD-A195685] p 51 N88-29666 ELASTIC PLATES Experimental study of transient waves in a plane grid structure p 28 A88-38390 ELASTIC WAVES Experimental study of transient waves in a plane grid structure p 28 A88-38390 ELASTODYNAMICS Mathematical modeling of the dynamics of a spacecraft with elastic components p 33 A88-48080 Investigation of the dynamics of a system of bodies containing extended elastic components in a central force field p 33 A88-48082 Dynamic analysis of finitely stretched and rotated three-dimensional space-curved beams Dynamic analysis of finitely stretched and rotated three-dimensional space-curved beams p 22 A88-49658 Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 ELECTRIC ARCS Arc-textured metal surfaces for high thermal emittance space radiators
tethers p 33 A88-46712 Adaptive control experiment with a large flexible structure [AIAA PAPER 88-4153] p 36 A88-50247 Libration damping of a tethered satellite using rate only control [AIAA PAPER 88-4172] p 37 A88-50263 Spatial distribution of model error based on analytical/experimental frequency discrepancies p 41 A88-50899 Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471 Procedures for updating dynamic mathematical models, test phase spacecraft hardware [MEBS-38/87] p 12 N88-29852 DYNAMIC RESPONSE On the transient dynamics of flexible orbiting structures p 31 A88-46405 Optimal deployment of spacecraft appendages [IAF PAPER 88-307] p 47 A88-55386 Feedback control of distributed parameter systems with applications to large space structures [AD-A190536] p 49 N88-22068 Vibration control of large structures [AD-A191358] p 50 N88-22928 DYNAMIC STABILITY Vibrations of structures with parametric uncertainties [AD-A194040] p 49 N88-22378 DYNAMIC STRUCTURAL ANALYSIS Modal testing R&D at the Communications Research Centre structural vibration analysis of aircraft and spacecraft structures p 25 A88-34613 Member vibration effects on LSS behavior [AAS PAPER 88-396] p 27 A88-35116 Recent trends in aeroelasticity, structures, and structural dynamics; Proceedings of the R. L. Bisplinghoff Memorial Symposium, University of Florida, Gainesville, FL, Feb. 6, 7, 1986 Dynamics of viscoelastic structures	Vibration control of large structures [AD-A193317] p 53 N88-27587 Space structure (dynamics and control) theme development [NASA-TM-100597] p 8 N88-29850 DYNAMICAL SYSTEMS Stability and equilibria of deformable systems p 26 A88-34813 On the dynamics of manipulators in space using the virtual manipulator approach p 75 A88-42677 On-line measurement configuration strategies for discrete-time systems [AIAA PAPER 88-4168] p 36 A88-50259 A Fourier-based optimal control approach for structural systems [AIAA PAPER 88-4168] p 36 A88-50259 A Fourier-based optimal control approach for structural systems p 45 A88-54643 Analytical investigation of the dynamics of tethered constellations in earth orbit [NASA-CR-179371] p 53 N88-28950 E EARTH (PLANET) Spacecraft technology requirements for future NASA missions [AIAA PAPER 88-3487] p 4 A88-43299 EARTH OBSERVATIONS (FROM SPACE) Scientific and economy-oriented space systems / revised edition/ Book p 93 A88-43247 EARTH ORBITAL ENVIRONMENTS The environment of earth-orbiting systems p 3 A88-35877 LEO to GEO transportation system combining electric propulsion with beamed microwave power from earth [AAS PAPER 87-126] p 83 A88-41287 Optical environment of the Spacelab 1 mission p 67 A88-47966 Solar thermal propulsion for orbit transfer	in elastic components p 28 A88-39724 Stress concentration around a pair of circular holes in a hydrostatically stressed elastic sheet Dynamics analysis of a system of hinge-connected flexible bodies p 42 A88-52639 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC DEFORMATION Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC PLATES Estimation and control of distributed models for certain elastic systems arising in large space structures [AD-A192120] p 51 N88-24666 ELASTIC WAVES Experimental study of transient waves in a plane grid structure p 28 A88-38390 ELASTIC WAVES Mathematical modeling of the dynamics of a spacecraft with elastic components p 33 A88-48080 Investigation of the dynamics of a system of bodies containing extended elastic components in a central force field p 33 A88-48082 Dynamic analysis of finitely stretched and rotated three-dimensional space-curved beams p 22 A88-9658 Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 ELECTRIC ARCS Arc-textured metal surfaces for high thermal emittance space radiators [NASA-TM-100894] p 69 N88-24754 ELECTRIC CHARGE A severe spacecraft-charging event on SCATHA in
tethers p 33 A88-46712 Adaptive control experiment with a large flexible structure [AIAA PAPER 88-4153] p 36 A88-50247 Libration damping of a tethered satellite using rate only control [AIAA PAPER 88-4172] p 37 A88-50263 Spatial distribution of model error based on analytical/experimental frequency discrepancies p 41 A88-50899 Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471 Procedures for updating dynamic mathematical models, test phase spacecraft hardware [MEBS-38/87] p 12 N88-29852 DYNAMIC RESPONSE On the transient dynamics of flexible orbiting structures p 31 A88-46405 Optimal deployment of spacecraft appendages [IAF PAPER 88-307] p 47 A88-5586 Feedback control of distributed parameter systems with applications to large space structures [AD-A190536] p 49 N88-22068 Vibration control of large structures [AD-A191358] p 50 N88-22928 DYNAMIC STABILITY Vibrations of structures with parametric uncertainties [AD-A190400] p 49 N88-22378 DYNAMIC STRUCTURAL ANALYSIS Modal testing R&D at the Communications Research Centre structural vibration analysis of aircraft and spacecraft structures p 25 A88-3613 Member vibration effects on LSS behavior [AAS PAPER 86-396] p 27 A88-35116 Recent trends in aeroelasticity, structures, and structural dynamics; Proceedings of the R. L. Bisplinghoff Memorial Symposium, University of Florida, Gainesville, FL, Feb. 6, 7, 1986 p 90 A88-35526 Dynamics of viscoelastic structures	Vibration control of large structures [AD-A193317] p 53 N88-27587 Space structure (dynamics and control) theme development [NASA-TM-100597] p 8 N88-29850 DYNAMICAL SYSTEMS Stability and equilibria of deformable systems p 26 A88-34813 On the dynamics of manipulators in space using the virtual manipulator approach p 75 A88-42677 On-line measurement configuration strategies for discrete-time systems [AIAA PAPER 88-4168] p 36 A88-50259 A Fourier-based optimal control approach for structural systems [AIAA PAPER 88-4168] p 36 A88-50259 A Fourier-based optimal control approach for structural systems [AIAA PAPER 88-4168] p 36 A88-50259 E E EARTH (PLANET) Spacecraft technology requirements for future NASA missions [AIAA PAPER 88-3487] p 4 A88-43299 EARTH OBSERVATIONS (FROM SPACE) Scientific and economy-oriented space systems / revised edition/ Book p 93 A88-43247 EARTH ORBITAL ENVIRONMENTS The environment of earth-orbiting systems p 3 A88-35877 LEO to GEO transportation system combining electric propulsion with beamed microwave power from earth [AAS PAPER 87-126] p 83 A88-41287 Optical environment of the Spacelab 1 mission p 67 A88-47966 Solar thermal propulsion for orbit transfer [AIAA PAPER 88-3171] p 84 A88-48042 Perspectives of Soviet cosmonautics. I	in elastic components Stress concentration around a pair of circular holes in a hydrostatically stressed elastic sheet p 33 A88-48194 Dynamics analysis of a system of hinge-connected flexible bodies p 42 A88-52639 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC DEFORMATION Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC PLATES Estimation and control of distributed models for certain elastic systems arising in large space structures [AD-A192120] p 51 N88-24666 ELASTIC WAVES Experimental study of transient waves in a plane grid structure p 28 A88-38390 ELASTODYNAMICS Mathematical modeling of the dynamics of a spacecraft with elastic components p 33 A88-48080 Investigation of the dynamics of a system of bodies containing extended elastic components in a central force field p 33 A88-48082 Dynamic analysis of finitely stretched and rotated three-dimensional space-curved beams p 22 A88-49658 Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 ELECTRIC ARCS Arc-textured metal surfaces for high thermal emittance space radiators [NASA-TM-100894] p 69 N88-24754 ELECTRIC CHARGE A severe spacecaft-charging event on SCATHA in September 1982
tethers p 33 A88-46712 Adaptive control experiment with a large flexible structure [AIAA PAPER 88-4153] p 36 A88-50247 Libration damping of a tethered satellite using rate only control [AIAA PAPER 88-4172] p 37 A88-50263 Spatial distribution of model error based on analytical/experimental frequency discrepancies p 41 A88-50899 Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471 Procedures for updating dynamic mathematical models, test phase spacecraft hardware [MEBS-38/87] p 12 N88-29852 DYNAMIC RESPONSE On the transient dynamics of flexible orbiting structures [AD-A190400] p 47 A88-55386 [AD-A190536] p 47 A88-55386 [AD-A190400] p 50 N88-22928 DYNAMIC STRUCTURAL ANALYSIS Modal testing R&D at the Communications Research Centre structural vibration analysis of aircraft and spacecraft structures [AD-A190400] p 27 A88-34613 Member vibration effects on LSS behavior [AAS PAPER 86-396] p 27 A88-35116 Recent trends in aeroelasticity, structures, p 28 A88-3859 Large space structures [P 28 A88-38389 Large space structures: Dynamics and control Book	Vibration control of large structures [AD-A193317] p 53 N88-27587 Space structure (dynamics and control) theme development [NASA-TM-100597] p 8 N88-29850 DYNAMICAL SYSTEMS Stability and equilibria of deformable systems	in elastic components Stress concentration around a pair of circular holes in a hydrostatically stressed elastic sheet Dynamics analysis of a system of hinge-connected flexible bodies p 42 A88-52639 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC DEFORMATION Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC PLATES Estimation and control of distributed models for certain elastic systems arising in large space structures [AD-A192120] p 51 N88-24666 Experimental study of transient waves in a plane grid structure p 28 A88-38390 ELASTODYNAMICS Mathematical modeling of the dynamics of a spacecraft with elastic components p 33 A88-48080 Investigation of the dynamics of a system of bodies containing extended elastic components in a central force field p 33 A88-48082 Dynamic analysis of finitely stretched and rotated three-dimensional space-curved beams p 22 A88-49658 Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 ELECTRIC ARCS Arc-textured metal surfaces for high thermal emittance space radiators [NASA-TM-100894] p 69 N88-24754 ELECTRIC CHARGE A severe spacecraft-charging event on SCATHA in September 1982 [AD-A193007] p 61 N88-26396
tethers	Vibration control of large structures [AD-A193317] p 53 N88-27587 Space structure (dynamics and control) theme development [NASA-TM-100597] p 8 N88-29850 DYNAMICAL SYSTEMS Stability and equilibria of deformable systems	in elastic components p 28 A88-39724 Stress concentration around a pair of circular holes in a hydrostatically stressed elastic sheet Dynamics analysis of a system of hinge-connected flexible bodies p 42 A88-52639 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC DEFORMATION Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC PLATES Estimation and control of distributed models for certain elastic systems arising in large space structures [AD-A192120] p 51 N88-24666 ELASTIC WAVES Experimental study of transient waves in a plane grid structure p 28 A88-38390 ELASTIC WAVES Mathematical modeling of the dynamics of a spacecraft with elastic components p 33 A88-48080 Investigation of the dynamics of a system of bodies containing extended elastic components in a central force field p 33 A88-48080 Dynamic analysis of finitely stretched and rotated three-dimensional space-curved beams p 22 A88-49658 Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 ELECTRIC ARCS Arc-textured metal surfaces for high thermal emittance space radiators [NASA-TM-100894] p 69 N88-24754 ELECTRIC CHARGE A severe spacecraft-charging event on SCATHA in September 1982 [AD-A193007] p 61 N88-26396
tethers	Vibration control of large structures [AD-A193317] p 53 N88-27587 Space structure (dynamics and control) theme development [NASA-TM-100597] p 8 N88-29850 DYNAMICAL SYSTEMS Stability and equilibria of deformable systems	in elastic components Stress concentration around a pair of circular holes in a hydrostatically stressed elastic sheet Dynamics analysis of a system of hinge-connected flexible bodies Dynamics of articulated aerospace structures [AD-A195685] Dynamics of articulated aerospace structures [AD-A192120] Dynamics of a plane grid structure Dynamics of a plane grid structure Dynamics of a spacecraft with elastic components up 28 A88-38390 ELASTIC WAVES Mathematical modeling of the dynamics of a spacecraft with elastic components up 33 A88-48080 Investigation of the dynamics of a system of bodies containing extended elastic components up 33 A88-48080 Dynamic analysis of finitely stretched and rotated three-dimensional space-curved beams Dynamic analysis of finitely stretched and rotated three-dimensional space-curved beams Dynamic analysis of finitely stretched and rotated three-dimensional space-curved beams Dynamic analysis of finitely stretched and rotated three-dimensional space-curved beams Dynamic analysis of finitely stretched and rotated three-dimensional space-curved beams Dynamic analysis of finitely stretched and rotated three-dimensional space-curved beams Dynamic analysis of finitely stretched and rotated three-dimensional space-curved beams Dynamic analysis of finitely stretched and rotated three-dimensional space-curved beams Dynamic analysis of finitely stretched and rotated three-dimensional space-curved beams Dynamic analysis of finitely stretched and rotated three-dimensional space-curved beams Dynamic analysis of finitely stretched and rotated
tethers p 33 A88-46712 Adaptive control experiment with a large flexible structure [AIAA PAPER 88-4153] p 36 A88-50247 Libration damping of a tethered satellite using rate only control [AIAA PAPER 88-4172] p 37 A88-50263 Spatial distribution of model error based on analytical/experimental frequency discrepancies p 41 A88-50899 Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471 Procedures for updating dynamic mathematical models, test phase spacecraft hardware [MEBS-38/87] p 12 N88-29852 DYNAMIC RESPONSE On the transient dynamics of flexible orbiting structures p 31 A88-46405 Optimal deployment of spacecraft appendages [IAF PAPER 88-307] p 47 A88-55366 Feedback control of distributed parameter systems with applications to large space structures [AD-A190536] p 49 N88-22068 Vibration control of large structures [AD-A191358] DYNAMIC STABILITY Vibrations of structures with parametric uncertainties [AD-A190400] p 49 N88-22378 DYNAMIC STRUCTURAL ANALYSIS Modal testing R&D at the Communications Research Centre structural vibration analysis of aircraft and spacecraft structures p 25 A88-34613 Member vibration effects on LSS behavior [AAS PAPER 86-396] p 27 A88-35116 Recent trends in aeroelasticity, structures, and structural dynamics; Proceedings of the R. L. Bisplinghoff Memorial Symposium, University of Florida, Gainesville, FL, Feb. 6, 7, 1986 p 90 A88-35526 Dynamics of viscoelastic structures p 28 A88-38389 Large space structures: Dynamics and control of space structures - Some issues for computational mechanics	Vibration control of large structures [AD-A193317] p 53 N88-27587 Space structure (dynamics and control) theme development [NASA-TM-100597] p 8 N88-29850 DYNAMICAL SYSTEMS Stability and equilibria of deformable systems p 26 A88-34813 On the dynamics of manipulators in space using the virtual manipulator approach p 75 A88-42677 On-line measurement configuration strategies for discrete-time systems [AIAA PAPER 88-4168] p 36 A88-50259 A Fourier-based optimal control approach for structural systems p 45 A88-54643 Analytical investigation of the dynamics of tethered constellations in earth orbit [NASA-CR-179371] p 53 N88-28950 E EARTH (PLANET) Spacecraft technology requirements for future NASA missions [AIAA PAPER 88-3487] p 4 A88-43299 EARTH OBSERVATIONS (FROM SPACE) Scientific and economy-oriented space systems / revised edition/ Book p 93 A88-43247 EARTH ORBITAL ENVIRONMENTS The environment of earth-orbiting systems p 3 A88-35877 LEO to GEO transportation system combining electric propulsion with beamed microwave power from earth [AAS PAPER 87-126] p 83 A88-41287 Optical environment of the Spacelab 1 mission p 67 A88-47966 Solar thermal propulsion for orbit transfer [AIAA PAPER 88-3171] p 84 A88-48042 Perspectives of Soviet cosmonautics. I p 95 A88-49026 Problems and solutions for GPS use beyond the 12-hour orbit Technologies for protection of the Space Station power system surfaces in atomic oxygen environment	in elastic components Stress concentration around a pair of circular holes in a hydrostatically stressed elastic sheet Dynamics analysis of a system of hinge-connected flexible bodies p 42 A88-52639 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC DEFORMATION Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC PLATES Estimation and control of distributed models for certain elastic systems arising in large space structures [AD-A192120] p 51 N88-24666 Experimental study of transient waves in a plane grid structure p 28 A88-38390 ELASTODYNAMICS Mathematical modeling of the dynamics of a spacecraft with elastic components p 33 A88-48080 Investigation of the dynamics of a system of bodies containing extended elastic components in a central force containing extended elastic components in a central force field Dynamic analysis of finitely stretched and rotated three-dimensional space-curved beams p 22 A88-49658 Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 ELECTRIC ARCS Arc-textured metal surfaces for high thermal emittance space radiators [NASA-TM-100894] p 69 N88-24754 ELECTRIC DISCHARGES Several spacecraft-charging event on SCATHA in September 1982 [AD-A193007] P 61 N88-26396 ELECTRIC DISCHARGES Several spacecraft-charging event on SCATHA in September 1982 Several spacecraft-charging event on SCATHA in September 1982
tethers	Vibration control of large structures [AD-A193317] p 53 N88-27587 Space structure (dynamics and control) theme development [NASA-TM-100597] p 8 N88-29850 DYNAMICAL SYSTEMS Stability and equilibria of deformable systems	in elastic components Stress concentration around a pair of circular holes in a hydrostatically stressed elastic sheet Dynamics analysis of a system of hinge-connected flexible bodies p 42 A88-52639 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC DEFORMATION Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC PLATES Estimation and control of distributed models for certain elastic systems arising in large space structures [AD-A195685] p 51 N88-29685 Experimental study of transient waves in a plane grid structure p 28 A88-38390 ELASTIC WAVES Experimental study of transient waves in a plane grid structure p 28 A88-38390 ELASTODYNAMICS Mathematical modeling of the dynamics of a spacecraft with elastic components p 33 A88-48080 Investigation of the dynamics of a system of bodies containing extended elastic components in a central force field p 33 A88-48082 Dynamic analysis of finitely stretched and rotated three-dimensional space-curved beams p 22 A88-49658 Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 ELECTRIC ARCS Arc-textured metal surfaces for high thermal emittance space radiators [NASA-TM-100894] p 69 N88-24754 ELECTRIC CHARGE A severe spacecraft-charging event on SCATHA in September 1982 [AD-A193007] p 58 A88-51392 A severe spacecraft-charging event on SCATHA in September 1982 p 58 A88-51392 A severe spacecraft-charging event on SCATHA in September 1982 p 58 A88-51392
tethers p 33 A88-46712 Adaptive control experiment with a large flexible structure [AIAA PAPER 88-4153] p 36 A88-50247 Libration damping of a tethered satellite using rate only control [AIAA PAPER 88-4172] p 37 A88-50263 Spatial distribution of model error based on analytical/experimental frequency discrepancies p 41 A88-50899 Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471 Procedures for updating dynamic mathematical models, test phase spacecraft hardware [MEBS-38/87] p 12 N88-29852 DYNAMIC RESPONSE On the transient dynamics of flexible orbiting structures p 31 A88-46405 Optimal deployment of spacecraft appendages [IAF PAPER 88-307] p 47 A88-55366 Feedback control of distributed parameter systems with applications to large space structures [AD-A190536] p 49 N88-22068 Vibration control of large structures [AD-A191358] DYNAMIC STABILITY Vibrations of structures with parametric uncertainties [AD-A190400] p 49 N88-22378 DYNAMIC STRUCTURAL ANALYSIS Modal testing R&D at the Communications Research Centre structural vibration analysis of aircraft and spacecraft structures p 25 A88-34613 Member vibration effects on LSS behavior [AAS PAPER 86-396] p 27 A88-35116 Recent trends in aeroelasticity, structures, and structural dynamics; Proceedings of the R. L. Bisplinghoff Memorial Symposium, University of Florida, Gainesville, FL, Feb. 6, 7, 1986 p 90 A88-35526 Dynamics of viscoelastic structures p 28 A88-38389 Large space structures: Dynamics and control of space structures - Some issues for computational mechanics	Vibration control of large structures [AD-A193317] p 53 N88-27587 Space structure (dynamics and control) theme development [NASA-TM-100597] p 8 N88-29850 DYNAMICAL SYSTEMS Stability and equilibria of deformable systems p 26 A88-34813 On the dynamics of manipulators in space using the virtual manipulator approach p 75 A88-42677 On-line measurement configuration strategies for discrete-time systems [AIAA PAPER 88-4168] p 36 A88-50259 A Fourier-based optimal control approach for structural systems p 45 A88-54643 Analytical investigation of the dynamics of tethered constellations in earth orbit [NASA-CR-179371] p 53 N88-28950 E EARTH (PLANET) Spacecraft technology requirements for future NASA missions [AIAA PAPER 88-3487] p 4 A88-43299 EARTH OBSERVATIONS (FROM SPACE) Scientific and economy-oriented space systems / revised edition/ Book p 93 A88-43247 EARTH ORBITAL ENVIRONMENTS The environment of earth-orbiting systems p 3 A88-35877 LEO to GEO transportation system combining electric propulsion with beamed microwave power from earth [AAS PAPER 87-126] p 83 A88-41287 Optical environment of the Spacelab 1 mission p 67 A88-47966 Solar thermal propulsion for orbit transfer [AIAA PAPER 88-3171] p 84 A88-48042 Perspectives of Soviet cosmonautics. I p 95 A88-49026 Problems and solutions for GPS use beyond the 12-hour orbit Technologies for protection of the Space Station power system surfaces in atomic oxygen environment	in elastic components Stress concentration around a pair of circular holes in a hydrostatically stressed elastic sheet Dynamics analysis of a system of hinge-connected flexible bodies p 42 A88-52639 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC DEFORMATION Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794 ELASTIC PLATES Estimation and control of distributed models for certain elastic systems arising in large space structures [AD-A192120] p 51 N88-24666 Experimental study of transient waves in a plane grid structure p 28 A88-38390 ELASTODYNAMICS Mathematical modeling of the dynamics of a spacecraft with elastic components p 33 A88-48080 Investigation of the dynamics of a system of bodies containing extended elastic components in a central force containing extended elastic components in a central force field Dynamic analysis of finitely stretched and rotated three-dimensional space-curved beams p 22 A88-49658 Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 ELECTRIC ARCS Arc-textured metal surfaces for high thermal emittance space radiators [NASA-TM-100894] p 69 N88-24754 ELECTRIC DISCHARGES Several spacecraft-charging event on SCATHA in September 1982 [AD-A193007] P 61 N88-26396 ELECTRIC DISCHARGES Several spacecraft-charging event on SCATHA in September 1982 Several spacecraft-charging event on SCATHA in September 1982

==		
SUBJECT INDEX		
ELECTRIC FIELDS		
Space station induced electromagn	etic eff	ects
	p 61	N88-25394
ELECTRIC GENERATORS		
The use of electrodynamic tethers for	or gene	rating power
and thrust in space	•	•
(AAS PAPER 86-366)	p 55	A88-35099
ELECTRIC MOTORS		
The LDCM actuator for vibration su	ppressi	on
[NASA-CR-182898]	p 50	N88-23940
ELECTRIC POTENTIAL	-	
Real-time, automatic vehicle-pote	ential d	etermination
from ESA measurements - The dis	stributi	on function
algorithm ElectroStatic Analyzer	p 58	A88-51391
ELECTRIC POWER SUPPLIES		
Advanced space power systems		
[SAWE PAPER 1762]	p 58	A88-53779
ELECTRIC POWER TRANSMISSION		
Prospects of intercalated graphite fit	re use	for electrical
power transmission in solar power sat	ellites	
		A88-40568
Possible variants of microwave-	beam	structure for
satellite solar power plants	p 85	A88-50671
Power transmission studies for teth-	ered Si	P-100
[NASA-TM-100864]	p 59	N88-21251
ELECTRIC PROPULSION		
LEO to GEO transportation system	combi	ning electric
propulsion with beamed microwave	power	from earth
[AAS PAPER 87-126]	p 83	A88-41287
Parametric studies of electric prop	ulsion	systems for
orbit transfer vehicles		-
[AIAA PAPER 88-2835]	p 84	A88-44668
Autonomous flight control for low th	rust or	bital transfer

ansportation system combining electric eamed microwave power from earth 26] p 83 A88-41287 261 ies of electric propulsion systems for 28351 p 84 A88-44668 ight control for low thrust orbital transfer vehicles [AIAA PAPER 88-2838] p 30 A88-44670

All electronic propulsion - Key to future spaceship design [AIAA PAPER 88-3170] p 84 A88-44875 Advanced propulsion for the Mars Rover Sample Return

[AIAA PAPER 88-2900] p 84 A88-46489

ELECTRIC ROCKET ENGINES

Nuclear electric power for multimegawatt orbit transfer p 87 N88-24261 vehicles

FLECTRIC WIRE A numerical method for the analysis of coupling to thin p 14 A88-54722 wire structures

ELECTRICAL FAULTS Mechanical and electrical characteristics of tin whiskers

with special reference to spacecraft systems p 67 A88-46192

ELECTRICAL INSULATION

Power transmission studies for tethered SP-100 [NASA-TM-100864] p 59 N88-21251

ELECTRICAL RESISTANCE

Unique bonding methods for spacecraft p 68 A88-54731

ELECTRO-OPTICS SHAPES - Spatial, High-Accuracy, Position-Encoding Sensor for multi-point, 3-D position measurement of large p 19 A88-40292 flexible structures Evaluation of image stability of a precision pointing p 30 A88-43215 Fiber based phased array antennas

p 57 A88-50306

ELECTRODYNAMICS

The use of electrodynamic tethers for generating power and thrust in space [AAS PAPER 86-366] p 55 A88-35099

Theory of the electrodynamic tether p 57 A88-46805 Plasma contactor design for electrodynamic tether

A88-46807 p 57 Space plasma contactor research, 1987 [NASA-CR-182148] p 60 N88-23649

ELECTROLYSIS Integration of Space Station propulsion and fluid

systems 1 AIAA PAPER 88-32891 p 85 A88-48492

ELECTROMAGNETIC FIELDS A numerical method for the analysis of coupling to thin

wire structures p 14 A88-54722 Space station induced electromagnetic effects

p 61 N88-25394

ELECTROMAGNETIC INTERFERENCE

Dinital seguration Digital sequential shunt regulator for solar power conditioning of Engineering Test Satellite (ETS-V)

p 86 A88-54696 Unique bonding methods for spacecraft p 68 A88-54731

ELECTROMAGNETIC PULSES

A numerical method for the analysis of coupling to thin p 14 A88-54722 **ELECTROMAGNETISM**

Electromagnetic damping and vibration isolation of space structures p 51 N88-24665 AD-A1914921

ELECTROMECHANICAL DEVICES The 15-meter diameter hoop/column antenna surface p 17 N88-21469 control actuator system **ELECTRON ACCELERATION**

Relationship between characteristics of low-energy electrons and geomagnetic disturbance in geostationary orbit p 62 N88-30501

ELECTRON BEAMS Electrostatic charging and arc discharges on satellite dielectrics simulated by electron beam

p 57 A88-47970

p 64 A88-38015

p 56 A88-46799

ELECTRON ENERGY

A study of SCATHA eclipse charging p 58 A88-53470

ELECTRON FLUX DENSITY

'Space weather forecast' - Prediction of relativistic electron intensity at synchronous orbit

ELECTRON GLINS

Electron beam experiments at high altitudes

ELECTRON IRRADIATION

Degradation of graphite-epoxy due to electron p 63 A88-36762 **ELECTRON RADIATION**

Space radiation effects on poly(aryl-ether-ketone) thir films and composites p 65 A88-41547 **ELECTRONIC CONTROL**

Laboratory facility for flexible structure control p 42 A88-53681 experiments

ELECTRONIC EQUIPMENT Mechanical and electrical characteristics of tin whiskers

with special reference to spacecraft systems p 67 A88-46192 **FLECTRONIC PACKAGING**

Unique bonding methods for spacecraft p 68 A88-54731

ELECTRONS Contaminant ions and waves in the space station

p 70 N88-25393 environment **ELECTROSTATIC CHARGE** Test program to evaluate ESD susceptibility of EVA suit

material p 73 A88-33789 Electrostatic charging and arc discharges on satellite dielectrics simulated by electron beam p 57 A88-47970

Simulations of the electrostatic charging of ESA communications satellites [ESA-STM-239] p 61 N88-24670

ELECTROSTATICS

Electron beam experiments at high altitudes

p 56 A88-46799 A severe spacecraft-charging event on SCATHA in September 1982 [AD-A193007] p 61 N88-26396

ELLIPTICAL ORBITS

Effect of solar pressure on the motion and stability of the system of two inter-connected satellites in an elliptical orbit p 24 A88-33104 Aeroassisted transfer between elliptical orbits using lift control

[AIAA PAPER 88-4346] p.95 A88-50590 Advantages of tether release of satellites from elliptic orbits p 46 A88-55062

EMBEDDING

Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of structural vibrations [AD-A194270]

END EFFECTORS

p 71 N88-28754 System and concept design of the SSRMS latching end p 15 N88-21204

effector --- Space Station **ENERGY BUDGETS**

Low authority control of large space structures using a

constrained threshold control formulation p 51 N88-24667

ENERGY CONVERSION

High-temperature solar energy systems for spacecraft power and propulsion units --- Russian book p 85 A88-50769

Advanced space power systems

[SAWE PAPER 1762] p 58 A88-53779 Multi-hundred kilowatt roll ring assembly evaluation

results [NASA-TM-100865] p 60 N88-21375

ENERGY DISSIPATION

Dynamics of viscoelastic structures

p 28 A88-38389 Electromagnetic damping and vibration isolation of

space structures [AD-A191492] p 51 N88-24665 **ENERGY DISTRIBUTION**

Use of modal energy distribution in the design of honevcomb sandwich decks p 64 A88-37466

ENERGY REQUIREMENTS

Power systems for production, construction, life support and operations in space [NASA-TM-100838] p 59 N88-21254

ENERGY STORAGE

Power systems for production, construction, life support and operations in space INASA-TM-1008381 p 59 N88-21254

ENERGY TECHNOLOGY

An energetics experiment on a space platform

p.3 A88-40571 **ENGINE TESTS**

An experimental investigation of the effect of test-cell pressure on the performance of resistojets IAIAA PAPER 88-32861 p 84 A88-44820

ENVIRONMENT POLLUTION

Particle adhesion to surfaces under vacuum [AIAA PAPER 88-2725] p 66

p 66 A88-43765 **ENVIRONMENT SIMULATION**

Interactive Radar Environment Simulation Model (IRESM) p 10 A88-46968

ENVIRONMENTAL CONTROL

ARGES: An expert system for fault diagnosis within pace-based ECLS systems p 101 N88-29380 space-based ECLS systems

ENVIRONMENTAL TESTS

Flight qualification testing of ultrathin solar cells p 63 A88-34448

EPOXY MATRIX COMPOSITES

Qualification of room-temperature-curing epoxy adhesives for spacecraft structural applications p 66 A88-42440

EPOXY RESINS Design, fabrication, and testing of rolled carbon/epoxy

struts for Space Station application p 62 A88-33018 Damping materials for spacecraft vibration control p 64 A88-37000 **EQUATIONS OF MOTION**

Computing the transmission zeros of large space p 27 A88-34917 Dynamic responses of orthotropic plates under moving p 28 A88-35543 masses

EQUILIBRIUM EQUATIONS

A thermal equilibrium model for multi-menawatt space platforms p 12 N88-24332

EQUILIBRIUM METHODS

Stability and equilibria of deformable systems

p 26 A88-34813 **ERROR ANALYSIS**

Spatial distribution of model error based on analytical/experimental frequency discrepancies

p 41 A88-50899 **ERRORS**

Fault diagnosis in orbital refueling operations

p 87 N88-24154

ESA SPACECRAFT Western European space science p 3 A88-39332 **ESTIMATES**

Moving-bank multiple model adaptive estimation applied to flexible spacestructure control

[AD-A190761] p 49 N88-22071 **EULER EQUATIONS OF MOTION**

Rapid slewing of the orbiting Spacecraft Control Laboratory Experiment (SCOLE) using LQR techniques HAF PAPER 88-3201 p 47 A88-55393 **EULER-LAGRANGE EQUATION**

An alternate transition from the Lagrangian of a satellite to equations of motion [AIAA PAPER 88-4221] p 37 A88-50362

EURECA (ESA)

Analytical models for relative motion under constant

thrust [AIAA PAPER 88-4300] p 85 A88-50425 Eureca TICCE - A nine-month survey of cosmic dust

and space debris at 500 km altitude p 96 A88-53242 Latching mechanisms for IOC --- EURECA p 16 N88-21205 The EURECA antenna deployment and retraction

mechanisms p 16 N88-21225 Study of standard generic approach for spacecraft (S/C) autonomy and automation (phase 3). Book B: Autonomy concept application example

ESA-CR(P)-2555-VOL-2

p 53 N88-28956 **EUROPEAN SPACE AGENCY**

Western European space science p 3 A88-39332 The European long-term space plan p 4 A88-49820 The technical reporting and approval procedure for materials and processes

[ESA-PSS-01-700-ISSUE-1] p 72 N88-28833 Material and process selection and quality control for ESA space systems and associated equipment

[ESA-PSS-01-70-ISSUE-3] p 72 N88-29190

With an eye to the future: ESA general studies program	EXTRAVEHICULAR ACTIVITY	I observation (family 20th, advide of a constant of the control of the
With an eye to the future: ESA general studies program 1988	Test program to evaluate ESD susceptibility of EVA suit	Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of structural
[ESA-SP-1100] p 8 N88-30447	material p 73 A88-33789	vibrations
ESA report to the 27th COSPAR meeting [ESA-SP-1098] p 102 N88-30556	A method for measuring the effect of grip surface on	[AD-A194270] p 71 N88-28754 FEEDBACK
EUROPEAN SPACE PROGRAMS	torque production during hand/arm rotation p 74 A88-35462	Robust decentralized control of large flexible
Columbus III; Proceedings of the Third Symposium,	COSM: A Space Station EVAS test challenge	structures
Capri, Italy, June 30-July 2, 1987 p 89 A88-34551 The Infrared Space Observatory (ISO) project	CheckOut, Servicing, and Maintenance for ExtraVehicular	[DE88-005416] p 48 N88-20902 FEEDBACK CONTROL
p 3 A88-39077	Activity System p 3 A88-36556 Human factors analysis of extravehicular servicing of	Design of a controller for mechanical systems by the
Western European space science p 3 A88-39332	payloads within the space station servicing facility	generalized energy function p 27 A88-34891
Deployable 20/30-GHz multi-beam antenna for future communications satellites p 56 A88-39423	p 76 A88-50998	Ground-test of spacecraft control and dynamics [AAS PAPER 86-267] p 27 A88-35102
Real-time systems for space applications	Debris in space p 85 A88-51139 A design methodology for neutral buoyancy simulation	Unified optimization of structures and controllers
p 91 A88-39424 Simulation of space manipulator operations (Eurosim)	of space operations	p 33 A88-46413
p 10 A88-46982	(AIAA PAPER 88-4628) p 77 A88-53665	Game theory approach for the integrated design of structures and controls p 33 A88-47462
The European long-term space plan p 4 A88-49820	Space inspection device for extravehicular repairs - SPIDER system	A variable structure control approach to flexible
Demonstration mission on Columbus for technology developments	[IAF PAPER 88-029] p 77 A88-55324	spacecrafts p 34 A88-49914 Pole/zero cancellations in flexible space structures
[IAF PAPER 88-002] p 6 A88-55314	EVA space suits - Safety problems [IAF PAPER 88-515] p 77 A88-55436	[AIAA PAPER E8-4055] p 34 A88-50165
Interim Flight Opportunity (IFO). Volume 1: Executive	The space station assembly phase: Flight telerobotic	Optimal structural design with control gain norm
summary space platform [SE/LS/AP-36-818/CN-VOL-1] p 8 N88-29849	servicer feasibility. Volume 2: Methodology and case	constraint p 22 A88-50339 Exponent diagram analysis of feedback control systems
With an eye to the future: ESA general studies program	study [NASA-CR-182690] p 77 N88-20352	including flexible structures p 10 A88-50836
1988	Design, development and evaluation of Stanford/Ames	Robotic applications at Kennedy Space Center
[ESA-SP-1100] p 8 N88-30447 ESA report to the 27th COSPAR meeting	EVA prehensors	p 76 A88-52328 Projective controls for disturbance attenuation in LSS
[ESA-SP-1098] p 102 N88-30556	[NASA-CR-182688] p 78 N88-22540 An investigation of conformable antennas for the	systems p 43 A88-54410
EVALUATION Multi-hundred kilowatt roll ring assembly evaluation	astronaut backpack communication system	Recent results in identification and control of a flexible
results	[NASA-CR-182908] p 99 N88-23929	truss structure p 44 A88-54576 Decentralized model reference adaptive control of large
[NASA-TM-100865] p 60 N88-21375	Space Station Human Factors Research Review. Volume 1: EVA Research and Development	flexible structures p 45 A88-54587
EXPANDABLE STRUCTURES A description of the Expandable Platform	[NASA-CP-2426-VOL-1] p 99 N88-24145	Variable structure control of decoupleable systems and
p 4 A88-43964	Advanced EVA system design requirements study	attitude control of spacecraft in presence of uncertainty p 46 A88-54655
EXPERIMENT DESIGN	p 78 N88-24147 Nuclear electric power for multimegawatt orbit transfer	Optimization of actively controlled structures using
1987 SEM Spring Conference on Experimental Mechanics, Houston, TX, June 14-19, 1987, Proceedings	vehicles p 87 N88-24261	multiobjective programming techniques
p 91 A88-40251	Space cabin atmosphere and extracurricular sortie embolisms p 100 N88-26023	p 46 A88-54973 A feedback double path compensating control structure
Experimental investigations in active vibration control	The US space programme spacewalk/extravehicular	for the attitude control of a flexible spacecraft
for application to large space systems p 30 A88-42577	activity experience: Past, present and future	[INPE-4464-PRE/1239] p 48 N88-21240 Feedback control of distributed parameter systems with
EXPERT SYSTEMS	p 79 N88-26031 Safety of extravehicular space activities	applications to large space structures
Knowledge based system verification and validation as	p 79 N88-26038	[AD-A190536] p 49 N88-22068
related to automation of Space Station subsystems - Rationale for a knowledge based system lifecycle	Marintek's ocean basin, a training facility for	Automatic feedback control of a rigid body for finite displacements p 51 N88-24674
ρ 42 A88-52238	extravehicular activity? p 79 N88-26041 Man versus machine: The role of astronauts in	Vibration control of large structures
		[AD A100017] - 50 A100 07507
Technology forecast and applications for autonomous,	extravehicular activity p 79 N88-26045	[AD-A193317] p 53 N88-27587
intelligent systems for space station, shuttle, and	Study of human factors engineering criteria for	FIBER COMPOSITES
intelligent systems for space station, shuttle, and interplanetary missions [IAF PAPER 88-025] p 6 A88-55322	Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1	FIBER COMPOSITES Radiation inspection methods for composites p 68 A88-49260
intelligent systems for space station, shuttle, and interplanetary missions [IAF PAPER 88-025] p 6 A88-55322 Fault diagnosis in orbital refueling operations	Study of human factors engineering criteria for	FIBER COMPOSITES Radiation inspection methods for composites p 68 A88-49260 FIBER OPTICS
intelligent systems for space station, shuttle, and interplanetary missions [IAF PAPER 88-025] p 6 A88-55322	Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298	FIBER COMPOSITES Radiation inspection methods for composites p 68 A88-49260 FIBER OPTICS Ku-band (14GHz) fiber optic communication links for
intelligent systems for space station, shuttle, and interplanetary missions [IAF PAPER 88-025] p 6 A88-55322 Fault diagnosis in orbital refueling operations p 87 N88-24154 Third Conference on Artificial Intelligence for Space Applications, part 2	Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298	FIBER COMPOSITES Radiation inspection methods for composites p 68 A88-49260 FIBER OPTICS Ku-band (14GHz) fiber optic communication links for distributed antennas in the Space Station p 55 A88-35275
intelligent systems for space station, shuttle, and interplanetary missions [IAF PAPER 88-025] p 6 A88-55322 Fault diagnosis in orbital refueling operations p 87 N88-24154 Third Conference on Artificial Intelligence for Space Applications, part 2 [NASA-CP-2492-PT-2] p 100 N88-24188	Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298	FIBER COMPOSITES Radiation inspection methods for composites p 68 A88-49260 FIBER OPTICS Ku-band (14GHz) fiber optic communication links for distributed antennas in the Space Station p 55 A88-35275 Fiber optic systems for mobile platforms; Proceedings
intelligent systems for space station, shuttle, and interplanetary missions [IAF PAPER 88-025] p 6 A88-55322 Fault diagnosis in orbital refueling operations p 87 N88-24154 Third Conference on Artificial Intelligence for Space Applications, part 2	Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298	FIBER COMPOSITES Radiation inspection methods for composites p 68 A88-49260 FIBER OPTICS Ku-band (14GHz) fiber optic communication links for distributed antennas in the Space Station p 55 A88-35275
intelligent systems for space station, shuttle, and interplanetary missions [IAF PAPER 88-025] p 6 A88-55322 Fault diagnosis in orbital refueling operations p 87 N88-24154 Third Conference on Artificial Intelligence for Space Applications, part 2 [NASA-CP-2492-PT-2] p 100 N88-24188 Integration of symbolic and algorithmic hardware and software for the automation of space station subsystems p 12 N88-24190	Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298 F FABRICATION Advanced topics in manufacturing technology: Product design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18,	FIBER COMPOSITES Radiation inspection methods for composites p 68 A88-49260 FIBER OPTICS Ku-band (14GHz) fiber optic communication links for distributed antennas in the Space Station p 55 A88-35275 Fiber optic systems for mobile platforms; Proceedings of the Meeting, San Diego, CA, Aug. 20, 21, 1987 [SPIE-840] p 93 A88-43176 Optical technology for spacecraft antennas
intelligent systems for space station, shuttle, and interplanetary missions [IAF PAPER 88-025] p 6 A88-55322 Fault diagnosis in orbital refueling operations p 87 N88-24154 Third Conference on Artificial Intelligence for Space Applications, part 2 [NASA-CP-2492-PT-2] p 100 N88-24188 Integration of symbolic and algorithmic hardware and software for the automation of space station subsystems p 12 N88-24190 Connecting remote systems for demonstration of	Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298 F FABRICATION Advanced topics in manufacturing technology: Product design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18, 1987 p 94 A88-44001	FIBER COMPOSITES Radiation inspection methods for composites p 68 A88-49260 FIBER OPTICS Ku-band (14GHz) fiber optic communication links for distributed antennas in the Space Station p 55 A88-35275 Fiber optic systems for mobile platforms; Proceedings of the Meeting, San Diego, CA, Aug. 20, 21, 1987 [SPIE-840] p 93 A88-43176 Optical technology for spacecraft antennas p 56 A88-43187
intelligent systems for space station, shuttle, and interplanetary missions [IAF PAPER 88-025] p 6 A88-55322 Fault diagnosis in orbital refueling operations p 87 N88-24154 Third Conference on Artificial Intelligence for Space Applications, part 2 [NASA-CP-2492-PT-2] p 100 N88-24188 Integration of symbolic and algorithmic hardware and software for the automation of space station subsystems p 12 N88-24190 Connecting remote systems for demonstration of automation technologies p 78 N88-24191	Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298 F FABRICATION Advanced topics in manufacturing technology: Product design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18,	FIBER COMPOSITES Radiation inspection methods for composites p 68 A88-49260 FIBER OPTICS Ku-band (14GHz) fiber optic communication links for distributed antennas in the Space Station p 55 A88-35275 Fiber optic systems for mobile platforms; Proceedings of the Meeting, San Diego, CA, Aug. 20, 21, 1987 [SPIE-840] p 93 A88-43176 Optical technology for spacecraft antennas p 56 A88-43187 Fiber based phased array antennas p 57 A88-50306
intelligent systems for space station, shuttle, and interplanetary missions [IAF PAPER 88-025] p 6 A88-55322 Fault diagnosis in orbital refueling operations p 87 N88-24154 Third Conference on Artificial Intelligence for Space Applications, part 2 [NASA-CP-2492-PT-2] p 100 N88-24188 Integration of symbolic and algorithmic hardware and software for the automation of space station subsystems p 12 N88-24190 Connecting remote systems for demonstration of	Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298 F FABRICATION Advanced topics in manufacturing technology: Product design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18, 1987 p 94 A88-44001 FABRICS Fabric space radiators [DE88-005569] p 17 N88-21237	FIBER COMPOSITES Radiation inspection methods for composites p 68 A88-49260 FIBER OPTICS Ku-band (14GHz) fiber optic communication links for distributed antennas in the Space Station p 55 A88-35275 Fiber optic systems for mobile platforms; Proceedings of the Meeting, San Diego, CA, Aug. 20, 21, 1987 [SPIE-840] p 93 A88-43176 Optical technology for spacecraft antennas p 56 A88-43187 Fiber based phased array antennas p 57 A88-50306 Comparison of fiber optic and space feed for large
intelligent systems for space station, shuttle, and interplanetary missions [IAF PAPER 88-025] p 6 A88-55322 Fault diagnosis in orbital refueling operations p 87 N88-24154 Third Conference on Artificial Intelligence for Space Applications, part 2 [NASA-CP-2492-PT-2] p 100 N88-24188 Integration of symbolic and algorithmic hardware and software for the automation of space station subsystems p 12 N88-24190 Connecting remote systems for demonstration of automation technologies p 78 N88-24191 Genetic algorithms for adaptive real-time control in space systems p 50 N88-24195 Block Oriented Simulation System (BOSS)	Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298 F FABRICATION Advanced topics in manufacturing technology: Product design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18, 1987 p 94 A88-44001 FABRICS Fabric space radiators [DE88-005569] p 17 N88-21237 FAILURE ANALYSIS	FIBER COMPOSITES Radiation inspection methods for composites p 68 A88-49260 FIBER OPTICS Ku-band (14GHz) fiber optic communication links for distributed antennas in the Space Station p 55 A88-35275 Fiber optic systems for mobile platforms; Proceedings of the Meeting, San Diego, CA, Aug. 20, 21, 1987 [SPIE-840] p 93 A88-43176 Optical technology for spacecraft antennas p 56 A88-43187 Fiber based phased array antennas p 57 A88-50306 Comparison of fiber optic and space feed for large aperture phased array antennas p 57 A88-50308
intelligent systems for space station, shuttle, and interplanetary missions [IAF PAPER 88-025]	Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298 F FABRICATION Advanced topics in manufacturing technology: Product design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18, 1987 FABRICS Fabric space radiators [DE88-005569] p 17 N88-21237 FAILURE ANALYSIS 1987 SEM Spring Conference on Experimental Mechanics, Houston, TX, June 14-19, 1987, Proceedings	FIBER COMPOSITES Radiation inspection methods for composites p 68 A88-49260 FIBER OPTICS Ku-band (14GHz) fiber optic communication links for distributed antennas in the Space Station p 55 A88-35275 Fiber optic systems for mobile platforms; Proceedings of the Meeting, San Diego, CA, Aug. 20, 21, 1987 [SPIE-840] Optical technology for spacecraft antennas p 56 A88-43187 Fiber based phased array antennas p 57 A88-50306 Comparison of fiber optic and space feed for large aperture phased array antennas Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of structural
intelligent systems for space station, shuttle, and interplanetary missions [IAF PAPER 88-025] p 6 A88-55322 Fault diagnosis in orbital refueling operations p 87 N88-24154 Third Conference on Artificial Intelligence for Space Applications, part 2 [NASA-CP-2492-PT-2] p 100 N88-24188 Integration of symbolic and algorithmic hardware and software for the automation of space station subsystems p 12 N88-24190 Connecting remote systems for demonstration of automation technologies p 78 N88-24191 Genetic algorithms for adaptive real-time control in space systems p 50 N88-24195 Block Oriented Simulation System (BOSS) [NASA-CR-182947] p 100 N88-27760 Space station as a vital focus for advancing the	Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298 F FABRICATION Advanced topics in manufacturing technology: Product design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18, 1987 FABRICS Fabric space radiators [DE88-005589] p 17 N88-21237 FAILURE ANALYSIS 1987 SEM Spring Conference on Experimental Mechanics, Houston, TX, June 14-19, 1987, Proceedings p 91 A88-40251	FIBER COMPOSITES Radiation inspection methods for composites p 68 A88-49260 FIBER OPTICS Ku-band (14GHz) fiber optic communication links for distributed antennas in the Space Station p 55 A88-35275 Fiber optic systems for mobile platforms; Proceedings of the Meeting, San Diego, CA, Aug. 20, 21, 1987 [SPIE-840] p 93 A88-43176 Optical technology for spacecraft antennas p 56 A88-43187 Fiber based phased array antennas p 57 A88-50306 Comparison of fiber optic and space feed for large aperture phased array antennas p 57 A88-50308 Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of structural vibrations
intelligent systems for space station, shuttle, and interplanetary missions [IAF PAPER 88-025] p 6 A88-55322 Fault diagnosis in orbital refueling operations p 87 N88-24154 Third Conference on Artificial Intelligence for Space Applications, part 2 [NASA-CP-2492-PT-2] p 100 N88-24188 Integration of symbolic and algorithmic hardware and software for the automation of space station subsystems p 12 N88-24190 Connecting remote systems for demonstration of automation technologies p 78 N88-24191 Genetic algorithms for adaptive real-time control in space systems p 50 N88-24195 Block Oriented Simulation System (BOSS) [NASA-CR-182947] p 100 N88-27760 Space station as a vital focus for advancing the technologies of automation and robotics [IAF-86-62]	Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298 F FABRICATION Advanced topics in manufacturing technology: Product design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18, 1987 FABRICS Fabric space radiators [DE88-005569] p 17 N88-21237 FAILURE ANALYSIS 1987 SEM Spring Conference on Experimental Mechanics, Houston, TX, June 14-19, 1987, Proceedings	FIBER COMPOSITES Radiation inspection methods for composites p 68 A88-49260 FIBER OPTICS Ku-band (14GHz) fiber optic communication links for distributed antennas in the Space Station p 55 A88-35275 Fiber optic systems for mobile platforms; Proceedings of the Meeting, San Diego, CA, Aug. 20, 21, 1987 [SPIE-840] Optical technology for spacecraft antennas p 56 A88-43187 Fiber based phased array antennas p 57 A88-50306 Comparison of fiber optic and space feed for large aperture phased array antennas Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of structural
intelligent systems for space station, shuttle, and interplanetary missions [IAF PAPER 88-025]	Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298 F FABRICATION Advanced topics in manufacturing technology: Product design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18, 1987 p 94 A88-44001 FABRICS Fabric space radiators [DE88-005569] p 17 N88-21237 FAILURE ANALYSIS 1987 SEM Spring Conference on Experimental Mechanics, Houston, TX, June 14-19, 1987, Proceedings p 91 A88-40251 Real-time fault management for large-scale systems p 42 A88-52355 Stability of imperfection-sensitive nonlinear space	FIBER COMPOSITES Radiation inspection methods for composites p 68 A88-49260 FIBER OPTICS Ku-band (14GHz) fiber optic communication links for distributed antennas in the Space Station p 55 A88-35275 Fiber optic systems for mobile platforms; Proceedings of the Meeting, San Diego, CA, Aug. 20, 21, 1987 [SPIE-840] p 93 A88-43176 Optical technology for spacecraft antennas p 56 A88-43187 Fiber based phased array antennas p 57 A88-50306 Comparison of fiber optic and space feed for large aperture phased array antennas p 57 A88-50308 Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of structural vibrations [AD-A194270] p 71 N88-28754 FIBERS Laboratory feasibility study of a composite embedded
intelligent systems for space station, shuttle, and interplanetary missions [IAF PAPER 88-025]	Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298 F FABRICATION Advanced topics in manufacturing technology: Product design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18, 1987 p 94 A88-44001 FABRICS Fabric space radiators [DE88-005569] p 17 N88-21237 FAILURE ANALYSIS 1987 SEM Spring Conference on Experimental Mechanics, Houston, TX, June 14-19, 1987, Proceedings p 91 A88-40251 Real-time fault management for large-scale systems p 42 A88-52355 Stability of imperfection-sensitive nonlinear space structures under stochastic loading	FIBER COMPOSITES Radiation inspection methods for composites p 68 A88-49260 FIBER OPTICS Ku-band (14GHz) fiber optic communication links for distributed antennas in the Space Station p 55 A88-35275 Fiber optic systems for mobile platforms; Proceedings of the Meeting, San Diego, CA, Aug. 20, 21, 1987 [SPIE-840] p 93 A88-43176 Optical technology for spacecraft antennas p 56 A88-43187 Fiber based phased array antennas p 57 A88-50306 Comparison of fiber optic and space feed for large aperture phased array antennas p 57 A88-50308 Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of structural vibrations [AD-A194270] p 71 N88-28754 FIBERS Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of structural vibrations
intelligent systems for space station, shuttle, and interplanetary missions [IAF PAPER 88-025]	Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298 F FABRICATION Advanced topics in manufacturing technology: Product design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18, 1987 p 94 A88-44001 FABRICS Fabric space radiators [DE88-005569] p 17 N88-21237 FAILURE ANALYSIS 1987 SEM Spring Conference on Experimental Mechanics, Houston, TX, June 14-19, 1987, Proceedings p 91 A88-40251 Real-time fault management for large-scale systems p 42 A88-52355 Stability of imperfection-sensitive nonlinear space	FIBER COMPOSITES Radiation inspection methods for composites p 68 A88-49260 FIBER OPTICS Ku-band (14GHz) fiber optic communication links for distributed antennas in the Space Station p 55 A88-35275 Fiber optic systems for mobile platforms; Proceedings of the Meeting, San Diego, CA, Aug. 20, 21, 1987 [SPIE-840] p 93 A88-43176 Optical technology for spacecraft antennas p 56 A88-43187 Fiber based phased array antennas p 57 A88-50306 Comparison of fiber optic and space feed for large aperture phased array antennas p 57 A88-50308 Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of structural vibrations [AD-A194270] p 71 N88-28754 FIBERS Laboratory feasibility study of a composite embedded
intelligent systems for space station, shuttle, and interplanetary missions [IAF PAPER 88-025] p 6 A88-55322 Fault diagnosis in orbital refueling operations p 87 N88-24154 Third Conference on Artificial Intelligence for Space Applications, part 2 [NASA-CP-2492-PT-2] p 100 N88-24188 Integration of symbolic and algorithmic hardware and software for the automation of space station subsystems p 12 N88-24190 Connecting remote systems for demonstration of automation technologies p 78 N88-24191 Genetic algorithms for adaptive real-time control in space systems p 50 N88-24195 Block Oriented Simulation System (BOSS) [NASA-CR-182947] p 100 N88-27760 Space station as a vital focus for advancing the technologies of automation and robotics [IAF-86-62] p 80 N88-29352 Machine vision for real time orbital operations p 80 N88-29367 Expert systems for MSFC power systems p 61 N88-29375 ARGES: An expert system for fault diagnosis within	Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298 F FABRICATION Advanced topics in manufacturing technology: Product design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18, 1987 p 94 A88-44001 FABRICS Fabric space radiators [DE88-005569] p 17 N88-21237 FAILURE ANALYSIS 1987 SEM Spring Conference on Experimental Mechanics, Houston, TX, June 14-19, 1987, Proceedings p 91 A88-40251 Real-time fault management for large-scale systems p 42 A88-52355 Stability of imperfection-sensitive nontlinear space structures under stochastic loading [IAF PAPER 88-293] p 47 A88-55377 On the danger of redundancies in some aerospace mechanisms p 17 N88-21475	FIBER COMPOSITES Radiation inspection methods for composites p 68 A88-49260 FIBER OPTICS Ku-band (14GHz) fiber optic communication links for distributed antennas in the Space Station p 55 A88-35275 Fiber optic systems for mobile platforms; Proceedings of the Meeting, San Diego, CA, Aug. 20, 21, 1987 [SPIE-840] p 93 A88-43176 Optical technology for spacecraft antennas p 56 A88-43187 Fiber based phased array antennas p 57 A88-50306 Comparison of fiber optic and space feed for large aperture phased array antennas p 57 A88-50308 Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of structural vibrations [AD-A194270] p 71 N88-28754 FIBERS Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of structural vibrations [AD-A194270] p 71 N88-28754 FIELD THEORY (PHYSICS)
intelligent systems for space station, shuttle, and interplanetary missions [IAF PAPER 88-025]	Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298 F FABRICATION Advanced topics in manufacturing technology: Product design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18, 1987 p 94 A88-44001 FABRICS Fabric space radiators [DE88-005569] p 17 N88-21237 FAILURE ANALYSIS 1987 SEM Spring Conference on Experimental Mechanics, Houston, TX, June 14-19, 1987, Proceedings p 91 A88-40251 Real-time fault management for large-scale systems p 42 A88-52355 Stability of imperfection-sensitive nonlinear space structures under stochastic loading [IAF PAPER 88-293] p 47 A88-55377 On the danger of redundancies in some aerospace mechanisms ARGES: An expert system for fault diagnosis within	FIBER COMPOSITES Radiation inspection methods for composites p 68 A88-49260 FIBER OPTICS Ku-band (14GHz) fiber optic communication links for distributed antennas in the Space Station p 55 A88-35275 Fiber optic systems for mobile platforms; Proceedings of the Meeting, San Diego, CA, Aug. 20, 21, 1987 [SPIE-840] p 93 A88-43176 Optical technology for spacecraft antennas p 56 A88-43187 Fiber based phased array antennas p 57 A88-50306 Comparison of fiber optic and space feed for large aperture phased array antennas p 57 A88-50308 Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of structural vibrations [AD-A194270] p 71 N88-28754 FIBERS Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of structural vibrations [AD-A194270] p 71 N88-28754 FIBERS Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of structural vibrations [AD-A194270] p 71 N88-28754 FIBERS Laboratory feasibility study of a composite of structural vibrations [AD-A194270] p 71 N88-28754 FIBELD THEORY (PHYSICS) Investigation of the dynamics of a system of bodies
intelligent systems for space station, shuttle, and interplanetary missions [IAF PAPER 88-025]	Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298 F FABRICATION Advanced topics in manufacturing technology: Product design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18, 1987 p 94 A88-44001 FABRICS Fabric space radiators [DE88-005569] p 17 N88-21237 FAILURE ANALYSIS 1987 SEM Spring Conference on Experimental Mechanics, Houston, TX, June 14-19, 1987, Proceedings p 91 A88-40251 Real-time fault management for large-scale systems p 42 A88-52355 Stability of imperfection-sensitive nontlinear space structures under stochastic loading [IAF PAPER 88-293] p 47 A88-55377 On the danger of redundancies in some aerospace mechanisms p 17 N88-21475	FIBER COMPOSITES Radiation inspection methods for composites p 68 A88-49260 FIBER OPTICS Ku-band (14GHz) fiber optic communication links for distributed antennas in the Space Station p 55 A88-35275 Fiber optic systems for mobile platforms; Proceedings of the Meeting, San Diego, CA, Aug. 20, 21, 1987 [SPIE-840] p 93 A88-43176 Optical technology for spacecraft antennas p 56 A88-43187 Fiber based phased array antennas p 57 A88-50306 Comparison of fiber optic and space feed for large aperture phased array antennas p 57 A88-50308 Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of structural vibrations [AD-A194270] p 71 N88-28754 FIBERS Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of structural vibrations [AD-A194270] p 71 N88-28754 FIELD THEORY (PHYSICS) Investigation of the dynamics of a system of bodies containing extended elastic components in a central force field p 33 A88-48082
intelligent systems for space station, shuttle, and interplanetary missions [IAF PAPER 88-025]	Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298 F FABRICATION Advanced topics in manufacturing technology: Product design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18, 1987 p 94 A88-44001 FABRICS Fabric space radiators [DE88-005569] p 17 N88-21237 FAILURE ANALYSIS 1987 SEM Spring Conference on Experimental Mechanics, Houston, TX, June 14-19, 1987, Proceedings p 91 A88-40251 Real-time fault management for large-scale systems p 42 A88-52355 Stability of imperfection-sensitive nonlinear space structures under stochastic loading [IAF PAPER 88-293] p 47 A88-55377 On the danger of redundancies in some aerospace mechanisms p 17 N88-21475 ARGES: An expert system for fault diagnosis within space-based ECLS systems p 101 N88-29380 Utilization of artificial intelligence techniques for the Space Station power system p 62 N88-29412	FIBER COMPOSITES Radiation inspection methods for composites p 68 A88-49260 FIBER OPTICS Ku-band (14GHz) fiber optic communication links for distributed antennas in the Space Station p 55 A88-35275 Fiber optic systems for mobile platforms; Proceedings of the Meeting, San Diego, CA, Aug. 20, 21, 1987 [SPIE-840] p 93 A88-43176 Optical technology for spacecraft antennas p 56 A88-43187 Fiber based phased array antennas p 57 A88-50306 Comparison of fiber optic and space feed for large aperture phased array antennas p 57 A88-50308 Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of structural vibrations [AD-A194270] p 71 N88-28754 FIBERS Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of structural vibrations [AD-A194270] p 71 N88-28754 FIBERS Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of structural vibrations [AD-A194270] p 71 N88-28754 FIBERS Laboratory feasibility study of a composite of structural vibrations [AD-A194270] p 71 N88-28754 FIBELD THEORY (PHYSICS) Investigation of the dynamics of a system of bodies containing extended elastic components in a central force field FILAMENT WINDING
intelligent systems for space station, shuttle, and interplanetary missions [IAF PAPER 88-025] p 6 A88-55322 Fault diagnosis in orbital refueling operations p 87 N88-24154 Third Conference on Artificial Intelligence for Space Applications, part 2 [NASA-CP-2492-PT-2] p 100 N88-24188 Integration of symbolic and algorithmic hardware and software for the automation of space station subsystems p 12 N88-24190 Connecting remote systems for demonstration of automation technologies p 78 N88-24191 Genetic algorithms for adaptive real-time control in space systems p 50 N88-24195 Block Oriented Simulation System (BOSS) [NASA-CR-182947] p 100 N88-27760 Space station as a vital focus for advancing the technologies of automation and robotics [IAF-86-62] p 80 N88-29352 Machine vision for real time orbital operations p 80 N88-29367 Expert systems for MSFC power systems p 61 N88-29375 ARGES: An expert system for fault diagnosis within space-based ECLS systems p 101 N88-29380 A scheduling and resource management system for space applications p 101 N88-29383 An expert system for a distributed real-time trainer p 12 N88-29411	Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298 F FABRICATION Advanced topics in manufacturing technology: Product design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18, 1987 p 94 A88-44001 FABRICS Fabric space radiators [DE88-005569] p 17 N88-21237 FAILURE ANALYSIS 1987 SEM Spring Conference on Experimental Mechanics, Houston, TX, June 14-19, 1987, Proceedings p 91 A88-40251 Real-time fault management for large-scale systems p 42 A88-52355 Stability of imperfection-sensitive nonlinear space structures under stochastic loading [IAF PAPER 88-293] p 47 A88-55377 On the danger of redundancies in some aerospace mechanisms p 17 N88-21478 ARGES: An expert system for fault diagnosis within space-based ECLS systems p 101 N88-29380 Utilization of artificial intelligence techniques for the Space Station power system p 62 N88-29412 A nonlinear filtering process diagnostic system for the	FIBER COMPOSITES Radiation inspection methods for composites p 68 A88-49260 FIBER OPTICS Ku-band (14GHz) fiber optic communication links for distributed antennas in the Space Station p 55 A88-35275 Fiber optic systems for mobile platforms; Proceedings of the Meeting, San Diego, CA, Aug. 20, 21, 1987 [SPIE-840] p 93 A88-43176 Optical technology for spacecraft antennas p 56 A88-43187 Fiber based phased array antennas p 57 A88-50306 Comparison of fiber optic and space feed for large aperture phased array antennas p 57 A88-50308 Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of structural vibrations [AD-A194270] p 71 N88-28754 FIBERS Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of structural vibrations [AD-A194270] p 71 N88-28754 FIBERS Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of structural vibrations [AD-A194270] p 71 N88-28754 FIELD THEORY (PHYSICS) Investigation of the dynamics of a system of bodies containing extended elastic components in a central force field p 33 A88-48082 FILAMENT WINDING Reinforced plastics: Winding and weaving technologies
intelligent systems for space station, shuttle, and interplanetary missions [IAF PAPER 88-025]	Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298 F FABRICATION Advanced topics in manufacturing technology: Product design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18, 1987 p 94 A88-44001 FABRICS Fabric space radiators [DE88-005569] p 17 N88-21237 FAILURE ANALYSIS 1987 SEM Spring Conference on Experimental Mechanics, Houston, TX, June 14-19, 1987, Proceedings p 91 A88-40251 Real-time fault management for large-scale systems p 42 A88-52355 Stability of imperfection-sensitive nonlinear space structures under stochastic loading [IAF PAPER 88-293] p 47 A88-55377 On the danger of redundancies in some aerospace mechanisms p 17 N88-21475 ARGES: An expert system for fault diagnosis within space-based ECLS systems p 101 N88-29380 Utilization of artificial intelligence techniques for the Space Station power system p 62 N88-29412 A nonlinear filtering process diagnostic system for the Space Station p	FIBER COMPOSITES Radiation inspection methods for composites p 68 A88-49260 FIBER OPTICS Ku-band (14GHz) fiber optic communication links for distributed antennas in the Space Station p 55 A88-35275 Fiber optic systems for mobile platforms; Proceedings of the Meeting, San Diego, CA, Aug. 20, 21, 1987 [SPIE-840] p 93 A88-43176 Optical technology for spacecraft antennas p 56 A88-43187 Fiber based phased array antennas p 57 A88-50306 Comparison of fiber optic and space feed for large aperture phased array antennas p 57 A88-50308 Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of structural vibrations [AD-A194270] p 71 N88-28754 FIBERS Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of structural vibrations [AD-A194270] p 71 N88-28754 FIELD THEORY (PHYSICS) Investigation of the dynamics of a system of bodies containing extended elastic components in a central force field p 33 A88-48082 FILAMENT WINDING Reinforced plastics: Winding and weaving technologies for space products [REPT-881-430-103] p 71 N88-27341
intelligent systems for space station, shuttle, and interplanetary missions [IAF PAPER 88-025] p 6 A88-55322 Fault diagnosis in orbital refueling operations p 87 N88-24154 Third Conference on Artificial Intelligence for Space Applications, part 2 [NASA-CP-2492-PT-2] p 100 N88-24188 Integration of symbolic and algorithmic hardware and software for the automation of space station subsystems p 12 N88-24190 Connecting remote systems for demonstration of automation technologies p 78 N88-24191 Genetic algorithms for adaptive real-time control in space systems p 50 N88-24195 Block Oriented Simulation System (BOSS) [NASA-CR-182947] p 100 N88-27760 Space station as a vital focus for advancing the technologies of automation and robotics [IAF-86-62] p 80 N88-29352 Machine vision for real time orbital operations p 80 N88-29367 Expert systems for MSFC power systems p 61 N88-29375 ARGES: An expert system for fault diagnosis within space-based ECLS systems p 101 N88-29380 A scheduling and resource management system for space applications p 101 N88-29383 An expert system for a distributed real-time trainer p 12 N88-29411	Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298 F FABRICATION Advanced topics in manufacturing technology: Product design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18, 1987 p 94 A88-44001 FABRICS Fabric space radiators [DE88-005569] p 17 N88-21237 FAILURE ANALYSIS 1987 SEM Spring Conference on Experimental Mechanics, Houston, TX, June 14-19, 1987, Proceedings p 91 A88-40251 Real-time fault management for large-scale systems p 42 A88-52355 Stability of imperfection-sensitive nonlinear space structures under stochastic loading [IAF PAPER 88-293] p 47 A88-55377 On the danger of redundancies in some aerospace mechanisms p 17 N88-21475 ARGES: An expert system for fault diagnosis within space-based ECLS systems p 101 N88-29380 Utilization of artificial intelligence techniques for the Space Station pwer system p 62 N88-29412 A nonlinear filtering process diagnostic system for the Space Station pwer system p 101 N88-29417 FATIGUE LIFE Manufacturing of damage-resistant composite structures	FIBER COMPOSITES Radiation inspection methods for composites p 68 A88-49260 FIBER OPTICS Ku-band (14GHz) fiber optic communication links for distributed antennas in the Space Station p 55 A88-35275 Fiber optic systems for mobile platforms; Proceedings of the Meeting, San Diego, CA, Aug. 20, 21, 1987 [SPIE-840] p 93 A88-43176 Optical technology for spacecraft antennas p 56 A88-43187 Fiber based phased array antennas p 57 A88-50306 Comparison of fiber optic and space feed for large aperture phased array antennas p 57 A88-50308 Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of structural vibrations [AD-A194270] p 71 N88-28754 FIBERS Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of structural vibrations [AD-A194270] p 71 N88-28754 FIBERS Investigation of the dynamics of a system of bodies containing extended elastic components in a central force field p 33 A88-48082 FILAMENT WINDING Reinforced plastics: Winding and weaving technologies for space products [REPT-881-430-103] p 71 N88-27341
intelligent systems for space station, shuttle, and interplanetary missions [IAF PAPER 88-025]	Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298 F FABRICATION Advanced topics in manufacturing technology: Product design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18, 1987 p 94 A88-44001 FABRICS Fabric space radiators [DE88-005569] p 17 N88-21237 FAILURE ANALYSIS 1987 SEM Spring Conference on Experimental Mechanics, Houston, TX, June 14-19, 1987, Proceedings p 91 A88-40251 Real-time fault management for large-scale systems p 42 A88-52355 Stability of imperfection-sensitive nonlinear space structures under stochastic loading [IAF PAPER 88-293] p 47 A88-55377 On the danger of redundancies in some aerospace mechanisms p 17 N88-21475 ARGES: An expert system for fault diagnosis within space-based ECLS systems p 101 N88-29380 Utilization of artificial intelligence techniques for the Space Station power system p 62 N88-29412 A nonlinear filtering process diagnostic system for the Space Station p	FIBER COMPOSITES Radiation inspection methods for composites p 68 A88-49260 FIBER OPTICS Ku-band (14GHz) fiber optic communication links for distributed antennas in the Space Station p 55 A88-35275 Fiber optic systems for mobile platforms; Proceedings of the Meeting, San Diego, CA, Aug. 20, 21, 1987 [SPIE-840] p 93 A88-43176 Optical technology for spacecraft antennas p 56 A88-43187 Fiber based phased array antennas p 57 A88-50306 Comparison of fiber optic and space feed for large aperture phased array antennas p 57 A88-50308 Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of structural vibrations [AD-A194270] p 71 N88-28754 FIBERS Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of structural vibrations [AD-A194270] p 71 N88-28754 FIELD THEORY (PHYSICS) Investigation of the dynamics of a system of bodies containing extended elastic components in a central force field p 33 A88-48082 FILAMENT WINDING Reinforced plastics: Winding and weaving technologies for space products [REPT-881-430-103] p 71 N88-27341
intelligent systems for space station, shuttle, and interplanetary missions [IAF PAPER 88-025]	Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298 F FABRICATION Advanced topics in manufacturing technology: Product design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18, 1987 p 94 A88-44001 FABRICS Fabric space radiators [DE88-005569] p 17 N88-21237 FAILURE ANALYSIS 1987 SEM Spring Conference on Experimental Mechanics, Houston, TX, June 14-19, 1987, Proceedings p 91 A88-40251 Real-time fault management for large-scale systems p 42 A88-52355 Stability of imperfection-sensitive nonlinear space structures under stochastic loading [IAF PAPER 88-293] p 47 A88-55377 On the danger of redundancies in some aerospace mechanisms p 17 N88-21475 ARGES: An expert system for fault diagnosis within space-based ECLS systems p 101 N88-29380 Utilization of artificial intelligence techniques for the Space Station power system p 62 N88-29412 A nonlinear filtering process diagnostic system for the Space Station power system p 101 N88-29417 FATIGUE LIFE Manufacturing of damage-resistant composite structures for aerospace applications p 65 A88-41885 FAULT TOLERANCE ARGES: An expert system for fault diagnosis within	FIBER COMPOSITES Radiation inspection methods for composites p 68 A88-49260 FIBER OPTICS Ku-band (14GHz) fiber optic communication links for distributed antennas in the Space Station p 55 A88-35275 Fiber optic systems for mobile platforms; Proceedings of the Meeting, San Diego, CA, Aug. 20, 21, 1987 [SPIE-840] p 93 A88-43176 Optical technology for spacecraft antennas p 56 A88-43187 Fiber based phased array antennas p 57 A88-50306 Comparison of fiber optic and space feed for large aperture phased array antennas p 57 A88-50308 Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of structural vibrations [AD-A194270] p 71 N88-28754 FIBERS Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of structural vibrations [AD-A194270] p 71 N88-28754 FIBERS Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of structural vibrations [AD-A194270] p 71 N88-28754 FILED THEORY (PHYSICS) Investigation of the dynamics of a system of bodies containing extended elastic components in a central force field p 33 A88-48082 FILAMENT WINDING Reinforced plastics: Winding and weaving technologies for space products [REPT-881-430-103] p 71 N88-27341 FILTERS Single-mode projection filters for modal parameter identification for flexible structures [NSA-CR-182680] p 52 N88-25244
intelligent systems — for space station, shuttle, and interplanetary missions [IAF PAPER 88-025] p 6 A88-55322 Fault diagnosis in orbital refueling operations p 87 N88-24154 Third Conference on Artificial Intelligence for Space Applications, part 2 [NASA-CP-2492-PT-2] p 100 N88-24188 Integration of symbolic and algorithmic hardware and software for the automation of space station subsystems p 12 N88-24190 Connecting remote systems for demonstration of automation technologies p 78 N88-24191 Genetic algorithms for adaptive real-time control in space systems p 50 N88-24195 Block Oriented Simulation System (BOSS) [NASA-CR-182947] p 100 N88-27760 Space station as a vital focus for advancing the technologies of automation and robotics [IAF-86-62] p 80 N88-29352 Machine vision for real time orbital operations p 80 N88-29367 Expert systems for MSFC power systems p 61 N88-29375 ARGES: An expert system for fault diagnosis within space-based ECLS systems p 101 N88-29380 A scheduling and resource management system for space applications p 101 N88-29380 An expert system for a distributed real-time trainer p 12 N88-29411 Utilization of artificial intelligence techniques for the Space Station power system p 62 N88-29412 The 1988 Goddard Conference on Space Applications of Artificial Intelligence	Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298 F FABRICATION Advanced topics in manufacturing technology: Product design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18, 1987 FABRICS Fabric space radiators [DE88-005569] p 17 N88-21237 FAILURE ANALYSIS 1987 SEM Spring Conference on Experimental Mechanics, Houston, TX, June 14-19, 1987, Proceedings p 91 A88-40251 Real-time fault management for large-scale systems p 42 A88-52355 Stability of imperfection-sensitive nonlinear space structures under stochastic loading [IAF PAPER 88-293] p 47 A88-55377 On the danger of redundancies in some aerospace mechanisms p 17 N88-21475 ARGES: An expert system for fault diagnosis within space-based ECLS systems p 101 N88-29380 Utilization of artificial intelligence techniques for the Space Station power system p 101 N88-29380 Utilization of artificial intelligence techniques for the Space Station power system p 101 N88-29417 FATIGUE LIFE Manufacturing of damage-resistant composite structures for aerospace applications p 65 A88-41885 FAULT TOLERANCE ARGES: An expert system for fault diagnosis within space-based ECLS systems p 101 N88-29380	FIBER COMPOSITES Radiation inspection methods for composites p 68 A88-49260 FIBER OPTICS Ku-band (14GHz) fiber optic communication links for distributed antennas in the Space Station p 55 A88-35275 Fiber optic systems for mobile platforms; Proceedings of the Meeting, San Diego, CA, Aug. 20, 21, 1987 [SPIE-840] p 93 A88-43176 Optical technology for spacecraft antennas p 56 A88-43187 Fiber based phased array antennas p 57 A88-50306 Comparison of fiber optic and space feed for large aperture phased array antennas p 57 A88-50308 Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of structural vibrations [AD-A194270] p 71 N88-28754 FIBERS Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of structural vibrations [AD-A194270] p 71 N88-28754 FIELD THEORY (PHYSICS) Investigation of the dynamics of a system of bodies containing extended elastic components in a central force field p 33 A88-48082 FILAMENT WINDING Reinforced plastics: Winding and weaving technologies for space products [REPT-881-430-103] p 71 N88-27341 FILTERS Single-mode projection filters for modal parameter identification for flexible structures [NASA-CR-182680] p 52 N88-25244
intelligent systems for space station, shuttle, and interplanetary missions [IAF PAPER 88-025]	Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298 F FABRICATION Advanced topics in manufacturing technology: Product design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18, 1987 p 94 A88-44001 FABRICS Fabric space radiators [DE88-005569] p 17 N88-21237 FAILURE ANALYSIS 1987 SEM Spring Conference on Experimental Mechanics, Houston, TX, June 14-19, 1987, Proceedings p 91 A88-40251 Real-time fault management for large-scale systems p 42 A88-52355 Stability of imperfection-sensitive nonlinear space structures under stochastic loading [IAF PAPER 88-293] p 47 A88-55377 On the danger of redundancies in some aerospace mechanisms p 17 N88-21475 ARGES: An expert system for fault diagnosis within space-based ECLS systems p 101 N88-29380 Utilization of artificial intelligence techniques for the Space Station power system p 62 N88-29412 A nonlinear filtering process diagnostic system for the Space Station power system p 101 N88-29417 FATIGUE LIFE Manufacturing of damage-resistant composite structures for aerospace applications p 65 A88-41885 FAULT TOLERANCE ARGES: An expert system for fault diagnosis within	FIBER COMPOSITES Radiation inspection methods for composites p 68 A88-49260 FIBER OPTICS Ku-band (14GHz) fiber optic communication links for distributed antennas in the Space Station p 55 A88-35275 Fiber optic systems for mobile platforms; Proceedings of the Meeting, San Diego, CA, Aug. 20, 21, 1987 [SPIE-840] p 93 A88-43176 Optical technology for spacecraft antennas p 56 A88-43187 Fiber based phased array antennas p 57 A88-50306 Comparison of fiber optic and space feed for large aperture phased array antennas p 57 A88-50308 Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of structural vibrations [AD-A194270] p 71 N88-28754 FIBERS Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of structural vibrations [AD-A194270] p 71 N88-28754 FIELD THEORY (PHYSICS) Investigation of the dynamics of a system of bodies containing extended elastic components in a central force field p 33 A88-48082 FILAMENT WINDING Reinforced plastics: Winding and weaving technologies for space products [REPT-881-430-103] p 71 N88-27341 FILTERS Single-mode projection filters for modal parameter identification for flexible structures [NASA-CR-182680] p 52 N88-25244 FINITE DIFFERENCE THEORY Space-based system disturbances caused by on-board fluid motion during system maneuvers
intelligent systems for space station, shuttle, and interplanetary missions [IAF PAPER 88-025]	Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298 F FABRICATION Advanced topics in manufacturing technology: Product design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18, 1987 p 94 A88-44001 FABRICS Fabric space radiators [DE88-005569] p 17 N88-21237 FAILURE ANALYSIS 1987 SEM Spring Conference on Experimental Mechanics, Houston, TX, June 14-19, 1987, Proceedings p 91 A88-40251 Real-time fault management for large-scale systems p 42 A88-52355 Stability of imperfection-sensitive nonlinear space structures under stochastic loading [IAF PAPER 88-293] p 47 A88-55377 On the danger of redundancies in some aerospace mechanisms p 17 N88-21475 ARGES: An expert system for fault diagnosis within space-based ECLS systems p 101 N88-29380 Utilization of artificial intelligence techniques for the Space Station power system p 101 N88-29380 Utilization of artificial intelligence techniques for the Space Station power system p 101 N88-29380 TATIGUE LIFE Manufacturing of damage-resistant composite structures for aerospace applications p 65 A88-41885 FAULT TOLERANCE ARGES: An expert system for fault diagnosis within space-based ECLS systems p 101 N88-29380 Reasoning about fault diagnosis for the space station common module thermal control system	FIBER COMPOSITES Radiation inspection methods for composites p 68 A88-49260 FIBER OPTICS Ku-band (14GHz) fiber optic communication links for distributed antennas in the Space Station p 55 A88-35275 Fiber optic systems for mobile platforms; Proceedings of the Meeting, San Diego, CA, Aug. 20, 21, 1987 [SPIE-840] p 93 A88-43176 Optical technology for spacecraft antennas p 56 A88-43187 Fiber based phased array antennas p 57 A88-50306 Comparison of fiber optic and space feed for large aperture phased array antennas p 57 A88-50308 Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of structural vibrations [AD-A194270] p 71 N88-28754 FIBERS Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of structural vibrations [AD-A194270] p 71 N88-28754 FIELD THEORY (PHYSICS) Investigation of the dynamics of a system of bodies containing extended elastic components in a central force field p 33 A88-48082 FILAMENT WINDING Reinforced plastics: Winding and weaving technologies for space products [REPT-881-430-103] p 71 N88-27341 FILTERS Single-mode projection filters for modal parameter identification for flexible structures [NASA-CR-182680] p 52 N88-25244 FINITE DIFFERENCE THEORY Space-based system disturbances caused by on-board fluid motion during system maneuvers [AIAA PAPER 88-3633] p 33 A88-48957
intelligent systems for space station, shuttle, and interplanetary missions [IAF PAPER 88-025]	Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298 F FABRICATION Advanced topics in manufacturing technology: Product design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18, 1987 p 94 A88-44001 FABRICS Fabric space radiators [DE88-005569] p 17 N88-21237 FAILURE ANALYSIS 1987 SEM Spring Conference on Experimental Mechanics, Houston, TX, June 14-19, 1987, Proceedings p 91 A88-40251 Real-time fault management for large-scale systems p 42 A88-52355 Stability of imperfection-sensitive nonlinear space structures under stochastic loading [IAF PAPER 88-293] p 47 A88-55377 On the danger of redundancies in some aerospace mechanisms p 17 N88-21475 ARGES: An expert system for fault diagnosis within space-based ECLS systems p 101 N88-29380 Utilization of artificial intelligence techniques for the Space Station power system p 62 N88-29412 A nonlinear filtering process diagnostic system for the Space Station power system p 101 N88-29417 FATIGUE LIFE Manufacturing of damage-resistant composite structures for aerospace applications p 65 A88-41885 FAULT TOLERANCE ARGES: An expert system for fault diagnosis within space-based ECLS systems p 101 N88-29380 Reasoning about fault diagnosis for the space station common module thermal control system p 23 N88-29395 Parallel and distributed computation for fault-tolerant	FIBER COMPOSITES Radiation inspection methods for composites p 68 A88-49260 FIBER OPTICS Ku-band (14GHz) fiber optic communication links for distributed antennas in the Space Station p 55 A88-35275 Fiber optic systems for mobile platforms; Proceedings of the Meeting, San Diego, CA, Aug. 20, 21, 1987 [SPIE-840] p 93 A88-43176 Optical technology for spacecraft antennas p 56 A88-43187 Fiber based phased array antennas p 57 A88-50306 Comparison of fiber optic and space feed for large aperture phased array antennas p 57 A88-50308 Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of structural vibrations [AD-A194270] p 71 N88-28754 FIBERS Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of structural vibrations [AD-A194270] p 71 N88-28754 FIELD THEORY (PHYSICS) Investigation of the dynamics of a system of bodies containing extended elastic components in a central force field p 33 A88-48082 FILAMENT WINDING Reinforced plastics: Winding and weaving technologies for space products [REPT-881-430-103] FILTERS Single-mode projection filters for modal parameter identification for flexible structures [NASA-CR-182680] FINITE DIFFERENCE THEORY Space-based system disturbances caused by on-board fluid motion during system maneuvers [AIAA PAPER 88-3633] p 33 A88-48957 A numerical method for the analysis of coupling to thin
intelligent systems for space station, shuttle, and interplanetary missions [IAF PAPER 88-025]	Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298 F FABRICATION Advanced topics in manufacturing technology: Product design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18, 1987 p 94 A88-44001 FABRICS Fabric space radiators [DE88-005569] p 17 N88-21237 FAILURE ANALYSIS 1987 SEM Spring Conference on Experimental Mechanics, Houston, TX, June 14-19, 1987, Proceedings p 91 A88-40251 Real-time fault management for large-scale systems p 42 A88-52355 Stability of imperfection-sensitive nonlinear space structures under stochastic loading [IAF PAPER 88-293] p 17 N88-21475 ARGES: An expert system for fault diagnosis within space-based ECLS systems p 101 N88-29380 Utilization of artificial intelligence techniques for the Space Station power system p 101 N88-29417 FATIGUE LIFE Manufacturing of damage-resistant composite structures for aerospace applications p 65 A88-41885 FAULT TOLERANCE ARGES: An expert system for fault diagnosis within space-based ECLS systems p 101 N88-29380 Reasoning about fault diagnosis for the space station common module thermal control system P 23 N88-29395 Parallel and distributed computation for fault-tolerant object recognition p 13 N88-30350 FEASIBILITY ANALYSIS	FIBER COMPOSITES Radiation inspection methods for composites p 68 A88-49260 FIBER OPTICS Ku-band (14GHz) fiber optic communication links for distributed antennas in the Space Station p 55 A88-35275 Fiber optic systems for mobile platforms; Proceedings of the Meeting, San Diego, CA, Aug. 20, 21, 1987 [SPIE-840] p 93 A88-43176 Optical technology for spacecraft antennas p 56 A88-43187 Fiber based phased array antennas p 57 A88-50306 Comparison of fiber optic and space feed for large aperture phased array antennas p 57 A88-50308 Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of structural vibrations [AD-A194270] p 71 N88-28754 FIBERS Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of structural vibrations [AD-A194270] p 71 N88-28754 FIELD THEORY (PHYSICS) Investigation of the dynamics of a system of bodies containing extended elastic components in a central force field FILAMENT WINDING Reinforced plastics: Winding and weaving technologies for space products [REPT-881-39-103] p 71 N88-27341 FILTERS Single-mode projection filters for modal parameter identification for flexible structures [NASA-CR-182680] p 52 N88-25244 FINITE DIFFERENCE THEORY Space-based system disturbances caused by on-board fluid motion during system maneuvers [AIAA PAPER 88-3633] p 33 A88-48957 A numerical method for the analysis of coupling to thin wire structures FINITE ELEMENT METHOD
intelligent systems for space station, shuttle, and interplanetary missions [IAF PAPER 88-025]	Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298 F FABRICATION Advanced topics in manufacturing technology: Product design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18, 1987 p 94 A88-44001 FABRICS Fabric space radiators [DE88-005589] p 17 N88-21237 FAILURE ANALYSIS 1987 SEM Spring Conference on Experimental Mechanics, Houston, TX, June 14-19, 1987, Proceedings p 91 A88-40251 Real-time fault management for large-scale systems p 42 A88-52355 Stability of imperfection-sensitive nonfinear space structures under stochastic loading [IAF PAPER 88-293] p 47 A88-55377 On the danger of redundancies in some aerospace mechanisms p 17 N88-21475 ARGES: An expert system for fault diagnosis within space-based ECLS systems p 101 N88-29380 Utilization of artificial intelligence techniques for the Space Station power system p 101 N88-29380 Utilization of artificial intelligence techniques for the Space Station power system p 101 N88-29380 The Manufacturing of damage-resistant composite structures for aerospace applications p 101 N88-29417 FATIGUE LIFE Manufacturing of damage-resistant composite structures for aerospace applications p 65 A88-41885 FAULT TOLERANCE ARGES: An expert system for fault diagnosis within space-based ECLS systems p 101 N88-29380 Reasoning about fault diagnosis for the space station common module thermal control system p 23 N88-29395 Parallel and distributed computation for fault-tolerant object recognition p 13 N88-30350 FEASIBILITY ANALYSIS The efficacy of using human myoelectric signals to	FIBER COMPOSITES Radiation inspection methods for composites p 68 A88-49260 FIBER OPTICS Ku-band (14GHz) fiber optic communication links for distributed antennas in the Space Station p 55 A88-35275 Fiber optic systems for mobile platforms; Proceedings of the Meeting, San Diego, CA, Aug. 20, 21, 1987 [SPIE-840] Detical technology for spacecraft antennas p 56 A88-43187 Fiber based phased array antennas p 57 A88-50308 Comparison of fiber optic and space feed for large aperture phased array antennas p 57 A88-50308 Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of structural vibrations [AD-A194270] P 71 N88-28754 FIBERS Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of structural vibrations [AD-A194270] P 71 N88-28754 FIELD THEORY (PHYSICS) Investigation of the dynamics of a system of bodies containing extended elastic components in a central force field p 33 A88-48082 FILAMENT WINDING Reinforced plastics: Winding and weaving technologies for space products [REPT-881-430-103] P 71 N88-27341 FILTERS Single-mode projection filters for modal parameter identification for flexible structures [NASA-CR-182680] P 52 N88-25244 FINITE DIFFERENCE THEORY Space-based system disturbances caused by on-board fluid motion during system maneuvers [AIAA PAPER 88-3633] P 33 A88-48957 A numerical method for the analysis of coupling to thin wire structures FINITE ELEMENT METHOD A distributed finite element modeling and control
intelligent systems for space station, shuttle, and interplanetary missions [IAF PAPER 88-025]	Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298 F FABRICATION Advanced topics in manufacturing technology: Product design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18, 1987 p 94 A88-44001 FABRICS Fabric space radiators [DE88-005569] p 17 N88-21237 FAILURE ANALYSIS 1987 SEM Spring Conference on Experimental Mechanics, Houston, TX, June 14-19, 1987, Proceedings p 91 A88-40251 Real-time fault management for large-scale systems p 42 A88-52355 Stability of imperfection-sensitive nonlinear space structures under stochastic loading [IAF PAPER 88-293] p 17 N88-21475 ARGES: An expert system for fault diagnosis within space-based ECLS systems p 101 N88-29380 Utilization of artificial intelligence techniques for the Space Station power system p 101 N88-29417 FATIGUE LIFE Manufacturing of damage-resistant composite structures for aerospace applications p 65 A88-41885 FAULT TOLERANCE ARGES: An expert system for fault diagnosis within space-based ECLS systems p 101 N88-29380 Reasoning about fault diagnosis for the space station common module thermal control system P 23 N88-29395 Parallel and distributed computation for fault-tolerant object recognition p 13 N88-30350 FEASIBILITY ANALYSIS	FIBER COMPOSITES Radiation inspection methods for composites p 68 A88-49260 FIBER OPTICS Ku-band (14GHz) fiber optic communication links for distributed antennas in the Space Station p 55 A88-35275 Fiber optic systems for mobile platforms; Proceedings of the Meeting, San Diego, CA, Aug. 20, 21, 1987 [SPIE-840] p 93 A88-43176 Optical technology for spacecraft antennas p 56 A88-43187 Fiber based phased array antennas p 57 A88-50306 Comparison of fiber optic and space feed for large aperture phased array antennas p 57 A88-50308 Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of structural vibrations [AD-A194270] p 71 N88-28754 FIBERS Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of structural vibrations [AD-A194270] p 71 N88-28754 FIELD THEORY (PHYSICS) Investigation of the dynamics of a system of bodies containing extended elastic components in a central force field FILAMENT WINDING Reinforced plastics: Winding and weaving technologies for space products [REPT-881-39-103] p 71 N88-27341 FILTERS Single-mode projection filters for modal parameter identification for flexible structures [NASA-CR-182680] p 52 N88-25244 FINITE DIFFERENCE THEORY Space-based system disturbances caused by on-board fluid motion during system maneuvers [AIAA PAPER 88-3633] p 33 A88-48957 A numerical method for the analysis of coupling to thin wire structures FINITE ELEMENT METHOD

SUBJECT INDEX FLUID MANAGEMENT

Moving-bank multiple model adaptive estimation applied Analytic redundancy management for systems with On the Caltech experimental large space structure p 6 A88-54603 to flexible spacestructure control appreciable structural dynamics --- for control systems IAD-A1907611 Generic model laboratory tests for large flexible structure A nonlinear computation for composite structures Structural vibration of space power station systems p 29 A88-42574 p 69 N88-23265 p 47 A88-55378 IONERA-RT-15/3542-RY-062-R1 [IAF PAPER 88-294] FISSION ELECTRIC CELLS Dynamics and control of large space platforms and small Identification of large structures on orbit - A survey experimental payloads p 30 A88-42582
Active vibration control synthesis for the control of Noncryogenic propellants for a nuclear orbit transfer [IAF PAPER 88-295] p 97 A88-55379 vehicle p 87 N88-24444 Dynamics of interconnected flexible members in the FITTINGS flexible structures mast flight system p 30 A88-43212 presence of environmental forces - A formulation with station interface Large space structures: Dynamics and control --- Book Expandable pallet for space applications p 31 A88-46401 attachments [IAF PAPER 88-318] p 47 A88-55391 [NASA-CASE-MSC-21117-1] Nonlinearities in the dynamics and control of space p 18 N88-28958 Multimission communication satellites structures - Some issues for computational mechanics FLEXIBILITY p 6 A88-55417 [IAF PAPER 88-426] p 31 A88-46403 On the transient dynamics of flexible orbiting A 60-meter erectable assembly concept for a control SIMSAT: Simulation package for flexible systems. of flexible structures flight experiment Beams in space p 31 A88-46405 [NASA-TM-100497] p 7 N88-21190 Single-mode projection filters for modal parameter identification for flexible structures p 48 N88-20348 Some approximations for the dynamics of spacecraft p 33 A88-46712 Robust decentralized control of large flexible tethers Mathematical modeling of the dynamics of a spacecraft structures INASA-CR-1826801 p 52 N88-25244 [DE88-005416] p 48 N88-20902 vith elastic components p 33 A88-48080
Investigation of the dynamics of a system of bodies with elastic components FLEXIBLE BODIES A feedback double path compensating control structure Multivariable control law analysis for a large space containing extended elastic components in a central force for the attitude control of a flexible spacecraft p 25 A88-34501 antenna [INPF-4464-PRF/1239] p 48 N88-21240 Approximation in discrete-time boundary control of p 33 A88-48082 Stress concentration around a pair of circular holes in flexible structures p 25 A88-34737 Maximum likelihood parameter identification of flexible Parameter identification techniques for the estimation a hydrostatically stressed elastic sheet spacecraft p 33 A88-48194 of damping in flexible structure experiments [LR-508] p 50 N88-22924 A variable structure control approach to flexible p 26 A88-34805 L(sub infinity symbol)-approximations of complex p 34 A88-49914 Robust control of flexible structures - A case study spacecrafts functions and robust controllers for large flexible space Pole/zero cancellations in flexible space structures p 29 A88-40489 structures The identification of a distributed parameter model for [AIAA PAPER 88-4055] p 34 A88-50165 [PB88-186226] p 52 N88-26390 Sensors, actuators, and hyperstability of structures Numerical optimization, system theoretic and software a flexible structure p 31 A88-46041 p 34 A88-50167 [AIAA PAPER 88-4057] Dynamic analysis of finitely stretched and rotated tools for the integrated design of flexible structures and A disturbance model for the optimization of control/structure interactions for flexible dynamic three-dimensional space-curved beams their control systems p 22 A88-49658 AD-A192927 p 52 N88-27183 A distributed finite element modeling and control FLIGHT CONTROL approach for large flexible structures
[AIAA PAPER 88-4085] [AIAA PAPER 88-4058] p 34 A88-50168 Autonomous flight control for low thrust orbital transfer Effects of nonlinear damping in flexible space p 35 A88-50191 vehicles A slew maneuver experiment of mission function structures [AIAA PAPER 88-2838] p 30 A88-44670 [AIAA PAPER 88-4059] p 35 A88-50169 control AIAA Guidance, Navigation and Control Conference, Modeling of non-collocated structural control systems [AIAA PAPER 88-4226] p 38 A88-50367 Minneapolis, MN, Aug. 15-17, 1988, Technical Papers [AIAA PAPER 88-4060] p 35 A88-50170 Design of an on-board antenna pointing control system Parts 1 & 2 p 95 A88-50160 Attituded tumbling due to flexibility in satellite mounted flight control of p 42 A88-50980 for communication satellites Aeroelastic interactions with [AIAA PAPER 88-4306] n 39 A88-50431 transatmospheric vehicles [AIAA PAPER 88-4096] p 35 A88-50201 Exponent diagram analysis of feedback control systems Motion planning for a free-flying robot Adaptive control experiment with a large flexible p 80 N88-29378 including flexible structures p 10 A88-50836 Large truss structures --- for space assembly structure Space station proximity operations windows: Human [AIAA PAPER 88-4153] p 75 A88-50862 p 36 A88-50247 factors design guidelines [NASA-TM-88233] Dynamics and control of experimental tendon control Laboratory facility for flexible structure control p 101 N88-30301 A88-53681 system for flexible space structure FLIGHT OPERATIONS experiments p 42 [AIAA PAPER 88-4154] p 36 A88-50248 The jitter beam - An experiment demonstrating pointing The Manned Space Laboratories Control Center (MSCC) An alternate transition from the Lagrangian of a satellite p 43 A88-54406 at DFVLR - Oberpfaffenhofen, Germany control on a flexible structure IAF PAPER 88-087 Recent results in identification and control of a flexible to equations of motion p 6 A88-55337 p 44 A88-54576 [AIAA PAPER 88-4221] p 37 A88-50362 truss structure FLIGHT SIMULATION Analytical expressions for vibratory displacements of Theoretical and experimental investigation Simulation - Antidote to risk p 9 A88-40524 space-realizable inertial actuation for passive and active deploying appendages FLIGHT SIMULATORS [AIAA PAPER 88-4250] p 38 A88-50383 structural control p 46 A88-55063 OMV docking simulator p 101 N88-29379 The dynamics and control of the orbiting spacecraft Moveable thermal joints for deployable or steerable FLIGHT TESTS spacecraft radiator systems control laboratory experiment (SCOLE) during station Flight qualification testing of ultrathin solar cells keeping [AIAA PAPER 88-4252] p 14 N88-20347 p 63 A88-34448 (NLR-MP-87016-U1 n 38 A88-50384 Optimal control and identification of space structures Space structure (dynamics and control) theme A pole placement technique for vibration suppression [AD-A190033] development [NASA-TM-100597] p 49 N88-22065 of flexible structures Experimental study of active vibration control p 8 N88-29850 p 51 N88-24989 [AIAA PAPER 88-4254] p 38 A88-50385 (AD-A191454) **FLOW DISTRIBUTION** Dynamics of articulated aerospace structures An optimal maneuver control method for the spacecraft A self-consistent tension shell structure for application with flexible appendages [AIAA PAPER 88-4255] p 53 N88-29794 aerobraking vehicle and its aerodynamic [AD-A195685] Robust design of distributed controllers for large flexible p 38 A88-50386 characteristics [AIAA PAPER 88-3405] A formulation for studying dynamics and control of the Space Station based MRMS and its application space structures p 14 A88-44839 p 54 N88-30134 NASA-CR-183202 FLUID FILMS p 38 A88-50398 [AIAA PAPER 88-4269] FLEXIBLE SPACECRAFT A new linearized theory of laminar film condensation of two phase annular flow in a capillary pumped loop [AIAA PAPER 88-2637] p 56 A88-43715 A formulation for studying dynamics of interconnected Synthesis of fine-pointing control systems for large, bodies with application p 24 A88-33446 p 56 A88-43715 flexible spacecraft [AIAA PAPER 88-4303] p 39 A88-50428 Time optimal slewing of flexible spacecraft FLUID FLOW A mathematical theory of learning control for linear Development of a rotary fluid transfer coupling and p 25 A88-34736 Moving bank multiple model adaptive estimation applied screte multivariable systems support mechanism for space station p 25 A88-34790 [AIAA PAPER 88-4313] to flexible space structure control p 40 A88-50438 p 18 N88-21493 Superfluid Helium On-Orbit Transfer (SHOOT) An adaptive control system for fine pointing of flexible Accommodation of kinematic disturbances during a spacecraft p 26 A88-34791 minimum-time maneuver of a flexible spacecraft operators [AIAA PAPER 88-4253] p 40 A88-50440 NASA-TM-101009] Rotational maneuver and stabilization of an elastic p 88 N88-28084 p 26 A88-34794 Control of spacecraft with multi-targeted flexible **FLUID MANAGEMENT** Controller synthesis for flexible spacecraft using Design of light-weight impact resistant pressure vessels antennas multivariable loop-shaping and factorization methods [AIAA PAPER 88-4268] for Space Station fluid and propulsion systems p 40 A88-50441 p 26 A88-34796 p 83 A88-35943 [AIAA PAPER 88-2466] Beam modifications of structural systems utilizing the Time optimal slewing of a rigid body with flexible International Symposium on Thermal Problems in receptance approach with static flexibility p 26 A88-34812 appendages Space-Based Systems, Boston, MA, Dec. 13-18, 1987, p 14 A88-50891 Stability and equilibria of deformable systems Proceedings p 92 A88-42829 Dynamics analysis of a system of hinge-connected p 26 A88-34813 Applicability of the flow-net program to solution of Space p 42 A88-52639 flexible bodies Modelling and stabilization of flexible spacecraft under Station fluid dynamics problems p 20 A88-42832 Use of assumed modes in equations governing p 27 A88-34914 the influence of orbital perturbation Orbital spacecraft consumables resupply large-displacement elastodynamic plate behavior Model reference control of the NASA SCOLE problem [AIAA PAPER 88-2922] p 94 A88-44695 p 43 A88-54421 --- Spacecraft COntrol Laboratory Experiment Fundamental limitations on low gravity fluid gauging Improved methods for linearized flexibility models in p 27 A88-34916 technologies imposed by orbital mission requirements multibody dynamics and control p 43 A88-54423 Experimental study of transient waves in a plane grid [AIAA PAPER 88-3402] p 86 A88-53163 Rapid multi-flexible-body maneuvering experiments Cryogenic Fluid Management Technology Workshop.
Volume 2: Roundtable Discussion of Technology tructure p 28 A88-38390 SHAPES - Spatial, High-Accuracy, Position-Encoding p 44 A88-54532 Decentralized model reference adaptive control of large Sensor for multi-point, 3-D position measurement of large Requirements

p 45 A88-54587

[NASA-CP-10009]

p 19 A88-40292

flexible structures

flexible structures

p 22 N88-20599

FLUID TRANSMISSION LINES SUBJECT INDEX Space Station truss strut tube design FLOSIN: A fluid loop analyzer for SINDA **FUNCTIONAL DESIGN SPECIFICATIONS** p 23 N88-22321 Study of human factors engineering criteria for IAIAA PAPER 88-24711 p 13 A88-35944 extravehicular activity (EVA) systems, volume 1 Degradation of graphite-epoxy due to electron Turbomachinery in space p 60 N88-2432 p 63 A88-36762 Superfluid Helium On-Orbit Transfer ISTF23-F87025-VOL-1) p 82 N88-30298 (SHOOT) radiation Space radiation effects on poly(aryl-ether-ketone) thin FURLABLE ANTENNAS operators p 88 N88-28084 INASA-TM-101009 Aerospatiale unfurlable reflector and associated films and composites p 65 A88-41547 Evaluation of chromic acid anodized aluminum foil **FLUID TRANSMISSION LINES** p 15 N88-21203 Ammonia transfer across rotating joints in space coated composite tubes for the Space Station truss p 22 N88-21492 p 65 A88-42412 G Thermal cycling effects on the dimensional stability of P75 and P75-T300 (fabric) hybrid graphite/epoxy laminates p 65 A88-42434 FLYING PLATFORMS Fiber optic systems for mobile platforms; Proceedings of the Meeting, San Diego, CA, Aug. 20, 21, 1987 GAME THEORY p 93 A88-43176 Advanced composites for Magellan spacecraft LSPIE-8401 Game theory approach for the integrated design of AIAA PAPER 88-3031] p 68 A88-53126 **FLYWHEELS** p 33 A88-47462 structures and controls Qualification of the OLYMPUS reaction wheel **GRAVITATIONAL EFFECTS** GAMMA RAY OBSERVATORY p 16 N88-21226 The dynamics and control of the orbiting spacecraft The Gamma Ray Observatory (GRO) Propulsion control laboratory experiment (SCOLE) during station Evolution of large momentum and reaction wheels Subsystem p 48 N88-21230 keeping [AIAA PAPER 88-4252] [AIAA PAPER 88-3051] p 4 A88-44741 **FOCAL PLANE DEVICES** p 38 A88-50384 **GAS FLOW** Self-correction of telescope surface errors using a **GRAVITATIONAL FIELDS** Ammonia transfer across rotating joints in space correlating focal plane array n 91 A88-38097 Optimal rendezvous in a gravitational field with limited p 22 N88-21492 Focal-plane and aperture-plane heterodyne array p 90 A88-36144 GAS TEMPERATURE receivers for millimeter-wave radioastronomy GRAVITATIONAL PHYSIOLOGY Velocity distributions of oxygen atoms incident on spacecraft surfaces p 68 A88-54990 p 58 A88-54749 A concept for manned variable gravity facilities comparison p.9 A88-43969 **FOCUSING GASEOUS ROCKET PROPELLANTS** GRAVITY ANOMALIES Performance of focusing mirror systems for the solar 25-LBF GO2/GH2 space station thruster Compatibility of microgravity experiments with dynamic energy supply of space stations [AIAA PAPER 88-2793] ρ 86 A88-53101 p 85 A88-49750 spacecraft disturbances p 34 A88-49743 GEOMAGNETIC TAIL **GREEN'S FUNCTIONS** Relationship between characteristics of low-energy Dynamic responses of orthotropic plates under moving Motion synchronization of a mechanism to deploy and electrons and geomagnetic disturbance in geostationary orbit p 62 N88-30501 p 77 N88-21474 p 28 A88-35543 restow a truss beam GROUND BASED CONTROL **FOLDING STRUCTURES** Piloted earth pointing of a spinning geosynchronous The CTM program of masts and the CTM engineering GEOMAGNETISM satellite --- following satellite's earth acquisition failure
[AIAA PAPER 88-4130] p 37 A88-50280 Active experiments; Proceedings of Symposium 1 of the model --- spacecraft mechanism p 15 N88-21196 Twenty-sixth COSPAR Plenary Meeting, Toulouse, France p 37 A88-50280 The development status of the strongback array ---GROUND OPERATIONAL SUPPORT SYSTEM June 30-July 11, 1986 p 95 A88-46776 p 15 N88-21201 spacecraft structure Ground based operations support by Artificial Intelligence p 58 A88-52339 **GEOSYNCHRONOUS ORBITS** The X-beam as a deployable boom for the space Space ten-meter telescope (STMT) - Structural and p 17 N88-21473 station **GROUND STATIONS** thermal feasibility study of the primary mirror Alternative module configurations for advanced solar p 19 A88-34539 A technique for the measurement of environmental arrays on low orbit and extended lifetime missions (AMOC 'Space weather forecast' - Prediction of relativistic levels of microwave radiation around satellite earth electron intensity at synchronous orbit p 62 N88-30182 [ESA-CR(P)-2581] p 64 A88-38015 GROUND SUPPORT EQUIPMENT FORCED VIBRATION Robotic applications at Kennedy Space Center Calorimetric measurements of thermal control surfaces Experimental and theoretical investigation of passive p 19 A88-41414 p 76 A88-52328 at geosynchronous orbit damping concepts for member forced and free vibration Autonomous flight control for low thrust orbital transfer GROUND SUPPORT SYSTEMS INASA-CR-1830821 p 52 N88-26693 Systems integration for the Kennedy Space Center (KSC) Robotics Applications Development Laboratory FORMING TECHNIQUES [AIAA PAPER 88-2838] p 30 A88-44670 (RADL) Superplastic forming characteristics and properties of Piloted earth pointing of a spinning geosynchronous p 76 A88-52330 GROUND TESTS aluminum-lithium sheet alloys p 67 A88-45205 satellite --- following satellite's earth acquisition failure [AIAA PAPER 88-4130] Ground-test of spacecraft control and dynamics FOURIER SERIES p 37 A88-50280 Problems and solutions for GPS use beyond the 12-hour AAS PAPER 86-267] p 27 A88-35102 A Fourier-based optimal control approach for structural Application of FAMESS to a large space structure ground p 45 A88-54643 p 5 A88-51715 systems Experimental demonstration of the maximum Study of the optimization of satellite system design for test facility FRACTURE MECHANICS transfer orbit Research in ceramics at the U.S. Naval Research Lab MBB-URV-1351 entropy/optimal projection design theory for active p 11 N88-20332 p 68 A88-49996 Relationship between characteristics of low-energy vibration control p 44 A88-54575 FRACTURE STRENGTH electrons and geomagnetic disturbance in geostationary GUIDANCE (MOTION) A fracture control plan for composite spacecraft AlAA Guidance, Navigation and Control Conference, Minneapolis, MN, Aug. 15-17, 1988, Technical Papers. p 62 N88-3050 GET AWAY SPECIALS (STS) [IAF PAPER 88-282] p 68 A88-55374 Project Endeavour - Cannister 2 support structure p 95 A88-50160 Parts 1 & 2 Thermally stable deployable structure p 91 A88-37273 **GYROSCOPES** p 17 N88-21472 GI ASS Stress concentration around a pair of circular holes in Solar cell cover glasses for satellites a hydrostatically stressed elastic sheet Comparison of theoretical and experimental modal p 69 N88-22225 p 33 A88-48194 analysis results of a rectangular three dimensional frame GLASS TRANSITION TEMPERATURE p 22 A88-50873 Degradation of graphite-epoxy due to electron Control augmented structural synthesis radiation p 63 A88-36762 p 48 N88-20290 [NASA-CR-4132] GLOBAL POSITIONING SYSTEM HALLEY'S COMET FREE FLIGHT Potential GPS user architecture for the NASA Space Decision time on orbital debris The Columbus resource module for the European p 66 A88-43516 Station based on Landsat 4/5 experience p 3 A88-37398 HAND (ANATOMY) man-tended free flyer p 2 A88-35056 [AAS PAPER 86-465] Problems and solutions for GPS use beyond the 12-hour Handgrip strength with the bare hand and in the NASA Redundancy control of a free-flying telerobot p 73 A88-35452 orbit p 5 A88-51715 spacesuit glove Feasibility of using GPS measurements for OMV attitude p 35 A88-50199 [AIAA PAPER 88-4094] Design, development and evaluation of Stanford/Ames update p 96 A88-51716 Guidance and control for cooperative tether-mediated EVA prehensors Spacecraft applications of advanced global positioning [NASA-CR-182688] p 78 N88-22540 orbital rendezvous system technology [AIAA PAPER 88-4170] p 37 A88-50261 HEAT PIPES INASA-CR-1720551 p 8 N88-27180 A resupply scenario for the Columbus Mantended International Symposium on Thermal Problems in GLOVES Space-Based Systems, Boston, MA, Dec. 13-18, 1987, Freeflyer (MTFF) p 5 A88-52337 Handgrip strength with the bare hand and in the NASA p 92 A88-42829 **Proceedings** Motion planning for a free-flying robot spacesuit glove p 73 A88-35452 p 80 N88-29378 Super heat pipe design considerations for applications Design, development and evaluation of Stanford/Ames to space-based systems p 20 A88-42830 FREE VIBRATION EVA prehensors Transfer matrix analysis of cable-stiffened hoop A flexible variable conductance heat pipe design for INASA-CR-1826881 p 78 N88-22540 p 46 A88-54989 platforms temperature control of spacecraft equipment **GOVERNMENT/INDUSTRY RELATIONS** [AIAA PAPER 88-2680] p 20 A88-43743 Experimental and theoretical investigation of passive Space for rent? p 5 A88-51133 damping concepts for member forced and free vibration [NASA-CR-183082] p 52 N88-26693 Development of an integrated heat pipe-thermal storage GRAPHITE system for a solar receiver [AIAA PAPER 88-2683] Prospects of intercalated graphite fibre use for electrical power transmission in solar power satellites p 21 A88-43746

p 64 A88-40568

p 62 A88-33018

p 13 A88-35940

GRAPHITE-EPOXY COMPOSITES

[AIAA PAPER 88-2448]

struts for Space Station application

Design, fabrication, and testing of rolled carbon/epoxy

Space Station erectable truss joint evaluation

Moveable thermal joints for deployable or steerable

Solar dynamic heat rejection technology. Task 2: Heat

p 14 N88-20347

p 23 N88-23182

spacecraft radiator systems

pipe radiator development [NASA-CR-182141]

[NLR-MP-87016-U]

FREQUENCY RESPONSE

a digital control system

dry friction damped systems

FRICTION REDUCTION

Method for the experimental determination of the

p 34 A88-50095

p 33 A88-49714

frequency characteristics of an elastic flight vehicle with

Frequency domain solutions to multi-degree-of-freedom,

Development of a space deployable radiator using heat		
Development of a space deployable radiator dainy near	Space station architectural elements model study	INFLATABLE STRUCTURES
pipes	[NASA-CR-4027] p 100 N88-24632	Far infrared spectroscopy telescope (FIRST) inflatable
[SNIAS-881-440-104] p 23 N88-29128	Human performance issues arising from manned space	thermal shield, phase 1
HEAT RADIATORS	station missions	[SR/FIS/108(87)CZ] p 24 N88-3055
Solar dynamic heat rejection technology. Task 2: Heat	[NASA-CR-3942] p 100 N88-25156	INFORMATION SYSTEMS
pipe radiator development	Study of human factors engineering criteria for	A shared-world conceptual model for integrating space
[NASA-CR-182141] p 23 N88-23182	extravehicular activity (EVA) systems, volume 1	station life sciences telescience operations
HEAT SHIELDING	[STF23-F87025-VOL-1] p 82 N88-30298	p 102 N88-3033
Far infrared spectroscopy telescope (FIRST) inflatable	Space station proximity operations windows: Human	INFRARED RADIATION
thermal shield, phase 1	factors design guidelines	Calculation of space station infrared irradiance from
[SR/FIS/108(87)CZ] p 24 N88-30552	[NASA-TM-88233] p 101 N88-30301	atmosphere-induced emissions p 70 N88-2539
HEAT STORAGE	HUMAN PERFORMANCE	INFRARED SPACE OBSERVATORY (ISO)
Development of an integrated heat pipe-thermal storage	Handgrip strength with the bare hand and in the NASA	The Infrared Space Observatory (ISO) project
system for a solar receiver	spacesuit glove p 73 A88-35452	p 3 A88-3907
[AIAA PAPER 88-2683] p 21 A88-43746	HYDRAULIC EQUIPMENT	INFRARED TELESCOPES
Structural assessment of a space station solar dynamic	Exponent diagram analysis of feedback control systems	Space ten-meter telescope (STMT) - Structural and
heat receiver thermal energy storage canister	including flexible structures p 10 A88-50836	thermal feasibility study of the primary mirror
p 23 N88-22406	HYDROGEN FUELS	p 19 A88-3453
	Open-cycle chemical power and thermal management	Precision pointing of scientific instruments on space
HEAT TRANSFER	system with combustion product-free effluent	station: The LFGGREC perspective p 42 A88-5097
A new linearized theory of laminar film condensation	[AIAA PAPER 88-2625] p 83 A88-43710	Design of a linear actuator and breadboard test result
of two phase annular flow in a capillary pumped loop	HYDROGEN OXYGEN ENGINES	
[AIAA PAPER 88-2637] p 56 A88-43715	Integration of Space Station propulsion and fluid	far IR telescope p 16 N88-2121
Two-phase ammonia thermal bus performance		Far infrared spectroscopy telescope (FIRST) inflatable
[AIAA PAPER 88-2701] p 21 A88-43753	systems	thermal shield, phase 1
FLOSIN: A fluid loop analyzer for SINDA	[AIAA PAPER 88-3289] p 85 A88-48492	[SR/FIS/108(87)CZ] p 24 N88-3055
p 23 N88-22321	25-LBF GO2/GH2 space station thruster	INLET FLOW
Design and testing of a high power spacecraft thermal	[AIAA PAPER 88-2793] p 86 A88-53101	Fundamental limitations on low gravity fluid gauging
management system	HYPERSONIC FLIGHT	technologies imposed by orbital mission requirement
[NASA-TM-4051] p 23 N88-26389	Aerodynamic design of a variable-bend vehicle	[AIAA PAPER 88-3402] p 86 A88-5316
HÈAT TRANSMISSION	[AIAA PAPER 88-4340] p 40 A88-50586	INSTRUMENT ORIENTATION
Two-phase thermal loops for use in future spacecraft	HYPERSONIC GLIDERS	Precision pointing of scientific instruments on space
p 19 A88-37295	A near optimal guidance algorithm for aero-assisted orbit	station: The LFGGREC perspective p 42 A88-50979
HEAVY LIFT LAUNCH VEHICLES	transfer	INTEGRATED CIRCUITS
Heavy lift horizontal take-off and landing vehicles	[AIAA PAPER 88-4175] p 37 A88-50266	System architecture of MMIC-based large aperture
p 84 A88-43863	HYPERVELOCITY IMPACT	arrays for space applications p 55 A88-3527-
Space station heavy lift launch vehicle utilization	Eureca TICCE - A nine-month survey of cosmic dust	INTEGRATED OPTICS
[NASA-TM-100604] p 86 N88-21188	and space debris at 500 km altitude p 96 A88-53242	Large space optical system active vibration
	Effects of meteoroids and space debris on the particulate	suppression p 24 A88-3449
HEURISTIC METHODS	environment for space station p 70 N88-25399	INTELSAT SATELLITES
Genetic algorithms for adaptive real-time control in	Office and the second s	Effect of air mass on modal tests in large space
space systems p 50 N88-24195		structures p 41 A88-5086
HIGH ENERGY ELECTRONS		
'Space weather forecast' - Prediction of relativistic		INTERACTIVE CONTROL
electron intensity at synchronous orbit	IGNITION SYSTEMS	Advanced control evaluation for structures (ACES
p 64 A88-38015	The use of pyrotechnics on spacecraft	programs p 44 A88-5457
HIGH TEMPERATURE	p 85 A88-49825	INTERCALATION
High temperature coatings; Proceedings of the	IMAGE CORRELATORS	Prospects of intercalated graphite fibre use for electrical
Symposium, Orlando, FL, Oct. 7-9, 1986	Self-correction of telescope surface errors using a	power transmission in solar power satellites
p 88 A88-24817	correlating focal plane array p 91 A88-38097	p 64 A88-4056
HIGH TEMPERATURE SUPERCONDUCTORS	IMAGE ENHANCEMENT	INTERFACES
The application of high temperature superconductors	Evaluation of image stability of a precision pointing	Expandable pallet for space station interface
to space electrical power distribution components	spacecraft p 30 A88-43215	attachments
[NASA-TM-100901] p 60 N88-22939		[NASA-CASE-MSC-21117-1] p 18 N88-2895
HINGES	IMAGE PROCESSING	Definition of common support equipment and space
Dynamics analysis of a system of hinge-connected	Sensing and perception research for space telerobotics	station interface requirements for IOC model technolog
		experiments
tlexible bodies D 42 A00-32039	at JPL p 74 A88-42657	
flexible bodies p 42 A88-52639	image management research p 99 N88-24150	
Locking hinge	Image management research p 99 N88-24150 Orbital navigation, docking and obstacle avoidance as	[NASA-TM-100656] p 8 N88-2985
Locking hinge [NASA-CASE-MSC-21056-1] p 18 N88-23827	image management research p 99 N88-24150 Orbital navigation, docking and obstacle avoidance as a form of three dimensional model-based image	[NASA-TM-100656] p 8 N88-2985 INTERFACIAL TENSION
Locking hinge [NASA-CASE-MSC-21056-1] p 18 N88-23827 HIPPARCOS SATELLITE	Image management research p 99 N88-24150 Orbital navigation, docking and obstacle avoidance as	[NASA-TM-100656] p 8 N88-2985 INTERFACIAL TENSION Use of the surface tension propellant tanks in the India
Locking hinge [NASA-CASE-MSC-21056-1] p 18 N88-23827 HIPPARCOS SATELLITE The Hipparcos solar panets p 14 A88-45452	image management research p 99 N88-24150 Orbital navigation, docking and obstacle avoidance as a form of three dimensional model-based image	[NASA-TM-100656] p 8 N88-2985 INTERFACIAL TENSION Use of the surface tension propellant tanks in the India satellite Insat
Locking hinge [NASA-CASE-MSC-21056-1] p 18 N88-23827 HIPPARCOS SATELLITE The Hipparcos solar panels p 14 A88-45452 HOLLOW CATHODES	Image management research p 99 N88-24150 Orbital navigation, docking and obstacle avoidance as a form of three dimensional model-based image understanding p 50 N88-24194	[NASA-TM-100656] p 8 N88-2985 INTERFACIAL TENSION Use of the surface tension propellant tanks in the India satellite Insat [IAF PAPER 88-237] p 86 A88-5536
Locking hinge [NASA-CASE-MSC-21056-1] p 18 N88-23827 HIPPARCOS SATELLITE The Hipparcos solar panels p 14 A88-45452 HOLLOW CATHODES Space plasma contactor research, 1987	image management research p 99 N88-24150 Orbital navigation, docking and obstacle avoidance as a form of three dimensional model-based image understanding p 50 N88-24194 The 1988 Goddard Conference on Space Applications of Artificial Intelligence	[NASA-TM-100656] p 8 N88-2985 INTERFACIAL TENSION Use of the surface tension propellant tanks in the Indial satellite Insat [IAF PAPER 88-237] p 86 A88-5536 INTERNATIONAL COOPERATION
Locking hinge [NASA-CASE-MSC-21056-1] p 18 N88-23827	Image management research p 99 N88-24150 Orbital navigation, docking and obstacle avoidance as a form of three dimensional model-based image understanding p 50 N88-24194 The 1988 Goddard Conference on Space Applications of Artificial Intelligence [NASA-CP-3009] p 102 N88-30330	[NASA-TM-100656] p 8 N88-2985 INTERFACIAL TENSION Use of the surface tension propellant tanks in the Indial satellite Insat [IAF PAPER 88-237] p 86 A88-5536 INTERNATIONAL COOPERATION The International Space Station complex - Promise and
Locking hinge	Image management research p 99 N88-24150 Orbital navigation, docking and obstacle avoidance as a form of three dimensional model-based image understanding p 50 N88-24194 The 1988 Goddard Conference on Space Applications of Artificial Intelligence [NASA-CP-3009] p 102 N88-30330 IMPACT DAMAGE	[NASA-TM-100656] p 8 N88-2985 INTERFACIAL TENSION Use of the surface tension propellant tanks in the India satellite Insat [IAF PAPER 88-237] p 86 A88-5536: INTERNATIONAL COOPERATION The International Space Station complex - Promise and problems p 1 A88-3457:
Locking hinge [NASA-CASE-MSC-21056-1] p 18 N88-23827 HIPPARCOS SATELLITE The Hipparcos solar panels p 14 A88-45452 HOLLOW CATHODES Space plasma contactor research, 1987 [NASA-CR-182148] p 60 N88-23649 HONEYCOMB STRUCTURES Use of modal energy distribution in the design of	Image management research p 99 N88-24150 Orbital navigation, docking and obstacle avoidance as a form of three dimensional model-based image understanding p 50 N88-24194 The 1988 Goddard Conference on Space Applications of Artificial Intelligence [NASA-CP-3009] p 102 N88-30330 IMPACT DAMAGE Manufacturing of damage-resistant composite structures	[NASA-TM-100656] p 8 N88-2985/ INTERFACIAL TENSION Use of the surface tension propellant tanks in the India: satellite Insat [IAF PAPER 88-237] p 86 A88-5536/ INTERNATIONAL COOPERATION The International Space Station complex - Promise amproblems p 1 A88-3457/ Japanese Space Station program p 1 A88-3457/
Locking hinge [NASA-CASE-MSC-21056-1] p 18 N88-23827 HIPPARCOS SATELITE The Hipparcos solar panels p 14 A88-45452 HOLLOW CATHODES Space plasma contactor research, 1987 [NASA-CR-182148] p 60 N88-23649 HONEYCOMB STRUCTURES Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466	Image management research p 99 N88-24150 Orbital navigation, docking and obstacle avoidance as a form of three dimensional model-based image understanding p 50 N88-24194 The 1988 Goddard Conference on Space Applications of Artificial Intelligence [NASA-CP-3009] p 102 N88-30330 IMPACT DAMAGE Manufacturing of damage-resistant composite structures for aerospace applications p 65 A88-41885	[NASA-TM-100656] p 8 N88-2985 INTERFACIAL TENSION Use of the surface tension propellant tanks in the Indial satellite Insat [IAF PAPER 88-237] p 86 A88-5536: INTERNATIONAL COOPERATION The International Space Station complex - Promise and problems p 1 A88-3457: Japanese Space Station program p 1 A88-3457: Western European space science p 3 A88-3933:
Locking hinge [NASA-CASE-MSC-21056-1] p 18 N88-23827 HIPPARCOS SATELLITE The Hipparcos solar panels p 14 A88-45452 HOLLOW CATHODES Space plasma contactor research, 1987 [NASA-CR-182148] p 60 N88-23649 HONEYCOMB STRUCTURES Use of modal energy distribution in the design of honeycomb sandwich decks HOOP COLUMN ANTENNAS	Image management research p 99 N88-24150 Orbital navigation, docking and obstacle avoidance as a form of three dimensional model-based image understanding p 50 N88-24194 The 1988 Goddard Conference on Space Applications of Artificial Intelligence [NASA-CP-3009] p 102 N88-30330 IMPACT DAMAGE Manufacturing of damage-resistant composite structures for aerospace applications p 65 A88-41885 Shielding against debris p 66 A88-43518	[NASA-TM-100656] p 8 N88-2985 INTERFACIAL TENSION Use of the surface tension propellant tanks in the India satellite Insat [IAF PAPER 88-237] p 86 A88-5536 INTERNATIONAL COOPERATION The International Space Station complex - Promise an problems p 1 A88-3457: Japanese Space Station program p 1 A88-3457: Western European space science p 3 A88-3933: Japanese space station module p 98 N88-2222:
Locking hinge [NASA-CASE-MSC-21056-1] p 18 N88-23827 HIPPARCOS SATELLITE The Hipparcos solar panels p 14 A88-45452 HOLLOW CATHODES Space plasma contactor research, 1987 [NASA-CR-182148] p 60 N88-23649 HONEYCOMB STRUCTURES Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 HOOP COLUMN ANTENNAS The 15-meter diameter hoop/column antenna surface	Image management research p 99 N88-24150 Orbital navigation, docking and obstacle avoidance as a form of three dimensional model-based image understanding p 50 N88-24194 The 1988 Goddard Conference on Space Applications of Artificial Intelligence [NASA-CP-3009] p 102 N88-30330 IMPACT DAMAGE Manufacturing of damage-resistant composite structures for aerospace applications p 65 A88-41885 Shielding against debris p 66 A88-43518 Atomic-oxygen durability of impact-damaged solar	[NASA-TM-100656] p 8 N88-2985 INTERFACIAL TENSION Use of the surface tension propellant tanks in the India satellite Insat [IAF PAPER 88-237] p 86 A88-5536 INTERNATIONAL COOPERATION The International Space Station complex - Promise am problems p 1 A88-3457 Japanese Space Station program p 1 A88-3457 Western European space science p 3 A88-3933 Japanese space station module p 98 N88-2222 INTERPLANETARY SPACECRAFT
Locking hinge [[NASA-CASE-MSC-21056-1] p 18 N88-23827 HIPPARCOS SATELLITE The Hipparcos solar panels p 14 A88-45452 HOLLOW CATHODES Space plasma contactor research, 1987 [[NASA-CR-182148] p 60 N88-23649 HONEYCOMB STRUCTURES Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 HOOP COLUMN ANTENNAS The 15-meter diameter hoop/column antenna surface control actuator system p 17 N88-21469	Image management research p 99 N88-24150 Orbital navigation, docking and obstacle avoidance as a form of three dimensional model-based image understanding p 50 N88-24194 The 1988 Goddard Conference on Space Applications of Artificial Intelligence [NASA-CP-3009] p 102 N88-30330 IMPACT DAMAGE Manufacturing of damage-resistant composite structures for aerospace applications p 65 A88-41885 Shielding against debris p 66 A88-43518 Atomic-oxygen durability of impact-damaged solar reflectors p 68 A88-54988	NASA-TM-100656 p 8 N88-2985
Locking hinge [NASA-CASE-MSC-21056-1] p 18 N88-23827 HIPPARCOS SATELLITE The Hipparcos solar panels p 14 A88-45452 HOLLOW CATHODES Space plasma contactor research, 1987 [NASA-CR-182148] p 60 N88-23649 HONEYCOMB STRUCTURES Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 HOOP COLUMN ANTENNAS The 15-meter diameter hoop/column antenna surface control actuator system p 17 N88-21469 HOOPS	Image management research p 99 N88-24150 Orbital navigation, docking and obstacle avoidance as a form of three dimensional model-based image understanding p 50 N88-24194 The 1988 Goddard Conference on Space Applications of Artificial Intelligence [NASA-CP-3009] p 102 N88-30330 IMPACT DAMAGE Manufacturing of damage-resistant composite structures for aerospace applications p 65 A88-41885 Shielding against debris p 66 A88-43518 Atomic-oxygen durability of impact-damaged solar reflectors Assessment of the effects of space debris and	[NASA-TM-100656] p 8 N88-2985 INTERFACIAL TENSION Use of the surface tension propellant tanks in the Indial satellite Insat [IAF PAPER 88-237] p 86 A88-5536 INTERNATIONAL COOPERATION The International Space Station complex - Promise and problems p 1 A88-3457: Japanese Space Station program p 1 A88-3457: Western European space science p 3 A88-3933: Japanese space station module p 98 N88-2222: INTERPLANETARY SPACECRAFT Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-3510
Locking hinge [[NASA-CASE-MSC-21056-1] p 18 N88-23827 HIPPARCOS SATELLITE The Hipparcos solar panels p 14 A88-45452 HOLLOW CATHODES Space plasma contactor research, 1987 [[NASA-CR-182148] p 60 N88-23649 HONEYCOMB STRUCTURES Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 HOOP COLUMN ANTENNAS The 15-meter diameter hoop/column antenna surface control actuator system p 17 N88-21469	Image management research p 99 N88-24150 Orbital navigation, docking and obstacle avoidance as a form of three dimensional model-based image understanding p 50 N88-24194 The 1988 Goddard Conference on Space Applications of Artificial Intelligence [NASA-CP-3009] p 102 N88-30330 IMPACT DAMAGE Manufacturing of damage-resistant composite structures for aerospace applications p 65 A88-41885 Shielding against debris p 66 A88-43518 Atomic-oxygen durability of impact-damaged solar reflectors p 68 A88-54988 Assessment of the effects of space debris and meteoroids environment on the space station solar array	[NASA-TM-100656] p 8 N88-2985 INTERFACIAL TENSION Use of the surface tension propellant tanks in the India satellite Insat [IAF PAPER 88-237] p 86 A88-5536 INTERNATIONAL COOPERATION The International Space Station complex - Promise an problems p 1 A88-3457: Japanese Space Station program p 1 A88-3457: Western European space science p 3 A88-3933: Japanese space station module p 98 N88-2222: INTERPLANETARY SPACECRAFT Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-35106 Transportation concepts for Mars exploration
Locking hinge [NASA-CASE-MSC-21056-1] p 18 N88-23827 HIPPARCOS SATELLITE The Hipparcos solar panels p 14 A88-45452 HOLLOW CATHODES Space plasma contactor research, 1987 [NASA-CR-182148] p 60 N88-23649 HONEYCOMB STRUCTURES Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 HOOP COLUMN ANTENNAS The 15-meter diameter hoop/column antenna surface control actuator system p 17 N88-21469 HOOPS	Image management research p 99 N88-24150 Orbital navigation, docking and obstacle avoidance as a form of three dimensional model-based image understanding p 50 N88-24194 The 1988 Goddard Conference on Space Applications of Artificial Intelligence [NASA-CP-3009] p 102 N88-30330 IMPACT DAMAGE Manufacturing of damage-resistant composite structures for aerospace applications p 66 A88-41885 Shielding against debris p 66 A88-43518 Atomic-oxygen durability of impact-damaged solar reflectors p 68 A88-54988 Assessment of the effects of space debris and meteoroids environment on the space station solar array assembly	NASA-TM-100656 p 8 N88-2985
Locking hinge [NASA-CASE-MSC-21056-1] p 18 N88-23827 HIPPARCOS SATELLITE The Hipparcos solar panels p 14 A88-45452 HOLLOW CATHODES Space plasma contactor research, 1987 [NASA-CR-182148] p 60 N88-23649 HONEYCOMB STRUCTURES Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 HOOP COLUMN ANTENNAS The 15-meter diameter hoop/column antenna surface control actuator system p 17 N88-21469 HOOPS Transfer matrix analysis of cable-stiffened hoop	Image management research p 99 N88-24150 Orbital navigation, docking and obstacle avoidance as a form of three dimensional model-based image understanding p 50 N88-24194 The 1988 Goddard Conference on Space Applications of Artificial Intelligence [NASA-CP-3009] p 102 N88-30330 IMPACT DAMAGE Manufacturing of damage-resistant composite structures for aerospace applications p 65 A88-41885 Shielding against debris p 66 A88-43518 Atomic-oxygen durability of impact-damaged solar reflectors p 68 A88-54988 Assessment of the effects of space debris and meteoroids environment on the space station solar array assembly [NASA-TM-101315] p 72 N88-28959	[NASA-TM-100656] p 8 N88-2985 INTERFACIAL TENSION Use of the surface tension propellant tanks in the India satellite Insat [IAF PAPER 88-237] p 86 A88-5536 INTERNATIONAL COOPERATION The International Space Station complex - Promise an problems p 1 A88-3457: Japanese Space Station program p 1 A88-3457: Western European space science p 3 A88-3933: Japanese space station module p 98 N88-2222: INTERPLANETARY SPACECRAFT Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-35106 Transportation concepts for Mars exploration
Locking hinge [NASA-CASE-MSC-21056-1] p 18 N88-23827 HIPPARCOS SATELLITE The Hipparcos solar panels p 14 A88-45452 HOLLOW CATHODES Space plasma contactor research, 1987 [NASA-CR-182148] p 60 N88-23649 HONEYCOMB STRUCTURES Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 HOOP COLUMN ANTENNAS The 15-meter diameter hoop/column antenna surface control actuator system p 17 N88-21469 HOOPS Transfer matrix analysis of cable-stiffened hoop platforms p 46 A88-54989 HORN ANTENNAS	Image management research p 99 N88-24150 Orbital navigation, docking and obstacle avoidance as a form of three dimensional model-based image understanding p 50 N88-24194 The 1988 Goddard Conference on Space Applications of Artificial Intelligence [NASA-CP-3009] p 102 N88-30330 IMPACT DAMAGE Manufacturing of damage-resistant composite structures for aerospace applications p 65 A88-41885 Shielding against debris p 66 A88-43518 Atomic-oxygen durability of impact-damaged solar reflectors Assessment of the effects of space debris and meteoroids environment on the space station solar array assembly [NASA-TM-101315] p 72 N88-28959 IMPACT PREDICTION	NASA-TM-100656 p 8 N88-2985
Locking hinge [[NASA-CASE-MSC-21056-1] p 18 N88-23827 HIPPARCOS SATELLITE The Hipparcos solar panels p 14 A88-45452 HOLLOW CATHODES Space plasma contactor research, 1987 [[NASA-CR-182148] p 60 N88-23649 HONEYCOMB STRUCTURES Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 HOOP COLUMN ANTENNAS The 15-meter diameter hoop/column antenna surface control actuator system p 17 N88-21469 HOOPS Transfer matrix analysis of cable-stiffened hoop platforms p 46 A88-54989	Image management research p 99 N88-24150 Orbital navigation, docking and obstacle avoidance as a form of three dimensional model-based image understanding p 50 N88-24194 The 1988 Goddard Conference on Space Applications of Artificial Intelligence [NASA-CP-3009] p 102 N88-30330 IMPACT DAMAGE Manufacturing of damage-resistant composite structures for aerospace applications p 66 A88-41885 Shielding against debris p 66 A88-43518 Atomic-oxygen durability of impact-damaged solar reflectors p 68 A88-54988 Assessment of the effects of space debris and meteoroids environment on the space station solar array assembly [NASA-TM-101315] p 72 N88-28959 IMPACT PREDICTION Predicting debris p 66 A88-43517	[NASA-TM-100656] p 8 N88-2985 INTERFACIAL TENSION Use of the surface tension propellant tanks in the India satellite Insat [IAF PAPER 88-237] p 86 A88-5536 INTERNATIONAL COOPERATION The International Space Station complex - Promise an problems p 1 A88-3457. Japanese Space Station program p 1 A88-3457. Western European space science p 3 A88-3933. Japanese space station module p 98 N88-2222. INTERPLANETARY SPACECRAFT Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-3510. Transportation concepts for Mars exploration [AIAA PAPER 88-3494] p 4 A88-4847. ION DISTRIBUTION
Locking hinge [[NASA-CASE-MSC-21056-1] p 18 N88-23827 HIPPARCOS SATELITE The Hipparcos solar panels p 14 A88-45452 HOLLOW CATHODES Space plasma contactor research, 1987 [[NASA-CR-182148] p 60 N88-23649 HONEYCOMB STRUCTURES Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 HOOP COLUMN ANTENNAS The 15-meter diameter hoop/column antenna surface control actuator system p 17 N88-21469 HOOPS Transfer matrix analysis of cable-stiffened hoop platforms p 46 A88-54989 HORN ANTENNAS Problems and solutions for GPS use beyond the 12-hour orbit p 5 A88-51715	Image management research p 99 N88-24150 Orbital navigation, docking and obstacle avoidance as a form of three dimensional model-based image understanding p 50 N88-24194 The 1988 Goddard Conference on Space Applications of Artificial Intelligence [NASA-CP-3009] p 102 N88-30330 IMPACT DAMAGE Manufacturing of damage-resistant composite structures for aerospace applications p 65 A88-41885 Shielding against debris p 66 A88-43518 Atomic-oxygen durability of impact-damaged solar reflectors p 68 A88-54988 Assessment of the effects of space debris and meteoroids environment on the space station solar array assembly [NASA-TM-101315] p 72 N88-28959 IMPACT PREDICTION Predicting debris p 66 A88-43517 IMPACT RESISTANCE	[NASA-TM-100656] p 8 N88-2985 INTERFACIAL TENSION Use of the surface tension propellant tanks in the India satellite Insat [IAF PAPER 88-237] p 86 A88-5536 INTERNATIONAL COOPERATION The International Space Station complex - Promise an problems p 1 A88-3457: Japanese Space Station program p 1 A88-3457: Western European space science p 3 A88-3957. Western European space science p 8 N88-2222: INTERPLANETARY SPACECRAFT Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-3510: Transportation concepts for Mars exploration [AIAA PAPER 88-3494] p 4 A88-4847 ION DISTRIBUTION Real-time, automatic vehicle-potential determination
Locking hinge [NASA-CASE-MSC-21056-1] p 18 N88-23827 HIPPARCOS SATELLITE The Hipparcos solar panels p 14 A88-45452 HOLLOW CATHODES Space plasma contactor research, 1987 [NASA-CR-182148] p 60 N88-23649 HONEYCOMB STRUCTURES Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 HOOP COLUMN ANTENNAS The 15-meter diameter hoop/column antenna surface control actuator system p 17 N88-21469 HOOPS Transfer matrix analysis of cable-stiffened hoop platforms p 46 A88-54989 HORN ANTENNAS Problems and solutions for GPS use beyond the 12-hour orbit p 5 A88-51715 HOTOL LAUNCH VEHICLE	Image management research p 99 N88-24150 Orbital navigation, docking and obstacle avoidance as a form of three dimensional model-based image understanding p 50 N88-24194 The 1988 Goddard Conference on Space Applications of Artificial Intelligence [NASA-CP-3009] p 102 N88-30330 IMPACT DAMAGE Manufacturing of damage-resistant composite structures for aerospace applications p 65 A88-41885 Shielding against debris p 66 A88-43518 Atomic-oxygen durability of impact-damaged solar reflectors p 68 A88-54988 Assessment of the effects of space debris and meteoroids environment on the space station solar array assembly [NASA-TM-101315] p 72 N88-28959 IMPACT PREDICTION Predicting debris p 66 A88-43517 IMPACT RESISTANCE Design of light-weight impact resistant pressure vessels	[NASA-TM-100656] p 8 N88-2985 INTERFACIAL TENSION Use of the surface tension propellant tanks in the Indial satellite Insat [IAF PAPER 88-237] p 86 A88-5536: INTERNATIONAL COOPERATION The International Space Station complex - Promise and problems p 1 A88-3457. Western European space science Japanese Space Station module p 98 N88-2222: INTERPLANETARY SPACECRAFT Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-3510: Transportation concepts for Mars exploration [AIAA PAPER 88-3494] p 4 A88-4847 ION DISTRIBUTION Real-time, automatic vehicle-potential determination from ESA measurements - The distribution functio
Locking hinge [NASA-CASE-MSC-21056-1] p 18 N88-23827 HIPPARCOS SATELLITE The Hipparcos solar panels p 14 A88-45452 HOLLOW CATHODES Space plasma contactor research, 1987 [NASA-CR-182148] p 60 N88-23649 HONEYCOMB STRUCTURES Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 HOOP COLUMN ANTENNAS The 15-meter diameter hoop/column antenna surface control actuator system p 17 N88-21469 HOOPS Transfer matrix analysis of cable-stiffened hoop platforms p 46 A88-54989 HORN ANTENNAS Problems and solutions for GPS use beyond the 12-hour orbit p 5 A88-51715 HOTOL LAUNCH VEHICLE Heavy lift horizontal take-off and landing vehicles	Image management research p 99 N88-24150 Orbital navigation, docking and obstacle avoidance as a form of three dimensional model-based image understanding p 50 N88-24194 The 1988 Goddard Conference on Space Applications of Artificial Intelligence [NASA-CP-3009] p 102 N88-30330 IMPACT DAMAGE Manufacturing of damage-resistant composite structures for aerospace applications p 66 A88-41885 Shielding against debris p 66 A88-43518 Atomic-oxygen durability of impact-damaged solar reflectors p 68 A88-54988 Assessment of the effects of space debris and meteoroids environment on the space station solar array assembly [NASA-TM-101315] p 72 N88-28959 IMPACT PREDICTION Predicting debris p 66 A88-43517 IMPACT RESISTANCE Design of light-weight impact resistant pressure vessels for Space Station fluid and propulsion systems	[NASA-TM-100656] p 8 N88-2985 INTERFACIAL TENSION Use of the surface tension propellant tanks in the India satellite Insat [IAF PAPER 88-237] p 86 A88-5536 INTERNATIONAL COOPERATION The International Space Station complex - Promise an problems p 1 A88-3457: Japanese Space Station program p 1 A88-3457: Western European space science p 3 A88-3933: Japanese space station module p 98 N88-2222: INTERPLANETARY SPACECRAFT Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-3510: Transportation concepts for Mars exploration [AIAA PAPER 88-3494] p 4 A88-4847 ION DISTRIBUTION Real-time, automatic vehicle-potential determination from ESA measurements - The distribution functio algorithm ElectroStatic Analyzer p 58 A88-5139 ION ENGINES
Locking hinge [[NASA-CASE-MSC-21056-1] p 18 N88-23827 HIPPARCOS SATELITE The Hipparcos solar panels p 14 A88-45452 HOLLOW CATHODES Space plasma contactor research, 1987 [[NASA-CR-182148] p 60 N88-23649 HONEYCOMB STRUCTURES Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 HOOP COLUMN ANTENNAS The 15-meter diameter hoop/column antenna surface control actuator system p 17 N88-21469 HOOPS Transfer matrix analysis of cable-stiffened hoop platforms p 46 A88-54989 HORN ANTENNAS Problems and solutions for GPS use beyond the 12-hour orbit p 5 A88-51715 HOTOL LAUNCH VEHICLE Heavy lift horizontal take-off and landing vehicles p 84 A88-43863	Image management research p 99 N88-24150 Orbital navigation, docking and obstacle avoidance as a form of three dimensional model-based image understanding p 50 N88-24194 The 1988 Goddard Conference on Space Applications of Artificial Intelligence [NASA-CP-3009] p 102 N88-30330 IMPACT DAMAGE Manufacturing of damage-resistant composite structures for aerospace applications p 66 A88-43518 Shielding against debris p 66 A88-43518 Atomic-oxygen durability of impact-damaged solar reflectors p 68 A88-54988 Assessment of the effects of space debris and meteoroids environment on the space station solar array assembly [NASA-TM-101315] p 72 N88-28959 IMPACT PREDICTION Predicting debris p 66 A88-43517 IMPACT RESISTANCE Design of light-weight impact resistant pressure vessels for Space Station fluid and propulsion systems [AIAA PAPER 88-2466] p 83 A88-35943	[NASA-TM-100656] p 8 N88-2985 INTERFACIAL TENSION Use of the surface tension propellant tanks in the Indias satellite Insat [IAF PAPER 88-237] p 86 A88-5536: INTERNATIONAL COOPERATION The International Space Station complex - Promise an problems p 1 A88-3457. Japanese Space Station program p 1 A88-3457. Western European space science Japanese space station module p 98 N88-2222: INTERPLANETARY SPACECRAFT Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-3510: Transportation concepts for Mars exploration [AIAA PAPER 88-3494] p 8 A88-4847 ION DISTRIBUTION Real-time, automatic vehicle-potential determination from ESA measurements - The distribution function algorithm ElectroStatic Analyzer p 58 A88-5139 ION ENGINES All electronic propulsion - Key to future spaceshi
Locking hinge [[NASA-CASE-MSC-21056-1] p 18 N88-23827 HIPPARCOS SATELLITE The Hipparcos solar panels p 14 A88-45452 HOLLOW CATHODES Space plasma contactor research, 1987 [NASA-CR-182148] p 60 N88-23649 HONEYCOMB STRUCTURES Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 HOOP COLUMN ANTENNAS The 15-meter diameter hoop/column antenna surface control actuator system p 17 N88-21469 HOOPS Transfer matrix analysis of cable-stiffened hoop platforms p 46 A88-54889 HORN ANTENNAS Problems and solutions for GPS use beyond the 12-hour orbit p 5 A88-51715 HOTOL LAUNCH VEHICLE Heavy lift horizontal take-off and landing vehicles p 84 A88-43863 HOUSINGS	Image management research p 99 N88-24150 Orbital navigation, docking and obstacle avoidance as a form of three dimensional model-based image understanding p 50 N88-24194 The 1988 Goddard Conference on Space Applications of Artificial Intelligence [NASA-CP-3009] p 102 N88-30330 IMPACT DAMAGE Manufacturing of damage-resistant composite structures for aerospace applications p 65 A88-41885 Shielding against debris p 66 A88-43518 Atomic-oxygen durability of impact-damaged solar reflectors p 68 A88-54988 Assessment of the effects of space debris and meteoroids environment on the space station solar array assembly [NASA-TM-101315] p 72 N88-28959 IMPACT PREDICTION Predicting debris p 66 A88-43517 IMPACT RESISTANCE Design of light-weight impact resistant pressure vessels for Space Station fluid and propulsion systems [AIAA PAPER 88-2466] p 83 A88-35943 IMPINGEMENT	[NASA-TM-100656] p 8 N88-2985 INTERFACIAL TENSION Use of the surface tension propellant tanks in the India satellite Insat [IAF PAPER 88-237] p 86 A88-5536 INTERNATIONAL COOPERATION The International Space Station complex - Promise an problems p 1 A88-3457 Japanese Space Station program p 1 A88-3457 Western European space science Japanese Space Station module p 98 N88-2222 INTERPLANETARY SPACECRAFT Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-3510 Transportation concepts for Mars exploration [AIAA PAPER 88-3494] p 4 A88-4847 ION DISTRIBUTION Real-time, automatic vehicle-potential determination from ESA measurements - The distribution function algorithm ElectroStatic Analyzer p 58 A88-5139 ION ENGINES All electronic propulsion - Key to future spaceshildesign
Locking hinge [[NASA-CASE-MSC-21056-1] p 18 N88-23827 HIPPARCOS SATELLITE The Hipparcos solar panels p 14 A88-45452 HOLLOW CATHODES Space plasma contactor research, 1987 [[NASA-CR-182148] p 60 N88-23649 HONEYCOMB STRUCTURES Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 HOOP COLUMN ANTENNAS The 15-meter diameter hoop/column antenna surface control actuator system p 17 N88-21469 HOOPS Transfer matrix analysis of cable-stiffened hoop platforms p 46 A88-54989 HORN ANTENNAS Problems and solutions for GPS use beyond the 12-hour orbit p 5 A88-51715 HOTOL LAUNCH VEHICLE Heavy lift horizontal take-off and landing vehicles p 84 A88-43863 HOUSINGS Project Endeavour - Cannister 2 support structure	Image management research p 99 N88-24150 Orbital navigation, docking and obstacle avoidance as a form of three dimensional model-based image understanding p 50 N88-24194 The 1988 Goddard Conference on Space Applications of Artificial Intelligence [NASA-CP-3009] p 102 N88-30330 IMPACT DAMAGE Manufacturing of damage-resistant composite structures for aerospace applications p 66 A88-41885 Shielding against debris p 66 A88-43518 Atomic-oxygen durability of impact-damaged solar reflectors p 68 A88-54988 Assessment of the effects of space debris and meteoroids environment on the space station solar array assembly [NASA-TM-101315] p 72 N88-28959 IMPACT RESISTANCE Design of light-weight impact resistant pressure vessels for Space Station fluid and propulsion systems [AIAA PAPER 88-2466] p 83 A88-35943 IMPINGEMENT Studies on rocket exhaust plumes and impingement	[NASA-TM-100656] p 8 N88-2985i INTERFACIAL TENSION Use of the surface tension propellant tanks in the India satellite Insat [IAF PAPER 88-237] p 86 A88-5536i INTERNATIONAL COOPERATION The International Space Station complex - Promise an problems p 1 A88-3457: Japanese Space Station program p 1 A88-3457: Western European space science p 3 A88-3933: Japanese space station module p 98 N88-2222: INTERPLANETARY SPACECRAFT Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-3510: Transportation concepts for Mars exploration [AIAA PAPER 88-3494] p 4 A88-4847 ION DISTRIBUTION Real-time, automatic vehicle-potential determination from ESA measurements - The distribution functio algorithm ElectroStatic Analyzer p 58 A88-5139 ION ENGINES All electronic propulsion - Key to future spaceshidesign [AIAA PAPER 88-3170] p 84 A88-4487
Locking hinge [[NASA-CASE-MSC-21056-1] p 18 N88-23827 HIPPARCOS SATELITE The Hipparcos solar panels p 14 A88-45452 HOLLOW CATHODES Space plasma contactor research, 1987 [[NASA-CR-182148] p 60 N88-23649 HONEYCOMB STRUCTURES Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 HOOP COLUMN ANTENNAS The 15-meter diameter hoop/column antenna surface control actuator system p 17 N88-21469 HOOPS Transfer matrix analysis of cable-stiffened hoop platforms p 46 A88-54989 HORN ANTENNAS Problems and solutions for GPS use beyond the 12-hour orbit p 5 A88-51715 HOTOL LAUNCH VEHICLE Heavy lift horizontal take-off and landing vehicles p 84 A88-43863 HOUSINGS Project Endeavour - Cannister 2 support structure	Image management research p 99 N88-24150 Orbital navigation, docking and obstacle avoidance as a form of three dimensional model-based image understanding p 50 N88-24194 The 1988 Goddard Conference on Space Applications of Artificial Intelligence [NASA-CP-3009] p 102 N88-30330 IMPACT DAMAGE Manufacturing of damage-resistant composite structures for aerospace applications p 65 A88-41885 Shielding against debris p 66 A88-43518 Atomic-oxygen durability of impact-damaged solar reflectors p 68 A88-54988 Assessment of the effects of space debris and meteoroids environment on the space station solar array assembly [NASA-TM-101315] p 72 N88-28959 IMPACT PREDICTION Predicting debris p 66 A88-43517 IMPACT RESISTANCE Design of light-weight impact resistant pressure vessels for Space Station fluid and propulsion systems [AIAA PAPER 88-2466] p 83 A88-35943 IMPINGEMENT	[NASA-TM-100656] p 8 N88-2985 INTERFACIAL TENSION Use of the surface tension propellant tanks in the Indial satellite Insat [IAF PAPER 88-237] p 86 A88-5536 INTERNATIONAL COOPERATION The International Space Station complex - Promise and problems p 1 A88-3457 Japanese Space Station program p 1 A88-3457 Western European space science Japanese space station module p 98 N88-2222 INTERPLANETARY SPACECRAFT Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-3510 Transportation concepts for Mars exploration [AIAA PAPER 88-3494] p 4 A88-4847 ION DISTRIBUTION Real-time, automatic vehicle-potential determination from ESA measurements - The distribution function algorithm ElectroStatic Analyzer p 58 A88-5139 ION ENGINES All electronic propulsion - Key to future spaceshind design [AIAA PAPER 88-3170] p 84 A88-4487 ION PROPULSION
Locking hinge [[NASA-CASE-MSC-21056-1] p 18 N88-23827 HIPPARCOS SATELLITE The Hipparcos solar panels p 14 A88-45452 HOLLOW CATHODES Space plasma contactor research, 1987 [NASA-CR-182148] p 60 N88-23649 HONEYCOMB STRUCTURES Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 HOOP COLUMN ANTENNAS The 15-meter diameter hoop/column antenna surface control actuator system p 17 N88-21469 HOOPS Transfer matrix analysis of cable-stiffened hoop platforms p 46 A88-54899 HORN ANTENNAS Problems and solutions for GPS use beyond the 12-hour orbit p 5 A88-51715 HOTOL LAUNCH VEHICLE Heavy lift horizontal take-off and landing vehicles p 84 A88-43863 HOUSINGS Project Endeavour - Cannister 2 support structure p 91 A88-37273 HUMAN FACTORS ENGINEERING	Image management research p 99 N88-24150 Orbital navigation, docking and obstacle avoidance as a form of three dimensional model-based image understanding p 50 N88-24194 The 1988 Goddard Conference on Space Applications of Artificial Intelligence [NASA-CP-3009] p 102 N88-30330 IMPACT DAMAGE Manufacturing of damage-resistant composite structures for aerospace applications p 66 A88-41885 Shielding against debris p 66 A88-43518 Atomic-oxygen durability of impact-damaged solar reflectors p 68 A88-54988 Assessment of the effects of space debris and meteoroids environment on the space station solar array assembly [NASA-TM-101315] p 72 N88-28959 IMPACT RESISTANCE Design of light-weight impact resistant pressure vessels for Space Station fluid and propulsion systems [AIAA PAPER 88-2466] p 83 A88-35943 IMPINGEMENT Studies on rocket exhaust plumes and impingement	[NASA-TM-100656] p 8 N88-2985 INTERFACIAL TENSION Use of the surface tension propellant tanks in the India satellite Insat [IAF PAPER 88-237] p 86 A88-5536 INTERNATIONAL COOPERATION The International Space Station complex - Promise an problems p 1 A88-3457 Japanese Space Station program p 1 A88-3457 Western European space science Japanese Space Station module p 98 N88-2222 INTERPLANETARY SPACECRAFT Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-3510 Transportation concepts for Mars exploration [AIAA PAPER 88-3494] p 4 A88-4847 ION DISTRIBUTION Real-time, automatic vehicle-potential determination from ESA measurements - The distribution function algorithm ElectroStatic Analyzer p 58 A88-5139 ION ENGINES All electronic propulsion - Key to future spaceshidesign [AIAA PAPER 88-3170] p 84 A88-4487 ION PROPULSION Parametric studies of electric propulsion systems for
Locking hinge [[NASA-CASE-MSC-21056-1] p 18 N88-23827 HIPPARCOS SATELLITE The Hipparcos solar panels p 14 A88-45452 HOLLOW CATHODES Space plasma contactor research, 1987 [[NASA-CR-182148] p 60 N88-23649 HONEYCOMB STRUCTURES Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 HOOP COLUMN ANTENNAS The 15-meter diameter hoop/column antenna surface control actuator system p 17 N88-21469 HOOPS Transfer matrix analysis of cable-stiffened hoop platforms p 46 A88-54989 HORN ANTENNAS Problems and solutions for GPS use beyond the 12-hour orbit p 5 A88-51715 HOTOL LAUNCH VEHICLE Heavy lift horizontal take-off and landing vehicles p 84 A88-43863 HOUSINGS Project Endeavour - Cannister 2 support structure p 91 A88-37273 HUMAN FACTORS ENGINEERING Handgrip strength with the bare hand and in the NASA	Image management research p 99 N88-24150 Orbital navigation, docking and obstacle avoidance as a form of three dimensional model-based image understanding p 50 N88-24194 The 1988 Goddard Conference on Space Applications of Artificial Intelligence [NASA-CP-3009] p 102 N88-30330 IMPACT DAMAGE Manufacturing of damage-resistant composite structures for aerospace applications p 66 A88-43518 Shielding against debris p 66 A88-43518 Atomic-oxygen durability of impact-damaged solar reflectors p 68 A88-54988 Assessment of the effects of space debris and meteoroids environment on the space station solar array assembly [NASA-TM-101315] p 72 N88-28959 IMPACT PREDICTION Predicting debris p 66 A88-43517 IMPACT RESISTANCE Design of light-weight impact resistant pressure vessels for Space Station fluid and propulsion systems [AIAA PAPER 88-2466] p 83 A88-35943 IMPINGEMENT Studies on rocket exhaust plumes and impingement effects related to the Columbus Space Station program:	[NASA-TM-100656] p 8 N88-2985 INTERFACIAL TENSION Use of the surface tension propellant tanks in the India satellite Insat [IAF PAPER 88-237] p 86 A88-5536 INTERNATIONAL COOPERATION The International Space Station complex - Promise an problems p 1 A88-3457 Japanese Space Station program p 1 A88-3457 Western European space science p 3 A88-3933 Japanese space station module p 98 N88-2222 INTERPLANETARY SPACECRAFT Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-3510 Transportation concepts for Mars exploration [AIAA PAPER 88-3494] p 4 A88-4847 ION DISTRIBUTION Real-time, automatic vehicle-potential determination from ESA measurements - The distribution function algorithm ElectroStatic Analyzer p 58 A88-5139 ION ENGINES All electronic propulsion - Key to future spaceshidesign [AIAA PAPER 88-3170] p 84 A88-4487 ION PROPUSION Parametric studies of electric propulsion systems for orbit transfer vehicles
Locking hinge [[NASA-CASE-MSC-21056-1] p 18 N88-23827 HIPPARCOS SATELITE The Hipparcos solar panels p 14 A88-45452 HOLLOW CATHODES Space plasma contactor research, 1987 [NASA-CR-182148] p 60 N88-23649 HONEYCOMB STRUCTURES Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 HOOP COLUMN ANTENNAS The 15-meter diameter hoop/column antenna surface control actuator system p 17 N88-21469 HOOPS Transfer matrix analysis of cable-stiffened hoop platforms p 46 A88-54989 HORN ANTENNAS Problems and solutions for GPS use beyond the 12-hour orbit p 5 A88-51715 HOTOL LAUNCH VEHICLE Heavy lift horizontal take-off and landing vehicles p 84 A88-43863 HOUSINGS Project Endeavour - Cannister 2 support structure p 91 A88-37273 HUMAN FACTORS ENGINEERING Handgrip strength with the bare hand and in the NASA spacesuit glove p 73 A88-35452	Image management research p 99 N88-24150 Orbital navigation, docking and obstacle avoidance as a form of three dimensional model-based image understanding p 50 N88-24194 The 1988 Goddard Conference on Space Applications of Artificial Intelligence [NASA-CP-3009] p 102 N88-30330 IMPACT DAMAGE Manufacturing of damage-resistant composite structures for aerospace applications p 65 A88-41885 Shielding against debris p 66 A88-43518 Atomic-oxygen durability of impact-damaged solar reflectors p 68 A88-54988 Assessment of the effects of space debris and meteoroids environment on the space station solar array assembly [NASA-TM-101315] p 72 N88-28959 IMPACT PREDICTION Predicting debris p 66 A88-43517 IMPACT RESISTANCE Design of light-weight impact resistant pressure vessels for Space Station fluid and propulsion systems [AIAA PAPER 88-2466] p 83 A88-35943 IMPINGEMENT Studies on rocket exhaust plumes and impingement effects related to the Columbus Space Station program: Executive summary	[NASA-TM-100656] p 8 N88-2985 INTERFACIAL TENSION Use of the surface tension propellant tanks in the Indial satellite Insat [IAF PAPER 88-237] p 86 A88-5536: INTERNATIONAL COOPERATION The International Space Station complex - Promise and problems p 1 A88-3457. Japanese Space Station program p 1 A88-3457. Western European space science Japanese space station module p 98 N88-2222: INTERPLANETARY SPACECRAFT Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-3510. Transportation concepts for Mars exploration [AIAA PAPER 88-3494] p 4 A88-4847 ION DISTRIBUTION Real-time, automatic vehicle-potential determination from ESA measurements - The distribution function algorithm ElectroStatic Analyzer p 58 A88-5139 ION ENGINES All electronic propulsion - Key to future spaceshind design [AIAA PAPER 88-3170] p 84 A88-4487 ION PROPULSION Parametric studies of electric propulsion systems for orbit transfer vehicles [AIAA PAPER 88-235] p 84 A88-4466
Locking hinge [[NASA-CASE-MSC-21056-1] p 18 N88-23827 HIPPARCOS SATELLITE The Hipparcos solar panels p 14 A88-45452 HOLLOW CATHODES Space plasma contactor research, 1987 [NASA-CR-182148] p 60 N88-23649 HONEYCOMB STRUCTURES Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 HOOP COLUMN ANTENNAS The 15-meter diameter hoop/column antenna surface control actuator system p 17 N88-21469 HOOPS Transfer matrix analysis of cable-stiffened hoop platforms p 46 A88-54899 HORN ANTENNAS Problems and solutions for GPS use beyond the 12-hour orbit p 5 A88-51715 HOTOL LAUNCH VEHICLE Heavy lift horizontal take-off and landing vehicles p 4 A88-4363 HOUSINGS Project Endeavour - Cannister 2 support structure p 91 A88-37273 HUMAN FACTORS ENGINEERING Handgrip strength with the bare hand and in the NASA spacesuit glove p 73 A88-35452 Human factors analysis of extravehicular servicing of	Image management research p 99 N88-24150 Orbital navigation, docking and obstacle avoidance as a form of three dimensional model-based image understanding p 50 N88-24194 The 1988 Goddard Conference on Space Applications of Artificial Intelligence [NASA-CP-3009] p 102 N88-30330 IMPACT DAMAGE Manufacturing of damage-resistant composite structures for aerospace applications p 66 A88-43518 Shielding against debris p 66 A88-43518 Atomic-oxygen durability of impact-damaged solar reflectors p 68 A88-54988 Assessment of the effects of space debris and meteoroids environment on the space station solar array assembly [NASA-TM-101315] p 72 N88-28959 IMPACT PREDICTION Predicting debris p 66 A88-43517 IMPACT RESISTANCE Design of light-weight impact resistant pressure vessels for Space Station fluid and propulsion systems [AIAA PAPER 88-2466] p 83 A88-35943 IMPINGEMENT Studies on rocket exhaust plumes and impingement effects related to the Columbus Space Station program: Executive summary [DFVLR-IB-222-88-A-12] p 88 N88-29862 INCIDENT RADIATION	INASA-TM-100656 p 8 N88-2985
Locking hinge [[NASA-CASE-MSC-21056-1] p 18 N88-23827 HIPPARCOS SATELLITE The Hipparcos solar panels p 14 A88-45452 HOLLOW CATHODES Space plasma contactor research, 1987 [[NASA-CR-182148] p 60 N88-23649 HONEYCOMB STRUCTURES Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 HOOP COLUMN ANTENNAS The 15-meter diameter hoop/column antenna surface control actuator system p 17 N88-21469 HOOPS Transfer matrix analysis of cable-stiffened hoop platforms p 46 A88-54989 HORN ANTENNAS Problems and solutions for GPS use beyond the 12-hour orbit p 5 A88-51715 HOTOL LAUNCH VEHICLE Heavy lift horizontal take-off and landing vehicles p 84 A88-43863 HOUSINGS Project Endeavour - Cannister 2 support structure p 91 A88-37273 HUMAN FACTORS ENGINEERING Handgrip strength with the bare hand and in the NASA spacesuit glove p 73 A88-35452 Human factors analysis of extravehicular servicing of payloads within the space station servicing facility	Image management research p 99 N88-24150 Orbital navigation, docking and obstacle avoidance as a form of three dimensional model-based image understanding p 50 N88-24194 The 1988 Goddard Conference on Space Applications of Artificial Intelligence [NASA-CP-3009] p 102 N88-30330 IMPACT DAMAGE Manufacturing of damage-resistant composite structures for aerospace applications p 65 A88-41885 Shielding against debris p 66 A88-43518 Atomic-oxygen durability of impact-damaged solar reflectors p 68 A88-54988 Assessment of the effects of space debris and meteoroids environment on the space station solar array assembly [NASA-TM-101315] p 72 N88-28959 IMPACT PREDICTION Predicting debris p 66 A88-43517 IMPACT RESISTANCE Design of light-weight impact resistant pressure vessels for Space Station fluid and propulsion systems [AIAA PAPER 88-2466] p 83 A88-35943 IMPINGEMENT Studies on rocket exhaust plumes and impingement effects related to the Columbus Space Station program: Executive summary [DFVLR-IB-222-88-A-12] p 88 N88-29862 INCIDENT RADIATION Velocity distributions of oxygen atoms incident on	[NASA-TM-100656] p 8 N88-2985 INTERFACIAL TENSION Use of the surface tension propellant tanks in the India satellite Insat [IAF PAPER 88-237] p 86 A88-5536 INTERNATIONAL COOPERATION The International Space Station complex - Promise an problems p 1 A88-3457 Japanese Space Station program p 1 A88-3457 Western European space science Japanese space station module p 98 N88-2222 INTERPLANETARY SPACECRAFT Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-3933 Transportation concepts for Mars exploration [AIAA PAPER 88-3494] p 4 A88-4847 ION DISTRIBUTION Real-time, automatic vehicle-potential determination from ESA measurements - The distribution function algorithm ElectroStatic Analyzer p 58 A88-5139 ION ENGINES All electronic propulsion - Key to future spaceshindesign [AIAA PAPER 88-3170] p 84 A88-4487 ION PROPULSION Parametric studies of electric propulsion systems for orbit transfer vehicles [AIAA PAPER 88-2835] p 84 A88-4466 IONOSPHERIC ELECTRON DENSITY Refilling process in the plasmasphere and its relation
Locking hinge [[NASA-CASE-MSC-21056-1] p 18 N88-23827 HIPPARCOS SATELLITE The Hipparcos solar panels p 14 A88-45452 HOLLOW CATHODES Space plasma contactor research, 1987 [NASA-CR-182148] p 60 N88-23649 HONEYCOMB STRUCTURES Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 HOOP COLUMN ANTENNAS The 15-meter diameter hoop/column antenna surface control actuator system p 17 N88-21469 HOOPS Transfer matrix analysis of cable-stiffened hoop platforms p 46 A88-54989 HORN ANTENNAS Problems and solutions for GPS use beyond the 12-hour orbit p 5 A88-51715 HOTOL LAUNCH VEHICLE Heavy lift horizontal take-off and landing vehicles p 84 A88-43863 HOUSINGS Project Endeavour - Cannister 2 support structure p 91 A88-37273 HUMAN FACTORS ENGINEERING Handgrip strength with the bare hand and in the NASA spacesuit glove p 73 A88-35452 Human factors analysis of extravehicular servicing of payloads within the space station servicing facility p 76 A88-50998	Image management research p 99 N88-24150 Orbital navigation, docking and obstacle avoidance as a form of three dimensional model-based image understanding p 50 N88-24194 The 1988 Goddard Conference on Space Applications of Artificial Intelligence [NASA-CP-3009] p 102 N88-30330 IMPACT DAMAGE Manufacturing of damage-resistant composite structures for aerospace applications p 65 A88-41885 Shielding against debris p 66 A88-43518 Atomic-oxygen durability of impact-damaged solar reflectors p 68 A88-54988 Assessment of the effects of space debris and meteoroids environment on the space station solar array assembly [NASA-TM-101315] p 72 N88-28959 IMPACT RESISTANCE Design of light-weight impact resistant pressure vessels for Space Station fluid and propulsion systems [AIAA PAPER 88-2466] p 83 A88-35943 IMPINGEMENT Studies on rocket exhaust plumes and impingement effects related to the Columbus Space Station program: Executive summary [DFVLR-IB-222-88-A-12] p 88 N88-29862 INCIDENT RADIATION Velocity distributions of oxygen atoms incident on spacecraft surfaces p 68 A88-54990	[NASA-TM-100656] p 8 N88-2985 INTERFACIAL TENSION Use of the surface tension propellant tanks in the Indial satellite Insat [IAF PAPER 88-237] p 86 A68-5536 INTERNATIONAL COOPERATION The International Space Station complex - Promise and problems p 1 A88-3457 Japanese Space Station program p 1 A88-3457 Western European space science Japanese space station module p 98 N88-2222 INTERPLANETARY SPACECRAFT Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A68-3510 Transportation concepts for Mars exploration [AIAA PAPER 88-3494] p 4 A88-4847 ION DISTRIBUTION Real-time, automatic vehicle-potential determination from ESA measurements - The distribution function algorithm ElectroStatic Analyzer p 58 A68-5139 ION ENGINES All electronic propulsion - Key to future spaceshindesign [AIAA PAPER 88-3170] p 84 A68-4467 ION PROPULSION Parametric studies of electric propulsion systems for orbit transfer vehicles [AIAA PAPER 88-2835] p 84 A68-4466 IONOSPHERIC ELECTRON DENSITY Refilling process in the plasmasphere and its relation to magnetic activity p 64 A68-3734
Locking hinge [[NASA-CASE-MSC-21056-1] p 18 N88-23827 HIPPARCOS SATELITE The Hipparcos solar panels p 14 A88-45452 HOLLOW CATHODES Space plasma contactor research, 1987 [[NASA-CR-182148] p 60 N88-23649 HONEYCOMB STRUCTURES Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 HOOP COLUMN ANTENNAS The 15-meter diameter hoop/column antenna surface control actuator system p 17 N88-21469 HOOPS Transfer matrix analysis of cable-stiffened hoop platforms p 46 A88-54989 HORN ANTENNAS Problems and solutions for GPS use beyond the 12-hour orbit p 5 A88-51715 HOTOL LAUNCH VEHICLE Heavy lift horizontal take-off and landing vehicles p 84 A88-43863 HOUSINGS Project Endeavour - Cannister 2 support structure p 91 A88-37273 HUMAN FACTORS ENGINEERING Handgrip strength with the bare hand and in the NASA spacesuit glove p 73 A88-35452 Human factors analysis of extravehicular servicing of payloads within the space station servicing facility p 76 A88-50998 Incorporation of privacy elements in space station	Image management research p 99 N88-24150 Orbital navigation, docking and obstacle avoidance as a form of three dimensional model-based image understanding p 50 N88-24194 The 1988 Goddard Conference on Space Applications of Artificial Intelligence [NASA-CP-3009] p 102 N88-30330 IMPACT DAMAGE Manufacturing of damage-resistant composite structures for aerospace applications p 66 A88-41885 Shielding against debris p 66 A88-43518 Atomic-oxygen durability of impact-damaged solar reflectors p 68 A88-54988 Assessment of the effects of space debris and meteoroids environment on the space station solar array assembly [NASA-TM-101315] p 72 N88-28959 IMPACT PREDICTION Predicting debris p 66 A88-43517 IMPACT RESISTANCE Design of light-weight impact resistant pressure vessels for Space Station fluid and propulsion systems [AIAA PAPER 88-2466] p 83 A88-35943 IMPINGEMENT Studies on rocket exhaust plumes and impingement effects related to the Columbus Space Station program: Executive summary [DFVLR-IB-222-88-A-12] p 88 N88-29662 INCIDENT RADIATION Velocity distributions of oxygen atoms incident on spacecraft surfaces p 68 A88-54990 INDIAN SPACECRAFT	[NASA-TM-100656] p 8 N88-2985 INTERFACIAL TENSION Use of the surface tension propellant tanks in the Indial satellite Insat [IAF PAPER 88-237] p 86 A88-5536 INTERNATIONAL COOPERATION The International Space Station complex - Promise and problems p 1 A88-3457 Japanese Space Station program p 1 A88-3457 Western European space science Japanese Space Station module p 98 N88-2222 INTERPLANETARY SPACECRAFT Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-3510 Transportation concepts for Mars exploration [AIAA PAPER 88-3494] p 4 A88-4847 ION DISTRIBUTION Real-time, automatic vehicle-potential determination from ESA measurements - The distribution function algorithm ElectroStatic Analyzer p 58 A88-5139 ION ENGINES All electronic propulsion - Key to future spaceshidesign [AIAA PAPER 88-3170] p 84 A88-4487 ION PROPULSION Parametric studies of electric propulsion systems for orbit transfer vehicles [AIAA PAPER 88-2835] p 84 A88-4466 IONOSPHERIC ELECTRON DENSITY Refilling process in the plasmasphere and its relation to magnetic activity p 64 A88-3734
Locking hinge [[NASA-CASE-MSC-21056-1] p 18 N88-23827 HIPPARCOS SATELLITE The Hipparcos solar panels p 14 A88-45452 HOLLOW CATHODES Space plasma contactor research, 1987 [NASA-CR-182148] p 60 N88-23649 HONEYCOMB STRUCTURES Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 HOOP COLUMN ANTENNAS The 15-meter diameter hoop/column antenna surface control actuator system p 17 N88-21469 HOOPS Transfer matrix analysis of cable-stiffened hoop platforms p 46 A88-54989 HORN ANTENNAS Problems and solutions for GPS use beyond the 12-hour orbit p 5 A88-51715 HOTOL LAUNCH VEHICLE Heavy lift horizontal take-off and landing vehicles p 84 A88-43863 HOUSINGS Project Endeavour - Cannister 2 support structure p 91 A88-37273 HUMAN FACTORS ENGINEERING Handgrip strength with the bare hand and in the NASA spacesuit glove p 73 A88-35452 Human factors analysis of extravehicular servicing of payloads within the space station servicing facility p 76 A88-50998 Incorporation of privacy elements in space station design	Image management research p 99 N88-24150 Orbital navigation, docking and obstacle avoidance as a form of three dimensional model-based image understanding p 50 N88-24194 The 1988 Goddard Conference on Space Applications of Artificial Intelligence [NASA-CP-3009] p 102 N88-30330 IMPACT DAMAGE Manufacturing of damage-resistant composite structures for aerospace applications p 66 A88-41885 Shielding against debris p 66 A88-43518 Atomic-oxygen durability of impact-damaged solar reflectors p 68 A88-54988 Assessment of the effects of space debris and meteoroids environment on the space station solar array assembly [NASA-TM-101315] p 72 N88-28959 IMPACT PREDICTION Predicting debris p 66 A88-43517 IMPACT RESISTANCE Design of light-weight impact resistant pressure vessels for Space Station fluid and propulsion systems [AIAA PAPER 88-2466] p 83 A88-35943 IMPINGEMENT Studies on rocket exhaust plumes and impingement effects related to the Columbus Space Station program: Executive summary [DFVLR-IB-222-88-A-12] p 88 N88-29862 INCIDENT RADIATION Velocity distributions of oxygen atoms incident on spacecraft surfaces p 68 A88-54990 INDIAN SPACECRAFT Use of the surface tension propellant tanks in the Indian	[NASA-TM-100656] p 8 N88-2985 INTERFACIAL TENSION Use of the surface tension propellant tanks in the India satellite Insat [IAF PAPER 88-237] p 86 A88-5536 INTERNATIONAL COOPERATION The International Space Station complex - Promise an problems p 1 A88-3457 Japanese Space Station program p 1 A88-3457 Western European space science Japanese Space Station module p 98 N88-2222 INTERPLANETARY SPACECRAFT Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-3510 Transportation concepts for Mars exploration [AIAA PAPER 88-3494] p 4 A88-4847 ION DISTRIBUTION Real-time, automatic vehicle-potential determination from ESA measurements - The distribution functio algorithm ElectroStatic Analyzer p 58 A88-5139 ION ENGINES All electronic propulsion - Key to future spaceshin design [AIAA PAPER 88-3170] p 84 A88-4487 ION PROPULSION Parametric studies of electric propulsion systems for orbit transfer vehicles [AIAA PAPER 88-2835] p 84 A88-4466 IONOSPHERIC ELECTRON DENSITY Refilling process in the plasmasphere and its relatio to magnetic activity p 64 A88-3734 IONS Contaminant ions and waves in the space statio
Locking hinge [[NASA-CASE-MSC-21056-1] p 18 N88-23827 HIPPARCOS SATELLITE The Hipparcos solar panels p 14 A88-45452 HOLLOW CATHODES Space plasma contactor research, 1987 [NASA-CR-182148] p 60 N88-23649 HONEYCOMB STRUCTURES Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 HOOP COLUMN ANTENNAS The 15-meter diameter hoop/column antenna surface control actuator system p 17 N88-21469 HOOPS Transfer matrix analysis of cable-stiffened hoop platforms p 46 A88-54989 HORN ANTENNAS Problems and solutions for GPS use beyond the 12-hour orbit p 5 A88-51715 HOTOL LAUNCH VEHICLE Heavy lift horizontal take-off and landing vehicles p 84 A88-43863 HOUSINGS Project Endeavour - Cannister 2 support structure p 91 A88-37273 HUMAN FACTORS ENGINEERING Handgrip strength with the bare hand and in the NASA spacesuit glove p 73 A88-35452 Human factors analysis of extravehicular servicing of payloads within the space station servicing facility p 76 A88-50998 Incorporation of privacy elements in space station design [NASA-CR-182748] p 98 N88-21242	Image management research p 99 N88-24150 Orbital navigation, docking and obstacle avoidance as a form of three dimensional model-based image understanding p 50 N88-24194 The 1988 Goddard Conference on Space Applications of Artificial Intelligence [NASA-CP-3009] p 102 N88-30330 IMPACT DAMAGE Manufacturing of damage-resistant composite structures for aerospace applications p 65 A88-41885 Shielding against debris p 66 A88-43518 Atomic-oxygen durability of impact-damaged solar reflectors p 68 A88-54988 Assessment of the effects of space debris and meteoroids environment on the space station solar array assembly [NASA-TM-101315] p 72 N88-28959 IMPACT PREDICTION Predicting debris p 66 A88-43517 IMPACT RESISTANCE Design of light-weight impact resistant pressure vessels for Space Station fluid and propulsion systems [AIAA PAPER 88-2466] p 83 A88-35943 IMPINGEMENT Studies on rocket exhaust plumes and impingement effects related to the Columbus Space Station program: Executive summary [DFVLR-IB-222-88-A-12] p 88 N88-29662 INCIDENT RADIATION Velocity distributions of oxygen atoms incident on spacecraft surfaces p 68 A88-54990 INDIAN SPACECRAFT Use of the surface tension propellant tanks in the Indian satellite Insat	[NASA-TM-100656] p 8 N88-2985 INTERFACIAL TENSION Use of the surface tension propellant tanks in the India satellite Insat [IAF PAPER 88-237] p 86 A68-5536 INTERNATIONAL COOPERATION The International Space Station complex - Promise an problems p 1 A88-3457 Japanese Space Station program p 1 A88-3457 Western European space science Japanese space station module p 98 N88-2222 INTERPLANETARY SPACECRAFT Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A68-3510 Transportation concepts for Mars exploration [AIAA PAPER 88-3494] p 4 A88-4847 ION DISTRIBUTION Real-time, automatic vehicle-potential determination from ESA measurements - The distribution function algorithm ElectroStatic Analyzer p 58 A68-5139 ION ENGINES All electronic propulsion - Key to future spaceshindesign [AIAA PAPER 88-3170] p 84 A68-4487 ION PROPULSION Parametric studies of electric propulsion systems for orbit transfer vehicles [AIAA PAPER 88-2835] p 84 A68-4466 IONOSPHERIC ELECTRON DENSITY Refilling process in the plasmasphere and its relation to magnetic activity p 64 A68-3734 IONS Contaminant ions and waves in the space station environment p 70 N88-2539
Locking hinge [[NASA-CASE-MSC-21056-1] p 18 N88-23827 HIPPARCOS SATELLITE The Hipparcos solar panels p 14 A88-45452 HOLLOW CATHODES Space plasma contactor research, 1987 [NASA-CR-182148] p 60 N88-23649 HONEYCOMB STRUCTURES Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 HOOP COLUMN ANTENNAS The 15-meter diameter hoop/column antenna surface control actuator system p 17 N88-21469 HOOPS Transfer matrix analysis of cable-stiffened hoop platforms p 46 A88-54989 HORN ANTENNAS Problems and solutions for GPS use beyond the 12-hour orbit p 5 A88-51715 HOTOL LAUNCH VEHICLE Heavy lift horizontal take-off and landing vehicles p 84 A88-43863 HOUSINGS Project Endeavour - Cannister 2 support structure p 91 A88-37273 HUMAN FACTORS ENGINEERING Handgrip strength with the bare hand and in the NASA spacesuit glove p 73 A88-35452 Human factors analysis of extravehicular servicing of payloads within the space station servicing facility p 76 A88-50998 Incorporation of privacy elements in space station design	Image management research p 99 N88-24150 Orbital navigation, docking and obstacle avoidance as a form of three dimensional model-based image understanding p 50 N88-24194 The 1988 Goddard Conference on Space Applications of Artificial Intelligence [NASA-CP-3009] p 102 N88-30330 IMPACT DAMAGE Manufacturing of damage-resistant composite structures for aerospace applications p 66 A88-41885 Shielding against debris p 66 A88-43518 Atomic-oxygen durability of impact-damaged solar reflectors p 68 A88-54988 Assessment of the effects of space debris and meteoroids environment on the space station solar array assembly [NASA-TM-101315] p 72 N88-28959 IMPACT RESISTANCE Design of light-weight impact resistant pressure vessels for Space Station fluid and propulsion systems [AIAA PAPER 88-2466] p 83 A88-35943 IMPINGEMENT Studies on rocket exhaust plumes and impingement effects related to the Columbus Space Station program: Executive summary [DFVLR-IB-222-88-A-12] p 88 N88-29862 INCIDENT RADIATION Velocity distributions of oxygen atoms incident on spacecraft surfaces p 68 A88-54990 INDIAN SPACECRAFT Use of the surface tension propellant tanks in the Indian satellite Insat [IAF PAPER 88-237] p 86 A88-55365	[NASA-TM-100656] p 8 N88-2985 INTERFACIAL TENSION Use of the surface tension propellant tanks in the India satellite Insat [IAF PAPER 88-237] p 86 A88-5536: INTERNATIONAL COOPERATION The International Space Station complex - Promise and problems p 1 A88-3457: Japanese Space Station program p 1 A88-3457: Western European space science Japanese Space Station module p 98 N88-2222: INTERPLANETARY SPACECRAFT Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-3510: Transportation concepts for Mars exploration [AIAA PAPER 88-3494] p 4 A88-4847 ION DISTRIBUTION Real-time, automatic vehicle-potential determination from ESA measurements - The distribution function algorithm ElectroStatic Analyzer p 58 A88-5139 ION ENGINES All electronic propulsion - Key to future spaceshing design [AIAA PAPER 88-3170] p 84 A88-4467 ION PROPULSION Parametric studies of electric propulsion systems for orbit transfer vehicles [AIAA PAPER 88-2835] p 84 A88-4466 IONOSPHERIC ELECTRON DENSITY Refilling process in the plasmasphere and its relation to magnetic activity p 64 A88-3734 IONS Contaminant ions and waves in the space statio environment IRRADIANCE
Locking hinge [[NASA-CASE-MSC-21056-1] p 18 N88-23827 HIPPARCOS SATELLITE The Hipparcos solar panels p 14 A88-45452 HOLLOW CATHODES Space plasma contactor research, 1987 [NASA-CR-182148] p 60 N88-23649 HONEYCOMB STRUCTURES Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 HOOP COLUMN ANTENNAS The 15-meter diameter hoop/column antenna surface control actuator system p 17 N88-21469 HOOPS Transfer matrix analysis of cable-stiffened hoop platforms p 46 A88-54989 HORN ANTENNAS Problems and solutions for GPS use beyond the 12-hour orbit p 5 A88-51715 HOTOL LAUNCH VEHICLE Heavy lift horizontal take-off and landing vehicles p 84 A88-43863 HOUSINGS Project Endeavour - Cannister 2 support structure p 91 A88-37273 HUMAN FACTORS ENGINEERING Handgrip strength with the bare hand and in the NASA spacesuit glove p 73 A88-35452 Human factors analysis of extravehicular servicing of payloads within the space station servicing facility p 76 A88-50998 Incorporation of privacy elements in space station design [NASA-CR-182748] p 98 N88-21242	Image management research p 99 N88-24150 Orbital navigation, docking and obstacle avoidance as a form of three dimensional model-based image understanding p 50 N88-24194 The 1988 Goddard Conference on Space Applications of Artificial Intelligence [NASA-CP-3009] p 102 N88-30330 IMPACT DAMAGE Manufacturing of damage-resistant composite structures for aerospace applications p 65 A88-41885 Shielding against debris p 66 A88-43518 Atomic-oxygen durability of impact-damaged solar reflectors p 68 A88-54988 Assessment of the effects of space debris and meteoroids environment on the space station solar array assembly [NASA-TM-101315] p 72 N88-28959 IMPACT PREDICTION Predicting debris p 66 A88-43517 IMPACT RESISTANCE Design of light-weight impact resistant pressure vessels for Space Station fluid and propulsion systems [AIAA PAPER 88-2466] p 83 A88-35943 IMPINGEMENT Studies on rocket exhaust plumes and impingement effects related to the Columbus Space Station program: Executive summary [DFVLR-IB-222-88-A-12] p 88 N88-29862 INCIDENT RADIATION Velocity distributions of oxygen atoms incident on spacecraft surfaces p 68 A88-54990 INDIAN SPACECRAFT Use of the surface tension propellant tanks in the Indian satellite Insat [IAF PAPER 88-237] p 86 A88-55365 INERTIAL GUIDANCE	[NASA-TM-100656] p 8 N88-2985 INTERFACIAL TENSION Use of the surface tension propellant tanks in the India satellite Insat [IAF PAPER 88-237] p 86 A68-5536 INTERNATIONAL COOPERATION The International Space Station complex - Promise an problems p 1 A88-3457 Japanese Space Station program p 1 A88-3457 Western European space science Japanese space station module p 98 N88-2222 INTERPLANETARY SPACECRAFT Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A68-3510 Transportation concepts for Mars exploration [AIAA PAPER 88-3494] p 4 A88-4847 ION DISTRIBUTION Real-time, automatic vehicle-potential determination from ESA measurements - The distribution function algorithm ElectroStatic Analyzer p 58 A68-5139 ION ENGINES All electronic propulsion - Key to future spaceshindesign [AIAA PAPER 88-3170] p 84 A68-4487 ION PROPULSION Parametric studies of electric propulsion systems for orbit transfer vehicles [AIAA PAPER 88-2835] p 84 A68-4466 IONOSPHERIC ELECTRON DENSITY Refilling process in the plasmasphere and its relation to magnetic activity p 64 A68-3734 IONS Contaminant ions and waves in the space station environment p 70 N88-2539
Locking hinge [[NASA-CASE-MSC-21056-1] p 18 N88-23827 HIPPARCOS SATELLITE The Hipparcos solar panels p 14 A88-45452 HOLLOW CATHODES Space plasma contactor research, 1987 [NASA-CR-182148] p 60 N88-23649 HONEYCOMB STRUCTURES Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 HOOP COLUMN ANTENNAS The 15-meter diameter hoop/column antenna surface control actuator system p 17 N88-21469 HOOPS Transfer matrix analysis of cable-stiffened hoop platforms p 46 A88-54989 HORN ANTENNAS Problems and solutions for GPS use beyond the 12-hour orbit p 5 A88-51715 HOTOL LAUNCH VEHICLE Heavy lift horizontal take-off and landing vehicles p 44 A88-43863 HOUSINGS Project Endeavour - Cannister 2 support structure p 91 A88-37273 HUMAN FACTORS ENGINEERING Handgrip strength with the bare hand and in the NASA spacesuit glove p 73 A88-35452 Human factors analysis of extravehicular servicing of payloads within the space station servicing facility p 76 A88-50998 Incorporation of privacy elements in space station design [NASA-CR-182748] p 98 N88-21242 Space Station Human Factors Research Review. Volume 1: EVA Research and Development	Image management research p 99 N88-24150 Orbital navigation, docking and obstacle avoidance as a form of three dimensional model-based image understanding p 50 N88-24194 The 1988 Goddard Conference on Space Applications of Artificial Intelligence [NASA-CP-3009] p 102 N88-30330 IMPACT DAMAGE Manufacturing of damage-resistant composite structures for aerospace applications p 66 A88-41885 Shielding against debris p 66 A88-43518 Atomic-oxygen durability of impact-damaged solar reflectors p 68 A88-54988 Assessment of the effects of space debris and meteoroids environment on the space station solar array assembly [NASA-TM-101315] p 72 N88-28959 IMPACT RESISTANCE Design of light-weight impact resistant pressure vessels for Space Station fluid and propulsion systems [AIAA PAPER 88-2466] p 83 A88-35943 IMPINGEMENT Studies on rocket exhaust plumes and impingement effects related to the Columbus Space Station program: Executive summary [DFVLR-IB-222-88-A-12] p 88 N88-29862 INCIDENT RADIATION Velocity distributions of oxygen atoms incident on spacecraft surfaces p 68 A88-54990 INDIAN SPACECRAFT Use of the surface tension propellant tanks in the Indian satellite Insat [IAF PAPER 88-237] p 86 A88-55365	[NASA-TM-100656] p 8 N88-2985 INTERFACIAL TENSION Use of the surface tension propellant tanks in the India satellite Insat [IAF PAPER 88-237] p 86 A88-5536: INTERNATIONAL COOPERATION The International Space Station complex - Promise and problems p 1 A88-3457: Japanese Space Station program p 1 A88-3457: Western European space science Japanese Space Station module p 98 N88-2222: INTERPLANETARY SPACECRAFT Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-3510: Transportation concepts for Mars exploration [AIAA PAPER 88-3494] p 4 A88-4847 ION DISTRIBUTION Real-time, automatic vehicle-potential determination from ESA measurements - The distribution function algorithm ElectroStatic Analyzer p 58 A88-5139 ION ENGINES All electronic propulsion - Key to future spaceshing design [AIAA PAPER 88-3170] p 84 A88-4467 ION PROPULSION Parametric studies of electric propulsion systems for orbit transfer vehicles [AIAA PAPER 88-2835] p 84 A88-4466 IONOSPHERIC ELECTRON DENSITY Refilling process in the plasmasphere and its relation to magnetic activity p 64 A88-3734 IONS Contaminant ions and waves in the space statio environment IRRADIANCE
Locking hinge [[NASA-CASE-MSC-21056-1] p 18 N88-23827 HIPPARCOS SATELLITE The Hipparcos solar panels p 14 A88-45452 HOLLOW CATHODES Space plasma contactor research, 1987 [NASA-CR-182148] p 60 N88-23649 HONEYCOMB STRUCTURES Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 HOOP COLUMN ANTENNAS The 15-meter diameter hoop/column antenna surface control actuator system p 17 N88-21469 HOOPS Transfer matrix analysis of cable-stiffened hoop platforms p 46 A88-54989 HORN ANTENNAS Problems and solutions for GPS use beyond the 12-hour orbit p 5 A88-51715 HOTOL LAUNCH VEHICLE Heavy lift horizontal take-off and landing vehicles p 84 A88-43863 HOUSINGS Project Endeavour - Cannister 2 support structure p 91 A88-37273 HUMAN FACTORS ENGINEERING Handgrip strength with the bare hand and in the NASA spacesuit glove p 73 A88-35452 Human factors analysis of extravehicular servicing of payloads within the space station servicing facility p 76 A88-50998 Incorporation of privacy elements in space station design [NASA-CR-182748] p 98 N88-21242 Space Station Human Factors Research Review. Volume 1: EVA Research and Development [NASA-CP-2426-VOL-1] p 99 N88-24145	Image management research p 99 N88-24150 Orbital navigation, docking and obstacle avoidance as a form of three dimensional model-based image understanding p 50 N88-24194 The 1988 Goddard Conference on Space Applications of Artificial Intelligence [NASA-CP-3009] p 102 N88-30330 IMPACT DAMAGE Manufacturing of damage-resistant composite structures for aerospace applications p 65 A88-41885 Shielding against debris p 66 A88-43518 Atomic-oxygen durability of impact-damaged solar reflectors p 68 A88-54988 Assessment of the effects of space debris and meteoroids environment on the space station solar array assembly [NASA-TM-101315] p 72 N88-28959 IMPACT RESISTANCE Design of light-weight impact resistant pressure vessels for Space Station fluid and propulsion systems [AIAA PAPER 88-2466] p 83 A88-35943 IMPINGEMENT Studies on rocket exhaust plumes and impingement effects related to the Columbus Space Station program: Executive summary [DFVLR-IB-222-88-A-12] p 88 N88-29862 INCIDENT RADIATION Velocity distributions of oxygen atoms incident on spacecraft surfaces p 68 A88-54990 INDIAN SPACECRAFT Use of the surface tension propellant tanks in the Indian satellite Insat [IAF PAPER 88-237] p 86 A88-55365 INERTIAL GUIDANCE Features of Soyuz TM spacecraft p 97 N88-20329 INFLATABLE SPACECRAFT	[NASA-TM-100656] p 8 N88-2985 INTERFACIAL TENSION Use of the surface tension propellant tanks in the India satellite Insat [IAF PAPER 88-237] p 86 A88-5536 INTERNATIONAL COOPERATION The International Space Station complex - Promise and problems p 1 A88-3457 Japanese Space Station program p 1 A88-3457 Western European space science Japanese Space Station module p 98 N88-2222 INTERPLANETARY SPACECRAFT Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-3510 Transportation concepts for Mars exploration [AIAA PAPER 88-3494] p 4 A88-4847 ION DISTRIBUTION Real-time, automatic vehicle-potential determination from ESA measurements - The distribution function algorithm ElectroStatic Analyzer p 58 A88-5139 ION ENGINES All electronic propulsion - Key to future spaceshing design [AIAA PAPER 88-3170] p 84 A88-4467 ION PROPULSION Parametric studies of electric propulsion systems for orbit transfer vehicles [AIAA PAPER 88-2835] p 84 A88-4466 IONOSPHERIC ELECTRON DENSITY Refilling process in the plasmasphere and its relation to magnetic activity p 64 A88-3734 IONS Contaminant ions and waves in the space station environment p 70 N88-2539 IRRADIANCE Calculation of space station infrared irradiance from
Locking hinge [[NASA-CASE-MSC-21056-1] p 18 N88-23827 HIPPARCOS SATELITE The Hipparcos solar panels p 14 A88-45452 HOLLOW CATHODES Space plasma contactor research, 1987 [[NASA-CR-182148] p 60 N88-23649 HONEYCOMB STRUCTURES Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 HOOP COLUMN ANTENNAS The 15-meter diameter hoop/column antenna surface control actuator system p 17 N88-21469 HOOPS Transfer matrix analysis of cable-stiffened hoop platforms p 46 A88-54989 HORN ANTENNAS Problems and solutions for GPS use beyond the 12-hour orbit p 5 A88-51715 HOTOL LAUNCH VEHICLE Heavy lift horizontal take-off and landing vehicles p 84 A88-43863 HOUSINGS Project Endeavour - Cannister 2 support structure p 91 A88-37273 HUMAN FACTORS ENGINEERING Handgrip strength with the bare hand and in the NASA spacesuit glove p 73 A88-35452 Human factors analysis of extravehicular servicing of payloads within the space station servicing facility p 76 A88-50998 Incorporation of privacy elements in space station design [NASA-CR-182748] p 98 N68-21242 Space Station Human Factors Research Review. Volume 1: EVA Research and Development [NASA-CP-2426-VOL-1] p 99 N88-24145 Space Station Human Factors Research Review.	Image management research p 99 N88-24150 Orbital navigation, docking and obstacle avoidance as a form of three dimensional model-based image understanding p 50 N88-24194 The 1988 Goddard Conference on Space Applications of Artificial Intelligence [NASA-CP-3009] p 102 N88-30330 IMPACT DAMAGE Manufacturing of damage-resistant composite structures for aerospace applications p 65 A88-41885 Shielding against debris p 66 A88-43518 Atomic-oxygen durability of impact-damaged solar reflectors p 68 A88-54988 Assessment of the effects of space debris and meteoroids environment on the space station solar array assembly [NASA-TM-101315] p 72 N88-28959 IMPACT PREDICTION Predicting debris p 66 A88-43517 IMPACT RESISTANCE Design of light-weight impact resistant pressure vessels for Space Station fluid and propulsion systems [AIAA PAPER 88-2466] p 83 A88-35943 IMPINGEMENT Studies on rocket exhaust plumes and impingement effects related to the Columbus Space Station program: Executive summary [DFVLR-IB-222-88-A-12] p 88 N88-29862 INCIDENT RADIATION Velocity distributions of oxygen atoms incident on spacecraft surfaces p 68 A88-54990 INDIAN SPACECRAFT Use of the surface tension propellant tanks in the Indian satellite Insat [IAF PAPER 88-237] p 86 A88-55365 INERTIAL GUIDANCE Features of Soyuz TM spacecraft Fechnology development missions concept definition	[NASA-TM-100656] p 8 N88-2985 INTERFACIAL TENSION Use of the surface tension propellant tanks in the India satellite Insat [IAF PAPER 88-237] p 86 A68-5536 INTERNATIONAL COOPERATION The International Space Station complex - Promise an problems p 1 A88-3457 Japanese Space Station program p 1 A88-3457 Western European space science p 3 A88-3933 Japanese space station module p 98 N88-2222 INTERPLANETARY SPACECRAFT Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A68-3510 Transportation concepts for Mars exploration [AIAA PAPER 88-3494] p 4 A88-4847 ION DISTRIBUTION Real-time, automatic vehicle-potential determination from ESA measurements - The distribution function algorithm ElectroStatic Analyzer p 58 A68-5139 ION ENGINES All electronic propulsion - Key to future spaceshindesign [AIAA PAPER 88-3170] p 84 A68-4487 ION PROPULSION Parametric studies of electric propulsion systems for orbit transfer vehicles [AIAA PAPER 88-2835] p 84 A68-4466 IONOSPHERIC ELECTRON DENSITY Refilling process in the plasmasphere and its relation to magnetic activity p 64 A68-3734 IONS Contaminant ions and waves in the space station environment p 70 N88-2539 IRRADIANCE Calculation of space station infrared irradiance fror atmosphere-induced emissions p 70 N88-2539
Locking hinge [[NASA-CASE-MSC-21056-1] p 18 N88-23827 HIPPARCOS SATELLITE The Hipparcos solar panels p 14 A88-45452 HOLLOW CATHODES Space plasma contactor research, 1987 [NASA-CR-182148] p 60 N88-23649 HONEYCOMB STRUCTURES Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 HOOP COLUMN ANTENNAS The 15-meter diameter hoop/column antenna surface control actuator system p 17 N88-21469 HOOPS Transfer matrix analysis of cable-stiffened hoop platforms p 46 A88-54989 HORN ANTENNAS Problems and solutions for GPS use beyond the 12-hour orbit p 5 A88-51715 HOTOL LAUNCH VEHICLE Heavy lift horizontal take-off and landing vehicles p 44 A88-4363 HOUSINGS Project Endeavour - Cannister 2 support structure p 91 A88-37273 HUMAN FACTORS ENGINEERING Handgrip strength with the bare hand and in the NASA spacesuit glove p 73 A88-35452 Human factors analysis of extravehicular servicing of payloads within the space station servicing facility p 76 A88-50998 Incorporation of privacy elements in space station design [NASA-CR-182748] p 98 N88-21242 Space Station Human Factors Research Review. Volume 1: EVA Research and Development [NASA-CP-2426-VOL-1] Space Station Human Factors Research Review. Volume 4: Inhouse Advanced Development and	Image management research p 99 N88-24150 Orbital navigation, docking and obstacle avoidance as a form of three dimensional model-based image understanding p 50 N88-24194 The 1988 Goddard Conference on Space Applications of Artificial Intelligence [NASA-CP-3009] p 102 N88-30330 IMPACT DAMAGE Manufacturing of damage-resistant composite structures for aerospace applications p 65 A88-41885 Shielding against debris p 66 A88-43518 Atomic-oxygen durability of impact-damaged solar reflectors p 68 A88-54988 Assessment of the effects of space debris and meteoroids environment on the space station solar array assembly [NASA-TM-101315] p 72 N88-28959 IMPACT PREDICTION Predicting debris p 66 A88-43517 IMPACT RESISTANCE Design of light-weight impact resistant pressure vessels for Space Station fluid and propulsion systems [AIAA PAPER 88-2466] p 83 A88-35943 IMPINGEMENT Studies on rocket exhaust plumes and impingement effects related to the Columbus Space Station program: Executive summary [DFVLR-IB-222-88-A-12] p 88 N88-29862 INCIDENT RADIATION Velocity distributions of oxygen atoms incident on spacecraft surfaces p 68 A88-54990 INDIAN SPACECRAFT Use of the surface tension propellant tanks in the Indian satellite Insat [IAF PAPER 88-237] p 86 A88-55365 INERTIAL GUIDANCE Features of Soyuz TM spacecraft Fechnology development missions concept definition	[NASA-TM-100656] p 8 N88-2985 INTERFACIAL TENSION Use of the surface tension propellant tanks in the Indial satellite Insat [IAF PAPER 88-237] p 86 A88-5536 INTERNATIONAL COOPERATION The International Space Station complex - Promise and problems p 1 A88-3457 Western European space science Japanese Space Station module p 98 N88-2222 INTERPLANETARY SPACECRAFT Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-3510 Transportation concepts for Mars exploration [AIAA PAPER 88-3494] p 4 A88-4847 ION DISTRIBUTION Real-time, automatic vehicle-potential determination from ESA measurements - The distribution function algorithm ElectroStatic Analyzer p 58 A88-5139 ION ENGINES All electronic propulsion - Key to future spaceshidesign [AIAA PAPER 88-3170] p 84 A88-4467 ION PROPULSION Parametric studies of electric propulsion systems for orbit transfer vehicles [AIAA PAPER 88-2835] p 84 A88-4466 IONOSPHERIC ELECTRON DENSITY Refilling process in the plasmasphere and its relation to magnetic activity p 64 A88-3734 IONS Contaminant ions and waves in the space station environment p 70 N88-2539 IRADIANCE Calculation of space station infrared irradiance for atmosphere-induced emissions p 70 N88-2539 ITALIAN SPACE PROGRAM
Locking hinge [[NASA-CASE-MSC-21056-1] p 18 N88-23827 HIPPARCOS SATELITE The Hipparcos solar panels p 14 A88-45452 HOLLOW CATHODES Space plasma contactor research, 1987 [[NASA-CR-182148] p 60 N88-23649 HONEYCOMB STRUCTURES Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 HOOP COLUMN ANTENNAS The 15-meter diameter hoop/column antenna surface control actuator system p 17 N88-21469 HOOPS Transfer matrix analysis of cable-stiffened hoop platforms p 46 A88-54989 HORN ANTENNAS Problems and solutions for GPS use beyond the 12-hour orbit p 5 A88-51715 HOTOL LAUNCH VEHICLE Heavy lift horizontal take-off and landing vehicles p 84 A88-43863 HOUSINGS Project Endeavour - Cannister 2 support structure p 91 A88-37273 HUMAN FACTORS ENGINEERING Handgrip strength with the bare hand and in the NASA spacesuit glove p 73 A88-35452 Human factors analysis of extravehicular servicing of payloads within the space station servicing facility p 76 A88-50998 Incorporation of privacy elements in space station design [NASA-CR-182748] p 98 N68-21242 Space Station Human Factors Research Review. Volume 1: EVA Research and Development [NASA-CP-2426-VOL-1] p 99 N88-24145 Space Station Human Factors Research Review.	Image management research p 99 N88-24150 Orbital navigation, docking and obstacle avoidance as a form of three dimensional model-based image understanding p 50 N88-24194 The 1988 Goddard Conference on Space Applications of Artificial Intelligence [NASA-CP-3009] p 102 N88-30330 IMPACT DAMAGE Manufacturing of damage-resistant composite structures for aerospace applications p 65 A88-41885 Shielding against debris p 66 A88-43518 Atomic-oxygen durability of impact-damaged solar reflectors p 68 A88-54988 Assessment of the effects of space debris and meteoroids environment on the space station solar array assembly [NASA-TM-101315] p 72 N88-28959 IMPACT RESISTANCE Design of light-weight impact resistant pressure vessels for Space Station fluid and propulsion systems [AIAA PAPER 88-2466] p 83 A88-35943 IMPINGEMENT Studies on rocket exhaust plumes and impingement effects related to the Columbus Space Station program: Executive summary [DFVLR-IB-222-88-A-12] p 88 N88-29862 INCIDENT RADIATION Velocity distributions of oxygen atoms incident on spacecraft surfaces p 68 A88-54990 INDIAN SPACECRAFT Use of the surface tension propellant tanks in the Indian satellite Insat [IAF PAPER 88-237] p 86 A88-55365 INERTIAL GUIDANCE Features of Soyuz TM spacecraft p 97 N88-20329 INFLATABLE SPACECRAFT	INASA-TM-100656] p 8 N88-2985 INTERFACIAL TENSION Use of the surface tension propellant tanks in the India satellite Insat [IAF PAPER 88-237] p 86 A88-5536 INTERNATIONAL COOPERATION The International Space Station complex - Promise and problems p 1 A88-3457 Japanese Space Station program p 1 A88-3457 Western European space science Japanese space station module p 98 N88-2222 INTERPLANETARY SPACECRAFT Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-3510 Transportation concepts for Mars exploration [AIAA PAPER 88-3494] p 84 A88-4847 ION DISTRIBUTION Real-time, automatic vehicle-potential determination from ESA measurements - The distribution function algorithm ElectroStatic Analyzer p 58 A88-5139 ION ENGINES All electronic propulsion - Key to future spaceshing design [AIAA PAPER 88-3170] p 84 A88-4467 ION PROPULSION Parametric studies of electric propulsion systems for orbit transfer vehicles [AIAA PAPER 88-2835] p 84 A88-4466 IONOSPHERIC ELECTRON DENSITY Refilling process in the plasmasphere and its relation to magnetic activity p 64 A88-3734 IONS Contaminant ions and waves in the space station environment p 70 N88-2539 IRRADIAMCE Calculation of space station infrared irradiance fror atmosphere-induced emissions p 70 N88-2539 ITALIAN SPACE PROGRAM Space inspection device for extravehicular repairs

p 77 A88-55324

p 35 A88-50191

ITED	ATIVE	SOL	UTION

An iterative approach to parameter identification in

JAPANESE SPACE PROGRAM

Japanese Space Station program A88-34574 Japanese space station module p 98 N88-22224 JET PROPULSION

An analysis of orbit maneuvering capabilities using arcjet propulsion

[AIAA PAPER 88-2832]

p 85 A88-48484

JOINTS (JUNCTIONS)

Space Station erectable truss joint evaluation p 13 A88-35940 I AIAA PAPER 88-24481 Performance enhancement of passively damped joints for space structures

[AIAA PAPER 88-2450] p 13 A88-35941 Necessary conditions of geometrical stability in trusses which include one-force members

(SAWE PAPER 1776) p 43 A88-53785 Ammonia transfer across rotating joints in space p 22 N88-21492

JUDGMENTS

Space vehicle approach velocity judgments under p 93 A88-42933 simulated visual space conditions

KALMAN FILTERS

Kalman filtering for second-order models

A88-36718 p 28 Utilization of strapdown inertial and non-inertial sensors in determination of satellite attitude by Kalman filters IINPE-4313-TDL/2801 p 48 N88-20349 Moving-bank multiple model adaptive estimation applied to flexible spacestructure control

[AD-A190761]

p 49 N88-22071

KINEMATICS

Base reaction optimization of manipulators with redundant kinematics p 78 N88-23238 KITS

Space Station tool kit p 94 A88-43967 KP INDEX

'Space weather forecast' - Prediction of relativistic electron intensity at synchronous orbit

p 64 A88-38015

L-SAT

Qualification of the OLYMPUS reaction wheel

Development and qualification of the OLYMPUS p 16 antenna pointing mechanism LABORATORIES

Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of vibrations

[AD-A194270]

p 71 N88-28754

LABORATORY EQUIPMENT

Microgravity mechanisms and robotics program p 78 N88-23237

LAGRANGE COORDINATES

A nonlinear computation for composite structures [ONERA-RT-15/3542-RY-062-R] p 69 N88-2 p 69 N88-23265 LAGRANGIAN EQUILIBRIUM POINTS

An alternate transition from the Lagrangian of a satellite to equations of motion

p 37 A88-50362 1 A 1 A A PAPER 88-4221 1

LARGE DEPLOYABLE REFLECTOR LDR structural experiment definition

p 7 N88-23826 INASA-TM-1006181

LARGE SPACE STRUCTURES

Large space system assembly options

p 72 A88-33433 On-orbit assembly, integration, and test of large spacecraft - A new technique p 72 A88-33440

Synthesis of fine-pointing control systems for large, p 24 A88-33446 flexible spacecraft active vibration Large space optical system p 24 A88-34498 suppression

Multivariable control law analysis for a large space p 25 A88-34501 antenna

An experimental test-bed for validation of control methodologies in large space optical structures

p 25 A88-34502

Columbus utilization studies - Attached payloads

A88-34563 p 1

System identification for space control laboratory experiment (SCOLE) using distributed parameter models p 26 A88-34792

Controller synthesis for flexible spacecraft using multivariable loop-shaping and factorization methods

p 26 A88-34796

Spectral analysis of a class of infinite-dimensional p 26 A88-34822 Modelling and stabilization of flexible spacecraft under the influence of orbital perturbation p 27 Computing the transmission zeros of large space

structures p 27 A88-34917 Ground-test of spacecraft control and dynamics 1AAS PAPER 86-2671 p 27 A88-35102

requirements, deployable Large space systems concepts, and technology issues (AAS PAPER 86-394)

o 2 A88-35115 Member vibration effects on LSS behavior (AAS PAPER 86-396) p 27 A88-35116

Distributed and concurrent computation for space structures

[AAS PAPER 86-397] n 28 A88-35117 System architecture of MMIC-based large aperture p 55 A88-35274 arrays for space applications Interactive structural and controller synthesis for large p 28 A88-35541

Dynamic responses of orthotropic plates under moving p 28 A88-35543 Performance enhancement of passively damped joints

for space structures [AIAA PAPER 88-2450] p 13 A88-35941

Designing Space Station structure for assembly [AIAA PAPER 88-2453] p 74 A88-35942 Experimental study of transient waves in a plane grid structure p 28 A88-38390

Sensitivity analysis of a deployable three longeron truss beam designed for minimum member loads during deployment [AIAA PAPER 88-2436]

p 13 A88-38689 Instrumentation for modal testing of large space p 29 A88-40261

SHAPES - Spatial, High-Accuracy, Position-Encoding Sensor for multi-point, 3-D position measurement of large flexible structures Analytic redundancy management for systems with

appreciable structural dynamics --- for control systems n 29 A88-40773 Structural vibration of space power station systems

p 29 A88-42574 Minimum-time control of large space structures A88-42576 p 29

Experimental investigations in active vibration control for application to large space systems p 30 A88-42577

Dynamics and control of large space platforms and small p 30 experimental payloads New approach to the analysis and control of large space p 30 A88-43030 structures Microprocessor controlled force actuator p 30 A88-43206

Active vibration control synthesis for the control of flexible structures mast flight system p 30 A88-43212 Scientific and economy-oriented space systems p 93 A88-43247 Heavy lift horizontal take-off and landing vehicles

p 84 A88-43863 Computational techniques for the self assembly of large space structures p 75 A88-43976 Cost effectiveness of on-orbit servicing for large constellations

[AIAA PAPER 88-3519] p 94 A88-44527

Data management for large space systems

p 95 A88-45034 Optimal experiment design for identification of large p 31 A88-45227 Large space structures: Dynamics and control --- Book

p 31 A88-46401 Nonlinearities in the dynamics and control of space

structures - Some issues for computational mechanics p 31 A88-46403

Computational issues in control-structure interaction analysis p 32 A88-46406

p 32 Control of distributed structures A88-46408 Active control for vibration damping p 32 A88-46410

Optimal projection for uncertain systems (OPUS) - A unified theory of reduced-order, robust control design p 32 A88-46411

Adaptive control of large space structures - Uncertainty estimation and robust control calibration

p 32 A88-46412 An integrated approach to the minimum weight and optimum control design of space structures

p 10 Tasks of the simulation installations for space flight operations in the operations center for manned space p 10 A88-46516

Game theory approach for the integrated design of p 33 A88-47462 structures and controls

Astrodynamics problems of the Space Station

p 33 A88-47907 Pole/zero cancellations in flexible space structures
AIAA PAPER 88-4055 | p 34 A88-50165 [AIAA PAPER 88-4055] Sensors actuators and hyperstability of structures [AIAA PAPER 88-4057] p 34 A88-50167

disturbance model for optimization of control/structure interactions for flexible dynamic [AIAA PAPER 88-4058]

p 34 A88-50168 Effects of nonlinear damping in flexible space [AIAA PAPER 88-4059] n 35 A88-50169

Modeling of non-collocated structural control systems [AIAA PAPER 88-4060] A distributed finite element modeling and control pproach for large flexible structures

Grammians and model reduction in limited time and frequency intervals
[AIAA PAPER 88-4087] p 35 A88-50193 Attituded tumbling due to flexibility in satellite mounted

[AIAA PAPER 88-4085]

robots [AIAA PAPER 88-4096] p 35 A88-50201 The kinetics and workspace of a robot mounted on a

satellite that is free to rotate and translate [AIAA PAPER 88-4097] p 75 A88-50202 System identification and control of the truss experiment A retrospective

[AIAA PAPER 88-4152] p 36 A88-50246 Adaptive control experiment with a large flexible structure

(AIAA PAPER 88-4153) p 36 A88-50247 Dynamics and control of experimental tendon control

stem for flexible space structure [AIAA PAPER 88-4154] p 36 A88-50248 Optimal structural design with control gain norm A88-50339

constraint p 22 A slew maneuver experiment of mission function

[AIAA PAPER 88-4226] p 38 A88-50367 A pole placement technique for vibration suppression of flexible structures (AIAA PAPER 88-4254)

n 38 A88-50385 A formulation for studying dynamics and control of the Space Station based MRMS and its application

[AIAA PAPER 88-4269] p 38 A88-50398 Integrated structural/controller optimization of large space structures

[AIAA PAPER 88-4305] n 39 A88-50430 Active control experiment using proof mass actuators [AIAA PAPER 88-4307] p 40 A88-50432 Effect of air mass on modal tests --- in large space structures p 41 A88-50860

Large truss structures --- for space assembly

p 75 A88-50862 Beam modifications of structural systems utilizing the receptance approach with static flexibility

p 14 A88-50891 Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892 Load dependent subspace reduction methods for structural dynamic computations p 42 A88-53420 A design methodology for neutral buoyancy simulation of space operations

[AIAA PAPER 88-4628] p 77 A88-53665 Laboratory facility for flexible structure control p 42 A88-53681 experiments Necessary conditions of geometrical stability in trusses which include one-force members

[SAWE PAPER 1776] p 43 A88-53785 The jitter beam - An experiment demonstrating pointing control on a flexible structure p 43 A88-54406 Projective controls for disturbance attenuation in LSS systems p 43 A88-54410

Obstacles to high fidelity dynamics multibody p 44 A88-54471 Development of a control oriented model of a cantilevered beam with end-mass --- for large space

p 44 A88-54533 Advanced control evaluation for structures (ACES) programs p 44 A88-54572 ACES program - Lessons learned p 6 A88-54573

Application of FAMESS to a large space structure ground p 44 A88-54574 Experimental demonstration the maximum entropy/optimal projection design theory for active vibration control p 44 A88-54575

Identification of a flexible truss structure using lattice p 45 A88-54577 filters Decentralized model reference adaptive control of large flexible structures

p 45 On the Caltech experimental large space structure p 6 A88-54603

H(infinity) robust control synthesis for a large space p 45 A88-54639

A robust control experiment using an optical structure	Clevis joint for deployable space structures	LIFT
prototype p 45 A88-54640	[NASA-CASE-LAR-13898-1] p 19 N88-30130	Aeroassisted transfer between elliptical orbits using lift
Design and development of a computer controlled	Robust design of distributed controllers for large flexible	control
system for spacecraft static testing p 11 A88-54896	space structures	[AIAA PAPER 88-4346] p 95 A88-50590
Transfer matrix analysis of cable-stiffened hoop	[NASA-CR-183202] p 54 N88-30134	LINE OF SIGHT
platforms p 46 A88-54989	LASER APPLICATIONS	Control of spacecraft with multi-targeted flexible
Sine dwell or broadband methods for modal testing	Laser sensing for identification and control of distributed	antennas
p 46 A88-55088	parameter systems [AD-A195886] p 54 N88-30124	[AIAA PAPER 88-4268] p 40 A88-50441
Development of a generalized cost model for large space	[AD-A195886] p 54 N88-30124 LASER OUTPUTS	LINEAR PROGRAMMING
power systems	Theory of filtering and control with application to control	A pole placement technique for vibration suppression
[IAF PAPER 88-219] p 97 A88-55363 Control of large space structures using reduced order	of large space structures	of flexible structures
models	[AD-A195500] p 54 N88-29851	[AIAA PAPER 88-4254] p 38 A88-50385
[IAF PAPER 88-272] p 47 A88-55371	LASER PLASMA INTERACTIONS	LINEAR QUADRATIC GAUSSIAN CONTROL
Effect of natural damping on the dynamics and control	Unified study of plasma/surface interactions for space	Approximation in discrete-time boundary control of flexible structures p 25 A88-34737
of a class of optimally designed structures	power and propulsion	•
[IAF PAPER 88-288] p 47 A88-55375	[AD-A195971] p 88 N88-29870	Reduced-order compensation: LQG reduction versus
Stability of imperfection-sensitive nonlinear space	LATCHES	optimal projection using a homotopic continuation method p 25 A88-34749
structures under stochastic loading	System and concept design of the SSRMS latching end	•
[IAF PAPER 88-293] p 47 A88-55377	effector Space Station p 15 N88-21204	Active control for vibration damping p 32 A88-46410
Generic model laboratory tests for large flexible structure	Latching mechanisms for IOC EURECA	The jitter beam - An experiment demonstrating pointing
control	p 16 N88-21205	control on a flexible structure p 43 A88-54406
[IAF PAPER 88-294] p 47 A88-55378	Structural latches for modular assembly of spacecraft and space mechanisms p 17 N88-21471	LINEAR QUADRATIC REGULATOR
Identification of large structures on orbit - A survey	LATERAL CONTROL	System identification and control of the truss experiment
[IAF PAPER 88-295] p 97 A88-55379	Two non-linear control approaches for retrieval of a	- A retrospective
Robust decentralized control of large flexible structures	thrusting tethered sub-satellite	[AIAA PAPER 88-4152] p 36 A88-50246
[DE88-005416] p 48 N88-20902	[AIAA PAPER 88-4171] p 37 A88-50262	Accommodation of kinematic disturbances during a
A sequentially deployable structure for space	LATERAL STABILITY	minimum-time maneuver of a flexible spacecraft
applications p 15 N88-21202	Model reference control of the NASA SCOLE problem	[AIAA PAPER 88-4253] p 40 A88-50440
Optimal control and identification of space structures	Spacecraft COntrol Laboratory Experiment	Projective controls for disturbance attenuation in LSS
[AD-A190033] p 49 N88-22065	p 27 A88-34916	systems p 43 A88-54410
Wave propagation and dynamics of lattice structures	LATTICES	Rapid slewing of the orbiting Spacecraft Control
[AD-A190037] p 49 N88-22066	Continuum modeling of large lattice structures - Status	Laboratory Experiment (SCOLE) using LQR techniques
Feedback control of distributed parameter systems with	and projections p 21 A88-46402	[IAF PAPER 88-320] p 47 A88-55393
applications to large space structures	LAUNCH VEHICLE CONFIGURATIONS	LINEAR SYSTEMS
[AD-A190536] p 49 N88-22068	Operational capabilities of generic advanced launch	On the quantitative characterization of approximate
Vibrations of structures with parametric uncertainties	system concepts p 86 A88-52374 LAUNCH VEHICLES	decentralized fixed modes using transmission zeros
[AD-A190400] p 49 N88-22378	Shuttle-C - A Shuttle derived launch vehicle	p 27 A88-34905
Travelling wave concepts for the modeling and control	p 86 A88-52373	The identification of a distributed parameter model for
of space structures [AD-A191235] p 50 N88-23819	LAUNCHING PADS	a flexible structure p 31 A88-46041
Soviet spacecraft engineering research	Multimission modular spacecraft (MMS)	A mathematical theory of learning control for linear
[FASAC-TAR-3090] p 98 N88-23823	[AIAA PAPER 88-3513] p 93 A88-42910	discrete multivariable systems
LDR structural experiment definition	LEAKAGE	[AIAA PAPER 88-4313] p 40 A88-50438
[NASA-TM-100618] p 7 N88-23826	Ammonia transfer across rotating joints in space	A Fourier-based optimal control approach for structural
Space spider crane	p 22 N88-21492	systems p 45 A88-54643
[NASA-CASE-LAR-13411-1-SB] p 7 N88-23828	Development of a rotary fluid transfer coupling and	The LDCM actuator for vibration suppression
Continuum modeling and dynamic analysis of large truss	support mechanism for space station	[NASA-CR-182898] p 50 N88-23940
structures p 50 N88-23995	p 18 N88-21493	LINEAR VIBRATION
Electromagnetic damping and vibration isolation of	LEARNING MACHINES	The identification of a distributed parameter model for
space structures	A mathematical theory of learning control for linear discrete multivariable systems	a flexible structure p 31 A88-46041
[AD-A191492] p 51 N88-24665	[AIAA PAPER 88-4313] p 40 A88-50438	LININGS
Estimation and control of distributed models for certain	LENS DESIGN	Fabric space radiators
elastic systems arising in large space structures [AD-A192120] p 51 N88-24666	Beyond the diameter-wavelength-ratio of reflector	[DE88-005569] p 17 N88-21237 LIOUVILLE THEOREM
[AD-A192120] p 51 N88-24666 Low authority control of large space structures using a	antennas - A film lens antenna p 55 A88-38098	A study of SCATHA eclipse charging
constrained threshold control formulation	LIAPUNOV FUNCTIONS	p 58 A88-53470
p 51 N88-24667	A slew maneuver experiment of mission function	LIQUID AMMONIA
Experimental study of active vibration control	control	Ammonia transfer across rotating joints in space
[AD-A191454] p 51 N88-24989	[AIAA PAPER 88-4226] p 38 A88-50367	p 22 N88-21492
Large antenna experiments aboard the space shuttle:	Precision pointing of scientific instruments on space	LIQUID HELIUM
Application of nonuniform sampling techniques	station: The LFGGREC perspective p 42 A88-50979	Bayonet for superfluid helium transfer in space
p 61 N88-25745	LIBRATIONAL MOTION	p 22 A88-53220
The 15-meter antenna performance optimization using	Libration damping of a tethered satellite using rate only	The superfluid helium on-orbit transfer (SHOOT) flight
an interdisciplinary approach p 61 N88-25746	control	experiment p 5 A88-53221
	TAIAA PAPEH 88-41/21 p.37 A88-50263	Suporfluid Holium On Orbit Transfer (CLICOT)
Adaptive residual mode filter control of distributed	[AIAA PAPER 88-4172] p 37 A88-50263 An alternate transition from the Lagrangian of a satellite	Superfluid Helium On-Orbit Transfer (SHOOT) operations
Adaptive residual mode filter control of distributed parameter systems for large space structure applications		operatons
Adaptive residual mode filter control of distributed parameter systems for large space structure applications p 52 N88-26143	An alternate transition from the Lagrangian of a satellite	operations [NASA-TM-101009] p 88 N88-28084
Adaptive residual mode filter control of distributed parameter systems for large space structure applications p 52 N88-26143 L(sub infinity symbol)-approximations of complex	An alternate transition from the Lagrangian of a satellite to equations of motion [AIAA PAPER 88-4221] p 37 A88-50362	operations [NASA-TM-101009] p 88 N88-28084 LIQUID METAL COOLED REACTORS
Adaptive residual mode filter control of distributed parameter systems for large space structure applications p 52 N88-26143 L(sub infinity symbol)-approximations of complex functions and robust controllers for large flexible space	An alternate transition from the Lagrangian of a satellite to equations of motion	operations [NASA-TM-101009] p 88 N88-28084 LIQUID METAL COOLED REACTORS Two-phase alkali-metal experiments in reduced gravity
Adaptive residual mode filter control of distributed parameter systems for large space structure applications p 52 N88-26143 L(sub infinity symbol)-approximations of complex	An alternate transition from the Lagrangian of a satellite to equations of motion [AIAA PAPER 88-4221] p 37 A88-50362 A dynamical study of the proposed Space Station type	operations [NASA-TM-101009] p 88 N88-28084 LIQUID METAL COOLED REACTORS
Adaptive residual mode filter control of distributed parameter systems for large space structure applications p 52 N88-26143 L(sub infinity symbol)-approximations of complex functions and robust controllers for large flexible space structures	An alternate transition from the Lagrangian of a satellite to equations of motion [AIAA PAPER 88-4221] p 37 A88-50362 A dynamical study of the proposed Space Station type configuration	operations [NASA-TM-101009] p 88 N88-28084 LIQUID METAL COOLED REACTORS Two-phase alkali-metal experiments in reduced gravity p 67 A88-47969
Adaptive residual mode filter control of distributed parameter systems for large space structure applications p 52 N88-26143 L(sub infinity symbol)-approximations of complex functions and robust controllers for large flexible space structures [PB88-186226] p 52 N88-26390	An alternate transition from the Lagrangian of a satellite to equations of motion [AIAA PAPER 88-4221] p 37 A88-50362 A dynamical study of the proposed Space Station type configuration [AIAA PAPER 88-4304] p 39 A88-50429	operations [NASA-TM-101009] p 88 N88-28084 LIQUID METAL COOLED REACTORS Two-phase alkali-metal experiments in reduced gravity p 67 A88-47969 LIQUID SLOSHING
Adaptive residual mode filter control of distributed parameter systems for large space structure applications p 52 N88-26143 L(sub infinity symbol)-approximations of complex functions and robust controllers for large flexible space structures [PB88-186226] p 52 N88-26390 Mobile remote manipulator system for a tetrahedral truss [NASA-CASE-MSC-20985-1] p 80 N88-26398	An alternate transition from the Lagrangian of a satellite to equations of motion [AIAA PAPER 88-4221] p 37 A88-50362 A dynamical study of the proposed Space Station type configuration [AIAA PAPER 88-4304] p 39 A88-50429 LIFE CYCLE COSTS	operatons [NASA-TM-101009] p 88 N88-28084 LIQUID METAL COOLED REACTORS Two-phase alkali-metal experiments in reduced gravity p 67 A88-47969 LIQUID SLOSHING Space-based system disturbances caused by on-board fluid motion during system maneuvers [AIAA PAPER 88-3633] p 33 A88-48957
Adaptive residual mode filter control of distributed parameter systems for large space structure applications p. 52 N88-26143 L(sub infinity symbol)-approximations of complex functions and robust controllers for large flexible space structures [PB88-186226] p. 52 N88-26390 Mobile remote manipulator system for a tetrahedral truss [NASA-CASE-MSC-20985-1] p. 80 N88-26398 Experimental and theoretical investigation of passive	An alternate transition from the Lagrangian of a satellite to equations of motion [AIAA PAPER 88-4221] p 37 A88-50362 A dynamical study of the proposed Space Station type configuration [AIAA PAPER 88-4304] p 39 A88-50429 LIFE CYCLE COSTS Cost effectiveness of on-orbit servicing for large	operatons [NASA-TM-101009] p 88 N88-28084 LIQUID METAL COOLED REACTORS Two-phase alkali-metal experiments in reduced gravity p 67 A88-47969 LIQUID SLOSHING Space-based system disturbances caused by on-board fluid motion during system maneuvers [AIAA PAPER 88-3633] p 33 A88-48957 LITHUM ALLOYS
Adaptive residual mode filter control of distributed parameter systems for large space structure applications p 52 N88-26143 L(sub infinity symbol)-approximations of complex functions and robust controllers for large flexible space structures [PB88-186226] p 52 N88-26390 Mobile remote manipulator system for a tetrahedral truss [NASA-CASE-MSC-20985-1] p 80 N88-26398 Experimental and theoretical investigation of passive damping concepts for member forced and free vibration	An alternate transition from the Lagrangian of a satellite to equations of motion [AIAA PAPER 88-4221] p 37 A88-50362 A dynamical study of the proposed Space Station type configuration [AIAA PAPER 88-4304] p 39 A88-50429 LIFE CYCLE COSTS Cost effectiveness of on-orbit servicing for large constellations [AIAA PAPER 88-3519] p 94 A88-44527 The space station assembly phase: Flight telerobotic	operatons [NASA-TM-101009] p 88 N88-28084 LIQUID METAL COOLED REACTORS Two-phase alkali-metal experiments in reduced gravity p 67 A88-47969 LIQUID SLOSHING Space-based system disturbances caused by on-board fluid motion during system maneuvers [AIAA PAPER 88-3633] p 33 A88-48957 LITHIUM ALLOYS Aluminum-lithium alloys: Design, development and
Adaptive residual mode filter control of distributed parameter systems for large space structure applications p 52 N88-26143 L(sub infinity symbol)-approximations of complex functions and robust controllers for large flexible space structures [PB88-186226] p 52 N88-26390 Mobile remote manipulator system for a tetrahedral truss [NASA-CASE-MSC-20985-1] p 80 N88-26398 Experimental and theoretical investigation of passive damping concepts for member forced and free vibration [NASA-CR-183082] p 52 N88-26693	An alternate transition from the Lagrangian of a satellite to equations of motion [AIAA PAPER 88-4221] p 37 A88-50362 A dynamical study of the proposed Space Station type configuration [AIAA PAPER 88-4304] p 39 A88-50429 LIFE CYCLE COSTS Cost effectiveness of on-orbit servicing for large constellations [AIAA PAPER 88-3519] p 94 A88-44527 The space station assembly phase: Flight telerobotic servicer feasibility. Volume 2: Methodology and case	operatons [NASA-TM-101009] p 88 N88-28084 LIQUID METAL COOLED REACTORS Two-phase alkali-metal experiments in reduced gravity p 67 A88-47969 LIQUID SLOSHING Space-based system disturbances caused by on-board fluid motion during system maneuvers [AIAA PAPER 88-3633] p 33 A88-48957 LITHIUM ALLOYS Aluminum-lithium alloys: Design, development and application update; Proceedings of the Symposium, Los
Adaptive residual mode filter control of distributed parameter systems for large space structure applications p 52 N88-26143 L(sub infinity symbol)-approximations of complex functions and robust controllers for large flexible space structures [PB88-186226] p 52 N88-26390 Mobile remote manipulator system for a tetrahedral truss [NASA-CASE-MSC-20985-1] p 80 N88-26398 Experimental and theoretical investigation of passive damping concepts for member forced and free vibration [NASA-CR-183082] p 52 N88-26693 Spacecraft applications of advanced global positioning	An alternate transition from the Lagrangian of a satellite to equations of motion [AIAA PAPER 88-4221] p 37 A88-50362 A dynamical study of the proposed Space Station type configuration [AIAA PAPER 88-4304] p 39 A88-50429 LIFE CYCLE COSTS Cost effectiveness of on-orbit servicing for large constellations [AIAA PAPER 88-3519] p 94 A88-44527 The space station assembly phase: Flight telerobotic servicer feasibility. Volume 2: Methodology and case study	operatons [NASA-TM-101009] p 88 N88-28084 LIQUID METAL COOLED REACTORS Two-phase alkali-metal experiments in reduced gravity p 67 A88-47969 LIQUID SLOSHING Space-based system disturbances caused by on-board fluid motion during system maneuvers [AIAA PAPER 88-3633] p 33 A88-48957 LITHIUM ALLOYS Aluminum-lithium alloys: Design, development and application update; Proceedings of the Symposium, Los Angeles, CA, Mar. 25, 26, 1987 Book
Adaptive residual mode filter control of distributed parameter systems for large space structure applications p 52 N88-26143 L(sub infinity symbol)-approximations of complex functions and robust controllers for large flexible space structures [PB88-186226] p 52 N88-26390 Mobile remote manipulator system for a tetrahedral truss [NASA-CASE-MSC-20985-1] p 80 N88-26398 Experimental and theoretical investigation of passive damping concepts for member forced and free vibration [NASA-CR-183082] p 52 N88-26693 Spacecraft applications of advanced global positioning system technology	An alternate transition from the Lagrangian of a satellite to equations of motion [AIAA PAPER 88-4221] p 37 A88-50362 A dynamical study of the proposed Space Station type configuration [AIAA PAPER 88-4304] p 39 A88-50429 LIFE CYCLE COSTS Cost effectiveness of on-orbit servicing for large constellations [AIAA PAPER 88-3519] p 94 A88-44527 The space station assembly phase: Flight telerobotic servicer feasibility. Volume 2: Methodology and case study [NASA-CR-182690] p 77 N88-20352	operatons [NASA-TM-101009] p 88 N88-28084 LIQUID METAL COOLED REACTORS Two-phase alkali-metal experiments in reduced gravity p 67 A88-47969 LIQUID SLOSHING Space-based system disturbances caused by on-board fluid motion during system maneuvers [AIAA PAPER 88-3633] p 33 A88-48957 LITHIUM ALLOYS Aluminum-lithium alloys: Design, development and application update; Proceedings of the Symposium, Los Angeles, CA, Mar. 25, 26, 1987 Book p 67 A88-45201
Adaptive residual mode filter control of distributed parameter systems for large space structure applications p 52 N88-26143 L(sub infinity symbol)-approximations of complex functions and robust controllers for large flexible space structures [PB88-186226] p 52 N88-26390 Mobile remote manipulator system for a tetrahedral truss [NASA-CASE-MSC-20985-1] p 80 N88-26398 Experimental and theoretical investigation of passive damping concepts for member forced and free vibration [NASA-CR-183082] p 52 N88-26693 Spacecraft applications of advanced global positioning system technology [NASA-CR-172055] p 8 N88-27180	An alternate transition from the Lagrangian of a satellite to equations of motion [AIAA PAPER 88-4221] p 37 A88-50362 A dynamical study of the proposed Space Station type configuration [AIAA PAPER 88-4304] p 39 A88-50429 LIFE CYCLE COSTS Cost effectiveness of on-orbit servicing for large constellations [AIAA PAPER 88-3519] p 94 A88-44527 The space station assembly phase: Flight telerobotic servicer feasibility. Volume 2: Methodology and case study [INASA-CR-182690] p 77 N88-20352 The multi-disciplinary design study: A life cycle cost	operatons [NASA-TM-101009] p 88 N88-28084 LIQUID METAL COOLED REACTORS Two-phase alkali-metal experiments in reduced gravity p 67 A88-47969 LIQUID SLOSHING Space-based system disturbances caused by on-board fluid motion during system maneuvers [AIAA PAPER 88-3633] p 33 A88-48957 LITHIUM ALLOYS Aluminum-lithium alloys: Design, development and application update; Proceedings of the Symposium, Los Angeles, CA, Mar. 25, 26, 1987 Book p 67 A88-45201 LOCAL AREA NETWORKS
Adaptive residual mode filter control of distributed parameter systems for large space structure applications p 52 N88-26143 L(sub infinity symbol)-approximations of complex functions and robust controllers for large flexible space structures [PB88-186226] p 52 N88-26390 Mobile remote manipulator system for a tetrahedral truss [NASA-CASE-MSC-20985-1] p 80 N88-26398 Experimental and theoretical investigation of passive damping concepts for member forced and free vibration [NASA-CR-183082] p 52 N88-26693 Spacecraft applications of advanced global positioning system technology [NASA-CR-172055] p 8 N88-27180 Technology for large space systems: A bibliography with	An alternate transition from the Lagrangian of a satellite to equations of motion [AIAA PAPER 88-4221] p 37 A88-50362 A dynamical study of the proposed Space Station type configuration [AIAA PAPER 88-4304] p 39 A88-50429 LIFE CYCLE COSTS Cost effectiveness of on-orbit servicing for large constellations [AIAA PAPER 88-3519] p 94 A88-44527 The space station assembly phase: Flight telerobotic servicer feasibility. Volume 2: Methodology and case study [NASA-CR-182690] p 77 N88-20352 The multi-disciplinary design study: A life cycle cost algorithm	operatons [NASA-TM-101009] p 88 N88-28084 LIQUID METAL COOLED REACTORS Two-phase alkali-metal experiments in reduced gravity p 67 A88-47969 LIQUID SLOSHING Space-based system disturbances caused by on-board fluid motion during system maneuvers [AIAA PAPER 88-3633] p 33 A88-48957 LITHIUM ALLOYS Aluminum-lithium alloys: Design, development and application update; Proceedings of the Symposium, Los Angeles, CA, Mar. 25, 26, 1987 Book p 67 A88-45201 LOCAL AREA NETWORKS Intelligent resource management for local area
Adaptive residual mode filter control of distributed parameter systems for large space structure applications p 52 N88-26143 L(sub infinity symbol)-approximations of complex functions and robust controllers for large flexible space structures [PB88-186226] p 52 N88-26390 Mobile remote manipulator system for a tetrahedral truss [NASA-CASE-MSC-20985-1] p 80 N88-26398 Experimental and theoretical investigation of passive damping concepts for member forced and free vibration [NASA-CR-183082] p 52 N88-26693 Spacecraft applications of advanced global positioning system technology [NASA-CR-172055] p 8 N88-27180 Technology for large space systems: A bibliography with indexes (supplement 18)	An alternate transition from the Lagrangian of a satellite to equations of motion [AIAA PAPER 88-4221] p 37 A88-50362 A dynamical study of the proposed Space Station type configuration [AIAA PAPER 88-4304] p 39 A88-50429 LIFE CYCLE COSTS Cost effectiveness of on-orbit servicing for large constellations [AIAA PAPER 88-3519] p 94 A88-44527 The space station assembly phase: Flight telerobotic servicer feasibility. Volume 2: Methodology and case study [NASA-CR-182690] p 77 N88-20352 The multi-disciplinary design study: A life cycle cost algorithm [NASA-CR-4156] p 11 N88-24172	operatons [NASA-TM-101009] p 88 N88-28084 LIQUID METAL COOLED REACTORS Two-phase alkali-metal experiments in reduced gravity p 67 A88-47969 LIQUID SLOSHING Space-based system disturbances caused by on-board fluid motion during system maneuvers [AIAA PAPER 88-3633] p 33 A88-48957 LITHIUM ALLOYS Aluminum-lithium alloys: Design, development and application update; Proceedings of the Symposium, Los Angeles, CA, Mar. 25, 26, 1987 Book p 67 A88-45201 LOCAL AREA NETWORKS
Adaptive residual mode filter control of distributed parameter systems for large space structure applications p 52 N88-26143 L(sub infinity symbol)-approximations of complex functions and robust controllers for large flexible space structures [PB88-186226] p 52 N88-26390 Mobile remote manipulator system for a tetrahedral truss [NASA-CASE-MSC-20985-1] p 80 N88-26398 Experimental and theoretical investigation of passive damping concepts for member forced and free vibration [NASA-CR-183082] p 52 N88-26693 Spacecraft applications of advanced global positioning system technology [NASA-CR-172055] p 8 N88-27180 Technology for large space systems: A bibliography with indexes (supplement 18) [NASA-SP-7046(18)] p 100 N88-27214	An alternate transition from the Lagrangian of a satellite to equations of motion [AIAA PAPER 88-4221] p 37 A88-50362 A dynamical study of the proposed Space Station type configuration [AIAA PAPER 88-4304] p 39 A88-50429 LIFE CYCLE COSTS Cost effectiveness of on-orbit servicing for large constellations [AIAA PAPER 88-3519] p 94 A88-44527 The space station assembly phase: Flight telerobotic servicer feasibility. Volume 2: Methodology and case study [NASA-CR-182690] p 77 N88-20352 The multi-disciplinary design study: A life cycle cost algorithm [NASA-CR-4156] p 11 N88-24172 LIFE SCIENCES	operatons [NASA-TM-101009] p 88 N88-28084 LIQUID METAL COOLED REACTORS Two-phase alkali-metal experiments in reduced gravity p 67 A88-47969 LIQUID SLOSHING Space-based system disturbances caused by on-board fluid motion during system maneuvers [AIAA PAPER 88-3633] p 33 A88-48957 LITHIUM ALLOYS Aluminum-lithium alloys: Design, development and application update, Proceedings of the Symposium, Los Angeles, CA, Mar. 25, 26, 1987 Book p 67 A88-45201 LOCAL AREA NETWORKS Intelligent resource management for local area networks: Approach and evolution p 81 N88-29385
Adaptive residual mode filter control of distributed parameter systems for large space structure applications p 52 N88-26143 L(sub infinity symbol)-approximations of complex functions and robust controllers for large flexible space structures [PB88-186226] p 52 N88-26390 Mobile remote manipulator system for a tetrahedral truss [NASA-CASE-MSC-20985-1] p 80 N88-26398 Experimental and theoretical investigation of passive damping concepts for member forced and free vibration [NASA-CR-183082] p 52 N88-26693 Spacecraft applications of advanced global positioning system technology [NASA-CR-172055] p 8 N88-27180 Technology for large space systems: A bibliography with indexes (supplement 18)	An alternate transition from the Lagrangian of a satellite to equations of motion [AIAA PAPER 88-4221] p 37 A88-50362 A dynamical study of the proposed Space Station type configuration [AIAA PAPER 88-4304] p 39 A88-50429 LIFE CYCLE COSTS Cost effectiveness of on-orbit servicing for large constellations [AIAA PAPER 88-3519] p 94 A88-44527 The space station assembly phase: Flight telerobotic servicer feasibility. Volume 2: Methodology and case study [NASA-CR-182690] p 77 N88-20352 The multi-disciplinary design study: A life cycle cost algorithm [NASA-CR-4156] p 11 N88-24172 LIFE SCIENCES A shared-world conceptual model for integrating space	operatons [NASA-TM-101009] p 88 N88-28084 LIQUID METAL COOLED REACTORS Two-phase alkali-metal experiments in reduced gravity p 67 A88-47969 LIQUID SLOSHING Space-based system disturbances caused by on-board fluid motion during system maneuvers [AIAA PAPER 88-3633] p 33 A88-48957 LITHIUM ALLOYS Aluminum-lithium alloys: Design, development and application update; Proceedings of the Symposium, Los Angeles, CA, Mar. 25, 26, 1987 Book p 67 A88-45201 LOCAL AREA NETWORKS Intelligent resource management for local area networks: Approach and evolution p 81 N88-29385 LOCKING
Adaptive residual mode filter control of distributed parameter systems for large space structure applications p 52 N88-26143 L(sub infinity symbol)-approximations of complex functions and robust controllers for large flexible space structures [PB88-186226] p 52 N88-26390 Mobile remote manipulator system for a tetrahedral truss [NASA-CASE-MSC-20985-1] p 80 N88-26398 Experimental and theoretical investigation of passive damping concepts for member forced and free vibration [NASA-CR-183082] p 52 N88-26693 Spacecraft applications of advanced global positioning system technology [NASA-CR-172055] p 8 N88-27180 Technology for large space systems: A bibliography with indexes (supplement 18) [NASA-SP-7046(18)] p 100 N88-27214 Vibration control of large structures	An alternate transition from the Lagrangian of a satellite to equations of motion [AIAA PAPER 88-4221] p 37 A88-50362 A dynamical study of the proposed Space Station type configuration [AIAA PAPER 88-4304] p 39 A88-50429 LIFE CYCLE COSTS Cost effectiveness of on-orbit servicing for large constellations [AIAA PAPER 88-3519] p 94 A88-44527 The space station assembly phase: Flight telerobotic servicer feasibility. Volume 2: Methodology and case study [NASA-CR-182690] p 77 N88-20352 The multi-disciplinary design study: A life cycle cost algorithm [NASA-CR-4156] p 11 N88-24172 LIFE SCIENCES A shared-world conceptual model for integrating space station life sciences telescience operations	operatons [NASA-TM-101009] p 88 N88-28084 LIQUID METAL COOLED REACTORS Two-phase alkali-metal experiments in reduced gravity p 67 A88-47969 LIQUID SLOSHING Space-based system disturbances caused by on-board fluid motion during system maneuvers [AIAA PAPER 88-3633] p 33 A88-48957 LITHIUM ALLOYS Aluminum-lithium alloys: Design, development and application update; Proceedings of the Symposium, Los Angeles, CA, Mar. 25, 26, 1987 Book p 67 A88-45201 LOCAL AREA NETWORKS Intelligent resource management for local area networks: Approach and evolution p 81 N88-29385 LOCKING Locking hinge
Adaptive residual mode filter control of distributed parameter systems for large space structure applications p 52 N88-26143 L(sub infinity symbol)-approximations of complex functions and robust controllers for large flexible space structures [PB88-186226] p 52 N88-26390 Mobile remote manipulator system for a tetrahedral truss [NASA-CASE-MSC-20985-1] p 80 N88-26398 Experimental and theoretical investigation of passive damping concepts for member forced and free vibration [NASA-CR-183082] p 52 N88-26693 Spacecraft applications of advanced global positioning system technology [NASA-CR-172055] p 8 N88-27180 Technology for large space systems: A bibliography with indexes (supplement 18) [NASA-SP-7046(18)] p 100 N88-27214 Vibration control of large structures [AD-A193317] p 53 N88-27587 Sensor and actuator selection for large space structure control	An alternate transition from the Lagrangian of a satellite to equations of motion [AIAA PAPER 88-4221] p 37 A88-50362 A dynamical study of the proposed Space Station type configuration [AIAA PAPER 88-4304] p 39 A88-50429 LIFE CYCLE COSTS Cost effectiveness of on-orbit servicing for large constellations [AIAA PAPER 88-3519] p 94 A88-44527 The space station assembly phase: Flight telerobotic servicer feasibility. Volume 2: Methodology and case study [NASA-CR-182690] p 77 N88-20352 The multi-disciplinary design study: A life cycle cost algorithm [NASA-CR-4156] p 11 N88-24172 LIFE SCIENCES A shared-world conceptual model for integrating space station life sciences telescience operations p 102 N88-30333	operatons [NASA-TM-101009] p 88 N88-28084 LIQUID METAL COOLED REACTORS Two-phase alkali-metal experiments in reduced gravity p 67 A88-47969 LIQUID SLOSHING Space-based system disturbances caused by on-board fluid motion during system maneuvers [AIAA PAPER 88-3633] p 33 A88-48957 LITHIUM ALLOYS Aluminum-lithium alloys: Design, development and application update; Proceedings of the Symposium, Los Angeles, CA, Mar. 25, 26, 1987 Book p 67 A88-45201 LOCAL AREA NETWORKS Intelligent resource management networks: Approach and evolution p 81 N88-29385 LOCKING Locking hinge [NASA-CASE-MSC-21056-1] p 18 N88-23827 LOCKS (FASTENERS) Collet lock joint for space station truss
Adaptive residual mode filter control of distributed parameter systems for large space structure applications p 52 N88-26143 L(sub infinity symbol)-approximations of complex functions and robust controllers for large flexible space structures [PB88-186226] p 52 N88-26390 Mobile remote manipulator system for a tetrahedral truss [NASA-CASE-MSC-20985-1] p 80 N88-26398 Experimental and theoretical investigation of passive damping concepts for member forced and free vibration [NASA-CR-183082] p 52 N88-26693 Spacecraft applications of advanced global positioning system technology [NASA-CR-172055] p 8 N88-27180 Technology for large space systems: A bibliography with indexes (supplement 18) [NASA-SP-7046(18)] p 100 N88-27214 Vibration control of large structures [AD-A193317] p 53 N88-27587 Sensor and actuator selection for large space structure control [AD-A194912] p 53 N88-29842	An alternate transition from the Lagrangian of a satellite to equations of motion [AIAA PAPER 88-4221] p 37 A88-50362 A dynamical study of the proposed Space Station type configuration [AIAA PAPER 88-4304] p 39 A88-50429 LIFE CYCLE COSTS Cost effectiveness of on-orbit servicing for large constellations [AIAA PAPER 88-3519] p 94 A88-44527 The space station assembly phase: Flight telerobotic servicer feasibility. Volume 2: Methodology and case study [INASA-CR-182690] p 77 N88-20352 The multi-disciplinary design study: A life cycle cost algorithm [INASA-CR-4156] p 11 N88-24172 LIFE SCIENCES A shared-world conceptual model for integrating space station life sciences telescience operations p 102 N88-30333 LIFE SUPPORT SYSTEMS	operatons [NASA-TM-101009] p 88 N88-28084 LIQUID METAL COOLED REACTORS Two-phase alkali-metal experiments in reduced gravity p 67 A88-47969 LIQUID SLOSHING Space-based system disturbances caused by on-board fluid motion during system maneuvers [AIAA PAPER 88-3633] p 33 A88-48957 LITHIUM ALLOYS Aluminum-lithium alloys: Design, development and application update; Proceedings of the Symposium, Los Angeles, CA, Mar. 25, 26, 1987 Book LOCAL AREA NETWORKS Intelligent resource management for local area networks: Approach and evolution p 81 N88-29385 LOCKING Locking hinge [NASA-CASE-MSC-21056-1] p 18 N88-23827 LOCKS (FASTENERS) Collet lock joint for space station truss [NASA-CASE-MSC-21207-1] p 19 N88-29180
Adaptive residual mode filter control of distributed parameter systems for large space structure applications p 52 N88-26143 L(sub infinity symbol)-approximations of complex functions and robust controllers for large flexible space structures [PB88-186226] p 52 N88-26390 Mobile remote manipulator system for a tetrahedral truss [NASA-CASE-MSC-20985-1] p 80 N88-26398 Experimental and theoretical investigation of passive damping concepts for member forced and free vibration [NASA-CR-183082] p 52 N88-26693 Spacecraft applications of advanced global positioning system technology [NASA-CR-172055] p 8 N88-27180 Technology for large space systems: A bibliography with indexes (supplement 18) [NASA-SP-7046(18)] p 100 N88-27214 Vibration control of large structures [AD-A193317] p 53 N88-27587 Sensor and actuator selection for large space structure control [AD-A194912] p 53 N88-29842 Space structure (dynamics and control) theme	An alternate transition from the Lagrangian of a satellite to equations of motion [AIAA PAPER 88-4221] p 37 A88-50362 A dynamical study of the proposed Space Station type configuration [AIAA PAPER 88-4304] p 39 A88-50429 LIFE CYCLE COSTS Cost effectiveness of on-orbit servicing for large constellations [AIAA PAPER 88-3519] p 94 A88-44527 The space station assembly phase: Flight telerobotic servicer feasibility. Volume 2: Methodology and case study [NASA-CR-182690] p 77 N88-20352 The multi-disciplinary design study: A life cycle cost algorithm [NASA-CR-4156] p 11 N88-24172 LIFE SCIENCES A shared-world conceptual model for integrating space station life sciences telescience operations p 102 N88-30333 LIFE SUPPORT SYSTEMS Advanced satellite servicing facility studies	operatons [NASA-TM-101009] p 88 N88-28084 LIQUID METAL COOLED REACTORS Two-phase alkali-metal experiments in reduced gravity p 67 A88-47969 LIQUID SLOSHING Space-based system disturbances caused by on-board fluid motion during system maneuvers [AIAA PAPER 88-3633] p 33 A88-48957 LITHIUM ALLOYS Aluminum-lithium alloys: Design, development and application update; Proceedings of the Symposium, Los Angeles, CA, Mar. 25, 26, 1987 Book p 67 A88-45201 LOCAL AREA NETWORKS Intelligent resource management for local area networks: Approach and evolution p 81 N88-29385 LOCKING Locking hinge [NASA-CASE-MSC-21056-1] p 18 N88-23827 LOCKS (FASTENERS) Collet lock joint for space station truss [NASA-CASE-MSC-21207-1] p 19 N88-29180 LOGISTICS
Adaptive residual mode filter control of distributed parameter systems for large space structure applications p 52 N88-26143 L(sub infinity symbol)-approximations of complex functions and robust controllers for large flexible space structures [PB88-186226] p 52 N88-26390 Mobile remote manipulator system for a tetrahedral truss [NASA-CASE-MSC-20985-1] p 80 N88-26398 Experimental and theoretical investigation of passive damping concepts for member forced and free vibration [NASA-CR-183082] p 52 N88-26693 Spacecraft applications of advanced global positioning system technology [NASA-CR-172055] p 8 N88-27180 Technology for large space systems: A bibliography with indexes (supplement 18) [NASA-SP-7046(18)] p 100 N88-27214 Vibration control of large structures [AD-A193317] p 53 N88-27587 Sensor and actuator selection for large space structure control [AD-A194912] p 53 N88-29842 Space structure (dynamics and control) theme development	An alternate transition from the Lagrangian of a satellite to equations of motion [AIAA PAPER 88-4221] p 37 A88-50362 A dynamical study of the proposed Space Station type configuration [AIAA PAPER 88-4304] p 39 A88-50429 LIFE CYCLE COSTS Cost effectiveness of on-orbit servicing for large constellations [AIAA PAPER 88-3519] p 94 A88-44527 The space station assembly phase: Flight telerobotic servicer feasibility. Volume 2: Methodology and case study [NASA-CR-182690] p 77 N88-20352 The multi-disciplinary design study: A life cycle cost algorithm [NASA-CR-4156] p 11 N88-24172 LIFE SCIENCES A shared-world conceptual model for integrating space station life sciences telescience operations p 102 N88-30333 LIFE SUPPORT SYSTEMS Advanced satellite servicing facility studies [AIAA PAPER 88-4200] p 93 A88-42912	operatons [NASA-TM-101009] p 88 N88-28084 LIQUID METAL COOLED REACTORS Two-phase alkali-metal experiments in reduced gravity p 67 A88-47969 LIQUID SLOSHING Space-based system disturbances caused by on-board fluid motion during system maneuvers [AIAA PAPER 88-3633] p 33 A88-48957 LITHIUM ALLOYS Aluminum-lithium alloys: Design, development and application update; Proceedings of the Symposium, Los Angeles, CA, Mar. 25, 26, 1987 Book p 67 A88-45201 LOCAL AREA NETWORKS Intelligent resource management for local area networks: Approach and evolution p 81 N88-29385 LOCKING Locking hinge [NASA-CASE-MSC-21056-1] p 18 N88-23827 LOCKS (FASTENERS) Collet lock joint for space station truss [NASA-CASE-MSC-21207-1] p 19 N88-29180 LOGISTICS Space station heavy lift launch vehicle utilization
Adaptive residual mode filter control of distributed parameter systems for large space structure applications p 52 N88-26143 L(sub infinity symbol)-approximations of complex functions and robust controllers for large flexible space structures [PB88-186226] p 52 N88-26390 Mobile remote manipulator system for a tetrahedral truss [NASA-CASE-MSC-20985-1] p 80 N88-26398 Experimental and theoretical investigation of passive damping concepts for member forced and free vibration [NASA-CR-183082] p 52 N88-26693 Spacecraft applications of advanced global positioning system technology [NASA-CR-172055] p 8 N88-27180 Technology for large space systems: A bibliography with indexes (supplement 18) [NASA-SP-7046(18)] p 100 N88-27214 Vibration control of large structures [AD-A193317] p 53 N88-27587 Sensor and actuator selection for large space structure control [AD-A194912] p 53 N88-29842 Space structure (dynamics and control) theme development [NASA-TM-100597] p 8 N88-29850	An alternate transition from the Lagrangian of a satellite to equations of motion [AIAA PAPER 88-4221] p 37 A88-50362 A dynamical study of the proposed Space Station type configuration [AIAA PAPER 88-4304] p 39 A88-50429 LIFE CYCLE COSTS Cost effectiveness of on-orbit servicing for large constellations [AIAA PAPER 88-3519] p 94 A88-44527 The space station assembly phase: Flight telerobotic servicer feasibility. Volume 2: Methodology and case study [NASA-CR-182690] p 77 N88-20352 The multi-disciplinary design study: A life cycle cost algorithm [NASA-CR-4156] p 11 N88-24172 LIFE SCIENCES A shared-world conceptual model for integrating space station life sciences telescience operations p 102 N88-30333 LIFE SUPPORT SYSTEMS Advanced satellite servicing facility studies [AIAA PAPER 88-4200] p 93 A88-42912 Subsea approach to work systems development	operatons [NASA-TM-101009] p 88 N88-28084 LIQUID METAL COOLED REACTORS Two-phase alkali-metal experiments in reduced gravity p 67 A88-47969 LIQUID SLOSHING Space-based system disturbances caused by on-board fluid motion during system maneuvers [AIAA PAPER 88-3633] p 33 A88-48957 LITHIUM ALLOYS Aluminum-lithium alloys: Design, development and application update; Proceedings of the Symposium, Los Angeles, CA, Mar. 25, 26, 1987 Book DOCAL AREA NETWORKS Intelligent resource management for local area networks: Approach and evolution p 81 N88-29385 LOCKING Locking hinge [NASA-CASE-MSC-21056-1] p 18 N88-23827 LOCKS (FASTENERS) Collet lock joint for space station truss [NASA-CASE-MSC-21207-1] p 19 N88-29180 LOGISTICS Space station heavy lift launch vehicle utilization [NASA-TM-100604] p 86 N88-21188
Adaptive residual mode filter control of distributed parameter systems for large space structure applications p 52 N88-26143 L(sub infinity symbol)-approximations of complex functions and robust controllers for large flexible space structures [PB88-186226] p 52 N88-26390 Mobile remote manipulator system for a tetrahedral truss [NASA-CASE-MSC-20985-1] p 80 N88-26398 Experimental and theoretical investigation of passive damping concepts for member forced and free vibration [NASA-CR-183082] p 52 N88-26693 Spacecraft applications of advanced global positioning system technology [NASA-CR-172055] p 8 N88-27180 Technology for large space systems: A bibliography with indexes (supplement 18) [NASA-SP-7046(18)] p 100 N88-27214 Vibration control of large structures [AD-A193317] p 53 N88-27587 Sensor and actuator selection for large space structure control [AD-A194912] p 53 N88-29842 Space structure (dynamics and control) theme development	An alternate transition from the Lagrangian of a satellite to equations of motion [AIAA PAPER 88-4221] p 37 A88-50362 A dynamical study of the proposed Space Station type configuration [AIAA PAPER 88-4304] p 39 A88-50429 LIFE CYCLE COSTS Cost effectiveness of on-orbit servicing for large constellations [AIAA PAPER 88-3519] p 94 A88-44527 The space station assembly phase: Flight telerobotic servicer feasibility. Volume 2: Methodology and case study [NASA-CR-182690] p 77 N88-20352 The multi-disciplinary design study: A life cycle cost algorithm [NASA-CR-4156] p 11 N88-24172 LIFE SCIENCES A shared-world conceptual model for integrating space station life sciences telescience operations p 102 N88-30333 LIFE SUPPORT SYSTEMS Advanced satellite servicing facility studies [AIAA PAPER 88-4200] p 93 A88-42912	operatons [NASA-TM-101009] p 88 N88-28084 LIQUID METAL COOLED REACTORS Two-phase alkali-metal experiments in reduced gravity p 67 A88-47969 LIQUID SLOSHING Space-based system disturbances caused by on-board fluid motion during system maneuvers [AIAA PAPER 88-3633] p 33 A88-48957 LITHIUM ALLOYS Aluminum-lithium alloys: Design, development and application update; Proceedings of the Symposium, Los Angeles, CA, Mar. 25, 26, 1987 Book p 67 A88-45201 LOCAL AREA NETWORKS Intelligent resource management for local area networks: Approach and evolution p 81 N88-29385 LOCKING Locking hinge [NASA-CASE-MSC-21056-1] p 18 N88-23827 LOCKS (FASTENERS) Collet lock joint for space station truss [NASA-CASE-MSC-21207-1] p 19 N88-29180 LOGISTICS Space station heavy lift launch vehicle utilization

		000007,1102/1
LONGERONS	MANIPULATORS	MARS SURFACE SAMPLES
Mast material test program (MAMATEP) for Solar Array Assembly of Space Station Photovoltaic Power	Telerobotic control of a dextrous manipulator using	Advanced propulsion for the Mars Rover Sample Return
Module	master and six-DOF hand-controllers for space assembly and servicing tasks p 73 A88-35453	Mission {AIAA PAPER 88-2900} p 84 A88-46489
[AIAA PAPER 88-2475] p 63 A88-35945	Traction-drive telerobot for space manipulation	MASS DISTRIBUTION
Sensitivity analysis of a deployable three longeron truss	p 75 A88-42668	Laser sensing for identification and control of distributed
beam designed for minimum member loads during	On the dynamics of manipulators in space using the	parameter systems
deployment [AIAA PAPER 88-2436] p 13 A88-38689	virtual manipulator approach p 75 A88-42677	[AD-A195886] p 54 N88-30124 MATERIALS TESTS
The X-beam as a deployable boom for the space	Simulation of space manipulator operations (Eurosim) p 10 A88-46982	Production of ground state atomic oxygen in a multifactor
station p 17 N88-21473	Laboratory facility for flexible structure control	stress environment for reaction testing of materials in
Two non-linear control approaches for retrieval of a	experiments p 42 A88-53681	orbiting space vehicles p 56 A88-42585 MATHEMATICAL MODELS
thrusting tethered sub-satellite	Telepresence for space applications	Predicting debris p 66 A88-43517
[AIAA PAPER 88-4171] p 37 A88-50262	(IAF PAPER 88-018) p 77 A88-55320	Mathematical modeling of the dynamics of a spacecraft
LOSS OF COOLANT	The dynamic control of robotic manipulators in space [NASA-CR-182710] p 77 N88-20646	with elastic components p 33 A88-48080
Development of a rotary fluid transfer coupling and support mechanism for space station	Design, development and evaluation of Stanford/Ames	Investigation of the dynamics of a system of bodies containing extended elastic components in a central force
p 18 N88-21493	EVA prehensors	field p 33 A88-48082
LOW COST	[NASA-CR-182688] p 78 N88-22540	The dynamics and control of the orbiting spacecraft
The Flinders Platform - A low-cost multimission platform for Australia p 3 A88-37257	Microgravity mechanisms and robotics program	control laboratory experiment (SCOLE) during station
Interim Flight Opportunity (IFO). Volume 1: Executive	p 78 N88-23237 Base reaction optimization of manipulators with	keeping [AIAA PAPER 88-4252] p 38 A88-50384
summary space platform	redundant kinematics p 78 N88-23238	Real-time, automatic vehicle-potential determination
[SE/LS/AP-36-818/CN-VOL-1] p 8 N88-29849	Space spider crane	from ESA measurements - The distribution function
LOW THRUST Reducing the cost and risk of orbit transfer	[NASA-CASE-LAR-13411-1-SB] p 7 N88-23828	algorithm ElectroStatic Analyzer p 58 A88-51391 Modelling of the microgravity environment of the Man
p 97 A88-54994	The efficacy of using human myoelectric signals to	Tended Free Flyer (MTFF) p 96 A88-52335
LUBRICANT TESTS	control the limbs of robots in space [NASA-CR-182901] p 78 N88-25155	Spacecraft dielectric surface charging property
The SPOT solar array. Box opening mechanisms	Analysis of a closed-kinematic chain robot manipulator	determination
physical vapor deposition (PVD)-MoS2: Lubricated slides. Functional evaluation p 16 N88-21211	[NASA-CR-183031] p 79 N88-25206	[NASA-CR-180879] p 59 N88-21243 Moving-bank multiple model adaptive estimation applied
LUNAR BASES	Underwater simulation for space teleoperation	to flexible spacestructure control
A description of the Expandable Platform	p 79 N88-26040	[AD-A190761] p 49 N88-22071
p 4 A88-43964	Man versus machine: The role of astronauts in	Travelling wave concepts for the modeling and control
Lunar orbit service station [IAF PAPER 88-618] p 6 A88-55454	extravehicular activity p 79 N88-26045 Mobile remote manipulator system for a tetrahedral	of space structures [AD-A191235] p 50 N88-23819
LUNAR ORBITS	truss	A thermal equilibrium model for multi-megawatt space
Lunar orbit service station	[NASA-CASE-MSC-20985-1] p 80 N88-26398	platforms p 12 N88-24332
[IAF PAPER 88-618] p 6 A88-55454	Simulation of space manipulator operations	Experimental study of active vibration control
LUNAR SOIL Design of a solar power satellite for construction from	(EUROSIM)	[AD-A191454] p 51 N88-24989 Adaptive residual mode filter control of distributed
lunar materials p 9 A88-40566	[NLR-MP-87017-U] p 80 N88-26678 MANNED MANEUVERING UNITS	parameter systems for large space structure applications
	Personnel occupied woven envelope robot	p 52 N88-26143
M	p 81 N88-29408	Literal dynamic modeling [REPT-881-440-114] p 53 N88-28083
	MANNED ORBITAL LABORATORIES	Procedures for updating dynamic mathematical models,
MAGELLAN SPACECRAFT (NASA)	The Manned Space Laboratories Control Center (MSCC) at DFVLR - Oberpfaffenhofen, Germany	test phase spacecraft hardware
Advanced composites for Magellan spacecraft [AIAA PAPER 88-3031] p 68 A88-53126	[IAF PAPER 88-087] p 6 A88-55337	[MEBS-38/87] p 12 N88-29852
MAGNETIC DISTURBANCES	Arguments for manned or unmanned spacecraft	MAXIMUM ENTROPY METHOD A robust control experiment using an optical structure
Relationship between characteristics of low-energy	activities	prototype p 45 A88-54640
electrons and geomagnetic disturbance in geostationary orbit p 62 N88-30501	[REPT-46/87] p 98 N88-23813	MAXIMUM LIKELIHOOD ESTIMATES
MAGNETIC FIELDS	MANNED SPACE FLIGHT Soviet space achievements in 1985 according to press	Optimal experiment design for identification of large space structures p 31 A88-45227
Space station induced electromagnetic effects	materials Russian book p 95 A88-46070	Maximum likelihood parameter identification of flexible
p 61 N88-25394	Tasks of the simulation installations for space flight	spacecraft
MAGNETIC PROPERTIES Electromagnetic damping and vibration isolation of	operations in the operations center for manned space	[LR-508] p 50 N88-22924
space structures	laboratories p 10 A88-46516 Second thoughts on the way to the station	MEASURING INSTRUMENTS Fundamental limitations on low gravity fluid gauging
[AD-A191492] p 51 N88-24665	p 96 A88-53749	technologies imposed by orbital mission requirements
MAGNETIC STORMS Refilling process in the plasmasphere and its relation	The Manned Space Laboratories Control Center (MSCC)	[AIAA PAPER 88-3402] p 86 A88-53163
to magnetic activity p 64 A88-37343	at DFVLR - Oberpfaffenhofen, Germany	MECHANICAL DEVICES
'Space weather forecast' - Prediction of relativistic	[IAF PAPER 88-087] p 6 A88-55337 Study on long term evolution Towards European	The SPOT solar array. Box opening mechanisms physical vapor deposition (PVD)-MoS2: Lubricated slides.
electron intensity at synchronous orbit	Autonomous Manned Spaceflight (STEAMS)	Functional evaluation p 16 N88-21211
p 64 A88-38015	[SNIAS-SE/LS/AP-35-073] p 7 N88-20330	Nonlinear analysis and optimal design of dynamic
MAGNETIC SUSPENSION The 22nd Aerospace Mechanisms Symposium	Human performance issues arising from manned space	mechanical systems for spacecraft application [AD-A190644] p 49 N88-22070
[NASA-CP-2506] p 98 N88-21468	station missions [NASA-CR-3942] p 100 N88-25156	[AD-A190644] p 49 N88-22070 MECHANICAL DRIVES
Development of a magnetically suspended,	MANNED SPACECRAFT	Traction-drive telerobot for space manipulation
tetrahedron-shaped antenna pointing system	Technology advancements for the U.S. manned Space	p 75 A88-42668
p 18 N88-21478	Station - An overview p 1 A88-33434	Hemispherical pointing mechanism drive unit satellite payloads antennas p.98 N88-21193
MAGNETOHYDRODYNAMIC GENERATORS Unified study of plasma/surface interactions for space	A concept for manned variable gravity facilities p 9 A88-43969	payloads antennas p 98 N88-21193 Qualification testing of the EUROSTAR Solar Array Drive
power and propulsion	Arguments for manned or unmanned spacecraft	Mechanism (SADM) p 17 N88-21229
[AD-A195971] p 88 N88-29870	activities	The 22nd Aerospace Mechanisms Symposium
MAN MACHINE SYSTEMS	[REPT-46/87] p 98 N88-23813 MANUAL CONTROL	[NASA-CP-2506] p 98 N88-21468 MECHANICAL PROPERTIES
On-orbit, man/machine interface verification with simulator testing p 89 A88-33780	A method for measuring the effect of grip surface on	Graphite thermoplastic composites for spacecraft
simulator testing p 89 A88-33780 Human-telerobot interactions - Information, control, and	torque production during hand/arm rotation	applications p 65 A88-42419
mental models p 73 A88-35457	p 74 A88-35462	Aluminum-lithium alloys: Design, development and
Optimal use of human and machine resources for Space	MANUFACTURING Advanced planar array development for space station	application update; Proceedings of the Symposium, Los Angeles, CA, Mar. 25, 26, 1987 Book
Station assembly operations	[NASA-CR-179373] p 24 N88-30181	p 67 A88-45201
[AIAA PAPER 88-3498] p 75 A88-42903	MANY BODY PROBLEM	Travelling wave concepts for the modeling and control
Columbus Pressurized Modules - A versatile user-friendly space laboratory system	Mathematical modeling of the dynamics of a spacecraft	of space structures
[IAF PAPER 88-097] p 6 A88-55340	with elastic components p 33 A88-48080 Investigation of the dynamics of a system of bodies	[AD-A191235] p 50 N88-23819 MECHANICS (PHYSICS)
Man versus machine: The role of astronauts in	containing extended elastic components in a central force	Developments in Mechanics. Volumes 14(a), 14(b), &
extravehicular activity p 79 N88-26045	field p 33 A88-48082	14(c) - Midwestern Mechanics Conference, 20th, Purdue
MAN-COMPUTER INTERFACE	Numerical solution of multibody systems in space	University, West Lafayette, IN, Aug. 31-Sept. 2, 1987,
Human-telerobot interactions - Information, control, and mental models p 73 A88-35457	applications p 48 N88-21200 MARS PROBES	Proceedings p 97 A88-54876 MEGAMECHANICS

Transportation concepts for Mars exploration
[AIAA PAPER 88-3494] p 4 A

p 4 A88-48477

Large space system assembly options

p 72 A88-33433

p 81 N88-29405

Intelligent interface design and evaluation

p 43 A88-54423

UBJECT INDEX
On-orbit assembly, integration, and test of large spacecraft - A new technique p 72 A88-33440
Spectral analysis of a class of infinite-dimensional systems p 26 A88-34822
ETABOLISM
The US space programme spacewalk/extravehicular activity experience: Past, present and future
p 79 N88-26031 ETAL FOILS
Evaluation of chromic acid anodized aluminum foil coated composite tubes for the Space Station truss structure p 65 A88-42412
ETAL MATRIX COMPOSITES Damping characteristics of metal matrix composites [AD-A193144] p 71 N88-27233
Superplastic forming characteristics and properties of
aluminum-lithium sheet alloys p 67 A88-45205
ETAL-METAL BONDING Unique bonding methods for spacecraft p 68 A88-54731
ETALS Arc-textured metal surfaces for high thermal emittance
space radiators [NASA-TM-100894] p 69 N88-24754
ETEOROID HAZARDS
Assessment of the effects of space debris and meteoroids environment on the space station solar array assembly
[NASA-ŤM-101315] p 72 N88-28959
ETEOROID SHOWERS Decision time on orbital debris p 66 A88-43516
ETEOROIDS Effects of meteoroids and space debris on the particulate
environment for space station p 70 N88-25399 CROCOMPUTERS
Active control experiment using proof mass actuators [AIAA PAPER 88-4307] p 40 A88-50432
CROGRAVITY APPLICATIONS Compatibility of microgravity experiments with
spacecraft disturbances p 34 A68-49743
Assessment of the effects of space debris and meteoroids environment on the space station solar array assembly
[NASA-TM-101315] p 72 N88-28959 ICROPROCESSORS Microprocessor controlled force actuator
p 30 A88-43206
CROSTRUCTURE
Damping characteristics of metal matrix composites [AD-A193144] p 71 N88-27233 ICROWAVE ANTENNAS
Ka, C, S frequency bands, multi-beam deployable

antenna system for large-capacity p 54 A88-33448 satellite MICROWAVE EMISSION All electronic propulsion - Key to future spaceship design [AIAA PAPER 88-3170] p 84 A88-44875 MICROWAVE TRANSMISSION

A technique for the measurement of environmental levels of microwave radiation around satellite earth p 56 stations LEO to GEO transportation system combining electric propulsion with beamed microwave power from earth [AAS PAPER 87-126] p 83 A88-41287

Possible variants of microwave-beam structure for satellite solar power plants p 85 A88-50671

MILITARY SPACECRAFT

Comparison of a direct thrust nuclear engine, nuclear electric engine and a chemical engine for future space p 87 N88-24379 MILLIMETER WAVES

System architecture of MMIC-based large aperture arrays for space applications p 55 A88-35274 Optical technology for spacecraft antennas

p 56 A88-43187 Focal-plane and aperture-plane heterodyne array receivers for millimeter-wave radioastronomy p 58 A88-54749 MIR SPACE STATION

Update on Soviet space activities [AAS PAPER 86-466]

p 2 A88-35081 'Glazar' - An orbital ultraviolet telescope p 91 A88-38826

The system of the Mir station motion control p 48 A88-55397 [IAF PAPER 88-334] MIRRORS

Performance of focusing mirror systems for the solar dynamic energy supply of space stations

p 85 A88-49750 Atomic-oxygen durability of impact-damaged solar p 68 A88-54988 reflectors

MISSION PLANNING

Computer applications in spacecraft design p 89 A88-34465 operation The International Space Station complex - Promise and p 1 A88-34573 Propulsion safety almost equals mission safety

p 84 A88-44698 [AIAA PAPER 88-2881] Technology development missions concept definition study - TDMX 2066 large inflatable/rigidized structures

p 5 A88-52332 Orbital transfer vehicle concept definition and system analysis study. Volume 2: OTV concept definition and evaluation. Book 1: Mission and system requirements [NASA-CR-179321] p 7 N88-20339 Human performance issues arising from manned space station missions

[NASA-CR-3942] p 100 N88-25156 A plan for time-phased incorporation of automation and robotics on the US space station p 80 N88-29377 A scheduling and resource management system for space applications p 101 N88-29383 Blackboard architectures and their relationship to

autonomous space systems D 82 N88-29414 Definition of common support equipment and space station interface requirements for IOC model technology experiments [NASA-TM-100656]

p 8 N88-29856 The 1988 Goddard Conference on Space Applications of Artificial Intelligence INASA-CP-3009] p 102 N88-30330

MODAL RESPONSE Modal testing R&D at the Communications Research Centre --- structural vibration analysis of aircraft and spacecraft structures p 25 A88-34613 Instrumentation for modal testing of large space

p 29 A88-40261 A comparative overview of modal testing and system identification for control of structures p 29 A88-40269 Minimum-time control of large space structures

n 29 A88-42576 Modal cost analysis for simple continua p 21 A88-46404

The acoustic limit of control of structural dynamics p 32 A88-46409

Active control for vibration damping p 32 A88-46410

International Modal Analysis Conference, 5th, Imperial College of Science and Technology, London, England, Apr. 6-9, 1987, Proceedings. Volumes 1 & 2 A88-50789

p 40 identification of a complex satellite model by means of modal synthesis p 40 Effect of air mass on modal tests --- in large space p 41 A88-50860 Comparison of theoretical and experimental modal analysis results of a rectangular three dimensional frame

p 22 A88-50873 Beam modifications of structural systems utilizing the receptance approach with static flexibility

p 14 A88-50891 Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 Aeroelastic interactions with flight transatmospheric vehicles p 42 A88-50 Rapid multi-flexible-body maneuvering experiments D 42 A88-50980 n 44 A88-54532

MODEL REFERENCE ADAPTIVE CONTROL

Moving bank multiple model adaptive estimation a to flexible space structure control p 25 A88-34790 Model reference control of the NASA SCOLE problem --- Spacecraft COntrol Laboratory Experiment

p 27 A88-34916 Decentralized model reference adaptive control of large p 45 A88-54587 MODELS

A shared-world conceptual model for integrating space

station life sciences telescience operations p 102 N88-30333 MODULES

Japanese space station module p 98 N88-22224 Solar cell cover glasses for satellites p 69 N88-22225

Advanced planar array development for space station p 24 N88-30181 (NASA-CR-1793731 **MOLYBDENUM ALLOYS**

Recent advances in aerospace refractory metal alloys p 67 A88-47449 MOLYBDENUM DISULFIDES

The SPOT solar array. Box opening mechanisms physical vapor deposition (PVD)-MoS2: Lubricated slides p 16 N88-21211 Functional evaluation MOMENTUM THEORY

A new momentum management controller for the Space Station

[AIAA PAPER 88-4132] p 36 A88-50233

MONATOMIC GASES

Design and demonstration of a system for the deposition of atomic-oxygen durable coatings for reflective solar dynamic power system concentrators

(NASA-CR-4158) D 71 N88-25474

MORPHOLOGY

Damping characteristics of metal matrix composites [AD-A193144] p 71 N88-27233 MOTION Improved methods for linearized flexibility models in

multibody dynamics and control MOTION SIMULATION

The identification of a distributed parameter model for a flexible structure p 31 A88-46041

MULTIBEAM ANTENNAS

Ka, C, S frequency bands, multi-beam deployable antenna system for large-capacity communication satellite p 54 A88-33448 Deployable 20/30-GHz multi-beam antenna for future

communications satellites p !
MULTIMISSION MODULAR SPACECRAFT p 56 A88-39423

Multimission modular spacecraft (MMS) AIAA PAPER 88-3513]

p 93 A88-42910

MUSCULAR STRENGTH

Handgrip strength with the bare hand and in the NASA pacesuit glove p 73 A88-35452

MYOELECTRICITY

The efficacy of using human myoelectric signals to control the limbs of robots in space [NASA-CR-182901] p 78 N88-25155

NASA PROGRAMS

Spacecraft technology requirements for future NASA

IAIAA PAPER 88-3487 I n 4 A88-43299 NASA SPACE PROGRAMS

Aerospace century XXI: Space missions and policy; Proceedings of the Thirty-third Annual AAS International Conference, Boulder, CO, Oct. 26-29, 1986

p 90 A88-35051 Space Station development

[AAS PAPER 86-255] p 2 A88-35052 Report of the National Commission on Space - One commissioner's view

IAAS PAPER 86-2501 Designing Space Station structure for assembly [AIAA PAPER 88-2453] p 74 A88-35942

Space: Countdown to the future; National Space Symposium, 3rd, Colorado Springs, CO, Jan. 20-23, 1987, p 91 A88-39050 OMV multiple deployments of lightsats

[AIAA PAPER 88-3518] p.9 A88-42911 The U.S. Space Station - A quarter-century of p 4 A88-44150 evolution

NASA's Pathfinder plots future US space activities

A88-44613 NASA Office of Space Sciences and Applications study on Space Station attached payload pointing [AIAA PAPER 88-4105]

Second thoughts on the way to the station p 96 A88-53749

Risk management for the Space Station program
ACDADER 88.0611 p 97 A88-55331 [IAF PAPER 88-061]

NASTRAN

Lewis Structures Technology, 1988. Volume 1: Structural Dynamics [NASA-CP-3003-VOL-1]

NAVSTAR SATELLITES

p 98 N88-23226

Problems and solutions for GPS use beyond the 12-hour p 5 A88-51715 orbit

NEURAL NETS

Genetic algorithms for adaptive real-time control in space systems p 50 N88-24195 The efficacy of using human myoelectric signals to

control the limbs of robots in space [NASA-CR-182901] p 78 N88-25155

Parallel and distributed computation for fault-tolerant p 13 N88-30350 object recognition NEUTRAL BUOYANCY SIMULATION

A design methodology for neutral buoyancy simulation of space operations AIAA PAPER 88-46281 p 77 A88-53665

NEUTRAL PARTICLES

Neutral environment for space station

p 69 N88-25391 Space station neutral external environment p 69 N88-25392

NONDESTRUCTIVE TESTS

Radiation inspection methods for composites

p 68 A88-49260 Contribution to the study of materials behavior in space

[SNIAS-881-430-104]

p 72 N88-28977

SUBJECT INDEX

NONLINEAR EQUATIONS		SUBJECT INDEX
NONLINEAR EQUATIONS	Study of standard generic approach for spacecraft (S/C)	Theory of filtering and control with application to control
Kalman filtering for second-order models	autonomy and automation (phase 3). Book B: Autonomy	of large space structures
p 28 A88-36718	concept application example	[AD-A195500] p 54 N88-29851
A continuum model for the nonlinear analysis of	[ESA-CR(P)-2555-VOL-2] p 53 N88-28956	OPTIMIZATION
beam-like lattice structures p 13 A88-41038	ONBOARD EQUIPMENT	Optimization of actively controlled structures using
New approach to the analysis and control of large space structures p 30 A88-43030	Spatial evolution of the residual-acceleration vector on board spacecraft p 43 A88-53945	multiobjective programming techniques p 46 A88-54973
structures p 30 A88-43030 NONLINEAR FEEDBACK	board spacecraft p 43 A88-53945 OPERATIONS RESEARCH	Effect of natural damping on the dynamics and control
A variable structure control approach to flexible	Telescience Testbed Pilot Project - Evaluation	of a class of optimally designed structures
spacecrafts p 34 A88-49914	environment for Space Station operations	[IAF PAPER 88-288] p 47 A88-55375
NONLINEAR FILTERS	[AIAA PAPER 88-4629] p 5 A88-53666	Control augmented structural synthesis
A nonlinear filtering process diagnostic system for the Space Station p 101 N88-29417	OPERATOR PERFORMANCE	[NASA-CR-4132] p 48 N88-20290 Nonlinear analysis and optimal design of dynamic
Space Station p 101 N88-29417 NONLINEAR SYSTEMS	Spatial cognition p 100 N88-24152	mechanical systems for spacecraft application
Nonlinearities in the dynamics and control of space	OPTICAL COMMUNICATION	[AD-A190644] p 49 N88-22070
structures - Some issues for computational mechanics	Ku-band (14GHz) fiber optic communication links for distributed antennas in the Space Station	Vibration control of large structures
p 31 A88-46403	p 55 A88-35275	[AD-A191358] p 50 N88-22928
Variable structure control of decoupleable systems and	OPTICAL EQUIPMENT	Numerical optimization, system theoretic and software tools for the integrated design of flexible structures and
attitude control of spacecraft in presence of uncertainty p 46 A88-54655	Structural mechanics of optical systems II; Proceedings	their control systems
Nonlinear analysis and optimal design of dynamic	of the Meeting, Los Angeles, CA, Jan. 13-15, 1987	[AD-A192927] p 52 N88-27183
mechanical systems for spacecraft application	[SPIE-748] p 89 A88-34486	ORBIT PERTURBATION
[AD-A190644] p 49 N88-22070	Large space optical system active vibration suppression p 24 A88-34498	Modelling and stabilization of flexible spacecraft under
NUCLEAR ELECTRIC POWER GENERATION	suppression p 24 A88-34498 An experimental test-bed for validation of control	the influence of orbital perturbation p 27 A88-34914 Singular perturbation analysis of the atmospheric orbital
Nuclear electric power for multimegawatt orbit transfer vehicles p 87 N88-24261	methodologies in large space optical structures	plane change problem p 31 A88-45712
NUCLEAR ELECTRIC PROPULSION	p 25 A88-34502	ORBIT TRANSFER VEHICLES
Comparison of a direct thrust nuclear engine, nuclear	Reflective optics; Proceedings of the Meeting, Los	The Space Station and recommendations of the National
electric engine and a chemical engine for future space	Angeles, CA, Jan. 15, 16, 1987	Commission on Space
missions p 87 N88-24379	[SPIE-751] p 89 A88-34536	[AAS PAPER 86-263] p 2 A88-35075 Beyond low earth orbit - A survey of upper stages
Power systems for production, construction, life support	Optical environment of the Spacelab 1 mission p 67 A88-47966	[AAS PAPER 87-115] p 83 A88-41283
and operations in space	Integrated structural/controller optimization of large	Trajectory analysis of a low lift/drag aeroassisted orbit
[NASA-TM-100838] p 59 N88-21254	space structures	transfer vehicle
NUCLEAR POWER REACTORS	[AIAA PAPER 88-4305] p 39 A88-50430	[AAS PAPER 87-123] p 92 A88-41285
Nuclear electric power for multimegawatt orbit transfer	A robust control experiment using an optical structure	Systems analysis of a low-acceleration research facility
vehicles p 87 N88-24261 NUCLEAR PROPULSION	prototype p 45 A88-54640 OPTICAL HETERODYNING	[AIAA PAPER 88-3512] p 93 A88-42909
Nuclear electric power for multimegawatt orbit transfer	Focal-plane and aperture-plane heterodyne array	Parametric studies of electric propulsion systems for
vehicles p 87 N88-24261	receivers for millimeter-wave radioastronomy - A	orbit transfer vehicles
Nuclear propulsion systems for orbit transfer based on	comparison p 58 A88-54749	[AIAA PAPER 88-2835] p 84 A88-44668
the particle bed reactor p 87 N88-24272 Comparison of a direct thrust nuclear engine, nuclear	OPTIMAL CONTROL Reduced-order compensation: LQG reduction versus	Autonomous flight control for low thrust orbital transfer vehicles
electric engine and a chemical engine for future space	optimal projection using a homotopic continuation	[AIAA PAPER 88-2838] p 30 A88-44670
missions p 87 N88-24379	method p 25 A88-34749	A self-consistent tension shell structure for application
Noncryogenic propellants for a nuclear orbit transfer	Moving bank multiple model adaptive estimation applied	to aerobraking vehicle and its aerodynamic
vehicle p 87 N88-24444	to flexible space structure control p 25 A88-34790	characteristics [AIAA PAPER 88-3405] p 14 A88-44839
NUCLEAR REACTORS Advanced space power systems	Kalman filtering for second-order models p 28 A88-36718	Singular perturbation analysis of the atmospheric orbital
[SAWE PAPER 1762] p 58 A88-53779	Optimal projection for uncertain systems (OPUS) - A	plane change problem p 31 A88-45712
NUCLEAR ROCKET ENGINES	unified theory of reduced-order, robust control design	Solar thermal propulsion for orbit transfer
Advanced nuclear rocket engine mission analysis [DE88-006797] p 87 N88-24681	p 32 A88-46411 Unified optimization of structures and controllers	[AIAA PAPER 88-3171] p 84 A88-48042 A near optimal guidance algorithm for aero-assisted orbit
NUMERICAL ANALYSIS	p 33 A88-46413	transfer
A dynamical study of the proposed Space Station type	An integrated approach to the minimum weight and	[AIAA PAPER 88-4175] p 37 A88-50266
configuration	optimum control design of space structures	Aeroassisted transfer between elliptical orbits using lift control
[AIAA PAPER 88-4304] p 39 A88-50429 Numerical solution of multibody systems in space	p 10 A88-46414 A disturbance model for the optimization of	[AIAA PAPER 88-4346] p 95 A88-50590
applications p 48 N88-21200	control/structure interactions for flexible dynamic	Optimum configuration of high-lift aeromaneuvering
Nonlinear analysis and optimal design of dynamic	systems	orbital transfer vehicles in viscous flow
mechanical systems for spacecraft application	[ÁIAA PAPER 88-4058] p 34 A88-50168	p 11 A88-51386
[AD-A190644] p 49 N88-22070	An approximate atmospheric guidance law for	Problems and solutions for GPS use beyond the 12-hour
Dynamics of a flexible orbiting platform with MRMS [ISSN-0285-6808] p 51 N88-24673	aeroassisted plane change maneuvers [AIAA PAPER 88-4174] p 37 A88-50265	orbit p 5 A88-51715 Orbital transfer vehicle concept definition and system
[ISSN-0285-6808] p 51 N88-24673 NUMERICAL CONTROL	An optimal maneuver control method for the spacecraft	analysis study. Volume 2: OTV concept definition and
Method for the experimental determination of the	with flexible appendages	evaluation. Book 1: Mission and system requirements
frequency characteristics of an elastic flight vehicle with	[AIAA PAPER 88-4255] p 38 A88-50386	[NASA-CR-179321] p 7 N88-20339
a digital control system p 34 A88-50095	Integrated structural/controller optimization of large	Space station mobile transporter p 98 N88-21488 Space station full-scale docking/berthing mechanisms
Design and development of a computer controlled system for spacecraft static testing p 11 A88-54896	space structures [AIAA PAPER 88-4305] p 39 A88-50430	development p 18 N88-21491
The system of the Mir station motion control	Accommodation of kinematic disturbances during a	Nuclear electric power for multimegawatt orbit transfer
[IAF PAPER 88-334] p 48 A88-55397	minimum-time maneuver of a flexible spacecraft	vehicles p 87 N88-24261
_	[AIAA PAPER 88-4253] p 40 A88-50440	Noncryogenic propellants for a nuclear orbit transfer vehicle p 87 N88-24444
0	Aeroassisted transfer between elliptical orbits using lift control	Advanced nuclear rocket engine mission analysis
_	[AIAA PAPER 88-4346] p 95 A88-50590	[DE88-006797] p 87 N88-24681
OBSERVABILITY (SYSTEMS)	Experimental demonstration of the maximum	Centaur operations at the space station: Cost and
Design of a controller for mechanical systems by the generalized energy function p 27 A88-34891	entropy/optimal projection design theory for active	transportation analysis
generalized energy function p 27 A88-34891 Grammians and model reduction in limited time and	vibration control p 44 A88-54575	[NASA-CR-182128] p 101 N88-29835
frequency intervals	H(infinity) robust control synthesis for a large space structure p 45 A88-54639	ORBITAL ASSEMBLY
[AIAA PAPER 88-4087] p 35 A88-50193	A robust control experiment using an optical structure	Large space system assembly options p 72 A88-33433
ON-LINE SYSTEMS	prototype p 45 A88-54640	p /2 A88-33433 On-orbit assembly, integration, and test of large
On-line measurement configuration strategies for	A Fourier-based optimal control approach for structural	spacecraft - A new technique p 72 A88-33440
discrete-time systems [AIAA PAPER 88-4168] p 36 A88-50259	systems p 45 A88-54643	Telerobotic control of a dextrous manipulator using
Identification of a flexible truss structure using lattice	Optimal control and identification of space structures [AD-A190033] p 49 N88-22065	master and six-DOF hand-controllers for space assembly
filters p 45 A88-54577	Estimation and control of distributed models for certain	and servicing tasks p 73 A88-35453
ONBOARD DATA PROCESSING	elastic systems arising in large space structures	A method for measuring the effect of grip surface on
Spacecraft technology requirements for future NASA	[AD-A192120] p 51 N88-24666	torque production during hand/arm rotation
missions (AIAA PAPER 88-3487) p 4 A88-43299	Low authority control of large space structures using a	p 74 A88-35462 Designing Space Station structure for assembly
[AIAA PAPER 88-3487] p 4 A88-43299 Data management for large space systems	constrained threshold control formulation p 51 N88-24667	[AIAA PAPER 88-2453] p 74 A88-35942
p 95 A88-45034	Sensor and actuator selection for large space structure	Optimal use of human and machine resources for Space

p 53 N88-29842

control [AD-A194912]

p 75 A88-42903

Station assembly operations [AIAA PAPER 88-3498]

Connectivity is the key --- for ground-space station-ground data links p 59 A88-54853

Computational techniques for the self assembly of large space structures p 75 A88-43976	Polar Platform configuration and servicing p 1 A88-34552	Results of apparent atomic oxygen reactions with spacecraft materials during Shuttle flight STS-41G
Welding in space - An overview p 66 A88-44004	Concepts and issues for a space telerobot	p 67 A88-47971
An assessment of nominal and contingency altitude reboost scenarios during Space Station assembly	[AAS PAPER 86-302] p 73 A88-35111 Telerobotic control of a dextrous manipulator using	Technologies for protection of the Space Station power system surfaces in atomic oxygen environment
[AIAA PAPER 88-3501] p 75 A88-44526	master and six-DOF hand-controllers for space assembly	p 68 A88-52331
Two-dimensional deployable truss structures for space	and servicing tasks p 73 A88-35453 Real-time model-based vision system for object	Velocity distributions of oxygen atoms incident on spacecraft surfaces p 68 A88-54990
applications p 14 A88-47964 Telerobotic Space Station applications	acquisition and tracking p 28 A88-36311	spacecraft surfaces p 68 A88-54990 Laboratory experiments of relevance to the space station
p 76 A88-52323	Robot path planning in space p 74 A88-42328 Robotic vision/sensing for space applications	environment p 71 N88-25402
Technology development missions concept definition study - TDMX 2066 large inflatable/rigidized structures	p 74 A88-42642	OXYGEN PRODUCTION Production of ground state atomic oxygen in a multifactor
p 5 A88-52332	Orbital replaceable unit-cold plate dry thermal interface concept and test measurements p 20 A88-42843	stress environment for reaction testing of materials in
Welding the Space Station common module prototype	Advanced satellite servicing facility studies	orbiting space vehicles p 56 A88-42585
p 11 A88-52334 Getting ready to go Space Station deployment	[AIAA PAPER 88-4200] p 93 A88-42912 Cost effectiveness of on-orbit servicing for large	D
schedule p 6 A88-54851	constellations	P
Identification of large structures on orbit - A survey	[AIAA PAPER 88-3519] p 94 A88-44527 Orbital spacecraft consumables resupply	PANELS
[IAF PAPER 88-295] p 97 A88-55379 Space station heavy lift launch vehicle utilization	[AIAA PAPER 88-2922] p 94 A88-44695	The Hipparcos solar panels p 14 A88-45452
[NASA-TM-100604] p 86 N88-21188	Orbiter Servicer Rendezvous Simulation (ORSIM) p 10 A88-46986	PARALLEL PROCESSING (COMPUTERS) Obstacles to high fidelity multibody dynamics
A 60-meter erectable assembly concept for a control of flexible structures flight experiment	Human factors analysis of extravehicular servicing of	simulation p 44 A88-54471
[NASA-TM-100497] p 7 N88-21190	payloads within the space station servicing facility p 76 A88-50998	Lewis Structures Technology, 1988. Volume 1: Structural Dynamics
Structural latches for modular assembly of spacecraft and space mechanisms p 17 N88-21471	Telerobotic Space Station applications	[NASA-CP-3003-VOL-1] p 98 N88-23226
Space spider crane	p 76 A88-52323 A resupply scenario for the Columbus Mantended	Parallel and distributed computation for fault-tolerant
[NASA-CASE-LAR-13411-1-SB] p 7 N88-23828 Bi-stem gripping apparatus	Freeflyer (MTFF) p 5 A88-52337	object recognition p 13 N88-30350 PARAMETER IDENTIFICATION
[NASA-CASE-MFS-28185-1] p 18 N88-23979	Bayonet for superfluid helium transfer in space	Parameter identification techniques for the estimation
Design guidelines for robotically serviceable hardware [NASA-TM-100700] p 79 N88-25472	The superfluid helium on-orbit transfer (SHOOT) flight	of damping in flexible structure experiments p 26 A88-34805
Mobile remote manipulator system for a tetrahedral	experiment p 5 A88-53221	Instrumentation for modal testing of large space
truss {NASA-CASE-MSC-20985-1} p 80 N88-26398	Design and test of a modified passive orbital disconnect strut (PODS-IV) support system p 11 A88-53226	structures p 29 A88-40261
Centaur operations at the space station: Cost and	Telepresence for space applications	An iterative approach to parameter identification in structures p 29 A88-40271
transportation analysis [NASA-CR-182128] p 101 N88-29835	[IAF PAPER 88-018] p 77 A88-55320 Lunar orbit service station	Identification of multiple-input modal parameters from
Study of robotics spacecraft servicing and assembly in	[IAF PAPER 88-618] p 6 A88-55454	multiple-frequency response function p 41 A88-50897
space. Volume 1: Executive summary [ESA-CR(P)-2612-VOL-1] p 82 N88-29839	Space station heavy lift launch vehicle utilization [NASA-TM-100604] p 86 N88-21188	Recent results in identification and control of a flexible truss structure p 44 A88-54576
ORBITAL ELEMENTS	Space station mobile transporter p 98 N88-21488	Optimal control and identification of space structures
Ballistic design of space systems Russian book p 9 A88-44898	Operational experience and design recommendations for teleoperated flight hardware p 78 N88-21489	[AD-A190033] p 49 N88-22065 Maximum likelihood parameter identification of flexible
ORBITAL LAUNCHING	Design guidelines for robotically serviceable hardware	spacecraft
Systems analysis of a low-acceleration research facility	[NASA-TM-100700] p 79 N88-25472 Man versus machine: The role of astronauts in	[LR-508] p 50 N88-22924
[AIAA PAPER 88-3512] p 93 A88-42909	extravehicular activity p 79 N88-26045	Single-mode projection filters for modal parameter identification for flexible structures
ORBITAL MANEUVERING VEHICLES OMV multiple deployments of lightsats	Remote servicing of space systems p 81 N88-29409	[NASA-CR-182680] p 52 N88-25244
[AIAA PAPER 88-3518] p 9 A88-42911	A teleoperated robotic manipulator system for materials	Procedures for updating dynamic mathematical models, test phase spacecraft hardware
Feasibility of using GPS measurements for OMV attitude update p 96 A88-51716	processing experiment servicing p 82 N88-29410 Centaur operations at the space station: Cost and	[MEBS-38/87] p 12 N88-29852
Orbital Maneuvering Vehicle support to the Space	transportation analysis	PARTIAL DIFFERENTIAL EQUATIONS Laser sensing for identification and control of distributed
Station p 5 A88-52362 Space station mobile transporter p 98 N88-21488	[NASA-CR-182128] p 101 N88-29835 Study of robotics spacecraft servicing and assembly in	parameter systems
OMV docking simulator p 101 N88-29379	space. Volume 1: Executive summary	(AD-A195886) p 54 N88-30124
ORBITAL MANEUVERS Singular perturbation analysis of the atmospheric orbital	[ESA-CR(P)-2612-VOL-1] p 82 N88-29839 Technology requirements for an orbiting fuel depot: A	PARTICULATES Space station particulate contamination environment
plane change problem p 31 A88-45712	necessary element of a space infrastructure	p 70 N88-25397
An analysis of orbit maneuvering capabilities using arcjet propulsion	[NASA-TM-101370] p 88 N88-29845 ORTHOTROPIC PLATES	The particulate environment surrounding the space station: Estimates from the PACS data
[AIAA PAPER 88-2832] p 85 A88-48484	Dynamic responses of orthotropic plates under moving	p 70 N88-25398
A pole placement technique for vibration suppression of flexible structures	masses p 28 A88-35543 OUTGASSING	Effects of meteoroids and space debris on the particulate environment for space station p 70 N88-25399
[AIAA PAPER 88-4254] p 38 A88-50385	Neutral environment for space station	PARTITIONS (MATHEMATICS)
Out of plane maneuvering with tethered satellites [AIAA PAPER 88-4282] p 39 A88-50409	p 69 N88-25391 Space station neutral external environment	Computational issues in control-structure interaction analysis p 32 A88-46406
Rapid multi-flexible-body maneuvering experiments	p 69 N88-25392	PASSIVITY
p 44 A88-54532 Reducing the cost and risk of orbit transfer	OUTLET FLOW Fundamental limitations on low gravity fluid gauging	Experimental and theoretical investigation of passive damping concepts for member forced and free vibration
p 97 A88-54994	technologies imposed by orbital mission requirements	(NASA-CR-183082) p 52 N88-26693
Docking/berthing subsystem: Design and breadboard test p 17 N88-21233	[AIAA PAPER 88-3402] p 86 A88-53163	PATTERN RECOGNITION Sensing and perception research for space telerobotics
Machine vision for real time orbital operations	OXIDATION RESISTANCE Recent advances in aerospace refractory metal alloys	at JPL p 74 A88-42657
p 80 N88-29367 ORBITAL MECHANICS	p 67 A88-47449	Parallel and distributed computation for fault-tolerant object recognition p 13 N88-30350
Effect of solar pressure on the motion and stability of	Design and demonstration of a system for the deposition of atomic-oxygen durable coatings for reflective solar	PAYLOAD CONTROL
the system of two inter-connected satellites in an elliptical orbit p 24 A88-33104	dynamic power system concentrators	Hemispherical pointing mechanism drive unit satellite payloads antennas p 98 N88-21193
Study of the optimization of satellite system design for	[NASA-CR-4158] p 71 N88-25474 OXYGEN	payloads antennas p 98 N88-21193 PAYLOAD DELIVERY (STS)
transfer orbit [MBB-URV-135] p 11 N88-20332	Open-cycle chemical power and thermal management	Large truss structures for space assembly
ORBITAL POSITION ESTIMATION	system with combustion product-free effluent	p 75 A88-50862 Noncryogenic propellants for a nuclear orbit transfer
Feasibility of using GPS measurements for OMV attitude	[AIAA PAPER 88-2625] p 83 A88-43710 Design and demonstration of a system for the deposition	vehicle p 87 N88-24444
update p 96 A88-51716 ORBITAL RENDEZVOUS	of atomic-oxygen durable coatings for reflective solar	PAYLOAD INTEGRATION Columbus utilization studies - Attached payloads
Orbiter Servicer Rendezvous Simulation (ORSIM)	dynamic power system concentrators [NASA-CR-4158] p 71 N88-25474	p 1 A88-34563
p 10 A88-46986 Guidance and control for cooperative tether-mediated	OXYGEN ATOMS	Turbomachinery in space p 60 N88-24321 PAYLOAD TRANSFER
orbital rendezvous	A technique to evaluate coatings for atomic oxygen	Transitioning from Spacelab to Space Station science
[AIAA PAPER 88-4170] p 37 A88-50261 ORBITAL SERVICING	resistance p 65 A88-42372 Production of ground state atomic oxygen in a multifactor	[AAS PAPER 86-284] p 3 A88-35131 Parametric studies of electric propulsion systems for
On-orbit, man/machine interface verification with	stress environment for reaction testing of materials in	orbit transfer vehicles
simulator testing p 89 A88-33780	orbiting space vehicles p 56 A88-42585	[AIAA PAPER 88-2835] p 84 A88-44668

PAYLOADS	PLASMA SHEATHS	POWER CONDITIONING
Performance considerations for the astrometric Telescope Facility on the Phase I Space Station p 92 A88-42539	Laboratory model of a Tethered Satellite - Current collection upon and sheath formation around a charged body in a definition magnetic laboration and a charged body in a definition magnetic laboration and a charged body in a definition of the charge of t	Space structures, power, and power conditioning; Proceedings of the Meeting, Los Angeles, CA, Jan. 11-13,
Solar thermal propulsion for orbit transfer	body in a drifting magnetoplasma p 57 A88-46806 PLASMA WAVES	1988 [SPIE-871] p 92 A88-42547
[AIAA PAPER 88-3171] p 84 A88-48042 Demonstration mission on Columbus for technology	Contaminant ions and waves in the space station environment p 70 N88-25393	Digital sequential shunt regulator for solar power conditioning of Engineering Test Satellite (ETS-V)
developments [IAF PAPER 88-002] p 6 A88-55314	PLASMAS (PHYSICS) Space plasma contactor research, 1987	p 86 A88-54696 Power systems for production, construction, life support
Orbital transfer vehicle concept definition and system	[NASA-CR-182148] p 60 N88-23649	and operations in space
analysis study. Volume 2: OTV concept definition and evaluation. Book 1: Mission and system requirements	PLASMASPHERE	[NASA-TM-100838] p 59 N88-21254 Utilization of artificial intelligence techniques for the
[NASA-CR-179321] p 7 N88-20339	Refilling process in the plasmasphere and its relation to magnetic activity p 64 A88-37343	Space Station power system p 62 N88-29412
PEBBLE BED REACTORS	to magnetic activity p 64 A88-37343 POINTING CONTROL SYSTEMS	POWER SUPPLY CIRCUITS
Nuclear propulsion systems for orbit transfer based on the particle bed reactor p 87 N88-24272	Synthesis of fine-pointing control systems for large,	Multi-hundred kilowatt roll ring assembly evaluation results
PEEK	flexible spacecraft p 24 A88-33446	[NASA-TM-100865] p 60 N88-21375
Space radiation effects on poly(aryl-ether-ketone) thin films and composites p 65 A88-41547	An adaptive control system for fine pointing of flexible spacecraft p 26 A88-34791	POWER TRANSMISSION
films and composites p 65 A88-41547 Graphite thermoplastic composites for spacecraft	Controller synthesis for flexible spacecraft using	Power systems for production, construction, life support and operations in space
applications p 65 A88-42419	multivariable loop-shaping and factorization methods p 26 A88-34796	[NASA-TM-100838] p 59 N88-21254
PERFORMANCE TESTS Aerospace Testing Seminar, 10th, Los Angeles, CA, Mar.	Minimum-time control of large space structures	Power components for the space station 20-kHz power distribution system
10-12, 1987, Proceedings p 89 A88-33776	p 29 A88-42576	[NASA-TM-100866] p 59 N88-21374
Generic model laboratory tests for large flexible structure	Evaluation of image stability of a precision pointing	PREDICTION ANALYSIS TECHNIQUES
control [IAF PAPER 88-294] p 47 A88-55378	spacecraft p 30 A88-43215 NASA Office of Space Sciences and Applications study	Space plasma contactor research, 1987 [NASA-CR-182148] p 60 N88-23649
Qualification of the OLYMPUS reaction wheel	on Space Station attached payload pointing	PREDICTIONS
p 16 N88-21226 Qualification testing of the EUROSTAR Solar Array Drive	[AIAA PAPER 88-4105] p 36 A88-50209	Single-mode projection filters for modal parameter identification for flexible structures
Mechanism (SADM) p 17 N88-21229	Piloted earth pointing of a spinning geosynchronous satellite following satellite's earth acquisition failure	[NASA-CR-182680] p 52 N88-25244
Space station full-scale docking/berthing mechanisms	[AIAA PAPER 88-4130] p 37 A88-50280	PRESSURE EFFECTS
development p 18 N88-21491 PERTURBATION THEORY	Design of an on-board antenna pointing control system	An experimental investigation of the effect of test-cell pressure on the performance of resistoiets
A disturbance model for the optimization of	for communication satellites [AIAA PAPER 88-4306] p 39 A88-50431	[AIAA PAPER 88-3286] p 84 A88-44820
control/structure interactions for flexible dynamic systems	Precision pointing of scientific instruments on space	PRESSURE SUITS Design, development and evaluation of Stanford/Ames
[AIAA PAPER 88-4058] p 34 A88-50168	station: The LFGGREC perspective p 42 A88-50979	EVA prehensors
Projective controls for disturbance attenuation in LSS	The jitter beam - An experiment demonstrating pointing control on a flexible structure p 43 A88-54406	[NASA-CR-182688] p 78 N88-22540
systems p 43 A88-54410 PHASED ARRAYS	Application of FAMESS to a large space structure ground	PRESSURE VESSELS Design of light-weight impact resistant pressure vessels
Optical technology for spacecraft antennas	test facility p 44 A88-54574	for Space Station fluid and propulsion systems
p 56 A88-43187 Fiber based phased array antennas	Development of a magnetically suspended, tetrahedron-shaped antenna pointing system	[AIAA PAPER 88-2466] p 83 A88-35943 PRESSURIZED CABINS
p 57 A88-50306	p 18 N88-21478	Columbus Pressurized Modules - A versatile
Comparison of fiber optic and space feed for large aperture phased array antennas p 57 A88-50308	POLAR ORBITS	user-friendly space laboratory system [IAF PAPER 88-097] p 6 A88-55340
aperture phased array antennas p 57 A88-50308 PHOTOVOLTAIC CELLS	Polar Platform configuration and servicing p 1 A88-34552	PRIVACY
Solar-dynamic energy supply systems for space	Advanced satellite servicing facility studies	Incorporation of privacy elements in space station
systems p 64 A88-37293	[AIAA PAPER 88-4200] p 93 A88-42912 POLICIES	design [NASA-CR-182748] p 98 N88-21242
Space Station Photovoltaic power modules p 58 A88-52333	Aerospace century XXI: Space missions and policy;	PROBABILITY THEORY
Advanced space power systems	Proceedings of the Thirty-third Annual AAS International	Predicting debris p 66 A88-43517 PROCESS CONTROL (INDUSTRY)
[SAWE PAPER 1762] p 58 A88-53779	Conference, Boulder, CO, Oct. 26-29, 1986 p 90 A88-35051	Material and process selection and quality control for
Power systems for production, construction, life support and operations in space	POLYIMIDE RESINS	ESA space systems and associated equipment
[NASA-TM-100838] p 59 N88-21254	Long-lived thermal control materials for high temperature and deep space applications p 20 A88-42441	[ESA-PSS-01-70-ISSUE-3] p 72 N88-29190 PROCUREMENT POLICY
PHOTOVOLTAIC CONVERSION Mast material test program (MAMATEP) for Solar	POLYMER MATRIX COMPOSITES	The technical reporting and approval procedure for
Array Assembly of Space Station Photovoltaic Power	Results of apparent atomic oxygen reactions with spacecraft materials during Shuttle flight STS-41G	materials and processes [ESA-PSS-01-700-ISSUE-1] p 72 N88-28833
Module	p 67 A88-47971	PRODUCT DEVELOPMENT
[AIAA PAPER 88-2475] p 63 A88-35945 PIEZOELECTRIC CERAMICS	Radiation inspection methods for composites	Advanced topics in manufacturing technology: Product
Research in ceramics at the U.S. Naval Research Lab	p 68 A88-49260 POLYMERIC FILMS	design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18,
p 68 A88-49996	Tribological properties of polymer films and solid bodies	1987 p 94 A88-44001
PIPES (TUBES) The CTM program of masts and the CTM engineering	in a vacuum environment p 63 A88-35565 Long-lived thermal control materials for high temperature	PROPELLANT STORAGE Turbomachinery in space p 60 N88-24321
model spacecraft mechanism p 15 N88-21196	and deep space applications p 20 A88-42441	PROPELLANT TANKS
PLANAR STRUCTURES	PONTRYAGIN PRINCIPLE	Testing of propellant management device for 3-axis
Advanced planar array development for space station [NASA-CR-179373] p 24 N88-30181	Optimal deployment of spacecraft appendages [IAF PAPER 88-307] p 47 A88-55386	geosynchronous spacecraft p 83 A88-33792 Use of the surface tension propellant tanks in the Indian
PLASMA ARC WELDING	PORTABLE EQUIPMENT	satellite Insat
Welding the Space Station common module prototype	An investigation of conformable antennas for the astronaut backpack communication system	[IAF PAPER 88-237] p 86 A88-55365 PROPELLANT TESTS
p 11 A88-52334 PLASMA CONDUCTIVITY	[NASA-CR-182908] p 99 N88-23929	Testing of propellant management device for 3-axis
Plasma contactor design for electrodynamic tether	PORTABLE LIFE SUPPORT SYSTEMS	geosynchronous spacecraft p 83 A88-33792
applications p 57 A88-46807	EVA space suits - Safety problems [IAF PAPER 88-515] p 77 A88-55436	PROPULSION SYSTEM CONFIGURATIONS All electronic propulsion - Key to future spaceship
PLASMA DENSITY Refilling process in the plasmasphere and its relation	POSITION INDICATORS	design
to magnetic activity p 64 A88-37343	SHAPES - Spatial, High-Accuracy, Position-Encoding Sensor for multi-point, 3-D position measurement of large	[AIAA PAPER 88-3170] p 84 A88-44875 Integration of Space Station propulsion and fluid
PLASMA DRIFT	flexible structures p 19 A88-40292	systems
Laboratory model of a Tethered Satellite - Current collection upon and sheath formation around a charged	POSITION SENSING	[AIAA PAPER 88-3289] p 85 A88-48492
body in a drifting magnetoplasma p 57 A88-46806	Real-time model-based vision system for object acquisition and tracking p 28 A88-36311	Nuclear propulsion systems for orbit transfer based on the particle bed reactor p 87 N88-24272
PLASMA ENGINES	Motion planning for a free-flying robot	Unified study of plasma/surface interactions for space
Unified study of plasma/surface interactions for space power and propulsion	p 80 N88-29378 POSITIONING DEVICES (MACHINERY)	power and propulsion [AD-A195971] p 88 N88-29870
[AD-A195971] p 88 N88-29870	Hemispherical pointing mechanism drive unit satellite	PROPULSION SYSTEM PERFORMANCE
PLASMA INTERACTION EXPERIMENT	payloads antennas p 98 N88-21193	Propulsion safety almost equals mission safety [AIAA PAPER 88-2881] p 84 A88-44698
Results from a tethered rocket experiment (Charge-2) p 57 A88-46804	Development and qualification of the OLYMPUS antenna pointing mechanism p 16 N88-21227	[AIAA PAPER 88-2881] p 84 A88-44698 Nuclear propulsion systems for orbit transfer based on
PLASMA INTERACTIONS	POTENTIAL FIELDS	the particle bed reactor p 87 N88-24272
Electron beam experiments at high altitudes p 56 A88-46799	Motion planning for a free-flying robot p 80 N88-29378	Noncryogenic propellants for a nuclear orbit transfer vehicle p 87 N88-24444
h 20 V00-40199	p 00 1100-20070	p o7 1100-24444

SUBJECTINDEX		TIEMOTE MARKITULATOR STOTEM
Unified study of plasma/surface interactions for space	Focal-plane and aperture-plane heterodyne array	Redundancy control of a free-flying telerobot
power and propulsion	receivers for millimeter-wave radioastronomy - A	[AIAA PAPER 88-4094] p 35 A88-50199
[AD-A195971] p 88 N88-29870 PROPULSIVE EFFICIENCY	comparison p 58 A88-54749 RADIO COMMUNICATION	On the danger of redundancies in some aerospace mechanisms p 17 N88-21475
Parametric studies of electric propulsion systems for	An investigation of conformable antennas for the	REDUNDANT COMPONENTS
orbit transfer vehicles	astronaut backpack communication system [NASA-CR-182908] p 99 N88-23929	On the danger of redundancies in some aerospace mechanisms p 17 N88-21475
[AIAA PAPER 88-2835] p 84 A88-44668 PROTECTION	RADIO FREQUENCIES	REENTRY VEHICLES
Solar cell cover glasses for satellites	Large antenna experiments aboard the space shuttle:	An approximate atmospheric guidance law for
p 69 N88-22225	Application of nonuniform sampling techniques p 61 N88-25745	aeroassisted plane change maneuvers [AIAA PAPER 88-4174] p 37 A88-50265
PROTECTIVE COATINGS	Study of secondary emission properties of materials	A near optimal guidance algorithm for aero-assisted orbit
High temperature coatings; Proceedings of the Symposium, Orlando, FL, Oct. 7-9, 1986	used for high power RF components in space	transfer
p 88 A88-24817	[ESA-CR(P)-2587] p 72 N88-30012 RADIO RECEIVERS	[AIAA PAPER 88-4175] p 37 A88-50266 Features of Soyuz TM spacecraft p 97 N88-20329
A technique to evaluate coatings for atomic oxygen	Potential GPS user architecture for the NASA Space	REFLECTANCE
resistance p 65 A88-42372	Station based on Landsat 4/5 experience	Design and demonstration of a system for the deposition
Results of apparent atomic oxygen reactions with spacecraft materials during Shuttle flight STS-41G	p 3 A88-37398 Focal-plane and aperture-plane heterodyne array	of atomic-oxygen durable coatings for reflective solar dynamic power system concentrators
p 67 A88-47971	receivers for millimeter-wave radioastronomy - A	[NASA-CR-4158] p 71 N88-25474
Spacecraft surface coating heat generation by charged particulate of the natural space environment	comparison p 58 A88-54749	REFLECTING TELESCOPES
[ASME PAPER 87-WA/HT-13] p 58 A88-51341	RADIO TELESCOPES Self-correction of telescope surface errors using a	Structural innovations in the Columbus Project - An 11.3 meter optical telescope p 89 A88-34491
Technologies for protection of the Space Station power	correlating focal plane array p 91 A88-38097	Reflective optics; Proceedings of the Meeting, Los
system surfaces in atomic oxygen environment p 68 A88-52331	RADIOGRAPHY Rediction imprestion methods for compositor	Angeles, CA, Jan. 15, 16, 1987
Atomic-oxygen durability of impact-damaged solar	Radiation inspection methods for composites p 68 A88-49260	[SPIE-751] p 89 A88-34536 Astrophysics space observatories - The next 25 years
reflectors p 68 A88-54988	RANDOM LOADS	p 1 A88-34537
PROTOCOL (COMPUTERS) Connectivity is the key for ground-space	Stability of imperfection-sensitive nonlinear space structures under stochastic loading	REFLECTOR ANTENNAS
station-ground data links p 59 A88-54853	[IAF PAPER 88-293] p 47 A88-55377	Antennas for diverse requirements p 55 A88-37285 Beyond the diameter-wavelength-ratio of reflector
PROVING	RANDOM SAMPLING	antennas - A film lens antenna p 55 A88-38098
Knowledge based system verification and validation as related to automation of Space Station subsystems -	Large antenna experiments aboard the space shuttle: Application of nonuniform sampling techniques	Effect of air mass on modal tests in large space structures p 41 A88-50860
Rationale for a knowledge based system lifecycle	p 61 N88-25745	Case study of active array feed compensation with
p 42 A88-52238 Structural margins assessment approach	RANDOM VIBRATION	sidelobe control for reflector surface distortion
[NASA-TM-100332] p 23 N88-24672	Methods for spacecraft simulation in vibro-acoustic environments p 9 A88-37278	[NASA-TM-100287] p 60 N88-23073 REFLECTORS
PSYCHOLOGICAL EFFECTS	REACTOR DESIGN	An experimental test-bed for validation of control
Incorporation of privacy elements in space station design	Rotating solid radiative coolant system for space nuclear	methodologies in large space optical structures
[NASA-CR-182748] p 98 N88-21242	reactors [AIAA PAPER 88-3189] p 21 A88-44785	p 25 A88-34502 Deployable precision reflectors
PSYCHOLOGICAL TESTS	REACTOR TECHNOLOGY	[AAS PAPER 86-298] p 55 A88-35112
NASA-Ames workload research program p 99 N88-24151	Rotating solid radiative coolant system for space nuclear reactors	The Hipparcos solar panels p 14 A88-45452 LDR structural experiment definition
PYROTECHNICS	[AIAA PAPER 88-3189] p 21 A88-44785	[NASA-TM-100618] p 7 N88-23826
The use of pyrotechnics on spacecraft p 85 A88-49825	REAL TIME OPERATION	REFRACTORY MATERIALS
p 65 A66-43625	Real-time model-based vision system for object acquisition and tracking p 28 A88-36311	Research in ceramics at the U.S. Naval Research Lab p 68 A88-49996
Q	Real-time systems for space applications	Very high temperature materials for mechanical
•	p 91 A88-39424 SHAPES - Spatial, High-Accuracy, Position-Encoding	application
QUALITY CONTROL	Sensor for multi-point, 3-D position measurement of large	[SNIAS-881-430-106] p 72 N88-28978 REFRACTORY METAL ALLOYS
Material and process selection and quality control for ESA space systems and associated equipment	flexible structures p 19 A88-40292	Recent advances in aerospace refractory metal alloys
[ESA-PSS-01-70-ISSUE-3] p 72 N88-29190	Real-time, automatic vehicle-potential determination from ESA measurements - The distribution function	p 67 A88-47449 REFUELING
Quasat - A 50,000 km-diameter Quasar probe	algorithm ElectroStatic Analyzer p 58 A88-51391	Fault diagnosis in orbital refueling operations
p 96 A88-54766	Space Operations and Space Station real-time	p 87 N88-24154
·	simulation [AIAA PAPER 88-4627] p 11 A88-53664	Technology requirements for an orbiting fuel depot: A necessary element of a space infrastructure
R	Genetic algorithms for adaptive real-time control in	[NASA-TM-101370] p 88 N88-29845
	space systems p 50 N88-24195 Machine vision for real time orbital operations	REINFORCED PLATES
RADAR ANTENNAS Antennas for diverse requirements p 55 A88-37285	p 80 N88-29367	Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466
Determination of the vertical pattern of the SIR-B	An expert system for a distributed real-time trainer	RELEASING
antenna p 56 A88-44638 Interactive Radar Environment Simulation Model	p 12 N88-29411 RECTANGULAR PLATES	Deployable booms and antennas on AMPTE-IRM p 15 N88-21198
(IRESM) p 10 A88-46968	Dynamic responses of orthotropic plates under moving	RELIABILITY ANALYSIS
RADAR TRACKING	masses p 28 A88-35543 Use of assumed modes in equations governing	Reliability evaluation on on-board satellite antenna
Decision time on orbital debris p 66 A88-43516 Predicting debris p 66 A88-43517	large-displacement elastodynamic plate behavior	deployment mechanism p 19 A88-38672 RELIABILITY ENGINEERING
RADIANT COOLING	p 43 A88-54421	Expert systems for MSFC power systems
Rotating solid radiative coolant system for space nuclear	RECYCLING Space Phoenix recycling shuttle external tanks into	p 61 N88-29375 Blackboard architectures and their relationship to
reactors [AIAA PAPER 88-3189] p 21 A88-44785	low-cost spacecraft p 9 A88-39500	autonomous space systems p 82 N88-29414
RADIANT HEATING	REDUCED GRAVITY	A nonlinear filtering process diagnostic system for the
Spacecraft surface coating heat generation by charged	The environment of earth-orbiting systems p 3 A88-35877	Space Station p 101 N88-29417 REMOTE CONTROL
particulate of the natural space environment [ASME PAPER 87-WA/HT-13] p 58 A88-51341	Two-phase alkali-metal experiments in reduced gravity	The space and telerobotic concepts of DFVLR rotex
RADIATION EFFECTS	p 67 A88-47969	p 74 A88-42667
Space radiation effects on poly(aryl-ether-ketone) thin films and composites p 65 A88-41547	Fundamental limitations on low gravity fluid gauging	Traction-drive telerobot for space manipulation p 75 A88-42668
RADIATION HARDENING	technologies imposed by orbital mission requirements [AIAA PAPER 88-3402] p 86 A88-53163	Telepresence for space applications
Flight qualification testing of ultrathin solar cells	Microgravity mechanisms and robotics program	[IAF PAPER 88-018] p 77 A88-55320
p 63 A88-34448 RADIATION PRESSURE	p 78 N88-23237	REMOTE HANDLING Operational experience and design recommendations
Effect of solar pressure on the motion and stability of	Base reaction optimization of manipulators with	for teleoperated flight hardware p 78 N88-21489
the system of two inter-connected satellites in an elliptical	redundant kinematics p 78 N88-23238 REDUCED ORDER FILTERS	Space spider crane [NASA-CASE-LAR-13411-1-SB] p 7 N88-23828
orbit p 24 A88-33104 RADIO ANTENNAS	Reduced-order compensation: LQG reduction versus	Mobile remote manipulator system for a tetrahedral
Quasat - A 50,000 km-diameter Quasar probe	optimal projection using a homotopic continuation	truss
n 96 A88-54766	method p 25 A88-34749	[NASA-CASE-MSC-20985-1] p 80 N88-26398

p 96 A88-54766

Radio astronomy from space; Proceedings of the Workshop, Green Bank, WV, Sept. 30-Oct. 2, 1986 p 91 A88-38077

RADIO ASTRONOMY

REDUNDANCY

design

p 29 A88-40773

Analytic redundancy management for systems with appreciable structural dynamics --- for control systems

[AIAA PAPER 88-4269]

REMOTE MANIPULATOR SYSTEM

A formulation for studying dynamics and control of the Space Station based MRMS and its application

p 80 N88-26398

p 38 A88-50398

		OOBOLO! MIDEX
System and concept design of the SSRMS latching end	RIGID STRUCTURES	A joint actuator design for a robotic manipulator
effector Space Station p 15 N88-21204	A formulation for studying dynamics of interconnected	p 77 N88-21232
Operational experience and design recommendations for teleoperated flight hardware p 78 N88-21489	bodies with application [AIAA PAPER 88-4303] p 39 A88-50428	Microgravity mechanisms and robotics program
Dynamics of a flexible orbiting platform with MRMS	A dynamical study of the proposed Space Station type	p 78 N88-23237 Tasks foreseen for space robots and an example of
[ISSN-0285-6808] p 51 N88-24673	configuration	an associated orbital infrastructure p 79 N88-26044
Remote servicing of space systems	[AIAA PAPER 88-4304] p 39 A88-50429	Motion planning for a free-flying robot
p 81 N88-29409 A teleoperated robotic manipulator system for materials	Automatic feedback control of a rigid body for finite	p 80 N88-29378
processing experiment servicing p 82 N88-29410	displacements p 51 N88-24674	Concepts for robot motion primitives required for space station teleoperations p 81 N88-29387
REMOTE SENSORS	Clevis joint for deployable space structures [NASA-CASE-LAR-13898-1] p 19 N88-30130	Personnel occupied woven envelope robot
Polar Platform configuration and servicing	RINGS	p 81 N88-29408
p 1 A88-34552 RENDEZVOUS GUIDANCE	Multi-hundred kilowatt roll ring assembly evaluation	Remote servicing of space systems
Space vehicle approach velocity judgments under	results	P 81 N88-29409 ROBUSTNESS (MATHEMATICS)
simulated visual space conditions p 93 A88-42933	[NASA-TM-100865] p 60 N88-21375	Robust control of flexible structures - A case study
RENDEZVOUS SPACECRAFT	RISK Risk management for the Space Station program	p 29 A88-40489
Tasks of the simulation installations for space flight operations in the operations center for manned space	[IAF PAPER 88-061] p 97 A88-55331	Optimal projection for uncertain systems (OPUS) - A
laboratories p 10 A88-46516	ROBOTICS	unified theory of reduced-order, robust control design p 32 A88-46411
Analytical models for relative motion under constant	Robotic vision/sensing for space applications	Adaptive control of large space structures - Uncertainty
thrust	p 74 A88-42642	estimation and robust control calibration
[AIAA PAPER 88-4300] p 85 A88-50425 REQUIREMENTS	Sensing and perception research for space telerobotics at JPL p 74 A88-42657	p 32 A88-46412
Advanced EVA system design requirements study	at JPL p 74 A88-42657 The space and telerobotic concepts of DFVLR rotex	System identification and control of the truss experiment - A retrospective
p 78 N88-24147	p 74 A88-42667	[AIAA PAPER 88-4152] p 36 A88-50246
RESEARCH AND DEVELOPMENT	Simulation of space manipulator operations (Eurosim)	H(infinity) robust control synthesis for a large space
Operational capabilities of generic advanced launch	p 10 A88-46982	structure p 45 A88-54639
system concepts p 86 A88-52374 Space Station - Home and workplace in orbit	Space Congress, 25th, Cocoa Beach, FL, Apr. 26-29,	A robust control experiment using an optical structure
p 97 A88-55486	1988, Proceedings p 96 A88-52317 Telerobotic Space Station applications	prototype p 45 A88-54640 ROCKET ENGINE DESIGN
With an eye to the future: ESA general studies program	p 76 A88-52323	The Gamma Ray Observatory (GRO) Propulsion
1988	Automation and robotics for experiment operations in	Subsystem
[ESA-SP-1100] p 8 N88-30447	an Enhanced Man Tended Free Flyer (EMTFF)	[AIAA PAPER 88-3051] p 4 A88-44741
RESEARCH FACILITIES The International Space Station complex - Promise and	p 76 A88-52326	25-LBF GO2/GH2 space station thruster
problems p 1 A88-34573	Automation and robotics for the Space Station - The influence of the Advanced Technology Advisory	[AIAA PAPER 88-2793] p 86 A88-53101 ROCKET EXHAUST
RESEARCH MANAGEMENT	Committee p 76 A88-52329	Studies on rocket exhaust plumes and impingement
Space station architectural elements and issues	Systems integration for the Kennedy Space Center	effects related to the Columbus Space Station program:
definition study	(KSC) Robotics Applications Development Laboratory	Executive summary
[NASA-CR-3941] p 12 N88-25371 RESIN MATRIX COMPOSITES	(RADL) p 76 A88-52330 Laboratory facility for flexible structure control	[DFVLR-IB-222-88-A-12] p 88 N88-29862 ROCKET FLIGHT
Graphite thermoplastic composites for spacecraft	experiments p 42 A88-53681	Results from a tethered rocket experiment (Charge-2)
applications p 65 A88-42419	The space station assembly phase: Flight telerobotic	p 57 A88-46804
RESISTOJET ENGINES	servicer feasibility. Volume 2: Methodology and case	ROCKET THRUST
An experimental investigation of the effect of test-cell pressure on the performance of resistojets	study [NASA-CR-182690] p 77 N88-20352	The use of electrodynamic tethers for generating power and thrust in space
	[NASA-CR-182690] p 77 N88-20352	
[AIAA PAPER 88-3286] p 84 A88-44820	The dynamic control of robotic manipulators in space	
[AIAA PAPER 88-3286] p 84 A88-44820 Integration of Space Station propulsion and fluid	The dynamic control of robotic manipulators in space [NASA-CR-182710] p 77 N88-20646	[AAS PAPER 86-366] p 55 A88-35099 ROLL
Integration of Space Station propulsion and fluid systems	[NASA-CR-182710] p 77 N88-20646 Microgravity mechanisms and robotics program	[AAS PAPER 86-366] p 55 A88-35099 ROLL Multi-hundred kilowatt roll ring assembly evaluation
Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492	[NASA-CR-182710] p 77 N88-20646 Microgravity mechanisms and robotics program p 78 N88-23237	[AAS PAPER 86-366] p 55 A88-35099 ROLL Multi-hundred kilowatt roll ring assembly evaluation results
Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 RESONANT FREQUENCIES	[NASA-CR-182710] p 77 N88-20646 Microgravity mechanisms and robotics program p 78 N88-23237 The efficacy of using human myoelectric signals to	[AAS PAPER 86-366] p 55 A88-35099 ROLL Multi-hundred kilowatt roll ring assembly evaluation results [NASA-TM-100865] p 60 N88-21375
Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 RESONANT FREQUENCIES Structural innovations in the Columbus Project - An 11.3 meter optical telescope p 89 A88-34491	[NASA-CR-182710] p 77 N88-20646 Microgravity mechanisms and robotics program p 78 N88-23237	[AAS PAPER 86-366] p 55 A88-35099 ROLL Multi-hundred kilowatt roll ring assembly evaluation results [NASA-TM-100865] p 60 N88-21375 ROOM TEMPERATURE
Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 RESONANT FREQUENCIES Structural innovations in the Columbus Project - An 11.3 meter optical telescope p 89 A88-34491 Interactive structural and controller synthesis for large	[NASA-CR-182710] p 77 N88-20646 Microgravity mechanisms and robotics program p 78 N88-23237 The efficacy of using human myoelectric signals to control the limbs of robots in space [NASA-CR-182901] p 78 N88-25155 Analysis of a closed-kinematic chain robot manipulator	[AAS PAPER 86-366] p 55 A88-35099 ROLL Multi-hundred kilowatt roll ring assembly evaluation results [NASA-TM-100865] p 60 N88-21375 ROOM TEMPERATURE Qualification of room-temperature-curing epoxy adhesives for spacecraft structural applications
Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 RESONANT FREQUENCIES Structural innovations in the Columbus Project - An 11.3 meter optical telescope p 89 A88-34491 Interactive structural and controller synthesis for large spacecraft p 28 A88-35541	[NASA-CR-182710] p 77 N88-20646 Microgravity mechanisms and robotics program p 78 N88-23237 The efficacy of using human myoelectric signals to control the limbs of robots in space [NASA-CR-182901] p 78 N88-25155 Analysis of a closed-kinematic chain robot manipulator [NASA-CR-183031] p 79 N88-25206	[AAS PAPER 86-366] p 55 A88-35099 ROLL Multi-hundred kilowatt roll ring assembly evaluation results [NASA-TM-100865] p 60 N88-21375 ROOM TEMPERATURE Qualification of room-temperature-curing epoxy adhesives for spacecraft structural applications p 66 A88-42440
Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 RESONANT FREQUENCIES Structural innovations in the Columbus Project - An 11.3 meter optical telescope p 89 A88-34491 Interactive structural and controller synthesis for large spacecraft p 28 A88-35541 Dynamic responses of orthotropic plates under moving	[NASA-CR-182710] p 77 N88-20646 Microgravity mechanisms and robotics program p 78 N88-23237 The efficacy of using human myoelectric signals to control the limbs of robots in space [NASA-CR-182901] p 78 N88-25155 Analysis of a closed-kinematic chain robot manipulator [NASA-CR-183031] p 79 N88-25206 Design guidelines for robotically serviceable hardware	[AAS PAPER 86-366] p 55 A88-35099 ROLL Multi-hundred kilowatt roll ring assembly evaluation results [NASA-TM-100865] p 60 N88-21375 ROOM TEMPERATURE Qualification of room-temperature-curing epoxy adhesives for spacecraft structural applications p 66 A88-42440 ROSAT MISSION
Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 RESONANT FREQUENCIES Structural innovations in the Columbus Project - An 11.3 meter optical telescope p 89 A88-34491 Interactive structural and controller synthesis for large spacecraft p 28 A88-35541	[NASA-CR-182710] p 77 N88-20646 Microgravity mechanisms and robotics program p 78 N88-23237 The efficacy of using human myoelectric signals to control the limbs of robots in space [NASA-CR-182901] p 78 N88-25155 Analysis of a closed-kinematic chain robot manipulator [NASA-CR-183031] p 79 N88-25206	[AAS PAPER 86-366] p 55 A88-35099 ROLL Multi-hundred kilowatt roll ring assembly evaluation results [NASA-TM-100865] p 60 N88-21375 ROOM TEMPERATURE Qualification of room-temperature-curing epoxy adhesives for spacecraft structural applications p 66 A88-42440 ROSAT MISSION Some highlights on ROSAT mechanisms
Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 RESONANT FREQUENCIES Structural innovations in the Columbus Project - An 11.3 meter optical telescope p 89 A88-34491 Interactive structural and controller synthesis for large spacecraft p 28 A88-35541 Dynamic responses of orthotropic plates under moving masses p 28 A88-35543 Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892	[NASA-CR-182710] p 77 N88-20646 Microgravity mechanisms and robotics program p 78 N88-23237 The efficacy of using human myoelectric signals to control the limbs of robots in space [NASA-CR-182901] p 78 N88-25155 Analysis of a closed-kinematic chain robot manipulator [NASA-CR-183031] p 79 N88-25206 Design guidelines for robotically serviceable hardware [NASA-TM-100700] p 79 N88-25472 Simulation of space manipulator operations (EUROSIM)	[AAS PAPER 86-366] p 55 A88-35099 ROLL Multi-hundred kilowatt roll ring assembly evaluation results [NASA-TM-100865] p 60 N88-21375 ROOM TEMPERATURE Qualification of room-temperature-curing epoxy adhesives for spacecraft structural applications p 66 A88-42440 ROSAT MISSION Some highlights on ROSAT mechanisms p 14 N88-21195 ROTATING BODIES
Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 RESONANT FREQUENCIES Structural innovations in the Columbus Project - An 11.3 meter optical telescope p 89 A88-34491 Interactive structural and controller synthesis for large spacecraft p 28 A88-35541 Dynamic responses of orthotropic plates under moving masses p 28 A88-35543 Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892 Identification of multiple-input modal parameters from	[NASA-CR-182710] p 77 N88-20646 Microgravity mechanisms and robotics program	[AAS PAPER 86-366] p 55 A88-35099 ROLL Multi-hundred kilowatt roll ring assembly evaluation results [NASA-TM-100865] p 60 N88-21375 ROOM TEMPERATURE Qualification of room-temperature-curing epoxy adhesives for spacecraft structural applications p 66 A88-42440 ROSAT MISSION Some highlights on ROSAT mechanisms p 14 N88-21195 ROTATING BODIES Rotational maneuver and stabilization of an elastic
Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 RESONANT FREQUENCIES Structural innovations in the Columbus Project - An 11.3 meter optical telescope p 89 A88-34491 Interactive structural and controller synthesis for large spacecraft p 28 A88-35541 Dynamic responses of orthotropic plates under moving masses p 28 A88-35543 Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892 Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897	[NASA-CR-182710] p 77 N88-20646 Microgravity mechanisms and robotics program p 78 N88-23237 The efficacy of using human myoelectric signals to control the limbs of robots in space [NASA-CR-182901] p 78 N88-25155 Analysis of a closed-kinematic chain robot manipulator [NASA-CR-183031] p 79 N88-25206 Design guidelines for robotically serviceable hardware [NASA-TM-100700] p 79 N88-25472 Simulation of space manipulator operations (EUROSIM) [NLR-MP-87017-U] p 80 N88-26678 Space station as a vital focus for advancing the	[AAS PAPER 86-366] p 55 A88-35099 ROLL Multi-hundred kilowatt roll ring assembly evaluation results [NASA-TM-100865] p 60 N88-21375 ROOM TEMPERATURE Qualification of room-temperature-curing epoxy adhesives for spacecraft structural applications
Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 RESONANT FREQUENCIES Structural innovations in the Columbus Project - An 11.3 meter optical telescope p 89 A88-34491 Interactive structural and controller synthesis for large spacecraft p 28 A88-35541 Dynamic responses of orthotropic plates under moving masses p 28 A88-35543 Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892 Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 Spatial distribution of model error based on	[NASA-CR-182710] p 77 N88-20646 Microgravity mechanisms and robotics program p 78 N88-23237 The efficacy of using human myoelectric signals to control the limbs of robots in space [NASA-CR-182901] p 78 N88-25155 Analysis of a closed-kinematic chain robot manipulator [NASA-CR-183031] p 79 N88-25206 Design guidelines for robotically serviceable hardware [NASA-TM-100700] p 79 N88-25472 Simulation of space manipulator operations (EUROSIM) [NLR-MP-87017-U] p 80 N88-26678 Space station as a vital focus for advancing the technologies of automation and robotics	AAS PAPER 86-366 p 55 A88-35099
Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 RESONANT FREQUENCIES Structural innovations in the Columbus Project - An 11.3 meter optical telescope p 89 A88-34491 Interactive structural and controller synthesis for large spacecraft p 28 A88-35541 Dynamic responses of orthotropic plates under moving masses p 28 A88-35543 Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50897 Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 Spatial distribution of model error based on analytical/experimental frequency discrepancies p 41 A88-50899	[NASA-CR-182710] p 77 N88-20646 Microgravity mechanisms and robotics program p 78 N88-23237 The efficacy of using human myoelectric signals to control the limbs of robots in space [NASA-CR-182901] p 78 N88-25155 Analysis of a closed-kinematic chain robot manipulator [NASA-CR-183031] p 79 N88-25206 Design guidelines for robotically serviceable hardware [NASA-TM-100700] p 79 N88-25472 Simulation of space manipulator operations (EUROSIM) [NLR-MP-87017-U] p 80 N88-26678 Space station as a vital focus for advancing the	[AAS PAPER 86-366] p 55 A88-35099 ROLL Multi-hundred kilowatt roll ring assembly evaluation results [NASA-TM-100865] p 60 N88-21375 ROOM TEMPERATURE Qualification of room-temperature-curing epoxy adhesives for spacecraft structural applications p 66 A88-42440 ROSAT MISSION Some highlights on ROSAT mechanisms p 14 N88-21195 ROTATING BODIES Rotational maneuver and stabilization of an elastic spacecraft spacecraft p 26 A88-34794 Secular effects in the translational-rotational motion of an orbital station with artificial gravity p 90 A88-36123
Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 RESONANT FREQUENCIES Structural innovations in the Columbus Project - An 11.3 meter optical telescope p 89 A88-34491 Interactive structural and controller synthesis for large spacecraft p 28 A88-35541 Dynamic responses of orthotropic plates under moving masses p 28 A88-35543 Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892 Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 Spatial distribution of model error based on analytical/experimental frequency discrepancies p 41 A88-50899 Laser sensing for identification and control of distributed	[NASA-CR-182710] p 77 N88-20646 Microgravity mechanisms and robotics program p 78 N88-23237 The efficacy of using human myoelectric signals to control the limbs of robots in space [NASA-CR-182901] p 78 N88-25155 Analysis of a closed-kinematic chain robot manipulator [NASA-CR-183031] p 79 N88-25206 Design guidelines for robotically serviceable hardware [NASA-TM-100700] p 79 N88-25472 Simulation of space manipulator operations (EUROSIM) [NLR-MP-87017-U] p 80 N88-26678 Space station as a vital focus for advancing the technologies of automation and robotics [IAF-86-62] p 80 N88-29352 Machine vision for real time orbital operations p 80 N88-29367	AAS PAPER 86-366 p 55 A88-35099
Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 RESONANT FREQUENCIES Structural innovations in the Columbus Project - An 11.3 meter optical telescope p 89 A88-34491 Interactive structural and controller synthesis for large spacecraft p 28 A88-35541 Dynamic responses of orthotropic plates under moving masses Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892 Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 Spatial distribution of model error based on analytical/experimental frequency discrepancies p 41 A88-50899 Laser sensing for identification and control of distributed parameter systems	[NASA-CR-182710] p 77 N88-20646 Microgravity mechanisms and robotics program	[AAS PAPER 86-366] p 55 A88-35099 ROLL Multi-hundred kilowatt roll ring assembly evaluation results [NASA-TM-100865] p 60 N88-21375 ROOM TEMPERATURE Qualification of room-temperature-curing epoxy adhesives for spacecraft structural applications p 66 A88-42440 ROSAT MISSION Some highlights on ROSAT mechanisms p 14 N88-21195 ROTATING BODIES Rotational maneuver and stabilization of an elastic spacecraft Secular effects in the translational-rotational motion of an orbital station with artificial gravity p 90 A88-36123 Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421
Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 RESONANT FREQUENCIES Structural innovations in the Columbus Project - An 11.3 meter optical telescope p 89 A88-34491 Interactive structural and controller synthesis for large spacecraft p 28 A88-35541 Dynamic responses of orthotropic plates under moving masses p 28 A88-35543 Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892 Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 Spatial distribution of model error based on analytical/experimental frequency discrepancies p 41 A88-50899 Laser sensing for identification and control of distributed	[NASA-CR-182710] p 77 N88-20646 Microgravity mechanisms and robotics program p 78 N88-23237 The efficacy of using human myoelectric signals to control the limbs of robots in space [NASA-CR-182901] p 78 N88-25155 Analysis of a closed-kinematic chain robot manipulator [NASA-CR-183031] p 79 N88-25206 Design guidelines for robotically serviceable hardware [NASA-TM-100700] p 79 N88-25472 Simulation of space manipulator operations (EUROSIM) [NLR-MP-87017-U] p 80 N88-26678 Space station as a vital focus for advancing the technologies of automation and robotics [IAF-86-62] p 80 N88-29352 Machine vision for real time orbital operations p 80 N88-29367 A plan for time-phased incorporation of automation and robotics on the US space station p 80 N88-29377	[AAS PAPER 86-366] p 55 A88-35099 ROLL Multi-hundred kilowatt roll ring assembly evaluation results [NASA-TM-100865] p 60 N88-21375 ROOM TEMPERATURE Qualification of room-temperature-curing epoxy adhesives for spacecraft structural applications p 66 A88-42440 ROSAT MISSION Some highlights on ROSAT mechanisms p 14 N88-21195 ROTATING BODIES Rotational maneuver and stabilization of an etastic spacecraft p 26 A88-34794 Secular effects in the translational-rotational motion of an orbital station with artificial gravity p 90 A88-36123 Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421
Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 RESONANT FREQUENCIES Structural innovations in the Columbus Project - An 11.3 meter optical telescope p 89 A88-34491 Interactive structural and controller synthesis for large spacecraft p 28 A88-35541 Dynamic responses of orthotropic plates under moving masses p 28 A88-35543 Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892 Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 Spatial distribution of model error based on analytical/experimental frequency discrepancies p 41 A88-50899 Laser sensing for identification and control of distributed parameter systems [AD-A195886] p 54 N88-30124	[NASA-CR-182710] p 77 N88-20646 Microgravity mechanisms and robotics program	[AAS PAPER 86-366] p 55 A88-35099 ROLL Multi-hundred kilowatt roll ring assembly evaluation results [NASA-TM-100865] p 60 N88-21375 ROOM TEMPERATURE Qualification of room-temperature-curing epoxy adhesives for spacecraft structural applications p 66 A88-42440 ROSAT MISSION Some highlights on ROSAT mechanisms p 14 N88-21195 ROTATING BODIES Rotational maneuver and stabilization of an elastic spacecraft p 26 A88-34794 Secular effects in the translational-rotational motion of an orbital station with artificial gravity p 90 A88-36123 Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 ROTATING FLUIDS Development of a rotary fluid transfer coupling and
Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 RESONANT FREQUENCIES Structural innovations in the Columbus Project - An 11.3 meter optical telescope p 89 A88-34491 Interactive structural and controller synthesis for large spacecraft p 28 A88-35541 Dynamic responses of orthotropic plates under moving masses p 28 A88-35543 Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892 Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 Spatial distribution of model error based on analytical/experimental frequency discrepancies p 41 A88-50899 Laser sensing for identification and control of distributed parameter systems [AD-A195886] p 54 N88-30124 RESOURCES MANAGEMENT Optimal use of human and machine resources for Space Station assembly operations	[NASA-CR-182710] p 77 N88-20646 Microgravity mechanisms and robotics program p 78 N88-23237 The efficacy of using human myoelectric signals to control the limbs of robots in space [NASA-CR-182001] p 78 N88-25155 Analysis of a closed-kinematic chain robot manipulator [NASA-CR-183031] p 79 N88-25206 Design guidelines for robotically serviceable hardware [NASA-TM-100700] p 79 N88-25472 Simulation of space manipulator operations (EUROSIM) [NLR-MP-87017-U] p 80 N88-26678 Space station as a vital focus for advancing the technologies of automation and robotics [IAF-86-62] p 80 N88-29352 Machine vision for real time orbital operations p 80 N88-29377 A plan for time-phased incorporation of automation and robotics on the US space station p 80 N88-29377 The use of computer graphic simulation in the development of robotic systems p 81 N88-29388 A teleoperated robotic manipulator system for materials	[AAS PAPER 86-366] p 55 A88-35099 ROLL Multi-hundred kilowatt roll ring assembly evaluation results [NASA-TM-100865] p 60 N88-21375 ROOM TEMPERATURE Qualification of room-temperature-curing epoxy adhesives for spacecraft structural applications p 66 A88-42440 ROSAT MISSION Some highlights on ROSAT mechanisms p 14 N88-21195 ROTATING BODIES Rotational maneuver and stabilization of an etastic spacecraft p 26 A88-34794 Secular effects in the translational-rotational motion of an orbital station with artificial gravity p 90 A88-36123 Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421
Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 RESONANT FREQUENCIES Structural innovations in the Columbus Project - An 11.3 meter optical telescope p 89 A88-34491 Interactive structural and controller synthesis for large spacecraft p 28 A88-35541 Dynamic responses of orthotropic plates under moving masses p 28 A88-35543 Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892 Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 Spatial distribution of model error based on analytical/experimental frequency discrepancies p 41 A88-50899 Laser sensing for identification and control of distributed parameter systems [AD-A195886] p 54 N88-30124 RESOURCES MANAGEMENT Optimal use of human and machine resources for Space Station assembly operations [AIAA PAPER 88-3498] p 75 A88-42903	[NASA-CR-182710] p 77 N88-20646 Microgravity mechanisms and robotics program p 78 N88-23237 The efficacy of using human myoelectric signals to control the limbs of robots in space [NASA-CR-182901] p 78 N88-25155 Analysis of a closed-kinematic chain robot manipulator [NASA-CR-183031] p 79 N88-25206 Design guidelines for robotically serviceable hardware [NASA-TM-100700] p 79 N88-25472 Simulation of space manipulator operations (EUROSIM) [NLR-MP-87017-U] p 80 N88-26678 Space station as a vital focus for advancing the technologies of automation and robotics [IAF-86-62] machine vision for real time orbital operations p 80 N88-29352 Machine vision for real time orbital operations p 80 N88-29377 The use of computer graphic simulation in the development of robotic systems A teleoperated robotic manipulator system for materials processing experiment servicing p 82 N88-29410	AAS PAPER 86-366 p 55 A88-35099
Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 RESONANT FREQUENCIES Structural innovations in the Columbus Project - An 11.3 meter optical telescope p 89 A88-34491 Interactive structural and controller synthesis for large spacecraft p 28 A88-35541 Page p 28 A88-35541 Dynamic responses of orthotropic plates under moving masses Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892 Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50892 Spatial distribution of model error based on analytical/experimental frequency discrepancies p 41 A88-50899 Laser sensing for identification and control of distributed parameter systems [AD-A195886] p 54 N88-30124 RESOURCES MANAGEMENT Optimal use of human and machine resources for Space Station assembly operations [AIAA PAPER 88-3498] p 75 A88-42903 A scheduling and resource management system for	[NASA-CR-182710] p 77 N88-20646 Microgravity mechanisms and robotics program	[AAS PAPER 86-366] p 55 A88-35099 ROLL Multi-hundred kilowatt roll ring assembly evaluation results [NASA-TM-100865] p 60 N88-21375 ROOM TEMPERATURE Qualification of room-temperature-curing epoxy adhesives for spacecraft structural applications p 66 A88-42440 ROSAT MISSION Some highlights on ROSAT mechanisms p 14 N88-21195 ROTATING BODIES Rotational maneuver and stabilization of an elastic spacecraft p 26 A88-34794 Secular effects in the translational-rolational motion of an orbital station with artificial gravity p 90 A88-36123 Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 ROTATING FLUIDS Development of a rotary fluid transfer coupling and support mechanism for space station p 18 N88-21493 ROTATION Some operational aspects of a rotating
Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 RESONANT FREQUENCIES Structural innovations in the Columbus Project - An 11.3 meter optical telescope p 89 A88-34491 Interactive structural and controller synthesis for large spacecraft p 28 A88-35541 Dynamic responses of orthotropic plates under moving masses p 28 A88-35543 Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892 Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 Spatial distribution of model error based on analytical/experimental frequency discrepancies p 41 A88-50899 Laser sensing for identification and control of distributed parameter systems [AD-A195886] p 54 N88-30124 RESOURCES MANAGEMENT Optimal use of human and machine resources for Space Station assembly operations [AIAA PAPER 88-3498] p 75 A88-42903 A scheduling and resource management system for space applications p 101 N88-29383	[NASA-CR-182710] p 77 N88-20646 Microgravity mechanisms and robotics program	[AAS PAPER 86-366] p 55 A88-35099 ROLL Multi-hundred kilowatt roll ring assembly evaluation results [NASA-TM-100865] p 60 N88-21375 ROOM TEMPERATURE Qualification of room-temperature-curing epoxy adhesives for spacecraft structural applications p 66 A88-42440 ROSAT MISSION Some highlights on ROSAT mechanisms p 14 N88-21195 ROTATING BODIES Rotational maneuver and stabilization of an elastic spacecraft Secular effects in the translational-rotational motion of an orbital station with artificial gravity p 90 A88-36123 Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 ROTATING FLUIDS Development of a rotary fluid transfer coupling and support mechanism for space station p 18 N88-21493 ROTATION Some operational aspects of a rotating advanced-technology space station for the year 2025
Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 RESONANT FREQUENCIES Structural innovations in the Columbus Project - An 11.3 meter optical telescope p 89 A88-34491 Interactive structural and controller synthesis for large spacecraft p 28 A88-35541 Page p 28 A88-35541 Dynamic responses of orthotropic plates under moving masses Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892 Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50892 Spatial distribution of model error based on analytical/experimental frequency discrepancies p 41 A88-50899 Laser sensing for identification and control of distributed parameter systems [AD-A195886] p 54 N88-30124 RESOURCES MANAGEMENT Optimal use of human and machine resources for Space Station assembly operations [AIAA PAPER 88-3498] p 75 A88-42903 A scheduling and resource management system for	[NASA-CR-182710] p 77 N88-20646 Microgravity mechanisms and robotics program	[AAS PAPER 86-366] p 55 A88-35099 ROLL Multi-hundred kilowatt roll ring assembly evaluation results [NASA-TM-100865] p 60 N88-21375 ROOM TEMPERATURE Qualification of room-temperature-curing epoxy adhesives for spacecraft structural applications p 66 A88-42440 ROSAT MISSION Some highlights on ROSAT mechanisms p 14 N88-21195 ROTATING BODIES Rotational maneuver and stabilization of an elastic spacecraft p 26 A88-34794 Secular effects in the translational-rolational motion of an orbital station with artificial gravity p 90 A88-36123 Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 ROTATING FLUIDS Development of a rotary fluid transfer coupling and support mechanism for space station p 18 N88-21493 ROTATION Some operational aspects of a rotating
Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 RESONANT FREQUENCIES Structural innovations in the Columbus Project - An 11.3 meter optical telescope p 89 A88-34491 Interactive structural and controller synthesis for large spacecraft p 28 A88-35541 Poynamic responses of orthotropic plates under moving masses p 28 A88-35543 Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892 Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50892 Identification of model error based on analytical/experimental frequency discrepancies p 41 A88-50899 Laser sensing for identification and control of distributed parameter systems [AD-A195886] p 54 N88-30124 RESOURCES MANAGEMENT Optimal use of human and machine resources for Space Station assembly operations [AIAA PAPER 88-3498] p 75 A88-42903 A scheduling and resource management system for space applications p 101 N88-29383 Intelligent resource management for local area networks: Approach and evolution p 81 N88-29385	[NASA-CR-182710] p 77 N88-20646 Microgravity mechanisms and robotics program	[AAS PAPER 86-366] p 55 A88-35099 ROLL Multi-hundred kilowatt roll ring assembly evaluation results [NASA-TM-100865] p 60 N88-21375 ROOM TEMPERATURE Qualification of room-temperature-curing epoxy adhesives for spacecraft structural applications p 66 A88-42440 ROSAT MISSION Some highlights on ROSAT mechanisms p 14 N88-21195 ROTATING BODIES Rotational maneuver and stabilization of an elastic spacecraft p 26 A88-34794 Secular effects in the translational-rotational motion of an orbital station with artificial gravity p 90 A88-36123 Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 ROTATING FLUIDS Development of a rotary fluid transfer coupling and support mechanism for space station p 18 N88-21493 ROTATION Some operational aspects of a rotating advanced-technology space station for the year 2025 p 8 N88-26397
Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 RESONANT FREQUENCIES Structural innovations in the Columbus Project - An 11.3 meter optical telescope p 89 A88-34491 Interactive structural and controller synthesis for large spacecraft p 28 A88-35541 Dynamic responses of orthotropic plates under moving masses p 28 A88-35543 Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892 Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 Spatial distribution of model error based on analytical/experimental frequency discrepancies p 41 A88-50899 Laser sensing for identification and control of distributed parameter systems [AD-A195886] p 54 N88-30124 RESOURCES MANAGEMENT Optimal use of human and machine resources for Space Station assembly operations [AIAA PAPER 88-3498] p 75 A88-42903 A scheduling and resource management system for space applications p 101 N88-29383 Intelligent resource management for local area networks: Approach and evolution p 81 N88-29385 RESPONSE TIME (COMPUTERS) Concepts for robot motion primitives required for space	[NASA-CR-182710] p 77 N88-20646 Microgravity mechanisms and robotics program p 78 N88-23237 The efficacy of using human myoelectric signals to control the limbs of robots in space [NASA-CR-182901] p 78 N88-25155 Analysis of a closed-kinematic chain robot manipulator [NASA-CR-183031] p 79 N88-25206 Design guidelines for robotically serviceable hardware [NASA-TM-100700] p 79 N88-25472 Simulation of space manipulator operations (EUROSIM) [NLR-MP-87017-U] p 80 N88-26678 Space station as a vital focus for advancing the technologies of automation and robotics [IAF-86-62] p 80 N88-29352 Machine vision for real time orbital operations p 80 N88-29377 The use of computer graphic simulation in the development of robotic systems p 81 N88-29377 The use of computer graphic simulation in the development of robotic systems p 81 N88-29388 A teleoperated robotic manipulator system for materials processing experiment servicing p 82 N88-29410 Study of robotics spacecraft servicing and assembly in space. Volume 1: Executive summary [ESA-CR(P)-2612-VOL-1] p 82 N88-29839 ROBOTS Concepts and issues for a space telerobot [AAS PAPER 86-302] p 73 A88-35111	[AAS PAPER 86-366] p 55 A88-35099 ROLL Multi-hundred kilowatt roll ring assembly evaluation results [NASA-TM-100865] p 60 N88-21375 ROOM TEMPERATURE Qualification of room-temperature-curing epoxy adhesives for spacecraft structural applications p 66 A88-42440 ROSAT MISSION Some highlights on ROSAT mechanisms p 14 N88-21195 ROTATING BODIES Rotational maneuver and stabilization of an elastic spacecraft Secular effects in the translational-rotational motion of an orbital station with artificial gravity p 90 A88-36123 Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 ROTATING FLUIDS Development of a rotary fluid transfer coupling and support mechanism for space station p 18 N88-21493 ROTATION Some operational aspects of a rotating advanced-technology space station for the year 2025
Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 RESONANT FREQUENCIES Structural innovations in the Columbus Project - An 11.3 meter optical telescope p 89 A88-34491 Interactive structural and controller synthesis for large spacecraft p 28 A88-35541 Dynamic responses of orthotropic plates under moving masses p 28 A88-35543 Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892 Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 Spatial distribution of model error based on analytical/experimental frequency discrepancies p 41 A88-50899 Laser sensing for identification and control of distributed parameter systems [AD-A195886] p 54 N88-30124 RESOURCES MANAGEMENT Optimal use of human and machine resources for Space Station assembly operations [AIAA PAPER 88-3498] p 75 A88-42903 A scheduling and resource management system for space applications p 101 N88-29383 Intelligent resource management for local area networks: Approach and evolution p 81 N88-29385 RESPONSE TIME (COMPUTERS) Concepts for robot motion primitives required for space station teleoperations p 81 N88-29387	[NASA-CR-182710] p 77 N88-20646 Microgravity mechanisms and robotics program	[AAS PAPER 86-366] p 55 A88-35099 ROLL Multi-hundred kilowatt roll ring assembly evaluation results [NASA-TM-100865] p 60 N88-21375 ROOM TEMPERATURE Qualification of room-temperature-curing epoxy adhesives for spacecraft structural applications p 66 A88-42440 ROSAT MISSION Some highlights on ROSAT mechanisms p 14 N88-21195 ROTATING BODIES Rotational maneuver and stabilization of an elastic spacecraft p 26 A88-34794 Secular effects in the translational-rotational motion of an orbital station with artificial gravity p 90 A88-36123 Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 ROTATING FLUIDS Development of a rotary fluid transfer coupling and support mechanism for space station p 18 N88-21493 ROTATION Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] S N88-26397
Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 RESONANT FREQUENCIES Structural innovations in the Columbus Project - An 11.3 meter optical telescope p 89 A88-34491 Interactive structural and controller synthesis for large spacecraft p 28 A88-35541 Dynamic responses of orthotropic plates under moving masses p 28 A88-35543 Frequency optimization of repetitive lattice bearn-like structures using a continuum model p 41 A88-50892 Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 Spatial distribution of model error based on analytical/experimental frequency discrepancies p 41 A88-50899 Laser sensing for identification and control of distributed parameter systems [AD-A195886] p 54 N88-30124 RESOURCES MANAGEMENT Optimal use of human and machine resources for Space Station assembly operations [AIAA PAPER 88-3498] p 75 A88-42903 A scheduling and resource management system for space applications p 101 N88-29385 Intelligent resource management for local area networks: Approach and evolution p 81 N88-29385 RESPONSE TIME (COMPUTERS) Concepts for robot motion primitives required for space station teleoperations p 81 N88-29387	[NASA-CR-182710] p 77 N88-20646 Microgravity mechanisms and robotics program p 78 N88-23237 The efficacy of using human myoelectric signals to control the limbs of robots in space [NASA-CR-182901] p 78 N88-25155 Analysis of a closed-kinematic chain robot manipulator [NASA-CR-183031] p 79 N88-25206 Design guidelines for robotically serviceable hardware [NASA-TM-100700] p 79 N88-25472 Simulation of space manipulator operations (EUROSIM) [NLR-MP-87017-U] p 80 N88-26678 Space station as a vital focus for advancing the technologies of automation and robotics [IAF-86-62] p 80 N88-29352 Machine vision for real time orbital operations p 80 N88-29377 The use of computer graphic simulation in the development of robotic systems p 81 N88-29377 The use of computer graphic simulation in the development of robotic systems p 81 N88-29388 A teleoperated robotic manipulator system for materials processing experiment servicing p 82 N88-29410 Study of robotics spacecraft servicing and assembly in space. Volume 1: Executive summary [ESA-CR(P)-2612-VOL-1] p 82 N88-29839 ROBOTS Concepts and issues for a space telerobot [AAS PAPER 86-302] p 73 A88-35111	[AAS PAPER 86-366] p 55 A88-35099 ROLL Multi-hundred kilowatt roll ring assembly evaluation results [NASA-TM-100865] p 60 N88-21375 ROOM TEMPERATURE Qualification of room-temperature-curing epoxy adhesives for spacecraft structural applications p 66 A88-42440 ROSAT MISSION Some highlights on ROSAT mechanisms p 14 N88-21195 ROTATING BODIES Rotational maneuver and stabilization of an elastic spacecraft p 26 A88-34794 Secular effects in the translational-rolational motion of an orbital station with artificial gravity p 90 A88-36123 Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 ROTATING FLUIDS Development of a rotary fluid transfer coupling and support mechanism for space station p 18 N88-21493 ROTATION Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] S GLASS
Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 RESONANT FREQUENCIES Structural innovations in the Columbus Project - An 11.3 meter optical telescope p 89 A88-34491 Interactive structural and controller synthesis for large spacecraft p 28 A88-35541 Dynamic responses of orthotropic plates under moving masses p 28 A88-35543 Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892 Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 Spatial distribution of model error based on analytical/experimental frequency discrepancies p 41 A88-50899 Laser sensing for identification and control of distributed parameter systems [AD-A195886] p 54 N88-30124 RESOURCES MANAGEMENT Optimal use of human and machine resources for Space Station assembly operations [AIAA PAPER 88-3498] p 75 A88-42903 A scheduling and resource management system for space applications p 101 N88-29383 Intelligent resource management for local area networks: Approach and evolution p 81 N88-29385 RESPONSE TIME (COMPUTERS) Concepts for robot motion primitives required for space station teleoperations p 81 N88-29387	[NASA-CR-182710] p 77 N88-20646 Microgravity mechanisms and robotics program	[AAS PAPER 86-366] p 55 A88-35099 ROLL Multi-hundred kilowatt roll ring assembly evaluation results [NASA-TM-100865] p 60 N88-21375 ROOM TEMPERATURE Qualification of room-temperature-curing epoxy adhesives for spacecraft structural applications p 66 A88-42440 ROSAT MISSION Some highlights on ROSAT mechanisms p 14 N88-21195 ROTATING BODIES Rotational maneuver and stabilization of an elastic spacecraft p 26 A88-34794 Secular effects in the translational-rotational motion of an orbital station with artificial gravity p 90 A88-36123 Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 ROTATING FLUIDS Development of a rotary fluid transfer coupling and support mechanism for space station p 18 N88-21493 ROTATION Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397
Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 RESONANT FREQUENCIES Structural innovations in the Columbus Project - An 11.3 meter optical telescope p 89 A88-34491 Interactive structural and controller synthesis for large spacecraft p 28 A88-35541 Dynamic responses of orthotropic plates under moving masses Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892 Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 Spatial distribution of model error based on analytical/experimental frequency discrepancies p 41 A88-50899 Laser sensing for identification and control of distributed parameter systems [AD-A195886] p 54 N88-30124 RESOURCES MANAGEMENT Optimal use of human and machine resources for Space Station assembly operations [AIAA PAPER 88-3498] p 75 A88-42903 A scheduling and resource management system for space applications p 101 N88-29383 Intelligent resource management for local area networks: Approach and evolution p 81 N88-29385 RESPONSE TIME (COMPUTERS) Concepts for robot motion primitives required for space station teleoperations p 81 N88-29387 RETRACTABLE EQUIPMENT The EURECA antenna deployment and retraction	[NASA-CR-182710] p 77 N88-20646 Microgravity mechanisms and robotics program	ASS PAPER 86-366
Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 RESONANT FREQUENCIES Structural innovations in the Columbus Project - An 11.3 meter optical telescope p 89 A88-34491 Interactive structural and controller synthesis for large spacecraft p 28 A88-35541 Dynamic responses of orthotropic plates under moving masses p 28 A88-35543 Frequency optimization of repetitive lattice bearn-like structures using a continuum model p 41 A88-50892 Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 Spatial distribution of model error based on analytical/experimental frequency discrepancies p 41 A88-50899 Laser sensing for identification and control of distributed parameter systems [AD-A195886] p 54 N88-30124 RESOURCES MANAGEMENT Optimal use of human and machine resources for Space Station assembly operations [AIAA PAPER 88-3498] p 75 A88-42903 A scheduling and resource management system for space applications p 101 N88-29383 Intelligent resource management for local area networks: Approach and evolution p 81 N88-29385 RESPONSE TIME (COMPUTERS) Concepts for robot motion primitives required for space station teleoperations p 81 N88-29387 RETRACTABLE EQUIPMENT The EURECA antenna deployment and retraction mechanisms p 16 N88-21225	[NASA-CR-182710] p 77 N88-20646 Microgravity mechanisms and robotics program p 78 N88-23237 The efficacy of using human myoelectric signals to control the limbs of robots in space [NASA-CR-182001] p 78 N88-25155 Analysis of a closed-kinematic chain robot manipulator [NASA-CR-183031] p 79 N88-25206 Design guidelines for robotically serviceable hardware [NASA-TM-100700] p 79 N88-25472 Simulation of space manipulator operations [EUROSIM] [NLR-MP-87017-U] p 80 N88-26678 Space station as a vital focus for advancing the technologies of automation and robotics [IAF-86-62] p 80 N88-29352 Machine vision for real time orbital operations p 80 N88-29377 The use of computer graphic simulation in the development of robotic systems p 81 N88-29377 The use of computer graphic simulation in the development of robotic systems p 81 N88-29388 A teleoperated robotic manipulator system for materials processing experiment servicing p 82 N88-29410 Study of robotics spacecraft servicing and assembly in space. Volume 1: Executive summary [ESA-CR(P)-2612-VOL-1] p 82 N88-29839 ROBOTS Concepts and issues for a space telerobot [AAS PAPER 86-302] p 73 A88-35111 Telerobotic control of a dextrous manipulator using master and six-DOF hand-controllers for space assembly and servicing tasks Human-telerobot interactions - Information, control, and mental models Robot path planning in space p 74 A88-42328	[AAS PAPER 86-366] p 55 A88-35099 ROLL Multi-hundred kilowatt roll ring assembly evaluation results [NASA-TM-100865] p 60 N88-21375 ROOM TEMPERATURE Qualification of room-temperature-curing epoxy adhesives for spacecraft structural applications p 66 A88-42440 ROSAT MISSION Some highlights on ROSAT mechanisms p 14 N88-21195 ROTATING BODIES Rotational maneuver and stabilization of an elastic spacecraft p 26 A88-34794 Secular effects in the translational-rotational motion of an orbital station with artificial gravity p 90 A88-36123 Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 ROTATING FLUIDS Development of a rotary fluid transfer coupling and support mechanism for space station p 18 N88-21493 ROTATION Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397
Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 RESONANT FREQUENCIES Structural innovations in the Columbus Project - An 11.3 meter optical telescope p 89 A88-34491 Interactive structural and controller synthesis for large spacecraft p 28 A88-35541 Dynamic responses of orthotropic plates under moving masses Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892 Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 Spatial distribution of model error based on analytical/experimental frequency discrepancies p 41 A88-50899 Laser sensing for identification and control of distributed parameter systems [AD-A195886] p 54 N88-30124 RESOURCES MANAGEMENT Optimal use of human and machine resources for Space Station assembly operations [AIAA PAPER 88-3498] p 75 A88-42903 A scheduling and resource management system for space applications p 101 N88-29383 Intelligent resource management for local area networks: Approach and evolution p 81 N88-29385 RESPONSE TIME (COMPUTERS) Concepts for robot motion primitives required for space station teleoperations p 16 N88-29387 RETRACTABLE EQUIPMENT The EURECA antenna deployment and retraction mechanisms p 16 N88-21473 Motion synchronization of a mechanism to deploy and	[NASA-CR-182710] p 77 N88-20646 Microgravity mechanisms and robotics program	ASS PAPER 86-366 p 55 A88-35099
Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 RESONANT FREQUENCIES Structural innovations in the Columbus Project - An 11.3 meter optical telescope p 89 A88-34491 Interactive structural and controller synthesis for large spacecraft p 28 A88-35541 Dynamic responses of orthotropic plates under moving masses p 28 A88-35543 Frequency optimization of repetitive lattice bearn-like structures using a continuum model p 41 A88-50892 Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 Spatial distribution of model error based on analytical/experimental frequency discrepancies p 41 A88-50899 Laser sensing for identification and control of distributed parameter systems [AD-A195886] p 54 N88-30124 RESOURCES MANAGEMENT Optimal use of human and machine resources for Space Station assembly operations [AIAA PAPER 88-3498] p 75 A88-42903 A scheduling and resource management system for space applications p 101 N88-29383 Intelligent resource management for local area networks: Approach and evolution p 81 N88-29385 RESPONSE TIME (COMPUTERS) Concepts for robot motion primitives required for space station teleoperations p 16 N88-29387 RETRACTABLE EQUIPMENT The EURECA antenna deployment and retraction mechanisms p 16 N88-21225 The X-beam as a deployable boom for the space station a truss beam p 77 N88-21474	[NASA-CR-182710] p 77 N88-20646 Microgravity mechanisms and robotics program p 78 N88-23237 The efficacy of using human myoelectric signals to control the limbs of robots in space [NASA-CR-182001] p 78 N88-25155 Analysis of a closed-kinematic chain robot manipulator [NASA-CR-183031] p 79 N88-25206 Design guidelines for robotically serviceable hardware [NASA-TM-100700] p 79 N88-25472 Simulation of space manipulator operations [EUROSIM] [NLR-MP-87017-U] p 80 N88-26678 Space station as a vital focus for advancing the technologies of automation and robotics [IAF-86-62] p 80 N88-29352 Machine vision for real time orbital operations p 80 N88-29377 The use of computer graphic simulation in the development of robotic systems p 81 N88-29377 The use of computer graphic simulation in the development of robotic systems p 81 N88-29388 A teleoperated robotic manipulator system for materials processing experiment servicing p 82 N88-29410 Study of robotics spacecraft servicing and assembly in space. Volume 1: Executive summary [ESA-CR(P)-2612-VOL-1] p 82 N88-29839 ROBOTS Concepts and issues for a space telerobot [AAS PAPER 86-302] p 73 A88-35111 Telerobotic control of a dextrous manipulator using master and six-DOF hand-controllers for space assembly and servicing tasks Human-telerobot interactions - Information, control, and mental models Robot path planning in space p 74 A88-42328	[AAS PAPER 86-366] p 55 A88-35099 ROLL Multi-hundred kilowatt roll ring assembly evaluation results [NASA-TM-100865] p 60 N88-21375 ROOM TEMPERATURE Qualification of room-temperature-curing epoxy adhesives for spacecraft structural applications p 66 A88-42440 ROSAT MISSION Some highlights on ROSAT mechanisms p 14 N88-21195 ROTATING BODIES Rotational maneuver and stabilization of an elastic spacecraft p 26 A88-34794 Secular effects in the translational-rotational motion of an orbital station with artificial gravity p 90 A88-36123 Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 ROTATING FLUIDS Development of a rotary fluid transfer coupling and support mechanism for space station p 18 N88-21493 ROTATION Some operational aspects of a rotating advanced-technology space station for the year 2025 p 8 N88-26397 S S GLASS Low authority control of a composite cantilever beam in two dimensions p 45 A88-54630 SAFETY FACTORS Safety of extravehicular space activities p 79 N88-26038
Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 RESONANT FREQUENCIES Structural innovations in the Columbus Project - An 11.3 meter optical telescope p 89 A88-34491 Interactive structural and controller synthesis for large spacecraft p 28 A88-35541 p 28 A88-35541 p 28 A88-35541 p 28 A88-35543 p 28 A88-35689 p 28 A88-35543 p 28 A88-35544 p 28 A88-	[NASA-CR-182710] p 77 N88-20646 Microgravity mechanisms and robotics program	[AAS PAPER 86-366] p 55 A88-35099 ROLL Multi-hundred kilowatt roll ring assembly evaluation results [NASA-TM-100865] p 60 N88-21375 ROOM TEMPERATURE Qualification of room-temperature-curing epoxy adhesives for spacecraft structural applications p 66 A88-42440 ROSAT MISSION Some highlights on ROSAT mechanisms p 14 N88-21195 ROTATING BODIES Rotational maneuver and stabilization of an elastic spacecraft Secular effects in the translational-rotational motion of an orbital station with artificial gravity p 90 A88-36123 Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 ROTATING FLUIDS Development of a rotary fluid transfer coupling and support mechanism for space station p 18 N88-21493 ROTATION Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] S S GLASS Low authority control of a composite cantilever beam in two dimensions p 45 A88-54630 SAFETY FACTORS Safety of extravehicular space activities p 79 N88-26038 SALYUT SPACE STATION Determination of the motion of the Salyut 6 and 7 orbital
Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 RESONANT FREQUENCIES Structural innovations in the Columbus Project - An 11.3 meter optical telescope p 89 A88-34491 Interactive structural and controller synthesis for large spacecraft p 28 A88-35541 Poynamic responses of orthotropic plates under moving masses p 28 A88-35543 Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892 Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50892 Identification of model error based on analytical/experimental frequency discrepancies p 41 A88-50899 Laser sensing for identification and control of distributed parameter systems [AD-A195886] p 54 N88-30124 RESOURCES MANAGEMENT Optimal use of human and machine resources for Space Station assembly operations [AIAA PAPER 88-3498] p 75 A88-42903 A scheduling and resource management system for space applications p 101 N88-29383 Intelligent resource management for local area networks: Approach and evolution p 81 N88-29387 RESPONSE TIME (COMPUTERS) Concepts for robot motion primitives required for space station teleoperations p 81 N88-29387 RETRACTABLE EQUIPMENT The EURECA antenna deployment and retraction mechanisms p 16 N88-21225 The X-beam as a deployable boom for the space station p 17 N88-21473 Motion synchronization of a mechanism to deploy and restow a truss beam p 77 N88-21474 RETURN TO EARTH SPACE FLIGHT Advanced propulsion for the Mars Rover Sample Return	[NASA-CR-182710] p 77 N88-20646 Microgravity mechanisms and robotics program p 78 N88-23237 The efficacy of using human myoelectric signals to control the limbs of robots in space [NASA-CR-182901] p 78 N88-25155 Analysis of a closed-kinematic chain robot manipulator [NASA-CR-1823031] p 79 N88-25206 Design guidelines for robotically serviceable hardware [NASA-TM-100700] p 79 N88-25206 Simulation of space manipulator operations (EUROSIM) [NLR-MP-87017-U] p 80 N88-26678 Space station as a vital focus for advancing the technologies of automation and robotics [IAF-86-62] p 80 N88-29352 Machine vision for real time orbital operations	[AAS PAPER 86-366] p 55 A88-35099 ROLL Multi-hundred kilowatt roll ring assembly evaluation results [NASA-TM-100865] p 60 N88-21375 ROOM TEMPERATURE Qualification of room-temperature-curing epoxy adhesives for spacecraft structural applications p 66 A88-42440 ROSAT MISSION Some highlights on ROSAT mechanisms p 14 N88-21195 ROTATING BODIES Rotational maneuver and stabilization of an elastic spacecraft p 26 A88-34794 Secular effects in the translational-rotational motion of an orbital station with artificial gravity p 90 A88-36123 Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 ROTATING FLUIDS Development of a rotary fluid transfer coupling and support mechanism for space station p 18 N88-21493 ROTATION Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 S S GLASS Low authority control of a composite cantilever beam in two dimensions p 45 A88-54630 SAFETY FACTORS Safety of extravehicular space activities p 79 N88-26038 SALYUT SPACE STATION Determination of the motion of the Salyut 6 and 7 orbital stations with respect to the mass center in the slow spin
Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 RESONANT FREQUENCIES Structural innovations in the Columbus Project - An 11.3 meter optical telescope p 89 A88-34491 Interactive structural and controller synthesis for large spacecraft p 28 A88-35541 p 28 A88-35541 p 28 A88-35541 p 28 A88-35543 p 28 A88-35689 p 28 A88-35543 p 28 A88-35544 p 28 A88-	[NASA-CR-182710] p 77 N88-20646 Microgravity mechanisms and robotics program	ASS PAPER 86-366
Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 RESONANT FREQUENCIES Structural innovations in the Columbus Project - An 11.3 meter optical telescope p 89 A88-34491 Interactive structural and controller synthesis for large spacecraft p 28 A88-35541 Dynamic responses of orthotropic plates under moving masses p 28 A88-35543 Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892 Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 Spatial distribution of model error based on analytical/experimental frequency discrepancies p 41 A88-50899 Laser sensing for identification and control of distributed parameter systems [AD-A195886] p 54 N88-30124 RESOURCES MANAGEMENT Optimal use of human and machine resources for Space Station assembly operations [AIAA PAPER 88-3498] p 75 A88-42903 A scheduling and resource management system for space applications p 101 N88-29383 Intelligent resource management for local area networks: Approach and evolution p 81 N88-29385 RESPONSE TIME (COMPUTERS) Concepts for robot motion primitives required for space station teleoperations p 16 N88-21225 The X-beam as a deployable boom for the space station P 17 N88-21474 RETURN TO EARTH SPACE FLIGHT Advanced propulsion for the Mars Rover Sample Return Mission	[NASA-CR-182710] p 77 N88-20646 Microgravity mechanisms and robotics program	ASS PAPER 86-366
Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 RESONANT FREQUENCIES Structural innovations in the Columbus Project - An 11.3 meter optical telescope p 89 A88-34491 Interactive structural and controller synthesis for large spacecraft p 28 A88-35541 Dynamic responses of orthotropic plates under moving masses Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892 Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 Spatial distribution of model error based on analytical/experimental frequency discrepancies p 41 A88-50899 Laser sensing for identification and control of distributed parameter systems [AD-A195886] p 54 N88-30124 RESOURCES MANAGEMENT Optimal use of human and machine resources for Space Station assembly operations [AIAA PAPER 88-3498] p 75 A88-42903 A scheduling and resource management system for space applications p 101 N88-29383 Intelligent resource management for local area networks: Approach and evolution p 81 N88-29385 RESPONSE TIME (COMPUTERS) Concepts for robot motion primitives required for space station teleoperations p 10 N88-29387 RETRACTABLE EQUIPMENT The EURECA antenna deployment and retraction mechanisms p 16 N88-21275 The X-beam as a deployable boom for the space station a truss beam p 77 N88-21473 Motion synchronization of a mechanism to deploy and restow a truss beam p 77 N88-21474 RETURN TO EARTH SPACE FLIGHT Advanced propulsion for the Mars Rover Sample Return Mission [AIAA PAPER 88-2900] p 84 A88-46489 REUSABLE SPACECRAFT Space Phoenix — recycling shuttle external tanks into	[NASA-CR-182710] p 77 N88-20646 Microgravity mechanisms and robotics program	[AAS PAPER 86-366] p 55 A88-35099 ROLL Multi-hundred kilowatt roll ring assembly evaluation results [NASA-TM-100865] p 60 N88-21375 ROOM TEMPERATURE Qualification of room-temperature-curing epoxy adhesives for spacecraft structural applications p 66 A88-42440 ROSAT MISSION Some highlights on ROSAT mechanisms p 14 N88-21195 ROTATING BODIES Rotational maneuver and stabilization of an elastic spacecraft p 26 A88-34794 Secular effects in the translational-rotational motion of an orbital station with artificial gravity p 90 A88-36123 Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 ROTATING FLUIDS Development of a rotary fluid transfer coupling and support mechanism for space station p 18 N88-21493 ROTATION Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 SGLASS Low authority control of a composite cantilever beam in two dimensions p 45 A88-54630 SAFETY FACTORS Safety of extravehicular space activities p 79 N88-26038 SALYUT SPACE STATION Determination of the motion of the Salyut 6 and 7 orbital stations with respect to the mass center in the slow spin mode on the basis of measurement data p 31 A88-45467 Spatial evolution of the residual-acceleration vector on board spacecraft p 43 A88-53945
Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 RESONANT FREQUENCIES Structural innovations in the Columbus Project - An 11.3 meter optical telescope p 89 A88-34491 Interactive structural and controller synthesis for large spacecraft p 28 A88-35541 Dynamic responses of orthotropic plates under moving masses p 28 A88-35543 Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892 Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 Spatial distribution of model error based on analytical/experimental frequency discrepancies p 41 A88-50899 Laser sensing for identification and control of distributed parameter systems [AD-A195886] p 54 N88-30124 RESOURCES MANAGEMENT Optimal use of human and machine resources for Space Station assembly operations [AIAA PAPER 88-3498] p 75 A88-42903 A scheduling and resource management system for space applications p 101 N88-29383 Intelligent resource management for local area networks: Approach and evolution p 81 N88-29385 RESPONSE TIME (COMPUTERS) Concepts for robot motion primitives required for space station teleoperations p 16 N88-21225 The X-beam as a deployable boom for the space station P 16 N88-21225 The X-beam as a deployable boom for the space station P 17 N88-21474 RETURN TO EARTH SPACE FLIGHT Advanced propulsion for the Mars Rover Sample Return Mission [AIAA PAPER 88-2900] p 84 A88-46489 REUSABLE SPACECRAFT Space Phoenix — recycling shuttle external tanks into low-cost spacecraft	[NASA-CR-182710] p 77 N88-20646 Microgravity mechanisms and robotics program	[AAS PAPER 86-366] p 55 A88-35099 ROLL Multi-hundred kilowatt roll ring assembly evaluation results [NASA-TM-100865] p 60 N88-21375 ROOM TEMPERATURE Qualification of room-temperature-curing epoxy adhesives for spacecraft structural applications p 66 A88-42440 ROSAT MISSION Some highlights on ROSAT mechanisms p 14 N88-21195 ROTATING BODIES Rotational maneuver and stabilization of an elastic spacecraft p 26 A88-34794 Secular effects in the translational-rotational motion of an orbital station with artificial gravity p 90 A88-36123 Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 ROTATING FLUIDS Development of a rotary fluid transfer coupling and support mechanism for space station P 18 N88-21493 ROTATION Some operational aspects of a rotating advanced-technology space station for the year 2025 p 8 N88-26397 S S GLASS Low authority control of a composite cantilever beam in two dimensions p 45 A88-54630 SAFETY FACTORS Safety of extravehicular space activities p 79 N88-26038 SALYUT SPACE STATION Determination of the motion of the Salyut 6 and 7 orbital stations with respect to the mass center in the slow spin mode on the basis of measurement data P 31 A88-45467 Spatial evolution of the residual-acceleration vector on board spacecraft p 43 A88-53945 SANDWICH STRUCTURES
Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 RESONANT FREQUENCIES Structural innovations in the Columbus Project - An 11.3 meter optical telescope p 89 A88-34491 Interactive structural and controller synthesis for large spacecraft p 28 A88-35541 Dynamic responses of orthotropic plates under moving masses Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892 Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 Spatial distribution of model error based on analytical/experimental frequency discrepancies p 41 A88-50899 Laser sensing for identification and control of distributed parameter systems [AD-A195886] p 54 N88-30124 RESOURCES MANAGEMENT Optimal use of human and machine resources for Space Station assembly operations [AIAA PAPER 88-3498] p 75 A88-42903 A scheduling and resource management system for space applications p 101 N88-29383 Intelligent resource management for local area networks: Approach and evolution p 81 N88-29385 RESPONSE TIME (COMPUTERS) Concepts for robot motion primitives required for space station teleoperations p 10 N88-29387 RETRACTABLE EQUIPMENT The EURECA antenna deployment and retraction mechanisms p 16 N88-21275 The X-beam as a deployable boom for the space station a truss beam p 77 N88-21473 Motion synchronization of a mechanism to deploy and restow a truss beam p 77 N88-21474 RETURN TO EARTH SPACE FLIGHT Advanced propulsion for the Mars Rover Sample Return Mission [AIAA PAPER 88-2900] p 84 A88-46489 REUSABLE SPACECRAFT Space Phoenix — recycling shuttle external tanks into	[NASA-CR-182710] p 77 N88-20646 Microgravity mechanisms and robotics program	[AAS PAPER 86-366] p 55 A88-35099 ROLL Multi-hundred kilowatt roll ring assembly evaluation results [NASA-TM-100865] p 60 N88-21375 ROOM TEMPERATURE Qualification of room-temperature-curing epoxy adhesives for spacecraft structural applications p 66 A88-42440 ROSAT MISSION Some highlights on ROSAT mechanisms p 14 N88-21195 ROTATING BODIES Rotational maneuver and stabilization of an elastic spacecraft p 26 A88-34794 Secular effects in the translational-rotational motion of an orbital station with artificial gravity p 90 A88-36123 Use of assumed modes in equations governing large-displacement elastodynamic plate behavior p 43 A88-54421 ROTATING FLUIDS Development of a rotary fluid transfer coupling and support mechanism for space station p 18 N88-21493 ROTATION Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 SGLASS Low authority control of a composite cantilever beam in two dimensions p 45 A88-54630 SAFETY FACTORS Safety of extravehicular space activities p 79 N88-26038 SALYUT SPACE STATION Determination of the motion of the Salyut 6 and 7 orbital stations with respect to the mass center in the slow spin mode on the basis of measurement data p 31 A88-45467 Spatial evolution of the residual-acceleration vector on board spacecraft p 43 A88-53945

Ka, C, S frequency bands, multi-beam deployable antenna system for large-capacity communication p 54 A88-33448 satellite

Deployable precision reflectors

p 55 A88-35112 1AAS PAPER 86-2981 Reliability evaluation on on-board satellite antenna deployment mechanism p 19 A88-38672

Deployable 20/30-GHz multi-beam antenna for future p 56 A88-39423 communications satellites

Fiber based phased array antennas

p 57 A88-50306

Design of an on-board antenna pointing control system for communication satellites [AIAA PAPER 88-4306] p 39 A88-50431

Hemispherical pointing mechanism drive unit --- satellite pavloads antennas p 98 N88-21193 Some highlights on ROSAT mechanisms

n 14 N88-21195

Deployable booms and antennas on AMPTE-IRM p 15 N88-21198

Aerospatiale unfurlable reflector and associated p 15 N88-21203

Design of a linear actuator and breadboard test result --- far IR telescope p 16 N88-21217

The EURECA antenna deployment and retraction p 16 N88-21225 mechanisms Development and qualification of the OLYMPUS

antenna pointing mechanism p 16 N88-21227 Large antenna experiments aboard the space shuttle:

Application of nonuniform sampling techniques p 61 N88-25745

The 15-meter antenna performance optimization using p 61 N88-25746 an interdisciplinary approach Technologies for antenna shape and vibration control p 52 N88-25748

SATELLITE ATTITUDE CONTROL

Rotational maneuver and stabilization of an elastic p 26 A88-34794 spacecraft Time optimal slewing of a rigid body with flexible p 26 A88-34812 appendages Input selection for a second-order mass property estimator --- for satellite attitude control

p 30 A88-43203 Variable-structure control of spacecraft attitude p 30 A88-43211 maneuvers Attituded tumbling due to flexibility in satellite mounted

[AIAA PAPER 88-4096] p 35 A88-50201

The kinetics and workspace of a robot mounted on a satellite that is free to rotate and translate

p 75 A88-50202 [AIAA PAPFR 88-4097] Piloted earth pointing of a spinning geosynchronous satellite --- following satellite's earth acquisition failure [AIAA PAPER 88-4130] p 37 A88-50280 Feasibility of using GPS measurements for OMV attitude

undate p 96 A88-51716 Variable structure control of decoupleable systems and attitude control of spacecraft in presence of uncertainty

p 46 A88-54655 Evolution of large momentum and reaction wheels

p 48 N88-21230

SATELLITE COMMUNICATION

A technique for the measurement of environmental levels of microwave radiation around satellite earth p 56 A88-38115 Optical technology for spacecraft antennas

p 56 A88-43187 SATELLITE CONFIGURATIONS

OMV multiple deployments of lightsats

p 9 A88-42911 AIAA PAPER 88-3518]

SATELLITE CONTROL

Automating satellite control and telemetry networks µ 54 A88-33673

Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite

[AIAA PAPER 88-4171] p 37 A88-50262 Libration damping of a tethered satellite using rate only

(AJAA PAPER 88-4172)

p 37 A88-50263 SATELLITE DESIGN

National Space Engineering Symposium, 3rd, Canberra, Australia, June 30-July 2, 1987, Preprints of Papers

p 90 A88-37239 Design of a solar power satellite for construction from lunar materials p 9 A88-40566

Multimission communication satellites

[IAF PAPER 88-426] p 6 A88-55417 Study of the optimization of satellite system design for transfer orbit

p 11 N88-20332 MBB-URV-1351

SATELLITE DRAG

Theory of the electrodynamic tether p 57 A88-46805 SATELLITE GROUND SUPPORT

A technique for the measurement of environmental levels of microwave radiation around satellite earth p 56 A88-38115 stations

SATELLITE NETWORKS

Scientific and economy-oriented space systems
/revised edition/ --- Book p 93 A88-43247 SATELLITE ORBITS

Beyond low earth orbit - A survey of upper stages AAS PAPER 87-115] p 83 A88-41283 [AAS PAPER 87-115] Systems analysis of a low-acceleration research

facility
[AIAA PAPER 88-3512] p 93 A88-42909

Advanced satellite servicing facility studies [AIAA PAPER 88-4200] A88-42912 p 93 Out of plane maneuvering with tethered satellites

(AIAA PAPER 88-42821 p 39 A88-50409 Advantages of tether release of satellites from elliptic p 46 A88-55062

SATELLITE PERTURBATION

Tethered subsatellite swinging from atmospheric p 46 A88-55067 aradionte

SATELLITE ROTATION

Determination of the motion of the Salvut 6 and 7 orbital stations with respect to the mass center in the slow spin mode on the basis of measurement data

A88-45467 SATELLITE SOLAR ENERGY CONVERSION

Flight qualification testing of ultrathin solar cells SATELLITE SOLAR POWER STATIONS
Possible variants of the state of the s

Possible variants of microwave-beam structure for satellite solar power plants p 85 A88-50671 Digital sequential shunt regulator for solar power conditioning of Engineering Test Satellite (ETS-V)

p 86 A88-54696

SATELLITE SOUNDING

Refilling process in the plasmasphere and its relation to magnetic activity p 64 A88-37343

SATELLITE SURFACES

Spacecraft surface coating heat generation by charged particulate of the natural space environment

p 58 A88-51341 ASME PAPER 87-WA/HT-13] SATELLITE TEMPERATURE

Two-phase thermal loops for use in future spacecraft p 19 A88-37295

Calorimetric measurements of thermal control surfaces at geosynchronous orbit p 19 A88-41414 Far infrared spectroscopy telescope (FIRST) inflatable

thermal shield, phase 1 [SR/FIS/108(87)CZ] p 24 N88-30552

SCALE MODELS

Testing of propellant management device for 3-axis geosynchronous spacecraft p 83 A88-33792 Space station full-scale docking/berthing mechanisms development

Orbital navigation, docking and obstacle avoidance as form of three dimensional model-based image p 50 N88-24194 understanding

SCATHA SATELLITE

Several spacecraft-charging event on SCATHA in p 58 A88-51392 September 1982

A study of SCATHA eclipse charging

p 58 A88-53470 A severe spacecraft-charging event on SCATHA in September 1982

[AD-A193007] p 61 N88-26396

SCENE ANALYSIS

Sensing and perception research for space telerobotics p 74 A88-42657

A scheduling and resource management system for p 101 N88-29383 space applications

SECONDARY EMISSION

Study of secondary emission properties of materials used for high power RF components in space [ESA-CR(P)-2587] p 72 N88-30012

SELECTION

Sensor and actuator selection for large space structure control

FAD-A1949121 p 53 N88-29842

SELF ERECTING DEVICES

The 15-meter antenna performance optimization using an interdisciplinary approach p 61 N88-25746 SELF MANEUVERING UNITS

Personnel occupied woven envelope robot p 81 N88-29408

SENSORS

Sensors, actuators, and hyperstability of structures p 34 A88-50167 [AIAA PAPER 88-4057] Sensor and actuator selection for large space structure

p 53 N88-29842 [AD-A194912]

SERVOCONTROL

Exponent diagram analysis of feedback control systems ncluding flexible structures

SERVOMECHANISMS

Minimum-time control of large space structures p 29 A88-42576

SHAPE CONTROL Robust control of flexible structures - A case study

p 29 A88-40489 The 15-meter diameter hoop/column antenna surface control actuator system p 17 N88-21469 Technologies for antenna shape and vibration control

p 52 N88-25748 Robust design of distributed controllers for large flexible

space structures [NASA-CR-183202] p 54 N88-30134

SHELLS (STRUCTURAL FORMS)

A self-consistent tension shell structure for application aerobraking vehicle and its aerodynamic characteristics [AIAA PAPER 88-3405] p 14 A88-44839

SHUTTLE DERIVED VEHICLES

Shuttle-C - A Shuttle derived launch vehicle

p 86 A88-52373

SHUTTLE IMAGING RADAR Determination of the vertical pattern of the SIR-B

antenna p 56 A88-44638 SHUTTLE MISSION SIMULATOR

SDI experiment requirements lead to new emphasis on

shuttle simulation capabilities p 10 A88-46987 SIDELORES Case study of active array feed compensation with

sidelobe control for reflector surface distortion p 60 N88-23073

SIGNAL DETECTORS

Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of structural vibrations

AD-A1942701 p 71 N88-28754

SIGNAL PROCESSING

ITC/USA/'87; Proceedings of the International Telemetering Conference, San Diego, CA, Oct. 26-29, p 89 A88-33626

Fiber based phased array antennas p 57 A88-50306

SILICON

Development of 8 cm x 8 cm silicon gridded back solar p 62 A88-34312 cell for space station SIMULATION

Methods for spacecraft simulation in vibro-acoustic environments p 9 A88-37278 The jitter beam - An experiment demonstrating pointing p 43 A88-54406 control on a flexible structure ontrol on a flexible structure
Improved methods for linearized flexibility models in
p 43 A88-54423

multibody dynamics and control Obstacles to high fidelity multibody dynamics p 44 A88-54471 simulation

SIMULATORS

Block Oriented Simulation System (BOSS)

NASA-CR-182947] p 100 N88-27760 SLEWING A slew maneuver experiment of mission function

[AIAA PAPER 88-4226] p 38 A88-50367 Improved methods for linearized flexibility models in multibody dynamics and control p 43 A88-54423 Rapid slewing of the orbiting Spacecraft Control Laboratory Experiment (SCOLE) using LQR techniques

[IAF PAPÉR 88-320] SOFTWARE ENGINEERING

Knowledge based system verification and validation as related to automation of Space Station subsystems -Rationale for a knowledge based system lifecycle

p 42 A88-52238 Block Oriented Simulation System (BOSS)

[NASA-CR-182947] p 100 N88-27760 SOFTWARE TOOLS

Third Conference on Artificial Intelligence for Space Applications, part 2

[NASA-CP-2492-PT-21 p 100 N88-24188 Integration of symbolic and algorithmic hardware and software for the automation of space station subsystems p 12 N88-24190

Numerical optimization, system theoretic and software tools for the integrated design of flexible structures and their control systems

(AD-A192927) SOLAR ACTIVITY EFFECTS

Effect of solar pressure on the motion and stability of the system of two inter-connected satellites in an elliptical orbit p 24 A88-33104

SOLAR ARRAYS

Mast material test program (MAMATEP) --- for Solar Array Assembly of Space Station Photovoltaic Power

[AIAA PAPER 88-2475]

p 63 A88-35945

p 52 N88-27183

p 47 A88-55393

Advanced space power systems [SAWE PAPER 1762] p 58 A88-53779	High-temperature solar energy systems for spacecraft power and propulsion units Russian book	SPACE ERECTABLE STRUCTURES Space Station development
Digital sequential shunt regulator for solar power	p 85 A88-50769	[AAS PAPER 86-255] p 2 A88-35052
conditioning of Engineering Test Satellite (ETS-V)	Technology for large space systems: A bibliography with	Reliability evaluation on on-board satellite antenna
p 86 A88-54696	indexes (supplement 18)	deployment mechanism p 19 A88-38672 Deployable 20/30-GHz multi-beam antenna for future
The development status of the strongback array spacecraft structure p 15 N88-21201	[NASA-SP-7046(18)] p 100 N88-27214 SOLAR PROPULSION	communications satellites p 56 A88-39423
The SPOT solar array. Box opening mechanisms	High-temperature solar energy systems for spacecraft	On the transient dynamics of flexible orbiting
physical vapor deposition (PVD)-MoS2: Lubricated slides.	power and propulsion units Russian book	structures p 31 A88-46405
Functional evaluation p 16 N88-21211	p 85 A88-50769	Two-dimensional deployable truss structures for space applications p 14 A88-47964
Qualification testing of the EUROSTAR Solar Array Drive Mechanism (SADM) p 17 N88-21229	SOLAR RADIATION Effect of solar pressure on the motion and stability of	Large truss structures for space assembly
Contamination of optical surfaces Space Station	the system of two inter-connected satellites in an elliptical	p 75 A88-50862
p 70 N88-25400	orbit p 24 A88-33104	Technology development missions concept definition
Assessment of the effects of space debris and	SOLAR REFLECTORS	study - TDMX 2066 large inflatable/rigidized structures p 5 A88-52332
meteoroids environment on the space station solar array assembly	Contamination of optical surfaces Space Station p 70 N88-25400	Rapid multi-flexible-body maneuvering experiments
[NASA-TM-101315] p 72 N88-28959	SOLAR THERMAL PROPULSION	p 44 A88-54532
Advanced planar array development for space station	Solar thermal propulsion for orbit transfer	A 60-meter erectable assembly concept for a control
[NASA-CR-179373] p 24 N88-30181	[AIAA PAPER 88-3171] p 84 A88-48042	of flexible structures flight experiment
Alternative module configurations for advanced solar arrays on low orbit and extended lifetime missions (AMOC	SOLID LUBRICANTS Tribological properties of polymer films and solid bodies	[NASA-TM-100497] p 7 N88-21190 Bi-stem gripping apparatus
2)	in a vacuum environment p 63 A88-35565	[NASA-CASE-MFS-28185-1] p 18 N88-23979
[ESA-CR(P)-2581] p 62 N88-30182	SOVIET SPACECRAFT	Development of a space deployable radiator using heat
SOLAR CELLS	Soviet space achievements in 1985 according to press	Pipes (SNIAS 991 440 104)
Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312	materials Russian book p 95 A88-46070 Perspectives of Soviet cosmonautics. I	[SNIAS-881-440-104] p 23 N88-29128 Clevis joint for deployable space structures
Temperature characteristics of silicon space solar cells	p 95 A88-49026	[NASA-CASE-LAR-13898-1] p 19 N88-30130
and underlying parameters p 63 A88-34418	Soviet spacecraft engineering research	Far infrared spectroscopy telescope (FIRST) inflatable
Flight qualification testing of ultrathin solar cells	[FASAC-TAR-3090] p 98 N88-23823	thermal shield, phase 1
p 63 A88-34448 Solar-dynamic energy supply systems for space	SOYUZ SPACECRAFT Features of Soyuz TM spacecraft p 97 N88-20329	[SR/FIS/108(87)CZ] p 24 N88-30552 SPACE EXPLORATION
systems p 64 A88-37293	SPACE	Report of the National Commission on Space - One
The Hipparcos solar panels p 14 A88-45452	Space station as a vital focus for advancing the	commissioner's view
Solar cell cover glasses for satellites	technologies of automation and robotics	[AAS PAPER 86-250] p 2 A88-35074
p 69 N88-22225	[IAF-86-62] p 80 N88-29352	The Space Station and recommendations of the National Commission on Space
Alternative module configurations for advanced solar arrays on low orbit and extended lifetime missions (AMOC	SPACE COLONIES Report of the National Commission on Space - One	[AAS PAPER 86-263] p 2 A88-35075
2)	commissioner's view	Space: Countdown to the future; National Space
[ESA-CR(P)-2581] p 62 N88-30182	[AAS PAPER 86-250] p 2 A88-35074	Symposium, 3rd, Colorado Springs, CO, Jan. 20-23, 1987,
SOLAR COLLECTORS	30 years of progress in space; Proceedings of the	Report p 91 A88-39050 Simulation - Antidote to risk p 9 A88-40524
Performance of focusing mirror systems for the solar dynamic energy supply of space stations	Thirty-eighth International Astronautical Congress, Brighton, England, Oct. 10-17, 1987 p 91 A88-38304	Scientific and economy-oriented space systems
p 85 A88-49750	SPACE COMMERCIALIZATION	/revised edition/ Book p 93 A88-43247
Atomic-oxygen durability of impact-damaged solar	Space Phoenix recycling shuttle external tanks into	NASA's Pathfinder plots future US space activities
reflectors p 68 A88-54988	low-cost spacecraft p 9 A88-39500	p 4 A88-44613 Soviet space achievements in 1985 according to press
Space station solar concentrator materials research [NASA-TM-100862] p 69 N88-21250	The Space Phoenix Program - A progress report p 4 A88-43968	materials Russian book p 95 A88-46070
Design and demonstration of a system for the deposition	Advanced topics in manufacturing technology: Product	Transportation concepts for Mars exploration
of atomic-oxygen durable coatings for reflective solar	design, bioengineering; Proceedings of the Symposium,	[AIAA PAPER 88-3494] p 4 A88-48477
dynamic power system concentrators	ASME Winter Annual Meeting, Boston, MA, Dec. 13-18,	The European long-term space plan p 4 A88-49820
[NASA-CR-4158] p 71 N88-25474 SOLAR DYNAMIC POWER SYSTEMS	1987 p 94 A88-44001 Welding in space - An overview p 66 A88-44004	Space Congress, 25th, Cocoa Beach, FL, Apr. 26-29, 1988, Proceedings p 96 A88-52317
Development of an integrated heat pipe-thermal storage	Space for rent? p 5 A88-51133	SPACE FLIGHT
system for a solar receiver	Space Congress, 25th, Cocoa Beach, FL, Apr. 26-29,	Electrotopographic investigation of the degradation
[AIAA PAPER 88-2683] p 21 A88-43746	1988, Proceedings p 96 A88-52317	dynamics of dielectric layers in space
Performance of focusing mirror systems for the solar dynamic energy supply of space stations	SPACE COMMUNICATION Scientific and economy-oriented space systems	p 62 A88-33958 Crew-induced load measurement for space operations
p 85 A88-49750	/revised edition/ Book p 93 A88-43247	p 73 A88-35455
Space Station Photovoltaic power modules	Telescience Testbed Pilot Project - Evaluation	Simulation - Antidote to risk p 9 A88-40524
p 58 A88-52333	environment for Space Station operations	SPACE FLIGHT TRACKING AND DATA NETWORK
Space station solar concentrator materials research [NASA-TM-100862] p 69 N88-21250	[AIAA PAPER 88-4629] p 5 A88-53666 SPACE DEBRIS	ITC/USA/'87; Proceedings of the International Telemetering Conference, San Diego, CA, Oct. 26-29.
Power systems for production, construction, life support	Decision time on orbital debris p 66 A88-43516	1987 p 89 A88-33626
and operations in space	Predicting debris p 66 A88-43517	SPACE FLIGHT TRAINING
[NASA-TM-100838] p 59 N88-21254	Shielding against debris p 66 A88-43518	An expert system for a distributed real-time trainer
Structural assessment of a space station solar dynamic	Debris in space p 85 A88-51139 Eureca TICCE - A nine-month survey of cosmic dust	p 12 N88-29411 SPACE HABITATS
heat receiver thermal energy storage canister p 23 N88-22406	and space debris at 500 km altitude p 96 A88-53242	A job for space manufacturing p 94 A88-43966
Solar dynamic heat rejection technology. Task 2: Heat	Effects of meteoroids and space debris on the particulate	Space Station habitation module - Privacy and collective
pipe radiator development	environment for space station p 70 N88-25399	life
[NASA-CR-182141] p 23 N88-23182 The multi-disciplinary design study: A life cycle cost	Assessment of the effects of space debris and meteoroids environment on the space station solar array	[IAF PAPER 88-080] p 97 A88-55336 Space Station - Home and workplace in orbit
algorithm	assembly	p 97 A88-55486
[NASA-CR-4156] p 11 N88-24172	[NASA-TM-101315] p 72 N88-28959	SPACE INDUSTRIALIZATION
Design and demonstration of a system for the deposition	SPACE ENVIRONMENT SIMULATION	Report of the National Commission on Space - One
of atomic-oxygen durable coatings for reflective solar	On-orbit, man/machine interface verification with	commissioner's view
dynamic power system concentrators [NASA-CR-4158] p 71 N88-25474	simulator testing p 89 A88-33780 Production of ground state atomic oxygen in a multifactor	[AAS PAPER 86-250] p 2 A88-35074
[NASA-CR-4158] p 71 N88-25474 SOLAR ENERGY	stress environment for reaction testing of materials in	The European long-term space plan p 4 A88-49820
Solar-dynamic energy supply systems for space	orbiting space vehicles p 56 A88-42585	Space for rent? p 5 A88-51133 SPACE LABORATORIES
systems p 64 A88-37293	An experimental investigation of the effect of test-cell	A design methodology for neutral buoyancy simulation
SOLAR GENERATORS	pressure on the performance of resistojets	of space operations
Possible variants of microwave-beam structure for satellite solar power plants p 85 A88-50671	[AIAA PAPER 88-3286] p 84 A88-44820 Orbiter Servicer Rendezvous Simulation (ORSIM)	[AIAA PAPER 88-4628] p 77 A88-53665
SOLAR POWER SATELLITES	p 10 A88-46986	Columbus Pressurized Modules - A versatile
Design of a solar power satellite for construction from	Two-phase alkali-metal experiments in reduced gravity	user-friendly space laboratory system [IAF PAPER 88-097] p 6 A88-55340
lunar materials p 9 A88-40566	p 67 A88-47969	[IAF PAPER 88-097] p 6 A88-55340 Microgravity mechanisms and robotics program
Prospects of intercalated graphite fibre use for electrical power transmission in solar power satellites	Electrostatic charging and arc discharges on satellite dielectrics simulated by electron beam	p 78 N88-23237
p 64 A88-40568	p 57 A88-47970	Simulation of space manipulator operations
An energetics experiment on a space platform	Modelling of the microgravity environment of the Man	(EUROSIM)
p 3 A88-40571	Tended Free Flyer (MTFF) p 96 A88-52335	[NLR-MP-87017-U] p 80 N88-26678
Autonomous flight control for low thrust orbital transfer	Contribution to the study of materials behavior in space environment	SPACE LOGISTICS Orbital spacecraft consumables resupply
vehicles [AIAA PAPER 88-2838] p 30 A88-44670	[SNIAS-881-430-104] p 72 N88-28977	[AIAA PAPER 88-2922] p 94 A88-44695
production and the entrangle of the control of the	- · · · · · · · · · · · · · · · · · · ·	

SPACE MAINTENANCE Welding in space - An overview p 66 A88-44004	Technology requirements for an orbiting fuel depot: A necessary element of a space infrastructure	Shuttle-C - A Shuttle derived launch vehicle p 86 A88-52373
Tasks of the simulation installations for space flight	[NASA-TM-101370] p 88 N88-29845	Connectivity is the key for ground-space
operations in the operations center for manned space	Interim Flight Opportunity (IFO). Volume 1: Executive summary space platform	station-ground data links p 59 A88-54853
laboratories p 10 A88-46516 Space inspection device for extravehicular repairs -	[SE/LS/AP-36-818/CN-VOL-1] p 8 N88-29849	SPACE STATION POWER SUPPLIES Development of 8 cm x 8 cm silicon gridded back solar
SPIDER system	SPACE POWER REACTORS	cell for space station p 62 A88-34312
[IAF PAPER 88-029] p 77 A88-55324	Space structures, power, and power conditioning; Proceedings of the Meeting, Los Angeles, CA, Jan. 11-13,	Mast material test program (MAMATEP) for Solar
Operational experience and design recommendations for teleoperated flight hardware p 78 N88-21489	1988	Array Assembly of Space Station Photovoltaic Power Module
Remote servicing of space systems	[SPIE-871] p 92 A88-42547	[AIAA PAPER 88-2475] p 63 A88-35945
p 81 N88-29409	Structural vibration of space power station systems p 29 A88-42574	Super heat pipe design considerations for applications
SPACE MANUFACTURING Space manufacturing 6 - Nonterrestrial resources,	Rotating solid radiative coolant system for space nuclear	to space-based systems p 20 A88-42830 Development of an integrated heat pipe-thermal storage
biosciences, and space engineering; Proceedings of the	reactors [AIAA PAPER 88-3189] p 21 A88-44785	system for a solar receiver
Eighth Princeton/AlAA/SSI Conference, Princeton, NJ,	Two-phase alkali-metal experiments in reduced gravity	[AIAA PAPER 88-2683] p 21 A88-43746
May 6-9, 1987 p 94 A88-43951 A job for space manufacturing p 94 A88-43966	p 67 A88-47969 Development of a generalized cost model for large space	A high power spacecraft thermal management system [AIAA PAPER 88-2702] p 21 A88-43754
The Space Phoenix Program - A progress report	power systems	Performance of focusing mirror systems for the solar
p 4 A88-43968	[IAF PAPER 88-219] p 97 A88-55363	dynamic energy supply of space stations
Some operational aspects of a rotating	Power transmission studies for tethered SP-100 [NASA-TM-100864] p 59 N88-21251	p 85 A88-49750
advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397	A thermal equilibrium model for multi-megawatt space	Space Station Photovoltaic power modules p 58 A88-52333
SPACE MISSIONS	platforms p 12 N88-24332	Power components for the space station 20-kHz power
Aerospace century XXI: Space missions and policy; Proceedings of the Thirty-third Annual AAS International	SPACE PROCESSING Space manufacturing 6 - Nonterrestrial resources,	distribution system [NASA-TM-100866] p 59 N88-21374
Conference, Boulder, CO, Oct. 26-29, 1986	biosciences, and space engineering; Proceedings of the	Structural assessment of a space station solar dynamic
p 90 A88-35051	Eighth Princeton/AIAA/SSI Conference, Princeton, NJ, May 6-9, 1987 p 94 A88-43951	heat receiver thermal energy storage canister
Al for space missions [AAS PAPER 86-390] p 55 A88-35144	A teleoperated robotic manipulator system for materials	p 23 N88-22406 Expert systems for MSFC power systems
Spacecraft technology requirements for future NASA	processing experiment servicing p 82 N88-29410	p 61 N88-29375
missions	SPACE PROGRAMS The Space Phoenix Program - A progress report	Utilization of artificial intelligence techniques for the Space Station power system p 62 N88-29412
[AIAA PAPER 88-3487] p 4 A88-43299	p 4 A88-43968	SPACE STATION PROPULSION
Safety of extravehicular space activities p 79 N88-26038	SDI experiment requirements lead to new emphasis on shuttle simulation capabilities p 10 A88-46987	Design of light-weight impact resistant pressure vessels
SPACE NAVIGATION	shuttle simulation capabilities p 10 A88-46987 SPACE PSYCHOLOGY	for Space Station fluid and propulsion systems [AIAA PAPER 88-2466] p 83 A88-35943
Problems and solutions for GPS use beyond the 12-hour	Space Station habitation module - Privacy and collective	Integration of Space Station propulsion and fluid
orbit p 5 A88-51715 Feasibility of using GPS measurements for OMV attitude	life [IAF PAPER 88-080] p 97 A88-55336	systems
update p 96 A88-51716	SPACE RENDEZVOUS	[AIAA PAPER 88-3289] p 85 A88-48492 25-LBF GO2/GH2 space station thruster
Orbital navigation, docking and obstacle avoidance as	Optimal rendezvous in a gravitational field with limited	[AIAA PAPER 88-2793] p 86 A88-53101
a form of three dimensional model-based image understanding p 50 N88-24194	observations p 90 A88-36144 SPACE SHUTTLE BOOSTERS	SPACE STATION STRUCTURES Design, fabrication, and testing of rolled carbon/epoxy
SPACE OPERATIONS CENTER (NASA)	Space Phoenix recycling shuttle external tanks into	struts for Space Station application p 62 A88-33018
Space Operations and Space Station real-time	low-cost spacecraft p 9 A88-39500 SPACE SHUTTLE MISSION 41-G	Designing Space Station structure for assembly
simulation [AIAA PAPER 88-4627] p 11 A88-53664	Results of apparent atomic oxygen reactions with	[AIAA PAPER 88-2453] p 74 A88-35942 Space Station truss strut tube design
SPACE PERCEPTION	spacecraft materials during Shuttle flight STS-41G	[AIAA PAPER 88-2471] p 13 A88-35944
Spatial cognition p 100 N88-24152 SPACE PLASMAS	p 67 A88-47971 SPACE SHUTTLE MISSIONS	Evaluation of chromic acid anodized aluminum foil coated composite tubes for the Space Station truss
Active experiments; Proceedings of Symposium 1 of the	Getting ready to go Space Station deployment	structure p 65 A88-42412
Twenty-sixth COSPAR Plenary Meeting, Toulouse, France,	schedule p 6 A88-54851 SPACE SHUTTLE PAYLOADS	International Symposium on Thermal Problems in
June 30-July 11, 1986 p 95 A88-46776 Electron beam experiments at high altitudes	Model reference control of the NASA SCOLE problem	Space-Based Systems, Boston, MA, Dec. 13-18, 1987, Proceedings p 92 A88-42829
p 56 A88-46799	Spacecraft COntrol Laboratory Experiment	Technologies for protection of the Space Station power
Laboratory model of a Tethered Satellite - Current collection upon and sheath formation around a charged	p 27 A88-34916 OMV multiple deployments of lightsats	system surfaces in atomic oxygen environment p 68 A88-52331
body in a drifting magnetoplasma p 57 A88-46806	[AIAA PAPER 88-3518] p 9 A88-42911	Technology development missions concept definition
A study of SCATHA eclipse charging	Two controller design approaches for decentralized systems	study - TDMX 2066 large inflatable/rigidized structures
p 58 A88-53470 Contaminant ions and waves in the space station	[AIAA PAPER 88-4083] p 35 A88-50189	p 5 A88-52332 Welding the Space Station common module prototype
environment p 70 N88-25393	Precision pointing of scientific instruments on space	p 11 A88-52334
SPACE PLATFORMS The Columbus resource module for the European	station: The LFGGREC perspective p 42 A88-50979 Deployable/retrievable boom: One application to	Real-time fault management for large-scale systems p 42 A88-52355
man-tended free flyer	tethered satellite p 15 N88-21197	Space Station habitation module - Privacy and collective
[AAS PAPER 86-465] p 2 A88-35056 The Flinders Platform - A low-cost multimission platform	SPACE SHUTTLES A technique to evaluate coatings for atomic oxygen	(IAF PAPER 88-080) p 97 A88-55336
for Australia p 3 A88-37257	resistance p 65 A88-42372	Control of large space structures using reduced order
An energetics experiment on a space platform	A 60-meter erectable assembly concept for a control of flexible structures flight experiment	models
p 3 A88-40571 Dynamics and control of large space platforms and small	[NASA-TM-100497] p 7 N88-21190	[IAF PAPER 88-272] p 47 A88-55371 LDR structural experiment definition
experimental payloads p 30 A88-42582	Structural margins assessment approach	[NASA-TM-100618] p 7 N88-23826
Application of two-phase thermal transport systems to space platforms p 20 A88-42842	[NASA-TM-100332] p 23 N88-24672 SPACE SIMULATORS	Mobile remote manipulator system for a tetrahedral
space platforms p 20 A88-42842 Multimission modular spacecraft (MMS)	Tasks of the simulation installations for space flight	truss [NASA-CASE-MSC-20985-1] p 80 N88-26398
[AIAA PAPER 88-3513] p 93 A88-42910	operations in the operations center for manned space laboratories p 10 A88-46516	SPACE STATIONS
A description of the Expandable Platform p 4 A88-43964	laboratories p 10 A88-46516 Obstacles to high fidelity multibody dynamics	ITC/USA/'87; Proceedings of the International Telemetering Conference, San Diego, CA, Oct. 26-29,
Dynamics and control of a space platform with a tethered	simulation p 44 A88-54471	1987 p 89 A88-33626
subsatellite p 33 A88-46717 A resupply scenario for the Columbus Mantended	SPACE STATION PAYLOADS Concepts and issues for a space telerobot	Telemetry handling on the Space Station data
Freeflyer (MTFF) p 5 A88-52337	[AAS PAPER 86-302] p 73 A88-35111	management system p 54 A88-33629 An integrated computer aided engineering system for
A thermal equilibrium model for multi-megawatt space	COSM: A Space Station EVAS test challenge	Space Station design p 8 A88-34469
platforms p 12 N88-24332 Individual satellite power requirements calculated from	CheckOut, Servicing, and Maintenance for ExtraVehicular Activity System p 3 A88-36556	Astrophysics space observatories - The next 25 years p 1 A88-34537
specified constellation performance p 60 N88-24392	Space Station tool kit p 94 A88-43967	Polar Platform configuration and servicing
Tasks foreseen for space robots and an example of	NASA Office of Space Sciences and Applications study on Space Station attached payload pointing	p 1 A88-34552
an associated orbital infrastructure p 79 N88-26044 Analytical investigation of the dynamics of tethered	[AIAA PAPER 88-4105] p 36 A88-50209	The International Space Station complex - Promise and problems p 1 A88-34573
constellations in earth orbit	Human factors analysis of extravehicular servicing of	Japanese Space Station program p 1 A88-34574
[NASA-CR-179371] p 53 N88-28950	payloads within the space station servicing facility p 76 A88-50998	Aerospace century XXI: Space missions and policy;
Expandable pallet for space station interface attachments	Orbital Maneuvering Vehicle support to the Space	Proceedings of the Thirty-third Annual AAS International Conference, Boulder, CO, Oct. 26-29, 1986
[NASA-CASE-MSC-21117-1] p 18 N88-28958	Station p 5 A88-52362	p 90 A88-35051

SPACE STORAGE SUBJECT INDEX

SPACE STORAGE		30BJECT IIVDEX
Space Station development	Connectivity is the key for ground-space	Contamination of optical surfaces Space Station
[AAS PAPER 86-255] p 2 A88-35052	station-ground data links p 59 A88-54853	p 70 N88-25400
Space Station evolution	Space inspection device for extravehicular repairs -	Surface interactions relevant to space station
(AAS PAPER 86-262) p 2 A88-35053	SPIDER system	contamination problems p 71 N88-25401
The Space Station and recommendations of the National	[IAF PAPER 88-029] p 77 A88-55324	Laboratory experiments of relevance to the space station
Commission on Space [AAS PAPER 86-263] p 2 A88-35075	Risk management for the Space Station program	environment p 71 N88-25402 Contamination of the space station environment by
Transitioning from Spacelab to Space Station science	[IAF PAPER 88-061] p 97 A88-55331 EVA space suits - Safety problems	vented chemicals p 71 N88-25403
[AAS PAPER 86-284] p 3 A88-35131	[IAF PAPER 88-515] p 77 A88-55436	The US space programme spacewalk/extravehicular
Ku-band (14GHz) fiber optic communication links for	Lunar orbit service station	activity experience: Past, present and future
distributed antennas in the Space Station	[IAF PAPER 88-618] p 6 A88-55454	p 79 N88-26031
p 55 A88-35275	Space Station - Home and workplace in orbit	Tasks foreseen for space robots and an example of
Human-telerobot interactions - Information, control, and mental models p 73 A88-35457	p 97 A88-55486 Study on long term evolution Towards European	an associated orbital infrastructure p 79 N88-26044 Some operational aspects of a rotating
Space Station erectable truss joint evaluation	Autonomous Manned Spaceflight (STEAMS)	advanced-technology space station for the year 2025
[AIAA PAPER 88-2448] p 13 A88-35940	[SNIAS-SE/LS/AP-35-073] p 7 N88-20330	[NASA-CR-181617] p 8 N88-26397
Secular effects in the translational-rotational motion of	The space station assembly phase: Flight telerobotic	Block Oriented Simulation System (BOSS)
an orbital station with artificial gravity p 90 A88-36123	servicer feasibility. Volume 2: Methodology and case	[NASA-CR-182947] p 100 N88-27760
Optimal rendezvous in a gravitational field with limited observations p 90 A88-36144	study	Expandable pallet for space station interface attachments
Potential GPS user architecture for the NASA Space	[NASA-CR-182690] p 77 N88-20352 The dynamic control of robotic manipulators in space	[NASA-CASE-MSC-21117-1] p 18 N88-28958
Station based on Landsat 4/5 experience	(NASA-CR-182710) p 77 N88-20646	Assessment of the effects of space debris and
p 3 A88-37398	Space station heavy lift launch vehicle utilization	meteoroids environment on the space station solar array
30 years of progress in space; Proceedings of the	[NASA-TM-100604] p 86 N88-21188	assembly
Thirty-eighth International Astronautical Congress,	Incorporation of privacy elements in space station	[NASA-TM-101315] p 72 N88-28959
Brighton, England, Oct. 10-17, 1987 p 91 A88-38304 Performance considerations for the astrometric	design (NASA-CR-182748) p 98 N88-21242	Collet lock joint for space station truss [NASA-CASE-MSC-21207-1] p 19 N88-29180
Telescope Facility on the Phase I Space Station	[NASA-CR-182748] p 98 N88-21242 Multi-hundred kilowatt roll ring assembly evaluation	A plan for time-phased incorporation of automation and
p 92 A88-42539	results	robotics on the US space station p 80 N88-29377
Robotic vision/sensing for space applications	[NASA-TM-100865] p 60 N88-21375	Definition of common support equipment and space
p 74 A88-42642	Space station mobile transporter p 98 N88-21488	station interface requirements for IOC model technology
The space and telerobotic concepts of DFVLR rotex	Japanese space station module p 98 N88-22224	experiments
p 74 A88-42667 Traction-drive telerobot for space manipulation	Solar cell cover glasses for satellites	[NASA-TM-100656] p 8 N88-29856 Advanced planar array development for space station
p 75 A88-42668	p 69 N88-22225 Vibrations of structures with parametric uncertainties	(NASA-CR-179373) p 24 N88-30181
Applicability of the flow-net program to solution of Space	[AD-A190400] p 49 N88-22378	Space station proximity operations windows: Human
Station fluid dynamics problems p 20 A88-42832	Microgravity mechanisms and robotics program	factors design guidelines
Optimal use of human and machine resources for Space	p 78 N88-23237	[NASA-TM-88233] p 101 N88-30301
Station assembly operations	Base reaction optimization of manipulators with	A shared-world conceptual model for integrating space
[AIAA PAPER 88-3498] p 75 A88-42903 Space vehicle approach velocity judgments under	redundant kinematics p 78 N88-23238 LDR structural experiment definition	station life sciences telescience operations p 102 N88-30333
simulated visual space conditions p 93 A88-42933	[NASA-TM-100618] p 7 N88-23826	The space station assembly phase: System design
A new linearized theory of laminar film condensation	Locking hinge	trade-offs for the flight telerobotic servicer
of two phase annular flow in a capillary pumped loop	[NASA-CASE-MSC-21056-1] p 18 N88-23827	p 82 N88-30357
[AIAA PAPER 88-2637] p 56 A88-43715	Space Station Human Factors Research Review.	SPACE STORAGE
The U.S. Space Station - A quarter-century of evolution p 4 A88-44150	Volume 1: EVA Research and Development	Long term orbital storage of cryogenic propellants for advanced space transportation missions
evolution p 4 A88-44150 An assessment of nominal and contingency altitude	[NASA-CP-2426-VOL-1] p 99 N88-24145 Advanced EVA system design requirements study	p 82 A88-33441
reboost scenarios during Space Station assembly	p 78 N88-24147	SPACE SUITS
[AIAA PAPER 88-3501] p 75 A88-44526	Space Station Human Factors Research Review.	Test program to evaluate ESD susceptibility of EVA suit
On the transient dynamics of flexible orbiting	Volume 4: Inhouse Advanced Development and	material p 73 A88-33789
structures p 31 A88-46405	Research	Handgrip strength with the bare hand and in the NASA
Astrodynamics problems of the Space Station p 33 A88-47907	[NASA-CP-2426-VOL-4] p 99 N88-24148 Spatial cognition p 100 N88-24152	spacesuit glove p 73 A88-35452 EVA space suits - Safety problems
A new momentum management controller for the Space	Fault diagnosis in orbital refueling operations	[IAF PAPER 88-515] p 77 A88-55436
Station	p 87 N88-24154	Space cabin atmosphere and extracurricular sortie
[AIAA PAPER 88-4132] p 36 A88-50233	Third Conference on Artificial Intelligence for Space	embolisms p 100 N88-26023
A formulation for studying dynamics and control of the	Applications, part 2	SPACE TOOLS
Space Station based MRMS and its application (AIAA PAPER 88-4269) p 38 A88-50398	[NASA-CP-2492-PT-2] p 100 N88-24188	On the dynamics of manipulators in space using the
[AIAA PAPER 88-4269] p 38 A88-50398 Transient dynamics of the Tether Elevator/Crawler	MTK: An AI tool for model-based reasoning p 12 N88-24189	virtual manipulator approach p 75 A88-42677 SPACE TRANSPORTATION
System	Integration of symbolic and algorithmic hardware and	The Space Station and recommendations of the National
[AIAA PAPER 88-4280] p 39 A88-50407	software for the automation of space station subsystems	Commission on Space
A dynamical study of the proposed Space Station type	p 12 N88-24190	[AAS PAPER 86-263] p 2 A88-35075
configuration	Connecting remote systems for demonstration of	30 years of progress in space; Proceedings of the
[AIAA PAPER 88-4304] p 39 A88-50429	automation technologies p 78 N88-24191	Thirty-eighth International Astronautical Congress,
Space Station dynamic analysis p 41 A88-50818	Space station architectural elements model study [NASA-CR-4027] p 100 N88-24632	Brighton, England, Oct. 10-17, 1987 p 91 A88-38304 Visions of tomorrow: A focus on national space
Space station dynamic analysis methods p 41 A88-50863	[NASA-CR-4027] p 100 N88-24632 Human performance issues arising from manned space	transportation issues; Proceedings of the Twenty-fifth
Precision pointing of scientific instruments on space	station missions	Goddard Memorial Symposium, Greenbelt, MD, Mar.
station: The LFGGREC perspective p 42 A88-50979	[NASA-CR-3942] p 100 N88-25156	18-20, 1987 p 92 A88-41276
Knowledge based system verification and validation as	Space station architectural elements and issues	Space Operations and Space Station real-time
related to automation of Space Station subsystems -	definition study	Simulation
Rationale for a knowledge based system lifecycle p 42 A88-52238	[NASA-CR-3941] p 12 N88-25371 A Study of Space Station Contamination Effects	[AIAA PAPER 88-4627] p 11 A88-53664 SPACE TRANSPORTATION SYSTEM
Space Congress, 25th, Cocoa Beach, FL, Apr. 26-29,	conference	Long term orbital storage of cryogenic propellants for
1988, Proceedings p 96 A88-52317	[NASA-CP-3002] p 69 N88-25390	advanced space transportation missions
Telerobotic Space Station applications	Neutral environment for space station	p 82 A88-33441
p 76 A88-52323	p 69 N88-25391	Transitioning from Spacelab to Space Station science
Automation and robotics for the Space Station - The	Space station neutral external environment	[AAS PAPER 86-284] p 3 A88-35131
influence of the Advanced Technology Advisory	p 69 N88-25392 Contaminant ions and waves in the space station	Beyond low earth orbit - A survey of upper stages
Committee p 76 A88-52329	Contaminant ions and waves in the space station environment p 70 N88-25393	[AAS PAPER 87-115] p 83 A88-41283
Systems integration for the Kennedy Space Center	Space station induced electromagnetic effects	LEO to GEO transportation system combining electric
(KSC) Robotics Applications Development Laboratory (RADL) p 76 A88-52330	p 61 N88-25394	propulsion with beamed microwave power from earth [AAS PAPER 87-126] p 83 A88-41287
(RADL) p 76 A88-52330 Space Operations and Space Station real-time	Space station contamination study: Assessment of	[AAS PAPER 87-126] p 83 A88-41287 Orbital Maneuvering Vehicle support to the Space
simulation	contaminant spectral brightness p 70 N88-25395	Station p 5 A88-52362
[AIAA PAPER 88-4627] p 11 A88-53664	Calculation of space station infrared irradiance from atmosphere-induced emissions p 70 N88-25396	Large antenna experiments aboard the space shuttle:
Telescience Testbed Pilot Project - Evaluation	Space station particulate contamination environment	Application of nonuniform sampling techniques
environment for Space Station operations	p 70 N88-25397	p 61 N88-25745
[AIAA PAPER 88-4629] p 5 A88-53666	The particulate environment surrounding the space	SPACE WEAPONS
Second thoughts on the way to the station	station: Estimates from the PACS data	Orbiter Servicer Rendezvous Simulation (ORSIM)
p 96 A88-53749	p 70 N88-25398	p 10 A88-46986
Getting ready to go Space Station deployment	Effects of meteoroids and space debris on the particulate	SDI experiment requirements lead to new emphasis on
schedule p 6 A88-54851	environment for space station p 70 N88-25399	shuttle simulation capabilities p 10 A88-46987

p 67 A88-46192

p 67 A88-47449

p 67 A88-47971 flight control of

p 42 A88-50980

p 68 A88-54731

p 68 A88-55374

p 98 N88-23823

p 71 N88-27341

p 72 N88-28833

p 72 N88-28977

p 72 N88-28978

p 72 N88-29190

p 72 N88-30012

p 66 A88-43765

p 68 A88-52331

p 69 N88-25390

p 69 N88-25391

p 69 N88-25392

p 70 N88-25393

p 61 N88-25394

p 70 N88-25395

p 70 N88-25397

p 70 N88-25398

p 70 N88-25399 Space Station

p 70 N88-25400

space station p 71 N88-25401

p 88 N88-29862

p 24 A88-33446

p 25 A88-34790

p 26 A88-34791

p 26 A88-34796

p 26 A88-34812

p 27 A88-35102

p 28 A88-35117

p 91 A88-39424

p 30 A88-42582

p 25

Individual satellite power requirements calculated from specified constellation performance p 60 N88-24392
SPACEBORNE ASTRONOMY
Astrophysics space observatories - The next 25 years p 1 A88-34537
Radio astronomy from space; Proceedings of the Workshop, Green Bank, WV, Sept. 30-Oct. 2, 1986 p 91 A88-38077
The Infrared Space Observatory (ISO) project p 3 A88-39077
ESA report to the 27th COSPAR meeting [ESA-SP-1098] p 102 N88-30556
SPACEBORNE EXPERIMENTS
Japanese Space Station program p 1 A88-34574 An energetics experiment on a space platform
p 3 A88-40571 Active experiments; Proceedings of Symposium 1 of the
Twenty-sixth COSPAR Plenary Meeting, Toulouse, France,
June 30-July 11, 1986 p 95 A88-46776 Transient dynamics of the Tether Elevator/Crawler
System [AIAA PAPER 88-4280] p 39 A88-50407
Automation and robotics for experiment operations in an Enhanced Man Tended Free Flyer (EMTFF)
p 76 A88-52326
Eureca TICCE - A nine-month survey of cosmic dust and space debris at 500 km altitude p 96 A88-53242
and space debris at 500 km altitude p 96 A88-53242 Second thoughts on the way to the station
p 96 A88-53749
Demonstration mission on Columbus for technology
developments [IAF PAPER 88-002] p 6 A88-55314
Solar cell cover glasses for satellites
p 69 N88-22225
Contamination of the space station environment by vented chemicals p 71 N88-25403
SPACEBORNE LASERS
Conceptual design for active structural control of a large
optical system p 25 A88-34500
SPACEBORNE TELESCOPES Space ten-meter telescope (STMT) - Structural and
thermal feasibility study of the primary mirror p 19 A88-34539
Deployable precision reflectors
[AAS PAPER 86-298] p 55 A88-35112 Project Endeavour - Cannister 2 support structure
p 91 A88-37273
Radio astronomy from space; Proceedings of the Workshop, Green Bank, WV, Sept. 30-Oct. 2, 1986
p 91 A88-38077
Beyond the diameter-wavelength-ratio of reflector
antennas - A film lens antenna p 55 A88-38098 'Glazar' - An orbital ultraviolet telescope
p 91 A88-38826
Evaluation of image stability of a precision pointing
spacecraft p 30 A88-43215
Precision pointing of scientific instruments on space station: The LFGGREC perspective p 42 A88-50979
Design of a linear actuator and breadboard test result
far IR telescope p 16 N88-21217
SPACECRAFT ANTENNAS Multivariable control law analysis for a large space
antenna p 25 A88-34501
System identification for space control laboratory
experiment (SCOLE) using distributed parameter models p 26 A88-34792
Large space systems requirements, deployable
concepts, and technology issues
[AAS PAPER 86-394] p 2 A88-35115
System architecture of MMIC-based large aperture
System architecture of MMIC-based large aperture arrays for space applications p 55 A88-35274
arrays for space applications p 55 A88-35274 Ku-band (14GHz) fiber optic communication links for
arrays for space applications p 55 A88-35274 Ku-band (14GHz) fiber optic communication links for distributed antennas in the Space Station
arrays for space applications p 55 A88-35274 Ku-band (14GHz) fiber optic communication links for distributed antennas in the Space Station p 55 A88-35275 Optical technology for spacecraft antennas
arrays for space applications p 55 A88-35274 Ku-band (14GHz) fiber optic communication links for distributed antennas in the Space Station p 55 A88-35275
arrays for space applications p 55 A88-35274 Ku-band (14GHz) fiber optic communication links for distributed antennas in the Space Station p 55 A88-35275 Optical technology for spacecraft antennas p 56 A88-43187 Determination of the vertical pattern of the SIR-B antenna p 56 A88-44638
arrays for space applications p 55 A88-35274 Ku-band (14GHz) fiber optic communication links for distributed antennas in the Space Station p 55 A88-35275 Optical technology for spacecraft antennas p 56 A88-43187 Determination of the vertical pattern of the SIR-B antenna p 56 A88-44638 Critique of the thermal design verification program for
arrays for space applications p 55 A88-35274 Ku-band (14GHz) fiber optic communication links for distributed antennas in the Space Station p 55 A88-35275 Optical technology for spacecraft antennas p 56 A88-43187 Determination of the vertical pattern of the SIR-B antenna p 56 A88-44638 Critique of the thermal design verification program for a high-power communications spacecraft
arrays for space applications p 55 A88-35274 Ku-band (14GHz) fiber optic communication links for distributed antennas in the Space Station p 55 A88-35275 Optical technology for spacecraft antennas p 56 A88-43187 Determination of the vertical pattern of the SIR-B antenna p 56 A88-44638 Critique of the thermal design verification program for a high-power communications spacecraft [AIAA PAPER 88-2648] p 22 A88-48479 Adaptive control experiment with a large flexible
arrays for space applications p 55 A88-35274 Ku-band (14GHz) fiber optic communication links for distributed antennas in the Space Station p 55 A88-35275 Optical technology for spacecraft antennas p 56 A88-43187 Determination of the vertical pattern of the SIR-B antenna p 56 A88-44638 Critique of the thermal design verification program for a high-power communications spacecraft [AIAA PAPER 88-2648] p 22 A88-48479 Adaptive control experiment with a large flexible structure
arrays for space applications p 55 A88-35274 Ku-band (14GHz) fiber optic communication links for distributed antennas in the Space Station p 55 A88-35275 Optical technology for spacecraft antennas p 56 A88-43187 Determination of the vertical pattern of the SIR-B antenna p 56 A88-44638 Critique of the thermal design verification program for a high-power communications spacecraft [AIAA PAPER 88-2648] p 22 A88-48479 Adaptive control experiment with a large flexible structure [AIAA PAPER 88-4153] p 36 A88-50247
arrays for space applications p 55 A88-35274 Ku-band (14GHz) fiber optic communication links for distributed antennas in the Space Station p 55 A88-35275 Optical technology for spacecraft antennas p 56 A88-43187 Determination of the vertical pattern of the SIR-B antenna p 56 A88-44638 Critique of the thermal design verification program for a high-power communications spacecraft [AIAA PAPER 88-2648] p 22 A88-48479 Adaptive control experiment with a large flexible structure [AIAA PAPER 88-4153] p 36 A88-50247 Comparison of fiber optic and space feed for large aperture phased array antennas p 57 A88-50308
arrays for space applications p 55 A88-35274 Ku-band (14GHz) fiber optic communication links for distributed antennas in the Space Station p 55 A88-35275 Optical technology for spacecraft antennas p 56 A88-43187 Determination of the vertical pattern of the SIR-B antenna p 56 A88-44638 Critique of the thermal design verification program for a high-power communications spacecraft [AIAA PAPER 88-2648] p 22 A88-48479 Adaptive control experiment with a large flexible structure [AIAA PAPER 88-4153] p 36 A88-50247 Comparison of fiber optic and space feed for large aperture phased array antennas p 57 A88-50308 A mathematical theory of learning control for linear
arrays for space applications p 55 A88-35274 Ku-band (14GHz) fiber optic communication links for distributed antennas in the Space Station p 55 A88-35275 Optical technology for spacecraft antennas p 56 A88-43187 Determination of the vertical pattern of the SIR-B antenna p 56 A88-44638 Critique of the thermal design verification program for a high-power communications spacecraft [AIAA PAPER 88-2648] p 22 A88-48479 Adaptive control experiment with a large flexible structure [AIAA PAPER 88-4153] p 36 A88-50247 Comparison of fiber optic and space feed for large aperture phased array antennas p 57 A88-50308 A mathematical theory of learning control for linear discrete multivariable systems
arrays for space applications p 55 A88-35274 Ku-band (14GHz) fiber optic communication links for distributed antennas in the Space Station p 55 A88-35275 Optical technology for spacecraft antennas p 56 A88-43187 Determination of the vertical pattern of the SIR-B antenna p 56 A88-44638 Critique of the thermal design verification program for a high-power communications spacecraft [AIAA PAPER 88-2648] p 22 A88-48479 Adaptive control experiment with a large flexible structure [AIAA PAPER 88-4153] p 36 A88-50247 Comparison of fiber optic and space feed for large aperture phased array antennas p 57 A88-50308 A mathematical theory of learning control for linear
arrays for space applications p 55 A88-35274 Ku-band (14GHz) fiber optic communication links for distributed antennas in the Space Station p 55 A88-35275 Optical technology for spacecraft antennas p 56 A88-43187 Determination of the vertical pattern of the SIR-B antenna p 56 A88-44638 Critique of the thermal design verification program for a high-power communications spacecraft [AIAA PAPER 88-2648] p 22 A88-48479 Adaptive control experiment with a large flexible structure [AIAA PAPER 88-4153] p 36 A88-50247 Comparison of fiber optic and space feed for large aperture phased array antennas p 57 A88-50308 A mathematical theory of learning control for linear discrete multivariable systems [AIAA PAPER 88-4313] p 40 A88-50438 Control of spacecraft with multi-targeted flexible antennas
arrays for space applications p 55 A88-35274 Ku-band (14GHz) fiber optic communication links for distributed antennas in the Space Station p 55 A88-35275 Optical technology for spacecraft antennas p 56 A88-43187 Determination of the vertical pattern of the SIR-B antenna p 56 A88-44638 Critique of the thermal design verification program for a high-power communications spacecraft [AIAA PAPER 88-2648] p 22 A88-48479 Adaptive control experiment with a large flexible structure [AIAA PAPER 88-4153] p 36 A88-50247 Comparison of fiber optic and space feed for large aperture phased array antennas p 57 A88-50308 A mathematical theory of learning control for linear discrete multivariable systems [AIAA PAPER 88-4313] p 40 A88-50438 Control of spacecraft with multi-targeted flexible

Latching mechanisms for IOC --- EURECA

p 16 N88-21205

aluminum-lithium sheet alloys

```
SPACECRAFT CABIN ATMOSPHERES
                                                                   Mechanical and electrical characteristics of tin whiskers
                                                                with special reference to spacecraft systems
    Space cabin atmosphere and extracurricular sortie ---
                                      p 100 N88-26023
  embolisms
SPACECRAFT CHARGING
                                                                   Recent advances in aerospace refractory metal alloys
    Test program to evaluate ESD susceptibility of EVA suit
                                       p 73 A88-33789
  material
                                                                  Results of apparent atomic oxygen reactions with
    Results from a tethered rocket experiment (Charge-2)
                                                                spacecraft materials during Shuttle flight STS-41G
                                       p 57 A88-46804
    Theory of the electrodynamic tether
                                                                  Aeroelastic interactions with
                                       p 57 A88-46805
                                                                transatmospheric vehicles
    Plasma contactor design for electrodynamic tether
                                                                  Unique bonding methods for spacecraft
  applications
                                       p 57 A88-46807
    Electrostatic charging and arc discharges on satellite
                                                                  A fracture control plan for composite spacecraft
  dielectrics simulated by electron beam
                                                                structures
                                       p 57 A88-47970
                                                                [IAF PAPER 88-282]
   Real-time, automatic vehicle-potential determination
                                                                Soviet spacecraft engineering research [FASAC-TAR-3090]
  from ESA measurements - The distribution function
    gorithm --- ElectroStatic Analyzer p 58 A88-51391
Several spacecraft-charging event on SCATHA in
  algorithm --- ElectroStatic Analyzer
                                                                  Reinforced plastics: Winding and weaving technologies
                                                                for space products
                                       p 58 A88-51392
  September 1982
                                                                [REPT-881-430-1031
    A study of SCATHA eclipse charging
                                                                  The technical reporting and approval procedure for
                                       p 58 A88-53470
                                                                materials and processes
    Spacecraft dielectric surface
                                    charging property
                                                                [ESA-PSS-01-700-ISSUE-1]
  determination
                                                                  Contribution to the study of materials behavior in space
  [NASA-CR-180879]
                                       p 59 N88-21243
                                                                environment
    Simulations of the electrostatic charging of ESA
                                                                [SNIAS-881-430-104]
  communications satellites
                                                                  Very high temperature materials for mechanical
  [ESA-STM-239]
                                       p 61 N88-24670
                                                                application
SPACECRAFT COMMUNICATION
                                                                [SNIAS-881-430-106]
    Spacecraft technology requirements for future NASA
                                                                  Material and process selection and quality control for
                                                                ESA space systems and associated equipment
  [AIAA PAPER 88-3487]
                                        p 4 A88-43299
                                                                [ESA-PSS-01-70-ISSUE-3]
    Data management for large space systems
                                                                Study of secondary emission properties of materials used for high power RF components in space
                                       p 95 A88-45034
    Critique of the thermal design verification program for
                                                                (ESA-CR(P)-2587)
  a high-power communications spacecraft
                                                              SPACECRAFT CONTAMINATION
                                       p 22 A88-48479
  [AIAA PAPER 88-2648]
                                                                  Particle adhesion to surfaces under vacuum
    Connectivity is the key ---
                                          ground-space
                                      for
                                                                [AIAA PAPER 88-2725]
  station-ground data links
                                       p 59
                                            A88-54853
                                                                  Technologies for protection of the Space Station power
    Technology forecast and applications for autonomous,
                                                                system surfaces in atomic oxygen environment
  intelligent systems --- for space station, shuttle, and
  interplanetary missions
                                                                  A Study of Space Station Contamination Effects ---
  HAF PAPER 88-0251
                                        p 6 A88-55322
    Connecting remote systems for demonstration of
                                                                [NASA-CP-3002]
                                       p 78 N88-24191
automation technologies
SPACECRAFT COMPONENTS
                                                                  Neutral environment for space station
    Optimal deployment of spacecraft appendages
                                                                  Space station neutral external environment
                                       p 47 A88-55386
  [IAF PAPER 88-307]
    Structural latches for modular assembly of spacecraft
                                                                  Contaminant ions and waves in the space station
  and space mechanisms
                                       p 17 N88-21471
                                                                environment
   Study of secondary emission properties of materials
                                                                  Space station induced electromagnetic effects
  used for high power RF components in space
                                       p 72 N88-30012
  [ESA-CR(P)-2587]
                                                                  Space station contamination study: Assessment of
SPACECRAFT CONFIGURATIONS
                                                                contaminant spectral brightness
    The Columbus resource module for the European
                                                                  Space station particulate contamination environment
  man-tended free flyer
  1AAS PAPER 86-4651
                                        p 2 A88-35056
                                                                  The particulate environment surrounding the space
    Update on Soviet space activities
                                                                station: Estimates from the PACS data
                                        p 2 A88-35081
  [AAS PAPER 86-466]
    Compatibility of microgravity
                                      experiments with
                                                                  Effects of meteoroids and space debris on the particulate
  spacecraft disturbances
                                       p 34 A88-49743
                                                                environment for space station
   A formulation for studying dynamics of interconnected
                                                                  Contamination of optical surfaces
  bodies with application
  [AIAA PAPER 88-4303]
                                       p 39 A88-50428
                                                                  Surface interactions relevant to
                                                                contamination problems
   A dynamical study of the proposed Space Station type
  configuration
                                                                  Laboratory experiments of relevance to the space station
                                       p 39 A88-50429
p 41 A88-50818
  [AIAA PAPER 88-4304]
                                                                 nvironment p 71 N88-25402
Contamination of the space station environment by ented chemicals p 71 N88-25403
    Space Station dynamic analysis
    Optimum configuration of high-lift aeromaneuvering
                                                                vented chemicals
  orbital transfer vehicles in viscous flow
                                                                  Studies on rocket exhaust plumes and impingement
                                                                effects related to the Columbus Space Station program:
SPACECRAFT CONSTRUCTION MATERIALS
                                                                Executive summary
    Mast material test program (MAMATEP) --- for Solar
                                                                [DFVLR-IB-222-88-A-12]
  Array Assembly of Space Station Photovoltaic Power
                                                              SPACECRAFT CONTROL
  Module
                                                                  Synthesis of fine-pointing control systems for large,
                                       p 63 A88-35945
 [AIAA PAPER 88-2475]
                                                                flexible spacecraft
   Measurements of thermal conductivity and thermal
                                                                  Time optimal slewing of flexible spacecraft
  contact resistance in composite materials for space
  applications
                                       p 64 A88-36982
                                                                  Moving bank multiple model adaptive estimation applied
                                                                to flexible space structure control
   Manufacturing of damage-resistant composite structures
                                       p 65 A88-41885
  for aerospace applications
                                                                  An adaptive control system for fine pointing of flexible
                                                                spacecraft
   Graphite thermoplastic composites for spacecraft
                                                                            synthesis for flexible spacecraft using
                                                                  Controller
  applications
                                      p 65 A88-42419
                                                                multivariable loop-shaping and factorization methods
    Qualification
                 of room-temperature-curing
  adhesives for spacecraft structural applications
                                                                  Time optimal slewing of a rigid body with flexible
                                       p 66 A88-42440
                                                                appendages
    Long-lived thermal control materials for high temperature
                                                                  Ground-test of spacecraft control and dynamics
  and deep space applications
                                       p 20 A88-42441
                                                                [AAS PAPER 86-267]
   Production of ground state atomic oxygen in a multifactor
                                                                  Distributed and concurrent computation for space
  stress environment --- for reaction testing of materials in
                                                                structures
  orbiting space vehicles
                                      p 56 A88-42585
                                                                [AAS PAPER 86-397]
   Beyond simulation --- selecting materials for spacecraft
                                                                  Real-time systems for space applications
                                       p 66 A88-45109
    Superplastic forming characteristics and properties of
                                                                  Dynamics and control of large space platforms and small
```

p 67 A88-45205

experimental payloads

SPACECRAFT DESIGN SUBJECT INDEX

Design of light-weight impact resistant pressure vessels Large space structures: Dynamics and control --- Book The use of pyrotechnics on spacecraft p 31 A88-46401 p 85 A88-49825 for Space Station fluid and propulsion systems Nonlinearities in the dynamics and control of space p 83 A88-35943 The CTM program of masts and the CTM engineering nodel --- spacecraft mechanism p 15 N88-21196 structures - Some issues for computational mechanics Space Station truss strut tube design model --- spacecraft mechanism p 31 A88-46403 p 13 A88-35944 [AIAA PAPER 88-2471] The development status of the strongback array Optimal projection for uncertain systems (OPUS) - A spacecraft structure p 15 N88-21201 Methods for spacecraft simulation in vibro-acoustic A joint actuator design for a robotic manipulator unified theory of reduced-order, robust control desig p 9 A88-37278 environments p 32 A88-46411 An integrated approach to the minimum weight and The Infrared Space Observatory (ISO) project p 77 N88-21232 Material and process selection and quality control for n 3 A88-39077 ESA space systems and associated equipment [ESA-PSS-01-70-ISSUE-3] p 72 optimum control design of space structures Space Phoenix --- recycling shuttle external tanks into p 10 A88-46414 p 9 A88-39500 p 72 N88-29190 low-cost spacecraft Dynamics and control of a space platform with a tethered SPACECRAFT GLOW A high power spacecraft thermal management system p 33 A88-46717 [AIAA PAPER 88-2702] A88-43754 Optical environment of the Spacelab 1 mission p 67 A88-47966 A new momentum management controller for the Space A concept for manned variable gravity facilities Space station contamination study: Assessment of p 9 A88-43969 [AIAA PAPER 88-4132] The U.S. Space Station - A quarter-century of plution p.4 A88-44150 n 36 A88-50233 contaminant spectral brightness p 70 N88-25395 Guidance and control for cooperative tether-mediated Calculation of space station infrared irradiance from evolution orbital rendezvous The Gamma Ray Observatory (GRO) Propulsion atmosphere-induced emissions p 70 N88-25396 JAIAA PAPER 88-41701 n 37 A88-50261 SPACECRAFT GUIDANCE Subsystem A slew maneuver experiment of mission function [AIAA PAPER 88-3051] Guidance and control for cooperative tether-mediated p 4 A88-44741 orbital rendezvous Beyond simulation --- selecting materials for spacecraft [AIAA PAPER 88-4226] [AIAA PAPER 88-4170] p 37 A88-50261 p 38 A88-50367 p 66 A88-45109 systems An approximate atmospheric guidance law aeroassisted plane change maneuvers The dynamics and control of the orbiting spacecraft Optimal experiment design for identification of large A88-45227 control laboratory experiment (SCOLE) during station space structures p 31 [AIAA PAPER 88-4174] p 37 A88-50265 keeping A variable structure control approach to flexible [AIAA PAPER 88-4252] p 38 A88-50384 A near optimal guidance algorithm for aero-assisted orbit p 34 A88-49914 An optimal maneuver control method for the spacecraft Getting ready to go --- Space Station deployment transfer IAIAA PAPER 88-41751 p 37 A88-50266 with flexible appendages p 6 A88-54851 schedule [AIAA PAPER 88-4255] p 38 A88-50386 Dynamics of interconnected flexible members in the SPACECRAFT INSTRUMENTS Polar Platform configuration and servicing A formulation for studying dynamics and control of the presence of environmental forces - A formulation with p 1 A88-34552 Space Station based MRMS and its application applications p 47 A88-55391 Integrated structural/controller optimization of large I AIAA PAPER 88-42691 p.38 A88-50398 HAF PAPER 88-3181 space structures
[AIAA PAPER 88-4305] Integrated structural/controller optimization of large Lunar orbit service station [IAF PAPER 88-618] space structures p 6 A88-55454 p 39 A88-50430 Study on long term evolution Towards European Autonomous Manned Spaceflight (STEAMS) SPACECRAFT LAUNCHING [AIAA PAPER 88-4305] n 39 A88-50430 Space Station development Control of spacecraft with multi-targeted flexible 1AAS PAPER 86-2551 [SNIAS-SE/LS/AP-35-073] N88-20330 p 2 A88-35052 [AIAA PAPER 88-4268] p 40 A88-50441 Multimission modular spacecraft (MMS) Docking/berthing subsystem: Design and breadboard Space station dynamic analysis methods p 93 A88-42910 p 17 N88-21233 [AIAA PAPER 88-3513] test Particle adhesion to surfaces under vacuum p 41 A88-50863 Nonlinear analysis and optimal design of dynamic [AIAA PAPER 88-2725] p 66 A88-43765 Development of a control oriented model of a mechanical systems for spacecraft application cantilevered beam with end-mass --- for large space Technology forecast and applications for autonomous, p 49 N88-22070 intelligent systems --- for space station, shuttle, and p 44 A88-54533 Jananese snace station module p 98 N88-22224 structures Advanced control evaluation for structures (ACES) Advanced EVA system design requirements study
p 78 N88-24147 interplanetary missions [IAF PAPER 88-025] ACES program - Lessons learned p 6 A88-54572
Variable structure contact p 6 A88-55322 programs Space Station Human Factors Research Review. SPACECRAFT LUBRICATION Volume 4: Inhouse Advanced Development and Research Tribological properties of polymer films and solid bodies Variable structure control of decoupleable systems and in a vacuum environment p 63 A88-35565 attitude control of spacecraft in presence of uncertainty p 46 A88-54655 The SPOT solar array. Box opening mechanisms [NASA-CP-2426-VOL-4] p 99 N88-24148 physical vapor deposition (PVD)-MoS2: Lubricated slides. Design and development of a computer controlled Structural margins assessment approach [NASA-TM-100332] p 23 Functional evaluation
SPACECRAFT MAINTENANCE system for spacecraft static testing p 11 A88-54896 p 23 N88-24672 Control of large space structures using reduced order Design and testing of a high power spacecraft thermal COSM: A Space Station EVAS test challenge --management system p 47 A88-55371 [IAF PAPER 88-272] [NASA-TM-4051] CheckOut, Servicing, and Maintenance for ExtraVehicular p 23 N88-26389 Literal dynamic modeling Activity System p 3 A88-36556 Generic model laboratory tests for large flexible structure Multimission modular spacecraft (MMS) IBEPT-881-440-1141 p 53 N88-28083 p 93 A88-42910 p 47 A88-55378 Study of standard generic approach for spacecraft (S/C) [AIAA PAPER 88-3513] HAF PAPER 88-2941 A job for space manufacturing p 94 A88-43966 autonomy and automation (phase 3). Book B: Autonomy Rapid slewing of the orbiting Spacecraft Control Space Station tool kit p 94 A88-43967 concept application example Laboratory Experiment (SCOLE) using LQR techniques [ESA-CR(P)-2555-VOL-2] p 53 N88-28956 Cost effectiveness of on-orbit servicing for large [IAF PAPER 88-320] p 47 A88-55393 constellations Space station as a vital focus for advancing the The system of the Mir station motion control technologies of automation and robotics [AIAA PAPER 88-3519] p 94 A88-44527 p 48 A88-55397 HAF PAPER 88-3341 p 80 N88-29352 Telepresence for space applications HAF-86-621 A feedback double path compensating control structure IAF PAPER 88-018 p 77 A88-55320 Interim Flight Opportunity (IFO). Volume 1: Executive for the attitude control of a flexible spacecraft summary --- space platform [SE/LS/AP-36-818/CN-VOL-1] SPACECRAFT MANEUVERS p 48 N88-21240 [INPE-4464-PRE/1239] Rotational maneuver and stabilization of an elastic p 8 N88-29849 Travelling wave concepts for the modeling and control p 26 A88-34794 SPACECRAFT DOCKING of space structures Input selection for a second-order mass property Space vehicle approach velocity judgments under p 50 N88-23819 IAD-A1912351 p 93 A88-42933 estimator --- for satellite attitude control simulated visual space conditions Genetic algorithms for adaptive real-time control in Tasks of the simulation installations for space flight p 30 A88-43203 p 50 N88-24195 space systems operations in the operations center for manned space Variable-structure control of spacecraft attitude Low authority control of large space structures using a p 30 A88-43211 maneuvers laboratories p 10 A88-46516 constrained threshold control formulation Development of an intermodule connector for Space-based system disturbances caused by on-board p 51 N88-24667 serviceable spacecraft p 16 N88-21212 fluid motion during system maneuvers [AIAA PAPER 88-3633] Docking/berthing subsystem: Design and breadboard Study of standard generic approach for spacecraft (S/C) p 33 A88-48957 p 17 N88-21233 autonomy and automation (phase 3). Book B: Autonomy test An approximate atmospheric guidance law for Space station full-scale docking/berthing mechanisms aeroassisted plane change maneuvers concept application example p 53 N88-28956 p 18 N88-21491 [ESA-CR(P)-2555-VOL-2] development [AIAA PAPER 88-4174] p 37 A88-50265 Orbital navigation, docking and obstacle avoidance as Theory of filtering and control with application to control A near optimal guidance algorithm for aero-assisted orbit form of three dimensional model-based image of large space structures transfer p 50 N88-24194 p 54 N88-29851 understanding [AIAA PAPER 88-4175] p 37 A88-50266 [AD-A195500] OMV docking simulator p 101 N88-29379 Robust design of distributed controllers for large flexible A slew maneuver experiment of mission function SPACECRAFT ELECTRONIC EQUIPMENT space structures System effectiveness-A key to assurance [AIAA PAPER 88-4226] n 54 N88-30134 INASA-CR-1832021 p 38 A88-50367 p 93 A88-43333 SPACECRAFT DESIGN An optimal maneuver control method for the spacecraft A flexible variable conductance heat pipe design for with flexible appendages Technology advancements for the U.S. manned Space temperature control of spacecraft equipment p 1 A88-33434 [AIAA PAPER 88-4255] Station - An overview p 38 A88-50386 [AIAA PAPER 88-2680] p 20 A88-43743 Computer applications in spacecraft design and Out of plane maneuvering with tethered satellites SPACECRAFT ENVIRONMENTS p 89 A88-34465 p 39 A88-50409 [AIAA PAPER 88-4282] The environment of earth-orbiting systems An integrated computer aided engineering system for Accommodation of kinematic disturbances during a p 3 A88-35877 p 8 A88-34469 minimum-time maneuver of a flexible spacecraft Space Station design Space radiation effects on poly(aryl-ether-ketone) thin [AIAA PAPER 88-4253] p 65 A88-41547 p 40 A88-50440 Space Station evolution films and composites p 2 A88-35053 SPACECRAFT EQUIPMENT 1AAS PAPER 86-2621 Orbital navigation, docking and obstacle avoidance as Interactive structural and controller synthesis for large Two-phase ammonia thermal bus performance a form of three dimensional model-based image [AIAA PAPER 88-2701] p 21 A88-43753 p 28 A88-35541 p 50 N88-24194 understanding spacecraft

SUBJECT INDEX		SPACECREWS
SPACECRAFT MODELS	The application of high temperature superconductors	Damping materials for spacecraft vibration control
Modelling and stabilization of flexible spacecraft under	to space electrical power distribution components	p 64 A88-37000
the influence of orbital perturbation p 27 A88-34914	[NASA-TM-100901] p 60 N88-22939	Use of modal energy distribution in the design of
Identification of a complex satellite model by means of modal synthesis p 40 A88-50809	Individual satellite power requirements calculated from specified constellation performance p 60 N88-24392	honeycomb sandwich decks p 64 A88-37466
Space station dynamic analysis methods	Alternative module configurations for advanced solar	Analytical expressions for vibratory displacements of deploying appendages
p 41 A88-50863	arrays on low orbit and extended lifetime missions (AMOC	[AIAA PAPER 88-4250] p 38 A88-50383
Literal dynamic modeling [REPT-881-440-114] p 53 N88-28083	2) [ESA-CR(P)-2581] p 62 N88-30182	Identification of a complex satellite model by means of
Procedures for updating dynamic mathematical models,	SPACECRAFT PROPULSION	modal synthesis p 40 A88-50809
test phase spacecraft hardware	Long term orbital storage of cryogenic propellants for	Transient tests for space structures qualification p 41 A88-50837
[MEBS-38/87] p 12 N88-29852 SPACECRAFT MODULES	advanced space transportation missions p 82 A88-33441	Comparison of theoretical and experimental modal
The Columbus resource module for the European	Exotic propulsion in the 21st century	analysis results of a rectangular three dimensional frame
man-tended free flyer	[AAS PAPER 86-409] p 83 A88-35100	p 22 A88-50873 Advanced composites for Magellan spacecraft
[AAS PAPER 86-465] p 2 A88-35056 Update on Soviet space activities	LEO to GEO transportation system combining electric propulsion with beamed microwave power from earth	[AIAA PAPER 88-3031] p 68 A88-53126
[AAS PAPER 86-466] p 2 A88-35081	[AAS PAPER 87-126] p 83 A88-41287	Use of assumed modes in equations governing
Welding the Space Station common module prototype	An assessment of nominal and contingency altitude reboost scenarios during Space Station assembly	large-displacement elastodynamic plate behavior
p 11 A88-52334 Modelling of the microgravity environment of the Man	[AIAA PAPER 88-3501] p 75 A88-44526	p 43 A88-54421 Velocity distributions of oxygen atoms incident on
Tended Free Flyer (MTFF) p 96 A88-52335	Parametric studies of electric propulsion systems for	spacecraft surfaces p 68 A88-54990
Space Station habitation module - Privacy and collective	orbit transfer vehicles [AIAA PAPER 88-2835] p 84 A88-44668	A fracture control plan for composite spacecraft
life [IAF PAPER 88-080] p 97 A88-55336	The Gamma Ray Observatory (GRO) Propulsion	structures [IAF PAPER 88-282] p 68 A88-55374
Columbus Pressurized Modules - A versatile	Subsystem	Numerical solution of multibody systems in space
user-friendly space laboratory system	[AIAA PAPER 88-3051] p 4 A88-44741 All electronic propulsion - Key to future spaceship	applications p 48 N88-21200
[IAF PAPER 88-097] p 6 A88-55340 Development of an intermodule connector for	design	The development status of the strongback array spacecraft structure p 15 N88-21201
serviceable spacecraft p 16 N88-21212	[AIAA PAPER 88-3170] p 84 A88-44875	A sequentially deployable structure for space
Docking/berthing subsystem: Design and breadboard	Advanced propulsion for the Mars Rover Sample Return Mission	applications p 15 N88-21202
test p 17 N88-21233 Space station architectural elements model study	[AIAA PAPER 88-2900] p 84 A88-46489	Optimal control and identification of space structures [AD-A190033] p 49 N88-22065
[NASA-CR-4027] p 100 N88-24632	Transportation concepts for Mars exploration	Wave propagation and dynamics of lattice structures
Alternative module configurations for advanced solar	[AIAA PAPER 88-3494] p 4 A88-48477 SPACECRAFT RADIATORS	[AD-A190037] p 49 N88-22066
arrays on low orbit and extended lifetime missions (AMOC 2)	International Symposium on Thermal Problems in	Vibration control of large structures [AD-A191358] p 50 N88-22928
[ESA-CR(P)-2581] p 62 N88-30182	Space-Based Systems, Boston, MA, Dec. 13-18, 1987,	Lewis Structures Technology, 1988. Volume 1: Structural
SPACECRAFT MOTION	Proceedings p 92 A88-42829 A flexible variable conductance heat pipe design for	Dynamics
Ground-test of spacecraft control and dynamics [AAS PAPER 86-267] p 27 A88-35102	temperature control of spacecraft equipment	[NASA-CP-3003-VOL-1] p 98 N88-23226 Base reaction optimization of manipulators with
Determination of the motion of the Salyut 6 and 7 orbital	[AIAA PAPER 88-2680] p 20 A88-43743	redundant kinematics p 78 N88-23238
stations with respect to the mass center in the slow spin	Rotating solid radiative coolant system for space nuclear reactors	Travelling wave concepts for the modeling and control
mode on the basis of measurement data p 31 A88-45467	[AIAA PAPER 88-3189] p 21 A88-44785	of space structures [AD-A191235] p 50 N88-23819
Some approximations for the dynamics of spacecraft	Moveable thermal joints for deployable or steerable	Reinforced plastics: Winding and weaving technologies
tethers p 33 A88-46712	spacecraft radiator systems [NLR-MP-87016-U] p 14 N88-20347	for space products [REPT-881-430-103] p 71 N88-27341
Dynamics and control of a space platform with a tethered subsatellite p 33 A88-46717	Fabric space radiators	[REPT-881-430-103] p 71 N88-27341 Vibration control of large structures
Astrodynamics problems of the Space Station	[DE88-005569] p 17 N88-21237	[AD-A193317] p 53 N88-27587
p 33 A88-47907 Analytical models for relative motion under constant	Arc-textured metal surfaces for high thermal emittance space radiators	Dynamics of articulated aerospace structures [AD-A195685] p 53 N88-29794
thrust	[NASA-TM-100894] p 69 N88-24754	Sensor and actuator selection for large space structure
[AIAA PAPER 88-4300] p 85 A88-50425	Development of a space deployable radiator using heat	control
Control of spacecraft with multi-targeted flexible antennas	pipes [SNIAS-881-440-104] p 23 N88-29128	[AD-A194912] p 53 N88-29842 Laser sensing for identification and control of distributed
[AIAA PAPER 88-4268] p 40 A88-50441	SPACECRAFT RECOVERY	parameter systems
SPACECRAFT ORBITS	Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite	[AD-A195886] p 54 N88-30124
Analytical models for relative motion under constant thrust	[AIAA PAPER 88-4171] p 37 A88-50262	SPACECRAFT TEMPERATURE Super heat pipe design considerations for applications
[Alaa Paper 88-4300] p 85 A88-50425	SPACECRAFT RELIABILITY	to space-based systems p 20 A88-42830
SPACECRAFT PERFORMANCE	Testing of propellant management device for 3-axis geosynchronous spacecraft p 83 A88-33792	Application of two-phase thermal transport systems to
Design and testing of a high power spacecraft thermal management system	System effectiveness-A key to assurance	space platforms p 20 A88-42842 Moveable thermal joints for deployable or steerable
[NASA-TM-4051] p 23 N88-26389	p 93 A88-43333	spacecraft radiator systems
A scheduling and resource management system for space applications p 101 N88-29383	Propulsion safety almost equals mission safety [AIAA PAPER 88-2881] p 84 A88-44698	[NLR-MP-87016-U] p 14 N88-20347 Feasibility demonstration of a sensor for high-quality
SPACECRAFT POWER SUPPLIES	A scheduling and resource management system for	two-phase flow Space Station
The use of electrodynamic tethers for generating power	space applications p 101 N88-29383 SPACECRAFT SHIELDING	[NLR-TR-87009-U] p 59 N88-20569
and thrust in space [AAS PAPER 86-366] p 55 A88-35099	Shielding against debris p 66 A88-43518	MTK: An Al tool for model-based reasoning p 12 N88-24189
Solar-dynamic energy supply systems for space	SPACECRAFT STABILITY	Design and testing of a high power spacecraft thermal
systems p 64 A88-37293	Stability and equilibria of deformable systems p 26 A88-34813	management system
30 years of progress in space; Proceedings of the Thirty-eighth International Astronautical Congress,	Modelling and stabilization of flexible spacecraft under	[NASA-TM-4051] p 23 N88-26389 Reasoning about fault diagnosis for the space station
Brighton, England, Oct. 10-17, 1987 p 91 A88-38304	the influence of orbital perturbation p 27 A88-34914	common module thermal control system
Space structures, power, and power conditioning;	Active vibration control synthesis for the control of flexible structures mast flight system p 30 A88-43212	p 23 N88-29395 SPACECRAFT TRACKING
Proceedings of the Meeting, Los Angeles, CA, Jan. 11-13, 1988	Mathematical modeling of the dynamics of a spacecraft	Spacecraft applications of advanced global positioning
[SPIE-871] p 92 A88-42547	with elastic components p 33 A88-48080	system technology
Orbital replaceable unit-cold plate dry thermal interface concept and test measurements p 20 A88-42843	Sensors, actuators, and hyperstability of structures	[NASA-CR-172055] p 8 N88-27180 SPACECRAFT TRAJECTORIES
Open-cycle chemical power and thermal management	[AIAA PAPER 88-4057] p 34 A88-50167 A formulation for studying dynamics of interconnected	Trajectory analysis of a low lift/drag aeroassisted orbit
system with combustion product-free effluent	bodies with application	transfer vehicle
[AIAA PAPER 88-2625] p 83 A88-43710 High-temperature solar energy systems for spacecraft	[AIAA PAPER 88-4303] p 39 A88-50428	[AAS PAPER 87-123] p 92 A88-41285 Ballistic design of space systems Russian book
power and propulsion units Russian book	Vibrations of structures with parametric uncertainties	p 9 A88-44898
p 85 A88-50769	[AD-A190400] p 49 N88-22378 SPACECRAFT STRUCTURES	SPACECREWS
Technologies for protection of the Space Station power system surfaces in atomic oxygen environment	On-orbit assembly, integration, and test of large	Crew-induced load measurement for space operations p 73 A88-35455
p 68 A88-52331	spacecraft - A new technique p 72 A88-33440	Space Station habitation module - Privacy and collective
Advanced space power systems	Columbus utilization studies - Attached payloads p 1 A88-34563	life
[SAWE PAPER 1762] p 58 A88-53779 Power systems for production, construction, life support	Modal testing R&D at the Communications Research	[IAF PAPER 88-080] p 97 A88-55336 The US space programme spacewalk/extravehicular
and operations in space	Centre structural vibration analysis of aircraft and	activity experience: Past, present and future
[NASA-TM-100838] p 59 N88-21254	spacecraft structures p 25 A88-34613	p 79 N88-26031

An expert system for a distributed real-time trainer p 12 N88-29411	STRAPDOWN INERTIAL GUIDANCE Utilization of strapdown inertial and non-inertial sensors	A disturbance model for the optimization of control/structure interactions for flexible dynamic
SPACELAB	in determination of satellite attitude by Kalman filters	systems
Transitioning from Spacelab to Space Station science	[INPE-4313-TDL/280] p 48 N88-20349	[AIAA PAPER 88-4058] p 34 A88-50168
[AAS PAPER 86-284] p 3 A88-35131	STRESS ANALYSIS	Optimal structural design with control gain norm
Optical environment of the Spacelab 1 mission	Performance enhancement of passively damped joints	constraint p 22 A88-50339
p 67 A88-47966	for space structures	STRUCTURAL ENGINEERING
SPACELAB PAYLOADS The environment of earth-orbiting systems	[AIAA PAPER 88-2450] p 13 A88-35941	Structural mechanics of optical systems II; Proceedings of the Meeting, Los Angeles, CA, Jan. 13-15, 1987
p 3 A88-35877	Structural assessment of a space station solar dynamic	[SPIE-748] p 89 A88-34486
SDI experiment requirements lead to new emphasis on	heat receiver thermal energy storage canister p 23 N88-22406	Developments in Mechanics. Volumes 14(a), 14(b), &
shuttle simulation capabilities p 10 A88-46987	STRUCTURAL ANALYSIS	14(c) - Midwestern Mechanics Conference, 20th, Purdue
SPATIAL DISTRIBUTION	Computing the transmission zeros of large space	University, West Lafayette, IN, Aug. 31-Sept. 2, 1987,
Spatial distribution of model error based on	structures p 27 A88-34917	Proceedings p 97 A88-54876
analytical/experimental frequency discrepancies p 41 A88-50899	1987 SEM Spring Conference on Experimental	Travelling wave concepts for the modeling and control of space structures
Load dependent subspace reduction methods for	Mechanics, Houston, TX, June 14-19, 1987, Proceedings	[AD-A191235] p 50 N88-23819
structural dynamic computations p 42 A88-53420	p 91 A88-40251	STRUCTURAL INFLUENCE COEFFICIENTS
SPECIFIC IMPULSE	An iterative approach to parameter identification in	Beam modifications of structural systems utilizing the
Unified study of plasma/surface interactions for space	structures p 29 A88-40271	receptance approach with static flexibility
power and propulsion	A continuum model for the nonlinear analysis of beam-like lattice structures p 13 A88-41038	p 14 A88-50891
[AD-A195971] p 88 N88-29870	beam-like lattice structures p 13 A88-41038 New approach to the analysis and control of large space	STRUCTURAL MEMBERS Experimental and theoretical investigation of passive
SPECIFICATIONS	structures p 30 A88-43030	damping concepts for member forced and free vibration
The technical reporting and approval procedure for	Continuum modeling of large lattice structures - Status	[NASA-CR-183082] p 52 N88-26693
materials and processes [ESA-PSS-01-700-ISSUE-1] p 72 N88-28833	and projections p 21 A88-46402	Dynamics of articulated aerospace structures
Material and process selection and quality control for	Spacecraft dielectric surface charging property	[AD-A195685] p 53 N88-29794
ESA space systems and associated equipment	determination	STRUCTURAL STABILITY
[ESA-PSS-01-70-ISSUE-3] p 72 N88-29190	[NASA-CR-180879] p 59 N88-21243	Necessary conditions of geometrical stability in trusses
SPECTRAL EMISSION	Vibrations of structures with parametric uncertainties	which include one-force members [SAWE PAPER 1776] p 43 A88-53785
Space station contamination study: Assessment of	[AD-A190400] p 49 N88-22378	Stability of imperfection-sensitive nonlinear space
contaminant spectral brightness p 70 N88-25395	Structural assessment of a space station solar dynamic	structures under stochastic loading
Calculation of space station infrared irradiance from	heat receiver thermal energy storage canister	[IAF PAPER 88-293] p 47 A88-55377
atmosphere-induced emissions p 70 N88-25396	p 23 N88-22406	Vibrations of structures with parametric uncertainties
SPECTRAL METHODS	A nonlinear computation for composite structures [ONERA-RT-15/3542-RY-062-R] p 69 N88-23265	[AD-A190400] p 49 N88-22378
Spectral analysis of a class of infinite-dimensional systems p 26 A88-34822	Travelling wave concepts for the modeling and control	STRUCTURAL VIBRATION Modal testing R&D at the Communications Research
systems p 26 A88-34822 SPECTRAL REFLECTANCE	of space structures	Centre structural vibration analysis of aircraft and
Space station solar concentrator materials research	[AD-A191235] p 50 N88-23819	spacecraft structures p 25 A88-34613
[NASA-TM-100862] p 69 N88-21250	Electromagnetic damping and vibration isolation of	Parameter identification techniques for the estimation
SPIN STABILIZATION	space structures	of damping in flexible structure experiments
Rotational maneuver and stabilization of an elastic	[AD-A191492] p 51 N88-24665	p 26 A88-34805
spacecraft p 26 A88-34794	Laboratory feasibility study of a composite embedded	Member vibration effects on LSS behavior [AAS PAPER 86-396] p 27 A88-35116
Determination of the motion of the Salyut 6 and 7 orbital	fiber optic sensor for measurement of structural vibrations	Structural vibration of space power station systems
stations with respect to the mass center in the slow spin	[AD-A194270] p 71 N88-28754	p 29 A88-42574
mode on the basis of measurement data p 31 A88-45467	STRUCTURAL DESIGN	Microprocessor controlled force actuator
SPOT (FRENCH SATELLITE)	Conceptual design for active structural control of a large	p 30 A88-43206
The SPOT solar array. Box opening mechanisms	optical system p 25 A88-34500	Grammians and model reduction in limited time and
physical vapor deposition (PVD)-MoS2: Lubricated slides.	Space ten-meter telescope (STMT) - Structural and	frequency intervals [AIAA PAPER 88-4087] p 35 A88-50193
Functional evaluation p 16 N88-21211	thermal feasibility study of the primary mirror	Attituded tumbling due to flexibility in satellite mounted
SPRINGS (ELASTIC)	p 19 A88-34539	robots
Locking hinge INASA-CASE-MSC-21056-1] p 18 N88-23827	Advanced satellite servicing facility studies [AIAA PAPER 88-4200] p 93 A88-42912	[AIAA PAPER 88-4096] p 35 A88-50201
,	Optimization of actively controlled structures using	Optimal structural design with control gain norm
STANDARDS Orbital transfer vehicle concept definition and system	multiobjective programming techniques	constraint p 22 A88-50339
analysis study. Volume 2: OTV concept definition and	p 46 A88-54973	Analytical expressions for vibratory displacements of deploying appendages
evaluation. Book 1: Mission and system requirements	Theoretical and experimental investigation of	[AIAA PAPER 88-4250] p 38 A88-50383
[NASA-CR-179321] p 7 N88-20339	space-realizable inertial actuation for passive and active	A formulation for studying dynamics of interconnected
STAR FORMATION	structural control p 46 A88-55063	bodies with application
Quasat - A 50,000 km-diameter Quasar probe	Effect of natural damping on the dynamics and control	[AIAA PAPER 88-4303] p 39 A88-50428
p 96 A88-54766	of a class of optimally designed structures	Accommodation of kinematic disturbances during a
STAR TRACKERS	[IAF PAPER 88-288] p 47 A88-55375	minimum-time maneuver of a flexible spacecraft [AIAA PAPER 88-4253] p 40 A88-50440
'Glazar' - An orbital ultraviolet telescope p 91 A88-38826	Orbital transfer vehicle concept definition and system analysis study. Volume 2: OTV concept definition and	Control of spacecraft with multi-targeted flexible
STATE ESTIMATION	evaluation. Book 1: Mission and system requirements	antennas
On-line measurement configuration strategies for	[NASA-CR-179321] p 7 N88-20339	[AIAA PAPER 88-4268] p 40 A88-50441
discrete-time systems	A sequentially deployable structure for space	International Modal Analysis Conference, 5th, Imperial
[AIAA PAPER 88-4168] p 36 A88-50259	applications p 15 N88-21202	College of Science and Technology, London, England, Apr.
STATIC TESTS	LDR structural experiment definition	6-9, 1987, Proceedings. Volumes 1 & 2
Design and development of a computer controlled	[NASA-TM-100618] p 7 N88-23826	p 40 A88-50789 Effect of air mass on modal tests in large space
system for spacecraft static testing p 11 A88-54896	Structural margins assessment approach [NASA-TM-100332] p 23 N88-24672	structures p 41 A88-50860
STATIONKEEPING	Dynamics of a flexible orbiting platform with MRMS	Frequency optimization of repetitive lattice beam-like
The dynamics and control of the orbiting spacecraft control laboratory experiment (SCOLE) during station	[ISSN-0285-6808] p 51 N88-24673	structures using a continuum model p 41 A88-50892
keeping	Space station architectural elements and issues	Identification of multiple-input modal parameters from
[AIAA PAPER 88-4252] p 38 A88-50384	definition study	multiple-frequency response function p 41 A88-50897
STOCHASTIC PROCESSES	[NASA-CR-3941] p 12 N88-25371	Low authority control of a composite cantilever beam
Vibrations of structures with parametric uncertainties	Alternative module configurations for advanced solar arrays on low orbit and extended lifetime missions (AMOC	in two dimensions p 45 A88-54630
[AD-A190400] p 49 N88-22378	2)	A Fourier-based optimal control approach for structural
Theory of filtering and control with application to control	[ESA-CR(P)-2581] p 62 N88-30182	systems p 45 A88-54643
of large space structures	The space station assembly phase: System design	Effect of natural damping on the dynamics and control of a class of optimally designed structures
[AD-A195500] p 54 N88-29851	trade-offs for the flight telerobotic servicer	[IAF PAPER 88-288] p 47 A88-55375
STORAGE TANKS Design of light weight impact resistant pressure vessels	p 82 N88-30357	Wave propagation and dynamics of lattice structures
Design of light-weight impact resistant pressure vessels for Space Station fluid and propulsion systems	STRUCTURAL DESIGN CRITERIA	[AD-A190037] p 49 N88-22066
[AIAA PAPER 88-2466] p 83 A88-35943	Designing Space Station structure for assembly [AIAA PAPER 88-2453] p 74 A88-35942	Vibrations of structures with parametric uncertainties
STOWAGE (ONBOARD EQUIPMENT)	Sensitivity analysis of a deployable three longeron truss	[AD-A190400] p 49 N88-22378
Locking hinge	beam designed for minimum member loads during	Vibration control of large structures
[NASA-CASE-MSC-21056-1] p 18 N88-23827	deployment	[AD-A191358] p 50 N88-22928
Expandable pallet for space station interface	[AIAA PAPER 88-2436] p 13 A88-38689	Lewis Structures Technology, 1988. Volume 1: Structural
attachments	Game theory approach for the integrated design of	Dynamics (NASA CR 2002 VOL. 1)
(NASA-CASE-MSC-21117-1) p 18 N88-28958	structures and controls p 33 A88-47462	[NASA-CP-3003-VOL-1] p 98 N88-23226

SUBJECT INDEX		TELEOPERATORS
Vibration control of large structures	MTK: An Al tool for model-based reasoning	SIMSAT: Simulation package for flexible systems.
(AD-A193317) p 53 N88-27587	p 12 N88-24189 SYSTEM IDENTIFICATION	Beams in space [TW-278] p 48 N88-20348
Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of structural	System identification for space control laboratory	Numerical solution of multibody systems in space
vibrations	experiment (SCOLE) using distributed parameter models	applications p 48 N88-21200
[AD-A194270] p 71 N88-28754	p 26 A88-34792 1987 SEM Spring Conference on Experimental	Simulation of space manipulator operations (EUROSIM)
STRUTS Design, fabrication, and testing of rolled carbon/epoxy	Mechanics, Houston, TX, June 14-19, 1987, Proceedings	[NLR-MP-87017-U] p 80 N88-26678
struts for Space Station application p 62 A88-33018	p 91 A88-40251 A comparative overview of modal testing and system	SYSTEMS STABILITY
Space Station truss strut tube design	identification for control of structures p 29 A88-40269	Effects of nonlinear damping in flexible space structures
[AIAA PAPER 88-2471] p 13 A88-35944 Design and test of a modified passive orbital disconnect	Optimal experiment design for identification of large	[AIAA PAPER 88-4059] p 35 A88-50169
strut (PODS-IV) support system p 11 A88-53226	space structures p 31 A88-45227 System identification and control of the truss experiment	
The X-beam as a deployable boom for the space	- A retrospective	Т
station p 17 N88-21473 SUPERFLUIDITY	[AIAA PAPER 88-4152] p 36 A88-50246 Identification of a complex satellite model by means of	
Bayonet for superfluid helium transfer in space	modal synthesis p 40 A88-50809	TARGET ACQUISITION Real-time model-based vision system for object
p 22 A88-53220	Recent results in identification and control of a flexible truss structure p 44 A88-54576	acquisition and tracking p 28 A88-36311
The superfluid helium on-orbit transfer (SHOOT) flight experiment p 5 A88-53221	truss structure p 44 A88-54576 Identification of a flexible truss structure using lattice	TASKS
Superfluid Helium On-Orbit Transfer (SHOOT)	filters p 45 A88-54577	The space station assembly phase: Flight telerobotic servicer feasibility. Volume 2: Methodology and case
operations [NASA-TM-101009] p 88 N88-28084	On the Caltech experimental large space structure p 6 A88-54603	study
[NASA-TM-101009] p 88 N88-28084 SUPERHIGH FREQUENCIES	Identification of large structures on orbit - A survey	[NASA-CR-182690] p 77 N88-20352
Ka, C, S frequency bands, multi-beam deployable	[IAF PAPER 88-295] p 97 A88-55379 SYSTEMS ANALYSIS	NASA-Ames workload research program p 99 N88-24151
antenna system for large-capacity communication satellite p 54 A88-33448	Systems analysis of a low-acceleration research	Fault diagnosis in orbital refueling operations
Ku-band (14GHz) fiber optic communication links for	facility AIAA PAPER 88-3512 p 93 A88-42909	p 87 N88-24154
distributed antennas in the Space Station p 55 A88-35275	[AIAA PAPER 88-3512] p 93 A88-42909 Application of inclusion principle to mechanical	TECHNOLOGICAL FORECASTING Technology advancements for the U.S. manned Space
SUPERPLASTICITY	systems p 45 A88-54583	Station - An overview p 1 A88-33434
Superplastic forming characteristics and properties of aluminum-lithium sheet alloys p 67 A88-45205	Study of the optimization of satellite system design for transfer orbit	Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-35100
aluminum-lithium sheet alloys p 67 A88-45205 SUPERSONIC FLIGHT	[MBB-URV-135] p 11 N88-20332	Visions of tomorrow: A focus on national space
Aerodynamic design of a variable-bend vehicle	SYSTEMS ENGINEERING System architecture of MMIC-based large aperture	transportation issues; Proceedings of the Twenty-fifth
[AIAA PAPER 88-4340] p 40 A88-50586 SUPPORT SYSTEMS	arrays for space applications p 55 A88-35274	Goddard Memorial Symposium, Greenbelt, MD, Mar. 18-20, 1987 p 92 A88-41276
Design and test of a modified passive orbital disconnect	Two controller design approaches for decentralized	Spacecraft technology requirements for future NASA
strut (PODS-IV) support system p 11 A88-53226 Definition of common support equipment and space	systems [AIAA PAPER 88-4083] p 35 A88-50189	missions [AIAA PAPER 88-3487] p 4 A88-43299
station interface requirements for IOC model technology	Ground based operations support by Artificial	Perspectives of Soviet cosmonautics. I
experiments [NASA-TM-100656] p 8 N88-29856	Intelligence p 58 A88-52339 The development status of the strongback array	p 95 A88-49026 Technology forecast and applications for autonomous,
SURFACE DISTORTION	spacecraft structure p 15 N88-21201	intelligent systems for space station, shuttle, and
Case study of active array feed compensation with	System and concept design of the SSRMS latching end effector Space Station p 15 N88-21204	interplanetary missions [IAF PAPER 88-025] p 6 A88-55322
sidelobe control for reflector surface distortion [NASA-TM-100287] p 60 N88-23073	Latching mechanisms for IOC EURECA	Study on long term evolution Towards European
SURFACE PROPERTIES	p 16 N88-21205	Autonomous Manned Spaceflight (STEAMS)
Arc-textured metal surfaces for high thermal emittance space radiators	The EURECA antenna deployment and retraction mechanisms p 16 N88-21225	[SNIAS-SE/LS/AP-35-073] p 7 N88-20330 TECHNOLOGY ASSESSMENT
[NASA-TM-100894] p 69 N88-24754	Evolution of large momentum and reaction wheels	EASCON '87; Proceedings of the Twentieth Annual
SURFACE REACTIONS Results of apparent atomic oxygen reactions with	p 48 N88-21230 Space cabin atmosphere and extracurricular sortie	Electronics and Aerospace Systems Conference, Washington, DC, Oct. 14-16, 1987 p 88 A88-33426
spacecraft materials during Shuttle flight STS-41G	embolisms p 100 N88-26023	Aerospace century XXI: Space flight technologies;
p 67 A88-47971	Study of standard generic approach for spacecraft (S/C) autonomy and automation (phase 3). Book B: Autonomy	Proceedings of the Thirty-third Annual AAS International Conference, Boulder, CO, Oct. 26-29, 1986
Surface interactions relevant to space station contamination problems p 71 N88-25401	concept application example	p 90 A88-35093
SURVEYS	[ESA-CR(P)-2555-VOL-2] p 53 N88-28956 Space station as a vital focus for advancing the	Automation and robotics for the Space Station - The
Human performance issues arising from manned space station missions	technologies of automation and robotics	influence of the Advanced Technology Advisory Committee p 76 A88-52329
[NASA-CR-3942] p 100 N88-25156	[IAF-86-62] p 80 N88-29352	Cryogenic Fluid Management Technology Workshop.
SWITCHING CIRCUITS Digital sequential shunt regulator for solar power	Study of robotics spacecraft servicing and assembly in space. Volume 1: Executive summary	Volume 2: Roundtable Discussion of Technology Requirements
conditioning of Engineering Test Satellite (ETS-V)	[ESA-CR(P)-2612-VOL-1] p 82 N88-29839	[NASA-CP-10009] p 22 N88-20599
p 86 A88-54696 SYMBOLIC PROGRAMMING	Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1	Power systems for production, construction, life support and operations in space
Integration of symbolic and algorithmic hardware and	[STF23-F87025-VOL-1] p 82 N88-30298	[NASA-TM-100838] p 59 N88-21254
software for the automation of space station subsystems p 12 N88-24190	SYSTEMS INTEGRATION An integrated computer aided engineering system for	Soviet spacecraft engineering research [FASAC-TAR-3090] p 98 N88-23823
SYNCHRONOUS SATELLITES	Space Station design p 8 A88-34469	Man versus machine: The role of astronauts in
Testing of propellant management device for 3-axis geosynchronous spacecraft p 83 A88-33792	Development of an integrated heat pipe-thermal storage system for a solar receiver	extravehicular activity p 79 N88-26045 Space structure (dynamics and control) theme
geosynchronous spacecraft p 83 A88-33792 Advanced satellite servicing facility studies	[AIAA PAPER 88-2683] p 21 A88-43746	development
[AIAA PAPER 88-4200] p 93 A88-42912	An integrated approach to the minimum weight and optimum control design of space structures	[NASA-TM-100597] p 8 N88-29850
Piloted earth pointing of a spinning geosynchronous satellite following satellite's earth acquisition failure	p 10 A88-46414	Definition of common support equipment and space station interface requirements for IOC model technology
[AIAA PAPER 88-4130] p 37 A88-50280	Integration of Space Station propulsion and fluid systems	experiments
A study of SCATHA eclipse charging p 58 A88-53470	[AIAA PAPER 88-3289] p 85 A88-48492	[NASA-TM-100656] p 8 N88-29856 TECHNOLOGY UTILIZATION
Digital sequential shunt regulator for solar power	Systems integration for the Kennedy Space Center	Tasks foreseen for space robots and an example of
conditioning of Engineering Test Satellite (ETS-V) p 86 A88-54696	(KSC) Robotics Applications Development Laboratory (RADL) p 76 A88-52330	an associated orbital infrastructure p 79 N88-26044 TELEMETRY
Use of the surface tension propellant tanks in the Indian	Space Station Photovoltaic power modules	ITC/USA/'87; Proceedings of the International
satellite Insat [IAF PAPER 88-237] p 86 A88-55365	p 58 A88-52333 SYSTEMS MANAGEMENT	Telemetering Conference, San Diego, CA, Oct. 26-29, 1987 p 89 A88-33626
[IAF PAPER 88-237] p 86 A88-55365 Fast geostationary satellite relocation	Analytic redundancy management for systems with	Telemetry handling on the Space Station data
[IAF PAPER 88-314] p 97 A88-55390	appreciable structural dynamics for control systems design p 29 A88-40773	management system p 54 A88-33629
SYNTHETIC APERTURE RADAR Antennas for diverse requirements p 55 A88-37285	Risk management for the Space Station program	Automating satellite control and telemetry networks p 54 A88-33673
SYSTEM EFFECTIVENESS	[IAF PAPER 88-061] p 97 A88-55331	TELEOPERATORS
System effectiveness-A key to assurance p 93 A88-43333	A nonlinear filtering process diagnostic system for the Space Station p 101 N88-29417	Concepts and issues for a space telerobot [AAS PAPER 86-302] p 73 A88-35111
SYSTEM FAILURES	SYSTEMS SIMULATION	Telerobotic control of a dextrous manipulator using
On the danger of redundancies in some aerospace mechanisms p 17 N88-21475	Simulation of space manipulator operations (Eurosim) p 10 A88-46982	master and six-DOF hand-controllers for space assembly and servicing tasks p 73 A88-35453
mechanisms p 17 N88-214/5	p 10 7100-40302	and 301710119 Mond p 10 Mon-30403

TELESCOPES		SUBJECT INDEX
Human-telerobot interactions - Information, control, and	Space Operations and Space Station real-time	THERMAL DEGRADATION
mental models p 73 A88-35457	simulation	Calorimetric measurements of thermal control surfaces
Real-time model-based vision system for object	[AIAA PAPER 88-4627] p 11 A88-53664	at geosynchronous orbit p 19 A88-41414
acquisition and tracking p 28 A88-36311	Telescience Testbed Pilot Project - Evaluation	THERMAL EMISSION
Sensing and perception research for space telerobotics	environment for Space Station operations	Arc-textured metal surfaces for high thermal emittance
at JPL p 74 A88-42657	[AIAA PAPER 88-4629] p 5 A88-53666	space radiators [NASA-TM-100894] p 69 N88-24754
The space and telerobotic concepts of DFVLR rotex p 74 A88-42667	TEST FACILITIES	[NASA-TM-100894] p 69 N88-24754 THERMAL ENERGY
Traction-drive telerobot for space manipulation	Aerospace Testing Seminar, 10th, Los Angeles, CA, Mar. 10-12, 1987, Proceedings p 89 A88-33776	Open-cycle chemical power and thermal management
p 75 A88-42668	On-orbit, man/machine interface verification with	system with combustion product-free effluent
Redundancy control of a free-flying telerobot	simulator testing p 89 A88-33780	[AIAA PAPER 88-2625] p 83 A88-43710
[AIAA PAPER 88-4094] p 35 A88-50199	Test program to evaluate ESD susceptibility of EVA suit	THERMAL ENVIRONMENTS
Telerobotic Space Station applications	material p 73 A88-33789	Integration of symbolic and algorithmic hardware and
p 76 A88-52323 Robotic applications at Kennedy Space Center	TETHERED SATELLITES Effect of solar pressure on the motion and stability of	software for the automation of space station subsystems p 12 N88-24190
p 76 A88-52328	the system of two inter-connected satellites in an elliptical	THERMAL EXPANSION
The space station assembly phase: Flight telerobotic	orbit p 24 A88-33104	Degradation of graphite-epoxy due to electron
servicer feasibility. Volume 2: Methodology and case	Some approximations for the dynamics of spacecraft	radiation p 63 A88-36762
study	tethers p 33 A88-46712	Thermally stable deployable structure
[NASA-CR-182690] p 77 N88-20352	Dynamics and control of a space platform with a tethered	p 17 N88-21472 THERMAL INSULATION
The 22nd Aerospace Mechanisms Symposium [NASA-CP-2506] p 98 N88-21468	subsatellite p 33 A88-46717 Theory of the electrodynamic tether	Fabric space radiators
Operational experience and design recommendations	p 57 A88-46805	[DE88-005569] p 17 N88-21237
for teleoperated flight hardware p 78 N88-21489	Laboratory model of a Tethered Satellite - Current	THERMAL PROTECTION
Design, development and evaluation of Stanford/Ames	collection upon and sheath formation around a charged	High temperature coatings; Proceedings of the
EVA prehensors	body in a drifting magnetoplasma p 57 A88-46806	Symposium, Orlando, FL, Oct. 7-9, 1986
[NASA-CR-182688] p 78 N88-22540	Two non-linear control approaches for retrieval of a	p 88 A88-24817
Underwater simulation for space teleoperation p 79 N88-26040	thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262	THERMAL RADIATION Eabric enace radiators
Simulation of space manipulator operations	Libration damping of a tethered satellite using rate only	Fabric space radiators [DE88-005569] p 17 N88-21237
(EUROSIM)	control	THERMAL STABILITY
[NLR-MP-87017-U] p 80 N88-26678	(AIAA PAPER 88-4172) p 37 A88-50263	Thermal cycling effects on the dimensional stability of
Concepts for robot motion primitives required for space	Transient dynamics of the Tether Elevator/Crawler	P75 and P75-T300 (fabric) hybrid graphite/epoxy
station teleoperations p.81 N88-29387	System	laminates p 65 A88-42434
A teleoperated robotic manipulator system for materials processing experiment servicing p 82 N88-29410	[AIAA PAPER 88-4280] p 39 A88-50407 Out of plane maneuvering with tethered satellites	Research in ceramics at the U.S. Naval Research Lab
The space station assembly phase: System design	[AIAA PAPER 88-4282] p 39 A88-50409	p 68 A88-49996
trade-offs for the flight telerobotic servicer	Advantages of tether release of satellites from elliptic	Thermally stable deployable structure
p 82 N88-30357	orbits p 46 A88-55062	p 17 N88-21472
TELESCOPES	Tethered subsatellite swinging from atmospheric	THERMAL STRESSES Dynamics of interconnected flexible members in the
Self-correction of telescope surface errors using a correlating focal plane array p 91 A88-38097	gradients p 46 A88-55067	presence of environmental forces - A formulation with
correlating focal plane array p 91 A88-38097 TEMPERATURE CONTROL	Deployable/retrievable boom: One application to tethered satellite p 15 N88-21197	applications
Two-phase thermal loops for use in future spacecraft	Analytical investigation of the dynamics of tethered	[IAF PAPER 88-318] p 47 A88-55391
p 19 A88-37295	constellations in earth orbit	Thermally stable deployable structure
Super heat pipe design considerations for applications	[NASA-CR-179371] p 53 N88-28950	p 17 N88-21472
to space-based systems p 20 A88-42830	TETHERING	THERMODYNAMIC EQUILIBRIUM A thermal equilibrium model for multi-megawatt space
Application of two-phase thermal transport systems to space platforms p 20 A88-42842	Guidance and control for cooperative tether-mediated orbital rendezvous	platforms p 12 N88-24332
New approach to the analysis and control of large space	[AIAA PAPER 88-4170] p 37 A88-50261	THERMODYNAMICS
structures p 30 A88-43030	Space plasma contactor research, 1987	Super heat pipe design considerations for applications
A flexible variable conductance heat pipe design for	[NASA-CR-182148] p 60 N88-23649	to space-based systems p 20 A88-42830
temperature control of spacecraft equipment	Analytical investigation of the dynamics of tethered	THERMOPHYSICAL PROPERTIES
[AIAA PAPER 88-2680] p 20 A88-43743	constellations in earth orbit	Measurements of thermal conductivity and thermal
A high power spacecraft thermal management system	[NASA-CR-179371] p 53 N88-28950 TETHERLINES	contact resistance in composite materials for space
[AIAA PAPER 88-2702] p 21 A88-43754	The use of electrodynamic tethers for generating power	applications p 64 A88-36982
Critique of the thermal design verification program for a high-power communications spacecraft	and thrust in space	THERMOPLASTIC RESINS Graphite thermoplastic composites for spacecraft
[AIAA PAPER 88-2648] p 22 A88-48479	[AAS PAPER 86-366] p 55 A88-35099	applications p 65 A88-42419
Technology forecast and applications for autonomous,	Some approximations for the dynamics of spacecraft	THIN FILMS
intelligent systems for space station, shuttle, and	tethers p 33 A88-46712	Flight qualification testing of ultrathin solar cells
interplanetary missions	Results from a tethered rocket experiment (Charge-2) p 57 A88-46804	p 63 A88-34448
[IAF PAPER 88-025] p 6 A88-55322	Plasma contactor design for electrodynamic tether	Beyond the diameter-wavelength-ratio of reflector
Moveable thermal joints for deployable or steerable	applications p 57 A88-46807	antennas - A film lens antenna p 55 A88-38098
spacecraft radiator systems	Power transmission studies for tethered SP-100	Space radiation effects on poly(aryl-ether-ketone) thin
[NLR-MP-87016-U] p 14 N88-20347	[NASA-TM-100864] p 59 N88-21251	films and composites p 65 A88-41547
Feasibility demonstration of a sensor for high-quality	THERMAL ANALYSIS	Space station solar concentrator materials research
two-phase flow Space Station [NLR-TR-87009-U] p 59 N88-20569	Space ten-meter telescope (STMT) - Structural and thermal feasibility study of the primary mirror	[NASA-TM-100862] p 69 N88-21250 THREE AXIS STABILIZATION
MTK: An Al tool for model-based reasoning	p 19 A88-34539	Testing of propellant management device for 3-axis
p 12 N88-24189	International Symposium on Thermal Problems in	geosynchronous spacecraft p 83 A88-33792
Turbomachinery in space p 60 N88-24321	Space-Based Systems, Boston, MA, Dec. 13-18, 1987,	Dynamics analysis of a system of hinge-connected
Design and testing of a high power spacecraft thermal	Proceedings p 92 A88-42829	flexible bodies p 42 A88-52639
management system	Applicability of the flow-net program to solution of Space	THREE DIMENSIONAL BODIES
[NASA-TM-4051] p 23 N88-26389	Station fluid dynamics problems p 20 A88-42832	Dynamic analysis of finitely stretched and rotated
Reasoning about fault diagnosis for the space station	Application of two-phase thermal transport systems to space platforms p 20 A88-42842	three-dimensional space-curved beams
common module thermal control system	Orbital replaceable unit-cold plate dry thermal interface	p 22 A88-49658
p 23 N88-29395	concept and test measurements p 20 A88-42843	Comparison of theoretical and experimental modal
TEMPERATURE DEPENDENCE Temperature characteristics of silicon space solar cells	THERMAL CONDUCTIVITY	analysis results of a rectangular three dimensional frame p 22 A88-50873
and underlying parameters p 63 A88-34418	Measurements of thermal conductivity and thermal	Maximum likelihood parameter identification of flexible
TEMPERATURE DISTRIBUTION	contact resistance in composite materials for space	spacecraft
A thermal equilibrium model for multi-megawatt space	applications p 64 A88-36982 A flexible variable conductance heat pipe design for	[LR-508] p 50 N88-22924
platforms p 12 N88-24332	temperature control of spacecraft equipment	THREE DIMENSIONAL MODELS
Reasoning about fault diagnosis for the space station	[AIAA PAPER 88-2680] p 20 A88-43743	Orbital navigation, docking and obstacle avoidance as
common module thermal control system	THERMAL CONTROL COATINGS	a form of three dimensional model-based image
p 23 N88-29395	Calorimetric measurements of thermal control surfaces	understanding p 50 N88-24194
TENSILE STRESS	at geosynchronous orbit p 19 A88-41414	THREE DIMENSIONAL MOTION
Dynamic analysis of finitely stretched and rotated three-dimensional space-curved beams	Long-lived thermal control materials for high temperature	Singular perturbation analysis of the atmospheric orbital plane change problem p 31 A88-45712
p 22 A88-49658	and deep space applications p 20 A88-42441 THERMAL CYCLING TESTS	THRUST
TEST EQUIPMENT	Thermal cycling effects on the dimensional stability of	Analytical models for relative motion under constant
Aerospace Testing Seminar, 10th, Los Angeles, CA, Mar.	P75 and P75-T300 (fabric) hybrid graphite/epoxy	thrust
10-12, 1987, Proceedings p 89 A88-33776	laminates p 65 A88-42434	[AIAA PAPER 88-4300] p 85 A88-50425

THRUST CONTROL	Aeroassisted transfer between elliptical orbits using lift	Mobile remote manipulator system for a tetrahedral
Guidance and control for cooperative tether-mediated orbital rendezvous	control [AIAA PAPER 88-4346] p 95 A88-50590	truss [NASA-CASE-MSC-20985-1] p 80 N88-26398
[AIAA PAPER 88-4170] p 37 A88-50261	Reducing the cost and risk of orbit transfer	Collet lock joint for space station truss
THRUST LOADS Transient tests for space structures qualification	p 97 A88-54994 Fast geostationary satellite relocation	(NASA-CASE-MSC-21207-1) p 19 N88-29180 Clevis joint for deployable space structures
p 41 A88-50837	[IAF PAPER 88-314] p 97 A88-55390	(NASA-CASE-LAR-13898-1) p 19 N88-30130
TIME LAG	Study of the optimization of satellite system design for transfer orbit	TUMBLING MOTION
Concepts for robot motion primitives required for space station teleoperations p 81 N88-29387	[MBB-URV-135] p 11 N88-20332	Attituded tumbling due to flexibility in satellite mounted robots
TIME OPTIMAL CONTROL	TRANSFORMERS The application of high temperature superconductors	{AIAA PAPER 88-4096} p 35 A88-50201
Time optimal slewing of flexible spacecraft p 25 A88-34736	to space electrical power distribution components	The kinetics and workspace of a robot mounted on a satellite that is free to rotate and translate
Approximation in discrete-time boundary control of	[NASA-TM-100901] p 60 N88-22939 TRANSIENT LOADS	[AIAA PAPER 88-4097] p 75 A88-50202
flexible structures p 25 A88-34737	Transient tests for space structures qualification	TURBINE BLADES
Time optimal slewing of a rigid body with flexible appendages p 26 A88-34812	p 41 A88-50837 TRANSIENT RESPONSE	Lewis Structures Technology, 1988. Volume 1: Structural Dynamics
Minimum-time control of large space structures	Experimental study of transient waves in a plane grid	[NASA-CP-3003-VOL-1] p 98 N88-23226
p 29 A88-42576	structure p 28 A88-38390	TURBOGENERATORS Turbomachinery in space p 60 N88-24321
TIMOSHENKO BEAMS Frequency optimization of repetitive lattice beam-like	TRANSLATIONAL MOTION Secular effects in the translational-rotational motion of	TWO PHASE FLOW
structures using a continuum model p 41 A88-50892	an orbital station with artificial gravity p 90 A88-36123	Application of two-phase thermal transport systems to space platforms p 20 A88-42842
TITAN LAUNCH VEHICLES Operational capabilities of generic advanced launch	Use of assumed modes in equations governing large-displacement elastodynamic plate behavior	space platforms p 20 A88-42842 A new linearized theory of laminar film condensation
system concepts p 86 A88-52374	p 43 A88-54421	of two phase annular flow in a capillary pumped loop
TOOLS	TRANSMISSION LINES The application of high temperature superconductors	[AIAA PAPER 88-2637] p 56 A88-43715 Two-phase ammonia thermal bus performance
Space Station tool kit p 94 A88-43967 TORQUE	to space electrical power distribution components	[AIAA PAPER 88-2701] p 21 A88-43753
A method for measuring the effect of grip surface on	[NASA-TM-100901] p 60 N88-22939 TRANSPORT THEORY	Two-phase alkali-metal experiments in reduced gravity
torque production during hand/arm rotation p 74 A88-35462	FLOSIN: A fluid loop analyzer for SINDA	p 67 A88-47969 Space-based system disturbances caused by on-board
TRACKING (POSITION)	p 23 N88-22321 TRANSPORTER	fluid motion during system maneuvers
Structural innovations in the Columbus Project - An 11.3	Space station mobile transporter p 98 N88-21488	[AIAA PAPER 88-3633] p 33 A88-48957
meter optical telescope p 89 A88-34491 Moving-bank multiple model adaptive estimation applied	TRANSVERSE OSCILLATION Analytical expressions for vibratory displacements of	11
to flexible spacestructure control	deploying appendages	U
[AD-A190761] p 49 N88-22071	[AIAA PAPER 88-4250] p 38 A88-50383	U.S.S.R. SPACE PROGRAM
TRACKING FILTERS Feasibility of using GPS measurements for OMV attitude	TRAVELING WAVES Travelling wave concepts for the modeling and control	Update on Soviet space activities
update p 96 A88-51716	of space structures	[AAS PAPER 86-466] p 2 A88-35081 Scientific and economy-oriented space systems
TRACKING NETWORKS Automating satellite control and telemetry networks	[AD-A191235] p 50 N88-23819 TRIBOLOGY	/revised edition/ Book p 93 A88-43247
p 54 A88-33673	Tribological properties of polymer films and solid bodies	Soviet space achievements in 1985 according to press materials Russian book p 95 A88-46070
TRACKING PROBLEM	in a vacuum environment p 63 A88-35565 TRUSSES	Features of Soyuz TM spacecraft p 97 N88-20329
A mathematical theory of learning control for linear discrete multivariable systems	Member vibration effects on LSS behavior	ULTRAVIOLET TELESCOPES Astrophysics space observatories - The next 25 years
[AIAA PAPER 88-4313] p 40 A88-50438	[AAS PAPER 86-396] p 27 A88-35116	p 1 A88-34537
[, ,	Interactive structural and controller synthesis for large	
TRACKING RADAR	Interactive structural and controller synthesis for large spacecraft p 28 A88-35541	Project Endeavour - Cannister 2 support structure
TRACKING RADAR Antennas for diverse requirements p 55 A88-37285 TRACTION	spacecraft p 28 A88-35541 Space Station erectable truss joint evaluation	Project Endeavour - Cannister 2 support structure p 91 A88-37273 'Glazar' - An orbital ultraviolet telescope
TRACKING RADAR Antennas for diverse requirements p 55 A88-37285 TRACTION Traction-drive telerobot for space manipulation	spacecraft p 28 A88-35541 Space Station erectable truss joint evaluation [AIAA PAPER 88-2448] p 13 A88-35940 Space Station truss strut tube design	Project Endeavour - Cannister 2 support structure p 91 A88-37273 'Glazar' - An orbital ultraviolet telescope p 91 A88-38826
TRACKING RADAR Antennas for diverse requirements p 55 A88-37285 TRACTION Traction-drive telerobot for space manipulation p 75 A88-42668 TRAINING EVALUATION	spacecraft p 28 A88-35541 Space Station erectable truss joint evaluation [AIAA PAPER 88-2448] p 13 A88-35940 Space Station truss strut tube design [AIAA PAPER 88-2471] p 13 A88-35944	Project Endeavour - Cannister 2 support structure p 91 A88-37273 'Glazar' - An orbital ultraviolet telescope p 91 A88-38826 UNDERWATER TESTS Underwater simulation for space teleoperation
TRACKING RADAR Antennas for diverse requirements p 55 A88-37285 TRACTION Traction-drive telerobot for space manipulation p 75 A88-42668 TRAINING EVALUATION An expert system for a distributed real-time trainer	spacecraft p 28 A88-35541 Space Station erectable truss joint evaluation [AIAA PAPER 88-2448] p 13 A88-35940 Space Station truss strut tube design	Project Endeavour - Cannister 2 support structure p 91 A88-37273 'Glazar' - An orbital ultraviolet telescope p 91 A88-38826 UNDERWATER TESTS Underwater simulation for space teleoperation p 79 N88-26040
TRACKING RADAR Antennas for diverse requirements p 55 A88-37285 TRACTION Traction-drive telerobot for space manipulation p 75 A88-42668 TRAINING EVALUATION An expert system for a distributed real-time trainer p 12 N88-29411 TRAINING SIMULATORS	spacecraft p 28 A88-35541 Space Station erectable truss joint evaluation [AIAA PAPER 88-2448] p 13 A88-35940 Space Station truss strut tube design [AIAA PAPER 88-2471] p 13 A88-35944 Sensitivity analysis of a deployable three longeron truss beam designed for minimum member loads during deployment	Project Endeavour - Cannister 2 support structure p 91 A88-37273 'Glazar' - An orbital ultraviolet telescope p 91 A88-38826 UNDERWATER TESTS Underwater simulation for space teleoperation p 79 N88-26040 UNIVERSITIES Space Phoenix recycling shuttle external tanks into
TRACKING RADAR Antennas for diverse requirements p 55 A88-37285 TRACTION Traction-drive telerobot for space manipulation p 75 A88-42668 TRAINING EVALUATION An expert system for a distributed real-time trainer p 12 N88-29411 TRAINING SIMULATORS Simulation - Antidote to risk p 9 A88-40524	spacecraft p 28 A88-35541 Space Station erectable truss joint evaluation [AIAA PAPER 88-2448] p 13 A88-35940 Space Station truss strut tube design [AIAA PAPER 88-2471] p 13 A88-35944 Sensitivity analysis of a deployable three longeron truss beam designed for minimum member loads during	Project Endeavour - Cannister 2 support structure p 91 A88-37273 'Glazar' - An orbital ultraviolet telescope p 91 A88-38826 UNDERWATER TESTS Underwater simulation for space teleoperation p 79 N88-26040 UNIVERSITIES Space Phoenix recycling shuttle external tanks into low-cost spacecraft p 9 A88-39500
TRACKING RADAR Antennas for diverse requirements p 55 A88-37285 TRACTION Traction-drive telerobot for space manipulation p 75 A88-42668 TRAINING EVALUATION An expert system for a distributed real-time trainer p 12 N88-29411 TRAINING SIMULATORS Simulation - Antidote to risk p 9 A88-40524 TRAJECTORIES Base reaction optimization of manipulators with	spacecraft p 28 A88-35541 Space Station erectable truss joint evaluation [AIAA PAPER 88-2448] p 13 A88-35940 Space Station truss strut tube design [AIAA PAPER 88-2471] p 13 A88-35944 Sensitivity analysis of a deployable three longeron truss beam designed for minimum member loads during deployment [AIAA PAPER 88-2436] p 13 A88-38689 An iterative approach to parameter identification in structures p 29 A88-40271	Project Endeavour - Cannister 2 support structure p 91 A88-37273 'Glazar' - An orbital ultraviolet telescope p 91 A88-38826 UNDERWATER TESTS Underwater simulation for space teleoperation p 79 N88-26040 UNIVERSITIES Space Phoenix recycling shuttle external tanks into
TRACKING RADAR Antennas for diverse requirements p 55 A88-37285 TRACTION Traction-drive telerobot for space manipulation p 75 A88-42668 TRAINING EVALUATION An expert system for a distributed real-time trainer p 12 N88-29411 TRAINING SIMULATORS Simulation - Antidote to risk p 9 A88-40524 TRAJECTORIES Base reaction optimization of manipulators with redundant kinematics p 78 N88-23238	spacecraft p 28 A88-35541 Space Station erectable truss joint evaluation [AIAA PAPER 88-2448] p 13 A88-35940 Space Station truss strut tube design [AIAA PAPER 88-2471] p 13 A88-35944 Sensitivity analysis of a deployable three longeron truss beam designed for minimum member loads during deployment [AIAA PAPER 88-2436] p 13 A88-36689 An iterative approach to parameter identification in structures p 29 A88-40271 A continuum model for the nonlinear analysis of	Project Endeavour - Cannister 2 support structure p 91 A88-37273 'Glazar' - An orbital ultraviolet telescope p 91 A88-38826 UNDERWATER TESTS p 91 A88-38826 Underwater simulation for space teleoperation p 79 N88-26040 UNIVERSITIES Space Phoenix recycling shuttle external tanks into low-cost spacecraft p 9 A88-39500 UNMANNED SPACECRAFT Arguments for manned or unmanned spacecraft activities
TRACKING RADAR Antennas for diverse requirements p 55 A88-37285 TRACTION Traction-drive telerobot for space manipulation p 75 A88-42668 TRAINING EVALUATION An expert system for a distributed real-time trainer p 12 N88-29411 TRAINING SIMULATORS Simulation - Antidote to risk p 9 A88-40524 TRAJECTORIES Base reaction optimization of manipulators with redundant kinematics p 78 N88-23238 TRAJECTORY ANALYSIS Trajectory analysis of a low lift/drag aeroassisted orbit	spacecraft p 28 A88-35541 Space Station erectable truss joint evaluation [AIAA PAPER 88-2448] p 13 A88-35940 Space Station truss strut tube design [AIAA PAPER 88-2471] p 13 A88-35944 Sensitivity analysis of a deployable three longeron truss beam designed for minimum member loads during deployment [AIAA PAPER 88-2436] p 13 A88-38689 An iterative approach to parameter identification in structures p 29 A88-40271 A continuum model for the nonlinear analysis of beam-like lattice structures p 13 A88-41038 Evaluation of chromic acid anodized aluminum foil	Project Endeavour - Cannister 2 support structure p 91 A88-37273 'Glazar' - An orbital ultraviolet telescope p 91 A88-38826 UNDERWATER TESTS Underwater simulation for space teleoperation p 79 N88-26040 UNIVERSITIES Space Phoenix recycling shuttle external tanks into low-cost spacecraft p 9 A88-39500 UNMANNED SPACECRAFT Arguments for manned or unmanned spacecraft
TRACKING RADAR Antennas for diverse requirements p 55 A88-37285 TRACTION Traction-drive telerobot for space manipulation p 75 A88-42668 TRAINING EVALUATION An expert system for a distributed real-time trainer p 12 N88-29411 TRAINING SIMULATORS Simulation - Antidote to risk p 9 A88-40524 TRAJECTORIES Base reaction optimization of manipulators with redundant kinematics p 78 N88-2328 TRAJECTORY ANALYSIS Trajectory analysis of a low lift/drag aeroassisted orbit transfer vehicle	spacecraft p 28 A88-35541 Space Station erectable truss joint evaluation [AIAA PAPER 88-2448] p 13 A88-35940 Space Station truss strut tube design [AIAA PAPER 88-2471] p 13 A88-35944 Sensitivity analysis of a deployable three longeron truss beam designed for minimum member loads during deployment [AIAA PAPER 88-2436] p 13 A88-3689 An iterative approach to parameter identification in structures p 29 A88-40271 A continuum model for the nonlinear analysis of beam-like lattice structures p 13 A88-41038 Evaluation of chromic acid anodized aluminum foil coated composite tubes for the Space Station truss	Project Endeavour - Cannister 2 support structure p 91 A88-37273 'Glazar' - An orbital ultraviolet telescope p 91 A88-38826 UNDERWATER TESTS p 91 A88-38826 Underwater simulation for space teleoperation p 79 N88-26040 UNIVERSITIES Space Phoenix recycling shuttle external tanks into low-cost spacecraft p 9 A88-39500 UNMANNED SPACECRAFT Arguments for manned or unmanned spacecraft activities [REPT-46/87] p 98 N88-23813 UNSTEADY AERODYNAMICS Recent trends in aeroelasticity, structures, and structural
TRACKING RADAR Antennas for diverse requirements p 55 A88-37285 TRACTION Traction-drive telerobot for space manipulation p 75 A88-42668 TRAINING EVALUATION An expert system for a distributed real-time trainer p 12 N88-29411 TRAINING SIMULATORS Simulation - Antidote to risk p 9 A88-40524 TRAJECTORIES Base reaction optimization of manipulators with redundant kinematics p 78 N88-23238 TRAJECTORY ANALYSIS Trajectory analysis of a low lift/drag aeroassisted orbit transfer vehicle [AAS PAPER 87-123] p 92 A88-41285 Ballistic design of space systems Russian book	spacecraft p 28 A88-35541 Space Station erectable truss joint evaluation [AIAA PAPER 88-2448] p 13 A88-35940 Space Station truss strut tube design [AIAA PAPER 88-2471] p 13 A88-35944 Sensitivity analysis of a deployable three longeron truss beam designed for minimum member loads during deployment [AIAA PAPER 88-2436] p 13 A88-38689 An iterative approach to parameter identification in structures p 29 A88-40271 A continuum model for the nonlinear analysis of beam-like lattice structures p 13 A88-41038 Evaluation of chromic acid anodized aluminum foil coated composite tubes for the Space Station truss structure p 65 A88-42412	Project Endeavour - Cannister 2 support structure p 91 A88-37273 'Glazar' - An orbital ultraviolet telescope p 91 A88-38826 UNDERWATER TESTS Underwater simulation for space teleoperation p 79 N88-26040 UNIVERSITIES Space Phoenix recycling shuttle external tanks into low-cost spacecraft p 9 A88-39500 UNMANNED SPACECRAFT Arguments for manned or unmanned spacecraft activities [REPT-46/87] p 98 N88-23813 UNSTEADY AERODYNAMICS
TRACKING RADAR Antennas for diverse requirements p 55 A88-37285 TRACTION Traction-drive telerobot for space manipulation p 75 A88-42668 TRAINING EVALUATION An expert system for a distributed real-time trainer p 12 N88-29411 TRAINING SIMULATORS Simulation - Antidote to risk p 9 A88-40524 TRAJECTORIES Base reaction optimization of manipulators with redundant kinematics p 78 N88-2328 TRAJECTORY ANALYSIS Trajectory analysis of a low lift/drag aeroassisted orbit transfer vehicle [AAS PAPER 87-123] p 92 A88-41285 Ballistic design of space systems Russian book p 9 A88-44898	spacecraft p 28 A88-35541 Space Station erectable truss joint evaluation [AIAA PAPER 88-2448] p 13 A88-35940 Space Station truss strut tube design [AIAA PAPER 88-2471] p 13 A88-35944 Sensitivity analysis of a deployable three longeron truss beam designed for minimum member loads during deployment [AIAA PAPER 88-2436] p 13 A88-38689 An iterative approach to parameter identification in structures p 29 A88-40271 A continuum model for the nonlinear analysis of beam-like lattice structures p 13 A88-41038 Evaluation of chromic acid anodized aluminum foil coated composite tubes for the Space Station truss structure Continuum modeling of large lattice structures - Status and projections p 21 A88-46402	Project Endeavour - Cannister 2 support structure p 91 A88-37273 'Glazar' - An orbital ultraviolet telescope p 91 A88-3826 UNDERWATER TESTS p 91 A88-38826 Underwater simulation for space teleoperation p 79 N88-26040 UNIVERSITIES Space Phoenix recycling shuttle external tanks into low-cost spacecraft p 9 A88-39500 UNMANNED SPACECRAFT
TRACKING RADAR Antennas for diverse requirements p 55 A88-37285 TRACTION Traction-drive telerobot for space manipulation p 75 A88-42668 TRAINING EVALUATION An expert system for a distributed real-time trainer p 12 N88-29411 TRAINING SIMULATORS Simulation - Antidote to risk p 9 A88-40524 TRAJECTORIES Base reaction optimization of manipulators with redundant kinematics p 78 N88-2338 TRAJECTORY ANALYSIS Trajectory analysis of a low lift/drag aeroassisted orbit transfer vehicle [AAS PAPER 87-123] p 92 A88-41285 Ballistic design of space systems Russian book p 9 A88-44898 TRAJECTORY CONTROL Redundancy control of a free-flying telerobot	spacecraft p 28 A88-35541 Space Station erectable truss joint evaluation [AIAA PAPER 88-2448] p 13 A88-35940 Space Station truss strut tube design [AIAA PAPER 88-2471] p 13 A88-35944 Sensitivity analysis of a deployable three longeron truss beam designed for minimum member loads during deployment [AIAA PAPER 88-2436] p 13 A88-38689 An iterative approach to parameter identification in structures p 29 A88-40271 A continuum model for the nonlinear analysis of beam-like lattice structures p 13 A88-41038 Evaluation of chromic acid anodized aluminum foil coated composite tubes for the Space Station truss structure p 65 A88-42412 Continuum modeling of large lattice structures - Status and projections p 21 A88-4602 Two-dimensional deployable truss structures for space	Project Endeavour - Cannister 2 support structure p 91 A88-37273 'Glazar' - An orbital ultraviolet telescope p 91 A88-3826 UNDERWATER TESTS Underwater simulation for space teleoperation p 79 N88-26040 UNIVERSITIES Space Phoenix recycling shuttle external tanks into low-cost spacecraft p 9 A88-39500 UNMANNED SPACECRAFT Arguments for manned or unmanned spacecraft activities [REPT-46/87] p 98 N88-23813 UNSTEADY AERODYNAMICS Recent trends in aeroelasticity, structures, and structural dynamics; Proceedings of the R. L. Bisplinghoff Memorial Symposium, University of Florida, Gainesville, FL, Feb. 6,
TRACKING RADAR Antennas for diverse requirements p 55 A88-37285 TRACTION Traction-drive telerobot for space manipulation p 75 A88-42668 TRAINING EVALUATION An expert system for a distributed real-time trainer p 12 N88-29411 TRAINING SIMULATORS Simulation - Antidote to risk p 9 A88-40524 TRAJECTORIES Base reaction optimization of manipulators with redundant kinematics p 78 N88-29238 TRAJECTORY ANALYSIS Trajectory analysis of a low lift/drag aeroassisted orbit transfer vehicle [AAS PAPER 87-123] p 92 A88-41285 Ballistic design of space systems Russian book p 9 A88-44898 TRAJECTORY CONTROL Redundancy control of a free-flying telerobot [AIAA PAPER 88-4094] p 35 A88-50199	spacecraft p 28 A88-35541 Space Station erectable truss joint evaluation [AIAA PAPER 88-2448] p 13 A88-35940 Space Station truss strut tube design [AIAA PAPER 88-2471] p 13 A88-35944 Sensitivity analysis of a deployable three longeron truss beam designed for minimum member loads during deployment [AIAA PAPER 88-2436] p 13 A88-3689 An iterative approach to parameter identification in structures p 29 A88-40271 A continuum model for the nonlinear analysis of beam-like lattice structures p 13 A88-41038 Evaluation of chromic acid anodized aluminum foil coated composite tubes for the Space Station truss structure Continuum modeling of large lattice structures - Status and projections p 21 A88-46402 Two-dimensional deployable truss structures for space applications	Project Endeavour - Cannister 2 support structure p 91 A88-37273 'Glazar' - An orbital ultraviolet telescope p 91 A88-38826 UNDERWATER TESTS p 97 N88-26040 UNIVERSITIES p 79 N88-26040 UNIVERSITIES p 79 A88-39500 UNMANNED SPACECRAFT p 9 A88-39500 UNMANNED SPACECRAFT Arguments for manned or unmanned spacecraft activities [REPT-46/87] p 98 N88-23813 UNSTEADY AERODYNAMICS Recent trends in aeroelasticity, structures, and structural dynamics; Proceedings of the R. L. Bisplinghoff Memorial Symposium, University of Florida, Gainesville, FL, Feb. 6, 7, 1986 p 90 A88-35526 UPPER STAGE ROCKET ENGINES Beyond low earth orbit - A survey of upper stages [AAS PAPER 87-115] p 83 A88-41283
TRACKING RADAR Antennas for diverse requirements p 55 A88-37285 TRACTION Traction-drive telerobot for space manipulation p 75 A88-42668 TRAINING EVALUATION An expert system for a distributed real-time trainer p 12 N88-29411 TRAINING SIMULATORS Simulation - Antidote to risk p 9 A88-40524 TRAJECTORIES Base reaction optimization of manipulators with redundant kinematics p 78 N88-2338 TRAJECTORY ANALYSIS Trajectory analysis of a low lift/drag aeroassisted orbit transfer vehicle [AAS PAPER 87-123] p 92 A88-41285 Ballistic design of space systems Russian book p 9 A88-44898 TRAJECTORY CONTROL Redundancy control of a free-flying telerobot	spacecraft p 28 A88-35541 Space Station erectable truss joint evaluation [AIAA PAPER 88-2448] p 13 A88-35940 Space Station truss strut tube design [AIAA PAPER 88-2471] p 13 A88-35944 Sensitivity analysis of a deployable three longeron truss beam designed for minimum member loads during deployment [AIAA PAPER 88-2436] p 13 A88-38689 An iterative approach to parameter identification in structures p 29 A88-40271 A continuum model for the nonlinear analysis of beam-like lattice structures p 13 A88-41038 Evaluation of chromic acid anodized aluminum foil coated composite tubes for the Space Station truss structure p 65 A88-42412 Continuum modeling of large lattice structures - Status and projections p 21 A88-46402 Two-dimensional deployable truss structures for space applications p 14 A88-47964 Large truss structures for space assembly p 75 A88-50862	Project Endeavour - Cannister 2 support structure p 91 A88-37273 'Glazar' - An orbital ultraviolet telescope p 91 A88-37273 'UNDERWATER TESTS
TRACKING RADAR Antennas for diverse requirements p 55 A88-37285 TRACTION Traction-drive telerobot for space manipulation p 75 A88-42668 TRAINING EVALUATION An expert system for a distributed real-time trainer p 12 N88-29411 TRAINING SIMULATORS Simulation - Antidote to risk p 9 A88-40524 TRAJECTORIES Base reaction optimization of manipulators with redundant kinematics p 78 N88-23238 TRAJECTORY ANALYSIS Trajectory analysis of a low lift/drag aeroassisted orbit transfer vehicle [AAS PAPER 87-123] p 92 A88-41285 Ballistic design of space systems Russian book p 9 A88-44898 TRAJECTORY CONTROL Redundancy control of a free-flying telerobot [AIAA PAPER 88-4094] p 35 A88-50199 A mathematical theory of learning control for linear discrete multivariable systems [AIAA PAPER 88-4313] p 40 A88-50438	spacecraft p 28 A88-35541 Space Station erectable truss joint evaluation [AIAA PAPER 88-2448] p 13 A88-35940 Space Station truss strut tube design [AIAA PAPER 88-2471] p 13 A88-35944 Sensitivity analysis of a deployable three longeron truss beam designed for minimum member loads during deployment [AIAA PAPER 88-2436] p 13 A88-38689 An iterative approach to parameter identification in structures p 29 A88-40271 A continuum model for the nonlinear analysis of beam-like lattice structures p 13 A88-41038 Evaluation of chromic acid anodized aluminum foil coated composite tubes for the Space Station truss structure p 65 A88-42412 Continuum modeling of large lattice structures - Status and projections p 21 A88-46402 Two-dimensional deployable truss structures for space applications p 14 A88-47964 Large truss structures for space assembly p 75 A88-50862 Frequency optimization of repetitive lattice beam-like	Project Endeavour - Cannister 2 support structure p 91 A88-37273 'Glazar' - An orbital ultraviolet telescope p 91 A88-38826 UNDERWATER TESTS Underwater simulation for space teleoperation p 79 N88-26040 UNIVERSITIES Space Phoenix recycling shuttle external tanks into low-cost spacecraft p 9 A88-39500 UNMANNED SPACECRAFT Arguments for manned or unmanned spacecraft activities [REPT-46/87] UNSTEADY AERODYNAMICS Recent trends in aeroelasticity, structures, and structural dynamics; Proceedings of the R. L. Bisplinghoff Memorial Symposium, University of Florida, Gainesville, FL, Feb. 6, 7, 1986 p 90 A88-35526 UPPER STAGE ROCKET ENGINES Beyond low earth orbit - A survey of upper stages [AAS PAPER 87-115] p 83 A88-41283 USER REQUIREMENTS Space Station evolution [AAS PAPER 86-262] p 2 A88-35053
TRACKING RADAR Antennas for diverse requirements p 55 A88-37285 TRACTION Traction-drive telerobot for space manipulation p 75 A88-42668 TRAINING EVALUATION An expert system for a distributed real-time trainer p 12 N88-29411 TRAINING SIMULATORS Simulation - Antidote to risk p 9 A88-40524 TRAJECTORIES Base reaction optimization of manipulators with redundant kinematics p 78 N88-29238 TRAJECTORY ANALYSIS Trajectory analysis of a low lift/drag aeroassisted orbit transfer vehicle [AAS PAPER 87-123] p 92 A88-41285 Ballistic design of space systems Russian book p 9 A88-44898 TRAJECTORY CONTROL Redundancy control of a free-flying telerobot [AIAA PAPER 88-4094] p 35 A88-50199 A mathematical theory of learning control for linear discrete multivariable systems [AIAA PAPER 88-4313] p 40 A88-50438 Fast geostationary satellite relocation	spacecraft p 28 A88-35541 Space Station erectable truss joint evaluation [AIAA PAPER 88-2448] p 13 A88-35940 Space Station truss strut tube design [AIAA PAPER 88-2471] p 13 A88-35944 Sensitivity analysis of a deployable three longeron truss beam designed for minimum member loads during deployment [AIAA PAPER 88-2436] p 13 A88-36689 An iterative approach to parameter identification in structures p 29 A88-40271 A continuum model for the nonlinear analysis of beam-like lattice structures p 13 A88-41038 Evaluation of chromic acid anodized aluminum foil coated composite tubes for the Space Station truss structure p 65 A88-42412 Continuum modeling of large lattice structures - Status and projections p 21 A88-46402 Two-dimensional deployable truss structures for space applications p 14 A88-47964 Large truss structures for space assembly p 75 A88-50862 Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892 Advanced composites for Magellan spacecraft	Project Endeavour - Cannister 2 support structure p 91 A88-37273 'Glazar' - An orbital ultraviolet telescope p 91 A88-38826 UNDERWATER TESTS
TRACKING RADAR Antennas for diverse requirements p 55 A88-37285 TRACTION Traction-drive telerobot for space manipulation p 75 A88-42668 TRAINING EVALUATION An expert system for a distributed real-time trainer p 12 N88-29411 TRAINING SIMULATORS Simulation - Antidote to risk p 9 A88-40524 TRAJECTORIES Base reaction optimization of manipulators with redundant kinematics p 78 N88-2938 TRAJECTORY ANALYSIS Trajectory analysis of a low lift/drag aeroassisted orbit transfer vehicle [AAS PAPER 87-123] p 92 A88-41285 Ballistic design of space systems Russian book p 9 A88-44898 TRAJECTORY CONTROL Redundancy control of a free-flying telerobot [AIAA PAPER 88-4094] p 35 A88-50199 A mathematical theory of learning control for linear discrete multivariable systems [AIAA PAPER 88-4313] p 40 A88-50438 Fast geostationary satellite relocation [IAF PAPER 88-314] p 97 A88-55390 TRAJECTORY OPTIMIZATION	spacecraft p 28 A88-35541 Space Station erectable truss joint evaluation [AIAA PAPER 88-2448] p 13 A88-35940 Space Station truss strut tube design [AIAA PAPER 88-2471] p 13 A88-35944 Sensitivity analysis of a deployable three longeron truss beam designed for minimum member loads during deployment [AIAA PAPER 88-2436] p 13 A88-38689 An iterative approach to parameter identification in structures p 29 A88-40271 A continuum model for the nonlinear analysis of beam-like lattice structures p 13 A88-41038 Evaluation of chromic acid anodized aluminum foil coated composite tubes for the Space Station truss structure p 65 A88-42412 Continuum modeling of large lattice structures - Status and projections p 21 A88-46402 Two-dimensional deployable truss structures for space applications p 14 A88-47964 Large truss structures for space assembly p 75 A88-50862 Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892 Advanced composites for Magellan spacecraft [AIAA PAPER 88-3031] p 68 A88-53126	Project Endeavour - Cannister 2 support structure p 91 A88-37273 'Glazar' - An orbital ultraviolet telescope p 91 A88-38826 UNDERWATER TESTS
TRACKING RADAR Antennas for diverse requirements p 55 A88-37285 TRACTION Traction-drive telerobot for space manipulation p 75 A88-42668 TRAINING EVALUATION An expert system for a distributed real-time trainer p 12 N88-29411 TRAINING SIMULATORS Simulation - Antidote to risk p 9 A88-40524 TRAJECTORIES Base reaction optimization of manipulators with redundant kinematics p 78 N88-29238 TRAJECTORY ANALYSIS Trajectory analysis of a low lift/drag aeroassisted orbit transfer vehicle [AAS PAPER 87-123] p 92 A88-41285 Ballistic design of space systems Russian book p 9 A88-44898 TRAJECTORY CONTROL Redundancy control of a free-flying telerobot [AIAA PAPER 88-4094] p 35 A88-50199 A mathematical theory of learning control for linear discrete multivariable systems [AIAA PAPER 88-313] p 40 A88-50438 Fast geostationary satellite relocation [IAF PAPER 88-314] TRAJECTORY OPTIMIZATION Robot path planning in space p 74 A88-42328	spacecraft p 28 A88-35541 Space Station erectable truss joint evaluation [AIAA PAPER 88-2448] p 13 A88-35940 Space Station truss strut tube design [AIAA PAPER 88-2471] p 13 A88-35944 Sensitivity analysis of a deployable three longeron truss beam designed for minimum member loads during deployment [AIAA PAPER 88-2436] p 13 A88-36689 An iterative approach to parameter identification in structures p 29 A88-40271 A continuum model for the nonlinear analysis of beam-like lattice structures p 13 A88-41038 Evaluation of chromic acid anodized aluminum foil coated composite tubes for the Space Station truss structure p 65 A88-42412 Continuum modeling of large lattice structures - Status and projections p 21 A88-46402 Two-dimensional deployable truss structures for space applications p 14 A88-47964 Large truss structures for space assembly p 75 A88-50862 Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892 Advanced composites for Magellan spacecraft	Project Endeavour - Cannister 2 support structure p 91 A88-37273 'Glazar' - An orbital ultraviolet telescope p 91 A88-38826 UNDERWATER TESTS
TRACKING RADAR Antennas for diverse requirements p 55 A88-37285 TRACTION Traction-drive telerobot for space manipulation p 75 A88-42668 TRAINING EVALUATION An expert system for a distributed real-time trainer p 12 N88-29411 TRAINING SIMULATORS Simulation - Antidote to risk p 9 A88-40524 TRAJECTORIES Base reaction optimization of manipulators with redundant kinematics p 78 N88-2938 TRAJECTORY ANALYSIS Trajectory analysis of a low lift/drag aeroassisted orbit transfer vehicle [AAS PAPER 87-123] p 92 A88-41285 Ballistic design of space systems Russian book p 9 A88-44898 TRAJECTORY CONTROL Redundancy control of a free-flying telerobot [AIAA PAPER 88-4094] p 35 A88-50199 A mathematical theory of learning control for linear discrete multivariable systems [AIAA PAPER 88-4313] p 40 A88-50438 Fast geostationary satellite relocation [IAF PAPER 88-314] p 97 A88-55390 TRAJECTORY OPTIMIZATION Robot path planning in space p 74 A88-42328 TRANSATMOSPHERIC VEHICLES Aeroelastic interactions with flight control of	spacecraft p 28 A88-35541 Space Station erectable truss joint evaluation [AIAA PAPER 88-2448] p 13 A88-35940 Space Station truss strut tube design [AIAA PAPER 88-2471] p 13 A88-35944 Sensitivity analysis of a deployable three longeron truss beam designed for minimum member loads during deployment [AIAA PAPER 88-2436] p 13 A88-36689 An iterative approach to parameter identification in structures p 29 A88-40271 A continuum model for the nonlinear analysis of beam-like lattice structures p 13 A88-41038 Evaluation of chromic acid anodized aluminum foil coated composite tubes for the Space Station truss structure p 65 A88-42412 Continuum modeling of large lattice structures - Status and projections p 21 A88-46402 Two-dimensional deployable truss structures for space applications p 14 A88-47964 Large truss structures — for space assembly p 75 A88-50862 Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892 Advanced composites for Magellan spacecraft [AIAA PAPER 88-3031] p 68 A88-53126 Necessary conditions of geometrical stability in trusses which include one-force members [SAWE PAPER 1776] p 43 A88-53785	Project Endeavour - Cannister 2 support structure p 91 A88-37273 'Glazar' - An orbital ultraviolet telescope p 91 A88-38826 UNDERWATER TESTS p 91 N88-26040 UNIVERSITIES p 79 N88-26040 UNIVERSITIES p 79 N88-26040 UNIVERSITIES p 79 N88-26040 UNMANNED SPACECRAFT p 9 A88-39500 UNMANNED SPACECRAFT p 9 A88-39500 UNMANNED SPACECRAFT p 98 N88-23813 UNSTEADY AERODYNAMICS REPT-46/87) p 98 N88-23813 UNSTEADY AERODYNAMICS Recent trends in aeroelasticity, structures, and structural dynamics; Proceedings of the R. L. Bisplinghoff Memorial Symposium, University of Florida, Gainesville, FL, Feb. 6, 7, 1986 p 90 A88-35526 UPPER STAGE ROCKET ENGINES Beyond low earth orbit - A survey of upper stages [AAS PAPER 87-115] p 83 A88-41283 USER REQUIREMENTS Space Station evolution [AAS PAPER 86-262] p 2 A88-35053 Potential GPS user architecture for the NASA Space Station based on Landsat 4/5 experience p 3 A88-37398 Orbital transfer vehicle concept definition and evaluation. Book 1: Mission and system requirements
TRACKING RADAR Antennas for diverse requirements p 55 A88-37285 TRACTION Traction-drive telerobot for space manipulation p 75 A88-42668 TRAINING EVALUATION An expert system for a distributed real-time trainer p 12 N88-29411 TRAINING SIMULATORS Simulation - Antidote to risk p 9 A88-40524 TRAJECTORIES Base reaction optimization of manipulators with redundant kinematics p 78 N88-29288 TRAJECTORY ANALYSIS Trajectory analysis of a low lift/drag aeroassisted orbit transfer vehicle [AAS PAPER 87-123] p 92 A88-41285 Ballistic design of space systems Russian book p 9 A88-44898 TRAJECTORY CONTROL Redundancy control of a free-flying telerobot [AIAA PAPER 88-4094] p 35 A88-50199 A mathematical theory of learning control for linear discrete multivariable systems [AIAA PAPER 88-313] p 40 A88-50438 Fast geostationary satellite relocation [IAF PAPER 88-314] p 97 A88-55390 TRAJECTORY OPTIMIZATION Robot path planning in space TRANSATMOSPHERIC VEHICLES Aeroelastic interactions with flight control of transatmospheric vehicles	spacecraft p 28 A88-35541 Space Station erectable truss joint evaluation [AIAA PAPER 88-2448] p 13 A88-35940 Space Station truss strut tube design [AIAA PAPER 88-2471] p 13 A88-35944 Sensitivity analysis of a deployable three longeron truss beam designed for minimum member loads during deployment [AIAA PAPER 88-2436] p 13 A88-38689 An iterative approach to parameter identification in structures p 29 A88-40271 A continuum model for the nonlinear analysis of beam-like lattice structures p 13 A88-41038 Evaluation of chromic acid anodized aluminum foil coated composite tubes for the Space Station truss structure p 65 A88-42412 Continuum modeling of large lattice structures - Status and projections p 21 A88-46402 Two-dimensional deployable truss structures for space applications Large truss structures for space assembly p 75 A88-50862 Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892 Advanced composites for Magellan spacecraft [AIAA PAPER 88-3031] p 68 A88-53126 Necessary conditions of geometrical stability in trusses which include one-force members [SAWE PAPER 1776] p 43 A88-53785 Recent results in identification and control of a flexible	Project Endeavour - Cannister 2 support structure p 91 A88-37273 'Glazar' - An orbital ultraviolet telescope p 91 A88-38826 UNDERWATER TESTS Underwater simulation for space teleoperation p 79 N88-26040 UNIVERSITIES Space Phoenix recycling shuttle external tanks into low-cost spacecraft p 9 A88-39500 UNMANNED SPACECRAFT Arguments for manned or unmanned spacecraft activities [REPT-46/87] P 98 N88-23813 UNSTEADY AERODYNAMICS Recent trends in aeroelasticity, structures, and structural dynamics; Proceedings of the R. L. Bisplinghoff Memorial Symposium, University of Florida, Gainesville, FL, Feb. 6, 7, 1986 UPPER STAGE ROCKET ENGINES Beyond low earth orbit - A survey of upper stages [AAS PAPER 87-115] Space Station evolution [AAS PAPER 86-62] P 2 A88-35053 Potential GPS user architecture for the NASA Space Station based on Landsat 4/5 experience p 3 A88-37398 Orbital transfer vehicle concept definition and system analysis study. Volume 2: OTV concept definition
TRACKING RADAR Antennas for diverse requirements p 55 A88-37285 TRACTION Traction-drive telerobot for space manipulation p 75 A88-42668 TRAINING EVALUATION An expert system for a distributed real-time trainer p 12 N88-29411 TRAINING SIMULATORS Simulation - Antidote to risk p 9 A88-40524 TRAJECTORIES Base reaction optimization of manipulators with redundant kinematics p 78 N88-2938 TRAJECTORY ANALYSIS Trajectory analysis of a low lift/drag aeroassisted orbit transfer vehicle [AAS PAPER 87-123] p 92 A88-41285 Ballistic design of space systems Russian book p 9 A88-44898 TRAJECTORY CONTROL Redundancy control of a free-flying telerobot [AIAA PAPER 88-4094] p 35 A88-50199 A mathematical theory of learning control for linear discrete multivariable systems [AIAA PAPER 88-4313] p 40 A88-50438 Fast geostationary satellite relocation [IAF PAPER 88-314] p 97 A88-5590 TRAJECTORY OPTIMIZATION Robot path planning in space p 74 A88-42328 TRANSATMOSPHERIC VEHICLES Aeroelastic interactions with flight control of transatmospheric vehicles TRANSFER FUNCTIONS Pole/zero cancellations in flexible space structures	spacecraft p 28 A88-35541 Space Station erectable truss joint evaluation [AIAA PAPER 88-2448] p 13 A88-35940 Space Station truss strut tube design [AIAA PAPER 88-2471] p 13 A88-35944 Sensitivity analysis of a deployable three longeron truss beam designed for minimum member loads during deployment [AIAA PAPER 88-2436] p 13 A88-36689 An iterative approach to parameter identification in structures p 29 A88-40271 A continuum model for the nonlinear analysis of beam-like lattice structures p 13 A88-41038 Evaluation of chromic acid anodized aluminum foil coated composite tubes for the Space Station truss structure p 65 A88-42412 Continuum modeling of large lattice structures - Status and projections p 21 A88-46402 Two-dimensional deployable truss structures for space applications p 14 A88-47964 Large truss structures for space assembly p 75 A88-50862 Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892 Advanced composites for Magellan spacecraft [AIAA PAPER 88-3031] p 68 A88-53126 Necessary conditions of geometrical stability in trusses which include one-force members [SAWE PAPER 1776] p 43 A88-53785 Recent results in identification and control of a flexible truss structure p 44 A88-54576 Control augmented structural synthesis	Project Endeavour - Cannister 2 support structure p 91 A88-37273 'Glazar' - An orbital ultraviolet telescope p 91 A88-38826 UNDERWATER TESTS p 91 N88-26040 UNIVERSITIES p 79 N88-26040 UNIVERSITIES p 79 N88-26040 UNIVERSITIES p 79 N88-26040 UNMANNED SPACECRAFT p 9 A88-39500 UNMANNED SPACECRAFT p 9 A88-39500 UNMANNED SPACECRAFT p 98 N88-23813 UNSTEADY AERODYNAMICS REPT-46/87) p 98 N88-23813 UNSTEADY AERODYNAMICS Recent trends in aeroelasticity, structures, and structural dynamics; Proceedings of the R. L. Bisplinghoff Memorial Symposium, University of Florida, Gainesville, FL, Feb. 6, 7, 1986 p 90 A88-35526 UPPER STAGE ROCKET ENGINES Beyond low earth orbit - A survey of upper stages [AAS PAPER 87-115] p 83 A88-41283 USER REQUIREMENTS Space Station evolution [AAS PAPER 86-262] p 2 A88-35053 Potential GPS user architecture for the NASA Space Station based on Landsat 4/5 experience p 3 A88-37398 Orbital transfer vehicle concept definition and evaluation. Book 1: Mission and system requirements
TRACKING RADAR Antennas for diverse requirements p 55 A88-37285 TRACTION Traction-drive telerobot for space manipulation p 75 A88-42668 TRAINING EVALUATION An expert system for a distributed real-time trainer p 12 N88-29411 TRAINING SIMULATORS Simulation - Antidote to risk p 9 A88-40524 TRAJECTORIES Base reaction optimization of manipulators with redundant kinematics p 78 N88-2328 TRAJECTORY ANALYSIS Trajectory analysis of a low lift/drag aeroassisted orbit transfer vehicle [AAS PAPER 87-123] p 92 A88-41285 Ballistic design of space systems Russian book p 9 A88-44898 TRAJECTORY CONTROL Redundancy control of a free-flying telerobot [AIAA PAPER 88-4094] p 35 A88-50199 A mathematical theory of learning control for linear discrete multivariable systems [AIAA PAPER 88-314] p 40 A88-50498 Fast geostationary satellite relocation [IAF PAPER 88-314] p 97 A88-55390 TRAJECTORY OTHIMIZATION Robot path planning in space TRANSATMOSPHERIC VEHICLES Aeroelastic interactions with flight control of transatmospheric vehicles TRANSFER FUNCTIONS Pole/zero cancellations in flexible space structures [AIAA PAPER 88-4055] p 34 A88-50165	spacecraft p 28 A88-35541 Space Station erectable truss joint evaluation [AIAA PAPER 88-2448] p 13 A88-35940 Space Station truss strut tube design [AIAA PAPER 88-2471] p 13 A88-35944 Sensitivity analysis of a deployable three longeron truss beam designed for minimum member loads during deployment [AIAA PAPER 88-2436] p 13 A88-36689 An iterative approach to parameter identification in structures p 29 A88-40271 A continuum model for the nonlinear analysis of beam-like lattice structures p 13 A88-41038 Evaluation of chromic acid anodized aluminum foil coated composite tubes for the Space Station truss structure p 65 A88-42412 Continuum modeling of large lattice structures - Status and projections p 21 A88-46402 Two-dimensional deployable truss structures for space applications p 14 A88-47964 Large truss structures for space assembly p 75 A88-50862 Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892 Advanced composites for Magellan spacecraft [AIAA PAPER 88-3031] p 68 A88-53126 Necessary conditions of geometrical stability in trusses which include one-force members [SAWE PAPER 1776] p 43 A88-53785 Recent results in identification and control of a flexible truss structure p 44 A88-54576 Control augmented structural synthesis [NASA-CR-4132] p 48 N88-20290	Project Endeavour - Cannister 2 support structure p 91 A88-37273 'Glazar' - An orbital ultraviolet telescope p 91 A88-38826 UNDERWATER TESTS Underwater simulation for space teleoperation p 79 N88-26040 UNIVERSITIES Space Phoenix recycling shuttle external tanks into low-cost spacecraft p 9 A88-39500 UNMANNED SPACECRAFT Arguments for manned or unmanned spacecraft activities [REPT-46/87] p 98 N88-23813 UNSTEADY AERODYNAMICS Recent trends in aeroelasticity, structures, and structural dynamics; Proceedings of the R. L. Bisplinghoff Memorial Symposium, University of Florida, Gainesville, FL, Feb. 6, 7, 1986 p 90 A88-35526 UPPER STAGE ROCKET ENGINES Beyond low earth orbit - A survey of upper stages [AAS PAPER 87-115] p 83 A88-41283 USER REQUIREMENTS Space Station evolution [AAS PAPER 86-262] p 2 A88-35053 Potential GPS user architecture for the NASA Space Station based on Landsat 4/5 experience p 3 A88-37398 Orbital transfer vehicle concept definition and evaluation. Book 1: Mission and system requirements [NASA-CR-179321] p 7 N88-20339
TRACKING RADAR Antennas for diverse requirements p 55 A88-37285 TRACTION Traction-drive telerobot for space manipulation p 75 A88-42668 TRAINING EVALUATION An expert system for a distributed real-time trainer p 12 N88-29411 TRAINING SIMULATORS Simulation - Antidote to risk p 9 A88-40524 TRAJECTORIES Base reaction optimization of manipulators with redundant kinematics p 78 N88-23238 TRAJECTORY ANALYSIS Trajectory analysis of a low lift/drag aeroassisted orbit transfer vehicle [AAS PAPER 87-123] p 92 A88-41285 Ballistic design of space systems Russian book p 9 A88-44898 TRAJECTORY CONTROL Redundancy control of a free-flying telerobot [AIAA PAPER 88-4094] p 35 A88-50199 A mathematical theory of learning control for linear discrete multivariable systems [AIAA PAPER 88-4313] p 40 A88-50438 Fast geostationary satellite relocation [IAF PAPER 88-314] p 97 A88-55990 TRAJECTORY OPTIMIZATION Robot path planning in space p 74 A88-42328 TRANSET MOSPHERIC VEHICLES Aeroelastic interactions with flight control of transatmospheric vehicles TRANSER FUNCTIONS Pole/zero cancellations in flexible space structures [AIAA PAPER 88-4055] p 34 A88-50165 TRANSER ORBITS Autonomous flight control for low thrust orbital transfer	spacecraft p 28 A88-35541 Space Station erectable truss joint evaluation [AIAA PAPER 88-2448] p 13 A88-35940 Space Station truss strut tube design [AIAA PAPER 88-2471] p 13 A88-35944 Sensitivity analysis of a deployable three longeron truss beam designed for minimum member loads during deployment [AIAA PAPER 88-2436] p 13 A88-36689 An iterative approach to parameter identification in structures p 29 A88-40271 A continuum model for the nonlinear analysis of beam-like lattice structures p 13 A88-41038 Evaluation of chromic acid anodized aluminum foil coated composite tubes for the Space Station truss structure p 65 A88-42412 Continuum modeling of large lattice structures - Status and projections p 21 A88-46402 Two-dimensional deployable truss structures for space applications p 14 A88-47964 Large truss structures for space assembly p 75 A88-50862 Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892 Advanced composites for Magellan spacecraft [AIAA PAPER 88-3031] p 68 A88-53126 Necessary conditions of geometrical stability in trusses which include one-force members [SAWE PAPER 1776] p 43 A88-53785 Recent results in identification and control of a flexible truss structure p 44 A88-54576 Control augmented structural synthesis	Project Endeavour - Cannister 2 support structure p 91 A88-37273 'Glazar' - An orbital ultraviolet telescope p 91 A88-38826 UNDERWATER TESTS Underwater simulation for space teleoperation p 79 N88-26040 UNIVERSITIES Space Phoenix recycling shuttle external tanks into low-cost spacecraft p 9 A88-39500 UNMANNED SPACECRAFT Arguments for manned or unmanned spacecraft activities [REPT-46/87] UNSTEADY AERODYNAMICS Recent trends in aeroelasticity, structures, and structural dynamics; Proceedings of the R. L. Bisplinghoff Memorial Symposium, University of Florida, Gainesville, FL, Feb. 6, 7, 1986 p 90 A88-35526 UPPER STAGE ROCKET ENGINES Beyond low earth orbit - A survey of upper stages [AAS PAPER 86-262] p 83 A88-41283 USER REQUIREMENTS Space Station evolution [AAS PAPER 86-262] Potential GPS user architecture for the NASA Space Station based on Landsat 4/5 experience p 3 A88-37398 Orbital transfer vehicle concept definition and evaluation. Book 1: Mission and system requirements [NASA-CR-179321] V VACUUM DEPOSITION
TRACKING RADAR Antennas for diverse requirements p 55 A88-37285 TRACTION Traction-drive telerobot for space manipulation p 75 A88-42668 TRAINING EVALUATION An expert system for a distributed real-time trainer p 12 N88-29411 TRAINING SIMULATORS Simulation - Antidote to risk p 9 A88-40524 TRAJECTORIES Base reaction optimization of manipulators with redundant kinematics p 78 N88-23238 TRAJECTORY ANALYSIS Trajectory analysis of a low lift/drag aeroassisted orbit transfer vehicle [AAS PAPER 87-123] p 92 A88-41285 Ballistic design of space systems Russian book p 9 A88-44898 TRAJECTORY CONTROL Redundancy control of a free-flying telerobot [AIAA PAPER 88-4094] p 35 A88-50199 A mathematical theory of learning control for linear discrete multivariable systems [AIAA PAPER 88-314] p 40 A88-50438 Fast geostationary satellite relocation [IAF PAPER 88-314] p 97 A88-55390 TRAJECTORY OPTIMIZATION Robot path planning in space TRANSATMOSPHERIC VEHICLES Aeroelastic interactions with flight control of transatmospheric vehicles Pole/zero cancellations in flexible space structures [AIAA PAPER 88-4055] p 34 A88-50165 TRANSEER ORBITS Autonomous flight control for low thrust orbital transfer vehicles	spacecraft p 28 A88-35541 Space Station erectable truss joint evaluation [AIAA PAPER 88-2448] p 13 A88-35940 Space Station truss strut tube design [AIAA PAPER 88-2471] p 13 A88-35944 Sensitivity analysis of a deployable three longeron truss beam designed for minimum member loads during deployment [AIAA PAPER 88-2436] p 13 A88-36689 An iterative approach to parameter identification in structures p 29 A88-40271 A continuum model for the nonlinear analysis of beam-like lattice structures p 13 A88-41038 Evaluation of chromic acid anodized aluminum foil coated composite tubes for the Space Station truss structure p 65 A88-4212 Continuum modeling of large lattice structures - Status and projections p 21 A88-46402 Two-dimensional deployable truss structures for space applications p 14 A88-47964 Large truss structures for space assembly p 75 A88-50862 Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892 Advanced composites for Magellan spacecraft [AIAA PAPER 88-3031] p 68 A88-53126 Necessary conditions of geometrical stability in trusses which include one-force members [SAWE PAPER 1776] p 43 A88-53785 Recent results in identification and control of a flexible truss structure p 44 A88-54576 Control augmented structural synthesis [NASA-CR-4132] p 48 N88-20290 A 60-meter erectable assembly concept for a control of flexible structures flight experiment [NASA-TM-100497] p 7 N88-21190	Project Endeavour - Cannister 2 support structure p 91 A88-37273 'Glazar' - An orbital ultraviolet telescope p 91 A88-38826 UNDERWATER TESTS Underwater simulation for space teleoperation p 79 N88-26040 UNIVERSITIES Space Phoenix recycling shuttle external tanks into low-cost spacecraft p 9 A88-39500 UNMANNED SPACECRAFT Arguments for manned or unmanned spacecraft activities [REPT-46/87] p 98 N88-23813 UNSTEADY AERODYNAMICS Recent trends in aeroelasticity, structures, and structural dynamics; Proceedings of the R. L. Bisplinghoff Memorial Symposium, University of Florida, Gainesville, FL, Feb. 6, 7, 1986 p 90 A88-35526 UPPER STAGE ROCKET ENGINES Beyond low earth orbit - A survey of upper stages [AAS PAPER 87-115] p 83 A88-41283 USER REQUIREMENTS Space Station evolution [AAS PAPER 86-262] p 2 A88-35053 Potential GPS user architecture for the NASA Space Station based on Landsat 4/5 experience p 3 A88-37398 Orbital transfer vehicle concept definition and system analysis study. Volume 2: OTV concept definition and evaluation. Book 1: Mission and system requirements [NASA-CR-179321] p 7 N88-20339
TRACKING RADAR Antennas for diverse requirements p 55 A88-37285 TRACTION Traction-drive telerobot for space manipulation p 75 A88-42668 TRAINING EVALUATION An expert system for a distributed real-time trainer p 12 N88-29411 TRAINING SIMULATORS Simulation - Antidote to risk p 9 A88-40524 TRAJECTORIES Base reaction optimization of manipulators with redundant kinematics p 78 N88-29238 TRAJECTORY ANALYSIS Trajectory analysis of a low lift/drag aeroassisted orbit transfer vehicle [AAS PAPER 87-123] p 92 A88-41285 Ballistic design of space systems Russian book p 9 A88-44898 TRAJECTORY CONTROL Redundancy control of a free-flying telerobot [AIAA PAPER 88-4094] p 35 A88-50199 A mathematical theory of learning control for linear discrete multivariable systems [AIAA PAPER 88-4313] p 40 A88-50438 Fast geostationary satellite relocation [IAF PAPER 88-314] p 97 A88-5590 TRAJECTORY OPTIMIZATION Robot path planning in space p 74 A88-42328 TRANSATMOSPHERIC VEHICLES Aeroelastic interactions with flight control of transatmospheric vehicles POE/Zero cancellations in flexible space structures [AIAA PAPER 88-4055] p 34 A88-50165 TRANSFER ORBITS Autonomous flight control for low thrust orbital transfer vehicles [AIAA PAPER 88-2838] p 30 A88-44670 Singular perturbation analysis of the atmospheric orbital	spacecraft p 28 A88-35541 Space Station erectable truss joint evaluation [AIAA PAPER 88-2448] p 13 A88-35940 Space Station truss strut tube design [AIAA PAPER 88-2471] p 13 A88-35944 Sensitivity analysis of a deployable three longeron truss beam designed for minimum member loads during deployment [AIAA PAPER 88-2436] p 13 A88-38689 An iterative approach to parameter identification in structures p 29 A88-40271 A continuum model for the nonlinear analysis of beam-like lattice structures p 13 A88-41038 Evaluation of chromic acid anodized aluminum foil coated composite tubes for the Space Station truss structure p 65 A88-42412 Continuum modeling of large lattice structures - Status and projections Two-dimensional deployable truss structures for space applications Large truss structures for space assembly p 75 A88-50862 Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892 Advanced composites for Magellan spacecraft [AIAA PAPER 88-3031] p 68 A88-53126 Necessary conditions of geometrical stability in trusses which include one-force members [SAWE PAPER 1776] p 43 A88-53785 Recent results in identification and control of a flexible truss structure p 44 A88-54576 Control augmented structural synthesis [NASA-CR-4132] p 48 N88-20290 A 60-meter erectable assembly concept for a control of flexible structures flight experiment [NASA-TM-100497] p 7 N88-21190 A sequentially deployable structure for space	Project Endeavour - Cannister 2 support structure p 91 A88-37273 'Glazar' - An orbital ultraviolet telescope p 91 A88-38826 UNDERWATER TESTS Underwater simulation for space teleoperation p 79 N88-26040 UNIVERSITIES Space Phoenix recycling shuttle external tanks into low-cost spacecraft p 9 A88-39500 UNMANNED SPACECRAFT Arguments for manned or unmanned spacecraft activities [REPT-46/87] UNSTEADY AERODYNAMICS Recent trends in aeroelasticity, structures, and structural dynamics; Proceedings of the R. L. Bisplinghoff Memorial Symposium, University of Florida, Gainesville, FL, Feb. 6, 7, 1986 p 90 A88-35526 UPPER STAGE ROCKET ENGINES Beyond low earth orbit - A survey of upper stages [AAS PAPER 87-115] p 83 A88-41283 USER REQUIREMENTS Space Station evolution [AAS PAPER 86-262] p 2 A88-35053 Potential GPS user architecture for the NASA Space Station based on Landsat 4/5 experience p 3 A88-37398 Orbital transfer vehicle concept definition and evaluation. Book 1: Mission and system requirements [NASA-CR-179321] V VACUUM DEPOSITION Design and demonstration of a system for the deposition of atomic-oxygen durable coatings for reflective solar dynamic power system concentrators
TRACKING RADAR Antennas for diverse requirements p 55 A88-37285 TRACTION Traction-drive telerobot for space manipulation p 75 A88-42668 TRAINING EVALUATION An expert system for a distributed real-time trainer p 12 N88-29411 TRAINING SIMULATORS Simulation - Antidote to risk p 9 A88-40524 TRAJECTORIES Base reaction optimization of manipulators with redundant kinematics p 78 N88-23238 TRAJECTORY ANALYSIS Trajectory analysis of a low lift/drag aeroassisted orbit transfer vehicle [AAS PAPER 87-123] p 92 A88-41285 Ballistic design of space systems Russian book p 9 A88-44898 TRAJECTORY CONTROL Redundancy control of a free-flying telerobot [AIAA PAPER 88-4094] p 35 A88-50199 A mathematical theory of learning control for linear discrete multivariable systems [AIAA PAPER 88-4313] p 40 A88-50438 Fast geostationary satellite relocation [IAF PAPER 88-314] p 97 A88-55390 TRAJECTORY OPTIMIZATION Robot path planning in space p 74 A88-42328 TRANSATMOSPHERIC VEHICLES Aeroelastic interactions with flight control of transatmospheric vehicles TRANSFER FUNCTIONS Pole/zero cancellations in flexible space structures [AIAA PAPER 88-4055] p 34 A88-50165 TRANSFER ORBITS Autonomous flight control for low thrust orbital transfer vehicles [AIAA PAPER 88-2838] p 30 A88-44670 Singular perturbation analysis of the atmospheric orbital plane change problem p 31 A88-45712	spacecraft p 28 A88-35541 Space Station erectable truss joint evaluation [AIAA PAPER 88-2448] p 13 A88-35940 Space Station truss strut tube design [AIAA PAPER 88-2471] p 13 A88-35944 Sensitivity analysis of a deployable three longeron truss beam designed for minimum member loads during deployment [AIAA PAPER 88-2436] p 13 A88-36689 An iterative approach to parameter identification in structures p 29 A88-40271 A continuum model for the nonlinear analysis of beam-like lattice structures p 13 A88-41038 Evaluation of chromic acid anodized aluminum foil coated composite tubes for the Space Station truss structure p 65 A88-4212 Continuum modeling of large lattice structures - Status and projections p 21 A88-46402 Two-dimensional deployable truss structures for space applications p 14 A88-47964 Large truss structures for space assembly p 75 A88-50862 Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892 Advanced composites for Magellan spacecraft [AIAA PAPER 88-3031] p 68 A88-53126 Necessary conditions of geometrical stability in trusses which include one-force members [SAWE PAPER 1776] p 43 A88-53785 Recent results in identification and control of a flexible truss structure p 44 A88-54576 Control augmented structural synthesis [NASA-CR-4132] p 48 N88-20290 A 60-meter erectable assembly concept for a control of flexible structures flight experiment [NASA-TM-100497] p 7 N88-21190	Project Endeavour - Cannister 2 support structure p 91 A88-37273 'Glazar' - An orbital ultraviolet telescope p 91 A88-38826 UNDERWATER TESTS Underwater simulation for space teleoperation p 79 N88-26040 UNIVERSITIES Space Phoenix recycling shuttle external tanks into low-cost spacecraft p 9 A88-39500 UNMANNED SPACECRAFT Arguments for manned or unmanned spacecraft activities [REPT-46/87] UNSTEADY AERODYNAMICS Recent trends in aeroelasticity, structures, and structural dynamics; Proceedings of the R. L. Bisplinghoff Memorial Symposium, University of Florida, Gainesville, FL, Feb. 6, 7, 1986 p 90 A88-35526 UPPER STAGE ROCKET ENGINES Beyond low earth orbit - A survey of upper stages [AAS PAPER 87-115] USER REQUIREMENTS Space Station evolution [AAS PAPER 86-262] P 2 A88-35053 Potential GPS user architecture for the NASA Space Station based on Landsat 4/5 experience p 3 A88-37398 Orbital transfer vehicle concept definition and system analysis study. Volume 2: OTV concept definition and evaluation. Book 1: Mission and system requirements [NASA-CR-179321] V VACUUM DEPOSITION Design and demonstration of a system for the deposition of atomic-oxygen durable coatings for reflective solar dynamic power system concentrators [NASA-CR-4158] p 71 N88-25474
TRACKING RADAR Antennas for diverse requirements p 55 A88-37285 TRACTION Traction-drive telerobot for space manipulation p 75 A88-42668 TRAINING EVALUATION An expert system for a distributed real-time trainer p 12 N88-29411 TRAINING SIMULATORS Simulation - Antidote to risk p 9 A88-40524 TRAJECTORIES Base reaction optimization of manipulators with redundant kinematics p 78 N88-23238 TRAJECTORY ANALYSIS Trajectory analysis of a low lift/drag aeroassisted orbit transfer vehicle [AAS PAPER 87-123] p 92 A88-41285 Ballistic design of space systems Russian book p 9 A88-44898 TRAJECTORY CONTROL Redundancy control of a free-flying telerobot [AIAA PAPER 88-4094] p 35 A88-50199 A mathematical theory of learning control for linear discrete multivariable systems [AIAA PAPER 88-4313] p 40 A88-50438 Fast geostationary satellite relocation [IAF PAPER 88-314] p 97 A88-55990 TRAJECTORY OPTIMIZATION Robot path planning in space p 74 A88-42328 TRANSATMOSPHERIC VEHICLES Aeroelastic interactions with flight control of transatmospheric vehicles TRANSFER FUNCTIONS Pole/zero cancellations in flexible space structures [AIAA PAPER 88-4055] p 34 A88-50165 TRANSFER ORBITS Autonomous flight control for low thrust orbital transfer vehicles [IAIAA PAPER 88-2838] p 30 A88-44670 Singular perturbation analysis of the atmospheric orbital	spacecraft p 28 A88-35541 Space Station erectable truss joint evaluation [AIAA PAPER 88-2448] p 13 A88-35940 Space Station truss strut tube design [AIAA PAPER 88-2471] p 13 A88-35944 Sensitivity analysis of a deployable three longeron truss beam designed for minimum member loads during deployment [AIAA PAPER 88-2436] p 13 A88-36689 An iterative approach to parameter identification in structures p 29 A88-40271 A continuum model for the nonlinear analysis of beam-like lattice structures p 13 A88-41038 Evaluation of chromic acid anodized aluminum foil coated composite tubes for the Space Station truss structure p 65 A88-4212 Continuum modeling of large lattice structures - Status and projections p 21 A88-46402 Two-dimensional deployable truss structures for space applications p 14 A88-47964 Large truss structures for space assembly p 75 A88-50862 Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892 Advanced composites for Magellan spacecraft [AIAA PAPER 88-3031] p 68 A88-53126 Necessary conditions of geometrical stability in trusses which include one-force members [SAWE PAPER 1776] p 43 A88-53785 Recent results in identification and control of a flexible truss structure p 44 A88-54576 Control augmented structural synthesis [NASA-CR-4132] p 7 N88-2190 A 60-meter erectable assembly concept for a control of flexible structures flight experiment [NASA-TM-100497] p 7 N88-2190 A reospatiale unfurlable reflector and associated mechanisms p 15 N88-21203	Project Endeavour - Cannister 2 support structure p 91 A88-37273 'Glazar' - An orbital ultraviolet telescope p 91 A88-38826 UNDERWATER TESTS Underwater simulation for space teleoperation p 79 N88-26040 UNIVERSITIES Space Phoenix recycling shuttle external tanks into low-cost spacecraft p 9 A88-39500 UNMANNED SPACECRAFT Arguments for manned or unmanned spacecraft activities [REPT-46/87] p 98 N88-23813 UNSTEADY AERODYNAMICS Recent trends in aeroelasticity, structures, and structural dynamics; Proceedings of the R. L. Bisplinghoff Memorial Symposium, University of Florida, Gainesville, FL, Feb. 6, 7, 1986 p 90 A88-35526 UPPER STAGE ROCKET ENGINES Beyond low earth orbit - A survey of upper stages [AAS PAPER 87-115] p 83 A88-41283 USER REQUIREMENTS Space Station evolution [AAS PAPER 86-262] p 2 A88-35053 Potential GPS user architecture for the NASA Space Station based on Landsat 4/5 experience p 3 A88-37398 Orbital transfer vehicle concept definition and system analysis study. Volume 2: OTV concept definition and evaluation. Book 1: Mission and system requirements [NASA-CR-179321] p 7 N88-20339 VACUUM DEPOSITION Design and demonstration of a system for the deposition of atomic-oxygen durable coatings for reflective solar dynamic power system concentrators [NASA-CR-1158] VACUUM TESTS Particle adhesion to surfaces under vacuum
TRACKING RADAR Antennas for diverse requirements p 55 A88-37285 TRACTION Traction-drive telerobot for space manipulation p 75 A88-42668 TRAINING EVALUATION An expert system for a distributed real-time trainer p 12 N88-29411 TRAINING SIMULATORS Simulation - Antidote to risk p 9 A88-40524 TRAJECTORIES Base reaction optimization of manipulators with redundant kinematics p 78 N88-23238 TRAJECTORY ANALYSIS Trajectory analysis of a low lift/drag aeroassisted orbit transfer vehicle [AAS PAPER 87-123] p 92 A88-41285 Ballistic design of space systems Russian book p 9 A88-44898 TRAJECTORY CONTROL Redundancy control of a free-flying telerobot [AIAA PAPER 88-4094] p 35 A88-50199 A mathematical theory of learning control for linear discrete multivariable systems [AIAA PAPER 88-4313] p 40 A88-50438 Fast geostationary satellite relocation [IAF PAPER 88-314] p 97 A88-55390 TRAJECTORY OPTIMIZATION Robot path planning in space p 74 A88-42328 TRANSATMOSPHERIC VEHICLES Aeroelastic interactions with flight control of transatmospheric vehicles p 42 A88-50980 TRANSEER FUNCTIONS Pole/zero cancellations in flexible space structures [AIAA PAPER 88-4055] p 34 A88-50165 TRANSEER ORBITS Autonomous flight control for low thrust orbital transfer vehicles [AIAA PAPER 88-2838] p 30 A88-44670 Singular perturbation analysis of the atmospheric orbital plane change problem p 31 A88-45712 An analysis of orbit maneuvering capabilities using arcjet propulsion [AIAA PAPER 88-2832] p 85 A88-48484	spacecraft p 28 A88-35541 Space Station erectable truss joint evaluation [AIAA PAPER 88-2448] p 13 A88-35940 Space Station truss strut tube design [AIAA PAPER 88-2471] p 13 A88-35944 Sensitivity analysis of a deployable three longeron truss beam designed for minimum member loads during deployment [AIAA PAPER 88-2436] p 13 A88-36689 An iterative approach to parameter identification in structures p 29 A88-40271 A continuum model for the nonlinear analysis of beam-like lattice structures p 13 A88-41038 Evaluation of chromic acid anodized aluminum foil coated composite tubes for the Space Station truss structure p 65 A88-42412 Continuum modeling of large lattice structures - Status and projections p 21 A88-46402 Two-dimensional deployable truss structures for space applications Large truss structures for space assembly p 75 A88-50862 Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892 Advanced composites for Magellan spacecraft [AIAA PAPER 88-3031] p 68 A88-53126 Necessary conditions of geometrical stability in trusses which include one-force members [SAWE PAPER 1776] p 43 A88-53785 Recent results in identification and control of a flexible truss structure p 44 A88-54576 Control augmented structural synthesis [NASA-CR-4132] p 48 N88-20290 A 60-meter erectable assembly concept for a control of flexible structures flight experiment [NASA-TM-100497] p 7 N88-21190 A sequentially deployable structure for space applications p 15 N88-21202 Aerospatiale unfurlable reflector and associated mechanisms p 15 N88-21203 Motion synchronization of a mechanism to deploy and	Project Endeavour - Cannister 2 support structure p 91 A88-37273 'Glazar' - An orbital ultraviolet telescope p 91 A88-38826 UNDERWATER TESTS Underwater simulation for space teleoperation p 79 N88-26040 UNIVERSITIES Space Phoenix recycling shuttle external tanks into low-cost spacecraft p 9 A88-39500 UNMANNED SPACECRAFT Arguments for manned or unmanned spacecraft activities [REPT-46/87] UNSTEADY AERODYNAMICS Recent trends in aeroelasticity, structures, and structural dynamics; Proceedings of the R. L. Bisplinghoff Memorial Symposium, University of Florida, Gainesville, FL, Feb. 6, 7, 1986 p 90 A88-35526 UPPER STAGE ROCKET ENGINES Beyond low earth orbit - A survey of upper stages [AAS PAPER 87-115] USER REQUIREMENTS Space Station evolution [AAS PAPER 86-262] P 2 A88-35053 Potential GPS user architecture for the NASA Space Station based on Landsat 4/5 experience p 3 A88-37398 Orbital transfer vehicle concept definition and system analysis study. Volume 2: OTV concept definition and evaluation. Book 1: Mission and system requirements [NASA-CR-179321] VACUUM DEPOSITION Design and demonstration of a system for the deposition of atomic-oxygen durable coatings for reflective solar dynamic power system concentrators [NASA-CR-4158] P 71 N88-25474 VACUUM TESTS Particle adhesion to surfaces under vacuum [AIAA PAPER 88-2725] P 66 A88-43765
TRACKING RADAR Antennas for diverse requirements p 55 A88-37285 TRACTION Traction-drive telerobot for space manipulation p 75 A88-42668 TRAINING EVALUATION An expert system for a distributed real-time trainer p 12 N88-29411 TRAINING SIMULATORS Simulation - Antidote to risk p 9 A88-40524 TRAJECTORIES Base reaction optimization of manipulators with redundant kinematics p 78 N88-29238 TRAJECTORY ANALYSIS Trajectory analysis of a low lift/drag aeroassisted orbit transfer vehicle [AAS PAPER 87-123] p 92 A88-41285 Ballistic design of space systems Russian book p 9 A88-44898 TRAJECTORY CONTROL Redundancy control of a free-flying telerobot [AIAA PAPER 88-4094] p 35 A88-50199 A mathematical theory of learning control for linear discrete multivariable systems [AIAA PAPER 88-4313] p 40 A88-50438 Fast geostationary satellite relocation [IAF PAPER 88-314] p 97 A88-5590 TRAJECTORY OPTIMIZATION Robot path planning in space p 74 A88-42328 TRANSATMOSPHERIC VEHICLES Aeroelastic interactions with flight control of transatmospheric vehicles Pole/zero cancellations in flexible space structures [AIAA PAPER 88-4055] p 34 A88-50165 TRANSFER ORBITS Autonomous flight control for low thrust orbital transfer vehicles [IAIAA PAPER 88-2838] p 30 A88-4670 Singular perturbation analysis of the atmospheric orbital plane change problem p 31 A88-45712 An analysis of orbit maneuvering capabilities using arcjet	spacecraft p 28 A88-35541 Space Station erectable truss joint evaluation [AIAA PAPER 88-2448] p 13 A88-35940 Space Station truss strut tube design [AIAA PAPER 88-2471] p 13 A88-35944 Sensitivity analysis of a deployable three longeron truss beam designed for minimum member loads during deployment [AIAA PAPER 88-2436] p 13 A88-36689 An iterative approach to parameter identification in structures p 29 A88-40271 A continuum model for the nonlinear analysis of beam-like lattice structures p 13 A88-41038 Evaluation of chromic acid anodized aluminum foil coated composite tubes for the Space Station truss structure p 65 A88-4212 Continuum modeling of large lattice structures - Status and projections p 21 A88-46402 Two-dimensional deployable truss structures for space applications p 14 A88-47964 Large truss structures for space assembly p 75 A88-50862 Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892 Advanced composites for Magellan spacecraft [AIAA PAPER 88-3031] p 68 A88-53126 Necessary conditions of geometrical stability in trusses which include one-force members [SAWE PAPER 1776] p 43 A88-53785 Recent results in identification and control of a flexible truss structure p 44 A88-54576 Control augmented structural synthesis [NASA-CR-4132] p 7 N88-2190 A 60-meter erectable assembly concept for a control of flexible structures flight experiment [NASA-TM-100497] p 7 N88-2190 A reospatiale unfurlable reflector and associated mechanisms p 15 N88-21203	Project Endeavour - Cannister 2 support structure p 91 A88-37273 'Glazar' - An orbital ultraviolet telescope p 91 A88-38826 UNDERWATER TESTS Underwater simulation for space teleoperation p 79 N88-26040 UNIVERSITIES Space Phoenix recycling shuttle external tanks into low-cost spacecraft p 9 A88-39500 UNMANNED SPACECRAFT Arguments for manned or unmanned spacecraft activities [REPT-46/87] p 98 N88-23813 UNSTEADY AERODYNAMICS Recent trends in aeroelasticity, structures, and structural dynamics; Proceedings of the R. L. Bisplinghoff Memorial Symposium, University of Florida, Gainesville, FL, Feb. 6, 7, 1986 p 90 A88-35526 UPPER STAGE ROCKET ENGINES Beyond low earth orbit - A survey of upper stages [AAS PAPER 87-115] p 83 A88-41283 USER REQUIREMENTS Space Station evolution [AAS PAPER 86-262] p 2 A88-35053 Potential GPS user architecture for the NASA Space Station based on Landsat 4/5 experience p 3 A88-37398 Orbital transfer vehicle concept definition and system analysis study. Volume 2: OTV concept definition and evaluation. Book 1: Mission and system requirements [NASA-CR-179321] p 7 N88-20339 VACUUM DEPOSITION Design and demonstration of a system for the deposition of atomic-oxygen durable coatings for reflective solar dynamic power system concentrators [NASA-CR-1158] VACUUM TESTS Particle adhesion to surfaces under vacuum

VARIABLE GEOMETRY STRUCTURES

		COBCECT INDEX
A variable structure control approach to flexible	A robust control experiment using an optical structure	VISCOUS DAMPING
spacecrafts p 34 A88-49914 Aerodynamic design of a variable-bend vehicle	prototype p 45 A88-54640	Effects of nonlinear damping in flexible space structures
[AIAA PAPER 88-4340] p 40 A88-50586	Theoretical and experimental investigation of space-realizable inertial actuation for passive and active	(AIAA PAPER 88-4059) p 35 A88-50169
Variable structure control of decoupleable systems and	structural control p 46 A88-55063	VISCOUS FLOW
attitude control of spacecraft in presence of uncertainty p 46 A88-54655	Effect of natural damping on the dynamics and control	Optimum configuration of high-lift aeromaneuvering
VARIABLE MASS SYSTEMS	of a class of optimally designed structures [IAF PAPER 88-288] p 47 A88-55375	orbital transfer vehicles in viscous flow p 11 A88-51386
Input selection for a second-order mass property	Vibrations of structures with parametric uncertainties	VISUAL PERCEPTION
estimator for satellite attitude control	[AD-A190400] p 49 N88-22378	Space vehicle approach velocity judgments under
p 30 A88-43203 VERY LARGE ARRAY (VLA)	Vibration control of large structures	simulated visual space conditions p 93 A88-42933 Image management research p 99 N88-24150
Astrophysics space observatories - The next 25 years	[AD-A191358] p 50 N88-22928	Space station proximity operations windows: Human
p 1 A88-34537	Lewis Structures Technology, 1988. Volume 1: Structural Dynamics	factors design guidelines
VERY LONG BASE INTERFEROMETRY Quasat - A 50,000 km-diameter Quasar probe	[NASA-CP-3003-VOL-1] p 98 N88-23226	[NASA-TM-88233] p 101 N88-30301 VOLT-AMPERE CHARACTERISTICS
p 96 A88-54766	The LDCM actuator for vibration suppression	Temperature characteristics of silicon space solar cells
VIBRATION	[NASA-CR-182898] p 50 N88-23940	and underlying parameters p 63 A88-34418
Low authority control of large space structures using a constrained threshold control formulation	Electromagnetic damping and vibration isolation of space structures	Laboratory model of a Tethered Satellite - Current collection upon and sheath formation around a charged
p 51 N88-24667	[AD-A191492] p 51 N88-24665	body in a drifting magnetoplasma p 57 A88-46806
VIBRATION DAMPING	Experimental study of active vibration control	VOLTAGE REGULATORS
Large space optical system active vibration suppression p 24 A88-34498	[AD-A191454] p 51 N88-24989	Digital sequential shunt regulator for solar power conditioning of Engineering Test Satellite (ETS-V)
An experimental test-bed for validation of control	Technologies for antenna shape and vibration control p 52 N88-25748	p 86 A88-54696
methodologies in large space optical structures	Experimental and theoretical investigation of passive	P /
p 25 A88-34502	damping concepts for member forced and free vibration	W
Parameter identification techniques for the estimation of damping in flexible structure experiments	[NASA-CR-183082] p 52 N88-26693	••
p 26 A88-34805	Vibration control of large structures	WALKING MACHINES
Design of a controller for mechanical systems by the	[AD-A193317] p 53 N88-27587 VIBRATION EFFECTS	Space spider crane [NASA-CASE-LAR-13411-1-SB] p 7 N88-23828
generalized energy function p 27 A88-34891 Computing the transmission zeros of large space	Member vibration effects on LSS behavior	WASTE HEAT
structures p 27 A88-34917	[AAS PAPER 86-396] p 27 A88-35116	Two-phase ammonia thermal bus performance
Performance enhancement of passively damped joints	Optimal deployment of spacecraft appendages	[AIAA PAPER 88-2701] p 21 A88-43753 WASTE WATER
for space structures [AIAA PAPER 88-2450] p 13 A88-35941	[IAF PAPER 88-307] p 47 A88-55386 VIBRATION ISOLATORS	Integration of Space Station propulsion and fluid
Damping materials for spacecraft vibration control	Rapid multi-flexible-body maneuvering experiments	systems
p 64 A88-37000	p 44 A88-54532	[AIAA PAPER 88-3289] p 85 A88-48492
Dynamics of viscoelastic structures	The 22nd Aerospace Mechanisms Symposium	WAVE PROPAGATION Wave propagation and dynamics of lattice structures
p 28 A88-38389 Distributed sensors and actuators for vibration control	[NASA-CP-2506] p 98 N88-21468 VIBRATION MEASUREMENT	[AD-A190037] p 49 N88-22066
in elastic components p 28 A88-39724	Spatial evolution of the residual-acceleration vector on	WAVEGUIDE ANTENNAS
Structural vibration of space power station systems p 29 A88-42574	board spacecraft p 43 A88-53945	Antennas for diverse requirements p 55 A88-37285 WEAR
Experimental investigations in active vibration control	Laboratory feasibility study of a composite embedded	Tribological properties of polymer films and solid bodies
for application to large space systems	fiber optic sensor for measurement of structural vibrations	in a vacuum environment p 63 A88-35565
p 30 A88-42577	[AD-A194270] p 71 N88-28754	WEIGHT REDUCTION
Active vibration control synthesis for the control of flexible structures mast flight system p 30 A88-43212	VIBRATION MODE	Beyond simulation selecting materials for spacecraft systems p 66 A88-45109
Large space structures: Dynamics and control Book	Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466	An integrated approach to the minimum weight and
p 31 A88-46401	honeycomb sandwich decks p 64 A88-37466 Experimental study of transient waves in a plane grid	optimum control design of space structures
Active control for vibration damping p 32 A88-46410	structure p 28 A88-38390	p 10 A88-46414
Optimal projection for uncertain systems (OPUS) - A	International Modal Analysis Conference, 5th, Imperial	Optimization of actively controlled structures using multiobjective programming techniques
unified theory of reduced-order, robust control design	College of Science and Technology, London, England, Apr. 6-9, 1987, Proceedings, Volumes 1 & 2	p 46 A88-54973
p 32 A88-46411 Adaptive control of large space structures - Uncertainty	p 40 A88-50789	The application of high temperature superconductors
estimation and robust control calibration	Identification of a complex satellite model by means of	to space electrical power distribution components [NASA-TM-100901] p 60 N88-22939
p 32 A88-46412	modal synthesis p 40 A88-50809	[NASA-TM-100901] p 60 N88-22939 WEIGHTLESSNESS
Frequency domain solutions to multi-degree-of-freedom, dry friction damped systems p 33 A88-49714	Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897	Compatibility of microgravity experiments with
Pole/zero cancellations in flexible space structures	Spatial distribution of model error based on	spacecraft disturbances p 34 A88-49743
[AIAA PAPER 88-4055] p 34 A88-50165	analytical/experimental frequency discrepancies	WEIGHTLESSNESS SIMULATION
Effects of nonlinear damping in flexible space	p 41 A88-50899	Modelling of the microgravity environment of the Man Tended Free Flyer (MTFF) p 96 A88-52335
structures [AIAA PAPER 88-4059] p 35 A88-50169	Sine dwell or broadband methods for modal testing p 46 A88-55088	Underwater simulation for space teleoperation
Modeling of non-collocated structural control systems	VIBRATION TESTS	p 79 N88-26040
[AIAA PAPER 88-4060] p 35 A88-50170	Modal testing R&D at the Communications Research	Marintek's ocean basin, a training facility for
Dynamics and control of experimental tendon control system for flexible space structure	Centre structural vibration analysis of aircraft and spacecraft structures p 25 A88-34613	extravehicular activity? p 79 N88-26041 WELDING
[AIAA PAPER 88-4154] p 36 A88-50248	Interactive structural and controller synthesis for large	Welding in space - An overview p 66 A88-44004
A pole placement technique for vibration suppression	spacecraft p 28 A88-35541	WHISKERS (CRYSTALS)
of flexible structures [AIAA PAPER 88-4254] p 38 A88-50385	Methods for spacecraft simulation in vibro-acoustic	Mechanical and electrical characteristics of tin whiskers
An optimal maneuver control method for the spacecraft	environments p 9 A88-37278 Transient tests for space structures qualification	with special reference to spacecraft systems
with flexible appendages	p 41 A88-50837	p 67 A88-46192 WIND TURBINES
[AIAA PAPER 88-4255] p 38 A88-50386	Comparison of theoretical and experimental modal	Lewis Structures Technology, 1988. Volume 1: Structural
Accommodation of kinematic disturbances during a minimum-time maneuver of a flexible spacecraft	analysis results of a rectangular three dimensional frame p 22 A88-50873	Dynamics
[AIAA PAPER 88-4253] p 40 A88-50440	Sine dwell or broadband methods for modal testing	[NASA-CP-3003-VOL-1] p 98 N88-23226 WINDOWS
Space station dynamic analysis methods	p 46 A88-55088	Space station proximity operations windows: Human
p 41 A88-50863 Laboratory facility for flexible structure control	VIBRATIONAL STRESS Dynamics of interconnected flexible members in the	factors design guidelines
experiments p 42 A88-53681	presence of environmental forces - A formulation with	[NASA-TM-88233] p 101 N88-30301
Obstacles to high fidelity multibody dynamics	applications	WORK Subsea approach to work systems development
simulation p 44 A88-54471 Experimental demonstration of the maximum	[IAF PAPER 88-318] p 47 A88-55391	p 99 N88-24146
Experimental demonstration of the maximum entropy/optimal projection design theory for active	VISCOELASTIC DAMPING Damping materials for spacecraft vibration control	WORKING FLUIDS
vibration control p 44 A88-54575	p 64 A88-37000	Two-phase thermal loops for use in future spacecraft
Identification of a flexible truss structure using lattice	VISCOELASTICITY	p 19 A88-37295
filters p 45 A88-54577 Low authority control of a composite cantilever beam	Performance enhancement of passively damped joints for space structures	WORKLOADS (PSYCHOPHYSIOLOGY) Crew-induced load measurement for space operations
	• === =========	

(AIAA PAPER 88-2450)

יייי בארבוז אפ-2450] p 13 A88-35941 Dynamics of viscoelastic structures

p 28 A88-38389

RKLOADS (PSTCHOPHISIOLOGI)
Crew-induced load measurement for space operations
p 73 A88-35455

p 99 N88-24151

NASA-Ames workload research program

structure

p 45 A88-54630

H(infinity) robust control synthesis for a large space structure p 45 A88-54639

X

X RAY TELESCOPES
Some highlights on ROSAT mechanisms
p 14 N88-21195

Typical Personal Author Index Listing

Listings in this index are arranged alphabetically by personal author. The title of the document provides the user with a brief description of the subject matter. The report number helps to indicate the type of document listed (e.g., NASA report, translation, NASA contractor report). The page and accession numbers are located beneath and to the right of the title. Under any one author's name the accession numbers are arranged in sequence with the AIAA accession numbers appearing first.

ABE, TAKASHI

A self-consistent tension shell structure for application to aerobraking vehicle and its aerodynamic

[AIAA PAPER 88-3405]

p 14 A88-44839

ABE. TOSHIO

Electrostatic charging and arc discharges on satellite dielectrics simulated by electron beam p 57 A88-47970

ARRAMOV, J. P.

EVA space suits - Safety problems

[IAF PAPER 88-515] **ABT, BERND**

p 77 A88-55436

Deployable precision reflectors [AAS PAPER 86-298]

p 55 A88-35112

ACOSTA, R. J.

Case study of active array feed compensation with sidelobe control for reflector surface distortion p 60 N88-23073 [NASA-TM-100287]

ADAMS, LOUIS R.

The X-beam as a deployable boom for the space p 17 N88-21473

ADOMIAN, G.

New approach to the analysis and control of large spa structures p 30 A88-43030

AENISHANSLIN, M. H.

Interim Flight Opportunity (IFO). Volume 1: Executive summary p 8 N88-29849 [SE/LS/AP-36-818/CN-VOL-1]

AGRAWAL, O. P.

Dynamic responses of orthotropic plates under moving p 28 A88-35543 masses

AGRAWAL, SUPHAL P.

Aluminum-lithium alloys: Design, development and application update: Proceedings of the Symposium, Los p 67 A88-45201 Angeles, CA, Mar. 25, 26, 1987

AGUIRRE, M.

The CTM program of masts and the CTM engineering p 15 N88-21196 model

AHL, ELVIN L., JR.

The 15-meter diameter hoop/column antenna surface p 17 N88-21469 control actuator system

AHMED, N. U.

Modelling and stabilization of flexible spacecraft under the influence of orbital perturbation p 27 A88-34914 AKIN. DAVID

Redundancy control of a free-flying telerobot p 35 A88-50199

AIAA PAPER 88-4094] AKIN. DAVID L.

A design methodology for neutral buoyancy simulation

of space operations
[AIAA PAPER 88-4628]

p 77 A88-53665

ALARIO, JOE

Solar dynamic heat rejection technology. Task 2: Heat pipe radiator development [NASA-CR-182141] p 23 N88-23182

ALBERT, J. H.

Robot path planning in space p 74 A88-42328

ALBUGUES, F.

Contribution to the study of materials behavior in space environment

[SNIAS-881-430-104]

p 72 N88-28977 ALDAMIZ, A.

Columbus utilization studies - Attached payloads p 1 A88-34563

ALDRICH, J.

Design, development and evaluation of Stanford/Ames EVA prehensors

[NASA-CR-182688]

p 78 N88-22540 ALEXANDER, R. M.

Beam modifications of structural systems utilizing the receptance approach with static flexibility

p 14 A88-50891 AMATO, AMIEL Orbiter Servicer Rendezvous Simulation (ORSIM)

AMDIEU, M.

Development of a space deployable radiator using heat

[SNIAS-881-440-104]

p 23 N88-29128

p 10 A88-46986

AMOS, ANTHONY K.

Large space structures: Dynamics and control

p 31 A88-46401 Vibration control of large structures [AD-A191358] p 50 N88-22928

ANDERSON, C. C.

Calorimetric measurements of thermal control surfaces at geosynchronous orbit p 19 A88-41414

ANSPAUGH, B. E.

Temperature characteristics of silicon space solar cells p 63 A88-34418 and underlying parameters

ANTONIAK, Z. I.

Fabric space radiators [DE88-005569] p 17 N88-21237

ANTONIAK, ZENEN I.

Two-phase alkali-metal experiments in reduced gravity

p 67 A88-47969 ANTONIK, PAUL

Interactive Radar Environment Simulation Model (IRESM) p 10 A88-46968 APLEY, WALTER J.

Rotating solid radiative coolant system for space nuclear reactors [AIAA PAPER 88-3189] p 21 A88-44785

ARAJ, K.

Nuclear propulsion systems for orbit transfer based or

the particle bed reactor p 87 N88-24272 ARNOLD, GRAHAM S.

Contamination of optical surfaces p 70 N88-25400 ARON, PAUL R.

The application of high temperature superconductors to space electrical power distribution components p 60 N88-22939 INASA-TM-1009011

ASKEW, RAYMOND F.

Space structures, power, and power conditioning: Proceedings of the Meeting, Los Angeles, CA, Jan. 11-13, p 92 A88-42547

[SPIE-871]

ASWANI, M. Soviet spacecraft engineering research

[FASAC-TAR-3090]

p 98 N88-23823

ATLURI, S. N.

Nonlinearities in the dynamics and control of space structures - Some issues for computational mechanics

p 31 A88-46403

Dynamic analysis of finitely stretched and rotated three-dimensional space-curved beams

p 22 A88-49658

ATLURI, SATYA N.

Large space structures: Dynamics and control p 31 A88-46401

AUSTIN, RICHARD

system technology

Spacecraft applications of advanced global positioning p 8 N88-27180

[NASA-CR-172055] AVANS, SHERMAN L.

p 66 A88-43518

Shielding against debris
AVDUEVSKII, V. S.

Scientific and economy-oriented space systems /revised edition/ p 93 A88-43247 Spatial evolution of the residual-acceleration vector on board spacecraft p 43 A88-53945

AXFORD, IAN

Western European space science p 3 A88-39332

В

BABB, ALBERT L.

Rotating solid radiative coolant system for space nuclear

TAIAA PAPER 88-31891 BÀBEL, H. W.

p 21 A88-44785

p 11 N88-20332

Design of light-weight impact resistant pressure vessels for Space Station fluid and propulsion systems [AIAA PAPER 88-2466] p 83 A88-35943

BABEL, HANK W.

Space Station truss strut tube design

AIAA PAPER 88-2471]

p 13 A88-35944

BACCARINI, M. P. Ku-band (14GHz) fiber optic communication links for distributed antennas in the Space Station

p 55 A88-35275

BAE. GYOUNG H.

transfer [AIAA PAPER 88-4175]

A near optimal guidance algorithm for aero-assisted orbit p 37 A88-50266

BAETZ

Study of the optimization of satellite system design for transfer orbit

[MRR-URV-135]

BAILEY, MARION C. The 15-meter antenna performance optimization using an interdisciplinary approach p 61 N88-25746 p 61 N88-25746

BAILY, MICHAEL K.

Large space system assembly options p 72 A88-33433

BAINUM, M.

Effect of natural damping on the dynamics and control of a class of optimally designed structures

BAINUM, P.

p 47 A88-55375 [IAF PAPER 88-288]

Astrodynamics problems of the Space Station p 33 A88-47907

BAINUM, PETER M.

Dynamics and control of a space platform with a tethered p 33 A88-46717 subsatellite The dynamics and control of the orbiting spacecraft

control laboratory experiment (SCOLE) during station keepina [AIAA PAPER 88-4252]

p 38 A88-50384 Rapid slewing of the orbiting Spacecraft Control Laboratory Experiment (SCOLE) using LQR techniques

(IAF PAPÉR 88-320) BAKER, DAVID

Second thoughts on the way to the station

RAKER, M.

An integrated computer aided engineering system for pace Station design p 8 A88-34469 pace Station design

BAKER, MARY

Space station dynamic analysis methods p 41 A88-50863

p 47 A88-55393

p 96 A88-53749

BALAKRISHNAN, A. V.	BENNETT, NEAL	BONTSEMA, J.
Theory of filtering and control with application to control	Structural latches for modular assembly of spacecraft	Robust control of flexible structures - A case study
of large space structures	and space mechanisms p 17 N88-21471	p 29 A88-40489
[AD-A195500] p 54 N88-29851	BENTS, DAVID J.	BOSLEY, JOHN
BALAS, GARY J.	Power transmission studies for tethered SP-100	A shared-world conceptual model for integrating space
On the Caltech experimental large space structure	[NASA-TM-100864] p 59 N88-21251	station life sciences telescience operations
p 6 A88-54603	BERG. TOR EINER	p 102 N88-30333
BALAS, MARK J.	Marintek's ocean basin, a training facility for	BOSWORTH, T. J.
Feedback control of distributed parameter systems with	extravehicular activity? p 79 N88-26041	Welding the Space Station common module prototype
applications to large space structures	BERGER, H.	p 11 A88-52334
[AD-A190536] p 49 N88-22068	Radiation inspection methods for composites	BOUKAMP, JOACHIM
BANERJEE, A. K.	p 68 A88-49260	Antennas for diverse requirements p 55 A88-37285
Libration damping of a tethered satellite using rate only	BERGMANN, EDWARD V.	BOUVARD, J.
control	Input selection for a second-order mass property	Reinforced plastics: Winding and weaving technologies
[AIAA PAPER 88-4172] p 37 A88-50263	estimator p 30 A88-43203	for space products
BANKS, BRUCE A.	BERNHARDT, PAUL A.	[REPT-881-430-103] p 71 N88-27341
Arc-textured metal surfaces for high thermal emittance		BOWLES, DAVID E.
space radiators	Contamination of the space station environment by	Thermal cycling effects on the dimensional stability of
[NASA-TM-100894] p 69 N88-24754	vented chemicals p 71 N88-25403	P75 and P75-T300 (fabric) hybrid graphite/epoxy
BANKS, H. T.	BERNSTEIN, DENNIS S.	laminates p 65 A88-42434
Parameter identification techniques for the estimation	Optimal projection for uncertain systems (OPUS) - A	BOY, GUY A.
of damping in flexible structure experiments	unified theory of reduced-order, robust control design	Fault diagnosis in orbital refueling operations
p 26 A88-34805	p 32 A88-46411	p 87 N88-24154
The identification of a distributed parameter model for	BEYER, J.	BRADLEY, O. H., JR.
a flexible structure p 31 A88-46041	Orbital navigation, docking and obstacle avoidance as	Development of a rotary fluid transfer coupling and
BANKS, P. M.	a form of three dimensional model-based image	support mechanism for space station
Theory of the electrodynamic tether	understanding p 50 N88-24194	p 18 N88-21493
p 57 A88-46805	BHASIN, K. B.	BRANETS, V. N.
BARENGOLTZ, JACK B.	System architecture of MMIC-based large aperture	The system of the Mir station motion control
Particle adhesion to surfaces under vacuum	arrays for space applications p 55 A88-35274	[IAF PAPER 88-334] p 48 A88-55397
[AIAA PAPER 88-2725] p 66 A88-43765	BICKNELL, B. A.	BRAUN, C. E.
BARR, ALAN H.	Integration of Space Station propulsion and fluid	Application of two-phase thermal transport systems to
Computational techniques for the self assembly of large	systems	space platforms p 20 A88-42842
space structures p 75 A88-43976	[AIAA PAPER 88-3289] p 85 A88-48492	BRAUN, ROBERT D.
BARRY, JENNIFER	BIELZA, A.	Trajectory analysis of a low lift/drag aeroassisted orbit
Arc-textured metal surfaces for high thermal emittance	Columbus utilization studies - Attached payloads	transfer vehicle
space radiators	p 1 A88-34563	[AAS PAPER 87-123] p 92 A88-41285
[NASA-TM-100894] p 69 N88-24754	BIGLARI, H.	BRAZZINI, G.
BARZEL, RONEN	Real-time fault management for large-scale systems	Aerospatiale unfurlable reflector and associated
Computational techniques for the self assembly of large	p 42 A88-52355	mechanisms p 15 N88-21203
space structures p 75 A88-43976	BILARDO, VINCENT J., JR.	BREAKWELL, J. A.
BATES, J. M.	An assessment of nominal and contingency altitude	Large space optical system active vibration suppression p 24 A88-34498
Fabric space radiators [DE88-005569] p 17 N88-21237	reboost scenarios during Space Station assembly	suppression p 24 A88-34498 BREAKWELL, J. V.
(======================================	[AIAA PAPER 88-3501] p 75 A88-44526	Astrodynamics problems of the Space Station
BAYARD, D. S. Optimal experiment design for identification of large	BJORSETH, O.	p 33 A88-47907
space structures p 31 A88-45227	Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1	BREEDEN, ARCHIE
BAYARD, DAVID S.		Space Station tool kit p 94 A88-43967
Adaptive control experiment with a large flexible	[STF23-F87025-VOL-1] p 82 N88-30298 BLACK, DAVID C.	BREITFELLER, ERIC
structure	Space Station evolution	Development of a control oriented model of a
[AIAA PAPER 88-4153] p 36 A88-50247	[AAS PAPER 86-262] p 2 A88-35053	cantilevered beam with end-mass p 44 A88-54533
BEARDSLEY, ANTHONY C.	BLACKWELL, C. C.	BREKKE, B.
COSM: A Space Station EVAS test challenge	Precision pointing of scientific instruments on space	Study of human factors engineering criteria for
p 3 A88-36556	station: The LFGGREC perspective p 42 A88-50979	extravehicular activity (EVA) systems, volume 1
BECCHI, P.	BLELLOCH, PAUL	[STF23-F87025-VOL-1] p 82 N88-30298
Deployable/retrievable boom: One application to	Space station dynamic analysis methods	BREMNER, P. G.
tethered satellite p 15 N88-21197	p 41 A88-50863	Methods for spacecraft simulation in vibro-acoustic
BEDINI, DANIELE	BLOCH, ANTHONY M.	environments p 9 A88-37278
Space Station habitation module - Privacy and collective	Stability and equilibria of deformable systems	BRILEY, G. L.
life	p 26 A88-34813	25-LBF GO2/GH2 space station thruster
[IAF PAPER 88-080] p 97 A88-55336	BOBINSKY, E. A.	[AIAA PAPER 88-2793] p 86 A88-53101
BEHREND, TRACY	Case study of active array feed compensation with	BRINDLE, A. F.
Arc-textured metal surfaces for high thermal emittance	sidelobe control for reflector surface distortion	Robot path planning in space p 74 A88-42328
space radiators	[NASA-TM-100287] p 60 N88-23073	BRITT, DANIEL L.
[NASA-TM-100894] p 69 N88-24754	BODEN, D. G.	A scheduling and resource management system for
BELIAEV, M. IU.	Out of plane maneuvering with tethered satellites	space applications p 101 N88-29383
Determination of the motion of the Salyut 6 and 7 orbital	[AIAA PAPER 88-4282] p 39 A88-50409	BRODSKY, ROBERT F.
stations with respect to the mass center in the slow spin	BOETTCHER, RD.	Reducing the cost and risk of orbit transfer
mode on the basis of measurement data	Studies on rocket exhaust plumes and impingement	p 97 A88-54994
p 31 A88-45467	effects related to the Columbus Space Station program:	BROUSTET, Y.
BELISLE, J.	Executive summary	Aerospatiale unfurlable reflector and associated
Nuclear propulsion systems for orbit transfer based on	[DFVLR-IB-222-88-A-12] p 88 N88-29862	mechanisms p 15 N88-21203
the particle bed reactor p 87 N88-24272	BOGGIATTO, D.	BROWN, C. E.
BELONOZHKO, P. A.	Columbus Pressurized Modules - A versatile	Subsea approach to work systems development
Mathematical modeling of the dynamics of a spacecraft	user-friendly space laboratory system	p 99 N88-24146
with elastic components p 33 A88-48080	[IAF PAPER 88-097] p 6 A88-55340	BROWN, NORMAN S.
BELY, PIERRE Y.	BOLSTAD, G.	Long term orbital storage of cryogenic propellants for
Space ten-meter telescope (STMT) - Structural and	Study of human factors engineering criteria for	advanced space transportation missions
thermal feasibility study of the primary mirror	extravehicular activity (EVA) systems, volume 1	p 82 A88-33441
p 19 A88-34539	[STF23-F87025-VOL-1] p 82 N88-30298	BROWN, R. M.
BEN-ASHER, JOSEPH	BOLTON, JOHN F.	Connecting remote systems for demonstration of
Time optimal slewing of flexible spacecraft	Space ten-meter telescope (STMT) - Structural and	automation technologies p 78 N88-24191
p 25 A88-34736	thermal feasibility study of the primary mirror	BROWN, WILLIAM C.
BENAROYA, HAYM	p 19 A88-34539	LEO to GEO transportation system combining electric
Vibrations of structures with parametric uncertainties	BON, BRUCE	propulsion with beamed microwave power from earth
[AD-A190400] p 49 N88-22378	Real-time model-based vision system for object	[AAS PAPER 87-126] p 83 A88-41287
BENENATI, R.	acquisition and tracking p 28 A88-36311	All electronic propulsion - Key to future spaceship
Nuclear propulsion systems for orbit transfer based on	Sensing and perception research for space telerobotics	design
the particle bed reactor p 87 N88-24272	at JPL p 74 A88-42657	[AIAA PAPER 88-3170] p 84 A88-44875
BENNER, S. M.	BOND, DONALD L.	BRUBAKK, A. O.
A high power spacecraft thermal management system	Testing of propellant management device for 3-axis	Study of human factors engineering criteria for
[AIAA PAPER 88-2702] p 21 A88-43754	geosynchronous spacecraft p 83 A88-33792	extravehicular activity (EVA) systems, volume 1
BENNER, STEVE	BONIFAZI, C.	[STF23-F87025-VOL-1] p 82 N88-30298
Design and testing of a high power spacecraft thermal	Laboratory model of a Tethered Satellite - Current	BRYAN, CHARLES F., JR.
management system [NASA-TM-4051] p 23 N88-26389	collection upon and sheath formation around a charged body in a drifting magnetoplasma p 57 A88-46806	Space spider crane [NASA-CASE-LAR-13411-1-SB] p 7 N88-23828

Qualification of room-temperature-curing epoxy

p 66 A88-42440

p 100 N88-24632

adhesives for spacecraft structural applications

[NASA-CR-4027]

Space station architectural elements model study

CASAGRANDE, R. D. CLEARWATER, YVONNE A. BUCHANAN, DAVID B. Space Station Human Factors Research Review. Space station full-scale docking/berthing mechanisms Nuclear electric power for multimegawatt orbit transfer Volume 4: Inhouse Advanced Development and p 18 N88-21491 p 87 N88-24261 CASSADY, R. J. Research BUCHNER, M. An analysis of orbit maneuvering capabilities using arcjet [NASA-CP-2426-VOL-4] p 99 N88-24148 A nonlinear filtering process diagnostic system for the Space Station p 101 N88-29417 propulsion CLEARY, JOHN C. [AIAA PAPER 88-2832] p 85 A88-48484 Interactive Radar Environment Simulation Model CAUDAL, GERARD (IRESM) p 10 A88-46968 Advanced nuclear rocket engine mission analysis Refilling process in the plasmasphere and its relation to magnetic activity p 64 A88-37343 [DE88-006797] p 87 N88-24681 CLIFF, EUGENE M. Time optimal slewing of flexible spacecraft BUGAJSKI, DANIEL J. CEBALLOS, DECIO CASTILHO p 25 A88-34736 Multivariable control law analysis for a large space A feedback double path compensating control structure for the attitude control of a flexible spacecraft antenna p 25 A88-34501 CLIFFTON, E. Space station architectural elements model study RUGEAT I P INPF-4464-PRE/1239] p 48 N88-21240 [NASA-CR-4027] Transient tests for space structures qualification p 100 N88-24632 CECCONI, J. L. p 41 A88-50837 CLIFTON, K. S. The SPOT solar array. Box opening mechanisms physical vapor deposition (PVD)-MoS2: Lubricated slides. Space station particulate contamination environment BUHARIWALA, K. J. p 70 N88-25397 Dynamics of viscoelastic structures unctional evaluation p 16 N88-21211 p 28 A88-38389 CLOTHIAUX, E. J. CHALMERS, H. Production of ground state atomic oxygen in a multifactor Study of the optimization of satellite system design for stress environment Robust decentralized control of large flexible p 56 A88-42585 transfer orbit COCHRAN, J. E., JR. MBB-UBV-1351 p 11 N88-20332 structures IDF88-0054161 p 48 N88-20902 Dynamics and control of large space platforms and small CHAN, T. S. p 60 N88-24321 p 30 A88-42582 Turbomachinery in space experimental payloads BUNYAN, S. M. Development of 8 cm x 8 cm silicon gridded back solar CHAPEL, JIM COHEN. H. A. cell for space station p 62 A88-34312 Concepts and issues for a space telerobot Electron beam experiments at high altitudes p 73 A88-35111 p 56 A88-46799 [AAS PAPER 86-302] CHEN, CHUNG-WEN The CTM program of masts and the CTM engineering COHEN, HERBERT A. Single-mode projection filters for modal parameter identification for flexible structures p 15 N88-21196 Real-time, automatic vehicle-potential determination model The EURECA antenna deployment and retraction from ESA measurements - The distribution function [NASA-CR-182680] p 52 N88-25244 algorithm p 58 A88-51391 mechanisms p 16 N88-21225 CHEN, JAY-CHUNG COHEN, MARC M. BURGESS, T. W. Sine dwell or broadband methods for modal testing Space Station Human Factors Research Review. Operational experience and design recommendations Volume 1: EVA Research and Development p 78 N88-21489 for teleoperated flight hardware CHENG. C. [NASA-CP-2426-VOL-1] Real-time fault management for large-scale systems Space Station Human Factors Research Review Simulations of the electrostatic charging of ESA p 42 A88-52355 Volume 4: Inhouse Advanced Development and communications satellites ESA-STM-239] CHENG, MIAN p 61 N88-24670 A variable structure control approach to flexible p 99 N88-24148 [NASA-CP-2426-VOI -41] BURNS, GENE C. p 34 A88-49914 spacecrafts COLLINS, EMMANUEL G., JR. Space station full-scale docking/berthing mechanisms CHERNIAVSKAIA, S. S. A robust control experiment using an optical structure p 18 N88-21491 Investigation of the dynamics of a system of bodies p 45 A88-54640 prototype BURNS, JOHN A. containing extended elastic components in a central force COLLINS, LEWIS Time optimal slewing of flexible spacecraft p 33 A88-48082 p 25 A88-34736 An assessment of nominal and contingency altitude CHERRETTE, A. R. reboost scenarios during Space Station assembly BUTTERFIELD, A. J. AIAA PAPER 88-3501 J Case study of active array feed compensation with p 75 A88-44526 Some operational aspects of а rotating sidelobe control for reflector surface distortion COLLINS, S. L. advanced-technology space station for the year 2025 + / p 60 N88-23073 [NASA-TM-100287] p 8 N88-26397 Remote servicing of space systems [NASA-CR-181617] CHERTOK, B. E.
The system of the Mir station motion control p 81 N88-29409 BYUN. K. W. CONCHIE. P. J. A new momentum management controller for the Space [IAF PAPER 88-334] Polar Platform configuration and servicing p 48 A88-55397 p 1 A88-34552 [AIAA PAPER 88-4132] CHEW. M. p 36 A88-50233 CONDE. E. On the danger of redundancies in some aerospace The SPOT solar array. Box opening mechanisms mechanisms p 17 N88-21475 C physical vapor deposition (PVD)-MoS2: Lubricated slides CHIANG, R. Y. Functional evaluation H(infinity) robust control synthesis for a large space p 16 N88-21211 CONNALLY, JOHN A. p 45 A88-54639 structure The use of pyrotechnics on spacecraft Low authority control of a composite cantilever beam CHIGER, H. D. p 85 A88-49825 two dimensions p 45 A88-54630 An integrated computer aided engineering system for Docking/berthing subsystem: Design and breadboard CONWAY, BRUCE A. Space Station design A88-34469 p 17 N88-21233 Advantages of tether release of satellites from elliptic CHIKADA, YOSHIHIRO CAESAR, B. p 46 A88-55062 Beyond the diameter-wavelength-ratio of reflector Procedures for updating dynamic mathematical models, CORBAN, R. R. antennas - A film lens antenna p 55 A88-38098 Technology requirements for an orbiting fuel depot: A test phase p 12 N88-29852 necessary element of a space infrastructure [NASA-TM-101370] p 88 MERS-38/871 Turbomachinery in space p 60 N88-24321 CALDWELL, BARRETT p 88 N88-29845 CHOUDRY, A. CORNELISSE, J. W Incorporation of privacy elements in space station Genetic algorithms for adaptive real-time control in Quasat - A 50,000 km-diameter Quasar probe p 50 N88-24195 (NASA-CR-182748) p 98 N88-21242 space systems p 96 A88-54766 CALEDONIA, G. E. CHRISTENSEN, F. CORNWELL, T. J. Structural vibration of space power station systems Laboratory experiments of relevance to the space station Self-correction of telescope surface errors using a p 29 Á88-42574 correlating focal plane array p 91 A88-38097 COSMO, M. Active control experiment using proof mass actuators Transient dynamics of the Tether Elevator/Crawler Maximum likelihood parameter identification of flexible [AIAA PAPER 88-4307] spacecraft [AIAA PAPER 88-4280] CALISE, A. J. [LR-508] p 50 N88-22924 p 39 A88-50407 COSTULIS, J. A. Singular perturbation analysis of the atmospheric orbital CHUNG, C. L. plane change problem p 31 A88-45712 Development of a rotary fluid transfer coupling and Base reaction optimization of manipulators with redundant kinematics p 78 N88-23238 CALISE, ANTHONY J. p 78 N88-23238 support mechanism for space station A near optimal guidance algorithm for aero-assisted orbit p 18 N88-21493 CIANCONE, MICHAEL L. COUR-PALAIS, BURTON G. Mast material test program (MAMATEP) [AIAA PAPER 88-4175] p 37 A88-50266 [AIAA PAPER 88-2475] p 63 A88-35945 Shielding against debris p 66 A88-43518 CRAWLEY, E. F. CAMPBELL, THOMAS G. CIMINO, W. Soviet spacecraft engineering research
[FASAC-TAR-3090] p The 15-meter antenna performance optimization using Improved methods for linearized flexibility models in an interdisciplinary approach p 61 N88-25746 p 98 N88-23823 multibody dynamics and control p 43 A88-54423 CARLSON, R. A. CRAWLEY, EDWARD F. CLARK, BENTON C. Theoretical and experimental investigation of space-realizable inertial actuation for passive and active The Gamma Ray Observatory (GRO) Propulsion Transportation concepts for Mars exploration Subsystem [AIAA PAPER 88-3494] p 4 A88-48477 [AIAA PAPER 88-3051] p 4 A88-44741 structural control CLARK, JANE E. CREAMER, NELSON G. CARPENTER, ALAIN

The efficacy of using human myoelectric signals to

On-orbit assembly, integration, and test of large

p 78 N88-25155

p 72 A88-33440

control the limbs of robots in space

spacecraft - A new technique

[NASA-CR-182901]

CLARK, WALTON

p 38 A88-50385

p 40 A88-50432

A pole placement technique for vibration suppression

Active control experiment using proof mass actuators

of flexible structures

CRISTLER, T.

[AIAA PAPER 88-4254]

[AIAA PAPER 88-4307]

CROCKER, M. J. PERSONAL AUTHOR INDEX CROCKER, M. J. DEATON, A. WAYNE DIPIRRO, MICHAEL J. Feasibility of using GPS measurements for OMV attitude Bayonet for superfluid helium transfer in space Structural vibration of space power station systems p 29 A88-42574 p 96 A88-51716 p 22 The superfluid helium on-orbit transfer (SHOOT) flight DEBRIE, R. A technique to evaluate coatings for atomic oxygen Laboratory model of a Tethered Satellite - Current p 5 A88-53221 p 65 A88-42372 collection upon and sheath formation around a charged DIXON, SIDNEY C. CRUES, EDWIN Z. p 57 A88-46806 body in a drifting magnetoplasma Beyond simulation p 66 A88-45109 An approximate atmospheric guidance law for DECRAMER, L. aeroassisted plane change maneuvers Super heat pipe design considerations for applications The SPOT solar array. Box opening mechanisms p 37 A88-50265 p 20 A88-42830 [AIAA PAPER 88-4174] physical vapor deposition (PVD)-MoS2: Lubricated slides. to space-based systems CÚBUKCU, ARIF DOBRAN, FLAVIO p 16 N88-21211 Functional evaluation A nonlinear filtering process diagnostic system for the International Symposium on Thermal Problems in DEGTYAREV. V. I. Space-Based Systems, Boston, MA, Dec. 13-18, 1987, Space Station p 101 N88-29417 Relationship between characteristics of low-energy p 92 A88-42829 CUDDIHY, W. F. electrons and geomagnetic disturbance in geostationary operational aspects of a rotating DODDS, JAMES p 62 N88-30501 orbit advanced-technology space station for the year 2025 Spacecraft applications of advanced global positioning DEHART, MARK DAVID system technology NASA-CR-181617 | p 8 N88-26397 A thermal equilibrium model for multi-megawatt space INASA-CR-172055] CUDNEY, H., JR. p 8 N88-27180 p 12 N88-24332 platforms Parameter identification techniques for the estimation DOMINGO, V. DELCAMPO. F. ESA report to the 27th COSPAR meeting of damping in flexible structure experiments The CTM program of masts and the CTM engineering nodel p 15 N88-21196 [ESA-SP-1098] p 26 A88-34805 p 102 N88-30556 model DOMINICK, SAM M. **CURTAIN, R. F.** Latching mechanisms for IOC p 16 N88-21205 Robust control of flexible structures - A case study Orbital spacecraft consumables resupply p 29 A88-40489 [AIAA PAPER 88-2922] **DELHAES, PIERRE** p 94 A88-44695 L(sub infinity symbol)-approximations of complex Prospects of intercalated graphite fibre use for electrical DOUGLAS, WILLIAM K. functions and robust controllers for large flexible space power transmission in solar power satellites Human performance issues arising from manned space p 64 A88-40568 station missions structures p 52 N88-26390 [PB88-186226] INASA-CR-39421 p 100 N88-25156 DOWELL, E. H. Moveable thermal joints for deployable or steerable Frequency domain solutions to multi-degree-of-freedom, spacecraft radiator systems dry friction damped systems p 14 N88-20347 p 33 A88-49714 [NLR-MP-87016-U] DOYLE, JOHN C. Feasibility demonstration of a sensor for high-quality D'CRUZ, PREM B. On the Caltech experimental large space structure two-phase flow Space Station dynamic analysis p 41 A88-50818 p 6 A88-54603 [NLR-TR-87009-U] p 59 N88-20569 D'ELEUTERIO, G. M. T. DROGOU, J.-F. DELORENZO, MICHAEL L. Stress concentration around a pair of circular holes in Underwater simulation for space teleoperation Sensor and actuator selection for large space structure a hydrostatically stressed elastic sheet p 79 N88-26040 control p 33 A88-48194 [AD-A194912] p 53 N88-29842 D'EMILIANO, L.
Columbus Pressurized Modules Laboratory feasibility study of a composite embedded DENMAN, EUGENE E. A versatile fiber optic sensor for measurement of structural Identification of large structures on orbit - A survey user-friendly space laboratory system HAF PAPER 88-2951 p 97 A88-55379 [IAF PAPER 88-097] p 6 A88-55340 IAD-A1942701 p 71 N88-28754 **DENNER, WOLF-JUERGEN** DAILEY, R. LANE DUBORAW, I. NEWTON, III Recent results in identification and control of a flexible Solar-dynamic energy supply systems for space Spacecraft applications of advanced global positioning p 64 A88-37293 p 44 A88-54576 systems system technology NASA-CR-172055] DALKE, ROGER A. DENTON, JUDITH S. p 8 N88-27180 A numerical method for the analysis of coupling to thin Third Conference on Artificial Intelligence for Space DÚBOVSKOI, V. B. p 14 A88-54722 Applications, part 2 wire structures Spatial evolution of the residual-acceleration vector on DALY, E. J. [NASA-CP-2492-PT-2] p 100 N88-24188 board spacecraft p 43 A88-53945 Simulations of the electrostatic charging of ESA DERYDER, L. J. DUBOWSKY, S. communications satellites On the dynamics of manipulators in space using the Space station heavy lift launch vehicle utilization [ESA-STM-239] [NASA-TM-100604] p 86 N88-21188 virtual manipulator approach p 75 A88-42677 The dynamic control of robotic manipulators in space DESA. S. Studies on rocket exhaust plumes and impingement Base reaction optimization of manipulators with [NASA-CR-182710] p 77 N88-20646 effects related to the Columbus Space Station program: redundant kinematics p 78 N88-23238 DUNN, B. D. Mechanical and electrical characteristics of tin whiskers **DESJARDINS, RICHARD** p 88 N88-29862 IDFVLR-IB-222-88-A-121 with special reference to spacecraft systems Al for space missions DARYOUSH, A. S. p 67 A88-46192 [AAS PAPER 86-390] p 55 A88-35144 Ku-band (14GHz) fiber optic communication links for DURSCH, HARRY W. DESPAIN RON distributed antennas in the Space Station Evaluation of chromic acid anodized aluminum foil Robotic applications at Kennedy Space Center p 55 A88-35275 p 76 A88-52328 coated composite tubes for the Space Station truss DAVIES, CAROL B. DETTLEFF, G. p 65 A88-42412 Optimum configuration of high-lift aeromaneuvering DURVASULA, S. Studies on rocket exhaust plumes and impingement Use of modal energy distribution in the design of orbital transfer vehicles in viscous flow effects related to the Columbus Space Station program: p 11 A88-51386 honeycomb sandwich decks Executive summary p 64 A88-37466 [DFVLR-IB-222-88-A-12] DAVIES, W. S. p 88 N88-29862 DUTTO, PIERRE A technique for the measurement of environmental DHARAN, C. K. H. Tasks foreseen for space robots and an example of levels of microwave radiation around satellite earth p 79 N88-26044 A fracture control plan for composite spacecraft an associated orbital infrastructure p 56 A88-38115 structures DWYER, THOMAS A. W., III stations [IAF PAPER 88-282] p 68 A88-55374 DAVIS, JOHN G., JR. Variable-structure control of spacecraft attitude p 66 A88-45109 DI PIPPO, SIMONETTA Beyond simulation p 30 A88-43211 maneuvers Space inspection device for extravehicular repairs -DAVIS. V. LEON Systems integration for the Kennedy Space Center SPIDER system E [IAF PAPÉR 88-029] p 77 A88-55324 (KSC) Robotics Applications Development Laboratory DIARRA, CHEICK M. p 76 A88-52330 The dynamics and control of the orbiting spacecraft DAVIS, W. R. EASTEP, F. E. control laboratory experiment (SCOLE) during station Libration damping of a tethered satellite using rate only Optimal structural design with control gain norm keeping [AIAA PAPER 88-4252] constraint p 22 A88-50339 control p 38 A88-50384 p 37 A88-50263 [AIAA PAPER 88-4172] EBERHARDT, RALPH N. Rapid slewing of the orbiting Spacecraft Control Orbital spacecraft consumables resupply DAVISON, E. J. aboratory Experiment (SCOLE) using LQR techniques [AIAA PAPER 88-2922] On the quantitative characterization of approximate p 94 A88-44695 p 47 A88-55393 [IAF PAPER 88-320] decentralized fixed modes using transmission zeros EGAN, THOMAS R. DICK, PAUL p 27 A88-34905 Autonomous flight control for low thrust orbital transfer System effectiveness-A key to assurance vehicles DAVISON, WARREN B. p 93 A88-43333 [AIAA PAPER 88-2838] Structural innovations in the Columbus Project - An 11.3 DICKINSON, J. T. p 30 A88-44670 p 89 A88-34491 EHLERS, H. meter optical telescope Surface interactions relevant to space station Space station neutral external environment DAY, LEE contamination problems p 71 N88-25401 p 9 A88-40524 p 69 N88-25392

DIFILIPPO, FRANK

snace radiators

DIPIRRO, M. J.

operators

[NASA-TM-100894]

[NASA-TM-101009]

Arc-textured metal surfaces for high thermal emittance

Superfluid Helium On-Orbit Transfer (SHOOT)

p 69 N88-24754

p 88 N88-28084

EIDEN. M.

applications

EL-GENK, MOHAMED S.

(ASME PAPER 87-WA/HT-131

A sequentially deployable structure for space

Spacecraft surface coating heat generation by charged

particulate of the natural space environment

p 15 N88-21202

p 58 A88-51341

B-4

Simulation - Antidote to risk

Robotic vision/sensing for space applications

ressure on the performance of resistojets

An experimental investigation of the effect of test-cell

p 74 A88-42642

p 84 A88-44820

DE FIGUEIREDO, RUI J. P.

I AIAA PAPER 88-32861

DE WITT, K. J.

ELDRED, DANIEL	FERRI, A. A.	FRITZSCHE, ALBERT
Technologies for antenna shape and vibration control	Frequency domain solutions to multi-degree-of-freedom,	Solar-dynamic energy supply systems for space
p 52 N88-25748	dry friction damped systems p 33 A88-49714	systems p 64 A88-37293
ELDRED, DANIEL B.	FESTER, D. A.	FRYE, PATRICK E.
Adaptive control experiment with a large flexible	Integration of Space Station propulsion and fluid	Solar thermal propulsion for orbit transfer
structure	systems	[AIAA PAPER 88-3171] p 84 A88-48042
[AIAA PAPER 88-4153] p 36 A88-50247	[AIAA PAPER 88-3289] p 85 A88-48492	FUENTES, M.
ELFVING, A.	FETZER, K. Study of the optimization of satellite system design for	Large truss structures p 75 A88-50862
Simulation of space manipulator operations (Eurosim)	transfer orbit	The CTM program of masts and the CTM engineering
p 10 A88-46982	[MBB-URV-135] p 11 N88-20332	model p 15 N88-21196
Simulation of space manipulator operations	FEUERBACHER, B.	The EURECA antenna deployment and retraction
(EUROSIM)	Compatibility of microgravity experiments with	mechanisms p 16 N88-21225
[NLR-MP-87017-U] p 80 N88-26678		FUJII, HARUHISA
ELIAZOV, T. E.	spacecraft disturbances p 34 A88-49743 FINDEN, L. E.	Electrostatic charging and arc discharges on satellite
An adaptive control system for fine pointing of flexible	25-LBF GO2/GH2 space station thruster	dielectrics simulated by electron beam
spacecraft p 26 A88-34791	[AIAA PAPER 88-2793] p 86 A88-53101	p 57 A88-47970
ENNS, DALE F.		FUJII, HIRONORI
Multivariable control law analysis for a large space	FINK, W.	A slew maneuver experiment of mission function
antenna p 25 A88-34501	Study of the optimization of satellite system design for	control
	transfer orbit (MBB-URV-135) p 11 N88-20332	[AIAA PAPER 88-4226] p 38 A88-50367
ERBEN, E.	• • • • • • • • • • • • • • • • • • • •	FUJIMOTO, JUN
Procedures for updating dynamic mathematical models,	FISHER, E. M., JR. A plan for time-phased incorporation of automation and	Damping materials for spacecraft vibration control
test phase [MEBS-38/87] p 12 N88-29852		
(•	p 64 A88-37000
ERICKSON, WILLIAM K.	FISK, U. O.	FUJITA, T.
MTK: An Al tool for model-based reasoning	ESA report to the 27th COSPAR meeting	Parametric studies of electric propulsion systems for
p 12 N88-24189	[ESA-SP-1098] p 102 N88-30556	orbit transfer vehicles
ERSUE, E.	FITTON, B.	[AIAA PAPER 88-2835] p 84 A88-44668
Simulation of space manipulator operations (Eurosim)	The environment of earth-orbiting systems	FUNK, JOAN G.
p 10 A88-46982	p 3 A88-35877	Space radiation effects on poly(aryl-ether-ketone) thin
Simulation of space manipulator operations	FITZ-COY, N. G.	films and composites p 65 A88-41547
(EUROSIM)	Dynamics and control of large space platforms and small	FURNISS, TIM
[NLR-MP-87017-U] p 80 N88-26678	experimental payloads p 30 A88-42582	Debris in space p 85 A88-51139
ESTES. ROBERT D.	FITZGERALD, D. D.	FUSARO, ROBERT L.
Analytical investigation of the dynamics of tethered	Piloted earth pointing of a spinning geosynchronous	Tribological properties of polymer films and solid bodies
constellations in earth orbit	satellite	in a vacuum environment p 63 A88-35565
[NASA-CR-179371] p 53 N88-28950	[AIAA PAPER 88-4130] p 37 A88-50280	F
(FLANDROIS, SERGE	^
ESTUS, J. M.	Prospects of intercalated graphite fibre use for electrical	G
NASA Office of Space Sciences and Applications study	power transmission in solar power satellites	
on Space Station attached payload pointing [AIAA PAPER 88-4105] p 36 A88-50209	p 64 A88-40568	GALAN, L.
(,	FLASHNER, H.	Study of secondary emission properties of materials
EVATT, THOMAS C.	Modeling of non-collocated structural control systems	used for high power RF components in space
Utilization of artificial intelligence techniques for the	(AIAA PAPER 88-4060) p 35 A88-50170	[ESA-CR(P)-2587] p 72 N88-30012
Space Station power system p 62 N88-29412	H(infinity) robust control synthesis for a large space	GALLOWAY, WILLIAM E.
	structure p 45 A88-54639	Orbital Maneuvering Vehicle support to the Space
F	FLOYD, M. A.	Station p 5 A88-52362
Г	Interactive structural and controller synthesis for large	GAO, WEIBING
	spacecraft p 28 A88-35541	A variable structure control approach to flexible
FAHLENBOCK, KLAUS	spacecraπ p 28 A88-35541 FONG, I. K.	spacecrafts p 34 A88-49914
The Columbus resource module for the European		
The Columbus resource module for the European man-tended free flyer	FONG, I. K.	spacecrafts p 34 A88-49914
The Columbus resource module for the European	FONG, I. K. Robust decentralized control of large flexible	spacecrafts p 34 A88-49914 GARIBOTTI, J. F.
The Columbus resource module for the European man-tended free flyer	FONG, I. K. Robust decentralized control of large flexible structures	spacecrafts p 34 A88-49914 GARIBOTTI, J. F. Soviet spacecraft engineering research
The Columbus resource module for the European man-tended free flyer [AAS PAPER 86-465] p 2 A88-35056	FONG, I. K. Robust decentralized control of large flexible structures [DE88-005416] p 48 N88-20902 FONG, I-KONG Decentralized model reference adaptive control of large	spacecrafts p 34 A88-49914 GARIBOTTI, J. F. Soviet spacecraft engineering research [FASAC-TAR-3090] p 98 N88-23823
The Columbus resource module for the European man-tended free flyer [AAS PAPER 86-465] p 2 A88-35056 FALKENHAYN, EDWARD, JR. Multimission modular spacecraft (MMS)	FONG, I. K. Robust decentralized control of large flexible structures [DE88-005416] p 48 N88-20902 FONG, I-KONG	spacecrafts p 34 A88-49914 GARIBOTTI, J. F. Soviet spacecraft engineering research [FASAC-TAR-3090] p 98 N88-23823 GARLICK, G. F. J.
The Columbus resource module for the European man-tended free flyer [AAS PAPER 86-465] p 2 A88-35056 FALKENHAYN, EDWARD, JR. Multimission modular spacecraft (MMS) [AIAA PAPER 88-3513] p 93 A88-42910	FONG, I. K. Robust decentralized control of large flexible structures [DE88-005416] p 48 N88-20902 FONG, I-KONG Decentralized model reference adaptive control of large	spacecrafts p 34 A88-49914 GARIBOTTI, J. F. Soviet spacecraft engineering research [FASAC-TAR-3090] p 98 N88-23823 GARLICK, G. F. J. Development of 8 cm x 8 cm silicon gridded back solar
The Columbus resource module for the European man-tended free flyer [AAS PAPER 86-465] p 2 A88-35056 FALKENHAYN, EDWARD, JR. Multimission modular spacecraft (MMS) [AIAA PAPER 88-3513] p 93 A88-42910 FAN, RUYING	FONG, I. K. Robust decentralized control of large flexible structures [DE88-005416] p 48 N88-20902 FONG, I-KONG Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 FORWARD, ROBERT L. Exotic propulsion in the 21st century	spacecrafts p 34 A88-49914 GARIBOTTI, J. F. Soviet spacecraft engineering research [FASAC-TAR-3090] p 98 N88-23823 GARLICK, G. F. J. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312
The Columbus resource module for the European man-tended free flyer [AAS PAPER 86-465] p 2 A88-35056 FALKENHAYN, EDWARD, JR. Multimission modular spacecraft (MMS) [AIAA PAPER 88-3513] p 93 A88-42910 FAN, RUYING Dynamics and control of a space platform with a tethered	FONG, I. K. Robust decentralized control of large flexible structures [DE88-005416] p 48 N88-20902 FONG, I-KONG Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 FORWARD, ROBERT L.	spacecrafts p 34 A88-49914 GARIBOTTI, J. F. Soviet spacecraft engineering research [FASAC-TAR-3090] p 98 N88-23823 GARLICK, G. F. J. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 Temperature characteristics of silicon space solar cells and underlying parameters p 63 A88-34418
The Columbus resource module for the European man-tended free flyer [AAS PAPER 86-465] p 2 A88-35056 FALKENHAYN, EDWARD, JR. Multimission modular spacecraft (MMS) [AIAA PAPER 88-3513] p 93 A88-42910 FAN, RUYING Dynamics and control of a space platform with a tethered subsatellite p 33 A88-46717	FONG, I. K. Robust decentralized control of large flexible structures [DE86-005416] p 48 N88-20902 FONG, I-KONG Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 FORWARD, ROBERT L. Exotic propulsion in the 21st century	spacecrafts p 34 A88-49914 GARIBOTTI, J. F. Soviet spacecraft engineering research [FASAC-TAR-3090] p 98 N88-23823 GARLICK, G. F. J. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 Temperature characteristics of silicon space solar cells and underlying parameters p 63 A88-34418 GARN, P. A.
The Columbus resource module for the European man-tended free flyer [AAS PAPER 86-465] p 2 A88-35056 FALKENHAYN, EDWARD, JR. Multimission modular spacecraft (MMS) [AIAA PAPER 88-3513] p 93 A88-42910 FAN, RUYING Dynamics and control of a space platform with a tethered subsatellite p 33 A88-46717 FAN, ZIJIE	FONG, I. K. Robust decentralized control of large flexible structures [DE88-005416] p 48 N88-20902 FONG, I-KONG Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 FORWARD, ROBERT L. Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-35100	spacecrafts p 34 A88-49914 GARIBOTTI, J. F. Soviet spacecraft engineering research [FASAC-TAR-3090] p 98 N88-23823 GARLICK, G. F. J. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 Temperature characteristics of silicon space solar cells and underlying parameters p 63 A88-34418 GARN, P. A. Some operational aspects of a rotating
The Columbus resource module for the European man-tended free flyer [AAS PAPER 86-465] p 2 A88-35056 FALKENHAYN, EDWARD, JR. Multimission modular spacecraft (MMS) [AIAA PAPER 88-3513] p 93 A88-42910 FAN, RUYING Dynamics and control of a space platform with a tethered subsatellite p 33 A88-46717 FAN, ZIJIE Identification of multiple-input modal parameters from	FONG, I. K. Robust decentralized control of large flexible structures [DE88-005416] p 48 N88-20902 FONG, I-KONG Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 FORWARD, ROBERT L. Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-35100 FOS, JOSEPH E., JR.	spacecrafts p 34 A88-49914 GARIBOTTI, J. F. Soviet spacecraft engineering research [FASAC-TAR-3090] p 98 N88-23823 GARLICK, G. F. J. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 Temperature characteristics of silicon space solar cells and underlying parameters p 63 A88-34418 GARN, P. A. Some operational aspects of a rotating advanced-technology space station for the year 2025
The Columbus resource module for the European man-tended free flyer [AAS PAPER 86-465] p 2 A88-35056 FALKENHAYN, EDWARD, JR. Multimission modular spacecraft (MMS) [AIAA PAPER 88-3513] p 93 A88-42910 FAN, RUYING Dynamics and control of a space platform with a tethered subsatellite p 33 A88-46717 FAN, ZIJIE Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897	FONG, I. K. Robust decentralized control of large flexible structures [DE88-005416] p 48 N88-20902 FONG, I-KONG Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 FORWARD, ROBERT L. Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-35100 FOS, JOSEPH E., JR. Unique bonding methods for spacecraft	spacecrafts p 34 A88-49914 GARIBOTTI, J. F. Soviet spacecraft engineering research [FASAC-TAR-3090] p 98 N88-23823 GARLICK, G. F. J. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 Temperature characteristics of silicon space solar cells and underlying parameters p 63 A88-34418 GARN, P. A. Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397
The Columbus resource module for the European man-tended free flyer [AAS PAPER 86-465] p 2 A88-35056 FALKENHAYN, EDWARD, JR. Multimission modular spacecraft (MMS) [AIAA PAPER 88-3513] p 93 A88-42910 FAN, RUYING Dynamics and control of a space platform with a tethered subsatellite p 33 A88-46717 FAN, ZIJIE Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 FARBMAN, G.	FONG, I. K. Robust decentralized control of large flexible structures [DE88-005416] p 48 N88-20902 FONG, I-KONG Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 FORWARD, ROBERT L. Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-35100 FOS, JOSEPH E., JR. Unique bonding methods for spacecraft p 68 A88-54731	spacecrafts p 34 A88-49914 GARIBOTTI, J. F. Soviet spacecraft engineering research [FASAC-TAR-3090] p 98 N88-23823 GARLICK, G. F. J. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 Temperature characteristics of silicon space solar cells and underlying parameters p 63 A88-34418 GARN, P. A. Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 GARNIER, C.
The Columbus resource module for the European man-tended free flyer [AAS PAPER 86-465] p 2 A88-35056 FALKENHAYN, EDWARD, JR. Multimission modular spacecraft (MMS) [AIAA PAPER 88-3513] p 93 A88-42910 FAN, RUYING Dynamics and control of a space platform with a tethered subsatellite p 33 A88-46717 FAN, ZJIE Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 FARBMAN, G. Advanced nuclear rocket engine mission analysis	FONG, I. K. Robust decentralized control of large flexible structures [DE88-005416] p 48 N88-20902 FONG, I-KONG Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 FORWARD, ROBERT L. Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-35100 FOS, JOSEPH E., JR. Unique bonding methods for spacecraft p 68 A88-54731 FOWLER, JOHN	spacecrafts p 34 A88-49914 GARIBOTTI, J. F. Soviet spacecraft engineering research [FASAC-TAR-3090] p 98 N88-23823 GARLICK, G. F. J. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 Temperature characteristics of silicon space solar cells and underlying parameters p 63 A88-34418 GARN, P. A. Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 GARNIER, C. Literal dynamic modeling
The Columbus resource module for the European man-tended free flyer [AAS PAPER 86-465] p 2 A88-35056 FALKENHAYN, EDWARD, JR. Multimission modular spacecraft (MMS) [AIAA PAPER 88-3513] p 93 A88-42910 FAN, RUYING Dynamics and control of a space platform with a tethered subsatellite p 33 A88-46717 FAN, ZIJIE Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 FARBMAN, G. Advanced nuclear rocket engine mission analysis [DE88-006797] p 87 N88-24681	FONG, I. K. Robust decentralized control of large flexible structures [DE88-005416] p 48 N88-20902 FONG, I-KONG Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 FORWARD, ROBERT L. Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-35100 FOS, JOSEPH E., JR. Unique bonding methods for spacecraft p 68 A88-54731 FOWLER, JOHN Effect of air mass on modal tests p 41 A88-50860	spacecrafts p 34 A88-49914 GARIBOTTI, J. F. Soviet spacecraft engineering research [FASAC-TAR-3090] p 98 N88-23823 GARLICK, G. F. J. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 Temperature characteristics of silicon space solar cells and underlying parameters p 63 A88-34418 GARN, P. A. Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 GARNIER, C. Literal dynamic modeling [REPT-881-440-114] p 53 N88-28083
The Columbus resource module for the European man-tended free flyer [AAS PAPER 86-465] p 2 A88-35056 FALKENHAYN, EDWARD, JR. Multimission modular spacecraft (MMS) [AIAA PAPER 88-3513] p 93 A88-42910 FAN, RUYING Dynamics and control of a space platform with a tethered subsatellite p 33 A88-46717 FAN, ZIJIE Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 FARBMAN, G. Advanced nuclear rocket engine mission analysis [DE88-006797] p 87 N88-24681	FONG, I. K. Robust decentralized control of large flexible structures [DE88-005416] p 48 N88-20902 FONG, I-KONG Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 FORWARD, ROBERT L. Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-35100 FOS, JOSEPH E., JR. Unique bonding methods for spacecraft p 68 A88-54731 FOWLER, JOHN Effect of air mass on modal tests p 41 A88-50860 FOX, D. J.	spacecrafts p 34 A88-49914 GARIBOTTI, J. F. Soviet spacecraft engineering research [FASAC-TAR-3090] p 98 N88-23823 GARLICK, G. F. J. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 Temperature characteristics of silicon space solar cells and underlying parameters p 63 A88-34418 GARN, P. A. Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 GARNIER, C. Literal dynamic modeling
The Columbus resource module for the European man-tended free flyer [AAS PAPER 86-465] p 2 A88-35056 FALKENHAYN, EDWARD, JR. Multimission modular spacecraft (MMS) [AIAA PAPER 88-3513] p 93 A88-42910 FAN, RUYING Dynamics and control of a space platform with a tethered subsatellite p 33 A88-46717 FAN, ZIJIE Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 FARBMAN, G. Advanced nuclear rocket engine mission analysis [DE88-006797] p 87 N88-24681	FONG, I. K. Robust decentralized control of large flexible structures [DE88-005416] p 48 N88-20902 FONG, I-KONG Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 FORWARD, ROBERT L. Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-35100 FOS, JOSEPH E., JR. Unique bonding methods for spacecraft p 68 A88-54731 FOWLER, JOHN Effect of air mass on modal tests p 41 A88-50860 FOX, D. J. Degradation of graphite-epoxy due to electron	spacecrafts p 34 A88-49914 GARIBOTTI, J. F. Soviet spacecraft engineering research [FASAC-TAR-3090] p 98 N88-23823 GARLICK, G. F. J. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 Temperature characteristics of silicon space solar cells and underlying parameters p 63 A88-34418 GARN, P. A. Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 GARNIER, C. Literal dynamic modeling [REPT-881-440-114] p 53 N88-28083 GARRETT, L. B. Large space systems requirements, deployable concepts, and technology issues
The Columbus resource module for the European man-tended free flyer [ASS PAPER 86-465] p 2 A88-35056 FALKENHAYN, EDWARD, JR. Multimission modular spacecraft (MMS) [AIAA PAPER 88-3513] p 93 A88-42910 FAN, RUYING Dynamics and control of a space platform with a tethered subsatellite p 33 A88-46717 FAN, ZIJIE Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 FARBMAN, G. Advanced nuclear rocket engine mission analysis [DE88-006797] p 87 N88-24681 FARMER, I. System and concept design of the SSRMS latching end effector p 15 N88-21204	FONG, I. K. Robust decentralized control of large flexible structures [DE88-005416] p 48 N88-20902 FONG, I-KONG Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 FORWARD, ROBERT L. Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-35100 FOS, JOSEPH E., JR. Unique bonding methods for spacecraft p 68 A88-54731 FOWLER, JOHN Effect of air mass on modal tests p 41 A88-50860 FOX, D. J. Degradation of graphite-epoxy due to electron radiation p 63 A88-36762	spacecrafts p 34 A88-49914 GARIBOTTI, J. F. Soviet spacecraft engineering research [FASAC-TAR-3090] p 98 N88-23823 GARLICK, G. F. J. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 Temperature characteristics of silicon space solar cells and underlying parameters p 63 A88-34418 GARN, P. A. Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 GARNIER, C. Literal dynamic modeling [REPT-881-440-114] p 53 N88-28083 GARRETT, L. B. Large space systems requirements, deployable
The Columbus resource module for the European man-tended free flyer [AAS PAPER 86-465] p 2 A88-35056 FALKENHAYN, EDWARD, JR. Multimission modular spacecraft (MMS) [AIAA PAPER 88-3513] p 93 A88-42910 FAN, RUYING Dynamics and control of a space platform with a tethered subsatellite p 33 A88-46717 FAN, ZIJIE Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 FARBMAN, G. Advanced nuclear rocket engine mission analysis [DE88-006797] p 87 N88-24681 FARMER, I. System and concept design of the SSRMS latching end	FONG, I. K. Robust decentralized control of large flexible structures [DE88-005416] p 48 N88-20902 FONG, I-KONG Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 FORWARD, ROBERT L. Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-35100 FOS, JOSEPH E., JR. Unique bonding methods for spacecraft p 68 A88-54731 FOWLER, JOHN Effect of air mass on modal tests p 41 A88-50860 FOX, D. J. Degradation of graphite-epoxy due to electron radiation p 63 A88-36762 FRANCIS, PHILIP H. Advanced topics in manufacturing technology: Product design, bioengineering; Proceedings of the Symposium,	spacecrafts p 34 A88-49914 GARIBOTTI, J. F. Soviet spacecraft engineering research [FASAC-TAR-3090] p 98 N88-23823 GARLICK, G. F. J. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 Temperature characteristics of silicon space solar cells and underlying parameters p 63 A88-34418 GARN, P. A. Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 GARNIER, C. Literal dynamic modeling [REPT-881-440-114] p 53 N88-28083 GARRETT, L. B. Large space systems requirements, deployable concepts, and technology issues
The Columbus resource module for the European man-tended free flyer [ASS PAPER 86-465] p 2 A88-35056 FALKENHAYN, EDWARD, JR. Multimission modular spacecraft (MMS) [AIAA PAPER 88-3513] p 93 A88-42910 FAN, RUYING Dynamics and control of a space platform with a tethered subsatellite p 33 A88-46717 FAN, ZIJIE Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 FARBMAN, G. Advanced nuclear rocket engine mission analysis [DE88-006797] p 87 N88-24681 FARMER, I. System and concept design of the SSRMS latching end effector p 15 N88-21204	FONG, I. K. Robust decentralized control of large flexible structures [DE88-005416] p 48 N88-20902 FONG, I-KONG Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 FORWARD, ROBERT L. Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-35100 FOS, JOSEPH E., JR. Unique bonding methods for spacecraft p 68 A88-54731 FOWLER, JOHN Effect of air mass on modal tests p 41 A88-50860 FOX, D. J. Degradation of graphite-epoxy due to electron radiation FRANCIS, PHILIP H. Advanced topics in manufacturing technology: Product	spacecrafts p 34 A88-49914 GARIBOTTI, J. F. Soviet spacecraft engineering research [FASAC-TAR-3090] p 98 N88-23823 GARLICK, G. F. J. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 Temperature characteristics of silicon space solar cells and underlying parameters p 63 A88-34418 GARN, P. A. Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 GARNIER, C. Literal dynamic modeling [REPT-881-440-114] p 53 N88-28083 GARRETT, L. B. Large space systems requirements, deployable concepts, and technology issues [AAS PAPER 86-394] p 2 A88-35115
The Columbus resource module for the European man-tended free flyer [AS PAPER 86-465] p 2 A88-35056 FALKENHAYN, EDWARD, JR. Multimission modular spacecraft (MMS) [AIAA PAPER 88-3513] p 93 A88-42910 FAN, RUYING Dynamics and control of a space platform with a tethered subsatellite p 33 A88-46717 FAN, ZIJIE Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 FARBMAN, G. Advanced nuclear rocket engine mission analysis [DE88-006797] p 87 N88-24681 FARMER, I. System and concept design of the SSRMS latching end effector p 15 N88-21204 FATHI, H. Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1	FONG, I. K. Robust decentralized control of large flexible structures [DE88-005416] p 48 N88-20902 FONG, I-KONG Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 FORWARD, ROBERT L. Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-35100 FOS, JOSEPH E., JR. Unique bonding methods for spacecraft p 68 A88-54731 FOWLER, JOHN Effect of air mass on modal tests p 41 A88-50860 FOX, D. J. Degradation of graphite-epoxy due to electron radiation p 63 A88-36762 FRANCIS, PHILIP H. Advanced topics in manufacturing technology: Product design, bioengineering; Proceedings of the Symposium,	spacecrafts p 34 A88-49914 GARIBOTTI, J. F. Soviet spacecraft engineering research [FASAC-TAR-3090] p 98 N88-23823 GARLICK, G. F. J. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 Temperature characteristics of silicon space solar cells and underlying parameters p 63 A88-34418 GARN, P. A. Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 GARNIER, C. Literal dynamic modeling [REPT-881-440-114] p 53 N88-28083 GARRETT, L. B. Large space systems requirements, deployable concepts, and technology issues [AAS PAPER 86-394] p 2 A88-35115 GATES, RICHARD M.
The Columbus resource module for the European man-tended free flyer [AS PAPER 86-465] p 2 A88-35056 FALKENHAYN, EDWARD, JR. Multimission modular spacecraft (MMS) [AIAA PAPER 88-3513] p 93 A88-42910 FAN, RUYING Dynamics and control of a space platform with a tethered subsatellite p 33 A88-46717 FAN, ZIJIE Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 FARBMAN, G. Advanced nuclear rocket engine mission analysis [DE88-006797] p 87 N88-24681 FARMER, I. System and concept design of the SSRMS latching end effector p 15 N88-21204 FATHI, H. Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298	FONG, I. K. Robust decentralized control of large flexible structures [DE88-005416] p 48 N88-20902 FONG, I-KONG Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 FORWARD, ROBERT L. Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-35100 FOS, JOSEPH E., JR. Unique bonding methods for spacecraft p 68 A88-54731 FOWLER, JOHN Effect of air mass on modal tests p 41 A88-50860 FOX, D. J. Degradation of graphite-epoxy due to electron radiation p 63 A88-36762 FRANCIS, PHILIP H. Advanced topics in manufacturing technology: Product design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18, 1987 p 94 A88-44001	spacecrafts p 34 A88-49914 GARIBOTTI, J. F. Soviet spacecraft engineering research [FASAC-TAR-3090] p 98 N88-23823 GARLICK, G. F. J. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 Temperature characteristics of silicon space solar cells and underlying parameters p 63 A88-34418 GARN, P. A. Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 GARNIER, C. Literal dynamic modeling [REPT-881-440-114] p 53 N88-28083 GARRETT, L. B. Large space systems requirements, deployable concepts, and technology issues [AAS PAPER 86-394] p 2 A88-35115 GATES, RICHARD M. LDR structural experiment definition
The Columbus resource module for the European man-tended free flyer [AAS PAPER 86-465] p 2 A88-35056 FALKENHAYN, EDWARD, JR. Multimission modular spacecraft (MMS) [AIAA PAPER 88-3513] p 93 A88-42910 FAN, RUYING Dynamics and control of a space platform with a tethered subsatellite p 33 A88-46717 FAN, ZIJIE Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 FARBMAN, G. Advanced nuclear rocket engine mission analysis [DE88-006797] p 87 N88-24681 FARMER, I. System and concept design of the SSRMS latching end effector p 15 N88-21204 FATHI, H. Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298	FONG, I. K. Robust decentralized control of large flexible structures [DE88-005416] p 48 N88-20902 FONG, I-KONG Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 FORWARD, ROBERT L. Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-35100 FOS, JOSEPH E., JR. Unique bonding methods for spacecraft p 68 A88-54731 FOWLER, JOHN Effect of air mass on modal tests p 41 A88-50860 FOX, D. J. Degradation of graphite-epoxy due to electron radiation p 63 A88-36762 FRANCIS, PHILIP H. Advanced topics in manufacturing technology: Product design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18, 1987 p 94 A88-44001 FRANKLIN, GENE F.	spacecrafts p 34 A88-49914 GARIBOTTI, J. F. Soviet spacecraft engineering research [FASAC-TAR-3090] p 98 N88-23823 GARLICK, G. F. J. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 Temperature characteristics of silicon space solar cells and underlying parameters p 63 A88-34418 GARN, P. A. Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 GARNIER, C. Literal dynamic modeling [REPT-881-440-114] p 53 N88-28083 GARRETT, L. B. Large space systems requirements, deployable concepts, and technology issues [AAS PAPER 86-394] p 2 A88-35115 GATES, RICHARD M. LDR structural experiment definition [NASA-TM-100618] p 7 N88-23826
The Columbus resource module for the European man-tended free flyer [ASS PAPER 86-465] p 2 A88-35056 FALKENHAYN, EDWARD, JR. Multimission modular spacecraft (MMS) [AIAA PAPER 88-3513] p 93 A88-42910 FAN, RUYING Dynamics and control of a space platform with a tethered subsatellite p 33 A88-46717 FAN, ZIJIE Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 FARBMAN, G. Advanced nuclear rocket engine mission analysis [DE88-006797] p 87 N88-24681 FARMER, I. System and concept design of the SSRMS latching end effector p 15 N88-21204 FATHI, H. Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298 FAUGHNAN, BARBARA Space manufacturing 6 - Nonterrestrial resources,	FONG, I. K. Robust decentralized control of large flexible structures [DE88-005416] p 48 N88-20902 FONG, I-KONG Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 FORWARD, ROBERT L. Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-35100 FOS, JOSEPH E., JR. Unique bonding methods for spacecraft p 68 A88-54731 FOWLER, JOHN Effect of air mass on modal tests p 41 A88-50860 FOX, D. J. Degradation of graphite-epoxy due to electron radiation p 63 A88-36762 FRANCIS, PHILIP H. Advanced topics in manufacturing technology: Product design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18, 1987 p 94 A88-44001 FRANKLIN, GENE F. Minimum-time control of large space structures	spacecrafts p 34 A88-49914 GARIBOTTI, J. F. Soviet spacecraft engineering research [FASAC-TAR-3090] p 98 N88-23823 GARLICK, G. F. J. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 Temperature characteristics of silicon space solar cells and underlying parameters p 63 A88-34418 GARN, P. A. Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 GARNIER, C. Literal dynamic modeling [REPT-881-440-114] p 53 N88-28083 GARRETT, L. B. Large space systems requirements, deployable concepts, and technology issues [AAS PAPER 86-394] p 2 A88-35115 GATES, RICHARD M. LDR structural experiment definition [NASA-TM-100618] p 7 N88-23266 Space structure (dynamics and control) theme
The Columbus resource module for the European man-tended free flyer [AAS PAPER 86-465] p 2 A88-35056 FALKENHAYN, EDWARD, JR. Multimission modular spacecraft (MMS) [AIAA PAPER 88-3513] p 93 A88-42910 FAN, RUYING Dynamics and control of a space platform with a tethered subsatellite p 33 A88-46717 FAN, ZIJIE Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 FARBMAN, G. Advanced nuclear rocket engine mission analysis [DE88-006797] p 87 N88-24681 FARMER, I. System and concept design of the SSRMS latching end effector p 15 N88-21204 FATHI, H. Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298 FAUGHNAN, BARBARA Space manufacturing 6 - Nonterrestrial resources, biosciences, and space engineering; Proceedings of the	FONG, I. K. Robust decentralized control of large flexible structures [DE88-005416] p 48 N88-20902 FONG, I-KONG Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 FORWARD, ROBERT L. Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-35100 FOS, JOSEPH E., JR. Unique bonding methods for spacecraft p 68 A88-54731 FOWLER, JOHN Effect of air mass on modal tests p 41 A88-50860 FOX, D. J. Degradation of graphite-epoxy due to electron radiation p 63 A88-36762 FRANCIS, PHILIP H. Advanced topics in manufacturing technology: Product design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18, 1987 p 94 A88-44001 FRANKLIN, GENE F. Minimum-time control of large space structures p 29 A88-42576	spacecrafts p 34 A88-49914 GARIBOTTI, J. F. Soviet spacecraft engineering research [FASAC-TAR-3090] p 98 N88-23823 GARLICK, G. F. J. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 Temperature characteristics of silicon space solar cells and underlying parameters p 63 A88-34418 GARN, P. A. Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 GARNIER, C. Literal dynamic modeling [REPT-881-440-114] p 53 N88-28083 GARRETT, L. B. Large space systems requirements, deployable concepts, and technology issues [AAS PAPER 86-394] p 2 A88-35115 GATES, RICHARD M. LDR structural experiment definition [NASA-TM-100618] p 7 N88-23826 Space structure (dynamics and control) theme development
The Columbus resource module for the European man-tended free flyer [AAS PAPER 86-465] p 2 A88-35056 FALKENHAYN, EDWARD, JR. Multimission modular spacecraft (MMS) [AIAA PAPER 88-3513] p 93 A88-42910 FAN, RUYING Dynamics and control of a space platform with a tethered subsatellite p 33 A88-46717 FAN, ZIJIE Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 FARBMAN, G. Advanced nuclear rocket engine mission analysis [DE88-006797] p 87 N88-24681 FARMER, I. System and concept design of the SSRMS latching end effector p 15 N88-21204 FATHI, H. Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298 FAUGHNAN, BARBARA Space manulacturing 6 - Nonterrestrial resources, biosciences, and space engineering; Proceedings of the Eighth Princeton/AIAA/SSI Conference, Princeton, NJ,	FONG, I. K. Robust decentralized control of large flexible structures [DE88-005416] p 48 N88-20902 FONG, I-KONG Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 FORWARD, ROBERT L. Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-35100 FOS, JOSEPH E., JR. Unique bonding methods for spacecraft p 68 A88-54731 FOWLER, JOHN Effect of air mass on modal tests p 41 A88-50860 FOX, D. J. Degradation of graphite-epoxy due to electron radiation p 63 A88-36762 FRANCIS, PHILIP H. Advanced topics in manufacturing technology: Product design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18, 1987 p 94 A88-44001 FRANKLIN, GENE F. Minimum-time control of large space structures p 29 A88-42576 FRASER, M. E.	spacecrafts p 34 A88-49914 GARIBOTTI, J. F. Soviet spacecraft engineering research [FASAC-TAR-3090] p 98 N88-23823 GARLICK, G. F. J. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 Temperature characteristics of silicon space solar cells and underlying parameters p 63 A88-34418 GARN, P. A. Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 GARNIER, C. Literal dynamic modeling [REPT-881-440-114] p 53 N88-28083 GARRETT, L. B. Large space systems requirements, deployable concepts, and technology issues [AAS PAPER 86-394] p 2 A88-35115 GATES, RICHARD M. LDR structural experiment definition [NASA-TM-100618] p 7 N88-23826 Space structure (dynamics and control) theme development [NASA-TM-100597] p 8 N88-29850
The Columbus resource module for the European man-tended free flyer [AS PAPER 86-465] p 2 A88-35056 FALKENHAYN, EDWARD, JR. Multimission modular spacecraft (MMS) [AIAA PAPER 88-3513] p 93 A88-42910 FAN, RUYING Dynamics and control of a space platform with a tethered subsatellite p 33 A88-46717 FAN, ZIJIE Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 FARBMAN, G. Advanced nuclear rocket engine mission analysis [DE88-006797] p 87 N88-24681 FARMER, I. System and concept design of the SSRMS latching end effector p 15 N88-21204 FATHI, H. Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298 FAUGHNAN, BARBARA Space manufacturing 6 - Nonterrestrial resources, biosciences, and space engineering; Proceedings of the Eighth Princeton/AIAA/SSI Conference, Princeton, NJ, May 6-9, 1987 p 94 A88-43951	FONG, I. K. Robust decentralized control of large flexible structures [DE88-005416] p 48 N88-20902 FONG, I-KONG Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 FORWARD, ROBERT L. Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-35100 FOS, JOSEPH E., JR. Unique bonding methods for spacecraft p 68 A88-54731 FOWLER, JOHN Effect of air mass on modal tests p 41 A88-50860 FOX, D. J. Degradation of graphite-epoxy due to electron radiation p 63 A88-36762 FRANCIS, PHILIP H. Advanced topics in manufacturing technology: Product design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18, 1987 p 94 A88-44001 FRANKLIN, GENE F. Minimum-time control of large space structures p 29 A88-42576 FRASER, M. E. Calculation of space station infrared irradiance from	spacecrafts p 34 A88-49914 GARIBOTTI, J. F. Soviet spacecraft engineering research [FASAC-TAR-3090] p 98 N88-23823 GARLICK, G. F. J. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 Temperature characteristics of silicon space solar cells and underlying parameters p 63 A88-34418 GARN, P. A. Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 GARNIER, C. Literal dynamic modeling [REPT-881-440-114] p 53 N88-28083 GARRETT, L. B. Large space systems requirements, deployable concepts, and technology issues [AAS PAPER 86-394] p 2 A88-35115 GATES, RICHARD M. LDR structural experiment definition [NASA-TM-100618] p 7 N88-23826 Space structure (dynamics and control) theme development [NASA-TM-100597] p 8 N88-29850
The Columbus resource module for the European man-tended free flyer [AAS PAPER 86-465] p 2 A88-35056 FALKENHAYN, EDWARD, JR. Multimission modular spacecraft (MMS) [AIAA PAPER 88-3513] p 93 A88-42910 FAN, RUYING Dynamics and control of a space platform with a tethered subsatellite p 33 A88-46717 FAN, ZIJIE Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 FARBMAN, G. Advanced nuclear rocket engine mission analysis [DE88-006797] p 87 N88-24681 FARMER, I. System and concept design of the SSRMS latching end effector p 15 N88-21204 FATHI, H. Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298 FAUGHNAN, BARBARA Space manufacturing 6 - Nonterrestrial resources, biosciences, and space engineering: Proceedings of the Eighth Princeton/AIAA/SSI Conterence, Princeton, NJ, May 6-9, 1987 p 94 A88-43951	FONG, I. K. Robust decentralized control of large flexible structures [DE88-005416] p 48 N88-20902 FONG, I-KONG Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 FORWARD, ROBERT L. Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-35100 FOS, JOSEPH E., JR. Unique bonding methods for spacecraft p 68 A88-54731 FOWLER, JOHN Effect of air mass on modal tests p 41 A88-50860 FOX, D. J. Degradation of graphite-epoxy due to electron radiation p 63 A88-36762 FRANCIS, PHILIP H. Advanced topics in manufacturing technology: Product design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18, 1987 p 94 A88-44001 FRANKLIN, GENE F. Minimum-time control of large space structures p 29 A88-42576 FRASER, M. E. Calculation of space station infrared irradiance from atmosphere-induced emissions p 70 N88-25396	spacecrafts GARIBOTTI, J. F. Soviet spacecraft engineering research [FASAC-TAR-3090] Development of 8 cm x 8 cm silicon gridded back solar cell for space station Temperature characteristics of silicon space solar cells and underlying parameters Development of 8 cm x 8 cm silicon gridded back solar cell for space station Temperature characteristics of silicon space solar cells and underlying parameters Development of 8 cm x 8 cm silicon gridded back solar cells and underlying parameters Development of 8 cm x 8 cm silicon gridded back solar cells and underlying parameters Development of 8 cm x 8 cm silicon gridded back solar cells and technology space station for the year 2025 [NASA-R. A. Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] Development of 8 cm x 8 cm silicon gridded back solar cells and space systems feet parameter of the year 2025 [NASA-CR-181617] Development of 8 cm x 8 cm silicon gridded back solar cells and space systems feet parameter model for the year 2025 [NASA-CR-181617] Development of 9 cm x 8 cm silicon gridded back solar cells and space station of a distributed parameter model for space structure of the year 2025 [NASA-TM-100597] Development of 9 cm x 8 cm silicon gridded back solar peace solar cells and space structure dynamics and control) theme development [NASA-TM-100597] Development of 9 cm x 8 cm silicon gridded back solar peace solar cells and space structure dynamics and control of the parameter model for the year 2025 [NASA-TM-100597] Development of 9 cm x 8 cm silicon gridded back solar peace solar cells and space structure dynamics and control of the year 2025 [NASA-TM-100597] Development of 9 cm x 8 cm x 8 cm silicon gridded back solar peace station peace solar cells and year 2025 [NASA-TM-100597] Development of 9 cm x 8 cm x 8 cm silicon gridded back solar peace station peace solar cells and year 2025 [NASA-TM-100618] Development of 9 cm x 8 cm x 9
The Columbus resource module for the European man-tended free flyer [AAS PAPER 86-465] p 2 A88-35056 FALKENHAYN, EDWARD, JR. Multimission modular spacecraft (MMS) [AIAA PAPER 88-3513] p 93 A88-42910 FAN, RUYING Dynamics and control of a space platform with a tethered subsatellite p 33 A88-46717 FAN, ZIJIE Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 FARBMAN, G. Advanced nuclear rocket engine mission analysis [DE88-006797] p 87 N88-24681 FARMER, I. System and concept design of the SSRMS latching end effector p 15 N88-21204 FATHI, H. Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298 FAUGHNAN, BARBARA Space manufacturing 6 - Nonterrestrial resources, biosciences, and space engineering; Proceedings of the Eighth Princeton/AIAA/SSI Conference, Princeton, NJ, May 6-9, 1987 p 94 A88-43951 FENNELL, J. F. Several spacecraft-charging event on SCATHA in	FONG, I. K. Robust decentralized control of large flexible structures [DE88-005416] p 48 N88-20902 FONG, I-KONG Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 FORWARD, ROBERT L. Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-35100 FOS, JOSEPH E., JR. Unique bonding methods for spacecraft p 68 A88-54731 FOWLER, JOHN Effect of air mass on modal tests p 41 A88-50860 FOX, D. J. Degradation of graphite-epoxy due to electron radiation p 63 A88-36762 FRANCIS, PHILIP H. Advanced topics in manufacturing technology: Product design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18, 1987 p 94 A88-44001 FRANKLIN, GENE F. Minimum-time control of large space structures p 29 A88-42576 FRASER, M. E. Calculation of space station infrared irradiance from atmosphere-induced emissions p 70 N88-25396 FREDLEY, J. E.	spacecrafts p 34 A88-49914 GARIBOTTI, J. F. Soviet spacecraft engineering research [FASAC-TAR-3090] p 98 N88-23823 GARLICK, G. F. J. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 Temperature characteristics of silicon space solar cells and underlying parameters p 63 A88-34418 GARN, P. A. Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 GARNIER, C. Literal dynamic modeling [REPT-881-440-114] p 53 N88-28083 GARRETT, L. B. Large space systems requirements, deployable concepts, and technology issues [AAS PAPER 86-394] p 2 A88-35115 GATES, RICHARD M. LDR structural experiment definition [NASA-TM-100618] p 7 N88-23826 Space structure (dynamics and control) theme development [NASA-TM-100597] p 8 N88-29850 GATES, S. S. The identification of a distributed parameter model for a flexible structure
The Columbus resource module for the European man-tended free flyer [AAS PAPER 86-465] p 2 A88-35056 FALKENHAYN, EDWARD, JR. Multimission modular spacecraft (MMS) [AIAA PAPER 88-3513] p 93 A88-42910 FAN, RUYING Dynamics and control of a space platform with a tethered subsatellite p 33 A88-46717 FAN, ZIJIE Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 FARBMAN, G. Advanced nuclear rocket engine mission analysis [DE88-006797] p 87 N88-24681 FARMER, I. System and concept design of the SSRMS latching end effector p 15 N88-21204 FATHI, H. Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298 FAUGHNAN, BARBARA Space manufacturing 6 - Nonterrestrial resources, biosciences, and space engineering; Proceedings of the Eighth Princeton/AIAA/SSI Conference, Princeton, NJ, May 6-9, 1987 p 94 A88-43951 FENNELL, J. F. Several spacecraft-charging event on SCATHA in September 1982 p 58 A88-51392	FONG, I. K. Robust decentralized control of large flexible structures [DE88-005416] p 48 N88-20902 FONG, I-KONG Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 FORWARD, ROBERT L. Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-35100 FOS, JOSEPH E., JR. Unique bonding methods for spacecraft p 68 A88-54731 FOWLER, JOHN Effect of air mass on modal tests p 41 A88-50860 FOX, D. J. Degradation of graphite-epoxy due to electron radiation p 63 A88-36762 FRANCIS, PHILIP H. Advanced topics in manufacturing technology: Product design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18, 1987 p 94 A88-44001 FRANKLIN, GENE F. Minimum-time control of large space structures p 29 A88-42576 FRASER, M. E. Calculation of space station infrared irradiance from atmosphere-induced emissions p 70 N88-25396 FREDLEY, J. E. Application of two-phase thermal transport systems to	spacecrafts p 34 A88-49914 GARIBOTTI, J. F. Soviet spacecraft engineering research [FASAC-TAR-3090] p 98 N88-23823 GARLICK, G. F. J. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 Temperature characteristics of silicon space solar cells and underlying parameters p 63 A88-34418 GARN, P. A. Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 GARNIER, C. Literal dynamic modeling [REPT-881-440-114] p 53 N88-28083 GARRETT, L. B. Large space systems requirements, deployable concepts, and technology issues [AAS PAPER 86-394] p 2 A88-35115 GATES, RICHARD M. LDR structural experiment definition [NASA-TM-100618] p 7 N88-23826 Space structure (dynamics and control) theme development [NASA-TM-100597] p 8 N88-29850 GATES, S. S. The identification of a distributed parameter model for a flexible structure p 31 A88-46041
The Columbus resource module for the European man-tended free flyer [AAS PAPER 86-465] p 2 A88-35056 FALKENHAYN, EDWARD, JR. Multimission modular spacecraft (MMS) [AIAA PAPER 88-3513] p 93 A88-42910 FAN, RUYING Dynamics and control of a space platform with a tethered subsatellite p 33 A88-46717 FAN, ZIJIE Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 FARBMAN, G. Advanced nuclear rocket engine mission analysis [DE88-006797] p 87 N88-24681 FARMER, I. System and concept design of the SSRMS latching end effector p 15 N88-21204 FATHI, H. Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298 FAUGHNAN, BARBARA Space manufacturing 6 Nonterrestrial resources, biosciences, and space engineering; Proceedings of the Eighth Princeton/AIAA/SSI Conference, Princeton, NJ, May 6-9, 1987 p 94 A88-43951 FENNELL, J. F. Several spacecraft-charging event on SCATHA in September 1982 p 58 A88-51392 A severe spacecraft-charging event on SCATHA in	FONG, I. K. Robust decentralized control of large flexible structures [DE88-005416] p 48 N88-20902 FONG, I-KONG Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 FORWARD, ROBERT L. Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-35100 FOS, JOSEPH E., JR. Unique bonding methods for spacecraft p 68 A88-54731 FOWLER, JOHN Effect of air mass on modal tests p 41 A88-50860 FOX, D. J. Degradation of graphite-epoxy due to electron radiation p 63 A88-36762 FRANCIS, PHILIP H. Advanced topics in manufacturing technology: Product design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18, 1987 p 94 A88-44001 FRANKLIN, GENE F. Minimum-time control of large space structures p 29 A88-42576 FRASER, M. E. Calculation of space station infrared irradiance from atmosphere-induced emissions p 70 N88-25396 FREDLEY, J. E. Application of two-phase thermal transport systems to space platforms p 20 A88-42842	spacecrafts GARIBOTTI, J. F. Soviet spacecraft engineering research [FASAC-TAR-3090] GARLICK, G. F. J. Development of 8 cm x 8 cm silicon gridded back solar cell for space station Temperature characteristics of silicon space solar cells and underlying parameters GARN, P. A. Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] GARNIER, C. Literal dynamic modeling [REPT-881-440-114] GARRETT, L. B. Large space systems requirements, deployable concepts, and technology issues [AAS PAPER 86-394] GATES, RICHARD M. LDR structural experiment definition [NASA-TM-100618] Space structure (dynamics and control) theme development [NASA-TM-100597] GATES, S. S. The identification of a distributed parameter model for a flexible structure GATEWOOD, GEORGE D. Performance considerations for the astrometric
The Columbus resource module for the European man-tended free flyer [AAS PAPER 86-465] p 2 A88-35056 FALKENHAYN, EDWARD, JR. Multimission modular spacecraft (MMS) [AIAA PAPER 88-3513] p 93 A88-42910 FAN, RUYING Dynamics and control of a space platform with a tethered subsatellite p 33 A88-46717 FAN, ZIJIE Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 FARBMAN, G. Advanced nuclear rocket engine mission analysis [DE88-006797] p 87 N88-24681 FARMER, I. System and concept design of the SSRMS latching end effector p 15 N88-21204 FATHI, H. Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1; STF23-F87025-VOL-1] p 82 N88-30298 FAUGHNAN, BARBARA Space manufacturing 6 - Nonterrestrial resources, biosciences, and space engineering; Proceedings of the Eighth Princeton/AIAA/SSI Conference, Princeton, NJ, May 6-9, 1987 p 94 A88-43951 FENNELL, J. F. Several spacecraft-charging event on SCATHA in September 1982 p 58 A88-51392 A severe spacecraft-charging event on SCATHA in September 1982	FONG, I. K. Robust decentralized control of large flexible structures [DE88-005416] p 48 N88-20902 FONG, I-KONG Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 FORWARD, ROBERT L. Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-35100 FOS, JOSEPH E., JR. Unique bonding methods for spacecraft p 68 A88-54731 FOWLER, JOHN Effect of air mass on modal tests p 41 A88-50860 FOX, D. J. Degradation of graphite-epoxy due to electron radiation p 63 A88-36762 FRANCIS, PHILIP H. Advanced topics in manufacturing technology: Product design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18, 1987 p 94 A88-44001 FRANKLIN, GENE F. Minimum-time control of large space structures p 29 A88-42576 FRASER, M. E. Calculation of space station infrared irradiance from atmosphere-induced emissions p 70 N88-25396 FREDLEY, J. E. Application of two-phase thermal transport systems to space platforms p 20 A88-42842	spacecrafts p 34 A88-49914 GARIBOTTI, J. F. Soviet spacecraft engineering research [FASAC-TAR-3090] p 98 N88-23823 GARLICK, G. F. J. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 Temperature characteristics of silicon space solar cells and underlying parameters p 63 A88-34418 GARN, P. A. Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 GARNIER, C. Literal dynamic modeling [REPT-881-440-114] p 53 N88-28083 GARRETT, L. B. Large space systems requirements, deployable concepts, and technology issues [AAS PAPER 86-394] p 2 A88-35115 GATES, RICHARD M. LDR structural experiment definition (NASA-TM-100618] p 7 N88-23826 Space structure (dynamics and control) theme development [NASA-TM-100597] p 8 N88-29850 GATES, S. S. The identification of a distributed parameter model for a flexible structure p 31 A88-46041 GATEWOOD, GEORGE D. Performance considerations for the astrometric Telescope Facility on the Phase I Space Station
The Columbus resource module for the European man-tended free flyer [AS PAPER 86-465] p 2 A88-35056 FALKENHAYN, EDWARD, JR. Multimission modular spacecraft (MMS) [AIAA PAPER 88-3513] p 93 A88-42910 FAN, RUYING Dynamics and control of a space platform with a tethered subsatellite p 33 A88-46717 FAN, ZIJIE Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 FARBMAN, G. Advanced nuclear rocket engine mission analysis [DE88-006797] p 87 N88-24681 FARMER, I. System and concept design of the SSRMS latching end effector p 15 N88-21204 FATHI, H. Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298 FAUGHNAN, BARBARA Space manufacturing 6 - Nonterrestrial resources, biosciences, and space engineering; Proceedings of the Eighth Princeton/AIAA/SSI Conference, Princeton, NJ, May 6-9, 1987 p 94 A88-43951 FENNELL, J. F. Several spacecraft-charging event on SCATHA in September 1982 A severe spacecraft-charging event on SCATHA in September 1982 [AD-A193007] p 61 N88-26396	FONG, I. K. Robust decentralized control of large flexible structures [DE88-005416] p 48 N88-20902 FONG, I-KONG Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 FORWARD, ROBERT L. Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-35100 FOS, JOSEPH E., JR. Unique bonding methods for spacecraft p 68 A88-54731 FOWLER, JOHN Effect of air mass on modal tests p 41 A88-50860 FOX, D. J. Degradation of graphite-epoxy due to electron radiation p 63 A88-36762 FRANCIS, PHILIP H. Advanced topics in manufacturing technology: Product design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18, 1987 p 94 A88-44001 FRANKLIN, GENE F. Minimum-time control of large space structures p 29 A88-42576 FRASER, M. E. Calculation of space station infrared irradiance from atmosphere-induced emissions p 70 N88-25396 FREDLEY, J. E. Application of two-phase thermal transport systems to space platforms p 20 A88-42842 FREEMAN, MICHAEL S. Third Conference on Artificial Intelligence for Space	spacecrafts p 34 A88-49914 GARIBOTTI, J. F. Soviet spacecraft engineering research [FASAC-TAR-3090] p 98 N88-23823 GARLICK, G. F. J. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 Temperature characteristics of silicon space solar cells and underlying parameters p 63 A88-34418 GARN, P. A. Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 GARNIER, C. Literal dynamic modeling [REPT-881-440-114] p 53 N88-28083 GARRETT, L. B. Large space systems requirements, deployable concepts, and technology issues [AAS PAPER 86-394] p 2 A88-35115 GATES, RICHARD M. LDR structural experiment definition [NASA-TM-100618] p 7 N88-23826 Space structure (dynamics and control) theme development [NASA-TM-100597] p 8 N88-29850 GATES, S. S. The identification of a distributed parameter model for a flexible structure GATEWOOD, GEORGE D. Performance considerations for the astrometric Telescope Facility on the Phase I Space Station p 92 A88-42539
The Columbus resource module for the European man-tended free flyer [AAS PAPER 86-465] p 2 A88-35056 FALKENHAYN, EDWARD, JR. Multimission modular spacecraft (MMS) [AIAA PAPER 88-3513] p 93 A88-42910 FAN, RUYING Dynamics and control of a space platform with a tethered subsatellite p 33 A88-46717 FAN, ZIJIE Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 FARBMAN, G. Advanced nuclear rocket engine mission analysis [DE88-006797] p 87 N88-24681 FARMER, I. System and concept design of the SSRMS latching end effector p 15 N88-21204 FATHI, H. Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298 FAUGHNAN, BARBARA Space manufacturing 6 - Nonterrestrial resources, biosciences, and space engineering; Proceedings of the Eighth Princeton/AIAA/SSI Conference, Princeton, NJ, May 69, 1987 FENNELL, J. F. Several spacecraft-charging event on SCATHA in September 1982 A severe spacecraft-charging event on SCATHA in September 1982 [AD-A193007] p 61 N88-26396	FONG, I. K. Robust decentralized control of large flexible structures [DE88-005416] p 48 N88-20902 FONG, I-KONG Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 FORWARD, ROBERT L. Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-35100 FOS, JOSEPH E., JR. Unique bonding methods for spacecraft p 68 A88-54731 FOWLER, JOHN Effect of air mass on modal tests p 41 A88-50860 FOX, D. J. Degradation of graphite-epoxy due to electron radiation p 63 A88-36762 FRANCIS, PHILIP H. Advanced topics in manufacturing technology: Product design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18, 1987 p 94 A88-44001 FRANKLIN, GENE F. Minimum-time control of large space structures p 29 A88-42576 FRASER, M. E. Calculation of space station infrared irradiance from atmosphere-induced emissions p 70 N88-25396 FREDLEY, J. E. Application of two-phase thermal transport systems to space platforms p 20 A88-42842 FREEMAN, MICHAEL S. Third Conference on Artificial Intelligence for Space	spacecrafts p 34 A88-49914 GARIBOTTI, J. F. Soviet spacecraft engineering research [FASAC-TAR-3090] p 98 N88-23823 GARLICK, G. F. J. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 Temperature characteristics of silicon space solar cells and underlying parameters p 63 A88-34418 GARN, P. A. Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 GARNIER, C. Literal dynamic modeling [REPT-881-440-114] p 53 N88-28083 GARRETT, L. B. Large space systems requirements, deployable concepts, and technology issues [AAS PAPER 86-394] p 2 A88-35115 GATES, RICHARD M. LDR structural experiment definition (NASA-TM-100618] p 7 N88-23826 Space structure (dynamics and control) theme development [NASA-TM-100597] p 8 N88-29850 GATES, S. The identification of a distributed parameter model for a flexible structure p 31 A88-46041 GATEWOOD, GEORGE D. Performance considerations for the astrometric Telescope Facility on the Phase I Space Station p 92 A88-42539 GAWRONSKI, WODEK Grammians and model reduction in limited time and
The Columbus resource module for the European man-tended free flyer [AAS PAPER 86-465] p 2 A88-35056 FALKENHAYN, EDWARD, JR. Multimission modular spacecraft (MMS) [AIAA PAPER 88-3513] p 93 A88-42910 FAN, RUYING Dynamics and control of a space platform with a tethered subsatellite p 33 A88-46717 FAN, ZIJIE Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 FARBMAN, G. Advanced nuclear rocket engine mission analysis [DE88-006797] p 87 N88-24681 FARMER, I. System and concept design of the SSRMS latching end effector p 15 N88-21204 FATHI, H. Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298 FAUGHNAN, BARBARA Space manufacturing 6 - Nonterrestrial resources, biosciences, and space engineering; Proceedings of the Eighth Princeton/AIAA/SSI Conference, Princeton, NJ, May 6-9, 1987 p 94 A88-43951 FENNELL, J. F. Several spacecraft-charging event on SCATHA in September 1982 A severe spacecraft-charging event on SCATHA in September 1982 [AD-A193007] p 61 N88-26396 FEREBEE, MELVIN J., JR. Systems analysis of a low-acceleration research	FONG, I. K. Robust decentralized control of large flexible structures [DE88-005416] p 48 N88-20902 FONG, I-KONG Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 FORWARD, ROBERT L. Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-35100 FOS, JOSEPH E., JR. Unique bonding methods for spacecraft p 68 A88-54731 FOWLER, JOHN Effect of air mass on modal tests p 41 A88-50860 FOX, D. J. Degradation of graphite-epoxy due to electron radiation p 63 A88-36762 FRANCIS, PHILIP H. Advanced topics in manufacturing technology: Product design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18, 1987 p 94 A88-44001 FRANKLIN, GENE F. Minimum-time control of large space structures p 29 A88-42576 FRASER, M. E. Calculation of space station infrared irradiance from atmosphere-induced emissions p 70 N88-25396 FREDLEY, J. E. Application of two-phase thermal transport systems to space platforms p 20 A88-42842 FREEMAN, MICHAEL S. Third Conference on Artificial Intelligence for Space Applications, part 2 [NASA-CP-2492-PT-2] p 100 N88-24188	spacecrafts p 34 A88-49914 GARIBOTTI, J. F. Soviet spacecraft engineering research [FASAC-TAR-3090] p 98 N88-23823 GARLICK, G. F. J. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 Temperature characteristics of silicon space solar cells and underlying parameters p 63 A88-34418 GARN, P. A. Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 GARNIER, C. Literal dynamic modeling [REPT-881-440-114] p 53 N88-28083 GARRETT, L. B. Large space systems requirements, deployable concepts, and technology issues [AAS PAPER 86-394] p 2 A88-35115 GATES, RICHARD M. LDR structural experiment definition (NASA-TM-100618] p 7 N88-23826 Space structure (dynamics and control) theme development (NASA-TM-100597] p 8 N88-29850 GATES, S. The identification of a distributed parameter model for a flexible structure GATEWOOD, GEORGE D. Performance considerations for the astrometric Telescope Facility on the Phase I Space Station p 92 A88-42539 GAWRONSKI, WODEK Grammians and model reduction in limited time and frequency intervals
The Columbus resource module for the European man-tended free flyer [AAS PAPER 86-465] p 2 A88-35056 FALKENHAYN, EDWARD, JR. Multimission modular spacecraft (MMS) [AIAA PAPER 88-3513] p 93 A88-42910 FAN, RUYING Dynamics and control of a space platform with a tethered subsatellite p 33 A88-46717 FAN, ZIJIE Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 FARBMAN, G. Advanced nuclear rocket engine mission analysis [DE88-006797] p 87 N88-24681 FARMER, I. System and concept design of the SSRMS latching end effector p 15 N88-21204 FATHI, H. Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298 FAUGHNAN, BARBARA Space manulacturing 6 - Nonterrestrial resources, biosciences, and space engineering; Proceedings of the Eighth Princeton/AIAA/SSI Conference, Princeton, NJ, May 6-9, 1987 p 94 A88-43951 FENNELL, J. F. Several spacecraft-charging event on SCATHA in September 1982 p 58 A88-51392 A severe spacecraft-charging event on SCATHA in September 1982 [AD-A193007] p 61 N88-26396 FERBEE, MELVIN J., JR. Systems analysis of a low-acceleration research facility	FONG, I. K. Robust decentralized control of large flexible structures [DE88-005416] p 48 N88-20902 FONG, I-KONG Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 FORWARD, ROBERT L. Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-35100 FOS, JOSEPH E., JR. Unique bonding methods for spacecraft p 68 A88-54731 FOWLER, JOHN Effect of air mass on modal tests p 41 A88-50860 FOX, D. J. Degradation of graphite-epoxy due to electron radiation p 63 A88-36762 FRANCIS, PHILIP H. Advanced topics in manufacturing technology: Product design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18, 1987 p 94 A88-44001 FRANKLIN, GENE F. Minimum-time control of large space structures p 29 A88-42576 FRASER, M. E. Calculation of space station infrared irradiance from atmosphere-induced emissions p 70 N88-25396 FREDLEY, J. E. Application of two-phase thermal transport systems to space platforms p 20 A88-42842 FREEMAN, MICHAEL S. Third Conference on Artificial Intelligence for Space Applications, part 2 [NASA-CP-2492-PT-2] p 100 N88-24188 FRISBEE, ROBERT	spacecrafts p 34 A88-49914 GARIBOTTI, J. F. Soviet spacecraft engineering research [FASAC-TAR-3090] p 98 N88-23823 GARLICK, G. F. J. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 Temperature characteristics of silicon space solar cells and underlying parameters p 63 A88-34418 GARN, P. A. Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 GARNIER, C. Literal dynamic modeling [REPT-881-440-114] p 53 N88-28083 GARRETT, L. B. Large space systems requirements, deployable concepts, and technology issues [AAS PAPER 86-394] p 2 A88-35115 GATES, RICHARD M. LDR structural experiment definition (NASA-TM-100618] p 7 N88-23826 Space structure (dynamics and control) theme development [NASA-TM-100597] p 8 N88-29850 GATES, S. The identification of a distributed parameter model for a flexible structure p 31 A88-46041 GATEWOOD, GEORGE D. Performance considerations for the astrometric Telescope Facility on the Phase I Space Station p 92 A88-42539 GAWRONSKI, WODEK Grammians and model reduction in limited time and
The Columbus resource module for the European man-tended free flyer [ASS PAPER 86-465] p 2 A88-35056 FALKENHAYN, EDWARD, JR. Multimission modular spacecraft (MMS) [AIAA PAPER 88-3513] p 93 A88-42910 FAN, RUYING Dynamics and control of a space platform with a tethered subsatellite p 33 A88-46717 FAN, ZIJIE Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 FARBMAN, G. Advanced nuclear rocket engine mission analysis [DE88-006797] p 87 N88-24681 FARMER, I. System and concept design of the SSRMS latching end effector p 15 N88-21204 FATHI, H. Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298 FAUGHNAN, BARBARA Space manufacturing 6 - Nonterrestrial resources, biosciences, and space engineering; Proceedings of the Eighth Princeton/AIAA/SSI Conference, Princeton, NJ, May 69, 1987 FENNELL, J. F. Several spacecraft-charging event on SCATHA in September 1982 A severe spacecraft-charging event on SCATHA in September 1982 [AD-A193007] p 61 N88-26396 FEREBEE, MELVIN J., JR. Systems analysis of a low-acceleration research facility [AIAA PAPER 88-3512] p 93 A88-42909	FONG, I. K. Robust decentralized control of large flexible structures [DE88-005416] p 48 N88-20902 FONG, I-KONG Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 FORWARD, ROBERT L. Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-35100 FOS, JOSEPH E., JR. Unique bonding methods for spacecraft p 68 A88-54731 FOWLER, JOHN Effect of air mass on modal tests p 41 A88-50860 FOX, D. J. Degradation of graphite-epoxy due to electron radiation p 63 A88-36762 FRANCIS, PHILIP H. Advanced topics in manufacturing technology: Product design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18, 1987 p 94 A88-44001 FRANKLIN, GENE F. Minimum-time control of large space structures p 29 A88-42576 FRASER, M. E. Calculation of space station infrared irradiance from atmosphere-induced emissions p 70 N88-25396 FREDLEY, J. E. Application of two-phase thermal transport systems to space platforms p 20 A88-42842 FREEMAN, MICHAEL S. Third Conference on Artificial Intelligence for Space Applications, part 2 [NASA-CP-2492-PT-2] p 100 N88-24188	spacecrafts GARIBOTTI, J. F. Soviet spacecraft engineering research [FASAC-TAR-3090] GARLICK, G. F. J. Development of 8 cm x 8 cm silicon gridded back solar cell for space station Temperature characteristics of silicon space solar cells and underlying parameters GARN, P. A. Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] GARNIER, C. Literal dynamic modeling [REPT-881-440-114] GARRETT, L. B. Large space systems requirements, deployable concepts, and technology issues [AAS PAPER 86-394] GATES, RICHARD M. LDR structural experiment definition [NASA-TM-100618] Space structure (dynamics and control) theme development [NASA-TM-100597] GATES, S. S. The identification of a distributed parameter model for a flexible structure GATEWOOD, GEORGE D. Performance considerations for the astrometric Telescope Facility on the Phase I Space Station p 92 A68-42539 GAWRONSKI, WODEK Grammians and model reduction in limited time and frequency intervals [AIAA PAPER 88-4087] GELB, A.
The Columbus resource module for the European man-tended free flyer [AAS PAPER 86-465] p 2 A88-35056 FALKENHAYN, EDWARD, JR. Multimission modular spacecraft (MMS) [AIAA PAPER 88-3513] p 93 A88-42910 FAN, RUYING Dynamics and control of a space platform with a tethered subsatellite p 33 A88-46717 FAN, ZIJIE Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 FARBMAN, G. Advanced nuclear rocket engine mission analysis [DE88-006797] p 87 N88-24681 FARMER, I. System and concept design of the SSRMS latching end effector p 15 N88-21204 FATHI, H. Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume I; STF23-F87025-VOL-1] p 82 N88-30298 FAUGHNAN, BARBARA Space manufacturing 6 - Nonterrestrial resources, biosciences, and space engineering; Proceedings of the Eighth Princeton/AIAA/SSI Conference, Princeton, NJ, May 6-9, 1987 p 94 A88-43951 FENNELL, J. F. Several spacecraft-charging event on SCATHA in September 1982 [AD-A193007] p 61 N88-26396 FEREBEE, MELVIN J., JR. Systems analysis of a low-acceleration research facility [AIAA PAPER 88-3512] p 93 A88-42909 Advanced satellite servicing facility studies	FONG, I. K. Robust decentralized control of large flexible structures [DE88-005416] p 48 N88-20902 FONG, I-KONG Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 FORWARD, ROBERT L. Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-35100 FOS, JOSEPH E., JR. Unique bonding methods for spacecraft p 68 A88-54731 FOWLER, JOHN Effect of air mass on modal tests p 41 A88-50860 FOX, D. J. Degradation of graphite-epoxy due to electron radiation p 63 A88-36762 FRANCIS, PHILIP H. Advanced topics in manufacturing technology: Product design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18, 1987 p 94 A88-44001 FRANKLIN, GENE F. Minimum-time control of large space structures p 29 A88-42576 FRASER, M. E. Calculation of space station infrared irradiance from atmosphere-induced emissions p 70 N88-25396 FREDLEY, J. E. Application of two-phase thermal transport systems to space platforms p 20 A88-42842 FREEMAN, MICHAEL S. Third Conference on Artificial Intelligence for Space Applications, part 2 [NASA-CP-2492-PT-2] p 100 N88-24188 FRISBEE, ROBERT	spacecrafts p 34 A88-49914 GARIBOTTI, J. F. Soviet spacecraft engineering research [FASAC-TAR-3090] p 98 N88-23823 GARLICK, G. F. J. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 Temperature characteristics of silicon space solar cells and underlying parameters p 63 A88-34418 GARN, P. A. Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 GARNIER, C. Literal dynamic modeling [REPT-881-440-114] p 53 N88-28083 GARRETT, L. B. Large space systems requirements, deployable concepts, and technology issues [AAS PAPER 86-394] p 2 A88-35115 GATES, RICHARD M. LDR structural experiment definition [NASA-TM-100618] p 7 N88-23826 Space structure (dynamics and control) theme development [NASA-TM-100597] p 8 N88-29850 GATES, S. S. The identification of a distributed parameter model for a flexible structure p 31 A88-46041 GATEWOOD, GEORGE D. Performance considerations for the astrometric Telescope Facility on the Phase I Space Station p 92 A88-42539 GAWRONSKI, WODEK Grammians and model reduction in limited time and frequency intervals [AIAA PAPER 88-4087] p 35 A88-50193 GELB, A. Calculation of space station infrared irradiance from
The Columbus resource module for the European man-tended free flyer [AAS PAPER 86-465] p 2 A88-35056 FALKENHAYN, EDWARD, JR. Multimission modular spacecraft (MMS) [AIAA PAPER 88-3513] p 93 A88-42910 FAN, RUYING Dynamics and control of a space platform with a tethered subsatellite p 33 A88-46717 FAN, ZIJIE Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 FARBMAN, G. Advanced nuclear rocket engine mission analysis [DE88-006797] p 87 N88-24681 FARMER, I. System and concept design of the SSRMS latching end effector p 15 N88-21204 FATHI, H. Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298 FAUGHNAN, BARBARA Space manufacturing 6 - Nonterrestrial resources, biosciences, and space engineering; Proceedings of the Eighth Princeton/AIAA/SSI Conference, Princeton, NJ, May 6-9, 1987 p 94 A88-43951 FENNELL, J. F. Several spacecraft-charging event on SCATHA in September 1982 p 58 A88-51392 A severe spacecraft-charging event on SCATHA in September 1982 [AD-A193007] p 61 N88-26396 FERBEE, MELVIN J., JR. Systems analysis of a low-acceleration research facility [AIAA PAPER 88-3512] p 93 A88-42909 Advanced satellite servicing facility studies [AIAA PAPER 88-4200] p 93 A88-42912	FONG, I. K. Robust decentralized control of large flexible structures [DE88-005416] p 48 N88-20902 FONG, I-KONG Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 FORWARD, ROBERT L. Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-35100 FOS, JOSEPH E., JR. Unique bonding methods for spacecraft p 68 A88-54731 FOWLER, JOHN Effect of air mass on modal tests p 41 A88-50860 FOX, D. J. Degradation of graphite-epoxy due to electron radiation p 63 A88-36762 FRANCIS, PHILIP H. Advanced topics in manufacturing technology: Product design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18, 1987 p 94 A88-44001 FRANKLIN, GENE F. Minimum-time control of large space structures p 29 A88-42576 FRASER, M. E. Calculation of space station infrared irradiance from atmosphere-induced emissions p 70 N88-25396 FREDLEY, J. E. Application of two-phase thermal transport systems to space platforms p 20 A88-42842 FREEMAN, MICHAEL S. Third Conference on Artificial Intelligence for Space Applications, part 2 [NASA-CP-2492-PT-2] p 100 N88-24188 FRISBEE, ROBERT Advanced propulsion for the Mars Rover Sample Return	spacecrafts GARIBOTTI, J. F. Soviet spacecraft engineering research [FASAC-TAR-3090] Development of 8 cm x 8 cm silicon gridded back solar cell for space station Temperature characteristics of silicon space solar cells and underlying parameters Development of 8 cm x 8 cm silicon gridded back solar cell for space station Temperature characteristics of silicon space solar cells and underlying parameters Development of 8 cm x 8 cm silicon gridded back solar cells and underlying parameters Development of 8 cm x 8 cm silicon gridded back solar cells and underlying parameters Development of 8 cm x 8 cm silicon gridded back solar cells and underlying parameters Development of 8 cm x 8 cm silicon gridded back solar cells and underlying parameters Development of 8 cm x 8 cm silicon gridded back solar cells and sex solar cells and sex solar cells and evel solar parameter modeling [REPT-881-440-114] Development of 9 parameter model for a flexible structure (dynamics and control) theme development (NASA-TM-100618) Development of 9 parameter model for a flexible structure parameter model for a flexi
The Columbus resource module for the European man-tended free flyer [AAS PAPER 86-465] p 2 A88-35056 FALKENHAYN, EDWARD, JR. Multimission modular spacecraft (MMS) [AIAA PAPER 88-3513] p 93 A88-42910 FAN, RUYING Dynamics and control of a space platform with a tethered subsatellite p 33 A88-46717 FAN, ZIJIE Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 FARBMAN, G. Advanced nuclear rocket engine mission analysis [DE88-006797] p 87 N88-24681 FARMER, I. System and concept design of the SSRMS latching end effector p 15 N88-21204 FATHI, H. Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298 FAUGHNAN, BARBARA Space manufacturing 6 - Nonterrestrial resources, biosciences, and space engineering; Proceedings of the Eighth Princeton/AIAA/SSI Conference, Princeton, NJ, May 6-9, 1987 p 94 A88-43951 FENNELL, J. F. Several spacecraft-charging event on SCATHA in September 1982 A severe spacecraft-charging event on SCATHA in September 1982 [AD-A193007] p 61 N88-26396 FEREBEE, MELVIN J., JR. Systems analysis of a low-acceleration research facility [AIAA PAPER 88-3512] p 93 A88-42912 FERNADDEZ, KEN	FONG, I. K. Robust decentralized control of large flexible structures [DE88-005416] p 48 N88-20902 FONG, I-KONG Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 FORWARD, ROBERT L. Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A68-35100 FOS, JOSEPH E., JR. Unique bonding methods for spacecraft p 68 A68-54731 FOWLER, JOHN Effect of air mass on modal tests p 41 A68-50860 FOX, D. J. Degradation of graphite-epoxy due to electron radiation p 63 A68-36762 FRANCIS, PHILIP H. Advanced topics in manufacturing technology: Product design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18, 1987 p 94 A68-44001 FRANKLIN, GENE F. Minimum-time control of large space structures p 29 A68-42576 FRASER, M. E. Calculation of space station infrared irradiance from atmosphere-induced emissions p 70 N88-25396 FREDLEY, J. E. Application of two-phase thermal transport systems to space platforms p 20 A68-42842 FREEMAN, MICHAEL S. Third Conference on Artificial Intelligence for Space Applications, part 2 [NASA-CP-2492-PT-2] p 100 N88-24188 FRISBEE, ROBERT Advanced propulsion for the Mars Rover Sample Return Mission [AIAA PAPER 88-2900] p 84 A88-46489	spacecrafts GARIBOTTI, J. F. Soviet spacecraft engineering research [FASAC-TAR-3090] GARLICK, G. F. J. Development of 8 cm x 8 cm silicon gridded back solar cell for space station Temperature characteristics of silicon space solar cells and underlying parameters GARN, P. A. Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] GARNIER, C. Literal dynamic modeling [REPT-881-440-114] GARRETT, L. B. Large space systems requirements, deployable concepts, and technology issues [AAS PAPER 86-394] GARSETT, L. B. LDR structural experiment definition (NASA-TM-100618) Space structure (dynamics and control) theme development (NASA-TM-100597] GATES, S. S. The identification of a distributed parameter model for a flexible structure GATEWOOD, GEORGE D. Performance considerations for the astrometric Telescope Facility on the Phase I Space Station p 92 A68-42539 GAWRONSKI, WODEK Grammians and model reduction in limited time and frequency intervals [AIAA PAPER 88-4087] GELB, A. Calculation of space station infrared irradiance from atmosphere-induced emissions GELB, S. W.
The Columbus resource module for the European man-tended free flyer [AAS PAPER 86-465] p 2 A88-35056 FALKENHAYN, EDWARD, JR. Multimission modular spacecraft (MMS) [AIAA PAPER 88-3513] p 93 A88-42910 FAN, RUYING Dynamics and control of a space platform with a tethered subsatellite p 33 A88-46717 FAN, ZIJIE Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 FARBMAN, G. Advanced nuclear rocket engine mission analysis [DE88-006797] p 87 N88-24681 FARMER, I. System and concept design of the SSRMS latching end effector p 15 N88-21204 FATHI, H. Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298 FAUGHNAN, BARBARA Space manufacturing 6 - Nonterrestrial resources, biosciences, and space engineering; Proceedings of the Eighth Princeton/AIAA/SSI Conference, Princeton, NJ, May 6-9, 1987 p 94 A88-43951 FENNELL, J. F. Several spacecraft-charging event on SCATHA in September 1982 A severe spacecraft-charging event on SCATHA in September 1982 [AD-A193007] p 61 N88-26396 FEREBEE, MELVIN J., JR. Systems analysis of a low-acceleration research facility [AIAA PAPER 88-3512] p 93 A88-42912 FERNANDEZ, KEN The use of computer graphic simulation in the	FONG, I. K. Robust decentralized control of large flexible structures [DE88-005416] p 48 N88-20902 FONG, I-KONG Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 FORWARD, ROBERT L. Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A68-35100 FOS, JOSEPH E., JR. Unique bonding methods for spacecraft p 68 A88-54731 FOWLER, JOHN Effect of air mass on modal tests p 41 A68-50860 FOX, D. J. Degradation of graphite-epoxy due to electron radiation p 63 A68-36762 FRANCIS, PHILIP H. Advanced topics in manufacturing technology: Product design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18, 1987 p 94 A68-44001 FRANKLIN, GENE F. Minimum-time control of large space structures p 29 A68-42576 FRASER, M. E. Calculation of space station infrared irradiance from atmosphere-induced emissions p 70 N88-25396 FREDLEY, J. E. Application of two-phase thermal transport systems to space platforms p 20 A68-42842 FREEMAN, MICHAEL S. Third Conference on Artificial Intelligence for Space Applications, part 2 [NASA-CP-2492-PT-2] p 100 N88-24188 FRISBEE, ROBERT Advanced propulsion for the Mars Rover Sample Return Mission [AIAA PAPER 88-2900] P 84 A88-46489 FRISBIE, F. R.	spacecrafts GARIBOTTI, J. F. Soviet spacecraft engineering research [FASAC-TAR-3090] P 98 N88-23823 GARLICK, G. F. J. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 Temperature characteristics of silicon space solar cells and underlying parameters p 63 A88-34418 GARN, P. A. Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] P 8 N88-26397 GARNIER, C. Literal dynamic modeling [REPT-881-440-114] P 53 N88-28083 GARRETT, L. B. Large space systems requirements, deployable concepts, and technology issues [AAS PAPER 86-394] P 2 A88-35115 GATES, RICHARD M. LDR structural experiment definition [NASA-TM-100618] Space structure (dynamics and control) theme development [NASA-TM-100597] P 8 N88-29850 GATES, S. S. The identification of a distributed parameter model for a flexible structure p 31 A88-46041 GATEWOOD, GEORGE D. Performance considerations for the astrometric Telescope Facility on the Phase I Space Station p 92 A88-42539 GAWRONSKI, WODEK Grammians and model reduction in limited time and frequency intervals [AIAA PAPER 88-4087] P 35 A88-50193 GELB, S. W. Flight qualification testing of ultrathin solar cells
The Columbus resource module for the European man-tended free flyer [AAS PAPER 86-465] p 2 A88-35056 FALKENHAYN, EDWARD, JR. Multimission modular spacecraft (MMS) [AIAA PAPER 88-3513] p 93 A88-42910 FAN, RUYING Dynamics and control of a space platform with a tethered subsatellite p 33 A88-46717 FAN, ZIJIE Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 FARBMAN, G. Advanced nuclear rocket engine mission analysis [DE88-006797] p 87 N88-24681 FARMER, I. System and concept design of the SSRMS latching end effector p 15 N88-21204 FATHI, H. Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298 FAUGHNAN, BARBARA Space manufacturing 6 - Nonterrestrial resources, biosciences, and space engineering; Proceedings of the Eighth Princeton/AIAA/SSI Conference, Princeton, NJ, May 6-9, 1987 p 94 A88-43951 FENNELL, J. F. Several spacecraft-charging event on SCATHA in September 1982 p 58 A88-51392 A severe spacecraft-charging event on SCATHA in September 1982 [AD-A193007] p 61 N88-26396 FEREBEE, MELVIN J., JR. Systems analysis of a low-acceleration research facility [AIAA PAPER 88-3512] p 93 A88-42909 Advanced satellite servicing facility studies [AIAA PAPER 88-4200] p 93 A88-42912 FERNANDEZ, KEN The use of computer graphic simulation in the development of robotic systems p 81 N88-29388	FONG, I. K. Robust decentralized control of large flexible structures [DE88-005416] p 48 N88-20902 FONG, I-KONG Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 FORWARD, ROBERT L. Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-35100 FOS, JOSEPH E., JR. Unique bonding methods for spacecraft p 68 A88-54731 FOWLER, JOHN Effect of air mass on modal tests p 41 A88-50860 FOX, D. J. Degradation of graphite-epoxy due to electron radiation p 63 A88-36762 FRANCIS, PHILIP H. Advanced topics in manufacturing technology: Product design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18, 1987 p 94 A88-44001 FRANKLIN, GENE F. Minimum-time control of large space structures p 29 A88-42576 FRASER, M. E. Calculation of space station infrared irradiance from atmosphere-induced emissions p 70 N88-25396 FREDLEY, J. E. Application of two-phase thermal transport systems to space platforms p 20 A88-42842 FREEMAN, MICHAEL S. Third Conference on Artificial Intelligence for Space Applications, part 2 [NASA-CP-2492-PT-2] p 100 N88-24188 FRISBEE, ROBERT Advanced propulsion for the Mars Rover Sample Return Mission [AIAA PAPER 88-2900] p 84 A88-46489 FRISBIE, F. R. Subsea approach to work systems development	spacecrafts GARIBOTTI, J. F. Soviet spacecraft engineering research [FASAC-TAR-3090] Development of 8 cm x 8 cm silicon gridded back solar cell for space station Temperature characteristics of silicon space solar cells and underlying parameters Development of 8 cm x 8 cm silicon gridded back solar cell for space station Temperature characteristics of silicon space solar cells and underlying parameters Development of 8 cm x 8 cm silicon gridded back solar cells and underlying parameters Development of 8 cm x 8 cm silicon gridded back solar cells and underlying parameters Development of 8 cm x 8 cm silicon gridded back solar cells Development of 8 cm x 8 cm silicon gridded back solar cells Development of 8 cm x 8 cm silicon gridded back solar vells of 6 a rotating advanced-technology space station Development of 8 cm x 8 cm silicon gridded back solar cells Development of 9 cm x 8 cm silicon gridded back solar vells of 9 cm x 8 cm silicon gridded back solar vells of 9 cm x 8 cm silicon gridded back solar vells of 9 cm x 8 cm silicon gridded back solar vells of 9 cm x 8 cm silicon gridded back solar vells of 9 cm x 8 cm silicon gridded back solar vells of 9 cm x 8 cm silicon gridded back solar vells of 9 cm x 8 cm silicon gridded back solar vells of 9 cm x 8 cm silicon gridded back solar vells of 9 cm x 8 cm silicon gridded back solar vells of 9 cm x 8 cm silicon gridded back solar vells of 9 cm x 8 cm silicon gridded back solar vells of 9 cm x 8 cm silicon gridded back solar vells of 9 cm x 8 cm silicon gridded back solar vells of 9 cm x 8 cm silicon gridded back solar vells of 9 cm x 8 cm silicon gridded back solar vells of 9 cm x 8 cm silicon gridded back solar vells of 9 cm x 8 cm x 8 cm silicon gridded back solar vells of 9 cm x 8 cm x 8 cm silicon gridded back solar vells of 9 cm x 8 cm x 8 cm silicon gridded back solar vells of 9 cm x 8 cm x 8 cm x 8 cm x 9
The Columbus resource module for the European man-tended free flyer [AAS PAPER 86-465] p 2 A88-35056 FALKENHAYN, EDWARD, JR. Multimission modular spacecraft (MMS) [AIAA PAPER 88-3513] p 93 A88-42910 FAN, RUYING Dynamics and control of a space platform with a tethered subsatellite p 33 A88-46717 FAN, ZIJIE Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 FARBMAN, G. Advanced nuclear rocket engine mission analysis [DE88-006797] p 87 N88-24681 FARMER, I. System and concept design of the SSRMS latching end effector p 15 N88-21204 FATHI, H. Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298 FAUGHNAN, BABBARA Space manufacturing 6 - Nonterrestrial resources, biosciences, and space engineering; Proceedings of the Eighth Princeton/AIAA/SSI Conference, Princeton, NJ, May 6-9, 1987 FENNELL, J. F. Several spacecraft-charging event on SCATHA in September 1982 p 58 A88-51392 A severe spacecraft-charging event on SCATHA in September 1982 [AD-A193007] p 61 N88-26396 FERBEE, MELVIN J., JR. Systems analysis of a low-acceleration research facility [AIAA PAPER 88-3512] p 93 A88-42912 FERNANDEZ, KEN The use of computer graphic simulation in the development of robotic systems FERRARESI, VALTAIR ANTONIO	FONG, I. K. Robust decentralized control of large flexible structures [DE88-005416] p 48 N88-20902 FONG, I-KONG Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 FORWARD, ROBERT L. Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-35100 FOS, JOSEPH E., JR. Unique bonding methods for spacecraft p 68 A88-54731 FOWLER, JOHN Effect of air mass on modal tests p 41 A88-50860 FOX, D. J. Degradation of graphite-epoxy due to electron radiation p 63 A88-36762 FRANCIS, PHILIP H. Advanced topics in manufacturing technology. Product design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18, 1987 p 94 A88-44001 FRANKLIN, GENE F. Minimum-time control of large space structures p 29 A88-42576 FRASER, M. E. Calculation of space station infrared irradiance from atmosphere-induced emissions p 70 N88-25396 FREDLEY, J. E. Application of two-phase thermal transport systems to space platforms p 20 A88-42842 FREEMAN, MICHAEL S. Third Conference on Artificial Intelligence for Space Applications, part 2 [NASA-CP-2492-PT-2] p 100 N88-24188 FRISBEE, ROBERT Advanced propulsion for the Mars Rover Sample Return Mission [AIAA PAPER 88-2900] p 84 A88-46489 FRISBIE, F. R. Subsea approach to work systems development p 99 N88-24146	spacecrafts p 34 A88-49914 GARIBOTTI, J. F. Soviet spacecraft engineering research [FASAC-TAR-3090] p 98 N88-23823 GARLICK, G. F. J. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 Temperature characteristics of silicon space solar cells and underlying parameters p 63 A88-34418 GARN, P. A. Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 GARNIER, C. Literal dynamic modeling [REPT-881-440-114] p 53 N88-28083 GARRETT, L. B. Large space systems requirements, deployable concepts, and technology issues [AAS PAPER 86-394] p 2 A88-35115 GATES, RICHARD M. LDR structural experiment definition [NASA-TM-100618] p 7 N88-23826 Space structure (dynamics and control) theme development [NASA-TM-100597] p 8 N88-29850 GATES, S. The identification of a distributed parameter model for a flexible structure GATEWOOD, GEORGE D. Performance considerations for the astrometric Telescope Facility on the Phase I Space Station p 92 A88-42539 GAWRONSKI, WODEK Grammians and model reduction in limited time and frequency intervals [AIAA PAPER 88-4087] p 35 A88-50193 GELB, A. Calculation of space station infrared irradiance from atmosphere-induced emissions p 70 N88-25396 GELB, S. W. Flight qualification testing of ultrathin solar cells p 63 A88-34448
The Columbus resource module for the European man-tended free flyer [AAS PAPER 86-465] p 2 A88-35056 FALKENHAYN, EDWARD, JR. Multimission modular spacecraft (MMS) [AIAA PAPER 88-3513] p 93 A88-42910 FAN, RUYING Dynamics and control of a space platform with a tethered subsatellite p 33 A88-46717 FAN, ZIJIE Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 FARBMAN, G. Advanced nuclear rocket engine mission analysis [DE88-006797] p 87 N88-24681 FARMER, I. System and concept design of the SSRMS latching end effector p 15 N88-21204 FATHI, H. Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298 FAUGHNAN, BARBARA Space manufacturing 6 - Nonterrestrial resources, biosciences, and space engineering; Proceedings of the Eighth Princeton/AIAA/SSI Conference, Princeton, NJ, May 6-9, 1987 p 94 A88-43951 FENNELL, J. F. Several spacecraft-charging event on SCATHA in September 1982 A severe spacecraft-charging event on SCATHA in September 1982 [AD-A193007] p 61 N88-26396 FEREBEE, MELVIN J., JR. Systems analysis of a low-acceleration research facility [AIAA PAPER 88-3512] p 93 A88-42912 FERNANDEZ, KEN The use of computer graphic simulation in the development of robotic systems FERRARESI, VALTAIR ANTONIO Utilization of strapdown inertial and non-inertial sensors	FONG, I. K. Robust decentralized control of large flexible structures [DE88-005416] p 48 N88-20902 FONG, I-KONG Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 FORWARD, ROBERT L. Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-35100 FOS, JOSEPH E., JR. Unique bonding methods for spacecraft p 68 A88-54731 FOWLER, JOHN Effect of air mass on modal tests p 41 A88-50860 FOX, D. J. Degradation of graphite-epoxy due to electron radiation p 63 A88-36762 FRANCIS, PHILIP H. Advanced topics in manufacturing technology: Product design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18, 1987 p 94 A88-44001 FRANKLIN, GENE F. Minimum-time control of large space structures p 29 A88-42576 FRASER, M. E. Calculation of space station infrared irradiance from atmosphere-induced emissions p 70 N88-25396 FREDLEY, J. E. Application of two-phase thermal transport systems to space platforms p 20 A88-42842 FREEMAN, MICHAEL S. Third Conference on Artificial Intelligence for Space Applications, part 2 [NASA-CP-2492-PT-2] p 100 N88-24188 FRISBEE, ROBERT Advanced propulsion for the Mars Rover Sample Return Mission [AIAA PAPER 88-2900] p 84 A88-46489 FRISBIE, F. R. Subsea approach to work systems development p 99 N88-24146	spacecrafts GARIBOTTI, J. F. Soviet spacecraft engineering research [FASAC-TAR-3090] P 98 N88-23823 GARLICK, G. F. J. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 Temperature characteristics of silicon space solar cells and underlying parameters p 63 A88-34418 GARN, P. A. Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] P 8 N88-26397 GARNIER, C. Literal dynamic modeling [REPT-881-440-114] P 53 N88-28083 GARRETT, L. B. Large space systems requirements, deployable concepts, and technology issues [AAS PAPER 86-394] P 2 A88-35115 GATES, RICHARD M. LDR structural experiment definition [NASA-TM-100618] Space structure (dynamics and control) theme development [NASA-TM-100597] P 8 N88-29850 GATES, S. S. The identification of a distributed parameter model for a flexible structure p 31 A88-46041 GATEWOOD, GEORGE D. Performance considerations for the astrometric Telescope Facility on the Phase I Space Station p 92 A88-42539 GAWRONSKI, WODEK Grammians and model reduction in limited time and frequency intervals [AIAA PAPER 88-4087] GALB, A. Calculation of space station infrared irradiance from atmosphere-induced emissions p 70 N88-25396 GELB, A. Calculation testing of ultrathin solar cells p 63 A88-34448 GELLER, D. A new momentum management controller for the Space
The Columbus resource module for the European man-tended free flyer [AAS PAPER 86-465] p 2 A88-35056 FALKENHAYN, EDWARD, JR. Multimission modular spacecraft (MMS) [AIAA PAPER 88-3513] p 93 A88-42910 FAN, RUYING Dynamics and control of a space platform with a tethered subsatellite p 33 A88-46717 FAN, ZIJIE Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 FARBMAN, G. Advanced nuclear rocket engine mission analysis [DE88-006797] p 87 N88-24681 FARMER, I. System and concept design of the SSRMS latching end effector p 15 N88-21204 FATHI, H. Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298 FAUGHNAN, BABBARA Space manufacturing 6 - Nonterrestrial resources, biosciences, and space engineering; Proceedings of the Eighth Princeton/AIAA/SSI Conference, Princeton, NJ, May 6-9, 1987 FENNELL, J. F. Several spacecraft-charging event on SCATHA in September 1982 p 58 A88-51392 A severe spacecraft-charging event on SCATHA in September 1982 [AD-A193007] p 61 N88-26396 FERBEE, MELVIN J., JR. Systems analysis of a low-acceleration research facility [AIAA PAPER 88-3512] p 93 A88-42912 FERNANDEZ, KEN The use of computer graphic simulation in the development of robotic systems FERRARESI, VALTAIR ANTONIO	FONG, I. K. Robust decentralized control of large flexible structures [DE88-005416] p 48 N88-20902 FONG, I-KONG Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 FORWARD, ROBERT L. Exotic propulsion in the 21st century [AAS PAPER 86-409] p 83 A88-35100 FOS, JOSEPH E., JR. Unique bonding methods for spacecraft p 68 A88-54731 FOWLER, JOHN Effect of air mass on modal tests p 41 A88-50860 FOX, D. J. Degradation of graphite-epoxy due to electron radiation p 63 A88-36762 FRANCIS, PHILIP H. Advanced topics in manufacturing technology. Product design, bioengineering; Proceedings of the Symposium, ASME Winter Annual Meeting, Boston, MA, Dec. 13-18, 1987 p 94 A88-44001 FRANKLIN, GENE F. Minimum-time control of large space structures p 29 A88-42576 FRASER, M. E. Calculation of space station infrared irradiance from atmosphere-induced emissions p 70 N88-25396 FREDLEY, J. E. Application of two-phase thermal transport systems to space platforms p 20 A88-42842 FREEMAN, MICHAEL S. Third Conference on Artificial Intelligence for Space Applications, part 2 [NASA-CP-2492-PT-2] p 100 N88-24188 FRISBEE, ROBERT Advanced propulsion for the Mars Rover Sample Return Mission [AIAA PAPER 88-2900] p 84 A88-46489 FRISBIE, F. R. Subsea approach to work systems development p 99 N88-24146	spacecrafts p 34 A88-49914 GARIBOTTI, J. F. Soviet spacecraft engineering research [FASAC-TAR-3090] p 98 N88-23823 GARLICK, G. F. J. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 Temperature characteristics of silicon space solar cells and underlying parameters p 63 A88-34418 GARN, P. A. Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 GARNIER, C. Literal dynamic modeling [REPT-881-440-114] p 53 N88-28083 GARRETT, L. B. Large space systems requirements, deployable concepts, and technology issues [AAS PAPER 86-394] p 2 A88-35115 GATES, RICHARD M. LDR structural experiment definition [NASA-TM-100618] p 7 N88-23826 Space structure (dynamics and control) theme development [NASA-TM-100597] p 8 N88-29850 GATES, S. The identification of a distributed parameter model for a flexible structure GATEWOOD, GEORGE D. Performance considerations for the astrometric Telescope Facility on the Phase I Space Station p 92 A88-42539 GAWRONSKI, WODEK Grammians and model reduction in limited time and frequency intervals [AIAA PAPER 88-4087] p 35 A88-50193 GELB, A. Calculation of space station infrared irradiance from atmosphere-induced emissions p 70 N88-25396 GELB, S. W. Flight qualification testing of ultrathin solar cells p 63 A88-34448

p 101 N88-30301

GENDRIN, ROGER

Refilling process in the plasmasphere and its relation to magnetic activity p 64 A88-37343

GENNERY, DONALD B.

Real-time model-based vision system for object acquisition and tracking p 28 A88-36311 Sensing and perception research for space telerobotics A88-42657

GEOFFROY, AMY L.

A scheduling and resource management system for p 101 space applications N88-29383

GERHOLD, C. H.

Beam modifications of structural systems utilizing the receptance approach with static flexibility p 14 A88-50891

GERNHARDT, M. L.

Subsea approach to work systems development p 99 N88-24146

GHOLDSTON, EDWARD W.

Utilization of artificial intelligence techniques for the p 62 N88-29412 Space Station power system GIBSON, J. S.

Approximation in discrete-time boundary control of p 25 A88-34737 flexible structures Identification of a flexible truss structure using lattice filters p 45 A88-54577

Optimal control and identification of space structures [AD-A190033] p 49 N88-22065

GIELLIS, R.

Open-cycle chemical power and thermal management system with combustion product-free effluent

[AIAA PAPER 88-2625] p 83 A88-43710

GILBERTI, V. J.

Application of two-phase thermal transport systems to space platforms p 20 A88-42842

GILLAN, DOUGLAS J.

Human-telerobot interactions - Information, control, and p 73 A88-35457 mental models

GIMARC, J. ALEX

A concept for manned variable gravity facilities

p 9 A88-43969

Measurements of thermal conductivity and thermal contact resistance in composite materials for space p 64 A88-36982 applications

GIRARD, R.

A nonlinear computation for composite structures p 69 N88-23265 [ONERA-RT-15/3542-RY-062-R]

Technology development missions concept definition study - TDMX 2066 large inflatable/rigidized structures p 5 A88-52332

Ku-hand (14GHz) fiber optic communication links for distributed antennas in the Space Station

p 55 A88-35275

GOHRING, JOHN R. A scheduling and resource management system for

p 101 N88-29383 space applications GOLDEN, CONSTANCE J. Automating satellite control and telemetry networks

p 54 A88-33673 GOLDHAMMER, L. J.

Flight qualification testing of ultrathin solar cells

p 63 A88-34448

GOLDMACHER, JERRY

Space Station - Home and workplace in orbit

p 97 A88-55486

GOODELLE, G. S.

Flight qualification testing of ultrathin solar cells p 63 A88-34448

GORDON, SCOTT A.

Design guidelines for robotically serviceable hardware p 79 N88-25472 [NASA-TM-100700]

GOTTESMAN, JEROME D.

Conceptual design for active structural control of a large p 25 A88-34500 optical system

GRAFODATSKIY, O. S.

Relationship between characteristics of low-energy electrons and geomagnetic disturbance in geostationary p 62 N88-30501

GRAHAM, OLIN

Robotic vision/sensing for space applications

p 74 A88-42642

GRANDHI, R. V. Optimal structural design with control gain norm p 22 A88-50339 constraint

GRANTHAM, WILLIAM L.

The 15-meter antenna performance optimization using p 61 N88-25746 an interdisciplinary approach

ESA report to the 27th COSPAR meeting p 102 N88-30556 [ESA-SP-1098]

GREELEY, S. W.

Reduced-order compensation: LQG reduction versus optimal projection using a homotopic continuation p 25 A88-34749 method

Experimental demonstration of the maximum entropy/optimal projection design theory for active vibration control p 44 A88-54575

GREEN, B. D.

Calculation of space station infrared irradiance from atmosphere-induced emissions p 70 N88-25396

GREEN, BYRON DAVID

The particulate environment surrounding the space station: Estimates from the PACS data

p 70 N88-25398 GREGG, HUGH

p 39 A88-50430

Integration of symbolic and algorithmic hardware and software for the automation of space station subsystems p 12 N88-24190

GREGORY, CHARLES Z., JR.

Integrated structural/controller optimization of large structures

[AIAA PAPER 88-4305] GREGORY, J. C.

Velocity distributions of oxygen atoms incident on spacecraft surfaces p 68 A88-54990

GREITZER, FRANK L.

Intelligent interface design and evaluation p 81 N88-29405

GRIFFEE, C. C.

Welding the Space Station common module prototype p 11 A88-52334

GRIMARD, M.

Study on long term evolution Towards European Autonomous Manned Spaceflight (STEAMS) [SNIAS-SE/LS/AP-35-073] p 7 N88-20330

GRINGEL, D.

Alternative module configurations for advanced sola arrays on low orbit and extended lifetime missions (AMOC

p 62 N88-30182 LESA-CR(P)-25811

GROSS, D. W.

Development of an intermodule serviceable spacecraft p 16 N88-21212

GROVER, JEFFREY L.

Concepts for robot motion primitives required for space p 81 N88-29387 station teleoperations A teleoperated robotic manipulator system for materials

processing experiment servicing p 82 N88-29410 GRUEN, RAINER

Ground based operations support by Artificial telligence p 58 A88-52339 Intelligence GUGGENMOS, JOEL L.

Fiber based phased array antennas

p 57 A88-50306

GUINDON, E.

Structural vibration of space power station systems p 29 A88-42574

GULINO, DANIEL A.

Atomic-oxygen durability of impact-damaged solar p 68 A88-54988 Space station solar concentrator materials research [NASA-TM-100862] p 69 N88-21250

GULLAHORN, GORDON E.

Analytical investigation of the dynamics of tethered constellations in earth orbit INASA-CR-179371] p 53 N88-28950

GYAMFI, MAX

The space station assembly phase: System design trade-offs for the flight telerobotic servicer

GYAMFI, MAX A.

p 82 N88-30357 The space station assembly phase: Flight telerobotic servicer feasibility. Volume 2: Methodology and case

INASA-CR-1826901

p 77 N88-20352

Н

HAALAND, RYAN K.

Noncryogenic propellants for a nuclear orbit transfer vehicle D 87 N88-24444

HABERMEYER, J. A.

An integrated computer aided engineering system for Space Station design p 8 A88-34469

HABLANI, HARI E.

Evaluation of image stability of a precision pointing spacecraft p 30 A88-43215 HACK, EDMUND

Integration of symbolic and algorithmic hardware and software for the automation of space station subsystems p 12 N88-24190

HADAEGH, F. Y.

Optimal experiment design for identification of large space structures p 31 A88-45227

HAERENDEL, G.

Active experiments; Proceedings of Symposium 1 of the Twenty-sixth COSPAR Plenary Meeting, Toulouse, France, June 30-July 11, 1986 p 95 A88-46776

HAHN, HUBERT

Exponent diagram analysis of feedback control systems including flexible structures p 10 A88-50836

HAINES, ŘICHARD F.

Space vehicle approach velocity judgments under simulated visual space conditions p 93 A88-42933 Space station proximity operations windows: Human factors design guidelines [NASA-TM-88233]

HAJELA, PRABHAT

Recent trends in aeroelasticity, structures, and structural dynamics; Proceedings of the R. L. Bisplinghoff Memorial Symposium, University of Florida, Gainesville, FL, Feb. 6, 7. 1986 p 90 A88-35526

HALL, DANA L.

Connectivity is the key HALL, DAVID F. p 59 A88-54853 Contamination of optical surfaces p 70 N88-25400

HALL, S. R.

Travelling wave concepts for the modeling and control of space structures [AD-A191235] p 50 N88-23819

HALLAUER, WILLIAM L., JR.

Experimental study of transient waves in a plane grid tructure p 28 A88-38390 structure Experimental study of active vibration control p 51 N88-24989

[AD-A191454] HALPERN, RICHARD E.

The International Space Station complex - Promise and p 1 A88-34573 problems

HAMACHER, H.

The environment of earth-orbiting systems p.3 A88-35877 Compatibility of microgravity experiments p 34 A88-49743 spacecraft disturbances

HAMEL, W. R. Traction-drive telerobot for space manipulation

p 75 A88-42668

HANCOCK, ROBERT J. Interactive Radar Environment Simulation Model (IRESM) p 10 A88-46968

HANKINS, W. W. Operational experience and design recommendations for teleoperated flight hardware p 78 N88-21489

HANSEN, J. S. Dynamics of viscoelastic structures

p 28 A88-38389

p 20 A88-42842

HANSMAN, R. JOHN, JR. Fundamental limitations on low gravity fluid gauging technologies imposed by orbital mission requirement [AIAA PAPER 88-3402] p 86 A88-53163

HARDING, R. R. The multi-disciplinary design study: A life cycle cost

[NASA-CR-4156] p 11 N88-24172

HARRIS, P. Advanced nuclear rocket engine mission analysis

1DE88-0067971 p 87 N88-24681 HARRISON, ALBERT A.

Incorporation of privacy elements in space station design [NASA-CR-182748] p 98 N88-21242

HART, SANDRA NASA-Ames workload research program

p 99 N88-24151 HARTMANN, J. Docking/berthing subsystem: Design and breadboard

test

p 17 N88-21233 HARTSHORN, K. Application of two-phase thermal transport systems to

space platforms

HASHEMIPOUR, HAMID R.

Kalman filtering for second-order models p 28 · A88-36718

HASSELMAN, T. K. Identification of large structures on orbit - A survey HAF PAPER 88-295] p 97 A88-55379

HASTINGS, D. E.

The use of electrodynamic tethers for generating power and thrust in space [AAS PAPER 86-366] p 55 A88-35099

HATHEWAY, ALSON E.

Structural mechanics of optical systems II; Proceedings of the Meeting, Los Angeles, CA, Jan. 13-15, 1987 (SPIE-7481 p 89 A88-34486

HATTAR, M. M.

Calorimetric measurements of thermal control surfaces at geosynchronous orbit p 19 A88-41414 HATTIS, PHILIP D.

The U.S. Space Station - A quarter-century of evolution p 4 A88-44150

p 54 N88-30124

p 44 A88-54574

p 27 A88-34891

Laser sensing for identification and control of distributed parameter systems

Application of FAMESS to a large space structure ground

Design of a controller for mechanical systems by the

[AD-A195886]

IRWIN R DENNIS

ISHIJIMA, SHINTARO

generalized energy function

HAUG, EDWARD J.	HIGUCHI, K.	HUDSON, WAYNE R.
Dynamics of articulated aerospace structures	Japanese Space Station program p 1 A88-34574	Spacecraft technology requirements for future NASA
[AD-A195685] p 53 N88-29794	HIPOL, P. J.	missions
HAWKINS, J.	An integrated computer aided engineering system for	[AIAA PAPER 88-3487] p 4 A88-43299
OMV docking simulator p 101 N88-29379	Space Station design p 8 A88-34469	HUENERS, H.
HAWKINS, PATRICK J.	HIRAO, K.	Procedures for updating dynamic mathematical models,
Motion planning for a free-flying robot	Results from a tethered rocket experiment (Charge-2) p 57 A88-46804	test phase
p 80 N88-29378	HIRZINGER, G.	[MEBS-38/87] p 12 N88-29852
HAWKYARD, A.	The space and telerobotic concepts of DFVLR rotex	HUFFMAN, B. L.
Quasat - A 50,000 km-diameter Quasar probe	p 74 A88-42667	SDI experiment requirements lead to new emphasis on
p 96 A88-54766	HOBBS, ROBERT W.	shuttle simulation capabilities p 10 A88-46987
HAYNES, M. D.	Al for space missions	HUFNAGEL, H. Study of the entimization of satellite quater design for
Out of plane maneuvering with tethered satellites	[AAS PAPER 86-390] p 55 A88-35144	Study of the optimization of satellite system design for transfer orbit
[AIAA PAPER 88-4282] p 39 A88-50409	HODGE, L. W.	[MBB-URV-135] p 11 N88-20332
HEALEY, KATHLEEN	Large space optical system active vibration	HUGHES, PETER
Integration of symbolic and algorithmic hardware and	suppression p 24 A88-34498	The 1988 Goddard Conference on Space Applications
software for the automation of space station subsystems	HOFACKER, SCOTT A.	of Artificial Intelligence
p 12 N88-24190	Telerobotic Space Station applications	[NASA-CP-3009] p 102 N88-30330
HEARD, WALTER L., JR.	p 76 A88-52323	HULBERT, J. K.
A 60-meter erectable assembly concept for a control	HOFFMAN, MICKIE D.	Electromagnetic damping and vibration isolation of
of flexible structures flight experiment [NASA-TM-100497] p 7 N88-21190	Orbiter Servicer Rendezvous Simulation (ORSIM) p 10 A88-46986	space structures
,	HOFFMANN, U.	[AD-A191492] p 51 N88-24665
HEER, EWALD	Alternative module configurations for advanced solar	HUTH, GAYLORD
Technology forecast and applications for autonomous, intelligent systems	arrays on low orbit and extended lifetime missions (AMOC	Spacecraft applications of advanced global positioning
[IAF PAPER 88-025] p 6 A88-55322	2)	system technology
HEIDENREICH, GARY	[ESA-CR(P)-2581] p 62 N88-30182	[NASA-CR-172055] p 8 N88-27180
Development of an integrated heat pipe-thermal storage	HOJO, HIROSHI	HWANGBO, HAN
system for a solar receiver	Design of an on-board antenna pointing control system	A flexible variable conductance heat pipe design for
[AIAA PAPER 88-2683] p 21 A88-43746	for communication satellites	temperature control of spacecraft equipment
HEIMBOLD, GERHARD	[AIAA PAPER 88-4306] p 39 A88-50431	[AIAA PAPER 88-2680] p 20 A88-43743
Tasks of the simulation installations for space flight	HOLAND, B.	HYLAND, D. C.
operations in the operations center for manned space	Study of human factors engineering criteria for	Reduced-order compensation: LQG reduction versus
laboratories p 10 A88-46516	extravehicular activity (EVA) systems, volume 1	optimal projection using a homotopic continuation
HEIMEL, H.	[STF23-F87025-VOL-1] p 82 N88-30298	method p 25 A88-34749
Evolution of large momentum and reaction wheels	HORBONNEAU, A.	Experimental demonstration of the maximum
p 48 N88-21230	Very high temperature materials for mechanical	entropy/optimal projection design theory for active
HEIMERDINGER, H.	application [SNIAS-881-430-106] p 72 N88-28978	vibration control p 44 A88-54575
Some highlights on ROSAT mechanisms	· · · · · · · · · · · · · · · · · · ·	HYLAND, DAVID C.
p 14 N88-21195	HORN, F. L. Nuclear propulsion systems for orbit transfer based on	An experimental test-bed for validation of control
HEMMAT, MEHRZAD Determination of the vertical pattern of the SIR-B	the particle bed reactor p 87 N88-24272	methodologies in large space optical structures
antenna p 56 A88-44638	HORNER, G. C.	p 25 A88-34502
HENDERSON, DOUGLAS A.	Microprocessor controlled force actuator	Experimental investigations in active vibration control
Instrumentation for modal testing of large space	p 30 A88-43206	for application to large space systems
structures p 29 A88-40261	HOSFORD, G. S.	p 30 A88-42577
HENDERSON, I. D.	Open-cycle chemical power and thermal management	Optimal projection for uncertain systems (OPUS) - A
Qualification testing of the EUROSTAR Solar Array Drive	system with combustion product-free effluent	unified theory of reduced-order, robust control design
Mechanism (SADM) p 17 N88-21229	[AIAA PAPER 88-2625] p 83 A88-43710	p 32 A88-46411
HENSHALL, CONSTANCE A.	HOSSAIN, S. A.	A robust control experiment using an optical structure
Superplastic forming characteristics and properties of	System identification for space control laboratory	prototype p 45 A88-54640
aluminum-lithium sheet alloys p 67 A88-45205	experiment (SCOLE) using distributed parameter models	HYLTON, J. D.
HERAKOVICH, C. T.	p 26 A88-34792	On-orbit, man/machine interface verification with
Degradation of graphite-epoxy due to electron	HOSTENKAMP, R. G.	simulator testing p 89 A88-33780
radiation p 63 A88-36762	Design of a linear actuator and breadboard test result	_
HERCZFELD, P. R.	p 16 N88-21217	
System architecture of MMIC-based large aperture arrays for space applications p 55 A88-35274	HOTES, DEBORAH	•
arrays for space applications p 55 A88-35274 Ku-band (14GHz) fiber optic communication links for	Arc-textured metal surfaces for high thermal emittance	IACABUCCI, R. S.
distributed antennas in the Space Station	space radiators	25-LBF GO2/GH2 space station thruster
p 55 A88-35275	[NASA-TM-100894] p 69 N88-24754	[AIAA PAPER 88-2793] p 86 A88-53101
Optical technology for spacecraft antennas	HOUSNER, JERROLD M.	IBRAHIM, A. M.
p 56 A88-43187	Sensitivity analysis of a deployable three longeron truss	On the transient dynamics of flexible orbiting
HERCZFELD, PETER R.	beam designed for minimum member loads during	structures p 31 A88-46405
Comparison of fiber optic and space feed for large	deployment	IDE, ERIC N.
aperture phased array antennas p 57 A88-50308	[AIAA PAPER 88-2436] p 13 A88-38689	The LDCM actuator for vibration suppression
HERKERT, ARTHUR	HOWELL, J.	[NASA-CR-182898] p 50 N88-23940
Telerobotic Space Station applications	Astrophysics space observatories - The next 25 years	IFTAR, A.
p 76 A88-52323	p 1 A88-34537	Two controller design approaches for decentralized
HERMAN, DANIEL H.	HSU, Y. K.	systems [AIAA PAPER 88-4083] p 35 A88-50189
Space station as a vital focus for advancing the technologies of automation and robotics	A new linearized theory of laminar film condensation	[AIAA PAPER 88-4083] p 35 A88-50189 IH, CHE-HANG CHARLES
	of two phase annular flow in a capillary pumped loop [AIAA PAPER 88-2637] p 56 A88-43715	Adaptive control experiment with a large flexible
[IAF-86-62] p 80 N88-29352 HERNANDEZ, D.	••••••	structure
Space Operations and Space Station real-time	HU, A.	[AIAA PAPER 88-4153] p 36 A88-50247
simulation	Modal cost analysis for simple continua p 21 A88-46404	IMBER, MURRAY
[AIAA PAPER 88-4627] p 11 A88-53664	•	International Symposium on Thermal Problems in
HERNDON, J. N.	HU, ANREN Effects of nonlinear damping in flexible space	Space-Based Systems, Boston, MA, Dec. 13-18, 1987,
Traction-drive telerobot for space manipulation	structures	Proceedings p 92 A88-42829
p 75 A88-42668	an double a	INMAN, D. J.
HERPEL, HANS-JUERGEN	[AIAA PAPER 88-4059] n 35 A88-50160	numeri, b. c.
	[AIAA PAPER 88-4059] p 35 A88-50169	Parameter identification techniques for the estimation
Real-time systems for space applications	HUANG, JEN-KUANG	Parameter identification techniques for the estimation of damping in flexible structure experiments
p 91 A88-39424	HUANG, JEN-KUANG Single-mode projection filters for modal parameter	Parameter identification techniques for the estimation of damping in flexible structure experiments p 26 A88-34805
p 91 A88-39424 HERSHEY, JOHN E.	HUANG, JEN-KUANG	Parameter identification techniques for the estimation of damping in flexible structure experiments p 26 A88-34805 Microprocessor controlled force actuator
p 91 A88-39424	HUANG, JEN-KUANG Single-mode projection filters for modal parameter identification for flexible structures	Parameter identification techniques for the estimation of damping in flexible structure experiments p 26 A88-34805

Distributed sensors and actuators for vibration control

Low authority control of a composite cantilever beam

An assessment of nominal and contingency altitude

reboost scenarios during Space Station assembly

p 28 A88-39724

p 45 A88-54630

p 75 A88-44526

in elastic components

HUBBARD, JAMES E., JR.

[AIAA PAPER 88-3501]

in two dimensions

HUDIBURG, JOHN

p 28 A88-35117

p 4 A88-44741

p 23 N88-29395

[AAS PAPER 86-397]

[AIAA PAPER 88-3051]

common module thermal control system

The Gamma Ray Observatory (GRO) Propulsion

Reasoning about fault diagnosis for the space station

HEVERT, S. C.

Subsystem

HEXMOOR, H.

B-7

IURA, M.		PERSONAL AUTHOR INDEX
ioria, iii.		T ENGCIAL ACTION INDEX
IURA, M. Nonlinearities in the dynamics and control of space structures - Some issues for computational mechanics	JUANG, JER-NAN A comparative overview of modal testing and system identification for control of structures p.29 A88-40269	KEHR, J. The Manned Space Laboratories Control Center (MSCC) at DFVLR - Oberpfaffenhofen, Germany
p 31 A88-46403	Pole/zero cancellations in flexible space structures	[IAF PAPER 88-087] p 6 A88-55337
Dynamic analysis of finitely stretched and rotated three-dimensional space-curved beams	[AIAA PAPER 88-4055] p 34 A88-50165 Grammians and model reduction in limited time and	KEITH, T. G., JR. An experimental investigation of the effect of test-cell
p 22 A88-49658 IYER, ASHOK	frequency intervals [AIAA PAPER 88-4087] p 35 A88-50193	pressure on the performance of resistojets [AIAA PAPER 88-3286] p 84 A88-44820
Variable structure control of decoupleable systems and attitude control of spacecraft in presence of uncertainty p 46 A88-54655	Rapid multi-flexible-body maneuvering experiments p 44 A88-54532	KELLERMEIER, H. Study of the optimization of satellite system design for
p 46 - A00-54055	JUNKINS, J. L. Unified optimization of structures and controllers	transfer orbit [MBB-URV-135] p 11 N88-20332
J	p 33 A88-46413	KELLNER, ALBRECHT Ground based operations support by Artificial
JABBARI, FARYAR	JUNKINS, JOHN L. A pole placement technique for vibration suppression	Intelligence p 58 A88-52339 KELLY, W. H.
Identification of a flexible truss structure using lattice filters p 45 A88-54577	of flexible structures [AIAA PAPER 88-4254] p 38 A88-50385	Critique of the thermal design verification program for
JACKSON, DAVID R.	Identification of large structures on orbit - A survey	a high-power communications spacecraft [AIAA PAPER 88-2648] p 22 A88-48479
An investigation of conformable antennas for the astronaut backpack communication system	[IAF PAPER 88-295] p 97 A88-55379	KEMPSTER, K. B. Space Station erectable truss joint evaluation
[NASA-CR-182908] p 99 N88-23929 JACKSON, S. W.	K	[AIAA PAPER 88-2448] p 13 A88-35940 KEMPSTER, KARL B.
Development of an intermodule connector for serviceable spacecraft p 16 N88-21212	KABAMBA, P. T.	Space Station truss strut tube design
JACOBUS, C. Orbital navigation, docking and obstacle avoidance as	Time optimal slewing of a rigid body with flexible	KERREBROCK, JACK L.
a form of three dimensional model-based image	appendages p 26 A88-34812 KACHARE, RAM	Report of the National Commission on Space - One commissioner's view
understanding p 50 N88-24194 JAKOBSEN, P.	Temperature characteristics of silicon space solar cells and underlying parameters p 63 A88-34418	[AAS PAPER 86-250] p 2 A88-35074 KERSLAKE, T. W.
ESA report to the 27th COSPAR meeting [ESA-SP-1098] p 102 N88-30556	KAHN, E.	Structural assessment of a space station solar dynamic
JAYARAMAN, K.	Space station architectural elements model study [NASA-CR-4027] p 100 N88-24632	heat receiver thermal energy storage canister p 23 N88-22406
Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892	KAISER, DONALD LEO Motion planning for a free-flying robot	KESSLER, DONALD J. Predicting debris p 66 A88-43517
JENSON, DAVID W. Laboratory feasibility study of a composite embedded	p 80 N88-29378 KAISER, MARY KISTER	KESSLER, M. F. The Infrared Space Observatory (ISO) project
fiber optic sensor for measurement of structural vibrations	Spatial cognition p 100 N88-24152	p 3 A88-39077
[AD-A194270] p 71 N88-28754	KALAYCIOGLU, S. Analytical expressions for vibratory displacements of	ESA report to the 27th COSPAR meeting [ESA-SP-1098] p 102 N88-30556
JESPERSEN, NILS V. Comparison of fiber optic and space feed for large	deploying appendages [AIAA PAPER 88-4250] p 38 A88-50383	KESSLER, W. C. Soviet spacecraft engineering research
aperture phased array antennas p 57 A88-50308 JILG, R.	Optimal deployment of spacecraft appendages [IAF PAPER 88-307] p 47 A88-55386	[FASAC-TAR-3090] p 98 N88-23823 KHOBAIB, M.
Compatibility of microgravity experiments with spacecraft disturbances p 34 A88-49743	KALDEICH, BRIGITTE	High temperature coatings; Proceedings of the Symposium, Orlando, FL, Oct. 7-9, 1986
JIMENEZ, RICHARD D. Spacecraft surface coating heat generation by charged	With an eye to the future: ESA general studies program 1988	p 88 A88-24817
particulate of the natural space environment	[ESA-SP-1100] p 8 N88-30447 KAM, M.	KHODZHAIANTS, IU. M. 'Glazar' - An orbital ultraviolet telescope
[ASME PAPER 87-WA/HT-13] p 58 A88-51341 JOHNSON, RONALD L.	System architecture of MMIC-based large aperture arrays for space applications p 55 A88-35274	p 91 A88-38826 KHORRAMI, F.
Fiber based phased array antennas	KAMAT, MANOHAR	Two controller design approaches for decentralized systems
JOHNSON, STEVE Development of an integrated heat pipe-thermal storage	Identification of large structures on orbit - A survey IAF PAPER 88-295 p 97 A88-55379	[AIAA PAPER 88-4083] p 35 A88-50189
system for a solar receiver	KANNAN, M. V. Design and development of a computer controlled	KHOT, N. S. An integrated approach to the minimum weight and
[AIAA PAPER 88-2683] p 21 A88-43746 JOHNSON, VICKI	system for spacecraft static testing p 11 A88-54896 KAR, RAMESH J.	optimum control design of space structures
A shared-world conceptual model for integrating space station life sciences telescience operations	Aluminum-lithium alloys: Design, development and	Game theory approach for the integrated design of
p 102 N88-30333	application update; Proceedings of the Symposium, Los Angeles, CA, Mar. 25, 26, 1987 p 67 A88-45201	structures and controls p 33 A88-47462 Optimal structural design with control gain norm
JOHNSTON, GORDON I. Spacecraft technology requirements for future NASA	KARNICK, DREW A. Moving bank multiple model adaptive estimation applied	constraint p 22 A88-50339 KIDMAN, RUSSELL B.
missions [AIAA PAPER 88-3487] p 4 A88-43299	to flexible space structure control p 25 A88-34790 KASAI, RITAROH	Individual satellite power requirements calculated from specified constellation performance p 60 N88-24392
JONES, R. Improved methods for linearized flexibility models in	Electrostatic charging and arc discharges on satellite	KIMURA, TOKIO
multibody dynamics and control p 43 A88-54423	dielectrics simulated by electron beam p 57 A88-47970	Solar cell cover glasses for satellites p 69 N88-22225
JONES, ROBERT J. Graphite thermoplastic composites for spacecraft	KASHIN, A. L. 'Glazar' - An orbital ultraviolet telescope	KING, C. B. Some operational aspects of a rotating
applications p 65 A88-42419 JONES, T. S.	p 91 A88-38826 KASSING, D.	advanced-technology space station for the year 2025
Radiation inspection methods for composites p 68 A88-49260	Demonstration mission on Columbus for technology	[NASA-CR-181617] p 8 N88-26397 KING, M. L.
JONES, VICTORIA L.	developments [IAF PAPER 88-002] p 6 A88-55314	Telepresence for space applications [IAF PAPER 88-018] p 77 A88-55320
ACES program - Lessons learned p 6 A88-54573 JOOST, T. E.	KAUFMAN, HOWARD Model reference control of the NASA SCOLE problem	KINGDON, J.
A flexible variable conductance heat pipe design for temperature control of spacecraft equipment	p 27 A88-34916	The environment of earth-orbiting systems p 3 A88-35877
[AIAA PAPER 88-2680] p 20 A88-43743	KAWAKAMI, YOICHI Design of an on-board antenna pointing control system	KINKEAD, REBECCA L. Space spider crane
JOSEPH-GABRIEL, E. Aerospatiale unfurlable reflector and associated	for communication satellites [AIAA PAPER 88-4306] p 39 A88-50431	[NASA-CASE-LAR-13411-1-SB] p 7 N88-23828
mechanisms p 15 N88-21203	KAWASHIMA, N.	KISKO, W. A.

Results from a tethered rocket experiment (Charge-2)

Development of a generalized cost model for large space

Development of an integrated heat pipe-thermal storage

KAZANOWSKI, ALBIN D.

(IAF PAPER 88-219)

system for a solar receiver

Thermally stable deployable structure

[AIAA PAPER 88-2683]

KEGG, COLLEEN M.

power systems

KEDDY, E.

p 57 A88-46804

p 97 A88-55363

p 21 A88-43746

p 17 N88-21472

or satellites p 69 N88-22225 spects of a rotating station for the year 2025 p 8 N88-26397 oplications p 77 A88-55320 orbiting systems p 3 A88-35877 p 7 N88-23828 SB) Operational capabilities of generic advanced launch system concepts p 86 A88-52374 Superfluid Helium On-Orbit Transfer (SHOOT) operatons [NASA-TM-101009] p 88 N88-28084 KITTEL, PETER The superfluid helium on-orbit transfer (SHOOT) flight experiment p 5 A88-53221 KLEINAU Study of the optimization of satellite system design for [MBB-URV-135] p 11 N88-20332

JOSHI, SURESH M.

JOYNER, K. H.

JUANG, JER-NAM

[IAF PAPER 88-295]

stations

flexible spacecraft

Synthesis of fine-pointing control systems for large,

Controller synthesis for flexible spacecraft using

A technique for the measurement of environmental

Identification of large structures on orbit - A survey

levels of microwave radiation around satellite earth

multivariable loop-shaping and factorization methods

p 24 A88-33446

p 26 A88-34796

p 56 A88-38115

p 97 A88-55379

KLOMPSTRA, MARTIN H.	KRISHAN, BAL	LAGERQUIST, NORMAN
SIMSAT: Simulation package for flexible systems.	Risk management for the Space Station program [IAF PAPER 88-061] p 97 A88-55331	Effect of air mass on modal tests p 41 A88-50860
Beams in space [TW-278] p 48 N88-20348	KRISHEN, KUMAR	LALOE, JACQUES Safety of extravehicular space activities
KOBAYASHI, HISATO	Robotic vision/sensing for space applications	p 79 N88-26038
Design of a controller for mechanical systems by the	p 74 A88-42642 KRMOIAN, M. N.	LAN, E. H. A technique to evaluate coatings for atomic oxygen
generalized energy function p 27 A88-34891	'Glazar' - An orbital ultraviolet telescope	resistance p 65 A88-42372
KOBAYASHI, MOTOHIRO Digital sequential shunt regulator for solar power	p 91 A88-38826	LANGE, THOMAS
conditioning of Engineering Test Satellite (ETS-V)	KROLICZEK, E. J. A high power spacecraft thermal management system	Tasks of the simulation installations for space flight operations in the operations center for manned space
p 86 A88-54696	[AIAA PAPER 88-2702] p 21 A88-43754	laboratories p 10 A88-46516
KOCH, D. Astrophysics space observatories - The next 25 years	KROTIUK, W. J.	Generic model laboratory tests for large flexible structure
p 1 A88-34537	Fabric space radiators [DE88-005569] p 17 N88-21237	control [IAF PAPER 88-294] p 47 A88-55378
KOCH, J.	KRUTENAT, R. C.	LASHLEE, ROBERT W., JR.
Alternative module configurations for advanced solar arrays on low orbit and extended lifetime missions (AMOC	High temperature coatings; Proceedings of the	Moving-bank multiple model adaptive estimation applied
2)	Symposium, Orlando, FL, Oct. 7-9, 1986 p 88 A88-24817	to flexible spacestructure control [AD-A190761] p 49 N88-22071
[ESA-CR(P)-2581] p 62 N88-30182	KU, J.	LASKIN, R. A.
KOEHNE, R. Performance of focusing mirror systems for the solar	A high power spacecraft thermal management system	NASA Office of Space Sciences and Applications study
dynamic energy supply of space stations	[AIAA PAPER 88-2702] p 21 A88-43754 KU, JENTUNG	on Space Station attached payload pointing [AIAA PAPER 88-4105] p 36 A88-50209
p 85 A88-49750	Design and testing of a high power spacecraft thermal	Precision pointing of scientific instruments on space
KOELLE, H. HERMANN	management system [NASA-TM-4051] p 23 N88-26389	station: The LFGGREC perspective p 42 A88-50979
Lunar orbit service station [IAF PAPER 88-618] p 6 A88-55454	[NASA-TM-4051] p 23 N88-26389 KUBAN, D. P.	LAUB, ALAN J. Kalman filtering for second-order models
KOENOV, D. Z.	Traction-drive telerobot for space manipulation	p 28 A88-36718
Secular effects in the translational-rotational motion of	p 75 A88-42668 Operational experience and design recommendations	LAUPA, THOMAS G.
an orbital station with artificial gravity p 90 A88-36123 KOFAL. ALLEN E.	for teleoperated flight hardware p 78 N88-21489	Plasma contactor design for electrodynamic tether applications p 57 A88-46807
Orbital transfer vehicle concept definition and system	KUBICHEK, ROBERT F.	LAWLER, ANDREW
analysis study. Volume 2: OTV concept definition and	Distributed and concurrent computation for space structures	Space for rent? p 5 A88-51133
evaluation. Book 1: Mission and system requirements [NASA-CR-179321] p 7 N88-20339	[AAS PAPER 86-397] p 28 A88-35117	LAZARETH, O. Nuclear propulsion systems for orbit transfer based on
KOHARCHIK, MIKE	KUDRIN, OLEG IVANOVICH	the particle bed reactor p 87 N88-24272
Laboratory feasibility study of a composite embedded	High-temperature solar energy systems for spacecraft power and propulsion units p 85 A88-50769	LAZAREV, V. I.
fiber optic sensor for measurement of structural	KUKULKA, J. R.	Relationship between characteristics of low-energy electrons and geomagnetic disturbance in geostationary
vibrations (AD-A194270) p 71 N88-28754	Development of 8 cm x 8 cm silicon gridded back solar	orbit p 62 N88-30501
KOHN, W.	cell for space station p 62 A88-34312 KULKARNI, SUNIL SHRIKRISHNA	LEAGUE, MARK
Robot path planning in space p 74 A88-42328	Automatic feedback control of a rigid body for finite	Solar dynamic heat rejection technology. Task 2: Heat pipe radiator development
KONINK, T. The Hipparcos solar panels p 14 A88-45452	displacements p 51 N88-24674	[NASA-CR-182141] p 23 N88-23182
The Hipparcos solar panels p 14 A88-45452 KOONS, H. C.	KUMAR, K. Dynamics and control of large space platforms and small	LEBLANC, M.
Several spacecraft-charging event on SCATHA in	experimental payloads p 30 A88-42582	Design, development and evaluation of Stanford/Ames EVA prehensors
September 1982 p 58 A88-51392	KUMAZAWA, HIROYUKI	[NASA-CR-182688] p 78 N88-22540
A severe spacecraft-charging event on SCATHA in September 1982	Ka, C, S frequency bands, multi-beam deployable antenna system for large-capacity communication	LEBRETON, JP. Laboratory model of a Tethered Satellite - Current
[AD-A193007] p 61 N88-26396	satellite p 54 A88-33448	collection upon and sheath formation around a charged
KOOPMANN, H. J. C.	KUNATH, R. R.	body in a drifting magnetoplasma p 57 A88-46806
A resupply scenario for the Columbus Mantended Freeflyer (MTFF) p 5 A88-52337	System architecture of MMIC-based large aperture arrays for space applications p 55 A88-35274	ESA report to the 27th COSPAR meeting [ESA-SP-1098] p 102 N88-30556
Freeflyer (MTFF) p 5 A88-52337 KORENSTEIN, DAVID A.	KURIKI, KYOICHI	LEE, FU-MING
Potential GPS user architecture for the NASA Space	An energetics experiment on a space platform	Decentralized model reference adaptive control of large
Station based on Landsat 4/5 experience	p 3 A88-40571 KUSSMAUL, MICHAEL	flexible structures p 45 A88-54587 LEE, K. Y.
p 3 A88-37398 KORSCH, DIETRICH	Arc-textured metal surfaces for high thermal emittance	System identification for space control laboratory
Reflective optics; Proceedings of the Meeting, Los	space radiators	experiment (SCOLE) using distributed parameter models
Angeles, CA, Jan. 15, 16, 1987 [SPIE-751] p 89 A88-34536	[NASA-TM-100894] p 69 N88-24754 KUVSHINOV, V. M.	p 26 A88-34792 LEE. S. W.
[SPIE-751] p 89 A88-34536 KOSE, S.	Method for the experimental determination of the	Case study of active array feed compensation with
Far infrared spectroscopy telescope (FIRST) inflatable	frequency characteristics of an elastic flight vehicle with	sidelobe control for reflector surface distortion
thermal shield, phase 1 ISB/FIS/108(87)CZI p 24 N88-30552	a digital control system p 34 A88-50095 KUWAJIMA, SABURO	[NASA-TM-100287] p 60 N88-23073 LEGER, L.
[SR/FIS/108(87)CZ] p 24 N88-30552 KOSUT, ROBERT L.	Digital sequential shunt regulator for solar power	Space station neutral external environment
Minimum-time control of large space structures	conditioning of Engineering Test Satellite (ETS-V)	p 69 N88-25392
p 29 A88-42576 Adaptive control of large space structures - Uncertainty	p 86 A88-54696 KUZ'MIN, S. P.	LEGER, PIERRE Load dependent subspace reduction methods for
estimation and robust control calibration	Determination of the motion of the Salyut 6 and 7 orbital	structural dynamic computations p 42 A88-53420
p 32 A88-46412	stations with respect to the mass center in the slow spin	LEGGE, H.
Integrated structural/controller optimization of large space structures	mode on the basis of measurement data p 31 A88-45467	Studies on rocket exhaust plumes and impingement effects related to the Columbus Space Station program:
[AIAA PAPER 88-4305] p 39 A88-50430	KWAK, MOON K.	Executive summary
KOTNIK, PAUL T.	Control of spacecraft with multi-targeted flexible	[DFVLR-IB-222-88-A-12] p 88 N88-29862
Laboratory facility for flexible structure control experiments p 42 A88-53681	antennas	LEGOSTAEV, V. P. The system of the Mir station motion control
KOVAL, LESLIE R.	[AIAA PAPER 88-4268] p 40 A88-50441 KYROUDIS, GEORGE A.	[IAF PAPER 88-334] p 48 A88-55397
Control of large space structures using reduced order	Advantages of tether release of satellites from elliptic	LEIFER, LARRY J. Design, development and evaluation of Stanford/Ames
models [IAF PAPER 88-272] p 47 A88-55371	orbits p 46 A88-55062	EVA prehensors
KOZLOV, A. G.	_	[NASA-CR-182688] p 78 N88-22540
Relationship between characteristics of low-energy	L	LEINER, BARRY M.
electrons and geomagnetic disturbance in geostationary orbit p 62 N88-30501		Telescience Testbed Pilot Project - Evaluation environment for Space Station operations
KRAMER, TED J.	LA PRADE, NICK	[AIAA PAPER 88-4629] p 5 A88-53666
Two-phase ammonia thermal bus performance	System architecture of MMIC-based large aperture arrays for space applications p 55 A88-35274	LEONARD, B. P. Operational capabilities of generic advanced launch
[AIAA PAPER 88-2701] p 21 A88-43753 KRAVTSOV, A. E.	LABINI, GIOVANNI SYLOS	system concepts p 86 A88-52374
Electrotopographic investigation of the degradation	Space inspection device for extravehicular repairs -	LESOTA, S. K.
dynamics of dielectric layers in space p 62 A88-33958	SPIDER system [IAF PAPER 88-029] p 77 A88-55324	Possible variants of microwave-beam structure for satellite solar power plants p 85 A88-50671
· · · · · · · · · · · · · · · · · · ·	LACEY, W. GREG	LEUNG, PHILIP
KREEB, H.		

KREEB, H.
Orbital replaceable unit-cold plate dry thermal interface concept and test measurements p 20 A88-42843

Individual satellite power requirements calculated from specified constellation performance p 60 N88-24392

Test program to evaluate ESD susceptibility of EVA suit material p 73 A88-33789

LEVE, HOWARD	LONGMAN, RICHARD W.	MANGAN, JOSEPH J.
Effect of air mass on modal tests p 41 A88-50860 LEWIS. DAVID. III	Attituded tumbling due to flexibility in satellite mounted robots	A description of the Expandable Platform p 4 A88-43964
Research in ceramics at the U.S. Naval Research Lab	[AIAA PAPER 88-4096] p 35 A88-50201	MANVI, R.
p 68 A88-49996	The kinetics and workspace of a robot mounted on a	Parametric studies of electric propulsion systems for
LEWIS, NORRIS Fiber optic systems for mobile platforms; Proceedings	satellite that is free to rotate and translate [AIAA PAPER 88-4097] p 75 A88-50202	orbit transfer vehicles [AIAA PAPER 88-2835] p 84 A88-44668
of the Meeting, San Diego, CA, Aug. 20, 21, 1987	A mathematical theory of learning control for linear	MANZELLA, D. H.
[SPIE-840] p 93 A88-43176 LEWIS, RUTHAN	discrete multivariable systems	An experimental investigation of the effect of test-cell
Crew-induced load measurement for space operations	[AIAA PAPER 88-4313] p 40 A88-50438 LOOMIS, PETER	pressure on the performance of resistojets [AIAA PAPER 88-3286] p 84 A88-44820
p 73 A88-35455	Spacecraft applications of advanced global positioning	MARANDI, S. R.
A method for measuring the effect of grip surface on torque production during hand/arm rotation	system technology	An alternate transition from the Lagrangian of a satellite
p 74 A88-35462	[NASA-CR-172055] p 8 N88-27180 LOPARO, K.	to equations of motion [AIAA PAPER 88-4221] p 37 A88-50362
LEWIS, WILLIAM Space Station tool kit p 94 A88-43967	A nonlinear filtering process diagnostic system for the	MARCHAL, C.
LI, WEI-WEI	Space Station p 101 N88-29417	Astrodynamics problems of the Space Station
A study of SCATHA eclipse charging	LORENZI, RENE Perspectives of Soviet cosmonautics. I	p 33 A88-47907 MARCHETTI, M.
p 58 A88-53470 LICHTENBERG, BYRON K.	p 95 A88-49026	Measurements of thermal conductivity and thermal
Transitioning from Spacelab to Space Station science	LORENZINI, E. C.	contact resistance in composite materials for space applications p 64 A88-36982
[AAS PAPER 86-284] p 3 A88-35131 LIKHODED, A. 1.	Transient dynamics of the Tether Elevator/Crawler System	MAREC, JP.
Spatial evolution of the residual-acceleration vector on	[AIAA PAPER 88-4280] p 39 A88-50407	Astrodynamics problems of the Space Station
board spacecraft p 43 A88-53945 LILLINGTON, D. R.	LORENZINI, ENRICO C. Analytical investigation of the dynamics of tethered	p 33 A88-47907 MARKS, GEOFF W.
Development of 8 cm x 8 cm silicon gridded back solar	constellations in earth orbit	Space station mobile transporter p 98 N88-21488
cell for space station p 62 A88-34312	[NASA-CR-179371] p 53 N88-28950	MAROTTE, HENRI
LIM, SANG S. Modelling and stabilization of flexible spacecraft under	LOVELACE, U. M. Large space systems requirements, deployable	Space cabin atmosphere and extracurricular sortie p 100 N88-26023
the influence of orbital perturbation p 27 A88-34914	concepts, and technology issues	MARR, DUANE R.
LIN, P. S. A plan for time-phased incorporation of automation and	[AAS PAPER 86-394] p 2 A88-35115	Individual satellite power requirements calculated from
robotics on the US space station p 80 N88-29377	LOVETT, P. J. Development and qualification of the OLYMPUS	specified constellation performance p 60 N88-24392 MARSDEN, R.
LIN, R. R.	antenna pointing mechanism p 16 N88-21227	ESA report to the 27th COSPAR meeting
Beam modifications of structural systems utilizing the receptance approach with static flexibility	LU, S. C.	[ESA-SP-1098] p 102 N88-30556
p 14 A88-50891	Robust decentralized control of large flexible structures	MARTIN, ANDREW Noncryogenic propellants for a nuclear orbit transfer
LIN, Y. H. NASA Office of Space Sciences and Applications study	[DE88-005416] p 48 N88-20902	vehicle p 87 N88-24444
on Space Station attached payload pointing	LUCY, M. Motion synchronization of a mechanism to deploy and	MARTIN, GARY L.
[AIAA PAPER 88-4105] p 36 A88-50209 LIN, YU-HWAN	restow a truss beam p 77 N88-21474	Systems analysis of a low-acceleration research facility
Decentralized model reference adaptive control of large	LUDEWIG, H.	[AIAA PAPER 88-3512] p 93 A88-42909
flexible structures p 45 A88-54587	Nuclear propulsion systems for orbit transfer based on the particle bed reactor p 87 N88-24272	MARTIN, JÖSEPH W. Laboratory facility for flexible structure control
LINDNER, DOUGLAS K. The LDCM actuator for vibration suppression	LUKEZ, RUDY	experiments p 42 A88-53681
[NASA-CR-182898] p 50 N88-23940	Design, fabrication, and testing of rolled carbon/epoxy	MARTINDALE, D. L.
LINK, M. Procedures for updating dynamic mathematical models.	struts for Space Station application p 62 A88-33018 LUKICH, MICHAEL S.	Bayonet for superfluid helium transfer in space p. 22 A88-53220
Procedures for updating dynamic mathematical models, test phase	LUKICH, MICHAEL S. System identification and control of the truss experiment	p 22 A88-53220 MARTINEZ-SANCHEZ, MANUEL
Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29852	LUKICH, MICHAEL S. System identification and control of the truss experiment A retrospective	p 22 A88-53220 MARTINEZ-SANCHEZ, MANUEL The use of electrodynamic tethers for generating power
Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29852 LIPPAY, A. L. Simulation of space manipulator operations (Eurosim)	LUKICH, MICHAEL S. System identification and control of the truss experiment A retrospective [AIAA PAPER 88-4152] p 36 A88-50246 Recent results in identification and control of a flexible	p 22 A88-53220 MARTINEZ-SANCHEZ, MANUEL
Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29852 LIPPAY, A. L. Simulation of space manipulator operations (Eurosim) p 10 A88-46982	LUKICH, MICHAEL S. System identification and control of the truss experiment - A retrospective [AIAA PAPER 88-4152] p 36 A88-50246 Recent results in identification and control of a flexible truss structure p 44 A88-54576	p 22 A68-53220 MARTINEZ-SANCHEZ, MANUEL The use of electrodynamic tethers for generating power and thrust in space [AAS PAPER 86-366] p 55 A88-35099 MARYNIAK, GREGG E.
Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29852 LIPPAY, A. L. Simulation of space manipulator operations (Eurosim) p 10 A88-46982 Simulation of space manipulator operations (EUROSIM)	LUKICH, MICHAEL S. System identification and control of the truss experiment A retrospective [AIAA PAPER 88-4152] p 36 A88-50246 Recent results in identification and control of a flexible	p 22 A88-53220 MARTINEZ-SANCHEZ, MANUEL The use of electrodynamic tethers for generating power and thrust in space [AAS PAPER 86-366] p 55 A88-35099 MARYNIAK, GREGG E. Design of a solar power satellite for construction from
Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29852 LIPPAY, A. L. Simulation of space manipulator operations (Eurosim) p 10 A88-46982 Simulation of space manipulator operations (EUROSIM) [NLR-MP-87017-U] p 80 N88-26678	LUKICH, MICHAEL S. System identification and control of the truss experiment A retrospective [AIAA PAPER 88-4152] p 36 A88-50246 Recent results in identification and control of a flexible truss structure p 44 A88-54576 Identification of a flexible truss structure using lattice filters p 45 A88-54577 LUM, HENRY, JR.	p 22 A88-53220 MARTINEZ-SANCHEZ, MANUEL The use of electrodynamic tethers for generating power and thrust in space [AAS PAPER 86-366] p 55 A88-35099 MARYNIAK, GREGG E. Design of a solar power satellite for construction from lunar materials p 9 A88-40566 Space manufacturing 6 - Nonterrestrial resources,
Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29852 LIPPAY, A. L. Simulation of space manipulator operations (Eurosim) p 10 A88-46982 Simulation of space manipulator operations (EUROSIM)	LUKICH, MICHAEL S. System identification and control of the truss experiment A retrospective [AIAA PAPER 88-4152] p 36 A88-50246 Recent results in identification and control of a flexible truss structure p 44 A88-54576 Identification of a flexible truss structure using lattice filters p 45 A88-54577 LUM, HENRY, JR. Technology forecast and applications for autonomous,	p 22 A88-53220 MARTINEZ-SANCHEZ, MANUEL The use of electrodynamic tethers for generating power and thrust in space [AAS PAPER 86-366] p 55 A88-35099 MARYNIAK, GREGG E. Design of a solar power satellite for construction from lunar materials p 9 A88-40566 Space manufacturing 6 - Nonterrestrial resources, biosciences, and space engineering; Proceedings of the
Procedures for updating dynamic mathematical models, test phase [MEBS-38/87]	LUKICH, MICHAEL S. System identification and control of the truss experiment A retrospective [AIAA PAPER 88-4152] p 36 A88-50246 Recent results in identification and control of a flexible truss structure p 44 A88-54576 Identification of a flexible truss structure using lattice filters p 45 A88-54577 LUM, HENRY, JR.	p 22 A88-53220 MARTINEZ-SANCHEZ, MANUEL The use of electrodynamic tethers for generating power and thrust in space [AAS PAPER 86-366] p 55 A88-35099 MARYNIAK, GREGG E. Design of a solar power satellite for construction from lunar materials p 9 A88-40566 Space manufacturing 6 - Nonterrestrial resources,
Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29852 LIPPAY, A. L. Simulation of space manipulator operations (Eurosim) p 10 A88-46982 Simulation of space manipulator operations (EUROSIM) p 10 A88-46982 (EUROSIM) p 80 N88-26678 LIPS, K. W. Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471 LITWIN, TODD	LUKICH, MICHAEL S. System identification and control of the truss experiment A retrospective [AIAA PAPER 88-4152] p 36 A88-50246 Recent results in identification and control of a flexible truss structure p 44 A88-54576 Identification of a flexible truss structure using lattice filters p 45 A88-54577 LUM, HENRY, JR. Technology forecast and applications for autonomous, intelligent systems [IAF PAPER 88-025] p 6 A88-55322 LUNA, JOEL	p 22 A88-53220 MARTINEZ-SANCHEZ, MANUEL The use of electrodynamic tethers for generating power and thrust in space [AAS PAPER 86-366] p 55 A88-35099 MARYNIAK, GREGG E. Design of a solar power satellite for construction from lunar materials p 9 A88-40566 Space manufacturing 6 - Nonterrestrial resources, biosciences, and space engineering; Proceedings of the Eighth Princeton/AIAA/SSI Conference, Princeton, NJ, May 6-9, 1987 p 94 A88-43951 MASCY, ALFRED C.
Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29852 LIPPAY, A. L. Simulation of space manipulator operations (Eurosim) p 10 A88-46982 Simulation of space manipulator operations (EUROSIM) p 10 A88-46982 LIPNAM [NLR-MP-87017-U] p 80 N88-26678 LIPS, K. W. Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471 LITWIN, TODD Real-time model-based vision system for object acquisition and tracking p 28 A88-36311	LUKICH, MICHAEL S. System identification and control of the truss experiment - A retrospective [AIAA PAPER 88-4152] p 36 A88-50246 Recent results in identification and control of a flexible truss structure p 44 A88-54576 Identification of a flexible truss structure using lattice filters p 45 A88-54577 LUM, HENRY, JR. Technology forecast and applications for autonomous, intelligent systems [IAF PAPER 88-025] p 6 A88-55322	p 22 A88-53220 MARTINEZ-SANCHEZ, MANUEL The use of electrodynamic tethers for generating power and thrust in space [AAS PAPER 86-366] p 55 A88-35099 MARYNIAK, GREGG E. Design of a solar power satellite for construction from lunar materials p 9 A88-40566 Space manufacturing 6 - Nonterrestrial resources, biosciences, and space engineering; Proceedings of the Eighth Princeton/AIAA/SSI Conference, Princeton, NJ, May 6-9, 1987 p 94 A88-43951 MASCY, ALFRED C. Performance considerations for the astrometric
Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29852 LIPPAY, A. L. Simulation of space manipulator operations (Eurosim) p 10 A88-46982 Simulation of space manipulator operations (EUROSIM) p 10 A88-46982 Simulation of space manipulator operations (EUROSIM) [NLR-MP-87017-U] p 80 N88-26678 LIPS, K. W. Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471 LITWIN, TODD Real-time model-based vision system for object acquisition and tracking p 28 A88-36311 Sensing and perception research for space telerobotics	LUKICH, MICHAEL S. System identification and control of the truss experiment - A retrospective [AIAA PAPER 88-4152] p 36 A88-50246 Recent results in identification and control of a flexible truss structure p 44 A88-54576 Identification of a flexible truss structure using lattice filters p 45 A88-54577 LUM, HENRY, JR. Technology forecast and applications for autonomous, intelligent systems [IAF PAPER 88-025] p 6 A88-55322 LUNA, JOEL Cost effectiveness of on-orbit servicing for large constellations [AIAA PAPER 88-3519] p 94 A88-44527	p 22 A88-53220 MARTINEZ-SANCHEZ, MANUEL The use of electrodynamic tethers for generating power and thrust in space [AAS PAPER 86-366] p 55 A88-35099 MARYNIAK, GREGG E. Design of a solar power satellite for construction from lunar materials p 9 A88-40566 Space manufacturing 6 - Nonterrestrial resources, biosciences, and space engineering; Proceedings of the Eighth Princeton/AIAA/SSI Conference, Princeton, NJ, May 6-9, 1987 p 94 A88-43951 MASCY, ALFRED C.
Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29852 LIPPAY, A. L. Simulation of space manipulator operations (Eurosim) p 10 A88-46982 Simulation of space manipulator operations (EUROSIM) [NLR-MP-87017-U] p 80 N88-26678 LIPS, K. W. Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471 LITWIN, TODD Real-time model-based vision system for object acquisition and tracking p 28 A88-36311 Sensing and perception research for space telerobotics at JPL LIU, D.	LUKICH, MICHAEL S. System identification and control of the truss experiment - A retrospective [AIAA PAPER 88-4152] p 36 A88-50246 Recent results in identification and control of a flexible truss structure p 44 A88-54576 Identification of a flexible truss structure using lattice filters p 45 A88-54577 LUM, HENRY, JR. Technology forecast and applications for autonomous, intelligent systems [IAF PAPER 88-025] p 6 A88-55322 LUNA, JOEL Cost effectiveness of on-orbit servicing for large constellations [IAIAA PAPER 88-3519] p 94 A88-44527 LUNDE, STEVEN M.	p 22 A88-53220 MARTINEZ-SANCHEZ, MANUEL The use of electrodynamic tethers for generating power and thrust in space [AAS PAPER 86-366] p 55 A88-35099 MARYNIAK, GREGG E. Design of a solar power satellite for construction from lunar materials p 9 A88-40566 Space manufacturing 6 - Nonterrestrial resources, biosciences, and space engineering; Proceedings of the Eighth Princeton/AIAA/SSI Conference, Princeton, NJ, May 6-9, 1987 p 94 A88-43951 MASCY, ALFRED C. Performance considerations for the astrometric Telescope Facility on the Phase I Space Station p 92 A88-42539 MATTHEWS, A. P.
Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29852 LIPPAY, A. L. Simulation of space manipulator operations (Eurosim) p 10 A88-46982 Simulation of space manipulator operations (EUROSIM) [NLR-MP-87017-U] p 80 N88-26678 LIPS, K. W. Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471 LITWIN, TODD Real-time model-based vision system for object acquisition and tracking p 28 A88-36311 Sensing and perception research for space telerobotics at JPL LIU, D. An optimal maneuver control method for the spacecraft	LUKICH, MICHAEL S. System identification and control of the truss experiment - A retrospective [AIAA PAPER 88-4152] p 36 A88-50246 Recent results in identification and control of a flexible truss structure p 44 A88-54576 Identification of a flexible truss structure using lattice filters p 45 A88-54577 LUM, HENRY, JR. Technology forecast and applications for autonomous, intelligent systems [IAF PAPER 88-025] p 6 A88-55322 LUNA, JOEL Cost effectiveness of on-orbit servicing for large constellations [AIAA PAPER 88-3519] p 94 A88-44527 LUNDE, STEVEN M. FLOSIN: A fluid loop analyzer for SINDA p 23 N88-22321	p 22 A88-53220 MARTINEZ-SANCHEZ, MANUEL The use of electrodynamic tethers for generating power and thrust in space [AAS PAPER 86-366] p 55 A88-35099 MARYNIAK, GREGG E. Design of a solar power satellite for construction from lunar materials p 9 A88-40566 Space manufacturing 6 - Nonterrestrial resources, biosciences, and space engineering; Proceedings of the Eighth Princeton/AIAA/SSI Conference, Princeton, NJ, May 6-9, 1987 MASCY, ALFRED C. Performance considerations for the astrometric Telescope Facility on the Phase I Space Station p 92 A88-42539 MATTHEWS, A. P. Development of an intermodule connector for
Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29852 LIPPAY, A. L. Simulation of space manipulator operations (Eurosim) p 10 A88-46982 Simulation of space manipulator operations (EUROSIM) [NLR-MP-87017-U] p 80 N88-26678 LIPS, K. W. Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471 LITWIN, TODD Real-time model-based vision system for object acquisition and tracking p 28 A88-36311 Sensing and perception research for space telerobotics at JPL LIU, D.	LUKICH, MICHAEL S. System identification and control of the truss experiment - A retrospective [AIAA PAPER 88-4152] p 36 A88-50246 Recent results in identification and control of a flexible truss structure p 44 A88-54576 Identification of a flexible truss structure using lattice filters p 45 A88-54577 LUM, HENRY, JR. Technology forecast and applications for autonomous, intelligent systems [IAF PAPER 88-025] p 6 A88-55322 LUNA, JOEL Cost effectiveness of on-orbit servicing for large constellations [IAIAA PAPER 88-3519] p 94 A88-44527 LUNDE, STEVEN M. FLOSIN: A fluid loop analyzer for SINDA p 23 N88-22321 LUST, ROBERT V.	martinez-sanchez, manuel The use of electrodynamic tethers for generating power and thrust in space [AAS PAPER 86-366] p 55 A88-35099 MARYMIAK, GREGG E. Design of a solar power satellite for construction from lunar materials p 9 A88-40566 Space manufacturing 6 - Nonterrestrial resources, biosciences, and space engineering; Proceedings of the Eighth Princeton/AIAA/SSI Conference, Princeton, NJ, May 6-9, 1987 p 94 A88-43951 MASCY, ALFRED C. Performance considerations for the astrometric Telescope Facility on the Phase I Space Station p 92 A88-42539 MATTHEWS, A. P. Development of an intermodule connector for serviceable spacecraft p 16 N88-21212 MAXFIELD, BRUCE W.
Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29852 LIPPAY, A. L. Simulation of space manipulator operations (Eurosim) p 10 A88-46982 Simulation of space manipulator operations (EUROSIM) p 10 A88-46982 Simulation of space manipulator operations (EUROSIM) [NLR-MP-87017-U] p 80 N88-26678 LIPS, K. W. Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471 LITWIN, TODD Real-time model-based vision system for object acquisition and tracking p 28 A88-36311 Sensing and perception research for space telerobotics at JPL LIU, D. An optimal maneuver control method for the spacecraft with flexible appendages [AIAA PAPER 88-4255] p 38 A88-50386 LIU, RUIYAN	LUKICH, MICHAEL S. System identification and control of the truss experiment - A retrospective [AIAA PAPER 88-4152] p 36 A88-50246 Recent results in identification and control of a flexible truss structure p 44 A88-54576 Identification of a flexible truss structure using lattice filters p 45 A88-54577 LUM, HENRY, JR. Technology forecast and applications for autonomous, intelligent systems [IAF PAPER 88-025] p 6 A88-55322 LUNA, JOEL Cost effectiveness of on-orbit servicing for large constellations [AIAA PAPER 88-3519] p 94 A88-44527 LUNDE, STEVEN M. FLOSIN: A fluid loop analyzer for SINDA p 23 N88-22321	MARTINEZ-SANCHEZ, MANUEL The use of electrodynamic tethers for generating power and thrust in space [AAS PAPER 86-366] p 55 A88-35099 MARYNIAK, GREGG E. Design of a solar power satellite for construction from lunar materials p 9 A88-40566 Space manufacturing 6 - Nonterrestrial resources, biosciences, and space engineering; Proceedings of the Eighth Princeton/AIAA/SSI Conference, Princeton, NJ, May 6-9, 1987 p 94 A88-43951 MASCY, ALFRED C. Performance considerations for the astrometric Telescope Facility on the Phase I Space Station p 92 A88-42539 MATTHEWS, A. P. Development of an intermodule connector for serviceable spacecraft p 16 N88-21212 MAXFIELD, BRUCE W. Electromagnetic damping and vibration isolation of
Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29852 LIPPAY, A. L. Simulation of space manipulator operations (Eurosim) p 10 A88-46982 Simulation of space manipulator operations (EUROSIM) p 10 A88-46982 Simulation of space manipulator operations (EUROSIM) p 80 N88-26678 LIPS, K. W. Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471 LITWIN, TODD Real-time model-based vision system for object acquisition and tracking p 28 A88-36311 Sensing and perception research for space telerobotics at JPL p 74 A88-42657 LIU, D. An optimal maneuver control method for the spacecraft with flexible appendages [AIAA PAPER 88-4255] p 38 A88-50386 LIU, RUIYAN lidentification of multiple-input modal parameters from	LUKICH, MICHAEL S. System identification and control of the truss experiment - A retrospective [AIAA PAPER 88-4152] p 36 A88-50246 Recent results in identification and control of a flexible truss structure p 44 A88-54576 Identification of a flexible truss structure using lattice filters p 45 A88-54577 LUM, HENRY, JR. Technology forecast and applications for autonomous, intelligent systems [IAF PAPER 88-025] p 6 A88-55322 LUNA, JOEL Cost effectiveness of on-orbit servicing for large constellations [IAIA PAPER 88-3519] p 94 A88-44527 LUNDE, STEVEN M. FLOSIN: A fluid loop analyzer for SINDA p 23 N88-22321 LUST, ROBERT V. Control augmented structural synthesis [NASA-CR-4132] p 48 N88-20290 LYNCH, P. J.	martinez-sanchez, manuel The use of electrodynamic tethers for generating power and thrust in space [AAS PAPER 86-366] p 55 A88-35099 MARYMIAK, GREGG E. Design of a solar power satellite for construction from lunar materials p 9 A88-40566 Space manufacturing 6 - Nonterrestrial resources, biosciences, and space engineering; Proceedings of the Eighth Princeton/AIAA/SSI Conference, Princeton, NJ, May 6-9, 1987 p 94 A88-43951 MASCY, ALFRED C. Performance considerations for the astrometric Telescope Facility on the Phase I Space Station p 92 A88-42539 MATTHEWS, A. P. Development of an intermodule connector for serviceable spacecraft p 16 N88-21212 MAXFIELD, BRUCE W.
Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29852 LIPPAY, A. L. Simulation of space manipulator operations (Eurosim) p 10 A88-46982 Simulation of space manipulator operations (EUROSIM) [NLR-MP-87017-U] p 80 N88-26678 LIPS, K. W. Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471 LITWIN, TODD Real-time model-based vision system for object acquisition and tracking p 28 A88-36311 Sensing and perception research for space telerobotics at JPL LIU, D. An optimal maneuver control method for the spacecraft with flexible appendages [AIAA PAPER 88-4255] p 38 A88-50386 LIU, RUIYAN Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 LOBDELL, G. M.	LUKICH, MICHAEL S. System identification and control of the truss experiment - A retrospective [AIAA PAPER 88-4152] p 36 A88-50246 Recent results in identification and control of a flexible truss structure p 44 A88-54576 Identification of a flexible truss structure using lattice filters p 45 A88-54577 LUM, HENRY, JR. Technology forecast and applications for autonomous, intelligent systems [IAF PAPER 88-025] p 6 A88-55322 LUNA, JOEL Cost effectiveness of on-orbit servicing for large constellations [AIAA PAPER 88-3519] p 94 A88-44527 LUNDE, STEVEN M. FLOSIN: A fluid loop analyzer for SINDA p 23 N88-22321 LUST, ROBERT V. Control augmented structural synthesis [NASA-CR-4132] p 48 N88-20290	MARTINEZ-SANCHEZ, MANUEL The use of electrodynamic tethers for generating power and thrust in space [AAS PAPER 86-366] p 55 A88-35099 MARYNIAK, GREGG E. Design of a solar power satellite for construction from lunar materials p 9 A88-40566 Space manufacturing 6 - Nonterrestrial resources, biosciences, and space engineering; Proceedings of the Eighth Princeton/AIAA/SSI Conference, Princeton, NJ, May 6-9, 1987 p 94 A88-43951 MASCY, ALFRED C. Performance considerations for the astrometric Telescope Facility on the Phase I Space Station p 92 A88-42539 MATTHEWS, A. P. Development of an intermodule connector for serviceable spacecraft p 16 N88-21212 MAXFIELD, BRUCE W. Electromagnetic damping and vibration isolation of space structures [AD-A191492] p 51 N88-24665 MAY, GAYLE L.
Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29852 LIPPAY, A. L. Simulation of space manipulator operations (Eurosim) p 10 A88-46982 Simulation of space manipulator operations (Eurosim) p 10 A88-46982 Simulation of space manipulator operations (EUROSIM) p 80 N88-26678 LIPS, K. W. Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471 LITWIN, TODD Real-time model-based vision system for object acquisition and tracking p 28 A88-36311 Sensing and perception research for space telerobotics at JPL p 74 A88-42657 LIU, D. An optimal maneuver control method for the spacecraft with flexible appendages [AIAA PAPER 88-4255] p 38 A88-50386 LIU, RIUYAN Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 LOBDELL, G. M. Robot path planning in space p 74 A88-42328	LUKICH, MICHAEL S. System identification and control of the truss experiment - A retrospective [AIAA PAPER 88-4152] p 36 A88-50246 Recent results in identification and control of a flexible truss structure p 44 A88-54576 Identification of a flexible truss structure using lattice filters p 45 A88-54577 LUM, HENRY, JR. Technology forecast and applications for autonomous, intelligent systems [IAF PAPER 88-025] p 6 A88-55322 LUNA, JOEL Cost effectiveness of on-orbit servicing for large constellations [AIAA PAPER 88-3519] p 94 A88-44527 LUNDE, STEVEN M. FLOSIN: A fluid loop analyzer for SINDA p 23 N88-22321 LUST, ROBERT V. Control augmented structural synthesis [NASA-CR-4132] p 48 N88-20290 LYNCH, P. J. Active control for vibration damping	MARTINEZ-SANCHEZ, MANUEL The use of electrodynamic tethers for generating power and thrust in space [AAS PAPER 86-366] p 55 A88-35099 MARYNIAK, GREGG E. Design of a solar power satellite for construction from lunar materials p 9 A88-40566 Space manufacturing 6 - Nonterrestrial resources, biosciences, and space engineering; Proceedings of the Eighth Princeton/AIAA/SSI Conference, Princeton, NJ, May 6-9, 1987 MASCY, ALFRED C. Performance considerations for the astrometric Telescope Facility on the Phase I Space Station p 92 A88-42539 MATTHEWS, A. P. Development of an intermodule connector for serviceable spacecraft p 16 N88-21212 MAXFIELD, BRUCE W. Electromagnetic damping and vibration isolation of space structures [AD-A191492] p 51 N88-24665 MAY, GAYLE L. Aerospace century XXI: Space missions and policy;
Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29852 LIPPAY, A. L. Simulation of space manipulator operations (Eurosim) p 10 A88-46982 Simulation of space manipulator operations (EUROSIM) [NLR-MP-87017-U] p 80 N88-26678 LIPS, K. W. Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471 LITWIN, TODD Real-time model-based vision system for object acquisition and tracking p 28 A88-36311 Sensing and perception research for space telerobotics at JPL LIU, D. An optimal maneuver control method for the spacecraft with flexible appendages [AIAA PAPER 88-4255] p 38 A88-50386 LIU, RUIYAN Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 LOBDELL, G. M. Robot path planning in space p 74 A88-42328 LOEWY, R. G. Transfer matrix analysis of cable-stiffened hoop	LUKICH, MICHAEL S. System identification and control of the truss experiment - A retrospective [AIAA PAPER 88-4152] p 36 A88-50246 Recent results in identification and control of a flexible truss structure p 44 A88-54576 Identification of a flexible truss structure using lattice filters p 45 A88-54577 LUM, HENRY, JR. Technology forecast and applications for autonomous, intelligent systems [IAF PAPER 88-025] p 6 A88-55322 LUNA, JOEL Cost effectiveness of on-orbit servicing for large constellations [AIAA PAPER 88-3519] p 94 A88-44527 LUNDE, STEVEN M. FLOSIN: A fluid loop analyzer for SINDA p 23 N88-22321 LUST, ROBERT V. Control augmented structural synthesis [NASA-CR-4132] p 48 N88-20290 LYNCH, P. J. Active control for vibration damping	MARTINEZ-SANCHEZ, MANUEL The use of electrodynamic tethers for generating power and thrust in space [AAS PAPER 86-366] p 55 A88-35099 MARYNIAK, GREGG E. Design of a solar power satellite for construction from lunar materials p 9 A88-40566 Space manufacturing 6 - Nonterrestrial resources, biosciences, and space engineering; Proceedings of the Eighth Princeton/AIAA/SSI Conference, Princeton, NJ, May 6-9, 1987 p 94 A88-43951 MASCY, ALFRED C. Performance considerations for the astrometric Telescope Facility on the Phase I Space Station p 92 A88-42539 MATTHEWS, A. P. Development of an intermodule connector for serviceable spacecraft p 16 N88-21212 MAXFIELD, BRUCE W. Electromagnetic damping and vibration isolation of space structures [AD-A191492] p 51 N88-24665 MAY, GAYLE L.
Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29852 LIPPAY, A. L. Simulation of space manipulator operations (Eurosim) p 10 A88-46982 Simulation of space manipulator operations (EUROSIM) p 10 A88-46982 Simulation of space manipulator operations (EUROSIM) [NLR-MP-87017-U] p 80 N88-26678 LIPS, K. W. Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471 LITWIN, TODD Real-time model-based vision system for object acquisition and tracking p 28 A88-36311 Sensing and perception research for space telerobotics at JPL LIU, D. An optimal maneuver control method for the spacecraft with flexible appendages [AIAA PAPER 88-4255] p 38 A88-50386 LIU, RIUYAN Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 LOBDELL, G. M. Robot path planning in space p 74 A88-42328 LOEWY, R. G. Transfer matrix analysis of cable-stiffened hoop platforms	LUKICH, MICHAEL S. System identification and control of the truss experiment - A retrospective [AIAA PAPER 88-4152] p 36 A88-50246 Recent results in identification and control of a flexible truss structure p 44 A88-54576 Identification of a flexible truss structure using lattice filters p 45 A88-54577 LUM, HENRY, JR. Technology forecast and applications for autonomous, intelligent systems [IAF PAPER 88-025] p 6 A88-55322 LUNA, JOEL Cost effectiveness of on-orbit servicing for large constellations [IAIAA PAPER 88-3519] p 94 A88-44527 LUNDE, STEVEN M. FLOSIN: A fluid loop analyzer for SINDA p 23 N88-22321 LUST, ROBERT V. Control augmented structural synthesis [NASA-CR-4132] p 48 N88-20290 LYNCH, P. J. Active control for vibration damping p 32 A88-46410	MARTINEZ-SANCHEZ, MANUEL The use of electrodynamic tethers for generating power and thrust in space [AAS PAPER 86-366] p 55 A88-35099 MARYNIAK, GREGG E. Design of a solar power satellite for construction from lunar materials p 9 A88-40566 Space manufacturing 6 - Nonterrestrial resources, biosciences, and space engineering; Proceedings of the Eighth Princeton/AIAA/SSI Conference, Princeton, NJ, May 6-9, 1987 p 94 A88-43951 MASCY, ALFRED C. Performance considerations for the astrometric Telescope Facility on the Phase I Space Station p 92 A88-42539 MATTHEWS, A. P. Development of an intermodule connector for serviceable spacecraft p 16 N88-21212 MAXFIELD, BRUCE W. Electromagnetic damping and vibration isolation of space structures [AD-A191492] p 51 N88-24665 MAY, GAYLE L. Aerospace century XXI: Space missions and policy; Proceedings of the Thirty-third Annual AAS international Conference, Boulder, CO, Oct. 26-29, 1986 p 90 A88-35051
Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29852 LIPPAY, A. L. Simulation of space manipulator operations (Eurosim) p 10 A88-46982 Simulation of space manipulator operations (EUROSIM) p 10 A88-46982 Simulation of space manipulator operations (EUROSIM) p 80 N88-26678 LIPS, K. W. Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471 LITWIN, TODD Real-time model-based vision system for object acquisition and tracking p 28 A88-36311 Sensing and perception research for space telerobotics at JPL p 74 A88-42657 LIU, D. An optimal maneuver control method for the spacecraft with flexible appendages [AIAA PAPER 88-4255] p 38 A88-50386 LIU, RUIYAM Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 LOBDELL, G. M. Robot path planning in space p 74 A88-42328 LOEWY, R. G. Transfer matrix analysis of cable-stiffened hoop platforms p 46 A88-5489	LUKICH, MICHAEL S. System identification and control of the truss experiment - A retrospective [AIAA PAPER 88-4152] p 36 A88-50246 Recent results in identification and control of a flexible truss structure p 44 A88-54576 Identification of a flexible truss structure using lattice filters p 45 A88-54577 LUM, HENRY, JR. Technology forecast and applications for autonomous, intelligent systems [IAF PAPER 88-025] p 6 A88-55322 LUNA, JOEL Cost effectiveness of on-orbit servicing for large constellations [AIAA PAPER 88-3519] p 94 A88-44527 LUNDE, STEVEN M. FLOSIN: A fluid loop analyzer for SINDA p 23 N88-22321 LUST, ROBERT V. Control augmented structural synthesis [NASA-CR-4132] p 48 N88-20290 LYNCH, P. J. Active control for vibration damping	MARTINEZ-SANCHEZ, MANUEL The use of electrodynamic tethers for generating power and thrust in space [AAS PAPER 86-366] p 55 A88-35099 MARYNIAK, GREGG E. Design of a solar power satellite for construction from lunar materials p 9 A88-40566 Space manufacturing 6 - Nonterrestrial resources, biosciences, and space engineering; Proceedings of the Eighth Princeton/AIAA/SSI Conference, Princeton, NJ, May 6-9, 1987 p 94 A88-43951 MASCY, ALFRED C. Performance considerations for the astrometric Telescope Facility on the Phase I Space Station p 92 A88-42539 MATTHEWS, A. P. Development of an intermodule connector for serviceable spacecraft p 16 N88-21212 MAXFIELD, BRUCE W. Electromagnetic damping and vibration isolation of space structures [AD-A191492] p 51 N88-24665 MAY, GAYLE L. Aerospace century XXI: Space missions and policy; Proceedings of the Thirty-third Annual AAS international Conference, Boulder, CO, Oct. 26-29, 1986 p 90 A88-35051
Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29852 LIPPAY, A. L. Simulation of space manipulator operations (Eurosim) p 10 A88-46982 Simulation of space manipulator operations (EUROSIM) p 10 A88-46982 Simulation of space manipulator operations (EUROSIM) [NLR-MP-87017-U] p 80 N88-26678 LIPS, K. W. Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471 LITWIN, TODD Real-time model-based vision system for object acquisition and tracking p 28 A88-36311 Sensing and perception research for space telerobotics at JPL LIU, D. An optimal maneuver control method for the spacecraft with flexible appendages [AIAA PAPER 88-4255] p 38 A88-50386 LIU, RUIYAN Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 LOBDELL, G. M. Robot path planning in space p 74 A88-4238 LOEWY, R. G. Transfer matrix analysis of cable-stiffened hoop platforms p 46 A88-54989 LOFTUS, JOSEPH P. Decision time on orbital debris p 66 A88-43516	LUKICH, MICHAEL S. System identification and control of the truss experiment - A retrospective [AIAA PAPER 88-4152] p 36 A88-50246 Recent results in identification and control of a flexible truss structure p 44 A88-54576 Identification of a flexible truss structure using lattice filters p 45 A88-54577 LUM, HENRY, JR. Technology forecast and applications for autonomous, intelligent systems [IAF PAPER 88-025] p 6 A88-55322 LUNA, JOEL Cost effectiveness of on-orbit servicing for large constellations [IAIAA PAPER 88-3519] p 94 A88-44527 LUNDE, STEVEN M. FLOSIN: A fluid loop analyzer for SINDA p 23 N88-22321 LUST, ROBERT V. Control augmented structural synthesis [NASA-CR-4132] p 48 N88-20290 LYNCH, P. J. Active control for vibration damping p 32 A88-46410 MAAG, C. R. Results of apparent atomic oxygen reactions with spacecraft materials during Shuttle flight STS-41G	MARTINEZ-SANCHEZ, MANUEL The use of electrodynamic tethers for generating power and thrust in space [AAS PAPER 86-366] p 55 A88-35099 MARYNIAK, GREGG E. Design of a solar power satellite for construction from lunar materials p 9 A88-40566 Space manufacturing 6 - Nonterrestrial resources, biosciences, and space engineering; Proceedings of the Eighth Princeton/AIAA/SSI Conference, Princeton, NJ, May 6-9, 1987 p 94 A88-43951 MASCY, ALFRED C. Performance considerations for the astrometric Telescope Facility on the Phase I Space Station p 92 A88-42539 MATTHEWS, A. P. Development of an intermodule connector for serviceable spacecraft p 16 N88-21212 MAXFIELD, BRUCE W. Electromagnetic damping and vibration isolation of space structures [AD-A191492] p 51 N88-24665 MAY, GAYLE L. Aerospace century XXI: Space missions and policy; Proceedings of the Thirty-third Annual AAS international Conference, Boulder, CO, Oct. 26-29, 1986 p 90 A88-35051 MAYBECK, PETER S. Moving bank multiple model adaptive estimation applied to flexible space structure control p 25 A88-34790
Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29852 LIPPAY, A. L. Simulation of space manipulator operations (Eurosim) p 10 A88-46982 Simulation of space manipulator operations (EUROSIM) [NLR-MP-87017-U] p 80 N88-26678 LIPS, K. W. Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471 LITWIN, TODD Real-time model-based vision system for object acquisition and tracking p 28 A88-36311 Sensing and perception research for space telerobotics at JPL p 74 A88-42657 LIU, D. An optimal maneuver control method for the spacecraft with flexible appendages [AIAA PAPER 88-4255] p 38 A88-50386 LIU, RUIYAN Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 LOBDELL, G. M. Robot path planning in space p 74 A88-42328 LOEWY, R. G. Transfer matrix analysis of cable-stiffened hoop platforms p 46 A88-54989 LOFTUS, JOSEPH P. Decision time on orbital debris p 66 A88-43516 LOMBARD, D. S. Bayonet for superfluid helium transfer in space	LUKICH, MICHAEL S. System identification and control of the truss experiment - A retrospective [AIAA PAPER 88-4152] p 36 A88-50246 Recent results in identification and control of a flexible truss structure p 44 A88-54576 Identification of a flexible truss structure using lattice filters p 45 A88-54577 LUM, HENRY, JR. Technology forecast and applications for autonomous, intelligent systems [IAF PAPER 88-025] p 6 A88-55322 LUNA, JOEL Cost effectiveness of on-orbit servicing for large constellations [AIAA PAPER 88-3519] p 94 A88-44527 LUNDE, STEVEN M. FLOSIN: A fluid loop analyzer for SINDA p 23 N88-22321 LUST, ROBERT V. Control augmented structural synthesis [NASA-CR-4132] p 48 N88-20290 LYNCH, P. J. Active control for vibration damping p 32 A88-46410 MMAAG, C. R. Results of apparent atomic oxygen reactions with spacecraft materials during Shuttle flight STS-41G p 67 A88-47971	MARTINEZ-SANCHEZ, MANUEL The use of electrodynamic tethers for generating power and thrust in space [AAS PAPER 86-366] p 55 A88-35099 MARYNIAK, GREGG E. Design of a solar power satellite for construction from lunar materials p 9 A88-40566 Space manufacturing 6 - Nonterrestrial resources, biosciences, and space engineering; Proceedings of the Eighth Princeton/AIAA/SSI Conference, Princeton, NJ, May 6-9, 1987 MASCY, ALFRED C. Performance considerations for the astrometric Telescope Facility on the Phase I Space Station p 92 A88-42539 MATTHEWS, A. P. Development of an intermodule connector for serviceable spacecraft p 16 N88-21212 MAXFIELD, BRUCE W. Electromagnetic damping and vibration isolation of space structures [AD-A191492] p 51 N88-24665 MAY, GAYLE L. Aerospace century XXI: Space missions and policy; Proceedings of the Thirty-third Annual AAS international Conference, Boulder, CO, Oct. 26-29, 1986 p 90 A88-35051 MAYBECK, PETER S. Moving bank multiple model adaptive estimation applied to flexible space structure control p 25 A88-34790 MCCABE, M. E., JR.
Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29652 LIPPAY, A. L. Simulation of space manipulator operations (Eurosim) p 10 A88-46982 Simulation of space manipulator operations (EUROSIM) p 10 A88-46982 Simulation of space manipulator operations (EUROSIM) [NLR-MP-87017-U] p 80 N88-26678 LIPS, K. W. Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471 LITWIN, TODD Real-time model-based vision system for object acquisition and tracking p 28 A88-36311 Sensing and perception research for space telerobotics at JPL LIU, D. An optimal maneuver control method for the spacecraft with flexible appendages [AIAA PAPER 88-4255] p 38 A88-50386 LIU, RUIYAN Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 LOBDELL, G. M. Robot path planning in space p 74 A88-4238 LOEWY, R. G. Transfer matrix analysis of cable-stiffened hoop platforms p 46 A88-54989 LOFTUS, JOSEPH P. Decision time on orbital debris p 66 A88-43516 LOMBARD, D. S. Bayonet for superfluid helium transfer in space p 22 A88-53220 LONDDON, NORMAN	LUKICH, MICHAEL S. System identification and control of the truss experiment - A retrospective [AIAA PAPER 88-4152] p 36 A88-50246 Recent results in identification and control of a flexible truss structure p 44 A88-54576 Identification of a flexible truss structure using lattice filters p 45 A88-54577 LUM, HENRY, JR. Technology forecast and applications for autonomous, intelligent systems [IAF PAPER 88-025] p 6 A88-55322 LUNA, JOEL Cost effectiveness of on-orbit servicing for large constellations [IAIAA PAPER 88-3519] p 94 A88-44527 LUNDE, STEVEN M. FLOSIN: A fluid loop analyzer for SINDA p 23 N88-22321 LUST, ROBERT V. Control augmented structural synthesis [NASA-CR-4132] p 48 N88-20290 LYNCH, P. J. Active control for vibration damping p 32 A88-46410 MAAG, C. R. Results of apparent atomic oxygen reactions with spacecraft materials during Shuttle flight STS-41G p 67 A88-47971 MACCONOCHIE, IAN O. Space spider crane	MARTINEZ-SANCHEZ, MANUEL The use of electrodynamic tethers for generating power and thrust in space [AAS PAPER 86-366] p 55 A88-35099 MARYNIAK, GREGG E. Design of a solar power satellite for construction from lunar materials p 9 A88-40566 Space manufacturing 6 - Nonterrestrial resources, biosciences, and space engineering; Proceedings of the Eighth Princeton/AIAA/SSI Conference, Princeton, NJ, May 6-9, 1987 p 94 A88-43951 MASCY, ALFRED C. Performance considerations for the astrometric Telescope Facility on the Phase I Space Station p 92 A88-42539 MATTHEWS, A. P. Development of an intermodule connector for serviceable spacecraft p 16 N88-21212 MAXFIELD, BRUCE W. Electromagnetic damping and vibration isolation of space structures [AD-A191492] p 51 N88-24665 MAY, GAYLE L. Aerospace century XXI: Space missions and policy; Proceedings of the Thirty-third Annual AAS international Conference, Boulder, CO, Oct. 26-29, 1986 p 90 A88-35051 MAYBECK, PETER S. Moving bank multiple model adaptive estimation applied to flexible space structure control p 25 A88-34790
Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29852 LIPPAY, A. L. Simulation of space manipulator operations (Eurosim) p 10 A88-46982 operations (EUROSIM) [NLR-MP-87017-U] p 80 N88-26678 LIPS, K. W. Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471 LITWIN, TODD Real-time model-based vision system for object acquisition and tracking p 28 A88-36311 Sensing and perception research for space telerobotics at JPL p 74 A88-42657 LIU, D. An optimal maneuver control method for the spacecraft with flexible appendages [AIAA PAPER 88-4255] p 38 A88-50386 LIU, RUIYAN Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 LOBDELL, G. M. Robot path planning in space p 74 A88-42328 LOEWY, R. G. Transfer matrix analysis of cable-stiffened hoop platforms p 46 A88-54989 LOFTUS, JOSEPH P. Decision time on orbital debris p 66 A88-43516 LOMBARD, D. S. Bayonet for superfluid helium transfer in space p 22 A88-53220 LONDDON, NORMAN With an eye to the future: ESA general studies program	LUKICH, MICHAEL S. System identification and control of the truss experiment - A retrospective [AIAA PAPER 88-4152] p 36 A88-50246 Recent results in identification and control of a flexible truss structure p 44 A88-54576 Identification of a flexible truss structure using lattice filters p 45 A88-54577 LUM, HENRY, JR. Technology forecast and applications for autonomous, intelligent systems [IAF PAPER 88-025] p 6 A88-55322 LUNA, JOEL Cost effectiveness of on-orbit servicing for large constellations [AIAA PAPER 88-3519] p 94 A88-44527 LUNDE, STEVEN M. FLOSIN: A fluid loop analyzer for SINDA p 23 N88-22321 LUST, ROBERT V. Control augmented structural synthesis [NASA-CR-4132] p 48 N88-20290 LYNCH, P. J. Active control for vibration damping p 32 A88-46410 M MAAG, C. R. Results of apparent atomic oxygen reactions with spacecraft materials during Shuttle flight STS-41G p 67 A88-47971 MACCONOCHIE, IAN O. Space spider crane [NASA-CASE-LAR-13411-1-SB] p 7 N88-23828	MARTINEZ-SANCHEZ, MANUEL The use of electrodynamic tethers for generating power and thrust in space [AAS PAPER 86-366] p 55 A88-35099 MARYNIAK, GREGG E. Design of a solar power satellite for construction from lunar materials p 9 A88-40566 Space manufacturing 6 - Nonterrestrial resources, biosciences, and space engineering; Proceedings of the Eighth Princeton/AIAA/SSI Conference, Princeton, NJ, May 6-9, 1987 p 94 A88-43951 MASCY, ALFRED C. Performance considerations for the astrometric Telescope Facility on the Phase I Space Station p 92 A88-42539 MATTHEWS, A. P. Development of an intermodule connector for serviceable spacecraft p 16 N88-21212 MAXFIELD, BRUCE W. Electromagnetic damping and vibration isolation of space structures [AD-A191492] p 51 N88-24665 MAY, GAYLE L. Aerospace century XXI: Space missions and policy; Proceedings of the Thirty-third Annual AAS international Conference, Boulder, CO, Oct. 26-29, 1986 p 90 A88-35051 MAYBECK, PETER S. Moving bank multiple model adaptive estimation applied to flexible space structure control p 25 A88-34790 MCCABE, M. E., JR. A high power spacecraft thermal management system [AIAA PAPER 88-2702] p 21 A88-43754
Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29852 LIPPAY, A. L. Simulation of space manipulator operations (Eurosim)	LUKICH, MICHAEL S. System identification and control of the truss experiment - A retrospective [AIAA PAPER 88-4152] p 36 A88-50246 Recent results in identification and control of a flexible truss structure p 44 A88-54576 Identification of a flexible truss structure using lattice filters p 45 A88-54577 LUM, HENRY, JR. Technology forecast and applications for autonomous, intelligent systems [IAF PAPER 88-025] p 6 A88-55322 LUNA, JOEL Cost effectiveness of on-orbit servicing for large constellations [IAIA PAPER 88-3519] p 94 A88-44527 LUNDE, STEVEN M. FLOSIN: A fluid loop analyzer for SINDA p 23 N88-22321 LUST, ROBERT V. Control augmented structural synthesis [NASA-CR-4132] p 48 N88-20290 LYNCH, P. J. Active control for vibration damping p 32 A88-46410 MAAG, C. R. Results of apparent atomic oxygen reactions with spacecraft materials during Shuttle flight STS-41G p 67 A88-47971 MACCONOCHIE, IAN O. Space spider crane [NASA-CASE-LAR-13411-1-SB] p 7 N88-23828 MADSEN, N. H. Structural vibration of space power station systems	MARTINEZ-SANCHEZ, MANUEL The use of electrodynamic tethers for generating power and thrust in space [AAS PAPER 86-366] p 55 A88-35099 MARYNIAK, GREGG E. Design of a solar power satellite for construction from lunar materials p 9 A88-40566 Space manufacturing 6 - Nonterrestrial resources, biosciences, and space engineering; Proceedings of the Eighth Princeton/AIAA/SSI Conference, Princeton, NJ, May 6-9, 1987 p 94 A88-43951 MASCY, ALFRED C. Performance considerations for the astrometric Telescope Facility on the Phase I Space Station p 92 A88-42539 MATTHEWS, A. P. Development of an intermodule connector for serviceable spacecraft p 16 N88-21212 MAXFIELD, BRUCE W. Electromagnetic damping and vibration isolation of space structures [AD-A191492] p 51 N88-24665 MAY, GAYLE L. Aerospace century XXI: Space missions and policy; Proceedings of the Thirty-third Annual AAS international Conference, Boulder, CO, Oct. 26-29, 1986 p 90 A88-35051 MAYBECK, PETER S. Moving bank multiple model adaptive estimation applied to flexible space structure control p 25 A88-34790 MCCABE, M. E., JR. A high power spacecraft thermal management system [AIAA PAPER 88-2702] p 21 A88-43754 MCCABE, MICHAEL E., JR. Design and testing of a high power spacecraft thermal
Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29852 LIPPAY, A. L. Simulation of space manipulator operations (Eurosim) p 10 A88-46982 Simulation of space manipulator operations (EUROSIM) [NLR-MP-87017-U] p 80 N88-26678 LIPS, K. W. Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471 LITWIN, TODD Real-time model-based vision system for object acquisition and tracking p 28 A88-36311 Sensing and perception research for space telerobotics at JPL p 74 A88-42657 LIU, D. An optimal maneuver control method for the spacecraft with flexible appendages [AIAA PAPER 88-4255] p 38 A88-50386 LIU, RUIYAN Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 LOBDELL, G. M. Robot path planning in space p 74 A88-42328 LOEWY, R. G. Transfer matrix analysis of cable-stiffened hoop platforms p 46 A88-54989 LOFTUS, JOSEPH P. Decision time on orbital debris p 66 A88-43516 LOMBARD, D. S. Bayonet for superfluid helium transfer in space p 22 A88-53220 LONDDON, NORMAN With an eye to the future: ESA general studies program 1988 [ESA-SP-1100] p 8 N88-30447	LUKICH, MICHAEL S. System identification and control of the truss experiment - A retrospective [AIAA PAPER 88-4152] p 36 A88-50246 Recent results in identification and control of a flexible truss structure p 44 A88-54576 Identification of a flexible truss structure using lattice filters p 45 A88-54577 LUM, HENRY, JR. Technology forecast and applications for autonomous, intelligent systems [IAF PAPER 88-025] p 6 A88-55322 LUNA, JOEL Cost effectiveness of on-orbit servicing for large constellations [AIAA PAPER 88-3519] p 94 A88-44527 LUNDE, STEVEN M. FLOSIN: A fluid loop analyzer for SINDA p 23 N88-22321 LUST, ROBERT V. Control augmented structural synthesis [NASA-CR-4132] p 48 N88-20290 LYNCH, P. J. Active control for vibration damping p 32 A88-46410 M MAAG, C. R. Results of apparent atomic oxygen reactions with spacecraft materials during Shuttle flight STS-41G p 67 A88-47971 MACCONOCHIE, IAN O. Space spider crane [NASA-CASE-LAR-13411-1-SB] p 7 N88-23828 MADSEN, N. H. Structural vibration of space power station systems p 29 A88-42574	MARTINEZ-SANCHEZ, MANUEL The use of electrodynamic tethers for generating power and thrust in space [AAS PAPER 86-366] p 55 A88-35099 MARYNIAK, GREGG E. Design of a solar power satellite for construction from lunar materials p 9 A88-40566 Space manufacturing 6 - Nonterrestrial resources, biosciences, and space engineering; Proceedings of the Eighth Princeton/AIAA/SSI Conference, Princeton, NJ, May 6-9, 1987 p 94 A88-43951 MASCY, ALFRED C. Performance considerations for the astrometric Telescope Facility on the Phase I Space Station p 92 A88-42539 MATTHEWS, A. P. Development of an intermodule connector for serviceable spacecraft p 16 N88-21212 MAXFIELD, BRUCE W. Electromagnetic damping and vibration isolation of space structures [AD-A191492] p 51 N88-24665 MAY, GAYLE L. Aerospace century XXI: Space missions and policy; Proceedings of the Thirty-third Annual AAS international Conference, Boulder, CO, Oct. 26-29, 1986 p 90 A88-35051 MAYBECK, PETER S. Moving bank multiple model adaptive estimation applied to flexible space structure control p 25 A88-34790 MCCABE, M. E., JR. A high power spacecraft thermal management system [AIAA PAPER 88-2702] p 21 A88-43754
Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29852 LIPPAY, A. L. Simulation of space manipulator operations (Eurosim)	LUKICH, MICHAEL S. System identification and control of the truss experiment - A retrospective [AIAA PAPER 88-4152] p 36 A88-50246 Recent results in identification and control of a flexible truss structure p 44 A88-54576 Identification of a flexible truss structure using lattice filters p 45 A88-54577 LUM, HENRY, JR. Technology forecast and applications for autonomous, intelligent systems [IAF PAPER 88-025] p 6 A88-55322 LUNA, JOEL Cost effectiveness of on-orbit servicing for large constellations [AIAA PAPER 88-3519] p 94 A88-44527 LUNDE, STEVEN M. FLOSIN: A fluid loop analyzer for SINDA p 23 N88-22321 LUST, ROBERT V. Control augmented structural synthesis [NASA-CR-4132] p 48 N88-20290 LYNCH, P. J. Active control for vibration damping p 32 A88-46410 MAAG, C. R. Results of apparent atomic oxygen reactions with spacecraft materials during Shuttle flight STS-41G p 67 A88-47971 MACCONOCHIE, IAN O. Space spider crane [NASA-CASE-LAR-13411-1-SB] p 7 N88-23828 MADSEN, N. H. Structural vibration of space power station systems p 29 A88-42574 MAGRET, V. L. Very high temperature materials for mechanical	MARTINEZ-SANCHEZ, MANUEL The use of electrodynamic tethers for generating power and thrust in space [AAS PAPER 86-366] p 55 A88-35099 MARYNIAK, GREGG E. Design of a solar power satellite for construction from lunar materials p 9 A88-40566 Space manufacturing 6 - Nonterrestrial resources, biosciences, and space engineering; Proceedings of the Eighth Princeton/AIAA/SSI Conference, Princeton, NJ, May 6-9, 1987 p 94 A88-43951 MASCY, ALFRED C. Performance considerations for the astrometric Telescope Facility on the Phase I Space Station p 92 A88-42539 MATTHEWS, A. P. Development of an intermodule connector for serviceable spacecraft p 16 N88-21212 MAXFIELD, BRUCE W. Electromagnetic damping and vibration isolation of space structures [AD-A191492] p 51 N88-24665 MAY, GAYLE L. Aerospace century XXI: Space missions and policy; Proceedings of the Thirty-third Annual AAS international Conference, Boulder, CO, Oct. 26-29, 1986 p 90 A88-35051 MAYBECK, PETER S. Moving bank multiple model adaptive estimation applied to flexible space structure control p 25 A88-34790 MCCABE, M. E., JR. A high power spacecraft thermal management system [AIAA PAPER 88-2702] MCCABE, MICHAEL E., JR. Design and testing of a high power spacecraft thermal management system [NASA-TM-4051] p 23 N88-26389 MCCALLEN, D. B.
Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29652 LIPPAY, A. L. Simulation of space manipulator operations (Eurosim) p 10 A88-46982 Simulation of space manipulator operations (EUROSIM) [NLR-MP-87017-U] p 80 N88-26678 LIPS, K. W. Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471 LITWIN, TODD Real-time model-based vision system for object acquisition and tracking p 28 A88-36311 Sensing and perception research for space telerobotics at JPL p 74 A88-42657 LIU, D. An optimal maneuver control method for the spacecraft with flexible appendages [AIAA PAPER 88-4255] p 38 A88-50386 LIU, RUIYAN Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 LOBDELL, G. M. Robot path planning in space p 74 A88-4238 LOEWY, R. G. Transfer matrix analysis of cable-stiffened hoop platforms p 46 A88-54989 LOFTUS, JOSEPH P. Decision time on orbital debris p 66 A88-43516 LOMBARD, D. S. Bayonet for superfluid helium transfer in space p 22 A88-53220 LONDDON, NORMAN With an eye to the future: ESA general studies program 1988 [ESA-SP-1100] p 8 N88-30447 LONG, D. A new momentum management controller for the Space Station [AIAA PAPER 88-4132] p 36 A88-50233	LUKICH, MICHAEL S. System identification and control of the truss experiment - A retrospective [AIAA PAPER 88-4152] p 36 A88-50246 Recent results in identification and control of a flexible truss structure p 44 A88-54576 Identification of a flexible truss structure using lattice filters p 45 A88-54577 LUM, HENRY, JR. Technology forecast and applications for autonomous, intelligent systems [IAF PAPER 88-025] p 6 A88-55322 LUNA, JOEL Cost effectiveness of on-orbit servicing for large constellations [IAIAA PAPER 88-3519] p 94 A88-44527 LUNDE, STEVEN M. FLOSIN: A fluid loop analyzer for SINDA p 23 N88-22321 LUST, ROBERT V. Control augmented structural synthesis [INASA-CR-4132] p 48 N88-20290 LYNCH, P. J. Active control for vibration damping p 32 A88-46410 M MAAG, C. R. Results of apparent atomic oxygen reactions with spacecraft materials during Shuttle flight STS-41G p 67 A88-47971 MACCONOCHIE, IAN O. Space spider crane [INASA-CASE-LAR-13411-1-SB] p 7 N88-23828 MADSEN, N. H. Structural vibration of space power station systems p 29 A88-42574 MAGRET, V. L. Very high temperature materials for mechanical application	MARTINEZ-SANCHEZ, MANUEL The use of electrodynamic tethers for generating power and thrust in space [AAS PAPER 86-366] p 55 A88-35099 MARYNIAK, GREGG E. Design of a solar power satellite for construction from lunar materials p 9 A88-40566 Space manufacturing 6 - Nonterrestrial resources, biosciences, and space engineering; Proceedings of the Eighth Princeton/AIAA/SSI Conference, Princeton, NJ, May 6-9, 1987 p 94 A88-43951 MASCY, ALFRED C. Performance considerations for the astrometric Telescope Facility on the Phase I Space Station p 92 A88-42539 MATTHEWS, A. P. Development of an intermodule connector for serviceable spacecraft p 16 N88-21212 MAXFIELD, BRUCE W. Electromagnetic damping and vibration isolation of space structures [AD-A191492] p 51 N88-24665 MAY, GAYLE L. Aerospace century XXI: Space missions and policy; Proceedings of the Thirty-third Annual AAS international Conference, Boulder, CO, Oct. 26-29, 1986 p 90 A88-35051 MAYBECK, PETER S. Moving bank multiple model adaptive estimation applied to flexible space structure control p 25 A88-34790 MCCABE, M. E., JR. A high power spacecraft thermal management system [AIAA PAPER 88-2702] p 21 A88-43754 MCCABE, MICHAEL E., JR. Design and testing of a high power spacecraft thermal management system [NASA-TM-4051] p 23 N88-26389 MCCALLEN, D. B. A continuum model for the nonlinear analysis of
Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29852 LIPPAY, A. L. Simulation of space manipulator operations (Eurosim) p 10 A88-46982 Simulation of space manipulator operations (EUROSIM) [NLR-MP-87017-U] p 80 N88-26678 LIPS, K. W. Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471 LITWIN, TODD Real-time model-based vision system for object acquisition and tracking p 28 A88-36311 Sensing and perception research for space telerobotics at JPL LIU, D. An optimal maneuver control method for the spacecraft with flexible appendages [AIAA PAPER 88-4255] p 38 A88-50386 LIU, RUIYAN Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 LOEWY, R. G. Transfer matrix analysis of cable-stiffened hoop platforms p 46 A88-54989 LOFTUS, JOSEPH P. Decision time on orbital debris p 66 A88-43516 LOMBARD, D. S. Bayonet for superfluid helium transfer in space p 22 A88-53220 LONDON, NORMAN With an eye to the future: ESA general studies program 1988 [ESA-SP-1100] p 8 N88-30447 LONG, D. A new momentum management controller for the Space Station [AIAA PAPER 88-4132] p 36 A88-50233	LUKICH, MICHAEL S. System identification and control of the truss experiment - A retrospective [AIAA PAPER 88-4152] p 36 A88-50246 Recent results in identification and control of a flexible truss structure p 44 A88-54576 Identification of a flexible truss structure using lattice filters p 45 A88-54577 LUM, HENRY, JR. Technology forecast and applications for autonomous, intelligent systems [IAF PAPER 88-025] p 6 A88-55322 LUNA, JOEL Cost effectiveness of on-orbit servicing for large constellations [AIAA PAPER 88-3519] p 94 A88-44527 LUNDE, STEVEN M. FLOSIN: A fluid loop analyzer for SINDA p 23 N88-22321 LUST, ROBERT V. Control augmented structural synthesis [NASA-CR-4132] p 48 N88-20290 LYNCH, P. J. Active control for vibration damping p 32 A88-46410 MAAG, C. R. Results of apparent atomic oxygen reactions with spacecraft materials during Shuttle flight STS-41G p 67 A88-47971 MACCONOCHIE, IAN O. Space spider crane [NASA-CASE-LAR-13411-1-SB] p 7 N88-23828 MADSEN, N. H. Structural vibration of space power station systems p 29 A88-42574 MAGRET, V. L. Very high temperature materials for mechanical	MARTINEZ-SANCHEZ, MANUEL The use of electrodynamic tethers for generating power and thrust in space [AAS PAPER 86-366] p 55 A88-35099 MARYNIAK, GREGG E. Design of a solar power satellite for construction from lunar materials p 9 A88-40566 Space manufacturing 6 - Nonterrestrial resources, biosciences, and space engineering; Proceedings of the Eighth Princeton/AIAA/SSI Conference, Princeton, NJ, May 6-9, 1987 p 94 A88-43951 MASCY, ALFRED C. Performance considerations for the astrometric Telescope Facility on the Phase I Space Station p 92 A88-42539 MATTHEWS, A. P. Development of an intermodule connector for serviceable spacecraft p 16 N88-21212 MAXFIELD, BRUCE W. Electromagnetic damping and vibration isolation of space structures [AD-A191492] p 51 N88-24665 MAY, GAYLE L. Aerospace century XXI: Space missions and policy; Proceedings of the Thirty-third Annual AAS international Conference, Boulder, CO, Oct. 26-29, 1986 p 90 A88-35051 MAYBECK, PETER S. Moving bank multiple model adaptive estimation applied to flexible space structure control p 25 A88-34790 MCCABE, M. E., JR. A high power spacecraft thermal management system [AIAA PAPER 88-2702] MCCABE, MICHAEL E., JR. Design and testing of a high power spacecraft thermal management system [NASA-TM-4051] p 23 N88-26389 MCCALLEN, D. B.
Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29652 LIPPAY, A. L. Simulation of space manipulator operations (Eurosim) p 10 A88-46982 Simulation of space manipulator operations (EUROSIM) [NLR-MP-87017-U] p 80 N88-26678 LIPS, K. W. Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471 LITWIN, TODD Real-time model-based vision system for object acquisition and tracking p 28 A88-36311 Sensing and perception research for space telerobotics at JPL p 74 A88-42657 LIU, D. An optimal maneuver control method for the spacecraft with flexible appendages [AIAA PAPER 88-4255] p 38 A88-50386 LIU, RUIYAN Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897 LOBDELL, G. M. Robot path planning in space p 74 A88-4238 LOEWY, R. G. Transfer matrix analysis of cable-stiffened hoop platforms p 46 A88-54989 LOFTUS, JOSEPH P. Decision time on orbital debris p 66 A88-43516 LOMBARD, D. S. Bayonet for superfluid helium transfer in space p 22 A88-53220 LONDDON, NORMAN With an eye to the future: ESA general studies program 1988 [ESA-SP-1100] p 8 N88-30447 LONG, D. A new momentum management controller for the Space Station [AIAA PAPER 88-4132] p 36 A88-50233	LUKICH, MICHAEL S. System identification and control of the truss experiment - A retrospective [AIAA PAPER 88-4152] p 36 A88-50246 Recent results in identification and control of a flexible truss structure p 44 A88-54576 Identification of a flexible truss structure using lattice filters p 45 A88-54577 LUM, HENRY, JR. Technology forecast and applications for autonomous, intelligent systems [IAF PAPER 88-025] p 6 A88-55322 LUNA, JOEL Cost effectiveness of on-orbit servicing for large constellations [AIAA PAPER 88-3519] p 94 A88-44527 LUNDE, STEVEN M. FLOSIN: A fluid loop analyzer for SINDA p 23 N88-22321 LUST, ROBERT V. Control augmented structural synthesis [NASA-CR-4132] p 48 N88-20290 LYNCH, P. J. Active control for vibration damping p 32 A88-46410 M MAAG, C. R. Results of apparent atomic oxygen reactions with spacecraft materials during Shuttle flight STS-41G p 67 A88-47971 MACCONOCHIE, IAN O. Space spider crane [NASA-CASE-LAR-13411-1-SB] p 7 N88-23828 MADSEN, N. H. Structural vibration of space power station systems p 29 A88-42574 MAGRET, V. L. Very high temperature materials for mechanical application [SNIAS-881-430-106] p 72 N88-28978	MARTINEZ-SANCHEZ, MANUEL The use of electrodynamic tethers for generating power and thrust in space [AAS PAPER 86-366] p 55 A88-35099 MARYMIAK, GREGG E. Design of a solar power satellite for construction from lunar materials p 9 A88-40566 Space manufacturing 6 - Nonterrestrial resources, biosciences, and space engineering; Proceedings of the Eighth Princeton/AIAA/SSI Conference, Princeton, NJ, May 6-9, 1987 p 94 A88-43951 MASCY, ALFRED C. Performance considerations for the astrometric Telescope Facility on the Phase I Space Station p 92 A88-42539 MATTHEWS, A. P. Development of an intermodule connector for serviceable spacecraft p 16 N88-21212 MAXFIELD, BRUCE W. Electromagnetic damping and vibration isolation of space structures [AD-A191492] p 51 N88-24665 MAY, GAYLE L. Aerospace century XXI: Space missions and policy; Proceedings of the Thirty-third Annual AAS international Conference, Boulder, CO, Oct. 26-29, 1986 p 90 A88-35051 MAYBECK, PETER S. Moving bank multiple model adaptive estimation applied to flexible space structure control p 25 A88-34790 MCCABE, M. E., JR. A high power spacecraft thermal management system [AIAA PAPER 88-2702] p 21 A88-43754 MCCABE, MICHAEL E., JR. Design and testing of a high power spacecraft thermal management system [NASA-TM-4051] p 23 N88-26389 MCCALLEN, D. B. A continuum model for the nonlinear analysis of beam-like lattice structures p 13 A88-41038

MCCLURE, DONALD J.

Design and demonstration of a system for the deposition of atomic-oxygen durable coatings for reflective solar dynamic power system concentrators

INASA-CR-41581

p 71 N88-25474

MCCLYMONDS, K. A. Design of light-weight impact resistant pressure vessels for Space Station fluid and propulsion systems

[AIAA PAPER 88-2466] MCCOWN, WILLIAM

p 83 A88-35943

Structural latches for modular assembly of spacecraft p 17 N88-21471 and space mechanisms

MCHALE, MICHAEL P.

Two-phase ammonia thermal bus performance [AIAA PAPER 88-2701] p 21 A8i p 21 A88-43753

MCINTOSH, G. E.

Bayonet for superfluid helium transfer in space

p 22 A88-53220 MCINTOSH R.

A new linearized theory of laminar film condensation of two phase annular flow in a capillary pumped loop p 56 A88-43715 [AIAA PAPER 88-2637]

MCINTOSH, S. C., JR.

Interactive structural and controller synthesis for large p 28 A88-35541 spacecraft MCKAY JEFFREY A.

Interactive Radar Environment Simulation Model p 10 A88-46968 (IRESM)

MCKINNON, G. M.

Telepresence for space applications [IAF PAPER 88-018]

p 77 A88-55320

MEDANIC, J.

Projective controls for disturbance attenuation in LSS p 43 A88-54410 systems

MEIKE ROGER

Intelligent resource management for local area networks: Approach and evolution p 81 N88-29385 MEIROVITCH, L.

An iterative approach to parameter identification in structures p 29 A88-40271

MEIROVITCH, LEONARD

Control of distributed structures p 32 A88-46408 Accommodation of kinematic disturbances during a minimum-time maneuver of a flexible spacecraft

[AIAA PAPER 88-4253] p 40 A88-50440 Control of spacecraft with multi-targeted flexible antennas

[AIAA PAPER 88-4268]

p 40 A88-50441

MELAMED, NAHUM

Aeroassisted transfer between elliptical orbits using lift control

[AIAA PAPER 88-4346]

p 95 A88-50590

MELDRUM, D. R. Optimal experiment design for identification of large p 31 A88-45227

MELTON, ROBERT G.

Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of structural vibrations

[AD-A194270]

p 64 A88-40568

Active experiments; Proceedings of Symposium 1 of the Twenty-sixth COSPAR Plenary Meeting, Toulouse, France, June 30-July 11, 1986 MENDLER, ANDREW P. p 95 A88-46776

ARGES: An expert system for fault diagnosis within space-based ECLS systems p 101 N88-29380

Development of an integrated heat pipe-thermal storage system for a solar receiver p 21 A88-43746 [AIAA PAPER 88-2683]

MESCHI, CLAUDE

Prospects of intercalated graphite fibre use for electrical power transmission in solar power satellites

MESEROLE, JERE S. Fundamental limitations on low gravity fluid gauging technologies imposed by orbital mission requirements p 86 A88-53163 [AIAA PAPER 88-3402]

METTLER, EDWARD

Technologies for antenna shape and vibration control p 52 N88-25748

MICHEL, J.-L.

Underwater simulation for space teleoperation p 79 N88-26040

MIKULAS, MARTIN M.

Continuum modeling of large lattice structures - Status and projections p 21 A88-46402

MIKULAS, MARTIN M., JR.

Space spider crane p 7 N88-23828 [NASA-CASE-LAR-13411-1-SB]

MILLER, C. M.

Welding the Space Station common module prototype p 11 A88-52334 MILLER, DAVID W.

Theoretical and experimental investigation of space-realizable inertial actuation for passive and active p 46 A88-55063 structural control MILLER E R

Space station particulate contamination environment p 70 N88-25397

MILLER, JAMES B.

The 15-meter diameter hoop/column antenna surface p 17 N88-21469 control actuator system MIRANDA, D.

Deployable/retrievable boom: One application to tethered satellite p 15 N88-21197

MIRTICH MICHAEL J.

Arc-textured metal surfaces for high thermal emittance space radiators

MISAWA, MASAYOSHI

p 69 N88-24754

Reliability evaluation on on-board satellite antenna deployment mechanism p 19 A88-38672 MISHNE, DAVID

Aeroassisted transfer between elliptical orbits using lift

[AIAA PAPER 88-4346] p 95 A88-50590 MÍSRA. A. K.

Analytical expressions for vibratory displacements of deploying appendages [AIAA PAPER 88-4250] p 38 A88-50383

Optimal deployment of spacecraft appendages [IAF PAPER 88-307] p 47 A88 p 47 A88-55386

MISRA, MOHAN S. Damping characteristics of metal matrix composites [AD-A193144] p 71 N88-27233

MITCHELL, B.

Orbital navigation, docking and obstacle avoidance as form of three dimensional model-based image p 50 N88-24194 understanding

MITCHELL, STEVEN D.

Space: Countdown to the future; National Space Symposium, 3rd, Colorado Springs, CO, Jan. 20-23, 1987, p 91 A88-39050

MITCHELL, TERRY R.

Shuttle-C - A Shuttle derived launch vehicle p 86 A88-52373

MIXON, R. W.

Operational experience and design recommendations teleoperated flight hardware

MIYAKE SHOURO

MIZERA P. F.

Reliability evaluation on on-board satellite antenna p 19 A88-38672 deployment mechanism

Several spacecraft-charging event on SCATHA in p 58 A88-51392 September 1982 A severe spacecraft-charging event on SCATHA in September 1982

AD-A1930071

n 61 N88-26396 MOCCIA. A.

Transient dynamics of the Tether Elevator/Crawler System p 39 A88-50407

[AIAA PAPER 88-4280]

MOCKOVCIAK, JOHN, JR.

Space Station - Home and workplace in orbit p 97 A88-55486

MODI, V. J.

On the transient dynamics of flexible orbiting A88-46405 Astrodynamics problems of the Space Station

p 33 A88-47907 An alternate transition from the Lagrangian of a satellite to equations of motion

p 37 A88-50362 [AIAA PAPER 88-4221]

A formulation for studying dynamics and control of the Space Station based MRMS and its application

p 38 A88-50398 [AIAA PAPER 88-4269] A formulation for studying dynamics of interconnected hodies with application

[AIAA PAPER 88-4303] p 39 A88-50428 A dynamical study of the proposed Space Station type configuration

[AIAA PAPER 88-4304] p 39 A88-50429 Dynamics of interconnected flexible members in the presence of environmental forces - A formulation with

applications [IAF PAPER 88-318]

MODI, VINOD J.

Dynamics of a flexible orbiting platform with MRMS [ISSN-0285-6808] p 51 N88-24673

n 47 A88-55391

MOLINEROS, A. A.

Space Operations and Space Station real-time [AIAA PAPER 88-4627] p 11 A88-53664

MOLVAER, O. I.

Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N88-30298 MONTGOMERY RAYMOND C.

Analytic redundancy management for systems with appreciable structural dynamics

MOORE, EMERY L.

Fiber optic systems for mobile platforms; Proceedings of the Meeting, San Diego, CA, Aug. 20, 21, 1987 p 93 A88-43176

MOORE, RICHARD K.

Determination of the vertical pattern of the SIR-B p 56 A88-44638

MOORE, THOMAS P.

The US space programme spacewalk/extravehicular activity experience: Past, present and future p 79 N88-26031

MOOREHEAD, T. W. A Study of Space Station Contamination Effects [NASA-CP-3002] p 69 N88

p 69 N88-25390 MORANTI, C.

Study of secondary emission properties of materials used for high power RF components in space (ESA-CB(P)-25871 p 72 N88-30012

MORENO-BARRAGAN, J. Procedures for updating dynamic mathematical models, test phase

[MEBS-38/87] p 12 N88-29852 MORGAN, S. H.

Astrophysics space observatories - The next 25 years p 1 A88-34537

MORGENTHALER, GEORGE W.

Aerospace century XXI: Space missions and policy; Proceedings of the Thirty-third Annual AAS International Conference, Boulder, CO, Oct. 26-29, 1986

p 90 A88-35051 Aerospace century XXI: Space flight technologies; Proceedings of the Thirty-third Annual AAS International Conference, Boulder, CO, Oct. 26-29, 1986

p 90 A88-35093

MORITA Y A formulation for studying dynamics and control of the Space Station based MRMS and its application IAIAA PAPER 88-42691 p 38 A88-50398

MORITA, YASUHIRO Dynamics of a flexible orbiting platform with MRMS

HSSN-0285-68081 p 51 N88-24673 MORRISON, SCOT K.

Integrated structural/controller optimization of large space structures

[AIAA PAPER 88-4305] p 39 A88-50430

MOSCHETTI, B. Development of a space deployable radiator using heat

[SNIAS-881-440-104] D 23 N88-29128 MOSER, THOMAS L.

Getting ready to go MUELLER, W. p 6 A88-54851

Study of the optimization of satellite system design for transfer orbit

[MBB-URV-135] p 11 N88-20332 MUENCH, R. E.

Computer applications in spacecraft design and p 89 A88-34465 operation MUGELLESI, R.

Analytical models for relative motion under constant thrust

[AIAA PAPER 88-4300] p 85 A88-50425 MULLIKIN, THOMAS L.

Reducing the cost and risk of orbit transfer p 97 A88-54994

MUNJAL, ASHOK K. Manufacturing of damage-resistant composite structures for aerospace applications p 65 A88-41885

Dynamics and control of experimental tendon control

system for flexible space structure AIAA PAPER 88-4154] p 36 A88-50248

MURPHY, G. B. Contaminant ions and waves in the space station p 70 N88-25393

MURPHY, J. ANTHONY Focal-plane and aperture-plane heterodyne array for millimeter-wave radioastronomy

n 58 A88-54749 comparison MURTHY, T. K. S. Computer applications in spacecraft design and

p 89 A88-34465 MUSALEM, ABRAHAM Model reference control of the NASA SCOLE problem

The application of high temperature superconductors to space electrical power distribution components [NASA-TM-100901] p 60 N88-22939

MYKINS, DAVID W.

Experimental and theoretical investigation of passive damping concepts for member forced and free vibration [NASA-CR-183082] p 52 N88-26693

p 27 A88-34916

MYRON, DONALD L.

Two-phase ammonia thermal bus performance p 21 A88-43753 [AIAA PAPER 88-2701]

NAGAL TSUGUNOBU

'Space weather forecast' - Prediction of relativistic electron intensity at synchronous orbit

p 64 A88-38015

NAGURKA, MARK L.

A Fourier-based optimal control approach for structural p 45 A88-54643 systems

NAHRA, HENRY K.

Technologies for protection of the Space Station power system surfaces in atomic oxygen environment

p 68 A88-52331 Assessment of the effects of space debris and meteoroids environment on the space station solar array assembly

[NASA-TM-101315]

p 72 N88-28959

NAIR. P. S.

Use of modal energy distribution in the design of p 64 A88-37466 honevcomb sandwich decks NAPIER, P. J.

Self-correction of telescope surface errors using p 91 A88-38097 correlating focal plane array

NAPOLITANO, L. G.

30 years of progress in space; Proceedings of the Thirty-eighth International Astronautical Congress, Brighton, England, Oct. 10-17, 1987 p 91 A88-38304 NARAYAN, S. SHANKAR

Design and development of a computer controlled system for spacecraft static testing p 11 A88-54896

NAVALGUND, K. H. Comparison of theoretical and experimental modal analysis results of a rectangular three dimensional frame p 22 A88-50873

NAVICKAS, J.

Applicability of the flow-net program to solution of Space Station fluid dynamics problems p 20 Space-based system disturbances caused by on-board

fluid motion during system maneuvers [AIAA PAPER 88-3633] p 33 A88-48957

NECIB. BRAHIM

Continuum modeling and dynamic analysis of large truss p 50 N88-23995 structures

NEECK, STEVEN P.

Space ten-meter telescope (STMT) - Structural and thermal feasibility study of the primary mirror

p 19 A88-34539

Production of ground state atomic oxygen in a multifactor p 56 A88-42585 stress environment

NEIN. M. E.

Astrophysics space observatories - The next 25 years p 1 A88-34537

NELSON, DAVID R.

Design, fabrication, and testing of rolled carbon/epoxy struts for Space Station application p 62 A88-33018 NERHEIM, N. M.

SHAPES - Spatial, High-Accuracy, Position-Encoding Sensor for multi-point, 3-D position measurement of large flexible structures p 19 A88-40292

Use of the surface tension propellant tanks in the Indian satellite Insat [IAF PAPER 88-237] p 86 A88-55365

NG. A. C.

A formulation for studying dynamics of interconnected

hodies with application p 39 A88-50428 [AIAA PAPER 88-4303] Dynamics of interconnected flexible members in the

presence of environmental forces - A formulation with applications [IAF PAPER 88-318] p 47 A88-55391

NGUYEN, CHARLES C.

Analysis of a closed-kinematic chain robot manipulator p 79 N88-25206 FNASA-CR-1830311 Robust design of distributed controllers for large flexible

space structures [NASA-CR-183202]

p 54 N88-30134

NIEH, T. G.

Recent advances in aerospace refractory metal alloys p 67 A88-47449

NIKANPOUR, D.

Orbital replaceable unit-cold plate dry thermal interface p 20 A88-42843 concent and test measurements NISHIMOTO, HIRONOBU

Electrostatic charging and arc discharges on satellite dielectrics simulated by electron beam

n 57 A88-47970

NISHIOKA, KENJI

Performance considerations for the astrometric Telescope Facility on the Phase I Space Station p 92 A88-42539

Dynamics and control of large space platforms and small experimental payloads p 30 A88-42582 NOOR, AHMED K. Continuum modeling of large lattice structures - Status

and projections NORDEEN, ROSS

Systems integration for the Kennedy Space Center (KSC) Robotics Applications Development Laboratory (RADL) p 76 A88-52330

NORRIS, M. A.

An iterative approach to parameter identification in p 29 A88-40271

NOVOSELOV, V. S.

Optimal rendezvous in a gravitational field with limited observations p 90 A88-36144

NUNAMAKER, ROBERT R.

Automation and robotics for the Space Station - The influence of the Advanced Technology Advisory
Committee p 76 A88-52329

0

O'DONNELL, TIM

Qualification of room-temperature-curing epoxy adhesives for spacecraft structural applications

p 66 A88-42440

p 43 A88-53945

p 18 N88-21478

p 21 A88-46402

Long-lived thermal control materials for high temperature and deep space applications p 20 A88-42441

O'HARA, JOHN M.

Telerobotic control of a dextrous manipulator using master and six-DOF hand-controllers for space assembly and servicing tasks p 73 A88-35453

OBARA, HIROAKI

An energetics experiment on a space platform p 3 A88-40571

OBAYASHI, T.

Results from a tethered rocket experiment (Charge-2) p 57 A88-46804

OBYDENNIKOV, S. S. Spatial evolution of the residual-acceleration vector on

board spacecraft OGLEVIE, RONALD E.

Autonomous flight control for low thrust orbital transfer vehicles p 30 A88-44670

[AIAA PAPER 88-2838] OHASHI, TOSHIRO

Development of a magnetically suspended, tetrahedron-shaped antenna pointing system

OHTOMO, ISAO

Ka, C, S frequency bands, multi-beam deployable antenna system for large-capacity communication satellite p 54 A88-33448

OKAMURA, TOSHIO

Digital sequential shunt regulator for solar power conditioning of Engineering Test Satellite (ETS-V) p 86 A88-54696

Dynamics and control of experimental tendon control system for flexible space structure AIAA PAPER 88-4154] p 36 A88-50248

OLIER, E.

Man versus machine: The role of astronauts in extravehicular activity p 79 N88-26045

OLSEN, R. C.

Electron beam experiments at high altitudes p 56 A88-46799

ONODA, JUNJIRO

Two-dimensional deployable truss structures for space p 14 A88-47964 applications Tethered subsatellite swinging from atmospheric p 46 A88-55067

OSHMAN, YAAKOV

On-line measurement configuration strategies for discrete-time systems p 36 A88-50259 [AIAA PAPER 88-4168]

OUYANG, JANG JAMES

Adaptive residual mode filter control of distributed parameter systems for large space structure applications p 52 N88-26143

Optical environment of the Spacelab 1 mission p 67 A88-47966

Results from a tethered rocket experiment (Charge-2)

p 57 A88-46804

Optimal structural design with control gain norm constraint p 22 A88-50339 OZAWA, TAMANE

Development of a magnetically suspended, tetrahedron-shaped antenna pointing system

p 18 N88-21478

p 35 A88-50189

OZGUNER. U.

Two controller design approaches for decentralized systems

[AIAA PAPER 88-4083] **OZGUNER. UMIT**

Laboratory facility for flexible structure control p 42 A88-53681

Development of a control oriented model of cantilevered beam with end-mass p 44 A88-54533

PACHURA, DAVID W.

ARGES: An expert system for fault diagnosis within pace-based ECLS systems p 101 N88-29380 PADMAN RACHAEL

Focal-plane and aperture-plane heterodyne array receivers for millimeter-wave radioastronomy comparison p 58 A88-54749

PADMANABHAN, M. K.

Design and development of a computer controlled system for spacecraft static testing p 11 A88-54896 PADUA, DAVID J.

p 9 A88-39500 Space Phoenix

PALASZEWSKI, BRYAN

Advanced propulsion for the Mars Rover Sample Return Mission

[AIAA PAPER 88-2900]

p 84 A88-46489

PALAZZOLO, A. B. Beam modifications of structural systems utilizing the

receptance approach with static flexibility

p 14 A88-50891 PANIN, F.

sequentially deployable structure for space p 15 N88-21202 applications

PANZANI, FRANCOIS

Multimission communication satellites [IAF PAPER 88-426] p 6 A88-55417

PAPEGAY, Y.

Literal dynamic modeling

[REPT-881-440-114]

p 53 N88-28083 PAPPA RICHARD S. A comparative overview of modal testing and system identification for control of structures p 29 A88-40269

PARIGGER, P. Deployable booms and antennas on AMPTE-IRM

p 15 N88-21198

PARK, CHUL Optimum configuration of high-lift aeromaneuvering

orbital transfer vehicles in viscous flow p 11 A88-51386

Computational issues in control-structure interaction

analysis p 32 A88-46406 PARMLEY, RICHARD T.

Design and test of a modified passive orbital disconnect strut (PODS-IV)

p 11 A88-53226 PARRISH, JOSEPH C. Optimal use of human and machine resources for Space

Station assembly operations [AIAA PAPER 88-3498] p 75 A88-42903

PARSONS, ERIC K. The jitter beam - An experiment demonstrating pointing p 43 A88-54406

control on a flexible structure PASCAL, MADELEINE

Dynamics analysis of a system of hinge-connected flexible bodies p 42 A88-52639 PASCHE, A.

Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1]

PASCOAL, ANTONIO M.

Minimum-time control of large space structures p 29 A88-42576 PASCUAL, C.

The EURECA antenna deployment and retraction

mechanisms p 16 N88-21225 PATIN, J. F. The SPOT solar array. Box opening mechanisms physical vapor deposition (PVD)-MoS2: Lubricated slides.

Functional evaluation

PAWLOWSKI P Some highlights on ROSAT mechanisms

p 14 N88-21195

p 102 N88-30556

PEACOCK, A. ESA report to the 27th COSPAR meeting

[ESA-SP-1098]

PEARSON, JEROME Advanced control evaluation for structures (ACES) programs p 44 A88-54572

POPOVICH, PAVEL ROMANOVICH

Ballistic design of space systems PORCELLI, GIACOMO

PORTER, A. H.

Fast geostationary satellite relocation [IAF PAPER 88-314]

support mechanism for space station

Development of a rotary fluid transfer coupling and

EDERSON, A.	POWELL, J. R.	RAMANATHAN, R. K.
ESA report to the 27th COSPAR meeting	Nuclear propulsion systems for orbit transfer based on the particle bed reactor p 87 N88-24272	Comparison of theoretical and experimental modal analysis results of a rectangular three dimensional frame
[ESA-SP-1098] p 102 N88-30556	PRASAD, C. S.	p 22 A88-50873
EEBLES, J. H. Space Station erectable truss joint evaluation	Use of the surface tension propellant tanks in the Indian	RAMSTHALER, J.
[AIAA PAPER 88-2448] p 13 A88-35940	satellite Insat	Advanced nuclear rocket engine mission analysis
ENKO, P. F.	[IAF PAPER 88-237] p 86 A88-55365	[DE88-006797] p 87 N88-24681
An experimental investigation of the effect of test-cell	PRATER, J. T. Fabric space radiators	RAMSTHALER, JACK H. Comparison of a direct thrust nuclear engine, nuclear
pressure on the performance of resistojets [AIAA PAPER 88-3286] p 84 A88-44820	[DE88-005569] p 17 N88-21237	electric engine and a chemical engine for future space
	PRICE, HAROLD A.	missions p 87 N88-24379
ENN, JAY P. Autonomous flight control for low thrust orbital transfer	Space station full-scale docking/berthing mechanisms	RANTANEN, R. O.
vehicles	development p 18 N88-21491 PRIESETT, K.	Neutral environment for space station
[AIAA PAPER 88-2838] p 30 A88-44670	A joint actuator design for a robotic manipulator	p 69 N88-25391
ENNINGTON, JACK E.	p 77 N88-21232	RAO, M. SAMBASIVA Use of modal energy distribution in the design of
Space spider crane [NASA-CASE-LAR-13411-1-SB] p 7 N88-23828	PRONK, C. N. A.	honeycomb sandwich decks p 64 A88-37466
(14/6/Constant of the constant	Simulation of space manipulator operations (Eurosim) p 10 A88-46982	RAO, S. S.
ERKINS, W. R. Projective controls for disturbance attenuation in LSS	Simulation of space manipulator operations	Game theory approach for the integrated design of
systems p 43 A88-54410	(EUROSIM)	structures and controls p 33 A88-47462
ERRYMAN, M. A. C.	[NLR-MP-87017-U] p 80 N88-26678	RAO, S. VITTAL
ESA report to the 27th COSPAR meeting	PRUCZ, JACKY C.	Control of large space structures using reduced order models
[ESA-SP-1098] p 102 N88-30556	Performance enhancement of passively damped joints for space structures	[IAF PAPER 88-272] p 47 A88-55371
ETERS, P. N. Velocity distributions of oxygen atoms incident on	[AIAA PAPER 88-2450] p 13 A88-35941	RÃO, SINGIRESU S.
spacecraft surfaces p 68 A88-54990	PULLIAM, R.	Optimization of actively controlled structures using
FITZNER, M. L.	On-orbit, man/machine interface verification with	multiobjective programming techniques
The Flinders Platform - A low-cost multimission platform	simulator testing p 89 A88-33780	p 46 A88-54973
for Australia p 3 A88-37257	PULLO, FRANK A. COSM: A Space Station EVAS test challenge	RASH, JAMES The 1988 Goddard Conference on Space Applications
HAN, MINH	p 3 A88-36556	of Artificial Intelligence
A mathematical theory of learning control for linear discrete multivariable systems	PULS, J.	[NASA-CP-3009] p 102 N88-30330
[AIAA PAPER 88-4313] p 40 A88-50438	Demonstration mission on Columbus for technology	RASMUSSEN, C. E.
HILLIPS, D. J.	developments (IAF PAPER 88-002) p 6 A88-55314	Theory of the electrodynamic tether
Experimental demonstration of the maximum	[IAF PAPER 88-002] p 6 A88-55314 PURINTON, STEVEN C.	p 57 A88-46805 RATCLIFFE, JAIMIE
entropy/optimal projection design theory for active	An expert system for a distributed real-time trainer	Block Oriented Simulation System (BOSS)
vibration control p 44 A88-54575	p 12 N88-29411	[NASA-CR-182947] p 100 N88-27760
HILLIPS, SALLY J. The efficacy of using human myoelectric signals to	PURVES, B.	RAZAFIMAHAROLAHY, M. R.
control the limbs of robots in space	Reasoning about fault diagnosis for the space station common module thermal control system	Transient tests for space structures qualification p 41 A88-50837
[NASA-CR-182901] p 78 N88-25155	p 23 N88-29395	RAZZAQ, ZIA
PICHI, F. J.	PURVES, R. B.	Experimental and theoretical investigation of passive
The multi-disciplinary design study: A life cycle cost	A plan for time-phased incorporation of automation and	damping concepts for member forced and free vibration
	00 1100 00077	
algorithm	robotics on the US space station p 80 N88-29377	[NASA-CR-183082] p 52 N88-26693
algorithm [NASA-CR-4156] p 11 N88-24172	Remote servicing of space systems	REAUX, RAY A.
algorithm [NASA-CR-4156] p 11 N88-24172 PILKEV, WALTER D.	•	REAUX, RAY A. Human factors analysis of extravehicular servicing of
algorithm [NASA-CR-4156] p 11 N88-24172	Remote servicing of space systems p 81 N88-29409 PURVES, R. BYRON A teleoperated robotic manipulator system for materials	REAUX, RAY A. Human factors analysis of extravehicular servicing of payloads within the space station servicing facility p 76 A88-50998
algorithm [NASA-CR-4156] p 11 N88-24172 PILKEV, WALTER D. Vibration control of large structures [AD-A193317] p 53 N88-27587 PINES, D. J.	Remote servicing of space systems p 81 N88-29409 PURVES, R. BYRON	REAUX, RAY A. Human factors analysis of extravehicular servicing of payloads within the space station servicing facility p 76 A88-50998 REDDING, D. C.
algorithm [NASA-CR-4156] p 11 N88-24172 INEXEV, WALTER D. Vibration control of large structures [AD-A193317] p 53 N88-27587 INES, D. J. Two non-linear control approaches for retrieval of a	Remote servicing of space systems p 81 N88-29409 PURVES, R. BYRON A teleoperated robotic manipulator system for materials processing experiment servicing p 82 N88-29410	REAUX, RAY A. Human factors analysis of extravehicular servicing of payloads within the space station servicing facility p 76 A88-50998 REDDING, D. C. Two non-linear control approaches for retrieval of a
algorithm [NASA-CR-4156] p 11 N88-24172 PILKEV, WALTER D. Vibration control of large structures [AD-A193317] p 53 N88-27587 INNES, D. J. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite	Remote servicing of space systems p 81 N88-29409 PURVES, R. BYRON A teleoperated robotic manipulator system for materials	REAUX, RAY A. Human factors analysis of extravehicular servicing of payloads within the space station servicing facility p 76 A88-50998 REDDING, D. C. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite
algorithm [NASA-CR-4156] p 11 N88-24172 PILKEV, WALTER D. Vibration control of large structures [AD-A193317] p 53 N88-27587 PINES, D. J. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262	Remote servicing of space systems p 81 N88-29409 PURVES, R. BYRON A teleoperated robotic manipulator system for materials processing experiment servicing p 82 N88-29410 Q	REAUX, RAY A. Human factors analysis of extravehicular servicing of payloads within the space station servicing facility p 76 A88-50998 REDDING, D. C. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite
algorithm [NASA-CR-4156] p 11 N88-24172 PILKEV, WALTER D. Vibration control of large structures [AD-A193317] p 53 N88-27587 PINES, D. J. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262	Remote servicing of space systems p 81 N88-29409 PURVES, R. BYRON A teleoperated robotic manipulator system for materials processing experiment servicing p 82 N88-29410 Q QUALLS, GARRY D.	REAUX, RAY A. Human factors analysis of extravehicular servicing of payloads within the space station servicing facility p 76 A88-50998 REDDING, D. C. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262 REGALADO, O. L. Development of an intermodule connector for
algorithm [NASA-CR-4156] p 11 N88-24172 PILKEV, WALTER D. Vibration control of large structures [AD-A193317] p 53 N88-27587 PINES, D. J. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262 PINOTTI, ROBERTO Space Station habitation module - Privacy and collective life	Remote servicing of space systems p 81 N88-29409 PURVES, R. BYRON A teleoperated robotic manipulator system for materials processing experiment servicing p 82 N88-29410 Q QUALLS, GARRY D. Advanced satellite servicing facility studies	REAUX, RAY A. Human factors analysis of extravehicular servicing of payloads within the space station servicing facility p 76 A88-50998 REDDING, D. C. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262 REGALADO, O. L. Development of an intermodule connector for serviceable spacecraft p 16 N88-21212
algorithm [NASA-CR-4156] p 11 N88-24172 PILKEV, WALTER D. Vibration control of large structures [AD-A193317] p 53 N88-27587 PINES, D. J. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262 PINOTTI, ROBERTO Space Station habitation module - Privacy and collective life [IAF PAPER 88-080] p 97 A88-55336	Remote servicing of space systems p 81 N88-29409 PURVES, R. BYRON A teleoperated robotic manipulator system for materials processing experiment servicing p 82 N88-29410 Q QUALLS, GARRY D.	REAUX, RAY A. Human factors analysis of extravehicular servicing of payloads within the space station servicing facility p 76 A88-50998 REDDING, D. C. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262 REGALADO, O. L. Development of an intermodule connector for serviceable spacecraft p 16 N88-21212 REGELBRUGGE, MARC E.
algorithm [NASA-CR-4156] p 11 N88-24172 PILKEV, WALTER D. Vibration control of large structures [AD-A193317] p 53 N88-27587 PINES, D. J. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262 PINOTTI, ROBERTO Space Station habitation module - Privacy and collective life [IIAF PAPER 88-080] p 97 A88-55336	Remote servicing of space systems p 81 N88-29409 PURVES, R. BYRON A teleoperated robotic manipulator system for materials processing experiment servicing p 82 N88-29410 Q QUALLS, GARRY D. Advanced satellite servicing facility studies [AIAA PAPER 88-4200] p 93 A88-42912 QUEIJO, M. J. Some operational aspects of a rotating	REAUX, RAY A. Human factors analysis of extravehicular servicing of payloads within the space station servicing facility p 76 A88-50998 REDDING, D. C. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262 REGALADO, O. L. Development of an intermodule connector for serviceable spacecraft p 16 N88-21212 REGELBRUGGE, MARC E. Integrated structural/controller optimization of large
algorithm [NASA-CR-4156] p 11 N88-24172 PLKEV, WALTER D. Vibration control of large structures [AD-A193317] p 53 N88-27587 PINES, D. J. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262 PINOTTI, ROBERTO Space Station habitation module - Privacy and collective life [IAF PAPER 88-080] p 97 A88-55336 PLATONOV, O. I. Relationship between characteristics of low-energy	Remote servicing of space systems p 81 N88-29409 PURVES, R. BYRON A teleoperated robotic manipulator system for materials processing experiment servicing p 82 N88-29410 Q QUALLS, GARRY D. Advanced satellite servicing facility studies [AIAA PAPER 88-4200] p 93 A88-42912 QUEIJO, M. J. Some operational aspects of a rotating advanced-technology space station for the year 2025	REAUX, RAY A. Human factors analysis of extravehicular servicing of payloads within the space station servicing facility p 76 A88-50998 REDDING, D. C. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262 REGALADO, O. L. Development of an intermodule connector for serviceable spacecraft p 16 N88-21212 REGELBRUGGE, MARC E.
algorithm [NASA-CR-4156] p 11 N88-24172 PILKEV, WALTER D. Vibration control of large structures [AD-A193317] p 53 N88-27587 PINES, D. J. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262 PINOTTI, ROBERTO Space Station habitation module - Privacy and collective life [IIAF PAPER 88-080] p 97 A88-55336	PURVES, R. BYRON A teleoperated robotic manipulator system for materials processing experiment servicing p 82 N88-29410 Q QUALLS, GARRY D. Advanced satellite servicing facility studies [AIAA PAPER 88-4200] p 93 A88-42912 QUEIJO, M. J. Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397	REAUX, RAY A. Human factors analysis of extravehicular servicing of payloads within the space station servicing facility p 76 A88-50998 REDDING, D. C. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262 REGALADO, O. L. Development of an intermodule connector for serviceable spacecraft p 16 N88-21212 REGELBRUGGE, MARC E. Integrated structural/controller optimization of large space structures [AIAA PAPER 88-4305] p 39 A88-50430 REINEL, K.
algorithm [NASA-CR-4156] p 11 N88-24172 PLIKEV, WALTER D. Vibration control of large structures [AD-A193317] p 53 N88-27587 PINES, D. J. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262 PINOTTI, ROBERTO Space Station habitation module - Privacy and collective life [IAF PAPER 88-080] p 97 A88-55336 PLATONOV, O. I. Relationship between characteristics of low-energy electrons and geomagnetic disturbance in geostationary orbit p 62 N88-30501	Remote servicing of space systems p 81 N88-29409 PURVES, R. BYRON A teleoperated robotic manipulator system for materials processing experiment servicing p 82 N88-29410 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	REAUX, RAY A. Human factors analysis of extravehicular servicing of payloads within the space station servicing facility p 76 A88-50998 REDDING, D. C. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262 REGALADO, O. L. Development of an intermodule connector for serviceable spacecraft p 16 N88-21212 REGELBRUGGE, MARC E. Integrated structural/controller optimization of large space structures [AIAA PAPER 88-4305] p 39 A88-50430 REINEL, K. The Manned Space Laboratories Control Center (MSCC)
algorithm [NASA-CR-4156] p 11 N88-24172 PILKEV, WALTER D. Vibration control of large structures [AD-A193317] p 53 N88-27587 PINES, D. J. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262 PINOTTI, ROBERTO Space Station habitation module - Privacy and collective life [IAF PAPER 88-080] p 97 A88-55336 PLATONOV, O. I. Relationship between characteristics of low-energy electrons and geomagnetic disturbance in geostationary orbit p 62 N88-30501 PLOTARD, P. Contribution to the study of materials behavior in space	PURVES, R. BYRON A teleoperated robotic manipulator system for materials processing experiment servicing p 82 N88-29410 Q QUALLS, GARRY D. Advanced satellite servicing facility studies [AIAA PAPER 88-4200] p 93 A88-42912 QUEIJO, M. J. Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 QUIST, WILLIAM E. Aluminum-lithium alloys: Design, development and application update; Proceedings of the Symposium, Los	REAUX, RAY A. Human factors analysis of extravehicular servicing of payloads within the space station servicing facility p 76 A88-50998 REDDING, D. C. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262 REGALADO, O. L. Development of an intermodule connector for serviceable spacecraft p 16 N88-21212 REGELBRUGGE, MARC E. Integrated structural/controller optimization of large space structures [AIAA PAPER 88-4305] p 39 A88-50430 REINEL, K. The Manned Space Laboratories Control Center (MSCC) at DFVLR - Oberptaffenhofen, Germany
algorithm [NASA-CR-4156] p 11 N88-24172 PULKEV, WALTER D. Vibration control of large structures [AD-A193317] p 53 N88-27587 PINES, D. J. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262 PINOTTI, ROBERTO Space Station habitation module - Privacy and collective life [IIAF PAPER 88-080] p 97 A88-55336 PLATONOV, O. I. Relationship between characteristics of low-energy electrons and geomagnetic disturbance in geostationary orbit p 62 N88-30501 PLOTARD, P. Contribution to the study of materials behavior in space environment	PURVES, R. BYRON A teleoperated robotic manipulator system for materials processing experiment servicing p 82 N88-29410 Q QUALLS, GARRY D. Advanced satellite servicing facility studies [AIAA PAPER 88-4200] p 93 A88-42912 [QUEIJO, M. J. Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 [QUIST, WILLIAM E. Aluminum-lithium alloys: Design, development and application update; Proceedings of the Symposium, Los Angeles, CA, Mar. 25, 26, 1987 p 67 A88-45201	REAUX, RAY A. Human factors analysis of extravehicular servicing of payloads within the space station servicing facility p 76 A88-50998 REDDING, D. C. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262 REGALADO, O. L. Development of an intermodule connector for serviceable spacecraft p 16 N88-21212 REGELBRUGGE, MARC E. Integrated structural/controller optimization of large space structures [AIAA PAPER 88-4305] p 39 A88-50430 REINEL, K. The Manned Space Laboratories Control Center (MSCC) at DFVLR - Oberpfaffenhofen, Germany [IAF PAPER 88-087] p 6 A88-55337 REINEL, K.ONRAD
algorithm [NASA-CR-4156] p 11 N88-24172 PILKEV, WALTER D. Vibration control of large structures [AD-A193317] p 53 N88-27587 PINES, D. J. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262 PINOTTI, ROBERTO Space Station habitation module - Privacy and collective life [IAF PAPER 88-080] p 97 A88-55336 PLATONOV, O. I. Relationship between characteristics of low-energy electrons and geomagnetic disturbance in geostationary orbit PLOTARD, P. Contribution to the study of materials behavior in space environment [SNIAS-881-430-104] p 72 N88-28977 POLAK, E.	PURVES, R. BYRON A teleoperated robotic manipulator system for materials processing experiment servicing p 82 N88-29410 Q QUALLS, GARRY D. Advanced satellite servicing facility studies [AIAA PAPER 88-4200] p 93 A88-42912 QUEIJO, M. J. Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] QUIST, WILLIAM E. Aluminum-lithium alloys: Design, development and application update; Proceedings of the Symposium, Los Angeles, CA, Mar. 25, 26, 1987 p 67 A88-45201 QUITTNER, E.	REAUX, RAY A. Human factors analysis of extravehicular servicing of payloads within the space station servicing facility p 76 A88-50998 REDDING, D. C. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262 REGALADO, O. L. Development of an intermodule connector for serviceable spacecraft p 16 N88-21212 REGELBRUGGE, MARC E. Integrated structural/controller optimization of large space structures [AIAA PAPER 88-4305] p 39 A88-50430 REINEL, K. The Manned Space Laboratories Control Center (MSCC) at DFVLR - Oberpfaffenhofen, Germany [IAF PAPER 88-087] p 6 A88-5537 REINEL, K. TRINEL, KONRAD Tasks of the simulation installations for space flight
algorithm [NASA-CR-4156] p 11 N88-24172 PILKEV, WALTER D. Vibration control of large structures [AD-A193317] p 53 N88-27587 PINES, D. J. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262 PINOTTI, ROBERTO Space Station habitation module - Privacy and collective life [IAF PAPER 88-080] p 97 A88-55336 PLATONOV, O. I. Relationship between characteristics of low-energy electrons and geomagnetic disturbance in geostationary orbit p 62 N88-30501 PLOTARD, P. Contribution to the study of materials behavior in space environment [SNIAS-881-430-104] p 72 N88-28977 POLAK, E. Numerical optimization, system theoretic and software	PURVES, R. BYRON A teleoperated robotic manipulator system for materials processing experiment servicing p 82 N88-29410 Q QUALLS, GARRY D. Advanced satellite servicing facility studies [AIAA PAPER 88-4200] p 93 A88-42912 QUEIJO, M. J. Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 QUIST, WILLIAM E. Aluminum-lithium alloys: Design, development and application update; Proceedings of the Symposium, Los Angeles, CA, Mar. 25, 26, 1987 p 67 A88-45201 QUITTNER, E. System and concept design of the SSRMS latching end	REAUX, RAY A. Human factors analysis of extravehicular servicing of payloads within the space station servicing facility p 76 A88-50998 REDDING, D. C. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262 REGALADO, O. L. Development of an intermodule connector for serviceable spacecraft p 16 N88-21212 REGELBRUGGE, MARC E. Integrated structural/controller optimization of large space structures [AIAA PAPER 88-4305] p 39 A88-50430 REINEL, K. The Manned Space Laboratories Control Center (MSCC) at DFVLR - Oberplaffenhofen, Germany [IAF PAPER 88-087] p 6 A88-5537 REINEL, KOMRAD Tasks of the simulation installations for space flight operations in the operations center for manned space
algorithm [NASA-CR-4156] p 11 N88-24172 PILKEV, WALTER D. Vibration control of large structures [AD-A193317] p 53 N88-27587 PINES, D. J. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262 PINOTTI, ROBERTO Space Station habitation module - Privacy and collective life [IAF PAPER 88-080] p 97 A88-5336 PLATONOV, O. I. Relationship between characteristics of low-energy electrons and geomagnetic disturbance in geostationary orbit p 62 N88-30501 PLOTARD, P. Contribution to the study of materials behavior in space environment [SNIAS-881-430-104] p 72 N88-28977 POLAK, E. Numerical optimization, system theoretic and software tools for the integrated design of flexible structures and	PURVES, R. BYRON A teleoperated robotic manipulator system for materials processing experiment servicing p 82 N88-29410 Q QUALLS, GARRY D. Advanced satellite servicing facility studies [AIAA PAPER 88-4200] p 93 A88-42912 QUEIJO, M. J. Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 QUIST, WILLIAM E. Aluminum-lithium alloys: Design, development and application update; Proceedings of the Symposium, Los Angeles, CA, Mar. 25, 26, 1987 p 67 A88-45201 QUITTNER, E. System and concept design of the SSRMS latching end	REAUX, RAY A. Human factors analysis of extravehicular servicing of payloads within the space station servicing facility p 76 A88-50998 REDDING, D. C. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262 REGALADO, O. L. Development of an intermodule connector for serviceable spacecraft p 16 N88-21212 REGELBRUGGE, MARC E. Integrated structural/controller optimization of large space structures [AIAA PAPER 88-4305] p 39 A88-50430 REINEL, K. The Manned Space Laboratories Control Center (MSCC) at DFVLR - Oberpfaffenhofen, Germany [IAF PAPER 88-087] p 6 A88-5537 REINEL, KONRAD Tasks of the simulation installations for space flight operations in the operations center for manned space laboratories
algorithm [NASA-CR-4156] p 11 N88-24172 PILKEV, WALTER D. Vibration control of large structures [AD-A193317] p 53 N88-27587 PINES, D. J. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262 PINOTTI, ROBERTO Space Station habitation module - Privacy and collective life [IAF PAPER 88-080] p 97 A88-55336 PLATONOV, O. I. Relationship between characteristics of low-energy electrons and geomagnetic disturbance in geostationary orbit PLOTARD, P. Contribution to the study of materials behavior in space environment [SNIAS-881-430-104] p 72 N88-28977 POLAK, E. Numerical optimization, system theoretic and software tools for the integrated design of flexible structures and their control systems	PURVES, R. BYRON A teleoperated robotic manipulator system for materials processing experiment servicing p 82 N88-29410 Q QUALLS, GARRY D. Advanced satellite servicing facility studies [AIAA PAPER 88-4200] p 93 A88-42912 QUEIJO, M. J. Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 QUIST, WILLIAM E. Aluminum-lithium alloys: Design, development and application update; Proceedings of the Symposium, Los Angeles, CA, Mar. 25, 26, 1987 p 67 A88-45201 QUITTNER, E. System and concept design of the SSRMS latching end effector p 15 N88-21204	REAUX, RAY A. Human factors analysis of extravehicular servicing of payloads within the space station servicing facility p 76 A88-50998 REDDING, D. C. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262 REGALADO, O. L. Development of an intermodule connector for serviceable spacecraft p 16 N88-21212 REGELBRUGGE, MARC E. Integrated structural/controller optimization of large space structures [AIAA PAPER 88-4305] p 39 A88-50430 REINEL, K. The Manned Space Laboratories Control Center (MSCC) at DFVLR - Oberplaffenhofen, Germany [IAF PAPER 88-087] p 6 A88-5537 REINEL, KOMRAD Tasks of the simulation installations for space flight operations in the operations center for manned space
algorithm [NASA-CR-4156] p 11 N88-24172 PILKEV, WALTER D. Vibration control of large structures [AD-A193317] p 53 N88-27587 PINES, D. J. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262 PINOTTI, ROBERTO Space Station habitation module - Privacy and collective life [IAF PAPER 88-080] p 97 A88-55336 PLATONOV, O. I. Relationship between characteristics of low-energy electrons and geomagnetic disturbance in geostationary orbit p 62 N88-30501 PLOTARD, P. Contribution to the study of materials behavior in space environment [SNIAS-881-430-104] p 72 N88-28977 POLAK, E. Numerical optimization, system theoretic and software tools for the integrated design of flexible structures and their control systems [AD-A192927] p 52 N88-27183	PURVES, R. BYRON A teleoperated robotic manipulator system for materials processing experiment servicing p 82 N88-29410 Q QUALLS, GARRY D. Advanced satellite servicing facility studies [AIAA PAPER 88-4200] p 93 A88-42912 QUEIJO, M. J. Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 QUIST, WILLIAM E. Aluminum-lithium alloys: Design, development and application update; Proceedings of the Symposium, Los Angeles, CA, Mar. 25, 26, 1987 p 67 A88-45201 QUITTNER, E. System and concept design of the SSRMS latching end	REAUX, RAY A. Human factors analysis of extravehicular servicing of payloads within the space station servicing facility p 76 A88-50998 REDDING, D. C. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262 REGALADO, O. L. Development of an intermodule connector for serviceable spacecraft p 16 N88-21212 REGELBRUGGE, MARC E. Integrated structural/controller optimization of large space structures [AIAA PAPER 88-4305] p 39 A88-50430 REINEL, K. The Manned Space Laboratories Control Center (MSCC) at DFVLR - Oberpfaffenhofen, Germany [IAF PAPER 88-087] p 6 A88-5537 REINEL, KONRAD Tasks of the simulation installations for space flight operations in the operations center for manned space laboratories p 10 A88-46516 REISS, ROBERT Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892
algorithm [NASA-CR-4156] p 11 N88-24172 PILKEV, WALTER D. Vibration control of large structures [AD-A193317] p 53 N88-27587 PINES, D. J. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262 PINOTTI, ROBERTO Space Station habitation module - Privacy and collective life [IAF PAPER 88-080] p 97 A88-55336 PLATONOV, O. I. Relationship between characteristics of low-energy electrons and geomagnetic disturbance in geostationary orbit p 62 N88-30501 PLOTARD, P. Contribution to the study of materials behavior in space environment [SNIAS-881-430-104] p 72 N88-28977 POLAK, E. Numerical optimization, system theoretic and software tools for the integrated design of flexible structures and their control systems [AD-A192927] p 52 N88-27183 POLANSKY, D. Radiation inspection methods for composites	PURVES, R. BYRON A teleoperated robotic manipulator system for materials processing experiment servicing p 82 N88-29410 Q QUALLS, GARRY D. Advanced satellite servicing facility studies [AIAA PAPER 88-4200] p 93 A88-42912 QUEIJO, M. J. Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 QUIST, WILLIAM E. Aluminum-lithium alloys: Design, development and application update; Proceedings of the Symposium, Los Angeles, CA, Mar. 25, 26, 1987 p 67 A88-45201 QUITTNER, E. System and concept design of the SSRMS latching end effector p 15 N88-21204	REAUX, RAY A. Human factors analysis of extravehicular servicing of payloads within the space station servicing facility p 76 A88-50998 REDDING, D. C. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262 REGALADO, O. L. Development of an intermodule connector for serviceable spacecraft p 16 N88-21212 REGELBRUGGE, MARC E. Integrated structural/controller optimization of large space structures [AIAA PAPER 88-4305] p 39 A88-50430 REINEL, K. The Manned Space Laboratories Control Center (MSCC) at DFVLR - Oberpfaffenhofen, Germany [IAF PAPER 88-087] p 6 A88-55337 REINEL, KONRAD Tasks of the simulation installations for space flight operations in the operations center for manned space laboratories p 10 A88-46516 REISS, ROBERT Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892 REISSMANN, F.
algorithm [NASA-CR-4156] p 11 N88-24172 PILKEV, WALTER D. Vibration control of large structures [AD-A193317] p 53 N88-27587 PINES, D. J. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262 PINOTTI, ROBERTO Space Station habitation module - Privacy and collective life [IAF PAPER 88-080] p 97 A88-55336 PLATONOV, O. I. Relationship between characteristics of low-energy electrons and geomagnetic disturbance in geostationary orbit p 62 N88-30501 PLOTARD, P. Contribution to the study of materials behavior in space environment [SNIAS-881-430-104] p 72 N88-28977 POLAK, E. Numerical optimization, system theoretic and software tools for the integrated design of flexible structures and their control systems [AD-A192927] p 52 N88-27183 POLANSKY, D. Radiation inspection methods for composites p 68 A88-49260	PURVES, R. BYRON A teleoperated robotic manipulator system for materials processing experiment servicing p 82 N88-29410 Q QUALLS, GARRY D. Advanced satellite servicing facility studies [AIAA PAPER 88-4200] p 93 A88-42912 QUEIJO, M. J. Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 QUIST, WILLIAM E. Aluminum-lithium alloys: Design, development and application update; Proceedings of the Symposium, Los Angeles, CA, Mar. 25, 26, 1987 p 67 A88-45201 QUITTNER, E. System and concept design of the SSRMS latching end effector p 15 N88-21204 R RACHNIKOV, A. V. Possible variants of microwave-beam structure for	REAUX, RAY A. Human factors analysis of extravehicular servicing of payloads within the space station servicing facility p 76 A88-50998 REDDING, D. C. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262 REGALADO, O. L. Development of an intermodule connector for serviceable spacecraft p 16 N88-21212 REGELBRUGGE, MARC E. Integrated structural/controller optimization of large space structures [AIAA PAPER 88-4305] p 39 A88-50430 REINEL, K. The Manned Space Laboratories Control Center (MSCC) at DFVLR - Oberpfaffenhofen, Germany [IAF PAPER 88-087] p 6 A88-5537 REINEL, KOMRAD Tasks of the simulation installations for space flight operations in the operations center for manned space laboratories p 10 A88-46516 REISS, ROBERT Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892 REISSMANN, F. Alternative module configurations for advanced solar
algorithm [NASA-CR-4156] p 11 N88-24172 PILKEV, WALTER D. Vibration control of large structures [AD-A193317] p 53 N88-27587 PINES, D. J. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262 PINOTTI, ROBERTO Space Station habitation module - Privacy and collective life [IAF PAPER 88-080] p 97 A88-5536 PLATONOV, O. I. Relationship between characteristics of low-energy electrons and geomagnetic disturbance in geostationary orbit p 62 N88-30501 PLOTARD, P. Contribution to the study of materials behavior in space environment [SNIAS-881-430-104] p 72 N88-28977 POLAK, E. Numerical optimization, system theoretic and software tools for the integrated design of flexible structures and their control systems [AD-A192927] p 52 N88-27183 POLANSKY, D. Radiation inspection methods for composites p 68 A88-49260	PURVES, R. BYRON A teleoperated robotic manipulator system for materials processing experiment servicing p 82 N88-29410 Q QUALLS, GARRY D. Advanced satellite servicing facility studies [AIAA PAPER 88-4200] p 93 A88-42912 QUEIJO, M. J. Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 QUIST, WILLIAM E. Aluminum-lithium alloys: Design, development and application update; Proceedings of the Symposium. Los Angeles, CA, Mar. 25, 26, 1987 p 67 A88-45201 QUITTNER, E. System and concept design of the SSRMS latching end effector p 15 N88-21204 R RACHNIKOV, A. V. Possible variants of microwave-beam structure for satellite solar power plants p 85 A88-50671	REAUX, RAY A. Human factors analysis of extravehicular servicing of payloads within the space station servicing facility p 76 A88-50998 REDDING, D. C. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262 REGALADO, O. L. Development of an intermodule connector for serviceable spacecraft p 16 N88-21212 REGELBRUGGE, MARC E. Integrated structural/controller optimization of large space structures [AIAA PAPER 88-4305] p 39 A88-50430 REINEL, K. The Manned Space Laboratories Control Center (MSCC) at DFVLR - Oberpfaffenhofen, Germany [IAF PAPER 88-087] p 6 A88-5537 REINEL, KONRAD Tasks of the simulation installations for space flight operations in the operations center for manned space laboratories p 10 A88-46516 REISS, ROBERT Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892 REISSMANN, F. Alternative module configurations for advanced solar arrays on low orbit and extended lifetime missions (AMOC
algorithm [NASA-CR-4156] p 11 N88-24172 PILKEV, WALTER D. Vibration control of large structures [AD-A193317] p 53 N88-27587 PINES, D. J. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262 PINOTTI, ROBERTO Space Station habitation module - Privacy and collective life [IAF PAPER 88-080] p 97 A88-55336 PLATONOV, O. I. Relationship between characteristics of low-energy electrons and geomagnetic disturbance in geostationary orbit PLOTARD, P. Contribution to the study of materials behavior in space environment [SNIAS-881-430-104] p 72 N88-28977 POLAK, E. Numerical optimization, system theoretic and software tools for the integrated design of flexible structures and their control systems [AD-A192927] p 52 N88-27183 POLANSKY, D. Radiation inspection methods for composites p 68 A88-49260 POLANSKY, G. F. Aerodynamic design of a variable-bend vehicle	PURVES, R. BYRON A teleoperated robotic manipulator system for materials processing experiment servicing p 82 N88-29410 Q QUALLS, GARRY D. Advanced satellite servicing facility studies [AIAA PAPER 88-4200] p 93 A88-42912 QUEIJO, M. J. Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 QUIST, WILLIAM E. Aluminum-lithium alloys: Design, development and application update; Proceedings of the Symposium, Los Angeles, CA, Mar. 25, 26, 1987 p 67 A88-45201 QUITTNER, E. System and concept design of the SSRMS latching end effector p 15 N88-21204 R RACHNIKOV, A. V. Possible variants of microwave-beam structure for satellite solar power plants p 85 A88-50671 RAHMATSAMII, Y.	REAUX, RAY A. Human factors analysis of extravehicular servicing of payloads within the space station servicing facility p 76 A88-50998 REDDING, D. C. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262 REGALADO, O. L. Development of an intermodule connector for serviceable spacecraft p 16 N88-21212 REGELBRUGGE, MARC E. Integrated structural/controller optimization of large space structures [AIAA PAPER 88-4305] p 39 A88-50430 REINEL, K. The Manned Space Laboratories Control Center (MSCC) at DFVLR - Oberpfaffenhofen, Germany [IAF PAPER 88-087] p 6 A88-5537 REINEL, KOMRAD Tasks of the simulation installations for space flight operations in the operations center for manned space laboratories p 10 A88-46516 REISS, ROBERT Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892 REISSMANN, F. Alternative module configurations for advanced solar arrays on low orbit and extended lifetime missions (AMOC 2) [ESA-CR(P)-2581] p 62 N88-30182
algorithm [NASA-CR-4156] p 11 N88-24172 PILKEV, WALTER D. Vibration control of large structures [AD-A193317] p 53 N88-27587 PINES, D. J. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262 PINOTTI, ROBERTO Space Station habitation module - Privacy and collective life [IIAF PAPER 88-080] p 97 A88-55336 PLATONOV, O. I. Relationship between characteristics of low-energy electrons and geomagnetic disturbance in geostationary orbit p 62 N88-30501 PLOTARD, P. Contribution to the study of materials behavior in space environment [SNIAS-881-430-104] p 72 N88-28977 POLAK, E. Numerical optimization, system theoretic and software tools for the integrated design of flexible structures and their control systems [AD-A19297] p 52 N88-27183 POLANSKY, D. Radiation inspection methods for composites p 68 A88-49260 POLANSKY, G. F. Aerodynamic design of a variable-bend vehicle [AIAA PAPER 88-4340] p 40 A88-50586	PURVES, R. BYRON A teleoperated robotic manipulator system for materials processing experiment servicing p 82 N88-29410 Q QUALLS, GARRY D. Advanced satellite servicing facility studies [AIAA PAPER 88-4200] p 93 A88-42912 QUEIJO, M. J. Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 QUIST, WILLIAM E. Aluminum-lithium alloys: Design, development and application update; Proceedings of the Symposium. Los Angeles, CA, Mar. 25, 26, 1987 p 67 A88-45201 QUITTNER, E. System and concept design of the SSRMS latching end effector p 15 N88-21204 R RACHNIKOV, A. V. Possible variants of microwave-beam structure for satellite solar power plants p 85 A88-50671	REAUX, RAY A. Human factors analysis of extravehicular servicing of payloads within the space station servicing facility p 76 A88-50998 REDDING, D. C. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262 REGALADO, O. L. Development of an intermodule connector for serviceable spacecraft p 16 N88-21212 REGELBRUGGE, MARC E. Integrated structural/controller optimization of large space structures [AIAA PAPER 88-4305] p 39 A88-50430 REINEL, K. The Manned Space Laboratories Control Center (MSCC) at DFVLR - Oberpfaffenhofen, Germany [IAF PAPER 88-087] p 6 A88-5537 REINEL, KONRAD Tasks of the simulation installations for space flight operations in the operations center for manned space laboratories p 10 A88-46516 REISS, ROBERT Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892 REISSMANN, F. Alternative module configurations for advanced solar arrays on low orbit and extended lifetime missions (AMOC 2) [ESA-CR(P)-2581] p 62 N88-30182
algorithm [NASA-CR-4156] p 11 N88-24172 PILKEV, WALTER D. Vibration control of large structures [AD-A193317] p 53 N88-27587 PINES, D. J. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262 PINOTTI, ROBERTO Space Station habitation module - Privacy and collective life [IAF PAPER 88-080] p 97 A88-55336 PLATONOV, O. I. Relationship between characteristics of low-energy electrons and geomagnetic disturbance in geostationary orbit PLOTARD, P. Contribution to the study of materials behavior in space environment [SNIAS-881-430-104] p 72 N88-28977 POLAK, E. Numerical optimization, system theoretic and software tools for the integrated design of flexible structures and their control systems [AD-A192927] p 52 N88-27183 POLANSKY, D. Radiation inspection methods for composites p 68 A88-49260 POLANSKY, G. F. Aerodynamic design of a variable-bend vehicle [AIAA PAPER 88-4340] p 40 A88-50586 POORAN, FARHAD J. Analysis of a closed-kinematic chain robot manipulator	PURVES, R. BYRON A teleoperated robotic manipulator system for materials processing experiment servicing p 82 N88-29410 Q QUALLS, GARRY D. Advanced satellite servicing facility studies [AIAA PAPER 88-4200] p 93 A88-42912 QUEIJO, M. J. Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 QUIST, WILLIAM E. Aluminum-lithium alloys: Design, development and application update; Proceedings of the Symposium, Los Angeles, CA, Mar. 25, 26, 1987 p 67 A88-45201 QUITTNER, E. System and concept design of the SSRMS latching end effector R RACHNIKOV, A. V. Possible variants of microwave-beam structure for satellite solar power plants p 85 A88-50671 RAHMATSAMII, Y. Large antenna experiments aboard the space shuttle:	REAUX, RAY A. Human factors analysis of extravehicular servicing of payloads within the space station servicing facility p 76 A88-50998 REDDING, D. C. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262 REGALADO, O. L. Development of an intermodule connector for serviceable spacecraft p 16 N88-21212 REGELBRUGGE, MARC E. Integrated structural/controller optimization of large space structures [AIAA PAPER 88-4305] p 39 A88-50430 REINEL, K. The Manned Space Laboratories Control Center (MSCC) at DFVLR - Oberpfaffenhofen, Germany [IAF PAPER 88-087] p 6 A88-55337 REINEL, KONRAD Tasks of the simulation installations for space flight operations in the operations center for manned space laboratories p 10 A88-46516 REISS, ROBERT Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892 REISSMANN, F. Alternative module configurations for advanced solar arrays on low orbit and extended lifetime missions (AMOC 2) [ESA-CR(P)-2581] p 62 N88-30182 REMINGTON, ROGER Spatial cognition p 100 N88-24152
algorithm [NASA-CR-4156] p 11 N88-24172 PILKEV, WALTER D. Vibration control of large structures [AD-A193317] p 53 N88-27587 PINES, D. J. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262 PINOTTI, ROBERTO Space Station habitation module - Privacy and collective life [IAF PAPER 88-080] p 97 A88-55336 PLATONOV, O. I. Relationship between characteristics of low-energy electrons and geomagnetic disturbance in geostationary orbit PLOTARD, P. Contribution to the study of materials behavior in space environment [SNIAS-881-430-104] p 72 N88-28977 POLAK, E. Numerical optimization, system theoretic and software tools for the integrated design of flexible structures and their control systems [AD-A192927] p 52 N88-27183 POLANSKY, D. Radiation inspection methods for composites [AB-A192927] p 68 A88-49260 POLANSKY, G. F. Aerodynamic design of a variable-bend vehicle [AIAA PAPER 88-4340] p 40 A88-50586 POCANSKY, G. F. Aerodynamic design of a variable-bend vehicle [AIAA PAPER 88-4340] p 40 A88-50586 POCANS, FARHAD J. Analysis of a closed-kinematic chain robot manipulator [NASA-CR-183031] p 79 N88-25206	PURVES, R. BYRON A teleoperated robotic manipulator system for materials processing experiment servicing p 82 N88-29410 Q Q QUALLS, GARRY D. Advanced satellite servicing facility studies [AIAA PAPER 88-4200] p 93 A88-42912 QUEIJO, M. J. Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 QUIST, WILLIAM E. Aluminum-lithium alloys: Design, development and application update; Proceedings of the Symposium, Los Angeles, CA, Mar. 25, 26, 1987 p 67 A88-45201 QUITTNER, E. System and concept design of the SSRMS latching end effector R RACHNIKOV, A. V. Possible variants of microwave-beam structure for satellite solar power plants p 85 A88-50671 RAHMATSAMIL, V. Large antenna experiments aboard the space shuttle: Application of nonuniform sampling techniques p 61 N88-25745	REAUX, RAY A. Human factors analysis of extravehicular servicing of payloads within the space station servicing facility p 76 A88-50998 REDDING, D. C. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262 REGALADO, O. L. Development of an intermodule connector for serviceable spacecraft p 16 N88-21212 REGELBRUGGE, MARC E. Integrated structural/controller optimization of large space structures [AIAA PAPER 88-4305] p 39 A88-50430 REINEL, K. The Manned Space Laboratories Control Center (MSCC) at DFVLR - Oberplaffenhofen, Germany (IAF PAPER 88-087) p 6 A88-5537 REINEL, KOMRAD Tasks of the simulation installations for space flight operations in the operations center for manned space laboratories p 10 A88-46516 REISS, ROBERT Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892 REISSMANN, F. Alternative module configurations for advanced solar arrays on low orbit and extended lifetime missions (AMOC 2) [ESA-CR(P)-2581] p 62 N88-30182 REMINGTON, ROGER Spatial cognition p 100 N88-24152
algorithm [NASA-CR-4156] p 11 N88-24172 PULKEV, WALTER D. Vibration control of large structures [AD-A193317] p 53 N88-27587 PURS, D. J. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262 PUNOTTI, ROBERTO Space Station habitation module - Privacy and collective life [IIAF PAPER 88-080] p 97 A88-55336 PLATONOV, O. I. Relationship between characteristics of low-energy electrons and geomagnetic disturbance in geostationary orbit p 62 N88-30501 PLOTARD, P. Contribution to the study of materials behavior in space environment [SNIAS-881-430-104] p 72 N88-28977 POLAK, E. Numerical optimization, system theoretic and software tools for the integrated design of flexible structures and their control systems [AD-A192927] p 52 N88-27183 POLANSKY, D. Radiation inspection methods for composites p 68 A88-49260 POLANSKY, G. F. Aerodynamic design of a variable-bend vehicle [AIAA PAPER 88-4340] p 40 A88-50586 POCRAN, FARHAD J. Analysis of a closed-kinematic chain robot manipulator [NASA-CR-183031]	PURVES, R. BYRON A teleoperated robotic manipulator system for materials processing experiment servicing p 82 N88-29410 Q QUALLS, GARRY D. Advanced satellite servicing facility studies [AIAA PAPER 88-4200] p 93 A88-42912 QUEIJO, M. J. Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 QUIST, WILLIAM E. Aluminum-lithium alloys: Design, development and application update; Proceedings of the Symposium. Los Angeles, CA, Mar. 25, 26, 1987 p 67 A88-45201 QUITTNER, E. System and concept design of the SSRMS latching end effector p 15 N88-21204 R RACHNIKOV, A. V. Possible variants of microwave-beam structure for satellite solar power plants p 85 A88-50671 RAHMATSAMII, Y. Large antenna experiments aboard the space shuttle: Application of nonuniform sampling techniques p 61 N88-25745 RAJU, J. A. S. Project Endeavour - Cannister 2 support structure	REAUX, RAY A. Human factors analysis of extravehicular servicing of payloads within the space station servicing facility p 76 A88-50998 REDDING, D. C. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262 REGALADO, O. L. Development of an intermodule connector for serviceable spacecraft p 16 N88-21212 REGELBRUGGE, MARC E. Integrated structural/controller optimization of large space structures [AIAA PAPER 88-4305] p 39 A88-50430 REINEL, K. The Manned Space Laboratories Control Center (MSCC) at DFVLR - Oberpfaffenhofen, Germany [IAF PAPER 88-087] p 6 A88-55337 REINEL, KONRAD Tasks of the simulation installations for space flight operations in the operations center for manned space laboratories p 10 A88-46516 REISS, ROBERT Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892 REISSMANN, F. Alternative module configurations for advanced solar arrays on low orbit and extended lifetime missions (AMOC 2) [ESA-CR(P)-2581] p 62 N88-30182 REMINGTON, ROGER Spatial cognition p 100 N88-24152
algorithm [NASA-CR-4156] p 11 N88-24172 PILKEV, WALTER D. Vibration control of large structures [AD-A193317] p 53 N88-27587 PINES, D. J. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262 PINOTTI, ROBERTO Space Station habitation module - Privacy and collective life [IAF PAPER 88-080] p 97 A88-55336 PLATONOV, O. I. Relationship between characteristics of low-energy electrons and geomagnetic disturbance in geostationary orbit PLOTARD, P. Contribution to the study of materials behavior in space environment [SNIAS-881-430-104] p 72 N88-28977 POLAK, E. Numerical optimization, system theoretic and software tools for the integrated design of flexible structures and their control systems [AD-A192927] p 52 N88-27183 POLANSKY, D. Radiation inspection methods for composites p 68 A88-49260 POLANSKY, G. F. Aerodynamic design of a variable-bend vehicle [AIAA PAPER 88-4340] p 40 A88-50586 POORAN, FARHAD J. Analysis of a closed-kinematic chain robot manipulator [NASA-CR-183031] p 79 N88-25206 POPE, MICHAEL A. Ground-test of spacecraft control and dynamics	PURVES, R. BYRON A teleoperated robotic manipulator system for materials processing experiment servicing p 82 N88-29410 Q QUALLS, GARRY D. Advanced satellite servicing facility studies [AIAA PAPER 88-4200] p 93 A88-42912 QUEIJO, M. J. Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 QUIST, WILLIAM E. Aluminum-lithium alloys: Design, development and application update; Proceedings of the Symposium, Los Angeles, CA, Mar. 25, 26, 1987 p 67 A88-45201 QUITTNER, E. System and concept design of the SSRMS latching end effector p 15 N88-21204 R RACHNIKOV, A. V. Possible variants of microwave-beam structure for satellite solar power plants p 85 A88-50671 RAHMATSAMI, Y. Large antenna experiments aboard the space shuttle: Application of nonuniform sampling techniques p 61 N88-25745 RAJU, J. A. S. Project Endeavour - Cannister 2 support structure	REAUX, RAY A. Human factors analysis of extravehicular servicing of payloads within the space station servicing facility p 76 A88-50998 REDDING, D. C. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262 REGALADO, O. L. Development of an intermodule connector for serviceable spacecraft p 16 N88-21212 REGELBRUGGE, MARC E. Integrated structural/controller optimization of large space structures [AIAA PAPER 88-4305] p 39 A88-50430 REINEL, K. The Manned Space Laboratories Control Center (MSCC) at DFVLR - Oberptaffenhofen, Germany [IAF PAPER 88-087] p 6 A88-55337 REINEL, KOMRAD Tasks of the simulation installations for space flight operations in the operations center for manned space laboratories p 10 A88-46516 REISS, ROBERT Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892 REISSMANN, F. Alternative module configurations for advanced solar arrays on low orbit and extended lifetime missions (AMOC 2) [ESA-CR(P)-2581] p 62 N88-30182 REMINGTON, ROGER Spatial cognition p 100 N88-24152 RENNISON, D. C. Methods for spacecraft simulation in vibro-acoustic environments p 9 A88-37278
algorithm [NASA-CR-4156] p 11 N88-24172 PULKEV, WALTER D. Vibration control of large structures [AD-A193317] p 53 N88-27587 PUNES, D. J. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262 PINOTTI, ROBERTO Space Station habitation module - Privacy and collective life [IAF PAPER 88-080] p 97 A88-55336 PLATONOV, O. I. Relationship between characteristics of low-energy electrons and geomagnetic disturbance in geostationary orbit p 62 N88-30501 PLOTARD, P. Contribution to the study of materials behavior in space environment [SNIAS-881-430-104] p 72 N88-28977 POLAK, E. Numerical optimization, system theoretic and software tools for the integrated design of flexible structures and their control systems [AD-A192927] p 52 N88-27183 POLANSKY, D. Radiation inspection methods for composites p 68 A88-49260 POLANSKY, G. F. Aerodynamic design of a variable-bend vehicle [AIAA PAPER 88-3340] p 40 A88-50586 POCAN, FARHAD J. Analysis of a closed-kinematic chain robot manipulator INASA-CR-183031] p 79 N88-25206 POPE, MICHAEL A. Ground-test of spacecraft control and dynamics [AAS PAPER 86-267] p 27 A88-35102	PURVES, R. BYRON A teleoperated robotic manipulator system for materials processing experiment servicing p 82 N88-29410 Q Q QUALLS, GARRY D. Advanced satellite servicing facility studies [AIAA PAPER 88-4200] p 93 A88-42912 QUEIJO, M. J. Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 QUIST, WILLIAM E. Aluminum-lithium alloys: Design, development and application update; Proceedings of the Symposium, Los Angeles, CA, Mar. 25, 26, 1987 p 67 A88-45201 QUITTNER, E. System and concept design of the SSRMS latching end effector p 15 N88-21204 R RACHNIKOV, A. V. Possible variants of microwave-beam structure for satellite solar power plants p 85 A88-50671 RAHMATSAMII, Y. Large antenna experiments aboard the space shuttle: Application of nonuniform sampling techniques p 61 N88-25745 RAJU, J. A. S. Project Endeavour - Cannister 2 support structure	REAUX, RAY A. Human factors analysis of extravehicular servicing of payloads within the space station servicing facility p 76 A88-50998 REDDING, D. C. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262 REGALADO, O. L. Development of an intermodule connector for serviceable spacecraft p 16 N88-21212 REGELBRUGGE, MARC E. Integrated structural/controller optimization of large space structures [AIAA PAPER 88-4305] p 39 A88-50430 REINEL, K. The Manned Space Laboratories Control Center (MSCC) at DFVLR - Oberpfaffenhofen, Germany [IAF PAPER 88-087] p 6 A88-5537 REINEL, KOMRAD Tasks of the simulation installations for space flight operations in the operations center for manned space laboratories p 10 A88-46516 REISS, ROBERT Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892 REISSMANN, F. Alternative module configurations for advanced solar arrays on low orbit and extended lifetime missions (AMOC 2) [ESA-CR(P)-2581] p 62 N88-30182 REMINGTON, ROGER Spatial cognition p 100 N88-24152 REMINGTON, ROGER Spatial cognition p 100 N88-24152 RENSHALL, JAMES Space station mobile transporter p 98 N88-21488
algorithm [NASA-CR-4156] p 11 N88-24172 PILKEV, WALTER D. Vibration control of large structures [AD-A193317] p 53 N88-27587 PINES, D. J. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262 PINOTTI, ROBERTO Space Station habitation module - Privacy and collective life [IAF PAPER 88-080] p 97 A88-55336 PLATONOV, O. I. Relationship between characteristics of low-energy electrons and geomagnetic disturbance in geostationary orbit PLOTARD, P. Contribution to the study of materials behavior in space environment [SNIAS-881-430-104] p 72 N88-28977 POLAK, E. Numerical optimization, system theoretic and software tools for the integrated design of flexible structures and their control systems [AD-A192927] p 52 N88-27183 POLANSKY, D. Radiation inspection methods for composites p 68 A88-49260 POLANSKY, G. F. Aerodynamic design of a variable-bend vehicle [AIAA PAPER 88-4340] p 40 A88-50586 POORAN, FARHAD J. Analysis of a closed-kinematic chain robot manipulator [NASA-CR-183031] p 79 N88-25206 POPE, MICHAEL A. Ground-test of spacecraft control and dynamics [AS PAPER 86-267] p 27 A88-35102 POPOV, G. V. Relationship between characteristics of low-energy	PURVES, R. BYRON A teleoperated robotic manipulator system for materials processing experiment servicing p 82 N88-29410 Q QUALLS, GARRY D. Advanced satellite servicing facility studies [AIAA PAPER 88-4200] p 93 A88-42912 QUEIJO, M. J. Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 QUIST, WILLIAM E. Aluminum-lithium alloys: Design, development and application update; Proceedings of the Symposium, Los Angeles, CA, Mar. 25, 26, 1987 p 67 A88-45201 QUITTNER, E. System and concept design of the SSRMS latching end effector p 15 N88-21204 R RACHNIKOV, A. V. Possible variants of microwave-beam structure for satellite solar power plants p 85 A88-50671 RAHMATSAMI, Y. Large antenna experiments aboard the space shuttle: Application of nonuniform sampling techniques p 61 N88-25745 RAJU, J. A. S. Project Endeavour - Cannister 2 support structure	REAUX, RAY A. Human factors analysis of extravehicular servicing of payloads within the space station servicing facility p 76 A88-50998 REDDING, D. C. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262 REGALADO, O. L. Development of an intermodule connector for serviceable spacecraft p 16 N88-21212 REGELBRUGGE, MARC E. Integrated structural/controller optimization of large space structures [AIAA PAPER 88-4305] p 39 A88-50430 REINEL, K. The Manned Space Laboratories Control Center (MSCC) at DFVLR - Oberpfaffenhofen, Germany [IAF PAPER 88-087] p 6 A88-55337 REINEL, KONRAD Tasks of the simulation installations for space flight operations in the operations center for manned space laboratories p 10 A88-46516 REISS, ROBERT Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892 REISSMANN, F. Alternative module configurations for advanced solar arrays on low orbit and extended lifetime missions (AMOC 2) [ESA-CR(P)-2581] p 62 N88-30182 REMINGTON, ROGER Spatial cognition p 100 N88-24152 REMINGTON, ROGER Spatial cognition p 100 N88-24152 REMINGTON, ROGER Spatial cognition p 9 A88-37278 REMSHALL, JAMES Space station mobile transporter p 98 N88-21488
algorithm [NASA-CR-4156] p 11 N88-24172 PULKEV, WALTER D. Vibration control of large structures [AD-A193317] p 53 N88-27587 PUNES, D. J. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262 PINOTTI, ROBERTO Space Station habitation module - Privacy and collective life [IAF PAPER 88-080] p 97 A88-55336 PLATONOV, O. I. Relationship between characteristics of low-energy electrons and geomagnetic disturbance in geostationary orbit p 62 N88-30501 PLOTARD, P. Contribution to the study of materials behavior in space environment [SNIAS-881-430-104] p 72 N88-28977 POLAK, E. Numerical optimization, system theoretic and software tools for the integrated design of flexible structures and their control systems [AD-A192927] p 52 N88-27183 POLANSKY, D. Radiation inspection methods for composites p 68 A88-49260 POLANSKY, G. F. Aerodynamic design of a variable-bend vehicle [AIAA PAPER 88-3340] p 40 A88-50586 POCAN, FARHAD J. Analysis of a closed-kinematic chain robot manipulator INASA-CR-183031] p 79 N88-25206 POPE, MICHAEL A. Ground-test of spacecraft control and dynamics [AAS PAPER 86-267] p 27 A88-35102	PURVES, R. BYRON A teleoperated robotic manipulator system for materials processing experiment servicing p 82 N88-29410 Q QUALLS, GARRY D. Advanced satellite servicing facility studies [AIAA PAPER 88-4200] p 93 A88-42912 QUEIJO, M. J. Some operational aspects of a rotating advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397 QUIST, WILLIAM E. Aluminum-lithium alloys: Design, development and application update; Proceedings of the Symposium. Los Angeles, CA, Mar. 25, 26, 1987 p 67 A88-45201 QUITTNER, E. System and concept design of the SSRMS latching end effector p 15 N88-21204 R RACHNIKOV, A. V. Possible variants of microwave-beam structure for satellite solar power plants p 85 A88-50671 RAHMATSAMII, Y. Large antenna experiments aboard the space shuttle: Application of nonuniform sampling techniques p 61 N88-25745 RAJU, J. A. S. Project Endeavour - Cannister 2 support structure p 91 A88-37273 RAJU, P. K. Structural vibration of space power station systems	REAUX, RAY A. Human factors analysis of extravehicular servicing of payloads within the space station servicing facility p 76 A88-50998 REDDING, D. C. Two non-linear control approaches for retrieval of a thrusting tethered sub-satellite [AIAA PAPER 88-4171] p 37 A88-50262 REGALADO, O. L. Development of an intermodule connector for serviceable spacecraft p 16 N88-21212 REGELBRUGGE, MARC E. Integrated structural/controller optimization of large space structures [AIAA PAPER 88-4305] p 39 A88-50430 REINEL, K. The Manned Space Laboratories Control Center (MSCC) at DFVLR - Oberpfaffenhofen, Germany [IAF PAPER 88-087] p 6 A88-5537 REINEL, KOMRAD Tasks of the simulation installations for space flight operations in the operations center for manned space laboratories p 10 A88-46516 REISS, ROBERT Frequency optimization of repetitive lattice beam-like structures using a continuum model p 41 A88-50892 REISSMANN, F. Alternative module configurations for advanced solar arrays on low orbit and extended lifetime missions (AMOC 2) [ESA-CR(P)-2581] p 62 N88-30182 REMINGTON, ROGER Spatial cognition p 100 N88-24152 REMINGTON, ROGER Spatial cognition p 100 N88-24152 RENSHALL, JAMES Space station mobile transporter p 98 N88-21488

effector

systems

RAMAKER, R. A.

RAMAKRISHNAN, JAYANT V.

[IAF PAPER 88-272]

p 9 A88-44898

p 97 A88-55390

p 18 N88-21493

p 15 N88-21204

p 43 A88-54410

p 47 A88-55371

Projective controls for disturbance attenuation in LSS

Control of large space structures using reduced order

results

REUTER, K.-E.

[NASA-TM-100865]

p 60 N88-21375

p 33 A88-46413

Multi-hundred kilowatt roll ring assembly evaluation

The European long-term space plan p 4 A88-49820

Unified optimization of structures and controllers

James influence influence of the control of Section State Includes an appearance of the control of Section State Includes an appearance of the control of Section State Includes an appearance of the control of Section State Includes an appearance of the Control of Section State Includes an appearance of the Control of Section State Includes an appearance of the Control of Section State Includes an appearance of the Control of Section State Includes an appearance of the Control of Section State Includes an appearance of the Control of Section State Includes an appearance of the Control of Section State Includes an appearance of the Control of Section State Includes an appearance of the Control of Section State Includes an appearance of the Control of Section State Includes an appearance of the Control of Section State Includes an appearance of the Control of Section State Includes an appearance of the Control of Section State Includes an appearance of the Control of Section State Includes an appearance of the Control of Section State Includes an appearance of the Control of Section State Includes an appearance of the Control of Section State Includes an appearance of the Control of Section State Includes an appearance of the Control of Section State Includes and Section State Includes an appearance of the Control of Section State Includes an appearance of the Control of Section State Includes an appearance of the Control of Section State Includes an appearance of the Control of Section State Includes an appearance of the Control of Section State Includes an appearance of the Control of Section State Includes an appearance of the Control of Section State Includes an appearance of the Control of Section State Includes an appearance of the Control of Section State Includes an appearance of the Control of Section State Includes an appearance of the Control of Section State Includes an appearance of the Control of Section State Includes an appearance of the Control of Section State Includes an appearance of the Contro	HE INOLDO, MICHAEL C.		TENOCIVAL ACTION INDEX
placementation above alloys a part of the component of th	REYNOLDS, MICHAEL J.	Space structure (dynamics and control) theme	SATYANARAYANA, K.
Expectation of common septor experience and square processors of the special processors of the s	Superplastic forming characteristics and properties of		Effect of natural damping on the dynamics and control
## ACCESS ALVINO 19 p. 19 ASS-1010 Order gard for depolyshed pages exhicutes Final Pages and the page of the pages of th		[NASA-TM-100597] p 8 N88-29850	
special experiments of the photological policy in the photological policy i			
HINDOLS, MANTHU D. NECK ALLY C. NECK ALLY			
Clovis point for deployable specked shouldarms and CALCASCAN (1981) at 19 No. 2015 (1982) and CALCASCAN (1981) at 19 No. 2015 (1982) and CALCASCAN (1981) and CALCASCAN (1982) an			
INDIAGA, CASE JANG-1988 1, 9 1 NR-02010 ACCS program (AMANTEP) ACCS program of the company o			
militorid y dispensa larger of p. 8.8-4-573 MCMPDIA. N. DIECETT P. Management and evaluation of p. 4. A8-5-4573 MCMPDIA. N. DIECETT P. Management and evaluation of p. 4. A8-5-520 MCMPDIA. N. DIECETT P. Management and evaluation of p. 5. A8-5-473 MCMPDIA. DIECETT P. Management and evaluation of p. 5. A8-5-473 MCMPDIA. DIECETT P. Management and evaluation of p. 5. A8-5-473 MCMPDIA. DIECETT P. Management and evaluation of p. 5. A8-5-473 MCMPDIA. DIECETT P. Management and evaluation of p. 5. A8-5-473 MCMPDIA. P. DIECETT P. Management and evaluation of p. 5. A8-5-473 MCMPDIA. P. DIECETT P. Management and evaluation of p. 5. A8-5-473 MCMPDIA. P. DIECETT P. Management and evaluation of p. 5. A8-5-473 MCMPDIA. P. DIECETT P. Management and evaluation of p. 5. A8-5-473 MCMPDIA. P. DIECETT P. Management and evaluation of p. 5. A8-5-473 MCMPDIA. P. DIECETT P. Management and evaluation of p. 5. A8-5-473 MCMPDIA. P. DIECETT P. MANAGEMENT P. DIECETT P. MANAGEMENT P. MA			
ACCES program - Lessons lamond p. P. A88-9579 (INJANEER). Male makes let all program (MAMCRE) (INJANEER) and the makes all story and the makes all sto			
HIGHARDON, KETTH Chrowings based yellow inefactors and validation and control of Spece Salano with September 12 across the Spece Salano provers of Spece Spece Spece Provided Spece Salano provers of Spece			
Inclination and the system evillation and validation as property segment or the street of the second-order management of the second-order to second-order management of the second-order to second-order management order to second-order to second-order to second-order to second-order management order to second-order to seco			
Technologies for protection of the Sace Station aboveyment. ### Control of the Sacrophic Station and the Sacrophic Station and the Sacrophic Station for a second order mass proteins from the Sacrophic Station for a second order mass proteins from the Sacrophic Station for a second order mass proteins from the Sacrophic Station for a second order mass proteins from the Sacrophic Station for a second order compensation. LCS condition views and the Sacrophic Station and the Sacrophic			
RICHELD, ROBERTSON, WILLIAM COST Short Station architectural elements and several secretarial relations of the flower program selement and several relationship of the flower program selements and several relationship of the flower program selement and several relationship of the flower program selement and several relationship of the flower program and selements and several relationship of the flower program and selements and several relationship of the flower program and selements and several relationship of the flower program and selements and several relationship of the flower program and selements and several relationship of the flower program and selements and several relationship of the flower program and selements and several relationship of the flower program and selements and several relationship of the flower program and selements and several relationship of the flower program and selements and several relationship of the flower program and selements and several relationship of the flower program and selements and several relationship of the flower program and selements and several relationship of the flower program and selements and several relationship of the flower program and selements and several relationship of the flower program and selements and several relationship of the flower program and selements and several relationship of the flower program and selements and several relationship of the flower program and selements and selements and several relationship of the flower program and selements and selectionship of the flower program and selectionship of the flo	related to automation of Space Station subsystems -		p 31 A88-4546
RICHERLA, ROBERT F. Input selection for a second-order mass property page 1 per processor for a second-order and a second-order and property or using a homologic continuation processor processor and processor using a homologic continuation processor processor processor processor and processor proces	Rationale for a knowledge based system lifecycle		SCHAEFER, BERND
Accisated metal surfaces for high thermal emillance screen and properly process and process of the process of t	p 42 A88-52238		Tasks of the simulation installations for space fligh
species districts in CHCHER, S. (CHCHER) p. 20 A89-42794 (AMA PAPER 88-2400 p. 40 A89-52794 (AMA PAPER 88-2401 p. 40 A89-52904 p. 40 A89-52904 (AMA PAPER 88-2401 p. 40 A89-52904 p. 40 A89-52904 (AMA PAPER 88-2401 p. 40 A89-52904	RICHFIELD, ROBERT F.	·	operations in the operations center for manned space
RICHTER, S. Reduced-order compensation: LOG accordance or production versus opinions projection using a homologic confination of the projection of the proj			
Reduced-code comparation. LOG radiation versus periorial projection using a horizonic continuation page 14 A88 A89 A89 A89 A89 A89 A89 A89 A89 A89	•		
coptional projection using a homologic contensation profession of variable-bend vehicle profession of variable-bend vehicle profession of the profession of			
memod MECAL J. P.			
NIDEAU P. Libral dynamic modeling IEEP of SHALED 1.19 p. 53 N88-22983 pr. 74 A89-39912 pr.			
Literal dyname modeling [REFT add 14-05 [REFT add 14-05] p 55 N88-28085 P5 N88-		· · · · · · · · · · · · · · · · · · ·	
INERTER 4-40-114 p. 53 N88-29838 for Siscos Station fuld and propulsion systems (PMAR A.PAER 8-2493) p. 74 A89-3994 p. 74 A8			
PIELE_FOAVID Designing Space Station structure for assertion Designing Space Station attribution for space spiciations A sequentially deplypable structure for space spiciations BYAAR R. R. assumed modes in geatines governed Applicability of the flow-met program to solution of Space Station fluid dynamics problems P 20 A88-43821 NYAARDRIN, M. ROBERT S. NATIFIER ORR Space Phornix P 30 A88-43822 NYAARDRIN, M. Space An overview p 66 A88-44004 Space Station fluid dynamics problems P 20 A88-43823 NYAARDRIN, M. Space Phornix P 30 A88-33823 NYABACRIN, M. Space Phornix P 30 A88-33823 NYAARDRIN, M. Space Phornix P 30 A88-33823 NYAARDRIN, M. Space Phornix P 30 A88-33823 NY			
Despring States States structure for assumbly (PAAR APER B8-2423) p. 74 A89-3942 (PAAR APER B8-2423) p. 74 A89-3942 (PAAR APER B8-2423) p. 15 N89-2120 (PAAR APER B8-2423) p. 15 N89-2120 (PAAR APER B8-2423) p. 15 N89-2120 (PAAR APER B8-2423) p. 16 N89-220 (PAAR APER B8-2423) p. 16 N89-2201 (PAAR APER B8-2423) p. 16 N89-2201 (PAAR APER B8-2423) p. 16 N89-2201 (PAAR APER B8-2423) p. 17 N89-2201 (PAAR APER B8-2423) p. 18 N89-2201 (PAAR APER B8-2301) p. 18 N89-2201 (PAAR	(
Fig. 24. Applicability of the flowned program to solutions of Space Space in the Space Space of Space Spa		· · · · · · · · · · · · · · · · · · ·	p 76 A88-52326
RIVACED A. J. A sequentially deployable structure for square A sequentially deployable structure for square A square structure for square A square structure for square A square structure for square Applicability of the flow met program to solution of Space Station fluid dynamics problems p. 20. A884-2832 RVARDEN. H. Sudy of human factors engineering criticis for square structure for s			
A sequentially dephysible structure for space applications of page applications of the flow ello program to solution of Space Station fland dynamics problems p. 27 A88-3402 (Station Land dynamics problems p. 27 A88-3402) (Station Land dynamics problems p. 28 A88-3402) (Station application should be supported and evaluation of Stanford/Amer Station application p. 62 A88-3402) (Station application p			
Since Process Since	A sequentially deployable structure for space		
Sinclusial margins assessment approach (NASA-MIROSA). A Rigination of the configurations for advanced approach (NASA-MIROSA). A Rigination of the configurations for advanced arms on the configuration for advanced arms on the configurations for advanced arms on the configuration of a flexible trust articles are configurated and concurrent computation for a flexible relation of a flexible trust articles are configurated and concurrent computation for a flexible relation of a flexible relation of a flexible relation of a flexible relation and and in the NASA space-actification of a flexible relation and advanced are configurated and concurrent computation for a flexible relation of a flexible relation and advanced are configurated and concurrent computation for a flexible relation and advanced are configurated and concurrent computation for a flexible relation of a flexible relation of a flexible relation of a flexible relation and advanced are configurated and concurrent computation for a flexible relation of a flexible relation of a flexible relation and advanced and concurrent computation for a flexible relation and advanced and concurrent computation for a flexible relation and advanced and concurrent computation for a flexible relation and advanced and concurrent computation for a flexible relation and advanced and concurrent computation for a flexible relation and advanced and concurrent computation for a flexible relation and advanced and concurrent computation f	approximation and the second s	RYAN, ROBERT S.	
Applicability of the flow-net program to solution of Space Station in deprenance problems p. 20. A88-4392 (Space Station and returning profession p. 90. A88-4392 (Space Station architectural elements model study Space Station architectural elements model study Space Station architectural elements model study Space Station architectural elements and sussesseriations of the Space Station architectural elements and sussesseriation architectural elements and sussesseria			Alternative module configurations for advanced sola
Suby of human factors engineering circles for models flow pages and process an		[NASA-TM-100332] p 23 N88-24672	
Weiding in space - An overview p 66 A88-4004 SoBeRTS, MALTER ORR Space Photons: More properly and the process of the property of the property of the process of the property of the property of the process of the property of the property of the process of the property of		RYVARDEN, H.	
ROBERTS, WALTER ORR Space Photons P9 A88-39500 ROBERTSON, WILLIAM Cost effectiveness of on-orbit servicing for large Cost effectiveness of on-orbit servicing for large (IANA-APEER 86-3919) P9 4 A88-4327 ROCHA, C. J. Space station architectural elements model study RIAS-AC-RES 100 pp. 100 1895-2402 RIAS-ACR-RES 100 pp. 100 1895-2403 RIAS-ACR-RES 100 pp. 100 1895-24			
Space station architectural elements model study (IAAS-ACH-4027) p. 94 A89-4527 ROCHA, C. J. Space station architectural elements model study (IAAS-ACH-4027) p. 100 N89-24032 (IAAS-ACH-3027) p. 100			
Space station architectural elements model study [NASA-CR-3027] p. 100 N89-24525 Space station architectural elements model study [NASA-CR-3027] p. 100 N89-24525 Space station architectural elements and issues [NASA-CR-3027] p. 100 N89-24525 Space station architectural elements and issues [NASA-CR-3027] p. 100 N89-24525 Space station architectural elements and issues [NASA-CR-3027] p. 100 N89-24525 Space station architectural elements and issues [NASA-CR-3027] p. 100 N89-24525 Space station architectural elements and issues [NASA-CR-3027] p. 100 N89-24525 Space station architectural elements and issues [NASA-CR-3027] p. 100 N89-24525 Space station architectural elements and issues [NASA-CR-3027] p. 100 N89-24525 Space station architectural elements in		[STF23-F87025-VOL-1] p 82 N88-30298	
Cost effectiveness of on-orbit servicing for large constellations (Constellations) p. 94 A88-45425 (Constellations) p. 94 A88-4545 (Constructives) p. 94 A88-3547 (Constructives) p. 94 A88-3547 (Constructives) p. 94 A88-3547 (Constructives) p. 95 A88-3347 (Constructives) p. 95 A8	-p		
Consistations of chief the second properties of materials and issues stentile and concurrent computation for second properties of materials seed for high power IF components and explain and issues stentile structure. When the properties of materials are structures using lattice in the Second properties of materials and issues stentile structure. When the properties of materials are structure using lattice in the Second properties of materials. Solved in the structure using lattice indication of a flexible truss structure using lattice indication of a flexible truss structure using lattice in the Second properties of the structure using lattice in the Second properties of the second prope		S	
AAPERT 89-3519] p 94 A88-4527 ROCHA, C. J. Space station architectural elements model study INASA-CR-192681] p 10 No. 892-4693 ANDERS AND A continuum model for the nonlinear analysis of bearnise lattice structures P 17 A88-2373 ROCKOFF, HARLET J. Design, fabrocation, and testing of rolled carbon/epoxy strust for 5pace Station application p 52 A88-3918 ROEBER, J. L. Design, fabrocation, and testing of rolled carbon/epoxy strust for 5pace Station application p 52 A88-3918 ROEBER, J. L. Design, fabrocation, and testing of rolled carbon/epoxy strust for 5pace Station application p 52 A88-3918 ROEBER, J. L. Design, fabrocation, and testing of rolled carbon/epoxy strust for 5pace Station application p 52 A88-3918 ROEBER, J. L. Design, fabrocation, and testing of rolled carbon/epoxy strust for 5pace Station application p 52 A88-3918 ROEBER, J. L. Design, fabrocation, and testing of rolled carbon/epoxy strust for 5pace Station application p 52 A88-3918 ROEBER, J. L. Design, fabrocation, and testing of rolled carbon/epoxy strust for 5pace station application p 52 A88-3918 ROEBER, J. L. Design, fabrocation p 52 A88-3918 ROEBER, J. R. Design fabrocation p 52 A88-3918 ROEBER, J. R. Design fabrocation p 52 A88-3918 ROEBER, J. R. Dynamic responses of orthotropic plates under moving analysis results of a rectangular three dimensional farms analysis of bearing the p 52 A88-3918 ROEBER, J. R. Dynamic responses p 22 A88-3918 ROEBER, J. R. Dynamic responses p 22 A88-3918 ROEBER, J. R. Dynamic responses of orthotropic plates under moving analysis results of a rectangular three dimensional farms analysis of a ferbility of imperfection-sensitive nonlinear space place filters p 42 A88-3958 ROEBER, J. R. ROEBER, J. D.		•	Distributed and concurrent computation for space
Space station architectural elements model study [NASA-CR-4027] p 100 N89-24932 Space station architectural elements and relations and relatio		SABELMAN, E.	
INASA-CR-4027 p 100 N98-24632 Space station architectural elements and issues definition study p 12 N88-25371 N88-25		Design, development and evaluation of Stanford/Ames	[AAS PAPER 86-397] p 28 A88-3511
Space station architectural elements and issues definition study (entinition study (1NASA-CR-3941) p. 12 N89-2571 (NASA-CR-3941) p. 13 N89-2571 (NASA-CR-3941) p. 14 N89-2571 (NASA-CR-394	Space station architectural elements model study	EVA prehensors	SCHROEDER, LYLE C.
Identification of a complex satellite model by means of model synthesis or a large space structure p. 40. A88-5039 ASPONOV, M. G. P. A88-5039 P. A88-4000 ASPONOV, M. G. P. A88-5039 P. A88-3000 ASPONOV, M. G. P. A88-5039 P. A88-3000 ASPONOV, M. G. P. A88-5050 ASPONOV,		[NASA-CR-182688] p 78 N88-22540	The 15-meter antenna performance optimization using
INASA-CR-3941] p. 12 N88-25971 Design, fabrication, and testing of rolled carbon/reports processing application p. 62 A88-3919 ROEDER, J. L. Several spacecraft-charging event on SCATHA in September 1982 p. 55 A88-51932 A severe spacecraft-charging event on SCATHA in September 1982 p. 61 N88-26396 ROESCH, J. RICHARD A severe spacecraft-charging event on SCATHA in September 1982 p. 61 N88-26396 ROESCH, J. RICHARD A severe spacecraft-charging event on SCATHA in September 1982 p. 61 N88-26396 ROESCH, J. RICHARD A severe spacecraft-charging event on SCATHA in September 1982 p. 61 N88-26396 ROESCH, J. RICHARD A severe spacecraft-charging event on SCATHA in September 1982 p. 61 N88-26396 ROESCH, J. RICHARD A severe spacecraft-charging event on SCATHA in September 1982 p. 61 N88-26396 ROESCH, J. R. Several space achievements in 1985 according to press materials p. 61 N88-26396 ROESCH, J. R. Comparison of theoretical and experimental modal analysis results of a rectangular tree dimensional translation of a flexible structure using lattice filters PASS ASSES, J. R. ROGERS, T. F. The Space Phoenix Program - A progress report p. 78 N88-3950 ROESCH, J. R. SOEGES, T. HOMAS F. Space Phoenix Program - A progress report p. 78 N88-2327 ROMSTAD, K. M. A continuum model for the nonlinear analysis of beam-tike lattice structures p. 78 N88-2327 The identification of a distributed parameter model for a flexible structures p. 78 N88-24287 The identification of a distributed parameter model for a flexible structures p. 78 N88-24287 The identification of a distributed parameter model for flexible structures p. 78 N88-24287 The identification of a distributed parameter model for flexible structures p. 78 N88-24287 The identification of a distributed parameter model for flexible structures p. 78 N88-24287 The identification of a distributed parameter model for flexible structures p. 78 N88-24287 The identification of a distributed parameter model for flexible structures p. 78 N88-24398 The identification of a distributed parameter model f			an interdisciplinary approach p 61 N88-2574
SAFONOV, M. G. Design, fabrication, and testing of rolled carbon/epoxystruts for Space Station application P 2 A88-33018 DEDER, J. L. Several spacecraft-charging event on SCATHA in Seytember 1992 A severe spacecraft-charging event on SCATHA in Seytember 1992 A severe spacecraft-charging event on SCATHA in Seytember 1992 A severe spacecraft-charging event on SCATHA in SADEEV, R. Z. Soviet space achievements in 1985 according to press AGAGL, SURIL DA-1319007 P 61 N88-23936 ROESCH, J. RICHARD Handgrip strength with the bare hand and in the NASA spacesuit glove P 73 A88-35452 SAMUEL, R. Comparison of theoretical and experimental modal analysis results of a rectangular three dimensional frame procedures for updating dynamic mathematical model analysis results of a rectangular three dimensional frame procedures for updating dynamic mathematical model analysis results of a rectangular three dimensional frame procedures for updating dynamic mathematical model analysis results of a rectangular three dimensional frame procedures for updating dynamic mathematical model analysis results of a rectangular three dimensional frame procedures for updating dynamic mathematical model analysis results of a rectangular three dimensional frame procedures for updating dynamic mathematical model analysis results of a rectangular three dimensional frame procedures for updating dynamic mathematical model analysis results of a rectangular three dimensional frame procedures for updating dynamic mathematical model analysis results of a rectangular three dimensional frame procedures for updating dynamic mathematical model analysis results of a rectangular three dimensional frame procedures for updating dynamic mathematical model and rectangular three dimensional frame procedures for updating dynamic mathematical model analysis results of a rectangular three dimensional frame procedures for updating dynamic mathematical model analysis results of a rectangular three dimensional frame procedures for updating dynamic mathematical model analysis			SCHROER, BERNARD J.
Design, fabrication, and testing of rolled carbon/epoxy struls for Space Station application p 62 A88-33018 AGDEFR, J. L. Several spacecraft-charging event on SCATHA in September 1982 a severe spacecraft-charging event on SCATHA in September 1982 p 61 N88-23936 Aspecsuit glove p 73 A88-35452 Aspecsuit glove p 73 A88-35452 Aspecsuit glove p 73 A88-35452 ARCAL, SUMI. Dynamic responses of orthotropic plates under moving laters filters and properties of materials analysis results of a rectangular three glove p 18 A88-35452 ASACAL, SUMI. Dynamic responses of orthotropic plates under moving laters filters p 45 A88-35452 ASACAL, SUMI. Dynamic responses of orthotropic plates under moving laters filters p 45 A88-35452 ASACAL, SUMI. Dynamic responses of orthotropic plates under moving laters filters p 45 A88-35452 ASACAL, SUMI. Dynamic responses of orthotropic plates under moving laters filters p 45 A88-35452 ASACAL, SUMI. Dynamic responses of orthotropic plates under moving laters filters and subject to p 25 A88-35452 ASACAL, SUMI. Dynamic responses of orthotropic plates under moving laters filters and subject for the position of a flexible structure p 45 A88-35452 ASACAL, SUMI. Dynamic responses of orthotropic plates under moving laters filters filters and position of a flexible structure p 45 A88-35452 ASACAL, SUMI. Dynamic responses of orthotropic plates under moving laters filters filters filters and position of a flexible structure p 45 A88-35452 ASACAL, SUMI. Dynamic responses of orthotropic plates under moving laters filters filters filters filters and position of a flexible structure p 45 A88-35452 ASACACAL, SUMI. Dynamic responses of orthotropic plates under moving laters filters f			Telerobotic Space Station applications
Structure p. 54 A88-54679 ASOEVER, J. C. Several spacecraft-charging event on SCATHA in Explember 1982 A severe spacecraft-charging event on SCATHA in Explember 1982 A severe spacecraft-charging event on SCATHA in Explember 1982 A severe spacecraft-charging event on SCATHA in Explember 1982 A severe spacecraft-charging event on SCATHA in Explember 1982 (ADA-193007) P 61 N88-2893 (ADA-193007) P 62 A88-3452 ABGEEV, R. Z. Soviet space achievements in 1985 according to press SAIGAL, SUMIL. Dynamic responses of orthotropic plates under moving masses P 28 A88-35543 SAIGAL, SUMIL. Dynamic responses of orthotropic plates under moving masses P 28 A88-35543 SAIGAL, SUMIL. Comparison of theoretical and experimental modal masses P 25 A88-35697 SAIGALS LIMIC. Comparison of a flexible truss structure using lattice plants of a flexible trust structure using lattice plants of a flexible structure scale and subject of the masses. P 4 A88-43677 ROGERS, T-F. Space Phoenix Program - A progress report p. 7 A88-35950 SONES, L. G. Approximation in discrete-time boundary control of flexible structures p. 13 A88-41039 P 78 N88-23237 ROMSTAD, K. M. Approximation in discrete-time boundary control of flexible structures p. 13 A88-41039 NOSEN, I. G. Approximation in discrete-time boundary control of flexible structures p. 13 A88-40517 The identification of a distributed parameter model for the notininear analysis and for high power RF components in space (ESA-CRI(P)-2587) The identification of a distributed parameter model for flexible structures p. 13 A88-40598 ROUFET, DENIS Multimission communication satellites [IAF PAFET 88-228] P 6 A88-34577 The identification of a distributed parameter model for flexible structures p. 13 A88-4059 ROUFET, DENIS SARAL S. STABILITY OF THE P. SOURCHARD A. Microgravity mechanisms and robotics program paratuse in the sumitance of the motion of the sale of the program of the motion of the sale of the program of the motion of the sale of the program of the motion of the sale of the program of the motion of t			p 76 A88-5232
SACOREY, R. Z. Several spacecraft-charging event on SCATHA in September 1982 A severe spacecraft space and severe memoring makes and severe spacecraft space and event in the SSASALL S. SAMUEL, R. SAMOERS, RED G. Shale 1, R. Shale 2, R.			
Several spacecraft-charging event on SCATHA in pstember 1982 p. 958. A88-51932 A severe spacecraft-charging event on SCATHA in September 1982 p. 958. A88-51932 A severe spacecraft-charging event on SCATHA in September 1982 p. 958. A88-3693 and september 1982 p. 28 A88-3543 p.			
September 1982			p 98 N88-2119
A severe spacecraft-charging event on SCATHA in September 1982 (ADA 193007) p 61 N88-28396 (ADA 193007) p 73 A88-36452 (ADA 193007) p 73 A88-36457 (ADA 193007) p 74 A88-39500 (ADA 193007) p 74 A88-39500 p 75 A88-3			
Application			
masses posset J. RiCHARD Handgrip strength with the bare hand and in the NASA spacesuit glove p 73 A88-35452 ROESLER, MARIBETH D. Identification of a flexible truss structure using lattice filters PAGERS, T. F. The Space Phoenix Porgram - A progress report ROGERS, T. F. Space Phoenix p 7 A88-35677 Robert Roman and robotics program - A progress report pottlem. The space Phoenix p 7 B N88-23277 Roman and the space Phoenix p 7 B N88-23237 ROMIN DOUGLAS A. Microgravity mechanisms and robotics program p 7 B N88-23237 Romer Roman and robotics program p 7 B N88-23237 The identification of a distributed parameter model for lexible structures p 31 A88-44098 ROSEN, I. G. Approximation in discrete-time boundary control of lexible structure p 31 A88-46981 ROHERT L. Propulsion safety almost equals mission safety [AIRA PAPER 88-2881] p 84 A88-44698 ROUFFET, DENIS Multimission communication satellites program p 12 N88-24189 RUSAL R. SAMUEL R. Comparison of theoretical and experimental model analysis results of a rectangular three dimensional frame dimensional frame dimensional frame dimensions of the sealus of experiment flam of the sale structure sunder stockastic loading [IAF PAPER 88-2839] p 18 N88-2307 SANUEL R. SANUEL R. SANDERS, FRED G. Bushem gripping apparatus SANDERS proceeding analysis of the manufacture of the molinear space structures of the manufacture of the molinear space [ESA-CRIP)-2897] p 72 N88-2507 SASAKI, S. Bushem			•
Mandagrip strength with the bare hand and in the NASA spacesuit glove pacesuit glove pacesuits glove pacesuits of a rectangular three dimensional frame analysis of pace pacesuits of a rectangular three dimensional frame analysis glove pacesuits of a rectangular three dimensional frame analysis glove pacesuits of a rectangular three dimensional frame analysis glove pacesuits of a rectangular three dimensional frame analysis glove pacesuits of a rectangular three dimensional frame analysis glove pacesuits of a rectangular three dimensional frame analysis glove pacesuits of a rectangular three dimensional frame analysis glove pacesuits on p 2 A88-3577 pacesuits on a glove pacesuit glove pacesuit glove pacesuits on p 2 A88-3087 pacesuits on pacesuits on p 2 A88-3087 pacesuits on pacesuits on p 2 A88-3087 pacesuits on pac			
ABA-State page state glove p 73 AB8-State page state glove p 73 AB8-State page state glove p 74 AB8-State page state glove p 75 AB8-State p 22 AB8-State p 2		SAMUEL, R.	
ASAMERS, FRED G. SAMDERS, FRED G. SAMCERS, T. F. Space Phoenix Program - A progress report A Microgravity mechanisms and robotics program A COMSTAD, K. M. A continuum model for the nonlinear analysis of beam-like lattice structures A P A 88-43737 The identification of a distributed parameter model for a flexible structures P 2 A 88-34737 The identification of a distributed parameter model for a flexible structures P 31 A88-46041 ROPER, J. G. P 4 A88-4898 ROSEN, I. G. A Continuum model for the nonlinear analysis of beam-like lattice structures P 13 A88-41694 ROSEN, I. G. Approximation in discrete-time boundary control of flexible structures P 31 A88-46041 ROPER, B 8-2891 ROPER, G. M. SAMCHEV, V. A. Determination of the motion of the Salyut 6 and 7 orbital stations with respect to the mass center in the slow spin mode on the basis of measurement data of the motion of th		Comparison of theoretical and experimental modal	
Identification of a flexible truss structure using lattice ROGERS, T.F. The Space Phoenix Program - A progress report properlies of materials used for high power RF components of a distributed parameter model for a flexible structure p 21 A88-4601 ROUFET, Denis Male Propulsion safety almost equals mission safety [AIA PAPER 88-2881] p 6 A88-55477 RUDOKAS, MARY R. Sudy of secondary emission properties of materials used for high power RF components of a distributed parameter model for the clientification of a distributed parameter model for falexible structure p 21 A88-4601 ROUFET, Denis Multimission communication safety [AIA PAPER 88-2881] p 6 A88-55477 RUDOKAS, MARY R. Sudy of secondary emission properties of materials used for high power RF components of a distributed parameter model for the clientification of a distributed parameter model for falexible structure p 21 A88-4601 ROUFET, Denis Maley and parameter model for the clientification of a distributed parameter model for falexible structure p 21 A88-4601 ROUFET, Denis Maley and parameter model for the clientification of a distributed parameter model for falexible structure p 21 A88-4601 ROUFET, Denis Maley and parameter model for the clientification of a distributed parameter model for the clientification of a distributed parameter model for a lexible structure p 21 A88-4601 ROUFET, Denis Maley and parameter model for p 21 A88-4601 ROUFET, Denis Maley and parameter model for p 22 A88-3473 ROUFET, Denis Maley and parameter model for p 23 A88-4601 Roufet Maley and parameter model for p 24 A88-34601 Roufet Maley and parameter model for p 24 A88-34601 Roufet Maley and parameter model for p 24 A88-34601 Roufet Maley and parameter model for p 25 A88-3473 Roufet Maley and parameter model for p 24 A88-34601 Roufet Maley and parameter model for p 24 A88-34601 Roufet Maley and parameter model for parameter model for p 24 A88-34601 Roufet Maley and parameter model for p 24 A88-34601 Roufet Maley and parameter model for parameter model for parameter model for param			
GGERS, T.F. The Space Phoenix Program - A progress report POHON, DOUGLAS A. Microgravity mechanisms and robotics program PA 888-39508 PROMSTAD, K. M. A continuum model for the nonlinear analysis of beam-like lattice structures p 13 A88-41038 ROBERS, I. G. Approximation in discrete-time boundary control of flexible structures p 25 A88-34737 The identification of a distributed parameter model for a flexible structure p 31 A88-4694 ROUSER, I. G. Propulsion safety almost equals mission safety p1AAA PAPER 88-2891 p 8 A 88-55417 RUDOKAS, MARY R. RUDOKAS, MARY R. Study of secondary emission properties of materials used for high power RF components in space [ESA-CR(P)-2587] p 12 N88-3012 RUBEDA, F. Study of secondary emission properties of materials used for high power RF components in space [ESA-CR(P)-2587] p 2 N88-3012 RUBSELL, RICHARD A. LDR structural experiment definition Bi-stem gripping apparatus P 4 A88-43988 SANKAR, T. S. Stability of imperfection-sensitive nonlinear space station sensitive nonlinear space stations and stability of imperfection-sensitive nonlinear space station sensitive nonlinear space as a structure superiment stochastic loading [IAF PAPER 88-2893] p 47 A88-55477 SANK, J. M. Study of secondary emission properties of materials used for high power RF components in space [ESA-CR(P)-2587] p 2 N88-3012 RUBSEAL, RICHARD A. LDR structural experiment definition Bi-stem gripping apparatus P 4 A88-43988 SANKAR, T. S. Stability of imperfection-sensitive nonlinear space station supported structures of materials suched particle structures of materials support and several space (ESA-CR(P)-2587] p 25 A88-5477 Bi-stem gripping apparatus P 4 A88-5957 SANKAR, T. S. Stability of imperfection-sensitive nonlinear space station support and several space (ESA-CR(P)-2587] p 2 N88-3012 SANCHAR, T. S. Stability of imperfection-sensitive nonlinear space station support and several space (ESA-CR(P)-2587] p 2 N88-3012 SARCHEVIA. Sale Subject of measurement and a subject of metals as the sale of the motion of the S			
ROGERS, T. F. The Space Phoenix Program - A progress report Space Phoenix Popram - A progress report Space Phoenix Popr			
The Space Phoenix Program - A progress report p 4 A88-43968 ARB-43968 ARE ARB-2393 ARE ARB-2403 Base-4614 Breal-time systems for space arb are			
Stability of imperfection-sensitive nonlinear space structures under stochastic loading page phoenix p 9 A88-39500 Microgravity mechanisms and robotics program p 78 N88-2327 SANX, J. M. A continuum model for the nonlinear analysis of beam-like lattice structures p 13 A88-41038 ACSEN, I.G. A continuum model for the nonlinear analysis of beam-like lattice structures p 13 A88-41038 ACSEN, I.G. A continuum model for the nonlinear analysis of beam-like lattice structures p 13 A88-41038 ACSEN, I.G. A proproximation in discrete-time boundary control of lexible structures p 25 A88-34737 The identification of a distributed parameter model for a flexible structure p 31 A88-4691 ROUFET, DENIS ROUFET, DENIS ROUFET, DENIS RULIDHARP R 89-2881] p 8 A88-44698 ROUFET, DENIS RULIDHARP R 89-2881] p 8 A88-4569 ASAKI, S. Results from a tethered rocket experiment (Charge-2) p 57 A88-46804 P 54 ROUFET, DENIS RULIDHARP R 89-2881] p 8 A88-4569 ASAKI, S. Results from a tethered rocket experiment (Charge-2) p 57 A88-46804 P 54 ROUFET, DENIS RULIDHARP R 89-2881] p 8 A88-4569 ASAKI, S. Results from a tethered rocket experiment (Charge-2) p 57 A88-488-3491 p 49 N88-22070 SATER, B. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 26 A88-5466 are conditioning of Engineering Test Satellite (ETS-V) Digital sequential shunt regulator for solar power conditioning of Engineering Test Satellite (ETS-V) Digital sequential shunt regulator for solar power conditioning of Engineering Test Satellite (ETS-V) Digital sequential shunt regulator for solar power conditioning of Engineering Test Satellite (ETS-V) SEEBAUCH, V. R. SEEBAUGH, W. R. SEEBAUGH, W. R. SEEBAUGH, W. R. SEEBAUGH, W. R. SEESALIGH RESIDENCY SULL STANDOORTHY, M. Nonlinear analysis and optimal design of dynamics to positive development and evaluation of Stanford/A SCOTT, R. A. Use of assumed modes in equations give large displacement elastodynamics plate behavior of solar power occiling to positive processing experiment servicing p 28 N			
Space Phoenix p 9 A88-39500 ROGERS, THOMAS F. Space Phoenix p 9 A88-39500 ROHN, DOUGLAS A. Microgravity mechanisms and robotics program p 78 N88-23237 ROHNAD, C. M. A continuum model for the nonlinear analysis of beam-like lattice structures p 13 A88-41038 ROSEN, I. G. Approximation in discrete-time boundary control of flexible structures p 25 A88-34737 The identification of a distributed parameter model for a flexible structure p 31 A88-4601 ROUFFET, DENIS Multimission communication satellites [IAF PAPER 88-2881] p 84 A88-44698 ROUFFET, DENIS Multimission communication satellites [IAF PAPER 88-2881] p 84 A88-34698 ROUFFET, DENIS Multimission communication satellites [IAF PAPER 88-2881] p 86 A88-5417 ROUFFET, DENIS MULTIMISSION communication satellites [IAF PAPER 88-2881] p 84 A88-44698 ROUFFET, DENIS MULTIMISSION communication satellites [IAF PAPER 88-2881] p 84 A88-44698 ROUFFET, DENIS MULTIMISSION communication satellites [IAF PAPER 88-2881] p 84 A88-44698 ROUFFET, DENIS MULTIMISSION communication satellites [IAF PAPER 88-2881] p 84 A88-44698 ROUFFET, DENIS MULTIMISSION communication satellites [IAF PAPER 88-2881] p 84 A88-44098 RUEDA, F. Study of secondary emission properties of materials used for high power RF components in space [ESA-CR(P)-2587] p 72 N88-30102 SARYCHEV, V. A. Determination of the motion of the Salyut 6 and 7 orbital stations with respect to the mass center in the slow spin mode on the basis of measurement data Design, development and evaluation of Stanford/A SCOTT, R.A. SCHWANDT, D. Design, development and evaluation of Stanford/A SCOTT, R.A. Use of assumed modes in equations gover analysis of the salyut 6 and 7 orbital stations with respect to the mass center in the slow spin mode on the basis of measurement data p 31 A88-4567 SASAKI, S. Results from a tethered rocket experiment (Charge-2) p 57 A88-45804 SCHWANDT, D. Design, development and evaluation of stanford/A Evaluation of candistributed parameter mode or an interials used for high power RF components in s			
ROMSTAD, K. M. A continuum model for the nonlinear analysis of beam-like lattice structures p 13 A88-41038 A proximation in discrete-time boundary control of flexible structure p 25 A88-34737 The identification of a distributed parameter model for a flexible structure p 31 A88-46041 ROUTER, L. Propulsion safety almost equals mission safety [AIAA PAPER 88-281] p 84 A88-4698 Multimission communication satellites Multimission communication s	,		
ROMSTAD, K. M. A continuum model for the nonlinear analysis of beam-like lattice structures p 13 A88-41038 ROSEN, I. G. Approximation in discrete-time boundary control of flexible structures p 25 A88-34737 The identification of a distributed parameter model for a flexible structure p 31 A88-46041 ROUFFET, DENIS Multimission communication safety [IAB PAPER 88-2881] p 84 A88-4698 RUEDA, F. Study of secondary emission properties of materials used for high power RF components in space [ESA-CR(P)-2587] p 72 N88-2012 SANZ, J. M. Study of secondary emission properties of materials used for high power RF components in space [ESA-CR(P)-2587] p 72 N88-3012 SANZ, J. M. Study of secondary emission properties of materials used for high power RF components in space [ESA-CR(P)-2587] p 72 N88-3012 SANZ, J. M. Study of secondary emission properties of materials used for high power RF components in space [ESA-CR(P)-2587] p 72 N88-3012 RUEDA, F. Study of secondary emission properties of materials used for high power RF components in space [ESA-CR(P)-2587] p 72 N88-3012 RUEDA, F. Study of secondary emission properties of materials used for high power RF components in space [ESA-CR(P)-2587] p 72 N88-3012 SANZ, J. M. Study of secondary emission properties of materials used for high power RF components in space [ESA-CR(P)-2587] p 72 N88-3012 SANZ, J. M. Study of secondary emission properties of materials used for high power RF components in space [ESA-CR(P)-2587] p 72 N88-3012 SANZ, J. M. Study of secondary emission properties of materials used for high power RF components in space [ESA-CR(P)-2587] p 72 N88-2517 RUBGAL RICHARD A. LDR structureal experiment definition			
Study of secondary emission properties of materials used for high power RF components in space [ESA-CR(P)-2587] p 72 N88-3012 Study of secondary emission properties of materials used for high power RF components in space [ESA-CR(P)-2587] p 72 N88-3012 Study of secondary emission properties of materials used for high power RF components in space [ESA-CR(P)-2587] p 72 N88-3012 Study of secondary emission properties of materials used for high power RF components in space [ESA-CR(P)-2587] p 72 N88-3012 Study of secondary emission properties of materials used for high power RF components in space [ESA-CR(P)-2587] p 72 N88-3012 Study of secondary emission properties of materials used for high power RF components in space [ESA-CR(P)-2587] p 72 N88-3012 Study of secondary emission properties of materials used for high power RF components in space [ESA-CR(P)-2587] p 72 N88-3012 Study of secondary emission properties of materials used for high power RF components in space [ESA-CR(P)-2587] p 72 N88-3012 Study of secondary emission properties of materials used for high power RF components in space [ESA-CR(P)-2587] p 72 N88-3012 Study of secondary emission properties of materials used for high power RF components in space [ESA-CR(P)-2587] p 72 N88-3012 Study of secondary emission properties of materials used for high power RF components in space [ESA-CR(P)-2587] p 72 N88-3012 Study of secondary emission properties of materials used for high power RF components in space [ESA-CR(P)-2587] p 72 N88-3012 Study of secondary emission properties of materials used for high power RF components in space [ESA-CR(P)-2587] p 72 N88-3012 Study of secondary emission properties of materials used for high power RF components in space [ESA-CR(P)-2587] p 72 N88-3012 Study of secondary emission properties of materials used for high power RF components in space [ESA-CR(P)-2587] p 72 N88-3012 Study of secondary emission properties of materials used for high power RF components in space [ESA-CR(P)-2587] p 72 N88-3012 Study of secon	open in the same		
JOMSTAD, K. M. A continuum model for the nonlinear analysis of beam-like lattice structures p 13 A88-41038 ASPACE, I. G. Approximation in discrete-time boundary control of flexible structures p 25 A88-34737 The identification of a distributed parameter model for a flexible structure p 31 A88-46041 Reproprise of materials used for high power RF components in space (ESA-CR(P)-2587] p 72 N88-3012 SASAKI, S. Besults from a tethered rocket experiment (Charge-2) p 57 A88-46604 SATER, B. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 SATYAMOORTHY, M. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application ADA (P)-2587] p 72 N88-3012 RUEDA, F. Sudy of secondary emission properties of materials used for high power RF components in space (ESA-CR(P)-2587) p 72 N88-3012 RUSSELL, RICHARD A. LDR structural experiment definition Log of assumed modes in equations gover large-displacement elastodynamic plate behavior p 43 A88-4567 SAFYCHEV, V. A. Determination of the motion of the Salyut 6 and 7 orbital stations with respect to the mass center in the slow spin mode on the basis of measurement data SASAKI, S. Results from a tethered rocket experiment (Charge-2) p 57 A88-46804 SASAKI, S. Results from a tethered rocket experiment (Charge-2) p 57 A88-46804 SATER, B. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 SATYMAMOORTHY, M. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application and processing experiment for solar power conditioning of Engineering Test Satellite (ETS-V) p 56 A88-54696 SELTZER, SHERMAN M. Ground-test of spacecraft control and dynamics p 2 A88-54696 SEMENOUTH OF ARCHARD A. LDR structural experiment definition			
A continuum model for the nonlinear analysis of beam-like lattice structures p 13 A88-41038 Approximation in discrete-time boundary control of flexible structures Approximation in discrete-time boundary control of elexible structures p 25 A88-34737 The identification of a distributed parameter model for a flexible structure p 31 A88-46041 ABPER 88-2881] p 84 A88-46945 ROUFFET, DENIS Multimission communication satellites [IAF PAPER 88-286] IAF PAPER 88-286] p 6 A88-55417 RUDOKAS, MARY R. MTK: An Al tool for model-based reasoning used for high power RF components in space [ESA-CR(P)-2587] p 72 N88-3012 SARVCHEV, V. A. Determination of the motion of the Salyut 6 and 7 orbital stations with respect to the mass center in the slow spin mode on the basis of measurement data p 31 A88-45467 SASAKI, S. Results from a tethered rocket experiment (Charge-2) p 57 A88-46804 SATER, B. Development of 8 cm x 8 cm silicon gridded back solar cell for space station SATHYAMOORTHY, M. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] SATIPLY AND A. LDR structural experiment definition IAS PAPER 88-2807 p 72 N88-3012 SASIR. SATER, B. Development of 8 cm x 8 cm silicon gridded back solar cell for space station SATHYAMOORTHY, M. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] SATER, B. Development of 8 cm x 8 cm silicon gridded back solar cell for space station SATHYAMOORTHY, M. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] SATER, B. Double for mate flexibodynamic plate behavior p 48 A88-5467 SEEBAUGH, W. R. Effects of meteoroids and space debris on the particular environment for space station p 5 A88-36207 SEEBAUGH, W. R. Effects of meteoroids and space debris on the particular environment for space station p 5 A88-5207 SATHYAMOORTHY, M. Nonlinear nalysis and optimal design of dynamic mechanical systems for			
A continuum model for the nonlinear analysis of beam-like lattice structures p 13 A88-41038 A88-41038 A88-41038 A8S-EDEAN, I.G. Approximation in discrete-time boundary control of flexible structures p 25 A88-34737 The identification of a distributed parameter model for a flexible structure p 31 A88-46041 A88-46041 A0TH, GILBERT L. Propulsion safety [AIAA PAPER 88-2881] p 84 A88-44698 A88-44698 [ISA-PAPER 88-2881] p 84 A88-5417 AUDOKAS, MARY R. MUEDAA, F. SUUDDAA, F. SUUDDAA, F. SUUDDA, F.	•		, , , , , , , , , , , , , , , , , , , ,
Determination of the motion of the Salyut 6 and 7 orbital stations with respect to the mass center in the slow spin mode on the basis of measurement data Approximation in discrete-time boundary control of flexible structures Approximation in discrete-time boundary control of flexible structures The identification of a distributed parameter model for a flexible structure P 31 A88-46041 A88-46041 APAPER 38-2881] A88-4698 CIAF PAPER 88-2881] Multimission communication satellites [IAF PAPER 88-286] MTK: An Al tool for model-based reasoning P 12 N88-24189 AREADOKAS, MARY R. MTK: An Al tool for model-based reasoning P 12 N88-24189 STUDOKAS, MARY R. Study of secondary emission properties of materials used for high power RF components in space [ESA-CR(P)-2587] P 72 N88-30012 RUSSELL, RICHARD A. LDR structural experiment definition Determination of the motion of the Salyut 6 and 7 orbital stations with respect to the mass center in the slow spin mode on the basis of measurement data p 31 A88-4567 SASAKI, S. Results from a tethered rocket experiment (Charge-2) p 57 A88-46804 SATER, B. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 SATHYAMOORTHY, M. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] SATO, TETSUO Digital sequential shunt regulator for solar power conditioning of Engineering Test Satellite (ETS-V) p 86 A88-54696 SELTZER, SHERMAN M. Ground-test of spacecraft control and dynamics (AAS PAPER 86-267) SEMENOV, YU. Features of Soyuz TM spacecraft p 97 N88-20 SEMENOV, YU. Features of Soyuz TM spacecraft p 97 N88-20 SENACI, S. SEBAUGH, W. R. Effects of meteoroids and space debris on the particular environment for space station p 70 N88-25 SESPACH, W. R. Effects of meteoroids and space debris on the particular environment for space station p 70 N88-25 SELEBAUGH, W. R. Effects of meteoroids and space debris on the particular environment for space station p 70 N88-25 SE	A continuum model for the nonlinear analysis of		Use of assumed modes in equations governing
stations with respect to the mass center in the slow spin mode on the basis of measurement data flexible structures p 25 A88-34737 The identification of a distributed parameter model for a flexible structure p 31 A88-46041 ROTH, GILBERT L. Propulsion safety almost equals mission safety [AIAA PAPER 88-2881] p 84 A88-44698 Multimission communication satellites (IAF PAPER 88-426) p 6 A88-55417 RUDOKAS, MARY R. MTK: An Ai tool for model-based reasoning p 12 N88-24189 Study of secondary emission properties of materials used for high power RF components in space [ESA-CR(P)-2587] p 72 N88-30012 RUSSELL, RICHARD A. LDR structural experiment definition stations with respect to the mass center in the slow spin mode on the basis of measurement data p 31 A88-45467 p 31 A88-45467 SASAKI, S. Results from a tethered rocket experiment (Charge-2) p 57 A88-46804 SATER, B. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 SATER, B. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 SATER, B. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 SATER, B. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 SATER, B. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 SATER, B. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 SATER, B. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 SATER, B. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 SATER, B. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 SATER, B. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 SATER, B. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 SATER, B. Development of 8 cm x 8 cm silicon gridded back solar ce	beam-like lattice structures p 13 A88-41038		
Approximation in discrete-time boundary control of flexible structures p 25 A88-347377 The identification of a distributed parameter model for a flexible structure p 31 A88-46041 Propulsion safety structure p 31 A88-46041 Propulsion safety almost equals mission safety [AIAA PAPER 88-2881] p 84 A88-44698 Multimission communication satellites [IAF PAPER 88-426] p 6 A88-55417 Multimission communication satellites [IAF PAPER 88-426] p 6 A88-55417 RUDOKAS, MARY R. Structure p 12 N88-24189 p 12 N88-24189 used for high power RF components in space [ESA-CR(P)-2587] p 72 N88-30012 NAS-2618 P 17 N88-30012 LDR structural experiment definition p 17 N88-30012 NAS-2618 P 17 N88-30012			p 43 A88-5442
flexible structures p 25 A88-34/37 The identification of a distributed parameter model for a flexible structure p 31 A88-46041 ROTH, GILBERT L. Propulsion safety almost equals mission safety PAPER 88-2881] p 84 A88-44698 ROUFFET, DENIS Multimission communication satellites IIAF PAPER 88-426] p 6 A88-55417 RUDOKAS, MARY R. MTK: An All tool for model-based reasoning P 12 N88-24189 RUEDA, F. Study of secondary emission properties of materials used for high power RF components in space [ESA-CR(P)-2587] p 72 N88-30012 RUSSELL, RICHARD A. LDR structural experiment definition P 31 A88-45467 SASAKI, S. Results from a tethered rocket experiment (Charge-2) p 57 A88-46804 SATER, B. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 SATHYAMOORTHY, M. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application IAD-A190644] p 49 N88-22070 STOTESUO Digital sequential shunt regulator for solar power conditioning of Engineering Test Satellite (ETS-V) p 86 A88-54696 SELTZER, SHERMAN M. Ground-test of spacecraft control and dynamics [AAS PAPER 86-267] p 27 A88-30 SEMENOV, YU. Features of Soyuz TM spacecraft p 97 N88-20 SEMENOV, YU. Features of Soyuz TM spacecraft p 97 N88-20 SENAL, S. Results from a tethered rocket experiment (Charge-2) p 57 A88-46804 SEISER, K. M. Technology development missions concept definition study on Space Station attached payload pointing			
The identification of a distributed parameter model for a flexible structure p 31 A88-46041 AOTH, GILBERT L. Propulsion safety almost equals mission safety [AIAA PAPER 88-2881] p 84 A88-44698 ROUFFET, DENIS Multimission communication satellites [IAF PAPER 88-426] p 6 A88-55417 MTK: An AI tool for model-based reasoning p 12 N88-24189 RUEDA, F. Study of secondary emission properties of materials used for high power RF components in space [ESA-CR(P)-2587] p 72 N88-30012 RUSSELL, RICHARD A. LDR structural experiment definition SASAKI, S. Results from a tethered rocket experiment (Charge-2) p 57 A88-46804 SATER, B. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 SATHYMOORTHY, M. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] p 49 N88-22070 SATER, B. Effects of meteoroids and space debris on the particular environment for space station p 70 N88-25 SEISER, K. M. Technology development missions concept defining study - TDMX 2066 large inflatable/rigidized structure p 70 N88-25 SELTZER, SHERMAN M. Ground-test of spacecraft tontrol and dynamics [AAS PAPER 86-267] p 27 A88-35 SEMBUGH, W. R. Effects of meteoroids and space debris on the particular environment for space station p 70 N88-25 SEISER, K. M. Technology development missions of study - TDMX 2066 large inflatable/rigidized structure p 70 N88-25 SELTZER, SHERMAN M. Ground-test of spacecraft tontrol and dynamics [AAS PAPER 86-267] p 27 A88-35 SELECTION (SEISER, K. M. Technology development of structure environment for space station p 70 N88-25 SEISER, K. M. Technology development mission study - TDMX 2066 large inflatable/rigidized structure structure environment for space station p 62 A88-34312 SATHY AMOORTHY, M. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application p 49 N88-22070 SELTZER, SHERMAN M. Ground-test of spacecraft p 97 N88-207 SEMENOV, YU. Features of Soyuz TM spacecraft p 97		5 04 A00 4E4E7	A teleoperated robotic manipulator system for materials
A flexible structure p 3 1 A88-4604 p 5 7 A88-4604 p 5 7 A88-46804 Propulsion safety almost equals mission safety [AIAA PAPER 88-2881] p 84 A88-44698 ACUFFET, DENIS Multimission communication satellites [IAF PAPER 88-426] p 6 A88-55417 MIX: An Ai tool for model-based reasoning p 12 N88-24189 Study of secondary emission properties of materials used for high power RF components in space [ESA-CR[P]-2587] p 72 N88-30012 NASA Office of Space Sciences and Applications Structural experiment (charge-2) p 5 A88-48694 p 5 A88-48694 p 5 A88-48694 SATTER, C. M. SATER, B. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 SATHYAMOORTHY, M. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] p 49 N88-22070 SATTER, C. M. SUEDA, F. SUUDA, F. SUUDA, F. SUBBAUGH, W. R. Effects of meteoroids and space debris on the particular environment for space station p 70 N88-25 A88-34312 SATHYAMOORTHY, M. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] p 49 N88-22070 SATTER, C. M. STEBAUGH, W. R. Effects of meteoroids and space debris on the particular environment for space station p 70 N88-25 A88-34312 SELECT M. SEEBAUGH, W. R. Effects of meteoroids and space debris on the particular environment for space station p 62 A88-34312 SELECT M. Technology development missions concept defining study - TDMX 2066 large inflatable/rigidized structure structure and dynamics p 5 A88-52 SELECTER, S. M. Technology development mission study - TDMX 2066 large inflatable/rigidized structure structure analysis and optimal design of dynamic mechanical systems for spacecraft application p 49 N88-22070 SELECTER, S. M. SEBAUGH, W. R. Effects of meteoroids and space debris on the particular environment for space station p 70 N88-25 and policy and polic		•	
Propulsion safety almost equals mission safety [AlAA PAPER 88-2881] p 84 A88-44698 ROUFFET, DENIS Multimission communication satellites [IAF PAPER 88-426] p 6 A88-55417 RUDOKAS, MARY R. MTK: An Al tool for model-based reasoning p 12 N88-24189 Study of secondary emission properties of materials used for high power RF components in space [ESA-CR(P)-2587] p 72 N88-30012 RUSSELL, RICHARD A. LDR structural experiment definition SATER, B. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 SATER, B. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 SATER, B. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 SATER, B. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 SATER, B. Technology development missions concept defining study - TDMX 2066 large inflatable/rigidized structure application p 54 A88-52070 SATER, B. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 SATER, B. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 SATER, B. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 SATER, B. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 SATER, B. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 70 N88-26 SEISER, K. M. Technology development missions concept defining study - TDMX 2066 large inflatable/rigidized structure application p 49 N88-22070 SATER, B. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 SATER, B. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 SATER, B. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 70 N88-26 SEISER, K. M. Technology development missions concept defining study - TDMX 2066 large inflatable/rigidized struct	The identification of a distributed parameter model for	SASAKI, S.	processing experiment servicing p 82 N88-29410
Propusion sately almost equals mission sately environment for space station p 70 N88-25 SEISER, K. M. Technology development missions concept definition on the study - TDMX 2066 large inflatable/rigidized structure almost environment for space station p 70 N88-25 SEISER, K. M. Technology development missions concept definition on the study - TDMX 2066 large inflatable/rigidized structure almost environment for space station p 70 N88-25 SEISER, K. M. Technology development missions concept definition on the study - TDMX 2066 large inflatable/rigidized structure almost environment for space station p 62 A88-34312 SEISER, K. M. Technology development missions concept definition on the study - TDMX 2066 large inflatable/rigidized structure almost environment for space station p 62 A88-34312 SEISER, K. M. Technology development missions concept definition of the study - TDMX 2066 large inflatable/rigidized structure almost environment for space station p 62 A88-35412 SEISER, K. M. Technology development missions concept definition study - TDMX 2066 large inflatable/rigidized structure almost environment for space station p 62 A88-5472 SEISER, K. M. Technology development missions concept definition almost environment for space station p 62 A88-5472 SEISER, K. M. Technology environment for space station p 40 A88-2570 SEISER,	The identification of a distributed parameter model for a flexible structure p 31 A88-46041	SASAKI, S. Results from a tethered rocket experiment (Charge-2)	
Development of a cut is configured acts solar power for solar power conditioning of Engineering Test Satellite (ETS-V) Satellic (ESA-CR(P)-2587] LDR Structural experiment definition Development of a cut is configured acts solar acts of the solar solar power conditioning p 6 A88-34312 SEISER, K. M. Technology development missions concept definition study - TDMX 2066 large inflatable/rigidized structure p 5 A88-5417 Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] p 49 N88-22070 SATO, TETSUO Digital sequential shunt regulator for solar power conditioning of Engineering Test Satellite (ETS-V) P 86 A88-54696 SELTZER, SHERMAN M. Ground-test of spacecraft control and dynamics [AAS PAPER 86-267] p 27 A88-35 (EAS PAPER 86-267) p 27 A88-35 (ESA-CR(P)-2587) p 72 N88-30012 NASA Office of Space Sciences and Applications study on Space Station attached payload pointing	The identification of a distributed parameter model for a flexible structure p 31 A88-46041	SASAKI, S. Results from a tethered rocket experiment (Charge-2) p 57 A88-46804	SEEBAUGH, W. R.
Multimission communication satellites [IAF PAPER 88-426] p 6 A68-55417 MTK: An Al tool for model-based reasoning MIDOKAS, MARY R. MTK: An Al tool for model-based reasoning P 12 N88-24189 SATHYAMOORTHY, M. Nonlinear analysis and optimal design of dynamic mechanical synamics for spacecraft application [AD-A190644] p 49 N88-22070 SATISTIC PORTOR OF ARB-52 SATISTIC PORTOR OF ARB-52 SELTZER, SHERMAN M. Ground-test of spacecraft control and dynamics [AAS PAPER 86-267] p 27 A88-35 Conditioning of Engineering Test Satellite (ETS-V) SEMENOV, YU. Features of Soyuz TM spacecraft p 97 N88-20 SENA, J. TOM Development of an integrated heat pipe-thermal stores system for a solar receiver	The identification of a distributed parameter model for a flexible structure p 31 A88-46041 ROTH, GILBERT L. Propulsion safety almost equals mission safety	SASAKI, S. Results from a tethered rocket experiment (Charge-2) p 57 A88-46804 SATER, B.	SEEBAUGH, W. R. Effects of meteoroids and space debris on the particulate
[IAF PAPER 88-426] p 6 A88-55417 Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] p 49 N88-22070 RUEDA, F. Study of secondary emission properties of materials used for high power RF components in space [ESA-CR(P)-2587] p 72 N88-30012 LDR structural experiment definition Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] p 49 N88-22070 SATO, TETSUO Digital sequential shunt regulator for solar power conditioning of Engineering Test Satellite (ETS-V) p 86 A88-54696 SELTZER, SHERMAN M. Ground-test of spacecraft control and dynamics [AAS PAPER 86-267] p 27 A88-35 SEMENOV, YU. Features of Soyuz TM spacecraft p 97 N88-20 SEMENOV, TOM Development of an integrated heat pipe-thermal store system for a solar receiver	The identification of a distributed parameter model for a flexible structure p 31 A88-46041 ROTH, GILBERT L. Propulsion safety almost equals mission safety [AIAA PAPER 88-2881] p 84 A88-44698	SASAKI, S. Results from a tethered rocket experiment (Charge-2) p 57 A88-46804 SATER, B. Development of 8 cm x 8 cm silicon gridded back solar	SEEBAUGH, W. R. Effects of meteoroids and space debris on the particulate environment for space station p 70 N88-25399 SEISER, K. M.
AUDOKAS, MARY R. MTK: An Al tool for model-based reasoning p 12 N88-24189 RUEDA, F. Study of secondary emission properties of materials used for high power RF components in space [ESA-CR(P)-2587] p 72 N88-30012 RUSSELL, RICHARD A. LDR structural experiment definition NASA Office of Space Sciences and Applications study on Space Station attached payload pointing P 5 A88-52 SELTZER, SHERMAN M. Ground-test of spacecraft control and dynamics [AAS PAPER 86-267] p 27 A88-35 SEMENOV, YU. Features of Soyuz TM spacecraft p 97 N88-20 SENA, J. TOM Development of an integrated heat pipe-thermal stores system for a solar receiver	The identification of a distributed parameter model for a flexible structure p 31 A88-46041 AOTH, GILBERT L. Propulsion safety almost equals mission safety [AIAA PAPER 88-2881] p 84 A68-44698 ROUFFET, DENIS	SASAKI, S. Results from a tethered rocket experiment (Charge-2) p 57 A88-46804 SATER, B. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312	SEEBAUGH, W. R. Effects of meteoroids and space debris on the particulate environment for space station p 70 N88-25398 SEISER, K. M. Technology development missions concept definition
MTK: An Al tool for model-based reasoning p 12 N88-24189 p 12 N88-24189 Study of secondary emission properties of materials used for high power RF components in space [ESA-CR[P]-2587] Digital sequential shunt regulator for solar power conditioning of Engineering Test Satellite (ETS-V) SATER, C. M. NASA Office of Space Sciences and Applications study on Space Station attached payload pointing SELTZER, SHERMAN M. Ground-test of spacecraft control and dynamics [ABA PAPER 86-267] P 27 A88-35 SEMENOV, YU. Features of Soyuz TM spacecraft p 97 N88-207 SEMENOV, YU. Features of Soyuz TM spacecraft p 97 N88-207 SEMENOV, YU. Features of Soyuz TM spacecraft p 97 N88-207 SEMENOV, YU. Features of Soyuz TM spacecraft p 97 N88-207 Semenov, Yu. Features of Soyuz TM spacecraft p 97 N88-207 Semenov, Yu. Features of Soyuz TM spacecraft p 97 N88-207 Semenov, Yu. Features of Soyuz TM spacecraft p 97 N88-207 Semenov, Yu. Features of Soyuz TM spacecraft p 97 N88-207 Semenov, Yu. Features of Soyuz TM spacecraft p 97 N88-207 Semenov, Yu. Features of Soyuz TM spacecraft p 97 N88-207 Semenov, Yu. Features of Soyuz TM spacecraft p 97 N88-207 Semenov, Yu. Features of Soyuz TM spacecraft p 97 N88-207 Semenov, Yu. Features of Soyuz TM spacecraft p 97 N88-207 Semenov, Yu. Features of Soyuz TM spacecraft p 97 N88-207 Semenov, Yu. Features of Soyuz TM spacecraft p 97 N88-207 Semenov, Yu. Features of Soyuz TM spacecraft p 97 N88-207 Semenov, Yu. Features of Soyuz TM spacecraft p 97 N88-207 Semenov, Yu. Features of Soyuz TM spacecraft p 97 N88-207 Semenov, Yu. Features of Soyuz TM spacecraft p 97 N88-207 Semenov, Yu. Features of Soyuz TM spacecraft p 97 N88-207 Semenov, Yu. Features of Soyuz TM spacecraft p 97 N88-207 Semenov, Yu. Features of Soyuz TM spacecraft p 97 N88-207 Semenov, Yu.	The identification of a distributed parameter model for a flexible structure p 31 A88-46041 ROTH, GLBERT L. Propulsion safety almost equals mission safety [AIAA PAPER 88-2881] p 84 A88-44698 ROUFFET, DENIS Multimission communication satellites	SASAKI, S. Results from a tethered rocket experiment (Charge-2) p 57 A88-46804 SATER, B. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 SATHYAMOORTHY, M.	SEEBAUGH, W. R. Effects of meteoroids and space debris on the particulate environment for space station p 70 N88-25399 SEISER, K. M.
P 12 N88-24189 RUEDA, F. Study of secondary emission properties of materials used for high power RF components in space [ESA-CR(P)-2587] p 72 N88-30012 RUSSELL, RICHARD A. LDR structural experiment definition P 18 N88-24189 Digital sequential shunt regulator for solar power conditioning of Engineering Test Satellite (ETS-V) SEMENOV, YU. SATTER, C. M. NASA Office of Space Sciences and Applications study on Space Station attached payload pointing Ground-test of spacecraft control and dynamics [AAS PAPER 86-267] p 27 A88-35 SEMENOV, YU. Features of Soyuz TM spacecraft p 97 N88-20 SENA, J. TOM Development of an integrated heat pipe-thermal store system for a solar receiver	The identification of a distributed parameter model for a flexible structure p 31 A88-46041 ROTH, GILBERT L. Propulsion safety [AIAA PAPER 88-2881] p 84 A88-44698 ROUFFET, DENIS Multimission communication satellites [IAF PAPER 88-426] p 6 A88-55417	SASAKI, S. Results from a tethered rocket experiment (Charge-2) p 57 A88-46804 SATER, B. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 SATHYAMOORTHY, M. Nonlinear analysis and optimal design of dynamic	SEEBAUGH, W. R. Effects of meteoroids and space debris on the particulate environment for space station p 70 N88-2539! SEISER, K. M. Technology development missions concept definition study - TDMX 2066 large inflatable/rigidized structures
Study of secondary emission properties of materials used for high power RF components in space [ESA-CR(P)-2587] p 72 N88-30012 SATTER, C. M. LDR structural experiment definition Digital sequential shunt regulator for solar power conditioning of Engineering Test Satellite (ETS-V) p 86 A88-54696 SEMENOV, YU. SATTER, C. M. NASA Office of Space Sciences and Applications study on Space Station attached payload pointing Digital sequential shunt regulator for solar power conditioning of Engineering Test Satellite (ETS-V) SEMENOV, YU. SEMENOV, YU. SEMENOV, TU. SEMENOV,	The identification of a distributed parameter model for a flexible structure p 31 A88-46041 ROTH, GILBERT L. Propulsion safety almost equals mission safety [AIAA PAPER 88-2881] p 84 A88-44698 ROUFFET, DENIS Multimission communication satellites [IAF PAPER 88-426] p 6 A88-55417 RUDOKAS, MARY R.	SASAKI, S. Results from a tethered rocket experiment (Charge-2) p 57 A88-46804 SATER, B. Development of 8 cm x 8 cm silicon gridded back solar cell for space station SATHYAMOORTHY, M. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application	SEEBAUGH, W. R. Effects of meteoroids and space debris on the particulate environment for space station p 70 N88-2539t SEISER, K. M. Technology development missions concept definition study - TDMX 2066 large inflatable/rigidized structures p 5 A88-5233
Study of secondary emission properties of materials used for high power RF components in space [ESA-CR(P)-2587] p 72 N88-30012 SATTER, C. M. RUSSELL, RICHARD A. NASA Office of Space Sciences and Applications study on Space Station attached payload pointing Sement of an integrated heat pipe-thermal storage system for a solar receiver.	The identification of a distributed parameter model for a flexible structure p 31 A88-46041 ROTH, GILBERT L. Propulsion safety almost equals mission safety [AIAA PAPER 88-2881] p 84 A88-44698 ROUFFET, DENIS Multimission communication satellites [IAF PAPER 88-426] p 6 A88-55417 RUDOKAS, MARY R. MTK: An Al tool for model-based reasoning	SASAKI, S. Results from a tethered rocket experiment (Charge-2) p 57 A88-46804 SATER, B. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 SATHYAMOORTHY, M. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] p 49 N88-22070	SEEBAUGH, W. R. Effects of meteoroids and space debris on the particulate environment for space station p 70 N88-25398 SEISER, K. M. Technology development missions concept definition study - TDMX 2066 large inflatable/rigidized structures p 5 A88-52332 SELTZER, SHERMAN M.
used for high power RF components in space [ESA-CR(P)-2587] p 72 N88-30012 SATTER, C. M. NASA Office of Space Sciences and Applications study LDR structural experiment definition NASA Office of Space Sciences and Applications study on Space Station attached payload pointing SATTER, C. M. NASA Office of Space Sciences and Applications study on Space Station attached payload pointing system for a solar receiver	The identification of a distributed parameter model for a flexible structure p 31 A88-46041 ROTH, GILBERT L. Propulsion safety almost equals mission safety [AIAA PAPER 88-2881] p 84 A88-44698 ROUFFET, DENIS Multimission communication satellites [IAF PAPER 88-426] p 6 A88-55417 RUDOKAS, MARY R. MTK: An Al tool for model-based reasoning p 12 N88-24189	SASAKI, S. Results from a tethered rocket experiment (Charge-2) p 57 A88-46804 SATER, B. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 SATHYAMOORTHY, M. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] p 49 N88-22070 SATO, TETSUO	SEEBAUGH, W. R. Effects of meteoroids and space debris on the particulate environment for space station p 70 N88-2539: SEISER, K. M. Technology development missions concept definition study · TDMX 2066 large inflatable/rigidized structures p 5 A88-5233: SELTZER, SHERMAN M. Ground-test of spacecraft control and dynamics
[ESA-CR(P)-2587] p 72 N88-30012 SATTER, C. M. RUSSELL, RICHARD A. LDR structural experiment definition NaSA Office of Space Sciences and Applications study on Space Station attached payload pointing Sena, J. TOM Development of an integrated heat pipe-thermal store system for a solar receiver	The identification of a distributed parameter model for a flexible structure p 31 A88-46041 ROTH, GILBERT L. Propulsion safety almost equals mission safety [AIAA PAPER 88-2881] p 84 A88-44698 ROUFFET, DENIS Multimission communication satellites [IAF PAPER 88-426] p 6 A88-55417 RUDOKAS, MARY R. MTK: An Al tool for model-based reasoning p 12 N88-24189 RUEDA, F.	SASAKI, S. Results from a tethered rocket experiment (Charge-2) p 57 A88-46804 SATER, B. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 SATHYAMOORTHY, M. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] p 49 N88-22070 SATO, TETSUO Digital sequential shunt regulator for solar power	SEEBAUGH, W. R. Effects of meteoroids and space debris on the particulate environment for space station p 70 N88-2539! SEISER, K. M. Technology development missions concept definition study - TDMX 2066 large inflatable/rigidized structures p 5 A88-5232 SELTZER, SHERMAN M. Ground-test of spacecraft control and dynamics [AAS PAPER 86-267] p 27 A88-35102
RUSSELL, RICHARD A. NASA Office of Space Sciences and Applications study LDR structural experiment definition NASA Office of Space Sciences and Applications study on Space Station attached payload pointing Development of an integrated heat pipe-thermal store system for a solar receiver	The identification of a distributed parameter model for a flexible structure p.31 A88-46041 ROTH, GILBERT L. Propulsion safety almost equals mission safety [AIAA PAPER 88-2881] p.84 A88-44698 ROUFFET, DENIS Multimission communication satellites [IAF PAPER 88-426] p.6 A88-55417 RUDOKAS, MARY R. MTK: An Ai tool for model-based reasoning p.12 N88-24189 RUEDA, F. Study of secondary emission properties of materials	SASAKI, S. Results from a tethered rocket experiment (Charge-2) p 57 A88-46804 SATER, B. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 SATHYAMOORTHY, M. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] p 49 N88-22070 SATO, TETSUO Digital sequential shunt regulator for solar power conditioning of Engineering Test Satellite (ETS-V)	SEEBAUGH, W. R. Effects of meteoroids and space debris on the particulate environment for space station p 70 N88-25395 SEISER, K. M. Technology development missions concept definition study - TDMX 2066 large inflatable/rigidized structures p 5 A88-52332 SELTZER, SHERMAN M. Ground-test of spacecraft control and dynamics [AAS PAPER 86-267] p 27 A88-35102 SEMENOV, YU.
LDR structural experiment definition on Space Station attached payload pointing system for a solar receiver	The identification of a distributed parameter model for a flexible structure p.31 A88-46041 ROTH, GILBERT L. Propulsion safety almost equals mission safety [AIAA PAPER 88-2881] p.84 A88-44698 ROUFFET, DENIS Multimission communication satellites [IAF PAPER 88-426] p.6 A88-55417 RUDOKAS, MARY R. MTK: An Al tool for model-based reasoning p.12 N88-24189 RUEDA, F. Study of secondary emission properties of materials used for high power RF components in space	SASAKI, S. Results from a tethered rocket experiment (Charge-2) p 57 A88-46804 SATER, B. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 SATHYAMOORTHY, M. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] p 49 N88-22070 SATO, TETSUO Digital sequential shunt regulator for solar power conditioning of Engineering Test Satellite (ETS-V) p 86 A88-54696	SEEBAUGH, W. R. Effects of meteoroids and space debris on the particulate environment for space station p 70 N88-25395 SEISER, K. M. Technology development missions concept definition study · TDMX 2086 large inflatable/rigidized structures p 5 A88-52332 SELTZER, SHERMAN M. Ground-test of spacecraft control and dynamics [AAS PAPER 86-267] p 27 A88-35102 SEMENOV, YU. Features of Soyuz TM spacecraft p 97 N88-20329
	The identification of a distributed parameter model for a flexible structure p 31 A88-46041 ROTH, GILBERT L. Propulsion safety almost equals mission safety [AIAA PAPER 88-2881] p 84 A88-44698 ROUFFET, DENIS Multimission communication satellites [IAF PAPER 88-426] p 6 A88-55417 RUDOKAS, MARY R. MTK: An Al tool for model-based reasoning p 12 N88-24189 RUEDA, F. Study of secondary emission properties of materials used for high power RF components in space [ESA-CR(P)-2587] p 72 N88-30012	SASAKI, S. Results from a tethered rocket experiment (Charge-2) p 57 A88-46804 SATER, B. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 SATHYAMOORTHY, M. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] p 49 N88-22070 SATO, TETSUO Digital sequential shunt regulator for solar power conditioning of Engineering Test Satellite (ETS-V) p 86 A88-54696 SATTER, C. M.	SEEBAUGH, W. R. Effects of meteoroids and space debris on the particulate environment for space station p 70 N88-25398 SEISER, K. M. Technology development missions concept definition study · TDMX 2066 large inflatable/rigidized structures p 5 A88-52332 SELTZER, SHERMAN M. Ground-test of spacecraft control and dynamics [AAS PAPER 86-267] p 27 A88-35102 SEMENOV, YU. Features of Soyuz TM spacecraft p 97 N88-20329 SENA, J. TOM
• • • • • • • • • • • • • • • • • • • •	The identification of a distributed parameter model for a flexible structure p 31 A88-46041 ROTH, GILBERT L. Propulsion safety almost equals mission safety [AIAA PAPER 88-2881] p 84 A68-44698 ROUFFET, DENIS Multimission communication satellites [IAF PAPER 88-426] p 6 A88-55417 RUDOKAS, MARY R. MTK: An Al tool for model-based reasoning p 12 N88-24189 RUEDA, F. Study of secondary emission properties of materials used for high power RF components in space [ESA-CR(P)-2587] p 72 N88-30012 RUSSELL, RICHARD A.	SASAKI, S. Results from a tethered rocket experiment (Charge-2) p 57 A88-46804 SATER, B. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 SATHYAMOORTHY, M. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] p 49 N88-22070 SATO, TETSUO Digital sequential shunt regulator for solar power conditioning of Engineering Test Satellite (ETS-V) p 86 A88-54696 SATTER, C. M. NASA Office of Space Sciences and Applications study	SEEBAUGH, W. R. Effects of meteoroids and space debris on the particulate environment for space station p 70 N88-25398 SEISER, K. M. Technology development missions concept definition study · TDMX 2066 large inflatable/rigidized structures p 5 A88-52332 SELTZER, SHERMAN M. Ground-test of spacecraft control and dynamics [AAS PAPER 86-267] p 27 A88-35102 SEMENOV, YU. Features of Soyuz TM spacecraft p 97 N88-20329 SENA, J. TOM Development of an integrated heat pipe-thermal storage
	The identification of a distributed parameter model for a flexible structure p.31 A88-46041 RROTH, GILBERT L. Propulsion safety almost equals mission safety [AIAA PAPER 88-2881] p.84 A68-44698 ROUFFET, DENIS Multimission communication satellites [IAF PAPER 88-426] p.6 A88-55417 RUDOKAS, MARY R. MTK: An Al tool for model-based reasoning p.12 N88-24189 RUEDA, F. Study of secondary emission properties of materials used for high power RF components in space [ESA-CR(P)-2587] p.72 N88-30012 RUSSELL, RICHARD A.	SASAKI, S. Results from a tethered rocket experiment (Charge-2) p 57 A88-46804 SATER, B. Development of 8 cm x 8 cm silicon gridded back solar cell for space station p 62 A88-34312 SATHYAMOORTHY, M. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] p 49 N88-22070 SATO, TETSUO Digital sequential shunt regulator for solar power conditioning of Engineering Test Satellite (ETS-V) p 86 A88-54696 SATTER, C. M. NASA Office of Space Sciences and Applications study	SEEBAUGH, W. R. Effects of meteoroids and space debris on the particula environment for space station p 70 N88-253 SEISER, K. M. Technology development missions concept definiting study - TDMX 2066 large inflatable/rigidized structures p 5 A88-523 SELTZER, SHERMAN M. Ground-test of spacecraft control and dynamics [AAS PAPER 86-267] p 27 A88-3517 SEMENOV, YU. Features of Soyuz TM spacecraft p 97 N88-203: SENA, J. TOM Development of an integrated heat pipe-thermal storal

SENDA, K.	SIMPSON, THEODORE R.	SOLON, M.
Dynamics and control of experimental tendon control system for flexible space structure	The Space Station and recommendations of the National Commission on Space	Nuclear propulsion systems for orbit transfer based on the particle bed reactor p 87 N88-24272
[AIAA PAPER 88-4154] p 36 A88-50248	[AAS PAPER 86-263] p 2 A88-35075	SONG, XIAO-TING
SEVERIN, G. I.	SINGH, G.	Refilling process in the plasmasphere and its relation
EVA space suits - Safety problems	Time optimal slewing of a rigid body with flexible	to magnetic activity p 64 A88-37343
[IAF PAPER 88-515] p 77 A88-55436	appendages p 26 A88-34812 SINGH, N,	SOOSAAR, K.
SHAH, M. Turbomachinery in space p 60 N88-24321	Space station induced electromagnetic effects	Soviet spacecraft engineering research [FASAC-TAR-3090] p 98 N88-23823
SHANKARNARAYANAN, S.	p 61 N88-25394	SOUCY, Y.
Comparison of theoretical and experimental modal	SINGH, R. B.	Modal testing R&D at the Communications Research
analysis results of a rectangular three dimensional frame	Effect of solar pressure on the motion and stability of	Centre p 25 A88-34613
p 22 A88-50873	the system of two inter-connected satellites in an elliptical orbit p 24 A88-33104	SOVIE, RONALD J.
SHANNON, REBECCA L. Human factors analysis of extravehicular servicing of	SINGH, R. P.	Power systems for production, construction, life support
payloads within the space station servicing facility	Obstacles to high fidelity multibody dynamics	and operations in space [NASA-TM-100838] p 59 N88-21254
p 76 A88-50998	simulation p 44 A88-54471	[NASA-TM-100838] p 59 N88-21254 SPANN, J. F.
SHARMA, S. P.	SINGH, SAHJENDRA N.	A Study of Space Station Contamination Effects
Critique of the thermal design verification program for	Rotational maneuver and stabilization of an elastic spacecraft p 26 A88-34794	[NASA-CP-3002] p 69 N88-25390
a high-power communications spacecraft [AIAA PAPER 88-2648] p 22 A88-48479	Variable structure control of decoupleable systems and	SPANOS, J. T.
SHARONY, YAAKOV	attitude control of spacecraft in presence of uncertainty	NASA Office of Space Sciences and Applications study
Accommodation of kinematic disturbances during a	p 46 A88-54655	on Space Station attached payload pointing
minimum-time maneuver of a flexible spacecraft	SINHA, SACHINDRA KUMAR	[AIAA PAPER 88-4105] p 36 A88-50209
[AIAA PAPER 88-4253] p 40 A88-50440	Effect of solar pressure on the motion and stability of	SPEAKER, EDWIN E.
SHELFORD, C. J.	the system of two inter-connected satellites in an elliptical orbit p 24 A88-33104	Space Station development [AAS PAPER 86-255] p 2 A88-35052
Data management for large space systems p 95 A88-45034	SIRA-RAMIREZ, HEBERTT	SPECHT, B.
SHEN, GON-YEN	Variable-structure control of spacecraft attitude	Numerical solution of multibody systems in space
Conceptual design for active structural control of a large	maneuvers p 30 A88-43211	applications p 48 N88-21200
optical system p 25 A88-34500	SIRLIN, S. W.	SPECTOR, V. A.
SHEN, JAMES	Precision pointing of scientific instruments on space station: The LFGGREC perspective p 42 A88-50979	Modeling of non-collocated structural control systems
Thermal cycling effects on the dimensional stability of	SISK, R. C.	[AIAA PAPER 88-4060] p 35 A88-50170
P75 and P75-T300 (fabric) hybrid graphite/epoxy laminates p 65 A88-42434	Velocity distributions of oxygen atoms incident on	SPEED, GRAHAM
SHEPARD, G. DUDLEY	spacecraft surfaces p 68 A88-54990	Simulation - Antidote to risk p 9 A88-40524
Spatial distribution of model error based on	SKELTON, R. E.	SPENCER, J. S. Space station architectural elements model study
analytical/experimental frequency discrepancies	Modal cost analysis for simple continua	[NASA-CR-4027] p 100 N88-24632
p 41 A88-50899	p 21 A88-46404 SKLAR, MIKE	Space station architectural elements and issues
SHEPPARD, SYLVIA B.	Robotic applications at Kennedy Space Center	definition study
Human factors analysis of extravehicular servicing of payloads within the space station servicing facility	p 76 A88-52328	[NASA-CR-3941] p 12 N88-25371
p 76 A88-50998	SKREBUSHEVSKII, BORIS SERGEEVICH	SPERANS, JOEL
SHERRILL, FRANCIS G.	Ballistic design of space systems p 9 A88-44898	Performance considerations for the astrometric
Interactive Radar Environment Simulation Model	SLATER, G. L.	Telescope Facility on the Phase I Space Station
(IRESM) p 10 A88-46968	A disturbance model for the optimization of control/structure interactions for flexible dynamic	p 92 A88-42539
SHERWOOD, R. B.	control/structure interactions for flexible dynamic systems	SPEYER, JASON L. An approximate atmospheric guidance law for
Piloted earth pointing of a spinning geosynchronous satellite	[AIAA PAPER 88-4058] p 34 A88-50168	aeroassisted plane change maneuvers
[AIAA PAPER 88-4130] p 37 A88-50280	SLEMP, WAYNE S.	[AIAA PAPER 88-4174] p 37 A88-50265
SHIBUYA, YOSHIKAZU	Evaluation of chromic acid anodized aluminum foil	SPIEGEL, STANLEY L.
Electrostatic charging and arc discharges on satellite	coated composite tubes for the Space Station truss	Real-time, automatic vehicle-potential determination
dielectrics simulated by electron beam	structure p 65 A88-42412 SLINEY, JACK	from ESA measurements - The distribution function
p 57 A88-47970	Cost effectiveness of on-orbit servicing for large	algorithm p 58 A88-51391 SPOFFORD, JOHN
SHIMEMURA, ETSUJIRO Design of a controller for mechanical systems by the	constellations	Redundancy control of a free-flying telerobot
generalized energy function p 27 A88-34891	[AIAA PAPER 88-3519] p 94 A88-44527	[AIAA PAPER 88-4094] p 35 A88-50199
SHINAR, JOSEF	SLOVIK, G.	SPRADLEY, IRAN E.
Aeroassisted transfer between elliptical orbits using lift	Nuclear propulsion systems for orbit transfer based on	Design and test of a modified passive orbital disconnect
control	the particle bed reactor p 87 N88-24272 SMARGIASSI, M.	strut (PODS-IV) p 11 A88-53226
[AIAA PAPER 88-4346] p 95 A88-50590 SHINGU, SHITTA	Laboratory model of a Tethered Satellite - Current	SPYRAKOS, C. C. Performance enhancement of passively damped joints
Development of a magnetically suspended,	collection upon and sheath formation around a charged	for space structures
tetrahedron-shaped antenna pointing system	body in a drifting magnetoplasma p 57 A88-46806	[AIAA PAPER 88-2450] p 13 A88-35941
p 18 N88-21478	SMITH, C. A.	STANG, D. A.
SHINODA, K.	A technique to evaluate coatings for atomic oxygen resistance p 65 A88-42372	Advanced composites for Magellan spacecraft
Dynamics and control of experimental tendon control	resistance p 65 A88-42372 SMITH, JEFFREY H.	[AIAA PAPER 88-3031] p 68 A88-53126 STEELE, T.
system for flexible space structure [AIAA PAPER 88-4154] p 36 A88-50248	The space station assembly phase: Flight telerobotic	Modal testing R&D at the Communications Research
SHOJI, JAMES M.	servicer feasibility. Volume 2: Methodology and case	Centre p 25 A88-34613
Solar thermal propulsion for orbit transfer	study	STEPHENS, J. J.
[AIAA PAPER 88-3171] p 84 A88-48042	[NASA-CR-182690] p 77 N88-20352	Recent advances in aerospace refractory metal alloys
SHPAK, M. T.	The space station assembly phase: System design trade-offs for the flight telerobotic servicer	p 67 A88-47449
Electrotopographic investigation of the degradation	p 82 N88-30357	STEVENSON, T. J. Eureca TICCE - A nine-month survey of cosmic dust
dynamics of dielectric layers in space p 62 A88-33958	SMITH, MARCIA S.	and space debris at 500 km altitude p 96 A88-53242
SIEPMANN, RALF	Update on Soviet space activities	STIDHAM, CURTIS
Two-phase thermal loops for use in future spacecraft	[AAS PAPER 86-466] p 2 A88-35081	Arc-textured metal surfaces for high thermal emittance
p 19 A88-37295	SMITH, RANDY L.	space radiators
SIERRA, M.	Human-telerobot interactions - Information, control, and mental models p 73 A88-35457	[NASA-TM-100894] p 69 N88-24754
Large truss structures p 75 A88-50862 A sequentially deployable structure for space	SMITH, WILLIAM L.	STIEBER, MICHAEL E. Sensors, actuators, and hyperstability of structures
applications p 15 N88-21202	OMV multiple deployments of lightsats	[AIAA PAPER 88-4057] p 34 A88-50167
SILL, H. K.	[AIAA PAPER 88-3518] p 9 A88-42911	STOECKER, J. E.
Orbital replaceable unit-cold plate dry thermal interface	SNYDER, JOHN	Deployable booms and antennas on AMPTE-IRM
concept and test measurements p 20 A88-42843	Computational techniques for the self assembly of large	p 15 N88-21198
SILVERMAN, EDWARD M.	space structures p 75 A88-43976 SOBECK, CHARLES K.	STONE, R. W.
Graphite thermoplastic composites for spacecraft applications p 65 A88-42419	Performance considerations for the astrometric	Some operational aspects of a rotating
applications p 65 A88-42419 SIMMONS, A. B.	Telescope Facility on the Phase I Space Station	advanced-technology space station for the year 2025 [NASA-CR-181617] p 8 N88-26397
Piloted earth pointing of a spinning geosynchronous	p 92 A88-42539	STRUTHERS, NANCY J.
satellite	SOFFEN, GERALD A.	Incorporation of privacy elements in space station
[AIAA PAPER 88-4130] p 37 A88-50280	Visions of tomorrow: A focus on national space	design
SIMON, WILLIAM E.	transportation issues; Proceedings of the Twenty-fifth	[NASA-CR-182748] p 98 N88-21242
Technology advancements for the U.S. manned Space	Goddard Memorial Symposium, Greenbelt, MD, Mar.	STRYKER, J. W. A job for space manufacturing p 94 A88-43966
Station - An overview p 1 A88-33434	18-20, 1987 p 92 A88-41276	A job for space manufacturing p 94 A88-43966

STUART, DALE G.	TATRY, M. B.	TORRISI, F. R.
Guidance and control for cooperative tether-mediated	Development of a space deployable radiator using heat	Measurements of thermal conductivity and thermal
orbital rendezvous	pipes	contact resistance in composite materials for space
[AIAA PAPER 88-4170] p 37 A88-50261	[SNIAS-881-440-104] p 23 N88-29128	applications p 64 A88-36982
STUBBS, R. M. Technology requirements for an orbiting fuel depot: A	TAYLOR, LAWRENCE W.	TOVMASIAN, G. M. 'Glazar' - An orbital ultraviolet telescope
necessary element of a space infrastructure	Effects of nonlinear damping in flexible space	·
[NASA-TM-101370] p 88 N88-29845	structures [AIAA PAPER 88-4059] p 35 A88-50169	p 91 A88-38826 TRACEY, THOMAS R.
STUEBER. THOMAS	TAYLOR, T. C.	Orbital spacecraft consumables resupply
Arc-textured metal surfaces for high thermal emittance	Space station architectural elements model study	[AIAA PAPER 88-2922] p 94 A88-44695
space radiators	[NASA-CR-4027] p 100 N88-24632	TRIPATHI, SHIVA S.
[NASA-TM-100894] p 69 N88-24754	Space station architectural elements and issues	Conceptual design for active structural control of a large
STURTIVANT, G. J.	definition study	optical system p 25 A88-34500
Qualification of the OLYMPUS reaction wheel	[NASA-CR-3941] p 12 N88-25371	TRIVEDI, DINESH J.
p 16 N88-21226	TELLER, VOLKER B.	Experimental study of transient waves in a plane grid
SU, RENJENG	Design, fabrication, and testing of rolled carbon/epoxy	structure p 28 A88-38390
Spectral analysis of a class of infinite-dimensional	struts for Space Station application p 62 A88-33018	TROEGER, R. E.
systems p 26 A88-34822	TELTSOV, M. V.	Turbornachinery in space p 60 N88-24321
SUCHTING, STEVEN	Relationship between characteristics of low-energy	TSUYA, NAOKI
A teleoperated robotic manipulator system for materials	electrons and geomagnetic disturbance in geostationary	Digital sequential shunt regulator for solar power
processing experiment servicing p 82 N88-29410	orbit p 62 N88-30501	conditioning of Engineering Test Satellite (ETS-V)
SUCHTING, STEVEN A. E.	TEMPLE, L. PARKER, III	p 86 A88-54696
Concepts for robot motion primitives required for space	Decision time on orbital debris p 66 A88-43516	TULKOFF, PHILIP J.
station teleoperations p 81 N88-29387	TEOFILO, V. L.	Space ten-meter telescope (STMT) - Structural and
SUGIURA, HITOSHI Development of a magnetically suspended,	Advanced space power systems	thermal feasibility study of the primary mirror
tetrahedron-shaped antenna pointing system	{SAWE PAPER 1762} p 58 A88-53779 TEOH. W.	p 19 A88-34539
p 18 N88-21478	OMV docking simulator p 101 N88-29379	TURNER, J. D.
SULEIMAN, SALEM A.	TEOH, WILLIAM	Soviet spacecraft engineering research
ARGES: An expert system for fault diagnosis within	Personnel occupied woven envelope robot	[FASAC-TAR-3090] p 98 N88-23823
space-based ECLS systems p 101 N88-29380	p 81 N88-29408	
SULEMAN, A.	TERUI. F.	U
A dynamical study of the proposed Space Station type	Dynamics and control of experimental tendon control	U
configuration	system for flexible space structure	
[AIAA PAPER 88-4304] p 39 A88-50429	[ÁIAA PAPER 88-4154] p 36 A88-50248	UDALOV, SERGEI
SULMEISTERS, T.	TESTA, P.	Spacecraft applications of advanced global positioning
Advanced nuclear rocket engine mission analysis	Measurements of thermal conductivity and thermal	system technology
[DE88-006797] p 87 N88-24681	contact resistance in composite materials for space	[NASA-CR-172055] p 8 N88-27180
SULMEISTERS, TAL K.	applications p 64 A88-36982	UEBA, MASAZUMI
Comparison of a direct thrust nuclear engine, nuclear	THAU, F. E.	Design of an on-board antenna pointing control system
electric engine and a chemical engine for future space	An adaptive control system for fine pointing of flexible	for communication satellites
missions p 87 N88-24379	spacecraft p 26 A88-34791	[AIAA PAPER 88-4306] p 39 A88-50431
SUNKEL, J. A new momentum management controller for the Space	THOMPSON, DAVID W. Beyond low earth orbit - A survey of upper stages	UGO, RYOSUKE
Station	[AAS PAPER 87-115] p 83 A88-41283	Damping materials for spacecraft vibration control p 64 A88-37000
[AIAA PAPER 88-4132] p 36 A88-50233	THOMPSON, R. L.	UPADHYAY, TRIVENI N.
SVERTSHEK, V. I.	Structural assessment of a space station solar dynamic	Feasibility of using GPS measurements for OMV attitude
EVA space suits - Safety problems	heat receiver thermal energy storage canister	update p 96 A88-51716
[JAF PAPER 88-515] p 77 A88-55436	p 23 N88-22406	USPENSKII, G. R.
SWAIM, ROBERT L.	THORNBRUGH, ALLISON	Scientific and economy-oriented space systems
Aeroelastic interactions with flight control of	Blackboard architectures and their relationship to	/revised edition/ p 93 A88-43247
transatmospheric vehicles p 42 A88-50980	autonomous space systems p 82 N88-29414	71011000 CUMOTO p 00 700-40247
SWALES, A. W.	THUERY, JACQUES	
Heavy lift horizontal take-off and landing vehicles	Multimission communication satellites	V
p 84 A88-43863	[IAF PAPER 88-426] p 6 A88-55417	
SWANSON, T.	TIAN, T. N.	VACHTSEVANOS, G.
A new linearized theory of laminar film condensation	Determination of the motion of the Salyut 6 and 7 orbital	Real-time fault management for large-scale systems
of two phase annular flow in a capillary pumped loop [AIAA PAPER 88-2637] p 56 A88-43715	stations with respect to the mass center in the slow spin mode on the basis of measurement data	p 42 A88-52355
(,	p 31 A88-45467	Reasoning about fault diagnosis for the space station
SYKES, G. F. Degradation of graphite-epoxy due to electron	TILLOTSON, BRIAN	common module thermal control system
radiation p 63 A88-36762	Design of a solar power satellite for construction from	p 23 N88-29395
SYKES, GEORGE F., JR.	lunar materials p 9 A88-40566	VAFA, Z.
Space radiation effects on poly(aryl-ether-ketone) thin	TILTON, E. LEE	On the dynamics of manipulators in space using the
films and composites p 65 A88-41547	The Space Station and recommendations of the National	virtual manipulator approach p 75 A88-42677
SYVERSEN, T.	Commission on Space	VALLERANI, E.
Study of human factors engineering criteria for	[AAS PAPER 86-263] p 2 A88-35075	Columbus Pressurized Modules - A versatile
extravehicular activity (EVA) systems, volume 1	TILTON, LEE E.	user-friendly space laboratory system
[STF23-F87025-VOL-1] p 82 N88-30298	Decision time on orbital debris p 66 A88-43516	[IAF PAPER 88-097] p 6 A88-55340
[311 23-1 67 625-4 62-1]	TIMCHENKO, V.	VAN DER HA, J.
_	Features of Soyuz TM spacecraft p 97 N88-20329	Analytical models for relative motion under constant
T	TOBISKA, W. KENT	thrust
	Aerospace century XXI: Space flight technologies;	[AIAA PAPER 88-4300] p 85 A88-50425
TAKAHARA, KENICHI	Proceedings of the Thirty-third Annual AAS International	VANDERSLUIS, R.
Development of a magnetically suspended,	Conference, Boulder, CO, Oct. 26-29, 1986	System and concept design of the SSRMS latching end
tetrahedron-shaped antenna pointing system	p 90 A88-35093	effector p 15 N88-21204
p 18 N88-21478	TODOME, KAZUHIDE	VANDERZIJP, J.
TAKAHASHI, HIROSHI	Damping materials for spacecraft vibration control	Genetic algorithms for adaptive real-time control in
Development of a magnetically suspended,	p 64 A88-37000	space systems p 50 N88-24195
tetrahedron-shaped antenna pointing system	TONG, M. T. Structural assessment of a space station solar dynamic	VANKE, V. A.
p 18 N88-21478	heat receiver thermal energy storage canister	Possible variants of microwave-beam structure for
TANNER, TRIEVE	p 23 N88-22406	satellite solar power plants p 85 A88-50671
MANNEN, INIEVE		

VARSI, GIULIO

VAZ, A. F.

constraint

Space station as a vital focus for advancing the

On the quantitative characterization of approximate

decentralized fixed modes using transmission zeros

VENKAYYA, V. B.

Game theory approach for the integrated design of p 33 A88-47462

Optimal structural design with control gain norm onstraint p 22 A88-50339

p 80 N88-29352

p 27 A88-34905

technologies of automation and robotics [IAF-86-62] p

Research

TARASOV, S. V.

TAPPE, W.

[NASA-CP-2426-VOL-4]

with elastic components

TATRO, CHARLES A.

Space Station Human Factors Research Review.
Volume 4: Inhouse Advanced Development and

Nuclear propulsion systems for orbit transfer based on the particle bed reactor p 87 N88-24272

Mathematical modeling of the dynamics of a spacecraft

Space Station Photovoltaic power modules

p 99 N88-24148

p`33 A88-48080

p 58 A88-52333

TORR, D. G.

TORR, M. R.

TORR, MARSHA R.

Optical environment of the Spacelab 1 mission

A Study of Space Station Contamination Effects
[NASA-CP-3002] p 69 N88-

Optical environment of the Spacelab 1 mission

contaminant spectral brightness

atmosphere-induced emissions

Space station contamination study: Assessment of

Calculation of space station infrared irradiance from

p 67 A88-47966

p 70 N88-25395

p 70 N88-25396

p 69 N88-25390

p 67 A88-47966

[AIAA PAPER 88-4153]

Adaptive control experiment with a large flexible structure

p 36 A88-50247

VEREEN, MARY	WANG, TOM D.	WHITE, LUTHER W.
Third Conference on Artificial Intelligence for Space	Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of structural	Estimation and control of distributed models for certain
Applications, part 2 [NASA-CP-2492-PT-2] p 100 N88-24188	vibrations	elastic systems arising in large space structures {AD-A192120} p 51 N88-24666
VETRELLA, S.	[AD-A194270] p 71 N88-28754	WHITELAW, VIRGINIA A.
Transient dynamics of the Tether Elevator/Crawler	WANG, Y.	Telemetry handling on the Space Station data
System	Parameter identification techniques for the estimation	management system p 54 A88-33629
[AIAA PAPER 88-4280] p 39 A88-50407	of damping in flexible structure experiments p 26 A88-34805	WHITT, ROBIN
VIGNERON, F. R.	The identification of a distributed parameter model for	Long-lived thermal control materials for high temperature
Modal testing R&D at the Communications Research Centre p 25 A88-34613	a flexible structure p 31 A88-46041	and deep space applications p 20 A88-42441 WIE, B.
VINZ. FRANK L.	WARE, RANDOLPH H.	A new momentum management controller for the Space
Machine vision for real time orbital operations	Space Phoenix p 9 A88-39500	Station
p 80 N88-29367	WARNAAR, DIRK B. Sensitivity analysis of a deployable three longeron truss	[AIAA PAPER 88-4132] p 36 A88-50233
VOGEL, F.	beam designed for minimum member loads during	WIE, BONG
Procedures for updating dynamic mathematical models,	deployment	Active vibration control synthesis for the control of
test phase	[Alaa Paper 88-2436] p 13 A88-38689	flexible structures mast flight system p 30 A88-43212
[MEBS-38/87] p 12 N88-29852 VOLKMER. KENT	WARNER, MARK H.	WILBUR, PAUL J.
The space station assembly phase: Flight telerobotic	Ammonia transfer across rotating joints in space	Plasma contactor design for electrodynamic tether applications p 57 A88-46807
servicer feasibility. Volume 2: Methodology and case	p 22 N88-21492 WARREN, V. W.	Space plasma contactor research, 1987
study	A new momentum management controller for the Space	[NASA-CR-182148] p 60 N88-23649
[NASA-CR-182690] p 77 N88-20352	Station	WILCOX, BRIAN
The space station assembly phase: System design	[AIAA PAPER 88-4132] p 36 A88-50233	Real-time model-based vision system for object
trade-offs for the flight telerobotic servicer	WATANABE, NAOYUKI	acquisition and tracking p 28 A88-36311
p 82 N88-30357 VON FLOTOW, A. H.	Tethered subsatellite swinging from atmospheric gradients p 46 A88-55067	Sensing and perception research for space telerobotics
The acoustic limit of control of structural dynamics	gradients p 46 A88-55067 WATSON, ANDREW B.	at JPL p 74 A88-42657
p 32 A88-46409	Image management research p 99 N88-24150	WILLIAMS, JAMES H., JR. Wave propagation and dynamics of lattice structures
Some approximations for the dynamics of spacecraft	WATSON, JUDITH J.	[AD-A190037] p 49 N88-22066
tethers p 33 A88-46712	A 60-meter erectable assembly concept for a control	WILLIAMS, JEFFERY T.
Two non-linear control approaches for retrieval of a	of flexible structures flight experiment	An investigation of conformable antennas for the
thrusting tethered sub-satellite	[NASA-TM-100497] p 7 N88-21190 WEATHERLY, J. A.	astronaut backpack communication system
[AIAA PAPER 88-4171] p 37 A88-50262	The Gamma Ray Observatory (GRO) Propulsion	[NASA-CR-182908] p 99 N88-23929
VON HERZEN, BRIAN Computational techniques for the self assembly of large	Subsystem	WILLIAMS, R. D.
space structures p 75 A88-43976	[AIAA PAPER 88-3051] p 4 A88-44741	Flight qualification testing of ultrathin solar cells p 63 A88-34448
VON STETTEN, CARL C.	WEBB, B. J.	WILLIAMS, TREVOR
Necessary conditions of geometrical stability in trusses	Fabric space radiators	Computing the transmission zeros of large space
which include one-force members	[DE88-005569] p 17 N88-21237 WEBER, K.	structures p 27 A88-34917
[SAWE PAPER 1776] p 43 A88-53785	Open-cycle chemical power and thermal management	Pole/zero cancellations in flexible space structures
VONFLOTOW, A. H. Travelling wave concepts for the modeling and control	system with combustion product-free effluent	[AIAA PAPER 88-4055] p 34 A88-50165
of space structures	[AIAA PAPER 88-2625] p 83 A88-43710	WILLIAMSON, W. S.
[AD-A191235] p 50 N88-23819	WECHSLER, HARRY	Spacecraft dielectric surface charging property
VÝKUKAL, H. C.	Parallel and distributed computation for fault-tolerant	determination
VIRONAL, II. O.	abject responsition n 12 MRR 20250	
Space Station Human Factors Research Review.	object recognition p 13 N88-30350	[NASA-CR-180879] p 59 N88-21243
Space Station Human Factors Research Review. Volume 1: EVA Research and Development	WEEKS, DAVID J.	WILLMERT, K. D.
Space Station Human Factors Research Review.		WILLMERT, K. D. Nonlinear analysis and optimal design of dynamic
Space Station Human Factors Research Review. Volume 1: EVA Research and Development [NASA-CP-2426-VOL-1] p 99 N88-24145	WEEKS, DAVID J. Expert systems for MSFC power systems	WILLMERT, K. D. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] p 49 N88-22070
Space Station Human Factors Research Review. Volume 1: EVA Research and Development	WEEKS, DAVID J. Expert systems for MSFC power systems p 61 N88-29375 WEGERIF, DAN Robotic applications at Kennedy Space Center	WILLMERT, K. D. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] p 49 N88-22070 WILLOUGHBY, A. J.
Space Station Human Factors Research Review. Volume 1: EVA Research and Development [NASA-CP-2426-VOL-1] p 99 N88-24145	WEEKS, DAVID J. Expert systems for MSFC power systems p 61 N88-29375 WEGERIF, DAN Robotic applications at Kennedy Space Center p 76 A88-52328	WILLMERT, K. D. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] p 49 N88-22070 WILLOUGHBY, A. J. Technology requirements for an orbiting fuel depot: A
Space Station Human Factors Research Review. Volume 1: EVA Research and Development [NASA-CP-2426-VOL-1] p 99 N88-24145 W WADA, BEN K.	WEEKS, DAVID J. Expert systems for MSFC power systems p 61 N88-29375 WEGERIF, DAN Robotic applications at Kennedy Space Center p 76 A88-52328 WEIBEL, MARC	WILLMERT, K. D. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] p 49 N88-22070 WILLOUGHBY, A. J. Technology requirements for an orbiting fuel depot: A necessary element of a space infrastructure
Space Station Human Factors Research Review. Volume 1: EVA Research and Development [NASA-CP-2426-VOL-1] p 99 N88-24145	WEEKS, DAVID J. Expert systems for MSFC power systems p 61 N88-29375 WEGERIF, DAN Robotic applications at Kennedy Space Center p 76 A88-52328 WEIBEL, MARC Space cabin atmosphere and extracurricular sortie	WILLMERT, K. D. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] p 49 N88-22070 WILLOUGHBY, A. J. Technology requirements for an orbiting fuel depot: A necessary element of a space infrastructure [NASA-TM-101370] p 88 N88-29845
Space Station Human Factors Research Review. Volume 1: EVA Research and Development [NASA-CP-2426-VOL-1] p 99 N88-24145 W WADA, BEN K. Sine dwell or broadband methods for modal testing	WEEKS, DAVID J. Expert systems for MSFC power systems p 61 N88-29375 WEGERIF, DAN Robotic applications at Kennedy Space Center p 76 A88-52328 WEIBEL, MARC Space cabin atmosphere and extracurricular sortie p 100 N88-26023	WILLMERT, K. D. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] p 49 N88-22070 WILLOUGHBY, A. J. Technology requirements for an orbiting fuel depot: A necessary element of a space infrastructure
Space Station Human Factors Research Review. Volume 1: EVA Research and Development [NASA-CP-2426-VOL-1] p 99 N88-24145 W WADA, BEN K. Sine dwell or broadband methods for modal testing p 46 A88-55088 WADSWORTH, J. Recent advances in aerospace refractory metal alloys	WEEKS, DAVID J. Expert systems for MSFC power systems p 61 N88-29375 WEGERIF, DAN Robotic applications at Kennedy Space Center p 76 A88-52328 WEIBEL, MARC Space cabin atmosphere and extracurricular sortie p 100 N88-26023 WEILAND, M.	WILLMERT, K. D. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] p 49 N88-22070 WILLOUGHBY, A. J. Technology requirements for an orbiting fuel depot: A necessary element of a space infrastructure [NASA-TM-101370] p 88 N88-29845 WILLSHIRE, KELLI F. Automation and robotics for the Space Station The influence of the Advanced Technology Advisory
Space Station Human Factors Research Review. Volume 1: EVA Research and Development [NASA-CP-2426-VOL-1] p 99 N88-24145 W WADA, BEN K. Sine dwell or broadband methods for modal testing p 46 A88-55088 WADSWORTH, J. Recent advances in aerospace refractory metal alloys p 67 A88-47449	WEEKS, DAVID J. Expert systems for MSFC power systems p 61 N88-29375 WEGERIF, DAN Robotic applications at Kennedy Space Center p 76 A88-52328 WEIBEL, MARC Space cabin atmosphere and extracurricular sortie p 100 N88-26023	WILLMERT, K. D. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] p 49 N88-22070 WILLOUGHBY, A. J. Technology requirements for an orbiting fuel depot: A necessary element of a space infrastructure [NASA-TM-101370] p 88 N88-29845 WILLSHIRE, KELLI F. Automation and robotics for the Space Station - The influence of the Advanced Technology Advisory Committee p 76 A88-52329
Space Station Human Factors Research Review. Volume 1: EVA Research and Development [NASA-CP-2426-VOL-1] p 99 N88-24145 W WADA, BEN K. Sine dwell or broadband methods for modal testing p 46 A88-55088 WADSWORTH, J. Recent advances in aerospace refractory metal alloys p 67 A88-47449 WADSWORTH, JEFFREY	WEEKS, DAVID J. Expert systems for MSFC power systems p 61 N88-29375 WEGERIF, DAN Robotic applications at Kennedy Space Center p 76 A88-52328 WEIBEL, MARC Space cabin atmosphere and extracurricular sortie p 100 N88-26023 WEILAND, M. Procedures for updating dynamic mathematical models,	WILLMERT, K. D. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] p 49 N88-22070 WILLOUGHBY, A. J. Technology requirements for an orbiting fuel depot: A necessary element of a space infrastructure [NASA-TM-101370] WILLSHIRE, KELLI F. Automation and robotics for the Space Station - The influence of the Advanced Technology Advisory Committee WILSON, ANDREW
Space Station Human Factors Research Review. Volume 1: EVA Research and Development [NASA-CP-2426-VOL-1] p 99 N88-24145 W WADA, BEN K. Sine dwell or broadband methods for modal testing p 46 A88-55088 WADSWORTH, J. Recent advances in aerospace refractory metal alloys p 67 A88-47449 WADSWORTH, JEFFREY Superplastic forming characteristics and properties of	WEEKS, DAVID J. Expert systems for MSFC power systems p 61 N88-29375 WEGERIF, DAN Robotic applications at Kennedy Space Center p 76 A88-52328 WEIBEL, MARC Space cabin atmosphere and extracurricular sortie p 100 N88-26023 WEILAND, M. Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29852 WEILER, KURT W.	WILLMERT, K. D. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] p 49 N88-22070 WILLOUGHBY, A. J. Technology requirements for an orbiting fuel depot: A necessary element of a space infrastructure [NASA-TM-101370] p 88 N88-29845 WILSHIRE, KELLI F. Automation and robotics for the Space Station - The influence of the Advanced Technology Advisory Committee p 76 A88-52329 WILSON, ANDREW NASA'S Pathfinder plots future US space activities
Space Station Human Factors Research Review. Volume 1: EVA Research and Development [NASA-CP-2426-VOL-1] p 99 N88-24145 W WADA, BEN K. Sine dwell or broadband methods for modal testing p 46 A88-55088 WADSWORTH, J. Recent advances in aerospace refractory metal alloys p 67 A88-47449 WADSWORTH, JEFFREY	WEEKS, DAVID J. Expert systems for MSFC power systems p 61 N88-29375 WEGERIF, DAN Robotic applications at Kennedy Space Center p 76 A88-52328 WEIBEL, MARC Space cabin atmosphere and extracurricular sortic p 100 N88-26023 WEILAND, M. Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29852 WEILER, KURT W. Radio astronomy from space; Proceedings of the	WILLMERT, K. D. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] p 49 N88-22070 WILLOUGHBY, A. J. Technology requirements for an orbiting fuel depot: A necessary element of a space infrastructure [NASA-TM-101370] WILLSHIRE, KELLI F. Automation and robotics for the Space Station - The influence of the Advanced Technology Advisory Committee WILSON, ANDREW
Space Station Human Factors Research Review. Volume 1: EVA Research and Development [NASA-CP-2426-VOL-1] p 99 N88-24145 W WADA, BEN K. Sine dwell or broadband methods for modal testing p 46 A88-55088 WADSWORTH, J. Recent advances in aerospace refractory metal alloys p 67 A88-47449 WADSWORTH, JEFFREY Superplastic forming characteristics and properties of aluminum-lithium sheet alloys p 67 A88-45205 WAGNER, W. C. Space Operations and Space Station real-time	WEEKS, DAVID J. Expert systems for MSFC power systems p 61 N88-29375 WEGERIF, DAN Robotic applications at Kennedy Space Center p 76 A88-52328 WEIBEL, MARC Space cabin atmosphere and extracurricular sortie p 100 N88-26023 WEILAND, M. Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29852 WEILER, KURT W. Radio astronomy from space; Proceedings of the Workshop, Green Bank, WV, Sept. 30-Oct. 2, 1986	WILLMERT, K. D. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] p 49 N88-22070 WILLOUGHBY, A. J. Technology requirements for an orbiting fuel depot: A necessary element of a space infrastructure [NASA-TM-101370] p 88 N88-29845 WILLSHIRE, KELLI F. Automation and robotics for the Space Station - The influence of the Advanced Technology Advisory Committee p 76 A88-52329 WILSON, ANDREW NASA'S Pathfinder plots future US space activities p 4 A88-44613 WILSON, S. C. Integration of Space Station propulsion and fluid
Space Station Human Factors Research Review. Volume 1: EVA Research and Development [NASA-CP-2426-VOL-1] p 99 N88-24145 W WADA, BEN K. Sine dwell or broadband methods for modal testing p 46 A88-55088 WADSWORTH, J. Recent advances in aerospace refractory metal alloys p 67 A88-47449 WADSWORTH, JEFFREY Superplastic forming characteristics and properties of aluminum-lithium sheet alloys p 67 A88-45205 WAGNER, W. C. Space Operations and Space Station real-time simulation	WEEKS, DAVID J. Expert systems for MSFC power systems p 61 N88-29375 WEGERIF, DAN Robotic applications at Kennedy Space Center p 76 A88-52328 WEIBEL, MARC Space cabin atmosphere and extracurricular sortic p 100 N88-26023 WEILAND, M. Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29852 WEILER, KURT W. Radio astronomy from space; Proceedings of the	WILLMERT, K. D. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] p 49 N88-22070 WILLOUGHBY, A. J. Technology requirements for an orbiting fuel depot: A necessary element of a space infrastructure [NASA-TM-101370] p 88 N88-29845 WILLSHIRE, KELLI F. Automation and robotics for the Space Station - The influence of the Advanced Technology Advisory Committee p 76 A88-52329 WILSON, ANDREW NASA'S Pathfinder plots future US space activities p 4 A88-44613 WILSON, S. C. Integration of Space Station propulsion and fluid systems
Space Station Human Factors Research Review. Volume 1: EVA Research and Development [NASA-CP-2426-VOL-1] p 99 N88-24145 W WADA, BEN K. Sine dwell or broadband methods for modal testing p 46 A88-55088 WADSWORTH, J. Recent advances in aerospace refractory metal alloys p 67 A88-47449 WADSWORTH, JEFFREY Superplastic forming characteristics and properties of aluminum-lithium sheet alloys p 67 A88-45205 WAGNER, W. C. Space Operations and Space Station real-time simulation [AIAA PAPER 88-4627] p 11 A88-53664	WEEKS, DAVID J. Expert systems for MSFC power systems p 61 N88-29375 WEGERIF, DAN Robotic applications at Kennedy Space Center p 76 A88-52328 WEIBEL, MARC Space cabin atmosphere and extracurricular sortic p 100 N88-26023 WEILAND, M. Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29852 WEILER, KURT W. Radio astronomy from space; Proceedings of the Workshop, Green Bank, WV, Sept. 30-Oct. 2, 1986 p 91 A88-38077	WILLMERT, K. D. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] p 49 N88-22070 WILLOUGHBY, A. J. Technology requirements for an orbiting fuel depot: A necessary element of a space infrastructure [NASA-TM-101370] p 88 N88-29845 WILLSHIRE, KELLI F. Automation and robotics for the Space Station - The influence of the Advanced Technology Advisory Committee p 76 A88-52329 WILSON, ANDREW NASA'S Pathfinder plots future US space activities p 4 A88-44613 WILSON, S. C. Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492
Space Station Human Factors Research Review. Volume 1: EVA Research and Development [NASA-CP-2426-VOL-1] p 99 N88-24145 W WADA, BEN K. Sine dwell or broadband methods for modal testing p 46 A88-55088 WADSWORTH, J. Recent advances in aerospace refractory metal alloys p 67 A88-47449 WADSWORTH, JEFFREY Superplastic forming characteristics and properties of aluminum-lithium sheet alloys p 67 A88-45205 WAGNER, W. C. Space Operations and Space Station real-time simulation	WEEKS, DAVID J. Expert systems for MSFC power systems p 61 N88-29375 WEGERIF, DAN Robotic applications at Kennedy Space Center p 76 A88-52328 WEIBEL, MARC Space cabin atmosphere and extracurricular sortie p 100 N88-26023 WEILAND, M. Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29852 WEILER, KURT W. Radio astronomy from space; Proceedings of the Workshop, Green Bank, WV, Sept. 30-Oct. 2, 1986 p 91 A88-38077 WERTZ, JAMES R. Reducing the cost and risk of orbit transfer	WILLMERT, K. D. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] p 49 N88-22070 WILLOUGHBY, A. J. Technology requirements for an orbiting fuel depot: A necessary element of a space infrastructure [NASA-TM-101370] p 88 N88-29845 WILSHIRE, KELLI F. Automation and robotics for the Space Station - The influence of the Advanced Technology Advisory Committee p 76 A88-52329 WILSON, ANDREW NASA'S Pathfinder plots future US space activities p 4 A88-44613 WILSON, S. C. Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 WILTON, DONALD R.
Space Station Human Factors Research Review. Volume 1: EVA Research and Development [NASA-CP-2426-VOL-1] p 99 N88-24145 W WADA, BEN K. Sine dwell or broadband methods for modal testing p 46 A88-55088 WADSWORTH, J. Recent advances in aerospace refractory metal alloys p 67 A88-47449 WADSWORTH, JEFFREY Superplastic forming characteristics and properties of aluminum-lithium sheet alloys p 67 A88-45205 WAGNER, W. C. Space Operations and Space Station real-time simulation [AIAA PAPER 88-4627] p 11 A88-53664 WAHLBERG, DWIGHT Space Station tool kit p 94 A88-43967 WAISS, RICHARD D.	WEEKS, DAVID J. Expert systems for MSFC power systems p 61 N88-29375 WEGERIF, DAN Robotic applications at Kennedy Space Center p 76 A88-52328 WEIBEL, MARC Space cabin atmosphere and extracurricular sortie p 100 N88-26023 WEILAND, M. Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29852 WEILER, KURT W. Radio astronomy from space; Proceedings of the Workshop, Green Bank, WV, Sept. 30-Oct. 2, 1986 p 91 A88-38077 WERTZ, JAMES R. Reducing the cost and risk of orbit transfer p 97 A88-54994 WESSELSKI, CLARENCE J.	WILLMERT, K. D. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] p 49 N88-22070 WILLOUGHBY, A. J. Technology requirements for an orbiting fuel depot: A necessary element of a space infrastructure [NASA-TM-101370] p 88 N88-29845 WILLSHIRE, KELLI F. Automation and robotics for the Space Station - The influence of the Advanced Technology Advisory Committee p 76 A88-52329 WILSON, ANDREW NASA'S Pathfinder plots future US space activities p 4 A88-44613 WILSON, S. C. Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492
Space Station Human Factors Research Review. Volume 1: EVA Research and Development [NASA-CP-2426-VOL-1] p 99 N88-24145 W WADA, BEN K. Sine dwell or broadband methods for modal testing p 46 A88-55088 WADSWORTH, J. Recent advances in aerospace refractory metal alloys p 67 A88-47449 WADSWORTH, JEFFREY Superplastic forming characteristics and properties of aluminum-lithium sheet alloys p 67 A88-45205 WAGNER, W. C. Space Operations and Space Station real-time simulation [AIAA PAPER 88-4627] p 11 A88-53664 WAHLBERG, DWIGHT Space Station tool kit p 94 A88-43967 WAISS, RICHARD D. Definition of common support equipment and space	WEEKS, DAVID J. Expert systems for MSFC power systems p 61 N88-29375 WEGERIF, DAN Robotic applications at Kennedy Space Center p 76 A88-52328 WEIBEL, MARC Space cabin atmosphere and extracurricular sortic p 100 N88-26023 WEILAND, M. Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29852 WEILER, KURT W. Radio astronomy from space; Proceedings of the Workshop, Green Bank, WV, Sept. 30-Oct. 2, 1986 p 91 A88-38077 WERTZ, JAMES R. Reducing the cost and risk of orbit transfer p 97 A88-54994 WESSELSKI, CLARENCE J. Locking hinge	WILLMERT, K. D. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] p 49 N88-22070 WILLOUGHBY, A. J. Technology requirements for an orbiting fuel depot: A necessary element of a space infrastructure [NASA-TM-101370] WILLSHIRE, KELLI F. Automation and robotics for the Space Station - The influence of the Advanced Technology Advisory Committee p 76 A88-52329 WILSON, ANDREW NASA'S Pathfinder plots future US space activities p 4 A88-44613 WILSON, S. C. Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 WILTON, DONALD R. An investigation of conformable antennas for the astronaut backpack communication system [NASA-CR-182908] p 99 N88-23929
Space Station Human Factors Research Review. Volume 1: EVA Research and Development [NASA-CP-2426-VOL-1] p 99 N88-24145 W WADA, BEN K. Sine dwell or broadband methods for modal testing p 46 A88-55088 WADSWORTH, J. Recent advances in aerospace refractory metal alloys p 67 A88-47449 WADSWORTH, JEFFREY Superplastic forming characteristics and properties of aluminum-lithium sheet alloys p 67 A88-47449 WADSWORTH, W.C. Space Operations and Space Station real-time simulation [AIAA PAPER 88-4627] p 11 A88-53664 WAHLBERG, DWIGHT Space Station tool kit p 94 A88-43967 WAHLBERG, DWIGHT Space Station tool kit p 94 A88-43967 WANSS, RICHARD D. Definition of common support equipment and space station interface requirements for IOC model technology	WEEKS, DAVID J. Expert systems for MSFC power systems p 61 N88-29375 WEGERIF, DAN Robotic applications at Kennedy Space Center p 76 A88-52328 WEIBEL, MARC Space cabin atmosphere and extracurricular sortie p 100 N88-26023 WEILAND, M. Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29852 WEILER, KURT W. Radio astronomy from space; Proceedings of the Workshop, Green Bank, WV, Sept. 30-Oct. 2, 1986 p 91 A88-38077 WERTZ, JAMES R. Reducing the cost and risk of orbit transfer p 97 A88-54994 WESSELSKI, CLARENCE J. Locking hinge [NASA-CASE-MSC-21056-1] p 18 N88-23827	WILLMERT, K. D. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] p 49 N88-22070 WILLOUGHBY, A. J. Technology requirements for an orbiting fuel depot: A necessary element of a space infrastructure [NASA-TM-101370] p 88 N88-29845 WILLSHIRE, KELLI F. Automation and robotics for the Space Station - The influence of the Advanced Technology Advisory Committee p 76 A88-52329 WILSON, ANDREW NASA'S Pathfinder plots future US space activities p 4 A88-44613 WILSON, S. C. Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 WILTON, DONALD R. An investigation of conformable antennas for the astronaut backpack communication system [NASA-CR-182908] p 99 N88-23929 WINDSOR, E. P. L.
Space Station Human Factors Research Review. Volume 1: EVA Research and Development [NASA-CP-2426-VOL-1] p 99 N88-24145 W WADA, BEN K. Sine dwell or broadband methods for modal testing p 46 A88-55088 WADSWORTH, J. Recent advances in aerospace refractory metal alloys p 67 A88-47449 WADSWORTH, JEFFREY Superplastic forming characteristics and properties of aluminum-lithium sheet alloys p 67 A88-45205 WAGNER, W. C. Space Operations and Space Station real-time simulation [AIAA PAPER 88-4627] p 11 A88-53664 WAHLBERG, DWIGHT Space Station tool kit p 94 A88-43967 WAISS, RICHARD D. Definition of common support equipment and space station interface requirements for IOC model technology experiments	WEEKS, DAVID J. Expert systems for MSFC power systems p 61 N88-29375 WEGERIF, DAN Robotic applications at Kennedy Space Center p 76 A88-52328 WEIBEL, MARC Space cabin atmosphere and extracurricular sortie p 100 N88-26023 WEILAND, M. Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29852 WEILER, KURT W. Radio astronomy from space; Proceedings of the Workshop, Green Bank, WV, Sept. 30-Oct. 2, 1986. p 91 A88-38077 WERTZ, JAMES R. Reducing the cost and risk of orbit transfer p 97 A88-54994 WESSELSKI, CLARENCE J. Locking hinge [NASA-CASE-MSC-21056-1] p 18 N88-23827 Mobile remote manipulator system for a tetrahedral	WILLMERT, K. D. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] p 49 N88-22070 WILLOUGHBY, A. J. Technology requirements for an orbiting fuel depot: A necessary element of a space infrastructure [NASA-TM-101370] p 88 N88-29845 WILLSHIRE, KELLI F. Automation and robotics for the Space Station - The influence of the Advanced Technology Advisory Committee p 76 A88-52329 WILSON, ANDREW NASA's Pathfinder plots future US space activities p 4 A88-44613 WILSON, S. C. Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 WILTON, DONALD R. An investigation of conformable antennas for the astronaut backpack communication system [NASA-CR-182908] p 99 N88-23929 WINDSOR, E. P. L. Polar Platform configuration and servicing
Space Station Human Factors Research Review. Volume 1: EVA Research and Development [NASA-CP-2426-VOL-1] p 99 N88-24145 W WADA, BEN K. Sine dwell or broadband methods for modal testing p 46 A88-55088 WADSWORTH, J. Recent advances in aerospace refractory metal alloys p 67 A88-47449 WADSWORTH, JEFFREY Superplastic forming characteristics and properties of aluminum-lithium sheet alloys p 67 A88-45205 WAGNER, W. C. Space Operations and Space Station real-time simulation [AIAA PAPER 88-4627] p 11 A88-53664 WAHLBERG, DWIGHT Space Station tool kit p 94 A88-43967 WAISS, RICHARD D. Definition of common support equipment and space station interface requirements for IOC model technology experiments [NASA-TM-100656] p 8 N88-29856	WEEKS, DAVID J. Expert systems for MSFC power systems p 61 N88-29375 WEGERIF, DAN Robotic applications at Kennedy Space Center p 76 A88-52328 WEIBEL, MARC Space cabin atmosphere and extracurricular sortic p 100 N88-26023 WEILAND, M. Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29852 WEILER, KURT W. Radio astronomy from space; Proceedings of the Workshop, Green Bank, WV, Sept. 30-Oct. 2, 1986 p 91 A88-38077 WERTZ, JAMES R. Reducing the cost and risk of orbit transfer p 97 A88-54994 WESSELSKI, CLARENCE J. Locking hinge [NASA-CASE-MSC-21056-1] p 18 N88-23827 Mobile remote manipulator system for a tetrahedral truss	WILLMERT, K. D. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] p 49 N88-22070 WILLOUGHBY, A. J. Technology requirements for an orbiting fuel depot: A necessary element of a space infrastructure [NASA-TM-101370] p 88 N88-29845 WILSHIRE, KELLI F. Automation and robotics for the Space Station - The influence of the Advanced Technology Advisory D 76 A88-52329 WILSON, ANDREW NASA'S Pathfinder plots future US space activities P 4 A88-44613 WILSON, S. C. Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 WILTON, DONALD R. An investigation of conformable antennas for the astronaut backpack communication system [NASA-CR-182908] p 99 N88-23929 WINDSOR, E. P. L. Polar Platform configuration and servicing
Space Station Human Factors Research Review. Volume 1: EVA Research and Development [NASA-CP-2426-VOL-1] p 99 N88-24145 W WADA, BEN K. Sine dwell or broadband methods for modal testing p 46 A88-55088 WADSWORTH, J. Recent advances in aerospace refractory metal alloys p 67 A88-47449 WADSWORTH, JEFFREY Superplastic forming characteristics and properties of aluminum-lithium sheet alloys p 67 A88-45205 WAGNER, W. C. Space Operations and Space Station real-time simulation [AIAA PAPER 88-4627] p 11 A88-53664 WAHLBERG, DWIGHT Space Station tool kit p 94 A88-43967 WAISS, RICHARD D. Definition of common support equipment and space station interface requirements for IOC model technology experiments	WEEKS, DAVID J. Expert systems for MSFC power systems p 61 N88-29375 WEGERIF, DAN Robotic applications at Kennedy Space Center p 76 A88-52328 WEIBEL, MARC Space cabin atmosphere and extracurricular sortic p 100 N88-26023 WEILAND, M. Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29852 WEILER, KURT W. Radio astronomy from space; Proceedings of the Workshop, Green Bank, WV, Sept. 30-Oct. 2, 1986 p 91 A88-38077 WERTZ, JAMES R. Reducing the cost and risk of orbit transfer p 97 A88-54994 WESSELSKI, CLARENCE J. Locking hinge [NASA-CASE-MSC-21056-1] p 18 N88-23827 Mobile remote manipulator system for a tetrahedral truss [NASA-CASE-MSC-20985-1] p 80 N88-26398	WILLMERT, K. D. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] p 49 N88-22070 WILLOUGHBY, A. J. Technology requirements for an orbiting fuel depot: A necessary element of a space infrastructure [NASA-TM-101370] p 88 N88-29845 WILLSHIRE, KELLI F. Automation and robotics for the Space Station - The influence of the Advanced Technology Advisory Committee p 76 A88-52329 WILSON, ANDREW NASA'S Pathfinder plots future US space activities p 4 A88-44613 WILSON, S. C. Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 WILTON, DONALD R. An investigation of conformable antennas for the astronaut backpack communication system [NASA-CR-182908] p 99 N88-23929 WINDSOR, E. P. L. Polar Platform configuration and servicing p 1 A88-34552
Space Station Human Factors Research Review. Volume 1: EVA Research and Development [NASA-CP-2426-VOL-1] p 99 N88-24145 W WADA, BEN K. Sine dwell or broadband methods for modal testing p 46 A88-55088 WADSWORTH, J. Recent advances in aerospace refractory metal alloys p 67 A88-47449 WADSWORTH, JEFFREY Superplastic forming characteristics and properties of aluminum-lithium sheet alloys p 67 A88-45205 WAGNER, W. C. Space Operations and Space Station real-time simulation [AIAA PAPER 88-4627] p 11 A88-53664 WAHLBERG, DWIGHT Space Station tool kit p 94 A88-43967 WAISS, RICHARD D. Definition of common support equipment and space station interface requirements for IOC model technology experiments [NASA-TM-100656] p 8 N88-29856 WAITES, HENRY Advanced control evaluation for structures (ACES) programs p 44 A88-54572	WEEKS, DAVID J. Expert systems for MSFC power systems p 61 N88-29375 WEGERIF, DAN Robotic applications at Kennedy Space Center p 76 A88-52328 WEIBEL, MARC Space cabin atmosphere and extracurricular sortic p 100 N88-26023 WEILAND, M. Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29852 WEILER, KURT W. Radio astronomy from space; Proceedings of the Workshop, Green Bank, WV, Sept. 30-Oct. 2, 1986 p 91 A88-38077 WERTZ, JAMES R. Reducing the cost and risk of orbit transfer p 97 A88-54994 WESSELSKI, CLARENCE J. Locking hinge [NASA-CASE-MSC-21056-1] p 18 N88-23827 Mobile remote manipulator system for a tetrahedral truss	WILLMERT, K. D. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] p 49 N88-22070 WILLOUGHBY, A. J. Technology requirements for an orbiting fuel depot: A necessary element of a space infrastructure [NASA-TM-101370] p 88 N88-29845 WILLSHIRE, KELLI F. Automation and robotics for the Space Station - The influence of the Advanced Technology Advisory Committee p 76 A88-52329 WILSON, ANDREW NASA'S Pathfinder plots future US space activities p 4 A88-44613 WILSON, S. C. Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 WILTON, DONALD R. An investigation of conformable antennas for the astronaut backpack communication system [NASA-CR-182908] p 99 N88-23929 WINDSOR, E. P. L. Polar Platform configuration and servicing p 1 A88-34552 WISE, P. C. Critique of the thermal design verification program for a high-power communications spacecraft
Space Station Human Factors Research Review. Volume 1: EVA Research and Development [NASA-CP-2426-VOL-1] p 99 N88-24145 W WADA, BEN K. Sine dwell or broadband methods for modal testing p 46 A88-55088 WADSWORTH, J. Recent advances in aerospace refractory metal alloys p 67 A88-47449 WADSWORTH, JEFFREY Superplastic forming characteristics and properties of aluminum-lithium sheet alloys p 67 A88-47449 WADSWORTH, JEFREY Superplastic forming characteristics and properties of aluminum-lithium sheet alloys p 67 A88-45205 WAGNER, W. C. Space Operations and Space Station real-time simulation [AIAA PAPER 88-4627] p 11 A88-53664 WAHLBERG, DWIGHT Space Station tool kit p 94 A88-43967 WAHLBERG, DWIGHT Space Station tool kit p 94 A88-43967 WAILES, HCHARD D. Definition of common support equipment and space station interface requirements for IOC model technology experiments [NASA-TM-100656] p 8 N88-29856 WAITES, HENRY Advanced control evaluation for structures (ACES) programs p 44 A88-54572	WEEKS, DAVID J. Expert systems for MSFC power systems p 61 N88-29375 WEGERIF, DAN Robotic applications at Kennedy Space Center p 76 A88-52328 WEIBEL, MARC Space cabin atmosphere and extracurricular sortie p 100 N88-26023 WEILAND, M. Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29852 WEILER, KURT W. Radio astronomy from space; Proceedings of the Workshop, Green Bank, WV, Sept. 30-Oct. 2, 1986 p 91 A88-38077 WERTZ, JAMES R. Reducing the cost and risk of orbit transfer p 97 A88-54994 WESSELSKI, CLARENCE J. Locking hinge [NASA-CASE-MSC-21056-1] p 18 N88-23827 Mobile remote manipulator system for a tetrahedral truss [NASA-CASE-MSC-20985-1] p 80 N88-26398 Expandable pallet for space station interface	WILLMERT, K. D. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] p 49 N88-22070 WILLOUGHBY, A. J. Technology requirements for an orbiting fuel depot: A necessary element of a space infrastructure [NASA-TM-101370] p 88 N88-29845 WILSHIRE, KELLI F. Automation and robotics for the Space Station - The influence of the Advanced Technology Advisory Committee p 76 A88-52329 WILSON, ANDREW NASA'S Pathfinder plots future US space activities p 4 A88-44613 WILSON, S. C. Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 WILTON, DONALD R. An investigation of conformable antennas for the astronaut backpack communication systems [NASA-CR-182908] p 99 N88-23929 WINDSOR, E. P. L. Polar Platform configuration and servicing p 1 A88-34552 WISE, P. C. Critique of the thermal design verification program for a high-power communications spacecraft [AIAA PAPER 88-2648] p 22 A88-48479
Space Station Human Factors Research Review. Volume 1: EVA Research and Development [NASA-CP-2426-VOL-1] p 99 N88-24145 W WADA, BEN K. Sine dwell or broadband methods for modal testing p 46 A88-55088 WADSWORTH, J. Recent advances in aerospace refractory metal alloys p 67 A88-47449 WADSWORTH, JEFFREY Superplastic forming characteristics and properties of aluminum-lithium sheet alloys p 67 A88-45205 WAGNER, W. C. Space Operations and Space Station real-time simulation [AIAA PAPER 88-4627] p 11 A88-53664 WAHLBERG, DWIGHT Space Station tool kit p 94 A88-43967 WAISS, RICHARD D. Definition of common support equipment and space station interface requirements for IOC model technology experiments [NASA-TM-100656] p 8 N88-29856 WAITES, HENRY Advanced control evaluation for structures (ACES) program - Lessons learned p 6 A88-54573	WEEKS, DAVID J. Expert systems for MSFC power systems p 61 N88-29375 WEGERIF, DAN Robotic applications at Kennedy Space Center p 76 A88-52328 WEIBEL, MARC Space cabin atmosphere and extracurricular sortie p 100 N88-26023 WEILAND, M. Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29852 WEILER, KURT W. Radio astronomy from space; Proceedings of the Workshop, Green Bank, WV, Sept. 30-Oct. 2, 1986 p 91 A88-38077 WERTZ, JAMES R. Reducing the cost and risk of orbit transfer p 97 A88-54994 WESSELSKI, CLARENCE J. Locking hinge [NASA-CASE-MSC-21056-1] p 18 N88-23827 Mobile remote manipulator system for a tetrahedral truss [NASA-CASE-MSC-20985-1] p 80 N88-26398 Expandable pallet for space station interface attachments [NASA-CASE-MSC-21117-1] p 18 N88-28958 Collet lock joint for space station truss	WILLMERT, K. D. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] p 49 N88-22070 WILLOUGHBY, A. J. Technology requirements for an orbiting fuel depot: A necessary element of a space infrastructure [NASA-TM-101370] p 88 N88-29845 WILLSHIRE, KELLI F. Automation and robotics for the Space Station - The influence of the Advanced Technology Advisory Committee p 76 A88-52329 WILSON, ANDREW NASA's Pathfinder plots future US space activities p 4 A88-44613 WILSON, S. C. Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 WILTON, DONALD R. An investigation of conformable antennas for the astronaut backpack communication system [NASA-CR-182908] p 99 N88-23929 WINDSOR, E. P. L. Polar Platform configuration and servicing p 1 A88-34552 WISE, P. C. Critique of the thermal design verification program for a high-power communications spacecraft [AIAA PAPER 88-2648] p 22 A88-48479 WISKERCHEN, MICHAEL J.
Space Station Human Factors Research Review. Volume 1: EVA Research and Development [NASA-CP-2426-VOL-1] p 9 9 N88-24145 W WADA, BEN K. Sine dwell or broadband methods for modal testing p 46 A88-55088 WADSWORTH, J. Recent advances in aerospace refractory metal alloys p 67 A88-47449 WADSWORTH, JEFFREY Superplastic forming characteristics and properties of aluminum-lithium sheet alloys p 67 A88-45205 WAGNER, W. C. Space Operations and Space Station real-time simulation [AIAA PAPER 88-4627] p 11 A88-53664 WAHLBERG, DWIGHT Space Station tool kit p 94 A88-43967 WAISS, RICHARD D. Definition of common support equipment and space station interface requirements for IOC model technology experiments [NASA-TM-100656] p 8 N88-29856 WAITES, HENRY Advanced control evaluation for structures (ACES) programs p 44 A88-54572 WALKER, BRUCE K.	WEEKS, DAVID J. Expert systems for MSFC power systems p 61 N88-29375 WEGERIF, DAN Robotic applications at Kennedy Space Center p 76 A88-52328 WEIBEL, MARC Space cabin atmosphere and extracurricular sortie p 100 N88-26023 WEILAND, M. Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29852 WEILER, KURT W. Radio astronomy from space; Proceedings of the Workshop, Green Bank, WV, Sept. 30-Oct. 2, 1986 p 91 A88-38077 WERTZ, JAMES R. Reducing the cost and risk of orbit transfer p 97 A88-54994 WESSELSKI, CLARENCE J. Locking hinge [NASA-CASE-MSC-21056-1] p 18 N88-23827 Mobile remote manipulator system for a tetrahedral truss [NASA-CASE-MSC-20985-1] p 80 N88-26398 Expandable pallet for space station interface attachments [NASA-CASE-MSC-21117-1] p 18 N88-28958 Collet lock joint for space station truss [NASA-CASE-MSC-21117-1] p 18 N88-28958	WILLMERT, K. D. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] p 49 N88-22070 WILLOUGHBY, A. J. Technology requirements for an orbiting fuel depot: A necessary element of a space infrastructure [NASA-TM-101370] p 88 N88-29845 WILLSHIRE, KELLI F. Automation and robotics for the Space Station - The influence of the Advanced Technology Advisory D 76 A88-52329 WILSON, ANDREW NASA'S Pathfinder plots future US space activities P 4 A88-44613 WILSON, S. C. Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 WILTON, DONALD R. An investigation of conformable antennas for the astronaut backpack communication system [NASA-CR-182908] p 99 N88-23929 WINDSOR, E. P. L. Polar Platform configuration and servicing p 1 A88-34552 WISE, P. C. Critique of the thermal design verification program for a high-power communications spacecraft [AIAA PAPER 88-2648] p 22 A88-48479 WISKERCHEN, MICHAEL J. Telescience Testbed Pilot Project - Evaluation
Space Station Human Factors Research Review. Volume 1: EVA Research and Development [NASA-CP-2426-VOL-1] p 99 N88-24145 W WADA, BEN K. Sine dwell or broadband methods for modal testing p 46 A88-55088 WADSWORTH, J. Recent advances in aerospace refractory metal alloys p 67 A88-47449 WADSWORTH, JEFFREY Superplastic forming characteristics and properties of aluminum-lithium sheet alloys p 67 A88-45205 WAGNER, W. C. Space Operations and Space Station real-time simulation [AIAA PAPER 88-4627] p 11 A88-53664 WAHLBERG, DWIGHT Space Station tool kit p 94 A88-43967 WAISS, RICHARD D. Definition of common support equipment and space station interface requirements for IOC model technology experiments [NASA-TM-100656] p 8 N88-29856 WAITES, HENRY Advanced control evaluation for structures (ACES) program - Lessons learned p 6 A88-54573	WEEKS, DAVID J. Expert systems for MSFC power systems p 61 N88-29375 WEGERIF, DAN Robotic applications at Kennedy Space Center p 76 A88-52328 WEIBEL, MARC Space cabin atmosphere and extracurricular sortic p 100 N88-26023 WEILAND, M. Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29852 WEILER, KURT W. Radio astronomy from space; Proceedings of the Workshop, Green Bank, WV, Sept. 30-Oct. 2, 1986 p 91 A88-38077 WERTZ, JAMES R. Reducing the cost and risk of orbit transfer p 97 A88-54994 WESSELSKI, CLARENCE J. Locking hinge [NASA-CASE-MSC-21056-1] p 18 N88-23827 Mobile remote manipulator system for a tetrahedral truss [NASA-CASE-MSC-20985-1] p 80 N88-26398 Expandable pallet for space station interface attachments [NASA-CASE-MSC-21117-1] p 18 N88-28958 Collet lock joint for space station truss [NASA-CASE-MSC-2117-1] p 19 N88-29180 WESSLING, FRANCIS	WILLMERT, K. D. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] p 49 N88-22070 WILLOUGHBY, A. J. Technology requirements for an orbiting fuel depot: A necessary element of a space infrastructure [NASA-TM-101370] p 88 N88-29845 WILLSHIRE, KELLI F. Automation and robotics for the Space Station - The influence of the Advanced Technology Advisory Committee p 76 A88-52329 WILSON, ANDREW NASA's Pathfinder plots future US space activities p 4 A88-44613 WILSON, S. C. Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 WILTON, DONALD R. An investigation of conformable antennas for the astronaut backpack communication system [NASA-CR-182908] p 99 N88-23929 WINDSOR, E. P. L. Polar Platform configuration and servicing p 1 A88-34552 WISE, P. C. Critique of the thermal design verification program for a high-power communications spacecraft [AIAA PAPER 88-2648] p 22 A88-48479 WISKERCHEN, MICHAEL J.
Space Station Human Factors Research Review. Volume 1: EVA Research and Development [NASA-CP-2426-VOL-1] p 99 N88-24145 W WADA, BEN K. Sine dwell or broadband methods for modal testing p 46 A88-55088 WADSWORTH, J. Recent advances in aerospace refractory metal alloys p 67 A88-47449 WADSWORTH, JEFFREY Superplastic forming characteristics and properties of aluminum-lithium sheet alloys p 67 A88-45205 WAGNER, W. C. Space Operations and Space Station real-time simulation [AIAA PAPER 88-4627] p 11 A88-53664 WAHLBERG, DWIGHT Space Station tool kit p 94 A88-43967 WAISS, RICHARD D. Definition of common support equipment and space station interface requirements for IOC model technology experiments [NASA-TM-100656] p 8 N88-29856 WAITES, HENRY Advanced control evaluation for structures (ACES) programs p 44 A88-54572 WAILEE, BENCE K. Input selection for a second-order mass property estimator p 30 A88-43203 WALKER, BRUCE K.	WEEKS, DAVID J. Expert systems for MSFC power systems p 61 N88-29375 WEGERIF, DAN Robotic applications at Kennedy Space Center p 76 A88-52328 WEIBEL, MARC Space cabin atmosphere and extracurricular sortie p 100 N88-26023 WEILAND, M. Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29852 WEILER, KURT W. Radio astronomy from space; Proceedings of the Workshop, Green Bank, WV, Sept. 30-Oct. 2, 1986 p 91 A88-38077 WERTZ, JAMES R. Reducing the cost and risk of orbit transfer p 97 A88-54994 WESSELSKI, CLARENCE J. Locking hinge [NASA-CASE-MSC-21056-1] p 18 N88-23827 Mobile remote manipulator system for a tetrahedral truss [NASA-CASE-MSC-20985-1] p 80 N88-26398 Expandable pallet for space station interface attachments [NASA-CASE-MSC-21117-1] p 18 N88-2958 Collet lock joint for space station truss [NASA-CASE-MSC-21207-1] p 19 N88-29180 WESSLING, FRANCIS Personnel occupied woven envelope robot	WILLMERT, K. D. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] p 49 N88-22070 WILLOUGHBY, A. J. Technology requirements for an orbiting fuel depot: A necessary element of a space infrastructure [NASA-TM-101370] p 88 N88-29845 WILLSHIRE, KELLI F. Automation and robotics for the Space Station - The influence of the Advanced Technology Advisory D 76 A88-52329 WILSON, ANDREW NASA'S Pathfinder plots future US space activities p 4 A88-44613 WILSON, S. C. Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 WILTON, DONALD R. An investigation of conformable antennas for the astronaut backpack communication system [NASA-CR-182908] p 99 N88-23929 WINDSOR, E. P. L. Polar Platform configuration and servicing p 1 A88-34552 WISE, P. C. Critique of the thermal design verification program for a high-power communications spacecraft [AIAA PAPER 88-2648] p 22 A88-48479 WISKERCHEN, MICHAEL J. Telescience Testbed Pilot Project - Evaluation environment for Space Station operations [AIAA PAPER 88-4629] p 5 A88-53666 WITT, W. P.
Space Station Human Factors Research Review. Volume 1: EVA Research and Development [NASA-CP-2426-VOL-1] p 9 9 N88-24145 W WADA, BEN K. Sine dwell or broadband methods for modal testing p 46 A88-55088 WADSWORTH, J. Recent advances in aerospace refractory metal alloys p 67 A88-47449 WADSWORTH, JEFFREY Superplastic forming characteristics and properties of aluminum-lithium sheet alloys p 67 A88-45205 WAGNER, W. C. Space Operations and Space Station real-time simulation [AIAA PAPER 88-4627] p 11 A88-53664 WAHLBERG, DWIGHT Space Station tool kit p 94 A88-43967 WAHLBERG, DWIGHT Space Station tool kit p 94 A88-43967 WAISS, RICHARD D. Definition of common support equipment and space station interface requirements for IOC model technology experiments [NASA-TM-100656] p 8 N88-29856 WAITES, HENRY Advanced control evaluation for structures (ACES) programs p 44 A88-54572 WAITES, HENRY B. ACES program - Lessons learned p 6 A88-54573 WALKER, BRUCE K. Input selection for a second-order mass property estimator p 30 A88-43203 WALKER, JAMES D. OMV multiple deployments of lightsats	WEEKS, DAVID J. Expert systems for MSFC power systems p 61 N88-29375 WEGERIF, DAN Robotic applications at Kennedy Space Center p 76 A88-52328 WEIBEL, MARC Space cabin atmosphere and extracurricular sortie p 100 N88-26023 WEILAND, M. Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29852 WEILER, KURT W. Radio astronomy from space; Proceedings of the Workshop, Green Bank, WV, Sept. 30-Oct. 2, 1986 p 91 A88-38077 WERTZ, JAMES R. Reducing the cost and risk of orbit transfer p 97 A88-54994 WESSELSKI, CLARENCE J. Locking hinge [NASA-CASE-MSC-21056-1] p 18 N88-23827 Mobile remote manipulator system for a tetrahedral truss [NASA-CASE-MSC-20985-1] p 80 N88-26398 Expandable pallet for space station interface attachments [NASA-CASE-MSC-21117-1] p 18 N88-28958 Collet lock joint for space station truss [NASA-CASE-MSC-21207-1] p 19 N88-29180 WESSLING, FRANCIS Personnel occupied woven envelope robot	WILLMERT, K. D. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] p 49 N88-22070 WILLOUGHBY, A. J. Technology requirements for an orbiting fuel depot: A necessary element of a space infrastructure [NASA-TM-101370] WILLSHIRE, KELLI F. Automation and robotics for the Space Station - The influence of the Advanced Technology Advisory Deposition of the Advanced Technology Advisory Deposition of the Advanced Technology Advisory Deposition of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 WILSON, S. C. Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 WILTON, DONALD R. An investigation of conformable antennas for the astronaut backpack communication system [NASA-CR-182908] p 99 N88-23929 WINDSOR, E. P. L. Polar Platform configuration and servicing p 1 A88-34552 WISE, P. C. Critique of the thermal design verification program for a high-power communications spacecraft [AIAA PAPER 88-2648] p 22 A88-48479 WISKERCHEN, MICHAEL J. Telescience Testbed Pilot Project - Evaluation environment for Space Station operations [AIAA PAPER 88-4629] p 5 A88-53666 WITT, W. P. Soviet spacecraft engineering research
Space Station Human Factors Research Review. Volume 1: EVA Research and Development [NASA-CP-2426-VOL-1] p 99 N88-24145 W WADA, BEN K. Sine dwell or broadband methods for modal testing p 46 A88-55088 WADSWORTH, J. Recent advances in aerospace refractory metal alloys p 67 A88-47449 WADSWORTH, JEFFREY Superplastic forming characteristics and properties of aluminum-lithium sheet alloys p 67 A88-45205 WAGNER, W. C. Space Operations and Space Station real-time simulation [AIAA PAPER 88-4627] p 11 A88-53664 WAHLBERG, DWIGHT Space Station tool kit p 94 A88-43967 WAHLBERG, DWIGHT Space Station tool kit p 94 A88-43967 WAISS, RICHARD D. Definition of common support equipment and space station interface requirements for IOC model technology experiments [NASA-TM-100656] p 8 N88-29856 WAITES, HENRY Advanced control evaluation for structures (ACES) programs p 44 A88-54572 WAITES, HENRY B. ACES program - Lessons learned p 6 A88-54573 WALKER, BRUCE K. Input selection for a second-order mass property estimator p 30 A88-43203 WALKER, JAMES D. OMV multiple deployments of lightsats [AIAA PAPER 88-3518] p 9 A88-42911	WEEKS, DAVID J. Expert systems for MSFC power systems p 61 N88-29375 WEGERIF, DAN Robotic applications at Kennedy Space Center p 76 A88-52328 WEIBEL, MARC Space cabin atmosphere and extracurricular sortie p 100 N88-26023 WEILAND, M. Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29852 WEILER, KURT W. Radio astronomy from space; Proceedings of the Workshop, Green Bank, WV, Sept. 30-Oct. 2, 1986 p 91 A88-38077 WERTZ, JAMES R. Reducing the cost and risk of orbit transfer p 97 A88-54994 WESSELSKI, CLARENCE J. Locking hinge [NASA-CASE-MSC-21056-1] p 18 N88-23827 Mobile remote manipulator system for a tetrahedral truss [NASA-CASE-MSC-20985-1] p 80 N88-26398 Expandable pallet for space station interface attachments [NASA-CASE-MSC-21117-1] p 18 N88-2958 Collet lock joint for space station truss [NASA-CASE-MSC-21207-1] p 19 N88-29180 WESSLING, FRANCIS Personnel occupied woven envelope robot	WILLMERT, K. D. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] p 49 N88-22070 WILLOUGHBY, A. J. Technology requirements for an orbiting fuel depot: A necessary element of a space infrastructure [NASA-TM-101370] p 88 N88-29845 WILLSHIRE, KELLI F. Automation and robotics for the Space Station - The influence of the Advanced Technology Advisory Committee p 76 A88-52329 WILSON, ANDREW NASA's Pathfinder plots future US space activities p 4 A88-44613 WILSON, S. C. Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 WILTON, DONALD R. An investigation of conformable antennas for the astronaut backpack communication system [NASA-CR-182908] p 99 N88-23929 WINDSOR, E. P. L. Polar Platform configuration and servicing p 1 A88-34552 WISE, P. C. Critique of the thermal design verification program for a high-power communications spacecraft [AIAA PAPER 88-2648] p 22 A88-48479 WISKERCHEN, MICHAEL J. Telescience Testbed Pilot Project - Evaluation environment for Space Station operations [AIAA PAPER 88-4629] p 5 A88-53666 WITT, W. P. Soviet spacecraft engineering research [FASAC-TAR-3090] p 98 N88-23823
Space Station Human Factors Research Review. Volume 1: EVA Research and Development [NASA-CP-2426-VOL-1] p 9 9 N88-24145 W WADA, BEN K. Sine dwell or broadband methods for modal testing p 46 A88-55088 WADSWORTH, J. Recent advances in aerospace refractory metal alloys p 67 A88-47449 WADSWORTH, JEFFREY Superplastic forming characteristics and properties of aluminum-lithium sheet alloys p 67 A88-45205 WAGNER, W. C. Space Operations and Space Station real-time simulation [AIAA PAPER 88-4627] p 11 A88-53664 WAHLBERG, DWIGHT Space Station tool kit p 94 A88-43967 WAISS, RICHARD D. Definition of common support equipment and space station interface requirements for IOC model technology experiments [NASA-TM-100656] p 8 N88-29856 WAITES, HENRY Advanced control evaluation for structures (ACES) programs p 44 A88-54572 WAILES, HENRY B. ACES program - Lessons learned p 6 A88-54573 WALKER, BRUCE K. Input selection for a second-order mass property estimator p 30 A88-43203 WALKER, JAMES D. OMV muttiple deployments of lightsats [AIAA PAPER 88-3518] p 9 A88-42911	WEEKS, DAVID J. Expert systems for MSFC power systems p 61 N88-29375 WEGERIF, DAN Robotic applications at Kennedy Space Center p 76 A88-52328 WEIBEL, MARC Space cabin atmosphere and extracurricular sortie p 100 N88-26023 WEILAND, M. Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29852 WEILER, KURT W. Radio astronomy from space; Proceedings of the Workshop, Green Bank, WV, Sept. 30-Oct. 2, 1986 p 91 A88-38077 WERTZ, JAMES R. Reducing the cost and risk of orbit transfer p 97 A88-54994 WESSELSKI, CLARENCE J. Locking hinge [NASA-CASE-MSC-21056-1] Mobile remote manipulator system for a tetrahedral truss [NASA-CASE-MSC-20985-1] Expandable pallet for space station interface attachments [NASA-CASE-MSC-21117-1] Collet lock joint for space station truss [NASA-CASE-MSC-2117-1] Collet lock joint for space station truss [NASA-CASE-MSC-2117-1] P 18 N88-29408 WESSLING, FRANCIS Personnel occupied woven envelope robot p 81 N88-29408 WEY, J. P.	WILLMERT, K. D. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] p 49 N88-22070 WILLOUGHBY, A. J. Technology requirements for an orbiting fuel depot: A necessary element of a space infrastructure [NASA-TM-101370] p 88 N88-29845 WILLSHIRE, KELLI F. Automation and robotics for the Space Station - The influence of the Advanced Technology Advisory Committee p 76 A88-52329 WILSON, ANDREW NASA'S Pathfinder plots future US space activities p 4 A88-44613 WILSON, S. C. Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 WILTON, DONALD R. An investigation of conformable antennas for the astronaut backpack communication system [NASA-CR-182908] p 99 N88-23929 WINDSOR, E. P. L. Polar Platform configuration and servicing p 1 A88-34552 WISE, P. C. Critique of the thermal design verification program for a high-power communications spacecraft [AIAA PAPER 88-2648] p 22 A88-48479 WISKERCHEN, MICHAEL J. Telescience Testbed Pilot Project - Evaluation environment for Space Station operations [AIAA PAPER 88-4629] p 5 A88-53666 WITT, W. P. Soviet spacecraft engineering research [FASAC-TAR-3090] p 98 N88-23823
Space Station Human Factors Research Review. Volume 1: EVA Research and Development [NASA-CP-2426-VOL-1] p 9 9 N88-24145 W WADA, BEN K. Sine dwell or broadband methods for modal testing p 46 A88-55088 WADSWORTH, J. Recent advances in aerospace refractory metal alloys p 67 A88-47449 WADSWORTH, JEFFREY Superplastic forming characteristics and properties of aluminum-lithium sheet alloys p 67 A88-45205 WAGNER, W. C. Space Operations and Space Station real-time simulation [AIAA PAPER 88-4627] p 11 A88-53664 WAHLBERG, DWIGHT Space Station tool kit p 94 A88-43967 WAISS, RICHARD D. Definition of common support equipment and space station interface requirements for IOC model technology experiments [NASA-TM-100656] p 8 N88-29856 WAITES, HENRY Advanced control evaluation for structures (ACES) programs p 44 A88-54572 WAITES, HENRY B. ACES program - Lessons learned p 6 A88-54573 WALKER, BRUCE K. Input selection for a second-order mass property estimator p 30 A88-43203 WALKER, JAMES D. OMV multiple deployments of lightsats [AIAA PAPER 88-3518] p 9 A88-42911 WANG, CAROLINE K. An expert system for a distributed real-time trainer	WEEKS, DAVID J. Expert systems for MSFC power systems p 61 N88-29375 WEGERIF, DAN Robotic applications at Kennedy Space Center p 76 A88-52328 WEIBEL, MARC Space cabin atmosphere and extracurricular sortie p 100 N88-26023 WEILAND, M. Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] P 12 N88-29852 WEILER, KURT W. Radio astronomy from space; Proceedings of the Workshop, Green Bank, WV, Sept. 30-Oct. 2, 1986 p 91 A88-38077 WERTZ, JAMES R. Reducing the cost and risk of orbit transfer p 97 A88-54994 WESSELSKI, CLARENCE J. Locking hinge [NASA-CASE-MSC-21056-1] Mobile remote manipulator system for a tetrahedral truss [NASA-CASE-MSC-20985-1] Expandable pallet for space station interface attachments [NASA-CASE-MSC-21117-1] Collet lock joint for space station truss [NASA-CASE-MSC-21207-1] P 18 N88-2958 Collet lock joint for space station truss [NASA-CASE-MSC-21207-1] P 19 N88-29180 WESSLING, FRANCIS Personnel occupied woven envelope robot p 81 N88-29408 WEY, J. P. Production of ground state atomic oxygen in a multifactor stress environment p 56 A88-42585 WHALE, R. A.	WILLMERT, K. D. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] p 49 N88-22070 WILLOUGHBY, A. J. Technology requirements for an orbiting fuel depot: A necessary element of a space infrastructure [NASA-TM-101370] WILLSHIRE, KELLI F. Automation and robotics for the Space Station - The influence of the Advanced Technology Advisory D 76 A88-52329 WILSON, ANDREW NASA'S Pathfinder plots future US space activities P 4 A88-44613 WILSON, S. C. Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 WILTON, DONALD R. An investigation of conformable antennas for the astronaut backpack communication system [NASA-CR-182908] p 99 N88-23929 WINDSOR, E. P. L. Polar Platform configuration and servicing p 1 A88-34552 WISE, P. C. Critique of the thermal design verification program for a high-power communications spacecraft [AIAA PAPER 88-2648] p 22 A88-48479 WISKERCHEN, MICHAEL J. Telescience Testbed Pilot Project - Evaluation environment for Space Station operations [AIAA PAPER 88-4629] p 5 A88-53666 WITT, W. P. Soviet spacecraft engineering research [FASAC-TAR-3090] p 98 N88-23823 WOEHLKE, W. Modelling of the microgravity environment of the Man
Space Station Human Factors Research Review. Volume 1: EVA Research and Development [NASA-CP-2426-VOL-1] p 9 9 N88-24145 W WADA, BEN K. Sine dwell or broadband methods for modal testing p 46 A88-55088 WADSWORTH, J. Recent advances in aerospace refractory metal alloys p 67 A88-47449 WADSWORTH, JEFFREY Superplastic forming characteristics and properties of aluminum-lithium sheet alloys p 67 A88-45205 WAGNER, W. C. Space Operations and Space Station real-time simulation [AIAA PAPER 88-4627] p 11 A88-53664 WAHLBERG, DWIGHT Space Station tool kit p 94 A88-43967 WAISS, RICHARD D. Definition of common support equipment and space station interface requirements for IOC model technology experiments [NASA-TM-100656] p 8 N88-29856 WAITES, HENRY Advanced control evaluation for structures (ACES) programs p 44 A88-54572 WAILES, HENRY B. ACES program - Lessons learned p 6 A88-54573 WALKER, BRUCE K. Input selection for a second-order mass property estimator p 30 A88-43203 WALKER, JAMES D. OMV muttiple deployments of lightsats [AIAA PAPER 88-3518] p 9 A88-42911	WEEKS, DAVID J. Expert systems for MSFC power systems p 61 N88-29375 WEGERIF, DAN Robotic applications at Kennedy Space Center p 76 A88-52328 WEIBEL, MARC Space cabin atmosphere and extracurricular sortic p 100 N88-26023 WEILAND, M. Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29852 WEILER, KURT W. Radio astronomy from space; Proceedings of the Workshop, Green Bank, WV, Sept. 30-Oct. 2, 1986 p 91 A88-38077 WERTZ, JAMES R. Reducing the cost and risk of orbit transfer p 97 A88-54994 WESSELSKI, CLARENCE J. Locking hinge [NASA-CASE-MSC-21056-1] Mobile remote manipulator system for a tetrahedral truss [NASA-CASE-MSC-20985-1] Expandable pallet for space station interface attachments [NASA-CASE-MSC-2117-1] Collet lock joint for space station truss [NASA-CASE-MSC-2117-1] P 18 N88-2938 Collet lock joint for space station truss [NASA-CASE-MSC-21207-1] P 19 N88-29180 WESSLING, FRANCIS Personnel occupied woven envelope robot p 81 N88-29408 WEY, J. P. Production of ground state atomic oxygen in a multifactor stress environment p 56 A88-42585 WHALE, R. A. An integrated computer aided engineering system for	WILLMERT, K. D. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] p 49 N88-22070 WILLOUGHBY, A. J. Technology requirements for an orbiting fuel depot: A necessary element of a space infrastructure [NASA-TM-101370] p 88 N88-29845 WILLSHIRE, KELLI F. Automation and robotics for the Space Station - The influence of the Advanced Technology Advisory Committee p 76 A88-52329 WILSON, ANDREW NASA'S Pathfinder plots future US space activities p 4 A88-44613 WILSON, S. C. Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 WILTON, DONALD R. An investigation of conformable antennas for the astronaut backpack communication system [NASA-CR-182908] p 99 N88-23929 WINDSOR, E. P. L. Polar Platform configuration and servicing p 1 A88-34552 WISE, P. C. Critique of the thermal design verification program for a high-power communications spacecraft [AIAA PAPER 88-2648] p 22 A88-48479 WISKERCHEN, MICHAEL J. Telescience Testbed Pilot Project - Evaluation environment for Space Station operations [AIAA PAPER 88-3629] p 5 A88-53666 WITT, W. P. Soviet spacecraft engineering research [FASAC-TAR-3090] p 98 N88-23823
Space Station Human Factors Research Review. Volume 1: EVA Research and Development [NASA-CP-2426-VOL-1] p 9 9 N88-24145 W WADA, BEN K. Sine dwell or broadband methods for modal testing p 46 A88-55088 WADSWORTH, J. Recent advances in aerospace refractory metal alloys p 67 A88-47449 WADSWORTH, JEFFREY Superplastic forming characteristics and properties of aluminum-lithium sheet alloys p 67 A88-47449 WADSWORTH, JEFFREY Superplastic forming characteristics and properties of aluminum-lithium sheet alloys p 67 A88-45205 WAGNER, W. C. Space Operations and Space Station real-time simulation [AIAA PAPER 88-4627] p 11 A88-53664 WAHLBERG, DWIGHT Space Station tool kit p 94 A88-43967 WAHLBERG, DWIGHT Space Station tool kit p 94 A88-43967 WAISS, RICHARD D. Definition of common support equipment and space station interface requirements for IOC model technology experiments [NASA-TM-100656] p 8 N88-29856 WAITES, HENRY Advanced control evaluation for structures (ACES) programs p 44 A88-54572 WAITES, HENRY B. ACES program - Lessons learned p 6 A88-54573 WALKER, BRUCE K. Input selection for a second-order mass property estimator p 30 A88-43203 WALKER, JAMES D. OMV muttiple deployments of lightsats [AIAA PAPER 88-3518] p 9 A88-42911 WANG, CAROLINE K. An expert system for a distributed real-time trainer p 12 N88-29411	WEEKS, DAVID J. Expert systems for MSFC power systems p 61 N88-29375 WEGERIF, DAN Robotic applications at Kennedy Space Center p 76 A88-52328 WEIBEL, MARC Space cabin atmosphere and extracurricular sortie p 100 N88-26023 WEILAND, M. Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29852 WEILER, KURT W. Radio astronomy from space; Proceedings of the Workshop, Green Bank, WV, Sept. 30-Oct. 2, 1986 p 91 A88-38077 WERTZ, JAMES R. Reducing the cost and risk of orbit transfer p 97 A88-54994 WESSELSKI, CLARENCE J. Locking hinge [NASA-CASE-MSC-21056-1] p 18 N88-23827 Mobile remote manipulator system for a tetrahedral truss [NASA-CASE-MSC-20985-1] p 80 N88-26398 Expandable pallet for space station interface attachments [NASA-CASE-MSC-21117-1] p 18 N88-28958 Collet lock joint for space station truss [NASA-CASE-MSC-21207-1] p 19 N88-29180 WESY, J. P. Production of ground state atomic oxygen in a multifactor stress environment p 56 A88-42585 WHALE, R. A. An integrated computer aided engineering system for Space Station design p 8 A88-34469	WILLMERT, K. D. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] p 49 N88-22070 WILLOUGHBY, A. J. Technology requirements for an orbiting fuel depot: A necessary element of a space infrastructure [NASA-TM-101370] p 88 N88-29845 WILLSHIRE, KELLI F. Automation and robotics for the Space Station - The influence of the Advanced Technology Advisory Committee p 76 A88-52329 WILSON, ANDREW NASA's Pathfinder plots future US space activities p 4 A88-44613 WILSON, S. C. Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 WILTON, DONALD R. An investigation of conformable antennas for the astronaut backpack communication system [NASA-CR-182908] p 99 N88-23929 WINDSOR, E. P. L. Polar Platform configuration and servicing p 1 A88-34552 WISE, P. C. Critique of the thermal design verification program for a high-power communications spacecraft [AIAA PAPER 88-2648] p 22 A88-48479 WISKERCHEN, MICHAEL J. Telescience Testbed Pilot Project - Evaluation environment for Space Station operations [AIAA PAPER 88-4629] p 5 A88-53666 WITT, W. P. Soviet spacecraft engineering research [FASAC-TAR-3090] p 98 N88-23823 WOEHLKE, W. Modelling of the microgravity environment of the Man Tended Free Fiyer (MTFF) p 96 A88-52335
Space Station Human Factors Research Review. Volume 1: EVA Research and Development [NASA-CP-2426-VOL-1] p 9 9 N88-24145 W WADA, BEN K. Sine dwell or broadband methods for modal testing p 46 A88-55088 WADSWORTH, J. Recent advances in aerospace refractory metal alloys p 67 A88-47449 WADSWORTH, JEFFREY Superplastic forming characteristics and properties of aluminum-lithium sheet alloys p 67 A88-45205 WAGNER, W. C. Space Operations and Space Station real-time simulation [AIAA PAPER 88-4627] p 11 A88-53664 WAHLBERG, DWIGHT Space Station tool kit p 94 A88-43967 WAHLBERG, DWIGHT Space Station tool kit p 94 A88-43967 WAISS, RICHARD D. Definition of common support equipment and space station interface requirements for IOC model technology experiments [NASA-TM-100656] p 8 N88-29856 WAITES, HENRY Advanced control evaluation for structures (ACES) programs p 44 A88-54572 WAITES, HENRY B. ACES program - Lessons learned p 6 A88-54573 WALKER, BRUCE K. Input selection for a second-order mass property estimator p 30 A88-43203 WALKER, JAMES D. OMV multiple deployments of lightsats [AIAA PAPER 88-3518] p 9 A88-42911 WANG, CAROLINE K. An expert system for a distributed real-time trainer p 12 N88-29411 WANG, S. H. Robust decentralized control of large flexible structures	WEEKS, DAVID J. Expert systems for MSFC power systems p 61 N88-29375 WEGERIF, DAN Robotic applications at Kennedy Space Center p 76 A88-52328 WEIBEL, MARC Space cabin atmosphere and extracurricular sortie p 100 N88-26023 WEILAND, M. Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29852 WEILER, KURT W. Radio astronomy from space; Proceedings of the Workshop, Green Bank, WV, Sept. 30-Oct. 2, 1986 p 91 A88-38077 WERTZ, JAMES R. Reducing the cost and risk of orbit transfer p 97 A88-54994 WESSELSKI, CLARENCE J. Locking hinge [NASA-CASE-MSC-21056-1] p 18 N88-23827 Mobile remote manipulator system for a tetrahedral truss [NASA-CASE-MSC-21056-1] p 80 N88-26398 Expandable pallet for space station interface attachments [NASA-CASE-MSC-21117-1] p 18 N88-28958 Collet lock joint for space station truss [NASA-CASE-MSC-21207-1] WESSLING, FRANCIS Personnel occupied woven envelope robot p 81 N88-29408 WEY, J. P. Production of ground state atomic oxygen in a multifactor stress environment p 56 A88-42585 WHALE, R. A. An integrated computer aided engineering system for Space Station design WHIPPLE, ELDEN C.	WILLMERT, K. D. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] p 49 N88-22070 WILLOUGHBY, A. J. Technology requirements for an orbiting fuel depot: A necessary element of a space infrastructure [NASA-TM-101370] p 88 N88-29845 WILLSHIRE, KELLI F. Automation and robotics for the Space Station - The influence of the Advanced Technology Advisory Committee p 76 A88-52329 WILSON, ANDREW NASA's Pathfinder plots future US space activities p 4 A88-44613 WILSON, S. C. Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 WILTON, DONALD R. An investigation of conformable antennas for the astronaut backpack communication system [NASA-CR-182908] p 99 N88-23929 WINDSOR, E. P. L. Polar Platform configuration and servicing p 1 A88-34552 WISE, P. C. Critique of the thermal design verification program for a high-power communications spacecraft [AIAA PAPER 88-2648] p 22 A88-48479 WISKERCHEN, MICHAEL J. Telescience Testbed Pilot Project - Evaluation environment for Space Station operations [AIAA PAPER 88-4629] p 5 A88-53666 WITT, W. P. Soviet spacecraft engineering research [FASAC-TAR-3090] p 98 N88-23823 WOGHLKE, W. Modelling of the microgravity environment of the Man Tended Free Flyer (MTFF) p 96 A88-52335 WONG, CARLA Knowledge based system verification and validation as related to automation of Space Station subsystems -
Space Station Human Factors Research Review. Volume 1: EVA Research and Development [NASA-CP-2426-VOL-1] p 99 N88-24145 W WADA, BEN K. Sine dwell or broadband methods for modal testing p 46 A88-55088 WADSWORTH, J. Recent advances in aerospace refractory metal alloys p 67 A88-47449 WADSWORTH, JEFFREY Superplastic forming characteristics and properties of aluminum-lithium sheet alloys p 67 A88-45205 WAGNER, W. C. Space Operations and Space Station real-time simulation [AIAA PAPER 88-4627] p 11 A88-53664 WAHLBERG, DWIGHT Space Station tool kit p 94 A88-43967 WAISS, RICHARD D. Definition of common support equipment and space station interface requirements for IOC model technology experiments [NASA-TM-100656] p 8 N88-29856 WAITES, HENRY Advanced control evaluation for structures (ACES) programs p 44 A88-54572 WAITES, HENRY B. ACES program - Lessons learned p 6 A88-54573 WALKER, BRUCE K. Input selection for a second-order mass property estimator p 30 A88-43203 WALKER, JAMES D. OMV multiple deployments of lightsats [AIAA PAPER 88-3518] p 9 A88-42911 WANG, CAROLINE K. An expert system for a distributed real-time trainer p 12 N88-29411 WANG, S. H. Robust decentralized control of large flexible structures [DE88-005416] p 48 N88-20902	WEEKS, DAVID J. Expert systems for MSFC power systems p 61 N88-29375 WEGERIF, DAN Robotic applications at Kennedy Space Center p 76 A88-52328 WEIBEL, MARC Space cabin atmosphere and extracurricular sortie p 100 N88-26023 WEILAND, M. Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29852 WEILER, KURT W. Radio astronomy from space; Proceedings of the Workshop, Green Bank, WV, Sept. 30-Oct. 2, 1986 p 91 A88-38077 WERTZ, JAMES R. Reducing the cost and risk of orbit transfer p 97 A88-54994 WESSELSKI, CLARENCE J. Locking hinge [NASA-CASE-MSC-21056-1] Mobile remote manipulator system for a tetrahedral truss [NASA-CASE-MSC-20985-1] Expandable pallet for space station interface attachments [NASA-CASE-MSC-21117-1] Collet lock joint for space station truss [NASA-CASE-MSC-2117-1] Collet lock joint for space station truss [NASA-CASE-MSC-21207-1] P 19 N88-29180 WESSLING, FRANCIS Personnel occupied woven envelope robot p 81 N88-29408 WEY, J. P. Production of ground state atomic oxygen in a multifactor stress environment p 56 A88-42585 WHALE, R. A. An integrated computer aided engineering system for Space Station design p 8 A88-34469 WHIPPLE, ELDEN C. A study of SCATHA eclipse charging	WILLMERT, K. D. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] p 49 N88-22070 WILLOUGHBY, A. J. Technology requirements for an orbiting fuel depot: A necessary element of a space infrastructure [NASA-TM-101370] p 88 N88-29845 WILLSHIRE, KELLI F. Automation and robotics for the Space Station - The influence of the Advanced Technology Advisory Committee p 76 A88-52329 WILSON, ANDREW NASA'S Pathfinder plots future US space activities p 4 A88-44613 WILSON, S. C. Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 WILTON, DONALD R. An investigation of conformable antennas for the astronaut backpack communication system [NASA-CR-182908] p 99 N88-23929 WINDSOR, E. P. L. Polar Platform configuration and servicing p 1 A88-34552 WISE, P. C. Critique of the thermal design verification program for a high-power communications spacecraft [AIAA PAPER 88-2648] p 22 A88-48479 WISECRCHEN, MICHAEL J. Telescience Testbed Pilot Project - Evaluation environment for Space Station operations [AIAA PAPER 88-4629] p 5 A88-53666 WITT, W. P. Soviet spacecraft engineering research [FASAC-TAR-3090] p 98 N88-23823 WOEHLKE, W. Modelling of the microgravity environment of the Man Tended Free Flyer (MTFF) p 96 A88-52335 WONG, CARLA Knowledge based system verification and validation as related to automation of Space Station subsystems - Rationale for a knowledge based system lifecycle
Space Station Human Factors Research Review. Volume 1: EVA Research and Development [NASA-CP-2426-VOL-1] p 9 9 N88-24145 W WADA, BEN K. Sine dwell or broadband methods for modal testing p 46 A88-55088 WADSWORTH, J. Recent advances in aerospace refractory metal alloys p 67 A88-47449 WADSWORTH, JEFFREY Superplastic forming characteristics and properties of aluminum-lithium sheet alloys p 67 A88-45205 WAGNER, W. C. Space Operations and Space Station real-time simulation [AIAA PAPER 88-4627] p 11 A88-53664 WAHLBERG, DWIGHT Space Station tool kit p 94 A88-43967 WAHLBERG, DWIGHT Space Station tool kit p 94 A88-43967 WAISS, RICHARD D. Definition of common support equipment and space station interface requirements for IOC model technology experiments [NASA-TM-100656] p 8 N88-29856 WAITES, HENRY Advanced control evaluation for structures (ACES) programs p 44 A88-54572 WAITES, HENRY B. ACES program - Lessons learned p 6 A88-54573 WALKER, BRUCE K. Input selection for a second-order mass property estimator p 30 A88-43203 WALKER, JAMES D. OMV multiple deployments of lightsats [AIAA PAPER 88-3518] p 9 A88-42911 WANG, CAROLINE K. An expert system for a distributed real-time trainer p 12 N88-29411 WANG, S. H. Robust decentralized control of large flexible structures	WEEKS, DAVID J. Expert systems for MSFC power systems p 61 N88-29375 WEGERIF, DAN Robotic applications at Kennedy Space Center p 76 A88-52328 WEIBEL, MARC Space cabin atmosphere and extracurricular sortie p 100 N88-26023 WEILAND, M. Procedures for updating dynamic mathematical models, test phase [MEBS-38/87] p 12 N88-29852 WEILER, KURT W. Radio astronomy from space; Proceedings of the Workshop, Green Bank, WV, Sept. 30-Oct. 2, 1986 p 91 A88-38077 WERTZ, JAMES R. Reducing the cost and risk of orbit transfer p 97 A88-54994 WESSELSKI, CLARENCE J. Locking hinge [NASA-CASE-MSC-21056-1] p 18 N88-23827 Mobile remote manipulator system for a tetrahedral truss [NASA-CASE-MSC-21056-1] p 80 N88-26398 Expandable pallet for space station interface attachments [NASA-CASE-MSC-21117-1] p 18 N88-28958 Collet lock joint for space station truss [NASA-CASE-MSC-21207-1] WESSLING, FRANCIS Personnel occupied woven envelope robot p 81 N88-29408 WEY, J. P. Production of ground state atomic oxygen in a multifactor stress environment p 56 A88-42585 WHALE, R. A. An integrated computer aided engineering system for Space Station design WHIPPLE, ELDEN C.	WILLMERT, K. D. Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application [AD-A190644] p 49 N88-22070 WILLOUGHBY, A. J. Technology requirements for an orbiting fuel depot: A necessary element of a space infrastructure [NASA-TM-101370] p 88 N88-29845 WILLSHIRE, KELLI F. Automation and robotics for the Space Station - The influence of the Advanced Technology Advisory Committee p 76 A88-52329 WILSON, ANDREW NASA's Pathfinder plots future US space activities p 4 A88-44613 WILSON, S. C. Integration of Space Station propulsion and fluid systems [AIAA PAPER 88-3289] p 85 A88-48492 WILTON, DONALD R. An investigation of conformable antennas for the astronaut backpack communication system [NASA-CR-182908] p 99 N88-23929 WINDSOR, E. P. L. Polar Platform configuration and servicing p 1 A88-34552 WISE, P. C. Critique of the thermal design verification program for a high-power communications spacecraft [AIAA PAPER 88-2648] p 22 A88-48479 WISKERCHEN, MICHAEL J. Telescience Testbed Pilot Project - Evaluation environment for Space Station operations [AIAA PAPER 88-4629] p 5 A88-53666 WITT, W. P. Soviet spacecraft engineering research [FASAC-TAR-3090] p 98 N88-23823 WOGHLKE, W. Modelling of the microgravity environment of the Man Tended Free Flyer (MTFF) p 96 A88-52335 WONG, CARLA Knowledge based system verification and validation as related to automation of Space Station subsystems -

WHITE, CHARLES W.

Member vibration effects on LSS behavior
[AAS PAPER 86-396] p 27 A88-35116

software for the automation of space station subsystems
p 12 N88-24190

Z

WOODS, T. G.

Advanced EVA system design requirements study p 78 N88-24147

WORKMAN, MICHAEL L.

Minimum-time control of large space structures

WORLEY, S. D.

Production of ground state atomic oxygen in a multifactor stress environment p 56 A88-42585

WRIGHT, ROBERT L.

Systems analysis of a low-acceleration research

[AIAA PAPER 88-3512]

WROBEL, J. R. operational aspects of a rotating Some advanced-technology space station for the year 2025 [NASA-CR-181617] p8 N88-26397

WULZ, HANS GEORG

Two-phase thermal loops for use in future spacecraft p 19 A88-37295

X

An optimal maneuver control method for the spacecraft with flexible appendages TAIAA PAPER 88-42551 p.38 A88-50386

YAMADA, YOSHIHIDE

Ka, C, S frequency bands, multi-beam deployable antenna system for large-capacity communication p 54 A88-33448

YAMAMOTO, YOHZOH

Damping materials for spacecraft vibration control p 64 A88-37000

YAMAWAKI, T.

Japanese Space Station program p 1 A88-34574 YANG, D. M.

An optimal maneuver control method for the spacecraft with flexible appendages [AIAA PAPER 88-4255] p 38 A88-50386

YANG, T. C.

Production of ground state atomic oxygen in a multifactor p 56 A88-42585 stress environment

YANG, T. Y.

Modal cost analysis for simple continua

p 21 A88-46404

YASAKA, TETSUO

Ka, C. S frequency bands, multi-beam deployable antenna system for large-capacity communication satellite p 54 A88-33448

Reliability evaluation on on-board satellite antenna deployment mechanism p 19 A88-38672

Integrated structural/controller optimization of large space structures p 39 A88-50430

[AIAA PAPER 88-4305]

YEE, R. Connecting remote systems for demonstration of

automation technologies p 78 N88-24191 YEH, TSO-PING Testing of propellant management device for 3-axis

p 83 A88-33792 geosynchronous spacecraft YEN, VINCENT

A Fourier-based optimal control approach for structural p 45 A88-54643

YOÉL, RAYMOND R.

A nonlinear filtering process diagnostic system for the p 101 N88-29417 Space Station

YOO. H. H.

Use of assumed modes in equations governing large-displacement elastodynamic plate behavio

p 43 A88-54421

YOUNG, GRANT L.

Space station mobile transporter p 98 N88-21488 YOUNG, K. DAVID

A distributed finite element modeling and control approach for large flexible structures [AIAA PAPER 88-4085] p 35 A88-50191

YOUSUFF, AJMAL

Application of inclusion principle to mechanical p 45 A88-54583

YUEN, WAYNE

Instrumentation for modal testing of large space p 29 A88-40261 structures

YURKOVICH, STEPHEN

Laboratory facility for flexible structure control p 42 A88-53681 experiments

ZAKHARIAN, A. Z.

'Glazar' - An orbital ultraviolet telescope

D 91 A88-38826

Case study of active array feed compensation with sidelobe control for reflector surface distortion [NASA-TM-100287] p 60 N88-23073

ZARETZKY, C. L. Transfer matrix analysis of cable-stiffened hoop

platforms

p 46 A88-54989 ZENG, WENLING

A variable structure control approach to flexible p.34 A88-49914 spacecrafts

ZHANG, W. P.

An optimal maneuver control method for the spacecraft with flexible appendages

[AIAA PAPER 88-4255]

p 38 A88-50386

ZIEMKE, M. CARL

Personnel occupied woven envelope robot p 81 N88-29408

ZIMCIK, D. G.

Results of apparent atomic oxygen reactions with spacecraft materials during Shuttle flight STS-41G p 67 A88-47971

ZIMMERMAN, D. C.

Microprocessor controlled force actuator

p 30 A88-43206

ZIMMERMAN, DAVID C. Low authority control of large space structures using a constrained threshold control formulation

p 51 N88-24667

p 82 N88-30357

ZIMMERMAN, WAYNE

The space station assembly phase: System design trade-offs for the flight telerobotic servicer

ZIMMERMAN, WAYNE F. The space station assembly phase: Flight telerobotic servicer feasibility. Volume 2: Methodology and case

(NASA-CR-182690)

ZWANENBURG, R.

The development status of the strongback array

p 15 N88-21201

Typical Corporate Source Index Listing

Listings in this index are arranged alphabetically by corporate source. The title of the document is used to provide a brief description of the subject matter. The page number and the accession number are included in each entry to assist the user in locating the abstract in the abstract section. If applicable, a report number is also included as an aid in identifying the document.

AEC-Able Engineering Co., Inc., Goleta, CA.

Thermally stable deployable structure p 17 N88-21472

AEG-Telefunken, Wedel (Germany, F.R.).

Alternative module configurations for advanced solar

arrays on low orbit and extended lifetime missions (AMOC

[ESA-CR(P)-2581] p 62 N88-30182 Aeritalia S.p.A., Turin (Italy).

Study of robotics spacecraft servicing and assembly in space. Volume 1: Executive summary

[ESA-CR(P)-2612-VOL-1] p 82 N88-29839

Aerospace Corp., El Segundo, CA.

A severe spacecraft-charging event on SCATHA in September 1982

[AD-A193007] p 61 N88-26396

Aerospace Corp., Los Angeles, CA.

Contamination of optical surfaces p 70 N88-25400

Air Command and Staff Coll., Maxwell AFB. AL.

Sensor and actuator selection for large space structure

[AD-A194912] p 53 N88-29842

Air Force Astronautics Lab., Edwards AFB, CA. Noncryogenic propellants for a nuclear orbit transfer

p 87 N88-24444

Air Force Inst. of Tech., Wright-Patterson AFB, OH. Moving-bank multiple model adaptive estimation applied to flexible spacestructure control

p 49 N88-22071 [AD-A190761] Air Force Wright Aeronautical Labs., Wright-Patterson

AFB. OH. Advanced control evaluation for structures (ACES)

p 44 A88-54572 programs

Alabama Univ., Huntsville.

Electron beam experiments at high altitudes p 56 A88-46799

Optical environment of the Spacelab 1 mission

p 67 A88-47966

Velocity distributions of oxygen atoms incident on spacecraft surfaces p 68 A88-54990 Genetic algorithms for adaptive real-time control in space systems p 50 N88-24195

Space station induced electromagnetic effects p 61 N88-25394

Space station contamination study: Assessment of p 70 contaminant spectral brightness OMV docking simulator p 101 N88-29379

Personnel occupied woven envelope robot

p 81 N88-29408 Army Aviation Systems Command, Cleveland, OH.

Microgravity mechanisms and robotics program N88-23237

Astro Aerospace Corp., Carpinteria, CA.

p 98 N88-21488 Space station mobile transporter Avions Marcel Dassault-Breguet Aviation, Saint-Cloud

(France). Safety of extravehicular space activities

p 79 N88-26038

Axiomatix, Los Angeles, CA.

Spacecraft applications of advanced global positioning system technology [NASA-CR-172055] p 8 N88-27180

Beijing Inst. of Control Engineering (China).

Dynamics and control of a space platform with a tethered subsatellite p 33 A88-46717

Bionetics Corp., Hampton, VA.

Some operational aspects of a rotating advanced-technology space station for the year 2025 p 8 N88-26397 [NASA-CR-181617]

Boeing Aerospace Co., Huntsville, AL.

A plan for time-phased incorporation of automation and robotics on the US space station p 80 N88-29377

Remote servicing of space systems

p 81 N88-29409 A teleoperated robotic manipulator system for materials p 82 N88-29410 processing experiment servicing A nonlinear filtering process diagnostic system for the p 101 N88-29417 Space Station

Boeing Aerospace Co., Seattle, WA.

Evaluation of chromic acid anodized aluminum foil coated composite tubes for the Space Station truss p 65 A88-42412 structure

FLOSIN: A fluid loop analyzer for SINDA

p 23 N88-22321 Boeing Computer Services Co., Seattle, WA.

Motion planning for a free-flying robot

p 80 N88-29378

Booz-Allen and Hamilton, Inc., Bethesda, MD. Optimal use of human and machine resources for Space

Station assembly operations [AIAA PAPER 88-3498] p 75 A88-42903

British Aerospace Public Ltd. Co., Stevenage (England).

Qualification of the OLYMPUS reaction wheel

p 16 N88-21226 Development and qualification of the OLYMPUS antenna pointing mechanism p 16 N88-21227 Qualification testing of the EUROSTAR Solar Array Drive

Mechanism (SADM) p 17 N88-21229 Brookhaven National Lab., Upton, NY.

Nuclear propulsion systems for orbit transfer based on the particle bed reactor p 87 N88-24272

Brown Univ., Providence, RI.

Parameter identification techniques for the estimation

of damping in flexible structure experi p 26 A88-34805 The identification of a distributed parameter model for

a flexible structure D 31 A88-46041

Bundesministerium fuer Forschung und Technologie, Bonn (Germany, F.R.).

Arguments for manned or unmanned spacecraft activities [REPT-46/87] p 98 N88-23813

C

California Univ., Berkeley.

Numerical optimization, system theoretic and software tools for the integrated design of flexible structures and their control systems

[AD-A192927] p 52 N88-27183

California Univ., Davis.

Robust decentralized control large flexible structures

p 48 N88-20902 Incorporation of privacy elements in space station

[NASA-CR-182748] p 98 N88-21242

California Univ., La Jolla.

A study of SCATHA eclipse charging

p 58 A88-53470

California Univ., Los Angeles. Control augmented structural synthesis

[NASA-CR-4132] p 48 N88-20290 Optimal control and identification of space structures p 49 N88-22065 [AD-A1900331 Theory of filtering and control with application to control of large space structures

p 54 N88-29851 [AD-A195500]

Carnegie-Mellon Univ., Pittsburgh, PA.

Base reaction optimization of manipulators redundant kinematics p 78 N88-2 p 78 N88-23238

Catholic Univ. of America, Washington, DC.

Analysis of a closed-kinematic chain robot manipulator [NASA-CR-183031] p 79 N88-25206 Robust design of distributed controllers for large flexible space structures

INASA-CR-1832021 p 54 N88-30134

Centre d'Essais en Vol, Bretigny-Air (France).

Space cabin atmosphere and extracurricular sortie p 100 N88-26023

Centre National d'Etudes Spatiales, Toulouse (France). Tasks foreseen for space robots and an example of an associated orbital infrastructure p 79 N88-26044

Clarkson Univ., Potsdam, NY.

Nonlinear analysis and optimal design of dynamic mechanical systems for spacecraft application p 49 N88-22070 [AD-A190644]

Colorado State Univ., Fort Collins.

Plasma contactor design for electrodynamic tether pplications p 57
Space plasma contactor research, 1987
VASA-CR-182140 A88-46807 applications

[NASA-CR-182148] p 60 N88-23649

Colorado Univ., Boulder.
Computational issues in control-structure interaction p 32 A88-46406

Columbia Univ., New York, NY.

A mathematical theory of learning control for linear discrete multivariable systems

[AIAA PAPER 88-4313] p 40 A88-50438 Communications Research Centre, Ottawa (Ontario). Results of apparent atomic oxygen reactions with spacecraft materials during Shuttle flight STS-41G

p 67 A88-47971

Construcciones Aeronauticas S.A., Madrid (Spain), Interim Flight Opportunity (IFO). Volume 1: Executive

[SE/LS/AP-36-818/CN-VOL-1] p 8 N88-29849 Contraves Corp., Zurich (Switzerland).

Far infrared spectroscopy telescope (FIRST) inflatable thermal shield, phase 1

ISR/FIS/108(87)CZ] p 24 N88-30552 Control Dynamics Co., Huntsville, AL. ACES program - Lessons learned p 6 A88-54573

Cryolab, Inc., San Luis Obispo, CA.

Bayonet for superfluid helium transfer in space p 22 A88-53220

Department of the Air Force, Washington, DC.

p 66 A88-43516 Decision time on orbital debris Feedback control of distributed parameter systems with applications to large space structures [AD-A190536] p 49 N88-22068

Deutsche Forschungs- und Versuchsanstalt fuer Luft-	F	Howard Univ., Washington, DC.
und Raumfahrt, Cologne (Germany, F.R.).	•	Dynamics and control of a space platform with a tethered
Some highlights on ROSAT mechanisms	Flight Mechanics and Control, Inc., Hampton, VA.	subsatellite p 33 A88-46717
p 14 N88-21195	Advanced satellite servicing facility studies	The dynamics and control of the orbiting spacecraft
Deutsche Forschungs- und Versuchsanstalt fuer Luft-	[AIAA PAPER 88-4200] p 93 A88-42912	control laboratory experiment (SCOLE) during station
und Raumfahrt, Goettingen (Germany, F.R.).		keeping
Studies on rocket exhaust plumes and impingement	Fokker B.V., Amsterdam (Netherlands).	[AIAA PAPER 88-4252] p 38 A88-50384
effects related to the Columbus Space Station program:	The development status of the strongback array p 15 N88-21201	Frequency optimization of repetitive lattice beam-like
Executive summary	·	structures using a continuum model p 41 A88-50892
[DFVLR-IB-222-88-A-12] p 88 N88-29862	Interim Flight Opportunity (IFO), Volume 1: Executive	Effect of natural damping on the dynamics and control
Dornier-Werke G.m.b.H., Friedrichshafen (Germany,	summary	of a class of optimally designed structures
F.R.).	[SE/LS/AP-36-818/CN-VOL-1] p 8 N88-29849	[IAF PAPER 88-288] p 47 A88-55375
Numerical solution of multibody systems in space	Fraunhofer-Inst. fuer Produktionsanlagen und	Rapid slewing of the orbiting Spacecraft Control
applications p 48 N88-21200	Konstruktionstechnik, Berlin (Germany, F.R.).	Laboratory Experiment (SCOLE) using LQR techniques
Design of a linear actuator and breadboard test result	Study of robotics spacecraft servicing and assembly in	[IAF PAPER 88-320] p 47 A88-55393
p 16 N88-21217	space. Volume 1: Executive summary [ESA-CR(P)-2612-VOL-1] p 82 N88-29839	Hughes Research Labs., Malibu, CA.
A joint actuator design for a robotic manipulator	[E3A-OH(F)-2012-VOL-1] p 62 1400-29039	Spacecraft dielectric surface charging property
p 77 N88-21232	_	determination
Study of standard generic approach for spacecraft (S/C)	G	[NASA-CR-180879] p 59 N88-21243
autonomy and automation (phase 3). Book B: Autonomy	•	
concept application example	General Dynamics Corp., San Diego, CA.	
[ESA-CR(P)-2555-VOL-2] p 53 N88-28956	Long term orbital storage of cryogenic propellants for	U
Procedures for updating dynamic mathematical models,	advanced space transportation missions	I.A.M. Rinaldo Piaggio, Finale Ligure (Italy).
test phase	p 82 A88-33441	Deployable/retrievable boom: One application to
[MEBS-38/87] p 12 N88-29852	Centaur operations at the space station: Cost and	tethered satellite p 15 N88-21197
Draper (Charles Stark) Lab., Inc., Cambridge, MA.	transportation analysis	Idaho National Engineering Lab., Idaho Falls.
The identification of a distributed parameter model for a flexible structure p 31 A88-46041	[NASA-CR-182128] p 101 N88-29835	Comparison of a direct thrust nuclear engine, nuclear
a flexible structure p 31 A88-46041 Drexel Univ., Philadelphia, PA.	General Electric Co., Philadelphia, PA.	electric engine and a chemical engine for future space
System architecture of MMIC-based large aperture	Potential GPS user architecture for the NASA Space	missions p 87 N88-24379
arrays for space applications p 55 A88-35274	Station based on Landsat 4/5 experience	Illinois Univ., Urbana.
Optical technology for spacecraft antennas	p 3 A88-37398	Variable-structure control of spacecraft attitude
p 56 A88-43187	The multi-disciplinary design study: A life cycle cost	maneuvers p 30 A88-43211
Duke Univ., Durham, NC.	algorithm	Innovative Sciences, Inc., San Leandro, CA.
Frequency domain solutions to multi-degree-of-freedom,	[NASA-CR-4156] p 11 N88-24172	Electromagnetic damping and vibration isolation of
dry friction damped systems p 33 A88-49714	•	space structures
DYNACS Engineering Co., Inc., Clearwater, FL.	Nuclear electric power for multimegawatt orbit transfer vehicles p 87 N88-24261	[AD-A191492] p 51 N88-24665
Effects of nonlinear damping in flexible space	•	Institut Francais de Recherche pour l'Exploitation de
structures	Turbomachinery in space p 60 N88-24321	la Mer, La Seyne sur Mer.
[AIAA PAPER 88-4059] p 35 A88-50169	General Research Corp., McLean, VA. The Space Station and recommendations of the National	Underwater simulation for space teleoperation
Obstacles to high fidelity multibody dynamics	Commission on Space	p 79 N88-26040
simulation p 44 A88-54471	[AAS PAPER 86-263] p 2 A88-35075	Instituto de Pesquisas Espaciais, Sao Jose dos
Dynamics Technology, Inc., Torrance, CA.	George Mason Univ., Fairfax, VA.	Campos (Brazil).
Laboratory feasibility study of a composite embedded	Parallel and distributed computation for fault-tolerant	Utilization of strapdown inertial and non-inertial sensors
fiber optic sensor for measurement of structural	object recognition p 13 N88-30350	in determination of satellite attitude by Kalman filters
vibrations	George Washington Univ., Hampton, VA.	[INPE-4313-TDL/280] p 48 N88-20349 A feedback double path compensating control structure
[AD-A194270] p 71 N88-28754	Systems analysis of a low-acceleration research	for the attitude control of a flexible spacecraft
	facility	[INPE-4464-PRE/1239] p 48 N88-21240
E	[AIAA PAPER 88-3512] p 93 A88-42909	lowa Univ., lowa City.
-	Georgia Inst. of Tech., Atlanta.	Contaminant ions and waves in the space station
Edgerton, Germeshausen and Grier, Inc., Idaho Falls,	Singular perturbation analysis of the atmospheric orbital	environment p 70 N88-25393
ID.	plane change problem p 31 A88-45712	Dynamics of articulated aerospace structures
Advanced nuclear rocket engine mission analysis	Frequency domain solutions to multi-degree-of-freedom,	[AD-A195685] p 53 N88-29794
[DE88-006797] p 87 N88-24681	dry friction damped systems p 33 A88-49714	•
Environmental Research Inst. of Michigan, Ann Arbor.	A near optimal guidance algorithm for aero-assisted orbit	.1
Orbital navigation, docking and obstacle avoidance as	transfer	U
a form of three dimensional model-based image	[AIAA PAPER 88-4175] p 37 A88-50266 Identification of large structures on orbit - A survey	let Description Lab. Collingia last of Tools
understanding p 50 N88-24194	[IAF PAPER 88-295] p 97 A88-55379	Jet Propulsion Lab., California Inst. of Tech., Pasadena.
Erno Raumfahrttechnik G.m.b.H., Bremen (Germany,	Concepts for robot motion primitives required for space	Test program to evaluate ESD susceptibility of EVA suit
F.R.).	station teleoperations primitives required for space	material p 73 A88-33789
Study of robotics spacecraft servicing and assembly in	Reasoning about fault diagnosis for the space station	Temperature characteristics of silicon space solar cells
space. Volume 1: Executive summary	common module thermal control system	and underlying parameters p 63 A88-34418
[ESA-CR(P)-2612-VOL-1] p 82 N88-29839	p 23 N88-29395	
Interim Flight Opportunity (IFO). Volume 1: Executive	Groningen Rijksuniversiteit (Netherlands).	Real-time model-based vision system for object acquisition and tracking p 28 A88-36311
summary	SIMSAT: Simulation package for flexible systems.	• • • • • • • • • • • • • • • • • • • •
[SE/LS/AP-36-818/CN-VOL-1] p 8 N88-29849	Beams in space	SHAPES - Spatial, High-Accuracy, Position-Encoding Sensor for multi-point, 3-D position measurement of large
European Nuclear Energy Agency, Paris (France). Vibration control of large structures	[TW-278] p 48 N88-20348	flexible structures p 19 A88-40292
[AD-A193317] p 53 N88-27587	L(sub infinity symbol)-approximations of complex	<u> </u>
European Space Agency, Paris (France).	functions and robust controllers for large flexible space	
With an eye to the future: ESA general studies program	structures	adhesives for spacecraft structural applications
1988	[PB88-186226] p 52 N88-26390	p 66 A88-42440
[ESA-SP-1100] p 8 N88-30447	Grumman Aerospace Corp., Bethpage, NY.	Long-lived thermal control materials for high temperature
ESA report to the 27th COSPAR meeting	Telerobotic control of a dextrous manipulator using	and deep space applications p 20 A88-42441
[ESA-SP-1098] p 102 N88-30556	master and six-DOF hand-controllers for space assembly	Sensing and perception research for space telerobotics
European Space Agency. European Space Research	and servicing tasks p 73 A88-35453	at JPL p 74 A88-42657
and Technology Center, ESTEC, Noordwijk	Solar dynamic heat rejection technology. Task 2: Heat	Particle adhesion to surfaces under vacuum
(Netherlands).	pipe radiator development	[AIAA PAPER 88-2725] p 66 A88-43765
The CTM program of masts and the CTM engineering	[NASA-CR-182141] p 23 N88-23182	Parametric studies of electric propulsion systems for
model p 15 N88-21196		orbit transfer vehicles
A sequentially deployable structure for space	H	[AIAA PAPER 88-2835] p 84 A88-44668
applications p 15 N88-21202	- -	Optimal experiment design for identification of large
Docking/berthing subsystem: Design and breadboard	Heer Associates, Inc., LaCanada, CA.	space structures p 31 A88-45227
test p 17 N88-21233	Technology forecast and applications for autonomous,	Advanced propulsion for the Mars Rover Sample Return
Simulations of the electrostatic charging of ESA		Mission
communications satellites	intelligent systems	[AIAA PAPER 88-2900] p 84 A88-46489
	[IAF PAPER 88-025] p 6 A88-55322	
[ESA-STM-239] p 61 N88-24670		Results of apparent atomic oxygen reactions with
[ESA-STM-239] p 61 N88-24670 Man versus machine: The role of astronauts in	[IAF PAPER 88-025] p 6 A88-55322	Results of apparent atomic oxygen reactions with spacecraft materials during Shuttle flight STS-41G
[ESA-STM-239] p 61 N88-24670 Man versus machine: The role of astronauts in extravehicular activity p 79 N88-26045	[IAF PAPER 88-025] p 6 A88-55322 Honeywell, Inc., Clearwater, FL.	Results of apparent atomic oxygen reactions with spacecraft materials during Shuttle flight STS-41G p 67 A88-47971
[ESA-STM-239] p 61 N88-24670 Man versus machine: The role of astronauts in extravehicular activity p 79 N88-26045 The technical reporting and approval procedure for	[IAF PAPER 88-025] p 6 A88-5322 Honeywell, Inc., Clearwater, FL. Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471 Houston Univ., TX.	Results of apparent atomic oxygen reactions with spacecraft materials during Shuttle flight STS-41G p 67 A88-47971 NASA Office of Space Sciences and Applications study
[ESA-STM-239] p 61 N88-24670 Man versus machine: The role of astronauts in extravehicular activity p 79 N88-26045 The technical reporting and approval procedure for materials and processes	[IAF PAPER 88-025] p 6 A88-5322 Honeywell, Inc., Clearwater, FL. Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471 Houston Univ., TX. Identification of large structures on orbit - A survey	Results of apparent atomic oxygen reactions with spacecraft materials during Shuttle flight STS-41G p 67 A88-47971 NASA Office of Space Sciences and Applications study on Space Station attached payload pointing
[ESA-STM-239] p 61 N88-24670 Man versus machine: The role of astronauts in p 79 N88-26045 The technical reporting and approval procedure for materials and processes [ESA-PSS-01-700-ISSUE-1] p 72 N88-28833	[IAF PAPER 88-025] p 6 A88-5322 Honeywell, Inc., Clearwater, FL. Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471 Houston Univ., TX. Identification of large structures on orbit - A survey [IAF PAPER 88-295]	Results of apparent atomic oxygen reactions with spacecraft materials during Shuttle flight STS-41G p 67 A88-47971 NASA Office of Space Sciences and Applications study on Space Station attached payload pointing [AIAA PAPER 88-4105] p 36 A88-50209
[ESA-STM-239] p 61 N88-24670 Man versus machine: The role of astronauts in p 79 N88-26045 The technical reporting and approval procedure for materials and processes [ESA-PSS-01-700-ISSUE-1] p 72 N88-28833 Material and process selection and quality control for	[IAF PAPER 88-025] p 6 A88-5322 Honeywell, Inc., Clearwater, FL. Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471 Houston Univ., TX. Identification of large structures on orbit - A survey [IAF PAPER 88-295] p 97 A88-55379 An investigation of conformable antennas for the	Results of apparent atomic oxygen reactions with spacecraft materials during Shuttle flight STS-41G p 67 A88-47971 NASA Office of Space Sciences and Applications study on Space Station attached payload pointing [AIAA PAPER 88-4105] p 36 A88-50209 Adaptive control experiment with a large flexible
[ESA-STM-239] p 61 N88-24670 Man versus machine: The role of astronauts in p 79 N88-26045 The technical reporting and approval procedure for materials and processes [ESA-PSS-01-700-ISSUE-1] p 72 N88-28833	[IAF PAPER 88-025] p 6 A88-5322 Honeywell, Inc., Clearwater, FL. Obstacles to high fidelity multibody dynamics simulation p 44 A88-54471 Houston Univ., TX. Identification of large structures on orbit - A survey [IAF PAPER 88-295]	Results of apparent atomic oxygen reactions with spacecraft materials during Shuttle flight STS-41G p 67 A88-47971 NASA Office of Space Sciences and Applications study on Space Station attached payload pointing [AIAA PAPER 88-4105] p 36 A88-50209

NASA. Lyndon B. Johnson Space Center

Locking hinge [NASA-CASE-MSC-21056-1] p 18 N88-23827
Space station neutral external environment p 69 N88-25392
Mobile remote manipulator system for a tetrahedral truss
[NASA-CASE-MSC-20985-1] p 80 N88-26398 Expandable pallet for space station interface
attachments [NASA-CASE-MSC-21117-1] p 18 N88-28958
Collet lock joint for space station truss [NASA-CASE-MSC-21207-1] p 19 N88-29180 National Aeronautics and Space Administration.
Langley Research Center, Hampton, VA.
Synthesis of fine-pointing control systems for large, flexible spacecraft p 24 A88-33446
Controller synthesis for flexible spacecraft using
multivariable loop-shaping and factorization methods p 26 A88-34796
Large space systems requirements, deployable
concepts, and technology issues [AAS PAPER 86-394] p 2 A88-35115
Degradation of graphite-epoxy due to electron
radiation p 63 A88-36762
Sensitivity analysis of a deployable three longeron truss beam designed for minimum member loads during
deployment
[AIAA PAPER 88-2436] p 13 A88-38689 A comparative overview of modal testing and system
identification for control of structures p 29 A88-40269
Analytic redundancy management for systems with appreciable structural dynamics p 29 A88-40773
appreciable structural dynamics p 29 A88-40773 Space radiation effects on poly(aryl-ether-ketone) thin
films and composites p 65 A88-41547
Evaluation of chromic acid anodized aluminum foil coated composite tubes for the Space Station truss
structure p 65 A88-42412
Thermal cycling effects on the dimensional stability of
P75 and P75-T300 (fabric) hybrid graphite/epoxy laminates p 65 A88-42434
laminates p 65 A88-42434 Systems analysis of a low-acceleration research
facility
[AIAA PAPER 88-3512] p 93 A88-42909 Advanced satellite servicing facility studies
[AIAA PAPER 88-4200] p 93 A88-42912
Microprocessor controlled force actuator
p 30 A88-43206 Beyond simulation p 66 A88-45109
Continuum modeling of large lattice structures - Status
and projections p 21 A88-46402
Pole/zero cancellations in flexible space structures [AIAA PAPER 88-4055] p 34 A88-50165
Effects of nonlinear damping in flexible space
structures [AIAA PAPER 88-4059] p 35 A88-50169
Grammians and model reduction in limited time and
frequency intervals [AIAA PAPER 88-4087] p 35 A88-50193
[AIAA PAPER 88-4087] p 35 A88-50193 Automation and robotics for the Space Station - The
influence of the Advanced Technology Advisory
Committee p 76 A88-52329
Rapid multi-flexible-body maneuvering experiments p 44 A88-54532
Identification of large structures on orbit - A survey
[IAF PAPER 88-295] p 97 A88-55379
Space station heavy lift launch vehicle utilization [NASA-TM-100604] p 86 N88-21188
A 60-meter erectable assembly concept for a control
of flexible structures flight experiment [NASA-TM-100497] p 7 N88-21190
[NASA-TM-100497] p 7 N88-21190 The 22nd Aerospace Mechanisms Symposium
[NASA-CP-2506] p 98 N88-21468
The 15-meter diameter hoop/column antenna surface
control actuator system p 17 N88-21469 The X-beam as a deployable boom for the space
station p 17 N88-21473
Motion synchronization of a mechanism to deploy and
restow a truss beam p 77 N88-21474
Operational experience and design recommendations for teleoperated flight hardware p 78 N88-21489
Development of a rotary fluid transfer coupling and
support mechanism for space station
p 18 N88-21493 LDR structural experiment definition
[NASA-TM-100618] p 7 N88-23826
Space spider crane
[NASA-CASE-LAR-13411-1-SB] p 7 N88-23828 A Study of Space Station Contamination Effects
[NASA-CP-3002] p 69 N88-25390
The 15-meter antenna performance optimization using
an interdisciplinary approach p 61 N88-25746
Space structure (dynamics and control) theme development
[NASA-TM-100597] p 8 N88-29850

```
Definition of common support equipment and space
                                                                 Machine vision for real time orbital operations
  station interface requirements for IOC model technology
                                                                                                    p 80 N88-29367
  experiments
                                                                 Expert systems for MSFC power systems
  [NASA-TM-100656]
                                        p 8 N88-29856
                                                                                                    p 61 N88-29375
    Clevis joint for deployable space structures
                                                                 The use of computer graphic simulation in the
                                       p 19 N88-30130
  [NASA-CASE-LAR-13898-1]
                                                               development of robotic systems
                                                                                                    p 81 N88-29388
National Aeronautics and Space Administration, Lewis
                                                                 An expert system for a distributed real-time trainer
  Research Center, Cleveland, OH.
                                                                                                    p 12 N88-29411
                                                             National Aerospace Lab., Amsterdam (Netherlands).
    Development of 8 cm x 8 cm silicon gridded back solar
                                                                 Moveable thermal joints for deployable or steerable
  cell for space station
                                       p 62 A88-34312
    System architecture of MMIC-based large aperture
                                                               spacecraft radiator systems
                                                                                                    p 14 N88-20347
  arrays for space applications
                                       p 55 A88-35274
                                                               INLR-MP-87016-UT
     Tribological properties of polymer films and solid bodies
                                                                 Feasibility demonstration of a sensor for high-quality
  in a vacuum environment
                                                               two-phase flow
                                       p 63 A88-35565
    Mast material test program (MAMATEP)
                                                               [NLR-TR-87009-U]
                                                                                                    p 59 N88-20569
  [AIAA PAPER 88-2475]
                                       p 63 A88-35945
                                                                 Simulation
                                                                              of
                                                                                   space
                                                                                            manipulator
                                                                                                          operations
    Development of an integrated heat pipe-thermal storage
                                                               (EUROSIM)
  system for a solar receiver
                                                               (NLR-MP-87017-U)
                                                                                                    p 80 N88-26678
                                       p 21 A88-43746
  [AIAA PAPER 88-2683]
                                                             National Taiwan Univ., Taipei.
    An experimental investigation of the effect of test-cell
                                                                 Decentralized model reference adaptive control of large
  pressure on the performance of resistoiets
                                                               flexible structures
                                                                                                   p 45 A88-54587
  [AIAA PAPER 88-3286]
                                       p 84
                                            A88-44820
                                                             Naval Research Lab., Washington, DC.
    Technologies for protection of the Space Station power
                                                                 Contamination of the space station environment by
  system surfaces in atomic oxygen environment
                                                               vented chemicals
                                                                                                   p 71
                                                                                                         N88-25403
                                       p 68 A88-52331
                                                             Norsk Forsvarsteknologi A/S (Norway).
    Space Station Photovoltaic power modules
                                                                 Interim Flight Opportunity (IFO). Volume 1: Executive
                                       p 58 A88-52333
                                                               summary
    Atomic-oxygen durability of impact-damaged solar
                                                               [SE/LS/AP-36-818/CN-VOL-1]
                                                                                                     p 8 N88-29849
  reflectors
                                      p 68 A88-54988
                                                             North Carolina State Univ., Raleigh.
    Cryogenic Fluid Management Technology Workshop
                                                                 Automatic feedback control of a rigid body for finite
  Volume 2: Roundtable Discussion of
                                            Technology
  Requirements
                                                               displacements
                                                                                                   p 51
                                                                                                         N88-24674
  [NASA-CP-10009]
                                                             Norwegian Marine Technology Research Inst.,
                                      p 22 N88-20599
                                                               Trondheim.
    Space station solar concentrator materials research
  [NASA-TM-100862]
                                                                 Marintek's
                                                                            ocean basin, a training facility for
                                      p 69 N88-21250
    Power transmission studies for tethered SP-100
                                                               extravehicular activity?
                                                                                                   p 79 N88-26041
  INASA-TM-1008641
                                      n 59 N88-21251
    Power systems for production, construction, life support
                                                                                       О
  and operations in space
  [NASA-TM-100838]
                                      p 59 N88-21254
    Power components for the space station 20-kHz power
                                                             Oak Ridge National Lab., TN.
 distribution system [NASA-TM-100866]
                                                                 Traction-drive telerobot for space manipulation
                                      р 59 N88-21374
                                                                                                   p 75 A88-42668
    Multi-hundred kilowatt roll ring assembly evaluation
                                                             OAO Corp., Greenbelt, MD.
  results
                                                              A high power spacecraft thermal management system [AIAA PAPER 88-2702] p 21 A88-43754
  [NASA-TM-100865]
                                      p 60 N88-21375
    Structural assessment of a space station solar dynamic
                                                             Office National d'Etudes et de Recherches
  heat receiver thermal energy storage canister
                                                               Aerospatiales, Paris (France).
                                      p 23 N88-22406
                                                                 A nonlinear computation for composite structures
    The application of high temperature superconductors
                                                               IONERA-RT-15/3542-RY-062-R1
                                                                                                   p 69 N88-23265
  to space electrical power distribution components
                                                             Office National d'Etudes et de Recherches
  [NASA-TM-100901]
                                      p 60 N88-22939
                                                               Aerospatiales, Toulouse (France).
   Case study of active array feed compensation with
                                                                 Fault diagnosis in orbital refueling operations
  sidelobe control for reflector surface distortion
                                                                                                   p 87 N88-24154
                                      p 60 N88-23073
  [NASA-TM-100287]
                                                            Ohio State Univ., Columbus.

Two controller design approaches for decentralized
    Lewis Structures Technology, 1988. Volume 1: Structural
  [NASA-CP-3003-VOL-1]
                                      p 98 N88-23226
                                                               [AIAA PAPER 88-4083]
                                                                                                   p 35 A88-50189
   Arc-textured metal surfaces for high thermal emittance
                                                             Oklahoma Univ., Norman.
   pace radiators
                                                                Estimation and control of distributed models for certain
                                      p 69 N88-24754
  [NASA-TM-100894]
                                                               elastic systems arising in large space structures
   Assessment of the effects of space debris and
                                                                                                   p 51 N88-24666
  meteoroids environment on the space station solar array
                                                              [AD-A1921201
                                                             Old Dominion Univ., Norfolk, VA.
  assembly
  [NASA-TM-101315]
                                      p 72 N88-28959
                                                                 On the danger of redundancies in some aerospace
    Technology requirements for an orbiting fuel depot: A
                                                              mechanisms
                                                                                                   p 17 N88-21475
 necessary element of a space infrastructure [NASA-TM-101370] p 88
                                                                Single-mode projection filters for modal parameter
                                      p 88 N88-29845
                                                               identification for flexible structures
National Aeronautics and Space Administration.
                                                               [NASA-CR-182680]
                                                                                                   p 52 N88-25244
  Marshall Space Flight Center, Huntsville, AL.
                                                                Experimental and theoretical investigation of passive
    Long term orbital storage of cryogenic propellants for
                                                              damping concepts for member forced and free vibration
  advanced space transportation missions
                                                              [NASA-CR-183082]
                                                                                                   p 52 N88-26693
                                      p 82 A88-33441
    Astrophysics space observatories - The next 25 years
                                       p 1 A88-34537
    Shielding against debris
                                      p 66 A88-43518
    Optical environment of the Spacelab 1 mission
                                                             Pacific Northwest Labs., Richland, WA.
                                      p 67 A88-47966
                                                                Fabric space radiators
   Feasibility of using GPS measurements for OMV attitude
                                                              [DE88-005569]
                                                                                                   p 17 N88-21237
                                      p 96
                                            A88-51716
                                                             Physical Sciences, Inc., Andover, MA.
   Orbital Maneuvering Vehicle support to the Space
                                                                Calculation of space station infrared irradiance from
  Station
                                       p 5 A88-52362
                                                              atmosphere-induced emissions
                                                                                                  p 70 N88-25396
   Advanced control evaluation for
                                     structures (ACES)
                                                                The particulate environment surrounding the space
 programs
                                     p 44 A88-54572
p 6 A88-54573
                                                              station: Estimates from the PACS data
    ACES program - Lessons learned
                                                                                                  p 70 N88-25398
   Velocity distributions of oxygen atoms incident on
                                                                Laboratory experiments of relevance to the space station
                                      p 68 A88-54990
  spacecraft surfaces
                                                              environment
                                                                                                  p 71 N88-25402
   Bi-stem gripping apparatus
 [NASA-CASE-MFS-28185-1]
                                                            Pittsburgh Univ., PA.
                                      p 18 N88-23979
                                                                Performance considerations for the astrometric
   Third Conference on Artificial Intelligence for Space
                                                              Telescope Facility on the Phase I Space Station
  Applications, part 2
 [NASA-CP-2492-PT-2]
                                     p 100 N88-24188
                                                                                                  p 92 A88-42539
   Structural margins assessment approach
                                                            Politecnico di Torino (Italy).
 [NASA-TM-100332]
                                     p 23 N88-24672
                                                                Activities report of the Department of Aerospace
```

Engineering

[ETN-88-91607]

p 102 N88-30582

ation environment p 70 N88-25397

Space station particulate contami

CORPORATE SOURCE PRC Kentron, Inc., Hampton, VA. Sensitivity analysis of a deployable three longeron truss beam designed for minimum member loads during deployment p 13 A88-38689 [AIAA PAPER 88-2436] Thermal cycling effects on the dimensional stability of P75 and P75-T300 (fabric) hybrid graphite/epoxy Purdue Univ., West Lafayette, IN. Modal cost analysis for simple continua p 21 A88-46404 Continuum modeling and dynamic analysis of large truss p 50 N88-23995 R R and D Associates, Alexandria, VA. Unified study of plasma/surface interactions for space power and propulsion p 88 N88-29870 [AD-A195971] RCA Aerospace and Defense, Princeton, NJ. Development of an intermodule connector for serviceable spacecraft p 16 N88-21212 p 16 N88-21212 Rensselaer Polytechnic Inst., Troy, NY. Model reference control of the NASA SCOLE problem p 27 A88-34916 Adaptive residual mode filter control of distributed parameter systems for large space structure applications p 52 N88-26143 Rexnord Aerospace Mechanisms, Torrance, CA. Structural latches for modular assembly of spacecraft p 17 N88-21471 and space mechanisms Rice Univ., Houston, TX. Robotic vision/sensing for space applications p 74 A88-42642 Rockwell International Corp., Canoga Park, CA. 25-LBF GO2/GH2 space station thruster p 86 A88-53101 [AIAA PAPER 88-2793] Utilization of artificial intelligence techniques for the p 62 N88-29412 Space Station power system Saab Space A.B., Goeteborg (Sweden). Interim Flight Opportunity (IFO). Volume 1: Executive [SE/LS/AP-36-818/CN-VOL-1] p 8 N88-29849 Schafer (W. J.) Associates, Inc., Arlington, VA. Electron beam experiments at high altitudes p 56 A88-46799 Science and Engineering Associates, Inc., Englewood, Neutral environment for space station p 69 N88-25391 Effects of meteoroids and space debris on the particulate p 70 N88-25399 environment for space station Science Applications International Corp., McLean, VA. Soviet spacecraft engineering research p 98 N88-23823 IFASAC-TAR-30901 SDRC, Inc., San Diego, CA.

An assessment of nominal and contingency altitude reboost scenarios during Space Station assembly [AIAA PAPER 88-3501] SEA Corp., Gaithersburg, MD. The dynamics and control of the orbiting spacecraft control laboratory experiment (SCOLE) during station [AIAA PAPER 88-4252] p 38 A88-50384 Selskapet for Industriell og Teknisk Forskning, Trondheim (Norway).
Study of human factors engineering criteria for extravehicular activity (EVA) systems, volume 1 [STF23-F87025-VOL-1] p 82 N p 82 N88-30298 Sener S.A., Madrid (Spain) p 16 N88-21205 Latching mechanisms for IOC The EURECA antenna deployment and retraction p 16 N88-21225 mechanisms Study of robotics spacecraft servicing and assembly in space. Volume 1: Executive summary p 82 N88-29839 [ESA-CR(P)-2612-VOL-1]

Interim Flight Opportunity (IFO). Volume 1: Executive

Astrophysics space observatories - The next 25 years

Smithsonian Astrophysical Observatory, Cambridge,

p 8 N88-29849

eumman

[SE/LS/AP-36-818/CN-VOL-1]

constellations in earth orbit

[NASA-CR-179371]

Taylor and Associates, Inc., Wrightwood, CA. Space station architectural elements model study p 1 A88-34537 INASA-CR-40271 Space station architectural elements and issues Analytical investigation of the dynamics of tethered definition study [NASA-CR-3941] p 53 N88-28950

Technische Hogeschool, Delft (Netherlands). Societe Nationale Industrielle Aerospatiale, Cannes Maximum likelihood parameter identification of flexible (France). The SPOT solar array. Box opening mechanisms physical vapor deposition (PVD)-MoS2: Lubricated slides. enacecraft [LB-508] p 16 N88-21211 Teldix Luftfahrt-Ausruestungs G.m.b.H., Heidelberg Functional evaluation Literal dynamic modeling (Germany, F.R.). p 53 N88-28083 Hemispherical pointing mechanism drive unit [REPT-881-440-114] p 98 N88-21193 Development of a space deployable radiator using heat Evolution of large momentum and reaction wheels p 48 N88-21230 [SNIAS-881-440-104] p 23 N88-29128 Societe Nationale Industrielle Aerospatiale, Les Texas A&M Univ., College Station. Identification of large structures on orbit - A survey Mureaux (France). Study on long term evolution Towards European [IAF PAPER 88-295] p 97 A88-55379 A thermal equilibrium model for multi-megawatt space Autonomous Manned Spaceflight (STEAMS) p 12 N88-24332 [SNIAS-SE/LS/AP-35-073] N88-20330 platforms p 7 Texas Univ., Arlington.

Precision pointing of scientific instruments on space station: The LFGGREC perspective p 42 A88-50979 Aerospatiale unfurlable reflector and associated p 15 N88-21203 mechanisms Interim Flight Opportunity (IFO). Volume 1: Executive Texas Univ., Austin. summary
[SE/LS/AP-36-818/CN-VOL-1] A new momentum management controller for the Space p 8 N88-29849 Societe Nationale Industrielle Aerospatiale. [AIAA PAPER 88-4132] n 36 A88-50233 Saint-Medard-en-Jalles (France). An approximate atmospheric guidance law for Reinforced plastics: Winding and weaving technologies aeroassisted plane change maneuvers [AIAA PAPER 88-4174] for space products p.37 A88-50265 p 71 N88-27341 (REPT-881-430-103) Tokyo Univ. (Japan). Contribution to the study of materials behavior in space Dynamics of a flexible orbiting platform with MRMS [ISSN-0285-6808] p 51 N88-24673 environment [SNIAS-881-430-104] p 72 N88-28977 Toledo Univ., OH. Very high temperature materials for mechanical An experimental investigation of the effect of test-cell application pressure on the performance of resistojets p 72 N88-28978 [SNIAS-881-430-106] p 84 A88-44820 [AIAA PAPER 88-3286] Space Telescope Science Inst., Baltimore, MD. Toshiba Corp., Kawasaki (Japan).

Development of a magnetically Space ten-meter telescope (STMT) - Structural and suspended. thermal feasibility study of the primary mirror tetrahedron-shaped antenna pointing system p 19 A88-34539 p 18 N88-21478 TRW Defense and Space Systems Group, Redondo Spar Aerospace Ltd., Ste-Anne-de-Bellevue (Quebec). Study of robotics spacecraft servicing and assembly in Beach, CA. Block Oriented Simulation System (BOSS) space. Volume 1: Executive summary NASA-CR-182947] p 100 N88-27760 [ESA-CR(P)-2612-VOL-1] p 82 N88-29839 TS Infosystems, Lanham, MD. Spar Aerospace Ltd., Weston (Ontario). A high power spacecraft thermal management system
[AIAA PAPER 88-2702] p 21 A88-43754 System and concept design of the SSRMS latching end p 21 A88-43754 p 15 N88-21204 effector Spectrolab, Inc., Sylmar, CA. Development of 8 cm x 8 cm silicon gridded back sola p 62 A88-34312 cell for space station Stanford Univ., CA. Universidad Autonoma de Madrid, Cantoblanco Optimal experiment design for identification of large p 31 A88-45227 space structures Study of secondary emission properties of materials Telescience Testbed Pilot Project - Evaluation used for high power RF components in space environment for Space Station operations
[AIAA PAPER 88-4629] p p 72 N88-30012 [ESA-CR(P)-2587] p 5 A88-53666 University of Southern California, Los Angeles. The identification of a distributed parameter model for Design, development and evaluation of Stanford/Ames EVA prehensors a flexible structure p 31 A88-46041 [NASA-CR-182688] p 78 N88-22540 State Univ. of New York. Albany. Laser sensing for identification and control of distributed parameter systems Virginia Polytechnic Inst. and State Univ., Blacksburg. p 54 N88-30124 [AD-A195886] Degradation of graphite-epoxy due to electron adiation p 63 A88-36762 State Univ. of New York, Buffalo. radiation Parameter identification techniques for the estimation The LDCM actuator for vibration suppression of damping in flexible structure experiments [NASA-CR-182898] p 50 N88-23940 p 26 A88-34805 Experimental study of active vibration control Microprocessor controlled force actuator p 51 N88-24989 [AD-A191454] p 30 A88-43206 Virginia Univ., Charlottesville.
Vibration control of large structures Low authority control of large space structures using a constrained threshold control formulation [AD-A191358] p 50 N88-22928 p 51 N88-24667 Sterling Software, Palo Alto, CA. Optimum configuration of high-lift aeromaneuvering orbital transfer vehicles in viscous flow p 11 A88-51386 Washington State Univ., Pullman. Surface interactions relevant to space contamination problems p 71 No Sundstrand Corp., Rockford, IL. p 71 N88-25401 Development of an integrated heat pipe-thermal storage system for a solar receiver WEA, Cambridge, MA. Wave propagation and dynamics of lattice structures [AD-A190037] p 49 N88-22066 [AIAA PAPER 88-2683] p 21 A88-43746 Weidlinger Associates, New York, NY.
Vibrations of observe Sverdrup Technology, Inc., Cleveland, OH. An experimental investigation of the effect of test-cell Vibrations of structures with parametric uncertainties pressure on the performance of resistojets [AD-A190400] p 49 N88-22378 p 84 A88-44820 [AIAA PAPER 88-3286] Swales and Associates, Beltsville, MD. Space ten-meter telescope (STMT) - Structural and thermal feasibility study of the primary mirror p 19 A88-34539

p 100 N88-24632

p 12 N88-25371

station

Typical Foreign Technology Index Listing

Listings in this index are arranged alphabetically by country of intellectual origin. The title of the document is used to provide a brief description of the subject matter. The page number and the accession number are included in each entry to assist the user in locating the citation in the abstract section. If applicable, a report number is also included as an aid in identifying the document

AUSTRALIA

National Space Engineering Symposium, 3rd, Canberra, Australia, June 30-July 2, 1987, Preprints of Papers p 90 A88-37239

The Flinders Platform - A low-cost multimission platform p 3 A88-37257

for Australia Project Endeavour - Cannister 2 support structure p 91 A88-37273

Methods for spacecraft simulation in vibro-acoustic p 9 A88-37278 environments

A technique for the measurement of environmental levels of microwave radiation around satellite earth p 56 A88-38115 stations

B

Utilization of strapdown inertial and non-inertial sensors in determination of satellite attitude by Kalman filters p 48 N88-20349 [INPE-4313-TDL/280]

A feedback double path compensating control structure for the attitude control of a flexible spacecraft p 48 N88-21240 [INPE-4464-PRE/1239]

CANADA

Modal testing R&D at the Communications Research p 25 A88-34613 Centre On the quantitative characterization of approximate decentralized fixed modes using transmission zeros

p 27 A88-34905 Modelling and stabilization of flexible spacecraft under p 27 the influence of orbital perturbation A88-34914

Dynamics of viscoelastic structures

A88-38389 p 28

On the transient dynamics of flexible p 31 A88-46405 structures Results of apparent atomic oxygen reactions with spacecraft materials during Shuttle flight STS-41G

p 67 A88-47971 Stress concentration around a pair of circular holes in a hydrostatically stressed elastic sheet

p 33 A88-48194 Sensors, actuators, and hyperstability of structures [AIAA PAPER 88-4057] p 34 A88-50167

An alternate transition from the Lagrangian of a satellite to equations of motion

[AIAA PAPER 88-4221] p 37 A88-50362 Analytical expressions for vibratory displacements of deploying appendages [AIAA PAPER 88-4250]

p 38 A88-50383 A formulation for studying dynamics and control of the

Space Station based MRMS and its application [AIAA PAPER 88-4269] p.38 A88-50398

A formulation for studying dynamics of interconnected bodies with application
[AIAA PAPER 88-4303]

р 39 A88-50428 A dynamical study of the proposed Space Station type

configuration
[AIAA PAPER 88-4304] p 39 A88-50429 Load dependent subspace reduction methods for

p 42 A88-53420 structural dynamic computations Telepresence for space applications

p 77 A88-55320 HAF PAPER 88-0181 Stability of imperfection-sensitive nonlinear space tructures under stochastic loading

HAF PAPER 88-2931 p 47 A88-55377 Optimal deployment of spacecraft appendages

[IAF PAPER 88-307] p 47 A88-55386 Dynamics of interconnected flexible members in the presence of environmental forces - A formulation with

[IAF PAPER 88-318] p 47 A88-55391 System and concept design of the SSRMS latching end p 15 N88-21204 effector

CHINA, PEOPLE'S REPUBLIC OF

Dynamics and control of a space platform with a tethered p 33 A88-46717 subsatellite A variable structure control approach to flexible p 34 A88-49914 An optimal maneuver control method for the spacecraft with flexible appendages

AIAA PAPER 88-4255 p 38 A88-50386 Identification of multiple-input modal parameters from multiple-frequency response function p 41 A88-50897

FRANCE

Refilling process in the plasmasphere and its relation p 64 A88-37343 to magnetic activity Prospects of intercalated graphite fibre use for electrical power transmission in solar power satellites

n 64 A88-40568 Transient tests for space structures qualification

p 41 A88-50837 Dynamics analysis of a system of hinge-connected flexible bodies p 42 A88-52639

Multimission communication satellites

HAF PAPER 88-4261 A88-55417 р6 Study on long term evolution Towards European Autonomous Manned Spaceflight (STEAMS)

[SNIAS-SE/LS/AP-35-073] N88-20330 7 מ Aerospatiale unfurlable reflector and associated p 15 N88-21203

The SPOT solar array. Box opening mechanisms physical vapor deposition (PVD)-MoS2: Lubricated slides p 16 N88-21211 Functional evaluation

A nonlinear computation for composite structures [ONERA-RT-15/3542-RY-062-R] p 69 N88-23265 Fault diagnosis in orbital refueling operations

p 87 N88-24154 Space cabin atmosphere and extracurricular sortie

p 100 N88-26023 Safety of extravehicular space activities

p 79 N88-26038

Underwater simulation for space teleoperation

p 79 N88-26040 Tasks foreseen for space robots and an example of an associated orbital infrastructure p 79 N88-26044

Reinforced plastics: Winding and weaving technologies for space products IREPT-881-430-1031 p 71 N88-27341

Vibration control of large structures [AD-A193317] p 53 N88-27587

Literal dynamic modeling

[REPT-881-440-114] p 53 N88-28083 Study of standard generic approach for spacecraft (S/C) autonomy and automation (phase 3). Book B: Autonomy concept application example

[ESA-CR(P)-2555-VOL-2] p 53 N88-28956 Contribution to the study of materials behavior in space environment

[SNIAS-881-430-104] p 72 N88-28977 Very high temperature materials for mechanical

application [SNIAS-881-430-106] n 72 N88-28978

Development of a space deployable radiator using heat

SNIAS-881-440-1041 p 23 N88-29128 Interim Flight Opportunity (IFO). Volume 1: Executive summary

[SE/LS/AP-36-818/CN-VOL-1] p 8 N88-29849 With an eye to the future: ESA general studies program 1988

[ESA-SP-1100] p 8 N88-30447 ESA report to the 27th COSPAR meeting

[ESA-SP-1098] p 102 N88-30556

G

GERMANY.FEDERAL REPUBLIC OF

The Columbus resource module for the European man-tended free flyer TAAS PAPER 86-4651 p 2 A88-35056 Deployable precision reflectors [AAS PAPER 86-298] p 55 A88-35112

The environment of earth-orbiting systems р3 A88-35877

Antennas for diverse requirements p 55 A88-37285 Solar-dynamic energy supply systems for space p 64 A88-37293 systems Two-phase thermal loops for use in future spacecraft

p 19 A88-37295 Western European space science p 3 A88-39332

Deployable 20/30-GHz multi-beam communications satellites p 56 A88-39423 Real-time systems for space applications p 91 A88-39424

The space and telerobotic concepts of DFVLR rotex

p 74 A88-42667 Tasks of the simulation installations for space flight operations in the operations center for manned space

laboratories p 10 A88-46516 Active experiments; Proceedings of Symposium 1 of the Twenty-sixth COSPAR Plenary Meeting, Toulouse, France, June 30-July 11, 1986 p 95 A88-46776

Compatibility of microgravity experiments with spacecraft disturbances p 34 A88-49743 Performance of focusing mirror systems for the solar dynamic energy supply of space stations

p 85 A88-49750 Identification of a complex satellite model by means of modal synthesis p 40 A88-50809 Exponent diagram analysis of feedback control systems including flexible structures p 10 A88-50836

Automation and robotics for experiment operations in an Enhanced Man Tended Free Flyer (EMTFF)

p 76 A88-52326 Modelling of the microgravity environment of the Man Tended Free Flyer (MTFF) p 96 A88-52335 A resupply scenario for the Columbus Mantended Freeflyer (MTFF) p 5 A88-52337 Ground based support by operations Intelligence p 58 A88-52339

Demonstration mission on Columbus for technology	30 years of progress in space; Proceedings of the	A sequentially deployable structure for space
developments	Thirty-eighth International Astronautical Congress,	applications p 15 N88-21202
[IAF PAPER 88-002] p 6 A88-55314 The Manned Space Laboratories Control Center (MSCC)	Brighton, England, Oct. 10-17, 1987 p 91 A88-38304 Space inspection device for extravehicular repairs -	Docking/berthing subsystem: Design and breadboard test p 17 N88-21233
at DFVLR - Oberpfaffenhofen, Germany	SPIDER system	test p 17 N88-21233 Maximum likelihood parameter identification of flexible
[IAF PAPER 88-087] p 6 A88-55337	[IAF PAPER 88-029] p 77 A88-55324	spacecraft
Use of the surface tension propellant tanks in the Indian	Space Station habitation module - Privacy and collective	[LR-508] p 50 N88-22924
satellite Insat [IAF PAPER 88-237] p 86 A88-55365	life	Simulations of the electrostatic charging of ESA
Generic model laboratory tests for large flexible structure	[IAF PAPER 88-080] p 97 A88-55336	communications satellites [ESA-STM-239] p 61 N88-24670
control	Columbus Pressurized Modules - A versatile user-friendly space laboratory system	Man versus machine: The role of astronauts in
[IAF PAPER 88-294] p 47 A88-55378	[IAF PAPER 88-097] p 6 A88-55340	extravehicular activity p 79 N88-26045
Lunar orbit service station [IAF PAPER 88-618] p 6 A88-55454	Deployable/retrievable boom: One application to	L(sub infinity symbol)-approximations of complex
Study of the optimization of satellite system design for	tethered satellite p 15 N88-21197	functions and robust controllers for large flexible space structures
transfer orbit	Activities report of the Department of Aerospace	[PB88-186226] p 52 N88-26390
[MBB-URV-135] p 11 N88-20332	Engineering	Simulation of space manipulator operations
Hemispherical pointing mechanism drive unit	[ETN-88-91607] p 102 N88-30582	(EUROSIM)
p 98 N88-21193 Some highlights on ROSAT mechanisms	•	[NLR-MP-87017-U] p 80 N88-26678 The technical reporting and approval procedure for
p 14 N88-21195	J	materials and processes
Deployable booms and antennas on AMPTE-IRM		[ESA-PSS-01-700-ISSUE-1] p 72 N88-28833
p 15 N88-21198	JAPAN Ko C S fraguanay handa multi baam danlayahla	Material and process selection and quality control for
Numerical solution of multibody systems in space applications p 48 N88-21200	Ka, C, S frequency bands, multi-beam deployable antenna system for large-capacity communication	ESA space systems and associated equipment
Design of a linear actuator and breadboard test result	satellite p 54 A88-33448	[ESA-PSS-01-70-ISSUE-3] p 72 N88-29190 NORWAY
p 16 N88-21217	Japanese Space Station program p 1 A88-34574	Marintek's ocean basin, a training facility for
Evolution of large momentum and reaction wheels	Design of a controller for mechanical systems by the	extravehicular activity? p 79 N88-26041
p 48 N88-21230	generalized energy function p 27 A88-34891	Study of human factors engineering criteria for
A joint actuator design for a robotic manipulator p 77 N88-21232	Damping materials for spacecraft vibration control	extravehicular activity (EVA) systems, volume 1 {STF23-F87025-VOL-1} p 82 N88-30298
Arguments for manned or unmanned spacecraft	p 64 A88-37000	(31723-767023-40L-1) p 62 (486-30298
activities	'Space weather forecast' - Prediction of relativistic electron intensity at synchronous orbit	c
[REPT-46/87] p 98 N88-23813	p 64 A88-38015	S
Study of robotics spacecraft servicing and assembly in	Beyond the diameter-wavelength-ratio of reflector	SPAIN
space. Volume 1: Executive summary	antennas - A film lens antenna p 55 A88-38098	Columbus utilization studies - Attached payloads
[ESA-CR(P)-2612-VOL-1] p 82 N88-29839 Procedures for updating dynamic mathematical models,	Reliability evaluation on on-board satellite antenna	p 1 A88-34563
test phase	deployment mechanism p 19 A88-38672	Large truss structures p 75 A88-50862
[MEBS-38/87] p 12 N88-29852	An energetics experiment on a space platform	Latching mechanisms for IOC p 16 N88-21205
Studies on rocket exhaust plumes and impingement	p 3 A88-40571 A self-consistent tension shell structure for application	The EURECA antenna deployment and retraction
effects related to the Columbus Space Station program:	to aerobraking vehicle and its aerodynamic	mechanisms p 16 N88-21225
Executive summary [DFVLR-IB-222-88-A-12] p 88 N88-29862	characteristics	Study of secondary emission properties of materials used for high power RF components in space
[DFVLR-IB-222-88-A-12] p 88 N88-29862 Alternative module configurations for advanced solar	[AIAA PAPER 88-3405] p 14 A88-44839	[ESA-CR(P)-2587] p 72 N88-30012
arrays on low orbit and extended lifetime missions (AMOC	Results from a tethered rocket experiment (Charge-2)	SWITZERLAND
2)	p 57 A88-46804 Two-dimensional deployable truss structures for space	NASA's Pathfinder plots future US space activities
[ESA-CR(P)-2581] p 62 N88-30182	applications p 14 A88-47964	p 4 A88-44613 Perspectives of Soviet cosmonautics.
•	Electrostatic charging and arc discharges on satellite	
I	dielectrics simulated by electron beam	p 95 A88-49026 Far infrared spectroscopy telescope (FIRST) inflatable
	dielectrics simulated by electron beam p 57 A88-47970	p 95 A88-49026 Far infrared spectroscopy telescope (FIRST) inflatable thermal shield, phase 1
INDIA Effect of color procesure on the motion and stability of	dielectrics simulated by electron beam p 57 A88-47970 Dynamics and control of experimental tendon control	p 95 A88-49026 Far infrared spectroscopy telescope (FIRST) inflatable
Effect of solar pressure on the motion and stability of	dielectrics simulated by electron beam p 57 A88-47970	p 95 A88-49026 Far infrared spectroscopy telescope (FIRST) inflatable thermal shield, phase 1
	dielectrics simulated by electron beam p 57 A88-47970 Dynamics and control of experimental tendon control system for flexible space structure [AIAA PAPER 88-4154] p 36 A88-50248 A slew maneuver experiment of mission function	p 95 A88-49026 Far infrared spectroscopy telescope (FIRST) inflatable thermal shield, phase 1
Effect of solar pressure on the motion and stability of the system of two inter-connected satellites in an elliptical orbit Use of modal energy distribution in the design of	dielectrics simulated by electron beam p 57 A88-47970 Dynamics and control of experimental tendon control system for flexible space structure [AIAA PAPER 88-4154] p 36 A88-50248 A slew maneuver experiment of mission function control	Far infrared spectroscopy telescope (FIRST) inflatable thermal shield, phase 1 [SR/FIS/108(87)CZ] p 24 N88-30552
Effect of solar pressure on the motion and stability of the system of two inter-connected satellites in an elliptical orbit p 24 A88-33104 Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466	dielectrics simulated by electron beam p 57 A88-47970 Dynamics and control of experimental tendon control system for flexible space structure [AIAA PAPER 88-4154] p 36 A88-50248 A siew maneuver experiment of mission function control [AIAA PAPER 88-4226] p 38 A88-50367	Far infrared spectroscopy telescope (FIRST) inflatable thermal shield, phase 1 [SR/FIS/108(87)CZ] p 24 N88-30552
Effect of solar pressure on the motion and stability of the system of two inter-connected satellites in an elliptical orbit p 24 A88-33104 Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 Comparison of theoretical and experimental modal	dielectrics simulated by electron beam p 57 A88-47970 Dynamics and control of experimental tendon control system for flexible space structure [AIAA PAPER 88-4154] p 36 A88-50248 A siew maneuver experiment of mission function control [AIAA PAPER 88-4226] p 38 A88-50367 Design of an on-board antenna pointing control system	Far infrared spectroscopy telescope (FIRST) inflatable thermal shield, phase 1 [SR/FIS/108(87)CZ] p 24 N88-30552 T TAIWAN Decentralized model reference adaptive control of large
Effect of solar pressure on the motion and stability of the system of two inter-connected satellites in an elliptical orbit p 24 A88-33104 Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 Comparison of theoretical and experimental modal analysis results of a rectangular three dimensional frame	dielectrics simulated by electron beam p 57 A88-47970 Dynamics and control of experimental tendon control system for flexible space structure [AIAA PAPER 88-4154] p 36 A88-50248 A siew maneuver experiment of mission function control [AIAA PAPER 88-4226] p 38 A88-50367	Far infrared spectroscopy telescope (FIRST) inflatable thermal shield, phase 1 [SR/FIS/108(87)CZ] p 24 N88-30552
Effect of solar pressure on the motion and stability of the system of two inter-connected satellites in an elliptical orbit p 24 A88-33104 Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 Comparison of theoretical and experimental modal analysis results of a rectangular three dimensional frame p 22 A88-50873 Design and development of a computer controlled	dielectrics simulated by electron beam p 57 A88-47970 Dynamics and control of experimental tendon control system for flexible space structure [AIAA PAPER 88-4154] p 36 A88-50248 A siew maneuver experiment of mission function control [AIAA PAPER 88-4226] p 38 A88-50367 Design of an on-board antenna pointing control system for communication satellites [AIAA PAPER 88-4306] p 39 A88-50431 Digital sequential shunt regulator for solar power	Far infrared spectroscopy telescope (FIRST) inflatable thermal shield, phase 1 [SR/FIS/108(87)CZ] p 24 N88-30552 T TAIWAN Decentralized model reference adaptive control of large flexible structures p 45 A88-54587
Effect of solar pressure on the motion and stability of the system of two inter-connected satellites in an elliptical orbit p24 A88-33104 Use of modal energy distribution in the design of honeycomb sandwich decks p64 A88-37466 Comparison of theoretical and experimental modal analysis results of a rectangular three dimensional frame p22 A88-50873 Design and development of a computer controlled system for spacecraft static testing p11 A88-54896	dielectrics simulated by electron beam p 57 A88-47970 Dynamics and control of experimental tendon control system for flexible space structure [AIAA PAPER 88-4154] p 36 A88-50248 A slew maneuver experiment of mission function control [AIAA PAPER 88-4226] p 38 A88-50367 Design of an on-board antenna pointing control system for communication satellites [AIAA PAPER 88-4306] p 39 A88-50431 Digital sequential shunt regulator for solar power conditioning of Engineering Test Satellite (ETS-V)	Far infrared spectroscopy telescope (FIRST) inflatable thermal shield, phase 1 [SR/FIS/108(87)CZ] p 24 N88-30552 T TAIWAN Decentralized model reference adaptive control of large
Effect of solar pressure on the motion and stability of the system of two inter-connected satellites in an elliptical orbit Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 Comparison of theoretical and experimental modal analysis results of a rectangular three dimensional frame p 22 A88-50873 Design and development of a computer controlled system for spacecraft static testing p 11 A88-54896 INTERNATIONAL ORGANIZATION	dielectrics simulated by electron beam p 57 A88-47970 Dynamics and control of experimental tendon control system for flexible space structure [AIAA PAPER 88-4154] p 36 A88-50248 A slew maneuver experiment of mission function control [AIAA PAPER 88-4226] p 38 A88-50367 Design of an on-board antenna pointing control system for communication satellites [AIAA PAPER 88-4306] p 39 A88-50431 Digital sequential shunt regulator for solar power conditioning of Engineering Test Satellite (ETS-V) p 86 A88-54696	Far infrared spectroscopy telescope (FIRST) inflatable thermal shield, phase 1 [SR/FIS/108(87)CZ] p 24 N88-30552 T TAIWAN Decentralized model reference adaptive control of large flexible structures p 45 A88-54587
Effect of solar pressure on the motion and stability of the system of two inter-connected satellites in an elliptical orbit p 24 A88-33104 Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 Comparison of theoretical and experimental modal analysis results of a rectangular three dimensional frame p 22 A88-50873 Design and development of a computer controlled system for spacecraft static testing p 11 A88-54896 INTERNATIONAL ORGANIZATION The Infrared Space Observatory (ISO) project	dielectrics simulated by electron beam p 57 A88-47970 Dynamics and control of experimental tendon control system for flexible space structure [AIAA PAPER 88-4154] p 36 A88-50248 A slew maneuver experiment of mission function control [AIAA PAPER 88-4226] p 38 A88-50367 Design of an on-board antenna pointing control system for communication satellites [AIAA PAPER 88-4306] p 39 A88-50431 Digital sequential shunt regulator for solar power conditioning of Engineering Test Satellite (ETS-V) p 86 A88-54696 Tethered subsatellite swinging from atmospheric	Far infrared spectroscopy telescope (FIRST) inflatable thermal shield, phase 1 [SR/FIS/108(87)CZ] p 24 N88-30552 T TAIWAN Decentralized model reference adaptive control of large flexible structures p 45 A88-54587
Effect of solar pressure on the motion and stability of the system of two inter-connected satellites in an elliptical orbit p 24 A88-33104 Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 Comparison of theoretical and experimental modal analysis results of a rectangular three dimensional frame p 22 A88-50873 Design and development of a computer controlled system for spacecraft static testing p 11 A88-54896 INTERNATIONAL ORGANIZATION The Infrared Space Observatory (ISO) project p 3 A88-39077	dielectrics simulated by electron beam p 57 A88-47970 Dynamics and control of experimental tendon control system for flexible space structure [AIAA PAPER 88-4154] p 36 A88-50248 A slew maneuver experiment of mission function control [AIAA PAPER 88-4226] p 38 A88-50367 Design of an on-board antenna pointing control system for communication satellites [AIAA PAPER 88-4306] p 39 A88-50431 Digital sequential shunt regulator for solar power conditioning of Engineering Test Satellite (ETS-V) p 86 A88-54696 Tethered subsatellite swinging from atmospheric	Far infrared spectroscopy telescope (FIRST) inflatable thermal shield, phase 1 [SR/FIS/108(87)CZ] p 24 N88-30552 T TAIWAN Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 U U.S.S.R. Electrotopographic investigation of the degradation dynamics of dielectric layers in space
Effect of solar pressure on the motion and stability of the system of two inter-connected satellites in an elliptical orbit Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 Comparison of theoretical and experimental modal analysis results of a rectangular three dimensional frame p 22 A88-50873 Design and development of a computer controlled system for spacecraft static testing INTERNATIONAL ORGANIZATION The Infrared Space Observatory (ISO) project p 3 A88-39077 Mechanical and electrical characteristics of tin whiskers with special reference to spacecraft systems	dielectrics simulated by electron beam p 57 A88-47970 Dynamics and control of experimental tendon control system for flexible space structure [AIAA PAPER 88-4154] p 36 A88-50248 A slew maneuver experiment of mission function control [AIAA PAPER 88-4226] p 38 A88-50367 Design of an on-board antenna pointing control system for communication satellites [AIAA PAPER 88-4206] p 39 A88-50431 Digital sequential shunt regulator for solar power conditioning of Engineering Test Satellite (ETS-V) p 86 A88-54696 Tethered subsatellite swinging from atmospheric gradients Development of a magnetically suspended, tetrahedron-shaped antenna pointing system	Far infrared spectroscopy telescope (FIRST) inflatable thermal shield, phase 1 [SR/FIS/108(87)CZ] p 24 N88-30552 T TAIWAN Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 U U.S.S.R. Electrotopographic investigation of the degradation dynamics of dielectric layers in space p 62 A88-33958
Effect of solar pressure on the motion and stability of the system of two inter-connected satellites in an elliptical orbit p 24 A88-33104 Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 Comparison of theoretical and experimental modal analysis results of a rectangular three dimensional frame p 22 A88-50873 Design and development of a computer controlled system for spacecraft static testing p 11 A88-54896 INTERNATIONAL ORGANIZATION The Infrared Space Observatory (ISO) project p 3 A88-39077 Mechanical and electrical characteristics of tin whiskers with special reference to spacecraft systems p 67 A88-46192	dielectrics simulated by electron beam p 57 A88-47970 Dynamics and control of experimental tendon control system for flexible space structure [AIAA PAPER 88-4154] p 36 A88-50248 A slew maneuver experiment of mission function control [AIAA PAPER 88-4226] p 38 A88-50367 Design of an on-board antenna pointing control system for communication satellites [AIAA PAPER 88-4306] p 39 A88-50431 Digital sequential shunt regulator for solar power conditioning of Engineering Test Satellite (ETS-V) p 86 A88-54696 Tethered subsatellite swinging from atmospheric gradients p 46 A88-55067 Development of a magnetically suspended, tetrahedron-shaped antenna pointing system p 18 N88-21478	Far infrared spectroscopy telescope (FIRST) inflatable thermal shield, phase 1 [SR/FIS/108(87)CZ] p 24 N88-30552 T TAIWAN Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 U U.S.S.R. Electrotopographic investigation of the degradation dynamics of dielectric layers in space p 62 A88-33958 Secular effects in the translational-rotational motion of
Effect of solar pressure on the motion and stability of the system of two inter-connected satellites in an elliptical orbit p 24 A88-33104 Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 Comparison of theoretical and experimental modal analysis results of a rectangular three dimensional frame p 22 A88-50873 Design and development of a computer controlled system for spacecraft static testing p 11 A88-54896 INTERNATIONAL ORGANIZATION The Infrared Space Observatory (ISO) project p 3 A88-39077 Mechanical and electrical characteristics of tin whiskers with special reference to spacecraft systems p 67 A88-46192 Laboratory model of a Tethered Satellite - Current	dielectrics simulated by electron beam p 57 A88-47970 Dynamics and control of experimental tendon control system for flexible space structure [AIAA PAPER 88-4154] p 36 A88-50248 A slew maneuver experiment of mission function control [AIAA PAPER 88-4226] p 38 A88-50367 Design of an on-board antenna pointing control system for communication satellites [AIAA PAPER 88-4306] p 39 A88-50431 Digital sequential shunt regulator for solar power conditioning of Engineering Test Satellite (ETS-V) Tethered subsatellite swinging from atmospheric gradients p 46 A88-5067 Development of a magnetically suspended, tetrahedron-shaped antenna pointing system p 18 N88-21478 Japanese space station module p 98 N88-22224	Far infrared spectroscopy telescope (FIRST) inflatable thermal shield, phase 1 [SR/FIS/108(87)CZ] p 24 N88-30552 T TAIWAN Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 U U.S.S.R. Electrotopographic investigation of the degradation dynamics of dielectric layers in space p 62 A88-33958 Secular effects in the translational-rotational motion of an orbital station with artificial gravity p 90 A88-36123
Effect of solar pressure on the motion and stability of the system of two inter-connected satellites in an elliptical orbit p 24 A88-33104 Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 Comparison of theoretical and experimental modal analysis results of a rectangular three dimensional frame p 22 A88-50873 Design and development of a computer controlled system for spacecraft static testing p 11 A88-54896 INTERNATIONAL ORGANIZATION The Infrared Space Observatory (ISO) project p 3 A88-39077 Mechanical and electrical characteristics of tin whiskers with special reference to spacecraft systems p 67 A88-46192 Laboratory model of a Tethered Satellite - Current collection upon and sheath formation around a charged	dielectrics simulated by electron beam p 57 A88-47970 Dynamics and control of experimental tendon control system for flexible space structure [AIAA PAPER 88-4154] p 36 A88-50248 A slew maneuver experiment of mission function control [AIAA PAPER 88-4226] p 38 A88-50367 Design of an on-board antenna pointing control system for communication satellites [AIAA PAPER 88-4306] p 39 A88-50431 Digital sequential shunt regulator for solar power conditioning of Engineering Test Satellite (ETS-V) p 86 A88-54696 Tethered subsatellite swinging from atmospheric gradients p 46 A88-55067 Development of a magnetically suspended, tetrahedron-shaped antenna pointing system p 18 N88-21478	Far infrared spectroscopy telescope (FIRST) inflatable thermal shield, phase 1 [SR/FIS/108(87)CZ] p 24 N88-30552 T TAIWAN Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 U U.S.S.R. Electrotopographic investigation of the degradation dynamics of dielectric layers in space p 62 A88-33958 Secular effects in the translational-rotational motion of an orbital station with artificial gravity p 90 A88-36123 Optimal rendezvous in a gravitational field with limited observations p 90 A88-36144
Effect of solar pressure on the motion and stability of the system of two inter-connected satellites in an elliptical orbit p 24 A88-33104 Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 Comparison of theoretical and experimental modal analysis results of a rectangular three dimensional frame p 22 A88-50873 Design and development of a computer controlled system for spacecraft static testing p 11 A88-54896 INTERNATIONAL ORGANIZATION The Infrared Space Observatory (ISO) project p 3 A88-39077 Mechanical and electrical characteristics of tin whiskers with special reference to spacecraft systems p 67 A88-46192 Laboratory model of a Tethered Satellite - Current	dielectrics simulated by electron beam p 57 A88-47970 Dynamics and control of experimental tendon control system for flexible space structure [AIAA PAPER 88-4154] p 36 A88-50248 A slew maneuver experiment of mission function control [AIAA PAPER 88-4226] p 38 A88-50367 Design of an on-board antenna pointing control system for communication satellites [AIAA PAPER 88-4206] p 39 A88-50431 Digital sequential shunt regulator for solar power conditioning of Engineering Test Satellite (ETS-V) p 86 A88-54696 Tethered subsatellite swinging from atmospheric gradients p 46 A88-55067 Development of a magnetically suspended, tetrahedron-shaped antenna pointing system p 18 N88-21478 Japanese space station module p 98 N88-22224 Solar cell cover glasses for satellites p 69 N88-22225 Dynamics of a flexible orbiting platform with MFMS	Far infrared spectroscopy telescope (FIRST) inflatable thermal shield, phase 1 [SR/FIS/108(87)CZ] p 24 N88-30552 T TAIWAN Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 U U.S.S.R. Electrotopographic investigation of the degradation dynamics of dielectric layers in space p 62 A88-33958 Secular effects in the translational-rotational motion of an orbital station with artificial gravity p 90 A88-36123 Optimal rendezvous in a gravitational field with limited observations p 90 A88-36144 'Glazar' - An orbital ultraviolet telescope
Effect of solar pressure on the motion and stability of the system of two inter-connected satellites in an elliptical orbit p 24 A88-33104 Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 Comparison of theoretical and experimental modal analysis results of a rectangular three dimensional frame p 22 A88-50873 Design and development of a computer controlled system for spacecraft static testing p 11 A88-54896 INTERNATIONAL ORGANIZATION The Infrared Space Observatory (ISO) project p 3 A88-39077 Mechanical and electrical characteristics of tin whiskers with special reference to spacecraft systems p 67 A88-46192 Laboratory model of a Tethered Satellite - Current collection upon and sheath formation around a charged body in a drifting magnetoplasma p 57 A88-4806	dielectrics simulated by electron beam p 57 A88-47970 Dynamics and control of experimental tendon control system for flexible space structure [AIAA PAPER 88-4154] p 36 A88-50248 A slew maneuver experiment of mission function control [AIAA PAPER 88-4226] p 38 A88-50367 Design of an on-board antenna pointing control system for communication satellites [AIAA PAPER 88-4226] p 39 A88-50431 Digital sequential shunt regulator for solar power conditioning of Engineering Test Satellite (ETS-V) p 86 A88-54696 Tethered subsatellite swinging from atmospheric gradients p 46 A88-55067 Development of a magnetically suspended, tetrahedron-shaped antenna pointing system p 18 N88-21478 Japanese space station module p 98 N88-22224 Solar cell cover glasses for satellites	Far infrared spectroscopy telescope (FIRST) inflatable thermal shield, phase 1 [SR/FIS/108(87)CZ] p 24 N88-30552 T TAIWAN Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 U U.S.S.R. Electrotopographic investigation of the degradation dynamics of dielectric layers in space Secular effects in the translational-rotational motion of an orbital station with artificial gravity p 90 A88-36123 Optimal rendezvous in a gravitational field with limited observations p 90 A88-36144 'Glazar' - An orbital ultraviolet telescope p 91 A88-38826
Effect of solar pressure on the motion and stability of the system of two inter-connected satellites in an elliptical orbit p 24 A88-33104 Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 Comparison of theoretical and experimental modal analysis results of a rectangular three dimensional frame p 22 A88-50873 Design and development of a computer controlled system for spacecraft static testing p 11 A88-54896 INTERNATIONAL ORGANIZATION The Infrared Space Observatory (ISO) project p 3 A88-39077 Mechanical and electrical characteristics of tin whiskers with special reference to spacecraft systems p 67 A88-46192 Laboratory model of a Tethered Satellite - Current collection upon and sheath formation around a charged body in a drifting magnetoplasma p 57 A88-46806 Astrodynamics problems of the Space Station p 33 A88-47907 The European long-term space plan p 4 A88-49820	dielectrics simulated by electron beam p 57 A88-47970 Dynamics and control of experimental tendon control system for flexible space structure [AIAA PAPER 88-4154] p 36 A88-50248 A slew maneuver experiment of mission function control [AIAA PAPER 88-4226] p 38 A88-50367 Design of an on-board antenna pointing control system for communication satellites [AIAA PAPER 88-4206] p 39 A88-50431 Digital sequential shunt regulator for solar power conditioning of Engineering Test Satellite (ETS-V) p 86 A88-54696 Tethered subsatellite swinging from atmospheric gradients p 46 A88-55067 Development of a magnetically tetrahedron-shaped antenna pointing system p 18 N88-21478 Japanese space station module p 98 N88-22224 Solar cell cover glasses for satellites p 69 N88-22225 Dynamics of a flexible orbiting platform with MFMS [ISSN-0285-6808] p 51 N88-24673	Far infrared spectroscopy telescope (FIRST) inflatable thermal shield, phase 1 [SR/FIS/108(87)CZ] p 24 N88-30552 T TAIWAN Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 U U.S.S.R. Electrotopographic investigation of the degradation dynamics of dielectric layers in space p 62 A88-33958 Secular effects in the translational-rotational motion of an orbital station with artificial gravity p 90 A88-36123 Optimal rendezvous in a gravitational field with limited observations p 90 A88-36144 'Glazar' - An orbital ultraviolet telescope p 91 A88-38826 Scientific and economy-oriented space systems
Effect of solar pressure on the motion and stability of the system of two inter-connected satellites in an elliptical orbit p 24 A88-33104 Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 Comparison of theoretical and experimental modal analysis results of a rectangular three dimensional frame p 22 A88-50873 Design and development of a computer controlled system for spacecraft static testing p 11 A88-54896 INTERNATIONAL ORGANIZATION The Infrared Space Observatory (ISO) project p 3 A88-39077 Mechanical and electrical characteristics of tin whiskers with special reference to spacecraft systems p 67 A88-46192 Laboratory model of a Tethered Satellite - Current collection upon and sheath formation around a charged body in a drifting magnetoplasma p 57 A88-46806 Astrodynamics problems of the Space Station p 33 A88-47907 The European long-term space plan p 4 A88-49820 The use of pyrotechnics on spacecraft	dielectrics simulated by electron beam p 57 A88-47970 Dynamics and control of experimental tendon control system for flexible space structure [AIAA PAPER 88-4154] p 36 A88-50248 A slew maneuver experiment of mission function control [AIAA PAPER 88-4226] p 38 A88-50367 Design of an on-board antenna pointing control system for communication satellites [AIAA PAPER 88-4206] p 39 A88-50431 Digital sequential shunt regulator for solar power conditioning of Engineering Test Satellite (ETS-V) p 86 A88-54696 Tethered subsatellite swinging from atmospheric gradients p 46 A88-55067 Development of a magnetically suspended, tetrahedron-shaped antenna pointing system p 18 N88-21478 Japanese space station module p 98 N88-22224 Solar cell cover glasses for satellites p 69 N88-22225 Dynamics of a flexible orbiting platform with MFMS	Far infrared spectroscopy telescope (FIRST) inflatable thermal shield, phase 1 [SR/FIS/108(87)CZ] p 24 N88-30552 T TAIWAN Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 U U.S.S.R. Electrotopographic investigation of the degradation dynamics of dielectric layers in space p 62 A88-33958 Secular effects in the translational-rotational motion of an orbital station with artificial gravity p 90 A88-36123 Optimal rendezvous in a gravitational field with limited observations p 90 A88-36144 'Glazar' - An orbital ultraviolet telescope p 91 A88-38826 Scientific and economy-oriented space systems /revised edition/
Effect of solar pressure on the motion and stability of the system of two inter-connected satellites in an elliptical orbit p 24 A88-33104 Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 Comparison of theoretical and experimental modal analysis results of a rectangular three dimensional frame p 22 A88-50873 Design and development of a computer controlled system for spacecraft static testing p 11 A88-54896 INTERNATIONAL ORGANIZATION The Infrared Space Observatory (ISO) project p 3 A88-39077 Mechanical and electrical characteristics of tin whiskers with special reference to spacecraft systems p 67 A88-46192 Laboratory model of a Tethered Satellite - Current collection upon and sheath formation around a charged body in a drifting magnetoplasma p 57 A88-46806 Astrodynamics problems of the Space Station p 33 A88-47907 The European long-term space plan p 4 A88-49820 The use of pyrotechnics on spacecraft	dielectrics simulated by electron beam p 57 A88-47970 Dynamics and control of experimental tendon control system for flexible space structure [AIAA PAPER 88-4154] p 36 A88-50248 A slew maneuver experiment of mission function control [AIAA PAPER 88-4226] p 38 A88-50367 Design of an on-board antenna pointing control system for communication satellites [AIAA PAPER 88-4206] p 39 A88-50431 Digital sequential shunt regulator for solar power conditioning of Engineering Test Satellite (ETS-V) p 86 A88-54696 Tethered subsatellite swinging from atmospheric gradients p 46 A88-55067 Development of a magnetically suspended, tetrahedron-shaped antenna pointing system p 18 N88-21478 Japanese space station module p 98 N88-22224 Solar cell cover glasses for satellites p 69 N88-22225 Dynamics of a flexible orbiting platform with MRMS [ISSN-0285-6808] N88-24673	Far infrared spectroscopy telescope (FIRST) inflatable thermal shield, phase 1 [SR/FIS/108(87)CZ] p 24 N88-30552 T TAIWAN Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 U.S.S.R. Electrotopographic investigation of the degradation dynamics of dielectric layers in space p 62 A88-33958 Secular effects in the translational-rotational motion of an orbital station with artificial gravity p 90 A88-36123 Optimal rendezvous in a gravitational field with limited observations p 90 A88-36144 'Glazar' - An orbital ultraviolet telescope Scientific and economy-oriented p 90 A88-38826 Scientific and economy-oriented p 90 A88-3842847 Ballistic design of space systems p 93 A88-44288 Determination of the motion of the Salyut 6 and 7 orbital
Effect of solar pressure on the motion and stability of the system of two inter-connected satellites in an elliptical orbit p 24 A88-33104 Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 Comparison of theoretical and experimental modal analysis results of a rectangular three dimensional frame p 22 A88-50873 Design and development of a computer controlled system for spacecraft static testing p 11 A88-54896 INTERNATIONAL ORGANIZATION The Infrared Space Observatory (ISO) project p 3 A88-39077 Mechanical and electrical characteristics of tin whiskers with special reference to spacecraft systems p 67 A88-46192 Laboratory model of a Tethered Satellite - Current collection upon and sheath formation around a charged body in a drifting magnetoplasma p 57 A88-46806 Astrodynamics problems of the Space Station p 33 A88-47907 The European long-term space plan p 4 A88-49820 The use of pyrotechnics on spacecraft p 85 A88-49825 Analytical models for relative motion under constant	dielectrics simulated by electron beam p 57 A88-47970 Dynamics and control of experimental tendon control system for flexible space structure [AIAA PAPER 88-4154] p 36 A88-50248 A slew maneuver experiment of mission function control [AIAA PAPER 88-4226] p 38 A88-50367 Design of an on-board antenna pointing control system for communication satellites [AIAA PAPER 88-4206] p 39 A88-50431 Digital sequential shunt regulator for solar power conditioning of Engineering Test Satellite (ETS-V) p 86 A88-54696 Tethered subsatellite swinging from atmospheric gradients p 46 A88-55067 Development of a magnetically suspended, tetrahedron-shaped antenna pointing system p 18 N88-21478 Japanese space station module p 98 N88-22224 Solar cell cover glasses for satellites p 69 N88-22224 Solar cell cover glasses for satellites p 69 N88-22225 Dynamics of a flexible orbiting platform with MFMS [ISSN-0285-6808]	Far infrared spectroscopy telescope (FIRST) inflatable thermal shield, phase 1 [SR/FIS/108(87)CZ] p 24 N88-30552 T TAIWAN Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 U U.S.S.R. Electrotopographic investigation of the degradation dynamics of dielectric layers in space p 62 A88-33958 Secular effects in the translational-rotational motion of an orbital station with artificial gravity p 90 A88-36123 Optimal rendezvous in a gravitational field with limited observations Glazar' - An orbital ultraviolet telescope p 91 A88-36144 'Glazar' - An orbital ultraviolet telescope p 91 A88-38826 Scientific and economy-oriented space systems p 93 A88-43247 Ballistic design of space systems p 9 A88-44898 Determination of the motion of the Salyut 6 and 7 orbital stations with respect to the mass center in the slow spin
Effect of solar pressure on the motion and stability of the system of two inter-connected satellites in an elliptical orbit p 24 A88-33104 Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 Comparison of theoretical and experimental modal analysis results of a rectangular three dimensional frame p 22 A88-50873 Design and development of a computer controlled system for spacecraft static testing p 11 A88-54896 INTERNATIONAL ORGANIZATION The Infrared Space Observatory (ISO) project p 3 A88-39077 Mechanical and electrical characteristics of tin whiskers with special reference to spacecraft systems p 67 A88-46192 Laboratory model of a Tethered Satellite - Current collection upon and sheath formation around a charged body in a drifting magnetoplasma p 57 A88-4806 Astrodynamics problems of the Space Station p 33 A88-47907 The European long-term space plan p 4 A88-49820 The use of pyrotechnics on spacecraft p 85 A88-49825 Analytical models for relative motion under constant thrust	dielectrics simulated by electron beam p 57 A88-47970 Dynamics and control of experimental tendon control system for flexible space structure [AIAA PAPER 88-4154] p 36 A88-50248 A slew maneuver experiment of mission function control [AIAA PAPER 88-4226] p 38 A88-50367 Design of an on-board antenna pointing control system for communication satellites [AIAA PAPER 88-4306] p 39 A88-50431 Digital sequential shunt regulator for solar power conditioning of Engineering Test Satellite (ETS-V) p 86 A88-5496 Tethered subsatellite swinging from atmospheric gradients Development of a magnetically suspended, tetrahedron-shaped antenna pointing system p 18 N88-21478 Japanese space station module p 98 N88-22224 Solar cell cover glasses for satellites p 69 N88-22225 Dynamics of a flexible orbiting platform with MFMS [ISSN-0285-6808] p 51 N88-24673 NETHERLANDS Robust control of flexible structures - A case study	Far infrared spectroscopy telescope (FIRST) inflatable thermal shield, phase 1 [SR/FIS/108(87)CZ] p 24 N88-30552 T TAIWAN Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 U U.S.S.R. Electrotopographic investigation of the degradation dynamics of dielectric layers in space p 62 A88-33958 Secular effects in the translational-rotational motion of an orbital station with artificial gravity p 90 A88-36123 Optimal rendezvous in a gravitational field with limited observations p 90 A88-36144 'Glazar' - An orbital ultraviolet telescope p 91 A88-38826 Scientific and economy-oriented space systems p 93 A88-44898 Determination of the motion of the Salyut 6 and 7 orbital stations with respect to the mass center in the slow spin mode on the basis of measurement data
Effect of solar pressure on the motion and stability of the system of two inter-connected satellites in an elliptical orbit p 24 A88-33104 Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 Comparison of theoretical and experimental modal analysis results of a rectangular three dimensional frame p 22 A88-50873 Design and development of a computer controlled system for spacecraft static testing p 11 A88-54896 INTERNATIONAL ORGANIZATION The Infrared Space Observatory (ISO) project p 3 A88-39077 Mechanical and electrical characteristics of tin whiskers with special reference to spacecraft systems p 67 A88-46192 Laboratory model of a Tethered Satellite - Current collection upon and sheath formation around a charged body in a drifting magnetoplasma p 57 A88-46806 Astrodynamics problems of the Space Station p 33 A88-47907 The European long-term space plan p 4 A88-49820 The use of pyrotechnics on spacecraft p 85 A88-49825 Analytical models for relative motion under constant thrust [AIAA PAPER 88-4300] p 85 A88-50425 Quasat - A 50,000 km-diameter Quasar probe	dielectrics simulated by electron beam p 57 A88-47970 Dynamics and control of experimental tendon control system for flexible space structure [AIAA PAPER 88-4154] p 36 A88-50248 A slew maneuver experiment of mission function control [AIAA PAPER 88-4226] p 38 A88-50367 Design of an on-board antenna pointing control system for communication satellites [AIAA PAPER 88-4206] p 39 A88-50431 Digital sequential shunt regulator for solar power conditioning of Engineering Test Satellite (ETS-V) p 86 A88-54696 Tethered subsatellite swinging from atmospheric gradients p 46 A88-55067 Development of a magnetically suspended, tetrahedron-shaped antenna pointing system p 18 N88-21478 Japanese space station module p 98 N88-22224 Solar cell cover glasses for satellites p 69 N88-22225 Dynamics of a flexible orbiting platform with MRMS [ISSN-0285-6808] p 51 N88-24673	Far infrared spectroscopy telescope (FIRST) inflatable thermal shield, phase 1 [SR/FIS/108(87)CZ] p 24 N88-30552 T TAIWAN Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 U U.S.S.R. Electrotopographic investigation of the degradation dynamics of dielectric layers in space p 62 A88-33958 Secular effects in the translational-rotational motion of an orbital station with artificial gravity p 90 A88-36123 Optimal rendezvous in a gravitational field with limited observations p 90 A88-36144 'Glazar' - An orbital ultraviolet telescope p 91 A88-38826 Scientific and economy-oriented /revised edition/ Ballistic design of space systems p 9 A88-43247 Ballistic design of space systems p 9 A88-44898 Determination of the motion of the Salyut 6 and 7 orbital stations with respect to the mass center in the slow spin mode on the basis of measurement data
Effect of solar pressure on the motion and stability of the system of two inter-connected satellites in an elliptical orbit p 24 A88-33104 Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 Comparison of theoretical and experimental modal analysis results of a rectangular three dimensional frame p 22 A88-50873 Design and development of a computer controlled system for spacecraft static testing p 11 A88-54896 INTERNATIONAL ORGANIZATION The Infrared Space Observatory (ISO) project p 3 A88-39077 Mechanical and electrical characteristics of tin whiskers with special reference to spacecraft systems p 67 A88-46192 Laboratory model of a Tethered Satellite - Current collection upon and sheath formation around a charged body in a drifting magnetoplasma p 57 A88-46806 Astrodynamics problems of the Space Station p 33 A88-47907 The European long-term space plan p 4 A88-49820 The use of pyrotechnics on spacecraft p 85 A88-49825 Analytical models for relative motion under constant thrust [AIAA PAPER 88-4300] p 85 A88-50425 Quasat - A 50,000 km-diameter Quasar probe p 96 A88-54766	dielectrics simulated by electron beam p 57 A88-47970 Dynamics and control of experimental tendon control system for flexible space structure [AIAA PAPER 88-4154] p 36 A88-50248 A slew maneuver experiment of mission function control [AIAA PAPER 88-4226] p 38 A88-50367 Design of an on-board antenna pointing control system for communication satellites [AIAA PAPER 88-4306] p 39 A88-50431 Digital sequential shunt regulator for solar power conditioning of Engineering Test Satellite (ETS-V) p 86 A88-5496 Tethered subsatellite swinging from atmospheric gradients Development of a magnetically suspended, tetrahedron-shaped antenna pointing system p 18 N88-21478 Japanese space station module p 98 N88-22224 Solar cell cover glasses for satellites p 69 N88-22225 Dynamics of a flexible orbiting platform with MFMS [ISSN-0285-6808] p 51 N88-24673 NETHERLANDS Robust control of flexible structures - A case study	Far infrared spectroscopy telescope (FIRST) inflatable thermal shield, phase 1 [SR/FIS/108(87)CZ] p 24 N88-30552 T TAIWAN Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 U U.S.S.R. Electrotopographic investigation of the degradation dynamics of dielectric layers in space p 62 A88-33958 Secular effects in the translational-rotational motion of an orbital station with artificial gravity p 90 A88-36123 Optimal rendezvous in a gravitational field with limited observations p 90 A88-36144 'Glazar' - An orbital ultraviolet telescope p 91 A88-38826 Scientific and economy-oriented space systems p 93 A88-44898 Determination of the motion of the Salyut 6 and 7 orbital stations with respect to the mass center in the slow spin mode on the basis of measurement data
Effect of solar pressure on the motion and stability of the system of two inter-connected satellites in an elliptical orbit p 24 A88-33104 Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 Comparison of theoretical and experimental modal analysis results of a rectangular three dimensional frame p 22 A88-50873 Design and development of a computer controlled system for spacecraft static testing p 11 A88-54896 INTERNATIONAL ORGANIZATION The Infrared Space Observatory (ISO) project p 3 A88-39077 Mechanical and electrical characteristics of tin whiskers with special reference to spacecraft systems p 67 A88-46192 Laboratory model of a Tethered Satellite - Current collection upon and sheath formation around a charged body in a drifting magnetoplasma p 57 A88-46806 Astrodynamics problems of the Space Station p 33 A88-47907 The European long-term space plan p 4 A88-49820 The use of pyrotechnics on spacecraft p 85 A88-49825 Analytical models for relative motion under constant thrust [AIAA PAPER 88-4300] p 85 A88-50425 Quasat - A 50,000 km-diameter Quasar probe p 96 A88-54766 Fast geostationary satellite relocation	dielectrics simulated by electron beam p 57 A88-47970 Dynamics and control of experimental tendon control system for flexible space structure [AIAA PAPER 88-4154] p 36 A88-50248 A slew maneuver experiment of mission function control [AIAA PAPER 88-4226] p 38 A88-50367 Design of an on-board antenna pointing control system for communication satellites [AIAA PAPER 88-4226] p 39 A88-50431 Digital sequential shunt regulator for solar power conditioning of Engineering Test Satellite (ETS-V) p 86 A88-54696 Tethered subsatellite swinging from atmospheric gradients p 46 A88-55067 Development of a magnetically suspended, tetrahedron-shaped antenna pointing system p 18 N88-21478 Japanese space station module p 98 N88-22224 Solar cell cover glasses for satellites p 69 N88-22225 Dynamics of a flexible orbiting platform with MFMS [ISSN-0285-6808] p 51 N88-24673 N NETHERLANDS Robust control of flexible structures - A case study p 29 A88-40489 The Hipparcos solar panels p 14 A88-45452 Simulation of space manipulator operations (Eurosim)	Far infrared spectroscopy telescope (FIRST) inflatable thermal shield, phase 1 [SR/FIS/108(87)CZ] p 24 N88-30552 T TAIWAN Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 U U.S.S.R. Electrotopographic investigation of the degradation dynamics of dielectric layers in space Secular effects in the translational-rotational motion of an orbital station with artificial gravity p 90 A88-36123 Optimal rendezvous in a gravitational field with limited observations p 90 A88-36124 'Glazar' - An orbital ultraviolet telescope p 91 A88-38826 Scientific and economy-oriented / revised edition/ Ballistic design of space systems p 93 A88-43247 Ballistic design of space systems Determination of the motion of the Salyut 6 and 7 orbital stations with respect to the mass center in the slow spin mode on the basis of measurement data p 31 A88-45467 Soviet space achievements in 1985 according to press materials p 95 A88-46070 Mathematical modeling of the dynamics of a spacecraft
Effect of solar pressure on the motion and stability of the system of two inter-connected satellites in an elliptical orbit p 24 A88-33104 Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 Comparison of theoretical and experimental modal analysis results of a rectangular three dimensional frame p 22 A88-50873 Design and development of a computer controlled system for spacecraft static testing p 11 A88-54896 INTERNATIONAL ORGANIZATION The Infrared Space Observatory (ISO) project p 3 A88-39077 Mechanical and electrical characteristics of tin whiskers with special reference to spacecraft systems p 67 A88-46192 Laboratory model of a Tethered Satellite - Current collection upon and sheath formation around a charged body in a drifting magnetoplasma p 57 A88-46806 Astrodynamics problems of the Space Station p 33 A88-47907 The European long-term space plan p 4 A88-49820 The use of pyrotechnics on spacecraft p 85 A88-49825 Analytical models for relative motion under constant thrust [AIAA PAPER 88-4300] p 85 A88-50425 Quasat - A 50,000 km-diameter Quasar probe p 96 A88-54766 Fast geostationary satellite relocation [IAF PAPER 88-314] p 97 A88-55390	dielectrics simulated by electron beam p 57 A88-47970 Dynamics and control of experimental tendon control system for flexible space structure [AIAA PAPER 88-4154] p 36 A88-50248 A slew maneuver experiment of mission function control [AIAA PAPER 88-4226] p 38 A88-50367 Design of an on-board antenna pointing control system for communication satellites [AIAA PAPER 88-4226] p 39 A88-50431 Digital sequential shunt regulator for solar power conditioning of Engineering Test Satellite (ETS-V) p 86 A88-54696 Tethered subsatellite swinging from atmospheric gradients p 46 A88-55067 Development of a magnetically suspended, tetrahedron-shaped antenna pointing system p 18 N88-21478 Japanese space station module p 98 N88-22224 Solar cell cover glasses for satellites p 69 N88-22225 Dynamics of a flexible orbiting platform with MRMS [ISSN-0285-6808] p 51 N88-24673 N NETHERLANDS Robust control of flexible structures - A case study p 29 A88-40489 The Hipparcos solar panels p 14 A88-45452 Simulation of space manipulator operations (Eurosim) p 10 A88-46982 Moveable thermal joints for deployable or steerable	Far infrared spectroscopy telescope (FIRST) inflatable thermal shield, phase 1 [SR/FIS/108(87)CZ] p 24 N88-30552 T TAIWAN Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 U U.S.S.R. Electrotopographic investigation of the degradation dynamics of dielectric layers in space p 62 A88-33958 Secular effects in the translational-rotational motion of an orbital station with artificial gravity p 90 A88-36123 Optimal rendezvous in a gravitational field with limited observations p 90 A88-36144 'Glazar' - An orbital ultraviolet telescope p 91 A88-38826 Scientific and economy-oriented space systems p 93 A88-43247 Ballistic design of space systems p 9 A88-44898 Determination of the motion of the Salyut 6 and 7 orbital stations with respect to the mass center in the slow spin mode on the basis of measurement data p 31 A88-45467 Soviet space achievements in 1985 according to press materials p 95 A88-46070 Mathematical modeling of the dynamics of a spacecraft with elastic components p 33 A88-48080
Effect of solar pressure on the motion and stability of the system of two inter-connected satellites in an elliptical orbit p 24 A88-33104 Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 Comparison of theoretical and experimental modal analysis results of a rectangular three dimensional frame p 22 A88-50873 Design and development of a computer controlled system for spacecraft static testing p 11 A88-54896 INTERNATIONAL ORGANIZATION The Infrared Space Observatory (ISO) project p 3 A88-39077 Mechanical and electrical characteristics of tin whiskers with special reference to spacecraft systems p 67 A88-46192 Laboratory model of a Tethered Satellite - Current collection upon and sheath formation around a charged body in a drifting magnetoplasma p 57 A88-46806 Astrodynamics problems of the Space Station p 33 A88-47907 The European long-term space plan p 4 A88-49820 The use of pyrotechnics on spacecraft p 85 A88-49825 Analytical models for relative motion under constant thrust [AIAA PAPER 88-4300] p 85 A88-50425 Quasat - A 50,000 km-diameter Quasar probe p 96 A88-54766 Fast geostationary satellite relocation [IAF PAPER 88-314] p 97 A88-55390	dielectrics simulated by electron beam p 57 A88-47970 Dynamics and control of experimental tendon control system for flexible space structure [AIAA PAPER 88-4154] p 36 A88-50248 A slew maneuver experiment of mission function control [AIAA PAPER 88-4226] p 38 A88-50367 Design of an on-board antenna pointing control system for communication satellities [AIAA PAPER 88-4306] p 39 A88-50431 Digital sequential shunt regulator for solar power conditioning of Engineering Test Satellite (ETS-V) p 86 A88-5496 Tethered subsatellite swinging from atmospheric gradients Development of a magnetically suspended, tetrahedron-shaped antenna pointing system p 18 N88-21478 Japanese space station module p 98 N88-22224 Solar cell cover glasses for satellites p 69 N88-22225 Dynamics of a flexible orbiting platform with MFMS [ISSN-0285-6808] p 51 N88-24673 N NETHERLANDS Robust control of flexible structures - A case study p 29 A88-40489 The Hipparcos solar panels p 14 A88-45452 Simulation of space manipulator operations (Eurosim) p 10 A88-46982 Moveable thermal joints for deployable or steerable spacecraft radiator systems	Far infrared spectroscopy telescope (FIRST) inflatable thermal shield, phase 1 [SR/FIS/108(87)CZ] p 24 N88-30552 T TAIWAN Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 U U.S.S.R. Electrotopographic investigation of the degradation dynamics of dielectric layers in space p 62 A88-33958 Secular effects in the translational-rotational motion of an orbital station with artificial gravity p 90 A88-36123 Optimal rendezvous in a gravitational field with limited observations p 90 A88-36144 'Glazar' - An orbital ultraviolet telescope p 91 A88-38826 Scientific and economy-oriented space systems p 93 A88-480247 Ballistic design of space systems p 93 A88-44898 Determination of the motion of the Salyut 6 and 7 orbital stations with respect to the mass center in the slow spin mode on the basis of measurement data p 31 A88-45467 Soviet space achievements in 1985 according to press materials p 95 A88-46070 Mathermatical modeling of the dynamics of a system of bodies
Effect of solar pressure on the motion and stability of the system of two inter-connected satellites in an elliptical orbit p 24 A88-33104 Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 Comparison of theoretical and experimental modal analysis results of a rectangular three dimensional frame p 22 A88-50873 Design and development of a computer controlled system for spacecraft static testing p 11 A88-54896 INTERNATIONAL ORGANIZATION The Infrared Space Observatory (ISO) project p 3 A88-39077 Mechanical and electrical characteristics of tin whiskers with special reference to spacecraft systems p 67 A88-46192 Laboratory model of a Tethered Satellite - Current collection upon and sheath formation around a charged body in a drifting magnetoplasma p 57 A88-46806 Astrodynamics problems of the Space Station p 33 A88-47907 The European long-term space plan p 4 A88-49820 The use of pyrotechnics on spacecraft p 85 A88-49825 Analytical models for relative motion under constant thrust [AIAA PAPER 88-4300] p 85 A88-50425 Quasat - A 50,000 km-diameter Quasar probe p 96 A88-54766 Fast geostationary satellite relocation [IAF PAPER 88-314] p 97 A88-55390 IRELAND Focal-plane and aperture-plane heterodyne array receivers for millimeter-wave radioastronomy - A	dielectrics simulated by electron beam p 57 A88-47970 Dynamics and control of experimental tendon control system for flexible space structure [AIAA PAPER 88-4154] p 36 A88-50248 A slew maneuver experiment of mission function control [AIAA PAPER 88-4226] p 38 A88-50367 Design of an on-board antenna pointing control system for communication satellites [AIAA PAPER 88-4226] p 39 A88-50431 Digital sequential shunt regulator for solar power conditioning of Engineering Test Satellite (ETS-V) p 86 A88-54696 Tethered subsatellite swinging from atmospheric gradients p 46 A88-55067 Development of a magnetically suspended, tetrahedron-shaped antenna pointing system p 18 N88-21478 Japanese space station module p 98 N88-22224 Solar cell cover glasses for satellites p 69 N88-22225 Dynamics of a flexible orbiting platform with MFMS [ISSN-0285-6808] p 51 N88-24673 N NETHERLANDS Robust control of flexible structures - A case study p 29 A88-40489 The Hipparcos solar panels p 14 A88-45452 Simulation of space manipulator operations (Eurosim) p 10 A88-46982 Moveable thermal joints for deployable or steerable spacecraft radiator systems [NLR-MP-87016-U] p 14 N88-20347	Far infrared spectroscopy telescope (FIRST) inflatable thermal shield, phase 1 [SR/FIS/108(87)CZ] p 24 N88-30552 T TAIWAN Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 U U.S.S.R. Electrotopographic investigation of the degradation dynamics of dielectric layers in space Secular effects in the translational-rotational motion of an orbital station with artificial gravity p 90 A88-36123 Optimal rendezvous in a gravitational field with limited observations p 90 A88-36123 Optimal rendezvous in a gravitational field with limited observations p 90 A88-36124 'Glazar' - An orbital ultraviolet telescope p 91 A88-38826 Scientific and economy-oriented frevised edition/ Ballistic design of space systems Determination of the motion of the Salyut 6 and 7 orbital stations with respect to the mass center in the slow spin mode on the basis of measurement data p 31 A88-45467 Soviet space achievements in 1985 according to press materials p 95 A88-46070 Mathematical modeling of the dynamics of a spacecraft with elastic components p 33 A88-48080 lnvestigation of the dynamics of a system of bodies containing extended elastic components in a central force
Effect of solar pressure on the motion and stability of the system of two inter-connected satellites in an elliptical orbit p 24 A88-33104 Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 Comparison of theoretical and experimental modal analysis results of a rectangular three dimensional frame p 22 A88-50873 Design and development of a computer controlled system for spacecraft static testing p 11 A88-54896 INTERNATIONAL ORGANIZATION The Infrared Space Observatory (ISO) project p 3 A88-39077 Mechanical and electrical characteristics of tin whiskers with special reference to spacecraft systems p 67 A88-46192 Laboratory model of a Tethered Satellite - Current collection upon and sheath formation around a charged body in a drifting magnetoplasma p 57 A88-46806 Astrodynamics problems of the Space Station p 33 A88-47907 The European long-term space plan p 4 A88-49825 The use of pyrotechnics on spacecraft p 85 A88-49825 Analytical models for relative motion under constant thrust [AIAA PAPER 88-4300] p 85 A88-50425 Quasat - A 50,000 km-diameter Quasar probe p 96 A88-54766 Fast geostationary satellite relocation [IAF PAPER 88-314] p 97 A88-55390 IRELAND Focal-plane and aperture-plane heterodyne array	dielectrics simulated by electron beam p 57 A88-47970 Dynamics and control of experimental tendon control system for flexible space structure [AIAA PAPER 88-4154] p 36 A88-50248 A slew maneuver experiment of mission function control [AIAA PAPER 88-4226] p 38 A88-50367 Design of an on-board antenna pointing control system for communication satellities [AIAA PAPER 88-4306] p 39 A88-50431 Digital sequential shunt regulator for solar power conditioning of Engineering Test Satellite (ETS-V) p 86 A88-5496 Tethered subsatellite swinging from atmospheric gradients Development of a magnetically suspended, tetrahedron-shaped antenna pointing system p 18 N88-21478 Japanese space station module p 98 N88-22224 Solar cell cover glasses for satellites p 69 N88-22225 Dynamics of a flexible orbiting platform with MFMS [ISSN-0285-6808] p 51 N88-24673 N NETHERLANDS Robust control of flexible structures - A case study p 29 A88-40489 The Hipparcos solar panels p 14 A88-45452 Simulation of space manipulator operations (Eurosim) p 10 A88-46982 Moveable thermal joints for deployable or steerable spacecraft radiator systems	Far infrared spectroscopy telescope (FIRST) inflatable thermal shield, phase 1 [SR/FIS/108(87)CZ] p 24 N88-30552 T TAIWAN Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 U U.S.S.R. Electrotopographic investigation of the degradation dynamics of dielectric layers in space p 62 A88-33958 Secular effects in the translational-rotational motion of an orbital station with artificial gravity p 90 A88-36123 Optimal rendezvous in a gravitational field with limited observations p 90 A88-36144 'Glazar' - An orbital ultraviolet telescope p 91 A88-38826 Scientific and economy-oriented years p 93 A88-43247 Ballistic design of space systems p 93 A88-44898 Determination of the motion of the Salyut 6 and 7 orbital stations with respect to the mass center in the slow spin mode on the basis of measurement data p 31 A88-4567 Soviet space achievements in 1985 according to press materials p 95 A88-46070 Mathematical modeling of the dynamics of a system of bodies containing extended elastic components in a central force field p 33 A88-48082
Effect of solar pressure on the motion and stability of the system of two inter-connected satellites in an elliptical orbit p. 24 A88-33104 Use of modal energy distribution in the design of honeycomb sandwich decks p. 64 A88-37466 Comparison of theoretical and experimental modal analysis results of a rectangular three dimensional frame p. 22 A88-50873 Design and development of a computer controlled system for spacecraft static testing p. 11 A88-54896 INTERNATIONAL ORGANIZATION The Infrared Space Observatory (ISO) project p. 3 A88-39077 Mechanical and electrical characteristics of tin whiskers with special reference to spacecraft systems p. 67 A88-46192 Laboratory model of a Tethered Satellite - Current collection upon and sheath formation around a charged body in a drifting magnetoplasma p. 57 A88-46806 Astrodynamics problems of the Space Station p. 33 A88-47907 The European long-term space plan p. 4 A88-49825 Analytical models for relative motion under constant thrust [AIAA PAPER 88-4300] p. 85 A88-49825 Quasat - A 50,000 km-diameter Quasar probe p. 96 A88-54766 Fast geostationary satellite relocation [IAF PAPER 88-314] p. 97 A88-5590 IRELAND Focal-plane and aperture-plane heterodyne array receivers for millimeter-wave radioastronomy - A comparison p. SARAL	dielectrics simulated by electron beam p 57 A88-47970 Dynamics and control of experimental tendon control system for flexible space structure [AIAA PAPER 88-4154] p 36 A88-50248 A slew maneuver experiment of mission function control [AIAA PAPER 88-4226] p 38 A88-50367 Design of an on-board antenna pointing control system for communication satellites [AIAA PAPER 88-4226] p 39 A88-50431 Digital sequential shunt regulator for solar power conditioning of Engineering Test Satellite (ETS-V) p 86 A88-54696 Tethered subsatellite swinging from atmospheric gradients p 46 A88-55067 Development of a magnetically suspended, tetrahedron-shaped antenna pointing system p 18 N88-21478 Japanese space station module p 98 N88-22224 Solar cell cover glasses for satellites p 69 N88-22225 Dynamics of a flexible orbiting platform with MRMS [ISSN-0285-6808] p 51 N88-24673 N NETHERLANDS Robust control of flexible structures - A case study p 29 A88-40489 The Hipparcos solar panels p 14 A88-45452 Simulation of space manipulator operations (Eurosim) p 10 A88-46982 Moveable thermal joints for deployable or steerable spacecraft radiator systems [NLR-MP-87016-U] p 14 N88-20347 SIMSAT: Simulation package for flexible systems.	Far infrared spectroscopy telescope (FIRST) inflatable thermal shield, phase 1 [SR/FIS/108(87)CZ] p 24 N88-30552 T TAIWAN Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 U U.S.S.R. Electrotopographic investigation of the degradation dynamics of dielectric layers in space p 62 A88-33958 Secular effects in the translational-rotational motion of an orbital station with artificial gravity p 90 A88-36123 Optimal rendezvous in a gravitational field with limited observations p 90 A88-36144 'Glazar' - An orbital ultraviolet telescope Scientific and economy-oriented space systems p 93 A88-36144 Ballistic design of space systems p 9 A88-48247 Ballistic design of space systems p 9 A88-44898 Determination of the motion of the Salyut 6 and 7 orbital stations with respect to the mass center in the slow spin mode on the basis of measurement dat p 31 A88-45467 Soviet space achievements in 1985 according to press materials p 95 A88-46070 Mathematical modeling of the dynamics of a spacecraft with elastic components p 33 A88-48080 Investigation of the dynamics of a system of bodies containing extended elastic components in a central force field Method for the experimental determination of the
Effect of solar pressure on the motion and stability of the system of two inter-connected satellites in an elliptical orbit Q24 A88-33104 Use of modal energy distribution in the design of honeycomb sandwich decks Comparison of theoretical and experimental modal analysis results of a rectangular three dimensional frame p 22 A88-50873 Design and development of a computer controlled system for spacecraft static testing p 11 A88-54896 INTERNATIONAL ORGANIZATION The Infrared Space Observatory (ISO) project p 3 A88-39077 Mechanical and electrical characteristics of tin whiskers with special reference to spacecraft systems p 67 A88-46192 Laboratory model of a Tethered Satellite - Current collection upon and sheath formation around a charged body in a drifting magnetoplasma p 57 A88-46806 Astrodynamics problems of the Space Station p 33 A88-47907 The European long-term space plan p 4 A88-49825 The use of pyrotechnics on spacecraft p 85 A88-49825 Analytical models for relative motion under constant thrust [AIAA PAPER 88-4300] p 85 A88-50425 Quasat - A 50,000 km-diameter Quasar probe p 96 A88-54766 Fast geostationary satellite relocation [IAF PAPER 88-314] p 97 A88-55390 IRELAND Focal-plane and aperture-plane heterodyne array receivers for millimeter-wave radioastronomy - A comparison ISRAEL Aeroassisted transfer between elliptical orbits using lift	dielectrics simulated by electron beam p 57 A88-47970 Dynamics and control of experimental tendon control system for flexible space structure [AIAA PAPER 88-4154] p 36 A88-50248 A slew maneuver experiment of mission function control [AIAA PAPER 88-4226] p 38 A88-50367 Design of an on-board antenna pointing control system for communication satellites [AIAA PAPER 88-4206] p 39 A88-50431 Digital sequential shunt regulator for solar power conditioning of Engineering Test Satellite (ETS-V) p 86 A88-54696 Tethered subsatellite swinging from atmospheric gradients p 46 A88-55067 Development of a magnetically suspended, tetrahedron-shaped antenna pointing system p 18 N88-21478 Japanese space station module p 98 N88-22224 Solar cell cover glasses for satellites p 69 N88-22225 Dynamics of a flexible orbiting platform with MRMS [ISSN-0285-6808] p 51 N88-24673 N NETHERLANDS Robust control of flexible structures - A case study p 29 A88-40489 The Hipparcos solar panels p 14 A88-45452 Simulation of space manipulator operations (Eurosim) p 10 A88-46982 Moveable thermal joints for deployable or steerable spacecraft radiator systems [NLR-MP-87016-U] p 14 N88-20347 SIMSAT: Simulation package for flexible systems. Beams in space [TW-278] p 48 N88-20348 Feasibility demonstration of a sensor for high-quality	Far infrared spectroscopy telescope (FIRST) inflatable thermal shield, phase 1 [SR/FIS/108(87)CZ] p 24 N88-30552 T TAIWAN Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 U.S.S.R. Electrotopographic investigation of the degradation dynamics of dielectric layers in space p 62 A88-33958 Secular effects in the translational-rotational motion of an orbital station with artificial gravity p 90 A88-36123 Optimal rendezvous in a gravitational field with limited observations p 90 A88-36144 'Glazar' - An orbital ultraviolet telescope p 91 A88-38826 Scientific and economy-oriented space systems p 93 A88-43247 Ballistic design of space systems p 93 A88-44898 In p 95 A88-46070 Mathematical modeling of the dynamics of a system of bodies containing extended elastic components in a central force field Method for the experimental determination of the requency characteristics of an elastic (flight vehicle with a digital control system p 34 A88-50095
Effect of solar pressure on the motion and stability of the system of two inter-connected satellites in an elliptical orbit p 24 A88-33104 Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 Comparison of theoretical and experimental modal analysis results of a rectangular three dimensional frame p 22 A88-50873 Design and development of a computer controlled system for spacecraft static testing p 11 A88-54896 INTERNATIONAL ORGANIZATION The Infrared Space Observatory (ISO) project p 3 A88-39077 Mechanical and electrical characteristics of tin whiskers with special reference to spacecraft systems p 67 A88-46192 Laboratory model of a Tethered Satellite - Current collection upon and sheath formation around a charged body in a drifting magnetoplasma p 57 A88-46806 Astrodynamics problems of the Space Station p 33 A88-47907 The European long-term space plan p 4 A88-49820 The use of pyrotechnics on spacecraft p 85 A88-49825 Analytical models for relative motion under constant thrust [AIAA PAPER 88-4300] p 85 A88-50425 Quasat - A 50,000 km-diameter Quasar probe p 96 A88-54766 Fast geostationary satellite relocation [IAF PAPER 88-314] p 97 A88-55390 IRELAND Focal-plane and aperture-plane heterodyne array receivers for millimeter-wave radioastronomy - A comparison p 58 A88-54749 ISRAEL Aeroassisted transfer between elliptical orbits using lift control	dielectrics simulated by electron beam p 57 A88-47970 Dynamics and control of experimental tendon control system for flexible space structure [AIAA PAPER 88-4154] p 36 A88-50248 A siew maneuver experiment of mission function control [AIAA PAPER 88-4226] p 38 A88-50367 Design of an on-board antenna pointing control system for communication satellities [AIAA PAPER 88-4306] p 39 A88-50431 Digital sequential shunt regulator for solar power conditioning of Engineering Test Satellite (ETS-V) p 86 A88-54696 Tethered subsatellite swinging from atmospheric gradients Development of a magnetically suspended, tetrahedron-shaped antenna pointing system p 18 N88-21478 Japanese space station module p 98 N88-22224 Solar cell cover glasses for satellites p 69 N88-22225 Dynamics of a flexible orbiting platform with MRMS [ISSN-0285-6808] p 51 N88-24673 N8 NETHERLANDS Robust control of flexible structures - A case study p 29 A88-40489 The Hipparcos solar panels p 14 A88-45452 Simulation of space manipulator operations (Eurosim) p 10 A88-46982 Moveable thermal joints for deployable or steerable spacecraft radiator systems [NLR-MP-87016-U] p 14 N88-20347 SIMSAT: Simulation package for flexible systems. Beams in space [TW-278] p 48 N88-20348 Feasibility demonstration of a sensor for high-quality two-phase flow	Far infrared spectroscopy telescope (FIRST) inflatable thermal shield, phase 1 [SR/FIS/108(87)CZ] p 24 N88-30552 T TAIWAN Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 U U.S.S.R. Electrotopographic investigation of the degradation dynamics of dielectric layers in space p 62 A88-33958 Secular effects in the translational-rotational motion of an orbital station with artificial gravity p 90 A88-36123 Optimal rendezvous in a gravitational field with limited observations p 90 A88-36144 'Glazar' - An orbital ultraviolet telescope p 91 A88-38826 Scientific and economy-oriented space systems p 93 A88-43898 Determination of the mass center in the slow spin mode on the basis of measurement data p 31 A88-45467 Soviet space achievements in 1985 according to press materials p 95 A88-46070 Mathematical modeling of the dynamics of a spacecraft with elastic components p 33 A88-46070 Mathematical modeling of the dynamics of a system of bodies containing extended elastic components in a central force field p 33 A88-48082 Method for the experimental determination of the frequency characteristics of an elastic flight vehicle with a digital control system p 93 A88-50095 Possible variants of microwave-beam structure for
Effect of solar pressure on the motion and stability of the system of two inter-connected satellites in an elliptical orbit p 24 A88-33104 Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 Comparison of theoretical and experimental modal analysis results of a rectangular three dimensional frame p 22 A88-50873 Design and development of a computer controlled system for spacecraft static testing p 11 A88-54896 INTERNATIONAL ORGANIZATION The Infrared Space Observatory (ISO) project p 3 A88-39077 Mechanical and electrical characteristics of tin whiskers with special reference to spacecraft systems p 67 A88-46192 Laboratory model of a Tethered Satellite - Current collection upon and sheath formation around a charged body in a drifting magnetoplasma p 57 A88-46806 Astrodynamics problems of the Space Station p 33 A88-47907 The European long-term space plan p 4 A88-49820 The use of pyrotechnics on spacecraft p 85 A88-49825 Analytical models for relative motion under constant thrust [AIAA PAPER 88-4300] p 85 A88-50425 Quasat - A 50,000 km-diameter Quasar probe p 96 A88-54766 Fast geostationary satellite relocation [IAF PAPER 88-314] p 97 A88-55390 IRELAND Focal-plane and aperture-plane heterodyne array receivers for millimeter-wave radioastronomy - A comparison p 58 A88-50490 ISRAEL Aeroassisted transfer between elliptical orbits using lift control [AIAA PAPER 88-4346] p 95 A88-50590	dielectrics simulated by electron beam p 57 A88-47970 Dynamics and control of experimental tendon control system for flexible space structure [AIAA PAPER 88-4154] p 36 A88-50248 A slew maneuver experiment of mission function control [AIAA PAPER 88-4226] p 38 A88-50367 Design of an on-board antenna pointing control system for communication satellites [AIAA PAPER 88-4226] p 39 A88-50431 Digital sequential shunt regulator for solar power conditioning of Engineering Test Satellite (ETS-V) p 86 A88-54696 Tethered subsatellite swinging from atmospheric gradients p 46 A88-55067 Development of a magnetically system p 18 N88-21478 Japanese space station module p 98 N88-22224 Solar cell cover glasses for satellites p 69 N88-22225 Dynamics of a flexible orbiting platform with MFMS [ISSN-0285-6808] p 51 N88-24673 N NETHERLANDS Robust control of flexible structures - A case study p 29 A88-40489 The Hipparcos solar panels p 14 A88-45452 Simulation of space manipulator operations (Eurosim) p 10 A88-46982 Moveable thermal joints for deployable or steerable spacecraft radiator systems [NLR-MP-87016-U] p 14 N88-20347 SIMSAT: Simulation package for flexible systems. Beams in space [TW-278] p 48 N88-20348 Feasibility demonstration of a sensor for high-quality two-phase flow [NLR-TR-87009-U] p 59 N88-20569	Far infrared spectroscopy telescope (FIRST) inflatable thermal shield, phase 1 [SR/FIS/108(87)CZ] p 24 N88-30552 T TAIWAN Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 U U.S.S.R. Electrotopographic investigation of the degradation dynamics of dielectric layers in space p 62 A88-33958 Secular effects in the translational-rotational motion of an orbital station with artificial gravity p 90 A88-36123 Optimal rendezvous in a gravitational field with limited observations p 90 A88-36123 Optimal rendezvous in a gravitational field with limited observations p 90 A88-36123 Scientific and economy-oriented revised edition/ Ballistic design of space systems Determination of the motion of the Salyut 6 and 7 orbital stations with respect to the mass center in the slow spin mode on the basis of measurement data p 31 A88-45467 Soviet space achievements in 1985 according to press materials p 5 A88-46070 Mathematical modeling of the dynamics of a spacecraft with elastic components p 33 A88-48080 Investigation of the dynamics of a system of bodies containing extended elastic components in a central force field Method for the experimental determination of the frequency characteristics of an elastic flight vehicle with a digital control system p 34 A88-50095 Possible variants of microwave-beam structure for satellite solar power plants p 85 A88-50671
Effect of solar pressure on the motion and stability of the system of two inter-connected satellites in an elliptical orbit	dielectrics simulated by electron beam p 57 A88-47970 Dynamics and control of experimental tendon control system for flexible space structure [AIAA PAPER 88-4154] p 36 A88-50248 A slew maneuver experiment of mission function control [AIAA PAPER 88-4226] p 38 A88-50367 Design of an on-board antenna pointing control system for communication satellites [AIAA PAPER 88-4226] p 39 A88-50431 Digital sequential shunt regulator for solar power conditioning of Engineering Test Satellite (ETS-V) p 86 A88-54696 Tethered subsatellite swinging from atmospheric gradients p 46 A88-55067 Development of a magnetically suspended, tetrahedron-shaped antenna pointing system p 18 N88-21478 Japanese space station module p 98 N88-22224 Solar cell cover glasses for satellites p 69 N88-22225 Dynamics of a flexible orbiting platform with MRMS [ISSN-0285-6808] p 51 N88-24673 N NETHERLANDS Robust control of flexible structures - A case study p 29 A88-40489 The Hipparcos solar panels p 14 A88-45452 Simulation of space manipulator operations (Eurosim) p 10 A88-46982 Moveable thermal joints for deployable or steerable spacecraft radiator systems Beams in space [TW-278] p 48 N88-20348 Feasibility demonstration of a sensor for high-quality two-phase flow [NLR-TR-87016-U] p 59 N88-20569 The CTM program of masts and the CTM engineering	Far infrared spectroscopy telescope (FIRST) inflatable thermal shield, phase 1 [SR/FIS/108(87)CZ] p 24 N88-30552 T TAIWAN Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 U.S.S.R. Electrotopographic investigation of the degradation dynamics of dielectric layers in space p 62 A88-33958 Secular effects in the translational-rotational motion of an orbital station with artificial gravity p 90 A88-36123 Optimal rendezvous in a gravitational field with limited observations p 90 A88-36144 'Glazar' - An orbital ultraviolet telescope p 91 A88-38826 Scientific and economy-oriented revised edition/ Ballistic design of space systems p 93 A88-48247 Ballistic design of space systems Determination of the motion of the Salyut 6 and 7 orbital stations with respect to the mass center in the slow spin mode on the basis of measurement data p 31 A88-4567 Soviet space achievements in 1985 according to press materials p 95 A88-46070 Mathematical modeling of the dynamics of a spacecraft with elastic components p 33 A88-48080 Investigation of the dynamics of a system of bodies containing extended elastic components in a central force p 33 A88-48082 Method for the experimental determination of the frequency characteristics of an elastic flight vehicle with a digital control system p 85 A88-50071 High-temperature solar energy systems for spacecraft
Effect of solar pressure on the motion and stability of the system of two inter-connected satellites in an elliptical orbit p 24 A88-33104 Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 Comparison of theoretical and experimental modal analysis results of a rectangular three dimensional frame p 22 A88-50873 Design and development of a computer controlled system for spacecraft static testing p 11 A88-54896 INTERNATIONAL ORGANIZATION The Infrared Space Observatory (ISO) project p 3 A88-39077 Mechanical and electrical characteristics of tin whiskers with special reference to spacecraft systems p 67 A88-46192 Laboratory model of a Tethered Satellite - Current collection upon and sheath formation around a charged body in a drifting magnetoplasma p 57 A88-46806 Astrodynamics problems of the Space Station p 33 A88-47907 The European long-term space plan p 4 A88-49820 The use of pyrotechnics on spacecraft p 85 A88-49820 The use of pyrotechnics on spacecraft p 85 A88-49825 Analytical models for relative motion under constant thrust [AIAA PAPER 88-4300] p 85 A88-50425 Quasat - A 50,000 km-diameter Quasar probe p 96 A88-54766 Fast geostationary satellite relocation [IAF PAPER 88-314] p 97 A88-55990 IRELAND Focal-plane and aperture-plane heterodyne array receivers for millimeter-wave radioastronomy - A comparison p 58 A88-54749 ISRAEL Aeroassisted transfer between elliptical orbits using lift control [AIAA PAPER 88-4346] p 95 A88-50590	dielectrics simulated by electron beam p 57 A88-47970 Dynamics and control of experimental tendon control system for flexible space structure [AIAA PAPER 88-4154] p 36 A88-50248 A slew maneuver experiment of mission function control [AIAA PAPER 88-4226] p 38 A88-50367 Design of an on-board antenna pointing control system for communication satellites [AIAA PAPER 88-4226] p 39 A88-50431 Digital sequential shunt regulator for solar power conditioning of Engineering Test Satellite (ETS-V) p 86 A88-54696 Tethered subsatellite swinging from atmospheric gradients p 46 A88-55067 Development of a magnetically system p 18 N88-21478 Japanese space station module p 98 N88-22224 Solar cell cover glasses for satellites p 69 N88-22225 Dynamics of a flexible orbiting platform with MFMS [ISSN-0285-6808] p 51 N88-24673 N NETHERLANDS Robust control of flexible structures - A case study p 29 A88-40489 The Hipparcos solar panels p 14 A88-45452 Simulation of space manipulator operations (Eurosim) p 10 A88-46982 Moveable thermal joints for deployable or steerable spacecraft radiator systems [NLR-MP-87016-U] p 14 N88-20347 SIMSAT: Simulation package for flexible systems. Beams in space [TW-278] p 48 N88-20348 Feasibility demonstration of a sensor for high-quality two-phase flow [NLR-TR-87009-U] p 59 N88-20569	Far infrared spectroscopy telescope (FIRST) inflatable thermal shield, phase 1 [SR/FIS/108(87)CZ] p 24 N88-30552 T TAIWAN Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 U U.S.S.R. Electrotopographic investigation of the degradation dynamics of dielectric layers in space p 62 A88-33958 Secular effects in the translational-rotational motion of an orbital station with artificial gravity p 90 A88-36123 Optimal rendezvous in a gravitational field with limited observations p 90 A88-36144 'Glazar' - An orbital ultraviolet telescope p 91 A88-38826 Scientific and economy-oriented space systems p 93 A88-48982 Scientific and economy-oriented space systems p 93 A88-44898 Determination of the motion of the Salyut 6 and 7 orbital stations with respect to the mass center in the slow spin mode on the basis of measurement data p 31 A88-45467 Soviet space achievements in 1985 according to press materials p 95 A88-46070 Mathematical modeling of the dynamics of a spacecraft with elastic components p 33 A88-48080 Investigation of the dynamics of a system of bodies containing extended elastic components in a central force p 33 A88-48082 Method for the experimental determination of the frequency characteristics of an elastic flight vehicle with a digital control system p 85 A88-50079 Possible variants of microwave-beam structure for satellite solar power plants p 85 A88-50769
Effect of solar pressure on the motion and stability of the system of two inter-connected satellites in an elliptical orbit p 24 A88-33104 Use of modal energy distribution in the design of honeycomb sandwich decks p 64 A88-37466 Comparison of theoretical and experimental modal analysis results of a rectangular three dimensional frame p 22 A88-50873 Design and development of a computer controlled system for spacecraft static testing p 11 A88-54896 INTERNATIONAL ORGANIZATION The Infrared Space Observatory (ISO) project p 3 A88-39077 Mechanical and electrical characteristics of tin whiskers with special reference to spacecraft systems p 67 A88-46192 Laboratory model of a Tethered Satellite - Current collection upon and sheath formation around a charged body in a drifting magnetoplasma p 57 A88-46806 Astrodynamics problems of the Space Station p 33 A88-47907 The European long-term space plan p 4 A88-49825 The use of pyrotechnics on spacecraft p 85 A88-49825 Analytical models for relative motion under constant thrust [AIAA PAPER 88-4300] p 85 A88-50425 Quasat - A 50,000 km-diameter Quasar probe p 96 A88-54766 Fast geostationary satellite relocation [IAF PAPER 88-314] p 97 A88-55390 IRELAND Focal-plane and aperture-plane heterodyne array receivers for millimeter-wave radioastronomy - A comparison ISRAEL Aeroassisted transfer between elliptical orbits using lift control [AIAA PAPER 88-4346] p 95 A88-50590	dielectrics simulated by electron beam p 57 A88-47970 Dynamics and control of experimental tendon control system for flexible space structure [AIAA PAPER 88-4154] p 36 A88-50248 A siew maneuver experiment of mission function control [AIAA PAPER 88-4226] p 38 A88-50367 Design of an on-board antenna pointing control system for communication satellities [AIAA PAPER 88-4226] p 39 A88-50431 Digital sequential shunt regulator for solar power conditioning of Engineering Test Satellite (ETS-V) p 86 A88-54696 Tethered subsatellite swinging from atmospheric gradients p 46 A88-55067 Development of a magnetically suspended, tetrahedron-shaped antenna pointing system p 18 N88-21478 Japanese space station module p 98 N88-22224 Solar cell cover glasses for satellites p 69 N88-22224 Solar cell cover glasses for satellites p 69 N88-2226 Dynamics of a flexible orbiting platform with MRMS [ISSN-0285-6808] p 51 N88-24673 N NETHERLANDS Robust control of flexible structures - A case study p 29 A88-40489 The Hipparcos solar panels p 14 A88-45452 Simulation of space manipulator operations (Eurosim) p 10 A88-46982 Moveable thermal joints for deployable or steerable spacecraft radiator systems [NLR-MP-87016-U] p 14 N88-20347 SIMSAT: Simulation package for flexible systems. Beams in space [TW-278] p 48 N88-20348 Feasibility demonstration of a sensor for high-quality two-phase flow [NLR-TR-8709-U] p 59 N88-20569 The CTM program of masts and the CTM engineering model p 15 N88-21196	Far infrared spectroscopy telescope (FIRST) inflatable thermal shield, phase 1 [SR/FIS/108(87)CZ] p 24 N88-30552 T TAIWAN Decentralized model reference adaptive control of large flexible structures p 45 A88-54587 U.S.S.R. Electrotopographic investigation of the degradation dynamics of dielectric layers in space p 62 A88-33958 Secular effects in the translational-rotational motion of an orbital station with artificial gravity p 90 A88-36123 Optimal rendezvous in a gravitational field with limited observations p 90 A88-36144 'Glazar' - An orbital ultraviolet telescope p 91 A88-38826 Scientific and economy-oriented revised edition/ Ballistic design of space systems p 93 A88-48247 Ballistic design of space systems Determination of the motion of the Salyut 6 and 7 orbital stations with respect to the mass center in the slow spin mode on the basis of measurement data p 31 A88-4567 Soviet space achievements in 1985 according to press materials p 95 A88-46070 Mathematical modeling of the dynamics of a spacecraft with elastic components p 33 A88-48080 Investigation of the dynamics of a system of bodies containing extended elastic components in a central force p 33 A88-48082 Method for the experimental determination of the frequency characteristics of an elastic flight vehicle with a digital control system p 85 A88-50071 High-temperature solar energy systems for spacecraft

The second of the 18's state of the second
The system of the Mir station motion control
[IAF PAPER 88-334] p 48 A88-55397
EVA space suits - Safety problems
[IAF PAPER 88-515] p 77 A88-55436
Features of Soyuz TM spacecraft p 97 N88-20329
Relationship between characteristics of low-energy
electrons and geomagnetic disturbance in geostationary
orbit p 62 N88-30501
UNITED KINGDOM
Computer applications in spacecraft design and
operation p 89 A88-34465
An integrated computer aided engineering system for
Space Station design p 8 A88-34469
Columbus III; Proceedings of the Third Symposium,
Capri, Italy, June 30-July 2, 1987 p 89 A88-34551
Polar Platform configuration and servicing
p 1 A88-34552
Simulation - Antidote to risk p 9 A88-40524
Orbital replaceable unit-cold plate dry thermal interface
concept and test measurements p 20 A88-42843
Heavy lift horizontal take-off and landing vehicles
p 84 A88-43863
Data management for large space systems
p 95 A88-45034
Debris in space p 85 A88-51139
Eureca TICCE - A nine-month survey of cosmic dust
and space debris at 500 km altitude p 96 A88-53242
Second thoughts on the way to the station
p 96 A88-53749
Qualification of the OLYMPUS reaction wheel
p 16 N88-21226
Development and qualification of the OLYMPUS
antenna pointing mechanism p 16 N88-21227
Qualification testing of the EUROSTAR Solar Array Drive
Mechanism (SADM) p 17 N88-21229

Typical Contract Number Index Listing

TECHNOLOGY FOR LARGE SPACE SYSTEMS / A Bibliography (Supplement 20)

Listings in this index are arranged alphanumerically by contract number. Under each contract number, the accession numbers denoting documents that have been produced as a result of research done under that contract are arranged in ascending order with the AIAA accession numbers appearing first. The accession number denotes the number by which the citation is identified in the abstract section. Preceding the accession number is the page number on which the citation may be found.

AF AFOSR-0271-84	p 51	N88-24666
AF-AFOSR-ISSA-87-0077	p 26	A88-34813
AF-AFOSR-0076-84	p 49	N88-22070
AF-AFOSR-0082-86	p 53	N88-29794
	p 54	N88-30124
AF-AFOSR-0099-87		
AF-AFOSR-0124-83	p 49	N88-22068
AF-AFOSR-0309-84	p 49	N88-22065
AF-AFOSR-0318-83	p 54	N88-29851 A88-49714
AF-AFOSR-83-0346	p 33	A88-54989
AF-AFOSR-83-0348	p 46 p 25	A88-34737
AF-AFOSR-84-0309	p 25	A88-34737
AF-AFOSR-84-0393	p 31	A88-46041
AF-AFOSR-84-0398	p 26	A88-34805
AF-AFUSH-04-0390	p 31	A88-46041
AF-AFOSR-85-0015	p 58	A88-51391
AF-AFOSR-85-01	p 26	A88-34805
AF-AFOSR-85-0220	p 26	A88-34805
AF-AFUSH-65-0220	p 30	A88-43206
AF-AFOSR-85-0287	p 25	A88-34736
AF-AFOSR-86-0116	p 52	N88-27183
DAAH01-85-D-A015	p 14	A88-54722
DAAL03-87-G-0004	p 46	A88-54655
DE-AC04-76DP-00789	p 40	A88-50586
DE-AC05-84OR-21400	p 75	A88-42668
	p 78	N88-21489
DE-AC06-76RL-01830	p 21	A88-44785
	p 67	A88-47969
	p 17	N88-21237
DE-AC07-76ID-01570	p 87	N88-24379
	p 87	N88-24681
DNA001-85-C-0183	p 29	A88-42574
	p 30	A88-42582
DRET-86-34-001	p 69	N88-23265
ESA-6272/85-NL-AB	р8	N88-29849
ESA-6324/85-NL-PB(SC)	p 24	N88-30552
ESA-6482/85	p 10	A88-46982
	p 80	N88-26678
ESA-6829/86-NL-PH(SC)	p 88	N88-29862
ESA-6837/86-NL-PP(SC)	p 82	N88-29839
ESTEC-4908/81-NL-PP(SC)	p 11	N88-20332
ESTEC-5508/83-NL-PB(SC)	p 62	N88-30182
ESTEC-6262/85-NL-PH	p 12	N88-29852
ESTEC-6358/85-NL-PP(SC)	p 53	N88-28956
ESTEC-6577/85-NL-PB	p 72	N88-30012
ESTEC-6668/86-NL-PP	p 7	N88-20330
ESTEC-7016/87-NL-PP(SC)	p 82	N88-30298
F04611-86-C-0039	p 83	A88-35100
F04701-84-C-0034	p 19	A88-41414
F04701-85-C-0086	p 58	A88-51392
	p 61	N88-26396

F04701-87-C-00	78	p 30	A88-44670
F29601-86-C-02		p 87	N88-24261
F29601-86-C-02	43	p 39	A88-50430
F33615-85-C-25		p 60	N88-24321
F33615-86-C-32		p 40	A88-50440
F49620-79-C-00		p 58	A88-51391
F49620-84-C-00		p 49	N88-22378
F49620-84-C-00		p 28	A88-35541
F49620-84-C-00		p 25	A88-34749
F49620-84-K-00		p 46	A88-55063
F49620-85-C-00		p 28	A88-38390
1 43020 00 0 00		p 51	N88-24989
F49620-85-C-00	94	p 32	A88-46412
F49620-85-C-01		p 49	N88-22066
F49620-86-C-00		p 32	A88-46411
F49620-86-C-00		p 32	A88-46411
F49620-86-C-00		p 50	N88-23819
F49620-86-C-00		p 88	N88-29870
F49620-86-K-00		p 50	N88-22928
1 43020-00-11-00	VV	p 53	N88-27587
F49620-86-K-00	14	p 33	A88-46413
F49620-87-C-00		p 51	N88-24665
F49620-87-C-00		p 22	A88-49658
F49620-87-C-00		p 32	A88-46406
		p 30	A88-43030
F49620-87-C-00 F49620-88-C-00		p 40	A88-50441
151 050444		p 37	A88-50265
.m		р 56	A88-44638
			A88-53665
NAGW-21		р 77 р 68	A88-54990
		р 70	N88-25396
		p 52	N88-26693
		p 63	A88-36762
		р 41	A88-50892
		p 30	A88-43211
NAG1-436 NAG1-489		p 75	A88-42677
		p 27	A88-34916
		p 26	A88-34805
MAG1-517		p 31	A88-46041
NAG1-642		p 21	A88-46404
		p 40	A88-50438
		p 52	N88-25244
		p 31	A88-45712
14/10/ 000		p 37	A88-50266
NAG1-719		p 50	N88-23940
		p 35	A88-50189
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	p 21	A88-46402
*** * * * * * * * * * * * * * * * * * *	***************************************	p 32	A88-46406
		p 77	N88-20646
NAG2-431	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	p 98	N88-21242
NAG3-516	.,,	p 33	A88-49714
NAG3-620		p 56	A88-46799
NAG3-776		p 60	N88-23649
NAG3-811		p 78	N88-23238
NAG5-780		p 79	N88-25206
NAG5-895		p 78	N88-25155
		p 54	N88-30134
		p 57	A88-46807
		p 99	N88-23929
NASA ORDER		p 12	N88-25371
		p 75	A88-42903
		p 31	A88-46041
		p 17	N88-21475
		p 11	N88-24172
		p 31	A88-46041
		p 8	N88-26397 A88-35116
		p 27	N88-25156
		p 100	A88-53226
******		р 11 р 59	N88-21243
		p 23	N88-23182
		p 62	A88-34312
		p 101	N88-29835
		p 71	N88-25474
		p 86	A88-53101
		p 3	A88-37398
		p 23	N88-26389
NAS5-29224		p 22	A88-53220
NAS7-918		p 73	A88-33789
		p 66	A88-42440
		p 20	A88-42441
		p 77	N88-20352
		p 82	N88-30357

NAS8-34588	p 44	A88-54471
NAS8-36108	p 7	N88-20339
NAS8-36363	p 96	A88-51716
NAS8-36418	p 86	A88-53101
11100 00110	p 24	N88-30181
_	•	A88-48492
NAS8-36438	p 85	
NAS8-36606	p 53	N88-28950
NAS8-36645	p 68	A88-54990
NAS8-37126	p 4	A88-48477
NAS9-17145	p 74	A88-42642
NAS9-17229	p 73	A88-35453
NAS9-17585	p 94	A88-44695
NAS9-17677	p 100	N88-27760
NAS9-17681	р8	N88-27180
NAS9-17900	p 73	A88-35457
NCC2-295	p 78	N88-22540
NGL-05-005-007	p 58	A88-53470
NGR-06-002-112	p 57	A88-46807
NGT-33-183-801	p 30	A88-43206
NIVR-2502-N	p 59	N88-20569
NSC-77-0404-E002-28	p 45	A88-54587
NSERC-A-2181	p 39	A88-50429
NSERC-A-4396	p 27	A88-34905
NSERC-A-7104	p 47	A88-55377
NSERC-G-1547	p 31	A88-46405
	p 47	A88-55391
NSERC-0032682	p 38	A88-50398
NSERC-58-0029	p 39	A88-50428
NSF CME-80-14059	•	
	p 28	A88-38390
NSF DCR-83-18514	p 74	A88-42642
NSF DMC-85-06143	p 42	A88-53681
NSF DMR-86-01281	p 71	N88-25401
NSF DMS-87-01574	p 26	A88-34813
NSF ECE-86-02170	p 90	A88-35526
NSF ECS-84-06152	p 28	A88-36718
NSF ECS-85-16445	p 30	A88-43211
NSF INT-86-12195	p 45	A88-54583
NSF MCS-85-04316	p 31	A88-46041
NSF MEA-83-51807	p 30	A88-43206
NSF MSM-83-51807	p 26	A88-34805
NSF MSM-85-05331	p 35	A88-50170
NSG-1414	p 38	A88-50384
	p 47	A88-55393
NSG-1490	p 48	N88-20290
N00014-84-C-0149	p 30	A88-43211
	p 43	A88-54410
N00014-85-C-0857	p 71	N88-27233
N00014-85-K-0152	p 74	A88-42642
	p 28	A88-36718
	p 35	A88-50191
W-7405-ENG-48	p 48	N88-20902
171 50 10	p 12	N88-24190
474-52-10476-30-20-11	p 71 p 77	N88-25474 N88-20352
		N88-21188
476-50-02-02 480-51-13-01	р 86 р 7	N88-23826
460-51-13-01		N88-29856
481-32-23-02	p8	N88-29856 N88-21190
	p 7	
481-54-32	p 59	N88-21374
	p 60	N88-21375
482-52-21-01	p 99	N88-24148
482-55-52	p 72	N88-28959
482-56-87	p 23	N88-23182
505-63-1B		N88-23226
	p 48	N88-20290
506-41-11		N88-22939
506-41-3K		N88-21254
506-41-31	p 69	N88-21250
506-46-11-01		N88-24172
506-49-31-01		N88-26397
506-49-31-02	р8	N88-29850
506-49-31		N88-29845
506-55-72		N88-21243
586-01-11		N88-21251
	p 69	N88-24754
650-60-20		N88-23073
928-30-05		N88-28084
020 00 00	J 30	.100 20004

Typical Report Number Index Listing

Listings in this index are arranged alphanumerically by report number. The page number indicates the page on which the citation is located. The accession number denotes the number by which the citation is identified. An asterisk (*) indicates that the item is a NASA report. A pound sign (#) indicates that the item is available on microfiche.

A-86185	p 101	N88-30301	* #
A-87163-VOL-1	p 99	N88-24145	* #
A-87247-VOL-4	p 99	N88-24148	* #
A-88212	p 88	N88-28084	* #
A-00212	p 00	1100 20004	"
AAC DADED BE DED	- 2	A88-35074	
AAS PAPER 86-250	p 2	A88-35052	
AAS PAPER 86-255	p 2	A88-35053	
AAS PAPER 86-262	p 2		
AAS PAPER 86-263	p 2	A88-35075	
AAS PAPER 86-267	p 27	A88-35102	
AAS PAPER 86-284	p 3	A88-35131	
AAS PAPER 86-298	p 55	A88-35112	
AAS PAPER 86-302	p 73	A88-35111	
AAS PAPER 86-366	p 55	A88-35099	
AAS PAPER 86-390	p 55	A88-35144	_
AAS PAPER 86-394	p 2	A88-35115	
AAS PAPER 86-396	p 27	A88-35116	*
AAS PAPER 86-397	p 28	A88-35117	
AAS PAPER 86-409	p 83	A88-35100	
AAS PAPER 86-465	p 2	A88-35056	
AAS PAPER 86-466	p 2	A88-35081	
AAS PAPER 87-115	p 83	A88-41283	
AAS PAPER 87-123	p 92	A88-41285	
AAS PAPER 87-126	p 83	A88-41287	
ACSC-88-0725	p 53	N88-29842	#
AD A100022	- 40	N88-22065	ш
AD-A190033	p 49	N88-22066	#
AD-A190037	p 49		#
AD-A190400	p 49	N88-22378	#
AD-A190536	p 49	N88-22068	#
AD-A190644	p 49	N88-22070	#
AD-A190761	p 49	N88-22071	#
AD-A191235	p 50	N88-23819	#
AD-A191358	p 50	N88-22928	#
AD-A191454	p 51	N88-24989	#
AD-A191492	p 51	N88-24665	#
AD-A192120	p 51	N88-24666	#
AD-A192927	p 52	N88-27183	#
AD-A193007	p 61	N88-26396	#
AD-A193144	p 71	N88-27233	#
AD-A193317	p 53	N88-27587	#
AD-A194270	p 71	N88-28754	#
AD-A194912	p 53	N88-29842	#
AD-A195500	p 54	N88-29851	#
AD-A195685	p 53	N88-29794	#
AD-A195886	p 54	N88-30124	#
AD-A195971	p 88	N88-29870	#
40 B4455401	- 44	NOO 000 : 7	,,
AD-B115513L	p 14	N88-20347	#
AD-B119669L	p 80	N88-26678	#
AFIT/GE/ENG/87D-36	p 49	N88-22071	#

AFOSR-87-1734TR p 49 N88-22378 #

AFOSR-87-2008TR		p 49	N88-22070 #	
AFOSR-87-2034TR		p 49	N88-22068 #	
AFOSR-88-0007TR		p 50	N88-22928 #	
		h o i	N88-24989 #	
AFOSR-88-0062TR		p 49	N88-22066 #	
AFOSR-88-0063TR		p 51	N88-24665 #	
			N88-22065 #	
AFOSR-88-0245TR		p 51	N88-24666 #	
AFOSR-88-0278TR	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	p 50	N88-23819 #	
AFOSR-88-0369TR		p os	N88-27587 #	
AFOSR-88-0405TR		p 52	N88-27183 #	
AFOSR-88-0600TR		p 88	N88-29870 #	
		·		
AFOSR-88-0654TR		p 54	N88-30124 #	
AFOSR-88-0666TR		p 54	N88-29851 #	
AFOSR-88-0670TR		p 53	N88-29794 #	
		,		
AF080722A.DOC		p 51	N88-24665 #	
ALA A DADED DO 0400		- 10	**********	
AIAA PAPER 88-2436		p 13	A88-38689 * #	
AIAA PAPER 88-2448		p 13	A88-35940 #	
AIAA PAPER 88-2450		p 13	A88-35941 #	
AIAA PAPER 88-2453		n 74	A88-35942 #	
AIAA PAPER 88-2466				
		h 00	A88-35943 #	
AIAA PAPER 88-2471			A88-35944 #	
AIAA PAPER 88-2475		p 63	A88-35945 * #	
AIAA PAPER 88-2625			A88-43710 #	
AIAA PAPER 88-2637		h 20	A88-43715 * #	
AIAA PAPER 88-2648		p 22	A88-48479 #	
AIAA PAPER 88-2680			A88-43743 #	
AIAA PAPER 88-2683				
AIAA PAPER 88-2701		p 21	A88-43753 #	
AIAA PAPER 88-2702		p 21	A88-43754 * #	
AIAA PAPER 88-2725		n 66	A88-43765 * #	
			7100 40700 17	
AIAA PAPER 88-2793			A88-53101 * #	
AIAA PAPER 88-2832		p 85	A88-48484 #	
AIAA PAPER 88-2835			A88-44668 * #	
AIAA PAPER 88-2838				
	***************************************	p 30		
AIAA PAPER 88-2881		p 84	A88-44698 * #	
AIAA PAPER 88-2900		p 84	A88-46489 * #	
AIAA PAPER 88-2922			A88-44695 * #	
AIAA PAPER 88-3031				
			A88-53126 #	
AIAA PAPER 88-3051		p 4	A88-44741 #	
AIAA PAPER 88-3170		p 84	A88-44875 #	
AIAA PAPER 88-3171			A88-48042 #	
AIAA PAPER 88-3189			A88-44785 #	
AIAA PAPER 88-3286		p 84	A88-44820 * #	
AIAA PAPER 88-3289		p 85	A88-48492 * #	
AIAA PAPER 88-3402		p 86		
AIAA PAPER 88-3405		p 14	A88-44839 #	
AIAA PAPER 88-3487		p 4	A88-43299 * #	
AIAA PAPER 88-3494			A88-48477 * #	
AIAA PAPER 88-3498		p 75		
			A88-42903 * #	
AIAA PAPER 88-3501		p 75	A88-44526 * #	
AIAA PAPER 88-3512		p 93	A88-42909 * #	
AIAA PAPER 88-3513		p 93	A88-42910 * #	
AIAA PAPER 88-3518		p 9		
	•••••			
AIAA PAPER 88-3519		p 94	A88-44527 #	
AIAA PAPER 88-3633		p 33	A88-48957 #	
AIAA PAPER 88-4055		p 34	A88-50165 * #	
AIAA PAPER 88-4057			A88-50167 #	
		P 04		
AIAA PAPER 88-4058	•••••	p 34	A88-50168 #	
AIAA PAPER 88-4059		p 35	A88-50169 * #	
AIAA PAPER 88-4060		p 35	A88-50170 #	
AIAA PAPER 88-4083	***************************************			
		p 35	A88-50189 * #	
AIAA PAPER 88-4085			A88-50191 #	,
AIAA PAPER 88-4087		p 35	A88-50193 * #	
AIAA PAPER 88-4094		p 35	A88-50199 #	
AIAA PAPER 88-4096			A88-50201 #	
	•••••			
AIAA PAPER 88-4097			A88-50202 #	
AIAA PAPER 88-4105		p 36	A88-50209 * #	
AIAA PAPER 88-4130			A88-50280 #	
AIAA PAPER 88-4132			A88-50233 * #	
AIAA PAPER 88-4152		p 36	A88-50246 #	
AIAA PAPER 88-4153		p 36	A88-50247 * #	
AIAA PAPER 88-4154			A88-50248 #	
AIAA PAPER 88-4168				
		p 36	A88-50259 #	
AIAA PAPER 88-4170	***************************************	p 37	A88-50261 #	
AIAA PAPER 88-4171	***************************************			
			A88-50262 #	
		p 37		
AIAA PAPER 88-4172		p 37 p 37	A88-50263 #	
		p 37 p 37		
AIAA PAPER 88-4172 AIAA PAPER 88-4174		р 37 р 37 р 37	A88-50263 # A88-50265 * #	
AIAA PAPER 88-4172		p 37 p 37 p 37 p 37	A88-50263 #	

AIAA PAPER 88-4221 p 37 A88-50362 #

AIAA PAPER 88-4226	р 38	A88-50367	ħ
AIAA PAPER 88-4250	p 38	A88-50383	ħ
AIAA PAPER 88-4252	p 38	A88-50384 *	#
AIAA PAPER 88-4253		A88-50440	Ħ
AIAA PAPER 88-4254		A88-50385	Ħ
AIAA PAPER 88-4255	•	A88-50386 A88-50441	Ħ
AIAA PAPER 88-4269		A88-50398	Ħ
AIAA PAPER 88-4280		A88-50407	Ħ
AIAA PAPER 88-4282	p 39	A88-50409	#
AIAA PAPER 88-4300		A88-50425	Ħ
AIAA PAPER 88-4303		A88-50428	#
AIAA PAPER 88-4304 AIAA PAPER 88-4305		A88-50429 A88-50430	#
AIAA PAPER 88-4306		A88-50431	#
AIAA PAPER 88-4307		A88-50432	#
AIAA PAPER 88-4313		A88-50438 *	#
AIAA PAPER 88-4340		A88-50586	#
AIAA PAPER 88-4346		A88-50590 A88-53664	#
AIAA PAPER 88-4628	p 77	A88-53665 *	#
AIAA PAPER 88-4629	p 5	A88-53666 *	#
ACME BARER OF WALLET 40			
ASME PAPER 87-WA/HT-13	p 58	A88-51341	#
B8725241	p 14	N88-20347	#
B8729599	p 59	N88-20569	#
B8733287 B8805305	p 50	N88-22924	#
B8805305	p 80	N88-26678	#
COL-TN-AS-0059-VOL-1	8 q	N88-29849	#
CONF-871274-1	p 87	N88-24681	#
DE88-005416	p 48	N88-20902	#
DE88-005569		N88-21237	#
DE88-006797	p 87	N88-24681	#
DFVLR-IB-222-88-A-12	p 88	N88-29862	#
DT-8723-01	p 71	N88-28754	#
E-3932	p 60	N88-23073 *	#
E-3932E-3970-VOL-1	p 60 p 98	N88-23073 * N88-23226 *	##
E-3932E-3970-VOL-1	p 60 p 98	N88-23073 *	#
E-3932 E-3970-VOL-1 E-3987 E-4026 E-4074	p 60 p 98 p 22 p 59 p 69	N88-23073 * N88-23226 * N88-20599 * N88-21254 * N88-21250 *	#####
E-3932 E-3970-VOL-1 E-3987 E-4026 E-4074 E-4081	p 60 p 98 p 22 p 59 p 69 p 59	N88-23073 * N88-23226 * N88-20599 * N88-21254 * N88-21250 * N88-21251 *	######
E-3932 E-3970-VOL-1 E-3987 E-4026 E-4074 E-4081 E-4091	p 60 p 98 p 22 p 59 p 69 p 59 p 60	N88-23073 * N88-23226 * N88-20599 * N88-21254 * N88-21250 * N88-21251 * N88-21375 *	######
E-3932 E-3970-VOL-1 E-3987 E-4026 E-4074 E-4081 E-4091 E-4092	p 60 p 98 p 22 p 59 p 69 p 59 p 60 p 59	N88-23073 * N88-23226 * N88-20599 * N88-21250 * N88-21251 * N88-21251 * N88-21375 * N88-21374 *	########
E-3932 E-3970-VOL-1 E-3987 E-4026 E-4074 E-4081 E-4091 E-4092	p 60 p 98 p 22 p 59 p 69 p 59 p 60	N88-23073 * N88-23226 * N88-20599 * N88-21254 * N88-21250 * N88-21251 * N88-21375 * N88-21375 * N88-24754 * N88-25474 *	######
E-3932 E-3970-VOL-1 E-3987 E-4026 E-4074 E-4081 E-4091 E-4092 E-4135 E-4150 E-4153	p 60 p 98 p 22 p 59 p 69 p 59 p 60 p 59 p 69 p 71 p 60	N88-23073 * N88-23226 * N88-20599 * N88-21254 * N88-21251 * N88-21375 * N88-21374 * N88-24754 * N88-25474 * N88-22939 *	##########
E-3932 E-3970-VOL-1 E-3987 E-4026 E-4074 E-4081 E-4091 E-4092 E-4135 E-4150 E-4150 E-4153 E-4150	p 60 p 98 p 22 p 59 p 69 p 59 p 60 p 59 p 69 p 71 p 60 p 72	N88-23073 * N88-23226 * N88-23226 * N88-21254 * N88-21250 * N88-21257 * N88-21375 * N88-24754 * N88-25474 * N88-22939 * N88-28959 *	###########
E-3932 E-3970-VOL-1 E-3987 E-4026 E-4074 E-4081 E-4091 E-4092 E-4135 E-4150 E-4153	p 60 p 98 p 22 p 59 p 69 p 59 p 60 p 59 p 69 p 71 p 60	N88-23073 * N88-23226 * N88-20599 * N88-21254 * N88-21251 * N88-21375 * N88-21374 * N88-24754 * N88-25474 * N88-22939 *	##########
E-3932 E-3970-VOL-1 E-3987 E-4026 E-4074 E-4081 E-4091 E-4092 E-4135 E-4150 E-4150 E-4153 E-4150	p 60 p 98 p 22 p 59 p 69 p 59 p 60 p 59 p 71 p 60 p 72 p 88	N88-23073 * N88-23226 * N88-23226 * N88-21254 * N88-21250 * N88-21257 * N88-21375 * N88-24754 * N88-25474 * N88-22939 * N88-28959 *	###########
E-3932 E-3970-VOL-1 E-3987 E-4026 E-4074 E-4081 E-4091 E-4092 E-4135 E-4150 E-4153 E-4150 E-4154 EGG-M-41087 ESA-CR(P)-2518	p 60 p 98 p 29 p 59 p 69 p 59 p 60 p 59 p 60 p 71 p 60 p 72 p 88 p 87	N88-23073 * N88-23226 * N88-20599 * N88-21254 * N88-21251 * N88-21375 * N88-21374 * N88-24754 * N88-25474 * N88-25474 * N88-2839 * N88-28959 * N88-29845 *	############
E-3932 E-3970-VOL-1 E-3987 E-4026 E-4074 E-4081 E-4091 E-4092 E-4135 E-4150 E-4150 E-4150 E-4154 E-4154 E-4154 E-4154 E-4154 E-4156 E-4	p 60 p 98 p 22 p 59 p 69 p 59 p 60 p 59 p 60 p 71 p 60 p 72 p 88 p 87	N88-23073 * N88-23226 * N88-20599 * N88-21250 * N88-21251 * N88-21375 * N88-21374 * N88-24754 * N88-25474 * N88-2939 * N88-29845 * N88-29845 * N88-29845 * N88-20330	########### # ##
E-3932 E-3970-VOL-1 E-3987 E-4026 E-4074 E-4081 E-4091 E-4092 E-4135 E-4150 E-4150 E-4153 E-4310 E-4414 EGG-M-41087 ESA-CR(P)-2518 ESA-CR(P)-2520 ESA-CR(P)-2555-VOL-2	P 60 P 98 P 22 P 59 P 59 P 59 P 59 P 60 P 71 P 60 P 72 P 88 P 87	N88-23073 * N88-23226 * N88-20599 * N88-21254 * N88-21251 * N88-21375 * N88-21375 * N88-24754 * N88-284754 * N88-28959 * N88-29845 * N88-29845 * N88-20332 * N88-20332 * N88-20332 * N88-20330 * N88-28956 * N88-28956 * N88-20330 * N88-28956 * N88-2856	########### # ###
E-3932 E-3970-VOL-1 E-3987 E-4026 E-4074 E-4081 E-4091 E-4092 E-4135 E-4150 E-4153 E-4310 E-4414 EGG-M-41087 ESA-CR(P)-2518 ESA-CR(P)-2520 ESA-CR(P)-2568	P 60 P 98 P 22 P 59 P 69 P 59 P 60 P 71 P 60 P 72 P 88 P 87	N88-23073 * N88-23226 * N88-20599 * N88-21254 * N88-21251 * N88-21375 * N88-21374 * N88-24754 * N88-28959 * N88-29845 * N88-29845 * N88-20332 * N88-20332 * N88-20332 * N88-20352 * N88-20552 * N88-20	########### # ####
E-3932 E-3970-VOL-1 E-3987 E-4026 E-4074 E-4081 E-4091 E-4092 E-4135 E-4150 E-4153 E-4310 E-4414 EGG-M-41087 ESA-CR(P)-2518 ESA-CR(P)-2520 ESA-CR(P)-2568 ESA-CR(P)-2568 ESA-CR(P)-2568	p 60 p 98 p 22 p 59 p 69 p 59 p 60 p 59 p 60 p 72 p 88 p 87 p 11 p 75 p 87 p 11 p 53 p 24 p 86	N88-23073 * N88-23226 * N88-20599 * N88-21250 * N88-21251 * N88-21375 * N88-21374 * N88-24754 * N88-25474 * N88-25474 * N88-2939 * N88-29845 * N88-29845 * N88-20332 * N88-20330 * N88-30552 * N88-30298 * N88-30552 * N88-30298 * N88-302	###################
E-3932 E-3970-VOL-1 E-3987 E-4026 E-4074 E-4081 E-4091 E-4092 E-4135 E-4150 E-4153 E-4310 E-4414 EGG-M-41087 ESA-CR(P)-2518 ESA-CR(P)-2520 ESA-CR(P)-2568 ESA-CR(P)-2568 ESA-CR(P)-2568	p 60 p 98 p 22 p 59 p 69 p 59 p 60 p 59 p 60 p 72 p 88 p 87 p 11 p 75 p 87 p 11 p 53 p 24 p 86	N88-23073 * N88-23226 * N88-20599 * N88-21254 * N88-21251 * N88-21375 * N88-21374 * N88-24754 * N88-28959 * N88-28959 * N88-29845 * N88-20332 * N88-20332 * N88-20332 * N88-20332 * N88-20352 * N88-29856 * N88-30552	########### # ####
E-3932 E-3970-VOL-1 E-3987 E-4026 E-4074 E-4081 E-4091 E-4092 E-4135 E-4150 E-4150 E-4150 E-4141 EGG-M-41087 ESA-CR(P)-2518 ESA-CR(P)-2555-VOL-2 ESA-CR(P)-2568 ESA-CR(P)-2568 ESA-CR(P)-2581 ESA-CR(P)-2581 ESA-CR(P)-2581 ESA-CR(P)-2581 ESA-CR(P)-2581 ESA-CR(P)-2581 ESA-CR(P)-2581	P 60 P 98 P 22 P 59 P 60 P 59 P 60 P 72 P 88 P 87 P 11 P 7 P 52 P 82 P 82 P 82 P 82 P 82 P 82 P 83 P 84 P 85 P 87 P 87 P 87 P 88 P 88 P 88 P 88 P 88	N88-23073 * N88-23226 * N88-20599 * N88-21250 * N88-21251 * N88-21375 * N88-21375 * N88-25474 * N88-22399 * N88-29845 * N88-20332 * N88-2032 * N88-2032 * N88-2032 * N88-2032 * N88-2032 * N88-2032 *	###################
E-3932 E-3970-VOL-1 E-3987 E-4026 E-4074 E-4081 E-4091 E-4092 E-4135 E-4150 E-4153 E-4150 E-41414 EGG-M-41087 ESA-CR(P)-2518 ESA-CR(P)-2555-VOL-2 ESA-CR(P)-2568 ESA-CR(P)-2581 ESA-CR(P)-2581 ESA-CR(P)-2581 ESA-CR(P)-2581 ESA-CR(P)-2587 ESA-CR(P)-2567 ESA-CR(P)-2567 ESA-CR(P)-2567	P 60 P 98 P 22 P 59 P 69 P 59 P 69 P 71 P 67 P 88 P 87 P 11 P 7 P 53 P 84 P 87 P 82 P 82 P 82 P 82 P 82 P 82 P 84 P 84 P 84 P 84 P 84 P 84 P 84 P 84	N88-23073 * N88-23226 * N88-20599 * N88-21250 * N88-21251 * N88-21375 * N88-21375 * N88-25474 * N88-25474 * N88-25474 * N88-29895 * N88-29845 * N88-29845 * N88-20330 * N88-30152 * N88-30012 * N88-20852 * N88-30012 * N88-20852	#########################
E-3932 E-3970-VOL-1 E-3987 E-4026 E-4074 E-4081 E-4091 E-4092 E-4135 E-4150 E-4153 E-4150 E-4153 E-4310 E-4414 EGG-M-41087 ESA-CR(P)-2518 ESA-CR(P)-2555-VOL-2 ESA-CR(P)-2555-VOL-2 ESA-CR(P)-2580 ESA-CR(P)-2581 ESA-CR(P)-2581 ESA-CR(P)-2581 ESA-CR(P)-2587 ESA-CR(P)-2606 ESA-CR(P)-2612-VOL-1	P 60 98 P 22 P 59 P 69 P 69 P 60 P 59 P 60 P 59 P 60 P 71 P 60 P 88 P 87 P 71 P 72 P 88 P 87 P 72 P 74 P 74 P 75 P 74 P 75 P 75 P 75 P 75 P 75 P 75 P 75 P 75	N88-23073 * N88-23226 * N88-20599 * N88-21254 * N88-21251 * N88-21375 * N88-21375 * N88-21374 * N88-25474 * N88-25474 * N88-2939 * N88-29845 * N88-29845 * N88-2032 * N88-30012 * N88-30012 * N88-30012 * N88-29849 * N88-30012 * N88-29849 * N88-29839 * N88-29839 * N88-29839	########################
E-3932 E-3970-VOL-1 E-3987 E-4026 E-4074 E-4081 E-4091 E-4092 E-4135 E-4150 E-4153 E-4150 E-41414 EGG-M-41087 ESA-CR(P)-2518 ESA-CR(P)-2555-VOL-2 ESA-CR(P)-2555-VOL-2 ESA-CR(P)-2581 ESA-CR(P)-2581 ESA-CR(P)-2581 ESA-CR(P)-2581 ESA-CR(P)-2581 ESA-CR(P)-2583-VOL-1 ESA-CR(P)-2606 ESA-CR(P)-2612-VOL-1 ESA-CR(P)-2612-VOL-1 ESA-CR(P)-2606 ESA-CR(P)-2612-VOL-1 ESA-CR(P)-2612-VOL-1	P 60 P 98 P 22 P 59 P 69 P 59 P 60 P 59 P 71 P 60 P 72 P 88 P 87 P 11 P 7 P 53 P 84 P 87 P 82 P 82 P 88 P 88 P 88 P 88 P 88 P 88	N88-23073 * N88-23226 * N88-20599 * N88-21250 * N88-21251 * N88-21375 * N88-21375 * N88-25474 * N88-25474 * N88-25474 * N88-29895 * N88-29845 * N88-29845 * N88-20330 * N88-30152 * N88-30012 * N88-20852 * N88-30012 * N88-20852	#########################
E-3932 E-3970-VOL-1 E-3987 E-4026 E-4074 E-4081 E-4091 E-4092 E-4135 E-4150 E-4153 E-4150 E-4153 E-4310 E-4414 EGG-M-41087 ESA-CR(P)-2518 ESA-CR(P)-2555-VOL-2 ESA-CR(P)-2555-VOL-2 ESA-CR(P)-2580 ESA-CR(P)-2581 ESA-CR(P)-2581 ESA-CR(P)-2581 ESA-CR(P)-2587 ESA-CR(P)-2606 ESA-CR(P)-2612-VOL-1	P 60 P 98 P 22 P 59 P 69 P 759 P 69 P 760 P 77 P 88 P 87 P 11 P 7 P 59 P 82 P 82 P 82 P 88 P 72 P 88 P 72 P 88 P 72	N88-23073 * N88-23226 * N88-20599 * N88-21254 * N88-21251 * N88-21375 * N88-21375 * N88-21374 * N88-25474 * N88-25474 * N88-2939 * N88-29845 * N88-29845 * N88-2032 * N88-30012 * N88-30012 * N88-30012 * N88-29849 * N88-30012 * N88-29849 * N88-29839 * N88-29839 * N88-29839	########################
E-3932 E-3970-VOL-1 E-3987 E-4026 E-4074 E-4081 E-4091 E-4092 E-4135 E-4150 E-4153 E-4150 E-4153 E-3110 E-4414 EGG-M-41087 ESA-CR(P)-2518 ESA-CR(P)-2555-VOL-2 ESA-CR(P)-2555-VOL-2 ESA-CR(P)-2558 ESA-CR(P)-2558 ESA-CR(P)-2581 ESA-CR(P)-2581 ESA-CR(P)-2581 ESA-CR(P)-2587 ESA-CR(P)-2606 ESA-CR(P)-2614 ESA-CR(P)-2614 ESA-PSS-01-70-ISSUE-3 ESA-PSS-01-700-ISSUE-1	P 60 P 98 P 22 P 59 P 69 P 759 P 760 P 77 P 10 P 88 P 87 P 11 P 7 P 12 P 82 P 88 P 72 P 10 P 88 P 72 P 10 P 10 P 10 P 10 P 10 P 10 P 10 P 10	N88-23073 * N88-23226 * N88-20599 * N88-21250 * N88-21251 * N88-21375 * N88-21375 * N88-21374 * N88-22339 * N88-29845 * N88-29845 * N88-29845 * N88-29845 * N88-29845 * N88-29848 * N88-30182 * N88-30182 * N88-29849 * N88-30182 * N88-29849 * N88-30182 * N88-29849 * N88-29849 * N88-29852 * N88-29	#######################################
E-3932 E-3970-VOL-1 E-3987 E-4026 E-4074 E-4081 E-4091 E-4092 E-4135 E-4150 E-4150 E-4150 E-4154 E-4150 E-4	P 60 P 98 P 22 P 59 P 69 P 759 P 760 P 77 P 10 P 88 P 87 P 11 P 7 P 12 P 82 P 88 P 72 P 10 P 88 P 72 P 10 P 10 P 10 P 10 P 10 P 10 P 10 P 10	N88-23073 * N88-23226 * N88-23226 * N88-21259 * N88-21250 * N88-21251 * N88-21375 * N88-21375 * N88-24374 * N88-25474 * N88-25474 * N88-2859 * N88-29845 * N88-29845 * N88-29845 * N88-29849 * N88-29852 * N88-29853 * N88-298	###############################
E-3932 E-3970-VOL-1 E-3987 E-4026 E-4074 E-4081 E-4091 E-4092 E-4135 E-4150 E-4153 E-4150 E-4153 E-3110 E-4414 EGG-M-41087 ESA-CR(P)-2518 ESA-CR(P)-2555-VOL-2 ESA-CR(P)-2555-VOL-2 ESA-CR(P)-2558 ESA-CR(P)-2558 ESA-CR(P)-2581 ESA-CR(P)-2581 ESA-CR(P)-2581 ESA-CR(P)-2587 ESA-CR(P)-2606 ESA-CR(P)-2614 ESA-CR(P)-2614 ESA-PSS-01-70-ISSUE-3 ESA-PSS-01-700-ISSUE-1	P 60 P 98 P 22 P 59 P 69 P 59 P 60 P 72 P 88 P 87 P 11 P 7 P 53 P 82 P 82 P 82 P 82 P 82 P 82 P 88 P 72 P 72 P 102 P 88	N88-23073 * N88-23226 * N88-20599 * N88-21250 * N88-21251 * N88-21375 * N88-21375 * N88-21374 * N88-22339 * N88-29845 * N88-29845 * N88-29845 * N88-29845 * N88-29845 * N88-29848 * N88-30182 * N88-30182 * N88-29849 * N88-30182 * N88-29849 * N88-30182 * N88-29849 * N88-29849 * N88-29852 * N88-29	#######################################
E-3932 E-3970-VOL-1 E-3987 E-4026 E-4074 E-4081 E-4091 E-4092 E-4135 E-4150 E-4153 E-4150 E-4154 E-4150 E-4154 E-4150 E-4156 E-4	P 60 P 98 P 22 P 59 P 69 P 59 P 69 P 71 P 7 P 53 P 87 P 87 P 7 P 53 P 82 P 82 P 82 P 82 P 82 P 83 P 84 P 85 P 86 P 87 P 88 P 72 P 72 P 72 P 72 P 72 P 72 P 72 P 72	N88-23073 * N88-23226 * N88-23226 * N88-21254 * N88-21255 * N88-21251 * N88-21375 * N88-21375 * N88-24754 * N88-25474 * N88-25474 * N88-2895 * N88-29845 * N88-29845 * N88-29849 * N88-2989 * N88-2989 * N88-2989 * N88-2989 * N88-3012 * N88-2989 * N88-3012 * N88-2989 * N88-3012 * N88-2989 * N88-3012 * N88-2989 * N88-3014 * N88-29852 * N88-29862 * N88-29863 * N88-30556 * N88-30547 * N88-24670 * N88-30582 * N88-30582 * N88-30582 * N88-30582 * N88-30586 * N88-30586 * N88-30582 * N88-30586 * N88-30586 * N88-30582 * N88-3058	#######################################
E-3932 E-3970-VOL-1 E-3987 E-4026 E-4074 E-4081 E-4091 E-4092 E-4135 E-4150 E-4153 E-4150 E-4153 E-4150 E-41414 EGG-M-41087 ESA-CR(P)-2518 ESA-CR(P)-2555-VOL-2 ESA-CR(P)-2555-VOL-2 ESA-CR(P)-2581 ESA-CR(P)-2614 ESA-SP-1100 ESA-SP-1100 ESA-STM-239 ETN-88-91607 ETN-88-91607 ETN-88-91724	P 60 P 98 P 22 P 59 P 69 P 59 P 69 P 71 P 67 P 72 P 88 P 87 P 11 P 7 P 53 P 82 P 82 P 82 P 82 P 88 P 72 P 72 P 88 P 72 P 72 P 72 P 88 P 72 P 72 P 72 P 72 P 72 P 72 P 72 P 72	N88-23073 ** N88-23226 ** N88-20599 ** N88-21254 ** N88-21251 ** N88-21375 ** N88-21375 ** N88-21375 ** N88-25474 ** N88-25474 ** N88-22939 ** N88-29845 ** N88-29845 ** N88-29845 ** N88-29845 ** N88-29849 ** N88-29852 ** N88-29862 ** N88-29862 ** N88-3012 ** N88-29863 ** N88-30556 ** N88-30556 ** N88-30556 ** N88-30582 ** N88-30582 ** N88-30582 ** N88-30582 ** N88-30586	#######################################
E-3932 E-3970-VOL-1 E-3987 E-4026 E-4074 E-4081 E-4091 E-4092 E-4135 E-4150 E-4153 E-4150 E-4153 E-4150 E-4520 E-4154 ESA-CR(P)-2518 ESA-CR(P)-2520 ESA-CR(P)-2552 ESA-CR(P)-2552 ESA-CR(P)-2581 ESA-CR(P	P 60 P 98 P 22 P 59 P 69 P 759 P 69 P 77 P 88 P 87 P 11 P 7 7 2 5 24 P 82 P 72 P 102 P 88 P 77 P 102 P 88 P 61 P 102 P 59 P 61 P 102 P 59 P 61	N88-23073 * N88-23226 * N88-23226 * N88-21259 * N88-21251 * N88-21251 * N88-21375 * N88-21374 * N88-25474 * N88-25474 * N88-25474 * N88-25474 * N88-29849 * N88-29849 * N88-29852 * N88-29852 * N88-29852 * N88-29852 * N88-30182 * N88-29852 * N88-30182 * N88-29852 * N88-30182 * N88-29852 * N88-30182 * N88-30552 * N88-29852 * N88-30182 * N88-30552 * N88-30447 * N88-28652 * N88-29852 * N88-29858 * N88-29	#######################################
E-3932 E-3970-VOL-1 E-3987 E-4026 E-4074 E-4081 E-4091 E-4092 E-4135 E-4150 E-4153 E-4150 E-4153 E-4150 E-41414 EGG-M-41087 ESA-CR(P)-2518 ESA-CR(P)-2555-VOL-2 ESA-CR(P)-2555-VOL-2 ESA-CR(P)-2581 ESA-CR(P)-2614 ESA-SP-1100 ESA-SP-1100 ESA-STM-239 ETN-88-91607 ETN-88-91607 ETN-88-91724	P 60 P 98 P 22 P 59 P 69 P 759 P 760 P 77 P 88 P 87 P 11 P 7 P 53 P 82 P 82 P 84 P 87 P 72 P 88 P 72 P 72 P 88 P 72 P 72 P 88 P 72 P 72 P 88 P 72 P 72 P 72 P 72 P 72 P 72 P 72 P 72	N88-23073 ** N88-23226 ** N88-20599 ** N88-21254 ** N88-21251 ** N88-21375 ** N88-21375 ** N88-21375 ** N88-25474 ** N88-25474 ** N88-22939 ** N88-29845 ** N88-29845 ** N88-29845 ** N88-29845 ** N88-29849 ** N88-29852 ** N88-29862 ** N88-29862 ** N88-3012 ** N88-29863 ** N88-30556 ** N88-30556 ** N88-30556 ** N88-30582 ** N88-30582 ** N88-30582 ** N88-30582 ** N88-30586	#######################################

ETN-88-91960p	11	N88-20332	#	NAS 1.15:100838	. p 59	N88-21254 * #	NASA-SP-7046(18)	p 100	N88-27214 *
ETN-88-91962p			#	NAS 1.15:100862		N88-21250 * #			
ETN-88-92141p			#				NASA-TM-100287	D 60	N88-23073 * #
				NAS 1.15:100864		N88-21251 * #	NASA-TM-100287		
ETN-88-92456p			#	NAS 1.15:100865		N88-21375 * #			N88-24672 * #
ETN-88-92555 p			#	NAS 1.15:100866		N88-21374 * #	NASA-TM-100497		N88-21190 * #
ETN-88-92609 p	80	N88-26678	#	NAS 1.15:100894	. p 69	N88-24754 * #	NASA-TM-100597	р8	N88-29850 * #
ETN-88-92781 p	72	N88-28833	#	NAS 1.15:100901	. p 60	N88-22939 * #	NASA-TM-100604	p 86	N88-21188 * #
ETN-88-92851p	71	N88-27341	#	NAS 1.15:101009		N88-28084 * #	NASA-TM-100618		N88-23826 * #
ETN-88-92852			#			N88-28959 * #	NASA-TM-100656		N88-29856 * #
				NAS 1.15:101315					
ETN-88-92854			#	NAS 1.15:101370		N88-29845 * #	NASA-TM-100700		N88-25472 * #
ETN-88-92874 p			#	NAS 1.15:4051	. р 23	N88-26389 * #	NASA-TM-100838		N88-21254 * #
ETN-88-92878 p	53	N88-28083	#	NAS 1.15:88233	p 101	N88-30301 * #	NASA-TM-100862	p 69	N88-21250 * #
ETN-88-92913 p		N88-29190	#	NAS 1.21:7046(18)		N88-27214 *	NASA-TM-100864		N88-21251 * #
ETN-88-92915			#	NAS 1.26:172055		N88-27180 * #	NASA-TM-100865		N88-21375 * #
ETN-88-93017ρ			#	NAS 1.26:179321	. р7	N88-20339 * #	NASA-TM-100866		N88-21374 * #
ETN-88-93020 p		N88-30298	#	NAS 1.26:179371	p 53	N88-28950 * #	NASA-TM-100894	p 69	N88-24754 * #
ETN-88-93026 p	62	N88-30182	#	NAS 1.26:179373		N88-30181 * #	NASA-TM-100901	p 60	N88-22939 * #
ETN-88-93028p			#	NAS 1.26:180879		N88-21243 * #	NASA-TM-101009		N88-28084 * #
ETN-88-93031 p			#	NAS 1.26:181617		N88-26397 * #	NASA-TM-101315		N88-28959 * #
ETN-88-93036 p	12		#	NAS 1.26:182128	. p 101	N88-29835 * #	NASA-TM-101370	p 88	N88-29845 * #
ETN-88-93046 p	102	N88-30556	#	NAS 1.26:182141	p 23	N88-23182 * #	NASA-TM-4051	p 23	N88-26389 * #
ETN-88-93047 p	8	N88-30447	#	NAS 1.26:182148		N88-23649 * #	NASA-TM-88233	D 101	N88-30301 * #
ETN-88-93147 p			#					μ .σ.	1100 00001 //
				NAS 1.26:182680		N88-25244 * #	NU D ND 07040 U	- 44	NOO 000 17 #
ETN-88-93148p	00	N88-29862	#	NAS 1.26:182688		N88-22540 * #	NLR-MP-87016-U		N88-20347 #
				NAS 1.26:182690	. p 77	N88-20352 * #	NLR-MP-87017-U	p 80	N88-26678 #
FASAC-TAR-3090 p	98	N88-23823	#	NAS 1.26:182710	p 77	N88-20646 * #			
·				NAS 1.26:182748		N88-21242 * #	NLR-TR-87009-U	p 59	N88-20569 #
GDSS-SP-88-006p	101	N88-29835 *	#	NAS 1.26:182898		N88-23940 * #			
α <i>υ</i> ου-οι -ου-ουο μ	.01	20000	"				ONERA-RT-15/3542-RY-062-R	n ec	N88-23265 #
11E BADED 00 000	_	A00 55011	4	NAS 1.26:182901		N88-25155 * #	ONLINA-INT-10/3042-NT-002-N	h oa	1100-23200 #
IAF PAPER 88-002 p			#	NAS 1.26:182908		N88-23929 * #			
IAF PAPER 88-018 p	77		#	NAS 1.26:182947	p 100	N88-27760 * #	PB88-186226		N88-26390 #
IAF PAPER 88-025 p			#	NAS 1.26:183031		N88-25206 * #	PB88-209747		N88-26678 #
IAF PAPER 88-029p			#			N88-26693 * #		, 55	200.0 17
				NAS 1.26:183082			DNI 6459		NOD 04007
IAF PAPER 88-061 p			#	NAS 1.26:183202		N88-30134 * #	PNL-6458	p 1/	N88-21237 #
IAF PAPER 88-080 p	97		#	NAS 1.26:3941	p 12	N88-25371 * #			
IAF PAPER 88-087 p	6	A88-55337	#	NAS 1.26:3942		N88-25156 * #	REPT-46/87		N88-23813 #
IAF PAPER 88-097 p			#	NAS 1.26:4027		N88-24632 * #	REPT-88B0167	n 23	N88-26389 * #
IAF PAPER 88-219 p			#	NAS 1.26:4132		N88-20290 * #	REPT-88B0212		N88-30330 * #
IAF PAPER 88-237 p	86		#	NAS 1.26:4156	p 11	N88-24172 * #	REPT-881-430-103		N88-27341 #
IAF PAPER 88-272 p	47	A88-55371	#	NAS 1.26:4158	p 71	N88-25474 * #	REPT-881-440-114	p 53	N88-28083 #
IAF PAPER 88-282 P		A88-55374	#	NAS 1.55;10009		N88-20599 * #			
			#			N88-24145 * #	R8805-5	n 8	N88-27180 * #
IAF PAPER 88-288 p				NAS 1.55:2426-VOL-1			110000 0	PO	1100-27100 #
IAF PAPER 88-293 P			#	NAS 1.55:2426-VOL-4		N88-24148 * #	045.4		
IAF PAPER 88-294 p	47	A88-55378	#	NAS 1.55:2492-PT-2	p 100	N88-24188 * #	SAR-1	p 77	N88-20646 * #
IAF PAPER 88-295 p	97	A88-55379 *	#	NAS 1.55:2506	p 98	N88-21468 * #			
IAF PAPER 88-307p			#	NAS 1.55:3002		N88-25390 * #	SAWE PAPER 1762	n 58	A88-53779
IAF PAPER 88-314p			#				SAWE PAPER 1776		A88-53785
				NAS 1.55:3003-VOL-1		N88-23226 * #	5AWE FAFER 1770	p 43	M00-33763
IAF PAPER 88-318 p			#	NAS 1.55:3009		N88-30330 * #			
IAF PAPER 88-320 p	47	A88-55393 *	#	NAS 1.71:LAR-13898-1	p 19	N88-30130 * #	SD-TR-88-12	p 61	N88-26396 #
IAF PAPER 88-334 p	48	A88-55397	#						
1AE DADED 99 426	6		#	NACA CASE LAD 12411 1 SD	n 7	NIGO 22020 *	SE/LS/AP-36-818/CN-VOL-1	n 8	N88-20840 #
IAF PAPER 88-426p		A88-55417	#	NASA-CASE-LAR-13411-1-SB		N88-23828 *	SE/LS/AP-36-818/CN-VOL-1	р8	N88-29849 #
IAF PAPER 88-515 p	77	A88-55417 A88-55436	#	NASA-CASE-LAR-13411-1-SB NASA-CASE-LAR-13898-1		N88-23828 * N88-30130 * #		•	
	77	A88-55417 A88-55436					SE/LS/AP-36-818/CN-VOL-1 SNIAS-SE/LS/AP-35-073	•	N88-29849 # N88-20330 #
IAF PAPER 88-515 p	77	A88-55417 A88-55436	#	NASA-CASE-LAR-13898-1	p 19	N88-30130 * #		•	
IAF PAPER 88-515 p IAF PAPER 88-618 p	77 6	A88-55417 A88-55436 A88-55454	#		p 19		SNIAS-SE/LS/AP-35-073	р7	N88-20330 #
IAF PAPER 88-515 p	77 6	A88-55417 A88-55436	#	NASA-CASE-LAR-13898-1 NASA-CASE-MFS-28185-1	р 19 р 18	N88-30130 * # N88-23979 *	SNIAS-SE/LS/AP-35-073 SNIAS-881-430-104	р7 р72	N88-20330 # N88-28977 #
IAF PAPER 88-515 p IAF PAPER 88-618 p IAF-86-62 p	77 6 80	A88-55417 A88-55436 A88-55454 N88-29352 *	# # #	NASA-CASE-MFS-28185-1 NASA-CASE-MFS-20985-1	p 19 p 18 p 80	N88-30130 * # N88-23979 * N88-26398 *	SNIAS-SE/LS/AP-35-073	p 7 p 72 p 72	N88-20330 # N88-28977 # N88-28978 #
IAF PAPER 88-515	77 6 80 48	A88-55417 A88-55436 A88-55454 N88-29352 * N88-20349	# # #	NASA-CASE-MFS-28185-1 NASA-CASE-MFS-28185-1 NASA-CASE-MSC-20985-1 NASA-CASE-MSC-21056-1	p 19 p 18 p 80 p 18	N88-30130 * # N88-23979 * N88-26398 * N88-23827 *	SNIAS-SE/LS/AP-35-073 SNIAS-881-430-104	p 7 p 72 p 72	N88-20330 # N88-28977 #
IAF PAPER 88-515 p IAF PAPER 88-618 p IAF-86-62 p	77 6 80 48	A88-55417 A88-55436 A88-55454 N88-29352 * N88-20349	# # #	NASA-CASE-MFS-28185-1	p 19 p 18 p 80 p 18 p 18	N88-30130 * # N88-23979 * N88-26398 *	SNIAS-881-430-104	p 7 p 72 p 72 p 23	N88-20330 # N88-28977 # N88-28978 #
IAF PAPER 88-515	77 6 80 48	A88-55417 A88-55436 A88-55454 N88-29352 * N88-20349	# # #	NASA-CASE-MFS-28185-1	p 19 p 18 p 80 p 18 p 18	N88-30130 * # N88-23979 * N88-26398 * N88-23827 * N88-28958 *	SNIAS-SE/LS/AP-35-073	p 7 p 72 p 72 p 23	N88-20330 # N88-28977 # N88-28978 #
IAF PAPER 88-515	77 6 80 48 48	A88-55417 A88-55436 A88-55454 N88-29352 * N88-20349 N88-21240	# # # #	NASA-CASE-MFS-28185-1 NASA-CASE-MFS-28185-1 NASA-CASE-MSC-20985-1 NASA-CASE-MSC-21056-1	p 19 p 18 p 80 p 18 p 18	N88-30130 * # N88-23979 * N88-26398 * N88-23827 *	SNIAS-SE/LS/AP-35-073	p 7 p 72 p 72 p 72 p 23 p 89	N88-20330 # N88-28977 # N88-28978 # N88-29128 # A88-34486
IAF PAPER 88-515	77 6 80 48 48	A88-55417 A88-55436 A88-55454 N88-29352 * N88-20349 N88-21240	# # #	NASA-CASE-MFS-28185-1 NASA-CASE-MFS-28185-1 NASA-CASE-MSC-20985-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21117-1 NASA-CASE-MSC-21207-1	p 19 p 18 p 80 p 18 p 18 p 19	N88-23979 * N88-26398 * N88-23827 * N88-28958 * N88-29180 *	SNIAS-SE/LS/AP-35-073 SNIAS-881-430-104 SNIAS-881-440-104 SPIE-748 SPIE-751	p 7 p 72 p 72 p 72 p 23 p 89 p 89	N88-20330 # N88-28977 # N88-28978 # N88-29128 # A88-34486 A88-34536
IAF PAPER 88-515	77 6 80 48 48 51	A88-55417 A88-55436 A88-55454 N88-29352 * N88-20349 N88-21240 N88-24673	#######################################	NASA-CASE-LAR-13898-1 NASA-CASE-MFS-28185-1 NASA-CASE-MSC-20985-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21117-1 NASA-CASE-MSC-21207-1 NASA-CASE-MSC-21207-1	p 19 p 18 p 80 p 18 p 18 p 19	N88-30130 * # N88-23979 * N88-26398 * N88-23827 * N88-28958 * N88-29180 * N88-20599 * #	SNIAS-881-430-104 SNIAS-881-430-106 SNIAS-881-440-104 SPIE-748 SPIE-751 SPIE-840	p 7 p 72 p 72 p 72 p 23 p 89 p 89 p 93	N88-20330 # N88-28977 # N88-28978 # N88-29128 # A88-34486 A88-34536 A88-43176
IAF PAPER 88-515	77 6 80 48 48 51	A88-55417 A88-55436 A88-55454 N88-29352 * N88-20349 N88-21240 N88-24673 N88-30447	## # ## #	NASA-CASE-MFS-28185-1 NASA-CASE-MFS-20985-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21117-1 NASA-CASE-MSC-21107-1 NASA-CASE-MSC-21207-1 NASA-CP-10009 NASA-CP-2426-VOL-1	p 19 p 18 p 80 p 18 p 18 p 19 p 22 p 99	N88-30130 ° # N88-23979 ° N88-26398 ° N88-23827 ° N88-29180 ° N88-20599 ° # N88-24145 ° #	SNIAS-SE/LS/AP-35-073 SNIAS-881-430-104 SNIAS-881-440-104 SPIE-748 SPIE-751	p 7 p 72 p 72 p 72 p 23 p 89 p 89 p 93	N88-20330 # N88-28977 # N88-28978 # N88-29128 # A88-34486 A88-34536
IAF PAPER 88-515	77 6 80 48 48 51 8 51	A88-55417 A88-55436 A88-55454 N88-29352 * N88-20349 N88-21240 N88-24673 N88-30447 N88-30447	#######################################	NASA-CASE-LAR-13898-1 NASA-CASE-MFS-28185-1 NASA-CASE-MSC-20985-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21117-1 NASA-CASE-MSC-21207-1 NASA-CASE-MSC-21207-1	p 19 p 18 p 80 p 18 p 18 p 19 p 22 p 99	N88-30130 * # N88-23979 * N88-26398 * N88-23827 * N88-28958 * N88-29180 * N88-20599 * #	SNIAS-881-430-104 SNIAS-881-430-106 SNIAS-881-440-104 SPIE-748 SPIE-751 SPIE-840 SPIE-871	p 7 p 72 p 72 p 23 p 89 p 89 p 93 p 92	N88-20330 # N88-28977 # N88-28978 # N88-29128 # A88-34486 A88-34536 A88-43176 A88-42547
IAF PAPER 88-515	77 6 80 48 48 51 8 51	A88-55417 A88-55436 A88-55454 N88-29352 * N88-20349 N88-21240 N88-24673 N88-30447	## # ## #	NASA-CASE-MRS-28185-1 NASA-CASE-MSC-20985-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21117-1 NASA-CASE-MSC-21107-1 NASA-CP-10009 NASA-CP-2426-VOL-1 NASA-CP-2426-VOL-4	p 19 p 18 p 80 p 18 p 19 p 22 p 99 p 99	N88-30130 ° # N88-23979 ° N88-26398 ° N88-23827 ° N88-2958 ° N88-29180 ° N88-20599 ° # N88-24145 ° # N88-24148 ° #	SNIAS-881-430-104 SNIAS-881-430-106 SNIAS-881-440-104 SPIE-748 SPIE-751 SPIE-840 SPIE-871	p 7 p 72 p 72 p 23 p 89 p 89 p 93 p 92	N88-20330 # N88-28977 # N88-28978 # N88-29128 # A88-34486 A88-34536 A88-43176 A88-42547
IAF PAPER 88-515	77 6 80 48 48 51 8 51 72	A88-55417 A88-55454 A88-55454 N88-29352 • N88-20349 N88-21240 N88-24673 N88-30447 N88-26673 N88-28833	## # ## # ###	NASA-CASE-LAR-13898-1 NASA-CASE-MFS-28185-1 NASA-CASE-MSC-20985-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21117-1 NASA-CASE-MSC-21207-1 NASA-CP-10009 NASA-CP-2426-VOL-1 NASA-CP-2426-VOL-4 NASA-CP-2429-PT-2	p 19 p 18 p 80 p 18 p 19 p 22 p 99 p 90 p 100	N88-30130 ° # N88-23979 ° N88-26398 ° N88-23827 ° N88-28958 ° N88-29180 ° N88-20599 ° # N88-24145 ° # N88-24148 ° #	SNIAS-881-430-104 SNIAS-881-430-106 SNIAS-881-440-104 SPIE-748 SPIE-751 SPIE-840	p 7 p 72 p 72 p 23 p 89 p 89 p 93 p 92	N88-20330 # N88-28977 # N88-28978 # N88-29128 # A88-34486 A88-34536 A88-43176 A88-42547
IAF PAPER 88-515	77 6 80 48 48 51 8 51 72 72	A88-55417 A88-55454 A88-55454 N88-29352 * N88-20349 N88-21240 N88-24673 N88-30447 N88-24673 N88-28633 N88-29190	## # ## # ####	NASA-CASE-LAR-13898-1 NASA-CASE-MFS-28185-1 NASA-CASE-MSC-20985-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21117-1 NASA-CASE-MSC-211207-1 NASA-CP-10009 NASA-CP-2426-VOL-1 NASA-CP-2426-VOL-4 NASA-CP-2492-PT-2 NASA-CP-2506	p 19 p 18 p 80 p 18 p 19 p 22 p 99 p 100 p 98	N88-30130 * # N88-23979 * N88-26398 * N88-23827 * N88-29180 * N88-20599 * # N88-24145 * # N88-24148 * # N88-21468 * #	SNIAS-SE/LS/AP-35-073 SNIAS-881-430-104 SNIAS-881-430-106 SNIAS-881-440-104 SPIE-748 SPIE-751 SPIE-840 SPIE-871 SR/FIS/108(87)CZ	p 7 p 72 p 72 p 23 p 89 p 89 p 93 p 92 p 24	N88-20330 # N88-28977 # N88-28978 # N88-29128 # A88-34486 A88-34536 A88-43176 A88-42547 N88-30552 #
IAF PAPER 88-515	77 6 80 48 48 51 8 51 72 72 61	A88-55417 A88-55436 A88-55454 N88-29352 * N88-20349 N88-21240 N88-24673 N88-24673 N88-2833 N88-29190 N88-24670	## # ## # #####	NASA-CASE-MRS-28185-1 NASA-CASE-MSC-20985-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-211056-1 NASA-CASE-MSC-21117-1 NASA-CASE-MSC-21107-1 NASA-CP-10009 NASA-CP-2426-VOL-1 NASA-CP-2426-VOL-4 NASA-CP-2492-PT-2 NASA-CP-2506 NASA-CP-3002	p 19 p 18 p 80 p 18 p 19 p 22 p 99 p 100 p 98 p 69	N88-30130 * # N88-23979 * N88-23979 * N88-23927 * N88-23958 * N88-29180 * N88-24145 * # N88-24148 * # N88-24188 * # N88-25390 * #	SNIAS-881-430-104 SNIAS-881-430-106 SNIAS-881-440-104 SPIE-748 SPIE-751 SPIE-840 SPIE-871	p 7 p 72 p 72 p 23 p 89 p 89 p 93 p 92 p 24	N88-20330 # N88-28977 # N88-28978 # N88-29128 # A88-34486 A88-34536 A88-43176 A88-42547
IAF PAPER 88-515	77 6 80 48 48 51 8 51 72 72 61	A88-55417 A88-55436 A88-55454 N88-29352 * N88-20349 N88-21240 N88-24673 N88-24673 N88-2833 N88-29190 N88-24670	## # ## # ####	NASA-CASE-LAR-13898-1 NASA-CASE-MFS-28185-1 NASA-CASE-MSC-20985-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21117-1 NASA-CASE-MSC-21207-1 NASA-CP-10009 NASA-CP-2426-VOL-1 NASA-CP-2426-VOL-4 NASA-CP-2492-PT-2 NASA-CP-2506 NASA-CP-3002 NASA-CP-3003-VOL-1	p 19 p 18 p 80 p 18 p 19 p 22 p 99 p 100 p 98 p 69 p 98	N88-23979 * N88-26398 * N88-23827 * N88-28958 * N88-29180 * N88-24145 * # N88-24145 * # N88-24188 * # N88-21468 * # N88-25390 * # N88-25390 * #	SNIAS-SE/LS/AP-35-073 SNIAS-881-430-104 SNIAS-881-430-106 SNIAS-881-440-104 SPIE-748 SPIE-751 SPIE-840 SPIE-871 SR/FIS/108(87)CZ STF23-F87025-VOL-1	p 7 p 72 p 72 p 72 p 23 p 89 p 89 p 93 p 92 p 24 p 82	N88-20330 # N88-28977 # N88-28978 # N88-29128 # A88-34486 A88-34536 A88-42547 N88-30552 # N88-30298 #
IAF PAPER 88-515	77 6 80 48 48 51 8 51 72 72 61 102	A88-55417 A88-55454 A88-55454 N88-29352 * N88-20349 N88-21240 N88-24673 N88-24673 N88-24673 N88-28633 N88-29190 N88-24670 N88-24670 N88-24670 N88-26670 N88-20556	## # ## ######	NASA-CASE-MRS-28185-1 NASA-CASE-MSC-20985-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-211056-1 NASA-CASE-MSC-21117-1 NASA-CASE-MSC-21107-1 NASA-CP-10009 NASA-CP-2426-VOL-1 NASA-CP-2426-VOL-4 NASA-CP-2492-PT-2 NASA-CP-2506 NASA-CP-3002	p 19 p 18 p 80 p 18 p 19 p 22 p 99 p 100 p 98 p 69 p 98	N88-30130 * # N88-23979 * N88-23979 * N88-23927 * N88-23958 * N88-29180 * N88-24145 * # N88-24148 * # N88-24188 * # N88-25390 * #	SNIAS-SE/LS/AP-35-073 SNIAS-881-430-104 SNIAS-881-430-106 SNIAS-881-440-104 SPIE-748 SPIE-751 SPIE-840 SPIE-871 SR/FIS/108(87)CZ STF23-F87025-VOL-1 TR-0086A(2940-06)-6	p 7 p 72 p 72 p 72 p 23 p 89 p 89 p 93 p 92 p 24 p 82 p 61	N88-20330 # N88-28977 # N88-28978 # N88-29128 # A88-34486 A88-34536 A88-43176 A88-42547 N88-30552 # N88-30298 # N88-26396 #
IAF PAPER 88-515	77 6 80 48 48 51 8 51 72 72 61 102	A88-55417 A88-55436 A88-55454 N88-29352 * N88-20349 N88-21240 N88-24673 N88-24673 N88-2833 N88-29190 N88-24670	## # ## ######	NASA-CASE-LAR-13898-1 NASA-CASE-MFS-28185-1 NASA-CASE-MSC-20985-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21117-1 NASA-CASE-MSC-21207-1 NASA-CP-10009 NASA-CP-2426-VOL-1 NASA-CP-2426-VOL-4 NASA-CP-2492-PT-2 NASA-CP-2506 NASA-CP-3002 NASA-CP-3003-VOL-1	p 19 p 18 p 80 p 18 p 19 p 22 p 99 p 100 p 98 p 69 p 98	N88-23979 * N88-26398 * N88-23827 * N88-28958 * N88-29180 * N88-24145 * # N88-24145 * # N88-24188 * # N88-21468 * # N88-25390 * # N88-25390 * #	SNIAS-SE/LS/AP-35-073 SNIAS-881-430-104 SNIAS-881-430-106 SNIAS-881-440-104 SPIE-748 SPIE-751 SPIE-840 SPIE-871 SR/FIS/108(87)CZ STF23-F87025-VOL-1	p 7 p 72 p 72 p 72 p 23 p 89 p 89 p 93 p 92 p 24 p 82 p 61	N88-20330 # N88-28977 # N88-28978 # N88-29128 # A88-34486 A88-34536 A88-42547 N88-30552 # N88-30298 #
IAF PAPER 88-515	77 6 80 48 48 51 8 51 72 72 61 102	A88-55417 A88-55454 A88-55454 N88-29352 * N88-20349 N88-21240 N88-24673 N88-24673 N88-24673 N88-28633 N88-29190 N88-24670 N88-24670 N88-24670 N88-26670 N88-20556	## # ## ######	NASA-CASE-LAR-13898-1 NASA-CASE-MFS-28185-1 NASA-CASE-MSC-20985-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21107-1 NASA-CASE-MSC-21107-1 NASA-CP-10009 NASA-CP-2426-VOL-1 NASA-CP-2426-VOL-4 NASA-CP-2492-PT-2 NASA-CP-2492-PT-2 NASA-CP-3002 NASA-CP-3003-VOL-1 NASA-CP-3009	p 19 p 18 p 80 p 18 p 19 p 22 p 99 p 100 p 98 p 69 p 102	N88-30130 ° # N88-23979 ° N88-26398 ° N88-23827 ° N88-29180 ° N88-24145 ° # N88-24148 ° # N88-24148 ° # N88-24168 ° # N88-25390 ° # N88-30330 ° #	SNIAS-SE/LS/AP-35-073 SNIAS-881-430-104 SNIAS-881-430-106 SNIAS-881-440-104 SPIE-748 SPIE-751 SPIE-840 SPIE-871 SR/FIS/108(87)CZ STF23-F87025-VOL-1 TR-0086A(2940-06)-6	p 7 p 72 p 72 p 72 p 23 p 89 p 89 p 93 p 92 p 24 p 82 p 61	N88-20330 # N88-28977 # N88-28978 # N88-29128 # A88-34486 A88-34536 A88-43176 A88-42547 N88-30552 # N88-30298 # N88-26396 #
IAF PAPER 88-515	77 6 80 48 48 51 8 51 72 72 61 102	A88-55417 A88-55436 A88-55454 N88-29352 * N88-20349 N88-21240 N88-24673 N88-24673 N88-2833 N88-29190 N88-2670 N88-30556 N88-20352 *	## # ## # ##### #	NASA-CASE-LAR-13898-1 NASA-CASE-MFS-2B185-1 NASA-CASE-MSC-20985-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21117-1 NASA-CASE-MSC-21207-1 NASA-CP-10009 NASA-CP-2426-VOL-1 NASA-CP-2426-VOL-4 NASA-CP-2492-PT-2 NASA-CP-2506 NASA-CP-3002 NASA-CP-3009 NASA-CP-3009 NASA-CP-3009	p 19 p 18 p 80 p 18 p 19 p 22 p 99 p 100 p 98 p 102 p 8	N88-23979 * N88-26398 * N88-23927 * N88-28958 * N88-29180 * N88-24145 * # N88-24148 * # N88-21468 * # N88-21468 * # N88-23226 * # N88-30330 * #	SNIAS-SE/LS/AP-35-073 SNIAS-881-430-104 SNIAS-881-430-106 SNIAS-881-440-104 SPIE-748 SPIE-751 SPIE-840 SPIE-871 SR/FIS/108(87)CZ STF23-F87025-VOL-1 TR-0086A(2940-06)-6 TR-88-18	P 7 P 72 P 72 P 72 P 89 P 89 P 89 P 93 P 92 P 24 P 82 P 61 P 99	N88-20330 # N88-28977 # N88-28978 # N88-29128 # A88-34486 A88-43176 A88-42547 N88-30552 # N88-30298 # N88-26396 # N88-23929 ##
IAF PAPER 88-515	77 6 80 48 48 51 8 51 72 72 61 102	A88-55417 A88-55454 A88-55454 N88-29352 * N88-20349 N88-21240 N88-24673 N88-24673 N88-24673 N88-28633 N88-29190 N88-24670 N88-24670 N88-24670 N88-26670 N88-20556	## # ## # ##### #	NASA-CASE-LAR-13898-1 NASA-CASE-MFS-28185-1 NASA-CASE-MSC-20985-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-2117-1 NASA-CASE-MSC-2117-1 NASA-CASE-MSC-21207-1 NASA-CP-10009 NASA-CP-2426-VOL-1 NASA-CP-2426-VOL-4 NASA-CP-2492-PT-2 NASA-CP-2506 NASA-CP-3002 NASA-CP-3009 NASA-CP-3009 NASA-CP-3009 NASA-CR-172055 NASA-CR-179321	p 19 p 18 p 80 p 18 p 19 p 22 p 99 p 100 p 98 p 69 p 98 p 102 p 8 p 7	N88-30130 ° # N88-23979 ° N88-26398 ° N88-28958 ° N88-29180 ° N88-24145 ° # N88-24148 ° # N88-24148 ° # N88-21468 ° # N88-25390 ° # N88-30330 ° # N88-27180 ° # N88-27180 ° #	SNIAS-SE/LS/AP-35-073 SNIAS-881-430-104 SNIAS-881-430-106 SNIAS-881-440-104 SPIE-748 SPIE-751 SPIE-840 SPIE-871 SR/FIS/108(87)CZ STF23-F87025-VOL-1 TR-0086A(2940-06)-6 TR-88-18 TW-278	P 7 P 72 P 72 P 72 P 89 P 89 P 89 P 93 P 92 P 24 P 82 P 61 P 99 P 48	N88-20330 # N88-28977 # N88-28978 # A88-34456 A88-43176 A88-42547 N88-30552 # N88-30298 # N88-26396 # N88-23929 # N88-20348 #
IAF PAPER 88-515	77 6 80 48 48 51 8 51 72 72 61 102 77 98	A88-55417 A88-55436 A88-55454 N88-29352 * N88-20349 N88-21240 N88-24673 N88-24673 N88-2833 N88-29190 N88-29352 * N88-20352 *	**	NASA-CASE-LAR-13898-1 NASA-CASE-MFS-28185-1 NASA-CASE-MSC-20985-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21117-1 NASA-CASE-MSC-21117-1 NASA-CP-10009 NASA-CP-10009 NASA-CP-2426-VOL-1 NASA-CP-2426-VOL-4 NASA-CP-2492-PT-2 NASA-CP-2506 NASA-CP-3002 NASA-CP-3003-VOL-1 NASA-CP-3009 NASA-CP-3009 NASA-CR-179321 NASA-CR-179321 NASA-CR-179371	p 19 p 18 p 80 p 18 p 19 p 22 p 99 p 100 p 98 p 102 p 8 p 102 p 8 p 102 p 98 p 105	N88-30130 ° # N88-23979 ° N88-23927 ° N88-23927 ° N88-29180 ° N88-24145 ° # N88-24148 ° # N88-24148 ° # N88-21468 ° # N88-23226 ° # N88-30330 ° # N88-27180 ° # N88-27180 ° # N88-20339 ° # N88-20339 ° #	SNIAS-SE/LS/AP-35-073 SNIAS-881-430-104 SNIAS-881-430-106 SNIAS-881-440-104 SPIE-748 SPIE-751 SPIE-840 SPIE-871 SR/FIS/108(87)CZ STF23-F87025-VOL-1 TR-0086A(2940-06)-6 TR-88-18	P 7 P 72 P 72 P 72 P 89 P 89 P 89 P 93 P 92 P 24 P 82 P 61 P 99 P 48	N88-20330 # N88-28977 # N88-28978 # N88-29128 # A88-34486 A88-43176 A88-42547 N88-30552 # N88-30298 # N88-26396 # N88-23929 ##
IAF PAPER 88-515	77 6 80 48 48 51 8 51 72 72 61 102 77 98	A88-55417 A88-55436 A88-55454 N88-29352 * N88-20349 N88-21240 N88-24673 N88-24673 N88-2833 N88-29190 N88-2670 N88-30556 N88-20352 *	**	NASA-CASE-LAR-13898-1 NASA-CASE-MFS-28185-1 NASA-CASE-MSC-20985-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-2117-1 NASA-CASE-MSC-2117-1 NASA-CASE-MSC-21207-1 NASA-CP-10009 NASA-CP-2426-VOL-1 NASA-CP-2426-VOL-4 NASA-CP-2492-PT-2 NASA-CP-2506 NASA-CP-3002 NASA-CP-3009 NASA-CP-3009 NASA-CP-3009 NASA-CR-172055 NASA-CR-179321	p 19 p 18 p 80 p 18 p 19 p 22 p 99 p 100 p 98 p 102 p 8 p 102 p 8 p 102 p 98 p 105	N88-30130 ° # N88-23979 ° N88-26398 ° N88-28958 ° N88-29180 ° N88-24145 ° # N88-24148 ° # N88-24148 ° # N88-21468 ° # N88-25390 ° # N88-30330 ° # N88-27180 ° # N88-27180 ° #	SNIAS-SE/LS/AP-35-073 SNIAS-881-430-104 SNIAS-881-430-106 SNIAS-881-440-104 SPIE-748 SPIE-751 SPIE-840 SPIE-871 SR/FIS/108(87)CZ STF23-F87025-VOL-1 TR-0086A(2940-06)-6 TR-88-18 TW-278 TW-278	P 7 P 72 P 72 P 72 P 89 P 89 P 93 P 92 P 24 P 82 P 61 P 99 P 48 P 52	N88-20330 # N88-28977 # N88-28978 # A88-34486 A88-34536 A88-43176 A88-42547 N88-30552 # N88-30598 # N88-26396 # N88-20348 # N88-20348 # N88-26390 #
IAF PAPER 88-515	77 6 80 48 48 51 8 51 72 72 61 102 77 98	A88-55417 A88-55436 A88-55454 N88-29352 * N88-20349 N88-21240 N88-24673 N88-24673 N88-2833 N88-29190 N88-29352 * N88-20352 *	**	NASA-CASE-LAR-13898-1 NASA-CASE-MFS-28185-1 NASA-CASE-MSC-20985-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21017-1 NASA-CASE-MSC-21117-1 NASA-CP-10009 NASA-CP-2426-VOL-1 NASA-CP-2426-VOL-4 NASA-CP-2426-VOL-4 NASA-CP-2506 NASA-CP-3002 NASA-CP-3002 NASA-CP-3009 NASA-CR-179309 NASA-CR-179371 NASA-CR-179373	p 19 p 18 p 80 p 18 p 19 p 22 p 99 p 100 p 98 p 69 p 102 p 8 p 102 p 8 p 7 p 53 p 24	N88-23979 * N88-26398 * N88-23927 * N88-28958 * N88-29180 * N88-24145 * # N88-24148 * # N88-21468 * # N88-21468 * # N88-23226 * # N88-30330 * # N88-27180 * # N88-2939 * # N88-2939 * # N88-2939 * # N88-3031 * #	SNIAS-SE/LS/AP-35-073 SNIAS-881-430-104 SNIAS-881-430-106 SNIAS-881-440-104 SPIE-748 SPIE-751 SPIE-840 SPIE-871 SR/FIS/108(87)CZ STF23-F87025-VOL-1 TR-0086A(2940-06)-6 TR-88-18 TW-278	P 7 P 72 P 72 P 72 P 89 P 89 P 93 P 92 P 24 P 82 P 61 P 99 P 48 P 52	N88-20330 # N88-28977 # N88-28978 # A88-34456 A88-43176 A88-42547 N88-30552 # N88-30298 # N88-26396 # N88-23929 # N88-20348 #
IAF PAPER 88-515	77 6 80 48 48 51 8 51 72 72 61 102 77 98	A88-55417 A88-55436 A88-55454 N88-29352 * N88-20349 N88-21240 N88-24673 N88-24673 N88-28833 N88-28930 N88-24670 N88-20352 * N88-21468 * N88-30181 *	## # ## # ###### # # #	NASA-CASE-LAR-13898-1 NASA-CASE-MFS-28185-1 NASA-CASE-MSC-20985-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21017-1 NASA-CASE-MSC-21117-1 NASA-CASE-MSC-21207-1 NASA-CP-10009 NASA-CP-2426-VOL-1 NASA-CP-2426-VOL-4 NASA-CP-2492-PT-2 NASA-CP-2506 NASA-CP-3002 NASA-CP-3003-VOL-1 NASA-CP-3009 NASA-CR-179371 NASA-CR-179371 NASA-CR-179373 NASA-CR-179373 NASA-CR-179379	p 19 p 18 p 80 p 18 p 19 p 22 p 99 p 100 p 98 p 102 p 8 p 7 p 53 p 24 p 59	N88-30130 ° # N88-23979 ° N88-26398 ° N88-28958 ° N88-29180 ° N88-24145 ° # N88-24145 ° # N88-24148 ° # N88-21468 ° # N88-25390 ° # N88-23226 ° # N88-30330 ° # N88-20339 ° #	SNIAS-SE/LS/AP-35-073 SNIAS-881-430-104 SNIAS-881-430-106 SNIAS-881-440-104 SPIE-748 SPIE-751 SPIE-840 SPIE-871 SR/FIS/108(87)CZ STF23-F87025-VOL-1 TR-0086A(2940-06)-6 TR-88-18 TW-278 TW-278	P 7 P 72 P 72 P 72 P 89 P 89 P 93 P 92 P 24 P 82 P 61 P 99 P 48 P 52	N88-20330 # N88-28977 # N88-28978 # A88-34486 A88-34536 A88-43176 A88-42547 N88-30552 # N88-30598 # N88-26396 # N88-20348 # N88-20348 # N88-26390 #
IAF PAPER 88-515	77 6 80 48 48 51 8 51 72 72 61 102 77 98	A88-55417 A88-55436 A88-55454 N88-29352 * N88-20349 N88-21240 N88-24673 N88-24673 N88-2833 N88-29190 N88-29352 * N88-20352 *	## # ## # ###### # # #	NASA-CASE-LAR-13898-1 NASA-CASE-MFS-28185-1 NASA-CASE-MSC-20985-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21107-1 NASA-CASE-MSC-21117-1 NASA-CP-10009 NASA-CP-2426-VOL-1 NASA-CP-2426-VOL-4 NASA-CP-2492-PT-2 NASA-CP-2506 NASA-CP-3002 NASA-CP-3009 NASA-CP-3009 NASA-CP-172055 NASA-CR-179371 NASA-CR-179373 NASA-CR-179373 NASA-CR-180879 NASA-CR-180879 NASA-CR-180879 NASA-CR-180879 NASA-CR-181617	p 19 p 18 p 80 p 18 p 19 p 22 p 99 p 90 p 98 p 69 p 90 p 98 p 102 p 8 p 102 p 8 p 102 p 99 p 99 p 99 p 99 p 99 p 99 p 99 p 9	N88-23979 * N88-23979 * N88-23827 * N88-23828 * N88-29180 * N88-24145 * # N88-24148 * # N88-24168 * # N88-21468 * # N88-23226 * # N88-23326 * # N88-23326 * # N88-23180 * # N88-2180 * # N88-2190 * #	SNIAS-SE/LS/AP-35-073 SNIAS-881-430-104 SNIAS-881-430-106 SNIAS-881-440-104 SPIE-748 SPIE-751 SPIE-840 SPIE-871 SR/FIS/108(87)CZ STF23-F87025-VOL-1 TR-0086A(2940-06)-6 TR-88-18 TW-278 TW-281 UCRL-15980	P 7 P 72 P 72 P 72 P 89 P 89 P 89 P 93 P 92 P 24 P 82 P 61 P 99 P 48 P 52 P 48	N88-20330 # N88-28977 # N88-28978 # N88-29128 # A88-34486 A88-34536 A88-42547 N88-30552 # N88-30552 # N88-26396 # N88-23929 * # N88-20348 # N88-20348 # N88-20902 #
IAF PAPER 88-515	77 6 80 48 48 51 8 51 72 72 61 102 77 98 24	A88-55417 A88-55436 A88-55454 N88-29352 * N88-20349 N88-21240 N88-24673 N88-24673 N88-24673 N88-29190 N88-2670 N88-20556 N88-20352 * N88-21468 * N88-30181 *	## # ## # ###### # # # #	NASA-CASE-LAR-13898-1 NASA-CASE-MFS-28185-1 NASA-CASE-MSC-20985-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21017-1 NASA-CASE-MSC-21117-1 NASA-CP-2426-VOL-1 NASA-CP-2426-VOL-4 NASA-CP-2426-VOL-4 NASA-CP-2506 NASA-CP-3002 NASA-CP-3002 NASA-CP-3002 NASA-CP-3003-VOL-1 NASA-CP-3009 NASA-CR-179371 NASA-CR-179371 NASA-CR-179373 NASA-CR-180879 NASA-CR-181617 NASA-CR-181617 NASA-CR-181617	p 19 p 18 p 80 p 18 p 19 p 22 p 99 p 100 p 98 p 69 p 98 p 102 p 8 p 7 p 53 p 24 p 59 p 8	N88-23979 * N88-26398 * N88-28958 * N88-29180 * N88-24145 * N88-24148 * N88-24188 * N88-21408 * * N88-23226 * * N88-30330 * * N88-27180 * * * * * * * * * * * * * * * * * * *	SNIAS-SE/LS/AP-35-073 SNIAS-881-430-104 SNIAS-881-430-106 SNIAS-881-440-104 SPIE-748 SPIE-751 SPIE-840 SPIE-871 SR/FIS/108(87)CZ STF23-F87025-VOL-1 TR-0086A(2940-06)-6 TR-88-18 TW-278 TW-278 TW-281 UCRL-15980 US-PATENT-APPL-SN-032818	P 7 P 72 P 72 P 72 P 89 P 89 P 89 P 93 P 92 P 24 P 82 P 61 P 99 P 48 P 19	N88-20330 # N88-28977 # N88-28978 # A88-34486 A88-44536 A88-43176 A88-30552 # N88-30552 # N88-30298 # N88-26396 # N88-20348 # N88-20348 # N88-20348 # N88-20348 # N88-20902 # N88-20902 #
IAF PAPER 88-515	77 6 80 48 48 51 8 51 72 61 102 77 98 24 50 100	A88-55417 A88-55436 A88-55454 N88-29352 N88-20349 N88-21240 N88-24673 N88-24673 N88-28833 N88-28930 N88-24670 N88-30556 N88-20352 N88-21468 N88-30181 N88-30181	## # ## # ###### # # # #	NASA-CASE-LAR-13898-1 NASA-CASE-MFS-28185-1 NASA-CASE-MSC-20985-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21017-1 NASA-CASE-MSC-21117-1 NASA-CP-10009 NASA-CP-2426-VOL-1 NASA-CP-2426-VOL-1 NASA-CP-2492-PT-2 NASA-CP-2506 NASA-CP-3002 NASA-CP-3003-VOL-1 NASA-CP-3009 NASA-CR-179371 NASA-CR-179371 NASA-CR-179373 NASA-CR-181617 NASA-CR-181617 NASA-CR-182128 NASA-CR-182128	p 19 p 18 p 80 p 18 p 19 p 22 p 99 p 100 p 98 p 102 p 8 p 7 p 53 p 24 p 59 p 8 p 102	N88-23979 * N88-23979 * N88-26398 * N88-28958 * N88-29180 * N88-24145 * # N88-24145 * # N88-24148 * # N88-21468 * # N88-23226 * # N88-30330 * # N88-20339 * # N88-20339 * # N88-2143 * # N88-2143 * # N88-2143 * # N88-2143 * # N88-21243 * # N88-21243 * # N88-29835 * # N88-29182 * #	SNIAS-SE/LS/AP-35-073 SNIAS-881-430-104 SNIAS-881-430-106 SNIAS-881-440-104 SPIE-748 SPIE-751 SPIE-840 SPIE-871 SR/FIS/108(87)CZ STF23-F87025-VOL-1 TR-0086A(2940-06)-6 TR-88-18 TW-278 TW-281 UCRL-15980 US-PATENT-APPL-SN-032818 US-PATENT-APPL-SN-056930	P 7 7 2 P 72 P 72 P 72 P 72 P 72 P 72 P	N88-20330 # N88-28977 # N88-28978 # A88-34456 A88-43176 A88-42547 N88-30552 # N88-30592 # N88-26396 # N88-23929 *# N88-20348 # N88-20348 # N88-20902 # N88-29180 * N88-21800 *
IAF PAPER 88-515	77 6 80 48 48 51 8 51 72 61 102 77 98 24 50 100	A88-55417 A88-55436 A88-55454 N88-29352 * N88-20349 N88-21240 N88-24673 N88-24673 N88-24673 N88-29190 N88-2670 N88-20556 N88-20352 * N88-21468 * N88-30181 *	## # ## # ###### # # # #	NASA-CASE-LAR-13898-1 NASA-CASE-MFS-28185-1 NASA-CASE-MSC-20985-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21017-1 NASA-CASE-MSC-21117-1 NASA-CP-2426-VOL-1 NASA-CP-2426-VOL-4 NASA-CP-2426-VOL-4 NASA-CP-2506 NASA-CP-3002 NASA-CP-3002 NASA-CP-3002 NASA-CP-3003-VOL-1 NASA-CP-3009 NASA-CR-179371 NASA-CR-179371 NASA-CR-179373 NASA-CR-180879 NASA-CR-181617 NASA-CR-181617 NASA-CR-181617	p 19 p 18 p 80 p 18 p 19 p 22 p 99 p 100 p 98 p 102 p 8 p 7 p 53 p 24 p 59 p 8 p 102	N88-23979 * N88-26398 * N88-28958 * N88-29180 * N88-24145 * N88-24148 * N88-24188 * N88-21408 * * N88-23226 * * N88-30330 * * N88-27180 * * * * * * * * * * * * * * * * * * *	SNIAS-SE/LS/AP-35-073 SNIAS-881-430-104 SNIAS-881-430-106 SNIAS-881-440-104 SPIE-748 SPIE-751 SPIE-840 SPIE-871 SR/FIS/108(87)CZ STF23-F87025-VOL-1 TR-0086A(2940-06)-6 TR-88-18 TW-278 TW-278 TW-281 UCRL-15980 US-PATENT-APPL-SN-032818	P 7 7 2 P 72 P 72 P 72 P 72 P 72 P 72 P	N88-20330 # N88-28977 # N88-28978 # A88-34486 A88-44536 A88-43176 A88-30552 # N88-30552 # N88-30298 # N88-26396 # N88-20348 # N88-20348 # N88-20348 # N88-20348 # N88-20902 # N88-20902 #
IAF PAPER 88-515	77 6 80 48 48 51 8 51 72 61 102 77 98 24 50 100	A88-55417 A88-55436 A88-55454 N88-29352 N88-20349 N88-21240 N88-24673 N88-24673 N88-28833 N88-28930 N88-24670 N88-30556 N88-20352 N88-21468 N88-30181 N88-30181	## # ## # ###### # # # #	NASA-CASE-LAR-13898-1 NASA-CASE-MFS-28185-1 NASA-CASE-MSC-20985-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21117-1 NASA-CASE-MSC-21117-1 NASA-CP-10009 NASA-CP-2426-VOL-1 NASA-CP-2426-VOL-4 NASA-CP-2426-VOL-2 NASA-CP-3002 NASA-CP-3003 NASA-CP-3009 NASA-CP-3009 NASA-CP-3009 NASA-CR-179371 NASA-CR-179371 NASA-CR-180879 NASA-CR-180879 NASA-CR-182148 NASA-CR-182141 NASA-CR-182148	p 19 p 18 p 80 p 18 p 19 p 22 p 99 p 99 p 99 p 90 p 98 p 69 p 102 p 8 p 7 p 53 p 24 p 59 p 91 p 92 p 95 p 96 p 96 p 96 p 96 p 97 p 53 p 24 p 59 p 96 p 9	N88-30130 ° # N88-23979 ° N88-26398 ° N88-28958 ° N88-29180 ° N88-24145 ° # N88-24148 ° # N88-24168 ° # N88-25390 ° # N88-25390 ° # N88-23226 ° # N88-2330 ° # N88-20339 ° #	SNIAS-SE/LS/AP-35-073 SNIAS-881-430-104 SNIAS-881-430-106 SNIAS-881-440-104 SPIE-748 SPIE-751 SPIE-840 SPIE-871 SR/FIS/108(87)CZ STF23-F87025-VOL-1 TR-0086A(2940-06)-6 TR-88-18 TW-278 TW-281 UCRL-15980 US-PATENT-APPL-SN-032818 US-PATENT-APPL-SN-056930 US-PATENT-APPL-SN-0225427	P 7 P 72	N88-20330 # N88-28977 # N88-28978 # A88-34456 A88-34536 A88-3457 N88-30552 # N88-30298 # N88-26396 # N88-23929 * # N88-20348 # N88-20348 # N88-29180 *
IAF PAPER 88-515 IAF PAPER 88-618 PAF-86-62 INPE-4313-TDL/280 INPE-4464-PRE/1239 PISAS-RN-625 ISSN-0250-1589 ISSN-0265-6808 PISSN-0379-4059 ISSN-0379-4059 PISSN-0379-4059 PISSN-0379-6566 PJPL-PUBL-87-42-VOL-2 L-16433 PLMSC-F115808 PM-576-PT-2 PM-586 P	77 6 80 48 48 51 8 51 72 72 72 72 72 75 77 98 24 50 100 69	A88-55417 A88-55436 A88-55454 N88-29352 N88-20349 N88-21240 N88-24673 N88-24673 N88-2833 N88-29190 N88-2670 N88-20352 N88-20352 N88-20352 N88-21468 N88-20352 N88-21468	## # ## # ###### # # # # ##	NASA-CASE-LAR-13898-1 NASA-CASE-MFS-28185-1 NASA-CASE-MSC-20985-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21017-1 NASA-CASE-MSC-21117-1 NASA-CP-2426-VOL-1 NASA-CP-2426-VOL-4 NASA-CP-2492-PT-2 NASA-CP-2506 NASA-CP-3002 NASA-CP-3002 NASA-CP-3002 NASA-CP-3003-VOL-1 NASA-CP-3002 NASA-CR-179371 NASA-CR-179371 NASA-CR-179373 NASA-CR-180879 NASA-CR-181617 NASA-CR-182128 NASA-CR-182141 NASA-CR-182141 NASA-CR-182148 NASA-CR-182146	P 19 P 18 P 80 P 18 P 18 P 19 P 22 P 99 P 100 P 98 P 102 P 8 P 7 P 23 P 59 P 101 P 23 P 60	N88-23979 * N88-26398 * N88-28958 * N88-29180 * N88-24145 * N88-24145 * N88-24188 * N88-21408 * * N88-21408 * * N88-23226 * * N88-30330 * * * * * * * * * * * * * * * * * * *	SNIAS-SE/LS/AP-35-073 SNIAS-881-430-104 SNIAS-881-430-106 SNIAS-881-440-104 SPIE-748 SPIE-751 SPIE-840 SPIE-871 SR/FIS/108(87)CZ STF23-F87025-VOL-1 TR-0086A(2940-06)-6 TR-88-18 TW-278 TW-281 UCRL-15980 US-PATENT-APPL-SN-032818 US-PATENT-APPL-SN-056930 US-PATENT-APPL-SN-056427 US-PATENT-APPL-SN-904134	P 7 P 72	N88-20330 # N88-28977 # N88-28978 # N88-29128 # A88-34486 A88-43176 A88-42547 N88-30552 # N88-30298 # N88-26396 # N88-26396 # N88-29399 # N88-20348 #
IAF PAPER 88-515	77 6 80 48 48 51 8 51 72 72 72 72 72 75 77 98 24 50 100 69	A88-55417 A88-55436 A88-55454 N88-29352 N88-20349 N88-21240 N88-24673 N88-24673 N88-28833 N88-28930 N88-24670 N88-30556 N88-20352 N88-21468 N88-30181 N88-30181	## # ## # ###### # # # # ##	NASA-CASE-LAR-13898-1 NASA-CASE-MFS-28185-1 NASA-CASE-MSC-20985-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21117-1 NASA-CASE-MSC-21117-1 NASA-CP-10009 NASA-CP-2426-VOL-1 NASA-CP-2426-VOL-4 NASA-CP-2492-PT-2 NASA-CP-2506 NASA-CP-3002 NASA-CP-3003-VOL-1 NASA-CP-3009 NASA-CR-179373 NASA-CR-179371 NASA-CR-179373 NASA-CR-1811617 NASA-CR-181168 NASA-CR-182148 NASA-CR-182148 NASA-CR-182680 NASA-CR-182680 NASA-CR-182680 NASA-CR-182688	p 19 p 18 p 80 p 18 p 19 p 22 p 99 p 100 p 98 p 102 p 8 p 7 p 524 p 59 p 8 p 102 p 8 p 7 p 524 p 59 p 8 p 60 p 7 p 7 p 7 p 7 p 7 p 7 p 7 p 7 p 7 p 7	N88-23979 * N88-26398 * N88-28958 * N88-29180 * N88-24145 * # N88-24145 * # N88-24148 * # N88-21468 * # N88-23226 * # N88-20339 * # N88-20339 * # N88-21243 * # N88-23849 * # N88-23649 * # N88-23649 * # N88-23649 * # N88-23640 * # N88-23640 * # N88-25244 * # N88-25244 * #	SNIAS-SE/LS/AP-35-073 SNIAS-881-430-104 SNIAS-881-430-106 SNIAS-881-440-104 SPIE-748 SPIE-751 SPIE-840 SPIE-871 SR/FIS/108(87)CZ STF23-F87025-VOL-1 TR-0086A(2940-06)-6 TR-88-18 TW-278 TW-281 UCRL-15980 US-PATENT-APPL-SN-032818 US-PATENT-APPL-SN-904134 US-PATENT-APPL-SN-904134 US-PATENT-APPL-SN-9013432	P 7 P 72 P 72 P 72 P 72 P 72 P 72 P 73 P 79	N88-20330 # N88-28977 # N88-28978 # A88-34456 A88-34566 A88-42547 N88-30552 # N88-30552 # N88-26396 # N88-26396 # N88-2348 # N88-20348 #
IAF PAPER 88-515 IAF PAPER 88-618 P IAF-86-62 INPE-4313-TDL/280 INPE-4464-PRE/1239 P ISAS-RN-625 ISSN-0250-1589 ISSN-0255-6808 ISSN-0239-4059 ISSN-0379-4059 ISSN-0379-4057 ISSN-0379-6566 P JPL-PUBL-87-42-VOL-2 L-16433 P LMSC-F115808 P M-576-PT-2 M-586 P MBB-URV-135	77 6 80 48 48 51 8 51 72 61 102 77 98 24 50 100 69 11	A88-55477 A88-55436 A88-55454 N88-29352 N88-20349 N88-21240 N88-24673 N88-30447 N88-24673 N88-2833 N88-2833 N88-29190 N88-21468 N88-30181 N88-21468 N88-30181 N88-2924 N88-24188 N88-25390 N88-20332	## # ## # ###### # # # ## ##	NASA-CASE-LAR-13898-1 NASA-CASE-MFS-28185-1 NASA-CASE-MSC-20985-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21107-1 NASA-CASE-MSC-21117-1 NASA-CASE-MSC-21207-1 NASA-CP-2426-VOL-1 NASA-CP-2426-VOL-4 NASA-CP-2492-PT-2 NASA-CP-3002 NASA-CP-3009 NASA-CP-3003-VOL-1 NASA-CP-3009 NASA-CR-179371 NASA-CR-179371 NASA-CR-179371 NASA-CR-182148 NASA-CR-182141 NASA-CR-182148 NASA-CR-182141 NASA-CR-182680	p 19 p 18 p 80 p 18 p 19 p 22 p 99 p 100 p 98 p 69 p 102 p 8 p 102 p 8 p 102 p 8 p 102 p 95 p 100 p 10	N88-30130 ° # N88-23979 ° N88-26398 ° N88-28958 ° N88-29180 ° N88-24145 ° # N88-24148 ° # N88-24148 ° # N88-22166 ° # N88-23226 ° # N88-20339 ° # N88-20339 ° # N88-20339 ° # N88-20339 ° # N88-21448 ° # N88-21468 ° # N88-20339 ° # N88-21440 ° # N88-25444 ° # N88-22540 ° # N88-20352 ° #	SNIAS-SE/LS/AP-35-073 SNIAS-881-430-104 SNIAS-881-430-106 SNIAS-881-440-104 SPIE-748 SPIE-751 SPIE-840 SPIE-871 SR/FIS/108(87)CZ STF23-F87025-VOL-1 TR-0086A(2940-06)-6 TR-88-18 TW-278 TW-281 UCRL-15980 US-PATENT-APPL-SN-032818 US-PATENT-APPL-SN-056930 US-PATENT-APPL-SN-904134 US-PATENT-APPL-SN-904134 US-PATENT-APPL-SN-913432 US-PATENT-APPL-SN-913432 US-PATENT-APPL-SN-913432 US-PATENT-APPL-SN-913432	P 7 P 72 P 72 P 72 P 72 P 72 P 73 P 89 P 89 P 99 P 99 P 92 P 24 P 61 P 99 P 48 P 52 P 48 P 19 P 18 P 19 P 80 P 7 P 18	N88-20330 # N88-28977 # N88-28978 # A88-34486 A88-43176 A88-42547 N88-30552 # N88-26396 # N88-26396 # N88-26396 # N88-26390 # N88-29180 * N88-29180 * N88-29180 * N88-29309 # N88-29309 # N88-29309 #
IAF PAPER 88-515 IAF PAPER 88-618 PAF-86-62 INPE-4313-TDL/280 INPE-4464-PRE/1239 PISAS-RN-625 PISSN-0250-1589 ISSN-0379-4059 ISSN-0379-4059 ISSN-0379-4057 ISSN-0379-4067 PISSN-0379-6566 PUPL-PUBL-87-42-VOL-2 PL-16433 PLMSC-F115808 PMS-576-PT-2 PM-586 PMBB-URV-135 PMCR-85-721	77 6 80 48 48 51 8 51 72 72 61 102 77 98 24 50 100 69 11 71	A88-55417 A88-55436 A88-55454 N88-29352 N88-20349 N88-21240 N88-24673 N88-24673 N88-2833 N88-29190 N88-2670 N88-30556 N88-20352 N88-21468 N88-20352 N88-25390 N88-25390	## # ## # ###### # # # # # # #	NASA-CASE-LAR-13898-1 NASA-CASE-MFS-28185-1 NASA-CASE-MSC-20985-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21117-1 NASA-CASE-MSC-21117-1 NASA-CP-10009 NASA-CP-2426-VOL-1 NASA-CP-2426-VOL-4 NASA-CP-2492-PT-2 NASA-CP-2506 NASA-CP-3002 NASA-CP-3003-VOL-1 NASA-CP-3009 NASA-CR-179373 NASA-CR-179373 NASA-CR-1812168 NASA-CR-182148 NASA-CR-182148 NASA-CR-182148 NASA-CR-182680 NASA-CR-182680 NASA-CR-182688	p 19 p 18 p 80 p 18 p 19 p 22 p 99 p 100 p 98 p 69 p 102 p 8 p 102 p 8 p 102 p 8 p 102 p 95 p 100 p 10	N88-23979 * N88-26398 * N88-28958 * N88-29180 * N88-24145 * # N88-24145 * # N88-24148 * # N88-21468 * # N88-23226 * # N88-20339 * # N88-20339 * # N88-21243 * # N88-23849 * # N88-23649 * # N88-23649 * # N88-23649 * # N88-23640 * # N88-23640 * # N88-25244 * # N88-25244 * #	SNIAS-SE/LS/AP-35-073 SNIAS-881-430-104 SNIAS-881-430-106 SNIAS-881-440-104 SPIE-748 SPIE-751 SPIE-840 SPIE-871 SR/FIS/108(87)CZ STF23-F87025-VOL-1 TR-0086A(2940-06)-6 TR-88-18 TW-278 TW-281 UCRL-15980 US-PATENT-APPL-SN-032818 US-PATENT-APPL-SN-904134 US-PATENT-APPL-SN-904134 US-PATENT-APPL-SN-9013432	P 7 P 72 P 72 P 72 P 72 P 72 P 73 P 89 P 89 P 99 P 99 P 92 P 24 P 61 P 99 P 48 P 52 P 48 P 19 P 18 P 19 P 80 P 7 P 18	N88-20330 # N88-28977 # N88-28978 # A88-34456 A88-34566 A88-42547 N88-30552 # N88-30552 # N88-26396 # N88-26396 # N88-2348 # N88-20348 #
IAF PAPER 88-515 IAF PAPER 88-618 P IAF-86-62 INPE-4313-TDL/280 INPE-4464-PRE/1239 P ISAS-RN-625 ISSN-0250-1589 ISSN-0255-6808 ISSN-0239-4059 ISSN-0379-4059 ISSN-0379-4057 ISSN-0379-6566 P JPL-PUBL-87-42-VOL-2 L-16433 P LMSC-F115808 P M-576-PT-2 M-586 P MBB-URV-135	77 6 80 48 48 51 8 51 72 72 61 102 77 98 24 50 100 69 11 71	A88-55477 A88-55436 A88-55454 N88-29352 N88-20349 N88-21240 N88-24673 N88-30447 N88-24673 N88-2833 N88-2833 N88-29190 N88-21468 N88-30181 N88-21468 N88-30181 N88-2924 N88-24188 N88-25390 N88-20332	## # ## # ###### # # # # # # #	NASA-CASE-LAR-13898-1 NASA-CASE-MFS-28185-1 NASA-CASE-MSC-20985-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21117-1 NASA-CASE-MSC-21117-1 NASA-CP-2426-VOL-1 NASA-CP-2426-VOL-4 NASA-CP-2492-PT-2 NASA-CP-2506 NASA-CP-3002 NASA-CP-3002 NASA-CP-3009 NASA-CR-179371 NASA-CR-179371 NASA-CR-179371 NASA-CR-181617 NASA-CR-182128 NASA-CR-182141 NASA-CR-182141 NASA-CR-182148 NASA-CR-182688 NASA-CR-182688 NASA-CR-182690 NASA-CR-182690 NASA-CR-1826710	P 19 P 18 P 80 P 18 P 18 P 19 P 22 P 99 P 100 P 98 P 102 P 8 P 7 P 23 P 24 P 59 P 101 P 23 P 78 P 77 P 77	N88-30130 ° # N88-23979 ° N88-26398 ° N88-28958 ° N88-29180 ° N88-24145 ° # N88-24148 ° # N88-24148 ° # N88-22166 ° # N88-23226 ° # N88-20339 ° # N88-20339 ° # N88-20339 ° # N88-20339 ° # N88-21448 ° # N88-21468 ° # N88-20339 ° # N88-21440 ° # N88-25444 ° # N88-22540 ° # N88-20352 ° #	SNIAS-SE/LS/AP-35-073 SNIAS-881-430-104 SNIAS-881-430-106 SNIAS-881-440-104 SPIE-748 SPIE-751 SPIE-840 SPIE-871 SR/FIS/108(87)CZ STF23-F87025-VOL-1 TR-0086A(2940-06)-6 TR-88-18 TW-278 TW-281 UCRL-15980 US-PATENT-APPL-SN-032818 US-PATENT-APPL-SN-056930 US-PATENT-APPL-SN-904134 US-PATENT-APPL-SN-904134 US-PATENT-APPL-SN-913432 US-PATENT-APPL-SN-913432 US-PATENT-APPL-SN-913432 US-PATENT-APPL-SN-913432	P 7 P 72 P 72 P 72 P 72 P 72 P 73 P 89 P 89 P 99 P 99 P 92 P 24 P 61 P 99 P 48 P 52 P 48 P 19 P 18 P 19 P 80 P 7 P 18	N88-20330 # N88-28977 # N88-28978 # A88-34486 A88-43176 A88-42547 N88-30552 # N88-26396 # N88-26396 # N88-26396 # N88-26390 # N88-29180 * N88-29180 * N88-29180 * N88-29309 # N88-29309 # N88-29309 #
IAF PAPER 88-515 IAF PAPER 88-618 PAF-86-62 INPE-4313-TDL/280 INPE-4464-PRE/1239 PISAS-RN-625 PISSN-0250-1589 ISSN-0379-4059 ISSN-0379-4059 ISSN-0379-4057 ISSN-0379-4067 PISSN-0379-6566 PUPL-PUBL-87-42-VOL-2 PL-16433 PLMSC-F115808 PMS-576-PT-2 PM-586 PMBB-URV-135 PMCR-85-721	77 6 80 48 48 51 8 51 72 72 61 102 77 98 24 50 100 69 11 71	A88-55417 A88-55436 A88-55454 N88-29352 N88-20349 N88-21240 N88-24673 N88-24673 N88-2833 N88-29190 N88-2670 N88-30556 N88-20352 N88-21468 N88-20352 N88-25390 N88-25390	## # ## # ###### # # # # # # #	NASA-CASE-LAR-13898-1 NASA-CASE-MFS-28185-1 NASA-CASE-MSC-20985-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21117-1 NASA-CASE-MSC-21117-1 NASA-CP-10009 NASA-CP-2426-VOL-1 NASA-CP-2426-VOL-4 NASA-CP-2426-VOL-4 NASA-CP-2492-PT-2 NASA-CP-3002 NASA-CP-3003-VOL-1 NASA-CP-3009 NASA-CR-179371 NASA-CR-179371 NASA-CR-179373 NASA-CR-180879 NASA-CR-181617 NASA-CR-182148 NASA-CR-182148 NASA-CR-182148 NASA-CR-182688 NASA-CR-182688 NASA-CR-182690 NASA-CR-182710 NASA-CR-182710 NASA-CR-182710	P 19 P 18 P 80 P 18 P 19 P 22 P 99 P 100 P 98 P 102 P 8 P 7 P 53 P 602 P 78 P 77 P 98	N88-30130 ° # N88-23979 ° N88-26398 ° N88-28958 ° N88-29180 ° N88-24145 ° # N88-24145 ° # N88-24148 ° # N88-21468 ° # N88-23226 ° # N88-30330 ° # N88-20399 ° # N88-20399 ° # N88-20309 ° # N88-20309 ° # N88-25390 ° # N88-26397 ° # N88-26397 ° # N88-26397 ° # N88-23649 ° # N88-23649 ° # N88-23640 ° # N88-22544 ° # N88-22540 ° # N88-22540 ° # N88-22540 ° # N88-20352 ° # N88-20352 ° # N88-20352 ° # N88-21242 ° #	SNIAS-SE/LS/AP-35-073 SNIAS-881-430-104 SNIAS-881-430-106 SNIAS-881-440-104 SPIE-748 SPIE-751 SPIE-840 SPIE-871 SR/FIS/108(87)CZ STF23-F87025-VOL-1 TR-0086A(2940-06)-6 TR-88-18 TW-278 TW-281 UCRL-15980 US-PATENT-APPL-SN-032818 US-PATENT-APPL-SN-056930 US-PATENT-APPL-SN-904134 US-PATENT-APPL-SN-904134 US-PATENT-APPL-SN-913432 US-PATENT-APPL-SN-928675 US-PATENT-APPL-SN-928675 US-PATENT-APPL-SN-92875	P 7 P 72	N88-20330 # N88-28977 # N88-28978 # A88-34486 A88-34536 A88-43176 A88-42547 N88-30552 # N88-26396 # N88-26396 # N88-2348 # N88-20348 * N88-20348 * N88-20382 * N88-20382 * N88-20382 * N88-20382 *
IAF PAPER 88-515 IAF PAPER 88-618 P IAF-86-62 INPE-4313-TDL/280 INPE-4464-PRE/1239 P ISAS-RN-625 ISSN-0250-1589 ISSN-0255-6808 ISSN-0239-4059 ISSN-0379-4059 ISSN-0379-4067 ISSN-0379-6566 P JPL-PUBL-87-42-VOL-2 L-16433 P LMSC-F115808 P MSC-F115808 P M-576-PT-2 M-586 P MBB-URV-135 P MCR-86-2601-VOL-2-BK-1 P MCR-86-2601-VOL-2-BK-1	77 6 80 48 48 51 8 51 72 72 61 100 69 11 71 71 7	A88-55417 A88-55436 A88-55454 N88-29352 N88-20349 N88-21240 N88-24673 N88-30447 N88-24673 N88-2833 N88-29190 N88-24670 N88-30556 N88-20352 N88-21468 N88-20352 N88-2924 N88-21468 N88-2924 N88-21468 N88-2939 N88-20332 N88-20332	## # ## # ###### # # # ## ## ##	NASA-CASE-LAR-13898-1 NASA-CASE-MFS-28185-1 NASA-CASE-MSC-20985-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21017-1 NASA-CASE-MSC-21117-1 NASA-CASE-MSC-21207-1 NASA-CP-10009 NASA-CP-2426-VOL-1 NASA-CP-2426-VOL-4 NASA-CP-2492-PT-2 NASA-CP-2506 NASA-CP-3002 NASA-CP-3009 NASA-CP-3003-VOL-1 NASA-CR-179371 NASA-CR-179371 NASA-CR-179371 NASA-CR-181617 NASA-CR-181617 NASA-CR-181617 NASA-CR-182688 NASA-CR-182688 NASA-CR-182688 NASA-CR-182688 NASA-CR-182710 NASA-CR-182710 NASA-CR-182710 NASA-CR-182748 NASA-CR-182748	P 19 P 18 P 80 P 18 P 19 P 22 P 99 P 100 P 98 P 102 P 8 P 7 P 53 P 60 P 52 P 77 P 77 P 78 P 50	N88-30130 ° # N88-23979 ° N88-26398 ° N88-28958 ° N88-29180 ° N88-24145 ° # N88-24148 ° # N88-24148 ° # N88-21468 ° # N88-23266 ° # N88-20339 ° # N88-20339 ° # N88-20339 ° # N88-21443 ° # N88-21444 ° # N88-21444 ° # N88-2164 ° # N88-2144 ° # N88-20540 ° # N88-20540 ° # N88-20540 ° # N88-2164 ° # N88-21640 ° #	SNIAS-SE/LS/AP-35-073 SNIAS-881-430-104 SNIAS-881-430-106 SNIAS-881-440-104 SPIE-748 SPIE-751 SPIE-840 SPIE-871 SR/FIS/108(87)CZ STF23-F87025-VOL-1 TR-0086A(2940-06)-6 TR-88-18 TW-278 TW-281 UCRL-15980 US-PATENT-APPL-SN-032818 US-PATENT-APPL-SN-904134 US-PATENT-APPL-SN-904134 US-PATENT-APPL-SN-913432 US-PATENT-APPL-SN-913432 US-PATENT-APPL-SN-913432 US-PATENT-APPL-SN-913432 US-PATENT-APPL-SN-934397 US-PATENT-APPL-SN-934397	P 7 P 72 P 72 P 72 P 72 P 73 P 89 P 89 P 99 P 99 P 99 P 99 P 99 P 9	N88-20330 # N88-28977 # N88-28978 # A88-34486 A88-43176 A88-42547 N88-30552 # N88-26396 # N88-26396 # N88-26396 # N88-26390 # N88-29180 * N88-29180 * N88-29180 * N88-29180 * N88-29180 * N88-29382 * N88-23827 * N88-28398 * N88-28398 *
IAF PAPER 88-515 IAF PAPER 88-618 PAF-86-62 INPE-4313-TDL/280 INPE-4464-PRE/1239 PISAS-RN-625 PISSN-0250-1589 ISSN-0379-4059 ISSN-0379-4059 ISSN-0379-4057 ISSN-0379-4067 PISSN-0379-6566 PUPL-PUBL-87-42-VOL-2 PL-16433 PLMSC-F115808 PMS-576-PT-2 PM-586 PMBB-URV-135 PMCR-85-721	77 6 80 48 48 51 8 51 72 72 61 100 69 11 71 71 7	A88-55417 A88-55436 A88-55454 N88-29352 N88-20349 N88-21240 N88-24673 N88-24673 N88-2833 N88-29190 N88-2670 N88-30556 N88-20352 N88-21468 N88-20352 N88-25390 N88-25390	## # ## # ###### # # # ## ## ##	NASA-CASE-LAR-13898-1 NASA-CASE-MFS-28185-1 NASA-CASE-MSC-20985-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21117-1 NASA-CASE-MSC-21117-1 NASA-CP-2426-VOL-1 NASA-CP-2426-VOL-1 NASA-CP-2426-VOL-4 NASA-CP-2492-PT-2 NASA-CP-2506 NASA-CP-3002 NASA-CP-3002 NASA-CP-3009 NASA-CR-179307 NASA-CR-179371 NASA-CR-179371 NASA-CR-179371 NASA-CR-182141 NASA-CR-182141 NASA-CR-182141 NASA-CR-182148 NASA-CR-182688 NASA-CR-182688 NASA-CR-182688 NASA-CR-182748 NASA-CR-182748 NASA-CR-182748 NASA-CR-182748 NASA-CR-182898 NASA-CR-182981	P 19 P 18 P 80 P 18 P 18 P 19 P 22 P 99 P 100 P 98 P 102 P 8 P 75 P 24 P 59 P 101 P 26 P 77 P 98 P 77 P 98 P 77 P 98 P 77	N88-23979 * N88-26398 * N88-26398 * N88-28958 * N88-29180 * N88-24145 * N88-24145 * N88-24148 * N88-21468 * N88-21468 * N88-2326 * N88-30330 * ** N88-2326 * ** N88-2326 * ** N88-2326 * ** N88-2326 * ** N88-23930 * ** ** ** ** ** ** ** ** ** ** ** ** *	SNIAS-SE/LS/AP-35-073 SNIAS-881-430-104 SNIAS-881-430-106 SNIAS-881-440-104 SPIE-748 SPIE-751 SPIE-840 SPIE-871 SR/FIS/108(87)CZ STF23-F87025-VOL-1 TR-0086A(2940-06)-6 TR-88-18 TW-278 TW-281 UCRL-15980 US-PATENT-APPL-SN-056930 US-PATENT-APPL-SN-904134 US-PATENT-APPL-SN-904134 US-PATENT-APPL-SN-904134 US-PATENT-APPL-SN-914322 US-PATENT-APPL-SN-914329 US-PATENT-APPL-SN-934397 US-PATENT-APPL-SN-934397 US-PATENT-APPL-SN-934397 US-PATENT-APPL-SN-934397 US-PATENT-APPL-SN-934397 US-PATENT-APPL-SN-934397 US-PATENT-APPL-SN-934397 US-PATENT-APPL-SN-934397 US-PATENT-CLASS-104-172.1 US-PATENT-CLASS-104-172.1	P 7 P 72	N88-20330 # N88-28977 # N88-28978 # N88-29128 # A88-34486 A88-34536 A88-43176 A88-30552 # N88-30298 # N88-26396 # N88-20348 # N88-20348 # N88-20348 # N88-2990 # N88-2980 * N88-2980 * N88-23828 * N88-23828 * N88-23828 * N88-23828 * N88-23827 * N88-26398 * N88-26398 *
IAF PAPER 88-515 IAF PAPER 88-618 P IAF-86-62 INPE-4313-TDL/280 INPE-4464-PRE/1239 P ISAS-RN-625 ISSN-0250-1589 ISSN-0285-6808 ISSN-0379-4059 ISSN-0379-4059 ISSN-0379-4067 ISSN-0379-4067 ISSN-0379-4067 ISSN-0379-6566 P JPL-PUBL-87-42-VOL-2 L-16433 P LMSC-F115808 P M-576-PT-2 M-586 P MBB-URV-135 P MCR-86-2601-VOL-2-BK-1 P MCR-86-2601-VOL-2-BK-1 P MDC-H1363	77 6 80 48 48 51 8 51 72 72 72 61 102 77 98 24 50 100 69 11 71 7 100	A88-55417 A88-55436 A88-55454 N88-29352 N88-20349 N88-21240 N88-24673 N88-24673 N88-28633 N88-29190 N88-24670 N88-20352 N88-21468 N88-20352 N88-25156 N88-27233 N88-27233 N88-27233 N88-27556	## # ## # ###### # # # # # # # # # #	NASA-CASE-LAR-13898-1 NASA-CASE-MFS-28185-1 NASA-CASE-MSC-20985-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21017-1 NASA-CASE-MSC-21117-1 NASA-CASE-MSC-21207-1 NASA-CP-10009 NASA-CP-2426-VOL-1 NASA-CP-2426-VOL-4 NASA-CP-2492-PT-2 NASA-CP-2506 NASA-CP-3002 NASA-CP-3009 NASA-CP-3003-VOL-1 NASA-CR-179371 NASA-CR-179371 NASA-CR-179371 NASA-CR-181617 NASA-CR-181617 NASA-CR-181617 NASA-CR-182688 NASA-CR-182688 NASA-CR-182688 NASA-CR-182688 NASA-CR-182710 NASA-CR-182710 NASA-CR-182710 NASA-CR-182748 NASA-CR-182748	P 19 P 18 P 80 P 18 P 18 P 19 P 22 P 99 P 100 P 98 P 102 P 8 P 75 P 24 P 59 P 101 P 26 P 77 P 98 P 77 P 98 P 77 P 98 P 77	N88-30130 ° # N88-23979 ° N88-26398 ° N88-28958 ° N88-29180 ° N88-24145 ° # N88-24148 ° # N88-24148 ° # N88-21468 ° # N88-23266 ° # N88-20339 ° # N88-20339 ° # N88-20339 ° # N88-21443 ° # N88-21444 ° # N88-21444 ° # N88-2164 ° # N88-2144 ° # N88-20540 ° # N88-20540 ° # N88-20540 ° # N88-2164 ° # N88-21640 ° #	SNIAS-SE/LS/AP-35-073 SNIAS-881-430-104 SNIAS-881-430-106 SNIAS-881-440-104 SPIE-748 SPIE-751 SPIE-840 SPIE-871 SR/FIS/108(87)CZ STF23-F87025-VOL-1 TR-0086A(2940-06)-6 TR-88-18 TW-278 TW-281 UCRL-15980 US-PATENT-APPL-SN-032818 US-PATENT-APPL-SN-056930 US-PATENT-APPL-SN-056930 US-PATENT-APPL-SN-904134 US-PATENT-APPL-SN-904134 US-PATENT-APPL-SN-904134 US-PATENT-APPL-SN-994397 US-PATENT-APPL-SN-934397 US-PATENT-CLASS-104-435 US-PATENT-CLASS-104-435	P 7 P 72	N88-20330 # N88-28977 # N88-28978 # A88-34486 A88-43176 A88-42547 N88-30552 # N88-26396 # N88-26396 # N88-26396 # N88-26390 # N88-29180 * N88-29180 * N88-29180 * N88-29180 * N88-29180 * N88-29382 * N88-23827 * N88-28398 * N88-28398 *
IAF PAPER 88-515 IAF PAPER 88-618 P IAF-86-62 INPE-4313-TDL/280 INPE-4464-PRE/1239 P ISAS-RN-625 ISSN-0250-1589 ISSN-0285-6808 ISSN-0379-4059 ISSN-0379-4059 ISSN-0379-4067 ISSN-0379-4067 ISSN-0379-4067 ISSN-0379-6566 P JPL-PUBL-87-42-VOL-2 L-16433 P LMSC-F115808 P M-576-PT-2 M-586 P MBB-URV-135 P MCR-86-2601-VOL-2-BK-1 P MCR-86-2601-VOL-2-BK-1 P MDC-H1363	77 6 80 48 48 51 8 51 72 72 72 61 102 77 98 24 50 100 69 11 71 7 100	A88-55417 A88-55436 A88-55454 N88-29352 N88-20349 N88-21240 N88-24673 N88-30447 N88-24673 N88-2833 N88-29190 N88-24670 N88-30556 N88-20352 N88-21468 N88-20352 N88-2924 N88-21468 N88-2924 N88-21468 N88-2939 N88-20332 N88-20332	## # ## # ###### # # # # # # # # # #	NASA-CASE-LAR-13898-1 NASA-CASE-MFS-28185-1 NASA-CASE-MSC-20985-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21117-1 NASA-CASE-MSC-21117-1 NASA-CP-10009 NASA-CP-2426-VOL-1 NASA-CP-2426-VOL-1 NASA-CP-2492-PT-2 NASA-CP-2492-PT-2 NASA-CP-3002 NASA-CP-3003-VOL-1 NASA-CP-3009 NASA-CR-179371 NASA-CR-179372 NASA-CR-179373 NASA-CR-182148 NASA-CR-182141 NASA-CR-182148 NASA-CR-182680 NASA-CR-182680 NASA-CR-182680 NASA-CR-182710 NASA-CR-182748 NASA-CR-182998 NASA-CR-182991 NASA-CR-182998	P 19 P 18 P 80 P 18 P 18 P 19 P 22 P 99 P 100 P 98 P 102 P 8 P 7 P 53 P 62 P 78 P 77 P 98 P 77 P 98 P 77 P 99 P 99	N88-23979 * N88-26398 * N88-26398 * N88-28958 * N88-29180 * N88-24145 * N88-24145 * N88-24148 * N88-21468 * N88-21468 * N88-2326 * N88-30330 * ** N88-2326 * ** N88-2326 * ** N88-2326 * ** N88-2326 * ** N88-23930 * ** ** ** ** ** ** ** ** ** ** ** ** *	SNIAS-SE/LS/AP-35-073 SNIAS-881-430-104 SNIAS-881-430-106 SNIAS-881-440-104 SPIE-748 SPIE-751 SPIE-840 SPIE-871 SR/FIS/108(87)CZ STF23-F87025-VOL-1 TR-0086A(2940-06)-6 TR-88-18 TW-278 TW-281 UCRL-15980 US-PATENT-APPL-SN-056930 US-PATENT-APPL-SN-904134 US-PATENT-APPL-SN-904134 US-PATENT-APPL-SN-904134 US-PATENT-APPL-SN-914322 US-PATENT-APPL-SN-914329 US-PATENT-APPL-SN-934397 US-PATENT-APPL-SN-934397 US-PATENT-APPL-SN-934397 US-PATENT-APPL-SN-934397 US-PATENT-APPL-SN-934397 US-PATENT-APPL-SN-934397 US-PATENT-APPL-SN-934397 US-PATENT-APPL-SN-934397 US-PATENT-CLASS-104-172.1 US-PATENT-CLASS-104-172.1	P 7 P 72	N88-20330 # N88-28977 # N88-28978 # A88-34866 A88-34566 A88-43176 A88-42547 N88-30552 # N88-30552 # N88-26396 # N88-23929 # N88-20348 # N88-20348 # N88-20348 # N88-29180 * N88-29180 * N88-29180 * N88-29180 * N88-29180 * N88-29180 * N88-29397 * N88-29397 * N88-29398 * N88-2828 * N88-2828 * N88-2828 * N88-28398 * N88-26398 * N88-26398 * N88-26398 * N88-26398 *
IAF PAPER 88-515 IAF PAPER 88-618 P IAF-86-62 INPE-4313-TDL/280 INPE-4464-PRE/1239 P ISAS-RN-625 ISSN-0250-1589 ISSN-0255-6808 ISSN-0239-4059 ISSN-0379-4059 ISSN-0379-4067 ISSN-0379-6566 P JPL-PUBL-87-42-VOL-2 L-16433 P LMSC-F115808 P MSC-F115808 P M-576-PT-2 M-586 P MBB-URV-135 P MCR-86-2601-VOL-2-BK-1 P MCR-86-2601-VOL-2-BK-1	77 6 80 48 48 51 8 51 72 72 72 61 102 77 98 24 50 100 69 11 71 7 100	A88-55417 A88-55436 A88-55454 N88-29352 N88-20349 N88-21240 N88-24673 N88-24673 N88-28633 N88-29190 N88-24670 N88-20352 N88-21468 N88-20352 N88-25156 N88-27233 N88-27233 N88-27233 N88-27556	## # ## # ###### # # # # # # # # # #	NASA-CASE-LAR-13898-1 NASA-CASE-MFS-28185-1 NASA-CASE-MSC-20985-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21117-1 NASA-CASE-MSC-21117-1 NASA-CASE-MSC-21207-1 NASA-CP-2426-VOL-1 NASA-CP-2426-VOL-4 NASA-CP-2492-PT-2 NASA-CP-2506 NASA-CP-3002 NASA-CP-3002 NASA-CP-3003-VOL-1 NASA-CR-179371 NASA-CR-179371 NASA-CR-179371 NASA-CR-18181617 NASA-CR-18181617 NASA-CR-182148 NASA-CR-182148 NASA-CR-182148 NASA-CR-182688 NASA-CR-182688 NASA-CR-182688 NASA-CR-182688 NASA-CR-182748 NASA-CR-182990 NASA-CR-1829901 NASA-CR-1829901 NASA-CR-1829901 NASA-CR-1829908 NASA-CR-1829908 NASA-CR-1829901 NASA-CR-1829901 NASA-CR-1829901 NASA-CR-1829908 NASA-CR-1829907	P 19 P 18 P 80 P 18 P 19 P 22 P 99 P 100 P 98 P 102 P 8 P 7 P 53 P 60 P 77 P 7	N88-30130 ° # N88-23979 ° N88-26398 ° N88-28958 ° N88-29180 ° N88-24145 ° # N88-24145 ° # N88-24148 ° # N88-21468 ° # N88-23226 ° # N88-30330 ° # N88-20339 ° # N88-20339 ° # N88-21438 ° # N88-23266 ° # N88-23182 ° # N88-23182 ° # N88-23182 ° # N88-23649 ° # N88-25440 ° # N88-25440 ° # N88-25440 ° # N88-25440 ° # N88-20466 ° # N88-21242 ° # N88-23940 ° #	SNIAS-SE/LS/AP-35-073 SNIAS-881-430-104 SNIAS-881-430-106 SNIAS-881-440-104 SPIE-748 SPIE-751 SPIE-840 SPIE-871 SR/FIS/108(87)CZ STF23-F87025-VOL-1 TR-0086A(2940-06)-6 TR-88-18 TW-278 TW-281 UCRL-15980 US-PATENT-APPL-SN-032818 US-PATENT-APPL-SN-904134 US-PATENT-APPL-SN-904134 US-PATENT-APPL-SN-904134 US-PATENT-APPL-SN-904134 US-PATENT-APPL-SN-934397 US-PATENT-APPL-SN-934397 US-PATENT-APPL-SN-934397 US-PATENT-LASS-104-172.1 US-PATENT-LASS-104-172.1 US-PATENT-LASS-104-172.1 US-PATENT-LASS-104-19 US-PATENT-LCASS-104-19	P 7 P 72	N88-20330 # N88-28977 # N88-28978 # A88-34486 A88-43176 A88-42547 N88-30552 # N88-26396 # N88-26396 # N88-26396 # N88-23829 # N88-23829 # N88-29180 * N88-29180 * N88-29180 * N88-29180 * N88-29382 * N88-23827 * N88-26398 *
IAF PAPER 88-515 IAF PAPER 88-618 IAF-86-62 INPE-4313-TDL/280 INPE-4464-PRE/1239 ISAS-RN-625 ISSN-0250-1589 ISSN-0256-6808 ISSN-0379-4059 ISSN-0379-4059 ISSN-0379-4059 ISSN-0379-4059 ISSN-0379-6566 IPSSN-0379-6566 IPSSN-0	77 6 80 48 48 51 8 51 72 72 61 102 77 98 24 50 100 69 11 71 7 100 12	A88-55417 A88-55436 A88-55454 N88-29352 N88-20349 N88-21240 N88-24673 N88-24673 N88-28833 N88-29190 N88-24670 N88-20352 N88-21468 N88-21468 N88-25390 N88-20332 N88-20332 N88-20333 N88-20339 N88-25156	## # ## # ###### # # # # # # # # # # # #	NASA-CASE-LAR-13898-1 NASA-CASE-MFS-28185-1 NASA-CASE-MSC-20985-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21117-1 NASA-CASE-MSC-21117-1 NASA-CP-10009 NASA-CP-2426-VOL-1 NASA-CP-2426-VOL-1 NASA-CP-2492-PT-2 NASA-CP-2506 NASA-CP-3002 NASA-CP-3002 NASA-CP-3009 NASA-CR-179307 NASA-CR-179371 NASA-CR-179371 NASA-CR-181617 NASA-CR-182141 NASA-CR-182141 NASA-CR-182148 NASA-CR-182688 NASA-CR-182688 NASA-CR-182688 NASA-CR-182748 NASA-CR-182748 NASA-CR-182998 NASA-CR-182998 NASA-CR-182908 NASA-CR-182907 NASA-CR-182908 NASA-CR-182908 NASA-CR-182908 NASA-CR-182908 NASA-CR-182908 NASA-CR-182908 NASA-CR-182908 NASA-CR-182908	P 19 P 18 P 80 P 18 P 18 P 19 P 22 P 99 P 100 P 98 P 102 P 8 P 75 P 23 P 24 P 59 P 101 P 23 P 77 P 98 P 101 P 26 P 77 P 98 P 107 P 19	N88-23979 * N88-26398 * N88-26398 * N88-28958 * N88-29180 * N88-24145 * N88-24145 * N88-24188 * N88-21408 * N88-21408 * N88-23226 * N88-30330 * ** N88-23226 * * * N88-23226 * * * * * * * * * * * * * * * * * * *	SNIAS-SE/LS/AP-35-073 SNIAS-881-430-104 SNIAS-881-430-106 SNIAS-881-440-104 SPIE-748 SPIE-751 SPIE-840 SPIE-871 SR/FIS/108(87)CZ STF23-F87025-VOL-1 TR-0086A(2940-06)-6 TR-88-18 TW-278 TW-281 UCRL-15980 US-PATENT-APPL-SN-032818 US-PATENT-APPL-SN-056930 US-PATENT-APPL-SN-925427 US-PATENT-APPL-SN-913432 US-PATENT-APPL-SN-913432 US-PATENT-APPL-SN-934375 US-PATENT-APPL-SN-934397 US-PATENT-APPL-SN-934397 US-PATENT-APPL-SN-934397 US-PATENT-APPL-SN-934397 US-PATENT-CLASS-104-172.1 US-PATENT-CLASS-104-35 US-PATENT-CLASS-104-39 US-PATENT-CLASS-16-292 US-PATENT-CLASS-16-292 US-PATENT-CLASS-16-292	P 7 P 72	N88-20330 # N88-28977 # N88-28978 # N88-29128 # A88-34486 A88-34486 A88-43176 A88-42547 N88-30552 # N88-30298 # N88-26396 # N88-29392 # N88-29390 # N88-29390 # N88-29390 # N88-29390 # N88-29390 # N88-29390 * N88-26398 *
IAF PAPER 88-515 IAF PAPER 88-618 P IAF-86-62 INPE-4313-TDL/280 INPE-4464-PRE/1239 P ISAS-RN-625 ISSN-0250-1589 ISSN-0285-6808 ISSN-0379-4059 ISSN-0379-4059 ISSN-0379-4067 ISSN-0379-6566 P JPL-PUBL-87-42-VOL-2 L-16433 P LMSC-F115808 P M-576-PT-2 M-586 P MBB-URV-135 MCR-85-721 MCR-86-2601-VOL-2-BK-1 P MCR-86-2601-VOL-2-BK-1 P MCBS-38/87 P NAS 1.15:100287	77 6 80 48 48 51 8 51 72 72 72 102 77 98 24 50 100 69 11 71 7 100 12 60	A88-55417 A88-55436 A88-55454 N88-29352 N88-20349 N88-21240 N88-24673 N88-24673 N88-28633 N88-29190 N88-24670 N88-20352 N88-21468 N88-20352 N88-27233 N88-27233 N88-27233 N88-25156 N88-25156 N88-29852 N88-29852	## # ## # ###### # # # # # # # # # # # #	NASA-CASE-LAR-13898-1 NASA-CASE-MFS-2B185-1 NASA-CASE-MSC-20985-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21117-1 NASA-CASE-MSC-21117-1 NASA-CP-2426-VOL-1 NASA-CP-2426-VOL-1 NASA-CP-2492-PT-2 NASA-CP-2506 NASA-CP-3002 NASA-CP-3003-VOL-1 NASA-CP-3009 NASA-CR-179371 NASA-CR-179372 NASA-CR-179373 NASA-CR-179373 NASA-CR-182128 NASA-CR-182141 NASA-CR-182128 NASA-CR-182141 NASA-CR-182680 NASA-CR-182680 NASA-CR-182748 NASA-CR-182680 NASA-CR-182748 NASA-CR-182690 NASA-CR-182748 NASA-CR-182748 NASA-CR-182998 NASA-CR-182998 NASA-CR-182990 NASA-CR-182907 NASA-CR-182908 NASA-CR-182908 NASA-CR-1830081 NASA-CR-1830082	P 19 P 18 P 80 P 18 P 18 P 19 P 22 P 99 P 100 P 98 P 102 P 8 P 7 P 53 P 62 P 78 P 77 P 98 P 78 P 7	N88-30130 ° # N88-23979 ° N88-26398 ° N88-28958 ° N88-29180 ° N88-24145 ° # N88-24148 ° # N88-21468 ° # N88-2326 ° # N88-23303 ° # N88-20339 ° # N88-20339 ° # N88-21488 ° # N88-23180 ° # N88-2540 ° # N88-20352 ° # N88-21243 ° # N88-26397 ° # N88-26397 ° # N88-26397 ° # N88-2340 ° # N88-2540 ° # N88-2540 ° # N88-2540 ° # N88-2540 ° # N88-25540 ° # N88-25550 ° # N88-25550 ° # N88-25550 ° # N88-25500 ° #	SNIAS-SE/LS/AP-35-073 SNIAS-881-430-104 SNIAS-881-430-106 SNIAS-881-440-104 SPIE-748 SPIE-751 SPIE-840 SPIE-871 SR/FIS/108(87)CZ STF23-F87025-VOL-1 TR-0086A(2940-06)-6 TR-88-18 TW-278 TW-281 UCRL-15980 US-PATENT-APPL-SN-056930 US-PATENT-APPL-SN-925427 US-PATENT-APPL-SN-9213432 US-PATENT-APPL-SN-9213432 US-PATENT-APPL-SN-934397 US-PATENT-APPL-SN-934397 US-PATENT-CLASS-104-172.1 US-PATENT-CLASS-104-172.1 US-PATENT-CLASS-104-49 US-PATENT-CLASS-104-49 US-PATENT-CLASS-16-297 US-PATENT-CLASS-16-297 US-PATENT-CLASS-16-297 US-PATENT-CLASS-16-297	P 7 P 72	N88-20330 # N88-28977 # N88-28978 # A88-34486 A88-34536 A88-42547 N88-30552 # N88-30552 # N88-26396 # N88-26396 # N88-20348 # N88-20348 # N88-20348 # N88-20348 # N88-29180 N88-23929 # N88-29598 N88-23927 * N88-26398 N88-28958 N88-28958 N88-23827 N88-23827 N88-23827 *
IAF PAPER 88-515 IAF PAPER 88-618 PAF-86-62 INPE-4313-TDL/280 INPE-4464-PRE/1239 PISAS-RN-625 ISSN-0250-1589 ISSN-0285-6808 ISSN-0379-4059 ISSN-0379-4059 ISSN-0379-4059 ISSN-0379-4067 ISSN-0379-6566 PJPL-PUBL-87-42-VOL-2 L-16433 PLMSC-F115808 PM-576-PT-2 M-586 PMBB-URV-135 PMCR-86-2601-VOL-2-BK-1 PMCR-86-2601-VOL-2-BK-1 PMSS-38/87 PNAS 1.15:100287	77 6 80 48 48 51 8 51 72 72 61 1102 77 98 24 50 100 69 11 71 7 100 12 60 23	A88-55417 A88-55436 A88-55454 N88-29352 N88-20349 N88-21240 N88-24673 N88-24673 N88-28833 N88-29190 N88-24670 N88-20352 N88-21468 N88-21468 N88-25390 N88-20332 N88-20332 N88-20333 N88-20339 N88-25156	## # ## # ###### # # # # # # # # # # # #	NASA-CASE-LAR-13898-1 NASA-CASE-MFS-28185-1 NASA-CASE-MSC-20985-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21117-1 NASA-CASE-MSC-21117-1 NASA-CP-10009 NASA-CP-2426-VOL-1 NASA-CP-2426-VOL-1 NASA-CP-2492-PT-2 NASA-CP-2506 NASA-CP-3002 NASA-CP-3002 NASA-CP-3009 NASA-CR-179307 NASA-CR-179371 NASA-CR-179371 NASA-CR-181617 NASA-CR-182141 NASA-CR-182141 NASA-CR-182148 NASA-CR-182688 NASA-CR-182688 NASA-CR-182688 NASA-CR-182748 NASA-CR-182748 NASA-CR-182998 NASA-CR-182998 NASA-CR-182908 NASA-CR-182907 NASA-CR-182908 NASA-CR-182908 NASA-CR-182908 NASA-CR-182908 NASA-CR-182908 NASA-CR-182908 NASA-CR-182908 NASA-CR-182908	P 19 P 18 P 80 P 18 P 18 P 19 P 22 P 99 P 100 P 98 P 102 P 8 P 7 P 53 P 62 P 78 P 77 P 98 P 78 P 7	N88-23979 * N88-26398 * N88-26398 * N88-28958 * N88-29180 * N88-24145 * N88-24145 * N88-24188 * N88-21408 * N88-21408 * N88-23226 * N88-30330 * ** N88-23226 * * * N88-23226 * * * * * * * * * * * * * * * * * * *	SNIAS-SE/LS/AP-35-073 SNIAS-881-430-104 SNIAS-881-430-106 SNIAS-881-440-104 SPIE-748 SPIE-751 SPIE-840 SPIE-871 SR/FIS/108(87)CZ STF23-F87025-VOL-1 TR-0086A(2940-06)-6 TR-88-18 TW-278 TW-281 UCRL-15980 US-PATENT-APPL-SN-032818 US-PATENT-APPL-SN-904134 US-PATENT-APPL-SN-904134 US-PATENT-APPL-SN-904134 US-PATENT-APPL-SN-904134 US-PATENT-APPL-SN-934397 US-PATENT-APPL-SN-934397 US-PATENT-CLASS-104-172.1 US-PATENT-CLASS-104-35 US-PATENT-CLASS-104-49 US-PATENT-CLASS-16-292 US-PATENT-CLASS-16-292 US-PATENT-CLASS-16-292 US-PATENT-CLASS-16-326 US-PATENT-CLASS-16-326 US-PATENT-CLASS-16-326	P 7 P 72	N88-20330 # N88-28977 # N88-28978 # N88-29128 # A88-34486 A88-34486 A88-43176 A88-42547 N88-30552 # N88-30298 # N88-26396 # N88-29392 # N88-29390 # N88-29390 # N88-29390 # N88-29390 # N88-29390 # N88-29390 * N88-26398 *
IAF PAPER 88-515 IAF PAPER 88-618 PAF-86-62 INPE-4313-TDL/280 INPE-4464-PRE/1239 PISAS-RN-625 ISSN-0250-1589 ISSN-0285-6808 ISSN-0379-4059 ISSN-0379-4059 ISSN-0379-4059 ISSN-0379-4067 ISSN-0379-6566 PJPL-PUBL-87-42-VOL-2 L-16433 PLMSC-F115808 PM-576-PT-2 M-586 PMBB-URV-135 PMCR-86-2601-VOL-2-BK-1 PMCR-86-2601-VOL-2-BK-1 PMSS-38/87 PNAS 1.15:100287	77 6 80 48 48 51 8 51 72 72 61 1102 77 98 24 50 100 69 11 71 7 100 12 60 23	A88-55417 A88-55436 A88-55454 N88-29352 N88-20349 N88-21240 N88-24673 N88-24673 N88-28633 N88-29190 N88-24670 N88-20352 N88-21468 N88-20352 N88-27233 N88-27233 N88-27233 N88-25156 N88-25156 N88-29852 N88-29852	## # ## # ###### # # # # ## # # # # # #	NASA-CASE-LAR-13898-1 NASA-CASE-MFS-28185-1 NASA-CASE-MSC-20985-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21017-1 NASA-CASE-MSC-21117-1 NASA-CP-10009 NASA-CP-2426-VOL-1 NASA-CP-2426-VOL-4 NASA-CP-2492-PT-2 NASA-CP-2506 NASA-CP-3002 NASA-CP-3003-VOL-1 NASA-CP-3003-VOL-1 NASA-CP-3003-VOL-1 NASA-CR-179371 NASA-CR-179371 NASA-CR-179373 NASA-CR-181617 NASA-CR-181617 NASA-CR-182148 NASA-CR-182148 NASA-CR-182148 NASA-CR-182148 NASA-CR-182688 NASA-CR-182688 NASA-CR-182990 NASA-CR-182990 NASA-CR-182990 NASA-CR-182998 NASA-CR-182998 NASA-CR-182998 NASA-CR-182998 NASA-CR-182998 NASA-CR-182998 NASA-CR-182998 NASA-CR-182997 NASA-CR-182998 NASA-CR-182997 NASA-CR-183082 NASA-CR-183082 NASA-CR-183082 NASA-CR-183092	P 19 P 18 P 80 P 18 P 19 P 19 P 18 P 19 P 22 P 99 P 100 P 98 P 102 P 100	N88-30130 ° # N88-23979 ° N88-26398 ° N88-28958 ° N88-29180 ° N88-24145 ° # N88-24145 ° # N88-24148 ° # N88-21468 ° # N88-23226 ° # N88-30330 ° # N88-20339 ° # N88-20339 ° # N88-2143 ° # N88-23226 ° # N88-23182 ° # N88-235244 ° # N88-25244 ° # N88-23524 ° # N88-23526 ° # N88-25066 ° # N88-25669 ° # N88-25066 ° # N88-26693 ° # N88-30134 ° #	SNIAS-SE/LS/AP-35-073 SNIAS-881-430-104 SNIAS-881-430-106 SNIAS-881-440-104 SPIE-748 SPIE-751 SPIE-840 SPIE-871 SR/FIS/108(87)CZ STF23-F87025-VOL-1 TR-0086A(2940-06)-6 TR-88-18 TW-278 TW-281 UCRL-15980 US-PATENT-APPL-SN-056930 US-PATENT-APPL-SN-925427 US-PATENT-APPL-SN-9213432 US-PATENT-APPL-SN-9213432 US-PATENT-APPL-SN-934397 US-PATENT-APPL-SN-934397 US-PATENT-CLASS-104-172.1 US-PATENT-CLASS-104-172.1 US-PATENT-CLASS-104-49 US-PATENT-CLASS-104-49 US-PATENT-CLASS-16-297 US-PATENT-CLASS-16-297 US-PATENT-CLASS-16-297 US-PATENT-CLASS-16-297	P 7 P 72	N88-20330 # N88-28977 # N88-28978 # A88-34486 A88-34536 A88-42547 N88-30552 # N88-30552 # N88-26396 # N88-26396 # N88-26396 # N88-26396 # N88-26398 * N88-29180 *
IAF PAPER 88-515 IAF PAPER 88-618 IAF-86-62 INPE-4313-TDL/280 INPE-4464-PRE/1239 ISAS-RN-625 ISSN-0250-1589 ISSN-0258-6808 ISSN-0379-4059 ISSN-0379-4059 ISSN-0379-4057 ISSN-0379-4057 ISSN-0379-6566 JPL-PUBL-87-42-VOL-2 L-16433 PLMSC-F115808 PMS-576-PT-2 M-586 MBB-URV-135 MCR-85-721 MCR-86-2601-VOL-2-BK-1 MDC-H1363 PMEBS-38/87 PMS 1.15:100287 PAS 1.15:100287 PNAS 1.15:100497 PNAS 1.15:100497	77 6 80 48 48 51 8 51 72 72 661 1002 77 98 24 50 100 69 11 71 7 100 12 60 23 7	A88-55417 A88-55436 A88-55436 A88-29352 N88-20349 N88-21240 N88-24673 N88-24673 N88-24673 N88-28833 N88-29190 N88-24670 N88-20352 N88-20352 N88-20352 N88-20352 N88-20353 N88-20332 N88-20332 N88-20332 N88-20333 N88-20339 N88-20339 N88-20339 N88-20373	## # ## # ###### # # # # # # # # # # # #	NASA-CASE-LAR-13898-1 NASA-CASE-MFS-28185-1 NASA-CASE-MSC-20985-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21117-1 NASA-CASE-MSC-21117-1 NASA-CP-10009 NASA-CP-2426-VOL-1 NASA-CP-2426-VOL-1 NASA-CP-2492-PT-2 NASA-CP-2506 NASA-CP-3002 NASA-CP-3002 NASA-CP-3009 NASA-CR-179371 NASA-CR-179371 NASA-CR-179371 NASA-CR-179371 NASA-CR-179371 NASA-CR-182188 NASA-CR-182188 NASA-CR-182188 NASA-CR-182188 NASA-CR-182188 NASA-CR-182198 NASA-CR-182909 NASA-CR-182909 NASA-CR-182909 NASA-CR-182908 NASA-CR-182908 NASA-CR-182908 NASA-CR-182908 NASA-CR-182908 NASA-CR-182908 NASA-CR-182908 NASA-CR-182082 NASA-CR-183002	P 19 P 18 P 80 P 18 P 18 P 19 P 22 P 99 P 100 P 98 P 102 P 8 P 7 3 P 24 P 59 P 101 P 23 P 78 P 77 P 98 P 101 P 26 P 77 P 98 P 101 P 27 P 77 P 98 P 101 P 27 P 101 P 27 P 101 P 27	N88-30130 ° # N88-23979 ° N88-26398 ° N88-28958 ° N88-29180 ° N88-24145 " N88-24148 " # N88-24148 " # N88-21468 " # N88-23226 " # N88-23226 " # N88-20330 " # N88-21243 " # N88-21243 " # N88-21244 " # N88-21244 " # N88-21244 " # N88-23182 " # N88-2544 " # N88-2544 " # N88-25590 " # N88-2506 " # N88-23649 " # N88-2506 " # N88-23929 " # N88-25669 " #	SNIAS-SE/LS/AP-35-073 SNIAS-881-430-104 SNIAS-881-430-106 SNIAS-881-440-104 SPIE-748 SPIE-751 SPIE-840 SPIE-871 SR/FIS/108(87)CZ STF23-F87025-VOL-1 TR-0086A(2940-06)-6 TR-88-18 TW-278 TW-281 UCRL-15980 US-PATENT-APPL-SN-032818 US-PATENT-APPL-SN-056930 US-PATENT-APPL-SN-913432 US-PATENT-APPL-SN-913432 US-PATENT-APPL-SN-934397 US-PATENT-APPL-SN-934397 US-PATENT-APPL-SN-934397 US-PATENT-APPL-SN-934397 US-PATENT-APPL-SN-934397 US-PATENT-CLASS-104-172.1 US-PATENT-CLASS-104-35 US-PATENT-CLASS-16-292 US-PATENT-CLASS-16-292 US-PATENT-CLASS-16-236 US-PATENT-CLASS-16-332 US-PATENT-CLASS-16-332 US-PATENT-CLASS-16-332 US-PATENT-CLASS-16-345	P 7 P 72	N88-20330 # N88-28977 # N88-28978 # N88-29128 # A88-34486 A88-34486 A88-43176 A88-30552 # N88-30552 # N88-20398 # N88-20348 # N88-20348 # N88-20348 # N88-2990 # N88-2990 # N88-2990 * N88-2890 * N88-2800 *
IAF PAPER 88-515 IAF PAPER 88-618 PAF-86-62 INPE-4313-TDL/280 INPE-4464-PRE/1239 PISAS-RN-625 PISSN-0250-1589 ISSN-0285-6808 PISSN-0379-4059 PISSN-0379-4059 PISSN-0379-4059 PISSN-0379-6566 PJPL-PUBL-87-42-VOL-2 L-16433 PLMSC-F115808 PM-576-PT-2 M-586 PMBB-URV-135 PMCR-86-2601-VOL-2-BK-1 PMCR-86-2601-VOL-2-BK-1 PMCR-85-721 PMCR-86-2601-VOL-2-BK-1 PMCR-85-88/87 PMS 1.15:100287 PMS 1.15:100332 PMS 1.15:100497 PMS 1.15:100597 PMS PISSN-0319 PMS 1.15:100597 PMS 1.15:100597	77 6 80 48 48 51 8 51 72 72 72 72 72 77 98 24 50 100 69 11 71 7 100 12 60 23 7 8	A88-55417 A88-55436 A88-55454 N88-29352 N88-20349 N88-21240 N88-24673 N88-24673 N88-28633 N88-29190 N88-24670 N88-20352 N88-20352 N88-20352 N88-25566 N88-20332 N88-25566 N88-29852 N88-29852 N88-29852 N88-29852	## # ## # ###### # # # # # # # # # # # #	NASA-CASE-LAR-13898-1 NASA-CASE-MFS-2B185-1 NASA-CASE-MSC-20985-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21117-1 NASA-CASE-MSC-21117-1 NASA-CP-10009 NASA-CP-2426-VOL-1 NASA-CP-2426-VOL-1 NASA-CP-2426-VOL-1 NASA-CP-2492-PT-2 NASA-CP-2506 NASA-CP-3002 NASA-CP-3003-VOL-1 NASA-CP-3009 NASA-CR-179371 NASA-CR-179372 NASA-CR-179373 NASA-CR-182128 NASA-CR-182141 NASA-CR-182148 NASA-CR-182141 NASA-CR-182680 NASA-CR-182680 NASA-CR-182680 NASA-CR-182680 NASA-CR-182748 NASA-CR-182680 NASA-CR-182901 NASA-CR-182908 NASA-CR-182908 NASA-CR-182908 NASA-CR-182908 NASA-CR-182908 NASA-CR-182908 NASA-CR-182908 NASA-CR-182908 NASA-CR-182908 NASA-CR-182907 NASA-CR-182908 NASA-CR-182908 NASA-CR-182907 NASA-CR-182908 NASA-CR-182907 NASA-CR-182908 NASA-CR-182002 NASA-CR-1830082 NASA-CR-1830082 NASA-CR-3941 NASA-CR-3941 NASA-CR-3941 NASA-CR-3941 NASA-CR-3941 NASA-CR-3941 NASA-CR-3941	P 19 P 18 P 80 P 18 P 18 P 19 P 22 P 99 P 100 P 98 P 102 P 8 P 7 P 524 P 59 P 101 P 23 P 652 P 77 P 77 P 79 P 77 P 79 P 70	N88-23979 * N88-23979 * N88-26398 * N88-28958 * N88-29180 * N88-22145 * # N88-24145 * # N88-24148 * # N88-21468 * # N88-2326 * # N88-23300 * # N88-23300 * # N88-23180 * # N88-2326 * # N88-23180 * # N88-2326 * # N88-2530 * # N88-21443 * # N88-26397 * # N88-26397 * # N88-2540 * # N88-25540 * # N88-25555 * # N88-25506 * # N88-25506 * # N88-25506 * # N88-25506 * #	SNIAS-SE/LS/AP-35-073 SNIAS-881-430-104 SNIAS-881-430-106 SNIAS-881-440-104 SPIE-748 SPIE-751 SPIE-840 SPIE-871 SR/FIS/108(87)CZ STF23-F87025-VOL-1 TR-0086A(2940-06)-6 TR-88-18 TW-278 TW-281 UCRL-15980 US-PATENT-APPL-SN-056930 US-PATENT-APPL-SN-925427 US-PATENT-APPL-SN-9213432 US-PATENT-APPL-SN-9213432 US-PATENT-APPL-SN-934397 US-PATENT-APPL-SN-934397 US-PATENT-CLASS-104-172.1 US-PATENT-CLASS-104-172.1 US-PATENT-CLASS-104-19 US-PATENT-CLASS-16-292 US-PATENT-CLASS-16-297 US-PATENT-CLASS-16-297 US-PATENT-CLASS-16-345 US-PATENT-CLASS-16-345 US-PATENT-CLASS-16-345 US-PATENT-CLASS-16-345 US-PATENT-CLASS-16-345 US-PATENT-CLASS-16-345 US-PATENT-CLASS-16-345 US-PATENT-CLASS-16-345	P 7 P 72	N88-20330 # N88-28977 # N88-28978 # A88-34486 A88-34536 A88-43176 A88-42547 N88-30552 # N88-30552 # N88-26396 # N88-26396 # N88-23929 # N88-20348 # N88-20348 # N88-29180 * N88-29180 * N88-2397 * N88-2828 * N88-2828 * N88-2828 * N88-2898 * N88-23827 *
IAF PAPER 88-515 IAF PAPER 88-618 PAF-86-62 INPE-4313-TDL/280 INPE-4464-PRE/1239 PISAS-RN-625 ISSN-0250-1589 ISSN-0285-6808 ISSN-0379-4059 ISSN-0379-4059 ISSN-0379-4067 ISSN-0379-4067 ISSN-0379-6566 PJPL-PUBL-87-42-VOL-2 L-16433 PLMSC-F115808 PM-576-PT-2 M-586 MBB-URV-135 MCR-85-721 MCR-86-2601-VOL-2-BK-1 PMCR-86-2601-VOL-2-BK-1 PMSS-38/87 PNAS 1.15:100287 PNAS 1.15:100497 PNAS 1.15:100604 PNAS 1.15:100604	77 6 80 48 48 51 8 51 72 72 61 102 77 98 24 50 100 69 11 71 7 100 12 60 23 7 8 8 86	A88-55417 A88-55436 A88-55436 A88-55454 N88-29352 N88-20349 N88-21240 N88-24673 N88-24673 N88-2833 N88-29190 N88-24670 N88-30556 N88-20352 N88-21468 N88-20352 N88-25390 N88-25390 N88-25390 N88-25390 N88-20332 N88-20332 N88-20332 N88-2188 N88-2188	井井 并 井井 井 井井井井井 井 井 井 井 井 井 井 井 井 井 井井井井井	NASA-CASE-LAR-13898-1 NASA-CASE-MFS-28185-1 NASA-CASE-MSC-20985-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21017-1 NASA-CASE-MSC-21117-1 NASA-CP-10009 NASA-CP-2426-VOL-1 NASA-CP-2426-VOL-4 NASA-CP-2492-PT-2 NASA-CP-2506 NASA-CP-3002 NASA-CP-3003-VOL-1 NASA-CP-3003-VOL-1 NASA-CP-3003-VOL-1 NASA-CR-179371 NASA-CR-179371 NASA-CR-179373 NASA-CR-181617 NASA-CR-181617 NASA-CR-182148 NASA-CR-182148 NASA-CR-182148 NASA-CR-182148 NASA-CR-182688 NASA-CR-182688 NASA-CR-182690 NASA-CR-182690 NASA-CR-182991 NASA-CR-182991 NASA-CR-182998 NASA-CR-182992 NASA-CR-182092 NASA-CR-183082 NASA-CR-183092 NASA-CR-183091 NASA-CR-183092 NASA-CR-3941 NASA-CR-3941 NASA-CR-3942 NASA-CR-4027	P 19 P 18 P 80 P 18 P 18 P 19 P 22 P 99 P 100 P 98 P 102 P 59 P 8 P 7 P 524 P 59 P 8 P 77 P 77 P 78 P 77 P 79 P 79 P 100	N88-30130 ° # N88-23979 ° N88-26398 ° N88-28958 ° N88-29180 ° N88-24145 ° # N88-24145 ° # N88-24148 ° # N88-21468 ° # N88-23226 ° # N88-30330 ° # N88-20339 ° # N88-20339 ° # N88-2143 ° # N88-2144 ° # N88-25206 ° # N88-2035 ° # N88-2144 ° # N88-2364 ° # N88-2364 ° # N88-2364 ° # N88-2540 ° # N88-25515 ° # N88-25515 ° # N88-25206 ° # N88-25311 ° # N88-25432 ° #	SNIAS-SE/LS/AP-35-073 SNIAS-881-430-104 SNIAS-881-430-106 SNIAS-881-440-104 SPIE-748 SPIE-751 SPIE-840 SPIE-871 SR/FIS/108(87)CZ STF23-F87025-VOL-1 TR-0086A(2940-06)-6 TR-88-18 TW-278 TW-281 UCRL-15980 US-PATENT-APPL-SN-032818 US-PATENT-APPL-SN-904134 US-PATENT-APPL-SN-904134 US-PATENT-APPL-SN-904134 US-PATENT-APPL-SN-904134 US-PATENT-APPL-SN-904134 US-PATENT-APPL-SN-904134 US-PATENT-APPL-SN-904134 US-PATENT-APPL-SN-904134 US-PATENT-CLASS-104-35 US-PATENT-CLASS-104-49 US-PATENT-CLASS-16-326 US-PATENT-CLASS-16-326 US-PATENT-CLASS-16-332 US-PATENT-CLASS-16-345 US-PATENT-CLASS-16-345 US-PATENT-CLASS-16-349 US-PATENT-CLASS-16-349 US-PATENT-CLASS-16-347 US-PATENT-CLASS-16-349	P 7 7 2 7 2 7 2 8 2 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	N88-20330 # N88-28977 # N88-28978 # A88-34486 A88-34486 A88-42547 N88-30552 # N88-30552 # N88-26396 # N88-26396 # N88-23829 # N88-29180 N88-23829 # N88-29180 N88-23827 N88-2382
IAF PAPER 88-515 IAF PAPER 88-618 PAF-86-62 INPE-4313-TDL/280 INPE-4464-PRE/1239 PISAS-RN-625 ISSN-0250-1589 ISSN-0258-6808 ISSN-0379-4059 ISSN-0379-4059 ISSN-0379-4057 ISSN-0379-4057 ISSN-0379-6566 PJPL-PUBL-87-42-VOL-2 L-16433 PLMSC-F115808 PMS-76-PT-2 M-586 PMBB-URV-135 PMCR-85-721 MCR-86-2601-VOL-2-BK-1 PMC-H1363 PMEBS-38/87 PAS 1.15:100287 PAS 1.15:100287 PAS 1.15:100287 PAS 1.15:100497 PAS 1.15:100697 PAS 1.15:100697 PAS 1.15:100697 PAS 1.15:100697 PAS 1.15:100697 PAS 1.15:1000697 PAS 1.15:1000691 PAS 1.15:1000691 PAS 1.15:1000691	77 6 80 48 48 51 8 51 72 72 61 102 77 98 24 50 100 69 11 71 7 100 12 60 23 7 8 86 7	A88-55417 A88-55436 A88-55436 A88-29352 N88-20349 N88-21240 N88-24673 N88-24673 N88-28833 N88-29190 N88-24670 N88-20352 N88-20352 N88-20352 N88-20352 N88-20352 N88-20356 N88-20356 N88-20356 N88-20356 N88-20356 N88-21468 N88-25390 N88-25390 N88-21468 N88-25390 N88-21468 N88-25390 N88-21468 N88-25390 N88-21468 N88-25390 N88-21468 N88-2850 N88-21488 N88-2850 N88-2850	井井 井 井井 井井井井井井 井 井 井 井 井 井 井 井 井 井 井井井井井	NASA-CASE-LAR-13898-1 NASA-CASE-MFS-2B185-1 NASA-CASE-MSC-20985-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21117-1 NASA-CASE-MSC-21117-1 NASA-CP-10009 NASA-CP-2426-VOL-1 NASA-CP-2426-VOL-1 NASA-CP-2426-VOL-1 NASA-CP-2492-PT-2 NASA-CP-2506 NASA-CP-3002 NASA-CP-3003-VOL-1 NASA-CP-3009 NASA-CR-179371 NASA-CR-179372 NASA-CR-179373 NASA-CR-182128 NASA-CR-182141 NASA-CR-182148 NASA-CR-182141 NASA-CR-182680 NASA-CR-182680 NASA-CR-182680 NASA-CR-182680 NASA-CR-182748 NASA-CR-182680 NASA-CR-182901 NASA-CR-182908 NASA-CR-182908 NASA-CR-182908 NASA-CR-182908 NASA-CR-182908 NASA-CR-182908 NASA-CR-182908 NASA-CR-182908 NASA-CR-182908 NASA-CR-182907 NASA-CR-182908 NASA-CR-182908 NASA-CR-182907 NASA-CR-182908 NASA-CR-182907 NASA-CR-182908 NASA-CR-182002 NASA-CR-1830082 NASA-CR-1830082 NASA-CR-3941 NASA-CR-3941 NASA-CR-3941 NASA-CR-3941 NASA-CR-3941 NASA-CR-3941 NASA-CR-3941	P 19 P 18 P 80 P 18 P 18 P 19 P 22 P 99 P 100 P 98 P 102 P 59 P 8 P 7 P 524 P 59 P 8 P 77 P 77 P 78 P 77 P 79 P 79 P 100	N88-23979 * N88-23979 * N88-26398 * N88-28958 * N88-29180 * N88-22145 * # N88-24145 * # N88-24148 * # N88-21468 * # N88-2326 * # N88-23300 * # N88-23300 * # N88-23180 * # N88-2326 * # N88-23180 * # N88-2326 * # N88-2530 * # N88-21443 * # N88-26397 * # N88-26397 * # N88-2540 * # N88-25540 * # N88-25555 * # N88-25506 * # N88-25506 * # N88-25506 * # N88-25506 * #	SNIAS-SE/LS/AP-35-073 SNIAS-881-430-104 SNIAS-881-430-106 SNIAS-881-440-104 SPIE-748 SPIE-751 SPIE-840 SPIE-871 SR/FIS/108(87)CZ STF23-F87025-VOL-1 TR-0086A(2940-06)-6 TR-88-18 TW-278 TW-281 UCRL-15980 US-PATENT-APPL-SN-032818 US-PATENT-APPL-SN-056930 US-PATENT-APPL-SN-913432 US-PATENT-APPL-SN-913432 US-PATENT-APPL-SN-913432 US-PATENT-APPL-SN-93437 US-PATENT-APPL-SN-93437 US-PATENT-APPL-SN-934397 US-PATENT-CLASS-104-172.1 US-PATENT-CLASS-104-35 US-PATENT-CLASS-16-292 US-PATENT-CLASS-16-292 US-PATENT-CLASS-16-332 US-PATENT-CLASS-16-332 US-PATENT-CLASS-16-345 US-PATENT-CLASS-16-345 US-PATENT-CLASS-16-345 US-PATENT-CLASS-16-349 US-PATENT-CLASS-16-349 US-PATENT-CLASS-16-349 US-PATENT-CLASS-16-349 US-PATENT-CLASS-16-349 US-PATENT-CLASS-16-349 US-PATENT-CLASS-16-349 US-PATENT-CLASS-16-349 US-PATENT-CLASS-16-349	P 7 P 72	N88-20330 # N88-28977 # N88-28978 # A88-34486 A88-34536 A88-43176 A88-42547 N88-30552 # N88-30552 # N88-26396 # N88-26396 # N88-23929 # N88-20348 # N88-20348 # N88-29180 * N88-29180 * N88-2397 * N88-2828 * N88-2828 * N88-2828 * N88-2898 * N88-23827 *
IAF PAPER 88-515 IAF PAPER 88-618 PAF-86-62 INPE-4313-TDL/280 INPE-4464-PRE/1239 PISAS-RN-625 ISSN-0250-1589 ISSN-0258-6808 ISSN-0379-4059 ISSN-0379-4059 ISSN-0379-4057 ISSN-0379-4057 ISSN-0379-6566 PJPL-PUBL-87-42-VOL-2 L-16433 PLMSC-F115808 PMS-76-PT-2 M-586 PMBB-URV-135 PMCR-85-721 MCR-86-2601-VOL-2-BK-1 PMC-H1363 PMEBS-38/87 PAS 1.15:100287 PAS 1.15:100287 PAS 1.15:100287 PAS 1.15:100497 PAS 1.15:100697 PAS 1.15:100697 PAS 1.15:100697 PAS 1.15:100697 PAS 1.15:100697 PAS 1.15:1000697 PAS 1.15:1000691 PAS 1.15:1000691 PAS 1.15:1000691	77 6 80 48 48 51 8 51 72 72 61 102 77 98 24 50 100 69 11 71 7 100 12 60 23 7 8 86 7	A88-55417 A88-55436 A88-55436 A88-29352 N88-20349 N88-21240 N88-24673 N88-24673 N88-28833 N88-29190 N88-24670 N88-20352 N88-20352 N88-20352 N88-20352 N88-20352 N88-20356 N88-20356 N88-20356 N88-20356 N88-20356 N88-21468 N88-25390 N88-25390 N88-21468 N88-25390 N88-21468 N88-25390 N88-21468 N88-25390 N88-21468 N88-25390 N88-21468 N88-2850 N88-21488 N88-2850 N88-2850	井井 井 井井 井井井井井井 井 井 井 井 井 井 井 井 井 井 井井井井井	NASA-CASE-LAR-13898-1 NASA-CASE-MFS-28185-1 NASA-CASE-MSC-20985-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21117-1 NASA-CASE-MSC-21117-1 NASA-CP-10009 NASA-CP-2426-VOL-1 NASA-CP-2426-VOL-4 NASA-CP-2492-PT-2 NASA-CP-2506 NASA-CP-3002 NASA-CP-3002 NASA-CP-3009 NASA-CR-179371 NASA-CR-179371 NASA-CR-179371 NASA-CR-179371 NASA-CR-182188 NASA-CR-182181 NASA-CR-182188 NASA-CR-182141 NASA-CR-182148 NASA-CR-182189 NASA-CR-182909 NASA-CR-182909 NASA-CR-182909 NASA-CR-182909 NASA-CR-182908 NASA-CR-182908 NASA-CR-182908 NASA-CR-182908 NASA-CR-182908 NASA-CR-182908 NASA-CR-182098 NASA-CR-182098 NASA-CR-182098 NASA-CR-182098 NASA-CR-182098 NASA-CR-182098 NASA-CR-182098 NASA-CR-182097 NASA-CR-182098 NASA-CR-182097 NASA-CR-183092 NASA-CR-183092 NASA-CR-183094 NASA-CR-4027 NASA-CR-4027 NASA-CR-4027 NASA-CR-4027 NASA-CR-4132	P 19 P 18 P 80 P 18 P 18 P 19 P 22 P 99 P 100 P 98 P 102 P 8 P 73 P 23 P 75 P 77 P 98 P 101 P 23 P 77 P 98 P 101 P 26 P 77 P 98 P 100 P 78	N88-30130 ° # N88-23979 ° N88-26398 ° N88-28958 ° N88-29180 ° N88-24145 " # N88-24148 " # N88-24148 " # N88-24148 " # N88-23226 " # N88-23226 " # N88-23320 " # N88-23230 " # N88-2324 " # N88-21243 " # N88-21243 " # N88-21244 " # N88-21244 " # N88-21244 " # N88-2326 " # N88-21244 " # N88-21244 " # N88-21242 " # N88-23649 " # N88-23649 " # N88-2544 " # N88-25556 " # N88-23929 " # N88-23929 " # N88-23929 " # N88-2506 " # N88-25156 " # N88-26693 " # N88-25156 " # N88-26692 " # N88-26699 " #	SNIAS-SE/LS/AP-35-073 SNIAS-881-430-104 SNIAS-881-430-106 SNIAS-881-440-104 SPIE-748 SPIE-751 SPIE-840 SPIE-871 SR/FIS/108(87)CZ STF23-F87025-VOL-1 TR-0086A(2940-06)-6 TR-88-18 TW-278 TW-281 UCRL-15980 US-PATENT-APPL-SN-032818 US-PATENT-APPL-SN-056930 US-PATENT-APPL-SN-913432 US-PATENT-APPL-SN-913432 US-PATENT-APPL-SN-913432 US-PATENT-APPL-SN-93437 US-PATENT-APPL-SN-93437 US-PATENT-APPL-SN-934397 US-PATENT-CLASS-104-172.1 US-PATENT-CLASS-104-35 US-PATENT-CLASS-16-292 US-PATENT-CLASS-16-292 US-PATENT-CLASS-16-332 US-PATENT-CLASS-16-332 US-PATENT-CLASS-16-345 US-PATENT-CLASS-16-345 US-PATENT-CLASS-16-345 US-PATENT-CLASS-16-349 US-PATENT-CLASS-16-349 US-PATENT-CLASS-16-349 US-PATENT-CLASS-16-349 US-PATENT-CLASS-16-349 US-PATENT-CLASS-16-349 US-PATENT-CLASS-16-349 US-PATENT-CLASS-16-349 US-PATENT-CLASS-16-349	P 7 P 72	N88-20330 # N88-28977 # N88-28978 # N88-29128 # A88-34486 A88-34486 A88-34536 A88-43176 A88-30552 # N88-30552 # N88-26396 # N88-29329 # N88-29329 # N88-29390 # N88-29390 # N88-29390 # N88-29397 * N88-28382 * N88-28382 * N88-28382 * N88-28382 * N88-28382 * N88-23827 * N88-23828 *
IAF PAPER 88-515 IAF PAPER 88-618 PAF-86-62 INPE-4313-TDL/280 INPE-4464-PRE/1239 PISAS-RN-625 PISSN-0250-1589 ISSN-0379-4059 ISSN-0379-4059 ISSN-0379-4059 ISSN-0379-40659 PASSN-0379-6566 PASSN-0315-100664 PASSN-1.15-100664 PASSN-1.15-1006666 PASSN-1.15-1006666	77 6 80 48 48 51 8 51 72 72 72 72 72 74 100 77 98 24 50 100 69 11 71 7 100 12 60 23 7 8 86 7 8	A88-55417 A88-55436 A88-55436 A88-55454 N88-29352 N88-20349 N88-21240 N88-24673 N88-28833 N88-29190 N88-24670 N88-20352 N88-20352 N88-20352 N88-20352 N88-20332 N88-25556 N88-20332 N88-25556 N88-29852 N88-29856 N88-29856 N88-29856 N88-29856	井井 并 并并 并 并并并并并 并 并 并 并 并并 并 并 并 并 并 并并并并并	NASA-CASE-LAR-13898-1 NASA-CASE-MFS-28185-1 NASA-CASE-MSC-20985-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21017-1 NASA-CASE-MSC-21117-1 NASA-CP-2426-VCL-1 NASA-CP-2426-VCL-1 NASA-CP-2426-VCL-1 NASA-CP-2492-PT-2 NASA-CP-3002 NASA-CP-3002 NASA-CP-3009 NASA-CP-3009 NASA-CR-179371 NASA-CR-179371 NASA-CR-179371 NASA-CR-179372 NASA-CR-180879 NASA-CR-182128 NASA-CR-182141 NASA-CR-182141 NASA-CR-182141 NASA-CR-182688 NASA-CR-182688 NASA-CR-182689 NASA-CR-182690 NASA-CR-182690 NASA-CR-182991 NASA-CR-182991 NASA-CR-182991 NASA-CR-182998 NASA-CR-182991 NASA-CR-182998 NASA-CR-182991 NASA-CR-182998 NASA-CR-182991 NASA-CR-182998 NASA-CR-182991 NASA-CR-182990 NASA-CR-182991 NASA-CR-183092 NASA-CR-183092 NASA-CR-183092 NASA-CR-183092 NASA-CR-183092 NASA-CR-183092 NASA-CR-183092 NASA-CR-183094 NASA-CR-183092 NASA-CR-183094 NASA-CR-183094 NASA-CR-183094 NASA-CR-183094 NASA-CR-183094 NASA-CR-4132 NASA-CR-4132 NASA-CR-4132 NASA-CR-4132 NASA-CR-4132 NASA-CR-4132 NASA-CR-4132 NASA-CR-4132 NASA-CR-4132 NASA-CR-4136	P 19 P 18 P 80 P 18 P 18 P 19 P 22 P 99 P 100 P 98 P 102 P 8 P 7 P 53 P 62 P 78 P 77 P 98 P 77 P 98 P 77 P 98 P 77 P 98 P 77 P 99 P 100 P 100 P 100 P 11	N88-23979 * N88-23979 * N88-26398 * N88-28958 * N88-29180 * N88-221405 * N88-24145 * # N88-24148 * # N88-21468 * # N88-21468 * # N88-23226 * # N88-23226 * # N88-23390 * # N88-23226 * # N88-23226 * # N88-23840 * # N88-23226 * # N88-23840 * # N88-23840 * # N88-21243 * # N88-26397 * # N88-25244 * # N88-23649 * # N88-23649 * # N88-23649 * # N88-25155 * # N88-23940 * # N88-25155 * # N88-23940 * # N88-25155 * # N88-23940 * # N88-25155 * # N88-25155 * # N88-25155 * # N88-25156 * # N88-26693 * # N88-25156 * # N88-26692 * # N88-26692 * # N88-26693 * # N88-24632 * #	SNIAS-SE/LS/AP-35-073 SNIAS-881-430-104 SNIAS-881-430-106 SNIAS-881-440-104 SPIE-748 SPIE-751 SPIE-840 SPIE-871 SR/FIS/108(87)CZ STF23-F87025-VOL-1 TR-0086A(2940-06)-6 TR-88-18 TW-278 TW-281 UCRL-15980 US-PATENT-APPL-SN-032818 US-PATENT-APPL-SN-93432 US-PATENT-APPL-SN-913432 US-PATENT-APPL-SN-913432 US-PATENT-APPL-SN-934397 US-PATENT-APPL-SN-934397 US-PATENT-CLASS-104-172.1 US-PATENT-CLASS-104-35 US-PATENT-CLASS-16-392 US-PATENT-CLASS-16-395 US-PATENT-CLASS-16-395 US-PATENT-CLASS-16-396 US-PATENT-CLASS-16-347 US-PATENT-CLASS-16-347 US-PATENT-CLASS-16-347 US-PATENT-CLASS-16-347 US-PATENT-CLASS-16-347 US-PATENT-CLASS-16-349 US-PATENT-CLASS-16-349 US-PATENT-CLASS-180-8.6 US-PATENT-CLASS-180-8.6 US-PATENT-CLASS-180-8.6	P 7 P 72	N88-20330 # N88-28977 # N88-28978 # A88-34486 A88-34486 A88-43176 A88-30552 # N88-30552 # N88-26396 # N88-26396 # N88-20348 # N88-20348 # N88-20348 # N88-20348 # N88-20348 * N88-23929 * N88-23927 * N88-23827 * N88-23828 * N88-23828 * N88-26398 *
IAF PAPER 88-515 IAF PAPER 88-618 PAF-86-62 INPE-4313-TDL/280 INPE-4464-PRE/1239 PISAS-RN-625 ISSN-0250-1589 ISSN-0258-6808 ISSN-0379-4059 ISSN-0379-4059 ISSN-0379-4057 ISSN-0379-4057 ISSN-0379-6566 PJPL-PUBL-87-42-VOL-2 L-16433 PLMSC-F115808 PMS-76-PT-2 M-586 PMBB-URV-135 PMCR-85-721 MCR-86-2601-VOL-2-BK-1 PMC-H1363 PMEBS-38/87 PAS 1.15:100287 PAS 1.15:100287 PAS 1.15:100287 PAS 1.15:100497 PAS 1.15:100697 PAS 1.15:100697 PAS 1.15:100697 PAS 1.15:100697 PAS 1.15:100697 PAS 1.15:1000697 PAS 1.15:1000691 PAS 1.15:1000691 PAS 1.15:1000691	77 6 80 48 48 51 8 51 72 72 72 72 72 74 100 77 98 24 50 100 69 11 71 7 100 12 60 23 7 8 86 7 8	A88-55417 A88-55436 A88-55436 A88-29352 N88-20349 N88-21240 N88-24673 N88-24673 N88-28833 N88-29190 N88-24670 N88-20352 N88-20352 N88-20352 N88-20352 N88-20352 N88-20356 N88-20356 N88-20356 N88-20356 N88-20356 N88-21468 N88-25390 N88-25390 N88-21468 N88-25390 N88-21468 N88-25390 N88-21468 N88-25390 N88-21468 N88-25390 N88-21468 N88-2850 N88-21488 N88-2850 N88-2850	井井 并 并并 并 并并并并并 并 并 并 并 并并 并 并 并 并 并 并并并并并	NASA-CASE-LAR-13898-1 NASA-CASE-MFS-28185-1 NASA-CASE-MSC-20985-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21056-1 NASA-CASE-MSC-21117-1 NASA-CASE-MSC-21117-1 NASA-CP-10009 NASA-CP-2426-VOL-1 NASA-CP-2426-VOL-4 NASA-CP-2492-PT-2 NASA-CP-2506 NASA-CP-3002 NASA-CP-3002 NASA-CP-3009 NASA-CR-179371 NASA-CR-179371 NASA-CR-179371 NASA-CR-179371 NASA-CR-182188 NASA-CR-182181 NASA-CR-182188 NASA-CR-182141 NASA-CR-182148 NASA-CR-182189 NASA-CR-182909 NASA-CR-182909 NASA-CR-182909 NASA-CR-182909 NASA-CR-182908 NASA-CR-182908 NASA-CR-182908 NASA-CR-182908 NASA-CR-182908 NASA-CR-182908 NASA-CR-182098 NASA-CR-182098 NASA-CR-182098 NASA-CR-182098 NASA-CR-182098 NASA-CR-182098 NASA-CR-182098 NASA-CR-182097 NASA-CR-182098 NASA-CR-182097 NASA-CR-183092 NASA-CR-183092 NASA-CR-183094 NASA-CR-4027 NASA-CR-4027 NASA-CR-4027 NASA-CR-4027 NASA-CR-4132	P 19 P 18 P 80 P 18 P 18 P 19 P 22 P 99 P 100 P 98 P 102 P 8 P 7 P 53 P 62 P 78 P 77 P 98 P 77 P 98 P 77 P 98 P 77 P 98 P 77 P 99 P 100 P 100 P 100 P 11	N88-30130 ° # N88-23979 ° N88-26398 ° N88-28958 ° N88-29180 ° N88-24145 " # N88-24148 " # N88-24148 " # N88-24148 " # N88-23226 " # N88-23226 " # N88-23320 " # N88-23230 " # N88-2324 " # N88-21243 " # N88-21243 " # N88-21244 " # N88-21244 " # N88-21244 " # N88-2326 " # N88-21244 " # N88-21244 " # N88-21242 " # N88-23649 " # N88-23649 " # N88-2544 " # N88-25556 " # N88-23929 " # N88-23929 " # N88-23929 " # N88-2506 " # N88-25156 " # N88-26693 " # N88-25156 " # N88-26692 " # N88-26699 " #	SNIAS-SE/LS/AP-35-073 SNIAS-881-430-104 SNIAS-881-430-106 SNIAS-881-440-104 SPIE-748 SPIE-751 SPIE-840 SPIE-871 SR/FIS/108(87)CZ STF23-F87025-VOL-1 TR-0086A(2940-06)-6 TR-88-18 TW-278 TW-281 UCRL-15980 US-PATENT-APPL-SN-032818 US-PATENT-APPL-SN-056930 US-PATENT-APPL-SN-913432 US-PATENT-APPL-SN-913432 US-PATENT-APPL-SN-913432 US-PATENT-APPL-SN-93437 US-PATENT-APPL-SN-93437 US-PATENT-APPL-SN-934397 US-PATENT-CLASS-104-172.1 US-PATENT-CLASS-104-35 US-PATENT-CLASS-16-292 US-PATENT-CLASS-16-292 US-PATENT-CLASS-16-332 US-PATENT-CLASS-16-332 US-PATENT-CLASS-16-345 US-PATENT-CLASS-16-345 US-PATENT-CLASS-16-345 US-PATENT-CLASS-16-349 US-PATENT-CLASS-16-349 US-PATENT-CLASS-16-349 US-PATENT-CLASS-16-349 US-PATENT-CLASS-16-349 US-PATENT-CLASS-16-349 US-PATENT-CLASS-16-349 US-PATENT-CLASS-16-349 US-PATENT-CLASS-16-349	P 7 P 72	N88-20330 # N88-28977 # N88-28978 # N88-29128 # A88-34486 A88-34486 A88-34536 A88-43176 A88-30552 # N88-30552 # N88-26396 # N88-29329 # N88-29329 # N88-29390 # N88-29390 # N88-29390 # N88-29397 * N88-28382 * N88-28382 * N88-28382 * N88-28382 * N88-28382 * N88-23827 * N88-23828 *

US-PATENT-CLASS-294-113	p 18	N88-23979	•
US-PATENT-CLASS-294-119.2	p 18	N88-23979	•
US-PATENT-CLASS-294-16	p 18	N88-23979	*
US-PATENT-CLASS-403-171	p 19	N88-29180	*
US-PATENT-CLASS-403-217	p 19	N88-29180	٠
US-PATENT-CLASS-414-735	p 7	N88-23828	•
US-PATENT-CLASS-414-750	p 7	N88-23828	*
US-PATENT-CLASS-52-646	p 18	N88-28958	*
US-PATENT-CLASS-52-646	p 19	N88-29180	*
US-PATENT-CLASS-52-648	p 18	N88-28958	•
US-PATENT-CLASS-52-648	p 19	N88-29180	•
US-PATENT-CLASS-901-1	p 7	N88-23828	•
US-PATENT-CLASS-901-33	p 7	N88-23828	•
US-PATENT-4,723,800	p 18	N88-23979	•
US-PATENT-4,736,490	p 18	N88-23827	*
US-PATENT-4,738,583	ρ7	N88-23828	*
US-PATENT-4,757,767	p 80	N88-26398	*
US-PATENT-4,763,459	p 19	N88-29180	•
US-PATENT-4,765,114	p 18	N88-28958	•
UVA/525673/MAE88/101	p 50	N88-22928	#
UVA/525673/MAE88/103	p 53	N88-27587	#

ACCESS-OZ

Typical Accession Number Index Listing

Listings is this index are arranged alphanumerically by accession number. The page number listed to the right indicates the page on which the citation is located. An asterisk (*) indicates that the item is a NASA report. A pound sign (#) indicates that the item is available on microfiche.

p 88	A88-35051	p 90
p 62		p 2
p 24		p 2
n 88		p 2
•		p 2
•		p 2
		p 2
		p 90
		p 55
		p 83
		p 27
		p 73
	A88-35112	p 55
		p 2
		p 27
		p 28
	A88-35131	р3
	A88-35144	p 55
		p 55
	A88-35275	p 55
	A88-35452	p 73
	A88-35453 *	p 73
	A88-35455	p 73
	A88-35457 *	p 73
		p 74
		p 90
	A88-35541	p 28
	A88-35543	p 28
	A88-35565 *	p 63
	A88-35877	p 3
•	A88-35940 #	p 13
		p 13
		p 74
		p 83
		p 13
		p 63
		p 90
		p 90
		p 28
		р3
		p 28
	A88-36762 "#	p 63
p 25	A88-36982	p 64
p 26	A88-37000	p 64
p 26 p 26	A88-37000 A88-37239	р 64 р 90
p 26 p 26 p 26	A88-37000 A88-37239 A88-37257 #	p 64 p 90 p 3
p 26 p 26 p 26 p 26 p 26	A88-37000 A88-37239 A88-37257 # A88-37273 #	p 64 p 90 p 3 p 91
p 26 p 26 p 26 p 26 p 26 p 26	A88-37000 A88-37239 A88-37257 # A88-37273 # A88-37278 #	p 64 p 90 p 3 p 91 p 9
p 26 p 26 p 26 p 26 p 26 p 26 p 26	A88-37000 A88-37239 A88-37257 # A88-37273 # A88-37278 # A88-37285 #	p 64 p 90 p 3 p 91 p 9 p 55
p 26 p 26 p 26 p 26 p 26 p 26 p 26 p 26	A88-37000 A88-37239 A88-37257 # A88-37273 # A88-37278 # A88-37295 # A88-37293 #	p 64 p 90 p 3 p 91 p 9 p 55 p 64
p 26 p 26 p 26 p 26 p 26 p 26 p 26 p 26	A88-37000 A88-37239 A88-37257 # A88-37273 # A88-37278 # A88-37285 #	p 64 p 90 p 3 p 91 p 9 p 55
p 26 p 26 p 26 p 26 p 26 p 26 p 26 p 26	A88-37000 A88-37239 A88-37257 # A88-37273 # A88-37278 # A88-37295 # A88-37293 #	p 64 p 90 p 3 p 91 p 9 p 55 p 64
P 26 P 26 P 26 P 26 P 26 P 26 P 26 P 26	A88-37000 A88-37239 A88-37257 # A88-37273 # A88-37278 # A88-37285 # A88-37293 # A88-37295 #	p 64 p 90 p 3 p 91 p 9 p 55 p 64 p 19 p 64
p 26 p 26 p 26 p 26 p 26 p 26 p 26 p 26	A88-37000 A88-37237 A88-37257 # A88-37273 # A88-37278 # A88-37293 # A88-37293 # A88-37343	p 64 p 90 p 3 p 91 p 9 p 55 p 64 p 19
	P 62 P 24 P 84 P 87 P 72 P 82 P 84 P 89 P 73 P 89 P 73 P 89 P 73 P 89 P 62 P 63 P 63 P 69 P 89 P 8	P 62

A88-34917

p 27

p 64

A88-38015

A88-38077	p 91
A88-38097	р 91
A88-38098	p 55
A88-38115	ρ 56
A88-38304	p 91
A88-38389 #	p 28
A88-38390 #	p 28
A88-38672 #	p 19
A88-38689 * #	p 13
A88-38826	p 91
A88-39050	p 91
A88-39077	р3
A88-39332	р3
A88-39423 #	p 56
A88-39424 #	p 91
A88-39500	p 9
A88-39724	p 28
A88-40251	p 91
A88-40261	p 29
A88-40269 * A88-40271	p 29 p 29
A88-40292 *	p 29 p 19
A88-40489	p 29
A88-40524	p 9
A88-40566	p 9
A88-40568	p 64
A88-40571	p 3
A88-40773 * #	p 29
A88-41038	p 13
A88-41276 *	p 92
A88-41283	p 83
A88-41285	p 92
A88-41287	p 83
A88-41414 #	p 19
A88-41547 *	p 65
A88-41882	p 92
A88-41885	p 65
A88-42328	p 74
A88-42372	p 65
A88-42412 *	p 65
A88-42419	p 65
A88-42434 * A88-42440 *	p 65
A88-42441 *	р 66 р 20
A88-42539 *	p 92
A88-42547	p 92
A88-42574	p 29
A88-42576	p 29
A88-42577	p 30
A88-42582	p 30
A88-42585	p 56
A88-42642 *	p 74
A88-42657 *	p 74
A88-42667	p 74
A88-42668 * #	p 75
A88-42677 *	p 75
A88-42829	p 92
A88-42830 #	p 20
A88-42832 # A88-42842 #	p 20
A88-42843 #	p 20 p 20
A88-42903 *#	p 75
A88-42909 *#	p 93
A88-42910 *#	p 93
A88-42911 #	p 9
A88-42912 *#	p 93
A88-42933 * #	p 93
A88-43030 #	p 30
A88-43176	p 93
A88-43187 *	p 56
A88-43203 #	p 30
A88-43206 *#	p 30
A88-43211 *#	p 30
A88-43212 #	p 30
A88-43215 #	p 30
A88-43247	p 93
A88-43299 * #	p 4
A88-43333	p 93
A88-43516 * #	p 6 6
7100 40017 W	p 66
	p 66
A88-43710 # A88-43715 *#	p 83 p 56
A00-40/10 #	p 56

A88-43743	#	p 20	
A88-43746	* #	p 21	
A88-43753		p 21	
A88-43754	* #	p 21	
A88-43765	* #	p 66	
A88-43863		p 84	
A88-43951		р 94	
A88-43964	#	p 4	
A88-43966	#	p 94	
A88-43967	#	p 94	
A88-43968	#	p 4	
A88-43969	#	p 9	
A88-43976	#	p 75	
A88-44001		p 94	
A88-44004	#	p 66	
A88-44150		p 4	
A88-44526	* #	p 75	
A88-44527	#	p 94	
A88-44613		p 4	
A88-44638	*	p 56	
A88-44668	* #	p 84	
A88-44670	#	p 30	
A88-44695	*#	p 94	
A88-44698	*#	p 84	
A88-44741	#	p 4	
A88-44785	#	p 21	
A88-44820	*#	p 84	
A88-44839	#	p 14	
A88-44875	#	p 84	
A88-44898		р9	
A88-45034		p 95	
A88-45109	*#	p 66	
A88-45201		p 67	
A88-45205		p 67	
A88-45227	· "	p 31	
A88-45452 A88-45467	#	p 14	
A88-45712		р 31 р 31	
A88-46041			
A88-46070		р 31 р 95	
A88-46192	#	p 67	
A88-46401	π	p 31	
A88-46402		p 21	
A88-46403		p 31	
A88-46404		p 21	
A88-46405		p 31	
A88-46406		p 32	
A88-46408		p 32	
A88-46409		p 32	
A88-46410		p 32	
A88-46411		p 32	
A88-46412		p 32	
A88-46413		p 33	
A88-46414		p 10	
A88-46489	*#	p 84	
A88-46516		p 10	
A88-46712	#	p 33	
A88-46717	#	p 33	
A88-46776		p 95	
A88-46799	*	p 56	
A88-46804		p 57	
A88-46805		p 57	
A88-46806		p 57	
A88-46807	•	p 57	
A88-46968		p 10	
A88-46982		p 10	
A88-46986		p 10	
A88-46987		p 10	
A88-47449		p 67	
A88-47462	#	p 33	
A88-47907		p 33	
A88-47964	#	p 14	
A88-47966	*#	p 67	
A88-47969	#	p 67	
A88-47970	#	p 57	
A88-47971	*#	p 67	
A88-48042	#	p 84	
A88-48080		p 33	
A88-48082		p 33	
A88-48194	#	p 33	
A88-48477	*#	p 4	
A88-48479	#	p 22	
A00 40404	и.	- 05	

A88-48484 # p 85

A88-48492 A88-48957	*#	р 85 р 33
A88-49026	"	p 95
A88-49260 A88-49658		p 68
A88-49714	*	p 22 p 33
A88-49743 A88-49750		p 34 p 85
A88-49820	#	р 4
A88-49825 A88-49914	#	p 85 p 34
A88-49996	"	p 68
A88-50095 A88-50160		р 34 р 95
A88-50165 A88-50167	* #	p 34
A88-50168	#	р 34 р 34
A88-50169 A88-50170	* #	p 35 p 35
A88-50189	* #	p 35
A88-50191 A88-50193	*#	p 35 p 35
A88-50199	#	p 35
A88-50201 A88-50202	#	р 35 р 75
A88-50209 A88-50233	*#	p 36 p 36
A88-50246	#	p 36
A88-50247 A88-50248	*#	p 36 p 36
A88-50259 A88-50261	#	p 36
A88-50262	#	p 37
A88-50263 A88-50265	*#	p 37 p 37
A88-50266 A88-50280	* #	p 37
A88-50306	#	р 37 р 57
A88-50308 A88-50339	#	р 57 р 22
A88-50352		p 95
A88-50362 A88-50367	#	р 37 р 38
A88-50383 A88-50384	*#	р 38 р 38
A88-50385	#	p 38
A88-50386 A88-50398	#	p 38 p 38
A88-50407 A88-50409	#	p 39 p 39
A88-50425	#	p 85
A88-50428 A88-50429	#	p 39 p 39
A88-50430 A88-50431	#	p 39 p 39
A88-50432	#	p 40
A88-50438 A88-50440	*#	p 40 p 40
A88-50441 A88-50586	#	p 40 p 40
A88-50590	#	p 95
A88-50671 A88-50769		p 85 p 85
A88-50789 A88-50809		p 40 p 40
A88-50818		p 41
A88-50836 A88-50837		p 10 p 41
A88-50860 A88-50862		p 41 p 75
A88-50863		p 75 p 41
A88-50873 A88-50891		p 22 p 14
A88-50892	•	p 41
A88-50897 A88-50899		p 41 p 41
A88-50979 A88-50980	•	p 42 p 42
A88-50998		p 76
A88-51133 A88-51139		р5 р85
A88-51341 A88-51386	#	p 58
400-0138p	* #	p 11

A88-51391

				NOO 00040 # #	- 50
A88-51391 #	p 58	A88-55386 #	ρ 47	N88-23940 * #	p 50 p 18
A88-51392 #	p 58	A88-55390 #	p 97	N88-23979 * N88-23995	p 50
A88-51715 #	p 5	A88-55391 #	p 47	N88-24145 * #	p 99
A88-51716 * #	p 96	A88-55393 *#	p 47	N88-24146 * #	p 99
A88-52238 * #	p 42	A88-55397 #	p 48	N88-24147 * #	p 78
A88-52317	p 96	A88-55417 #	p 6	N88-24148 * #	p 99
A88-52323	p 76	A88-55436 #	p 77	N88-24150 * #	p 99
A88-52326	p 76	A88-55454 #	p 6	N88-24151 *#	p 99
A88-52328 *	p 76	A88-55486	p 97	N88-24152 *#	p 100
A88-52329 *	p 76			N88-24154 *#	p 87
A88-52330 *	p 76	N88-20290 * #	p 48	N88-24172 * #	p 11
A88-52331 *	p 68	N88-20329 #	p 97	N88-24188 * #	p 100
A88-52332	p 5	N88-20330 #	p 7	N88-24189 * #	p 12
A88-52333 *	p 58	N88-20332 #	p 11	N88-24190 * #	p 12
A88-52334	p 11 p 96	N88-20339 * #	p 7	N88-24191 *#	p 78
A88-52335 A88-52337	p 5	N88-20347 #	p 14	N88-24194 * #	p 50
A88-52339	p 58	N88-20348 #	p 48	N88-24195 *#	p 50
A88-52355	p 42	N88-20349 #	p 48	N88-24261 * #	p 87
A88-52362 *	p 5	N88-20352 * #	p 77	N88-24272 #	p 87
A88-52373	p 86	N88-20569 #	p 59	N88-24321 #	p 60
A88-52374 #	p 86	N88-20599 * #	p 22	N88-24332 #	p 12
A88-52639	p 42	N88-20646 * #	p 77 p 48	N88-24379 #	p 87
A88-53101 * #	p 86	N88-20902 # N88-21188 * #	p 86	N88-24392 #	p 60
A88-53126 #	p 68	N88-21190 * #	p 7	N88-24444 #	p 87
A88-53163 #	p 86	N88-21193 #	p 98	N88-24632 * #	p 100
A88-53220 *	p 22	N88-21195 #	p 14	N88-24665 #	p 51 p 51
A88-53221 *	p 5	N88-21196 #	p 15	N88-24666 #	p 51
A88-53226 *	p 11	N88-21197 #	p 15	N88-24667 N88-24670 #	p 61
A88-53242	p 96	N88-21198 #	p 15	N88-24672 * #	p 23
A88-53420	p 42	N88-21200 #	p 48	N88-24673 #	p 51
A88-53470 *	p 58	N88-21201 #	p 15	N88-24674	p 51
A88-53664 #	p 11	N88-21202 #	p 15	N88-24681 #	p 87
A88-53665 *#	p 77	N88-21203 #	p 15	N88-24754 * #	p 69
A88-53666 *#	p 5	N88-21204 #	p 15	N88-24989 #	p 51
A88-53681	p 42	N88-21205 #	p 16	N88-25155 * #	p 78
A88-53749	p 96	N88-21211 #	p 16	N88-25156 * #	p 100
A88-53779	p 58	N88-21212 #	p 16	N88-25206 * #	p 79
A88-53785	p 43	N88-21217 #	p 16	N88-25244 * #	p 52
A88-53945	p 43	N88-21225 #	p 16	N88-25371 * #	p 12
A88-54401	p 43	N88-21226 #	p 16	N88-25390 * #	p 69
A88-54406	p 43	N88-21227 #	p 16	N88-25391 * #	p 69
A88-54410	p 43 p 43	N88-21229 #	p 17	N88-25392 * #	p 69
A88-54421 A88-54423	p 43	N88-21230 #	p 48	N88-25393 * #	p 70
A88-54471 *	p 44	N88-21232 #	p 77	N88-25394 * #	p 61
A88-54532 *	p 44	N88-21233 #	p 17	N88-25395 * #	p 70
A88-54533	p 44	N88-21237 #	p 17	N88-25396 * #	p 70
A88-54572 *	p 44	N88-21240 #	p 48	N88-25397 * #	p 70
A88-54573 *	p 6	N88-21242 * # N88-21243 * #	p 98 p 59	N88-25398 * #	p 70
A88-54574	p 44		p 69	N88-25399 * #	p 70
A88-54575	p 44	N88-21250 * # N88-21251 * #	p 59	N88-25400 * #	p 70
A88-54576	p 44	N88-21254 * #	p 59	N88-25401 * #	p 71
A88-54577	p 45	N88-21374 * #	p 59	N88-25402 * #	p 71
A88-54583	p 45	N88-21375 *#	p 60	N88-25403 * #	p 71
A88-54587 *	p 45	N88-21468 * #	p 98	N88-25472 * #	р 79 р 71
A88-54603	p 6	N88-21469 * #	p 17	N88-25474 * # N88-25745 * #	p 61
A88-54630	p 45	N88-21471 * #	p 17	N88-25746 * #	p 61
A88-54639	p 45	N88-21472 * #	p 17	N88-25748 * #	p 52
A88-54640	p 45	N88-21473 * #	p 17	N88-26023 #	p 100
A88-54643	p 45	N88-21474 * #	p 77	N88-26031 #	p 79
A88-54655	p 46	N88-21475 * #	p 17	N88-26038 #	p 79
A88-54696	p 86	N88-21478 * #	p 18	N88-26040 #	p 79
A88-54722	p 14	N88-21488 * #	p 98	N88-26041 #	p 79
A88-54731	p 68	N88-21489 * #		N88-26044 #	p 79
A88-54749	р 58 р 96	N88-21491 * #	p 18	N88-26045 #	p 79
A88-54766 # A88-54851 * #	p 6	N88-21492 * #		N88-26143	p 52
	p 59	N88-21493 * #		N88-26389 * #	p 23
A88-54853 * # A88-54876	p 97	N88-22065 #		N88-26390 #	p 52
A88-54896 #	p 11	N88-22066 #		N88-26396 #	p 61
A88-54973 #	p 46	N88-22068 #	· · · -	N88-26397 * #	p 8
A88-54988 * #	p 68	N88-22070 #		N88-26398 *	p 80
A88-54989 #	p 46	N88-22071 #		N88-26678 #	p 80
A88-54990 * #	p 68	N88-22224 #		N88-26693 * #	p 52
A88-54994 #	p 97	N88-22225 # N88-22321 #		N88-27180 * #	p 8
A88-55062 #	p 46			N88-27183 #	p 52
A88-55063 #	p 46	N88-22378 # N88-22406 * #		N88-27214 *	p 100
A88-55067 #	p 46	N88-22540 * #		N88-27233 #	p 71
A88-55088 * #	p 46	N88-22924 #		N88-27341 #	р 71 р 53
A88-55314 #	p 6	N88-22928 #		N88-27587 #	p 100
A88-55320 #	p 77	N88-22939 * #		N88-27760 * # N88-28083 #	p 53
A88-55322 * #	p 6	N88-23073 * #		N88-28084 * #	p 88
A88-55324 #	p 77	N88-23182 * #		N88-28754 #	p 71
A88-55331 #		N88-23226 * #		N88-28833 #	p 72
A88-55336 #		N88-23237 * #		N88-28950 * #	p 53
A88-55337 #		N88-23238 * #		N88-28956 #	p 53
A88-55340 #		N88-23265 #		N88-28958 *	p 18
A88-55363 #		N88-23649 * #		N88-28959 * #	p 72
A88-55365 #		N88-23813 #	p 98	N88-28977 #	p 72
A88-55371 #		N88-23819 #		N88-28978 #	p 72
A88-55374 #		N88-23823 #	p 98	N88-29128 #	p 23
A88-55375 *#		N88-23826 * #	# p7		•
A88-55377 #		N88-23827 *	p 18	N88-29180 *	p 19
A88-55378 #	p 47	N88-23828 *	p 7	N88-29190 #	p 72
A88-55379 * #	•	N88-23929 * #	# р99	N88-29352 * #	p 80

AVAILABILITY OF CITED PUBLICATIONS

IAA ENTRIES (A88-10000 Series)

Publications announced in *IAA* are available from the AIAA Technical Information Service as follows: Paper copies of accessions are available at \$10.00 per document (up to 50 pages), additional pages \$0.25 each. Microfiche⁽¹⁾ of documents announced in *IAA* are available at the rate of \$4.00 per microfiche on demand. Standing order microfiche are available at the rate of \$1.45 per microfiche for *IAA* source documents and \$1.75 per microfiche for AIAA meeting papers.

Minimum air-mail postage to foreign countries is \$2.50. All foreign orders are shipped on payment of pro-forma invoices.

All inquiries and requests should be addressed to: Technical Information Service, American Institute of Aeronautics and Astronautics, 555 West 57th Street, New York, NY 10019. Please refer to the accession number when requesting publications.

STAR ENTRIES (N88-10000 Series)

One or more sources from which a document announced in *STAR* is available to the public is ordinarily given on the last line of the citation. The most commonly indicated sources and their acronyms or abbreviations are listed below. If the publication is available from a source other than those listed, the publisher and his address will be displayed on the availability line or in combination with the corporate source line.

Avail: NTIS. Sold by the National Technical Information Service. Prices for hard copy (HC) and microfiche (MF) are indicated by a price code preceded by the letters HC or MF in the STAR citation. Current values for the price codes are given in the tables on NTIS PRICE SCHEDULES.

Documents on microfiche are designated by a pound sign (#) following the accession number. The pound sign is used without regard to the source or quality of the microfiche.

Initially distributed microfiche under the NTIS SRIM (Selected Research in Microfiche) is available at greatly reduced unit prices. For this service and for information concerning subscription to NASA printed reports, consult the NTIS Subscription Section, Springfield, Va. 22161.

NOTE ON ORDERING DOCUMENTS: When ordering NASA publications (those followed by the * symbol), use the N accession number. NASA patent applications (only the specifications are offered) should be ordered by the US-Patent-Appl-SN number. Non-NASA publications (no asterisk) should be ordered by the AD, PB, or other *report number* shown on the last line of the citation, not by the N accession number. It is also advisable to cite the title and other bibliographic identification.

Avail: SOD (or GPO). Sold by the Superintendent of Documents, U.S. Government Printing Office, in hard copy. The current price and order number are given following the availability line. (NTIS will fill microfiche requests, as indicated above, for those documents identified by a # symbol.)

⁽¹⁾ A microfiche is a transparent sheet of film, 105 by 148 mm in size containing as many as 60 to 98 pages of information reduced to micro images (not to exceed 26.1 reduction).

- Avail: BLL (formerly NLL): British Library Lending Division, Boston Spa, Wetherby, Yorkshire, England. Photocopies available from this organization at the price shown. (If none is given, inquiry should be addressed to the BLL.)
- Avail: DOE Depository Libraries. Organizations in U.S. cities and abroad that maintain collections of Department of Energy reports, usually in microfiche form, are listed in *Energy Research Abstracts*. Services available from the DOE and its depositories are described in a booklet, *DOE Technical Information Center Its Functions and Services* (TID-4660), which may be obtained without charge from the DOE Technical Information Center.
- Avail: ESDU. Pricing information on specific data, computer programs, and details on ESDU topic categories can be obtained from ESDU International Ltd. Requesters in North America should use the Virginia address while all other requesters should use the London address, both of which are on the page titled ADDRESSES OF ORGANIZATIONS.
- Avail: Fachinformationszentrum, Karlsruhe. Sold by the Fachinformationszentrum Energie, Physik, Mathematik GMBH, Eggenstein Leopoldshafen, Federal Republic of Germany, at the price shown in deutschmarks (DM).
- Avail: HMSO. Publications of Her Majesty's Stationery Office are sold in the U.S. by Pendragon House, Inc. (PHI), Redwood City, California. The U.S. price (including a service and mailing charge) is given, or a conversion table may be obtained from PHI.
- Avail: NASA Public Document Rooms. Documents so indicated may be examined at or purchased from the National Aeronautics and Space Administration, Public Documents Room (Room 126), 600 Independence Ave., S.W., Washington, D.C. 20546, or public document rooms located at each of the NASA research centers, the NASA Space Technology Laboratories, and the NASA Pasadena Office at the Jet Propulsion Laboratory.
- Avail: Univ. Microfilms. Documents so indicated are dissertations selected from *Dissertation Abstracts* and are sold by University Microfilms as xerographic copy (HC) and microfilm. All requests should cite the author and the Order Number as they appear in the citation.
- Avail: US Patent and Trademark Office. Sold by Commissioner of Patents and Trademarks, U.S. Patent and Trademark Office, at the standard price of \$1.50 each, postage free. (See discussion of NASA patents and patent applications below.)
- Avail: (US Sales Only). These foreign documents are available to users within the United States from the National Technical Information Service (NTIS). They are available to users outside the United States through the International Nuclear Information Service (INIS) representative in their country, or by applying directly to the issuing organization.
- Avail: USGS. Originals of many reports from the U.S. Geological Survey, which may contain color illustrations, or otherwise may not have the quality of illustrations preserved in the microfiche or facsimile reproduction, may be examined by the public at the libraries of the USGS field offices whose addresses are listed in this Introduction. The libraries may be queried concerning the availability of specific documents and the possible utilization of local copying services, such as color reproduction.
- Avail: Issuing Activity, or Corporate Author, or no indication of availability. Inquiries as to the availability of these documents should be addressed to the organization shown in the citation as the corporate author of the document.

PUBLIC COLLECTIONS OF NASA DOCUMENTS

DOMESTIC: NASA and NASA-sponsored documents and a large number of aerospace publications are available to the public for reference purposes at the library maintained by the American Institute of Aeronautics and Astronautics, Technical Information Service, 555 West 57th Street, 12th Floor, New York, New York 10019.

EUROPEAN: An extensive collection of NASA and NASA-sponsored publications is maintained by the British Library Lending Division, Boston Spa, Wetherby, Yorkshire, England for public access. The British Library Lending Division also has available many of the non-NASA publications cited in *STAR*. European requesters may purchase facsimile copy or microfiche of NASA and NASA-sponsored documents, those identified by both the symbols # and * from ESA — Information Retrieval Service European Space Agency, 8-10 rue Mario-Nikis, 75738 CEDEX 15, France.

FEDERAL DEPOSITORY LIBRARY PROGRAM

In order to provide the general public with greater access to U.S. Government publications, Congress established the Federal Depository Library Program under the Government Printing Office (GPO), with 50 regional depositories responsible for permanent retention of material, inter-library loan, and reference services. At least one copy of nearly every NASA and NASA-sponsored publication, either in printed or microfiche format, is received and retained by the 50 regional depositories. A list of the regional GPO libraries, arranged alphabetically by state, appears on the inside back cover. These libraries are *not* sales outlets. A local library can contact a Regional Depository to help locate specific reports, or direct contact may be made by an individual.

ADDRESSES OF ORGANIZATIONS

American Institute of Aeronautics and Astronautics Technical Information Service 555 West 57th Street, 12th Floor New York, New York 10019

British Library Lending Division, Boston Spa, Wetherby, Yorkshire, England

Commissioner of Patents and Trademarks U.S. Patent and Trademark Office Washington, D.C. 20231

Department of Energy Technical Information Center P.O. Box 62 Oak Ridge, Tennessee 37830

ESA-Information Retrieval Service ESRIN Via Galileo Galilei 00044 Frascati (Rome) Italy

ESDU International P.O. Box 1633 Manassas, Virginia 22110

ESDU International, Ltd. 251-259 Regent Street London, W1R 7AD, England

Fachinformationszentrum Energie, Physik, Mathematik GMBH 7514 Eggenstein Leopoldshafen Federal Republic of Germany

Her Majesty's Stationery Office P.O. Box 569, S.E. 1 London, England

NASA Scientific and Technical Information Facility P.O. Box 8757 B.W.I. Airport, Maryland 21240 National Aeronautics and Space Administration Scientific and Technical Information Division (NTT) Washington, D.C. 20546

National Technical Information Service 5285 Port Royal Road Springfield, Virginia 22161

Pendragon House, Inc. 899 Broadway Avenue Redwood City, California 94063

Superintendent of Documents U.S. Government Printing Office Washington, D.C. 20402

University Microfilms A Xerox Company 300 North Zeeb Road Ann Arbor, Michigan 48106

University Microfilms, Ltd. Tylers Green London, England

U.S. Geological Survey Library National Center - MS 950 12201 Sunrise Valley Drive Reston, Virginia 22092

U.S. Geological Survey Library 2255 North Gemini Drive Flagstaff, Arizona 86001

U.S. Geological Survey 345 Middlefield Road Menlo Park. California 94025

U.S. Geological Survey Library Box 25046 Denver Federal Center, MS914 Denver, Colorado 80225

NTIS PRICE SCHEDULES

(Effective January 1, 1989)

Schedule A STANDARD PRICE DOCUMENTS AND MICROFICHE

NORTH AMERICAN PRICE	FOREIGN PRICE
\$ 6.95	\$13.90
10.95	21.90
13.95	27.90
15.95	31.90
21.95	43.90
28.95	57.90
36.95	73.90
42.95	85.90
49.95	99.90
•	•
55.00	70.00
55.00	80.00
	AMERICAN PRICE \$ 6.95 10.95 13.95 15.95 21.95 28.95 36.95 42.95 49.95

Schedule E EXCEPTION PRICE DOCUMENTS AND MICROFICHE

PRICE CODE	NORTH AMERICAN PRICE	FOREIGN PRICE
E01	\$ 9.00	18.00
E02	11.50	23.00
E03	13.00	26.00
E04	15.50	31.00
E05	17.50	35.00
E06	20.50	41.00
E07	23.00	46.00
E08	25.50	51.00
E09	28.00	56.00
E10	31.00	62.00
E11	33.50	67.00
E12	36.50	73.00
E13	39.00	78.00
E14	42.50	85.00
E15	46.00	92.00
E16	50.50	101.00
E17	54.50	109.00
E18	59.00	118.00
E19	65.50	131.00
E20	76.00	152.00
E99	•	•

*Contact NTIS for price quote.

IMPORTANT NOTICE

NTIS Shipping and Handling Charges
U.S., Canada, Mexico — ADD \$3.00 per TOTAL ORDER
All Other Countries — ADD \$4.00 per TOTAL ORDER

Exceptions - Does NOT apply to:

ORDERS REQUESTING NTIS RUSH HANDLING ORDERS FOR SUBSCRIPTION OR STANDING ORDER PRODUCTS ONLY

NOTE: Each additional delivery address on an order requires a separate shipping and handling charge.

1. Report No.	Government Accession No.	3. Recipient's Catalog	No.		
NASA SP-7046 (20)					
4. Title and Subtitle		5. Report Date			
Technology for Large Space Systems		JUNE 1989			
A Bibliography with Indexes		6. Performing Organiza	6. Performing Organization Code		
7. Author(s)		8. Performing Organiza	ation Report No.		
		10. Work Unit No.			
9. Performing Organization Name and Address		TO. WORK CHIRCHO.			
National Aeronautics and Space Admin	istration	11. Contract or Grant N			
Washington, DC 20546		11. Contract of Grant N	io.		
		13. Type of Report and	Period Covered		
12. Sponsoring Agency Name and Address					
		14. Sponsoring Agency	/ Code		
15. Supplementary Notes					
Compiled by Technical Library Branch Hampton, Virginia.	and edited by Space Station Off	ice, Langley Research Center,			
16. Abstract					
	data.	discontinuo de NACA de Carto de Carto			
This bibliography lists 694 reports, ar					
information system between July 1, 1 the researcher, manager, and design					
interactive analysis and design, struct					
electronics, advanced materials, asse					
·		•			
17. Key Words (Suggested by Authors(s))	18. Distribution	n Statement			
Large Space Antenna		ified - Unlimited			
Large Space Structures					
Large Space Systems					
19. Security Classif. (of this report)	20. Security Classif. (of this page)	21. No. of Pages			
		21. NO. OF 1 ages	22. Price *		
Unclassified	Unclassified	186	22. Price * A09/HC		