SMART INDIA HACKATHON 2024

TITLE PAGE

- Problem Statement ID 1604
- Problem Statement Title- Conversational
 Image recognition Chatbot
- Theme- Smart Automation
- PS Category- Software
- Team ID-
- **Team Name -** Dragons of the Realm

Conversational Image Recognition Chatbot

Solution we offer

- Chatbot harnessing the power of Vision
 Language Model (VLM) & Zero-shot object
 detection Model
- The user can upload an image, detect the objects in it and start the chat session.
- Enhanced spatial understanding of objects in the images. It happens due to inter-communication between both the models.
- Image question answering chatbot with feature of object detection.
- Chat bot History and detection output interaction of the system.
- We used 9 representative VLMs on 10
 Benchmarks in Open compass multimodal leaderboard.
- Best performing and most used object detection models like OWLv2 model, Grounding DINO model.

How it addresses the problem

- Fulfils all the aspects of the problem statement.
- Both the models help in addressing the problem since they were pretrained on household datasets.
- Provide unparalleled results and inference speed.
- Our approach is easy and can be implemented with minimal efforts.

Unique value propositions

- Correct responses lexically and grammatically.
- Usage of state of the art and novel research work in field of image understanding.
 Everything we have used is open sourcework.
- **Flexibility** to use different models with reference documentation.
- Working and hosted demo application

TECHNICAL APPROACH

Technologies used

Programming languages: Python

Libraries: Transformers, Pytorch, Image libraries like PIL

Hardware : Nvidia T4 medium 8vCPU 30GB RAM

Platforms: Hugging face, arXiv, other research articles

Deployment tools: Gradio, Streamlit, Hugging face spaces

hardware

Product status

- Built a working demo and deployed on hugging face spaces.
- Used <u>google/owlv2-base-patch16-ensemble</u> as zero shot object detection model and <u>Qwen/Qwen2-VL-2B-Instruct</u> as VLM
- Gradio framework and transformers library for development

Demo Link - Hugging Face Space Google Colab demo

HF space has 2vCPU-16GB RAM and **no GPU** deployed in the free tier. So the inference speed of our chatbot is very slow.

To see the demo it is highly recommended to use the <u>Google colab demo</u> we have provided. Get started with the demo with minimal efforts. The inference speed increases drastically on google colab with T4 GPU runtime.

Process Flow Diagram

FEASIBILITY AND VIABILITY

	Technical	Financial	Market	Operational
Potential challenges	 Computation of large models is expensive. We require powerful GPUs like Nvidia T4 medium 8vCPU 30GB RAM, Nvidia 1xL4 8vCPU 30GB RAM etc. 	The starting cost these GPUs cost 0.60\$ per hour In the extensive usage, using the app may be expensive.	 This chatbot is a very simple and basic use case as per Problem statement. But for specific use cases the models should be fine tuned on respective data 	The challenge for us to proceed is to get a GPU with high RAM for deployment purpose. We are using multiple models to give flexibility.
Strategies for overcoming	 As the use case is most basic, we have selected the best performing models which do not require fine tuning and give state of the art results. 9 Representative VLMs on 10 Benchmarks 	 Optimized inference pipeline Reduced waste for every model But we need GPUs for better performance. 	If we really want to finetune model, then we have got a solution • No need to finetune all parameters. • We can use PEFT library and adaptor fine tuning techniques. • This also preserves the performance.	 The only way to reduce the operational cost is to reduce the number of models to be used. But there will be no flexibility.

IMPACT AND BENEFITS

Use cases

- Reduced customer support costs for businesses.
- Anomaly/ hazard detection in images/ scenes.
- Feedback and reviews of products using only images.
- Integration with Autonomous vehicle and weapon system.
- Guided tours and information of artifacts in museums.
- A powerful educational tool for anyone who interacts with images
- The solution opens avenues for business growth and innovation in areas like e-commerce, education, and tech support.

User experience

- Any user can interact with application using natural language making it easy for non-technical users.
- User can also provide ongoing feedback and suggestions, improving user satisfaction and experience.
- Use a model of your choice.
 Flexibility

Social and economic benefits

- Supports diverse user needs and equal access to information to everyone in organization
- Assistance in navigating complex financial processes, such as filling out applications or understanding banking terms.
- Analyze images of prescription drugs to identify the drug name, composition, and expiration date, aiding in patient safety and medication management.
- Monitoring patient's health using medical images and data

RESEARCH AND REFERENCES

Platforms

For **development** and experimentation : Kaggle, Google collab

Loading **models** and many other uses : Hugging face, Vertex Al, Open Al,

Version control system: Github

Engineering Designs : Draw.io

Articles and other resources

Tasks page:

https://huggingface.co/tasks/image-text-to-text

https://huggingface.co/tasks/visual-guestion-answering

https://huggingface.co/tasks/zero-shot-object-detection

Open VLM Leaderboard:

https://huggingface.co/spaces/opencompass/open_vlm_leaderboard

Citations of the research work used in demo

Zero Shot object detection model

https://huggingface.co/google/owlv2-base-patch16-ensemble

arXiv:2306.09683 [cs.CV]

Visual Language Model

https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct

The paper is not yet published for this model