SAMPLE SOLUTIONS, Contest #5

25. Answer: $22\sqrt{5}$

Let A represent the area of the smaller rectangle. Then A + A + 225 = 405 and A = 90. One side of the rectangle is $\sqrt{405} = 9\sqrt{5}$. The other side of the rectangle is $\frac{90}{9\sqrt{5}} = \frac{10}{\sqrt{5}} = 2\sqrt{5}$. The perimeter of the rectangle is $2(9\sqrt{5} + 2\sqrt{5}) = 22\sqrt{5}$.

26. Answer: $\left\{\pm 2, \pm \frac{3}{2}\right\}$

Rearranging the terms so they are in standard form, $16x^6 - 64x^4 - 81x^2 + 324 = 0$. Factoring by grouping, $16x^4(x^2 - 4) - 81(x^2 - 4) = 0$; $(x^2 - 4)(16x^4 - 81) = 0$; $(x^2 - 4)(4x^2 - 9)(4x^2 + 9) = 0$; $(x - 2)(x + 2)(2x - 3)(2x + 3)(4x^2 + 9) = 0$.

The real roots are ± 2 and $\pm \frac{3}{2}$. The imaginary roots are $\pm \frac{3}{2}i$.

27. Answer: 512

$$25^{\frac{1}{4}} + x^{\frac{1}{3}} = \frac{59}{8 - \sqrt{5}} \cdot \frac{8 + \sqrt{5}}{8 + \sqrt{5}} = 8 + \sqrt{5}; \quad (5^2)^{\frac{1}{4}} + \sqrt[3]{x} = 8 + \sqrt{5}; \quad \sqrt[3]{x} = 8 \text{ and } x = 512.$$

28. Answer: 11:40 pm

Let the height of each original candle be 1 and let x be the number of hours that the second candle is burning, $0 < x \le 4$. $1 - \frac{x}{5} = 4\left(1 - \frac{x+1}{5}\right)$; 5 - x = 20 - 4x - 4; $x = \frac{11}{3}$. The second candle burns $3\frac{2}{3}$ hours, that is, 3 hours and 40 minutes.

29. Answer: 10

 $2\theta = 30^{\circ}$.

 $\frac{9 \cdot 8}{2} + \frac{9 \cdot 8 \cdot 7}{3 \cdot 2} = \frac{x(x-1)(x-2)}{3 \cdot 2}; \quad x(x-1)(x-2) = 720.$ The three positive consecutive integers with a product of 720 from least to greatest are 8, 9, and 10.

30. Answer: 15 $\cos 2\theta = 1 - 2\sin^2 \theta$; $\sin^2 \theta = \frac{1 - \cos 2\theta}{2} = \frac{2 - \sqrt{3}}{4}$; $4 - 4\cos 2\theta = 4 - 2\sqrt{3}$; $\cos 2\theta = \frac{\sqrt{3}}{2}$;