IFT2125-6001 TA: Maëlle Zimmermann

Démonstration 4

1

Question: Soit $f \in O(n^{\log_b a - \epsilon})$ où $\epsilon > 0$. Soit $T : \mathbb{N} \to \mathbb{R}^{\geq 0}$ telle que

$$T(b^k) = \begin{cases} c & \text{si } k = k_0, \\ aT(b^{k-1}) + f(b^k) & \text{sinon} \end{cases}$$

Montrer que $T \in \Theta(n^{\log_b a} : n \text{ est une puissance de } b)$.

Solution: Posons $g(b^{k_0}) = c/a^{k_0}$, et $g(b^k) = f(b^k)/a^k$ pour tout $k > k_0$. Nous avons montré en cours par induction que $T(b^k) = a^k \left[g(b^{k_0}) + g(b^{k_0+1}) + \ldots + g(b^k) \right]$, ce qui prouve que $T \in \Omega(n^{\log_b a} : n$ est une puissance de b), car $a^k = (b^k)^{\log_b a}$.

Il reste à prouver que $T \in O(n^{\log_b a} : n$ est une puissance de b). Puisque $f \in O(n^{\log_b a - \epsilon})$, il existe $n_0 \in \mathbb{N}, d \in \mathbb{R}^{>0}$ telles que $f(n) \leq dn^{\log_b a - \epsilon}$ pour tout $n \geq n_0$.

Soit $i \geq \max(n_0, k_0)$, alors:

$$g(b^{i}) = f(b^{i})/a^{i}$$

$$\leq d(b^{i})^{\log_{b} a - \epsilon}/a^{i}$$

$$= db^{i(\log_{b} a - \epsilon)}/b^{i\log_{b} a}$$

$$= d/b^{\epsilon i}.$$

Ainsi pour $k \ge \max(n_0, k_0)$, nous avons

$$T(b^k) = a^k \left[g(b^{k_0}) + g(b^{k_0+1}) + \dots + g(b^k) \right]$$

$$= a^k \left[\sum_{i=k_0}^{\max(n_0,k_0)-1} g(b^i) + \sum_{i=\max(n_0,k_0)}^k g(b^i) \right]$$

$$\leq a^k \left[\sum_{i=k_0}^{\max(n_0,k_0)-1} g(b^i) + \sum_{i=\max(n_0,k_0)}^k d/b^{\epsilon i} \right]$$

$$\leq a^k \left[\sum_{i=k_0}^{\max(n_0,k_0)-1} g(b^i) + d/(1 - (1/b^{\epsilon})) \right].$$

Puisque $a^k = (b^k)^{\log_b a}$, nous concluons que $T \in O(n^{\log_b a} : n$ est une puissance de b) et donc nous avons $T \in \Theta(n^{\log_b a} : n$ est une puissance de b).

 $\mathbf{2}$

Question: Montrer que toutes les conditions afin d'appliquer la règle d'harmonie sont nécessaires. Plus précisément, exhiber $b \geq 2$, et $f, t : \mathbb{N} \to \mathbb{R}^{\geq 0}$ telles que $t(n) \in \Theta(f(n) : n)$ est une puissance de b, mais $t \notin \Theta(f)$. Donner trois paires de fonctions f, t sujettes aux conditions additionnelles suivantes:

- 1. f est harmonieuse, mais t n'est pas éventuellement non décroissante
- 2. f et t sont éventuellement non décroissantes mais $f(bn) \notin O(f(n))$
- 3. $f(b(n)) \in O(f(n))$ et t est éventuellement non décroissante mais f n'est pas éventuellement non décroissante.

Solution:

1. Nécessité de t é.n.d.: Soient f(n) = n et

$$t(n) = \begin{cases} n & \text{si } n \text{ est une puissance de } b, \\ 1 & \text{sinon} \end{cases}$$

Lorsque n est une puissance de b, nous avons t(n)=f(n)=n. Montrons que $t\notin\Theta(f)$. Supposons le contraire par l'absurde. Alors il existe $n_0\in\mathbb{N},c\in\mathbb{R}^{>0}$

telles que $\forall n \geq n_0$ nous avons $t(n) \geq cf(n)$. Soit $m > \max(n_0, 1/c)$ un nombre qui ne soit pas une puissance de b. Selon notre supposition, nous avons $t(m) \geq cf(m) = cm > c\frac{1}{c} = 1$. Or par définition t(m) = 1, ce qui est une contradiction avec ce qui précède.

2. Nécessité de $f(bn) \in O(f(n))$: Soient b=2,

$$t(n) = 2^{n\lceil \log n \rceil},$$

$$f(n) = 2^{n\lfloor \log n \rfloor}.$$

Par définition, t et f sont non décroissantes, et nous avons $t(2^i) = f(2^i) = 2^{2^i i}$. Supposons que $f(2n) \in O(f(n))$, alors $\exists n_0, c \in \mathbb{R}^{>0}$ telles que $\forall n \geq n_0$ nous avons $f(2n) \leq cf(n)$. Posons $m = \max(n_0, \lceil c \rceil + 1)$. Nous avons $f(2^{m+1})/f(2^m) \leq c$, or

$$\frac{f(2^{m+1})}{f(2^m)} = \frac{2^{2^{m+1}(m+1)}}{2^{2^m m}} \ge \frac{2^{2^{m+1}(m+1)}}{2^{2^{m+1}m}} = 2^{2^{m+1}} \ge m > c,$$

ce qui est une contradiction.

Montrons maintenant que $t \notin \Theta(f)$. Supposons que $t \in \Theta(f)$, alors $\exists n_0 \in \mathbb{N}, c \in \mathbb{R}^{>0}$ telles que $\forall n \geq n_0$ nous avons $t(n) \leq cf(n)$. Posons $m = \max(n_0, \lceil c \rceil + 1)$. Nous avons $t(2^m + 1)/f(2^m + 1) \leq c$, or

$$\frac{t(2^m+1)}{f(2^m+1)} = \frac{2^{(2^m+1)(m+1)}}{2^{(2^m+1)m}} = 2^{2^{m+1}} \ge m > c,$$

ce qui est une contradiction. Ainsi, $t \notin \Theta(f)$.

3. Nécessité de f é.n.d.: Soient t(n) = n et

$$f(n) = \begin{cases} n & \text{si } n \text{ est une puissance de } b, \\ 1 & \text{sinon} \end{cases}$$

Lorsque n est une puissance de b, nous avons t(n) = f(n) = n. De plus, $f(bn) \in O(f(n))$. En effet, si $n = b^k$ nous avons

$$f(bn) = f(b^{k+1}) = b^{k+1} = bf(b^k) = bf(n),$$

et si n n'est pas une puissance de b nous avons

$$f(bn) = 1 \le b = bf(n).$$

Or, $t \notin \Theta(f)$, par un argument similaire à celui donné au point 1.

Question: Considérez une fonction $t: \mathbb{N} \to \mathbb{R}^{>0}$ éventuellement non décroissante telle que

$$\forall n \ge n_0 \qquad t(n) \le t(\lceil n/2 \rceil) + t(\lceil n/2 \rceil) + t(1 + \lceil n/2 \rceil) + cn.$$

Bornez t grâce à la notation O.

Solution: Soit m_0 le seuil à partir duquel t est non décroissante. Soit $n \ge \max(2m_0, n_0)$, alors $\lfloor n/2 \rfloor \ge m_0$. Ainsi $t(\lfloor n/2 \rfloor) \le t(\lceil n/2 \rceil) \le t(1 + \lceil n/2 \rceil)$ et du coup

$$t(n) \le 3t(1 + \lceil n/2 \rceil) + cn. \tag{1}$$

Posons T(n) = t(n+2). Soit $n \ge \max(2m_o, n_0)$, alors

$$\begin{split} T(n) &= t(n+2) \\ &\leq 3t(1+\lceil (n+2)/2\rceil) + c(n+2) \\ &= 3t(2+\lceil n/2\rceil) + c(n+2) \\ &\leq 3t(2+\lceil n/2\rceil) + c \cdot 2n \\ &= 3T(\lceil n/2\rceil) + 2cn. \end{split}$$

Ainsi, $T(n) \leq 3T(\lceil n/2 \rceil) + (2c)n$ pour tout $n \geq \max(2m_0, n_0)$. En appliquant un théorème vu en classe (théorème sur les récurrences asymptotiques) avec

$$a = 3, b = 2, f(n) = n, \epsilon = 1/2 > 0$$

nous obtenons $T \in O(n^{\log_2 3})$. Puisque $t(n) = T(n-2) \le T(n)$, nous concluons que $t \in O(n^{\log_2 3}) = O(n^{1.585})$.

4

Question: Résoudre la récurrence suivante exactement

$$t_n = \begin{cases} n+1 & \text{si } n=0 \text{ ou si } n=1, \\ 3t_{n-1} - 2t_{n-2} + 3 \cdot 2^{n-2} & \text{sinon} \end{cases}$$
 (2)

Solution: Pour n > 1, nous avons $t_n - 3t_{n-1} + 2t_{n-2} = (3/4) \cdot 2^n$. Ainsi le polynôme charactéristique de la récurrence est $p(x) = (x^2 - 3x + 2)(x - 2) = (x - 1)(x - 2)(x - 2)$. Les racines sont 1 et 2 (de multiplicité 2). La racine 2 engendre

$$(c_1 + c_2 n) \cdot 2^n$$

et la racine 1 engendre

$$c_3 \cdot 1^n$$
.

Ainsi,

$$t_n = c_1 2^n + c_2 2^n n + c_3.$$

Utilisant les conditions initiales données par (2) nous obtenons le système suivant

Comme nous avons

$$\left[\begin{array}{ccc|c} 1 & 0 & 1 & 1 \\ 2 & 2 & 1 & 2 \\ 4 & 8 & 1 & 7 \end{array}\right] \sim \left[\begin{array}{ccc|c} 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & 3/2 \\ 0 & 0 & 1 & 3 \end{array}\right]$$

Nous obtenons donc $t_n = -2 \cdot 2^n + (3/2)2^n n + 3 = (3n - 4)2^{n-1} + 3$.

5

Question: Résoudre la récurrence suivante exactement

$$T(n) = \begin{cases} a & \text{si } n = 0 \text{ ou si } n = 1, \\ T(n-1) + T(n-2) + c & \text{sinon} \end{cases}$$

Solution: Pour n > 1, nous avons $T(n) - T(n-1) - T(n-2) = c = 1^n c$. Ainsi le polynôme charactéristique de la récurrence est $p(x) = (x^2 - x - 1)(x - 1)$. Ainsi les racines de p sont 1 et $\frac{1 \pm \sqrt{5}}{2}$, toutes de multiplicité 1. Dénotant $\phi = \frac{1 + \sqrt{5}}{2}$, nous avons

$$T(n) = c_1 + c_2 \phi^n + c_3 (1 - \phi)^n.$$

Nous obtenons le système

$$T(0) = c_1 + c_2 + c_3 = a,$$

 $T(1) = c_1 + c_2\phi + c_3(1-\phi) = a,$
 $T(2) = c_1 + c_2\phi^2 + c_3(1-\phi)^2 = 2a + c.$

Nous pouvons résoudre le système soit en appliquant directement l'algorithme de Gauss-Jordan comme précédemment sur la matrice

$$\begin{bmatrix}
1 & 1 & 1 & a \\
1 & \phi & 1 - \phi & a \\
1 & \phi^2 & (1 - \phi)^2 & 2a + c
\end{bmatrix}$$

soit en procédant d'abord par substitution, ce qui donne:

$$c_1 = a - c_2 - c_3$$

Le système devient alors

$$(\phi - 1)c_2 - \phi c_3 = 0$$
$$(\phi^2 - 1)c_2 + (\phi^2 - 2\phi)c_3 = a + c$$

Avec Gauss-Jordan nous obtenons

$$\begin{bmatrix} \phi - 1 & -\phi & 0 \\ \phi^2 - 1 & \phi^2 - 2\phi & a + c \end{bmatrix} \sim \begin{bmatrix} 1 & \frac{-\phi}{\phi - 1} & 0 \\ 0 & \phi(2\phi - 1) & a + c \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 0 & \frac{a + c}{(\phi - 1)(2\phi - 1)} \\ 0 & 1 & \frac{a + c}{\phi(2\phi - 1)} \end{bmatrix}$$

Comme $2\phi - 1 = \sqrt{5}$ et $\phi(1 - \phi) = -1$, nous obtenons $c_1 = -c$, $c_2 = \phi(a + c)/\sqrt{5}$, $c_3 = -(1 - \phi)(a + c)/\sqrt{5}$. Nous concluons que $T(n) = -c + \frac{a+c}{\sqrt{5}}\phi^{n+1} - \frac{a+c}{\sqrt{5}}(1 - \phi)^{n+1}$.

6

Question: Borner la récurrence suivante pour n une puissance de 2

$$T(n) = \begin{cases} 1 & \text{si } n = 1, \\ 2T(n/2) + \log n & \text{sinon} \end{cases}$$

Solution: Nous pouvons utiliser le lemme des puissances de b. Si $n=2^k$ nous avons

$$T(2^k) = \begin{cases} 1 & \text{si } k = 0, \\ 2T(2^{k-1}) + k & \text{sinon} \end{cases}$$

Nous retrouvons le cas général du lemme avec $a=2,b=2,\log_b a=\log_2 2=1$ et $f(n)=\log(n)$. Comme nous pouvons borner f(n) par \sqrt{n} , nous pouvons appliquer le cas 1 du lemme avec $\epsilon=1/2$. En effet, nous avons trouvé $\epsilon>0$ tel que $f(n)\in O(n^{\log_b a-\epsilon})$, car $O(n^{\log_2 2-(1/2)})=O(\sqrt{n})$. Cela implique que $T(n)\in\Theta(n^{\log_b a}:n)$ est une puissance de $b)=\Theta(n:n)$ est une puissance de b).