第13章: 强化学习

huchengyu@cug.edu.cn

http://grzy.cug.edu.cn/huchengyu/

本章内容

- 强化学习概述
- 二、有模型学习
- 三、无模型学习
- 对强化学习的理解

基本概念:强化学习又称为增强学习、加强学习、再励学习或激励学习,是一种从环境状态到行为映射的学习,目的是使动作从环境中获得的累积回报值最大。强化学习是机器学习分支之一,介于监督学习和无监督学习之间。

机器学习三大分支:

- ◆ 无监督学习
- ◆监督学习
- ◆强化学习

- ◆ 强化学习技术是从控制理论 、统计学、心理学等相关学 科发展而来。
- ◆ 在人工智能、机器学习和自动控制等领域中得到广泛研究和应用,并被认为是设计智能系统的核心技术之一。
- ◆随着强化学习的数学基础研究取得突破性进展后,强化学习成为机器学习领域研究热点之一。

强化学习发展历史

- ◆1954年Minsky首次提出"强化"和"强化学习"的概念。
- ◆1953到1957年, Bellman提出了求解最优控制问题的一个有效方法——动态规划, 同年, 还提出了最优控制问题的随机离散版本, 就是著名的马尔可夫决策过程
- ◆1960年Howard提出马尔可夫决策过程的策略迭代方法,这些都成为现代强化学习的理论基础。
- ◆1972年, Klopf把试错学习和时序差分结合在一起。
- ◆1988年 Sutton提出了TD算法
- ◆1989年 Watkins提出了Q学习算法
- ◆1994年 Rummery等提出了SARSA学习算法
- ◆2015 Google DeepMind公司提出了深度强化学习DRL

强化学习的特点:

强化学习围绕着如何与环境交互学习,在行动—评价的环境中获得改进的行动方案,以适应环境达到预想的目的。学习者并不会被告知采取哪个动作,而只能通过尝试每个动作,获得环境对所采取动作的反馈信息,从而指导以后的行动。因此,强化学习主要特点包括:

- ◆试错搜索: Agent通过尝试多个动作,搜索最优策略;
- ◆延迟回报: 其反馈信号是延迟的而非瞬间的;
- ◆ 适应性: Agent不断利用环境中的反馈信息来改善其性能;
- ◆ 不依赖外部教师信号: 因为Agent只根据反馈信号进行学习, 因此不需要外部教师信号。

强化学习基本模型

- ◆在强化学习中, Agent 选择 一个动作a作用于环境;
- ◆环境接收该动作后发生变化, 同时产生一个强化信号 Reward(奖或罚)反馈给 Agent;
- ◆ Agent再根据强化信号和环境 的当前状态s再选择下一个动 作,选择的原则是使受到奖 赏值的概率增大。

强化学习的目的就是寻找一个最优策略,使得Agent在运行中所获得的累计期望回报最大。

郭宪等,深入浅出强化学习入门,电子工业出版社,2018

从广义上讲,强化学习是解决序贯决策问题的方法之一,将强化学习纳入马尔科夫决策过程的框架后,可以分为基于模型的动态规划方法和基于无模型的强化学习方法。

定义:在已知模型的环境中学习,称为"有模型学习",也即,对于多步强化学习任务,其对应的马尔可夫决策过程四元组表示<S,A,R,P>均为已知,称为"模型已知"。

- ◆S: 环境的状态空间
- ◆ A: agent可选择的动作空间
- ◆ R(s, a): 奖励函数, 返回的值表示在状态下执行a动作的奖励
- ◆ P(s' | s, a): 状态转移概率函数, 表示从s状态执行a动作后环 境转移至s′ 状态的概率

目标:找到一个策略 π 能够最大化我们的对未来奖励的期望 $E(\sum_{t=0}^{n} \gamma^{t} R_{t})$, R_{t} 为t时刻的奖励, γ 为折扣因子,代表距离现在遥远的奖励不如现在的奖励大。

策略迭代算法---流程

- ① 某一个随机策略作为初始策略
- ② 策略评价+策略改进+策略评价+策略改进+******
- ③ 若满足收敛条件,则退出,否则,转入②

策略迭代算法的缺点在于:每次改进策略后都需要重新进行策略评价,计算比较耗时。

策略迭代算法---策略评价

- [1] 输入:需要评估的策略 π 状态转移概率 P_{ss}^a ,回报函数 R_s^a ,折扣因子 γ
- [2] 初始化值函数: V(s) = 0
- [3] Repeat k=0,1,...
- [4] for every s do

[5]
$$v_{k+1}(s) = \sum_{a \in A} \pi(a|s) \left(R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a v_k(s') \right)$$

- [6] \ end for
- [7] Until $v_{k+1} = v_k$
- [8] 输出: v(s)

次状态扫描

策略迭代算法 一策略评价举例

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

https://blog.csdn.net/liweibin1994/article/details/79093453

- ◆ 即时奖励: 左图是一个九宫格,左上角和右下角是终点, 它们的reward是0, 其他的状态reward都是-1。
- ◆ 状态空间:除了灰色两个格子,其他都是非终点状态
- ◆ 动作空间:在每个状态下,都有四种动作可以执行, 分别是上下左右(东西南北)。
- ◆ 转移概率:任何想要离开大正方形的动作将保持其状态不变,也就是原地不动。其他时候都是直接移动到下一个状态。所以状态转移概率是确定性的。
- ◆ 折扣因子: γ=1
- ◆ 当前策略:在任何状态下,agent都采取均匀随机策略,也就是它的动作是随机选择的,即:

$$\pi(e|*) = \pi(w|*) = \pi(s|*) = \pi(n|*) = 0.25$$

问题:评价均匀随机策略。也就是说,求解均匀随机策略下所有状态的V值

策略迭代算法----策略评价举例

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0

0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0

$$K=0$$

$$K=1$$

$$K=2$$

Repeat k=0,1,...

for every s do

$$v_{k+1}(s) = \sum_{a \in A} \pi(a|s) \left(R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a v_k(s') \right)$$

Until
$$v_{k+1} = v_k$$

策略迭代算法——策略改进:在每个状态采用贪心策略,从而找到更好的策略。

$$\pi_{l+1}(s) \in \underset{\boldsymbol{a}}{\operatorname{arg\,max}} q^{\pi_l}(s, \boldsymbol{a})$$

K=10	0.0	-6.1	-8.4	-9.0
π ₀ 均	-6.1	-7.7	-8.4	-8.4
匀	-8.4	-8.4	-7.7	-6.1
策	-9.0	-8.4	-6.1	0.0

0.0	-	+	4
†	1	T	↓
1	t,	₽	ţ
t.		—	0.0
	~		

π1贪心策略

有模型学习

值迭代算法: 基于策略迭代的方法是交替进行策略评价和策略 改进, 其中策略评价中需要迭代多次, 以保证当前策略评价收 敛。因此,算法收敛较慢。为了解决该问题,提出了值迭代算 法。

K=10

 π_0

均 匀 策 略

 $K=\infty$

0.0	-6.1	-8.4	-9.0
-6.1	-7.7	-8.4	-8.4
-8.4	-8.4	-7.7	-6.1
-9.0	-8.4	-6.1	0.0

	0.0	-14	-20	-22
)	-14	-18	-20	-20
	-20	-20	-18	-14
7	-22	-20	-14	0.0

0.0	—	Ţ	4
1	t	Ţ [*]	1
1	t .	‡	ţ
t .		\rightarrow	0.0

0.0	+	Į.	Ţ
1	t	†	ţ
1	t.	₽	ţ
1,1	→	1	0.0

贪 婪 策 略

策略改进不 定要等到值函 数收敛!

值迭代算法:

- [1] 输入:状态转移概率 P_{ss}^a ,回报函数 R_s^a ,折扣因子 γ 初始化值函数:v(s) = 0 初始化策略 π_0
- [2] Repeat l=0,1,...
- [3] for every s do

[4]
$$v_{l+1}(s) = \max_{a} R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a v_l(s')$$

[5] Until
$$v_{l+1} = v_l$$

[6] 输出:
$$\pi(s) = \underset{a}{\operatorname{argmax}} R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a v_l(s')$$

- ◆ 当模型未知,即状态转移概率、奖赏函数往往我们是不知道的,甚至很难知道环境中一共有多少状态。此时我们无法直接利用Bellman方程来求解得到最优策略。
- ◆ 若学习算法不依赖环境建模,则称为"无模型学习",或称模型无关的学习(Model-free Learning)。
- ◆ 模型无关的强化学习,是在不知道马尔科夫决策过程的情况下学习到最优策略。模型无关的策略学习主要有两种算法: 蒙塔卡洛强化学习,时序差分强化学习。而时序差分强化学习又包括SARSA 和 Q-learning两种算法。

蒙特卡洛采样

- ◆ MDP是通过5元组: ⟨S, P, A, R, γ⟩来做决策的。对于这种已知模型的情况,也就是知道了这个5元组,我们可以通过求解贝尔曼方程获得奖赏最大化。
- ◆但是,在现实世界中,我们无法同时知道这个5元组。比如 状态转移概率就很难知道,我们无法使用bellman方程来求 解V和Q值。
- ◆一个想法是,虽然我不知道状态转移概率P,但是这个概率 是真实存在的。我们可以直接去尝试,不断采样,然后会得 到奖赏,通过奖赏来评价值函数。

同策略

蒙特卡洛强 化学习

周志华 著. 机器学习, 北京:清华大学出版社, 2016年1月, pp:384

```
输入: 环境 E;
```

动作空间 A; 起始状态 x_0 ; 策略执行步数 T.

过程:

1:
$$Q(x, a) = 0$$
, $count(x, a) = 0$, $\pi(x, a) = \frac{1}{|A(x)|}$;

2: **for**
$$s = 1, 2, \dots$$
 do

3: 在
$$E$$
 中执行策略 π 产生轨迹 $< x_0, a_0, r_1, x_1, a_1, r_2, \dots, x_{T-1}, a_{T-1}, r_T, x_T >;$

4: **for**
$$t = 0, 1, \dots, T - 1$$
 do

5:
$$R = \frac{1}{T-t} \sum_{i=t+1}^{T} r_i;$$

6:
$$Q(x_t, a_t) = \frac{Q(x_t, a_t) \times \operatorname{count}(x_t, a_t) + R}{\operatorname{count}(x_t, a_t) + 1};$$

7:
$$\operatorname{count}(x_t, a_t) = \operatorname{count}(x_t, a_t) + 1$$

8: end for

9: 对所有已见状态 x:

$$\pi(x,a) = \begin{cases} \arg\max_{a'} Q(x,a'), & \text{以概率 } 1 - \epsilon; \\ \text{以均匀概率从 } A \text{ 中选取动作,} & \text{以概率 } \epsilon. \end{cases}$$

10: **end for**

输出: 策略 π

异策略

蒙特卡洛强化 学习

京:清华大学出版社,2016 年1月, pp:386

输入:环境E; 动作空间 A; 起始状态 x_0 ; 策略执行步数 T. 过程: 1: Q(x,a) = 0, count(x,a) = 0, $\pi(x,a) = \frac{1}{|A(x)|}$; 周志华《著. 机器学习, 北(2: for $s=1,2,\ldots$ do 在 E 中执行 π 的 ϵ -贪心策略产生轨迹 $< x_0, a_0, r_1, x_1, a_1, r_2, \dots, x_{T-1}, a_{T-1}, r_T, x_T >;$

4:
$$p_i = \begin{cases} 1 - \epsilon + \epsilon/|A|, & a_i = \pi(x); \\ \epsilon/|A|, & a_i \neq \pi(x), \end{cases}$$
5:
$$\mathbf{for} \ t = 0, 1, \dots, T = 1, \mathbf{do}$$

5: **for**
$$t = 0, 1, ..., T - 1$$
 do

5: **for**
$$t = 0, 1, ..., T - 1$$
 do
6: $R = \frac{1}{T-t} \sum_{i=t+1}^{T} (r_i \times \prod_{j=i}^{T-1} \frac{1}{p_j});$

7:
$$Q(x_t, a_t) = \frac{Q(x_t, a_t) \times \operatorname{count}(x_t, a_t) + R}{\operatorname{count}(x_t, a_t) + 1};$$

8:
$$\operatorname{count}(x_t, a_t) = \operatorname{count}(x_t, a_t) + 1$$

end for

10:
$$\pi(x) = \arg\max_{a'} Q(x, a')$$

11: end for

输出: 策略 π

时序差分强化学习(Temporal-Difference)

在蒙特卡洛学习中,却需要一条完整的轨迹,才能估计某个状态——动作值函数,从而进行更新,导致了算法效率低下。

$$Q_t^{\pi}(x, a) = \frac{1}{t} \sum_{i=1}^t r_i$$

在时序差分学习中,算法在每执行一步策略后就进行值函数的 更新,因此效率较高。

$$Q_{t+1}^{\pi}(x,a) = Q_t^{\pi}(x,a) + \frac{1}{t+1} \left(r_{t+1} - Q_t^{\pi}(x,a) \right)$$

$$V(S_t) \leftarrow V(S_t) + \alpha (G_t - V(S_t))$$

蒙特卡洛强化学习

$$V(S_t) \leftarrow V(S_t) + \alpha (R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$$

时序差分强化学习

时序差分方法:分为同策略的Sarsa和异策略的Q-learning

Sarsa算法

```
Initialize Q(s, a) arbitrarily
Repeat (for each episode):
   Initialize S
   Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)
   Repeat (for each step of episode):
      Take action A, observe R, S'n. net/panglinzhuo
      Choose A' from S' using policy derived from Q (e.g., \varepsilon-greedy)
      Q(S,A) \leftarrow Q(S,A) + \alpha[R + \gamma Q(S',A') - Q(S,A)]
      S \leftarrow S'; A \leftarrow A';
   until S is terminal
```

在Sarsa算法中,选择动作时遵循的策略和更新动作值函数时遵循的策略是相同的,均为 ϵ -贪心策略

Q-learning算法

```
Initialize Q(s, a) arbitrarily
Repeat (for each episode):
   Initialize S
   Repeat (for each step of episode):
      Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)
      Take action A, observe R, S'
      Q(S,A) \leftarrow Q(S,A) + \alpha[R + \gamma \max_a Q(S',a) - Q(S,A)]
      S \leftarrow S';
   until S is terminal
```

在Q-learning算法中,选择动作时遵循的策略是 ϵ -贪心策略,更新动作值函数时,直接使用了最大的Q(S_{t+1} ,a)

强化学习在某种意义上可看作具有"延迟标记信息"的监督学习问题。

强化学习可以分为基于模型的方法与无模型的方法。前者发展主要来自最优控制领域。而后者发展更多的来自机器学习领域。无模型的强化学习算法通过大量采样,估计智能体的状态--动作值函数或回报函数,从而获得最优的策略。

但是, 无模型的强化学习可能面临的一些问题:

- ① 奖励函数难以设计,缺乏理论指导。
- ② 不对具体问题进行建模,而是尝试用一个通用的算法解决所有问题,没有利用问题固有的信息。
- ③ 因为没有模型,解释性不强,调试困难。

- ◆ 深度学习(DL)技术和强化学习(RL)的结合,形成了深度强化学习(DRL),迅速成为人工智能界的焦点。
- ◆ 在视频游戏、棋类游戏、机器人控制等领域取得了巨大成功。

可能面临的问题:

- ①难以平衡"探索"和"利用",以致算法陷入局部极小;
- ② 样本利用较低;
- ③ 对环境容易出现过拟合;
- ④ 灾难性的不稳定性。

.

潜在的研究方向包括:

- ◆提高无模型方法的数据利用率和扩展性;
- ◆设计高效的探索策略。平衡"探索"与"利用";
- ◆与模仿学习结合,既能更快地得到反馈、又能更快地收敛;
- ◆探索好的奖励机制。奖励机制对强化学习算法性能的影响是巨大的,因此该方向一直是强化学习的研究热点。
- ◆混合迁移学习和多任务学习。当前强化的采样效率较低,而且学到的知识不通用,迁移学习与多任务学习可以有效解决这些问题。

• • • • • • • •