

planetmath.org

Math for the people, by the people.

hyperbolic isomorphism

Canonical name HyperbolicIsomorphism
Date of creation 2013-03-22 13:39:34

Last modified on 2013-03-22 13:39:34

Owner Koro (127) Last modified by Koro (127)

Numerical id 10

Author Koro (127)
Entry type Definition
Classification msc 37D05
Classification msc 46B03

Synonym linear hyperbolic isomorphism

Let X be a Banach space and $T: X \to X$ a continuous linear isomorphism. We say that T is an hyperbolic isomorphism if its spectrum is disjoint with the unit circle, i.e. $\sigma(T) \cap \{z \in \mathbb{C} : |z| = 1\} = \emptyset$.

If this is the case, by the spectral theorem there is a splitting of X into two invariant subspaces, $X = E^s \oplus E^u$ (and therefore, a corresponding splitting of T into two operators $T^s: E^s \to E^s$ and $T_u: E^u \to E^u$, i.e. $T = T_s \oplus T_u$), such that $\sigma(T_s) = \sigma(T) \cap \{z: |z| < 1\}$ and $\sigma(T_u) = \sigma(T) \cap \{z: |z| > 1\}$. Also, for any λ greater than the spectral radius of both T_s and T_u^{-1} there exists an equivalent (box-type) norm $\|\cdot\|_1$ such that

$$||T_s||_1 < \lambda \text{ and } ||T_u^{-1}||_1 < \lambda$$

and

$$||x||_1 = \max\{||x_u||_1, ||x_s||_1\}.$$

In particular, λ can be chosen smaller than 1, so that T_s and T_u^{-1} are contractions.