

planetmath.org

Math for the people, by the people.

interior axioms

Canonical name InteriorAxioms

Date of creation 2013-03-22 16:30:37 Last modified on 2013-03-22 16:30:37

Owner rspuzio (6075) Last modified by rspuzio (6075)

Numerical id 8

Author rspuzio (6075) Entry type Definition Classification msc 54A05

Related topic GaloisConnection
Defines interior operator

Let S be a set. Then an *interior operator* is a function $\circ : \mathcal{P}(S) \to \mathcal{P}(S)$ which satisfies the following properties:

Axiom 1. $S^{\circ} = S$

Axiom 2. For all $X \subset S$, one has $X^{\circ} \subseteq S$.

Axiom 3. For all $X \subset S$, one has $(X^{\circ})^{\circ} = X^{\circ}$.

Axiom 4. For all $X, Y \subset S$, one has $(X \cap Y)^{\circ} = X^{\circ} \cap Y^{\circ}$.

If S is a topological space, then the operator which assigns to each set its interior satisfies these axioms. Conversely, given an interior operator $^{\circ}$ on a set S, the set $\{X^{\circ} \mid X \subset S\}$ defines a topology on S in which X° is the interior of X for any subset X of S. Thus, specifying an interior operator on a set is equivalent to specifying a topology on that set.

The concepts of interior operator and closure operator are closely related. Given an interior operator $^{\circ}$, one can define a closure operator c by the condition

$$X^c = ((X')^\circ)'$$

and, given a closure operator c , one can define an interior operator $^\circ$ by the condition

$$X^{\circ} = ((X')^c)'.$$