### M6 SDR Receiver

Hochschule Rhein-Waal
Communication and Information Engineering B.Sc.
Cl\_5.02 Communication Systems

Prepared by

Amr Mostafa - 20733 Ahmed S. M. Ahmed - 25197

#### Topics to be covered:

• Impairments and available solutions.

• Implementation.

Analysis on the received signals.

#### Impairments

• Carrier Frequency and Phase offset.

Fix: Carrier Recovery

#### Carrier Recovery

Squared Difference Loop.

• The Phase-Locked Loop.

• The Costas Loop.

#### Carrier Recovery

Squared Difference Loop.

• The Phase-Locked Loop.

• The Costas Loop.

# Implementation

#### Determining the Assumed Carrier Frequency

$$f_c = min_k |f_{if} + kf_s|$$

#### The Costas Loop

• Update function:

• 
$$\theta_1[k + 1] = \theta_1[k] - \mu LPF\{r(kTs) \cos(2\pi f 0 k Ts + \theta_1[k])\} \times LPF\{r(kTs) \sin(2\pi f 0 k Ts + \theta_1[k])\}.$$

• 
$$\theta_1[n] \approx \frac{1}{4} s_{avg}^2 \cos^2(\emptyset - \theta_1)$$

#### Output of a Single Costas loop



$$\theta_1[n] = 2\pi(fc - f0)nTs + \emptyset$$

#### Dual Costas Loop

• 
$$\theta_1[k + 1] = \theta_1[k] - \mu LPF\{r(kTs) \cos(2\pi f0kTs + \theta_1[k])\} \times LPF\{r(kTs) \sin(2\pi f0kTs + \theta_1[k])\}.$$

• 
$$\theta_2[k+1] = \theta_2[k] - \mu LPF\{r(kTs)\cos(2\pi f0kTs + \theta_1[k] + \theta_2[k])\} \times LPF\{r(kTs)\sin(2\pi f0kTs + \theta_1[k] + \theta_2[k])\}$$

• 
$$\theta_2[n] \approx \frac{1}{4} s_{avg}^2 \cos^2(\emptyset - \theta_1)$$

### Outputs of a Dual Costas loop



## Output after mixing



#### Matched filter



#### Matched filter





Options:
Decision Directed Algorithm
Output Power Maximizing Algorithm



Considered factor:

SRRC Rolloff factor for the three signals respectively are 0.4, 0.9 and 0.5

#### Decision Directed Error surface



#### Output Power Maximizing Error surface



#### tau over iterations for mysteryA



• Dual Output Power Maximizing Algorithm.

•



• Dual Output Power Maximizing Algorithm.



#### Correlation

head = 'A0Oh well whatever Nevermind'



#### Correlation

head = 'A0Oh well whatever Nevermind'



- headstart=length(y)-ind+1
- headstart = mod(headstart, (112+400))

#### Decoding

mysteryA: An den Mond, Johann Wolfgang von Goethe, 1749-1832

mysteryB: Prometheus, Johann Wolfgang von Goethe, 1749-1832

mysteryC: Der getreue Eckart, Johann Wolfgang von Goethe- 1749-1932