Comportement global d'un circuit électrique

I-Distribution de l'énergie électrique au niveau d'un récepteur :

1- Loi d'ohm pour un récepteur :

La tension électrique U_{AB} aux bornes d'un récepteur (moteur ou électrolyseur) est :

$$U_{AB} = E' + r'I$$
 avec :
$$\begin{cases} E': force\ contre\ \'electromotrice\ en\ (V) \\ r': la\ r\'esistance\ interne\ en\ (\Omega) \\ I: Intensit\'e\ du\ courant\ en(A) \end{cases}$$

2- Bilan énergétique d'un récepteur :

Lorsqu'un récepteur (électrolyseur ou moteur), soumis à une tension électrique U_{AB} , est parcouru par un courant électrique I, l'énergie électrique W_r qu'il reçoit pendant la durée Δt est :

$$W_r = U_{AB}.I.\Delta t$$

D'après la loi d'ohm:

$$U_{AB} = E' + r'I$$

$$W_r = E'.I.\Delta t + r'.I^2.\Delta t$$

$$W_r = W_u + W_{th}$$

Tel que:

 $W_r = U_{AB}$. I. Δt : Energie électrique reçue par le récepteur.

 $W_u = E'.I.\Delta t$: Energie utile fournie par le récepteur (mécanique pour un moteur ou chimique pour un électrolyseur).

 $W_{th} = r' \cdot I^2 \cdot \Delta t$: Energie thermique dissipée par effet Joule dans le récepteur.

3- Bilan de puissance du récepteur :

On divisant les deux membres de l'égalité par Δt , on obtient :

$$P_r = E'.I + r'.I^2$$

$$P_r = P_u + P_{th}$$

Tel que:

 $P_r = U_{AB}$. I : Puissance électrique reçue par le récepteur.

 $P_u = E' \cdot I$: Puissance utile fournie par le récepteur.

 $P_{th} = r'$. I^2 : Puissance thermique dissipée par effet Joule dans le récepteur.

4- Rendement d'un récepteur :

Définition:

Le rendement d'un récepteur est le rapport de l'énergie utile W_u par l'énergie W_r reçue par le récepteur.

$$\rho = \frac{W_u}{W_r} = \frac{P_u}{P_r}$$

$$\rho = \frac{E'.I.\Delta t}{U_{AB}.I.\Delta t} \Longrightarrow \rho = \frac{E'}{E' + r'.I}$$

Remarque:

Le rendement est nombre sans unité qui s'exprime généralement en pourcentage.

II-Distribution de l'énergie électrique au niveau d'un générateur :

1- Loi d'ohm pour un générateur :

La tension électrique U_{PN} aux bornes d'un générateur est :

$$U_{PN} = E - rI$$
 avec :
$$\begin{cases} E : force \ \'electromotrice \ en \ (V) \\ r : la \ r\'esistance \ interne \ en \ (\Omega) \\ I : Intensit\'e \ du \ courant \ en \ (A) \end{cases}$$

2- Bilan énergétique d'un générateur :

La tension électrique U_{PN} aux bornes d'un générateur s'écrit : $U_{PN} = E - rI$ On multipliant les deux membres de cette égalité par $I.\Delta t$, on obtient :

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} E.I.\Delta t &= egin{aligned} egin{aligned\\ egin{aligned} egin{al$$

Tel que:

 $W_g = E.I.\Delta t$: Energie électrique totale fournie par le générateur.

 $W_{ex} = E.I.\Delta t$: Energie électrique utile fournie par le générateur au reste du circuit.

 $W_{th}=r$. I^2 . Δt : Energie thermique dissipée par effet Joule dans le générateur.

3- Bilan de puissance du récepteur :

On divisant les deux membres de l'égalité par Δt , on obtient :

$$E.I = U_{PN}.I + r.I^{2}$$

$$P_{q} = P_{ex} + P_{th}$$

Tel que:

 $P_g = E.I$: Puissance électrique utile fournie par le générateur au reste du circuit.

 $P_{ex} = U_{PN}$. I : Puissance électrique utile fournie par le générateur au reste du circuit.

 $extbf{\emph{P}}_{th} = extbf{\emph{r}}. extbf{\emph{I}}^2$: Puissance thermique dissipée par effet Joule dans le générateur.

4- Rendement d'un générateur:

Définition:

Le rendement d'un générateur est le rapport de l'énergie électrique W_{ex} fournie au reste du circuit à l'énergie totale W_g engendrée dans le générateur.

$$ho = rac{W_{ex}}{W_g} = rac{P_{ext}}{P_g}$$
 $ho = rac{U_{PN}.I.\Delta t}{E.I.\Delta t} = rac{E-rI}{E} \Rightarrow
ho = 1 - rac{r}{E}.I$

Remarque:

Le rendement est nombre sans unité qui s'exprime généralement en pourcentage.

III- Bilan énergétique d'un circuit simple :

1- Loi de Pouillet

On considère le circuit en série constitué par un générateur, un moteur et un conducteur ohmique :

D'après la loi d'additivité des tensions et la loi d'ohm on a :

$$U_{PN} = U_{AB} + U_{BC}$$
 $E - r \cdot I = E' + r' \cdot I + R \cdot I$
 $E - E' = (R + r + r') \cdot I$
 $I = \frac{E - E'}{R + r + r'}$

La généralisation de cette loi conduit à l'expression suivante :

$$I = \frac{\sum E - \sum E'}{\sum R}$$

2- Bilan énergétique de circuit :

On multipliant les deux membres de cette égalité par $I.\Delta t$, on obtient :

$$(E - E')I.\Delta t = (R + r + r').I^2.\Delta t$$

$$E.I.\Delta t = E'I.\Delta t + (R + r')I.\Delta t$$

$$W_{g} = W_{u} + W_{th}$$

 $W_g = E.I.\Delta t$: Energie totale fournie par le générateur.

 $W_u = E' \cdot I \cdot \Delta t$: Energie utile (mécanique pour le moteur).

 $W_{th} = r' . I. \Delta t$: Energie thermique dissipée par effet joule.

2- Rendement globale d'un circuit simple:

Le rendement global de circuit est définit comme le rapport de l'énergie utile du circuit par l'énergie totale (du générateur).

$$\rho = \frac{W_u}{W_g} = \frac{E' \cdot I \cdot \Delta t}{E \cdot I \cdot \Delta t}$$

$$\rho = \frac{E'}{E}$$

IV- Facteurs influençant sur l'énergie fournit par un générateur au reste d'un circuit résistif :

1- Influence de la force électromotrice :

On considère le circuit suivant :

$$U_{PN} = E - rI$$
 $U_{AB} = R_{eq} I$

 R_{eq} : est la résistance équivalente du dipôle AB.

D'après la loi de Pouillet on a :

$$I = \frac{E}{r + R_{eq}}$$

L'énergie électrique fournie par un générateur pendant la durée Δt est : $W_{ex} = U_{PN}$. I. Δt

$$W_{ex} = R_{eq} \cdot I^2 \cdot \Delta t = \frac{R_{eq}}{(r + R_{eq})^2} \cdot E^2 \cdot \Delta t$$

La puissance électrique fournie par un générateur est proportionnelle au carré de sa force électromotrice.

2- Influence des résistances et de leurs modes d'association :

2-1- Influence de la résistance :

On considère le dipôle AB précédent est un conducteur ohmique de résistance R.

L'énergie électrique fournie par un générateur pendant la durée Δt est :

$$W_{ex} = U_{PN}.I.\Delta t$$

$$W_{ex} = R.I^2.\Delta t = \frac{R}{(r+R)^2}.E^2.\Delta t$$

En mathématique, pour une valeur donnée de la force électromotrice, la puissance

 $P_{e \; max}$ est maximale quand R=r. Son expression est : $P_{e \; max}=\frac{E^2}{4r}$

2-2- Influence de mode d'association :

-Association en parallèle :

La puissance électrique fournie par le générateur aux deux conducteurs ohmiques est :

$$P=U_{AB}.\,I=E.\,I$$

$$I=rac{E}{R_{eq}}\,\,et\,R_{eq}=R_1+R_2$$

$$P=rac{E^2}{R_1+R_2}$$

-Association en parallèle :

La puissance électrique fournie par le générateur aux deux conducteurs ohmiques est :

$$P' = E.I'$$
 $I' = \frac{E}{R'_{eq}} \ et \ R_{eq} = \frac{R_1.R_2}{R_1 + R_2}$
 $P' = (R_1 + R_2).\frac{E^2}{R_1.R_2}$

Conclusion:

$$\frac{P'}{P} = \frac{(R_1 + R_2)^2}{R_1 \cdot R_2} > 1$$
 donc: $P' > P$

La puissance électrique fournie par un générateur à des conducteurs ohmiques montés en parallèle est supérieur à la puissance électrique fournie par ce générateur à ces conducteurs ohmiques montés en série.

V- limites de fonctionnement des générateurs et des récepteurs :

1- Générateurs :

Une alimentation stabilisée de tension fournie une intensité de courant constante tant que cette intensité ne dépasse pas une valeur limite indiquée par le constructeur :

$$P_{max} = E.I_{\ell}$$

2- Conducteurs ohmiques:

Chaque conducteur ohmique est caractérisé par sa résistance R et sa puissance maximale P_{max} qu'il peut dissipée par effet Joule.

$$P_{max} = U_{max}.I_{max} = R.I_{max}^2 = \frac{U_{max}^2}{R}$$

Exprimons I_{max} et U_{max} que le conducteur peut supporter :

$$I_{max} = \sqrt{\frac{P_{max}}{R}}$$
 et $U_{max} = \sqrt{R.P_{max}}$