1. Solve the following system of equations using the method of elimination and select the correct answer.

1/1 point

$$\begin{cases} x + y = 4 \\ -6x + 2y = 16 \end{cases}$$

- O The system has infinitely many solutions.
- $\bigcirc x = 1, y = 3.$
- $0 \ x = 0, y = 0.$
- O The system has no solution.
- x = -1, y = 5.

The solution for the system of equations is a unique point at x=-1 , y=5 , as shown:

$$\begin{cases} -1+5=4\\ -6\cdot (-1)+2\cdot 5=16 \end{cases}.$$

2. Calculate the determinant of the following matrix and determine if it is singular or non-singular:

1/1 point

$$A = egin{bmatrix} 4 & -3 \ 7 & -8 \end{bmatrix}$$

- $\bigcirc \det(A) = -53$. The matrix is singular.
- $igotimes \det(A) = -11$. The matrix is non-singular.
- $\bigcirc \det(A) = -11$. The matrix is singular.
- $\bigcirc \det(A) = -53$. The matrix is non-singular.
- **⊘** Correct

3.	alculate the determinant of the following matrix and determine if it is singular or non-sing	ular:

$$\begin{bmatrix} -3 & 8 & 1 \\ 2 & 2 & -1 \\ -5 & 6 & 2 \end{bmatrix}$$

- 0. Singular.
- 0. Non-singular.
- 36. Non-singular.
- \bigcirc -80. Non-singular.
- \bigcirc -20. Non-singular.

⊘ Correct

As explained in the video "The determinant (3x3)", you managed to correctly compute the determinant of the matrix. If the determinant is zero, then the matrix is singular.

4. Determine if the provided matrix has linearly dependent or independent rows (a,b,c,d,e,f) are real numbers):

1/1 point

1/1 point

$$\begin{bmatrix} a & b & c \\ d & e & f \\ 2a-d & 2b-e & 2c-f \end{bmatrix}$$

Hint: Can one row in the matrix be obtained as a result of operations on the other rows?

- Independent
- O It cannot be determined.
- Dependent

⊘ Correct

Row 3 can be obtained by adding $(2 \cdot row \ 1) + (-1 \cdot row \ 2)$.

5. Which of the following operations, when applied to the rows of the matrix, do not change the singularity (or non-singularity) of the matrix:

0.75 / 1 point

- Multiplying a row by a nonzero scalar.

Multiplying a row by a nonzero scalar is equivalent to scaling a whole equation, so it does not change the matrix singularity.

- Switching rows.
 - **⊘** Correct

Switching rows is equivalent to switching equations in a system of equations, thus it won't change its singularity.

- Adding one row to another one.
- **⊘** Correct

Adding two rows is equivalent to adding two equations in a system of equations, so it won't change the matrix singularity.

- Adding a nonzero fixed value to every entry of the row.
- X This should not be selected

This operation can change the singularity of the matrix. For example, the matrix $\begin{bmatrix} 0 & 0 \\ 2 & 3 \end{bmatrix}$ is singular, which can be determined by calculating that its determinant is 0. If you added 1 to both entries in the first row, creating the matrix $\begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$ the determinant would become 1, and the matrix would be non-singular. You might want to review the lecture on "Row operations that preserve singularity" \square .

6. In the following matrix:

1/1 point

$$\begin{bmatrix} x & x \\ y & z \end{bmatrix}$$

x,y, and z are **non-zero** real numbers. If the matrix is **non-singular**, which of the following must be true:

- $\bigcirc z = x$ only if x = y.
- $\bigcirc z = y$.
- \bigcirc x=y only if $z\neq x$.
- **⊘** Correct

The matrix determinant is given by xz-xy in this case. Knowing the matrix is **non-singular**, its determinant is **different from zero** so if x=y, then z cannot be equal to x, otherwise the determinant would be zero.