UNIVERSIDADE FEDERAL DA PARAÍBA
CENTRO DE TECNOLOGIA
DEPARTAMENTO DE ENGENHARIA DE PRODUÇÃO
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE
PRODUÇÃO E SISTEMAS

OTIMIZAÇÃO LINEAR: DIMENSIONAMENTO DE ESTOQUE DE ENSACADOS EM CANTEIRO DE OBRAS E SELEÇÃO DE FORNECEDORES

VINICIUS BEZERRA CAVALCANTI CENTURION

ANAND SUBRAMANIAN professor

DIMENSIONAMENTO DE ESTOQUE DE ENSACADOS EM CANTEIRO DE OBRAS

DIMENSIONAMENTO DE ESTOQUE DE ENSACADOS EM CANTEIRO DE OBRAS

A proximidade dos insumos ensacados, como cimento, cal e aditivos, em relação à betoneira é fundamental para otimizar a produtividade e a eficiência na obra. Quando esses materiais estão dispostos perto do equipamento de mistura, o tempo de transporte e manuseio por parte dos operários é drasticamente reduzido. Isso não só acelera o ciclo de produção da argamassa ou do concreto, diminuindo o tempo ocioso da betoneira, mas também minimiza o esforço físico da equipe

Categoria A (Itens de Alta Relevância - Custo Unitário Elevado e/ou Grande Volume)

Estes são os materiais que mais impactam o custo total da obra.

Cimento Portland (CP II-F 32 ou CP II-E 32):

Função: Base para concreto, argamassas (assentamento, chapisco, reboco, contrapiso). Consumo massivo.

Custo Unitário (SINAPI PB - exemplo): Em torno de **R\$ 35,00 a R\$ 45,00 por saco de 50kg**. (O custo de uma composição de argamassa ou concreto, que é onde o cimento é usado, será significativamente maior, por exemplo, argamassa traço 1:3: R\$ 770,25/m³ - AF_08/2019).

Dimensões de embalagem 18 x 32 x 50 cm; Empilhamento de 10 sacos; Área ocupada pela pilha 0.25 m²; Validade 90 dias (considerar 80).

Categoria B (Itens de Média Relevância - Custo Unitário Moderado e/ou Volume Considerável)

Argamassa Colante (ACII / ACIII):

Função: Assentamento de revestimentos cerâmicos e porcelanatos.

Custo Unitário (SINAPI PB - exemplo): Em torno de R\$ 2,00 a R\$ 3,00 / kg. Um saco de 20kg pode custar de R\$ 40,00 a R\$ 60,00.

Observação: O consumo varia de 4 a 8 kg/m² dependendo do tipo de cerâmica e do chapisco.

Dimensões de embalagem 10 x 20 x 46 cm; Empilhamento de 15 sacos; Área ocupada pela pilha 0.20 m²; Validade 240 dias (considerar 220).

Serviço	ID	ID atividade precedente	Insumo	Produtividad e (m²/dia.equip e)	Consumo de insumo (kg/m².equipe)	Consumo diário de insumo (kg/equipe)	Consumo diário de insumo (sacos/equipe)	Quantidade total a ser executada (m²)	Consumo total de insumo (sacos)	Periodo de cura (dias)
Alvenaria (cerâmico)	0	-	Cimento	15	4,25	63,75	1,275	1450	123,25	3
Chapisco (interno)	1	0	Cimento	30	2	60	1,2	2105	84,2	3
Chapisco (externo)	2	0	Cimento	20	2	40	0,8	650	26	3
Reboco (interno)	3	1	Cimento	25	7,5	187,5	3,75	2105	315,75	21
Reboco (externo)	4	2	Cimento	15	7,5	112,5	2,25	650	97,5	21
Contrapiso	5	0;3;4	Cimento	40	9	360	7,2	890	160,2	14
Revest. Piso Interno 60x60	6	5	Argamassa ACIII	25	4,7	117,5	5,875	750	176,25	0
Revest. Piso Externo 60x60	7	5	Argamassa ACIII	18	5,5	99	4,95	140	38,5	0
Revest. Parede Interna 30x60	8	3	Argamassa ACIII	20	4,5	90	4,5	770	173,25	0
Revest. Parede Externa 10x20	9	4	Argamassa ACIII	14	5,5	77	3,85	650	178,75	0

CONSUMO DE ENSACADOS: SEQUENCIAMENTO DE SERVIÇOS

CONSUMO DE ENSACADOS: SEQUENCIAMENTO DE SERVIÇOS

Minimizar Z = 0.25x + 0.20y

Minimizar Z = 0.25x + 0.20y

x: pilhas de 10 sacos de cimento

y: pilhas de 15 sacos de argamassa

0,25: área que uma pilha de cimento ocupa em m^2

0,20: área que uma pilha de argamassa ocupa em m^2

$$Minimizar Z = 0.25x + 0.20y$$

Sujeito a

$$10x \ge Cmax \cdot (Tc + Ec)$$

$$15y \ge Amax \cdot (Ta + Ea)$$

$$x, y \in \mathbb{Z} \ge 0$$

Minimizar Z = 0.25x + 0.20y

Sujeito a

$$10x \ge Cmax \cdot (Tc + Ec)$$

$$15y \ge Amax \cdot (Ta + Ea)$$

$$x, y \in \mathbb{Z} \geq 0$$

Amax: 3 vezes o maior consumo diário de argamassa por equipe;

Cmax: 3 vezes o maior consumo diário de cimento por equipe;

Tc,Ta: tempo de reposição (em dias)para cimento e argamassa;

Ec, Ea: estoque de segurança adicional (em dias), definido como:

$$Ec = Tc + 1$$

$$Ea = Ta + 1$$

$$Minimizar Z = 0.25x + 0.20y$$

Sujeito a

$$10x \ge 3 \cdot 7.2 \cdot (2Tc + 1)$$

$$15y \ge 3 \cdot 5,875 \cdot (2Ta + 1)$$

$$x, y \in \mathbb{Z} \ge 0$$

Minimizar Z = 0.25x + 0.20y

Sujeito a

$$10x \ge 3 \cdot 7.2 \cdot (2Tc + 1)$$

$$15y \ge 3 \cdot 5,875 \cdot (2Ta + 1)$$

$$x, y \in \mathbb{Z} \geq 0$$

ID fornecedor	Insumo	Tempo entrega	Custo unitário
0	cimento	2	36
1	cimento	1	37,9
2	cimento	3	33,9
3	cimento	1	40
4	argamassa	1	51,9
5	argamassa	1	49,9
6	argamassa	3	36,9
7	argamassa	2	44,9

PROBLEMA: QUAIS FORNECEDORES TEM MENOR CUSTO UNITÁRIO POSSÍVEL GARANTINDO ININTERRUPÇÃO DOS SERVIÇOS E TAMANHO MÁXIMO (E MÍNIMO) DO ALMOXARIFADO?

$$\begin{array}{lll} \text{Minimize} & Z = \sum_{i \in F} c_i \cdot z_i \\ \\ \text{subject to} & \sum_{i \in F_c} z_i = 1 \\ & \sum_{i \in F_a} z_i = 1 \\ \\ & 10x \geq \sum_{i \in F_a} z_i \cdot C_{\max} \cdot (2t_i + 1) \\ & 15y \geq \sum_{i \in F_a} z_i \cdot A_{\max} \cdot (2t_i + 1) \\ & 15y \geq \sum_{i \in F_a} z_i \cdot A_{\max} \cdot (2t_i + 1) \\ & 0.25x + 0.20y \geq A_{\min} \\ & 0.25x + 0.20y \leq A_{\max} \\ & x, y \in \mathbb{Z}_{\geq 0} \\ & z_i \in \{0, 1\}, \quad \forall i \in F \end{array} \tag{Escolher 1 fornecedor de cimento)}$$