© Encoding Categorical Data

Machine learning models can't directly handle **categorical variables** (like "Red", "Blue", "Green"). So we **convert them into numbers** using **encoding techniques**.

Introduction:

- Categorical data = Non-numeric data
- Examples: Gender = ["Male", "Female"], City = ["Lahore", "Karachi", "Islamabad"]
- Encoding helps transform strings → numbers so ML models can understand them

Revision:

Quick recap of:

- Types of data: Numeric (int, float), Categorical (object/string)
- Why encoding is needed: Models can't process text
- Categorical variables are of two types:
 - 1. **Nominal** (no order): e.g., ["Apple", "Banana", "Mango"]
 - 2. Ordinal (has order): e.g., ["Low", "Medium", "High"]

What is Ordinal Data?

- Ordinal data has a meaningful order but not exact differences
- Examples:
 - 1. T-shirt Sizes: Small < Medium < Large
 - 2. Ratings: Bad < Average < Good < Excellent
- You should not use Label Encoding on nominal data (it imposes false order)

Label Encoding

- Assigns integer labels to each unique category
- Good for ordinal data (but misused sometimes on nominal)

Warning: For nominal data, the model might think red > green > blue, which is wrong!

How Ordinal Encoding Works?

- Use OrdinalEncoder when the categories have a natural order
- Must manually define order if needed

Summary

Encoding Type	Use For	Preserves Order?	Example Tool
Label Encoding	Ordinal (if no specific order is defined)	×	LabelEncoder()
Ordinal Encoding	Ordered categories like ["Low", "Medium", "High"]	✓	OrdinalEncoder()