

For the C-64 -

David Thom and Vic Numbers

A PUBLICATION OF

THE SOFTWARE **PROTECTION HANDBOOK** For the C-64 DAVID THOM and VIC NUMBERS COVER and ILLUSTRATION ACE CAMPBELL © 1984 PSIDAC 000 ALL RIGHTS RESERVED 1

PUBLISHER'S NOTE

This book is written as an information guide for those who wish to learn about and experiment with software protection and duplication methods. It is not intended to encourage theft or illegal uses of copyrighted software.

All information in this book is accurate insofar as can be determined by the authors and publisher. No liability can be assumed for any inaccuracies which may be inadvertently contained herein.

The user of this information must assume liabilities associated with its use. The user must also assume all risk to person or property associated with the use of the circuitry described in this book. recommended that the user be technically competent to determine the suitability of application. In no event shall the authors publisher be liable for incidental or consequential damages in connection with the use of the information in this book.

C-64, VIC-20, and MONITOR \$8000 are trademarks of Commodore Business Machine, Inc.

Romulator, Tapeworm, PSIPACK and its program names are all trademarks of PSIDAC.

*** PROGRAM NOTES ***

Most of the Basic programs will require that you use CBM "shorthand" when typing to avoid excess memory use.

Programs have been written for the Commodore 1541 disk and 1525 printer. Many of the programs have been tested on a version of the MSD. The programs which "talk" to the drive controller such as Diskpicker and error analyzers will not work with MSD. The others may work.

THE SOFTWARE PROTECTION HANDBOOK

Copyright c 1984 by PSIDAC. All rights reserved. No part of this publication may be distributed by any means. The circuits and programs contained herein and on the PSIPACK disk may be copied for personal use. No part of this book may be reproduced for publication.

SPH-64 V1284 USD19.95

FOREWORD

Č

000

Č

C

2.

The philosopy of this book embraces three main goals.

- 1. To provide broad view of protection from laws and ethics through tools and techniques.
- "vicious circle" nature of protection/protection breakers, and the potential cost of getting caught in this spiral.

To alert you, the consumer, of the

3. To remove some of the mystery surrounding the subject while providing a useful reference document.

Preface Pg. 6

Chapter 1..... Introduction. Rules, Regulations, and Ethics Pq. 7 for copying software.

Chapter 2.... Tools. Description of tools provided in this Pg. 21 book as well as other helpful tools for breaking protected programs.

()

()

C \mathbf{C}

C

C

Chapter 3.... Maps. C-64 and 1541 disk memory maps with Pq. 47 explanations. Also special memory locations and configurations used for protection purposes.

Pg. 71 techniques used to protect software. Covers disks, cartridges and tapes. Chapter 5.... Tapes. Specific procedures, circuits and

Chapter 4.... Protection Methods. Current and future

88 software to duplicate tapes. Tapeworm, Pq. Cloneplug, and Trelo.

Chapter 6.... Disks. Procedures, and programs to copy and Pa. 117 analyze protection on disk. DD-1, Fastback, Superdirectory, Disk-Editor, T/S Analyzer, Error Analyzer, Diskpicker, Relocate/Loader,

Chapter 7..... Cartridges. Saving cartridges to disk and tape. Romulator system. Pq. 174

Appendix A.... CBM ASCII-CHR\$- SCREEN CODES Chart. Pg. 197

Appendix B.... Monitor use with Diskpicker. Pg. 201

and Linkster.

Appendix C.... Autorun Booters- Machine and Basic version. Pg. 202

```
()
                           *** CONTENTS CONT. ***
(
(
     Appendix D.... Sector Byte identifications. Resetting
(
         Pg. 205 Deleted programs or files.
(
(
     Appendix E.... Reset switch wiring.
        Pg. 207
     Appendix F.... GCR sector encoding explanations. Sector maps
(
        Pg. 208 in GCR with notes.
(
     Appendix G.... Products available from PSIDAC.
         Pq. 211
(1
     Appendix H.... Interrupt routine techniques.
(
         Pq. 212
\mathbf{C}
         DISK NAME = PSIPACK (C) 1984 VBN 3RD ED.
(
        TYPE
               TRACK
                       SECTOR
                                 NAME
                                                   BLKS
()
( )
        PRG
                17
                      0
                                 1PSIMAIN
        PRG
                17
                      1
                                  2PSIMAIN
                    12
13
                      12
        PRG
                20
                                SUPERDIRECTORY
PRG
                19
                                DISK-EDITOR
                                                  7
                                RELOCATE/LOADER * 2
        PRG
                17
                     19
(
        PRG
                15
                      2
                                 DISKPICKER
                                                 * 20
               19
                      9
                                                 * 10
        PRG
                                 T/S ANALYZER
C,
                      Ø
                                                 * 7
        PRG
                19
                                 FASTBACK
                   15
                                                 * 17
        PRG
                17
                                 1DUPDAC
        PRG
                      7
                                                 * 17
                16
                                 2DUPDAC
•
        PRG
                      2
                20
                                 ADMACH
(
                      3
                                                 * 1
        PRG
                20
                                 MACHRELO
        PRG
                20
                      4
                                  3ROMULATOR
(
        PRG
                20
                      - 6
                                  2ROMULATOR
        PRG
                19
                      8
                                 ZMACH
                      9
        PRG
                20
                                 ANALYMACH
        PRG
                17
                      3
                                 SUPERMON64.V1
        PRG
                19
                      6
                                 ERROR ANALYZER
                                                   7
()
                      6
                17
        PRG
                                 20 NO HEADER
()
        PRG
                17
                      7
                                 21 ERASE TRK
        PRG
               17
                     16
                                 22 NO DATA
        PRG
                16
                      Ø
                                  23 DATCHKSUM
        PRG
                16
                      1
                                 SYNC WRITER
()
        PRG
                19
                      5
                                 HELP
()
        PRG
                17
                                 WRITE HDR
                      8
                      2
        PRG
                17
                                 READ HDR
        PRG
                19
                      14
                                COPY HDR
        PRG
                19
                      7
                                 CON HDR
        PRG
                19
                      15
                                100N HDR
0
                      3
9
        PRG
                16
                                 LINKSTER
                14
        PRG
                                 TMACHRELO
(
        PRG
               14
                      15
                                 TRELO
0
                     . 4
        PRG
               19
                                 SYNC ONLY
                19
                                                 " 1
        PRG
                      16
                                1TRKFMT
        PRG
                17
                      17
                                 TRACK CHECK
                                                " 10
                                    5
```

PREFACE

The writing of this book was undertaken as a result of the large number of inquiries and strong interest developed after the release of our first book "The Software Pirate's Handbook for the VIC-20" (SPH-20). This book will follow a similar format to the SPH-20 and, although each are complete books in their own right, this book is designed as a complement to SPH-20.

The SPH-64 will expand on both the philosophy and technique of duplicating software. In doing so we want to dispel many of the doubts and fears that people often have about copying software. We also want to be sure that the legal issues are understood so that we do not promote theft or black-marketing of software which clearly are crimes. At the same time we will show you how to protect your own investments by making back-up copies of a variety of "protected" forms of software.

This book will first cover our philosophy for copying, specific legal considerations. In the following chapters we will outline technical theory and concepts with specific numbered procedures and the program listings at the end of applicable chapters. In many cases you will be able to go directly to the specific procedure for the type of copy you wish to make. However for a better understanding or in case of difficulty in making a copy, you may need to refer to the sections which give attention to theory and In this manner you should be able to gain an ng of the kinds of protection that you are concepts. understanding of encountering so that you can deduce possible "countermeasures".

The ultimate purpose of this book is not to provide you with the "newest thing" in copy history, but rather, we will try to provide you with primary tools and knowledge of protection systems. These tools are not candied for appeal are essential utilities which are themselves open and unprotected so that you can use, study, and adapt them to a continually changing market. Our experience has shown that "packaged" protection breaking software becomes obsolete as fast as it is written, leaving the consumer with yet another hole to pour money into. Adaptive programs and user skills are necessary to stay current. In light of this, we offer this book, not as the final word, but as what may be the first technical reference document available on the subject. Together with the programs included, this makes a powerful analytical package for defeating protected software.

We greatly hope that you find this book informative, understandable, and USEFUL!

The authors.

*** CHAPTER ONE ***

INTRODUCTION

PIRACY...an issue so clouded with fear, intrigue, and misinformation that you dare only to utter it in safe, familiar company. The original title of this book was to be "The Software Pirate's Handbook II", but had to be changed after several advertisers flatly refused to advertise a book of that title in spite of the fact that the book was never meant to encourage piracy in any form. The use of "Pirate" was intended as a light-hearted reference to any copying process, and to inspire a certain tendancy of humankind; the attraction to things mysterious or secret.

(

(

(

(

(

(

(

(

(

Unfortunately, there is a great deal of hocuspocus and puffery being used to cloak the alleged brainchildren of this new market. This reletively new consumer product - software - is being hawked, with all the vigor and claims of mysterious powers, like the patent medicines of earlier years. This technocratic rhetoric is replete with all the rumored pitfalls and warnings of what may happen to you or your equipment if you try to exercise your documented legal right to copy the product. All of this has the detrimental end effect of deluding the consumer into purchasing overpriced, underperforming products. In our opinion this will most certainly undermine the strong beginning and curiosity the home microcomputer market now has. It is our goal to provide the public with some knowldge, tools, and attitudes that will be a start in changing two futures this situation. I see for microcomputing, one with software and computers accepted and used by many, and the other with software and computers rejected as expensive "hyped" toys of a bygone fad.

At this point we must separate the difference between what is acceptable copying and what is Piracy. Quite simply, the intent of the user will decide the question. Copying for sale, distribution or other non-personal uses is Piracy. Copying for backup, archival, study, and other personal uses is not piracy. Loaning your original to another person for temporary use is not piracy. (If that ever were changed we may as well burn the libraries and return to the Dark Ages!) However copying an original you do not own is unethical.

We should start to analyze this whole issue of

copying software by first classifying software amongst the products with which it belongs. This will also help to peel away some of the misinformation that surrounds the issue. To get very basic, software is a set of instructions which produce a desired effect on a physical system. Software is written with letters and numbers and can be embodied in many different forms such as; verbal, magnetic recording, paper, solid state and so on...just like this book or a piece of music or a recipe for example. The fact is that the examples that I have given are just as common or likely to be found in one of the formats listed as software itself, with the exception of solid state, which refers mainly to ROM memory. The reason that books and other typically printed materials are not commonly found in this format is that they inherently contain vastly greater amounts of data than the average program. Any one of these also often cost more to produce, take more expensive equipment, and more time to write than a piece of software. How strange it is then that software should sell for tens of times more money than these other like products!

(

(

(

(

(

(

(

(

(

(

(

(

(

(

I suppose that the real mystique of software, and the factor most capitalized on, is it's code-like nature. Few people are professional programmers and thus cannot really understand the mysterious language of the program. Some might say that all that is important is that the user be able to use the program and that the degree of secrecy or protection applied to the program is not a concern. We feel that this is a

 \mathbf{C}

little like a homemakers magazine saying that you should only be able to eat the end result of a recipe, not be able to understand the words and numbers which define the end product! If you only wish to eat and care less about the ingredients, that is your perogative, but if you like to understand what you are eating, there really should be no great mystery about the ingredients.

When it comes to making a copy of a piece of software many people get cold feet. In selling the "Pirate's Handbook" for the Vic-20, we advertised "for archival use only". We recieved many promises, signed statements and so on from our customers that they would use it only for "archival" purposes. I am sorry that so many people have been bullied into thinking that they might be required to make such a statement in the first place. I have yet to meet a person who felt the need to sign an affadavit before running up to the local grocery store to make a copy of a magazine article, pages of a book, recipe or whatever. Probably the only situation even near in comparison would be the fear of attempting to photocopy a dollar bill to try in a bill changer. (it doesn't work!)

A recent manifestation of this biased thinking on software appears in a proposal being considered for state law in Louisiana. The law, if enacted, would mandate that the act of purchasing and subsequently opening the package of a piece of software, would inherently place the "opener" in a legal contract with

the seller. The purchaser would be obligated to refrain from copying, distributing, and whatever else they throw in. I hope they have a lot of jail space in Louisiana!

(

(

(

0

(

•

(

(

(

(

(

(

(

(

(

C

(

(

(

(

(

One of my favorite analogies which may help you to put this whole ethical question in perspective is the recipe analogy. Consider the fact that a recipe like software is a set of written instructions which cause a desired effect on a physical system. Like software, it requires a sequence of steps to be performed in the correct order in real time. Both require specialized hardware to perform their respective functions. As with computer hardware, a complete cooking system easily costs thousands of dollars. Developing a unique recipe requires specialized skill as well as a great deal of time.

Some of the major differences are a result of the general perception of a recipe as an ordinary everyday commodity often given away and the perception of a program as a highly valuable and unfathomable product. It is easy to believe that a great deal more knowledge and effort goes into a program than a recipe. However there are a lot of professionally trained chefs who would argue otherwise! Judging from some of the "professional" software that I have seen marketed, I am quite sure that they are right!

If you can then, consider that these diverse yet similar copyrightable literary forms should be given equal treatment and respect when we think of copying.

Are womens clubs and church groups that exchange recipes (many of which are blatantly copied from the pages of magazines) committing an act of piracy? Probably they are in the strictest sense, but who really cares!? It doesn't appear that their doing so has seriously affected the market. If taken case by case, each category of information market has a similar situation. For each of these markets there is some form of equipment and general knowledge of methods for making copies of the copyrighted product. Your right to these facts has never really been own and know disallowed. Otherwise, tape recorders, photocopy machines, and probably even cameras could have been outlawed due to their potential for illegal use in copying protected information. Each of these markets also face the real threat of blatant piracy by those who would profit by use of copy technology. The current misunderstanding of the ethical question of copying software is not a result of a factual difference in the nature of software but rather a simple difference in the typical perception of software versus more commonly understood information like a recipe.

Historically software has been a closely guarded secret of the company owning it. This results largely from the fact that prior to 1980 software had no legal form of protection. It did not fall under patent law or copyright law. Also most software was for larger businesses as home use was not that extensive. Naturally the market was limited and the price necessarily high. As a result companies were rightfully

worried about being ripped-off by those who might copy their software and sell it without fear of punity. This unfortunatly, happened too often. More recently for example, Franklin computer copied many versions of Apple computer's operating system. The uncertanty of the new laws protecting software prevented Apple from stopping this apparently obvious case of piracy. Although the two companies finally came to an out of court settlement, the 3rd U.S. Circuit Court of Appeals in Philadelphia ruled that the software was protected under current copyright law. "Piracy" of this form could quite literally, bankrupt a company. operating systems of a microcomputer are closely linked to the hardware design of a system. A company stands to lose the fantastic amount of investment that it takes to set up production and marketing if unscrupulous persons pirate these software systems to install in a competing computer. In effect, this creates a limited monopoly for the original manufacturer. If a competitor wishes to make a 100% compatible alternate, the operating system he uses must be identical performance. For technical reasons, this is virtually impossible to do without copying the operating system! Although legal protection for ROM based operating systems has been upheld in court, the issue is long from being settled.

(

(

(

(

(

(

(

(

(

(

C

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

The heart of the copyright intent is that the specific expression of an idea is copyrightable but the idea is not. Ideas must be free of legal encumbrances. However, if the idea can only be expressed in one way

without losing its meaning, then the ability to protect that idea becomes very limited. The same sort of thing is true when product names become so common as to be considered generic. Legal protection is lost. Thus I can talk about crescent wrenches and skill saws without worrying about the legal ramifications. There is not a clearly defined legal answer available for this problem with operating system software. The real answer may lie in the intent of the person making the copy.

From another viewpoint, an applications package which may take a month or so for a single person to write and an average investment to produce and market should not be priced as the basis for a lifelong income. This does not mean that it should be stolen and distributed according to some modern Robin Hoodian mentality. It does mean that the over-pricing of applications software creates a climate where such piracy is going to be common. If the price better accommodated the market, the tendancy of people to distribute copyrighted software would greatly diminish.

Protection of software is clearly not the answer. I would not even recommend that anyone buy software if the protection methods seem too strong. The ability to make backups and expect a reliable and compatible product are rights of a consumer. As later chapters will bear out, some of the more elaborate protection schemes can prove rather unreliable. Often they are obvious encumbrances to smooth loading and running of a

program. Furthermore, in the case of disks, they often are not compatible with other brands of disk drives. The real clincher is that Commodore, or any other drive manufacturer, reserve the right to update their drive hardware/software at any time as needed. Protection schemes which operate beyond the defined specifications of the system would not necessarily work on an "updated" system! The drive manufacturer has no obligation to try to figure out what has been done beyond the original accepted specifications. If you don't believe this is a real problem, try talking to anyone who has bought "Commodore compatible" hardware.

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

The difficulty of backing up highly protected software places you in the vulnerable position of facing complete system crash and resulting data loss. In many cases I can think of it would be totally unacceptable to even run a program without having a backup accessible within minutes. Although failure of the storage medium is more common with tapes and disks, it is still possible with cartridges. The problems with cartridges are that a lot of wear tear is placed on the port by constantly changing cartridges. As anyone experienced in failure analysis could tell you, the weakest link in many electronic systems is the mechanical interface such as edge connectors. I have seen them become loose, bent, intermittent and who knows what else. One popular solution has been to use expander boards with switchable slots but these are quite expensive and

still limit the total number of cartridges you may use without switching. Our solution is to use an external RAM memory which can be loaded from tape or disk and then emulate the original ROM cartridge. This way, the RAM unit is left in the computer and does not interfere with any other operation. When desired, the cartridge program which was previously saved on disk or tape can be loaded and reloaded as needed. Your cartridges can be put away safely and be used only to make backups. The obvious problem with this system is that people who don't own the cartridge could illegaly obtain copies of the tape or disk and use the program without purchasing it. We strongly discourage this. It is an illegal act Chapter 7 gives specific details on this of piracy. system.

The point of importance is that without a backup copy of each program you endanger yourself needlessly. Feeble attempts of software houses to remedy this by offering backups if your original fails, simply do not This is true even IF the backup solve the problems. policy is quick and promises a replacement within say 24hrs. What happens if the original company goes out of business? What if the user faces a deadline or is in the middle of a presentation? In some cases a delay of more than some minutes can be devastating. In our opinion there is only one rule and all should take heed: Only a fool runs a program without a backup but it is a fools fool who runs a program without a backup of the backup! For those really important programs we recommend that backups be stored in two different

locations. In one case, one of our programs was recovered from a disk which had it's protective cover cut away and had been thrown in the trash - after being passed around to show how they were constructed! One of the first things you should do especially with a new disk or tape is to make a backup.

(

(

(

(

(

(

(

(

(

(

It is likely that you may hear about a "great" program but find out it is uncopiable or very hard to ask; are you willing to suffer We consequences of a failure with no backup? Is it then, really such a great program? The truth is that such a program rewritten with no protection is much more valuable and marketable. The irony is that selling a program with significant modification may not even BE a violation of copyrights. "Reverse engineering", an accepted industrial practice of distilling the underlying principals of a product and then marketing your own version, has always been a common source of "improved" products.

Another issue which creates a problem for those who purchase software is the lack of documentation of the program itself. Not all people want or care to try to modify a program to suit their application but for many the original program may be ill suited to their needs. These people have a legitimate need to be able to list and modify the program. Without adequate documentation, this is nearly impossible. Our philosophy is that if you buy our book we are happy to give you our listings and you may make any changes that

suit your special wishes. We feel that all software should be sold with listings and documentation or that they should be available for a reasonable price. The ability to customize is a unique feature of software which should be capitalized on instead of hidden. Some products are naturally customizable some are not. The custom car parts industry has made a fortune on this very fact. Occasionally a potentially valuable piece of software is totally useless to a person because of the inability to modify it.

The consumer has a legal right to expect a product to perform the "normal" functions associated with that type of product. In legal terms this is known as the merchantability of a product. Imagine that you buy an "all purpose" fertilizer for flowers. After reading all directions and using it, your roses do great but all your other flowers die. Let's say that after talking to your friend, a chemist, you find that it would work on other flowers - IF you had specialized knowledge of the chemical compounds used and how they could be applied successfully to other flowers. A lawyer would probably tell you that you have legal grounds for recovery because the product is not merchantable as an all purpose fertilizer without sufficient instructions on how to use it successfully, and any "normal" application does more harm than good. In the microcomputer business, there are many programs with the implication that they will do many things. Only after purchasing might you find out that it would require specialized knowledge or even modification to

make it work to reasonable expectations. Since backup copying of owned software is a legal right I wonder if a copy protected program itself violates the principal of merchantability. As long as we have that right it is reasonable to expect software to be copyable.

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

Time and again various industries have gone through this "secrets" game only to find in the end that a large number of the consumers have a right, need, and demand to know what's inside. Limiting protecting this information can only limit useability of the equipment and also limits the growth of add-ons which make the original product more useful. Software houses would certainly view this as opening the door wide to the pirates. Already terrified by loss of profits due to piracy they find more and more elaborate and costly protection to be the answer. this is the very thing that makes the market attractive to the pirates in the first place! Take away the protection and high price, and who would need a pirate anyway!?

In strict legal terms, software has been protected by U.S. copyright law since 1980. Anyone who makes a copy of software and gives it away or sells it is in direct violation of these laws and prosecution is available. Other information forms have survived very well with copyright law as the only means of protection. The pricing has been set by the accepted method of market determination and copying and exchanging amongst small groups or by friends has never

seriously affected the market. The thought of a ladies sewing circle being sued for exchanging patterns seems ludicrous because it is. Large scale piracy does not occur as a result of grocery store photocopy machines because the original is priced low enough that it wouldn't be profitable. With the areas of legality clearly defined, no one should feel intimidated or afraid to make a copy of software for backup purposes. The existance of copying hardware, software, and information should be no more threatening than photocopy machine or tape recorder and the knowledge of how to use them!

*** CHAPTER TWO ***

TOOLS

Without a doubt the C64 is a powerful computer and a very versatile tool. However, the first time that you try to save a protected program you might suddenly feel like a child given the task of decrypting a classified and encoded top-secret document. A myriad of questions immediately present themselves. Where do you start? What kind of program is it? What methods of protection have been applied? Is there any way to list it? Where does the program reside in memory? And so on... It is often difficult to decide which questions to ask in the first place!

It would be wonderful if someone made a supercopier that would copy any software with the ease that a photocopy machine will copy this page. Unfortunately, there is just no way that a single answer will cover the wide variety of possibilities available for copy protection. The only way to really be equipped for the task is to have various specialized tools. Most of the jobs cannot be accomplished with only one of the tools but will require skilled application of many different tools. The key here is skill. The most effective tool you can posses is a sound knowledge of how software can be protected so that you can make a meaningful analysis of each situation and apply the correct tools with the greatest amount of skill.

In this chapter will concentrate we on familiarizing you with the kinds of tools to use on three categories of software media. These cartridges, disks, and tapes. Within these categories will define "levels" of protection as they apply. The descriptions of tools will aquaint you with the general applications of the tools but we will leave out the specifics of use until the later chapters, which will list the procedures in a very detailed fashion. If breaking protected software is all new to you, chapter should give you a good general understanding of what you are up against and what tools are available to help you. This should also help you develop plans of attack when you come up against a protected program that you need to back-up.

--Cartridges--

Cartridges are unique in that they are a form of protection in themselves. That is to say that the very

features of the cartridge are what protect the program that it contains. The fact that the computer is designed to autorun cartridges makes it difficult to break into and list the program or save it to another format. Since most people don't have PROM memory burning facilities, they cannot expect to make a "copy cartridge" from an original cartridge. Furthermore, the cost of PROM burners and circuit boards to implement a copy cartridge would make it expensive anyway.

(

(

Ċ

(

(

(

(

(

(

(

(

(

(

•

•

(

(

(

(

(

(

(

(

(

Actually cartridges are not that prone to failure. The simple excuse of making a duplicate cartridge for back-up purposes really isn't realistic in view of PROM making costs. We have developed a method that can be used to transfer cartridge programs to tape or disk and then run in a RAM expander! This makes the process very cheap if applied for many cartridges. With this system becomes desirable to have back-ups for cartridges you own. After all, if the cost is a little disk or tape real-estate, why not have a copy? are good reasons to want a tape or disk copy, such as avoiding the hassle of continuously plugging and unplugging cartridges when changing programs. Making a modification of a program residing in a cartridge can't be accomplished unless the program can be put into RAM and run in RAM. A single disk can contain a whole library of programs while the cartridge holds only one. Having drawers full of odd shapped cartridges is a real pain. If, for example, you need to transport a library of cartridges to work each day, you would need an extra lunchbucket! But with your cartridge library on disk,

your software is very transportable.

Remember that all these limitations in the cartridge medium are mostly to make copying likely. It would be much cheaper for a software house to sell all of it's software on either tape or disk. Magnetic media does not require a circuit specially manufactured circuits and enclosures. Cartridges exist largely because of the fear of piracy. As is often the case, those with legitimate needs are penalized by actions of those with illegitimate greed.

When the C64 is powered up one of the housekeeping chores that it does is to check to see if a cartridge is plugged in. Part of this is accomplished by two pins on the cartridge edge connector which are identified by the names GAME and EXROM. The job of these pins is to control the way the memory is configured on the C64 so that the computer will allow Basic, Kernal and ROM to be located as necessary. The initialization routines also check memory locations where a cartridge resides to see if an access code is found there. These codes then tell the computer that there indeed is a cartridge and they pass information to the computer so it knows where to start running the program from. A program doesn't need to start at the beginning of the cartridge memory to run. Most of the time the entry point is not at the beginning but further on in cartridge memory. Following is an Interrogate dump of the first several bytes of a typical ROM cartridge. Notice the ASCII (reversed) display which shows the access code CBM80.

The first four bytes before this code give the cold start and warm start addresses respectively.

CS \$8394 WS \$83A0

--ROMULATOR--

(

(

(

(

(

Romulator is a cartridge copy system that comes in three versions. One for the VIC-20, one for C64 tape systems and one for C64 disk systems. The C64 versions are identified as 2Romulator for disk and 3Romulator for tape. In this book we will refer to the C64 system as Romulator and leave the numbers out except when needed for specific procedures etc. Romulator consists of a special program which moves the contents of the cartridge then saves it to the magnetic medium being used. A special Romulator circuit card is used which allows changing the configuration of the GAME and EXROM lines thus preventing auto starting. This card is used with both the tape and disk versions of the C64 software. The circuit card also has a socket for an 8K or 16K RAM expander. The RAM expander is the key since the tape or disk program can be downloaded to the RAM. The RAM is made to look like a ROM cartridge by the use of a write enable line which prevents erasing of the program by software means. Finally, the RAM location can be changed so that it will reside anywhere commonly used by commercial cartridges.

The general process is to use the Romulator circuit card to determine the normal cartridge configuration, next set the switches to defeat the autorun and then to copy the contents of the cartridge to the selected magnetic medium. The Romulator card with RAM is left in the computer. It does not interfere with any other operation. The cartridge can be stored away safely. When desired to run the program, it is downloaded into the expander RAM which is then write protected and switched into the configuration for the cartridge being run. A system reset button on the Romulator card is then pressed to force a cold start. Since the computer will see the cartridge configuration and cartridge codes, it will run the program as though the cartridge itself were plugged in! This can be done with 8K or 16K cartridges. To date we have not found one that it will not work with. Chapter seven lists the exact procedures to follow as well as the programs and circuits needed.

This book has been written with the aid of Quick Brown Fox word processor which we run on a Romulator system. The cartridge is safely stored in a drawer. It is very nice to be free of the anxiety of having some unexpected "glitch" destroy the cartridge and put us temporarily out of business. Also gone is the fear that an overworked edge connector will become intermittent or fail altogether. If you decide to set up a Romulator system for your computer you will find it a valuable

(((((((((((((((((

(

There are a wider variety of protection schemes in existence for disk than any other medium. understandable that software houses have developed so many forms of protection since an unprotected disk is so easy to copy. Many people would be tempted to avoid purchasing by copying from a friend, and a few might even try to make a profit by selling pirated copies at a much lower price. The protection methods we will cover will help you to protect your own disk software and to break protection when you need to make a backup of one you have purchased. As a consumer, you should avoid purchasing "super protected" disks because of the limitations and insecurity they force upon the user. If the super protected program is the best thing around, you will have to weigh the disadvantages versus the quality of the software. You might perhaps settle with purchasing a second original if you need maximum disk crash. protection from the eventual When appropriate, we will spell out specific limitations and problems to normal function introduced by some forms of protection.

We will define "levels" of protection to make our discussion easier. These are not in line with any "standard level", but are merely to give us a yardstick in comparing different kinds of protection. This may also help you in classifying programs that you wish to copy so that you can select the most appropriate form of "attack".

Level 0.....Unprotected. Can be saved by loading and saving. Contains basic only or basic loaded machine language.

Level 1....Contains auto-run feature and a STOP disable poke in program. Doesn't allow saving but can be direct copied or Relocate/loaded and saved. (see copy systems; Direct Duplicator-1 [DD-1] and Relocate/Loader)

Level 2.....Contains "bad sector" errors on disk which prevents most commercial disk duplicators from reading past. Creates "shuts off in the middle of copying" syndrome with many disk copy programs. May also contain L1 techniques. DD-1 will copy these.

Level 3.....Same as above except program will not run without error sectors being put back into the copy. Requires Error Maker program or modification of program to take out sections which "look" for bad sectors.

Level 4.... This is what we will call "advanced" error protection. It involves altering the parameters of the normal drive formatting and/or writing. This will produce symptoms such as extra tracks, specially encoded data or format info, modified headers, "data under errors", and so on. The so called "half tracking" is one of these non-standard writing techniques. This seems to be the direction of newer software and can create severe compatibility problems. Diskpicker can be used to both analyze and develop routines to break anything that fits into the altered DOS category, as that is its primary purpose.

Level 5....Disk requires hardware module to operate. "Dongle" protected. Requires Dongle synthesizer or modification of program so that it does not look for dongle. This is a "valid" form of protection if it allows backup disks to be made. It will minimize "Piracy" while giving the owner crash protection.

This listing does not attempt to cover every possibility under the sun but it does cover the more common methods that we have encountered. For those levels which require modification of the program, you will need an understanding of how to disassemble programs to make the necessary changes. A full fluency

((((((((((

in machine language is beyond the scope of this book and really is an aquired skill. We will try to define the process however to give you some chance. Your own interest in going further is up to you. Level 4 is probably the one that you should avoid purchasing in the first place If you can find a similar program of similar quality without the protection. Don't be fooled though, a highly protected program has no relation whatsoever to the quality of the program. I have seen public domain programs that are significantly better than expensive commercial versions!

Attacking level four protection can be done with Diskpicker. The error making and header modifying routines we give will get you started in this direction.

-- WHOLE DISK DUPLICATORS --

Direct Duplicator-1 was written by Vic Numbers and is listed as a part of this book. PSIDAC holds copyrights on this program. DD-1 overcomes many of the limitations of other "whole disk" copiers. This is especially true for protected disks containing errors which will stop some copiers. Other copiers may attempt to "second guess" where the errors might be and do those sections last, which does not often work. DD-1 does a sector by sector duplication of every track and sector on the disk. It will transfer the contents of bad sectors but cannot reproduce an error. Most duplicators that can get through the errors can't

duplicate the errors so programs called Error Makers are needed. These programs and means of clearing errors will be described later. DD-1 has a version for single disk owners and a version for dual disk owners. The single disk version (1DUPDAC and 1PSIMAIN) will require swapping disks. The dual disk version (2DUPDAC and 2PSIMAIN) is essentially a hands free system. Both versions will print the type of error on the screen or optionally to the printer, if the original contains "error protection". This is a powerful feature that gives needed information if you have to reinstall errors or modify the copied program to make it run.

One very unusual feature is a "fast write" mode which tests each byte of data on a sector and skips over any sector which contains normal format data but no program data. This will in no way affect the validity of the copy but it can cut the time to make a duplicate almost in half. Another really handy feature is the ability to write more than one copy per original The idea is that once DD-1 has read a buffer full of data (150 blocks) that this data can be written to more than one disk. This saves the extra read which would be redundant since the buffer still contains the data until a new 150 block section is read. Thus making many copies of the same disk can be accomplished at a very fast rate. This is very handy for disks of programs that you have written and wish to distribute. Generally, if the original contains more than three programs and you wish to make several copies, you will save time by using the fast write mode and multiple

copy features of DD-1. Since this system is written in machine language (DUPDAC) with a basic controller (PSIMAIN) speed and flexibility are natural.

(

(

(

(

(

(

(

(

(

(

(

(

C

(

(

(

(

(

DD-1 is simple to use and usually overcomes protection on the original. Since the whole process is very direct, you will avoid spending the time required to get an understanding of what is being done on the disk. It is best for the lower levels of protection.

There are several other noteworthy copier programs on the market which you might find especially suited to your needs. We will point out some of their advantages and limitations from our viewpoint. Clone Machine is the trade name of a set of programs released by Micro Ware, of Butler, New Jersey. It offers a whole disk backup program along with other programs similar to the variety we give you in chapter 6. We will cover the other types of tools later in this chapter. The Clone Machine disk duplicater program provides a "graphic" display indicating the reading and writing of sectors. The version we used locked up when an error was encountered. This meant writing down track and sector, then returning to menu options and then trying to continue the copy process from the point ended. found this extremely cumbersome compared to automatic error skipping features of DD-1. The whole menu process can sometimes be tedious since typically you will be doing the same thing over and over. It is tiresome having to keep telling it that you're using device 8 each time!

Clone machine uses a 120 block buffer which allows reasonable copy times for backup purposes. Uses for multiple copies or high speed are not supported, and copying an original with lots of protection errors would be frustrating. In most respects though, Clone Machine does what is says it will and can be useful. The Unguard error writer seemed to function well, it provides a simple direct way of writing errors back onto a disk. The problem will be mainly one of obsolecence as new forms of protection hit the shelves. Our biggest complaint would be the price. At \$49.95 it is hard to justify owning for the value obtained.

Another good copier is Supercopy by Richvale Telecommunications. It is relatively fast and has a nice menu display. Once again, the program is locked up giving you little opportunity to modify it and keep it current with the changing forms of protection. We believe a copy program should be open so that as new forms of protection come along you can add routines to accommodate them.

There are several very new entries to the market (mid 1984) that you may wish to consider. The major features are that they provide fast copy times (4 minute average) and automatic error writing including the "current popular errors". The copy protection used by these programs does indicate their inevitable obsolescence however. In the mean time though they are certainly "state-of-the-art"! Among those we have tried

or that have come well recommended are "DI-SECTOR" from Starpoint Software of Gazelle, California, "GEMINI 2.0" available from Computron Business Systems of Portland, Oregon, and "ULTRA COPY" from Ultrabyte of Dearborn, MI. There may be more good copiers hatching than there are good programs to copy!

(

(

(

(

(

(

(

(

(

(

We have included two programs which will greatly simplify and speed up copying disks with several errors. The programs are T/S Analyzer and Fastback. T/S is used to examine the disk sector by sector and log any errors found. The check is made out through track number 35. This log can be saved on another disk for later use or simply examined to see what you are up against. The primary purpose for the log is to tell Fastback which sectors to copy and which ones to skip. Any unused sector or a sector containing an error are skipped. This results in a very fast copy. The original time spent to make the error log is spread over the total number of backups that you make. Fastback need waste no time repeating the error checking on each copy as does DD-1 and most other copiers. Another note is that the logging routine which takes about 10 minutes can operate unattended unlike the copier programs themselves. After doing the Fastback you can go back with an error maker replace the error sectors as needed, or remove the sections of the program that look for the errors.

There are several copy programs "floating" around that you may run into.We have commonly found that the whole disk copiers usually have no fast or multiple

features and often are awkward in handling errors. Although DD-1 cannot solve every copy situation, we have tried to make it economical to own and easy to use. T/S Analyzer and Fastback are especially handy if you intend to make several backups. T/S Analyzer by itself is useful if you want to find out what kind of errors you are going to find on a particular disk. (See listings chapter 6)

Contrary to how it may sound, a Dumb copier is probably the most effective way to duplicate "smart" protected disks. The principle of dumb copying is that data is fed from one drive to another without going through the logic of the system. This is basically a dubbing process. The effectiveness of protection in the first place relies on the fact that your disk drive has a computer inside that decides which data from the diskette is good, which is bad, and which is ugly. The dumb copier could care less, it writes what it sees! We have not heard of any system of this type yet on the market for low end users. We are currently considering developing and marketing such a system. At this point a lot depends on the market interest.

-- OTHER TOOLS --

Superdirectory is what its name says it is. When you run into programs which cannot be copied by whole disk means and when you load them and they take off running... it's time for Superdirectory. As you know, the Load"\$",8 tells you whats on the disk but it doesn't tell eveything! Superdirectory will tell you a

SUPERDIRECTORY

DISK NAME = PSIPACK V1 C(84)

TYPE	TRACK	SECTOR	NAME	BLKS	HEX.ADD	DEC.ADD
PRG	17	ø	1PSIMAIN	2	9891	2049
PRG	17	ĭ	2PSIMAIN	ว้	9891	2049
PRG	i9	å	SUPERDIRECTORY	2 2 8	9891 9891	2049 2049
PRG	19	13	DISK-EDITOR	7	9891	2049 2049
PRG	17	19	RELOCATE/LOADER	2	9891	2045 2049
PRG	16	5	DISKPICKER	17	9891	2049 2049
PRG	19	2 9 2	T/S ANALYZER	8	9891 9891	2049 2049
PRG	17	3	FASTBACK	7	9891 9891	
PRG	17	15	1DUPDAC	17	C000	2049
PRG	16		2DUPDAC	17	C000	49152
PRG	20	5	ADMACH	17		49152
PRG	20	7 2 3 4 6 8 9	MACHRELO	1	0000 0040	49152
PRG	20	3	3ROMULATOR	ļ	0348	840
2RG	20	7		4	0A00	2560
PRG	40	Ď	2ROMULATOR	4	0A00	2560
PRG	19	8	ZMACH	1	0999	49152
פואה DEL	20		ANALYMACH	1_	C846	51264
	20	12	MONITOR\$8000	17	0101	257
₽RG PRG	19	4	ERROR ANALYZER	7	9891	2049
PRG	17	6 7	20 NO HEADER	1	3300	13056
PRG	17		21 ERASE TRK	1	3300	13056
PRG	17	16	22 NO DATA	1	3300	13056
PRG	16	0	23 DATCHKSUM	1	3300	13056
PRG	16	1 8 6 5	SYNC WRITER	1	3300	13056
PRG	17	a	HELP	4	0801	2049
PRG	19	6	WRITE HDR	1	3300	13056
PRG	19		READ HDR	1	4300	17152
PRG	19	14	COPY HDR	1	3300	13056
PRG	19	7	CON HDR	1	5300	21248
PRG	19	15	1CON HDR	1	5300	21248
PRG	16	3	LINKSTER	5	9891	2049
PRG	14	9	TMACHRELO	1	1F48	8008
PRG	14	15	TRELO	7	0801	2049
						- · · · -

lot about whats on your disk so that you can decide how to handle each program and file.

On the opposite page is a sample printout of a Superdirectory listing. Note that as well as the name and number of blocks, you are also told the starting track and sector for each. Note also that DELeted programs are listed. Until they have actually been written over, they are still on the disk. This can be used for protection since one normally wouldn't even know they were present! Appendix D shows how to restore scratched programs. The most valuable feature of Superdirectory is the second section which lists each program by its starting track and sector and gives the hex and decimal equivalents of its starting address in the computer. This makes it easy to separate machine routines from basic routines and to locate autorun and other protection boot systems that load in normally below hex 0801. With this info you can often load and "pick" programs separately. Without knowing these addresses, you can load them but you don't know where to find them!

Error Analyzer has two primary functions. One is to do a quick track by track check for normal sync formatting. This is done out to track 44 so that as well as finding Erased tracks it will also tell you if anything has been put beyond the normal track ranges. This operation can be done in a few seconds and is a good idea on a new program disk to get an idea of what you are up against. The second mode is a sector by

sector check which is similar but gives you a complete listing of errors by sector. Unlike T/S analyzer, this one does not make a log of errors for Fastback. The other difference is that it is a machine controlled read which operates OUTSIDE of the normal DOS. This improves its ability to "tolerate" the errors it finds without bumping and grinding the head in the process. The error listings can be printed if desired for a permanent record.

(

(

(

(

(

(

(

(

(

(

(

(

•

(

(

•

(

useful Relocate/Loader is another tool in "picking" programs. For example you will probably be able to load and pick any program addressed above hex 0801 but the ones starting lower than this may lock up the computer. The trick is to load them somewhere else and pick them. Once the "picking" is done, you can save them and change the address on the disk so that they load back to where they were supposed to. Somtimes rather than even picking a program, you may simply reload it so that it won't run or lock up. Then you can save the program - which defeats the purpose of the lockup anyway! The saved version of the relocated program will need two bytes changed on the disk so that it will then load back to its normal disk location and run normally. A 50K byte buffer is available for your relocated programs. All efforts were made to keep Relocate/loader itself small. There is also a tape version called Trelo which is described in the tape section of this chapter and chapter 5.

Disk-Editor is a program that will display any

 \mathbf{C} (((

 \mathbf{C}

sector of the disk on the screen and allow you to change any bytes in that sector. This will give you the ability to change the address contained in the first track and sector of a program which tells where that program loads to in the computer. This is normally done on programs that have been saved with Relocate/loader techniques. Also you may find occasions when you would like to scramble some data on a particular sector, reactivate a deleted file or otherwise confound some location on a disk. Some other programs similar to this are called disk doctors and also have the ability to change data on the disk.

Error Makers are programs which can reproduce certain errors on a disk. This is usually accomplished by sending a machine language program to the computer in the disk which tells it to do something outside its normal operating paramaters. Often there will be compatibility problems when using these with disks other than the 1541 since the operating system programs used by other manufacturers are not identical to the 1541.

Diskpicker is a disk drive software development system which allows you to write, load, and execute programs directly in the disk drive memory. We have provided the more commom error routines which can be sent to the disk drive to write the errors as desired on a disk. The primary purpose of Diskpicker however is to give you a development system on which you can devise your own error writing, modified formating,

(((((((((• ((((((• (((((((((((((((((

encrypted data writing, routines and so on. Diskpicker is designed, it lets you develop a routine such as an error writer, send it to the disk and execute it and then read the disk to see if operated the way you wanted. Since the market will continually change with new errors and techniques for protection, Diskpicker gives you a way to develop and use new error routines as needed. Alternately, if you are not into machine programming, you may be able to find someone with an error making routine and you can then use Diskpicker to send it and execute it. Commercial error writing programs do not generally allow for this and are thus prematurely obsolete. The Diskpicker requires Monitor\$8000 by Commodore to give it the monitor features although other monitors can be used by changing the auto load and monitor call locations. Other monitors should not be located at \$C000 as this area is used by Diskpicker. Beyond that it is a unique program that gives you a chance to stay current in this volatile pastime.

Linkster is a simple basic program that gives you a display and printout of the tracks and sectors used by a program. It is very handy when you need to know exactly which tracks and sectors are being used by any given program.

There are some other tools which you may like to have that we have not included in our kit. Two notable tools are BAM view and Track and Sector display. These are readily available in the public domain and are

() **(**) C C ϵ \mathbf{C} :

furnished on the demo with your 1541 drive, thus we have made no effort to include our own version. The Bam view is nice to give you a more graphical display of what tracks and sectors have been used on a disk. The track and sector display is similar to what you get when you use our Disk-Editor. A block at a time can be displayed or printed. The data is in hex with the ASCII representation shown off to the side. This is nice as it allows you to see things like names and other "coherent" data. It is a passive program only, and unlike the Disk-Editor which allows you to change contents of these locations.

The next group of tools that you may need to use are the most powerful but also the hardest to use. They are the Editor/Assemblers. To the uninitiated, these allow you to write, view, change, save, and generally manipulate machine language programs. The secret that most programmers and pirates alike try to keep is that in order to become really proficient at breaking protected programs you need an understanding of machine language and the use of editor/assemblers. There are too many possibilities for any likelyhood of ever seeing an undefeatable protection breaker. Get editor/assembler and start learning how to use it. You may never become a machine language programmer, but it will be a powerful tool even if your ability limited.

There are many E/As that will do the job and feel free to use one that you like. If you have no previous

experience we recommend two which Commodore sells on a disk called "Commodore 64 Macro Assembler Development System". The two programs are called "Monitor\$8000" and "Monitor\$C000" after the hex locations in which they reside. We recommend these partly because the entire range of memory can be accessed with these two. If a program happens to extend up into the area used by one of the assemblers, you can always use the other! Also the command structure is identical for each which makes switching quite painless. Also this assembler is readily available . You will need it to use Diskpicker. There are two major weaknesses which are nearly unforgivable in a commercial system though. The first is that they will not save the memory locations where they reside, so you can't copy them. We have included a range of memory locations in Appendix B which you should change in Monitor\$8000 so that this problem can be eliminated. In this manner Monitor\$8000 can be modified so that it will save any range in memory. The second problem is that page zero cannot be saved or restored from a monitor command and thus it is awkward to go back and forth between basic and assembler. have included a utility routine "ZMACH" that can be loaded when using the monitors to do this. With these fixes you should find them quite usefull in attacking machine programs and various forms of protection.

(

(

(

(

(

(

(

(

(

(

(

(

(

(

€

(

(

(

(

(

(

1

(

(

The use of E/As and the details of machine language are complete subjects in themselves. Many good books exist on the subject and you should purchase one along with the Commodore 64 Reference guide. Two books,

either of which will get you started on machine language are "Programming the 6502" by Lawrence Leventhal and "6502 Software Design" by Leo J. Scanlon. The 64 reference guide is especially important because of the Kernal explanations and the complete memory maps which can be a great aid in trying to figure out what a program is doing. The two 6502 machine language books give good expanations of machine language commands and simple examples of their use. Many of the routines that you will be disassembling involve jumps to Kernal routines along with specialized machine routines. Bytracing the kernal jumps in the program you can often get a "skeleton" of it. By filling in with what the specialized machine programs are doing you can then learn what has been done.

 \mathbf{C}

C

 \mathbf{C}

 \mathbf{C}

(

(

C

C .

<u>C</u>

()

(

A good calculator with Hex to Decimal conversions is invaluable to a serious machine programmer. The Sharp EL-510S is a good as well as inexpensive choice.

-- Summary --

The simplest thing to do when first trying to back up a disk program is to try to make a direct whole-disk copy. If this copy will not run as is, you can then go back to see what kind of errors showed up in duplication. If using our copier you will already have a printout of this info. If you are quite certain that the original makes heavy use of error protection, you should first use Error Analyzer to check the disk out

and depending on what you find, perhaps run T/S Analyzer to get an error log. The error log should be saved on a disk reserved for this purpose. A Fastback can then be done, utilizing the error log. Next use an error maker to try to reproduce these kinds of errors in the copy. If this fails, use a program such as SuperDirectory to locate what kind of programs are on the disk and where they load to. Where possible load these programs and list or dissassemble them as appropriate for the kind of program involved. Locate the sections which look for the errors, extra tracks, etc. and take these sections out. When programs autorun preventing listing, use Relocate/Loader to load then dissassemble. For more ideas on use of these programs see the chapters which cover specific applications.

(

(

(

(

(

0

•

(

(

(

(

•

(

•

(

(

(

(

(

(

(

If you obtain versions of the kinds of programs we have discussed and become proficient at using them, you will be able to break many forms of protection. As with any complex job, it is an art which depends largely on aquired skill. In this book we do not hope to solve every problem for you but rather to give you a guide to follow and explain the major tools and their use. If and when software falls into line with the rest of the information market, these problems of exotic protection may dissappear.

-- Tapes --

Compared to disks and cartridges, tape protection is very easy to circumvent. The main reason for this is that the tape medium simply does not provide for any

• C \mathbf{C} \mathbf{C} C

really sophisticated "lock outs". A magnetic tape recorder is a very "dumb" peripheral device compared to a disk recorder. It contains no microprocessor or logic control devices which need to be fooled or bypassed as does a disk drive. The serial nature of the tape does not allow for sophisticated file handling and the kinds of access code checking that disks may use. In fact, if a program of interest is available both on disk or tape, you may choose to purchase the tape and make your back-ups on disk! You can then enjoy the speed and versatility of the disk while avoiding the sophisticated forms of protection which the disk version may contain!

The most effective way of copying a taped program is to use the "Clone" method which we describe in chapter 5. The effectiveness of this system is due to the fact that it is an entirely "dumb copier". A dumb copier makes no attempt to interpret any data, it has no means to do so. Information coming from one datasette is rerouted via a special plug and fed into another datasette. One plays whatever is on the tape while the other records whatever is on the tape. The data on the backup is an exact match to the original complete with any protection and so on.

When using cloning for duplication you should be aware of the fact that a cloned copy is never quite as good as a "computer saved" copy. The amount of degradation is minimal and will not cause any problems if the clone is made from an original tape. If clones

are made of clones, there will be a multiplication effect so that after about four or five generations the copy would be unuseable. You might think of this as sort of a problem of inbreeding. The best practice is to clone the original and use the clone, keeping the original stored safely away in case your clone is damaged. In this manner all clones will be first generation and will not exhibit mutant tendencies!

Another way to make tape copies is to try to save them directly. One noteworthy form of tape protection

1

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

•

(

(

(

•

(

Another way to make tape copies is to try to save them directly. One noteworthy form of tape protection against this relies on an autorun routine in the program. These are loaded below hex \$0801 in memory. The usual trick is to use a short autorun program which also disables the STOP key so that you cannot break and list the main program(s). Often there may be more than one program, each of which can be loaded and saved normally as long as the autorun section is not loaded. If the datasette runs and stops and runs again while loading a program, this is probably the case. The autorun section can be saved separately by using the tape version of Relocate/Loader, Trelo.

If you decide to try to copy tape programs by loading and saving, you will need to know whether they are basic or machine language and where the machine sections reside in memory. Chapter 3 details the tape buffer which can be used to extract the beginning and ending addresses of programs being loaded. In order to be effective at this kind of work we recommend that you add a "Load Data Audio" circuit to your computer. Tape

programs contain a "header" section which contains the name and locations. By listening to the program load with the audio circuit, you can stop the recorder at the appropriate times and Peek at the tape buffer to find out the starting and ending locations. An editor/assembler is helpful in this also so that you can get a full hex display of the important buffer locations and also directly save the machine programs to the backup tape or disk.

This completes our discussion of tools for duplicating software. Although other tools and methods exist, this is a good sampling of the essentials. As with any craft, you will probably find yourself collecting a variety of specialized tools to solve special problems. As your skill with the simple tools increases, you will begin to understand the applications for the more advanced tools.

*** CHAPTER THREE ***

(

(

(

(

(

(

(

(

(

(

(

MAPS

For many applications of the computer we do not need to know much about the memory of the system. Usually we can be happy knowing that we will not run out of useable memory space. When it comes to duplicating programs however, working without a memory map is like trying to find a house in a strange city without a roadmap. "Getting into" a protected program will often require that we know something about where it normally resides in memory or how the computer is configured to run that program. This chapter will give you the maps and information about system configuration This chapter should be used as a that you will need. reference when you get into situations which require you to locate programs. Do not worry about memorizing this information, will be better off you familiarizing yourself with what kind of information is

here, then look it up when you need it.

We will cover five topics concerning memory as follows:

- 1. Normal configuration.
- 2. Software reconfiguration.
- 3. Hardware reconfiguration.
- 4. Special locations.
- 5. Disk memory.

NORMAL CONFIGURATION

Figure 3.1 shows the normal configuration for the C64. Note that the memory addresses are given both in hex and in decimal. In this configuration the areas shown shaded are RAM available to the user. For basic programs the memory must be contiguous. Thus the area from 2048 to 40960 (38911 bytes) is available for basic programs.

Basic ROM starts at \$A000 and extends to \$BFFF. That means that in normal configuration, this area is occupied by Basic and cannot be used otherwise. Another free RAM zone begins at \$C000 but can only be used for machine programs or data storage kinds of jobs since it is not contiguous with the other free RAM. The area at \$C000 is 4K (4096) bytes, extending to \$CFFF. A basic program can poke values to the 4K RAM at \$C000 thus increasing the available RAM without reconfiguring. Alternately, this RAM at \$C000 could be used for machine subroutines which basic could call thus

reducing t	the	requirements	for	uninterupted	d memory
space.					
•			•		
		•			
				• •	
					•
					•
			-		
÷					
			49		

SOFTWARE RECONFIGURATION

One of the unique features of the C64 is the way its memory can be reconfigured. This is made possible because the C64 contains 64K of RAM located between hex \$0000 and \$FFFF. The ROM and I/O areas shown on figure 3.1 actually contain RAM "underneath" them. The 6510 microprocessor used in the C64 allows the programmer to switch memory blocks in or out. Ιf the 6510 microprocessor chip had more than 16 address lines, the process of reconfiguring memory would not be necessary. The 16 address lines limit it to directly addressing 64K of memory. By using a special output port at location \$0001, the 6510 "turns on or off" these memory blocks which are addressed "on top of each other". Actually, the ROM and I/O are normally "in", while the RAM underneath is accessed by switching the ROM "out". So Basic ROM is normally seen at \$A000 and KERNAL ROM is normally seen at \$E000. The I/O section hex \$D000 to \$DFFF has three possible memories to talk Normally it is I/O. By changing location 1 to a to. value such as decimal 51, the character ROM can

switched into the D000 to DFFF locations. A value of decimal 48 will switch the D000 to DFFF RAM in.

C

of BASIC and KERNAL the case areas, the underlying RAM can be written to at any time but can only be read if the ROM is switched out. Thus a basic values into these "hidden" RAM program can poke locations or a machine program can Store to these locations. To read the contents of this memory the ROM must be switched out by the accessing program. means that the program that reads these locations cannot be BASIC because the BASIC ROM and/or KERNAL ROM will be "shut off" during the access time. if the KERNAL area is "off" the machine example, routine must not access KERNAL routines during the time the hidden memory is being read. If Basic is off, calling routine must not use any basic statements. important note is that switching the KERNAL off also disables Basic. Also if using the I/O area, the program reading the underlying RAM must not contain any interrupts, keyboard or I/O calls, in addition to not using BASIC or KERNAL routines. Outside of these limitations, the memory reconfiguration is a good feature which allows the C64 to go far beyond the limitations of norma1 8/16 bit computer. Unfortunately, it also makes for quite a bit many users and makes some forms of confusion for protection harder to analyze and break. In some knowing the normal configuration for a program you are trying to break will be of paramount importance.

Three of the bits at location \$0001 hex control the configuration of the ROM and I/O memory. Table 3.1 shows the hex, binary and decimal values used to reconfigure the port. Most often you would use a small machine routine to set the value at location \$0001 for the configuration desired, then access the memory, finally resetting the value at \$0001 to 37 before returning to basic or accessing normal I/O or KERNAL routines.

----- TABLE 3.1 -----

	····		
Value	at Loc \$0001		
нех	BINARY	DEC	CONFIGURATION
37	110111	55	Normal (Map fig 3.1)
36	110110	54	BASIC out
35	110101	53	KERNAL & BASIC out
34	110100	52	BAS -KERN -I/O out (64K RAM
33	110011	51	I/O out
32	110010	50	I/O & BASIC out
31	110001	49	I/O & KERNAL & BASIC out
30	110000	48	I/O-BAS -KERN out (64K RAM)

Although the values in table 3.1 are the "normal" state for the data in location \$0001, there are other situations which may cause these values to appear

different than the ones listed in table 3.1. The reason for this is that the value at location \$0001 is the result of eight bits of binary information and only the last three of these bits actually control memory configuration. The other bits which go together to make up the value have to do with the cassette port. storing one of the hex values listed in location \$0001 achieve the desired result but is not the "cleanest" in programming terms. A better method when you need to shut OFF one bit of eight. is to use the logical AND instruction. When you need to turn ON one bit without affecting the rest, the ORA (logical OR) instruction is best. Table 3.2 gives the pre-'calculated values to AND or OR for changing memory configurations. Think of the AND as disabling certain ROMs while the OR (ORA machine) will reset to normal. A disable program for removing basic might look this:

> LDA #\$FE AND \$01 STA \$01 RTS

A resetting routine:

LDA #\$01 ORA \$01 STA \$01 RTS

HEX	Disable # (AND) Enable # (OR) Configuration						
	2- FE 3- FD 4- FC 5- FB 6- FA 7- F9	01 02 03 04 05 06	KERN & BASIC out KERN BAS I/O out I/O out I/O BAS out I/O BAS KERN out				

HARDWARE RECONFIGURATION (CARTRIDGES)

As you can see, the useable memory controlled by limitations of 8/16 the addressing an microprocessor, is pretty well filled up! The problem then arises of where to put cartridge programs. Leaving a certain area unused as the VIC 20 does, would mean a limitation of user RAM or a tradeoff in sophistication of the normal system. Rather than allow this, the Commodore designers included another memory reconfiguration scheme that could be controlled by the cartridge itself. The concept being that cartridge programs would occupy RAM locations starting at hex 8000 or hex A000, with a hardware system of switching out the normal memory in these locations. This still leaves a lot of RAM available if needed by the cartridge program and, in the case of A000 cartridges, uses BASIC area which is not often needed since most

cartridges are machine language.

An interesting fact is that the cartridge program could again reconfigure memory once it starts operation. In many cases this would foil attempts to transfer the cartridge program to RAM inside the C64 and running it from there. Some cartridge programs can be operated from C64 memory without using the cartridge! This is not a very predictable method though as even a simple "write over" loop in the program could eliminate any possibility of running in RAM without write protection. This along with the chance that the program could reconfigure memory when it runs, convinced us that the only viable way of running cartridge programs without using the cartridge would be through the use of an external RAM with write protect capability, which essentially emulates ROM. Thus the Romulator system described in chapter seven provides a very reliable cartridge elimination scheme.

The hardware reconfiguration necessary for the cartridges involves two lines which are connected to the expansion port of your C64. These two lines are named GAME and EXROM and they are normally at logic one with no cartridge plugged in. In general, these lines are either individually or both grounded by the cartridge to control the memory configuration of the C64. Table 3.3 details the possible combinations of these lines and indicates what areas are made available. Actually there is no specific rule for exactly where in these areas a cartridge must start for

any given line configuration. However unfortunate this might be, it has little effect on our ability to copy and operate the cartridge in external RAM such as the Romulator system does. All that is important is that you know the normal state of these lines with the particular cartridge in question. Chapter seven outlines a very simple non-destructive way to find out the normal starting location used by the cartridge ROM.

----- TABLE 3.3 -----

GAME	EXROM	MEMORY CONFIGURATION
1 0 1 0	1 1 0	NORMAL- no cartridge in \$8000 & A000 & E000 available Location \$8000 available BASIC out \$8000 & \$A000 available

(

Hardware reconfiguration will be needed if you are doing cartridge backups. The Romulator system provides you with the necessary hardware to accomplish this for the majority of 8K and 16K cartridges currently available.

----- SPECIAL LOCATIONS -----

There are several areas in the C64 memory that are of particular concern to anyone breaking protected

These locations or areas of memory either programs. contain information that you may need to duplicate a particular protected program, or they may be locations used for purposes of disabling the keyboard, autostart routines and so on. One area of especial interest is the "control zone" which is indicated on figure 3.1. This zone which resides between \$0000 and \$0400 is the operating system mainly used by to store "housekeeping" data such as pointers, vectors, flags and so on. The "zero page" (\$0000 to 00FF" is located in this zone. The memory maps in the Commodore 64 Programmer's Reference Guide spells out the function of every assigned location in the control zone. There are three fairly good size "free" areas within the control zone that you need to be aware of. The tape buffer \$033C-\$03FB is one and an unused area \$02A7-\$02FF is the other and \$0100-\$01FF the third. Although the tape buffer area and the \$0100 area have other jobs, you will see them used for directly loaded routines. The tape buffer has two characteristics of interest to us. One is that upon loading a tape header from a program, it will contain the starting and ending addresses of that program. Figure 3.2 shows the first locations of the tape buffer and indicates what information the bytes located there contain. Note the way the starting and ending address of the program that has been loaded is determined. Second, the buffer area of the tape buffer is often used for a short control

program or data storage. Programs in the buffer area can be written there from disk or tape or sometimes

placed there via a "poking" routine in another location. Since this area would only be affected by a tape load, it is protected from being destroyed by normal means such as resets etc. Also it is not obvious to the uninitiated and thus provides a small measure of secrecy. Routines here must be in machine language as it is not contiguous with user RAM. The size limits the extent of the program, but it is perfect for boot or protection routines and access codes.

The unused memory at \$02A7-\$02FF has similar applications. This is an insidious area because it borders on the BASIC vector locations. The significance of this is that if each of these five vector locations contain the starting address of a routine, RUN/RESTORE attempt will force an automatic jump into the routine. In this manner, an attempt to break a program for listing or disassembly cannot be done from the keyboard. Most importantly though is that if these vector locations are loaded to from tape or disk, upon completion of the load the program they point to will run! This is the elusive method for AUTORUN! The trick to using autorun is that the program must be in the computer BEFORE these locations are loaded to. Since one of the purposes of autorun is to prevent listing of programs before the user RUNs them, that means that the program to be autorun must be loaded along with but before the vectors. The only area before the vectors big enough to contain a program is the \$02A7 to \$02FF area. Although not large this area is perfect to boot in a main program and run it. RUN/RESTORE will simply restart the program as long as the vectors are set! The Relocate/loader process in chapter six gives the procedure to get around this and save these routines or examine them. Appendix C lists an autorum routine that you can use with your own programs if you wish. Note locations specified for addresses and load options.

(

(

(

The zone at \$0100 has sometimes been used for autorun boots. Most of the same ideas apply to it as the other areas we have already talked about. You should once again be alert for addresses shown up by Superdirectory which reside in this zone. The Relocate/loader is a perfect way to save these routines.

As usual, the possibilites for using or modifying certain locations in the control zone are limitless. Ultimately, you need the ability to find out what locations a program is using in the control zone and then analyzing the result for each particular case.

Some programs, especially basic will need to have the basic vector locations intact, that is the autostart method would interfere with the normal operation of a basic routine. When this case occurs, the autostart may be used as a loader but from the moment the basic program is accessed, the five vectors will need to be restored. There is a method which will prevent any basic program from being "Stopped" and listed which requires no special separate routines. That is to execute a POKE808,225 somewhere near the beginning of the program. This location is the KERNAL

STOP routine vector and poking 225 there prevents the computer from doing the STOP routine when the STOP key is pressed!

As a general rule you should be especially watchful of pokes or stores to any control page locations. Pay particular attention to any changes of vector addresses as they cause the computer to go to the wrong place when that routine or condition arises. This allows protectors to keep people from using "normal" means to look at their programs. For more information, you will need the 'Programmers Reference Guide or one of the other clones of this guide which fill most bookstore computer bookshelves. Probably the most fertile range to study and look for in programs are address locations \$02A7 through \$03FF. This range contains the five BASIC vectors and thirteen KERNAL vectors as well as the largest unused zone and the tape buffer.

The tools included in this book are just the beginning in breaking protection. The whole protection dilemma is dynamic in nature and even as we write this book, someone somewhere is bound to be devising a new and more diabolical scheme. Every time you buy another utility guaranteed to break "all forms of protection" you will eventually find something it won't work on. Information and understanding are the most important keys you can have to unlocking protection.

----- DISK MEMORY -----

Perhaps one of the best kept secrets of the Commodore family of equipment is information concerning the disk drive. Most of the information around is a slightly fermented product of the grapevine... So and so said this... what isname said that. The information and procedures being used with the disk range from gibberish to genius. What we have managed to distill from all this is somewhere between and although I know it is not genius, I hope you won't find it gibberish!

()

(

(

(

(

(

(

(

(

(

(

In this section we will give you a simplified disk map, figure 3.3 as well as point out a few of the areas of special interest. The VIAs which are used in the disk drive are detailed in figure 3.4. For diskette formatting, we will refer you to your User's Manual. Appendix F shows a GCR (group coded recording) map of a typical disk sector. You should also note the GCR header organization as it is slightly different from what the disk manual implies. The rest of this chapter will explain the areas shown on the maps in figure 3.3 and 3.4.

The ROM used in the disk is 16K and provides a unique operating system (DOS) in which the vast majority of all disk functions are accomplished by software. This is the hardware-software tradeoff which gives designers the choice of making fast and relatively expensive hardware intensive products versus slower, cheaper software intensive products. The Commodore directive was to produce an inexpensive

disk which inherently requires the use of software for as many functions as possible. Although much too long to detail here, you can get a complete disassembly of this ROM by using Diskpicker which is explained in more detail in chapter six. If you are serious about programming the disk, you should take the time to do this. Be sure to have lots of paper ready for your printer and a couple hours of time. 16K is a lot to transfer and print!

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

As a user, you can control the ROM only to the extent that you may use (JSR to) the routines contained there. However, those with the knowlege and equipment, could "burn" another set of ROMs with some of the routines specially modified. The purpose of this might then be to cause the disk to write in an abnormal manner which could not be reproduced by normal disk drives. If this is done in a manner that does not interfere with normal reading operations, it would be a very effective protection scheme. The users "normal" operating system could not copy or write in the same way as the manufacturers "abnormal" operating system. The only hope would be if the user, by analyzing the protection, could write a routine that could be fitted into an unused RAM buffer in the disk memory. In some cases, one could reproduce the way the disk was protected. This is one of the primary purposes of Diskpicker; to allow user machine language programs to be developed, tested, and operated in the disk RAM. The major problem in implementing such routines will be limited RAM available. Ιf the the protection DOS

routine is called by an earlier DOS routine, the users RAM routine would need both, as well as any others in the chain. The whole thing starts to become quite large. The reason is that the normal DOS is going to call routines within its address space, this does not always allow jumping out to RAM routines then back and so on. Only a modified ROM could provide this capability. There are still many routines you can use parts of from RAM calls however. As chapter six will show you, our error writing routines involve exactly this kind of process.

The ROM area from \$C000 to \$F24C serves mostly for the software oriented tasks of interpreting, manipulating data and so on. This you will probably not have a lot of reason to modify. The ROM from \$F24D to \$FFFFF contains the hardware control routines. These routines control such things as selecting tracks and sectors, starting motors, selecting reading and writing and so on. Many of the error writing jobs can be accomplished by using these routines or modified versions of them. A source code listing, which you may be able to locate through a user group, can be an invaluable aid in using these routines.

The RAM used. by the disk is 2K in size. The RAM provides the zero page (\$0000-\$00FF) which is required by 6502 based systems. Two pages \$0100-\$02FF are reserved for additional pointers, stack requirements, and so on. \$025B-\$02BO which is in this area is used for RAM array and takes care of file handling. \$02b1-

\$02FF is for output buffer information such as error codes and directory. The rest of the RAM area is divided into 256 byte "buffers". There are five of these buffers which have the primary job of holding the data comming from and going to the disk. They are allocated as needed by the DOS. User programs can be located in these buffers and called by the user commands. The first 18 bytes of the buffer at \$0500 are often used for a jump table to user routines.

(

(

(

(

(

•

(

By far the most important area of these RAM locations is the \$0000-\$0005 which is the job queue, and \$0006-\$0012 which provides the respective headers (track and sector) for the job in the queue. Note that there are two RAM locations for each job location.

In addition to the ROM and RAM, there are also two Versatile Interface adapters which are seen by the disk CPU as memory locations. By nature, a VIA occupies only 16 memory locations. Figure 3.4 shows what is found at each location of a VIA. The first VIA is normally "seen" at \$1800-\$180F. Its primary job is to control the serial bus. It is connected directly to the serial bus and has the job of taking data from the internal data bus and sending it out on the serial bus and vice versa. The second VIA is normally "seen" at \$1000-\$100F and its job is to serve as hardware controller. It is connected to the circuits which drive the motors, sense write protect, and controls the read/write logic for the head. The hardware signals are transmitted to and from the VIA directly from the internal disk data

FIGURE 3.4 1541 DISK VIA MAP

00	I/O REGISTER B
01	I/O REGISTER A (WITH HANDSHAKE)
02	DATA DIRECTION REGISTER B (DDR-B)
03	DATA DIRECTION REGISTER A (DDR-A)
04	TIMER ONE LOW BYTE (CLAS INT ON READ)
05	TIMER ONE HIGH BYTE (CLRS INT ON WRITE)
06	TIMER ONE LOW BYTE TO LOAD
07	TIMER ONE HIGH BYTE TO LOAD
08	TIMER TWO LOW BYTE
09	TIMER TWO HIGH BYTE
DA	SHIFT REGISTER
08	AUXILIANY CONTROL REGISTER (ACR)
oc	PERIPHERAL CONTROL REGISTER (PCR)
00	INTERRUPT FLAG REGISTER (IFR)
0E	INTERRUPT ENABLE REGISTER (IER)
OF	I/O REGISTER A (WITHOUT HANDSHAKE)

The 1541 drive uses two VIAs. One is primarily used in communicating with the serial bus while the other is primarily used for hardware control. The VIA occupies 16 memory locations (OO-OF). The specific function desired can be accessed at one of these locations as indicated. Note that either VIA can be READ from or WRITTEN to, thus a port would be an input if it is being READ and an output if it is being WRITTEN to. This is taken care of with the normal READ/WRITE control line from the microprocessor.

bus. As you can see from figure 3.4, among the other functions, the VIAs have directly addressable timers which are used as needed by the DOS.

One interesting fact about the 1541 drive is the "mirroring" of memory that is shown on the map figure 3.3. As shown, the devices which make up the disk memory can be seen at more than one location in the map. The ROM at two 16K areas, the RAM at four 2K locations, and each VIA at 256 16 byte locations (not shown). The reason for this is the way the disk hardware decodes memory. It was simply cheaper and easier to decode only the necessary address lines to place the memory in its designed locations. When only some of the address lines are decoded to define a memory block, that block will be "mirrored" at every other location defined by those lines. In order to get unique positions in memory, all address lines must be decoded. Mirroring causes no problems so long as two decoded blocks do not overlap each other. It can produce some confusion though if you are not aware of it and you "discover" what looks like important data at say \$2003. What you would be seeing is actually the zero page data at \$0003! A programmer could confuse those studying his code by accessing the same data with . different addresses.

(

(

Other sources for information on the disk include the 1541 Maintenance Manual by Michael Peltier, which covers the system hardware if you need to make repairs. You will not find it much help for software applications though. The User's Manual that comes with the drive should be referred to for diagrams on how the diskette is configured with tracks and sectors. However note appendix F for the correct header format map. One final interesting note is that the drive can be forced beyond track 35 by software control. Chapter six covers this in detail.

*** CHAPTER FOUR ***

PROTECTION CONCEPTS

Software protection concepts have evolved from relatively simple schemes to very complex ones. rush to find ways to keep users out of programs, methods have been developed at an incredible pace. Each new form of protection then spawns a whole new set of breaker programs and copying techniques. The results of this vicious cycle takes its toll on programmers AND users. If you have been playing in this game for even a short time you have perhaps already bought some breaker products only to find that some new form of protection foils the methods it uses. So once again you are in the market for the latest breaker system and so on and so on.... We cannot offer a total solution to this nor I doubt, can anyone else. The ultimate answer for disks will probably take the form of a mechanical "dumb copier" which will not interpret any data but simply

(

read and write an exact copy. Although it still wouldn't be a guarantee against certain forms of protection. This chapter will cover a variety of the techniques currently being used. Chapters five six and seven will then list specific procedures. Your ability to stay current with the ever changing techniques depends on your practice and motivation. We will start off with information about disk then go on to cartridge and finally tape protection methods.

There are really two things to consider when breaking protection. One is; do you just need a copy?, and two is do you need to modify the program (code) to customize it for your application? Where applicable we will try to include information to help you get listings of protected programs. Often you can learn quite a bit by studying listings of protected programs. In many cases, modifying the program so that the protection no longer exists will give you a much more valuable commodity. With your modified version, you won't have to play all the protection games if you need an additional backup copy!

----- DISK PROTECTION -----

Chapter two defined some arbitrary levels of protection. Here we will expand on this information giving you more detail on the protection in contrast with our earlier focus on tools available for breaking the various levels.

LEVEL 0.... Although this level is "unprotected" there are a few points that a beginner should be aware of. If the program is in Basic, it may involve more than one program which the user would need to copy separately. Since these are often chain loaded, it is important not to run the program. It should be loaded, saved to the backup then perhaps run to see if it loads any other programs. In a similar fashion, the program might access data files which would not be saved by the save command. Often the program might be in machine language and a simple save will not work since that is for basic only. Even though the machine routines are "unprotected", you may need to use something like Superdirectory to find the address range of the program so that you can save it with an Editor/Assembler. The E/A's require that you know the beginning and ending address of the program to save it. In general, with unprotected programs, if you wish to copy by Saving you need to know the details of what kind of program it is and what all it needs to operate correctly. The simplest method of duplicating such programs is to use a BAM type copier. Virtually any whole disk copier will also work.

(

(

(

(

•

(

(

(

•

(

(

(

(

(

C

(

(

(

LEVEL 1.... Programs in this category use some sort of autorun feature which prevents the user from making listings, and directly Saving the program. The added use of a STOP disable poke keeps the user from simply pressing the stop key to see whats in the program. On programs that ask for data from the keyboard or use a peripheral device, you can sometimes

break into them by giving the computer some value out of range or unplugging the device the program is talking to. The idea is to force some kind of error which will return control to the user. At that point listings etc can be done. Usually the program will intercept the error codes and return control to the program, so you will need to be devious in the kinds of things you try. We were able to break into a well protected word processor and generate complete listings by unplugging the cassette connector while the program was writing a file. Other ways to get into such involve more coherent means such programs relocate/loading which prevents autoruns as the data does not go into the vector table that the programmer Then by saving the program without the autorun or with a modified autorun, the disk can be edited so that when the copy is loaded it goes to the right place but no longer has the protection! The complete procedure for this is in chapter six. Once again if making a backup is your only concern and you do not need to get into the code, you can use BAM copiers or whole disk copiers. The advantage of relocate/loading is that in essence it gives you a new unprotected program which you can list and modify at will. The BAM and whole disk copiers will give you a "clone" of the original which will still contain the autorun and non-STOP features as originally written. The final choice depends on your needs.

LEVEL 2.... has been defined as including those programs which use disk errors to stop whole disk

duplication. In this case, the errors will only stop duplicators which do not reset or "handle" errors. Although "old" as the protection methods go, there are several "whole disk" duplicator programs which will stop if the disk indicates that there is an error on the disk. The kind of error could be one of many possibilities but generally falls into the category of tampered headers or data on the disk. Regardless of the specific error, the duplicator stops because the disk drive tells the computer in essence that the diskette is defective. This of course is exactly what the protectors want to happen so that you will not get a useable copy. Most of the more recent entries on the duplicator market can handle this kind of error situation. There are various possibilities but the concept is to "skip over" any sector in which the disk drive sees an error. Some such as DD-1 will go ahead and transmit the data on the sector in question in many Essentially it just ignores the errors that the cases. disk drive says are there, and goes on to the next sector. This level of protection can be broken by error tolerant duplicators. Alternately, the relocate/load method can be used on this protection level. level of protection usually includes the autorum and non-STOP features. Otherwise there would be nothing stopping the user from simply loading and saving the program. The program itself has no relation to the errors, they are just inserted on a blank track or sector to disable copiers which don't have error tolerant routines.

(

LEVEL 3... This level is more typical of much current software. In this elaborate scheme, disks will have errors and autoruns as described earlier but to complicate matters, the program or a loader will check to see if the errors are present at the right locations on the disk. If the errors are not there, the program will not run, or it will crash. This is called error checking and if a program employs error checking you will need to either get rid of the error checking routines or you will need to put the same errors back backup disk as the original had (and in the places). One popular place to put the error correct checking routines is in a loader that runs after the autorun boot has started things up. The order is something like this: A very small autorun routine loads to the control zone resetting vectors and forcing itself to run. This autorun then boots in a loader program which is more sophisticated and handles the checking for the main disk loading and error the loader doesn't find the proper program(s). If errors in the correct locations it will not continue to load the main program or will cause a crash etc. addition to checking for the errors, the loader program may be responsible for actually deciding which tracks and sectors to load and in what order. This way a main program can be saved and have its BAM erased. As long as the person who writes the loader knows which order the tracks and sectors need to be loaded. Interspersed amongst the valid data loads the loader can check predefined tracks and sectors for specific errors.

using a table of tracks to load and ones to error check, a very high degree of protection is obtained. Our disk analyzer is helpful both in making protected programs and backing up ones that have been protected in this manner. It will give you a sector by sector list of which ones contain data and which ones contain errors as well as what kind of error. When the main program has finally loaded correctly, it will run taking control of the system preventing breaks or normal methods of stopping. The main program may or may not perform further checks for errors on tracks and sectors depending on how it is designed. The simplest approach for these programs is to use an error analyzing routine and whole disk copier and then use an error writer to make errors on the backup - exactly like they were on the original. The major problem with this is keeping up to date on the errors that you can write onto your backup disk. As the state of the art progresses, you find that you need to be able to write increasingly large number of different kinds errors. The other method which is harder is t.o relocate/load and disassemble the loader routines locate error checking sections. Again, the analyzer printout will help because it will tell you which sectors contain errors. Upon inspection of the loader you will know which sectors it is expecting to find errors in and spotting that data is easier. With "Hunt" command of an editor/assembler you can systematically search through large amounts of code to locate occurances of likely command sequences. Practice and experience are the key to doing this successfully.

In general you will be looking for a sequence of CMP #\$XX

(XX= hex error code value) followed by a BEQ or maybe

BNE**.

C

 \mathbf{C}

(

C

€

The error writing process itself involes a fairly cumbersome system of writing special routines which are loaded into the disk drive RAM and executed by the disk drive microprocessor. The routines are basically mutant versions of the disks own formatting and data writing routines. In other words, if you have just saved a program which you wish to protect by these means (or made a backup which needs them), by running one of these mutated routines, you can cause something like one sector header to be formatted differently than the normal pattern for that disk. Other possibilities include erasing an entire track of data or completely wiping out a sector.

The level three will at some point check to see if errors are present before a run will be allowed. Alternately the errors might be checked within the program.

LEVEL 4... This in many ways is just an extension of Level 3 but there is a sly twist. The errors involved in this level of protection include with the others, the trick of putting data beyond the normal 35 tracks defined in the original drive design, or writing data where none would be expected and can't be recovered by the DOS read functions. Both the extra tracks and the "hidden" data require modified DOS

routines to be loaded. These DOS routines are machine programs that operate similar to the normal ones in the disk but they are designed to find the hidden data whereas the normal routines would simply return error. The "extra track" protection could involve simply writing sync beyond track 35 or even go as far as putting data out there. There are other unexpected places to "hide" data such as between the last and first sector of any given track. This area is normally defined as a "gap", but data can be written and read here using modified DOS routines. Another trick is to erase all or part of a track and then to write data in the erased part. This data will not have the usual headers, so it must be read with a special routine. One way to find such data is to find the last valid sector using an error analyzer, then begin reading the data found AFTER this block. In this manner you can recover a couple of sectors worth of the hidden data. This process can be repeated with a change in the timing so that you see more and more of the data. Often a couple blocks worth is all you need. The diskpicker HDR read routine is useful for this purpose. Changing the sector number to an illegal value has a similar effect to these others. The disk may only expect to find perhaps .20 sectors on a given track but the protected disk will have some sectors with numbers higher than this. To recover this data, you would again go to a header reading routine. In essence, you will get the data First, then save it under a valid number. The last thing would be to change the copy header so that it

(

(

(

(

(

(

looked like the original. Errors can be "spliced" into a copy disk by reading the bad part off the original and writing it verbatim to the copy. (See Diskpicker Procedure) Once again though, in these processes the drive is being manipulated by mutant programs to perform these "unnatural acts". We discourage both the use and purchase of software with this form of protection as there are some valid questions as to the effects this can have on a drive. First of all, there are many 1541s, especially the earlier models, which seem to get out of align if the head is forced to "bump" excessively. (Bumping is when the head goes to the end and bumps several times) These programs only aggravatethis situation as you may have already discovered. A good quality drive mechanism should be able to handle this without problems but this problem does exist and will occur on some drives. You will just have to live with it if you decide to purchase a program with such protection and it adversely affects your drive. In the least these programs will usually take their time loading with a undue share of bumping, chattering,

blinking, and various other assorted paranormal responses.

Another dilemma with this level of protection is that it may not be compatible with drives of other manufacturers. How a drive loads and saves data is a function of the hardware and software design of the drive. When a drive is as software dependant as

Commodore's are, a 100% compatible drive would have to have the disk operating system copied verbatim. Although this has been done before with some computers, it is legally questionable. It is generally accepted that totally compatible means 99% compatible while most "compatible" equipment really comes in at a much lower percentage. What is reasonable to expect is that a compatible disk drive can save and load it's own programs and load commercial software that is recorded WITHIN ORIGINAL EQUIPMENT MANUFACTURERS SPECIFICATIONS. With level 4 software the protection is not within the design parameters of the drive so it is anybodies guess what it will and what it won't work on. It is something like an oil company putting in a additive to gasoline which rots out engine gasket material without ever bothering to check it out with car manufacturers! Thus programs, error writers and copiers that work at these levels will in general be uncompatible with drives other than the 1541. You simply cannot expect equipment manufacturers to be able to forsee the various ways programmers might try to "defile the DOS".

Making duplicates of this kind of software, if necessary, can be done like level three. The error maker will need to have the capability of writing data or errors beyond the normal tracks. The best approach for this level would be to remove the error checking from the loader or main program so that you won't have to worry about all the error checking problems every time you load the program. This is done virtually the same as the others, with relocate loads and

dissassembly.

LEVEL 5... This may be the most effective protection method in current use as well as the valid. It works on the principle of a hardware "key" which is usually plugged in to the joystick port. the program runs it can periodically check to see if key is in and crash itself if it is not! hardware key is effective for several reasons but the most noteworthy is that most people have no means of duplicating the piece of hardware. Even if they could it would be a time consuming task to first figure out what the key contains and then make a similar one. Removing the sections of the program that check for the key would be the best approach but certainly not easy. As opposed to the error checking which requires the disk to run and consume quite a bit of time. key can be validated in a matter microseconds and has little or no degrading effect on the program. This is why error checking routines are often in a loader, so that they do not steal time from the main program. Many programs would be of little use if the protection system had to run the disk for a few seconds every so often in the middle of what you were trying to do. The hardware key does not suffer these limitations. It is possible to check for the valid key literally hundreds of times within the main body of the program, without noticeable time lag! If the checking is done during an interrupt cycle, the time taken is almost unmeasurable. Appendix H shows how an interrupt routine can be easily accessed from a main program.

The key itself could be as simple as a plug with certain pins shorted to ground which the computer would see as a specific value anytime it looked at the joystick port. Using just the five joystick switches allows 31 possible code values that could be hardwired into a small plug. This will be defined as a passive key. You can easily make one of these for your own protected programs! This would not be too hard to defeat though if the user realized that it was just a hardwired setup.

In more elaborate schemes, the protector can use a ROM chip which is addressed by a code sent on the lines and responds with a different value for each code. The circuit could send pulses of a certain frequency or in a certain pattern as the code. If desired the protector could use a complete microprocessor on a chip to respond with a very complex set of passkeys. There is simply no imagineable limit to what could be done.

Unfortunately we can offer no simple solution to the hardware key systems. If the key is the only protection, and the disk itself can be easily backed up, then you have little reason to worry. Your requirement for backup ability has been met while still protecting the seller from wanton distribution. We feel that it would be unethical for us to encourage reproduction of these keys. Thus in this respect, we feel key protection is valid as long as you can back up the magnetic medium.

One final word about compiled basic programs. The compiled program has been transformed into it's machine language equivalent, which among other things, makes it harder to analyze. Using protection on compiled programs makes a very effective means of protection.

In the future we hope to see prices of software come into line with value. New forms of protection are on the horizon but along with them comes the questions of compatibilty and effectivness against inspired pirating.

----- CARTRIDGE PROTECTION -----

Compared to disks, cartridges are quite simple. However due to the hardware necessary to make and use backups, the procedures are less well known. The real heart of cartridge protection is the autostart feature of the cartridge. Since it is running all the time, how do you disassemble or save it? The answer is just about as simple; do not let it autostart!

Understanding an doing this depends on realizing that the only time the cartridge will autostart is when the computer is first turned on or the coldstart or reset is initiated. If we disconnect certain lines on the cartridge and then turn on the computer the computer will not know the cartridge is there so the autostart will not occur. We can then switch the cartridge into certain areas of the computer and "look" at the contents or save them to tape or disk. An external RAM system which emulates ROM through the use

C Ċ C C C C \mathbf{C}

of a write protect can later be loaded with the original cartridge code, switched into the correct location, then run as though it were the cartridge itself!

The most difficult obstacle to overcome cartridges is the duplication of the hardware memory configuration used by the original. (See Chap. 3 Hardware Reconfiguration) Although the C64 is "filled" up with memory, the cartridges can be "switched" in place of some other memory device. Even though this is not protection in the true sense, it has the same effect. The Romulator system (Chap. 7) gives you a to know procedure which does not require you specifically "where" the cartridge is seen at. All that is required is that you determine the configuration of the GAME and EXROM lines which ultimately control what the computer does with memory and start up routines. We have encountered no other forms of protection with cartridges.

----- TAPE PROTECTION -----

Tapes have severe limitations in the kinds of protection available compared to disks. As with the others, the autorun can and usually is used. The locations and method is really the same as the disk except that the autorun routine will boot in from the tape instead of the disk.

In the next chapter we will cover the clone system which will duplicate all tapes regardless of protection

FIGURE 4.1

LOAD DATA AUDIO & SAVE DATA AUDIO

CASSETTE PORT	PIN #	FUNCTION
1 2 3 4 5 6	С-3 D-Ц В-5	Ground +5 Volts Cassette Motor Cassette READ Cassette WRITE Cassette Switch

The LOAD data audio circuit provides an audio output during LOAD operations. This is useful in determining characteristics of pre-recorded program tapes. It also provides a simple way to align the tape head by "ear". (Chapter five - Head alignment procedure). Installation can be in the computer or on lines D-4 and A-1 where they enter the datasette. If you are using a Tapeworm, or similar interface, parts can be mounted on the interface unit itself. (Use earphone for speaker)

The SAVE data audio circuit is primarily for "Relocate Loading" which is detailed in chapter five. You may choose to wire two aligator clips to an earphone with a 1K ohm series resistor. In this manner, you can simply clip it across E-5 and A-1 when you are performing header changes. The SAVE data audio circuit provides audio only during the time that the computer is saving data to tape.

used. As with disks, often a tape program will load in several sections which each set up certain parameters of the program and all are needed to run. If a save is attempted after loading the program only part would be saved and it would be useless. To duplicate this by other than cloneing requires that you know when each section starts and stops so that you can stop the tape and put in you blank to make a copy. Also, if you try this, be alert for machine sections mixed between basic sections. You will need to use an editor/assembler for the machine sections.

Figure 4.1 shows the connections for an audio output which greatly helps in identifying separate load. sections. A taped program consists of a tone leader followed by a short data burst (header) then another tone leader followed by a longer data burst which is the program. If you hope to copy taped programs by saving, you will find the circuits very helpful.

The one protection that tapes can use is the hardware key. However there is nothing to prevent you from making backup tapes, it will just keep you from distributing them or running on more than one computer. As with disks, this is not a real problem then for your own use. The one drawback is the reliance on the key itself, if it fries, you are out of business!

*** CHAPTER FIVE ***

TAPES

The very size of the C64 memory allows programmers to write some very powerful programs. As these programs require large amounts of data, they also tend to be quite slow if loaded from a datasette. As a result, tapes are not as popular as with the Vic 20. even if you .primarily use a disk drive, it is still handy to have a tape drive available. You may encounter a taped version of a program you wish to have. The cost of a datasette may prevent you from wanting to own one for this somewhat rare function. In answer to this we have developed a simple device which lets you avoid the expense of a datasette. Chapter five features TAPEWORM (tm) which is an inexpensive interface for standard recorders. If you do not own a datasette this circuit allow you to add a tape drive for very little

expense. If you already own a datasette and wish "clone" tapes using audio type duplication, the Tapeworm will provide you with the means to add another drive as required for dubbing purposes. Another of the major differences is that if you wish to do audio work such as message playback or time lapse recording etc. the inherent Tapeworm cassette motor interface will make this possible. Audio work cannot be done at all with the datasette since it utilizes digital signal processing. Tapeworm makes no change to an audio recorder circuits. It is entirely an external device which turns digital computer data into audio signals for the recorder and the opposite function of converting the audio output of the tape recorder to a digital level signal for the computer. The theory of operation will give more technical detail about these aspects for those so inclined.

This chapter also features CLONEPLUG (tm) which is a simple plug that allows audio dubbing of digital tapes. In essence, Cloneplug is a dumb copier so virtually any tape can be duplicated. Although some have had success with doing this with two audio recorders, it is very unlikely that purely audio clones will work very well. The amount of signal degradation is severe if the data is not converted to digital format. An audio clone is even worse in successive generations which have been cloned from a previous clone. The clone method we will show you relies on digital signals or audio-conditioned digital signals so that cloning can be done over several generations

(

(

without the inbreeding problems.

---- TAPEWORM -----

DESCRIPTION

TAPEWORM provides the proper interface circuitry between the Vic 20 and C64 computers and most standard cassette tape recorders.

FEATURES

- The TAPEWORM is an inexpensive and reliable alternative to the purchase of single use cassette data recorders such as the datasette.
- When not being used with the computer, your cassette recorder can be used for normal recording applications. No changes or modifications need be made to your recorder.
- TAPEWORM allows the computer to control the cassette recorder to play and record voice/sound information under program command; i.e., telephone answering... security monitoring... slide show sound... time lapse recording... etc.
- TAPEWORM allows manual adjustment of the volume output level of the cassette recorder so that you have the

ability to compensate for tape quality variations.

- With an optional modification, the data can be heard during the load operations to aid in analyzing protection methods.
- A.C. adapters are not needed. The cassette and TAPEWORM obtain all power from the computer just like a datasette does.
- Used with CLONEPLUG, TAPEWORM facilitates tape duplication using standard recorders and or one datasette and one standard recorder. (fig. 5.7)
- Simple to hook up. Ear, Mic, an power plugs provide all cassette interface connections without modifying recorder.
- Recommended tape recorder: SANYO SLIM 1 or SLIM 2.

 Other tape recorders may work with TAPEWORM. Variations in record levels, fidelity, 6VDC connector polarity, voltages, etc. between manufacturers requires some technical discretion before making cassette recorder substitution.

TAPEWORM THEORY OF OPERATION

Refer to figure 5.1 for the block diagram showing function of Tapeworm. Note the cassette write and cassette read signals drawn at the left of the diagram by the computer block. As shown, both are five volt square waves. This is the normal digital signal the computer expects to "see". Cassette recorders on the

other hand, do not like five volt square waves. They are much better suited to smoother waveforms like the sinewave shown at lower right. Furthermore, a microphone input on a cassette recorder expects to see a 10mV to 20mV (0.020V) signal, NOT 5 volts!

To accomplish this, the signal from the computer is fed through the input circuitry consisting of IClA and the 1K/100 ohm voltage divider. IClA functions as an integrator which rounds off the 5V square waves from the computer. The voltage divider then reduces the voltage level seen at the Mic input of the cassette deck to about 20mV. The sketches of the signals in figure 5.1 show the approximate shaping taking place.

For loading programs to the computer, the output of the tape recorder is a sinewave of about 6 volts. The output circuitry consisting of IClB and Ql must provide a clean squarewave of 5 volts to the computer. IClB is designed as a high gain clipping amplifier and Ql provides a fast risetime 5 volt square wave of the correct polarity. This is fed into the cassette read line of the cassette port on the computer.

As you can see from the schematic figure 5.2, the cassette switch line is always grounded. This causes the computer to always think the buttons of the cassette are depressed so that the computer will not print the "Press Play..." messages. This is done to eliminate the need for wiring inside the cassette deck to the switch which closes when the buttons are depressed. If you are technically able to determine the,

wiring on your particular deck and wish to do so, the circuit board has provision for this. Simply cut the ground link on line F6 and wire it to the switch in your deck. As this is awkward to do, we do not recommend it.

<u>C</u>

(

The Tapeworm board obtains operating power from the computer via the 5VDC output on pin B2. Six volt DC power is fed directly from the computer pin C3 to your cassette deck. There is enough power at this output to easily drive most modern 6VDC recorders. You should be careful of polarity for your recorder. (see note below)

ASSEMBLY

Figures 5.2-5.4 give the schematics and layouts for Tapeworm. Appendix D lists kits available from PSIDAC or you may use your own resources.

Before installing any parts, the circuit board should be cleaned with alcohol and scrubbing pad so that the copper is bright and shiny. All parts are installed from the BLANK side of the board with the leads protruding through the holes on the copper FOIL side of the board. Soldering should be done with radio grade rosin core solder and a small, clean soldering iron of 25 to 40 watts maximum. Be especially careful to orient the IC correctly. Use the pin 1 dot or notched end and the component layout for reference.

The edge connector is soldered directly to the PC

FIGURE 5.3 PRINTED CIRCUIT LAYOUT

1:1 POSITIVE PC LAYOUT (FOIL SIDE SHOWN)

PT#	QTY	DESCRIPTION	RADIO SHACK EQUIV.
C1	1	.0047uf Disc Cap. 12V	272-130
cs	1	.1uf Disc Cap. 12V	272-135
СЗ	1	.47uf Electrolytic 16V	272-1417
IC1	1	LM3900 Quad OP Amp	276-1713
Q1	1	2N39O4 NPN Transistor	276-2016
R1 .	1	100 ohm Resistor	271-1311
H2-3	2	1K ohm Resistor	271-1321
R4	1	4.7K ohm Resistor	271-1330
R5	1	10K ohm Resistor	271-1335
R6	1	22K ohm Resistor	271-1339
R7	1	100K ohm Resistor	271-1347
A8-9	2	1M ohm Resistor	271-1356
	(All resistors 1/4 Watt)		
EC1	1	6 pin .156" edge connector	PSIDAC #CONN*
P1-2	2	1/8" Mini phone plug	274-286
Р3	1	DC plug (to match recrdr)	274-1551

Misc - Wire ties, solder, Mic. wire, etc. -

^{*} For complete kit, see Appendix G-Price List.

board traces. You should first make a small solder "puddle" on each of the end foil traces which are for the edge connector. By holding the edge connector in alignment and then heating it's terminal with your iron, you can "tack" the lead in place. Do the same with the other end. This will hold the connector firmly in place. If necessary, you can remelt and reposition the connector until it is perfectly aligned. Then solder the middle terminals down to the foil. Finally, go back and resolder the two end terminals to get a good shiny connection.

(

(((

C.

Note that the Mic ground is not soldered at the PC board end. It is soldered at the Plug end. This prevents "ground loop" interference while still maintaining shield properties of the cable. An optional LED circuit is shown in the schematic. You can add this by drilling extra holes in the PC board. The LED will light up when data is being loaded to the computer. This helps you determine whether data is present as well as being an aid in deducing the number of separate data loads the program must go through to run. Some prefer this to the audio modifications shown in chapter 4 and later in this chapter.

POLARITY

Be extra careful in wiring the audio plug. If you use any recorder other than the Sanyo recommended, you will need to determine the polarity. Most recorders

have a negative center pin. Sanyo is opposite! See figure 5.4 inset. If your recorder has the positive lead connected to the Mic and Ear ground pins (Positive ground system) you will not be able to use Tapeworm. (Some Panasonics are wired this way)

If you make a mistake on the power connections, it will blow the computer fuse. It is highly unlikely to cause any other damage.

USE OF TAPEWORM

HOOK-UP

- Always plug the Tapeworm into the computer COMPONENT SIDE UP with the computer TURNED OFF!
- Make sure all cassette recorder switches are up or OFF before switching the computer on.
- Use high output, low noise tapes of good quality.
- Insert MIC and EAR plugs into the cassette jacks marked MIC and EAR.
- Insert Tapeworm plug marked DC6V into the cassette jack marked DC6V or 6V power.

OPERATION

- Turn on computer.
- You can advance or rewind tapes at this time.
- The cassette recorder volume should be set to about 3/4 of full volume. This setting may vary depending on tape quality and recorder used.
- The motor can be disabled by typing SAVE or S shift A

RETURN then hitting Run/Stop.

- The computer SAVE, LOAD, and VERIFY operations will now function in accordance with the computer instruction guide.

NOTE: The "PRESS PLAY ON TAPE" and "PRESS PLAY AND RECORD ON TAPE" messages will not be displayed when using the unmodified Tapeworm.

- REWIND of tape is best accomplished by placing computer in READY state and using the VERIFY command. This will turn on the motor voltage and give you control of the tape deck.
- -Press RUN/STOP to disable manual control.
- We recommend that you always advance tape past the leader when performing SAVE operations so that no data is lost trying to record on leader.

OPTIONAL MODIFICATION

When the Tapeworm EAR plug is in the jack on your recorder, the speaker is shut off by a switch built into the jack. By jumping this switch with a resistor, a comfortable audio output will be obtained. This is a feature you may like. It allows you to hear when data is present on the tape. Figure 5.5 shows how to do this on a Sanyo Slim 1 or 2. For other recorders, use the information in figure 4.1.

HEAD ALIGNMENT

Normally all tapes recorded on your recorder will be in alignment with the tape head and each other. However, tapes made on different recorders or some commercial tapes may not be aligned with your machine, resulting in difficult loading. If you are using an older tape recorder, you may need to align it with a commercially made tape before using it extensively. This will assure accurate loads of commercial tapes AND your own tapes. It is not a good idea to change the alignment once it is adjusted for normal tracking. Otherwise you will end up with a mess of misaligned tapes, each requiring realignment to load properly. BE SURE IT IS NECESSARY BEFORE PROCEEDING WITH HEAD ALIGNMENT!

(

If you are using a datasette you will need to wire the "LOAD DATA AUDIO" circuit (fig. 4.1), or use an oscilloscope. If you have this circuit already or it's equivalent, simply ignore the reference to "Ear Plug" in the following procedure.

- Unplug "Ear" plug.
- Put in tape do not close cover.
- Locate alignment hole left of tape head. (see sketch)
- Set volume 1/4 to 1/2 of full Press Play.
- Adjust screw for loudest output. **Do not turn far! A slight adjustment back and forth only!**

ADDITIONAL INFORMATION

Other brands of recorders usually work well with Tapeworm. However, if recorder voltage is different than 6VDC, you cannot use the power plug supplied. Instead, you can use the adapter or power source normally supplied with your recorder. This will require that you control your recorder MANUALLY since Tapworm normally controls the recorder through the 6VDC power plug.

Another inherent feature of using a standard recorder with Tapeworm is that it is still a normal recorder and as such can be used for audio work under control of your computer. By unplugging the Mic and Ear plugs and using only the 6VDC power plug, the computer can start and stop the recorder under program command. The most efficient way to do this is to use a line similar to this for turning motor ON:

100POKE1, PEEK(1) AND 223

For turning motor OFF:

110POKE1, PEEK(1)OR32

CLONING

Fighting tape protection schemes can be a frustrating experience. In the least, it can become more time consuming than desireable especially if you just need to make a backup so that you can file the original for safekeeping. For these reasons we suggest that under all normal circumstances that you simply "Clone" the original using the cloneplug system we describe. As a dumb copier, the cloning method does not

Figure 5.6a is the schematic of a clone plug. Note that if You are using one or more datasettes, that you will need the See figure 5.8 for PC layout. 90° plug.

.6b shows how to modify a Tapeworm so that you will not need a clone plug. (You must use two standard recorders which work in the normal manner with Tapeworm to use this modification) You can either modify the artwork of figure 5.3 or remove traces from two lower pads and use jumpers for changes indicated in solid black. Clone is C-D, normal C-N.

depend on or vary with the type of protection used.

(

(

(

(

(

(

(

Although we have heard of some people obtaining useable copies with a straight audio to audio method and two tape recorders, we do not feel that it is a very good method. The reason lies in the fact that the signals used by the computer are not exactly the same frequency requirements and audio signals. The as tolerance to wow and flutter is not as great with these digital signals. As a result, the audio to audio method induces problems which are minor in audio recordings but seriously degrade digital data. If attempted at all, the audio method should use high quality reel to reel recorders and the copies should always be made from an original.

The Cloneplug system is a simple arrangement which uses the Tapeworm and/or datasette itself to restore the digital characteristics of the signals before sending them on to the recorder making the copy. This will normally allow good clones up to four or five "generations" removed from the original. However, when possible, best results are still obtained when the original is used for cloning.

One major feature of the Cloneplug system is that you can use two standard recorders and one Tapeworm, or two datasettes and no Tapeworm, or a combination of a standard with Tapeworm and a datasette! Figure 5.7 shows the different hookups to match the equipment you have available. This way you should be able to use cloning with a minimum hardware aquisition.

CLONING PROCEDURE

Before cloning, be sure that the recorders that you are using are compatible with the Tapeworm and C64. If you are using datasettes only and no standard recorders, you will not need to worry about Tapeworm.

- Determine the correct hookup from figure 5.7 based on the type of recorders you are using.
- Place original tape in PLAYBACK DECK. NOTE: PLAYBACK DECK plugs into main (horizontal) edge of Cloneplug.
- Place blank tape in RECORD DECK. NOTE: RECORD DECK, if using 5.7b or 5.7c, plugs into vertical (90 degree) plug of Cloneplug.
- Make sure proper cassette buttons are set. Enter LOAD command on computer.
- 5. When done , verify clone by loading it.

(

(

(

(

(

(

(

(

(

(

(

(

6. Best results are obtained if you record the clone on the same deck as you normally use to load programs when not cloning.

SAVING TAPES

There are times when you may wish to Save a program via the computer instead of cloning. The biggest advantage to doing this is that the "Saved" program is equal in quality to an original tape.

Secondly, you do not have to use two recorders and play around with external hardware. The main disadvantage is that you need to have a good handle on the protection being used. Often this will mean simply to know how MANY sections a program loads in, where the sections load TO, and whether the program sections are MACHINE or BASIC. Following is a general outline of procedures to make direct computer saved copies of many taped programs.

Start by determining the number of separate loads taking place. This can be done by listening for the long tone leader followed by the short header burst. Another way is to watch the screen for the FOUND interval which occurs after the header.

STOP the computer after each header load (before data load) and use an editor/assembler to read the tape buffer. Write down the starting and ending address given on each header. NOTE: DO NOT LOAD THE PROGRAM SECTIONS. Fast forward past these to the next header.

When done you should have a list that looks something like this:

1rst PRG. Starts \$02A7 Ends \$030B
 2nd PRG. Starts \$0801 Ends \$30FF
 3rd PRG. Starts \$000 Ends \$C400

Remember that your list values will be in hex.

Programs that load below \$0801 probably have something
to do with autorun and will require relocate/loading

(see separate section this chapter) to load and save. Write R/L by each of these on your list. The programs above \$0801 can be saved separately as machine or basic. If they are at \$0801 you can load them separately and list them to see if they make sense as basic routines. If so, write BASIC beside them and when you save them for your final duplicate, they will be saved via the basic "SAVE" command. Assume the rest are machine language, they will be saved with the editor/assembler. Write Mach. beside each of these on your list.

()

((

To make the backup, you will need to save each program in order on your copy tape. Using your list, perform a LOAD"",1,1 and the appropriate save for each program. (Use TRELO and its special save procedure on those indicated R/L) If all goes well, your final tape will have an exact copy of the original programs. If you are so inclined, you may try to defeat the autorun feature all together so that your copy will be easier to duplicate for future backups.

MACHINE SAVES

If you are not familiar with editor assemblers, it may seem like a big chore to do machine saves. This is not true, it is a very simple process which you need to know. We recommend the use of Monitor\$8000 and Monitor\$C000 which Commodore sells on it's "Commodore 64 Macro Assembler Development System". (see chapter 2) When modified according to appendix B, any area in

memory can be saved with the "S" (save) command as follows:

S"prg name",01,beginning hex address, ending hex address

NOTE: the 01 indicates tape drive. For disk use 08.

As you can see, this is a natural with the information provided by the tape buffer.

RELOCATE LOADER for TAPE

TRELO-TMACHRELO

The main purpose of the Relocate load (r/1) process is to force programs to load in the wrong place so that autorun and other "disabling" features will not operate. This allows you to "get into" the program and find out what it does. In some cases, we just want to be able to Save the program, which of course can't be done if it is running. The basis of the technique given here is that autorun routines which keep you from getting into programs are normally loaded into memory locations in the "control zone" before \$0801.

(

(

The tape relocate/loader will shift the program up in memory to \$2000. Thus a autorum which normally loads to \$0100 will be loaded by the R/L to \$2000. This relocating process will keep the program from running. The save is performed by TRELO as a machine save from \$2000 to the "new end" of the program. TRELO does all the calculations for you and displays the original addresses so you can replace them in the tape

header.

Since the relocated program SAVEs from abnormal location, it will not yet load and run correctly. The trick is to EDIT the header data that tells the program where it will load to. In other words, your copy must have a different header put on so that it will load to the normal location instead of the relocated area. This procedure is called "header swapping" and can be tricky. It will require the use of the "Save Data" audio circuit of figure 4.1 or split second timing. If you use the timing method you only have about +/- 0.5 seconds to react. Also close attention needs to be paid to the EXACT start of the header on the tape. The process involves replacing the relocated copy's header with a "normal" one. following step by step procedure will simplify this process for you.

RELOCATE/LOADER PROCEDURE

- 1. Load and run TRELO.
- 2. Follow prompts to make relocated copy. Before making the new header, study the following steps. They direct you through the process of putting a NEW header over the one with the relocated address. (TRELO keeps track of the correct addresses for you)
- 3. Connect "Save data audio" circuit or obtain accurate STOPWATCH. The audio method is more reliable. (With some monitors, you can turn up the volume and it will pick up the SAVE audio, eliminating the need for the

circuit or stopwatch. Check this by SAVING a program with your monitor volume at full) .

4. Set up relocated copy tape at the very beginning of FIRST tone leader. This positioning is critical if using timing.

(

(

(

(

(

(

- 5. Follow prompts. By listening to data, allow to save ONLY THE HEADER, then STOP tape recorder. (Or time for 13.1 seconds)
 - 6. If all went well, your relocated program will have a "normal" header which will cause it to load and run as it should!

HINT: Practice listening to tape saves and loads to get used to the "sound" of headers and data loads. (see sketch) With a little practice, you will be able to accurately respond to the short break between. You must use the same name on the relocated copy and the doctored header so that the time for the header will not change. Be careful to start the tape in the same place when editing as when the relocate load was done.

TAPE HEADER CONFIGURATION SKETCH

This will prevent it from recording over the data.

TAPE TO DISK TRELO PROCEDURE

- 1. Load TRELO and RUN.
- 2. Follow prompts for disk. WRITE DOWN ORIGINAL STARTING ADDRESS! Convert to HEX, break into HIGH byte and LOW byte. ie: if calculated value is \$02A7 High byte =02 Low byte =A7.
- 3. When process is finished, use SUPERDIRECTORY to find the starting TRACK and SECTOR used by the disk to store your program.
- 4. Use DISK-EDITOR to change the starting ADDRESS on the Relocated copy back to what you calculated. (Original Address) The third location from the top left on Disk-Editor display is the LOW byte. Replace the THIRD BYTE TO YOUR CALCULATED LOW BYTE. The Fourth location is the HIGH byte. Change the FOURTH LOCATION TO YOUR CALCULATED HIGH BYTE. Hit RETURN and follow prompts to save data. (Chapter six has more info on DISK-EDITOR)
- 5. Relocated copy should now run normally. NOTE: NOT ALL PROGRAMS CAN BE SUCCESSFULLY COPIED WITH THIS PROCEDURE.
- NOTE: If exchanging program medium from tape to disk, or vice versa, remember to change the device number in the booter section.

```
TREL O
[ IFA=0THENA=1:LOAD"TMACHRELO",8,1
2 POKE53280,11 POKE53281,11
3 PRINT"DATA TRELOZLORDER MPSIDAC (C)84 VBN=":PRINT"MN":GOTO15
8 PRINT"MPUT CPY TAPE IN DRIVE - SET FOR A RECORDE":PRINT"MPRESS F7"
9 GETA$: IFA$<> "W"THEN9
10 PRINT"@BAVING ";NF$;" FROM ";BG;" TO ";EA:SYS8043
11 [FCK#="D"THENOPEN15,8,15:INPUT#15,A#,B#,C#,D#:PRINT"@"A#,B#,C#,D#:CLOSE15
12 POKES047, 1 POKES049, 1: INPUT "MAMAKE NEW TAPE HEADER"; AK$
13 IFAK#="Y"THEN100
14 IFCK$="D"THEN200:END
14 TPCKS="D" INCIR200"END
15 PRINT"MPLACE ORIGINAL TAPE IN DRIVE":POKE1,PEEK(1)AND223
20 PRINT"MPERFORM TAPE LOAD... WHEN FOUND MESSAGE"
21 PRINT"MAPPEARS, MRUN/STOP# THEN ENTER MRUN25#" END
25 POKE52,20: POKE56,20: POKE53280,11: POKE53281,11
26 AH=PEEK(830): AL=PEEK(829): BH=PEEK(832): BL=PEEK(831)
27 OD=(PEEK(830)*256)+PEEK(829):OE=(PEEK(832)*256)+PEEK(831):BY=OE-OD
28 BG=32#256:POKE254,32:POKE253,0
30 PRINT"INMT TRELO/LOADER @PSIDAC (C)84 VBN⊐"
32 POKE1, PEEK (1) AND 223: PRINT "DIREWIND TAPE SPRESS F7 WHEN DONE"
33 GETA$: IFA$<>"■"THEN33
34 POKE1, PEEK(1) OR32 PRINT" TAPRESS PLAY .
35 INPUT MINPUT SEXACT FILENAME"; NF$: NL=LEN(NF$): POKE251, NL
40 5YS8008:SYS8103
40 5758093-3753193

45 PRINT"ITH OF BYTES="BY;"

50 PRINT"MORIGINAL STARTING ADDRESS = ";OD:PRINT"MORIGINAL ENDING ADDRESS = ";OE

55 INPUT"MSAYE ON T/D";CK$:IFCK$="T"THEN8

60 PRINT":PREP DISK TO COPY - F7 WHEN READY":POKE8047.3:POKE8049.8:GOTO9
100 POKE830, AH: POKE829, AL: POKE832, BH: POKE831, BL: POKE254, AH: POKE253, AL
105 POKE175,BH:POKE174,BL
115 PRINT"DD * ROUTINE TO REPLACE TAPE HEADER
120 POKE1, PEEK (1) AND 223: PRINT "NO SPENIND TAPE TO EXACT BEGINNINGS"
125 PRINT" OF? WHEN READY!"
130 GETA$: IFA$<>"#I"THEN 130-
140 PRINT"TTTAPRESS PLAY AND RECORD
                                                                        ":POKE1,PEEK(1)0R32
150 PRINT" WHITIME FOR MEXACTLY 13.1 SECONDS .... ": PRINT" WITHEN HIT WEUN/STOF !!
160 PRINT" WF7 WHEN READY"
 170 GETA$: IFA$<>"#"THEN170
 180 SYS8043
200 PRINT"MUSE DISK-EDITOR TO RESET™ LOAD TON ADDRESS"
```

1F48		TMACHRELO		
1F97 8D A7 02 STA \$02A7 1F9A 29 FE AND #\$FE 1F9C 85 01 STA \$01 1F9E 60 RTS 1F9F 00 BRK 1FAO AD A7 02 LDA \$02A7 1FA3 85 01 STA \$01 1FA5 60 RTS 1FA6 00 BRK 1FA6 00 BRK 1FA7 A6 FB LDX \$FB 1FA9 BD 40 03 LDA \$0340,X 1FAC AB DEX 1FAF CA DEX 1FAB D0 F7 BNE \$1FA9	1F4B 1F4D 1F4F 1F51 1F56 1F58 1F5B 1F5F 1F63 1F66 1F69 1F68 1F68 1F72 1F72 1F77 1F79 1F7D 1F80 1F82 1F84 1F86 1F86 1F88 1F86	20 95 1F	LDA #\$01 LDX #\$01 LDX #\$00 LDY #\$FB LDY #\$FFB LDY #\$FFB LDY \$FFB LDY \$FFB LDY #\$FB LDY #\$FFB LDY #\$FFB LDY #\$FFB LDY #\$FFB LDY \$FFB LDY \$F	
1FA0 AD A7 02 LDA \$02A7 1FA3 85 01 STA \$01 1FA5 60 RTS 1FA6 00 BRK 1FA7 A6 FB LDX \$FB 1FA9 BD 40 03 LDA \$0340,X 1FAC 9D B0 02 STA \$02B0,X 1FAF CA DEX 1FB0 D0 F7 BNE \$1FA9	1F97 1F9A 1F9C 1F9E	8D A7 02 29 FE 85 01 60	STA \$02A7 AND #\$FE STA \$01 RTS	
1FA9 BD 40 03 LDA \$0340,X 1FAC 9D B0 02 STA \$02B0,X 1FAF CA DEX 1FB0 D0 F7 BNE \$1FA9	1FAØ 1FA3 1FA5 1FA6	AD A7 02 85 01 60 00	LDA \$02A7 STA \$01 RTS BRK	
	1FA9 1FAC 1FAF	BD 40 03 9D B0 02 CA	LDA \$0340,X STA \$02B0,X DEX	

```
*** CHAPTER SIX ***
                      DISKS
    If the point has not been, made clear enough yet,
let me restate it here, at the beginning of the chapter
you may have turned to first. There is not now, and may
never be, a single software solution to the protection
used on disks.
                 Regardless of the optimism
advertisements in general, neither we nor anyone else
can offer a 100% solution or method for protection
breaking. The more you understand the disk drive and
it's potential, the clearer this point becomes.
happens is that as a consumer you get caught
endless vicious cycle of new protections and new
products to break them. Everyone makes money at your
expense! The true solutions lie in your ability to
become a "detective" of sorts and to have tools that
are adaptable to the situation. With this in mind,
     little attempt to supply overglossed,
make
                          117
```

priced), declining term software. Instead we have developed some raw utilities which allow you to obtain information, look into and modify programs, override disk operating systems, and in general, to give you control of what should be done.

C

(

((

()

This chapter consists of three main sections. The first will cover each of the disk utilities in terms of what it is, generally what it does, and special operating details. Chapter two gives a shorter, less specific introduction to the various utilities for disk, tape, and cartridge. The second part of this chapter will give you some specific procedures to follow in attacking different types of problems. It will cover some of the common ways you would combine several utilities in a logical sequence to breaking a program. The third section gives you the actual listings of the programs and any pertinent loading details.

SECTION 1 - UTILITIES

SUPERDIRECTORY

Gives you an expanded directory of whats listed in the normal disk directory. The additional features include identification of the starting track and sector for each program and file, listing of deleted programs and files, and the starting address of each program given in hex and decimal. Although this may seem innocuous at first glance, it is really a key to determining what you may be up against on a given program. If for example, the program shows a starting address of less than \$0801, it will affect the control zone and may be an autostart. Relocating will probably be needed if you wish to save or pick. The number of blocks used by the program will give you an idea of what its function may be. Again, a short routine loaded first is likely autorum or autoboot. If the program begins at 0801, it is probably basic and if loaded by itself, you will probably be able to list it. There is however, no reason that it cannot be machine language, so be ready to try disassembly also. Do not run a routine first, often the program can be listed before you run it but you may lose control after you run it. In addition, if the program is loaded separately, may not run correctly as the other sections are often needed.

Programs starting in the \$033C-\$03FF range are usually machine routines or access keys which reside in the tape buffer. In these you should look for a meaningful dissassembly or ASCII code representing information.

Programs above \$0801 will often be machine language routines or hex data used by the main program. Blocks in the \$8000 and \$0000 range are popular for machine programs and data.

Superdirectory utilizes the machine routine "ADMACH" in its operation. Loading and running Superdirectory will automatically load ADMACH. Use of Superdirectory is simple, after loading and running, it

will give you the option of sending the output to the printer as well as the screen, then asking for the disk to be examined. We recommend that you print a Superdirectory for every disk you have, and make it one of the first things you do with new disks.

() ()

(

(

C

(

() ()

(

() ()

0

()

()

RELOCATE/LOADER

One of the disadvantages of using whole disk copiers is that an entire disk may be required when only a small portion of that disk is actually used. Many people like to combine similar programs on a disk so that they might have several games on one disk, several utilities on another, business packages on another, and so on. In order to "pack" a disk with different programs you usually need to use normal basic or machine SAVE commands. As you well know, commercial prgrams do not usually lend themselves to this operation.

The premise of Relocate/loader is that if a program is loaded to the WRONG PLACE, it will not take control of the system. Thus you are free to SAVE at will. The R/L has the SAVE routine as an inherent part of its operation. The most important thing to remember is that the relocated copy will always have a starting address of \$0A00, regardless of where the original was supposed to reside. Thus the relocated copy cannot RUN until its starting address has been doctored. That is one of the primary purposes of Disk-Editor.

If you wish to pick the program, you can use the relocated version before you change the address back.

The disk version of Relocate/Loader uses a short basic program to control the machine relocating programs. The machine routines are loaded through the basic main program. "MACHRELO" is the name of these machine routines. One of the things done by the system is that basic is switched out during the relocating process. This along with the compact size of the basic main and machine routines allows us to squeeze in a 50K byte buffer. The size of this buffer should allow the use of R/L on the vast majority of "long" programs.

DISK-EDITOR

(

As one of the primary uses of Disk-Editor is to allow you to change the addresses contained on a disk, we will go into this next. Each sector of the disk contains header information and then a "block" of data which is 256 bytes in size (binary, actual GCR format is longer by 4:5 ratio, see Appendix F). Disk-Editor allows you to dump any block on the disk to examine it or to change any of the data contained in the block. On every block, the first two bytes of data tell which block is next on the disk. In this manner, the drive can "link" all of the blocks together which belong to any given program. Disk-Editor shows the links in green. On the first block of a program, the second and third bytes give the starting address (hex) of the program. These are the two bytes you need to change when "resetting" the address on a relocated program.

Once these addresses have been reset to their original values, the relocated program can be loaded an run as though it were the original! Remember that the two bytes you change are in hex and in the standard 6502 format of low byte first, high byte second. Also remember that they are contained on the starting sector of the program. These locations in the rest of the sectors contain program data.

 \mathbf{C}

(

(

()

()

(

(1

(:

()

()

 \bigcirc

There may be times when you will want to change some of the data within a particular sector of a disk. Disk-Editor gives you this option. It is simple to use, you postition the cursor over the bytes you wish to change, and type in the new values. When you have completed all the changes for a given sector, hitting the RETURN key cause the changes to be read and prompt you on whether you desire to actually write the changes onto the disk.

Disk-Editor is a basic program which loads its machine subroutines under the name ADMACH. As with the others, you must run the basic program to load the machine routines. If you get into a situation where you need to re-RUN the main program, you can always skip the first line which calls the machine load, as long as the machine program has not been wiped out in some manner. This is true of all of our basic/machine programs.

LINKSTER

Linkster is a basic program which gives you a complete list of sector links for a given program.

Linkster allows you to specify which track and sector you would like to begin with, then it will print a list of all the tracks and sectors used from that point in the program. You do not have to start linking from the beginning, it will just give you the ones from the point you choose. Linkster also counts the number of blocks from the point you started. The printout can be screen only or screen and printer.

Other than simply finding out where a program is stored on your disk, linkster can be used to find bad sectors when a program disk becomes defective and looses some data. If you have a program which loads for a bit and then stops and returns a disk error, use linkster to find out which sector the error is coming from. You can then concentrate on "fixing" the sector. If it is really bad you may be able to change the previous link so that the program "skips" the bad sector. In some cases you can list the program and replace what is missing by hand and then resave the "repaired" program!

ERROR ANALYZER

Error Analyzer checks an entire disk for errors by either a sector by sector check or by a track by track check. Error Analyzer checks tracks all the way to 44. This gives you the ability to find out if any level 4 protection has been used on the disk. The track by track check is primarily a sync locator which can indicate if sync has been wiped out on any normal tracks and if any has been written on the "extra" inner

tracks above 35. Many of the protection methods such as wiping out a track, erasing sync, or writing to the extra tracks can be detected by this program. If any information or protection codes have been written to the "extra" tracks, this is the only program that will detect that, and do so in a short amount of time.

() ()

(

<u>C</u>:

0

() ()

() ()

()

0

() ()

 \mathbf{C}_{T}

()

 \bigcirc

The track by track check only takes about 45 seconds and is a good idea as a primary test on new programs. The sector by sector test takes longer but is more thorough. When errors are found the program is designed so as to not "bump" the disk head which can be detrimental to alignment on some disk drives. Instead it uses a machine programming technique which will recheck each track or sector four times and then go on to the next. You will appreciate this feature on disks with lots of errors. It is quicker, cleaner, safer, and doesn't make your disk sound like its having a cow.

Error Analyzer has printer options on both checks. This will give you a convenient paper listing of the errors found. These printouts supplied by our programs should be used as a "map" as you work back through your copied program to get it operating. With current protection involving many errors in various locations, you will need these printouts to work your way through the "patching" chores on your copy disk.

T/S Analyzer has the primary purpose of producing

T/S ANALYZER

a error log which can be stored as a file and passed along to Fastback. Although T/S does not have the

advanced reading technique of Error analyzer, it does have several logging options and serves as a map maker for Fastback. If you plan to be doing a lot of copying, you should format a disk especially to hold your T/S error logs. In this manner, the log only need be done once when the disk to be copied is new. As time goes on, you will build a file of error logs and if you ever need to do another backup you can simply load Fastback and through it, the appropriate error log for the program in question. The output of T/S tells both what errors are encountered as well as which sectors contain data and which sectors are unused on the disk. This can be helpful to locate sectors which have data but are not called through the normal linking method. sector has been destroyed, linkster cannot find out what is beyond the bad sector. T/S can give you a clue as where to pick up from!

T/S loads its machine routines under the name "ANALYMACH". As before, this is done in the first line of the program. T/S gives you four options. First to analyze the Tracks and Sectors on the disk being tested. Once this is done you have the choice of (2) printing the log or (3) saving it to your log disk. The final option is to load an error log previously saved. You can then print that if you desire. This allows you to make your logs at one time and then later as the need arises or it becomes appropriate, you can make a printout. The number of errors counted is kept track of and printed out for your convenience.

FASTBACK

(

(

(

The error log from T/S, which Fastback asks for, relieves Fastback from having to bother with any empty or bad sectors on the disk. Only those with valid data are loaded into the buffer and subsequently saved on your copy disk. Thus Fastback is just about as fast as a copier can be. The operation is comparable to a BAM copier which only copies those sectors containing program. The difference is that it is not using an easily destroyed BAM but rather a verified list of which sectors have data and are copiable.

() ()

 \mathbf{C} :

0

C :

(

()

()

(

(1

(1

€:

('

(:

0

C /

0

()

O

()

 \bigcirc

Once a Fastback copy has been made, you can use the error log printouts which indicate where changes, or errors need to be. Error writers or Diskpicker can be used to put errors on. Alternately you may choose to list/disassemble the program and try to modify the sections which look for the errors. There may be data in the sectors with errors that you will need to recover. Fastback loads its machine counterpart "ANALYMACH" in the first line of the program.

DD-1 is the name of a group of four programs which provide direct duplication via whole disk copy. The programs are 1DUPDAC and its controller 1PSIMAIN which are for single disk copies. 2DUPDAC and its basic controller 2PSIMAIN are used for whole disk copies with two disk drives. Although not as advanced in technique as Fastback, you will find DD-1 is very handy to make an on the spot backup of a less protected disk. It can

be quite fast if the original is only partially full and you make use of the fast copy features.

The programs are able to copy many of the lower level protection disks since they provide a direct track by track duplication which does not depend on BAMs, and it skips over errors. A 150 block buffer is used for a minimum number of swaps. Track and sector manipulations are handled by machine routines for maximum reading and writing speed. Error decoding allows simple operation and circumvents many error protection schemes.

(

The system also features an error display which can be sent to a printer for logging and later error writing or removal. DD-1 will skip sectors which contain errors designed to stop whole disk copiers. If the program requires the errors to be present you can use diskpicker or an error writer to replace them.

The "fast write" feature of DD-1 causes the program to skip over the writing of any sectors which contain only format data and no program data. For compatibility with other drives, this can be set to look for a normal format of "ONEs" or "ZEROs". The program checks the contents of the sector before writing it and if it contains only format data it will skip to the next.

The Multiple Copy Option allows making more than one copy per original - without rereading the original. This will allow you to read in a section of the

original, then write it to several copies, and so on. This saves a great amount of time since the original is only read once.

C :

 \mathbf{C}

(

(

(

()

(

() ()

After chosing either 1 or 2 disk drives, the corresponding DUPDAC is loaded. Then type NEW and load the basic PSIMAIN version that corresponds to the number of drives you are using. The options and procedure for DD-1 are given in the procedure part of this chapter (section 2).

DISKPICKER

Diskpicker is a machine language development system for the 1541 disk drive. It is designed to allow you to develop machine language routines in the C64 memory space and then transfer them to the disk drive. From there, the routines can be executed from a control menu in Diskpicker. The memory transfer features of diskpicker allow you to transfer any or all of the disk drive memory contents into the C64 memory space. It can then be examined, printed, modified an so on. Since Diskpicker uses the Commodore MONITOR\$8000, you have a full featured editor assembler for accomplishing the various machine language tasks. Diskpicker also utilizes ZMACH which gives it the ability to switch effortlessly between its basic and machine functions.

You may wish to make a ROM listing of your disk drive ROM using diskpicker. The 16K size will make a rather large printout however. The disk controller routines that you will need the most reside from F24D to FFFF and thus makes a much shorter listing.

In addition to writing routines to be sent to the disk drive, you will also be able to load sectors from the disk drive and transfer them back to computer memory to see what is there. Diskpicker allows you to look at header images, and other format information that you normally couldn't see. Also modified headers can be created which will produce errors if read normally. With diskpicker, special machine language routines can be written to find and read data after these modified headers. This gives you the power to experiment with protection methods of your own as well as read out data that would otherwise be hidden.

The specific procedure for Diskpicker will be given in the next section but the menu options available are as follows:

- 1...Transfer disk memory to buffer (in C64)
- 2...Enable monitor (machine E/A)
- 3...Transfer (C64) buffer to disk memory space.
- 4...Direct execute user program.
- 5...Job Que execute user program.
- 6...Load Sector to disk buffer.
- 7...Initialize disk I/O.
- 8...Format Diskette.

ZMACH

Zmach is a short machine routine which you can load any time you are using an editor assembler, particularly Monitor\$8000. Zmach provides you with a

way to save and restore zero page as you go back and forth between basic and machine language. This is necessary to prevent. "lock up" of the computer when exiting from the editor assembler. When loaded, before going to the E/A, you SAVE ZERO PAGE by typing SYS49152 RETURN. Later, after you exit from the machine monitor, you type SYS49184 to RESTORE ZERO PAGE.

Č

SECTION 2 -- PROCEDURES

We will start this section with general procedure to follow with any new disk and then we will cover remaining individual utility programs with special notes to make you aware of additional options that may not be obvious from a users standpoint.

- 1...Do a SUPERDIRECTORY listing of what is on your new disk. If you have a printer, make a hard copy for your records.
- 2...Run an ERROR ANALYZER TRACK check. This will identify use of error protection and extra tracks. Make hardcopy if errors show up. Next do a TRACK and SECTOR analysis, making hardcopy as needed.
- 3...Choose copy method. DD-1, FASTBACK or RELOCATE/LOAD.

 Go directly to procedure for method chosen.

DD-1 PROCEDURE

- 1...SELECT and LOAD "1DUPDAC",8,1 then NEW and LOAD "1PSIMAIN",8 for single drive users.
- 2...SELECT and LOAD "2DUPDAC",8,1 then NEW and LOAD "2PSIMAIN",8 for dual drives.
- 3...PRINTER option. List and change line 1 P=0 to P=1 to turn on printer. F7 must be pressed after each error printout unless last line of program is changed from . SYS49903 to SYS49881. NOTE: if you use this option a lot you may wish to save the modified version for your own use. We have chosen this method of configuration over a menu to conserve memory for buffer space.
- 4...SET FAST COPY MODE. Run selected DD-1 program with disk to be copied but STOP after the first few sectors have been read on track one. ?PEEK(2561) and ?PEEK(2562). If both are 1 then POKE49747,1 and POKE49751,1. If both PEEKs were 0, then do nothing. 0 is default value for DD-1 FAST COPY.

(

- 5...SET MULTIPLE COPY option. Default makes one copy. POKE49174, [number of EXTRA copies desired]. Note that the value you poke will produce that many EXTRA write cycles. Thus poke 1 for 2 copies, 2 for 3 copies and so on. The default value of 0 produces one copy.
- 6...DUAL DISKS; device number 8 for original disk, and device number 9 for copy disk.

- 7...Run DD-1 program chosen. You must use previously formatted disks for copies since DD-1 has no format option. If you forget, just RUN/STOP and format disks in normal way. (Do not use wedge), then RUN again. Follow PROMPTS on screen.
- 8...Bell indicates program read or write is active. TRack, SECtor, and ERRor displays indicate current location and any errors encountered. You will have time to write the info down if an error was found. You must press F7 after error to continue with copy process.

FASTBACK PROCEDURE

 \mathbf{C}

- 1...LOAD and run T/S analyzer. Follow PROMPTS. Make error
 printout if desired. SAVE error log on disk reserved
 for that purpose.
- 2...LOAD and RUN FASTBACK. Follow PROMPTS.
- 3...After copy is done, use error log and error maker or Diskpicker to write errors back on copy disk.
- 4...As an alternate to error writing, try to disassemble original program and remove error checking routines. As these routines may be in the boot, you may need to use Relocate/Loader to get into these routines.

RELOCATE/LOADER PROCEDURE

- 1...LOAD and RUN RELOCATE/LOADER.
- 2...Follow PROMPTS and select program from original disk to be Relocate/loaded.
- 3...Type in EXACT program name when asked for it.
- 4...Save the Relocated copy. If you are trying to pick the program you can load Editor /Assemblers or other tools needed for picking. The relocated copy can be loaded as often as needed for study purposes. It will have a starting address of \$0A00 or decimal 2560. You do not need to change the start address until you are done "picking". While picking, you can save the program as a normal machine language routine.
- 5...If relocating has been done to COPY and if you have completed any needed changes and now need to reset address, go to the DISK-EDITOR PROCEDURE.

DISK-EDITOR PROCEDURE

1...LOAD and RUN DISK-EDITOR.

(

2...Follow PROMPTs and select track and sector desired to edit. IF RESETTING ADDRESS, this will be the first track and sector for the program. If you do not know which is the first track and sector you will need to do a Superdirectory listing to find out. 3...Once desired sector has been loaded, you will have a display with the hex values of each byte in the sector. The first two are green and are the NEXT TRACK and SECTOR values IN HEX. (Convert these to decimal to find next track and sector and convert any desired values to hex before trying to replace current ones) For example if next track and sector is given as 17 10; the decimal value is 23 16. If you wish to change this link to to say track 1 sector 12 you would type in 01 0C.

C

 \mathbf{C}

- 4... If you want to change the LOAD-TO address, it is given in the 3rd and 4th bytes. (Two following the green ones) Remember this only applies to the first sector of the program, all others contain data in this location. The values are in hex with the low byte first and the Ιf byte second. you are looking you would see in this location relocate/saved copy, 00 OA Which means that the program these numbers: will load to location \$0A00. If you are resetting the address back to what is used on the original disk, look up the correct start address from the HEX.ADD column of your Superdirectory listing of that disk.
- 5...Once all desired changes have been made, follow the PROMPTS to either SAVE changed sector or get another one. SAVED sector will replace itself on the disk.

DISKPICKER PROCEDURE

The uses of Diskpicker go well beyond what a simple procedure can give you. As it is a system that allows you to develop programs to use in the disk, will explain how to use the options and give you some example error routines which you can send to the disk. Beyond this, you will need fluency in machine language to be sucessful. Note that you must obtain a copy of MONITOR\$8000 which should be saved on your PSIPACK disk. Other monitors may be used if you want to change the program lines that load and call MONITOR\$8000. (SYS32768 is the call). Remember that other monitors cannot occupy the beginning of basic RAM or \$C000 locations. You will need some free RAM to use as buffer for developing routines and for information read from the disk. Typically a couple of K will be enough.

1...LOAD and RUN Diskpicker.

(

(

2...MENU OPTION 1 - Transfer disk memory to buffer.

The purpose of this option is to allow any valid locations in the disk drive to be transferred to the memory of the C64 from where you can dissassemble, study, and modify as desired. The monitor printer options will allow you to make printouts of this memory. Since the total RAM in the disk is only 2K in

size, you have plenty of room in the 64 for this purpose. The requirements of Diskpicker do limit you to using memory between \$3000 and \$7FFF which is 20K.

 \mathbf{C}

(

(((

(

((((

Option one will ask for the starting and ending DISK locations you want to transfer to the C64. These must be in HEX! It will then ask you where you want the C64 buffer which will recieve the data to be. We STRONGLY recommend that you always use the same page offset. Thus if you want to transfer disk \$0300-\$03FF to the C64 you should use a buffer start such as 3300 or 4300 or 5300 etc. This will make disassembly more meaningful because all page addresses will be the same. NOTE: We define 00-FF as location address; 000-F00 as page address; and 0000-F000 as block address.

2...MENU OPTION 2 - Enable Monitor Mode.

This option puts you into the editor assembler. We use Monitor\$8000 (by Commodore) for this purpose. The typical E/A features are available in this mode. For example, you can select a memory area and write a machine routine which can be transfered to the disk by option 3. When looking at information that you have loaded from a disk through disk memory, we recommend using the I (interrogate) command which will give you an ASCII as well as hex dump. This can be useful when looking for acess codes or particular info which would be meaningful in ASCII. Keep a copy of figure 3.3 (disk map) handy when using the monitor.

To EXIT the monitor mode, type G CO20. This will

return you to the main menu in basic mode. Your programs or data that you were working on will remain intact as long as you do not try to transfer something on top of them or erase them with a monitor command. This gives you the ability to keep many "images" of disk memory or machine routines in memory at one time.

3...Transfer Buffer to Disk Memory

(

(

(

(

This option allows you to send the data or program that you have in the C64 buffer space TO the disk drive memory. Remember that the disk uses \$0000 to \$02FF for system purposes and you will not normally transfer programs to these locations. The buffers in the disk, 0300, 0400, 0500, 0600, and 0700 are perfect for such uses.

4...Direct Execute User Program.

Assuming you have transferred a program to the disk drive, this option will allow you to cause that program to be executed! You will be asked for the address (hex) in the disk at which you want execution to begin. The proper commands will be sent by Diskpicker to cause that program to RUN in the disk memory. It is a good idea to make sure a scratch disk is in the drive the first few times you try a routine in case it backfires.

Direct Execute is primarily for routines which manipulate data rather than routines which control reading or writing to sectors. The reason for this is

that direct execute does not provide for automatic track and sector preparation as does Job Que Execute.

5...Job Que Execute.

This option provides execution of your routine AS A PART OF one of the EXISTANT DISK ROUTINES. In other words, if you select lets say a Job Que WRITE, the drive will find the track and sector you have selected, and then execute your routine. Normally your routine would be designed to affect what might normally have been done through the disk routines. The job que functions save you the trouble of trying to get the motors going, find track and sector, etc.

The following list gives the direct execute commands:

128-READ -Reads in selected sector.

144-WRITE -Writes to selected sector.

160-VERIFY -Compares sector with one in memory.

176-SEEK TRACK -Locates specified track.

184-SEEK SEC -Locates specified sector.

192-BUMP -Runs head to stop and bumps (resets head)

208-JUMP -Jumps to specified memory location.

224-EXECUTE -Puts Track and Sector to be affected in Que, finds track and sector, loads the header there and goes to your machine routine. Note that your machine routine or its jump vector must start at the beginning of one of the five buffers, \$0300 through \$0700. Since data is read from the disk header, variables in the drive memory will be affected.

6...Load Sector To Disk Buffer

This option will ask you for the headers (track and sector) and will then load that sector to the disk memory. From there it can be transferred to C64 Memory for study. This option is useful to examine specific sectors.

7...Initialize disk I/O

(

This is essentially a RESET command which returns the disk to power up conditions. It does so without wiping out all of memory like a C64 RESET would do. Useful when you need to be sure the disk is clear for other operations. It is a good idea to use this command any time you have uncovered and error and wish to send new commands to the disk. This makes sure the disk is ready to receive the data properly.

8...Format Diskette.

This option allows to format a diskette without breaking out of program. This can be useful since you will typically be trying to do things which can "mess" up your practice scratch disk!

9...Resetting.

If the system locks up, use SYS49184 for a warm reset. In extreme cases you may need a reset button or turn off the computer. (See Appendix E). X is used to

escape an input mode question.

ADVANCED TECHNIQUES

In making protection, there are some things which go beyond simply writing an error and having the program test the error by trying to load the sector. Error writing programs to date leave you with little other option. There are many things possible of which we will try to start you thinking about a few.

Consider first, how a disk sector or partial track could be erased. The disk would normally find this sector by its header, which can't be done if it has been erased. However, if you know which sector is bad, you can tell the disk to look for the sector in front of it, which is good. Once the preceding good sector is found, the disk is programmed to wait for a certain period and write some data. This data then goes to the "nonexistant" sector. A similar process can be used to read this data. A quite effective means of protection since it is difficult to reproduce the exact parameters used to write the data! This variation can be used on the "extra" tracks beyond 35.

Other ways to protect include putting data in the GAP at the end of a track. If your copy maker is not aware that data is there it will not look there. With the machine routines we have included, the gap data can be read in a fashion similar to the above process.

Tracks and Sectors can be given illegal numbers by changing this data in the header. (Appendix F) The normal DOS will not accept out of range values. A machine routine used by the disk drive can do this. The diskette could also be entirely or partially formatted in an abnormal pattern which would only be recognized by a modified DOS routine.

Another devious means would be to write "encoded" sync pulses on an unused part of the disk. These sync pulses could be encoded by a means as simple as spacing. In other words, the time between consecutive sync pulses would have to be exactly according to a predetermined VARIABLE spacing, or the program checking them would abort. Breaking such a system would require a sophisticated analysis of the diskette which cannot be done through normal DOS routines.

(

(

(

(

These examples should give you a clearer idea of what can be done if you go outside the confines of the DOS and develop both reading and writing routines. It is hard enough to understand how the normal DOS routines function, let alone trying to figure out what someone has done beyond this. These methods by nature will not be compatible with other drives. It is also interesting to note that copier programs usually will not copy themselves... in other words they are obsoleted by their own manufacturers since they have developed protection that foils their OWN product!! If they can do it, so can anybody else. If a copy program cannot copy itself, you may rest certain that within a

VERY short time there will be many new programs out that it also cannot copy! If the market continues to develop in this direction, we will likely continue with our development of a disk "Dumb Copier". Such a system will put to rest any protection that does not involve external hardware or physical modification of the disk drive.

ERROR WRITING PROCEDURE

Following are some examples of how to send error writing routines to the disk via Diskpicker. In the program section of this chapter we have listings for all the error routines included. You may prefer to write a basic program which "sends" these routines to the disk and then executes them. We have chosen not to as such error writers are abundant already and become outdated as fast as they are sold. If you become familiar with the techniques of Diskpicker, you will be able to add and modify routines as YOU see fit.

IMPORTANT: Although every attempt was made to make these procedures compatible with all 1541s, there are apparently four revisions of the DOS ROM put out by Commodore. As explained earlier, this can lead to compatibility problems with many forms of protected software AS WELL AS error making procedures. This is why such protection is of questionable validity. We can not guarantee that all error making routines will work on all past and future versions.

SPECIAL INSTRUCTIONS AND CAUTIONS

NOTE: These techniques should not be attempted if you do understand the underlying principles. Indiscriminate use could cause the disk head to stick which may require partial disassembly to correct!!

- Escape back to Main Menu, Input letter X for requested input value.
- To escape from Monitor\$8000, input G CO20. (requires space btween G & CO20) If disk or computer locks up, (and if you have a reset 3.

button), press reset and enter SYS49184 to restore

- system. Always Format disk to be written to with the same disk
- Never select tracks above 44 or disk head will bang against end stop and may get stuck. If this happens you will need to open disk case and gently push head back to center.
- If head gets stuck, first try by using Initialize 6. operation or call the Job Que Bump command, #192.
- 7. Always input valid header # and data for track & sector when using the Job Que.

ERROR 20 NO HEADER

Erases header from specified track and sector.

1. Load and run Diskpicker.

ID# as the original.

(

(

(

(

(

(

(

(

(

((

(

(

(

(

(

(

(

2.

- 2. Select menu option 2. Set printer choice "N".
- Input L"20 NO HEADER",08 After load, C020.
- 4. Place diskette to be written on in drive.
- 5. Select menu option 7. 6. Select menu option 3.
- 7. Input disk start address 0300.
- 8. Input disk end address 034F.

9. Input Buffer address

- 10. After Data transfer to disk, select menu option 5.
- 11.Input Job choice 224. Select choice 1 (0300) for execute address. FOR ONE SECTOR SET MULTISECTOR='N' FOR ALL SECTORS, SET MULTISECTOR='Y'

3300.

- 12. For header #1, input track # desired to write ON.
- 13.For header#2, input value ONE LESS than sector desired to write ON. (USE 0 FOR SECTOR #s 1)

()

() () ()

- * Note: If sector 0 is to be written to, select the highest sector number on this track. (see drive user manual). i.e.: Input a 20 if sector 0 on track 1 is being chosen.
- 14.REPEAT the above steps 8-11 for writing type 20 errors to other headers of your choice. * Intermixing read, write and load operations may write over the error routine being held in the disk memory buffer.
- 15. To test your errors, select option 5 (Job Que Execute).
- 16. Input job choice 128.
- 17. For header #1 , enter track #desired to read, and for header#2, enter the sector number to read.
- 18.If everything went right, you will see the proper error message and OP status code.
- For error routines 21 ERASE TRACK, 22 NO DATA, DATCHKSUM, and SYNC WRITER, repeat the same instructions as given above EXCEPT select the EXACT track and sector #s you wish to write on. around is needed on sector 0) The SYNC WRITER routine is usually used to write sync pulses to tracks from 35 thru 44. This will change the error returned when reading these areas from sync not found to HEADER NOT FOUND.

READ HEADER

This routine reads the GCR header from a disk and allows you to put it in the computer for analysis or modification. By using this routine and the HDR WRITE you can "SPLICE" bad headers from original disks on to your copy disks. In many cases this is more effective than trying to reproduce the header errors that have been used for protection.

- 1. Load and run Diskpicker.
- 2. Select Menu option 2 and printer choice "N".
- Input L"READ HDR",08 after load, input L"COPY HDR",08
- 4. After load, input G CO20
- 5. Place diskette to be read into drive.

```
(
    6. Select menu option 7 then option 3.
(
    7. Input disk start address 0300
(
(
    8. Input disk end address 034F
(
    9. Input buffer address 4300
(
    10. After data transfer, select menu option 5.
    11. Input Job choice 224 and select choice 1 for execute
(
       address of 0300. FOR ONE SECTOR, MULTISECTOR='N'
       SECTORS MULTISECTOR='Y'
    12.For header #1, enter track header you wish to copy is
(
       on.
    13. For header #2, enter sector value ONE LESS than sector
(
       value with header you want. ie: Input 0 if sector 1 was
       choice.
(
       ** For sectors 0, select last sector on that track!
(
    14. Select menu option 1.
(
   15. Input disk start address of 0400.
(
(
    16. Input disk end address of 05FF.
    17. Input buffer address of 6400.
(
    18. After data transfer, select menu option 2 and desired
(
       printer option.
(
    19. Use memory dump command ( M ) of monitor to display GCR
(
       image of the header and data now contained in computer
       memory locations from 6400 to 65FF. See Appendix F for
(
       explanation of GCR image. G CO20 will return you to
       main menu.
COPY HEADER
            Writes GCR image of header from disk buffer to
(
       object diskette. Useful for ERROR SPLICING.
    1. Follow steps 1-19 for Read Hdr routine.
(
    2. Insert disk to be written to in drive. (object disk)
(
    3. Select menu option 3.
    4. Input disk start address 0300.
    5. Input disk end address 035F.
(
    6. Input buffer address 3300.
        After transfer of program to disk, select menu option
       5.
                                   145
```

(

- Input Job Choice 224 and select choice 1 for execute address of 0300.For one SECTOR, MULTISECTOR='N' FOR ALL SECTORS MULTISECTOR='Y'
- For header #1, enter the track header is to be written to.
- 10.For header#2, enter sector value ONE LESS than desired sector to be written to. ie: Input 0 if 1 is your choice.
- * If choice is 0, use highest sector value on THAT track, as described in other procedures.
- 11.If everything went right, you can use READ HDR steps 5 thru 19 to look at and verify the new header just written!!

EXTRA NOTES

Remember, Diskpicker is designed to give control of exactly what is written and sent to the Ιt is a disk development system especially for experimenting with and testing modified DOS routines. Do not confuse its intent with that of "turnkey" error writers which are simple to use but restrict you what they have decided should be used for errors. programs are obsolete shortly after they are sold. With Diskpicker you can concentrate on collecting modified DOS routines which are by nature short and easily traded, and use Diskpicker to transfer and execute these routines. Dedicated error writers generally try keep you from getting into the program let alone modify and update it.

Below are listed some protection possibilities to look for on original diskettes:

 \mathbf{O}

- Missing or extra sync bytes. Use READ HDR to look for this.
- 2. Missing header or illegal header ID.
- 3. False header checksum.
- 4. Illegal or missing sectors.
- 5. False ID numbers.
- 6. Protection data in GAP area.
- 7. Missing or illegal data block ID byte.
- 8. Data block missing.
- 9. False data checksum.
- 10.Protection data in end of track GAP.

11.Protection data encoded using sync pulse combinations.

*Note: It is possible to achieve some of the above errors on tracks 36 thru 44 as these are readily available using the disk controller software.

Even though protection errors will cause loading problems under normal conditions, it is a fairly simple process to recover useable data from a bad sector. This is done by analyzing the error and writing a short machine program to recover the data. The trick is to sync up on a previous sector's sync pulse and count bytes to the location you wish to read from. When counting bytes, sync pulses show up as ONE byte even though several have occurred. A valid sync pulse does not always show up on a GCR sector read out as an "FF".

The general philosophy for precise error writing is to place the GCR data you wish to record in one of the disk memory buffers, find a valid sync pulse on a nearby preceeding sector, count bytes up to the area you wish to write to, switch the disk controller to its write mode and dump the buffer to the diskette. Switching from read to write is Best accomplished during the gap time when GCR 55's are being read.

The read/write techniques just described will allow a clever programmer to read or write desired information to/from any place on the diskette!! Good luck!!!

diskettes during IMPORTANT: When switching procedures, to perform be sure Diskpicker will insure Initialization - Menu option seven. This locations are page zero memory the drive initialized to the current diskette identification parameters. THIS DOES NOT HAPPEN ON POWER UP!

CREATE HEADER ERRORS

- For checksum error in header, load 100N HDRthrough monitor mode of Diskpicker.
- If checksum in header error is not desired, load CONHDR through monitor mode.
- Load WRITE HDR through monitor mode. PUT OBJECT DISKETTE IN DRIVE.
- Select 6 from main menu and enter track# and sector# desired.
- 5. Select choice 1 (Transfer disk mem. to buffer)
 Start addr. 0000
 End addr. 00FF
 Buff. addr. 6000
- 6. Interogate memory locations 6000 -6030 form monitor mode. Refer to Appendix F "Important Disk Memory Locations" to identify byte functions.
- 7. Change locations to value desired to create errors. Disk ID #s might normally be changed.
- The GCR image of this hdr can be seen in computer buffer locations 6024-602B. (Which come from disk memory 0024-002B) SELECT 3 FROM MAIN MENU START ADDR 0016

END ADDR 001B BUFF ADDR 6016

- Select 3 from main menu. Start addr. 0300 End addr. 031F Buff. addr. 5300
- 10. Select 4 from main menu. Entry addr. 0300
- 11.GCR image is now in disk memory locations 03E0-03E7, ready for transfer to the object disk. Make sure object disk is inserted in drive.
- 12.Select 3 from main menu. Start addr. 0300 End addr. 036F

Buff. addr. 3300

- 13. Select 5 from main menu. Job choice = 224. For execute start addr, select 1 (0300)
- 14. For Hdr #1, use track desired. For Hdr#2, use ONE LESS than desired. ("wraparound as in earlier procedures). ie: For sector 1 enter a 0.
- 15. To check errors, follow read header techniques.

```
1PSIMAIN
1 SYS49891 P=0
2 $4849844
3 SYS49516:X=PEEK(49160):ONXGOTO4,3,5,10
4 T=PEEK(49156):S=PEEK(49157):PRINT#15, "U1: "2;0;T;8:GOSUB25:SYS49691:GOT03
5 SYS49858:Z=0
6 SYS49939:X=PEEK(49161): ONXGOTO7, 6,2,10,5
7 T=PEEK(49158):S=PEEK(49159): SYS49745: IFPEEK(49173)=1ANDZ=1THEN6
8 PRINT#15,"B-P: "2;0:SYS49718: PRINT#15,"U2: "2;0;T;S:GOSUB25: Z=1:GOTO6
10 SYS49872 END
19 37343072 ETNU
25 PRINT"MERK."T"H ":PRINT"MSEC."S"H ":INPUT#15,8$,B$
26 PRINT"MERR. "68"TITITT":IFA$="00"THENRETURN
27 IFP=1THENOPEN4,4:PRINT#4,T,S,8$,B$:CLOSE4
28 SYS49903: RETURN
    2PSIMAIN
1 SYS49778:P=0
2 SYS49816:M=0
3 SYS49516:X=PEEK(49160):ONXGOTO4,3,5,10
4 T=PEEK(49156):S=PEEK(49157):PRINT#15,"U1:"2;0;T;S:GOSUB25:SYS49691:GOTO3
5 SYS49832:M=1:Z=0
5 37343632:M=1:2-0
6 SYS49604:X=PEEK(49161):ONXGOTO7,6,2,10,5
7 T=PEEK(49158):S=PEEK(49159):SYS49745:IFPEEK(49173)=1ANDZ=1THEN6
8 PRINT#15,"B-P:"2;0:SYS49718:PRINT#15,"U2:"2;0;T;S:GOSUB25:Z=1:GOTO6
10 SYS49848:EMD ":PRINT"MSEC. "S"M ":INPUT#15,A$,B$
26 PRINT"MERR. "A$"TITIT":IFA$="00"THENRETURN
27 IFP=1THENOPEN4,4:PRINT#4,T,S,A$,B$:CLOSE4
28 IFM=0THENSYS49867:RETURN
29 SYS49877: RETURN
```

```
DUPDAC DATA
:C008 00 00 0B 0B 11 F8 11 23
                       00 00 08 08 11 F8 11 23
03 0F 23 08 09 00 00 00
1DUPDAC
A9 08 LDA #$00 C087
85 FB STA $FB C088
85 FD STA $FD C088
85 FD STA $FD C088
85 FC STA $FC C088
86 FC STA $FC C088
87 FC STA $FC C088
89 00 LDA #$00 C09F 85 FC STA $FC
80 00 LDA #$00 C09F 89 02 C0 STA $FC
80 00 LDA #$00 C09F 80 BFK
80 00 C0 STA $C000 Y C093 20 C3 FF JSR $FFC3
80 00 C0 STA $C000 Y C093 20 C3 FF JSR $FFC3
80 00 C0 STA $C000 Y C098 20 C3 FF JSR $FFC3
80 00 C0 STA $C000 C09C 00 BFK
80 00 STA $T000 C09C 00 BFK
80 00 SFR
80 00 STA $T000 C09C 00 BFK
80 00 SFR
80 00
:C010 03 0F 23 08 09 00 00 00
                             1DUPDAC
   CØ18
   CØ1A
   C01C
   C01E
   C020
   CØ22
   C024
   C026
   CØ28
   CØ2B
    CØ2C
                                                                                                                                                                                                                                                                                                       (
    CØ2E
   0030
    0033
    C036
    C039
    CØ3C
                                                                                                                                                                                                                                                                                                      (
   COSF
    C042
    C045
    C048
    C04B
                                                                                                                                                                                                                                                                                                       C
    C04E
    CØ51
                                                                                                                                                                                                                                                                                                      (
    C054
                                                                                                                                                                                                                                                                                                      (
    0057
    C05A 60
     C05B
    0050
                                                                                                                                                                                                                                                                                                      CØSD
    005E
    0969
                                                                                                                                                                                                                                                                                                       (
     0963
     0065
     0068
     C06A
     C06D
     0070
                                                                                                                                                                                                                                                                                                      C
     0072
     0075
     0077
     C078
                                                                                                                                                                                                                                                                                                      (:
     0970
                                                                                                                                                                                                                                                                                                      Ö
     CØ7E
     0890
                                                                                                                                                                                                                                                                                                      (;
     0083
     0886
                                                                                                                                                                                                                                                                                                      O
                                                                                                                                              CØE1
                                                                                                                                                                         A2 00
                                                                                                                                                                                                                  LDX #$00
                                                                                                                                              CØE3
                                                                                                                                                                        BD SC CE LDA $CESC,X
                                                                                                                                                                         C9 04
                                                                                                                                              CØE6
                                                                                                                                                                                                                  CMP #$04
                                                                                                                                                                                                                                                                                                     \mathbf{C}
                                                                                                                                                                          FØ 06
                                                                                                                                                                                                                  BEQ $C0F0
                                                                                                                                              C0E8
                                                                                                                                                                          20 D2 FF JSR $FFD2
                                                                                                                                              CØEA
                                                                                                                                                                                                                  INX
                                                                                                                                              CØED
                                                                                                                                                                          E8
                                                                                                                                                                                                                                                                                                     0
                                                                                                                                               CØEE
                                                                                                                                                                          DØ F3
                                                                                                                                                                                                                  BNE $C0E3
                                                                                                                                                                                                                  RTS
                                                                                                                                                                                                                                                                                                      COFO
                                                                                                                                                                          60
                                                                                                                                              COF1
COF2
                                                                                                                                                                                                                  CLC
                                                                                                                                                                           18
                                                                                                                                                                         18 CLC
A2 00 LDX #$00
BD E0 CE LDA $CEE0,X
                                                                                                                                               CØF4
```

() ()

```
1DUPDAC -
           CØF7
                   C9 04
                              CMP #$04
                                                  C161
                                                          FØ 06
                                                                     BEQ $C169
           CØF9
                   FØ 06
                              BEQ $C101
                                                          20 D2 FF JSR $FFD2
                                                  C163
           COFB
                   20 D2 FF JSR $FFD2
                                                  C166
                                                          E8
                                                                      INX
                   E8
           CØFE
                              INX
                                                          DØ F3
                                                  C167
                                                                     BNE $C15C
                              BNE $C0F4
           COFF
                   DØ F3
                                                  C169
                                                                     RTS
                                                          60
                  20 E4 FF JSR $FFE4
C9 88 CMP #$88
D0 F9 BNE $C101
                                                  C16B
           C101
                                                          99
                                                                     BRK
                              CMP #$88
BNE $C101
           C104
                                                          99
                                                                      BRK
                                                  C16C
           C106
                                                          18
                                                                      CLC
                             RTS
           0108
                   60
                                                  C16D
                                                          AE 08 C0 LDX $C008
                                                  C170
C172
C174
                                                                      CPX #$01
           C109
                   00
                              BRK
                                                          EØ 01
           C10A
                   99
                              BRK
                                                          FØ 38
                                                                      BEQ $C180
                  AE OF CO LDX $COOF
8E 04 D4 STX $D404
                                                          AC 00 C0 LDY $C000
           C10B
           C10E
                                                  C177
                                                          B9 76 CF LDA $CF76,Y
                  CA DEX
8E 04 D4 STX $D404
                                                 C17A
C17C
                                                          C9 BB
D0 06
           C111
                                                                      CMP #$BB
                                                                      BNE $C184
           C112
           C115
                   60
                              RTS
                                                  C17E
                                                          A2 04
                                                                      LDX #$04
                                                  C180
                                                          8E 08 C0 STX $C008
           C116
                   00
                              BRK
                  00 BRK
A9 04 LDA #$04
8D 79 CE STA $CE79
60 RTS
00 BRK
00 BRK
18 CLC
A2 00 LDX #$00
BD B8 CE LDA $CEB8,X
C9 04 CMP #$04
F0 06 BEQ $C130
20 D2 FF JSR $FFD2
E8 INX
D0 F3 BNE $C123
60 RTS
                              BRK
LDA #$04
                                               C183
C184
           C117
                   99
                                                          60
                                                                      RTS
                                                          Č9 FF
           0118
                                                                      CMP ##FF
           CIIA
                                                  C186
                                                          DØ ØA
                                                                      BNE $C192
                                                          A2 03 LDX #$03
8E 08 C0 STX $C008
           CIID
                 60
                                                  C188
                                                  CISA
           CITE
           CHIF
                                                  C18D
                                                          CS
                                                                      TNY
           C120
                                                  C18E
                                                          8C 00 C0 STY $C000
           C121
                                                  C191
                                                          60
                                                                      RTS
                                                  C192
           C123
                                                          Ã2 01
                                                                      LDX #$01
           0126
                                                  C194
                                                          8E 08 C0 STX $C008
                                                 C197
C19A
C19B
           0128
                                                          8D 04 C0 STA $C004
                                                          C8 INY
B9 76 CF LDA $CF76,Y
           C12A
          C12D
C12E
                                               C19E
C1A1
                                                          8D 05 C0 STA $C005
           C130
                  60
                              RTS
                                                          C8
                                                                      INY
           C131
                              BRK
                                                          B9 76 CF LDA $CF76,Y
                  99
                                                  C1A2
           Č132
                  00
                              BRK
                                                          8D 02 C0 STA $C002
                                                  C1A5
           C133
                                                  C1A8
C1A9
                  18
                              CLC
                                                          CS
                                                                      INY
                              LDX #$00
           C134
                  A2 00
                                                          8C 00 C0 STY $C000
                 BD F5 CE LDA $CEF5,X
C9 04 CMP #$04
F0 06 BEQ $C143
20 D2 FF JSR $FFD2
                                                          AD 05 CO LDA $C005
           0136
                                                  CIAC
          C139
                                                  CIAF
                                                          CD 02 C0 CMP $C002
•
           C13B
                                                  C1B2
                                                          DØ 05
                                                                      BME $C1B9
                                                  C1B4
C1B6
           C13D
                                                          A2 02
                                                                      LDX #$02
                                                          8E 08 C0 STX $C008
AE 0F C0 LDX $C00F
           C140
                  E8
                              INX
                              BNE $C136
                  DØ F3
           0141
                                                  C1B9
                             RTS
BRK
BRK
CLC
                                                  C1BC
C1BF
           C143
                  60
                                                          20 0B C1 JSR $C10B
                                                          60
                                                                      RTS
           C144
                   00
           C145
                  00
                                                  C1C0
                                                          99
                                                                      BRK
                              CLC
                                                  C1C1
C1C2
           C146
                                                                      BRK
                   18
                                                          00
                              LDX #$00
           C147
                  A2 00
                                                                     BRK
                                                          ØØ
                                                  Č1C3
                  BD 13 CF LDA $CF13,X
           C149
                                                          00
                                                                     BRK
                                                  C1C4
C1C5
C1C8
C1CA
           C14C
                   C9 04
                              CMP #$04
                                                          18
                                                                      CLC
                                                          AE 09 C0 LDX $C009
           C14E
                   FØ 06
                              BEQ $C156
                   20 D2 FF JSR $FFD2
           C150
C153
                                                          EØ 01
                                                                      CPX #$01
                                                          FØ 37 BEQ $C203
AC Ø1 CØ LDY $C001
                                                                      BEQ $C203
                  E8
                               INX
                  DØ F3
                                                  CICC
           0154
                              BNE $C149
                              RTS
BRK
BRK
CLC
                                                  CICF
           0156
                                                          B9 76 CF LDA $CF76,Y
                  60
                   99
                                                  C1D2
                                                          C9 FF
                                                                      CMP #$FF
                                                  C1D4
                                                          DØ 13
                                                                      BNE $C1E9
           0158
                   00
                  18 CLC C1D6
A2 00 LDX #$00 C1D8
BD 32 CF LDA $CF32,X C1D9
C9 04 CMP #$04 C1DC
                                                          A2 03
                                                                      LDX #$03
           C159
                                                          C8 INY
B9 76 CF LDA $CF76,Y
C9 BB CMP #$BB
           C15A
C15C
           C15F
                                                151
(
```

LITY CO STTS C	#\$049 #\$049 #\$049 #\$049 #\$049 \$	Y Y	C25H C25B C25F C262 C267 C268 C26A C26E C271 C272 C278 C278 C278 C284 C284 C288 C288 C288 C288 C288 C28	CDA8EE692E999999999999999999999999999999999	F7 C1	NYE STANDAY TO THE LINE STANDAY THE LINE STANDAY TO THE LINE STANDAY THE L	\$C254 #\$01 \$C015 \$C007 \$FE #\$00 \$C015 \$C00D \$C00D \$C00B \$C118 \$C118 \$C133 \$C00D \$C120	
CO STY	\$C001 #\$01 \$C006 \$C006 \$C007 \$C007 \$C003 \$C007 \$C003 \$C007 \$C003 \$C007 \$C008 \$C009 \$C009 \$C009 \$C008 \$C006 \$ \$C006 \$C006 \$ \$ \$ \$C006 \$ \$ \$ \$ \$ \$ \$ \$ \$	Y Y	C25F C262 C265 C2667 C268 C266D C266D C271 C272 C272 C278 C278 C278 C284 C288 C288 C288 C288 C288 C288 C28	CSEE692E0909090909090909090909090909090909090	15 CC	TYCOS AND THE PROPERTY OF THE	\$C015 \$C007 \$FE #\$00 \$C015 \$C0015 \$C0015 \$C0015 \$C0015 \$C0018 \$C118 \$C118 \$C133 \$C0010 \$C0010 \$C0010	
CO STA	#\$01 \$C009 \$C006 \$C76, \$C007 \$C003 \$C001 \$C007 \$C003 \$C009 \$C009 \$C009 \$C009 \$C009 \$C009 \$C006 \$ \$C006 \$C006 \$C006 \$ \$C006 \$ \$	Y Y	C262 C267 C268 C260 C260 C260 C271 C272 C275 C278 C278 C278 C278 C281 C281 C288 C288 C288 C288 C288 C28	EE602E0000002222222600002220	97 CI	THUS SERVICES OF THE SERVICES	\$C0CD \$C0E0 \$C0E0 \$C0E0 \$C0E0 \$C118 \$C10B \$C133	
CO STA : CO	\$C005 \$C76,' \$C907 \$C76,' \$C903 \$C901 \$C007 \$C003 \$C210 #\$C210 #\$C009 \$C00F \$C00F \$C00B	Ψ	C267 C268 C260 C260 C260 C271 C272 C273 C278 C278 C278 C281 C284 C287 C288 C288 C288 C288 C288 C288 C288	672600000000000000000000000000000000000	00 CD CC CD CC CD CC CD CC CC CD CC CC CC	TS LI	#\$00 \$C015 \$C00D \$C0E0 \$C0E0 \$C10B \$C118 \$C00D \$C133	
CF LDA : CF	\$CF76,\\ \$C007\ \$CF76,\\ \$C003\ \$C001\ \$C007\ \$C007\ \$C003\ \$C009\ \$C009\ \$C00F\ \$C10B\ #\$02	Ψ	C26A C26D C26E C270 C271 C272 C275 C278 C278 C281 C284 C287 C288 C288 C288 C288 C288 C288 C288	86000000000000000000000000000000000000	CD CC C	TYSKKKKRRR BRANKSRR BRANKKRRR BRANKKRRRR BRANKKRRRR BRANKKKRRRR BRANKKKRRRR BRANKKKRRRR BRANKKKRRRR BRANKKKRRRR	\$C0015 \$C00D \$C0E0 \$C0E1 \$C10B \$C118 \$C00D \$C133	
CO STA :	\$C007 \$CF76, \$CG03 \$C001 \$C007 \$C003 \$C210 #\$C009 \$C00F \$C10B #\$62 \$C10B	Y	C26E C26F C270 C271 C275 C278 C278 C278 C281 C284 C284 C288 C289 C288 C289 C286 C286 C287 C286 C287 C287 C288	99999999999999999999999999999999999999	CD CC E0 CC F1 CC 0B C 18 C CD CC 33 C	BRKKBR BRKKKB BRKKKB JSR JSR JSR BRKKB BRKKB BRKKKB BRKKKB BRKKKB BRKKKB BRKKKB BRKKB BRKB BRKKB BRKB BRKKB BRKB BRKKB BRKKB BRKKB BRKKB BRKKB BRKKB BRKKB BRKKB BRKB BRK	\$C0CD \$C0E0 \$C0E1 \$C10B \$C118 \$C0CD \$C133	
CF LDA : C0 STA : C0 LDA : C0 CMP : C0 STX : C0 STX : C1 JSR : BRK BRK BRK BRK CLC LDX : FF JSR :	\$CF76," \$C003 \$C001 \$C007 \$C003 \$C210 #\$02 \$C009 \$C00F \$C10B	Y	C270 C271 C272 C275 C275 C278 C278 C278 C281 C284 C287 C289 C288 C288 C288 C288 C288 C288 C288	00000000000000000000000000000000000000	CD CC CC	BRKK BRK BRK BRK BRK BRK BRK BRK BRK BRK	\$C0CD \$C0E0 \$C0E1 \$C10B \$C118 \$C0CD \$C133	
INY CØ STY : CØ LDA : CØ CMP : BNE : LDX : CØ LDX : CØ LDX : CØ LDX : FF JSR : LDY : LDX : FF JSR : LDY : LDX : CD	\$C001 \$C007 \$C003 \$C210 #\$02 \$C009 \$C00F \$C10B		C2712 C275 C278 C278 C278 C27E C281 C284 C284 C288 C289 C288 C288 C288 C288 C288 C288	20 20 20 20 20 20 20 20 20 20 20 20 20 2	CD CC CD CD	JSR JSR JSR JSR JSR JSR JSR BRK BRK JSR JSR JSR	\$C0CD \$C0E0 \$C0E1 \$C10B \$C118 \$C0CD \$C133 \$C0CD \$C133	
CØ LDA: CØ CMP: BNE: LDX: CØ STX: CØ LDX: CØ LDX: BRK BRK BRK BRK CLDX: FF JSR: LDY: LDY:	\$C007 \$C003 \$C210 #\$02 \$C009 \$C009 \$C10B #\$02 \$FFC6		C275 C278 C27E C281 C284 C287 C288 C289 C288 C288 C288 C288 C288 C286 C295	20 20 20 20 20 20 20 20 20 20 20 20 20 2	F1 CC OB CC	Jak Jak Jak Jak Jak Jak Jak Jak Jak Jak	\$C0E0 \$C0F1 \$C10B \$C118 \$C0CD \$C133 \$C0CD \$C120	
CO CHIF : BUE : CO STX : CO LDX : C1 JSR : BRK BRK BRK BRK LDX : LDX : LDX :	#\$020 #\$020 \$C009 \$C00F \$C10B #\$02		C278 C27E C281 C284 C287 C288 C289 C28B C28B C28F C28F C295	20 20 20 20 20 20 20 20 20 20 20 20 20 2	08 C. 18 C. CD C. 33 C. CD C. 20 C.	JSK JSR JSR JSR BRK BRK BRK JSR JSR	\$C108 \$C118 \$C0CD \$C133 \$C0CD \$C120	
LUX (CØ STX (CØ LUX (C1 JSR (BRK BRK BRK BRK CLC LUX (L	#\$02 \$C009 \$C00F \$C10B #\$02 \$FFC6		C281 C284 C287 C288 C289 C28A C28B C28C C28F C292	20 60 60 60 60 60 60 60 60 60 60 60 60 60	CD CC 20 C: E1 CC	JSR JSR RTS BRK BRK BRK JSR JSR	\$C0CD \$C133 \$C0CD \$C120	
CO LIX : C1 JSR : RTS BRK BRK BRK CLC LIX : FF JSR : LIY :	\$C00F \$C10B #\$02 \$FFC6		C287 C288 C289 C28A C28B C28C C28F C292	60 00 00 00 20 20	CD C0 20 C:	RTS BRK BRK BRK BRK JSR JSR	\$C0CD \$C120	
RTS BRK BRK BRK CLC LDX FF JSR	#\$02 \$FFC6		C289 C288 C288 C28C C28F C292	00 00 00 20 20 20	CD C(20 C:	BRK BRK BRK JSR JSR	\$C0CD \$C120	
BRK BRK BRK CLC LDX =	#\$02 \$FFC6		C28B C28C C28F C292	20 20 20 20	CD C0 20 C:	BRK JSR JSR	\$COCD \$C120	
BRK CLC LDX : FF JSR :	#\$02 \$FFC6		C28F C292 C295	20	20 C:	JSR JSR	\$C120	
LDX :	#\$02 \$FFC6		C292 C295	20	E1 F1	a ico		
FE JSK	事たたし も			20	0B C	JSR	\$C10B	
	#\$00		C298 C29B	20 ·	CD C0 46 C:	ð JSR L JSR	\$C0CD \$C146	
FF JSR : STA	\$FFH5 (\$FB),'	γ	C29E 1	60 00		RTS BRK		
INY BNE :	\$C223		C2A0 C2A1	00 00		BRK BRK		
INC : FF JSR :	\$FC \$FFCC		C2A2 C2A3	00 20	en e	BRK	.≰CØCTI	
CØ INC	\$C005		C2A6	20	59 C	JSR	\$C159	
BRK			C2AC	20	0B C	JSR	\$C10B	
CLC	## @ @		C2B0	99		BRK		
FF JSR	##02 \$FFC9		C2B2	99 90		BRK		
LDA :	#\$UU (\$FD),	Y	C2B3 C2 B4	00 20 :	SB C	BRK JSR	\$C08B	
FF JSR : INY	\$FFA8		C2B7 C2BA	20 1 20 1	72 C2 5E C0	2 JSR 3 JSR	\$C272 \$C05E	
BNE	\$C23E		C2BD	20 (2 JSR	\$C2FB	
FF JSR	\$FFCC		C2C1	99	വ വ	BRK		•
RTS			0205	20 :	ac ca	2 JSR	\$C28C	
BRK			C2CB	20 (3 JSR	\$C303	
LDY			C2CF	60 00		RTS BRK		
		ሃ	C2D0		8B C0			
	BNE INC FF JSR OB INC RTS BRK BRK CLC LDY LDA CMP	#NE \$C23E INC \$FE FF JSR \$FFCC O INC \$C007 RTS BRK BRK CLC LDY #\$00	BNE \$C23E INC \$FE FF JSR \$FFCC C0 INC \$C007 RTS BRK BRK CLC LDY #\$00 LDA (\$FD),Y CMP #\$00	BNE \$C23E	BNE \$C23E	BNE \$C23E	BNE \$C23E	BNE \$C23E

```
1DUPDAC ---
(
            C2D3
                   20 A3 C2 JSR $C2A3
            C2D6
                   60
                              RTS
                   99
                              BRK
            C2D7
            C2D8
                   99
                              BRK
                   20 8B C0 JSR $C08B
            C2D9
                   20 5E C0 JSR $C05E
            C2DC
(
            C2DF
                   60
                              RTS
            C2E0
C2E1
                              BRK
                   99
                    99
                              BRK
                              BRK
            C2E2
                    00
                              LDA #$0A
             C2E3
                   A9 ØA
                              STR $34
                    85 34
             C2E5
                              STA $38
                    85 38
             C2E7
(
                    20 18 CØ JSR $CØ18
             C2E9
C2EC
                    60
                              RTS
(
             C2ED
                              BRK
                    00
                    99
                              BRK
             C2EE
                    20 8B C0 JSR $C08B
             C2EF
(
                    20 01 C1 JSR $C101
             C2F2
(
                    20 5E C0 JSR $C05E
             C2F5
                              RTS
             C2F8
                    60
(
             C2F9
                    99
                              BRK
             C2FA
C2FB
                              BRK
                    00
                    A9 00
                              LDA #$00
                    8D 17 CØ STA $CØ17
             C2FD
                              RTS
             C300
                    60
(
                    99
                               BRK
             C301
                               BRK
                    00
             C302
                    A0 00
                               LDY #$00
             C303
             C305
C308
                    B9 00 C0 LDA $C000,4
                    99 3C 03 STR $033C,Y
C8 INY
(
             C30B
(
             C30C
                    CØ 09
                               CPY #$09
             C30E
                    DØ F5
                               BNE $C305
             C310
                    60
                               RTS
             C311
                    00
                               BRK
             C312
                    00
                               BRK
             C313
C316
C317
(
                    20 C4 C1
                              JSR $C1C4
                    18
                              CLC
(
                    AD 17 CO LDA $C017
             C31A
                    CD 16 CØ CMP $CØ16
             C31D
                    FØ 24
                              BEQ $C343
             C31F
                    AD 09 C0 LDA $C009
             C322
C324
                    C9 Ø1
                              CMP #$01
(
                    FØ 1D
                              BEQ $C343
                    C9 02
F0 19
             C326
                              CMP ##02
(
             C328
                              BEQ $C343
             C32A
                    EE 17 CO INC $CO17
             C32D
                    A0 00
                              LDY #$99
             C32F
                    B9 3C 03 LDA $033C,Y
             C332
                    99 00 C0 STA $C000,Y
                    CØ 03
             C335
                              INY
            ·C336
                              CPY #$09
                    DØ F5
                              BNE $C32F
             C338
             C33A
                    A2 05
                              LDX #$05
             C33C
                    8E 09 C0 STX $C009
             C33F
                    A9 0A
                              LDA #$@A
             C341
                    85
                       38
                              STA $38
             C343
                    60
                              RTS
(
(
                                          153
(
```

C

 C^1

0

 \mathbf{O}

0

0

0

()

2DUPDAC DUPDAC DATA :C008 00 00 0B 0B 11 F8 11 23 :C010 03 OF 23 08 09 00 00 00 CØ18 A9 00 LDA #\$00 CØ91 A9 02 LDA #\$02 (CØ1A 85 FB STA \$FB 0093 20 C3 FF JSR \$FFC3 85 FD STA \$FD 0010 0096 A9 0F LDA #\$0F (LDA #\$0A CØ1E A9 0A C098 20 C3 FF JSR ≇FFC3 0020 85 FC STA \$FC C09B 60 RTS 0022 85 FE STA \$FE C09C 00 BRK LDY #\$00 LDA #\$00 CØ24 A0 00 00 BRK CØ26 A9 00 C09E 00 BRK (CØ28 99 00 C0 STA \$C000,Y C09F 00 BRK C8 CPY #\$OR C02B COAO A9 0F LDA #\$0F (ČØ ØA 0020 CØA2 AE 14 CØ LDX \$C014 DØ F9 BNE \$C028 AD 0A CO LDA \$C00A C02E CØA5 LDY #\$0F A0 0F C030 20 BA FF CØA7 JSR \$FFBA 0033 8D 20 D0 STA \$D020 COAA A9 00 LDA #\$00 AD 0B C0 LDA \$C00B
8D 21 D0 STA \$D021
AD 11 C0 LDA \$C011
8D 18 D4 STA \$D418
AD 0C 0 LDA \$C00C
8D 05 D4 STA \$D405
AD 0D C0 LDA \$C00D
8D 06 D4 STA \$D406
AD 10 C0 LDA \$C010
8D 00 D4 STA \$D406
AD 10 C0 LDA \$C010
8D 00 D4 STA \$D400
AD 0F C0 LDA \$C00F
8D 01 D4 STA \$D401
60 RTS
00 BRK
00 BRK AD 0B C0 LDA \$C00B (0036 COAC 20 BD FF JSR ≸FFBD 0039 **CØAF** 20 CO FF JSR \$FFC0 (0030 CØB2 A9 02 LDA #\$02 C03F C0B4 AE 14 CO LDX \$C014 CØ42 **C0B7** A0 02 LDY #\$02 (CØ45 20 BA FF JSR \$FFBA C0B9 C948 COBC **R9 01** LDA #\$01 (C@4B CØBE A2 12 LDX #\$12 C0C0 C0C2 LDY #\$CØ C04E A0 C0 (CØ51 20 BD FF JSR \$FFBD CØ54 C0C5 20 CØ FF JSR \$FFCØ CØ57 60 RTS CØ5A CØC9 00 BRK (CØ5B COCA 00 BRK CØ5C · COCB 99 BRK CØ5D BRK COCC 99 00 BRK LDA #\$0F **CØ5E** A9 0F 18 CLC AE 13 CO LDX \$C013 0969 CØCE A2 00 LDX #\$00 LDY #\$OF (CØ63 A0 0F CODO BD FO CD LDA \$CDFO,X JSR \$FFBA LDA #\$00 C065 20 BA FF C9 04 F0 06 COD3 CMP #\$04 (CØ68 A9 00 CØD5 BEQ \$CØDD 20 BD FF JSR \$FFBD CØ6A CØD7 20 D2 FF JSR \$FFD2 20 C0 FF JSR \$FFC0 A9 02 LDA #\$02 AE 13 C0 LDX \$C013 C06D CØDA E8 INX 0070 CODB DØ F3 BNE \$C0D0 C072 CODD 60 RTS (LDY #\$02 AØ 02 C075 CØDE 99 BRK 20 BA FF JSR \$FFBA CODE CØ77 99 BRK LDA #\$01 LDX #\$12 LDY #\$C0 C07A A9 01 18 C0E0 CLC R2 12 **C07C** C0E1 A2 00 LDX #\$00 BD 8C CE LDA \$CE8C,X C9 04 CMP #\$04 F0 06 BEQ \$C0F0 **C07E** A0 C0 C0E3 20 BD FF JSR \$FFBD 20 C0 FF JSR \$FFC0 C080 **C0E6** (C083 C0E8 0986 60 RTS 20 D2 FF JSR \$FFD2 CØEA (0087 99 BRK COED E8 INX C088 99 BRK DØ F3 COEE BNE \$C0E3 99 BRK 0089 COFO 60 RTS C088 99 BRK CØF1 18 CLC LDA #\$0A C08B A9 0A CØF2 R2 00 LDX #\$00 85 FC STA \$FC BD E0 CE LDA \$CEE0,X C08D C0F4 CØ8F 85 FE STA \$FE CØF7 C9 04 CMP #\$04 (155 (

C0F9 C0FB C0FF C104 C104 C108 C109 C108 C1112 C1115 C1116 C1111 C1121 C1121 C1121 C1123 C1221 C1230 C1332 C1334	20UPDAC - F0 06 1 20 D2 FF 20 D2 FF 20 E4 FF C9 88 P9 00 04 D4 8E 04 D4 8E 04 D4 8E 04 D4 8E 09 07 8E 00 00 8E 09 07 8E 00 00 8E 09 07 8E 00 00 8E 09 07 8E 09 00	### ### ### ### ### ### ### ### ### ##	C159 C159 C155A C155F C1666 C1667 C166A C166B C1670 C177A C177A C188A C188A C188B C199A C199A C199B	00 13 00 CF FF 00 00 18 FF 00 00 00 18 FF 00 00 00 00 18 FF 00 00 00 00 18 FF 00 00 00 00 00 00 00 00 00 00 00 00	BRK CLC #\$000 LDA #\$015 BEQ \$FFD 150 BERK CLC \$C000 CPG \$C000 CPG #\$018 LDY #\$000 BEDY #\$000 BEDY \$C000 ENEX #\$000 STY \$C000 S	
C140 C141 C143 C1445 C146 C147 C149 C146 C150 C153 C156 C157	60	BNE \$C136 RTS BRK BRK CLC LIX #\$00 LIA \$CF13,X CMP #\$04 BEQ \$C156 JSR \$FFD2 INX BNE \$C149 RTS BRK	C1C3 C1C4	8C 00 C0 AD 05 C0 CD 05 C0 B2 02 C0 RE 08 C0 8E 08 C1 00 00 00 13	STY \$C000 LDA \$C003 BNE \$C018 LDX \$C000 LDX \$C000 JSR \$C101 RTS BRK BRK BRK BRK CLC	

r				
(2DUPDAC		
(0105	AE 09 C0 LDX \$C009	C237	A2 02 LDX #\$02
(CIC8	FG G1 CPX #\$01	C239 C23C	20 C9 FF JSR \$FFC9 A0 00 LDY #\$00
(C1CA	FØ 37 BEQ \$C203 AC 01 C0 LDY \$C001	C23E	B1 FD LDA (\$FD),Y
(C1CC C1CF	B9 76 CF LDA \$CF76,Y	C240	20 A8 FF JSR ≸FFA8
	CID2	CO FE CMP #4FF	UZ43	C8 INY DØ F8 BNE \$C23E
(C1D4	DØ 13 BNE \$C1E9	C244 C246	DØ F8 BNE \$C23E E6 FE INC \$FE
(CID6 CID8	D0 13 BNE \$C1E9 A2 03 LDX #\$03 C8 INY B9 76 CF LDA \$CF76,Y	C248	20 CC FF JSR \$FFCC
(CID9		C24B	EE 07 C0 INC \$C007
(CIDC	C9 BB CMP #\$BB	C24E C24F	60 RTS 00 BRK
Ì	C1DE C1EØ	DØ 02 BNE \$C1E2 A2 04 LDX #\$04	C250	00 BRK
	C1E2	8F 09 C0 STX \$C009	C251	18 CLC
(C1E5	8C 01 C0 STY \$C001	C252 C254	A0 00 LDY #\$00 B1 FD LDA (\$FD),Y
•	C1E8 C1E9	60 RTS	C256	C9 00 CMP #\$00
(CIEB	8E 09 C0 STX \$C009	C258	DØ ØE BNE \$C268
Ì	CIEE	A2 01 LDX #\$01 8E 09 C0 STX \$C009 8D 06 C0 STA \$C006 C8 INY	C25A C25B	C8 INY D0 F7 BNE \$C254
	C1F1	C8 INY	C25D	A2 01 LDX #\$01
(C1F2 C1F5	B9 76 CF LDA \$CF76,Y 8D 07 C0 STA \$C007 C8 INY	C25F	8E 15 CØ STX \$C015
•	C1F8		CO/E	EE 07 C0 INC \$C007 E6 FE INC \$FE
(C1F9	B9 76 CF LDA \$CF76,Y BD 03 C0 STA \$C003 C8 INY	C267	60 RTS
Ì	C1FC C1FF	CS INY	C268	A2 00 LDX #\$00
	C200	8C 01 C0 STY \$C001	C26A	8E 15 CØ STX \$CØ15 60 RTS
(C203	AD 07 CO LDA \$C007	C26 D C26 E	60 RTS 00 BRK
(C206 C209	TO 05 CO CMP \$C003	C26F	00 BRK
(C20B	C8 INY 8C 01 C0 STY \$C001 AD 07 C0 LDA \$C007 CD 03 C0 CMP \$C003 D0 05 BNE \$C210 A2 02 LDX #\$02 8E 09 C0 STX \$C009 AE 0F C0 LDX \$C00F 20 0B C1 JSR \$C10B	C270	00 BRK 00 BRK
(C20D	8E 09 C0 STX \$C009	C271 C272	A9 ØA LDA #\$ØA
	C210 C213	20 OR C1 JSR \$C10B	C274	85 34 STR \$34
(C216	60 RTS	C276	85 38 STA \$38 20 18 C0 JSR \$C018
(C217	00 BRK	C278	20 18 C0 JSR \$C018 20 CD C0 JSR \$C0CD
•	C218 C219	aa BRK	C27E	20 E0 C0 J3R \$C0E0
(C21A	00 BRK	C281	20 F1 C0 JSR \$C0F1 20 0B C1 JSR \$C10B
Č	C21B	18 CLC	C287	20 18 C1 JSR \$C118
	C21C C21E	20 C6 FF 19R \$FFC6	C28A	20 CD C0 JSR \$C0CD
(C221	A0 00 LDY #\$00	C28D	20 20 C1 JSR \$C120 20 F1 C0 JSR \$C0F1
(C223	00 BRK 00 BRK 00 BRK 00 BRK 18 CLC 18 CLC 19 CLC 19 CLC 10 CLC	C293	20 0B C1 JSR \$C10B
(C226 C228	CS INY	C296	60 RTS
Ì	C229	DØ F8 BNE \$C223	C297 C298	00 BRK
	C22B	DØ F8 BNE \$C223 E6 FC INC \$FC	C298 C29B	20 8B C0 JSR \$C08B 20 CD C0 JSR \$C0CD
(C23D	20 CC FF JSR \$FFCC EE 05 C0 INC \$C005	C29E	20 33 C1 JSR \$C133
(C233	60 RTS	C2A1	20 5E CØ JSR \$C 05 E
(. C234	00 BRK		,
į.	0235			
(C236	18 CLC		
(•			
(-		
(
è			157	

(

2DUPDAC	
C2A4 C2A5 C2A6 C2A6 C2A6 C2A7 C2A7 C2A7 C2A8 C2A8 C2AB C2AB C2AB C2AB C2AB C2AB C2AB C2AB	CEI8 56 45 20 2A 20 2A 0D 04 CEE0 11 11 9F 2A 20 2A 20 50 CEE3 52 45 53 53 20 46 37 20 CEF6 2A 20 2A 0D 04 11 11 9E CEF8 2A 20 2A 0D 04 11 11 9E CF00 20 4D 4F 44 45 20 45 4E CF08 41 42 4C 45 44 20 2A 20 CF10 2A 0D 04 11 11 05 2A 20 CF10 2A 0D 04 11 11 05 2A 20 CF10 2A 0D 04 11 11 9F 9F 2A 20 CF10 2A 0D 04 11 11 9F 9F 2A 20 CF20 4D 4F 44 45 20 45 45 41 CF28 42 4C 45 44 20 2A 20 2A CF30 0D 04 11 11 9F 9F 2A 20 CF30 0D 04 11 11 9F 9F 2A 20 CF30 0D 04 11 11 9F 9F 2A 20 CF30 0D 04 11 11 2A 20 2A CF30 0D 04 11 11 2A 20 2A CF30 0D 04 11 11 2A 20 2A CF30 0D 04 00 00 00 00 00 00 CF30 20 2A 0D 11 11 2A 20 2A CF50 20 2A 0D 11 11 2A 20 2A CF50 20 2A 0D 15 11 2A 20 2A CF50 20 2A 0D 15 11 2A 20 2A CF50 20 2A 0D 15 11 2A 20 2A CF50 20 2A 0D 15 11 2A 20 2A CF50 20 2A 0D 15 11 2A 20 2A CF50 20 2A 0D 15 11 10 00 CF70 00 00 00 00 00 00 00 00 00 CF70 00 00 15 05 00 15 06 00 15 CF90 03 15 09 00 15 0A 00 15 CF90 15 12 10 10 12 1A 00 12 CFD0 18 00 12 1A 00 12 CFD0 18 10 20 14 15 16
CE00 72 72 72 72 72 72 72 72 72 72 CE00 72 72 72 72 72 72 72 72 72 72 72 72 72	CFD8 12 1E 00 12 1F 00 02 FF CFE0 1F 02 11 20 00 11 21 00 CFE8 11 22 00 11 23 00 11 FF CFF0 BB 00 00 00 00 00 00 CFF8 00 00 00 00 00 00 00 00 00 00 00 00 00

SUPERDIRECTORY 5 IFA=0THENA=1:LOAD"ADMACH",8,1 10 POKE53280,11:POKE53281,11:TR=18:SE=1:DIMA(300):DIMB(200) 15 HX\$="0123456789ABCDEF" 18 P=0:INPUT"D=PRINTER Y/N";YM\$:IFYM\$="Y"THEMP=1 20 PRINT"DD SUPERDIRECTORYW (C)84 PSIDAC VBM=" 25 IFP=1THEMOPEN4,4:PRINT#4:PRINT#4,CHR\$(16)"15SUPERDIRECTORY":PRINT#4:CLOSE4 30 PRINT"MINSERT SOURCE DISK IN DRIVE" 35 INPUT"MDISK NAME"; DN\$ 40 IFPD≈1THEN50 41 PRINT"XMPRESS F7" 42 GETA\$: IFA\$<>"III"THEN42 45 IFP=1THENOPEN4,4:PRINT#4,"DISK NAME = "DN\$:PRINT#4:CLOSE4 50 OPEN15,8,15:OPEN2,8,2,"#":PRINT#15,"U1:"2;0;TR;SE 60 SYS49152 70 CLOSE2: CLOSE15 20 FORRP=0T0255 100 A(RP)=PEEK(RP+52992) **120 HEXT** 125 TR=A(0):SE=A(1) 130 PRINT"DUTYPE TRACK SECTOR NAME BLKSE" 132 IFPD=1THENOPEN4,4:GOTO138 133 IFP<>1THEN136 134 OPEN4,4:PRINT#4,"TYPE 136 IFP=1THENPD=1 TRACK SECTOR NAME BLKS": PRINT#4 138 FORRP=2T0226STEP32:0K=1:FT\$=" 139 TK=A(RP+1):SK=A(RP+2):NB=A(RP+28):IFTK=0THENCLOSE4:G0T0200 140 IFA(RP)=OTHENFT\$="DEL":QK=1 145 IFA(RP)=130THENFT\$="PRG":0K=1 150 IFA(RP)=132THENFT\$="REL":0K=0 155 IFA(RP)=129THENFT\$="SEQ":OK=0 160 PRINTFT\$; IFP=1THENPRINT#4,FT\$; 165 172 PRINTTAB(5)TK; TAB(12)SK; 175 IFP=1THENPRINT#4/CHR\$(16)"07"TK;CHR\$(16)"16"SK;CHR\$(16)"27"; 178 IFOK=1THENB(C)=TK:B(C+1)=SK:C=C+2 190 PRINTTAB(18); :FORTX=3T018:PRINTCHR\$(A(RP+TX)); :NEXT:PRINTTAB(34)NB 185 IFP=1THENFORTX=3T018:PRINT#4,CHR\$(A(RP+TX));:NEXT:PRINT#4,CHR\$(16)"34"NB 190 NEXT: CLOSE4 200 IFA(0) OTHENGOTO40 300 PRINT WPRESS F70" 305 GETA\$: IFA\$<>"#I"THEN305 310 PRINT"TTRACK HEX.ADD DEC.ADD": PRINT SECTOR (315 IFP<>1THEN320 318 OPEN4,4:PRINT#4:PRINT#4,"TRACK SECTOR HEX.ADD DEC.ADD":PRINT#4 319 CL0SE4 320 PC=1:FORRP=0TOC-2STEP2 330 TR=B(RP):SE=B(RP+1) 340 OPEN15,8,15:OPEN2,8,2,"#":PRINT#15,"U1:"2;0;TR;SE 350 SYS49152 360 CLOSE2:CLOSE15:PC=PC+1 364 IFP=1THEN370 365 IFPC<>1860T0370 367 PRINT"XPRESS F7XI" 368 GETAS: IFAS<>"#I"THEN368 369 PC=1:PRINT"DTRACK SECTOR HEX . ADD DEC.ADD":PRINT 370 RL=PEEK(52994): RH=PEEK(52995): RT=256*RH+RL 375 GOSUB1000 380 PRINTTR; TAB(9)SE; TAB(18)D\$; TAB(29)AT 382 IFP<>1THEN390 385 OPEN4,4 386 PRINT#4,TR;CHR\$(16)"97"SE;CHR\$(16)"16"D\$;CHR\$(16)"26"AT:CLOSE4 **390 NEXT** 400 PRINT" MOPRESS F7" 410 GETA\$: IFA\$<>"#"THEN410 999 RUN10 1000 X=RT:D\$="" 1005 D(1)=INT(X/4096):X=X-(D(1)*4096):D(2)=INT(X/256):X=X-(D(2)*256) 1010 D(3)=INT(X/16):D(4)=X-(D(3)*16) 1020 FORI=1TO4:D\$=D\$+MID\$(HX\$,(D(I)+1),1):NEXT 1060 RETURN CHANGE THESE LINES FOR NON-COMMODORE PRINTERS 25 IFP=1THENOPEN4,4:PRINT#4:PRINT#4.TAB(15) "SUPERDIRECTORY":PRINT#4:CLOSE4 165 IFP=1THENPRINTW4,FT\$;TAB(07)TK; 172 PRINTTAB(5)TK;TAB(12)5K; 175 IFP=1THENPRINTW4,TAB(18)5K;TAB(24); 178 IFOK=1THENB(C)=TK:B(C+1)=5K:C=C+2 180 PRINTTAB (18) : FORTX=3T018: PRINTCHR (A(RP+TX)) : NEXT: PRINTTAB (34) NB 185 IFP=1THENFORTX=3T018:PRINTM4, CHR\$ (A (RP+TX));:NEXT:PRINTM4, TAB (2) NB 386 PRINT#4, TR; TAB (4) SE; TAB (5) D\$; TAB (7) AT: CLOSE4

C000 C001 C003 C005 C007 C009 C018 C010 C015 C016 C018 C011 C011 C011 C011 C012 C021 C020 C021 C022 C023 C025 C026 C036 C036 C038 C038 C038 C038 C038	ADMACH 13	$ = \{ (x_1, x_2, x_3, x_4, x_4, x_4, x_4, x_4, x_4, x_4, x_4$
	160	() ()

```
DISK-EDITOR
10 IFA=OTHENA=1:LOAD"ADMACH",8,1
10 IFA=0THENA=1:LOAD*ADMACH*,8,1
20 POKE53280,11:POKE53281,11:DIMA(300):DIMA$(300):HX$="0123456789ABCDEF"
25 P=0:INPUT"D#PRINTER Y/N";YN$:IFYN$="Y"THENP=1
30 PRINT"DM DISK-EDITORW (C) PSIDAC VBN#"
40 IFP=1THENDPEN4,4:PRINT#4:PRINT#4;CHR$(16)*13DISK-EDITOR":PRINT#4:CLOSE4
50 PRINT"D INSERT SOURCE DISK IN DRIVE":INPUT"D DISK NAME";DN$
80 IFP=1THENDPEN4,4:PRINT#4;"DISK NAME = "DN$:PRINT#4:CLOSE4
110 INPUT"D INPUT TRACK # ";TR:INPUT"D INPUT SECTOR # ";SE
120 OPEN15,8,15:OPEN2,8,2,"#":PRINT#15,"U1:"2;0;TR;SE:SYS49152:CLOSE2
125 INPUTB 15,A$,B$,C$,D$:PRINT*D "9$,B$,C$,D$"D":CLOSE15
130 FORPP=0TO255:G(RP)=PFEK(RP+25992):NEXT
130 FORRP=0T0255: A(RP)=PEEK(RP+52992): NEXT
 140 PRINT"J";:RP=0:FORXA=0T020:FORYA=1T012:GOSUB1000:PRINTD$" ";:RP=RP+1
150 NEXT : PRINT"
                                "; : NEXT
160 FORRP=RPT0255:GOSUB1000:PRINTD$" ";:NEXT:PRINT
165 PRINT"TRACK "TR" SECTOR "SE:IFP=0THEN200
170 OPEN4.4:RP=0
175 FORXA=0T020:FORYA=1T012:GOSUB1000:PRINT#4,D$" ";:RP=RP+1
186 NEXT :PRINT#4," ":NEXT
 190 FORRP=RPT0255:GOSUB1000:PRINT#4,D$" ";:NEXT:PRINT#4
210 SL=1024:BL=52992:FORBC=0T0255
220 X=PEEK(SL): IFX=32THENSL=SL+1:GOTO220
230 IFX>47THENX=(X-48)*16:GOTO260
240 IFX<7THENX=(X+9)#16:GOTO260
250 PRINT"DUM ILLEGAL DATA FOUND": END
260 POKESL, 32: SL=SL+1: Y=PEEK(SL)
 270 IFY>47THENY=Y-48:GOT0300
280 IFY<7THENY=Y+9:G0T0300
290 G0T0250
300 NT=X+Y:POKEBL,NT:BL=BL+1:POKESL,32:SL=SL+1:NEXT
330 PRINT",30 READY DISK TO SAVE"
340 PRINT",30 PRESS F7 TO SAVE":PRINT",30 PRESS F1 TO NOT SAVE"
350 GETX$
 360 IFX$="W"THENPRINT":":00T0390
 370 IFX$="@"THENPRINT"3":GOTO110
 380 GOTO350
390 OPEN15,8,15:OPEN2,8,2,"#":PRINT#15,"B-P:"2;0
400 SYS49104:PRINT#15,"U2:"2;0;TR;SE:CLOSE2
410 INPUT#15,8*,B*,C*,D*:PRINT"N "8*,B*,C*,D*:CLOSE15
415 PRINT"M TO USE PGM. AGAIN PRESS F7"
420 GETX4: IFX4="#"THENRUN20
 440 GOTO420
999 FND
 1000 X=A(RP):D$=""
 1010 D1=INT(X/16):D$=D$+MID$(HX$,D1+1,1)
 1020 D2=INT(X-16*D1):D$=D$+MID$(HX$,D2+1,1):RETURN
FOR NON-COMMODORE PRINTERS CHANGE THESE LINES
40 IFP=1THENOPEN4,4:PRINT#4:PRINT#4,TAB(13)*DISK-EDITOR*:PRINT#4:CLOSE4
```

ERROR ANALYZER 10 POKE53280,11:POKE53281,11:P=4:D=8:RT=1:NT=3 20 DIMER\$(11):FORRP=1TO11:READER\$(RP):NEXT 30 DATA ALL OK", "NO HEADER FOUND", "NO SYNC FOUND", "DATA BLOCK NOT FOUND" 40 DATA CHECKSUM ERROR IN DATA", "BYTE DECODING ERROR", "WRITE VERIFY ERROR" 50 DATA WRITE PROTECT ON", "CHECK SUM ERROR IN HEADER", "LONG DATA BLOCK" 60 DATA"DISK ID MISMATCH" 80 DATA 1,17,0,20,18,24,0,18,25,30,0,17,31,35,0,16,36,44,0,15 85 OPEN15.D.15."IO":CLOSE15 90 PRINT"IM ERROR ANALYZERW PSIDAC(C)84 VBN" 100 PRINT"MMINSERT SOURCE DISK IN DRIVE":PRINT"PRESS F7" 110 GETF7\$:IFF7\$<>"W"THEN110 115 PR=0: INPUT"XPRINTER Y/N"; YN\$: IFYN\$="Y"THENPR=1 120 INPUT "XDISK NAME"; DH\$ 122 PRINT":DELECT CHOICE":PRINT"DM(1)=LOG ERRORS" 123 PRINT"DM(2)=LOG UNFORMATTED TRACKSDM" 124 INPUTCH\$:CH=VAL(CH\$):PRINT"DDM":ONCHGOTO128,300 125 PRINT"3" : GOTO122 128 IFPR=1THENOPEN4,P:PRINT#4," ERROR LOG FOR "DN#:PRINT#4:CLOSE4 140 FORPP=1T05:READFT,LT,FS,LS 150 FORTC=FTTOLT:FORSC=FSTOLS:OPEN15.D.15 170 PRINT#15,"M-W"CHR\$(6)CHR\$(0)CHR\$(1)CHR\$(TC) 180 PRINT#15,"M-W"CHR\$(7)CHR\$(0)CHR\$(1)CHR\$(SC) 190 PRINT#15,"M-W"CHR\$(9)CHR\$(0)CHR\$(1)CHR\$(128) 200 PRINT#15,"M-R"CHR\$(0)CHR\$(0)CHR\$(1)CHR\$(128) 202 IFX=1THEN210 205 T=T+1: IFT<>NTTHEN170 210 CLOSE15:PRINT"ER#"X;TAB(6)"TR#"TC;TAB(12)"SE#"SC:PRINTER\$(X)"W" 220 IFX=10RRT=1THEN1000 230 IFPR=0THEN265 235 OPEN4,P 250 PRINT#4, "ER#"X" TR# "TC; CHR\$(16)"068E# "SC; CHR\$(16)"24"ER\$(X): CL08E4 260 GOTO1000 265 GOSUB2000 280 GOTO1000 300 IFPR=1THENOPEN4,P:PRINT#4,"UNFORMATTED TRACK LOG FOR "DN#:PRINT#4:CLOSE4 310 FORTR=1T044:0PEN15,D.15 320 PRINT#15,"M-W"CHR\$(6)CHR\$(0)CHR\$(1)CHR\$(TR) 330 PRINT#15,"M-W"CHR\$(7)CHR\$(0)CHR\$(1)CHR\$(0) 340 PRINT#15, "M-W"CHR\$(0)CHR\$(0)CHR\$(1)CHR\$(128) 350 PRINT#15,"M-R"CHR\$(0)CHR\$(0):GET#15,A\$:X=ASC(A\$+CHR\$(0)):IFX>127THEN350 360 CL0SE15 365 FM\$="SYNC FOUND": IFX=3THENFM\$="UNFORMATTED" 375 PRINT"TRACK "TR; TAB(12)FM\$ 385 IFPR=1ANDX=3THEN OPEN4,P:PRINT#4,"TRACK "TR;CHR\$(16)"12"FM\$:CLOSE4 390 NEXT:GOSUB2000:GOT085 999 END 1000 NEXT: NEXT: NEXT 1010 GOSUB2000: GOTO85 2000 PRINT"MPRESS F7 TO CONTINUEM" 2010 GETF7\$: IFF7\$()"8"THEN2010 2020 RETURN INSERT LINE 112 OPEN15, D, 15, "IO" : CLOSE15 CHANGE FOLLOWING LINES FOR NON-COMMODORE PRINTERS 250 PRINTH4, "ERH"X" TRH "TC; TAB(06) "SEH "SC; TAB(24) ER\$(X): CLOSE4 385 IFPR=1ANDX=3THEN OPEN4,P:PRINT#4, "TRACK "TR; TAB(12)FM\$:CL05E4 () ()

NOTE: The following options for Error Analyzer are included for your benefit:
LINE 10 RT=0 for STOP on ERROR, or RT=1 to run through.
LINE 140 For non-extended (0-35) "formatted track check",
Change PP=1 TO 5 to PP=1 TO 4.
LINE 310 Set TR=1TO44 for complete sync check. Set
TR=1TO35 for non-extended sync check, or set TR=36TO44 to only check "extra" tracks for sync.
NOTE: IF DISK LOCKS UP BEYOND TRACK 35, OPEN DRIVE DOOR.
Some diskette manufacturers certification methods may cause variations in what is "found" in the extra tracks.

()

()

()

()

()

()

LINKSTER 100 PRINT"I MLINKSTER WKC) PSIDAC 1984 DTW" 110 POKE53280,11:POKE53281,11:P=0:DR=8 120 INPUT WPRINTER ON Y/N";PR\$ 130 IFPR\$="Y"THENP=1:INPUT"@PRG NAME";NM\$:GOT0140 135 IFPR#<>"N"THEN100 140 PRINT"D MLINKSTER MKC) PSIDAC 1984 DTW" 150 PRINT WENTER STARTING TRACK & SECTOR" 160 INPUT"MTRACK"; TR: INPUT"MSECTOR"; SE: PRINT 180 IFP=1THENOPEN4,4:PRINT#4,NM\$CHR\$(13)"STARTING (TR SEC)-"TR)SE:CLOSE4 190 LN=1:CT=1 200 LN=LN+1:OPEN15,DR,15:OPEN3,DR,3,"#" 210 FRINT#15, "B-R"; 3; DR; TR; SE: GOTO600 220 PRINT#15, "B-P";3;0 230 GET#3,Q\$:IFQ\$=""THENQ\$=CHR\$(0) 240 TR=ASC(Q\$):IFTR=00RTR>35THEN320 250 GET#3, N\$: IFN\$=""THENN\$=CHR\$(0) 260 CLOSE3:CLOSE15:SE=ASC(W\$) 270 IFP=1ANDLN=6THENOPEN4,4:PRINT#4," ":CLOSE4 280 IFLN=6THENPRINT:LN=1 290 PRINTTR"N"SE"-"; 300 IFF=1THENOPEN4,4:PRINT#4,TR;SE" - ";:CLOSE4 310 CT=CT+1:GOTO200 320 PRINT" ENDING TR/SECW" 330 IFF=1THENOPEN4,4:PRINT#4," - ENDING TR/SEC" 340 IFF=1THENPRINT#4, CHR\$(13)CT" BLOCKS USED":PRINT#4:CLUSE4 350 PRINTCT" BLOCKS USED A" 360 PRINT"PRESS F7 TO RUN AGAIN":CLOSE15:CLOSE3 370 GETCK\$:IFCK\$<\"#"THEN370 380 RUN 600 INPUT#15, ER\$, B\$, C\$, D\$: IFER\$="00"THENGOTO 220 610 PRINT:PRINT"MERROR CONDITION "ER\$,B\$" "C\$" "D\$"&" 620 PRINT"MCORRECT PROBLEM - PRESS F7" 630 GETCK\$:IFCK\$<>"#"THEN630 640 PRINT"T **''** 650 CLOSE3:CLOSE15:GOT0150 READY.

() RELOCATE/LOADER () 1 IFA=0THENA=1:LOAD"MACHRELO",8,1 2 POKE52, 10: POKE56, 10: POKE53280, 11: POKE53281, 11 3 PRINT"DOM RELO/LOADER #PSIDAC (C)84 VBN=" 4 PRINT "MPUT ORIG. DISK IN DRIVE" 5 INPUT MINPUT FILENAME"; NF\$: NL=LEN(NF\$): POKE251, NL 6 FORLP=1TONL:POKE819+LP,ASC(MID\$(NF\$,LP,1)):NEXT:SYS840 7 EA=PEEK(175)*256+PEEK(174):PRINT"M BYTES ="EA-2560 8 PRINT"MPUT CPY DISK IN DRIVE": PRINT"MPRESS F7" 9 GETA\$: IFA\$<>"BI"THEN9 10 PRINT"MSAVING "NF\$" FROM 2560 TO"ER:SYS875:CLR 11 OPEN15, 8, 15: INPUT#15, A\$, B\$, C\$, D\$: PRINT "W"A\$, B\$, C\$, D\$: CLOSE15 **(**) () () () **(**)

()

C	
Ò	MACHRELO
(03	48 20 95 03 JSR \$0395
	4B A9 08 LDA #\$08 4D A2 08 LDX #\$08
່	14F A0 00 LDY #\$00 151 20 BA FF JSR \$FFBA
(03	54 A5 FB LDA \$FB
03	56 A2 34 LDX #\$34 58 A0 03 LDY #\$03
`	5A 20 BD FF JSR \$FFBD 5D A9 00 LDA #\$00
93	5F A2 00 LDX #\$00
ด้ว	
(93 93	66 20 A0 03 JSR \$03A0 69 60 RTS
03	6A 00 BRK 6B 20 95 03 JSR \$0395
l C	6E A9 08 LDA #\$08
83	70 A2 08 LDX #\$08 72 A0 FF LDY #\$FF
03	74 20 BA FF JSR \$FFBA
03	
03	7D 20 BD FF JSR \$FFBD
(03 03	
03 03	84 A9 0A LDA #\$0A
03	88 A9 FC LDA #\$FC
03	BC R4 RF LDY \$RF
03	
(03	94 60 RTS
(03 03	97 8D A7 02 STA \$02A7
03:	
03	9E 60 RTS
03	AO AD A7 02 LDA \$02A7
03	
(
(
(
(
(
(
(
Č	
Č	165
(103
Ò	

```
10 IFA=0THENA=1:LOAD*ANALYMACH*,8,1
11 DATA*ALL OK*, "NO HEADER ", "NO SYNC ", "NO DATA "
12 DATA*DATA CHECK SUM*, "X". "
13 DATA*X, "CHKSUM IN HDR", "X"
14 DATA*BAD ID*
15 DIMER*(11):FORRP=1T011:READER*(RP):NEXT
18 POKE54296,15:POKE54277,17:POKE54278,248:POKE54272,3:POKE54273,35
20 POKE53280,11:POKE553281,11:SL=49152:POKE54273,1:D=8:P=4
30 DATA1.17,0,20,18,24,0,18,25,30,0,17,31,35,0.16
40 GOSUB1000:OPEN15,D.15, "IO*:CLOSE15
50 PRINT*(SC)(YL) T/S ANALYZER(LG) PSIDAC(C)84 UBN*
60 PRINT*(CD)(WH) (1)ANALYZE T/S DATA*
75 PRINT*(CD)(WH) (2)PRINT T/S STATUS LOG*
80 PRINT*(CD)(WH) (3)LOAD T/S STATUS LOG*
80 PRINT*(CD)(WH) (4)SAVE T/S STATUS LOG*
80 PRINT*(CD)(WH) (4)SAVE T/S STATUS LOG*
80 INPUT*(CD)(WH) (5)ELECT CHOICE(WH)*; CH*-VAL(CH*)
100 ONCHGOTO200,400,600,800:GOTO50
                                       I/ U MANALIZED
   30 DATA1.17,0,20,18,24,0,16,25,30,0,17,31,35.0,16
40 GOSUBLOD0:OPEN15,D.15,"10":CLOSE15
50 PRINT"(CD)(CD)(CY)
57 ANALYZER(LG)
60 PRINT"(CD)(LH)
60 PRINT"(CD)(LH)
61 ANALYZE T/S DATA"
72 PRINT"(CD)(LH)
62 PRINT T/S STATUS LOG"
83 PRINT"(CD)(LH)
63 PRINT"(CD)(LH)
64 PRINT"(CD)(LH)
65 PRINT"(CD)(LH)
66 PRINT"(CD)(LH)
67 PRINT"(CD)(LH)
68 PRINT"(CD)(LH)
69 PRINT"(CD)(LH)
60 PRINT"(CD)(LH)
60 PRINT"(CD)(LH)
61 SELECT CHOICE(LH)
62 PRINT"(CD)(LH)
63 PRINT"(CD)(LH)
64 SAUE T/S STATUS LOG"
65 PRINT"(CD)(LH)
65 PRINT"(SC)(LH)
66 PRINT"(SC)(LHS)
67 PRINT"(SC)(LHS)
68 PRINT"(SC)(LHS)
68 PRINT"(SC)(LHS)
69 PRINT"(SC)(LHS)
60 PRINT*(SC)(LHS)
60 PRINT*(SC)(LHS)(SC)(LHS)(LHS)
60 PRINT*(TRK)(SC)(LHS)(SC)(LHS)(LHS)
60 PRINT*(TRK)(SC)(LHS)(SC)(LHS)(LHS)(LHS)
60 PRINT*(TRK)(SC)(LHS)(SC)(LHS)(LHS)(LHS)
60 PRINT*(TRK)(SC)(LHS)(SC)(LHS)(LHS)(LHS)(LHS)
60 PRINT*(TRK)(TAB(3))TC; TAB(8) "SEC"(TAB(11) SC; TAB(16) "CODE"(TAB(18) SS; TAB(25) NM*
60 PRINT*(TRK)(TAB(3))TC; TAB(8) "SEC"(TAB(11) SC; TAB(16) "CODE"(TAB(18) SS; TAB(25) NM*
60 PRINT*(TRK)(TAB(3))TC; TAB(8) "SEC"(TAB(11) SC; TAB(16) "CODE"(TAB(18) SS; TAB(25) NM*
60 PRINT*(TRK)(TAB(3))TC; TAB(8) "SEC"(TAB(11) SC; TAB(16) "CODE"(TAB(18) SS; TAB(25) NM*
60 PRINT*(CD)"(SC"(ERRORS COUNTED*(FORTD=1TO3000:NEXT:GOTO40
      335 PRINT TRETTHE (3) TO THE (8) TO ECT THE (11) SUCT THE (10) TO UE THE (10):
340 PRINT (CD) ECTERNORS COUNTED FORTD=1TO 3000: NEXT: GOTO 40
400 PRINT (CD) PRINT MODE ENABLED 402 OPEN 4, P: PRINT H4: PRINT
     702 OPEN4; PERINTH4: PRINTH4; PRINTHE; 
                                                                                                                                                                                                                                                                                                                                                 STATUS": PRINT#4
%30 MS$="READ ERROR"

440 IFZ=0THENMS$="DATA"

450 IFZ=|THENMS$="UATA"

450 IFZ=|THENMS$="UATA"

460 PRINT%4,X;CHR$(16)"06"Y;CHR$(16)"13";CHR$(16)"12"Z;CHR$(16)"20"MS$

470 NEXT:CLOSE4:GOTO40

480 PRINT%4(SC)LOAD MODE(CD)":PRINT*INSERT STATUS LOG DISK IN DRIVE":PRINT*PRESS F7

482 GETF7*:IFF7*()"(F7)"THEN602

485 INPUT"(5C):YUL)INPUT STATUS LOG NAME":NF$:DN$=NF$

480 NL=LEN(NF$):POKE251;NL:FORLP=1TONL:POKE678+LP,ASC(MID$(NF$,LP,1))

481 NEXT:SYS51308:OPEN15,D.15:INPUTN15,A$,B$,C$,D$:PRINTA$,B$,C$,D$

480 GOSUB1005:FORTD=1T03000:NEXT:GOTO40

480 PRINT*(5C):SAVE MODE(CD)":PRINT*INSERT STATUS LOG DISK IN DRIVE":PRINT*PRESS F7

480 GETF7*:IFF7*()"(F7)"THEN802

480 INPUT"(5C):YUL)INPUT STATUS LOG NAME":NF$:DN$=NF$

4810 NL=LEN(NF$):POKE251;NL:FORLP=1TONL:POKE678+LP,ASC(MID$(NF$,LP,1))

4810 NL=LEN(NF$):POKE251;NL:FORLP=1TONL:POKE678+LP,ASC(MID$(NF$,LP,1))

4820 GOSUB1005:FORTD=1T03000:NEXT:GOTO40

4899 PEND

480 POKE54276,35:POKE54276,34:RETURN
     1000 POKE54276, 35: POKE54276, 34: RETURN
1005 CLOSE15: RETURN
                                                CHANGE THIS LINE FOR NON-COMMODORE PRINTERS
                                              460 PRINTH4, X; TAB (02) Y; TAB (02) Z; TAB (03) MS$
                                                                                                                  T/S Analyzer may indicate data on tracks
                           containing only format data. This will be apparent on
                           some partially full disks which indicate data in the
                           first track. If you suspect this to be the case,
                           POKE51233,0 (disk formatted with zeros) or POKE51233,1
                             (disk formatted with ones).
```

()

FASTBACK 10 IFA=0THENA=1:LOAD"ANALYMACH",8,1 15 POKE52,16:POKE56,16:POKE53281,11:POKE53289,11 20 POKE54296,15:POKE54277,17:POKE54278,248:POKE54272,3:POKE54273,35:D=8 30 JS=49152:JE=51198:BS=4096:BE=48988:RP=BS:WP=BS 35 SP\$=" 45 DUSOSIONO CELTAS POPULA PRIDAC(C)84 VBN" 50 PRINT"DA FASTBACK PSIDAC(C)84 VBN" 60 PRINT"DA INSERT STATUS LOG DISK IN DRIVE":60SUB1050 70 INPUT"DINPUT STATUS LOG NAME";NF\$:NL=LEN(NF\$):POKE251,NL 75 FORLP=1TONL:POKE678+LP,ASC(NID\$(NF\$,LP,1)):NEXT:SYS51308 90 INPUT"DIMPUT NUMBER OF COPIES";NC 100 PRINT"DINSERT SOURCE DISK IN DRIVE":GOSUB1050 102 PRINT"DI READ MODE ENBLED⊠■" 102 PRINT "TM REMU MUDE EMBLEDMA 105 IFJS=JETHEN400 110 SS=PEEK(JS+2):OK=0:FORCS=1TO8:IFSS=IS(CS)THENOK=1:NEXT 120 JS=JS+3:IFOK<>1THEN105 200 IFRP=BETHEN JS=JS-3:GOTO400 210 TR=PEEK(JS-3):SE=PEEK(JS-2):POKERP,TR:POKERP+1,SE:RP=RP+2 220 HI=INT(RP/256:LO=RP-(HI*256):POKE252,LO:POKE253,HI:GOSUB1090 140 GOSUB2460:PDINTAIS "HI:"2:0:TP:SE:SYSS[376:GOSUB1000] 240 GOSUB2000:PRINT#15,"U1:"2;0;TR;SE:SYS51376:GOSUB1000 250 RP=RP+256:GOSUB1070:GOTO105 400 FORCC=1TONC 410 PRINT"DINSERT COPY DISK IN DRIVE": GOSUB1050 WRITE MODE ENABLEDMA" 420 IFWP=RPTHEN500 430 GOSUB2010:SYS(51452):TR=PEEK(679):SE=PEEK(680):WP=NP+2 440 GOSUB2010:LO=WP-(HI*256):POKE252,LO:POKE253,HI 460 GOSUB1030:GOSUB2000 470 PRINT#15, "B-P: "2;0:SYSS1404:PRINT#15, "U2: "2;0;TR;SE:GOSUB1000 475 OOSUB1070:IFA\$="00"THEN490 480 GOSUB1080:PRINT"TCLEAR ERROR THEN":GOSUB1050:PRINT"T":GOTO460 490 WP=NP+256:GOT0420 500 WP=BS:NEXT:IFJS<>JETHENRP=BS:GOTO100 510 PRINT" ** * DUPLICATION COMPLETE * * * ": GOSUB1080: RUN15 1000 POKE54276,35:POKE54276,34:RETURN 1050 PRINT"PRESS F7" 1055 GETF7*:IFF7*<>"#"THEN1055 1060 RETURN 1070 INPUT#15,A\$,B\$,C\$,D\$ 1075 PRINT"@"SP\$:PRINT"]"A\$" "B\$" "C\$" "D\$"]TT]":CLOSE2:CLOSE15:OPEN15,8,15 1078 CLOSE15:RETURN 1080 FORTD=1T03000:NEXT:RETURN 1090 PRINTSP\$:PRINT"TIRACK"TAB(5)TR;TAB(10)"SECTOR"TAB(15)SE:RETURN 2000 OPEN15.D,15:OPEN2.D,2,"#":RETURN 2010 HI=INT(WP/256):L0=WP-(HI*256):POKE252,L0:POKE253,HI:RETURN

00/8				01.0	ANALYI	MAL	н					
C840 C841	18 A9	00		CLC	#\$00	.,	C885	20	C6	FF	JSR	\$FFC6
C843	8D	20	C8	STA	\$C820	.,	C888	AØ	00		LDY	= -
C846	A2	02	. 0	LDX	#\$02	.,	CBBA	20	A5	FF	JSR	\$FFA5
C848	20	65	FF	JSR	\$FFC6	. ,	CSED	91	FC		STA	(SFC),Y
C84B	20	A5	FF	JSR	\$FFA5	. ,	C8BF	C8			INY	
C84E	20	A5	FF	JSR	\$FFA5	.,	C8C0	DØ	F8		BNE	\$C8BA
C851	AØ	00	• •	LDY	# \$ 8 8	.,	CBC2	20	cc	FF	JSR	\$FFCC
C853	20	A5	FF	JSR	SFFA5	. ,	C8C5	20	F4	C8	JSR	\$CBF4
C856	CD	21	C8	CMP	\$C821	.,	CBCB	60			RTS	
C859	DØ	0 A		BNE	\$C865	. ,	CBC9	00			BRK	
C858	CB			INY		. ,	CBCA	90			BRK	
C85C	CØ	FΕ		CPY	#\$FE		CSCB	99			BRK	
C85E	DØ	F3		BNE	\$ C853		CBCC		E8	CB		*C8E8
C840	A9	01		LDA	#\$01	• •	CBCF	A2	02			#\$02
C842	8D	20	C8	STA	\$C820	• •	CBD1	20	C9	FF		
C865	20	cc	FF	JSR	*FFCC	• •	C8D4	AØ	00		LDY	#\$00
C898	60			RTS		• •	C8D6	B1	FC		LDA	(\$FC),Y
C869	00			BRK		• •	C8D8	20	8A	FF	JSR	\$FFA8
C868	00			BRK		. ,	CBDB	68	50		INY	\$C8D6 .
CBAB	99			BRK		. ,	CBDE	D0 20	F8 CC	FF	JSR	\$FFCC
C89C	A9	98			#\$08	• •	C8E1	20	F4	C8	JSR	\$CBF4
C84E	A2	88		LDX	W\$08		C8E4	69	F T	- 0	RTS	PCOP 4
C870	A0	FF		LDY	#\$FF	• •	CBE5	99			BRK	
C872	20	BA	FF	JSR	\$FFBA \$FB	.,	CBE 6	00			BRK	
C875 C877	A5 A2	FB A7		LDA	\$FB	.,	CBE7	00			BRK	
C879	AØ	02		LDY	#\$02	.,	CBE8	A5	01		LDA	\$01
C878	20	BD	FF		\$FFBD	.,	CBEA	85	FE			\$FE
C87E	A9	00			#\$00	.,	CBEC	29	FE		AND	HSFE
C880	20	D5	FF		\$FFD5		CBEE	85	01		STA	\$01
C883	٤0		• •	RTS			C8F0	69			RTS	
C884	00			BRK			CBF1	00			BRK	
C885	00			BRK			CBF2	00			BRK	
C889	00			BRK		. ,	C8F3	00			BRK	
C887	A9	08		LDA	#\$08	. ,	C8F4	A5	FE		LDA	\$FE
C889	A2	08		LDX	#\$08		C8F6	85	01			\$01
C888	AØ	FF		LDY	#\$FF	. ,	CBF8	60			RTS	
C88D	20	BA	FF	JSR	*FFBA	• •	C8F9	99			BRK	
C890	A5	FB			\$FB	• •	CBFA	99			BRK	
C892	A2	A7			H\$A7	• •	C8FB	99			BRK	****
C894	AØ	02		LDY	#\$02	• •	CBFC	20	E8	C8		\$C8E8
C896	20	BD	FF	JSR	\$FFBD	. ,	CBFF	A0	00		LDY	#\$00 /#50\ V
C899	A9	99		LDA	#\$00	. ,	C901	81	FC	@ 2	LDA	(\$FC),Y
C89B	85	FB			\$FB	• •	C903 C906	99 C8	A7	02	STA	\$02A7,Y
C89D	A9	CØ		LDA	#\$CØ	• •	C907	B1	FC		LDA	(\$FC),Y
C89F	85	FC			\$FC	• •	C909	99	A7	02	STA	\$02A7,Y
CBA1		FB			#\$FB	• •	C90C		F4			\$C8F4
CBA3		02			#\$02 #400		C90F	60	. 7	_0	RTS	72017
CBA5		68	c c		##CB #FFD8	.,	C910	99			BRK	
CBA7 CBAA	20	שט	FF	RTS	∌ ୮୮∪8	.,	-,10	20			₩.N.N.	
CBAB	99			BRK		•						
CBAC	99			BRK								
CBAD	99			BRK								
CBAE	99			BRK								
CBAF	99			BRK								
C8B0		FΩ	CB		\$C8E8							
C8B3		02	. 6		#\$02							
-003	H &	52		LUX	# # U L							
		•	•									
					168	ł						
					100	•						

```
10 IFA=0THENA=1:LOAD'MONITOR$8000",8,1
20 IFA=1THENA=2:LOAD'ZMACH",8,1
30 POKE52,31:POKE56.31
33 SYS49152:RUN40
40 POKE53280,11:POKE53281,11:CLR:DIMER$(11):GOSUB3000
43 PRINT*(SC)(YL) DISKPICKER{LG} PSIDAC(C)84 VBN(WH)*
50 PRINT*(CD)
40 PRINT*(CD)(1) TRANSFER DISK MEMORY TO BUFFER*
65 PRINT*(CD)(2) ENABLE MONITOR MODE*
70 PRINT*(CD)(3) TRANSFER BUFFER TO DISK MEMORY*
75 PRINT*(CD)(4) DIRECT EXECUTE USER PROGRAM*
76 PRINT*(CD)(5) JOB QUE EXECUTE USER PROGRAM*
80 PRINT*(CD)(6) LOAD SECTOR TO DISK BUFFER*
81 PRINT*(CD)(7) INITIALIZE DISK IO*
82 PRINT*(CD)(8) FORMAT DISKETTE*
84 PRINT*(CD)(9) POSITION READ/WRITE HEAD*
85 INPUT*(CD)SELECT CHOICE*:CH$:CH=VAL(CH$)
88 IFCH)9THEN40
90 ONCH GOTO 100.300.400.500.600.700.800.900.805
95 GOTO40
                                                                                                                                                                                                                                                                                                      DISKPICKER
                                                                                                                                                                                                                                                                                                                                                                                                  pg1
  PO ONCH GOTO 100,300,400,500,600,700.800,900,805
93 GOTO40
100 PRINT'(SC)(CD)(1) TRANSFER DISK MEMORY TO BUFFER":GOSUB2000
103 INPUT'(CD)INPUT DISK START ADDRESS";X$:GOSUB1000:SA=X
110 INPUT'(CD)INPUT DISK START ADDRESS";X$:GOSUB1000:SA=X
110 INPUT'(CD)INPUT DISK START ADDRESS";X$:GOSUB1000:SA=X
120 INPUT'(CD)INPUT BUFFER ADDRESS";X$:GOSUB1000:SA=X:IFX(8192TMENGOSUB2030
125 IFX)32767TMENGOSUB2040
130 PRINT'(CD)DISK MEM. TO BUFF, TRANSFER IN PROCESS":PRINT"(CD)BYTE COUNT =";
140 NB=EA-SA:SH=INT(SA/256):SL=SA-(SH*256)
150 OPENIS,8,15:FORLP=0TON8
160 PRINTMIS,"M=R"CHR$(SL)CHR$(SH):GETN15,A$:PN=ASC(A$+CHR$(0))
170 POKEBA;PN:BA=BA+1:SL=SL+1:IFSL=256THENSL=0:SH=SH+1
175 PRINTTAB(12)LP"(CU)":NEXT
180 CLOSE15:PRINT'(CD)*(CD)END TRANSFER":FORTD=1T03000:NEXT:RUN40
300 INPUT'(CD)PRINTER Y;N";YN$:IFYN$="Y"THENP=1
302 IFYN$()"Y"ANDYN$()"N"THENPRINT"(CU)*(CU)*:GOTO300
305 PRINT:FP=1THENOPEN4,4:CMD4
310 SY532768
320 END
310
    070 PRINT*(CD):NPUT TRACK N ";x%:SN=VAL(x%):GOSUB2000
700 PRINT*(CD):NPUT TRACK N ";x%:TN=VAL(x%):GOSUB100
710 INPUT*(CD):NPUT SECTOR N ";x%:SN=VAL(x%):GOSUB1100
710 INPUT*(CD):NPUT SECTOR N ";x%:SN=VAL(x%):GOSUB1100
715 OPEN15,8,15:OPEN2,8,2,"N"
                                                                                                                                                                                                                                                                                                                                                                                                                                                   169
```

```
720 PRINTM15, "U1: "2:0; TN; SN: INPUTM15, A$, B$, C$, D$: PRINT"(CD)"A$, B$, C$, D$
725 FORTD=1T03000:NEXT
730 CL05E2:CL05E15: RUN+0
800 OPEN15, B: 15. "I0":CL05E15: RUN+0
805 PRINT"(SC)(CD) (9) POSITION READ/WRITE MEAD": TR0="18"
810 INPUT"(CD) TRACK WANTED"; TR$: TR=VAL (TR$): HT=TR-INT (TR): IFTR$="X"THENRUN+0
811 IFTR*+1THEN805
815 OPEN15, B: 15. "I0": PRINTM15, "H-W"CHR$ (0) CHR$ (0) CHR$ (1) CHR$ (192): CL05E15
817 FORTD=1T05000:NEXT
820 OPEN15, B: 15. "FRINTM15, "H-W"CHR$ (6) CHR$ (0) CHR$ (1) CHR$ (TR)
830 PRINTM15, "H-W"CHR$ (0) CHR$ (0) CHR$ (1) CHR$ (176)
835 PRINTM15, "H-W"CHR$ (0) CHR$ (0) CHR$ (1) CHR$ (176)
840 CETM15, A8: X=ASC (A$+CHR$ (0) : IFX) 127THEN840
845 IFHT(), STHENCLOSE15: RUN+0
845 IFHT(), STHENCLOSE15: RUN+0
845 BI=XAND3: BI=BI-1: BI=BIRND3: HF= (XAND252) ORBI
857 PRINT*(CD) TRACK = "TR" HEAD PHASE = "BI
860 PRINT*(CD) TRACK = "TR" HEAD PHASE = "BI
860 PRINT*(SC) INSERT DISKETTE TO BE FORMATTED*: COSUB2000
865 RUN40
900 PRINT'(SC)INSERT DISKETTE TO BE FORMATTED': GOSUB2000
905 INPUT'(CD)DISKETTE NAME"; X8:NMS=X8: GOSUB1100
910 INPUT'(CD)DISKETTE ID'; X8:IDS=X8: GOSUB1100: GOSUB2000
915 PRINT'(SC)FORMAT ENABLED PLEASE WAIT'
920 OPENIS,8:15:PRINTMIS, "ND: "NMS:CHR8(44); ID4: INPUTW15, A8:B8, C4:D8
930 PRINT'(CD)"A6:B8:C8:D6:CLOSE15:FORTD=1T03000:NEXT:RUN40
1000 IFXS="X"THENRUN40
1005 FORI=1T04:D6(I)=HID8(X8:I,I):NEXT
1010 FORI=1T04:D6(I)=UAL(D6(I))
1020 IFD6(I)="A"THEND(I)=10
1020 IFD6(I)="B"THEND(I)=11
1030 IFD6(I)="B"THEND(I)=11
1030 IFD6(I)="C"THEND(I)=12
1035 IFD6(I)="C"THEND(I)=13
1040 IFD6(I)="C"THEND(I)=13
1040 IFD6(I)="E"THEND(I)=15
1050 NEXT
  1040 IFD$
1045 IFD$
1050 NEXT
1060 D(1)
             D(1)=D(1) *4096:D(2)=D(2) *256:D(3)=D(3) *16:X=D(1)+D(2)+D(3)+D(4)
             NETURN
IFX8()"X"THENRETURN
RUN40
PRINT'(CD)CHECK DISK THEN PRESS F7"
GETF70:IFF78()"(F7)"THEN2010
   2010
  2010 GETP/9: TP/9()*(P/)* THEMEDIA
2020 RETURN
2030 PRINT*(YL)(CD)BUFF ADDRESS TOO LOW(WH)*:FORTD=1T02000:NEXT:PRINT*(SC)*:GOT0120:RETURN
2040 PRINT*(YL)(CD)BUFF ADDRESS TOO HIGH(WH)*:FORTD=1T02000:NEXT:PRINT*(SC)*:GOT0120:RETURN
3000 FORRP=1T011:READER9 (RP):NEXT
3010 DATA*ALL OK*, NO HEADER FOUND*, NO SYNC FOUND*, DATA BLOCK NOT FOUND*
3020 DATA*CHL OK*, NO HEADER FOUND*, BYTE DECODING ERROR*, WRITE VERIFY ERROR*
3030 DATA*URITE PROTECT ON*, CHECKSUM ERROR IN HEADER*, LONG DATA BLOCK*
3040 DATA*DISK ID MISMATCH*
             RESTORE: RETURN
                 ZMAUH
                                                                                                                          C01F
                                                                                                                                                                        ARK
                                                                                                                                              AA
                                                                                                                           C020
                                                                                                                                              28 C3 FF J5R $FFC3
                         ., 0000
                                                  20 C3 FF JSR #FFC3
                                                                                                                                              A2 00
                                                                                                                           CØ23
                                                                                                                                                                        LDX #400
                         .. 0003
                                                  AD 01
                                                                   08 LDA $0801
                                                                                                                    .. 0025
                                                                                                                                              BD
                                                                                                                                                     40
                                                                                                                                                               CØ LDA $CØ40.X
                                                                             STA SFD
                         .. 0006
                                                  85 FD
                                                                                                                     ., 0028
                                                  AD 02 08 LDA $0802
                                                                                                                                              95
                                                                                                                                                     00
                                                                                                                                                                        STA $00.X
                         .. 0008
                                                                                                                    .. C02A
                                                                                                                                              E8
                                                                                                                                                                         INX
                         .. C00B
                                                  85 FE
                                                                             STA SFE
                         .. C00D
                                                  A2 00
                                                                            LDX #$80
                                                                                                                    .. C02B
                                                                                                                                              DØ
                                                                                                                                                     F8
                                                                                                                                                                        BNE $C025
                         ., C00F
                                                  B5 88
                                                                            LDA $88.X
                                                                                                                    .. C02D
                                                                                                                                              A5
                                                                                                                                                     FD
                                                                                                                                                                        LDA SFD
                                                                                                                    .. C02F
                         .. C011
                                                  9D 40 CO 5TA $C040,X
                                                                                                                                              80
                                                                                                                                                     01
                                                                                                                                                                08 STA $0801
                                                                                                                    .. CØ32
                         .. C014
                                                  E8
                                                                            INX
                                                                                                                                              AS FE
                                                                                                                                                                        LDA SFE
                                                                                                                                              8D 02 08 STA $0802
                                                                            BNE $COOF
                                                                                                                    ., 0034
                                 C015
                                                  DØ F8
                         . .
                         . .
                                                                                                                            CØ37
                                                                                                                                                                        RTS
                                 C017
                                                                             RTS
                                                                                                                                              60
                                                  60
                                                                                                                                                                                                                              0
                         ٠,
                                 CØ18
                                                  00
                                                                            BRK
                                 C019
                                                  00
                                                                            BRK
                                 CØ1A
                                                  00
                                                                             BRK
                                                  98
                                 C01B
                                                                            BRK
                                 COIC
                                                  00
                                                                            BRK
                         ., C01D
                                                                            BRK
                                                  99
                                 CØ1E
                                                  99
                                                                            BRK
                                                                                                                                                                                                                              O
                                      *NOTE: ZMACH can be used to recover any program after a
                                      crash and reset! Use following procedure:
                             1. First load "ZMACH",8,1
                             2. Type NEW [RETURN].
                             Load your program, type SYS49152 [RETURN]
                                        To restore your program after a reset or
                                                                                                                                                                        new,
                                                                                                                                                                                          type
                                      SYS49184 [RETURN]
                                                                                                    170
```

C		20 NO HEADER	ATAD ON SS
•	3300	A5 06 LDA \$06	3300 A5 06 LDA \$06
(3302 3304	85 08 STA \$08 A5 07 LDA \$07	3302 85 08 STA \$08 3304 A5 07 LDA \$07
(3306	or ag the tag	3306 85 09 STA \$09
•	3308	A9 78 LDA #\$78 8D 01 00 STA \$0001	3308 A9 78 LDA #\$78 330A 8D 01 00 STA \$0001
è	330A 3 30D	20 95 F3 JSR \$F395	330D 20 95 F3 JSR \$F395
	3310	20 10 F5 JSR \$F510	3310 20 10 F5 JSR \$F510 3313 A9 FF LDA #\$FF
(3313 3315	20 95 F3 JSR \$F395 20 10 F5 JSR \$F510 80 00 LDY #\$00 B8 CLV	3313 A9 FF LDA #\$FF 3315 8D 03 1C STA \$1C03
(3316	50 FE BVC \$3316	3318 AD QC 1C LDA \$1000
(3318 3319	88 11EY . TA FA RNE \$3315	331B 29 1F AND #\$1F 331D 09 C0 ORA #\$C0
(331B	20 56 F5 JSR \$F556	331F 8D 0C 1C STA \$100C
(331E 3 320	A9 FF LDA #\$FF	3322 A9 00 LDA #\$00 3324 8D 01 1C STA \$1001
•	3323	AD OC IC LDA \$1000	3327 A0 00 LDY #\$00
(3326 3328	29 1F AND #\$1F	3329 B8 CLV 332A 50 FE BVC \$332A
è	332A	8D 0C 1C STA \$100C	332C 88 DEY
Č	332D	A9 00 LDA #\$00	332D DØ FA BNE \$3329 332F 20 00 FE JSR \$FE00
	332F 3332	A0 00 LDY #\$00	3332 A9 00 LDA #\$00
(3334	B8	3334 8D 01 00 STA \$0001 3337 A9 01 LDA #\$01
(33 35 3337	88 DEY	3339 4C 69 F9 JMP \$F969
•	3338	B8 CLV #\$00 B8 CLV \$3335 B8 DEY D0 FA BNE \$3334 20 00 FE JSR \$FE00 A9 00 LDA #\$00 BD 01 00 STA \$0001 A0 00 LDY #\$00 20 95 F3 JSR \$F395	23 DATCHKSUM
(333A 333D	20 00 FE JSK \$FE00	3300 20 E9 F5 JSR \$F5E9
(333F	8D 01 00 STA \$0001	3303 49 77 EOR #\$77 3305 85 3A STA \$3A
\mathbf{C}	3342 3344	HU UU LUY #≯UU 20 95 F3 JSR \$F395	3307 A9 90 LDA #\$90
Č	3347	43 01 FNU #301	3309 85 00 STA \$00 330B 4C 86 F5 JMP \$F586
Č	3349		
Č		21 ERASE TRACK	SYNC WRITER 3300 AD 0C 1C LDA \$1C0C
Č	3300 3303	AD 0C 1C LDA \$1000 29 1F AND #\$1F 09 00 ORA #\$00	3303 29 1F AND #\$1F
	3305	ขี9 C0 ORA #≸C0	3305 09 C0 ORA #\$C0 3307 8D 0C 1C STA \$1C0C
<u>C</u>	3307 330A	8D 0C 1C STA \$1C0C A3 FF LDA #\$FF	330A A9 FF LDA #\$FF
C	3300	8D 03 1C STA \$1C03	330C 8D 03 1C STA \$1003
(330F 3311	A9 55 LDA #\$55 8D 01 1C STA \$1C01	330F A2 28 LDX #\$28 3311 A0 00 LDY #\$00
(3314	A2 28 LDX #\$28	3313 A9 00 LDA #\$00
(3316	A0 00 LDY # \$00	3315 8D 03 1C STA \$1C03 3318 50 FE BVC \$3318
(3318 331A	50 FE BVC \$3318 B8 CLV	3318 50 FE BVC \$3318 331A B8 CLV 331B 88 DEV
Č	331B	88 DEY	331B 88 DEY 331C D0 FA BNE \$3318
(331C 331E	DØ FA BNE \$3318 CA DEX	331E AØ Ø4 LDY #\$Ø4
(331F		3320 A9 FF LDA #≸FF 3322 8D 03 1C STA \$1C03
	3321 3324	20 00 FE JSR \$FE00 A9 01 LDA #\$01	332 5 50 FE BVC \$3325
(3326	4C 69 F9 JMP \$F969	3327 B8 CLV 3328 88 DEY
(3329 DØ FA BNE \$3325
•			332B CA DEX 332C DØ E5 BNE \$3313
(332C D0 E3 BME \$3313 332E 20 00 FE JSR \$FE00
(3331 A9 01 LDA # \$0 1
Č			3333 4C 69 F9 JMP \$F969
Č			171
Č			
C			

	COPY HDA			CON HOR	
800 803 805 807	A2 00 50 FE B8	JSR \$F510 LDX #\$00 BVC \$3305 CLV	5300 5302 5304 5306	A9 00 45 16 45 17 45 18	LDA #\$00 EOR \$16 EOR \$17 EOR \$18
908 909 90B 90D 90F	CA DØ FA A2 54 50 FE B8	DEX BNE \$3305 LDX #\$54 BVC \$330D CLV	5308 530A 530C 530F 5311	45 19 85 1A 20 34 F9 A0 08 A2 00	EOR \$19 STA \$1A JSR \$F934 LDY #\$08 LDX #\$00
810 811 813 815	CA DØ FA A9 FF 8D Ø3 10	DEX BNE \$330D LDA #\$FF STA \$1003	5313 5315 5318 5319	B5 24 9D E0 03 E8 88	LDA \$24,X STA \$03E0,X INX DEY
18 18 10	29 1F 09 C0	LDA \$1000 AND #\$1F ORA #\$00		DØ F7 60 1CON HDR	BNE \$5313 RTS
1F 22 24	A9 FF A2 0 5	STA \$1000 LDA #\$FF LDX #\$05	5300 5302	A9 00 45 16	LDA #\$00 . EOR \$16
129 12A 13C	88 50 FE 88	STA \$1001 CLV BVC \$332A CLV DEX	5308 530A	45 17 45 18 45 19 49 77	EOR \$17 EOR \$18 EOR \$19 EOR #\$77
(2D (2E (30 (32 (34	D0 FA A2 0F A0 00	DEX BNE \$332A LDX #\$0F LDY #\$00 LDA \$0400,	5311 5313	A0 08 A2 00	STA \$1A JSR \$F934 LDY #\$08 LDX #\$00
137 139 138 138 130	50 FE B8	BVC \$3337 CLV STA \$1001 INY	5317 5318	88 83	LDA \$24,X STA \$03E0,X INX DEY
3E 3F 41	CA DØ F3 50 FE B8	DEX BNE \$3334 BVC \$3341 CLV	531C 531E	D0 F7 60	BNE \$5315 RTS
844 847 849 840	AD 0C 1C 09 E0	: LDA \$1000 ORA #\$E0 : STA \$1000 LDA #\$00			
84E 851 853	8D 03 10 A9 00 85 01	: STA \$1C03 LDA #\$00 STA \$01			
:55 :57 :5A :5C	A9 Ø1	LDY #\$00 ; JSR \$F395 LDA #\$01 ; JMP \$F969			

WRITE HDR READ HDR 3300 20 10 F5 JSR \$F510 ., 4300 ., 4303 ., 4305 ., 4306 20 10 F5 JSR \$F510 A0 00 LDY #\$00 3303 LDX #\$00 (A2 00 AØ 00 3305 50 FE BVC \$3305 88 čĽV. B8 BVČ \$4306 DEY 3307 CLV 50 FE 88 3308 CA DEX DØ FA BNE \$4305 20 56 F5 JSR \$F556 A0 00 LDY #\$00 50 FE BUC \$4310 BNE \$3305 LDX #\$54 3309 DØ FA A2 54 330B BVC \$330D 330D 50 FE 88 ČLV CLV 330F B8 AD 01 1C 99 00 04 LDA \$1001 STA \$0400.Y DEX 3310 CA BNE \$330D DØ FA ĊĖ 3311 INY 4319 4311E 43312B 4332214 4332214 4332214 4332225 4332225 433225 DØ F4 AØ ØØ 50 FE 88 BNE \$4310 LDY #\$00 BVC \$431E LDA #\$FF 3313 A9 FF 3315 8D 03 1C STA \$1003 1C LDA \$1C0C čĽŬ. AD 00 3318 LDA \$1001 STA \$8500.Y INY AND #\$1F ORA #\$C0 AD 01 10 331B 29 iF C8 F4 BNE \$431E A9 00 LDA #\$00 20 95 F3 JSR \$F395 A9 01 LDA #\$00 20 95 F3 JSR \$F395 A9 01 LDA #\$519 A9 01 BRK 331D 09 C0 10 STA \$1000 331F 8D 0C A9 FF 3322 LDA #\$FF 3324 A2 05 LDX #\$05 ., 432E 3326 8D 01 1C STA \$1C01 . 4333 . 4335 CLV 3329 B8 BVC \$332A 332A 50 FE ., 4338 ., 4339 ., 433A 3320 88 CLV BRK 00 CA DEX BRK 332D 332E DØ FA BNE \$332A 3330 A2 08 LDX #\$08 LDY #\$00 3332 AØ 00 3334 B9 E0 03 LDA \$03E0,Y 50 FE BVC \$3337 3337 3339 B8 CLV 8D 01 1C STA \$1C01 333A 333**D** C8 INY 333E CA DEX DØ F3 333F BNE \$3334 (A2 05 LDX #\$05 3341 A9 55 50 FE 3343 LDA #\$55 3345 BVC \$3345 3347 CLV B8 8D 01 1C STA \$1C01 3348 334B CA DEX 3340 DØ F7 BNE \$3345 50 FE BVC \$334E 334E 3350 AD 0C 1C LDA \$1000 3353 09 E0 ORA #\$E0 3355 8D 0C 1C STA \$1000 LDA #\$00 3358 A9 00 8D 03 1C STA \$1003 33**5**A 335D A9 00 LDA #\$00 335F 85 01 STA \$01 3361 A0 00 LDY #\$00 20 95 F3 JSR \$F395 3363 3366 A9 01 LDA #\$01 **4**C F9 JMP \$F969 3368 69 (

*** CHAPTER SEVEN ***

CARTRIDGES

This chapter is primarily a reference aid for building and using the ROMULATOR system. We will summarize the major points of cartridge duplication theory, but for a complete understanding, you will need to cover the material under the Cartridge headings in chapters 2, 3, and 4.

As discussed in the earlier sections, the autorun feature of a cartridge makes it impossible to "get into" via normal methods such as STOP RESTORE and so on. The autorun is a part of the power-up job of the C64, so defeating it requires the cartridge to be "invisible" during power-up. Once the system is running under user control, you are then able to get into the cartridge for saving, disassembling and whatever else you may want to do. This is one of the main tasks of

the Romulator card.

(

(

(

(

(

(

(

(

(

The next area of concern with cartridges is the way they reconfigure memory. Two of the lines to the cartridge (GAME and EXROM) control the way the C64 organizes its internal RAM and ROM. There are four combinations which are shown in table 3.3. Once again, the Romulator circuit card overrides the cartridge and allows you to change the configuration. In this manner you can easily find out the normal configuration used by the cartridge.

The fact that a cartridge is a ROM based program affords it another kind of protection. That is that the program can "write" data to the ROM locations, but this will not change the data actually stored there. other words, the program cannot "erase itself"! If you run a ROM based program in RAM, a write enable line is necessary. This enable can be turned OFF which in effect protects the RAM from write-over. It then works just like a ROM with the exception that it will lose data when power is removed. The Romulator card has a write enable switch as well as a socket into which you plug an 8K or 16K Vic-20 RAM expander card. These were chosen because they are readily available at a reasonable price. Many C64 owners started with a Vic-20 and still have expander cards. In the case of 16K duplication the card will also need block switching. (The Romulator Switch Card is illustrated in this chapter and is available for those with Commodore cartridges without the switching capability) If your

RAM already has the ability to switch either half of the 16K into block one or two or OFF, you will not need a switchcard. (Note that this reference is to the Vic-20 block one and two, not C64 RAM area)

It is possible to run some cartridge programs in the computer RAM. The general procedure is to find the normal location of the ROM program, load or transfer the contents of the ROM to its equivalent location in RAM. You must then determine the normal entry point of the program (sometimes the first two bytes of the program) and SYS to that location. You may wish to experiment with this procedure but we have not found it predictable enough to write about. The Romulator system on the other hand, has proven effective for every cartridge we have thus far encountered.

ROMULATOR HARDWARE SYSTEM DESCRIPTION

The Romulator system consists of a special circuit card and a program which are used together to transfer the contents of ROM based cartridges to tape or disk. We will refer to the copies as "cartridge tapes" or "cartridge disks". To run the cartridge tapes or disks you must supply a 8K or 16K Vic-20 RAM expander (for 16K cartridges you must have 16K RAM with block switching). The Romulator with RAM plugged in need not be removed from the expansion port. It will not affect normal computer operations. Cartridge disks/tapes can be loaded and run at will. In addition, a cartridge

 \boldsymbol{C}

program can be "switched" out and in without reloading, as long as power is not interrupted. Another handy feature when using a 16K RAM is that two 8K cartridge disks/tapes can be resident at one time allowing you to simply switch between them. An edge connector at the back allows cartridges to also be plugged in and operated without removing Romulator.

(

(

(

(

(

(

(

(

(

(

THEORY OF OPERATION

Figure 7.1 shows the Romulator schematic. Note that the data and address bus (A0-A12) pass uninterrupted to both the cartridge and RAM slots on the Romulator card. The GAME and EXROM lines however are intercepted by the card so that you have complete manual control of the system configuration. A Reset button is also provided for cold starts. Write enable is on board in case your RAM does not provide it.

The key to the system is the 74138 decoder and block switching system. We have chosen the \$4000 block to serve as RAM buffer for cartridges since it allows other user programs below; and 16K worth of transfered ROM above. The Romulator program will transfer the contents of cartridges to \$4000, and also saves them from there. A jumper rail is provided if you wish to modify this for your own reasons.

The ROML and ROMH lines are normally used by the computer to select the cartridge according to the location forced by EXROM and GAME lines. With these

lines open and GAME and EXROM open, the computer cannot "see" the cartridge. To avoid conflicts with the basic ROM (ROMH), we will always connect the ROM to be copied to the ROML line. The T switch makes this transfer if the cartridge is normally selected by ROMH. By first turning on EXROM, reseting, then switching the cartridge into ROML, any ROM can be forced to appear at \$8000 without running! The RAM need not be active at this time although it does not affect the operation if it is. The Romulator program then performs the transfer to \$4000 and the Save. The process is repeated for 16K cartridges. For 16Ks, you will first save the ROML half then the ROMH half using the T switch.

(

(

(

(

(

(

(

(

(

€

(

The loading process requires the RAM to be situated at \$4000 with the R switch, write Enable should be ON. A normal load is done, then if 16K the load is repeated with the other half of the RAM and other half of the cartridge disk. The RAM is then switched into the location used by that cartridge using the CA and AA switch or the C8 and A8 switches. (Switches ending in 'A for ROMH cartridges and '8 for ROMLs). Then by switching OFF write enable and setting GAME and EXROM, the RESET will start the cartridge program!

Though the theory may seem a little confusing, the step by step procedure given later will make the process quite simple.

ASSEMBLY

We do not recommend that you try to build your own circuits unless you have had considerable experience doing so. The damage possible to your computer system through improperly built circuits would far outweigh the slight cost advantage you may obtain.

If you have the experience necessary you will find the layout straight-forward. The ROM socket is soldered directly to the pads at the end of the board. Note the correct orientation of the IC and switches. The RAM socket is mounted near the center of the board. The PC board is double sided, note the Top and Bottom side layouts. All through-hole feeds should be soldered top and bottom side or plated through. Be careful not to make solder bridges between adjacent traces on the PC board. See Appendix G for assembled unit availability.

16K RAM SWITCH MODIFICATION

If you own a Commodore 16K RAM and wish to be able to do 16K cartridges, you will need a RAM switch card. No changes are required if you are only interested in doing 8K cartridges and will be using an 8K expander addressed for block one. (Vic-20 block) Figures 7.3 and 7.4 show the schematic and PC layout for this. With the card installed in your RAM, you will have the ability to switch either 8K half of the 16K into block one or two. Figure 7.5 shows the positioning of the card in the Commodore RAM case. If you have another brand of

FIGURE 7.5 SWITCH CARD OR ENTATION VIC 16K RAM CARTRIDGE RAM CARTRIDGE SHOWN FROM BOTTOM

((x,y),(y,

```
RAM, you will have to have some other switching system.
                16K RAM SWITCH INSTALLATION
                     FOR COMMODORE RAMS
1. Disassemble 16K case. (1 screw, 4 snaps)
 2. Orient RAM SWITCH as shown in figure 7.5.
 3. Use small piece of tape to hold board as shown in
   figure 7.6. You should be looking at the soldered side
   of the RAM and the foil side of the SWITCH CARD. The
   large hole in the SWITCH CARD should be aligned with
   the screw hole of the RAM.
 4. Pretin SWITCH CARD numbered pads with SMALL puddle of
   solder.
 5. Tack solder kynar wire from numbered pads on SWITCH
   CARD to like numbered pads on RAM. (1 to 1, 2 to 2, 3
   to 3...)
 6. Make certain jumpers on RAM at location indicated are
   cut. If switch is in this position, make sure all
   switches are OFF. (Some have 4 switches for half and a
    jumper for other half. All must be OPEN!
 7. Double check all connections. Make certain that wire
    insulation is close enough to pad so inter-pad shorts
   cannot occur.
            YOUR NEW BLOCK SELECT SWITCHES ARE:
                                3
                               1rst 8K HALF
                2nd 8K HALF
```


ROMULATOR PROCEDURE 8K

(

(

(

(

(

(

The following instructions give the step by step procedure for using the Romulator system. We will refer all operations to disk. Just replace word "disk" with "tape" if you are using tape. Tape requires 3ROMULATOR program, disk uses 2ROMULATOR or, abbreviated, 2R*. Note that the Romulator circuit card with RAM may be left "permanently" plugged into computer. If you are not otherwise using expansion port it will not affect normal operation. All steps below assume it is already plugged in.

SAVING 8K CARTRIDGES

- With power OFF, plug cartridge to copy into the Romulator cartridge socket. All Romulator switches should be OFF.
- 2. Turn ON computer. Using table 7.1, try each combination of GAME, EXROM, A8, and AA. (follow each by pressing RESET). One of the combinations should result in RUNNING of the cartridge. If not, it may be 16K, go to 16K save procedure. WRITE DOWN the combination used which made it RUN. (Such as A8-C8-GM-EX)
- Turn OFF all switches. Turn ON EXROM and press RESET.
 30719 Bytes Free message should appear.
- 4. Using information obtained in above steps, now turn ON switch A8 if you wrote down A8. Use switch T if you

wrote down AA.

- 5. LOAD appropriate Romulator program then perform SYS3291. Romulator title notice should appear. Follow prompts. NAME should be less than 16 characters ...Do NOT use quotes.
- 6. For additional backups repeat step 5 from SYS3291 only!
- 7. NOTE: A copy can be made from a copy by using editor assembler and loading cartridge disk then Saving \$4000 to \$6000. You may find this easier than using the ROMULATOR procedure to make backups of the disk at a later date.

LOADING-RUNNING CARTRIDGE DISKS/TAPES

- Switch all Romulator Switches OFF. Turn ON switch R, and WRITE ENABLE. Switch RAM switch so RAM is in Block one. (When loading second half of 16K, use second half of RAM in block one...First half all OFF.)
- 2. Press RESET. 38911 message should appear. LOAD cartridge disk using "prg name",8,1 or tape with "prg name",1,1.
- 3. When done loading, Switch WRITE ENABLE OFF. (For 16K switch first half of RAM <u>out</u> of block one and switch second half <u>in</u> then repeat step 2. When <u>done</u>, Write Enable OFF, first half of RAM into block 1 second half into block 2, also turn R OFF!)
- 4. Turn ON the switches you wrote down from SAVE procedure table 7.1. This information should be kept with the program. One convenient way is to include as part of

program name.

5. Press RESET button and program should RUN!

--TABLE 7.1--

_	TE	ST -		WRITE DOWN
GM	EX	A8	AA	
ON	OFF	ON	OFF	A8-C8-GM
OFF	ON	ON	OFF	A8-C8-EX
ON	ON	ON	OFF	A8-C8-GM-EX
ON	OFF	OFF	ON	AA-CA-GM
OFF	ON	OFF	ON	AA-CA-EX
ON	ON	OFF	ON	AA-CA-GM-EX

16K SAVE PROCEDURE

The main difference between 16K and 8K procedure is that the 16K has to be handled in halves. You should think of your RAM as having a First half and a Second half. The ROM will be saved one half at a time. Each half is saved identically except that the T switch is used to place the second half of the ROM into position so Romulator can see and save it. These steps assume that you already know the cartridge is a 16K as discovered by the first few steps of the 8K procedure.

- Use the first three patterns of TEST on table 7.1 to determine the RUN configuration. However, AA & A8 should both be on for each 16K test.
- 2. When you discover the correct pattern for RUNNING write down the configuration indicated.
- 3. Turn OFF all switches. Turn ON EXROM and press RESET.

- 30719 message should appear.
- 4. LOAD the appropriate version of Romulator (tape or disk). SYS3291 , Romulator title should appear. SWITCH A8 ON!

()

 \mathbf{O}

- 5. Follow prompts. For NAME use a 1 followed by program name to indicate 1rst half. Name must be less than 16 characters, do NOT use quotes.
- 6. When done turn OFF all switches and turn ON EXROM. Press RESET, 30719 message should appear. Turn ON T.
- 7. Type SYS3291. (You do not need to reload it as long as power wasn't interupted).
- Again follow prompts. Use a 2 in front of name to indicate second half of program.
- 9. This completes 16K SAVE procedure. You now have the program in two halves called "lname" and "2name". The LOAD RUN procedure covers the method of running both 8K and 16K cartridge disks/tapes.

--- PROGRAMS ---

Following are the listings in assembly code (machine code is used for data tables). Note that there is a data table starting at \$0A00 and extending to the beginning of the program area, \$0BD6. We recommend the use of an editor assembler Memory command to type in the table and the Assemble command for the program. 2ROMULATOR is for disk saves and 3ROMULATOR is for tapes. PSIDAC supplies a complete disk of the programs in this book if you do not wish to type these by hand.

(
• (3F	ЮМ	DAT	'А Т	ABL	.E		
C	0000 0000	0B 01	0B 01	11 00	F8 00	11	23 00	93 49	0F 20
(0A10	99	60	99	00	99	00	00	00
. (0A18 0A20	99 99	00 00	99 99	99 99	99 99	99 99	93	00 05
(0A28	20	20	20	20	20	20	A4	84
Č	0A30	R4 R4	64 64	A4 A4	A4 A4	A4 A4	A4	A4 A4	84 84
	0A40	A4	A4	84	A4	A4	A4	R4	84
(0A48 0A50	A4 20	A4 20	20 20	20 74	0D 9F	20 33	20 52	20 4F
	9A58	41)	55	4C	41	54	4F	52	29
(9868 9868	9E 44	28 41	43 43	29 20	1E 38	50 34	53 2D	49 56
(9879	4E	95	A7	20	0D	20	20	20
	0A78 0A80	20 83	20 A3	20. 83	A3	A3	A3	A3	A3
(88A0	A3	A3	A3	AS	A3	A3	ЯЗ	ÄЗ
(0A90 0A98	A3 20	A3	A3 20	A3	A3 20	A3 20	A3	20 84
(0AA0	Ã4	R4	Ã4	A4	84	Ã4	A4	A4
(0AA8	A4 A4	R4	A4 A4	84 84	A4 A4	A4	R4 R4	A4 A4
(9AB8	A4	A4	A4	A4	R4	A4	20	0D
Č	9AC9	04 20	20 43	20 41	20 52	20 54	2A 52	20 49	28 44
Č	OADO	47	45	20	42	41	43	4B	55
(OADS	50	20	50	52	4F	47	52	41
(ØAEØ	4D 20	20 20	2A 20	20 20	2A A3	20 83	20 A3	0D A3
	ØAFØ	A3	A3	A3	A3	A3	A3	83 83	A3
	0AF8 0B00	A3	A3	A3	PЗ	AЗ	A3	ЯЗ	A3
(0B08 0B10	A3 ØD	A3 20	A3 20	A3 20	20 20	20 20	20 28	11 31
Ç	ØB18	29	20	52	45	41	44	59	20
(0B20 0B28	54 54	41 20	50 46	45 4F	20 52	55 20	4E 53	49 41
<u>C</u> .	0B30	56	45	20	20	20	11	ØD	20
C	0B38 0B40	20 50	20 52	20 45	20 53	28 53	32 20	29 46	2 0 37
C	0B48	20	20	11	ØD	04	04	20	20
(0B50 0B58	20 4E	20 50	20 55	28 54	33 20	29 50	20 52	49 4F
	0B60	47	52	41	4D	20	4E	41	4D
(0B68 0B70	45 20	20 20	20 28	11 34	29 0D	20 20	20 04	20 04
(0B78	94.	.04	94	11	20	20	20	20
(0B88	20 52	28 41	35 54	29 49	20 4F	4F 4E	50 20	45 43
Č	0B90	4F	4D	50	4C	45	54	45	20
Č	0B98 0BA0	52 0D	45 20	4D 20	4F 20	56° 20	45 20	20 20	20 20
(ØBA8	20	20	54	41	50	45	20	46
(0BB0 0BB8	52 20	4F 11	4D 20	20 20	55 ØD	4E 20	49 20	54 20
	0BC0	20	20	28	36	29	20	50	52
(0BC8	45 20	53 20	53 04	20 04	46 04	37 04	20 AD	0D 0B
(
(•	191		
(-	121		

3ROMULATOR -

0BD6 0BD9	AD 0B 0A LDA \$0A0B 85 FB STA ≸FB	0C4B D0 F3 BNE \$0C40 0C4E 00 BRK 0C50 00 BRK 0C51 A2 00 LDX #\$00 0C51 A2 00 LDX #\$04 \$0C60 0C51 A2 00 LDX #\$04 \$0C60 \$0C60 0C52 BD F3 BNE \$0C60 \$0C60	
ØBDB	AD OC OA LDA \$OAOC	0C4E 00 BRK	
0BDE 0BE0	85 FC STA \$FC AD ØD ØA LDA \$ØAØD	904F 99 BRK 9059 99 BRK	
ØBE3	85 FD STA \$FD	0C51 A2 00 LDX #\$00	
0BES	#####################################	0C53 BD 7B 0B LDA \$0B7B,X 0C56 C9 04 CMP #\$04	
ØBEA	AD 00 0A LDA \$0A00	0C58 F0 06 BEQ \$0C60	
0BED 0BF0	8D 20 D0 S1H \$D020 AD 01 0A LDA \$0A01	0C5D E8 INX	
ØBF3	8D 21 DØ STA \$DØ21	0C5E D0 F3 BNE \$0C53	
0BF6 0BF9	8D 18 D4 STA \$D418	0C61 00 BRK	
0BFC 0BFF	AD 02 0A LDA \$0A02	0C62 00 BRK	
0C05	AD 03 0A LDA \$0A03	0C64 20 E4 FF JSR \$FFE4	
0005 008	8D 06 D4 STA \$D406	0067 C9 88 CMP #\$88	
0C0B	8D 00 D4 STA \$D400	0C6B 60 RTS	
000E 0011	AD 05 0A LDA \$0A05	0060 00 BRK	
0C14	60 RTS	0C6E AE 05 0A LDX \$0A05	
0C15 0C16	00 BRK	0C71 8E 04 D4 STX \$D404 0C74 C8 DEX	
9C17	00 BRK	0075 8E 04 D4 STX \$D404	
0C18 0C1A	A2 00 LDX #\$00 RD 26 09 LDB \$0026.Y	0C75 8E 04 D4 STX \$D404 0C78 60 RTS 0C79 A2 00 LDX #\$00 0C7B A0 00 LDY #\$00 0C7D B1 FB LDA (\$FB), Y 0C7F 91 FD STA (\$FD), Y 0C81 C8 INY 0C82 C0 00 CPY #\$00 0C84 D0 F7 BNE \$0C7D 0C86 E6 FC INC \$FC 0C88 E6 FE INC \$FE 0C8A E8 INX	
ØC1D	C9 04 CMP #\$04	0C7B A0 00 LDY #\$00	
0C1F 0C21	F0 06 BEQ \$0C27	0C7D B1 FB LDA (\$FB),Y 0C7F 91 FD STA (\$FD),Y	
ØC24	E8 INX	OC81 C8 INY	
9025 9027	DØ F3 BNE \$ØC1A 60 RTS	0C82	
ØC28	00 BRK	0C86 E6 FC INC \$FC	
0C29 0C2A	00 BRK 00 BRK	0088 E6 FE INC \$FE 0088 E8 INX	
0C2B	A2 00 LDX #\$00	0C8B EC 0F 0A CPX \$0A0F	
002D 0030	BU C1 0A LUH \$0AC1/X C9 04 CMP #\$04	003E	
ØC32	FØ Ø6 BEQ \$0C3A	0C91 00 BRK	
0034 0037	E8 INX #FFD2	0C93 00 BRK	
0038	DØ F3 BNE \$0C2D	0C94 A0 00 LDY #\$00	
ØСЗА ØСЗВ	60 K15 00 BRK	0C96 20 CF FF JSR \$FFCF 0C99 99 16 0A STA \$0A16,Y	
ØC3C	ØØ BRK	0C9C C8 INY	
003D 003E	00 BKK A2 00 LDX #\$00	009D 09 0D 0MP #\$0D 009F D0 F5 BNE \$0096	
0C40	BD 4E 0B LDA \$0B4E,X	0CA1 20 6E 0C JSR \$0C6E	
0043 0045	FØ 06 BEQ \$0C4D	୭୦୮+ ୭୦ ୭୮ ୭୮ ୪୮ ୪୮ ୫୭୮୭୮ ୭୯ନ7 AD 98 0A LDA \$0A08	
0C47	20 D2 FF JSR \$FFD2	0CAA AE 09 0A LIX \$0A09	
ØC4A	E0 114V	פרטח עה גי דחז #⊅גי	

```
3ROMULATOR ...
ØCAF
       20 BA FF JSR $FFBA
0CB2
       AD ØA
             ØA LDA $ØAØA
0CB5
       A2 16
                 LDX #$16
0CB7
       A0 0A
                 LDY #$ØA
ØCB9
       20 BD
             FF JSR $FFBD
       ĀD ÕD
              ØA LDA $ØAØD
ØCBC
ØCBF
       85 FD
                 STA $FD
ØCC1
       AD ØE
              0A LDA $0A0E
0CC4
       85 FE
                 STA $FE
       A9 00
                 LDA #$0D
0006
0008
       20 D2 FF
                 JSR $FFD2
ØCCB
       A9 FD
                 LDA #$FD
       AE 10 0A LDX $0A10
AC 11 0A LDY $0A11
0CD0
0CD3
       20 D8 FF JSR $FFD8
ØCD6
       60
                 RTS
ØCD7
       00
                  BRK
ØCD8
       00
                  BRK
ØCD9
                 BRK
       00
ØCDA
       00
                  BRK
ØCDE
ØCDE
       20 D6 0B JSR $0BD6
                 JSR $0C18
       20 18 OC
ØCE1
       20 2B 0C
                 JSR $0C2B
       20 64 0C
ØCE4
                 JSR $0C64
       20 6E 0C
20 79 0C
                 JSR $ØC6E
0CE7
ØCEA
                  JSR $0C79
       20 3E 0C
20 94 0C
ØCED
                  JSR $0C3E
0CF0
0CF3
                  JSR $0C94
       20 51 0C
                  JSR $0C51
ØCF6
       20 6E 0C
                  JSR $0C6E
0CF9
       20 64 0C
                 JSR $0C64
ØCFC
       20 6E 0C
                  JSR $0C6E
ØCFF
       60
                  RTS
```

2ROM.	DATA	TABLE
-------	------	-------

```
(
(
                                                          BD 7B 0B LDA $0B7B,X
             0C0E
             0016
             9018
             901A
             9C1D
             0C1F
                                                                     LDA ($FB),Y
(
             0C21
                                                                     STA ($FD),Y
             ØC24
             0C25
             9027
                                                         E6 FC
                                                 9C88
                                                                    INC $FC
INC $FE
             0028
            0C29
0C2A
0C2B
                    99
99
                               BRK
                               BRK
                                                 008A
                                                         E8
                                                                     INX
                                               0C8B EC 0F 0A CPX $0A0F
0C8E D0 EB BNE $0C7B
0C90 60 RTS
                               LDX #$00
                    A2 00
             0C2D
                    BD C1 OA LDA $0AC1,X
             9C39
                    C9 04
                               CMP #$04
                                                 0C91
0C92
0C93
                    FØ 06
             0032
                               BEQ $0C3A
                                                          00
                                                                    BRK
                    20 D2 FF JSR $FFD2
                                                          99
             0C34
                                                                    BRK
            0C37
0C38
0C3A
                    E8
                                                                     BRK
                               INX
                                                          20
(
                                                0C94
0C96
0C99
                    D0 F3
                               BNE $0C2D
                                                          A0 00
                                                                    LDY #$00
                                                          20 CF FF JSR $FFCF
                    60
                               RTS
             0C3B
                                                          99 16 0A STA $0A16,Y
                    99
                               BRK
                                                  0C9C
            9030
                    00
                               BRK
                                                          63
                                                                     INY
                    00 BRK 0C9D
A2 00 LDX #$00 0C9F
BD 4E 0B LDA $0B4E,X 0CA1
C9 04 CMP #$04 0CA4
F0 06 BEQ $0C4D 0CA7
20 D2 FF JSR $FFD2 0CAA
E8 INX 0CAC
                                                          C9 0D
            ØCSD
                                                                     CMP #$0D
            0C3E
                                                          DØ F5
                                                                     BNE $0096
                                                         8C 0A 0A STY $0A0A
AD 08 0A LDA $0A08
AE 09 0A LDX $0A09
            0C40
(
            0043
            ØC45
                                                                     LDY #$FF
            0C47
                                                          AØ FF
            0C48
                                                          20 BA FF JSR $FFBA
(
(
(
```

(

(

() 2ROMULATOR --0A LDA \$0A0A **ØCAF** AD 9A 0CB2 **A2** 16 LDX #\$16 0CB4 LDY #\$0A 80 0A **9CB6** 20 BD FF JSR \$FFBD **0CB9** AD 0D 0A LDA \$0A0D **ØCBC** STA \$FD 85 FD **ØCBE** AD ØE 0A LDA \$0A0E 0CC1 0CC3 0CC3 0CCB 0CCB 0CCF 0CD2 0CD7 0CD7 0CD9 0CDA 85 FE A9 FD STA \$FE LDA #\$FD AE 10 0A LDX \$0A10 ØA LDY \$ØA11 FF JSR \$FFD8 AC 11 20 D8 FF 60 RTS 20 6E ØC. JSR \$0C6E 20 E4 FF JSR \$FFE4 C9 88 CMP #\$88 DØ F6 BNE \$0CCF 60 RTS BRK 00 20 D6 0B JSR \$0BD6 OCDE OCE1 20 18 0C JSR \$0C18 20 2B 0C 20 64 0C 20 6E 0C JSR \$0C2B **0CE4** JSR \$0C64 ØCE7 ØCEA JSR \$0C6E 20 79 20 3E JSR \$0079 9C 0CED 9C JSR \$0C3E 29 94 ØC. JSR \$0C94 **0CF3** 20 51 0C JSR \$0C51 0CF6 20 CF 0C JSR \$0CCF **0CF9** 60 RTS 196

APPENDIX A HEX-CHR\$ S SCREEN CODES CHART

00 0				DEC SCF
01 1 2 2 3 3 3 4 4 4 0 5 5 0 6 6 6 7 7 7 0 8 0 9 9 0 A 10 0 B 11 0 C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	WHT SH/C OFF SH/C ON RET LWR/CS ON C/ON ROUST/DEL RED T GRUU SPACE! #\$%&.() *+,/ 012	!"#\$%&!()*+,/012	20123456789ABCDEF012	32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 50

56 57 55 55 55 55 55 55 66 66 66 66 66 66 66	33 45 67 89 A B C D E F O 1 4 4 5 6 7 8 9 A B C D E F O 1 4 4 5 6 7 8 9 A B C D E F O 1 2 3 4 5 6 7 8 9 A B C D E F O 1 2 3 4 5 6 7 8 9 A B C D E F O 1 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107	51 52 53 55 55 55 56 66 66 66 67 77 77 77 78 88 88 88 88 88 88 88 88 88
v x y z f s/A s/B s/B s/J s/M s/N	3456789:;V=>?@ABCDEFGHIJKLMNOPQRSTUV
> * X YNLGIJA SABCOEFGHHJKLMN X X X YNLGIJA X X	3456789:;<=>?@abcdefghijklmnopqrstux
16 17 18 19 1A 1B 1C 1D 1E 1F 40 41 42 43 44 45 46 47 48 49 48 49 40 40 40 40 40 40 40 40 40 40 40 40 40	33 34 55 37 38 38 38 38 38 38 39 30 40 40 40 40 40 40 40 40 40 40 40 40 40
23 24 25 26 27 28 30 31 65 66 67 77 77 77 77 77 78	51 52 53 54 55 55 55 55 56 66 66 60 60 61 62 63 64 64 65 67 88 91 61 61 61 61 61 61 61 61 61 61 61 61 61

95 149 96 150 97 151 98 152 99 153 9A 154 9B 155 9C 156 9D 157 9E 158 9F 159 AO 160 A1 161 A2 162 A3 163 A4 164 A5 165 A6 166 A7 167 A8 168 A9 169 AA 170	144 145 146 147 148	136 137 138 139 140 141 142	82 130 83 131 84 132 85 133 86 134 87 135	7C 124 7D 125 7E 126 7F 127 80 128 81 129	74 116 75 117 76 118 77 119 78 120 79 121 7A 122 7B 123	6F 111 70 112 71 113 72 114 73 115
PUR CR/LFT YEL CYN SPC C/I C/T C/G C/+M C/£ C/N	BLK CR/UP RVS ON CLR/HM INST/DEL	f7 f2 f4 f6 f8 SH/RET UPR CS ON	f1 f3 f5	C/*	S/T S/U S/V S/W S/X S/Y S/Z S/+	S/O S/P S/Q S/R S/S
Diag Lns				Lg CKRBD Diag Lns	T U V W X Y	0 P Q R S
60 61 63 64 66 67 66 68 68	•			5C 5D 5E 5F	54 55 56 57 58 59 5A 5B	4F 50 51 52 53
96 97 98 99 100 101 102 103 104 105 106				92 93 94 95	84 85 86 87 88 89 90 91	79 80 81 82 83

ı	ı			1 1	ı	1	
1	'					1	
1							
١	AB	171	c/Q		6B	107	
١	AC	172	C/D		6C	108	
1	AD	173	C/Z	1	6D	109	
1	ΑE	174	c/s		6E	110	
1	AF	175	C/P	[6F	111	
1	80	176	C/A		70	112	
1	B1	177	C/E		71	113	
١	82	178	C/R		72	114	
١	B3	179	C/W		73	115	
١	84	180	C/H		74	116	
	8 5	181	ר/ט		75	117	
١	86	182	C/L		<i>.</i> 76	118	
1	B7	183	C/Y		77	119	
1	88	184	C/U		78	120	
1	89	185	C/O	Į.	79	121	
1	BA	186	S/@	CK MARK	7A	122	
1	88	187	C/F		7B	123	
	BC	188	c/c		7C	124	
	80	189	C/X		70	125	
	BE	190	C/V		7E	126	
1	8F	191	C/B		7F	127	

() () ()

()

 \bigcirc

()

 \mathbf{C}

C)

C)

 \mathbf{O}

 \mathbf{C}

 \mathbf{C}

 \mathbf{O}

 \mathbf{C}

O

()

() ()

() ()

NOTE: This table shows which characters will be displayed for any value of CBM ASCII code. The two left columns give the values in hex and decimal (dec used for CHR\$). The 2nd and 3rd columns show what will be displayed or what control mode affected, depending whether the computer is in the UPPER CASE MODE (column 2), or LOWER CASE MODE (column 3). The last two columns give the hex and decimal values used for the SCREEN DISPLAY CODES. The decimal value is used to POKE directly to screen locations, while the hex is used if Storing to screen locations from a machine routine. Note that S/ followed by a letter means the SHIFTED letter which is the right hand graphic symbol on your key. A C/ means the COMMODORE KEY which produces the left hand graphic symbol on your keyboard.

APPENDIX B

MONITOR USE WITH DISKPICKER

Other monitors can be substituted for MONITOR\$8000 in Diskpicker by changing line 10 with alternate monitor's name, and by changing the SYS to the monitor's entry point in line 310 to that of the monitor you are using. Note that the alternate monitor should reside between \$8000-\$BFFF.

All Diskpicker functions except #2 - Monitor Mode can be used without a Monitor. This gives you the ability to load and execute error utilities etc. The procedure for this is:

 Delete line 10. Change line 20 to read: IFA=0 THEN A=1 :LOAD "ZMACH",8,1

 Press RUN/STOP - RESTORE then load "the desired utility program", 8, 1 then type NEW [RETURN]

3. SYS49184 [RETURN] Then follow normal Diskpicker procedure section for error writing routine.

HESMON- cartridge can be used in lieu of MONITOR\$8000. However, you will lose the ability to easily recover from lockup conditions which normally require reset and ZMACH restore features. Use the following changes and procedure:

- DELETE DISKPICKER LINE 10 and 20. Change line 35 to read: RUN40
- 2. Change line 310 to read SYS 36466
- TO USE- Plug in HESMON, turn computer ON, EXIT HESMON with "XC" command.
- 4. Load "DISKPICKER", 8 and modify as above then RUN.
- Use RESTORE key to enter HESMON instead of Menu item
 To return from HESMON, type "X" command then RUN.

SUPERMON64.V1 -Is part of the Commodore 64 Software Bonus Pack and seems to be readily available in the public domain. It can be used in place of Monitor\$8000. Modify Diskpicker as follows:

- Load "SUPERMON64.V1",8 then RUN. Monitor prompt screen should appear. Use "X" command to EXIT to basic. Insert PSIPACK disk and LOAD "DISKPICKER",8
- Delete line 10. Change line 20 IF A=0 THEN A=1:LOAD"ZMACH",8,1
- 3. Change line 310 to read: POKE53281,3 : SYS(PEEK(43)+256*PEEK(44)+127)
- 4. RUN Diskpicker as per procedure sections.
- 5. If you save the MODIFIED DISKPICKER, you need follow only step 1 in order to RUN Diskpicker with SUPERMON!!
- 6. If you are unable to locate SUPERMON or the COMMODORE BONUS PACK, we will supply a copy of SUPERMON for a handling fee of \$5.00.

If your MONITOR\$8000 will not save itself, change hex locations \$86EC through \$86F7 to EA (These are NOPs). MONITOR\$8000 can be easily saved using RELOCATE/LOADER procedures.

APPENDIX C

 \bigcirc

()

() ()

()

()

(:

()

C

<u>(</u>

(:

()

0

()

()

(

()

Following are two samples of autorun booters. One is for booting machine routines and the other for basic. We have chosen O2A7-O3OC for the booter routines. Use an editor to assemble them in these locations. Remember that when you load the routine from the tape or disk it will call the program identified by the NAME bytes. To set the names and messages you wish to use, look up the HEX CBM ASCII value for the letter and control functions in appendix A.

The first part of the routine sends a name to the screen to indicate that the booter is operating. The routine for machine has more available space for this message. The basic routine simply sends the name that you are calling with the loader.

Next the standard Commodore format for setting logical file, device number, name, and loading the RAM is used. Note that the device number is listed as \$08 (disk) tape is \$01.

Finally, in the machine booter, it jumps to the starting address of the machine routine that was loaded. The basic routine sets necessary basic pointers and restores 0302-030B vectors before it runs.

It is a good idea to use the no-break Poke 808,255 in your basic program. You should play around with some simple test routines before you commit the loader to service.

To set the names and messages you wish to use, look up the HEX CBM ASCII value for the letter and control functions in appendix ${\sf A}$.

APPENDIX C

```
BASIC AUTOBOOTER
  02A7
        A2 00
                  LDX #$00
                                 GET NAME AT
., 02A9
         BD F6 02 LDA $02F6,X
                                 02F6
  02AC
         20 D2 FF JSR $FFD2
., 02AF
         E8
                  INX
                                 SEND TO
                  CPX #$04
., 02B0
         E0 04
                                 SCREEN
., 02B2
         DO F5
                  BNE $02A9
., 02B4
         A9 10
                  LDA #$10
                                SET
., 02B6
         A2 08
                  LDX #$08
., 02B8
         AO 01
                  LDY #$01
., 02BA
         20 BA FF JSR $FFBA
         A9 04
                  LDA #$04
., 02BD
                                NAME (AT
., 02BF
                  LDX #$F6-
         A2 F6
., 02C1
         AØ 02
                  LDY #$02 -
                                 02F6)
., 02C3
         20 BD FF JSR $FFBD
., 02C6
        A9 00
                  LDA #$00
                                 LOAD
         85 9D
., 02C8
                  STA $9D
                                 RAM
         20 D5 FF JSR $FFD5
., 02CA
                  STX $2D
., 02CD
         86 2D
                  STY $2E
., 02CF
         84 2E
                  LDX #$OC
., 02D1
         A2 0C
                                RESET
., 02D3
         BD E9 02 LDA $02E9,X
                                 VEC.
., 02D6
         9D FF 02 STA $02FF,X
         CA
                  DEX
., 02D9
                                 EX.
., 02DA
         DO F7
                  BNE $02D3
                                 BASIC
., 02DC
         A9 00
                  LDA #$00
., 02DE
                                 PRG-
         85 7A
                  STA $7A
., 02EO
         A9 08
                  LDA #$08
., 02E2
         85 7B
                  STA $7B
., 02E4
         20 60 A6 JSR $A660
., 02E7
         4C AE A7 JMP $A7AE
., 02EA
         8B
         E3
., 02EB
., 02EC
         83
., 02ED
         A4 7C
         A5 1A
., 02EF
., 02F1
         A7
., 02F2
         E4 A7
., 02F4
         86 AE
          HEX DATA
.:02EA 8B E3 83 A4 7C A5 1A A7
.:02F2 E4 A7 86 AE 54 45 53 54
.:02FA 02 86 AE 00 00 00 36 34
.:0302 A7 02 A7 02 A7 02 A7 02
.:030A A7 02 00 00 00 00 4C
                            48
.' 02EA.C.$ %.' 8B E3 83 A4 7C A5 1A A7
.' 02F2D'..TEST E4 A7 86 AE
                            54 45 53 54
.' 02FA.....64 02 86 AE 00 00 00 36 34
.' 0302'.'.'. A7 02 A7
                         02 A7
                                02 A7 02
.' 030A'....LH A7 02 00 00
                            00 00 4C 48
```

(

APPENDIX C cont MACHINE AUTOBOOTER

 \mathbf{O}

C

•

 \mathbf{O}

 \bigcirc

 \bigcirc

()

```
LDX #$00
  02A7
        A2 00
                                   SEND
        BD DO 02 LDA $02D0,X
  02A9
                                   SCREEN
         20 D2 FF JSR $FFD2
  02AC
                                   MSG
  02AF
         E8
                  INX
                  CPX #$1E
  02B0
        EO 1E
        DO F5
                  BNE $02A9
  02B2
                  LDA #$10
  02B4
        A9 10
                                   LFS
         A2 08
                  LDX #$08
  02B6
                  LDY #$01 ·
  02B8
         AO 01
         20 BA FF JSR $FFBA
  02BA
                  LDA #$04
  02BD
         A9 04
                                   NME
                  LDX #$FO
  02BF
         A2 F0
         AO 02
                  LDY #$02
  02C1
         20 BD FF JSR $FFBD
., 02C3
                                   LOAD
., 02C6
                  LDA #$00
         A9 00
                                   MACH. PGM
        85 9D
                  STA $9D
., 02C8
., 02CA
         20 D5 FF JSR $FFD5
                               - EX MACH.
         4C 00 45 JMP $4500
., 02CD
```

MSG&NME HEX

.:02D0 93 05 20 20 50 53 49 44

.:02D8 41 43 20 1E 41 55 54 02

.:02E0 42 4F 4F 54 20 9F 20 20

.:02E8 20 20 20 20 20 20 20 20 20

.:02F0 4D 41 43 48 00 00 00 00

.:02F8 00 00 00 00 00 00 00 00

.:0300 36 34 A7 02 A7 02 A7 02

.:0308 A7 02 A7 02 00 00 00

HEX DATA SHOWING ASCII CHRs

PSID 93 05 20 20 50 53 49 44

ASCII

02D0.

APPENDIX D SECTOR EXPLANATIONS

The following information shows typical directory and data sectors. The important bytes have been numbered and the list identifies the meaning of the numbered bytes. The first part is for the directory and the second part for program data sectors. **Tells how to undelete a file. 12--BYTE 10 11 7 6 50 53 49 4D 41 49 **Y** 00 31 12 04 82 11 AG ALL 1. Next directory track-12HEX 1374E 1480 00 00 00 00 00 02 00 00 00 82 11 =18DEC. 50 53 49 4D 41 49 4E A0 A0 A0 32 01 AO AO AO AO AO **OO OO OO OO OO OO** 00 00 02 00 00 00 82 13 00 53 55 50 ^{2.Next} sector-O4HEX =O4DEC. 52 59 A0 52 45 43 54 4F 45 52 44 49 Ag 00 00 00 00 00 00 00 00 00 00 00 3.Type of file-82HEX OO=DELETED 13 0D 44 49 53 4B 2D 45 44 00 00 82 81=SEQUENTIAL 52 A0 A0 A0 A0 A0 00 00 00 49 54 4F 82=PROGRAM 00 00 00 82 11 00 00 00 00 00 00 07 84=RELATIVE 54 45 2F 4C 4F 13 52 45 4C 4F 43 41 41 44 45 52 A0 00 00 00 00 00 00 00 10 02 44 49 53 4. Disk File starting track-00 00 02 00 00 00 62 11HEX =17DEC 4B 50 49 43 4B 45 52 A0 A0 A0 A0 A0 AG 00 00 00 00 00 00 90 00 00 11 99 41 5.Disk File starting sector-00 00 82 13 09 54 2F 53 20 41 4E 59 5A 45 52 A0 A0 A0 A0 00 00 00 OOHEX =OODEC. 40 00 00 00 00 00 00 08 00 00 00 82 11 02 46 41 53 54 42 41 43 4B AQ AQ AQ 6.File NAME-1 A9 A9 A9 A9 A9 99 99 99 **99 99 99** 00 00 07 00 -P SECTOR TRACK 18 82 11 ØF 55 50 44 41 438. 31 44 -s 12 07 AO AO AO AO AO AO AO AO **AO OO OO** 00 00 00 00 00 00 11 **00 00 00** 82 **10**9. - I **07** 32 44 55 50 44 41 43 A0 A0 A0 A0 AG AG AG AG AG GG GG GG GG GG GG GG 10. 00 00 11 00 00 00 82 14 **02 41 44 4D** 41 43 48 A0 11. – A 00 00 01 00 A0 00 00 00 00 00 00 00 00 00 82 14 03 4D 41 43 48 **52 45 4C**12. - I 4F A0 A0 A0 A0 A0 A0 A0 00 00 00 00 00 01 00 00 00 82 14 13. 00 00 00 00 -N 04 33 52 4F 4D 55 4C 41 54 4F 52 AØ A0 A0 A0 A0 A0 00 00 00 00 00 00 00 14.Ending characters -A0 52 4F 99 99 82 14 06 32 00 00 04 00 52 A0 A0 A0 A0 A0 A5.Next Entry file type-82HEX 4D 55 4C 41 54 4F A0 00 00 00 00 00 00 00 00 00 04 00 00 00 82 13 08 5A 4D 41 43 48 A0 A0 16.Next sector AO AO AO AO AO AO AO AO OO OO OO Data continues as above to 00 00 00 00 00 00 01 00 **00 00 82** 14 the end of directory. 4E 41 4C 59 4D 41 43 48 A0 A0 09 41 00 00 00 00 00 00 *File name data is the hex

(

(

(

(

•

(

(

(

(

(

(

(

1

(

(

A0 A0

TRACK

00 00 01 00

18

A0 A0 A0 00

SECTOR

** UNDELETE A FILE

conversion of CHR\$ codes.

You can undelete a file only if the data has not been written over. Any time something has been saved on a disk with a deleted file, some of the data has likely been written over. To undelete a file, change the file type entry back to its original number. ie:On a program file this byte should be changed to 82.

2 3 4 5 6 7	de following information plains how program sectors are configured. Xt track -11HEX =17DEC Xt sector -OAHEX=10DEC ad TO address low byte=01 ad TO address high byte=08 s load address =\$0801 or 49 DECIMAL. Ogram DATA (in HEX) """ Intinues to end (see next cotor and explanation#9 d #10) d byte of THIS sector. art of data) dicates no next sector if otherwise same as above expt 4 & 5 would be data at addresses. ast program byte.
B2 31 A7 9F 34 2C 34 3A 98 34 2C 54 2C 53 2C 41 24 2C 42 24 3A A0 34 00 98 09 1C 00 9E 34 39 39 30 33 3A BE-IO 00 00 00 00 00 00 00 00 00 00 00 00 00 00	() () () ()
206	

APPENDIX E RESET SWITCH

-- INSTALLATION INSTRUCTIONS --

A Reset switch is useful for breaking out of lockup conditions without erasing RAM data. Tack solder two fine wires to OUTPUT PORT pins 1 and 3. To keep solder from flowing over the entire edge connector pad, you should put a piece of masking tape over the pads, exposing only the top end for soldering. The switch can be mounted at any convenient location where it is not likely to be accidentally pushed. If the location you use is not close to the port, loop the wires through the ferrite donut to preserve EMI shielding properties.

APPENDIX F

() () ()

0

()

(

()

(1

C.

C,

C +

()

():

()

()

()

() ()

The normal binary information sent from the computer to the disk is the binary equivalent of the CBM ASCII. However when the information is to be stored on a diskette, the DOS converts the CBM ASCII to another format called Group Coded Recording (GCR). In this process, the standard eight bit code has two extra bits added to it. Thus the GCR equivalent of the ASCII is a 10 bit number. When you load this GCR data into RAM and view it, you are only seeing eight of the ten bits at a time, so it is more difficult to analyze the HEX GCR code. The other effect this has is that a 256 byte block actually takes about 320 8-bit locations on the disk.

Following we have listed a GCR Sector Map, an example printout of a GCR Sector Image, and a list of the Disk drive memory locations that hold GCR header images.

IMPORTANT DISK MEMORY LOCATIONS HEADER IMAGES

BINARY DATA LOC. \$0016 Disk ID HI \$0017 Disk ID LO \$0018 Track \$0019 Sector \$001A Checksum ---- GCR DATA ----\$0024 Header block ID (HBID) \$0025 Checksum \$0026 Sector \$0027 Track \$0028 ID1 \$0029 IDS \$002A \$002B

APPÉNDIX F cont GCR BYTE MAP FOR A SECTOR BEGIN SECTOR FF (5) Sync Bytes FF FF 52 Header block ID byte XX (7) Header bytes XX Checksum XX Sector XX Track ХX ID1 XX IDS XX55 (11) Gap bytes 55 55 55 55 55 55 55 55 55 55 FF (5) Sync Bytes FF FF FF 55 Data block ID Byte XX (324) Data block bytes xxDATA Checksum Of Of 55 (7) Gap bytes 55 55 55 55 55 55 Next Sector starts here. *Note: The end of track Gap contains several "AA" GCR clear bytes.

APPENDIX F cont GCR IMAGE EXAMPLE :6400 |52 | 6E E5 2D 72 9A DF 65 HEADER ! .:6408155 55 55 HEADER GAP (55) .:6410 55 .:6418 32 25 7F 55 D7 55 25 39 (FF 55=Data SYNC or 7F) 5A D4 A9 AD EA 70 DD block ID .:6420 97 75 CB76 5D ED 2B 4A DATA :6428 D2 B4 ĤΒ 2B4Ĥ n_2 **B4** A5 29 4A : 6430 52 94 Ĥ5 29 4A 52 .:6438 94 A5 29 52 52 94 A5 29 32 .:6440 09 5A B9 D4 ΕĤ 70 DD :6448 97 75 CB 76 5D ED 2B 4Ĥ :6450 D2 B4 ĤΒ 2B 4Ĥ D2A5 :6458-29 4Ĥ 52 94 **A5** 29 4**A** 52 52 .:6460 94 A5 29 52 94 **A5** 29 .:6468 32 50 D4 **A7** CD EF 78 9C :6470 F7 09 CE 5F 76 27 3D D3 :6478 7B 9D 57 C9 F9 D2B4 A5 :6480 29 4A 52 94 A5 29 48 52 .:6488 94 A5 29 49 52 94 A5 29 .:6499 32 50 D5 D7 39 D9 70 DD .:6498 B9 75 CF 73 9D 97 В9 D5 .:64A0 7C **B**4 AD 2B 4A D2**B4 A**5 ∹64A8 29 48 52 94 **A5** 29 48 .:64B0 94 **A5** 29 57 52 94 **A5** 29 .:64B8 32 5A D7 37 C9 CF 5D 73 :6400 57 4D CB 7B F9 90 55 CD 1:6408 75 50 **B**7 39 CF 70 B4 A5 .:64D0 29 4Ĥ 52 94 **A5** 29 4Ĥ 52 .:64D8 94 52 A5 29 52 94 **A5** .:64E0 32 5A 95 27 39 D9 70 DD .:64E8 B7 A9 D9 74 DD B7 3D F2 .:64F0 D2 B4 AD 2B 4A D2 85 B4 :64F8 29 4Ĥ 52 94 **A5** 29 48 52 DATA ∴6500 94 A5 29 6B 52 94 **A5** 29 :6598 32 50 D597 BA 55 70 E4 :6510 A7 2DDΕ 72 DC D7 E5 FĤ :6518 73 DF 2D2B 4Ĥ B2A5 В4 :6520 29 52 94 4A **A5** 29 4R 52 -6528-94 **A5** 29 49 52 94 **A5** 29 :6530 32 5A D5 27 59 CB 70 DΕ :6538 E7 **CB** 74 49 DD BD 2B 48 .:6540 D2 B4 ΑD 2B 4Ĥ D2B4 85 :6548 29 52 29 4Ĥ 94 **A5** 4A 52 :6550 94 **A5** 29 57 52 97 D5:6558 40 **H7** 155 55 55 55 55 55 DATA GAP ÷6569 [55 55 55 55 55 55 FF 52 FF=SYNC 52=HDR BLOCK ID 75 49 9A DF 65 55 :6568 <u>6</u>F :6570 | 55 :6578 | 55 :6580 | 52 55 55 55 55 FF | [55] - GAP 55 55 55 55 DD **B**5 20 4B B5 **D4** 2D 4B 52 D4 B5 :6588 2D 4B 52 D4 B5 20 4B 52 :6590 D4 B5 2D4B 52 D4 B5 2D:6598 4B 52 D4 B5 2D4B 52 D4 FORMATTED ONLY :65A0 B5 2D4B 52 D4 **B**5 2D 4B :65A8 52 D4 B5 2D 4B 52 D4 B5 :6580 2D 4B 52 D4 B5 2D4B 52 :65B8 D4 B5 2D 4B 52 D4 B5 20 :6500 4B 52 D4 B5 2D 4B 52 D4 46508 B5 2D 4B 52 D4 B5 2D4 P. .:6500 52 D4 B5 2D 4B 52 D4 B5

(

(

(

(

C

 \mathbf{C}

(

0

()

C

0

0

()

() ()

(

```
APPENDIX G
                                    PRICE LIST
                                     884-1284
                        ****** C-64PRODUCTS ******
      PART#
                DESCRIPTION
                                                                   PRICE(US)
      SPH-64
                Software Protection Handbook for C-64
                                                                      $19.95
      PPK-1
                PSIPACK disk of SPH-64 programs. (Instructions in
                SPH64 only)
                                                                      $16.95
      SPH-64-D
                SPH-64 book and PPK-1 disk combination.
                                                                     $29.95
      S-AMR
                Romulator for C-64 (requires 8K or 16K Vic
                compatible RAM expander)
                                                                     $39.95
      RS-2
                16KRAM switch. (see text) (kit)
                                                                     $9.95
      SC-1
                Super Clone Plug kit. (VIC & 64)
                                                                     $9.95
      TK-1
                Tapeworm Kit. All parts, PC & inst.(VIC & 64)
                                                                      $19.95
      CS-1
                Reset switch Kit. (VIC & 64)
                                                                      $6.95
€
                     ****** VIC & Misc PRODUCTS ******
      SPH-20
                Software Protection Handbook for the VIC
                                                                      $9.95
.(
      PT-1
                Pirate's Tape of programs in SPH-20
                                                                      $9.95
      RMK-1
                Romulator, VIC version (kit)
                                                                      $19.95
      PA-1
                Protection Arsenal for VIC 20. Pirates Tape.
                Tapeworm Kit, Vic Romulator, Super Clone kit.
                                                                      $49.95
      SHIRT
                "Software Pirates" T-Shirt White Skull and
                Crossbones on jet-black Shirt. (S-M-L)
                                                                      $9.95
                "SUPERMON" Disk Can be used in place of
      MON-1
                Monitor$8000. See Appendix B.
                                                                      $5.00
                *Shipping-- add 10% to order total. ($5.00
                maximum)
                *Overseas Airmail-- add $6.00 Orders including
                SPH-64 or many items, add $10.00
                *Canada-- allow for current exchange rate or
                obtain money order in US dollars.
                ** If not available at your local dealer, you may
                order directly from:
                PSIDAC Products Div.
                7326 N. Atlantic
                Portland, OR 97217
                    Prices subject to change without notice.
```

APPENDIX H INTERRUPTS

At roughly 1/60 second intervals, the C-64 takes a "time out" from the user program to do some of its own internal housekeeping. This is the "hardware interrupt" cycle which is a normal part of computer systems. Since it is automatic by nature, the user need not worry about it for normal purposes. The user CAN take advantage of it for his own routines. The limitation is that the routines should be short and in machine language.

0

C)

 \mathbf{C}

 \mathbf{O}

()

(;

()

0

()

O

A control zone vector at \$0314 and \$0315 holds the address that tells where the routines to be executed during the interrupt are. This value is normally \$EA31. You can write a routine wherever convenient and change the value at \$0314 and \$0315 to point to your new routine. Remember that the 64 still needs to do its own routines; so at the END of your routine you must have a JMP \$EA31 so that the normal housekeeping will get done.

*** LIMITED WARRANTY ***

The PSIPACK diskette is guaranteed only to be free of defects in material and to load on a Commodore 64 computer from a Commodore 1541 disk drive.

PERIOD: This coverage extends for 30 days from the date of purchase.

LIMITATIONS: No guarantee can be made concerning its application. Changes made by Commodore to the Disk Operating System ROM may defeat or invalidate functions of the programs we have provided. Neither PSIDAC nor any of its authorized distributors may assume any liability for incidental or consequential damages which occur through use of this product or to damages caused by misuse or abuse.

REMEDY: PSIDAC will replace a diskette only if it is found to be defective in materials, workmanship, or recording and only if returned within the 30 day warranty period. PSIDAC will not replace diskettes which will not load due to misaligned heads on the users equipment.

THIRD EDITION ADDITIONS

The following procedures work with Diskpicker to accomplish additional error writing capabilities. CREATE ERROR #27

Places error 27 on all sectors of desired track.

- Load "1CON HDR",08 through monitor mode of Diskpicker.
- 2. Load "WRITE HDR", 08 through monitor mode. Then G CO20
- Put object diskette in drive. Select 6 from main menu and enter track # and sector # desired to be errored. *If sector desired is in doubt, use
 - Select 3 from main menu. Start Addr 0300
 - End Addr 031FBuff Addr 5300
 - Select 4 from main menu. Entry addr 0300.
 - Select 3 from main menu. Start Addr 0300
 - End Addr 036F 3300 Buff Addr

sector #1

1.

- start addr, select 1 = (0300)9. For "Multi Sector Y/N", select Y.
- 10. For HDR#1, use track# to be errored.

1. Select 5 from main menu. Job choice = 128.

- 2. For "Multi Sector Y/N", select Y.
- For HDR#1 use track # just errored in above procedure. 3.

Select 5 from main menu Job choice= 224. For execute

TO CHECK ERROR 27

- Sectors should read "Checksum Error In Header"
- For more 27 errors repeat starting at step 4.

CREATE ERROR 29

Places "29" error on all sectors of desired track.

- 1. Load "CON HDR" through monitor mode of Diskpicker.
- 2. Load "WRITE HDR",08 through monitor mode. Then type G CO20 [RETURN]
- 3. Put object diskette in drive.

6016

- 4. Select 6 from main menu and enter track# and sector# desired to error. *If in doubt, use sector #1.
- 5. Select 1 from main menu Start Addr 0016 End Addr 001B

Addr

Addr

Addr

Buff

Buff

Buff

- 6. Dump memory locations 6016-601B from monitor mode.
- 7. Change memory locations \$6016 and \$6017 to the Hex value of the desired ID#s. *Refer to appendix F.
- 8. Select 3 from main menu Start Addr 0016 End Addr 001B
 - Select 3 from main menu Start Addr 0300 End Addr 031F

6016

5300

- 10. Select 4 from main menu, Entry addr 0300
- 11. Select 3 from main menu Start Addr 0300 End Addr 036F Buff Addr 3300
- 12. Select 5 from main menu. Job choice=224. For execute start addr select 1=(0300).

 \bigcirc

- 13. For Multi Sector Y/N, select Y.
- 14. For Hdr#1 use track# to be errored.

TO CHECK ERROR 29

- 1. Select 5 from main menu. Job choice = 128.
- For Multi Sector Y/N, select Y.

```
For HDR#1 use track # just errored.
       * Sectors should read "DISK ID MISMATCH"
       * For more 29 Errors, repeat procedure from step 4.
                         ASSIGN ILLEGAL SECTOR #"
            This procedure will substitute an illegal sector #
       onto the diskette in place of a legal one. The illegal
       sector can be read using the Job Oue - menu option 5.
       Whenever a header not found error is encountered, make sure
       that illegal sectoring has not been used. This is done by
       loading a sector using the Job Que read function to see if
       the sector can be found in the illegal ranges specified in
       the table following step 7 of this procedure.
         Load "CON HDR" through monitor mode of Diskpicker.
     1.
     2.
         Load "WRITE HDR" through monitor mode.
     3.
         Put object diskette in drive.
         Select 6 from main menu and enter track# and sector #
       desired to be changed to illegal value.
     5.
         Select 1 from main menu,
       Start Addr
                   0016
       End
             Addr
                    001B
       Buff
             Addr
                    6016
         View memory locations 6016-601B from monitor mode. Refer
       to appendix F GCR info to identify byte function.
(
         Change data at memory location $6019 to hex value of
       sector # you want to substitute for sector # chosen in step
           The range of acceptable illegal sectors are:
                   LEGAL SECTORS
                                          ILLEGAL SECTORS
           TRACKS
                                          DEC.
                                                        HEX
            1-17
                           0-20
                                          21-25
                                                        15 - 19
                                          19-23
            18-24
                           0 - 18
                                                        13 - 17
            25-30
                           0 - 17
                                          18-22
                                                        12-16
                           0 - 16
            31 - 35
                                          17-21
                                                        11-15
         Select 3 from main menu
(
       Start Addr
                    0016
       End
             Addr
                    001B
(
       Buff
             Addr
                    6016
     9. Select 3 from main menu
(
       Start Addr
                    0300
       End
             Addr
                    031F
       Buff
             Λddr
                    5300
     10. Select 4 from main menu. Entry Addr 0300.
     11. Select 3 from main menu
       Start Addr
                   0300
```

(

End

Buff

Addr

Λddr

036F

3300

12. Select 5 from main menu. Job choice =224. For Execute Start Addr, select 1 (0300)

 \bigcirc

C

()

 \mathbf{C}

 \mathbf{O}

- 13. For Multi Sector Y/N, select 'N'.
- 14. For HDR #1, use track # selected in step 6.
- 15. For HDR #2 Use one less than sector # selected in step 6.

TO CHECK ILLEGAL SECTOR NUMBER

("Wraparound" as in earlier procedures... ie. for sector l

- 1. Select 5 from main menu. Job choice= 128.
- 2. For Multi Sector Y/N, select 'N'.

enter a 0)

- 3. For HDR #1 use track # selected in step 6 above.
- For HDR #2, use DECIMAL value of illegal sector number you selected in step 7.
- 5. Even though it is an illegal value, the DOS should find the sector and load the data into the disk buffer. The sector selected in step 4 is now re-assigned to an illegal value. This can be verified by repeating check procedure steps 1-3 with a 'Y' for Multi sector question, step 2. With a little imagination, this can be used for protecting your own programs quite effectively.

SYNC ONLY

This process will cover any desired track with GCR FF's for the purpose of locking up most current whole disk copy programs. By using this routine on several unused tracks, especially the lower numbered ones, you can help protect your own software.

- 1. Load and Run Diskpicker.
- 2. Select menu option 2, printer choice 'N'.
- Input L"SYNC ONLY",08 to load machine routine. After load is done, Type G CO20
- Place diskette to be errored into drive.
- 5. Select menu option 7.
- 6. Select menu option 3.
- Start Addr 0300
- End Addr 034F Buff Addr 3300
- 7. After data transfer to disk, select menu option 5.
- 8. Input Job choice 224. Select execute address 1 (0300).

- For Multi sector Y/N, select 'N'.
- 10. For Header #1, input track # to be errored.
- 11. For header #2, input sector #0.
- 12. Repeat procedure steps 7 through 10 for additional sync only errors.
- 13. To test your errors select option 5. Job Que execute addr 128.
- 14. For Multi Sector Y/N, select 'N'.
- 15. For Header #1, enter track

with error.

(

(

(

(

(

(

(

4.

- 16. For Header #2, enter sector #0.
- 17. If everything went right, the disk will lock up and continue to look for the sector you selected.
- 18. The only way to escape this error is to open the drive door until a sync not found error shows on the monitor.

ONE TRACK FORMAT

This routine will reformat a single track. Can be used to repair any whole track error such as 22, 27, 29, Sync only, Multi-No Header. This routine can also be used to create 29 errors on a track.

- ** You will need a reset switch as described to facilitate the use of this procedure.
- 1. Load "1TRKFMT",08 through the monitor mode of diskpicker. Then type G C020
- Put object diskette in drive. 2.
- Select 7 from main menu.
- Select 2 from main menu and change data in memory locations \$3312 (ID HI) and \$3313 (ID LOW) to ID#s you want. IDs different than the one the disk was formatted with (False ID) will reformat the track to produce a 29 error. Correct ID#s (same as disk formatted ID) will provide normal reformat. See appendix A column 1 for the
- HEX values to use for ID characters of your choice. ie. the hex codes for an ID of "VN"=56 4E. (56 is ID HI and 4E is ID LOW)
- When done, enter G C020 Select menu option 3. Start Addr 0300 Addr 0315 End

- Select menu option 5. Job choice = 224. For execute addr, select 1 (0300).
- For Multi Sector Y/N, choose 'N'.
- For HDR #1 use track desired to be reformatted. 8.
- For HDR #2 use sector 0. 9.
- 10. Wait about 5 seconds then press computer reset. (non critical time).
- 11. Type in SYS49184 then [RETURN].
- 12. Select menu option 7, if disk LED lamp flashes, repeat this step.

TO CHECK

- Select menu option 5. Job choice=128. 1.
- For Multi Sector Y/N, choose 'Y'.
- 3. For HDR #1, select track number just reformatted.
- Refer to the error codes returned on your monitor which indicate result of your attempts.

 \mathbf{C}

DETERMINING ID NUMBERS

This process will allow you to find out the Hex value

of ID#s on specific tracks and sectors of the disk. 1. Assuming Diskpicker is loaded, put object diskette in

- drive.
- Select 7 from main menu.
- Select 6 from main menu, input Track # desired, Input Sector # desired.
- Select 1 from main menu. Start Addr 0012

001F End Addr

Buff Addr 6012

2.

5. Select 2 from menu and interrogate memory locations 6012-6018

MEMORY LOCATION DEFINITIONS

DISK ADDR	BUFF ADDR
\$0012	\$6012= Disk ID HI
\$0013	\$6013= Disk ID LOW
\$0016	\$6016= Sector ID HI
\$0017	\$6017= Sector ID LOW
\$0018	\$6018= Track #
\$0019	\$6019= Sector #
\$001A	\$601A= HDR Checksum

TRACK CHECK

...

The track check program was designed to provide the following information for full and half tracks.

1. Disk master ID in Hex.

(

- 2. Actual track found in each physical track location.
- 3. Header ID#s in hex for each physical track location.
- 4. Status of error for each physical track location.

load and run "TRACK CHECK". To operate; Follow the screen prompts to provide your choice of options. data returns the physical track called for. D-Trk returns the actual track found in any physical track location. some forms of protection the actual track found will different than the normal track number designed to be in IDH and IDL return the actual header ID#s that location. in the physical track location. If you choose the track option the data returned may or may not be reliable because normal track widths often overlap the half track areas. This program will not return valid data for illegal tracks having abnormal bit densities. abnormal bit density exists on a particular physical track location, it will show up as a header not found error or some other erratic non repeatable error.

The only commercial program diskettes we have found using half track or bit density errors have been on highly protected copy programs written to run on 1541 drives only. This makes these programs incompatible on other so called "Commodore compatible" drives. We have found some commercial disks with more than one track 35. Track Check will prove useful for most present day commercial programs.

FORMATTING ILLEGAL TRACKS

This procedure will format a new illegal track onto the diskette in place of an existing legal track. This process can also be accomplished in between tracks known as half tracks. For example: Track 34 could be reformatted as a track 35 resulting in two track 34s. Likewise, a physical location of 29.5 could be reformatted as a track 33 etc.

It is best not to reformat a physical track location with format data containing more sectors than will fit in that location. To reformat physical track 35 as a track 1 would present a problem because track 1 format data contains too many sectors to fit into the physical track 35

location. It is possible to have illegal ID#s on the illegally formatted tracks.

An effective protection method can be utilized by formatting higher numbered track format data onto lower physical track locations. This makes these tracks unreadable under normal circumstances because the data will be formatted at a lower than normal bit density rate for that physical track. Disk memory location \$1000 bits 5 & 6 control the bit density rate.

BIT DENSITY CONTROL TABLE

TRACK	BITS/SEC	\$1C00	
		Bit 6	Bit 5
1-17	307,692.31	1	1
18-24	285,714.29	1	0
25-30	266,666.67	0	1
31-35	250,000.00	0	0

To test this concept try the following procedure by formatting physical track 1 with format data for track 35. You will notice that you can find the headers etc. using the check procedure but you will not be able to read headers/data from track 1 using the T/S analyzer or Track Check programs as the data density is not normal in this location.

The theory of this method is to make the disk drive memory think that it is set for track 35 and the read write head over track 35 while in reality the read write head is method also forces an illegal bit track 1! This density number into memory location \$1000. By combining and illegal ID#s with illegal bit half tracks achieve a high level of software densities you can protection.

ILLEGAL TRACK FORMATTING

- Load "1TRKFMT",08 through the monitor mode of Diskpicker. Then G C020.
- 2. Put object diskette in drive.
- 3. Select 6 from main menu and enter the track # you want to use for format data. Then enter sector 0. This sets up the DOS pointers and data variables in the drive memory.
- 4. Select menu option 1

Start Addr 0000 End Addr 00FF

Buff Addr 6000

This stores the Disk zero page in computer buffer.

- 5. Select menu option 9 Position read write head. Enter your track choice for the physical track position you wish to format with the format data determined in step 3.
- Select menu option 3.

Start Addr 0000 End Addr OOFF 6000 Buff Addr This step restores the drive page zero to contain data for "illegal" track selected in step 3. Select 2 from main menu and change the data in memory 7. locations \$3312(ID HI) and \$3313 (ID LOW) to the ID#s you want. Then enter G CO20. (If in question about ID you want to use see section on determining ID numbers or use Track Check on original program if making backups. Select menu option 3. Start Addr 0300 End 0315 Addr Buff Addr 3300 Select menu option 5. Job Choice = 224. For execute Addr select 1=(0300) 10. For multi sector Y/N select N. 11. For Hdr#1 use the data track number selected in step 3. 12. For HDR#2 use sector 0. 13. Wait about 5 seconds then press computer reset. 14. Type in SYS 49184 [RETURN] 15. Select menu option 9. For track select track 18. 16. Select menu option 7. If disk LED lamp flashes repeat this step. * EXAMPLE If you chose track 32 for step 3 and track 34.5 for step 4, then you will have two track #32s, one in physical track position 32 and one in physical track postion 34.5. TO CHECK Select 6 from main menu and enter the track # that you chose in step 3 of the format procedure. Then enter sector 0. Select menu option 1 Start Addr 0000 Addr COFF End Buff Addr 6000 З. Select menu option 9 Position read write head. Enter the physical track position you selected in step format procedure. Select menu option 3. Start Addr 0000 Addr 00FF End

Buff Addr 6000

```
5.
    Select menu option 5. dob choice =128.
6.
    For Multi Sector Y/N Select Y.
          header #1 select the track # you used in step 1 of
    For
  this check procedure.
    Refer to the error codes returned on your monitor for the
  results of your attempt.
   Select menu option 9. For track select track 18.
9.
   Select menu option 7. If disk LED lamp flashes, repeat
  this step.
                         SYNC ONLY
                   3300
                          AD OC 1C LDA $1COC
                   3303
                          29 1F
                                   AND #$1F
                   3305
                          09 CO
                                   ORA #$C0
                    3307
                          8D OC
                               1C STA $1COC
                   330A
                          A9 FF
                                   LDA #$FF
                    330C
                          8D 03 1C STA $1C03
                   330F
                          A9 FF
                                   LDA #$FF
                    3311
                          8D 01 1C STA $1C01
                    3314
                            28
                                   LDX #$28
                          A2
                    3316
                          AO 00
                                   LDY #$00
```

1TRKFMT

A5 06 85 51

85 12

85 13

00

EΑ

EA

 $00 \cdot$

3318

331A

331B

331C

331E

331F

3321

3324

3326

3329

332A

3300

3302

3304

3307

3309

330c

330E 3311

3312

3313

3314

3315

50. FE

DO FA

DO F7

A9 01

B8

88

CA

00

00

BVC \$3318

BNE \$3318

BNE \$3318

LDA #\$01

LDA \$06

STA \$51

STA \$12

STA \$13

AD 12 03 LDA \$0312

AD 13 03 LDA \$0313

4C C7 FA JMP \$FAC7

8D 03 1C STA \$1C03

BRK

NOP

NOP

BRK

CLV

DEY

DEX

BRK

BRK

20 00 FE JSR \$FE00

4C 69 F9 JMP \$F969

```
10 POKE53280,11:POKE53281,11:P=4:D=8:HX$="0123456789ABCDEF"
12 OPEN15,8,15,"I0":CL05E15
15 PRINT"($C?\YL) TRACK CHECK(LG) PSIDAC(C)84 VBN":FORTD=1T02000:NEXT
20 CH$="NORM":PRINT"($C)\WH)SELECT CHOICE":PRINT"(CD)(1) NORMAL TRACK CHECK"
30 PRINT"(CD)(2) HALF TRACK CHECK(CD)"
40 INPUTCH$:IFCH$="1"THENCH$="NORM"
50 IFCH$="2"THENCH$="HALF"
100 PRINT"(CD)(HULINGERT SOURCE DISK IN DRIVE":PRINT"PRESS E7"
30 IPCHS= 2*THENCHS="HHEP"
100 PRINT*(CD)YUH)INSERT SOURCE DISK IN DRIVE":PRINT*PRESS F7*
110 GETF7$:IFF7$()*(F7)*THEN110
115 PR=0:INPUT*(CD)PRINTER Y/N*;YN$:IFYN$="Y*THENPR=1
120 INPUT *(CD)DISK NAME*;DN$
125 PRINT*(CD)TRACK LOG FOR *DN$
125 PRINT*(CD)TRACK LOG FOR *DN$
 130 IFPR=1THENOFEN4,P:PRINT#4;" TRACK LOG FOR "DN$:PRINT#4:C
140 OPEN15,8,15,"IO"
150 PRINT#15,"M-R*CHR$(18)CHR$(0):GET#15,MH$:MH=ASC(MH$+CHR$(0))
                                                                                                               TRACK LOG FOR "DN$:PRINT#4:CLOSE4
 152 X=MH: GGSUB3000: MH$=D$
155 PRINT#15, "M-R"CHR$(19)CHR$(0): GET#15, ML$: ML=ASC(ML$+CHR$(0)): CLOSE15
155 PRINTH15,"M-R*CHR$(19)CHR$(0):GET#15,ML$:ML=ASC(ML$+CHR$(0)):CLOSI
158 X=ML:GOSUB3000:ML$=D$
160 PRINT*(CD)MASTER ID# = "MH$;ML$" IN HEX(CD)*
162 IFPR=1THENOPEN4,P:PRINTH4, "MASTER ID# = "MH$;ML$" IN HEX":PRINTH4
165 PRINT*(CD)P-TRK D-TRK IDH IDL STATUS(CD)*
170 IFPR=1THEN:PRINTH4,*P-TRK D-TRK IDH IDL STATUS*:PRINTH4:CLOSE-
172 IFCH$="HALF"THENGOSUB500
175 FORTR=1T042
182 IFCH$="MORM"THENGOSUB200:GOSUB700
183 IFCH$="NORM"THENGOSUB200:GOSUB275
185 NEYT:TECH&="HOLF"THENGOSUB200:
                                                                                                                       IDH IDL STATUS":PRINT#4:CLOSE4
185 NEXT: IFCH*="HALF"THENGOSUB500
190 CLOSE15: RUN
200 OPEN15,D,15
205 PRINTH15, "M-W"CHR*(24) CHR*(0) CHR*(1) CHR*(0)
206 PRINTH15, "M-W"CHR*(22) CHR*(0) CHR*(1) CHR*(0)
207 PRINTH15, "M-W"CHR*(22) CHR*(0) CHR*(1) CHR*(0)
210 PRINTH15, "M-W"CHR*(23) CHR*(0) CHR*(1) CHR*(0)
210 PRINTH15, "M-W"CHR*(6) CHR*(0) CHR*(1) CHR*(TR)
220 PRINTH15, "M-W"CHR*(7) CHR*(0) CHR*(1) CHR*(1)
230 PRINTH15, "M-W"CHR*(0) CHR*(0) CHR*(1) CHR*(176)
240 PRINTH15, "M-R"CHR*(0) CHR*(0)
250 GETH15, AR: X=ASC(AS+CHR*(0)): IFXX127THEN240
254 OP*=" ":IFX=3THENOP$="NO SYNC FOUND"
255 IFX=2THENOP$="NO HOR FOUND"
255 IFX=9THENOP$="NO HOR FOUND"
260 PRINTH15, "M-R"CHR*(24) CHR*(0): GETH15, CT*: CT=ASC(CT*+CHR*(0))
265 PRINTH15, "M-R"CHR*(24) CHR*(0): GETH15, IH*: IH=ASC(IH*+CHR*(0))
268 X=IH: GOSUB3000: IH*=D$
 185 NEXT: IFCH#="HALF"THENGOSUB500
268 X=IH:GOSUB3000: IH$=D$

270 PRINT#15. "M-R"CHR$(23) CHR$(0):GET#15, IL$: IL=ASC(IL$+CHR$(0)) :CLOSE15

272 X=IL:GOSUB3000: IL$=D$
 275 IFCT()@AMDCT()TRTHENOP$="ILLEGAL TRACK"
280 RETURN
  295 PRINTTR; TAB(6); CT; TAB(13); IH$; TAB(17); IL$; TAB(22); OP$
 300 IFIL=0ANDIH=0THEN308
305 IFIL<>MLORIH<>MHTHENPRINT*
                                                                                                                                          BAD ID# * * * * * *(CD)":0K=1
 308 IFPR=1THENGOSUB1000
308 IFPR=ITHENGOSUB1000
310 RETURN
500 OPENIS.D.15
510 PRINTHIS."M-R"CHR$(0)CHR$(28)
512 GETHIS,X$:X=ASC(X$+CHR$(0))
515 BI=XAND3:BI=BI+1:BI=BIAND3:HP=(XAND252)ORBI
520 PRINTHIS,"M-W"CHR$(0)CHR$(28)CHR$(1)CHR$(HP):CLOSE15
530 RETURN
700 PRINTTR"(CL),5";TAB(6);CT;TAB(13);IH$;TAB(17);IL$;TAB(22);OP$
710 IFIL=0ANDIH=0THEN718
715 IFIL()MLORIH()MHTHENPRINT" ***** BAD ID#*******
                                                                                                                                             BAD ID# * * * * * *{CD}*:OK=1
 718 IFPR=1THENGOSUB2000
718 1FFK=1 HENGGSGG2000
720 RETURN
1000 OPEN4,P
1010 PRINT#G,TR:CHR$(16)"08"CT;CHR$(16)"14"IH$;CHR$(16)"18"IL$;CHR$(16)"24"OP$
1020 IFOK=1THENOK=0:PRINT#4," * * * * * * BAD ID# * * * * * * *
3010 D2=INT(X-16*D1):D$=D$+MID$(HX$,D2+1,1):RETURN
```

(

ABOUT THE AUTHORS

Vic Numbers and David Thom have been involved in a working association for over seven years. They formed PSIDAC as a partnership to develop and market electronic devices and software.

Vic Numbers has an extensive background in electronics. He has 15 years of experience in custom designed automatic test systems used for fault analysis at a Naval weapons testing facility.

David Thom has been involved with applications of microprocessons for electro-mechanical systems control as well as video games. Mr. Thom also served as Engineering Manager for Windmills International Diversified over a two year period.

Since their association, Numbers and Thom have been involved in numerous industrial and commercial projects. Thom and Numbers headed an engineering team in designing a microprocessor controller for a 150KW wind electrical generator. They have also cooperated in designing computerized advertising displays as well as producing and selling products for the VIC-20 and C-64.

After successfully marketing a handbook and kits for the VIC-20, Numbers and Thom decided to continue with a more serious and in depth study on the C-64. This book is the product of that goal.

THE
SOFTWARE
PROTECTION
HANDBOOK
For the C-64

CONTRARY TO POPULAR BELIEF, WHEN YOU BUY SOFTWARE, YOU OWN MORE THAN JUST THE LIGHT RAYS FROM YOUR TV!

IT IS TIME TO DEFROCK THE WIZARDS BY RELEASING INFORMATION ON THE "BLACK ARTS" OF PROTECTION. YOU NO LONGER NEED SEEK OUT THE CRUMBS OF INFORMATION DOLED OUT BY THE LOCAL WIZARD OR HINTED AT IN THE MAGAZINES.

THIS MANUAL WILL HELP YOU "BLOW THE LOCKS OFF" PROTECTED SOFTWARE! THE SOFTWARE PROTECTION HANDBOOK LETS YOU KNOW WHERE YOU STAND LEGALLY AND PROVIDES INFORMATION ON PROTECTION TECHNIQUES AND BREAKING FOR EACH CATEGORY OF SOFTWARE; DISKS, CARTRIDGES, AND TAPES. THIS MANUAL ALSO GIVES THE LISTINGS AND PROCEDURES FOR ELEVEN PROTECTION ANALYSIS AND BREAKING TOOLS.

THE REFERENCE VALUE ALONE WILL KEEP YOU TURNING BACK TO THIS BOOK FOR AS LONG AS YOU OWN YOUR COMPUTER. YOUR BIGGEST PROBLEM WILL BE IN KEEPING YOUR COMPUTING FRIENDS FROM BORROWING YOUR COPY OF THIS BOOK!!!

A PSIDAC PUBLICATION
7326 N. ATLANTIC
PORTLAND, OREGON
97217