PATENT ABSTRACTS OF JAPAN

(11)Publication number : 2003-223939

(43)Date of publication of application: 08.08.2003

(51)Int.Cl. H01M 14/00

008L101/02

C08L101/12

H01L 31/04

(21)Application number: 2002-020442 (71)Applicant: NIPPON SHOKUBAI CO LTD

(22)Date of filing: 29.01.2002 (72)Inventor: NAKAMURA JUNICHI

SUGIOKA TAKAHISA MIZUTA KEIICHIRO

(54) INTERLAMINAR MATERIAL FOR SOLAR CELL AND DYE SENSITIZING SOLAR CELL USING IT

PROBLEM TO BE SOLVED: To provide an interlaminar material for solar cells which can fully check leakage of an electrolysis solvent and an electrolyte which constitute electrolyte layers in a sealed cell, has durability and safety securing prolonged reliability for a long time, moreover, makes it possible to manufacture the solar cell simply, and can be suitably used for the dye sensitizing solar cells, and to provide the dye sensitizing solar cell using the material.

SOLUTION: The interlaminar material for the solar cells, which constitutes the solar cell, (1) consists of a resin composite whose glass transition temperature is 80° C or higher and/or a solvent resistance resin composite as essentials, or (2) consists of resin with an aromatic ring as an essential. Moreover, the dye sensitizing solar cell is constituted by using the above interlaminar material for the solar cell.

* NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1.This document has been translated by computer. So the translation may not reflect the original precisely.
 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1]A charge of the material between solar battery layers becoming as this charge of the material between solar battery layers having an indispensable glass transition temperature in a resin composition and/or a solvent resistance resin composition of not less than 80 ** that it is a charge of the material between solar battery layers which constitutes a solar cell.

[Claim 2]A charge of the material between solar battery layers which is a charge of the material between solar battery layers which constitutes a solar cell, and is characterized by this charge of the material between solar battery layers becoming considering resin which has an aromatic ring as indispensable.

[Claim 3] The charge of the material between solar battery layers according to claim 1 or 2, wherein resin which constitutes said charge of the material between solar battery layers is hardening resin.

[Claim 4]The charge of the material between solar battery layers according to claim 1, 2, or 3 which resin which constitutes said charge of the material between solar battery layers hardens with an activity energy line, and is characterized by things.

[Claim 5]The charge of the material between solar battery layers according to claim 1, 2, 3, or 4, wherein said charge of the material between solar battery layers becomes considering a mineral constituent as indispensable.

[Claim 6]A dye sensitizing type solar cell which uses the charge of the material between solar battery layers according to claim 1, 2, 3, 4, or 5, and is characterized by things.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Field of the Invention] This invention relates to the charge of the material between solar battery layers, and a dye sensitizing type solar cell. It is related with the dye sensitizing type solar cell which uses the charge of the material between solar battery layers and it which are used in order to form in more detail a sealing agent, lead covering material, a gestalt holding material, etc. which constitute a solar cell.

[0002]

[Description of the Prior Art]The solar cell attracts attention from the dye sensitizing type solar cell which uses the semiconductor layer (photosensitive layer) which has especially photo conductors, such as titanium oxide which made photosensitizing pigment support (adsorption), having the high conversion efficiency to electrical energy, although what is constituted from recent years by the closure cell is used. As shown in <u>drawing 1</u>, a dye sensitizing type solar cell, for example A conductive substrate, It has a counter electrode by metal, such as a charge transfer layer containing electrolytes with a photo conductor, such as electrolysis solvents, such as a semiconductor layer (photosensitive layer) and acetonitrile, and iodine, and platinum (Pt), and has the structure of coming to close an electrolysis solution with a sealing agent.

Electrical energy will be taken out when a semiconductor layer with a photo conductor will emit electrons by operation of photosensitizing pigment if sunlight hits from the conductive substrate or counter electrode side, and Γ^-/I_0^- in a charge transfer layer carries out a redox action to a counter electrode.

[0003]In such a solar cell, in order to secure prolonged reliability, preventing the electrolysis solvent and electrolyte in a closure cell from being revealed, and improving safety is called for. Although there is also the method of solidifying an electrolysis solution, even if it solidifies, it is necessary to prevent an electrolyte from being revealed. If the long-term use over several years is assumed on outdoor conditions, degradation by ultraviolet rays, etc. are controlled and what has endurance is called for. Such the characteristic will be required also in other components of a solar cell, For example, endurance etc. will be called for also in the gestalt holding material for gap maintenance or modular gestalt maintenance besides the sealing agent (lead covering material) of the metal wire (current collection wiring) which is needed by the sealing agent which reinforces the edge part of substrates, such as a conductive substrate, or large area—ization.

[0004] A crevice is made from etching to the transparent substrate in which the conducting film was formed. and using the resin which contains in formation of a sealing agent insulating particles, such as an epoxy resin and an epoxy resin containing silica impalpable powder, about the wet solar cell which pours in an electrolysis solution is indicated by JP.11-307141.A. Using an ultraviolet curing type epoxy resin etc. for formation of a sealing agent is indicated by JP,2000-30767,A about the manufacturing method of the wet solar cell which has formation of a transparent substrate, pouring of an electrolysis solution, a sealing process, etc. Oppose the transparent conducting film formed in the transparent substrate, and the metallic oxide film which supported the sensitizing due formed in the conductive substrate to JP.2000-150005.A. and it joins, Using for formation of a sealing agent the epoxy resin which is resin which is hard to dissolve in a solvent about the manufacturing method of the dve sensitizing type solar cell which has the process of pouring an electrolyte into the opening formed by junction etc. is indicated. The transparent substrate in which transparent conducting film adherence was formed, and the conductive substrate in which the dye sensitizing semiconductor electrode was formed are laid on top of JP.2000-173680.A, While applying and closing resin, such as an epoxy resin and silicone rubber, to the circumference, the dye sensitizing type solar cell fixed with the solid for closure is indicated. In the crevice formed in JP,2000-200627.A by junction to the transparent substrate in which the transparent conducting film was formed, and arbitrary substrates. The substrate with which the dve sensitizing semiconductor electrode was formed is inserted, and using an epoxy resin and silicone rubber for formation of a sealing agent is indicated about the dve sensitizing type solar cell with which it comes to pour an jodine electrolytic solution into a crevice.

[0005]In JP,2000-348783,A, the process of introducing a sensitizing dye solution and an electrolysis solution into the field currently closed beforehand etc., about the manufacturing method of the dye sensitizing type solar cell which it has for formation of a sealing agent. Being based on the sealing compound of inorganic systems, such as a heat-hardened type or photo-curing type organic matter system resin, and a paste of glass frit, is indicated. The paste state sealing compound of glass frit is applied over the surrounding perimeter of a substrate, and, specifically, having heat-treated at 450 ** is indicated. Using the paste state glass frit which contains the acrylic resin used as glass powder and a binder in JP,2001-185244.A about the dye sensitizing type solar cell which closed the edge part of the substrate by glass frit is indicated.

[0006]However, in using an epoxy resin and silicone rubber in formation of the sealing agent of a solar cell. In the long-term use over several years, outdoor conditions were not enough as endurance, and since disclosure of an electrolysis solvent or an electrolyte could not fully be prevented by this, there was room of the device for improving these points and obtaining a reliable prolonged solar cell. In using glass frit, in order to make it weld to a substrate, the working temperature of not less than 400 ** is usually needed. For example, since it became impossible to close after forming the semiconductor layer which has photo conductors, such as titanium oxide which made photosensitizing pigment support (adsorption), there was room of the device which enables it to form a solar cell simple by the usual process in this point.

[0007]

[Problem(s) to be Solved by the Invention]This invention is made in view of the above-mentioned actual condition, and is a thing.

The purpose fully prevents disclosure of the electrolysis solvent and electrolyte which constitute the electrolyte layer of **, And it is providing the dye sensitizing type solar cell which uses the charge of the material between solar battery layers and it which can make it possible to have the endurance and the safety which can secure prolonged reliability, and also to manufacture a solar cell simple, and can be used conveniently for a dve sensitizing type solar cell.

[8000]

[Means for Solving the Problem] If this invention persons use a resin composition with a high glass transition temperature for a charge of the material between solar battery layers while examining many things about a charge of the material between solar battery layers which constitutes a solar cell. In long-term use over several years, a solar cell has sufficient endurance on outdoor conditions, and moreover, with improvement in endurance, even if an electrolyte layer in a closure cell is a thing of which state of a liquid state, gel, and a solid state. If a resin composition which has specific solvent resistance is used paving attention to fully preventing disclosure of an electrolysis solvent and an electrolyte which constitute an electrolyte layer, It notes fully preventing disclosure of an electrolysis solvent in a closure cell, or an electrolyte, and also having sufficient endurance. And a charge of the material between solar battery layers thought out for a operation effect resulting from glass transition temperature or solvent resistance to fully be demonstrated, and for an aforementioned problem to be solved splendidly, when glass transition temperature became considering a resin composition and/or a solvent resistance resin composition of not less than 80 ** as indispensable. When a charge of the material between solar battery layers became considering resin which has an aromatic ring as indispensable, it found out that it originated in glass transition temperature and solvent resistance improving, and an aforementioned problem could be solved splendidly. Resin which constitutes such a charge of the material between solar battery layers was hardening resin, and also it hardened with an activity energy line, and if, endurance and solvent resistance improved rather than what does not have hardenability, and it found out that it was more desirable on manufacture than what heat-hardens. When a charge of the material between solar battery layers became considering mineral constituents, such as ceramics, as indispensable, solvent resistance improved and it found out that the above-mentioned operation effect was more fully demonstrated. If it applies to a dye sensitizing type solar cell, conversion efficiency to electrical energy will find out a high thing and that a highly efficient and reliable solar cell can be obtained conjointly, and will reach this invention.

[0009] That is, the above—mentioned charge of the material between solar battery layers is a charge of the material between solar battery layers which glass transition temperature becomes considering a resin composition and/or a solvent resistance resin composition of not less than 80 ** as indispensable that this invention is a charge of the material between solar battery layers which constitutes a solar cell. This invention is a charge of the material between solar battery layers which constitutes a solar cell again, and the above—mentioned charge of the material between solar battery layers is also a charge of the material between solar battery layers is also a charge of the material between solar battery layers which has an aromatic ring as indispensable. [0010] This invention is also a dye sensitizing type solar cell which uses the above—mentioned charge of the material between solar battery layers further. Below, this invention is explained in full detail.

[0011]Although a charge of the material between solar battery layers of this invention becomes considering resin which (1) glass transition temperature becomes considering a not less than 80 ** resin composition and/, or a solvent resistance resin composition as indispensable, or has (2) aromatic rings as indispensable, it may use together (1) and (2). These may be used independently, respectively and may use two or more sorts together. A charge of the material between solar battery layers is used in order to form a sealing agent, lead covering material, a gestalt holding material, etc. which constitute a solar cell.

[0012] First, a component of a charge of the material between solar battery layers of this invention is explained. In a charge of the material between solar battery layers of this invention, glass transition temperature which is an essential ingredient A not less than 80 ** resin composition and/or a solvent resistance resin composition, and/. Or it is preferred that such total mass is more than 1 mass % as content of resin which has an aromatic ring to charge of material between solar battery layers 100 mass %, and it is preferred that it is below 99 mass %. When it is less than 1 mass % or 99 mass % is exceeded, there is a possibility that it may become impossible to fully demonstrate a operation effect of this invention. More preferably, it is more than 30 mass %, and is below 95 mass %. Preferably, it is more than 50 mass %, and is below 95 mass %.

[0013] The above-mentioned glass transition temperature is a constituent in which a resin composition and a solvent resistance resin composition of not less than 80 ** contain an ingredient etc. of others which use resin as an essential ingredient and mention it later if needed. In this invention, other ingredient kinds and quantity which are contained [resin or if needed] which are included in a resin composition will be suitably set up become what fulfills solvent resistance mentioned later so that glass transition temperature of a resin composition which constitutes a charge of the material between solar battery layers may be not less than 80 **. An ingredient of resin contained in a resin composition and others may be used independently, and may use two or more sorts together.

[0014]As a not less than 80 ** resin composition, a not less than 90 ** resin composition has [the above-mentioned glass transition temperature (Tg)] a preferred glass transition temperature. It is a not less than 130 ** resin composition more preferably. As a measuring method of Tg, it is preferred among this specification to carry out by a following method.

(Measuring method of Tg) TMA measurement (coefficient-of-thermal-expansion measurement) determines Tg of a resin composition.

measuring condition: — heating rate 5 ** / min temperature-up pattern: — 25-200 ** measuring device: — TMA-50 (a trade name, the Shimadzu Corp. make)

Sample: A hardened material of a resin composition [0015] Although tolerance over an electrolysis solution and an electrolyte in a charge transfer layer will use a good resin composition as the above-mentioned solvent resistance resin composition, A resin composition with good acetonitrile which is electrolysis solution of a dye sensitizing type solar cell and tolerance over iodine etc. is preferred, It is preferred that the percentage of the amount of hardened materials of a resin composition after solvent immersion to the amount of hardened materials of a resin composition before solvent immersion in the following resistance to solvents test is not less than 90%, and it is preferred that it is 120% or less. Since tolerance over acetonitrile is insufficient if it is less than 90% or exceeds 120%, there is a possibility that it may become impossible to fully prevent disclosure of an electrolysis solvent in a closure cell or an electrolyte in a dye sensitizing type solar cell. More preferably, it is not less than 95%, and is 110% or less. Preferably, it is not less than 98%, and is 105% or less.

(Resistance to solvents test) A resin composition is neglected at 60 ** in acetonitrile fluid, and a mass change in a resin composition estimates the solvent resistance of material between layers.

Measuring condition: 30 g of acetonitrile and the hardened material 2g of a resin composition are put into the same container, and it is immersed by stirring for seven days at 60 **. The mass w (g) of a hardened material of a resin composition of seven days after is measured, a following formula estimates a mass change in a hardened material of a resin composition, and a rate of the amount of hardened materials of a resin composition after solvent immersion to the amount of hardened materials of a resin composition before solvent immersion is measured.

the amount of hardened materials of a resin composition after solvent immersion to the amount of hardened materials of a resin composition before solvent immersion — comparatively — $w(g) / (\frac{n}{2}) = |2 (g)| \times 100$ [0016] Even if a main chain and/or a side chain in resin have an aromatic ring as resin which has the above-mentioned aromatic ring, when a monomer contains in resin, a monomer may have an aromatic ring. Although not limited especially as an aromatic ring, preferably, it may be the benzene ring, a naphthalene ring, and a biphenyl ring, and may be one sort, or they may be two or more sorts. As resin which has such an aromatic ring, glass transition temperature is not less than 80 **, and it is preferred that it is what fulfills solvent resistance mentioned above.

[0017]It is resin which glass transition temperature in this invention has a reactant group, and hardens by energies, such as activity energy lines, such as light, and heat, as a desirable gestalt of resin contained in a resin composition and a solvent resistance resin composition of not less than 80 **, and resin which has an aromatic ring, i.e., hardening resin. That is, as resin which constitutes a charge of the material between solar battery layers of this invention, it is preferred that it is hardening resin. As hardening resin, it is radical, and although resin (radical hardening resin) to harden, resin (ion hardening resin) hardened with ion, resin (heat-hardened type resin) hardened with heat, etc. are preferred, it is preferred to make radical hardening resin indispensable. Since it is more desirable on manufacture also in these than what heat-hardens, what is hardened with an activity energy line is more preferred. Resin which constitutes a charge of the material between solar battery layers hardens with an activity energy line, and things are one of the desirable gestalten of this invention.

[0018] Glass transition temperature in this invention explains below radical hardening resin which is a desirable gestalt of resin contained in a resin composition and a solvent resistance resin composition of not less than 80 **, and resin which has an aromatic ring, and ion hardening resin.

[0019]As radical hardening resin in this invention, what is necessary is just radical hardening type resin hardened by a radical polymerization under existence of radical generators, such as heat and a hardening agent, or a radiation; infrared; visible light exposure of an ultraviolet—rays; electron beam; excimer laser; gamma ray, X—rays, etc. As such radical hardening resin, unsaturated polyester, epoxy (meta) acrylate, Resin containing a polymer (henceforth a radical hardenability polymer) with radical hardenability, such as urethane (meta) acrylate and polyester (meta) acrylate, and reactive diluent, resin containing acryl syrup (meta) containing reactive diluent, etc. are preferred. Resin which contains a polymer without radical hardenability, such as saturated polyester and poly(meta) methyl acrylate, and reactive diluent in others is also preferred. In radical hardening resin which has an aromatic ring, a polymer without a radical hardenability polymer or radical hardenability may have an aromatic ring, and reactive diluent may have an aromatic ring.

[0020]It is not limited but what is necessary is just to set up suitably especially as reaction conditions, such as reaction pressure at the time of compounding the above-mentioned unsaturated polyester, epoxy (meta) acrylate, urethane (meta) acrylate, polyester (meta) acrylate, and an acrylic (meta) polymer, reaction time, and reaction temperature. A molecular weight in particular of each radical hardenability polymer which constitutes radical hardening resin is not limited.

[0021]In a charge of the material between solar battery layers of this invention, as content of each radical hardenability polymer which constitutes radical hardening resin, it is more than 1 mass % preferably to charge of material between solar battery layers 100 mass %, and is below 99 mass %. It is easy to produce distortion by contraction accompanying [that it is less than 1 mass %] a hardening reaction, and physical properties after hardening become weak easily. When 99 mass % is exceeded, viscosity of a charge of the material between solar battery layers does not fall enough, but there is a possibility that workability may be spoiled or a charge of the material between solar battery layers may not serve as a uniform constituent. It is more than 5 mass % more preferably, and is below 95 mass %. It is more than 10 mass % preferably, and is below 90 mass %.

[0022]A charge of the material between solar battery layers of this invention may contain one or more kinds of reactive diluent with radical hardening resin if needed, as mentioned above. Reactive diluent is a compound which has a polymerization nature unsaturated bond of 1 ** at least in a molecule, and there are a monofunctional nature compound which has one polymerization nature unsaturated bond in a molecule, and a polyfunctional compound which has two or more polymerization nature unsaturated bonds in a molecule.

[0023]As amount of monofunctional nature and polyfunctional compound used, among charge of material between solar battery layers 100 mass % of this invention, preferably, it is more than 1 mass %, and is below 99 mass %. More preferably, it is more than 10 mass %, and is below 80 mass %. Preferably, it is more than 20 mass % and is below 50 mass %.

[0024] The above-mentioned ion hardening resin is heat or an activity energy line, generates an anion as a labile kind, and a cation, and refers to resin which crosslinking reaction advances and hardens with it as the starting point. As ion hardening resin in this invention, resin of structure of having an epoxy group, a vinyl ether group, an oxetane group, and an isopropenyl ether group at the end of a main chain and/or a side

chain is preferred, and an epoxy resin etc. are preferred as such resin. A molecular weight in particular of each ion hardenability polymer which constitutes ion hardening resin is not limited.

[0025]In a charge of the material between solar battery layers of this invention, as content of each ion hardenability polymer which constitutes ion hardening resin, it is more than 1 mass % preferably to charge of material between solar battery layers 100 mass %, and is below 99 mass %. It is easy to produce distortion by contraction accompanying [that it is less than 1 mass %] a hardening reaction, and physical properties after hardening become weak easily. When 99 mass % is exceeded, viscosity of a charge of the material between solar battery layers does not fall enough, but there is a possibility that workability may be spoiled or a charge of the material between solar battery layers may not serve as a uniform constituent. It is more than 5 mass % more preferably, and is below 95 mass %. It is more than 10 mass % preferably, and is below 90 mass %.

[0026]When making it harden by the exposure of the above-mentioned activity energy line, a charge of the material between solar battery layers of this invention may be made to contain a photopolymerization initiator other than radioal hardening resin or ion hardening resin further. Thereby, a charge of the material between solar battery layers of this invention serves as a photosensitive resin composition, and is set to one of the desirable embodiments by this invention.

[0027]Various publicly known substances can be used as the above-mentioned photopolymerization initiator, and it is not limited in particular. As amount of photopolymerization initiator used, it is more than 0.1 mass % preferably to radical hardening resin and ion hardening resin 100 mass %, and is below 15 mass %. More preferably, it is more than 1 mass % and is below 10 mass %.

[0028]In hardening resin in this invention, an epoxy resin and/or polyhydric phenol are preferred as what heat-hardens (heat-hardened type resin) besides radical hardening resin of the above-mentioned statement, as a desirable gestalt, they are a gestalt which uses together (1) epoxy resin and polyhydric phenol, and an epoxy resin obtained by forming (2) polyhydric phenol into polyfunctional glycidyl ether — an epoxy resin and polyhydric phenol — respectively — one sort — or two or more sorts can be used. "Polyhydric phenol" means a polymer which has two or more aromatic rings with a hydroxyl group among this specification.

[0029]As an epoxy resin in a gestalt of the above (1), into a molecule, what is necessary is just a compound which has at least one epoxy group, and it is not limited in particular. It is desirable still more preferred to blend so that a mole ratio of hydroxyl in polyhydric phenol and an epoxy group in an epoxy resin may be set to 1.0.5 to 1:1.5, and a range of the mixture ratio of polyhydric phenol and an epoxy resin is 1:0.8 to 1:1.2. If it separates from this range, curing failure will happen, and there is a possibility that a good hardened material may not be obtained.

[0030]in a gestalt of the above (1), it is preferred to use a hardening accelerator for epoxy resins with an epoxy resin and polyhydric phenol. As a hardening accelerator for epoxy resins, to the usual epoxy resin, if it is a thing of publicly known public use, all can be used.

[0031]"Phenols" as used in reaction raw materials for manufacturing the above-mentioned polyhydric phenol means a compound which has an aromatic ring with a hydroxyl group which is one of the raw materials used in order to manufacture polyhydric phenol. What is necessary is just the compound which one piece or two hydroxyl groups or more combined with an aromatic ring, and substituents other than one piece or two hydroxyl groups or more combined as the above-mentioned phenols, and it is not limited in particular.

[0032]Although a charge of the material between solar battery layers of this invention uses as an essential ingredient resin, such as hardening resin mentioned above, it is preferred that it is what becomes considering a mineral constituent as indispensable further. Thereby, solvent resistance can be improved or adhesion of a charge of the material between solar battery layers and conductive substrates, such as glass, can be improved. One sort or two sorts or more can be used for a mineral constituent. As amount of mineral constituent used, preferably, it is more than 1 mass % to charge of material between solar battery layers 100 mass % and is below 95 mass %. More preferably, it is more than 50 mass %, and is below 70 mass %.

[0033]Mineral matter without reactivity may be used as the above-mentioned mineral constituent, and reactant mineral matter may be used. A substance which may have an organic component and a mineral constituent in single structure, and has what has a reactant group in a substance in it, i.e., an organic component, and a mineral constituent in single structure, and has a reactant group can also be used as a mineral constituent in this invention. In this case, one of a mineral constituent and the organic components or both may have a reactant group. These mixtures may be sufficient. As an organic component in a mineral constituent, it is desirable, and more preferably, it is 10,000 or less that weight average molecular weight is 10 million or less, and it is 1000 or less still more preferably. An existing reactant thing is also called inorganic reacting matter in mineral matter and a substance which has an organic component and a mineral constituent in single structure. As inorganic reacting matter, to have a reactant group and what is necessary is just a hydroxyl group and -MX (M expresses a metallic element among a formula,) as a reactant group. X expresses a hydrogen atom, a hydroxyl group, $-OR^{1}$, a carboxyl group, a $-N(R^{2})$, group, or a halogen atom. R1 expresses an alkyl group of the carbon numbers 1-100 which may have a substituent. R2 is the same, or it differs and it expresses an alkyl group of the carbon numbers 1-100 which may have a hydrogen atom or a substituent — a basis and -OR3 (R3 among a formula) which are expressed An alkyl group of the carbon numbers 1-100 which may have a substituent is expressed. An acetoxy group expressed, a carboxyl group, a basis which has structure like a silazane compound, etc. are preferred. In a basis which is a basis and an acetoxy group which are expressed with -MX, and is preferably expressed with -MX, as M, Silicon, titanium, zinc, etc. are preferred, a basis expressed with halogen atom;-ORI, such as a fluorine atom, a chlorine atom, a bromine atom, and iodine atoms, is preferred as X, and it is an alkyl group of the carbon numbers 1-100 which may have a substituent as a desirable gestalt of R'. As R', they are a methoxy group, an ethoxy basis, a butoxy group, an isopropoxy group, and a propoxy group more preferably. If it is a basis which has radical polymerization nature, ionic polymerization nature, and thermal polymerization nature as a reactant group again in addition to a reactant, above mentioned group, all are good, but a basis which has ring-opening-reaction nature, such as a radical polymerization nature unsaturation group and an epoxy group, is preferred. In inorganic reacting matter, such a reactant group should just be connected in structure by ester bond, ether bond, amide bond, a urethane bond, -C-C-combination, etc. via a carbon atom and a hetero element (S. O. P. N). A reactant group may be introduced by ring opening reaction, such as a reaction with a radical polymerization nature unsaturated bond (a double bond and a triple bond), and epoxy.

[0034]In the above-mentioned mineral constituent, as a thing with a reactant group, an alkoxide and a halogenide are preferred, for example, the Silang alkoxide, a titanium alkoxide, etc. are preferred. Various kinds of silica with a thing of a ceramics system desirable and sufficient again for example, as a mineral constituent, such as silicates, such as natural silica, synthetic silica, and argillite; inorganic oxides, such as alumina, zirconia, titanium oxide, and a zinc oxide, etc. are preferred.

[0035]A charge of the material between solar battery layers of this invention is the purpose of raising the stability, and may contain a modifier (polymerization inhibitor) again. According to the use, further a charge of the material between solar battery layers of this invention A conventionally publicly known additive agent. For example, a low shrinkage-ized agent, colorant, paraffin wax, and organic metal soap, Fibers reinforced, such as a silane coupling agent, a thixotropy grant agent, thixotropy ******, a thickener, a plasticizer, an ultraviolet ray absorbent, an antiaging agent, fire retardant, stabilizer, glass fiber, and carbon fiber, etc. may be included within limits which do not check an effect of this invention.

[0036]It can carry out, when glass transition temperature which is an essential ingredient mixes other ingredients with a not less than 80 ** resin composition and/or a solvent resistance resin composition and/or resin that has an aromatic ring if needed, for example as a method of manufacturing a charge of the material between solar battery layers of this invention. As a gestalt of material between solar battery layers, it may be which gestalten, such as a grain, paste state, the shape of sol, and gel, and they may be these mixtures.

[0037]In a charge of the material between solar battery layers of this invention, it is preferred that glass transition temperature of a charge of the material between solar battery layers prepared as mentioned above is not less than 80 **. Class transition temperature is not less than 90 ** more preferably. It is preferred that it is what fulfills solvent resistance which a charge of the material between solar battery layers mentioned above, and it is preferred a kind of resin which is an essential ingredient, and to set up other kinds and rates of an ingredient suitably comparatively so that a charge of the material between solar battery layers may become [such].

[0038] Although it will choose suitably according to a kind of resin etc. which constitute a charge of the material between solar battery layers as a method of stiffening a charge of the material between solar battery layers of this invention, How to stiffen by irradiating with an activity energy line when making indispensable the above-mentioned radical hardening resin and ion hardening resin, How to stiffen by adding radical generators, such as a hardening agent, an ion generation agent, etc., A method of stiffening by adding radical generators, such as a method and a hardening agent, an ion generation agent, etc. which are stiffened by mentioning a method of stiffening, etc. and irradiating with an activity energy line also in these is preferred by heating. These methods may be used together. As an activity energy line, radiation, such as light energy; electron beam; gamma rays, such as ultraviolet rays, an excimer laser, infrared rays, and visible light, and X-rays, is preferred. Also in these, a method of using light energy is preferred, and is using ultraviolet rays more preferably.

[0039]When making indispensable the above-mentioned heat-hardened type resin, it is made to harden by heating a charge of the material between solar battery layers of this invention. As curing conditions, although it will set up suitably according to a kind of hardening agent, etc., it is preferred to make curing temperature beyond a room temperature. It is not less than 80 ** more preferably. As cure time, 30 minutes or more are preferred, and less than 48 hours is preferred. More preferably, it is 60 minutes or more, and is less than 6 hours.

[0040]Next, a using form of a charge of the material between solar battery layers of this invention is explained. A charge of the material between solar battery layers of this invention constitutes a solar cell, and a dye sensitizing type solar cell is preferred for it as this solar cell. In usual, such a solar cell will have a semiconductor layer (henceforth a photosensitive layer) with (2) photo conductors, such as (1) conductive substrate, (3) charge transfer layers, and (4) counter electrodes, and will have the structure of coming to close a charge transfer layer with a sealing agent. What forms a sealing agent by a charge of the material between solar battery layers of this invention in such a dye sensitizing type solar cell is one of the desirable embodiments of this invention.

[0041]As it mentioned [a charge of the material between solar battery layers of this invention] above in a solar cell, in order that a sealing agent may be formed, it is used, and also it is possible to use also as a gestalt holding material and lead covering material, and these gestalten are desirable embodiments of this invention. A sealing agent means a sealing agent for reinforcing an edge part of a sealing agent used in order to prevent penetration of solvents, such as iodine of a charge transfer layer, and water, especially, and substrates, such as a conductive substrate, in order to prevent a substance which constitutes a charge transfer layer in a closure cell as covering of a battery material from being revealed. A gestalt holding material means what is used for gestalt maintenance (adhesion role) of a base material (spacer) for gap maintenance, or a module. Lead covering material is used for closure of a lead (metal) lead in a closure cell, and closure (insulating material) of a metal wire (current collection wiring) which is needed by large area-ization. A dye sensitizing type solar cell which a charge of the material between solar battery layers of this invention is suitably applied in such a use in a dye sensitizing type solar cell, and uses a charge of the material between solar battery layers of this invention is also one of this inventions.

[0042] An example of a dve sensitizing type solar cell which uses a charge of the material between solar battery layers of this invention is explained using drawing 1 - 6. Drawing 1 is the example which used a charge of the material between solar battery layers of this invention as a sealing agent, and is a dye sensitizing type solar cell which has the structure where a charge of the material between solar battery layers of this invention comes to close a charge transfer layer. Drawing 2 is the example which used a charge of the material between solar battery layers of this invention as a base material (gestalt holding material) or a sealing agent, and is a dye sensitizing type solar cell which has the structure where a charge of the material between solar battery layers of this invention comes to close a charge transfer layer. In a dve sensitizing type solar cell of drawing 2, a charge transfer layer is closed with a base material (gestalt holding material) and a sealing agent, and a base material is pasted up on a counter electrode, a conductive substrate, etc. with a sealing agent (binding material). In drawing 2, a charge of the material between solar battery layers of this invention may be used for a base material or a sealing agent (binding material), and may be used for a base material and a sealing agent. Drawing 3 is the example which used a charge of the material between solar battery layers of this invention as a gestalt holding material (base material) for closure (lead covering material) of a sealing agent and a lead lead, and gap maintenance. As shown in drawing 3, as a gestalt holding material, a charge of the material between solar battery layers of this invention can be used for adhesion of base materials, and adhesion with a base material, a counter electrode, a photosensitive layer, or a conductive substrate, and will demonstrate an adhesion role. Drawing 4 is the example which used a charge of the material between solar battery layers of this invention as a gestalt

holding material (base material) for a sealing agent and gap maintenance. <u>Drawing 5</u> is the example which used a charge of the material between solar battery layers of this invention as a gestalt holding material (base material) for a sealing agent and gap maintenance, and an insulation material (lead covering material) of a metal lead. Each module which <u>drawing 6</u> is the example which used a charge of the material between solar battery layers of this invention as a gestalt holding material (adhesion role), and constitutes a solar cell is being fixed on a transparent substrate by charge of the material between solar battery layers of this invention. Drawing I – a gestalt of six can also be used together.

[0043] Below, composition of a dve sensitizing type solar cell of this invention is explained. A dve sensitizing type solar cell of this invention comprises an optoelectric transducer which has a semiconductor layer (photosensitive layer) with a conductive substrate and a photo conductor, a charge transfer layer containing an electrolyte composition, and a counter electrode. As preferably shown in drawing 1 - 6, it is an optoelectric transducer which comprises a charge transporting material which permeated an opening between a semiconductor particulate by which laminated in order of a conductive layer, a photosensitive layer, a charge transfer layer, and a counter electrode conductive layer, and sensitization was carried out with coloring matter in this photosensitive laver, and this semiconductor particulate. A charge transporting material consists of the same ingredient as material used for a charge transfer layer. In order to give intensity to a dve sensitizing type solar cell, a substrate may be formed in the conductive layer and/or counter electrode conductive layer side. A layer which consists a layer which consists of a conductive layer and a substrate which it is arbitrary and is formed into this specification of a "conductive substrate", a counter electrode conductive layer, and a substrate it is arbitrary and is formed is called a "counter electrode." A thing it was made to make such an optoelectric transducer work by connecting with an external circuit is a dve sensitizing type solar cell. Drawing 1 - a conductive layer in six, a counter electrode conductive layer, and a substrate may be a transparent conductive layer, a transparent counter electrode conductive layer, and a transparent substrate, respectively.

[0044]In an optoelectric transducer shown in drawing 1 - 6, coloring matter etc. are excited, and electrons of inner high energy, such as excited coloring matter, are passed to a conducting zone of a semiconductor particulate, and also light which entered into a photosensitive layer containing a semiconductor particulate, such as carried out with coloring matter reaches a conductive layer by diffusion. At this time, molecules, such as coloring matter, serve as an oxidant. In a photoelectrochemical cell, while an electron in a conductive layer works in an external circuit, it returns to oxidants, such as coloring matter, through a counter electrode conductive layer and a charge transfer layer, and coloring matter is reproduced. A photosensitive layer works as a negative electrode. On boundaries (for example, a boundary of a conductive layer and a photosensitive layer, a boundary of a photosensitive layer and a charge transfer layer, a boundary of a charge transfer layer, a boundary of a charge transfer layer, a boundary of a conductive layer, etc.) of each layer, the constituents of each class may be carrying out diffusive mixing mutually. Hereafter, each class is explained in detail.

[0045](1) Although it may consist of a monolayer of a conductive layer (1-1) and consists of a conductive layer (1-2) and two-layer [of a substrate] as a conductive substrate conductive substrate, if a conductive layer that intensity and sealing performance are fully maintained is used, a substrate is not necessarily required. In the case of (1-1), what sufficient intensity is obtained like metal as a conductive layer, and has conductivity is used. In the case of (1-2), a substrate which has a conductive layer which contains a conducting agent in the photosensitive layer side can be used. As a conducting agent, conductive metallic oxide, such as what doped fluoride, etc. are suitable for metal; carbon; indium tin multiple oxides, such as platinum, gold, silver, copper, aluminum, rhodium, and indium, and tin oxide. As thickness of a conductive layer, about 0.02-10 micrometers is preferred.

[0046]It is so good that surface resistance is low, surface resistance is below 100ohms / ** preferably, and the above-mentioned conductive substrate is below 10ohms / ** more preferably. As a minimum of surface resistance, it is preferred that they are 0.1ohm / ** grade.

[0047]When irradiating with light from the above-mentioned conductive substrate side, substantially transparent thing of a conductive substrate is preferred. That it is transparent means substantially that transmissivity of light is not less than 10%, it is preferred that it is not less than 50%, and not less than 70% is more preferred.

[0048]What formed a transparent conductive layer which consists of conductive metallic oxide in the surface of transparent substrates, such as glass or a plastic, by spreading or vacuum evaporation as the above-mentioned transparent conductive base material is preferred. Especially, electrically conductive glass which deposited a conductive layer which consists of diacid-ized tin which doped fluoride on a transparent substrate made with a soda lime float glass of low cost is preferred. In order to consider it as a flexible dye sensitizing type solar cell by low cost, it is preferred to use for a transparent polymer film what provided a conductive layer. As a material of a transparent polymer film, a tetraacetyl cellulose (TAC), Polyethylene terephthalate (PET), polyethenenaphthalate (PEN), Sindi octa tic polystyrene (SPS), a polyphenylene sulfide (PPS), Polycarbonate (PC), polyarylate (PAr), polysulfone (PSF), polyester sulfone (PES), polyether imide (PEI), cyclic polyolefin, bromine-ized phenoxy, etc. are preferred. As for coverage of conductive metallic oxide, in order to secure sufficient transparency, it is preferred to consider it as per [0.01-100g] base material Im² of glass or a plastic.

[0049]In this invention, it is preferred to use a metal lead in order to lower resistance of a transparent conductive base material. As construction material of a metal lead, metal, such as aluminum, copper, silver, gold, platinum, and nickel, is preferred, and especially aluminum and silver are preferred. It is preferred for a metal lead to install in a transparent substrate by vacuum evaporation, sputtering, etc., and to provide on it a transparent conductive layer which consists of tin oxide or an ITO film which doped fluoride. After providing a transparent conductive layer in a transparent substrate, it is also preferred to install a metal lead on a transparent conductive layer. A fall of incident light quantity by metal lead installation may be 1 to 5% more preferably less than 10%.

[0050](2) A semiconductor layer with a photo conductor (photosensitive layer)

In a dye sensitizing type solar cell of this invention, it is preferred to contain a particle semiconductor by which sensitization was carried out with coloring matter as a photosensitive layer. A semiconductor acts as what is called a photo conductor, absorbs light, performs charge separation, and produces an electron and an electron hole. In a semiconductor particulate by which dye sensitizing was carried out, generating of optical absorption, an electron by this, and an electron hole takes place mainly in coloring matter, and a semiconductor particulate receives this electron and bears a role to transmit.

[0051] As the above-mentioned semiconductor particulate, element semiconductor; III-V system compound

semiconductor; oxides, such as silicon and germanium, Metal chalcogenides, such as a sulfide and a selenide; a compound etc. which have perovskite structures, such as strontium titanate, titanic acid calcium, titanium sodium, barium titanate, and potassium niobate, are preferred. Also in these, what comprises metal chalcogenide is preferred.

[0052]As the above-mentioned metal chalcogenide, titanium, tin, zinc, iron, tungsten, A zirconium, hafnium, strontium, indium, cerium, A selenide of the sulfide; cadmium or lead of yttrium, a lantern, vanadium, niobium or the oxide; cadmium of tantalum, zinc, lead, silver, antimony, or bismuth; a telluride of cadmium, etc. are preferred. As other compound semiconductors, a selenide of phosphide; gallium arsenide or copper-indium, such as zinc, gallium, indium, and cadmium, a sulfide of copper-indium, etc. are preferred.

[0053]As a semiconductor used for this invention, preferably, Si, TiO₂, SnO₂, and Fe₂O₃, WO₃, ZnO, Nb₂O₅, CdS, ZnS, Are PbS, Bi₂S₃, CdSe, CdTe, GaP, InP, GaAs, CuInS₂, or CuInSe₂, and more preferably, TiO₂, SnO₂, and Fe₂O₃, WO₃, ZnO, Nb₂O₃, CdS, PbS, It is CdSe, InP, GaAs, CuInS₂, or CuInSe₂, is TiO₂ or Nb₂O₃ especially preferably, and is TiO₂ most preferably.

[0054]A single crystal or polycrystal may be sufficient as a semiconductor used for this invention. Although a single crystal from a viewpoint of conversion efficiency is preferred, from viewpoints of a manufacturing cost, raw-material reservation, an energy payback time, etc., polycrystal is preferred.

[0055]Although particle diameter of the above-mentioned semiconductor particulate is generally an order of nm-mu m, it is preferred that mean particle diameter of a primary particle for which it asked from a diameter when a project area was converted into a circle is 5-200 nm, and its 8-100 nm is more preferred. As for mean particle diameter of a semiconductor particulate (aggregated particle) in dispersion liquid mentioned later, 0.01-100 micrometers is preferred. Two or more kinds of particles from which particle size distribution differs may be mixed, and it is preferred that average size of small particles is 5 nm or less in this case. Particle diameter is big in order to scatter incident light and to raise an optical capturing rate, for example, an about 300-nm semiconductor particle may be mixed.

[0056]As a method of producing the above-mentioned semiconductor particulate, a company of the Sumio Sakuhana "science of sol-gel method" (1998) AGUNE ** style, A sol-gel method given in "thin-layer-coating art by a sol-gel method" (1995), etc. of TECHNICAL INFORMATION INSTITUTE, Tadao Sugimoto "composition of a monodisperse particle by the new synthetic method gel -**** method, and size gestalt control" -- wait -- **** The 35th volume The gel -**** method given in p.1012-1018 is preferred No. 9 (1996). A method of producing an oxide for a chloride which Degussa developed by elevated-temperature hydrolysis in an acid water matter salt is also preferred.

[0057]When the above-mentioned semiconductor particulate is titanium oxide, each of above-mentioned sol-gel methods, gel -**** methods, and elevated-temperature hydrolysis methods in inside of an acid water matter salt of a chloride is preferred, and can also use a sulfuric acid method and a chlorine method of a statement for Seino study "titanium oxide physical-properties and applied technology" (1997) Gihodo Shuppan further. In addition, as a sol-gel method, it is a journal OBU American ceramic society of varves. The 80th volume No. 12 (1997) A method given in p.3157-3171, Chemical MATERIARUZU of burn sides The 10th volume A method given in p.2419-2425 is also preferred No. 9.

[0058]When forming the above-mentioned semiconductor particle layer, in order to apply a semiconductor particulate on a conductive substrate, an above-mentioned sol-gel method other than a method of applying

dispersion liquid or a colloidal solution of a semiconductor particulate on a conductive substrate, etc. can also be used. When fertilization of a dye sensitizing type solar cell, the physical properties of semiconductor particulate liquid, the flexibility of a conductive substrate, etc. are taken into consideration, a wet film production method is comparatively advantageous. As the wet film production method, the applying method and print processes are typical.

[0059]When compounding a method and a semiconductor which are distributed while grinding as a method of producing dispersion liquid of the above-mentioned semiconductor particulate using a method and a mill which are mashed with a mortar other than an above-mentioned sol-gel method, a method of depositing as particles and using it as it is in a solvent, etc. are preferred.

[0060]As the above-mentioned carrier fluid, it is usable in water or various kinds of organic solvents, and methanol, ethanol, isopropyl alcohol, dichloromethane, acetone, acetonitrile, ethyl acetate, etc. are preferred as an organic solvent. These may be used independently and may use two or more sorts together. In the case of distribution, a polymer, a surface-active agent, acid, a chelating agent, etc. may be used as a distributed auxiliary agent if needed.

[0061]As the above-mentioned coating method, the air knife method, the braid method, etc. the roller method, a dip method, etc. as a meter ring system as an application system as that where application and a meter ring are made at identical parts, The slide hopper method given in the wire bar method, a U.S. Pat. No. 2681294 item specification, a U.S. Pat. No. 2761419 item specification, a U.S. Pat. No. 2761791 item specification, etc. which are indicated by JP.58-4589,B, the extrusion method, the curtain method, etc. are preferred. Spin method and a spray method are also preferred as a general aviation. As a wet printing method, letterpress, offset, and the three major print processes of photogravure are begun, and an intaglio, a rubber plate, screen-stencil, etc. are preferred. According to liquid viscosity or wet thickness, a desirable film production method is chosen from these.

[0062]Viscosity of dispersion liquid of the above-mentioned semiconductor particulate is greatly influenced with additive agents, such as a kind of semiconductor particulate, dispersibility and a use solvent kind, a surface-active agent, and a binder. In a viscous liquid (for example, 0.001 – 50 Pa-s), the extrusion method, the cast method, screen printing, etc. are preferred. It is able for the slide hopper method, the wire bar method, or spin method to be preferred, and to make it a uniform film with hypoviscosity liquid (for example, 0.01 or less Pa-s). If there is a certain amount of coverage, spreading according to the extrusion method also by a case of hypoviscosity liquid is possible. Thus, what is necessary is just to choose a wet film production method suitably according to viscosity of coating liquid, coverage, a base material, spreading speed, etc.

[0063]The layer of the above-mentioned semiconductor particulate can carry out multilayer spreading of the dispersion liquid of a semiconductor particulate with which not only a monolayer but particle diameter is different, or can also carry out multilayer spreading of the coating layer containing a semiconductor particulate (or a different binder, an additive agent) from which a kind differs. Also when thickness is insufficient, multilayer spreading is effective at one-time spreading. The extrusion method or the slide hopper method is suitable for multilayer spreading. When carrying out multilayer spreading, a multilayer may be applied simultaneously, and two coats may be given one by one about ten times from several times. When giving two coats one by one, screen printing can also be used preferably.

[0064]Since support pigment quantity per unit project area increases so that thickness (it is the same as thickness of a photosensitive layer) of a semiconductor particle layer generally becomes thick, a capturing rate of light becomes high, but since the generated diffusion length of electron increases, a loss by electric charge recombination also becomes large. Therefore, desirable thickness of a semiconductor particle layer is 0.1–100 micrometers. When using for a dye sensitizing type solar cell, as for thickness of a semiconductor particle layer, 1–30 micrometers is preferred, and its 2–25 micrometers are more preferred. Per base material 1m² of a semiconductor particulate, as for coverage, 0.5–400g are preferred, and 5–100g are more preferred.

[0085]Heat-treating is preferred in order to raise improvement in film strength, and adhesion with a base material, while contacting semiconductor particulates electronically after applying the above—mentioned semiconductor particulate on a conductive substrate. As desirable cooking temperature, it is not less than 40 **, and is less than 700 **. It is not less than 100 ** more preferably, and is 800 ** or less. Cooking time is 10 minutes – about 10 hours. When using a low base material of the melting point or softening temperature like a polymer film, high temperature processing is not preferred in order to cause degradation of a base material. It is preferred that it is low temperature as much as possible also from a viewpoint of cost. Low temperature–ization becomes possible by concomitant use of the small semiconductor particulate of 5 mm or less described previously, heat—treatment under existence of mineral acid, etc.

[0066]Electrochemical plating treatment using chemical plating and titanium trichloride solution using a titanium tetrachloride aqueous solution may be performed after the above-mentioned heat-treatment for the purpose of increasing surface area of a semiconductor particulate, or raising purity near the semiconductor particulate and raising electron injection efficiency from coloring matter to semiconductor particles.

[0067]As for the above-mentioned semiconductor particulate, what has large surface area is preferred so that much coloring matter can be adsorbed. For this reason, as for surface area in the state where a layer of a semiconductor particulate was applied on a base material, it is preferred that they are 10 or more times to a project area, and it is more preferred that they are 100 or more times. As a maximum, they are usually about 1000 times.

[0068] As coloring matter used for a photosensitive layer of a dye sensitizing type solar cell of this invention, In order to have absorption in various light ranges and infrared light fields and to make it stick to a semiconductor layer firmly, What has interlock groups, such as a carboxyl group, an alkoxy group, hydroxyl, a hydroxyalkyl group, a sulfonic group, an ester group, a sulfhydryl group, and a phosphonyl group, in a dye molecule is preferred. An interlock group provides electrical coupling which makes easy electron transfer between coloring matter of an excitation state, and a conducting zone of a semiconductor. As such coloring matter, ruthenium BIBIRIJIN system coloring matter, azo dye, Quinone system coloring matter, quinonimine system coloring matter, quinacridone series coloring matter, squarylium system coloring matter, Cyanine dye, merocyanine system coloring matter, triphenylmethane dye, a xanthene dye, Pori Phi Lynne system coloring matter, phthalocyanine system coloring matter, BERIREN system coloring matter, an indigo pigment, naphthalocyanine system coloring matter, etc. are preferred. In this invention, while making a wavelength band of photoelectric conversion large as much as possible, in order to raise conversion efficiency, two or more kinds of coloring matter may be mixed. In this case, it is preferred to choose coloring matter mixed so

that it may double with a wavelength band and intensity distribution of a light source, and its rate.

[0069]A method of making coloring matter stick to the above-mentioned semiconductor particulate, and immersing a conductive substrate which has the semiconductor particle layer dry well in a solution of coloring matter as a method, or applying a solution of coloring matter to a semiconductor particle layer is preferred. The above-mentioned coloring matter which functions as a solution of coloring matter as a photosensitizer is dissolved in a solvent. In the case of the former, dip coating, a dip method, the roller method, the air knife method, etc. are preferred. In the case of dip coating, adsorption of coloring matter may be performed at a room temperature, and it may carry out by carrying out heating flowing back as indicated to JP.7-249790.A. As a latter coating method, the wire bar method, the slide hopper method, the extrusion method, the curtain method, spin method, a spray method, etc. are preferred, and letterpress, offset, photogravure, screen-stencil, etc. are preferred as a printing method. According to the solubility of coloring matter, can choose a solvent suitably, and Methanol, ethanol, Alcohols, such as t-butanol and benzyl alcohol; Acetonitrile, Nitril; nitromethanes, such as propionitrile and 3-methoxy propionitrile; Dichloromethane, Halogenated hydrocarbon, such as a dichloroethane, chloroform, and chlorobenzene; Diethylether, ether [, such as a tetrahydrofuran,]; -- dimethyl sulfoxide; -- N.N-dimethylformamide, amide [, such as N.N-dimethyl acetamido.]: -- N-methyl-pyrrolidone: -- 1.3-dimethylimidazolidinone: -- 3-methyl oxazolidinone; -- ethyl acetate. Ester species, such as butyl acetate; hydrocarbon of **, such as ketone; hexane, such as carbonic ester; acetone, such as diethyl carbonate, ethylene carbonate, and propylene carbonate, 2-butanone, and cyclohexanone, petroleum ether, benzene, and toluene, these mixed solvents, etc. are preferred. These may be used independently and may use two or more sorts together.

[0070]About viscosity of a solution of the above-mentioned coloring matter as well as the time of formation of a semiconductor particle layer. In a viscous liquid (for example, 0.001 – 50 Pa-s), the extrusion method, various print processes, etc. are preferred, and it is possible to use a film with the slide hopper method, the wire bar method or preferred spin method, and uniform all with hypoviscosity liquid (for example, 0.1 or less Pa-s). Thus, what is necessary is just to choose an adsorption method of coloring matter suitably according to viscosity of coating liquid of coloring matter, coverage, a conductive substrate, spreading speed, etc. When fertilization is considered, as short the one of time which coloring matter adsorption after spreading takes as possible is good.

[0071]Since existence of unadsorbed coloring matter becomes the disturbance of element performance, it is preferred that was shing removes promptly after adsorption, and it is preferred that use a wet cleaning tank and organic solvents, such as polar solvents, such as acetonitrile, and an alcohols solvent, wash. In order to increase the amount of adsorption of coloring matter, heat—treating before adsorption is preferred to make coloring matter adsorb quickly among 40–80 **, without returning to ordinary temperature.

[0072]As amount of all [used] of the above-mentioned coloring matter, it is preferred to be referred to as per [unit surface area (1 m²) / 0.01] – 100mmol of a conductive substrate. As for the amount of adsorption to a semiconductor particulate of coloring matter, it is preferred to be referred to as per [semiconductor particulate 1g / 0.01] – 1mmol. Thereby, the sensitization effect in a semiconductor is fully acquired. If there is too little coloring matter, the sensitization effect will become insufficient, and if there is too much coloring matter, coloring matter which has not adhered to a semiconductor will float, and it becomes the

cause of reducing the sensitization effect. Coadsorption of the colorless hydrophobic compound may be carried out to a semiconductor particulate in order to reduce an interaction of the coloring matter like a meeting. As a hydrophobic compound which carries out coadsorption, a steroid compound (for example, chenodexycholic acid) etc. which have a carboxyl group are preferred. An ultraviolet ray absorbent can also be used together.

[0073]In a semiconductor layer with the above-mentioned photo conductor, it is the purpose of promoting removal of excessive coloring matter, and after adsorbing coloring matter, amines may be used and the surface of a semiconductor particulate may be processed. As amines, pyridine, 4-t-butylpyridine, polyvinyl pyridine, etc. are preferred. When these are fluids, it may use as it is, and it may dissolve and use for an organic solvent.

[0074](3) Although a oxidation reduction system composition substance of a couple which consists of an oxidant and a reduced form should just be contained in a solvent as an electrolyte used by a charge transfer layer in a dye sensitizing type solar cell of charge transfer layer this invention, a oxidation reduction system composition substance in which an oxidant and a reduced form have the same electric charge is preferred. A oxidation reduction system composition substance as used in an oxidation-reduction reaction in this specification means a substance of a couple which exists in a form of an oxidant and a reduced form reversibly. As a oxidation reduction system composition substance which can be used by this invention, Chlorine compound-chlorine, iodine compound-iodine, bromine compound-bromine, thallium ion (III)—thallium ion (I), Mercury ion (II)—mercury ion (I), ruthenium ion (III)—ruthenium ion (II), Copper—ion (II)—copper—ion (I), iron ion (III)—iron ion (III). Vanadium—ions (III)—vanadium—ions (II), manganic acid ion permanganic acid ion, ferricyanide—ferrocyanide, quinone hydroquinone, fumaric acid—succinic acid, etc. are preferred. Also in these, iodine compound—iodine has it and as an iodine compound, [preferred] Iodination quarternary—ammonium—salt compounds, such as lithium iodide and potassium iodide, and pyridiniumiodide; especially iodination JIIMIDAZORIUMU compounds, such as iodination dimethylpropyl imidazolium, are preferred.

[0075]A compound which dissolved a oxidation reduction system composition substance and was excellent in ion conductivity as a solvent used in order to dissolve the above-mentioned electrolyte is preferred, and although it may be an aqueous solvent and may be an organic solvent, since a oxidation reduction system composition substance is stabilized more, an organic solvent is preferred. As an organic solvent, dimethyl carbonate, diethyl carbonate, Carbonate compounds, such as methylethyl carbonate, ethylene carbonate, and propylene carbonate; Methyl acetate, Ester compounds, such as methyl propionate and a gamma butyrolactone; Diethylether, 1,2-dimethoxyethane, a 1,3-dioxosilane, a tetrahydrofuran, Ether compounds, such as 2-methyl pyrrolidone; Acetonitrile, methoxy acetonitrile, Nitryl compounds, such as propionitrile; aprotic polar compounds, such as sulfolane, JJJIME chill sulfoxide, and dimethylformamide, etc. are preferred, and one sort or two sorts or more can be used. Also in these, especially nitryl compounds, such as heterocyclic compound; acetonitrile, such as carbonate compound;3-methyl-2-OKISAZOJI linon, such as ethylene carbonate and propylene carbonate, and 2-methyl pyrrolidone, methoxy acetonitrile, and propionitrile, are preferred.

[0076]Both a fluid a solid and a gel electrolyte can be used as the above-mentioned charge transfer layer.

To especially improvement in photoelectric conversion efficiency, a liquid electrolyte is preferred. A liquid spill of an electrolytic solution can be prevented by filling up porous support with a liquid electrolyte. As porous support usable to such a purpose, a separator or a nonwoven fabric used for a barrier filter (membrane filter), a primary battery, a rechargeable battery, etc. is suitably applicable, for example. When it has the opening especially penetrated to a normal line direction to a porous support side, since there are few operations from which the porous support itself prevents movement of a redox couple, high photoelectric conversion efficiency is acquired.

[0077]As construction material of a barrier filter used as the above-mentioned porous support, what consists of polyester, such as polyelefines, such as glass fiber, polypropylene, and polyethylene, and polyethylene terephthalate, is preferred.

[0078]As construction material of a separator used as the above-mentioned porous support, or a nonwoven fabric, Polypropylene, polyolefine [, such as polyethylene,]; — polyester [, such as polyethylene terephthalate]; — polyamide; — poly FERIREN sulfide; — vinyon (copolymer of VCM/PVC and vinyl acetate); — polyimide; — vinylon (acetalization polyvinyl alcohol) etc. are preferred. A separator or a nonwoven fabric of such construction material may be used independently, it may composite—ize two or more sorts, and they may be used for it. Here, "a composite—ized nonwoven fabric" uses either melt spinning / extended blend roll nonwoven fabric or two kinds of materials as a core, after blending two kinds of materials, and thermal melting arrival is a nonwoven fabric of a sheath—core structural form to carry out about a bicomponent fiber (conjugate type textiles) in which another side covers the circumference. For example, a nonwoven fabric of a thermal melting arrival type which used polypropylene of a high-melting point for a core component, and used polyethylene of a low melting point for a sheath component is known well

[0079]Thickness of the above—mentioned porous support is prescribed by spacing of a photosensitive layer and a counter electrode. However, as for thickness of porous support, generally, 1 mm or less is preferred. When thickness of porous support exceeds 1 mm, there is a possibility that migration length of a redox couple in a charge transfer layer may become long, a transfer reaction of an electron through a redox couple may become rate-limiting, and photoelectric conversion efficiency may fall.

[0080]losing space of the above-mentioned photosensitive layer and a counter electrode will lose a charge transfer layer portion which maintaining structure by porous support does not commit — that — the very thing leads to liquid leakage prevention and improvement in reliability. However, setting it as the assembler and forcing two poles mutually strongly, in order to lose space of a photosensitive layer and a counter electrode may destroy a photosensitive layer and a counter electrode mechanically, and it may become a factor which reduces photoelectric conversion efficiency. Therefore, it is preferred to establish interval of at least 1 micrometers or more between a photosensitive layer and a counter electrode, and to prevent mechanical destruction of this photosensitive layer and a counter electrode. Therefore, it is preferred to be referred to as 1 micrometers or more as thickness of porous support provided between a photosensitive layer and a counter electrode.

[0081]Since a charge transfer layer in a dye sensitizing type solar cell of this invention is constituted, when using porous support, it is preferred that porosity (porosity) uses a porosity raw material which is 30 to 80% as the porous support. There is a possibility that an effect that porous support bars movement of a redox

couple as it is less than 30% may become large, a transfer reaction of an electron through a redox couple may become rate-limiting, and photoelectric conversion efficiency may become low. When it exceeds 80%, an aperture becomes large, electrolytic solution retention capacity by capillary action declines, and there is a possibility that sufficient liquid leakage depressor effect may no longer be acquired.

[0082](4) The counter electrode above-mentioned counter electrode acts as an anode, when an optoelectric transducer is used as a dye sensitizing type solar cell. Like the above-mentioned conductive substrate, layer structure of a counter electrode conductive layer which consists of conductive materials may be sufficient as a counter electrode, and it may comprise a counter electrode conductive layer and a supporting board. As a conducting material used for a counter electrode conductive layer, conductive metallic oxide, such as what doped fluoride, etc. are suitable for metal; carbon; indium tin multiple oxides, such as platinum, gold, silver, copper, aluminum, rhodium, and indium, and tin oxide. As a supporting board used for a counter electrode, a glass substrate or a plastic plate is preferred, it applies or vapor-deposits and the above-mentioned conducting agent is used for this. As thickness of a counter electrode conductive layer, 3 nm - 10 micrometers are preferred. When a counter electrode conductive layer is metal, the thickness is 5 micrometers or less preferably, and is 5 nm - 3 micrometers still more preferably.

[0083]Since it may irradiate with light from both the above-mentioned conductive substrate, and both [either or], in order for light to reach a photosensitive layer, it is good if at least one side is substantially transparent among a conductive substrate and a counter electrode. It is preferred to make a conductive substrate transparent from a viewpoint of improvement in generation efficiency, and to enter light from the conductive substrate side. In this case, as for a counter electrode, it is preferred to have the character to reflect light. As such a counter electrode, glass or a plastic, a metal thin film, etc. which vapor-deposited metal or a conductive oxide are preferred.

[0084]2 passage in a case where it provides on it as a procedure of providing the above-mentioned counter electrode after forming a (b) charge transfer layer, and a case of filling up the opening with an electrolytic solution, after arranging a counter electrode via a spacer on a (**) photosensitive layer is. (**) a case — a charge transfer layer top — a direct conducting material — spreading, plating, or vacuum evaporation (PVD, CVD) — stick the conductive layer side of a substrate which carries out or has a conductive layer. An open end of an assembly obtained by assembling a counter electrode and fixing via a base material (spacer) on a photosensitive layer is immersed in an electrolytic solution, and an electrolytic solution is made to permeate an opening of a photosensitive layer and a counter electrode using capillarity or decompression in (**). As well as a case of a conductive substrate when especially a counter electrode is transparent, it is preferred to use a metal lead in order to lower resistance of a counter electrode. A fall of incident light quantity by desirable construction material of a metal lead and an installation method, and metal lead installation is the same as a case of a conductive substrate.

[0085](5) a conductive substrate which acts as an electrode in a dye sensitizing type solar cell of other layer this inventions in addition to (1) conductive substrate mentioned above, (2) photosensitive layers, (3) charge transfer layers, and (4) counter electrodes, and a counter electrode — on the other hand — or functional layers, such as a protective layer and an antireflection layer, etc. may be provided in both. When forming such a functional layer in a multilayer, the simultaneous multilayer applying method and the serial applying method can be used, but from a viewpoint of productivity, the simultaneous multilayer applying

method is preferred. In the simultaneous multilayer applying method, the slide hopper method and the extrusion method are suitable from a viewpoint of productivity and the homogeneity of a coat. Vacuum deposition, the sticking method, etc. can be used for formation of these functional layers according to the construction material. Since a short circuit of a counter electrode and a conductive substrate is prevented, a thin film layer of a conductive substrate and a semiconductor precise between photosensitive layers can also be beforehand painted as an under coat. Materials of an under coat are TiO_2 , SnO_2 , and Fe_2O_3 , WO_3 , ZnO, and/or Nb_2O_3 preferably, and are TiO_2 still more preferably. An under coat can be painted by Electrochimi. Acta and the spray pyrolysis method indicated to 40(1995)p, 643-652. Desirable thickness of an under coat is not less than 5 nm, and is 1000 nm or less. More preferably, it is not less than 10 nm, and is 500 nm or less.

[0086]As mentioned above, an internal structure of an optoelectric transducer which constitutes a dye sensitizing type solar cell is doubled with the purpose, and various gestalten are possible for it. If it roughly divides into two, structure which can enter both sides to light, and a structure possible only from one side are possible. An internal structure of an optoelectric transducer preferably applicable to this invention at drawing 1 - drawing 6 is illustrated.

[0087] A photosensitive layer and a charge transfer layer are made to intervene between a conductive layer (conductive substrate) and a counter electrode conductive layer, a substrate is further arranged on a counter electrode conductive layer, and drawing 1 and drawing 2 form a counter electrode. Drawing 3, drawing 4, and drawing 5 provide a photosensitive layer, a charge transfer layer, and a counter electrode conductive layer on a conductive layer (conductive substrate) at this order, and also a substrate is arranged. and a gestalt holding material (base material) is used for gap maintenance. In drawing 3, a lead lead has provided the part into a charge transfer layer, and these are closed by lead covering material. In drawing 4. a metal lead has provided the part on a conductive layer (inside of a photosensitive layer), and into a counter electrode conductive layer. In drawing 5, a metal lead has provided the part on a conductive layer (inside of a photosensitive layer), and into a counter electrode conductive layer, and a metal lead in a photosensitive layer is closed by lead covering material. In drawing 1 - 5, it has structure where light enters from one side or both sides by making transparent a conductive layer, a counter electrode conductive layer, and a substrate. Drawing 6 has a transparent conductive layer on one field of a transparent substrate, and a cell which provided a photosensitive layer, a charge transfer layer, and a counter electrode conductive layer further on this is modularized. In drawing 6, each module which constitutes a solar cell is being fixed on a transparent substrate by a gestalt holding material which has an adhesion role. In drawing 6, an antireflection layer (not shown) may be provided in a field of another side of a transparent substrate again. When considering it as such a structure, in order to raise utilization efficiency of incident light, it is preferred to enlarge an area ratio (area ratio when it sees from the substrate side which is an entrance plane of light) of a photosensitive layer. Drawing 1 - a gestalt of six can also be used together.

[0088]It is made to make a dye sensitizing type solar cell of this invention work to an optoelectric transducer mentioned above in an external circuit. As for such a dye sensitizing type solar cell, in order to prevent degradation of a structure and vaporization of contents, it is preferred to close the side with a polymer, adhesives, etc. Under the present circumstances, even if it is preferred to close using a charge of the material between solar battery layers of this invention and electrolytes which constitute a charge

transfer layer are a fluid, a solid, and gel any, that disclosure can fully be prevented and, moreover, prolonged reliability can be secured. The external circuit itself connected to a conductive substrate and a counter electrode via a lead may be publicly known. In a dye sensitizing type solar cell of this invention, a sealing agent for reinforcing an edge part of substrates, such as a conductive substrate, in addition to such a sealing agent, lead covering material, a formation holding material, etc. may be formed using a charge of the material between solar battery layers mentioned above.

[0089]A charge of the material between solar battery layers of this invention can be used conveniently also for solar cells other than a dye sensitizing type solar cell. When applying an optoelectric transducer which uses a charge of the material between solar battery layers of this invention to what is called a solar cell, structure inside the cell is the same as structure of a dye sensitizing type solar cell fundamentally mentioned above. Hereafter, a modular structure of a solar cell using an optoelectric transducer which uses a charge of the material between solar battery layers of this invention is explained.

[0090]The above-mentioned solar cell can take the fundamentally same modular structure as the conventional solar cell module. Although a cell is constituted on supporting boards, such as metal and ceramics, a solar cell module generally covers an it top with filling resin, cover glass, etc. and structure of incorporating light from an opposite hand of a supporting board is taken, It is also possible to consider it as structure of using transparent materials, such as tempered glass, for a supporting board, constituting a cell and incorporating light from the transparent supporting board side on it. A substrate integral-type modular structure etc. which are specifically used with a modular structure called a super straight type, a substrate type, and a potting type, an amorphous-silicon solar cell, etc. are known. With the purpose of use, a service space, and environment, a solar cell can also choose these modular structures suitably.

[0091]A typical super straight type or a substrate type module, A cell is arranged at a constant interval between supporting boards by which one side or both sides were transparent, and acid-resisting processing was performed to them, adjacent cells are connected by a metal lead or flexible wiring, a current collection electrode is arranged in an outer edge section, and generated electric power has structure taken out outside. Although plastic material of various kinds, such as ethylene vinyl acetate (EVA), may be used in a form of a film or filling resin between a substrate and a cell according to the purpose for protection of a cell, or improvement in collecting efficiency, the above-mentioned charge of the material between solar battery layers is suitably applicable. When using the surfaces, such as a place with few shocks from the outside, at a place without wrap necessity for a hard raw material, it is possible by constituting a surface protection layer from a transparent plastic film, or stiffening the above-mentioned filling resin to give a protection feature and to lose a supporting board of one side. The circumference of a supporting board is fixed to sandwich shape with metal frames in order to secure internal seal and modular rigidity, and the sealing seal of between a supporting board and a frame is carried out with a sealing material. If a flexible raw material is used for the cell itself, a supporting board, a packing material, and a sealing material, a solar cell can also be constituted on a curved surface.

[0092]A solar cell module of the above-mentioned super straight type, For example, after laminating a cell one by one with a sealing material-cell indirect continued use lead, a back sealing material, etc. on it, conveying a front substrate sent out from a substrate feeder on a conveyor belt etc., a back substrate or a back cover can be put, and a frame can be set and produced to an outer edge section.

[0093]After laminating a cell one by one with a cell indirect continued use lead, a sealing material, etc. on it on the other hand, conveying a supporting board sent out from a substrate feeder on a conveyor belt etc. in a substrate type case, a front cover can be put, and a frame can be set and produced to an edge part.

[0094]The what case has the structure which carried out substrate integral-type modularization as an optoelectric transducer which uses a charge of the material between solar battery layers of this invention is explained using <u>drawing 6</u>. It has a transparent conductive layer on one field of a transparent substrate, a cell which provided a photosensitive layer, a charge transfer layer, and a counter electrode conductive layer which contained coloring matter adsorption TiO₂ further on this is modularized, and <u>drawing 6</u> has the structure where an antireflection layer (not shown) is provided in a field of another side of a transparent substrate. When considering it as such a structure, in order to raise utilization efficiency of incident light, it is preferred to enlarge an area ratio (area ratio when it sees from the substrate side which is an entrance plane of light) of a photosensitive layer.

[0095]In the case of a module of structure shown in <u>drawing 6</u>, so that a transparent conductive layer, a photosensitive layer, a charge transfer layer, a counter electrode, etc. may be arranged with three-dimensional and a constant interval on a substrate, Semiconductor process technique, such as selective plating, selective etching, CVD, and PVD, Or laser scribing after pattern spreading or double width spreading, plasma CVM (it indicates in Solar EnergyMaterials and Solar Cells, <u>48</u>, and p.373–381 grade), A desired modular structure can be acquired by patterning with the mechanical techniques, such as grinding,

[0096]Below, other members and processes are explained. Although it is preferred to use a charge of the material between solar battery layers mentioned above as the above-mentioned sealing material, according to the purpose, a mixture of liquefied EVA (ethylene vinyl acetate) and film state EVA, a vinylidene fluoride copolymer, and an acrylic resin, etc. can also be used. It is preferred between frames surrounding a module rim and a periphery to use a sealing material with high weatherability and dampproofing, and the above-mentioned charge of the material between solar battery layers is preferred also as such a sealing material. A transparent filler can be mixed in a sealing material and intensity and light transmittance can be raised.

[0097]When the above-mentioned sealing material is fixed on a cell, a method suitable for the physical properties of material is used. In the case of material of film state, in the case of liquid, such as roll application-of-pressure afterbaking adhesion and vacuum application-of-pressure afterbaking adhesion, or a paste state material, it is usable in various methods, such as a roll coat, a bar coat, a spray coat, and screen-stencil.

[0098]When using flexible materials, such as PET and PEN, as the above-mentioned supporting board, after letting out a rolled form base material and constituting a cell on it, a sealing layer can be continuously laminated by an above-mentioned method, and high productivity is obtained.

[0099]In the above-mentioned solar cell, in order to raise generation efficiency, acid-resisting processing is performed to the surface of a substrate (generally tempered glass) by the side of optical incorporation of a module. There is a method of coating a method and an antireflection layer which laminate an antireflection film as an acid-resisting disposal method. It is possible by processing the surface of a cell by methods, such as grooving or texturing, to raise utilization efficiency of light which entered.

[0100]In the above-mentioned solar cell, in order to raise generation efficiency, it is primary importance to incorporate light in a module without a loss, but it is also important to reflect light which penetrated a photoelectric conversion layer and reached to the inside, and to return to the photoelectric conversion layer side efficiently. Methods of raising reflectance of light include a method of vapor-depositing or plating Ag, aluminum, etc., a method of providing alloy layers, such as aluminum-Mg or aluminum-Ti, in the bottom of the heap of a cell as a reflecting layer, a method of making texture structure to the bottom of the heap by annealing treatment, etc., after carrying out mirror polishing of the supporting board side.

[0101]It is important to make connection resistance between cells small, in order to raise generation efficiency in a meaning which suppresses internal voltage descent. Although connection by wire bonding and a conductive flexible sheet is common as a method of connecting cells, While a cell is fixed using conductive adhesive tape or electroconductive glue, a method of carrying out pattern spreading, etc. are in a position of a request of a method and conductive hot melt which are electrically connected.

[0102]After in the case of a solar cell using flexible support, such as a polymer film, forming a cell one by one and cutting in desired size by an above-mentioned method, sending out a rolled form base material, a cell proper is producible by carrying out the seal of the edge part for a raw material which is flexible and has dampproofing. It can also be considered as Solar Energy Materialsand Solar Cells, 48, and a modular structure called "SCAF" of a statement to p.383-391. It can also be used for them, carrying out addesion fixing of the solar cell using flexible support to curved-surface glass etc. As mentioned above, a solar cell which has various shape and functions according to the purpose of use or an operating environment can be manufactured.

[0103]

[Example]Although an example is given to below and this invention is explained to it still in detail, this invention is not limited only to these examples. Especially, as long as there is no notice, a "part" shall mean a "weight section."

- [0104]resin of 1180(made by Ciba-Geigy):430g of manufacture (1) phenol novolak-type-epoxy-resin EPN
- (2) of the precursor resin A, and (1) -- 2,2,6,6-tetramethylpiperidine 1-oxyl: -- 0.2 g was added.
- (3) Styrene (360g) was added to methacrylic acid (52g) and the liquid of (4) which added triethylamine (0.5g) 4 times at intervals of 30 minutes at 110 **, and (3) under the air air current (2).
- (5) It held at 120 ** after the end of an injection for 6 hours.
- (6) Oxidation The reaction was ended by 7 mgKOH/g.

Tetramethylthiuram monosulfide (0.4g) and NAFUCHIN **** (0.1g) were added to the liquid of (7) and (6). [0105]The resin composition was manufactured by the combination shown in the Examples 1-7 and comparative example 1 table 1, by the curing conditions shown in Table 1, the gap was made from silicone rubber etc. between glass plates, the resin composition was poured and stiffened there, and the sample of the shape shown in Table 1 was produced. Tg measurement and solvent resistance evaluation were performed using this sample. Light was irradiated with and stiffened in Example 6. The optical exposure used HB-25103BYC (a trade name, the USHIO, INC. make). It evaluated by producing a solar cell by the following method using the resin composition manufactured by Examples 1-7 and the comparative example 1.

[0106]

Table 1

[0107]Table 1 is explained below. KBM-503 (trade name) is a radical polymerization type silane coupling agent by the Shin-etsu chemicals company, and with TSF-401 (trade name). Are the Toshiba Silicone defoaming agent and with the par butyl O (trade name). Are a polymerization initiator by Nippon Oil & Fats Co., Ltd., and with A187 (trade name). Are the epoxy Nippon Unicar hardening type silane coupling agent, and in W-9010 (trade name). Are an adhesiveness-reducing agent and with kaya melic M (trade name). It is a polymerization initiator by Kayaku AKZO Corp., and accelerator VE (trade name) is a polymerization accelerator by NIPPON SHOKUBAI Co., Ltd., in 328E (trade name), it is a polymerization initiator by Kayaku AKZO Corp., and IRGACURE184 (trade name) is the optical Ciba-Geigy radical generator.

[0108]Tg and solvent resistance of the sample which were manufactured by Examples 1-7 and the comparative example 1 were measured by the following method, and the result was shown in Table 2 and 3.

(1) Measurement TMA measurement (coefficient-of-thermal-expansion measurement) of Tg determined Tg of the resin composition (material between layers).

measuring condition: — heating rate 5 ** / min temperature-up pattern: — 25-200 ** measuring device: — TMA-50 (a trade name, the Shimadzu Corp. make)

Sample: Use the sample produced by Examples 1-7 and the comparative example 1.

[0109]

Table 2

[0110](2) The sample was neglected at 60 ** in solvent resistance acetonitrile fluid, and mass increase and decrease estimated the solvent resistance of the material between layers. The curing conditions of the material between layers (resin composition) are the method indicated to Table 1, made the predetermined gap using the gap holding material between glass plates, and they slush, deaerate and stiffened the resin composition so that air bubbles might not be included.

Measuring condition: 30 g of acetonitrile and the hardened material 2g of the resin composition were put into the same container, and it was immersed by stirring for seven days at 60 **. The mass w (g) of the hardened material of the resin composition of seven days after was measured, the following formula estimated the mass change in the hardened material of a resin composition, and the rate of the amount of hardened materials of the resin composition after the solvent immersion to the amount of hardened materials of the resin composition before solvent immersion was measured.

the amount of hardened materials of the resin composition after the solvent immersion to the amount of hardened materials of the resin composition before solvent immersion — comparatively — $w(g) / (\% = [2 (g)] \times 100 \text{ sample}$: — the sample produced by Examples 1–7 and the comparative example 1 — use.

[0111]

[Table 3]

semiconductor electrode: — a titania — sol (the Ishihara Sangyo Kaisha, Ltd. make, trade name "STS-21")
— a FTO board (the Nippon Glass Co., Ltd. make.) It dried at 100 ** behind the spin coat, heat treatment
was performed to VZ019 and glass with a SnO₂ film at 450 ** for 1 hour, and the porous-titanium-oxide thin
film electrode was produced (2 micrometers of TiO₂ thickness).

The above-mentioned porous-titanium-oxide thin film electrode was immersed in the RuN3 coloring-matter (product [made by Solaronix], Ruthenium535-bis-TBA) ethanol solution of concentration 3.0x10 ⁻⁴M for 10 hours, and the porous-titanium-oxide thin film electrode to which RuN3 coloring matter stuck was produced. Electrolyte: 0.1M lithium iodide 0.05M iodine 0.3M 1.2-dimethyl- 3-propyl, Imidazole, an iodine-salt 0.5M tert-butylpyridine solvent:acetonitrile measuring condition: Platinum membrane was formed by sputtering on light source:AM-1.5 and a 100 mW/cm² electrode area:0.25-cm² counter electrode:FTO board, and the platinum electrode was produced.

Closure: By the method indicated to Table 1, the resin composition of Examples 1-7 and the comparative example 1 was stiffened, and it closed. The surroundings of the TiO₂ portion closed the seal part so that there might be no liquid leakage.

As Example 8, the resin composition of Example 6 and the glass by Matsunami Glass Ind., Ltd. (name-of-article 0100 glass and 0.03 mm in thickness) were used together. The resin composition was used for the interface at adhesives. The unclosed cell was evaluated as the comparative example 2.

[0113](Deterioration test of a cell) The cell was neglected in a 40 ** dryer after producing a cell with the described method for 1 hour, and the cell after a deterioration test was produced.

[0114](Evaluation of an energy conversion efficiency) The solar cell was made to irradiate the light of the xenon lamp (made by USHIO, INC.) of 500W with imitation sunlight through a spectrum filter (the product made by Oriel, AM1.5), and light was entered from the substrate side of a semiconductor electrode. This light intensity was 100 mW/cm². A crocodile clip is connected to electrically conductive glass and a platinum electrode (photoelectric-conversion area: 0.25-cm²), respectively, using the generated electrical and electric equipment as a current potential measuring device — 487 by ammeter:KEITHLEY, function generator:Hokuto Denko Corp. make, HB-105, and POTENSHIO — a stud — it measured using :Hokuto Denko Corp. make and HA-5016. The energy conversion efficiency (eta) (%) was searched for by the lower type from open photoelectrical pressure (V) called for from this, short circuit photoelectric current density (mA/cm²), and a fill factor.

energy-conversion-efficiency (%) =(open photoelectrical pressure) (V)x(short circuit photoelectric current density) (mA/cm²) x(fill factor)/100(mW/cm²)x100 — eventually, The above-mentioned energy conversion efficiency was evaluated about each sample, the maintenance factor of the energy conversion efficiency was computed by the lower type, and the result was shown in Table 4.

Maintenance factor (%) =(energy conversion efficiency after deterioration test)/(energy conversion efficiency before deterioration test) x100 [0115]

[Table 4]

[0116]

[Effect of the Invention]. Since the charge of the material between solar battery layers of this invention

consists of above—mentioned composition, constitute a solar cell. Are used in order to form a sealing agent, lead covering material, a gestalt holding material, etc., and disclosure of the electrolysis solvent and electrolyte which constitute the electrolyte layer in a closure cell is fully prevented. And it can make it possible to have the endurance and the safety which can secure prolonged reliability, and also to manufacture a solar cell simple, and can use conveniently for a dve sensitizing type solar cell.

[Brief Description of the Drawings]

[Drawing 1] It is a partial (photoelectricity sensing element) sectional view showing an example of a dye sensitizing type solar cell which uses the charge of the material between solar battery layers of this invention.

[Drawing 2] It is a partial (photoelectricity sensing element) sectional view showing an example of a dye sensitizing type solar cell which uses the charge of the material between solar battery layers of this invention.

[Drawing 3] It is a partial (photoelectricity sensing element) sectional view showing an example of a dye sensitizing type solar cell which uses the charge of the material between solar battery layers of this invention.

[Drawing 4]It is a partial (photoelectricity sensing element) sectional view showing an example of a dye sensitizing type solar cell which uses the charge of the material between solar battery layers of this invention.

[<u>Drawing 5</u>]It is a partial (photoelectricity sensing element) sectional view showing an example of a dye sensitizing type solar cell which uses the charge of the material between solar battery layers of this invention.

[Orawing 6] They are a partial (photoelectricity sensing element) sectional view showing an example of a dye sensitizing type solar cell which uses the charge of the material between solar battery layers of this invention, or a fragmentary sectional view showing an example of the structure of the substrate integral-type solar cell module using the photoelectricity sensing element which uses the charge of the material between solar battery layers of this invention.

[Translation done.]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-223939 (P2003-223939A)

(43)公開日 平成15年8月8日(2003.8.8)

(51) Int.Cl.7	截別記号	FI	テーマコード(参考)
	B#C/P1/PL2.7-7		P 4J002
H 0 1 M 14/00		H 0 1 M 14/00	
C 0 8 L 101/02		C 0 8 L 101/02	5 F 0 5 1
101/12		101/12	5 H 0 3 2
H01L 31/04		H01L 31/04	Z
		審査請求 未請求 請求項の	数6 OL (全 18 頁)
(21)出願番号	特顧2002-20442(P2002-20442)	(71)出願人 000004628	
		株式会社日本触	媒
(22)出願日	平成14年1月29日(2002.1.29)	大阪府大阪市中	央区高麗橋4丁目1番1号
		(72)発明者 中村 潤一	
		大阪府吹田市西	御旅町5番8号 株式会社
		日本触媒内	
		(72)発明者 杉岡 卓央	
			御旅町 5番8号 株式会社
		日本触媒内	Profit o M o .) Profit in
		(74)代理人 100086586	
			康男 (外1名)
		弁理士 安富	原为 (外1石)
			最終頁に続く
			政性具に能り

(54) 【発明の名称】 太陽電池層間用材料及びそれを用いてなる色素増感型太陽電池

(57) 【要約】

【課題】 封止セル中の電解質層を構成する電解溶媒や 電解質の循波を充分に防止し、しかも長期間の信頼性を 確保することができる耐分性及び安全性を有するうえ に、太陽電池を簡便に製造することを可能とし、色素増 感型太陽電池に好適に用いることができる太陽電池原間 用材料及びそれを用いてなる色素増感型太陽電池を提供 する。

【解決手段】 太陽電池を構成する太陽電池閉間用材料 であって、該太陽電池開間用材料は、(1) ガラス転移 温度が80で以上の樹脂温成物及び/若しくは確溶剤性 樹脂組成物を必須としてなる、又は、(2) 芳香族環を 有する樹脂を必須としてなる太陽電池開間用材料、並び に、上記太陽電池層間用材料を用いてなる色素増感型太 服留池。

【特許請求の範囲】

【請求項1】 太陽電池を構成する太陽電池層間用材料 であって、該太陽電池層間用材料は、ガラス転移温度が 80℃以上の樹脂組成物及び/又は耐溶剤性樹脂組成物 を必須としてなることを特徴とする太陽電池層間用材 料。

【請求項2】 太陽電池を構成する太陽電池的間用材料 であって、該太陽電池原間用材料は、芳香族環を有する 樹脂を必須としてなることを特徴とする太陽電池層間用 材料。

【請求項3】 前記太陽電池層間用材料を構成する樹脂 は、硬化型樹脂であることを特徴とする請求項1又は2 記載の太陽雷池層間用材料。

【請求項4】 前記太陽電池層間用材料を構成する樹脂 が、活性エネルギー線により硬化してなることを特徴と する請求項1、2又は3記載の太陽電池層間用材料。

【請求項5】 前記太陽電池層間用材料が、無機成分を必須としてなることを特徴とする請求項1、2、3又は4記載の太陽電池層間用材料。

【請求項6】 請求項1、2、3、4又は5記載の太陽 20 電池層間用材料を用いてなることを特徴とする色素増感 型太陽雷池。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】 本発明は、太陽電池層間用材 释及び色素増感型太陽電池に関する。より詳しくは、太 陽電池を構成する、封止材、導線被覆材、形態保持材等 を形成するために用いられる太陽電池層間用材料及びそ れを用いてなる色素増速型大鍋電池に関する。

[00002]

 する必要がある。また、屋外条件で数年にもたる長期の 使用を想定すると、紫外線による分化等が即制され、耐 火性を育するものが求められている。このような特性 は、太陽電池の他の構成要素においても要求されること になり、例えば、導電性支持体等の基材の周縁部を補強 する封止格や大面積化で必要ななる金属線(集電配線) の封止材(郷線被関材)の他、ギャップ保持やモジュー ルの形態保持のための形態保持材においても高久性等が 求められることになる。

2

【0004】特開平11-307141号公報には、導 電膜が形成された透明基板にエッチングで凹部を作り、 雷解液を注入してなる混式太陽雷池に関し、封止材の形 成には、エポキシ樹脂や、シリカ微粉末を含むエポキシ 樹脂等の絶縁微粒子を含む樹脂を用いることが開示され ている。特開2000-30767号公報には、透明基 板の形成、電解液の注入及び封止工程等を有する湿式太 陽電池の製造方法に関し、封止材の形成には、紫外線硬 化型エポキシ樹脂等を用いることが開示されている。特 間2000-150005号公銀には、透明基板に形成 した透明導雷順と導雷性基板に形成した増感色素を扫持 した金属酸化膜とを向かいあわせて接合し、接合によっ て形成した空隙に電解質を注入する工程等を有する色素 増感型太陽電池の製造方法に関し、封止材の形成には、 溶媒に溶解しにくい樹脂であるエポキシ樹脂を用いるこ とが開示されている。特開2000-173680号公 報には、透明導電膜固着が形成された透明基板と色素増 感半導体電極が形成された導電性基板とを重ね合わせ、 その周囲にエポキシ樹脂やシリコンゴム等の樹脂を塗っ て封止するとともに封止用固形物で固定してなる色素増 感型太陽電池が開示されている。特開2000-200 627号公報には、透明導電膜が形成された透明基板と 任意の基板との接合により形成された隙間に、色素増感 半導体電極が形成された基板を挿入し、隙間にヨウ素電 解溶液が注入されてなる色素増感型太陽電池に関し、封 止材の形成には、エポキシ樹脂やシリコンゴムを用いる ことが開示されている。

【0005】特開2000-348783号公報には、 増略色素溶液と電解液とを予め封止されている領域に導 入する工程等を育する色素増速型大陽電池の製造方法に 関し、封止材の形成には、熱硬化型又は光硬化型の有機 物系動階や、ガラスフリットのペースト等の無機系のシ ルが限によることが開示されている。具体的には、ガラ スフリットのペースト状シール衛を基板の周辺の全局に わたって塗り、450でを熱処理をしたことが開示され ている。特開2001-185244号公報には、基板 の間縁部をガラスフリットで封止した色素増速型大陽電 池に関し、ガラス粉末とパインダーとなるアクリル模態 とを含むペースト状のガラスフリットを用いることが開 示されている。

(0006] しかしながら、太陽電池の封止材の形成に

おいてエボキシ側層やシリコンゴムを用いる場合には、 屋外条件で数年にわたる長期の使用においては耐外性が 充分なものではなく、これにより電解電像や電解質面 液を充分に防止することができないことから、これらの 点を改善して長門皿の信頼性の高い太陽電池を得るため の工夫の余地があった。また、ガラスフリットを用いる 場合には、基板に融着させるために通常400℃以上の 作業温度が必要となり、例えば、光増感色素を担待。吸 後)させた酸化ケシケ等の感化を有する半導体層を形 成した後に封止することは不可能となることから、この 10 点において太陽電池の水炭池端の工程により簡便に行 うことができるようにする工たの全地があった。

[0007]

【穿助が解決しようとする課題】 本発明は、上記規状に 総みてなされためであり、封止セル中の電解質層を構 成する電解容媒や電解質の認定を充分に防止し、しかも 長期間の信頼性を確保することができる耐火性及び安全 性を有するうえた、基端電池を開催に製造することを可 能とし、色素物感型太陽電池に好適に用いることができ る太陽電池が開加料料及びそれを用いてなる色素物感型 20 大線電池が開加料料及びそれを用いてなる色素物感型 20 大線電船が基準性なることを目的もする。

[0008]

【課題を解決するための手段】本発明者らは、太陽電池 を構成する太陽電池層間用材料について種々検討するう ち、太陽電池層間用材料にガラス転移温度が高い樹脂組 成物を用いると、太陽電池が屋外条件で数年にわたる長 期の使用において充分な耐久性を有し、しかも耐久性の 向上にともなって封止セル中の電解質層が海体状、ゲル 状、固体状のいずれの状態のものであっても、電解質層 を構成する雷解溶媒や雷解質の漏洩を充分に防止するこ とに着目し、また、特定の耐溶剤性を有する樹脂組成物 を用いると、封止セル中の電解溶媒や電解質の漏洩を充 分に防止するうえに、充分な耐久性を有することになる ことに着目し、そして太陽電池層間用材料が、ガラス転 移温度が80℃以上の樹脂組成物及び/又は耐溶剤性樹 脂組成物を必須としてなると、ガラス転移温度や耐溶剤 性に起因する作用効果を充分に発揮して上記課題をみご とに解決することができることに規利した。また、太陽 雷池層間用材料が、芳香族環を有する樹脂を必須として なると、ガラス転移温度や耐溶剤性が向上することに起 40 因して、上記課題をみごとに解決することができること を見いだした。このような太陽電池層間用材料を構成す る樹脂が硬化型樹脂であり、更に活性エネルギー線によ り硬化してなると、硬化性を有しないものよりも耐久性 や耐溶剤性が向上し、また、熱硬化するものよりも製造 上好ましいことを見いだした。また、太陽電池層間用材 料がセラミックス等の無機成分を必須としてなると、耐 溶剤性が向上し、上記の作用効果がより充分に発揮され ることを見いだした。更に、色素増感型太陽電池に適用 すると、電気エネルギーへの変換効率が高いことと相ま 50 って、高性能で信頼性の高い太陽電池を得ることができ ることを見いだし、本発明に到達したものである。

【0009】 すなわち水堤明は、太陽電池を構成する大 鰯電池層側用材料であって、上記太陽電池層側用材料 は、ガラス株砂温度が80℃以上の樹脂和皮物板が「火 は耐溶剤性樹脂和成物を必須としてなる太陽電池層間用材料である。木泥甲はまた、大陽電池を構成する大陽電 池層間用材料であって、上記太陽電池層は月 が展光を有さる樹脂を必須としてなる太陽電池層間用材料は、芳 香族原を有する樹脂を必須としてなる太陽電池層間用材料 料でもある。

【0010】本発明は更に、上記太陽電池層間用材料を 用いてなる色素増感型太陽電池でもある。以下に、本発 雨を詳述する。

【0011】本発列の太陽電池原門用材料は、(1)ガ ラス帳移温度が80℃以上の樹脂耐成物及び/着しくは 耐溶剤性樹脂削成物を必須としてなるか、又は、(2) 芳香族環を有する樹脂を必須としてなるが、(1)及び (2)を併用してもよい。これらはそれぞれ単独で用いてもよく、全個以上を併用してもよい。これ。太陽電池 層間用材料とは、太陽電池を構成する、封止材、導線被 覆材、形態保持材等を形成するために用いられるもので ある。

【0012】先ず、本発明の太陽電池層間用材料の構成 要素について説明する。本発明の太陽電池層間用材料の構成 おいて、必須成分であるガラス転移温度が80で以上の 樹脂和成物なび、若しくは確常部性樹脂和成神、並びに / 又は、芳香板塊を有する樹脂の含有量としては、太陽 電池層間用材料100質量%に対してこれらの合計製が が1質量が以上であることが好ましく、また、99質量 %以下であることが好ましい、1質量%未満であった り、99質量%を超えたりすると、本発明の作用効果を 充分に発揮することがでまなくなるおそれがある。より 好ましくは、30質量%以上であり、また、95質量% 以下である。更に好ましくは、50質量%以上であり、 また、95質量%以上であり、また、95質量%

【0013】上記サラス転移温度が80°区以上の樹脂組成物及び耐溶剂性樹脂組成物は、樹脂を必須成分とし成金更に応じて後述するその他の成分等を含んでなる出成物である。本発明においては、大陽電池層間用材料を構成する樹脂組成物のガラス転移温度が80°区以上となるように、機断組成物に含まれる樹脂や必要に応じて含まれるその他の成分種類や截を適宜設定することになる。機断組成物に含まれる樹脂をびその他の成分種類や低を適宜設定することになっ、機断組成物に含まれる樹脂をびその他の成分種類や低を適宜設定することになっ、機断組成物に含まれる樹脂をびその他の成分は、単独下用いてもよく。2種以上を併用してもよい。

【0014】上記ガラス転移温度(Tg)が80℃以上の樹脂組成物をしては、ガラス転移温度が90℃以上の 樹脂組成物が好ましい。より好ましくは、130℃以上 の樹脂組成物である。なお、本明細書中、Tgの測定方 法としては、下部の方法により行うことが疾滅である。 (Tgの測定方法) TMA測定(熱膨張率測定) により、樹脂組成物のTgを決定する。

測定条件:昇温速度 5℃/min

昇温パターン:25~200℃

測定装置:TMA-50(商品名、島津製作所社製)

試料:樹脂組成物の硬化物

【0015】上記耐溶剤性粉脂組成物としては、電荷移動層中の電解液や電解質に対する配性が見好である樹脂組成物を用いることになるが、色素神感を見ぬ間能的の電解液であるアセトニトリルや、ヨウ素等を反対する溶剤接近前の樹脂組成物の硬化物能と対する溶剤浸液前の樹脂組成物の硬化物能と対する溶剤浸液前の樹脂組成物の硬化物能の割合が90%以上であることが好ましく、また、120%以下であることが好ましい。90%未満であったり、120%を超えたりすると、アセトニトリルに対する配性が不完分であるため、企業地感鬼太陽電池において封止せル中の電解溶解や観察質の漏波を充分に防止することができなくなるおぞれがある。より好ましくは、95%以上であり、また、110%以下である。更に好景しくは、98%以上であり、また、110%以下である。更に好景しくは、98%以上であり、また、110%以下である。更に好景しくは、98%以上であり、また、150%以下である。更に好景しくは、98%以上であり、また、150%以下である。更に好景しくは、98%以上であり、また、150%以下であり、また、50%以下であり、また、150%以下であり、また、10%以下である。更に好景とくは、98%以上であり、また、10%以下であり、また、10%以下であり、また、10%以下であり、また、10%以下であり、また、10%以下であり、また、10%以下であり、また、10%以下であり、また、10%以下であり、50%以下では、50%以下であり、50%以下では、50

(耐溶剤性試験) アセトニトリル溶液中に樹脂組成物を 60℃で放置し、横脂組成物の質量増減で層間材料の耐 溶剤性を評価する。

測定条件:アセトニトリル30gと樹脂組成物の硬化物2gとを同一の容器に入れ、60でで7日間機件することにより設計する。7日後の動態組成物の変化物の質量が減乏平価し、容滑設清前の樹脂組成物の硬化物の質量増減乏平価し、容滑設清前の樹脂組成物の硬化物量に対する溶剂設済後の樹脂組成物の硬化物量の割合を測3c対する溶剂設済後の樹脂組成物の硬化物量の割合を測3c対する溶剂設済後の樹脂組成物の硬化物量の割合を測3c対する。

溶剤浸漬前の樹脂組成物の硬化物量に対する溶剤浸漬後 の樹脂組成物の硬化物量の割合(%)= {w(g)/2 (g)}×100

【0016】上記芳香族環を有する樹脂としては、樹脂 中における主鎖及び/又は側鎖が芳香族環を有するもの であっても、樹脂中に単量体が含有される場合には、単 量体が芳香族環を有するものであってもよい。芳香族環 としては特に限定されないが、好ましくは、ベンゼン 環、ナフタレン環、ビフェニル環であり、1種であって 40 も2種以上であってもよい。このような芳香族環を有す る樹脂としては、ガラス転移温度が80℃以上であり、 上述した耐溶剤性を満たすものであることが好ましい。 【0017】本発明におけるガラス転移温度が80℃以 上の樹脂組成物及び耐溶剤性樹脂組成物に含まれる樹 脂、並びに、芳香族環を有する樹脂の好ましい形態とし ては、反応性基を有し、光等の活性エネルギー線や熱等 のエネルギーにより硬化する樹脂、すなわち硬化型樹脂 である。すなわち本発明の太陽電池層間用材料を構成す る樹脂としては、硬化型樹脂であることが好ましい。硬 50

化型樹脂としては、ラジカルで硬化する樹脂 (ラジカル 硬化型樹脂)、イオンで硬化する樹脂 (イオン硬化型樹 脚)、熱により硬化する樹脂 (熱硬化型樹脂) 等が好適 であるが、ラジカル硬化型樹脂を必須とすることが好ま しい。また、これらの中でも、熱煙化するものよりも製 遊上好ましいことから、活性エネルギー線により硬化し てなるものがより好ましい。太陽電池開閉月材料や構成 する樹脂が、活性エネルギー線により硬化してなること は、本発明の好ましい形態の1つである。

【0018】本発明におけるガラス転移温度が80℃以 上の側離損敗物及び耐溶剤性側脂組成物に含まれる樹 脂、並びに、芳香族環を有する樹脂の好ましい形態であ るラジカル硬化型樹脂及びイオン硬化型樹脂について以 下に説明する。

【0019】本発明におけるラジカル硬化型樹脂として は、熱、硬化剤等のラジカル発生剤の存在下、又は、紫 外線;電子線;エキシマレーザー; v線、X線等の放射 線;赤外線;可視光線照射下で、ラジカル重合により硬 化するラジカル硬化型の樹脂であればよい。このような ラジカル硬化型樹脂としては、不飽和ポリエステル、エ ポキシ (メタ) アクリレート、ウレタン (メタ) アクリ レート、ポリエステル(メタ)アクリレート等のラジカ ル硬化性をもつ重合体(以下、ラジカル硬化性重合体と もいう)と反応性希釈剤とを含む樹脂や、反応性希釈剤 を含有する (メタ) アクリルシラップを含む樹脂等が好 適である。また、他にも、飽和ポリエステルやポリ(メ タ) アクリル酸メチル等のラジカル硬化性をもたない重 合体と反応性希釈剤とを含む樹脂も好適である。なお、 芳香族環を有するラジカル硬化型樹脂においては、ラジ カル硬化性重合体又はラジカル硬化性をもたない重合体

【0020】上記不飽和ポリエステル、エポキシ(メ タ)アクリレート、プレタン(メタ)アクリレート、ポ リエステル(メタ)アクリレート、(メタ)アクリル系 重合体を合成する際の反応圧力、反応時間及び反応温度 等の反応条件としては、特に限定されず適宜設定すれば よい。また、ラジカル硬化型船節を構成する各ラジカル 硬化性重合体の分子量は、特に限定されるものではな

が芳香族環を有していてもよく、反応性希釈剤が芳香族

環を有していてもよい。

【0021】本空脚の大陽電池層間用材料において、ラジカル硬化型機能を構成する各ラジカル硬化性重合体の各有量としては、大陽電池網開材料100質量%に対して、好ましくは1質量%以上であり、また、99質量%以下である。1質量%未満であると、硬化反応に伴うて数による力が生いやすく、また、硬化をか性が聴くなりやすい。99質量%を超えると、太陽電池層間材料がお近が充分下がらず作業性を損なったり、太陽電池層間材料がある。より軟ましくは5質量%以上であり、また、れがある。より軟ましくは5質量%以上であり、また、また、まりまた。

95質量%以下である。更に好ましくは10質量%以上 であり、また、90質量%以下である。

【0022】本発明の太陽電池原門用材料は、上述した ようにラジカル硬化型樹脂と共に、必要に応じて、反応 性呑积潮を 1種原以上含んでいてもよい。反応性香釈剤 とは、分子中に少なくとも1 図の重合性不飽和結合を有 する化合物であり、分子中に1 個の重合性不飽和結合を 有する単官能性化合物と分子中に2 図以上の重合性不飽 和結合を有する多官能性化合物とがある。

【0023】単宮能性及び多宮能性化合物の使用量とし 10 では、木煙明の太陽電池陽開用材料100質量等中、好 ましくは、1質量等以上であり、また、99質量等以下 である。とり好ましくは、10質量等以上であり、ま た、80質量等以下である。更に好ましくは、20質量 が以上であり、また、50質量等以下である。

【0024】上記イオン硬化型樹脂とは、熱文は活性エネルギー線で、反応活性種としてのアニオン、カチオンを発生し、それを起点として契橋反応が進行して硬化する樹脂をいう。本発明におけるイオン硬化型樹脂としては、エボキン基、ビニルエーテル基、オキセタン基、インプロベニルエーテル基を主鎖及び/又は側鎖の末端に有する構造の樹脂が好適であり、このような樹脂をして、エボキン樹脂等が好適である。また、イオン硬化型樹脂を構成する各イオン硬化性重合体の分子量は、特に限定されるものではない。

【0025】本発明の太陽電池原間用材料にむいて、イオン硬化型樹脂を構成する各イオン硬化性重合体の含有量としては、太陽電池層間用材料100質量%に対して、好ましくは1質量%以上であり、また、99質量%以下である。1質量%未満であると、硬化反応に伴う取 20 株による売か生じやすく、また、硬化後の物性が脆くなりやすい、99質量%を超えると、太陽電池層間用材料の粘度が充分下がらず作業性を損なったり、太陽電池層間用材料が当一な組成物とならなかったり、本部電池層間用材料が当一な組成物とならなかったり、本部である。より好ましくは10質量%以上であり、また、95質量%以下である。更に好ましくは10質量%以上であり、また、90質量%以下である。更しながである。

【0026】上記活性エネルギー線の照射により硬化させる場合、本発明の太陽電池層間用材料には、ラジカル 硬化型機関やイオン硬化型機関の他に、更に火炬合開始 剤を含育させておいてもよい、これにより、本発明の太 隔電池層間用材料が感光機樹脂組成物となり、本発明で は好ましい実施形態の1つとなる。

[0027]上記光重合開始制としては、種々の公知の 物質が使用でき、特に限定されない。光重合開始剤の使 用量としては、ラジカル硬化型樹脂やイオン硬化型樹脂 100質量等に対して、好ましくは0.1質量常以上で あり、また、15質量が以下である。より好ましくは、 1質量等以上であり、10質量等以下である。

【0028】本発明における硬化型樹脂において、熱硬 50

化するもの (熱硬化型樹脂) としては、上記記載のラジ カル硬化型樹脂以外にも、エボキシ樹脂及び/又は多価 フェノールが好適である。好ましい形態としては、

(1) エボキン樹脂と多価フェノールとを併用する形 無、(2) 多価フェノールを写管能グリシジルエーテル 化することにより得られるエボキシ樹脂であり、エボキ シ樹脂及び多価フェノールは、それぞれ1種又は2種以 上用いることができる。なお、本明細書中、「多価フェ ノール」とは、水酸基をもつ方香環を複数個有する重合 体を意味する。

【0029】上記(1)の形態におけるエボキン樹脂と しては、分子中に少なくとも1個のエボキシ結を育する 化合物でさればよく、特に限定されるものではない。多 個フェノールとエボキシ樹脂との混合比は多価フェノー ル中のヒドロキシル基とエボキシ樹脂中のエボキシ基の モル比が1、0.5~1:1、5になるよう配合する ことが好ましく、更に好ましくは1:0、8~1:1. 2の範囲である。この範囲を外れると硬化不良が起こ り、食好を硬件が影響も有ないますれがある。

(0030]上記(1)の形態においては、エボキシ樹脂及び多価フェノールと共に、エボキシ樹脂用硬化促進剤を用いることが好ましい。エボキシ樹脂用硬化促進剤としては、通常のエボキシ樹脂に対して公知公用のものであればいずれも使用できる。

【0031】上記多価フェノールを製造するための反応 原料において、「フェノール類」とは、多価フェノール を製造するために用いる原料の1つである水酸基をもつ 芳香環を有する化合物を意味する。上記フェノール類と しては、芳香族環に1種又は2種以上の水酸基が外の電燃基が結 台、たかつ、1個又は2個以上の水酸基以外の電燃基が結 合した化合物であればよく、特に限定されるものではな

【0032】 本発申の大陶電池層個用材料は、上述した 使化型機能等の機能を必須成分とするものであるが、更 に、無機成分を必須としてなるものであることが好まし い。これにより、最俗熱性を向上したり、太陽電池層間 用材料とガラス等の導電性支持体との密着性を高めたり することができる。無機成分は、1種又は2種以上を用 いることができる。無機成分はの使用量としては、好まし くは、太陽電池層間用材料100質能がに対して、1質 量%以上であり、また、95質能が以下である。より好 ましくは、50質量%以上であり、また、70質量%以 下である。

[0033] 上証無機成分としては、反応性のない無機物質を用いてもよいし、反応性の無機物質を用いてもよいし、反応性の無機物質を用いてもい。また、有機成分と無機成分とを単一構造中にもつものであってもよいし、その中の物質に反応性基があるもの、すなわち有機成分と無機成分とを単一構造中にもち、かつ反応性基をもつ物質も本発明における無機成分として用いることができる。この場合、無機成分、有機して用いることができる。この場合、無機成分、有機

(0

成分のどちらかに又は両方とも反応性基があってもよ い。更に、これらの混合物でもよい。無機成分における 有機成分としては、重量平均分子量が1000万以下で あることが好ましく、より好ましくは、1万以下であ り、更に好ましくは、1000以下である。なお、無機 物質、及び、有機成分と無機成分とを単一構造中にもつ 物質の中で、反応性のあるものを無機反応物質ともい う。無機反応物質としては、反応性基をもつものであれ ばよく、反応性基としては、水酸基、-MX(式中、M は、金属元素を表す。Xは、水素原子、水酸基、-OR カルボキシル基、-N(R²)2基又はハロゲン原子 を表す。 R^1 は、置換基を有してもよい炭素数1~10 Oのアルキル基を表す。R2は、同一若しくは異なっ て、水素原子又は置換基を有してもよい炭素数1~10 0のアルキル基を表す。)で表される基、-OR³(式 中、R3は、置換基を有してもよい炭素数1~100の アルキル基を表す。) で表されるアセトキシ基、カルボ キシル基、シラザン化合物のような構造を有する基等が 好滴である。好ましくは、一MXで表される基、アセト キシ基であり、-MXで表される基において、Mとして 20 は、ケイ素、チタン、亜鉛等が好滴であり、Xとして は、フッ素原子、塩素原子、臭素原子、ヨウ素原子等の ハロゲン原子: $-OR^1$ で表される基が好適であり、 R^1 の好ましい形態としては、置換基を有してもよい炭素数 $1 \sim 100$ のアルキル基である。また、 R^1 としては、 より好ましくは、メトキシ基、エトキシ基、プトキシ 基、イソプロポキシ基、プロポキシ基である。反応性基 としてはまた、上記に挙げた反応性基に加え、ラジカル 重合性、イオン重合性、熱重合性を有する基であればい ずれもよいが、ラジカル重合性不飽和基、エポキシ基等 30 の間環反応性を有する基が好ましい。無機反応物質にお いては、このような反応性基が炭素原子やヘテロ元素 (S、O、P、N)を介して、例えば、エステル結合、 エーテル結合、アミド結合、ウレタン結合、一C-С-結合等により構造中に繋がっていればよい。また、反応 性基は、ラジカル重合性不飽和結合(二重結合や三重結 合) との反応やエポキシ等の開環反応により導入されて いてもよい。

[0034]上記無機成分において、反応性底をもつも のとしては、アルコキシドやハロゲン化物が好ましく、 例えば、シランアルコキシド、チタンアルコキシド等が 好ましい。無機成分としてはまた、好ましくはセラミッ クス系のものがなく、例えば、天然シリカや合成シリカ、 売上鉱物等のケイ酸性等の各種のシリカ;アルミナ、ジルコニア、酸化チタン、酸化亜鉛等の無機酸化物 等が好害があるため。

【0035】本発明の太陽電池層間用材料はまた、その 安定性を向上させる目的で、重合調整剤(重合禁止剤) を含んでいてもよい。本発明の太陽電池層間用材料は、 更に、その用途に応じて、従来公知の添加剤、例えば、 低収縮化剤、着色剤、パラフィン・ワックス肌、有機会 風石鹸類、シランカップリング剤、揺変性付与剤、揺変 性与助剤、増粘剤、可塑剤、紫外線吸収剤、老化防止 剤、螺燃剤、安定剤、ガラス繊維や炭素繊維等の強化繊 維等を、本界明の効果を阻害しない範囲内で含んでいて もよい。

10

【0036】本発酵の太陽電池側周用材料を製造する方法としては、例えば、必須収分であるガラス底部温度が 80℃以上の樹脂和成物及び/若しくは耐溶剤性樹脂組 成物、並びに/又は、芳香族環念有する樹脂と、必要に 吃じてその他の成分を起送することにより行うことが できる。また、太陽電池層間材料の形態としては、粒 状、ベースト状、ゾル状、ゲル状等のいずれの形態であ ってもよく。これらの混合物であってもよい。これらの混合物であっても、

【0037】本発明の太陽電池側周用材料では、上記の ように調製される大陽電池側間材料のガラス底移温度 が80℃以上であることが好ましい。より好ましくは、 ガラス底移温度が90℃以上である。また、太陽電池間 周用材料がよい上の耐溶剤性を潰さすものであることが 好ましく、太陽電池側間用材料がこのようなものとなる ように、必須収分である樹脂の種類や割合、その他の成 少の種類や身合を遊音波形であることが好まして

【0038】本発明の太陽電池層間用材料を硬化させる 方法としては、太陽電池層間用材料を構成する樹脂等の 種類により適宜選択することになるが、上記ラジカル硬 化型樹脂やイオン硬化型樹脂を必須とする場合、活性エ ネルギー線を照射することにより硬化させる方法、硬化 削等のラジカル発生剤、イオン発生剤等を添加すること により硬化させる方法、加熱することにより硬化させる 方法等が挙げられ、これらの中でも、活性エネルギー線 を照射することにより硬化させる方法、硬化剤等のラジ カル発生剤、イオン発生剤等を添加することにより硬化 させる方法が好適である。また、これらの方法を併用し てもよい。活性エネルギー線としては、紫外線、エキシ マレーザー、赤外線、可視光線等の光エネルギー;電子 線;y線、X線等の放射線が好適である。これらの中で も、光エネルギーを用いる方法が好ましく、より好まし くは、紫外線を用いることである。

【0039】また上記熱硬化型樹脂を必須とする場合、 本発明の太陽電池範囲用材料を加熱することにより硬化 させることになる。硬化条件としては、硬化剤の種類等 により適宜設定することになるが、硬化温度を発温以上 とすることが好ましい。より好ましくは、80 で以上で ある。硬化時間としては、30分以上が好ましく、ま た、48時間以内が好ましい。より好ましくは、60分 以上であり、また。6時間以内である。

【0040】次に、本発卵の太陽電池層間用材料の使用 形態について説明する。本発卵の太陽電池層間用材料 は、太陽電池を構成するものであり、該太陽電池として は、色素増密型太陽電池が好節である。なお、このよう な太陽電池は、通常では(1) 導電性支持体等、(2) 感光体をもつ半導体層(以下、感光層ともいう)。

(3)電荷移動層及び(4)対極を有し、電荷移動層が 封止材により封止されてなる構造を有することになる。 また、このような色素神感型太陽電池において封止材を 本発明の太陽電池層間用材料により形成してなるもの は、本発明の好ましい実施形態の1つである。

【0041】本発明の太陽電池層間用材料は、太陽電池 において上述したように封止材を形成するために用いら れる他、形態保持材、導線被覆材としても用いることが 可能であり、これらの形態も本発明の好ましい実施形態 である。なお、封止材とは、雷池材料のカパーとして封 止セル中の電荷移動層を構成する物質が漏洩することを 防止するため、特に電荷移動層のヨウ素や水等の溶剤の 進入を防止するために用いられる封止材や、導電性支持 体等の基材の周縁部を補強するための封止材を意味す る。形態保持材とは、ギャップ保持のための支持体(ス ペーサ)やモジュールの形態保持(接着的役割)に用い られるものを意味する。道線被覆材とは、封止セル中の 道線(金属)リードの封止や、大面積化で必要になる金 20 属線(集電配線)の封止(絶縁物)に用いられるもので ある。本発明の太陽雷池層間用材料は、色素増感型太陽 電池におけるこのような用途において好適に適用される ものであり、本発明の太陽電池層間用材料を用いてなる 色素増感型太陽電池もまた本発明の1つである。

【0042】本発明の太陽電池層間用材料を用いてなる 色素増感型太陽電池の一例について、図1~6を用いて 説明する。図1は、本発明の太陽電池層間用材料を封止 材として用いた例であり、電荷移動層が本発明の太陽電 池層間用材料により封止されてなる構造を有する色素増 30 感型太陽電池である。図2は、本発明の太陽電池層間用 材料を支持体(形態保持材)や封止材として用いた例で あり、電荷移動層が本発明の太陽電池層間用材料により 封止されてなる構造を有する色素増感型太陽電池であ る。図2の色素増感型太陽電池では、電荷移動層が、支 持体(形態保持材)及び封止材により封止されており、 支持体は、封止材(結合材)により対極や導電性支持体 等に接着されている。本発明の太陽雷池層間用材料は、 図2において、支持体又は封止材(結合材)に用いても よく、支持体及び封止材に用いてもよい。図3は、本発 40 明の太陽電池層間用材料を封止材、導線リードの封止 (導線被覆材) 及びギャップ保持のための形態保持材 (支持体)として用いた例である。また、図3に示すよ うに、本発明の太陽電池層間用材料は、形態保持材とし て、支持体どうしの接着や、支持体と対極、感光層又は 導電性支持体との接着に用いることができ、接着的役割 を発揮することになる。図4は、本発明の太陽電池層間 用材料を封止材及びギャップ保持のための形態保持材 (支持体) として用いた例である。図5は、本発明の太 陽電池層間用材料を封止材及びギャップ保持のための形 50

態保持材(支持体)として、また、金属リードの絶縁材 (導線被覆材)として用いた例である。図6 は、本発明 の太陽電池範囲材料を形態保持材「接着的投票」とし て用いた例であり、太陽電池を構成する各モジュール が、本発明の太陽電池層間用材料により透明基板上に固 定されている。なお、図1~6の形態を併用することも できる。

12

【0043】以下に、本発明の色素増感型太陽電池の構 成について説明する。本発明の色素増感型太陽電池は、 導電性支持体、感光体をもつ半導体層(感光層)、電解 質組成物を含有する電荷移動層及び対極を有する光電変 換素子から構成される。好ましくは図1~6に示すよう に、導電層、感光層、電荷移動層、対極導電層の順に積 層し、該感光層を色素によって増感された半導体微粒子 と該半導体微粒子の間の空隙に浸透した電荷輸送材料と から構成される光電変換素子である。電荷輸送材料は、 電荷移動層に用いる材料と同じ成分からなる。また色素 増感型太陽電池に強度を付与するために、導電層側及び /又は対極導雷層側に基板を設けてもよい。本明細書中 においては、導電層及び任意で設ける基板からなる層を 「導雷性支持体」、対極導電層及び任意で設ける基板か らなる層を「対極」と呼ぶ。このような光電変換素子を 外部回路に接続して仕事をさせるようにしたものが色素 増感型太陽電池である。なお図1~6中の導電層、対極 導電層、基板は、それぞれ透明導電層、透明対極導電 層、透明基板であってもよい。

【0044】関1~6に示于光電変換素子において、色素により網感された半導体微粒子を含む感光層に入射した光柱色素等を助起し、動起された色素等中の高エネルギーの電子が半導体微粒子の伝導帯に渡され、更に拡散により背楽地震に到ます。。このき色色素等の分子は酸化体となっている。光電気化学描述においては、準電層中の電子が外部回路で仕事をしながら対極導電層及び電荷移動層を経て色素等の酸化体に戻り、色素が単生する。 成光層は負傷として働く。それぞれの層の境界(例えば、導電層を感光層との境界、感光層と複層とが振り、それぞれの層の境界(例えば、導電層を感光層と変換界、感光層と直向移動層との境界、電荷移動層と列極薄電層との境界、感光層とつら立り、基本は、多面の構成成分とうしが相互に拡散能力としていてもよい。以下、各層につて詳細に説明する。

【0045】(1) 導電性支持体 響電性支持体としては、(1-1) 導電圏の単層からな るものであってもよく、(1-2) 導電圏及び基板の2 励からなものであってもよいが、強度や密制性が充分。 に係たれるような準電階を使用すれば、基板に达ずしも 必要でない。(1-1) の場合、導電間として金属のよ うに充分な強度が得られ、かつ導電性があるものを用い る。(1-2) の場合、感光側に薄電消を合き増電 を有する基板を使用することができる。導電剤として は、白金、魚、銀、ボアルミニウム、ロジウム、イング ジウム等の必能、炭素:インジウムースズ根合能に物。 酸化スズにフッ素をドープしたもの等の尊電性金属酸化 物等が好適である。導電層の厚さとしては、0.02~ 10μm程度が好ましい。

【0046】上記學電性支持体は、表面抵抗が低い程と よく、好ましくは表面抵抗が1000~□以下であり、 より好ましくは100~□以下である。表面抵抗の下限 としては、0、10~回程度であることが好適である。 【0047】上記學電性支持体働から光を照射する場合 には、導電性支持体は実質的に透明であることが好まし い。実質的に透明であるとは光の透過率が10%以上で あることを意味し、50%以上であることが好ましく、 70%以上がより好ましく。

【0048】上記透明導電性支持体としては、ガラス又 はプラスチック等の透明基板の表面に導電性金属酸化物 からなる透明導電層を塗布又は蒸着等により形成したも のが好適である。中でも、フッ素をドーピングした二酸 化スズからなる導電層を低コストのソーダ石灰フロート ガラスでできた透明基板上に堆積した導電性ガラスが好 ましい。また低コストでフレキシブルな色素増感型太陽 雷油とするには、透明重合体フィルムに導電層を設けた 20 ものを用いることが好ましい。透明重合体フィルムの材 料としては、テトラアセチルセルロース(TAC)、ポ リエチレンテレフタレート(PET)、ポリエチレンナ フタレート (PEN)、シンジオクタチックポリスチレ ン(SPS)、ポリフェニレンスルフィド(PPS)、 ポリカーボネート (PC)、ポリアリレート (PA r)、ポリスルフォン(PSF)、ポリエステルスルフ ォン(PES)、ポリエーテルイミド(PEI)、環状 ポリオレフィン、プロム化フェノキシ等が好適である。 充分な透明性を確保するため、導雷性金属酸化物の途布 30 量はガラス又はプラスチックの支持体 $1 m^2$ 当たり0. 01~100gとすることが好ましい。

【0049】本発明においては、透明導電性支持体の抵 抗を下げる目的で金属リードを用いることが好ましい。 金属リードの材質としては、アルミニウム、卵、卵、 金、白金、ニッケル等の金属が好適であり、特にアルミ ニウム及び超功がましい。金周リードは、透明技能に基 着、スパッタリング等で設置し、その上にフッ素をドー プした酸化ス欠以は170限からなる透明導電間を設け るのが好適である。また透明等電間を透明見板に設けた 後、透明導電旭上に金属リードを設置するのも好まし い。金属リード設置による人料光圏の作に好すましくは 10%以内、より好ましくは1~5%とする。

[0050] (2) 感光体をもつ半導体層 (感光層) 本発明の色素増感型太陽電池において、感光層としては 色素によって増感された微粒子半導体を含することが 好ましい。半導体はいわゆる感光体として作用し、光を 吸収して電荷分離を行い、電子と正孔を生ずる。色素増 感された半導体微粒子では、光吸収及びこれによる電子 及び正孔の発生は主として他系において起こり、半導体 86 機粒子はこの電子を受け取り、伝達する役割を担う。 【0051】 上記半導体機粒子としては、シリコン、ゲ ルマニウム等の単体半導体: IIIーV系合合物半導 体:機化物、硫化物、セレン化物等の金属カルコゲニ ド:チタン酸ストロンチウム、チタン酸カルシウム、チ タン酸ナトリウム、チタン酸のリウム、ニュイブ酸カリウ ム等のベロブスカイト構造を作する化合物等が好適であ る。これらの中でも、金属カルコゲニドから構成される ものが好ましい。

【0052】上記金扇カルコゲニドとしては、チタン、スズ、亜鉛、鉄、タングステン、ジルコニウム、ハフニウム、ストロンチウム、インジウム、セリウム、イットリウム、ランタン、パナジウム、ニオブ又はタンタルの酸化物:カドミウム、亜鉛、鉛、銀、アンチモン又はゼスマスの硫化物:カドミウム、カスは鉛のセンと作物:カドミウムのテルル化物等が介着である。他の化合物半導体としては亜鉛、ガリウム、インジウム、カドミウム等のリン化物:ガリウムーヒ素又は第一インジウムの他と物等が介着である。

【0053】本発明に用いる半導体としては、好ましくは、Si、TiO2、SnO2、Fe2O3、WO3、ZnO、Nb2O5、CdS、ZnS、PbS、BlzSa、CdSe、CdTe、GaP、InP、GaAs、CuIn5z以はCuInSezであり、より好ましては、TiO2、SnO2、Fe2O3、WO3、ZnO、Nb2O5、CdS、PbS、CdSe、InP、GaAs、CuIn5z以はCuInSezであり、特に行ましてはTiO2である。【0054】本発明に用いる半導体は単結晶でも多結晶でもよい。変換効率の観点からは単結晶が好ましいが、製造コスト、原材料権保、エネルギーベイバックタイム等の観点が自体を発品が研究としいが、製造コスト、原材料権保、エネルギーベイバックタイム等の観点が自体を発品が研究としいが、製造コスト、原材料権保、エネルギーベイバックタイム等の観点が自体を発品が研究としいが、製造コスト、原材料権保、エネルギーベイバックタイム等の観点が自体を発品が研究としい。

【0055】上記半導係執力の設備は、一般にnmμ mのオーダーであるが、投影症積を円に換算したとき の直径から求めた一次性ラの半均径をかう~200 nm であることが好ましく、8~100 nmがより好まし い。また後述する分散施中の半導体執性子(二次粒子) の平均径は100~100 μmが好ましい。また、 粒径分布の異なる2 種類以上の競技子を混合してもよ く、この場合かとい数での平均サイズは5 nm以下であ るのが好ましい。入射光を散乱させて光掃後率を向上さ せる目的で靱径の大きな、例えば、300 nm程度の半 導体数子を混合してもよい。

【0056】上記半導体微粒子の作製法としては、作花 済夫「ゾルーゲル法の科学」(1998年) アグネ 承風 は、技術情報協会の「ゾルーゲル法による構規コーティ ング技術」(1995年) 等に記載のゾルーゲル法、杉 本忠夫「新合成法ゲルーゾル法による単分徴粒子の合成 とサイズ形態制御」、まてりあ 第35巻 第95(1 996年) p. 1012~1018に記載のゲルーゾル 法が好ましい。またDegussa社が開発した塩化物 を酸水素塩中で高温加水分解により酸化物を作製する方 法も好ましい。

【0057】上記半導体微粒子が酸化チタンの場合、上 記ゾルーゲル法、ゲルーゾル法、塩化物の酸水素塩中で の高温加水分解法はいずれも好ましく、更に、清野学

「機化チタン 物性と応用技術」 (1997年) 技権党 出版に記載の縮敏法及び塩素法を用いることもできる。 加えてゾルーゲル法として、バーブらのジャーナル・オ ブ・アメリカン・セラミック・ツサエティー 第80巻 第12号 (1997年) p. 3157~3171に記 載の方法や、バーンサイドらのケミカル・マテリアルズ 第10巻 第9号p. 2419~2425に記載の方 法も好ましか。

【0058】上記半導体微粒子層を形成する際、半導体 機粒子を導電性支持体上に築作するには、半導体機粒子 の分散液又はコロイド溶液を導電性支持体上に薬作する 方法の他に、上途のソルーゲル法等を使用することもで きる。色素消感型太陽電池の風産化、半導体機粒子液の 物性、導電性支持体の膨通性等を考慮した場合、温式の 製膜方法が比較的有利である。温式の製膜方法としては 球布法及行用原法が代表的である。

【0059】上記半導体機能子の分散液を作製する方法 としては、上途のゾルーゲル法の他に、乳鉢ですり潰す 方法、ミルを使って粉砕しながら分散する方法、半導体 を合成する際に溶線中で機能子として析出させそのまま 使用する方法等が好適である。

【0060】上記分散媒としては、水又は各種の有機溶 媒が使用可能であり、有機溶媒としては、メタノール、 エタノール、イソプロピルアルコール、ジクロロメタ ン、アセトン、アセトニトリル、酢酸エチル等が好適で ある。これらは単独で用いてもよく、2種以上を併用し てもよい。分散の際、必要に応じて重合体、界面活性 剤、酸、キレート剤等を分散助剤として用いてもよい。 【0061】上記塗布方法としては、アプリケーション 系としてローラ法、ディップ法等、メータリング系とし てエアーナイフ法、ブレード法等、またアプリケーショ ンとメータリングを同一部分にできるものとして、特公 昭58-4589号公報に開示されているワイヤーバー 法、米国特許2681294号明細書、米国特許276 40 1419号明細書、米国特許2761791号明細書等 に記載のスライドホッパー法、エクストルージョン法、 カーテン法等が好ましい。また汎用機としてスピン法や スプレー法も好ましい。湿式印刷方法としては、凸版、 オフセット及びグラビアの3大印刷法をはじめ、凹版、 ゴム版、スクリーン印刷等が好ましい。これらの中か ら、液粘度やウェット厚さに応じて、好ましい製膜方法 を選択する。

【0062】上記半導体微粒子の分散液の粘度は半導体 微粒子の種類や分散性、使用溶媒種、界面活性剤やパイ 50 ンダー等の添加剤により大きく左右される。高粘度液 (例えば、0.001~50Pa・s)ではエクストル ・ジョン法・キャスト法、スクリーン印刷法等が穿まし い。また低粘度液(例えば、0.01Pa・s以下)で はスライドホッパー法、ワイヤーバー法又はスピン法が がましく、均一な暇にすることが可能である。なお、あ 名程度の確市能があれば低速度で場合で生エクストル ージョン法による塗布は可能である。このように塗布液 の粘度、染布量、支持体、塗布速度等に応じて適宜混式 製販方法を選択すればよい。

【0063】上記半導体微粒子の層は単層に限らず、粒 経の適った半導体微粒子の分配液を多層強化したり、維 動が異なる半導体微粒子では異なるパインター、添加 剤)を含有する塩布層を多層強布したりすることもでき る。一度の塗布で振厚が不足の場合にも多層を布は有効 である。多層塗布にはエクストルージョン法又はスライ ドホッパー法が適している。また多層塗布をする場合は 同時に多層を塗布してもよく、数回から十数同順次重ね 塗りしてもよい。更に順次重ね塗りする場合にはスクリ 一少印刷能と好ましく使用できる。

【0064】一般に半導体微粒子層の厚さ(遠光層の厚さと同じ)が厚くなるほど単位投影面積当たりの担持色 ま屋が増えるため光の補種サポカ南くなるが、生成した電子の拡散距離が増すため電荷再結合によるロスも大きく なる。したがって、半導体微粒子層の好ましい厚さは 0.1~100μmである。毎葉増盛型大幅電池は用いる場合、半導体微粒子層の厚さは1~30μmが写ましく、2~25μmがより好ましい。半導体微粒子の支持 化1m*当たり速作職は0.5~400gがましく、

5~100gがよりが手しい。 【0065】上記半導体機数子を導電性支持体上に塗布 した後で半導体機能子とうしを電子的に接触させるとと もに、連携強度の向上や支持体との密着性を向上させる ために、加熱処理するのが好ましい。好ましい加熱温度 としては、40℃以上であり、また、7000不満であ る。より好ましくは100℃以上であり、また。600 で以下である。また加熱時間は10分~10時程度である。ボリマーフィルムのように融点や軟化点の低い支 持体を用いる場合。高温処理は支持体の劣化を招くため 好ましくない。またコメトの組立からもできる即り低温 であるのが好ましい。低温化は先に述べた5 nm以下の 小さい半導体機粒子の併用や鉱鹼の存在下での加熱処理 等により可能とかる。

【0066】上記加熱処理後、半導体微粒子の表面積を 増大させたり、半導体機粒子近傍の純度を高め色素から 半導体粒子への電子注入効率を高めたりする目的で、四 塩化チタン水溶液を用いた化学メッキや三単化チタン水 溶液を用いた電気化学的メッキ処理を行ってもよい。

【0067】上記半導体微粒子は多くの色素を吸着する ことができるように表面積の大きいものが好ましい。こ

1.10.

のため半導体微粒子の層を支持体上に塗布した状態での 表面額は、投影面積に対して10倍以上であるのが好ま しく、100倍以上であるのがより好ましい。上限とし ては、通常1000倍程度である。

【0068】本発明の色素増感型太陽雷池の感光層に用 いる色素としては、種々の可視光領域及び赤外光領域に 吸収をもつものであって、半導体層に強固に吸着させる ために、色素分子中にカルボキシル基、アルコキシ基、 ヒドロキシル基、ヒドロキシアルキル基、スルホン酸 基、エステル基、メルカプト基、ホスホニル基等のイン ターロック基を有するものが好ましい。インターロック 基は、励記状態の色素と半導体の伝導帯との間の電子の 移動を容易にする電気的結合を提供するものである。こ のような色素としては、ルテニウムビビリジン系色素、 アゾ系色素、キノン系色素、キノンイミン系色素、キナ クリドン系色素、スクアリリウム系色素、シアニン系色 素、メロシアニン系色素、トリフェニルメタン系色素、 キサンテン系色素、ポリフィリン系色素、フタロシアニ ン系色素、ベリレン系色素、インジゴ系色素、ナフタロ シアニン系色素等が好適である。また、本発明において 20 は、光雷変換の波長域をできるだけ広くするとともに変 換効率を上げるため、2種類以上の色素を混合してもよ い。この場合、光源の波長域と強度分布に合わせるよう に混合する色素及びその割合を選ぶのが好ましい。

【0069】上記半導体微粒子に色素を吸着させ方法と しては、色素の溶液中に良く乾燥した半導体微粒子層を 有する導電性支持体を浸漬するか、色素の溶液を半導体 微粒子層に塗布する方法が好適である。なお、色素の溶 液とは、光増感剤として機能する上記色素を溶媒に溶解 したものである。前者の場合、浸漬法、ディップ法、ロ 30 ーラ法、エアーナイフ法等が好適である。なお浸漬法の 場合、色素の吸着は室温で行ってもよいし、特開平7-249790号公報に記載されているように加熱還流し て行ってもよい。また後者の塗布方法としては、ワイヤ ーパー法、スライドホッパー法、エクストルージョン 法、カーテン法、スピン法、スプレー法等が好適であ り、印刷方法としては、凸版、オフセット、グラビア、 スクリーン印刷等が好滴である。溶媒は、色素の溶解性 に応じて適官選択でき、メタノール、エタノール、t-ブタノール、ベンジルアルコール等のアルコール類:ア 40 セトニトリル、プロピオニトリル、3-メトキシプロピ オニトリル等のニトリル類;ニトロメタン;ジクロロメ タン、ジクロロエタン、クロロホルム、クロロベンゼン 等のハロゲン化炭化水素; ジエチルエーテル、テトラヒ ドロフラン等のエーテル額;ジメチルスルホキシド; N, N-ジメチルホルムアミド、N, N-ジメチルアセ タミド等のアミド類: N-メチルピロリドン: 1.3-ジメチルイミダゾリジノン: 3-メチルオキサゾリジノ ン;酢酸エチル、酢酸プチル等のエステル類;炭酸ジエ チル、炭酸エチレン、炭酸プロピレン等の炭酸エステル 50 類;アセトン、2 — ブタノン、シクロヘキサノン等のケトン類:ヘキサン、石油エーテル、ペンゼン、トルエン等等の度化水素やこれらの混合溶媒等が好適である。これらは単独で用いてもよく、2 種以上を併用してもよ

【0070】上記色素の溶液の粘度についても、半導体

18

微粒子層の形成時と同様に、高粘度液(例えば、0.0 01~50Pa・s)ではエクストルージョン法、各種 印刷法等が好適であり、また低粘度液(例えば、0.1 Pa・s以下) ではスライドホッパー法、ワイヤーバー 法又はスピン法が好適であり、いずれも均一な膜にする ことが可能である。このように色素の途布液の粘度、途 布量、導電性支持体、塗布速度等に応じて、適宜色素の 吸着方法を選択すればよい。途布後の色素吸着に要する 時間は、量産化を考えた場合なるべく短い方がよい。 【0071】また、未吸着の色素の存在は素子性能の外 乱になるため、吸着後速やかに洗浄により除去するのが 好ましく、湿式洗浄槽を使い、アセトニトリル等の極性 溶剤、アルコール系溶剤等の有機溶媒で洗浄を行うのが 好ましい。また色素の吸着量を増大させるため、吸着前 に加熱処理を行うのが好ましい。加熱処理後、半導体徴 粒子表面に水が吸着するのを避けるため、常温に戻さず に40~80℃の間で素早く色素を吸着させるのが好ま

【0072】上記色素の全使用量としては、導電性支持 体の単位表面膜(1m²)当たり0、01~100mm 01とすることが守ましい。また色素の半導体数割子に 対する吸着量は、半導体微粒子1g当たり0、01~1 mmo1とすることがすましい。これにより、半導体に おりる地域効果が充分に得られる。色素が少なすぎると 地域効果が不充分となり、また色素が多すざると半導体 に付着していない色素が浮遊し、増感効果を低減させる 原因となる。また、会合のような色素どうしの相互作用 を低減する目的で、無色の疎水性化合物を半導体機粒子 に共戦者させてもよい、共吸着させる疎水性化合物としては、カルボキシル基を有するステロイド化合物(例え ば、ケノデオキシコール酸)等が背流である。また紫外 独剛収割を用せることもできる。

【0073】 記述感光体をもつ半導体層においては、余 分な色素の除去を促進する目的で、色素を吸着した後に アミン類を用いて半導体微粒子の表面を処理してもよ い。アミン類としては、ピリジン、4-t - プチルビリ ジン、ボリビニルビリジン等が好適である。これらが液 体の場合はそのまま用いてもよいし、有機溶媒に溶解し て用いてもよい。

【0074】(3)電荷移動層

本発明の色素増感型太陽電池における電荷移動層で使用 される電解質としては、酸化体と週元体からなる一対の 酸化還元系構成物質が溶媒中に含まれていればよいが、 酸化体と週元体とが同一電荷をもつ酸化還元系構成物質 が好ましい。本明細書における、酸化還元系構成物質と は、酸化環元反応において、可逆的に酸化体及び環元体 の形で存在する一対の物質を意味する。本発明で使用で きる酸化還元系構成物質としては、塩素化合物-塩素、 ヨウ素化合物-ヨウ素、臭素化合物-臭素、タリウムイ オン(III)ータリウムイオン(I)、水銀イオン (II) -水銀イオン(I)、ルテニウムイオン(II ールテニウムイオン(II)、銅イオン(II) ー 銅イオン(1)、鉄イオン(111) -鉄イオン(1 I)、パナジウムイオン(III)ーパナジウムイオン 10 (11)、マンガン酸イオン一過マンガン酸イオン、フ ェリシアン化物ーフェロシアン化物、キノンーヒドロキ ノン、フマル酸-コハク酸等が好適である。これらの中 でも、ヨウ素化合物ーヨウ素が好ましく、ヨウ素化合物 としては、ヨウ化リチウム、ヨウ化カリウム等の金属ヨ ウ化物;テトラアルキルアンモニウムヨージド、ピリジ ニウムヨージド等のヨウ化4級アンモニウム塩化合物; ヨウ化ジメチルプロピルイミダゾリウム等のヨウ化ジイ ミダゾリウム化合物が特に好ましい。

媒としては、酸化還元系構成物質を溶解しイオン伝導性 に優れた化合物が好ましく、水性溶媒であってもよく、 有機溶媒であってもよいが、酸化還元系構成物質をより 安定するため、有機溶媒が好ましい。有機溶媒として は、ジメチルカーボネート、ジエチルカーボネート、メ チルエチルカーボネート、エチレンカーボネート、プロ ピレンカーボネート等のカーボネート化合物; 酢酸メチ ル、プロピオン酸メチル、ガンマープチロラクトン等の エステル化合物;ジエチルエーテル、1,2-ジメトキ シエタン、1、3-ジオキソシラン、テトラヒドロフラ ン、2-メチルーテトラヒドラフラン等のエーテル化合 物: 3-メチル-2-オキサゾジリノン、2-メチルピ ロリドン等の複素環化合物; アセトニトリル、メトキシ アセトニトリル、プロピオニトリル等のニトリル化合 物;スルフォラン、ジジメチルスルフォキシド、ジメチ ルフォルムアミド等の非プロトン性極性化合物等が好適 であり、1種又は2種以上を用いることができる。これ らの中でも、エチレンカーボネート、プロピレンカーボ ネート等のカーボネート化合物:3-メチル-2-オキ サゾジリノン、2-メチルピロリドン等の複素環化合 物:アセトニトリル、メトキシアセトニトリル、プロピ オニトリル等のニトリル化合物が特に好ましい。

【0076】上記電荷移動層としては、液体、固体、ゲ ル状電解質のいずれも使用することができる。特に光電 変換効率の向上には液体電解質が好ましい。また、液体 電解質を多孔質支持体に充填することにより、電解質溶 液の漏液を防止することができる。このような目的に使 用可能な多孔質支持体としては、例えば、濾過フィルタ (メンプランフィルタ)や、一次電池や二次電池等に 用いられるセパレーター又は不織布等を好適に適用する ことができる。特に、多孔質支持体面に対し法線方向に 貫通した空隙をもつ場合、多孔質支持体自体が酸化還元 対の移動を開書する作用が少ないため高い光雷変換効率 が得られる。

20

【0077】上記多孔質支持体として使用される濾過フ ィルターの材質としては、ガラス繊維、ポリプロピレ ン、ポリエチレン等のポリオレフィン類、ポリエチレン テレフタレート等のポリエステル類等からなるものが好 ましい。

【0078】上記多孔質支持体として使用されるセパレ ーター又は不織布の材質としては、ポリプロピレン、ポ リエチレン等のポリオレフィン額:ポリエチレンテレフ タレート等のポリエステル類;ポリアミド類;ポリフェ リレンスルフィド;ビニヨン(塩化ピニルと酢酸ビニル の共重合物);ポリイミド;ビニロン(アセタール化ポ リビニルアルコール)等が好適である。これらの材質の セパレーター又は不識布は、単独で用いてもよく、2種 以上を複合化して用いてもよい。ここで、「複合化した 不織布」とは、2種類の材料をプレンド後に溶融結系/ 【0075】 上記電解質を溶解するために使用される溶 20 延伸したプレンド延伸型不織布、又は、2種類の材料の 一方を芯とし、他方がその周囲を被覆してなる複合繊維 (コンジュゲート型繊維) を熱融着してなる芯鞘構造型 の不織布である。例えば、芯成分に高融点のポリプロピ レンを用い、鞘成分に低融点のポリエチレンを用いた熱 融着タイプの不織布がよく知られている。

> 【0079】上記多孔質支持体の厚みは感光層と対極と の面間隔で規定される。しかし、一般的に、多孔質支持 体の厚みは、1mm以下が好ましい。多孔質支持体の厚 みが1mmを超えると、電荷移動層中の酸化還元対の移 動距離が長くなり、酸化還元対を媒介とした電子の授受 反応が律速となり光電変換効率が低下するおそれがあ

【0080】上記感光層と対極との空間をなくすこと は、多孔質支持体による保持機構の働かない電荷移動層 部分をなくすことになり、そのこと自体は液漏れ防止及 び信頼性向上につながる。しかしながら、感光層と対極 との空間をなくすために、その組立工程おいて両極を互 いに強く押しつけ合うことは、感光層及び対極を機械的 に破壊し、光雷変換効率を低下させる要因となることも ある。そのため、感光層と対極との間には少なくとも1 um以上の間隔を設け、該感光層及び対極の機械的破壊 を防ぐことが好ましい。従って、感光層と対極との間に

とが好ましい。 【0081】本発明の色素増感型太陽雷池における雷荷 移動層を構成するために多孔質支持体を使用する場合。 その多孔質支持体としては、ポロシティー(気孔率)が 30~80%である多孔質素材を使用することが好まし い。30%未満であると、多孔質支持体が酸化還元対の

移動を妨げる効果が大きくなり、酸化還元対を媒介とし

設ける多孔質支持体の厚みとしては1μm以上とするこ

た電子の授受反応が伴速となり光電変換効率が低くなる おそれがある。80%を超えると、孔径が大きくなり、 毛管作用による電解資溶液保持能力が低下し、充分な液 漏れ抑制効果が得られなくなるおそれがある。

【0082】(4)対極

上記対極は、光電変換素子を包束物感要と規能等態とした ときに正確として作用するものである。対極は上記導電 性支持体と同様に、導電性材料からなる対極弾電源の単 層構造でもよいし、対極導電船と支持基板から構成され ていてもよい、対極導電船に用いる導電材としては、白 金 金 銀 銀 アルミニウム、ロジウム、インジウム 等の金郎:炭素:インジウムースズ複合機化物、酸化ス ズエフッ表をトープしたものか等電性金属酸化物物が 好適である。対極に用いる支持基板としては、ガラス基 板又はプラスチック基板が好適であり、これに上記や導 電源を依有収ま成着して用いる。対極関係の所ととし では、3 nm~10 μ mが好ましい。対極導電隔が金属 要である場合、その原さは好ましくは5 μ m以下であ り、更に好ましくは5 nm~3 mである。

[0083]上記場電性支持体と対極のいずれか一方又 20 は両方から光を照射してよいので、感光層に光が到達力 たためには、導電性支持体と対極のうち少なくとも一方 が実質的に通用でさればよい。発電効率の加上の観点か らは、導電性支持体を通明にして光を導電性支持体制か らは、するかが穿ましい。このような対極として は、金飯又は導電性の酸化物を蒸着したガラス又はプラ スチック、金属環察等が好富である。

【0084】上記対極を設ける手順としては、(イ)電 荷移動圏を形成した後でその上に設ける場合と、(ロ) 感光層の上にスペーサを介して対極を配置した後でその 空隙に電解質溶液を充填する場合の2通りある。(イ) の場合、電荷移動層上に直接導電材を塗布、メッキ又は 蒸着(PVD、CVD)するか、導電層を有する基板の 導電層側を貼り付ける。また(ロ)の場合、感光層の上 に支持体 (スペーサ) を介して対極を組み立てて固定 し、得られた組立体の開放端を電解質溶液に浸漬し、毛 細管現象又は減圧を利用して感光層と対極との空隙に雷 解質溶液を浸透させる。また、導雷性支持体の場合と同 様に、特に対極が透明の場合には対極の抵抗を下げる目 40 的で金属リードを用いるのが好ましい。なお、好ましい 金属リードの材質及び設置方法、金属リード設置による 入射光量の低下等は導電性支持体の場合と同じである。 【0085】(5)その他の層

本発明の色素増感型太陽電池においては、上述した (1) 導電性支持体、(2) 感光層、(3) 電荷移動層

及び(4) 対極以外に、電極として作用する導電性支持 体及び対極の一方又は両方に、保護原、反射防止障等の 機能性層等を設けてもよい。このような機能性層を多層 に形成する場合、同時多層塗布法や液火塗布法を利用で 90 きるが、生産性の観点からは同時多層塗布法が好ましい。同時多層落布法では、生産性及び塗膜の均一性の観点からスライドキッグー法やエクストルージョン法が適している。これらの機能性層の形成には、その材質に応じて蒸着法や眠り付け法等を用いることができる。まな対極、事情を持たし感光層の間に観答な半導体の薄膜層を下塗り層として輸送しておくこともできる。下途り層の材料は好ましくば「10、2、0の人び「火はNb20であり、更に好ましくは「10、2、0人び「火はNb20であり、更に好ましくは「10、2、0人び「火はNb20であり、更に好ましくは「10、2、0人び「火はNb20であり、更に好ましくは「10、2、0人び「火はNb20であり、下途り層は目ectroのように高速されているスプレーバイロリシス話により強速することができる。下途り層の好ましい展別は5 nm以上であり、また、10 0 0 m以下である。より好ましくは、10 nm以下である。より好ましくは、10 nm以下である。より好ましくは、10 nm以下である。より好ましくは、10 nm以下である。より好ましくは、10 nm以下である。より好ましくは、10 nm以下である。より好ましくは、10 nm以下である。より好ましくは、10 nm以下である。より好ましくは、10 nm以下である。より好ましくは、10 nm以下である。よりないのに対している。

22

【0086】上途のように、色素物感型太陽電池を構成 る光電変換素子の内部構造は目的に合わせ様々な形態 が可能である。大きく2つに分ければ、両面から光の入 射が可能な構造と、片面からのみ可能な構造が可能であ る。図1~図61に本発明に好ましく適用できる光電変換 素子の内部構造を例示する。

m以上であり、また、500nm以下である。

【0087】図1及び図2は、導電層(導電性支持体) と対極導電層との間に、感光層と、電荷移動層とを介在 させたものであり、対極導電層上には更に基板が配置さ れて対極を形成している。図3、図4及び図5は、導電 層(導電性支持体)上に感光層、電荷移動層及び対極導 電層をこの順に設け、更に基板を配置したものであり、 ギャップ保持のために形態保持材 (支持体) が用いられ ている。図3においては、電荷移動層中に一部導線リー ドが設けており、これらは導線被覆材により封止されて いる。図4においては、導電層上(感光層中)及び対極 導電層中に一部金属リードが設けている。図5において は、導電層上(感光層中)及び対極導電層中に一部金属 リードが設けており、感光層中の金属リードは導線被覆 材により封止されている。図1~5においては、導電 層、対極導電層や基板を透明とすることにより、片面又 は両面から光が入射する構造となっている。図6は、透 明基板の一方の面上に透明な導電層を有し、この上に更 に感光層、電荷移動層及び対極導電層を設けたセルがモ ジュール化されている。図6においては、太陽電池を構 成する各モジュールが、接着的役割を有する形態保持材 により透明基板上に固定されている。図6においてはま た、透明基板の他方の面には反射防止層 (図示せず) が 設けられていてもよい。このような構造とする場合、入 射光の利用効率を高めるために、感光層の面積比率(光 の入射面である基板側から見たときの面積比率)を大き くするのが好ましい。なお、図1~6の形態を併用する こともできる。

【0088】本発明の色素増感型太陽電池は、上述した

光電変換素子に外部回路で仕事をさせるようにしたものである。このような色素増速型太陽電池は構成物の劣化や内容物の相能を防止するために、側面を重合体や接着 割等で計止するのが好ましか。この際、本発明の太陽電 監管側用材料を用いて身止することが好ましく、電荷移動層を構成する電解質が密体、固体、ゲル状のいずれであっても、その漏洩を充分に防止し、しかも長期間の信頼性を確保することができる。導電性支持体の対解にリードを介して接続される外部回路自体は公知のものでよい。なお、本発明の企業物感型太陽電池においては、このようた計れ以分に、導電性支持体の影材の開發部であた。大量に大路の計止材や、導線被関材、形成保持材等を、上述した太陽電池網間用材料を用いて形成してもよい。

【0089】本発明の太陽電池側間用材料はまた、色素 均感型太陽電池以外の太陽電池にも好適に用いることが できる。本実明の太陽電池網囲材料を用いてなる光電 変換素子をいわゆる太陽電池に適用する場合、そのセル 内部の構造とは未がほこ注と「色素財像型人福電池の構 造と同じである。以下、本発明の太陽電池網間用材料を 和いてなる光電変換素子を用いた太陽電池のドジュール 構造について説明する。

【0090】上記太陽電池は、従来の太陽電池モジュールと基本的には同様のモジュール構造をとりうる。太陽電池モジュールは一般的には金属、セラミック等の支持基板の上にせかが構成され、その上を充填樹脂や保護ガラス等で覆い、支持基板のは強力で大き取り込む構造をとるが、支持基板に強化ガラス等の透明材料を用い、その上にセルを構成してモン透明の支持基板制から光を取り込む構造とすることも可能である。具体的には、スーパーストレートタイプ、サフストレートタイプ及びボッティングタイプと呼ばれるモジュール構造、アモルファスシリコン大陽電池等で用いられる基板一体型モジュール構造等が知られている。太陽電池も使用目的や使用場所及び環境により、適宜これらのモジュール構造を選択できる。

【0091】代表的なスーパーストレートタイプ又はサ プストレートタイプのモジュールは、片側又は両側が透 明で反射防止処理を施された支持基板の間に一定間隔に セルが配置され、隣り合うセルどうしが金属リード又は 40 フレキシブルを観等によって接続され、外縁部に集団電 極が配置されており、発生した電力が外部に取り出され る構造となっている。基板とセルの間には、セルの保護 や集電物等向したのか、目時に応じエチレンピールアセ テート(EVA)等様々な種類のプラスチック材料をフ ィルム又は元境報胎の形で用いてもよいが、上記太陽電 池側用用材を好通に適用することができる。また、外 部からの簡繁が少ないところ等表面を硬い素材で覆う必 要のない場所において使用する場合には、表面保護問 を適用プラステックフィルムで構成し、又は、達話元頻樹 脂を硬化させることによって保護機能を付与し、片側の 支持基板をなくすことが可能である。支持基板の周囲 は、内部の部別及びモジュールの剛性を確保するため金 属製のフレームでサンドイッチ状に固定し、支持基板と フレームの間は対止材料で影かシールする。また、セル そのものや支持基板、充填材料及び封止材料に可強性の 素材を用いれば、曲面の上に太陽電池を構成することも できる。

24

【0092】上記スペーストレートタイプの太陽電池 モジュールは、例えば、基板供給装置から送り出される プロント基板をベルトコンペイ等で報送しながら、その 上にセルを封止材料一セル間接続用リード線、背面封止 材料等と共に幅気配層した後、背面基板又は背面カバー を乗り、外縁部にフレームをセットして作製することが できる。

【0093】一方、サプストレートタイプの場合、基礎 供給装置から送り出された支持基板をベルトコンペヤ等 で搬送しながら、その上にセルをセル間接続用リード 線、封止材料等と共に順次額層した後、プロントカバー を乗せ、周線部にフレームをセットして作製することが できる。

【0094】本発明の太陽電池層間用材料を用いてなる 光電変換素子として、基板一体型モジュール化した構造 を有するもの場合について図めを用いて設明する。図6 は、透明な基板の一方の面上に透明な導電層を有し、こ の上に更に色素吸着下10½を含有した感光層、環境時 動層及分財極電温を設けたせいポモジュールでされて おり、透明基板の他方の面には反射防止層(図示せず) が設けられている構造を有する。このような構造とする 場合、入射光の利用効率を高めるために、感光層の面積 比率(迷の入射面である基板側から見たときの面積比

【0096】以下に、その他の部材や工程について説明 する。上記対止材料としては、上述した太陽電池層間用 材料を用いることが好適であるが、目的に応じて液化 V A (エチレンピニルアセテート)、フィルル-状足 V A、フッ化ピニリデン共重合体とアクリル樹脂の混合物 等を使用することもできる。モジュール外縁と周縁を囲 セプレームとの間は、耐候性及び防湿性が高い封止材料 を用いるのが好ましく、上述入障電池層間用材料は、こ のような封止材料としても好適である。また、透明フィ ラーを封止材料に混入して強度や光透過率を上げること ができる。

【0097】上記封止材料をセル上に固定するときは、 材料の物性に合った方法を用いる。フィルム状の材料の 場合はロール加圧後加熱密着、真空加圧後加熱容着等、 液又はペースト状の材料の場合はロールコート、パーコ ート、スプレーコート、スクリーン印刷等の様々な方法 が使用可能である。

【0098】上記支持基板としてPET、PEN等の可 10 操性素材を用いる場合は、ロール状の支持体を繰り出し でその上に中心を構成した後、上記の方法で連接して身 止層を観層することができ、高い生産性が得られる。 【0099】上記太陽電池においては、発電効率を上げ なために、モジュールの光度の込み側の基板(一般的に は強化ガラス)の表面には反射防止処理が施される。反 射防止処理方法としては、反射防止拠手が違される。反 射防止処理方法としては、反射防止拠乏ラミネートする 方法及び反射防止処理方法としては、反射防止頻 方法及び反射防止燃をコーティングする方法がある。また、それの表面をグルーピング又はテクスチャリング等 の方法で処理することによって、入射した光の利用効率 20 を高めることが可能である。

【0100】上記太陽電池において、発電効率を上げる ためには、光を損失なくモジュール内に取り込むことが 最重要であるが、光電変換層を透過してその内側まで到 達した光を反射させて光電変換層側に効率良く戻すこと も重要である。光の反射率を高める方法としては、支持 基板面を鏡面研磨した後、AgやAl等を蒸着又はメッ キする方法、セルの最下層にA1-Mg又はA1-Ti 等の合金層を反射層として設ける方法、アニール処理に よって最下層にテクスチャー構造を作る方法等がある。 【0 1 0 1 】また、発電効率を上げるためにはセル間接 続抵抗を小さくすることが、内部電圧降下を抑える意味 で重要である。セルどうしを接続する方法としてはワイ ヤーボンディング、導電性フレキシブルシートによる接 続が一般的であるが、導電性粘着テープや導電性接着剤 を用いてセルを固定すると同時に**電気的に接続する**方 法、導電性ホットメルトを所望の位置にパターン塗布す る方法等もある。

【0102】 ボリマーフィルム等のフレキシブル支持体 を用いた太陽電池の場合、ロール状の支持体を送り出し ながら上述の方法によって順次セルを形成し、所望のサ イズに切断した後、周線部をフレキシブルで防湿性のあ

る素材でシールすることにより電池本体を作製できる。 また、Solar Energy Materials and Solar Cells、4.8、p. 383 — 391に記載の「SCAF」とよばれるモジュール構造 とすることもできる。更に、フレキシブル支持を用い 大脳電池は、曲面ガラス等に接着図位じて使用すること とできる。以上のように、使用目的や使用環境に合わ せて様々な形状・機能をもつ人陽電池を製作することが できる。

26

0 [0103]

【実施例】以下に実施例を挙げて本発明を更に詳細に説 明するが、本発明はこれらの実施例のみに限定されるも のではない。なお、特に断りのない限り、「部」は、 「電量部」を意味するものとする。

【0104】前駆体樹脂Aの製造

- (1) フェノールノボラック型エボキシ樹脂EPN1180(チバガイギー社製):430g
- (2) (1) の樹脂に2, 2, 6, 6ーテトラメチルピペリジン-1ーオキシル:0.2gを加えた。
- (3) 空気気流下、(2) にメタクリル酸(52g)と トリエチルアミン(0.5g)を110℃で30分間隔 で4回添加した
 - (4) (3) の液にスチレン (360g) を加えた。
 - (5)投入終了後、120℃で6時間保持した。
 - (6)酸化 7mgKOH/gで反応を終了した。
 - (7) (6) の液にテトラメチルチウラムモノサルファイド(0.4g) とナフチン酸銅(0.1g) を加えた。

【0105】実施例1~7及び比較例1

- 表1に示す配合で樹脂組成物を製造し、表1に示す硬化 条件で、ガラス板の間にギャップをシリコンゴム等で作 り、そこに樹脂組度物を流して硬化させ、表1に示す形 状のサンブルを作製した。このサンブルを用いて、Tg 測定及び解溶剤性新幅を行った。なお、実施例のにおい なを照射して硬化させた。光照射は、HB-2 103BYC(商品名、ウンオ社製)を使用した。ま た、実施例1~7及び比較例1で製造した模部組成物を 用いて下記の方法により太陽電池を作製し、評価を行っ た。
- 40 [0106]
 - 【表1】

11111----

28

		樹脂組成物					
	樹脂	成分	シリカ	シリカ 反応 性物質	その他	硬化 条件	形状(電池以外 の試験サンブル)
実施例	前駆4 50		E-2 (龍森 社製) 50g	-	KBM-503(信慈化学 社製、0.5g)、TSF-401 (東芝ジリコーン社 製、0.03g)、パープチル O(日本油脂社製、0.5g)	130°C、 2時間	1mm注型板
実施例 2	前壓相 50		-	-	TSF-401(0.03g), /\"-7"FBO(0.5g)	130°C、 2時間	1mm注型板
実施例	t*スフェ/ールF型 樹脂エポトート YDF-170(東 都化成社製) 23.5g	3-メアル-1,6- ヘキサヒト・ロキシ 無水フ外放 23.5g	E-2 (龍森 社製) 47g	_	クリセリン(0.7g)、 2-エチルー4Jチルーイミダゾール (0.7g)、TSF-40 J(0.03g)、 A187 (日本ユニカー社製、0.7g)	120℃、 2時間	1mm注型板
実施例 4	前駆制 13		E-2 (龍森 社製) 30g	-	KBM-503(0.3g)、 TSF-401(0.03g)、 W-9010(0.29g)、 カヤメリックM(化薬 アクソー社製、0.4g)	180℃、 1時間	1mm注型板
実施例	前駆相 15		- 1	,	TSF-401(0.03g)、 促進剤VE(日本 触媒社製、0.03g)、 328E(北薬アケゾー 社製、0.15g)	40°C、 6時間	Imm注型板
実施例 6	前駆相 15		ı	-	TSF-401(0.03g)、 IRGACURE184 (チバガイギー社製、0.3g)	(メソン ピーク 365nm) 10J	0.1mmシート
実施例 7	前駆相 50		E-2 (龍森 社製) 50g	ソルカート NP730 (日本ダム ロシャ) 2g	KBM-503(0.5g)、 TSF-401(0.03g)、 パープチル〇(0.5g)	130°C、 2時間	Imm注型板
比較例 1	1.6-ヘキサンジ オールジグリ シジルエーテル 24g	3-メチル-1,6- ヘキサとドロキシ 無水フタル酸 26g	-	-	クリセリン(0.5g)、 2-エチルー 4.チルー イミダ ゲール(0.5g)、 TSF-401(0.03g)	180°C、 1時間	1mm注型板

【0 1 0 7 】 表 1 について、以下に説明する。 K B M — 5 0 3 (商品名) とは、信越化学社製のラジカル重合型 シランカップリング剤であり、T S F — 4 0 1 (商品 A) とは、東芝リコーン社製の消泡剤であり、バーブ チル〇 (商品名) とは、日本油解社製の重合開始剤であ 40 り、A 1 8 7 (商品名) とは、日本油解社製の重合開始剤であ 40 で、A 1 8 7 (商品名) とは、以本がより、M — 9 0 1 0 (商品名) とは、減耗剤であり、カナメリック州(商品名)とは、減耗剤であり、カナメリック州(商品名)とは、減耗剤であり、カナメリック州(商品名)とは、減耗剤であり、カナリー・対力の重合開始剤であり、3 2 8 E (商品名) とは、任寒アクリー・社製の重合開始剤であり、3 2 8 E (商品名) とは、日本地域社製の重合健維剤であり、3 2 8 E (商品名) とは、ほど、サイガイギー社製の光ラシカル発生剤である。

【0108】実施例1~7及び比較例1で製造したサン プルのTg及び耐溶剤性を下記の方法により測定し、そ 50 の結果を表2及び表3に示した。

(1) Tgの測定

TMA測定 (熱膨張率測定) により、樹脂組成物 (層間 材料)のTgを決定した。

測定条件:昇温速度 5℃/min

昇温パターン:25~200℃

測定装置: TMA-50 (商品名、島津製作所社製) 試料: 実施例1~7及び比較例1で作製したサンプルを 使用。

[0109]

【表2】

サンブル	Tg (°C)
実施例1	137
実施例2	135
実施例3	128
実施例4	137
実施例5	103
実施例6	127
実施例7	138
U. On Pile	

【0110】(2)耐溶剤性

アセトニトリル常波中に試料を60℃で放置して、質量 特減で層間材料の耐溶剤性を評価した。層間材料(樹脂 組成物・の硬化条件は、表」に記載している方法で、ガ ラス板の間に所定のギャップを、ギャップ保持材を用い で作り、気泡を含まないように樹脂組成物を流し込み、 脱気して硬化させた。

測定条件: アセトニトリル30gと樹脂組成物の硬化物2gとを同一の容器に入れ、60℃で7日間推算する2gとにより設立した。7日後の静韻組成物の硬化物の質量 が変きが、下記式により樹脂組成物の硬化物の質量が減乏評価し、溶剤浸漬前の樹脂組成物の硬化物量に対する溶剤浸漬後の樹脂組成物の硬化物量の割合を測定した。

溶剤浸漬前の樹脂組成物の硬化物量に対する溶剤浸漬後の樹脂組成物の硬化物量の割合 $(%) = \{w \ (g) \ / 2 \ (g) \} \times 100$

試料:実施例 $1 \sim 7$ 及び比較例1で作製したサンプルを 使用。

[0111]

【表3】

サンブル	質量増減量 (%)
実施例1	104
実施例2	107
実施例3	106
実施例4	102
実施例5	105
実施例6	102
実施例7	101
比較例1	125

【0 1 1 2】 (3) 太陽電池評価

(セル作製方法)

半導体電艦: チタニアゾル (石原産業社製、商品名「STS-21」) をFTの基板 (日本両子社製、VZ019、Sn0z限付ガラス) にスピンコート後、100で乾燥、450でで1時間熱処理を施して多孔質酸化チタン薄膜電極を作製した (「10.限厚2μm)。

上記多孔質酸化チタン薄膜電極を濃度3.0×10⁻⁴ M のRuN3色素(Solaronix社製、Ruthe so nium535-bis-TBA) エタノール溶液に1 0時間浸漬し、RuN3色素が吸着した多孔質酸化チタン繊膜電極を作製した。

電解質: 0. 1M ヨウ化リチウム

0.05M ヨウ素

0.3M 1,2-ジメチル-3-プロピル、イミダゾール、ヨウ素塩

0.5M tertープチルピリジン

溶媒:アセトニトリル

測定条件:光源:AM−1.5、100mW/cm²
 電極面積:0.25 cm²

対極:FTO基板上に白金膜をスパッタリングで形成し、白金電極を作製した。

封止:表1に記載した方法により、実施例1~7及び比較例1の樹脂組成物を硬化させ封止した。封止部分はTiO2部分の周り、液漏れがないように封止した。

実施例8として、実施例6の樹脂組成物と松浪硝子工業 社製のガラス(品名0100ガラス、厚さ0.03m m)を併用した。界面に樹脂組成物を接着剤に用いた。 比較例2として、未針止のセルを評価した。

【0113】(セルの劣化試験)上記方法によりセルを 作製後、40℃の乾燥機にセルを1時間放置し、劣化試 験後のセルを作製した。

【0114】 (エネルギー変換の率の評価) 太陽電池に 500Wのキセノンランプ (ウシオ社製) の光を分光フ イルター (Orlel社製) AMI50 を通じて模様 太陽光を照射させ、半導体電極の基板側より光を入射した。この光速度は100mW/cm²であった。導電性 ガラスと自金種機 (光電変換離費:0.25 cm²) に

50 それぞれワニロクリップを複核し、発生した電気を電流 電圧側定装置として電流計: K E I T H L E Y 社製 4 8 7、ファンクションジェネレーター: 北半電工社製、H B ー105、ボテンシオスタッド: 北半電工社製、H A ー50160 を使用して開催した。これおり求められた開放光電圧(V)、短絡光電流密度(m A / c m²)、フィルファクターから下式によりエネルギー変換効率(ŋ)(%)を求めた。

エネルギー変換効率 (%) = (開放光電圧) (V) × (短絡光電流密度) (mA/cm²) × (フィルファク 40 ター) / 100 (mW/cm²) × 100

最終的には、上記エネルギー変換効率を各サンプルについて評価し、下式によりエネルギー変換効率の維持率を 算出し、表4に結果を示した。

維持率(%) = (劣化試験後のエネルギー変換効率) / (劣化試験前のエネルギー変換効率) × 100

[0115]

【表4】

30

(17)

.

サンブル	エネルギー変換効率の 維持率(%)
实施例1	95
実施例3	93
実施例6	97
実施例7	98
実施例8	98
比較例2	37

31

[0116]

【発明の効果】 本発明の大陶電池層周川材料は、上述の 構成よりなるため、太陽電池を構成する、身止材、導線 核複材、形態保持材等を形成するために用いられ、身止 セル中の電解質順を構成する電解溶媒や電解質の動設を 充分に防止し、しかも長期間の目積性を確定することが できる耐久性及び安全性を有するうえに、太陽電池を簡 便に製造することを可能とし、色素増速型大陽電池に好 適能に用いることを可能とし、色素増速型大陽電池に好 適能に用いることができるものである。

【図面の簡単な説明】

【図1】本発明の太陽電池層間用材料を用いてなる色素

32 増感型太陽電池の一例を示す部分(光電気変換素子)断 面関である。

- 【図2】本発明の太陽電池層間用材料を用いてなる色素 増感型太陽電池の一例を示す部分(光電気変換素子)断 面図である。
- 【図3】本発明の太陽電池層間用材料を用いてなる色素 増感型太陽電池の一例を示す部分(光電気変換素子)断 面図である。
- 【図4】本発明の太陽電池層間用材料を用いてなる色素 増感型太陽電池の一例を示す部分(光電気変換素子)断 面図である。
- 【図5】本発明の太陽電池層間用材料を用いてなる色素 増感型太陽電池の一例を示す部分(光電気変換素子)断 面図である。
- 【図6】本発明の太陽電池層間用材料を用いてなる色素 増整型太陽電池の一例を示す部分(光電気変換案子) 新図、又は、本発明の太陽電池層間用材料を用いてなる 光電気変換素子を用いた基接一体型太陽電池モジュール の構造の一例を示す部分断面図である。

フロントページの続き

(72)発明者 水田 圭一郎 大阪府吹田市西御旅町 5 番 8 号 株式会社 日本触媒内 F ターム(参考) 4,1002 BGO-W CO33X CD00W CD20W CF00W CF24W CX05W FD010 FD14X CQ00 5F051 A007 A12 A344 B348 CB13 CB30 EA20 FA03 GA03 5B1032 AA06 8506 AS16 CC16 EE01

EEO2 EEO4 EEO7 EE16 HHO6