

Linear and Discrete Optimization

Duality

- Dualizing the dual
- ► Other forms of duals
- Proving optimality
- ► Farkas' lemma

mex ct X The dual of the dual is the primal AXSO min b.y MAX - 6.7 AT. 7=C & (-) 920 cT(yn-ye) MIN CT. 91 - CT 92 +0T. 93 $\approx A (g_2 - g_4) + g_3 = b$ A.y. - A. y2 - y3 = - b

41, 92, 9520

 $-A^{T}y \leq -C \qquad \approx C - \frac{y_{1}}{A^{T}} = 0$ $-I \cdot y \leq 0 \qquad y_{3} = 0$ MAX CT (92-91)

9114214320

MAX cT.3, A.y = b

MAX -5T. 9

Which combinations are possible?

PD	finik Opt	Unbounded	Infecsible
Finik Opt	×	\bigcirc	0
Unbounded	0	0	\bowtie
In frontle	0	×	possible

Infeasible primal and dual

Example

Dual of max ct.
$$\times$$

Ax \leq b

X \geq 0

Ary-ary+c=c

Ary \geq c

Ary \leq ct. \times

Ary \leq b

Ary \leq ct. \times

Ary \leq ct. \times

Ary \leq cr. \times

Example

$$(A)_{X} \leq (b)_{O}$$

$$(A^T, -I)\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = C$$

Proving optimality

LP-Solver 1

fromble xx∈10°N

Says it's optimal

LP-solver 2

fronth x* . y*

(P) (0)

(T-x*= 5.4*

Proof of optimality

Simplex returns x4, y*

Size of x* and y* is

polynomial in size of LP.

Proving infeasibility

Farkas' Lemma

A system of inequalities $Ax \le b$ is <u>infeasible</u> if and only if there exists $\mathfrak{J} \ge 0$ such that $\mathfrak{J}^T A = 0$ and $\mathfrak{J}^T b = -1$.

Proof:
$$=$$
 " $(X^T.A) \times = X^T.b$ volid into.

 \Rightarrow " $AX = b$ infranka

 \Rightarrow " \Rightarrow Dual: \Rightarrow \Rightarrow Fros. \Rightarrow Proof.

 \Rightarrow AX \Rightarrow Dual: \Rightarrow \Rightarrow Dual un Bounded

 \Rightarrow Dual un Bounded

 \Rightarrow \Rightarrow Dual un Bounded

 \Rightarrow Dual un Bounded