DSMA Assignment 2 Questions

- 1. Determine whether these statements are true or false. Prove your answer with sound, precise and simple reasoning. {Complicated proofs can attract negative marks}
 - a) $\emptyset \in \{\emptyset\}$
 - b) $\emptyset \in \{\emptyset, \{\emptyset\}\}$
 - c) $\{\emptyset\} \in \{\emptyset\}$
 - $d) \ \{\varnothing\} \in \{\{\varnothing\}\}$
 - e) $\{\emptyset\} \subseteq \{\emptyset, \{\emptyset\}\}$
 - $f) \{ \emptyset \} \subseteq \{ \emptyset, \{ \emptyset \} \}$
 - g) $\{\{\emptyset\}\}\subseteq \{\{\emptyset\}, \{\emptyset\}\}\}$
 - h) $\emptyset \subseteq \{1, 2, 3\} \rightarrow \emptyset \nsubseteq \{(1,2), (2,3), (1,3)\}$
 - i) $A=\{1,2\} \longrightarrow A \times \emptyset \neq \emptyset$ [note, X means cartesian product]
 - j) \varnothing X \varnothing \neq \varnothing
- 2. Let the strings be composed from the alphabet = $\{0,1,2\}$. For example, 00122 is a string. These are called ternary strings (similar to binary strings which are over alphabet = $\{0,1\}$).
 - a) Find a recurrence relation for the number of ternary strings of length n that contain either two consecutive 0's or two consecutive 1's or two consecutive 2's.
 - b) What are the initial conditions?
 - c) How many ternary strings of length six contain two consecutive 0's or two consecutive 1's or two consecutive 2's? Is this same as your recurrence relation?
 - d) Give a closed form solution.

- 3. Prove that there is a positive multiple of 3333 which is entirely made of 0s and 1s. (For example: 110000011; note that we don't need to find the number. We just need to prove that there exists such a number)
- 4. Draw the directed graph of the reflexive and symmetric closure of the relation with the directed graph shown below.

- 5. Let $R = \{(0,1),(0,2),(1,1),(1,3),(2,2),(3,0)\}$ be a relation defined on $A = \{0,1,2,3\}$. Find the zero-one matrix of transitive closure of R.
- 6. The population of City A is 8,000,000 at the end of the year 2020. The number of immigrants is 25,000n at the end of year n. The population of city increases at the rate of 8% per year. Use recurrence relation to determine the population of the city at the end of 2030.