ÜBUNGEN ZUR VORLESUNG MITTLERER KRÜMMUNGSFLUSS

Blatt 3

Sei T > 0 und $(M^n, g(t))$ für $t \in [0, T)$ eine abgeschlossene Mannigfaltigkeit mit einer Familie von Metriken, die glatt von der Zeit abhängen.

Sei $A=(A_{ij})_{1\leq i,j\leq n}$ symmetrisch mit $A_{ij}\in C^\infty(M^n\times[0,T)).$

Sei $B=(B_{ij}(A,p,t))_{1\leq i,j\leq n}$ symmetrisch mit $B_{ij}\in C^1(M^n\times[0,T))$ und erfülle die Null-Eigenvektor-Bedingung, d.h. aus $A_{ij}\xi^j=0$ für $1\leq i\leq n$ folgt auch $B_{ij}\xi^i\xi^j\geq 0$.

Seien $u^k \in L^{\infty}(M^n \times [0,T)), 1 < k < n.$

 $\bf Aufgabe~7$ (Schwaches Maximumprinzip für Tensoren). (4 Punkte) Gelte

$$\partial_t A_{ij} \succeq \Delta_{q(t)} A_{ij} + u^k \nabla_k^{q(t)} A_{ij} + B_{ij} (A_{kl}, \cdot)$$

in $M^n \times (0,T)$ und $A_{ii}(\cdot,0) \succeq 0$.

Zeige, dass dann $A_{ij}(\cdot,t) \succeq 0$ für $0 \le t < T$ gilt.

 $\bf Aufgabe~8$ (Starkes Maximumprinzip für Tensoren I). (4 Punkte) Sei Blokal Lipschitz in A. Gelte

$$\partial_t A_{ij} = \Delta_{g(t)} A_{ij} + u^k \nabla_k^{g(t)} A_{ij} + B_{ij} (A_{kl}, \cdot)$$

in $M^n \times (0,T)$, $A_{ij}(\cdot,0) \succeq 0$ für alle $t \in [0,T)$ und $A_{ij}(p_0,0) \succ 0$ für ein $p_0 \in M^n$.

Zeige, dass dann $A_{ij}(\cdot,t) \succ 0$ für 0 < t < T gilt.

Hinweis: Für jeden Punkt $p \in M^n$ betrachte eine Umgebung $U \in M^n$ mit $p_0, p \in U$. Betrachte außerdem $\varphi_1 : \overline{U} \times [0, T) \to \mathbb{R}$ mit

$$\varphi_1 \le \lambda_1(\cdot, 0) \quad \text{ in } \overline{U}$$

$$\varphi_1 \equiv 0 \quad \text{ auf } \partial U$$

$$2\varphi_1(p_0) \ge \frac{1}{2}\lambda_1(p_0, 0)$$

eine Lösung $f: \overline{U} \times [0,T) \to \mathbb{R}$ der Gleichung

$$\partial_t f = \Delta_{g(t)} f + u^k \nabla_k^{g(t)} f - Af \quad \text{in } U \times (0, T)$$
$$f \equiv 0 \quad \text{auf } \partial U \times [0, T)$$
$$f(\cdot, 0) = \varphi_1 \quad \text{in } U$$

und den Tensor $\tilde{A}_{ij} = A_{ij} + (\varepsilon e^{Ct} - f)\delta_{ij}$, wobei $\varepsilon > 0$ und C > 0.

Aufgabe 9 (Starkes Maximumprinzip für Tensoren II). (4 Punkte)

$$\phi_k(p,t) := \inf_{\{\tau_1,\dots,\tau_k\} \text{ orthonormal}} (A(\tau_1,\tau_1) + \dots + A(\tau_k,\tau_k))$$
$$= \lambda_1(p,t) + \dots + \lambda_k(p,t)$$

wobei $k \in \{1, ..., n\}$. Sei B lokal Lipschitz in A. Gelte

$$\partial_t A_{ij} = \Delta_{g(t)} A_{ij} + u^k \nabla_k^{g(t)} A_{ij} + B_{ij} (A_{kl}, \cdot)$$

in $M^n \times (0,T)$, $A_{ij}(\cdot,0) \succeq 0$ für alle $t \in [0,T)$ und $\phi_k(p_0,0) \succ 0$ für ein k und ein $p_0 \in M^n$. Zeige, dass dann $\phi_k(\cdot,t) \succ 0$ für 0 < t < T gilt.

Hinweis: Gehe ananlog, wie in Aufgabe 8 vor, wobei nun $\varphi_k : \overline{U} \times [0,T) \to \mathbb{R}$ mit

$$k\varphi_k \le \phi_k(\cdot,0)$$
 in \overline{U}
$$\varphi_k \equiv 0 \quad \text{auf } \partial U$$

$$k\varphi_k(p_0) \ge \frac{1}{2}\lambda_1(p_0,0)$$

und $f(\cdot,0)=\varphi_k$ auf \overline{U} . Definiere wieder $\tilde{A}_{ij}=A_{ij}+(\varepsilon e^{Ct}-f)\delta_{ij}$ und zeige $\tilde{\phi}_k>0$ per Widerspruchsbewiris. Setze dazu ein orthonormales Vektorfeld $\{\tau_1^0,\dots\tau_k^0\}$ in einer Umgebung eines geeigneten Punktes parallel entlang Geodäten und konstant in der Zeit zu einem orthonormalen Vektorfeld $\{\tau_1,\dots\tau_k\}$ fürt. Wirnde dann die Differentialgleichung auf $\psi_k:=\tilde{A}(\tau_1,\tau_1)+\dots+\tilde{A}(\tau_k,\tau_k)$ an diesem geeigneten Punkt an.

Abgabe: Bis Mittwoch, 12.12.2018, 10:00 Uhr, in die Mappe vor Büro F 402.