

Versioni

Ver.	Data	Redattore	Verificatore _G	Descrizione
1.1	2024-06-06	Raul Seganfreddo	Elena Ferro	Correzione errori RTB _G
1.0	2024-05-24	Antonio Benetazzo	Raul Seganfreddo	Approvazione finale documento
0.9	2024-05-20	Leonardo Baldo	Tiozzo Matteo	Aggiunta requisiti
8.0	2024-05-09	Valerio Occhinegro	Leonardo Baldo	Aggiunta CU isole ecologiche e livello dell'acqua
0.7	2024-05-07	Valerio Occhinegro	Leonardo Baldo	Aggiunta CU colonnine e parcheggi
0.6	2024-05-03	Elena Ferro	Antonio Benetazzo	Aggiunta CU precipitazioni e traffico
0.5	2024-04-30	Elena Ferro	Antonio Benetazzo	Aggiunta CU umidità e qualità dell'aria
0.4	2024-04-23	Elena Ferro	Antonio Benetazzo	Aggiunta CU dati grezzi e temperatura
0.3	2024-04-15	Davide Malgarise	Valerio Occhinegro	Prima stesura casi d'uso
0.2	2024-04-12	Raul Seganfreddo	Valerio Occhinegro	Aggiunta descrizione del prodotto
0.1	2024-04-08	Davide Malgarise	Valerio Occhinegro	Aggiunta introduzione

Indice

Indice delle tabelle

Indice delle immagini

1 Introduzione

1.1 Scopo del documento

Questo documento ha lo scopo di illustrare i casi d'uso e i requisiti del capitolato $_{\mathbb{G}}$ proposto da *Sync Lab S.r.l.*, a seguito di un'analisi da parte del gruppo e di un confronto tenuto con l'azienda.

Vengono presentate le funzionalità che il progetto dovrà offrire, suddivise in requisiti obbligatori, desiderabili e opzionali, in accordo con le richieste della proponente_G.

1.2 Glossario

Per evitare qualsiasi ambiguità o malinteso sui termini utilizzati nel seguente documento, è stato aggiunto un glossario_G, contenente le definizioni necessarie. È possibile individuare ogni termine presente nel glossario_G grazie ad uno stile specifico:

- ad ogni parola presente sarà aggiunta una "G" al pedice;
- verrà fornito il link al glossario_G online (v.1.0) per ciascuna parola.

1.3 Riferimenti

1.3.1 Normativi

- Capitolato_G d'appalto C6: SyncCity_G A smart city_G monitoring platform https://www.math.unipd.it/~tullio/IS-1/2023/Progetto/C6.pdf
- Regolamento di progetto didattico

https://www.math.unipd.it/~tullio/IS-1/2023/Dispense/PD2.pdf

• Norme di Progetto_G v2.0:

https://7last.github.io/docs/rtb/documentazione-interna/norme-di-progetto

1.3.2 Informativi

• Glossario_G v2.0

https://7last.github.io/docs/pb/documentazione-interna/glossario

2 Descrizione del prodotto

2.1 Obiettivi del prodotto

L'obiettivo del prodotto è quello di sviluppare una piattaforma di monitoraggio per una città intelligente che consenta alle autorità locali di avere una visione d'insieme delle condizioni della città, permettendo loro di prendere decisioni informate e tempestive riguardo ad eventuali interventi e ottimizzazioni dei servizi da effettuare.

2.2 Architettura del prodotto

Il prodotto è costituito da 4 componenti principali.

Simulatore

Rappresenta la sorgente di dati. In uno scenario reale, i dati sono raccolti da migliaia di sensori installati nelle varie città. La proponente_G richiede che i dati siano i più realistici possibili, non escludendo la possibilità di inserire rilevazioni provenienti da sensori reali. Abbiamo scelto di utilizzare Python_G come linguaggio di programmazione per la simulazione dei dati in quanto è uno strumento molto flessibile che rende disponibili numerose librerie per la manipolazione dei dati.

Piattaforma di streaming

Svolge la funzione di broker $_{\rm G}$ per disaccoppiare lo stream di informazioni provenienti dai simulatori dei sensori. Si occupa di ricevere i dati provenienti dal simulatore e di inviarli ai vari consumatori. In questo caso, il consumatore principale è il database di cui al punto successivo. A tal fine, abbiamo deciso di utilizzare Redpanda $_{\rm G}$ come piattaforma di streaming, in quanto, sulla base dell'analisi eseguita, risulta avere prestazioni migliori rispetto ad Apache Kafka $_{\rm G}$ mantenendo la compatibilità con le sue API.

Stream processing

Abbiamo utilizzato Apache Flink che è un sistema di elaborazione di flussi distribuito e scalabile che consente l'analisi e l'elaborazione di grandi volumi di dati in tempo reale. È particolarmente adatto per applicazioni che richiedono un basso tempo di latenza e un'elevata velocità di elaborazione.

Database

Necessario per la persistenza dei dati raccolti. Per questo scopo abbiamo scelto di adottare ClickHouse_G, un database colonnare in grado di effettuare query analitiche complesse su grandi volumi di dati in modo molto efficiente.

Dashboard_G

Permette di visualizzare in tempo reale i dati raccolti. Questo componente rappresenta l'interfaccia utente del prodotto. Abbiamo scelto di utilizzare Grafana_G come strumento per la creazione di questa in quanto offre una vasta gamma di dashboard_G interattive e dinamiche.

Figura 1: Architettura del prodotto

2.3 Funzionalità del prodotto

Una volta che il sistema sarà funzionante, esso potrà:

- raccogliere e memorizzare i dati provenienti dalle diverse tipologie di sensori;
- visualizzare i dati raccolti in tempo reale attraverso una dashboard_G, offrendo la
 possibilità di applicare filtri di diversa tipologia e fornendo una panoramica delle
 condizioni della città (tra le informazioni visualizzate ci saranno una mappa con la
 posizione dei sensori e alcuni grafici che mostrano gli andamenti delle misurazioni);
- calcolare un Key Performance Index (KPI_G) della città, rappresentativo della qualità dei servizi forniti, basato sulle ultime rilevazioni dei sensori;

 notificare automaticamente le autorità locali in caso di superamento di soglie critiche da parte dei sensori.

2.4 Caratteristiche degli utenti

Si prevede che i principali utenti saranno le autorità locali responsabili_G del monitoraggio dello stato di salute, sicurezza ed efficienza della città. Gli utenti interagiranno con il sistema esclusivamente attraverso la dashboard_G.

2.4.1 Conoscenze e competenze

Si presume che tali utenti siano in grado di comprendere i dati visualizzati nella dashboard $_{\mathbb{G}}$ e filtrare le informazioni per ottenere una visione d'insieme della situazione.

2.4.2 Dispositivi

Per accedere alla piattaforma gli utenti potranno utilizzare indifferentemente un dispositivo mobile, un computer o un tablet.

3 Casi d'uso

3.1 Introduzione

In questa sezione del documento vengono analizzati nel dettaglio i casi d'uso individuati in fase di analisi del capitolato e durante i colloqui con il proponente.

3.2 Struttura dei casi d'uso

In tutto il documento faremo riferimento ai casi d'uso utilizzando la sigla UC seguita dal rispettivo codice nella forma

UC-[identificativo_caso_principale].[identificativo_sotto_caso]

il quale permette di utilizzarlo come riferimento in questo e in altri documenti. Per ciascun caso d'uso vengono definiti i seguenti elementi:

- attore principale, entità primariamente coinvolta nel caso d'uso;
- **precondizioni**, le condizioni che devono essere verificate prima che il caso d'uso possa essere eseguito;
- **postcondizioni**, le condizioni che devono essere verificate al termine dell'esecuzione del caso;
- **scenario principale**, la sequenza di passi che descrive il comportamento del sistema durante l'esecuzione del caso d'uso;
- user story_G: una descrizione testuale del caso d'uso.

3.3 Attori

I seguenti attori sono coinvolti nei casi d'uso:

- autorità locali, possono accedere al sistema per visualizzare i dati di monitoraggio della Smart City_G;
- **sensori**, sorgente di dati con un determinato dominio di interesse che effettua misurazioni e trasmette i dati al sistema.

3.4 Elenco dei casi d'uso

3.4.1 UC-1: Visualizzazione dashboard

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- Postcondizioni: l'autorità locale visualizza la dashboard_G con i dati relativi ai sensori presenti nella città.

• Scenario principale:

- 1. l'autorità locale accede alla piattaforma.
- 2. il sistema carica i dati relativi ai sensori interrogando il database.
- **User story**_G: come autorità locale desidero poter visualizzare una dashboard_G con i dati relativi ai sensori per poter monitorare la loro posizione e i dati trasmessi.

Figura 2: UC-1: Visualizzazione dashboard_G

3.4.2 UC-2: Visualizzazione dashboard dati grezzi

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- **Postcondizioni**: l'autorità locale visualizza la dashboard $_{\mathbb{G}}$ dei dati grezzi con i dati relativi ai sensori presenti nella città.
- Scenario principale:

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati relativi ai sensori interrogando il database.
- **User story**_G: come autorità locale desidero poter visualizzare una dashboard_G dei dati grezzi con i dati relativi ai sensori presenti, la quale mi consente di monitorare quanti e quali sensori sono presenti e la loro posizione.

Figura 3: UC-2: Visualizzazione dashboard_G dei dati grezzi

3.4.2.1 UC-2.1: Visualizzazione *panel* con tabella sensori

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- **Postcondizioni**: l'autorità locale visualizza il *panel*_G contenente una tabella di tutti i sensori collegati al sistema, in cui sono presenti l'identificativo del sensore, il tipo di sensore e la data dell'ultima trasmissione.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati relativi ai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard dei dati grezzi.
- User story_G: come autorità locale desidero poter visualizzare un panel_G contenente una tabella di tutti i sensori collegati al sistema. I dati che devono essere presenti nella tabella sono: identificativo del sensore, tipo di sensore e data dell'ultima trasmissione. Questi mi consentiranno di avere una visione d'insieme dei sensori presenti.

Figura 4: UC-2.1: Visualizzazione panel_G con tabella sensori

3.4.2.2 UC-2.2: Visualizzazione mappa interattiva sensori

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- Postcondizioni: l'autorità locale visualizza un panel_G contenente una mappa interattiva popolata con dei marker. Ogni marker consente di visualizzare l'identificativo del sensore e le sue coordinate geografiche.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard dei dati grezzi.
- User story_G: come autorità locale desidero poter visualizzare una mappa interattiva popolata con dei marker rappresentanti la posizione dei sensori e contenenti il loro identificativo. Essa mi consentirà di visualizzare la distribuzione dei sensori nel territorio ed eventualmente di intervenire nel caso in cui siano presenti zone non coperte.

Figura 5: UC-2.2: Visualizzazione mappa interattiva sensori

3.4.2.3 UC-2.3: Visualizzazione panel numero sensori per tipo

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- **Postcondizioni**: l'autorità locale visualizza un *panel*_G contenente il conteggio totale di sensori presenti nel sistema, suddivisi per tipologia.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
 - 3. l'autorità locale seleziona la visualizzazione della dashboard dei dati grezzi.
- User story_G: come autorità locale, desidero visualizzare il conteggio totale dei sensori presenti nel sistema, suddivisi per tipologia, per poter valutare l'eventuale necessità di aggiungerne altri.

Figura 6: UC-2.3: Visualizzazione panel_G numero sensori per tipo

3.4.2.4 UC-2.4: Visualizzazione tabella sensori non trasmettenti

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- **Postcondizioni**: l'autorità locale visualizza una tabella contenente i sensori che non trasmettono da più di un giorno. Ciascuna riga contiene il nome del sensore, il tipo di sensore e la data dell'ultima trasmissione.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard dei dati grezzi.
- User story_G: come autorità locale desidero poter visualizzare una tabella contenente i sensori che non trasmettono da più di un giorno, contenente il nome del sensore, il tipo di sensore e la data dell'ultima trasmissione, in modo da poter intervenire e ripristinare il corretto funzionamento.

Figura 7: UC-2.4: Visualizzazione tabella sensori che non trasmettono da più di 1 giorno

3.4.2.5 UC-2.5: Visualizzazione tabella dati grezzi temperatura

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- **Postcondizioni**: l'autorità locale visualizza una tabella contenente i dati grezzi trasmessi dai sensori di temperatura. Ciascuna riga contiene il nome del sensore, il valore della temperatura in gradi Celsius e il timestamp della trasmissione.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard dei dati grezzi.
- User story_G: come autorità locale desidero poter visualizzare una tabella contenente i dati grezzi delle misurazioni di temperatura in gradi Celsius, il nome del sensore e il timestamp della trasmissione, in modo da poter analizzare i dati in modo più dettagliato.

Figura 8: UC-2.5: Visualizzazione tabella dati grezzi temperatura

3.4.2.6 UC-2.6: Visualizzazione tabella dati grezzi umidità

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- **Postcondizioni**: l'autorità locale visualizza una tabella contenente i dati grezzi trasmessi dai sensori di umidità. Ciascuna riga contiene il nome del sensore, il valore dell'umidità in percentuale e il timestamp della trasmissione.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard dei dati grezzi.
- **User story**_G: come autorità locale desidero poter visualizzare una tabella contenente i dati grezzi delle misurazioni di umidità in percentuale, il nome del sensore e il timestamp della trasmissione, in modo da poter analizzare i dati in modo più dettagliato.

Figura 9: UC-2.6: Visualizzazione tabella dati grezzi umidità

3.4.2.7 UC-2.7: Visualizzazione tabella dati grezzi traffico

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- Postcondizioni: l'autorità locale visualizza una tabella contenente i dati grezzi trasmessi dai sensori di traffico. Ciascuna riga contiene il nome del sensore, il numero di veicoli transitati, la loro velocità media espressa in km/h e il timestamp della trasmissione.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard dei dati grezzi.
- User story_G: come autorità locale desidero poter visualizzare una tabella contenente i dati grezzi delle misurazioni del numero di veicoli transitati e della velocità media espressa in km/h, il nome del sensore e il timestamp della trasmissione, in modo da poter analizzare i dati in modo più dettagliato.

Figura 10: UC-2.7: Visualizzazione tabella dati grezzi traffico

3.4.2.8 UC-2.8: Visualizzazione tabella dati grezzi qualità dell'aria

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- **Postcondizioni**: l'autorità locale visualizza una tabella contenente i dati grezzi trasmessi dai sensori di qualità dell'aria. Ciascuna riga contiene il nome del sensore, il valore in $\mu g/m^3$ di PM10, PM2.5, NO₂, O₃, SO₂ e il timestamp della trasmissione.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
 - 3. l'autorità locale seleziona la visualizzazione della dashboard dei dati grezzi.

Figura 11: UC-2.8: Visualizzazione tabella dati grezzi qualità dell'aria

3.4.2.9 UC-2.9: Visualizzazione tabella dati grezzi precipitazioni

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- **Postcondizioni**: l'autorità locale visualizza una tabella contenente i dati grezzi trasmessi dai sensori di precipitazioni. Ciascuna riga contiene il nome del sensore, il valore in mm di precipitazioni e il timestamp della trasmissione.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;

- 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard dei dati grezzi.
- **User story**_©: come autorità locale desidero poter visualizzare una tabella contenente i dati grezzi delle misurazioni di precipitazioni in mm, il nome del sensore e il timestamp della trasmissione, in modo da poter analizzare i dati in modo più dettagliato.

Figura 12: UC-2.9: Visualizzazione tabella dati grezzi precipitazioni

3.4.2.10 UC-2.10: Visualizzazione tabella dati grezzi isole ecologiche

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- **Postcondizioni**: l'autorità locale visualizza una tabella contenente i dati grezzi trasmessi dai sensori di isole ecologiche. Ciascuna riga contiene il nome del sensore, il valore in percentuale di riempimento e il timestamp della trasmissione.

• Scenario principale:

- l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard dei dati grezzi.
- User story_G: come autorità locale desidero poter visualizzare una tabella contenente i dati grezzi delle misurazioni di riempimento in percentuale delle isole ecologiche, il nome del sensore e il timestamp della trasmissione, in modo da poter analizzare i dati in modo più dettagliato.

Figura 13: UC-2.10: Visualizzazione tabella dati grezzi isole ecologiche

3.4.2.11 UC-2.11: Visualizzazione tabella dati grezzi livello di acqua

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- **Postcondizioni**: l'autorità locale visualizza una tabella contenente i dati grezzi trasmessi dai sensori di livello di acqua. Ciascuna riga contiene il nome del sensore, il valore in cm del livello di acqua e il timestamp della trasmissione.
- Scenario principale:

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard dei dati grezzi.
- **User story**_G: come autorità locale desidero poter visualizzare una tabella contenente i dati grezzi delle misurazioni del livello di acqua in cm, il nome del sensore e il timestamp della trasmissione, in modo da poter analizzare i dati in modo più dettagliato.

Figura 14: UC-2.11: Visualizzazione tabella dati grezzi livello di acqua

3.4.2.12 UC-2.12: Visualizzazione tabella dati grezzi colonnine di ricarica

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- Postcondizioni: l'autorità locale visualizza una tabella contenente i dati grezzi trasmessi
 dai sensori di colonnine di ricarica. Ciascuna riga contiene il nome del sensore, il
 valore in kW della potenza erogata, il tempo rimanente alla ricarica e il timestamp
 della trasmissione.

• Scenario principale:

1. l'autorità locale accede alla piattaforma;

- 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard dei dati grezzi.
- **User story**_G: come autorità locale desidero poter visualizzare una tabella contenente i dati grezzi delle misurazioni della potenza erogata in kW, il tempo rimanente alla ricarica, il nome del sensore e il timestamp della trasmissione, in modo da poter analizzare i dati in modo più dettagliato.

Figura 15: UC-2.12: Visualizzazione tabella dati grezzi colonnine di ricarica

3.4.2.13 UC-2.13: Visualizzazione grafico time series dati grezzi complessivi temperatura

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- Postcondizioni: l'autorità locale visualizza un grafico time series contenente i dati grezzi di temperatura trasmessi da tutti i sensori presenti nella città, espressi in gradi Celsius.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati trasmessi dai sensori interrogando il database;

- 3. l'autorità locale seleziona la visualizzazione della dashboard dei dati grezzi.
- User story_G: come autorità locale desidero poter visualizzare un grafico time series contenente i dati grezzi trasmessi da tutti i sensori di temperatura presenti nella città, espressi in gradi Celsius, in modo da poterli confrontare tra loro e analizzare in modo più dettagliato.

Figura 16: UC-2.13: Visualizzazione grafico time series dati grezzi complessivi temperatura

3.4.2.14 UC-2.14: Visualizzazione grafico time series dati grezzi complessivi umidità

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- **Postcondizioni**: l'autorità locale visualizza un grafico time series contenente i dati grezzi trasmessi da tutti i sensori di umidità presenti nella città.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
 - 3. l'autorità locale seleziona la visualizzazione della dashboard dei dati grezzi.

 User story_G: come autorità locale desidero poter visualizzare un grafico time series contenente i dati grezzi trasmessi da tutti i sensori di umidità presenti nella città, espressi in percentuale, in modo da poterli confrontare tra loro e analizzare in modo più dettagliato.

Figura 17: UC-2.14: Visualizzazione grafico time series dati grezzi complessivi umidità

3.4.2.15 UC-2.15: Visualizzazione grafico time series dati grezzi complessivi traffico

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- **Postcondizioni**: l'autorità locale visualizza un grafico time series contenente i dati grezzi trasmessi da tutti i sensori di traffico presenti nella città.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
 - 3. l'autorità locale seleziona la visualizzazione della dashboard dei dati grezzi.
- User story_G: come autorità locale desidero poter visualizzare un grafico time series contenente i dati grezzi del numero di veicoli transitati e della velocità media

espressa in km/h rilevati dai sensori di traffico, in modo da poterli confrontare tra loro e analizzare in modo più dettagliato.

Figura 18: UC-2.15: Visualizzazione grafico time series dati grezzi complessivi traffico

3.4.2.16 UC-2.16: Visualizzazione grafico time series dati grezzi complessivi qualità dell'aria

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- **Postcondizioni**: l'autorità locale visualizza un grafico time series contenente i dati grezzi trasmessi da tutti i sensori di qualità dell'aria presenti nella città.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
 - 3. l'autorità locale seleziona la visualizzazione della dashboard dei dati grezzi.
- User story_G: come autorità locale desidero poter visualizzare un grafico time series contenente le misurazioni di PM10, PM2.5, NO₂, O₃, SO₂ rilevatate dai sensori di qualità dell'aria, in modo da poterli confrontare tra loro e analizzare in modo più dettagliato.

Figura 19: UC-2.16: Visualizzazione grafico time series dati grezzi complessivi qualità dell'aria

3.4.2.17 UC-2.17: Visualizzazione grafico time series dati grezzi complessivi precipitazioni

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- **Postcondizioni**: l'autorità locale visualizza un grafico time series contenente i dati grezzi trasmessi da tutti i sensori di precipitazioni presenti nella città.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
 - 3. l'autorità locale seleziona la visualizzazione della dashboard dei dati grezzi.
- **User story**_G: come autorità locale desidero poter visualizzare un grafico time series contenente le misurazioni in mm rilevate dai sensori di precipitazioni presenti nella città, in modo da poterli confrontare tra loro e analizzare in modo più dettagliato.

analisi_dei_requisiti/UC-2.17.png

Figura 20: UC-2.17: Visualizzazione grafico time series dati grezzi complessivi precipitazioni

3.4.2.18 UC-2.18: Visualizzazione grafico time series dati grezzi complessivi isole ecologiche

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- **Postcondizioni**: l'autorità locale visualizza un grafico time series contenente i dati grezzi trasmessi da tutti i sensori di isole ecologiche presenti nella città.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
 - 3. l'autorità locale seleziona la visualizzazione della dashboard dei dati grezzi.

Figura 21: UC-2.18: Visualizzazione grafico time series dati grezzi complessivi isole ecologiche

3.4.2.19 UC-2.19: Visualizzazione grafico time series dati grezzi complessivi livello di acqua

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- **Postcondizioni**: l'autorità locale visualizza un grafico time series contenente i dati grezzi trasmessi da tutti i sensori di livello di acqua presenti nella città.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;

- 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard dei dati grezzi.
- User story_G: come autorità locale desidero poter visualizzare un grafico time series contenente le misurazioni in cm di acqua rilevate dai sensori di livello di acqua presenti nella città, in modo da poterli confrontare tra loro e analizzare in modo più dettagliato.

analisi_dei_requisiti/UC-2.19.png

Figura 22: UC-2.19: Visualizzazione grafico time series dati grezzi complessivi livello di acqua

3.4.2.20 UC-2.20: Visualizzazione grafico time series dati grezzi complessivi colonnine di ricarica

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.

- **Postcondizioni**: l'autorità locale visualizza un grafico time series contenente i dati grezzi trasmessi da tutti i sensori di colonnine di ricarica presenti nella città.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
 - 3. l'autorità locale seleziona la visualizzazione della dashboard dei dati grezzi.
- User story_G: come autorità locale desidero poter visualizzare un grafico time series contenente le misurazioni in kW della potenza erogata e il tempo rimanente alla ricarica rilevati dalle colonnine di ricarica, in modo da poterli confrontare tra loro e analizzare in modo più dettagliato.

Figura 23: UC-2.20: Visualizzazione grafico time series dati grezzi complessivi colonnine di ricarica

3.4.3 UC-3: Visualizzazione dashboard dati ambientali

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- **Postcondizioni**: l'autorità locale visualizza la dashboard contenente le sezioni relative ai sensori ambientali presenti nella città.

• Scenario principale:

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati relativi ai sensori interrogando il database.
- **User story**_G: come autorità locale desidero poter visualizzare una dashboard_G dei dati ambientali contenente le sezioni relative ai sensori ambientali presenti nella città, la quale mi consente di monitorare la situazione ambientale.

Figura 24: UC-3: Visualizzazione dashboard dei dati ambientali

3.4.3.1 UC-3.1: Visualizzazione sezione temperatura

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- Postcondizioni: l'autorità locale visualizza la sezione relativa ai sensori di temperatura presenti nella città.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori ambientali.
- User story_G: come autorità locale desidero poter visualizzare una sezione relativa ai sensori di temperatura presenti nella città, la quale dovrà contenere informazioni utili per monitorare l'andamento della temperatura sulla base di dati storici e in tempo reale, mostrando anche statistiche come la temperatura media, massima e minima nel periodo di tempo selezionato.

Figura 25: UC-3.1: Visualizzazione sezione temperatura

3.4.3.1.1 UC-3.1.1: Visualizzazione grafico time series temperatura

• Attore principale: autorità locale.

• Precondizioni:

- 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- 2. il sistema ha caricato la dashboard relativa ai sensori ambientali.
- **Postcondizioni**: l'autorità locale visualizza un grafico time series contenente le misurazioni storiche della temperatura aggregate per 5 minuti.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati relativi ai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori ambientali.
- **User story**_©: come autorità locale desidero poter visualizzare un grafico time series contenente le misurazioni storiche della temperatura per poter monitorarne l'andamento nel tempo e facilmente individuare eventuali anomalie.

Figura 26: UC-3.1.1: Visualizzazione grafico time series per temperatura

3.4.3.1.2 UC-3.1.2: Visualizzazione mappa sensori temperatura

Attore principale: autorità locale.

Precondizioni:

- 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- 2. il sistema ha caricato la dashboard relativa ai sensori ambientali.
- **Postcondizioni**: l'autorità locale visualizza una mappa interattiva popolata con dei *marker* contenenti l'identificativo e le coordinate geografiche dei sensori di temperatura.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati relativi ai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori ambientali.

 User story_G: come autorità locale desidero poter visualizzare una mappa interattiva popolata con dei marker rappresentanti la posizione dei sensori di temperatura e contenenti il loro identificativo. Essa mi consentirà di visualizzare la distribuzione dei sensori di temperatura nel territorio ed eventualmente intervenire nel caso in cui siano presenti zone non coperte.

Figura 27: UC-3.1.2: Visualizzazione mappa interattiva sensori temperatura

3.4.3.1.3 UC-3.1.3: Visualizzazione panel temperatura media nel periodo di tempo selezionato

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard relativa ai sensori ambientali.
- **Postcondizioni**: l'autorità locale visualizza un $panel_{\mathbb{G}}$ contenente la temperatura media nel periodo di tempo selezionato.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati relativi ai sensori interrogando il database;

- 3. l'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori ambientali.
- **User story**_G: come autorità locale desidero poter visualizzare la temperatura media nel periodo di tempo selezionato in modo da poterne monitorare l'andamento.

Figura 28: UC-3.1.3: Visualizzazione $panel_{\mathbb{G}}$ temperatura media nel periodo di tempo selezionato

3.4.3.1.4 UC-3.1.4: Visualizzazione panel temperatura in tempo reale

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard relativa ai sensori di temperatura.
- **Postcondizioni**: l'autorità locale visualizza un $panel_{\mathbb{G}}$ contenente la temperatura in tempo reale.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;

- 2. il sistema carica i dati relativi ai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori di temperatura.
- **User story**_G: come autorità locale desidero poter visualizzare la temperatura in tempo reale in modo da poterne monitorare l'andamento e poterla facilmente confrontare con i dati storici.

Figura 29: UC-3.1.4: Visualizzazione panel_G temperatura in tempo reale

3.4.3.1.5 UC-3.1.5: Visualizzazione *panel* temperatura massima nel periodo di tempo selezionato

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard relativa ai sensori ambientali.
- **Postcondizioni**: l'autorità locale visualizza un *panel*_G contenente la temperatura massima nel periodo di tempo selezionato.
- Scenario principale:

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati relativi ai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori ambientali.
- **User story**_©: come autorità locale desidero poter visualizzare la temperatura massima nel periodo di tempo selezionato in modo da poterla prendere come riferimento e confrontarla con la temperatura attuale.

Figura 30: UC-3.1.5: Visualizzazione panel_G temperatura massima

3.4.3.1.6 UC-3.1.6: Visualizzazione *panel* temperatura minima nel periodo di tempo selezionato

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard relativa ai sensori ambientali.
- **Postcondizioni**: l'autorità locale visualizza un $panel_{\mathbb{G}}$ contenente la temperatura minima nel periodo di tempo selezionato.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati relativi ai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori ambientali.
- User story_G: come autorità locale desidero poter visualizzare la temperatura minima nel periodo di tempo selezionato in modo da poterla prendere come riferimento e confrontarla con la temperatura attuale.

Figura 31: UC-3.1.6: Visualizzazione panel_G temperatura minima

3.4.3.2 UC-3.2: Visualizzazione sezione umidità

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- Postcondizioni: l'autorità locale visualizza la dashboard relativa ai sensori ambientali presenti nella città.
- Scenario principale:

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard relativa ai ambientali.
- User story_G: come autorità locale desidero poter visualizzare una dashboard relativa ai sensori di umidità presenti nella città, la quale dovrà contenere informazioni utili per monitorare l'andamento dell'umidità sulla base di dati storici e in tempo reale, mostrando anche statistiche come l'umidità media, massima e minima nel periodo di tempo selezionato.

Figura 32: UC-3.2: Visualizzazione sezione umidità

3.4.3.2.1 UC-3.2.1: Visualizzazione grafico time series umidità

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard relativa ai sensori ambientali.
- **Postcondizioni**: l'autorità locale visualizza un grafico time series contenente le misurazioni storiche di umidità aggregate per 5 minuti.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - il sistema carica i dati relativi ai sensori interrogando il database;

- 3. l'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori ambientali.
- **User story**_G: come autorità locale desidero poter visualizzare un grafico time series contenente le misurazioni storiche di umidità per poter monitorarne l'andamento nel tempo e facilmente individuare eventuali anomalie.

Figura 33: UC-3.2.1: Visualizzazione grafico time series umidità

3.4.3.2.2 UC-3.2.2: Visualizzazione mappa sensori umidità

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard relativa ai sensori ambientali.
- **Postcondizioni**: l'autorità locale visualizza una mappa interattiva popolata con dei *marker* contenenti l'identificativo e le coordinate geografiche dei sensori di umidità.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;

- 2. il sistema carica i dati relativi ai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori ambientali.
- User story_G: come autorità locale desidero poter visualizzare una mappa interattiva popolata con dei marker rappresentanti la posizione dei sensori di umidità e contenenti il loro identificativo. Essa mi consentirà di visualizzare la distribuzione dei sensori di umidità nel territorio ed eventualmente intervenire nel caso in cui siano presenti zone non coperte.

Figura 34: UC-3.2.2: Visualizzazione mappa interattiva sensori umidità

3.4.3.2.3 UC-3.2.3: Visualizzazione *panel* umidità media nel periodo di tempo selezionato

- Attore principale: autorità locale.
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione:
 - il sistema ha caricato la dashboard relativa ai sensori ambientali.
- Postcondizioni: l'autorità locale visualizza un panel_G contenente l'umidità media nel periodo di tempo selezionato.
- Scenario principale:

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati relativi ai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori ambientali.
- **User story**_G: come autorità locale desidero poter visualizzare l'umidità media nel periodo di tempo selezionato in modo da poterne monitorare l'andamento.

Figura 35: UC-3.2.3: Visualizzazione $panel_{\mathbb{G}}$ umidità media nel periodo di tempo selezionato

3.4.3.2.4 UC-3.2.4: Visualizzazione panel umidità in tempo reale

- Attore principale: autorità locale.
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard relativa ai sensori ambientali.
- **Postcondizioni**: l'autorità locale visualizza un *panel*_© contenente l'umidità in tempo reale.
- Scenario principale:

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati relativi ai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori ambientali.
- **User story**_G: come autorità locale desidero poter visualizzare l'umidità in tempo reale in modo da poterne monitorare l'andamento e poterla facilmente confrontare con i dati storici.

Figura 36: UC-3.2.4: Visualizzazione $panel_{\mathbb{G}}$ umidità in tempo reale

3.4.3.2.5 UC-3.2.5: Visualizzazione panel umidità massima nel periodo di tempo selezionato

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard relativa ai sensori ambientali.
- Postcondizioni: l'autorità locale visualizza un panel_G contenente l'umidità massima nel periodo di tempo selezionato.
- Scenario principale:

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati relativi ai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori ambientali.
- **User story**_G: come autorità locale desidero poter visualizzare l'umidità massima nel periodo di tempo selezionato in modo da poterla prendere come riferimento e confrontarla con l'umidità attuale.

Figura 37: UC-3.2.5: Visualizzazione panel_G umidità massima

3.4.3.2.6 UC-3.2.6: Visualizzazione *panel* umidità minima nel periodo di tempo selezionato

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - il sistema ha caricato la dashboard relativa ai sensori ambientali.
- **Postcondizioni**: l'autorità locale visualizza un *panel*_G contenente l'umidità minima nel periodo di tempo selezionato.
- Scenario principale:

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati relativi ai sensori interrogando il database;
- I'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori ambientali.
- **User story**_G: come autorità locale desidero poter visualizzare l'umidità minima nel periodo di tempo selezionato in modo da poterla prendere come riferimento e confrontarla con l'umidità attuale.

Figura 38: UC-3.2.6: Visualizzazione panel_G umidità minima

3.4.3.3 UC-3.3: Visualizzazione sezione qualità dell'aria

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- Postcondizioni: l'autorità locale visualizza la dashboard relativa ai sensori ambientali presenti nella città.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati trasmessi dai sensori interrogando il database;

- 3. l'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori ambientali.
- **User story**_G: come autorità locale desidero poter visualizzare una dashboard relativa ai sensori ambientali presenti nella città, la quale dovrà contenere informazioni utili per monitorare l'andamento della qualità dell'aria sulla base di dati storici e in tempo reale, mostrando anche statistiche quali il giorno con la qualità dell'aria peggiore e il giorno con la qualità dell'aria migliore nel periodo di tempo selezionato.

Figura 39: UC-3.3: Visualizzazione dashboard qualità dell'aria

3.4.3.3.1 UC-3.3.1: Visualizzazione grafico time series qualità dell'aria

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard relativa ai sensori ambientali.
- **Postcondizioni**: l'autorità locale visualizza un grafico time series contenente le misurazioni storiche di qualità dell'aria aggregate per 5 minuti.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati relativi ai sensori interrogando il database;

- 3. l'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori ambientali.
- **User story**_G: come autorità locale desidero poter visualizzare un grafico time series contenente le misurazioni storiche di qualità dell'aria per poter monitorarne l'andamento nel tempo e facilmente individuare eventuali anomalie.

Figura 40: UC-3.3.1: Visualizzazione grafico time series qualità dell'aria

3.4.3.3.2 UC-3.3.2: Visualizzazione mappa interattiva sensori qualità dell'aria

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione:
 - 2. il sistema ha caricato la dashboard relativa ai sensori ambientali.
- **Postcondizioni**: l'autorità locale visualizza una mappa interattiva popolata con dei *marker* contenenti l'identificativo e le coordinate geografiche dei sensori della qualità dell'aria.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;

- 2. il sistema carica i dati relativi ai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori della qualità dell'aria.
- **User story**_G: come autorità locale desidero poter visualizzare una mappa interattiva popolata con dei *marker* rappresentanti la posizione dei sensori della qualità dell'aria e contenenti il loro identificativo. Essa mi consentirà di visualizzare la distribuzione dei sensori della qualità dell'aria nel territorio ed eventualmente intervenire nel caso in cui siano presenti zone non coperte.

Figura 41: UC-3.3.2: Visualizzazione mappa interattiva sensori qualità dell'aria

3.4.3.3.3 UC-3.3.3: Visualizzazione *panel* qualità dell'aria media nel periodo di tempo selezionato

- Attore principale: autorità locale.
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard relativa ai sensori ambientali.
- **Postcondizioni**: l'autorità locale visualizza un *panel*_G contenente qualità dell'aria media nel periodo di tempo selezionato.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati relativi ai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori ambientali.
- **User story**_G: come autorità locale desidero poter visualizzare della qualità dell'aria media nel periodo di tempo selezionato in modo da poterne monitorare l'andamento.

Figura 42: UC-3.3.3: Visualizzazione $panel_{\mathbb{G}}$ qualità dell'aria media nel periodo di tempo selezionato

3.4.3.3.4 UC-3.3.4: Visualizzazione panel qualità dell'aria in tempo reale

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard relativa ai sensori ambientali.
- Postcondizioni: l'autorità locale visualizza un panel_G contenente qualità dell'aria in tempo reale.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati relativi ai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori ambientali.
- User story_G: come autorità locale desidero poter visualizzare della qualità dell'aria in tempo reale in modo da poterne monitorare l'andamento e poterla facilmente confrontare con i dati storici.

Figura 43: UC-3.3.4: Visualizzazione panel_G qualità dell'aria in tempo reale

3.4.3.3.5 UC-3.3.5: Visualizzazione *panel* giorno con qualità dell'aria peggiore nel periodo di tempo selezionato

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard relativa ai sensori ambientali.
- **Postcondizioni**: l'autorità locale visualizza un $panel_{\Theta}$ contenente il giorno con la qualità dell'aria peggiore nel periodo di tempo selezionato.

- l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati relativi ai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori ambientali.
- **User story**_G: come autorità locale desidero poter visualizzare il giorno con la qualità dell'aria peggiore nel periodo di tempo selezionato in modo da poterla prendere come riferimento e confrontarla con la qualità dell'aria attuale.

Figura 44: UC-3.3.5: Visualizzazione $panel_{\rm G}$ giorno con qualità dell'aria peggiore nel periodo di tempo selezionato

3.4.3.3.6 UC-3.3.6: Visualizzazione *panel* giorno con qualità dell'aria migliore nel periodo di tempo selezionato

- Attore principale: autorità locale.
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard relativa ai sensori ambientali.

• **Postcondizioni**: l'autorità locale visualizza un *panel*_G contenente il giorno con la qualità dell'aria migliore nel periodo di tempo selezionato.

• Scenario principale:

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati relativi ai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori ambientali.
- **User story**_G: come autorità locale desidero poter visualizzare il giorno con la qualità dell'aria migliore nel periodo di tempo selezionato in modo da poterla prendere come riferimento e confrontarla con la qualità dell'aria attuale.

Figura 45: UC-3.3.6: Visualizzazione $panel_{G}$ giorno con qualità dell'aria peggiore nel periodo di tempo selezionato

3.4.3.4 UC-3.4: Visualizzazione sezione precipitazioni

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.

- Postcondizioni: l'autorità locale visualizza la dashboard relativa ai sensori ambientali presenti nella città.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
 - 3. l'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori ambientali.
- User story_G: come autorità locale desidero poter visualizzare una dashboard relativa ai sensori ambientali presenti nella città, la quale dovrà contenere informazioni utili per monitorare l'andamento delle precipitazioni sulla base di dati storici e in tempo reale, mostrando anche statistiche quali quantità di precipitazioni media, massima e minima nel periodo di tempo selezionato.

Figura 46: UC-3.4: Visualizzazione sezione precipitazioni

3.4.3.4.1 UC-3.4.1: Visualizzazione grafico time series quantità precipitazioni nel periodo di tempo selezionato

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard relativa ai sensori ambientali

• **Postcondizioni**: l'autorità locale visualizza un grafico time series contenente le misurazioni storiche di precipitazioni aggregate per 5 minuti.

• Scenario principale:

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati relativi ai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori ambientali.
- **User story**_G: come autorità locale desidero poter visualizzare un grafico time series contenente le misurazioni storiche di precipitazioni per poter monitorarne l'andamento nel tempo e facilmente individuare eventuali anomalie.

Figura 47: UC-3.4.1: Visualizzazione grafico time series precipitazioni

3.4.3.4.2 UC-3.4.2: Visualizzazione mappa sensori precipitazioni

- Attore principale: autorità locale.
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard relativa ai sensori ambientali.

• **Postcondizioni**: l'autorità locale visualizza una mappa interattiva popolata con dei *marker* contenenti l'identificativo e le coordinate geografiche dei sensori di precipitazioni.

• Scenario principale:

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati relativi ai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori ambientali.
- **User story**_G: come autorità locale desidero poter visualizzare una mappa interattiva popolata con dei *marker* rappresentanti la posizione dei sensori di precipitazioni e contenenti il loro identificativo. Essa mi consentirà di visualizzare la distribuzione dei sensori di precipitazioni nel territorio ed eventualmente intervenire nel caso in cui siano presenti zone non coperte.

Figura 48: UC-3.4.2: Visualizzazione mappa interattiva sensori precipitazioni

3.4.3.4.3 UC-3.4.3: Visualizzazione *panel* quantità di precipitazioni media nel periodo di tempo selezionato

- Attore principale: autorità locale.
- Precondizioni:

- 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- 2. il sistema ha caricato la dashboard relativa ai sensori ambientali.
- **Postcondizioni**: l'autorità locale visualizza un *panel*_G contenente di quantità di precipitazioni media nel periodo di tempo selezionato.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati relativi ai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori ambientali.
- **User story**_G: come autorità locale desidero poter visualizzare di quantità di precipitazioni media nel periodo di tempo selezionato in modo da poterne monitorare l'andamento.

Figura 49: UC-3.4.3: Visualizzazione $panel_{\mathbb{G}}$ quantità di precipitazioni media nel periodo di tempo selezionato

3.4.3.4.4 UC-3.4.4: Visualizzazione panel quantità di precipitazioni in tempo reale

- Attore principale: autorità locale.
- Precondizioni:

- 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- 2. il sistema ha caricato la dashboard relativa ai sensori ambientali.
- **Postcondizioni**: l'autorità locale visualizza un *panel*_G contenente di quantità di precipitazioni in tempo reale.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. l'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori ambientali.
- User story_G: come autorità locale desidero poter visualizzare di quantità di precipitazioni in tempo reale in modo da poterne monitorare l'andamento e poterla facilmente confrontare con i dati storici.

Figura 50: UC-3.4.4: Visualizzazione panel_G quantità di precipitazioni in tempo reale

3.4.3.4.5 UC-3.4.5: Visualizzazione *panel* giorno con precipitazioni maggiori nel periodo di tempo selezionato

- Attore principale: autorità locale.
- Precondizioni:

- 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- 2. il sistema ha caricato la dashboard relativa ai sensori ambientali.
- **Postcondizioni**: l'autorità locale visualizza un $panel_{\mathbb{G}}$ contenente il giorno con la quantità di precipitazioni maggiori nel periodo di tempo selezionato.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. l'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori ambientali.
- **User story**_G: come autorità locale desidero poter visualizzare il giorno con la quantità di precipitazioni maggiori nel periodo di tempo selezionato e poterla facilmente confrontare con i dati storici.

Figura 51: UC-3.4.5: Visualizzazione $panel_{\mathbb{G}}$ giorno con precipitazioni maggiori nel periodo di tempo selezionato

3.4.3.4.6 UC-3.4.6: Visualizzazione *panel* giorno con precipitazioni minori nel periodo di tempo selezionato

• Attore principale: autorità locale.

Precondizioni:

- 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- 2. il sistema ha caricato la dashboard relativa ai sensori ambientali.
- **Postcondizioni**: l'autorità locale visualizza un $panel_{\mathbb{G}}$ contenente il giorno con la quantità di precipitazioni minori nel periodo di tempo selezionato.

• Scenario principale:

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati relativi ai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori ambientali.
- User story_G: come autorità locale desidero poter visualizzare il giorno con la quantità di precipitazioni minori nel periodo di tempo selezionato e poterla facilmente confrontare con i dati storici.

Figura 52: UC-3.4.6: Visualizzazione $panel_{\ominus}$ giorno con precipitazioni minori nel periodo di tempo selezionato

3.4.3.5 UC-3.5: Visualizzazione sezione livello di acqua

• Attore principale: autorità locale.

- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- **Postcondizioni**: l'autorità locale visualizza la dashboard relativa ai sensori ambientali presenti nella città.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori ambientali.
- User story_G: come autorità locale desidero poter visualizzare una dashboard relativa ai sensori ambientali presenti nella città, la quale dovrà contenere informazioni utili per monitorare il livello di acqua sulla base di dati storici e in tempo reale, mostrando anche statistiche quali del livello di acqua medio nel periodo di tempo selezionato e il livello di acqua in tempo reale.

Figura 53: UC-3.5: Visualizzazione sezione livello di acqua

3.4.3.5.1 UC-3.5.1: Visualizzazione grafico time series livello di acqua

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;

- 2. il sistema ha caricato la dashboard relativa ai sensori ambientali.
- **Postcondizioni**: l'autorità locale visualizza un grafico time series contenente le misurazioni storiche del livello di acqua aggregate per 5 minuti.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. l'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori ambientali.
- **User story**_©: come autorità locale desidero poter visualizzare un grafico time series contenente le misurazioni storiche del livello di acqua per poter monitorarne l'andamento nel tempo e facilmente individuare eventuali anomalie.

analisi_dei_requisiti/UC-3.5.1.png

Figura 54: UC-3.5.1, Visualizzazione grafico time series livello di acqua

3.4.3.5.2 UC-3.5.2: Visualizzazione mappa sensori livello di acqua

• Attore principale: autorità locale.

Precondizioni:

- 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- 2. il sistema ha caricato la dashboard relativa ai sensori ambientali.
- **Postcondizioni**: l'autorità locale visualizza una mappa interattiva popolata con dei *marker* contenenti l'identificativo e le coordinate geografiche dei sensori del livello di acqua.

• Scenario principale:

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati relativi ai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori ambientali.
- **User story**_G: come autorità locale desidero poter visualizzare una mappa interattiva popolata con dei *marker* rappresentanti la posizione dei sensori del livello di acqua e contenenti il loro identificativo. Essa mi consentirà di visualizzare la distribuzione dei sensori del livello di acqua nel territorio ed eventualmente intervenire nel caso in cui siano presenti zone non coperte.

Figura 55: UC-3.5.2: Visualizzazione mappa interattiva sensori livello di acqua

3.4.3.5.3 UC-3.5.3: Visualizzazione *panel* livello di acqua medio nel periodo di tempo selezionato

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard relativa ai sensori ambientali.
- **Postcondizioni**: l'autorità locale visualizza un *panel*_© contenente del livello di acqua medio nel periodo di tempo selezionato.
- Scenario principale:

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati relativi ai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori ambientali.

analisi_dei_requis	uisiti/UC-3.5.3.png	

Figura 56: UC-3.5.3: Visualizzazione $panel_{\mathbb{G}}$ livello di acqua medio nel periodo di tempo selezionato

3.4.3.5.4 UC-3.5.4: Visualizzazione panel livello di acqua in tempo reale

• Attore principale: autorità locale.

Precondizioni:

- 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- 2. il sistema ha caricato la dashboard relativa ai sensori ambientali.
- **Postcondizioni**: l'autorità locale visualizza un *panel*_G contenente il livello di acqua in tempo reale.

• Scenario principale:

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati relativi ai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori ambientali.
- **User story**_G: come autorità locale desidero poter visualizzare il livello di acqua in tempo reale in modo da poterne monitorare l'andamento e poterlo facilmente confrontare con i dati storici.

analisi_dei_requisiti/UC-3.5.4.png

Figura 57: UC-3.5.4: Visualizzazione panel_G livello di acqua in tempo reale

3.4.4 UC-4: Visualizzazione dashboard dati urbani

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- **Postcondizioni**: l'autorità locale visualizza la dashboard contenente le sezioni relative ai sensori urbani presenti nella città.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati relativi ai sensori interrogando il database.
- **User story**_G: come autorità locale desidero poter visualizzare una dashboard_G dei dati ambientali contenente le sezioni relative ai sensori urbani presenti nella città, la quale mi consente di monitorare la situazione urbanistica.

Figura 58: UC-4: Visualizzazione dashboard dei dati urbani

3.4.4.1 UC-4.1: Visualizzazione sezione traffico

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- **Postcondizioni**: l'autorità locale visualizza la dashboard relativa ai sensori urbani presenti nella città.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;

- 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori urbani.
- User story_G: come autorità locale desidero poter visualizzare una dashboard relativa ai sensori urbani presenti nella città, la quale dovrà contenere informazioni utili per monitorare l'andamento del traffico sulla base di dati storici e in tempo reale, mostrando anche statistiche quali numero di veicoli in tempo reale, velocità media in tempo reale e calcolo dell'ora di punta (basato su numero veicoli e velocità media).

Figura 59: UC-4.1: Visualizzazione sezione traffico

3.4.4.1.1 UC-4.1.1: Visualizzazione grafico time series traffico

- Attore principale: autorità locale.
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard relativa ai sensori urbani.
- **Postcondizioni**: l'autorità locale visualizza un grafico time series contenente le misurazioni storiche di traffico aggregate per 5 minuti.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;

- 2. il sistema carica i dati relativi ai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori urbani.
- **User story**_G: come autorità locale desidero poter visualizzare un grafico time series contenente le misurazioni storiche di traffico per poter monitorarne l'andamento nel tempo e facilmente individuare eventuali anomalie o congestioni.

Figura 60: UC-4.1.1: Visualizzazione grafico time series traffico

3.4.4.1.2 UC-4.1.2: Visualizzazione mappa sensori traffico

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard relativa ai sensori urbani.
- **Postcondizioni**: l'autorità locale visualizza una mappa interattiva popolata con dei *marker* contenenti l'identificativo e le coordinate geografiche dei sensori del traffico.
- Scenario principale:

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati relativi ai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori urbani.
- **User story**_©: come autorità locale desidero poter visualizzare una mappa interattiva popolata con dei *marker* rappresentanti la posizione dei sensori del traffico e contenenti il loro identificativo. Essa mi consentirà di visualizzare la distribuzione dei sensori del traffico nel territorio ed eventualmente intervenire nel caso in cui siano presenti zone non coperte.

Figura 61: UC-4.1.2: Visualizzazione mappa interattiva sensori traffico

3.4.4.1.3 UC-4.1.3: Visualizzazione panel numero veicoli in tempo reale

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard relativa ai sensori urbani.
- Postcondizioni: l'autorità locale visualizza un panel_G contenente il numero di veicoli in tempo reale.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati relativi ai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori urbani.
- **User story**_G: come autorità locale desidero poter visualizzare del numero di veicoli in tempo reale in modo da poterne monitorare l'andamento e poterla facilmente confrontare con i dati storici.

Figura 62: UC-4.1.3: Visualizzazione panel_G numero di veicoli in tempo reale

3.4.4.1.4 UC-4.1.4: Visualizzazione panel velocità media in tempo reale

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard relativa ai sensori urbani.
- Postcondizioni: l'autorità locale visualizza un panel_G contenente la velocità media in tempo reale.

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati relativi ai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori urbani.
- **User story**_G: come autorità locale desidero poter visualizzare della velocità media in tempo reale in modo da poterne monitorare l'andamento e poterla facilmente confrontare con i dati storici.

Figura 63: UC-4.1.4: Visualizzazione panel_G velocità media in tempo reale

3.4.4.2 UC-4.2: Visualizzazione sezione colonnine di ricarica

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- **Postcondizioni**: l'autorità locale visualizza la dashboard relativa ai sensori urbani presenti nella città.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;

- 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori urbani.
- **User story**_G: come autorità locale desidero poter visualizzare una dashboard relativa ai sensori urbani presenti nella città, la quale dovrà contenere informazioni riguardanti lo stato di funzionamento e manutenzione delle colonnine di ricarica.

Figura 64: UC-4.2: Visualizzazione sezione colonnine di ricarica

3.4.4.2.1 UC-4.2.1: Visualizzazione mappa colonnine di ricarica con stato

- Attore principale: autorità locale.
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard relativa ai sensori urbani.
- **Postcondizioni**: l'autorità locale visualizza una mappa interattiva popolata con dei *marker* rappresentanti la posizione delle colonnine di ricarica.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. l'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori urbani.

 User story_G: come autorità locale desidero poter visualizzare una mappa interattiva popolata con dei marker rappresentanti la posizione delle colonnine di ricarica contenenti il loro identificativo e lo stato di funzionamento. Essa mi consentirà di visualizzare la distribuzione delle colonnine di ricarica nel territorio ed eventualmente intervenire nel caso in cui vi siano dei guasti.

Figura 65: UC-4.2.1: Visualizzazione mappa interattiva sensori colonnine di ricarica

3.4.4.2.2 UC-4.2.2: Visualizzazione *panel* numero colonnine di ricarica per stato in tempo reale

- Attore principale: autorità locale.
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione:
 - 2. il sistema ha caricato la dashboard relativa ai sensori urbani.
- **Postcondizioni**: l'autorità locale visualizza un *panel*_© contenente il conteggio delle colonnine di ricarica suddivise per stato di funzionamento.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - il sistema carica i dati relativi ai sensori interrogando il database;

- 3. l'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori urbani.
- User story_G: come autorità locale desidero poter visualizzare un panel_G contenente il conteggio delle colonnine di ricarica suddivise per stato di funzionamento per poterle monitorare e intervenire in caso di guasti.

Figura 66: UC-4.2.2: Visualizzazione $panel_{\mathbb{G}}$ numero colonnine di ricarica per stato

3.4.4.3 UC-4.3: Visualizzazione sezione parcheggi

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.
- **Postcondizioni**: l'autorità locale visualizza la dashboard relativa ai sensori urbani presenti nella città.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
 - 3. l'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori urbani.

 User story_G: come autorità locale desidero poter visualizzare una dashboard relativa ai sensori urbani presenti nella città, la quale dovrà contenere informazioni utili per monitorare lo stato di occupazione dei parcheggi sulla base di dati storici e in tempo reale, in modo da poter individuare eventuali zone di criticità e intervenire per aumentare la disponibilità di parcheggi.

Figura 67: UC-4.3: Visualizzazione dashboard parcheggi

3.4.4.3.1 UC-4.3.1: Visualizzazione mappa interattiva parcheggi con rispettivo stato di occupazione

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard relativa ai sensori urbani.
- **Postcondizioni**: l'autorità locale visualizza una mappa interattiva popolata con dei *marker* rappresentanti la posizione dei parcheggi con rispettivo stato di occupazione.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. l'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori urbani.

 User story_G: come autorità locale desidero poter visualizzare una mappa interattiva popolata con dei marker rappresentanti la posizione dei parcheggi con rispettivo stato di occupazione e contenenti il loro identificativo. Essa consentirà di individuare facilmente le zone con maggiore affluenza ed eventualmente intervenire per aumentare la disponibilità di parcheggi.

Figura 68: UC-4.3.1: Visualizzazione mappa interattiva sensori parcheggi con rispettivo stato di occupazione

3.4.4.3.2 UC-4.3.2: Visualizzazione *panel* con conteggio parcheggi per stato in tempo reale

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard relativa ai sensori urbani.
- **Postcondizioni**: l'autorità locale visualizza un *panel*_G contenente i parcheggi con rispettivo stato di occupazione in tempo reale.

• Scenario principale:

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati relativi ai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori urbani.
- 4. **User story**_G: come autorità locale desidero poter visualizzare i parcheggi con rispettivo stato di occupazione in tempo reale in modo da poterne monitorare l'andamento e poterla facilmente confrontare con i dati storici.

Figura 69: UC-4.3.2: Visualizzazione $panel_{\mathbb{G}}$ parcheggi con rispettivo stato di occupazione in tempo reale

3.4.4.4 UC-4.4: Visualizzazione sezione isole ecologiche

- Attore principale: autorità locale.
- **Precondizioni**: l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione.

- **Postcondizioni**: l'autorità locale visualizza la dashboard relativa ai sensori urbani presenti nella città.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati trasmessi dai sensori interrogando il database;
 - 3. l'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori urbani.
- User story_G: come autorità locale desidero poter visualizzare una dashboard relativa ai sensori urbani presenti nella città, la quale dovrà contenere informazioni utili per monitorare lo stato di riempimento delle isole ecologiche. In questo modo potrò intervenire per poter svuotare le isole ecologiche piene.

Figura 70: UC-4.4: Visualizzazione sezione isole ecologiche

3.4.4.4.1 UC-4.4.1: Visualizzazione *panel* con riempimento isole ecologiche in tempo reale

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard relativa ai sensori urbani.

- **Postcondizioni**: l'autorità locale visualizza un *panel*_G contenente il riempimento in percentuale delle isole ecologiche in tempo reale.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. l'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori urbani.
- **User story**_G: come autorità locale desidero poter visualizzare il riempimento in percentuale delle isole ecologiche in tempo reale in modo da poterne monitorare l'andamento ed eventualmente intervenire per svuotarle.

Figura 71: UC-4.4.1: Visualizzazione panel_G riempimento isole ecologiche in tempo reale

3.4.4.4.2 UC-4.4.2: Visualizzazione mappa interattiva isole ecologiche

- Attore principale: autorità locale.
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard relativa ai sensori urbani.

 Postcondizioni: l'autorità locale visualizza una mappa interattiva popolata con dei marker contenenti l'identificativo e le coordinate geografiche dei sensori delle isole ecologiche.

• Scenario principale:

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati relativi ai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori urbani.
- **User story**_G: come autorità locale desidero poter visualizzare una mappa interattiva popolata con dei *marker* rappresentanti la posizione dei sensori delle isole ecologiche contenenti il loro identificativo. Essa mi consentirà di visualizzare la distribuzione delle isole ecologiche nel territorio.

Figura 72: UC-4.4.2: Visualizzazione mappa interattiva sensori isole ecologiche

3.4.4.4.3 UC-4.4.3: Visualizzazione grafico time series isole ecologiche

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;

- 2. il sistema ha caricato la dashboard relativa ai sensori urbani.
- **Postcondizioni**: l'autorità locale visualizza un grafico time series contenente le misurazioni storiche di riempimento e svuotamento di isole ecologiche.
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. l'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori urbani.
- **User story**_G: come autorità locale desidero poter visualizzare un grafico time series contenente le misurazioni storiche di isole ecologiche per poter monitorare gli svuotamenti e i riempimenti nel tempo.

Figura 73: UC-4.4.3: Visualizzazione grafico time series isole ecologiche

3.4.4.4.4 UC-4.4.4: Visualizzazione panel ore di saturazione isole ecologiche

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione:

- 2. il sistema ha caricato la dashboard relativa ai sensori urbani.
- **Postcondizioni**: l'autorità locale visualizza un panel_G contenente il conteggio delle ore di saturazione delle isole ecologiche, ovvero il numero di ore in cui le isole ecologiche sono rimaste piene al 100% prima di essere svuotate.

• Scenario principale:

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati relativi ai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori urbani.
- **User story**_G: come autorità locale desidero poter visualizzare il conteggio delle ore di saturazione delle isole ecologiche in modo da poter monitorare quanto efficienti sono gli svuotamenti e poter intervenire per migliorare il servizio.

Figura 74: UC-4.4.4: Visualizzazione panel_G ore di saturazione isole ecologiche

3.4.4.4.5 UC-4.4.5: Visualizzazione *panel* con percentuale media di riempimento al momento dello svuotamento

- Attore principale: autorità locale.
- Precondizioni:

- 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- 2. il sistema ha caricato la dashboard relativa ai sensori urbani.
- **Postcondizioni**: l'autorità locale visualizza un *panel*_© contenente la percentuale media di riempimento delle isole ecologiche al momento dello svuotamento, che rappresenta l'efficienza del servizio di svuotamento.

• Scenario principale:

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati relativi ai sensori interrogando il database;
- 3. l'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori urbani.
- User story_G: come autorità locale desidero poter visualizzare la percentuale media di riempimento delle isole ecologiche al momento dello svuotamento in modo da poter monitorare l'efficienza del servizio di svuotamento e poter intervenire per migliorare il servizio.

Figura 75: UC-4.4.5: Visualizzazione panel_G percentuale media di riempimento al momento dello svuotamento

3.4.4.4.6 UC-4.4.6: Visualizzazione *panel* con percentuale tempo trascorso per livello di riempimento

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato la dashboard relativa ai sensori urbani.
- **Postcondizioni**: l'autorità locale visualizza un *panel*_G contenente la percentuale di tempo trascorso in ciascuno dei seguenti livelli:
 - Basso (0-50%)
 - Medio (50-80%)
 - Alto (80-100%)
- Scenario principale:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. l'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori urbani.
- User story_G: come autorità locale desidero poter visualizzare la percentuale di tempo trascorso in ciascuno dei livelli di riempimento delle isole ecologiche, in modo da poter monitorare l'andamento del riempimento e poter intervenire per migliorare il servizio.

Figura 76: UC-4.4.6: Visualizzazione $panel_{\odot}$ percentuale tempo trascorso per livello di riempimento

3.4.5 UC-5: Visualizzazione messaggio assenza di dati

- Attore principale: autorità locale.
- Precondizioni:
 - 1. l'autorità locale accede alla piattaforma;
 - 2. il sistema carica i dati relativi ai sensori interrogando il database.
- **Postcondizioni**: l'autorità locale visualizza un messaggio che notifica l'assenza di dati.

• Scenario principale:

- 1. l'autorità locale accede alla piattaforma;
- 2. il sistema carica i dati relativi ai sensori interrogando il database;
- 3. il sistema non trova dati relativi ai sensori;
- 4. il sistema mostra un messaggio che notifica l'assenza di dati.

• **User story**_G: come autorità locale desidero poter visualizzare un messaggio che notifica l'assenza di dati relativi ai sensori in modo da poter essere informato in caso di malfunzionamento.

Figura 77: UC-5: Visualizzazione messaggio assenza di dati

3.4.6 UC-6: Trasmissione dati

- Attore principale: sensore.
- **Precondizioni**: il sensore è attivo e collegato al sistema.
- Postcondizioni: i dati inviati dal sensore sono stati elaborati e memorizzati nel sistema.
- Scenario principale:
 - 1. il sensore effettua una misurazione;
 - 2. il sensore formatta i dati da inviare al sistema, includendo le misurazioni, l'identificativo del sensore, il timestamp, e la sua posizione geografica;
 - 3. il sensore invia i dati al sistema.
- **User story**_G: come sensore, desidero poter inviare al sistema le rilevazioni effettuate.

Figura 78: UC-6: Trasmissione dati

3.4.7 UC-7: Trasmissione dati temperatura

- Attore principale: sensore.
- **Precondizioni**: il sensore è attivo e collegato al sistema.
- Postcondizioni: i dati inviati dal sensore sono stati elaborati e memorizzati nel sistema.
- Scenario principale:
 - 1. il sensore effettua una misurazione di temperatura;
 - 2. il sensore formatta i dati da inviare al sistema, includendo la temperatura in gradi Celsius, l'identificativo del sensore, il timestamp, e la sua posizione geografica;

- 3. il sensore invia i dati al sistema.
- **User story**_G: come sensore, desidero poter inviare al sistema le rilevazioni della temperatura.

 ${\tt analisi_dei_requisiti/UC-13.1.png}$

Figura 79: UC-7: Trasmissione dati temperatura

3.4.8 UC-8: Trasmissione dati umidità

- Attore principale: sensore.
- **Precondizioni**: il sensore è attivo e collegato al sistema.
- Postcondizioni: i dati inviati dal sensore sono stati elaborati e memorizzati nel sistema.
- Scenario principale:

- 1. il sensore effettua una misurazione dell'umidità;
- 2. il sensore formatta i dati da inviare al sistema, includendo all'umidità in percentuale, l'identificativo del sensore, il timestamp, e la sua posizione geografica;
- 3. il sensore invia i dati al sistema.
- **User story**_G: come sensore, desidero poter inviare al sistema le rilevazioni dell'umidità.

Figura 80: UC-8: Trasmissione dati umidità

3.4.9 UC-9: Trasmissione dati qualità dell'aria

- Attore principale: sensore.
- **Precondizioni**: il sensore è attivo e collegato al sistema.
- Postcondizioni: i dati inviati dal sensore sono stati elaborati e memorizzati nel sistema.
- Scenario principale:
 - 1. il sensore effettua una misurazione della quantità di precipitazioni;
 - 2. il sensore formatta i dati da inviare al sistema, includendo le misurazioni degli agenti inquinanti PM10, PM2.5, NO₂, O₃, SO₂ in $\mu g/m^3$, l'identificativo del sensore, il timestamp, e la sua posizione geografica;
 - 3. il sensore invia i dati al sistema.
- User $story_{\ominus}$: come sensore, desidero poter inviare al sistema le rilevazioni della qualità dell'aria.

Figura 81: UC-9: Trasmissione dati qualità dell'aria

3.4.10 UC-10: Trasmissione dati precipitazioni

- Attore principale: sensore.
- **Precondizioni**: il sensore è attivo e collegato al sistema.
- Postcondizioni: i dati inviati dal sensore sono stati elaborati e memorizzati nel sistema.
- Scenario principale:
 - 1. il sensore effettua una misurazione della quantità di precipitazioni;
 - 2. il sensore formatta i dati da inviare al sistema, includendo la misurazione in mm delle precipitazioni, l'identificativo del sensore, il timestamp, e la sua posizione geografica;
 - 3. il sensore invia i dati al sistema.
- **User story**_©: come sensore, desidero poter inviare al sistema le rilevazioni della quantità di precipitazioni.

Figura 82: UC-10: Trasmissione dati precipitazioni

3.4.11 UC-11: Trasmissione dati traffico

- Attore principale: sensore.
- **Precondizioni**: il sensore è attivo e collegato al sistema.
- Postcondizioni: i dati inviati dal sensore sono stati elaborati e memorizzati nel sistema.
- Scenario principale:
 - 1. il sensore effettua una misurazione del traffico:
 - 2. il sensore formatta i dati da inviare al sistema, includendo il numero di veicoli transitati, la loro velocità media, l'identificativo del sensore, il timestamp, e la sua posizione geografica;
 - 3. il sensore invia i dati al sistema.
- **User story**_G: come sensore, desidero poter inviare al sistema le rilevazioni sui dati del traffico.

Figura 83: UC-11: Trasmissione dati traffico

3.4.12 UC-12: Trasmissione dati colonnine di ricarica

- Attore principale: sensore.
- **Precondizioni**: il sensore è attivo e collegato al sistema.
- **Postcondizioni**: i dati inviati dal sensore sono stati elaborati e memorizzati nel sistema.
- Scenario principale:
 - 1. il sensore effettua una misurazione dello stato e l'occupazione delle colonnine di ricarica;
 - 2. Il sensore formatta i dati da inviare al sistema, includendo la potenza erogata in kW, il tempo rimanente alla fine della ricarica, l'identificativo del sensore, il timestamp, e la sua posizione geografica;
 - 3. il sensore invia i dati al sistema.
- **User story**_G: come sensore, desidero poter inviare al sistema le rilevazioni sullo stato e l'occupazione delle colonnine di ricarica.

Figura 84: UC-12: Trasmissione dati colonnine di ricarica

3.4.13 UC-13: Trasmissione dati parcheggi

- Attore principale: sensore.
- **Precondizioni**: il sensore è attivo e collegato al sistema.
- Postcondizioni: i dati inviati dal sensore sono stati elaborati e memorizzati nel sistema.
- Scenario principale:
 - 1. il sensore effettua una misurazione dello stato di riempimento del parcheggio;
 - 2. il sensore formatta i dati da inviare al sistema, includendo lo stato di occupazione del parcheggio, l'identificativo del sensore, il timestamp, e la sua posizione geografica;
 - 3. il sensore invia i dati al sistema.
- User story_G: come sensore, desidero poter inviare al sistema le rilevazioni sull'occupazione dei parcheggi.

Figura 85: UC-13: Trasmissione dati parcheggi

3.4.14 UC-14: Trasmissione dati isole ecologiche

- Attore principale: sensore.
- **Precondizioni**: il sensore è attivo e collegato al sistema.
- Postcondizioni: i dati inviati dal sensore sono stati elaborati e memorizzati nel sistema.
- Scenario principale:
 - 1. il sensore effettua una misurazione dello stato di riempimento delle isole ecologiche;
 - 2. il sensore formatta i dati da inviare al sistema, includendo la percentuale di riempimento, l'identificativo del sensore, il timestamp, e la sua posizione geografica;
 - 3. il sensore invia i dati al sistema.
- **User story**_G: come sensore, desidero poter inviare al sistema le rilevazioni sullo stato di riempimento delle isole ecologiche.

Figura 86: UC-14: Trasmissione dati isole ecologiche

3.4.15 UC-15: Trasmissione dati livello di acqua

- Attore principale: sensore.
- **Precondizioni**: il sensore è attivo e collegato al sistema.
- Postcondizioni: i dati inviati dal sensore sono stati elaborati e memorizzati nel sistema.
- Scenario principale:
 - 1. il sensore effettua una misurazione del livello di acqua;
 - 2. il sensore formatta i dati da inviare al sistema, includendo il livello di acqua in cm, l'identificativo del sensore, il timestamp, e la sua posizione geografica;
 - 3. il sensore invia i dati al sistema.
- User story_G: come sensore, desidero poter inviare al sistema le rilevazioni sul livello di acqua.

Figura 87: UC-15: Trasmissione dati livello di acqua

3.4.16 UC-16: Applicazione filtro

• Attore principale: autorità locale.

• Precondizioni:

- 1. l'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- 2. il sistema ha caricato i dati interrogando il database;
- 3. l'autorità locale visualizza una dashboard.
- **Postcondizioni**: l'autorità locale applica un filtro ai dati visualizzati in modo da poter circoscrivere l'analisi ai dati di interesse.

• Scenario principale:

- 1. I'autorità locale visualizza una dashboard;
- 2. l'autorità locale seleziona uno dei filtri disponibili.
- User story_G: come autorità locale desidero poter applicare dei filtri ai dati visualizzati in modo da poter circoscrivere l'analisi ai dati di interesse.

Figura 88: UC-7: Applicazione filtro

3.4.17 UC-16.1: Applicazione filtro per tipo di sensore

• Attore principale: autorità locale.

• Precondizioni:

- 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- 2. il sistema ha caricato i dati interrogando il database;
- 3. l'autorità locale visualizza una dashboard.
- **Postcondizioni**: l'autorità locale applica un filtro per il tipo di sensore ai dati visualizzati in modo da poter circoscrivere l'analisi ai dati di interesse.

• Scenario principale:

- 1. I'autorità locale visualizza una dashboard;
- 2. l'autorità locale seleziona il tipo di sensore di cui vuole visualizzare i dati.
- **User story**_©: come autorità locale desidero poter applicare un filtro per il tipo di sensore ai dati visualizzati in modo da poter circoscrivere l'analisi ai dati di interesse.

Figura 89: UC-16.1: Applicazione filtro per tipo di sensore

3.4.18 UC-16.2: Applicazione filtro per nome del sensore

- Attore principale: autorità locale.
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato i dati interrogando il database;
 - 3. l'autorità locale visualizza una dashboard.
- **Postcondizioni**: l'autorità locale applica un filtro per il nome del sensore ai dati visualizzati in modo da poter circoscrivere l'analisi ai dati di interesse.
- Scenario principale:
 - 1. I'autorità locale visualizza una dashboard;
 - 2. L'autorità locale seleziona il nome del sensore di cui vuole visualizzare i dati.
- **User story**_G: come autorità locale desidero poter applicare un filtro per il nome del sensore ai dati visualizzati in modo da poter circoscrivere l'analisi ai dati di interesse.

Figura 90: UC-16.2: Applicazione filtro per nome del sensore

3.4.19 UC-16.3: Applicazione filtro temporale

- Attore principale: autorità locale.
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. il sistema ha caricato i dati interrogando il database;
 - 3. l'autorità locale visualizza una dashboard.
- **Postcondizioni**: l'autorità locale applica un filtro temporale ai dati visualizzati in modo da poter circoscrivere l'analisi ai dati di interesse.
- Scenario principale:
 - 1. I'autorità locale visualizza una dashboard;
 - 2. l'autorità locale seleziona il periodo di tempo di cui vuole visualizzare i dati.
- **User story**_G: come autorità locale desidero poter applicare un filtro temporale ai dati visualizzati in modo da poter circoscrivere l'analisi ai dati di interesse.

Figura 91: UC-16.3: Applicazione filtro temporale

3.4.20 UC-17: Visualizzazione notifica superamento soglie

• Attore principale: autorità locale.

• Precondizioni: nessuna

• **Postcondizioni**: l'autorità locale visualizza una notifica relativa al superamento delle soglie.

• Scenario principale:

- 1. si verificano delle condizioni che portano al superamento di soglie prestabilite per uno dei sensori.
- **User story**_G: come autorità locale desidero poter visualizzare delle notifiche relative al superamento delle soglie in modo da poter intervenire tempestivamente in caso di criticità.

Figura 92: UC-17: Visualizzazione notifica superamento soglie

3.4.21 UC-17.1: Visualizzazione notifica superamento soglia di temperatura

- Attore principale: autorità locale.
- Precondizioni: nessuna
- Postcondizioni: l'autorità locale visualizza una notifica relativa al superamento della soglia di temperatura.
- Scenario principale:
 - 1. la temperatura rilevata supera i 40°C per più di 30 minuti;
 - 2. il sistema invia una notifica all'autorità locale.
- User story_G: come autorità locale desidero poter visualizzare delle notifiche relative al superamento delle soglie di temperatura in modo da poter avvisare la popolazione e prendere eventuali misure precauzionali.

Figura 93: UC-17.1: Visualizzazione notifica superamento soglie di temperatura

3.4.22 UC-17.2: Visualizzazione notifica superamento soglia di riempimento dell'isola ecologica

- Attore principale: autorità locale.
- Precondizioni: nessuna.
- **Postcondizioni**: l'autorità locale visualizza una notifica relativa al superamento della soglia di riempimento dell'isola ecologica.
- Scenario principale:
 - 1. l'isola ecologica rimane piena al 100% per più di 24 ore;
 - 2. il sistema invia una notifica all'autorità locale.
- **User story**_G: come autorità locale desidero poter visualizzare delle notifiche relative al superamento delle soglie di riempimento dell'isola ecologica in modo da poter intervenire per svuotarla.

Figura 94: UC-17.2: Visualizzazione notifica superamento soglia di riempimento dell'isola ecologica

3.4.23 UC-17.3: Visualizzazione notifica superamento indice 3 EAQI

- Attore principale: autorità locale.
- Precondizioni: nessuna.
- **Postcondizioni**: l'autorità locale visualizza una notifica relativa al superamento dell'indice 3 EAQI.
- Scenario principale:

- 1. l'indice EAQI supera il valore 3;
- 2. il sistema invia una notifica all'autorità locale.
- **User story**_G: come autorità locale desidero poter visualizzare delle notifiche relative al superamento dell'indice 3 EAQI per poter avvisare la popolazione e prendere eventuali misure precauzionali.

Figura 95: UC-17.3: Visualizzazione notifica superamento indice 3 EAQI

3.4.24 UC-17.4: Visualizzazione notifica superamento livello di precipitazioni

- Attore principale: autorità locale.
- Precondizioni: nessuna.
- **Postcondizioni**: l'autorità locale visualizza una notifica relativa al superamento di 10mm di precipitazioni in un'ora.
- Scenario principale:
 - 1. il livello di precipitazioni supera i 10mm in un'ora;
 - 2. il sistema invia una notifica all'autorità locale.
- **User story**_G: come autorità locale desidero poter visualizzare delle notifiche relative al superamento del livello di precipitazioni per poter avvisare la popolazione e prendere eventuali misure precauzionali.

Figura 96: UC-17.4: Visualizzazione notifica superamento livello di precipitazioni

4 Requisiti

4.1 Definizione di un requisito

Per ciascun requisito vengono fornite le seguenti informazioni:

- codice identificativo del requisito, meglio specificato nella sezione ??;
- descrizione del requisito;
- fonte, ovvero la provenienza del requisito, meglio specificata nella sezione ??;
- importanza del requisito, meglio specificata nella sezione??.

4.2 Tipologie di requisiti

I requisiti possono essere di quattro tipologie:

- funzionali, descrivono le funzionalità del sistema;
- qualitativi, descrivono le qualità che il sistema deve avere;
- di vincolo, descrivono i vincoli a cui il sistema deve sottostare.
- prestazionali, descrivono le prestazioni che il sistema deve avere.

4.2.1 Codifica dei requisiti

I requisiti sono codificati nel seguente modo:

R[Tipologia]-[Codice]

dove [Codice] è un numero progressivo che identifica univocamente il requisito e [Tipologia] è una lettera che identifica la tipologia del requisito:

- F: requisito funzionale;
- Q: requisito qualitativo;
- V: requisito di vincolo;
- P: requisito prestazionale.

4.2.2 Fonti dei requisiti

I requisiti provengono dalle fonti meglio specificate di seguito.

Capitolato_G

Requisiti individuati a seguito dell'analisi dello stesso;

Interno

Requisiti individuati durante le riunioni interne e da coloro che hanno il ruolo di analista_G;

Esterno

Requisiti individuati in seguito agli incontri tenuti con la proponente_G;

Piano di Qualifica_G

Requisiti necessari per adeguare il prodotto agli standard di qualità definiti nel documento Piano di Qualifica_G;

Norme di Progetto_G

Requisiti necessari per adeguare il prodotto alle norme stabilite nel documento *Norme* di *Progetto*_G;

4.2.3 Importanza dei requisiti

I requisiti possono avere tre livelli di importanza:

- **Obbligatorio**, requisito irrinunciabile per il committente_G;
- **Desiderabile**, requisito non strettamente necessario, ma che porta valore aggiunto al prodotto;
- Opzionale, requisito relativo a funzionalità aggiuntive.

4.3 Requisiti funzionali

Codice	Importanza	Fonte	Descrizione
RF-1	Obbligatorio	Capitolato _G	La parte <i>IoT</i> dovrà essere simulata
			attraverso tool di generazione di
			dati casuali che tuttavia siano
			verosimili.
	Obbligatorio	Capitolato _G	Il sistema dovrà permettere la
RF-2			visualizzazione dei dati in tempo
			reale.
RF-3	Obbligatorio	Capitolato _G	Il sistema dovrà permettere la
111 0			visualizzazione dei dati storici.
	Obbligatorio	Capitolato _G	L'utente deve poter accedere
RF-4			all'applicativo senza bisogno di
			autenticazione.
RF-5	Obbligatorio	Capitolato _G	L'utente dovrà poter visualizzare su
			una mappa la posizione
			geografica dei sensori.
RF-6	Obbligatorio	Capitolato _G	I tipi di dati che il sistema dovrà
			visualizzare sono: temperatura,
			umidità, qualità dell'aria,
			precipitazioni, traffico, stato delle
IXI -O			colonnine di ricarica, stato di
			occupazione dei parcheggi, stato
			di riempimento delle isole
			ecologiche e livello di acqua.
RF-7	Obbligatorio	Capitolato _G	I dati dovranno essere salvati su un
IXI -7			database OLAP.
RF-8	Obbligatorio	Capitolato _G	I sensori di temperatura rilevano i
IXI -O			dati in gradi Celsius
RF-9	Obbligatorio	Capitolato _G	l sensori di umidità rilevano la
			percentuale di umidità nell'aria.
RF-10	Obbligatorio	Capitolato _G	I sensori livello acqua rilevano il
			livello di acqua nella zona di
			installazione

Codice	Importanza	Fonte	Descrizione
	Obbligatorio	Capitolato _⊖	l dati provenienti dai sensori
RF-11			dovranno contenere i seguenti
			dati: id sensore _G , data, ora e
			valore.
RF-12	Obbligatorio	Capitolato _G	Sviluppo di componenti quali
			widget _G e grafici per la
			visualizzazione dei dati nelle
			dashboard _G .
	Obbligatorio	Interno	Il sistema deve permettere di
DE 10			visualizzare una dashboard _G
RF-13			generale con tutti i dati dei
			sensori.
	Obbligatorio	Interno	Il sistema deve permettere di
DE 14			visualizzare una dashboard _G
RF-14			contenente tutti i dati dei sensori
			che monitorano l'ambiente.
RF-15	Obbligatorio	Interno	Il sistema deve permettere di
			visualizzare una dashboard _G
			contenente tutti i dati dei sensori
			che monitorano gli aspetti urbani.
	Obbligatorio	Interno	Il sistema deve permettere di
RF-16			visualizzare una sezione specifica
			per ciascuna categoria di sensori.
	Obbligatorio	Interno	Nella dashboard _G dei dati grezzi
			dovranno essere presenti: una
			mappa interattiva, un widget _⊖
			con il conteggio totale dei sensori
			divisi per tipo, una tabella
RF-17			contente tutti i sensori e la data in
			cui essi hanno trasmesso l'ultima
			volta. Inoltre verranno mostrate
			delle tabelle con i dati filtrabili
			suddivisi per sensore _G e un grafico
			time series _G con tutti i dati grezzi.

Codice	Importanza	Fonte	Descrizione
			Nella dashboard _G dei dati
			ambientali dovranno essere
			presenti delle sezioni contenenti i
RF-18	Obbligatorio	Interno	panel relativi ai sensori di
			temperatura, umidità,
			precipitazioni, livello dei fiumi e
			qualità dell'aria.
			Nella dashboard _G dei dati legati
			agli aspetti urbani dovranno
			essere presenti delle sezioni
RF-19	Obbligatorio	Interno	contenenti i panel relativi ai
			sensori di parcheggio, traffico,
			isole ecologiche e colonnine di
			ricarica.
	Obbligatorio	Interno	Nella sezione della temperatura
			dovranno essere visualizzati: un
			grafico time series _G , una mappa
RF-20			interattiva, la temperatura media,
IXI ZO			minima e massima di un certo
			periodo di tempo, la temperatura
			in tempo reale e la temperatura
			media per settimana e mese.
			Nella sezione dell'umidità
			dovranno essere visualizzati: un
			grafico time series _G , una mappa
RF-21	Obbligatorio	Interno	interattiva, l'umidità media,
			minima e massima di un certo
			periodo di tempo e l'umidità in
			tempo reale.

Codice	Importanza	Fonte	Descrizione
			Nella sezione della qualità
			dell'aria dovranno essere
			visualizzati: un grafico time series _G ,
			una mappa interattiva, la qualità
RF-22	Obbligatorio	Interno	media dell'aria in un certo
			periodo e in tempo reale, i giorni
			con la qualità dell'aria migliore e
			peggiore in un certo periodo di
			tempo.
			Nella sezione delle precipitazioni
			dovranno essere visualizzati: un
			grafico time series $_{\mathbb{G}}$, una mappa
	Obbligatorio	Interno	interattiva, la quantità media di
RF-23			precipitazioni in un certo periodo
			e in tempo reale, i giorni con la
			quantità di precipitazioni
			maggiore e minore in un certo
			periodo di tempo.
	Obbligatorio	Interno	Nella sezione del livello di acqua
			dovranno essere visualizzati: un
RF-24			grafico time series _G , una mappa
			interattiva, il livello medio di
			acqua in un certo periodo e in
			tempo reale.
			Nella sezione delle isole
			ecologiche dovranno essere
DE 05			visualizzati: una mappa interattiva
RF-25	Obbligatorio	Interno	con il rispettivo stato di
			riempimento e il conteggio di isole
			ecologiche suddivise per stato di
			riempimento in tempo reale.

Codice	Importanza	Fonte	Descrizione
			Nella sezione dei parcheggi
			dovranno essere visualizzati: una
			mappa interattiva con il rispettivo
RF-26	Obbligatorio	Interno	stato di occupazione e il
			conteggio di parcheggi suddivisi
			per stato di occupazione in
			tempo reale.
			Nella sezione delle colonnine di
			ricarica dovranno essere
RF-27	Obbligatorio	Interno	visualizzati: una mappa interattiva
10.7	Obbligation	II II C II IO	contenente anche lo stato e il
			numero di colonnine di ricarica
			suddivise per stato in tempo reale.
	Obbligatorio	Interno	Nella sezione del traffico dovranno
			essere visualizzati: un grafico time
			series _G , il numero di veicoli e la
RF-28			velocità media in tempo reale, il
			calcolo dell'ora di punta sulla
			base del numero di veicoli e
			velocità media.
	Obbligatorio	Interno	Nel caso in cui non ci siano dati
RF-29			visualizzabili, il sistema deve
		IIIICIIIO	notificare l'utente mostrando un
			opportuno messaggio.
			l sensori di qualità dell'aria inviano
RF-30	Obbligatorio	Interno	i seguenti dati: PM10, PM2.5, NO2,
			CO , $O3$, $SO2$ in $\mu g/m^3$.
RF-31	Obbligatorio	Interno	I sensori di precipitazioni inviano la
101	Obbligatorio	ii ii Cii iO	quantità di pioggia caduta in mm.
			l sensori di traffico inviano il
RF-32	Obbligatorio	Interno	numero di veicoli rilevati e la
			velocità in km/h.

Codice	Importanza	Fonte	Descrizione
			Le colonnine di ricarica inviano lo
			stato di occupazione e il tempo
RF-33	Obbligatorio	Interno	mancante alla fine della ricarica
KI-JJ	Obbligatorio	IIIIeIIIO	(se occupate) o il tempo passato
			dalla fine dell'ultima ricarica (se
			libere).
			I sensori di parcheggio inviano lo
			stato di occupazione del
RF-34	Obbligatorio	Interno	parcheggio (1 se occupato, 0 se
			libero) e il timestamp dell'ultimo
			cambiamento di stato.
			Le isole ecologiche inviano lo
RF-35	Obbligatorio	Interno	stato di riempimento come
			percentuale.
RF-36	Obbligatorio	Intorno	I sensori di livello di acqua inviano
KF-30	Obbligatorio	Interno	il livello di acqua in cm.
	Obbligatorio	Esterno	Il sistema deve permettere di
RF-37			filtrare i dati visualizzati in base a
			un intervallo di tempo.
	Obbligatorio	Esterno	Il sistema deve permettere di
RF-38			filtrare i dati visualizzati in base al
			sensore _G che li ha generati.
RF-39	Desiderabile	Esterno	Devono essere messe in relazione
IKI-09	Desiderabile	ESIGITIO	più sorgenti di dati.
			Nei grafici time series _G i dati
RF-40	Desiderabile	Esterno	devono essere aggregati
RF-40	Desiderabile	ESIGITIO	calcolando la media di 5 minuti,
			in modo da risultare più leggibili.
RF-41	Obbligatorio	Capitolato _G	Deve essere implementato
1817-41	Oppligation	Capilolalo _G	almeno un simulatore di dati.
RF-42	Docidorabilo	Couplibalant -	Devono essere implementati più
177-42	Desiderabile	Capitolato _G	simulatori di dati.
DE 42	Obbligatoria	Capitolato _⊖	I simulatori devono produrre dei
RF-43	Obbligatorio		dati verosimili.

Codice	Importanza	Fonte	Descrizione
			Per ciascuna tipologia di sensore _G
RF-44	Obbligatorio	Capitolato _€	dev'essere sviluppata almeno una
			sezione.
			Deve essere implementata una
			funzionalità di previsione di dati
RF-45	Opzionale	Capitolato _G	futuri della temperature,
			basandosi sui dati dell'anno e
			della settimana precedente.
			Deve esistere una dashboard _G per
RF-46	 Desiderabile	Capitolato _s	la visualizzazione della posizione
1817-40	Desiderabile	Capilolalo _G	geografica dei sensori su una
			mappa.
	Opzionale	Capitolato _G	Deve essere presente un sistema
RF-47			di notifiche che allerti l'utente nel
IXI -47			caso in cui la temperatura superi i
			40°C per più di 30 minuti.
	Opzionale	Interno	Deve essere presente un sistema
RF-48			di notifiche che allerti l'utente se
10 -40			un'isola ecologica rimane al 100%
			di riempimento per più di 24 ore.
			Deve essere presente un sistema
RF-49	Opzionale	Interno	di notifiche che allerti l'utente se
101 47		ii ii Cii io	la qualità dell'aria supera l'indice
			3 dell'EAQI.
			Deve essere presente un sistema
RF-50	Opzionale	Interno	di notifiche che allerti l'utente se
IXI OO	Opzioriale	111101110	la quantità di precipitazioni supera
			i 10mm in un'ora.
			Deve essere implementato il
RF-51	Opzionale	Esterno	calcolo dell'indice di qualità
			dell'aria EAQI.

Codice	Importanza	Fonte	Descrizione
			Deve essere implementato il
			calcolo dell'indice di temperatura
RF-52	Opzionale	Esterno	percepita Heat Index,
			combinando i dati provenienti dai
			sensori di temperatura e umidità.
	Opzionale		Devono essere combinati i dati
		Esterno	provenienti dalle colonnine di
			ricarica e dai parcheggi per
RF-53			calcolare quanti parcheggi sono
100			stati utilizzati da veicoli elettrici e
			se il parcheggio ha fruttato
			abbastanza per coprire i costi di
			installazione.
			Il sistema deve permettere di
RF-54	Obbligatorio	Esterno	filtrare i dati visualizzati in base al
			tipo di sensore che li ha prodotti.

Tabella 1: Requisiti funzionali

4.4 Requisiti qualitativi

Codice	Importanza	Fonte	Descrizione
			Sviluppo di test che dimostrino il
		Capitolato _G ,	corretto funzionamento dei servizi
RQ-55	Obbligatorio	Piano di	e delle funzionalità previste. Viene
		Qualifica _⊖	richiesta una copertura dell'80%
			corredata di report.
			Il progetto deve essere corredato
		Capitolato $_{\mathbb{G}}$,	di documentazione riguardo
RQ-56	Obbligatorio	Piano di	scelte implementative e
		Qualifica _G	progettuali effettuate e relative
			motivazioni.
	Obbligatorio	Capitolato _G , Piano di Qualifica _G	Il progetto deve essere corredato
RQ-57			di documentazione riguardo
KG 07			problemi aperti e eventuali
		Quamoug	soluzioni proposte da esplorare.
		Capitolato _G ,	Tutte le componenti del sistema
RQ-58	Obbligatorio	Piano di	devono essere testate con <i>test</i>
		Qualifica _G	end-to-end _G .
			Il sistema sarà corredato di un
RQ-59	Obbligatorio	Interno	Manuale Utente che spieghi le
KG 07		11101110	funzionalità del sistema e come
			utilizzarle.
			Il sistema sarà corredato di un
RQ-60	Obbligatorio	Interno	documento di Specifica Tecnica
1.00			che spieghi le scelte progettuali
			effettuate.

Tabella 2: Requisiti qualitativi

4.5 Requisiti di vincolo

Codice	Importanza	Fonte	Descrizione
			Il simulatore di dati deve
RV-61	Obbligatorio	Capitolato €	pubblicare messaggi in una
			piattaforma di <i>data streaming</i> .
RV-62	Obbligatorio	Interno	La piattaforma di <i>data streaming</i>
IKV-02	Obbligatorio	IIIIeIIIO	utilizzata è <i>Redpanda</i> _G .
			I dati pubblicati nella piattaforma
RV-63	Obbligatorio	Capitolato €	di <i>data streaming</i> devono essere
			salvati in un database OLAP.
			I dati devono poter essere
			visualizzati dall'utente finale in
RV-64	Obbligatorio	Capitolato _G	delle <i>dashboard</i> _G , sviluppate con
			un tool apposito, ad esempio
			Grafana _⊜ .
			l dati pubblicati nei topic _€ di
RV-65	Opzionale	Esterno	Redpanda _G sono serializzati in
			formato <u>Confluent Avro</u> .
	Obbligatorio	Esterno	Il sistema deve essere sviluppato
RV-66			con <i>Docker</i> _G Compose _G ,
14.4-00			utilizzando la versione 3.8 della
			specifica.
			Il sistema deve poter essere
			usufruito dalle versioni più recenti
			dei browser web più diffusi. Al
RV-67	Obbligatoria	Capitalata	momento della stesura del
KV-0/	Obbligatorio	Capitolato _G	presente documento, le versioni
			supportate sono: Google Chrome
			v124, Safari v17.4, Microsoft Edge
			v123, Firefox v125.

RV-68	Obbligatorio	Interno	Il sistema deve poter funzionare su sistema operativo <i>Linux</i> , con CPU a 64 bit, almeno 4GB di RAM e una delle seguenti distribuzioni e versioni minime: <i>Ubuntu</i> 22.04,
			Debian 12, Fedora 38, Red Hat Enterprise Linux 8.
	Obbligatorio	Interno	Il sistema deve poter funzionare su
			sistema operativo <i>Windows</i> con
RV-69			versione 10 o 11, CPU a 64 bit,
			almeno 4GB di RAM e la
			funzionalità WSL2 abilitata.
			Il sistema deve poter funzionare su
	Obbligatorio		sistema operativo <i>MacOs</i> con
RV-70		Interno	versione 12 o superiore, CPU <i>Intel</i>
			o <i>Apple Silicon</i> a 64bit e almeno
			4GB di RAM.

Tabella 3: Requisiti di vincolo

4.6 Requisiti prestazionali

Codice	Importanza	Fonte	Descrizione
RP-71	Obbligatorio	Interno	Il sistema deve garantire che la
			visualizzazione dei dati in tempo
			reale avvenga entro 5 secondi
			dalla ricezione dei dati.

Tabella 4: Requisiti prestazionali

4.7 Tracciamento

4.7.1 Requisito - Fonte

Requisito	Fonte
RF-1	Capitolato _⊖
RF-2	Capitolato _G
RF-3	Capitolato _⊖
RF-4	Capitolato _G
RF-5	Capitolato _G
RF-6	Capitolato _G
RF-7	Capitolato _G
RF-8	Capitolato _G
RF-9	Capitolato _G
RF-10	Capitolato _⊖
RF-11	Capitolato _G
RF-12	Capitolato _G
RF-13	Interno
RF-14	Interno
RF-15	Interno
RF-16	Interno
RF-17	Interno
RF-18	Interno
RF-19	Interno
RF-20	Interno
RF-21	Interno
RF-22	Interno
RF-23	Interno
RF-24	Interno
RF-25	Interno
RF-26	Interno
RF-27	Interno
RF-28	Interno
RF-29	Interno
RF-30	Interno

Requisito	Fonte
RF-31	Interno
RF-32	Interno
RF-33	Interno
RF-34	Interno
RF-35	Interno
RF-36	Interno
RF-37	Esterno
RF-38	Esterno
RF-39	Esterno
RF-40	Esterno
RF-41	Capitolato _G
RF-42	Capitolato _G
RF-43	Capitolato _G
RF-44	Capitolato _G
RF-45	Capitolato _G
RF-46	Capitolato _G
RF-47	Capitolato _G
RF-48	Interno
RF-49	Interno
RF-50	Interno
RF-51	Esterno
RF-52	Esterno
RF-53	Esterno
RF-54	Esterno
RQ-55	Capitolato _© , Piano di Qualifica _©
RQ-56	Capitolato _© , Piano di Qualifica _©
RQ-57	Capitolato _G , Piano di Qualifica _G
RQ-58	Capitolato _G , Piano di Qualifica _G
RQ-59	Interno
RQ-60	Interno
RV-61	Capitolato _G
RV-62	Interno
RV-63	Capitolato _G
RV-64	Capitolato _G

Requisito	Fonte		
RV-65	Esterno		
RV-66	Esterno		
RV-67	Capitolato _⊖		
RV-68	Interno		
RV-69	Interno		
RV-70	Interno		
RP-71	Interno		

Tabella 5: Tracciamento requisito - fonte

4.7.2 Caso d'uso - Requisito

Caso d'uso	Requisito			
UC-1	RF-13			
UC-2	RF-15			
UC-2.1	RF-15			
UC-2.2	RF-15			
UC-2.3	RF-15			
UC-2.4	RF-15			
UC-2.5	RF-15			
UC-2.6	RF-15			
UC-2.7	RF-15			
UC-2.8	RF-15			
UC-2.9	RF-15			
UC-2.10	RF-15			
UC-2.11	RF-15			
UC-2.12	RF-15			
UC-2.13	RF-15			
UC-2.14	RF-15			
UC-2.15	RF-15			
UC-2.16	RF-15			
UC-2.17	RF-15			
UC-2.18	RF-15			
UC-2.19	RF-15			

Caso d'uso	Requisito		
UC-2.20	RF-15		
UC-3	RF-16		
UC-3.1	RF-16		
UC-3.2	RF-16		
UC-3.3	RF-16		
UC-3.4	RF-16		
UC-3.5	RF-16		
UC-3.6	RF-16		
UC-4	RF-17		
UC-4.1	RF-17		
UC-4.2	RF-17		
UC-4.3	RF-17		
UC-4.4	RF-17		
UC-4.5	RF-17		
UC-4.6	RF-17		
UC-5	RF-18		
UC-5.1	RF-18		
UC-5.2	RF-18		
UC-5.3	RF-18		
UC-5.4	RF-18		
UC-5.5	RF-18		
UC-5.6	RF-18		
UC-6	RF-19		
UC-6.1	RF-19		
UC-6.2	RF-19		
UC-6.3	RF-19		
UC-6.4	RF-19		
UC-6.5	RF-19		
UC-6.6	RF-19		
UC-7	RF-20		
UC-7.1	RF-20		
UC-7.2	RF-20		
UC-7.3	RF-20		
UC-7.4	RF-20		

Caso d'uso	Requisito		
UC-7.5	RF-20		
UC-8	RF-21		
UC-8.1	RF-21		
UC-8.2	RF-21		
UC-9	RF-22		
UC-9.1	RF-22		
UC-9.2	RF-22		
UC-10	RF-23		
UC-10.1	RF-23		
UC-10.2	RF-23		
UC-10.3	RF-23		
UC-10.4	RF-23		
UC-10.5	RF-23		
UC-10.6	RF-23		
UC-11	RF-24		
UC-11.1	RF-24		
UC-11.2	RF-24		
UC-11.3	RF-24		
UC-11.4	RF-24		
UC-12	RF-25		
UC-13	RF-11		
UC-13.1	RF-8		
UC-13.2	RF-9		
UC-13.3	RF-26		
UC-13.4	RF-27		
UC-13.5	RF-28		
UC-13.6	RF-29		
UC-13.7	RF-30		
UC-13.8	RF-31		
UC-13.9	RF-32		
UC-14	RF-33,RF-34,RF-50		
UC-14.1	RF-50		
UC-14.2	RF-33		
UC-14.3	RF-34		

Caso d'uso	Requisito		
UC-15	RF-43,RF-44,RF-45,RF-46		
UC-15.1	RF-43		
UC-15.2	RF-44		

Tabella 6: Tracciamento caso d'uso - requisito

4.8 Riepilogo

Tipologia	Obbligatorio	Desiderabile	Opzionale	Totale
Funzionali	38	4	8	50
Qualitativi	6	0	0	6
Di vincolo	9	0	1	10
Prestazionali	1	0	0	1

Tabella 7: Riepilogo