МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №3

по дисциплине «Организация ЭВМ и систем»

Тема: Представление и обработка целых чисел. Организация ветвящихся процессов

Вариант 4

Студентка гр.1303	 Герасименко Я.Д.
Преподаватель	 Ефремов М.А

Санкт-Петербург 2022

Цель работы.

Изучить представление и обработку целых чисел на Ассемблере. Научиться организовывать ветвящиеся процессы для выполнения задания.

Задание.

Разработать на языке Ассемблера программу, которая по заданным целочисленным значениям параметров a, b, i, k вычисляет:

- a) значения функций i1 = f1(a, b, i) и i2 = f2(a, b, i);
- b) значения результирующей функции res = f3(i1, i2, k), где вид функций f1 и f2 определяется из табл. 2, а функции f3 из табл.3 по цифрам шифра индивидуального задания (n1, n2, n3), приведенным в табл.4. Значения a, b, i, k являются исходными данными, которые должны выбираться студентом самостоятельно и задаваться в процессе исполнения программы в режиме отладки. При этом следует рассмотреть всевозможные комбинации параметров a, b и k, позволяющие проверить различные маршруты выполнения программы, а также различные знаки параметров a и b.

Вариант 11

/ 15-2*i, при a>b	/ 20-4*i, при a>b	/ min(i1-i2 ,2), при k=0
f1 = <	f5 = <	$f5 = \langle max(G, i2), max \} = 0$
\ 3*i+4, при a<=b	\ -(6*i-6), при a<=b	\ max(-6,-i2), при k>=0

Выполнение работы.

- 1. Были созданы три сегмента: сегмент стека (AStack), сегмент данных (DATA) и сегмент кода (CODE). Метки сегментов были записаны в соответствующие регистры с помощью директивы ASSUME (полное определение сегментов). Исходный код программы см. в приложении A.
- 2. В сегменте DATA были объявлены переменные A, B, I, K, I1, I2, RES. В этом сегменте будут меняться некоторые переменные во время тестирования.
- 3. В сегменте CODE была создана процедура Main, в которой написаны инструкции для завершения программы после операции ret. Для выполнения

задания использовались следующие переходы, чтобы избежать обращение к процедурам:

- 1). JMP команда безусловного перехода. Выполняет безусловный переход в указанное место. В процедуре Main используется в случае, когда А больше В. Также используется в F3 и F3_1, чтобы перейти к записи результата вычисления функции.
- 2). JLE команда, выполняющая короткий переход, если первый операнд меньше второго операнда или равен ему при выполнении операции сравнения с помощью команды стр. В процедуре Main используется в самом начале для перехода к метке ALessB, если A не больше В
- 3). JGE команда, выполняющая короткий переход, если первый операнд больше второго операнда или равен ему при выполнении сравнения с помощью команды стр.

Тестирование.

Корректность работы программы была проверена тремя тестами.

1. Результаты работы программы при a=14; b=-5; i=2; k=2 представлены в табл.1.

i1	i2	res	Корректность
			результата
000B (11)	000C(12)	FFF4 (-6)	Верно

Таблица 1 – Результаты первого теста

2. Результаты работы программы при a=14; b=-5; i=2; k=0 представлены в табл.2.

i1	i2	res	Корректность
			результата
000B (11)	000C(12)	0001(1)	Верно

Выводы.

В ходе выполнения лабораторной работы было изучена обработка целых чисел, их представление и организация ветвящихся процессов. Для выполнения задания написана программа, которая вычисляет значения функций согласно заданным условиям.

ПРИЛОЖЕНИЕ А ИСХОДНЫЙ КОД ПРОГРАММ

```
Название файла: lb3.asm
         SEGMENT STACK
AStack
       DW 12 DUP(?)
         ENDS
AStack
DATA
      SEGMENT
Α
       DW 14
       DW -5
В
Ι
       DW 2
K
      DW 0
I1
      DW ?
12
      DW ?
RES DW ?
DATA
         ENDS
CODE
         SEGMENT
     ASSUME CS:CODE, DS:DATA, SS:AStack
Main
         PROC FAR
         push DS
         sub
               AX,AX
         push AX
               AX, DATA
         mov
               DS, AX
         mov
         mov AX, A
         mov CX, I
         cmp AX, B
         jle ALessB
BLessA:
       ;2(i+1)-4
         add CX, 1
         shl CX, 1
```

sub CX, 4
mov I2, CX

```
;-(4i+3)
shl CX, 1
add CX, 7
neg CX
mov I1, CX
jmp ABSI1
```

ALessB:

; 5 - 3*(i+1) add CX, 1 mov BX, CX

shl CX, 1
shl CX, 1
sub CX, BX
neg CX
add CX, 5
mov I2, CX

;6i - 10 shl CX, 1 neg CX sub CX, 6 mov I1, CX

ABSI1:

mov CX, I1
cmp CX, 0
jge F3
neg I1

F3:

mov CX, K cmp CX, 0 jne ABSI2

F3_1:

mov CX, I1 cmp CX, 6 jle MIN

m

0

٧

Α

Χ

,

6

jmp F3RES ULT

```
MIN:
             mov AX, I1
             jmp F3RESULT
  ABSI2:
             mov CX, I2
             cmp CX, 0
             jge F3_2
             neg I2
   F3_2:
             mov AX, I1
             add AX, I2
             jmp F3RESULT
   F3RESULT:
             mov RES, AX
             ret
   Main
             ENDP
   CODE
             ENDS
             END Main
        Название файла: lb3.lst
   Microsoft (R) Macro Assembler Version 5.10
                                                                        10/30/22
   17:15:2
                                                                    Page
                                                                             1-1
 0000
                               AStack
                                          SEGMENT STACK
    0000
          000C[
                                       DW) 12 DUP(?
                  ????
                           ]
    0018
                               AStack
                                          ENDS
0000
                               DATA
                                          SEGMENT
    0000
          000E
                         Α
                                   DW 14
          FFFB
                                  DW -5
    0002
                          В
                                   DW 2
    0004
          0002
                          Ι
    0006
          0000
                                  DW 0
                          K
```

8000

000A

000C

0000

0000

0000

Ι1

12

RES

DW ?

DW ?

DW ?

```
000E
                             DATA
                                   ENDS
  0000
                             CODE
                                        SEGMENT
                                   ASSUME CS CODE,
DS:DATA, SS:AStack
  0000
                                        PROC FAR
                             Main
  0000
        1E
                                  push DS
  0001
        2B C0
                                        sub
                                              AX, AX
  0003
        50
                                  push AX
                                  mov
  0004
        B8-----R
                                        AX, DATA
  0007
        8E D8
                                        mov
                                             DS,AX
  0009
        A1 0000 R
                                  mov AX, A
                                        mov CX, I
  000C
        8B 0E 0004 R
  0010
        3B 06 0002 R
                                        cmp AX, B
  0014
        7E 1A
                                        jle ALessB
  0016
                             BLessA:
                                     ;2(i+1)-4
        83 C1 01
                                        add CX, 1
  0016
                                        shl CX, 1
        D1 E1
  0019
        83 E9 04
                                        sub CX, 4
  001B
        89 0E 000A R
                                        mov I2, CX
  001E
                                     ; -(4i+3)
                                     shl CX, 1
  0022
        D1 E1
        83 C1 07
                                     add CX, 7
  0024
        F7 D9
  0027
                                     neg CX
                                     mov I1, CX
  0029
        89 0E 0008 R
        EB 20 90
                                        jmp ABSI1
  002D
  0030
                             ALessB:
                                     ; 5 - 3*(i+1)
        83 C1 01
  0030
                                     add CX, 1
  0033
        8B D9
                                        mov BX, CX
  0035
        D1 E1
                                        shl CX, 1
 Microsoft (R) Macro Assembler Version 5.10
                                                                10/30/22
 17:15:2
                                                                 Page
                                                                          1-2
  0037 D1 E1
                                        shl CX, 1
                                        sub CX, BX
        2B CB
  0039
        F7 D9
                                        neg CX
  003B
        83 C1 05
                                        add CX, 5
  003D
  0040
        89 0E 000A R
                                        mov I2, CX
                                        ;6i - 10
                                        shl CX, 1
  0044
        D1 E1
  0046
        F7 D9
                                        neg CX
                                        sub CX, 6
  0048
        83 E9 06
  004B
        89 0E 0008 R
                                        mov I1, CX
                             ABSI1:
  004F
  004F
        8B 0E 0008 R
                                        mov CX, I1
```

0053 0056 0058	7D		R		cmp CX, 0 jge F3 neg I1
005C 005C 0060 0063	83		R	F3:	mov CX, K cmp CX, 0 jne ABSI2
0065 0065 0069 006C 006E 0071	83 7E B8	0006	R	F3_1	mov CX, I1 cmp CX, 6 jle MIN mov AX, 6 jmp F3RESULT
0074 0074 0077		0008 R 18 90		MIN: mov A	X, I1 jmp F3RESULT
007E 0081	83 7D			ABSI2:	mov CX, I2 cmp CX, 0 jge F3_2 neg I2
008A	03	0008 R 06 000A 01 90	R	F3_2: mov A	X, I1 add AX, I2 jmp F3RESULT
0091 0091 0094	A3 CB	000C R		F3RESULT: mov R ret	ES, AX
0095 0095				Main CODE	ENDP ENDS END Main

Segments and Groups:

	Name	Length Alig	n Combine Class
ASTACK CODE DATA			NONE
Symbols:			
	Name	Type Value	Attr
A		. L NEAR	0000 DATA 004F CODE 007A CODE 0030 CODE
B BLESSA		. L WORD . L NEAR	0002 DATA 0016 CODE
F3		. L NEAR	005C CODE 0091 CODE 0065 CODE 0087 CODE
I I1		L WORD L WORD L WORD	0004 DATA 0008 DATA 000A DATA
K		. L WORD	0006 DATA
MAIN MIN			0000 CODE Length = 0095 0074 CODE
RES		. L WORD	000C DATA
<u>.</u>		. TEXT 0101H . TEXT lb3 . TEXT 510	า

103 Source Lines

103 Total Lines

25 Symbols

48012 + 459248 Bytes symbol space free

0 Warning Errors

O Severe Errors