21 秋- 高代 1 期末 (回忆版)

何家兴 hejiaxing202411@163.com

December 7, 2024

Exercise 1.

若 n 是给定的正整数, $U=\{[a] \mid (a,n)=1\}$,证明 U 关于剩余类的乘法构成群

Exercise 2.

设 $H \in G$ 的一个子群, $\forall a, b \in G$, $a \sim b \Leftrightarrow a^{-1}b \in H$.

- 1. 证明 \sim 是 H 上的一个等价关系
- 2. 若 $G = S_3$, $H = \langle (123) \rangle$, 写出该等价关系下的所有等价类。

Exercise 3.

已知 G 是一个群, $a \in G$, 今 $f_a : G \to G$, $g \mapsto aga^{-1}$.

- 1. 证明 f_a 是 G 上的置换
- 2. 今 $Inn(G) = \{f_a | a \in G\}$ 。证明 Inn(G) 关于映射的合成构成群。

Exercise 4.

设 R 是所有 n 阶上三角矩阵关于矩阵的加法和乘法构成的环。 \forall $A \in R$,若 \exists $m \in \mathbb{Z}^+$, $A^m = O$,则称 A 是 R 上的幂零元。

- 1. 求 R 中所有的幂零元
- 2. 证明 R 中所有幂零元构成 R 的一个子环。

Exercise 5.

设
$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \in \mathbb{R}[x], A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}.$$

- 1. 求次数最低的非零多项式 p(x), 使得 p(A) = O
- 2. $\Rightarrow f(A) = a_n A^n + a_{n-1} A^{n-1} + \dots + a_1 A + a_0 I_2$, $\not\equiv f(A) = O$, $\forall x \in I$, $\forall x \in I$

Exercise 6.

若多项式 $f(x) = x^3 + 3x^3 + tx + 1$ 有重根, 求 t.

Exercise 7.

讨论
$$f(x) = 5x^3 + 6x^2 + 12x - 6$$
 与 $g(x) = 2x^3 - 5x^2 - 7x - 2$ 在 $\mathbb{Q}[x]$ 上的可约性。

Exercise 8.

已知 f(x) 是整系数多项式, $1+\sqrt{2}$ 是它的根,证明 $1-\sqrt{2}$ 也是它的根。