Análise de Sensibilidade

Professores André L.M. Marcato, Ivo C.da Silva Jr, João A.Passos Filho

Universidade Federal de Juiz de Fora Programa de Pós-Graduação em Engenharia Elétrica

 $andre.marcato@ufjf.edu.br,\ ivo.junior@ufjf.edu.br,\ joao.passos@ufjf.edu.br$

Primeiro Semestre de 2018

Agenda da Apresentação

- 1 Análise de Sensibilidade ou Análise de Pós-Otimização
 - Exemplo Tableau-Simplex
 - Variáveis Duais x Tableau Simplex
 - Eliminação de Variáveis
 - Eliminação de Restrições
 - Variação dos Coeficientes da FOB

O Problema dos Cereais - Matlab

RESULTADOS

 $\begin{array}{lll} \operatorname{Max} Z = 600x_1 + 800x_2 \\ \operatorname{sujeito} \ a & & & & \\ x_1 + x_2 \leq 100 & & & & & \\ 3x_1 + 2x_2 \leq 240 & & & & & \\ x_1 & \leq 60 & & & & & \\ & x_2 \leq 80 & & & & & \\ & x_1, x_2 \geq 0 & & & & \\ \end{array}$

```
LAMBDA INE =
                                   Variável dual Y1 ≠ 0
 X1 =
                         600.0000
Variável primal X1
                           0.0000
                                   Variável dual Y2
    20,0000
                       LAMBDA_EQ =
 X2 =
                          Empty matrix: 0-by-1
Variável primal X2
    80.0000
                       LAMBDA UB =
 FOB =
                                     Variável dual Y3
                           0.0000
   Valor da FOB
                         200.0000
                                     Variável dual Y4 #
  -7.6000e+004
                       LAMBDA LB =
 EXITFLAG =
 Convergência
                         1.0e-007 *
                                     Variável dual Y5
                           0.2363
                                     Variável dual Y6
                           0.0231
```

$$\max z = 600x_1 + 800x_2$$
Sujeito a:
$$x_1 + x_2 \le 100$$

$$3x_1 + 2x_2 \le 240$$

$$x_1 \le 60$$

$$x_2 \le 80$$

$$x_1, x_2 \ge 0$$

max
$$z = 600x_1 + 800x_2$$

Sujeito a:
 $x_1 + x_2 \le 100$
 $3x_1 + 2x_2 \le 240$
 $x_1 \le 60$
 $x_2 \le 80$
 $x_1, x_2 \ge 0$

$$\max z = 600x_1 + 800x_2$$
Sujeito a:

$$x_1 + x_2 + S_1 = 100$$

$$3x_1 + 2x_2 + S_2 = 240$$

$$x_1 + S_3 = 60$$

$$x_2 + S_4 = 80$$

$$x_1, x_2 \ge 0$$

$$\max z = 600x_1 + 800x_2$$
Sujeito a:
$$x_1 + x_2 \le 100$$

$$3x_1 + 2x_2 \le 240$$

$$x_1 \le 60$$

$$x_2 \le 80$$

$$x_1, x_2 \ge 0$$

$$\max z = 600x_1 + 800x_2$$
Sujeito a:
$$x_1 + x_2 + S_1 = 100$$

$$3x_1 + 2x_2 + S_2 = 240$$

$$x_1 + S_3 = 60$$

$$x_2 + S_4 = 80$$

$$x_1, x_2 \ge 0$$

Tabela: Tableau Simplex Final Processo Iterativo

Base	Ζ	<i>x</i> ₁	<i>X</i> 2	S_1	S_2	<i>S</i> ₃	<i>S</i> ₄	В
X_1	0	1	0	1	0	0	-1	20
S_2	0	0	0	-3	1	0	1	20
<i>S</i> ₃	0	0	0	-2	0	1	1	40
X_2	0	0	1	0	0	0	1	80
Z	1	0	0	600	0	0	200	76000

O Problema dos Cereais - Tableau Final - Linha FOB

<u>Conclusão:</u> Os coeficientes da VNB da FOB (Tableau Ótimo) são referentes aos valores das variáveis duais e suas respectivas restrições.

Programação Linear - Análise de Sensibilidade

Justificativas para a Análise Pós-Otimização

- O problema em estudo exige grande tempo de processamento e já foi resolvido anteriormente.
- Modificação ou ajuste de algum parâmetro do modelo.
- Estudo do impacto da variação de alguns parâmetros do modelo na função objetivo do problema.

Programação Linear - Análise de Sensibilidade

Análise Pós-Otimização pode ser feita em relação:

- Variação dos recursos das restrições
- Eliminação das variáveis
- Eliminação das restrições
- Variação dos coeficientes da FOB

Quais variáveis podem ser eliminadas?

- Variáveis nulas podem ser eliminadas (VNB e/ou VB nulas) sem afetar a solução ótima do problema.
- Variáveis básicas (VB) <u>não nulas</u> <u>não podem</u> ser eliminadas.
 Caso sejam, deve-se resolver o problema novamente.

```
\max z = 600x_1 + 800x_2 + x_3
Sujeito a:
x_1 + x_2 + x_3 \le 100
3x_1 + 2x_2 \le 240
x_1 \le 60
x_2 \le 80
x_1, x_2, x_3 \ge 0
```



```
max z = 600x_1 + 800x_2 + x_3

Sujeito a:

x_1 + x_2 + x_3 \le 100

3x_1 + 2x_2 \le 240

x_1 \le 60

x_2 \le 80

x_1, x_2, x_3 \ge 0
```



```
Optimization terminated.

x =

20.0000 %1
80.0000 %2
0.0000 %3

fval =

-7.6000e+04 FOB

exitflag =

1 Optimization Terminated
```


max
$$z = 600x_1 + 800x_2 + x_3$$

Sujeito a:
 $x_1 + x_2 + x_3 \le 100$
 $3x_1 + 2x_2 \le 240$
 $x_1 \le 60$
 $x_2 \le 80$
 $x_1, x_2, x_3 \ge 0$


```
Optimization terminated.
   20.0000 X1
   80.0000 X2
    0.0000 X3
fval =
  -7.6000e+04 FOB
exitflag =
```


1 Optimization Terminated

```
\max z = 600x_1 + 800x_2
       Sujeito a:
     x_1 + x_2 \le 100
   3x_1 + 2x_2 < 240
        x_1 \le 60
        x_2 < 80
       x_1, x_2 \ge 0
```



```
max z = 600x_1 + 800x_2 + x_3

Sujeito a:

x_1 + x_2 + x_3 \le 100

3x_1 + 2x_2 \le 240

x_1 \le 60

x_2 \le 80

x_1, x_2, x_3 \ge 0
```



```
Optimization terminated.
x =
20.0000 %1
80.0000 %2

fval =
-7.6000e+04 FOB
exitflag =
```

1Optimization Terminated


```
x =

20.0000 %1
80.0000 %2
0.0000 %3

fval =

-7.6000c+04 FOB

exitflag =

1 Optimization Terminated
```

Optimization terminated.

- A restrição a ser eliminada é uma igualdade:
 - ⋄ Neste caso, deve-se resolver o problema novamente.
- A restrição a ser eliminada é uma desigualdade. Neste caso, deve-se verificar se a restrição é ativa ou não
 - ♦ Ativa: Deve-se resolver o problema novamente.
 - Não está ativa: A desigualdade pode ser eliminada, pois esta não afetará em nada a solução do problema.

max
$$z = 600x_1 + 800x_2$$

Sujeito a:
 $x_1 + x_2 \le 100$
 $3x_1 + 2x_2 \le 240$
 $x_1 \le 60$
 $x_2 \le 80$
 $x_1, x_2 > 0$

max
$$z = 600x_1 + 800x_2$$

Sujeito a:
 $x_1 + x_2 + S_1 = 100$
 $3x_1 + 2x_2 + S_2 = 240$
 $x_1 + S_3 = 60$
 $x_2 + S_4 = 80$
 $x_1, x_2 > 0$

Tabela: Tableau Simplex Final Processo Iterativo

Base	Z	<i>x</i> ₁	<i>X</i> 2	S_1	S_2	<i>S</i> ₃	S_4	В
X_1	0	1	0	1	0	0	-1	20
S_2	0	0	0	-3	1	0	1	20
<i>S</i> ₃	0	0	0	-2	0	1	1	40
X_2	0	0	1	0	0	0	1	80
Z	1	0	0	600	0	0	200	76000

$$\begin{aligned} \max z &= 600x_1 + 800x_2\\ \text{Sujeito a:} \\ x_1 + x_2 &\leq 100 \Leftrightarrow \text{Ativa}\\ 3x_1 + 2x_2 &\leq 240 \Leftrightarrow \text{Não Ativa}\\ x_1 &\leq 60 \Leftrightarrow \text{Não Ativa}\\ x_2 &\leq 80 \Leftrightarrow \text{Ativa}\\ x_1, x_2 &\geq 0 \end{aligned}$$

$$\max z = 600x_1 + 800x_2$$
Sujeito a:

$$x_1 + x_2 + S_1 = 100$$

$$3x_1 + 2x_2 + S_2 = 240$$

$$x_1 + S_3 = 60$$

$$x_2 + S_4 = 80$$

$$x_1, x_2 \ge 0$$

Tabela: Tableau Simplex Final Processo Iterativo

Base	Ζ	<i>x</i> ₁	<i>X</i> 2	S_1	S_2	<i>S</i> ₃	S_4	В
X_1	0	1	0	1	0	0	-1	20
S_2	0	0	0	-3	1	0	1	20
<i>S</i> ₃	0	0	0	-2	0	1	1	40
X_2	0	0	1	0	0	0	1	80
Z	1	0	0	600	0	0	200	76000


```
\max z = 600x_1 + 800x_2
Sujeito a:

x_1 + x_2 \le 100 \Leftrightarrow \text{Ativa}
3x_1 + 2x_2 \le 240 \Leftrightarrow \text{Não Ativa}
x_1 \le 60 \Leftrightarrow \text{Não Ativa}
x_2 \le 80 \Leftrightarrow \text{Ativa}
x_1, x_2 \ge 0
```

 $\max z = 600x_1 + 800x_2$ Sujeito a: $x_1 + x_2 \le 100 \Leftrightarrow \text{Ativa}$ $3x_1 + 2x_2 \le 240 \Leftrightarrow \text{Não Ativa}$ $x_1 \le 60 \Leftrightarrow \text{Não Ativa}$ $x_2 \le 80 \Leftrightarrow \text{Ativa}$ $x_1, x_2 \ge 0$

max z = $600x_1 + 800x_2$ Sujeito a: $x_1 + x_2 + S_1 = 100$ $x_2 + S_4 = 80$ $x_1, x_2 \ge 0$


```
\max z = 600x_1 + 800x_2
Sujeito a:
x_1 + x_2 \le 100 \Leftrightarrow \text{Ativa}
3x_1 + 2x_2 \le 240 \Leftrightarrow \text{Não Ativa}
x_1 \le 60 \Leftrightarrow \text{Não Ativa}
x_2 \le 80 \Leftrightarrow \text{Ativa}
x_1, x_2 \ge 0
```



```
max z = 600x_1 + 800x_2

Sujeito a:

x_1 + x_2 + S_1 = 100

x_2 + S_4 = 80

x_1, x_2 \ge 0
```

Programa em Matlab

```
1 clear all; close all; clc;
2
3 c = -[ 600 800];
4
5 A = [ 1 1; 0 1]; B = [ 100; 80];
6 lb = [0 0]; ub = [inf inf];
7
8 [x, fval, exitflag] = ...
linprog(c,A,B,[],[],lb,ub)
```



```
\max z = 600x_1 + 800x_2
Sujeito a:
x_1 + x_2 \le 100 \Leftrightarrow \text{Ativa}
3x_1 + 2x_2 \le 240 \Leftrightarrow \text{Não Ativa}
x_1 \le 60 \Leftrightarrow \text{Não Ativa}
x_2 \le 80 \Leftrightarrow \text{Ativa}
x_1, x_2 \ge 0
```



```
max z = 600x_1 + 800x_2

Sujeito a:

x_1 + x_2 + S_1 = 100

x_2 + S_4 = 80

x_1, x_2 \ge 0
```

Programa em Matlab

```
1  clear all; close all; clc;
2
3  c = -[ 600 800];
4
5  A = [ 1 1; 0 1]; B = [ 100; 80];
6  lb = [0 0]; ub = [inf inf];
7
8  [x, fval, exitflag] = ...
linprog(c,A,B,[],[],lb,ub)
```

```
Optimization terminated.
x =
   20.0000 X1
   80.0000 X2

fval =
   -7.6000e+04 FOB

exitflag =
   Optimization
   1 terminated.
```


Exemplo da Fábrica de Sucos

$$\max z = 5x_1 + 7x_2 + 3x_3 \Rightarrow \text{Lucro}$$

$$\frac{\text{Sujeito a}}{2x_1 + 3x_2 + 4x_3} \leq 240 \Rightarrow \text{Horas}$$

$$2x_1 + 1x_2 + 1x_3 \le 150$$
 \Rightarrow Matéria Prima

$$x_1 \le 80$$
 \Rightarrow Produção $x_1, x_2, x_3 > 0$

 x_1 litros de suco maçã x_2 litros de suco uva x_3 litros de suco limão

Exemplo da Fábrica de Sucos

$$\begin{array}{ll} \max z = 5x_1 + 7x_2 + 3x_3 & \Rightarrow \mathsf{Lucro} \\ \underline{\mathsf{Sujeito}} \ a: \\ 2x_1 + 3x_2 + 4x_3 \leq 240 & \Rightarrow \mathsf{Horas} \\ 2x_1 + 1x_2 + 1x_3 \leq 150 & \Rightarrow \mathsf{Mat\acute{e}ria} \ \mathsf{Prima} \\ x_1 \leq 80 & \Rightarrow \mathsf{Produ\~{c}\~{a}o} \end{array}$$

 x_1 litros de suco maçã x_2 litros de suco uva x_3 litros de suco limão

 $x_1, x_2, x_3 > 0$

Uma redução do preço original de x_3 tem impacto no lucro (Z)?

Exemplo da Fábrica de Sucos

$$\begin{array}{ll} \max z = 5x_1 + 7x_2 + 3x_3 & \Rightarrow \mathsf{Lucro} \\ \underline{\mathsf{Sujeito}} \ \mathbf{a} \\ \underline{2x_1 + 3x_2} + 4x_3 \leq 240 & \Rightarrow \mathsf{Horas} \\ 2x_1 + 1x_2 + 1x_3 \leq 150 & \Rightarrow \mathsf{Mat\acute{e}ria} \ \mathsf{Prima} \\ x_1 \leq 80 & \Rightarrow \mathsf{Produ\~{c}\~{a}o} \end{array}$$

 x_1 litros de suco maçã x_2 litros de suco uva x_3 litros de suco limão

 $x_1, x_2, x_3 > 0$

A partir de que valor de preço, o produto x_3 passa a ser mais vantajoso?

Exemplo da Fábrica de Sucos

```
\begin{array}{ll} \max z = 5x_1 + 7x_2 + 3x_3 & \Rightarrow \mathsf{Lucro} \\ \underline{\mathsf{Sujeito}} \ a: \\ 2x_1 + 3x_2 + 4x_3 \leq 240 & \Rightarrow \mathsf{Horas} \\ 2x_1 + 1x_2 + 1x_3 \leq 150 & \Rightarrow \mathsf{Mat\acute{e}ria} \ \mathsf{Prima} \\ x_1 \leq 80 & \Rightarrow \mathsf{Produ\~{e}\~{a}o} \\ x_1, x_2, x_3 \geq 0 & \end{array}
```

 x_1 litros de suco maçã x_2 litros de suco uva x_3 litros de suco limão

Como ficaria minha estratégia de venda com esse novo valor de produto x_3 ?

Tabela: Tableau Simplex Final Processo Iterativo

Base	Ζ	X_1	X_2	X_3	SLK_2	SLK₃	SLK_4	В
X_2	0	0	1	1.5	0.5	-0.5	0	45
X_1	0	1	0	-0.25	-0.25	0.75	0	52.5
SLK ₄	0	0	0	0.25	0.25	-0.75	1	27.5
Ζ	1	0	0	6.25	2.25	0.25	0	577.5

max
$$Z = 5X_1 + 7X_2 + 3X_3$$

Sujeito a:
 $2X_1 + 3X_2 + 4X_3 + 5LK_2 = 240$
 $2X_1 + 1X_2 + 1X_3 + 5LK_3150$
 $X_1 + 5LK_4 = 80$
 $X_1, X_2, X_3, 5LK_2, 5LK_3, 5LK_4 > 0$

CASO 1 - Variável Não Básica

Quanto se pode variar o coeficiente da variável X_3 (VNB) na FOB sem alterar o valor da FOB?

Tabela: Tableau Simplex Final Processo Iterativo

Base	Ζ	X_1	X_2	X_3	SLK_2	SLK ₃	SLK_4	В
X_2	0	0	1	1.5	0.5	-0.5	0	45
X_1	0	1	0	-0.25	-0.25	0.75	0	52.5
SLK ₄	0	0	0	0.25	0.25	-0.75	1	27.5

max
$$Z = 5X_1 + 7X_2 + 3X_3$$

Sujeito a:
 $2X_1 + 3X_2 + 4X_3 + 5LK_2 = 240$
 $2X_1 + 1X_2 + 1X_3 + 5LK_3150$
 $X_1 + 5LK_4 = 80$
 $X_1, X_2, X_3, SLK_2, SLK_3, SLK_4 > 0$

CASO 1 - Variável Não Básica

Quanto se pode variar o coeficiente da variável X_3 (VNB) na FOB sem alterar o valor da FOB?

$$\max Z = 5X_1 + 7X_2 + (3 + \Delta C_3)X_3 = 577, 5$$

Tabela: Tableau Simplex Final Processo Iterativo

Base	Z	X_1	X_2	<i>X</i> ₃	SLK_2	SLK ₃	SLK_4	В
X_2	0	0	1	1.5	0.5	-0.5	0	45
X_1	0	1	0	-0.25	-0.25	0.75	0	52.5
SLK ₄	0	0	0	0.25	0.25	-0.75	1	27.5

max
$$Z = 5X_1 + 7X_2 + 3X_3$$

Sujeito a:
 $2X_1 + 3X_2 + 4X_3 + SLK_2 = 240$
 $2X_1 + 1X_2 + 1X_3 + SLK_3150$
 $X_1 + SLK_4 = 80$
 $X_1, X_2, X_3, SLK_2, SLK_3, SLK_4 > 0$

CASO 1 - Variável Não Básica

Quanto se pode variar o coeficiente da variável X_3 (VNB) na FOB sem alterar o valor da FOB?

$$\max Z = 5X_1 + 7X_2 + (3 + \Delta C_3)X_3 = 577, 5$$

 $\Delta C_3 = ????$

Tabela: Tableau Simplex Final Processo Iterativo

Base	Ζ	X_1	X_2	X_3	SLK_2	SLK ₃	SLK_4	В
X_2	0	0	1	1.5	0.5	-0.5	0	45
X_1	0	1	0	-0.25	-0.25	0.75	0	52.5
SLK ₄	0	0	0	0.25	0.25	-0.75	1	27.5
Z	1	0	0	6.25	2.25	0.25	0	577.5

max
$$Z = 5X_1 + 7X_2 + 3X_3$$

Sujeito a:
 $2X_1 + 3X_2 + 4X_3 + SLK_2 = 240$
 $2X_1 + 1X_2 + 1X_3 + SLK_3150$
 $X_1 + SLK_4 = 80$
 $X_1, X_2, X_3, SLK_2, SLK_3, SLK_4 \ge 0$

CASO 1 - Variável Não Básica

Quanto se pode variar o coeficiente da variável X_3 (VNB) na FOB sem alterar o valor da FOB?

$$\max Z = 5X_1 + 7X_2 + (3 + \Delta C_3)X_3 = 577, 5$$

 $\Delta C_3 = ????$

Tabela: Tableau Simplex Final Processo Iterativo

Base	Ζ	X_1	X_2	X_3	SLK_2	SLK ₃	SLK_4	В
X_2	0	0	1	1.5	0.5	-0.5	0	45
X_1	0	1	0	-0.25	-0.25	0.75	0	52.5
SLK ₄	0	0	0	0.25	0.25	-0.75	1	27.5
Z	1	0	0	6.25	2.25	0.25	0	577.5

Tabela: Expressão da FOB Tableau Ótimo

$$Z + 6,25X_3 + 2,25SLK_2 + 0,25SLK_3 = 577,50$$

Tabela: Tableau Simplex Final Processo Iterativo

Base	Ζ	X_1	X_2	X_3	SLK_2	SLK ₃	SLK_4	В
X_2	0	0	1	1.5	0.5	-0.5	0	45
X_1	0	1	0	-0.25	-0.25	0.75	0	52.5
SLK ₄	0	0	0	0.25	0.25	-0.75	1	27.5
Z	1	0	0	6.25	2.25	0.25	0	577.5

Tabela: Expressão da FOB Tableau Ótimo

$$Z + 6,25X_3 + 2,25SLK_2 + 0,25SLK_3 = 577,50$$

Tabela: Alteração na FOB devido a variação em X_3

$$\max Z = 5X_1 + 7X_2 + (3 + \Delta C_3)X_3$$

Tabela: Tableau Simplex Final Processo Iterativo

Base	Z	X_1	X_2	X_3	SLK_2	SLK ₃	SLK_4	В
X_2	0	0	1	1.5	0.5	-0.5	0	45
X_1	0	1	0	-0.25	-0.25	0.75	0	52.5
SLK ₄	0	0	0	0.25	0.25	-0.75	1	27.5
Z	1	0	0	6.25	2.25	0.25	0	577.5

Tabela: Expressão da FOB Tableau Ótimo

$$Z + 6,25X_3 + 2,25SLK_2 + 0,25SLK_3 = 577,50$$

Tabela: Alteração na FOB devido a variação em X_3

$$\max Z = 5X_1 + 7X_2 + (3 + \Delta C_3)X_3$$

Tabela: Expressão da FOB para entrada no tableau

$$\max Z - 5X_1 - 7X_2 - (3 + \Delta C_3)X_3 = 0$$

Tabela: Alteração na Expressão da FOB no tableau ótimo

$$\max Z - 5X_1 - 7X_2 - (3 + \Delta C_3)X_3 = 0$$

O Tableau ótimo (Maximização) permanecerá o mesmo enquanto o coeficiente de X_3 for positivo.

Tabela: Alteração na Expressão da FOB no tableau ótimo

$$\max Z - 5X_1 - 7X_2 - (3 + \Delta C_3)X_3 = 0$$

O Tableau ótimo (Maximização) permanecerá o mesmo enquanto o coeficiente de X_3 for positivo.

$$6,25 - \Delta C_3 \geq 0$$

Tabela: Alteração na Expressão da FOB no tableau ótimo

$$\max Z - 5X_1 - 7X_2 - (3 + \Delta C_3)X_3 = 0$$

O Tableau ótimo (Maximização) permanecerá o mesmo enquanto o coeficiente de X_3 for positivo.

$$6,25-\Delta C_3\geq 0 \quad \Longrightarrow \quad \Delta C_3\leq 6,25$$

$$\Delta c_3 < 6,25$$

$$Max z = 5 x_1 + 7 x_2 + 3 + \Delta c_3 x_3$$

Conclusão:

O coeficiente de x3 (C3) pode variar de $0 < c_3 < 9.25$ alterar a solução ótima (valor da FOB).

$$0 < c_3 < 9,25$$

sem


```
clc
 clear all
 close all
 cont=0;
□ for C3=0:1:20
 cont=cont+1;
 f=-[ 5 7 C3];
 Aeq=[];
 beq=[];
 A=[2 3 4; 2 1 1];
 b=[240;150];
 lb=[0 0 01;
 ub=[80 inf inf];
 x0=[];
 [X,Z,EXTIFLAG,OUT,LBD]=linprog(f,A,b,Aeg,beg,lb,ub,x0);
 arma(cont) = -2;
 analise(cont,:)= [ C3 X'];
 end
```

```
Max z = 5 x_1 + 7 x_2 + C3 x_3

s.a:

2x_1 + 3x_2 + 4x_3 \le 240

2x_1 + 1x_2 + 1x_3 \le 150

x_1 \le 80

x_1, x_2, x_3 \ge 0
```


Uma redução do preço original de x3 tem impacto no lucro? Não

A partir de que valor de preço, o produto x3 passa a ser mais vantajoso? \$9,25

Tabela: Tableau Simplex Final Processo Iterativo

Base	Z	X_1	X_2	X_3	SLK_2	SLK_3	SLK_4	В
X_2	0	0	1	1.5	0.5	-0.5	0	45
X_1	0	1	0	-0.25	-0.25	0.75	0	52.5
SLK_4	0	0	0	0.25	0.25	-0.75	1	27.5
Z	1	0	0	6.25	2.25	0.25	0	577.5

max
$$Z = 5X_1 + 7X_2 + 3X_3$$

Sujeito a:
 $2X_1 + 3X_2 + 4X_3 + SLK_2 = 240$
 $2X_1 + 1X_2 + 1X_3 + SLK_3150$
 $X_1 + SLK_4 = 80$
 $X_1, X_2, X_3, SLK_2, SLK_3, SLK_4 > 0$

CASO 2 - Variável Básica

Tabela: Tableau Simplex Final Processo Iterativo

Base	Ζ	X_1	X_2	X_3	SLK_2	SLK_3	SLK_4	В
X_2	0	0	1	1.5	0.5	-0.5	0	45
X_1	0	1	0	-0.25	-0.25	0.75	0	52.5
SLK_4	0	0	0	0.25	0.25	-0.75	1	27.5

max
$$Z = 5X_1 + 7X_2 + 3X_3$$

Sujeito a:
 $2X_1 + 3X_2 + 4X_3 + SLK_2 = 240$
 $2X_1 + 1X_2 + 1X_3 + SLK_3150$
 $X_1 + SLK_4 = 80$
 $X_1, X_2, X_3, SLK_2, SLK_3, SLK_4 \ge 0$

CASO 2 - Variável Básica

$$\max Z = (5 + \Delta C_1)X_1 + 7X_2 + 3X_3 = 577, 5$$

Tabela: Tableau Simplex Final Processo Iterativo

Base	Z	X_1	X_2	X_3	SLK_2	SLK ₃	SLK_4	В
X_2	0	0	1	1.5	0.5	-0.5	0	45
X_1	0	1	0	-0.25	-0.25	0.75	0	52.5
SLK ₄	0	0	0	0.25	0.25	-0.75	1	27.5

max
$$Z = 5X_1 + 7X_2 + 3X_3$$

Sujeito a:
 $2X_1 + 3X_2 + 4X_3 + SLK_2 = 240$
 $2X_1 + 1X_2 + 1X_3 + SLK_3150$
 $X_1 + SLK_4 = 80$
 $X_1, X_2, X_3, SLK_2, SLK_3, SLK_4 > 0$

CASO 2 - Variável Básica

$$\max Z = (5 + \Delta C_1)X_1 + 7X_2 + 3X_3 = 577, 5$$

$$\Delta C_1 = ????$$

Tabela: Tableau Simplex Final Processo Iterativo

Base	Z	X_1	X_2	X_3	SLK_2	SLK ₃	SLK_4	В
X_2	0	0	1	1.5	0.5	-0.5	0	45
X_1	0	1	0	-0.25	-0.25	0.75	0	52.5
SLK ₄	0	0	0	0.25	0.25	-0.75	1	27.5
Ζ	1	$-\Delta C_1$	0	6.25	2.25	0.25	0	577.5

max $Z = 5X_1 + 7X_2 + 3X_3$ Sujeito a: $2X_1 + 3X_2 + 4X_3 + SLK_2 = 240$ $2X_1 + 1X_2 + 1X_3 + SLK_3150$ $X_1 + SLK_4 = 80$ $X_1, X_2, X_3, SLK_2, SLK_3, SLK_4 \ge 0$

CASO 2 - Variável Básica

$$\max Z = (5 + \Delta C_1)X_1 + 7X_2 + 3X_3 = 577, 5$$

$$\Delta C_1 = ????$$

Tabela: Método Simplex, quadro final com alteração ΔC_1

Base	Ζ	X_1	X_2	X_3	SLK_2	SLK_3	SLK_4	В
X_2	0	0	1	1.5	0.5	-0.5	0	45
X_1	0	1	0	-0.25	-0.25	0.75	0	52.5
SLK ₄	0	0	0	0.25	0.25	-0.75	1	27.5
Z	1	$-\Delta C_1$	0	6.25	2.25	0.25	0	577.5

Diante da alteração (VB na FOB) deve-se eliminar o coeficiente de X_1 , uma vez que na FOB só deve haver VNB.

$$\mathsf{Linha}(Z) = \mathsf{Linha}(Z) + \Delta \mathit{C}_1 \cdot \mathsf{Linha}(\mathit{X}_1)$$

Tabela: Linha da FOB com variação ΔC_1

Base	Z	X_1	X_2	<i>X</i> ₃	SLK ₂	SLK ₃	<i>S</i> ₄	В
Ζ	1	0	0	6.25	2.25	0.25	0	577.5
				$-0.25\Delta C_{1}$	$-0.25\Delta C_{1}$	$+0.75\Delta C_1$		$+52.5\Delta C_{1}$

Linha (0) do quadro final com variação Δc_1

Base	Z	X1	X2	Х3	SLK2	SLK3	SLK4	b
Max	1	0	0	6,25−0,25∆c ₁	2,25−0,25∆c ₁	$0,25+0,75\Delta c_1$	0	577,50+52,5∆c₁

A otimalidade da solução será preservada enquanto os coeficientes das VNB, no tableau acima, forem positivos (Maximização).

$$\begin{array}{|c|c|c|c|c|}
\hline
 6,25-0,25\Delta c_1 > 0 \to \Delta c_1 < 25 \\
\hline
 2,25-0,25\Delta c_1 > 0 \to \Delta c_1 < 9 \\
\hline
 0,25+0,75\Delta c_1 > 0 \to \Delta c_1 > -1/3
\end{array}$$

$$\boxed{-\frac{1}{3} < \Delta c_1 < 9}$$

Max
$$z = (5 + \Delta c_1) x_1 + 7 x_2 + 3 x_3$$

Conclusão:

Conclusão: coeficiente de x1 (C1) pode variar de $\left| \frac{14}{3} < c_1 < 14 \right|$ de modo a manter a otimalidade do problema.

$$\left| \frac{14}{3} < c_1 < 14 \right|$$

Método Simplex, quadro final

Base	Z	X1	X2	Х3	SLK 2	SLK 3	SLK 4	b	
Max	1	0	0	6,25	2,25	0,25	0	577,50	
X2	0	0	1	1,5	0,5	-0,5	0	45,0	
X1	0	1	0	-0,25	-0,25	0,75	0	52,5	
SLK 4	0	0	0	0,25	0,25	-0,75	1	27,5	

Linha (0) Linha (1)

Linha (2)

Linha (3)

C1	X1	X2	Х3	Z
5	52.5	45	9.4652e-08	577.5
6	52.5	45	1.0907e-09	630
7	52.5	45	1.5377e-08	682.5
8	52.5	45	7.3657e-10	735
9	52.5	45	1.148e-09	787.5
10	52.5	45	4.7363e-10	840
11	52.5	45	5.0465e-12	892.5
12	52.5	45	8.4801e-10	945
13	52.5	45	2.1908e-08	997.5
14	57.407	35.186	5.679e-13	1050

4,6 < c₁ < 14

Fim

