Math 3A03 - Tutorial 2 Questions - Winter 2019

Nikolay Hristov

January 21/23, 2019

Problem 1. Use the induction principle to prove that $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$ for any $n \in \mathbb{N}$.

Problem 2. Show that the set $P := \{\sqrt{2}q : q \in \mathbb{Q}\}$ is dense in \mathbb{R} .

Problem 3. If a set E is dense in \mathbb{R} , what can you conclude about

- (a) a set A, such that $E \subset A$?
- (b) the set $\mathbb{R}\backslash E$?
- (c) the set $E \cap F$, where F is also dense in \mathbb{R} ?

Problem 4. Let $I := (a, b) \subseteq \mathbb{R}$ be an interval with $b \in \mathbb{R}$, a < b, and $E \subseteq I$ be a dense subset of I.

- (a) Show that sup(E) = sup(I) = b.
- (b) Prove that $\sqrt{5}$ is the $sup([0, \sqrt{5}))$.
- (c) Prove that $\sqrt{5}$ is the $sup([0,\sqrt{5}] \cap \mathbb{Q})$.

Problem 5. Prove, using the definition of the limit $\lim_{n\to\infty} \frac{\cos(n)}{\sqrt{n^5+n^2+3}} = 0$.