Module 6: Statistical inference (III)

Siyue Yang

06/01/2022

Outline

This module we will review

- Basics of hypothesis testing
- P-values
- The Wald test
- The score test
- The likelihood ratio test

Hypothesis testing

Definition (Hypothesis testing)

Suppose that we partition the parameter space Θ into two disjoint sets Θ_0 and Θ_1 and that we wish to test

$$H_0: \theta \in \Theta_0$$
 versus $H_1: \theta \in \Theta_1$

We call H_0 the null hypothesis and H_1 the alternative hypothesis.

Rejection region

Let X be a random variable and let \mathcal{X} be the range of X. Rejection region is a subset of outcomes $R \in \mathcal{X}$

$$X \in R \implies \text{reject } H_0$$

 $X \notin R \implies \text{retain (do not reject) } H_0$

Usually, the rejection region is

$$R = \{x : T(x) > c\}$$

where T is a test statistic and c is a critical value.

Type I error and type II error

	Retain Null	Reject Null
H ₀ true	$\sqrt{}$	type I error
H_1 true	type II error	\checkmark

Power function and the size of a test

Definition (Power function)

The power function of a test with rejection region R is defined by

$$\beta(\theta) = \mathbb{P}_{\theta}(X \in R).$$

Definition (The size of a test)

The size of a test is defined to be

$$\alpha = \sup_{\theta \in \Theta_0} \beta(\theta).$$

A test is said to have level α if its size is less than or equal to α .

Exercise

Let $X_1,\ldots,X_n\sim N(\mu,\sigma)$ where σ is known. We want to test $H_0:\mu\leq 0$ versus $H_1:\mu>0$. Hence, $\Theta_0=(-\infty,0]$ and $\Theta_1=(0,\infty)$.

Consider the test:

reject
$$H_0$$
 if $T > c$

where $T = \bar{X}$. The rejection region is

$$R = \{(x_1, \ldots, x_n) : T(x_1, \ldots, x_n) > c\}$$

What is the power function? What is the size of the test?

Exercise (cont'd)

Let Z denote a standard Normal random variable. The power function is

$$\beta(\mu) = \mathbb{P}_{\mu}(\bar{X} > c)$$

$$= \mathbb{P}_{\mu}\left(\frac{\sqrt{n}(\bar{X} - \mu)}{\sigma} > \frac{\sqrt{n}(c - \mu)}{\sigma}\right)$$

$$= \mathbb{P}\left(Z > \frac{\sqrt{n}(c - \mu)}{\sigma}\right)$$

$$= 1 - \Phi\left(\frac{\sqrt{n}(c - \mu)}{\sigma}\right)$$

Exercise (cont'd)

size
$$= \sup_{\mu \le 0} \beta(\mu) = \beta(0) = 1 - \Phi\left(\frac{\sqrt{nc}}{\sigma}\right)$$

For a size α test, we set this equal to α and solve for c to get

$$c = \frac{\sigma \Phi^{-1}(1 - \alpha)}{\sqrt{n}}$$

We reject when $\bar{X} > \sigma \Phi^{-1}(1-\alpha)/\sqrt{n}$. Equivalently, we reject when

$$\frac{\sqrt{n}(\bar{X}-0)}{\sigma}>z_{\alpha}$$

where $z_{\alpha} = \Phi^{-1}(1 - \alpha)$

Most powerful test

The test with highest power under H_1 , among all size α tests (if it exists), is called **most powerful**.

In the special case of a simple null $H_0: \theta = \theta_0$ and a simple alternative $H_1: \theta = \theta_1$ we can say precisely what the most powerful test is.

Most powerful test

The test with highest power under H_1 , among all size α tests (if it exists), is called **most powerful**.

In the special case of a simple null $H_0: \theta = \theta_0$ and a simple alternative $H_1: \theta = \theta_1$ we can say precisely what the most powerful test is.

Definition (Neyman-Pearson Lemma)

Suppose we test $H_0: \theta = \theta_0$ versus $H_1: \theta = \theta_1$. Let

$$T = \frac{\mathcal{L}(\theta_1)}{\mathcal{L}(\theta_0)} = \frac{\prod_{i=1}^n f(x_i; \theta_1)}{\prod_{i=1}^n f(x_i; \theta_0)}$$

Suppose we reject H_0 when T>k. If we choose k so that $\mathbb{P}_{\theta_0}(T>k)=\alpha$ then this test is the most powerful, size α test. That is, among all tests with size α , this test maximizes the power $\beta\left(\theta_1\right)$.

P-values

Definition (P-values)

Suppose that for every $\alpha \in (0,1)$ we have a size α test with rejection region R_{α} . Then,

p-value = inf
$$\{\alpha : T(X^n) \in R_\alpha\}$$
.

That is, the p-value is the smallest level at which we can reject H_0 .

Misconceptions of P-value

• A large p-value is not strong evidence in favor of H_0 . A large p-value can occur for two reasons: (i) H_0 is true or (ii) H_0 is false but the test has low power.

Misconceptions of P-value

- A large p-value is not strong evidence in favor of H_0 . A large p-value can occur for two reasons: (i) H_0 is true or (ii) H_0 is false but the test has low power.
- The p-value is not the probability that the null hypothesis is true.

P-values (cont'd)

FIGURE 10.4. The p-value is the smallest α at which you would reject H_0 . To find the p-value for the Wald test, we find α such that |w| and -|w| are just at the boundary of the rejection region. Here, w is the observed value of the Wald statistic: $w = (\widehat{\theta} - \theta_0)/\widehat{\text{se}}$. This implies that the p-value is the tail area $\mathbb{P}(|Z| > |w|)$ where $Z \sim N(0,1)$.

Widely used tests

- Wald test
- Score test
- Likelihood ratio test

The Wald test

Consider testing

$$H_0: \theta = \theta_0$$
 versus $H_1: \theta \neq \theta_0$.

using log-likelihood function $\ell(\theta)$.

Intuitively, the farther $\hat{\theta}_n$ is from θ_0 , the stronger the evidence against the null hypothesis.

How far is "far enough"?

The Wald test (cont'd)

We use the fact that under regularity assumptions that we have under H_0 ,

$$\sqrt{n}\left(\widehat{\theta}_{n}-\theta_{0}\right)\overset{\mathrm{D}}{\rightarrow}\mathcal{N}\left(0,I^{-1}\left(\theta_{0}\right)\right)$$

where

$$I(\theta_0) = \mathbb{E}_{\theta_0} \left[\frac{\partial^2 \log f(X \mid \theta)}{\partial \theta^2} \right]$$

• Wald statistics:

$$W_{n} = \sqrt{nI(\theta_{0})} \left(\widehat{\theta}_{n} - \theta_{0}\right)$$

The Wald test (cont'd)

Under H_0 ,

$$\mathcal{W}_{n} = \sqrt{\textit{nI}\left(\theta_{0}\right)}\left(\widehat{\theta}_{n} - \theta_{0}\right) \overset{D}{\rightarrow} \mathcal{N}(0, 1)$$

or $W_n = \sqrt{n\widehat{I}(\theta_0)} \left(\widehat{\theta}_n - \theta_0\right)$ where $\widehat{I}(\theta_0)$ is a consistent estimate of $I(\theta_0)$, e.g. $I\left(\widehat{\theta}_n\right)$.

- Rejects H_0 if $|W_n| \ge z_{\alpha/2}$, where $P\left(Z \ge z_{\alpha/2}\right) = \alpha/2$.
- Asymptotic size α test

$$\mathbb{P}_{\theta_0}\left(|W_n|>z_{\alpha/2}\right)\to\mathbb{P}_{\theta_0}\left(|Z|>z_{\alpha/2}\right)=\alpha$$

Power

• Suppose the true value of θ is $\theta_{\star} \neq \theta_{0}$. The power $\beta\left(\theta_{\star}\right)$ — the probability of correctly rejecting the null hypothesis - is given (approximately) by

$$1 - \Phi\left(\frac{\theta_0 - \theta_{\star}}{\widehat{\mathrm{se}}} + z_{\alpha/2}\right) + \Phi\left(\frac{\theta_0 - \theta_{\star}}{\widehat{\mathrm{se}}} - z_{\alpha/2}\right)$$

Power

• Suppose the true value of θ is $\theta_{\star} \neq \theta_{0}$. The power $\beta\left(\theta_{\star}\right)$ – the probability of correctly rejecting the null hypothesis - is given (approximately) by

$$1 - \Phi\left(\frac{\theta_0 - \theta_{\star}}{\widehat{\mathrm{se}}} + z_{\alpha/2}\right) + \Phi\left(\frac{\theta_0 - \theta_{\star}}{\widehat{\mathrm{se}}} - z_{\alpha/2}\right)$$

• If θ_{\star} far from θ_{0} , or the sample size is large, power is large.

Size of the Wald test

• The size α Wald test rejects $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$ if and only if $\theta_0 \notin C$ where

$$C = \left(\widehat{\theta} - \widehat{\operatorname{se}} z_{\alpha/2}, \widehat{\theta} + \widehat{\operatorname{se}} z_{\alpha/2}\right)$$

Size of the Wald test

• The size α Wald test rejects $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$ if and only if $\theta_0 \notin C$ where

$$C = \left(\widehat{\theta} - \widehat{\operatorname{se}} z_{\alpha/2}, \widehat{\theta} + \widehat{\operatorname{se}} z_{\alpha/2}\right)$$

 Testing the hypothesis is equivalent to checking whether the null value is in the confidence interval.

Statistically significant v.s. Scientifically significant

FIGURE 10.2. Scientific significance versus statistical significance. A level α test rejects $H_0: \theta = \theta_0$ if and only if the $1-\alpha$ confidence interval does not include θ_0 . Here are two different confidence intervals. Both exclude θ_0 so in both cases the test would reject H_0 . But in the first case, the estimated value of θ is close to θ_0 so the finding is probably of little scientific or practical value. In the second case, the estimated value of θ is far from θ_0 so the finding is of scientific value. This shows two things. First, statistical significance does not imply that a finding is of scientific importance. Second, confidence intervals are often more informative than tests.

Beyond MLE estimate

- Wald test is not limited to MLE estimate, you just need to know the asymptotic distribution of your test satistic.
- Example: Assume we have X_1, \ldots, X_m and Y_1, \ldots, Y_n be two independent samples from populations with mean μ_1 and ν .
- We write $\delta=\mu_1-\mu_2$ and we want to test $H_0:\delta=0$ versus $H_1:\delta\neq 0$.
- We build

$$W = \frac{\bar{X} - \bar{Y}}{\sqrt{\frac{S_1^2}{m} + \frac{S_2^2}{m}}}$$

where S_1^2 and S_2^2 are the sample variances.

ullet Thanks to the *CLT*, we have $W\stackrel{\mathrm{D}}{ o} \mathcal{N}(0,1)$ as $m,n o\infty$.

The score test

Under $H_0: \theta = \theta_0$

$$\frac{1}{\sqrt{n}}\ell'\left(\theta_{0}\right)\overset{\mathrm{D}}{\rightarrow}\mathcal{N}\left(0,I\left(\theta_{0}\right)\right)$$

where

$$\ell'(\theta) = \frac{\partial \log L(\theta \mid \mathbf{x})}{\partial \theta}$$

Score statistic

$$R_{n} = \frac{\ell'(\theta_{0})}{\sqrt{n\widehat{I}(\theta_{0})}}$$

where

$$\widehat{I}(\theta_0) = -\frac{1}{n} \sum_{i=1}^{n} \frac{\partial^2 \log f(x_i \mid \theta)}{\partial \theta^2} \bigg|_{\theta_0} \stackrel{P}{\to} I(\theta_0)$$

Proof sketch (Optional)

$$0 = \ell'\left(\widehat{\boldsymbol{\theta}}_n\right) \approx \ell'\left(\boldsymbol{\theta}_0\right) + \ell''\left(\boldsymbol{\theta}_0\right)\left(\widehat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_0\right)$$

thus

$$\frac{1}{\sqrt{n}}\ell'(\theta_0) \approx -\frac{\ell''(\theta_0)}{\sqrt{n}}\left(\widehat{\theta}_n - \theta_0\right) = -\frac{\ell''(\theta_0)}{n}\sqrt{n}\left(\widehat{\theta}_n - \theta_0\right)$$

where

$$-\frac{\ell''\left(\theta_{0}\right)}{n}\overset{\mathrm{P}}{\rightarrow}I\left(\theta_{0}\right)\text{ and }\sqrt{n}\left(\widehat{\theta}_{n}-\theta_{0}\right)\overset{\mathrm{D}}{\rightarrow}\mathcal{N}\left(0,I^{-1}\left(\theta_{0}\right)\right)$$

The result follows from Slutzky's lemma.

The score test (cont'd)

Under H_0 ,

$$R_n = \frac{\ell'(\theta_0)}{\sqrt{n\widehat{I}(\theta_0)}} \stackrel{\mathrm{D}}{\to} \mathcal{N}(0,1)$$

• Rejects H_0 if $|R_n| \ge z_{\alpha/2}$, where $P\left(Z \ge z_{\alpha/2}\right) = \alpha/2$

The likelihood ratio test

$$\Delta_{n} = \ell\left(\widehat{\theta}_{n}\right) - \ell\left(\theta_{0}\right) = \log\left(\frac{\sup_{\theta \in \Theta}(\theta \mid \mathbf{x})}{L\left(\theta_{0} \mid \mathbf{x}\right)}\right) \geq 0$$

Under H_0 ,

$$2\Delta_n \stackrel{\mathrm{D}}{\to} \chi_1^2$$

- ullet As the 1-lpha quantile of a χ^2_1 distribution is $z^2_{lpha/2}$,
- we rejects H_0 when $2\Delta_n \geq z_{\alpha/2}^2$.
- i.e. We reject small values of LR test statistics.

The Wald test, score test, and likelihood ratio test

Fox, J.

(1997) Applied regression analysis, linear models, and related methods. Thousand Oaks, CA: Sage Publications. P. 570.

Test equivalence

We can show that (when there is no misspecification)

$$R_n \xrightarrow{\mathrm{P}} W_n$$

$$W_n^2 \xrightarrow{\mathrm{P}} 2\Delta_n.$$

- The tests are thus asymptotically equivalent in the sense that under H_0 they reach the same decision with probability 1 as $n \to \infty$.
- For a finite sample size *n*, they have some relative advantages and disadvantages with respect to one another.

Discussion

$$egin{aligned} W_n &= \sqrt{n I\left(heta_0
ight)} \left(\widehat{ heta}_n - heta_0
ight) \stackrel{\mathrm{D}}{
ightarrow} \mathcal{N}(0,1) \ &R_n &= rac{\ell'\left(heta_0
ight)}{\sqrt{n \widehat{I}\left(heta_0
ight)}} \stackrel{\mathrm{D}}{
ightarrow} \mathcal{N}(0,1) \ &2\Delta_n &= 2\left\{\ell\left(\widehat{ heta}_n
ight) - \ell\left(heta_0
ight)
ight\} \stackrel{\mathrm{D}}{
ightarrow} \chi_1^2 \end{aligned}$$

- It is easy to create one-sided Wald and score tests.
- The score test does not require $\widehat{\theta}_n$ whereas the other two tests do.
- The Wald test is most easily interpretable and yields immediate confidence intervals.
- The score test and LR test are invariant under reparametrization, whereas the Wald test is not.

Resources

This tutorial is based on

- "All of statistics" Chapter 10 by Larry A. Wasserman.
- Arnaud Doucet's STA 461 Lecture notes [links].