Линейная алгебра и геометрия

Экзамен-2. 2020/2021 учебный год. Вариант 1

Морфей

Группа БЭАД242

Определите все значения, которые может принимать размерность пересечения ядра и образа линейного оператора $\varphi: \mathbb{R}^4 \to \mathbb{R}^4$ при условии, что в ядре содержится вектор v = (1, 0, -1, 2).

Решение:

Вспомним важный факт про линейные операторы и подпространства:

• $\dim \ker \varphi + \dim \operatorname{im} \varphi = 4$

Так как $v \neq \vec{0} \in \ker \varphi$, то dim $\ker \varphi \geqslant 1$. Тогда есть только такие возможные комбинации для значений dim $\ker \varphi$ и dim im φ : 1 + 3, 2 + 2, 3 + 1, 4 + 0.

Ясно, что $\min\{\dim U, \dim W\} \leqslant \dim(U \cap W) \leqslant \max\{\dim U, \dim W\}$. Отсюда есть три возможных варианта для $\dim(\ker \varphi \cap \operatorname{im} \varphi) : 0, 1$ или 2. Приведём примеры:

Пример 1.

 $\dim(\ker \varphi \cap \operatorname{im} \varphi) = 0$. Рассмотрим

Ясно, что $\ker \varphi = \mathbb{R}^4$, $\operatorname{im} \varphi = \left\{ \vec{0} \right\} \Rightarrow \ker \varphi \cap \operatorname{im} \varphi = \left\{ \vec{0} \right\}$, что и нужно.

Пример 2.

 $\dim(\ker \varphi \cap \operatorname{im} \varphi) = 1$. Рассмотрим

$$A(arphi, \mathbf{e}) = egin{pmatrix} 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 \ 0 & -1 & 0 & 0 \ 0 & 2 & 0 & 0 \end{pmatrix}$$

Видно, что $v \in \ker \varphi$, так что условие выполняется. Видим, что $\ker \varphi = \langle e_1, e_3, e_4 \rangle$, а $\operatorname{im} \varphi = \langle (1, 0, -1, 2)^T \rangle = \langle v \rangle$. Тогда $\ker \varphi \cap \operatorname{im} \varphi = \langle v \rangle \Rightarrow \dim(\ker \varphi \cap \operatorname{im} \varphi) = 1$.

Пример 3.

 $\dim(\ker\varphi\cap\operatorname{im}\varphi)=2$. Рассмотрим матрицу линейного отображения в следующем базисе:

$$\begin{split} e_1 &= v = (1,0,-1,2)^T, \\ e_2 &= (0,1,0,0)^T, e_3 = (0,0,1,0)^T, e_4 = (0,0,0,1)^T \end{split}$$

По условию $f_1=\varphi(v)=(0,0,0,0)^T$. Пусть $\varphi(e_2)=v$. Уже имеем $\ker \varphi\cap \operatorname{im} \varphi=\langle v\rangle$.

Теперь пусть $\varphi(e_3)=0,\ \varphi(e_4)=e_3.$ Тогда $\ker\varphi\cap\operatorname{im}\varphi=\langle v,e_3\rangle.$ Ясно, что v и e_3 линейно независимы, значит, $\dim(\ker\varphi\cap\operatorname{im}\varphi)=2.$ Тогда матрица в этом базисе:

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Ответ:			
0.1.2			

Определите нормальный вид квадратичной формы

$$Q(x, y, z) = x^2 + ay^2 + z^2 + 4xy - 4xz - 8yz$$

в зависимости от значения параметра a.

Решение:

Сделаем замену x' = x, y' = z, z' = y. Получаем:

$$Q(x', y', z') = x'^{2} + y'^{2} + az'^{2} + 4x'z' - 4x'y' - 8y'z'$$

Получаем матрицу квадратичной формы:

$$A = \begin{pmatrix} 1 & -2 & 2 \\ -2 & 1 & -4 \\ 2 & -4 & a \end{pmatrix}$$

Воспользуемся методом Якоби:

$$\delta_1 = 1$$

$$\delta_2 = 1 + 4 = 5$$

$$\delta_3 = \det \begin{pmatrix} 1 & -2 & 2 \\ -2 & 1 & -4 \\ 2 & -4 & a \end{pmatrix} = [a+16+16] - [4+16+4a] = -3a+12$$

Случай 1.

a < 4. Тогда $\delta_3 > 0$, значит, нормальный вид $x^2 + y^2 + z^2$.

Случай 2.

 $a=4\Rightarrow\delta_3=0\Rightarrow$ нормальный вид $x^2+y^2.$

Случай 3.

 $a>4\Rightarrow\delta_3<0\Rightarrow$ нормальный вид $x^2+y^2-z^2.$

Ответ:

$$a < 4: x^2 + y^2 + z^2$$
,

$$a = 4: x^2 + y^2,$$

$$a > 4: x^2 + y^2 - z^2.$$

В четырёхмерном евклидовом пространстве $\mathbb E$ даны векторы v_1,v_2,v_3 . Известно, что матрица Грама веткоров v_1,v_2 равна $\begin{pmatrix} 4 & 3 \\ 3 & 5 \end{pmatrix}$, вектор v_3 имеет длину 10 и его ортогональная проекция на $\langle v_1,v_2 \rangle$ равна $2v_1-v_2$. Найдите объём параллелепипеда, натянутого на векторы v_1,v_2,v_3 .

Решение:

Найдём матрицу Грама системы векторов v_1,v_2,v_3 . Мы знаем левый верхний 2×2 блок и знаем, что $\|v_1\|=10\Rightarrow (v_1,v_1)=100$. Осталось найти (v_1,v_3) и (v_2,v_3) .

Пусть $u=\operatorname{pr}_{\langle v_1,\; v_2\rangle}v, w=\operatorname{ort}_{\langle v_1,\; v_2\rangle}v.$ Тогда v=u+w, причём $(w,v_1)=(w,v_2)=0.$

Отсюда и из матрицы Грама:

$$(v_3,v_1)=(u,v_1)=(2v_1-v_2,v_1)=2(v_1,v_1)-(v_2,v_1)=2\cdot 4-3=5$$

$$(v_3,v_2)=(u,v_2)=(2v_1-v_2,v_2)=2(v_1,v_2)-(v_2,v_2)=2\cdot 3-5=1$$

Имеем матрицу Грама

$$G = G(v_1, v_2, v_3) = \begin{pmatrix} 4 & 3 & 5 \\ 3 & 5 & 1 \\ 5 & 1 & 100 \end{pmatrix}$$

$$\det G = \det \begin{pmatrix} 4 & 3 & 5 \\ 3 & 5 & 1 \\ 5 & 1 & 100 \end{pmatrix} = [2000 + 15 + 15] - [125 + 4 + 900] = 1001$$

$$\operatorname{Vol}\,P(v_1,v_2,v_3) = \sqrt{\det G} = \sqrt{1001}$$

Ответ:

 $\sqrt{1001}$

Приведите пример недиагонализуемого оператора φ в \mathbb{R}^2 , для которого оператор $\varphi^2 - 3\varphi$ диагонализуем.

Решение:

Возьмём такой недиагонализуемый оператор для $a, b \in \mathbb{R}^2$:

$$A(\varphi, \mathbf{e}) = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$$

Почему он не диагонализуем? Его характеристический многочлен, очевидно, равен $(\lambda - a)^2$. Значит, a— единственное собственное значение кратности 2. При этом

$$A - aE = \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix}$$

И геометрическая кратность равна 1, значит, оператор не диагонализуем. Найдём матрицу $\varphi^2 - 3\varphi$:

$$A^2 = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}^2 = \begin{pmatrix} a^2 & 2ab \\ 0 & a^2 \end{pmatrix}$$

$$A^{2} - 3A = \begin{pmatrix} a^{2} - 3a & 2ab - 3b \\ 0 & a^{2} - 3a \end{pmatrix} = B$$

Тогда если 2ab-3b=0 и $a^2\neq 3a$, то оператор будет диагонализуемым. Возьмём b=1, тогда $a=\frac{3}{2}$. Отсюда матрица линейного оператора

$$A = \begin{pmatrix} \frac{3}{2} & 1\\ 0 & \frac{3}{2} \end{pmatrix}$$

Ответ:

Оператор с такой матрицей:

$$\begin{pmatrix} \frac{3}{2} & 1 \\ 0 & \frac{3}{2} \end{pmatrix}$$

Про ортогональный линейный оператор $\varphi: \mathbb{R}^3 \to \mathbb{R}^3$ известно, что $\varphi((1,-1,1)) = (-1,1,-1)$, $\varphi((2,0,1)) = (-2,1,0)$ и φ не самосопряжён. Найдите ортонормированный базис, в котором матрица оператора φ имеет канонический вид, и выпишите эту матрицу.

Решение:

 φ не самосопряжён, значит, $A^T \neq A$.

Если $v=(1,-1,1)^T$, то $\varphi(v)=-v$. То есть v — собственный вектор. Тогда канонический вид φ это

$$\begin{pmatrix} \Pi(\alpha) & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

в каком-то базисе e_1, e_2, e_3 .

Уже можно найти e_3 , это нормированный вектор $v: e_3 = \frac{1}{\sqrt{3}}(1, -1, 1)$.

Пусть w = (2, 0, 1). Ортогонализуем w относительно v:

$$\operatorname{pr}_v w = \frac{(w,v)}{(v,v)}v = \frac{2\cdot 1 + 1\cdot 1}{3} \begin{pmatrix} 1\\ -1\\ 1 \end{pmatrix} = \begin{pmatrix} 1\\ -1\\ 1 \end{pmatrix}$$

Тогда

$$\operatorname{ort}_v w = w - v = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

Положим $e_1 = \frac{1}{\sqrt{2}}(1,1,0)^T$. Тогда (e_1,e_3) — ортонормированная система векторов. Найдём

$$\varphi(e_1) = \frac{1}{\sqrt{2}} \varphi(w-v) = \frac{1}{\sqrt{2}} \Biggl(\begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} - \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix} \Biggr) = \frac{1}{\sqrt{2}} (-1,0,1)$$

Теперь найдём e_2 такой, что $e_2 \perp \langle e_1, e_3 \rangle$. Например, векторным произведением:

$$[v, w - v] = egin{vmatrix} i & j & k \\ 1 & -1 & 1 \\ 1 & 1 & 0 \end{bmatrix} = -i + j + 2k = egin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}$$

Отнормируем и положим $e_2=\frac{1}{\sqrt{6}}(-1,1,2)^T$. Тогда в базисе (e_1,e_2,e_3) матрица φ имеет канонический вид. Выразим $\sqrt{2}\varphi(e_1)$ через $\sqrt{2}e_1,\sqrt{6}e_2,\sqrt{3}e_3$:

$$\begin{pmatrix} 1 & -1 & 1 & | & -1 \\ 1 & 1 & -1 & | & 0 \\ 0 & 2 & 1 & | & 1 \end{pmatrix} \xrightarrow{(2)-(1)} \begin{pmatrix} 1 & -1 & 1 & | & -1 \\ 0 & 2 & -2 & | & 1 \\ 0 & 2 & 1 & | & 1 \end{pmatrix} \xrightarrow{(3)-(2)} \begin{pmatrix} 1 & -1 & 1 & | & -1 \\ 0 & 2 & -2 & | & 1 \\ 0 & 0 & 3 & | & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -1 & 0 & | & -1 \\ 0 & 2 & 0 & | & 1 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -1 & 0 & | & -1 \\ 0 & 1 & 0 & | & \frac{1}{2} \end{pmatrix} \xrightarrow{(1)+(2)} \begin{pmatrix} 1 & 0 & 0 & | & -\frac{1}{2} \\ 0 & 1 & 0 & | & \frac{1}{2} \end{pmatrix}$$

Получаем, что

$$\begin{split} \sqrt{2}\varphi(e_1) &= -\frac{1}{2}\sqrt{2}e_1 + \frac{1}{2}\sqrt{6}e_2 \\ \varphi(e_1) &= -\frac{1}{2}e_1 + \frac{1}{2}\sqrt{3}e_2 \end{split}$$

Тогда первый столбец имеет вид $\left(-\frac{1}{2},\frac{\sqrt{3}}{2},0\right)^T$. Отсюда $\alpha=\frac{2\pi}{3}$.

Значит, можно записать канонический вид оператора:

$$\begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0\\ 0 & 0 & -1 \end{pmatrix}$$

в базисе

$$\begin{split} e_1 &= \frac{1}{\sqrt{2}} (1,1,0)^T, \\ e_2 &= \frac{1}{\sqrt{6}} (-1,1,2)^T, \\ e_3 &= \frac{1}{\sqrt{3}} (1,-1,1)^T \end{split}$$

Ответ:

$$\begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0\\ 0 & 0 & -1 \end{pmatrix}$$

в базисе

$$\begin{split} e_1 &= \frac{1}{\sqrt{2}} (1,1,0)^T, \\ e_2 &= \frac{1}{\sqrt{6}} (-1,1,2)^T, \\ e_3 &= \frac{1}{\sqrt{3}} (1,-1,1)^T \end{split}$$

Существует ли матрица $A\in \mathrm{Mat}_{2 imes 3}(\mathbb{R})$ ранга 2 со следующими свойствами:

- 1) одно из сингулярных значений матрицы A равно $\sqrt{50}$,
- 2) ближайшая к A по норме Фробениуса матрица ранга 1 есть $B = \begin{pmatrix} 3 & -6 & 3 \\ 1 & -2 & 1 \end{pmatrix}$?

Если существует, то предъявите такую матрицу.

Решение:

Найдём усечённое сингулярное разложение матрицы B.

Пусть $C = B^T$. Найдём разложение матрицы C.

$$C^{T}C = \begin{pmatrix} 3 & -6 & 3 \\ 1 & -2 & 1 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ -6 & -2 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} 54 & 18 \\ 18 & 6 \end{pmatrix}$$

Собственные значения:

$$\det(C^TC-\lambda E) = \det\begin{pmatrix} 54-\lambda & 18\\ 18 & 6-\lambda \end{pmatrix} = \lambda^2 - 60\lambda + 324 - 324 = \lambda(\lambda-60)$$

Имеем сингулярное значение $\sigma_1 = \sqrt{60}$ и $\sigma_2 = 0$.

Собственные векторы:

$$C^TC-60E=egin{pmatrix} -6&18\\18&-54 \end{pmatrix}\sim egin{pmatrix} 1&-3\\0&0 \end{pmatrix}\Rightarrow v_1=rac{1}{\sqrt{10}}(3,1)^T-$$
 собственный вектор

$$u_1 = \frac{1}{\sigma_1} C v_1 = \frac{1}{\sqrt{60}} \begin{pmatrix} 3 & 1 \\ -6 & -2 \\ 3 & 1 \end{pmatrix} \frac{1}{\sqrt{10}} \begin{pmatrix} 3 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{6}} \frac{1}{10} \cdot \begin{pmatrix} 10 \\ -20 \\ 10 \end{pmatrix} = \frac{1}{\sqrt{6}} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$

Имеем

$$C = \begin{pmatrix} \frac{1}{\sqrt{6}} \\ -\frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \end{pmatrix} \left(\sqrt{60}\right) \begin{pmatrix} \frac{3}{\sqrt{10}} \\ \frac{1}{\sqrt{10}} \end{pmatrix}^T$$

Отсюда

$$B = \begin{pmatrix} \frac{3}{\sqrt{10}} \\ \frac{1}{\sqrt{10}} \end{pmatrix} \left(\sqrt{60}\right) \begin{pmatrix} \frac{1}{\sqrt{6}} \\ -\frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \end{pmatrix}^T$$

Какой план: добавить сингулярное значение $\sigma_2=\sqrt{50}$ и по одному вектору $v_2,u_2,$ чтобы сохранить ортонормированность систем. Так как $\sqrt{60}>\sqrt{50},$ то B будет ближайшей к A по норме Фробениуса матрицей ранга 1.

Добавим $u_2 = \frac{1}{\sqrt{2}}(1,0,-1)^T \perp u_1$ и $v_2 = \frac{1}{\sqrt{10}}(-1,3)^T \perp v_1$. Тогда

$$A = \begin{pmatrix} \frac{3}{\sqrt{10}} & -\frac{1}{\sqrt{10}} \\ \frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \end{pmatrix} \begin{pmatrix} \sqrt{60} & 0 \\ 0 & \sqrt{50} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \\ -\frac{2}{\sqrt{6}} & 0 \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} \end{pmatrix}^{T} = \begin{pmatrix} 3 - \frac{1}{2}\sqrt{10} & -6 & \frac{1}{2}\sqrt{10} + 3 \\ 1 + \frac{3}{2}\sqrt{10} & -2 & 1 - \frac{3}{2}\sqrt{10} \end{pmatrix}$$

Это искомая матрица (красиво не получилось)

Ответ:

$$\begin{pmatrix} 3 - \frac{1}{2}\sqrt{10} & -6 & \frac{1}{2}\sqrt{10} + 3 \\ 1 + \frac{3}{2}\sqrt{10} & -2 & 1 - \frac{3}{2}\sqrt{10} \end{pmatrix}$$

Найдите все значения параметра a, при которых уравнение

$$2y^2 - 3z^2 + 4xz - 12y + a = 0$$

определяет однополостный гиперболоид в \mathbb{R}^3 . Для каждого найденного значения a укажите прямоугольную декартову систему координат в \mathbb{R}^3 (выражение старых координат через новые), в которой данное уравнение принимает канонический вид.

Решение:

Приведём к главным осям матрицу квадратичной части уравнения:

$$A = \begin{pmatrix} 0 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & -3 \end{pmatrix}$$

$$0 = \det(A - \lambda E) = \det\begin{pmatrix} -\lambda & 0 & 2 \\ 0 & 2 - \lambda & 0 \\ 2 & 0 & -3 - \lambda \end{pmatrix} = \lambda(-\lambda^2 - \lambda + 6) - 8 + 4\lambda = -\lambda^3 - \lambda^2 + 10\lambda - 8 =$$
$$= -(\lambda^3 + \lambda^2 - 10\lambda + 8) = -(\lambda - 1)(\lambda^2 + 2\lambda - 8) = -(\lambda - 1)(\lambda - 2)(\lambda + 4)$$

Собственные значения $2,1,-4\Rightarrow$ в главных осях квадратичная часть имеето вид $2x'^2+y'^2-4z'^2$. Найдём собственные векторы:

$$A - 2E = \begin{pmatrix} -2 & 0 & 2 \\ 0 & 0 & 0 \\ 2 & 0 & -5 \end{pmatrix} \sim \begin{pmatrix} 2 & 0 & -5 \\ 0 & 0 & -3 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \Rightarrow v_1 = (0, 1, 0)^T$$

$$A - E = \begin{pmatrix} -1 & 0 & 2 \\ 0 & 1 & 0 \\ 2 & 0 & -4 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 0 \end{pmatrix} \Rightarrow v_2 = \frac{1}{\sqrt{5}}(2, 0, 1)$$

$$A + 4E = \begin{pmatrix} 4 & 0 & 2 \\ 0 & 6 & 0 \\ 2 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & 0 \end{pmatrix} \Rightarrow v_3 = \frac{1}{\sqrt{5}}(-1, 0, 2)^T$$

Матрица перехода:

$$\begin{pmatrix} 0 & \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \\ 1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix} \Rightarrow \begin{cases} x = \frac{2}{\sqrt{5}}y' - \frac{1}{\sqrt{5}}z' \\ y = x' \\ z = \frac{1}{\sqrt{5}}y' + \frac{2}{\sqrt{5}}z' \end{cases}$$

Подставим. Получим уравнение

$$2x'^2 + y'^2 - 4z'^2 - 12x' + a = 0$$

Выделим полный квадрат:

$$2(x'-3)^2 + y'^2 - 4z'^2 + a - 18 = 0$$

Сделаем замену x'' = x' - 3, y'' = y', z'' = z'. Получаем уравнение

$$2x''^2 + y''^2 - 4z''^2 = 18 - a$$

Вид фигуры зависит от знака 18-a. Однополостной гиперболоид мы получим, если $18-a>0 \Leftrightarrow a>18$. Поделим на 18-a обе части:

$$\frac{2}{18-a}x''^2 + \frac{1}{18-a}y''^2 - \frac{4}{18-a}z''^2 = 1$$

Это канонический вид. Итоговая замена координат (нужно подставить x'' = x' - 3 в первую систему):

$$\begin{cases} x = \frac{2}{\sqrt{5}}y'' - \frac{1}{\sqrt{5}}z'' \\ y = x'' + 3 \\ z = \frac{1}{\sqrt{5}}y'' + \frac{2}{\sqrt{5}}z'' \end{cases}$$

Ответ:

a > 18. Замена координат:

$$\begin{cases} x = \frac{2}{\sqrt{5}}y'' - \frac{1}{\sqrt{5}}z'' \\ y = x'' + 3 \\ z = \frac{1}{\sqrt{5}}y'' + \frac{2}{\sqrt{5}}z'' \end{cases}$$

Линейный оператор $\varphi: \mathbb{R}^4 \to \mathbb{R}^4$ имеет в стандартном базисе матрицу

$$\begin{pmatrix}
4 & 0 & 0 & -2 \\
-5 & 3 & 2 & 6 \\
2 & 0 & 3 & 2 \\
1 & 0 & 0 & 1
\end{pmatrix}$$

Найдите базис пространства \mathbb{R}^4 , в котором матрица оператора φ имеет жорданову форму, и укажите эту жорданову форму.

Решение:

Пусть

$$A = \begin{pmatrix} 4 & 0 & 0 & -2 \\ -5 & 3 & 2 & 6 \\ 2 & 0 & 3 & 2 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$

Найдём собственные значения этого оператора:

$$0 = \det(A - \lambda E) = \det egin{pmatrix} 4 - \lambda & 0 & 0 & -2 \\ -5 & 3 - \lambda & 2 & 6 \\ 2 & 0 & 3 - \lambda & 2 \\ 1 & 0 & 0 & 1 - \lambda \end{pmatrix}$$

Мммм, вкусно. Разложим по четвёртой строке

$$0 = -1 \begin{vmatrix} 0 & 0 & -2 \\ 3 - \lambda & 2 & 6 \\ 0 & 3 - \lambda & 2 \end{vmatrix} + (1 - \lambda) \begin{vmatrix} 4 - \lambda & 0 & 0 \\ -5 & 3 - \lambda & 2 \\ 2 & 0 & 3 - \lambda \end{vmatrix} =$$

$$= 2 \begin{vmatrix} 3 - \lambda & 2 \\ 0 & 3 - \lambda \end{vmatrix} + (1 - \lambda)(4 - \lambda) \begin{vmatrix} 3 - \lambda & 2 \\ 0 & 3 - \lambda \end{vmatrix} =$$

$$= 2(3 - \lambda)^2 + (1 - \lambda)(4 - \lambda)(3 - \lambda)^2 = (\lambda - 3)^2(\lambda^2 - 5\lambda + 4 + 2) = (\lambda - 3)^3(\lambda - 2)$$

Получили $\lambda_1=3, a_1=3, \lambda_2=2, a_2=1.$ Ясно, что клетка с СЗ $\lambda_2=2$ будет размера $1\times 1.$ Найдём собственный вектор для λ_2 :

$$\operatorname{rref}\left(\begin{pmatrix} 2 & 0 & 0 & -2 \\ -5 & 1 & 2 & 6 \\ 2 & 0 & 1 & 2 \\ 1 & 0 & 0 & -1 \end{pmatrix}\right) = \begin{pmatrix} \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -7 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{pmatrix}, (0, 1, 2)$$

$$B = A - 2E = \begin{pmatrix} 2 & 0 & 0 & -2 \\ -5 & 1 & 2 & 6 \\ 2 & 0 & 1 & 2 \\ 1 & 0 & 0 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & -1 \\ 2 & 0 & 1 & 2 \\ -5 & 1 & 2 & 6 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 4 \\ 0 & 1 & 2 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -7 \\ 0 & 0 & 1 & 4 \end{pmatrix} \Rightarrow f_4 = (1, 7, -4, 1)^T$$

Найдём g_1 :

$$C = A - 3E = \begin{pmatrix} 1 & 0 & 0 & -2 \\ -5 & 0 & 2 & 6 \\ 2 & 0 & 0 & 2 \\ 1 & 0 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & -2 \\ 1 & 0 & 0 & 1 \\ -5 & 0 & 2 & 6 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 2 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \Rightarrow g_1 = 1$$

Значит, клетка с СЗ $\lambda_1=3$ будет одна и её размер 3×3 . Тогда ЖНФ:

$$J = \begin{pmatrix} 3 & 1 & 0 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

Найдём f_1, f_2, f_3 , ведь f_4 мы уже нашли. Будем рассматривать степени матрицы C.

$$C = \begin{pmatrix} 1 & 0 & 0 & -2 \\ -5 & 0 & 2 & 6 \\ 2 & 0 & 0 & 2 \\ 1 & 0 & 0 & -2 \end{pmatrix}$$

$$C^{2} = \begin{pmatrix} 1 & 0 & 0 & -2 \\ -5 & 0 & 2 & 6 \\ 2 & 0 & 0 & 2 \\ 1 & 0 & 0 & -2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & -2 \\ -5 & 0 & 2 & 6 \\ 2 & 0 & 0 & 2 \\ 1 & 0 & 0 & -2 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 & 2 \\ 5 & 0 & 0 & 2 \\ 4 & 0 & 0 & -8 \\ -1 & 0 & 0 & 2 \end{pmatrix}$$

$$C^{3} = \begin{pmatrix} -1 & 0 & 0 & 2 \\ 5 & 0 & 0 & 2 \\ 4 & 0 & 0 & -8 \\ -1 & 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & -2 \\ -5 & 0 & 2 & 6 \\ 2 & 0 & 0 & 2 \\ 1 & 0 & 0 & -2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & -2 \\ 7 & 0 & 0 & -14 \\ -4 & 0 & 0 & 8 \\ 1 & 0 & 0 & -2 \end{pmatrix}$$

$$C^{4} = \begin{pmatrix} 1 & 0 & 0 & -2 \\ 7 & 0 & 0 & -14 \\ -4 & 0 & 0 & 8 \\ 1 & 0 & 0 & -2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & -2 \\ -5 & 0 & 2 & 6 \\ 2 & 0 & 0 & 2 \\ 1 & 0 & 0 & -2 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 & 2 \\ -7 & 0 & 0 & 14 \\ 4 & 0 & 0 & -8 \\ -1 & 0 & 0 & 2 \end{pmatrix}$$

Видим, что $\ker C^3 = \ker C^4 = \ker C^5 = \dots$

Значит, нужно выбрать $v \in \ker C^3$ и рассмотреть v, Cv, C^2v . Найдём $\ker C^3$:

$$\begin{pmatrix} 1 & 0 & 0 & -2 \\ 7 & 0 & 0 & -14 \\ -4 & 0 & 0 & 8 \\ 1 & 0 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & -2 \end{pmatrix} \Rightarrow \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} x_2 + \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} x_3 + \begin{pmatrix} 2 \\ 0 \\ 0 \\ 1 \end{pmatrix} x_4$$

Брать e_2 или e_3 в качестве v бесполезно, ибо $C^2e_2=C^2e_3=0$. Возьмём v=(2,0,0,1). Тогда

$$v \to Cv \to C^2 v$$

$$\begin{pmatrix} 2 \\ 0 \\ 0 \\ 1 \end{pmatrix} \rightarrow \begin{pmatrix} 0 \\ -4 \\ 6 \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 \\ 12 \\ 0 \\ 0 \end{pmatrix}$$

Тогда искомый базис:

$$f_1 = (0, 12, 0, 0)^T, f_2 = (0, -4, 6, 0)^T, f_3 = (2, 0, 0, 1)^T, f_4 = (1, 7, -4, 1)^T$$

$$C = \begin{pmatrix} 0 & 0 & 2 & 1 \\ 12 & -4 & 0 & 7 \\ 0 & 6 & 0 & -4 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

Ответ:

ЖНФ:

$$\begin{pmatrix}
3 & 1 & 0 & 0 \\
0 & 3 & 1 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 2
\end{pmatrix}$$

Базис:

$$f_1 = (0, 12, 0, 0)^T, f_2 = (0, -4, 6, 0)^T, f_3 = (2, 0, 0, 1)^T, f_4 = (1, 7, -4, 1)^T$$