sequential Circuits: Introduction PERSIONS

- -> sequential circuits are combinational circuits with memory.
- → In sequential circuits, the present 0/p depends on the present i/p as well as previous output.
- -> combinational circuits are those in which present 0/p depend on present i/p.
 - Adder
 - · subtractor
 - Multiplexer.
 - Decoders
 - · EnoOders.

clock & Triggering Methods

- → clock signal is a turing signal.
- -> Used to provide sequence of the circuit.
- -> clock is a sectar gular signal called clock pulse with duty cycle equal to 50%

when nothing is applied to this circuit it behaves asynchronously and is called latch.

clock frequency = 1.

duty cycle = ratio of time for which pulse is high

total time.

- -> now this circuit becomes synchronous and is called SR Flip Flop
- -> Output is shown when clock signal is in high state.
- → The clock rignal decides if the change in input signal must be reflected in the output signal or not.
- -> speed of the charlet can be varied by changing the frequency of clock signal.

Triggering Methods

Tuth Table for SR FF

when cik=1
g'= s.uk s'=s R'=R
= G+CLK -O R=K
R'= R.CIK
= R+CIK -2 .
when $CLK=0$ $8'=\overline{S}+\overline{O} \Rightarrow 8'=\overline{S}+1=1$
$0'-\overline{0}+\overline{0} \Rightarrow R'=\overline{R}+ = $
TRUTH Table & SR Latch

	XE	either	001	Ġ	nrl	,
1	CLK	8	R	Q _n	QnH	
	0	X	×	Previs (Neme		8
	1	Ò	0	Prev. s (Mer	ciate 1014).	
Resi	1	D	1	0	1	,
Sei		4	\wedge	1	D	

1

1

1	when	clk=1
ĊĎ	S=0	R=0
8n	s'=1	R'=1
(II)	S=0	R=1
9)	5'=1	R'=0
(III)	S=1	R=0.
()	s'=D	R'=1
رس)	S=1	R=1
	S'=0	R'=0

8	R	g	9
0	0	Inva	uld·
0	1	1	0
1	D	0	١
1)	Pre (Me	u. stati uoey)

Characteric Equation of SRFF.

Present state = 8n

Invalid.

Next state = 9ntl Bn also acts as an input

Tuth table of SRFF

				_
CLK	S	R	g _{n+1}	
0	×	×	13n	
	0	0	Qn	
	, , , , , , , , , , , , , , , , , , ,	1	OR	set
	1.	D	1 6	et
	t l	1	Invalid	

char Table

Qn	cn	Rn	Qn+1
0	0	0	0
0	0	1	0
0	l	0	1
0	1	t	ximoduide
1	Ø	0	1 1
ì	0	1	0
1	1	O	1
ì	1	1	Exacid.
1	, L		

Qn+1 = Sn+ QaRnQn

Excitation Table for SR FP

H162 6

Table

C.	uv iuo		
Qn	Sn	Rn (BAH
0	0	0	0
0	0	- 1	0
0		5 o	1
0	1	1	×
1. 1	0	O	1
41192	hon.	1 box	0
14	Wall &	0	01, 12.
1	7 15 60	d1 1 1	×

Ou ou	outputs		
State On	Next state In H	Sn	Rn
0	0	0	0
0	0	1 -	0
	0	0	l (
ally large	lugni Ton July 1	0	0

Excitation table is used when output are given an we have to find the corresponding input.

DFUP FLOP (used for data storage)

Characteristic Eg"

אני	D	1 0	chae l	able	
<u>u</u>	<u>x</u>	Sh+1 Rn	Q_n	D	Qntl
1	\hat{n}	200	0	D	0
1	1		0	1	1
,	'	1 '	1 .	0	0.
			l	1	1

Chas. Equation: QnH=D

Excitation table

Present Bn	Next BnH	D
0	0	0
0	1	1
1	0	D
1	1	1 (

I quist used for last input JK FUP FLOP (we charge the invalid state 2 SR FF where S=1, R=1 $\frac{1}{8n}$ $\frac{$

oscillates Hw 0 & 1 Helefore this is called sacing condition

Bry

Bn

K

0

0

Va Table

On	J	k	On+1
0	0	0	0
0	0)	0
0	J	0.	1
0	1	1, .	J
1	0	0	1
1	0	1	D
	1,	0	T_{i} q_{i}
1	1	1	0.
Din-	H= Qn	I + Qn	k .

Excitation	lable

Present

	State On	Sm i 1		
_	0	O	0	0
	0	1	1	0
	- <u> </u> -	0	0	1
	-		1	0
-, T.	On	BnH	J	k
Excitation Table.	0	0	D	X
Table.	0	1	1	Х
	1	D	X	i

J= 8n+1

J

K

-> Race Asound condition can be removed by Impartical >1. clock time < Propogation time.

2. Edge teiggering. (Master slave JR FF)

MASTER SLAVE JEFF (togging)

MASTER

slave is Off and vice vessa. when waster is ON

FLIPFLUP (when we have to do only organy)

CIK	J	k	Bntl
0	X	X	Om
1	D	0	Qn
ı	D	1	D
' 1	1	D	1
· 1	1	1	Dn
	,	·	l E

chae Table

Crook		•
Qn	T	Ontl
$\overline{\mathcal{O}}$	0	0
0	1	1
ţ	0	1
ĺ	1	0

TRUTH PABLE

CLK	Т	Qn+1
0	X	Qn
10	0	On
1	1	\overline{\mathbb{Q}}n

Excitation Table

B	gn+1	7
0	0	0
0	1	1
1	0	1 1
1	11	O

FLIP FLOP CONVERSION

- 1. Identify available & reg. FF.
- 2. Make excitation table for Available ff.
- 3. Make char table for legiff.
- 4. Write Bollean exp. for available ff using kmap.
- 5. praw circuit dia.

LVDT E0 = ES1 - ESL when Es= Esz Eo=D

3 Null position

Es,>Es2 LHS displacement E0>0

RMS displacement Es, < Esz. E0 <0

Of vottage. d=180k linear $\Rightarrow \phi = 0$ lange 'Kesidual votage. displacement