2.3.8

Aditya Mishra - EE25BTECH11005

September 15, 2025

Question

If $\hat{i}+\hat{j}+\hat{k}$, $2\hat{i}+5\hat{j}$, $3\hat{i}+2\hat{j}-3\hat{k}$, $\hat{i}-6\hat{j}-\hat{k}$ respectively are the position vectors of points A,B,C, and D, then find the angle between the straight lines $(\mathbf{B}-\mathbf{A})$ and $(\mathbf{D}-\mathbf{C})$. Find whether $(\mathbf{B}-\mathbf{A})$ and $(\mathbf{D}-\mathbf{C})$ are collinear or not.

Given Information

Let
$$\mathbf{A} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} 2 \\ 5 \\ 0 \end{pmatrix}$, $\mathbf{C} = \begin{pmatrix} 3 \\ 2 \\ -3 \end{pmatrix}$, $\mathbf{D} = \begin{pmatrix} 1 \\ -6 \\ -1 \end{pmatrix}$

$$\mathbf{B} - \mathbf{A} = \begin{pmatrix} 1\\4\\-1 \end{pmatrix} \tag{1}$$

$$\mathbf{D} - \mathbf{C} = \begin{pmatrix} -2 \\ -8 \\ 2 \end{pmatrix} \tag{2}$$

Formula

The angle θ between $(\mathbf{B} - \mathbf{A})$ and $(\mathbf{D} - \mathbf{C})$ is

$$\cos \theta = \frac{(\mathbf{B} - \mathbf{A})^{T} (\mathbf{D} - \mathbf{C})}{|(\mathbf{B} - \mathbf{A})||(\mathbf{D} - \mathbf{C})|}$$
(3)

$$\theta = \cos^{-1}\left(\frac{(\mathbf{B} - \mathbf{A})^{\mathsf{T}}(\mathbf{D} - \mathbf{C})}{|(\mathbf{B} - \mathbf{A})||(\mathbf{D} - \mathbf{C})|}\right)$$
(4)

Vectors are collinear if $\theta = 0^{\circ}$ or 180° .

Solution

$$(\mathbf{B} - \mathbf{A})^{T}(\mathbf{D} - \mathbf{C}) = \begin{pmatrix} 1 & 4 & -1 \end{pmatrix} \begin{pmatrix} -2 \\ -8 \\ 2 \end{pmatrix} = 1 \times (-2) + 4 \times (-8) + (-1) \times 2 = -36$$

$$|(\mathbf{B} - \mathbf{A})| = \sqrt{1^{2} + 4^{2} + (-1)^{2}} = \sqrt{18}$$

$$|(\mathbf{D} - \mathbf{C})| = \sqrt{(-2)^{2} + (-8)^{2} + 2^{2}} = \sqrt{72}$$

$$\cos \theta = \frac{-36}{\sqrt{18} \times \sqrt{72}} = \frac{-36}{36} = -1$$

Therefore, $(\mathbf{B} - \mathbf{A})$ and $(\mathbf{D} - \mathbf{C})$ are collinear but in opposite directions.

 $\theta = \cos^{-1}(-1) = 180^{\circ}$

Plot

Vectors AB and CD

Codes

For Codes, refer to the URL below: https://github.com/Aditya-Mishra11005/ee1030-2025/tree/main/ee25btech11005/matgeo/2.3.8/Codes