Gestiunea memoriei-Eliberarea

Presupunem Liber – sortata crescator dupa adresele blocurilor din lista. Fie b – blocul de eliberat.

Fie pred, succ blocuri din lista Liber a.i. adr(pred) < adr(b) < adr(succ)

Daca : adr (succ) = adr(b) + lg(header) + size(b)

<u>atunci</u> putem fuziona cele doua blocuri ⇒ fuzionare in amonte

Daca : $adr(pred) = adr(b) - size(pred) - h \Rightarrow fuzionare in aval Daca se verifica ambele conditi va avea loc o fuzionare dubla.$

Mai jos: b1=pred si b2=succ

Cateva situatii posibile sunt prezentate in diagramele de mai jos :

- in figura 1 este cazul de eliberare a blocului b dar nu se poate face fuziune
- in fig. 2 se poate face fuziune in amonte
- in fig. 3 se prezinta cazul de fuziune dubla


```
/* in acest moment avem :

⇒Testez conditiile de fuziune */

daca succ ≠NIL /* i.e. (∃) in LSD un bloc la o adresa > b * /

atunci daca (b+h+k = succ) /* conditia fuziune "amonte" * /

atunci size(b) ← k + size (succ) + h;

urm(b) ← urm(succ);

i.e /*
```

```
/*
altfel urm(b) ← succ
altfel urm(b) ←NIL /* nu exista in LSD alt bloc dupa b * /
daca pred ≠ NIL /* i.e. (∃) bloc in LSD la o adresa < b * /
atunci daca pred = b - size(pred) ← size(pred) - h / *conduce la fuziune in "aval" * /
atunci size (pred) ← size(pred) + size(b) + h;
urm(pred) ← urm(b);
altfel urm(pred) ← b;
altfel Liber ← b;
sfarsit.
```

 $OBS: \rightarrow La$ alocare preferam ca lista LSD sa fie pastrata sortata crescator in functie de lungimea blocurilor din lista .

 \rightarrow La eliberare in schimb, daca blocurile din lista apar in ordinea adreselor lor \Rightarrow testez mai usor adresele de fuziune.

Daca aleg alta structura pentru blocuri , pot sa pastrez lista sortata dupa lungime si pot sa testez comod si conditia de fuziune.

Testez conditia de fuziune :

a) amonte Tag(b + 2h + size(b)) = '-'aval Tag(b-1) = '-'

OBS: - Ca urmare a fuzionarii este posibil sa fie nencesara sortarea listei LSD.

→ La oricare din metodele de pana acum apare un dezavantaj : fragmentarea spatiului de memorie.

Buddy System (Sistemul cu "camarazi" (Knuth))

Principiul metodei:

 \rightarrow Cu aceasta metoda se aloca blocuri de memorie a caror lungime trebuie sa fie o putere a lui 2 (i.e.2,2',2²,...)

Daca se afce o cerere de alocare cu o lungime $\neq 2^k \Rightarrow$ se aloca primul bloc acoperitor ca lungime si care are o lungime = cu o putere a lui 2.

- \rightarrow Blocul de memorie din care se fac alocarile, este presupus de dimensiune 2^{M} .
- →Evidenta blocurilor libere, se tine cu ajutorul unui vector de liste.
- \rightarrow Fiecare componenta i a acestui vector mentine lista a blocurilor libere de dimensiune 2^i sau lista vida daca in momentul considerat nu exista nici un bloc liber de dimensiune 2^i . \rightarrow Initial (\exists) un singur bloc avand dimensiunea intregii memorii disponibile 2^M .
- \rightarrow La o cerere de alocare a unui bloc de dimensiune 2^k , se cauta un bloc liber de aceasta dimensiune.

daca exista \Rightarrow se aloca acest bloc

daca nu exista ,dar (\exists) un bloc de dimensiune mai mare, se incepe un proces de injumatatire, plecand de la acest bloc, proces care se continua pana se obtine un bloc de dimensiune 2^k .

OBS : Cand un bloc este divizat in doua , cele doua jumatati poarta numele de "camarazi" ("muguri").

EX: M = 4

OBS: \rightarrow O intrare i din vectorul Liber (i.e. Liber [i]), este un pointer spre lista blocurilor libere de dimensiune 2^{i} .

→Fiecare element al listei contine in primul camp adresa blocului (adresa de inceput).

OBS: \rightarrow Cand un bloc de dimensiune 2^{k+1} se injumatateste rezulta doua blocuri ("camarazi", "muguri") pe care le notam $B_k(A)$ si $B_k(A')$ care au propietatile:

fiecare bloc are dimensiune = 2^k

A mod $2^k = 0$ si A' mod $2^k = 0$ (i.e. adresa la care incepe oricare din cele doua blocuri (A sau A') este multiplu de 2^k .

 $\begin{cases} K = \text{ordinul blocului} \\ A = \text{adresa blocului} \end{cases} \Rightarrow B_k(A) \rightarrow \text{bloc de ordinul } K \text{ si adresa } A.$

Fie in exemplul nostru o cerere de alocare a unui bloc de dimensiune = 2 cuvinte ; i.e. cerere de determinare $B_1(Adr)$ si vreau sa aflu adresa Adr la care se face alocarea: \Rightarrow avem succesiv:

OBS : Injumatatirea se continua cu "camaradul" din stanga pana la 2^k ,iar cel din dreapta e introdus ca bloc liber. Acum presupun o noua cerere $B_1(Adr)$:

Eliberarea

eliberarea blocului $B_1(4)$:

OBS : \rightarrow pentru a respecta algoritmul nu pot sa fuzioneze doua blocuri vecine,decat daca ele sunt "camarazi" i.e. : au provenit din divizarea aceluiasi bloc (la noi , $B_1(2)$ si $B_1(4)$ nu sunt "camarazi" intre ei).

DEF : Fie $B_i(A)$ si $B_j(A')$ doua blocuri eliberate. Conditiile ca cele doua blocuri sa poata fuziona : sa aiba aceeasi dimensiune \Rightarrow i = j

 $|A - A'| = 2^{i}$ (blocuri adiacentede dimensiune 2^{i})

adresa blocului care ar rezulta dupa fuziune (!!sa fie la multiplu 2^{i+1}) \rightarrow La noi in ultimul caz : min (A,A') = 2 ; 2 nod $4 \neq 0$!!

· Si acum o noua eliberare : $B_1(6)$.

Se observa ca $B_1(6)$ si $B_1(4)$ indeplineste conditiile de fuziune:

acceasi dimensiune

$$|6-4| = 2 = 2^1$$

$$min(A,A') = min(4,6) = 4 \text{ si } 4 \text{ nod } 2^{1+1} = 0$$

Pentru evidenta spatiului disponibil ,am o variabila TabLis : array [0..M] of lista (tablou de lista) unde 2^M = dimensiunea totala a spatiuluidin care fac alocarile.

Presupun ca pentru Lista, am definiti urmatorii operatori: First, Insert, Delete.

Presupun ca se afc cereri de alocare $B_k(A)$ i.e. se cere alocarea unui bloc de dimensiune = 2^k . Daca pot sa fac alocarea intorc in A adresa blocului alocat, modificand corespunzator TabLis. Daca nu se poate face alocarea ,intorc NIL.

$$\uparrow ADR \qquad ADR + 2^{j-1}$$

$$2^{j} cu \ j > k$$
 */
$$j \leftarrow j-1 \ ;$$
 sfarsit.
$$\begin{cases} Car \\ Top \end{cases} \qquad \begin{cases} Push \\ Cons \end{cases} \qquad Delete \end{cases} \begin{cases} Cdr \\ Pop \end{cases}$$
 procedura Eliberare (TabLis,M,k,A) este
$$j \leftarrow k; \\ gata \leftarrow Fals; \\ cat timp \ (j <=M) \ and \ (not \ gata) \ executa \\ daca \qquad exista \ A1 \ \equiv \ TabLis[j] care \ poate \ fuziona \ cu \ A \ i.e.: \ |A-A1| = 2^{j}$$
 and min (A,A1) nod $2^{j+1} \equiv 0$

 $TabLis[i] \leftarrow Delete(a1,TabLis[i])$ $A \leftarrow \min(A,A1)$;

fuzioneaza si el */

altfel TabLis $[j] \leftarrow Insert(A, TabLis [j])$ gata ← Adevarat;

atunci / * A1 ≠NIL * /

sfarsit.