[2.8] The Cantor Set

So wire interested in sets that have measure zero. So fair, all the examples we've seen have been countable. We return to Chapter 2 for an uncountable example.

Def. Let
$$C_0 = [0, 1]$$

$$C_1 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1]$$

$$C_2 = \left([0, \frac{1}{4}] \cup [\frac{2}{4}, \frac{1}{3}] \right) \cup \left([\frac{2}{3}, \frac{7}{4}] \cup [\frac{2}{4}, 1] \right)$$

$$C_n = \left(\frac{1}{3} C_{n-1} \right) \cup \left(\frac{1}{3} \left(2 + C_{n-1} \right) \right)$$

$$C_{2} = C_{1} \setminus \left(\frac{1}{3}, \frac{2}{3}\right)$$

$$C_{3} = C_{2} \setminus \left(\left(\frac{1}{9}, \frac{2}{9}\right) \cup \left(\frac{7}{9}, \frac{8}{9}\right)\right)$$

$$\vdots$$

$$C_{n} = C_{n-1} \setminus \left(\left(\frac{1}{3^{n-1}}, \frac{2}{3^{n-1}}\right) \cup \cdots \cup \left(\frac{3^{n-1}-2}{3^{n-1}}, \frac{3^{n-1}-1}{3^{n-1}}\right)\right)$$

This is why it's after called the "Center m.dale-Thirds" set.

Q: which points are in C?

A: At least some points like it ... but (uncountably) many more,

Proof: LTS. D

Prop: For every x C, x is the limit of a sequence in C that is not eventually constant (x is a clusher point of C)

Proof: Given any E70, consider (x-E, x+E) n.C.

There is an n large enough so that $\frac{1}{3n} < E$, and since $C = \bigcap_{n=1}^{\infty} C_n$ we know that $x \in C_n$.

Con is the disjoint union of intervals of width $\frac{1}{3^n}$; one of these intervals is thus contained in $(x-\epsilon, x+\epsilon)$.

 $\Rightarrow (x-\epsilon,x+\epsilon) \cap Cn \text{ is infinite. But in fact this is thre}$ for every r, so $(x-\epsilon,x+\epsilon) \cap C$ is infinite, for every ϵ .

Using $\epsilon=\frac{1}{n}$, we can build a sequence in $C \setminus \{1,2\}$ that

converges to x. \square

Prop: For every x & C, and for every E>O, there is a cloper subset UE C with x & U = (x-E, x+E). (C is totally disconnected)

Proof: Each subinterval of each Cn is clopen in Cn.

By Inheritance, then for each subinterval IECn, In C is clopen in C. But we can find arbitrarily small I by taking large n, and every xEC is in one of these I.

Prop: m(C)=0

Proof $m(C_n) = 2^n \cdot \frac{1}{3^n} = \left(\frac{2}{3}\right)^n$, and C_n is a cover of C by closed intervals.

is a cover of 6 by closed intervals with total width (3) ~ E. D

Prop. C is uncountable.

Proof: Let $W = \{(\omega_1, \omega_2, ...) \mid \omega_i \in \{0, 23\}\}$.

Define $\phi: W \rightarrow C$ by: $\phi(\varpi) = \sum_{n=1}^{\infty} \frac{\omega_n}{3^n}$.

1) for each well, of (w) & C:

Look at the partial sums $S_K = \sum_{n=1}^K \frac{\omega_n}{3^n}$, we see that $S_K \in C_K$ for each K, so $S_K \in \bigcap_{n=1}^K C_K$.

· · · · (w) € €

2) For each xe C, x= q(w) for exactly one weW:

First consider $C_1 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1] = I_0 + I_2$.

Note that the left endpoint of Io is $\frac{9}{3}$ and the left endpoint of I2 is $\frac{2}{3}$.

Thus Io = { p(w) | w = 0} and Iz = { p(w) | w = 2}.

Next consider $C_{2}=\left(\left[0,\frac{1}{4} \right] \cup \left[\frac{2}{4},\frac{1}{3} \right] \right) \cup \left(\left[\frac{2}{3},\frac{7}{4} \right] \cup \left[\frac{8}{4},\frac{1}{1} \right] \right)$

Now x & Io iff x & Io and x = q; this forces w2 = 0.

In fact, Ioo= { \$\phi(\omega) \ \ \omega_1=0, \omega_2=0}, \I_{02}= {\phi(\omega) \ \ \omega_1=0, \omega_2=2}, \end{and so on!}

In general, then are 2^n intervals in Cn, and we can label them $I_{\alpha,\alpha_2...\alpha_n}$ where each $\alpha_i \in \{0,2\}$, and: $I_{\alpha,\alpha_2...\alpha_n} = \{ \phi(\tau_3) \mid \tau_3 = (\alpha_1,\alpha_2,...,\alpha_n,\omega_{n+1},...) \}.$

In other words, each finite string $(\alpha_1,...,\alpha_n)$ originally determined an interval $I_{\alpha_1...\alpha_n} \subseteq C_n$, and forthermore the left entpoint of $I_{\alpha_1...\alpha_n}$ is $\sum_{k=1}^n \frac{\alpha_k}{3^k}$

So if wi 7 W2 then of (Wi) 7 of (Wz),

And since every x is in some Ia, ... an for every n,
there is some Toew with $\phi(to) = x \cdot \Box$

So there is an uncountable set with measure zero.

Cor: I [0,1](c is Riemann Integrable.

This Function is one almost everywhere, so its derivative is zero a.e.

Def The Devil's Steinme: For $x = \varphi(\omega) \in \mathcal{C}$, let $H(x) = \sum_{i=1}^{\infty} \frac{\omega_i}{2^{i+1}}$ For $x \notin \mathcal{C}$, let $H(x) = \max\{H(y) \mid y \leq x\}$.

Then H is Riemann integrable, it is afferentiable a.e. and H'(x)=0 a.e.

But H & I Toure do not differ by accordant!

So the FTC requires that antiderivatives differ by a constant everywhere, not just a.e.