Arranging the Data

- . We also have need to make sure the data is ordered in a certain manner. This can be easily done in R with the arrange() function.
- Again we can do this in base R but this is not always a clear path.

Arranging the Data Example

- . Let's say that we wish to look at only carriers and departure delay and we wish to order departure delays from what smallest.
- · In base R we would have to run the following command:

flights[order(flights\$dep_delay), c("carrier", "dep_delay")]

A ni eted gnizinemmu2 bne gnignemA - 2 yed Intro to R Programming for Biostatistics

nevillu2 U mebA

Enter the arrange() Function

We could do this in an easy manner using the $\mbox{\it ann}\mbox{\it ang}\mbox{\it e}($) function:

(... ,etab.)egnerna

. data is a data frame of interest.

More Complex Arrange

- · Lets consider that we wish to look at the top 3 departure delays for each day.
- . Then we wish to order them from largest to smallest departure delay.

 We then need to do the following:

 J. foroup by morth and boy
- 2. Pick the top 3 departure delays
- 3. order them largest to smallest

More Complex Arrange Continued

+11ghrs %>% srrange(desc(dep_delay)) %>% errange(desc(dep_delay))

- . group_by() is a way to group data. This way we perform operations on a group. So top 3 delays are by a group of day and month.
- $\mbox{top_n}()$ takes a tibble and returns a specific number of rows based on a chosen value.

More Complex Arrange Continued

			(LECTIL)	o> unoq ⁻ ə	niti (<	e <qp< th=""><th>เกนรุเม</th><th>#</th><th>##</th></qp<>	เกนรุเม	#	##
' <qp>> .</qp>	<qpj> yonu</qpj>	qţz£ance	air_time <dbl>,</dbl>	f <chr>t</chr>	səp '‹	u «cpı	tgirno	#	##
	'cuyɔ> wn	ntiej (cin	chr>, flight <i< td=""><td>canniten <</td><td>'<tqp< td=""><td>етау <</td><td>Jue</td><td>#</td><td>##</td></tqp<></td></i<>	canniten <	' <tqp< td=""><td>етау <</td><td>Jue</td><td>#</td><td>##</td></tqp<>	етау <	Jue	#	##
<qup></qup>	amit_me_b	руба: асре	d 12 more varia	LOMS, an	anom 8	50°T 4	ιτ ო · · ·	#	##
	850T	968	00/I	954	S	ZΤ	2013	ΘŢ	##
	121	868	6SZ	2257	22	L	2013	6	##
	1536	668	006T	656	77	9	2013	8	##
	T32	TT6	810	2321	ΔT	ε	2013	۷	##
	1342	096	006T	TIGG	ΘT	Þ	2013	9	##
	1044	T002	009T	842	22	L	2013	S	##
	ZS#T	1014	3845	TT36	20	6	2013	Þ	##
	1539	1126	3E9T	1151	9T	τ	2013	ε	##
	Z09T	ZETT	326T	T435	ST	9	2013	7	##
	1242	1301	006	11/9	6	τ	2013	τ	##
	<tnt></tnt>	<qpj></qpj>	<pre><put></put></pre>	<pre><qut></qut></pre>	<tut></tut>	<qut></qut>	<ţuţ>		##
	enit_ nne	dep_delay	ached_dep_banas	dep_time	Λep	изиош	year		##
									##
				[59	day [3	'qquo	ı :sdno	uр	##
			[6T × 8i	ane [1,16	it etal	ocal c	nuce:]	os	##

On Your Own: RStudio Practice

- · Perform the following operations:
- nse samp $_1e_n()$ to pick 1 observation per day. Group by month and day.
- Arrange by longest to smallest departure delay.

On Your Own: RStudio Practice

Jour answer **may** look like:

flights %>% Broup_by(month,day) %>% sample_m(1) %>% almple(month,day))

Arranging the Data Example Continued

flights %>% select(carrier, dep_delay) %>% arrange(dep_delay)

Arranging the Data Example Continued

## 17 MILLY 339*1,200 MOUGE LONG ## 18					
## 19	SMDJ	a.inii 00/1000	изтм		
8 8 6 75 75 8 8 8 8 9 75 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	3700				
88 8 46 - 72 81		77-			
## 6 PQ - 26 ## 7 PG - 29 ## 7 PG - 23 ## 7 PG - 26 ## 7		-52			
22 - 64 2 # 60 - 20		-22	EΛ		. ##
## 3 EA -39 ## 3 EA -35 ## 7 E9 -43 ## 3 CQA> (SQD)> ## 4 CQA> (SQD)>		-59	дм	9	##
## 2 EA25 ET		LZ-	63	9	: ##
## 2 DC -33 ## 1 Be -43 ## CSALCEU.A (40)?>		96-	٦a	1	/ ##
## 7 #6 -43 ## csu-tev peb qejsk ## csu-tev peb qejsk		-32	EΛ	1	: ##
## carrier dep_delay ## <chr></chr> chr/> <dbl></dbl>		£E-	٦a	- 7	: ##
## csulfer dep_delay		£4-	98	1	: ##
					##
2 x 377,38E :91ddif A # ##		qeb_delay	uəţu.	csi	##
		Z × 977,8EE	: əŢqqī	J A 1	: ##

Arranging the Data Example Continued

- · With arrange() we first use select() to pick the only columns that we want and then we arrange by the dep_delay.
- lf we had wished to order them in a descending manner we could have simply used the

flights %>% select(carrier, dep_delay) %>% arrange(desc(dep_delay))

%% \$2figli?
%c% (2ab)\vec{q}_quong
%c% (3URT=mn.en ,qefab_ene)neam = vecfab_gve)ves_tenemus - As you have seen in your own work, being able to summarize information is crucial. Summarizing Data Example Summarizing Data ()xem´ -()uim -()ps -- var() - . . . is a list of name paired summary functions . teats is the tibble of interest. (... ,efeb.)esthemmus The summarise() function is: Enter summarise() Function

Summarizing Data

- . We need to be able to take out data and summarize it as well.

We will consider doing this using the summerise() function.

Summarizing Data Example

- Consider the logic here:
 1. Group flights by destination
- 2. Find the average delay of the groups and call it avg_delay.
- · This is much easier to understand than the Base R code.
- \$ 2.0 (1.0 (1.0 ft) \$ 0.0 0.0 \$ 0.0

Summarizing Data

. Like in the rest of these lessons, let's consider what happens when we try to to do this in base & We will:

1. Create a table grouped by dest.

head(with(filghts, tapply(arr_delay, dest, mean, na.rm=TRUE))) head(aggregate(arr_delay \sim dest, flights, mean))

On Your Own: RStudio Practice

Your answer should look like:

OUG LOMS	322 10	чэтм	. #	##
1001	LΤ	L	ΘĪ	##
1001	6	L	6	##
T995	ZΤ	L	8	##
1993	SZ	L	4	##
T993	31	L	9	##
T99¢	Z	15	S	##
T99¢	ΘT	L	Þ	##
T99¢	8	L	8	##
9001	ττ	L	Z	##
1014	77	ττ	τ	##
<pre><put></put></pre>	<au< td=""><td>< qut></td><td></td><td>##</td></au<>	< qut>		##
11ght_count	day f	узиои		##
				##
5]	E] 434	ow:sdr	oug	##
[8 x 236] ement et	ep Te:	uce: joi	nos	##

We could also have used what is called the tally() function:

```
filghts %>%
group_by(month, day) %>%
tally(sort = TRUE)
```

Another Example

Lets say that we would like to have more than just the averages but we wish to have the minimum and the maximum departure delays by carrier:

Another Example

səldsing New Variables

səldsinsV wəM gnibbA

- There is usually no way around needing a new variable in your data.
- For example, most medical srudies have height and weight in them, however many times what a researcher is interested in using is Body Mass Index (BMI).

 We would need to add BMI in.

On Your Own: RStudio Practice

- · The following is a new function:
- Helper function n() counts the number of rows in a group

- Sort in descending order. - count total flights

Differences Between mutate() and

transmute()

- . There is only one major difference between mutate() and transmutate and that is what it keeps in your data.

- It keeps all existing variables
- It only keeps the new variables

Example

· Let's say we wish to have a variable called speed. We want to basically do:

$$speed = \frac{distance}{dimb} * 60$$

We can first do this with mutate():

flights %>% select(flight, distance, air_time) %>% mutate(speed = distance/air_time*60)

SeldsinsV weW gnibbA

- $\,\cdot\,\,$. . . is the name paired with an expression

Example

With mutate() we have

- transmute()

SeldsinsV weW gnibbA

. Using the $\operatorname{tidyverse}$ we can add new variables in multiple ways

(... ,efeb.)eferum

seldsinsV weM gnibbA

Then with transmute() we have:

(... ,efeb.)efumenent

. . data is your tibble of interest.

 $\,\cdot\,\,$. . . is the name paired with an expression

Further Summaries

Example

However there are many more operations that you may wish to do for summarizing data.

. In fact many of the following examples are excellent choices for working with categorical data which does not always make sense to do the above summaries for.

. We have so far discussed how one could find the basic number summaries:

nedian -

- standard deviation

flights %>% select(flight, distance, air_time) %>% transmute(speed = distance/air_time*60)

flights %% select(flight, distance, air_time) %% select(flight, distance, air_time*60) transmute(speed = distance/air_time*60) Example

Further Summaries

3. Other Groupings We will consider:
1. Grouping and Counting

2. Grouping, Counting and Sorting

4. Counting Groups

· Both of these can be used for grouping and counting. . We have seen the functions tally() and count(). **Grouping and Counting**

· They also are very concise in how they are called.

#Further Summaries

0 0

flights %>% group_by(month) %>% tally(sort=TRUE) . For tally() this would be: · This allows you to go one step further and group by, count and sort at the same time. . Both tally() and count() have an argument called sort(). ## Error in as.lazy_dots(.dots): object 'month' not found Grouping, counting and sorting. Then for count() we would have: *Notice: count() allowed for month to be called inside of it, removing the need for the group_by() function. · Where as we could do the same thing with count() **Grouping and Counting** Then for count() we would have: %/% ethgalf} %/% (month) %/% tally() . For example if we wished to know how many flights there were by month, we would use tally() in this manner: **Grouping and Counting**

flights %>% count(month, wt = distance) • With the count() function we also use wt: Grouping with other functions

##Counting Groups

885T 5245Z 5246Z 5246Z 6528Z 9678Z 9678Z 6688Z 1264Z 6888Z [2] ##

flights %>% group_by(month) %>% group_size() groups size using group_size():

50 if wanted to count the number of flights by month, we could group by month and find the

##Counting Groups

- n_groups() returns the number of groups - group_size() is a function that returns counts of group.

We may want to know how large our groups are. To do this we can use the following functions:

. For tally() we could do:

the distance.

flights %>% Group_by(month) %>% tally(wt = distance)

We take flights then group by month and then create a new variable called distance, where
we sum the distance.

Note: in tally() the wt stands for weight and allows you to weight the sum based on

Grouping with other functions

flights %>% group_by(month) %>% summarise(dist = sum(distance)) . We could do this with the summarize() function, tally() function or the count() function:

For example let us say we were interested in knowing the total distance for planes in a given month.

. We can also sum over other values rather than just counting the rows like the above examples,

Grouping with other functions

ZT [T] ##

##Counting Groups

flights %>% group_by(month) %>% n_groups()

n_groups() function:

If we just wished to know how many months were represented in our data we could use the

##Counting Groups