

Deep RegulAtory GenOmic Neural Networks - DragoNN

Practice LESS Deep Learning Learn - Experiment - Share - Seek

Barathi Ganesh HB

Centre for Excellence in Computational Engineering and Networking (CEN)
Amrita School of Engineering, Coimbatore
Amrita Vishwa Vidyapeetham, India
email: barathiganesh.hb@gmail.com

Barathi Ganesh HB 24 Dec 2017 DragoNN 1 / 22

Classification with DragoNN

Amrita Vishwa Vidyapeetham

Outline

Genomics

DNA sequencing

Nucleotides

Property of Regulatory Sequence

DragoNN

Simulations with DragoNN

Representation of motifs

Classification with DragoNN

Genomics

- An interdisciplinary field of science within the field of molecular biology.
- Aims at the collective characterization and quantification of genes.
- Direct the production of proteins with the assistance of enzymes and messenger molecules.
- Uses high throughput DNA sequencing and bioinformatics to assemble, and analyze the function and structure of entire genomes.

Barathi Ganesh HB 24 Dec 2017 DragoNN 3 / 22

DNA sequencing

- DNA sequencing is the process of determining the precise order of nucleotides within a DNA molecule.
- It includes any method or technology that is used to determine the order of the four bases - adenine (A), guanine (G), cytosine (C), and thymine (T) in a strand of DNA.

Nucleotides

- Organic molecules composed of three sub unit molecules: a nitrogenous base, a five-carbon sugar (ribose or deoxyribose), and at least one phosphate group.
- Ribose is a carbohydrate (simple sugar)
- Deoxyribose deoxy sugar derived from the sugar ribose by loss of an oxygen atom.
- Nitrogenous base Adenine (A), Guanine (G), Thymine (T),
 Cytosine (C), Uracil (U)
- A phosphate (PO34) is an inorganic chemical and a salt-forming anion of phosphoric acid.

Barathi Ganesh HB 24 Dec 2017 DragoNN 5 / 22

Ribose, Deoxyribose and Phosphate

Figure: Ribose Figure: Phosphate

Barathi Ganesh HB 24 Dec 2017 DragoNN 6 / 22

Nitrogenous bases

Nucleobase	Adenine	NH NH ₂ Guanine	NH NH Thymine	NH ₂ N N Cytosine	O NH NH O Uracil
Nucleoside	HO NHO OH OH Adenosine	HO NH NH ₂ OHOH Guanosine G	HO OHOH Thymidine	NH ₂ N OHOH Cytidine	HO NH OHOH Uridine

Figure: Nitrogenous bases

Barathi Ganesh HB 24 Dec 2017 DragoNN 7 / 22

Classification with DragoNN

Amrita Vishwa Vidyapeetham

Four bases in a strand of DNA

Figure: adenine

NH NH₂

Figure: guanine

 NH_2

Figure: cytosine

Figure: thymine

24 Dec 2017 DragoNN 8 / 22

Key properties of regulatory sequence

TRANSCRIPTION FACTOR BINDING

Regulatory proteins called <u>transcription factors</u> (<u>TFs</u>) bind to high affinity sequence patterns (<u>motifs</u>) in regulatory DNA

Figure: Nuc. level importance (height of letter) shows coordination of

DNA sequencing
Nucleotides
Property of Regulatory Sequence
DragoNN
Simulations with DragoNN
Representation of motifs
Classification with DragoNN

Amrita Vishwa Vidyapeetham

HOMOTYPIC MOTIF DENSITY

Regulatory sequences often contain <u>more than one binding instance</u> of a TF resulting in <u>homotypic clusters of motifs of the same TF</u>

Barathi Ganesh HB 24 Dec 2017 DragoNN 10 / 22

DNA sequencing Nucleotides Property of Regulatory Sequence DragoNN Simulations with DragoNN Representation of motifs Classification with DragoNN with DragoNN Representation of motifs Classification with DragoNN

Amrita Vishwa Vidyapeetham

HETEROTYPIC MOTIF COMBINATIONS

Regulatory sequences often bound by <u>combinations of TFs</u> resulting in <u>heterotypic clusters of motifs of different TFs</u>

Barathi Ganesh HB 24 Dec 2017 DragoNN 11 / 22

DNA sequencing
Nucleotides
Property of Regulatory Sequence
DragoNN
Simulations with DragoNN
Representation of motifs
Classification with DragoNN

Amrita Vishwa Vidyapeetham

SPATIAL GRAMMARS OF HETEROTYPIC MOTIF COMBINATIONS

Regulatory sequences are often bound by <u>combinations of TFs</u> with specific <u>spatial and positional constraints</u> resulting in distinct <u>motif grammars</u>

Barathi Ganesh HB 24 Dec 2017 DragoNN 12 / 22

Deep RegulAtory GenOmic Neural Networks

- A toolkit to teach and learn about deep learning for genomics.
- Enables computational biologists working on genomics problems to get started with deep learning.
- deep learning practitioners to get started with applications in genomics.
- Software for model development, model interpretation, and DNA sequence simulations.

Barathi Ganesh HB 24 Dec 2017 DragoNN 13 / 22

Representation of motifs Classification with DragoNN

Amrita Vishwa Vidyapeetham

DNA sequence simulations

Sequence Simulations

print_available_simulations()

Simulation Name	"Positive" class sequence	"Negative" class sequence
simulate_single_motif_detection		
simulate_motif_counting		
simulate_motif_density_localization		2 2 2
simulate_multi_motif_embedding		
simulate_differential_accessibility		2 0 0
simulate_heterodimer_grammar		

Barathi Ganesh HB 24 Dec 2017 DragoNN 14 / 22

Genomics
DNA sequencing
Nucleotides
Property of Regulatory Sequence
DragoNN

Simulations with DragoNN

Representation of motifs

Amrita Vishwa Vidyapeetham

Heterodimer sequence simulations

Positive class of genomic sequences containing two motifs with relatively <u>fixed</u> spacing

Negative class of genomic sequences containing two motifs with <u>random and</u> <u>variable spacing</u>

Representation of motifs Classification with DragoNN

Amrita Vishwa Vidyapeetham

Representation of motifs (patterns)

GGATAA CGATAA CGATAT GGATAT

Set of aligned sequences Bound by TF

 $p_i(x_i = a_i)$

Α	0	0	1	0	1	0.5
O	0.5	0	0	0	0	0
G	0.5	1	0	0	0	0
т	0	0	0	1	0	0.5

Position weight matrix (PWM)

24 Dec 2017 DragoNN 16 / 22

Barathi Ganesh HB

Representation of motifs (patterns)

DNA sequencing
Nucleotides
Property of Regulatory Sequence
DragoNN
Simulations with DragoNN
Representation of motifs
Classification with DragoNN

Amrita Vishwa Vidyapeetham

One Hot Encoding

Barathi Ganesh HB 24 Dec 2017 DragoNN 18 / 22

Classification with DragoNN

DragoNN Model

DragoNN Model

Thank You.

you can follow me through:

www.linkedin.com/in/barathiqaneshhb