- **a)** $B_{\mu} = \{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$ es base de R^3 .
- c) Encontrar las coordenadas de los vectores $\vec{v}_1, \vec{v}_2, \vec{v}_3$ en la base B_u .
- **d)** El vector $\vec{x} \in R^3$ tiene coordenadas (1,2,3) en la base B_v . Calcular las coordenadas de \vec{x} en la base B_u

EP3.20. - Expresar el vector (3,1,4) en la base de \mathbb{R}^3 formada por los vectores (1,-2,-1),(1,-1,0) y (0,0,-3).

EP3.21.- Sea la base $B_1 = \{(1,0,0,-1),(0,1,-1,0),(0,1,0,-1),(0,1,1,1)\}$ de R^4 . Obtener las componentes en dicha base del vector \vec{u} que tiene las coordenadas $\left(-3,2,1,-2\right)$ en otra base B_2 formada por los vectores (1,2,0,0),(-1,0,1,1),(0,0,-2,1),(-1,0,-1,0).

EP3.22. - Determinar cuáles de los siguientes conjuntos son subespacios de los espacios que se indican:

a)
$$U = \{(x, y, z) \in \mathbb{R}^3 \mid x - z = 0\}$$

b)
$$W = \{(x, y, z) \in \mathbb{R}^3 \mid x - y + z = 0\}$$

c)
$$X = \{(x, y, z) \in R^3 \mid x = 0, y + z = 0\}$$
 d) $A = \{(a, b, 0) \in R^3\}$

d)
$$A = \{(a,b,0) \in \mathbb{R}^3\}$$

e)
$$B = \{(a,b,c,d) \in \mathbb{R}^4 \mid b = a+c+d+1\}$$

e)
$$B = \{(a,b,c,d) \in \mathbb{R}^4 \mid b = a+c+d+1\}$$
 f) $C = \{(a,b,c,d) \in \mathbb{R}^4 \mid b = a+c, d=2a\}$

Dar una base en los casos que sean subespacios.

EP3.23.- a) Encontrar una base del subespacio E generado por $\vec{v}_1 = (1, -2, 0, 3), \vec{v}_2(2, -5, -3, 6),$ $\vec{v}_3(0,1,3,0), \vec{v}_4(2,-1,4,-7) \text{ y } \vec{v}_5 = (5,-8,1,2)$

- **b)** Encontrar una base del subespacio $F = \langle (1,2,1,0), (0,0,1,0), (1,2,0,0) \rangle$
- **EP3.24.-** Probar que $\langle (1,-1,-1,1), (1,-2,-2,1), (0,1,1,0) \rangle = \langle (1,0,0,1), (0,-1,-1,0) \rangle$. Dar una base de este subespacio.

EP3.25. Sea E el espacio generado por los vectores $\vec{v}_1, \vec{v}_2, \vec{v}_3$, $E = \langle v_1, v_2, v_3 \rangle$, donde $\vec{v}_1 = (2,1,0,3)$, $\vec{v}_2 = (3, -1, 5, 2)$, $\vec{v}_3 = (-1, 0, 2, 1)$. Determinar la dimensión de E y decir si los vectores (1, 1, 1, 1)(2, 3, -7, 3)pertenecen a E.

EP3.26. - Demostrar que el conjunto de matrices de la forma $\begin{pmatrix} x-3y & 5y \\ -4y & x+3y \end{pmatrix}$ $x,y \in Q$ constituyen un subespacio vectorial del espacio $\widetilde{\mathcal{M}}_2$ (Q) de todas las matrices de orden 2 sobre el cuerpo Q.