

Acknowledgements

- Aiden Doherty and the Oxford Wearables group
- **DNANexus**
- UK Biobank
- Oxford Population Health
- Big Data Institute
- Funders

Outline

- Why wearables?
- What is the UK Biobank accelerometry study?
- How can the accelerometer data be used?
- Where can I find resources?

Outline

- Why wearables?
- What is the UK Biobank accelerometry study?
- How can the accelerometer data be used?
- Where can I find resources?

Wearables in health applications

- Acceptable technology: widespread use of consumer wearables
- Rich and detailed measurement in the real-world

• Diverse applications e.g. studying disease risk factors, clinical trial endpoints, patient monitoring

Insights from wearables

- Stronger associations between physical activity and mortality than found with self-report
- Insights into behaviours hard-to-measure with self-report e.g. light physical activity

What is an accelerometer?

 A device to measure movement objectively

 Typically worn on the body, often on the wrist, hip or thigh

 Modern accelerometers measure in 3 dimensions and record data ~100 times/second (100 Hz)

Outline

- Why wearables?
- What is the UK Biobank accelerometry study?
- How can the accelerometer data be used?
- Where can I find resources?

Accelerometry in UK Biobank

- ~100,000 people
- Axivity AX3 wrist-worn accelerometer
- 7-day 24-hour wear protocol

Processing accelerometer data

• Use of validated methods e.g validation of overall activity measurement against doubly labelled water

Data processing: Doherty et al. *PLoS One* 12, (2017). 12(2):e0169649

Processing methods: van Hees et al. J App Physiol, (2014). 117(7): 738-744

Validation: White et al. Intl J. Obesity, (2019). 10.1038/s41366-019-0352-x

Quality control

- Pipeline to exclude participants not meeting quality control conditions
- Most exclusions due to insufficient wear time, affecting 7% participants
- Conditions may depend on variables of interest

Outline

- Why wearables?
- What is the UK Biobank accelerometry study?
- How can the accelerometer data be used?
- Where can I find resources?

Uses of UK Biobank accelerometer data

Used to derive measurements of:

- overall physical activity
- movement behaviours (e.g. sleep, sedentary behaviour, light activity, moderate-to-vigorous activity)
- behavioural patterns
- circadian rhythm
- sleep quality
- step count

Uses of UK Biobank accelerometer data

Used to study:

- Associations with incident disease and mortality
- Genetic architecture of movement-related phenotypes
- Associations with other phenotypes e.g. mental health phenotypes

Energy expenditure and mortality

Strain et al. Nature Medicine, (2020).

Physical activity and cardiovascular disease (CVD)

3,617 CVD events

5.2 years of follow-up (440,004 person years)

Ramakrishnan et al. *PLoS Medicine*, (2021).

Measuring 24-hour movement behaviours

- Developing machine-learning models to classify movement behaviours in accelerometer data
- Models developed in a separate dataset with ground-truth (CAPTURE-24, 10.5287/bodleian:NGx0JOMP5)
- Applied to classify UK Biobank participants' movement behaviours

Willetts et al. Scientific Reports, (2018).

24-hour movement behaviours and CVD

Walmsley et al. British Journal of Sports Medicine, (2021), http://dx.doi.org/10.1136/bjsports-2021-104050

Genetics and movement behaviours

Overall activity rs564819152 (SKIDA1), rs2696625* (KANSL1-AS1), rs59499656 (SYT4)

Doherty et al. Nature Communications 9:5257, (2018).

Genetics and sleep/circadian characteristics

Table 2 Heritability estimates of derived sleep variables from BOLT-REML				
Sleep variable	h²	95% CI		
Sleep duration	0.190	0.182-0.198		
Sleep duration variability (SD)	0.028	0.020-0.036		
Number of nocturnal sleep episodes	0.223	0.215-0.231		
Sleep efficiency	0.130	0.122-0.138		
L5 timing	0.117	0.109-0.125		
M10 timing	0.087	0.079-0.095		
Sleep midpoint timing	0.101	0.093-0.109		
Diurnal inactivity	0.148	0.134-0.161		

Supplementary Figure 1. Manhattan plots for the eight accelerometer-derived phenotypes. Plots show GWAS results for a) sleep duration, b) sleep duration variability, c) sleep efficiency, d) number of sleep episodes, e) L5 timing, f) M10 timing, g) sleep midpoint and h) diurnal inactivity.

Jones et al. *Nature Communications*, 10:1585, (2019).

What's next?

Outline

- Why wearables?
- What is the UK Biobank accelerometry study?
- How can the accelerometer data be used?
- Where can I find resources?

Accessing UK Biobank accelerometer data

Off-the-shelf Bespo				
Summary accelerometer variables	Processed accelerometer variables from other applications	Intermediate accelerometer time series files	Raw accelerometer data	
Summary activity metrics, quality control metrics	E.g. machine-learned behaviours	"Epoch-level" data from device	Raw ~100 Hz data as recorded by the device	
Suitable for many analyses	May be appropriate for some analyses	May be suitable for deriving some novel phenotypes (e.g. circadian)	Can be used flexibly to derive novel phenotypes	
Tabular	Generally tabular	Medium-sized	Very large	
Access in tabular participant data	Access in "returns" datasets	Access as Bulk data	Access as Bulk data	

Getting started with accelerometry variables

- github.com/OxWearables/rap_wearables
- Basic pipeline replicating previous papers:

- A demo, not a prescription of best-practice
- Start a conversation GitHub, community.dnanexus.com

Getting started with accelerometry variables

throughout the day (meaning missing data could not be imputed in a way that would account for diurnal bias). See this paper research questions, you may choose to select different criteria. For example, to study the difference between weekdays and we both the week and the weekend. If you're interested in finding out more, check out the literature on accelerometer data qualit

We do the accelerometer data quality exclusions:

• Exclude participants whose device could not be calibrated:

```
In [55]:
    nb <- nrow(dat)
    dat <- dat[dat$quality_good_calibration == "Yes", ]
    tab_exc <- rbind(tab_exc, data.frame("Exclusion" = "Poor calibration", "Number_excluded" = nb - nrow(dat), '</pre>
```

• Exclude participants for whom >1% of values were clipped (fell outside the sensor's range) before or after calibration:

```
In [56]:
    nb <- nrow(dat)
    dat <- dat[(dat$clips_before_cal < 0.01*dat$total_reads) & (dat$clips_after_cal <0.01*dat$total_reads) , ]
    tab_exc <- rbind(tab_exc, data.frame("Exclusion" = "Too many clips", "Number_excluded" = nb - nrow(dat), "Number_excluded")</pre>
```

Working with raw accelerometer data

- Processing accelerometer data + applying ML models: github.com/OxWearables/biobankAccelerometerAnalysis
- Accelerometer data with ground-truth labels: (e.g. model development) github.com/OxWearables/capture24

Summary

- Wearables can enhance health research through better phenotype measurement
- In 2013–2015, ~100,000 UKB participants wore an accelerometer, a device to measure movement
- Used to study how movement-related phenotypes are associated with disease, genetics and other health-related phenotypes
- Open-source resources available e.g. introductory repo from this webinar