DCC062 - Sistemas Operacionais

Cap. 2 – Processos Parte 3

Prof. Marcelo Moreno

moreno@ice.ufjf.br
http://sites.google.com/a/ice.ufjf.br/dcc062

Comportamento de Processos

- (a) Processo CPU-bound ou orientado a CPU
- (b) Processo I/O-bound ou orientado a E/S

Escalonamento de Processos

- Multiprogramação
 - Diversos processos competem pela CPU
 - Cabe ao sistema operacional decidir o momento em que cada processo obterá a CPU
- Escalonador de processos
 - * Subsistema do S.O. responsável por tal decisão
 - Utiliza um (ou até vários) algoritmos de escalonamento que estabelecem a lógica de tal decisão
- Escalonamento vs. trocas de contexto
 - Tempo gasto com chaveamento do modo usuário para o modo núcleo

Quando escalonar?

- Quando se faz necessária a escolha do próximo processo a obter a CPU?
 - Criação de um processo
 - Término de um processo
 - Processo é bloqueado
 - Após uma Interrupção

Escalonamento Não-Preemptivo

Escalonamento Preemptivo

- Periodicamente, a cada k inter. de relógio
- Escalonamento não-preemptivo. Escalonamento apenas em situações que praticamente obrigam que uma decisão seja tomada.
- Escalonamento preemptivo. Escolher um processo e lhe conceder a CPU durante um certo tempo. Findado o tempo, a CPU é concedida a outro processo.

Categorias de algoritmos de escalonamento

- Escalonamento de processos pode envolver diferentes tipos de requisitos, seguindo assim diferentes parâmetros e diferentes lógicas
- Classificação segundo o tipo de sistema, tipo de aplicação...
- Tanenbaum:
 - Sistemas em Lote
 - Sistemas Interativos
 - Sistemas de Tempo Real

Escalonamento em Sistemas em Lote

- Job mais curto primeiro
 - Shortest Job First (SJF)
 - Exige conhecimento do tempo de execução de um job
 - Entre a fila de jobs aguardando escalonamento, escolhe aquele que possui o menor tempo de execução
 - * Melhora o tempo médio de retorno
 - Desvantagem
 - Jobs chegando entre a execução de outros podem ter tempos curtos e caso escolhidos primeiro reduziriam o tempo médio de retorno

Escalonamento em Sistemas em Lote

- Primeiro a chegar, primeiro a ser servido
 - First come, first served (FCFS)
 - CPU é atribuída a processos na ordem em que a requisitaram
 - Uma única fila de processos prontos
 - Novos jobs entram no fim da fila
 - Simples e justo
 - Desvantagem
 - CPU-bound vs. I/O-bound
 - Preempção faz falta

Escalonamento em Sistemas em Lote

- Próximo de menor tempo restante
 - Shortest remaining time first (SRTF)
 - Novamente, tempo de execução de cada job deve ser conhecido
 - Na chegada de novo job, seu tempo total é comparado com o tempo restante dos jobs atualmente enfileirados
 - Será enfileirado antes daquele que possui tempo restante imediatamente superior a ele
 - Podendo inclusive tomar a CPU logo na chegada
 - Quase preempção

Escalonamento em Sistemas Interativos

- Escalonamento por alternância circular
 - Round-robin
 - Cada processo ganha um intervalo de tempo para uso contínuo da CPU (quantum)
 - Se ao final do quantum, processo ainda está processando, há preempção e outro processo será escolhido
 - Se houve bloqueio ou o processo terminou antes do fim do quantum, outro processo será escolhido
 - Dimensionamento do quantum é sensível
 - Overhead das trocas de contexto
 - Tempo de resposta

Escalonamento em Sistemas Interativos

- Prioridades + Round-robin
 - Definem-se classes de prioridade
 - Normalmente promove justiça apenas intra-classe

Escalonamento em Sistemas Interativos

- Escalonamento por prioridades
 - Cada processo possui uma prioridade
 - * O processo pronto com maior prioridade ganha a CPU
 - Processo de mais alta prioridade deixaria a CPU somente quando quisesse
 - Pode-se baixar a prioridade do processo executando, a cada tick de relógio
 - Ou estabelecer um quantum máximo
 - * Atribuição pode ser estática ou dinâmica
 - * Comumente usado em conjunto com round-robin

Escalonamento em Sistemas Interativos

- Escalonamento Garantido
 - Fazer promessas reais aos usuários
 - Exemplo: Havendo *n* usuários conectados garantir a fração 1/n de CPU
 - Cálculo fica baseado no tempo de uso da CPU por cada processo desde sua criação
 - Processos com menor tempo de uso ganham CPU para se aproximar da fração garantida
 - Pode levar a grandes variações no tempo de resposta

Escalonamento em Sistemas Interativos

- Escalonamento por Loteria
 - Prover garantias é interessante, mas com implementação mais complexa
 - Pode-se obter algo próximo a garantias mas com implementação mais simples
 - Processos ganham bilhetes de loteria. O prêmio é ganhar a CPU
 - A decisão de escalonamento consiste simplesmente da escolha aleatória de um bilhete
 - O quantum pode variar, conforme número de sorteios por segundo

Escalonamento em Sistemas de Tempo Real

- Sistemas com propósito específico
- Resposta certa, porém tardia, é tão ruim quanto não ter resposta
- Tempo real crítico
 - Prazos absolutos a serem cumpridos
- Tempo real não-crítico
 - · Descumprimento ocasional de prazos é tolerável
- Normalmente, processos de tempo real têm comportamento bem conhecido
 - Curto processamento
- Escalonador deve trabalhar para que todos os prazos sejam respeitados

Escalonamento em Sistemas Interativos

- Escalonamento por Loteria
 - · Como oferecer diferenciação de processos?
 - Dar mais bilhetes de loteria aos processos mais importantes, aumentando suas chances de ganhar
 - Processos recém-criados participam da loteria prontamente
 - Processos cooperativos podem trocar bilhetes entre si
 - Cliente/Servidor
 - * Bilhetes de loteria acabam representando frações da CPU
 - Se um processo possui um fração f dos bilhetes, possui praticamente uma fração f da CPU
 - Muito útil como forma de oferecer garantias diferentes a processos com demandas diferentes

Escalonamento em Sistemas de Tempo Real

- Sistema de tempo-real escalonável
 - É possível descobrir se um sistema de tempo real é realmente escalonável com base na periodicidade dos eventos (tratados pelos processos)
 - m eventos periódicos
 - evento i ocorre em períodos de Pi unidades de tempo e requer Ci unidades de tempo para execução
 - Então a carga poderá ser tratada somente se

$$\sum_{i=1}^{m} \frac{C_i}{P_i} \le 1$$

