基于WBS-RBS矩阵的项目风险识别方法 的改进及应用

张志清! 王文周1,2

(1.中国科学院研究生院,北京100039;

2.中科院科技政策与管理科学研究所,北京100190)

摘要:通过对WBS-RBS矩阵及软件项目风险管理实践的研究,提出对基于WBS-RBS矩阵的风险识别方法的改进,并 融合多层次模糊统计方法等,实现对风险的多层次综合统计分析和评价,提高软件项目风险管理的正确性和实 雕

关键词: WBS-RBS, 项目风险管理, 多层次模糊评价

0 引言

风险识别是寻找可能影响项目的风险,辨识项 目面临的风险,揭示风险来源、风险产生的条件,以 及确认风险特性的过程。风险识别的目的在于让人 们认清风险,更好地预防和控制,趋利避害,变被动 为主动。目前,对于软件项目风险识别来说,主要问 题之一是现有的一些风险识别方法缺乏有效性和 针对性,比如专家调查法、情景分析法、头脑风暴法 等都只是适合于在项目前期阶段对项目的整体风

程单独分包,出现问题时,施工方之间就经常扯皮 推诿。因此在合同签订时,应明确总承包方在收取 了总包服务费后的责任范畴,以避免日后推诿现象 的发生。

项目进入实施阶段,风险管理的重心就转为监 控,高校基建管理部门应随时动态地关注项目的进 度及质量情况,不断地监控残留风险,以确保项目 顺利完成。

3 结语

高等学校的基本建设是学校事业发展的先决 条件和物质保证。只有根据高校基建项目的特点, 在工程项目的前期设计阶段、招投标阶段、合同签 险进行粗略的识别,而在项目实施阶段不能从软件 项目整体的角度,系统地辨识软件项目的风险,而 且很多时候过于粗略和混乱,因而遗漏风险和重复 交叉风险成为风险识别过程中常见的情况。

工作分解结构 (Work Breakdown Structure, WBS)和风险分解结构(RiskBreakdownStructure, RBS)是风险识别的常用工具,但是现有书籍和教 材中对于基于前者的风险识别方法基本没有做具 体的阐述,也很少将其与后者结合起来进行风险管 理。为了克服现行风险识别工具与方法中存在的缺

订及施工阶段对风险实时动态地管理,才能确保高 校基建项目的顺利进行,进而为学校各项事业的发 展奠定良好的物质基础。

参考文献

- [1] 吕大刚,张世海,王光远.结构选型智能决策支持系统的总体 设计及关键技术研究[C]//《大型复杂结构的关键科学问题及 设计理论研究论文集》编辑委员会.大型复杂结构的关键科 学问题及设计理论研究论文集.大连:大连理工大学出版社,
- [2] 陆青翠.大学城建设留下的思索[J].福建建筑, 2007(6):12-
- [3] 沈建明.项目风险管理[M].北京:机械工业出版社,2003.PMT 收稿日期:2010-01-12

陷,本文引入WBS-RBS矩阵,并对其进行改进,将 其用于软件项目风险的识别。WBS-RBS矩阵应用 到软件项目风险识别领域,为软件项目风险识别的 实施提供了具体的方法和工具。

1 WBS-RBS矩阵介绍

PMI专家David Hillson是最早研究基于WBS-RBS矩阵的风险管理的美国专家。David Hillson在他的几个研究文献中详细描述了基于WBS-RBS矩阵的风险管理。基于WBS-RBS矩阵对软件项目风险进行识别具有以下几点好处: 能够系统地整理软件项目的风险规律,涵盖软件项目中可能发生的风险,通过按照RBS对每个WBS节点进行风险识别,有效地避免了风险遗漏; 风险分类和风险因子经过归类和层次划分后更加清晰、系统,避免了风险划分的混乱,便于风险规划应对、数据处理、评价分析及经验积累等。

David Hillson建立WBS-RBS矩阵主要分为以下三个步骤: 构建WBS; 构建RBS; 以WBS 最底层的作业包集合作为矩阵的列,以RBS最底层的风险因子集合作为矩阵的行,建立WBS-RBS矩阵,构建起WBS和RBS的关联。如图1所示。

注:该图取自参考文献[1]。

在WBS-RBS矩阵中,行与列的交叉点就是风险点。在文献[2]中,David Hillson对该风险点的数据做了定义,分别包括风险概率和当前风险因子对当前WBS节点的影响或损失。在David Hillson的定

义中,风险概率可以通过三种形式进行描述: 文字描述(an ordinal scale approach),如很低(very low),低(low),中等(medium),高(high),很高(very high)等; 基数形式(a cardinal scale approach),使用1~9的整数,即模糊评价; 量化形式(a quantitative approach),即1%~99%的数字。对于风险损失结果的描述形式,David Hillson并没有直接予以说明,在文献[2]的例子中,David Hillson采用了模糊评价来量化风险损失。图2是David Hillson建立的WBS-RBS矩阵风险模糊评价统计图。图中风险发生概率和风险损失结果都采用模糊评价,然后分别用矩阵的横向计算统计WBS节点的风险总和,用矩阵的纵向计算统计RBS节点的风险总和。

图2 David Hillson的WBS-RBS矩阵风险模糊评价统计图注:该图取自参考文献[2]。

同时,David Hillson也指出,由于WBS和RBS都是多层次的,所以在一个项目中可以得到若干像图2一样的矩阵。由于WBS的层次关系和RBS的层次关系,使得这些矩阵也形成一些层次关系,这样,这些矩阵就形成一个金字塔模型,如图3所示。这个模型中的两个三角形分别代表WBS和RBS层次结构。图中只有最底层的所有矩阵是风险识别过程中直接采用WBS-RBS矩阵的方法对软件项目风险进行识别得到的,其余每一个层次的矩阵都是由所属的所有下层矩阵计算得到,每一个上层矩阵的单个风险点的风险值等于下属矩阵的风险值总和。付金强等也在文献[3]中特别指出"所有父科目的估算都是从低层次的汇总中得到的,而不是直接输入的"。

目前,国内的相关研究和应用主要是借鉴了 David Hillson的研究成果,所有文献内容基本都是

其研究成果的行业运用,没有明显变化。

上述方法在一定程度上解决了软件项目风险 识别中存在的主要问题,主要优点是涵盖了所有可 能发生的风险,不会产生遗漏。但在实际运用中,笔 者发现该方法也存在以下问题:简单地以WBS最底 层的作业包集合作为矩阵的列,以RBS最底层的风 险因子集合作为矩阵的行,构建出一个大而全的 WBS-RBS矩阵,会将一些在某个节点不可能产生 的风险也纳入映射矩阵,产生没有意义的统计数 据,在计算中将风险扩大化。

2 基于WBS-RBS矩阵的风险识别方法的 改讲

结合一些文献研究成果和软件项目风险管理 实践,本文以"重视风险识别,构建灵活矩阵"为思 路,在前人研究成果的基础上对基于WBS-RBS矩 阵的风险识别方法进行改进,使得这一方法能够在 软件项目风险管理中得到更好的运用,切实提高软 件企业的项目风险管理水平。

2.1 矩阵的改进

本着实事求是的原则, WBS-RBS矩阵不能简 单地用WBS最底层的作业包集合作为列、以RBS最 底层的风险因子集合作为行来构建,而是要基于已 经得到的WBS和RBS,对WBS的所有节点逐一进 行风险识别,识别方法是核对RBS的每个底层的风 险因子,根据实际情况判别当前WBS节点是否存在 RBS节点对应的风险,如果存在,则增加该RBS节 点到当前WBS节点,如果不存在,则不需要将该 RBS节点添加到当前WBS节点下的风险列表中。这 样,每个WBS节点下所列出的风险项都是当前项目 的该项工作所面临的实际风险,使得风险管理的目 标更为准确,有利于风险分析和应对。

2.2 金字塔模型的改进

多层次的WBS和RBS将组成多层次的金字塔 模型,但是笔者认为,这一金字塔模型如图4所示, 实线表示WBS的层次结构,虚线表示各个WBS节 点下的RBS结构,同时还存在另一种点划线标识的 层次关系,即由于WBS的层次关系,同一风险因子 在不同层级WBS之间形成的组合关系。这两种虚线 关系构成金字塔模型的风险统计分析的主要路径。

所有的风险因子对应的一个节点就是一条风 险记录。风险因子对应的风险记录节点又分为实风 险和虚风险两种,实风险是在项目风险识别过程中 识别出的真正风险,如图4实线框中的风险因子对 应的风险记录。虚风险节点是根据WBS层次结构和 RBS层次结构组成连续的层次关系而产生的,如 图4虚线框中的风险因子对应的风险记录。这些虚 风险是为了用于风险统计分析和风险评价,其服 务对象一般是高级的项目管理人员和企业管理人 员,以了解特定范围、特定阶段、特定类型的风险

图4 改进后的金字塔模型

水平。

在改进的金字塔模型中,所有实风险都是该风险因子对应的风险在该WBS节点及其所有下级WBS节点中的末级风险记录节点,即在该WBS节点的所有下级WBS节点中不会再出现同一风险记录。这些实风险的相关风险评估数据都是经过评估后输入的,或者通过其他统计计算得到的。所有虚风险节点在该WBS节点的下级WBS节点中至少有一个同一风险因子识别的实风险记录与之对应。所有虚风险记录的风险项数据是其所有子风险节点累计得到的。

2.3 基于WBS-RBS矩阵的多层次风险统计

通过WBS-RBS矩阵及改进后的金字塔模型,可以在任何层次上实现以下3个方面的风险统计:特定WBS节点的总风险;特定RBS大类的总风险;特定RBS因子的总风险。

2.3.1 权重计算

权重计算是各项统计的前提,可以采用的方法 有算数平均法、专家评分法、层次分析法(AHP)等, 其中算数平均法可以使用模糊评价值、成本损失、 工期损失来计算。同时,风险发生概率、紧急程度、 不可控程度以及不可预测程度可作为权重计算的 统计项,这样计算出的"风险贡献度"将更加完整可 信。公式为

$$W_i = \frac{|D_i|}{{n \choose i-1}|D_i|} \tag{1}$$

或

$$W_{i} = \frac{|D_{i}| \times P_{i} \times E_{i} \times M_{i} \times U_{i} \times T_{i} \times C_{i} \times Q_{i}}{|D_{i}| \times P_{i} \times E_{i} \times M_{i} \times U_{i} \times T_{i} \times C_{i} \times Q_{i}} (2)$$

式中, W_i 是第i个风险记录的权重; D_i 是第i个风险记录的模糊评价值,或成本损失,或工期损失; P_i 是第i个风险记录的风险发生概率,是可选项; E_i 是第i个风险记录的风险紧急程度,是可选项; M_i 是第i个风险记录的不可控程度,是可选项; U_i 是第i个风险记录的不可预测程度,是可选项; U_i 是第i个风险记录的风险控制的工期投入,是可选项; E_i 是第i个风险记录的风险控制的成本投入,是可选项; E_i 是第i个风险记录的风险控制的成本投入,是可选项; E_i 是i0、是i

在上述公式中, 当分母部分是项目总的风险额

度,而分子是某个特定的风险记录的相关数据时, 该公式得到的就是第*i*个风险记录的总权重。总权重 可以用于风险排序。

2.3.2 风险值(损失)计算

公式为

$$T_{k} = \sum_{i=k+1}^{k+m} T_{ij} \times W_{ij}$$
 (3)

式中, T_k 是WBS中第k层次的某个工作包节点下的某个特定风险因子的风险损失估计,也可以是WBS中第k层次的某个工作包节点的风险损失估计; T_{ij} 是WBS中第i层次的某个工作包节点下的第j个风险记录的风险损失估计; W_{ij} 是WBS中第i层次的某个工作包节点下的第j个风险记录的权重;m是WBS中从当前WBS节点到最末级WBS节点之间的层次数量:n是每个WBS节点下风险记录的数量。

3 应用案例

文中的研究成果在原中国网通集团南方省市 10060及国际分公司呼叫中心系统升级改造工程项目(简称中国网通10060升级改造项目)中得到了应用。原有系统采用总部集中、全国联网的建设模式。近年来,随着机构的融合和业务的全面开展,特别是客服数据的迅速增长,原有系统在规模、内存管理、处理能力、应用灵活性、维护方便性、系统架构、产品版本以及业务功能等方面都表现出严重不足,通过本项目的实施,系统在客户管理、业务功能、系统集成、业务支撑能力和接入渠道等方面得到增强和改善,并增强用户体验,为网通用户和内部系统用户提供优质服务。

项目中建立了基于全面动态风险管理的软件项目管理模式,项目风险管理作为十分重要的项目管理活动之一,其管理活动应该有标准,有方法,有策略,有组织,有计划,这是制定项目风险管理规范的主要目的。其中主要的管理手段就是采用改进的基于WBS-RBS矩阵的风险识别方法,为项目实施阶段的项目风险管理提供切实有效的保障。

在项目实施过程中,项目管理人员利用微软 EXCEL VBA设计和实现了基于WBS-RBS矩阵和 多层次模糊分析的项目风险评估系统,建立了低成 本、快速易用、更为精确的风险管理和分析工具,使 得项目风险管理人员可以实时统计分析任意项目 工作的风险情况,并进行风险评价,从而降低软件 项目风险管理的复杂性,有效促进项目风险管理技 术在软件项目管理中的推广与运用。

表1是基于WBS-RBS矩阵的多层次风险统计 结果的一部分。

4 结语

对基于WBS-RBS矩阵的项目风险识别方法的 改进使得这一方法能够更加符合软件项目的风险 管理实践,为项目实施阶段的项目风险管理提供更 有效的指导。

借助计算机技术,可以很容易地根据这一方法 建立项目风险评估系统,为软件项目风险提供操作 简单、分析准确的工具,使得风险管理人员可以随 时实现金字塔模型中任何一个层次和节点的风险 水平统计和评价,进一步降低软件项目风险管理实 施的复杂性,从而帮助软件项目管理人员快速准确 地分析、评估项目风险,更大程度地支持项目决策。

参考文献

[1] Carlo Rafele, David Hillson, Sabrina Grimaldi. Understanding project risk exposure using the two-dimensional risk breakdown matrix[C]/2005 PMI Global Congress Proceedings. Newtown Square: PMI, 2005.

- [2] David Hillson, Sabrina Grimaldi, Carlo Rafele. Managing project risks using a cross risk breakdown matrix[J].Risk Management, 2006 (8):61-76.
- [3] 付金强,傅长锋.基于WBS和RBS的水电工程投资风险因素 分析[J].水科学与工程技术,2008(5):66-68.
- [4] 王艳伟, 王松江.基于WBS的能源项目多维模型集成化管理 [J].水电能源科学, 2008(1):192-195.
- [5] 于恩亚, 范云飞.基于WBS与多层次模糊的立交方案综合评 价[J].公路交通技术, 2007(Z1):14-17.
- [6] 柴大胜, 申金升, 李根柱.基于WBS-RBS和AHP方法的虚拟 物流组织风险研究[J].北京交通大学学报:社会科学版,2006 (3):30-34.
- [7] 卜良桃,毛晶晶.基于WBS与多层次模糊综合评估的桥梁检 测评估方法的研究[J].中南公路工程,2005(3):81-85.
- [8] 贾俊峰,梁青槐.WBS-RBS与AHP方法在土建工程施工安全 风险评估中的应用[J].中国安全科学学报,2005(7):101-103, 107.
- [9] 黄艳敏,郝建新.WBS-RBS法在城市轨道工程风险辨识中的 应用[J].都市快轨交通, 2004(4):9-12.
- [10] David Hillson.Structuring a breakdown: the risk managementRBS[J].ProjectMagazine, 2003 (7):12-14.
- [11] David Hillson. Using a Risk Breakdown Structure in project management[J].Journal of Facilities Management , 2003 (1): 85-97.
- [12] David Hillson. Use a Risk Breakdown Structure (RBS) to Understand Your Risks[C]//Proceedings of the 33rd Annual Project Management Institute Seminars & Symposium. Newtown Square: PMI, 2002. PMT

收稿日期:2009-12-07

表1 基于WBS-RBS矩阵的多层次风险统计结果(部分)

WBS 编号	WBS 名称	风险分类	RBS 编号	RBS名称	发生概率	紧急 程度	不可 预测 程度	不可 控程 度	风险损失估计				
									模糊评价	工期 估计	费用估计		
											工时成本	固定成本	小计
1	2	3	4	5	9	10	11	12	13	14	15	16	17
1.02.	IVR 系需分析	小计			0.8066	2	2	7	-7	9.80	3 921 . 66	0.00	3 921.66
		项目范围 与需求风 险	3		0.6808	2	3	6	-8	9.27	3 707.61	0.00	3 707.61
			3.1	范围不确定	0.89	3	2	5	-8	10.68	4 273.45	0.00	4 273 . 45
			3.5	需求不明确或准确,含边 界不清晰	0.53	2	4	5	-6	9.37	3 748.35	0.00	3 748.35
			3.7	需求过于复杂,实现难度 高	0.62	1	3	6	-8	8.62	3 447.09	0.00	3 447.09
		技术风险	4		0.9009	3	2	7	-7	10.16	4 066.65	0.00	4 066.65
			4.3	是否缺少对重要关键技术 的掌握	0.8	3	1	5	-6	9.00	3 600.72	0.00	3 600 . 72
			4.4	是否存在技术瓶颈或高难 度技术	0.93	3	2	8	- 7	10.50	4 200.84	0.00	4 200.84
		项目组织 与团队风 险	5		0.8924	3	1	7	-6	8.17	3 269.54	0.00	3 269.54
			5.6	技术人员未经过开发工具、 管理辅助工具培训	0.9	3	1	7	-6	8.27	3 307.86	0.00	3 307.86