

Contenidos

Diseñar AFN

Convertir AFN en AFD

Resolución de ejercicios TP 4

Autómatas Finitos

Ya hablamos de los *Autómatas Finitos*, en particular de aquellos que cumplen con determinadas características que los hacen *determinísticos*. Pero estos no son sino, un caso particular de los *Autómatas Finitos No Determinísticos* (o AFN).

Autómatas Finitos no Determinísticos

Los AFN permiten que de cada nodo salga un número de transiciones distinto del número de caracteres del alfabeto (ya sean más o menos). Esto permite que falten flechas, o salgan varias con una misma etiqueta. También nos permite transiciones con palabras o con la palabra vacía (ɛ).

Los nodos dejan de ser mutuamente excluyentes ya que una misma entrada permite distintas salidas.

Autómatas Finitos No Determinísticos

Ventaja: al perder las restricciones de los AFD el diseño resulta más simple. Por ejemplo, los nodos ya no deben tener n transiciones, pueden tener solo 1 de n (Siendo n el total de caracteres del alfabeto).

Desventaja: al simplificar tanto el diseño, el costo de operación es más grande.

Ejercicio

Diseñar el AFD que acepte palabras en el alfabeto Σ ={a,b} que empiecen con la letra 'a'.

K =

S =

F =

> =

δ =

Diseñar el AFD que acepte palabras en el alfabeto Σ ={a,b} que empiecen con la letra 'a'.

Determinístico

No Determinístico

Ejercicio

Diseñar el AFD que acepte palabras en el alfabeto Σ ={a,b,c} que terminen con 'bb'.

K =

S =

F =

> =

δ =

Diseñar el AFD que acepte palabras en el alfabeto Σ ={a,b,c} que terminen con 'bb'.

Determinístico

No Determinístico

Conversión de AFN a AFD

Relación entre los AFN y los AFD

Por cada AFN existe un AFD equivalente (que acepta el mismo lenguaje).

Para poder encontrar este autómata, existe el *método de* conversión por conjunto de estados el cual nos permite partir del AFN y llegar al AFD que valide el mismo lenguaje.

Para poder entenderlo, veamos el método aplicado a un ejemplo:

Hallar a raíz del siguiente AFN su AFD equivalente:

Paso 1. Crear una tabla con una columna vacía y luego tantas columnas como caracteres del alfabeto (encabezadas por los

mismos)

a b

Paso 2. En una nueva fila colocar q0 y escribir en cada columna a donde llega con la transición indicada.

	а	b
q_0	q ₁	q ₁

\equiv

Método de conversión por conjunto de estados

Paso 3. Ahora, agregar los estados que aparecieron en filas nuevas.

	а	b
q_0	q_1	q_1
q ₁		

Paso 4. Completar las filas nuevas con los estados a los que puedo llegar con las transiciones que encabezan las

00	. I.	ım	S PO	~ ~
	ш			
$\boldsymbol{\mathcal{L}}$	_			

	а	b
q_0	q_1	q_1
q ₁	q ₂	q ₂

	а	b
q_0	q₁	q₁
\mathbf{q}_1	q_2	q_2
q ₂	q_0,q_2	q_2

	а	b
q_0	q₁	q_1
\mathbf{q}_1	q_2	q_2
q_2	q_0,q_2	q_2
q_0,q_2	q_0,q_1,q_2	q_1q_2

	а	b
q_0	q_1	q ₁
\mathbf{q}_1	q_2	q_2
q_2	q_0,q_2	q_2
q_0,q_2	q_0,q_1,q_2	q_1q_2
q_0,q_1,q_2	q_0,q_1,q_2	q_1,q_2

	а	b
q_0	q₁	q₁
\mathbf{q}_1	q_2	q_2
q_2	q_0,q_2	q_2
q_0,q_2	q_0,q_1,q_2	q_1q_2
q_0,q_1,q_2	q_0,q_1,q_2	q_1,q_2
q ₁ ,q ₂	q_0,q_2	q ₂

	а	b
q_0	q_1	q ₁
q_1	q_2	q_2
q_2	q_0,q_2	q_2
q_0,q_2	q_0,q_1,q_2	q_1q_2
q_0, q_1, q_2	q_0,q_1,q_2	q_1,q_2
q_1,q_2	q_0,q_2	q_2

Estados

Ahora se dibuja el nuevo autómata cada cabecera de fila como un estado nuevo y las columnas serán las transiciones.

Transiciones

\equiv

Método de conversión por conjunto de estados

	а	b
q_0	q_1	q_1
q_1	q_2	q_2
q_2	q_0,q_2	q_2
q_0,q_2	q_0,q_1,q_2	q_1q_2
q_0,q_1,q_2	q_0,q_1,q_2	q_1,q_2
q_1,q_2	q_0,q_2	q_2

Ejercicios:

Ejercicios:

