Linearne Transformacije

December 21, 2021

Neka su $V_1 = (V_1, +, \cdot, F)$ i $V_2 = (V_2, +, \cdot, F)$ vektorski prostori nad istim poljem $F = (F, +, \cdot)$. Tada se funkcija $\underline{f} : V_1 \longrightarrow V_2$ naziva **linearna transformacija** ili **homomorfizam** vektorskog prostora V_1 u vektorski prostor V_2 ako za svako $x, y \in V_1$ i $\alpha \in F$ važi

$$f(x+y) = f(x) + f(y)$$
 i $f(\alpha x) = \alpha f(x)$.

Napomena: Ova dva uslova mogu i da se spoje u jedan koji bi onda glasio: za svako $x, y \in V_1$ i $\alpha, \beta \in F$ važi

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$
.

Svaka linearna transformacija $f: V_1 \longrightarrow V_2$ preslikava nula vektor prostora V_1 u nula vektor prostora V_2 .

you become y v,

Neka je $f: V_1 \longrightarrow V_2$ linearna transformacija vektorskog prostora V_1 u vektorski prostor V_2 . Tada je:

jezgro linearne transformacije f: skup svih vektora iz V_1 koji se preslikaju u nula vektor vektorskog prostora V_2 , tj.

$$ker(f) = \{x \in V_1 \mid f(x) = 0\}.$$

Osobine:

- ▶ nula vektor $0 \in V_1$ pripada skupu ker(f);
- ▶ skup ker(f) čini potprostor prostora V_1 ;

slika linearne transformacije f: skup svih vektora iz V_2 koji se dobijaju preslikavanjem vektora vektorskog prostora V_1 , tj.

$$Img(f) = \{ y \in V_2 \mid \exists x \in V_1, \ f(x) = y \}.$$

Osobine:

- ▶ nula vektor $0 \in V_2$ pripada skupu Img(f);
- ▶ skup Img (f) čini potprostor ptostora V₂.
- ▶ rang linearne transformacije f: dimenzija potprostora slika, tj.

$$V_{2} = \frac{1}{\operatorname{rang}(f) = \operatorname{dim}(\operatorname{Img}(f)) + \operatorname{rang}(H)}$$

Ako je $V = (V, +, \cdot, F)$ vektorski prostor nad poljem F dimenzije $n \in \mathbb{N}$, tada je on izomorfan sa vektorskim prostorom $F^n = (F^n, +, \cdot, F)$ uređenih n-torki elemenata polja F sa standardno definisanim sabiranjem po komponentama i množenjem skalarom po komponentama.

Na osnovu ove osobine može se zaključiti da je dovoljno proučavati samo vektorski prostor uređenih n-torki i samo linearne transformacije oblika $\underline{f:F^n\longrightarrow F^m}$, jer su na taj način proučeni svi vektorski prostori i sve linearne transformacije.

Zbog toga je svaki n-dimenzionalni vektorski prostor nad $\mathbb R$ izomorfan sa vektorskim prostorom $\mathbf R^n=(\mathbb R^n,\pm,\cdot,\mathbb R)$ i uobičajeno je da se posmatraju linearne transformacije oblika $f:\mathbb R^n\longrightarrow\mathbb R^m$.

Neka je F proizvoljno polje. Preslikavanje $f: F^n \longrightarrow F^m$ je linearna transformacija akko je f oblika

$$f: \mathbb{R}^3 \to \mathbb{R}^2$$

f(x,y,2) = (xty, 2x+3) & Hyd MH. Wp.

$$f(x_1y_1z) = (x+luy_1 0) \leftarrow Huy \quad MH - GP$$

$$= (x+luy_1 0) \leftarrow Huy \quad MH - GP$$

$$= x^2 x^2 - luy$$

f(x,y,2)= (x+y.lu2,0) & genre men up.

- jer luz se spoj - [1 luz 0] Land X+ Photo A 1. X+luz,y

f: R3-9R2

Dakle,

- svaka od m komponenti slike linearne transformacije $f: F^n \longrightarrow F^m$ mora biti oblika $t_1x_1 + t_2x_2 + \ldots + t_nx_n, t_1, t_2, \ldots, t_n \in F$.
- svaka linearna transformacija $f: F^n \longrightarrow F^m$ može se poistovetiti sa njoj odgovarajućom matricom $M_f = [\alpha_{ij}]_{m \times n}$ nad poljem \boldsymbol{F} takvom da je

$$f(x) = y \iff M_f \cdot [x] = [y]$$

gde su $[x] = [x_1 \dots x_n]^T$ i $[y] = [y_1 \dots y_n]^T$ matrice kolone koje odgovaraju vektorima x i y.

$$M_{f}$$
. $\begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix} = \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{bmatrix}$

Linearna transformacija je **regularna** akko je bijektivna, tj. akko je njoj odgovarajuća matrica kvadratna i regularna (tada je f izomorfizam).

Rang linearne transformacije $f: F^n \longrightarrow F^m$ jednak je rangu njene matrice M_f , odnosno

$$\{oug(t) = dim(Img(t)) = rang(M_t).$$

Ako su $f: F^n \longrightarrow F^k$ i $g: F^k \longrightarrow F^m$ linearne transformacije, i ako su M_f i M_g njima odgovarajuće matrice, tada je $h = g \circ f: F^n \longrightarrow F^m$ takođe linearna transformacija i njena matrica se može dobiti kao $M_h = M_g \cdot M_f$.