SVM

Introduction

Cas linéairemen éparable

Cas

Astuce du noyau

Cas de la régression

Plan

Introduction

Cas linéairement séparable

Cas non-séparable

Astuce du noyau

Cas de la régression

Introduction

Cas linéairement séparable

Cas non-séparable

Astuce du noyau

Cas de la régression

Plan

Introduction

Introduction

Cas linéairement séparable

Cas

non-séparable

Astuce du noyau

Cas de la régression

Généralités I

- ► Les SVM (Support Vector Machine) (en français : séparateurs à vaste marge ou machines à vecteurs supports) sont issus de la théorie de Vapnik-Tchervonenkis (dénommée théorie VC) : (Cortes et Vapnik, 1995), (Vapnik, 1995).
- L'objectif historique des SVM est de classifier une variable binaire via un hyperplan de marge maximale, les SVM constituent une généralisation des classifieurs linéaires.
- ▶ Les SVM intègrent le contrôle de la complexité, ce qu'on peut appréhender via la dimension de Vapnik-Tchervonenkis qui est un indicateur du pouvoir séparateur d'une famille de fonctions.
- C'est une méthode souvent utilisée en pratique au vu des bons résultats obtenus.

Introduction

Cas linéaireme

Cas

Astuce du noyau

Cas de la régression

Généralités II

- On parle de marge (hard margin) lorsque les données sont linéairement séparables et de marge souple (soft margin) lorsque les données ne le sont pas.
- Dans le cas où les données ne sont pas linéairement séparables, on utilise ce qu'on appelle l'astuce du noyau (kernel trick).
- Il existe également les SVR dans le cadre de la régression.
- Il faut normaliser les covariables.

Introduction

Cas linéairement séparable

Cas

.

Cas de la régression

Données considérées

▶ On dispose d'un échantillon de $(X_1, ..., X_p, Y)$:

$$d_n = (x_{i1}, \ldots, x_{ip}, y_i)_{i \in \{1, \ldots, n\}}$$
.

- On considère dans la suite que :
 - ➤ X ∈ ℝ^p : Toutes les covariables sont considérés quantitatives. Mais il est également possible de considérer des covariables qualitatives.
 - Y ∈ {-1,1}: On se place dans le cadre d'une classification supervisée binaire

Introduction

Cas linéairement séparable

cas non-séparable

Astuce du noya

Cas de la régression

Généralités sur les hyperplans I

lacktriangle Dans \mathbb{R}^p , un hyperplan ${\mathcal H}$ admet comme équation :

$$\omega_0 + \omega_1 x_1 + \ldots + \omega_p x_p = 0 ,$$

ce qu'on peut noter également :

$$\omega_0 + \langle \omega, x \rangle = 0$$

ou encore :

$$\omega_0 + \omega^\top x = 0$$

où $\omega = (\omega_1, \dots, \omega_p)^\top \in \mathbb{R}^p$ et $x = (x_1, \dots, x_p)^\top \in \mathbb{R}^p$.

- $ightharpoonup \omega$ est le vecteur normal de l'hyperplan \mathcal{H} .
- Par exemple : un hyperplan dans \mathbb{R}^2 est une droite, un hyperplan dans \mathbb{R}^3 est un plan.

Introduction

Cas linéairement séparable

non-séparable

Astuce du noyau

Cas de la régression

Généralités sur les hyperplans II

Introduction

Cas linéairement séparable

Cas

Astuce du nova

Cas de la régression

Plan

Cas linéairement séparable

Introduction

Cas linéairement séparable

Cas

Astuce du noyau

Cas de la régression

Données linéairement séparables I

Introduction

Cas linéairement séparable

Cas non-séparable

Astuce du noyau

régression

tererences

Données linéairement séparables II

▶ On dit que $(x_1, y_1), \dots, (x_n, y_n)$ sont linéairement séparables s'il existe $(\omega_0, \omega) \in \mathbb{R} \times \mathbb{R}^d$ tels que :

$$\forall i \in \{1,\ldots,n\} : y_i = \begin{cases} 1 & \text{si } \omega_0 + \omega^\top x_i > 0 \\ -1 & \text{si } \omega_0 + \omega^\top x_i < 0 \end{cases}.$$

Cette propriété est équivalente à :

$$y_i \left(\omega_0 + \omega^\top x \right) > 0$$
.

Introduction

Cas linéairement séparable

cas non-séparable

Astuce du noyai

Cas de la régression

Données linéairement séparables III

Introduction

Cas linéairement séparable

Cas non-sépa

Cas de la régression

Le choix de l'hyperplan séparateur

▶ Il existe une infinité d'hyperplans séparateurs possibles :

➤ Vapnik a proposé de maximiser la marge, soit la distance minimale entre les 2 classes déterminées par l'hyperplan séparateur.

Introduction

Cas linéairement séparable

non-séparable

Cas de la

Marge et vecteurs supports

Introduction

Cas linéairement séparable

Cas non-sépara

Astuce du noyau

Cas de la régression

Formalisation du problème I

On pose comme contrainte que les vecteurs supports sont situés sur les hyperplans canoniques d'équations :

$$\begin{cases} \omega_0 + \omega^\top x = -1 \\ \omega_0 + \omega^\top x = 1 \end{cases}$$

La marge vaut dans ce cas :

$$\frac{2}{\|\omega\|}$$

Introduction

Cas linéairement séparable

non-séparable

Astuce du noyau

Cas de la régression

Formalisation du problème II

Introduction

Cas linéairement séparable

Cas non-sépara

Astuce du novau

Cas de la régression

Formalisation du problème III

► On obtient donc le problème suivant :

$$\begin{aligned} & \max_{\omega_0,\omega} \; \frac{2}{\|\omega\|} \\ & \text{sc} \quad \forall i \in \{1,\dots,n\} : y_i \left(\omega_0 + \omega^\top x_i\right) \geq 1 \; . \end{aligned}$$

▶ Dans la suite, on considère le problème primal équivalent :

$$\min_{\omega_0,\omega} \frac{1}{2} \|\omega\|^2$$
sc $\forall i \in \{1,\dots,n\} : y_i \left(\omega_0 + \omega^\top x_i\right) \ge 1$.

- ► Le carré et la division par 2 ont respectivement comme objectif de faciliter l'optimisation (fonction convexe) et de « normaliser » la dérivée.
- ► Il s'agit d'un programme d'optimisation quadratique classique.

Introduction

Cas linéairement séparable

Cas non-séparable

Astuce du noyau

Cas de la régression

Références

17/6

Plan

Cas non-séparable

Introduction

Cas linéairement séparable

Cas non-séparable

Astuce du noyau

Cas de la régression

Exemple non-séparable

Introduction

Cas linéairement séparable

Cas non-séparable

Astuce du noya

Cas de la régression

Lever les contraintes L

- Il est rare d'être confronté à un problème linéairement séparable.
- ► On lève la contrainte en tolérant que :
 - certains points soient bien classés mais à l'intérieur de la zone définie par la marge,
 - certains points soient mal classés.

Introduction

Cas linéairement séparable

Cas non-séparable

Astuce du noyai

Cas de la régression

Lever les contraintes II

Introduction

Cas linéairemen

Cas non-séparable

Astuce du noya

Cas de la régression

Un outil: les variables ressorts I

On créé des variables ressorts (slack variables) (ξ_1, \ldots, ξ_n) telles que :

$$y_i \left(\omega_0 + \omega^\top x_i \right) \ge 1 - \xi_i$$
.

- On peut distinguer les cas suivants :
 - ▶ $\xi_i \in]0,1]$: les points sont bien classés mais à l'intérieur (strictement) de la zone définie par la marge.
 - \triangleright $\xi_i > 1$: les points sont mal classés.
 - $\xi_i = 0$: les points sont bien classés et à l'extérieur de la zone définie par la marge.
- L'enjeu est de ne pas pas avoir trop de variables ressorts non nulles (et lorsqu'elles le sont, qu'elles soient les plus faibles possibles).

Introduction

Cas linéairement séparable

Cas non-séparable

Astuce du noyau

Cas de la régression

Un outil : les variables ressorts II

Introduction

Cas linéairement séparable

Cas non-séparable

Astuce du no

Cas de la régression

Un nouveau problème I

 Dans le cas linéairement séparable, le problème considéré est :

$$\begin{aligned} & \min_{\omega_0, \omega} \; \frac{1}{2} \, \|\omega\|^2 \\ \text{sc} & \forall i \in \{1, \dots, n\} : y_i \left(\omega_0 + \omega^\top x\right) \geq 1 \; . \end{aligned}$$

Introduction

Cas linéairement séparable

Cas non-séparable

Astuce du noyau

Cas de la régression

Un nouveau problème II

Dans le cas non-linéairement séparable, le problème considéré devient :

$$\min_{\omega_0,\omega,\xi} \frac{1}{2} \|\omega\|^2 + C \sum_{i=1}^n \xi_i$$
sc $\forall i \in \{1,\ldots,n\} : y_i \left(\omega_0 + \omega^\top x\right) \ge 1 - \xi_i$,
 $\forall i \in \{1,\ldots,n\} : \xi_i \ge 0$.
où $\xi = (\xi_1,\ldots,\xi_n)^\top$.

Introduction

Cas linéairement séparable

Cas non-séparable

Astuce du noya

Cas de la régression

Choix de l'hyperparamètre C

- ▶ L'hyperparamètre C contrôle de le compromis entre le nombre d'erreurs de classification et le niveau de la marge.
- Le cas linéairement séparable correspond à une valeur *C* infinie.
- ▶ On choisit l'hyperparamètre C par validation croisée.

Introduction

Cas linéairement séparable

Cas non-séparable

Astuce du noyau

Cas de la régression

Plan

Astuce du noyau

Introduction

Cas linéairement séparable

Cas

non-separable

Astuce du noyau

Cas de la régression

Changer la dimension I

Introduction

Cas linéairement séparable

Cas non-séparabl

Astuce du noyau

Cas de la régression

Changer la dimension II

Introduction

Cas linéairement séparable

Cas non-séparable

Astuce du noyau

Cas de la régression

Astuce du noyau (kernel trick)

- ▶ Déterminer un classifieur linéaire dans l'espace des observations n'est pas toujours opportun.
- ➤ On « envoie » les observations (dans l'espace X) dans un nouvel espace X', l'espace de représentation (feature space), afin d'accroître la séparabilité linéaire.
- ▶ On considère pour cela une fonction Φ définie sur \mathcal{X} et à valeurs dans \mathcal{X}' .
- Dans le problème d'optimisation des SVM, on retrouve les produits $x_i^\top x_{i'}$ dans l'espace des observations, donc des produits $\Phi(x_i)^\top \Phi(x_{i'})$ dans l'espace de représentation.
- ► Il n'est pas nécessaire de déterminer Φ, on utilisera des noyaux K tels que :

$$K(x_i, x_{i'}) = \Phi(x_i)^{\top} \Phi(x_{i'})$$

pour i et i' dans $\{1, \ldots, n\}$.

Introduction

Cas linéairement

Cas

Astuce du noyau

Cas de la régression

Retour au problème d'optimisation I

▶ Dans le cas linéairement séparable, on devait résoudre le problème dual suivant dans l'espace des observations :

$$\begin{aligned} \max_{\alpha} \ \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{i'=1}^{n} \alpha_i \, \alpha_{i'} \, y_i \, y_{i'} \, x_i^\top x_{i'} \\ \text{sc} \quad \forall i \in \{1, \dots, n\} : \alpha_i \geq 0 \ , \\ \sum_{i=1}^{n} \alpha_i y_i = 0 \ . \end{aligned}$$

Introduction

Cas linéairement séparable

Cas

Astuce du noyau

Cas de la régression

Retour au problème d'optimisation II

Dans le cas linéairement séparable, on doit maintenant résoudre le problème dual suivant dans l'espace de représentation :

$$\max_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{i'=1}^{n} \alpha_{i} \alpha_{i'} y_{i} y_{i'} \Phi (x_{i})^{\top} \Phi (x_{i'})$$
sc $\forall i \in \{1, \dots, n\} : \alpha_{i} \geq 0$,
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$
.

Introduction

Cas linéairement séparable

Cas non-séparable

Astuce du noyau

Cas de la régression

Retour au problème d'optimisation III

▶ Dans le cas linéairement séparable, on doit résoudre le problème dual suivant dans l'espace de représentation :

$$\begin{aligned} \max_{\alpha} \; \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{i'=1}^{n} \alpha_{i} \; \alpha_{i'} \; y_{i} \; y_{i'} \; \textit{K} \left(\textbf{x}_{i}, \textbf{x}_{i'} \right) \\ \text{sc} \quad \forall i \in \{1, \dots, n\} : \alpha_{i} \geq 0 \; , \\ \sum_{i=1}^{n} \alpha_{i} y_{i} = 0 \; . \end{aligned}$$

Introduction

Cas linéairement séparable

Cas

Astuce du noyau

Cas de la régression

Noyau

- ▶ Une fonction $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ est un noyau si et seulement si :
 - ► *K* est une fonction symétrique :

$$\forall (x, x') \in \mathcal{X} \times \mathcal{X} : K(x, x') = K(x', x)$$
.

K est une fonction semi-définie positive :

$$\forall n \in \mathbb{N}^*, \forall (x_1, \ldots, x_n) \in \mathcal{X}^n, \forall (a_1, \ldots, a_n) \in \mathbb{R}^n$$
:

$$\sum_{i=1}^{n} \sum_{i'=1}^{n} a_i a_j K(x_i, x_{i'}) \geq 0.$$

Introduction

Cas linéairement séparable

non-séparable

Astuce du noyau

Cas de la régression

Un exemple de noyau

Pour une observation $x_i = (x_{i1}, x_{i2})^{\top}$, on considère la fonction suivante :

$$\Phi: \qquad \mathbb{R}^2 \qquad \to \quad \mathbb{R}^3$$
$$(x_{i1}, x_{i2})^{\top} \quad \mapsto \quad (x_{i1}^2, \sqrt{2} x_{i1} x_{i2}, x_{i2}^2)^{\top}$$

On peut montrer que pour 2 observations x_i et x_{i'}:

$$K(x_{i}, x_{i'}) = \Phi(x_{i})^{\top} \Phi(x_{i'})$$

$$= (x_{i1}x_{i'}^{1})^{2} + 2(x_{i1}x_{i'1})(x_{i2}x_{i'2}) + (x_{i2}x_{i'2})^{2}$$

$$= (x_{i1}x_{i'1} + x_{i2}x_{i'2})^{2}$$

$$= (x_{i}^{\top}x_{i'})^{2}.$$

Introduction

Cas linéairement séparable

Cas non-séparable

Astuce du noyau

Cas de la régression

Quelques noyaux (parmi bien d'autres)

Noyau affine:

$$K(x_i,x_{i'})=x_i^{\top}x_{i'}+c.$$

Noyau polynomial:

$$K(x_i, x_{i'}) = \left(x_i^\top x_{i'} + c\right)^d$$
.

► Noyau laplacien :

$$K(x_i, x_{i'}) = \exp\left(-\frac{\|x_i - x_{i'}\|}{\sigma}\right).$$

Noyau gaussien (ou RBF : Radial Basis Function) :

$$K(x_i, x_{i'}) = \exp\left(-\frac{\|x_i - x_{i'}\|^2}{2\sigma^2}\right).$$

Introduction

Cas linéairement séparable

Cas non-séparable

Astuce du noyau

Cas de la régression

En pratique

- On choisit:
 - ► l'hyperparamètre *C*,
 - ► le noyau *K*,

par validation croisée.

Introduction

Cas linéairement séparable

non-séparable

Astuce du noyau

Cas de la régression

Compléments

Dans le cas où on dispose de K > 2 classes, on peut par exemple considérer K discriminations binaires « classe k » contre « classe autre que k » pour k ∈ {1,..., K}.

▶ Il est également possible d'utiliser ces méthodes pour la régression : on parle alors de SVR : (Drucker et collab., 1997), (Vapnik et collab., 1997).

Introduction

Cas linéairement séparable

Cas non-séparabl

Astuce du noyau

Cas de la régression

Plan

Cas de la régression

Introduction

Cas linéairement séparable

Cas

Astuce du noyau

Cas de la régression

Fonction de perte

 Vapnik a introduit la fonction de perte suivante (ε-insensitive loss function) pour mesurer la qualité de l'ajustement de la fonction de régression m :

$$\ell(m(x), y) = \begin{cases} |m(x) - y| - \varepsilon & \text{si } |m(x) - y| > \varepsilon \\ 0 & \text{sinon} \end{cases}$$

où $\varepsilon > 0$.

Introduction

Cas linéairement séparable

Cas non-séparable

Astuce du noy

Cas de la régression

Risque empirique

Le risque empirique vaut :

$$R_n(m) = \sum_{i=1}^n (|m(x_i) - y_i| - \varepsilon) = \sum_{i=1}^n (\xi_i + \xi_i^*)$$

où:

$$\begin{cases} \xi_i = m(x_i) - \varepsilon - y_i & \text{si } y_i < m(x_i) - \varepsilon \\ 0 & \text{sinon} \end{cases}$$

et:

$$\begin{cases} \xi_i^* = y_i - m(x_i) - \varepsilon & \text{si } y_i > m(x_i) + \varepsilon \\ 0 & \text{sinon} \end{cases}$$

.

Introduction

Cas linéairement séparable

Cas non-sénarable

Astuce du noyau

Cas de la régression

Cas linéaire I

Introduction

Cas linéairement

Cas non-séparable

Astuce du noya

Cas de la régression

Cas linéaire II

On considère la fonction de régression :

$$\forall x \in \mathbb{R}^p : m_{\omega_0,\omega}(x) = \omega_0 + \omega^\top x$$
.

- ▶ On cherche ω_0 et ω de manière à minimiser la somme de la perte qui traduit l'ajustement et d'un terme de régularisation (assurant la parcimonie) $\|\omega\|^2$.
- On considère le problème suivant :

$$\min_{\omega_{0},\omega} \frac{1}{2} \|\omega\|^{2} + C \sum_{i=1}^{n} (\xi_{i} + \xi_{i}^{\star})$$
sc
$$\forall i \in \{1, \dots, n\} : m_{\omega_{0},\omega}(x_{i}) - y_{i} \leq \varepsilon + \xi_{i} ,$$

$$\forall i \in \{1, \dots, n\} : y_{i} - m_{\omega_{0},\omega}(x_{i}) \leq \varepsilon + \xi_{i}^{\star} ,$$

$$\forall i \in \{1, \dots, n\} : \xi_{i} \geq 0 ,$$

$$\forall i \in \{1, \dots, n\} : \xi_{i}^{\star} \geq 0 .$$

Introduction

Cas linéairement séparable

Cas non-séparable

Astuce du noyau

Cas de la régression

Choix des hyperparamètres ε et C

- ▶ L'hyperparamètre ε contrôle la largeur du « tube » : plus ε est important, moins on a de vecteurs support et plus lisse est l'estimation.
- L'hyperparamètre C contrôle de le compromis entre l'erreur d'ajustement et le niveau de la marge. On le choisit par validation croisée.

Introduction

Cas linéairement séparable

Cas non-séparable

Astuce du noy

Cas de la régression

Références L

- Boyd, S. et L. Vandenberghe. 2003, *Convex optimization*, Cambridge University Press.
- Cortes, C. et V. N. Vapnik. 1995, «Support-vector networks», *Machine Learning*, vol. 20, n° 3, p. 273–297.
- Drucker, H., C. J. Burges, L. Kaufman, A. Smola et V. N. Vapnik. 1997, «Support vector regression machines», dans *Advances in neural information processing systems*, vol. 9, édité par M. C. Mozer, M. I. Jordan et T. Petsche, MIT Press, p. 155–161.
- Schölkopf, B. et A. J. Smola. 2001, Learning with Kernels. Support vector machines, regularization, optimization, and beyond, MIT Press.
- Vapnik, V. N. 1995, *The nature of statistical learning theory*, Springer.

Introduction

Cas linéairement séparable

Cas non-sénarabl

Astuce du noyau

Cas de la régression

Références II

Vapnik, V. N., S. E. Golowich et A. Smola. 1997, «Support vector method for function approximation, regression estimation, and signal processing», dans *Advances in neural information processing systems*, vol. 9, édité par M. C. Mozer, M. I. Jordan et T. Petsche, MIT Press, p. 281–287.

Introduction

Cas linéairement séparable

Cas non-séparable

Astuce du noyau

Cas de la régression