Exercício 1. Uma urna contém três bolas assinaladas com 0, 1 e 2. Duas são sorteadas com reposição sucessivamente ao acaso. Calcule E(XY), onde X e Y são o primeiro e o segundo números sorteados.

$$E(x) = 0. \frac{1}{3} + 1. \frac{1}{3} + 2. \frac{1}{3} = 1$$

$$E(x) = 0. \frac{1}{3} + 1. \frac{1}{3} + 2. \frac{1}{3} = 1$$

$$E(x) = 0. \frac{1}{3} + 1. \frac{1}{3} + 2. \frac{1}{3} = 1$$

Exercício 2. Considere duas lâmpadas com tempo de duração (em anos) T_1 e T_2 .

Assuma que T_1 tem a seguinte densidade de probabilidade: $f_{T_1}(t) = e^{-t}$, se t > 0, e $f_{T_1}(t) = 0$ caso contrário, e que T_2 tem a seguinte densidade de probabilidade: $f_{T_2}(t) = 2e^{-2t}$, se t > 0, e $f_{T_2}(t) = 0$ caso contrário.

• Esboce as densidades das duas variáveis aleatórias

Exercício 2. Considere duas lâmpadas com tempo de duração (em anos) T_1 e T_2 .

Assuma que T_1 tem a seguinte densidade de probabilidade: $f_{T_1}(t) = e^{-t}$, se t > 0, e $f_{T_1}(t) = 0$ caso contrário, e que T_2 tem a seguinte densidade de probabilidade: $f_{T_2}(t) = 2e^{-2t}$, se t > 0, e $f_{T_2}(t) = 0$ caso contrário.

• Calcule e interprete comparativamente $\mathbb{E}[T_1]$ e $\mathbb{E}[T_2]$

$$\begin{aligned}
& \left[\left[\left[\left[T_{1} \right] \right] \right] = \int_{0}^{\infty} t \cdot e^{t} dt = \left(-e^{-t} \cdot t - e^{-t} + C \right)_{0}^{\infty} = O - (-1) = 1 \\
& \left[\left[\left[\left[T_{2} \right] \right] \right] = \int_{0}^{\infty} 2t e^{-2t} dt = \left(-e^{-2t} \cdot t - 2e^{-2t} + C \right)_{0}^{\infty} = O - (-12) = 0,5
\end{aligned}$$

A partir des célules ocions, pode-re concluir que a expertative de durações da lâmpede 1 é maios e o debre da lâmpede 2

Exercício 2. Considere duas lâmpadas com tempo de duração (em anos) T_1 e T_2 .

Assuma que T_1 tem a seguinte densidade de probabilidade: $f_{T_1}(t) = e^{-t}$, se t > 0, e $f_{T_1}(t) = 0$ caso contrário, e que T_2 tem a seguinte densidade de probabilidade: $f_{T_2}(t) = 2e^{-2t}$, se t > 0, e $f_{T_2}(t) = 0$ caso contrário.

• Calcule e interprete comparativamente $V[T_1]$ e $V[T_2]$

$$V[T_{1}] = \sigma^{2} = E(T_{1}^{2}) - (E(T_{1}))^{2} = 2 - 1 = 1$$

$$E(T_{1}^{2}) = 2$$

$$V(T_{2}) = \sigma^{2} = E(T_{2}^{2}) - (E(T_{2}))^{2} = \frac{1}{2} - \frac{1}{4} = 0.25$$

$$E(T_{2}^{2}) = \frac{1}{2} + \frac{1}{4} = 0.25$$

A varianço da lâmpada 1 também é maior que a lâmpada 2, dando mais certeza da durezas da 2 em reloção com a 1.

Giullio Emmanuel da Cruz Di Gerolamo Prof: Rafael Izbicki RA: 790965 Quiz 3