Partial Differential Equation

June - 2014

(1) Let x = x(s), y = y(s), u = u(s), $s \in \mathbb{R}$, be the characteristic curve of the *PDE*

$$\left(\frac{\partial u}{\partial x}\right)\left(\frac{\partial u}{\partial y}\right) - u = 0$$

Passing through a given curve

 $x = 0, y = \tau, u = \tau^2, \tau \cdot \epsilon \mathbb{K}$. Then the characteristics are given by

(a)
$$x = 3\tau(e^s - 1), y = \frac{\tau}{2}(e^{-s} + 1), u = \tau^2 e^{-2s}$$

(b)
$$x = 2\tau(e^{-s} - 1), y = \tau(2e^{2s} - 1), u = \frac{\tau^2}{2}(1 + e^{-2s})$$

(c)
$$x = 2\tau(e^s - 1), y = \frac{\tau}{2}(e^s + 1), u = \tau^2 e^{\frac{2}{2}S}$$

(d)
$$x = \tau(e^{-s} - 1), y = -2\tau\left(e^{-s} - \frac{3}{2}\right), u = \tau^2(2e^{-2s} - 1)$$

Answer: (c)

Solution: for first option (a)

$$\frac{\partial u}{\partial x} = \tau^2(-2)e^{-2s} \cdot \frac{\partial s}{\partial x}$$

$$= \frac{-2\tau^2 e^{-s}}{3\tau e^s} = -\frac{2}{3}\tau e^{-2s}$$

$$\frac{\partial u}{\partial y} = \frac{-2\tau^2 e^{-2s}}{-\frac{\tau}{2}e^{-s}} = 4\tau e^{-s}$$

So,
$$\left(\frac{\partial u}{\partial x}\right)^2 \cdot \left(\frac{\partial u}{\partial x}\right) - u = 0$$
 does not satisfied.

Similarly, option (b) does not satisfy the given equation.

For the option (c)

$$\frac{\partial u}{\partial x} \cdot \frac{\partial u}{\partial y} = \frac{2\tau^2 e^{2s}}{2\tau e^s} \cdot \frac{2\tau^2 e^{2s}}{\frac{\tau}{2} e^s} = x + 4y = 2\tau \cdot 2e^s = 4\tau e^s$$

$$\therefore (x + 4y)^2 = 16^{2}\tau^2 e^{2s} = 16u$$

$$\therefore u = \frac{1}{16}(x+4y)^2$$

$$\frac{\partial u}{\partial x} = \frac{1}{8}(x+4y), \frac{\partial u}{\partial y} = \frac{1}{2}(x+4y)$$

$$\therefore \frac{\partial u}{\partial x} \cdot \frac{\partial u}{\partial y} = \frac{1}{16}(x + 4y)^2 = u \text{ satisfied}$$

(2) The initial value problem

$$\frac{\partial u}{\partial t} + x \frac{\partial u}{\partial x} = x$$
, $0 \le x \le 1$, $t > 0$ and $u(x, 0) = 2x$ has

- (a) A unique solution u(x, t) which $\to \infty$ as $t \to \infty$.
- (b) More than one solution.
- (c) A solution which remains bounded as $t \to \infty$.
- (d) No solution.

Answer: (c)

Solution:
$$q + xp = x$$
 [Here $P = x$, $Q = 1$, $R = x$] i.e. $p P + q Q = R$

So, Lagrange's auxiliary equations are $\frac{dx}{x} = \frac{dt}{1} = \frac{du}{x}$

$$\therefore \frac{du}{x} = \frac{dx}{x} \Rightarrow du = dx \Rightarrow x = u + c_1$$

$$u = x - c_1 = x + c$$

$$\frac{dx}{x} = \frac{dt}{1}$$

$$\log x = t + \log c_2$$

$$x = c_2 e^t$$

$$xe^{-t}=c_2$$

General solution is $\phi(xe^{-t}) = u - x$

$$u(x,0) = 2x \Rightarrow \phi(x) = 2x - x = x$$

$$\phi(x) = x$$

$$\therefore u(x,t) = x + xe^{-t}$$

$$\therefore \phi(xe^{-t}) + \phi(x) = u$$

$$\phi(xe^{-t} + x) = x + xe^{-t} \Rightarrow u(x, t) = x + xe^{-t}$$

$$\lim_{t \to \infty} u(x,t) = x + 0 = x \quad \forall \ x \in [0,1]$$

$$u(x,t)$$
 is bounded on [0,1] as $t \to \infty$.

Hence, the option (c) is correct.

(3) Let $xyu = c_1$ and $x^2 + y^2 - 2u = c_2$, where c_1 and c_2 are arbitrary constants, be the first integrals of the PDE.

 $x(u+y^2)\frac{\partial u}{\partial x} - y(u+x^2)\frac{\partial u}{\partial y} = (x^2-y^2)u$. Then the solution of the *PDE* with x+y=0, u=0

1 is given by

(a)
$$x^3 + y^3 + 2xyu^2 + 2x^2u = 0$$

(b)
$$x^3 + yx^2 + (x^2 + xy)u = 0$$

(c)
$$x^2 + y^2 + 2(xy - 1)u + 2 = 0$$

(d)
$$x^2 - y^2 - u(x + y - 2) - 2 = 0$$

Answer: (c)

Solution:
$$uxy = c_1$$
, $x^2 + y^2 - 2u = c_2$

$$x + y = 0, u = 1$$

Let
$$x = t, y = -t, u = 1$$

$$\therefore -t^2 = c_1$$

$$t^2 + t^2 - 2 = c_2 or, 2t^2 - 2 = c_2$$

$$or, 2(-c_1) - 2 = c_2$$

$$or, -2c_1 - 2 = c_2$$

$$or, 2c_1 + c_2 + 2 = 0$$

$$or$$
, $2(xyu) + (x^2 + y^2 - 2u) + 2 = 0$
 or , $x^2 + y^2 + 2u(xy - 1) + 2 = 0$
Hence the option (c) is correct.

- (4) Let u(x,t) be the solution of the equation $\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$, which tends to zero as $t \to \infty$ and has the value $\cos(x)$ when t = 0 then
- (a) $u = \sum_{n=1}^{\infty} a_n \sin(nx + b_n) e^{-nt}$ where a_n , b_n are arbitrary constants.
- (b) $u = \sum_{n=1}^{\infty} a_n \sin(nx + b_n) e^{-n^2 t}$ where a_n , are non-zero constants.
- (c) $u = \sum_{n=1}^{\infty} a_n \cos(nx + b_n)e^{-nt}$ where a_n are not all zero and $b_n = 0$ for $n \ge 1$.
- (d) $u = \sum_{n=1}^{\infty} a_n \cos(nx + b_n) e^{-n^2 t}$ where $a_1 \neq 0$, $a_n = 0$ for n > 1, and $b_n = 0$ for $n \geq 1$.

Answer: (d)

Solution:
$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$

$$u(x,t) = (c_1 \cos nx + c_2 \sin nx)e^{-n^2t}$$

$$u_n(x,t) = (a_n \cos nx + b_n \sin nx)e^{-n^2t}$$

$$u(x,t) = \sum_{n=1}^{\infty} u_n(x,t)$$

$$\therefore u(x,t) = \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)e^{-n^2t}$$

$$u \to \infty \text{ as } t \to \infty$$

$$u(x,0) = \cos x$$

$$u(x,0) = \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

$$\Rightarrow \cos x = a_1 \cos x + b_1 \sin x + a_2 \cos 2x + b_2 \sin 2x + \cdots$$

$$\Rightarrow a_1 = 1, a_2 = a_3 = \cdots = 0, n \ge 1$$

$$b_n = 0 \text{ for all } n \ge 1$$

- (5) The PDE $\frac{\partial^2 u}{\partial x^2} + 2 \frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} = 0$ is
- (a) Parabolic and has characteristics.

Hence, the option (d) is correct.

$$\xi(x,y) = x + 2y, \eta(x,y) = x - 2y$$

- (b) Reducible to the canonical form $\frac{\partial^2 u}{\partial \xi^2} = 0$, where $\xi(x, y) = x + 2y$.
- (c) Reducible to the canonical form $\frac{\partial^2 u}{\partial \eta^2} = 0$, where $\eta(x, y) = x + y$
- (d) Parabolic and has the general solution $u = (x y)f_1(x + y) + f_2(x y)$ where f_1, f_2 are arbitrary functions.

Solution: Here
$$A = 1, B = 2, C = 1$$

$$\therefore \text{ Discriminant } B^2 - 4AC = 4 - 4.1.1 = 0$$

So, the given *PDE* is parabolic characteristics are $\frac{dy}{dx} = \frac{B}{2A} = \frac{2}{2} = 1$

Integrating,
$$y = x + c$$

 $or, y - x = c$

$$\xi = y - x, \eta = y + x$$

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial \xi} \frac{\partial \xi}{\partial x} + \frac{\partial u}{\partial \eta} \cdot \frac{\partial \eta}{\partial x} = \frac{-\partial u}{\partial \xi} + \frac{\partial u}{\partial \eta}$$

$$\begin{split} \frac{\partial u}{\partial y} &= \frac{\partial u}{\partial \xi} \cdot \frac{\partial \xi}{\partial y} + \frac{\partial u}{\partial \eta} \cdot \frac{\partial \eta}{\partial y} = \frac{\partial u}{\partial \xi} + \frac{\partial u}{\partial \eta} \\ \frac{\partial^2 u}{\partial x^2} &= \frac{\partial^2 u}{\partial \xi^2} - 2 \frac{\partial^2 u}{\partial \xi \partial \eta} + \frac{\partial^2 u}{\partial \eta^2} \\ \frac{\partial^2 u}{\partial y^2} &= \frac{\partial^2 u}{\partial \xi^2} + 2 \frac{\partial^2 u}{\partial \xi \partial \eta} + \frac{\partial^2 u}{\partial \eta^2} \\ 2 \frac{\partial^2 u}{\partial x \partial y} &= 2 \frac{\partial^2 u}{\partial \eta^2} - 2 \frac{\partial^2 u}{\partial \xi^2} \\ \therefore 2 \left(\frac{\partial^2 u}{\partial \xi^2} + \frac{\partial^2 u}{\partial \eta^2} \right) + 2 \left(\frac{\partial^2 u}{\partial \eta^2} - \frac{\partial^2 u}{\partial \xi^2} \right) = 0 \\ or, \frac{\partial^2 u}{\partial \eta^2} &= 0 \end{split}$$

So, the option (c) is correct.

December – 2014

(1) Let $u(x,t) = e^{iwx} v(t)$ with v(0) = 1 a solution to $\frac{\partial u}{\partial t} = \frac{\partial^3 u}{\partial x^3}$. Then

(a)
$$u(x,t) = e^{iw(x-w^2t)}$$

(b)
$$u(x,t) = e^{iw x - w^2 t}$$

(c)
$$u(x,t) = e^{iw(x+w^2t)}$$

(d)
$$u(x,t) = e^{iw^3(x-t)}$$

Answer: (a)

Solution: Option (a) $\rightarrow u(x,t) = e^{iw(x-w^2t)}$

$$\frac{\partial u}{\partial x} = e^{iw(x - w^2 t)} \cdot iw$$

$$\frac{\partial u}{\partial x} = e^{iw(x-w^2t)} \cdot iw$$

$$\frac{\partial^2 u}{\partial x^2} = e^{iw(x-w^2t)} \cdot (iw)^2$$

$$\frac{\partial^3 u}{\partial x^3} = e^{iw(x-w^2t)\cdot(iw)^3}$$

$$= e^{iw(x-w^2t)\cdot(-iw^3)}$$

So,
$$\frac{\partial u}{\partial t} = \frac{\partial^3 u}{\partial x^3}$$

So, the option (a) is correct.

(2) The Charpit's equations for the *PDE*

$$up^2 + q^2 + x + y = 0, p = \frac{\partial u}{\partial x}, q = \frac{\partial u}{\partial y}$$
 are given by

(a)
$$\frac{dx}{-1-p^3} = \frac{dy}{-1-qp^2} = \frac{du}{2p^2u+2q^2} = \frac{dp}{2pu} = \frac{dq}{2q}$$

(b) $\frac{dx}{2pu} = \frac{dy}{2q} = \frac{du}{2p^2u+2q^2} = \frac{dp}{-1-p^3} = \frac{dq}{-1-qp^2}$
(c) $\frac{dx}{up^2} = \frac{dy}{q^2} = \frac{du}{0} = \frac{dp}{x} = \frac{dq}{y}$

(b)
$$\frac{dx}{2pu} = \frac{dy}{2q} = \frac{du}{2p^2u + 2q^2} = \frac{dp}{-1 - p^3} = \frac{dq}{-1 - qp^2}$$

$$(c)\frac{dx}{un^2} = \frac{dy}{a^2} = \frac{du}{0} = \frac{dp}{x} = \frac{dq}{y}$$

(d)
$$\frac{dx}{2q} = \frac{dy}{2pu} = \frac{du}{x+y} = \frac{dp}{p^2} = \frac{dq}{qp^2}$$

Answer: (b)

Solution: Here $f(x, y, u, p, q) = up^2 + q^2 + x + y$ Charapit's equations are $\frac{dp}{f_x + pf_u} = \frac{dq}{f_y + qf_u} = \frac{du}{-pf_p - qf_q} = \frac{dx}{-f_p} = \frac{dy}{-f_q}$

$$\frac{dp}{f_x + pf_u} = \frac{dq}{f_y + qf_u} = \frac{du}{-pf_p - qf_q} = \frac{dx}{-f_p} = \frac{dy}{-f_q}$$

$$f_x = 1, f_y = 1, f_u = p^2, f_p = 2pu, f_q = 2q$$

$$\therefore f_x = 1, f_y = 1, f_u = p^2, f_p = 2pu, f_q = 2q$$

$$\Rightarrow \frac{dp}{1+p^3} = \frac{dq}{1+qp^2} = \frac{du}{-2p^2u - 2q^2} = \frac{dx}{-2pu} = \frac{dy}{-2q}$$

So, the option (b) is corre

(3) Consider the Cauchy problem of finding u = u(x, t) such that

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = 0 \text{ for } x \in \mathbb{R}, t > 0 u(x, 0) = u_0(x), x \in \mathbb{R}$$

Which choices of the following functions for u_0 yield aC' solution u(x, t) for all $x \in \mathbb{R}$ and t > 0.

(a)
$$u_0(x) = \frac{1}{1+x^2}$$

(b)
$$u_0(x) = x$$

(c)
$$u_0(x) = 1 + x^2$$

(d)
$$u_0(x) = 1 + 2x$$

Answer: (b), (d)

Solution:
$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = 0$$

Lagrange's equations are $\frac{dx}{R} = \frac{dy}{Q} = \frac{dz}{R}$

$$\therefore c \frac{dt}{1} = \frac{dy}{u} = \frac{du}{0} \Rightarrow du = 0 \Rightarrow u = c$$
Also, $dt = \frac{dx}{c} \Rightarrow ct = x + c_1$

Also,
$$dt = \frac{dx}{c} \Rightarrow ct = x + c_1$$

 $x - ct = c_1 \rightarrow \text{straight lines}.$

$$u(x,t) = \phi(x - ct)$$

$$u(x,0) = \phi(x)$$

$$\therefore \phi(x) = u_0(x)$$

So, the option (b) and (d) are correct.

- (4) Let u = u(x, t) be the solution of the Cauchy problem $\frac{\partial u}{\partial t} + \left(\frac{\partial u}{\partial x}\right)^2 = 1, x \in \mathbb{R}, t > 0u(x, 0) = 0$ $-x^2$, $x \in \mathbb{R}$. Then
- (a) u(x, t) exists for all $x \in \mathbb{R}$ and t > 0.
- (b) $|u(x,t)| \to \alpha$ as $t \to t^*$ for some $t^* > 0$ and $x \neq 0$.
- (c) $u(x,t) \le 0$ for all $x \in \mathbb{R}$ and for all $t < \frac{1}{4}$
- (d) u(x,t) > 0 for some $x \in \mathbb{R}$ and $0 < t < \frac{1}{4}$.

Answer: (b), (d)

Solution:
$$\frac{\partial u}{\partial t} + \left(\frac{\partial u}{\partial x}\right)^2 = 1$$

$$\therefore q + p^2 = 1$$
, where $q = \frac{\partial u}{\partial t}$, $p = \frac{\partial u}{\partial x}$

Solution is
$$u(x, t) = ax + bt + c$$

$$p = a, q = b$$

$$\therefore b + a^2 = 1 \Rightarrow b = 1 - a^2$$

$$u(x,t) = ax + (1 - a^2)t + c$$

$$u(x, o) = -x^{2}$$

$$\therefore -x^{2} = ax + c$$

$$c = -x^{2} - ax$$

$$u(x, t) = ax + (1 - a^{2})t - x^{2} - ax = -x^{2} + (1 - a^{2})t$$

$$\frac{\partial u}{\partial a} = 0 \Rightarrow 0 = 0 + (-2a)t \Rightarrow a = 0$$

$$\therefore u(x, t) = -x^{2} + t$$

$$\lim_{t \to \infty} |u(x, t)| \to \infty$$

$$\lim_{t \to \infty} u(x, t) \to \infty, u(x, t) \text{ does not exist.}$$
If $t = \frac{1}{6}, x = 0, u(x, t) = \frac{1}{6} > 0$
So, the options (b) and (d) are correct.

- (5) Let u(x,t) satisfy for $x \in \mathbb{R}$, t > 0 $\frac{\partial^2 u}{\partial t^2} + \frac{\partial u}{\partial t} + 2 \frac{\partial^2 u}{\partial x^2} = 0$. A solution of the form $u = e^{ix} v(t)$ with v(0) = 0 and u'(0) = 1
- (a) Is necessarily bounded
- (b) Satisfies $|u(x,t)| < e^t$
- (c) Is necessarily unbounded
- (d) Is oscillatory in x.

Answer: (b), (c) and (d)

Solution:
$$u = e^{ix} v(t)$$

$$\frac{\partial u}{\partial t} = e^{ix}v'(t), \frac{\partial^{2}u}{\partial t^{2}} = e^{ix}v''(t)
\frac{\partial u}{\partial x} = i e^{ix} v(t), \frac{\partial^{2}u}{\partial x^{2}} = -e^{ix} v(t)
So, $e^{ix}[v'' + v' - 2v] = 0 \Rightarrow v'' + v' - 2v = 0 \Rightarrow v(t) = c_{1}e^{-2t} + c_{2}e^{t}
v'(t) = -2c_{1}e^{-2t} + c_{2}e^{t}
v(0) = 0 \Rightarrow c_{1} + c_{2} = 0$$$

$$v'(0) = 0 \Rightarrow c_1 + c_2 = 0$$

$$v'(0) = 1 \Rightarrow -2c_1 + c_2 = 1$$

$$\therefore c_1 = -\frac{1}{3}, c_2 = \frac{1}{3}$$

$$\therefore u(x,t) = e^{ix} \cdot \frac{1}{3} [e^t - e^{-2t}]$$

$$u(x,t) = e^{ix} \cdot \frac{1}{3} [e^{ix} - e^{ix-2t}]$$

$$= \frac{1}{3} [e^{ix+t} - e^{ix-2t}]$$

So, the options (b), (c) and (d) are correct.

June-2015 (**Part-B**)

1. Let $a, b \in \mathbb{R}$ be such that $a^2 + b^2 \neq 0$. Then the Cauchy problem $a \frac{ru}{rx} + b \frac{ru}{ry} =$ 1; $x, y \in \mathbb{R}$, u(x, y) = x on ax + by = 1

- (a) has more than one solution if either a or b is zero.
- (b) has no solution.
- (c) has a unique solution.
- (d) has infinitely many solutions.

Answer: (c)

Solution:

Pp + Qq = R

Here P = a, Q = b.

 $b \neq 0$, $(\xi, \frac{1-a\xi}{b}, \xi)$

$$\frac{P}{\frac{\partial x_0}{\partial \xi}}, \frac{Q}{\frac{\partial y_0}{\partial \xi}}, \frac{R}{\frac{\partial z_0}{\partial \xi}}$$
i.e.,
$$\frac{a}{1} \neq \frac{b}{-\frac{a}{b}} \neq \frac{1}{1}$$

i.e.,
$$\frac{a}{1} \neq \frac{b}{-a/b} \neq \frac{1}{1}$$

Jacobian (J) =
$$\begin{vmatrix} P & \frac{\partial x_0}{\partial \xi} \\ Q & \frac{\partial y_0}{\partial \xi} \end{vmatrix} \neq 0$$

So, it has a unique solution. Option (c) is correct.

- 2. Consider the initial value problem $\frac{\partial u}{\partial x} + 2 \frac{\partial u}{\partial y} = 0$, $u(0, y) = 4e^{-2y}$. Then the value of u(1, 1) is
- (a) $4e^{-2}$
- (b) $4e^2$
- (c) $2e^{-4}$
- (d) $4e^4$

Answer: (b)

Solution:

$$(D+2D^1)u=0$$

Lagrange's equations are $\frac{dx}{1} = \frac{dy}{2} = \frac{dz}{0}$, $z = c_1$

$$2x - y = c_2$$
, $z = c_1$

Let $(0, \xi, 4e^{-2\xi}) \Rightarrow$ transformation

$$c_1 = 4e^{-2\xi}, c_2 = -\xi$$

 $\therefore c_1 = 4e^{2c_2}$

$$\therefore c_1 = 4e^{2c_2}$$

$$z = 4e^{2(2x-y)}$$

$$u(1,1) = 4e^2$$

So, option (b) is correct.

Part-C

3. For an arbitrary continuously differentiable function f, which of the following is a general solution of $z(px - qy) = y^2 - x^2$.

(a)
$$x^2 + y^2 + z^2 = f(xy)$$

(b)
$$(x + y)^2 + z^2 = f(xy)$$

(c)
$$x^2 + y^2 + z^2 = f(y - x)$$

(d)
$$x^2 + y^2 + z^2 = f((x + y)^2 + z^2)$$

Answer: (a), (b) and (d)

Solution:
$$zxp + (-zy)q = y^2 - x^2$$

Lagrange's equations are $\frac{dx}{zx} = \frac{dy}{-zy} = \frac{dz}{y^2 - x^2} \Rightarrow \frac{dx}{x} = \frac{-dy}{y}$, Integrating $xy = c_1$

Also,
$$\frac{dx+dy}{zx-zy} = \frac{dz}{y^2-x^2}$$

$$(x+y)(dx+dy) + zdz = 0$$

Integrating,
$$\frac{(x+y)^2}{2} + \frac{z^2}{2} = \frac{c_2}{2}$$

 $or, z^2 + (x+y)^2 = c_2$

$$or, z^2 + (x + y)^2 = c_2$$

General solution is

$$f(c_1, c_2) = 0$$

$$or, (xy, (x + y)^2 + z^2) = 0$$

$$\Rightarrow (x+y)^2 + z^2 = f(xy)$$

$$\Rightarrow$$
 Options (a), (b) and (d) are correct.

4. The second order partial differential equation $u_{xx} + xu_{yy} = 0$ is

- (a) elliptic for x > 0
- (b) elliptic for x < 0
- (c) hyperbolic for x > 0
- (d) hyperbolic for x < 0

Answer: (a), (d)

Solution: Discriminant $B^2 - 4AC = 0 - 4.1$. x = -4x

$$< 0$$
 for $x > 0$ \rightarrow Elliptic

$$> 0$$
 for $x < 0 \rightarrow$ Hyperbolic

So, option (a) and (d) are correct.

5. Which of the following are complete integrals of the partial differential equation $pqx + yq^2 =$ 1?

(a)
$$z = \frac{x}{a} + \frac{ay}{a} + b$$

(a)
$$z = \frac{x}{a} + \frac{ay}{x} + b$$

(b) $z = \frac{x}{b} + \frac{ay}{x} + b$

(c)
$$z^2 = 4(ax + y) + b$$

(c)
$$z^2 = 4(ax + y) + b$$

(d) $(z - b)^2 = 4(ax + y)$

Answer: (a), (d)

Solution:
$$z = \frac{x}{a} + \frac{ay}{x} + b$$

$$\therefore p = \frac{1}{a} - \frac{ay}{x^2}, q = \frac{a}{x}$$

So,
$$pqx + yq^2 = \left(\frac{1}{a} - \frac{ay}{x^2}\right) \cdot \frac{a}{x} \cdot x + y \cdot \frac{a^2}{x^2}$$

$$=1-\frac{a^2y}{x^2}+\frac{a^2y}{x^2}=1$$

$$z = \frac{x}{b} + \frac{ay}{x} + b$$

$$\therefore p = \left(\frac{1}{b} - \frac{ay}{x^2}\right), q = \frac{a}{x}$$

So,
$$pqx + yq^2 = \left(\frac{1}{b} - \frac{ay}{x^2}\right) \cdot \frac{a}{x} \cdot x + y \cdot \frac{a^2}{x^2} = \frac{a}{b} - \frac{a^2y}{x^2} + \frac{a^2y}{x^2} = \frac{a}{b} \neq 1$$

Now,
$$z^2 = 4(ax + y) + b$$

$$or, 2zp = 4a \Rightarrow p = \frac{2a}{z}, 2zq = 4$$

$$q = \frac{2}{z}$$

Now,
$$pqx + yq^2 = \frac{2a}{z} \cdot \frac{2}{z} \cdot x + y \frac{4}{z^2} = \frac{4ax + 4y}{z} \neq 1$$

$$(z-b)^2 = 4(ax+y)$$

$$\therefore 2(z-b) \cdot p = 4aor, p = \frac{2a}{z-b}$$

and
$$2(z - b)q = 4or, q = \frac{2}{z - b}$$

and
$$2(z-b)q = 4or$$
, $q = \frac{\frac{z-b}{2}}{z-b}$
Now, $pqx + yq^2 = \frac{2a}{z-b} \cdot \frac{2}{z-b} \cdot x + y \frac{y}{(z-b)^2} = \frac{4ax+4y}{(z-b)^2} = \frac{4(ax+y)}{4(ax+y)} = 1$

So, the options (a) and (d) are correct.

December – 2015

1. The
$$PDE \frac{\partial^2 u}{\partial x^2} + 2 \frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} = X$$
, has

- (a) Only one particular integral.
- (b) A particular integral which is linear in x and y.
- (c) A particular integral which is a quadratic polynomial in x and y.
- (d) More than one particular integral.

Answer: (d)

Answer: (d)
Solution:
$$\left(\frac{\partial u}{\partial x} + \frac{\partial}{\partial y}\right) \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y}\right) u = x$$
Let $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y}\right) u = z$

$$\therefore \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = x$$

$$\frac{dx}{1} = \frac{dy}{1} = \frac{dz}{x} \Rightarrow x - y = c_1$$
and $\frac{x^2}{2} - z = c_2$
Solution is $f(c_1, c_2) = 0$

$$z = \frac{x^2}{2} = f(x - y)$$
Also, $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = \frac{x^2}{2} + f(x - y)$

$$\frac{dx}{1} = \frac{dy}{1} = \frac{dx}{\frac{x^2}{2} + f(x - y)}$$

$$\Rightarrow x - y = c_3 \text{ and } \left(\frac{x^2}{2} + f(c_3)\right) dx = du$$

$$\Rightarrow \frac{x^3}{3} + x f(x - y) = u$$

So, there exist more than one particular integral.

Option (d) is correct.

2. the solution of the initial value problem
$$(x-y)\frac{\partial u}{\partial x} + (y-x-u)\frac{\partial u}{\partial y} = u, u(x,0) = 1$$
Satisfies

(a)
$$u^2(x - y + u) + (y - x - u) = 0$$

(b)
$$u^2(x + y + u) + (y - x - u) = 0$$

(c)
$$u^2(x - y + u) - (x + y + u) = 0$$

(d)
$$u^2(y-x+u) + (x+y-u) = 0$$

Answer: (b)

Solution: Lagrange's equations are

$$\frac{dx}{x-y} = \frac{dy}{y-x-u} = \frac{du}{u} \Rightarrow dx + dy + du = 0 \text{ or, } x + y + u = c_1$$

$$or, x + u = c_1 - y$$

 $u(x, 0) = 1 \Rightarrow x + 1 = c_1$

Also,
$$\frac{dy}{y - c_1 + y} = \frac{du}{u} \Rightarrow \frac{dy}{2y - c_1} = \frac{du}{u} \Rightarrow \frac{1}{2} \log(2y - c_1) = \log u + \log c_2 \Rightarrow \frac{(2y - c_1)^{\frac{1}{2}}}{u} = c_2$$

$$\Rightarrow \frac{(2y - x - u - y)^{\frac{1}{2}}}{u} = c_2 \Rightarrow \frac{(y - x - u)^{\frac{1}{2}}}{u} = c_2$$

Also,
$$u(x, 0) = 1 \Rightarrow c_2 = (-x - 1)^{\frac{1}{2}}$$

 $c_2^2 = -x - 1$
 $\therefore \frac{(y - x - u)}{u^2} = c_2^2 = -(x + 1) = -c_1 = -(x + y + u)$
 $or, u^2(x + y + u) + y - x - u = 0$
So, the option (b) is correct.

3. Let u(x,t) satisfy the wave equation $\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$; $x \in (0,2\pi), t > 0$

 $u(x,0)=e^{iwx}\ for\ some\ w\ \epsilon\mathbb{R}.$ Then

(a)
$$u(x,t) = e^{iwx}e^{iwt}$$

(b)
$$u(x,t) = e^{iwx}e^{-iwt}$$

(c)
$$u(x,t) = e^{iwx} \left(\frac{e^{iwz} + e^{-iwz}}{2}\right)$$

(d)
$$u(x,t) = t + \frac{x^2}{2}$$

Answer: (a), (b) and (c)

Solution: Clearly, in the options (a), (b) and (c) u(x,t) satisfies the equation and the initial

So, the options (a), (b) and (c) are correct.

4. Let u(x,y) be the solution of the equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$, which tends to zero as $y \to \infty$ and has the value $\sin x$ when y = 0. Then

(a) $u = \sum_{n=1}^{\infty} a_n \sin(nx + b_n) e^{-ny}$, where a_n are arbitrary and b_n are non-zero constants.

(b) $u = \sum_{n=1}^{\infty} a_n \sin(nx + b_n) e^{-n^2 y}$, where $a_1 + 1$ and $a_n (n > 1)$, b_n are non-zero constants. (c) $u = \sum_{n=1}^{\infty} a_n \sin(nx + b_n) e^{-ny}$, where $a_1 = 1$, $a_n = 0$ for n > 1 and $b_n = 0$ for $n \ge 1$

(d) $u = \sum_{n=1}^{\infty} a_n \sin(nx + b_n) e^{-n^2y}$, where $b_n = 0$ for $n \ge 0$ and a_n are all non-zero.

Answer: (c)

Solution:
$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial y^2} = 0, u \to 0 \text{ as } y \to \alpha$$

 $u(x, 0) = \sin x$

Separation of variables

Let
$$u(x,y) = X(x), Y(y) \Rightarrow X''y + Y''x = 0 \Rightarrow \frac{X''}{X} = \frac{-Y''}{Y} = \lambda$$

$$\therefore X'' - \lambda X = 0 \text{ and } Y' + \lambda Y = 0$$

for
$$\lambda < 0$$
 let $\lambda = -k^2, k > 0$

$$X = c_1 \cos kx + c_2 \sin kx$$

And
$$Y = c_3 e^{ky} + c_4 e^{-ky}$$

$$u(x,y) = (c_1 \cos kx + c_2 \sin kx) \cdot (c_3 e^{ky} + c_4 e^{-ky})$$

Since
$$u \to 0$$
 as $y \to \infty$

Then
$$u(x, y) = (c_1 \cos kx + c_2 \sin kx)c_4 e^{-ky}(c_3 = 0)$$

$$u(x.0) = (c_1 \cos kx + c_2 \sin kx) = \sin x$$

Comparing,
$$k = 1, c_2 = 1, c_1 = 0$$

$$u(x,y) = \sin x e^{-y}$$

5. A solution of the
$$PDEx \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + \left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 - u = 0$$
 represents

- (a) An ellipse in the xyplane.
- (b) An ellipsoid in xyu space.
- (c) A parabola in the u x plane.
- (d) A hyperbolic in the u y plane.

Answer: (c)

Solution:
$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + \left(\frac{\partial y}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 = u$$

Complete integral
$$u = xp + yq + p^2 + q^2$$

= $xp + yq + f(p,q) \rightarrow$ Clairant equation
 $u = ax + by + a^2 + b^2$

Singular integral
$$\frac{\partial u}{\partial a} = 0 \Rightarrow x + 2a = 0$$

$$\frac{\partial u}{\partial b} = 0 \Rightarrow y + 2b = 0$$

or,
$$b = -\frac{y}{2}$$

$$\therefore u = -\frac{x^2}{2} - \frac{y^2}{2} + \frac{x^2}{4} + \frac{y^2}{4} = -\frac{x^2}{4} - \frac{y^2}{4} \Rightarrow x^2 + y^2 = 4u$$

This is a parabola in u - x plane and also.

June – 2016

(1) Let a, b, c, d be four differentiable functions defined on \mathbb{R}^2 . Then the partial differentiable

$$\left(a(x,y)\frac{\partial}{\partial x} + b(x,y)\frac{\partial}{\partial y}\right)\left(c(x,y)\frac{\partial}{\partial x} + d(x,y)\frac{\partial}{\partial y}\right)u = 0 \text{ is}$$

- (a) Always hyperbolic
- (b) Always parabolic
- (c) Never parabolic
- (d) Never elliptic

Answer: (d)

Solution: Here A = ac

$$B = ad + bc$$

$$C = bd$$

Now,
$$B^2 - 4AC = (ad + bc)^2 - 4 ac \cdot bd = (ad - bc)^2 < 0$$

So, never elliptic

Option (d) is correct.

(2) For the Cauchy problem

$$u_t - u u_x = 0, x \in \mathbb{R}, t > 0$$

$$u(x,0) = x, x \in \mathbb{R}$$

Which of the following statements is true?

- (a) The solution u exists for all t > 0.
- (b) The solution u exists for $t < \frac{1}{2}$ and breaks down at $t = \frac{1}{2}$.
- (c) The solution u exists for t < 1 and breaks down at t = 1.
- (d) The solution u exists for t < 2 and breaks down at t = 2.

Answer: (c)

Solution:
$$u_t - u u_x = 0$$
, $u(x, 0) = x$

Solution:
$$u_t - u u_x = 0$$
, $u(x, 0) = x$
Lagrange's equations are $\frac{dt}{1} = \frac{dx}{-u} = \frac{du}{0} \Rightarrow u = c_1$ and $dt = \frac{dx}{-c_1}$

$$tc_1 + x = c_2$$

Let,
$$\mathbb{C}_1 = \xi$$
, $c_2 = t\xi + \xi$

$$c_2 = tc_1 + c_1$$

$$tu + x = u$$

$$u = \frac{x}{1-t}$$

(3) Let $u: \mathbb{R} \times [0, \infty) \to \mathbb{R}$ be a solution of the initial value problem.

$$u_{tt} - u_{xx} = 0$$
, for $(x, t) \in \mathbb{R} \times (0, \infty)$

$$u(x,0) = f(x), x \in \mathbb{R}$$

$$u_t(x,0) = g(x), x \in \mathbb{R}$$

Suppose, f(x) = g(x) = 0 for $x \notin [0,1]$, then we always have

(a)
$$u(x,t) = 0$$
 for all $(x,t)\epsilon(-\alpha,0) \times (0,\alpha)$

(b)
$$u(x,t) = 0$$
 for all $(x,t)\epsilon(1,\alpha) \times (0,\alpha)$

(c)
$$u(x,t) = 0$$
 for all (x,t) satisfying $x + t < 0$

(d)
$$u(x,t) = 0$$
 for all (x,t) satisfying $x - t > 1$

Answer: (c), (d)

Solution:
$$u_{tt} = u_{xx}, u(x, 0) = f(x), u_t(x, 0) = g(x)$$

Options (c) and (d) are correct.

(4) Consider the Cauchy problem for the Eikonal equation $p^2 + q^2 = 1$; $p \equiv \frac{\partial u}{\partial r}$, $q \equiv$

$$\frac{\partial u}{\partial y} u(x, y) = 0$$
 on $x + y = 1, (x, y) \in \mathbb{R}^2$. Then

(a) The Charpit's equations for the differential equation are

$$\frac{dx'}{dt} = 2p; \frac{dy}{dt} = 2q; \frac{du}{dt} = 2; \frac{dp}{dt} = -p; \frac{dq}{dt} = q.$$

(b) The Charpit's equations for the differential equation are
$$\frac{du}{dt} = 2p; \frac{dy}{dt} = 2q; \frac{du}{dt} = 2; \frac{dp}{dt} = 0, \frac{dq}{dt} = 0.$$

(c)
$$u(1,\sqrt{2}) = \sqrt{2}$$
.

(d)
$$u(1,\sqrt{2})=1$$

Answer: (b), (d)

Solution: $p^2 + q^2 = 1$, u(x, y) = 0 on x + y = 1 $F(x, y, u, p, q) = p^2 + q^2$

$$F(x, y, u, p, q) = p^2 + q^2$$

$$\frac{dx}{dt} = F_p = 2p$$

$$\frac{dx}{dt} = F_p = 2p$$

$$\frac{dy}{dt} = F_q = 2q$$

$$\frac{du}{dt} = p F_p + q F_q = 2p^2 + 2q^2 = 2 \Rightarrow u = 2t + c_1$$

$$u_0 = 2.0 + c_1 \Rightarrow c_1 = 0$$

$$u = 2t$$

$$\frac{dp}{dt} = -f_x - p F_u = 0 - 0 = 0$$

$$\frac{dp}{dt} = -f_x - p F_u = 0 - 0 = 0$$

$$\frac{dq}{dt} = -f_y - q F_u = 0 - 0 = 0$$

$$x = \sqrt{2}t + \zeta, y = \sqrt{2}t + 1 - \zeta$$

$$p=rac{1}{\sqrt{2}}$$
 , $q=rac{1}{\sqrt{2}}$

$$x = \sqrt{2} t + \sqrt{2} t + 1 - y$$

$$x + y - 1 = 2\sqrt{2} t$$

$$2t = \frac{x+y-1}{\sqrt{2}}$$

$$\therefore u = \frac{x + y - 1}{\sqrt{2}}$$

$$u(1,\sqrt{2}) = \frac{1+\sqrt{2}-1}{\sqrt{2}} = 1$$

So, the options (b) and (d) are correct.

(5) Let u be the solution of the boundary value problem

$$u_{xx} + u_{yy} = 0 \text{ for } 0 < x, y < \pi$$

$$u(x, 0) = 0 = u(x, \pi) \text{ for } 0 \le x \le \pi$$

$$u(0,y)=0, u(\pi,y)=\sin y+\sin 2y \ for \ 0\leq y\leq \pi$$

Then.

(a)
$$u\left(1, \frac{\pi}{2}\right) = \left(\sin h(\pi)\right)^{-1} \sin h(1)$$

(b)
$$u\left(1, \frac{\pi}{2}\right) = \left(\sin h(1)\right)^{-1} \sin h \pi$$

(c)
$$u\left(1, \frac{\pi}{4}\right) = \left(\sin h(\pi)\right)^{-1} \left(\sin h(1)\right) \frac{1}{\sqrt{2}} + \left(\sin h(2\pi)\right)^{-1} \cdot \sin h(2)$$

(d)
$$u\left(1, \frac{\pi}{4}\right) = \left(\sin h(1)\right)^{-1} \left(\sin h(\pi)\right) \frac{1}{\sqrt{2}} + \left(\sin h(2)\right)^{-1} \sin h(2\pi)$$

Answer: (a), (c)

Solution:
$$u(x,y) = X(x) \cdot Y(y)$$

$$\therefore X'' \cdot Y + Y'' \cdot X = 0 \Rightarrow \frac{X''}{X} = \frac{-Y''}{Y} = \lambda$$

$$X'' - \lambda X = 0$$
 and $Y'' + \lambda Y = 0$

$$\lambda > 0, \lambda = k^2(say)$$

$$X'' - K^2 X = 0, Y'' + K^2 Y = 0$$

$$u(x,y) = (c_1 e^{kx} + c_2 e^{-kx})(c_3 \cos ky + c_4 \sin ky)$$

$$u(x,0) = 0 \Rightarrow X(x) Y(0) = 0 \Rightarrow Y(0) = 0 \Rightarrow c_3 = 0$$

$$u(x,\pi) = 0 \Rightarrow X(x) Y(\pi) = 0 \Rightarrow Y(\pi) = 0 \Rightarrow c_4 \sin k\pi = 0 \Rightarrow k = n$$

$$u(x,y) = \left(A_{n^{e^{nx}}} + B_{n^{e^{-nx}}}\right) \cdot \sin ny$$

$$u(0,y) = 0 \Rightarrow A_n + B_n = 0 \Rightarrow A_n = -B_n$$

$$\therefore u(x,y) = A_n(e^{nx} - e^{-nx}) \sin ny$$

$$\therefore u(x,y) = A_n(e^{nx} - e^{-nx})\sin ny$$

$$u(\pi, y) = \sin y + \sin 2y \Rightarrow A_n(e^{n\pi} - e^{-n\pi}) \sin ny = \sin y + \sin 2y$$

Comparing,
$$A_1 = \frac{1}{e^{\pi} - e^{-\pi}}$$
, $A_2 = \frac{1}{e^{2\pi} - e^{-2\pi}}$

$$A_n = 0 \ \forall \ n \ge 3.$$

$$u(x,y) = \sum_{n=1}^{\infty} A_n (e^{nx} - e^{-nx}) \sin ny$$

$$= \frac{1}{e^{\pi - e^{-\pi}}} (e^x - e^{-x}) \sin y + \frac{1}{e^{2\pi} - e^{-2\pi}} (e^{2x} - e^{-2x}) \sin 2y$$

$$u\left(1, \frac{\pi}{2}\right) = \frac{e - e^{-1}}{e^{\pi} - e^{-\pi}} = \sin h\left(1\right) \left(\sin h\left(\pi\right)\right)^{-1}$$

Option (a) is correct

$$u\left(1, \frac{\pi}{4}\right) = \frac{e - e^{-1}}{e^{\pi} - e^{-\pi}} \times \frac{1}{\sqrt{2}} + \frac{e^{2} - e^{-2}}{e^{2\pi} - e^{-2\pi}}$$

$$= \sin h (1) (\sin h (\pi))^{-1} \cdot \frac{1}{\sqrt{2}} + \sin h (2) \cdot (\sin h (2\pi))^{-1}$$

Option (c) is correct.

Hence, the option (a) and (c) are correct.

December - 2016

(1) The PDE
$$x \frac{\partial^2 u}{\partial x^2} + y \frac{\partial^2 u}{\partial y^2} = 0$$
 is

(a) Hyperbolic for
$$x > 0$$
, $y < 0$

(b) Elliptic for
$$x > 0$$
, $y < 0$

(c) Hyperbolic for
$$x > 0$$
, $y > 0$

(d) Elliptic for
$$x < 0, y > 0$$

Answer: (a)

Solution: Discriminant = $B^2 - 4AC = 0^2 - 4 \cdot xy = -4xy$ If x > 0, y < 0, then $B^2 - 4AC > 0$. This is a hyperbola.

So, the option (a) is correct.

(2) Let u(x, t) satisfy the initial boundary value problem

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}; x \in (0,1), t > 0$$

$$u(x,0) = \sin(\pi x)$$
; $x \in [0,1]$

$$u(0,t) = u(1,t) = 0, t > 0$$

Then for $x \in (0,1)$, $u\left(x, \frac{1}{\pi^2}\right)$ is equal to

(a)
$$e \sin(\pi x)$$

(b)
$$e^{-1} \sin(\pi x)$$

(c)
$$\sin(\pi x)$$

(d)
$$\sin(\pi^{-1}x)$$

Answer: (b)

Solution: $u(x,t) = \sum A_n \sin\left(\frac{n\pi x}{a}\right) e^{\frac{-n^2\pi^2}{a^2}t}$

$$\sin \pi x = \sum A_n \sin(n\pi x)$$

$$\Rightarrow A_1 = 1 \text{ and } A_n = 0 \ \forall \ n > 1$$

$$u(x,t) = \sin \pi x \cdot e^{-\pi^2 t}$$

$$\therefore u\left(x, \frac{1}{\pi^2}\right) = \sin \pi x \, e^{-1} = e^{-1} \sin \pi x$$

So, option (b) is correct.

(3) Consider the wave equation for $u(x,t)\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} = 0$, $(x,t) \in \mathbb{R} \times (0,\alpha)$

$$u(x.\,0)=f(x),x\epsilon\mathbb{R}$$

$$\frac{\partial u}{\partial t}(x,0) = g(x), x \in \mathbb{R}$$

Let u_i be the solution of the above problem with $f = f_i$ and $g = g_i$ for i = 1,2, where $f_i : \mathbb{R} \to \mathbb{R}$ and $g_i : \mathbb{R} \to \mathbb{R}$ are given C^2 functions satisfying $f_1(x) = f_2(x)$ and $g_1(x) = g_2(x)$, for every $x \in [-1,1]$, which of the following statements are necessarily true?

(a)
$$u_1(0,1) = u_2(0,1)$$

(b)
$$u_1(1,1) = u_2(1,1)$$

(c)
$$u_1\left(\frac{1}{2}, \frac{1}{2}\right) = u_2\left(\frac{1}{2}, \frac{1}{2}\right)$$

(d)
$$u_1(0,2) = u_2(0,2)$$

Answer: (a), (c)

Solution: Options (a) and (c) are correct.

(4)
$$y \frac{\partial u}{\partial x} - x \frac{\partial u}{\partial y} = 0$$

 $u = g \ on\Gamma$

Has a unique solution in a neighborhood of Γ for every differentiable function $g:\Gamma\to\mathbb{R}$ if

- (a) $\Gamma = \{(x, 0): x > 0\}$
- (b) $\Gamma = \{(x, y): x^2 + y^2 = 1\}$
- (c) $\Gamma = \{(x, y): x + y = 1, x > 1\}$
- (d) $\Gamma = \{(x, y) : y = x^2, x > 0\}$

Answer: (a), (c) & (d)

Solution: Here P = y, Q = -x, R = 0

If
$$\begin{vmatrix} P & Q \\ x_0^1(x) & y_0^1(x) \end{vmatrix} \neq 0$$
, unique solution

(a)
$$\{(x, 0): x > 0\}$$

$$x_0 = S, y_0 = 0$$

$$\begin{vmatrix} P & Q \\ x_0^1 & y_0^1 \end{vmatrix} = \begin{vmatrix} 0 & -s \\ 1 & 0 \end{vmatrix} = s \neq 0, \text{ unique solution}$$

(b)
$$\{(x,y): x^2 + y^2 = 1\}$$

Let
$$x_0 = s$$
, $y_0 = \sqrt{1 - s^2}$

Let
$$x_0 = s$$
, $y_0 = \sqrt{1 - s^2}$

$$\begin{vmatrix} P & Q \\ x_0^1 & y_0^1 \end{vmatrix} = \begin{vmatrix} \sqrt{1 - s^2} & -s \\ 1 & -\frac{s}{\sqrt{1 - s^2}} \end{vmatrix} = 0$$

Not unique solution.

(c)
$$\{(x, y): x + y = 1, x > 1\}$$

Let no =
$$s > 1$$
, $y_0 = 1 - s$

$$\begin{vmatrix} P & Q \\ x_0^1 & y_0^1 \end{vmatrix} = \begin{vmatrix} 1-s & -s \\ 1 & 1 \end{vmatrix} = 2s - 1 > 0$$

Unique solution

(d)
$$\{(x,y): y = x^2, x > 0\}$$

Let
$$x_0 = s \Rightarrow v_0 = s^2$$

Let
$$x_0 = s \Rightarrow y_0 = s^2$$

$$\begin{vmatrix} P & Q \\ x_0^1 & y_0^1 \end{vmatrix} = \begin{vmatrix} s^2 & -s \\ 1 & 2s \end{vmatrix} = 2s^3 + s > 0$$

Unique solution

So, the option (a), (c) and (d) are correct.

(5) Let
$$u: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}^2$$
 be a C^2 function satisfying $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$, for $all(x,y) \neq (0,0)$.

Suppose u is of the form $u(x,y) = f(\sqrt{x^2 + y^2})$, where $f:(0,\alpha) \to \mathbb{R}$ is a non-constant function, then

(a)
$$\lim_{x^2+y^2\to 0} |u(x,y)| = \infty$$

(b)
$$\lim_{x^2+y^2\to 0} |u(x,y)| = 0$$

$$(c) \lim_{x^2 + y^2 \to \infty} |u(x, y)| = \infty$$

$$(d) \lim_{x^2 + y^2 \to \infty} |u(x, y)| = 0$$

(d)
$$\lim_{x^2+y^2\to\infty} |u(x,y)| = 0$$

Answer: (a), (c)

Solution:
$$u_{xx} + u_{yy} = 0 \Rightarrow u(x,y) = \phi_1(y - ix) + \phi_2(y - ix)$$

Let, $\phi_1 = \frac{1}{\sqrt{x^2 + y^2}}, \phi_2 = \sqrt{x^2 + y^2}$

Let,
$$\phi_1 = \frac{1}{\sqrt{x^2 + y^2}}$$
, $\phi_2 = \sqrt{x^2 + y^2}$

$$\lim_{x^2 + y^2 \to 0} u(x, y) = \infty + 0 = \infty$$

$$\lim_{x^2+y^2\to\infty}u(x,y)=0+\infty=\infty$$

So, the option (a) and (c) are correct.