Бинарная классификация движения цен по новостному потоку

Ахияров Валентин

9 декабря 2018 г.

0.1 Сравнение классификаторов на разных признаках

					Av	erage
Classifier	Features	Data Set	F1 Score	AUC ROC	F1 Score	AUC ROC
	Unigrams	1	0.7811	0.7181		
	Unigrams	2	0.8061	0.4973	0.8093	0.5565
	Unigrams	3	0.8408	0.4541		
	NMF 50	1	0.7397	0.6080		
	NMF 50	2	0.8087	0.5000	0.7647	0.5394
	NMF 50	3	0.7458	0.5102		
	NMF 100	1	0.7602	0.5841		
RF	NMF 100	2	0.8061	0.4973	0.7984	0.5487
	NMF 100	3	0.8288	0.5648		
	NMF 200	1	0.7720	0.7235		
	NMF 200	2	0.8087	0.5000	0.7996	0.5838
	NMF 200	3	0.8180	0.5278		
	Ensemble	1	0.7907	0.7198		
	Ensemble	2	0.8018	0.5006	0.8045	0.5617
	Ensemble	3	0.821	0.4648		

Таблица 1: RandomForestClassifier on 3 data sets

					Av	erage
Classifier	Features	Data Set	F1 Score	AUC ROC	F1 Score	AUC ROC
	Unigrams	1	0.8371	0.7623		
	$\operatorname{Unigrams}$	2	0.8035	0.4946	0.835	0.5805
	Unigrams	3	0.8643	0.4846		
	NMF 50	1	0.8239	0.7508		
	NMF 50	2	0.8035	0.4946	0.8284	0.5716
	NMF 50	3	0.8577	0.4693		
	NMF 100	1	0.7989	0.7054		
XGB	NMF 100	2	0.8035	0.4946	0.8257	0.5586
	NMF 100	3	0.8747	0.4759		
	NMF 200	1	0.7923	0.6815		
	NMF 200	2	0.8061	0.4973	0.8221	0.5617
	NMF 200	3	0.8679	0.5063		
	Ensemble	1	0.8046	0.7314		
	Ensemble	2	0.8035	0.4946	0.8217	0.5680
	Ensemble	3	0.8571	0.4780		
	Unigrams	1	0.8217	0.6873		
	Unigrams	2	0.8087	0.5000	0.8464	0.5624
	Unigrams	3	0.9087	0.5000		
	NMF 50	1	0.8235	0.6831		
	NMF 50	2	0.8087	0.5000	0.8470	0.5610
	NMF 50	3	0.9087	0.5000		
	NMF 100	1	0.8154	0.6724		
LR	NMF 100	2	0.8087	0.5000	0.8443	0.5575
	NMF 100	3	0.9087	0.5000		
	NMF 200	1	0.8244	0.6811		
	NMF 200	2	0.8087	0.5000	0.8473	0.5604
	NMF 200	3	0.9087	0.5000		
	Ensemble	1	0.8214	0.6782		
	Ensemble	2	0.8087	0.5000	0.8463	0.5594
	Ensemble	3	0.9087	0.5000		

Таблица 2: XGBClassifier & Logistic Regression on 3 data sets

					Av	erage
Classifier	Features	Data Set	F1 Score	AUC ROC	F1 Score	AUC ROC
	Unigrams	1	0.7952	0.5957		
	Unigrams	2	0.8087	0.5000	0.8309	0.5406
	Unigrams	3	0.8889	0.5260		
	NMF 50	1	0.8049	0.6204		
	NMF 50	2	0.8087	0.5000	0.8349	0.5495
	NMF 50	3	0.8912	0.5281		
	NMF 100	1	0.7933	0.5907		
LSVC	NMF 100	2	0.8087	0.5000	0.8310	0.5396
	NMF 100	3	0.8912	0.5281		
	NMF 200	1	0.7962	0.5936		
	NMF 200	2	0.8087	0.5000	0.8312	0.5399
	NMF 200	3	0.8889	0.5260		
	Ensemble	1	0.8029	0.6155		
	Ensemble	2	0.8087	0.5000	0.8343	0.5479
	Ensemble	3	0.8912	0.5281		

Таблица 3: Linear
SVC on 3 data sets $\,$

Будем обозначать модели Random Forest Classifier, XGB Classifier, Logistic Regression и Linear SVC как RF, XGB, LR и LSVC, соответственно. Сравнив модели (RF, XGB, LR, LSVC) на разных признаках (Unigrams, NMF 50, NMF 100, NMF 200, Ensemble) выберем признаки, на которых модели давали лучший результат по F1 Score. Такими оказались: Unigrams (для моделей RF и XGB), NMF 50 (для модели LSVC) и NMF 200 (для модели LR). Далее будем оптимизировать модели с этими признаками (RF с Unigrams, XGB с Unigrams, LSVC с NMF 50 и LR с NMF 200) по гиперпараметрам.

0.2 RandomForestClassifier c Unigrams

							Ave	Average
max_depth	max_depth min_samples_leaf min_	min_samples_split	$n_{\rm estimators}$	Data Set	F1 Score	AUC ROC	F1 Score	AUC ROC
None	3	ເດ	2000	1 2 3	0.8677 0.8087 0.9080	0.7710 0.5000 0.5174	0.8615	0.5961
None	ಣ	67	2000	1 2 3	0.8663 0.8087 0.9084	0.7751 0.5000 0.5087	0.8611	0.5946
10	ಣ	72	1000	1 2 3	0.8661 0.8087 0.9084	0.7640 0.5000 0.5087	0.8611	0.5909
None	ಣ	2	1000	1 2 3	0.8647 0.8087 0.9080	0.7681 0.5000 0.5174	0.8605	0.5952
20	ಣ	ഹ	2000	1 2 3	0.8640 0.8087 0.9084	0.7702 0.5000 0.5087	0.8604	0.5930
10	ಣ	ശ	2000	1 2 3	$\begin{array}{c} 0.8639 \\ 0.8087 \\ 0.9084 \end{array}$	0.7591 0.5000 0.5087	0.8603	0.5892
20	ಣ	2	2000	1 2 3	0.8647 0.8087 0.9062	0.7681 0.5000 0.5065	0.8599	0.5915
20	ಣ	2	1000	1 2 3	0.8624 0.8087 0.9080	0.7632 0.5000 0.5174	0.8597	0.5935
None	ಣ	ഥ	1000	1 2 3	0.8624 0.8087 0.9080	0.7632 0.5000 0.5174	0.8597	0.5935

Таблица 4: RandomForestClassifier with Unigrams

0.3 XGBClassifier c Unigrams

Таблица 5: XGBClassifier with Unigrams

0.4 LinearSVC c NMF 50

							Ave	Average
C	loss	max_iter	$\operatorname{multi_class}$	Data Set	F1 Score	AUC ROC	F1 Score	AUC ROC
0.1	squared_hinge	1000	OVF	1 2 3 3	0.8152 0.8087 0.9087	0.6633 0.5000 0.5000	0.8442	0.5544
0.1	squared_hinge	1500	OVF	2 2 3	0.8152 0.8087 0.9087	0.6633 0.5000 0.5000	0.8442	0.5544
0.1	hinge	1500	crammer_singer	1 2 3	0.7852 0.8087 0.9087	0.5982 0.5000 0.5000	0.8342	0.5327
0.1	squared_hinge	1500	crammer_singer	1 2 3	0.7852 0.8087 0.9087	0.5982 0.5000 0.5000	0.8342	0.5327
0.1	squared_hinge	1000	crammer_singer	1 2 3	0.7852 0.8087 0.9087	0.5982 0.5000 0.5000	0.8342	0.5327
0.1	hinge	1000	crammer_singer	1 2 3	0.7852 0.8087 0.9087	0.5982 0.5000 0.5000	0.8342	0.5327
\vdash	hinge	1000	OVF	1 3	0.7841 0.8087 0.9087	0.6002 0.5000 0.5000	0.8338	0.5334
\vdash	hinge	1500	OVF	1 3	0.7841 0.8087 0.9087	0.6002 0.5000 0.5000	0.8338	0.5334
0.1	hinge	1000	OVI	1 2 3	0.7786 0.8087 0.9087	0.5763 0.5000 0.5000	0.832	0.5254

0.5 LogisticRegression c NMF 200

						1 T T	202212
\circ	max_iter	solver	Data Set	F1 Score	AUC ROC	F1 Score	AUC ROC
	150	liblinear	2 2	0.8235	0.6831	0.847	0.561
			3	0.9087	0.5000		
			$\overline{}$	0.8235	0.6831		
\vdash	100	liblinear	2	0.8087	0.5000	0.847	0.561
			က	0.9087	0.5000		
		•		0.8173	0.6683		
$\overline{}$	150	newton-cg	2	0.8087	0.5000	0.8449	0.5561
			က	0.9087	0.5000		
				0.8173	0.6683		
П	100	lbfgs	2	0.8087	0.5000	0.8449	0.5561
			က	0.9087	0.5000		
		•		0.8173	0.6683		
П	100	newton-cg	2	0.8087	0.5000	0.8449	0.5561
			3	0.9087	0.5000		
		•		0.8173	0.6683		
\vdash	150	lbfgs	2	0.8087	0.5000	0.8449	0.5561
			က	0.9087	0.5000		
				0.7960	0.6208		
0.1	100	liblinear	2	0.8087	0.5000	0.8378	0.5403
			3	0.9087	0.5000		
				0.7960	0.6208		
0.1	150	liblinear	2	0.8087	0.5000	0.8378	0.5403
			က	0.9087	0.5000		
				0.7904	0.5878		
0.1	100	lbfgs	2	0.8087	0.5000	0.8359	0.5293
)	cr:	0.9087	0.5000		

11