Dinda Khamila Nurfatimah No. G1401211025

4901211039	Date	
TUGAS MANOIRI PESPONSI 3		
1.a) Tentukan rumus ekspiisit dan kekonvergenannya:		1012
	-	
$\frac{\text{COSTT}, \text{COS2TI}, \text{COS3TI}, \text{COS4TI}}{4}$		
o> Rumus eksplisit		
$\Omega n = \frac{\cos n\pi}{h^2}, n > 1$		
»> Yelonvergenan		1
$-1 \le \cos n \pi \le 1$ $\lim_{n \to \infty} \left(-\frac{1}{n^2}\right) = 0$		
M 2-12 m2		
$\frac{-1}{h^2} \leq \frac{\cos n\pi}{n^2} \leq \frac{1}{n^2} \qquad \lim_{n \to \infty} \left(\frac{1}{n^2}\right) = 0$	7 (4)	
N>0 (N5)		- 1
:. fanz honvergen he o		-
b) Diketahui {an} honvergen ke A dan {bn} konvergen ke B. Bi	Jutikan (an+b	m s
konvergen he A+B.		
Jim an = A, untuk setrap €>0 terdapat Ni>0 sedemikian se	hingga n > N	, berlaku
$ \alpha_n - A < \frac{1}{2} \varepsilon$		
lim bn = B, untuk setiap < >0 terdapat Ni20 sedemikian s	ehingga n > N	2 berlaku
n→0 bn-B < ± €	N a.	17 1 1
· Pilih N = max { N., Nz}, diperoleh:		
$ a_n + b_n - (A + B) = (a_n - A) + (b_n - B) $		
≤ 1an-A + bn-B	- 11-11	
< ≥ € + ≥ €	water of all	in him to
= &	1, 8 1 2, 11	,
: Terbulifi bahwa lim (an+bn) = A+B.		
n→&	+ 25	
c) an = sin nit		
4	Lajzh	7 7 1 -
20.14		

Yemonotonan

$$an-ant = sin n\pi - sin (n+1)\pi = sin n\pi - sin (n\pi+1)$$

🖰 Barisan tidak memiliki kemonotonan karena nilainya bisa 🕀 dan 🖯 .

S Feterbatasan

Karena barisan tidak monoton, maka tidak memiliki keterbatasan

os Limit

⇒ divergen (tidalı memiliki limit). -1 < SIN NI <1

20)

$$\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \dots$$

·> Rumus eusplisit

$$A_{N=}(-1)^{n+1}\cdot \frac{1}{h}, n > 1$$

Yekonvergenan

26) Buktikan barisan {an} konvergen:

$$\Omega_{n} = 3 - 8.2^{n}$$

$$= \lim_{n\to\infty} \frac{3-8.2^n}{5+4.2^n} = \lim_{n\to\infty} \frac{2^n}{4^n \cdot 2^{n-1}} = \lim_{n\to\infty} -2 = -2$$

:. {an} konvergen ke-2

2c) On = Inn

o> Kemonotonan

$$a'(n) = \frac{1}{n} \cdot n - \ln n \cdot 1 = 1 - \ln n$$
 \Rightarrow bukan barisan monoton karena nijainya bisa(f) dan \bigcirc

*> Keterbatasan

Trdah ada keterbatasan karena bukan barisan monoton

o> Kelionvergenan

30) 0.9,0.99,0.999,0.9999,....

» Pumus eusplisit

$$a_{n^2} 1 - \frac{1}{10^n}, n > 1$$

o> Kellonvergenan

::{an} konvergen ke 1,,

Dinda Khamila Murfatimah G1401211035

tidau ada limit.

No.

Date

3b)
$$a_{n} = n+3$$

$$3n-2$$
 \Rightarrow Kelunvergenan

 $\lim_{n\to\infty} \frac{n+3}{3n-2} = \lim_{n\to\infty} \frac{1}{3} = \frac{1}{3}$
 $\lim_{n\to\infty} \frac{n+3}{3n-2} = \lim_{n\to\infty} \frac{1}{3} = \frac{1}{3}$
 $\lim_{n\to\infty} \frac{1}{3n-2} = \frac{1}{n\to\infty} = \frac{1}{3}$
 $\lim_{n\to\infty} \frac{1}{3n-2} = \frac{1}{n\to\infty} = \frac{1}{3}$
 $\lim_{n\to\infty} \frac{1}{10^n} = \frac{n!}{10^n} \times \frac{10.10^n}{(n+1)!} = \frac{10.11^n}{(n+1)!} = \frac{10.11^$

10×10×10×-- ×10

n