SEQUENCE LISTING

	<110>	Applied Research Systems ARS Holding N.V.														
5	<120>	NOVEL FIBULIN-LIKE POLYPEPTIDES														
	<130>	810														
10	<150> <151>	US60/436,786 2002-12-27														
	<160>	4														
15	<170>	170> PatentIn version 3.1														
15	<210><211><211><212><213>	1 2661 DNA homo sapiens														
20	<220> <221> <222>	SCS0007 polynucleotide coding sequence (50)(2582)														
25	<223> <400>		60													
		teett egggeegeet gtgtegeget eetgetgeeg ggggeaceag eeegaggeta	120													
30		ggagg aageegeeeg ggeaettege ggeegagaga egeegaetgg geeeceaegt	180													
		etetet gggtttggga gtggetgetg ceetggetgg gegeeeteta tgggtggtgg	240													
		geace etgeceetet geteettegg etgtgggagt ggeatetgea tegeteceaa	300													
35		getec tgccaggatg gagagcaagg ggccacetge ccagaaaccc atggaccatg	360													
		gagtac ggctgtgacc ttacctgcaa ccatggaggc tgtcaggagg tggcccgagt	420													
40		cccgtg ggcttctcga tgacggagac agetgttggc atcaggtgta cagacattga	480													
		tgtgta acctectect gegagggeea etgtgtgaae acagaaggtg ggtttgtgtg	540													
45		tgtggg ccgggcatgc agctgtctgc cgaccgccac agctgccaag acactgacga	600													
45		ctaggg actocotgto agoagagatg taaaaacago attggcagot acaagtgtto	660													
		cgaact ggcttccacc ttcatggcaa ccggcactcc tgtgtagatg taaacgagtg	720													
50		aggeca ttggagagge gagtetgtea ceatteetge cacaacaceg tgggeagett	780													
		tgcaca tgccgacctg gcttcaggct ccgagctgac cgcgtgtcct gtgaaggggc	840													
55		ragtece ecegactgge ageagggeee tetecetget ggeacetggg agecatgeat	900													
	_															

gaatcaagga gtcgctggac agagcctggg tgttcccagt gctggtgcga ggctggaaac 960 gtgtcgtgca tgtttcgtga gtgtcctttt ggcccgtgtg agacccccca taaagacgga 1020 ttgctgtact tgtgttccag tgagatgcta tttccacggc cggtggtacg cagacggggc 1080 tgtgttcagt gggggtggtg acgagtgtac cacctgtgtt tgccagaatg gggaggtgga 1140 1200 gtgctccttc atgccctgcc ctgagctggc ctgcccccga gaagagtggc ggctgggccc 10 tgggcagtgt tgcttcacct gccaggagcc cacaccctcg acaggctgct ctcttgacga 1260 caacggggtt gagtttccga ttggacagat ctggtcgcct ggtgacccct gtgagttatg 1320 1380 catctgccag gcagatggct cggtgagctg caagaggaca gactgtgtgg actcctgccc 15 tcacccgatc cggatccctg gacagtgctg cccagactgt tcagcagetg gtgctcagcg 1440 catgetetet etggeagget geacetacae aggeagaate ttetataaca aegagacett 1500 20 cccgtctgtg ctggacccat gtctgagctg catctgcctg ctgggctcag tggcctgttc ccccgtggac tgccccatca cctgtaccta ccctttccac cctgacgggg agtgctgccc 1620 1680 cgtgtgccga gactgcaact acgagggaag gaaggtggcg aatggccagg tgttcacctt 25 ggatgatgaa ccctgcaccc ggtgcacgtg ccagctggga gaggtgagct gtgagaaggt 1740 tecetgecag egggeetgtg eegaceetge eetgetteet ggggaetget getetteetg 1800 30 1860 tccagattcc ctgtctcctc tggaagaaaa gcaggggctc tcccctcacg gaaatgtggc attcagcaaa gctggtcgga gcctgcatgg agacactgag gcccctgtca actgtagetc 1920 1980 ctgtcctggg cccccgacag catcaccctc gaggccggtg cttcatctcc tccagetcct 35 tttaagaacg aacttgatga aaacacagac tttacctaca agcccggcag gagctcatgg 2040 tocacactca ctcgctttgg ggctgacagc cactttccca ggggagcctg gggcctcccc 2100 40 2160 togactotea coagggeett egacceetee aggageeece actetacete tagetteece aggggctcct cagccacctc ctgtgactcc agagcgctcg ttctcagcct ctggggccca 2220 gatagtgtcc aggtggcctc ctctgcctgg caccctcctg acggaagett cagcactttc 2280 45 2340 catgatggac cocagecect egaagacece cateacecte etegggeete gegtgettte 2400 teccaccace tetagactet ecacageeet tgeageeace acceaccetg geoceeagea 50 gcccccagtg ggggcttctc ggggggaaga gtccaccatg ttgtctcggt ttccccatgc 2460 tgcactgctc attcaccgct tacctgtggg aaggtgggaa acgtgacccc aagcccacag 2520 2580 gtggtaagtg agcatccacc tttaccccac tgctggggag aaaagctggc accaaattgt 55 gactgggctg gggaagggtc tcctgtaagc acttggcggc cttttatatt gggagacttc 2640

PCT/EP2003/050974 3/10

2661

tttttatttt tttccccaag a <210> 2 <211> 818 <212> PRT <213> homo sapiens <400> 2 10 Met Trp Ala Gly Leu Leu Leu Arg Ala Ala Cys Val Ala Leu Leu Leu Pro Gly Ala Pro Ala Arg Gly Tyr Thr Gly Arg Lys Pro Pro Gly His Phe Ala Ala Glu Arg Arg Leu Gly Pro His Val Cys Leu Ser Gly 20 Phe Gly Ser Gly Cys Cys Pro Gly Trp Ala Pro Ser Met Gly Gly Gly 25 His Cys Thr Leu Pro Leu Cys Ser Phe Gly Cys Gly Ser Gly Ile Cys 30 Ile Ala Pro Asn Val Cys Ser Cys Gln Asp Gly Glu Gln Gly Ala Thr Cys Pro Glu Thr His Gly Pro Cys Gly Glu Tyr Gly Cys Asp Leu Thr 35 Cys Asn His Gly Gly Cys Gln Glu Val Ala Arg Val Cys Pro Val Gly 40 120 Phe Ser Met Thr Glu Thr Ala Val Gly Ile Arg Cys Thr Asp Ile Asp 45 Glu Cys Val Thr Ser Ser Cys Glu Gly His Cys Val Asn Thr Glu Gly 50 Gly Phe Val Cys Glu Cys Gly Pro Gly Met Gln Leu Ser Ala Asp Arg His Ser Cys Gln Asp Thr Asp Glu Cys Leu Gly Thr Pro Cys Gln Gln 55 180

4/10

	Arg	Cys	Lys 195	Asn	Ser	Ile	Glу	Ser 200	Tyr	Lys	Суз	Ser	Cys 205	Arg	Thr	Gly
5		His 210	Leu	His	Gly	Asn	Arg 215	His	Ser	Cys	Val	Asp 220	Val	Asn	Glu	Cys
10	Arg 225	Arg	Pro	Leu	Glu	Arg 230	Arg	Val	Cys	His	His 235	Ser	Cys	His	Asn	Thr 240
15	Val	Gly	Ser	Phe	Leu 245	Cys	Thr	Cys	Arg	Pro 250	Gly	Phe	Arg	Leu	Arg 255	Ala
	Asp	Arg	Val	Ser 260	Суз	Glu	Gly	Ala	Leu 265	Ser	Pro	Pro	Asp	Trp 270	Gln	Gln
20	Gly	Pro	Leu 275	Pro	Ala	Gly	Thr	Trp 280	Glu	Pro	Cys	Met	Asn 285	Gln	Gly	Val
25	Ala	Gly 290		Ser	Leu	Gly	Val 295	Pro	Ser	Ala	Gly	Ala 300	Arg	Leu	Glu	Thr
30	Cys 305		Ala	Cys	Phe	Val 310	Ser	Val	Leu	Leu	Ala 315	Arg	Val	Arg	Pro	Pro 320
35	Ile	Lys	Thr	Asp	Cys 325		Thr	: Cys	Val	930	Val	Arg	Cys	Туг	Phe 335	His
	Gly	Arç	Trp	340		Asp	Gl3	y Ala	Val 345	. Phe	e Ser	Gly	Gly	Gly 350	Asp	Glu
40	Cys	Thi	Th:		s Val	. Cys	Gl:	n Asr 360		/ Gli	ı Val	. Glu	Cys 365	Ser	Phe	Met
45	Pro	Cy:		Glı	ı Lev	ı Alá	a Cy:		Arq	g Gl	u Glu	380	Arç	j Lei	ı Glş	Pro
50	G1) 385		n Cy	в Су	s Phe	390	c Cy O	s Glı	n Gli	u Pr	o Thi	r Pro	Se:	r Thi	r Gly	/ Cys 400
55	Se	r Le	u As	p As	p Ası 40!		y Va	1 Gl	u Phe	e Pr 41	o Ile 0	e Gl	y Gl	n Ile	e Trp 415	Ser
	Pro	o Gl	y As	p Pr 42		s Gl	u Le	u Cy	s Il 42	e Cy 5	s Gl:	n Ala	a As	p Gl; 430	y Sei	c Val

WO 2004/063225 PCT/EP2003/050974

5	Ser	Cys	Lys 435	Arg	Thr	Asp	Суз	Val 440	Asp	Ser	Cys	Pro	His 445	Pro	Ile	Arg
	Ile	Pro 450	Gly	Gln	Cys	Суз	Pro 455	Asp	Cys	Ser	Ala	Ala 460	Gly	Ala	Gln	Arg
10	Met 465	Leu	Ser	Leu	Ala	Gly 470	Cys	Thr	Tyr	Thr	Gly 475	Arg	Ile	Phe	Tyr	Asn 480
15	Asn	Glu	Thr	Phe	Pro 485	Ser	Val	Leu	Asp	Pro 490	Суѕ	Leu	Ser	Cys	Ile 495	Cys
20	Leu	Leu	Gly	Ser 500	Val	Ala	Суз	Ser	Pro 505	Val	Asp	Cys	Pro	Ile 510	Thr	Cys
25	Thr	Tyr	Pro 515	Phe	His	Pro	Asp	Gly 520	Glu	Суз	Cys	Pro	Val 525	Cys	Arg	Asp
	Cys	Asn 530		Glu	Gly	Arg	Lys 535		Ala	Asn	Gly	Gln 540	Val	Phe	Thr	Leu
30	Asp 545		Glu	Pro	Cys	Thr 550		Суз	Thr	Cys	Gln 555	Leu	Gly	Gl u	Val	Ser 560
35	Cys	Glu	Lys	Val	Pro 565		Gln	Arg	Ala	Cys 570		Asp	Pro	Ala	Leu 575	Leu
40	Pro	Gly	/ Asp	Cys 580		Ser	Ser	: Cys	Pro 585) Asp	Ser	Leu	Ser	Pro 590	Leu	Glu
45	Glu	ı Lys	595		, Leu	. Ser	Pro	His 600		/ Asr	ı Val	. Ala	Phe 605	Ser	. Lys	Ala
	Gly	/ Arg		. Lei	ı His	: Gly	/ Asp 615	Thi	Glu	ı Ala	a Pro	0 Val	. Asr	n Cys	Ser	Ser
50	Cy:		o Gly	y Pro	o Pro	Th:		a Sei	r Pro	Se:	635	g Pro	val	l Leu	ı His	Leu 640
55	Le	u G1:	n Lei	ı Le	u Let 645		g Th	r Ası	n Lei	u Me ⁴	t Lys	s Thi	r Glı	n Thi	Let 655	Pro

	Inr	ser	PIO	660	GIĀ	AIG	urs	GLY	665	nro	Der	Бец	nια	670	GIĀ	Deu	
5	Thr	Ala	Thr 675	Phe	Pro	Gly	Glu	Pro 680	Gly	Ala	Ser	Pro	Arg 685	Leu	Ser	Pro	
10	Gly	Pro 690	Ser	Thr	Pro	Pro	Gly 695	Ala	Pro	Thr	Leu	Pro 700	Leu	Ala	Ser	Pro	
15	Gly 705	Ala	Pro	Gln	Pro	Pro 710	Pro	Val	Thr	Pro	Glu 715	Arg	Ser	Phe	Ser	Ala 720	
	Ser	Gly	Ala	Gln	Ile 725	Val	Ser	Arg	Trp	Pro 730	Pro	Leu	Pro	Gly	Thr 735	Leu	
20	Leu	Thr	Glu	Ala 740	Ser	Ala	Leu	Ser	Met 745	Met	Asp	Pro	Ser	Pro 750	Ser	Lys	
25	Thr	Pro	Ile 755	Thr	Leu	Leu	Gly	Pro 760	Arg	Val	Leu	Ser	Pro 765	Thr	Thr	Ser	
30	Arg	Leu 770		Thr	Ala	Leu	Ala 775	Ala	Thr	Thr	His	Pro 780	Gly	Pro	Gln	Gln	
35	Pro 785		Val	Gly	Ala	Ser 790	Arg	Gly	Glu	Glu	Ser 795	Thr	Met	Leu	Ser	Arg 800	
	Phe	Pro	His	Ala	Ala 805	Leu	Leu	Ile	His	Arg 810	Leu	Pro	Val	Gly	Arg 815	Trp	
40	Glu	Thr															
45	<21 <21 <21 <21	1> 2>	3 2397 DNA homo	sap	iens												
50	<40 gcc		gct	acac	cggg	ag g	aagc	cgcc	c gg	gcac	ttcg	cgg	ccga	gag	acge	cgactg	60
	ggc	cccc	acg	tctg	ccto	tc t	gggt	ttgg	g ag	tggc	tgct	gcc	ctgg	ctg	ggcg	ccctct	120
55	atg	ggtg	gtg	ggca	ctgc	ac c	ctgc	ccct	c tg	ctcc	ttcg	gct	gtgg	gag	tggc	atctgc	180
	ato	gctc	cca	atgt	ctgo	tc c	tgcc	agga	t gg	agag	caag	ggg	ccac	ctg	ccca	gaaacc	24

catggaccat gtggggagta cggctgtgac cttacctgca accatggagg ctgtcaggag 300 gtggcccgag tgtgccccgt gggcttctcg atgacggaga cagctgttgg catcaggtgt 360 acagacattg acgaatgtgt aacctcctcc tgcgagggcc actgtgtgaa cacagaaggt 420 gggtttgtgt gegagtgtgg geegggeatg eagetgtetg eegaeegeea eagetgeeaa 480 gacactgacg aatgcctagg gactccctgt cagcagagat gtaaaaacag cattggcagc 540 10 tacaagtgtt cctgtcgaac tggcttccac cttcatggca accggcactc ctgtgtagat 600 gtaaacgagt gtcggaggcc attggagagg cgagtctgtc accattcctg ccacaacacc 660 15 gtgggcagct tcctatgcac atgccgacct ggcttcaggc tccgagctga ccgcgtgtcc 720 tgtgaagggg ccctgagtcc ccccgactgg cagcagggcc ctctccctgc tggcacctgg 780 gagccatgca tgaatcaagg agtcgctgga cagagcctgg gtgttcccag tgctggtgcg 840 20 aggetggaaa egtgtegtge atgtttegtg agtgteettt tggeeegtgt gagaeeeeee 900 ataaagacgg attgctgtac ttgtgttcca gtgagatgct atttccacgg ccggtggtac 960 25 gcagacgggg ctgtgttcag tgggggtggt gacgagtgta ccacctgtgt ttgccagaat 1020 ggggaggtgg agtgctcctt catgccctgc cctgagctgg cctgcccccg agaagagtgg 1080 eggetgggee etgggeagtg ttgetteace tgecaggage ecacacete gacaggetge 1140 30 totottgacg acaacggggt tgagtttccg attggacaga tctggtcgcc tggtgacccc 1200 tgtgagttat gcatctgcca ggcagatggc tcggtgagct gcaagaggac agactgtgtg 1260 35 gacteetgee eteaceegat eeggateeet ggacagtget geecagactg tteageaget 1320 ggtgctcagc gcatgctctc tctggcaggc tgcacctaca caggcagaat cttctataac 1380 aacgagacct teeegtetgt getggaccea tgtetgaget geatetgeet getgggetea 1440 40 gtggcctgtt cccccgtgga ctgccccatc acctgtacct accctttcca ccctgacggg 1500 gagtgctgcc ccgtgtgccg agactgcaac tacgagggaa ggaaggtggc gaatggccag 1560 45 gtgttcacct tggatgatga accctgcacc cggtgcacgt gccagctggg agaggtgagc 1620 tgtgagaagg tteeetgeea gegggeetgt geegaeeetg eeetgettee tggggaetge 1680 tgctcttcct gtccagattc cctgtctcct ctggaagaaa agcaggggct ctcccctcac 1740 50 ggaaatgtgg cattcagcaa agctggtcgg agcctgcatq gagacactga ggcccctgtc 1800 aactgtaget cetgteetgg geeeeegaca geateaceet egaggeeggt gétteatete 1860 55 ctccagctcc ttttaagaac gaacttgatg aaaacacaga ctttacctac aagcccggca 1920 ggageteatg gtecacacte actegetttg gggetgacag ceaettteee aggggageet 1980 **8/10**

	ggggcctccc ctcgactctc accagggcct tcgacccctc caggagcccc cactctacct	2040										
	ctagettece caggggetee teagecacet cetgtgacte cagagegete gtteteagee	2100										
5	tetggggeee agatagtgte eaggtggeet cetetgeetg geacceteet gaeggaaget	2160										
	teageacttt ccatgatgga ecceageece tegaagaece ccateaceet ectegggeet	2220										
10	cgcgtgcttt ctcccaccac ctctagactc tccacagccc ttgcagccac cacccaccct	2280										
10	ggcccccagc agcccccagt gggggcttct cggggggaag agtccaccat gttgtctcgg	2340										
	tttccccatg ctgcactgct cattcaccgc ttacctgtgg gaaggtggga aacgtga											
15	<210> 4 <211> 798 <212> PRT <213> homo sapiens											
20	<400> 4											
25	Ala Arg Gly Tyr Thr Gly Arg Lys Pro Pro Gly His Phe Ala Ala Glu 1 5 10 15											
	Arg Arg Arg Leu Gly Pro His Val Cys Leu Ser Gly Phe Gly Ser Gly 20 25 30											
30	Cys Cys Pro Gly Trp Ala Pro Ser Met Gly Gly Gly His Cys Thr Leu 35 40 45											
35	Pro Leu Cys Ser Phe Gly Cys Gly Ser Gly Ile Cys Ile Ala Pro Asn 50 55 60											
40	Val Cys Ser Cys Gln Asp Gly Glu Gln Gly Ala Thr Cys Pro Glu Thr 65 70 75 80											
45	His Gly Pro Cys Gly Glu Tyr Gly Cys Asp Leu Thr Cys Asn His Gly 85 90 95											
	Gly Cys Gln Glu Val Ala Arg Val Cys Pro Val Gly Phe Ser Met Thr 100 105 110											
50	Glu Thr Ala Val Gly Ile Arg Cys Thr Asp Ile Asp Glu Cys Val Thr 115 120 125											
55	Ser Ser Cys Glu Gly His Cys Val Asn Thr Glu Gly Gly Phe Val Cys 130 135 140											

Asn Gly Val Glu Phe Pro Ile Gly Gln Ile Trp Ser Pro Gly Asp Pro 390 395 5 Cys Glu Leu Cys Ile Cys Gln Ala Asp Gly Ser Val Ser Cys Lys Arg 10 Thr Asp Cys Val Asp Ser Cys Pro His Pro Ile Arg Ile Pro Gly Gln 15 Cys Cys Pro Asp Cys Ser Ala Ala Gly Ala Gln Arg Met Leu Ser Leu Ala Gly Cys Thr Tyr Thr Gly Arg Ile Phe Tyr Asn Asn Glu Thr Phe 20 Pro Ser Val Leu Asp Pro Cys Leu Ser Cys Ile Cys Leu Leu Gly Ser 470 475 25 Val Ala Cys Ser Pro Val Asp Cys Pro Ile Thr Cys Thr Tyr Pro Phe 30 His Pro Asp Gly Glu Cys Cys Pro Val Cys Arg Asp Cys Asn Tyr Glu Gly Arg Lys Val Ala Asn Gly Gln Val Phe Thr Leu Asp Asp Glu Pro 35 520 Cys Thr Arg Cys Thr Cys Gln Leu Gly Glu Val Ser Cys Glu Lys Val 40 530 Pro Cys Gln Arg Ala Cys Ala Asp Pro Ala Leu Leu Pro Gly Asp Cys 45 Cys Ser Ser Cys Pro Asp Ser Leu Ser Pro Leu Glu Glu Lys Gln Gly 570 50 Leu Ser Pro His Gly Asn Val Ala Phe Ser Lys Ala Gly Arg Ser Leu 580 His Gly Asp Thr Glu Ala Pro Val Asn Cys Ser Ser Cys Pro Gly Pro 55

Pro Thr Ala Ser Pro Ser Arg Pro Val Leu His Leu Leu Gln Leu Leu 615 Leu Arg Thr Asn Leu Met Lys Thr Gln Thr Leu Pro Thr Ser Pro Ala 5 635 Gly Ala His Gly Pro His Ser Leu Ala Leu Gly Leu Thr Ala Thr Phe 10 Pro Gly Glu Pro Gly Ala Ser Pro Arg Leu Ser Pro Gly Pro Ser Thr 665 15 Pro Pro Gly Ala Pro Thr Leu Pro Leu Ala Ser Pro Gly Ala Pro Gln 20 Pro Pro Pro Val Thr Pro Glu Arg Ser Phe Ser Ala Ser Gly Ala Gln Ile Val Ser Arg Trp Pro Pro Leu Pro Gly Thr Leu Leu Thr Glu Ala 25 710 Ser Ala Leu Ser Met Met Asp Pro Ser Pro Ser Lys Thr Pro Ile Thr 30 Leu Leu Gly Pro Arg Val Leu Ser Pro Thr Thr Ser Arg Leu Ser Thr 35 Ala Leu Ala Ala Thr Thr His Pro Gly Pro Gln Gln Pro Pro Val Gly 40 Ala Ser Arg Gly Glu Glu Ser Thr Met Leu Ser Arg Phe Pro His Ala Ala Leu Leu Ile His Arg Leu Pro Val Gly Arg Trp Glu Thr 790