LA HIPOCICLOIDE

Un disco regular de radio r en el plano XY rueda por el interior de otro disco fijo de radio R. La curva que describe un punto fijo P de la circunferencia del disco que rueda se denomina hipocicloide. Hallar sus ecuaciones y sus puntos regulares.

Eligiendo t tal y como muestra el dibujo, lo que buscamos es determinar la curva:

$$\alpha: \mathbf{R} \rightarrow \mathbf{R^2}$$

$$t \mapsto (x(t), y(t))$$

Está claro que

$$x(t) = d(O, B) = d(O, A) - d(D, P) = (R-r)\cos(t)-r\sin(\phi)$$

 $y(t) = d(O, C) = d(A, O_1)-d(D, O_1) = (R-r)\sin(t)-r\cos(\phi)$

Para determinar el ángulo ϕ , observamos que, $\phi = \frac{\pi}{2} - t + \theta.$

Ahora bien, como el disco rueda sin deslizar, se verifica que la longitud del arco de la circunferencia que rueda entre P y E coincide con la longitud del arco de la circunferencia fija entre F y E, es decir,

Rt =
$$(\pi + \theta)$$
r por lo que $\theta = \frac{Rt}{r} - \pi$.

Rt = $(\pi + \theta)$ r por lo que $\theta = \frac{Rt}{r} - \pi$. Así, operando se tiene que sen $\phi = -\cos(\frac{R-r}{r}t)$ y $\cos\phi = \sin(\frac{R-r}{r}t)$.

Por lo tanto la Hipocicloide vendrá dada por:

$$\alpha(t) = ((R - r)cost + rcos(\frac{R - r}{r}t), (R - r)sent - rsen(\frac{R - r}{r}t))$$

En cuanto a la regularidad de la hipocicloide, se calcula directamente que

$$\alpha'(t) = (-(R-r)sen(t) - sen(\frac{R-r}{r}t)(R-r), (R-r)cos(t) - cos(\frac{R-r}{r}t)(R-r)$$

Calculamos el módulo:

$$|\alpha'(t)| = \sqrt{2(R-r)^2(1+sen(t)sen(\frac{R-r}{r}t)-cos(t)cos(\frac{R-r}{r}t))} = \sqrt{2}(R-r)\sqrt{1-cos(t+\frac{R-r}{r}t)}$$

Ahora veamos cuando el módulo es igual a cero:

$$\sqrt{2}(R-r)\sqrt{1-\cos(t+\frac{R-r}{r}t)} = 0 \Leftrightarrow \cos(\frac{Rt}{r}) = 1$$
$$\Leftrightarrow \frac{Rt}{r} = 2k\pi \Leftrightarrow t = \frac{2kr\pi}{R}$$

Como $\theta = \frac{Rt}{r} - \pi$,
obtenemos que los puntos singulares de la hipocicloide son los que se obtienen cada vez que el disco que rueda completa una vuelta,
estando todos situados sobre la circunferencia de radio fijo. Ya que $\theta = \frac{Rt}{r} - \pi \Rightarrow \theta = 2k\pi - \pi$

Por otra parte, es fácil ver que la hipocicloide se cierra si y sólo si existen $m,n\in\mathbf{Z}$ tal que:

$$2\pi n = (2r\pi/R)m \Leftrightarrow m/n = R/r \Rightarrow R/r \in \mathbf{Q}$$

Finalmente, observemos que la longitud de un lóbulo de la hipocicloide viene dada por:

$$L = \int_0^{\frac{2r\pi}{R}} |\alpha'(t)| dt = \frac{8r(R-r)}{R}$$

En el caso en que $R/r=m \in \mathbb{N}$, la hipocicloide se cierra en una vuelta, con m lóbulos, con lo que su longitud total sera:

$$L_T = 8R(1 - \frac{1}{m})$$

Y tomando límite en m tenemos:

$$\lim_{n\to\infty} 8R(1-\frac{1}{m}) = 8R$$

Tenemos que $8R>2r\pi$ esto ocurre, pues al aumentar el número de lóbulos, la hipocicloide generaría una circunferencia entera de puntos singulares.

Trabajo realizado por: Gemma Hermida Granado, Mª Carmen Izquierdo Garrido, Cecilia Pérez Ortiz.