Examenul de bacalaureat național 2016 Proba E. c)

Matematică M_tehnologic

BAREM DE EVALUARE ŞI DE NOTARE

Varianta 01

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\begin{bmatrix} -:0,25=1\\4 \end{bmatrix}$	3 p
	$1 - \frac{1}{4} : 0, 25 = 1 - 1 = 0$	2p
2.	$f(-1) = 0$ $f(-1) \cdot f(1) = 0$	3p
	$f(-1)\cdot f(1)=0$	2 p
3.	2x-3=25	3p
	x=14, care verifică ecuația	2p
4.	20% din 100 este egal cu $\frac{20}{100} \cdot 100 = 20$	3 p
	Prețul după scumpire este 100 + 20 = 120 de lei	2p
5.	$AB = \sqrt{(5-2)^2 + (4-4)^2} =$	3 p
	= 3	2p
6.	$\triangle ABC$ este isoscel $\Rightarrow AB = AC =$	3p
	= 6	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 1 & 2 \\ 1 & -2 \end{vmatrix} = 1 \cdot (-2) - 1 \cdot 2 =$	3p
	=-2-2=-4	2 p
b)	$A - 2B = \begin{pmatrix} 1 & 2 \\ 1 & -2 \end{pmatrix} - \begin{pmatrix} 2x & 2 \\ 2y & -2 \end{pmatrix} = \begin{pmatrix} 1 - 2x & 0 \\ 1 - 2y & 0 \end{pmatrix}$	2p
	$\det(A-2B) = \begin{vmatrix} 1-2x & 0 \\ 1-2y & 0 \end{vmatrix} = 0, \text{ pentru orice numere reale } x \text{ §i } y$	3p
	$A \cdot B = \begin{pmatrix} x + 2y & -1 \\ x - 2y & 3 \end{pmatrix}, \ B \cdot A = \begin{pmatrix} x + 1 & 2x - 2 \\ y - 1 & 2y + 2 \end{pmatrix}$	2p
	$\begin{pmatrix} x+2y & -1 \\ x-2y & 3 \end{pmatrix} = \begin{pmatrix} x+1 & 2x-2 \\ y-1 & 2y+2 \end{pmatrix}$, de unde obţinem $x = \frac{1}{2}$, $y = \frac{1}{2}$	3р
2.a)	$1 \circ (-2) = 1 \cdot (-2) + 2 \cdot 1 + 2 \cdot (-2) + 2 =$	3 p
	=-2+2-4+2=-2	2p
b)	$x \circ y = xy + 2x + 2y + 4 - 2 =$	3 p
	= x(y+2)+2(y+2)-2=(x+2)(y+2)-2, pentru orice numere reale x şi y	2p

c)
$$(x+2)\left(\frac{1}{x}+2\right)-2=x \Leftrightarrow (x+2)\left(\frac{1}{x}+2\right)=x+2 \Leftrightarrow (x+2)\left(\frac{1}{x}+1\right)=0$$

 $x=-2 \text{ sau } x=-1$
2p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = (x^3)' + (x^2)' - x' + 1' =$	2p
	$=3x^2 + 2x - 1 + 0 = 3x^2 + 2x - 1, \ x \in \mathbb{R}$	3p
b)	$\lim_{x \to +\infty} \frac{x f'(x)}{f(x)} = \lim_{x \to +\infty} \frac{3x^3 + 2x^2 - x}{x^3 + x^2 - x + 1} =$	2p
	$= \lim_{x \to +\infty} \frac{3 + \frac{2}{x} - \frac{1}{x^2}}{1 + \frac{1}{x} - \frac{1}{x^2} + \frac{1}{x^3}} = 3$	3p
c)	f'(x) = 4	2p
	$3x^2 + 2x - 5 = 0 \Leftrightarrow x = -\frac{5}{3} \text{ sau } x = 1$	3p
2.a)	$\int_{-1}^{1} \left(f(x) - x^3 - 2x \right) dx = \int_{-1}^{1} \left(x^5 + x^3 + 2x - x^3 - 2x \right) dx = \int_{-1}^{1} x^5 dx =$	2p
	$=\frac{x^6}{6} \bigg _{-1}^{1} = \frac{1}{6} - \frac{1}{6} = 0$	3p
b)	$\int_{0}^{2} e^{x} (f(x) - x^{5} - x^{3} + 1) dx = \int_{0}^{2} e^{x} (2x + 1) dx = e^{x} (2x + 1) \Big _{0}^{2} - \int_{0}^{2} 2e^{x} dx =$	3p
	$=5e^2 - 1 - 2(e^2 - 1) = 3e^2 + 1$	2p
c)	F este o primitivă a funcției $f \Rightarrow F'(x) = f(x), x \in \mathbb{R}$	2p
	$F''(x) = f'(x) = 5x^4 + 3x^2 + 2 \ge 0$, pentru orice număr real x , deci F este convexă pe \mathbb{R}	3p