Ruben Ohana

First year phD Student in Machine Learning at Ecole Normale Supérieure, INRIA & LightOn

□+33 6 59 60 75 52 | Seruben.ohana@hotmail.fr | French nationality | In rubenohana

Education

Ecole Normale Supérieure (LPENS & DIENS), INRIA & LightOn

Paris, France

PHD STUDENT - SUPERVISORS: FLORENT KRZAKALA, ALESSANDRO RUDI, LAURENT DAUDET

Dec. 2019 - Nov. 2022

- Development of large-scale kernel methods/algorithms based on optical random features.
- Use of the Optical Processing Unit to develop fast algorithms using large random matrices.
- · Use and development of mathematical tools in nonparametric estimation to determine the efficiency and speed of these algorithms.

Sorbonne Université (ex-UPMC)

Paris, France

MASTER 2 MATHEMATICS AND APPLICATIONS IN STATISTICS

2018 - 2019

• Relevant courses: Convex optimization, Linear models in high dimension, Statistical learning, Machine learning algorithms, Non-parametric estimation, Monte-Carlo methods, Geometrical inference, Statistical graph theory, Compressed sensing, Online convex optimization, Deep learning, Reinforcement learning.

Ecole Normale Supérieure de Paris (ENS)

Paris. France

MASTER 2 ICFP (INTERNATIONAL CENTER FOR FUNDAMENTAL PHYSICS), CONDENSED MATTER TRACK

2017 - 2018

Relevant courses: Statistical physics, Information inference and networks, Complex systems: from physics to social sciences, Symmetries and quantum field theory, Advanced quantum mechanics, Condensed matter theory, Quantum information.

Ecole Supérieure de Physique et de Chimie Industrielles (ESPCI ParisTech)

Paris, France

MASTER-LEVEL Diplôme d'ingénieur, MAJOR IN PHYSICS

2014 - 2018

Relevant courses: Statistics and modelization, Physics of Signals, Complex Systems, Big Data, Numerical analysis, Statistical thermodynamics, Mathematical methods.

Internships

LPENS, Ecole Normale Supérieure

Paris, France

APPROXIMATIONS OF KERNELS AT THE SPEED OF LIGHT USING THE OPU OF LIGHTON (PI: FLORENT KRZAKALA)

May 2019 - Nov. 2019

- Use of approximations of kernels processed by the Optical Processing Unit (OPU) of LightOn.
- Search for the use of these kernel approximations in other machine learning algorithms.
- Looking for mathematical bounds on the accuracy of these kernels generated by the OPU.

LIP6, Sorbonne Université

Paris, France

CONTEXTUALITY FOR QUANTUM INFORMATION NETWORKS (PI: DAMIAN MARKHAM)

April 2018 - June 2018

- Search for dimension witnesses for contextuality and development of contextuality tests.
- Use of the Cabello/Severini/Winter graph formalism to represent contextual tests and derive bounds to contextual inequalities.

MIT LIGO laboratory, Massachusetts Institute of Technology (MIT)

Cambridge, USA

 $Noise\ characterization\ of\ the\ ytterbium-doped\ fiber\ laser\ for\ ligo\ (PI:\ Peter\ Fritschel)$

May 2017 - July 2017

- Implementation of the whole optical set-up for noise characterization of the laser.
- Characterization of the frequency noise, relative intensity noise, polarization noise of the laser data analysis.
- Following of the lectures Gravitational waves and effective field theory methods to model binaries.

Quantum Solid State Physics Group, NTT Basic Research Laboratories

Atsugi, Japan

QUANTUM SPIN HALL EFFECT IN INAS/(IN)GASB DOUBLE QUANTUM WELLS (PI: HIROSHI IRIE)

July 2016 - December 2016

- Implementation of an experimental set-up, data acquisition and analysis experimental proof of a topological gap in our samples.
- Establishment and analysis of a model for understanding the Subnikov-de Haas oscillations of our double quantum wells.

Publications

- [1] Reservoir Computing meets Recurrent Kernels and Structured Transforms **Ohana, R.***, Dong, J.*, Rafayelyan M., Krzakala, F., Arxiv (Submitted to NeurIPS 2020)
- [2] Kernel computations from large-scale random features obtained by Optical Processing Units. **Ohana, R.**., Wacker, J., Dong, J., Marmin, S., Krzakala, F., Filippone, M., Daudet, L. ArXiv (accepted at ICASSP 2020)
- [3] Impact of epitaxial strain on the topological-nontopological phase diagram and semimetallic behavior of InAs/GaSb composite quantum wells. Irie, H., Akiho, T., Couedo, F., **Ohana, R.**, Suzuki, K., Onomitsu, K., Muraki, K. ArXiv, abs/2002.12503. / PhysRevB.101.075433

Academic Projects

ENGIE Challenge Data (rank: 33/185) Predict wind power production from wind turbine operational data (supervised learning). Data preprocessing, feature engineering and model selection.

Scientific Team Project (ESPCI, 18 months) Assembly of an electrospray and study of the nano-drops on a liquid (water or oil) collector, as well as the different modes of the spray. Video of the project available here.

Languages/Computer Science _

English Fluent - Degrees: BULATS (level C1, June 2013), TOEIC (965/990, March 2017).

French Mother tongue.

Computer skills Python (sklearn, numpy, Pytorch), Matlab, R, Arduino, Quantum Espresso, Labview.

Extracurricular Activity _____

Association President of the Langevinium (1 year), the laboratory for students of the ESPCI: implementation of a superconductive train self-propelled by liquid nitrogen, showing of many scientific experiments at the *Collège de France* and the *Grand Palais*.

Music Harp (11 years of practice, *Diplôme de fin d'études du Conservatoire de Rueil-Malmaison*, 1st Medal), music theory.

Teaching Private tutoring (mathematics, quantum physics, chemistry, music theory) to students from various levels.