Analiza

Tie m, $\rho \in \mathbb{N}$, m, $\rho \geqslant 2$ Dil: a> O funcie $f: A \rightarrow \mathbb{R}^{\rho}$, unde $A \subseteq \mathbb{R}$, se numiste $\forall x \in A$, $f(x) = (f_1(x), \dots, f_p(x)) \in \mathbb{R}^p$ b) Junctic $f: A \rightarrow \mathbb{R}$ unde $A \subseteq \mathbb{R}^m$, se numuște $\forall (x, ..., x_m) \in A$, $f(x, ..., x_m) \in \mathbb{R}$ c) fundie $f: A \rightarrow \mathbb{R}^p$ und $A \subseteq \mathbb{R}^m$, se numere $\forall (x_1, ..., x_m) \in A, \ f(x_1, ..., x_m) = f(f_1(x_1, ..., x_m), ..., f_p(x_1, ..., x_m)) \in \mathbb{R}^p$ $(x_1, ..., x_m) - \text{variabile function}$ $(f_1, ..., f_p) - \text{componential Scalare ale function}$ 2. Sirwi în R Def: Orice functie $f: \mathbb{N} \to \mathbb{R}^P$ se numble en de puncte din \mathbb{R}^P . $\forall n \in \mathbb{N}$, $f(n) \stackrel{\text{mot}}{=} (x^m)$, $x^m = (x^m, ..., x^m)$, $\forall m \in \mathbb{N}$. $(x^m)_{m \in \mathbb{N}}$, ..., $(x^m)_{m \in \mathbb{N}}$ sunt siruri de numere reale. Spinin cā XERP esti limita similar (x^n) dacā YE>O 3

Ex:
$$x^{m} = \left(\frac{(-1)^{m}}{m}\right)$$
, $(1-\frac{1}{m})^{m}$) $\subseteq \mathbb{R}^{2}$, $\forall m \geqslant 1$

Esta $x = (0, x^{-1})$ limita similar $(x^{m})^{7}$

Africation (x^{m}) standardiant $(x^{m})^{7}$

Africation (x^{m}) standardiant $(x^{m})^{7}$

Africation (x^{m}) standardiant $(x^{m})^{7}$

Augment $(x^{m}-x)$ of $(x^{m}-x)$ standardiant $(x^{m})^{7}$ divide (x^{m}) sin de (x^{m}) such that $(x^{m}-x)$ is $(x^{m}-x)$ standardiant $(x^{m})^{7}$ and $(x^{m})^{7}$ standardiant $(x^{m})^{7}$ at $(x^{m}-x)^{7}$

Augment $(x^{m}-x)^{7}$ standardiant $(x^{m})^{7}$ standardiant $(x^{m})^{7}$ standardiant $(x^{m})^{7}$ standardiant $(x^{m}-x)^{7}$ standardiant $(x$

=> lim || x^- x || = 0 => lim x^= X brop (caracterizaria cu siruri a punctulor de acumulari) Tie A S IR Multime mevida și XEIR P. Aru loc X E A' <=> 3 (x") Lm: ,=>" x ∈ A' => ¥ n>0 : B(x,n) n (A\ {x3) ≠ Ø $\forall m \in \mathbb{N}^*$ aligem $n = \frac{1}{m} > 0 = > B(x, \frac{1}{m}) \cap (A \setminus \{x\}) \neq \emptyset = >$ => $\exists x^m \in B(x, \frac{1}{m}) \cap (A \setminus \{x\}) => (x^m)$ iste sin a puncte , <= " Tie >> > > 5! (x m) ⊆ A \ {x x 3 cm lim x = x => 3 no EIN a. a. + m> no : 11 x m - x 11 < n => x EB(x,n), + m> mo => B(x,n) N(A\ {x3) + Ø => x & A 3. Limito si continuitate pentru funcții reale de variabilo vectorială Lef: Tie A ⊆ R^m multime nevide, o functie f: A → R l ∈ R si x° ∈ A'. Spurem ca l'este lunts functie f in punctel x. Oacā \(\x^n\)_meIN sin de puncte din A\\\x\^3 cu lim x^m = x^n,

atunci lim
$$f(x^{m}) = l$$
, si vom serie lim $f(x) = l$ sau

lim
$$(x_{1}, ..., x_{m}) \rightarrow (x_{1}^{*}, ..., x_{m}^{*})$$

$$(x_{1}, ..., x_{m}^{*}) \rightarrow (x_{1}^{*}, ..., x_{m}^{*})$$

$$(x_{1}, ..., x_{1}^{*}) \rightarrow (x_{1}^{*}, ..., x_{m}^{*})$$

$$(x_{1}, ..., x_{2}^{*}) \rightarrow (x_{1}^{*}, ..., x_{m}^{*})$$

$$(x_{1}, ..., x_{2}^{*}) \rightarrow (x_{1}^{*}, ..., x_{m}^{*})$$

$$(x_{1}, ..., x_{2}^{*}) \rightarrow (x_{1}^{*}, ..., x_{2}^{*})$$

$$(x_{1}, ..., x_{2}^{*}) \rightarrow (x_{1}^{*}, ..., x_{2}^{*})$$

$$(x_{1}, ..., x_{2}^{*}) \rightarrow (x_{1}^{*}, ..., x_{2}^{*})$$

$$(x_{1}, ..., x_{2}^{*})$$

 $\frac{\sum_{x} A = \mathbb{R}^{2} \setminus \{(0,0)\}}{(X_{1})^{2} \cdot (X_{2})^{2}}, \quad \{(X_{1})^{2} \cdot (X_{2})\} \in A \Rightarrow i \quad x^{0} = (0,0)$ $\frac{1}{1}(x_{1}, x_{2}) = \frac{(X_{1})^{2} \cdot (X_{2})^{2}}{(X_{1})^{2} + (X_{2})^{2}}, \quad \{(X_{1})^{2} + (X_{2})^{2} \in (X_{1})^{2}\}$

 $\frac{\sum_{x} a}{(x_1, x_2)} = \frac{(x_1)^2 \cdot x_2}{(x_1)^4 + (x_2)^4}, x^6 = (0,0)$ Limitele iterate sunt egale și totuși \$ lim (x,x2)-1(0,0) f(x,x2) Del: Tie A ∈ IR™ multime nevida si x° ∈ A N A'. Spumem ca Junctia J: A → IR este: a) commo in panetal x, dace 3 lim f(x) = f(x°)

b) commo promotione A dace f continue in $\forall x \in A$. Ex: f(x) = |x| continua pe \mathbb{R}^m . Del: Fie A = Rm multime ne viva , f: A->R o functie si g(A) = \(\frac{1}{2}\) y \(\text{ER}\) | \(\frac{1}{2}\) x \(\text{E}\) \(\frac{1}{2}\) \(\frac{1}{2}\ a) l'este marginité dacé d'(A) este marginité.
b) l'ési alinge estrende pe 4 dacé 3 x, x, & A o. 8.: f(x) = inf f(A) si f(x,) = sup f(A) numite extende function. $f(x) = \min \left\{ f(A) \right\} = \max \left\{ f(A) \right\}$ Tu A \(\text{R}^m \) o multime compacto \(\text{s}; \) \(\text{J}: A \to \) \(\text{R} \) o \\ \text{function} \(\text{continuous} \) \(\text{Pe} \) \(\text{A} \cdot \) \(\text{Loc} \) \(\text{afino} \) \(\text{J}: A \(\text{P} \) \(\text{R} \) \(\text{loc} \) \(\text{afino} \) \(\text{J}: A \(\text{P} \) \(\text{R} \) \(\text{loc} \) \(\text{afino} \) \(\text{J}: A \(\text{P} \) \(\text{R} \) \(\text{loc} \) \(\text{afino} \) \(\text{J}: A \(\text{P} \) \(\text{R} \) \(\text{loc} \) \(\text{afino} \) \(\text{J}: A \(\text{P} \) \(\text{R} \) \(\text{loc} \) \(

