实验四 数码管七段译码电路

一、实验目的

- 1. 了解组合逻辑电路设计。
- 2. 制作一个数码管显示的7段译码电路,以备后面的实验调用。
- 3. 学习在 QUARTUS II 中使用 Verilog 设计功能模块,并将所生成的功能模块转换成 QUARTUS II 原理图的符号库,以便在使用原理图时调用该库。

二、实验原理:

在电子电路显示部分里,发光二极管(LED)、七段显示数码管、液晶显示(LCD)均是十分常见的人机接口电路。通常点亮一个 LED 所需的电流在 5~20mA 之间,电流愈大,LED 的亮度也高,相对的使用寿命也愈短。若以 10mA 导通电流来估算一个接 5V 的串接电阻值计算应为:

 $(5-1.6) /10 \text{mA} \approx 0.34 \text{K}\Omega_{\circ}$

LED 数码管是由多个发光二极管封在一起组成"8"字型的器件,引线已在内部连接完成,只需引出它们的各个笔划,公共电极。

七段显示数码管分为共阳、共阴二种极性。它们等效成八个 LED 相连电路。

图 1 共阴极七段显示器的 LED 位置定义和等效电路

表 1 共阴极七段显示码十六进制转换表

十六进制码				共阴极七段显示码							
Num	D ₄	D_3	D_2	D_1	g	f	e	d	c	b	a
0	0	0	0	0	0	1	1	1	1	1	1
1	0	0	0	1	0	0	0	0	1	1	0
2	0	0	1	0	1	0	1	1	0	1	1
3	0	0	1	1	1	0	0	1	1	1	1
4	0	1	0	0	1	1	0	0	1	1	0
5	0	1	0	1	1	1	0	1	1	0	1
6	0	1	1	0	1	1	1	1	1	0	1
7	0	1	1	1	0	0	0	0	1	1	1
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	0	1	1	1	1
A	1	0	1	0	1	1	1	0	1	1	1
В	1	0	1	1	1	1	1	1	1	0	0
С	1	1	0	0	0	1	1	1	0	0	1
D	1	1	0	1	1	0	1	1	1	1	0
E	1	1	1	0	1	1	1	1	0	0	1
F	1	1	1	1	1	1	1	0	0	0	1

实验台上的 8 个七段数码管采用共阴极连接。需要注意的是, 8 个数码管的 A 端连接在一起、B 段连接在一起, 以此类推, G 端链接在一起, DP 连接在一起。8 个每个数码管的使能端, 分别是 DS8-DS1 (低电平有效)。

图 2 原理图

如果只是想在最左侧的数码管 DP8 上显示数字"8",则需要禁止其它 7 个数码管,即需要给出使能信号 DS8-DS1=01111111,数据信号 A-G=1111111 即可在

最左侧数码管 DP8 上显示数字"8"。

若需要同时在8个数码管上分别显示不同的数据,则需要给出如图所示的时序对8个数码管进行动态扫描。根据人眼的视觉效应,刷新频率可以设置为60HZ。下图中的AN0-AN7分别对应上述的使能端DS1-DS7。

图 3 数码管动态扫描时序图

三、实验内容

用拨码开关产生 0000~1111, FPGA 器件产生译码电路, 把 16 进制数显示在数码管上。

四、参考程序:

000000

五、引脚分配情况及实验操作步骤

下表为创新开发实验平台8个数码管的引脚分配表

设计端口	芯片引脚	开发板模块	备注
A	AA20	DP1-DP8	8 个数码管的
В	W20		A,B,C,D,E,F,G,DP 段(1
С	R21		点亮)
D	P21		
Е	N21		
F	N20		
G	M21		
DP (小数点)	M19		
ds[7]	V16	DP8	分别为8个数码管的使能
ds[6]	AA17	DP7	端(0点亮)
ds[5]	U22	DP6	
ds[4]	V22	DP5	
ds[3]	W22	DP4	
ds[2]	Y22	DP3	
ds[1]	Y21	DP2	
ds[0]	AB20	DP1	
D[0]	V13	SW4	拨码开关:
D[1]	AA15	SW3	上: "1"
D[2]	M20	SW2	下:"0"
D[3]	N18	SW1	

六、实验步骤和实验结果:

改变 4 个拨码开关"SW4~SW1"的组合状态(2^4 =16 种状态,0000-1111),并在第 1 个独立数码管上显示对应的十六进制数 0~F。

本次实验开关设置: 4个拨码开关 sw1-sw4 分别用于数据的二进制输入 D3-D0, DP8 数码管显示该数据的十六进制。如上所示,4个开关位置 1111,数码管上显示"F"。