Liste des Tests du cours

Charles Vin

2022

Table des matières

1	Template	2
2	Test d'ajustement de Kolmogorov-Smirnov	2
	Le test du \mathcal{X}^2 d'ajustement 3.1 Le \mathcal{X}^2 d'ajustement à une famille paramétrique de loi	3 4
4	Le test d'homogénéité de Kolmogorov-Smirnov	4
5	Test du \mathcal{X}^2 d'indépendance	5
6	Test du \mathcal{X}^2 d'homogénéité	6
7	Test sur les Gaussiennes 7.1 Sur la moyenne	7 7 7
8	Test de la somme des rangs	7
9	Test du signe	8
10	Signe et Rang	9
11	Test d'indépendance de Pearson	10
12	Test de comparaison asymptotique de proportion	11
13	ANOVA	12

Le test du \mathcal{X}^2 d'ajustement

Conditions

- 1. Les X_i sont à valeur dans un ensemble fini (loi discrète). Si a valeur dans \mathbb{N} , on fusionne les classes à partir d'un certain rang choisis
- 2. Test asymptotique : $\forall k \in \{1,\dots,d\}, np_k^{ref}(1-p_k^{ref}) \geq 5 \Leftrightarrow n \geq 20$

Si on ne remplis pas les conditions, on peut fusionner les classes

Hypothèse

$$H_0=p=p^{ref}$$
 i.e. $\forall k\in\{1,\ldots,d\}, p_k=p_k^{ref}$ $H_1=p\neq p^{ref}$ i.e. $\exists k\in\{1,\ldots,d\}: p_k\neq p_k^{ref}$

Avec p^{ref} un vecteur fixé à tester (par exemple pour un lancé de dé $(\frac{1}{6},\dots,\frac{1}{6})$)

Statistique de test

$$D(\bar{p_n}, p^{ref}) = n \sum_{k=1}^d \frac{(p_{k,n}^- - p_k^{ref})^2}{p_k^{ref}} \to_{n \to \infty}^{\mathcal{L}} \mathcal{X}^2(d-1)$$
$$= \sum_{k=1}^d \frac{(N_{k,n} - np_k^{ref})^2}{np_k^{ref}}$$

— $N_{k,n}=\sum_{i=1}^n\mathbbm{1}_{X_ix_k}$ (ce qu'il y a dans le tableau de la consigne) — $p_{k,n}^-=\frac{N_{k,n}}{n}$ les proportions observés

Zone de Rejet

$$\mathcal{R} = \{ D(\bar{p_n}, p^{ref}) \ge h_{\alpha} \}.$$

avec h_{α} le quantile d'ordre $1-\alpha$ de la loi $\mathcal{X}^2(d-1)$

Méthode

1. Etape 0 : On vérifie les conditions

$$\forall k \in \{1, \dots, d\}, n * p_k \ge 5.$$

C'est la condition de Cochran (1954), il avait testé cas possible en observant l'approximation faites.

- 2. Etape 1 : On calcule les effectifs et proportions observées : $N_{k,n}$ et $\hat{p}_{k,n}$
- 3. Etape 2 : Calcul de la statistique de test

$$D = n \sum_{d}^{k=1} \frac{(\hat{p}_{k,n} - p_k)^2}{p_k}.$$

- 4. Etape 3 : Détermination de la zone de rejet au niveau α . On lit h_{α} le quantile d'ordre $1-\alpha$ de la loi $\mathcal{X}^2(d_1)$
- 5. Etape 4: Décisions
 - si $D>h_{\alpha}$, on rejette H_0 (au niveau α).
 - Si $D \leq h_{\alpha}$ on conserve H_0

Bilan de la méthode

Aspects positifs:

- Fonctionne pour toutes les lois
- Facile à faire

Aspects négatifs:

- Problème de consistance. Regrouper les variables par intervalle ruiner l'erreur de seconde espèce.
- Asymptotique
- Dépendant du choix des intervalles. Ce qui n'est pas canonique.

3.1 Le \mathcal{X}^2 d'ajustement à une famille paramétrique de loi

Pratiquement comme avant, pas encore fait en TD, mais copier collé du cours quand même

- 1. Etape 1 : Soit $\hat{\theta}_n$ l'estimateur du maximum de vraisemblance de θ (pour P_{θ}). On estime **tous** les paramètres de la loi $(p_1^{\hat{\theta}_n}, \dots, p_J^{\hat{\theta}_n})$
- 2. Etape 2 : On vas tester l'ajustement de X_1,\ldots,X_n à $P_{\hat{\theta}_n}$ On calcule les fréquences observées $\hat{p}_{k,n}$.
- 3. Etape 3 : Vérification des conditions $np_k^{\hat{\theta}_n}$ et possible regroupement en classes
- 4. Etape 4 : Calcul de la stat de test D
- 5. Etape 5 : Zone de rejet : lecture de H_{α} le quantile d'ordre $1-\alpha$ d'une $\mathcal{X}^2(d-1-M)$ avec M nombre de paramètre.
- 6. Etape 6: Décision
 - $D > h_{\alpha}$ on rejette H_0
 - D ≤ h_{α} on conserve H_0

5 Test du \mathcal{X}^2 d'indépendance

Donnée

```
\begin{array}{l} (X_1,Y_1),\ldots,(X_T,Y_T) \text{ iid appariés.} \\ -X_1 \text{ à valeur dans } A_1,\ldots,A_M \\ -Y_1 \text{ à valeur dans } B_1,\ldots,B_N \end{array}
```

Conditions

- Loi discrète
- n ou T plutôt grand $\forall i < M, j < N: T*\hat{p}_m\hat{q}_m \geq 5$ ou avec la notation en TD $:E_{i,j} \geq 5$

Hypothèse

 $- H_0: X_1 \perp Y_1$ $- H_1: X_1 \perp Y_1$

Statistique de test

$$D = T * \sum_{m=1}^{M} \sum_{n=1}^{N} \frac{(\hat{p}_{m,n} - \hat{p}_{m}\hat{q}_{n})^{2}}{\hat{p}_{m}\hat{q}_{n}}$$
$$= \sum_{m=1}^{M} \sum_{n=1}^{N} \frac{(N_{m,n} - \frac{N_{m,n}N_{n,n}}{T})^{2}}{\frac{N_{m,n}N_{n,n}}{T}}$$

On utilise la deuxième en TD, la fraction est équivalent à $E_{i,j}$ aka le produit en croix à l'intérieur du tableau durant les TD (groupe 2)

Zone de Rejet

— Sous
$$H_0$$
, $D \to \mathcal{X}^2((M-1)(N-1))$
— Sous H_1 , $D \to +\infty$
$$\mathcal{R} = \{D \geq h_\alpha\}.$$

Méthode

Puis calculer la stat de test

$$D = \sum_{\text{chaque case du tableau}} \frac{(N_{1,1} - E_{1,1})^2}{E_{1,1}}. \label{eq:decomposition}$$

Test du \mathcal{X}^2 d'homogénéité

Donnée

- X_1,\ldots,X_{n_1} échantillons iid Y_1,\ldots,Y_{n_2} échantillons iid
- Échantillons indépendant entre eux

Les variables sont toutes à valeurs dans les mêmes classes A_1, \ldots, A_M .

Conditions

Hypothèse

On veut tester l'homogénéité

- $H_0 = X_1$ et Y_1 ont la même loi $\Leftrightarrow \forall m \in \{1, \dots, M\}, P(X_1 \in A_m) = P(Y_1 \in A_m)$
- $-H_1=X_1$ et Y_1 n'ont pas la même loi $\Leftrightarrow \exists m\in\{1,\ldots,M\}$ tel que $P(X_1\in A_m)\neq P(Y_1\in A_m)$