Summer 2011 Kalmer Apinis apinis@in.tum.de

Virtual Machines

Solutions to Sheet 1

Exercise 1: CMa Calculator		4 Points
loadc 4 loadc $ ho(x)$ load dup	$\begin{array}{ll} \operatorname{loadc} & \rho(x) \\ \operatorname{load} & \\ \operatorname{mul} & \\ \operatorname{add} & \end{array}$	load loadc 26 sub div
mul	loadc 1	halt
mul	add	
loadc 3	loadc $ ho(y)$	
Exercise 2: Assembly program	ming	10 Points
loadc 6 $/*n = 6*/$		loadc 0
	loop:	load
/*case n = 0*/	/*n' == 0*/	loadc 1
dup	loadc O	sub
jumpz firsttwo	load	loadc O
	jumpz end	store
/*case n = 1*/		pop
dup	/*calc $F_{n-n'+1}*/$	jump loop
loadc 1	loadc 1	
sub	load	end: /*cleanup*/
jumpz firsttwo	loadc 2	loadc O
	load	store
/*n' = n - 2*/	loadc 1	pop
loadc 2	store	pop
sub	pop	halt
	add	
loadc 1 /* $F_{n-n'-1}$ */		firsttwo:
loadc 1 $/*F_{n-n'}$ */	/*n' = n' - 1*/	halt

2 Points

$$\operatorname{code}_R(e',e) \ \rho = \operatorname{code}_R e' \ \rho$$

$$\operatorname{pop}$$

$$\operatorname{code}_R e \ \rho$$

Exercise 4: Short circuit evaluation

 $\begin{aligned} \operatorname{code}_R \; (e'||\, e) \; \rho = & \operatorname{code}_R \; e' \; \rho \\ & \operatorname{loadc} \; 0 \\ & \operatorname{neq} \\ & \operatorname{jumpz} \; \operatorname{true} \\ & \operatorname{code}_R \; e \; \rho \\ & \operatorname{jump} \; \operatorname{end} \\ & \operatorname{true} \colon \\ & \operatorname{loadc} \; 1 \\ & \operatorname{end} \colon \end{aligned}$

Exercise 5: Conditional Expressions

2 Points

$$\begin{aligned} \operatorname{code}_R \ (b\,?\,e_1:e_2) \ \rho = & \operatorname{code}_R \ b \ \rho \\ & \operatorname{jumpz} \ \operatorname{false} \\ & \operatorname{code}_R \ e_1 \\ & \operatorname{jump} \ \operatorname{end} \\ & \operatorname{false} \colon \\ & \operatorname{code}_R \ e_2 \ \rho \\ & \operatorname{end} \colon \end{aligned}$$