第 3 章

关系模型

----燧人氏语录

Albert Einstein: Any intelligent fool can make things bigger and more complex...

It takes a touch of genius and a lot of courage to move in the opposite direction

牛顿: 把简单的事情考虑得很复杂, 可以发现新领域; 把复杂的现象看得很简单, 可以发现新定律

 $E = MC^2$

电子 汤姆逊

质子 卢瑟福

中子 查德威克

慢中子 费米

裂变 哈恩 迈特纳

U235 波尔

曼哈顿工程 奥本海默

小男孩 广岛

居里家族

TABLE

An arrangement of words, numbers, or signs, or combinations of them, as in parallel columns, to exhibit a set of facts or relations in a definite, compact, and comprehensive form; a synopsis or scheme.

——Webster's Dictionary of the English Language

关系模型的诞生

1970: "A Relational Model of data for Large Shared Data Banks"

E.F.Codd于70年代初提出 关系数据理论。他因此获 得1981年的ACM图灵奖 关系理论建立在集合代数 理论基础之上, 有着坚实 的数学基础

关系模型一统江湖

早期代表系统

- System R; 由IBM研制
- INGRES:由加州Berkeley分校研制

目前主流的商业数据库系统

- Oracle, SQL Server, DB2
- MySQL, PostgreSQL
- OceanBase, GaussDB, 达梦
- Access, SQLite

笛卡尔积 (Car'tesian Product)

域 (Domain)

具有相同数据类型的一组值的集合如整数集合、字符串集合、全体学生集合

一组域 $D_1, D_2, ..., D_n$ 的笛卡尔积为:

$$D_1 \times D_2 \times \dots \times D_n = \{ (d_1, d_2, \dots, d_n) \mid d_i \in D_i, i = 1, \dots, n \}$$

笛卡尔积

笛卡尔积的元素 $(d_1,d_2,...,d_n)$ 称作n元组(tuple)

元组的每一个值 d_i

称作分量(component)

若 D_i 的基数为 m_i

则笛卡尔积的基数为 $\prod_{i=1}^n m_i$

笛卡尔积: 可能的世界

老师集合
$$T = \{t_1, t_2\}$$

学生集合 $S = \{S_1, S_2, S_3\}$
课程集合 $C = \{C_1, C_2\}$

- · T×S×C是个三元组集合,元组 个数为2×3×2
- · 它是所有可能的(老师, 学生, 课程)元组集合

笛卡尔积可表为二维表的形式

老师	学生	课程
t ₁	S ₁	C ₁
t ₁	S ₁	C ₂
t ₁	S ₂	C ₁
•••	•••	•••
t ₂	S ₃	C ₂

关系: 笛卡尔积的子集

笛卡尔积 $D_1 \times D_2 \times \cdots \times D_n$ 的子集称作

在域 D_1, D_2, \ldots, D_n 上的类系

用 $R(D_1, D_2, ..., D_n)$ 表示

R是关系的名字,n是关系的度或目

- guanxi 关系
- > add oil 加油
- > hongbao 红包
- > Gelivable 给力的
- Funny mud pee

关系: 实际的世界

有意义的体现

关系是笛卡尔积中有意义的子集

关系名体现了

现实实体或联系

关系集合包含了真正存在 的实体或发生的联系 Teach(老师、学生、课程)
Assistant(老师、学生、课程)

~ 老师	学生	课程
↓ t ₁	S ₁	C ₁
t ₁	S ₁	C ₂
t ₁	S ₂	C ₁
t ₂	S ₃	C ₂

属性

元组

过江之鲫: 关系实例的数目

 $D1 := \{A,B,C,D,E\}$

 $D2 := \{1,2,3,4\}$

 $D3 := \{ \Psi, \mathcal{L}, \mathcal{A}, \mathcal{T} \}$

D1×D2×D3包含多少个关系?

{A,B,C,D,E,1,2,3,4,甲,乙,丙,丁} 划分为多少个域,每个域多少个元素, 使得笛卡尔积包含的关系数目最多?

关系的性质

P1:

列是同质的,是同一类型的数据,即每一列中的分量来自同一域

P2:

不同的列可以来自 同一域,每列必须 有不同的属性名

P3: 行列的顺序无关紧要

P4:

任意两个元组不能完全相同(集合内不能)有相同的两个元素)

P5:

每一分量必须是不可再分的数据, 称其为作满足第一范式 (1NF) 的关系

关系的性质

列同质

Tno	Sno	Cno
t1	s1	c1
t1	t2	c2

不同质违反了关系对 实体联系的表达,以 及对实体属性的刻画

来自同一域的不同列

Eno	ENAME	MGR
e1	TOM	e2
e2	jerry	null

什么时候两个列会 来自同一个域?

- 一元联系
- 类型相同的属性

关系的性质

分量不可再分

嵌套关系

Sno	Cno
s1	{c1,c2,c3}

1NF关系

Sno	Cno
s1	c1
s1	c2
s1	c3

从查询的角度,深入分析嵌套关系的利弊 声明性查询 VS 路径式查询 数据结构

关系模型 三要素

数据完整性

数据操作

关系模型: 数据结构

单一的数据结构——关系

实体集、联系都表示成关系

关系模型: 数据结构

关系模型:码

溪选码 (Candidate Key)

- 关系中的一个属性组, 其值能唯一标识一个元组
- 若从属性组中去掉任何一个属性, 它就不具有这
 - 一性质了,这样的属性组称作候选码

(如DEPT中的dno, dname都可作为候选码)

任何一个倏选码中的属性称作主属性

(如SC中的sno, cno, DEPT中的dno, dname)

关系模型:码

主码 (PK: Primary Key)

进行数据库设计时,从一个关系的 多个候选码中选定一个作为主码 (如可选定dno作为DEPT的主码)

外码 (FK: Foreign Key)

关系R中的一个属性组,它不是R的码,但它与另一个关系S的码相对应,称这个属性组为R的外码(如S关系中的dno属性)

关系模式:

关系的描述, 记作 $R(A_1, A_2, ..., A_n)$, 包括:

- > 关系名、关系中的属性名
- > 属性向域的映象. 通常说明为属性的类型、长度等
- 》 属性间的数据依赖关系, 比如在特定的时间和教室 只能安排一门课

关系模式是型, 是稳定的

关系:

关系数据库的构成

关系数据库的型

是关系模式的集合,即数据库描述。称作数据库的内涵(Intension)

关系数据库的值

是某一时刻关系的集合。称作数据库的外延(Extension)

数据结构

关系模型 三要素

数据完整性

数据操作

关系操作

关系操作是集合操作

操作的对象及结果都是集合

是一次一集合(Set-at-a-time)的方式

非关系型的数据操作方式是一次一记录

(Record-at-a-time)

关系数据语言的特点

一体化

对象单一,都是关系,因此操作符也单一

非过程化

用户只需提出"做什么",无须说明"怎么做" 存取路径的选择和操作过程由系统自动完成

面向集合的存取方式

操作对象是一个或多个关系,结果是一个新的关系 (一次一关系)

非关系系统是一次一记录的方式

抽象的关系模型查询语言 用谓词来表达查询,只 需描述所需信息的特性 关系 关系 验算 代数 用预定义操作算子的 元组关系验算 域关系验算 执行序列来表达查询

谓词变元是元组

谓词变元是属性列

数据结构

关系模型 三要素

数据完整性

数据操作

实体完整性

关系的主码中的属性值不能为空值

空值:不知道或无意义

意义: 关系对应到现实世界中的实体集, 元组对应到实体, 实体是相互可区分的, 通过主码来唯一标识, 若主码为空, 则出现不可标识的实体, 这是不容许的

DNA	NAME	
null	张三	
ATGC	张三	

参照完整性

如果关系 R_2 的外码 F_k 与关系 R_1 的主码 P_k 相对应,则 R_2 中每个元组的 F_k 值或者等于 R_1 中某个元组的 P_k 值,或者为空值

如果关系 R_2 的某个元组 t_2 参照了关系 R_1 的某个元组 t_1 ,则 t_1 必须存在,也即必须与客观存在的实体发生联系

sno	sname	dno		dno	dname
s1	ТОМ	(d1)		-*(d1)	maths
s2	JERRY	(null)+-	允许为null	d2	physics
s3	ВОВ	(d3)+-	违反参照完整性	GZ	priysics

用户定义的完整性

用户针对具体应用环境定义的完整性约束条件

- sno要求是8位整数,首位是0或1
- 飞行员的飞行里程与星级评定
- 选课人数不能少于10人,多于100人
- 在本地纳税记录超过5年才有购房资格
- 婚姻登记必须购买百年好合保险.....

实体完整性和参照完整性由系统自动支持

系统提供定义和检验用户定义的完整性的机制

课堂练习: 关系模型完整性例子

供应商关系5 (主码是"供应商号")

供应商号	供应商名	所在城市
B01	红星	北京
S10	宇宙	上海
T20	黎明	天津
Z01	立新	重庆

今要向关系P中插入新行,新行的值分别列出如右图所示。哪些行能够插入?

零件关系P(主码是"零件号",外码是"供应商号")

零件号	颜色	供应商号
010	红	B01
312	白	S10
201	蓝	T20

- 1. (null,'黄', T20)
- 2.(201,'红', T20)
- 3.(037, '绿', null)
- 4.(105,'蓝', BO1)
- 5.(101,'黄', T11)

