

Intégration de l'intelligence artificielle dans la gestion de crise

Séminaire 2

Matthieu François Le lundi 20 décembre 2021

Matthieu François 20/12/2021

Détection de NER

Diversification dans la classification

Indice de confiance

Traitement des médias

Objectif

Exploitation des médias lors d'une crise

Matthieu François 20/12/2021

Traitement des médias

Objectif

Exploitation des médias lors d'une crise

Traitement des médias

Objectif

Exploitation des médias lors d'une crise

Transcription de l'audio

ASR

OCR

Détection et reconnaissance du bandeau

10

Framework: pytesseract (R. Smith

2007, C. Patel 2012)

Pipeline: Preprocessing,

détection de texte,

reconnaissance de text

· Open Source

- Développé par HP dans les années 80 puis repris par Google en 2005
- · Disponible en plus de 100 langues
- · Reconnu et éprouvé depuis 2006

Matthieu François 20/12/2021

Framework: pytesseract (R. Smith

2007, C. Patel 2012)

Pipeline: Preprocessing,

détection de texte,

reconnaissance de text

- · Open Source
- Développé par HP dans les années 80 puis repris par Google en 2005
- · Disponible en plus de 100 langues
- · Reconnu et éprouvé depuis 2006

Binarisation

Détection

2 étapes pour la reconnaissance de mots

Algorithme de recherche en faisceau

12

Atlantis a...

Limites : Pas de reconnaissance de l'écriture manuscrite

Reconnaissance plus ou moins correcte selon le preprocessing appliqué en amont

Limites : Pas de reconnaissance de l'écriture manuscrite

Reconnaissance plus ou moins correcte selon le preprocessing appliqué en amont

Reconnaissance 100 % correct qu'avec combinaison de plusieurs transcriptions

Exemple

ALERTE Atlantis a décollé avec succès de Floride pour son dernier INFO SI vol, ultime mission d'une navette spatiale américaine.

î'ù£F"'ä VUI Atlantis a décollé avec succès de Floride pour_s—oñ'dÿemier

vol, ultime mission d'une navette spatiale américaine.

Limites : Pas de reconnaissance de l'écriture manuscrite

Reconnaissance plus ou moins correcte selon le preprocessing appliqué en amont

Reconnaissance 100 % correct qu'avec combinaison de plusieurs transcriptions

Exemple

ALERTE Atlantis a décollé avec succès de Floride pour son dernier INFO SI vol, ultime mission d'une navette spatiale américaine.

î'û£F"'ä VUI Atlantis a décollé avec succès de Floride pour_s—oñ'dÿemier

vol, ultime mission d'une navette spatiale américaine.

Suite : Traitement du texte et affinage des outputs. Une bonne transcription nécessiterait la moyenne de plusieurs d'entre elle

15

Framework: SpeechBrain (M.

Ravanelli 2021)

Pipeline : Conv,

transformers, finetunning

Applications

Séparation de voix superposée

Modèle de Diarisation

Identification de l'émetteur

· Modèle X-vectors

Traduction

· Modèle speech to speech

Transcription

· Modèle speech to text

Framework : SpeechBrain (M.

Ravanelli 2021)

Pipeline: Conv,

transformers, finetunning

Applications

Séparation de voix superposée

Modèle de Diarisation

Identification de l'émetteur

· Modèle X-vectors

Traduction

· Modèle speech to speech

Transcription

Modèle speech to text

wav2vec (A. Baevski et al 2020)

Phase auto supervisée suivit d'une phase de fine tuning

17

Framework: SpeechBrain (M.

Ravanelli 2021)

Pipeline : Conv,

transformers, finetunning

Applications

Séparation de voix superposée

Modèle de Diarisation

Identification de l'émetteur

· Modèle X-vectors

Traduction

· Modèle speech to speech

Transcription

Modèle speech to text

wav2vec (A. Baevski et al 2020)

Phase auto supervisée suivit d'une phase de fine tuning

Common Voice

moz://a

834h de français annotées par 15391 personnes Bruit de fond toléré

18

Pas chanté

Pas haché

Consommation / modèles

19

Limites: Beaucoup de bruit dans la transcription

Sensible au bruit de fond, multi sources

Pas de ponctuation

Matthieu François 20/12/2021

Limites: Beaucoup de bruit dans la transcription

Sensible au bruit de fond, multi sources

Pas de ponctuation

Exemple

- Si vous me permettez, vous le pensez seul puisque l'ensemble. Bien sûr que si. L'ensemble. Qui doivent avoir leur carte à l'UMP. Laissez moi terminer, je vous ai laissé terminer tout à l'heure...
- Il y a clairement un débat politique là dessus. Non. Il y a pleins de pédiatres, pleins d'enseignants qui considèrent qu'à moins de 3 ans que l'école. Non.

21

si vous me u débaté seul puisque l ensemblepèsnleur caruelque laissez moilement taré sur cette question là par exemple pour reprendre que celui là il suffit de regarder les comparaisos internationale

Limites: Beaucoup de bruit dans la transcription

Sensible au bruit de fond, multi sources

Pas de ponctuation

Exemple

- Si vous me permettez, vous le pensez seul puisque l'ensemble. Bien sûr que si. L'ensemble. Qui doivent avoir leur carte à l'UMP. Laissez moi terminer, je vous ai laissé terminer tout à l'heure...
- Il y a clairement un débat politique là dessus. Non. Il y a pleins de pédiatres, pleins d'enseignants qui considèrent qu'à moins de 3 ans que l'école. Non.

si vous me u débaté seul puisque l'ensemblepèsnleur caruelque laissez moilement taré sur cette question là par exemple pour reprendre que celui là il suffit de regarder les comparaisos internationale

Suite: Exploration d'autres modèles comme ceux d'alphacephei, moins récent mais potentiellement avec ponctuation

Natural Language Processing

Objectif

Recherche d'entités nommées (NER)

Permet d'avoir un premier aperçu du contexte

Types

Loc = Localisation

Per = Personne

Org = Organisation

Misc = Miscellanious entity (divers)

Matthieu François 20/12/2021

Natural Language Processing

Objectif

Recherche d'entités nommées (NER)

Permet d'avoir un premier aperçu du contexte

Types

Loc = Localisation

Per = Personne

Org = Organisation

Misc = Miscellanious entity (divers)

Modèles

- Spacy
- CamemBERT finetunné pour la reconnaissance des NER avec wikiner-fr (Nothman et al. at 2013)

24

Natural Language Processing

Objectif

Recherche d'entités nommées (NER)

Permet d'avoir un premier aperçu du contexte

Types

Loc = Localisation

Per = Personne

Org = Organisation

Misc = Miscellanious entity (divers)

Modèles

- Spacy
- CamemBERT finetunné pour la reconnaissance des NER avec wikiner-fr (Nothman et al. at 2013)

25

Apple org is looking at buying U.K. GPE startup for \$1 billion MONEY

PROPN- VERB- VERB- ADP- VERB- PROPN- NOUN- ADP- SYM- NUM- NUM

ASR & OCR

Démonstration

NER Twitter

27

Contexte

- · Situation nouvelle, pas forcément traitée lors de l'entraînement du modèle
- · Peu / pas de temps pour l'annotation de données
- · Évolutions / imprévus de la crise

Objectif

Construire des modèles adaptatifs

Une première comparaison d'efficacité de méthodes

Données

- · 1800 tweets anglais du #wildfire
- 5 classes : canada, usa, grêce, turquie, autre

· 27h de tweets

Matthieu François 20/12/2021

Classification par expression régulières

r'califor?nia|oregon|u\.?s\.?a\.?'

Matthieu François 20/12/2021

Classification par expression régulières

r'califor?nia|oregon|u\.?s\.?a\.?'

Classification par similarité (Glove)

Matthieu François 20/12/2021

Classification par expression régulières

r'califor?nia|oregon|u\.?s\.?a\.?'

Classification par similarité (Glove)

Classification par BERT

31

Les limites

Limites : Expression Régulières

Nécessite de les construire spécifiquement pour chaque crise

Plongement lexicale (embedding)

Nécessite un modèle pré entraîné ce qui rend chaque cas est très spécifique

Ex : cos(California, californie) = 0,75

Réseaux de neurones

Nécessite une annotation et un ré-entraînement au cours du temps

Matthieu François 20/12/2021

Comparaison de scores

Comparaison de scores

Les suites

Suites: Ajout de 90 000 tweets de crises annotés selon 25 classes

Combiner des méthodes pour plus d'efficacité

Intégrer l'humain dans l'apprentissage / la surveillance

Matthieu François 20/12/2021

Indice de confiance

Objectif

Avoir une mesure de confiance du modèle & réduire la quantité d'annotations

Entropie de Shannon

$$H_b(X) = -\mathbb{E}[\log_b P(X)] = \sum_{i=1}^n P_i \log_b \left(\frac{1}{P_i}\right) = -\sum_{i=1}^n P_i \log_b P_i.$$

Matthieu François 20/12/2021

Indice de confiance

Objectif

Avoir une mesure de confiance du modèle & réduire la quantité d'annotations

Entropie de Shannon

$$H_b(X) = -\mathbb{E}[\log_b P(X)] = \sum_{i=1}^n P_i \log_b \left(\frac{1}{P_i}\right) = -\sum_{i=1}^n P_i \log_b P_i.$$

Matthieu François 20/12/2021

Indice de confiance

Objectif

Avoir une mesure de confiance du modèle & réduire la quantité d'annotations

Entropie de Shannon

$$H_b(X) = -\mathbb{E}[\log_b P(X)] = \sum_{i=1}^n P_i \log_b \left(\frac{1}{P_i} \right) = -\sum_{i=1}^n P_i \log_b P_i.$$

Entropie élevée

Entropie croisée

Evolution de l'entropie

- Légère corrélation entre entropie et accuracy
- Mesure intéressante mais insuffisante seule (nous ajouterons de la détection d'évènements, clustering...)

39

Perspectives & Données

Aujourd'hui : Données libres, annotées, d'images de feu

Données libres de tweets, annotées à la main

Échantillon de vidéo de médias

Matthieu François 20/12/2021

Perspectives & Données

Aujourd'hui: Données libres, annotées, d'images de feu

Données libres de tweets, annotées à la main

Échantillon de vidéo de médias

A suivre : Acquisition de corpus de vidéo annotées

ex : REPERE, Lrec 2012, 60h de vidéo de news transcrites, de transcription d'OCR, de détourage de

41

visages

Exploitation des logs du Cwall

Poursuite de l'apprentissage avec Twitter

Situation

Situation

Merci de votre attention

Lundi 20 décembre 2021

