UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA CURSO DE ENGENHARIA ELÉTRICA

Operação e Formação de Preços

Relatório

Planejamento e Regulação de Mercados de Energia Elétrica

Lucas Budde Mior

Professor: Erlon Finardi

Sumário

1	Introdução	3					
2	Questão 1 - Afluência Hidráulica e Demanda de Cada Barra						
3 Questão 2 - Despacho ótimo de cada usina e custo marginal de cada barra							
4	Questão 3 e 4 - Contabilização	8					
	4.1 Sem contrato	8					
	4.2 com contrato	8					
5	Questão 5 - Comentários	8					

1 Introdução

Esse trabalho demonstra a simulação de um sistema elétrico alimentado por uma usina hidrelétrica e 3 térmicas, durante um período de 20 horas. Para o despacho, é utilizado um modelo de otimização implementado em python utilizando a biblioteca Gurobipy. Os cálculos de formação de preço também foram implementados em python, com base no despacho otimizado.

Figura 1: Apresentação do sistema

2 Questão 1 - Afluência Hidráulica e Demanda de Cada Barra

O volume afluente é modelado como uma distribuição uniforme entre 0 e 100hm. Os valores sortados foram os seguintes:

Período	Volume
0	77
1	28
2	17
3	41
4	97
5	18
6	13
7	21
8	95
9	0
10	62
11	4
12	30
13	58
14	23
15	87
16	67
17	60
18	47
19	69

As demandas por barra, por sua vez, são modeladas como uma distribuição normal com média 25 e desvio padrão 2, com exceção da barra 1 que não possui carga. As demandas por barra foram as seguintes:

Período	L1	L2	L3
0	0	24	28
1	0	24	27
2	0	25	23
3	0	22	25
4	0	22	25
5	0	25	27
6	0	24	23
7	0	29	27
8	0	25	24
9	0	25	28
10	0	26	22
11	0	25	25
12	0	26	22
13	0	30	24
14	0	23	24
15	0	24	24
16	0	25	27
17	0	25	21
18	0	27	26
19	0	25	26

3 Questão 2 - Despacho ótimo de cada usina e custo marginal de cada barra

O despacho ótimo obtido pelo modelo de otimização é apresentado a seguir (gerações em MW).

Período	gt1	gt2	gt3	gh	custo
0	30.0	0.0	3.0	19.0	R\$ 63.18
1	30.0	16.2	2.0	2.8	R\$ 197.90
2	30.0	16.3	0.0	1.7	R\$ 248.10
3	30.0	12.9	0.0	4.1	R\$ 129.30
4	19.7	0.0	0.0	27.3	R\$ 19.70
5	30.0	18.2	2.0	1.8	R\$ 255.90
6	30.0	15.7	0.0	1.3	R\$ 270.90
7	30.0	20.0	3.9	2.1	R\$ 251.00
8	23.5	0.0	0.0	25.5	R\$ 23.50
9	30.0	20.0	3.0	0.0	R\$ 372.50
10	30.0	2.2	0.0	15.8	R\$ 71.90
11	30.0	19.6	0.0	0.4	R\$ 332.70
12	30.0	15.0	0.0	3.0	R\$ 177.50
13	30.0	11.8	0.0	12.2	R\$ 91.10
14	30.0	14.7	0.0	2.3	R\$ 208.90
15	29.7	0.0	0.0	18.3	R\$ 29.70
16	30.0	0.0	2.0	20.0	R\$ 76.93
17	30.0	2.0	0.0	14.0	R\$ 71.50
18	30.0	17.3	1.0	4.7	R\$ 119.10
19	30.0	0.0	1.0	20.0	R\$ 68.56

- $\bullet~{\bf gt1}$ Geração na Usina Termelétrica 1
- $\bullet~{\bf gt2}$ Geração na Usina Termelétrica 2
- $\bullet~{\bf gt3}$ Geração na Usina Termelétrica 3
- $\bullet\,$ gh Geração na Usina Hidrelétrica

Em seguida foi realizado os cálculo dos custos marginais de operação de cada barra, e os excedentes de mercado. Na tabela a seguir pode-se visualizar os resultados.

periodo	alfa	f12	f13	f32	cmo1	cmo2	cmo3	EM	EMT
0	18.18	4.0	15.0	-10.0	1.88	1.88	5.00	196.8125	68.64
1	125.50	-12.2	15.0	-10.0	2.00	2.00	5.00	57.1000	14.40
2	185.50	-11.3	13.0	-10.0	2.00	2.00	2.00	-152.1000	0.00
3	73.50	-10.9	15.0	-10.0	2.00	2.00	5.00	105.7000	12.30
4	0.00	12.3	15.0	-10.0	1.00	1.00	5.00	215.3000	109.20
5	179.50	-13.2	15.0	-10.0	2.00	2.00	5.00	4.1000	11.40
6	209.50	-11.7	13.0	-10.0	2.00	2.00	2.00	-176.9000	0.00
7	161.50	-12.9	15.0	-8.1	5.00	5.00	5.00	29.0000	0.00
8	0.00	10.5	15.0	-9.0	1.00	1.00	1.00	25.5000	0.00
9	287.50	-15.0	15.0	-10.0	5.00	5.00	5.00	-107.5000	0.00
10	37.50	3.8	12.0	-10.0	2.00	2.00	2.00	24.1000	0.00
11	263.50	-14.6	15.0	-10.0	3.80	3.80	5.00	-82.7000	0.48
12	117.50	-9.0	12.0	-10.0	2.00	2.00	2.00	-81.5000	0.00
13	37.50	-1.8	14.0	-10.0	2.00	2.00	2.00	16.9000	0.00
14	149.50	-11.7	14.0	-10.0	2.00	2.00	2.00	-114.9000	0.00
15	0.00	4.3	14.0	-10.0	1.61	1.61	1.61	47.5800	0.00
16	36.93	5.0	15.0	-10.0	1.96	1.96	5.00	183.0625	66.88
17	37.50	3.0	11.0	-10.0	2.00	2.00	2.00	20.5000	0.00
18	49.50	-10.3	15.0	-10.0	2.00	2.00	5.00	145.9000	17.10
19	33.56	5.0	15.0	-10.0	1.88	1.88	5.00	186.4375	65.52

4 Questão 3 e 4 - Contabilização

4.1 Sem contrato

A contabilização com ausência de contrato é apresentada a seguir:

4.2 com contrato

A contabilização com contrato é apresentada a seguir:

5 Questão 5 - Comentários