Organization

Introduction

- 2 Sorting
- Selection

What is this Course About?

Clever ways to organize information in order to enable efficient computation

- What do we mean by clever?
- What do we mean by efficient?

What is this Course About?

Clever ways to organize information in order to enable efficient computation

- What do we mean by clever?
 Using eficient data structure.
- What do we mean by efficient?
 To reduce time and space complexity, and to make the designing of algorithm easy.

Data structure

- Lists, Stacks, Queues
- Heaps
- Binary Search Trees
- AVL Trees
- Hash Tables
- Graphs
- Disjoint Sets

Operations on data structure

- Insert
- Delete
- Find
- Merge
- Shortest Paths
- Union

Applications: Used Everywhere!

- Systems
- Theory
- Graphics
- Al
- Other Applications

Perhaps the most important course in the CS curriculum!

Goal of a Deterministic Algorithm

- The solution produced by the algorithm is correct, and
- the number of computational steps is same for different runs of the algorithm with the same input.

Assymptotic Running time

- Worst case time complexity.
- Average case time complexity.
- Amortized time complexity

Assymptotic Running time

- Worst case time complexity.
- Average case time complexity.
- Amortized time complexity

Worst case time complexity

An upper bound on the running time of the algorithm for any input.

Assymptotic Running time

- Worst case time complexity.
- Average case time complexity.
- Amortized time complexity

Worst case time complexity

An upper bound on the running time of the algorithm for any input.

Average case time complexity

The average over the time required to run the algorithm for all possible inputs, where the input is assumed to follow some distribution (known in advance).

Assymptotic Running time

- Worst case time complexity.
- Average case time complexity.
- Amortized time complexity

Worst case time complexity

An upper bound on the running time of the algorithm for any input.

Average case time complexity

The average over the time required to run the algorithm for all possible inputs, where the input is assumed to follow some distribution (known in advance).

Amortized time complexity

The total time needed for a series of input ÷ number of runs

The time complexity is measured as a function of the input size, or the output size, or both.

Specific goal of this lecture

 Becoming familiar with some of the fundamental data structures in computer science

Specific goal of this lecture

- Becoming familiar with some of the fundamental data structures in computer science
- To improve the ability to solve problems abstractly
 - data structures are the building blocks

Specific goal of this lecture

- Becoming familiar with some of the fundamental data structures in computer science
- To improve the ability to solve problems abstractly
 - data structures are the building blocks
- To improve the ability to analyze your algorithms
 - to prove correctness
 - analyzing the time complexity, and
 - improving the time complexity if possible

The Sorting Problem

Input:

A sequence of n numbers a_1, a_2, \ldots, a_n

Output:

A permutation (reordering) a'_1, a'_2, \ldots, a'_n of the input sequence such that $a'_1 \leq a'_2 \leq \ldots \leq a'_n$.

The Sorting Problem

Input:

A sequence of n numbers a_1, a_2, \ldots, a_n

Output:

A permutation (reordering) a'_1, a'_2, \ldots, a'_n of the input sequence such that $a'_1 \leq a'_2 \leq \ldots \leq a'_n$.

Example

Before sorting: 70 85 12 56 42 37 5

After sorting: 5 12 37 42 56 70 85

Sorting

Structure of Data:

- Usually, the data to be sorted is a part of a collection of records
- Each record contains a key. The sorting of records is performed with respect to the values of the key.
- During the sorting, the keys are arranged along with the data attached with them.

Definitions

Internal Sort

The data to be sorted is all stored in the computer's main memory.

External Sort

Some of the data to be sorted might be stored in some external, slower, device.

In Place Sort

The amount of extra space required to sort the data is a small constant, and is not dependent of the input size.

STABLE sort

It preserves relative order of records with equal keys

D Aaron	4	A	664-480-0023	097 Little
Andrews	3	A	874-088-1212	121 Whitman
Battle	4	U	991-878-4944	308 Blair
Chen	2	Α	884-232-5341	11 Dickinson
Fox	1	A	243-456-9091	101 Brown
Furia	3	A	766-093-9873	22 Brown
Gazsi	4	В	665-303-0266	113 Walker
Kanaga	3	В	898-122-9643	343 Forbes
Rohde	3	A	232-343-5555	115 Holder
Quilici	1	U	343-987-5642	32 McCosh

Fox	1	A	243-456-9091	101 Brown
Quilici	1	Ü	343-987-5642	32 McCosh
Chen	2	A	884-232-5341	11 Dickinson
Kanaga	3	В	898-122-9643	343 Forbes
Andrews	3	A	874-088-1212	121 Whitman
Furia	3	A	766-093-9873	22 Brown
Rohde	3	A	232-343-5555	115 Holder
Battle	4	O	991-878-4944	308 Blair
Gazsi	4	В	665-303-0266	113 Walker
Aaron	4	A	664-480-0023	097 Little

Insertion Sort

Insertion Sort

```
Algorithm

Line 1 for j \leftarrow 2 to n

Line 2 do key = A[j]

/* Insert A[j] in the sorted list A[1,2,\ldots,j-1] */

Line 3 i \leftarrow j-1

Line 4 while i > 0 and A[i] > key

Line 5 do A[i+1] \leftarrow A[i]

Line 6 i \leftarrow i-1

Line 7 A[i+1] \leftarrow key
```

Insertion Sort

```
Algorithm
```

```
Line 1 for j \leftarrow 2 to n

Line 2 do key = A[j]

/* Insert A[j] in the sorted list A[1,2,\ldots,j-1] */
Line 3 i \leftarrow j-1

Line 4 while i > 0 and A[i] > key

Line 5 do A[i+1] \leftarrow A[i]

Line 6 i \leftarrow i-1

Line 7 A[i+1] \leftarrow key
```

Line number	1	2	3	4	5	6	7
times executed	n-1	n-1	n-1	$\sum_{j=2}^{n} t_j$	$\sum_{j=2}^{n} (t_j - 1)$	$\sum_{j=2}^{n} (t_j - 1)$	n-1

 $t_i \longrightarrow$ number of times **while** statement is executed in iteration j.

= number of elements greater than A[j] in the input array

= i - 1 in the worst case

Analysis

Line number	1	2	3	4	5	6	7
times executed	n — 1	n — 1	n — 1	$\sum_{j=2}^{n} t_j$	$\sum_{j=2}^{n}(t_{j}-1)$	$\sum_{j=2}^{n}(t_{j}-1)$	n - 1

 $t_j \longrightarrow$ number of times **while** statement is executed in iteration j.

- = number of elements greater than A[j] in the input array
- = j 1 in the worst case

Time Complexity

Time required to run the algorithm

$$\leq 4(n-1)+3\sum_{j=2}^{n}t_{j}$$

 $\leq kn^2$ for some constant k

$$= O(n^2)$$

Bubble Sort

An example

1	8	4	6	9	2	3	
	i = 2					j	
1	2	8	4	6	9	3	
		i = 3				j	
1	2	3	8	4	6	9	
			i = 4			j	
1	2	3	4	8	6	9	
				i = 5		j	
1	2	3	4	6	8	9	
	i = 6 j						
1	2	3	4	6	8	9	
	_	_	_	_		i = 7	
						j	

Algorithm

```
Line 1 for i \leftarrow 1 to n / * n = \text{length}(A) * /

Line 2 do for j = \text{length}(A) downto i + 1

/ * \text{fill } A[i] \text{ by } \min\{A[j], j = i, i + 1, \dots, n \} * /

Line 3 do if A[j] < A[j-1] then \exp(A[j], A[j-1])
```

```
Time Complexity: O(n^2)
```

Minor Improvement Line 1 FLAG = false; i = 1Line 2 while FLAG = false do Line 3 FLAG = true Line 4 for i = longth(A) downto i + 1 do

```
Line 4 for j = \operatorname{length}(A) downto i+1 do 

/* fill A[i] by \min\{A[j], j = i, i+1, \ldots, n\} */
Line 5 if A[j] < A[j-1] then
Line 6 FLAG = false
Line 7 exchange(A[j], A[j-1])
Line 8 i = i+1
```

Minor Improvement

```
Line 1 FLAG = false; i=1

Line 2 while FLAG = false do

Line 3 FLAG = true

Line 4 for j = \text{length}(A) downto i+1 do

/* fill A[i] by \min\{A[j], j=i, i+1, \ldots, n\} */

Line 5 if A[j] < A[j-1] then

Line 6 FLAG = false

Line 7 exchange(A[j], A[j-1])

Line 8 i=i+1
```

Time Complexity

Here iteration terminates if no exchange takes place in an iteration. Still worst case time complexity remains $O(n^2)$.

Minor Improvement

```
Line 1 FLAG = false; i=1

Line 2 while FLAG = false do

Line 3 FLAG = true

Line 4 for j= length(A) downto i+1 do

/* fill A[i] by \min\{A[j], j=i, i+1, \ldots, n\} */

Line 5 if A[j] < A[j-1] then

Line 6 FLAG = false

Line 7 exchange(A[j], A[j-1])

Line 8 i=i+1
```

Time Complexity

Here iteration terminates if no exchange takes place in an iteration. Still worst case time complexity remains $O(n^2)$.

Example: 8 7 6 5 4 3 2 1

Quick Sort

QSORT(A, p, q)

- 1. If $p \ge q$, EXIT.
- 2. Compute $s \leftarrow$ correct position of A[p] in the sorted order of the elements of A from p-th location to q-th location.
- 3. Move the pivot A[p] into position A[s].
- 4. Move the remaining elements of A[p-q] into appropriate sides.
- 5. Recursively sort the segments to the left and right of the pivot.
- 5a. QSORT(A, p, s 1);
- 5b. QSORT(A, s + 1, q).

Quick Sort - Detailed Algorithm

QSORT(A, p, q)

- 1. **if** $p \ge q$, EXIT.
- 2 & 4. Compute $j \leftarrow$ correct position of A[p] in the sorted order of the elements of A from p-th location to q-th location.
 - 2a. pivot = A[p]; i = p + 1; j = q
 - 2b. while (i < j) do
 - 2c. while $A[i] \leq \text{pivot do } i = i + 1$
 - 2d. while A[j] > pivot do j = j 1
 - 2e. if i < j then SWAP (A[i], A[j])
 - 3. Move the pivot A[p] into position A[s].
 - 3a. SWAP(A[p], A[j])
 - 5. Recursively sort the segments to the left and right of the pivot.
 - 5a. QSORT(A, p, s-1);
 - 5b. QSORT(A, s + 1, q).

Complexity Results of QSORT

- An INPLACE algorithm
- The worst case time complexity is $O(n^2)$.
- The average case time complexity is $O(n \log n)$.

Complexity Results of QSORT

- An INPLACE algorithm
- The worst case time complexity is $O(n^2)$.
- The average case time complexity is $O(n \log n)$.

Worst case analysis

- In each level of recursion, total number of comparisons = O(n).
- Number of levels of recursion = O(n) in the worst case.

Total time: $O(n^2)$ in the worst case.

Complexity Results of QSORT

- An INPLACE algorithm
- The worst case time complexity is $O(n^2)$.
- The average case time complexity is $O(n \log n)$.

Worst case analysis

- In each level of recursion, total number of comparisons = O(n).
- Number of levels of recursion = O(n) in the worst case.

Total time: $O(n^2)$ in the worst case.

Example:

```
array
[3, 1, 4, 4, 8, 2, 7]
[3, 1, 2, 4, 8, 4, 7]
[2, 1], 3, [4, 4, 8, 2, 7]
1, 2, 3, [4, 4, 8, 7]
1, 2, 3, 4, [4, 8, 8]
1, 2, 3, 4, 4, [8, 7]
1, 2, 3, 4, 4, [7], 8
1. 2. 3. 4. 4. 7. 8
```

pivot

4 D > 4 P > 4 B > 4 B > B 9 9 P

 $T(n) \longrightarrow \text{Expected time taken by the QSORT algorithm on an input of size } n.$

Inductive proof of $T(n) = O(n \log n)$

 $T(n) \longrightarrow \text{Expected time taken by the QSORT algorithm on an input of size } n$.

Inductive proof of $T(n) = O(n \log n)$

• Assumption: pivot can lie anywhere in [1, 2, ..., n] of the input array with equal probability.

 $T(n) \longrightarrow \text{Expected time taken by the QSORT algorithm on an input of size } n.$

Inductive proof of $T(n) = O(n \log n)$

- Assumption: pivot can lie anywhere in [1, 2, ..., n] of the input array with equal probability.
- $T(n) = \frac{1}{n}[T(1) + T(n) + \sum_{q=1}^{n-1}(T(q) + T(n-q))] + O(n).$
- $\frac{1}{n}(T(1) + T(n-1)) = O(n)$ since T(1) = 1 and $T(n-1) = O(n^2)$.

 $T(n) \longrightarrow \text{Expected time taken by the QSORT algorithm on an input of size } n$.

Inductive proof of $T(n) = O(n \log n)$

- Assumption: pivot can lie anywhere in [1, 2, ..., n] of the input array with equal probability.
- $T(n) = \frac{1}{n}[T(1) + T(n) + \sum_{q=1}^{n-1}(T(q) + T(n-q))] + O(n)$.
- $\frac{1}{n}(T(1) + T(n-1)) = O(n)$ since T(1) = 1 and $T(n-1) = O(n^2)$.
- $T(n) = \frac{2}{n} \sum_{k=1}^{n-1} T(k) + O(n) \le \frac{2}{n} \sum_{k=1}^{n-1} (ak \log k + b) + O(n)$ = $\frac{2a}{n} \sum_{k=1}^{n-1} k \log k + \frac{2b}{n} (n-1) + O(n)$

Average Case Analysis of Quick Sort

 $T(n) \longrightarrow \text{Expected time taken by the QSORT algorithm on an input of size } n.$

Inductive proof of $T(n) = O(n \log n)$

- Assumption: pivot can lie anywhere in [1, 2, ..., n] of the input array with equal probability.
- $T(n) = \frac{1}{n}[T(1) + T(n) + \sum_{q=1}^{n-1}(T(q) + T(n-q))] + O(n).$
- $\frac{1}{n}(T(1) + T(n-1)) = O(n)$ since T(1) = 1 and $T(n-1) = O(n^2)$.
- $T(n) = \frac{2}{n} \sum_{k=1}^{n-1} T(k) + O(n) \le \frac{2}{n} \sum_{k=1}^{n-1} (ak \log k + b) + O(n)$ = $\frac{2a}{n} \sum_{k=1}^{n-1} k \log k + \frac{2b}{n} (n-1) + O(n)$
- Using $\sum_{k=1}^{n-1} k \log k \le \frac{1}{2} n^2 \log n \frac{1}{8} n^2$, we have
- $T(n) = \frac{2a}{n} \left(\frac{n^2 \log n}{2} \frac{n^2}{8} \right) + \frac{2b}{n} (n-1) + O(n)$

Average Case Analysis of Quick Sort

 $T(n) \longrightarrow \mathsf{Expected}$ time taken by the QSORT algorithm on an input of size n.

Inductive proof of $T(n) = O(n \log n)$

- Assumption: pivot can lie anywhere in [1, 2, ..., n] of the input array with equal probability.
- $T(n) = \frac{1}{n}[T(1) + T(n) + \sum_{q=1}^{n-1}(T(q) + T(n-q))] + O(n).$
- $\frac{1}{n}(T(1) + T(n-1)) = O(n)$ since T(1) = 1 and $T(n-1) = O(n^2)$.
- $T(n) = \frac{2}{n} \sum_{k=1}^{n-1} T(k) + O(n) \le \frac{2}{n} \sum_{k=1}^{n-1} (ak \log k + b) + O(n)$ = $\frac{2a}{n} \sum_{k=1}^{n-1} k \log k + \frac{2b}{n} (n-1) + O(n)$
- Using $\sum_{k=1}^{n-1} k \log k \le \frac{1}{2} n^2 \log n \frac{1}{8} n^2$, we have

•
$$T(n) = \frac{2a}{n} \left(\frac{n^2 \log n}{2} - \frac{n^2}{8}\right) + \frac{2b}{n}(n-1) + O(n)$$

= $an \log n - \frac{1}{4}an + 2b + O(n) \le an \log n + b$
(since we can choose a large enough such that $\frac{an}{4} > O(n) + b$)

Proof of $\sum_{k=1}^{n-1} k \log k \le \frac{1}{2} n^2 \log n - \frac{1}{8} n^2$

Observations:

- In each level of recursion, total number of comparisons = O(n).
- Thus, we need to reduce the number of levels of recursion.

Observations:

- In each level of recursion, total number of comparisons = O(n).
- Thus, we need to reduce the number of levels of recursion.

Avenue: Split each sub-array under consideration, into two equal halves using the median of that sub-array as the *pivot*.

Observations:

- In each level of recursion, total number of comparisons = O(n).
- Thus, we need to reduce the number of levels of recursion.

Avenue: Split each sub-array under consideration, into two equal halves using the median of that sub-array as the *pivot*.

Reason: If there are k levels then $2^k = n$ $\implies k = \log_2 n$.

Observations:

- In each level of recursion, total number of comparisons = O(n).
- Thus, we need to reduce the number of levels of recursion.

Avenue: Split each sub-array under consideration, into two equal halves using the median of that sub-array as the *pivot*.

Reason: If there are k levels then $2^k = n$

 $\implies k = \log_2 n.$

Tool: Median of an array of n elements can be computed in O(n) time.

Observations:

- In each level of recursion, total number of comparisons = O(n).
- Thus, we need to reduce the number of levels of recursion.

Avenue: Split each sub-array under consideration, into two equal halves using the median of that sub-array as the *pivot*.

Reason: If there are k levels then $2^k = n$

 $\implies k = \log_2 n.$

Tool: Median of an array of n elements can be computed in O(n) time.

Time Complexity of the algorithm is $O(n \log_2 n)$.

Observations:

- In each level of recursion, total number of comparisons = O(n).
- Thus, we need to reduce the number of levels of recursion.

Avenue: Split each sub-array under consideration, into two equal halves using the median of that sub-array as the *pivot*.

Reason: If there are k levels then $2^k = n$

 $\implies k = \log_2 n$.

Tool: Median of an array of n elements can be computed in O(n) time.

Time Complexity of the algorithm is $O(n \log_2 n)$.

Difficulty: The linear time algorithm for computing median is difficult to implement.

Randomized Quick Sort

An Useful Concept - The Central Splitter

It is an index s such that the number of elements less (resp. greater) than A[s] is at least $\frac{n}{4}$.

Randomized Quick Sort

An Useful Concept - The Central Splitter

It is an index s such that the number of elements less (resp. greater) than A[s] is at least $\frac{n}{4}$.

- The algorithm randomly chooses a key, and checks whether it is a central splitter or not.
- If it is a central splitter, then the array is split with that key as was done in the QSORT algorithm.
- It can be shown that the expected number of trials needed to get a central splitter is constant.

Randomized Quick Sort

RandQSORT(A, p, q)

- 1: If $p \ge q$, then EXIT.
- 2: While no central splitter has been found, execute the following steps:
 - 2.1: Choose uniformly at random a number $r \in \{p, p+1, \dots, q\}$.
 - 2.2: Compute s = number of elements in A that are less than A[r], and
 - t = number of elements in A that are greater than A[r].
 - 2.3: If $s \ge \frac{q-p}{4}$ and $t \ge \frac{q-p}{4}$, then A[r] is a central splitter.
- 3: Position A[r] in A[s+1], put the members in A that are smaller than the central splitter in $A[p \dots s]$ and the members in A that are larger than the central splitter in $A[s+2 \dots q]$.
- 4: RandQSORT(A, p, s);
- 5: RandQSORT(A, s + 2, q).

Fact: Step 2 needs O(q - p) time.

Question: How many times Step 2 is executed for finding a

central splitter ?

Fact: Step 2 needs O(q - p) time.

Question: How many times Step 2 is executed for finding a central splitter?

Result:

The probability that the randomly chosen element is a central splitter is $\frac{1}{2}$.

Fact: Step 2 needs O(q - p) time.

Question: How many times Step 2 is executed for finding a central splitter?

Result:

The probability that the randomly chosen element is a central splitter is $\frac{1}{2}$.

Implication

- The expected number of times the Step 2 needs to be repeated to get a central splitter is 2.
- Thus, the expected time complexity of Step 2 is O(n)

Time Complexity

- Worst case size of each partition in *j*-th level of recursion is $n \times (\frac{3}{4})^j$.
- Number of levels of recursion = $\log_{\frac{4}{3}} n = O(\log n)$.
- Recurrence Relation of the time complexity: $T(n) = 2T(\frac{3n}{4}) + O(n) = O(n \log n)$

Merge Sort - A divide and conquer algorithm

- Divide the list into two halves
- Sort each half separately
- Merge the sorted halves into one sorted array

Mergesort - Example

Merge Sort

Mergesort - Example

Definition

A heap is a complete binary tree with elements from a partially ordered set, such that the element at every node is less than (or equal to) the elements in the subtree rooted at that node.

Definition

A heap is a complete binary tree with elements from a partially ordered set, such that the element at every node is less than (or equal to) the elements in the subtree rooted at that node.

As it is a complete binary tree, it can be represented in an array, where

- root is at location 1.
- The children of node i (if exists) are at locations 2i and 2i + 1.
- The parent of a node i is at location $\frac{i}{2}$

- Because of its structure, a heap of height k will have between 2^k and $2^{k+1}1$ elements. Therefore a heap with n elements will have height $= \lfloor \log_2 n \rfloor$.
- Because of the heap property, the minimum element will always be present at the root of the heap. Thus the *findmin* operation will have worst-case O(1) running time.

- Because of its structure, a heap of height k will have between 2^k and $2^{k+1}1$ elements. Therefore a heap with n elements will have height = $\lfloor \log_2 n \rfloor$.
- Because of the heap property, the minimum element will always be present at the root of the heap. Thus the *findmin* operation will have worst-case O(1) running time.

Heap can be used to implement priority queue

The insert routine in priority queue (heap) H is as follows:

- Let n be the size of the heap.
 - Insert the new element x in position H[n+1].
 - Adjust the location of H[n+1]
 - Let i be the current location of x (* initially i = n + 1 *)
 - while not $(H[i] \ge H[\frac{i}{2}])$ or (i = 1) do swap $(H[i], H[\frac{i}{2}])$

- Because of its structure, a heap of height k will have between 2^k and $2^{k+1}1$ elements. Therefore a heap with n elements will have height = $\lfloor \log_2 n \rfloor$.
- Because of the heap property, the minimum element will always be present at the root of the heap. Thus the *findmin* operation will have worst-case O(1) running time.

Heap can be used to implement priority queue

The insert routine in priority queue (heap) H is as follows:

- Let n be the size of the heap.
- Insert the new element x in position H[n+1].
- Adjust the location of H[n+1]
 - Let i be the current location of x (* initially i = n + 1 *)
 - while not $(H[i] \ge H[\frac{i}{2}])$ or (i = 1) do swap $(H[i], H[\frac{i}{2}])$

Priority queue (implemented as a heap) can be maintained in $O(\log n)$ time, where n is the maximum size of the heap.

Heap Sort

Heapify(A, i)

```
Line 1: \ell \leftarrow \text{left}(i) = 2i; r \leftarrow \text{right}(i) = 2i + 1
```

Line 2: **if** $\ell \le n$ and $A[\ell] > A[i]$ **then** largest $\longleftarrow \ell$ **else** largest $\longleftarrow r$

Line 3: **if** $r \le n$ and A[r] > A[largest] **then** largest $\longleftarrow r$

Line 4: **if** largest $\neq i$ **then** SWAP(A[i], A[largest]); Heapify(A, largest)

BuildHeap(A)

Line 1: **for** $i = \lfloor \frac{n}{2} \rfloor$ downto1

Line 2: Heapify(A, i)

Analysis of Heapify

Trivial Analysis

- Time required for settling relation between A[i], A[2i] and A[2i+1] is O(1)
- $T(n) \longrightarrow \text{Time complexity for running Heapify for } A[1]$
- Maximum number of children of one child of A[1] is $\frac{2n}{3}$
- Thus, $T(n) = T(\frac{2n}{3}) + O(1) = O(\log n)$

Time complexity for BuildHeap is $O(n \log n)$.

Analysis of Heapify

Tighter Analysis

Fact: In an n element heap, the number of nodes at height h is at most $\lceil \frac{n}{2^{h+1}} \rceil$.

Time complexity for BuildHeap

$$= \sum_{h=0}^{\lfloor \log n \rfloor} \lceil \frac{n}{2^{h+1}} \rceil (h)$$

= $O(n \sum_{h=0}^{\lfloor \log n \rfloor} \frac{h}{2^h}) = 2n$

Heapsort

```
HeapSort(A)
```

Line 1: **for** $i = \lfloor \frac{n}{2} \rfloor$ downto1 **do** Heapify (A, i)

Line 2: **for** m = ndownto2 **do**

SWAP(A[i], A[m])

if m > 2 then Heapify $(A[1, 2, \dots, m-1], 1)$

Heapsort

Analysis

- Time for deletion of a node from a Heap containing k nodes is at most $2\lfloor \log k \rfloor$
- So, the total time complexity $= 2 \sum_{k=1}^{n-1} \lfloor \log k \rfloor$
- $\sum_{k=1}^{n-1} \lfloor \log k \rfloor = \frac{\log 2 + \log 3 + \log 4 + \log 5 + \log 6 + \log 7 + \dots}{\leq 2 \log 2 + 4 \log 4 + \dots 2^{\lfloor \log n \rfloor 1} (\lfloor \log n \rfloor 1) + \lfloor \log n \rfloor + (\lfloor \log n \rfloor + 1) + \dots + \lfloor \log (n-1) \rfloor$ $\leq \sum_{k=1}^{\lfloor \log n \rfloor - 1} k 2^k + \lfloor \log n \rfloor (n-2^{\lfloor \log n \rfloor})$
- $\sum_{k=1}^{\lfloor \log n \rfloor} k 2^k = (\lfloor \log n \rfloor 2) 2^{\lceil \log n \rceil} + 2$
- substituting, we have Total time required = $2n \log n - 4n + 4 = O(n \log n)$

Lower Bound for Sorting

Lower Bound for Sorting

Decision tree for Bubble Sort

Given string x_1, x_2, x_3

Result

Let ℓ be the number of leaves in a binary tree, and d be the depth of the tree, then $\ell \leq 2^d$, i.e., $d \geq \lceil \log_2 \ell \rceil$

In our case, $\ell = n!$. Thus $d \geq \lceil \log_2 n! \rceil$

Lower Bound for Sorting

Any algorithm to sort n items by comparison of keys must do at least $\lceil \log_2 n! \rceil$, or approximately $\lceil n \log_2 n - 1.5n \rceil$ comparisons in the worst case.

Proof:

```
\begin{aligned} \log_2 n! &= \sum_{j=1}^n \log_2 j \\ &\geq \int_1^n \log_2 x dx \\ &= \log_2 e \int_1^n \log_e x dx \\ &= \log_2 e [x \log_e x - x]_1^n \\ &= n \log_2 n - 1.44n \text{ (Putting } \log_2 e = 1.44\text{)} \end{aligned}
```

Lower Bound for Sorting - more stronger result

Average number of comparisons done by an algorithm to sort n items by comparison of keys is at least $|\log_2 n!| = |n\log_2 n - 1.5m|$

Proof: Average number of comparisons = Average path length in the decision tree with n! leaves.

$$= \frac{\text{Total path length of all leaves in the decision tree}}{n!} = \frac{n! \lfloor \log_2 n! \rfloor + (n! - 2^{\lfloor \log_2 n! \rfloor})}{n!}$$

$$= \lfloor \log n! \rfloor + \epsilon$$
, where $0 < \epsilon < 1$ since $n! - 2^{\lfloor \log_2 n! \rfloor} < \frac{n!}{2}$

Lower Bound for Sorting - more stronger result

The minimum of the sum of path lengths with ℓ leaves is $\ell \lfloor \log_2 \ell \rfloor + 2(\ell - 2^{\lfloor \log_2 \ell \rfloor})$

Proof:

- If ℓ is a power of 2, then all the leaves are in level $\log \ell$. Thus, the sum of path lengths is $\ell \log_2 \ell$.
- If ℓ is not a power of 2, then the depth of the tree is $d = \lceil \log_2 \ell \rceil$, and the leaves are in d-th and d-1-th level.
- The sum of length of all paths up to d-1-th level is $\ell(d-1)$.
- For each leaf in level d, 1 is to be added.
- Note that, at level d-1, k_1 nodes have two children and k_2 nodes have no children. Thus, $k_1+k_2=2^{d-1}$ and $2k_1+k_2=\ell$.
- Thus, the number of leaves in level d is $2(\ell 2^{d-1})$.
- Thus, the sum of path lengths = $\ell(d-1) + 2(\ell-2^{d-1}) = \ell \lfloor \log_2 \ell \rfloor + 2(\ell-2^{\lfloor \log_2 \ell \rfloor}).$

Counting Sort

Input: A sequence A of n integers, each one lies in $\{1, 2, ..., m\}$.

Output: The sequence *A* in sorted order.

Algorithm

- Step 1: In a linear scan compute frequency f_i of each number $i \in \{1, 2, \dots, m\}$
- Step 2: Write the number i f_i times in the array A starting from its position 1. This needs O(n) time.

Counting Sort

Input: A sequence A of n integers, each one lies in $\{1, 2, ..., m\}$.

Output: The sequence *A* in sorted order.

Algorithm

- Step 1: In a linear scan compute frequency f_i of each number $i \in \{1, 2, ..., m\}$
- Step 2: Write the number i f_i times in the array A starting from its position 1. This needs O(n) time.

Fallacy

Question: Does it violate the lower bound of the sorting problem? Answer: No. The reason is that the computational model for sorting is different.

Sorting in Read-only memory

Input data resides in a read-only array Output is produced in some other output device

Trivial algorithm — $O(n^2)$

Sorting in Read-only memory

Input data resides in a read-only array Output is produced in some other output device

Trivial algorithm — $O(n^2)$

With k space

- The whole array is split into k equal parts. start and end indices of each part is stored in an array.
- Initially, a min-heap is formed with the minimum element in each part.
 with each element, its part number is noted.

$$---O(n)$$
 time.

 The minimum element is reported, and deleted from the heap. The minimum element of the corresponding part is obtained by a linear scan in that part, and is put in the heap.

$$---O(\frac{n}{k})$$
 time.

Sorting in Read-only memory

Input data resides in a read-only array Output is produced in some other output device

Trivial algorithm — $O(n^2)$

With k space

- The whole array is split into *k* equal parts. start and end indices of each part is stored in an array.
- Initially, a min-heap is formed with the minimum element in each part.
 with each element, its part number is noted.

---O(n) time.

 The minimum element is reported, and deleted from the heap. The minimum element of the corresponding part is obtained by a linear scan in that part, and is put in the heap.

$$---O(\frac{n}{k})$$
 time.

The overall time complexity is $O(\frac{n^2}{k})$ with O(k) space

Finding extreme elements

- Finding the smallest number needs n-1 comparisons.
- Finding smallest and largest numbers need $\frac{3n}{2}$ comparisons.
- Finding smallest and second smallest numbers need $n + \log_2 n 2$ comparisons

Median Finding

The Problem

Given an array $A[1 \dots n]$ containing n (comparable) elements, find an element A[i] such that

No. of elements smaller than A[i] = No. of elements greater than $A[i] = \lfloor \frac{n}{2} \rfloor$.

Median Finding

The Problem

Given an array $A[1 \dots n]$ containing n (comparable) elements, find an element A[i] such that

No. of elements smaller than A[i] = No. of elements greater than $A[i] = \lfloor \frac{n}{2} \rfloor$.

Trivial Algorithm

Sort the members in the array A, and report the middle-most element.

Time complexity: $O(n \log n)$

Median Finding

The Problem

Given an array $A[1 \dots n]$ containing n (comparable) elements, find an element A[i] such that

No. of elements smaller than A[i] = No. of elements greater than $A[i] = \lfloor \frac{n}{2} \rfloor$.

Trivial Algorithm

Sort the members in the array A, and report the middle-most element.

Time complexity: $O(n \log n)$

Target

A linear time algorithm.

Deterministic Algorithm

Prune-and-Search Algorithm

```
function SELECT(A, k)
```

Output: The k-th smallest element in the input array A

if
$$|A| \leq 20$$
 then

x = k-th smallest element in A obtained by sorting the members in A

return x

Split the array A into $\frac{|A|}{5}$ parts each of size 5.

For each part, compute the median, and store them in an array B

$$x = SELECT(B, \lceil \frac{|B|}{2} \rceil)$$

Split *A* into the following three parts:

L: elements less than x

E: elements equal to x

G: elements greater than x

if $k \leq |L|$ then SELECT(L.k)

else if $k \le |L| + |E|$ then return x

else SELECT(G, k - |L| - |E|)

Time Complexity

Recurrence relation

$$T(n) = T(\frac{n}{5}) + T(\frac{3n}{4}) + cn$$

Assuming T(n) = kn, we have $\frac{kn}{20} = cn$, Implying k = 20c.

Thus, when $n \le 20$, we stopped recursion, and applied bruteforce algorithm.

Randomized Version

```
Splitter based Algorithm
function Rand_SELECT(A, k)
central\_splitter = NO
while not central_splitter do
    Choose an element A[i] randomly
    for j = 1, \ldots, n do
         if A[i] < A[i] put A[i] in L
         if A[j] > A[i] put A[j] in G
    endfor
    if |L| \geq \frac{n}{4} and |G| \geq \frac{n}{4} then
         central\_splitter = YES
    endif
endwhile
if |L| = k - 1 then return A[i]
    else if |L| > k then Rand_SELECT(L, k)
    else Rand_SELECT(G, k-1-|L|)
```

Problem: Choosing a good splitter.

Arbitrary splitter

Here if always the splitter is far from median, then in the worst case time required may be

$$T(n) \le cn + c(n-1) + \ldots = \frac{cn(n-1)}{2} = \Theta(n^2).$$

Arbitrary splitter

Here if always the splitter is far from median, then in the worst case time required may be

$$T(n) \le cn + c(n-1) + \ldots = \frac{cn(n-1)}{2} = \Theta(n^2).$$

Good splitter

It is an index s such that the number of elements less (resp. greater) than A[s] is at least $\epsilon \times n$.

Arbitrary splitter

Here if always the splitter is far from median, then in the worst case time required may be

$$T(n) \le cn + c(n-1) + \ldots = \frac{cn(n-1)}{2} = \Theta(n^2).$$

Good splitter

It is an index s such that the number of elements less (resp. greater) than A[s] is at least $\epsilon \times n$.

- A good splitter assures that at least a constant fraction ϵ of the total points must be thrown out in each iteration,
- Thus, in the worst case time complexity becomes $T(n) \leq T((1-\epsilon))n + cn = O(n)$.

Arbitrary splitter

Here if always the splitter is far from median, then in the worst case time required may be

$$T(n) \le cn + c(n-1) + \ldots = \frac{cn(n-1)}{2} = \Theta(n^2).$$

Good splitter

It is an index s such that the number of elements less (resp. greater) than A[s] is at least $\epsilon \times n$.

- A good splitter assures that at least a constant fraction ϵ of the total points must be thrown out in each iteration,
- Thus, in the worst case time complexity becomes $T(n) \leq T((1-\epsilon))n + cn = O(n)$.

Remark: In the earlier algorithm, it is assured that in the next iteration at least $\frac{n}{10}$ will be thrown out.

Randomized Splitter

- Choosing $\epsilon = \frac{1}{4}$, we have probability of getting a good splitter in a random trial $= \frac{1}{2}$.
- Number of comparisons required to check whether a chosen splitter is good is n.
- Thus, expected time to get a good splitter is 2cn.

Randomized Splitter

In each iteration, we are deleting at least $\frac{1}{4}$ fraction of points. Thus in the *j*-th iteration, we have $(\frac{3}{4})^j n$ points.

Expected time complexity

- X_j Number of steps executed in the j-th phase.
- Total execution time = $X = X_0 + X_1 + X_2 + \dots$
- By linearity of expectation, we have $E(X) = E(X_0) + E(X_1) + E(X_2) + \dots$
- $E(X_j) = 2cn(\frac{3}{4})^j$

Expected Time Complexity = 8cn

A nice problem

Suppose a given set of data in an array is organized as a MAX-HEAP.

Problem: To search for minimum and next minimum.

Question: In what portion of the array, we need to search to answer the query.