Ecuaciones Diferenciales 1 2do Parcial 14 de Junio de 2023

(1) (35 pt.) Considerar el siguiente problema de valores iniciales:

$$y'=-2ty, \quad y(0)=1,$$

Construir la sucesión de funciones $\{y_n\}_{n\in\mathbb{N}}$ por el proceso iterativo de Picard y probar que $y_n(t)$ converge uniformemente hacia la solución, en todo intervalo $[a,b]\subset\mathbb{R}$.

Ayuda: acotar la diferencia $y - y_n$ donde y es la solución del problema.

(2) (30 pt.) Decir si las siguientes afirmaciones son verdaderas ó falsas, justificando correctamente.

(a) La función $\varphi(t) = -1$, $\forall t$ es la única solución del problema y' = t(1+y), y(0) = -1.

(b) Para todo par (t_0, y_0) las soluciones del problema $y' = \arctan(y), y(t_0) = y_0$, están definidas para todo $t \in \mathbb{R}$.

(c) Sea φ una función continua tal que $\varphi(x) = 1 + \int_0^x \cos(s^2 \varphi(s)) ds$, para todo $x \in \mathbb{R}$. Entonces φ es derivable y satisface $\varphi'(x) = \cos(x^2 \varphi(x))$, para todo $x \in \mathbb{R}$.

(3) (35 pt.) Hallar una base del espacio de soluciones del siquiente sistema:

$$\dot{\mathbf{x}} = \begin{pmatrix} -1 & -1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{pmatrix} \mathbf{x},$$

y calcular la única matriz fundamental $\Phi(t)$, tal que $\Phi(0) = I_3 = 1$ a matriz identidad 3x3.

Ayuda: la matriz tiene dos bloques.