HW8 (CSCI-C241)

Lillie Donato

19 March 2024

1. Question One

- (a) R_1 is not a function, because R(1,2) and R(1,3) but $2 \neq 3$
- (b) R_2 is a total function each member of A is realated only to a single member of A
- (c) R_3 is a partial function, because each member of A is related to no more than one member of A, but not every member of A is related to another member.
- (d) P_2 is partial function because if $x, y, z \in \mathbb{R}$, $x \cdot y = 120$, and $x \cdot z = 120$, then x = z, but $\neg P_2(0, n)$ where $n \in \mathbb{R}$
- (e) P_3 is a total function because if $x, y, z \in \mathbb{R}^*$, $x \cdot y = 120$, and $x \cdot z = 120$, then x = z, and for every $n \in \mathbb{R}^*$, there is some $n_2 \in \mathbb{R}^*$ where $n * n_2 = 120$

2. Question Two

- (a) f_1 is not one-to-one, because $f_1(a) = f_1(d)$ but $a \neq d$
- (b) f_1 is not onto because there is no $x \in B$ where $f_1(x) = a$
- (c) f_2 is one-to-one because there is no $x, y \in B$ where $f_2(x) = f_2(y)$ and $x \neq y$
- (d) f_2 is onto because for every member of the codomain, there is some member of the domain that maps to said member of the codomain
- (e) s_1 is not one-to-one because $s_1(10) = s_1(-10)$ but $10 \neq -10$
- (f) s_2 is one-to-one because if a $x \in [0, \infty)$ and $x^2 10 = n$ where $n \in [0, \infty)$, there is no other member of the domain that can be squared and have ten added to equal n
- (g) s_2 onto?
- (h) c_1 one-to-one?
- (i) c_1 onto?
- (j) c_2 onto?
- (k) d is a total function, because for any possible string (including the empty string), there exists a string that contains dashes in between each character
- (l) d is one-to-one, because for any two strings, if they have dashes inserted in between their characters, the resulting strings for each would never be the same
- (m) d is not onto, because there exists no $s \in \text{Str}$ where d(s) = wall
- (n) f is a partial function, because for any $s \in Str$, there is only one possible first character of that string, but there does not exist $s_2 \in Str$ such that $f("") = s_2$
- (o) f is not one-to-one, because f(car) = f(can) but $car \neq can$

3. Question Three

- (a) Part (a)
- (b) Part (b)
- (c) Part (c)
- (d) Part (d)
- (e) Part (e)
- (f) Part (f)
- (g) Part (g)

(h) Part (h)	
(i) Part (i)	
(j) Part (j)	
(k) Part (k)	
(l) Part (l)	
(m) Part (m)	
(n) Part (n)	
4. Question Four	
(a) Part (a)	
(b) Part (b)	
Proof.	
v	
	(
5. Question Five	
(a) Part (a)	
(b) Part (b)	
6. Question Six	
(a) Part (a)	
(b) Part (b)	
Proof.	
r 100j.	
	(
7. Question Seven	
(a) Part (a)	
Proof.	
	(