Introduction to Manifold Theory Homework 1

Nutan Nepal

September 29, 2022

1. Prove that the open disks $D_r(p)$ are open subsets of \mathbb{R}^n .

To prove that the open disks $D_r(p)$ are open subsets of \mathbb{R}^n , we show that for every point $x \in D_r(p)$ we have another open disk $D_{\epsilon}(x)$, $\epsilon > 0$ such that $D_{\epsilon}(x) \subset D_r(p)$.

For any $x \in D_r(p)$ such that $\delta = d(x, p) < r$, we take $0 < \epsilon < r - \delta$. Then we see that for all $y \in D_{\epsilon}(x)$

$$d(p,y) \le d(p,x) + d(x,y) < \delta + \epsilon < \delta + r - \delta = r.$$

Hence, $y \in D_r(p)$ for all $y \in D_{\epsilon}(x)$ which implies that $D_{\epsilon}(x) \subset D_r(p)$. So, $D_r(p)$ is an open subset.

2. Prove the second part of Proposition 2.17 (a function $f: \mathbb{R}^n \to \mathbb{R}^m$ is continuous everywhere if and only if for all open subsets V of \mathbb{R}^m , the preimage $f^{-1}(V)$ of V under f is open in \mathbb{R}^n).

We prove for \Leftarrow : If for all open subsets V of \mathbb{R}^m the preimage $f^{-1}(V)$ of V under f is open in \mathbb{R}^n , then f is continuous.

Let $V \subset \mathbb{R}^m$ be an open subset such that $f(x) \in V$. Then we have an open disk $D_{\epsilon}(f(x)) \subset V$. As the disk $D_{\epsilon}(f(x))$ is open in \mathbb{R}^m , we have an open set $f^{-1}(D_{\epsilon}(f(x))) \subset \mathbb{R}^n$ which contains x. Then we can find a $\delta > 0$ such that $D_{\delta}(x) \subset f^{-1}(D_{\epsilon}(f(x)))$. That is, for every ϵ -ball around f(x), we can find a δ -ball around x such that

$$y \in D_{\delta}(x) \implies f(y) \in D_{\epsilon}(f(x))$$

for some y. Hence f is continuous.

3. Show that a composition of continuous functions $\mathbb{R}^n \xrightarrow{f} \mathbb{R}^m \xrightarrow{g} \mathbb{R}^k$ is continuous.

Since g is continuous, we have $g^{-1}(V)$ open for all open set $V \subset \mathbb{R}^k$. Similarly we have f continuous, so $f^{-1}(U)$ is open for all open sets $U \subset \mathbb{R}^m$. Then, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is open for all open sets V in \mathbb{R}^k . Hence the composition is continuous.

4. Show that a function $f: X \to Y$ between sets is invertible if and only if it is bijective.

A function $f: X \to Y$ is invertible if there exists a function $g: Y \to X$ such that $f \circ g = \mathrm{id}_Y$ and $g \circ f = \mathrm{id}_X$.

i. f invertible $\implies f$ bijective Note that since id_Y is surjective, f must be surjective. Now for injectivity, we observe that if f(x) = f(y) then

$$x = (g \circ f)(x) = g(f(x)) = g(f(y)) = (g \circ f)(y) = y.$$

Hence, f is bijective.

- ii. f bijective $\Longrightarrow f$ invertible Since f is both injective and surjective, we define a function $g: Y \to X$ by g(y) = xwhenever f(x) = y. Note that g is well-defined since there exists only one y for each x. Then, for all $x \in X$, $g(f(x)) = g(y) = x \implies g \circ f = \mathrm{id}_X$. Similarly, for all $y \in Y$, $f(g(y)) = f(x) = y \implies f \circ g = \mathrm{id}_Y$. So, f is invertible.
- 5. Show that the product topology on a product $X \times Y$ of topological spaces is a valid topology.

X and Y are topological spaces. We define a set $U \subset X \times Y$ to be open if for all $(x, y) \in U$ we have open neighborhoods $U_x \subset X$ and $U_y \subset Y$ such that $U_x \times U_y \subset U$.

- i. Clearly the null set ϕ and the whole set $X \times Y$ are open since X is open in X and Y is open in Y.
- ii. Arbitrary union $\bigcup U_{\alpha}$ of open sets is open. Let (x,y) be an arbitrary point in $\bigcup U_{\alpha}$, then $(x,y) \in U_i$ for some i. Then, by definition, there are open neighborhoods $U_x \subset X$ and $U_y \subset Y$ such that $U_x \times U_y \subset U_i \subset \bigcup U_{\alpha}$.
- iii. Finite intersection $U_i \cap U_j$ of open sets is open.

Let (x, y) be an arbitrary point of $U_i \cap U_j$, then $(x, y) \in U_i$ and $(x, y) \in U_j$. Then, by definition, there are open neighborhoods $U_{ix}, U_{jx} \subset X$ and $U_{iy}, U_{jy} \subset Y$ such that $U_{ix} \times U_{iy} \subset U_i$ and $U_{jx} \times U_{jy} \subset U_j$. Then

$$U_i \cap U_j \supset (U_{ix} \times U_{iy}) \cap (U_{jx} \times U_{jy}) = (U_{ix} \cap U_{jx}) \times (U_{iy} \cap U_{jy}) \ni (x, y).$$

Since $(U_{ix} \times U_{jx})$ and $(U_{iy} \times U_{jy})$ are open in X and Y respectively, we see that $U_i \cap U_j$ is open.

6. Verify the three basic properties of closed sets that correspond to the three axioms for open sets.

We define a set $V \subset X$ to be closed if its complement V^c is open in X.

i. The null set ϕ and the whole set X are closed.

 $\phi^c = X$ and $X^c = \phi$ which are open in X.

ii. Arbitrary intersection $\bigcap V_{\alpha}$ of closed sets is closed.

Here we use the set-theoretic fact that

$$\left(\bigcup U_{\beta}\right)^{c} = \bigcap U_{\beta}^{c} \tag{1}$$

where $\{U_{\beta}\}$ is the collection of indexed sets. Since each sets V_{α} are closed, we write V_{α} as U_{α}^{c} where U_{α} is an open set of X. Then from 1 we have

$$\bigcap V_{\alpha} = \bigcap U_{\alpha}^{c} = \left(\bigcup U_{\alpha}\right)^{c} \tag{2}$$

Hence, since $\bigcup U_{\alpha}$ is open in X, $\bigcap V_{\alpha}$ must be closed.

iii. Finite union $V_i \cup V_j$ of closed sets is closed.

We have $V_i \cup V_j = U_i^c \cup U_j^c = (U_i \cap U_j)^c$. Since finite intersection of open sets are open, we observe that $V_i \cup V_j$ is the complement of an open set. Hence $V_i \cup V_j$ is closed.

7. Show that if we have $X'' \subset X' \subset X$, then the "subspace of a subspace" topology on X'' is the same as the "subspace of the biggest space" topology on X''.

Suppose (X,τ) is a topological space. The subspace topology on X' is given by

$$\tau' = \{ U' \subset X' : U' = U \cap X' \text{ for some } U \in \tau \}$$

and the subspace topology on X'' induced by τ' is given by

$$\tau'' = \{ U'' \subset X'' : U'' = U' \cap X'' \text{ for some } U' \in \tau' \}.$$

We need to show that τ'' is equal to the subspace topology on X'' induced by τ

$$T = \{U'' \subset X'' : U'' = U \cap X'' \text{ for some } U \in \tau\}.$$

Let $A \in \tau''$, then $A = U' \cap X''$ for some $U' \in \tau'$. Since $U' = U \cap X'$ for some $U \in \tau$ we have, $A = U \cap X' \cap X'' = U \cap X'' \in T$. Hence $\tau'' \subset T$. Similarly, let $B \in T$, then $B = U \cap X''$ for some $U \in \tau$. Since we can write X'' as $X' \cap X''$ we have $B = U \cap X' \cap X'' = U' \cap X'' \in \tau''$ for some U' in τ' . Hence $T \subset \tau''$ which gives $T = \tau''$ ending our proof.

8. Prove the characterization of closed sets of a subspace as intersections with closed sets of the larger space: Let X be a topological space and let $X' \subset X$ be a subspace. Show that a subset $E \subset X'$ is closed if and only if $E = F \cap X'$ for some closed subset F of X.

If $E \subset X'$ is closed, then $X' \setminus E$ is open in X'. Since all open sets of X' are in the form of $U \cap X'$ for some open set U of X we have, $X' \setminus E = U \cap X'$.

$$E = X' \backslash (X' \backslash E) = X' \backslash (U \cap X') = X' \backslash U = X' \cap U^c = X' \cap F$$

for a closed subset F of X.

If $E = F \cap X'$ for some closed subset F of X, then for the open set $U = F^c$ of X, E =

 $(X \setminus U) \cap X' = (X \cap X') \setminus (U \cap X') = X' \setminus (U \cap X')$. Since $U \cap X'$ is an open set of X', we see that $E = X' \setminus (U \cap X')$ is closed in X'.