AMATH 585 Homework 1

Cade Ballew

January 14, 2022

1 Problem 1

We evaluate the second order accurate approximation

$$u''(x) \approx \frac{u(x+h) + u(x-h) - 2u(x)}{h^2}$$

for $u(x) = \sin x$ and $x = \pi/6$ for $h = 10^{-1}, 10^{-2}, \dots, 10^{-16}$ using the following MATLAB code.

The resulting output is displayed in the following table.

h	FD Approximation	Error
1e-01	-4.995835e-01	4.165278e-04
1e-02	-4.999958e-01	4.166653e-06
1e-03	-5.000000e-01	4.167450e-08
1e-04	-5.000000e-01	3.038735e-09
1e-05	-5.000012e-01	-1.151593e-06
1e-06	-4.999334e-01	6.657201e-05
1e-07	-4.996004e-01	3.996389e-04
1e-08	-1.110223e+00	-6.102230e-01
1e-09	1.110223e+02	1.115223e+02
1e-10	0.000000e+00	5.000000e-01
1e-11	0.000000e+00	5.000000e-01
1e-12	0.000000e+00	5.000000e-01
1e-13	1.110223e+10	1.110223e+10
1e-14	-1.110223e+12	-1.110223e+12
1e-15	0.000000e+00	5.000000e-01
1e-16	-1.110223e+16	-1.110223e+16

One can see that the error term appears to be second order as anticipated at first but actually increases as h decreases when $h < 10^{-4}$. As discussed in class, this is due to the limitations of finite precision arithmetic. As h gets smaller, round-off errors become more prominent and dominate our approximation error. Eventually, we run into catastrophic cancellation and obtain errors that are much larger than that of even h = 0.1.

2 Problem 2

Using the same FD formula for the same u and x as in problem 1, we perform two steps of Richardson extrapolation for h = 0.2. From class, we have that if $\phi_0(h)$ denotes our original approximation, the first step of Richardson extrapolation is given by

$$\phi_1(h) = \frac{4\phi_0(h/2) - \phi_0(h)}{3}$$

and the second step is given by

$$\phi_2(h) = \frac{16\phi_1(h/2) - \phi_1(h)}{15}.$$

The following MATLAB code computes and prints the values of ϕ_0, ϕ_1, ϕ_2 at the necessary values of h.

```
h = [0.2 \ 0.1 \ 0.05];
upp = (u(x+h)+u(x-h)-2*u(x))./h.^2; %phi_0
err = upp-upptrue;
for i=1:length(h)
    fprintf('%0.2f
                     %d %d\n',h(i), upp(i), err(i))
end
%phi_1
fprintf(' h
                  phi_1(h)
                                  Error\n')
R1 = (4*upp(2)-upp(1))/3; %combine 0.2 and 0.1
errR1=R1-upptrue;
R2 = (4*upp(3)-upp(2))/3; %combine 0.1 and 0.05
errR2=R2-upptrue;
fprintf('%0.2f %d %d\n',h(1), R1, errR1)
fprintf('%0.2f %d %d\n',h(2), R2, errR2)
R3 = (16*R2-R1)/15; %phi_2
errR3=R3-upptrue;
fprintf(' h
                  phi_2(h)
                                  Error\n')
fprintf('%0.2f %d %d\n',h(1), R3, errR3)
```

The resulting output is displayed in the following table.

	FD Approximation	Error
$\phi_0(0.2)$	-4.983356e-01	1.664446e-03
$\phi_0(0.1)$	-4.995835e-01	4.165278e-04
$\phi_0(0.05)$	-4.998958e-01	1.041580e-04
$\phi_1(0.2)$	-4.999994e-01	5.550598e-07
$\phi_1(0.1)$	-5.000000e-01	3.471449e-08
$\phi_2(0.2)$	-5.000000e-01	2.480538e-11

From class, we know that one step of Richardson extrapolation should give $O(h^4)$ error and two steps should give $O(h^6)$ error. This does appear to be roughly true of our obtained error values, as $5.55e-7/(0.2)^4\approx 3.47e-08/(0.1)^4$ and the error when going from ϕ_1 to ϕ_2 decreases by approximately the same magnitude as when going from ϕ_0 to ϕ_1 (as they should since ϕ_0 is $O(h^2)$).

3 Problem 3

To derive the error term for the approximation

$$u'(x) \approx \frac{1}{2h} [-3u(x) + 4u(x+h) - u(x+2h)],$$

we first write out the Taylor series

$$u(x+h) = u(x) + hu'(x) + \frac{h^2}{2!}u''(x) + \frac{h^3}{3!}u'''(x) + O(h^4)$$
$$= u(x) + hu'(x) + \frac{h^2}{2!}u''(x) + \frac{h^3}{6}u'''(x) + O(h^4)$$

$$u(x+2h) = u(x) + 2hu'(x) + \frac{(2h)^2}{2!}u''(x) + \frac{(2h)^3}{3!}u'''(x) + O(h^4)$$
$$= u(x) + 2hu'(x) + 2h^2u''(x) + \frac{4h^3}{3}u'''(x) + O(h^4)$$

From this, we can compute

$$\begin{split} &\frac{1}{2h}[-3u(x)+4u(x+h)-u(x+2h)]\\ &=\frac{1}{2h}\left((-3+4-1)u(x)+(4h-2h)u'(x)+\left(4\frac{h^2}{2}-2h^2\right)u''(x)+\left(4\frac{h^3}{6}-\frac{4h^3}{3}\right)u'''(x)+\mathcal{O}(h^4)\right)\\ &=\frac{1}{2h}\left(2hu'(x)-\frac{2h^3}{3}u'''(x)+\mathcal{O}(h^4)\right)=u'(x)-\frac{h^2}{3}u'''(x)+\mathcal{O}(h^3). \end{split}$$

Thus, the error term of the approximation is given by

$$u'(x) - \frac{h^2}{3}u'''(x) + O(h^3) - u'(x) = -\frac{h^2}{3}u'''(x) + O(h^3).$$

4 Problem 4

Re-purposing the Taylor series written out in problem 3, we can compute

$$Au(x) + Bu(x+h) + Cu(x+2h)$$

$$= (A+B+C)u(x) + (B+2C)hu'(x) + \left(\frac{B}{2} + 2C\right)h^2u''(x) + \left(\frac{B}{6} + \frac{4C}{3}\right)h^3u'''(x) + \dots$$

In order to achieve maximal order of accuracy when using this as an approximation to u''(x), we require that

$$A + B + C = 0$$
$$B + 2C = 0$$
$$\frac{B}{2} + 2C = \frac{1}{h^2}$$

Of course, we would obtain higher order accuracy if we could also set $\frac{B}{6} + \frac{4C}{3} = 0$, but we already have three equations and three unknowns, so we cannot do this in general.

Solving this system of equations, we get that $A = \frac{1}{h^2}$, $B = -\frac{2}{h^2}$, $C = \frac{1}{h^2}$. To

make the above statement about this being the maximal order of accuracy more clear, note that $\left(\frac{B}{6} + \frac{4C}{3}\right)h^3 = h$, so the term $\left(\frac{B}{6} + \frac{4C}{3}\right)h^3u'''(x)$ is only zero when u'''(x) = 0 and not in general. Now, we plug in these values of A, B, and C to conclude that

$$Au(x) + Bu(x+h) + Cu(x+2h) = u''(x) + hu'''(x) + \dots = u''(x) + O(h),$$

so this approximation is of order h accuracy.

5 Problem 5

Using the centered difference formulae

$$u''(x) \approx \frac{u_{j+1} + u_{j-1} - 2u_j}{h^2}$$

and

$$u'(x) \approx \frac{u_{j+1} - u_{j-1}}{2h},$$

the solution of the BVP

$$u'' + 2xu' - x^2u = x^2$$
, $u(0) = 1$, $u(1) = 0$

can be approximated by

$$\frac{u_{j+1} + u_{j-1} - 2u_j}{h^2} + 2x_j \frac{u_{j+1} - u_{j-1}}{2h} - x_j^2 u_j = x_j^2$$

for all interior gridpoints x_j . If we take h = 1/4, our grid becomes $x_0 = 0$, $x_1 = 1/4$, $x_2 = 1/2$, $x_3 = 3/4$, $x_4 = 1$. Note that to impose the boundary conditions, we take $u_0 = 1$, $u_1 = 0$. Now, we write out this equation explicitly for j = 1, 2, 3.

$$\frac{u_2 + 1 - 2u_1}{(1/4)^2} + x_1 \frac{u_2 - 1}{1/4} - (1/4)^2 u_1 = (1/4)^2,$$

$$\frac{u_3 + u_1 - 2u_2}{(1/4)^2} + (1/2) \frac{u_3 - u_1}{1/4} - (1/2)^2 u_2 = (1/2)^2,$$

$$\frac{0 + u_2 - 2u_3}{(1/4)^2} + (3/4) \frac{0 - u_2}{h} - (3/4)^2 u_3 = (3/4)^2.$$

These can be simplified the equations

$$(-32 - 1/16)u_1 + (16 + 1)u_2 = 1/16 + 1 - 16,$$

$$(16 - 2)u_1 + (-32 - 1/4)u_2 + (16 + 2)u_3 = 1/4,$$

$$(16 - 3)u_2 + (-32 - 9/16)u_3 = 9/16,$$

which can be further simplified to

$$-513/16u_1 + 17u_2 = -239/16,$$

$$14u_1 - 129/4u_2 + 18u_3 = 1/4,$$

$$13u_2 - 521/16u_3 = 9/16.$$

Thus can be rewritten as the matrix equation

$$\begin{pmatrix} -513/16 & 17 & 0 \\ 14 & -129/4 & 18 \\ 0 & 13 & -521/16 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = \begin{pmatrix} -239/16 \\ 1/4 \\ 9/16 \end{pmatrix}.$$