

Barak Gonen Based on "Computer Networks" Rosenboim, Gonen, Hod

Presentation Goals

- How reliable communication is ensured
 - TCP Seq numbers
 - TCP ACK
 - TCP 3 way handshake
- ▶ Hands on- Wireshark, SYN flood attack

Brief Recap

- Transport layer may, optionally, provide reliable service
 - TCP Transmission Control Protocol reliable
 - UDP User Datagram Protocol Best effort
- Reliable service:
 - All packets arrived
 - In order
 - No errors

UDP Header

- Ports src, dst
- Length header + application
- Checksum not error correction
- Hands on Wireshark

TCP Header

Sequence Numbers Idea

This is not how it works, but demonstrates the basic idea

Sequence Numbers Idea

- The receiver may know if a sequence is missing
- What if sequence 2 was the last?

ACK

ACK signals that no need to retransmit

TCP Sequential Numbers

- TCP, in practice
- Every byte has a sequence number
- SEQ field has the value of the first byte

- What is the next SEQ?
 - (106+4) 110

TCP Sequence Numbers

- Ex 6.14
- Use Wireshark to watch seq numbers
- Make sure: next SEQ = current SEQ + length

TCP ACK

- ACK relates to bytes
 - ACK 106 "Got up to byte 105, including.
 Expecting 106 in the next packet"

TCP ACK

- Ex 6.15
- Make sure: the ACKs match the SEQ + length

TCP Closing Connection

TCP Header

Stop and Wait

What is the drawback of the algorithm?

Retransmit

Will occur if:

Think of another scenario

Premature Timeout

Fast retransmit

Should A wait until timeout with the lost packet?

Cumulative ACK

Why didn't A resend packet of SEQ 92?

Go-Back-N

▶ Watch Go-Back-N

Selective Repeat

Isn't selective repeat always better than cumulative ACK?

Congestion Control - Slow Start

TCP Header

TCP: Three Way Handshake

Establishing a connection

SYN Packet

- "I want to connect"
- ▶ SYN flag == 1
- No data in packet, but still considered as having length of 1
- Random initial SEQ
- ACK is always 0

SYN ACK

- "I agree to connect"
- SYN flag, ACK flag
- Packet length == 1
- Random SEQ (not related to SYN packet's SEQ)
- ACK value is the SEQ of the SYN packet + 1
 - Recall SYN length is considered 1

ACK

- "Got your SYN-ACK, let's initiate communication"
- ightharpoonup ACK flag = 1, SYN = 0
- SEQ is the last byte that was sent
- ACK is the SEQ of the SYN-ACK plus 1

Summary - ACK, SEQ Calculation

- Figure the ACK and SEQ values of the following
 - Use random values where proper

Three Way Handshake

- Ex. 6.16
- Watch SEQ, ACK values and verify your expectations

Three Way Handshake

- Ex. 6.18
- Perform 3 way handshake using Scapy
 - You may encounter a "Reset" from the OS

Info Length	Protocol	Destination	Source	Time
Seq=0 Win=8192 Len=0 [SYN] 80 → 55555 54	TCP	142.250.186.132	192.168.1.221	2.189167 489
Seq=0 Ack=1 Win=65535 Len=0 MSS=1430 [SYN, ACK] 55555 → 80 60	TCP	192.168.1.221	142.250.186.132	2.258783 503
Seq=1 Ack=1 Win=8192 Len=0 [ACK] 80 → 55555 54	TCP	142.250.186.132	192.168.1.221	2.313947 511

SYN - Flood

- SYN packets cause the server to allocate resources for a new socket
- Attacker might exploit that for a DoS attack
 - Flood with SYN packets, no ACK
- https:/data.cyber.org.il/networks/SYN-Flood.pdf