Khôlles de Mathématiques $\mathbb{H}\mathbb{X}\mathbb{I}$ Relations, Ensembles et Applications

N. CLOAREC

Du 19-09-16 au 1-10-16

Exercice 1 Soit E un ensemble et A une partie de E. On définit une relation \mathcal{R} sur $\wp(E)$ par :

$$X\mathcal{R}Y \iff X \cup A = Y \cup A$$

- a) Montrer que \mathcal{R} est une relation d'équivalence
- b) Décrire la classe d'équivalence de $X \in \wp(E)$

Exercice 2 Soient $f: E \to F$ et $g: F \to E$ deux applications telles que $f \circ g \circ f$ soit bijective. Montrer que f et g sont bijectives

Exercice 3 Soient $f: E \to F$ et $g: F \to G$. Établir les implications suivantes :

- a) $g \circ f$ injective et f surjective $\implies g$ injective.
- b) $g \circ f$ surjective et g injective $\implies f$ surjective.

Exercice 4 Soient E un ensemble et $f: E \to E$ temme que $f \circ f \circ f = f$. Montrer que f est injective ssi f est surjective.

Exercice 5 Soient E et F deux ensembles et $f: E \to F$. Montrer que f est injective si, et seulement si,

$$\forall A, A' \in \wp(E), f(A \cap A') = f(A) \cap f(A')$$

Exercice 6 Soit $f: E \to F$ une application. Montrer que : f est bijective si, et seulement si,

$$\forall A \in \wp(E), f(C_E A) = C_F f(A)$$

Exercice 7 Soit $f: E \to F$ une application. Montrer que :

- a) f est injective $\iff \forall A \in \wp(E), A = f^{-1}(f(A)).$
- b) f est surjective $\iff \forall B \in \wp(F), f(f^{-1}(B)) = B$.

Exercice 8 Soient A et B deux parties d'un ensemble E et

$$f \colon \begin{cases} \mathcal{P}(E) \to \mathcal{P}(A) \times \mathcal{P}(B) \\ X \mapsto (X \cap A, X \cap B) \end{cases}$$

Montrer que:

- a) f est injective si, et seulement si, $A \cup B = E$
- b) f est surjective si, et seulement si, $A \cap B = \emptyset$.

Exercice 9 Soit E un ensemble et $f: \mathcal{P}(E) \to \mathcal{P}(E)$ croissante, i.e telle que si $A \subset B$, alors $f(A) \subset f(B)$. Montrer que f admet un point fixe.

Exercice 10 Soit $u: E \to A$ et $v: B \to F$ deux applications. On considère l'application $\phi: B^A \to F^E$ donnée par $f \to v \circ f \circ u$.

- 1) Démontrer que si u est surjective et v est injective, alors ϕ est injective.
- 2) Démontrer que si u est injective et v est surjective, alors ϕ est surjective.