Тамарин Вячеслав

5 января 2020 г.

# Оглавление

ОГЛАВЛЕНИЕ 4

# Глава 1

# Введение

# 1.1 Простейшие свойства вещественных чисел

- 1. Алгебраические операции
  - (a) сложение  $a,b\in\mathbb{R}$  : сумма a+b определяется единственным образом
    - i. a+b=b+a (коммутативность)
    - іі. (a + b) + c = a + (b + c) (ассоциативность)
    - ііі.  $\exists 0: a+0=a, \forall a \in \mathbb{R}$  (нейтральный по сложению)
    - iv.  $\forall a \in \mathbb{R} \exists a' : a + a' = a' + a = 0$  (обратный по сложению)
  - (b) умножение  $x,y \in \mathbb{R}$  : произведение  $x \cdot y$  определяется единственным образом
    - i. xy = yx (коммутативность)
    - ii. (xy)z = x(yz) (ассоциативность)
    - ііі.  $\exists 1: x \cdot 1 = x, \forall x \in \mathbb{R}$  (нейтральный по умножению)
    - iv. x(a+b) = xa + xb (дистрибутивность)
    - v.  $\forall x \neq 0 \in \mathbb{R} \exists y \stackrel{def}{=} x^{-1} : xy = 1$  (обратный по умножению)
- 2. Порядок на  $\mathbb{R}$

**Def 1.** Упорядоченная пара  $(u,v) = \{\{u\}, \{u,v\}\}$  .

**Def 2.** Декартово произведение  $X \times Y = \{(x,y) \mid \forall x \in X, y \in Y\}.$ 

**Def 3.** Отношение между элементами множеств X,Y -  $A\subset X\times Y$ 

Отношения порядка: a < b, a > b, a = b

- (a)  $\forall a,b \in \mathbb{R}: \begin{bmatrix} a=b\\ a>b \text{ (антисимметричность)}\\ a< b \end{bmatrix}$
- (b)  $a < b \land b < c \Rightarrow a < c$  (транзитивность)
- (c)  $a < b \land c \in \mathbb{R} \Rightarrow a + c < b + c$
- (d)  $a < b \land c > 0 \Rightarrow ac < bc$
- (e)  $u < v \land x < y \Rightarrow u + x < v + y$

1.2. MHOЖЕСТВА В  $\mathbb{R}$ 

### 1.2 Множества в $\mathbb{R}$

**Def** 4 (Отрезки, интервалы, сегменты).  $a, b \in \mathbb{R}, a \leqslant b$ 

$$[a,b]=\{a\in\mathbb{R}\mid a\leqslant x\leqslant b\}$$
(замкнутый отрезок)

6

$$(a,b] = \{a \in \mathbb{R} \mid a < x \leqslant b\}$$
(открытый слева отрезок)

$$[a,b) = \{a \in \mathbb{R} \mid a \leqslant x < b\}$$
 (открытый справа отрезок)

$$(a,b) = \{a \in \mathbb{R} \mid a < x < b\}$$
 (открытый отрезок)

**Def** 5 (Лучи).  $a \in \mathbb{R}$ 

$$[a, +\infty) = \{x \in \mathbb{R} \mid x \geqslant a\}$$

$$(a, +\infty) = \{x \in \mathbb{R} \mid x > a\}$$

$$(-\infty, a] = \{ x \in \mathbb{R} \mid x \leqslant a \}$$

$$(-\infty, a) = \{ x \in \mathbb{R} \mid x < a \}$$

Def 6.

Множество  $A\subseteq\mathbb{R}$  ограничено сверху, если  $\exists\;x\in\mathbb{R}:a\leqslant x\;\forall a\in A.$  Любое такое x - верхняя граница

A.

A.

Множество  $A\subseteq\mathbb{R}$  ограничено снизу, если  $\exists\;y\in\mathbb{R}:a\geqslant y\;\forall a\in A.$  Любое такое y - нижняя граница

 $//\pm\infty$  - не нижняя/верхняя граница.

Ограниченное множество - ограниченное сверху и снизу.

# 1.3 Натуральные числа

## 1.3.1 Аксиома Архимеда

**Axiom 1** (Архимед). *Множество натуральных чисел не ограниченно сверху.* 

**Lemma.**  $x > 0 \Rightarrow \exists n \in \mathbb{N} : \frac{1}{n} < x$ 

Доказательство. Предположим противное.  $\forall n \in \mathbb{N} : x \leqslant \frac{1}{n}$ . Тогда  $\forall n : n < x^{-1}$ , а это противоречит аксиоме Архимеда.

## 1.3.2 Аксиома индукции

**Axiom 2** (индукции). Любое не пустое подмножество натуральных чисел имеет наименьший элемент.

**Statement** (Обоснование метода математической индукции). Пусть  $P_1, P_2, \ldots$  - последовательность суждений. Предположим, что

- 1.  $P_1$  верно
- 2. Для любого  $k: P_k \to P_{k+1}$

Tогда все условия  $P_i$  верны.

Доказательство. Рассмотрим множество  $A = \{n \in \mathbb{N} \mid P_n \text{ - верно}\}$  и его дополнение  $B = \mathbb{N} \setminus A$ . Если не все  $P_i$  верны, то  $B \neq \emptyset$ . По аксиоме индукции существует наименьший элемент  $l \in B$ . Если  $l \neq 1, l-1 \notin B$ . А тогда  $P_{l-1}$  - верно, из чего следует, что  $P_l$  - верно. То есть  $l \notin B$ . Противоречие. Иначе не выполнено первое условие.

#### 1.3.3 Неравенство Бернулли

**Theorem 1** (Неравенство Бернулли). Пусть a > 1. Тогда  $a^n \geqslant 1 + n(a-1), \quad n \in \mathbb{N}$ 

Доказательство. Индукция:

База: n = 1:  $a \ge 1 + (a - 1)$ 

Переход:  $n \to n+1$ 

Известно:

$$a^n \geqslant 1 + n(a-1).$$

Тогда:

$$a^{n+1} \geqslant a + n(a-1)a = (a-1) + 1 + n(a-1)a = 1 + (a-1)(1+na) \geqslant 1 + (a-1)(1+n)$$

Corollary. Множество  $\{a^n \mid n \in \mathbb{N}\}$  для a > 1 не ограничено сверху.

Доказательство. Пусть  $a^n \leqslant b$ ,  $\forall n \in \mathbb{N}$ . Тогда  $1 + (a-1)n \leqslant b \Rightarrow n \leqslant \frac{b-1}{a-1}$ . Противоречие

#### 1.3.4 Аксиома Кантора-Дедекинда

**Def 7.** Щель – пара вещественных чисел (A,B), где  $A,B \subset \mathbb{R} \land A \neq \emptyset \land B \neq \emptyset$ , такая что всякое число из A не более любого из B.

**Def 8.** Число c лежит в щели (A, B), если  $\forall a \in A, b \in B : a \leqslant c \leqslant b$ 

Def 9. Щель называется узкой, если она содержит ровно одно число.

**Axiom 3** (Кантор, Дедекинд). В любой щели есть хотя бы одно вещественное число.

Statement. Квадратный корень из 2 существует и единственный.

Доказательство.

1. Существование

Рассмотрим множества:

$$A = \{a > 0 \mid a^2 < 2\}, B = \{b > 0 \mid b^2 > 2\}$$

Они образуют щель:  $a^2 - b^2 = (a+b)(a-b) < 0$ . По аксиоме Кантора-Дедекинда  $\exists v : a \leqslant v \leqslant b \ \forall a \in A, \forall b \in B$ . Тогда  $v^2 = 2$ .

**Lemma.** В множестве В нет наименьшего элемента. В множестве А нет наибольшего элемента.

Докажем, что  $v^2 = 2$ . Пусть  $v^2 > 2 \lor b^2 < 2$ . То есть  $v \in A \lor v \in B$ . Следовательно,

$$\left[egin{array}{l} \exists v_1 \in A: v_1 > v \ \Rightarrow \ v$$
 - не в щели  $\exists v_1 \in B: v_1 < v \ \Rightarrow \ v$  - не в щели

Противоречие.

#### 2. Единственность

Возьмем  $c \geqslant 0 : c^2 = 2$ . Пусть существует еще одно  $c_1 \geqslant 0 \land c_1 \neq c : c_1^2 = 2$ . Тогда

$$\left[\begin{array}{c} c < c_1 \\ c > c_1 \end{array}\right. \Rightarrow 2 > 2$$

Опять противоречие.

### 1.3.5 Иррациональность корня из двух

**Def 10.** Квадратный корень из числа 2 – такое вещественное неотрицательное число c, для которого верно  $c^2=2$ .

**Theorem 2.** Квадратный корень из двух иррационален.

Доказательство. Пусть  $\sqrt{2} \in \mathbb{Q}$ . Тогда  $\sqrt{2} = \frac{p}{q}$ ,  $p,q \in \mathbb{N}$ . Не умоляя общности, считаем эту дробь несократимой.

$$2 = \frac{p^2}{q^2} \Rightarrow 2q^2 = p^2 \Rightarrow 2 \mid p \Rightarrow 4 \mid p^2 \Rightarrow 2 \mid q$$

# 1.3.6 Существование рациональных и иррациональных чисел в каждом невырожденном отрезке

 ${f Def~11.}~\langle u,v 
angle$  - любой отрезок с концами в  $u,v~~(u\leqslant v).$  Его длина  $|\langle u,v 
angle|:=v-u$ 

**Theorem 3.** Пусть c > 0. Тогда на каждом отрезке вида (a,b), где a < b существует точка вида rc, где  $r \in \mathbb{Q}$ .

 $\mathcal{A}$ оказательство. Заменим  $c \to 1, a \to \frac{a}{c}, b \to \frac{b}{c}$ . Теперь будем доказывать  $a \leqslant r \leqslant b$ . Существует  $q \in \mathbb{N}: \frac{1}{q} < b-a$ . Рассмотрим множество  $\{\frac{p}{q} \mid p \in \mathbb{Z}\}$ . Кроме того  $\exists p: \frac{p}{q} \geqslant b$ . Среди таких p существует наименьший  $p_0$ .

Возьмем  $\frac{p_0-1}{a} = \frac{p_0}{a} - \frac{1}{a} \in (a,b)$ 

**Corollary.** На каждом отрезке вида (a, b), где a < b, существует рациональное число.

**Theorem 4.** На каждом отрезке вида (a,b), где a < b, существует иррациональное число.

Доказательство. По следствию из теоремы  $3 \exists r \in \mathbb{Q} : r \in \left(\frac{a}{\sqrt{2}}, \frac{b}{\sqrt{2}}\right)$ . Тогда  $r\sqrt{2} \in (a, b) \land r \notin \mathbb{Q}$ .

#### **1.3.7** Число *е*

**Def 12.** Рассмотрим последовательность  $a_n = \sum_{k=0}^n \frac{1}{k!}$ .

Число e – предел  $\{a_n\}$ .

Statement.  $\{a_n\}$  -  $cxo\partial umcs$ .

Доказательство.

$$1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} \le 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{6} + \frac{1}{6} \cdot \frac{1}{2} + \frac{1}{6} \cdot \frac{1}{4} \dots + \frac{1}{6} \cdot \frac{1}{2^{n-2}} =$$

$$= 2.5 + \frac{1}{6} (1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^{n-2}}) < 2.5 + \frac{1}{6} \cdot 2 \approx 2.8333$$

**Theorem 5.** e - uppayuonanbho.

Доказательство. 2 < e < 3

Пусть  $e = \frac{p}{q}, \ p, q \in \mathbb{N}$ . Тогда q > 1.

$$\begin{split} \frac{p}{q} &= \lim_{n \to \infty} \left( (1 + \frac{1}{1!} + \frac{1}{2!} + \dots \frac{1}{q!}) + \frac{1}{(q+1)!} + \dots + \frac{1}{n!} \right) = \\ &= (1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{q!} + \lim_{n \to \infty} \left( \frac{1}{(q+1)!} + \dots + \frac{1}{n!} \right). \\ q! p &= S + \lim_{n \to \infty} \left( \frac{1}{(q+1)} + \frac{1}{(q+1)(q+2)} + \dots + \frac{1}{(q+1)\dots n} \right) = S + a. \end{split}$$

 $q!p\in\mathbb{Z},S\in\mathbb{N}$ . Обозначим предел за a. Докажем, что  $a\notin\mathbb{Z}$ .

Statement. 0 < a < 1

Доказательство.

$$\frac{1}{q+1} + \frac{1}{(q+1)(q+2)} + \dots + \frac{1}{(q+1)\dots n} \leqslant \frac{1}{q+1} + \frac{1}{(q+1)^2} + \dots + \frac{1}{(q+1)^{n-q-1}}.$$

$$0 < a \leqslant \frac{1}{q+1} + \frac{1}{1 - \frac{1}{q+1}} = \frac{1}{q+1-1} = \frac{1}{q} < 1.$$

## 1.4 Свойства подмножеств $\mathbb R$

#### 1.4.1 Грани

**Def 13** (supremum). Пусть  $A \subset \mathbb{R}$  - ограничено сверху.

Точная верхняя грань (супремум) – наименьшая из всех его верхних границ.

**Def 14** (infimum). Пусть  $A \subset \mathbb{R}$  - ограничено снизу.

Точная нижняя грань (инфимум) – наибольшая из всех его верхних границ.

**Theorem 6** (об описании точной верхней грани). Пусть  $A \neq \emptyset$  и ограничено сверху. Следующие условия эквивалентны:

- 1.  $x = \sup A$
- 2. x верхняя граница для A и  $\forall \varepsilon > 0 \exists y \in A \cap (x \varepsilon, x]$

Доказательство.

 $1 \Rightarrow 2$ 

 $x=\sup A\Rightarrow x$  - верхняя граница. Пусть  $\exists \varepsilon>0:A\cap(x-\varepsilon,x]=\varnothing$ . Тогда  $y\leqslant x-\varepsilon,\quad \forall y\in A$ . Но из этого следует, что  $x-\varepsilon$  тоже наименьшая граница, которая меньше x. Следовательно,  $x\neq\sup A$ . Противоречие.

- $2 \Rightarrow 1$ 
  - x верхняя граница,  $\forall \varepsilon > 0 \exists y \in A \cap (x \varepsilon, x]$ . Докажем, что x наименьшая верхняя граница.

Пусть  $\exists y < x : y$  - верхняя граница A. Рассмотрим (y,x]. Для него верно  $\forall z \in (y,x] : z \notin A$  . Но тогда x - не верхняя граница.

**Theorem 7** (об описании точной нижней грани). *Пусть*  $A \neq \emptyset$  и ограничено снизу. Следующие условия эквивалентны:

- 1.  $x = \inf A$
- 2. x нижняя граница для A и  $\forall \varepsilon > 0 \exists y \in A \cap [x, x + \varepsilon)$

#### 1.4.2 Связность отрезка

**Def 15.** Замкнутое множество – множество, содержащее все свои предельные точки.

Note. Любое замкнутое, ограниченное, непустое множество содержит все свои грани.

**Theorem 8** (о связности отрезка). Никакой замкнутый отрезок нельзя представить в виде объединения двух непустых непересекающихся замкнутых множеств.

Для любого отрезка  $[a,b],\ a\leqslant b$ : если  $[a,b]=E\cup F\wedge E, F-$  замкнуты  $\wedge E\neq\varnothing\wedge F\neq\varnothing$ , то  $E\cap F\neq\varnothing$ .

Доказательство. E, F замкнуты, значит и ограничены сверху. Предположим, что  $E \cap F = \emptyset$ . Не умоляя общности  $x = \sup E < b$ , тогда  $(x,b] \in F$ . С одной стороны, x - предельная точка для E, с другой стороны, предельная точка для F. Так как E, F - замкнуты,  $x \in E \land x \in F$ . Следовательно,  $E \cap F \neq \emptyset$ . Противоречие.

#### 1.4.3 Предельные и изолированные точки

**Def 16.** Окрестность точки  $x \in \mathbb{R}$  – любой открытый интервал вида  $(x - \varepsilon, x + \varepsilon)$ , где  $\varepsilon > 0$ .

**Def 17.** Проколотая окрестность точки  $x \in \mathbb{R}$  – объединение двух открытых интервалов вида  $(x - \varepsilon, x) \cup (x, x + \varepsilon)$ 

#### **Def 18.** Пусть $A \subset \mathbb{R}, u \in \mathbb{R}$ .

u называется предельной точкой для A, если в любой проколотой окрестности точки u есть точки множества A.

$$\forall \varepsilon>0 \quad \stackrel{\circ}{U}_{\varepsilon}(u)\cap A\neq\varnothing.$$

Exs.

- 1.  $\mathbb{Z}$ ,  $\mathbb{N}$  не имеют предельных точек.
- 2.  $\{\frac{1}{n} \mid n \in \mathbb{N}\}$  имеет одну предельную точку 0.
- 3. Для  $\mathbb Q$  все предельные точки  $\mathbb R$ .

**Def 19.** Все точки множества A, не являющиеся предельными, называются изолированными:

$$u\in A$$
 – изолированная, если  $\exists\ arepsilon>0:\ U_{arepsilon}(u)\cap A=\{u\}\Leftrightarrow \overset{\circ}{U}_{arepsilon}\left(u
ight)\cap A=arnothing$ 

Exs.

- 1.  $[1,2] \cup \{3\}$  имеет одну изолированную точку 3.
- 2. [1, 2] не имеет ни одной изолированной точки.

**Lemma.** Пусть A ограничено сверху (снизу),  $y = \sup A$  ( $y = \inf A$ ).

$$\left[ egin{array}{l} y 
otin A \Rightarrow y \end{array} 
ight.$$
 - предельная точка  $A$   $y \in A$ 

#### 1.4.4 Теорема о вложенных отрезках

**Theorem 9** (о вложенных отрезках).  $a \leqslant b, I = \langle a, b \rangle$ .

 $\{I_n\}_{n\in\mathbb{N}}$  - последовательность замкнутых отрезков  $I_{n+1}\subseteq I_n$ . Тогда у этих отрезков есть хотя бы одна общая точка.

Доказательство. Рассмотрим две последовательности концов отрезков:

$$a_1 \leqslant a_2 \leqslant a_3 \dots$$
  
 $b_1 \geqslant b_2 \geqslant b_3 \dots$ 

Заметим, что  $a_k \leqslant b_j \ \forall k,j \in \mathbb{N}$ . Тогда множества  $A = \{a_k \mid k \in \mathbb{N}\}$  и  $B = \{b_j \mid j \in \mathbb{N}\}$  образуют щель. По аксиоме Кантора-Дедекинда  $\exists t \in \mathbb{R} : t \in (A,B)$ .

$$a_k \leqslant t \leqslant b_i \forall j, k \in \mathbb{N}.$$

Возьмем k = j:

$$t \in [a_j, b_j], \ \forall j \in \mathbb{N}.$$

А эта точка принадлежит всем отрезкам.

Note. Эта точка единственна тогда и только тогда, когда  $\forall \varepsilon > 0 \ \exists n : |I_n| < \varepsilon$ 

Доказательство. Если такая точка единственная, (A,B) - узкая щель. То есть  $\forall \varepsilon > 0 \; \exists k,j \in \mathbb{N} : b_j - a_k < \varepsilon$ . Не умоляя общности,  $j \geqslant k$ . Тогда  $b_j - a_j < \varepsilon$ . В обратную сторону очевидно.

#### в обратную сторону очевидно.

#### 1.4.5 Теорема о компактности

**Theorem 10** (о компактности). Любое бесконечное ограниченное подмножество вещественных чисел имеет хотя бы одну предельную точку.

Доказательство. Пусть A - ограничено. Тогда  $\exists a_1,b_1:a_1\leqslant x\leqslant b_1 \quad \forall x\in A$ . Получаем  $A\subset [a_1,b_1]$ . Возьмем середину отрезка  $c=\frac{b_1+a_1}{2}$ . Теперь  $I_2=\left\{\begin{array}{ll} [a_1,c] & \text{если }A\cap [a_1,c] \text{- бесконечно}\\ [c,b_1] & \text{если }A\cap [c,b_1] \text{- бесконечно} \end{array}\right.$  Будем аналогично делить пополам получаемый отрезок. Эти отрезки представляют собой последовательность вложенных замкнутых отрезков:

$$I_1 \supset I_2 \supset I_3 \ldots \supset I_n \supset \ldots$$

Причем  $|I_n|=\frac{|I_1|}{2^{n-1}}, \quad \forall n\in\mathbb{N}$ . По теореме о вложенных отрезках  $9\ \forall n\in\mathbb{N}\exists!x:x\in I_n$ . Этот x и есть предельная точка для множества A.

$$\forall \varepsilon > 0 \ \exists n \in \mathbb{N} : |I_n| < \varepsilon \land x \in I_n \Rightarrow I_n \subset U_{\varepsilon}(x)$$
. Тогда  $\exists y \in A \cap I_n : y \neq x$ .

### 1.4.6 Теорема о вложенных полуоткрытых отрезках

**Theorem 11** (о вложенных полуоткрытых отрезках). *Рассмотрим последовательность вложенных полуоткрытых интервалов, среди которых существуют полуинтервалы сколь угодно малой длины:* 

$$J_1 \supset J_2 \ldots \supset J_n \supset \ldots, \qquad \epsilon \partial e \ J_n = [a_n, b_n).$$

Torda 
$$\begin{bmatrix} \bigcap_{n=1}^{\infty} J_n = \varnothing \\ \bigcap_{n=1}^{\infty} J_n = \{x_0\} \iff \exists n_0 : b_{n_0} = b_{n_0+1} = b_{n_0+2} = \dots \end{bmatrix}$$

Доказательство. Рассмотрим последовательность  $I_n = [a_n, b_n]$ . По теореме о вложенных отрезках  $9 \; \exists! t \in \bigcap_{n=1}^{\infty} I_n$ . Если  $t \notin \bigcap_{n=1}^{\infty} J_n$ , то  $\exists n_0 : t \notin J_{n_0} \land t \in I_{n_0}$ . А тогда  $t = b_{n_0}$ , которое совпадает совпадает со концами всех следующих интервалов. Иначе  $t \in \bigcap_{n=1}^{\infty} J_n$  и правые концы одинаковы.

#### 1.4.7 Десятичное разложение вещественного числа

Пусть  $x \in [0,1)$ . Разобьем полуинтервал на десять равных полуинтервалов  $\{I_i\}$ . Будем собирать десятичную запись:

- 1.  $i_1$  номер интервала, куда попало x
- $2.\ i_2$  номер интервала второго ранга результата разбиения каждого полуинтервала на 10 частей



Рис. 1.1: Decimal decomposition

#### 3. И так далее

Получим  $0.i_1i_2i_3...$  – десятичную запись числа x.

Note. Не существует десятичного представления, в котором с некоторого момента все девятки.

**Theorem 12.** Пусть  $(j_1, j_2, ...)$  - цифры от нуля до девяти.  $\nexists n \in \mathbb{N} : j_k = 9 \ \forall k \geqslant n$ . Тогда  $\exists ! x \in [0,1)$  для которого  $0.j_1j_2...$  - десятичное представление.

Доказательство. Рассмотрим последовательность полуинтервалов  $I_1 \supset I_2 \supset \dots$  По теореме 11 существует непустое пересечение, равное одной точке - и есть наше число.

# Глава 2

# Пределы

## 2.1 Основные свойства пределов функций

#### 2.1.1 Определение предела

**Def 20.** b – предел функции f в точке  $x_0$ , если для любой окрестности U в точке b существует такая проколотая окрестность  $\overset{\circ}{V}$  точки  $x_0:f(\overset{\circ}{V}\cap A)\subset U$ .

**Def 21.** b – предел функции f в точке  $x_0$ , если

$$\forall \varepsilon > 0 \exists \stackrel{\circ}{V}(x_0) : \forall x \in \stackrel{\circ}{V} \cap A : |f(x) - b| < \varepsilon$$

**Def 22.** b – предел функции f в точке  $x_0$ , если

$$\forall \varepsilon > 0 \exists \delta > 0 : \forall x \in A \land x \neq x_0 \land |x - x_0| < \delta : |f(x) - b| < \varepsilon.$$

Если  $x_0 = \infty$ :

$$\forall \varepsilon > 0 \exists N > 0 : \forall x \in A \land x > N : |f(x) - b| < \varepsilon.$$

Note.

$$\lim_{x \to x_0} f(x) = b \Longleftrightarrow \lim_{x \to x_0} |f(x) - b| = 0.$$

#### 2.1.2 Единственность предела

**Theorem 13.**  $f: A \to \mathbb{R}$ , x - предельная точка для A. Если a, b - предельные для f в точке  $x_0$ , то a = b.

Доказательство. Пусть  $a \neq b$ . Тогда существуют  $U_1, U_2$  - не пересекающиеся окрестности точек a, b. Так как a, b - предельные,

$$\exists \overset{\circ}{V_1}(x_0) : f(\overset{\circ}{V_1} \cap A) \subset U_1$$
$$\exists \overset{\circ}{V_2}(x_0) : f(\overset{\circ}{V_2} \cap A) \subset U_2$$

Рассмотрим  $\overset{\circ}{V}(x)=\overset{\circ}{V_1}(x)\cap \overset{\circ}{V_2}(x)$  .  $\exists y\in \overset{\circ}{V}\cap A: f(y)\in U_1\wedge f(y)\in U_2\Rightarrow U_1\cap U_2\neq\varnothing$ . Противоречие.  $\Box$ 

#### 2.1.3 Теорема о пределе сужения

**Def 23.** A' – множество всех предельных точек.

**Theorem 14** (о пределе сужения).  $f: A \to \mathbb{R}, x \in A', B \subset A'$  Пусть  $x_0 \in B' \land z = \lim_{x_0} f$ . Тогда  $z = \lim_{x_0} (f \upharpoonright_B)$ .

Доказательство. По условию  $\forall U(z) \exists \stackrel{\circ}{V}: f(\stackrel{\circ}{V} \cap A) \subset U$ , тем более  $f(\stackrel{\circ}{V} \cap B) \subset U$ .

**Theorem 15** (частичное обращение теоремы о пределе сужения). *Если*  $B = \overset{\circ}{W}_{\delta}(x_0) \land \exists \lim_{x_0} f \upharpoonright_B = z$ ,  $mo \exists \lim_{x_0} f = z$ .

Доказательство. 
$$\forall U(z) \; \exists \stackrel{\circ}{V}(x_0) : f \upharpoonright_B (\stackrel{\circ}{V}) \cap A \subset U \Leftrightarrow f((\stackrel{\circ}{V} \cap \stackrel{\circ}{W}_{\delta}) \cap A) \subset U.$$
  $\stackrel{\circ}{V} \cap \stackrel{\circ}{W}_{\delta}$  - тоже окрестность точки  $x_0$ .

#### 2.1.4 Предел постоянной функции и предел тождественного отображения

Statement. 
$$f(x) = x \iff \lim_{x \to x_0} f(x) = x_0$$

Statement.  $f(x) = c \iff \lim_{x \to x_0} f(x) = c$ 

#### 2.1.5 Неравенства между функциями, имеющими предел

**Theorem 16.**  $f, g: A \to \mathbb{R}, \ x \in A'$ . Предположим, что существуют пределы у f, g в точке  $x_0$  равные соответственно a, b. Пусть a < b.

Тогда существует проколотая окрестность  $\overset{\circ}{V}(x_0):f(x) < g(x) \quad \forall x \in \overset{\circ}{V} \cap A.$ 

Доказательство. Рассмотрим  $U_1, U_2$  - не пересекающиеся окрестности точек a, b. Так как a, b - предельные,

$$\exists \overset{\circ}{V_1}(x_0) : f(\overset{\circ}{V_1} \cap A) \subset U_1$$
$$\exists \overset{\circ}{V_2}(x_0) : f(\overset{\circ}{V_2} \cap B) \subset U_2$$

Возьмем  $\overset{\circ}{V}(x) = \overset{\circ}{V}_1(x) \cap \overset{\circ}{V}_2(x)$  . Тогда  $\forall x \in \overset{\circ}{V} \cap A : f(x) \in U_1 \wedge g(x) \in U_2 \Rightarrow f(x) < g(x)$ .

#### 2.1.6 Предельный переход в неравенстве

**Theorem 17** (Предельный переход в неравенстве). Если  $g(x) \leq f(x)$  на A и существуют пределы a, b этих функций в точке  $x_0$ , то  $a \leq b$ .

#### 2.1.7 Принцип двух полицейских

**Theorem 18** (Принцип двух полицейских).  $f, g, k : A \to \mathbb{R}, x_0 \in A$  Пусть  $\lim_{x_0} f = \lim_{x_0} h = b, \ f(x) \leqslant g(x) \leqslant h(x) \quad \forall x \in A.$  Тогда  $\lim_{x_0} g = b$ .

Доказательство. Рассмотрим  $\overset{\circ}{U}(b)$ . Существуют проколотые окрестности

$$\begin{array}{ccc} \mathring{V}_1, \mathring{V}_2 \colon & \mathring{V}_1 \cap \mathring{V}_2 = \mathring{V} \wedge f(\mathring{V}_1 \cap A) \subset \mathring{U} \wedge h(\mathring{V}_2 \cap B) \subset \mathring{U} \\ & f(\mathring{V} \cap A) \subset U \\ & h(\mathring{V} \cap A) \subset U \end{array} \right\} \Rightarrow g(\mathring{V} \cap A) \subset U$$

#### 2.1.8 Предел линейной комбинации

**Theorem 19** (Предел линейной комбинайии).  $f,g:A\to\mathbb{R},\ x_0\in A',\ \alpha,\beta\in\mathbb{R}$  Пусть существуют пределы  $\lim_{x_0}f=a,\lim_{x_0}g=b$ .

$$h(x) = \alpha f(x) + \beta g(x), \quad x \in A.$$

Tог $\partial a \lim_{x_0} h = \alpha a + \beta b$ 

Доказательство.

$$\begin{aligned} |\alpha f(x) &= \beta g(x) - \alpha a - \beta b| = \\ &= |\alpha (f(x) - a) + \beta (g(x) - b)| \leq \\ &\leq |\alpha||f(x) - a| + |\beta||g(x) - b| \end{aligned}$$

Достаточно доказать, что  $|\alpha||f(x)-a|+|\beta||g(x)-b|\to 0$ . Будем считать, что  $\alpha,\beta\neq 0$ .

$$\forall \varepsilon > 0 \ \frac{\exists \delta_1 > 0 : |f(x) - a| < \frac{\varepsilon}{2|\alpha|}, x_0 \in A, |x - x_0| < \delta_1, x \neq x_0}{\exists \delta_2 > 0 : |g(x) - b| < \frac{\varepsilon}{2|\beta|}, x_0 \in A, |x - x_0| < \delta_2, x \neq x_0} \ .$$

Теперь возьмем  $\delta = \min(\delta_1, \delta_2)$ . Тогда для  $x \in A, |x - x_0| < \delta, x \neq x_0$ :

$$|\alpha||f(x) - a| + |\beta||g(x) - b| \le |\alpha| \cdot \frac{\varepsilon}{2|\alpha|} + |\beta| \cdot \frac{\varepsilon}{2|\beta|} = \varepsilon.$$

#### 2.1.9 $\,$ Предел произведения стремящейся к нулю и ограниченной функций

Statement.  $A \subset \mathbb{R}, \ f, g: A \to \mathbb{R}, \ x_0 \in A'$  $\Pi ped nono жим, что <math>\lim_{x_0} f = 0 \ u \ \exists c \in \mathbb{R} : |g(x)| \leqslant c \forall x \in A. \ Torda \lim_{x \to x_0} f(x)g(x) = 0$ 

Доказательство. Если c=0, утверждение очевидно (хотя оно и в любом случае очевидно). Будем считать, что c>0. Запишем определение предела f:

$$\forall \varepsilon : \exists \stackrel{\circ}{V}(x_0) : |f(x) - 0| = |f(x)| < \frac{\varepsilon}{c}, \quad \forall x \in \stackrel{\circ}{V} \cap A.$$

Тогда

$$|f(x)g(x)| < c|f(x)| \cdot c < \frac{\varepsilon}{c} \cdot c = \varepsilon, \quad \forall x \in \overset{\circ}{V} \cap A.$$

Следовательно,  $\lim_{x \to x_0} f(x)g(x) = 0$ .

ГЛАВА 2. ПРЕДЕЛЫ

#### 2.1.10 Предел произведения имеющих предел функций

Statement.  $A \subset \mathbb{R}, \ f,g: A \to \mathbb{R}, \ x_0 \in A', \ \lim_{x_0} f = a, \lim_{x_0} g = b$ Torda  $\lim_{x \to x_0} f(x)g(x) = ab$ .

Доказательство.

$$|f(x)g(x) - ab| = |f(x)g(x) - ag(x) + ag(x) - ab| \le$$
  
 $\le |g(x)||f(x) - a| + |a||g(x) - b|$ 

 $|g(x)| \le c$  в некоторой проколотой окрестности  $x_0$ , а f(x) - a и g(x) - b стремятся к нулю в точке  $x_0$ . Тогда можем применить утверждение 2.1.9:

### 2.1.11 Предел частного

Statement.  $A \subset \mathbb{R}, \ f, g : A \to \mathbb{R}, \ x_0 \in A', \ \lim_{x_0} f = a, \lim_{x_0} g = b, \ b \neq 0$  $To \ \partial a \lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{a}{b}$ 

Доказательство.

**Lemma.** В условии утверждения функция g удалена от нуля в некоторой проколотой окресности  $\overset{\circ}{V}(x_0)$ . То есть  $\exists c>0 \ \forall x\in \overset{\circ}{V}\cap A: |g(x)|\geqslant c$ 

Доказательство. (леммы)  $\forall \varepsilon > 0 \exists \stackrel{\circ}{U}(x_0) : |g(x) = b| < \varepsilon, \quad \forall x \in \stackrel{\circ}{U} \cap A.$  Возьмем  $\varepsilon = \frac{|b|}{2}.$ 

$$|b| - |g(x)| \le |g(x) - b| \le \frac{|b|}{2} \Longrightarrow \frac{|b|}{2} \le |g(x)|.$$

 $\forall x \in \stackrel{\circ}{V}(x_0) \cap A$  (из леммы):

$$\begin{split} |\frac{f(x)}{g(x)} - \frac{a}{b}| &= \frac{|bf(x) - ag(x)|}{|bg(x)|} \leqslant \\ &\leqslant \frac{1}{c|b|} |(b - g(x))f(x) + (f(x) - a)g(x)| \leqslant \\ &\leqslant \frac{1}{|b|c} |g(x) - b| |f(x)| + |(f(x) - a)|g(x)| \longrightarrow 0 \end{split}$$

#### 2.1.12 Односторонние пределы

**Designation.**  $f:A\to\mathbb{R},\ x_0$  - предельная точка  $A,(x_0\in\mathbb{R},\neq\pm\infty).$   $A_1=A\cap(-\infty,x_0];\ A_2=A\cap[x_0,+\infty).$ 

**Def 24.** Если  $x_0$  — предельной точка  $A_1$ ,  $\exists \lim_{x_0} f \upharpoonright_{A_1}$ , то говорят, что f имеет **предел слева** от  $x_0$ . Если  $x_0$  — предельная точка  $A_2$ ,  $\exists \lim_{x_0} f \upharpoonright_{A_2}$ , то говорят, что f имеет **предел слева** от  $x_0$ .

**Designation.** Левый предел обозначают:  $\lim_{x\to x_0-0} f(x)$ ,  $\lim_{x\to x_0-} f(x)$ . Правый предел обозначают:  $\lim_{x\to x_0+0} f(x)$ ,  $\lim_{x\to x_0+} f(x)$ .

 $\mathbf{E}\mathbf{x}$ .

$$A = [0, 2], x_0 = 1, f(x) = \begin{cases} x & 0 \le x < 1 \\ 2 & x = 1 \\ 0 & 1 < x \le 2 \end{cases}$$

В точке 1 у этой функции предел слева - 1, справа - 0.

 $\mathbf{E}\mathbf{x}$ .

$$f(x) = \begin{cases} \sin\frac{1}{x} & x > 0\\ 0 & x \leqslant 0 \end{cases}$$

Слева предел 0, справа — нет.

## 2.1.13 Сумма геометрической прогрессии

Рассмотрим функцию  $f(n) = \sum_{j=1}^{n} q^j = \frac{1-q^n}{1-q}, \quad q \in \mathbb{R}.$ 

Statement. Ecnu |q| < 1, mo f(x) umeem npeden, unave не имеет предела.

Доказательство.

|q| < 1

Lemma.

$$q^{n+1} \stackrel{n \to \infty}{\longrightarrow} 0 \Longleftrightarrow |q|^n \stackrel{n \to \infty}{\longrightarrow} 0.$$

1. Доказательство.

$$\left(\frac{1}{|q|}\right)^n = \left(1 + \frac{1}{|q|} - 1\right)^n \geqslant 1 + n\left(\frac{1}{|q|} - 1\right).$$

Тогда

$$0 \leqslant |q|^n \leqslant \frac{1}{1 + n\left(\frac{1}{|q|} - 1\right)} \stackrel{n \to \infty}{\longrightarrow} 0.$$

Теперь найдем  $\forall \varepsilon > 0 \ N \in \mathbb{N} \forall n > N : \frac{1}{\varepsilon} < 1 + n \left( \frac{1}{|q|} - 1 \right)$ . Подойдет  $N = \frac{1}{\varepsilon \left( \frac{1}{|q|} - 1 \right)}$ .

Из леммы получаем:  $f(n) = \frac{1-q^n}{1-q} \longrightarrow \frac{1}{1-q}$ 

2. q = -1

$$f(n) = \left\{ egin{array}{ll} 1, & 2 \mid n \\ 0, & 2 \nmid n \end{array} \right.$$
 нет предела

3. q = 1, f(n) = n + 1 - нет предела

4. q > 1

$$\lim f(n) = \lim \frac{1 - q^n}{1 - q} = \lim \frac{q^n - 1}{q - 1}.$$

Эта функция не имеет предела.

ГЛАВА 2. ПРЕДЕЛЫ

5. q < 1

$$|f(n)| = \left| \frac{q^n - 1}{q - 1} \right| \geqslant \frac{1}{|q - 1|} (|q|^n - 1).$$

Эта функция тоже не имеет предела.

#### 2.1.14 Предел монотонной функции

**Def 25.**  $f: A \to \mathbb{R}, A \cap \mathbb{R}$ 

f – (строго) возрастающая, если

$$x_1, x_2 \in A, x_1 < x_2 \Rightarrow f(x_1) \leqslant f(x_2) \ (f(x_1) < f(x_2)).$$

f – (строго) убывающая, если

$$x_1, x_2 \in A, x_1 > x_2 \Rightarrow f(x_1) \geqslant f(x_2) \ (f(x_1) > f(x_2)).$$

f – (строго) монотонна, если (строго) возрастает или (строго) убывает.

**Theorem 20** (о пределе монотонной функции).  $f: A \to \mathbb{R}$  - монотонная и ограниченная функция на  $A, x_0 \in A'$ , (допускается  $x_0 = \pm \infty$ , то есть A - неограничено). Если f - возрастает и ограничена сверху или убывает и ограничена снизу, то  $\exists \lim_{x \to x_0} f(x)$ .

Доказательство. Пусть f - возрастает и ограничена сверху.  $f(x)\leqslant M\ \forall x\in A.$ 

 $b = \sup\{f(x) \mid x \in A\}$ . Докажем, что  $b = \lim_{x \to x_0} f(x)$ .

Пусть  $\varepsilon > 0$ . Рассмотрим  $U_{\varepsilon}(b) = (b - \varepsilon, b + \varepsilon)$ .

$$\exists y \in A : b - \varepsilon < f(y).$$

Тогда  $\forall x \in A : y < x < x_0 \Rightarrow f(y) \leqslant f(x) \leqslant b$ 

Note. Доказали, что

$$\lim_{x_0} f = \sup_{x \in A} f(x).$$

Аналогично, если f убывает и ограничена снизу

$$\lim_{x_0} f = \inf_{x \in A} f(x).$$

#### 2.1.15 Предел композиции

**Def 26.**  $f: A \to \mathbb{R}, g: B \to \mathbb{R}, f(A) \subset B$ . Тогда задана функция композиции  $h = f \circ g$ .

**Theorem 21.** Пусть  $b = \lim_{x \to x_0} f(x) \wedge b \in B' \wedge \lim_{y \to b} g(y) = d$ . Тогда  $\lim_{x \to x_0} f \circ g(x) = d$ , если хотя бы одно условие выполнено:

- 1.  $f(x) \neq b$ ,  $\forall x \neq x_0$
- 2.  $b \in B, g$  непрерывна в точке b : d = g(b)

Доказательство. Пусть U — окрестность точки d;  $\exists V(b)$ :

$$y \in \stackrel{\circ}{V} \cap B \Rightarrow g(y) \in U.$$

$$\exists \stackrel{\circ}{W} (x_0) : x \in \stackrel{\circ}{W} \cap A \Rightarrow f(x) \in V.$$

Пусть выполнено первое условие. Тогда  $f(x) \in \stackrel{\circ}{V} \Longrightarrow g(f(x)) \in U$ . Пусть выполнено второе условие. Либо  $f(x) \neq b$ , тогда  $g(f(x)) \in U$ , либо f(x) = b, тогда  $g(f(x)) = d \in U$ 

## 2.2 Критерий Коши

### 2.2.1 Критерий Коши

**Theorem 22** (Критерий Коши).  $f: A \to \mathbb{R}, A \subset \mathbb{R}, x_0 \in A'$ . x - либо число, либо  $\pm \infty$ . Функция f имеет предел в точке  $x_0$  тогда и только тогда, когда выполняется условие Коши:

$$\forall \varepsilon > 0 \exists \stackrel{\circ}{V}(x_0) : |f(x_1) - f(x_2)| < \varepsilon, \quad \forall x_1, x_2 \in \stackrel{\circ}{V} \cap A.$$

Доказательство.  $1 \Rightarrow 2$ .

$$\lim_{x \to x_0} f(x) \to a \in \mathbb{R} \Leftrightarrow \forall \varepsilon > 0 \exists \overrightarrow{V}(x_0) : |f(x) - a| < \frac{\varepsilon}{2} \forall x \in \overset{\circ}{V} \cap A$$

$$\Rightarrow \forall x_1, x_2 \in \stackrel{\circ}{V} \cap A \Rightarrow |f(x_1) - f(x_2)| \leq |f(x_1) - a| + |f(x_2) - a| < \varepsilon$$

 $2 \Rightarrow 1$ .

**Lemma.** Если выполнено условие Коши, то f ограничено вблизи  $x_0$ .

Доказательство. Применим условие : зафиксируем какую-то точку y из нашего множества. Это будет означать, что для всей окрестности  $x_0$  выполнено  $f(y) - \varepsilon \le f(x) \le f(y) + \varepsilon$ , то есть f(x) ограничена.

От того, что мы в одной точке (которую выкололи из окрестности) добавим значение, ограниченность не испортится. Значит, не умоляя общности, f - ограничена.

**Def 27.** Пусть  $g: B \to \mathbb{R}$  ограничена на  $B, E \subset B$ . Колебание f на E - это  $\sup_{x \in E} g(x) - \inf_{x \in E} g(x) = osc_E(g)$ 

Если  $\forall x, y \in E \ |g(x) - g(y)| \le \rho \Rightarrow osc_E(g) \le \rho$ :  $\forall x, y \in E - \rho < g(x) - g(y) \le g \Rightarrow g(x) \le g(y) + \rho \Rightarrow \sup_E g \le g(y) + \rho$ ,  $\sup_E g - \rho \le g(y) \ \forall \ y \in E \Rightarrow \sup_E g - \rho$  - нижняя граница,  $\inf_E g \geqslant \sup_E g - \rho$ .

 $/sup - inf \leq sup - (sup - \rho) = \rho$ Еще одна полезная формула для колебаний:

$$osc_B(f) = \sup\{|f(x) - f(y)| \mid x, y \in B\}$$

. Доказали, что  $|f(x)-f(y)|\leqslant \rho\ \forall\ x,y\in B\Rightarrow osc_B(f)\leqslant \rho.$  Пусть  $d=osc_B(f);\ x,y\in B$ 

$$m = \inf_{z \in B} f(z) \leqslant f(x) \leqslant \sup_{z \in B} f(x) = M$$

$$\inf_{z \in B} f(z) \leqslant f(y) \leqslant \sup_{z \in B} f(x)$$

$$\Rightarrow |f(x) - f(y)| \leqslant M - m = osc_B(f) = d$$

d - верхняя граница для множества чисел |f(x) - f(y)|, доказали, что она меньше всех верхних границ, значит она точная верхняя граница, что и надо.

2.3. РЯДЫ 22

f удовлетворяет условию Коши в  $x_0: \forall \varepsilon > 0 \; \exists \; \stackrel{\circ}{V}(x_0): \; |f(x) - f(y)| < \varepsilon \; \forall x,y \in \stackrel{\circ}{V} \cap A.$  По лемме f ограничена.

Заведем вспомогательную функцию  $g:A\to\mathbb{R}, x_0\in\mathbb{R}, \pm\infty$  - предельная точка для g,g ограничена на  $A.\ \stackrel{\circ}{V}(x_0); m=m_{\stackrel{\circ}{V}}=m_{\stackrel{\circ}{V},g}=\inf_{x\in \stackrel{\circ}{V}\cap A}g(x); M=\sup_{x\in \stackrel{\circ}{V}\cap A}g(x).$  Всегда  $m\leqslant M,$  заведем еще  $\Gamma_{x_0}=\Gamma_{x_0,g}=m_{\stackrel{\circ}{V}}$  - множество inf по всем проколотым окрестностям, аналогично заведем множество sup.

//здесь мы просто смотрим на произвольную функцию и вводим терминологию

Пара  $(\Gamma_{x_0}, \Delta_{x_0})$  образует щель. Если  $\overset{\circ}{W} \subset \overset{\circ}{V} \Rightarrow m_{\overset{\circ}{W}} \geqslant m_{\overset{\circ}{V}}; M_{\overset{\circ}{W}} \leqslant M_{\overset{\circ}{V}}$ . Пусть  $a \in \Gamma, b \in \Delta, \ \exists \ \overset{\circ}{V}, \overset{\circ}{W}: a = m_{\overset{\circ}{V}}, b = M_{\overset{\circ}{W}}$ . Пусть  $\overset{\circ}{V} \subset \overset{\circ}{W}; \ a \leqslant M_{\overset{\circ}{V}} \leqslant b$ . Воспользовались какими нужно неравенствами, которые тут есть, проверили, что щель.

Для нашей f это щель.  $(\Gamma_{x_0,f},\Delta_{x_0,f})$  узкая щель.  $\varepsilon>0;\ \exists\ \overset{\circ}{V}:\ |f(x)-f(y)|<\varepsilon\ \forall x,y\in \overset{\circ}{V}\cap A\Rightarrow M_{\overset{\circ}{V},f}-m_{\overset{\circ}{V},f}\leqslant \varepsilon,$  то есть там только одно число c.

$$\forall \stackrel{\cdot}{V}(x_0) \stackrel{\cdot}{m_{\stackrel{\cdot}{V},f}} \leqslant c \leqslant M_{\stackrel{\cdot}{V},f}.x \in \stackrel{\circ}{V} \cap A \Rightarrow m_{\stackrel{\circ}{V},f} \leqslant f(x) \leqslant M_{\stackrel{\circ}{V},f} \Rightarrow |f(x) - c| \leqslant |M - m| \leqslant \varepsilon.$$

$$\forall \varepsilon > 0 \exists \stackrel{\circ}{V}(x_0) : osc_{\stackrel{\circ}{V} \cap A}(f - c) \leqslant \varepsilon.$$

## 2.3 Ряды

#### 2.3.1 Понятие ряда. Теорема Лейбница

**Def 28.** Рассмотрим последовательность  $\{a_n\}_{n\in\mathbb{N}}$ . Ряд – символ  $\sum_{n=1}^{\infty}a_n$ .

Частичные суммы ряда – последовательность  $\{S_k\}_{k\in\mathbb{N}}, \quad S_k = \sum_{n=1}^k a_n.$ 

Говорят, что ряд  $\sum_{n=1}^{\infty} y_n$  сходится, если последовательность его частичных сумм имеет предел. Иначе говорят, что ряд расходится.

Statement.

$$\sum_{n=2}^{\infty} \frac{1}{n(\log n)^{\alpha}} - cxo \partial umc s \iff \sum_{n=1}^{\infty} 2^n \frac{1}{2^n (\log 2^n)^{\alpha}} = \sum_{n=1}^{\infty} \frac{1}{(\log 2)^{\alpha}} \cdot \frac{1}{n^{\alpha}}, \quad \alpha > 1.$$

**Theorem 23** (Лейбниц). Пусть  $a_n$  - монотонно убывающая неотрицательная последовательность  $0\geqslant a_1\geqslant a_2\dots$  . Тогда ряд  $\sum\limits_{n=1}^{\infty}a_n$  - сходится тогда и только тогда, когда  $\sum\limits_{n=1}^{\infty}2^na_{2^n}$  - сходится.

Доказательство.

 $\underset{n-1}{\Rightarrow}$   $\sum_{n=1}^{\infty}a_n$  - сходится. Достаточно доказать, что частичные суммы второго ряда ограничены.

$$S_k = a_1, +a_2 + \ldots + a_k, \quad k = 2^n$$
  
 $S_{2^n} = a_1 + a_2 + (a_3 + a_4) + (a_5 + a_6 + a_7 + a_8) + \ldots + (a_{2^{n-1}} + \ldots + a_{2^n})$ 

Заменим в каждой скобке на минимальный:

$$S_{2^n} \leqslant a_2 \leqslant 2a_4 + 4a_8 + \dots + 2^{n-1}a_{2^n}.$$

2.3. РЯДЫ 23

Тогда

$$2a_2 + 4a_4 + \dots 2^n a_{2^n} \leqslant 2S_{2^n}.$$

Из чего следует, что  $\sum_{n=1}^{\infty} 2^n a_{2^n}$  - сходится.

$$\sum\limits_{n=1}^{\infty}2^{n}a_{2^{n}}$$
 - сходится. Обозначим его сумму за  $T$ . Тогда

$$a_1 + (a_2 + a_3) + (a_4 + a_5 + a_6 + a_7) + \ldots + (a_{2^n} + \ldots + a_{2^{n+1}-1}) \le a_1 + 2a_2 + 4a_4 + \ldots + 2a_{2^n} \le a_1 + T.$$

#### 2.3.2 Теорема сравнения для рядов с неотрицательными членами

**Theorem 24** (Теорема сравнения). Пусть  $\{a_n\}, \{b_n\}$  - неотрицательные последовательности. Если  $a_n \leqslant b_n \forall n, \sum_{n=1}^{\infty} b_n$  сходится, значит и  $\sum_{n=1}^{\infty} a_n$  сходится и  $\sum_{n=1}^{\infty} b_n \geqslant \sum_{n=1}^{\infty} a_n$ 

Доказательство. Пусть  $S_n$  (частичные суммы  $b) \to S$ , то есть ограничены сверху. Частичные суммы ряда a тогда ограничены сверху частичными суммами b, а значит ограничены S тем более. Значит по предыдущей теореме  $\sum_{n=1}^{\infty} a_n$  сходится, и предел не больше по лемме о предельном переходе в неравенстве.

**Theorem 25.** Пусть s > 0, тогда ряд  $\sum_{n=1}^{\infty} \frac{1}{n^s}$  сходится при s > 1 и расходится при  $s \leqslant 1$ .

 $\mathcal{A}$ оказательство.  $s < 1 \Rightarrow n^s < n \Rightarrow \frac{1}{n^s} > \frac{1}{n} \Rightarrow$  если докажем, что  $\sum_{n=1}^{\infty} \frac{1}{n}$  расходится, то и ряд при 0 < s < 1 расходится. Проверим, что  $S_N = \sum_{n=1}^N \frac{1}{n}$  неограничены. Посмотрим на  $S_{2^j}$ :

$$1 + \left(\frac{1}{2}\right) + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \dots + \frac{1}{8}\right) + \dots + \left(\frac{1}{2^{j-1}+1} + \dots + \frac{1}{2^j}\right) \geqslant 1 + \frac{1}{2} + 2\frac{1}{4} + 4\frac{1}{8} + \dots + 2^{j-1}\frac{1}{2^j} = 1 + j\frac{1}{2}$$

Действительно неограничены.

Пусть s>1. Хотим доказать, что  $1+\frac{1}{2^s}+\cdots+\frac{1}{n^s}$  ограничена сверху.  $\exists \ j:2^j\leqslant n<2^{j+1}.$ 

$$1 + \frac{1}{2^s} + \ldots + \frac{1}{n^s} \leqslant 1 + \frac{1}{2^s} + \ldots + \frac{1}{n^s} + \ldots + \frac{1}{(2^{j+1} - 1)^s} =$$

$$= 1 + \left(\frac{1}{2^s} + \frac{1}{3^s}\right) + \left(\frac{1}{4^s} + \frac{1}{5^s} + \frac{1}{6^s} + \frac{1}{7^s}\right) + \ldots + \left(\frac{1}{2^{js}} + \ldots + \frac{1}{(2^{j+1} - 1)^s}\right) \leqslant$$

$$\leqslant 1 + 2\frac{1}{2^s} + 2^2 \frac{1}{2^{2s}} + \cdots + 2^j \frac{1}{2^{js}} = 1 + \sum_{k=1}^j \frac{1}{2^{k(s-1)}} = \frac{\frac{1}{2}^{(s-1)(j+1)} - 1}{\frac{1}{2}^{s-1} - 1} \leqslant \frac{1}{1 - \frac{1}{2}^{s-1}}$$

Да, ограничена, значит сходится

**Ex.** 
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

t

# 2.4 Верхние и нижние пределы

### 2.4.1 Определение и свойства

**Def 29.**  $f: A \to \mathbb{R}$ 

$$a = \overline{\lim}_{x \to x_0} = \lim_{x \to x_0} \sup f(x)$$

$$b = \underline{\lim}_{x \to x_0} = \lim_{x \to x_0} \inf f(x).$$

Число a называется верхним пределом f в точке  $x_0$ .

Число b называется нижним пределом f в точке  $x_0$ .

Property. 1.  $\lambda \in \mathbb{R}$ 

$$\overline{\lim}_{x_0} \lambda f = \left\{ \begin{array}{ll} \lambda \overline{\lim}_{x_0} f, & \lambda \geqslant 0 \\ \lambda \underline{\lim}_{x_0} f, & \lambda < 0 \end{array} \right..$$

$$\underline{\lim}_{x_0} \lambda f = \begin{cases} \lambda \underline{\lim}_{x_0} f, & \lambda \geqslant 0 \\ \lambda \overline{\lim}_{x_0} f, & \lambda < 0 \end{cases}.$$

2. Сумма двух функций  $f,g:A\to\mathbb{R}$ 

$$\overline{\lim}_{x_0} (f+g) \leqslant \overline{\lim}_{x_0} f + \overline{\lim}_{x_0} g.$$

 $Paccмompum\ x \in \overset{\circ}{V}(x_0) \cap A.$ 

$$(f+g)(x) = f(x) + g(x) \leqslant M_{\stackrel{\circ}{V}}(f) + M_{\stackrel{\circ}{V}}(g) \Rightarrow$$

$$\Rightarrow M_{\overset{\circ}{V}}(f+g) \leqslant M_{\overset{\circ}{V}} \leqslant M_{\overset{\circ}{V}}(f) + M_{\overset{\circ}{V}}(g).$$

Tог $\partial a$ 

$$\overline{\lim_{x_0}}(f+g)\leqslant M_{\overset{\circ}{V}}(f)+M_{\overset{\circ}{V}}(g)-M_{\overset{\circ}{V}}(f)(g)+\overline{\lim_{x_0}}(f,g)\leqslant M_{\overset{\circ}{V}}.$$

/ Не дописано!!!

## 2.4.2 Теорема об описании верхнего и нижнего предела

**Theorem 26** (Теорема об описании верхнего предела). Пусть f - ограниченная функция на множестве A.  $x_0 \in A$ . Число а является верхним пределом функции f в точке  $x_0$  тогда и только тогда, когда выполнены условия:

1. 
$$\forall \varepsilon > 0 \exists \stackrel{\circ}{V}(x_0)$$
:

$$\forall x \in \overset{\circ}{V} \cap A : f(x) < a + \varepsilon.$$

2. 
$$\forall \varepsilon > 0 \ \forall \stackrel{\circ}{U}(x_0)$$
:

$$\exists x \in \overset{\circ}{U} \cap A : f(x) > a - \varepsilon.$$

Доказательство. Пусть 1 и 2 выполнены.  $a \in \overline{\lim}_{x_0} f$ .

Рассмотрим  $\varepsilon > 0$  и найдем для него  $\overset{\circ}{V}$ .

$$\overline{\lim}_{x_0} f \leqslant M_{\stackrel{\circ}{V}} \leqslant a + \varepsilon.$$

ГЛАВА 2. ПРЕДЕЛЫ

Тогда  $\overline{\lim}_{x_0} \leqslant a$ .

$$\forall \stackrel{\circ}{U}: M_{\stackrel{\circ}{U}} > a - \varepsilon \Rightarrow \overline{\lim}_{x_0} f \geqslant a + \varepsilon.$$

Так как  $\varepsilon$  любое,  $\overline{\lim}_{x_0} f \geqslant a$ 

Теперь в обратную сторону. Пусть  $a = \overline{\lim}_{x_0} f$ .

$$a = \overline{\lim}_{x_0} f \Rightarrow a = \inf M_{\stackrel{\circ}{V}}(f).$$

 $\varepsilon > 0: \exists \stackrel{\circ}{V}: a \leqslant M_{\stackrel{\circ}{V}} < a + \varepsilon$ 

$$M_{\stackrel{\circ}{V}} = \sup_{x \in \stackrel{\circ}{V} \cap A} f(x) \Rightarrow f(x) < a + \varepsilon \quad \forall x \in \stackrel{\circ}{V} \cap A.$$

Рассмотрим произвольную проколотую окрестность  $\overset{\circ}{V}$  точки  $x_0$ .

$$M_{\stackrel{\circ}{V}} \Rightarrow \exists x \in \stackrel{\circ}{V} \cap A : f(x) > a - \varepsilon.$$

**Theorem 27** (Теорема об описании нижнего предела). Пусть f - ограниченная функция на множесстве A.  $x_0 \in A$ . Число b является нижним пределом функции f в точке  $x_0$  тогда и только тогда, когда выполнены условия:

1. 
$$\forall \varepsilon > 0 \exists \stackrel{\circ}{V} (x_0)$$
:

$$\forall x \in \overset{\circ}{V} \cap A : f(x) > b - \varepsilon.$$

2. 
$$\forall \varepsilon > 0 \ \forall \stackrel{\circ}{U}(x_0)$$
:

$$\exists x \in \overset{\circ}{U} \cap A : f(x) < b + \varepsilon.$$

Доказательство. Аналогично

# 2.5 Последовательности

#### 2.5.1 Сходящиеся последовательности и их пределы

 $x: \mathbb{N} \to \mathbb{R}, \{x_n\}_{n \in \mathbb{N}}$  имеет единственную предельную точку  $+\infty$ .

**Def 30.**  $\{x_n\}$  называется сходящейся, если существует конечный предел  $\lim_{\infty} x_n$ .

Statement. Пусть  $\{x_n\}$  - последовательность,  $b \in \mathbb{R}$ . Следующие условия эквивалентны:

- 1.  $\lim_{n\to\infty} x_n = b$
- 2.  $\forall \varepsilon > 0 \exists A \subset \mathbb{N}$  конечное  $: \forall x \notin A : |x_n b| < \varepsilon$

Доказательство. Запишем определение того, что  $\lim_{\infty} x_n = b$ :

$$\forall \varepsilon > 0 \exists N \in \mathbb{R} : |x_n - b| < \varepsilon \quad \forall n > N \tag{2.1}$$

 $1\Rightarrow 2$ . Пусть 2.1 верно. Возьмем  $A=\{1,\ldots N\}$  - конечно. Следовательно, верно 2.

 $2 \Rightarrow 1$ . Возьмем  $N = \max\{A\}$ , получим 1.

**Def 31.** Пусть  $\varphi: \mathbb{N} \to \mathbb{N}$  - биекция.  $y_n = x_{\varphi(n)}$  - перестановка  $\{x_n\}$ .

Corollary. Последовательность сходится тогда и только тогда, когда любая перестановка сходится.

**Def 32.** Пусть  $\{n_k\}$  - строго возрастающая последовательность натуральных чисел.  $\{y_k\}: y_k = y_{n_k}$  - подпоследовательность  $\{x_n\}$ 

Statement. Если  $\{x_n\}$  сходится  $\kappa$  b, то любая подпоследовательность тоже сходится  $\kappa$  b.

Доказательство. Аналогично 2.1.3.

#### 2.5.2 Вторая форма теоремы о компактности

**Lemma.**  $\{x_n\} = X \subseteq \mathbb{R}, x_0 \in \mathbb{R}$ . Следующие условия эквивалентны:

- 1.  $x_0$  npeдельная точка для X.
- $2. \ \exists \{x_n\}_{n\in\mathbb{N}} \to x_0: x_n\in X, x_n\neq x_0.$  Более того  $\{x_n\}$  можно выбрать так, что  $x_k\neq x_j, \quad i\neq j.$

 $\mathcal{A}$ оказательство.  $2\Rightarrow 1$ . Возьмем любую проколотую окрестность точки  $x_0$ . Хотим:  $\stackrel{\circ}{V}\cap X\neq 0$ .

$$\stackrel{\circ}{V} = (x - \varepsilon, x_0) \cup (x_0, x + \varepsilon).$$

$$\exists k : x_k \in V, x_k \neq x_0 \Rightarrow x_k \in \stackrel{\circ}{V}, x_k \in X.$$

 $1 \Rightarrow 2$ . Теперь возьмем

$$V_n = (x_0 - \frac{1}{n}, x_0 + \frac{1}{n}), n \in \mathbb{N}.$$
$$\exists x_n \in X \cap V_n \land x_n \neq x_0.$$

Тогда  $|x_n-x_0|<\frac{1}{n}$ . По принципу двух полицейских  $|x_n-x_0|\to 0$ . Теперь сделаем все неравными:  $x_1\in V_1\cap X, x_1\neq x_0$ , дальше возьмем  $\delta_1<\min(\frac{1}{n},|x_n-x_0|)$  и скажем, что  $x_2\in (x_0-\delta,x_0+\delta)\cap X_1, x_2\neq x_1$  и так далее,  $\delta_{n-1}\min(\frac{1}{n},|x_0-x_1|,\dots|x_0-x_{n-1}|,x_n\in (x_0-\delta_{n-1},x_0+\delta_{n-1}),x_n\neq x_0$ 

**Theorem 28** (Вторая форма теоремы о компактности). Всякая ограниченная последовательность имеет сходящуюся подпоследовательность.

Доказательство.  $\{x_n\}_{n\in\mathbb{N}}$  - ограниченная последовательность. Тогда  $\exists M: |x_n| \leqslant M, \quad \forall n$ . Разберем два случая:

- 1.  $\{x_n \mid n \in \mathbb{N}\}$  конечно, тогда какое-то значение принимается бесконечное число раз, тогда с некоторого момента все элементы равны. Возьмем эту последовательность, она сходится.
- 2. A бесконечно, но ограничено. Следовательно, есть предельная точка для A. Тогда по лемме 2.5.2 существует  $\{a_k\} \in A, a_k \to b, a_k \neq a_l, k \neq l$ .

Тогда  $\forall k \exists ! n_k : a_k = x_{n_k}$ , где номера  $n_k$  попарно различны, но не упорядочены. То есть  $\{x_{n_k}\}$  - перестановка  $\{x_n\}$ , а значит тоже сходится.

### 2.5.3 Предел функции в терминах последовательности

**Theorem 29.** Пусть  $A \subset \mathbb{R}, x_0 \in A', x_0 \in \mathbb{R}, f : A \to \mathbb{R}$ . Следующие утверждения эквивалентны:

1. 
$$\lim_{x \to x_0} f(x) = a$$

2. 
$$\forall \{a_n\} : a_n \in A, a_n \neq x_0, a_n \to x_0 \ f(a_n) \to a$$

Доказательство.  $1 \Rightarrow 2$ . Берем последовательность  $a_n \in A, a_n \neq x_0$ . Надо  $f(a_n) \to b$ .

$$\varepsilon > 0; \exists V(x_0) : x \in \overset{\circ}{V} \cap A \Rightarrow |f(x) - b| < \varepsilon.$$

Тогда

$$\exists N : a_n \in V \ \forall n > N \Rightarrow a_n \in \overset{\circ}{V} \ (a_n \neq x_0).$$

Получаем

$$|f(a_n) - b| < \varepsilon.$$

 $2\Rightarrow 1$ . От противного. Пусть первое условие не выполнено. Предположим, что  $x_0\in\mathbb{R}$ .

$$\neg a = \lim_{x_0} f^* : \exists \varepsilon > 0 \forall \beta > 0 \exists x : |x - x_0| < \delta, x = x_0, x \in A, \quad |f(x) - a| \geqslant \varepsilon.$$

Возьмем

$$\delta_n = \frac{1}{n} \exists x_n : |x - x_n| < \frac{1}{n}, x_n \neq x_0, \in A.$$

Получаем, что  $|f(x_n) - a| \geqslant \varepsilon$ . С другой стороны, по принципу двух полицейских:

$$0 \leqslant |x_n - x_0| < \frac{1}{n} \Longrightarrow x_n \to x_0.$$

Противоречие.

Случай  $x_0 = \infty$ .

$$\exists \varepsilon > 0 \forall M \exists x > M, x \in A : |f(x) - a| \ge \varepsilon$$

Возьмем  $x_n > n, x_n \in A : |f(x_n) - b| \ge \varepsilon \Rightarrow x_n \to \infty.$ 

# 2.6 Бесконечные пределы

#### 2.6.1 Бесконечные пределы

**Def 33.**  $f:A\to\mathbb{R}, x_0\in A'(x_0\in\mathbb{R}\lor x_0=\pm\infty)$ . Говорят, что f имеет предел  $+\infty(-\infty)$  в точке  $x_0,$  если:  $\forall U(\pm\infty)$  существует проколотая окрестность  $\stackrel{\circ}{V}(x_0):f(x)\in U \forall x\in \stackrel{\circ}{V}\cap A$ .

На языке неравенств:  $\forall M \in \mathbb{R} \exists \stackrel{\circ}{V}(x_0) : f(x) > M \forall x \in \stackrel{\circ}{V} \cap A.$ 

**Def 34.** Говорят, что f стремиться к бесконечности в точке  $x_0$ , если  $\lim_{x\to x_0} |f(x)| = +\infty$ . То есть  $\forall M>0 \exists \stackrel{\circ}{V}(x_0): |f(x)|>M \forall x\in A\cap \stackrel{\circ}{V}$ .

Statement. Пусть  $f(x) \neq 0$  в проколотой окрестности  $x_0$ . Следующие условия эквивалентны:

1. f - стремиться к бесконечности в точке  $x_0$ 

2. 
$$\lim_{x\to x_0} \frac{1}{f(x)} = 0$$

Доказательство.  $1 \Rightarrow 2$  (тогда дополнительное условие 2.6.1 можно не накладывать).

$$\varepsilon > 0M = \frac{1}{\varepsilon} : \exists \overset{\circ}{W}(x_0) : |f(x)| > \frac{1}{\varepsilon} \ \forall x \in \overset{\circ}{W} \cap A \Leftrightarrow \left| \frac{1}{f(x)} \right| < \varepsilon$$

 $2\Rightarrow 1$  (здесь условие 2.6.1 необходимо).  $M>0, \varepsilon=\frac{1}{M}$ . Тогда существует проколотая окрестность  $\stackrel{\circ}{V}$  точки  $x_0$  :

 $\left|\frac{1}{f(x)}\right|<\frac{1}{M}, x\in \stackrel{\circ}{V}\cap A \Longleftrightarrow |f(x)|>M.$ 

### 2.7 Бесконечно большие и бесконечно малые

#### 2.7.1 О и о. Соотношения транзитивности

**Def 35.**  $f: A \to \mathbb{R}, x_0 \in A'$ .

f называется бесконечно малой в точке  $x_0$ , если  $\lim_{x\to x_0}|f(x)|=0$ .

f называется бесконечно большой в точке  $x_0$ , если  $\lim_{x\to x_0} |f(x)| = +\infty$ .

**Def 36.**  $f, g: A \to \mathbb{R}, x_0 \in A'$ . Говорят, что g доминирует функцию f вблизи  $x_0$  и пишут f = O(g)  $(x \to x_0)$ , если  $\exists \overset{\circ}{U}(x_0), \exists C: |f(x)| \leqslant C|g(x)| \quad \forall x \in \overset{\circ}{U}$ .

**Def 37.** Функции f,g называются сравнимым вблизи  $x_0$ , если  $f = O(g) \land g = O(f)$ . Обозначение:  $f \asymp g$ .

**Property.**  $f = O(g) \land g = O(h) \Longrightarrow f = O(h)$ 

Доказательство.

$$\exists \stackrel{\circ}{U}(x_0), \exists c_1 : |f(x)| \leqslant c_1|g(x)| \quad \forall x \in \stackrel{\circ}{U}$$

$$\exists \stackrel{\circ}{V}(x_0), \exists c_1 : |g(x)| \leqslant c_2 |h(x)| \quad \forall x \in \stackrel{\circ}{V} \cap A$$

Тогда  $\forall x \in \stackrel{\circ}{V} \cap \stackrel{\circ}{U}$ :

$$|f(x)| \leqslant c_1|g(x)| \leqslant c_1c_2|h(x)| \Rightarrow |f(x)| \leqslant c|h_\ell x|.$$

Note. Если g(x) не обращается в ноль вблизи  $x_0,$  то  $f(x)=O(g(x))\Longleftrightarrow rac{f}{g}$  - ограниченная функция.

**Def 38.**  $f,g:A\to\mathbb{R}, x_0\in A'$ . Говорят, что f(x)=o(g(x)) вблизи  $x_0$ , если  $\forall \varepsilon>0$   $\exists \stackrel{\circ}{U}(x_0):$ 

$$|f(x)| \leqslant \varepsilon |g(x)|, \quad \forall x \in \stackrel{\circ}{U} \cap A.$$

Note. Если g(x) не обращается в ноль вблизи  $x_0$ , то  $f(x) = o(g(x)) \iff \lim_{x_0} \frac{f}{g} = 0$  - ограниченная функция.

#### 2.7.2 Эквивалентные функции

**Def 39.**  $f,g:A\to \mathbb{R}, x_0\in A'$ . Говорят, что f,g эквивалентны вблизи  $x_0$ , если f-g=o(g), при  $x\to x_0$ . Обозначение:  $f\sim g$ .

Note. Определение асимметрично!

**Lemma.**  $f \sim g$ ,  $npu \ x \rightarrow x_0 \Longrightarrow g \sim f \ npu \ x \rightarrow x_0$ 

$$\varepsilon > 0 : \exists \stackrel{\circ}{V}(x_0) : |f(x) - g(x)| \leqslant \varepsilon |g(x)| \quad \forall x \in \stackrel{\circ}{V} \cap A.$$

Возьмем  $\varepsilon = \frac{1}{2}$ :

$$|f(x)| - |g(x)| \leqslant \frac{1}{2}|g(x)|.$$

$$\frac{1}{2}|g(x)| \leqslant |f(x)|.$$

$$|g(x)| \leqslant 2|f(x)|.$$

Note. Если  $g(x) \neq 0$  вблизи  $x_0, \, f \sim g \Longleftrightarrow \lim_{x \to x_0} rac{f(x)}{g(x)} = 1$ 

## 2.7.3 Отношение эквивалентности и вычисление пределов

Statement. Полезные преобразования для вычисления пределов:

1. 
$$p(x) = \sum_{i=1}^{n} a_n x^n$$
,  $a_n \neq 0$ .  $\Pi pu(x) \to +\infty : p(x) \sim a_n x^n$ 

2. 
$$p(x) = (x - x_0)^l (b + q(x)), \quad b \neq 0, q(x_0) = 0.$$
 Torda  $p(x) \sim b_0 (x - x_0)^l$ 

3. 
$$f(x) = \sqrt[n]{1+x} - 1 = \frac{1+x-1}{(\sqrt[n]{1+x})^{n-1}...+1} \sim \frac{x}{n} \to 0, \quad x \to x_0$$

**Theorem 30.** f, g не обращаются в нуль вблизи  $x_0, f \sim f_1 \wedge g \sim g_1$  вблизи  $x_0$ . Тогда  $fg, f_1g_1$  одновременно имеют или не имеют предел в точке  $x_0$ . Ели пределы существуют, то они равны.

Note. Аналогичная теорема верна для  $\frac{f}{g}$  и  $\frac{f_1}{g_1}$ 

Доказательство.

$$fg = f_1g_1$$
  $\underbrace{\frac{f}{f_1}\frac{g}{g_1}}_{\text{предел этого равен1}}$ 

$$\frac{f}{g} = \frac{f_1}{g_1}$$
  $\underbrace{\frac{f}{f_1} \frac{g_1}{g}}_{\text{предел этого равен1}}$  .



Рис. 2.1: Разрывы первого рода

## 2.7.4 Классификация разрывов

- 1. Разрыы превого рода
  - (a) Устранимые разрывы:  $\lim_{x_0} f$  существует, но  $\lim_{x_0} f \neq f(x_0)$ .
  - (b) Скачок:  $\exists \lim_{x \to x_0 -} f(x) \land \exists \lim_{x \to x_0 +}$ , но они не равны.
- 2. Разрывы второго рода остальные.

# Глава 3

# Непрерывные функции

## 3.1 Непрерывность в точке

**Designation.**  $f: A \to \mathbb{R}, x_0 \in A$ 

**Def 40.** Функция f называется **непрерывной в точке**  $x_0$ , если

для любой окрестности U точки  $f(x_0)$  существует окрестность точки  $x_0$  такая, что  $f(V \cap A) \subset U$ .

или

$$\forall \varepsilon > 0 \ \exists \delta > 0: \ (|x - x_0| < \delta \quad x \in A \Longrightarrow |f(x) - f(x_0)| < \varepsilon). \tag{3.1}$$

*Note.* Если  $x_0 \in A'$ , то условие ?? эквивалентно тому, что

$$\exists \lim_{x \to x_0} f(x) = f(x_0).$$

Note. Если точка  $x_0$  является изолированной для A, то f непрерывна в  $x_0$ .

# 3.2 Свойства непрерывных функций

#### 3.2.1 Теорема об алгебраических операциях

**Theorem 31** (об алгебраических операциях с непрерывными функциями). Пусть  $f: A \to \mathbb{R}, \ g: A \to \mathbb{R}, \ x_0 \in A, \ \alpha, \beta \in \mathbb{R}.$ 

- Если f и g непрерывны в точке  $x_0$ , то  $\alpha g + \beta f$  непрерывна в точке  $x_0$ .
- Если f и g непрерывны в точке  $x_0$  и  $g(x_0) \neq 0$ , то  $\frac{f}{g}$  непрерывна в точке  $x_0$ .

Доказательство. Если  $x_0$  — изолированная, утверждение верно, иначе повторяем доказательства свойств пределов в точке.

#### 3.2.2 Теорема о композиции

**Theorem 32** (о композиции).  $f:A\to\mathbb{R},\ g:B\to\mathbb{R},\ f(A)\subseteq B,\ x_0\in A$ . Пусть f непрерывна в точке  $x_0,\ g$  непрерывна в точке  $f(x_0)=y_0$ . Тогда  $g\circ f$  непрерывна в точке  $x_0$ .

Доказательство. Обозначим  $z_0 = g(y_0) = (g \circ f)(x_0)$ . Пусть U — окрестность точки  $z_0$ . Тогда

 $\exists$  окрестность  $V \ni y_0 : g(V \cap B) \subset U$ .

Так как f непрерывна в точке  $x_0$ :

 $\exists$  окрестность  $W \ni x_0 : f(W \cap A) \subset V$ .

Тогда

$$(g \circ f)(W \cap A) \subset g(U \cap B).$$

#### 3.2.3 Теорема о пределе последовательности

**Theorem 33.**  $f: A \to \mathbb{R}, \ A \subset \mathbb{R}, \ x_0 \in A$ . Следующие условия эквивалентны:

- 1. f непрерывна в точке  $x_0$
- 2.  $\forall$  последовательности  $\{x_n\} \in A, \ x_n \to x_0 : f(x_n) \to f(x_0)$

Доказательство.

 $1 \Longrightarrow 2$ 

 $\overline{\Pi_{yC}}$ ть W — окрестность точки  $f(x_0)$ . Так как f непрерывна,

 $\exists$  окрестность  $V \ni x_0 : f(x) \in W \quad \forall x \in V \cap A.$ 

Так как  $x_n \to x_0$ :

$$\exists N \in \mathbb{N} \ \forall n > N : x_n \in V \Longrightarrow f(x_n) \in W.$$

 $2 \Longrightarrow 1$ 

Пусть f не непрерывна в точке  $x_0$ , есть

$$\exists \varepsilon > 0 \ \forall \delta > 0 \ \exists x \in A : |x - x_0| < \delta \land |f(x) - f(x_0)| \geqslant \varepsilon.$$

Рассмотрим  $\delta_n = \frac{1}{n}$ .

$$\exists x_n \in A : |x_n - x_0| < \frac{1}{n} \land |f(x_n) - f(x_0)| \geqslant \varepsilon.$$

Тогда

$$0 < |x_n - x_0| < \frac{1}{n} \Longrightarrow x_n \to x_0.$$

Из этого следует, что  $f(x_n) \to f(x_0)$ . Противоречие.

# 3.3 Непрерывность на множестве

**Def 41.** Говорят, что функция f, заданная на множестве A, **непрерывна на некотором подмножестве**  $A_1 \subset A$ , если она непрерывна в каждой точке множества  $A_1$ .

ГЛАВА 3. НЕПРЕРЫВНЫЕ ФУНКЦИИ

#### 3.3.1Теоремы Вейерштрасса

**Theorem 34** (Первая теорема Вейершрасса). Пусть f задана и непрерывна на замкнутом и ограниченном множестве А. Тогда функция f ограничена на А.

Доказательство. От противного. Пусть f не ограничена на A. Тогда

$$\forall n \in \mathbb{N} \ \exists x_n \in A : |f(x_n)| > n.$$

 $\{x_n\}$  — ограниченная последовательность. По теореме о компактности существует подпоследовательность  $x_{n_i} \to x$ . Так как A замкнуто,  $x \in A$ . Следовательно,  $f(x_n) \to f(x)$ . Противоречие. 

**Theorem 35** (Вторая теорема Вейерштрасса).  $f:A\to\mathbb{R}$  — непрерывная на замкнутом и ограниченном множестве А функция. Если существуют конечные

$$M = \sup_{x \in A} f(x), \quad m = \inf_{x \in A} f(x),$$

mo

$$\exists y, z \in A : f(y) = M, \quad f(z) = m.$$

Доказательство.

Для M:

$$\forall n \in \mathbb{N} \ \exists x_n \in A : M \geqslant f(x_n) > M - \frac{1}{n}.$$

По теореме о компактности существует подпоследовательность  $x_{n_i} \to x$ . Так как A замкнуто,  $x \in A$ .

$$f(x_{n_i}) \to f(x) \land f(x_{n_i}) \to M \Longrightarrow M = f(x).$$

Значит, M достигается.

• Для т: совершенно аналогично.

#### 3.3.2Теорема о промежуточном значении

**Designation.** «
$$u$$
 между  $r$  и  $s$ » := 
$$\begin{cases} u \in [r,s] & r \leqslant s \\ u \in [s,r] & r > s \end{cases}$$

**Theorem 36** (о промежуточном значении). Пусть f задана и непрерывна на отрезке  $\langle \alpha, \beta \rangle$ . Пусть  $a,b\in\langle \alpha,\beta\rangle,\ v$  находится между f(a) и f(b). Тогда существует x между a и b такой, что f(x)=v.

Доказательство. Если a=b, утверждение очевидно. Не умаляя общности, предположим, что a< b. Будем считать, что  $v \neq f(a) \land v \neq f(b)$ .

Пусть нет точки  $x_0: f(x_0)=v$ . Обозначим I=[a,b]. Пусть  $egin{array}{c} X=\{x\in I\mid f(x)\leqslant v\} \\ Y=\{x\in I\mid f(x)\geqslant v\} \end{array}$  . Докажем, что Xи Y замкнуты.

1. X замкнуто:

 $x_0$  — предельная точка. Следовательно,  $\exists x_n \in X : x_n \to x_0, \ (x_n \neq x_0)$ . Тогда  $f(x_n) \to f(x_0)$ .

$$f(x_n) \leqslant v \Longrightarrow f(x) \leqslant v.$$

2. Аналогично Y замкнуто.

Следовательно,  $X \cap Y \neq \emptyset$ .

**Theorem 37.** Пусть f задана и непрерывна на отрезке (a,b). Следующие условия эквивалентны:

- 1. f инъекция (то есть  $x_1 \neq x_2 \Longrightarrow f(x_1) \neq f(x_2)$ )
- 2. f-строго монотонная

Доказательство.

 $2 \Longrightarrow 1$  Очевидно.

 $\boxed{1 \Longrightarrow 2}$  Пусть f не строго монотонна. Тогда  $\exists x_1 < x_2 < x_3 \in \langle \alpha, \beta \rangle$ :

$$\begin{cases} f(x_1) < f(x_2) \land f(x_2) > f(x_3) \\ f(x_1) > f(x_3) \land f(x_2) < f(x_3) \end{cases}$$

Тогда  $\exists x_1' \neq x_2'$ , но  $f(x_1') = f(x_2')$ . Противоречие.

**Theorem 38.** Пусть д задана на отрезке и возрастает (убывает). Тогда д непрерывна тогда и только тогда, когда образ функции есть отрезок (возможно бесконечный).

**Statement.** Если f непрерывна, задана на отрезке и интективна, то  $f^{-1}$  тоже задана на отрезке и непрерывна.

# 3.4 Степени с рациональным показателем

$$m\in\mathbb{Z},\ f(x)=x^m,\ x>0.$$
  $x^0\equiv 1,\quad x>0.$   $x^m$  строго возрастает, если  $m>0$   $x^m$  строго убывает, если  $m<0$ 

 $x^m\stackrel{\mathrm{def}}{=}=\frac{1}{x^{-m}}$   $f(x)=x^m$  — непрерывная функция. Обратная функция  $g(y)=f^{-1}(y)$  — корень m-й степени из y>0.

$${f Def~42.}~~x>0,~r\in\mathbb{Q},~r=rac{p}{q} \ x^r=\sqrt[q]{x^p}-x$$
 в рациональной степени.

 $Note. \ x \mapsto x^r$  — непрерывное отображение.

**Lemma.** Результат не зависит от представления r в виде дроби.

Property.

1. 
$$x^{r_1} \cdot x^{r_2} = x^{r_1+r_2}$$

2. 
$$(x^{r_1})^{r_2} = x^{r_1 r_2}$$

3. 
$$x^r \cdot y^r = (xy)^r$$

## 3.5 Равномерная непрерывность

 $\mathbf{Def}$  43.  $A \subset \mathbb{R}, \ f: A \to \mathbb{R}$ . Говорят, что f равномерно непрерывна на A, если

$$\forall \varepsilon > 0 \ \forall \delta > 0 \ x_0 \in A : (|x - x_0| < \delta \land x \in A) \Longrightarrow |f(x_0) - f(x_0)| < \varepsilon$$

или

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, y \in A : (|x - y| < \delta \Longrightarrow |f(x) - f(y)| < \varepsilon).$$

**Ex.** f(x) = x,  $A = \mathbb{R}$ .

$$\forall \varepsilon > 0 \ |x-y| < \varepsilon \Longrightarrow |f(x)-f(y)| < \varepsilon \Longrightarrow f$$
 равномерно непрерывна.

Ex.  $f(x) = x^2$ ,  $A \subset \mathbb{R}$ 

$$|x^2-y^2| не равномерно непрерывно.$$

**Ех.**  $h(x) = \sqrt{x}$  — равномерно непрерывна.

$$\left|\sqrt{x} - \sqrt{y}\right| = \frac{|x - y|}{\sqrt{x} + \sqrt{y}}.$$

### 3.5.1 Теорема Кантора

**Theorem 39** (Кантор). Пусть A замкнутое ограниченное множество.  $f: A \to \mathbb{R}$  — непрерывная функция. Тогда f равномерно непрерывна.

 $extit{Доказательство}.$  От противного. Пусть f не является равномерно непрерывной, то есть

$$\exists \varepsilon > 0 \ \delta > 0 \ \exists x_1', x_2'' \in A : |x_1' - x_2''| < \delta \wedge |f(x_1') - f(x_2'')| \geqslant \varepsilon.$$

Рассмотрим  $\delta = \frac{1}{n}$ .

$$\exists x_n', x_n'' \in A : |x_n' - x_n''| < \delta \land |f(x_n') - f(x_n'')| \geqslant \varepsilon.$$

Получили две последовательности  $\{x_n'\}$  и  $\{x_n''\}$ . Обе замкнуты и ограничены, тогда по теореме о компактности  $\exists x_{n_i}' \to x_0 \in A$ .

$$x_{n_i}'' = x_{n_i}' + (x_{n_i}'' - x_{n_i}') \to x_0 + 0.$$

Посмотрим на значения в точках последовательностей:

$$|f(x_n') - f(x_n'')| \geqslant \varepsilon.$$

Но каждое из значений стремится к  $f(x_0)$ , значит разность должна стремиться к нулю. Противоречие.  $\Box$ 

# Глава 4

# Дифференцирование

## 4.1 Определения

**Designation.**  $f: \langle a, b \rangle \to \mathbb{R}, \ x_0, x \in \langle a, b \rangle$ 

**Def** 44. Функция f называется **дифференцируемой** в точке  $x_0$ , если

$$f(x) - f(x_0) = l(x - x_0) + o_{x \to x_0}(x - x_0),$$

где  $l(t)=kt,\;k\in\mathbb{R}$  — дифференциал f в точке  $x_0$  (также обозначается  $d_{fx_0}(t)$  или  $df(x_0,t)$ ). Другая запись:

$$f(x) = f(x_0) + k(x - x_0) + o_{x \to x_0}(x - x_0).$$

**Def 45.** Если f дифференцируема в точке  $x_0$ , производная f в точке  $x_0$  определяется так:

$$f'(x_0) \stackrel{\text{def}}{=} \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$

#### Property.

- 1. Если f дифференцируема в точке  $x_0$ , то k единственное.
- 2. Если f дифференцируема в точке  $x_0$ , то f непрерывна в точке  $x_0$ .
- 3. f дифференцируема в точке  $x_0$  тогда и только тогда, когда

$$\exists \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = k, \ df_{x_0}(t) = kt.$$

Доказательство.

$$\lim_{x \to x_0} \frac{f(x) = f(x_0)}{x - x_0} = k \Longrightarrow \frac{f(x) - f(x_0)}{x - x_0} = k + O(1), \ x \to x_0.$$

$$f(x) - f(x_0) = k(x - x_0) + o_{x \to x_0}(1)(x - x_0) =$$
  
=  $k(x - x_0) + o_{x \to x_0}(x - x_0)$ 

4. f дифференцируема в точке  $x_0$  тогда и только тогда, когда существует  $\beta$ , заданная в окрестности  $V \ni x$ :

(a)  $\beta$  непрерывна в точке  $x_0$ 

(b) 
$$f(x) - f(x_0) = \beta(x) \cdot (x - x_0)$$
  $\forall x \in V$ 

Доказательство.

 $\Rightarrow$ 

$$\beta(x) = \begin{bmatrix} \frac{f(x) - f(x_0)}{x - x_0} & x \neq x_0\\ \lim_{y \to x_0} \frac{f(y) - f(x_0)}{y - x_0} & x = x_0 \end{bmatrix}$$

$$f(x) - \underbrace{\beta(x_0)}_{k}(x - x_0) + o_{x \to x_0}(1)(x - x_0).$$

Получили определение.

# 4.2 Правила дифференцирования

- 0. Никогда не дифференцируй при людях!
- 1. f(x) = ax + b дифференцируема и  $\forall x_0 : f'(x_0) = a$
- 2. Если f,g дифференцируемы в точке  $x_0, f \cdot g$  тоже дифференцируема в точке  $x_0$  и  $(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$
- 3. Если f дифференцируема в точке  $x_0$  и  $f(x_0) \neq 0$ , то 1/f дифференцируема в точке  $x_0$  и

$$\left(\frac{1}{f}\right)'(x_0) = -\frac{f'(x_0)}{f^2(x_0)}.$$

4. Если f,g дифференцируемы в  $x_0$  и  $g(x_0) \neq 0$ , то  $\frac{f}{g}$  дифференцируема в  $x_0$  и

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g^2(x_0)}.$$

5. Если  $f:\langle a,b\rangle\to\mathbb{R},\ g:\langle c,d\rangle,\ x_0\in\langle c,d\rangle,\ g(x_0)\in\langle a,b\rangle$  и f дифференцируема в точке  $g(x_0),\ g$  дифференцируема в точке  $x_0$ , то  $f\circ g$  дифференцируема в точке  $x_0$  и

$$(f \circ g)'(x_0) = f'(g(x_0)) \cdot g'(x_0).$$

ГЛАВА 4. ДИФФЕРЕНЦИРОВАНИЕ

6. Производная обратной функции.  $f:(a,b)\to\mathbb{R}$  непрерывна и инъективна. Пусть  $x_0\in(a,b),\ \exists f'(x_0)\neq 0$ , обозначим  $g=f^{-1}$  — обратное отображение,  $y_0=f(x_0)$ . Тогда g дифференцируема в точке  $y_0$  и

$$g'(y_0) = \frac{1}{f'(g(y_0))} = \frac{1}{f'(x_0)}.$$

7.  $m \in \mathbb{N}, \ g(x) = x^{\frac{1}{m}}$ . Если  $x_0 > 0$ , то g дифференцируема в точке  $x_0$  и

$$g'(x_0) = \frac{1}{f'\left(x^{\frac{1}{m}}\right)} = \frac{1}{m\left(x^{\frac{1}{m}}\right)^{m-1}} = \frac{1}{m} \cdot x^{\frac{1}{m}-1}.$$

8.  $x_0>0,\ \alpha=\frac{l}{k}>0.\ \varphi(x)=x^{\alpha}=\left(x^{\frac{1}{k}}\right)^l$ . Тогда  $\varphi$  дифференцируема в точке  $x_0$  и

$$\varphi'(x) = l\left(x^{\frac{1}{k}}\right) \cdot \frac{1}{k} x^{\frac{1}{k} - 1} = \frac{l}{k} x^{\frac{l}{k} - 1}.$$

Аналогично для  $\alpha < 0$ .

9. Тайная таблице еще не пройденных функций:

| Функция  | Производная        |
|----------|--------------------|
| $\sin x$ | $\cos x$           |
| $\cos x$ | $-\sin x$          |
| tg x     | $\frac{1}{\cos x}$ |
| $\exp x$ | $\exp x$           |
| $\ln x$  | $\ln x$            |

# 4.3 Производная возрастающей функции

**Def 46.** Пусть  $f: I = \langle a, b \rangle \to \mathbb{R}, \in \langle a, b \rangle$ . Говорят, что f возрастает в точке  $x_0$ , если  $\exists$  окрестность  $U \ni x_0$ :

$$\begin{cases} f(y) \leqslant f(x_0) & y \in U \cap I \land y \leqslant x_0 \\ f(y) \geqslant f(x_0) & y \in U \cap I \land y \geqslant x_0 \end{cases}$$

Note. Аналогично можно дать определение убывания в точке и строгие формы, заменив знаки на строгие.

**Theorem 40.** Пусть в условии определения f возрастает в точке  $x_0$ .

- 1.  $Ec_{\Lambda}u \; \exists f'(x), \; f'(x_0) \geqslant 0$
- 2. Пусть  $\exists f'(x_0) > 0$ , тогда f строго возрастает в точке  $x_0$

Доказательство.

1.

$$\underbrace{\frac{f(x) - f(x_0)}{x - x_0}}_{\geqslant 0 \ \forall x \geqslant x_0} \to f'(x_0) \Longrightarrow f'(x_0) \geqslant 0.$$

2. 
$$f(x) - f(x_0) = f'(x_0)(x - x_0) + \underbrace{o(x - x_0)}_{\gamma(x)}$$

$$\forall \varepsilon > 0 \ \exists \delta > 0 : (|x - x_0| < \delta \Longrightarrow |\gamma(x)| \leqslant \varepsilon |x - x_0|.$$

 $0 < \varepsilon < f(x_0)$ . Разберем пару случаев:

(a)  $x > x_0$ .

$$f(x) - f(x_0) = f'(x_0)(x - x_0) + \gamma(x) \ge (f(x) - \varepsilon)(x - x_0) > 0.$$

(b)  $x < x_0$ .

$$f(x) - f(x_0) \le f'(x_0)(x - x_0) + \varepsilon(x - x_0) = (f'(x_0) - \varepsilon)(x - x_0) > 0.$$

**Def 47.**  $I = (\alpha, \beta), \ x \in I$ . Говорят, что f имеет **монотонный максимум**, если

$$\exists \delta > 0 : f(x_0) \geqslant f(y) \quad \forall y \in I \land |x_0 - y| < \delta.$$

Note. Аналогично можно определить локальный минимум и строгие формы, заменив нестрогий знак на строгий.

Note. Локальный максимум и минимум — локальные экстремумы.

**Theorem 41.**  $x_0 \in (\alpha, \beta)$  — точка локального экстремума для  $f:(\alpha, \beta) \to \mathbb{R}$ . Если  $\exists f'(x_0), \ mof'(x_0) = 0$ .

Доказательство. Пусть  $x_0$  локальный максимум. Тогда  $f \upharpoonright_{(\alpha,x_0]}$  — возрастает в точке  $x_0 \Longrightarrow f'(x_0) \geqslant 0$ . Также  $f \upharpoonright_{[x_0,\beta)}$  — убывает в точке  $x_0 \Longrightarrow f'(x_0) \leqslant 0$ .

Для других случаев полностью аналогично.

# 4.4 Формулы Коши и Лагранжа

**Theorem 42** (Ролль).  $I = [a, b], \ a \neq b, \ f : I \to \mathbb{R}$  непрерывна, дифференцируема на (a, b). Пусть f(a) = f(b). Тогда  $\exists c \in (a, b) : f'(c) = 0$ .

Доказательство. По теореме Вейерштрасса №2 ??  $\exists x,y \in [a,b]: \begin{cases} f(x) = \min_{t \in [a,b]} f(t) \\ f(y) = \max_{t \in [a,b]} g(t) \end{cases}$  Если  $x,y \in a,b,$  то  $f \equiv const$  и f'(a) = 0. Иначе либо  $x \in (a,b)$ , либо  $y \in (a,b)$ . Тогда в ней производная и равна нулю по

прошлой теореме ??.

Corollary (Формула Коши). Пусть f, g непрерывны на [a, b] и дифференцируемы на  $(a, b), g'(x) \neq 0 \quad \forall x \in (a, b)$ . Тогда  $\exists c \in (a, b)$ :

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}.$$

**Corollary** (Формула Лагранжа). Если f непрерывна на [a,b] и дифференцируема на (a,b), то  $\exists c \in (a,b)$ :

$$f(b) - f(a) = f'(c)(b - a).$$

Note. Если h дифференцируема на (a,b) непрерывна на [a,b], при этом  $h'(x) \neq 0 \quad \forall x \in (a,b)$ , то f инъективна на [a.b].

Corollary. В условии замечания производная h' сохраняет знак.



Рис. 4.1: Теорема Ролля

#### Следствия из формулы Лагранжа

**Designation.**  $f:[a,b]\to\mathbb{R}$  непрерывна и дифференцируема на (a,b)

- 1.  $f \equiv const$  тогда и только тогда, когда  $f'(x) = 0 \quad \forall x \in (a,b)$ .
- 2. Связь знака производной и монотонности.

#### Theorem 43.

- (a) Если f возрастает (убывает) на [a,b], то  $f'(x) \geqslant 0$  ( $f'(x) \leqslant 0$ )  $\forall x \in (a,b)$ .
- (b) Echu  $f'(x) \geqslant 0$   $(f'(x) \leqslant 0)$   $\forall x \in (a,b), mo \ f \ sospacmaem \ (y \ bus a \ em).$
- (c) Echu f'(x) > 0 (f'(x) < 0)  $\forall x \in (a,b)$ , mo f cmporo bospacmaem (ybubaem).

Statement. Ecnu  $f'(x) \neq 0 \quad \forall x \in (a,b), mo \ f \ cmporo \ монотонна.$ 

3.  $f'(x_1) = u$ ,  $f'(x_2) = v$ , w лежит между u и v. Тогда  $\exists y$  между  $x_1, x_2 : f'(y) = w$ .

**Theorem 44.** Если f дифференцируема на (a,b), непрерывна в точке a и  $\exists \lim_{y\to a} f'(y) = d$ , то f дифференцируема в точке a и f'(a) = d.

Доказательство.

$$\forall \varepsilon > 0 \ \exists \delta > 0 : (0 < |y - a| < \delta \Longrightarrow |f'(y) - d| < \varepsilon).$$

Если x > a, по формуле Лагранжа

$$\frac{f(x) - f(a)}{x - a} = f'(c), \qquad c \in (a, x).$$

Пусть  $|x-a|<\delta$ , тогда  $|c-a|<\delta$ , следовательно,

$$\left| \frac{f(x) - f(a)}{x - a} - d \right| < \varepsilon.$$

### 4.5 Правило Лопиталя

**Theorem 45** (Привило Лопиталя для 0/0). f, g заданы и непрерывны на  $[a, b], \lim_{x \to a+} f(x) = \lim_{x \to a+} g(x) = 0$ . f, g дифференцируемы на  $(a, b), g'(y) \neq 0 \quad \forall y \in (a, b), \ \exists \lim_{x \to a+} \frac{f'(x)}{g'(x)} = d$ . Тогда

$$\lim_{x \to a+} \frac{f(x)}{g(x)} = d.$$

Доказательство. Рассмотрим x > u > a.

$$\frac{f(a) - f(b)}{g(a) - g(b)} = \frac{f'(y)}{g'(y)} \qquad y \in (a, x).$$

$$\forall \varepsilon \ \exists \delta : \left( |y - a| < \delta \Longrightarrow \left| \frac{f'(y)}{g'(y)} - d \right| < \varepsilon \right).$$

Если  $|x-a|<\delta$ , то  $|y-a|<\delta$ .

$$\left|\frac{f(u)-f(x)}{g(a)-g(x)}-d\right|<\varepsilon \stackrel{u\to a}{\Longrightarrow} \left|\frac{f(x)}{g(x)}-d\right|\leqslant \varepsilon \qquad \text{при } |x-a|<\delta.$$

**Theorem 46** (Правило Лопиталя для  $\infty/\infty$ ).  $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = \infty$ . Если  $\exists \lim_{x\to a} \frac{f'(x)}{g'(x)} = d$ , то

$$\lim_{x \to a} \frac{f(x)}{g(x)} = d.$$

Доказательство.  $x, u \in (a, a + \delta), x \neq u$ .  $\exists y$  между x и u:

$$\frac{f(x) - f(x)}{g(x) - g(u)} = \frac{f'(y)}{g'(y)}.$$

$$\frac{f(x) - f(x)}{g(x) - g(u)} = \frac{\frac{f(x)}{g(x)} - \frac{f(u)}{g(u)}}{1 - \frac{g(u)}{g(x)}}$$
(4.1)

ГЛАВА 4. ДИФФЕРЕНЦИРОВАНИЕ

Зафиксируем u вблизи  $x:\left|\frac{g(u)}{g(x)}\right|<1$ . Тогда модуль правой части в уравнении  $\ref{eq:condition}$  не более  $\varepsilon$ . Воспользуемся тем, что  $\lim_{x\to a}\frac{f'(x)}{g'(x)}=d$ :

$$d - \varepsilon \leqslant \left| \frac{\frac{f(x)}{g(x)} - \frac{f(u)}{g(u)}}{1 - \frac{g(u)}{g(x)}} \right|.$$

Домножим на знаменатель:

$$(d-\varepsilon)(1-\frac{g(u)}{g(x)}) \leqslant \frac{f(x)}{g(x)} - \frac{f(u)}{g(u)} \leqslant (d+\varepsilon)\left(1-\frac{g(u)}{g(u)}\right).$$

x близок к a:

$$\lim_{x \to a+} \frac{f(x)}{g(x)} \leqslant d + \varepsilon$$

$$\lim_{x \to a+} \frac{f(x)}{g(x)} \geqslant d - \varepsilon$$

Statement. Ecau v(x) < w(x), mo  $\overline{\lim}_{x \to a+} v(x) \geqslant \underline{\lim}_{x \to a+} w(x)$  u  $\underline{\lim}_{x \to a+} v(x) \leqslant \overline{\lim}_{x \to a+} w(x)$ .

Применим утверждение.

$$\overline{\lim}_{x \to a} v(x) = \inf_{\delta > 0} \sup_{|x - a| < \delta} \leqslant \lim_{x \to a} v(x).$$

$$\underline{\lim} \, x \to av(x) = \sup_{\delta > 0} \inf_{|x-a| < \delta} \leqslant \lim_{x \to a} v(x).$$

Значит

$$d + \varepsilon \geqslant \frac{f(x)}{g(x)} \geqslant d - \varepsilon.$$

# 4.6 Старшие производные

Пусть  $f: \langle a, b \rangle \to \mathbb{R}$ .

$$f(x) = f(a) + f'(a)(x - a) + o_{x \to a}(x - a).$$

Рассмотрим множество  $A = \{x \mid f'(x) \text{ существует}\}$  Тогда можно смотреть на f' как на функцию, заданную на A.

**Def 48.** Если f' определена в точке  $x \in A$ , то (f')'(x) = f''(x) — вторая производная в точке x.  $f^{(n)}(x) - n$ -я производная в функции f.

$$f^{(n+1)} \equiv (f^{(n)})'$$
, если такая существует.

#### 4.6.1 Полином с заданными производными

**Def 49.**  $p = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$  — полином степени не выше n.

Его можно разложить по степеням  $x-x_0, x_0 \in \mathbb{R}$ :  $p=b_0+b_1(x-a)+\ldots+b_n(x-a)^n$ , где  $b_i$  некоторые другие коэффициенты.

Как вычислить коэффициенты  $b_j$ , зная p? Нулевой –  $p(x_0)$ , дальше можно взять производную и посчитать следующий коэффициент:

$$b_0 = p(x_0)$$

$$b_1 = p'(x_0)$$

$$b_2 = \frac{1}{2!}p''(x_0)$$

$$b_3 = \frac{1}{3!}p^{(3)}(x_0)$$

$$\vdots$$

$$b_n = \frac{1}{n!}p^{(n)}(x_0)$$

$$p(x) = \sum_{j=0}^n \frac{p^{(j)}(x_0)}{j!}(x - x_0)^j.$$

**Ех.** Отсюда можно просто вывести формулу Бинома Ньютона:  $q(x) = (x - a)^n$ 

$$q(x) = \sum_{j=0}^{n} \frac{q^{j}(0)}{j!} x^{j}.$$

Одно слагаемое будет выглядеть так:

$$\frac{q^{(j)}(0)}{j!} = \frac{n \cdot (n-1) \cdot \dots \cdot (n-j+1) \cdot a^{n-j}}{j!} = \frac{n!}{j!(n-j)!} (-1)^{n-j} a^{n-j}$$

#### 4.6.2 Полином Тейлора

**Def 50.**  $f:\langle a,b\rangle\to\mathbb{R},\ x_0\in(a,b).$  Пусть p — полином степени не выше n. Говорят, что он есть полином **Тейлора** для f порядка n в точке  $x_0$ , если

$$f(x) - p(x) \leqslant o_{x \to x_0} \Big( (x - x_0)^n \Big).$$

**Ex.** n = 0.

$$f(x) - c = o_{x \to x_0}(1) \iff f(x) \stackrel{x \to x_0}{\longrightarrow} c.$$

Существует тогда и только тогда, когда действительно есть предел в точке  $x_0$ .

**Ex.** n = 1

$$p(x)=a+b(x-x_0).$$
  $f(x)=a+b(x-x_0)+o_{x\to x_0}(x-x_0)\Longleftrightarrow b=f'(x_0),$  если  $f'(x_0)$  существует.

**Theorem 47.** Если полином Тейлора порядка п существует для f в точке  $x_0$ , то он единственный.

Доказательство. Пусть p,q — два различных полинома Тейлора. Тогда  $p(x)-q(x)=o_{x\to x_0}(x-x_0)^n$ .

$$p(x) - p(y) = c_0 + c_1(x - x_0) + \dots + c_n(x - x_n)^n$$
.

Докажем, что  $c_j = 0 \ \forall j$ . Пусть  $k = \min\{j \mid c_j \neq 0\}$ .

$$r(x) = c_k(x - x_0)^k + \ldots + c_n(x - x_0)^n = o_{x \to x_0}(x - x_0)^n$$
.

По определению

$$c_k(x-x_0)^k + c_{k+1}(x-x_0)^{k+1} + \dots + c_n(x-x_0)^n < \varepsilon(x-x_0)^n.$$

$$c_k + c_{k+1}(x-x_0) + \dots + c_n(x-x_0)^{n-k} < \varepsilon(x-x_0)^{n-k} \qquad x \to x_0 \Longrightarrow c_k \to 0.$$

Противоречие. Значит все коэффициенты равны нулю.

### 4.7 Формула Тейлора

### 4.7.1 Формула Тейлора с остатком в форме Пеано

**Theorem 48** (Формула Тейлора с остатком в форме Пеано).  $f:(a,b)\to \mathbb{R}$  имеет n-1 производную  $u\;x_0\in(a,b),\;\exists f^{(n)}(x_0).$  Тогда

$$\sum_{j=0}^{n} \frac{f^{(j)}(x_0)}{j!} (x - x_0)^j.$$

является полиномом Тейлора функции f в точке  $x_0$ .

$$f(x) = \sum_{j=0}^{n} \frac{f^{(j)}(x_0)}{j!} (x - x_0)^j + o_{x \to x_0} (x - x_0)^n.$$

Доказательство.

**Lemma.** Пусть  $g - \partial u \phi \phi$ еренцируемая n-1 раз на (a,b) и n раз в точке  $x_0 \in (a,b)$  функция.

$$g(x_0) = g'(x_0) = \dots = g^{(n)}(x_0) = 0.$$

Тогда

$$g(x) = o_{x \to x_0} (x - x_0)^n.$$

Доказательство. Индукция. База n=1. Действительно,  $g(x_0)=0 \Longrightarrow g(x)=o(1)$ . Переход  $(n\to n+1)$ . По теореме Лагранжа

$$g(x) = g(x) - g(x_0) = g'(\xi)(x - x_0), \quad \xi \in (x, x_0).$$

По предположению индукции  $g'(y) = o_{y\to x_0}(y-x_0)^n$ . Это равносильно тому, что

$$\forall \varepsilon > 0 \ \exists \delta > 0 : (|y - x_0| < \delta \Longrightarrow |g'(y)| \leqslant \varepsilon |y - x_0|^n).$$

Выберем x:  $|x-x_0| < \delta$ . Тогда

$$|\xi - x_0| < \varepsilon \Longrightarrow g'(\xi) < \varepsilon |\xi - x_0|^n \leqslant \varepsilon |x - x_0|^n.$$

$$|g(x)| \leqslant |x - x_0| \cdot \varepsilon |x - x_0|^n = \varepsilon |x - x_0|^{n+1}, \qquad |x - x_0| < \delta.$$

Доказав лемму, мы доказали и теорему.

### 4.7.2 Формула Тейлора с остатком в форме Лагранжа

**Theorem 49** (Формула Тейлора с остатком в форме Лагранжа).  $f:(a,b) \to \mathbb{R}$  имеет n производных на (a,b) и  $f,f',f'',\ldots,f^{(n)}$  непрерывны на (a,b). Пусть  $x,x_0 \in (a,b)$  и  $f^{(n+1)}(y)$  существует на открытом интервале между x и  $x_0$ . Тогда

$$f(x) = \sum_{i=0}^{n} \frac{f^{(i)}(x_0)}{n!} (x - x_0)^j + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}, \qquad \xi \text{ между } x \text{ } u \text{ } x_0.$$

Доказательство.

**Lemma.** Пусть  $g - \partial u \phi \phi$ еренцируемая n-1 раз на (a,b) и n раз в точке  $x_0 \in (a,b)$  функция.

$$g(x_0) = g'(x_0) = \dots = g^{(n)}(x_0) = 0.$$

 $Tor\partial a \exists \xi$  между  $x \ u \ x_0$ :

$$g(x) = \frac{g^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}.$$

$$\exists \xi \in (a, b) : g(x) - \underbrace{g(x_0)}_{=0} = g'(\xi)(x - x_0).$$

Переход:  $n-1 \to n$ . Рассмотрим  $h(t) = (t-x_0)^{n+1}, \quad t \in (a,b)$ .

$$\frac{g(x)-g(x_0)}{h(x)-h(x_0)}=\frac{g'(\xi)}{h'(\xi)}, \quad \text{при некотором } \xi \text{ между } x,x_0$$
 
$$\frac{g(x)}{(x-x_0)^{n+1}}=\frac{g'(\xi)}{(n+1)(\xi-x_0)^n}$$

 $g^{\prime}$  удовлетворяет условию леммы для n-1. Тогда по предположению индукции

$$g'(\xi) = \frac{(g')^{(n)}(\eta)(\xi - x_0)^n}{n!}, \quad \eta$$
 между  $\xi, x_0.$ 

Тогда

$$\frac{g(x)}{(x-x_0)^{n+1}} = \frac{g'(\xi)}{(n+1)(\xi-x_0)^n} = \frac{g^{(n+1)}(\eta)}{(n+1)!}.$$

 $g(x) = f(x) - \sum_{j=0}^{n} \frac{f^{(j)}(x_0)}{j!} (x - x_0)^{j}.$ 

По лемме  $\exists \xi$  между x и  $x_0$ :

$$g(x) = \frac{g^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}.$$

Тогда

$$f(x) = \sum_{j=0}^{n} \frac{f^{(j)}(x_0)}{j!} (x - x_0)^j + \underbrace{\frac{g^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}}_{g(x)}.$$

## 4.8 Достаточное условие экстремума

**Theorem 50.**  $f:(a,b)\to\mathbb{R}$  дифференцируема на  $(a,b),\ x_0\in(a,b),\ f'(x_0)=0,\ \exists f''(x_0).$  Тогда

- если  $f''(x_0) > 0$ , то f имеет локальный минимум в точке  $x_0$
- если  $f''(x_0) < 0$ , то f имеет локальный максимум в точке  $x_0$ .

Note. Если f дифференцируема в точке  $x_0$  и  $f'(x_0) = 0$ , можно сказать, что f имеет локальный экстремум в точке  $x_0$ .

Доказательство. Запишем формулу Тейлора.

$$f(x) = f(x_0) + \underbrace{f'(x)(x - x_0)}_{\text{Het hynebmx}} + \frac{1}{2}f''(x_0)(x - x_0)^2 + \underbrace{o_{x \to x_0}(x - x_0)^2}_{\alpha(x)}.$$

Пусть  $f''(x_0) < 0$ .

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \left( |x - x_0| < \delta \Longrightarrow |\alpha(x)| \leqslant \varepsilon |x - x_0|^2 \right).$$

$$f(x) \leqslant f(x_0) + \frac{1}{2} f''(x_0) (x - x_0)^2 + \varepsilon (x - x_0)^2 =$$

$$= f(x_0) + \underbrace{\left(\frac{1}{2} f''(x_0) + \varepsilon\right)}_{t} (x - x_0)^2$$

Если взять  $\varepsilon = \left| \frac{1}{4} f''(x_0) \right|$ , то t все еще менее нуля. Тогда во всех точках кроме  $x_0 : f(x) < f(x_0)$ . Следовательно,  $f(x_0)$  — максимум.

Аналогичные рассуждения для  $f''(x_0) > 0$ .

# 4.9 Сходимость последовательностей

**Designation.** A — множество произвольной природы.  $f_n:A\to\mathbb{R},\ n\in\mathbb{N}\ \{f_n\}_{n=1}^\infty$  — последовательность функций.

**Def 51.** Говорят, что  $f_n$  поточечно сходится к функции  $f:A \to \mathbb{R}$ , если

$$\forall x \in A : \lim_{n \to \infty} f_n(x) = f(x).$$

Пишут « $f_n \to f$ ».

**Def 52.** Говорят, что последовательность функций  $f_n$  **сходится равномерно к функции** f, если

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall x \in A : (n > N \Longrightarrow |f_n(x) - f(x)| < \varepsilon).$$

**Designation.** Обозначается:  $f_n \Rightarrow f$ .

**Theorem 51** (Стокс-Зайдель).  $A \subset \mathbb{R}, f_n : A \to \mathbb{R}, f_n$  равномерно сходится  $\kappa f : A \to \mathbb{R}$ . Если все  $f_n$  непрерывны в  $x_0 \in A$ , то f непрерывна в точке  $x_0$ .

Доказательство. Используем условие равномерной сходимости:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in A : (n > N \Longrightarrow |f_n(x) - f(x)| < \varepsilon).$$

Зафиксируем  $n_0 > N$ . Тогда

$$\exists \delta : (|x - x_0| < \delta \Longrightarrow |f_{n_0}(x_0) - f(x)| < \varepsilon.$$

 $|x-x_0|<\delta$ , следовательно,

$$|f(x) - f(x_0)| \le |f_{n_0}(x) - f(x)| +$$
  
  $+ |f_{n_0}(x) - f_{n_0}(x_0)| +$   
  $+ |f_{n_0}(x_0) - f(x_0)| <$   
  $< \varepsilon + \varepsilon + \varepsilon < 3\varepsilon$ 

Получили, что f непрерывна в точке  $x_0$ .

**Theorem 52.**  $f_n, f: A \to \mathbb{R}, f_n \to f$  Следующие условия эквивалентны:

- 1.  $\exists M : (|f_n(x)| \leqslant M \quad \forall n, x \Longrightarrow |f(x)| \leqslant M)$
- 2. f ограничена:  $|f(n)| \leq M \quad \forall x \Longrightarrow \exists N \; \exists A : |f_n(x)| \leq A \quad \forall n \geq N \quad \forall x$

**Theorem 53.**  $f_n \rightrightarrows f, g_n \rightrightarrows g$  на A. Пусть  $\exists M : \forall x \in A \ \forall n | f_n(x) | \leqslant M$ . Тогда  $f_n g_n \rightrightarrows fg$ 

Доказательство.

$$|f(x)g(x) - f_n(x)g_n(x)| \le |f(x)||g(x) - g_n(x)| + |g_n(x)||f(x) - f_n(x)| \le M|g(x) - f_n(x)| + |f(x) - f_n(x)|$$

**Theorem 54** (Критерий Коши для равномерной сходимости). Пусть  $f_n$  — последовательность функций на множестве A. Она равномерно сходится тогда и только тогда, когда

$$\forall \varepsilon > 0 \ \exists N \ \forall k, j > N \ \forall x : |f_k(x) - f_j(x)| < \varepsilon \tag{4.2}$$

Доказательство.

Необходимость.

Пусть 
$$f_n \rightrightarrows f$$
,  $\varepsilon > 0$  найдем  $N : \forall n > N \quad |f_n(x) - f(x)| < \varepsilon \forall x \in A$ .

$$\forall k, l > N \quad |(f_k(x) - f_l(x))| \leq |f_k(x) - f(x)| + |f(x) - f_l(x)| < 2\varepsilon \forall x \in A.$$

Достаточность.

Пусть ?? выполнено.  $x \in A$  - фиксировано. Тогда  $\{f_n(x)\}_{n \in \mathbb{N}}$  есть последовательность Коши (см ??). Следовательно,

$$\forall x \exists \lim_{n \to \infty} f_n(x) \stackrel{\text{def}}{=} f(x).$$

 $\varepsilon > 0$ . Нашли  $N: |f_k(x) - f_j(x)| < \varepsilon \quad \forall x \in A \forall k, j > N$  Зафиксируем k, x, перейдем к пределу по j:

$$|f_n(x) - f(x)| < \varepsilon.$$

Что верно для  $\forall x \in A, \forall k > N$ .

ГЛАВА 4. ДИФФЕРЕНЦИРОВАНИЕ

**Ex.** Функция на  $\mathbb{R}$ , непрерывная всюду, но не дифференцируемая на в одной точке.

(Вейерштрасс): 
$$f(x) = \sum_{j=1}^{\infty} b^j \cos l^j \pi x$$
,  $|b| < 1$ .

**Theorem 55** (Вейерштрасс). Пусть  $f_n - \phi$ ункция на множестве A.

$$\forall x: |f_n(x)| \leqslant a_n$$
, где ряд  $\sum a_n$  сходится.

Тогда  $\sum_{0}^{\infty} f_n(x)$  сходится равномерно.

Note. Из этой теоремы следует, что функция из примера непрерывна.

Доказательство. Рассмотрим  $\varepsilon>0$ . Найдем  $N:\sum\limits_{n=k+1}^{l}a_n<\varepsilon\quad\forall k,l>N.$ 

$$S_j(x) = \sum_{n=0}^{j} f_n(x).$$

$$|S_j(x) - S_k(x)| = |f_{k+1} \dots + f_k(x)| \le |f_{k+1}(x)| + \dots + |f_l(x)| \le a_{k+1} + \dots + a_l < \varepsilon.$$

**Ех** (Ван дер Варден).  $f_1(x)=|x|,|x|<\frac{1}{2}$  ; продолжим с периодом 1.  $f_n=\frac{1}{4^{n-1}}f(4^{n-1}x,\,g(x))=\sum_{n=1}^\infty f_n$ 



Рис. 4.2: График функции Ван дер Вардена

непрерывна, но нигде не дифференцируема, так как:

$$|f_n(x)| \leqslant \frac{1}{2 \cdot 4^{n-1}}.$$

ГЛАВА 4. ДИФФЕРЕНЦИРОВАНИЕ

$$h \neq 0, \ h_k = \pm \frac{1}{4^{n-1}}: \quad \frac{g(x+h) - g(x)}{h} = \sum_{j=1}^{\infty} (f_j(x+h_k) - f_j(x))h_k = \sum_{j=1}^{k-1} \frac{f_j(x+h_k) - f_j(x)}{h_k}.$$

Будем выбирать знак в  $h_k$  ( $\pm$ ), чтобы во всех слагаемых значение лежал в одинаковых частях графика. Тогда при четном и нечетном j значение будет разных знаков.

**Designation.** Ряд из функций  $\sum_{n=1}^{\infty} h_n(x)$  сходится обозначает, что функции  $S_j(x) = h_1(x) \dots h_j(x)$  сходятся в соответствующем смысле.

**Ex.** 
$$f_n(x) = \sqrt{x^2 + \frac{1}{n}} \to |x|$$

$$\sqrt{x^2 + \frac{1}{n}} - |x| = \frac{x^2 + \frac{1}{n} - x^2}{\sqrt{x^2 + \frac{t}{n} + |x|}} = \frac{1}{n} \cdot \frac{1}{\sqrt{x^2 + \frac{1}{n} + |x|}} \leqslant \frac{1}{n}, \quad \text{при } |x \geqslant 1|.$$

**Theorem 56.**  $f_n, f, g_n : \langle a, b \rangle \to \mathbb{R}$  Предположим, что  $f_n \to f$  поточечно.  $f_n$  дифференцируемы и  $f_n \rightrightarrows g$  равномерно. Тогда f дифференцируемая на  $\langle a, b \rangle$  и f' = g.

Доказательство. Запишем определение равномерной сходимости:

$$\forall eps > 0 \exists N : k, l > N \rightarrow \forall x \in \langle a, b \rangle : |f_k(x)' - f_l(x)'| < \varepsilon.$$

$$u_{k,l} - f_k(x) - f_l(x).$$

Теперь рассмотрим для  $xy \in \langle a, b \rangle$ :

$$\frac{u_{k,l}(x) - u_{k,l}(y)}{x - 1} = u'k, l(c), \quad c \text{ между } x, y...$$

$$\forall x, y \in \langle a, b \rangle : \left| \frac{u_{k,l}(x) - u_{k,l}(y)}{x - y} \right| < \varepsilon \iff \forall x \in \langle a, b \rangle, \forall k, l > N :$$

$$\left| \frac{f_k(x) - f_k(y)}{x - y} - \frac{f_l(x) - f_l(y)}{x - y} \right\rangle | < \varepsilon$$

Фиксируем  $k, l \to \infty$ .

$$\left| \frac{f_k(x) - f_k(y)}{x - y} - \frac{f(x) - f(y)}{x - 1} \right| < \varepsilon, \quad \forall x, y \in \langle a, b \rangle.$$

Оценим разность. Зафиксируем x.

$$\exists \delta > 0 : |x - y| < \delta \land x \neq y \to \left| \frac{f_k(x) - f_k(y)}{x - y} f'_k(x) \right| < \varepsilon.$$

Объединяем неравенства: для данных k, x:

$$|y-x| < \delta, y \neq x \to \left| f'_k(x) - \frac{f(x) - f(y)}{x - y} \right| \le 2\varepsilon.$$

Следовательно,

$$|x-y| < \delta \to \left| g(x) - \frac{f(x) - f(y)}{x - y} \right| \le 3\varepsilon.$$

### 4.10 Первообразные

Пусть все происходит на  $\langle a,b \rangle$ .  $g:\langle a,b \rangle \to \mathbb{R}$ 

**Def 53.** Говорят, что f есть первообразная для g, если f дифференцируема на (a,b)y и f'=g всюду.

**Theorem 57** (Ньютон, Лейбниц). Если д непрерывна, то у нее есть первообразная.

Note. К этой теореме мы еще вернемся.

Statement. Если f'=g, то (f+c)'=g для любой константы c.

**Theorem 58.** Если  $f_1, f_2$  — первообразные для g, то  $f_1 - f_2 = const$ 

| Функция           | Первообразная                                     |
|-------------------|---------------------------------------------------|
| $x^{\alpha}$      | $\frac{x^{\alpha+1}}{\alpha+1}, \ \alpha \neq -1$ |
| $\frac{1}{x}$     | $\log x + c, \ \alpha \neq -1$                    |
| $\sin x$          | $-\cos x + c$                                     |
| $\cos x$          | $\sin x + c$                                      |
| $\frac{1}{x^2+1}$ | $\arctan x + c$                                   |
| $e^x$             | $e^x + c$                                         |

**Designation.** Пишут:

$$f = \int g$$
 или  $f(x) = \int g(x)dx$ .

Statement.  $\int f'(x) \cdot g' = f \circ g \pm C$ 

**Def 54.** Линейная функция — это функция вида  $\varphi(h) = ch$ .

Линейная форма:  $\langle a,b \rangle$ ;  $\Phi$  — отображение отрезка  $\langle a,b \rangle$  в множество линейных функций.  $x \in \langle a,b \rangle, \Phi(x)$  — линейная функция.

$$\Phi(x)(h) = c(x)h.$$

 $\mathbf{Def}$  55 (дифференциал). f дифференцируема на  $\langle a,b \rangle$ 

$$df(u,h) = f'(u)h = df.$$

**Ех.**  $x: \langle a, b \rangle \to \langle a, b \rangle$  — тождественная. dx(u, h) = h

Statement.  $\Phi = c \cdot dx$ ,  $\partial e c$  - некая функция на  $\langle a, b \rangle$ 

$$f' = g$$
$$df = f'dx = gdx$$

Задача первообразной: дана линейная форма arphi=gdx ; найти функцию f:df=arphi

Statement.

$$d(f \circ g) = (f' \circ g) \cdot g : dx = f' \circ gdg.$$

Ex.

$$\int \sqrt{1-x^2} dx, \quad x \in (-1,1).$$

Сделаем замену  $x = \sin t$ , пусть  $t \in [-\pi, \pi]$ 

$$\int \sqrt{1 - \sin^2(t)} \cos t dt = \int \cos^2(t) dt =$$

$$\int \frac{1 + \cos 2t}{2} dt = \frac{1}{2} \int ((1 + \cos 2t) dt =$$

$$\frac{1}{2} (t + \frac{1}{2} \int \cos t d(2t)) = \frac{1}{2} (t + \frac{\sin 2t}{2})$$

Тогда  $\int \sqrt{1-x^2} dx = \frac{1}{2}(\arcsin x + \frac{\sin 2 \arcsin x}{2})$ 

Statement (Формула интегрирования по частям). (fg)' = f'g + fg' Перепишем:

$$d(fg) = gdf + fdg.$$
 
$$gdf = -fdy + d(fg).$$
 
$$\int gdf = fg - \int fdg.$$

Ex.

$$\int \log x dx = x \log x - \int x d \log x = x \log x - \int 1 dx = x \log x - x + C.$$

 $\mathbf{E}\mathbf{x}$ .

$$\int e^x \sin x dx = \int \sin x de^x = \sin x e^x - \int \cos x e^x dx.$$
$$= \sin x e^x - \int x \cos x de^x = \sin x e^x - \cos x e^x - \int \sin x e^x dx.$$

Теперь решим уравнение и получим:

$$\int e^x \sin x dx = \frac{e^x \sin x - e^x \cos x}{2} + c.$$

# 4.11 Интеграл

**Def 56.** A — множество произвольной природы.  $\Phi: A \to \mathbb{R}$ .  $\Phi$  — функционал на A.

**Def 57.** Интеграл — функционал на множестве функций, заданных на отрезке [a,b].  $f \mapsto \Phi(f)$ 

$$\Phi(f+g) = \Phi(f) + \Phi(g).$$
 
$$\Phi(\alpha f) = \alpha \Phi.$$
 
$$f \geqslant 0 \Longrightarrow \Phi(f) \geqslant 0.$$
 
$$\langle c, d \rangle \subset \langle a, b \rangle, f = \Phi(\chi) \langle c, d \rangle = d - c.$$

Statement. Каким должен быть интеграл?

1. Функционал, заданный на каких-то функциях сопоставляет число  $(f \mapsto I(\alpha))$ 

- 2.  $I(\alpha f + \beta g) = \alpha I(f) = I(\beta)$  (Линейность)
- 3.  $f \leqslant g \Longrightarrow I(f) \leqslant I(g)$
- 4.  $\langle a, b \rangle : I(\chi_{\langle a, b \rangle}) = b a$

**Def 58.** Разбиение — ступенчатая функция на отрезке  $\langle a,b\rangle,\ a,b\in\mathbb{R}$ :

$$\langle a, b \rangle = \bigcup_{i=1}^{n} \langle \alpha_i, \beta_i \rangle, \quad \langle \alpha_i, \beta_i \rangle \cap \langle \alpha_j, \beta_j \rangle \neq \varnothing.$$

**Def 59.** g на  $\langle a,b \rangle$  — ступенчатая, если при  $i \neq j$  она постоянна на отрезках какого-то разиения нашего отрезка  $\langle a,b \rangle$ 

Теперь можно зажать функцию между ступенчатыми. В этом состоит идея Дарбу.

### 4.11.1 Интеграл Дарбу

**Def 60.** J — конечный интервал, если его разбиение — это набор интервалов  $\{J_k\}_{k=1}^N$ , такой что  $J_k$   $cap J_s = \varnothing, \ k \neq s, \bigcup_{k=1}^N J_k = J_i$ . (ДОпускаются одноточечные и пустые множества.)

 ${f Def 61.}$  Длина интервала  $\langle a,b \rangle$  — это b-a Обозначается |J|=b-a, |arnothing|=0

**Lemma.** Если  $\{J_k\}_{k=1}^N$  — разбиение J, то  $|J| = \sum_{k=1}^N |J_k|$ 

**Def 62.** e — множетсво, f — ограниченная функция на .

Колебание f на e:

$$esc_e(f) = \sup_{x,y \in e} |f(x) - f(y)| =$$

$$= \sup_{y} \left( \sup_{x} (f(x) - f(y)) \right) = \sup_{x} \left( \sup_{y} (f(x) - f(y)) \right) =$$

$$= \sup_{x \in e} f(x) + \sup_{y \in e} (-f(x) = \sup_{x \in e} f(x) - \inf_{y \in e} f(y).$$

Пока предполагаем, что f ограничена. Просуммируем отрезки  $J_1, \ldots J_N$  из разбиения отрезка J.

$$\sum_{k=1}^{N} |J_k| \inf_{x \in J_k} f(x) \underline{S}.$$

— нижняя сумма Дарбу для f и разбиения  $J_1 \dots J_N$ 

$$\sum_{k=1}^{N} |J_k| \sup_{x \in J_k} f(x) = \overline{S}.$$

— верхняя сумма Дарбу для f и разбиения  $J_1 \dots J_N$ 



Рис. 4.3: График функции

**Designation.** A — множество всех нижних сумм Дарбу для f по всевозможным разбиениям  $J_i$  B — множество всех верхних сумм Дарбу для f по всевозможным разбиениям  $J_i$ 

Statement. Пусть  $\{A,B\}$  — щель. Тогда

$$\underline{I}(f) = \sup A, \quad \overline{I}(f) = \inf(B).$$

Все числа, лежащие в этой щели — это  $[\underline{I}(f),\overline{I}(f)]$  (верхний и нижний интегралы Римана-Дарбу от f)

Statement.  $\{A,B\}$  — щель.

Доказательство.  $\varepsilon$  — разбиение отрезка  $J_i$ .  $\underline{S}_{\mathcal{E}}(f)$ ,  $\overline{S}_{\mathcal{E}}(f)$  — верхняя и нижняя сумма Дарбу. Очевидно, что  $\underline{S}_{\mathcal{E}}(f) \leqslant \overline{S}(f)$ 

 $\mathcal{E}, \mathcal{F}$  — разбиение  $J_i : \mathcal{F}$  — измельчение  $\mathcal{E},$  если  $\forall a \in \mathcal{F} \ \exists b \in \mathcal{E} : a < b$ .

**Lemma.** Если  $\mathcal{F}$  — измельчение для  $\mathcal{E}$ , то

$$\underline{S}_{\mathcal{F}}(f) \geqslant \underline{S}_{\mathcal{E}}, \quad \overline{S}_{\mathcal{F}} \leqslant \overline{S}_{\mathcal{E}}.$$

**Lemma.** Рассмотрим  $\mathcal{E}_1, \mathcal{E}_2$  — разбиения отрезка  $J_i$ . Тогда у них есть общее измельчение. (Можем взять пересечение всех отрезков из первого и из второго)

Пусть  $\mathcal{E}_1, \mathcal{E}_2$  — разбиения.  $\mathcal{F}$  — общее измельчение.

$$\underline{S}_{\mathcal{E}_1}(f) \leqslant \underline{S}_{\mathcal{F}}(f) \leqslant \overline{S}_{\mathcal{F}} \leqslant \overline{S}_{\mathcal{E}_2}.$$

Следовательно,  $\{A, B\}$  — щель.

*Note.* Определенные величины  $\overline{I}(f), \underline{I}(f)$  законны.

 ${f Def}$  63. f называется интегрируемой по Риману, если  $\overline{I}(f)=\underline{I}(f)$ 

 $\mathbf{E}\mathbf{x}$ .

Все ступенчатые функции интегрируемы по Риману.  $\varphi$ — ступенчатая функция на J, Существует разбиение  $\underline{S}$  отрезка на J.  $\mathcal{E} = \{e_1, \dots e_k\} : \varphi(x) = \sum i = 1^k c_i \chi_{e_i}$ 

$$\underline{S}_{\mathcal{E}}(\varphi) = \sum_{i=1}^{k} |e_i| c_i \overline{S}_{\mathcal{E}}(\varphi) = \sum_{i=1}^{k} |e_i| c_i$$

Тогда  $\underline{I}(\varphi) - \overline{I}\varphi = I(\varphi) = \sum_{i=1}^{k} |e_i|c_i$ 

**Theorem 59.** Если J — замкнутый отрезок (J = [a, b]), f — непрерывная функция на J, то f интегрируема по Риману.

Note. Пусть J — произвольный отрезок, f — ограниченная функция на J,  $\mathcal{E}$  — разбиение отрезка J на непустое отрезки  $\mathcal{E} = \{e_1, \dots e_k\}$ . Тогда

$$\overline{S}_{\mathcal{E}}(f) - \underline{(S)}_{\mathcal{E}}(f) = \sum_{i=1}^{k} |e_i| \sup_{e_i} f - \sum_{i=1}^{k} |e_i| \inf_{e_i} f =$$

$$= \sum_{i=1}^{k} |e_i| \left(\sup_{e_i} f - \inf_{e_i} f\right) = \sum_{i=1}^{k} |e_i| \operatorname{osc}_{e_i} f$$

Note. f интегрируема по Риману  $\iff$  щель (A, B) — узкая  $\iff$ 

$$\forall \varepsilon > 0 \; \exists \mathcal{E}_1, \mathcal{E}_2 -$$
разбиения отрезка  $J : \overline{S}_{\mathcal{E}_2}(f) - \underline{(S)}_{\mathcal{E}_1}(f) < \varepsilon$ .

В данный обозначениях измельчения можно считать, что  $\mathcal{E}_1 = \mathcal{E}_2 \; / / \;$  возможно, здесь должно быть что-то другое

**Theorem 60** (Критерий интегрируемости по Риману). f интегрируема по Риману на J тогда и только тогда, когда  $\forall \varepsilon > 0 \; \exists \; pasбиение \; e_1, \ldots, e_k \; Ompeska \; J, \; makoe \; что$ 

$$\sum_{i=1}^{k} |e_k| \operatorname{osc}_{e_k} f < \varepsilon. \tag{4.3}$$

Доказательство. Проверим, что f удовлетворяет условию  $\ref{eq:topa}$  f равномерно непрерывна по теореме Кантора  $\ref{eq:topa}$ :

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \Big( x, y \in [a, b] \land |x - y| < \delta \Longrightarrow |f(x) - f(y)| < \varepsilon \Big).$$

Пусть  $e_1, \dots e_k$  — столь мелкое разбиение отрезка [a,b], что  $\forall i: |e_i| < \delta$ . Тогда  $\forall i: \csc_{e_i} f \leqslant \varepsilon$ .

$$\sum_{i=1}^{k} |e_i| \operatorname{osc}_{e_i} f \leqslant \varepsilon \sum_{i=1}^{k} |e_i| = \varepsilon (b-a).$$

**Property.** 1. f непрерывна на  $\langle a,b\rangle \Rightarrow f$  интегрируема.

2.  $\Sigma$  — разбиение,

$$\overline{S}_{\Omega}(-f) = -\underline{S}_{\Omega}(f).$$

3. Если  $\alpha > 0$ ,

$$\bar{S}_{\Sigma}(\alpha f) = \alpha \bar{S}_{\Sigma}(f).$$

Аналогично с нижней суммой.

- 4. Если f интегрируема  $u \ \alpha \in \mathbb{R}$ , то  $\alpha f$  интегрируема  $u \ I(\alpha f) = \alpha I(f)$
- 5.  $f,g:\langle a,b\rangle\to\mathbb{R}$  ограничены.  $\Sigma$  разбиение.

$$\overline{S}_{\Sigma}(f+g) \leqslant \overline{iS}_{\Sigma}(f) + \overline{S}_{\Sigma}(g).$$

6.

$$\underline{S}_{\Sigma}(f+g) \geqslant \underline{S}_{\Sigma}(f) + \underline{S}_{\Sigma}(g).$$

7. Если f,g интегрируемы на  $\langle a,b 
angle,$  то f+g интегрируема u

$$I(f+g) = I(f) + I(g).$$

Можно рассмотреть общее подразбиение и применить критерий интегрируемости и прошлым свойством. Для второго утверждения: просто записываем неравенство.

8. f, g интегрируемы,  $\alpha, \beta \in \mathbb{R}$ . Тогда  $\alpha f + \beta g$  интегрируема и

$$I(\alpha f + \beta g) = \alpha I(f) + \beta I(g).$$

- 9. Монотонность.  $f \geqslant 0$ , f интегрируема по Дарбу. Тогда,  $I(f) \geqslant 0$ .
- 10. f,g интегрируемы на  $\langle a,b\rangle$ . Тогда  $f\cdot g$  интегрируема.

Доказательство.

$$\exists C, D \in \mathbb{R} : |f| \leqslant C, |g| \leqslant D \text{ Ha } \langle a, b \rangle.$$

Пусть J — отрезок. Оценим осцилляцию.

$$\begin{split} \forall x,y \in J : |f(x)g(x) - f(y)g(y_{|} &= |f(x)g(x) - f(x)g(y)| + |f(x)g(y) - f(y)g(x)| = \\ &\leqslant |f(x)g(x) - f(x)g(y)| + |f(x)g(y) - f(y)g(y)| = \\ &= |f(x)| \cdot |g(x) - g(y)| + |g(x)| \cdot |f(x) - f(y)| \leqslant \\ &\leqslant C \cdot \operatorname{osc}_J g + D \cdot \operatorname{osc}_J f. \end{split}$$

f,g интегрируемы, тогда  $\forall \varepsilon \; \exists \Sigma : \overline{S}_{\Sigma}(f) \leqslant \underline{S}_{\Sigma}(f) + \varepsilon \wedge \overline{S}_{\Sigma}(g) \leqslant \underline{S}_{\Sigma}(g) + \varepsilon$ .

Получаем

$$\frac{\sum\limits_{J \in \Sigma} |J| \operatorname{osc}_J f \leqslant \varepsilon}{\sum\limits_{J \in \Sigma} |J| \operatorname{osc}_J g \leqslant \varepsilon} \cdot$$

Тогда  $\forall J \in \Sigma : \operatorname{osc}_J(fg) \leqslant C \cdot \operatorname{osc}_J g + D \cdot \operatorname{osc}_J f$ .

Следовательно,

$$\sum_{J \in \Sigma} |J| \cdot \operatorname{osc}_J fg \leqslant C \cdot \sum_J |J| \cdot \operatorname{osc}_J g + D \cdot \sum_J |J| \cdot \operatorname{osc}_J f \leqslant (C + D) \varepsilon.$$

11. f интегрируема на  $\langle a,b \rangle$ .  $J \subset \langle a,b \rangle$ . Тогда  $f \cdot \chi_J$  интегрируема.  $(\chi_J$  равна единице на J и нулю на остальных точках)

$$Ec \Lambda u J = \{c\}, mo I(f\chi_J) = 0.$$

12.  $J_1,J_2-$  два подотрезка, такие что  $J_1\cup J_2=J\wedge J\cap J_2=\varnothing$ . Тогда

$$I(f\chi_{J_1\cup J_2}) = I(f\chi_{J_1}) + I(f\chi_{J_2}).$$

13. Основная оценка интеграла. f интегрируема на  $\langle a,b \rangle$ .  $|f| \leqslant M$  на  $[c,d] \subset \langle a,b \rangle$ 

$$\left| \int_{c}^{d} f \right| \leqslant M(d-c).$$

**Designation.**  $I(f\chi_J)$  не зависит от того, вклочает ли J концы.

$$\int_{c}^{d} f = \int_{c}^{d} f(x) dx \stackrel{def}{=} I(f\chi_{\langle c,d\rangle}).$$

**Designation.** Если d < c:

$$\int_{c}^{d} f = -\int_{d}^{c} f.$$

Statement. f интегрируема на  $\langle a, b \rangle$ .

$$\int_{c}^{e} f = \int_{c}^{d} f + \int_{d}^{e} f.$$

#### 4.11.2 Связь интеграла и производящей

 $f:\langle a,b\rangle \to \mathbb{R},\, F:\langle a,b\rangle \to \mathbb{R}$  — первообразная функция f, если F дифференцируема и F'=f.

**Theorem 61** (Ньютон-Лейбниц). Пусть f интегрируема по Риману на  $\langle a,b \rangle$  и непрерына в точке  $t \in \langle a,b \rangle$ . Пусть  $t_0 \in \langle a,b \rangle$ :  $F(s) = \int_{t_0}^s f$ . Тогда F дифференцируема в точке tu F'(t) = f(t).

Доказательство.  $x \neq t$ .

$$\left| \frac{F(x) - f(t)}{x - t} - f(t) \right| = \left| \frac{\int_{t_0}^x f = \int_{t_0}^t f}{x - t} \right| = \left| \frac{\int_t^x}{x - t} - f(t) \right| = \frac{1}{|x - t|} \left| \int_t^x f(s) - f(t) ds \right| \leqslant \sup_{s \in [t, x]} |f(s) = f(t)|.$$

f непрерывна в t. Тогда  $\forall \varepsilon > 0$   $\exists \delta$ . Если  $|s - t| < \delta$ ,  $|f(t) - f(s)| < \varepsilon$ 

$$|x-t| < \delta \Longrightarrow \forall s \in [t,x] : |s-t| < \varepsilon \to |f(s)-f(t)| < \varepsilon.$$

Тогда

$$\sup s \in [t, x] |f(x) - f(t)| \leqslant \varepsilon.$$

А значит

$$\lim_{x \to t} \left| \frac{F(x) - f(t)}{x - t} - f(t) \right| = 0 \Longrightarrow F'(t) = f(t).$$

Corollary. Если f дифференцируема на  $\langle a,b\rangle$ , то  $\forall t_0\in[a,b]:F$  —первообразная f.

**Corollary** (Формула Ньютона-Лейбница). f непрерывна на [a,b], F —первообразная f. Тогда

$$\int_{a}^{b} f = F(b) - F(a).$$

**Def 64.**  $f \in C^k\langle a,b\rangle$ ,  $k \in \mathbb{N} \cap \{0,\infty\}$ , если  $f,f',\ldots f^{(k)}$  непрерывны.

Theorem 62. Ecau  $f, g \leq C^1(a, b)$ , mo

$$\int_{b}^{a} fg' = f \cdot g \mid_{a}^{b} - \int_{a}^{b} f'g,$$

 $\operatorname{rde} \Phi \mid_a^b = \Phi(b) - \Phi(a)$ 

### 4.11.3 Формула интегрирования по частям

 $f,g:[a,b] o \mathbb{R},\, f,g$  непрерывны на [a,b] и f,g,f',g' непрерывны. Тогда

$$(fg)' = f'g + g'f.$$

Пусть  $\Phi$  — первообразная для f'g. Запишем первообразную для fg'

$$\Psi(x) = \int_a^x f(t)g'(x)dt = f(x)g(x) - \Phi(x) + c.$$

$$\Phi(x) = f(x)g(x) \int_{a}^{x} f(t)g'(t)dt + c.$$

Обозначим  $u|_{y}^{x} = u(x) - u(y)$ .

$$\Phi(x) - \Phi(y) = fg|_y^x - \int_y^x f(t)g'(t)dt.$$

Получаем

$$\int_{y}^{x} f'(t)g(t)dt = fg|_{y}^{x} - \int f(t)g'(t)dt.$$

**Theorem 63.**  $f_n, f - 3a\partial a$ ны на  $\langle a, b \rangle; n \in \mathbb{N}$  Пусть

- 1. все  $f_n$  интегрируемы по Риману на  $\langle a,b \rangle$
- 2.  $f_n \Longrightarrow f$ . Тогда f интегрируема по Риману

$$\int_{a}^{b} f_n(x)dx \to \int_{a}^{b} f(x)dx.$$

Доказательство.

**Lemma.** E — множеество, u, v — вещественные функции на E.  $|u(x) - v(x)| \le \lambda \ \forall E$ . Тогда  $|\operatorname{osc}_E(u) - \operatorname{osc}_E(v)| \le 2\lambda$ 

$$\varepsilon > 0 : \exists n : |f_n(x) - f(x)| \leqslant \varepsilon \ \forall x \in \langle a, b \rangle.$$

$$|\operatorname{osc}_{\langle a, b \rangle} - \operatorname{osc}_{\langle a, b \rangle(f)}| \leqslant 2\varepsilon.$$

 $\exists \{I_1, \dots I_N\}$  — отрезки  $\langle a, b \rangle$ :

$$\sum_{j=1}^{N} |I_j| \operatorname{osc}_{I_j} < \varepsilon.$$

$$\sum_{j=1}^{N} |I_j| \operatorname{osc}_{I_j}(f) \leqslant \varepsilon + \sum_{j=1}^{N} |I_j| (2\varepsilon) = \varepsilon (2(b-a)+1).$$

Следовательно, f интегрируема.

$$\left| \int_{a}^{b} f_{n}(x) dx - \int_{a}^{b} f(x) dx \right| = \left| \int_{a}^{b} f_{1}(x) - f(x) dx \right| \leqslant \varepsilon(b - a).$$

$$\varepsilon > 0 \ \exists M : \forall n \geqslant M \ \forall x \in \langle a, b \rangle : |f_{n}(x) - f(x)| \leqslant \varepsilon.$$

Тем самым получили последнее неравенство в прошлой строке.

**Statement.** Ecnu f интегрируема по Риману на  $\langle a,b \rangle$ , то |f| тоже интегрируема u

$$\left| \int_{a}^{b} f(x) dx \right| \leqslant \int_{a}^{b} |f(x)| dx.$$

# 4.12 Логарифм и экспонента

Пусть функция l удовлетворяет соотношению

$$l(xy) = l(x) + l(y),$$

и ноль лежит в ее области определения.

$$l(0) = l(0, a) = l(0) + l(a) \Longrightarrow l(0) = 0.$$

Будем искать l, заданную на  $\mathbb{R}_+$ .

$$l(x^2) = l((-x)^2).$$

$$2l(x) = 2l(-x).$$

То есть

$$l(x) = l(|x|).$$

**Def 65.** Логарифм — строго монотонная функция, заданная на  $\mathbb{R}_+$ , такая что

$$f(xy) = l(x) + l(y) \quad x, y > 0.$$

Statement. Для  $n \in \mathbb{N}$ :

$$l(x^n) = n \cdot l(x),$$
 
$$l(x^{\frac{1}{n}}) = \frac{1}{n}l(x).$$
 
$$l(1) = l(1^2) = 2l(1) \Longrightarrow l(1) = 0.$$

Statement. Ecnu l — логарифм,  $c \neq 0$ , то cl — тоже логарифм.

**Lemma.** Если l — логарифм, то l непрерывна на всей области определения.

Доказательство. Пусть l — логарифм. Считаем, что fстрого возрастает.

$$t = \lim_{x \to 1+0} f(x).$$

Покажем, что t = l(1) = 0. Пусть t > 0.

$$l((1+x)^2) = 1l(1+x).$$

При xto1+ получаем, что t=0. Если  $x\to 1-$ , получаем тое самое. Значит l непрерывна в 1. И равна нулю в этой точке.

**Lemma.** Если l — логарифм, то функция l дифференцируема.

Доказательство.

$$\Phi(x) - \int_{1}^{x} l(t)dt \quad x \in (0, +\infty).$$

Ф дифференцируема.

$$\begin{split} \Phi(2x) &= \int_{1}^{2x} l(t)dt = \int_{1}^{x} l(t)dt + \int_{x}^{2x} l(t)dt = \Phi(x) = \\ & x \int_{x}^{2x} l(x \cdot \frac{t}{x})d(\frac{t}{x}) = \Phi(x) + x \int_{1}^{2} l(x \cdot y)dy = \\ & \Phi(x) + x l(x) + x \int_{1}^{2} l(y)dy \end{split}$$

 $l(x) = \frac{\Phi(2x) - \Phi(x)}{x} - C$ . А  $\Phi$  дифференцируема, следовательно, f тоже дифференцируема.

**Theorem 64** (Производная логарифма).

l(xy) = l(x) + l(y). Зафиксируем у и возъмем производную:

$$yl'(xy) = l'(x)$$
  $x, y \in \mathbb{R}_+.$  
$$l'(x) = \frac{C}{x}, \quad C = l'(y).$$

Theorem 65.  $Ecnu\ l$  логарифм, то

$$\exists C \neq 0 : l(x) = C \int_{1}^{x} \frac{dt}{t}.$$

Доказательство. Только что доказали.

**Theorem 66.**  $\Phi(x) = \int_1^x \frac{C}{t} dt$  — логарифм. Cама  $l(x) = C \cdot \int_1^x \frac{dt}{t}$ 

Theorem 67. Ecau  $C \neq 0$ , mo

$$\varphi(x) = C \int_1^x \frac{dt}{t} - ecm$$
ь логарифм.

Доказательство. Достаточно доказать теорему для C=1.

$$\varphi(x) = \int_1^x, \quad x > 0.$$

Если  $x_1 > x$ ,

$$\varphi(x_1) - \varphi(x) = \int_1^{x_1} \frac{dt}{t} \geqslant \frac{1}{x_1} (x_1 - x) > 0.$$

Следовательно,  $\varphi$  строго возрастает.

Проверим:

$$\varphi(xy) = \varphi(x) + \varphi(y).$$

$$\in t_1^x \frac{dt}{t} + \int_x^y \frac{dt}{t} = \varphi(x) + \frac{1}{x} \int_x^{xy} \frac{d(\frac{t}{x})}{t} \frac{t}{x}.$$

$$\varphi(x) + \int_1^y \frac{d\mu}{\mu} = \varphi(x) - \varphi(y).$$

Designation. Натуральный логарифм –

$$\int_{1}^{x} \frac{dt}{t} = \log t.$$

**Property.**  $(\log x)' = \frac{1}{x}$ 

$$\frac{\log(x+1) - \log 1}{x} \xrightarrow{x \to 0} 0 \log'(1) = 1.$$
$$\frac{\log(1+x)}{x} \to 1, \quad x \to 0.$$

Statement. Образ функции log есть все вещественные числа.

Доказательство. При  $x_1>x,\ \log(x_1)-\log(x)>\frac{x_1-x}{x_1}$ . Рассмотрим  $x_1=2^{n+1},x=2^n$  :

$$\log 2^{n+1} - \log 2^n \geqslant \frac{2^n}{2^{n+1}} \geqslant \frac{1}{2}.$$

Тогда  $\lim_{x\to\infty} \log x = +\infty$ .

**Def 66** (Обратная функция к логарифму). У функции log есть обратная функция, называющаяся экспонентой:

$$\exp: \mathbb{R} \to \mathbb{R}^+$$
.

**Property.** 1. exp cmporo возрастает

ГЛАВА 4. ДИФФЕРЕНЦИРОВАНИЕ

$$\lim_{x \to +\infty} \exp = +\infty.$$

3.

$$\lim_{x \to -\infty} \exp = 0.$$

4.

$$\log 1 = 0 \Leftrightarrow \exp 0 = 1.$$

5.

$$\exp x \exp y = \exp(x+y).$$

Statement. Экспонента дифференцируема:

$$\exp'(x) = \frac{1}{\log'(\exp x)} = \exp x.$$

Statement.

$$f(x) = \sum_{j=0}^{n} rac{f^{(j)} j!}{x}^{j} + rac{f^{(n+1)}(c)}{(n+1)!} x^{n+1}$$
 с между  $0$  и  $x$ .

Пусть f имеет производную любого порядка

$$f(x) = \sum_{j=0}^{n} \frac{f^{(j)}(x_0)}{j!} (x - x_0)^j + \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{(n+1)}.$$

Pяд Tейлора для f в окрестности точки x :

$$\sum_{j=0}^{\infty} = \frac{f^{(j)}(x_0)}{j!} (x - x_0)^j.$$

**Theorem 68.** Ряд Тейлора для экспоненты,  $x_0 = 0$ :

$$\exp(x) = \sum_{j=0}^{\infty} \frac{x^j}{j!}.$$

Для любого x этот ряд cxodumcs  $\kappa$  epx(x), cxodumocmb равномерна на каждом конечном отрезке.

Доказательство.

$$\left| \exp x - \sum_{j=0}^{n} \frac{x^{j}}{j!} \right| = \frac{\exp c}{(n+1)!} |x|^{n+1}, \quad c$$
 между 0 и  $x$ .

Выберем R > 0, пусть  $|x| \leq R$  Применим:

$$\leqslant \exp\frac{R^{n+1}}{(n+1)!}.$$

Проверим, что полученное выражена стремиться к нулю.

**Lemma.** Пусть  $a_0,a_1,a_2\ldots$  — положительные числа u  $\exists N:a_j<\eta<1$   $\forall j>N$ . Тогда  $a_0a_1\ldots a_j\to 0$   $j\to\infty$ 

Corollary. Если  $a_j \geqslant 0, \ a_j \rightarrow 0, \ \text{то} \ a_0 \dots a_j \rightarrow 0$ 

По лемме  $\frac{R}{1} \cdot \frac{R}{2} \dots \frac{R}{n+1}$  стремиться к нулю. Доказали равномерную сходимость.

Note.

$$\exp 1 = \sum_{n=0}^{\infty} n! = e.$$

Corollary (быстрый рост экспоненты).

$$\forall n \in \mathbb{N} : \lim_{x \to \infty} \frac{x^n}{\exp x} = 0.$$

Доказательство.

$$\exp x = \sum_{k=0}^{\infty} \frac{x^k}{k!} \geqslant \frac{x^{n+1}}{(n+1)!}.$$

$$\frac{x^n}{\exp x} \leqslant (n+1)! \frac{1}{x} \longrightarrow 0 \qquad x \to \infty.$$

Note.

$$\exp(-x) = \frac{1}{\exp x}.$$

$$\lim_{x \to -\infty} x^n \exp(-x) = 0.$$

Corollary.

$$\frac{\log x}{x^k} \stackrel{x \to +\infty}{\longrightarrow} 0 \qquad k \in \mathbb{N}.$$

 $\mathbf{E}\mathbf{x}$  (Полезный пример).

$$g(x) = \begin{cases} 0 & x = 0\\ \exp\left(-\frac{1}{x^2}\right) & x \neq 0 \end{cases}.$$

g непрерывна на  $\mathbb{R}$ .

Если  $x \neq 0$ ,

$$g'(x) = \exp\left(-\frac{1}{x^2}\right) \left(2\frac{1}{x^3}\right).$$
$$\lim_{x \to 0} g'(x) = 0.$$

g дифференцируема а нуле и g'(0) = 0.

$$g^{(j)}(x) = \exp\left(-\frac{1}{x^2}\right) p_j\left(\frac{1}{x}\right), \quad p_j - \text{полином}.$$

Значит, g бесконечно дифференцируемая функция и  $g^{(j)}(0) = 0$ .

Напишем полином Тейлора:

$$T_n(x) = \sum_{j=0}^n \frac{g^{(j)}(0)}{j!} x^j \cong 0.$$

Hулевой, но не сходится к g.

ГЛАВА 4. ДИФФЕРЕНЦИРОВАНИЕ

$$h(x) = \begin{cases} g(x) & x \geqslant 0 \\ 0 & x \leqslant 0 \end{cases}.$$

*h* — бесконечно дифференцируема.

$$u(x) = h(x - a)h(b - x), \quad a < b.$$

Corollary. Пусть  $I=(a,b),\ a < b.$  Существует бесконечно дифференцируемая функция u:

$$u(x) > 0$$
  $x \in (a, b)$   
 $u(x) = 0$   $x \notin (a, b)$ 

**Designation.** l— логарифм.

$$\exists ! a \in (0, +\infty) : l(a) = 1.$$

тTакое число называется основанием логари $\phi$ ма l.

 $Note. \ l = \log$ . Тогда основание равно e.

Designation (общий случай).

$$\exists C \neq 0 : l(x) = C \log x.$$

a — ан для l.

$$1 = l(x) = C \log a \implies C = \frac{1}{\log a}.$$

Обозначим логарифм с основанием a так

$$\log_a x = \frac{\log x}{\log a}.$$

**Designation.** Степень с произвольным показателем:

$$u > 0 \land v \in \mathbb{R} : u^v \stackrel{\text{def}}{=} \exp(v \log u).$$

Note. Натуральная степень:  $\exp(n \log u) = \exp(\underbrace{\log u \dots \log u}_n) = u^n$ 

Целая отрицательная степень:  $\exp(-k\log u) = \frac{1}{\exp(k\log u)} = \frac{1}{u^k}$  Рациональная степень:  $v = \frac{a}{p}, \quad a \in \mathbb{Z}, p \in \mathbb{N}$ 

$$u^v = \exp \frac{a \log u}{n} = \sqrt[p]{\exp a \log u} = \sqrt[p]{u^a}.$$

#### Property.

- 1.  $u^{v_1+v_2} = \exp((v_1+v_2)\log u) = \exp v_1 \exp u \cdot \exp v_2 \log u = u^{v_1}u^{v_2}$
- 2.  $(u_1u_2)^v = u_1^v u_2^v$
- 3.  $(u^{v_1})^{v_2} = \exp v_2 \log u^{v_1} = \exp(v_2 v_2 \log u) = u^{v_1 v_2}$

#### ГЛАВА 4. ДИФФЕРЕНЦИРОВАНИЕ

### 4.12.1 Показательная функция

**Def 67.** Показательная функция  $f(x) = a^x$ .

**Property.**  $f'(x) = (\exp(x \log a))' = \exp(x \log a) = \log a \cdot a^x$ 

**Property.**  $\exp x = e^x = \exp(x \log e) = \exp x$ 

**Def 68.** Пусть  $\neq 1$ .

$$a^x = y : \exp x \log a \Leftrightarrow x = \frac{\log y}{\log a} = \log_a y.$$

### 4.12.2 Степенная функция

**Def 69.** Степенная функция  $g(x)=x^b, \quad x\in (0,+\infty),\ b\in \mathbb{R}$  .

Statement.

$$g'(x) = (\exp b \log x)' = (\exp b \log x) \cdot \frac{b}{x} = x^b \frac{1}{x} b = b \cdot x^{b-1}.$$

**Statement.** Ecnu a > 1, mo  $\forall b \in \mathbb{R} : x^b = o(a^x, x \to \infty)$ 

Доказательство.

$$\frac{x^b}{a^x} = \frac{\exp b \log x}{\exp x \log a} = e^{blogx - xloga}.$$

А логарифм растет медленнее линейной функции, тогда полученное выражение стремится к нолю при  $x \to \infty$ .

Practice.

 $\forall \beta : \log u = o(x^{\beta})$ 

 $\forall \alpha : \lim_{x \to 0} x^{\alpha} \log x = 0$ 

Statement. Ранее доказали, что

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \ldots + \frac{x^n}{n!} + \ldots$$

сходится при любых х. Экспонента равномерна на любом конечном отрезка.

Pяд для  $e^x$  по степеням  $(x-x_0)$ :

$$e^{x} = e^{x_0} \cdot e^{x - x_0} = e^{x_0} \sum_{n=0}^{\infty} \frac{(x - x_0)^n}{n!} = \sum_{n=1}^{\infty} \frac{e^{x_0}}{n!} (x - x_0)$$
(4.4)

Экспонента раскладывается в ряд Тейлора в центром в любой точка. Такое свойство называется "аналитичность"

**Ex.**  $f(x) = \sum_{n=1}^{\infty} 2^n \cos n^2 x$  — непрерывная, ряд сходится равномерно по теореме Вейерштрасса)

$$|2^n \cos n^2 x| \leqslant 2^n.$$

Возьмем производную:  $f'(x) = \sum_{n=1}^{\infty} 2^{-n} n^2 (-\sin n^2 x)$  сходится равномерно. Дальше будет происходить тоже самое при взятии производной. Значит, она дифференцируема бесконечное число раз.  $f \in C^{\infty}(\mathbb{R})$ 

Тогда можем записать ряд Тейлора в нуле:

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(2k)}}{(2k)!} x^{2k}$$
(4.5)

Этот ряд вообще не сходится! Докажем это:

$$f^{(2k)}(0) = \sum_{n=1}^{\infty} 2^{-n} n^{4k} (-1)^k.$$

**Statement.** В ?? общий член стремиться к нулю, если |x| > 0.

Доказательство.

$$\frac{|f^{(2k)}(0)|}{(2k)!}x^{2k}\geqslant \frac{2^{-n}n^{4k}}{(2k)!}x^{2k}\geqslant \frac{2^{-n}n^{4k}}{(2k)^{2k}}x^{2k}.$$

Подставим n=2k:

$$\left(\frac{|x|n^2}{2k}\right)^{2k} 2^{-n} = (2kx)^{2k} 2^{-2k} = (k|x|)^{2k}.$$

А это стремиться к нулю.

#### 4.12.3 Разложение Тейлора для логарифма

**Theorem 69** (разложение Тейлора для  $\log(1+x)$  центром в 0).

$$f(x) = \log(1+x), f'(x) = (1+x)^{-1}, f^{(2)} = -(1+x)^{-2}, f^{(3)} = 2(1+x)^{-3} \dots$$

$$f^{(n)} = (-1)^{n+1} \cdot 1 \cdot 2 \cdot \dots \cdot (n-1)(1+x)^{-n}.$$

Запишем локальную формулу Тейлора:

$$\log(1+x) = \sum_{n=0}^{n} \frac{\log^{(n)} 1}{n!} x^n + \frac{\log^{k+1} (1+c)}{(k+1)!} x^{k+1}.$$

$$\log(1+x) = \sum_{n=1}^{k} (-1)^{n+1} \frac{x^n}{n} + \frac{(-1)^{k+1}}{k+1} \cdot \frac{1}{(1+c)^{k+1}} x^{k+1}.$$

Tог $\partial a$ 

$$\log(1+x) \sim x$$
,  $\log(1+x) = x - \frac{x^2}{2} + O(x^3)$ .

Statement.  $e^x = \lim_{n\to 0} (1+ux)^{\frac{1}{n}}$ 

Доказательство.  $(1+ux)^{\frac{1}{n}}=e^{\frac{1}{n}\log(1+ux)}$ 

$$\frac{1}{n}\log(1+ux) = x + O(u) \longleftarrow x, \quad b \to 0.$$

$$\log(1+ux) = ux + O(n^2).$$

$$e = \lim_{n \to 0} (1+x)^{\frac{1}{n}}.$$

Statement. Ракскладывается ли логарифм ряд Тейлора:

$$\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n} \tag{4.6}$$

Посмотрим на модуль:

$$\frac{1}{n}|x|^n \longleftrightarrow +\infty, \quad |x| > 1.$$

Тогда имеет смысл рассматривать только  $x \in (-1,1]$ .

**Theorem 70.**  $x \in (-1,1]$ . Тогда ряд ?? равномерно сходится равномерно на любом (r,1], r > -1.

Доказательство. 1.  $x \in [0,1]$ .

$$\left| \log(1+x) - \sum_{n=1}^{k} \frac{(-1)^{n+1}}{n} x^n \right| \leqslant \frac{1}{k+1} x^{k+1} \left( \frac{1}{1+c} \right)^{k+1} \leqslant \frac{1}{k+1} x^{k+1} \leqslant \frac{1}{k+1}, \quad c \in lra$$
 (4.7)

В частности,  $\log 2 = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$ 

 $2. -1 < x \le 0$ 

$$\left| \log(1+x) - \sum_{n=1}^{k} \frac{(-1)^{n+1}}{n} x^n \right| \leqslant \frac{1}{k+1} |x|^{k+1} \left( \frac{1}{1+c} \right)^{k+1} \leqslant \frac{1}{k+1} |x|^{k+1} \leqslant \left( \frac{1}{1-|x|} \right)^{k+1} = \frac{1}{k+1} \left( \frac{|x|}{1-|x|} \right)^{k+1}$$

$$(4.8)$$

Удачным случаем ?? будет  $\frac{|x|}{1-|x|} < 1 \Leftrightarrow |x| \leqslant \frac{1}{2}, \ x \in (-\frac{1}{2},0]$ . Чтобы разобраться с оставшимися вариантами, воспользуемся формулой:  $(1-x)(1+x+\ldots+x^n)=1-x^{n+1}$ . Подставим x=-x:

$$1 - x + x^{2} - x^{3} + \dots + (-1)^{n} x^{n} = \frac{1}{1+x} + (-1)^{n} \frac{x^{n+1}}{1+x}.$$

Проинтегрируем:

$$\int_0^t \sum_{k=0}^{n-1} (-1)^k x^k dt = \int_0^t \frac{1}{1+x} - (-1)^n \frac{x^n}{1+x}.$$

$$\log(1+t) = \sum_{k=0}^n \frac{(-1)^{k-1}}{k} t^k + (-1)^{n+1} \int_0^t \frac{x^n}{1+x} dx - 1 < t \le 0, t < x \le 0.$$

$$\int_0^t \frac{x^n}{1+x} dx \le \int_0^t (\frac{|x|^n}{1-|x|} dx \le \frac{1}{1-|t|} \int_t^0 |x|^n dx = \frac{1}{1-|t|} \frac{1}{n+1} |t|^{n+1}.$$

Это выражение стремится к нулю при  $n \to \infty, \ t > -1,$  если  $t \in (-1,0], |t| \leqslant r < 1,$  равномерно сходится. Удачный случай:  $\leqslant \frac{1}{1+|t|} \frac{1}{n+1} |t|^n \leqslant \frac{1}{1-r} \frac{1}{n} r^n$ .

Note. Логарифм — аналитическая функция.

Доказательство. Выберем  $\left|1-\frac{x}{x_0}\right|<1$ .

$$\log x - \log x_0 = \log \frac{x}{x_0} = \log(1 - (1 - \frac{x}{x_0})) = \sum_{n=1}^{\infty} \frac{1}{n} (-1)^{n+1} (\frac{x}{x_0} - 1)^n.$$

$$\log x = \log x_0 + \sum_{n=1}^{\infty} \frac{1}{n} (-1)^n \frac{1}{x_0} (x - x_0)^n.$$

А это ряд Тейлора.

# 4.12.4 Формула Ньютона-Лейбница для большей производной. Еще один подход к формуле Тейлора

f имеет n+1 производную на отрезке  $I, t, a \in I$ .

$$f(t) - f(a) = \int_{a}^{t} f'(x)d(x - t) = f'(x)(x - t) \Big|_{x=a}^{x=t} - \int_{a}^{t} f''(x)(x - t)dx =$$
$$= f'(a)(t - a) + \int_{a}^{t} f''(x)(t - x)dx.$$

То есть:

$$f(t) = f(a) + f'(a)(t - a) + \int_{a}^{t} f''(x)(t - x)dx.$$

И так далее

**Theorem 71.** f имеет n+1 производную на отрезке I,  $t, a \in I$ .

$$f(t) = \sum_{j=0}^{n} \frac{1}{j!} f^{(j)}(a)(t-a)^{j} + \frac{1}{n!} \int_{a}^{t} f^{(n+1)}(z)(t-x)^{n+1} dx.$$

Ex.  $x \rightsquigarrow u$ , x = a(1-u) + tu $u \in [0,1]$ , dx = (t-a)du

$$t - x = t - a(1 - u) - tu =$$

$$= t - a + au - tu =$$

$$= t - a + u(t - a) =$$

$$= (t - a)(1 - u)$$

$$r_n(a,t) = \frac{1}{n!} \int_0^1 f^{(n+1)}(a(1-u) + tu)(t-a)^n (1-u)^n (t-a)^n du.$$

Если a=0:

$$f(x) = (1+x)^m, \quad m \in \mathbb{R}$$

$$f'(x) = m(1+x)^{m-1}$$

$$f''(x) = m(m-1)(1+x)^{m-1}$$

$$\vdots$$

$$f^{(k)}(x) = m(m-1)\dots(m-k-1)(1+x)^{m-k}$$

Designation.

$$\binom{m}{k} = \frac{m(m-1)\dots(m-k+1)}{k!}.$$

|x| < 1

$$(1+t)^m = 1 + \binom{m}{1}t + \binom{m}{2}t^2 + \ldots + \binom{m}{n}t^n + \frac{t^{n+1}}{n!}\int_0^1 m(m-1)\ldots(m-n)(1+tu)^{m-n+1}(1-u)^n du.$$

**Theorem 72** (Ряд Ньютона). *Ряд* 

$$1 + \sum_{k=1}^{\infty} \binom{m}{k} t^k$$

 $cxodumcs \kappa (1+t)^m, npu |t| < 1$ 

Доказательство.  $R_n(t) = \frac{t^{n+1}}{n!} \int_0^1 m(m-1) \dots (m-n) (1+tu)^{m-n+1} (1-u)^n du$ .  $0 \le t < 1$ .

$$|R_n(t)| \le |t|^{n+1} \left| {m-1 \choose n} \right| |m| \int_0^1 \left| \frac{(1-u)^n}{(1+tu)^{n-m+1}} du \right|.$$

**Theorem 73.**  $R_n(t) \to 0$  npu |t| < 1,  $u \, cxo dumcs pashomepho <math>npu |t| < \phi < 1$ .

Доказательство. Пусть  $\int_0^1 \left| \frac{(1-u)^n}{(1+tu)^{n-m+1}} du \right| = I$ 

1. Сначала  $0 \le t_0$ :

$$I \leqslant \int_0^1 (1-u)^n du = \frac{1}{n+1} \longleftarrow 0.$$

$$|R_n(t)| \leqslant t^{n+1} \left| {m-1 \choose n} \right| \frac{m}{n+1} = a_n(t).$$

Тогда

$$\frac{a_{n+1}(t)}{a_n(t)} = \frac{n+1}{n+2} \frac{|m-n-1|}{n+2} t.$$

 $t<1,\ t+arepsilon<1,$  следовательно, рано или поздно  $rac{a_{n+1}(t)}{a_n(t)(t)}< t+arepsilon$ 

2. Следующий случай -1 < t < 0 Подынтегральное выражение:

$$\left|\frac{1-u}{1+tu}\right|^n \left|\frac{1}{1+tu}\right|^{m-1}.$$

$$1 + |t| \geqslant |1 + tu| \geqslant 1 - |t||u|$$
.

Первый множитель:

$$\left| \frac{1-u}{1+tu} \right| \leqslant \frac{1-u}{1-|t|u} = \frac{1-|t|u+u(|t|-1)}{1-|t|u} = 1 - \left( n \frac{1-|t|}{1-|t|u} \right).$$

Это не превосходит 1 - n(1 - |t|).

Второй множитель:

(a)  $m \leq 1$ 

$$\left|\frac{1}{1+tu}\right|^{-m+1}\leqslant \left(\frac{1}{1-|t|u}\right)^{-m+1}\leqslant \left(\frac{1}{1-|t|}\right)^{-m+1}.$$

(b) m > 1

$$|1 + tu|^{m-1} \le (1 + |t|).$$

ГЛАВА 4. ДИФФЕРЕНЦИРОВАНИЕ

Обозначим полученную оценку  $C_m(t)$ .

$$I \leqslant C_m(t) \int_0^1 (1 - n(1 - |t|)) du = C_m(t) \left( -\frac{1}{1 - |t|} \right) \frac{1}{n+1} (1 - n(1 - |t|))^{n+1} \Big|_{n=0}^{n=1} =$$

$$= C_m(t) \frac{1}{1 - |t|} \frac{1}{n+1} (1 - |t|^{n+1}) \leqslant C_m(t) \frac{1}{n+1}.$$

Получили

$$R_n(t) \leqslant |t|^{n+1} \left| {m-1 \choose n} \right| |m| \frac{1}{n+1} \bar{C}_m(t) = \sigma_n(t).$$

Хотим доказать, что это стремиться к нулю.

$$\frac{\sigma_{n+1}(t)}{\sigma_n(t)} = \frac{n+1}{n+2}|t| \left| \frac{m-n+1}{n+2} \right| \longleftarrow |t|, \qquad n \to \infty.$$

$$\exists k_0 : n > k_0 \quad \frac{\sigma_{n+1}(t)}{\sigma_n(t)} \leqslant \rho \quad \sigma_n(t) \leqslant A\rho^{n-1}, \quad |t| \leqslant \rho < 1.$$

Доказали сходимость.

 $x, x_0 > 0$ 

$$x^{m} = x_{0}^{m} \left(\frac{x}{x_{0}}\right)^{m} = x_{0}^{m} (1 - (1 - \frac{x}{x_{0}}))^{m} =$$

$$= x - \left(1 + \sum_{n=1}^{\infty} {m \choose n} (-1)^{n} \left(1_{\frac{x}{x_{0}}}\right)^{m} = x_{0}^{m} + \sum_{n=1}^{\infty} {m \choose n} (x - x_{0})^{m}.$$

Значит ряд Тейлора аналитичен.

**Theorem 74** (Формула Тейлора с остатком в интегральной форме). Если f дифференцируема n+1 раз на отрезке с концами a,t:

$$f(x) = f(a) + \frac{f'(a)}{1!}(t-a) + \dots + \frac{f^{(n)}(a)}{n!} + \underbrace{\frac{1}{n!} \int_0^t f^{(n+1)}(x)(t-a)^n dx}_{R_n(t,a)}$$
(4.9)

Statement. Если f дифференцируема n+1 раз:

$$\exists c \text{ между } a \text{ } u \text{ } t : R_n(t,a) = \frac{(t-a)^{n+1}}{(n+1)!} f^{(n+1)}(c) \tag{4.10}$$

Note. Если  $f \in C^{(n+1)}$ , то ?? можно вывести из ??.

**Theorem 75** (о среднем).  $\varphi, \psi - \phi y$ нкции на  $[c,d], \varphi$  непрерывна,  $\psi$  - интегрируема по Риману и не меняет знака. Тогда

$$\exists \psi \in [c,d] : \int_{c}^{d} \varphi(x)\psi(x)dx = \varphi(\psi) \int_{c}^{d} \varphi(x)dx.$$

Доказательство. Можно считать, что  $\psi\geqslant 0$ . Пусть  $m=\min_{x\in[c,d]}\varphi(x),\quad M=\max_{x\in[c,d]}$ 

$$m \int_{c}^{d} \varphi(x) dx \leqslant \int_{c}^{d} \varphi(x) \psi(x) x \leqslant M \int_{x}^{d} \varphi(x) dx.$$
$$m \psi(x) \leqslant \varphi(x) \psi(x) \leqslant M \psi(x).$$

Если  $\int_{c}^{d} \psi(x) dx = 0$ , теорема верна. Предположим, что этот интеграл не равен нулю.

$$m \leqslant \frac{\int_{c}^{d} \varphi(x)\psi(x)dx}{\int_{c}^{d} \psi(x)dx} \leqslant M.$$

Следовательно,

$$\exists \ \zeta \in [c,d] : \psi(\zeta) = \frac{\int_c^d \varphi(x)\psi(x)dx}{\int_c^d \psi(x)dx}.$$

Statement (оценка остатка).

$$\varphi(x) = f^{(n+1)}(x), \psi(x) = (t-x)^n.$$

$$\exists \zeta : R_n(t,a) = \frac{1}{n!} f^{(n+1)}(\zeta) \int_a^t (t-x)^n dx.$$

$$f^{(n+1)}(\zeta) \frac{1}{(n+1)!} \left[ -(t-x)^{n+1} \Big|_{x=a}^{x=t} \right] = f^{(n+1)}(\zeta) \frac{1}{(n+1)!} (t-a)^{n+1}.$$

## 4.13 Дифференциальные уравнения

$$\Phi\left(f'(t), f(t), t\right) = 0.$$

**Theorem 76.** Пусть f — непрерывная дифференцируемая функция на (a,b). Следующие условия эквивалентны:

1. 
$$f'(t) = cf(t) \quad \forall t \in (a, b)$$

2. 
$$\exists A: f(t) = Ae^{ct}$$

 $\mathcal{A}$ оказательство.  $2 \Longrightarrow 1$  — очевидно

 $1 \Longrightarrow 2$ 

$$g(t) = f'(t)e^{-ct}.$$
  
 
$$g'(t) = f'(t)e^{-ct} + f(t)(-ce^{-ct}) = cf(t)e^{-ct} - cf(t)e^{-ct} = 0.$$

Тогда  $g(t) \equiv A \in R$ .

П