CENG 216 – Numerical Computation Final Exam

2019–20 Spring Semester June 30, 2020

- This exam contains 4 questions on 2 pages.
- \bullet The exam duration is **75 minutes**.
- Use your **own handwriting**, no typesetting is allowed.
- Make sure to write your name/student ID on each page you submit.
- Make sure to **sign** each page.
- All values for angles are given in radians.
- Good Luck!

CENG 216 Final 2019–20 Spring

Q1 (25 points) Householder Reflectors and Orthogonality

i. Compute the Householder reflector that transforms the vector $\begin{bmatrix} 2\\1 \end{bmatrix}$ to the vector $\begin{bmatrix} -1\\2 \end{bmatrix}$.

ii. Show that the matrix

$$\mathbf{Q} = \begin{bmatrix} 0.2524571 & -0.2599396 & 0.9320391 \\ 0.9340050 & -0.1861786 & -0.3049136 \\ 0.2527848 & 0.9475067 & 0.1957827 \end{bmatrix}$$

is almost orthogonal (when computations are rounded to four figures after the dot position).

Q2 (25 points) Least Squares and Curve Fitting

The following temperature measurements have been obtained during a day at Gülbahçe, İzmir:

$$(t = 10, T = 28), (t = 12, T = 30), (t = 14, T = 35), \text{ and } (t = 16, T = 33).$$

- i. Assuming that the temperature changes continuously as $T(t) = a_2t^2 + a_1t + a_0$ what are the values of the coefficients a_i , i = 0, 1, 2 if we fit to the data in the least square sense?
- ii. What will be the value of the peak temperature $T_{\rm max}$ and the time that it will take place $t_{\rm max}$? Hint: Differentiate the continuous curve to find the formula for the peak location. Use the calculated coefficients to find the required values.

Q3 (25 points) Newton's Method with Numerical Derivatives

We are given the following function

$$f(x) = e^{\sin(e^x \cos(x)\ln(x))} - 1$$

with approximate root location $x_0 = 0.6$ and $f(x_0) = -0.5695990729412462$.

Apply three iterations of Newton's method to find the approximate root x_r using numerically approximated derivatives. You may choose any valid approximation formula and step size.

Hint: Please use the given function value $f(x_0)$ to check that you are evaluating the correct function.

Q4 (25 points) Numerical Integration

- i. Compute an approximation of the integral $\int_0^1 x \cos x \, dx$ using the Simpson's rule.
- ii. Compute an approximation of the integral $\int_0^1 x \cos x \, dx$ using the composite Trapezoid rule by partitioning the interval [0,1] into **two** sub-intervals.