МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ

Физтех-школа радиотехники и компьютерных технологий

Отчёт о выполнении лабораторной работы 4.4.1. «Амплитудная дифракционная решётка»

Работу выполнил: Студент группы Б01-304 Лепин Владислав Дмитриевич Преподаватель: Тимирханов Ринат Асхатович

Содержание

1	Вве	едение		3
	1.1	Цели :	работы	3
	1.2	Испол	възуемые приборы	3
	1.3	Teoper	гическая часть	3
		1.3.1	Основное соотношение	3
		1.3.2	Угловая дисперсия	4
		1.3.3	Разрешающая способность	4
		1.3.4	Экспериментальная установка	6
2	Ход	ц работ	ГЫ	6
	2.1	Измер	рение угловых координат спектральных линий	6
	2.2	Опред	целение угловой дисперсии	8
	2.3	Опред	деление разрешающей способности	9
	2.4	Опред	деление порядка спектра наложения линий	10
3	Вы	воды и	и обсуждение результатов	13
1	Спт	าอยบบบ	ланные	11

1 Введение

1.1 Цели работы

- Знакомство с работой и настройкой гониометра Г5;
- Определение спектральных характеристик амплитудной решётки.

1.2 Используемые приборы

- Гониометр;
- Дифракционная решётка;
- Ртутная лампа.

1.3 Теоретическая часть

1.3.1 Основное соотношение

Амплитудную решётку можно представить в виде непрозрачного экрана, в котором прорезано большое число N параллельных щелей штрихов (рис. 1). Постоянство расстояний между штрихами d (период решётки, или шаг решётки) и шириной штриха b должно выдерживаться с большой точностью.

Рис. 1: Дифракция световой волны на амплитудной решётке

Интенсивность дифрагированного света максимальна для углов φ_m , при которых волны, приходящие в точку наблюдения от всех щелей, оказываются в фазе:

$$d\sin\varphi_m = m\lambda. \tag{1}$$

Величина $m=0, \pm 1, \pm 2, \pm 3,...$ называется порядком спектра.

1.3.2 Угловая дисперсия

Выражение для угловой дисперсии дифракционной решётки следует из основного соотношения выше:

$$D = \frac{d\varphi}{d\lambda} = \frac{m}{d\cos\varphi} = \frac{m}{\sqrt{d^2 - m^2\lambda^2}}.$$
 (2)

1.3.3 Разрешающая способность

Рассмотрим изображения спектра для двух узких спектральных линий с длинами волн λ и $\lambda + \delta \lambda$. Для минимального значения $\delta \lambda$, которое может быть определено по результатам измерений, вводят разрешающую способность:

$$R = \frac{\lambda}{\delta \lambda}.\tag{3}$$

Согласно критерию Релея две спектральные линии различимы в окуляре, если дифракционный максимум одной из них накладывается на дифракционный минимум другой.

Поэтому в качестве минимальной $\delta\lambda$ берут полуширину спектральной линии. Для наглядности см. рис. 2.

Рис. 2: Условие Релея для дифракционной решётки: а) интенсивности двух близких линий и их сумма, б) изображение спектра

Пусть на решётку, состоящую из N штрихов, падает параллельный пучок света перпендикулярно её поверхности. Если N=2, то две волны погасят друг друга, если между ними возникнет разность хода $\lambda/2$, если N=3, то $\lambda/3$. В общем случае N штрихов для полуширины линии $\delta\varphi$ получаем уравнение, решение которого совместно с уравнением (4.1) при $\delta\varphi\ll 1$ имеет вид

$$d\sin(\varphi_m + \delta\varphi) = m\lambda + \frac{\lambda}{N},\tag{4}$$

$$\delta\varphi = \frac{\lambda}{Nd\cos\varphi_m}.\tag{5}$$

Тем же выражением описывается полуширина линии. Угловое расстояние между двумя линиями определяется дисперсией:

$$\Delta \varphi \approx D\delta \lambda = \frac{m}{d\cos\varphi_m} \delta \lambda. \tag{6}$$

Для сравнения между собой различных спектральных приборов Релей предложил использовать полуширину $\delta \varphi$ и расстояние между линиями $\Delta \varphi$. Критерий Релея удобен для различных оценок. Согласно ему спектральная

разрешающая способность определяется порядком дифракции и числом штрихов:

$$R = Nm. (7)$$

1.3.4 Экспериментальная установка

Принципиальная схема установки для изучения спектров приведена на рис. 3. Свет от источника S попадает на экран, в котором имеется отверстие в виде щели. Экран располагают в фокальной плоскости линзы или системы линз. Коллиматор формирует пучок света, близкий к параллельному. После коллиматора пучок лучей попадает на диспергирующий элемент (ДЭ): амплитудную дифракционную решётку. Наблюдаются изображения с помощью зрительной трубы, установленной на бесконечность.

Рис. 3: Схема прибора: источник - коллиматор - диспергирующий элемент - зрительная труба

Диспергирующий элемент пространственно разделяет монохроматические составляющие падающего на него излучения, осуществляя тем самым его физическое разложение по спектру. При известной зависимости $\varphi(\lambda)$ по измеряемому углу поворота φ зрительной трубы можно определить длину волны спектральной линии.

2 Ход работы

2.1 Измерение угловых координат спектральных линий

Измерим угловые координаты спектральных линий и занесем их в таблицу 1. Для удобства будем пользоваться таблицей (см. рис. 4).

Характеристики спектра ртутной дампы ДРШ

$\mathcal{N}^{\underline{o}}$	K_1	K_2	1	2	3	4	5	6
λ нм.	690,7	623,4	579,1	577,0	546,1	491,6	$435,\!8$	404,7
Цвет	красн.	красн.	желт.	желт.	зелен.	голуб.	синий	фиолет.
Яркость	4	4	10	8	10	4	4	3

Рис. 4: Зависимость угла максимума от длины волны

Таблица 1: Измерения угловых координат спектральных линий

Цвет	Порядок	d, нм	Угол (град, мин, сек)	Угол (рад)	$\sin \alpha$
Синий		435.8	12°41'09"	0.221	0.220
Голубой		491.6	14°21'24"	0.251	0.248
Фиолетовый		404.7	11°44'25"	0.205	0.203
Зеленый	1	546.1	15°57'55"	0.279	0.275
Желтый 1		577	16°56'55"	0.296	0.292
Желтый 2		579.1	16°57'35"	0.296	0.292
Красный		623.4	18°19'05"	0.320	0.314

Погрешности измерения углов, согласно описанию установки - 5 угловых секунд. В переводе в радианы это порядка 0.000024, соответствующая погрешность будет и у синусов углов. В таком случае, в дальнейших расчетах ею можно пренебречь.

Построим график зависимости $\sin \alpha$ от λ

Рис. 5: Зависимость угла максимума от длины волны

Отсюда мы легко получаем шаг решётки d:

•
$$d = 1/(\frac{\sin \alpha}{\lambda}) = (1.9830 \pm 0.0020)$$
 mkm, $(\varepsilon = 0.10 \%)$

Эта величина совпадает со значением, указанным на приборе: $d_{th}=2$ мкм.

2.2 Определение угловой дисперсии

Измерим углы второго и третьего жёлтого дублета и вычислим разности между ними. Результаты запишем в таблицу 2

Таблица 2: Зависимость разности угла желтого цвета от её порядка

Порядок	ϕ	$\Delta \phi$
1	16°56′	2'20"
2	35°59′	10'00"
3	60°39′	20'36"

По формуле 2 найдем угловую дисперсию для максимумов разного порядка. Изобразим полученные результаты на графике.

Рис. 6: Угловая дисперсия для разных порядков

2.3 Определение разрешающей способности

Рис. 7: 2 линии желтого спектра 1-го порядка

Найдем разрешающую способность как отношение длины волны линии к ее полуширине (см. теоретическую часть).

Рис. 8: Измерение расстояний в Geogebra

•
$$R = \frac{\lambda}{\delta\lambda} = \frac{579.1}{(579.1 - 577)/7.29 \cdot 0.87} = (2300 \pm 100), (\varepsilon = 4\%).$$

Число рабочих штрихов $N=R/m=(2300\pm 100), (\varepsilon=4\%),$ эффективный размер $l=Nd=(4.6\pm 0.2)$ мм, $(\varepsilon=4\%)$

2.4 Определение порядка спектра наложения линий

Для нахождения порядка спектра m, при котором фиолетовая линия ($\lambda_f = 404.7$ нм) накладывается на жёлтую ($\lambda_y = 579.1$ нм), используем основное уравнение дифракционной решётки:

$$d\sin\varphi = m\lambda. \tag{8}$$

Так как линии должны совпадать по углу φ , при разных порядках m_f и m_y имеем:

$$m_f \lambda_f = m_y \lambda_y. (9)$$

Отсюда находим порядок m_f для фиолетовой линии:

$$m_f = m_y \frac{\lambda_y}{\lambda_f}. (10)$$

Подставим численные значения:

$$\frac{\lambda_y}{\lambda_f} = \frac{579.1}{404.7} \approx 1.43.$$

Рассчитаем m_f для различных значений m_y :

$$m_f(2) = 2 \times 1.43 = 2.86.$$

$$m_f(3) = 3 \times 1.43 = 4.29.$$

$$m_f(4) = 4 \times 1.43 = 5.72.$$

$$m_f(5) = 5 \times 1.43 = 7.15.$$

$$m_f(6) = 6 \times 1.43 = 8.58.$$

$$m_f(7) = 7 \times 1.43 = 10.01.$$

$$m_f(8) = 8 \times 1.43 = 11.44.$$

$$m_f(9) = 9 \times 1.43 = 12.87.$$

$$m_f(10) = 10 \times 1.43 = 14.30.$$

$$m_f(11) = 11 \times 1.43 = 15.73.$$

$$m_f(12) = 12 \times 1.43 = 17.16.$$

$$m_f(13) = 13 \times 1.43 = 18.59.$$

$$m_f(14) = 14 \times 1.43 = 20.02.$$

Наименьшая пара целых чисел — это $m_y=7$ и $m_f=10$, при которых фиолетовая линия накладывается на жёлтую.

3 Выводы и обсуждение результатов

На основе проделанной лабораторной работы можно сделать следующие выводы, соответствующие поставленным целям:

1. Знакомство с работой и настройкой гониометра Г5:

Гониометр был настроен для измерения углов максимума дифракции спектральных линий, что позволило построить график зависимости угла максимума от длины волны.

2. Определение спектральных характеристик амплитудной решётки:

Шаг решётки d был определён через экспериментальные данные, полученные из угловых координат спектральных линий. Результат вычислений:

$$d=1.9830\pm0.0020\,{\rm mm}$$

Этот результат близок к теоретическому значению $d_{th}=2$ мм, что подтверждает корректность работы установки.

В том числе была измерена угловая дисперсия для разных порядков максимумов желтого спектра. Результаты оказались близки к теоретическим с точностью 10%.

Угловая дисперсия была вычислена, а для разрешающей способности был использован подход, основанный на минимальном расстоянии между двумя спектральными линиями. Результат вычислений:

$$R = 2300 \pm 100, \quad \varepsilon = 4\%$$

4 Справочные данные

Формулы, используемые для рассчета коэффициентов a, b и их случайных погрешностей σ_a, σ_b уравнения наилучшей прямой y = ax + b через метод наименьших квадратов (МНК):

$$a = \frac{\langle xy \rangle - \langle x \rangle \langle y \rangle}{\langle x^2 \rangle - \langle x \rangle^2}$$

$$\sigma_a \approx \frac{1}{\sqrt{n}} \sqrt{\frac{\langle y^2 \rangle - \langle y \rangle^2}{\langle x^2 \rangle - \langle x \rangle^2} - a^2}$$

$$b = \langle y \rangle - a \langle x \rangle$$

$$\sigma_b = \sigma_a \sqrt{\langle x^2 \rangle - \langle x \rangle^2}$$

Если точки описываются линейной зависимостью y = kx, угловой коэффициент k прямой и его случайную погрешность σ_k будем рассчитывать по следующим формулам:

$$k = \frac{\langle xy \rangle}{\langle x^2 \rangle}$$

$$\sigma_k = \frac{1}{\sqrt{n}} \sqrt{\frac{\langle y^2 \rangle}{\langle x^2 \rangle} - k^2},$$

Полные погрешности косвенно измеренных величин будем считать по формулам, приведенным в таблице 3.

Таблица 3: Расчёт погрешностей косвенно измеренных величин

Формула для величины	Полная погрешность
$A = B \pm C$	$\sigma_A^2 = \sigma_B^2 + \sigma_C^2$
$A = B \cdot C$	$\varepsilon_A^2 = \varepsilon_B^2 + \varepsilon_C^2$
A = B/C	$\varepsilon_A^2 = \varepsilon_B^2 + \varepsilon_C^2$
$A = B^{\beta} \cdot C\gamma$	$\varepsilon_A^2 = (\beta \cdot \varepsilon_B)^2 + (\gamma \cdot \varepsilon_C)^2$

И, наконец, приведем формулу для оценки случайной погрешности измеряемой величины:

$$\sigma = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (x_i - \langle x \rangle)^2},$$

где $\langle x \rangle$ - наилучшее значение измеряемой величины, которое можно рассчитать так:

$$\langle x \rangle = \frac{1}{n} \sum_{i=1}^{n} x_i$$