Balancing Act: Achieving Time and Memory Efficiency in SVP

Michal Word Count: 742

Approach

My methodology was heavily influenced by my initial research into three of the most known methods of solving SVP:

Algorithm type	Time complexity	Space complexity
Enumeration	$n^{O(n)}$	$O(n^2)$
Sieving	$O(2^n)$	$2^{O(n)}$
Voronoi	$O(2^{2n})$	$O(2^n)$

Table 1: Time & Space complexities of varying types of Lattice-based algorithms [1]

While Sieving was conceptually the most intuitive, I found that Enumeration was ideal for this task.

Asymptotically, the time complexity of Enumeration is much worse than Sieving or Voronoi, however, empirical evidence suggests that for low-dimensions Enumeration outperforms them. Additionally, Enumeration has polynomial space complexity which is much better than Sieving and Voronoi.

Accuracy

A big worry of this assignment were floating point inaccuracies, hence I initially chose C's built-in double.

Arbitrarily, I set an accuracy threshold, T where

$$T = 5 \cdot 10^{-5}$$

This meant that if

$$|\text{Expected result} - \text{Actual result}| \leq T$$

then I would consider my result as correct.

I found this to be a better metric than percentage difference as it ensured correct results were closely aligned with the actual answer, and unaffected by the result's magnitude.

I generated test lattices using latticegen from the fplll library [2]. It is often referred to as the best lattice-based solver available, hence I trusted its answers. I made multiple bash & python scripts to automate test generation, and focused on uniform & knapsack-like lattices.

Lacking prior experience in C, I decided to begin implementing a prototype in Python.

I found many basis-reduction algorithms, and while BKZ is most commonly used, I struggled to implement it and instead implemented LLL [3]–[5].

Once I implemented LLL and Schnorr Euchner enumeration [6] according to pseudocode, I began testing different configurations, while varying δ .

Figure 1: Accuracy vs. Dimension for various algorithm configurations

This highlighted that:

- 1. LLL and SE on their own had unsatisfactory accuracy
 - LLL gave approximations from its reduced basis which weren't always correct.
 - SE struggled with knapsack-like lattices (due to accumulating floating-point inaccuracies)
- 2. Increasing δ led to a higher accuracy. This is because a higher δ yields a better basis reduction [7], therefore, a better approximation.
- 3. LLL and SE combined exhibit superior performance.

To determine whether long double was necessary, I tested my implementation using both.

Figure 2: Maximum Absolute Difference vs. Dimension when using double and long double in LLL+SE, δ =0.99

Based on this, and considering the coursework's requirements, I concluded it was unnecessary as the accuracy stayed within the tolerance T. Furthermore, I could not justify the extra memory and computation time needed for long double.

Time

Upon running valgrind's callgrind and feeding the result into kcachegrind, it became evident where optimisations would be most beneficial.

Incl.		Self	Called	Fu	nction	Location	•
	100.00	0.00	(0)		0x0000000000020290	ld-linux-x86-64.so.2	
	99.99	0.00	1		(below main)	runme	
	99.99	0.00	1		libc_start_main@@GLIBC	libc.so.6: libc-start.c	
	99.99	0.00	1		(below main)	libc.so.6: libc_start_call_main.h	
	99.99	0.00	1		main	runme	
	81.59	20.41	1		schorr_euchner	runme	
	67.08	58.05	2 640 710		inner_product	runme	
1	18.29	0.05	1		LLL	runme	
1	17.93	9.81	137		gram_schmidt	runme	
1	9.14	4.08	2 670 405		mcount	libc.so.6: _mcount.S	
	5.05	5.05	2 670 405		mcount_internal	libc.so.6: mcount.c	
	1.84	0.17	1 174 097		0x000000000109180	(unknown)	
	1.67	1.67	1 174 097		round	libm.so.6: s_round.c	
	0.31	0.00	137		freeGSInfo	runme	
	0.31	0.01	275		freeVector2D	runme	
	0.30	0.01	13 200		freeVector	runme	
	0.26	0.01	275		mallocVector2D	runme	
	0.25	0.02	13 200		mallocVector	runme	
	0.24	0.00	27 091		0x000000000109160	(unknown)	
	0.24	0.05	27 093		free	libc.so.6: malloc.c, arena.c	
	0.19	0.19			_int_free	libc.so.6: malloc.c	
	0.18			_	0x000000000109210	(unknown)	
	0.18	0.08	27 089		malloc	libc.so.6: malloc.c, arena.c	
	0.10	0.10	2 416		update_bk	runme	
	0.10	0.00			parseInput	runme	
	0.10	0.10	3 567		_int_malloc	libc.so.6: malloc.c	

Figure 3: Snippet of function call summary provided by kcachegrind

My schnorr_euchner, lll, and gram_schmidt all relied on calculating millions of inner_products.

```
double inner_product(const Vector v1, const Vector v2, const int dim) {
    double total = 0;
    for (int i = 0; i < dim; i++) {
        total += v1[i] * v2[i];
    }
    return total;
}</pre>
```

Code Sample 1: My implentation of the Euclidean Inner Product

The only optimisation here was potentially parallelising using multiple threads, which would only be effective on higher dimensions due to thread overhead.

I realised that by memoising/precalculating inner products I could drastically reduce the number of calls to inner_product, thereby decreasing the number of operations.

Figure 4: Effects of memoisation on median run-time of LLL + SE, δ =0.99

While the graph isn't perfect, it shows that memoising has a positive impact on performance - this is amplified by the logarithmic y-axis.

I decided to investigate the δ parameter more:

Figure 5: Effects of changing LLL's δ value on median run-time of LLL + SE

I found that for both uniform and knapsack lattices, a higher delta resulted in less variance of runtime, evident by times being less scattered (Figure 5).

Delta	Dimensions								
	1-5	6-10	11-15	16-20	21-25	26-30	31-35	36-40	
0.75	0.30	0.33	0.42	0.59	0.98	<u>2.37</u>	9.89	108.38	
0.99	0.30	0.33	0.47	0.93	1.98	3.96	7.92	22.39	

Figure 6: Median speed (in ms) of LLL+SE on each dimension range on **Uniform** Lattices
Faster delta value <u>underlined</u>

Delta	Dimensions								
Denta	1-5	6-10	11-15	16-20	21-25	26-30	31-35	36-40	
0.75	0.30	0.34	<u>0.55</u>	<u>1.13</u>	<u>2.78</u>	43.54	227.18	1330.40	
0.99	0.30	0.36	0.70	1.92	5.00	11.42	<u>26.48</u>	102.61	

Figure 7: Median speed (in ms) of LLL+SE on each dimension range on **Knapsack** Lattices
Faster delta value underlined

For dimensions 10-25/30 (Figure 6 and Figure 7), the run-time using $\delta = 0.99$ increases due to more iterations inside LLL. However, asymptotically, $\delta = 0.99$ was better.

Memory

For memory, I used valgrind (tools: massif and dhat) which helped me address potential memory leaks and segmentation faults.

The memusage tool was also useful as it gave me a distribution of memory block sizes, and from this, I could pinpoint inefficiencies in my data structures.

Figure 8: Effects of memoisation on the number of bytes read from memory

From Figure 8 it is clear memoisation leads to less memory reads. This is because, by memoising the inner products, the only value being read from memory is the inner product itself, and not the component vectors needed to compute the inner product.

Figure 9: Peak memory usage of LLL + SE, $\delta = 0.99$

Figure 9 shows that

Peak memory $\propto (Dimension)^2$

which aligns with Table 1 and [1]

From Figure 3, it was also clear that malloc and free were called too often. This was resolved by initialising GS_Info at the beginning and then reusing it throughout the program's execution.

Readability

My initial implementation was centered around structs, however these were unnecessary and made my code unreadable.

```
Old implementation

typedef struct {
    double *e;
} Vector;

typedef struct {
    Vector **v;
    int dimension;
} Vector2D;
```

Sample 2: Changes in implementation of Vector and Vector2D

Old implementation

```
for (int k = 0; k < i; k++) {
    double ip = inner_product(B->v[i], Bs->v[k], dim);
    mu->v[i]->e[k] = ip / inner_products[k];

    for (int j = 0; j < dim; j++) {
        Bs->v[i]->e[j] -= mu->v[i]->e[k] * Bs->v[k]->e[j];
    }
}

New implementation

for (int k = 0; k < i; k++) {
    double ip = inner_product(B[i], Bs[k], dim);
    mu[i][k] = ip / inner_products[k];

    for (int j = 0; j < dim; j++) {
        Bs[i][j] -= mu[i][k] * Bs[k][j];
    }
}</pre>
```

Sample 3: Changes in implementation of projection calculation in Gram Schmidt

This led to much better readability, which Sample 3 is a great example of.

Conclusion

Overall, I believe my implementation is quite fast, and accurate to a high number of dimensions. I would like to try this challenge again with a Domain-Specific Language and with more advanced methods to improve upon the performance.

Bibliography

- [1] D. Micciancio, "Lattice cryptography". [Online]. Available: https://cseweb.ucsd.edu/~daniele/LatticeLinks/SVP.html
- [2] T. F. development team, "fplll, a lattice reduction library, Version: 5.4.5". [Online]. Available: https://github.com/fplll/fplll
- [3] S. Bhattacherjee, J. Hernandez-Castro, and J. Moyler, "A Greedy Global Framework for LLL". [Online]. Available: https://eprint.iacr.org/2023/261
- [4] S. D. Galbraith, [Online]. Available: https://www.math.auckland.ac.nz/~sgal018/crypto-book/main.pdf
- [5] H. Cohen, "A course in computational algebraic number theory". 1993. doi: 10.1007/978-3-662-02945-9.
- [6] M. Yasuda, "A Survey of Solving SVP Algorithms and Recent Strategies for Solving the SVP Challenge". pp. 189–207, 2021. doi: 10.1007/978-981-15-5191-8_15.
- [7] N. (. Landsman, G. Lord, and G. Heckman, "Reduction of Matrices and Lattices". [Online]. Available: https://www.math.ru.nl/magma/text536.html
- [8] Z. Zheng, X. Wang, G. Xu, and Y. Yu, "Orthogonalized lattice enumeration for solving SVP". [Online]. Available: https://doi.org/10.1007/s11432-017-9307-0
- [9] K. Matsuda, A. Takayasu, and T. Takagi, "Explicit Relation between Low-Dimensional LLL-Reduced Bases and Shortest Vectors". pp. 1091–1100, 2019. doi: 10.1587/transfun.E102.A.1091.
- [10] F. Correia, A. Mariano, A. Proença, C. Bischof, and E. Agrell, "Parallel Improved Schnorr-Euchner Enumeration SE++ for the CVP and SVP", vol. 0, no. pp. 596–603, 2016. doi: 10.1109/PDP.2016.95.