Cálculo de Probabilidades

El modelo matemático

El **espacio muestral** de un fenómeno aleatorio, Ω es el conjunto de resultados posibles. Los subconjuntos de un único elemento son los **sucesos simples**, y los sucesos de más de un elemento son los **sucesos compuestos**. El conjunto de todos los posibles sucesos de Ω es el conjunto por partes, $\mathcal{P}(\Omega)$.

 $P(\{\omega_1\}) + P(\{\omega_2\}) + \cdots + P(\{\omega_n\}) = 1.$

Una probabilidad es una aplicación

$$P: \mathcal{P}(\Omega) \to [0,1]$$

tal que se verifica

- Si $A, B \in \Omega$ y $A \cap B = \emptyset$ entonces $P(A \cup B) = P(A) + P(B)$
- $P(\Omega) = 1$

P(A) es la **probabilidad del suceso** A y el par (Ω, P) es el **espacio de probabilidad finito**.

De estas dos propiedades pueden construirse otra serie de propiedades

- Si B ocurre siempre que sucede A, es decir, $A \subset B \subset \Omega$ entonces $P(A) \leq P(B)$. Esto es cierto pues $B = A \cup (B \cap A^c)$, y al ser disjuntos, $P(B) = P(A) + P(B \cap A^c)$.
- Como $A \subset B \subset \Omega$ y $B A = B \cap A^c$, P(B A) = P(B) P(A).
- Si tomamos $B = \Omega$, $P(A^c) = 1 P(A)$.
- $\bullet \ P(\emptyset) = P(\Omega^c) = 1 1 = 0$
- Sean $A, B \subset \Omega$. B se puede expresar como $B = (B \cap A) \cup (B \cap A^c)$, y al ser disjuntos, $P(B) = P(B \cup A) + P(B A)$.
- Como $A \cap B = A \cup (B A)$, y al ser disjuntos, $P(A \cup B) = P(A) + P(B A) = P(A) + P(B) P(A \cap B)$.
- Si A_1, A_2, \dots, A_n son disjuntos dos a dos, se tiene que $P(A_1 \cup A_2 \cup \dots \cup A_n) = P(A_1) + P(A_2) + \dots + P(A_n)$.
- Si $\Omega = \{\omega_1, \omega_2, \dots, \omega_n\}$ de (Ω, P) y $A = \{\omega_{i1}, \dots, \omega_{ik}\}$ con ω_{ik} un suceso simple, entonces $P(A) = P(\{\omega_{i1}\}) + \dots + P(\{\omega_{ik}\})$ y