Chapitre 26

Espaces de dimension finie Marathon du lundi de paques

Exercice 1: $\Diamond \Diamond \Diamond$ Soit $F = \{ M \in M_2(\mathbb{R}) : \text{Tr}(M) = 0 \}.$

Montrer que F est un s.e.v. de $M_2(\mathbb{R})$ et calculer sa dimension.

Solution:

La trace est une forme linéaire sur $M_2(\mathbb{R})$, donc F = Ker(Tr) est un s.e.v. de $M_2(\mathbb{R})$. D'après le théorème du rang, on a $\dim(M_2(\mathbb{R})) = \dim(\operatorname{Ker}(\operatorname{Tr})) + \dim(\operatorname{Tr}(M_2(\mathbb{R}))).$

Ainsi, $\dim(\operatorname{Ker}(\operatorname{Tr})) = \dim(F) = \dim(M_2(\mathbb{R})) - \dim(\mathbb{R}) = 3.$

Montrer que (M_1, M_2, M_3, M_4) est une base de $M_2(\mathbb{R})$ avec :

Exercice 2: $\Diamond \Diamond \Diamond$

 $M_1 = I_2, \ M_2 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \ M_3 = \begin{pmatrix} 6 & 6 \\ 6 & 0 \end{pmatrix}, \ M_4 = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}.$

 $\begin{cases} \lambda_1 + \lambda_2 + 6\lambda_3 + \lambda_4 = 0 \\ 6\lambda_3 + 2\lambda_4 = 0 \\ 6\lambda_3 + 3\lambda_4 = 0 \end{cases} \iff \begin{cases} \lambda_1 = 0 \\ \lambda_2 = 0 \\ \lambda_3 = 0 \end{cases}$

Pour $k \in [0, n]$, on pose $P_k = X^k(1 - X)^{n-k}$. Montrer que $(P_0, ..., P_n)$ est base de $\mathbb{K}_n[X]$.

C'est une famille libre de n+1 vecteurs dans un espace de dimension n+1, donc c'est une base.

Exercice 4: $\Diamond \Diamond \Diamond$

On sait que $(e_1, ..., e_{n-1})$ est une famille libre de E. Par théorème de la base incomplète, on peut compléter cette famille libre en une base de E.

Soient $\mathcal{B} = (e_1, ..., e_n)$ et $\mathcal{B}' = (e'_1, ..., e'_n)$ deux bases de E, \mathbb{K} -ev de dimension finie.

Montrer qu'il existe $j \in [1, n]$ tel que $(e_1, ..., e_{n-1}, e'_j)$ est une base de E.

Donc \mathcal{B}' est combinaison linéaire de \mathcal{B} , ce qui est absurde. Donc il existe un j tel que $(e_1, ..., e_{n-1}, e'_j)$ est une base de E

\mathbb{C} est un \mathbb{C} -ev de dimension 1 car $\forall z \in \mathbb{C}, z = z \cdot 1$.

Solution:

Exercice 6: ♦♦◊ Soient $n \in \mathbb{N}^*$ et $(\lambda_k)_{0 \le k \le n} \in \mathbb{K}^{n+1}$ tels que $\sum_{k=0}^n \lambda_k (X+k)^n = 0$.

1. Montrer que $\forall p \in \llbracket 0, n \rrbracket, \sum_{k=0}^{n} \lambda_k (X+k)^p = 0.$ 2. Montrer que $\forall p \in \llbracket 0, n \rrbracket, \sum_{k=0}^{n} \lambda_k k^p = 0.$

On pose $P = \sum_{k=0}^{n} \lambda_k (X+k)^n = 0$. $\boxed{ 1. } \text{ On a } P' = \sum_{k=0}^{n} \lambda_k n(X+k)^{n-1} = n \sum_{k=0}^{n} \lambda_k (X+k)^{n-1} = 0.$ Donc $\sum_{k=0}^{n} \lambda_k (X+k)^{n-1} = 0.$

En dérivant n fois, on obtient bien l'égalité pour tout $p \in [0, n]$.

3. Montrer que $\forall P \in \mathbb{K}_n[X], \sum_{k=0}^n \lambda_k P(k) = 0$.

- 3. Soit $P \in \mathbb{K}_n[X]$. On a $P = \sum_{p=0}^n a_p X^p$. On a $\sum_{k=0}^n \lambda_k P(k) = \sum_{k=0}^n \lambda_k \sum_{p=0}^n a_p k^p = \sum_{p=0}^n a_p \sum_{k=0}^n \lambda_k k^p = 0$.
- 2. Déduire que $\mathbb{R}^{\mathbb{R}}$ n'est pas de dimension finie.

Donc $(f_a)_{a\in\mathbb{R}}$ est une famille libre de $\mathbb{R}^{\mathbb{R}}$. $\boxed{2.}$ Supposons que $\mathbb{R}^{\mathbb{R}}$ est de dimension finie. $\overline{\text{Alors}}$, toute famille libre de $\mathbb{R}^{\mathbb{R}}$ est de cardinal inférieur ou égal à la dimension de $\mathbb{R}^{\mathbb{R}}$.

Exercice 8: $\Diamond \Diamond \Diamond$

Solution:

Solution:

1. Soit $n \in \mathbb{N}^*$ et $a_1 < ... < a_n \in \mathbb{R}$.

Or, on a montré que $(f_a)_{a\in\mathbb{R}}$ est une famille libre de $\mathbb{R}^{\mathbb{R}}$ de cardinal infini. Donc $\mathbb{R}^{\mathbb{R}}$ n'est pas de dimension finie.

1. Soit $M \in M_n(\mathbb{K})$. Justifier l'existence d'un entier p tel que $(I_n, M, M^2, ..., M^p)$ est liée. 2. Montrer que l'inverse d'une matrice triangulaire supérieure est triangulaire supérieure.

- 1. L'espace $M_n(\mathbb{K})$ est de dimension n^2 , donc toute famille de n^2+1 vecteurs est liée. En particulier, $(I_n, M, M^2, ..., M^{n^2})$ l'est.
- Exercice 9: $\Diamond \Diamond \Diamond$

intersection est une droite vectorielle.

strictement inférieure à P_1 et P_2 , puisque $P_1 \neq P_2$. On a donc que $P_1 \cap P_2$ est une droite vectorielle.

Sans la formule de Grassmann:

Soit p tel que $(I_n, M, ..., M^p)$ est liée.

1. On note P_1 et P_2 ces deux plans. $\overline{\text{Alors}} \ \exists (e_1, e_2) \in E^2 \mid P_1 = \text{Vect}(e_1, e_2) \ \text{et} \ \exists (e_3, e_4) \in E^2 \mid P_2 = \text{Vect}(e_3, e_4).$ On suppose ces familles libres. Puisque E est de dimension 3, alors $e_3 \in P_1$ ou $e_4 \in P_1$.

2. On peut prendre $P_1 = \text{Vect}(e_1, e_2)$ et $P_2 = \text{Vect}(e_3, e_4)$ avec (e_1, e_2, e_3, e_4) base de \mathbb{C}^4 .

Ainsi, $P_1 \cap P_2 \neq \{0\}$ car $e_3 \neq 0$ et $0 < \dim(P_1 \cap P_2) < 2$ comme l'intersection est de dimension

Soit E un espace vectoriel de dimension égale à $n \in \mathbb{N}$ et H_1, H_2 deux hyperplans de E non confondus.

2. Donner un exemple en dimension 4 de deux plans vectoriels supplémentaires.

1. Soient deux plans vectoriels non confondus d'un espace E de dimension 3. Montrer que leur

Solution: On a $\dim(H_1) = \dim(H_2) = n - 1$. On a $H_1 \subset H_1 + H_2 \subset E$ donc $n - 1 \le \dim(H_1 + H_2) \le n$.

Exercice 11: $\Diamond \Diamond \Diamond$ Calculer dim $S_n(\mathbb{R})$. En déduire dim $A_n(\mathbb{R})$.

Exercice 12: $\Diamond \Diamond \Diamond$

1. Prouver que F est un sous-espace vectoriel de $\mathbb{R}_3[X]$ et justifier que dim $F \leq 3$.

1. On a $F = \{P \in \mathbb{R}_3[X] : P(1) - P(2) = 0\} = \text{Ker}(\varphi) \text{ avec } \varphi : P \mapsto P(1) - P(2).$

2. On peut prendre $P_1 = 1$, $P_2 = X^2 - 3X + 2$ et $P_3 = X^3 - 3X^2 + 2X$.

Exercice 13: $\Diamond \Diamond \Diamond$

Solution:

Quelle est la condition nécessaire et suffisante sur λ pour que $D = \text{Vect}((\lambda, \lambda, 1))$ et P = $Vect((1, \lambda, 1), (2, 1, 1))$ soient supplémentaires dans \mathbb{R}^3 ?

Exercice 14: $\Diamond \Diamond \Diamond$

Soient F, G deux s.e.v. d'un espace vectoriel E de dimension finie.

Solution: Montrons que c'est une famille libre. Soient $\lambda_1, \lambda_2, \lambda_3, \lambda_4 \in \mathbb{R}$ tels que : $\lambda_1 I_2 + \lambda_2 M_2 + \lambda_3 M_3 + \lambda_4 M_4 = 0$. Alors :

On sait déjà que c'est une famille libre (cf 25.13).

Exercice 3: $\Diamond \Diamond \Diamond$ **Solution:**

Solution:

Supposons qu'il n'existe pas de j tel que $(e_1, ..., e_{n-1}, e'_i)$ est une base de E. Alors, pour tout j, $(e_1, ..., e_{n-1}, e'_j)$ est liée. Donc, pour tout j, e'_j est combinaison linéaire de $(e_1, ..., e_{n-1})$.

Exercice 5: $\Diamond \Diamond \Diamond$ Justifier que \mathbb{C} est un \mathbb{C} -ev de dimension 1 et un \mathbb{R} -ev de dimension 2.

\mathbb{C} est un \mathbb{R} -ev de dimension 2 car $\forall z \in \mathbb{C}, z = \Re(z) \cdot 1 + \Im(z) \cdot i$ avec $\Re(z), \Im(z) \in \mathbb{R}$.

4. Déduire que $((X+k)^n, k \in [0, n])$ est une base de $\mathbb{K}_n[X]$. **Solution:**

2. En évaluant en 0 l'égalité du 1., on obtient bien l'égalité.

4. On a montré que $\forall P \in \mathbb{K}_n[X], \sum_{k=0}^n \lambda_k P(k) = 0$.

- Donc, en particulier pour un polynôme ne s'annulant jamais, on a que les λ_k sont nuls. Donc $((X + k)^n, k \in [0, n])$ est une famille libre de $\mathbb{K}_n[X]$. Or, c'est une famille de n+1 vecteurs dans un espace de dimension n+1, donc c'est une base.
- Exercice 7: $\Diamond \Diamond \Diamond$ 1. Pour $a \in \mathbb{R}$, on note $f_a : x \mapsto e^{ax}$. Montrer que $(f_a)_{a \in \mathbb{R}}$ est libre dans $\mathbb{R}^{\mathbb{R}}$.
- Soient $(\lambda_1, ... \lambda_n) \in \mathbb{R} \mid \sum_{k=1}^n \lambda_k f_{a_k} = 0.$ Alors $\sum_{k=1}^{n-1} \lambda_k f_{a_k} = -\lambda_n f_{a_n}$ et $\sum_{k=1}^{n-1} \lambda_k f_{a_k-a_n} = -\lambda_n.$ Or $\sum_{k=1}^{n-1} \lambda_k f_{a_k-a_n}(x) \xrightarrow[x \to +\infty]{} 0$ donc $\lambda_n = 0.$ En itérant, on obtient que $\lambda_1 = ... = \lambda_n = 0$.

Alors, il existe $\lambda_1,...,\lambda_p \in \mathbb{K}$ tels que $\sum_{k=1}^p \lambda_k M^k = I_n$. On multiplie par $M^{-1}:\sum_{k=1}^p \lambda_k M^{k-1} = M^{-1}$.

- 2. | Soit $M \in M_n(\mathbb{K})$ triangulaire supérieure inversible d'inverse M^{-1} . On a que les itérés de M sont triangulaires supérieures.

Ainsi, M^{-1} est combinaison linéaire de MTS, donc est triangulaire supérieure.

Exercice 10: $\Diamond \Diamond \Diamond$

Calculer $\dim(H_1 \cap H_2)$.

Solution:

Or $H_1 \neq H_2$ donc $\exists x \in H_1 + H_2 \mid x \notin H_1$. Alors $\dim(H_1 + H_2) > \dim(H_1)$. Ainsi, $\dim(H_1 + H_2) = n$. On a $\dim(H_1 \cap H_2) = \dim(H_1) + \dim(H_2) - \dim(H_1 + H_2) = n - 1 + n - 1 - n = n - 2$.

Solution: On a dim $S_n(\mathbb{R}) = \frac{n(n+1)}{2}$ car c'est le nombre de coefficients au dessus/dessous de la diagonale. On a $M_n(\mathbb{R}) = S_n(\mathbb{R}) \oplus A_n(\mathbb{R})$ donc dim $A_n(\mathbb{R}) = \dim M_n(\mathbb{R}) - \dim S_n(\mathbb{R}) = n^2 - \frac{n(n+1)}{2} = \frac{n(n-1)}{2}$.

 $\overline{\operatorname{Or}} \varphi$ est une forme linéaire sur $\mathbb{R}_3[X]$, donc $F = \operatorname{Ker}(\varphi)$ est un s.e.v. de $\mathbb{R}_3[X]$. D'après le théorème du rang, on a $\dim(\mathbb{R}_3[X]) = \operatorname{rg}(\varphi) + \dim(\operatorname{Ker}(\varphi))$. Donc dim F = 4 - 1 = 3.

Soit $F = \{ P \in \mathbb{R}_3[X] : P(1) = P(2) \}.$

2. Trouver une base de F.

Solution: On a que $\mathbb{R}_n[X]$ est un hyperplan de $\mathbb{R}_{n+1}[X]$ et $\mathrm{Vect}(P)$ est une droite vectorielle de $\mathbb{R}_{n+1}[X]$. D'après le chapitre suivant, $\mathbb{R}_{n+1}[X] = \mathbb{R}_n[X] \oplus \operatorname{Vect}(P)$.

Soit $P \in \mathbb{R}_{n+1}[X]$. Montrer que $\mathbb{R}_{n+1}[X] = \mathbb{R}_n[X] \oplus \text{Vect}(P)$.

Montrer que $(\dim F + G)^2 + (\dim F \cap G)^2 \ge (\dim F)^2 + (\dim G)^2$.

On a dim $F + G = \dim F + \dim G - \dim F \cap G$.

Solution: La condition nécessaire et suffisante pour que D et P soient supplémentaires est que $D \cap P = \{0\}$.

On a que D est une droite vectorielle de \mathbb{R}^3 et P est un hyperplan de \mathbb{R}^3 .

Exercice 15: ♦♦♦

1 sur 1

Donc dim $F + G + \dim F \cap G = \dim F + \dim G$.

Montrons que $\dim(F+G)\dim(F\cap G) \geq \dim F\dim G$. Si F et G sont confondus, il y a égalité.

Solution:

 $\operatorname{Donc} (\dim F + G)^2 + (\dim F \cap G)^2 + 2\dim F + G\dim F \cap G = (\dim F)^2 + (\dim G)^2 + 2\dim F \dim G.$

SPDG, supposons que $\dim F \geq \dim G$. Alors $\dim(F+G) \ge \dim F + 1$ et $\dim F \cap G \ge \dim G - 1$. Donc $\dim(F+G)\dim(F\cap G) \ge \dim F \dim G - \dim F + \dim G - 1 \ge \dim F \dim G$. En remplaçant dans l'égalité, on obtient l'inégalité.