

1	1. A method of identifying a gene or genes associated with a selected				
2	phenotype, the method comprising the steps of:				
3	(a) providing a nucleic acid library comprising nucleotide sequences that				
4	encode at least partially randomized zinc finger proteins;				
5	(b) transducing cells with expression vectors, each comprising a nucleotic				
6	sequence from the library;				
7	(c) culturing the cells so that zinc finger proteins are expressed in the cell				
8	wherein the zinc finger proteins modulate gene expression in at least some of the cells;				
9	(d) assaying the cells for a selected phenotype and determining whether or				
10	not the cells exhibit the selected phenotype; and				
11	(e) identifying, in cells that exhibit the selected phenotype, the gene or				
12	genes whose expression is modulated by expression of a zinc finger protein, wherein the				
13	gene so identified is associated with the selected phenotype.				
1	2. The method of claim 1, wherein the zinc finger protein has three,				
2	four, or five fingers.				
1	3. The method of claim 1, wherein the library comprises no more that				
2	10 ⁷ clones.				
1	4. The method of claim 1, wherein the cells are physically separated				
2	individual pools of cells and each individual pool of cells is transduced with an				
3	expression vector comprising a nucleotide sequence from the library.				
1	5. The method of claim 4, wherein the physical separation of the				
2	pools of cells is accomplished by placing each pool of cells in a separate well of a 96,				
3	384, or 1536 well plate.				
	•				
1	6. The method of claim 4, wherein the cells are assayed for the				
2	selected phenotype using liquid handling robots.				
1	7. The method of claim 1, wherein the cells are pooled together and				
2	transduced in a batch.				

1		8.	The method of claim 7, wherein the cells are assayed for the		
2	selected phenotype using flow cytometry.				
1		9.	The method of claim 1, wherein the library is made by finger		
2	grafting, DNA	A shuffl	ing, or codon doping.		
1		10.	The method of claim 1, wherein the zinc finger proteins are fusion		
2	proteins comp	rising a	a regulatory domain.		
1		11.	The method of claim 10, wherein the zinc finger proteins are fusion		
2	proteins comprising at least two regulatory domains.				
1		12.	The method of claim 10, wherein the regulatory domain is selected		
2	from the grou	p consi	sting of a transcriptional repressor, a methyl transferase, a		
3	transcriptional activator, a histone acetyltransferase, and a histone deacetylase.				
1		13.	The method of claim 10, wherein the regulatory domain is VP16 or		
2	KRAB.		2 · · · · · · · · · · · · · · · · · · ·		
1		14.	The method of claim 1, wherein modulation of gene expression is		
2	repression of				
1		15.	The method of claim 1, wherein modulation of gene expression is		
2	activation of g	gene ex	pression.		
1		16.	The method of claim 1, wherein the cells are selected from the		
2	group consisti	ing of a	nimal cells, plant cells, bacterial cells, protozoal cells, or fungal		
3	cells.				
1		17.	The method of claim 1, wherein the cells are mammalian cells.		
1		18.	The method of claim 1, wherein the cells are human cells.		
1		19.	The method of claim 1, wherein expression of the zinc finger		
2	proteins is controlled by administration of a small molecule.				
1		20.	The method of claim 19, wherein the small molecule is		
2	tetracycline.				

1		21.	The method of claim 1, wherein the expression vectors are a viral			
2	vector.					
1		22.	The method of claim 21, wherein the expression vectors are a			
2	retroviral expression vector, a lentiviral expression vector, an adenoviral expression					
3	vector, or an AAV expression vector.					
1	Sector	23.	The method of claim 1, wherein the selected phenotype is related to			
2	cancer nenhri		state hypertrophy, hematopoiesis, osteoporosis, obesity,			
	cardiovascular disease, or diabetes.					
3	Cardiovascuia	i uiscaş	e, of diabetes.			
1		24.	The method of claim 1, wherein the zinc finger proteins comprise a			
2	Zif268 backbone.					
1		25.	The method of claim 1, wherein genes that are associated with the			
2	selected phenotype are identified by comparing differential gene expression patterns in					
3	the presence a	and abse	ence of expression of the zinc finger protein.			
1	•	26.	The method of claim 25, wherein differential gene expression			
2	natterns are co		d using an oligonucleotide array.			
2	putterns are ex	ompare	a doing air ongonaoteotae array.			
1		27.	The method of claim 1, wherein genes that are associated with the			
2	selected phene	otype ar	re identified by using zinc finger proteins from the library of			
3	randomized zinc finger proteins to probe YAC or BAC clones.					
1		28.	The method of claim 1, wherein genes that are associated with the			
2	selected phene	otype aı	re identified by scanning genomic sequences for target sequences			
3	recognized by	zinc fi	nger proteins from the library of randomized zinc finger proteins.			
1		29.	The method of claim 1, wherein genes that are associated with the			
2	selected pheno		re identified by cross-linking the zinc finger protein to DNA with			
3	which it is associated, followed by immunoprecipitation of the zinc finger protein and					
4	sequencing of the DNA.					

