Aix-Marseille Université

2016-2017

Algèbre Linéaire

Partiel 1 - 17 février 2017 Durée : 2 heures. Sans documents ni calculatrices

Exercice 1.

- 1. Soit E un espace vectoriel sur \mathbb{R} . Donner des conditions nécessaires et suffisantes pour qu'un sous-ensemble F de E soit un sous-espace vectoriel de E.
- 2. Soient $E = \mathbb{R}^3$ et $F = \{(x, y, z) \in \mathbb{R}^3 \mid x + 3y + 4z = 0 \text{ et } 2x + z = 0\}$. Montrer que F est un sous-espace vectoriel de E dont on déterminera une base et la dimension.

Exercice 2. Soit $A = \{x = (x_1, \dots, x_4) \in \mathbb{R}^4 \mid x_1 + 2x_2 = 0 \text{ et } x_3 = x_4^2\}$. On considère les vecteurs $v_1 = (-2, 1, 1, 1), v_2 = (-2, 1, 4, 2)$ et $v_3 = (0, 0, 1, 1)$.

- 1. A est-il un sous-espace vectoriel de \mathbb{R}^4 ?
- 2. Montrer que les trois vecteurs v_1, v_2 et v_3 appartiennent à A. Sont-ils linéairement indépendants?
- 3. Soit F un sous-espace vectoriel de \mathbb{R}^4 contenant A. Que peut-on dire sur la dimension de F?

Exercice 3. Dans \mathbb{R}^4 , on considère les vecteurs $v_1 = (-1, 2, 0, 1)$, $v_2 = (-3, 0, -2, 0)$, $v_3 = (0, -3, -1, 1)$ et $v_4 = (-2, 1, -1, 2)$.

- 1. La famille (v_1, v_2, v_3, v_4) est-elle une famille libre ou liée? Si elle est liée, donner une relation de dépendance linéaire entre ces quatre vecteurs.
- 2. Donner une base et la dimension du sous-espace vectoriel F de \mathbb{R}^4 engendré par ces quatre vecteurs.
- 3. Le vecteur $v_5 = (1, 0, 0, 0)$ appartient-il à F?
- 4. Déterminer un sous-espace vectoriel supplémentaire de F dans \mathbb{R}^4 .

Exercice 4.

- 1. Soient F_1 et F_2 deux sous-espaces vectoriels d'un espace vectoriel E sur \mathbb{R} . Montrer que $F_1 \cap F_2$ est un sous-espace vectoriel de E.
- 2. Montrer que si la famille (a_1, a_2, a_3, a_4) est une base d'un espace vectoriel E sur \mathbb{R} , alors la famille (b_1, b_2, b_3, b_4) est aussi une base de E avec $b_1 = a_1$, $b_2 = a_1 + a_2$, $b_3 = a_1 + a_2 + a_3$ et $b_4 = a_1 + a_2 + a_3 + a_4$.

En déduire que la famille (Q_0,Q_1,Q_2,Q_3) est une base de $\mathbb{R}_3[X]$ avec $Q_0=1$, $Q_1=1+X,\ Q_2=1+X+X^2$ et $Q_3=1+X+X^2+X^3$.