STUDENT PORTFOLIO

Name: SAI KETHAN PS

Register Number: RA2111030010059 Mail ID: ps8462@srmist.edu.in

Department: NWC

Specialization: Cyber Security

Semester: 3rd

Subject Title: I8CSC20IJ Data Structures and Algorithms

Handled By: (Dr.M.Jeyaselvi)

Assignment – CrossWord Puzzle (Unit 1,2,3, & 4) (Write about the assignment questions and how u solved differently)

UNIT -I DATA STRUCTURES Prepared by Dr.D.SHINY IRENE AP/CSE/SRMIST

UNIT -2 DATA STRUCTURES Prepared by Dr.D.SHINY IRENE AP/CSE/SRMIST

UNIT -3 DATA STRUCTURES & ALGORITHMS Prepared by Dr.D.SHINY IRENE AP/CSE/SRMIST

UNIT -4 DATA STRUCTURES & ALGORITHMS Prepared by Dr.D.SHINY IRENE AP/CSE/SRMIST

Assignment
(what is the most interesting part in the assignment)
 Calving the nuzzle was quite good. Lwag able to regal all the tening and at the game time
Solving the puzzle was quite good . I was able to recall all the topics and at the same time
I was not feeling bored.

Saikethan PS RA211103001005

Assignment - I

Circular doubly linked list

A circular doubly linked has the properties of both doubly triked list and circular linked list in which luse consecutive elements are linked or convected by the previous and next pointer and last node points to the first node by the next pointer and last pode and also the first node ley the next pointer and last pode and also the first node ley the next pointer and also the first node points to the last node ley the next pointer and also the first node points to the last node ley the previous pointer to the last node and also the first node points to the last node leg the previous pointer

- 1) Previous
- a) pate
- 3) Next

Algorithm 1) Start create a structure node with three variables namely. struct mode * prev; 3) int data; Struct node * nent; 4) (reate a new node If lest is empty assign poer and rest to the neuenade itself update neuenade as head go to step 6) Else assign nent of new nade as start node and assign pow of new node as last node golo step 7) update newwode as the last node goto Step 3 until user enters o 8) privat the elements of doubly circular linked list

Code for insertion and deletion in circular poulty linked list. C program to implement the circular poully unked list #include < stdio . h7 # include Zstallib.h7 Struct node E struct node * prev; int data; Struct node nent 3; Struct mode thead = NULL; Struct modet create (int); void mort-begin (int); void insert end (int); roid insurt mid (int, int); void delete-leegn (); roid delete-end(); roid delete-mid(); vord display();
int get_data();

```
int get position();
int main ()
   int choice;
   int data, position;
 printf(" in Enter your Choice: ");
  Scorf ("Y-d", & choice);
  Switch (choia){
      Case 1:
        printflu In Enserting a node at beginning
        data = get-data();
        mert-begin (data);
         break;
   cases:
      printf ("In "Inverting a node at end");
       data = get= data();
       insert=end (data);
    case 3:
        pointf ("In Inserting a nude at the given
             mosition");
        data = get-data();
         position = get - position();
         insert mid (position, data);
```

```
case 4:
    pountf(a In Daleting a node from beginning In
    dolete-begm();
     break;
case 5:
   printf ("In Deleting anode from end In");
   delete-end();
    break;
case 6:
    printf("In Delete a node from given position"
    nosition = get_position();
    delete-mid (position);
    break ;
default:
    perintf ("In Invalid Choice (");
pountf ("In Do you want to continue ?:");
scenf
```

```
Struct node * create (int data)
         strict node * new-node = (struct node *) malloc
                    (size of (struct nucle));
        if (new mode = = NULL)
             printf ("In con't be allocated In");
            actuan Null;
     new_node -> data = data;
     new-node -> nent = Null;
     new-node -> prev = NULL;
       scetusin new rode;
   // inserting made at loginning void insert_segin(int data)
           struct node * new node = create (data);
         if (new nade)
              if (nead == Mull

{

new-nocle -> next= new-nocle;
```

```
nuv_node -> puer = new_node;
 nead = new_node;
  neturno;
  head -) pour -> nent = new-node;
  newsode -> pow = head -> prev;
   newsode -> nent = head;
    head - new node.
     head = new node;
// Inserting at the end

void mosert_end (int data)

E Struct node * new node = create (delta);
3
     if (new-node) {
             of (mad == NULL)
              new-nale -> nent = newnade;
              new_node -> pour = new_node;
               head = new_node;
               getwen)
```

```
head - peur - nent = new node;
 newhode of power = head of power;
 numerale I nent = head;
 head -7 prov = new-node;
1/ mserting node at given position.
 void meent-mid (int prosition, int data)
       of (position <= 0)
        [ pount-f("In Irralia position ("); 3
     else if (head == NULL 6% position 71) {
             puntfuln invalid position (n");
    else if (head!= NULL 84 prosition > large-size());
             pountf(" In Invalid position \");
   else of poston == 1){
            insert-begin (data).
```

```
else 5
   Struct node * new-node = weate (data);
  if (new_nade! = NULL){
       Struct node * temp = head, * pow = NVIL;
       mt i=1;
    while ( i < = position) {
        Prev = temp;
        terup = temp -> nent;
   poer 7 nent = new_node;
   new node - nent = temp;
11 Deleting a node at leginning
void delete-begin() {
          if (head = = NULL) {
         printf(" In list is Empty ")
          retwen;
```

```
else if ( nead -> nent = = nead) {
           free (head);
          head = NVLLj
         return;
 Struct nucle * temp = head;
 head - power - next = head - next;
  head -> nent -> prov = head -> preer;
   head - had - next
    free (temp);
     femp=NULL;
   4
11 Deleting a node at last
  vord delete_end() {
       of (head == NULL) {

Number ("In list is empty In");
         out wan;
      else if (head -> nent = = head) {
            free (head);
            heach = NULL;
            eutwin;
```

```
Struct node * last node = head -> prew;
 head -> pow = last-node > pow;
 free (last_node);
 last node = NUL; 3
// beleting the node from given position
void delete-mid (int position) {
       if (position <= 0 & & position 7 (1st-Sizel)) {
          pountfluin invaled position in");
  else if (position == 1) {
         delete_legin();
  else if (prosition == list_size () {
        delete-end(); 3
  else E
        Struct nade * temp = head;
        Struct nocle * priew = NULL;
      Int 1=2;
     while (i< position) {
              pour = temp;
               temp = temp - nent;
               1+=1; 9
```

```
power - nent = temp > nent;
temp -> nent -> pecer = pacer;
 free (temp);
 temp = NULL; 3
// display hist
  Void clisplay (12
       if (head = = NULL) {
              pountf(" in list is empty! In");
             netwon;
 11 dispuay list
  void display () {
       if (head == NULL) {

pount f (u | n lid is empty ! In").
           return 6;
   Stand mode & temp= head;
    do {
        point f("/d", temp-7 data);
        temp = temp - nent; 3
```

```
holice (temp! = head);
int get_data()
     int data;
     point ("In Enter acita: In");
      Scomf lug.d", le data);
     sutwer data; 3.
  int get-position() {
           int position;
            pount f (" Enter position: ");
            scenf ("/d", ( prostion);
            return prosition;
```

Advantages and disadvantages of circular double linked lie

- · Implementation of advantages data Structures likes Liberacci heap.
- · cused with data where we have to navigate front on
- · arcular doubly linked lists are list in nultipressin
- · com de traversed in both Sides.

disadvantages

- · Requires additional memory
- · More complex than Singly unked lost
- · If not used properly then probly of infinite loop a occur.

Binary Search Tree is a node-based binary tree data structure contains has following properties

1) The left subtree of a nocle contains only nodes

with keys lesser than the noot's key. 2) The sight subtree of a node contains only notes with keys greater than the most's key The left and night subtree each must also be a binary search tree. Goraphical Representation of BST

Step II : create a new node

If thee is empty make new made as sweet

Stop II: Else compare numbed with sweet element and the nont nodes if it is greater put it in the suight part else pot it in the left part.

Step II: Repeate II until user enters 0

```
Code :-
# include < stdio h7
# include < stallib. h 7
 Struct node {
      int key;
      struct node * left, * signt
      Struct newwode (int item) {
         Struct node * temp = (struct node *) malloc(size of
                                    (strict nucle));
        temp -> key = item
         temp -> left = Wull;
         temp -> sight = NOLL;
          section temp; 3
          void inorder (struct nock * 900t) {
               if (2000 ! = NULL)
                   inorder (root -) left);
privat ("/d"; noot -> key);
                       inorder (noot -> sugnt);
```

```
Struct node * insert (struct node * node, int key) &
if (node == NULL)
     return nuw Node (key);
   if (key 2 node -> key)
      mode -> left = insert (mode -> left, key);
   else
     node -> sught = insert (node -> sught, key);
    return node;
struct node * delete Node (Struct mode * 9.00t, int key) {
     if (suest == NULL)
         setuen swoot;
      if (key < noot -> key)
         not -> left = delete Node (noot -> left, key)
       else of ( key 7900t -) key)
            most - sugnt = delete Node (most - signt, ke
      · else [
            if (soot -) left = NULL) {
                 Struct node * temp = 200t -> 9cignt
                 free (noot);
                 ret win temp; 3
```

```
else if (noet-) sight == NULL) {
      Struct node * temp = 900t -> left
       free (noot);
       suction temp;
  . 3
   int main () {
         strict rade * 900et = NUL;
         int n=1, data, x;
         while (n!=0)
              Escanf ("/d", & data)
                noct = insert (noot, data)
                printf (" Enter 0 to enit \n");
                Scanf ("-/.d", (n);
               print-[" Enter node you want to delete");
               Sconf ["./.d", (x))
               inorder (noot);
                nost = deletie Node (noot, x);
                inorder (sweet);
                 gutweno;
               9
```

	Advantages of BST
	Advantages of BST
1)	Binary search trace is fast in insertion and
	deletion when balanced.
⊗)	we can also do range queries find kys bestween 1
	M. cth
3.	M. Binary Search I we to simple as compared to other
	data Structures.
	pisoduantages
(1	The main disadvantage is that we should always
	implement a balanced binary Search tree.
	He allement in BST is slightly slower
a)	Accessing the element in BST is slightly slower
	winery-
3)	A BST an lee imbalanced or degenerated which
	can increase the companity.
-	
And the same of th	
American des	
and Collection and the Collectio	

P.S. Saikethan RARIII030010059

Assignment - 3 Hashing

Griven keys: 1,3,8,10

n(n) = 3x+4 mod==

key	Location
1	[8(1)+4] 1.7=0
3	[3(3)+4]/.7=6
8	[3(8)+4].1.7 = 0 [Put in the next availar space]=
10	[3(10)+4].7.7 = 6 [Put in the next available] Space]=2
	·

-) 1,8,10,-,-,3
Therefore onswer is B

Codechef Achievements

https://www.codechef.com/users/srmcse_I59

https://www.hackerrank.com/dashboard

Any other

(Write if you registered or practise apart from Codechef(ex. Hackerrank, Leetcode etc.)

Signature

Note: Enclose the assignment and relevant certificates along with the profile