AUFFRISCHUNGSKURS MATHEMATIK

- Ausführliche Lösungen für Tutoren -

WS 2023/24

Thema 1: Grundrechenarten

Brüche

Potenzen

Wurzeln

Vorbereitung der Übung: Wichtige Formeln an die Tafel schreiben!

Binomische Formeln

$$(a \pm b)^{2} = a^{2} + b^{2} \pm 2ab$$
$$(a + b)(a - b) = a^{2} - b^{2}.$$

Potenzgesetze

$$a^{m} \cdot a^{n} = a^{m+n}, \quad a^{n} \cdot b^{n} = (ab)^{n}, \quad (a^{m})^{n} = (a^{n})^{m} = a^{mn}$$

$$\frac{a^{m}}{a^{n}} = a^{m-n}, \quad \frac{a^{n}}{b^{n}} = \left(\frac{a}{b}\right)^{n}.$$

Aufgabe 1: Bruchrechnung

Ziel: (a) bis (f)

(a)
$$\frac{\frac{b}{a} - \frac{a}{b}}{\frac{1}{a} + \frac{1}{b}} = \frac{b^2 - a^2}{a + b} = \underline{b - a}$$

(b)
$$\frac{\frac{1}{a-b} + \frac{1}{a+b}}{\frac{1}{a-b} - \frac{1}{a+b}} = \frac{a+b+a-b}{a+b-a+b} = \frac{a}{\underline{b}}$$

(c)
$$\frac{x^2 - y^2}{xy} - \frac{x^2}{xy + x^2} + \frac{y^2}{x^2 + xy} = \frac{1}{x} \left(\frac{(x+y)(x-y)}{y} - \frac{x^2 - y^2}{x+y} \right) = \frac{x-y}{x} \left(\underbrace{\frac{x+y}{y} - 1}_{\underline{y}} \right) = \underbrace{\frac{x}{y} - 1}_{\underline{y}}$$

(d)
$$\frac{n+1}{2-\frac{1}{1-\frac{1}{n^2+1}}} = \frac{n+1}{2-\frac{n^2+1}{n^2}} = n^2 \frac{n+1}{n^2-1} = \frac{n^2}{\underline{n-1}}$$

(e)
$$\frac{\frac{1}{y^2} + \frac{2}{xy} + \frac{1}{x^2}}{\frac{1}{y^2} - \frac{1}{x^2}} = \frac{x^2 + 2xy + y^2}{x^2 - y^2} = \frac{(x+y)^2}{(x+y)(x-y)} = \frac{x+y}{x-y}$$

(f)
$$\frac{a^{2}-1}{a^{2}+a} - a\frac{a+1}{a^{3/2}-a} + \frac{1}{a} + \frac{(a+1)^{2}-(a-1)^{2}+4}{4(a^{2}-1)}$$

$$= \frac{1}{a} \frac{(a+1)(a-1)}{a+1} - \frac{a+1}{(a+1)(a-1)} + \frac{1}{a} + \frac{4a+4}{4(a+1)(a-1)} = 1 - \frac{1}{a-1} + \frac{1}{a-1} = \frac{1}{a}$$
(g)
$$\frac{1+(a+x)^{-1}}{1-(a+x)^{-1}} \left[\frac{\sqrt{2}}{ax} - \frac{1-(a^{2}+x^{2})}{\sqrt{2}a^{2}x^{2}} \right] \text{ für } x = \frac{1}{a-1}$$

$$= \frac{a+x+1}{a+x-1} \left[\frac{2ax-1+a^{2}+x^{2}}{\sqrt{2}a^{2}x^{2}} \right] = \frac{a+x+1}{a+x-1} \underbrace{\frac{(a+x)^{2}-1}{\sqrt{2}a^{2}x^{2}}} = \underbrace{\frac{(a+x+1)^{2}}{\sqrt{2}a^{2}x^{2}}} = \underbrace{\frac{1}{\sqrt{2}} \frac{a^{2}(a-1)^{2}}{(a-1)^{2}}} = \underbrace{\frac{a^{2}}{\sqrt{2}a^{2}}}_{x+a+1} = \underbrace{\frac{1}{a-1}}_{a-1} + a+1 = \underbrace{\frac{a^{2}}{a-1}}_{a-1}$$

Aufgabe 2: Potenzgesetze

Ziel: (a) bis (c)

(a)
$$\left(\frac{a^2 - b^2}{x^2 - y^2}\right)^n \left(\frac{x + y}{a - b}\right)^n = \frac{(a + b)^n (a - b)^n (x + y)^n}{(x + y)^n (x - y)^n} \underbrace{(a - b)^n}_{n} = \underbrace{\left(\frac{a + b}{x - y}\right)^n}_{n}$$

(b)
$$\frac{b^x c^y (ab)^{2z+y} (cb)^{-x}}{(ac)^{y-x} \left[\left(abc^{-0,5} \right)^z \right]^2} = a^{2z+y-(y-x+2z)} b^{x+2z+y-x-2z} c^{y-x-(y-x-z)} = \underline{a^x b^y c^z}$$

(c)
$$\frac{(a+b)^{3n-4}}{a^{n-1}b} \cdot \frac{a^{4n-3}(a+b)^{3-2n}}{b^{2n-5}} \cdot \frac{a^{4-3n}b^{3n-6}}{(a+b)^{n-2}}$$
$$= a^{1-n+4n-3+4-3n}b^{-1-2n+5+3n-6}(a+b)^{3n-4+3-2n-n+2}$$
$$= \underline{a^2b^{n-2}(a+b)}$$

(d)
$$(a^{n+2} - a^n) : (a^3 + a^2) = \frac{a^n}{a^2} \frac{a^2 - 1}{a + 1} = \underline{(a - 1)a^{n-2}}$$

(e)
$$\left(\frac{a^{-4}b^{-5}}{x^{-1}y^3}\right)^2 \cdot \left(\frac{a^{-2}x}{b^3y^2}\right)^3 = a^{-8-6}b^{-10-9}x^{2+3}y^{-6-6} = \frac{x^5}{\underline{a^{14}b^{19}y^{12}}}$$

Wurzelgesetze

$$\sqrt[n]{a}\sqrt[n]{b} = \sqrt[n]{ab}, \quad \sqrt[n]{a^n b} = a\sqrt[n]{b}, \quad \left(\sqrt[n]{a}\right)^m = \sqrt[n]{a^m}, \quad \sqrt[m]{\sqrt[n]{a}} = \sqrt[mn]{a}$$

$$\sqrt[n]{a^m}\sqrt[q]{a^n} = \sqrt[pq]{a^{mq+np}}, \quad \frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}, \quad \frac{\sqrt[p]{a^m}}{\sqrt[q]{a^n}} = \sqrt[pq]{a^{mq-np}}$$

Beispiel für "Rationalmachen des Nenners":

$$r + \sqrt{1 + r^2} - \frac{1}{r + \sqrt{1 + r^2}} = r + 1 + r^2 - \frac{r - \sqrt{1 + r^2}}{-1} = \underline{2r}.$$

(a)
$$\sqrt[6]{a^3} \frac{\frac{1}{\sqrt{a}} - \sqrt{b}}{1 + \sqrt{ab}} + \frac{1}{\sqrt{2}} \frac{\sqrt{a}\sqrt{8b}}{1 - ab} = \frac{1 - \sqrt{ab}}{1 + \sqrt{ab}} + \frac{2\sqrt{ab}}{1 - ab} = \frac{(1 - \sqrt{ab})^2 + 2\sqrt{ab}}{1 - ab} = \frac{1 + ab}{1 - ab}$$

(b)
$$\frac{\sqrt{a+bx} + \sqrt{a-bx}}{\sqrt{a+bx} - \sqrt{a-bx}} \quad \text{für } x = \frac{2am}{b(1+m^2)} \quad \text{mit } |m| < 1$$

$$= \frac{\left(\sqrt{a+bx} + \sqrt{a-bx}\right)^2}{2bx} = \frac{2a+2\sqrt{a^2-b^2x^2}}{2bx} = \frac{a+\sqrt{a^2-\frac{4a^2m^2}{(1+m^2)^2}}}{2am} (1+m^2)$$

$$= \frac{1+m^2+\sqrt{(1+m^2)^2-4m^2}}{2m} = \frac{1+m^2+1-m^2}{2m} = \frac{1}{\underline{m}}$$

(c)
$$\left(\sqrt{ab} - \frac{ab}{a + \sqrt{ab}}\right) : \frac{\sqrt[4]{ab} - \sqrt{b}}{a - b} = \frac{a\sqrt{b} + b\sqrt{a} - \sqrt{ab}}{\sqrt{a} + \sqrt{b}} \underbrace{\left(\sqrt[4]{a} + \sqrt[4]{b}\right)\left(\sqrt[4]{a} + \sqrt[4]{b}\right)\left(\sqrt[4]{a} + \sqrt[4]{b}\right)}_{\sqrt[4]{ab} + \sqrt{b}}$$
$$= \underline{a}\left(\sqrt[4]{ab} + \sqrt{b}\right)$$

Lösen Sie die folgenden Gleichungen jeweils nach x auf.

(b)
$$\frac{ax+b}{ab-b^2} - \frac{a-bx}{ab+b^2} = \frac{2(ax+b)}{a^2-b^2} \quad | \cdot b(a^2-b^2)$$

$$(ax+b)(a+b) - (a-bx)(a-b) = 2b(ax+b)$$

$$(ax+b)(a-b) - (a-bx)a-b = 0 \quad (a \neq b)$$

$$(a+b)x = a-b \quad \Rightarrow \quad x = \frac{a-b}{a+b}$$

(d)
$$a(\sqrt{x}-a) - b(\sqrt{x}-b) + a + b = \sqrt{x}$$

 $a - b - 1\sqrt{x} = a^2 - b^2 - (a+b) = (a+b)(a-b-1) \implies \underline{x} = (a+b)^2$

(e)
$$\frac{\frac{1}{x-\sqrt{1-4y^2}} + \frac{1}{x+\sqrt{1-4y^2}}}{\frac{1}{x-\sqrt{1-4y^2}} - \frac{1}{x+\sqrt{1-4y^2}}} = \sqrt{1 + \frac{y^2}{1+2y}} \sqrt{1 + \frac{y^2}{1-2y}}, \quad \text{siehe 1b) mit } a = x, b = \sqrt{1-4y^2}$$
$$\frac{x}{\sqrt{1-4y^2}} = \frac{|y+1|}{\sqrt{1+2y}} \frac{|y-1|}{\sqrt{1-2y}} \quad \Rightarrow \quad \begin{cases} \frac{x=y^2-1}{x=1-y^2} & \text{für } |y| \ge 1\\ \frac{x=1-y^2}{x=1-y^2} & \text{für } |y| < 1. \end{cases}$$

AUFFRISCHUNGSKURS MATHEMATIK

- Ausführliche Lösungen für Tutoren -

WS 2023/24

Thema 2: Lineare Gleichungssysteme

Tafelbeispiel:
$$\frac{10(x+y)+3}{x-2y+4} = 1$$
, $\frac{36x-3y}{7(x-y)+3} = 3$

1. Sortieren nach *x* und *y*

$$9x + 12y = 1$$
 (1)

$$15x + 18y = 9$$
 (2)

2. Prüfe auf lineare Unabhängigkeit, d. h. Berechne $a_1b_2-a_2b_1$ (Determinante, vgl. Vorlesung):

$$9 \cdot 18 - 15 \cdot 12 = 162 - 180 \neq 0 \implies \text{genau ein Lösungspaar}(x, y)$$

3. Lösen, bspw. durch geschickte Linearkombination (Elimination von y)

$$2 \cdot (2) - 3 \cdot (1)$$
: $3x = 15 \implies x = 5$

in (1):
$$12y = -44 \implies y = -\frac{11}{3}$$

$$\Rightarrow$$
 Lösungsmenge $\mathbb{L} = \left\{ \left(5; -\frac{11}{3}\right) \right\}$

Aufgabe 1: Zwei lineare Gleichungen mit zwei Unbekannten

Ziel (a) bis (d)

(a)
$$33x + 12y = 25$$
 (1)

$$11x - 3y = 6$$
 (2)

$$(1) - 3 \cdot (2): \quad 21y = 7 \quad \Rightarrow \quad y = \frac{1}{3}, \quad \text{in (2):} \quad x = \frac{7}{11} \qquad \Rightarrow \qquad \underline{\mathbb{L}} = \left\{ \left(\frac{7}{11}; \frac{1}{3}\right) \right\}$$

(b)
$$\frac{2x+3y}{3x-y} = \frac{17}{9} \\ \frac{3x+4y}{6x-1} = 2$$
 \implies $3x-4y=0$ (1) $9x-4y=2$ (2)

$$(1) - (2): 6x = 2 \Rightarrow x = \frac{1}{3}$$

$$3 \cdot (1) - (2): \quad 8y = 2 \quad \Rightarrow \quad y = \frac{1}{4} \quad \Rightarrow \quad \mathbb{L} = \left\{ \left(\frac{1}{3}; \frac{1}{4} \right) \right\}$$

(c)
$$\frac{x+2}{y+3} = \frac{1}{3}$$

$$\frac{y+3}{2y-5x} = \frac{3}{5}$$

$$\Rightarrow 3x-y = -3 \quad (1)$$

$$15x-y = -15 \quad (2)$$

$$(1)-(2): \quad -12x = 12 \quad \Rightarrow \quad x = -1$$

$$\text{in (1):} \qquad y = 0 \quad \Longrightarrow \quad \mathbb{L} = \{(-1;0)\}$$

(d)
$$ax + by = 2a \quad (1)$$

$$\frac{x}{b} - \frac{y}{a} = \frac{2}{a} \quad (2)$$

$$(1) - ab \cdot (2) : \quad 2by = 2(a - b) \quad \Rightarrow \quad y = \frac{a}{b} - 1$$

$$\text{in (1)} : \quad ax + \alpha - b = 2a \quad \Rightarrow \quad x = \frac{b}{a} + 1 \quad \Longrightarrow \quad \mathbb{L} = \left\{ \left(\frac{b}{a} + 1; \frac{a}{b} - 1 \right) \right\}$$

(e)
$$x + 14y = \frac{1}{\sqrt{2}} - 7\sqrt{2}$$
 (1) $3\sqrt{2}x - \frac{y}{\sqrt{3}} = 3 + \frac{1}{\sqrt{6}}$ (2) $(1) - \frac{1}{3\sqrt{2}} \cdot (2)$: $(14 + \frac{1}{3\sqrt{6}})y = \frac{1}{\sqrt{2}} - 7\sqrt{2} - \frac{1}{\sqrt{2}} - \frac{1}{3\sqrt{12}}$ $= -\frac{1}{\sqrt{2}} \left(14 + \frac{1}{3\sqrt{6}} \right) \Rightarrow y = -\frac{1}{\sqrt{2}}$ in (1): $x - 7\sqrt{2} = \frac{1}{\sqrt{2}} - 7\sqrt{2} \Rightarrow x = \frac{1}{\sqrt{2}} \implies \mathbb{L} = \left\{ \left(\frac{1}{\sqrt{2}}; -\frac{1}{\sqrt{2}} \right) \right\}$

(f)
$$\frac{x}{a+b} + \frac{y}{a-b} = a+b \quad (1)$$

$$\frac{x}{a} - \frac{y}{b} = 2b \qquad (2)$$

$$(a+b) \cdot (1) - a \cdot (2) : \quad \left(\frac{a+b}{a-b} + \frac{a}{b}\right) y = a^2 + b^2$$

$$(ab+b^2 + a^2 - ab) y = b(a-b)(a^2 + b^2)$$

$$\Rightarrow y = b(a-b)$$

$$\text{in (1)} : \quad \frac{x}{a+b} + b = a+b \qquad \Rightarrow x = a(a+b) \qquad \Rightarrow \underline{\mathbb{L}} = \{(a(a+b); b(a-b))\}$$

(g)
$$39x - 38y = 1$$
 (1)
 $91x - 57y = 4$ (2)
 $2 \cdot (2) - 3 \cdot (1)$: $(182 - 117)x = 5 \implies x = \frac{1}{13}$
in (1): $38y = 2 \implies y = \frac{1}{19} \implies \underline{\mathbb{L}} = \left\{ \left(\frac{1}{13}; \frac{1}{19}\right) \right\}$

Tafelbeispiel:

$$x + y + z = 9 \qquad (1)$$

$$x + 2y + 4z = 15$$
 (2)

$$x + 3x + 9z = 23$$
 (3)

Vorgehen: Wir wollen eine Linearkombination der drei Gleichungen finden, sodass (bspw.) x und y verschwinden; d. h. in $a \cdot (1) + b \cdot (2) + c \cdot (3)$ soll a + b + c = 0 sein und a + 2b + 3c = 0. Wir haben offenbar die Freiheit, a = 1 zu wählen, also b = -2 und c = 1.

$$(1) - 2 \cdot (2) + (3)$$
: $2z = 2 \implies z = 1$

in (1):
$$x + y = 8$$
 (4)

in (2):
$$x + 2y = 11$$
 (5)

Die Gleichungen (4),(5) können nun mit den früheren Methoden gelöst werden.

Optionale Kreativlösung: Angenommen $x, y \in \mathbb{N}$. Nach (5) muss x ungerade sein, damit nach (4) auch y. Die einzigen positiven Zerlegungen der Zahl 8 in zwei ungerade Zahlen sind (1,7) und (3,5). Nur letztere löst (4) und (5). Wir erhalten $\underline{\mathbb{L}} = \{(5;3;1)\}$.

Lösung:

(a)
$$x - y + 5z = 5$$
 (1)
 $3x + 7y - 5z = 5$ (2)
 $x + y - z = 1$ (3)
 $2 \cdot (1) + (2) - 5 \cdot (3)$: $10z = 10 \implies z = 1$
 $\text{in } (1): x - y = 0$
 $\text{in } (3): x + y = 2$ $x = y = 1 \implies \underline{\mathbb{L}} = \{(1; 1; 1)\}$

(b)
$$3x - 4y + 3z = 4 \quad (1)$$

$$-x + y - z = -2 \quad (2)$$

$$7x + 4y - 5z = 0 \quad (3)$$

$$(1) + 8 \cdot (2) - (3) : \quad -12x = -12 \quad \Rightarrow \quad x = 1$$

$$\text{in } (1) : \quad -4y + 3z = 1$$

$$\text{in } (2) : \quad y - z = -1$$

$$y = 2, z = 3 \quad \Longrightarrow \quad \underline{\mathbb{L}} = \{(1; 2; 3)\}$$

(c)
$$x + y = b + a$$
 (1) $x + z = a + c$ (2) Lösung durch Draufschauen. $y + z = c + b$ (3) $(1) + (2) - (3) : 2x = 2a$ $(1) - (2) + (3) : 2y = 2b$ $(2) + (3) - (1) : 2z = 2c \implies \mathbb{L} = \{(a; b; c)\}$

(d)
$$6x-4y+8z=0$$
 (1) $-2x+y-z=0$ (2) Da (1) $-3\cdot(2)=(3)$, ist das System unterbestimmt. $12x-7y+11z=0$ (3) $(1)+3\cdot(2):-y+5z=0 \Rightarrow y=5z$ $(1)+4\cdot(2):-2x+4z=0 \Rightarrow x=2z \Rightarrow \mathbb{L}=\{(2z;5z;z)\mid z\in\mathbb{R}\}$

Aufgabe 3: Parametrisierung von Lösungsmengen

Geben Sie die Lösungsmenge der Gleichung 13x - 7y = 1 an für

- (a) $x, y \in \mathbb{R}$;
- (b) $x, y \in \mathbb{N}$.
- (a) Für $x, y \in \mathbb{R}$ ist nichts zu beachten. Wir Lösen die Gleichung nach x auf und erhalten

$$x = \frac{1+7y}{13} \qquad \Longrightarrow \qquad \underline{\mathbb{L}} = \left\{ \left(\frac{1+7\lambda}{13}; \lambda\right) \mid \lambda \in \mathbb{R} \right\}.$$

(b) Für $x, y \in \mathbb{N}$ muss $1 + 7n, n \in \mathbb{N}$, ein Vielfaches von 13 sein. Die kleinste natürliche Zahl, für die das gilt, ist n = 11 (ausprobieren), d. h. alle übrigen Teiler liegen in 13er-Schritten darüber.

n	1	2	3	4	5	6	7	8	9	10	11
7n + 1	8	15	22	29	36	43	50	57	64	71	78
13-Reihe	13	26	39	52	65	78					

Setzen wir also $\lambda = 11 + 13n$ in \mathbb{L} von oben ein, ergibt sich $\mathbb{L} = \left\{ (6 + 7n; 11 + 13n) \mid n \in \mathbb{N}_0 \right\}.$

Aufgabe 4: Gleichungssysteme

Ziel (a) und (b)

Tafelbeispiel: In dieser Aufgabe werden nicht linear aussehende Gleichungen auf lineare Gleichungssysteme zurückgeführt.

$$(1-x)^2 = 5y^2 - 4(x-2)^2 (1)$$
$$2(x^2 - y^2) = 6x - 5 (2).$$

Sortieren wir das Gleichungssystem um, ergibt sich

$$5(x^{2} - y^{2}) - 18x + 17 = 0 (3)$$

$$2(x^{2} - y^{2}) - 6x + 5 = 0 (4)$$

$$(3) - \frac{5}{2} \cdot (2) : -3x + \frac{9}{2} = 0 \Rightarrow x = \frac{3}{2}$$

$$\text{in (2)} : y^{2} = x^{2} - 3x + \frac{5}{2} = \frac{1}{4} y = \pm \frac{1}{2} \Rightarrow \mathbb{L} = \left\{ \left(\frac{1}{2}; \pm \frac{1}{2} \right) \right\}.$$

Lösung:

(a)
$$x^{2} + y^{2} = 2(xy + 2) \quad (1) \quad \Rightarrow \quad (x - y)^{2} = 4 \Rightarrow x - y = \pm 2 \quad (1a)$$
$$x + y = 6 \quad (2)$$
$$(1a) + (2): \quad 2x = \begin{cases} 8, & \text{oberes VZ} \\ 4, & \text{unteres VZ} \end{cases}$$
$$\text{in (2):} \quad y = \begin{cases} 2, & \text{oberes VZ} \\ 4, & \text{unteres VZ} \end{cases} \Rightarrow \quad \underline{\mathbb{L}} = \left\{ (4; 2), (2; 4) \right\}$$

(b)
$$\frac{12}{\sqrt{x-1}} + \frac{5}{\sqrt{y+\frac{1}{4}}} = 5 \quad (1)$$

$$\frac{8}{\sqrt{x-1}} + \frac{10}{\sqrt{y+\frac{1}{4}}} = 6 \quad (2)$$

$$2 \cdot (1) - (2): \quad 16 = 4\sqrt{x-1} \quad \Rightarrow \quad x = 17$$

$$2 \cdot (1) - 3 \cdot (2): \quad 20 = 8\sqrt{y+\frac{1}{4}} \quad \Rightarrow \quad y = 6 \quad \Longrightarrow \quad \mathbb{L} = \left\{ (17;6) \right\}$$

Optionaler Hinweis: nicht immer muss alles mühsam quadriert und aufgelöst werden, sondern man kann auch versuchen draufzuschauen.

- Was ergibt 8 multipliziert mit 20? Antwort: $\frac{10}{4} = \frac{5}{2}$
- Die Wurzel woraus ist $\frac{5}{2}$? Antwort: $\frac{25}{4}$.

• Damit ist
$$y = \frac{25}{4} - \frac{1}{4} = \frac{24}{4} = 6$$
.

(c)
$$\frac{x^2 - y^2}{2x + 3} + y^2 = (x + y)x - xy \implies \frac{x^2 - y^2}{2x + 3} = x^2 - y^2 \quad (1)$$
$$y - 2x = 3 \quad (2)$$

Fall
$$x^2 \neq y^2$$
 (1): $1 = 2x + 3 \Rightarrow x = -1$ Widerspruch in (2): $y = 1$

Fall
$$x = \pm y$$
 (2): $y = \begin{cases} -3, & \text{oberes VZ} \\ 1, & \text{unteres VZ} \end{cases} \implies \underbrace{\mathbb{L} = \left\{ (-3; -3), (-1; 1) \right\}}_{\underline{\hspace{1cm}}}$

Aufgabe 5: Ungleichungssysteme

(a) Es ist die Lösungsmenge des folgenden Systems an Ungleichungen zu skizzieren. Welche der Ungleichungen können weggelassen werden, ohne dass sich die Lösungsmenge ändert?

Offenbar können die zweite und dritte Gleichung weggelassen werden, ohne dass sich etwas am schraffierten Gebiet ändert.

(b) * Welches Gebiet im ersten Oktanden ($x \ge 0$, $y \ge 0$, $z \ge 0$) wird durch die folgenden Ungleichungen definiert?

$$x + y \ge z$$
,
 $x + z \ge y$,
 $y + z \ge x$

Die Ungleichungen beschreiben eine dreiseitige (unendlich große) Pyramide, deren Spitze auf dem Koordinatenursprung liegt und deren Kanten jeweils die x-y-, x-z- und x-z-Ebene halbieren.

AUFFRISCHUNGSKURS MATHEMATIK

– Ausführliche Lösungen für Tutoren –

WS 2023/24

Thema 4: Umgang mit Polynomen höheren Grades Das Summenzeichen

Aufgabe 1: Nullstellensuche

Ziel: (a) bis (c)

(a) Stellen Sie das Polynom dritten Grades auf, das Wurzeln a, b und c hat.

$$f_3(x) = (x-a)(x-b)(x-c) = x^3 - (a+b+c)x^2 + (ab+ac+bc)x - abc$$

Bemerkung: Hier kann man versuchen, sich klarzumachen, wie der verallgemeinerte Satz von Vieta aussieht.

(b) Zerlegen Sie das Polynom $f_4(x) = x^3 + 2x^4 + 4x^2 + 2 + x$ in Faktoren. Welche Aussage können Sie über dessen Nullstellen treffen?

$$f_4(x) = x^3 + \underbrace{2x^4 + 4x^2 + 2}_{2x^4 + 2x^2 + 2z^2 + 2z^2(x^2 + 1) + 2(x^2 + 1)} + \underbrace{x^3 + x}_{x(x^2 + 1)} = \underbrace{(x^2 + 1)(2x^2 + x + 2)}_{x(x^2 + 1)}$$

Da weder $x^2 + 1 = 0$ noch $x^2 + \frac{1}{x}x + 1 = 0$ eine (reelle) Lösung hat, besitzt das Polynom keine (reellen) Nullstellen.

(c) Bestimmen Sie alle Nullstellen des Polynoms $f_5(x) = x^5 - 3x^3 + 2x$. Offensichtlicherweise gilt $x_1 = 0$ und wir können das Polynom mit Division durch x vereinfachen. Mit der Substitution $z \equiv x^2$ erhalten wir

$$0 = z^2 - 3z + 2 \quad \Rightarrow \quad z_{1/2} = \frac{3}{2} \pm \sqrt{\frac{9}{4} - 2} = \begin{cases} 2 \\ 1 \end{cases} \Rightarrow \quad \underline{x_{2/3} = \pm \sqrt{2}}, \quad \underline{x_{4/5} = \pm 1}.$$

(d) Bestimmen Sie die kleinste positive Nullstelle des Polynoms $f_4(x) = 1 - \frac{x^2}{2} + \frac{x^4}{24}$. Setzen Sie näherungsweise $\sqrt{3} \approx 3 - \frac{\pi^2}{8}$. Wir führen wieder die Substitution $z \equiv x^2$ aus und erhalten

$$0 = z^2 - 12z + 24$$
 \Rightarrow $z_{1/2} = 6 \pm 2\sqrt{3}$ bzw. $x_{1/2/3/4} = \pm \sqrt{6 \pm 2\sqrt{3}}$.

Wir suchen nun das kleinste positive x, also 1.VZ: "+" und 2.VZ: "-"

$$x_0 = \sqrt{6 - 2\sqrt{3}} \stackrel{\sqrt{3} \approx 3 - \frac{\pi^2}{8}}{\approx} \sqrt{6 - \left(3 - \frac{\pi^2}{8}\right)} = \frac{\pi}{2}.$$

Bemerkung: Die Funktion $f_4(x)$ ist das dritte Taylorpolynom der Kosinusfunktion. Es gilt $\cos(x) = f_4(x) + \mathcal{O}(x^6)$.

Aufgabe 2: Polynomdivision

Berechnen Sie die folgenden Ausdrücke. Zusatz: Für welche Werte von n bleibt die Polynomdivision in (d) ohne Rest?

(a)
$$(21a^3 + 34a^2b + 25b^3) : (7a+5b) = 3a^2 - 7ab + 5b^2$$

$$-(21a^3 + 15a^2b) + 25b^3$$

$$-(49a^2b - 35ab^2)$$

$$35ab^2 + 25b^3$$

$$-(35ab^2 + 25b^3)$$

$$0$$

(b)
$$(9x^{3} -7xy^{2} +2y^{3}) : (3x-2y) = \underline{3x^{2} +2xy - y^{2}}$$

$$-(9x^{3} -6x^{2}y)$$

$$-6x^{2}y -7xy^{2} +2y^{3}$$

$$-(6x^{2}y -4xy^{2})$$

$$-3xy^{2} +2y^{3}$$

$$-(-3xy^{2} +2y^{3})$$

$$0$$

(c)
$$(25x^{4} - a^{2}x^{2} + 25a^{4}) : (5x^{2} + 7ax + 5a^{2}) = \underline{5x^{2} - 7ax + 5a^{2}}$$

$$-(-25x^{4} + 35ax^{3} + 25a^{2}x^{2})$$

$$-35ax^{3} - 24a^{2}x^{2} + 25a^{4}$$

$$-(-35ax^{3} - 49a^{2}x^{2} - 35a^{3}x - 25a^{4})$$

$$-(25a^{2}x^{2} + 35a^{3}x + 25a^{4})$$

(d)
$$(x^2 + 2x - 15) : (x+n) = \underbrace{x+2-n + \frac{n(n-2)-15}{x+n}}_{-(x^2 + nx)}$$
$$(2-n)x - 15$$
$$-((2-n)x + n(2-n))$$
$$-15 + n(n-2) \Rightarrow 0 \stackrel{!}{=} n^2 - 2n - 15 \Rightarrow n_{1/2} = 1 \pm \sqrt{16}$$

Wir erhalten damit die beiden Werte $n_{1/2}$ die den Wurzeln des quadratischen Gleichungssystems entsprechen

$$x^{2} + 2x - 15 = (x + 5)(x - 3).$$

(a) Bestimmen Sie den Wert von m in der Gleichung

$$6x^3 - 7x^2 - 16x + m = 0, \Rightarrow -12 + m \stackrel{!}{=} 0 \Rightarrow \underline{m = 12}.$$

wenn eine Wurzel der Gleichung den Wert 2 hat. Berechnen Sie auch die beiden anderen Wurzeln. Wir bestimmen die restlichen Wurzeln per Polynomdivision und pq-Formel:

$$(6x^{3} - 7x^{2} - 16x + 12) : (x - 2) = 6x^{2} + 5x - 6$$

$$-(6x^{3} - 12x^{2})$$

$$5x^{2} - 16x + 12$$

$$-(5x^{2} - 10x)$$

$$-6x + 12$$

$$-(-6x + 12)$$

$$0$$

$$\Rightarrow 0 \stackrel{!}{=} x^{2} + \frac{5}{6}x - 1 \Rightarrow x_{1/2} = -\frac{5}{12} \pm \sqrt{\frac{25}{144} + 1} \Rightarrow x_{1} = \frac{2}{3}, x_{2} = -\frac{3}{2}.$$

(b) Die Zahlen 2 und 3 seien Wurzeln der Gleichung

$$2x^3 + mx^2 - 13x + n = 0$$
.

Bestimmen Sie die Zahlenwerte von m und n, und geben Sie die dritte Wurzel an. Zu Bestimmung der Lösung setzen wir die beiden Wurzeln in die Gleichung ein:

$$x_1 = 2$$
: $4m + n = 10$ (1)
 $x_2 = 3$: $9m + n = -15$ (2)
 \Rightarrow (1) - (2): $-5m = 25$ \Rightarrow $\underline{m = -5}$, $\underline{n = 30}$.

Die dritte Wurzel ermitteln wir durch Polynomdivision mit $(x-2)(x-3) = x^2 - 5x + 6$

$$(2x^{3} - 5x^{2} - 13x + 30) : (x^{2} - 5x + 6) = 2x + 5 \implies \underbrace{x_{3} = -\frac{5}{2}}_{2}$$

$$-(2x^{3} - 10x^{2} + 12x)$$

$$5x^{2} - 25x + 30$$

$$-(5x^{2} - 25x + 30)$$

$$0$$

Aufgabe 4: Nullstellenraten

(Zusatzaufgabe)

Finden Sie jeweils mindestens eine Nullstelle der folgenden Ausdrücke und spalten Sie diese als Linearfaktor $(x - x_0)$ vom Polynom ab.

(a)
$$x^3 - 5x^2 + 8x - 4$$
, $\underline{x_0 = 1}$ oder $\underline{x_0 = 2}$
= $(x - 1)(x^2 - 4x + 4) = (x - 1)(x - 2)^2$ (stückweises konstruieren ohne Polynomdivision)

(b)
$$x^4 - 2x^3 - 13x^2 + 9x + 9$$
, $\underline{x_0 = 3}$ (einzige reelle Nullstelle)
= $(x+3)(x^3 - 5x^2 + 2x + 3)$

(c)
$$x^4 - 3x^2 + 3x + 2$$
, $x_0 = -2$ (einzige reelle Nullstelle) $= (x+2)(x^3 - 2x^2 + x + 1)$

(d)
$$x^5 - x^4 - 3x^3 + 3x^2 + x - 1$$
, $\underline{x_0 = 1}$
= $(x - 1)(x^4 - 3x^2 + 1)$ die anderen Nullstellen sind: $x_{2/3/4/5} = \frac{\pm 1 \pm \sqrt{5}}{2}$
= $(x - 1)(x^2 - x - 1)(x^2 + x - 1)$

Aufgabe 5: Partialbruchzerlegung

Ziel: (a) bis (c)

Schreiben Sie, so weit möglich, als Summe von Partialbrüchen.

(a)
$$\frac{x-5}{x^2-2x-3} \stackrel{!}{=} \frac{\alpha}{x+1} + \frac{\beta}{x-3} = \frac{(x-3)\alpha + (x+1)\beta}{x^2-2x-3} = \frac{(\alpha+\beta)x+\beta-3\alpha}{x^2-2x-3}$$
Koeffizientenvergleich im Zähler:
$$x^1 : \alpha+\beta=1 \\ x^0 : 3\alpha-\beta=5$$
 Addition:
$$\alpha=\frac{3}{2}, \beta=-\frac{1}{2}$$

$$\Rightarrow \frac{x-5}{x^2-2x-3} = \frac{3}{2(x+1)} - \frac{1}{2(x-3)}$$

(b)
$$\frac{x^2+1}{x^2-1} \stackrel{!}{=} \frac{\alpha}{x+1} + \frac{\beta}{x-1} + \gamma = \frac{(x-1)\alpha + (x+1)\beta + (x^2-1)\gamma}{x^2-1}$$

$$x^2 : \quad \frac{\gamma=1}{\alpha+\beta=0}$$

$$x^0 : \quad 1=\beta-\alpha-\gamma$$

$$\Rightarrow \frac{x^2+1}{x^2-1} = 1 - \frac{1}{x+1} + \frac{1}{x-1}$$

Alternativ kann auch eine Poylnomdivision mit Rest durchgeführt werden mit anschließender Partialbruchzerlegung des Restglieds: $\frac{x^2}{x^2-1} = 1 + \frac{2}{x^2-1}$.

Die Faktorisierung des Nenners haben wir in Aufgabe 4a bereits gesehen. Wir müssen die

Vielfachheit der Nullstelle in unserem Ansatz berücksichtigen. Durch $\alpha = 0$ sehen wir, dass die rechte Seite bei x = 1 keine Pollstelle hat. Die Partialbruchzerlegung hat uns also den Limes $x \rightarrow 1$ der linken Seite verschafft.

(d)
$$\frac{2x^4 - 4x^3 - 5x^2 + (\sqrt{2} - 7)x + \sqrt{2} + 12}{x^2 - 2x - 3}$$

 $\frac{2x^4-4x^3-5x^2+(\sqrt{2}-7)x+\sqrt{2}+12}{x^2-2x-3}$ Da der Zähler von höherem Grade ist als das Nennerpolynom, wird zunächst eine Polynomdivision durchgeführt:

$$\frac{(2x^4 - 4x^3 - 5x^2 + (\sqrt{2} - 7)x + \sqrt{2} + 12) : (x^2 - 2x - 3) = 2x^2 + 1 + \frac{(\sqrt{2} - 5)x + \sqrt{2} + 15}{x^2 - 2x - 3}}{x^2 + (\sqrt{2} - 7)x + \sqrt{2} + 12} - \frac{x^2 + (\sqrt{2} - 7)x + \sqrt{2} + 12}{(\sqrt{2} - 5)x + \sqrt{2} + 15}$$

Die Nullstellen des Nenners lauten: $x_1 = 3$, $x_2 = -1$. Damit folgt

$$\frac{(\sqrt{2}-5)x+\sqrt{2}+15}{x^2-2x-3} \stackrel{!}{=} \frac{\alpha}{x-3} + \frac{\beta}{x+1} = \frac{(x+1)\alpha+(x-3)\beta}{x^2-2x-3}$$
Koeffizientenvergleich:
$$\frac{x^1:\alpha+\beta=\sqrt{2}-5}{x^0:\alpha-3\beta=\sqrt{2}+15} \text{ Differenz: } \frac{\beta=-5}{x^0=-5}, \Rightarrow \frac{\alpha=\sqrt{2}}{x^0=-5}$$

$$\Rightarrow \frac{2x^4-4x^3-5x^2+(\sqrt{2}-7)x+\sqrt{2}+12}{x^2-2x-3} = 2x^2+1+\frac{\sqrt{2}}{x-3}-\frac{5}{x+1}$$

Aufgabe 6: Summen

Ziel: (a) bis (b)

Vereinfachen bzw. berechnen Sie die folgenden Summen.

(a)
$$\underbrace{\sum_{k=1}^{n} \frac{1}{2k}}_{k=1} + \underbrace{\sum_{l=0}^{n-1} \frac{1}{2l+1}}_{l=0} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots \frac{1}{2n} = \underbrace{\sum_{k=0}^{2n} \frac{1}{k}}_{k=0}$$

$$= \frac{1}{2} + \frac{1}{4} + \frac{1}{2n} \quad 1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2n-1}$$

(b)
$$\sum_{k=1}^{n} \frac{1}{k(k+1)}$$

(c)
$$\sum_{k=0}^{n} x^k$$

Hinweis zu (b): Der Term in der Summe kann mithilfe von Partialbruchzerlegung vereinfacht und die entstehende Summe auseinandergezogen werden.

$$\frac{1}{k(k+1)} = \frac{A}{k} + \frac{B}{k+1} \implies 1 = A(k+1) + Bk = (A+B)k + A.$$

Der Koeffizientenvergleich liefert A = 1, B = -1 und wir können weiter vereinfachen

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \sum_{k=1}^{n} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k+1} \quad \text{Indexverschiebung} \quad k+1 = l$$

$$= \sum_{k=1}^{n} \frac{1}{k} - \sum_{l=2}^{n+1} \frac{1}{l} = \left(1 + \sum_{k=2}^{n}\right) - \left(\sum_{l=2}^{n} + \frac{1}{n+1}\right) = \frac{n}{\underline{n+1}}.$$

Hinweis zu (c): Hierfür kann ein expliziter Ausdruck gefunden werden, wenn man die Formel mit (1-x) multipliziert und analog vorgeht wie in (b)

$$(1-x)\sum_{k=0}^{n} x^{k} = \sum_{k=0}^{n} x^{k} - x\sum_{k=0}^{n} x^{k} = \sum_{k=0}^{n} x^{k} - \sum_{k=0}^{n} x^{k+1} \quad \text{Indexverschiebung} \quad l = k+1$$

$$= \sum_{k=0}^{n} x^{k} - \sum_{l=1}^{n+1} x^{l} = 1 + \sum_{k=1}^{n} x^{k} - \left(\sum_{l=1}^{n} x^{l} + x^{n+1}\right) = 1 - x^{n+1}$$

$$\Rightarrow \sum_{k=0}^{n} x^{k} = \frac{1 - x^{n+1}}{1 - x}.$$