Base Histórica de Proyectos

Ayuda en la toma de decisiones

- 1. Introducción y Objetivos
- 2. Conceptos
- 3. Análisis de una Base Histórica

1. Introducción

- ▲ Hay tres factores primordiales en un Proyecto de Desarrollo de Software: el coste, el tiempo y la calidad del producto obtenido.
- ▲ El propósito de todo gestor de proyectos será siempre minimizar el coste, minimizar el tiempo y maximizar la calidad.

1. Técnicas para la Ayuda a la Gestión de PDS:

- 1. La propia Experiencia del Gestor.
 - ∠ Subjetiva
 - ∠ Lo que es bueno para un cierto proyecto en un entorno, no tiene
 por qué ser bueno para otro binomio de proyecto-entorno distinto
- 2. La Analogía.
 - ∠ Consiste en la comparación con otros proyectos de similares características
 - ∠ Si es utilizado dentro de un mismo entorno, suele ser bastante acertado

1. Técnicas para la Ayuda a la Gestión de PDS:

- 3. Modelos Matemáticos Estáticos. (Putnam, COCOMO...)
 - ✓ Modelos estáticos con coeficientes empíricos: $E = a_b \bullet KLDC^{b_b}$
 - ∠ Aproximación demasiado simple.
 - ✓ No tiene en cuenta la evolución de las distintas variables en el tiempo.
- 4. Simulación Dinámica.
 - ✓ Aproximación matemática dinámica, con realimentación de variables, que sopesa las variaciones de éstas en el tiempo.
 - ∠ Más complejos y acertados.
 - ∠ El éxito de la Simulación Dinámica, depende de lo acertado que sea el modelo definido.

1. Objetivos:

▲ Profundizar en la problemática de la gestión

- ∠ Obtener resultados concretos y tangibles en forma de reglas de gestión para la ayuda en la toma de decisiones
- ∠ Estudio de una Base Histórica (Analogía y experiencia)

2. Conceptos

El *IEEE* define *Métrica* como: "una medida del grado en que un sistema, componente o proceso posee un atributo dado". Todos los conceptos y parámetros que intervienen en un PDS pueden ser representados y evaluados por una determinada métrica.

2. Conceptos

- ✓ Almacena una serie de métricas de distintos proyectos software realizados
- ∠ Su análisis estadístico permite deducir las relaciones causales existentes entre las distintas métricas
- ✓ De esta manera, se pueden extraer un conjunto de normas, (útiles para nuestra empresa y equipo en concreto), que nos ayuden en la gestión de proyectos

2. Conceptos

Propiedades de las métricas

Correctas: la recogida debe hacerse de acuerdo a la definición de la métrica y unidad de medida elegida

Exactas: la diferencia entre el valor resultante de la medida y el valor real del dato debe ser lo menor posible

Precisas: el número de cifras utilizadas para expresarlas debe ser la apropiada

Consistentes: evaluaciones diferentes sobre los mismos datos deben dar los mismos resultados

Replicables: deben servir para comparar datos obtenidos en circunstancias diferentes

Asociados con una actividad o periodo de tiempo particular: análisis a priori, monitorización y análisis post-mortem

El objetivo es mejorar mediante la medición, el análisis y la realimentación

3. Análisis de una Base Histórica de PDS

Modo de Operación:

- ∠ Baremar las métricas.
 - (% Técnicos Expertos: 0.3-04 ▲ Bajo; 0.4-.07 ▲ Medio; 0.7-1 ▲ Alto)
- ∠ Para el coste, tiempo y calidad:
 - Enfrentar las distintas métricas mediante un análisis estadístico para extraer posibles relaciones causales.
- ∠ Obtener un conjunto de Reglas de Gestión

A partir de dichas relaciones de causa ▲efecto.

3. Análisis de una Base Histórica de PDS

Ejemplo:

- A Coste frente al porcentaje de Técnicos Expertos:
 - Baremamos el porcentaje de Técnicos Expertos y la desviación de coste
 - Agrupamos los proyectos según estos dos atributos y calculamos los porcentajes, obteniendo las siguientes tablas:

		Desviación Coste				
		Muy Buena	Buena	Aceptable	Mala	TOTAL
	Bajo	0%	0%	0%	100%	100%
%Tec. Exp.	Medio	17%	3%	28%	52%	100%
(Real)	Alto	42%	13%	31%	15%	100%

3. Análisis de una Base Histórica de PDS

Ejemplo:

∠ A partir de dichas tablas, se obtienen las siguientes gráficas:

Desviación de Coste / %Técnicos con Experiencia (Real)

Relación causal: % Técnicos Expertos \land - Desviación Coste

Regla de Gestión: Para obtener productos buenos en calidad, en coste y en tiempo, el % de técnicos expertos debe estar por encima del 70%. Lo más barato es utilizar una proporción alta de técnicos expertos.

PDS Normal

PDS Contratación rápida

0

DE

G

Е

Ó

N

PDS Plazo Fijo y Contratación rápida

PDS Plazo Fijo