Review Paper on RFID Systems: Embedded Software and Hardware Design Review

By: SHIVANI AMBATI

Table of Contents

1. Introduction

- 1.1 What is RFID?
- 1.2 Scope and Objectives of the Review

2. RFID Technology Overview

- 2.1 Working Principle of RFID
- 2.2 RFID System Components (Tag, Reader, Antenna, Middleware)
- 2.3 RFID Types (Passive, Active, Semi-Passive)
- 2.4 RFID Frequency Bands (LF, HF, UHF, Microwave)

3. Hardware Components Deep-Dive

- 3.1 RFID Tags: IC, Antenna, Memory Types
- 3.2 RFID Readers: Processor, RF Module, Interface Ports
- 3.3 Power Supply and Efficiency
- 3.4 Antenna Design and Placement Considerations
- 3.5 Interfacing with Embedded Systems

4. System Architecture and Data Flow

- 4.1 RFID Tag-Reader Communication Flow
- 4.2 Reader-to-Host Communication Architecture
- 4.3 Integration with Cloud / IoT Platforms
- 4.4 Middleware Functions and Data Filtering

5. Embedded Software Lifecycle

- 5.1 Requirements & Architecture Design
- 5.2 Firmware for RFID Reader Modules
- 5.3 Tag Data Handling and Encoding Logic
- 5.4 Middleware & Application Layer Logic
- 5.5 Testing, Security & Privacy Aspects

6. Pseudocode & Logic Examples

- 6.1 RFID Tag Detection Logic
- 6.2 Unique ID Verification Algorithm
- 6.3 Anti-Collision Protocol Handling
- 6.4 RFID-Based Attendance Tracking System
- 6.5 RFID Data Logging to Cloud

7. Design Challenges & Analysis

- 7.1 Signal Interference & Range Limitations
- 7.2 Tag Collision and Multi-Tag Reading
- 7.3 Data Security & Privacy Concerns
- 7.4 Environmental Effects on RFID Performance
- 7.5 Power Constraints in Embedded Readers

8. Conclusion and Future Scope

- 8.1 Summary of Key Findings
- 8.2 Emerging Trends (RFID with IoT, Blockchain Integration, RFID Sensors)

9. References

- ISO/IEC 18000 RFID Standards
- IEEE Research Papers on RFID Advancements
- NXP RFID Datasheets & Resources

1. Introduction

1.1 What is RFID?

RFID (Radio-Frequency Identification) is a wireless technology that uses radio waves to identify and track objects, animals, or people. It consists of two main components:

- RFID Tag (attached to the object)
- RFID Reader (scans the tag and retrieves data)

Unlike barcodes, RFID does not require line-of-sight scanning and can read multiple tags simultaneously.

1.2 Scope and Objectives of the Review

This report explains:

- √ How RFID works in simple terms
- ✓ Different types of RFID and their uses
- √ Hardware & software components
- √ Real-world applications & challenges
- √ Future trends in RFID

2. RFID Technology Overview

2.1 Working Principle of RFID

- 1. Reader emits radio waves via an antenna.
- 2. **Tag receives power** (passive tags) or transmits data (active tags).
- 3. Tag sends back stored data (e.g., unique ID) to the reader.
- 4. Reader processes data and sends it to a computer or cloud.

2.2 RFID System Components

Component	Function
Tag	Contains a microchip + antenna (stores data)
Reader	Scans tags and processes data
Antenna	Sends/receives signals between tag & reader
Middleware	Software that filters and manages RFID data

2.3 RFID Types				
Туре	Power Source	Range	Use Case	
Passive	Powered by reader	Up to 10m	Inventory tracking	
Active	Battery-powered	Up to 100m	Vehicle tracking	
Semi- Passive	Battery for sensor, reader powers comm.	Medium	Temperature monitoring	

2.4 RFID Frequency Bands

Frequency	Range	Common Use
LF (125-134 kHz)	Short (~10cm)	Animal tracking
HF (13.56 MHz)	Medium (~1m)	NFC, access cards
UHF (860-960 MHz)	Long (~10m)	Supply chain, retail
Microwave (2.45 GHz)	Very long (~30m)	Toll collection

3. Hardware Components Deep-Dive

3.1 RFID Tags

- IC (Integrated Circuit) Stores data (e.g., ID, product info).
- Antenna Receives power and transmits data.
- Memory Types:
 - o Read-Only (RO) Pre-written (e.g., serial numbers).
 - o Read-Write (RW) Can be updated (e.g., logistics tracking).

3.2 RFID Readers

- **Processor** Decodes tag data.
- **RF Module** Handles wireless communication.
- Interface Ports USB, Ethernet, Wi-Fi for data transfer.

3.3 Power Supply & Efficiency

• Passive tags rely on **electromagnetic induction** from the reader.

Active tags use batteries for long-range communication.

3.4 Antenna Design & Placement

- Larger antenna = longer range.
- Metal & liquids interfere with signals → must be placed carefully.

3.5 Interfacing with Embedded Systems

RFID readers connect to microcontrollers (Arduino, Raspberry Pi) via:

- √ UART (Serial)
- ✓ SPI/I2C
- **✓** USB/Bluetooth

RFID System Components

nii ib iugo

Stores and transmits data

RFID Readers

Decodes tag data wirelessly

Power Supply

Powers tags for communication

Antenna Design

Affects communication range

Embedded Systems Interface

Connects readers to microcontrollers

4. System Architecture & Data Flow

4.1 RFID Tag-Reader Communication Flow

- 1. Reader sends a signal \rightarrow Tag responds with its ID.
- 2. Reader decodes the signal \rightarrow Sends data to a computer.

4.2 Reader-to-Host Communication

- Wired (USB, RS232) Reliable for fixed systems.
- Wireless (Wi-Fi, Bluetooth) Flexible for mobile setups.

4.3 Integration with Cloud/IoT

 \checkmark RFID data \rightarrow Cloud server \rightarrow Mobile alerts / Analytics.

Tan to Doador

✓ Example: Amazon warehouse tracks inventory in real-time.

4.4 Middleware Functions

• Filters duplicate reads.

Daw DEID Data

• Converts raw data into useful info (e.g., "Product X is in Aisle 3").

RFID Data Journey

Reader to Host

Middleware

Droceeing

Actionable RFID

Incidhte

Raw RFID Data	ray to Reader	Reduct to most	Processing	เมอเหมเอ	
Unprocessed tag identification	ID transmission and decoding	Data transfer via wired/wireless	Filtering and data conversion	Real-time inventory tracking	
Î,	·				

5. Embedded Software Lifecycle

5.1 Firmware for RFID Readers

- Written in **C/C++** for microcontrollers.
- Handles tag detection, anti-collision, data parsing.

5.2 Tag Data Handling

- EPC (Electronic Product Code) Standard RFID identifier.
- Encoding Logic Writing data to tags (e.g., product details).

5.3 Security & Privacy

- Encryption (e.g., AES) to prevent cloning.
- Access Control Only authorized readers can scan tags.

RFID Reader Firmware Components

Firmware Core

C/C++ code for microcontrollers

Tag Operations

Detect, parse, and handle tag data

Security Measures

Encryption and access control implementation

6. Pseudocode & Logic Examples

6.1 RFID Tag Detection Logic

```
reader = RFID_Reader()
while True:
    tag_id = reader.scan()
    if tag_id:
        print("Detected Tag:", tag_id)
```

6.4 RFID-Based Attendance System

- 1. Employee taps RFID card.
- 2. System logs time + ID \rightarrow sends to database.

7. Design Challenges & Solutions

Challenge	Solution
Tag Collision	Anti-collision protocols (e.g., Q-Algorithm)
Signal Interference	Use different frequency bands
Security Risks	Encrypted tags, secure authentication

8. Future Trends

- **RFID** + **IoT** Smart shelves in retail.
- **Blockchain + RFID** Secure supply chain tracking.
- Battery-free Sensors Self-powered RFID tags.

9. References

1. IEEE Research Papers on RFID Advancements

- ∞ https://www.rfidjournal.com/

2. NXP RFID Datasheets & Resources

HF/NFC Solutions:

- MIFARE® (e.g., DESFire, Classic) for smart cities and access control .
- NTAG® for connected NFC tags (e.g., smart packaging).
- https://www.nxp.com/products/rfid-nfc:RFID-NFC

UHF (RAIN RFID) Solutions:

- UCODE® 9xm: High-memory tags for industrial IoT .
- UCODE DNA: Cryptographic authentication for anti-counterfeiting
- ∞ https://www.nxp.com/products/rfid-nfc/ucode-rain-rfid-uhf:MC 50483