Understanding Tradeoffs in Software Transactional Memory

Dave Dice

Nir Shavit

Sun Microsystems

Tel-Aviv University and Microsystems Research

Präsentiert von: Eva Brunner

University of Salzburg

10.06.2009

Motivation

- Parallelismus bei Multiprozessor Design
- alternative Ansätze zur Vereinfachung von:
 - Design
 - Verifikation

Ziel

Eine mechanische Methode die sequentiellen oder coarse-grained lock-based Code in concurrent Code transformiert, ohne dass sie programmspezifische Informationen benötigt.

Transaktionale Programmierung

- Sequenzen von nebenläufigen Operationen werden zu atomaren Transaktionen zusammengefasst
- Reduktion der Komplexität der
 - Programmierung
 - Verifikation
- Transaktionen die sich beim Speicherzugriff:
 - nicht beeinflussen, sollen ununterbrochen parallel abgearbeitet werden
 - ausschließen, sollen abgebrochen und erneut versucht werden

TL- Algorithmus

- verwendet kurze Transaktionen (finegrained)
- unterstützt kein nesting
- time-outs statt shared write-sets
- lock-based
- hat 2 Betriebsarten
 - commit mode (Standard)
 - encounter mode

Commit Mode

Encounter Mode

- locks werden gesetzt, wenn die Transaktion schreibt
- write-set dient als undo-set
- kein look-aside nötig
- Transaktionsabbruch ist aufwändig

Kollisionsmanagement

- Kollisionsauflösung:
 - time-out
 - back-off delay

Modify-after-free hazard

Performance

- Faktoren
 - TM overhead
 - abort rate
- ausschlaggebender Faktor
 - TM overhead (contra intuitiv)
- Messung
 - single thread