Module 11 CCNA - Automation and Programmability

Beginner Question

- 1. Explain How Automation Impacts Network Management.
- ANS: Automation streamlines repetitive tasks in network management.
- It enhances efficiency and reduces human error.
- Network provisioning, configuration, monitoring, and troubleshooting can be automated.
- Automation leads to faster response times and improved network reliability.
- It enables better resource utilization and scalability.
- Network managers can focus on strategic planning and optimization with automation in place.
- 2. Compare Traditional network with Controller based networking.
- ANS: Traditional networks rely on manual configuration and management of individual devices.
- Controller-based networking centralizes control through a network controller, which automates configuration and management.
- Traditional networks are often more complex to manage and scale.
- Controller-based networking simplifies management and enables easier scalability.
- Traditional networks may experience configuration inconsistencies and slower response times.
- Controller-based networking offers more consistency and faster responses due to centralized control.
- Traditional networks require more manual intervention for troubleshooting and optimization.
- Controller-based networking provides more automated troubleshooting and optimization capabilities.
- 3. Explain Virtualization.
- ANS: Virtualization involves creating virtual instances of computing resources such as servers, storage, and networks.
- It enables multiple virtual machines (VMs) to run on a single physical machine, maximizing resource utilization.
- Virtualization abstracts hardware resources from the underlying physical infrastructure, allowing for flexibility and scalability.
- It facilitates the isolation of workloads, improving security and resource management.
- Virtualization enables the creation of virtual networks, allowing for easier management and configuration of network resources.
- It promotes disaster recovery and business continuity by enabling rapid deployment and migration of virtualized workloads.
- Virtualization is fundamental to cloud computing, enabling the efficient sharing and allocation of resources across multiple users or tenants.

Intermediate Question

- 1. Describe Characteristics of REST-based API.
- ANS: **Statelessness:** Each request from a client to the server must contain all the necessary information for the server to understand and fulfill it, without relying on any context from previous requests.
- **Uniform Interface:** REST APIs have a uniform and consistent interface, typically using HTTP methods (GET, POST, PUT, DELETE) to perform operations on resources. They often use standard formats such as JSON or XML for data exchange.
- **Client-Server Architecture:** REST is based on a client-server model where the client and server are independent of each other, allowing for scalability and separation of concerns.
- **Resource-Based:** REST APIs are resource-centric, meaning that each entity or concept in the system is represented as a resource with its own unique identifier (URL).
- Cacheability: Responses from REST APIs can be cached to improve performance and reduce server load. Clients can include caching directives in requests to indicate whether responses can be cached.
- Layered System: REST APIs are designed to be layered, meaning that
 intermediaries such as proxies or gateways can be used to improve
 scalability, security, or other aspects without affecting the client-server
 interaction.
- **State Transfer:** REST emphasizes the transfer of state between client and server. This can be achieved through representations of resources, allowing clients to manipulate resource state through the use of standard methods.

Advance Question

- 1. Explain methods of Automation
- ANS: **Scripting**: Writing scripts to automate repetitive tasks using programming languages like Python, Bash, or Power Shell.
- **Configuration Management Tools:** Using tools like Ansible, Puppet, or Chef to automate the provisioning and configuration of servers and infrastructure.
- Orchestration: Coordinating and automating workflows and processes across multiple systems and services using tools like Kubernetes, Docker Swarm, or Apache Airflow.

- **Monitoring and Alerting**: Implementing automated monitoring solutions like Nagios, Prometheus, or Data dog to detect issues and trigger alerts based on predefined thresholds.
- CI/CD Pipelines: Implementing Continuous Integration/Continuous Deployment pipelines using tools like Jenkins, GitLab CI/CD, or CircleCI to automate software development workflows from code commit to deployment.
- Robotic Process Automation (RPA): Automating repetitive tasks and workflows using software robots or bots to interact with applications and systems in a manner similar to humans.
- Machine Learning and AI: Leveraging machine learning and artificial intelligence techniques to automate decision-making processes, anomaly detection, and predictive analytics in various domains.
- 2. Explain SDN
- ANS: Centralized Control: SDN (Software-Defined Networking) centralizes network control, separating the control plane from the data plane.
- **Programmability:** It allows network administrators to program and automate network configurations using software-based controllers.
- **Dynamic Management:** SDN enables dynamic management of network resources, allowing for rapid provisioning, configuration, and optimization.
- **Flexibility:** Networks become more flexible and adaptable to changing business needs and traffic patterns through software-defined policies.
- **Virtualization:** SDN facilitates network virtualization, allowing for the creation of virtual networks that can be dynamically configured and managed.
- **Open Standards:** SDN often relies on open standards and protocols, promoting interoperability and vendor neutrality.
- Traffic Engineering: It enables fine-grained control over traffic flows, optimizing network performance and resource utilization.
- **Scalability:** SDN architectures can scale more easily than traditional network architectures, supporting large-scale deployments and cloud environments.
- 3. Explain DNA Center
- **ANS: Centralized Network Management:** DNA Center is a centralized network management platform provided by Cisco.
- Intent-Based Networking (IBN): It leverages IBN principles to translate business intent into network policies and configurations.

- **Automation:** DNA Center automates network provisioning, configuration, monitoring, and troubleshooting tasks.
- Policy-Based Management: It enables policy-based management of network devices, applications, and users.
- Analytics and Assurance: DNA Center provides analytics and assurance capabilities for gaining insights into network performance, security, and user experience.
- Integration with Cisco Technologies: It integrates with other Cisco technologies such as Cisco SD-WAN, Cisco Identity Services Engine (ISE), and Cisco Application Centric Infrastructure (ACI).
- **Streamlined Operations:** DNA Center streamlines network operations, improves efficiency, and reduces human errors.
- **Scalability and Security:** It offers scalability and security features to support large-scale enterprise networks and protect against threats.

4. Explain SD-Access and SD-WAN

ANS: SD-Access (Software-Defined Access):

- SD-Access extends the principles of SDN to the access layer of the network.
- It aims to simplify network segmentation, policy enforcement, and access control.
- SD-Access uses a centralized policy controller to define and enforce policies across the network.
- It enhances security by dynamically segmenting network traffic based on user identity, device type, and application requirements.
- SD-Access automates network provisioning and configuration, reducing manual intervention and improving agility.

SD-WAN (Software-Defined Wide Area Network):

- SD-WAN abstract the control plane from the physical infrastructure, allowing for centralized management and policy enforcement.
- It optimizes traffic routing and improves application performance over wide area networks, including MPLS, internet, and LTE connections.
- SD-WAN provide dynamic path selection, application-aware routing, and Quality of Service (QoS) capabilities to prioritize critical traffic.
- It simplifies branch office connectivity by enabling zero-touch provisioning and centralized management of remote devices.

• SD-WAN enhance network agility, scalability, and cost-efficiency compared to traditional WAN architectures.