Konstrukce algoritmů pro paralelní sčítání

Jan Legerský

TIGR jan.legersky@gmail.com

Školitel: Ing. Štěpán Starosta, PhD.

Předdiplomní seminář

31. března 2016

Paralelní sčítání Extending window method Konvergence Výsledky

- Paralelní sčítání
- 2 Extending window method
 - Fáze 1 množina váhových koeficientů
 - Fáze 2 váhová funkce
- 8 Konvergence

Abeceda

Fáze 1

Fáze 2

4 Výsledky

Poziční soustava

Algebraické celé číslo ω stupně d.

$$\mathbb{Z}[\omega] = \left\{ \sum_{j=0}^{d-1} \mathsf{a}_j \omega^j \, : \, \mathsf{a}_j \in \mathbb{Z}
ight\}$$

Poziční soustava

Algebraické celé číslo ω stupně d.

$$\mathbb{Z}[\omega] = \left\{ \sum_{j=0}^{d-1} \mathsf{a}_j \omega^j \, : \, \mathsf{a}_j \in \mathbb{Z}
ight\}$$

Poziční soustava je dána

- bází $eta \in \mathbb{Z}[\omega]$, |eta| > 1 a
- abecedou $\mathcal{A} \subset \mathbb{Z}[\omega], 0 \in \mathcal{A}$.

Poziční soustava

Algebraické celé číslo ω stupně d.

$$\mathbb{Z}[\omega] = \left\{ \sum_{j=0}^{d-1} a_j \omega^j : a_j \in \mathbb{Z} \right\}$$

Poziční soustava je dána

- bází $\beta \in \mathbb{Z}[\omega]$, $|\beta| > 1$ a
- abecedou $\mathcal{A} \subset \mathbb{Z}[\omega], 0 \in \mathcal{A}$.

Komplexní číslo x má konečnou (β, \mathcal{A}) -reprezentaci, pokud $x = \sum_{j=-m}^{n} x_j \beta^j$ s koeficienty $x_j \in \mathcal{A}$.

$$(x)_{\beta,\mathcal{A}} = x_n x_{n-1} \cdots x_1 x_0 \bullet x_{-1} x_{-2} \cdots x_{-m}$$

Sčítání

$$(x)_{\beta,\mathcal{A}} = x_{n'} x_{n'-1} \cdots x_1 x_0 \bullet x_{-1} x_{-2} \cdots x_{-m'} (y)_{\beta,\mathcal{A}} = y_{n'} y_{n'-1} \cdots y_1 y_0 \bullet y_{-1} y_{-2} \cdots y_{-m'} (w)_{\beta,\mathcal{A}+\mathcal{A}} = w_{n'} w_{n'-1} \cdots w_1 w_0 \bullet w_{-1} w_{-2} \cdots w_{-m'},$$

kde

$$w_j=x_j+y_j\in\mathcal{A}+\mathcal{A}.$$

Sčítání

$$(x)_{\beta,\mathcal{A}} = x_{n'} x_{n'-1} \cdots x_1 x_0 \bullet x_{-1} x_{-2} \cdots x_{-m'} (y)_{\beta,\mathcal{A}} = y_{n'} y_{n'-1} \cdots y_1 y_0 \bullet y_{-1} y_{-2} \cdots y_{-m'} (w)_{\beta,\mathcal{A}+\mathcal{A}} = w_{n'} w_{n'-1} \cdots w_1 w_0 \bullet w_{-1} w_{-2} \cdots w_{-m'},$$

kde

$$w_i = x_i + y_i \in \mathcal{A} + \mathcal{A}$$
.

Chceme najít (β, \mathcal{A}) -reprezentaci součtu

$$z_n z_{n-1} \cdots z_1 z_0 \bullet z_{-1} z_{-2} \cdots z_{-m} = (w)_{\beta, \mathcal{A}}.$$

$$R(x) = x - \beta \implies 0 = R(\beta) = \beta - \beta$$

$$\implies 0 = q_j \beta^j \cdot R(\beta) = q_j \cdot \beta^{j+1} - \beta q_j \cdot \beta^j$$

$$R(x) = x - \beta \implies 0 = R(\beta) = \beta - \beta$$

$$\implies 0 = q_j \beta^j \cdot R(\beta) = q_j \cdot \beta^{j+1} - \beta q_j \cdot \beta^j$$

$$w_{n'} w_{n'-1} \cdots w_{j+1} w_j w_{j-1} \cdots w_1 w_0 \bullet$$

$$q_{j-2} \cdots$$

$$q_{j-1} - \beta q_{j-1}$$

$$q_j - \beta q_j$$

$$\vdots - \beta q_{j+1}$$

$$z_n \cdots z_{n'} z_{n-1} \cdots z_{j+1} z_j z_{j-1} \cdots z_1 z_0 \bullet$$

$$R(x) = x - \beta \implies 0 = R(\beta) = \beta - \beta$$

 $\implies 0 = q_j \beta^j \cdot R(\beta) = q_j \cdot \beta^{j+1} - \beta q_j \cdot \beta^j$

Jak volit váhový koeficient q_i tak, aby

$$z_j = w_j + q_{j-1} - q_j \beta \in \mathcal{A}$$
?

$$z_j = w_j + q_{j-1} - q_j \beta$$

Standardní sčítání:

$$w_n w_{n-1} \cdots w_{j+1} w_j w_{j-1} \cdots w_1 w_0 \bullet , w_i \in \mathcal{A} + \mathcal{A},$$

$$\longrightarrow z_{n+1} z_n z_{n-1} \cdots z_{j+1} z_j z_{j-1} \cdots z_1 z_0 \bullet , z_i \in \mathcal{A}.$$

$$z_j = w_j + q_{j-1} - q_j \beta$$

Standardní sčítání:

$$w_n w_{n-1} \cdots w_{j+1} w_j w_{j-1} \cdots w_1 w_0 \bullet , w_i \in \mathcal{A} + \mathcal{A},$$

$$\longrightarrow z_{n+1} z_n z_{n-1} \cdots z_{j+1} z_j z_{j-1} \cdots z_1 z_0 \bullet , z_i \in \mathcal{A}.$$

Paralelní sčítání (Avizienis, 1961):

$$\cdots w_{j+t+1}w_{j+t}\cdots w_{j+1}w_jw_{j-1}\cdots w_{j-r}w_{j-r-1}\cdots , w_i \in \mathcal{A} + \mathcal{A},$$

$$\longrightarrow \cdots z_{j+t+1}z_{j+t}\cdots z_{j+1}z_j z_{j-1}\cdots z_{j-r}z_{j-r-1}\cdots , z_i \in \mathcal{A}.$$

$$z_i = w_i + q_{i-1} - q_i \beta$$

Standardní sčítání:

$$w_n w_{n-1} \cdots w_{j+1} w_j w_{j-1} \cdots w_1 w_0 \bullet , w_i \in \mathcal{A} + \mathcal{A},$$

$$\longrightarrow z_{n+1} z_n z_{n-1} \cdots z_{j+1} z_j z_{j-1} \cdots z_1 z_0 \bullet , z_i \in \mathcal{A}.$$

Paralelní sčítání (Avizienis, 1961):

$$\cdots w_{j+t+1}w_{j+t}\cdots w_{j+1}w_jw_{j-1}\cdots w_{j-r}w_{j-r-1}\cdots , w_i \in \mathcal{A} + \mathcal{A},$$

$$\longrightarrow \cdots z_{j+t+1}z_{j+t}\cdots z_{j+1}z_j z_{j-1}\cdots z_{j-r}z_{j-r-1}\cdots , z_i \in \mathcal{A}.$$

Najít algoritmus pro paralelní sčítání = určit váhové koeficienty q_j závislé pouze na pevném počtu vstupních cifer takové, že

$$z_j = \underbrace{w_j}_{\in \mathcal{A} + \mathcal{A}} + q_{j-1} - q_j \beta \in \mathcal{A}$$

pro všechny vstupy $(w)_{\beta,\mathcal{A}+\mathcal{A}}$ a každou pozici j.

Extending window method

Hledáme šířku okna $M \in \mathbb{N}$ a váhovou funkci $q: (\mathcal{A}+\mathcal{A})^M \to \mathcal{Q} \subset \mathbb{Z}[\omega]$ takovou, že $q_j = q(w_j, \ldots, w_{j-M+1})$.

Extending window method

Hledáme šířku okna $M \in \mathbb{N}$ a váhovou funkci $q: (\mathcal{A} + \mathcal{A})^M \to \mathcal{Q} \subset \mathbb{Z}[\omega]$ takovou, že $q_j = q(w_j, \dots, w_{j-M+1})$.

Metoda:

- **1** Najdeme množinu váhových koeficientů $\mathcal{Q} \subset \mathbb{Z}[\omega]$.
- **2** Zvětšujeme šířku okna M a pro všechny $(w_j, w_{j-1}, \ldots, w_{j-M+1}) \in (\mathcal{A} + \mathcal{A})^M$ zkoušíme najít váhový koeficient z množiny \mathcal{Q} pro definování váhové funkce q.

Fáze 1 – hledání množiny váhových koeficientů

Hledáme množinu váhových koeficientů $\mathcal{Q} \subset \mathbb{Z}[\omega]$ takovou, že

$$\underbrace{(\mathcal{A} + \mathcal{A})}_{} + \underbrace{\mathcal{Q}}_{} \subset \underbrace{\mathcal{A}}_{} + \underbrace{\beta\mathcal{Q}}_{}$$

Fáze 1 – hledání množiny váhových koeficientů

Hledáme množinu váhových koeficientů $\mathcal{Q} \subset \mathbb{Z}[\omega]$ takovou, že

$$\underbrace{\left(\mathcal{A}+\mathcal{A}\right)}_{w_{j}\in}+\underbrace{\mathcal{Q}}_{q_{j-1}\in}\subset\underbrace{\mathcal{A}}_{z_{j}\in}+\underbrace{eta\mathcal{Q}}_{eta q_{j}\in}$$

Odtud, pro všechny $q_{j-1} \in \mathcal{Q}$ a $w_j \in \mathcal{A} + \mathcal{A}$ existuje $q_j \in \mathcal{Q}$ takové, že

$$z_j=w_j+q_{j-1}-q_j\beta\in\mathcal{A}.$$

Příklad – fáze 1

Eisensteinova báze

- Báze $\beta = \omega 1$, kde $\omega = \exp(\frac{2\pi i}{3}), \omega^2 + \omega + 1 = 0$.
- Minimální polynom báze je $\beta^2 + 3\beta + 3$.
- Abeceda $\mathcal{A} = \{0, 1, -1, \omega, -\omega, -\omega 1, \omega + 1\} \subset \mathbb{Z}[\omega].$
- Označme $\mathcal{B} = \mathcal{A} + \mathcal{A}$.

$$\frac{\mathcal{Q}_1}{\mathcal{B} + \mathcal{Q}_1}$$

$$\begin{array}{l} \mathcal{A} + \beta \cdot (-\omega - 2) \\ \mathcal{Q}_2 \backslash \mathcal{Q}_1 \end{array}$$

Fáze 2 – hledání váhové funkce

Hledáme šířku okna M a váhovou funkci $q:(\mathcal{A}+\mathcal{A})^M \to \mathcal{Q}.$

Fáze 2 – hledání váhové funkce

Hledáme šířku okna M a váhovou funkci $q:(\mathcal{A}+\mathcal{A})^M\to\mathcal{Q}.$ Předpokládejme, že šířka okna je m.

Zkontrolujeme všechny přenosy zprava q_{j-1} a určíme $q_j \in \mathcal{Q}$ takové, že

$$z_j = w_j + q_{j-1} - q_j \beta \in \mathcal{A}.$$

Množinu všech možných hodnot q_j označíme $\mathcal{Q}_{[w_j,...,w_{j-m+1}]} \subset \mathcal{Q}.$

Fáze 2 – hledání váhové funkce

Hledáme šířku okna M a váhovou funkci $q:(\mathcal{A}+\mathcal{A})^M \to \mathcal{Q}.$ Předpokládejme, že šířka okna je m.

Zkontrolujeme všechny přenosy zprava q_{j-1} a určíme $q_j \in \mathcal{Q}$ takové, že

$$z_j = w_j + q_{j-1} - q_j \beta \in \mathcal{A}.$$

Množinu všech možných hodnot q_j označíme $\mathcal{Q}_{[w_j,\dots,w_{j-m+1}]}\subset\mathcal{Q}.$ Šířka okna M a váhová funkce q je nalezena, když

$$\#Q_{[w_i,...,w_{i-M+1}]} = 1$$

pro všechny $w_j, \ldots, w_{j-M+1} \in (\mathcal{A} + \mathcal{A})^M$.

Fáze 1 – množina váhových koeficientů Fáze 2 – váhová funkce

Dolní odhad velikosti abecedy

Abeceda $\mathcal{A} \subset \mathbb{Z}[\beta]$ taková, že $0 \in \mathcal{A}$ a $1 \in \mathcal{A}[\beta]$. Pokud existuje algoritmus pro paralelní sčítání v poziční soustavě (β, \mathcal{A}) , který používá přepisovací pravidlo $x - \beta$, pak

$$\#\mathcal{A} \geq \max\{|m_{\beta}(0)|,|m_{\beta}(1)|\}$$
,

kde m_{β} je minimální polynom báze β . Navíc, pokud β má reálný sdružený kořen větší než 1, pak

$$\#A \ge \max\{|m_{\beta}(0)|, |m_{\beta}(1)| + 2\}$$
.

Fáze 1 – postačující a nutná podmínka konvergence

Nechť abeceda $\mathcal{A} \subset \mathbb{Z}[\omega]$ obsahuje alespoň jednoho reprezentanta každé třídy kongruence modulo β v $\mathbb{Z}[\omega]$.

Pokud je β expandující, pak Fáze 1 konverguje.

Naopak, pokud existuje algoritmus pro paralelní sčítání v soustavě (β, \mathcal{A}) s přepisovacím pravidlem $x-\beta$, pak je β expandující.

Fáze 2 – zastavovací podmínka

Vrcholy Rauzyho grafu Fáze 2 pro šířku okna k jsou kombinace $(w_{-1},\ldots,w_{-k})\in (\mathcal{A}+\mathcal{A})^k$ takové, že

$$\#\mathcal{Q}_{[w_{-1},...,w_{-k}]} = \#\mathcal{Q}_{[w_{-1},...,w_{-(k-1)}]}.$$

Z
$$(w_{-1},\ldots,w_{-k})$$
 do (w'_{-1},\ldots,w'_{-k}) vede hrana právě tehdy, když
$$(w_{-2},\ldots,w_{-k})=(w'_{-1},\ldots,w'_{-(k-1)}).$$

Nechť
$$w_0,w_{-1},\ldots,w_{-k}\in(\mathcal{A}+\mathcal{A})$$
 jsou takové, že $\#\mathcal{Q}_{[w_0,\ldots,w_{-k}]}=\#\mathcal{Q}_{[w_0,\ldots,w_{-(k-1)}]}>1.$

Pokud existuje nekonečná cesta v Rauzyho grafu Fáze 2 pro šířku okna k začínající hranou $(w_0,\ldots,w_{-(k-1)}) \to (w_{-1},\ldots,w_{-k})$, pak ve Fázi 2 došlo k zacyklení.

Testované příklady

ω	Base	$\#\mathcal{A}$	m_eta	Phase 1	bbb	Phase 2
$1/2 \cdot I\sqrt{15} - 1/2$	ω	6	$x^2 + x + 4$	✓	✓	Х
$1/2 \cdot I\sqrt{11} + 1/2$	$-2\omega-2$	27	$x^2 + 6x + 20$	1	1	√
$1/2 \cdot I\sqrt{11} + 1/2$	$-\omega + 1$	3	$x^2 - x + 3$	✓	✓	X
$1/2 \cdot I\sqrt{7} - 1/2$	ω	4	$x^2 + x + 2$	✓	✓	✓
$1/2 \cdot I\sqrt{7} + 1/2$	ω	2	$x^{2} - x + 2$	✓	✓	X
$1/2 \cdot I\sqrt{7} + 3/2$	ω	4	$x^2 - 3x + 4$	✓	X	-
$1\sqrt{3}$	$-\omega$	4	$x^{2} + 3$	✓	✓	✓
$1/2 \cdot I\sqrt{3} + 1/2$	$-3\omega + 2$	7	$x^2 - x + 7$	✓	✓	X
$1\sqrt{2}$	$-\omega$	3	$x^{2} + 2$	✓	✓	✓
$I\sqrt{2}-1$	ω	6	$x^2 + 2x + 3$	✓	✓	X
I — 1	ω	5	$x^2 + 2x + 2$	1	1	√
	-3ω	10	$x^{2} + 9$	✓	✓	Х
$-1/2\sqrt{5} + 3/2$	$-2\omega-2$	31	$x^2 + 10x + 20$	✓	✓	✓
$-1/2\sqrt{5} + 3/2$	$3\omega - 3$	13	$x^2 - 3x - 9$	✓	✓	Х
$1/2\sqrt{13} - 3/2$	ω – 3	27	$x^2 + 9x + 17$	✓	✓	×
$1/2\sqrt{13} + 1/2$	$-2\omega + 2$	16	$x^2 - 2x - 12$	✓	X	-
$1/2\sqrt{17} - 3/2$	$\omega - 3$	26	$x^2 + 9x + 16$	1	✓	✓

Výsledky

Konvergence:

- dolní odhad velikosti abecedy ze $\mathbb{Z}[\beta]$
- nutná a postačující podmínka konvergence Fáze 1
- algoritmus pro odhalování zacyklení fáze 2

Výsledky

Konvergence:

- dolní odhad velikosti abecedy ze $\mathbb{Z}[\beta]$
- nutná a postačující podmínka konvergence Fáze 1
- algoritmus pro odhalování zacyklení fáze 2

Implementace v SageMath:

- extending window method včetně mnoha různých možností výběru v obou fázích
- navržený algoritmus pro odhalování zacyklení fáze 2
- generování možné abecedy k zadané bázi

Výsledky

Konvergence:

- dolní odhad velikosti abecedy ze $\mathbb{Z}[\beta]$
- nutná a postačující podmínka konvergence Fáze 1
- algoritmus pro odhalování zacyklení fáze 2

Implementace v SageMath:

- extending window method včetně mnoha různých možností výběru v obou fázích
- navržený algoritmus pro odhalování zacyklení fáze 2
- generování možné abecedy k zadané bázi

Testování

- velké množství vstupů (díky automatickému ukládání do google tabulky)
- úspěšné nalezení algoritmu paralelního sčítání pro téměř 70 pozičních soustav

Paralelní sčítání Extending window method Konvergence **Výsledky**

Děkuji

Množinu Q konstruujeme iterativně:

Fáze 1

$$k := 0$$

$$\mathcal{Q}_0:=\{0\}$$

Množinu $\mathcal Q$ konstruujeme iterativně:

Fáze 1

k := 0

 $\mathcal{Q}_0:=\{0\}$

Repeat:

• rozšiř Q_k na Q_{k+1} tak, že

$$(A + A) + Q_k \subset A + \beta Q_{k+1}$$
,

• k := k + 1

Množinu Q konstruujeme iterativně:

Fáze 1

k := 0

 $\mathcal{Q}_0:=\{0\}$

Repeat:

• rozšiř Q_k na Q_{k+1} tak, že

$$(A + A) + Q_k \subset A + \beta Q_{k+1}$$
,

• k := k + 1

until $Q_k = Q_{k+1}$.

Množinu Q konstruujeme iterativně:

Fáze 1

k := 0

 $\mathcal{Q}_0:=\{0\}$

Repeat:

• rozšiř Q_k na Q_{k+1} tak, že

$$(A + A) + Q_k \subset A + \beta Q_{k+1}$$
,

• k := k + 1

until $Q_k = Q_{k+1}$.

$$Q := Q_k$$

m := 1

Pro každé $w_j \in \mathcal{A} + \mathcal{A}$ najdi množinu $\mathcal{Q}_{[w_i]} \subset \mathcal{Q}$ takovou, že

$$w_j + \mathcal{Q} \subset \mathcal{A} + \beta \mathcal{Q}_{[w_j]}$$

m := 1

Pro každé $w_j \in \mathcal{A} + \mathcal{A}$ najdi množinu $\mathcal{Q}_{[w_i]} \subset \mathcal{Q}$ takovou, že

$$w_j + \mathcal{Q} \subset \mathcal{A} + \beta \mathcal{Q}_{[w_j]}$$

While $(\max\{\#Q_{[w_j,...,w_{j-m+1}]}:(w_j,...,w_{j-m+1})\in(\mathcal{A}+\mathcal{A})^m\}>1)$ do:

m := 1

Pro každé $w_j \in \mathcal{A} + \mathcal{A}$ najdi množinu $\mathcal{Q}_{[w_i]} \subset \mathcal{Q}$ takovou, že

$$w_j + \mathcal{Q} \subset \mathcal{A} + \beta \mathcal{Q}_{[w_j]}$$

While $(\max\{\#Q_{[w_j,...,w_{j-m+1}]}:(w_j,...,w_{j-m+1})\in(\mathcal{A}+\mathcal{A})^m\}>1)$ do:

• m := m + 1

m := 1

Pro každé $w_j \in \mathcal{A} + \mathcal{A}$ najdi množinu $\mathcal{Q}_{[w_i]} \subset \mathcal{Q}$ takovou, že

$$w_j + \mathcal{Q} \subset \mathcal{A} + \beta \mathcal{Q}_{[w_j]}$$

While $(\max\{\#Q_{[w_j,...,w_{j-m+1}]}:(w_j,...,w_{j-m+1})\in(\mathcal{A}+\mathcal{A})^m\}>1)$ do:

- m := m + 1
- Pro všechny $(w_j,\ldots,w_{j-m+1})\in (\mathcal{A}+\mathcal{A})^m$ najdi množinu $\mathcal{Q}_{[w_j,\ldots,w_{j-m+1}]}\subset \mathcal{Q}_{[w_j,\ldots,w_{j-m+2}]}$ takovou, že

$$w_j + \mathcal{Q}_{[w_{j-1},\ldots,w_{j-m+1}]} \subset \mathcal{A} + \beta \mathcal{Q}_{[w_j,\ldots,w_{j-m+1}]},$$

m := 1

Pro každé $w_j \in \mathcal{A} + \mathcal{A}$ najdi množinu $\mathcal{Q}_{[w_i]} \subset \mathcal{Q}$ takovou, že

$$w_j + \mathcal{Q} \subset \mathcal{A} + \beta \mathcal{Q}_{[w_j]}$$

While $(\max\{\#Q_{[w_j,...,w_{j-m+1}]}:(w_j,...,w_{j-m+1})\in(\mathcal{A}+\mathcal{A})^m\}>1)$ do:

- m := m + 1
- Pro všechny $(w_j,\ldots,w_{j-m+1})\in (\mathcal{A}+\mathcal{A})^m$ najdi množinu $\mathcal{Q}_{[w_j,\ldots,w_{j-m+1}]}\subset \mathcal{Q}_{[w_j,\ldots,w_{j-m+2}]}$ takovou, že

$$w_j + \mathcal{Q}_{[w_{j-1},\ldots,w_{j-m+1}]} \subset \mathcal{A} + \beta \mathcal{Q}_{[w_j,\ldots,w_{j-m+1}]},$$

M := m

m := 1

Pro každé $w_j \in \mathcal{A} + \mathcal{A}$ najdi množinu $\mathcal{Q}_{[w_i]} \subset \mathcal{Q}$ takovou, že

$$w_j + \mathcal{Q} \subset \mathcal{A} + \beta \mathcal{Q}_{[w_j]}$$

While $(\max\{\#Q_{[w_j,...,w_{j-m+1}]}:(w_j,...,w_{j-m+1})\in(\mathcal{A}+\mathcal{A})^m\}>1)$ do:

- m := m + 1
- Pro všechny $(w_j,\ldots,w_{j-m+1})\in (\mathcal{A}+\mathcal{A})^m$ najdi množinu $\mathcal{Q}_{[w_j,\ldots,w_{j-m+1}]}\subset \mathcal{Q}_{[w_j,\ldots,w_{j-m+2}]}$ takovou, že

$$w_j + \mathcal{Q}_{[w_{j-1},\ldots,w_{j-m+1}]} \subset \mathcal{A} + \beta \mathcal{Q}_{[w_j,\ldots,w_{j-m+1}]},$$

M:=m $q(w_j,\ldots,w_{j-M+1}):=$ jediný prvek $\mathcal{Q}_{[w_j,\ldots,w_{j-M+1}]}$