

Departamento de Engenharia Informática e de Sistemas

Metodologias de Otimização e Apoio à Decisão

Revisões de Investigação Operacional

Formulação do modelo de PL

Considere o seguinte problema:

Uma pequena fábrica de brinquedos de madeira pretende produzir três novos brinquedos: comboios, cavalos e cabanas. A produção destes brinquedos requer mão-de-obra especializada de carpintaria e acabamentos. A produção de um comboio requer 1 hora de carpintaria e 1 hora de acabamentos. A produção de um cavalo requer 3 horas de carpintaria e 2 de acabamentos. A produção de uma cabana requer 2 horas de carpintaria e 1 de acabamentos. A fábrica tem 10 empregados na secção de carpintaria e 7 na secção de acabamentos, sendo o horário semanal de qualquer um dos empregados, de 40 horas.

Com a venda dos comboios, cavalos e cabanas a fábrica tem lucros unitários de **20**€, **50**€ e **25**€, respetivamente.

A fábrica pretende saber quais as quantidades de cada tipo de brinquedo que deve produzir de forma a maximizar o seu lucro semanal. (Assuma que a fábrica vende tudo o que produzir.)

Para ajudar a fábrica a obter resposta pretendida, <u>formule o problema em</u> <u>termos de um modelo de programação linear</u>.

O método gráfico

Resolva cada um dos seguintes problemas pelo <u>método gráfico</u>:

Minimizar
$$z = 3x_1 + 2x_2$$
 Maximizar $z = 3x_1 - x_2$

 sujeito a
 sujeito a

 $2x_1 + 2x_2 \le 8$
 $2x_1 + x_2 \ge 2$
 $x_1 + 5x_2 \ge 10$
 $x_1 + 3x_2 \ge 3$
 $-x_1 + 3x_2 = 6$
 $x_2 \le 4$
 $x_1 \ge 0$, $x_2 \ge 0$
 $x_1 \ge 0$, $x_2 \ge 0$

 $+3x_2 \ge 3$

 $X_2 \leq 4$

O método Simplex

Considere o seguinte problema de programação linear:

$$\begin{array}{ll} \textit{Maximizar} \ z = -x_1 + 2x_2 \\ \text{sujeito a} \\ x_1 + 3x_2 \geq 6 \\ x_1 - x_2 \leq 1 \\ x_1 \leq 5 \\ x_1 \geq 0, \, x_2 \geq 0 \end{array}$$

Resolva-o pelo <u>método Simplex</u> usando a <u>técnica do "Grande M"</u>

Considere agora o seguinte problema de programação linear:

Minimizar
$$z = 3x_1 + 2x_2 + 4x_3$$

sujeito a
 $2x_1 + x_2 + 3x_3 = 60$
 $3x_1 + 3x_2 + 5x_3 \ge 120$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$

Resolva-o pelo <u>método Simplex</u> usando a <u>técnica das "Duas Fases"</u>

Considere agora o seguinte problema de programação linear:

Maximizar
$$z = x_1 + x_2$$

sujeito a
 $x_1 + 2x_2 \le 4$
 $x_1 + x_2 = 3$
 $x_1 \ge 0, x_2 \ge 0$

Resolva-o pelo <u>método Simplex</u> usando a <u>técnica das "Duas Fases"</u>

Considere agora o seguinte problema de programação linear:

Minimizar
$$z = 3x_1 + 2x_2 + 4x_3$$

sujeito a
 $2x_1 + x_2 + 3x_3 = 60$
 $3x_1 + x_2 + 5x_3 \ge 120$
 $x_1, x_2, x_3 \ge 0$

Resolva-o pelo <u>método Simplex</u> usando a <u>técnica do "Grande M"</u>
(<u>Sugestão:</u> Resolva este exercício e conclua que se trata de um **problema** impossível, sem solução, pois atingirá o quadro ótimo com uma variável artificial na base)

Dualidade - O método dual do Simplex

Resolva o seguinte problema de programação linear pelo método dual do

Simplex:

Minimizar
$$z = 3x_1 + 2x_2$$

sujeito a
 $2x_1 + x_2 \ge 10$
 $-3x_1 + 2x_2 \le 6$
 $x_1 + x_2 \ge 6$
 $x_1 \ge 0$, $x_2 \ge 0$

Dualidade - Formulação do problema dual

1

Maximizar
$$z = 3x_1 - 2x_2$$

sujeito a

$$x_1 \leq 4$$

$$x_1 + 3x_2 \le 15$$

$$2x_1 + x_2 \le 10$$

$$x_1 \ge 0$$
 , $x_2 \ge 0$

2.

Minimizar
$$z = x_1 + 9x_2 + x_3$$

sujeito a

$$x_1 + 2x_2 + 3x_3 \ge 9$$

$$3x_1 + 2x_2 + 2x_3 \le 15$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$$

Relações Primal-Dual

PROBLEMA DE MAXIMIZAÇÃO	<	M AO DUAL	PROBLEMA DE MINIMIZAÇÃO	
	≤	≥ 0	. , .	
<i>i-</i> ésima restrição	≥	≤ 0	<i>i-</i> ésima variável	
restrição	=	Livre	variavei	
	≥ 0	>		
<i>j</i> - <u>ésima</u> variável	≤ 0	≤	<i>j-</i> ésima restrição	
variavei	livre	=	restrição	

Dualidade - Obtenção da solução do dual

Maximizar $z = 2x_1 - x_2$

sujeito a

$$2x_1 + 4x_2 \ge 8 \tag{1}$$

$$x_1 + 2x_2 \ge 4$$
 (2)

$$2x_1 + 2x_2 \le 6 \tag{3}$$

$$x_1 \ge 0, x_2 \ge 0$$

Considerando x₃ e x₅ as variáveis **surplus** e **artificial** da restrição funcional (1), x₄ e x₆ as variáveis **surplus** e **artificial** da restrição funcional (2), e x₇ a variável **slack** da restrição funcional (3), o quadro ótimo do Simplex é:

	Ci	2	-1	0	0	-M	-M	0	
X Β	c_B/x_i	X 1	X 2	X 3	X 4	X 5	X 6	X 7	b
X 2	-1	0	1	0	-1	0	1	-1/2	1
X 3	0	0	0	1	-2	-1	2	0	0
X 1	2	1	0	0	1	0	-1	1	2
	zj-cj	0	0	0	3	М	M-3	5/2	3

Dualidade – Exercício completo

```
Minimizar z = x_1 + 2x_2 + 4x_3

sujeito a

x_1 + 3x_2 \le 5

x_1 + 3x_3 \ge 4

x_2 + x_3 \le 9

x_1, x_2, x_3 \ge 0
```

- Resolva-o pelo método dual do Simplex
- Formule o problema dual que lhe está associado
- A partir dos resultados obtidos na 1ª alínea, indique qual é a solução ótima do problema dual

Departamento de Engenharia Informática e de Sistemas

Metodologias de Otimização e Apoio à Decisão

Capítulo I

Pós-Otimização e Análise de Sensibilidade

Introdução

Nos modelos de programação linear, os parâmetros envolvidos (coeficientes **c**, **b** e **A**) raramente são conhecidos com exatidão, pelo que muitas vezes são valores aproximados, estando sujeitos a variações ao longo do tempo. Por outro lado, pode tornar-se necessário adicionar uma nova variável ou restrição ao modelo.

Deste modo, é fundamental saber se estas modificações alteram a solução ótima inicialmente obtida e, se for o caso, determinar uma nova solução ótima, sendo também importante perceber quão sensível é uma solução a variações dos dados.

Tradicionalmente, costumam ser realizados dois tipos de estudo:

- Análise de pós-otimização, em que é estudado o impacto na solução ótima, de alterações discretas nos parâmetros do modelo;
- Análise de sensibilidade, em que o principal objetivo é a determinação de intervalos de variação para os parâmetros, para os quais a solução ótima não é afetada.

Conceitos introdutórios

Considere-se o seguindo exemplo (*Exemplo 1 do Capítulo 2 de Investigação Operacional*).

"Um fazendeiro deseja otimizar as plantações de arroz e milho da sua quinta, ou seja, quer saber que áreas deve plantar de arroz e milho de modo a ser máximo o lucro obtido das plantações.

O lucro por unidade de área plantada de arroz e de milho é de, respetivamente, 5 e 2 unidades monetárias (UM).

As áreas a plantar de arroz e milho não devem ser maiores que 3 e 4 unidades de área, respetivamente.

O consumo total de mão-de-obra (medido em homens/hora) nas duas plantações não deve ser maior do que 9. Cada unidade de área plantada de arroz necessita de 1 homem/hora e cada unidade de área plantada de milho necessita de 2 homens/hora."

O modelo matemático de PL que o descreve é:

Determinar

 $x_1 = n^o de unidades de área a plantar de arroz$

 $x_2 = n^o de$ unidades de área a plantar de milho de modo a

maximizar o lucro a obter das plantações, ou seja,

$$\max z = 5 x_1 + 2 x_2$$

sujeito a

$$x_1 \le 3$$

$$x2 \le 4$$

$$x_1 + 2 \ x_2 \le 9$$

$$x_1 \ge 0, x_2 \ge 0$$

O problema na forma aumentada consiste em:

Determinar
$$\mathbf{x} = (x_1, x_2, x_3, x_4, x_5)$$
 de modo a max $z = 5 x_1 + 2 x_2$ sujeito a $x_1 + x_3 = 3$ (1) $x_2 + x_4 = 4$ (2) $x_1 + 2x_2 + x_5 = 9$ (3) $x_1 \ge 0$; $x_2 \ge 0$; $x_3 \ge 0$; $x_4 \ge 0$; $x_5 \ge 0$

Considere-se os seguintes quadros, inicial e ótimo, resultantes da resolução do modelo anterior pelo método simplex.

Quadro inicial:

						A	
	ci	5	2	0	0	/ 0	
хB	$c_{\rm B}$ $x_{\rm j}$	х1	x2	х3	x4 /	X5	b b
Х3	0	1	0	1	0	0	3 /
X4	0	0	1	0	1	0	4
X5	0	1	2	0	0	1	9
Zj	$-c_j$	-5	-2	0	0	0	0

Solução básica admissível inicial:

$$\mathbf{x}_{B} \begin{cases} x3 = 3 \\ x4 = 4 \\ x5 = 9 \end{cases} \quad \text{com } z = 0$$

$$\mathbf{x}_{N} \begin{cases} x1 = 0 \\ x2 = 0 \end{cases}$$

Quadro ótimo:

			<u> </u>]	3-1	
		c_j	5	2	0	0	0 /		$\mathbf{x}_{\mathrm{B}}^*$
хв	св	х _j	x ₁	x 2	Х3	X4	X_5	b	
x ₁	5		1	0	1	0	0	3 📗	
X4	0		0	0	1/2	1	-1/2	1	
X2	2		0	1	-1/2	0	1/2	3	
Zj	_ cj		0	0	4	0	1	21	

Solução básica admissível ótima:

Solução básica admissível ofima:
$$x_1^* = 3$$

 $x_2^* = 1$
 $x_2^* = 3$ com $z^* = 21$
 $x_1^* = 3$
 $x_2^* = 3$ com $z^* = 21$
 $x_1^* = 3$

Verifica-se que $\mathbf{x} = [\mathbf{x}_B, \mathbf{x}_N]$, ou seja, o vetor das variáveis do problema pode subdividir-se nos vetores \mathbf{x}_{B} e \mathbf{x}_{N} , o primeiro com as variáveis básicas e o segundo com as variáveis não básicas.

Por outro lado, A = [B, N], ou seja, a matriz A (matriz dos coeficientes das variáveis nas restrições) pode subdividir-se nas matrizes B e N, a primeira com as colunas das variáveis básicas e a segunda com as colunas das variáveis não básicas.

Sendo a matriz B⁻¹ a matriz inversa de B, **b** o vetor dos termos independentes das restrições e \mathbf{c}_B o vetor dos coeficientes das variáveis básicas na função objetivo, em qualquer solução básica, verifica-se que:

$$\begin{cases} \mathbf{x}_B = \mathbf{B}^{-1}\mathbf{b} \\ \mathbf{x}_N = \mathbf{0} \end{cases} \qquad \text{com } \mathbf{z} = \mathbf{c}_B, \ \mathbf{x}_B = \mathbf{c}_B, \ \mathbf{B}^{-1}\mathbf{b} \end{cases}$$

A matriz B é sempre obtida no quadro inicial, através das colunas da matriz A correspondentes às variáveis básicas de uma dada iteração.

No exemplo anterior, a matriz B da base ótima é:

$$B = \begin{bmatrix} (x_1)(x_4)(x_2) \\ 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 2 \end{bmatrix}$$

A matriz inversa B⁻¹da base ótima é pois:

$$B^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 1/2 & 1 & -1/2 \\ -1/2 & 0 & 1/2 \end{bmatrix}$$

Pode facilmente obter-se esta matriz B^{-1} a partir do quadro ótimo do simplex, selecionando as colunas correspondentes às variáveis básicas do quadro inicial (ou seja, às <u>slacks</u> e às <u>artificiais</u>).

É possível confirmar as fórmulas anteriores, no cálculo da solução ótima e do valor de z*:

$$\mathbf{x}_{B}^{*} = \mathbf{B}^{-1}\mathbf{b}$$

$$\mathbf{x}_{B}^{*} = \begin{bmatrix} 1 & 0 & 0 \\ 1/2 & 1 & -1/2 \\ -1/2 & 0 & 1/2 \end{bmatrix} \mathbf{x} \begin{bmatrix} 3 \\ 4 \\ 9 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ 3 \end{bmatrix}$$

$$\mathbf{com} \quad \mathbf{z}^{*} = \mathbf{c}_{B}, \mathbf{x}_{B}^{*} = \begin{bmatrix} 5 & 0 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \\ 3 \end{bmatrix} = \mathbf{21}$$

Considere-se novamente os quadros inicial e final da resolução do problema anterior pelo método *simplex*.

Quadro inicial:

Designa-se por $\mathbf{P_f}$, o vetor dos coeficientes da variável $\mathbf{x_f}$ nas restrições funcionais.

<u>Quadro ót</u>	<u>imo</u> :	\mathbf{X}_1	\mathbf{X}_2	X_3	X_4	X_5
c_{j}	5 /	2	/ 0 /	0	0	
x_B c_B x_j	x_1	x_2	х3	X4	X5	b
x ₁ 5	1	0	1	0	0	3
x4 0	0	0	1/2	1	-1/2	1
<u>x</u> 2 2	0	1	-1/2	0	1/2	3
$z_i - c_i$	0	0	4	0	1	21

Os vetores X_f são a representação dos vetores P_f na base B, verificando-se a seguinte relação:

$$\mathbf{X}_f = B^{-1}\mathbf{P_f}$$

Pós-Otimização

Considere-se o seguinte problema (retirado do Capítulo 2 da unidade curricular de Investigação Operacional), o qual será utilizado como base nos exercícios deste capítulo.

"Uma empresa de mobiliário de escritório pretende lançar um modelo de secretárias e de estantes.

Pensa-se que o mercado pode absorver toda a produção de estantes, mas aconselha-se a que a produção mensal de secretárias não ultrapasse as 160 unidades.

Ambos os produtos são processados em duas unidades diferentes: unidade de estampagem (UE) e unidade de montagem e acabamento (UMA). A disponibilidade mensal em cada uma destas unidades é de 720 horas/máquina na UE e de 880 horas/máquina na UMA. Cada secretária necessita de 2 horas/máquina na UE e 4 horas/máquina na UMA; cada estante necessita de 4 horas/máquina na UE e 4 horas/máquina na UMA.

O lucro obtido por cada secretária produzida é de 6 unidades monetárias (UM) e por cada estante produzida é de 3 unidades monetárias (UM).

Pretende-se saber qual o plano de produção mensal de secretárias e de estantes que maximiza o lucro."

Formulando-o em termos de um modelo de programação linear, este problema consiste em:

Determinar

 x_1 = número de secretárias a produzir por mês

 x_2 = número de estantes a produzir por mês

de modo a maximizar o lucro mensal, ou seja, maximizar $z = 6 x_1 + 3 x_2$

sujeito a

$$2 x_1 + 4 x_2 \le 720$$

$$4 x_1 + 4 x_2 \le 880$$

$$x_1 \le 160$$

$$x_1 \ge 0, x_2 \ge 0$$

Resolvendo pelo método gráfico obtém-se:

a) Alteração dos coeficientes da função objetivo - cj

Em termos gráficos, significa uma alteração do declive das retas de nível da função objetivo.

Exemplo

Considerando o exemplo anteriormente apresentado (*pág*. *I-8*), suponha que o vetor correspondente aos coeficientes da função objetivo foi alterado de [6 3] para [4 5].

Seja o quadro ótimo do simplex:

$\mathbf{c_j}$	6	3	0	0	0		
$x_B c_B^{X_j}$	X 1	X 2	X 3	X 4	X 5	b	
x ₃ 0	0	0	1	-1	2	160	x ₁ =
$\mathbf{x_2}$ 3	0	1	0	1/4	-1	60	X 2 =
x ₁ 6	1	0	0	0	1	160	X 3 =
Zj - Cj	0	0	0	3/4	3	1140	X4 =
·							X 5 =
							Z = 1

Como **x1 e x2** <u>estão na base</u> tem que se atualizar <u>toda</u> a linha "zj - cj".

$\mathbf{c_{j}}$	4	5	0	0	0	
$x_B c_B^{X_j}$	X 1	X 2	X 3	X 4	X 5	b
← x ₃ 0	0	0	1	-1	<u>2</u> *	160
\mathbf{x}_2 5	0	1	0	1/4	-1	60
$\mathbf{x_1}$ 4	1	0	0	0	1	160
$\mathbf{Z_{j}} - \mathbf{c_{j}}$	0	0	0	5/4	-1	940
J J					^	I

O quadro já não é ótimo => A solução ótima (x^*), o valor de z^* e a base ótima ($\{x_3, x_2, x_1\}$), não se mantêm!

Aplica-se o algoritmo *simplex* até se encontrar novo quadro ótimo.

x ₅ 0	0	0	1/2	-1/2	1	80
\mathbf{x}_2 5	0	1	1/2	-1/4	0	140
$\mathbf{x_1}$ 4	1	0	-1/2	1/2	0	80
$\mathbf{Z}_{\mathbf{j}} - \mathbf{c}_{\mathbf{j}}$	0	0	1/2	3/4	0	1020
0 0	ı					l

A alteração do declive da função objetivo, levou a que o ótimo fosse atingido num outro ponto extremo: $x^* \to x'^*$.

Ou seja, em termos gráficos, uma alteração dos coeficientes **cj** significa uma alteração do declive das retas de nível da função objetivo

- A solução ótima encontrada mantém-se admissível $\mathbf{x}_{\mathbf{B}}^* = \mathbf{B}^{-1}\mathbf{b}$ é sempre não negativo
- A solução ótima encontrada pode deixar de ser ótima pois há alterações em "zj - cj"
 (a solução do dual associado pode tornar-se não admissível)

Seja cf a sofrer um acréscimo (ou decréscimo) Δ cf

$$\tilde{c} f = cf + \Delta cf$$

- Se xf não pertencer à base ótima:
 - ⇒ atualizar o valor de cf e calcular o valor "zj-cj" correspondente à coluna de xf

$$z_f - \widetilde{c}_f = z_f - (c_f + \Delta c_f)$$

- Se ≥ 0 , solução ótima mantém-se ^{a)};
- Senão, aplicar algoritmo *simplex* até obter nova solução ótima.
- Se xf pertencer à base ótima:
 - ⇒ atualizar toda a linha "z¡ c¡"
 - Se solução ótima se mantiver, calcular novo $z\{c_f + \Delta c_f\}^* = z\{c_f\}^* + \Delta c_f x_f^*;$
 - Senão, aplicar o algoritmo *simplex* até obter nova solução ótima.
- a) se = 0, a solução ótima mantém-se, mas existem novas soluções ótimas alternativas que têm de ser calculadas!

b) Alteração dos termos independentes das restrições - bi

Pode estudar-se o problema dual ou usar-se uma abordagem direta.

- A linha "zj cj" não é afetada
 (a solução do dual associado mantém-se)
- A solução correspondente depende da alteração em análise

$$\mathbf{x}^*\mathbf{B} = \mathbf{B}^{-1}\mathbf{b}$$

e pode tornar-se <u>não admissível</u>.

Seja b_k a sofrer um acréscimo (ou decréscimo) Δb_k

$$\tilde{\mathbf{b}} \ \mathbf{k} = \mathbf{b}\mathbf{k} + \Delta \mathbf{b}\mathbf{k}$$

$$\tilde{\mathbf{x}} \ \mathbf{B} = \mathbf{B}^{-1}\tilde{\mathbf{b}}$$

$$\tilde{\mathbf{x}} \ \mathbf{B} = \mathbf{B}^{-1}(\mathbf{b} + \Delta \mathbf{b})$$

$$\tilde{\mathbf{x}} \ \mathbf{B} = \mathbf{B}^{-1}\mathbf{b} + \mathbf{B}^{-1}\Delta \mathbf{b}$$

$$\tilde{\mathbf{x}} \ \mathbf{B} = \mathbf{x}\mathbf{B}^* + \mathbf{B}^{-1}\Delta \mathbf{b}$$

$$\operatorname{com} \Delta \mathbf{b} = \begin{bmatrix} 0 \\ \vdots \\ \Delta \mathbf{b}\mathbf{k} \\ \vdots \\ 0 \end{bmatrix}$$

- Se $\widetilde{\mathbf{x}}$ $\mathbf{B} \geq \mathbf{0}$, a solução é ótima e $\widetilde{\mathbf{Z}}^*$ é calculado.
- Senão, a solução é não admissível e aplica-se o algoritmo dual do *simplex* para calcular a nova solução admissível (uma vez que a condição de otimalidade não é violada).

Exemplo

Retome-se o exemplo anterior (pág. I-8).

Suponha que o vetor dos termos independentes das

restrições foi alterado de
$$\begin{bmatrix} 720 \\ 880 \\ 160 \end{bmatrix}$$
 para $\begin{bmatrix} 720 \\ 1280 \\ 160 \end{bmatrix}$.

Seja o quadro ótimo:

$\mathbf{c_{j}}$	6	3	0	0	0		
$x_B c_B^{X_j}$	X 1	X 2	X 3	X4	X 5	b	$\mathbf{x}_1 = 1$
X3 0	0	0	1	-1	2	160	$\mathbf{X2} = 0$
$\mathbf{x_2}$ 3	0	1	0	1/4	-1	60	X3 = 1
$\mathbf{x_1}$ 6	1	0	0	0	1	160	X4 =
$\mathbf{Z_{i}} - \mathbf{c_{i}}$	0	0	0	3/4	3	1140	X 5 =
y y	I					I	Z = 114

$$\mathbf{x_B}^* = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 160 \\ 60 \\ 160 \end{bmatrix}$$

$$\Delta \mathbf{b} = \begin{bmatrix} 720 \\ 1280 \\ 160 \end{bmatrix} - \begin{bmatrix} 720 \\ 880 \\ 160 \end{bmatrix} = \begin{bmatrix} 0 \\ 400 \\ 0 \end{bmatrix}$$

A nova solução, resultante das alterações, será:

$$\widetilde{\mathbf{x}} \mathbf{B} = \begin{bmatrix} 160 \\ 60 \\ 160 \end{bmatrix} + \begin{bmatrix} 1 & -1 & 2 \\ 0 & 1/4 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 400 \\ 0 \end{bmatrix} = \begin{bmatrix} -240 \\ 160 \\ 160 \end{bmatrix}$$

Esta solução é <u>não admissível</u> (relativamente ao problema alterado).

	$\mathbf{c_{j}}$	6	3	0	0	0	
ХB	$c_B^{X_j}$	X 1	X 2	X 3	X 4	X 5	b
← X3	0	0	0	1	<u>-1</u> *	2	-240
X 2	3	0	1	0	1/4	-1	160
\mathbf{x}_1	6	1	0	0	0	1	160
	Ci	0	0	0	3/4	3	1440
J	J				^		I

Neste caso, aplica-se o algoritmo dual do *simplex*, partindo do quadro anterior:

							$\mathbf{X}_1 = 1$
x ₄ 0	0	0	-1	1	-2	240	$\mathbf{x}_2 = 1$
$\mathbf{x_2}$ 3	0	1	1/4	0	-1/2	100	$\mathbf{X3} = 0$
$\mathbf{x_1}$ 6	1	0	0	0	1	160	X4 = 2
$\mathbf{Z_{i}} - \mathbf{c_{i}}$	0	0	3/4	0	9/2	1260	$\mathbf{X5} = 0$
3 3	ı					ı	Z = 12

A nova solução ótima corresponde ao ponto extremo x'*:

c) Alteração dos coeficientes da matriz A - aij

Seja akf a sofrer um acréscimo (ou decréscimo) Δa_{kf}

$$\tilde{a}_{kf} = a_{kf} + \Delta a_{kf}$$

Há duas situações a considerar:

A) a_{kf} é coeficiente de xf não incluído na base ótima

$$\begin{split} \widetilde{\boldsymbol{X}} \ _f &= B^{\text{--}1} \widetilde{\boldsymbol{P}} \ _f = B^{\text{--}1} (\boldsymbol{P}_f + \Delta \boldsymbol{P}_f) = B^{\text{--}1} \boldsymbol{P}_f + B^{\text{--}1} \Delta \boldsymbol{P}_f \\ \widetilde{\boldsymbol{X}} \ _f &= \boldsymbol{X}_f + B^{\text{--}1} \Delta \boldsymbol{P}_f \end{split}$$

em que
$$\Delta \mathbf{P_f} = \begin{bmatrix} 0 \\ \vdots \\ \Delta \mathbf{akf} \\ \vdots \\ 0 \end{bmatrix}$$

e X_f é a coluna associada a x_f

$$\tilde{\mathbf{z}}_{\mathbf{f}} - \mathbf{c}_{\mathbf{f}} = \mathbf{z}_{\mathbf{f}} + \mathbf{c}'_{\mathbf{B}} \mathbf{B}^{-1} \Delta \mathbf{P}_{\mathbf{f}} - \mathbf{c}_{\mathbf{f}}$$

- Se ≥ 0 , a solução ótima mantém-se;
- Senão, aplica-se o algoritmo *simplex*.

B) a_{kf} é coeficiente de x_f incluído na base ótima (caso mais complexo)

A alteração de uma coluna de A pertencente à <u>matriz</u> <u>identidade</u>, impõe a reconstituição da mesma matriz a qual conduz a um novo quadro *simplex*. Neste novo quadro, podem verificar-se as seguintes situações:

1 - Soluções básicas admissíveis do primal e do dual

⇒ quadro mantém-se ótimo;

2 - Solução básica admissível do primal, mas não admissível do dual

⇒ aplica-se o algoritmo *simplex* para obter nova solução ótima;

3 - Solução básica não admissível para o primal mas admissível para o dual

⇒ aplica-se o algoritmo dual do *simplex* para obter a nova solução ótima;

4 - Soluções básicas não admissíveis para ambos os problemas primal e dual

- ⇒ resolve-se de novo o problema (?) *ou*
- ⇒ força-se a saída de xf da base ótima (do quadro ótimo antes das alterações):
 - 1' <u>Se</u> existir algum elemento positivo na linha da variável xf, correspondente a uma variável não básica, tomar como "pivot" o que tiver menor valor "zj-cj".

Proceder à iteração respetiva e aplicar **A**) à nova SBA

Caso contrário, o processo continua.

2' - Escolher a variável a entrar na base:

$$\min_{j} \left\{ (z_j \text{-} c_j) : (z_j \text{-} c_j) \ge 0 \right\} = (z_r \text{-} c_r)$$

Se $x_{ir} \le 0$ escolher a variável seguinte em termos do valor de " z_j - c_j ".

3' - Escolher a variável a sair da base

$$Q_O = \min_{i} \left\{ \frac{x_{iO}}{x_{ir}} \mid x_{ir} > 0 \right\} = \frac{x_{SO}}{x_{Sr}}$$

4' - Substituir x_S por x_T na base e regressar a 1'.

Exemplo

Considere o exemplo anterior (pág. I-8).

Suponha que o vetor dos coeficientes da variável x1 nas

restrições foi alterado de
$$\begin{bmatrix} 2\\4\\1 \end{bmatrix}$$
 para $\begin{bmatrix} 2\\3.2\\1 \end{bmatrix}$.

Seja o quadro ótimo do simplex:

	$\mathbf{c_{j}}$	6	3	0	0	0		
ХB	$c_B^{X_j}$	X 1	X 2	X 3	X 4	X 5	b	$X_1 = 160$
Х3	0	0	0	1	-1	2	160	$\mathbf{X2} = 60$
X 2	3	0	1	0	1/4	-1	60	$X_3 = 160$
\mathbf{x}_1	6	1	0	0	0	1	160	X4 = 0
Z j -	- Ci	0	0	0	3/4	3	1140	X5 = 0
J	J	I					I	Z = 1140

x₁ está na base

Soluções admissíveis para os problemas primal e dual ⇒ logo mantêm-se ótimas.

Exemplo

Considere novamente o exemplo anterior (pág. I-8).

Suponha que o vetor dos coeficientes da variável x2 nas

restrições foi alterado de
$$\begin{bmatrix} 4 \\ 4 \\ 0 \end{bmatrix}$$
 para $\begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$.

Seja o quadro ótimo do simplex:

 $\tilde{\mathbf{X}} 2 = \mathbf{X}_2 + \mathbf{B}^{-1} \Delta \mathbf{P}_2$

$\mathbf{c_{j}}$	6	3	0	0	0		
$x_B c_B^{X_j}$	X 1	X 2	X 3	X4	X 5	b	$X_1 = 160$
X 3 0	0	0	1	-1	2	160	$\mathbf{X2} = 60$
$\mathbf{x_2}$ 3	0	1	0	1/4	-1	60	X3 = 160
$\mathbf{x_1}$ 6	1	0	0	0	1	160	X4 = 0
Zj - Cj	0	0	0	3/4	3	1140	$\mathbf{X5} = 0$
	ı					I	Z = 1140

x2 está na base

Soluções não admissíveis para os problemas primal e dual ⇒ Faz-se x2 sair da base do quadro ótimo e em seguida introduz-se a alteração enunciada.

Regressando ao quadro ótimo:

O	$\mathbf{c_{j}}$	6	3	0	0	0		
ХB	c _B X _j	x ₁	X 2	X 3	X 4	X 5	b	$\mathbf{X}_1 = 1_0$
X 3	0	0	0	1	-1	2	160	$\mathbf{X2} = 60$
X 2	3	0	1	0	1/4 *	-1	60	$\mathbf{X3} = 1$
$\mathbf{x_1}$	6	1	0	0	0	1	160	X4 = 0
Zj - Cj	0	0	0	3/4	3	1140	$\mathbf{X5} = 0$	
ŭ	- 1				<		1	Z = 11

- Elementos positivos na linha x2 ⇒ "1/4"
- O menor valor "zj-cj" corresponde a x4 ⇒ substituir x2 por x4

No novo quadro obtido, x2 é uma VNB. Por essa razão aplica-se A):

$\mathbf{c_j}$	6	3	0	0	0	
$x_B c_B^{X_j}$	X 1	X 2	X 3	X 4	X 5	b
X 3 0	0	4	1	0	-2	400
$\mathbf{x_4} 0$	0	4	0	1	-4	240
$\mathbf{x_1}$ 6	1	0	0	0	1	160
$\mathbf{Z}_{\mathbf{j}} - \mathbf{c}_{\mathbf{j}}$	0	-3	0	0	+6	1140

$$\widetilde{\mathbf{X}} \ 2 = \mathbf{X}_2 + \mathbf{B}^{-1} \Delta \mathbf{P}_2$$

$$\widetilde{\mathbf{X}} \ 2 = \begin{bmatrix} 4 \\ 4 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & -4 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -2 \\ -3 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$$

	cj	6	3	0	0	0	
ХB	$c_B^{X_j}$	X 1	X 2	X 3	X 4	X 5	b
← X3	0	0	<u>2</u> *	1	0	-2	400
X 4	0	0	1	0	1	-4	240
X 1	6	1	0	0	0	1	160
	- Cj	0	-3	0	0	+6	960
· ·	Ü	I	^				ı
X2	3	0	1	1/2	0	-1	200
X 4	0	0	0	-1/2	1	-3	40
x ₁	6	1	0	0	0	1	160
Zj.	. c _j	0	0	+3/2	0	+3	1560

Nova solução ótima:

$$x1* = 160$$

 $x2* = 200$
 $x3* = 0$
 $x4* = 40$
 $x5* = 0$ $com z* = 1560$

d) Introdução de uma nova variável de decisão

O problema original transforma-se em:

$$\max \left\{z = \sum_{j=1}^{n} c_{j}x_{j} + c_{n+1}x_{n+1}\right\}$$
sujeito a
$$\sum_{j=1}^{n} a_{ij}x_{j} + a_{i(n+1)}x_{n+1} \le b_{i}$$

$$j=1$$

$$x_{j} \ge 0$$

$$x_{n+1} \ge 0; j = 1, 2, ..., n; i = 1, 2, ..., m$$

A solução ótima do problema original com $x_{n+1}=0$ (variável não básica) é uma solução admissível.

- Calcula-se $\mathbf{X}_{n+1} = \mathbf{B}^{-1}\mathbf{P}_{n+1}$
- Introduz-se esta coluna no quadro
- Calcula-se z_{n+1} - c_{n+1} :
 - Se ≥ 0, solução ótima mantém-se
 - Senão, aplica-se algoritmo simplex (colocando x_{n+1} na base) para determinar a nova solução ótima.

Exemplo

Considere novamente o exemplo anterior (pág. I-8).

Suponha que a empresa decidiu analisar a implicação da produção de um novo produto: <u>mesas</u>.

Estudos das condições de produção indicam que a produção de uma mesa requer 3 horas/máquina na UE e 2 horas/máquina na UMA, não estando prevista qualquer limitação de mercado.

O lucro unitário estimado para as mesas é de 5 unidades monetárias (UM).

Seja o quadro ótimo *simplex* (antes da introdução das mesas):

$\mathbf{c_i}$	6	3	0	0	0		
$x_B c_B^{X_i}$	X 1	X 2	X 3	X 4	X 5	b	
X 3 0	0	0	1	-1	2	160	$x_1 = 1$
x ₂ 3	0	1	0	1/4	-1	60	$\mathbf{X2} = 6$
x ₁ 6	1	0	0	0	1	160	X3 = 1
Zj - Cj	0	0	0	3/4	3	1140	$\mathbf{X4} = 0$
'						•	$\mathbf{X5} = 0$
							Z = 11

A formalização do problema, já incluindo o novo produto e na forma aumentada, é:

maximizar
$$z = 6 x_1 + 3 x_2 + 5 x_6$$

sujeito a
 $2 x_1 + 4 x_2 + x_3 + 3 x_6 = 720$
 $4 x_1 + 4 x_2 + x_4 + 2 x_6 = 880$
 $x_1 + x_5 = 160$
 $x_i \ge 0$; $i = 1, 2, ..., 6$

$$\mathbf{P}_6 = \begin{bmatrix} 3 \\ 2 \\ 0 \end{bmatrix}$$

$$\mathbf{X}_6 = \mathbf{B}^{-1}\mathbf{P}_6 = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 1/4 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1/2 \\ 0 \end{bmatrix}$$

O quadro simplex, depois da introdução de x6, é:

	$\mathbf{c_i}$	6	3	0	0	0	5	
XB	$c_B^{X_i}$	X 1	X 2	X 3	X4	X 5	X 6	b
Х3	0	0	0	1	-1	2	1	160
← X2	3	0	1	0	1/4	-1	<u>1/2</u> *	60
$\mathbf{x_1}$	6	1	0	0	0	1	0	160
Zj -	ci	0	0	0	3/4	3	-7/2	1140
J	J	I					^	I

A solução anterior deixa de ser ótima, ou seja, é vantajoso produzir mesas.

Aplica-se o algoritmo *simplex* até se encontrar o novo ótimo.

← x 3 0	0	-2	1	-3/2	<u>4</u> *	0	40
\mathbf{x}_{6} 5	0	2	0	1/2	-2	1	120
$\mathbf{x_1}$ 6	1	0	0	0	1	0	160
Zj - Cj	0	7	0	5/2	-4	0	1560
3 3	I				^		ı
X 5 0	0	-1/2	1/4	-3/8	1	0	10
x ₆ 5	0	1	1/2	-1/4	0	1	140
x ₁ 6	1	1/2	-1/4	3/8	0	0	150
Zj - Cj	0	5	1	1	0	0	1600

A solução ótima do problema, depois da introdução da nova variável, é:

$$\mathbf{x}^* = (150, 0, 0, 0, 10, 140)$$
 com $\mathbf{z}^* = 1600$

Ou seja, devem produzir-se 150 secretárias e 140 mesas, deixando de se produzir estantes, resultando um lucro total de 1600 UM.

e) Introdução de uma nova restrição

Não altera a função objetivo, mas pode restringir a região admissível.

O primeiro passo é verificar se a solução ótima do problema original satisfaz a restrição adicional

- Se satisfizer, a solução ótima mantém-se
- Senão, surge nova solução ótima que é necessário determinar.
 - Introduzir no quadro ótimo uma linha (correspondente à restrição) e uma coluna (variável folga e/ou artificial)
 - Fazer as operações de condensação necessárias (para reconstruir a matriz identidade). Se a solução obtida for não admissível efetuar nova iteração (pelo método dual do *simplex*) para determinar a nova solução ótima.

Exemplo

Retome-se o exemplo anterior (pág. I-8).

Estudos de mercado mostram que a produção de estantes deve ser pelo menos de 100. Adiciona-se a restrição $x2 \ge 100$.

Seja o quadro ótimo:

	$\mathbf{c_i}$	6	3	0	0	0		
ХB	$c_B^{X_i}$	X 1	X 2	X 3	X 4	X 5	b	
X 3	0	0	0	1	-1	2	160	$X_1 = 160$
X 2	3	0	1	0	1/4	-1	60	$\mathbf{X2} = 60$
X 1	6	1	0	0	0	1	160	X3 = 160
Zj -	cj	0	0	0	3/4	3	1140	$\mathbf{Z} = 1140$

Esta solução não satisfaz a nova restrição pois $x_2 = 60$.

Transformando $x_2 \ge 100$ em $-x_2 \le -100$ e adicionando uma "slack", obtém-se:

$$-x2 + x6 = -100$$

O novo quadro aumentado será:

	ci	6	3	0	0	0	0	
ХB	$c_B^{X_i}$	X 1	X 2	X 3	X 4	X 5	X 6	b
Х3	0	0	0	1	-1	2	0	160
X 2	3	0	1	0	1/4	-1	0	60
X 1	6	1	0	0	0	1	0	160
x6	0	0	-1 ⇐	0	0	0	1	-100
Zj -	cj	0	0	0	3/4	3	0	1140

Fazendo as operações de condensação necessárias:

X3 0	0	0	1	-1	2	0	160
$\begin{array}{ccc} \mathbf{x_3} & 0 \\ \mathbf{x_2} & 3 \end{array}$	0	1	0	1/4	-1	0	60
x ₁ 6 ← x ₆ 0	1	0	0	-1 1/4 0 1/4	1	0	160
← x ₆ 0	0	0	0	1/4	<u>-1</u> *	1	-40
Zj - Cj	0	0	0	3/4	3	0	1140
J	I				^		I

O quadro já não é ótimo devido ao aparecimento de um valor negativo na coluna b. Tem que se aplicar o método dual do *simplex*:

X 3 0	0	0	1	-1/2	0	2	80	
$\mathbf{x_2}$ 3	0	1	0	0	0	-1	100	
$\mathbf{x_1}$ 6	1	0	0	1/4	0	1	120	$X_1 = 120$
\mathbf{x}_{5} 0	0	0	0	-1/4	1	-1	40	$X_1 = 120$ $X_2 = 100$
Zj - Cj	0	0	0	3/2	0	3	1020	Z = 1020

A introdução da nova restrição levou a que a anterior solução ótima deixasse de ser admissível e o ótimo passasse a ser atingido num outro ponto:

$$x^* \rightarrow x'^* = (120, 100, 80, 0, 40, 0)$$

com $z^* = 1020$.

Análise de Sensibilidade:

a) <u>aos coeficientes da função objetivo</u> - cf

Seja Δ cf a variação que se pretende determinar em cf.

 i) cf é coeficiente da função objetivo duma variável não básica

No ótimo todos os " $z_j - c_j$ " ≥ 0

Como xf não pertence à base, qualquer variação só tem implicações em "zf - cf" logo

$$z_f - (c_f + \Delta c_f) \ge 0$$

$$\downarrow \\ -\infty < \Delta c_f \le z_f - c_f$$

A base ótima mantém-se desde que o novo cf $(cf+\Delta cf)$ não ultrapasse zf.

ii) cf é coeficiente da função objetivo duma variável básica

Como xf pertence à base, toda a linha dos "zj - cj" sofre alteração (assim como o valor do z*)

Recalcular toda a linha dos "zj - cj", considerar todos os valores obtidos como ≥ 0 e resolver o sistema de inequações resultante

Alternativamente:

$$\begin{split} \Delta c f^{min} &= \\ \left\{ \begin{array}{ll} \max \left[\frac{-(zj-cj)}{yfj} \right] & \text{para } yfj > 0 \\ -\infty & \text{se todo o } yfj \leq 0 \end{array} \right. \\ \Delta c f^{max} &= \\ \left\{ \begin{array}{ll} \min \left[\frac{-(zj-cj)}{yfj} \right] & \text{para } yfj < 0 \\ +\infty & \text{se todo o } yfj \geq 0 \end{array} \right. \\ \Delta c f^{min} &\leq \Delta c f \leq \Delta c f^{max} \end{split}$$

onde yfj é o elemento da linha f de Xj para todos os j correspondentes a variáveis não básicas.

O coeficiente da variável xf pode assumir qualquer valor de [cf + Δ cf^{min}; cf + Δ cf^{max}] sem que a base ótima se altere.

O valor de z* pertencerá ao intervalo:

$$[z^* + \Delta c f^{min} x f^*; z^* + \Delta c f^{max} x f^*]$$

Exemplo

Retome-se o exemplo anterior (pág. I-8), cujo quadro ótimo simplex é:

simplex c	⁻.						
•	$\mathbf{c_i}$ 6	3	0	0	0		
XB CB	$\mathbf{x_i}$ $\mathbf{x_1}$	X 2	X 3	X 4	X 5	b	_
X3 0	0	0	1	-1	2	160	$X_1 = 160$
$\mathbf{x_2}$ 3	0	1	0	1/4	-1	60	$\mathbf{X2} = 60$
$\mathbf{x_1}$ 6	1	0	0	0	1	160	$X_3 = 160$
z _j - c _j	0	0	0	3/4	3	1140	X4 = 0
							X5 = 0
							z = 1140

Proceda-se à análise de sensibilidade em relação a c1 = 6 (lucro unitário das secretárias).

Como x1 é variável básica, toda a linha dos " z_j - c_j " sofre alteração, bem como o valor do z^* .

Recalculando toda a linha dos " $z_j - c_j$ "

$\mathbf{c_i}$	6+∆c ₁	3	0	0	0	
$x_B c_B^{X_i}$	X 1	X 2	X 3	X 4	X 5	В
X 3 0	0	0	1	-1	2	160
\mathbf{x}_2 3	0	1	0	1/4	-1	60
x_1 6+ Δc_1	1	0	0	0	1	160
z_j - c_j	0	0	0	3/4	-3+6+∆c ₁	1140+160∆c1
					≥ 0	

$$-3 + 6 + \Delta c_1 \ge 0$$
 $z^* = 1140 + 160\Delta c_1$ $\Delta c_1 \ge -3$ $1140 + 160^*(-3) \le z^* \le +\infty$ $-3 \le \Delta c_1 \le +\infty$ $1140 - 480 \le z^* \le +\infty$ $3 \le c_1 \le +\infty$ $660 \le z^* \le +\infty$

Alternativamente, usando as fórmulas:

tal como anteriormente, $660 \le z^* \le +\infty$

b) <u>nos termos independentes das restrições</u> - bi

Seja Δb_k a variação que se pretende determinar em b_k .

$$\mathbf{x_B}^* = \mathbf{B}^{-1}\mathbf{b} \ge 0$$

para solução admissível

então

$$\mathbf{x_B}^*_{\Delta_{b_k}} = \mathbf{B}^{-1}(\mathbf{b} + \Delta \mathbf{b}) \ge 0$$

$$\operatorname{com} \Delta \mathbf{b} = \begin{bmatrix} 0 \\ \vdots \\ \Delta b_k \\ \vdots \\ 0 \end{bmatrix}$$

Resolver o sistema de inequações resultante, ou, alternativamente:

$$\begin{split} \Delta b k^{min} &= \\ \left\{ \begin{array}{ll} \max \left[\frac{-(x_B i^*)}{\beta i k} \right] & \text{para } \beta i k > 0 \\ -\infty & \text{se todo o } \beta i k \leq 0 \end{array} \right. \\ \Delta b k^{max} &= \\ \left\{ \begin{array}{ll} \min \left[\frac{-(x_B i^*)}{\beta i k} \right] & \text{para } \beta i k < 0 \\ +\infty & \text{se todo o } \beta i k \geq 0 \end{array} \right. \end{split}$$

 $\Delta b_k^{\min} \leq \Delta b_k \leq \Delta b_k^{\max}$

onde x_{Bi}^* é o elemento da coluna dos termos independentes e linha i do quadro ótimo e β_{ik} é o elemento (i, k) da matriz B^{-1} ótima.

O segundo membro da k-ésima restrição pode assumir qualquer valor de $[b_k + \Delta b_k^{min}; b_k + \Delta b_k^{max}]$ sem que a base ótima se altere.

Porém, os valores da solução ótima alteram-se em conformidade com o valor concreto assumido por Δb_k :

$$\mathbf{x_B}^*_{\Delta_{b_k}} = B^{-1}(\mathbf{b} + \Delta \mathbf{b})$$

acontecendo o mesmo ao valor de z*:

$$z^* = \mathbf{c'}_B \mathbf{x}_B^*_{\Delta_{bk}} = \mathbf{c'}_B B^{-1}(\mathbf{b} + \Delta \mathbf{b})$$

Exemplo

Retome-se o exemplo anterior (pág. I-8), cujo quadro ótimo simplex é:

$\mathbf{c_i}$	6	3	0	0	0		
$x_B c_B^{X_i}$	X 1	X 2	X 3	X 4	X 5	b	
X 3 0	0	0	1	-1	2	160	$X_1 = 160$
$\mathbf{x_2}$ 3	0	1	0	1/4	-1	60	$\mathbf{X2} = 60$
\mathbf{x}_1 6	1	0	0	0	1	160	X3 = 160
z _j - c _j	0	0	0	3/4	3	1140	X4 = 0
- -						•	$ \mathbf{X5} = 0 \\ \mathbf{z} = 1140 $

A solução ótima é:

$$\mathbf{x_B}^* = \mathbf{B}^{-1}\mathbf{b} = \begin{bmatrix} 160 \\ 60 \\ 160 \end{bmatrix}$$

Proceda-se à análise de sensibilidade em relação a b2 = 880 (disponibilidade máxima da UMA)

$$\mathbf{x}_{\mathbf{B}}^{*} = \begin{bmatrix} x_{3} \\ x_{2} \\ x_{1} \end{bmatrix} = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 1/4 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 720 \\ 880 + \Delta b_{2} \\ 160 \end{bmatrix}$$

$$\mathbf{x}_{\mathbf{B}}^{*} = \begin{bmatrix} x_{3} \\ x_{2} \\ x_{1} \end{bmatrix} = \begin{bmatrix} 160 - \Delta b_{2} \\ \Delta b_{2}/4 + 60 \\ 160 \end{bmatrix} \ge \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} 160 - \Delta b_{2} \ge 0 \\ \Delta b_{2}/4 + 60 \ge 0 \end{cases} \Leftrightarrow \begin{cases} \Delta b_{2} \le 160 \\ \Delta b_{2} \ge -240 \\ \downarrow \downarrow \end{cases}$$

$$-240 \le \Delta b_{2} \le 160$$

$$640 \le b_{2} \le 1040$$

$$\downarrow \downarrow$$

$$960 \le z^{*} \le 1260$$

Alternativamente, usando as fórmulas:

$$\Delta b2^{\min} = \max \left[\frac{-60}{1/4} \right] = -240$$

$$\Delta b2^{\max} = \min \left[\frac{-160}{-1} \right] = 160$$

$$\downarrow \downarrow$$

$$-240 \le \Delta b2 \le 160 \quad \text{ou} \quad 640 \le b2 \le 1040$$
tal como anteriormente, $960 \le z^* \le 1260$

Departamento de Engenharia Informática e de Sistemas

Metodologias de Otimização e Apoio à Decisão

Capítulo II Programação Linear inteira

1 - Introdução

A **Programação Linear Inteira** (**PLI**) é uma extensão da programação linear que resulta da inclusão de variáveis inteiras no modelo.

O modelo contempla exclusivamente variáveis inteiras	Programação Linear Inteira Pura (PLIP)
O modelo contempla variáveis contínuas e variáveis inteiras	Programação Linear Inteira Mista (PLIM)

2 – Resolução de problemas de PLI

Primeira abordagem

- Resolver o problema como se fosse um de programação linear (relaxação do problema de PLI) e arredondar os valores ótimos encontrados para cada uma das variáveis de decisão inteiras.
- No entanto, após o arredondamento, a solução obtida:
 - Pode ser não admissível para o problema de PLI
 - Pode não ser ótima para o problema de PLI

Algoritmos mais frequentemente usados

- Planos de Corte (introduzido por Ralph Gomory)
- Ramificação e Limitação (Branch-and-Bound)

3 – Algoritmo de Gomory

- Este algoritmo enquadra-se numa das grandes classes em que é possível classificar os vários métodos de resolução de problemas de PLI a classe dos métodos de planos de corte.
- O procedimento comum a todos estes métodos consiste na adição de novas restrições, designadas por planos de corte ou simplesmente cortes, que têm por objetivo restringir a região admissível.
- O algoritmo de Gomory foi dos primeiros a ser utilizado na resolução de problemas de PLI.

Algoritmo de Gomory para PLIP

Considere-se o seguinte problema de PLIP:

A lógica de funcionamento deste algoritmo é muito simples e resume-se em dois passos:

1º Passo

- Resolver o problema de PL associado:
 - No caso da solução ótima satisfazer as restrições de integralidade, então é também solução ótima do problema de PLIP.
 - Caso contrário, o processo continua.

2º Passo

- Introduzir uma nova restrição no problema e resolver de novo o problema de PL associado:
 - Se a solução obtida satisfizer as restrições de integralidade, então também é solução ótima do problema de PLIP.
 - Caso contrário, repetir o procedimento (2º Passo) até obter uma solução inteira, ou concluir pela impossibilidade do problema.

Resumindo:

- Este procedimento consiste em reduzir a região admissível através da introdução de restrições sucessivas que mais não fazem do que cortar "fatias" do conjunto X (região admissível). Daí a designação de planos de corte.
- O objetivo final é encontrar uma solução que satisfaça qualquer uma das restrições de integralidade.

- Em cada iteração do algoritmo a restrição a introduzir deve garantir que:
 - A solução ótima do problema de PL associado da iteração anterior seja não admissível para o novo problema.
 - Nenhuma solução inteira do problema inicial seja excluída ao restringir a região admissível.

Fluxograma do Algoritmo

A restrição de corte a introduzir no 2º passo do algoritmo tem a seguinte forma:

$$\sum_{j \notin I_B} f_{sj} x_j \ge f_{s0}$$

Em que:

 x_{s0} — é o valor da coluna b do quadro final do Simplex, correspondente a $s^{\underline{e}sima}$ variável básica (não inteira) que pode decompor-se nas partes inteira e fracionária:

$$x_{s0} = [x_{s0}] + f_{s0}$$
 $[x_{s0}] \ge 0$, $0 \le f_{s0} < 1$

 x_{sj} — é o elemento da linha s coluna j do quadro final do simple x, sendo x_i uma variável não pertencente à base.

Este também se pode decompor em:

$$x_{sj} = \begin{bmatrix} x_{sj} \end{bmatrix} + f_{sj}$$

$$0 \le f_{sj} < 1$$

Nota: Há varias restrições de corte possíveis, tantas quantas as variáveis básicas não inteiras. A regra normalmente usada consiste em selecionar para restrição de corte, aquela à qual corresponde um f_{s0} maior.

Algoritmo de Gomory para PLIM

- Na prática são frequentes as situações em que nem todas as variáveis estão sujeitas a uma restrição de integralidade, ou seja, o modelo incorpora simultaneamente variáveis inteiras e contínuas.
- Neste caso, diz-se que o problema é de Programação Linear Inteira Mista, ou abreviadamente, de PLIM.
- A partir do algoritmo apresentado anteriormente para problemas de PLIP, Gomory desenvolveu uma outra versão adaptada a este tipo de problemas.

Considere-se o seguinte problema de PLIM:

$$Maximizar z = \sum_{j} c_{j} x_{j}$$

s.a
$$\sum_{j} a_{ij} x_{j} \le b_{i}$$
 (i = 1,2,...,m)
 $x_{j} \ge 0$ (j = 1,2,...,n)
 x_{j} inteiro para (j = 1,2,...,p) (p < n)

- A forma de resolver um problema de PLIM é idêntica à que se usa para a resolução de problemas de PLIP (os 1° e 2° passos do algoritmo são iguais);
- A única diferença reside na forma da restrição de corte.

A **restrição de corte** tem agora a seguinte forma:

$$\sum_{j \in N} d_{sj} x_j \ge f_{s0}$$

$$d_{sj} = \begin{cases} x_{sj} & \text{j} \in \mathbf{N}_{+}^{\mathbf{C}} \\ \frac{f_{s0}}{1 - f_{s0}} |x_{sj}| & \text{j} \in \mathbf{N}_{-}^{\mathbf{C}} \\ f_{sj} & \text{j} \in \mathbf{N}^{\mathbf{I}} & \text{se } f_{sj} \leq f_{s0} \\ \frac{f_{s0}}{1 - f_{s0}} (1 - f_{sj}) & \text{j} \in \mathbf{N}^{\mathbf{I}} & \text{se } f_{sj} > f_{s0} \end{cases}$$
II-16

Em que:

N - é o conjunto dos **índices das variáveis não básicas**;

 N^{I} - é o conjunto dos índices das variáveis não básicas **sujeitas à** restrição de integralidade;

N^C- é o conjunto dos índices das variáveis não básicas **não sujeitas** à restrição de integralidade, designando-se por:

 N_{+}^{C} - se para essas variáveis $x_{ij} \ge 0$;

 N_{-}^{C} - se para essas variáveis $x_{ij} < 0$.

Departamento de Engenharia Informática e de Sistemas

Metodologias de Otimização e Apoio à Decisão

Capítulo II Programação Linear inteira

1 - Introdução

A **Programação Linear Inteira** (**PLI**) é uma extensão da programação linear que resulta da inclusão de variáveis inteiras no modelo.

O modelo contempla exclusivamente variáveis inteiras	Programação Linear Inteira Pura (PLIP)
O modelo contempla variáveis contínuas e variáveis inteiras	Programação Linear Inteira Mista (PLIM)

2 – Resolução de problemas de PLI

Primeira abordagem

- Resolver o problema como se fosse um de programação linear (relaxação do problema de PLI) e arredondar os valores ótimos encontrados para cada uma das variáveis de decisão inteiras.
- No entanto, após o arredondamento, a solução obtida:
 - Pode ser não admissível para o problema de PLI
 - Pode não ser ótima para o problema de PLI

Algoritmos mais frequentemente usados

- Planos de Corte (introduzido por Ralph Gomory)
- Ramificação e Limitação (*Branch-and-Bound*)

3 – Algoritmo de Gomory

- Este algoritmo enquadra-se numa das grandes classes em que é possível classificar os vários métodos de resolução de problemas de PLI – a classe dos métodos de planos de corte.
- O procedimento comum a todos estes métodos consiste na adição de novas restrições, designadas por planos de corte ou simplesmente cortes, que têm por objetivo restringir a região admissível.
- O algoritmo de Gomory foi dos primeiros a ser utilizado na resolução de problemas de PLI.

Algoritmo de Gomory para PLIP

Considere-se o seguinte problema de PLIP:

A lógica de funcionamento deste algoritmo é muito simples e resume-se em dois passos:

1º Passo

- Resolver o problema de PL associado:
 - No caso da solução ótima satisfazer as restrições de integralidade, então é também solução ótima do problema de PLIP.
 - Caso contrário, o processo continua.

2º Passo

- Introduzir uma nova restrição no problema e resolver de novo o problema de PL associado:
 - Se a solução obtida satisfizer as restrições de integralidade, então também é solução ótima do problema de PLIP.
 - Caso contrário, repetir o procedimento (2º Passo) até obter uma solução inteira, ou concluir pela impossibilidade do problema.

Resumindo:

- Este procedimento consiste em reduzir a região admissível através da introdução de restrições sucessivas que mais não fazem do que cortar "fatias" do conjunto X (região admissível). Daí a designação de planos de corte.
- O objetivo final é encontrar uma solução que satisfaça qualquer uma das restrições de integralidade.

- Em cada iteração do algoritmo a restrição a introduzir deve garantir que:
 - A solução ótima do problema de PL associado da iteração anterior seja não admissível para o novo problema.
 - Nenhuma solução inteira do problema inicial seja excluída ao restringir a região admissível.

Fluxograma do Algoritmo

A restrição de corte a introduzir no 2º passo do algoritmo tem a seguinte forma:

$$\sum_{j \notin I_B} f_{sj} x_j \ge f_{s0}$$

Em que:

 χ_{s0} — é o valor da coluna b do quadro final do Simplex, correspondente a s e e variável básica (não inteira) que pode decompor-se nas partes inteira e fracionária:

$$x_{s0} = [x_{s0}] + f_{s0}$$

$$[x_{s0}] \ge 0 , 0 \le f_{s0} < 1$$

 x_{sj} — é o elemento da linha s coluna j do quadro final do simple x, sendo x_i uma variável não pertencente à base.

Este também se pode decompor em:

$$x_{sj} = \begin{bmatrix} x_{sj} \end{bmatrix} + f_{sj}$$

$$0 \le f_{sj} < 1$$

Nota: Há varias restrições de corte possíveis, tantas quantas as variáveis básicas não inteiras. A regra normalmente usada consiste em selecionar para restrição de corte, aquela à qual corresponde um f_{s0} maior.

Algoritmo de Gomory para PLIM

- Na prática são frequentes as situações em que nem todas as variáveis estão sujeitas a uma restrição de integralidade, ou seja, o modelo incorpora simultaneamente variáveis inteiras e contínuas.
- Neste caso, diz-se que o problema é de Programação Linear Inteira
 Mista, ou abreviadamente, de PLIM.
- A partir do algoritmo apresentado anteriormente para problemas de PLIP, Gomory desenvolveu uma outra versão adaptada a este tipo de problemas.

Considere-se o seguinte problema de PLIM:

Maximizar
$$z = \sum_{j} c_{j} x_{j}$$

s.a $\sum_{j} a_{ij} x_{j} \le b_{i}$ (i = 1,2,...,m)
 $x_{j} \ge 0$ (j = 1,2,...,n)
 x_{i} inteiro para (j = 1,2,...,p) (p < n)

- A forma de resolver um problema de PLIM é idêntica à que se usa para a resolução de problemas de PLIP (os 1° e 2° passos do algoritmo são iguais);
- A única diferença reside na forma da restrição de corte.

A **restrição de corte** tem agora a seguinte forma:

$$\sum_{j \in N} d_{sj} x_j \ge f_{s0}$$

$$d_{sj} = \begin{cases} x_{sj} & j \in \mathbf{N}_{+}^{\mathbf{C}} \\ \frac{f_{s0}}{1 - f_{s0}} |x_{sj}| & j \in \mathbf{N}_{-}^{\mathbf{C}} \\ f_{sj} & j \in \mathbf{N}^{\mathbf{I}} & se \ f_{sj} \leq f_{s0} \\ \frac{f_{s0}}{1 - f_{s0}} (1 - f_{sj}) & j \in \mathbf{N}^{\mathbf{I}} & se \ f_{sj} > f_{s0} \end{cases}$$

Em que:

N - é o conjunto dos **índices das variáveis não básicas**;

 N^{I} - é o conjunto dos índices das variáveis não básicas **sujeitas à** restrição de integralidade;

N^C- é o conjunto dos índices das variáveis não básicas **não sujeitas** à restrição de integralidade, designando-se por:

 N_{+}^{C} - se para essas variáveis $x_{ij} \ge 0$;

 N_{-}^{C} - se para essas variáveis $x_{ij} < 0$.

Departamento de Engenharia Informática e de Sistemas

Metodologias de Otimização e Apoio à Decisão

Capítulo II

- Anexo 1 -

Resolução de problemas de PLIP

EXEMPLO 1

Considere o seguinte problema:

Mensalmente um carpinteiro possui 6 peças de madeira e dispõe de 28 horas livres para construir dois modelos diferentes de bancos. Cada banco do modelo I requer 2 peças de madeira e exige 7 horas de trabalho. Cada banco do modelo II requer 1 peça de madeira e exige 8 horas de trabalho. Os lucros unitários obtidos com a venda dos

bancos são de, respetivamente, 12 e 8 Unidades Monetárias (U.M.).

O carpinteiro pretende saber quantos bancos de cada modelo deve fabricar por mês, de forma a maximizar o lucro obtido com a venda dos bancos.

Para responder a esta questão, formule o problema em termos de um modelo de PLIP e resolva-o recorrendo ao algoritmo de Gomory.

O problema de programação linear inteira pura (PLIP) que temos para resolver é o seguinte:

Max
$$z = 12 x1 + 8 x2$$

s.a
 $2x1 + x2 \le 6$ (1)
 $7x1 + 8x2 \le 28$ (2)
 $x1 \ge 0, x2 \ge 0$
 $x1, x2$ inteiros

Adicionando as variáveis *slack* x₃ e x₄ em (1) e (2), respetivamente, vamos resolver o seguinte problema de programação linear associado:

$$\begin{aligned} &\text{Max } z = 12 \text{ x1} + 8 \text{ x2} \\ &\text{s.a} \\ &2 \text{x1} + \text{ x2} + \text{x3} = 6 \\ &7 \text{x1} + 8 \text{x2} + \text{x4} = 28 \\ &x_i \geq 0, i = 1, 2, ..., 4 \end{aligned}$$

Aplicando o método *simplex*:

<u>c</u>	12	8	0	0	
$\underline{\mathbf{x}}_{\mathbf{B}} \underline{\mathbf{c}}_{\mathbf{B}} \setminus \underline{\mathbf{x}}$	X1	X2	Х3	X4	<u>b</u>
$\mathbf{x_3} = 0$	2*	1	1	0	6 ←
x ₄ 0	7	8	0	1	28
$z_{\mathbf{j}}$ - $c_{\mathbf{j}}$	-12	-8	0	0	0
	$ \uparrow \uparrow$				
<u>c</u>	12	8	0	0	
$\underline{\mathbf{x}}_{\mathbf{B}} \underline{\mathbf{c}}_{\mathbf{B}} \setminus \underline{\mathbf{x}}$	X1	X2	X3	X4	<u>b</u>
x_1 12	1	1/2	1/2	0	3
x ₄ 0	0	9/2*	-7/2	1	7 ⇐
$z_{\mathbf{j}}$ - $c_{\mathbf{j}}$	0	-2	6	0	36

	<u>c</u>	12	8	0	0	
<u>X</u> B	$\underline{\mathbf{c}}_{\mathbf{B}} \setminus \underline{\mathbf{x}}$	X ₁	X2	X3	X4	<u>b</u>
X ₁	12	1	0	8/9	-1/9	20/9
X2	8	0	1	-7/9	2/9	14/9
Z	j ^{-C} j	0	0	40/9	4/9	352/9

- Quadro ótimo para o problema de PL associado pois não existem valores negativos na linha zj-cj
- No entanto, a solução obtida não satisfaz as restrições de integralidade de x₁ e
 x₂. Ou seja, não é ótima para o problema de PLIP
- Temos que introduzir uma restrição de corte

<u>c</u>	0	0	
$\underline{\mathbf{x}}_{\mathbf{B}} \underline{\mathbf{c}}_{\mathbf{B}} \setminus \underline{\mathbf{x}}$	Х3	X4	<u>b</u>
X ₁			20/9 = 18/9+2/9 = 2+2/9
X2	-7/9	2/9	$14/9 \Leftarrow = 9/9 + 5/9 = 1 + 5/9$
$z_{\mathbf{j}}$ - $c_{\mathbf{j}}$			

- Escolhe-se a linha da variável básica x₂ (a que tem maior parte fracionária)
- Selecionam-se as partes fracionárias correspondentes a x₃ e x₄ (VNB)
- A restrição de corte a considerar será:

$$(1 - 7/9) x_3 + 2/9 x_4 \ge 5/9$$

 $<=> 2/9 x_3 + 2/9 x_4 \ge 5/9$

Acrescentando a folga x₅ e transformando-a na forma de igualdade:

$$<=> -2/9 x_3 -2/9 x_4 \le -5/9 <=> -2/9 x_3 -2/9 x_4 + x_5 = -5/9$$

Introduzindo-a no quadro anterior e aplicando o método dual do *simplex*:

	<u>c</u>	12	8	0	0	0	
<u>X</u> B	$\underline{\mathbf{c}}_{\mathbf{B}} \setminus \underline{\mathbf{x}}$	X1	X2	Х3	X4	X5	<u>b</u>
X1	12	1	0	8/9	-1/9	0	20/9
X 2	8	0	1	-7/9	2/9	O	14/9
X5	0	0	0	-2/9	-2/9*	1	<i>-</i> 5/9 ←
Z	z _j -c _j	0	0	40/9	4/9	0	352/9
					\uparrow		
	<u>c</u>	12	8	0	0	0	
<u>X</u> B	$\underline{\mathbf{c}}_{\mathbf{B}} \setminus \underline{\mathbf{x}}$	12 x ₁	8 x ₂	0 x ₃	0 x4	0 x5	<u>b</u>
<u>X</u> B				· ·		C	<u>b</u> 5/2 =4/2+1/2
	$\underline{\mathbf{c}}_{\mathbf{B}} \setminus \underline{\mathbf{x}}$	X ₁	X2	Х3	X4	X5	
X ₁	<u>c</u> _{B} \ <u>X</u> 12	1 1	0 0	1 X ₃	0 0	-1/2	5/2 =4/2+1/2
X ₁ X ₂	<u>c</u> _{B} \ <u>X</u> 12 8	1 0	0 1	1 -1	X4 0 0	X5 -1/2 1	5/2 =4/2+1/2 1
X1 X2 X4	<u>c</u> _{B} \ <u>X</u> 12 8	1 0	0 1	1 -1	X4 0 0	X5 -1/2 1	$5/2 = 4/2 + 1/2$ 1 $5/2 \Leftarrow = 4/2 + 1/2$

Novo quadro ótimo (não há valores negativos na coluna b)

- => Na solução obtida, x₂'*=1, pelo que satisfaz a restrição de integralidade para x₂
- => O mesmo não se verifica relativamente a x_1 , pois x_1 '*=5/2
 - Há que introduzir uma **nova restrição de corte**

Para tal selecionam-se as partes fracionárias correspondentes a x3, que é 0, e a x5

$$-9/2 = -8/2 - 1/2 = -4 - 1/2$$

=> A nova restrição de corte a considerar será:

$$<=> (1-1/2) x_5 \ge 1/2 <=> 1/2 x_5 \ge 1/2 <=> -1/2 x_5 \le -1/2$$

Acrescentando a folga x_6 e transformando-a na forma de igualdade:

$$<=> -1/2x_5 + x_6 = -1/2$$

Introduzindo no quadro ótimo anterior e aplicando o método dual do *simplex*:

	<u>c</u>	12	8	0	0	0	0	
<u>X</u> B	$\underline{\mathbf{c}}_{\mathbf{B}} \setminus \underline{\mathbf{x}}$	X1	X2	Х3	X4	X5	X6	<u>b</u>
X ₁	12	1	0	1	0	-1/2	0	5/2
X2	8	0	1	-1	0	1	0	1
X4	0	0	O	1	1	-9/2	0	5/2
X6	0	0	0	0	0	-1/2	1	-1/2 ←
Z	_j -c _j	0	0	4	0	2	0	38
						\uparrow		

	<u>c</u>	12	8	0	0	0	0	
<u>X</u> B	$\underline{\mathbf{c}}_{\mathbf{B}} \setminus \underline{\mathbf{x}}$	X ₁	X2	Х3	X4	X5	X6	<u>b</u>
X 1	12	1	0	1	0	0	-1	3
X2	8	0	1	-1	0	0	2	0
X4	0	0	0	1	1	0	-9	7
X5	0	0	0	0	0	1	-2	1
Z	j-c _j	0	0	4	0	0	4	36

Novo quadro ótimo (não há valores negativos na coluna b)

Este quadro é também ótimo para o problema de PLIP!

=> x₁,,*=3 e satisfaz a restrição de integralidade x₂,,*=0 e satisfaz a restrição de integralidade

$$=> \underline{x}''*=(x_1, x_2, x_3, x_4, x_5, x_6)=(3, 0, 0, 7, 1, 0)$$

com $z''*=36$

Interpretação Gráfica:

Max
$$z = 12 x_1 + 8 x_2$$

s.a
 $2x_1 + x_2 \le 6$
 $7x_1 + 8x_2 \le 28$
 $x_1 \ge 0, x_2 \ge 0$
 x_1, x_2 inteiros

1º plano de corte:

$$2/9 x_3 + 2/9 x_4 \ge 5/9 <=> 2x_3 + 2x_4 \ge 5$$

Como

$$x_3 = 6 - 2x_1 - x_2$$
 e $x_4 = 28 - 7x_1 - 8x_2$

temos

$$2(6-2x_1-x_2) + 2(28-7x_1-8x_2) \ge 5 <=>$$
 $<=> 12-4x_1-2x_2+56-14x_1-16x_2 \ge 5 <=>$
 $<=> -18x_1-18x_2 \ge -63 <=>$
 $<=> 2x_1+2x_2 < 7$

2º plano de corte:

$$1/2 \ x_5 \ge 1/2$$
 <=> $x_5 \ge 1$

Como

$$x_5 = -5/9 + 2/9x_3 + 2/9x_4 = -5/9 + 2/9(6 - 2x_1 - x_2) + 2/9(28 - 7x_1 - 8x_2)$$
 $<=> x_5 = -5/9 + 12/9 - 4/9x_1 - 2/9x_2 + 56/9 - 14/9x_1 - 16/9x_2 <=>$
 $<=> x_5 = 63/9 - 18/9x_1 - 18/9x_2 = 7 - 2x_1 - 2x_2$

temos

$$x_5 \ge 1 <=> 7 - 2x_1 - 2x_2 \ge 1 <=> -2x_1 - 2x_2 \ge -6 <=> x_1 + x_2 \le 3$$

EXEMPLO 2

Considere o seguinte problema:

Uma fábrica de brinquedos produz dois tipos de carros telecomandados (A e B). Cada carro do tipo A requer cerca do triplo do tempo de produção em relação aos do tipo B e sabe-se que se todos os carros fossem do tipo B a fábrica teria capacidade para produzir diariamente um máximo de 400 carros.

Sabe-se que as vendas médias diárias dos carros dos tipos A e B não excedem as 150 e as 200 unidades, respetivamente.

Assumindo que cada carro do tipo A produz um lucro de 4000 U.M. e que cada carro do tipo B produz um lucro de 2500 U.M., a empresa pretende saber quantos carros de cada tipo deve fabricar diariamente de modo a maximizar o lucro.

Para responder a esta questão, formule o problema em termos de um modelo de PLIP e resolva-o recorrendo ao algoritmo de Gomory.

O problema de programação linear inteira pura (PLIP) que temos para resolver é o seguinte:

Max
$$z = 4000 x_1 + 2500 x_2$$

s.a
 $x_1 \leq 150$ (1)
 $x_2 \leq 200$ (2)
 $3x_1 + x_2 \leq 400$ (3)
 $x_1 \geq 0, x_2 \geq 0$
 x_1, x_2 inteiros

Adicionando as variáveis *slack* x₃, x₄ e x₅ em (1), (2) e (3), respetivamente, vamos resolver o seguinte problema de programação linear associado (método *simplex*):

$$\begin{array}{lll} \text{Max} & z = 4000 \text{ x1} + 2500 \text{ x2} \\ \text{s.a} & & & & \\ \text{x1} & & + \text{x3} & & = 150 \\ & & & & & \\ \text{x2} & & + \text{x4} & & = 200 \\ & & & & \\ 3\text{x1} + & \text{x2} & & + \text{x5} & = 400 \\ & & & & \\ \text{x}_i \geq 0, \, i = 1, \, 2, \, ..., \, 5 \end{array}$$

	<u>c</u>	4000	2500	0	0	0	
<u>X</u> B	$\underline{\mathbf{c}}_{\mathbf{B}} \setminus \underline{\mathbf{x}}$	X ₁	X2	Х3	X4	X5	<u>b</u>
X 3	0	1	0	1	0	0	150 (1)
X4	0	0	1	0	1	0	200 (2)
X5	0	3*	1	0	0	1	$400 \Leftarrow (3)$
Z	j- ^C j	-4000	-2500	0	0	0	0
		\uparrow					
		4000	2500	\mathbf{O}	0	0	
	<u>c</u>	4000	2500	0	0	0	
<u>X</u> B	$\frac{\underline{\mathbf{c}}}{\underline{\mathbf{c}}_{\mathrm{B}} \setminus \underline{\mathbf{x}}}$	4000 x ₁	2500 x ₂	0 x ₃	0 X4	0 x5	<u>b</u>
<u>X</u> B	<u> </u>						<u>b</u> 50/3
	$\underline{\mathbf{c}}_{\mathbf{B}} \setminus \underline{\mathbf{x}}$	X1	X2	Х3	X4	X5	
Х3	$\underline{\mathbf{c}_{\mathbf{B}} \setminus \underline{\mathbf{x}}}$	0 0	-1/3	1 X3	0 0	-1/3	50/3

	<u>c</u>	4000	2500	0	0	0	
<u>X</u> B	$\underline{\mathbf{c}}_{\mathbf{B}} \setminus \underline{\mathbf{x}}$	X ₁	X2	Х3	X4	X5	<u>b</u>
X3	0	0	O	1	1/3	-1/3	250/3 =249/3+1/3
X 2	2500	0	1	0	1	0	200
X1	4000	1	0	0	-1/3	1/3	200/3 =198/3+2/3
Z	j- ^C j	0	0	0	3500/3	4000/3	2300000/3 =
							= 766666.66

- Quadro ótimo para o problema PL associado
- ♠ Mas não ótimo para o problema de PLIP, pois x₁*=200/3=66.667 na solução obtida (valor não inteiro!)
- Vamos introduzir uma restrição de corte:

Escolhe-se a linha da variável básica x₁, pois é a que tem maior parte fracionária

Selecionam-se as partes fracionárias correspondentes a x4 e x5

A restrição de corte a considerar será:

$$(1-1/3) x_4 + 1/3 x_5 \ge 2/3$$

$$<=> 2/3 x_4 + 1/3 x_5 \ge 2/3$$

Acrescentando a folga x_6 e transformando-a na forma de igualdade:

$$<=> -2/3 x_4 -1/3 x_5 \le -2/3 <=> -2/3 x_4 -1/3 x_5 +x_6 = -2/3$$

Introduzindo no quadro ótimo anterior e aplicando o método dual do *simplex*:

<u>c</u>	4000	2500	0	0	0	0	
$\underline{\mathbf{x}}_{\mathbf{B}} \ \underline{\mathbf{c}}_{\mathbf{B}} \setminus \underline{\mathbf{x}}$	X ₁	X2	Х3	X4	X5	X6	<u>b</u>
$\mathbf{x_3} = 0$	0	0	1	1/3	-1/3	0	250/3
$x_2 2500$	0	1	0	1	0	0	200
x_1 4000	1	0	0	-1/3	1/3	0	200/3
$\mathbf{x_6} 0$	0	0	0	-2/3*	-1/3	1	-2/3 ⇐
z _j -c _j	0	0	0	3500/3 ↑	4000/3	0	2300000/3
				П			

	<u>c</u>	4000	2500	0	0	0	0	
<u>X</u> B	$\underline{\mathbf{c}}_{\mathbf{B}} \setminus \underline{\mathbf{x}}$	X ₁	X2	Х3	X4	X5	X6	<u>b</u>
X 3	0	0	0	1	0	-1/2	1/2	83
X2	2500	0	1	0	0	-1/2	3/2	199
X_1	4000	1	0	0	0	1/2	-1/2	67
X4	0	0	0	0	1	1/2	-3/2	1
7	z _j -c _j	0	0	0	0	750	1750	765500

- Quadro ótimo para o problema PL associado
- Este quadro é também ótimo para o problema de PLIP pois satisfaz as restrições de integralidade de x₁ e x₂!

=>
$$x_1'*=67$$

 $x_2'*=199$
=> $\underline{x'}*=(x_1, x_2, x_3, x_4, x_5, x_6)=(67, 199, 83, 1, 0, 0)$
 $com z'*=765500$

Interpretação Gráfica:

Max
$$z = 4000 x1 + 2500 x2$$

s.a
 $x1 \leq 150$ (1)
 $x2 \leq 200$ (2)
 $3x1 + x2 \leq 400$ (3)
 $x1 \geq 0, x2 \geq 0$
 $x1, x2$ inteiros

Restrição de corte:

$$2/3 x_4 + 1/3 x_5 \ge 2/3 <=> 2x_4 + x_5 \ge 2$$

Como

$$x_4 = 200 - x_2 e \quad x_5 = 400 - 3x_1 - x_2$$

temos

$$2(200 - x_2) + (400 - 3x_1 - x_2) \ge 2 \le >$$

$$<=> 800 - 3x_1 - 3x_2 \ge 2 <=>$$

$$<=> -3x_1 - 3x_2 \ge -798 <=>$$

$$<=> x_1 + x_2 \le 266$$

Departamento de Engenharia Informática e de Sistemas

Metodologias de Otimização e Apoio à Decisão

Capítulo II

- Anexo 2 -

Resolução de problemas de PLIM

EXEMPLO 1

Considere o seguinte problema:

Determinada vendedora ambulante vende dois tipos de morangos: embalados (em caixas de 1 kg) e também ao peso. Os morangos embalados (tipo A) são de cultura biológica e originam um lucro de 8 UM/Kg (\$\times\$8 UM/caixa). Os morangos vendidos a peso (tipo B) provêm

de grandes armazéns e dão um lucro de 5 UM/Kg. Dado que a vendedora se desloca a pé, ela não consegue transportar, diariamente, mais do que 6 kg de morangos. Por outro lado, o cesto onde os transporta tem uma capacidade de armazenamento correspondente a 45 unidades de área (UA). Verifica-se que cada embalagem de morangos do tipo A ocupa cerca de 9 UA e cada kg de morangos do tipo B ocupa cerca de 5 UA. Deste modo, a vendedora pretende saber quantas caixas de morangos do tipo A e quantos Kg de morangos do tipo B deve transportar por dia, de forma a maximizar o lucro diário (pressupondo-se que vende tudo o que transporta).

Formule o problema em termos de um modelo de Programação Linear Inteira Mista (PLIM) e resolva-o usando o algoritmo de Gomory.

O problema de programação linear inteira mista (PLIM) que temos para resolver é o seguinte:

Maximizar
$$z = 8 x_1 + 5 x_2$$

s.a
 $x_1 + x_2 \le 6$ (1)
 $9x_1 + 5x_2 \le 45$ (2)
 $x_1 \ge 0, x_2 \ge 0$
 $x_1 \text{ inteiro}$

Adicionando as variáveis "slack" x_3 e x_4 em (1) e (2), respetivamente, vamos resolver o seguinte problema de programação linear associado (método *simplex*):

Maximizar
$$z = 8 \times 1 + 5 \times 2$$

s.a
 $x1 + x2 + x3 = 6$
 $9x1 + 5x2 + x4 = 45$
 $x_i \ge 0, i = 1, 2, ..., 4$

O quadro inicial do simplex é:

	<u>c</u>	8	5	0	0		
<u>X</u> B	<u>c</u> _B \ <u>x</u>	X ₁	X ₂	Хз	X4	<u>b</u>	
Х3	0	1	1	1	0	6	6/1
X4	0	9*	5	0	1	45 ←	45/9
Z	j-c _j	-8	-5	0	0	0	
		\uparrow					
Хз	0	0	4/9*	1	-1/9	1 <=	1/4/9
X ₁	8	1	5/9	0	1/9	5	5/5/9
Z	j-c _j	0	-5/9	0	8/9	40	
			\uparrow				

	<u>c</u>	8	5	0	0	
<u>X</u> B	<u>c</u> _B \ <u>x</u>	X ₁	X2	Хз	X4	<u>b</u>
X2	5	0	1	9/4	-1/4	9/4
X ₁	8	1	0	-5/4	1/4	15/4
Z	z _j -c _j	0	0	5/4	3/4	165/4

Quadro ótimo para o problema de PL associado

=> Não existem valores negativos na linha zj-cj

$$=> \underline{x}^* = (x_1, x_2, x_3, x_4) = (15/4, 9/4, 0, 0) \text{ com } z^* = 165/4$$

Mas não ótimo para o problema de PLIM

=> Na solução obtida $x_1 = 15/4$ (não inteiro)

Vamos introduzir uma restrição de corte.

X ₂	5			
X ₁	8	-5/4	1/4	15/4 ← =3+ <mark>3/4</mark>
z _j -c _j				

=> Escolhe-se a linha da variável básica, x₁ (s=2)

$$x_{20} = 15/4$$
 <=> $x_{20} = [x_{20}] + f_{20} = 3 + 3/4$
 $f_{20} = 3/4$
=> $x_{23} = -5/4$ (j=3 \in N^C_)
=> $x_{24} = 1/4$ (j=4 \in N^C_+)

A equação de corte a considerar será:

$$((3/4/(1-3/4))* | -5/4|)$$
 $x_3 + 1/4 x_4 \ge 3/4$
 $<=> ((3/4/(1/4))* | -5/4|) x_3 + 1/4 x_4 \ge 3/4$
 $<=> 15/4 x_3 + 1/4 x_4 \ge 3/4$

Multiplicando por -1, acrescentando a folga x_5 e transformando na forma de igualdade obtemos:

$$<=> -15/4 x_3 -1/4 x_4 \le -3/4 <=> -15/4 x_3 -1/4 x_4 + x_5 = -3/4$$

Introduzindo no quadro anterior e aplicando o método dual do *simplex*:

	<u>c</u>	8	5	0	0	0	
<u>X</u> B	<u>c</u> _B \ <u>x</u>	X ₁	X2	Х3	X4	X5	<u>b</u>
X2	5	0	1	9/4	-1/4	0	9/4
X ₁	8	1	0	-5/4	1/4	0	15/4
X5	0	0	0	-15/4*	-1/4	1	-3/4 ⇐
Z	j- ^C j	0	0	5/4	3/4	0	165/4
				\uparrow			
X ₂	5	0	1	0	-2/5	3/5	9/5
X ₁	8	1	0	0	1/3	-1/3	4
Х3	0	0	0	1	1/15	-4/15	1/5
Z	j ^{-c} j	0	0	0	2/3	1/3	41

Quadro ótimo para o problema de PL associado

=> não existem valores negativos em zj-cj

Este quadro é também ótimo para o problema de PLIM!

=> na solução obtida x1 assume valor inteiro! $x_1 = 4$ (satisfaz a restrição de integralidade)

$$=> \underline{x}'^* = (x_1, x_2, x_3, x_4, x_5) = (4, 9/5, 1/5, 0, 0) \text{ com } z'^* = 41$$

Interpretação Gráfica:

Maximizar $z = 8 x_1 + 5 x_2$

s.a

$$x_1 + x_2 \leq 6$$

$$9x1 + 5x2 \le 45$$

$$x_1 \ge 0, x_2 \ge 0$$

x1 inteiro

Plano de corte:

$$15/4 x_3 + 1/4 x_4 \ge 3/4 <=> 15 x_3 + x_4 \ge 3$$

Como

$$x_3 = 6 - x_1 - x_2 = x_4 = 45 - 9x_1 - 5x_2$$

temos

15
$$(6 - x_1 - x_2) + (45 - 9x_1 - 5x_2) \ge 3 <=>$$

$$<=> 90 -15x_1 -15x_2 +45 -9x_1 -5x_2 \ge 3 <=>$$

$$<=> -24x_1 - 20x_2 \ge -132 <=>$$

$$<=> 6x_1 + 5x_2 \le 33$$

EXEMPLO 2

Considere o seguinte problema:

Agora que o tempo frio se aproxima, o Sr. Anacleto pretende aquecer a sua casa recorrendo a uma caldeira que pode ser alimentada com carvão ou com briquetes (material ecológico feitos com resíduos de madeira prensados). Apesar de o carvão ser mais barato, os briquetes têm uma duração maior. Na verdade, 1 kg de carvão arde durante cerca de 3 horas,

Tô congelando

enquanto 1 pack de briquetes (5 briquetes) queima durante aproximadamente 6 horas. O fornecedor habitual do Sr. José pode arranjar-lhe, semanalmente, um máximo de 10 kg de carvão e de 7 packs de briquetes. Para além disso, cada kg de carvão custa 1 UM e cada pack de briquetes custa (preço especial de lançamento) 3.5 UM, sendo que o Sr. Anacleto pode gastar um máximo de 20 UM por semana na compra daqueles produtos. Assim sendo, este senhor pretende saber quantos kg de carvão e/ou quantos packs de briquetes deve comprar semanalmente, de forma a prolongar o mais possível o tempo de aquecimento da sua casa sem exceder o seu orçamento.

Formule o problema em termos de um modelo de Programação Linear Inteira Mista (PLIM) e resolva-o usando o algoritmo de Gomory.

O problema de programação linear inteira mista (PLIM) que temos para resolver é o seguinte:

Maximizar $z = 3 x_1 + 6 x_2$

s.a $x1 \leq 10$ (1) $x2 \leq 7$ (2) x1 + 7/2 $x2 \leq 20$ (3) $x1 \geq 0$, $x2 \geq 0$ x2 inteiro

Adicionando as variáveis "slack" x_3 , x_4 e x_5 em (1), (2) e (3), respetivamente, vamos resolver o seguinte problema de programação linear associado (método *simplex*):

Maximizar $z = 3 x_1 + 6 x_2$

s.a.
$$x_1 + x_3 = 10$$

$$x_2 + x_4 = 7$$

$$x_1 + 7/2 x_2 + x_5 = 20$$

$$x_i \ge 0, i = 1, 2, ..., 5$$

O quadro inicial do simplex é:

	<u>c</u>	3	6	0	0	0	
<u>X</u> B	<u>c</u> _B \ <u>x</u>	X ₁	X2	Х3	X4	X5	<u>b</u>
Х3	0	1	0	1	0	0	10
X4	0	0	1	0	1	0	7
X5	0	1	7/2*	0	0	1	20 ←
Z	j-c _j	-3	-6	0	0	0	0
			\uparrow				
							T
Хз	0	1*	0	1	0	0	10 ⇐
X4	0	-2/7	0	0	1	-2/7	9/7
X2	6	2/7	1	0	0	2/7	40/7
Z	j ^{-C} j	-9/7	0	0	0	12/7	240/7
		\uparrow					

	<u>c</u>	3	6	0	0	0	
<u>X</u> B	<u>c</u> _B \ <u>x</u>	X ₁	X2	Х3	X4	X ₅	<u>b</u>
X ₁	3	1	0	1	0	0	10
X4	0	0	0	2/7	1	-2/7	29/7
X2	6	0	1	-2/7	0	2/7	20/7
Z	j- ^C j	0	0	9/7	0	12/7	330/7

Quadro ótimo para o problema de PL associado

=> Não existem valores negativos em zj-cj

 $=> \underline{x}^* = (x_1, x_2, x_3, x_4, x_5) = (10, 20/7, 0, 29/7, 0) \text{ com } z^* = 330/7$

Mas não ótimo para o problema de PLIM

=> Na solução obtida $x_2 = 20/7$ (não inteiro)

Vamos introduzir uma restrição de corte

=> Escolhe-se a linha da variável básica, x₂ (s=3)

$$x_{30} = 20/7$$
 <=> $x_{30} = [x_{30}] + f_{30} = 14/7 + 6/7 = 2 + 6/7$
 $f_{30} = 6/7$
=> $x_{33} = -2/7$ ($j=3 \in N^{C}_{-}$)
=> $x_{35} = 2/7$ ($j=5 \in N^{C}_{+}$)

A restrição de corte a considerar será:

$$((6/7/(1-6/7))* |-2/7|) x_3 + 2/7 x_5 \ge 6/7$$
<=> $12/7 x_3 + 2/7 x_5 \ge 6/7$

Multiplicando por -1, acrescentando a folga x_6 e transformando na forma de igualdade obtemos:

$$<=> -12/7 x_3 -2/7 x_5 \le -6/7 <=> -12/7 x_3 -2/7 x_5 + x_6 = -6/7$$

Introduzindo no quadro anterior e aplicando o método dual do simplex:

	<u>c</u>	3	6	0	0	0	0	
<u>X</u> B	<u>c</u> _B \ <u>x</u>	X ₁	X ₂	Х3	X4	X ₅	X ₆	<u>b</u>
X ₁	3	1	0	1	0	0	0	10
X4	0	0	0	2/7	1	-2/7	0	29/7
X2	6	0	1	-2/7	0	2/7	0	20/7
X ₆	6	0	0	-12/7*	0	-2/7	1	-6/7 ⇐
Z	z _j -c _j	0	0	9/7	0	12/7	0	330/7
				\uparrow				

	<u>C</u>	3	6	0	0	0	0	
<u>X</u> B	<u>c</u> _B \ <u>x</u>	X ₁	X2	Х3	X4	X5	X ₆	<u>b</u>
X ₁	3	1	0	0	0	-1/6	7/12	19/2
X4	0	0	0	0	1	-1/3	1/6	4
X ₂	6	0	1	0	0	1/3	-1/6	3
Хз	0	0	0	1	0	1/6	-7/12	1/2
Z	Zj-Cj	0	0	0	0	3/2	3/4	93/2

Quadro ótimo para o problema de PL associado

=> Não existem valores negativos em zj-cj

$$=> \underline{x}'^* = (x_1, x_2, x_3, x_4, x_5, x_6) = (19/2, 3, 1/2, 4, 0, 0) \text{ com } z'^* = 93/2$$

Este quadro é também ótimo para o problema de PLIM!

=> Na solução obtida x₂ assume valor inteiro! x₂= 3 (satisfaz a restrição de integralidade)

Interpretação Gráfica:

Maximizar $z = 3 x_1 + 6 x_2$

s.a

$$x_1 + 7/2 x_2 \le 20$$

$$x_1 \ge 0, x_2 \ge 0$$

x2 inteiro

Plano de corte:

$$12/7 x_3 + 2/7 x_5 \ge 6/7 <=> 12 x_3 + 2 x_5 \ge 6$$

Como

$$x_3 = 10 - x_1$$
 e $x_5 = 20 - x_1 - 7/2 x_2$

temos

12
$$(10 - x_1) + 2 (20 - x_1 - 7/2 x_2) \ge 6 <=>$$

$$<=> 120 - 12x_1 + 40 - 2x_1 - 7x_2 \ge 6 <=>$$

$$<=> -14x_1 - 7x_2 \ge -154 <=>$$

$$<=> 2x_1 + x_2 \le 22$$

4 – Algoritmo de *Branch and Bound*

- Está na base de muitas implementações computacionais que resolvem problemas de PLI (incluindo a biblioteca PuLP de Python).
- Consiste na **partição** (ramificação) sucessiva do conjunto de soluções admissíveis do problema de PLI em subconjuntos, e na **limitação** do valor ótimo da função objetivo (limite inferior se for uma maximização, ou superior se for uma minimização), de modo a excluir os subconjuntos que não contenham a solução ótima.

• Para demostrar o funcionamento deste método, considere-se o seguinte exemplo adaptado de:

Alves, Rui & Delgado, Catarina. (1997). Programação Linear Inteira.

Uma empresa de brinquedos, decidiu criar uma nova secção de brinquedos tradicionais de madeira, começando por apenas dois tipos: cavalos de baloiço (lucro unitário de **2400** UM) e comboios antigos (lucro unitário de **1500** UM). Cada cavalo requer **1** hora de trabalho e 9 m² de madeira, enquanto cada comboio requer 1 hora de trabalho e 5 m² de madeira. Supondo que estão disponíveis 6 horas de trabalho e 45 m² de madeira por dia, que quantidades deve a empresa fabricar diariamente de forma a maximizar o lucro (assumindo que todos os brinquedos fabricados serão vendidos).

O modelo de PLI será:

Max
$$z = 2400 x_1 + 1500 x_2$$

sujeito a
 $x_1 + x_2 \le 6$ (Horas de trabalho)
 $9x_1 + 5x_2 \le 45$ (Madeira)
 $x_1, x_2 \ge 0$
 $x_1 e x_2$ inteiros

 O primeiro passo consiste na resolução do modelo de PL associado (relaxação linear do modelo de PLI), a qual resulta no seguinte quadro do *simplex*:

		2400.0 x1	1500.0 x2	0.0 x3	0.0 x4	b
			1.0	2.2 -1.2	-0.2 0.2	2.25 3.75
 zj-	 cj	0.0	0.0	375.0	225.0	12375.00

O mesmo resultado pode visualizar-se no gráfico seguinte:

- É claro que o valor ótimo da função objetivo não pode exceder 12375.
- Como x₁ e x₂ não são inteiras na solução ótima deste problema, é necessário efetuar a sua partição em dois novos sub-problemas (A e B), através da introdução de novas restrições que eliminam soluções não-inteiras: x₁ ≤ 3 e x₁ ≥ 4. A partição podia ter sido feita em relação a x₂.

• A:

Max
$$z = 2400 x_1 + 1500 x_2$$

sujeito a
 $x_1 + x_2 \le 6$ (Horas de trabalho)
 $9x_1 + 5x_2 \le 45$ (Madeira)
 $x_1 \le 3$
 $x_1, x_2 \ge 0$

• B:

Max
$$z = 2400 x_1 + 1500 x_2$$

sujeito a
 $x_1 + x_2 \le 6$ (Horas de trabalho)
 $9x_1 + 5x_2 \le 45$ (Madeira)
 $x_1 \ge 4$
 $x_1, x_2 \ge 0$

- A solução ótima de **A** é inteira, o que significa que se encontrou uma solução inteira cujo valor da função objetivo é **11700**.
- O valor ótimo da função objetivo estará então compreendido entre dois limites: $11700 \le z \le 12375$.
- A solução ótima de $\bf B$ não é inteira e o valor da função objetivo é $\bf 12300~(>11700) \Rightarrow$ este sub-problema pode conter uma solução inteira melhor do que a de $\bf A$.
- Há pois que efetuar a sua partição nos sub-problemas **B1** e **B2**, através das restrições: $\mathbf{x}_2 \leq \mathbf{1}$ e $\mathbf{x}_2 \geq \mathbf{2}$.

• B1:

Max
$$z = 2400 x_1 + 1500 x_2$$

sujeito a
 $x_1 + x_2 \le 6$ (Horas de trabalho)
 $9x_1 + 5x_2 \le 45$ (Madeira)
 $x_1 \ge 4$
 $x_2 \ge 2$
 $x_1, x_2 \ge 0$

• B2:

Max
$$z = 2400 x_1 + 1500 x_2$$

sujeito a
 $x_1 + x_2 \le 6$ (Horas de trabalho)
 $9x_1 + 5x_2 \le 45$ (Madeira)
 $x_1 \ge 4$
 $x_2 \le 1$
 $x_1, x_2 \ge 0$

- O sub-problema B1 é excluído por não ter soluções possíveis.
- O sub-problema **B2** (à semelhança do sub-problema **B**), é particionado nos sub-problemas **B21** e **B22**, através da introdução das restrições: $x1 \le 4$ e $x1 \ge 5$.

• B21:

Max
$$z = 2400 x_1 + 1500 x_2$$

sujeito a
 $x_1 + x_2 \le 6$ (Horas de trabalho)
 $9x_1 + 5x_2 \le 45$ (Madeira)
 $x_1 \ge 4$
 $x_2 \le 1$
 $x_1 \le 4$
 $x_1, x_2 \ge 0$

• B22:

Max
$$z = 2400 x_1 + 1500 x_2$$

sujeito a
 $x_1 + x_2 \le 6$ (Horas de trabalho)
 $9x_1 + 5x_2 \le 45$ (Madeira)
 $x_1 \ge 4$
 $x_2 \le 1$
 $x_1 \ge 5$
 $x_1, x_2 \ge 0$

- Os sub-problemas B21 e B22 têm ambos soluções inteiras.
- O valor ótimo da função objetivo do sub-problema **B21** é **11100**, menor que **11700**, ou seja, pior do que a solução de que já tínhamos.
- O valor ótimo da função objetivo do sub-problema B22 é 12000.
- Atualizando os limites da função objetivo obtemos então:

$$12000 \le z \le 12000$$
.

 O seguinte diagrama em árvore, ilustra a sequência total das partições.

- À medida que se vai "descendo" na árvore vão-se atualizando os limites inferior e superior do valor ótimo da função objetivo (z*).
 - No nó inicial (raiz da árvore): $0 \le z^* \le 12375$.
 - No nível dos sub-problemas **A** e **B**: $11700 \le z^* \le 12300$.
 - No terceiro nível: $11700 \le z^* \le 12167$.
 - Finalmente, no último nível: $12000 \le z^* \le 12000$.
- Podemos então concluir que x*= (5,0) com z* = 12000, é a solução ótima do problema.

Note-se que:

- É efetuada a partição de um sub-problema se na sua solução ótima existir pelo menos uma variável com restrição de integralidade que assuma valores não-inteiros, desde que esse sub-problema possa conter uma solução inteira melhor do que a já existente.
- São excluídos os sub-problemas que não tenham soluções admissíveis ou que não possam conter uma solução admissível melhor do que a já existente.

Departamento de Engenharia Informática e de Sistemas

Metodologias de Otimização e Apoio à Decisão

Capítulo III Programação Linear Multi-objetivo

1 – Decisão Multi-objetivo

Decidir consiste em **escolher** "boas" soluções entre várias alternativas viáveis ou cursos de ação.

Cada vez mais o decisor é forçado a considerar **grande variedade de critérios/objetivos** para avaliar as diferentes alternativas viáveis.

O decisor é confrontado com a exigência da escolha da **melhor solução de compromisso**, que corresponde a um balanço entre os vários objetivos considerados, geralmente conflituosos.

A **Decisão Multi-objetivo** (DMO) constitui uma área à qual tem sido dada grande atenção, por ter como finalidade auxiliar o decisor na **pesquisa da melhor solução de compromisso** na presença de **múltiplos critérios de otimização**.

Existem vários métodos de DMO, entre os quais:

- Programação Linear Multi-objectivo (PLMO) (neste capítulo)
- Programação por Metas (capítulo seguinte)

A Decisão Multi-objetivo, abrange os problemas de decisão com pelo menos dois objetivos. O problema geral de DMO pode expressar-se matematicamente da seguinte forma:

$$\label{eq:maximizar} \begin{aligned} &\text{Maximizar (Minimizar) } Z = \\ &= [\ z_1(x_1, \ x_2, \ ..., x_n), \ z_2(x_1, \ x_2, \ ..., x_n), \ ..., \ z_p(x_1, \ x_2, \ ..., x_n) \] \\ &\text{sujeito a} \\ &g_1(x_1, \ x_2, \ ..., x_n) \ \{ \le, \ =, \ge \} \ b_1 \\ &g_2(x_1, \ x_2, \ ..., x_n) \ \{ \le, \ =, \ge \} \ b_2 \\ &\dots \\ &g_m(x_1, \ x_2, \ ..., x_n) \ \{ \le, \ =, \ge \} \ b_m \\ &x_j \ \ge 0, \ j = 1, 2, ..., n \end{aligned}$$

em que z_1 , z_2 ,..., z_p designam as p funções objetivo.

Nos problemas de decisão com um único objetivo, o que se procura é a solução ótima, isto é, a solução admissível que maximiza (minimiza) a função objetivo. Mesmo que existam soluções ótimas alternativas, o valor ótimo da função objetivo (z*) é o mesmo. O conceito chave é o ótimo.

Em problemas de decisão com múltiplos objetivos, este conceito não é aplicável pois uma solução admissível que otimiza um dos objetivos, não otimiza, em geral, os restantes objetivos.

- Neste tipo de problemas, o conceito de solução ótima dá lugar ao conceito de solução eficiente ou de solução não dominada (que é um subconjunto do conjunto das soluções admissíveis).
- Uma solução eficiente ou não dominada (a distinção entre ambas será feita mais à frente) caracteriza-se pelo facto de não existir outra solução admissível que melhore simultaneamente todas as funções objetivo. Ou seja, a melhoria de uma função objetivo só pode ser atingida à custa da deterioração do valor de pelo menos uma das outras funções objetivo do modelo.

- Na resolução de um problema com um único objetivo a solução ótima é perfeitamente determinada pelo algoritmo de otimização.
- Num problema multi-objetivo, a resolução do modelo matemático permite determinar um conjunto de soluções eficientes ou não dominadas que, no entanto, não são comparáveis. Ou seja, o algoritmo de resolução aplicado não as classifica como boas ou como más. Deste modo, torna-se necessário ter em conta as preferências do decisor.

- Então, é necessário fornecer ao decisor informação sobre o domínio no qual este pode exercer a sua escolha quanto ao curso de ação a seguir - conjunto das soluções eficientes / não dominadas.
- Esta informação pode ser apresentada sob a forma gráfica ou sob a forma tabular.
- Tomando por base tal informação e de acordo com as suas preferências, o decisor escolherá então uma solução (normalmente não dominada) que se designa por melhor solução de compromisso.

2 - Programação Linear Multiobjectivo

Caso particular do problema geral apresentado atrás, é aquele em que as *p* funções objectivo e as *m* restrições são funções lineares. Tem-se então a seguinte forma típica:

Maximizar
$$\mathbf{Z} = [Z_1, Z_2, ..., Z_p] = \left[\sum_j \mathbf{c}_j^1 \mathbf{x}_j, \sum_j \mathbf{c}_j^2 \mathbf{x}_j, ..., \sum_j \mathbf{c}_j^p \mathbf{x}_j \right]$$
 sujeito a

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n \le b_1$$

 $a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n \le b_2$
...

$$a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n \le b_m$$

 $x_j \ge 0, j=1,2,...,n$

Nota: A forma típica considerada não implica perda de generalidade, pois mediante operações convenientes, qualquer problema pode tomar esta forma.

- Em problemas com um único objetivo, as soluções admissíveis do espaço das variáveis de decisão, x∈K (K = região admissível), são mapeadas em ℜn (assumindo n variáveis de decisão).
- Em problemas multi-objetivo o espaço de decisão é mapeado num espaço p-dimensional denominado espaço dos objetivos.
- Neste espaço, uma solução admissível x do espaço das variáveis de decisão é representada por um vetor

$$Z(x) = (z_1(x), z_2(x), ..., z_p(x))$$

Os elementos do vetor são os valores assumidos pelas *p* funções objetivo, no ponto **x** da região admissível.

Exemplo, considerando que existem n=2 variáveis de decisão e p=2 funções objetivo:

Espaço de decisão

Espaço dos objectivos

Definição 1:

Uma solução $\mathbf{x} \in K$ é **eficiente** se e só se não existir uma outra solução $\mathbf{y} \in K$ tal que $f_k(\mathbf{y}) \ge f_k(\mathbf{x})$ para todo o k=1, ..., p, sendo que, para pelo menos um valor de k, $f_k(\mathbf{y}) > f_k(\mathbf{x})$.

A solução **Z** – imagem da solução **x** no espaço das funções objetivo – é **não dominada**, se e só se **x** for uma **solução eficiente**.

O conceito de **eficiência** é relativo ao espaço das variáveis de decisão.

O conceito de **não dominância** é relativo ao espaço das funções objetivo.

A imagem de uma solução eficiente é uma solução não dominada.

Definição 2:

Sejam $\mathbf{x} \in K$ e $\mathbf{y} \in K$ duas soluções admissíveis de um problema de DMO. As duas soluções dizem-se **não comparáveis** se não se verificar a dominância de $Z(\mathbf{x})$ por $Z(\mathbf{y})$ nem a dominância de $Z(\mathbf{y})$ por $Z(\mathbf{x})$ (sendo $Z(\mathbf{x}) = [f_1(\mathbf{x}), f_2(\mathbf{x}), ..., f_p(\mathbf{x})]$ e $Z(\mathbf{y}) = [f_1(\mathbf{y}), f_2(\mathbf{y}), ..., f_p(\mathbf{y})]$).

As soluções eficientes / não dominadas são não comparáveis.

Exemplo 1 (*)

A Direcção de Marketing de uma empresa de mobiliário de escritório, sugere o lançamento de um novo modelo de secretária e de estante em substituição dos modelos actuais.

A mesma Direcção não vê dificuldade de colocação no mercado para as estantes, enquanto que aconselha a que a produção mensal de secretárias não ultrapasse as **160** unidades.

(*) Retirado de "Programação Linear", Volume I Ramalhete, M., Guerreiro, J., Magalhães A. Após estudos levados a cabo pela Direção de Produção, concluiu-se que:

- A disponibilidade mensal do Departamento de Estampagem é de
 720 Horas-Máquina (H-M);
- A disponibilidade mensal do Departamento de Montagem e Acabamento é de 880 Horas-Homem (H-H);
- Cada secretária necessita de 2 H-M de Estampagem e de 4 H-H de Montagem e Acabamento;
- Cada estante necessita de 4 H-M de Estampagem e de 4 H-H de Montagem e Acabamento.

Por outro lado, os lucros unitários estimados são de **6000** UM (unidades monetárias) para as secretárias e de **3000** UM para as estantes.

A empresa pretende determinar qual o plano de produção mensal para os novos produtos que maximiza o lucro.

Modelo matemático:

Maximizar
$$z = 6x_1 + 3x_2$$

sujeito a $2x_1 + 4x_2 \le 720$
 $4x_1 + 4x_2 \le 880$
 $x_1 \le 160$
 $x_1, x_2 \ge 0$

A empresa estabeleceu anteriormente, como objetivo único, maximizar o lucro.

Admita-se que a empresa pretende criar espaço para no futuro poder vir a lançar outros produtos. Admita-se que, por outro lado, por cada secretária produzida do novo modelo, são economizados 20 minutos do tempo de produção (em relação ao modelo antigo) e que, por cada estante produzida do novo modelo, essa economia é de 30 minutos (também em relação ao modelo antigo). Dada a impossibilidade de expansão da empresa em termos de capacidade de produção nos tempos mais próximos, é natural que esta também pretenda maximizar as economias de tempo de processamento que permitirão equacionar a produção de novos produtos.

O problema é agora de **programação linear multi-objetivo** (PLMO):

Modelo matemático:

Maximizar
$$\mathbf{Z} = [z_1, z_2] = [6x_1 + 3x_2, 20x_1 + 30x_2]$$

sujeito a $2x_1 + 4x_2 \le 720$
 $4x_1 + 4x_2 \le 880$
 $x_1 \le 160$
 $x_1, x_2 \ge 0$

K_E - Conjunto das soluções eficientes

Resolução gráfica:

Espaço dos objetivos

K_{ND}⁽¹⁾ - Conjunto das soluções não dominadas

 $^{^{(1)}}$ Alguns autores denominam K_{ND} apenas por K_{D}

Através da representação gráfica em ambos os espaços de decisão e dos objetivos, obtém-se:

- O ponto C otimiza a função objetivo z₂ e é solução eficiente, pois não existe nenhuma outra solução que otimize a função objetivo z₁ sem piorar z₂.
- O ponto D otimiza a função objetivo z₁ e é solução eficiente, pois não existe nenhuma outra solução que otimize a função objetivo z₂ sem piorar z₁.

Para determinar o conjunto das soluções eficientes:

- Considere-se uma determinada solução admissível F no espaço das variáveis de decisão (pág.19). Qualquer uma das soluções admissíveis da zona cinzenta dominam a solução F (em qualquer dessas soluções da zona cinzenta verifica-se a melhoria de pelo menos uma das funções objetivo relativamente a F). Este raciocínio pode estender-se a todos os pontos da região admissível, nomeadamente aos pontos extremos C e D, e restantes pontos da aresta CD.
- Alternativamente, recorre-se aos cones de dominância. Sobre qualquer ponto de uma aresta de K coloca-se o vértice do cone. Se a interseção do cone com K for simplesmente o vértice, esse ponto constitui uma solução eficiente. O mesmo raciocínio aplica-se aos restantes pontos das arestas.

- O conjunto das soluções eficientes K_E é constituído pela aresta CD, incluindo os pontos extremos C e D. (Qualquer ponto da aresta CD pode ser obtido como combinação linear convexa dos pontos C e D.)
- O conjunto das soluções não dominadas K_{ND} é constituído pela aresta Z_CZ_D incluindo os extremos Z_c e Z_D.
- As soluções C e D são não comparáveis (nenhuma delas domina a outra), assim como quaisquer 2 pontos sobre a aresta CD.

Definição 3:

Designa-se por **solução ideal** - \mathbf{Z}_{ideal} = $(Z_1^*, Z_2^*, ..., Z_p^*)$ - a solução que otimizaria simultaneamente todas as funções objetivo — é um vetor cujos componentes são o ótimo de cada função objetivo quando otimizadas separadamente.

O vetor com os piores valores assumidos pelas diversas funções objetivo (na região eficiente) designa-se por **solução anti-ideal** - $Z_{anti-ideal}$.

As soluções ideal e anti-ideal são muitas vezes usadas pelo decisor na determinação da melhor solução de compromisso (menor distância à solução ideal ou maior distância à solução menos favorável).

Em geral, a **solução ideal** - \mathbf{Z}_{ideal} (=Z*) não pertence à região admissível, embora cada \mathbf{Z}_{r}^{*} seja individualmente alcançável. Além disso, pode não haver solução \mathbf{x}^{*} cuja imagem seja o ponto ideal.

A solução anti-ideal corresponde à solução no espaço dos objetivos cujas componentes são os piores valores de cada função objetivo na região eficiente.

Para determinar as soluções ideal e anti-ideal, constrói-se a **tabela de ótimos individuais** (ou tabela de *pay-off*):

	Z ₁	\mathbf{z}_2
Ótimo de z_1 : Ponto D = (x_1, x_2) = (160, 60)	1140	5000
Ótimo de z_2 : Ponto $C = (x_1, x_2) = (80, 140)$	900	5800

$$Z_{ideal} = (z_1, z_2) = (1140, 5800)$$

$$Z_{anti-ideal} = (z_1, z_2) = (900, 5000)$$

Resolução gráfica:

Espaço dos objetivos

Em situações práticas, mais do que o conhecimento de todas as soluções eficientes, é importante identificar uma solução de compromisso satisfatória.

Esta denominação pretende traduzir a ideia de que se trata de uma solução eficiente, à qual se encontra associado um determinado compromisso entre as funções objetivo, assumindo estas funções valores satisfatórios para o decisor, de tal forma que a solução é aceitável como solução final do processo de decisão.

Solução fracamente eficiente/ fracamente não dominada:

K_E = Soluções eficientesK_{ND} = Soluções não dominadas

K_{FE} = Soluções fracamente eficientes
 K_{FND} = Soluções fracamente não dominadas

Colocando o vértice de um cone de dominância sobre um determinado ponto de uma aresta de **K**, conclui-se que esse ponto corresponde a uma solução fracamente eficiente quando a interseção do cone com a região **K** não é apenas o vértice do cone, mas também parte da aresta do mesmo.

A uma solução fracamente eficiente, corresponde uma solução fracamente não dominada.

Departamento de Engenharia Informática e de Sistemas

Metodologias de Otimização e Apoio à Decisão

Capítulo III

- Anexo 2 -

Resolução de problemas de PLMO

Considere o seguinte problema:

"Numa determinada empresa existem dois processos produtivos, ambos fabricando três tipos de *toners* (que designaremos por **T1**, **T2**, **T3**) para impressoras / fotocopiadoras, com grande procura no mercado.

No primeiro processo, cada Kg de matéria-prima dá origem a 20 unidades do *toner* T1, 40 unidades do *toner* T2 e 40 unidades do *toner* T3, resultando 50 gramas de um resíduo poluente.

No segundo processo, gastando o mesmo Kg de matéria-prima, obtêm-se **30** unidades do *toner* **T1**, **10** unidades do *toner* **T2**, **20** unidades do *toner* **T3** e são geradas **25** gramas do mesmo resíduo poluente.

A empresa dispõe de **2500** Kg de matéria-prima e deve satisfazer encomendas de **30000** unidades do *toner* **T1**, **40000** unidades do *toner* **T2** e **50000** unidades do *toner* **T3**."

- Formule o problema como um de programação linear de modo a maximizar a quantidade de matéria-prima usada no primeiro processo produtivo e a minimizar a quantidade produzida de resíduo poluente.
- Determine o conjunto das soluções (estrita ou fracamente) eficientes, o conjunto das soluções não dominadas e as soluções ideal e anti-ideal.

Departamento de Engenharia Informática e de Sistemas

Metodologias de Otimização e Apoio à Decisão

Capítulo IV Programação por Metas (Goal Programming)

Programação por Metas (Goal Programming)

Na generalidade dos problemas reais de decisão é necessário incorporar **múltiplos objectivos**

Na **programação por metas** (*goal programming*), o agente de decisão **especifica** as <u>metas</u> que pretende atingir para cada um dos objetivos (bem como, **eventualmente**, as respetivas <u>prioridades</u>)

Meta = valor desejável

Podem ser consideradas **metas** em que se pretende:

- Atingir tanto quanto possível um determinado valor g (em relação ao objetivo considerado);
- Igualar ou ultrapassar um determinado valor g (em relação ao objetivo considerado);
- Ficar aquém ou igualar um determinado valor *g* (em relação ao objetivo considerado).

Solução de um problema de Programação por Metas

Solução ótima

Quando satisfaz TODAS as metas.

Melhor solução de compromisso

- Quando *minimiza* os desvios (ou folgas) dos objetivos em relação às metas estabelecidas;
- Corresponde a um balanço entre os vários objetivos considerados, os quais são geralmente conflituosos.

Com vista a uma melhor compreensão deste tipo de problemas, começa-se pela apresentação de alguns exemplos simples e formulação matemática dos modelos correspondentes.

Seguidamente, esses exemplos serão resolvidos pelo método gráfico.

Formalização de problemas de Programação por Metas

A formalização de um problema de acordo com o modelo de Programação por Metas tem várias etapas:

1ª. Definição das variáveis de decisão e especificação das metas:

Esta tarefa consiste em definir as variáveis que o decisor pode controlar e também as metas que se pretende atingir.

2ª. Formalização das restrições:

É a tarefa de expressar as relações existentes entre as variáveis de decisão, e entre estas e as metas a atingir.

3ª. Formalização da função objetivo:

Esta deve traduzir o posicionamento do decisor face às diferentes metas, quer em termos de graus prioridade associados a cada meta, quer em termos de ponderação relativa das metas com igual prioridade.

Exemplo 1

A Direcção de Marketing de uma empresa de mobiliário de escritório, sugere o lançamento de um novo modelo de secretária e de estante em substituição dos modelos atuais.

A mesma Direcção não vê dificuldade de colocação das estantes no mercado, mas aconselha a que a produção mensal de secretárias não ultrapasse as 160 unidades.

(*) Retirado de "Programação Linear", I Volume Ramalhete, M., Guerreiro, J., Magalhães A.

Após estudos levados a cabo pela Direção de Produção, concluiu-se que:

- A disponibilidade mensal do Departamento de Estampagem é de 720 Horas-Máquina (H-M);
- A disponibilidade mensal do Departamento de Montagem e Acabamento é de 880 H-M;
- Cada secretária necessita de 2 H-M de Estampagem e de 4 H-M de Montagem e Acabamento;
- Cada estante necessita de 4 H-M de Estampagem e de 4 H-M de Montagem e Acabamento.

Por outro lado, os lucros unitários estimados são de 6 UM (unidades monetárias) para as secretárias e 3 UM para as estantes.

A empresa pretende determinar qual o plano de produção mensal dos novos produtos que maximiza o lucro.

Sejam x_1 e x_2 o n^0 de secretárias e de estantes a produzir mensalmente.

Modelo matemático:

Maximizar
$$z = 6x_1 + 3x_2$$

sujeito a $2x_1 + 4x_2 \le 720$
 $4x_1 + 4x_2 \le 880$
 $x_1 \le 160$
 $x_1, x_2 \ge 0$

A solução ótima $x_1^*=160$ e $x_2^*=60$, indica o n^0 de secretárias e de estantes a produzir por mês, respetivamente.

Esta produção resulta para a empresa num lucro mensal de 1140 UM.

No exemplo anterior, a empresa estabeleceu como objetivo a maximização do lucro, o que conduziu a um problema de Programação Linear mono-objetivo. Contudo, neste momento a empresa enfrenta alguns problemas a nível de reorganização, pelo que não é realista o objetivo de maximização do lucro. A Administração entende que é preferível a fixação da meta de 900 UM para o valor do lucro mensal enquanto decorre a reorganização da empresa.

Está-se agora em presença de um problema de Programação por Metas. A questão é:

<u>Como incorporar a meta fixada pela Administração</u>

<u>no modelo matemático?</u>

Definam-se as seguintes variáveis:

- d_1^- a folga por defeito (desvio negativo) relativamente à meta fixada, isto é, em quanto é que o lucro obtido fica aquém do valor especificado como meta
- d_1^+ a folga por excesso (desvio positivo) relativamente à meta fixada, isto é, em quanto é que o lucro obtido excede o valor especificado como meta

Então, a meta estabelecida para o lucro mensal pode ser expressa por:

$$6x_1 + 3x_2 + d_1^- - d_1^+ = 900$$

Agora, esta equação pode ser incorporada como restrição no modelo.

As variáveis d_1^- e d_1^+ em qualquer solução, e particularmente na solução ótima, verificarão sempre o seguinte:

Se uma delas for positiva a outra é nula, podendo verificar-se a situação de ambas serem nulas.

Então:

- se d_1^- for positiva (e d_1^+ nula), a meta não foi atingida;
- se por outro lado d_1^+ for positiva (e d_1^- nula), a meta foi ultrapassada;
- se forem ambas nulas, a meta foi atingida.

A Administração, ao fixar aquela meta, pretende afinal que o lucro mensal se encontre **tão próximo quanto possível de 900 UM**.

Matematicamente, tal pode ser expresso por:

Minimizar z =
$$d_1^- + d_1^+$$

sujeito a

$$6x_1 + 3x_2 + d_1^- - d_1^+ = 900$$
 (*meta*)

$$2x_1 + 4x_2 + d_2^- = 720$$

$$4x_1 + 4x_2 + d_3^- = 880$$

$$X_1 + d_4^- = 160$$

$$X_1, X_2, d_1^-, d_1^+, d_2^-, d_3^-, d_4^- \geq 0$$

As variáveis d_2^- , d_3^- e d_4^- são as variáveis folga (do tipo *slack*) necessárias à passagem do problema para a forma *standard*, pelo que não são incluídas na função objetivo.

Pelo contrário, as variáveis folga d_1^- e d_1^+ encontram-se incluídas nessa função, o que significa que a restrição respetiva representa uma meta do problema.

Exemplo 2

Vamos agora considerar que a Administração da empresa de mobiliário decidiu estabelecer mais do que uma meta. Vamos ainda supor que a mesma Administração é capaz de ordenar as várias metas por ordem de importância e que a meta mais importante tem prioridade absoluta sobre a meta seguinte, e assim sucessivamente. Assim, além da meta estabelecida no exemplo anterior correspondente à primeira prioridade, pretende-se ainda que a capacidade do Departamento de Montagem e Acabamento seja utilizada em pleno.

A formalização de acordo com o modelo de Programação por Metas é a seguinte:

Minimizar z = {
$$(d_1^- + d_1^+), d_3^-$$
 }
sujeito a
 $6x_1 + 3x_2 + d_1^- - d_1^+ = 900$ (meta)
 $2x_1 + 4x_2 + d_2^- = 720$
 $4x_1 + 4x_2 + d_3^- - d_3^+ = 880$ (meta)
 $x_1 + d_4^- = 160$
 $x_1, x_2, d_1^-, d_1^+, d_2^-, d_3^-, d_3^+, d_4^- \ge 0$

No modelo, x_1 , x_2 , d_1^- , d_1^+ , d_2^- e d_4^- têm o significado já conhecido. Por outro lado, d_3^- e d_3^+ , representam o *tempo de inatividade mensal* e o *tempo de trabalho extraordinário*(*) *mensal* do Departamento de Montagem e Acabamento.

A meta com prioridade absoluta inclui as variáveis d_1^- e d_1^+ , uma vez que a Administração pretende um lucro mensal tão próximo quanto possível de 900 UM, o que só poderá ser atingido minimizando ambas as folgas.

^(*) Admite-se que a disponibilidade do Departamento diz respeito a horário normal.

Contudo, a meta secundária não inclui a variável d_3^+ , uma vez que a preocupação expressa foi apenas de reduzir ao mínimo o tempo de inatividade do departamento em questão.

Note-se que, na construção da função objetivo, começa-se pela meta com maior prioridade, depois pela meta com a segunda maior prioridade, e assim sucessivamente.

Exemplo 3

Considere que entretanto foi concluída a reorganização da empresa em causa. Neste momento, e dada a boa aceitação do novo modelo de secretária, a Direcção de Marketing da empresa aconselha que a produção mensal deste artigo seja de 160 unidades. Por outro lado, a Administração fixou em 1500 UM, a nova meta quanto ao lucro mensal, admitindo o recurso a trabalho extraordinário nos Departamentos de Estampagem (DE) e de Montagem e Acabamento (DMA). Contudo, o funcionamento em horário extraordinário do DMA, custa à empresa o dobro do trabalho extraordinário do DE, em regime idêntico.

A administração da empresa estabeleceu os seguintes graus de prioridade:

Prioridade 1 - Obter um lucro mensal de 1500 UM

Prioridade 2 - Produzir mensalmente 160 secretárias

Prioridade 3 - Reduzir ao mínimo o trabalho extraordinário no
 Departamento de Estampagem e no Departamento de
 Montagem e Acabamento

A formalização deste problema em termos de Programação por Metas é a seguinte:

Minimizar z =
$$\{(d_1^- + d_1^+), (d_4^- + d_4^+), (d_2^+ + 2d_3^+)\}$$

sujeito a
 $6x_1 + 3x_2 + d_1^- - d_1^+ = 1500$ (meta)
 $2x_1 + 4x_2 + d_2^- - d_2^+ = 720$ (meta)
 $4x_1 + 4x_2 + d_3^- - d_3^+ = 880$ (meta)
 $x_1 + d_4^- - d_4^+ = 160$ (meta)
 $x_1, x_2, d_i^-, d_i^+ \ge 0$ (i=1,2,3,4)

Relativamente ao modelo anterior, note-se que a relação de custos em regime extraordinário dos dois departamentos, foi incluída na função objetivo, usando pesos diferentes para as metas com igual prioridade.

Assim, o modelo dará preferência ao trabalho extraordinário no Departamento de Estampagem, desde que tal não comprometa as metas com prioridade mais elevada.

Formulação Matemática do Modelo de Programação por Metas

Minimizar $Z = \{ h_1(D^-,D^+), h_2(D^-,D^+), ..., h_k(D^-,D^+) \}$ sujeito a

$$\sum_{j=1}^{n} a_{ij} x_{j} + d_{i}^{-} - d_{i}^{+} = b_{i}$$

 x_j , d_i^- , $d_i^+ \ge 0$ (i = 1,2, ..., m; j = 1,2, ..., n) em que $D^- = [d_1^-, d_2^-, ..., d_m^-]'$, $D^+ = [d_1^+, d_2^+, ..., d_m^+]'$ e as p metas estabelecidas se agrupam em k graus de prioridade ($k \le p$), de tal forma que cada meta se encontre incluída num e num só grau de prioridade.

As variáveis x_j constituem as variáveis de decisão do problema, $d_i^-e d_i^+$ as folgas por defeito e por excesso relativamente a cada meta, ou então as variáveis folga introduzidas para a passagem do problema à forma *standard* (quando as restrições não correspondem a metas). Portanto, o modelo apresentado contém dois tipos de restrições:

- as que não correspondem a metas (funcionais);
- as que correspondem a metas (especificadas pelo decisor).

A principal diferença entre elas é que, as primeiras <u>não podem ser</u> <u>violadas</u>, enquanto que as segundas devem ser <u>satisfeitas de forma</u> <u>tão aproximada quanto possível</u> (por excesso ou por defeito).

O objetivo neste modelo é minimizar as folgas entre os resultados obtidos e as metas estabelecidas, tendo em conta as prioridades e as ponderações dentro de cada prioridade.

Qualquer restrição respeitante a uma meta, tem a forma:

$$\sum_{j=1}^{n} a_{ij} x_{j} + d_{i}^{-} - d_{i}^{+} = b_{i}$$

1) Se a meta for atingir o valor $\mathbf{b_i}$, então há que proceder à minimização de $d_i^- + d_i^+$;

2) Se a meta for igualar ou exceder o valor $\mathbf{b_i}$, então há que proceder à minimização de d_i^- ;

3) Se a meta for igualar ou ficar aquém do valor $\mathbf{b_i}$, então há que proceder à minimização de d_i^+ .

Resolução Gráfica

Exemplo 1

Relativamente ao gráfico anterior, a região das soluções admissíveis é dada pelo interior e pela fronteira de **ABCDE** .

Considerando que a meta (lucro mensal) pode ser inferior, igual ou superior a 900 UM, conforme indicado pelas setas, a região admissível não é alterada. Pretende-se minimizar ambas as "folgas",

 d_i^- e d_i^+ , o que se indica através de um pequeno círculo preto à frente das setas respetivas.

Conclui-se que o segmento **CM** é o **conjunto das soluções ótimas**, dado que é sobre a reta de $6x_1 + 3x_2 = 900$ ($d_i^- = d_i^+ = 0$) que a FO é minimizada.

A solução extrema **M** corresponde à produção mensal de **150 secretárias** e **0 estantes** (sendo atingida a meta que foi estipulada de **900 UM** de lucro).

A outra solução ótima extrema alternativa **C** corresponde à produção mensal de **80 secretárias** e **140 estantes** conseguindo-se de igual modo atingir a meta de **900 UM** de lucro.

Conclui-se assim, que existe uma infinidade de soluções ótimas (obtidas pela combinação linear convexa das duas determinadas), para as quais se verifica $d_i^- = d_i^+ = 0$.

Exemplo 2

Figura **a**)

No gráfico anterior representaram-se graficamente as restrições do problema.

A região admissível vem ampliada em relação ao **Exemplo 1** uma vez que agora é possível o recurso a trabalho extraordinário no DMA.

As diferentes prioridades das duas metas foram assinaladas por **G1** e **G2** (Prioridade de Grau 1 e de Grau 2, respetivamente).

Os pequenos círculos pretos colocados à frente das setas dizem respeito às variáveis folga a serem minimizadas.

Figura **b**)

No gráfico anterior iniciou-se a análise à função objectivo.

Como existem dois graus de prioridade, determinaram-se primeiro as soluções que satisfazem a **meta de 900 UM de lucro mensal** (G1). Verificou-se que todas as soluções do segmento de recta CM satisfazem esta meta.

Vai-se analisar em seguida a meta com prioridade 2 (G2) - esta consiste em minimizar o tempo de inatividade mensal do DMA.

Figura c)

Como a solução a determinar não podia comprometer o nível de satisfação atingido relativamente à meta com primeira prioridade, a pesquisa recaiu apenas sobre os pontos do segmento CM. Assim sendo, determinou-se como **solução ótima** a correspondente ao ponto C: (80,140) - esta solução proporciona o lucro pretendido (900 UM) e por outro lado a **utilização plena do DMA**. Ou seja, consegue-se atingir o nível máximo de satisfação possível em relação a ambas as metas.

Exemplo 3

Figura **a**)

No gráfico anterior verifica-se que a região admissível coincide com o 1º quadrante.

Existem três graus de prioridade e as duas metas com grau de prioridade 3 têm diferentes ponderações (assinaladas com 1 e 2).

A satisfação da meta com prioridade de grau 1, é verificada para as soluções assinaladas no gráfico que se segue (*Figura b*)).

Figura **b**)

Quando se tenta satisfazer a meta com grau de prioridade 2, vê-se que existe apenas uma solução nestas condições: (160,180).

A solução encontrada corresponde à produção mensal de 160 secretárias, originando um lucro mensal de 1500 UM.

Ou seja, como referido atrás, as metas dos dois primeiros graus de prioridade foram atingidas.

Figura c)

A satisfação das metas com grau de prioridade 3 já não alterará a solução determinada, pois como já foi referido, a lógica do modelo de Programação por Metas consiste na satisfação sequencial por graus de prioridade das metas em cada grau, sem nunca pôr em causa o nível de satisfação já atingido em relação às metas com precedência de prioridade.

Como se pode verificar pelo gráfico, na solução encontrada (160,180), as metas com prioridade de grau 3 não são satisfeitas. É necessário recorrer a trabalho extraordinário nos DE e DMA, de (2*160 + 4*180 - 720 =) 320 H-M e (4*160 + 4*180 - 880 =) 480 H-M mensais, respetivamente.

Então o processo termina e a solução encontrada (160,180) é a melhor solução de compromisso para este problema.

Resumindo, a resolução gráfica de um problema de Programação por Metas envolve os seguintes passos:

Passo 1

Representar graficamente as restrições que não correspondem a metas e determinar a Região Admissível. Representar graficamente as metas, indicando o grau de prioridade de cada uma bem como as variáveis folga que fazem parte da Função Objetivo.

Passo 2

Determinar o conjunto das soluções que satisfazem as metas com grau de prioridade 1.

Passo 3

Passar ao grau de prioridade seguinte e determinar o conjunto das soluções que satisfazem as metas com esse grau de prioridade, sem comprometer o nível de satisfação já atingido para as prioridades mais elevadas.

<u>Passo 4</u>

(Critério do ótimo). Se foram analisados todos os graus de prioridade, a solução encontrada é a solução ótima (ou a melhor solução de compromisso) para este problema e o processo termina.

Senão, voltar ao *Passo 3*.