演習問題 1.31

2つの変数 \mathbf{x} , \mathbf{y} を考え、同時分布 $p(\mathbf{x}, \mathbf{y})$ をとする。この変数の組の微分エントロピーが

$$H[x, y] \le H[x] + H[y]$$
 ... (1.52)

を満たし、等号は x と y が統計的に独立なとき、またそのときに限ることを示せ。

「エントロピー 〕

$$\mathbf{H}[\mathbf{x}] = -\int p(\mathbf{x}) \ln p(\mathbf{x}) d\mathbf{x}$$

... (1.104)

[条件付きエントロピー]

$$\mathbf{H}[\mathbf{y} | \mathbf{x}] = -\iint p(\mathbf{y}, \mathbf{x}) \ln p(\mathbf{y} | \mathbf{x}) d\mathbf{y} d\mathbf{x}$$

... (1.111)

[条件付きエントロピーの関係式]

$$H[x, y] = H[y|x] + H[x]$$

... (1.112)

[相互情報量 (カルバック – ライブラーダイバージェンス)]

$$\mathbf{I}[\mathbf{x},\mathbf{y}] = KL(p(\mathbf{x},\mathbf{y}) || p(\mathbf{x}) p(\mathbf{y})) = -\int \int p(\mathbf{x},\mathbf{y}) \ln\left(\frac{p(\mathbf{x}) p(\mathbf{y})}{p(\mathbf{x},\mathbf{y})}\right) d\mathbf{x} d\mathbf{y}$$
... (1.120)

[相互情報量の関係式]

$$I[x,y] = H[x] - H[x|y] = H[y] - H[y|x]$$
... (1.121)

[解]

式(1.52)は、左辺を右辺に移行すると、

$$H[x] + H[y] - H[x, y] \ge 0$$

··· (1.52)'

と変形できるので、以後、これを証明する。上記の式の左辺は、条件付きエントロピーの 関係式 (1.112)より、

式 (1.52)' の左辺 =
$$H[x] + H[y] - (H[y|x] + H[x])$$

= $H[y] - H[y|x]$

となり、これは相互情報量の関係式 (1.121) より、相互情報量 I[x,y] で以下のように書き表すことができる。

$$= I[x,y]$$

上記の式は、カルバック – ライブラーダイバージェンス (1.113) の性質から、必ず正の値となることがわかる。

$$I[x,y] \geq 0$$

以上より、式 (1.52)'の関係式が満たせたので、2つの変数 \mathbf{x} , \mathbf{y} の組の微分エントロピーが、式 (1.52) を満たすことが示せた。

最後に、式 (1.52) の等号は \mathbf{x} と \mathbf{y} が統計的に独立なとき、またそのときに限ることを示す。式 (1.120) より、

$$\mathbf{I}[\mathbf{x},\mathbf{y}] = KL(p(\mathbf{x},\mathbf{y}) \| p(\mathbf{x}) p(\mathbf{y})) = -\int \int p(\mathbf{x},\mathbf{y}) \ln \left(\frac{p(\mathbf{x}) p(\mathbf{y})}{p(\mathbf{x},\mathbf{y})} \right) d\mathbf{x} d\mathbf{y}$$

となり、 \mathbf{x} と \mathbf{y} が統計的に独立なとき、 $p(\mathbf{x},\mathbf{y}) = p(\mathbf{x})p(\mathbf{y})$ となるので、上記の式は、

$$= -\int \int p(\mathbf{x}) p(\mathbf{y}) \ln \left(\frac{p(\mathbf{x}) p(\mathbf{y})}{p(\mathbf{x}) p(\mathbf{y})} \right) d\mathbf{x} d\mathbf{y}$$
$$= -\int \int p(\mathbf{x}) p(\mathbf{y}) \ln 1 d\mathbf{x} d\mathbf{y} = 0$$

となる。よって、式 (1.52) の等号は \mathbf{x} と \mathbf{y} が統計的に独立なとき、またそのときに限ることを示せた。