Boolos and Jeffrey - HW1

David Maldonado, david.m.maldonado@gmail.com

September 7, 2014

1 A question about \cap

Proposition:

The intersection of a finite set S and an enumerable set T is enumerable.

Lemma 1.1. Any finite set is enumerable.

Proof. Let **S** be a finite set with n elements. Let $\mathbf{K} = \{1, 2, ..., n\}$. Choose an element $\mathbf{s} \in \mathbf{S}$ and assign $f(n) = \mathbf{s}$. Set \mathbf{S}' to $\mathbf{S} - \{\mathbf{s}\}$. Choose an element $\mathbf{s}' \in \mathbf{S}'$ and assign $f(n-1) = \mathbf{s}'$. Repeat this procedure until **S** is exhausted. The resulting function $f : \mathbf{K} \to \mathbf{S}$ is an enumeration of **S**.

Lemma 1.2. The intersection of two enumerable sets is enumerable.

Proof. Let $f: \mathbb{N} \to \mathbf{A}$ represent a function that enumerates the first set. Let $g: \mathbb{N} \to \mathbf{B}$ represent a function that enumerates the second set. Let $h: \mathbb{N} \to \mathbf{A} \cap \mathbf{B}$ be a new function defined as follows:

$$h(x) = \begin{cases} f(x) & \text{if } f(x) \in \mathbf{B} \\ undefined & \text{if } f(x) \notin \mathbf{B}. \end{cases}$$

Conclusion:

Proof. By **Lemma 1.1** the set **S** is enumerable. By **Lemma 1.2** the intersection of **S** and **T** is enumerable. \Box

2 A slightly harder question about \cap

Proposition:

The intersection of an enumerable set of enumerable sets is itself enumerable.

Conclusion:

Proof. Let **S** be a enumerable set of enumerable sets. Pick a set $\mathbf{A} \in \mathbf{S}$. Let **B** be $\bigcap (\mathbf{S} - \mathbf{A})$. By **Lemma 1.2** we can define a function $h : \mathbb{N} \to \mathbf{A} \cap \mathbf{B}$ that enumerates $\bigcap \mathbf{S}$.

3 It takes two...

Proposition:

Let \mathbf{F} be the set of all *one to one* functions that both i) have a domain that's a subset of the positive integers, and ii) are *onto* a two element set $\{a,b\}$. \mathbf{F} is enumerable.

Conclusion:

Proof. We can arrange each function $f \in \mathbf{F}$ in a two dimensional grid as follows:

F can now be enumerated by sweeping through the grid in a triangular fashion: $(f(1,1), f(1,2), f(2,1), f(1,3), f(2,2), f(3,1), \ldots)$.

4 Enumerate all the things!

Proposition:

The set of all finite sequences of positive integers is enumerable.

Lemma 4.1. For any n, the set of n-member sequences is enumerable.

Proof. We proceed by induction. Let \mathbf{A}_n be the set of all n-member sequences of \mathbb{N} . The base case of \mathbf{A}_0 is trivially enumerable. $\mathbf{A}_0 = \emptyset$, so a sequence of length 0 is a function $f:\emptyset\to\mathbb{N}$ which is enumerable by convention. For the inductive step suppose \mathbf{A}_n is enumerable by the list (a_1,a_2,a_3,\ldots,a_n) where a_i is an sequence of length n. We can construct \mathbf{A}_{n+1} by appending a number $n\in\mathbb{N}$ to each $a_i\in\mathbf{A}_{n+1}$. \mathbf{A}_{n+1} is then enumerable by a list (a_1,a_2,a_3,\ldots,a_n) using the preceding procedure to construct each a_i . Therefore by induction for any n the set of n-member sequences is enumerable.

Lemma 4.2. The union of an enumerable set of enumerable sets is itself enumerable.

Proof. Let **A** be an enumerable set of enumerable sets. The members $a \in$ **A** can be enumerated as $(a_1, a_2, a_3, ...)$. The members of each a_i can be enumerated as $(a_{i1}, a_{i2}, a_{i3}, ...)$. We can arrange them on a two-dimensional grid as follows:

```
a_1 a_{11} a_{21} ... a_2 a_{12} a_{22} ... a_3 a_{13} a_{23} ... \vdots \vdots \vdots \vdots
```

 $\bigcup \mathbf{A}$ can now be enumerated by sweeping through the grid in a triangular fashion: $(a_1, a_{11}, a_2, a_{21}, a_{12}, a_3, \dots)$.

Conclusion:

Proof. Let **A** be a set of sets where each member is a set containing all the n-member sequences of a particular n. Each member of **A** is enumerable by **Lemma 4.1**. The $\bigcup \mathbf{A}$ is enumerable by **Lemma 4.2**. Let **S** be the set of all finite sequences of positive integers. By definition $\mathbf{S} = \bigcup \mathbf{A}$, therefore **S** is enumerable.