MakerSpace[A]

Schaltungstechnik I

Michael Grabenschweiger michael@grabenschweiger.com

Ohmsches Gesetz / Leistung

- U = R * I
- P = U * I
- $P = I^2 * R = U^2 / R$

- U... Spannung in Volt
- I... Strom in Amper
- R... Widerstand in Ohm
- P... Leistung in Watt

Spannungsteiler

•
$$U_2 = U * \frac{R_2}{R_1 + R_2}$$

- Funktioniert nur $R_L \gg R_2$ um
- ansonst ->

•
$$U_2 = U * \frac{R_2||R_L|}{R_1 + R_2||R_L|}$$

- − > Unlustig ☺
- > Lösung im VortragSchaltungstechnik II

Spannungsquelle != Stromquelle

Spannungsquelle

- Innenwiderstand 00hm
- Spannung Konstant
- Strom Lastabhängig
- Beispiele:
 - Batterie
 - Netzgerät
 - Transformator
 - Thermoelement

Stromquelle

- Innenwiderstand Inf.Ω
- Spannung Lastabhängig
- Strom Konstant
- Beispiele:
 - Solarzelle
 - Fotodiode
 - Bipolartransistor
 - Messwandler

Widerstandstypen

Festwiderstand

Temperatursensoren

- PTC Positiv Temperatur Koeffizient
- Platin-Sensor $R_T = R_0 * (1 + \alpha * T + \beta * T^2)$

- VDR Spannungsabhängiger Widerstand
- LDR Lichtabhängiger Widerstand
- MDR Magnetfeldabhängige Widerstande

Kapazität

- $\bullet Q = C * U = I * t$
 - Q... Ladung in Coulomb (As)
 - C... Kapazität in Farad
- $C = \frac{\varepsilon * A}{d}$ Kapazität eines Kondensators
- Serienschaltung: $C = C_1 || C_2$
- Parallelschaltung: $C = C_1 + C_2$

Kondensatoren

- Ungepolte Typen
 - Folienkondensatoren
 - Keramikkondensatoren
 - Koaxial
 - Bipolare Elko's
- Gepolte Typen
 - Aluminium-Elektrolyt-Kondensator ELKO
 - Tantal-Elektrolyt-Kondensator

Besonderheiten bei realen Kondensatoren

 Starke Spannungsabhängigkeit bei Keramikkondensatoren

- Großer Toleranzbereich bei Elko's
 - -20% +50% als Standardwert

Halbleiter-Diode

- PN-Diode
 - Bis ca. 1kV
 - $-U_D \sim 0.7V$

$$-I_D = I_S * e^{\frac{U_D}{n*U_T} - 1}$$

$$-U_T = \frac{k_B * T}{q} \sim 0.25 \text{mV}$$

- Schottky-Diode
 - Metall Halbleiter

$$-U_{D}$$
 ~ 0,1 $-$ 0,3 V

Gleichrichter

Anwendungen / Schaltungen

RC-Filter

- Glätten von Signalen
- Signalaufbereitung f
 ür ADC

$$-$$
 > Nyquist f_S ≤ $\frac{f_{ADC}}{2}$

- Frequenzweichen
- Zeitverzögerungen
- Herausfiltern relevanter Signalanteile

RC-Tiefpassfilter

Grenzfrequenz:
$$f_g = \frac{1}{2\pi*R*C}$$
 wobei hier gilt $|\frac{V_{Out}}{V_{In}}|$ = -3dB

RC-Hochpassfilter

Grenzfrequenz:
$$f_g = \frac{1}{2\pi*R*C}$$
 wobei hier gilt $|\frac{V_{Out}}{V_{In}}|$ = -3dB

Spannungsmessung mit dem Arduino

- ADC-Auflösung
- Referenzspannung
- Abtastfrequenz
- Innenwiderstand / Sample-Hold-Kond.
- Antialiasing Tiefpass
- Rückrechnung

Temperaturmessung mit dem uC

VCC

- Reduzierbar auf einfache
 Widerstandsmessung
- Referenzunabhängige Messung möglich!
- Auswahl des Sensors für einfache Erfassung

$$T = \frac{(1023 - ADC)R_2 - R_0ADC}{ADC * R_0 * \alpha}$$

$$R_{v} = R_{0} * (1 + \alpha T + \beta T^{2})$$

$$V_{ADC} = V_{CC} * \frac{R_{2}}{R_{v} + R_{2}}$$

$$V_{ADC} = V_{CC} * \frac{ADC_{Value}}{2^{BITs}} = V_{CC} * \frac{ADC}{1023}$$

$$R_{v} = R_{2} * (\frac{1023}{ADC} - 1)$$

Ansteuerung einer Leuchtdiode

- Meist $U_D \sim 1.6V 3.5V$
- Strom meist stark reduzierbar bei ähnlicher Helligkeit
 uc out
- Genaue Rechnung Symbolisch sehr Komplex
- Näherung $R = \frac{U_{Out} U_{Led}}{I_{Led}}$

R1

D1

Bipolartransistor als Schalter Relaisansteuerung-Arduino

