Am9511A

Am9511A

Arithmetic Processor

MILITARY INFORMATION

DISTINCTIVE CHARACTERISTICS

- 2 and 3 MHz operation; fixed point 16-bit and 32-bit operations
- Floating point 32-bit operations; binary data formats
- Add, Subtract, Multiply and Divide; trigonometric and inverse trigonometric functions
- Square roots, logarithms, exponentiation; float-to-fixed fixed-to-float conversions
- Stack-oriented operand storage; DMA or programmed I/O data transfers
- End signal simplifies concurrent processing; Synchronous/Asynchronous operations
- General purpose 8-bit data bus interface; standard 24pin package

GENERAL DESCRIPTION

The Am9511A Arithmetic Processing Unit (APU) is a monolithic MOS/LSI device that provides high-performance fixed and floating point arithmetic and a variety of floating point trigonometric and mathematical operations. It may be used to enhance the computational capability of a wide variety of processor-oriented systems.

All transfers, including operand, result, status, and command information, take place over an 8-bit bidirectional data bus. Operands are pushed onto an internal stack, and a command is issued to perform operations on the data in

the stack. Results are then available to be retrieved from the stack, or additional commands may be entered.

Transfers to and from the APU may be handled by the associated processor using conventional programmed I/O, or may be handled by a direct memory access controller for improved performance. Upon completion of each command, the APU issues an end-of-execution signal that may be used as an interrupt by the CPU to help coordinate program execution.

BLOCK DIAGRAM

Publication # Rev. Amendment
09224 A /0
Issue Date: December 1987

CONNECTION DIAGRAM Top View

CD005172

Note: Pin 1 is marked for orientation.

MILITARY ORDERING INFORMATION

NPL Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of: a. Device Number

- b. Speed Option (if applicable)
- c. Package Type
- d. Temperature Range
- e. Optional Processing

Valid Combinations

AM9511A DMB

AM9511A-1

*Military or Limited Military temperature range products are "NPL" (Non-Compliant Products List) or Non-MIL-STD-883C Compliant products only.

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations, to check on newly released combinations, and to obtain additional data on AMD's standard military grade products.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature65	to +150°C
V _{DD} with Respect to V _{SS} 0.5 V	to +15.0 V
V _{CC} with Respect to V _{SS} 0.5 V	to +7.0 V
All Signal Voltages	
with Respect to VSS5.0 V	to +7.0 V
Power Discipation (Package Limitation)	

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Military (M) Devices		
Temperature (T _C)55	to +	125°C
Supply Voltage (V _{CC})	.5 V	±10%
(V _{DD})1	2 V	±10%

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range

Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
VOH Output HIGH Voltage		I _{OH} = -200 μA	3.7		
VOL	Output LOW Voltage	I _{OL} = 3.2 mA		0.4	v
VIH	Input HIGH Voltage		200	Vcc*	v
V _{IL}	Input LOW Voltage		A LEW	0.8	v
llχ	input Load Current	V _{SS} ≤ VI ≤ V _{CC}		±10	μA
loz	Data Bus Leakage	V _O = 0.4 V V _O =	10	10	μΑ
lcc	V _{CC} Supply Current			100	mA

Parameter Symbol	Proceeds Description	Test Conditions	Min.	Max.	Unit
co	Output Capacitance	f _C = 1.0 MHz, Inputs = 0 V	· · · · · · · · · · · · · · · · · · ·	10*	ρF
Cl	Input Capacitance			8*	ρF
C _{IO}	I/O Capacitance			12*	pF

*Not tested; guaranteed by design.

SWITCHING TEST INPUT WAVEFORM

SWITCHING CHARACTERISTICS over operating range

Parameter	· ·		Am9511A		Am95	11A-1	
Symbol			Min.	Max.	Min.	Max.	Uni
TAPW	EACK LOW Pulse Width		100		75		ns
TCDR	C/D to RD LOW Setup Time		0		0		ns
TCDW	C/D to WR LOW Setup Time		0		0		ns
TCPH	Clock Pulse HIGH Width		200		140		ns
TCPL	Clock Pulse LOW Width		240	****	160		ns
TCSR	CS LOW to RD LOW Setup Time		0		0		ns
TCSW	CS LOW to WR LOW Setup Time		0		0		ns
TCY	Clock Period		480	5000	320	3300	ns
TDW	Data Bus Stable to WR HIGH Setup Time		150		150	7	ns
TEAE	EACK LOW to END HIGH Delay			20		175	กร
TEPW	END LOW Pulse Width (Note 4)		400	4	270		ns
TOP	Data Bus Output Valid to PAUSE HIGH Delay		0		0		ns
TPPWR	PAUSE LOW Pulse Width Read (Note 5)	Data	3.FTCY 50	5.5TCY + 300	3.5TCY + 50	5.5TCY + 200	ns
IFFWH		Status	5TCT TO	3.5TCY + 300	1.5TCY + 50	3.5TCY + 200	
TPPWW	PAUSE LOW Pulse Width Write (Note 8)	•	20	50		50	ns
TPR	PAUSE HIGH to RD HIGH Hold Time	1 D	0		0		ns
TPW	PAUSE HIGH to WR HIGH Hold Time	N D	0		0		ns
TRCD	RD HIGH to C/D Hold Time		0		0		ns
TRCS	RD HIGH to CS HIGH Hole Time	A	0		0		ns
TRO	RD LOW to Data Box On Della		50		50		ns
TRP	RD LOW to PAINE Delay (Note 6)			150		150	ns
TRZ	RD HIGH to Data to OFF Delay		50	200	50	150	ns
TSAPW	SVACK LOW Pulse Width		100		75		ns
TSAR	SVACK LOW to SVREQ LOW Delay			300		200	ns
TWCD	WR HIGH to C/D Hold Time		60		30		ns
TWCS	WR HIGH to CS HIGH Hold Time		60		30		ns
TWD	WR HIGH to Data Bus Hold Time		20		20		ns
TWI	Write Inactive Time	Command Data	4TCY 5TCY		4TCY 5TCY		ns
TWP	WR LOW to PAUSE LOW Delay (Note 6)			150		150	ns

Notes: 1. Typical values are for TA = 25°C, nominal supply voltages and nominal processing parameters.

2. Switching parameters are listed in alphabetical order.

3. Test conditions assume transition times of 20 ns or less, output loading of one TTL gate plus 100 pF ±20 pF and timing reference levels of 0.8 V and 2.0 V.

4. END low pulse width is specified for EACK tied to Vss. Otherwise TEAE applies.

5. Minimum values shown assume no previously entered command is being executed for the data access. If a previously entered command is being executed, PAUSE LOW Pulse Width is the time to complete execution plus the time shown. Status may be read at any time without exceeding the time shown.

6. PAUSE is pulled low for both command and data operations.

7. TEX is the execution time of the current command (see the Command Execution Times table).

8. PAUSE low pulse width is less than 50 ns when writing into the data port or the control port as long as the duty requirement (TWI) is observed and no previous command is being executed. TWI may be safely violated up to 500 ns as long as the extended TPPWW that results is observed. If a previously entered command is being executed, PAUSE LOW Pulse Width is the time to complete execution plus the time shown.

CHAPTER 6

口

General Information

T-90-20

PACKAGE OUTLINES*

Ceramic DIPs (CD) CD 024

CD 028

* For reference only.

NOTE: Package dimensions are given in inches. To convert to millimeters, multiply by 25.4.

6-

T-90-20

PACKAGE OUTLINES (Continued)

Ceramic DIPs (CD) (Continued) CD 040

CDV040

PACKAGE OUTLINES (Continued)

T-90-20

Ceramic Sidebrazed DIPs (SD) **SD 040**

SD 048

T-90-20

PACKAGE OUTLINES (Continued)

Ceramic Leadless Chip Carriers (CL/CLV) CL 044

CLV044

T-90-20

CHAPTER 6
General Information

PACKAGE OUTLINES (Continued)

68-Pin Square Leadless Chip Carrier (CA2) CA2068

PACKAGE OUTLINES (Continued)

Ceramic Pin-Grid-Array Package (CG/CGX) **CGX068**

BOTTOM VIEW

