Coordinación de Cálculo III y Cálculo Avanzado para el Módulo Básico de Ingeniería

Control 2 Cálculo Avanzado, Forma A 9 de mayo de 2022

1. Asumamos que la temperatura dentro de una cueva viene dada por la función a valores reales:

$$f(x, y, z) = 20(xe^{-y^2} + 2ze^{-x^2}).$$

Para el punto (0,1,1) de la bodega determine lo siguiente:

- I) ¿En que dirección debemos movernos para que la temperatura aumente de la manera más rápida posible?
- II) Determine todas las direcciones en las cuáles no se aprecia cambio de temperatura.

Solución.

I) Sabemos por álgebra de funciones diferenciables que la función f(x,y,z) es diferenciable en el punto (0,1,1). Por ende la dirección de máximo crecimiento para la función corresponde al vector

$$\frac{\nabla f(0,1,1)}{\|\nabla f(0,1,1)\|}.$$

(0,6 ptos)

En vista de esto procedamos a calcular $\nabla f(0,1,1)$,

$$\frac{\partial f(0,1,1)}{\partial x} = \frac{\partial (20(xe^{-y^2} + 2ze^{-x^2}))}{\partial x}(0,1,1)$$

$$= (-80xze^{-x^2} + 20e^{-y^2})(0,1,1)$$

$$= 20 \cdot e^{-1}.$$

$$\frac{\partial f(0,1,1)}{\partial y} = \frac{\partial 20(xe^{-y^2} + 2ze^{-x^2})}{\partial x}(0,1,1),$$

$$= (-40xye^{-y^2})(0,1,1),$$

$$= 0.$$

$$\frac{\partial f(0,1,1)}{\partial z} = \frac{\partial (20(xe^{-y^2} + 2ze^{-x^2}))}{\partial x}(0,1,1),$$

$$= (40e^{-x^2})(0,1,1),$$

$$= 40.$$

(1, 2 ptos)

Luego, se tiene que $\nabla f(0,1,1) = (20 \cdot e^{-1}, 0, 40)$. Por otro lado,

$$\|\nabla f(0,1,1)\| = \|(20 \cdot e^{-1}, 0, 40)\|,$$

= $\sqrt{400 \cdot e^{-2} + 1600}$.

Finalmente la dirección de máximo crecimiento corresponde a

$$\left(\frac{20 \cdot e^{-1}}{\sqrt{400 \cdot e^{-2} + 1600}}, 0, \frac{40}{\sqrt{400 \cdot e^{-2} + 1600}}\right).$$

(1, 2 ptos)

II) Dado que la función es diferenciable en el punto (0, 1, 1), sabemos que las direcciones en cuales la temperatura no variará corresponden a los vectores unitarios $\vec{d} = (d_1, d_2, d_3)$ tales que

$$\langle \nabla f(0,1,1), \vec{d} \rangle = 0,$$

(0, 8 ptos)

o de manera equivalente,

$$\langle (20 \cdot e^{-1}, 0, 40), (d_1, d_2, d_3) \rangle = (20 \cdot e^{-1})d_1 + 40d_3 = 0,$$

es decir, $-e^{-1}d_1 = 2d_3$.

(1, 4 ptos)

Por ende las direcciones en las cuales la temperatura no varía corresponden a los vectores unitarios de la forma $(d_1, d_2, -\frac{e^{-1}}{2}d_1)$.

(0, 8 ptos)

2. Sea $u=u(x,y), v=v(x,y), x=r\cos(\theta)$ e $y=r\sin(\theta)$. Suponga que u(x,y) y v(x,y) satisfacen las ecuaciones de Cauchy-Riemann, esto es:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$

Demuestre que estas ecuaciones pueden ser reescritas como:

$$\begin{split} \frac{\partial u}{\partial r} &= \frac{1}{r} \frac{\partial v}{\partial \theta} \\ \frac{\partial u}{\partial \theta} &= -r \frac{\partial v}{\partial r}. \end{split}$$

Solución. Usando la regla de la cadena, tenemos:

$$\frac{\partial u}{\partial r} = \frac{\partial u}{\partial x} \cdot \frac{\partial x}{\partial r} + \frac{\partial u}{\partial y} \cdot \frac{\partial y}{\partial r} = \frac{\partial u}{\partial x} \cos(\theta) + \frac{\partial u}{\partial y} \sin(\theta)$$
 (1 punto)

$$\frac{\partial u}{\partial \theta} = \frac{\partial u}{\partial x} \cdot \frac{\partial x}{\partial \theta} + \frac{\partial u}{\partial y} \cdot \frac{\partial y}{\partial \theta} = -r \frac{\partial u}{\partial x} \operatorname{sen}(\theta) + r \frac{\partial u}{\partial y} \cos(\theta)$$
 (1 punto)

$$\frac{\partial v}{\partial r} = \frac{\partial v}{\partial x} \cdot \frac{\partial x}{\partial r} + \frac{\partial v}{\partial y} \cdot \frac{\partial y}{\partial r} = \frac{\partial v}{\partial x} \cos(\theta) + \frac{\partial v}{\partial y} \sin(\theta)$$
 (1 punto)

$$\frac{\partial v}{\partial \theta} = \frac{\partial v}{\partial x} \cdot \frac{\partial x}{\partial \theta} + \frac{\partial v}{\partial y} \cdot \frac{\partial y}{\partial \theta} = -r \frac{\partial v}{\partial x} \operatorname{sen}(\theta) + r \frac{\partial v}{\partial y} \cos(\theta)$$
 (1 punto)

y como $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ y $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$, entonces

$$\frac{\partial u}{\partial r} = \cos(\theta) \frac{\partial v}{\partial y} - \sin \frac{\partial v}{\partial x} = \frac{1}{r} \left(r \cos(\theta) \frac{\partial v}{\partial y} - r \sin(\theta) \frac{\partial v}{\partial x} \right) = \frac{1}{r} \frac{\partial v}{\partial \theta}$$
 (1 punto)

У

$$\frac{\partial u}{\partial \theta} = -r \operatorname{sen}(\theta) \frac{\partial v}{\partial y} + r \operatorname{cos} \cdot - \frac{\partial v}{\partial x} = -r \left(\operatorname{sen}(\theta) \frac{\partial v}{\partial y} + \operatorname{cos}(\theta) \frac{\partial v}{\partial x} \right) = -r \frac{\partial v}{\partial r}.$$
(1 punto)

3. Considerar la función $f: \mathbb{R}^2 \to \mathbb{R}^2$, definida por:

$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{e^{x+y} - 1}, & \text{si } x \neq -y\\ 2x, & x = -y \end{cases}$$

Sugerencia: estudiar la diferenciabilidad función $q: \mathbb{R} \to \mathbb{R}$:

$$g(x) = \begin{cases} \frac{e^x - 1}{x}, & \text{si } x \neq 0\\ 1, & x = 0 \end{cases}$$

- Estudiar la continuidad de f en (a, a), para algún $a \in \mathbb{R}$.
- i f es diferenciable en (0,0)?

Solución. Según la sugerencia tenemos que g es diferenciable en $\mathbb{R}\setminus\{0\}$ por álgebra de funciones $(\mathbf{0}, \mathbf{5} \text{ puntos})$. En x=0:

$$\lim_{h \to 0} \frac{\frac{e^h - 1}{h} - 1}{h} = \lim_{h \to 0} \frac{e^h - 1 - h}{h^2} \underbrace{= \lim_{h \to 0} \frac{e^h - 1}{2h}}_{\text{por la regla de L'Hôpital}} = \frac{1}{2} \left(\mathbf{1} \text{ punto} \right)$$

Luego g es diferenciable en 0 también y además $g(x) \neq 0$ (1 punto), $\forall x \in \mathbb{R}$. Notar que:

$$f(x,y) = \begin{cases} \frac{x-y}{\frac{e^{x+y}-1}{x+y}}, & \text{si } x \neq -y \\ \frac{x-y}{1}, & x = -y \end{cases} = \frac{x-y}{g(x+y)} (\mathbf{2} \text{ puntos})$$

Luego, como g no nula y diferenciable en 0, f es una función diferenciable en \mathbb{R}^2 ($\mathbf{0}, \mathbf{5}$ puntos). Y como es diferenciable en \mathbb{R}^2 también es continua ($\mathbf{1}$ punto)