Modal Logic Exercise Set 10

To be completed by Thursday 18 July

Recall that E(x) abbreviates $(\exists y)(y=x)$, where x is a free variable and y is a variable distinct from x.

- 1. Give variable domain tableau proofs of the following validities:
 - (a) $\Diamond(x=y) \to (x=y)$.
 - (b) $\neg (x = y) \rightarrow \Box \neg (x = y)$.
 - (c) $((x = y) \land (y = z)) \to (x = z)$.
 - (d) $(x = y) \to (\varphi(x) \leftrightarrow \varphi(y))$, where $\varphi(x)$ is a formula in which y does not occur, and $\varphi(y)$ is the result of substituting occurrences of y for free occurrences of x in $\varphi(x)$.
 - (e) $((\forall x)\varphi(x) \land \mathsf{E}(z)) \to \varphi(z)$.
 - (f) $((\forall x) \Diamond \mathsf{E}(x) \land (\exists x) \Box P(x)) \rightarrow \Diamond (\exists x) P(x)$.
- 2. Derive the Parameter Nonexistence Rule: A branch of a variable domain tableau containing $\sigma \neg \mathsf{E}(p^{\sigma})$ closes.
- 3. Let F = (W, R, D) be a variable domain frame. Prove that the following conditions are equivalent:
 - (a) F is anti-monotonic;
 - (b) $\Diamond E(x) \to E(x)$ is valid in every normal model based on F.