(19) Canadian Intellectual Property Office

Office de la Propriété Intellectuelle du Canada (11) CA 2 421 269

(13) A1

An Agency of Industry Canada

Un organisme d'Industrie Canada

(40) 09.02.2004 (43) 09.02.2004

(12)			
(21)	2 421 269	(51) Int. Cl. ⁷ :	C12N 5/10, A61K 48/00,
(22)	07.03.2003		C12N 5/00
(30)	60/402,254 US 09.08.2002		
• •	60/428,614 US 22.11.2002	(72)	
		SINCLAIR, DAVID A. (US).	
(71)			
	PRESIDENT AND FELLOWS OF HARVARD COLLEG	SE, (74)	
	17 Quincy Street, CAMBRIDGE, XX (US).	BERESK	(IN & PARR

- (54) METHODES ET COMPOSITIONS POUR PROLONGER LA DUREE DE VIE ET ACCROÎTRE LA RESISTANCE AU STRESS DE CELLULES ET D'ORGANISMES
- (54) METHODS AND COMPOSITIONS FOR EXTENDING THE LIFE SPAN AND INCREASING THE STRESS RESISTANCE OF CELLS AND ORGANISMS

(57)

The invention provides methods and compositions for modulating the life span of eukaryotic and prokaryotic cells and for protecting cells against certain stresses, e.g., heatshock: One method comprises modulating the flux of the NAD+ salvage pathway in the cell, e.g" by modulating the level or activity of one or more proteins selected from the group consisting of NPT1, PNC1, NMA1 and NMA2. Another method comprises modulating the level of nicotinamide in the cell.

Office de la Propriété Intellectuelle du Canada

Un organisme d'Industrie Canada Canadian Intellectual Property Office

An agency of Industry Canada CA 2421269 A1 2004/02/09

(21) 2 421 269

(12) DEMANDE DE BREVET CANADIEN CANADIAN PATENT APPLICATION (13) A1

(22) Date de dépôt/Filing Date: 2003/03/07 (41) Mise à la disp. pub./Open to Public Insp.: 2004/02/09 (30) Priorités/Priorities: 2002/08/09 (60/402,254) US; 2002/11/22 (60/428,614) US	(51) Cl.Int. ⁷ /Int.Cl. ⁷ C12N 5/10, A61K 48/00, C12N 5/00 (71) Demandeur/Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE, US	
	(72) Inventeur/Inventor: SINCLAIR, DAVID A., US	
	(74) Agent: BERESKIN & PARR	

⁽⁵⁴⁾ Titre: METHODES ET COMPOSITIONS POUR PROLONGER LA DUREE DE VIE ET ACCROÎTRE LA RESISTANCE AU STRESS DE CELLULES ET D'ORGANISMES

(57) Abrégé/Abstract:

The invention provides methods and compositions for modulating the life span of eukaryotic and prokaryotic cells and for protecting cells against certain stresses, e.g., heatshock. One method comprises modulating the flux of the NAD+ salvage pathway in the cell, e.g" by modulating the level or activity of one or more proteins selected from the group consisting of NPT1, PNC1, NMA1 and NMA2. Another method comprises modulating the level of nicotinamide in the cell.

⁽⁵⁴⁾ Title: METHODS AND COMPOSITIONS FOR EXTENDING THE LIFE SPAN AND INCREASING THE STRESS RESISTANCE OF CELLS AND ORGANISMS

Abstract

The invention provides methods and compositions for modulating the life span of eukaryotic and prokaryotic cells and for protecting cells against certain stresses, e.g., heatshock. One method comprises modulating the flux of the NAD+ salvage pathway in the cell, e.g., by modulating the level or activity of one or more proteins selected from the group consisting of NPT1, PNC1, NMA1 and NMA2. Another method comprises modulating the level of nicotinamide in the cell.

METHODS AND COMPOSITIONS FOR EXTENDING THE LIFE SPAN AND INCREASING THE STRESS RESISTANCE OF CELLS AND ORGANISMS

Background of the invention

5

10

15

20

25

Physiological studies and, more recently, DNA array analysis of gene expression patterns have confirmed that aging is a complex biological process. In contrast, genetic studies in model organisms have demonstrated that relatively minor changes to an organism's environment or genetic makeup can dramatically slow the aging process. For example, the life span of many diverse organisms can be greatly extended simply by limiting calorie intake, in a dietary regime known as caloric restriction (1-3).

How can simple changes have such profound effects on a complex process such as aging? A picture is emerging in which all eukaryotes possess a surprisingly conserved regulatory system that governs the pace of aging (4,5). Such a regulatory system may have arisen in evolution to allow organisms to survive in adverse conditions by redirecting resources from growth and reproduction to pathways that provide stress resistance (4,6).

One model that has proven particularly useful in the identification of regulatory factors of aging is the budding yeast, *S. cerevisiae*. Replicative life span in *S. cerevisiae* is typically defined as the number of buds or "daughter cells" produced by an individual "mother cell" (7). Mother cells undergo age-dependent changes including an increase in size, a slowing of the cell cycle, enlargement of the nucleolus, an increase in steady-state NAD⁺ levels, increased gluconeogenesis and energy storage, and sterility resulting from the loss of silencing at telomeres and mating-type loci (8-13). An alternative measure of yeast life span, known as chronological aging, is the length of time a population of non-dividing cells remains viable when deprived of nutrients (14). Increased chronological life span correlates with increased resistance to heat shock and oxidative stress, suggesting that cumulative damage to cellular components is a major cause of this type of aging (14,15). The extent of overlap between replicative and chronological aging is currently unclear.

One cause of yeast replicative aging has been shown to stem from the instability of the repeated ribosomal DNA (rDNA) locus (16). This instability gives rise to circular forms of rDNA called ERCs that replicate but fail to segregate to daughter cells. Eventually, ERCs

30

accumulate to over 1000 copies, which are thought to kill cells by titrating essential transcription and/or replication factors. (16-18). Regimens that reduce rDNA recombination such as caloric restriction or a *fob1* deletion extend replicative life span (17,19,20).

A key regulator of aging in yeast is the Sir2 silencing protein (17), a nicotinamide adenine dinucleotide (NAD⁺)-dependent deacetylase (21-24). Sir2 is a component of the heterotrimeric Sir2/3/4 complex that catalyzes the formation of silent heterochromatin at telomeres and the two silent mating-type loci (25). Sir2 is also a component of the RENT complex that is required for silencing at the rDNA locus and exit from telophase (26,27). This complex has also recently been shown to directly stimulate transcription of rRNA by Pol I and to be involved in regulation of nucleolar structure (28).

5

10

15

20

25

30

Biochemical studies have shown that Sir2 can readily deacetylate the amino-terminal tails of histones H3 and H4, resulting in the formation of 1-O-acetyl-ADP-ribose and nicotinamide (21-23,29). Strains with additional copies of SIR2 display increased rDNA silencing (30) and a 30% longer life span (17). It has recently been shown that additional copies of the C. elegans SIR2 homolog, sir-2.1, greatly extend life span in that organism (31). This implies that the SIR2-dependent regulatory pathway for aging arose early in evolution and has been well conserved (4). Yeast life span, like that of metazoans, is also extended by interventions that resemble caloric restriction (19,32). Mutations that reduce the activity of the glucose-responsive cAMP (adenosine 3'5'-monophosphate)-dependent (PKA) pathway extend life span in wild type cells but not in mutant sir2 strains, demonstrating that SIR2 is a key downstream component of the caloric restriction pathway (19).

In most organisms, there are two pathways of NAD+ biosynthesis (see Fig. 1). NAD+ may be synthesized de novo from tryptophan or recycled in four steps from nicotinamide via the NAD+ salvage pathway. The first step in the bacterial NAD+ salvage pathway, the hydrolysis of nicotinamide to nicotinic acid and ammonia, is catalyzed by the *pncA* gene product (33). An S. cerevisiae gene with homology to *pncA*, YGL037, was recently assigned the name PNC1 (SGD) (34). A nicotinate phosphoribosyltransferase, encoded by the NPT1 gene in S. cerevisiae, converts the nicotinic acid from this reaction to nicotinic acid mononucleotide (NaMN) (35-38). At this point, the NAD+ salvage pathway and the de novo NAD+ pathway converge and NaMN is converted to desamido-NAD+ (NaAD) by a nicotinate mononucleotide adenylyltransferase (NaMNAT). In S. cerevisiae, there are two putative ORFs with homology to bacterial NaMNAT genes, YLR328 (39) and an uncharacterized ORF, YGR010 (23,39). We

refer to these two ORFs as *NMA1* and *NMA2*, respectively. In *Salmonella*, the final step in the regeneration of NAD⁺ is catalyzed by an NAD synthetase (40). An as yet uncharacterized ORF, *QNS1*, is predicted to encode a NAD synthetase (23).

In yeast, null mutations in *NPT1* reduce steady-state NAD⁺ levels by ~2-fold (23) and abolish the longevity provided by limiting calories (19). One current hypothesis explaining how caloric restriction extends replicative life span is that decreased metabolic activity causes an increase in NAD⁺ levels, which then stimulate Sir2 activity (reviewed in Campisi, 2000 and Guarente, 2000).

5

10

15

20

25

30

Transcriptional silencing involves the heritable modification of chromatin at distinct sites in the genome. Silencing is referred to as long-range repression as it is promoter non-specific and often encompasses an entire genomic locus (1',2'). In yeast these silent regions of DNA, which are similar to the heterochromatin of higher eukaryotes, are subject to a wide variety of modifications (3'). Among the most well studied of these modifications is the reversible acetylation of histones (reviewed by 4',5').

There are two classes of enzymes that affect the acetylation state of histones: histone acetyltransferases (HATs) and the opposing histone deacetylases (HDACs). Compared with more transcriptionally active areas of the genome, histones within silent regions of chromatin are known to be hypoacetylated, specifically on the NH₂-terminal tails of core histones H3 and H4 (6'). Three classes of histone deacetylases have been described and classified based on homology to yeast proteins. Proteins in class I (Rpd3-like) and class II (Hda1-like) are characterized by their sensitivity to the inhibitor trichostatin A (TSA) (7',8'). Studies using this inhibitor have provided a wealth of information regarding the cellular function of these proteins, including their involvement in the expression of regulators of cell cycle, differentiation, and apoptosis (reviewed by 9').

Yeast Sir2 is the founding member of Class III HDACs. Sir2-like deacetylases are not inhibited by TSA and have the unique characteristic of being NAD⁺-dependent (10'-13'). Proteins of this class are found in a wide array of organisms, ranging from bacteria to humans. At least two Sir2 homologues, yeast Hst2 and human SIRT2, are localized to the cytoplasm and human SIRT1 has recently been shown to target p53 for deacetylation (11',13'-15'). These results indicate that not all members of this family are specific for histones or other nuclear substrates.

The term, silent information regulator (SIR), was first coined to describe a set of non-essential genes required for repression of the mating type loci (HML and HMR) in S. cerevisiae (16'). Silencing in yeast is also observed at telomeres and the ribosomal DNA (rDNA) locus (2',17'). The formation of heterochromatin at mating type loci and the poly(TG₁₋₃) tracts of yeast telomeres is mediated by a heterotrimeric complex of Sir2, Sir3 and Sir4 (18',19'). At the rDNA locus, Sir2 is part of the RENT (regulator of nuleolar silencing and telophase exit) complex, which includes Net1 and Cdc14 (20',21'). Of these proteins, Sir2 is the only factor that is indispensable for silencing at all three silent regions (22'-24').

5

10

15

20

25

30

The yeast rDNA locus (RDNI) consists of 100-200 tandemly-repeated 9 kb units encoding ribosomal RNAs. A major cause of yeast aging has been shown to stem from recombination between these repeats (25'-27') which can lead to the excision of an extrachromosomal rDNA circle (ERC). ERCs are replicated but they fail to segregate to daughter cells, resulting in their exponential amplification as cells divide. ERCs can accumulate to a DNA content greater than that of the entire yeast genome in old cells and are thought to kill cells by titrating essential transcription and/or replication factors (28'). Although Sir2 silences Pol II-transcribed genes integrated at the rDNA, there is evidence that its primary function at this locus is to suppress recombination. Deletion of SIR2 eliminates rDNA silencing and increases the frequency that a marker gene is recombined out of the rDNA 10-fold (29'). This results in increased ERC formation and a dramatic shortening of life span (29',30').

Sir2 is a limiting component of yeast longevity. A single extra copy of the SIR2 gene suppresses recombination and extends life span by 40% (26',31',32'). Recently, it has been shown that SIR2 is essential for the increased longevity provided by calorie restriction (31"), a regimen that extends the life span of every organism it has been tested on. Moreover, increased dosage of the Sir2 homologue sir2.1 has been shown to extend the life span of the nematode C. elegans (33') and the nearest human homologue SIRT1, has been shown to inhibit apoptosis through deacetylation of p53 (34',35'). These findings suggest that Sir2 and its homologues have a conserved role in the regulation of survival at the cellular and organismal level.

Recently, a great deal of insight has been gained into the biochemistry of Sir2-like deacetylases (reviewed by 36'). *In vitro*, Sir2 has specificity for lysine 16 of histone H4 and lysines 9 and 14 of histone H3 (10',12',13'). Although TSA sensitive HDACs catalyze deacetylation without the need of a cofactor, the Sir2 reaction requires NAD⁺. This allows for regulation of Sir2 activity through changes in availability of this co-substrate (10'-13'). Sir2

deacetylation is coupled to cleavage of the high-energy glycosidic bond that joins the ADP-ribose moiety of NAD⁺ to nicotinamide. Upon cleavage, Sir2 catalyzes the transfer of an acetyl group to ADP-ribose (10',11',15',37'). The product of this transfer reaction is *O*-acetyl-ADP-ribose, a novel metabolite, which has recently been shown to cause a delay/block in the cell cycle and oocyte maturation of embryos (38').

The other product of deacetylation is nicotinamide, a precursor of nicotinic acid and a form of vitamin B3 (39'). High doses of nicotinamide and nicotinic acid are often used interchangeably to self-treat a range of conditions including anxiety, osteoarthritis, psychosis, and nicotinamide is currently in clinical trials as a therapy for cancer and type I diabetes (40'). The long-term safety of the high doses used in these treatments has been questioned (41') and the possible effects of these compounds at the molecular level are not clear.

Summary of the invention

5

10

15

20

25

30

In one embodidment, the invention provides methods for modulating the life span of a cell or its resistance to stress, comprising modulating the flux through the NAD+ salvage pathway in the cell. The method may comprise increasing or extending the life of a cell or increasing its resistance against stress, comprising increasing the flux through the NAD+ salvage pathway in the cell. Modulating the flux through the NAD+ salvage pathway may occur essentially without changing steady state levels of NAD+ and NADH and essentially by maintaining the NAD+/NADH ratio in the cell.

Increasing the flux throught the NAD+ salvage pathway may comprise increasing the level or activity of a protein selected from the group consisting of NPT1, PNC1, NMA1 and NMA2. The method may comprise introducing into the cell at least one nucleic acid encoding a protein selected from the group consisting of NPT1, PNC1, NMA1 and NMA2, or a nucleic acid comprising at least 5 copies of a gene. Alternatively, the method may comprise introducing into the cell at least one protein selected from the group consisting of NPT1, PNC1, NMA1 and NMA2. The method may comprise contacting the cell with an agent that upregulates the expression of a gene selected from the group consisting of NPT1, PNC1, NMA1 and NMA2. The cell may live at least about 40% longer, or at least about 60% longer.

The invention also provides methods for increasing the resistance of the cell against stress, e.g., heat shock, osmotic stress, DNA damaging agents (e.g., U.V.), and inadequate nitrogen levels, comprising increasing the flux through the NAD+ salvage pathway in the cell.

In one embodiment, modulating the life span of a cell comprises modulating silencing in the cell. Silencing may include telomeric silencing and rDNA recombination.

The cell whose life span can be extended or who can be protected against stress can be a eukaryotic cell, such as a yeast cell or a prokaryotic cell, such as a bacterial cell. The cell can be in vitro or in vivo.

5

10

15

20

25

30

In another embodiment, modulating the life span of a cell or its resistance to stress comprises modulating the amount of nicotinamide in the cell. For example, reducing the life span of a cell or rendering a cell more sensitive to stress may comprise increasing the level of nicotinamide in the cell. This may comprise contacting the cell with an amount of nicotinamide of about 1 to 20 mM, preferably of about 2 to 10 mM. The level of nicotinamide in a cell may also be increased by increasing the level or activity of enzymes involved in the biosynthesis of nicotinamide or by decreasing the level or activity of enzymes that degrade or inactivate nicotinamide. Enzymes which inactivate nicotinamide include PNC1; nicotinamide N-methyl transferase (NNMT and NNT1); nicotinamide phosphoribosyltransferase (NAMPRT); NPT1 and human homologs thereof; and optionally nicotinamide mononucleotide adenylyltransferase (NMNAT-1 and 2); NMA1 and 2 and human homologs thereof.

On the contrary, extending the life span of a cell or rendering the cell more resistant (i.e., less sensitive) to stress may comprise decreasing the level of nicotinamide in the cell. This may be achieved by decreasing the level or activity of enzymes involved in the biosynthesis of nicotinamide or by increasing the level or activity of enzymes that degrade or inactivate nicotinamide. Accordingly, increasing lifespan or stress resistance in a cell can be achieved by increasing the activity or level of expression of a protein selected from the group consisting of NPT1, PNC1, NMA1, NMA2, NNMT, NAMPRT, NMNAT-1, and NMNAT-2.

The invention further provides methods for identifying compounds that modulate the life span of a cell or its resistance to stress, comprising (i) contacting a protein selected from the group consisting of NPT1, PNC1, NMA1, NMA2, NNMT, NAMPRT, NMNAT-1, and NMNAT-2 with a test compound for an amount of time that would be sufficient to affect the activity of the protein; and (ii) determining the activity of the enzyme, wherein a difference in the activity of the enzyme in the presence of the test compound relative to the absence of the test compound indicates that the test compound is a compound that modulates the life span of the cell or its resistance to stress. The method may further comprise contacting a cell with the test compound and determining whether the life span of the cell has been modulated. The method

may also further comprise contacting a cell with the test compound and determining whether the resistance of the cell to stress has been modulated.

5

10

15

20

25

30

In another embodiment, the invention provides a method for identifying a compound that modulates the life span of a cell or its resistance to certain types of stresses, comprising (i) contacting a cell or a lysate, comprising a transcriptional regulatory nucleic acid of a gene selected from the group consisting of NPT1, PNC1, NMA1, NMA2, NNMT, NAMPRT, NMNAT-1, and NMNAT-2 operably linked to a reporter gene, with a test compound for an amount of time that would be sufficient to affect the transcriptional regulatory nucleic acid; and (ii) determining the level or activity of the reporter gene, wherein a difference in the level or activity of the reporter gene in the presence of the test compound relative to the absence of the test compound indicates that the test compound is a compound that modulates the life span of the cell or its resistance to certain types of stresses. The method may further comprise contacting a cell with the test compound and determining whether the life span of the cell has been modulated. The method may also further comprise contacting a cell with the test compound and determining whether the resistance of the cell to stress has been modulated.

Also provided herein are methods for identifying an agent, e.g., a small molecule that modulates the nicotinamide level in a cell. The method may comprise (i) providing a cell or cell lysate comprising a reporter construct that is sensitive to the level of nicotinamide in a cell; (ii) contacting the cell with a test agent; and (iii) determining the level of nicotinamide in the cell contacted with the test agent, wherein a different level of nicotinamide in the cell treated with the test agent relative to a cell not treated with the test agent indicates that the test agent modulates the level of nicotinamide in the cell. The cell may further comprise a vector encoding a fusion protein that can bind to a DNA binding element operably linked to the reporter gene. The fusion protein may comprise at least an NAD+ binding pocket of a nicotinamide sensitive enzyme, e.g., a Sir2 family member, and a heterologous polypeptide. The heterologous polypeptide may be a transactivation domain of a transcription factor. The method may further comprise contacting a cell with the test compound and determining whether the life span of the cell or its resistance to stress has been modulated.

Also within the scope of the invention are computer-assisted methods for identifying an inhibitor of the activity of a Sir2 family member comprising: (i) supplying a computer modeling application with a set of structure coordinates of a molecule or molecular complex, the molecule or molecular complex including at least a portion of a Sir2 family member comprising a C

pocket; (ii) supplying the computer modeling application with a set of structure coordinates of a chemical entity; and (iii) determining whether the chemical entity is an inhibitor expected to bind to or interfere with the molecule or molecular complex, wherein binding to or interfering with the molecule or molecular complex is indicative of potential inhibition of the activity of the Sir2 family member. The chemical entity may be an analog of nicotinamide. Another method for identifying an inhibitor of the activity of a Sir2 family member comprises: (i) contacting a protein of the Sir2 family comprising at least the C pocket with a test compound for a time sufficient for the test compound to potentially bind to the C pocket of the protein of the Sir2 family; and (ii) determining the activity of protein; wherein a lower activity of the protein in the presence of the test compound relative to the absence of the test compound indicates that the test compound is an inhibitor of the activity of a Sir2 family member.

In addition, the invention provides methods for treating or preventing diseases that is associated with cell death (e.g., apoptosis) in a subject, comprising administering to a subject in need thereof an agent that increases the flux through the NAD+ salvage pathway or reduces nicotinamide levels in the cells susceptible or subject to cell death. Diseases can be chronic or acute and include Alzheimer's disease, Parkinson's disease, stroke and myocardial infarction. The methods of the invention for extending life span or increasing resistance to stress can also be used to reduce aging, e.g., for cosmetic purposes. The agent can be administered locally or systemically. Methods for extending life span or increasing resistance to stress can also be used on cells, tissues or organs outside of a subject, e.g., in an organ or tissue prior to transplantation.

The invention also provides methods for treating or preventing diseases in which reducing the life span of cells or rendering cell sensitive to stress is beneficial. Such diseases include those in which cells are undesirable, e.g., cancer and autoimmune diseases.

The methods of the invention can also be used to modulate the lifespan and stress resistance of organisms other than mammals. For example, the method can be used in microorganisms and plants. In particular, the methods of the invention permit to increase the resistance of plants to high salt, drought or disease, e.g., by treating these with a chemical that lowers nicotinamide levels or by genetically modifying genes that modulate the NAD+ salvage pathway or the level of nicotinamide in cells.

30

5

10

15

20

25

Brief description of the drawings

FIG. 1. Increased dosage of NPT1 delays aging by mimicking caloric restriction.

Life span was determined by scoring the number of daughter cells produced by each mother cell before cessation of cell division (7,10). Cells were pre-grown for a minimum of 48 h on complete glucose medium.

- A, Mortality curves for wild type (PSY316AT, circles), 2xNPT1 (YDS1544, diamonds) and 5xNPT1 (YDS1548, triangles) on medium with 2% glucose. Average life spans are 21.9, 30.8 and 35.1 generations respectively.
- B, Mortality curves for wild type (PSY316AT, circles), sir2::TRP1 (YDS1594, downward triangles), 2xNPT1 (YDS1544, squares), sir2::TRP1 2xNPT1 (YDS1573, diamonds) and 5xNPT1 2xSIR2 (YDS1577, upward triangles) on 2% glucose medium. Average life spans were 23.7, 14.4, 13.9, 31.0 and 31.9 generations respectively.

10

15

20

- C, Mortality curves for wild type on 2% glucose (PSY316AT, circles) and 0.5% glucose medium (PSY316AT, squares) and for 2xNPT1 on 0.5% glucose medium (YDS1544, triangles). Average life spans are 21.9, 31.7 and 34.5 generations respectively.
- FIG. 2. NPT1 and SIR2 provide resistance to heat shock. A, Strains were grown for three days post-diauxic shift in SC medium and incubated for 1 h at 55°C before plating 10-fold dilutions on SC plates. B, Strains were treated as in A and plated on SC at low density. Colonies that aroze after 24 hours were scored and expressed as a percentage of colonies arizing from the untreated sample. Values represent the avarage of three independent experiments (+/s.d.). Strains: W303AR URA3 (YDS1568), W303AR URA3 LEU2 (YDS1563) and isogenic derivatives of W303AR, 2xNPT1-URA3 (YDS1503), 2xSIR2-URA3 (YDS1572) and 2xNPT1-URA3 2xSIR2-LEU2 (YDS1561).
- FIG. 3. Additional NPT1 increases silencing and rDNA stability. A, Strains with an ADE2 marker at the rDNA were pre-grown on SC plates and spotted as 10-fold serial dilutions on SC plates. Increased silencing is indicated by growth retardation on media lacking adenine.

 Strains: W303-1A ADE2 (YDS1596), W303-1A RDN1::ADE2 (W303AR5) and W303AR5 derivatives 2xNPT1 (YDS1503), 2xSIR2 (YDS1572) and 2xNPT1 2xSIR2 (YDS1561). B, Silencing of MET15 at the rDNA locus was assayed by streaking isogenic derivatives of JS237 on rich medium containing 0.07% PbNO3 and incubating for 5 days at 30°C. Increased silencing is indicated by accumulation of a brown pigment. Relevant genotypes: met15Δ (JS209), MET15 (JS241), RND1::MET15 (JS237), sir2::TRP1 (JS218), 2xSIR2 (YDS1583), 2μSIR2 (YDS1522), npt1Δ::kan¹ (YDS1580), 2xNPT1 (YDS1581) and 2μNPT1 (YDS1493). C, Silencing of an ADE2 marker at the rDNA locus was determined in strains with 1xNPT1,

2xNPT1, and 2μNPT1 in the following backgrounds: wild type (W303AR5, YDS1503, YDS1496), sir2::TRP1 (YDS878, YDS1504, YDS1494), sir3::HIS3 (YDS924, YDS1505, YDS1587), and sir4::HIS3 (YDS882, YDS1506, YDS1495). D, Strains with an ADE2 marker at the telomere were streaked onto SC medium containing limiting amounts of adenine. Increased silencing is indicated by accumulation of red pigment. Relevant genotypes: (PSY316AT), 2xNPT1 (YDS1544), 5xNPT1 (YDS1548), 5xNPT1 2xSIR2 (YDS1577) and 5xNPT1 SIR2::TRP1 (YDS1573). sir2::TRP1 (YDS1594). E, Strains in A were assayed for rDNA stability by examining the rate of loss of an ADE2 marker integrated at the rDNA locus. Cells were plated on YPD medium and the frequency of half-sectored colonies, reflecting a marker loss event at the first cell division, was measured. More than 10,000 colonies were examined for each strain and each experiment was performed in triplicate. Average recombination frequencies (+/- s.d.) per cell division are shown. F, Ribosomal DNA recombination rates for wild type (W303AR), sir2::TRP1 (YDS878) and 2xNPT1 sir2::TRP1 (YDS1504) strains. Assays were performed as in (E).

5

10

15

20 -

25

30

FIG. 4. Expression of NPT1 in response to caloric restriction and stress. A. 3xHA tag sequence was inserted in frame with the 3' end of the native NPT1 ORF in W303AR5 (YDS1531) and W303cdc10-25 (YDS1537). Cells were grown in YPD medium at 30°C and treated as described. Levels of NPT1 mRNA were examined for W303AR5 grown in YPD (0.5% and 2.0% glucose) and W303cdc25-10 grown in YPD (2% glucose). A 1.8 kb NPT1 transcript was detected and levels were normalized to actin (ACTI) control. Similar results were obtained in the PSY316 strain background (not shown). B. Protein extracts from cultures in A were analyzed by Western blot to detect the HA-tagged Npt1 using α -HA antibody. Two bands of 53 kD and 40 kD were detected in the Npt1-HA strains and no bands were detected in the untagged control strain (not shown). Actin levels served as a loading control. Similar results were obtained in the PSY316 strain background (not shown). C. Levels of NPTI mRNA were examined in wild type W303AR5 (YDS1531) log phase cultures after 1 h exposure to the following: MMS (0.02% v/v), paraquat (5mM), or heat shock (55°C). D, Protein extracts of cultures in C were analyzed as in B. E and F. A green fluorescent protein (GFP) sequence was inserted in-frame at the 3' end of the native NPT1 and NMA2 ORFs in W303AR5 (YDS1611 and YDS1624, respectively). Cells were grown in YPD medium at 30°C to mid log phase and photographed live. Regions of overlap between GFP (green) and Hoechst DNA stain (false color red) appear yellow in the merged image.

FIG. 5. Multiple limiting components in the NAD⁺ salvage pathway. A, The putative steps in NAD⁺ biosynthesis in S. cerevisiae based on the known steps in Salmonella. The yeast genes that are thought to mediate each step are shown in italics. NaMN, nicotinic acid mononucleotide; NaAD, desamido-NAD⁺; NaM, nicotinamide; Na, nicotinic acid. Adapted from Smith et al. (2000). B, Silencing of ADE2 at the rDNA locus in strains ADE2 (YDS1596), wild type (W303AR5), 2xNPTI (YDS1503), 2xPNCI (YDS1588), 2xNMA2 (YDS1589), 2xNMA1 (YDS1590), and 2xQNSI (YDS1614). Increased silencing is indicated by growth retardation on media lacking adenine. C, Strains with an ADE2 marker at the telomere were streaked onto SC medium containing limiting amounts of adenine. Silencing is indicated by the accumulation of a red pigment. Strains tested: wild type (PSY316AT), 2xNPTI (YDS1544), 5xNPTI (YDS1548), sir2::TRPI (YDS1594), 2xPNCI (YDS1591), 2xNMA2 (YDS1592) and 2xNMAI (YDS1593).

5

10

15

20

- FIG. 6. Model for life span extension via increased flux through the NAD⁺ salvage pathway. Type III histone deacetylases such as Sir2 and Hst1-4 catalyze a key step in the salvage pathway by converting NAD⁺ to nicotinamide. Additional copies of *PNC1*, *NPT1*, *NMA1* and *NMA2* increase flux through the NAD⁺ salvage pathway, which stimulates Sir2 activity and increases life span. Additional copies of *QNS1* fail to increase silencing because, unlike other steps in the pathway, its substrate cannot be supplied from a source outside the salvage pathway and is therefore limiting for the reaction. Abbreviations: NAD⁺, nicotinamide adenine dinucleotide; NaMN, nicotinic acid mononucleotide; NaAD, desamido-NAD⁺.
- FIG. 7. The NAD⁺ salvage pathway. Nicotinamide generated by Sir2 is converted into nicotinic acid by Pnc1 and subsequently back to NAD⁺ in three steps. Abbreviations: NAD⁺, nicotinamide adenine dinucleotide; NaMN, nicotinic acid mononucleotide; NaAD, desamido-NAD⁺.
- FIG. 8. Nicotinamide inhibits telomeric and rDNA silencing. A, Silencing at the rDNA locus was assayed by streaking isogenic derivatives of JS237 (RDN1::MET15) on rich medium containing 0.07% PbNO3 and either 0, 1, or 5 mM nicotinamide. Silencing of the MET15 marker is indicated by the accumulation of a brown pigment. Single dark brown colonies in RDN1::MET15 strains represent marker loss events. Relevant genotypes: met15Δ (JS209), 30 MET15 (JS241), RDN1::MET15 (JS237), sir2::TRP1 (JS218), 2xSIR2 (YDS1583). B, Strains with an ADE2 marker at the telomere were streaked onto SC medium containing limiting amounts of adenine and either 0 or 5 mM nicotinamide. Silencing of the ADE2 marker results

in the accumulation of a red pigment. Relevant genotypes: (PSY316AT), W303-1A ADE2 (YDS1596) and W303-1A ade2 (YDS1595).

FIG.9. Nicotinamide increases rDNA recombination and shortens yeast life span.

A, Strains were assayed for rDNA stability by examining the rate of loss of an ADE2 marker integrated at the rDNA locus. Cells were plated on 2% glucose YPD medium with or without 5 mM nicotinamide (NAM) and the frequency of half-sectored colonies, reflecting a marker loss event at the first cell division, was measured. More than 10,000 colonies were examined for each strain and each experiment was performed in triplicate. Average recombination frequencies (+/- s.d.) per cell division are shown. Relevant strains: W303-1A RDN1::ADE2 (W303AR5) and W303AR5 derivatives 2xSIR2 (YDS1572) and sir2::TRP1 (YDS878). B, Comparison of structures for nicotinamide (NAM) and nicotinic acid (NA). C and D, Life spans were determined by scoring the number of daughter cells produced by each mother cell before cessation of cell division (68',69'). Cells were pre-grown for a minimum of 48 h on complete glucose medium. C, Mortality curves for wild type (PSY316AT) and sir2::TRP1 (YDS1594) strains in 0 or 5 mM nicotinamide (NAM). Average life spans were wt: 22.4, 12.1 and sir2: 12.1, 11.7 respectively. D, Mortality curves for wild type and sir2 strains from C, in the presence of either 0, 5 mM or 50 mM nicotinic acid (NA). Average life spans were wt: 22.4, 26, 25 and sir2: 12.1, 12.2.

10

15

30

FIG.10. Nicotinamide derepresses the silent mating type locus (HMR) in the both cycling and G1 arrested cells. A, PSY316 cells containing an ADH driven GFP transcript inserted at the HMR locus (YDS970) were grown in YPD medium at 30°C to mid-log phase and treated with 5 mM nicotinamide (NAM) for the indicated times. Cells were photographed live. B, Strain YDS970 or the isogenic sir4Δ mutant (YDS1499) were treated with either 5 mM nicotinamide (NAM), 5 mM nicotinic acid (NA) or 5 mM quinolinic acid (QA). Cells were analyzed by fluorescent activated cell sorting (FACS) to determine the extent of ADH-GFP expression. C, A MATa derivative of strain YDS970 (YDS1005) was deleted for HML and treated with 10 μg/ml alpha-factor for 3 hours. Cells were then grown in the presence of 5 mM nicotinamide for the indicated times and examined by FACS as above. Cell cycle progression was monitored at each time point by FACS analysis of propidium iodide stained cells.

FIG.11. Nicotinamide does not alter the localization of Sir proteins. Wild type strains containing either SIR2-GFP (YDS1078) (C and D), SIR3-GFP (YDS1099) (E and F), or GFP-SIR4 (YDS1097) (G and H) and an isogenic sir2 derivative expressing SIR3-GFP (YDS1109) (A

and B), were grown for 2 hours in the presence of 5 mM nicotinamide. GFP fluorescence was detected in live cells.

FIG.12. Sir2 does not associate with DNA from telomeres or mating type loci in the presence of nicotinamide. A and B, Chromatin immunoprecipitation using a polyclonal α-Sir2 antibody was performed on extracts from either a sir2 (YDS878) (A) or wild type (W303AR5) (B) strains in the presence of 5 mM nicotinamide (NAM). PCR amplification of both input DNA from whole cell extracts and immunoprecipitated chromatin are shown. PCR was performed using primer pairs specific for the CUP1 gene (top panels), 5S rDNA (second panels), the HMR locus (third panels), or subtelomeric DNA 1.4 and 0.6 kb from telomeres (bottom panels). Primer sequences are listed in Table 4.

10

15

20

25

FIG.13. Nicotinamide is a potent non-competitive inhibitor of yeast Sir2 and human SIRT1 in vitro. A, Recombinant GST-tagged Sir2 was incubated with acetylated substrate for 30 minutes at 30°C in the presence of 1 mM DTT, 200, 350, 500 or 750 μM NAD⁺ and the indicated concentrations of nicotinamide. Reactions were terminated by the addition of developer and samples were analyzed by fluorometry (excitation set at 360 nm and emission at 460 nm). Experiments were performed in triplicate. Data is shown as a Lineweaver-Burk double reciprocal plot of arbitrary fluorescence units (AFUs) min⁻¹ versus NAD⁺ (μM). B, Experiments were performed as in A, except that recombinant human SIRT1 was used and reactions were carried out at 37°C. C, Deacetylation reactions were performed in triplicate with 2.5 μg of SIRT1, 1 mM DTT, 200 μM NAD⁺ and either 50 μM water blank, DMSO blank, nicotinic acid, sirtinol, M15, splitomicin or nicotinamide. Reactions were carried out at 37°C for 30 minutes and fluorescence was measured as in A.

Fig. 14A-C. Nicotinamide docked in the conserved C pocket of Sir2-Af1. (A) The left panel shows a frontal view of the surface representation of Sir2-Af1, with bound NAD⁺ in purple and a red arrow pointing at the acetyl-lysine binding tunnel. The C site is traced with a dashed teal curve. The right panel shows the protein cut through the dashed line and rotated 90 degrees along its vertical axis. The surface of the conserved residues in the C site is colored teal. (B) Close-up view of the black rectangle drawn on the right panel of A, showing the nicotinamide docked deeply inside the C pocket of Sir2-Af1. (C) Stereo view of the docked nicotinamide (green) surrounded by the conserved residues in the C pocket. The putative interactions are shown as dashed lines, including H-bonds (blue), electrostatic (magenta) and Van der Waals (yellow).

Fig. 15 shows an alignment of NPT1 homologs. (SEQ ID NOS: 31-34)

Fig. 16 shows an alignment of PNC1 homologs. (SEQ ID NOS: 35-38)

Fig. 17 A-E. Calorie restriction and heat stress extend lifespan in a PNC1-dependent manner. (A) Pnc1 catalyses the conversion of nicotinamide to nicotinic acid. (B) In yeast NAD⁺ is synthesised de novo from tryptophan and recycled from nicotinamide via the NAD⁺ salvage pathway. (C) Lifespan extension by glucose restriction requires PNC1. Average lifespan on complete media containing 2.0% (w/v) glucose were: wild-type, (21.6); pnc1Δ, (19.1); sir2Δ, (14.2). Average lifespans on 0.5% glucose were: wild-type, (32.7); pnc1Δ, (18.1); sir2Δ, (14.7). (D) Extension of life span by exposure to mild heat stress. At 30°C, average lifespans were: wild-type, (19.4); pnc1Δ, (18.5); sir2Δ, (12.0). At 37°C, average lifespans were: wild-type, (23.4); pnc1Δ, (17.5); sir2Δ, (10.6). (E) Additional PNC1 extends lifespan in a SIR2-dependent manner. Average lifespans on 2.0% glucose/30°C: wild-type, (19.7); 5xPNC1, (36.1); sir2Δ, (14.2); 5xPNC1 sir2Δ, (15.1); pnc1Δ sir2Δ, (14.4).

Figure 18A-D. Pnc1 levels and activity are elevated in response to calorie restriction and stress. (A) Detection of Pnc1-GFP in yeast whole cell extracts using an anti-GFP antibody. Actin levels are included as a loading control. Extracts were made from mid-log phase wild-type cultures grown in complete media with 2.0%, 0.5% or 0.1% glucose (w/v). (B) Pnc1-GFP levels in extracts from mid-log phase wild-type, cdc25-10 or bna6Δ cultures detected as above. (C) Detection of Pnc1-GFP in extracts from mid-log phase wild-type cultures as described above. Cultures were grown under the following conditions: complete medium (no treatment), defined medium (SD), amino acid (a.a.) restriction (SD lacking non-essential amino acids), salt stress (NaCl, 300 mM), heat stress (37°C), sorbitol (1M). (D) Measurement of nicotinamide deamination by Pnc1 from cell extracts of mid-log phase wild-type cultures grown under the indicated conditions. Values shown are the average of three independent experiments. Activity is expressed as nmol ammonia produced/min/mg of total protein, ± s.d: 2.0% glucose 0.90± 0.26, 0.1% glucose 4.38 ± 0.43, 37°C 3.28 ± 0.32, sorbitol (1 M) 3.75 ± 0.65.

15

20

25

30

Fig. 19A-C. PNC1 confers resistance to acute stress. (A) Additional PNC1 confers resistance to salt stress. Cells from mid-log phase colonies were struck out on complete medium containing 600 mM NaCl or 200 mM LiCl and incubated for 4 d at 25°C. On standard yeast medium (2% glucose, 25°C), there was no detectable difference in growth rate between wild-type, 5xPNC1, or 5xPNC1 sir2\Delta strains. (B) Additional PNC1 protects against UV induced damage in a SIR2 independent manner. Cells from mid-log phase cultures were plated at low density on complete medium and exposed to UV (5 mJ/cm², 254nm). Viability was determined

by the ability to form colonies after 3 d growth in the dark at 30°C. Values are expressed as percent viable \pm s.e. (C) *PNC1* provides *SIR2*-independent protection against mitochondrial DNA damage. Microcolony analysis of log-phase cells streaked on complete 3% (v/v) glycerol medium and 10 _g/ml ethidium bromide (EtBr). At least 100 microcolonies were scored after 3 d in two independent experiments. Number of cells per colony \pm s.e. were: wild-type 6.92 \pm 0.06, 5xPNC1 18.72 \pm 0.53, and 5xPNC1 $sir2\Delta$ 16.15 \pm 2.82. No difference in growth was detected between these strains on complete 2% (w/v) glucose medium with EtBr

Fig. 20A-D. Pnc1-GFP is localized in the cytoplasm and nucleus and is concentrated in peroxisomes. (A) Pnc1-GFP fluorescence was detected in cells taken from mid-log phase wild-type cultures grown in complete media containing 2.0% glucose (unrestricted), or 0.5% or 0.1% glucose (Glu). (B) Detection of Pnc1-GFP in cells from wild-type cultures grown under the following conditions: amino acid (a.a) restriction (SD lacking non-essential amino acids), salt stress (300 mM NaCl), heat stress (37°C). (C) Co-localisation of Pnc1-GFP (green) and RFP-PTS1 (Peroxisomal Targeting Signal 1) (red) in cells from mid-log phase wild-type cultures. Yellow indicates overlap. Cultures were grown in complete media containing 0.5% glucose to facilitate visualization of fluorescence. (D) Localisation of Pnc1-GFP in cells from mid-log phase cultures of peroxisomal mutant strains, $pex6\Delta$, $pex5\Delta$ and $pex7\Delta$. Cultures were grown in complete media containing 0.5% glucose to enhance visualization of fluorescence. All images were taken with the same exposure of 1 s.

10

15

20

25

30

Fig. 21 A-B. Manipulation of nicotinamide metabolism affects SIR2 dependent silencing (A) To measure silencing, an ADE2 reporter was integrated at the ribosomal DNA (rDNA) locus. In this system, increased growth on media lacking adenine indicates decreased ADE2 silencing. Strains were spotted in 10-fold serial dilutions on plates with or without adenine. An Ade⁺ strain served as a control. (B) Model for regulation of lifespan and stress resistance by nicotinamide. Disparate environmental stimuli including calorie restriction, heat and osmotic stress serve as inputs to a common pathway of longevity and stress resistance. Cells coordinate a response to these inputs by inducing transcription of PNC1, which encodes an enzyme that converts nicotinamide to nicotinic acid. In addition to alleviating inhibition of Sir2 and promoting longevity, depletion of nicotinamide activates a number of additional target proteins involved in stress resistance and possibly other cellular processes.

Detailed description of the invention

5

10

15

20

The invention is based at least on the discovery that the life span of yeast cells can be extended by at least about 60% by increasing the flux through the nicotinamide adenine dinucleotide (NAD)+ salvage pathway (shown in Fig. 1). In addition, it was shown herein that this increase in flux through the NAD+ salvage pathway occurs essentially without increase in NAD+ and NADH levels and essentially by maintaining the ratio of NAD+/NADH constant. As shown in the Examples, increasing the flux through the NAD+ salvage pathway and thereby increasing the life span of cells can be achieved by introducing into the cells additional copies of a gene involved in the NAD+ salvage pathway, e.g., NPT1, PNC1, NMA1 and NMA2. It has also been shown in the Examples, that increasing the flux through the NAD+ salvage pathway protects yeast cells against certain types of stresses, e.g., heatshock. In addition, overexpression of PNC1 increases silencing, lifespan, as well as stress resistance, e.g., protects cells from DNA breakage caused by ultraviolet (U.V.) light and ethidium bromide and osmotic stress. On the other hand, deletion of PNC1 prevents lifespan extension and renders cells sensitive to stress.

The invention is also based at least on the discovery that nicotinamide inhibits silencing in yeast and thereby decreases the life span of cells. Nicotinamide was also shown to render cells more sensitive to stress. In particular, it was shown that overexpression of nicotinamide methyl transferase (NNMT), an enzyme that is involved in the secretion of nicotinamide from cells, stimulated silencing and thus extended life span, and increased tolerance to stress (e.g., radiation exposure), whereas the deletion of this enzyme had the opposite effect.

Based at least on the strong conservation of the NAD+ salvage pathway and silencing events from prokaryotes to eukaryotes, the methods of the invention are expected to be applicable to any eukaryotic cell, in addition to yeast cells, and to prokaryotic cells.

25 1. <u>Definitions</u>

As used herein, the following terms and phrases shall have the meanings set forth below. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this invention belongs.

The singular forms "a," "an," and "the" include plural reference unless the context clearly dictates otherwise.

The term "isolated" as used herein with respect to nucleic acids, such as DNA or RNA, refers to molecules separated from other DNAs, or RNAs, respectively, that are present in the

natural source of the macromolecule. The term isolated as used herein also refers to a nucleic acid or peptide that is substantially free of cellular material, viral material, or culture medium when produced by recombinant DNA techniques, or chemical precursors or other chemicals when chemically synthesized. Moreover, an "isolated nucleic acid" is meant to include nucleic acid fragments which are not naturally occurring as fragments and would not be found in the natural state. The term "isolated" is also used herein to refer to polypeptides which are isolated from other cellular proteins and is meant to encompass both purified and recombinant polypeptides.

5

10

15

20

25

30

"Modulating the flux through the NAD+ salvage pathway of a cell" refers to an action resulting in increasing or decreasing the number of NAD+ molecules that are generated by the NAD+ salvage pathway, e.g. shown in Fig. 1.

As used herein, the term "nucleic acid" refers to polynucleotides such as deoxyribonucleic acid (DNA), and, where appropriate, ribonucleic acid (RNA). The term should also be understood to include, as equivalents, analogs of either RNA or DNA made from nucleotide analogs, and, as applicable to the embodiment being described, single (sense or antisense) and double-stranded polynucleotides. ESTs, chromosomes, cDNAs, mRNAs, and rRNAs are representative examples of molecules that may be referred to as nucleic acids.

The phrase "nucleic acid corresponding to a gene" refers to a nucleic acid that can be used for detecting the gene, e.g., a nucleic acid which is capable of hybridizing specifically to the gene.

The term "percent identical" refers to sequence identity between two amino acid sequences or between two nucleotide sequences. Identity can each be determined by comparing a position in each sequence which may be aligned for purposes of comparison. When an equivalent position in the compared sequences is occupied by the same base or amino acid, then the molecules are identical at that position; when the equivalent site occupied by the same or a similar amino acid residue (e.g., similar in steric and/or electronic nature), then the molecules can be referred to as homologous (similar) at that position. Expression as a percentage of homology, similarity, or identity refers to a function of the number of identical or similar amino acids at positions shared by the compared sequences. Various alignment algorithms and/or programs may be used, including FASTA, BLAST, or ENTREZ. FASTA and BLAST are available as a part of the GCG sequence analysis package (University of Wisconsin, Madison, Wis.), and can be used with, e.g., default settings. ENTREZ is available through the National

Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Md. In one embodiment, the percent identity of two sequences can be determined by the GCG program with a gap weight of 1, e.g., each amino acid gap is weighted as if it were a single amino acid or nucleotide mismatch between the two sequences. Other techniques for alignment are described in Methods in Enzymology, vol. 266: Computer Methods for Macromolecular Sequence Analysis (1996), ed. Doolittle, Academic Press, Inc., a division of Harcourt Brace & Co., San Diego, California, USA. Preferably, an alignment program that permits gaps in the sequence is utilized to align the sequences. The Smith-Waterman is one type of algorithm that permits gaps in sequence alignments. See Meth. Mol. Biol. 70: 173-187 (1997). Also, the GAP program using the Needleman and Wunsch alignment method can be utilized to align sequences. An alternative search strategy uses MPSRCH software, which runs on a MASPAR computer. MPSRCH uses a Smith-Waterman algorithm to score sequences on a massively parallel computer. This approach improves ability to pick up distantly related matches, and is especially tolerant of small gaps and nucleotide sequence errors. Nucleic acid-encoded amino acid sequences can be used to search both protein and DNA databases. Databases with individual sequences are described in Methods in Enzymology, ed. Doolittle, supra. Databases include Genbank, EMBL, and DNA Database of Japan (DDBJ).

5

10

15

20

25

30

"Replicative life span" which is used interchangeably herein with "life span" of a cell refers to the number of daughter cells produced by an individual "mother cell." "Chronological aging," on the other hand, refers to the length of time a population of non-dividing cells remains viable when deprived of nutrients. The life span of cells can be increased by at least about 20%, 30%, 40%, 50%, 60% or between 20% and 70%, 30% and 60%, 40 and 60% or more using the methods of the invention.

"Sir2 family members" or "Sir2 protein family members" refers to S. cerevisiae Sir2 protein as well as any histone deacetylases having substantial structural similarities to Sir2, e.g., the human homologs hSIRT1, gSIRT2, hSIRT3, hSIRT4, hSIRT5, hSIRT6 and hSIRT7; and Sir-2.1.

"Small molecule" as used herein, is meant to refer to a composition, which has a molecular weight of less than about 5 kD and most preferably less than about 4 kD. Small molecules can be nucleic acids, peptides, polypeptides, peptidomimetics, carbohydrates, lipids or other organic (carbon-containing) or inorganic molecules. Many pharmaceutical companies

have extensive libraries of chemical and/or biological mixtures, often fungal, bacterial, or algal extracts, which can be screened with any of the assays described herein.

The term "specific hybridization" of a probe to a target site of a template nucleic acid refers to hybridization of the probe predominantly to the target, such that the hybridization signal can be clearly interpreted. As further described herein, such conditions resulting in specific hybridization vary depending on the length of the region of homology, the GC content of the region, the melting temperature "Tm" of the hybrid. Hybridization conditions will thus vary in the salt content, acidity, and temperature of the hybridization solution and the washes.

5

10

15

20

25

30

"Stress" refers to any non-optimal condition for growth, development or reproduction.

A "variant" of a polypeptide refers to a polypeptide having the amino acid sequence of the polypeptide in which is altered in one or more amino acid residues. The variant may have "conservative" changes, wherein a substituted amino acid has similar structural or chemical properties (e.g., replacement of leucine with isoleucine). A variant may have "nonconservative" changes (e.g., replacement of glycine with tryptophan). Analogous minor variations may also include amino acid deletions or insertions, or both. Guidance in determining which amino acid residues may be substituted, inserted, or deleted without abolishing biological or immunological activity may be found using computer programs well known in the art, for example, LASERGENE software (DNASTAR).

The term "variant," when used in the context of a polynucleotide sequence, may encompass a polynucleotide sequence related to that of a particular gene or the coding sequence thereof. This definition may also include, for example, "allelic," "splice," "species," or "polymorphic" variants. A splice variant may have significant identity to a reference molecule, but will generally have a greater or lesser number of polynucleotides due to alternate splicing of exons during mRNA processing. The corresponding polypeptide may possess additional functional domains or an absence of domains. Species variants are polynucleotide sequences that vary from one species to another. The resulting polypeptides generally will have significant amino acid identity relative to each other. A polymorphic variantion is a variation in the polynucleotide sequence of a particular gene between individuals of a given species. Polymorphic variants also may encompass "single nucleotide polymorphisms" (SNPs) in which the polynucleotide sequence varies by one base. The presence of SNPs may be indicative of, for example, a certain population, a disease state, or a propensity for a disease state.

2. Methods for increasing the life span of a cell or protecting it against certain stresses

5

10

15

20

25

30

In one embodiment, the life span of a cell is increased and/or the cell is protected against certain stresses by increasing the flux through the NAD+ salvage pathway. This can be achieved, e.g., increasing the level or activity of at least one protein involved in the NAD+ salvage pathway, such as a protein selected from the group consisting of NPT1, PNC1, NMA1 and NMA2.

The level of protein can be increased in a cell, e.g., by introducing into the cell a nucleic acid encoding the protein operably linked to a transcriptional regulatory sequence directing the expression of the protein in the cell. Methods for expressing nucleic acids in cells and appropriate transcriptional regulatory elements for doing so are well known in the art. Alternatively, a protein can be introduced into a cell, usually in the presence of a vector facilitating the entry of the protein into the cells, e.g., liposomes. Proteins can also be linked to transcytosis peptides for that purpose. Yet in other methods, an agent that stimulates expression of the endogenous gene is contacted with a cell. Such agents can be identified as further described herein.

A nucleotide sequence encoding S. cerevisiae nicotinate phosphoribosyltransferase (NPT1) and the protein encoded thereby are set forth as SEQ ID Nos: 1 and 2, respectively. NPT1 is also known as "LSR2." The S. cerevisiae NPT1 complete cDNA and encoded protein are provided by GenBank Accession numbers NC 001147 and AAB59317, respectively, which are set forth as SEQ ID NOs: 1 and 2, respectively. Accession numbers L11274 and AAB59317 also appear to refer to S. cerevisiae nucleotide and amino acid sequences. respectively. The NPT1 homolog in bacteria is PncB (35, 37 and 38). The E. coli NPT1 is provided as GenBank accession number J05568. The human nucleotide and amino acid sequences are provided by GenBank Accession numbers BC006284 and AAH06284, respectively, and X71355 and CAA50490, respectively, AAH32466 and BC032466 and are described in Chong et al. (1993) Genomics 18:355. The human nucleotide and amino acid sequences are also set forth as SEQ ID NOs: 13 and 14, respectively (and correspond to GenBank Accession No. BC032466). The human protein is also referred to as a "renal sodium phosphate transport protein." A mouse NPT1 nucleotide and amino acid sequences are provided by GenBank Accession numbers X77241 and CAA54459 and are described in Chong et al. (1995) Am. J. Physiol. 268:1038. The promoter region of mouse NPT1 is provided as GenBank Accession number AF361762 and is described in Soumounou et al. (2001) Am J.

Physiol. 281: F1082. NPT1 is also set forth as an IMAGE Clone, under number 3957135. An alignment of NPT1 homologs is set forth in Fig. 15.

5

10

15

20

25

30

A nucleotide sequence encoding S. cerevisiae PNC1 and the protein encoded thereby are set forth as SEQ ID Nos: 3 and 4, respectively, which correspond to GenBank Accession numbers NC_001139 and NP_011478, respectively. PNC1 is the yeast homologue of the bacterial protein pncA, which catalyzes the hydrolysis of nicotinamide to nicotinic acid and ammonia. S. cerevisiae PNC1, also referred to as open reading frame (ORF) YGL037 is described in Ghislain et al. (2002) Yeast 19:215. The nucleotide and amino acid sequences of an Arachis hypogaea PNC1 is provided by GenBank Accession numbers M37636 and AAB06183 and are described in Buffard et al. (1990) PNAS 87:8874. Nucleotide and amino acid sequences of a human homolog are provided by GenBank Accession numbers BC017344 and AAH17344, respectively; AK027122 and NP_078986, respectively; XM_041059 and XP_041059, respectively; and NM_016048 and NP_057132, respectively. The nucleotide and amino acid sequences of human PNC1 are set forth as SEQ ID NOs: 15 and 16, respectively and correspond to GenBank Accession No. BC017344. An alignment of human, fly and S. cerevisiae PNC1 is set forth in Fig. 16.

A nucleotide sequence encoding S. cerevisae NMA1 and the protein encoded thereby are set forth as SEQ ID Nos: 5 and 6, respectively, which correspond to GenBank Accession Numbers NC_001144.2 and NP_013432, respectively. The S. cerevisiae NMA1 corresponds to ORF YLR328, described in Smith et al. (2000) PNAS 97:6658. NMA1 is the S. cerevisae homolog of the bacterial NaMNAT gene. Nucleotide and amino acid sequences of human homologs are provided by GenBank Accession numbers NM_022787 and NP_073624, respectively; AK026065 and BAB15345, respectively; AF459819 and AAL76934, respectively; XM_087387 and XP_087387, respectively; and AF345564 and AAK52726, respectively, and NP_073624; AAL76934; NP_073624; and AF314163. The nucleotide and amino acid sequence of human NMA1 is set forth as SEQ ID NOs: 17 and 18, respectively, and correspond to GenBank Accession number NM_022787. An IMAGE Clone is provided under number 4874147 and HRC clone hrc08458. Bacterial homologs are described, e.g., in Zhang et al. (2002) Structure 10:69.

A nucleotide sequence encoding *S. cerevisiae* NMA2 and the protein encoded thereby are set forth as SEQ ID Nos: 7 and 8, respectively, which correspond to GenBank Accession numbers NC_001139 and NP_011524, respectively. The *S. cerevisiae* NMA2 corresponds to

ORF YGR010, described in Emanuelli et al. (1999) FEBS Lett. 455:13. NMA2 is the S. cerevisiae homolog of the bacterial NaMNAT gene. Nucleotide and amino acid sequences of human homologs are provided by GenBank Accession numbers NM_015039 and NP_055854, respectively. The nucleotide and amino acid sequences of human NMA2 are set forth as SEQ ID NOs: 19 and 20, respectively, and correspond to GenBank Accession number NM_015039.

5

10

15

20

30

It will be apparent to a person of skill in the art that a full length protein or nucleic acid encoding such or a portion thereof can be used according to the methods described herein. A portion of a protein is preferably a biologically active portion thereof. Portions that are biologically active can be identified according to methods known in the art and using an assay that can monitor the activity of the particular protein. Assays for determining the activity of an NPT1 protein are described, e.g., in Pescanglini et al. (1994) Clin. Chim. Acta 229: 15-25 and Sestini et al. (2000) Archives of Biochem. Biophys. 379:277. Assays for determining the activity of a PNC1 protein are described, e.g., in Ghislain et al. Yeast 19:215. Assays for determining the activity of an NMA1 and NMA2 protein are described, e.g., in Sestini et al., supra. Alternatively, the activity of such a protein can be tested in an assay in which the life span of a cell is determined. For example, a cell is transfected with a nucleic acid comprising one or more copies of a sequence encoding a portion of an NPT1, PNC1, NMA1 or NMA2 protein or a control nucleic acid, and the life span of the cells is compared. A longer life span of a cell transfected with a portion of one of the proteins indicates that the portion of the protein is a biologically active portion. Assays for determining the life span of a cell are known in the art and are also further described herein. In particular, assays for determining the life span of a mammalian cell can be conducted as described, e.g., in Cell Growth, Differentiation and Senescence: A Practical Approach. George P. Studzinski (ed.). Instead of measuring the life span, one can also measure the resistance of a transfected cell to certain stresses, e.g., heatshock, for determining whether a portion of a protein is a biologically active portion. Methods for measuring resistance to certain stresses are known in the art and are also further described herein. In particular, assays for determining the resistance of a mammalian cell to heatshock can be conducted as described, e.g., in Bunelli et al. (1999) Exp. Cell Res. 262: 20.

In addition to portions of NPT1, PNC1, NMA1 or NMA2 proteins, other variants, such as proteins containing a deletion, insertion or addition of one or more amino acids can be used, provided that the protein is biologically active. Exemplary amino acid changes include conservative amino acid substitutions. Other changes include substitutions for non-naturally

occurring amino acids. Proteins encoded by nucleic acids that hybridize to a nucleic acid encoding NPT1, PNC1, NMA1 or NMA2 under high or medium stringency conditions and which are biologically active can also be used. For example, nucleic acids that hybridize under high stringency conditions of 0.2 to 1 x SSC at 65 °C followed by a wash at 0.2 x SSC at 65 °C to a gene encoding NPT1, PNC1, NMA1 or NMA2 can be used. Nucleic acids that hybridize under low stringency conditions of 6 x SSC at room temperature followed by a wash at 2 x SSC at room temperature to a gene encoding NPT1, PNC1, NMA1 or NMA2 can be used. Other Other hybridization conditions include 3 x SSC at 40 or 50 °C, followed by a wash in 1 or 2 x SSC at 20, 30, 40, 50, 60, or 65 °C. Hybridizations can be conducted in the presence of formaldehyde, e.g., 10%, 20%, 30% 40% or 50%, which further increases the stringency of hybridization. Theory and practice of nucleic acid hybridization is described, e.g., in S. Agrawal (ed.) Methods in Molecular Biology, volume 20; and Tijssen (1993) Laboratory Techniques in biochemistry and molecular biology-hybridization with nucleic acid probes, e.g., part I chapter 2 "Overview of principles of hybridization and the strategy of nucleic acid probe assays," Elsevier, New York provide a basic guide to nucleic acid hybridization.

10

15

20

25

30

Exemplary proteins may have at least about 50%, 70%, 80%, 90%, preferably at least about 95%, even more preferably at least about 98% and most preferably at least 99% homology or identity with a wild-type NPT1, PNC1, NMA1 or NMA2 protein or a domain thereof, e.g., the catalytic domain. Other exemplary proteins may be encoded by a nucleic acid that is at least about 90%, preferably at least about 95%, even more preferably at least about 98% and most preferably at least 99% homology or identity with a wild-type NPT1, PNC1, NMA1 or NMA2 nucleic acid, e.g., those described herein.

In other embodiments proteins are fusion proteins, e.g., proteins fused to a transcytosis peptide. Fusion proteins may also comprise a heterologous peptide that can be used to purify the protein and/or to detect it.

In other embodiments, non-naturally occurring protein variants are used. Such variants can be peptidomimetics.

In yet other embodiments, the activity of one or more proteins selected from the group consisting of NPT1, PNC1, NMA1 and NMA2 is enhanced or increased. This can be achieved, e.g., by contacting a cell with a compound that increases the activity, e.g., enzymatic activity, of one of these proteins. Assays for identifying such compounds are further described herein.

In preferred embodiments, the flux through the NAD+ salvage pathway is increased without substantially changing the level of NAD+, NADH and the ratio of NAD+/NADH in a cell. Levels of NAD+ and NADH and ratios of these two molecules can be determined, e.g., as described in the Examples.

5

15

20

25

30

Any means for the introduction of polynucleotides into mammals, human or non-human, or cells thereof may be adapted to the practice of this invention for the delivery of the various constructs of the invention into the intended recipient. In one embodiment of the invention, the DNA constructs are delivered to cells by transfection, i.e., by delivery of "naked" DNA or in a complex with a colloidal dispersion system. A colloidal system includes macromolecule complexes, nanocapsules, microspheres, beads, and lipid-based systems including oil-in-water emulsions, micelles, mixed micelles, and liposomes. The preferred colloidal system of this invention is a lipid-complexed or liposome-formulated DNA. In the former approach, prior to formulation of DNA, e.g., with lipid, a plasmid containing a transgene bearing the desired DNA constructs may first be experimentally optimized for expression (e.g., inclusion of an intron in the 5' untranslated region and elimination of unnecessary sequences (Felgner, et al., Ann NY Acad Sci 126-139, 1995). Formulation of DNA, e.g. with various lipid or liposome materials, may then be effected using known methods and materials and delivered to the recipient mammal. See, e.g., Canonico et al, Am J Respir Cell Mol Biol 10:24-29, 1994; Tsan et al, Am J Physiol 268; Alton et al., Nat Genet. 5:135-142, 1993 and U.S. patent No. 5,679,647 by Carson et al.

The targeting of liposomes can be classified based on anatomical and mechanistic factors. Anatomical classification is based on the level of selectivity, for example, organ-specific, cell-specific, and organelle-specific. Mechanistic targeting can be distinguished based upon whether it is passive or active. Passive targeting utilizes the natural tendency of liposomes to distribute to cells of the reticulo-endothelial system (RES) in organs, which contain sinusoidal capillaries. Active targeting, on the other hand, involves alteration of the liposome by coupling the liposome to a specific ligand such as a monoclonal antibody, sugar, glycolipid, or protein, or by changing the composition or size of the liposome in order to achieve targeting to organs and cell types other than the naturally occurring sites of localization.

The surface of the targeted delivery system may be modified in a variety of ways. In the case of a liposomal targeted delivery system, lipid groups can be incorporated into the lipid bilayer of the liposome in order to maintain the targeting ligand in stable association with the liposomal bilayer. Various linking groups can be used for joining the lipid chains to the targeting

ligand. Naked DNA or DNA associated with a delivery vehicle, e.g., liposomes, can be administered to several sites in a subject (see below).

In a preferred method of the invention, the DNA constructs are delivered using viral vectors. The transgene may be incorporated into any of a variety of viral vectors useful in gene therapy, such as recombinant retroviruses, adenovirus, adeno-associated virus (AAV), and herpes simplex virus-1, or recombinant bacterial or eukaryotic plasmids. While various viral vectors may be used in the practice of this invention, AAV- and adenovirus-based approaches are of particular interest. Such vectors are generally understood to be the recombinant gene delivery system of choice for the transfer of exogenous genes in vivo, particularly into humans. The following additional guidance on the choice and use of viral vectors may be helpful to the practitioner. As described in greater detail below, such embodiments of the subject expression constructs are specifically contemplated for use in various in vivo and ex vivo gene therapy protocols.

A viral gene delivery system useful in the present invention utilizes adenovirus-derived vectors. Knowledge of the genetic organization of adenovirus, a 36 kB, linear and double-stranded DNA virus, allows substitution of a large piece of adenoviral DNA with foreign sequences up to 8 kB. In contrast to retrovirus, the infection of adenoviral DNA into host cells does not result in chromosomal integration because adenoviral DNA can replicate in an episomal manner without potential genotoxicity. Also, adenoviruses are structurally stable, and no genome rearrangement has been detected after extensive amplification. Adenovirus can infect virtually all epithelial cells regardless of their cell cycle stage. So far, adenoviral infection appears to be linked only to mild disease such as acute respiratory disease in the human.

15

20

25

30

Adenovirus is particularly suitable for use as a gene transfer vector because of its midsized genome, ease of manipulation, high titer, wide target-cell range, and high infectivity. The virus particle is relatively stable and amenable to purification and concentration, and as above, can be modified so as to affect the spectrum of infectivity. Additionally, adenovirus is easy to grow and manipulate and exhibits broad host range *in vitro* and *in vivo*. This group of viruses can be obtained in high titers, e.g., $10^9 - 10^{11}$ plaque-forming unit (PFU)/ml, and they are highly infective. The life cycle of adenovirus does not require integration into the host cell genome. The foreign genes delivered by adenovirus vectors are episomal, and therefore, have low genotoxicity to host cells. No side effects have been reported in studies of vaccination with wild-type adenovirus (Couch et al., 1963; Top et al., 1971), demonstrating their safety and therapeutic potential as in vivo gene transfer vectors. Moreover, the carrying capacity of the adenoviral genome for foreign DNA is large (up to 8 kilobases) relative to other gene delivery vectors (Berkner et al., supra; Haj-Ahmand and Graham (1986) J. Virol. 57:267). Most replication-defective adenoviral vectors currently in use and therefore favored by the present invention are deleted for all or parts of the viral E1 and E3 genes but retain as much as 80% of the adenoviral genetic material (see, e.g., Jones et al., (1979) Cell 16:683; Berkner et al., supra; and Graham et al., in Methods in Molecular Biology, E.J. Murray, Ed. (Humana, Clifton, NJ, 1991) vol. 7. pp. 109-127). Expression of the inserted polynucleotide of the invention can be under control of, for example, the E1A promoter, the major late promoter (MLP) and associated leader sequences, the viral E3 promoter, or exogenously added promoter sequences.

5

10

15

20

25

30

The genome of an adenovirus can be manipulated such that it encodes a gene product of interest, but is inactivated in terms of its ability to replicate in a normal lytic viral life cycle (see, for example, Berkner et al., (1988) BioTechniques 6:616; Rosenfeld et al., (1991) Science 252:431-434; and Rosenfeld et al., (1992) Cell 68:143-155). Suitable adenoviral vectors derived from the adenovirus strain Ad type 5 dl324 or other strains of adenovirus (e.g., Ad2, Ad3, Ad7 etc.) are well known to those skilled in the art. Recombinant adenoviruses can be advantageous in certain circumstances in that they are not capable of infecting nondividing cells and can be used to infect a wide variety of cell types, including airway epithelium (Rosenfeld et al., (1992) cited supra), endothelial cells (Lemarchand et al., (1992) PNAS USA 89:6482-6486), hepatocytes (Herz and Gerard, (1993) PNAS USA 90:2812-2816) and muscle cells (Quantin et al., (1992) PNAS USA 89:2581-2584).

Adenoviruses can also be cell type specific, i.e., infect only restricted types of cells and/or express a transgene only in restricted types of cells. For example, the viruses comprise a gene under the transcriptional control of a transcription initiation region specifically regulated by target host cells, as described e.g., in U.S. Patent No. 5,698,443, by Henderson and Schuur, issued December 16, 1997. Thus, replication competent adenoviruses can be restricted to certain cells by, e.g., inserting a cell specific response element to regulate a synthesis of a protein necessary for replication, e.g., E1A or E1B.

DNA sequences of a number of adenovirus types are available from Genbank. For example, human adenovirus type 5 has GenBank Accession No.M73260. The adenovirus DNA sequences may be obtained from any of the 42 human adenovirus types currently identified. Various adenovirus strains are available from the American Type Culture Collection, Rockville,

Maryland, or by request from a number of commercial and academic sources. A transgene as described herein may be incorporated into any adenoviral vector and delivery protocol, by restriction digest, linker ligation or filling in of ends, and ligation.

Adenovirus producer cell lines can include one or more of the adenoviral genes E1, E2a, and E4 DNA sequence, for packaging adenovirus vectors in which one or more of these genes have been mutated or deleted are described, e.g., in PCT/US95/15947 (WO 96/18418) by Kadan et al.; PCT/US95/07341 (WO 95/346671) by Kovesdi et al.; PCT/FR94/00624 (WO94/28152) by Imler et al.; PCT/FR94/00851 (WO 95/02697) by Perrocaudet et al., PCT/US95/14793 (WO96/14061) by Wang et al.

5

10

15

20

25

30

Yet another viral vector system useful for delivery of the subject polynucleotides is the adeno-associated virus (AAV). Adeno-associated virus is a naturally occurring defective virus that requires another virus, such as an adenovirus or a herpes virus, as a helper virus for efficient replication and a productive life cycle. (For a review, see Muzyczka et al., Curr. Topics in Micro. and Immunol. (1992) 158:97-129).

AAV has not been associated with the cause of any disease. AAV is not a transforming or oncogenic virus. AAV integration into chromosomes of human cell lines does not cause any significant alteration in the growth properties or morphological characteristics of the cells. These properties of AAV also recommend it as a potentially useful human gene therapy vector.

AAV is also one of the few viruses that may integrate its DNA into non-dividing cells, e.g., pulmonary epithelial cells, and exhibits a high frequency of stable integration (see for example Flotte et al., (1992) Am. J. Respir. Cell. Mol. Biol. 7:349-356; Samulski et al., (1989) J. Virol. 63:3822-3828; and McLaughlin et al., (1989) J. Virol. 62:1963-1973). Vectors containing as little as 300 base pairs of AAV can be packaged and can integrate. Space for exogenous DNA is limited to about 4.5 kb. An AAV vector such as that described in Tratschin et al., (1985) Mol. Cell. Biol. 5:3251-3260 can be used to introduce DNA into cells. A variety of nucleic acids have been introduced into different cell types using AAV vectors (see for example Hermonat et al., (1984) PNAS USA 81:6466-6470; Tratschin et al., (1985) Mol. Cell. Biol. 4:2072-2081; Wondisford et al., (1988) Mol. Endocrinol. 2:32-39; Tratschin et al., (1984) J. Virol. 51:611-619; and Flotte et al., (1993) J. Biol. Chem. 268:3781-3790).

The AAV-based expression vector to be used typically includes the 145 nucleotide AAV inverted terminal repeats (ITRs) flanking a restriction site that can be used for subcloning of the transgene, either directly using the restriction site available, or by excision of the transgene with

restriction enzymes followed by blunting of the ends, ligation of appropriate DNA linkers, restriction digestion, and ligation into the site between the ITRs. The capacity of AAV vectors is about 4.4 kb (Kotin, R.M., Human Gene Therapy 5:793-801, 1994 and Flotte, et al. J. Biol.Chem. 268:3781-3790, 1993).

5

10

15

20

25

30

AAV stocks can be produced as described in Hermonat and Muzyczka (1984) PNAS 81:6466, modified by using the pAAV/Ad described by Samulski et al. (1989) J. Virol. 63:3822. Concentration and purification of the virus can be achieved by reported methods such as banding in cesium chloride gradients, as was used for the initial report of AAV vector expression *in vivo* (Flotte, et al. J.Biol. Chem. 268:3781-3790, 1993) or chromatographic purification, as described in O'Riordan et al., WO97/08298. Methods for *in vitro* packaging AAV vectors are also available and have the advantage that there is no size limitation of the DNA packaged into the particles (see, U.S. Patent No. 5,688,676, by Zhou et al., issued Nov. 18, 1997). This procedure involves the preparation of cell free packaging extracts.

Hybrid Adenovirus-AAV vectors represented by an adenovirus capsid containing a nucleic acid comprising a portion of an adenovirus, and 5' and 3' ITR sequences from an AAV which flank a selected transgene under the control of a promoter. See e.g. Wilson et al, International Patent Application Publication No. WO 96/13598. This hybrid vector is characterized by high titer transgene delivery to a host cell and the ability to stably integrate the transgene into the host cell chromosome in the presence of the rep gene. This virus is capable of infecting virtually all cell types (conferred by its adenovirus sequences) and stable long term transgene integration into the host cell genome (conferred by its AAV sequences).

The adenovirus nucleic acid sequences employed in this vector can range from a minimum sequence amount, which requires the use of a helper virus to produce the hybrid virus particle, to only selected deletions of adenovirus genes, which deleted gene products can be supplied in the hybrid viral process by a packaging cell. For example, a hybrid virus can comprise the 5' and 3' inverted terminal repeat (ITR) sequences of an adenovirus (which function as origins of replication). The left terminal sequence (5') sequence of the Ad5 genome that can be used spans bp 1 to about 360 of the conventional adenovirus genome (also referred to as map units 0-1) and includes the 5' ITR and the packaging/enhancer domain. The 3' adenovirus sequences of the hybrid virus include the right terminal 3' ITR sequence which is about 580 nucleotides (about bp 35,353- end of the adenovirus, referred to as about map units 98.4-100).

The preparation of the hybrid vector is further described in detail in published PCT application entitled "Hybrid Adenovirus-AAV Virus and Method of Use Thereof", WO 96/13598 by Wilson et al. For additional detailed guidance on adenovirus and hybrid adenovirus-AAV technology which may be useful in the practice of the subject invention, including methods and materials for the incorporation of a transgene, the propagation and purification of recombinant virus containing the transgene, and its use in transfecting cells and mammals, see also Wilson et al, WO 94/28938, WO 96/13597 and WO 96/26285, and references cited therein.

5

10

15

20

25

30

In order to construct a retroviral vector, a nucleic acid of interest is inserted into the viral genome in the place of certain viral sequences to produce a virus that is replication-defective. In order to produce virions, a packaging cell line containing the gag, pol, and env genes but without the LTR and psi components is constructed (Mann et al. (1983) Cell 33:153). When a recombinant plasmid containing a human cDNA, together with the retroviral LTR and psi sequences is introduced into this cell line (by calcium phosphate precipitation for example), the psi sequence allows the RNA transcript of the recombinant plasmid to be packaged into viral particles, which are then secreted into the culture media (Nicolas and Rubenstein (1988) "Retroviral Vectors", In: Rodriguez and Denhardt ed. Vectors: A Survey of Molecular Cloning Vectors and their Uses. Stoneham: Butterworth; Temin, (1986) "Retrovirus Vectors for Gene Transfer: Efficient Integration into and Expression of Exogenous DNA in Vertebrate Cell Genome", In: Kucherlapati ed. Gene Transfer. New York: Plenum Press; Mann et al., 1983, supra). The media containing the recombinant retroviruses is then collected, optionally concentrated, and used for gene transfer. Retroviral vectors are able to infect a broad variety of cell types. Integration and stable expression require the division of host cells (Paskind et al. (1975) Virology 67:242). This aspect is particularly relevant for the treatment of PVR, since these vectors allow selective targeting of cells which proliferate, i.e., selective targeting of the cells in the epiretinal membrane, since these are the only ones proliferating in eyes of PVR subjects.

A major prerequisite for the use of retroviruses is to ensure the safety of their use, particularly with regard to the possibility of the spread of wild-type virus in the cell population. The development of specialized cell lines (termed "packaging cells") which produce only replication-defective retroviruses has increased the utility of retroviruses for gene therapy, and defective retroviruses are well characterized for use in gene transfer for gene therapy purposes

(for a review see Miller, A.D. (1990) Blood 76:271). Thus, recombinant retrovirus can be constructed in which part of the retroviral coding sequence (gag, pol, env) has been replaced by nucleic acid encoding a protein of the present invention, e.g., a transcriptional activator, rendering the retrovirus replication defective. The replication defective retrovirus is then packaged into virions which can be used to infect a target cell through the use of a helper virus by standard techniques. Protocols for producing recombinant retroviruses and for infecting cells in vitro or in vivo with such viruses can be found in Current Protocols in Molecular Biology, Ausubel, F.M. et al., (eds.) Greene Publishing Associates, (1989), Sections 9.10-9.14 and other standard laboratory manuals. Examples of suitable retroviruses include pLJ, pZIP, pWE and pEM which are well known to those skilled in the art. A preferred retroviral vector is a pSR MSVtkNeo (Muller et al. (1991) Mol. Cell Biol. 11:1785 and pSR MSV(XbaI) (Sawyers et al. (1995) J. Exp. Med. 181:307) and derivatives thereof. For example, the unique BamHI sites in both of these vectors can be removed by digesting the vectors with BamHI, filling in with Klenow and religating to produce pSMTN2 and pSMTX2, respectively, as described in PCT/US96/09948 by Clackson et al. Examples of suitable packaging virus lines for preparing both ecotropic and amphotropic retroviral systems include Crip, Cre, 2 and Am.

5

10

15

20

25

30

Retroviruses, including lentiviruses, have been used to introduce a variety of genes into many different cell types, including neural cells, epithelial cells, retinal cells, endothelial cells, lymphocytes, myoblasts, hepatocytes, bone marrow cells, in vitro and/or in vivo (see for example, review by Federico (1999) Curr. Opin. Biotechnol. 10:448; Eglitis et al., (1985) Science 230:1395-1398; Danos and Mulligan, (1988) PNAS USA 85:6460-6464; Wilson et al., (1988) PNAS USA 85:3014-3018; Armentano et al., (1990) PNAS USA 87:6141-6145; Huber et al., (1991) PNAS USA 88:8039-8043; Ferry et al., (1991) PNAS USA 88:8377-8381; Chowdhury et al., (1991) Science 254:1802-1805; van Beusechem et al., (1992) PNAS USA 89:7640-7644; Kay et al., (1992) Human Gene Therapy 3:641-647; Dai et al., (1992) PNAS USA 89:10892-10895; Hwu et al., (1993) J. Immunol. 150:4104-4115; U.S. Patent No. 4,868,116; U.S. Patent No. 4,980,286; PCT Application WO 89/07136; PCT Application WO 89/02468; PCT Application WO 89/05345; and PCT Application WO 92/07573).

Furthermore, it has been shown that it is possible to limit the infection spectrum of retroviruses and consequently of retroviral-based vectors, by modifying the viral packaging proteins on the surface of the viral particle (see, for example PCT publications WO93/25234, WO94/06920, and WO94/11524). For instance, strategies for the modification of the infection

spectrum of retroviral vectors include: coupling antibodies specific for cell surface antigens to the viral env protein (Roux et al., (1989) PNAS USA 86:9079-9083; Julan et al., (1992) J. Gen Virol 73:3251-3255; and Goud et al., (1983) Virology 163:251-254); or coupling cell surface ligands to the viral env proteins (Neda et al., (1991) J. Biol. Chem. 266:14143-14146). Coupling can be in the form of the chemical cross-linking with a protein or other variety (e.g. lactose to convert the env protein to an asialoglycoprotein), as well as by generating fusion proteins (e.g. single-chain antibody/env fusion proteins). This technique, while useful to limit or otherwise direct the infection to certain tissue types, and can also be used to convert an ecotropic vector in to an amphotropic vector.

5

10

15

20

25

30

Other viral vector systems that can be used to deliver a polynucleotide of the invention have been derived from herpes virus, e.g., Herpes Simplex Virus (U.S. Patent No. 5,631,236 by Woo et al., issued May 20, 1997 and WO 00/08191 by Neurovex), vaccinia virus (Ridgeway (1988) Ridgeway, "Mammalian expression vectors," In: Rodriguez R L, Denhardt D T, ed. Vectors: A survey of molecular cloning vectors and their uses. Stoneham: Butterworth,; Baichwal and Sugden (1986) "Vectors for gene transfer derived from animal DNA viruses: Transient and stable expression of transferred genes," In: Kucherlapati R, ed. Gene transfer. New York: Plenum Press; Coupar et al. (1988) Gene, 68:1-10), and several RNA viruses. Preferred viruses include an alphavirus, a poxivirus, an arena virus, a vaccinia virus, a polio virus, and the like. They offer several attractive features for various mammalian cells (Friedmann (1989) Science, 244:1275-1281; Ridgeway, 1988, supra; Baichwal and Sugden, 1986, supra; Coupar et al., 1988; Horwich et al. (1990) J. Virol., 64:642-650).

The expression of a protein, e.g., a protein selected from the group consisting of NPT1, PNC1, NMA1 and NMA2 or a biologically active variant thereof in cells of a subject to whom, e.g., a nucleic acid encoding the protein was administered, can be determined, e.g., by obtaining a sample of the cells of the patient and determining the level of the protein in the sample, relative to a control sample.

In another embodiment, a protein or biologically active variant thereof, is administered to the subject such that it reaches the target cells, and traverses the cellular membrane. Polypeptides can be synthesized in prokaryotes or eukaryotes or cells thereof and purified according to methods known in the art. For example, recombinant polypeptides can be synthesized in human cells, mouse cells, rat cells, insect cells, yeast cells, and plant cells. Polypeptides can also be synthesized in cell free extracts, e.g., reticulocyte lysates or wheat germ

extracts. Purification of proteins can be done by various methods, e.g., chromatographic methods (see, e.g., Robert K Scopes "Protein Purification: Principles and Practice" Third Ed. Springer-Verlag, N.Y. 1994). In one embodiment, the polypeptide is produced as a fusion polypeptide comprising an epitope tag consisting of about six consecutive histidine residues. The fusion polypeptide can then be purified on a Ni⁺⁺ column. By inserting a protease site between the tag and the polypeptide, the tag can be removed after purification of the peptide on the Ni⁺⁺ column. These methods are well known in the art and commercial vectors and affinity matrices are commercially available.

5

10

15

20

25

30

Administration of polypeptides can be done by mixing them with liposomes, as described above. The surface of the liposomes can be modified by adding molecules that will target the liposome to the desired physiological location.

In one embodiment, a protein is modified so that its rate of traversing the cellular membrane is increased. For example, the polypeptide can be fused to a second peptide which promotes "transcytosis," e.g., uptake of the peptide by cells. In one embodiment, the peptide is a portion of the HIV transactivator (TAT) protein, such as the fragment corresponding to residues 37-62 or 48-60 of TAT, portions which are rapidly taken up by cell *in vitro* (Green and Loewenstein, (1989) Cell 55:1179-1188). In another embodiment, the internalizing peptide is derived from the Drosophila antennapedia protein, or homologs thereof. The 60 amino acid long homeodomain of the homeo-protein antennapedia has been demonstrated to translocate through biological membranes and can facilitate the translocation of heterologous polypeptides to which it is couples. Thus, polypeptides can be fused to a peptide consisting of about amino acids 42-58 of Drosophila antennapedia or shorter fragments for transcytosis. See for example Derossi et al. (1996) J Biol Chem 271:18188-18193; Derossi et al. (1994) J Biol Chem 269:10444-10450; and Perez et al. (1992) J Cell Sci 102:717-722.

In another embodiment, the amount of nicotinamide is decreased in a cell. This can be achieved, e.g., by inhibiting the expression of genes of the NAD+ salvage pathway or other pathway that produce nicotinamide. Inhibition of the genes can be conducted, e.g., as further described herein, such as by performing RNAi on the NAD+ salvage pathway genes that produce nicotinamide. One can also inhibit genes that are involved in the *de novo* synthesis of nicotinamide. For example, nicotinamide levels in cells can be regulated by regulating the level or activity of poly(adenosine diphosphate-ribose) polymerase-1 (PARP). In particular, nicotinamide levels can be reduced by reducing the level or activity of PARP, since this enzyme

generates nicotinamide. Nicotinamide levels may also be decreased in cells by reducing the level or activity of glycohydrolases (e.g., human CD38, an ectoenzyme that is expressed on the surface of immune cells, such as neutrophils; gi:4502665 and GenBank Accession No. NP_001766), which cleave NAD to nicotinamide.

Nicotinamide levels may also be decreased by inhibiting the de novo nicotinamide synthesis pathway. Genes involved in this pathway include the BNA genes in S. cerevisiae (BNA1-6). Alternatively, poly(adenosine diphosphate-ribose) polymerase (PARP) family members, e.g., PARP-1 and PARPv and tankyrase can also be inhibited to decrease nicotinamide levels.

5

10

15

20

25

30

It is also possible to reduce the level or activity of nicotinamide transporters to reduce the level of nicotinamide that is imported into cells. For example, in yeast, nicotinic acid is transported by the Tna1 (nicotinate/nicotinamide mononucleotide transport) protein. Human homologues of yeast TNA1 have the following GenBank Accession numbers: gi:9719374 and AAF97769; gi:6912666 and NP_036566; gi:18676562 and AB84933; gi:12718201 and CAC28600; gi:19263934 and AAH25312; gi:9966811 and NP_065079; and gi:22761334 and BAC11546. Other nucleoside transporters that can be modulated include bacterial and fly nucleoside transporter and the following human genes that are homologous thereto: gi:8923160 and NP_060164; gi:14336678 and AAK61212; gi: 22749231 and NP_689812; and gi: 18603939 and XP_091525.

Alternatively, nicotinamide levels can be decreased or nicotinamide inactivated, e.g., by stimulating the activity or increase the level of enzymes that metabolize, degrade or inhibit nicotinamide, e.g., nicotinamide N-methyl transferase, also referred to as nicotinamide methyltransferase (NNMT; EC 2.1.1.1; CAS registry number 9029-74-7). This enzyme catalyzes the reaction S-adenosyl-L-methionine + nicotinamide = S-adenosyl-L-homocysteine + 1-methylnicotinamide and promotes excretion of nicotinamide from the cell (see also, Cantoni (1951) *J. Biol. Chem.* 203-216). The human enzyme is referred to as NNMT and its complete sequence can be found at GenBank Accession number U08021 and as SEQ ID NO: 9 for the nucleotide sequence and SEQ ID NO: 10 for the protein (Aksoy et al. (1994) *J. Biol. Chem.* 269:14835). The yeast version of this enzyme is referred to as NNT1 (also referred to as YLR258w).

Yet another enzyme that metabolizes nicotinamide and thereby reduces the level of nicotinamide is nicotinamide phosphribosyltransferase (NAMPRT; E.C.2.4.2.12). The human

gene is also referred to as pre-B-cell colony enhancing factor (PBEF), and its sequence is available under GenBank Accession numbers NP_005737; NM_005746; AAH20691; and BC020691. The nucleotide and amino acid sequences of human NAMPRT (BC020691) are set forth as SEQ ID NOs: 11 and 12, respectively. In yeast and human cells, the level of NPT1 or human homolog thereof, respectively, can be increased to reduce nicotinamide levels.

5

10

15

20

25

30

Another enzyme that metabolizes nicotinamide and may thereby modulate, e.g., reduce, the level of nicotinamide is nicotinamide mononucleotide (NMN) adenylyltransferase in human cells. The human enzyme is referred to as NMNAT-1 (E.C.2.7.7.18). The following GenBank Accession numbers are provided for the human enzyme: NP_073624; NM_022787; AAL76934; AF459819; and NP_073624; AF314163. A variant of this gene is NMNAT-2 (KIAA0479), the human version of which can be found under GenBank Accession numbers NP_055854 and NM_015039 (Raffaelli et al. (2002) Biochem Biophys Res Commun 297:835). In yeast cells, the equivalent enzymes in the NAD+ salvage pathway are nicotinate mononucleotide adenyltransferase 1 and 2 (NMA1 and NMA2, respectively) (E.C. 2.7.7.1).

Yet another enzyme that may be increased to decrease nicotinamide levels is phosphoribosyl pyrophosphate (PRPP) synthase (PRPS), which converts ribose 5-phosphate to PRPP, the substrate of NPT1. There are several related enzymes, having the following GenBank Accession numbers: gi:4506127 and NP_002755 (Prps1); gi:4506129 and NP_002756 (Prps2); gi:20539448; gi:4506133 and NP_002758 (Prps associated protein 2); gi:24418495 and Q14558 (Prps associated protein 1); gi:17644236 and CAD18892; gi:2160401 and BAA05675 (Prps isoform 1); and gi:2160402 and BAA05676 (Prps isoform 2).

Reducing nicotinamide levels in cells may also provide other advantages, such as stimulating DNA break repair. Indeed, PARP is regulated by nicotinamide (nicotinamide negatively regulates PARP). Thus, regulating the level of nicotinamide in cells, e.g., as further described herein, will regulate the activity of PARP. Accordingly, since PARP is involved in numerous cellular functions, such as DNA break repair, telomere-length regulation, and histone modification, modulating nicotinamide levels will modulate these activities. For example, reducing nicotinamide levels in cells will increase the activity of PARP and thereby further enhance the DNA break repair mechanism of cells.

In addition to applying the methods of the invention in eukaryotic cells, such as mammalian cells and yeast cells, the methods can also be applied to plant cells, based at least on the fact that Sir2 family members are present in plants. Accordingly, the invention also

provides methods for extending the life span of plants and plant cells and for rendering the plant and plant cells more resistant to stress, e.g., excessive salt conditions. This can be achieved, e.g., by modulating the level or activity of proteins in the plant cells that are essentially homologous to the proteins described herein in the yeast and mammalian systems as increasing the life span and/or the stress resistance of cells. Alternatively, the level of nicotinamide in plant cells can be reduced, in particular, as described herein for modulating their level in other eukaryotic cells. Nucleic acids can be introduced into plant cells according to methods known in the art.

For example, the following are genes form *Arabidopsis thalainia* that are homologous to the genes described above that can be modulated to modulate the flux throught the NAD+ salvage pathway or nicotinamide levels in cells. Homologues of yeast PNC1: gi 18401044 NP_566539.1 (a putative hydrolase); gi 15237256 NP_1977131; and gi 15237258 NP_197714.1. Homologues of yeast NPT1: gi 2026021 AAM13003.1; gi 15234571 NP_195412.1; gi 25054896 AAN71931.1; and gi 15227832 NP_179923.1. Homologues of yeast NMA1/2: gi 22327861 NP_200392.2 and gi 9758615 BAB09248.1. Homologues of yeast NNT1 (YL285W): gi 20197178 AAC14529; gi 22325900 NP_565619.2; gi 15219438 NP_177475.1 (a Tumor related Protein); gi 12324311 AA652120.1; gi:22330409 NP_683465; gi:15240506 NP_199767; gi 8778835 AAF79834.1; and gi 15231011 NP_188637. Homologue of human NNMT: gi 15238203 NP_196623. Homologue of yeast QNS1 (gene downstream of NMA1/2 in the NAD+salvage pathway): gi:15221990 NP_175906. Homologues of yeast BNA6: gi:18379203 NP_565259 and gi:21555686 AAM63914.

The methods of the invention can also be used to increase the lifespan and stress resistance in microorganisms, such as prokaryotes, based on the fact that Sir2 family members are also present in these organisms.

25

30

5

10

15

20

3. Methods for reducing the life span of a cell or rendering it more susceptible to certain stresses

In one embodiment, the level of expression or activity of a protein selected from the group consisting of NPT1, PNC1, NMA1 and NMA2 is decreased in a cell. This can be achieved by introducing into the cell an agent that inhibits the expression of the corresponding gene. An agent can be a small molecule that acts directly or indirectly on the promoter of the corresponding gene to reduce or inhibit its transcription. An agent can also be a compound that

inhibits the biological activity of the protein. An agent can also be an antisense molecule, a triplex molecule or a si RNA. Yet other agents are nucleic acids encoding a protein, such as a dominant negative mutant or an intracellular antibody or other protein that interferes with the biological activity of the protein. Such methods are well known in the art. Exemplary methods are set forth below.

5

10

15

25

30

One method for decreasing the level of expression of a gene in a cell is to introduce into the cell antisense molecules which are complementary to at least a portion of the target gene or RNA. An "antisense" nucleic acid as used herein refers to a nucleic acid capable of hybridizing to a sequence-specific (e.g., non-poly A) portion of the target RNA, for example its translation initiation region, by virtue of some sequence complementarity to a coding and/or non-coding region. The antisense nucleic acids of the invention can be oligonucleotides that are double-stranded or single-stranded, RNA or DNA or a modification or derivative thereof, which can be directly administered in a controllable manner to a cell or which can be produced intracellularly by transcription of exogenous, introduced sequences in controllable quantities sufficient to perturb translation of the target RNA.

Preferably, antisense nucleic acids are of at least six nucleotides and are preferably oligonucleotides (ranging from 6 to about 200 oligonucleotides). In specific aspects, the oligonucleotide is at least 10 nucleotides, at least 15 nucleotides, at least 100 nucleotides, or at least 200 nucleotides. The oligonucleotides can be DNA or RNA or chimeric mixtures or derivatives or modified versions thereof, single-stranded or double-stranded. The oligonucleotide can be modified at the base moiety, sugar moiety, or phosphate backbone. The oligonucleotide may include other appending groups such as peptides, or agents facilitating transport across the cell membrane (see, e.g., Letsinger et al., 1989, Proc. Natl. Acad. Sci. U.S.A. 86: 6553-6556; Lemaitre et al., 1987, Proc. Natl. Acad. Sci. 84: 648-652: PCT Publication No. WO 88/09810, published Dec. 15, 1988), hybridization-triggered cleavage agents (see, e.g., Krol et al., 1988, BioTechniques 6: 958-976) or intercalating agents (see, e.g., Zon, 1988, Pharm. Res. 5: 539-549).

In a preferred aspect of the invention, an antisense oligonucleotide is provided, preferably as single-stranded DNA. The oligonucleotide may be modified at any position on its structure with constituents generally known in the art. For example, the antisense oligonucleotides may comprise at least one modified base moiety which is selected from the group including but not limited to 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-

acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl)uracil, (acp3)w, and 2,6-diaminopurine.

In another embodiment, the oligonucleotide comprises at least one modified sugar moiety selected from the group including, but not limited to, arabinose, 2-fluoroarabinose, xylulose, and hexose.

10

15

20

25

30

In yet another embodiment, the oligonucleotide comprises at least one modified phosphate backbone selected from the group consisting of a phosphorothioate, a phosphorodithioate, a phosphoramidathioate, a phosphoramidate, a methylphosphonate, an alkyl phosphotriester, and a formacetal or analog thereof.

In yet another embodiment, the oligonucleotide is a 2-_-anomeric oligonucleotide. An _-anomeric oligonucleotide forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual _-units, the strands run parallel to each other (Gautier et al., 1987, Nucl. Acids Res. 15:6625-6641).

The oligonucleotide may be conjugated to another molecule, e.g., a peptide, hybridization triggered cross-linking agent transport agent, hybridization-triggered cleavage agent, etc. An antisense molecule can be a "peptide nucleic acid" (PNA). PNA refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least about 5 nucleotides in length linked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubility to the composition. PNAs preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their lifespan in the cell.

The antisense nucleic acids of the invention comprise a sequence complementary to at least a portion of a target RNA species. However, absolute complementarity, although preferred, is not required. A sequence "complementary to at least a portion of an RNA," as referred to

herein, means a sequence having sufficient complementarity to be able to hybridize with the RNA, forming a stable duplex; in the case of double-stranded antisense nucleic acids, a single strand of the duplex DNA may thus be tested, or triplex formation may be assayed. The ability to hybridize will depend on both the degree of complementarity and the length of the antisense nucleic acid. Generally, the longer the hybridizing nucleic acid, the more base mismatches with a target RNA it may contain and still form a stable duplex (or triplex, as the case may be). One skilled in the art can ascertain a tolerable degree of mismatch by use of standard procedures to determine the melting point of the hybridized complex. The amount of antisense nucleic acid that will be effective in the inhibiting translation of the target RNA can be determined by standard assay techniques.

5

10

15

25

30

The synthesized antisense oligonucleotides can then be administered to a cell in a controlled manner. For example, the antisense oligonucleotides can be placed in the growth environment of the cell at controlled levels where they may be taken up by the cell. The uptake of the antisense oligonucleotides can be assisted by use of methods well known in the art.

In an alternative embodiment, the antisense nucleic acids of the invention are controllably expressed intracellularly by transcription from an exogenous sequence. For example, a vector can be introduced in vivo such that it is taken up by a cell, within which cell the vector or a portion thereof is transcribed, producing an antisense nucleic acid (RNA) of the invention. Such a vector would contain a sequence encoding the antisense nucleic acid. Such a vector can remain episomal or become chromosomally integrated, as long as it can be transcribed to produce the desired antisense RNA. Such vectors can be constructed by recombinant DNA technology methods standard in the art. Vectors can be plasmid, viral, or others known in the art, used for replication and expression in mammalian cells. Expression of the sequences encoding the antisense RNAs can be by any promoter known in the art to act in a cell of interest. Such promoters can be inducible or constitutive. Most preferably, promoters are controllable or inducible by the administration of an exogenous moiety in order to achieve controlled expression of the antisense oligonucleotide. Such controllable promoters include the Tet promoter. Other usable promoters for mammalian cells include, but are not limited to: the SV40 early promoter region (Bernoist and Chambon, 1981, Nature 290: 304-310), the promoter contained in the 3' long terminal repeat of Rous sarcoma virus (Yamamoto et al., 1980, Cell 22: 787-797), the herpes thymidine kinase promoter (Wagner et al., 1981, Proc. Natl. Acad. Sci. U.S.A. 78: 14411445), the regulatory sequences of the metallothionein gene (Brinster et al., 1982, Nature 296: 39-42), etc.

Antisense therapy for a variety of cancers is in clinical phase and has been discussed extensively in the literature. Reed reviewed antisense therapy directed at the Bcl-2 gene in tumors; gene transfer-mediated overexpression of Bcl-2 in tumor cell lines conferred resistance to many types of cancer drugs. (Reed, J.C., N.C.I. (1997) 89:988-990). The potential for clinical development of antisense inhibitors of ras is discussed by Cowsert, L.M., Anti-Cancer Drug Design (1997) 12:359-371. Additional important antisense targets include leukemia (Geurtz, A.M., Anti-Cancer Drug Design (1997) 12:341-358); human C-ref kinase (Monia, B.P., Anti-Cancer Drug Design (1997) 12:327-339); and protein kinase C (McGraw et al., Anti-Cancer Drug Design (1997) 12:315-326.

10

15

20

25

30

In another embodiment, the level of a particular mRNA or polypeptide in a cell is reduced by introduction of a ribozyme into the cell or nucleic acid encoding such. Ribozyme molecules designed to catalytically cleave mRNA transcripts can also be introduced into, or expressed, in cells to inhibit expression of a gene (see, e.g., Sarver et al., 1990, Science 247:1222-1225 and U.S. Patent No. 5,093,246). One commonly used ribozyme motif is the hammerhead, for which the substrate sequence requirements are minimal. Design of the hammerhead ribozyme is disclosed in Usman et al., Current Opin. Struct. Biol. (1996) 6:527-533. Usman also discusses the therapeutic uses of ribozymes. Ribozymes can also be prepared and used as described in Long et al., FASEB J. (1993) 7:25; Symons, Ann. Rev. Biochem. (1992) 61:641; Perrotta et al., Biochem. (1992) 31:16-17; Ojwang et al., Proc. Natl. Acad. Sci. (USA) (1992) 89:10802-10806; and U.S. Patent No. 5,254,678. Ribozyme cleavage of HIV-I RNA is described in U.S. Patent No. 5,144,019; methods of cleaving RNA using ribozymes is described in U.S. Patent No. 5,116,742; and methods for increasing the specificity of ribozymes are described in U.S. Patent No. 5,225,337 and Koizumi et al., Nucleic Acid Res. (1989) 17:7059-7071. Preparation and use of ribozyme fragments in a hammerhead structure are also described by Koizumi et al., Nucleic Acids Res. (1989) 17:7059-7071. Preparation and use of ribozyme fragments in a hairpin structure are described by Chowrira and Burke, Nucleic Acids Res. (1992) 20:2835. Ribozymes can also be made by rolling transcription as described in Daubendiek and Kool, Nat. Biotechnol. (1997) 15(3):273-277.

Another method for decreasing or blocking gene expression is by introducing double stranded small interfering RNAs (siRNAs), which mediate sequence specific mRNA

degradation. RNA interference (RNAi) is the process of sequence-specific, post-transcriptional gene silencing in animals and plants, initiated by double-stranded RNA (dsRNA) that is homologous in sequence to the silenced gene. *In vivo*, long dsRNA are cleaved by ribonuclease III to generate 21- and 22-nucleotide siRNAs. It has been shown that 21-nucleotide siRNA duplexes specifically suppress expression of endogenous and heterologous genes in different mammalian cell lines, including human embryonic kidney (293) and HeLa cells (Elbashir et al. Nature 2001;411(6836):494-8). Accordingly, translation of a gene in a cell can be inhibited by contacting the cell with short doublestranded RNAs having a length of about 15 to 30 nucleotides, preferably of about 18 to 21 nucleotides and most preferably 19 to 21 nucleotides. Alternatively, a vector encoding for such siRNAs or hairpin RNAs that are metabolized into siRNAs can be introduced into a target cell (see, e.g., McManus et al. (2002) RNA 8:842; Xia et al. (2002) Nature Biotechnology 20:1006; and Brummelkamp et al. (2002) Science 296:550. Vectors that can be used are commercially available, e.g., from OligoEngine under the name pSuper RNAi SystemTM.

5

10

15

20

25

30

Gene expression can also be reduced by targeting deoxyribonucleotide sequences complementary to the regulatory region of the target gene (i.e., the gene promoter and/or enhancers) to form triple helical structures that prevent transcription of the gene in target cells in the body. (See generally, Helene, C. 1991, Anticancer Drug Des., 6(6):569-84; Helene, C., et al., 1992, Ann, N.Y. Accad. Sci., 660:27-36; and Maher, L.J., 1992, Bioassays 14(12):807-15).

In a further embodiment, RNA aptamers can be introduced into or expressed in a cell. RNA aptamers are specific RNA ligands for proteins, such as for Tat and Rev RNA (Good et al., 1997, Gene Therapy 4: 45-54) that can specifically inhibit their translation.

Yet another method of decreasing the biological activity of a polypeptide is by introducing into the cell a dominant negative mutant. A dominant negative mutant polypeptide will interact with a molecule with which the polypeptide normally interacts, thereby competing for the molecule, but since it is biologically inactive, it will inhibit the biological activity of the polypeptide. A dominant negative mutant of a protein can be created, e.g., by mutating the substrate-binding domain, the catalytic domain, or a cellular localization domain of the polypeptide. Preferably, the mutant polypeptide will be overproduced. Point mutations are made that have such an effect. In addition, fusion of different polypeptides of various lengths to the terminus of a protein can yield dominant negative mutants. General strategies are available for making dominant negative mutants. See Herskowitz, Nature (1987) 329:219-222.

In another embodiment, the activity of one or more proteins selected from the group consisting of NPT1, PNC1, NMA1 and NMA2 is decreased. This can be accomplished, e.g., by contacting a cell with a compound that inhibits the activity, e.g., enzymatic activity, of one of these proteins. Assays for identifying such compounds are further described herein.

5

10

15

20

25

30

In another embodiment, the flux through the NAD+ salvage pathway in a cell is decreased by contacting the cell with nicotinamide or a variant thereof having substantially the same biological activity. In a preferred embodiment, a cell is contacted with an amount of nicotinamide of about 0.1 mM to about 100 mM, preferably about 1 mM to about 20mM, even more preferably 2 mM to about 10 mM, and most preferably about 5 mM. Nicotinamide is commercially available (see, e.g., the source provided in the Examples). A cell is contacted with nicotinamide for a time sufficient to exert the desired effect. For example, a cell can be contacted for at least about 60 minutes or at least about 24 hours with nicotinamide. A cell may also be contacted continously with nicotinamide.

In addition to nicotinamide, cells can be contacted with analogs thereof. Exemplary analogs include Pyrazinamide, which is sold as an antituberculous agent. Analogs can be identified, e.g., by screening of combinatorial libraries of analogs for those having the desired activity. For example, an assay for measuring life span can be used. Alternatively, analogs of nicotinamide or agents that interact with the C pocket of Sir2 family members can be identified by rational drug design, as further described herein.

Generally, any inhibitor of a Sir2 family member can be used to reduce the life span of cells. Preferred inhibitors are molecules that bind to the C pocket of a Sir2 family member, e.g., nicotinamide or analogs thereof.

Alternatively, the level or activity of enzymes that produce nicotinamide can be increased in a cell in which it is desired to reduce its lifespan or render it more susceptible to stress. For example, the level or activity of enzymes involved in the biosynthesis of nicotinamide in the NAD+ salvage pathway or in *de novo* synthesis pathways can be increased. Exemplary enzymes are set forth above in the previous section. Yet another method for increasing the level of nicotinamide in cells includes inhibiting enzymes that inactivate or degrade nicotinamide, e.g., nicotinamide methyl transferase in yeast and human cells; nicotinamide phosphoribosyltransferase in human cells (discussed above) and yeast NPT1 or human homologs thereof (also described above). Methods for modulating gene expression levels or protein activity are further described herein and also known in the art.

In yet other embodiments, nicotinamide levels can be increased in cells by increasing the level or activity of glycohydrolases, which cleave NAD to nicotinamide. It is also possible to increase the level or activity of nicotinamide transporters to increase the level of nicotinamide in cells.

Decreasing the lifespan of cells or their resistance to stress can also be achieved in plant cells and microorganisms, by modulating plant genes that correspond to the genes described above. These genes have been described in the previous section.

5

10

15

20

25

30

4. Methods for identifying agents that modulate the flux through the NAD+ salvage pathway or the level of nicotinamide in cells

Agents include small molecules, e.g., small organic molecules, or any biological macromolecule, e.g., a nucleic acid, such as DNA or RNA, single stranded or double stranded; a protein or peptide; a polysaccharide; a lipid; or molecular combinations thereof.

In one embodiment, a method for identifying a compound that modulates the life span of a cell or its resistance to certain types of stresses, comprises (i) contacting a protein selected from the group consisting of NPT1, PNC1, NMA1 and NMA2 with a test compound for an amount of time that would be sufficient to affect the activity of the protein; and (ii) determining the activity of the enzyme, wherein a difference in the activity of the enzyme in the presence of the test compound relative to the absence of the test compound indicates that the test compound is a compound that modulates the life span of the cell. The method may further comprise contacting a cell with the test compound and determining whether the life span of the cell has been modulated. Alternatively, the method may further comprise contacting a cell with the test compound and determining whether the resistance of the cell to certain stresses, e.g., heatshock, osmotic stress, high temperature, calorie restriction, DNA damaging agents (e.g., U.V. and the mitochondrial mutagen ethidium bromide), inappropriate nitrogen conditions, has been modulated. Determining the activity of the enzyme can be conducted as further described herein. It can also consist of measuring the effect of the test compounds on the life span of a cell or on its resitance to stress, e.g., heatshock, osmotic stress, etc.

As will be understood by a person of skill in the art, the above-assay can also be conducted with a biologically active portion or variant of one of the above-described proteins, such as those described above. For example, a portion of a protein can consist of its catalytic site. The catalytic site of *S. cerevisae* and human NPT1 is located between about amino acids 209 and

240. The catalytic site of *S. cerevisiae* PNC1 is located at about amino acids 150-186. The catalytic site of human NMNAT (homolog of NMA1 and NMA2) is located at about amino acids 100-110 and 280-310 (both sequences contribute to the active site).

5

10

15

20

25

30

In another embodiment, the invention provides a method for identifying a compound that modulates the life span of a cell or its resistance to certain types of stresses, comprising (i) contacting a cell or a lysate, comprising a transcriptional regulatory nucleic acid of a gene selected from the group consisting of NPT1, PNC1, NMA1 and NMA2 operably linked to a reporter gene, with a test compound for an amount of time that would be sufficient to affect the transcriptional regulatory nucleic acid; and (ii) determining the level or activity of the reporter gene, wherein a difference in the level or activity of the reporter gene in the presence of the test compound relative to the absence of the test compound indicates that the test compound is a compound that modulates the life span of the cell or its resistance to certain types of stresses. The method may further comprise contacting a cell with the test compound and determining whether the life span of the cell has been modulated. The method may also further comprise contacting a cell with the test compound and determining whether the resistance of the cell to certain stresses, e.g., heatshock, has been modulated. Transcriptional regulatory nucleic acids are either known in the art or can easily be isolated according to methods well known in the art. The reporter gene can be any gene encoding a protein whose expression can be detected, e.g., by fluorescence activated cell sorting. The cell can be a prokaryotic or eukaryotic cell. The lysate can be a complete lysate of a cell, prepared according to methods known in the art, or it can be a fraction of a cell lysate or a combination of several cell lysates or fractions of cell lysates. A lysate may also comprise one or more recombinant proteins.

The invention also provides methods for regulating the level of nicotinamide in cells. Such methods may comprising identifying agents that modulate an enzyme that increases or decreases nicotinamide levels in a cell. Exemplary enzymes are described herein. Assays can be conducted essentially as described above for identifying agents that modulate the NAD+ salvage pathway.

5. Methods for identifying inhibitors of Sir2 and Sir2 family members

As shown herein, nicotinamide inhibits Sir2 and human SRT1. It has also been shown that nicotinamide inhibits Sir2 non-competitively by binding to the C pocket of Sir2. Accordingly, the invention provides assays, e.g., based on rational drug design, for identifying

analogs of nicotinamide that are also inhibitors of Sir2 and other members of the Sir2 family of proteins which comprise a C pocket.

5

10

15

20

25

30

Accordingly, the present invention provides methods of identifying agents that can be used for reducing the life span of cells, such as to treat conditions that may benefit from reducing the life span of certain cells. One such embodiment comprises a method of identifying an agent for use as an inhibitor of a Sir2 family member using a dataset comprising the three-dimensional coordinates of at least a portion a Sir2 family member comprising the C pocket. The crystal structure of a Sir2 homolog is described in Min et al. (2001) Cell 105 269 and the structure is provided in Protein Data Bank ID code 1ICI. The C pocket is located at about amino acids 70-90 and 127-167 of human SIRT1. The C pocket of Sir2 is located at about amino acids 250-270 and 310-350. The coordinates may further comprise the coordinates of nicotinamide or an analog thereof. In a particular embodiment the three-dimensional coordinates are those of a Sir2 homolog. In other embodiments, assays comprise co-crystallizing at least a portion of a Sir2 family member comprising the C pocket with a compound, e.g., a nicotinamide analog. Co-crystallization may be in the presence or absence of NAD+.

In one embodiment a potential agent is selected by performing rational drug design with the three-dimensional coordinates of a portion of a Sir2 family member comprising at least the C pocket. As noted above, preferably the selection is performed in conjunction with computer modeling. The potential agent is then contacted with the Sir2 family member and the activity of the Sir2 family member is determined (e.g., measured). A potential agent is identified as an agent that inhibits a Sir2 family member when there is a decrease in the activity determined for the Sir2 family member.

In a preferred embodiment the method further comprises preparing a supplemental crystal containing at least a portion of a Sir2 family member comprising the C pocket bound to the potential agent. Preferably the supplemental crystal effectively diffracts X-rays for the determination of the atomic coordinates to a resolution of better than 5.0 Angstroms, more preferably to a resolution equal to or better than 3.5 Angstroms, and even more preferably to a resolution equal to or better than 3.3 Angstroms. The three-dimensional coordinates of the supplemental crystal are then determined with molecular replacement analysis and a second generation agent is selected by performing rational drug design with the three-dimensional coordinates determined for the supplemental crystal. Preferably the selection is performed in conjunction with computer modeling. The second generation agent can be an analog of nicotinamide.

As should be readily apparent the three-dimensional structure of a supplemental crystal can be determined by molecular replacement analysis or multiwavelength anomalous dispersion or multiple isomorphous replacement. A candidate drug can then selected by performing rational drug design with the three-dimensional structure determined for the supplemental crystal, preferably in conjunction with computer modeling. The candidate drug can then be tested in a large number of drug screening assays using standard biochemical methodology exemplified herein.

5

10

15

20

25

30

The method can further comprise contacting the second generation agent with a Sir2 family member or portion thereof of a different species and determining (e.g., measuring) the activity of the Sir2 family member or portion thereof of the other species. A potential agent is then identified as an agent for use as an essentially specific inhibitor of a Sir2 family member of a first species when there is significantly less change (a factor of two or more) in the activity of the Sir2 family member of other species relative to that observed for the Sir2 family member of the first species. Preferably no, or alternatively minimal change (i.e., less than 15%) in the activity of the other species is observed.

In one aspect, the present invention provides a computer-assisted method for identifying an inhibitor of the activity of a Sir2 family member including: supplying a computer modeling application with a set of structure coordinates of a molecule or molecular complex, the molecule or molecular complex including at least a portion of a Sir2 family member comprising a C pocket; supplying the computer modeling application with a set of structure coordinates of a chemical entity, e.g., an analog of nicotinamide; and determining whether the chemical entity is an inhibitor expected to bind to or interfere with the molecule or molecular complex, wherein binding to or interfering with the molecule or molecular complex is indicative of potential inhibition of the activity of the Sir2 family member. Preferably determining whether the chemical entity is an inhibitor expected to bind to or interfere with the molecule or molecular complex includes performing a fitting operation between the chemical entity and a binding pocket of the molecule or molecular complex, followed by computationally analyzing the results of the fitting operation to quantify the association between the chemical entity and the binding pocket. The method may further includes screening a library of chemical entities. The method may also further include supplying or synthesizing the potential inhibitor, then assaying the potential inhibitor to determine whether it inhibits the activity of a Sir2 family member.

In another aspect, the present invention provides a method for making an inhibitor of a Sir2 family member, the method including chemically or enzymatically synthesizing a chemical entity to yield an inhibitor of the activity of a Sir2 family member, the chemical entity having been designed during a computer-assisted process, e.g., as described above.

The present invention further provides an apparatus that comprises a representation of a complex between Sir2 family member and nicotinamide or analog thereof. One such apparatus is a computer that comprises the representation of the complex in computer memory. In one embodiment, the computer comprises a machine-readable data storage medium which contains data storage material that is encoded with machine-readable data which comprises the atomic coordinates of the complex. The computer may further comprise a working memory for storing instructions for processing the machine-readable data, a central processing unit coupled to both the working memory and to the machine-readable data storage medium for processing the machine readable data into a three-dimensional representation of the complex. In a preferred embodiment, the computer also comprises a display that is coupled to the central-processing unit for displaying the three-dimensional representation.

15 6. Uses of the invention

5

10

20

25

30

In one embodiment, increasing the flux through the NAD+ salvage pathway or decreasing nicotinamide levels is used to increase the life span of cells and protect cells against at least certain stresses in vitro. For example, cells in culture can be treated as described herein, such as to keep them proliferating longer. This is particularly useful for primary cell cultures (i.e., cells obtained from an organism, e.g., a human), which are known to have only a limited life span in culture. Treating such cells according to methods of the invention, e.g., by integrating one or more additional copies of one or more genes selected from the group consisting of NPT1, PNC1, NMA1, NMA2, nicotinamide N-methyl transferase (NNMT and NNT1), nicotinamide phosphoribosyltransferase (NAMPRT), and optionally human nicotinamide mononucleotide adenylyltransferase (NMNAT, NMAT-1 and 2), will result in increasing the amount of time that the cells are kept alive in culture. Embryonic stem (ES) cells and pluripotent cells, and cells differentiated therefrom, can also be modified according to the methods of the invention such as to keep the cells or progeny thereof in culture for longer periods of time. Primary cultures of cells, ES cells, pluripotent cells and progeny thereof can be used, e.g., to identify compounds having particular biological effects on the cells or for testing the toxicity of compounds on the cells (i.e., cytotoxicity assays).

In other embodiments, cells that are intended to be preserved for long periods of time are treated as described herein. The cells can be cells in suspension, e.g., blood cells, or tissues or

organs. For example, blood collected from an individual for administering to an individual can be treated according to the invention, such as to preserve the blood cells for longer periods of time. Other cells that one may treat for extending their lifespan and/or protect them against certain types of stresses include cells for consumption, e.g., cells from non-human mammals (such as meat), or plant cells (such as vegetables).

5

10

15

20

25

30

In another embodiment, cells obtained from a subject, e.g., a human or other mammal, are treated according to the methods of the invention and then administered to the same or a different subject. Accordingly, cells or tissues obtained from a donor for use as a graft can be treated as described herein prior to administering to the recipient of the graft. For example, bone marrow cells can be obtained from a subject, treated ex vivo to extend their life span and protect the cells against certain types of stresses and then administered to a recipient. In certain embodiments, the cells of the graft, e.g., bone marrow, are transfected with one or more copies of one or more genes selected from the group consisting of NPT1, PNC1, NMA1, NMA2, NMNAT, NNT1, NAMPRT, and optionally NMAT-1 or 2. The graft can be an organ, a tissue or loose cells.

In yet other embodiments, cells are treated *in vivo* to increase their life span and/or protect them against certain types of stresses. For example, skin can be protected from aging, e.g., developing wrinkles, by treating skin, e.g., epithelial cells, as described herein. In an exemplary embodiment, skin is contacted with a pharmaceutical or cosmetic composition comprising a compound that is capable of increasing the transcription of one or more genes selected from the group consisting of NPT1, PNC1, NMA1, NMA2, NMNAT, NNT1, NAMPRT, and optionally NMAT-1 or 2. In another embodiment, skin cells are contacted with a composition comprising a protein selected from the group consisting of NPT1, PNC1, NMA1, NMA2, NMNAT, NNT1, NAMPRT, and optionally NMAT-1 or 2, or a nucleic acid encoding such, and a vehicle for delivering the nucleic acid or protein to the cells.

Compounds, nucleic acids and proteins can also be delivered to a tissue or organ within a subject, such as by injection, to extend the life span of the cells or protect the cells against certain stresses.

In yet another embodiment, an agent of the invention is administered to subjects, such as to generally increase the life span of its cells and protect its cells against certain types of stresses. For example, an agent can be taken by subjects as food supplements. In one embodiment, such an agent is a component of a multi-vitamin complex.

Agents that extend the life span of cells and protect them from stress can also be administered to subjects for treatement of diseases, e.g., chronic diseases, associated with cell death, such as to protect the cells from cell death, e.g., diseases associated with neural cell death or muscular cell death. Exemplary diseases include Parkinson's disease, Alzheimer's disease, multiple sclerosis, amniotropic lateral sclerosis, and muscular dystrophy. In such cases, the agent may be administered in the tissue or organ likely to encounter cell death.

5

10

15

20

25

30

Such agents can also be administered to a subject suffering from an acute damage to an organ or tissue, e.g., a subject suffering from stroke or myocardial infarction or a subject suffering from a spinal cord injury. Agents can also be used to repair an alcoholic's liver.

Since DNA repair is also inhibited by nicotinamide, agents that reduce nicotinamide levels in cells can be used to promote DNA repair in cells. Accordingly, cells exposed to conditions that may trigger DNA damage, e.g., U.S. radiation and ethidium bromide, may be protected by contacting them before, during and/or after exposure to the DNA damaging agent, with an agent that reduces nicotinamide levels in the cell.

In other embodiments, the methods of the invention are applied to yeast cells. Situations in which it may be desirable to extend the life span of yeast cells and to protect them against certain types of stress include any process in which yeast is used, e.g., the making of beer, yogurt, and bakery, e.g., making of bread. Use of yeast having an extended life span can result in using less yeast or in having the yeast be active for longer periods of time.

The invention also provides methods for reducing the life span of a cell or rendering it more susceptible to certain stresses, e.g., heatshock, radioactivity, osmotic stress, DNA damage, e.g., from U.V. Such methods can be used whenever it is desired to reduce the life span of a cell. Exemplary methods include decreasing the level or activity of a protein selected from the group consisting of NPT1, PNC1, NMA1, NMA2, NMNAT, NNT1, NAMPRT, and optionally NMAT-1 or 2.

Another method includes increasing the level of nicotinamide in the cell, e.g., by contacting the cell with nicotinamide, or by increasing the level or activity of an enzyme stimulating nicotinamide biosynthesis or decreasing the level or activity of an enzyme inhibiting or degrading nicotinamide, e.g., by decreasing the level or activity of NPT1, PNC1, NMA1, NMA2, NMNAT, NNT1, NAMPRT, and optionally NMAT-1 or 2. Exemplary situations in which one may wish to reduce the life span of a cell or render it more susceptible to certain stresses include treatment of cancer, autoimmune diseases or any other situation in which it is

desirable to eliminate cells in a subject. Nicotinamide or other compounds or agents of the invention can be administered directly to the area containing the underirable cells, e.g., in a tumor. These methods can also be used to eliminate cells or prevent further proliferation of undesirable cells of non-malignant tumors, e.g., warts, beauty spots and fibromas. For example, nicotinamide can be injected into a wart, or alternatively be included in a pharmaceutical composition for applying onto the wart.

Methods for decreasing the life span of cells or increasing their susceptibility to certain stresses can be applied to yeast, e.g., yeast infecting subjects. Accordingly, a composition comprising an agent, e.g., nicotinamide, can be applied to the location of the yeast infection.

Subjects that may be treated as described herein include eukaryotes, such as mammals, e.g., humans, ovines, bovines, equines, porcines, canines, felines, non-human primate, mice, and rats. Cells that may be treated include eukaryotic cells, e.g., from a subject described above, or plant cells, yeast cells and prokaryotic cells, e.g., bacterial cells.

7. Pharmaceutical compositions and methods

Compounds, nucleic acids, proteins, cells and other compositions can be administered to a subject according to methods known in the art. For example, nucleic acids encoding a protein or an antisense molecule can be administered to a subject as described above, e.g., using a viral vector. Cells can be administered according to methods for administering a graft to a subject, which may be accompanied, e.g., by administration of an immunosuppressant drug, e.g., cyclosporin A. For general principles in medicinal formulation, the reader is referred to Cell Therapy: Stem Cell Transplantation, Gene Therapy, and Cellular Immunotherapy, by G. Morstyn & W. Sheridan eds, Cambridge University Press, 1996; and Hematopoietic Stem Cell Therapy, E. D. Ball, J. Lister & P. Law, Churchill Livingstone, 2000.

25

20

5

10

15

The present invention is further illustrated by the following examples which should not be construed as limiting in any way. The contents of all cited references (including literature references, issued patents, published patent applications as cited throughout this application) are hereby expressly incorporated by reference.

30

CONT. TRANSPORTED AND A SERVICE CONTRACTOR OF THE PARTY O

The practice of the present invention will employ, unless otherwise indicated, conventional techniques of cell biology, cell culture, molecular biology, transgenic biology, microbiology, recombinant DNA, and immunology, which are within the skill of the art. Such techniques are explained fully in the literature. See, for example, Molecular Cloning A

Laboratory Manual, 2nd Ed., ed. by Sambrook, Fritsch and Maniatis (Cold Spring Harbor Laboratory Press: 1989); DNA Cloning, Volumes I and II (D. N. Glover ed., 1985); Oligonucleotide Synthesis (M. J. Gait ed., 1984); Mullis et al. U.S. Patent No: 4,683,195; Nucleic Acid Hybridization(B. D. Hames & S. J. Higgins eds. 1984); Transcription And Translation (B. D. Hames & S. J. Higgins eds. 1984); Culture Of Animal Cells (R. I. Freshney, Alan R. Liss, Inc., 1987); Immobilized Cells And Enzymes (IRL Press, 1986); B. Perbal, A Practical Guide To Molecular Cloning (1984); the treatise, Methods In Enzymology (Academic Press, Inc., N.Y.); Gene Transfer Vectors For Mammalian Cells (J. H. Miller and M. P. Calos eds., 1987, Cold Spring Harbor Laboratory); Methods In Enzymology, Vols. 154 and 155 (Wu et al. eds.), Immunochemical Methods In Cell And Molecular Biology (Mayer and Walker, eds., Academic Press, London, 1987); Handbook Of Experimental Immunology, Volumes I-IV (D. M. Weir and C. C. Blackwell, eds., 1986); Manipulating the Mouse Embryo, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1986).

15 Examples

10

20

25

30

Example 1: Manipulation of a nuclear NAD salvage pathway delays aging

Yeast deprived of nutrients exhibit a marked life span extension that requires the activity of the NAD⁺-dependent histone deacetylase, Sir2p. Here we show that increased dosage of NPT1, encoding a nicotinate phosphoribosyltranfserase critical for the NAD⁺ salvage pathway, increases Sir2-dependent silencing, stabilizes the rDNA locus and extends yeast replicative life span by up to 60%. Both NPT1 and SIR2 provide resistance against heat shock, demonstrating that these genes act in a more general manner to promote cell survival. We show that Npt1 and a previously uncharacterized salvage pathway enzyme, Nma2, are both concentrated in the nucleus, indicating that a significant amount of NAD⁺ is regenerated in this organelle. Additional copies of the salvage pathway genes, PNC1, NMA1 and NMA2 increase telomeric and rDNA silencing, implying that multiple steps affect the rate of the pathway. Although SIR2-dependent processes are enhanced by additional NPT1, steady-state NAD⁺ levels and NAD⁺/NADH ratios remain unaltered. This finding suggests that yeast life span extension may be facilitated by an increase in the availability of NAD⁺ to Sir2, though not through a simple increase in steady-state levels. We propose a model in which increased flux through the NAD⁺ salvage pathway is responsible for the Sir2-dependent extension of life span.

EXPERIMENTAL PROCEDURES

Plasmids and strains—Strains used in this study are listed in Table 2. W303AR5 sir3::URA3 (16), W303AR5 sir4::HIS3, W303AR5 sir2::TRP1 and PSY316AT are described (41). Deletion of SIR2 in PSY316AT was performed using Scal/PvuII linearized pC369 (41). JS209, JS241, JS237 and JS218 were gifts from J. Smith (42). The coding region and 1.1 kb of upstream sequence of NPT1 were amplified by PCR (43) and the 2.4 kb product fragment was subcloned into the pRS306 based vector pSP400 between NotI and SacI (gift from L. Guarente, M.I.T.) and the 2μ-based vector pDB20 (44) to generate pSPNPT1and pDBNPT1 respectively.

Table 2. Yeast strains used in this study.

•		^
-1	н	ш

Strain	Genotype
W303AR5	W303 MATa, ade2-1, leu2-3,112, can1-100, trp1-1, ura3-52, his3-11,15, RDN1::ADE2, RAD5
YDS878	W303 MATa., ade2-1, leu2-3,112, can1-100, trp1-1,, ura3-52, his3-11,15, RDN1::ADE2, RAD5, sir2:TRP1
YDS924	W303AR5 MATa, ade2-1, leu2-3,112, can1-100, trp1-1, ura3-52, his3-11,15, RDN1::ADE2, RAD5, sir3:HIS3
YDS882	W303 MATa, ade2-1, leu2-3,112, can1-100, trp1-1, ura3-52, his3-11,15, RDN1::ADE2, RAD5, sir4:HIS3
YD\$1503	W303 MATa, ade2-1, leu2-3,112, can1-100, trp1-1, ura3-52, his3-11,15, RDN1::ADE2, RAD5, URA3/NPT1
YDS1504	W303 MATa, ade2-1, leu2-3,112, can1-100, trp1-1, ura3-52, his3-11,15, RDN1::ADE2, RAD5, sir2:TRP1, URA3/NPT1
YDS1505	W303 MATa, ade2-1, leu2-3,112, can1-100, trp1-1, ura3-52, his3-11,15, RDN1::ADE2, RAD5, sir3:HIS3, URA3/NPT1
YD\$1506	W303 MATa, ade2-1, leu2-3,112, can1-100, trp1-1, ura3-52, his3-11,15, RDN1::ADE2, RAD5, sir4:HIS3, URA3/NPT1
YD\$1496	W303 MATa, ade2-1, leu2-3,112, can1-100, trp1-1, ura3-52, his3-11,15, RDN1::ADE2, RAD5, pDBNPT1
YD\$1494	W303 MATa, ade2-1, leu2-3,112, can1-100, trp1-1, ura3-52, his3-11,15, RDN1::ADE2, RAD5, sir2:TRP1, pDBNPT1
YDS1587	W303 MATa, ade2-1, leu2-3,112, can1-100, trp1-1, ura3-52, his3-11,15, RDN1::ADE2, RAD5, sir3:HIS3, pDBNPT1
YDS1495	W303 MATa, ade2-1, leu2-3,112, can1-100, trp1-1, ura3-52, his3-11,15, RDN1::ADE2, RAD5, sir4:HIS3, pDBNPT1
YD\$1572	W303 MATa, ade2-1, leu2-3,112, can1-100, trp1-1, ura3-52, his3-11,15, RDN1::ADE2, RAD5, LEU2/SIR2
YD\$1561	W303 MATa, ade2-1, leu2-3,112, can1-100, trp1-1, ura3-52, his3-11,15, RDN1::ADE2, RAD5, URA3/NPT1, LEU2/SIR2
YDS1595	W303 MATa, ade2-1, leu2-3,112, can1-100, trp1-1, ura3-52, his3-11,15, RAD5
YDS1596	W303 MATa, ADE2, leu2-3,112, can1-100, trp1-1, ura3-52, his3-11,15, RAD5
YDS1568	W303 MATa, ade2-1, leu2-3,112, can1-100, trp1-1, URA3, his3-11,15, RDN1::ADE2, RAD5
YDS1563	W303 MATa, ade2-1, LEU2, can1-100, trp1-1, URA3, his3-11,15, RDN1::ADE2, RAD5
YDS1588	W303 MATa, ade2-1, leu2-3,112, can1-100, trp1-1, ura3-52, his3-11,15, RDN1::ADE2, RAD5, pSPYGL037
YD\$1589	W303 MATa, ade2-1, leu2-3,112, can1-100, trp1-1, ura3-52, his3-11,15, RDN1::ADE2, RAD5, pSPYGR010
YDS1590	W303 MATa, ade2-1, leu2-3,112, can1-100, trp1-1, ura3-52, his3-11,15, RDN1::ADE2, RAD5, p306YLR328

YDS1614	W303 MATa, ade2-1, leu2-3,112, can1-100, trp1-1, ura3-52, his3-11,15, RDN1::ADE2, RAD5, p306YHR074
YD\$1531	W303 MATa, ade2-1, leu2-3,112, can1-100, trp1-1, ura3-52, his3-11,15, RDN1::ADE2, RAD5, NPT1-HA
W303cdc25-10	W303 MATa, ade2-1, leu2-3,112, can1-100, trp1-1, ura3-52, his3-11,15, RDN1::ADE2, RAD5, cdc25-10
YDS1537	W303 MATa, ade2-1, leu2-3,112, can1-100, trp1-1, ura3-52, his3-11,15, RDN1::ADE2, RAD5, cdc25-10, NPT1-HA
YD\$1611	W303 MATa, ade2-1, leu2-3,112, can1-100, trp1-1, ura3-52, his3-11,15, RDN1::ADE2, RAD5, NPT1-GFP
YDS1625	W303 MATa, ade2-1, leu2-3,112, can1-100, trp1-1, ura3-52, his3-11,15, RDN1::ADE2, RAD5, NMA1-GFP
YD\$1624	W303 MATa, ade2-1, leu2-3,112, can1-100, trp1-1, ura3-52, his3-11,15, RDN1::ADE2, RAD5, NMA2-GFP
PSY316AT	MATα, ura3-53 leu2-3,112 his3-Δ200 ade2-1,01 can1-100 ADE2-TEL V-R
YDS1594	PSY316 MATo, ura3-53 leu2-3,112 his3-Δ200 ade2-1,01 can1-100 ADE2-TEL V-R, sir2:TRP1
YDS1544	PSY316 MATo, ura3-53 leu2-3,112 his3-Δ200 ade2-1,01 can1-100 ADE2-TEL V-R, URA3/NPT1
YDS1548	PSY316 MATo, ura3-53 leu2-3,112 his3-Δ200 ade2-1,01 can1-100 ADE2-TEL V-R, (4x)URA3/NPT1
YD\$1527	PSY316 MATo, ura3-53 leu2-3,112 his3-Δ200 ade2-1,01 can1-100 ADE2-TEL V-R, pDBNPT1
YDS1577	PSY316 MATα, ura3-53 leu2-3,112 his3-Δ200 ade2-1,01 can1-100 ADE2-TEL V-R, (4x)URA3/NPT1, LEU2/SIR2
YDS1573	PSY316 MATα, ura3-53 leu2-3,112 his3-Δ200 ade2-1,01 can1-100 ADE2-TEL V-R, sir2::HIS3, URA3/NPT1
YD\$1591	PSY316 MATα, ura3-53 leu2-3,112 his3-Δ200 ade2-1,01 can1-100 ADE2-TEL V-R, pSPYGL037
YDS1592	PSY316 MATo, ura3-53 leu2-3,112 his3-Δ200 ade2-1,01 can1-100 ADE2-TEL V-R, pSPYGR010
YDS1593	PSY316 MATα, ura3-53 leu2-3,112 his3-Δ200 ade2-1,01 can1-100 ADE2-TEL V-R, p306YLR328
JS209	MATα, his $3\Delta 200$, leu $2\Delta 1$, met $15\Delta 200$, trp $1\Delta 63$, ura 3 - 167
JS241	IS209 MAT α , his3 Δ 200, leu2 Δ 1, me115 Δ 200, trp1 Δ 63, ura3-167, MET15
JS237	JS209 MATα, his3Δ200, leu2Δ1, met15Δ200, trp1Δ63, ura3-167, RDN1::Ty-MET15
JS218	JS237 MATα, his3Δ200, leu2Δ1, met15Δ200, trp1Δ63, ura3-167, RDN1::Ty-MET15, sir2::HIS3
YDS1583	JS237 MATα, his3Δ200, leu2Δ1, met15Δ200, trp1Δ63, ura3-167, RDN1::Ty-MET15, LEU2/SIR2
YDS1522	JS237 MATα, his3Δ200, leu2Δ1, met15Δ200, trp1Δ63, ura3-167, RDN1::Ty-MET15, p2μSIR2
YD\$1580	JS237 MATα, his3Δ200, leu2Δ1, met15Δ200, trp1Δ63, ura3-167, RDN1::Ty-MET15, npt1Δ::kan ^t
YDS1581	IS237 MATα, his3Δ200, leu2Δ1, met15Δ200, trp1Δ63, ura3-167, RDN1::Ty-MET1, URA3/NPT1
YDS1493	JS237 MATα, his3Δ200, leu2Δ1, met15Δ200, trp1Δ63, ura3-167, RDN1::Ty-MET15, pDBNPT1

Additional copies of *NPT1* were integrated at the *URA3* locus using plasmid pSPNPT1 linearized with *StuI*. Integrants were first identified by PCR. *NPT1* copy-number was then determined by probing for *NPT1* and *ACT1* DNA on Southern blots. The density of the *NPT1* band was compared to an *ACT1* band using ImageQuant software (Molecular Dynamics, Sunnyvale, CA). Strains carrying an additional copy of *SIR2* were generated by integrating

plasmids p306SIR2 or p305SIR2 (17) linearized with XcmI. High copy SIR2 was introduced on the 2µ-based plasmid p2µSIR2 (gift of L. Pillus, UCSD). W303AR5 was transformed to Ura+ and Leu⁺ prototrophy by integrating pRS306 or pRS305 (45) linearized with StuI and XcmI respectively. YDS1595 was generated from W303AR5 by selecting a colony that had experienced an ADE2 loss event. YDS1595 was transformed with StuI-cut pRS402 (carrying the ADE2 gene) to create YDS1596. W303cdc25-10 was a gift from S. Lin (M.I.T) (19). The NPT1 deletion strain, YDS1580, was generated by replacing the wildtype gene with the kan^r marker as described (46). The coding region and 650 bp upstream of PNC1/YGL037 was amplified by PCR from genomic DNA. The 1350 bp SacI/NotI fragment was cloned into the vector pSR400 to generate pSPYGL037. The coding region and 500 bp upstream of NMA2/YGR010 were amplified by PCR from genomic template and the 1730 bp SacI/NotI fragment was cloned into pSP400 to generate pSPYGR010. The coding region of NMA1/YLR328 and 450 bp upstream were amplified from genomic template by PCR and the 2150 bp fragment was cloned into pRS306 to generate p306YLR328. The coding region and 600 bp upstream of QNS1/YHR074 was amplified by PCR and the 2.8 kb SacI/NotI fragment was cloned into pSP400 to make pSPYHR074. Additional copies of PNC1/YGL037, NMA1/YLR328, NMA2/YGR010, and QNS1/YHR074 were integrated at the URA3 locus of W303AR5 and PSY316AT by transformation. All amplified DNA was confirmed to to be free of mutations by sequencing.

10

15

20

25

30

HA-tagged NPT1 was generated using a tag-kan^r integration method (47) in strains W303AR5 and W303cdc25-10 (19). A green fluorescent protein (GFP) cassette was introduced at the carboxy-terminus of Npt1, Nma1 and Nma2 as described (48). The functionality of tagged proteins was confirmed by assaying rDNA silencing.

Life span determination—Replicative life span determination was performed as described (16). Cells were grown on YPD medium (1% yeast extract, 2% bactopeptone, 2% glucose w/v) unless otherwise stated with a minimum of 40 cells per experiment. Each experiment was performed at least twice independently. Statistical significance of life span differences was determined using the Wilcoxon rank sum test. Differences are stated to be different when the confidence is higher than 95%.

mRNA and protein determination—Northern and Western blots were performed using standard techniques. NPT1 transcripts were detected using a probe derived from the complete open reading frame of the NPT1 gene. ACT1 mRNA was detected using a full-length ACT1

probe (gift of G. Fink, M.I.T). The HA epitope tag was detected using monoclonal antibody HA.11 (CRP, Richmond, CA). Actin was detected with monoclonal antibody MAB1501R (Chemicon, Temecula, CA).

Yeast assays and GFP localization—Yeast strains were grown at 30°C unless otherwise stated. The extent of silencing at the ribosomal DNA locus was determined using two assays. For the ADE2 silencing assay, cells were pre-grown on synthetic complete (SC) medium (1.67% yeast nitrogen base, 2% glucose, 40 mg/l of histidine, uridine, tryptophan, adenine and leucine) for 3 days. Cells were resuspended in SD medium and serially diluted 10-fold in phosphate-buffered saline and spotted onto SC medium lacking adenine. MET15 silencing assays were performed on Pb²⁺-containing plates as previously described (42). Telomeric silencing was assayed on SC medium containing 0.7 mg/l adenine. Cells were grown for 3 days and placed at 4°C for 3 days to enhance color. Heat shock assays were performed essentially as described (14). Strains were pre-grown overnight in SC-complete medium with limiting histidine (20 mg/ml), diluted to 1x10⁵ cells/ml in 3 ml of the same medium and grown for 5 days. Cultures were diluted 10-fold in expired medium, incubated for 1 h at 55°C and spotted on SC plates. Ribosomal DNA recombination rates were determined as previously described (49). At least 10,000 colonies were examined for each strain and each experiment was performed in triplicate.

NAD⁺ and NADH determinations were measured as described elsewhere (50). Cells expressing a GFP fusions were grown to mid log phase in YPD medium or YPD low glucose (0.5% w/v) then incubated in PBS containing 20 µM Hoechst 33342 DNA stain (Sigma) for 5 min. Images were captured under a 100X magnification on a Nikon E600 fluorescence microscope and analyzed using Photoshop 6.0 software.

RESULTS

5

10

15

20

25

30

Increased dosage of NPT1 increases longevity but not steady-state NAD⁺ levels—SIR2 is a limiting component of longevity in yeast and requires NAD⁺ for catalysis. Studies in E. coli have shown that PncB catalyzes a rate-limiting step in the salvage pathway that recycles NAD⁺ (35,37,38). We asked whether additional copies of the yeast pncB homolog, NPT1, could increase NAD⁺ production to Sir2 and hence extend yeast life span. NPT1 was integrated at the URA3 locus under the control of its native promoter. Strains that carried one or four tandem copies of NPT1 were then identified by Southern blotting. We refer to the resulting genotypes as 2xNPT1 and 5xNPT1 respectively.

For the replicative life span assay, cells were grown for at least two days on fresh yeast extract/peptone/glucose (YPD) medium to ensure that they had fully recovered from conditions of caloric restriction prior to the assay. Daughter cells that emerged from previously unbudded mother cells were then micro-manipulated away and scored. As shown in Fig. 1A, the 2xNPTI strain lived an average of ~40% longer than the wild type strain and the 5xNPTI strain lived a striking ~60% longer. The NPTI-induced life span extension was completely abrogated by a sir2 deletion and not significantly enhanced by an additional copy of SIR2 (Fig. 1B) indicating that the life span extension provided by NPTI is mediated by Sir2.

It has recently been shown that wild type cells grown in low glucose medium (0.5% w/v) have an average life span significantly greater than those grown on standard (2%) glucose medium (19,32). As shown in Fig. 1C, on low glucose medium the life span of the 5xNPT1 strain was not significantly greater than the wild type strain. The fact that the effect of NPT1 and low glucose were not additive suggests that these two regimens act via the same pathway.

Biochemical studies have shown that Sir2 requires NAD⁺ as a cofactor. This has led to the hypothesis that replicative life span may be extended by increased NAD⁺ levels. Consistent with this idea, NAD⁺ levels have been shown to increase significantly in old cells, perhaps as a defense against aging or as the result of decreased metabolic activity (50). To date the intracellular levels of NAD⁺ in any long-lived strain have not been reported. We found that steady-state NAD⁺ levels and NAD⁺/NADH ratios in the 2xNPT1 strain were not significantly different from the wild type (Table 1). We also examined $\Delta sir2$ and 2xNPT1 $\Delta sir2$ strains and again found no difference from wild type, indicating that the failure to detect increased NAD⁺ levels was not due to the activity of Sir2.

Table 1. Steady-state NAD⁺ and NADH levels in various long-and short-lived strains.

	NAD ⁺	NADH	NAD ⁺ /NADH	ATP
Genotype	(amol/pg	(amol/pg	ratio	(amol/pg protein) ¹
	protein) ¹	protein) ¹		
1xNPT1 (wild type)	23.7 (3.2)	9.3 (0.8)	2.8 (0.5)	15.5 (3)
2xNPT1	21.9 (2.0)	6.0 (0.6)	3.3 (0.3)	7.6 (1.6)
2xNPT1 sir2::TRP1	22.5 (1.6)	7.0 (0.3)	2.4 (0.9)	5.3 (1.1)
sir2::TRP1	23.6 (1.2)	7.0 (0.6)	2.8 (1.2)	7.9 (1.9)

¹ average of five independent experiments (s.e.)

5

10

15

20

NPT1 and SIR2 increase resistance to heat shock but not to other stresses—Mutations in components of the C. elegans and Drosophila insulin/IGF-1 pathway allow animals to live up to twice as long as controls (5). In C. elegans this longevity is coupled to stress resistance (4). In contrast, the chico mutation in Drosophila, which extends life span by ~50% in homozygotes, does not protect against heat shock or oxidative stress (51). The link between sir2.1 life span extension and stress resistance in C. elegans has not been examined, though there is evidence from yeast that the Sir2/3/4 complex may be involved in such a response. The yeast sir4-42 mutation increases replicative life span as well as resistance to starvation and heat shock (52). This raises the possibility that the SIR2 longevity pathway may also influence stress resistance.

5

10

15

20

25

30

To explore this, we examined the ability of extra copies of NPT1 and SIR2 to confer resistance to a variety of stresses including heat shock, starvation, and exposure to methylmethane sulfonate (MMS) or paraquat. MMS is a DNA damaging agent that causes a variety of DNA lesions, whereas paraquat induces oxidative stress by generating reactive oxygen species. Additional copies of either NPT1, SIR2, or both did not provide resistance against paraquat or MMS, nor did they enhance the ability to survive in stationary phase.

To assay heat shock resitance, strains with an additional copy of NPT1 or SIR2 were grown to stationary phase in SC medium, heat shocked for 1 hour at 55°C, then spotted in 10-fold serial dilutions onto SC plates. As shown in Fig. 2A, stains with a single additional copy of NPT1 or SIR2 were significantly more resistant to heat shock than the otherwise isogenic wild type control strain. No additive effect of NPT1 and SIR2 was apparent, consistent with these two genes acting in the same pathway. To provide a more quantitative measure of this phenotype, strains were subjected to 1 hour heat shock, plated for single colonies and the number of colonies after 24 hours was scored as a percentage of the untreated sample. As shown in Fig. 2B, additional copies of NPT1 and SIR2, or both provided ~8-fold greater survival than wild type, consistent with our earlier finding.

Additional NPT1 increases silencing and rDNA stability—We wished to determine the molecular basis of the SIR2-dependent life span extension provided by additional NPT1. A simple model predicts that increased dosage of NPT1 would stimulate the NAD⁺ salvage pathway, which would in turn increase Sir2 activity. We thus examined the effect of additional copies of NPT1 on the SIR2-dependent processes of silencing and stability at the rDNA locus.

To determine the effect of NPT1 on rDNA silencing, we utilized strains with either an ADE2 or MET15 marker integrated at the rDNA locus (RDN1). We used two marker genes to ensure that the effects we observed were not simply due to changes in adenine or methionine biosynthesis. Silencing of ADE2 results in slower growth of cells on media lacking adenine and the accumulation of a red pigment on plates with limiting adenine. Silencing of MET15 leads to production of a brown pigment on Pb2+-containing medium. Strains with additional copies of SIR2 were included for comparison. The 2xNPT1 strains showed higher levels of rDNA silencing than wild type in the ADE2 assay (Fig. 3A, compare growth on adenine with growth on no adenine) and the MET15 assay (Fig. 3B). Introduction of an additional copy of NPT1 into the 2xSIR2 strain did not further increase silencing, again consistent with the placement of these two genes in the same pathway. Strains carrying SIR2 and NPT1 on high-copy 2µ-based plasmids also showed increased levels of rDNA silencing (Fig. 3B and C). An additional copy of NPT1 also increased silencing in sir3 and sir4 null strains (Fig. 3C). High-copy NPT1 had a disruptive effect on rDNA silencing in the sir3 strain, whereas this effect was not observed in the sir4 strain. This can be explained by the fact that sir4 mutants relocalize Sir2 to the rDNA, which may counteract the high levels of Npt1. Additional copies of NPT1 in a sir2 mutant caused a slight increase in rDNA silencing that was considerably weaker than SIR2-dependent silencing. The basis of this apparent increase is unclear. To determine whether this was a global effect on silencing, we examined silencing at a telomeric locus. An additional copy of NPT1 was introduced into PSY316AT, which has an ADE2 marker inserted in the subtelomeric region of chromosome V (53). As shown in Fig. 3D, additional copies of NPT1 increased telomeric silencing in a SIR2-dependent manner.

5

10

15

20

25

30

Instability of the rDNA has been shown to be a major cause of yeast replicative aging. To test whether NPT1 extends life span by increasing stability at this locus, we determined the rate of rDNA recombination in 2xNPT1 and 2xSIR2 strains. This was achieved by measuring the rate of loss of an ADE2 marker inserted at the rDNA. As shown in Fig. 3E, an additional copy of NPT1 decreased rDNA recombination by 2-fold, similar to the 2xSIR2 and 2xNPT1 2xSIR2 strains. When sir2 was deleted from the 2xNPT1 strain, rDNA recombination increased dramatically to the levels of a sir2 null strain (Fig. 3F). These results are consistent with a model in which NPT1 extends replicative life span by increasing the ability of Sir2 to inhibit rDNA recombination.

One plausible explanation for the increase in rDNA silencing associated with additional copies of NPT1 is that the telomeric Sir2 in these strains is relocalized to the rDNA, which would result in the loss of telomeric silencing. We have shown that additional copies of NPT1 increase telomeric silencing in a SIR2-dependent manner, arguing against relocalization of Sir2 from telomeres as the mechanism of life span extension. Another possible explanation is that additional NPT1 upregulates Sir2 expression. By Western blotting we found that the steady-state levels of Sir2 did not change in response to additional NPT1. A third possibility for the increase in rDNA silencing is that additional NPT1 stimulates overall Sir2 activity. Although it is not currently possible to measure this activity in vivo, this idea is consistent with our findings that additional NPT1 enhances each of the SIR2-dependent processes thus far examined.

5

10

15

20

25

30

Caloric restriction does not alter NPT1 expression or localization—Given that additional NPT1 and caloric restriction appear to extend life span via the same pathway, we tested whether caloric restriction acts by increasing NPT1 expression. A triple hemagglutinin epitope (3xHA) tag was added to the carboxy-terminus of Npt1 by integrating an 3xHA-kanamycin resistance cassette into the native NPT1 locus. We confirmed that the fusion protein was functional by assaying its ability to maintain wild type levels of rDNA silencing. NPT1 levels were then determined in strains grown on (0.5%) glucose medium and in the long-lived cdc25-10 strain, which is considered a genetic mimic of caloric restriction (19). As shown in Fig. 4A and B, no increase in NPT1 expression was detected at the mRNA or protein level. In fact under low glucose conditions a consistent ~2-fold decrease in NPT1 expression was observed. We did not detect significant changes in NPT1 expression after heat shock or exposure to MMS or paraquat (Fig. 4C and D). We conclude that caloric restriction does not increase longevity by upregulating NPT1 expression.

Given that *NPT1* expression was not enhanced in response to caloric restriction, we examined the possibility that the activity of this protein may be modulated by other means. Specifically, we examined the subcellular localization of GFP-tagged Npt1 in live cells grown in complete or low glucose medium. To our surprise, Npt1 was observed throughout the cell with an apparent concentration of the protein in the nucleus of most cells (Fig. 4E). The large regions of exclusion correspond to vacuoles. These findings raise the intriguing possibility that a significant fraction of NAD⁺ is regenerated in the nucleus. In low glucose medium the

localization pattern of Npt1-GFP was unaltered, indicating that there is no gross relocalization of Npt1 in response to caloric restriction.

If our hypothesis that the entire NAD⁺ salvage pathway exists in the nuclear compartment, then we should expect that the other enzymes in the pathway will show a similar localization pattern to Npt1. Based on the bacterial salvage pathway, the step immediately downstream of NPT1 is predicted to be catalyzed by a nicotinate mononucleotide adenylyltransferase (NaMAT). There are two yeast ORFs with similar homology to NaMATs from other species, YLR0328 and YGR010, which we have designated NMA1 and NMA2, respectively. To localize these two proteins, a GFP cassette was integrated in frame prior to the stop codon of each ORF to generate C-terminal fusions. As shown in Fig. 4F, Nma2-GFP was concentrated in the nucleus in the majority of cells, in a pattern identical to that of Npt1-GFP. This finding further supports our hypothesis that NAD⁺ is recycled from nicotinamide entirely within the nucleus. The localization pattern of Nma1 was unable to be determined due to low expression levels.

15

20

25

30

5

10

Identification of other putative longevity genes in the NAD⁺ salvage pathway—The discovery that Nma2 shows a similar localization to Npt1 prompted us to test whether other genes in the NAD⁺ salvage pathway could have similar effects to Npt1 when overexpressed. While the bacterial genes in NAD⁺ salvage pathway have been studied in detail, in S. cerevisiae some of the key genes in the pathway remain to be characterized. PNC1, a recently identified gene, encodes a nicotinamidase which catalyses the conversion of nicoinamide to nicotinic acid, the step immediately upstream of NPT1. As discussed above, the two genes NMA1 and NMA2 encode NaMNATs which catalyze the step immediately downstream of NPT1. In bacteria, the next step in the pathway, the generation of NAD⁺, is catalyzed by an NAD synthetase. An uncharacterized ORF, QNS1/YHR074, shows high homolgy to NAD synthetases. Each of these salvage pathway genes was integrated as a single copy into the URA3 locus of W303AR5 and PSY316AT and assayed for silencing as previously described. Additional copies of either PNC1, NMA1 or NMA2 increased rDNA and telomeric silencing to levels similar to those in a 2xNPT1 strain (Fig. 5B and C). In contrast, additional copies of QNS1 had no effect on either rDNA silencing (Fig. 5B) or telomeric silencing. As discussed below, these results indicate there are multiple steps that can affect the rate of the pathway and that the two homologs NMA1 and NMA2 may have overlapping functions.

DISCUSSION

5

10

15

20

25

30

NPT1 encodes a key component of the yeast salvage pathway that recycles NAD⁺, a cofactor of Sir2. We have shown that additional copies of NPT1 increase life span by up to 60% in a SIR2-dependent manner. It has been proposed that longevity in yeast may be associated with increased NAD⁺ levels. However we have shown that in strains with additional copies of NPT1, steady-state NAD⁺ levels are unaltered. Furthermore, the NAD⁺/NADH ratios are also similar to wild type cells, indicating that total cellular redox state is not dramatically altered either.

We have also shown that *sir2* mutants have wild type NAD⁺ levels, implying that Sir2 is not a major consumer of NAD⁺. Nevertheless, by virtue of its ability to convert NAD⁺ to nicotinamide, Sir2 should be responsive to increased flux through the salvage pathway (Fig. 6). Thus, while steady-state levels of NAD⁺ remain constant, the turnover of this molecule may be elevated. Localization of GFP-tagged enzymes indicated that at least two of the enxymes in the NAD⁺ salvage pathway are concentrated in the nucleus. Consistent with this, Nma1 and Nma2 have been shown by high-throughput 2-hybrid screening to interact with Srp1, a protein that acts as a receptor for nuclear localization sequences (NLS) (54). The same 2-hybrid screen also found that Nma1 and Nma2 can interact with themselves and with each other. Perhaps Nma proteins exist as dimers, as is the case for the *Bacillus subtilis* NaMNAT (55), or as hexamers, as is the case for *Methanococcus jannaschii* (56) and *Methanobacterium thermoautotrophicum* NaMNATs (57). It is worth nothing that strains disrupted for either *NMA1* or *NMA2* are viable (58), arguing that they are functionally redundant.

In vertebrates, NaMNAT/NMNAT activity is primarily observed in the nuclear fraction of liver cell extracts (59), suggesting that nuclear compartmentalization of the pathway may be a universal property of eukaryotic cells. Having the salvage pathway in proximity to chromatin may allow NAD⁺ to be rapidly regenerated for silencing proteins. Alternatively, it may permit the coordination of a variety of nuclear activities via the alteration of nuclear NAD⁺ pools. Testing of these hypotheses will not be a simple task but one that will be greatly assisted by the development of a molecular probe for intracellular NAD⁺.

In yeast and many metazoans, a number of long-lived mutants display increased stress resistance. However, there are many examples of mutations that extend life span but provide little protection against stress, indicating that this relationship is not straightforward (4). For

example, in yeast the life span extension provided by a cdc25-10 mutation is not accompanied by heat shock resistance (19). We have shown that additional copies of NPT1 or SIR2 extend life span but do not provide protection against MMS, paraquat or starvation. Thus, in S cerevisiae longevity is not linked to a general increase in stress resistance. The only stress-related phenotype that we found correlated with longevity was heat shock resistance. Based on genome-wide analyses of gene expression in $sir2\Delta$ strains, it has been proposed that Sir2 regulates genes other than those at the three silent loci (60), although this interpretation is debated (61). If the interpretation is correct, then it is plausible that the heat shock resistance we observed in 2xNPT1 and 2xSIR2 strains results from Sir2-mediated silencing of genes that suppress heat shock resistance.

5

10

15

20

25

30

In bacteria, the Npt1 homolog PncB catalyzes a rate-limiting step in the NAD⁺ salvage pathway (35,37,38). In this study we show that additional copies of *PNC1*, *NPT1*, *NMA1* or *NMA2* all increase rDNA and telomeric silencing. The implication is that, in yeast, multiple steps can affect the rate of the pathway. Such a proposal is consistent with Metabolic Control Analysis, a theory based on the observation that flux through most metabolic pathways is controled by multiple enzymes, rather than by a single rate-liming step (62). Of all the genes in the salvage pathway, only *QNS1* had no effect on silencing, suggesting that it is the only enzyme in the pathway limited by substrate availability. This is likely due to the fact that the predicted substrate for Qns1, desamido-NAD⁺, is the only intermediate that can not be supplied from a source outside the salvage pathway (see Fig. 6).

In yeast and metazoans there are multiple members of the Sir2 family, many of which have been shown (or are predicted) to be NAD⁺-dependent deacetylases (24,63). This finding, combined with the fact that some Sir2 family members are cytoplasmic (64,65), suggests that reversible acetylation may be a much more prevalent regulatory mechanism than previously thought (66). This would place the NAD⁺ salvage pathway in a pivotal position, coordinating the activity of this group of effector proteins in response to cellular energy status

It is now widely accepted that there are conserved pathways for the regulation of longevity (4,5). The extent of this conservation is exemplified by the discovery that additional copies of *C. elegans sir-2.1* also extend life span in that organism (31). Our findings show that several *SIR2*-dependent processes can be enhanced by manipulation of the NAD⁺ salvage pathway in yeast and this may hold true for higher organisms. We have identified *NPT1* homologs in every genome we have examined and all possess a highly conserved region around

a histidine residue that, in Salmonella, greatly stimulates catalysis when phosphorylated (67). This mode of regulation may permit the design of mutations or small molecules that increase Npt1 activity. Together, our findings show that Npt1 and other members of the salvage pathway are attractive targets for small molecules that may mimic the beneficial effects of caloric restriction.

REFERENCES

- 10 1. Masoro, E. J. (2000) Exp Gerontol 35(3), 299-305.
 - 2. Vanfleteren, J. R., and Braeckman, B. P. (1999) Neurobiol Aging 20(5), 487-502
 - 3. Zainal, T. A., Oberley, T. D., Allison, D. B., Szweda, L. I., and Weindruch, R. (2000) Faseb J 14(12), 1825-36.
 - 4. Kenyon, C. (2001) Cell 105, 165-168
- 15 5. Guarente, L., and Kenyon, C. (2000) Nature 408(6809), 255-62.
 - 6. Kirkwood, T. B., and Rose, M. R. (1991) *Philos Trans R Soc Lond B Biol Sci* 332(1262), 15-24.
 - 7. Barton, A. (1950) J Gen Microbiol 4, 84-86
 - 8. Sinclair, D. A., Mills, K., and Guarente, L. (1997) Science 277(5330), 1313-6.
- 20 9. Mortimer, R. K., and Johnston, J. R. (1959) Nature 183, 1751-1752
 - 10. Kennedy, B. K., Austriaco, N. R., Jr., and Guarente, L. (1994) *J Cell Biol* 127(6 Pt 2), 1985-93.
 - 11. Kim, S., Villeponteau, B., and Jazwinski, S. M. (1996) *Biochem Biophys Res Commun* 219(2), 370-6.
- Ashrafi, K., Lin, S. S., Manchester, J. K., and Gordon, J. I. (2000) Genes Dev 14(15), 1872-85.
 - 13. Lin, S. S., Manchester, J. K., and Gordon, J. I. (2001) J. Biol. Chem.,
 - 14. Longo, V. D. (1999) Neurobiol Aging 20(5), 479-86.
 - 15. Jazwinski, S. M. (2001) Mech Ageing Dev 122(9), 865-82.
- 30 16. Sinclair, D. A., and Guarente, L. (1997) Cell 91(7), 1033-42.
 - 17. Kaeberlein, M., McVey, M., and Guarente, L. (1999) Genes Dev 13(19), 2570-80.
 - 18. Park, P. U., Defossez, P. A., and Guarente, L. (1999) Mol Cell Biol 19(5), 3848-56

- 19. Lin, S. J., Defossez, P. A., and Guarente, L. (2000) Science 289(5487), 2126-8.
- Defossez, P. A., Prusty, R., Kaeberlein, M., Lin, S. J., Ferrigno, P., Silver, P. A., Keil, R. L., and Guarente, L. (1999) Mol Cell 3(4), 447-55
- 21. Tanner, K. G., Landry, J., Sternglanz, R., and Denu, J. M. (2000) *Proc Natl Acad Sci U S A* 97(26), 14178-82.
- 22. Imai, S., Armstrong, C. M., Kaeberlein, M., and Guarente, L. (2000) *Nature* 403(6771), 795-800
- 23. Smith, J. S., Brachmann, C. B., Celic, I., Kenna, M. A., Muhammad, S., Starai, V. J., Avalos, J. L., Escalante-Semerena, J. C., Grubmeyer, C., Wolberger, C., and Boeke, J. D. (2000) *Proc Natl Acad Sci U S A* 97(12), 6658-63.
- 24. Landry, J., Sutton, A., Tafrov, S. T., Heller, R. C., Stebbins, J., Pillus, L., and Sternglanz, R. (2000) *Proc Natl Acad Sci USA* 97(11), 5807-11.
- 25. Laurenson, P., and Rine, J. (1992) Microbiol Rev 56(4), 543-60.

5

10

15

20

- Straight, A. F., Shou, W., Dowd, G. J., Turck, C. W., Deshaies, R. J., Johnson, A. D., and Moazed, D. (1999) Cell 97(2), 245-56.
 - Shou, W., Seol, J. H., Shevchenko, A., Baskerville, C., Moazed, D., Chen, Z. W., Jang,
 J., Charbonneau, H., and Deshaies, R. J. (1999) Cell 97(2), 233-44.
 - 28. Shou, W., Sakamoto, K. M., Keener, J., Morimoto, K. W., Traverso, E. E., Azzam, R., Hoppe, G. J., Feldman, R. M. R., DeModena, J., Moazed, D., Charbonneaux, H., Nomura, M., and Deshaies, R. J. (2001) *Mol. Cell.* 8(1), 45-55
 - 29. Tanny, J. C., and Moazed, D. (2001) Proc Natl Acad Sci USA 98(2), 415-20.
 - 30. Smith, J. S., Caputo, E., and Boeke, J. D. (1999) Mol Cell Biol 19(4), 3184-97.
 - 31. Tissenbaum, H. A., and Guarente, L. (2001) Nature 410(6825), 227-30.
- 32. Jiang, J. C., Jaruga, E., Repnevskaya, M. V., and Jazwinski, S. M. (2000) Faseb J 14(14), 2135-7.
 - 33. Foster, J. W., Kinney, D. M., and Moat, A. G. (1979) J Bacteriol 137(3), 1165-75.
 - 34. Ghislain, M., Talla, E., and Francois, J. M. (2002) Yeast 19(3), 215-224.
- 35. Wubbolts, M. G., Terpstra, P., van Beilen, J. B., Kingma, J., Meesters, H. A., and Witholt, B. (1990) *J Biol Chem* 265(29), 17665-72.
- 30 36. Vinitsky, A., Teng, H., and Grubmeyer, C. T. (1991) J Bacteriol 173(2), 536-40.
 - 37. Imsande, J. (1964) Biochim. Biophys. Acta 85, 255-273
 - 38. Grubmeyer, C. T., Gross, J. W., and Rajavel, M. (1999) Methods Enzymol 308, 28-48

- 39. Emanuelli, M., Carnevali, F., Lorenzi, M., Raffaelli, N., Amici, A., Ruggieri, S., and Magni, G. (1999) FEBS Lett 455(1-2), 13-7.
- 40. Hughes, K. T., Olivera, B. M., and Roth, J. R. (1988) J Bacteriol 170(5), 2113-20.
- 41. Mills, K. D., Sinclair, D. A., and Guarente, L. (1999) Cell 97(5), 609-20.
- 5 42. Smith, J. S., and Boeke, J. D. (1997) Genes Dev 11(2), 241-54.
 - 43. Lalo, D., Carles, C., Sentenac, A., and Thuriaux, P. (1993) *Proc Natl Acad Sci U S A* 90(12), 5524-8.
 - 44. Becker, D. M., Fikes, J. D., and Guarente, L. (1991) *Proc Natl Acad Sci U S A* 88(5), 1968-72.
- 10 45. Sikorski, R. S., and Hieter, P. (1989) Genetics 122(1), 19-27.

15

- 46. Guldener, U., Heck, S., Fielder, T., Beinhauer, J., and Hegemann, J. H. (1996) Nucleic Acids Res 24(13), 2519-24.
- 47. De Antoni, A., and Gallwitz, D. (2000) Gene 246(1-2), 179-85.
- 48. Longtine, M. S., McKenzie, A., 3rd, Demarini, D. J., Shah, N. G., Wach, A., Brachat, A., Philippsen, P., and Pringle, J. R. (1998) Yeast 14(10), 953-61.
- 49. Keil, R. L., and McWilliams, A. D. (1993) Genetics 135(3), 711-8.
- Ashrafi, K., Sinclair, D., Gordon, J. I., and Guarente, L. (1999) Proc Natl Acad Sci US
 A 96(16), 9100-5.
- 51. Clancy, D. J., Gems, D., Harshman, L. G., Oldham, S., Stocker, H., Hafen, E., Leevers,
 S. J., and Partridge, L. (2001) Science 292(5514), 104-6.
 - 52. Kennedy, B. K., and Guarente, L. (1996) Trends Genet 12(9), 355-9.
 - 53. Gottschling, D. E., Aparicio, O. M., Billington, B. L., and Zakian, V. A. (1990) Cell 63(4), 751-62.
- Uetz, P., Giot, L., Cagney, G., Mansfield, T. A., Judson, R. S., Knight, J. R., Lockshon,
 D., Narayan, V., Srinivasan, M., Pochart, P., Qureshi-Emili, A., Li, Y., Godwin, B.,
 Conover, D., Kalbfleisch, T., Vijayadamodar, G., Yang, M., Johnston, M., Fields, S.,
 and Rothberg, J. M. (2000) Nature 403(6770), 623-7.
 - Olland, A. M., Underwood, K. W., Czerwinski, R. M., Lo, M. C., Aulabaugh, A., Bard,
 J., Stahl, M. L., Somers, W. S., Sullivan, F. X., and Chopra, R. (2002) J Biol Chem
 277(5), 3698-707.
 - D'Angelo, I., Raffaelli, N., Dabusti, V., Lorenzi, T., Magni, G., and Rizzi, M. (2000)
 Structure Fold Des 8(9), 993-1004.

- 57. Saridakis, V., Christendat, D., Kimber, M. S., Dharamsi, A., Edwards, A. M., and Pai, E. F. (2001) *J Biol Chem* 276(10), 7225-32.
- 58. Winzeler, E. A., Shoemaker, D. D., Astromoff, A., Liang, H., Anderson, K., Andre, B., Bangham, R., Benito, R., Boeke, J. D., Bussey, H., Chu, A. M., Connelly, C., Davis, K., Dietrich, F., Dow, S. W., El Bakkoury, M., Foury, F., Friend, S. H., Gentalen, E., Giaever, G., Hegemann, J. H., Jones, T., Laub, M., Liao, H., Davis, R. W., and et al. (1999) Science 285(5429), 901-6.
- 59. Hogeboom, G., and Schneider, W. (1950) J. Biol. Chem. 197, 611-620

5

- Wyrick, J. J., Holstege, F. C., Jennings, E. G., Causton, H. C., Shore, D., Grunstein, M.,
 Lander, E. S., and Young, R. A. (1999) *Nature* 402(6760), 418-21.
 - 61. Bedalov, A., Gatbonton, T., Irvine, W. P., Gottschling, D. E., and Simon, J. A. (2001) Proc Natl Acad Sci USA 98(26), 15113-8.
 - 62. Fell, D. (1997) Understanding the Control of Metabolism. Frontiers in Metabolism (Snell, K., Ed.), Portland Press, London
- Landry, J., Slama, J. T., and Sternglanz, R. (2000) Biochem Biophys Res Commun 278(3), 685-90.
 - 64. Perrod, S., Cockell, M. M., Laroche, T., Renauld, H., Ducrest, A. L., Bonnard, C., and Gasser, S. M. (2001) *Embo J* 20(1-2), 197-209.
 - 65. Afshar, G., and Murnane, J. P. (1999) Gene 234(1), 161-8.
- 20 66. Shore, D. (2000) Proc Natl Acad Sci USA 97(26), 14030-2.
 - 67. Rajavel, M., Lalo, D., Gross, J. W., and Grubmeyer, C. (1998) *Biochemistry* 37(12), 4181-8.

Example 2: Increased genomic instability and accelerated aging by nicotinamide

The Saccharomyces cerevisiae Sir2 protein is an NAD⁺-dependent histone deacetylase that plays a critical role in transcriptional silencing, genome stability and longevity. A human homologue of Sir2, SIRT1, regulates the activity of the p53 tumor suppressor and inhibits apoptosis. The Sir2 deacetylation reaction generates two products: O-acetyl-ADP-ribose and nicotinamide, a precursor of nicotinic acid and a form of niacin/vitamin B3. We show here that nicotinamide completely abolishes yeast silencing and shortens replicative life span to that of a sir2 mutant. Nicotinamide, but not nicotinic acid, strongly inhibits silencing at the telomeres, rDNA and mating type loci of yeast. Nicotinamide also increases instability of the rDNA locus

and shortens yeast life span to that of a sir2 mutant. Nicotinamide also abolishes silencing in G1-arrested cells, demonstrating that continual Sir2 activity is required to maintain silencing. In the presence of nicotinamide, Sir2 no longer associates with either telomeres or mating type loci, but remains associated with the rDNA. Sir2 no longer co-immunoprecipitates with chromatin at telomeres and mating-type loci in the presence of nicotinamide, though the Sir2 localization pattern is unaltered. We show that physiological concentrations of nicotinamide non-competitively inhibit both Sir2 and SIRT1 in vitro. The degree of inhibition of SIRT1 by nicotinamide (IC₅₀ < 50 μ M) is equal to or better than the most effective known inhibitors of this class of proteins. We propose that nicotinamide and NAD⁺ can bind simultaneously to Sir2 preventing catalysis and discuss the possibility that inhibition of Sir2 by nicotinamide is physiologically relevant.

We discuss the possibility that nuclear nicotinamide negatively regulates Sir2 activity in vivo. Our findings suggest that the clinical use of nicotinamide should be given careful consideration.

5

10

15

20

25

Yeast assays- All yeast strains used in this study are listed in Table 3. Cells were grown at 30°C on YPD medium (1% yeast extract, 2% bactopeptone, 2% glucose w/v) unless otherwise stated. The extent of silencing at the ribosomal DNA locus was determined by growing RDN1::MET15 strains on Pb²⁺-containing medium (0.3% peptone, 0.5% yeast extract, 4% glucose, 0.02% (w/v) ammonium acetate, 0.07% Pb(NO₃)₂ and 2% agar). ADE2-based telomeric and HM locus silencing assays were performed as described previously (see, Example 1). Ribosomal DNA recombination frequencies were determined as previously described (44').

Table 3. Yeast strains used in this study.

EXPERIMENTAL PROCEDURES

Strain	Genotype
W303AR5	W303 MATa, ade2-1, leu2-3,112, can1-100, trp1-1, ura3-52, his3-11,15,
	RDN1::ADE2, RAD5
YDS878	W303 MATa,, ade2-1, leu2-3,112, can1-100, trp1-1,, ura3-52, his3-11,15,
	RDN1::ADE2, RAD5, sir2:TRP1
YDS1572	W303 MATa, ade2-1, leu2-3,112, can1-100, trp1-1, ura3-52, his3-11,15,
	RDN1::ADE2, RAD5, LEU2/SIR2
YDS1595	W303 MATa, ade2-1, leu2-3,112, can1-100, trp1-1, ura3-52, his3-11,15, RAD5
YDS1596	W303 MATa, ADE2, leu2-3,112, can1-100, trp1-1, ura3-52, his3-11,15, RAD5
YDS1097	W303 MATa, ade2-1, leu2-3,112, can1-100, trp1-1, ura3-52, his3-11,15, RDN,

RAD5, GFP-Sir4::URA3
W303 MATa, ade2-1, leu2-3,112, can1-100, trp1-1, ura3-52, his3-11,15, RDN, RAD5, GFP-Sir3::LEU2
W303 MATa, ade2-1, leu2-3,112, can1-100, trp1-1, ura3-52, his3-11,15, RDN, RAD5, GFP-Sir3::LEU2, sir2:TRP1
W303 MATa, ade2-1, leu2-3,112, can1-100, trp1-1, ura3-52, his3-11,15, RDN1::ADE2, RAD5, GFP-Sir2::LEU2, sir2:TRP1
MATα, ura3-53 leu2-3,112 his3-Δ200 ade2-1,01 can1-100 ADE2-TEL V-R
PSY316 MATα, ura3-53 leu2-3,112 his3-Δ200 ade2-1,01 can1-100 ADE2-TEL V-R, sir2:TRP1
PSY316 MATα, ura3-53 leu2-3,112 his3-Δ200 ade2-1,01 can1-100 ADE2-TEL V-R, HMR::GFP
PSY316 MATa, ura3-53 leu2-3,112 his3-Δ200 ade2-1,01 can1-100 ADE2-TEL V-R, HMR::GFP
PSY316 MATα, ura3-53 leu2-3,112 his3-Δ200 ade2-1,01 can1-100 ADE2-TEL V-R, HMR::GFP, sir4:HIS3
PSY316 MATα, ura3-53 leu2-3,112 his3-Δ200 ade2-1,01 can1-100 ADE2-TEL V-R, HMR::GFP, Δhml::LEU2
$MAT\alpha$, his $3\Delta 200$, leu $2\Delta 1$, met $15\Delta 200$, trp $1\Delta 63$, ura $3-167$
JS209 MAT α , his3 Δ 200, leu2 Δ 1, met15 Δ 200, trp1 Δ 63, ura3-167, Ty1-MET15
JS209 MAT α , his $3\Delta200$, leu $2\Delta1$, met $15\Delta200$, trp $1\Delta63$, ura 3 - 167 , RDN1::Ty1-MET15
JS237 MAT α , his3 Δ 200, leu2 Δ 1, met15 Δ 200, trp1 Δ 63, ura3-167, RDN1::Ty1-MET15, sir2::HIS3
JS237 MAT α , his3 Δ 200, leu2 Δ 1, met15 Δ 200, trp1 Δ 63, ura3-167, RDN1::Ty1-MET15, LEU2/SIR2

Replicative life span determination was performed by micromanipulation as described (25'). A minimum of 40 cells were examined per experiment and each experiment was performed at least twice independently. Statistical significance of life span differences was determined using the Wilcoxon rank sum test. Differences are stated to be significant when the confidence is higher than 95%.

5

10

GFP fluorescence was quantified by fluorescence-activated cell sorting (FACS) using a FACSCalibur flow cytometer (Becton Dickinson, CA) as described (45'). For G1-arrest experiments, cells were treated with 10 μg/ml alpha factor for 3 hours. DNA content was determined by FACS analysis of fixed cells stained with propidium iodide (Sigma) as described (45'). Typically 20,000 cells were analyzed per sample. Data acquisition and analysis were performed using CELLQuest software (Becton Dickenson).

Fluorescence Microscopy and Chomatin immunoprecipitation- GFP fluorescence was visualized in live cells grown to log phase in synthetic complete (SC) medium (1.67% yeast nitrogen base, 2% glucose, 40 mg/liter each of histidine, uridine, tryptophan, adenine and leucine). Images were captured using a Nikon Eclipse E600 microscope at a magnification of 1000X and analyzed with Scion Image software. Chromatin immunoprecipitation (ChIP) was performed as described (45') using the primer pairs listed in Table 2 (46'). PCR reactions were carried out in a 50 μl volume using a 1/5000 or a 1/12500 dilution of input DNA from precleared whole-cell extracts and a 1/50 dilution of immunoprecipitated DNA. PCR parameters were as follows. For CUP1 and 5S rDNA primer pairs, 26 cycles of PCR were performed with an annealing temperature of 55°C. For Tel 0.6, Tel 1.4 and HM primer pairs 32 cycles at an annealing temperature of 50°C were used. PCR products were separated by gel electrophoresis on a 2.3% agarose gel and visualized by ethidium bromide staining.

Table 4. Oligonucleotide Sequences

Oligonucleotide	Sequence	SEQ ID NO:
TEL-0.6.Fwd	CAGGCAGTCCTTTCTATTTC	21
TEL-0.6.Rev	GCTTGTTAACTCTCCGACAG	22
TEL-1.4.Fwd	AATGTCTTATCAAGACCGAC	23
TEL-1.4.Rev	TACAGTCCAGAAATCGCTCC	24
RDN-5S.Fwd	GAAAGGATTTGCCCGGACAGTTTG	. 25
RDN-5S.Rev	CTTCTTCCCAGTAGCCTGTTCCTT	26
HMR-YA/ZL.Fwd	GTGGCATTACTCCACTTCAAGTAAG	27
HMR-YA/ZL.Rev	CAAGAGCAAGACGATGGGG	28
CUP1-Fwd	TTTTCCGCTGAACCGTTCCA	29
CUP1-Rev	CATTGGCACTCATGACCTTC	30

15

20

5

10

In vitro deacetylation assays- Recombinant GST tagged yeast Sir2p (gift of D. Moazed) and recombinant human SIRT1 (47') were assayed for deacetylase activity using the HDAC Fluorescent Activity Assay/Drug Discovery Kit (AK-500, BIOMOL Research Laboratories). This assay system allows detection of a fluorescent signal upon deacetylation of a histone substrate when treated with developer. Fluorescence was measured on a fluorometric reader (Cytofluor II 400 series PerSeptive Biosystems) with excitation set at 360 nm and emission

detection set at 460 nm. Reactions consisted of either 5 μ g of GST-Sir2 or 2.5 μ g of SIRT1, incubated with 250 μ M acetylated histone substrate, 1 mM DTT and a range of NAD⁺ concentrations as described, in 50 μ l of assay buffer. Reactions with the yeast and human proteins were carried out at 30°C and 37°C respectively for 30 minutes.

For inhibitor assays, reactions were performed in the presence of 200 μ M NAD⁺_and either nicotinamide (0, 50, 150 or 300 μ M) (Sigma), or 50 μ M of the following inhibitors; nicotinic acid (Sigma), sirtinol, M15 (Chembridge), splitomicin (47), TSA (BIOMOL).

RESULTS

5

10

15

20

25

30

Nicotinamide abolishes silencing at the rDNA, telomeres and mating type loci. Nicotinamide is a product of Sir2 deacetylation and is a key substrate in the NAD⁺ salvage pathway. Based on our previous observation that manipulation of NAD⁺ biosynthesis can influence Sir2 dependent activities (see, Example 1), we wished to examine what effect NAD⁺ precursors would have on silencing. Strains with either an ADE2 or MET15 marker integrated at the rDNA locus (RDNI) were examined. Silencing of ADE2 results in the accumulation of a red pigment on plates with limiting adenine, whereas silencing of MET15 leads to production of a brown pigment on Pb²⁺-containing medium. We used two marker genes to ensure that the effects we observed were not simply due to changes in adenine or methionine biosynthesis. Strains with a single extra copy of SIR2 (2X SIR2) or lacking SIR2 (sir2::TRP1), were included as controls for increased silencing and lack of silencing, respectively. As shown in Figure 8A, when grown in the presence of 5 mM nicotinamide, silencing is completely abolished. Silencing of an ADE2 marker at this locus was similarly abolished by addition of nicotinamide.

To test whether the effect of nicotinamide is specific to the rDNA or whether it influences other heterochromatic regions, we examined silencing at telomeres. To monitor telomeric silencing, we used a strain in which the ADE2 gene is integrated at the subtelomeric (Y') region of the right arm of chromosome V (22'). On plates with limiting adenine, colonies have red/white sectors due to variegated expression of the ADE2 marker. In the presence of 5 mM nicotinamide colonies were white, demonstrating a complete loss of repression (Fig. 8B). We also monitored silencing of mating type genes and found that nicotinamide completely abrogated silencing at this locus as well.

Nicotinic acid, an intermediate in the NAD⁺ salvage pathway, is structurally similar to nicotinamide (see Fig. 9B). Nicotinic acid is taken up efficiently by yeast cells and a specific

transporter for this compound, Tna1, was recently identified (48',49'). In each of the above assays, we examined the effect of 5 mM nicotinic acid on Sir2-dependent silencing and in each case found that nicotinic acid had no effect.

Nicotinamide increases genomic instability and shortens yeast life span. We wished to determine whether the above loss of silencing was due to inhibition of Sir2 activity, in which case nicotinamide-treated cells should mimic a $sir2\Delta$ strain. Yeast lacking a functional Sir2 show increased frequencies of rDNA recombination. The loss of an ADE2 marker at the rDNA locus was monitored in wild type, 2X SIR2 and sir2 strains, in the presence and absence of nicotinamide. As shown in Figure 9A, treatment of wild type and 2X SIR2 cells with nicotinamide increased the frequency of marker loss \sim 7-fold, similar to that of a sir2 mutant. Importantly, treatment of the sir2 strain did not further increase recombination, arguing that the observed marker loss was due to inhibition of Sir2.

Instability of the rDNA locus has been shown to be a major cause of yeast replicative aging (25',26'). We therefore examined the effect of nicotinamide on yeast life span. Cells were grown for two days on fresh yeast YPD medium to ensure that they had fully recovered from conditions of calorie restriction prior to the assay. Daughter cells that emerged from previously unbudded mother cells were then micro-manipulated away and scored. Figure 9C shows representative life span curves of both wild type (triangles) and the short-lived sir2 mutant (circles). Cells grown on medium containing 5 mM nicotinamide (closed diamonds) had an average life span ~45% that of wild type, which was equivalent to that of the sir2 mutant. Treatment of the sir2 strain with nicotinamide did not further shorten life span (squares). In contrast to these results, we observed no detrimental effect on replicative life span in the presence of either 5 or 50 mM nicotinic acid (Fig. 9D, closed and open diamonds, respectively).

25

30

5

10

15

20

Nicotinamide inhibits silencing in non-dividing cells. The reestablishment of silent chromatin domains requires passage through S phase (50'), although the trigger does not appear to be DNA replication (51',52'). Experiments with a temperature-sensitive SIR3 allele suggest that the presence of the Sir2/3/4 complex is required to maintain a silenced state throughout the cell cycle (50'). We have shown that nicotinamide derepresses silent domains in cycling cells and attenuates replicative life span. We wondered whether nicotinamide treatment could have a similar effect on silencing in non-cycling, G1-arrested cells. We used a strain containing a GFP

reporter integrated at the *HMR* locus allowing us to quantify the effects of nicotinamide on *HM* silencing in single cells. We first validated the system in cycling cells. As shown in Figure 10A, GFP was not expressed in untreated cells due to the high degree of silencing at this locus. However, after 60 minutes in 5 mM nicotinamide we observed a dramatic increase in the level of expression, which became even more pronounced after 90 minutes (Fig. 10A, second and third panels respectively).

5

10

15

20

25

30

To gain a more quantitative measure of silencing, cells were analyzed by fluorescence activated cell sorting (FACS). The top two panels of Figure 10B show the GFP expression profiles of asynchronous cultures of sir4 and wild type strains. Deletion of SIR4 disrupts the telomeric and mating type loci SIR complexes, leading to a redistribution of Sir2 away from these sites and to the rDNA locus. Thus, the profile of the sir4 strain represents complete derepression of the HMR locus. Figure 10B shows that growth of wild type cells in 5 mM nicotinamide leads to complete derepression of this locus (third panel), as compared to the sir4 mutant. Cells treated with 5 mM nicotinic acid or the structurally related quinolinic acid (a substrate in the de novo NAD⁺ synthesis pathway) showed no increase in GFP expression (Fig. 10B, bottom two panels) demonstrating that the desilencing effect is specific to nicotinamide.

Using this assay system we could monitor the effects of nicotinamide on heterochromatin in non-cycling cells. A MATa strain containing the GFP transgene was deleted for the $HML\alpha$ locus to ensure that the cells did not escape G1-arrest due to the co-expression of a and α genes. After arrest in G1 by treatment with α factor, cells were exposed to 5 mM nicotinamide and examined by FACS every 30 min. Figure 10C shows the expression profiles of arrested cells, in the presence and absence of nicotinamide. Surprisingly, cells arrested in G1 showed a loss of silencing when treated with nicotinamide. Measurement of DNA content by FACS confirmed that the cells remained in G1 for the duration of the experiment (Fig 10C, right column). These results demonstrate that exogenous nicotinamide derepresses silent chromatin even in non-dividing cells and suggests that heterochromatin is an unstable and dynamic structure. This also indicates that continued deacetylation of histones is essential for the maintenance of silencing.

Nicotinamide causes Sir2 to dissociate from telomeres and mating type loci but not from rDNA. We have shown that nicotinamide derepresses heterochromatin at all three silent loci in yeast. Although the most likely explanation for our observations was that Sir2 is catalytically inactivated by nicotinamide, is was also possible that Sir2 was delocalized or that its expression

was down-regulated. To address the latter possibility we determined Sir2 protein levels in the presence of nicotinamide (1-5 mM) and found that they were unaltered. Next, we examined the effect of nicotinamide on the localization of a GFP-tagged Sir2. Identical log-phase cultures were grown in the presence or absence of 5 mM nicotinamide for two hours, during which the localization of GFP-Sir2 was monitored by fluorescence microscopy. Under normal conditions, Sir2 can be visualized at distinct foci near the nuclear periphery, each focal point representing a cluster of several telomeres (53'). In a sir2 mutant background, Sir3 is released from telomeres and shows a diffuse nuclear pattern (Fig 11A). This strain served as a reference for Sir delocalization. During growth in nicotinamide we observed no change in the Sir2-GFP pattern, even after two hours, a time at which treated cells show maximal derepression of silent loci (Fig. 11C and D). We also examined the two other members of the Sir silencing complex, Sir3 and Sir4. Figures 5E and G show the localization pattern of Sir3-GFP and GFP-Sir4 in untreated cells, respectively. Treatment with 5 mM nicotinamide for two hours did not alter the pattern of GFP fluorescence for either of these proteins (Figs. 11F and H). These results show for the first time that inhibition of Sir2 does not result in a gross relocalization of the SIR complex.

5

10

15

20

25

30

To more closely examine the association between Sir2 and silent loci in the presence of nicotinamide, we performed chromatin immunoprecipitation (ChIP) on both treated and untreated cells. A sir2 mutant strain and the non-silenced CUP1 gene served as controls. Figure 12 shows PCR products from input and immunoprecipitated DNA using a 5S rDNA-specific primer pair. Treatment of cells with 5 mM nicotinamide did not alter the amount of PCR product obtained using these primers (compare lanes 5 and 6), demonstrating that Sir2 remains associated with rDNA in the presence of this compound.

Next, we examined the association of Sir2 with the silent $HMR\alpha$ locus and DNA 0.6 and 1.4 kb from the right telomere of chromosome VI. In the presence of nicotinamide, no PCR product was obtained using primers specific for HMR. Similarly, the amount of product from obtained from nicotinamide-treated cells using primers specific for sub-telomeric DNA was equivalent to background. These results demonstrate that Sir2 is not associated with HMR or sub-telomeric DNA in cells treated with nicotinamide. This presumably reflects a fundamental difference in the roles of Sir2 in the RENT complex at the rDNA and in the heterotrimeric SIR complex at telomeres and mating type loci.

Nicotinamide is a potent non-competitive inhibitor of both yeast Sir2 and human SIRT1 in vitro. Since Sir2 was neither delocalized nor down-regulated in response to nicotinamide, the most plausible explanation for our results was that this compound acted as a direct inhibitor of Sir2 deacetylase activity. To further explore this, and to gain more insight into the mechanism of desilencing induced by nicotinamide, we directly measured Sir2 activity in vitro in the presence of varying amounts of this compound. We utilized a novel class III HDAC activity assay that generates a fluorescent signal upon deacetylation of a histone substrate. When incubated with acetylated substrate and NAD+, recombinant GST-tagged Sir2 gives a strong fluorescent signal 10-fold greater than no enzyme and no NAD+ controls. Using this assay, we tested the ability of nicotinamide to inhibit deacetylation in the presence of varying concentrations of NAD⁺. A double reciprocal Lineweaver-Burk plot of the data (Fig. 13A) shows that nicotinamide is a strong non-competitive inhibitor of this reaction. A similar result has recently been obtained for Hst2, a cytoplasmic Sir2 homologue (54'). We wished to determine whether the inhibitory effects of nicotinamide could be extended to the Sir2 homologues of higher eukaryotes. Thus, we examined whether nicotinamide could also inhibit human SIRT1 in vitro. Using recombinant SIRT1, we monitored deacetylation of the substrate in the presence of varying amounts of nicotinamide and NAD⁺. Similar to Sir2, a Lineweaver-Burk plot of the data shows that nicotinamide also inhibits SIRT1 in a non-competitive manner (Fig. 13B). These results imply that nicotinamide does not inhibit deacetylation by competing with NAD⁺ for binding to Sir2/SIRT1 and that nicotinamide and NAD⁺ can bind the enzyme simultaneously.

5

10

15

20

25

30

Recently several groups have isolated compounds that inhibit Sir2-like proteins both in vitro and in vivo (55',56'). Among these are sirtinol, M15 and splitomycin. These compounds were isolated in high-throughput phenotypic screens of small molecule libraries as inhibitors of silencing, though none has yet been examined for its ability to inhibit SIRT1 activity. To compare the efficacy of inhibition of these compounds to that of nicotinamide we measured recombinant SIRT1 activity in the presence of 50 μ M of each of these inhibitors. We also included the class I/II HDAC inhibitor TSA as a negative control. As shown in Figure 13C, nicotinamide inhibited SIRT1 with an IC₅₀<50 μ M, a value that was equal to, or lower than, that of all the other inhibitors we tested. Adding further support to our *in vivo* results, we showed that the structurally related compound, nicotinic acid, had no effect on the activity of SIRT1 *in vitro* (Fig. 13C).

DISCUSSION

5

10

15

20

25

30

We have shown that nicotinamide, a product of the Sir2 deacetylation reaction, is a potent inhibitor of Sir2 activity both *in vivo* and *in vitro*. Addition of exogenous nicotinamide to yeast cells derepresses all three silent loci, increases instability at the ribosomal DNA locus and shortens yeast life span to that of a *sir2* mutant. rDNA instability and short life span phenotypes of nicotinamide-treated cells are not augmented by a *sir2* mutation indicating that these phenotypes are the consequence of Sir2 inhibition. Importantly, these results also indicate that rDNA instability and life span are not influenced by the other yeast Sir2 family members, the Hst proteins.

We have recently shown that strains carrying extra copies of NAD⁺ salvage pathway genes show increased silencing and are long lived, yet they do not have increased steady-state NAD⁺ or NADH levels (see, Example 1). We hypothesized that the increased longevity is mediated by local increases in NAD⁺ availability or increased flux through the salvage pathway. The latter model implies that that there may be continual recycling of NAD⁺ to nicotinamide, via Sir2 family members and/or NMN adenylyl transferases. We show that nicotinamide abrogates silencing in G1 arrested cells, arguing that Sir2 activity is required constitutively for the maintenance of heterochromatin and that Sir2 consumes NAD⁺ even in non-cycling cells. This is consistent with the recent finding of Bedelov et al. that the $MAT\alpha$ gene at the silenced HML locus is expressed in G1 cells treated with splitomycin (56').

Addition of nicotinamide to cells does not alter the localization pattern of any of the Sir-GFP fusion proteins we examined (Fig. 11). This suggests that there are interactions that maintain the localization of Sir2 independently of its activity. Closer examination using ChIP shows that while Sir2 is still bound to the rDNA, it no longer associates with either telomeres or mating type loci in the presence of this compound (Fig. 12). It has previously been shown that Net1, the DNA binding subunit of the RENT complex, can associate with chromatin independently of Sir2 (57'). These findings indicate that this complex can assemble on ribosomal DNA in the absence of Sir2 deacetylase activity. In contrast, we show that the heterotrimeric Sir2/3/4 complex can not assemble on chromatin in the absence of Sir2 catalytic activity. These results are consistent with recent data from two other groups using catalytically inactive Sir2 mutants (46',58'). Both groups find that mutation of the conserved histidine in the catalytic domain (His-364) prevents Sir2 from interacting with telomeres and mating type loci *in vivo*. However, there remains the possibility that these mutations also affect the ability of Sir2 to

interact with other proteins. Our results show conclusively that the deacetylase activity of Sir2 is required for its proper association with telomeres and mating type loci.

5

10

15

20

25

30

We have shown that nicotinamide strongly inhibits the deacetylase activity of both yeast Sir2 and the human homologue, SIRT1 in vitro. The fact that nicotinamide acts noncompetitively to inhibit Sir2 suggests that this compound does not compete with NAD⁺ for binding. Examination of the reaction mechanism for Sir2 deacetylation and the crystal structure of an archeal Sir2 homologue provides clues as to a possible mechanism of inhibition. Sir2catalyzed deacetylation consists of two hydrolysis steps which are thought to be coupled. Cleavage of the glycosidic bond connecting nicotinamide to the ADP-ribose moiety of NAD⁺ is followed by cleavage of the C-N bond between an acetyl group and lysine. A recent structural analysis indicates that Sir2 enzymes contain two spatially distinct NAD+ binding sites (the B site and the C site), both of which are involved in catalysis (59'). The authors propose that in the presence of an acetyl lysine, NAD+ bound to the B site can undergo a conformational change bringing the nicotinamide group in proximity to the C site where it is cleaved. The ADP-ribose product of this reaction then returns to the B site where deacetylation of the acetyl lysine occurs. We propose that at elevated concentrations, nicotinamide binds to and blocks the internal C site, which prevents the conformational change and subsequent cleavage of NAD+. This would explain the non-competitive nature of the mode of inhibition of this compound.

We have shown that the potency of nicotinamide rivals that of the most effective library-isolated compounds used in our assay. The fact that SIRT1 is inhibited by such low concentrations of nicotinamide *in vitro*, raises the possibility that this mode of inhibition may be physiologically relevant. Levels of nicotinamide in mammalian tissues have been reported to lie in the range of 11-400 μ M (39',60'-62'). Recently, levels of nicotinamide in cerebrospinal fluid were determined with high accuracy to be 54.2 μ M (63'), a value which is similar to the IC₅₀ for nicotinamide reported here. We propose that fluctuations in cellular nicotinamide levels may directly control the activity of Sir2 proteins *in vivo*. These fluctuations may, in turn, be regulated by enzymes involved in nicotinamide metabolism.

The yeast *PNC1* gene encodes a nicotinamidase that is situated in a key position to regulate NAD⁺-dependent deacetylases. By converting nicotinamide into nicotinic acid, Pnc1 may reduce levels of this inhibitor and stimulate the rate at which NAD⁺ is regenerated (see Fig.7). Interestingly, *PNC1* is one of the most highly induced genes in response to stress and conditions that resemble calorie restriction (64',65'). Furthermore, *PNC1* encodes the only

salvage pathway enzyme whose transcript undergoes cell-cycle dependent fluctuations (66'). Levels of PNC1 are highest in M/G1 and drop off sharply in S-phase. Interestingly, this coincides with the establishment of Sir-dependent silencing (51',52',67'). These facts raise the possibility that high levels of Pnc1 induce silencing after S-phase or under conditions of stress and calorie restriction by removing the inhibitory effects of nicotinamide. Our previous finding, that a single extra copy of PNC1 increases Sir2-dependent silencing (see, Example 1), adds further support to this model. It will be interesting to determine if intracellular nicotinamide levels change during the cell cycle, stress or calorie restriction.

Nicotinamide and nicotinic acid are used at high doses (up to 10 g/day) to self-treat a wide variety of conditions (41'). Both are considered forms of vitamin B3 and are often used interchangeably, however nicotinamide has become preferred in many cases due to an apparent lack of side effects. In addition, nicotinamide is currently in trials as a therapy to prevent cancer recurrence and insulin-dependent (type I) diabetes. Our results, which clearly demonstrate that nicotinamide can disrupt heterochromatin, even in non-cycling cells, raise the concern that there may be deleterious consequences of long-term nicotinamide therapy in humans.

REFERENCES

5

10

- 1'. Courey, A. J., S. (2001) Genes Dev 15(21), 2786-96
- 2'. Moazed, D. (2001) Mol Cell 8(3), 489-98.
- 3'. Gasser, S. C. M. (2001) Gene 279(1), 1-16
- 20 4'. Eberharter, A. B., PB. (2002) Embo Reports 3(3), 224-9
 - 5'. Kuo, M. A., CD. (1998) Bioessays 20(8), 615-26
 - 6'. Bernstein, B. E., Tong, J. K., and Schreiber, S. L. (2000) *Proc Natl Acad Sci U S A* 97(25), 13708-13.
 - 7'. Fischle, W. K., V. Dequiedt, F. Verdin, E. (2001) Biochem Cell Biol 79(3), 337-48
- Marks, P. R., R A. Richon, V M. Breslow, R. Miller, T. Kelly, W K. (2001) Nature Rev Cancer 1(3), 194-202
 - 9'. Yoshida, M. F., R. Nishiyama, M. Komatsu, Y. Nishino, N. Horinouchi, S. (2001) Cancer Chemother Pharmacol 48(suppl), S20-6
 - 10'. Smith, J. S., Brachmann, C. B., Celic, I., Kenna, M. A., Muhammad, S., Starai, V. J.,
- Avalos, J. L., Escalante-Semerena, J. C., Grubmeyer, C., Wolberger, C., and Boeke, J. D. (2000) Proc Natl Acad Sci USA 97(12), 6658-63.

- 11'. Tanner, K. G., Landry, J., Sternglanz, R., and Denu, J. M. (2000) *Proc Natl Acad Sci U S A* 97(26), 14178-82.
- 12'. Landry, J., Sutton, A., Tafrov, S. T., Heller, R. C., Stebbins, J., Pillus, L., and Sternglanz, R. (2000) *Proc Natl Acad Sci U S A* 97(11), 5807-11.
- 5 13'. Imai, S., Armstrong, C. M., Kaeberlein, M., and Guarente, L. (2000) *Nature* 403(6771), 795-800
 - 14'. Brachmann, C. B., Sherman, J. M., Devine, S. E., Cameron, E. E., Pillus, L., and Boeke, J. D. (1995) *Genes Dev* 9(23), 2888-902.
 - 15'. Tanny, J. C., and Moazed, D. (2001) Proc Natl Acad Sci USA 98(2), 415-20.
- 10 16'. Rine, J. H. I. (1987) Genetics 116(1), 9-22
 - 17'. Wood, J. G., and Sinclair, D. A. (2002) Trends Pharmacol Sci 23(1), 1-4.
 - 18'. Strahl-Bolsinger S, H. A., Luo K, Grunstein M. (1997) Genes Dev (11), 1
 - 19'. Hecht, A. S.-B. S., Grunstein M. (1996) Nature 383(6595), 92-6
 - 20'. Ghidelli, S. D. D., Dhillon N, Kamakaka RT. (2001) EMBO 20(16), 4522-35
- 15 21'. Shou, W., Sakamoto, K. M., Keener, J., Morimoto, K. W., Traverso, E. E., Azzam, R., Hoppe, G. J., Feldman, R. M. R., DeModena, J., Moazed, D., Charbonneaux, H., Nomura, M., and Deshaies, R. J. (2001) Mol. Cell. 8(1), 45-55
 - 22'. Gottschling, D. E., Aparicio, O. M., Billington, B. L., and Zakian, V. A. (1990) Cell 63(4), 751-62.
- 20 23'. Smith, J. S., and Boeke, J. D. (1997) Genes Dev 11(2), 241-54.
 - 24'. Bryk, M., Banerjee, M., Murphy, M., Knudsen, K. E., Garfinkel, D. J., and Curcio, M. J. (1997) Genes Dev 11(2), 255-69.
 - 25'. Sinclair, D. A., and Guarente, L. (1997) Cell 91(7), 1033-42.
 - 26'. Kaeberlein, M., McVey, M., and Guarente, L. (1999) Genes Dev 13(19), 2570-80.
- 25 27'. Park, P. U., Defossez, P. A., and Guarente, L. (1999) Mol Cell Biol 19(5), 3848-56
 - 28'. Sinclair, D. A., Mills, K., and Guarente, L. (1998) Trends Biochem Sci 23(4), 131-4.
 - 29'. Gottlieb, S., and Esposito, R. E. (1989) Cell 56(5), 771-6.
 - 30'. Kennedy, B. K., Austriaco, N. R., Jr., Zhang, J., and Guarente, L. (1995) Cell 80(3), 485-96.
- 30 31'. Lin, S. J., Defossez, P. A., and Guarente, L. (2000) Science 289(5487), 2126-8.
 - 32'. Anderson, R. M., Bitterman, K. J., Wood, J. G., Medvedik, O., Cohen, H., Lin, S. S., Manchester, J. K., Gordon, J. I., and Sinclair, D. A. (2002) *J Biol Chem* 277(21), 18881-90.

- 33'. Tissenbaum, H. A., and Guarente, L. (2001) Nature 410(6825), 227-30.
- 34'. Vaziri, H., Dessain, S. K., Eaton, E. N., Imai, S. I., Frye, R. A., Pandita, T. K., Guarente, L., and Weinberg, R. A. (2001) *Cell* 107(2), 149-59.
- 35'. Luo, J., Nikolaev, A. Y., Imai, S., Chen, D., Su, F., Shiloh, A., Guarente, L., and Gu, W. (2001) *Cell* 107(2), 137-48.
- 36'. Moazed, D. (2001) Curr Opin Cell Biol 13(2), 232-8.
- 37'. Sauve, A. A., Celic, I., Avalos, J., Deng, H., Boeke, J. D., and Schramm, V. L. (2001) *Biochemistry* 40(51), 15456-63.
- 38'. Borra, M. T., O'Neill, F. J., Jackson, M. D., Marshall, B., Verdin, E., Foltz, K. R., and
- 10 Denu, J. M. (2002) J Biol Chem 277(15), 12632-41.
 - 39'. Dietrich, L. S. (1971) Amer J Clin Nut 24, 800-804
 - 40'. Kaanders, J. P. L., Marres HA, Bruaset I, van den Hoogen FJ, Merkx MA, van der Kogel AJ. (2002) Int J Radiat Oncol Biol Phys 52(3), 769-78
 - 41'. Knip, M. D. I., Moore WP, Gillmor HA, McLean AE, Bingley PJ, Gale EA. (2000)
- 15 Diabetologia 43(11), 1337-45
 - 42'. Foster, J. W., Park, Y. K., Penfound, T., Fenger, T., and Spector, M. P. (1990) *J Bacteriol* 172(8), 4187-96.
 - 43'. Ghislain, M., Talla, E., and Francois, J. M. (2002) Yeast 19(3), 215-224.
 - 44'. Keil, R. L., and McWilliams, A. D. (1993) Genetics 135(3), 711-8.
- 20 45'. Mills, K. D., Sinclair, D. A., and Guarente, L. (1999) Cell 97(5), 609-20.
 - 46'. Hoppe, G. T. J., Rudner AD, Gerber SA, Danaie S, Gygi SP, Moazed D. (2002) *Mol Cell Biol* 22(12), 4167-80
 - 47'. Langley, E. P. M., Faretta M, Bauer UM, Frye RA, Minucci S, Pelicci PG, Kouzarides T. (2002) *EMBO J* 21(10), 2383-2396
- 25 48'. Llorente, B., and Dujon, B. (2000) FEBS Lett 475(3), 237-41.
 - 49'. Sandmeier, J. J., Celic, I., Boeke, J. D., and Smith, J. S. (2002) Genetics 160(3), 877-89.
 - 50'. Miller, A. N. K. (1984) *Nature* 312(5991), 247-51
 - 51'. Kirchmaier, A. L., and Rine, J. (2001) Science 291(5504), 646-50.
 - 52'. Li, Y. C., Cheng, T. H., and Gartenberg, M. R. (2001) Science 291(5504), 650-3.
- 30 53'. Gasser, S. M., Gotta, M., Renauld, H., Laroche, T., and Cockell, M. (1998) Novartis Found Symp 214, 114-26

- 54'. Landry, J., Slama, J. T., and Sternglanz, R. (2000) Biochem Biophys Res Commun 278(3), 685-90.
- 55'. Grozinger, C. C. E., Blackwell HE, Moazed D, Schreiber SL. (2001) *J Biol Chem* 276(42), 38837-43
- 5 56'. Bedalov, A., Gatbonton, T., Irvine, W. P., Gottschling, D. E., and Simon, J. A. (2001) Proc Natl Acad Sci US A 98(26), 15113-8.
 - 57'. Straight, A. F., Shou, W., Dowd, G. J., Turck, C. W., Deshaies, R. J., Johnson, A. D., and Moazed, D. (1999) *Cell* 97(2), 245-56.
 - 58'. Armstrong, C. K. M., Imai SI, Guarente L. (2002) Mol Biol Cell 13(4), 1427-38
- 10 59'. Min, J. L. J., Sternglanz R, Xu RM. (2001) Cell 105(2), 269-79.
 - 60'. Hoshino, J., Schluter, U., and Kroger, H. (1984) Biochim Biophys Acta 801(2), 250-8.
 - 61'. Ijichi, H. A. I., A. Hataishi, O. (1966) J Biol Chem 241, 3701
 - 62'. Hagino, Y. L., J. Henderson, M. (1968) J Biol Chem 243, 4980
 - 63'. Smythe, G. A., Braga, O., Brew, B. J., Grant, R. S., Guillemin, G. J., Kerr, S. J., and
- 15 Walker, D. W. (2002) Anal Biochem 301(1), 21-6.
 - 64'. Gasch, A. P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B., Storz, G., Botstein, D., and Brown, P. O. (2000) Mol Biol Cell 11(12), 4241-57.
 - 65'. Moskvina, E. S. C., Maurer CT, Mager WH, Ruis H. (1998) Yeast 14(11), 1041-50
 - 66'. Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., Eisen, M. B.,
- 20 Brown, P. O., Botstein, D., and Futcher, B. (1998) Mol Biol Cell 9(12), 3273-97.
 - 67'. Laurenson, P., and Rine, J. (1992) Microbiol Rev 56(4), 543-60.
 - 68'. Barton, A. (1950) J Gen Microbiol 4, 84-86
 - 69'. Kennedy, B. K., Austriaco, N. R., Jr., and Guarente, L. (1994) *J Cell Biol* 127(6 Pt 2), 1985-93.

25

Example 3: Nicotinamide, but not nicotinic acid, bind to the C pocket of Sir2

The nicotinamide was docked in the crystal structure of Sir2 from Archaeoglobus fulgidus (Sir2-Af1) bound to NAD⁺ (Protein Data Bank ID code 11CI, Min et al. (2001). Crystal structure of a SIR2 homolog-NAD complex. Cell 105, 269-279). It was first manually docked in the C site of Sir2-Af1 using QUANTA (MSI, Inc.). Subsequently, an energy minimization calculation was done with CHARMM (Brooks et al. (1983) J. Comput. Chem. 4, 187-217) with harmonic constraint on Sir2-Af1 and NAD⁺ (F = 2.4 Kcal/mol Å²). Fig. 14A-C were made with

PYMOL (DeLano, W.L. The PyMOL Molecular Graphics System (2002) DeLano Scientific, San Carlos, CA, USA).

These studies indicate that nicotinamide inhibits Sir2 (see Figs. 14 A-C) and that nicotinic acid does not inhibit Sir2 because the presence of residue D101 (i.e., acidic) prevents nicotinic acid to dock into the C pocket of Sir2.

Example 4: PNC1 mediates lifespan extension

5

10

15

20

25

As shown in Fig. 17A, *PNC1* catalyzes an amide hydrolysis, converting nicotinamide to nicotinic acid in the NAD⁺ salvage pathway (Fig. 17B). Most wild-type yeast strains have an average lifespan of 21-23 divisions, with a maximum lifespan of ~40 divisions. A wild-type strain that was calorie restricted (0.5% glucose) or heat stressed (37°C) exhibited a longer lifespan than an untreated control (2.0% glucose or 30°C, respectively) (Fig. 17C and D). The $sir2\Delta$ strain had a short lifespan, consistent with previous reports ^{12,13}, and neither calorie restriction nor heat extended lifespan in this strain (Fig. 17C and D). The $pnc1\Delta$ strain did not exhibit a lifespan extension under either of these conditions, demonstrating that *PNC1* is necessary for lifespan extension.

Strikingly, under non-stressing conditions (2% glucose, 30°C), a strain with additional copies of PNC1 (5xPNC1) lived 70% longer than the wild-type and some cells lived over 70 divisions, which is the longest reported lifespan extension in this organism (Fig. 17E). Neither calorie restriction nor heat stress further increased the lifespan of the 5xPNC1 strain. Deletion of SIR2 in the 5xPNC1 background shortened lifespan to that of the $sir2\Delta$ strain (Fig. 17E). The $pnc1\Delta sir2\Delta$ double mutant had a lifespan similar to the $sir2\Delta$ mutant as well (Fig. 17E) and its lifespan was unaffected by glucose restriction. This indicates that PNC1 and SIR2 function in the same pathway and that PNC1 increases lifespan via SIR2.

Thus, these results demonstrate that *PNC1* is necessary for lifespan extension by both calorie restriction and heat stress, and that additional *PNC1* is sufficient to mimic these stimuli. According to our model, additional copies of *PNC1* extend lifespan by depleting nicotinamide, thus relieving inhibition of Sir2.

30 Example 5: PNC1 expression is increased in response to stress conditions

S. cerevisiae were incubated in different stress conditions and the level of expression of PNC1 was measured by conducted Western blots. The amount of PNC1 measured in yeast cells

grown in 2.0% glucose complete medium (YPD) was set at 1. The Table below and Fig. 18 show the fold induction in different growth conditions relative to this reference level of expression:

5	Culture conditions	Fold comparison
	2.0% glucose complete meidum (YPD)	1
	0.5% glucose complete medium (YPD)	15
	0.1% glucose complete medium (YPD)	25
	Defined complete medium (SD) + amino acid	ls 5
10	Defined complete medium (SD) - amino acid	s 20
	Heat shocked in 2% YPD (37 degrees for 4 heat shocked in 2% YPD)	ours) 20
	Osmotic stress (0.1 M NaCl)	15

15

20

25

30

It was also shown that nitrogen restriction greatly induced PNC1 expression. Since all of the above "stress conditions," i.e., not 2.0% glucose complete medium (YPD) extend the life span of S. cerevisiae (caloric restriction), an increase in PNC1 correlates with an extended life span in every condition tested and known to extend yeast lifespan, including amino acid restriction, salt stress and heat stress (Fig. 18C). Analysis of genome-wide mRNA profiles of the stress response (Gash) showed that PNC1 is one of the most highly responsive genes in response to stress and starvation in this organism. PNC1 levels were also greatly induced in cells carrying a cdc25-10 allele that mimics calorie restriction by lowering cAMP (Fig. 18B).

To test whether this response was specific to environmental stress, we examined Pnc1 levels in a strain deleted for BNA6/QPT1, which is required for the de novo synthesis of NAD⁺ but not life span extension by calorie restriction¹². In this mutant Pnc1 levels were unaltered (Fig. 18B). Pnc1 activity in extracts from treated cells correlated with Pnc1 levels in Western blots (Fig. 18D), demonstrating that these cells have increased rates of nicotinamide hydrolysis. Thus, PNC1 is the first yeast longevity gene whose expression is modulated by stimuli that extend lifespan.

Accordingly, methods in which the level of PNC1 is increased to extend the life span of cells or protect them against stresses, as further described herein, mimics the natural events in cells.

Example 6: Additional PNC1 confers resistance to acute stress

5

10

15

20

25

30

Given the strong link between longevity and stress resistance in other species, we tested whether additional *PNC1* could also confer resistance to a range of stresses. A well-characterized test of stress resistance in yeast is the ability of cells to tolerate high concentrations of salt²⁶. We found that the 5xPNC1 strain was dramatically more resistant than wild-type to high levels of both NaCl (600 mM) and LiCl (200 mM) (Fig. 19A). We also tested survival following DNA damage by UV irradiation (5 mJ/cm²) and found again that additional *PNC1* conferred resistance (Fig. 19B). Because mitochondrial DNA damage has been implicated in mammalian aging²⁷, we also examined the ability of additional *PNC1* to protect against this type of stress. Under conditions of obligate respiration (3% glycerol as carbon source), 5xPNC1 cells were more resistant than wild-type to mitochondrial mutagenesis by ethidium bromide (Fig. 19C). The increased resistance of the 5xPNC1 strain to LiCl was dependent on SIR2. Strikingly, the resistance of this strain to NaCl, UV and ethidium bromide was independent of SIR2 (Figs. 19A-C). These results demonstrate that PNC1 promotes both longevity and stress resistance, and suggests that SIR2 is not the only downstream effector of this gene. It is thus likely that nicotinamide regulates proteins other than Sir2.

Example 7: Cellular localization of PNC1 under a variety of stress conditions

We have previously shown that two enzymes in the NAD⁺ salvage pathway, Npt1 (nicotinamide phosphoribosyltransferase) and Nma2 (nicotinate mononucleotide adenylyltransferase), are concentrated in the nucleus²³. We investigated whether Pnc1, another salvage pathway enzyme, had a similar cellular distribution. Surprisingly, on complete 2% glucose medium, Pnc1-GFP was observed in the cytoplasm, the nucleus and in 3 - 6 discrete cytoplasmic foci per cell (Fig. 20A). Calorie-restricted or stressed cells showed a dramatic increase in the intensity of fluorescence, consistent with the Western data. Interestingly, under conditions of amino acid restriction or salt stress, this pattern was altered, with the fluorescence being predominately localized to the foci (Fig 20B). This suggests that Pnc1 localization is regulated in distinct ways by different stresses.

To determine the identity of the foci, we searched for cellular markers that co-localized with Pnc1-GFP. We observed significant overlap with a peroxisomally-targeted red fluorescent protein (RFP) (Fig. 20C). Furthermore, the Pnc1-GFP foci were no longer observed in a $pex6\Delta$ mutant, which is unable to form peroxisomes (Fig 20D). Because our stress studies

indicated that the localisation of Pnc1 to peroxisomes might be regulated, we sought to identify the transporter responsible for its import into this organelle. Although Pex5 imports the vast majority of peroxisomal proteins, the localisation of Pnc1 to peroxisomes required the lesser-utilised transporter Pex7 (Fig. 20D). The localisation of Pnc1 to sites outside the nucleus is consistent with our stress results demonstrating that nicotinamide regulates proteins other than Sir2. The peroxisomal localisation is of particular interest because these organelles are a major source of reactive oxygen species and have been implicated in mammalian aging^{28,29}. In addition, a number of crucial steps in lipid metabolism occur in peroxisomes and lipid signaling has recently been linked to salt tolerance²⁶. The salt resistance of additional *PNC1* maybe the result of a peroxisomal function of Pnc1.

5

10

15

20

25

30

Example 8: <u>Life span and stress resistance are negatively regulated by intracellular nicotinamide</u>

One prediction of our model is that any manipulation of intracelluar nicotinamide levels should be sufficient to alter Sir2 activity. A common indicator of Sir2 activity is the extent to which a reporter gene inserted at the rDNA (RDNI) is silenced. To exclude the possibility that NAD⁺ levels were responsible for any silencing effect, we sought to manipulate intracellular nicotinamide levels using a gene outside the NAD⁺ salvage pathway. In humans, the major route of nicotinamide metabolism is through nicotinamide N-methlytransferase (NNMT)³⁰. NNMT converts nicotinamide to N'-methylnicotinamide, which is excreted via the kidneys³¹. By homology we identified the S. cerevisiae NNMT gene, which we have named NNTI. Nnt1 is 23% identical to a mammalian NNMT core domain³⁰ and contains the four signature motifs of S-adenosylmethionine(SAM)-dependent methyltranferases³².

Deletion of *NNT1* caused a desilencing phenotype similar to deletion of *PNC1*³³ (Fig. 21A). These results are consistent with our finding that rDNA silencing is abrogated in the presence of exogenous nicotinamide (Example 2). As predicted, strains with additional *NNT1* showed increased silencing, similar to strains with additional *PNC1*²³. We conclude that lifespan, stress resistance and Sir2 activity can be regulated by changes in intracellular nicotinamide and levels of NNT1. It is worth noting that although *NNT1* can mimic *PNC1* phenotypes, unlike *PNC1*, its expression is not apparently modulated by stimuli that extend lifespan²⁵.

We have identified *PNC1* as a calorie restriction- and stress-responsive gene that increases lifespan and stress resistance of cells by depleting intracellular nicotinamide (Figure 21B). We show that lifespan extension by calorie restriction is the result of an active cellular defense response coordinated by a specific regulatory gene. An attractive feature of this mechanism is that it is not based on the modulation of NAD⁺, an essential co-factor involved in cellular homeostasis.

We do not yet know how a gene involved in nicotinamide metabolism confers resistance to numerous acute stresses. Presumably the benefits of increased Pnc1 come at an evolutionary cost but we have yet to identify any selective disadvantage. Both our stress and localisation results imply the existence of multiple nicotinamide-regulated effectors. Based on the enzymology of Sir2 inhibition by nicotinamide (Example 2 and ³⁴), proteins that cleave NAD⁺ in a two-step reaction are plausible candidates. Examples include the homologues of Sir2 (Hst1-4) and Tpt1, an NAD⁺-dependent 2'-phosphotransferase that facilitates the unfolded protein response³⁵. Expression profiling of cells with altered nicotinamide metabolism should help identify these effectors and the downstream pathways of stress resistance.

In mammals, there is evidence for a link between nicotinamide metabolism and stress resistance. Poly(adenosine diphosphate-ribose) polymerase-1 (PARP) is a nuclear enzyme that cleaves NAD⁺ to covalently attach poly(ADP-ribose) to acceptor proteins. This two-step reaction generates nicotinamide, which exerts an inhibitory effect on PARP-1 allowing for autoregulation³⁶. PARP enzymes have been implicated in numerous cellular functions including DNA break repair, telomere-length regulation, histone modification, and the regulation at the transcriptional level of key proteins including ICAM-1 and nitric oxide synthase³⁶. Our results suggest that PARP enzymes might be regulated by nicotinamide metabolism as part of a general stress response. Nicotinamide also inhibits human *SIRT1* both *in vitro* (Example 2) and *in vivo*¹⁷. *SIRT1* negatively controls p53 activity, indicating that nicotinamide levels may regulate apoptosis and DNA repair^{17,18}. Consistent with this, the expression of NNMT in human cells and tissues correlates with tumorigenesis³⁷ and radioresistance³⁸.

Example 9: <u>Materials and Methods for Examples 4-8</u>

5

10

15

20

25

30

Media and Strains: All strains were grown at 30°C in complete 2.0% (w/v) glucose (YPD) medium except where stated otherwise. In all experiments, we ensured that auxotrophic markers were matched between strains by integrating empty vector. All deletions were

generated using a kanMX6 PCR-based technique³⁹ and confirmed by PCR. Additional copies of PNC1 were integrated as previously described²³. The entire open reading frame and 700 bases of upstream sequence of NNT1 (YLR285w) were cloned from genomic DNA by PCR into pSP400 ⁴⁰, sequenced, and integrated into the yeast genome as described previously²³. The copy number of integrated genes was determined by Southern blotting. A GFP cassette was introduced inframe at the 3' end of the native PNC1 gene as previously described ³⁹. The RFP-PTS1 plasmid (pSG421) was a gift from S.J. Gould (Johns Hopkins U.). PSY316AT-derived strains were used for lifespan analysis and stress resistance assays. Strains derived from PSY316AT (MATa, ura3-53 leu2-3,112 his3-Δ200 ade2-1,01 can1-100 ADE2-TEL V-R): pnc1Δ (YDS1741), sir2Δ (YDS1750), 5xPNC1 (YDS1853), 5xPNC1 sir2Δ (YDS1851), pnc1Δ sir2Δ (YDS1853). W303derived strains were used for Western blot analysis, fluorescence microscopy and SIR2 dependent silencing assays. Strains derived from W303 (MATa, ade2-1, leu2-3,112, can1-100, trp1-1, ura3-52, his3-11,15, RDN1::ADE2, RAD5) include: PNC1-GFP (YDS1742), pnc1\Delta (YDS1911), nnt1\(\Delta\) (YDS1747), 2xPNC1 (YDS1588), 2xNNT1 (YDS1926), ADE2 (YDS1596). The following strains were derived from PNC1-GFP (YDS1742): bna6Δ (YDS1857), pSG421 (YDS1916), $pex6\Delta$ (YDS1869), $pex5\Delta$ (YDS1870) and $pex7\Delta$ (YDS1871). The cdc25-10 strain was a gift from L Guarente (M.I.T.).

10

15

20

25

30

Yeast assays were conducted as follows. Life span measurements were performed as previously described²³ except for the heat stress experiments where strains were incubated after each dissection at 37°C. Stress resistance assays were performed using mid-log phase cells. Silencing was assayed as previously described²³.

Protein expression analysis were conducted as follows. Strains were pretreated under the indicated conditions and grown to mid-log phase. Western blots were performed as described²³ using whole cell extracts (75 µg). Proteins were detected using anti-GFP antibodies (Santa Cruz) or anti-actin antibodies (Chemicon). Fluorescent microscopy images were captured at the same exposure (1 s) at 100x magnification with a Hamamatsu Orca100 CCD camera and processed with Openlab software.

Nicotinamidase activity assay was conducted as follows. Activity of Pnc1 in extracts obtained from pretreated mid-log phase cultures was determined as previously described⁴¹. Briefly, 0.16 mg of protein were incubated with either 0 or 8 mM nicotinamide for 45 min at 30°C in a final volume of 400 µl consisting of 10 mM Tris pH 7.5, 150 mM NaCl and 1 mM MgCl₂. Pnc1 activity was determined by measuring the final concentration of the reaction

product, ammonia, using the Sigma ammonia diagnostic kit. Baseline ammonia was accounted for by subtracting a no nicotinamide control. Nicotinamidase activity was expressed as nmol ammonia produced/min/mg total protein. Pnc1 activity was obtained by subtracting the background value for the $pnc1\Delta$ strain (0.06 ± 0.004 nmol/min/mg).

5

References for Examples 4-9:

- 1. Masoro, E. J. Exp Gerontol 35, 299-305. (2000).
- 2. Masoro, E. J. Exp Gerontol 33, 61-6. (1998).
- 3. Kirkwood, T. B. & Holliday, R. Proc R Soc Lond B Biol Sci 205, 531-46. (1979).
- 10 4. Holliday, R. Food *Bioessays* 10, 125-7. (1989).
 - 5. Kenyon, C. Cell 105, 165-168 (2001).
 - 6. Guarente, L. & Kenyon, C. Nature 408, 255-62. (2000).
 - 7. Kaeberlein, M. & Guarente, Genetics 160, 83-95. (2002).
 - 8. Jiang et al. Faseb J 14, 2135-7. (2000).
- 15 9. Swiecilo et al. Acta Biochim Pol 47, 355-64 (2000).
 - 10. Sinclair, D. A. Mech Ageing Dev in press. (2002).
 - 11. Moazed, D. Curr Opin Cell Biol 13, 232-8. (2001).
 - 12. Lin et al. Science 289, 2126-8, (2000).
 - 13. Kaeberlein et al. Genes Dev 13, 2570-80. (1999).
- 20 14. Sinclair, D. A. & Guarente, L. Cell 91, 1033-42. (1997).
 - 15. Tissenbaum, H. A. & Guarente, L. Nature 410, 227-30, (2001).
 - 16. Rogina et al. Science, in press (2002).
 - 17. Vaziri, H. et al. Cell 107, 149-59. (2001).
 - 18. Luo, J. et al. Cell 107, 137-48. (2001).
- 25 19. Smith, J. S. et al. Proc Natl Acad Sci USA 97, 6658-63, (2000).
 - 20. Imai et al. Nature 403, 795-800 (2000).
 - 21. Tanny, J. C. & Moazed, D. Proc Natl Acad Sci USA 98, 415-20. (2001).
 - 22. Landry, J. et al. Proc Natl Acad Sci USA 97, 5807-11. (2000).
 - 23. Anderson, R. M. et al. *J Biol Chem* 277, 18881-90. (2002).
- 30 24. Bitterman et al. J. Biol. Chem. in press (2002).
 - 25. Gasch, A. P. et al. Mol Biol Cell 11, 4241-57. (2000).
 - 26. Betz et al. Eur J Biochem 269, 4033-9. (2002).

- 27. Melov, S. Ann N Y Acad Sci 908, 219-25. (2000).
- 28. Masters, C. J. & Crane, D. I. Mech Ageing Dev 80, 69-83. (1995).
- 29. Perichon et al. Cell Mol Life Sci 54, 641-52. (1998).
- 30. Aksoy et al. *J Biol Chem* 269, 14835-40. (1994).
- 5 31. Matsubara et al. Neurotoxicol Teratol 24, 593. (2002).
 - 32. Niewmierzycka, A. & Clarke, S. J Biol Chem 274, 814-24. (1999).
 - 33. Sandmeier et al. Genetics 160, 877-89. (2002).
 - 34. Landry et al. Biochem Biophys Res Commun 278, 685-90. (2000).
 - 35. Spinelli et al. *J Biol Chem* 274, 2637-44. (1999).
- 10 36. Virag, L. & Szabo, C. Pharmacol Rev 54, 375-429. (2002).
 - 37. Lal, A. et al. Cancer Res 59, 5403-7. (1999).
 - 38. Kassem et al. Int J Cancer 101, 454-60. (2002).
 - 39. Longtine, M. S. et al. *Yeast* 14, 953-61. (1998).
 - 40. Mills et al. Cell 97, 609-20. (1999).
- 15 41. Ghislain et al. Yeast 19, 215-224. (2002).

Example 10: Human nicotinamide methyltransferase (NMNAT) confers radioresistance in human cells

NMNAT (EC 2.1.1.1; CAS registry number 9029-74-7), which is also referred to as nicotinamide N-methyltransferase, is an enzyme that catalyzes the reaction S-adenosyl-L-methionine + nicotinamide = S-adenosyl-L-homocysteine + 1-methylnicotinamide (see also, Cantoni (1951) J. Biol. Chem. 203-216). Overexpression of human NMNAT in radiosensitive human cells was found to increase the radioresistance of the cells.

25 Equivalents

Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents of the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
 - (ii) TITLE OF INVENTION: METHODS AND COMPOSITIONS FOR EXTENDING

THE LIFE SPAN AND INCREASING THE STRESS RESISTANCE OF CELLS

AND ORGANISMS

- (iii) NUMBER OF SEQUENCES: 38
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: BERESKIN & PARR
 - (B) STREET: 40 King Street West
 - (C) CITY: Toronto
 - (D) STATE: Ontario
 - (E) COUNTRY: Canada
 - (F) ZIP: M5H 3Y2
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: 3.5 inch, 1.2 Mb
 - (B) COMPUTER: iMac-Using Virtual PC
 - (C) OPERATING SYSTEM: Windows '95
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: 2,421,269
 - (B) FILING DATE: 07-MAR-2003
- (vii) PRIOR APPLICATION DATA
 - (A) APPLICATION NUMBER: US 60/428,614
 - (B) FILING DATE: 22-NOV-2003
- (vii) PRIOR APPLICATION DATA
 - (A) APPLICATION NUMBER: US 60/402,254
 - (B) FILING DATE: 09-AUG-2002
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Gravelle, Micheline
 - (B) REGISTRATION NUMBER: 40,261
 - (C) REFERENCE/DOCKET NUMBER: 11906-46
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (416) 364-7311
 - (B) TELEFAX: (416) 361-1398
- (2) INFORMATION FOR SEQ ID NO: 1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1290 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: other nucleic acid
 - (vi) ORIGINAL SOURCE: Saccharomyces cerevisiae

(ix) FEATURE:

(A) NAME/KEY: CDS
(B) LOCATION: (1)..(1290)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

			-					-									
	TCA Ser																48
	ACG Thr																96
	TAT Tyr															1	.44
	ATT Ile 50															1	.92
	ACA Thr															2	40
	TCG Ser															2	88
	GAA Glu															3	36
	CAC His															3	84
_	CTT Leu 130															4	32
	TTT Phe															4	80
	AAG Lys															5	28
	GGT Gly															5	76
CAA Gln	GGA Gly	ATC Ile 195	ATG Met	AAA Lys	GCT Ala	GTG Val	AAC Asn 200	GGT Gly	AAC Asn	CCA Pro	GAC Asp	AGA Arg 205	AAC Asn	AAA Lys	TCG Ser	6	24
	TTA Leu 210															6	72

- 89 -

	CCA Pro															720
	AGT Ser															768
	AAT Asn															816
	GGA Gly															864
GCT Ala	TAC Tyr 290	GTC Val	GGT Gly	GTT Val	AGA Arg	CAA Gln 295	GAT Asp	TCT Ser	GGA Gly	GAC Asp	CCA Pro 300	GTT Val	GAG Glu	TAT Tyr	ACC Thr	912
	AAG Lys															960
	AAG Lys												_			1008
	TAC Tyr															1056
	GGC Gly															1104
	AAA Lys 370															1152
	AAT Asn															1200
	CCT Pro															1248
	AGT Ser												TAA			1290

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 429 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: peptide
- (vi) ORIGINAL SOURCE: Saccharomyces cerevisiae
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Ser Glu Pro Val Ile Lys Ser Leu Leu Asp Thr Asp Met Tyr Lys 1 5 10 15

Ile Thr Met His Ala Ala Val Phe Thr Asn Phe Pro Asp Val Thr Val 20 25 30

Thr Tyr Lys Tyr Thr Asn Arg Ser Ser Gln Leu Thr Phe Asn Lys Glu 35 40 45

Ala Ile Asn Trp Leu Lys Glu Gln Phe Ser Tyr Leu Gly Asn Leu Arg 50 55 60

Phe Thr Glu Glu Glu Ile Glu Tyr Leu Lys Gln Glu Ile Pro Tyr Leu 65 70 75 80

Pro Ser Ala Tyr Ile Lys Tyr Ile Ser Ser Ser Asn Tyr Lys Leu His 85 90 95

Pro Glu Glu Gln Ile Ser Phe Thr Ser Glu Glu Ile Glu Gly Lys Pro 100 105 110

Thr His Tyr Lys Leu Lys Ile Leu Val Ser Gly Ser Trp Lys Asp Thr 115 120 125

Ile Leu Tyr Glu Ile Pro Leu Leu Ser Leu Ile Ser Glu Ala Tyr Phe 130 135 140

Lys Phe Val Asp Ile Asp Trp Asp Tyr Glu Asn Gln Leu Glu Gln Ala 145 150 155 160

Glu Lys Lys Ala Glu Thr Leu Phe Asp Asn Gly Ile Arg Phe Ser Glu 165 170 175

Phe Gly Thr Arg Arg Arg Ser Leu Lys Ala Gln Asp Leu Ile Met 180 185 190

Gln Gly Ile Met Lys Ala Val Asn Gly Asn Pro Asp Arg Asn Lys Ser

Leu Leu Gly Thr Ser Asn Ile Leu Phe Ala Lys Lys Tyr Gly Val 210 215 220 Lys Pro Ile Gly Thr Val Ala His Glu Trp Val Met Gly Val Ala Ser 225 230 235 240

Ile Ser Glu Asp Tyr Leu His Ala Asn Lys Asn Ala Met Asp Cys Trp
245 250 255

Ile Asn Thr Phe Gly Ala Lys Asn Ala Gly Leu Ala Leu Thr Asp Thr 260 265 270

Phe Gly Thr Asp Asp Phe Leu Lys Ser Phe Arg Pro Pro Tyr Ser Asp 275 280 285

Ala Tyr Val Gly Val Arg Gln Asp Ser Gly Asp Pro Val Glu Tyr Thr 290 295 300

Lys Lys Ile Ser His His Tyr His Asp Val Leu Lys Leu Pro Lys Phe 305 310 315 320

Ser Lys Ile Ile Cys Tyr Ser Asp Ser Leu Asn Val Glu Lys Ala Ile 325 330 335

Thr Tyr Ser His Ala Ala Lys Glu Asn Gly Met Leu Ala Thr Phe Gly 340 345 350

Ile Gly Thr Asn Phe Thr Asn Asp Phe Arg Lys Lys Ser Glu Pro Gln 355 360 365

Val Lys Ser Glu Pro Leu Asn Ile Val Ile Lys Leu Glu Val Asn 370 375 380

Gly Asn His Ala Ile Lys Ile Ser Asp Asn Leu Gly Lys Asn Met Gly 385 390 395 400

Asp Pro Ala Thr Val Lys Arg Val Lys Glu Glu Leu Gly Tyr Thr Glu
405 410 415

Arg Ser Trp Ser Gly Asp Asn Glu Ala His Arg Trp Thr 420 425

- (2) INFORMATION FOR SEQ ID NO: 3:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 651 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid (vi) ORIGINAL SOURCE: Saccharomyces cerevisiae (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: (1). . (651) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3: ATG AAG ACT TTA ATT GTT GTT GAT ATG CAA AAT GAT TTT ATT TCA CCT Met Lys Thr Leu Ile Val Val Asp Met Gln Asn Asp Phe Ile Ser Pro 10 TTA GGT TCC TTG ACT GTT CCA AAA GGT GAG GAA TTA ATC AAT CCT ATC Leu Gly Ser Leu Thr Val Pro Lys Gly Glu Leu Ile Asn Pro Ile 25 TCG GAT TTG ATG CAA GAT GCT GAT AGA GAC TGG CAC AGG ATT GTG GTC Ser Asp Leu Met Gln Asp Ala Asp Arg Asp Trp His Arg Ile Val Val 40 ACC AGA GAT TGG CAC CCT TCC AGA CAT ATT TCG TTC GCA AAG AAC CAT Thr Arg Asp Trp His Pro Ser Arg His Ile Ser Phe Ala Lys Asn His 55 AAA GAT AAA GAA CCC TAT TCA ACA TAC ACC TAC CAC TCT CCA AGG CCA Lys Asp Lys Glu Pro Tyr Ser Thr Tyr Thr Tyr His Ser Pro Arg Pro GGC GAT GAT TCC ACG CAA GAG GGT ATT TTG TGG CCC GTA CAC TGT GTG Gly Asp Asp Ser Thr Gln Glu Gly Ile Leu Trp Pro Val His Cys Val AAA AAC ACC TGG GGT AGT CAA TTG GTT GAC CAA ATA ATG GAC CAA GTG Lys Asn Thr Trp Gly Ser Gln Leu Val Asp Gln Ile Met Asp Gln Val 100 105 GTC ACT AAG CAT ATT AAG ATT GTC GAC AAG GGT TTC TTG ACT GAC CGT Val Thr Lys His Ile Lys Ile Val Asp Lys Gly Phe Leu Thr Asp Arg

48

144

192

240

288

336

384

432

Glu Tyr Tyr Ser Ala Phe His Asp Ile Trp Asn Phe His Lys Thr Asp 135 ATG AAC AAG TAC TTA GAA AAG CAT CAT ACA GAC GAG GTT TAC ATT GTC 480 Met Asn Lys Tyr Leu Glu Lys His His Thr Asp Glu Val Tyr Ile Val 150 155 GGT GTA GCT TTG GAG TAT TGT GTC AAA GCC ACC GCC ATT TCC GCT GCA 528 Gly Val Ala Leu Glu Tyr Cys Val Lys Ala Thr Ala Ile Ser Ala Ala 165 170 GAA CTA GGT TAT AAG ACC ACT GTC CTG CTG GAT TAC ACA AGA CCC ATC 576 Glu Leu Gly Tyr Lys Thr Thr Val Leu Leu Asp Tyr Thr Arg Pro Ile 180 185 AGC GAT GAT CCC GAA GTC ATC AAT AAG GTT AAG GAA GAG TTG AAG GCC 624 Ser Asp Asp Pro Glu Val Ile Asn Lys Val Lys Glu Glu Leu Lys Ala

GAA TAC TAC TCC GCC TTC CAC GAC ATC TGG AAC TTC CAT AAG ACC GAC

- 93 -

195 200 205

CAC AAC ATC AAT GTC GTG GAT AAA TAA His Asn Ile Asn Val Val Asp Lys 210 215 651

- (2) INFORMATION FOR SEQ ID NO:4:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 216 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (vi) ORIGINAL SOURCE: Saccharomyces cerevisiae
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met Lys Thr Leu Ile Val Val Asp Met Gln Asn Asp Phe Ile Ser Pro 1 5 15

Leu Gly Ser Leu Thr Val Pro Lys Gly Glu Glu Leu Ile Asn Pro Ile 20 25 30

Ser Asp Leu Met Gln Asp Ala Asp Arg Asp Trp His Arg Ile Val Val 35 40 45

Thr Arg Asp Trp His Pro Ser Arg His Ile Ser Phe Ala Lys Asn His 50 55 60

Lys Asp Lys Glu Pro Tyr Ser Thr Tyr Thr Tyr His Ser Pro Arg Pro 65 70 75 80

Gly Asp Asp Ser Thr Gln Glu Gly Ile Leu Trp Pro Val His Cys Val 85 90 95

Lys Asn Thr Trp Gly Ser Gln Leu Val Asp Gln Ile Met Asp Gln Val
100 105 110

Val Thr Lys His Ile Lys Ile Val Asp Lys Gly Phe Leu Thr Asp Arg 115 120 125

Glu Tyr Tyr Ser Ala Phe His Asp Ile Trp Asn Phe His Lys Thr Asp 130 135 140

Met Asn Lys Tyr Leu Glu Lys His His Thr Asp Glu Val Tyr Ile Val 145 150 155 160

Vai		200	165	TYT	Сув	vai	Lys	170	Tnr	Ala	iie	ser	175	Ala	
Leu	Gly	Tyr 180	Lys	Thr	Thr	Val	Leu 185	Leu	Asp	Tyr	Thr	Arg 190	Pro	Ile	
Asp	Asp 195	Pro	Glu	Val	Ile	Asn 200	Lys	Val	Lys	Glu	Glu 205	Leu	Lys	Ala	
Asn 210	Ile	Asn	Val	Val	Asp 215	Lys									
INF	ORMA?	rion	FOR	SEQ	ID 1	10: 5	5:								
(i)	(1	A) LE B) TY C) ST	engti PE : PRANI	H: 12 nucl	06 l leic ESS:	ase acio sing	pai:	cs							
(ii)	MO	LECUI	LE T	YPE:	othe	er ni	ıclei	ic a	cid						
(vi)	OR:	[GIN	AL SO	OURCI	E: Sa	accha	aromy	ces	cere	evisi	iae				
(ix)	(A	IAN (ME/KI			. (12	206)								
(xi) SE(QUENC	CE DI	ESCR	PTIC	ON: S	SEQ I	D NO): 5:	:					
															41
Leu		CCT Pro 20													96
ATT	Ile	Pro	Pro TAC	Pro GTC	Asp TTA	Pro GCC	Glu 25 GAT	Ser GCG	Lys AAT	Ile	Pro TCT	Lys 30 ATA	Ser GAT	Ile GCA	96 144
ATT Ile	ATT Ile 35	Pro 20 CCA	Pro TAC Tyr	Pro GTC Val	Asp TTA Leu AAG	Pro GCC Ala 40	Glu 25 GAT Asp	Ser GCG Ala CAT	Lys AAT Asn CCT	TCC Ser	TCT Ser 45	Lys 30 ATA Ile CAT	Ser GAT Asp	GCA Ala	
ATT Ile TTT Phe 50 CAT	ATT ile 35 AAT Asn	Pro 20 CCA Pro	TAC Tyr AAG Lys	GTC Val AGG Arg	TTA Leu AAG Lys 55	GCC Ala 40 AAA Lys	Glu 25 GAT Asp AAG Lys	GCG Ala CAT His	AAT ASN CCT Pro	TCC Ser AAG Lys 60	TCT Ser 45 CAT His	Lys 30 ATA Ile CAT His	GAT Asp CAT His	GCA Ala CAC His	144
ATT Ile TTT Phe 50 CAT His	ATT Ile 35 AAT Asn CAC His	Pro 20 CCA Pro ATT Ile	TAC Tyr AAG Lys CGT Arg	GTC Val AGG Arg AAA Lys 70 GAC	TTA Leu AAG Lys 55 GAA Glu	GCC Ala 40 AAA Lys GGC Gly	Glu 25 GAT Asp AAG Lys AAT Asn	GCG Ala CAT His GAT Asp	AAT ASN CCT Pro AAA Lys 75	TCC Ser AAG Lys 60 AAA Lys	TCT Ser 45 CAT His CAT His	Lys 30 ATA Ile CAT His CAG Gln	GAT Asp CAT His CAT His	GCA Ala CAC His ATT Ile 80 TCC	144 192
	Asp Asn 210 (ii) (ii) (vi) (ix) (xi) GAT Asp	Asp Asp 195 Asn Ile 210 INFORMAT (i) SEC (I)	ASP ASP Pro 195 ASN Ile ASN 210 INFORMATION (i) SEQUENC (A) LH (B) TY (C) SY (D) TO (ii) MOLECUM (vi) ORIGINA (ix) FEATURI (A) NAM (B) LOC (xi) SEQUENC GAT CCC ACA	ASP ASP Pro Glu 195 Asn Ile Asn Val 210 INFORMATION FOR (i) SEQUENCE CI (A) LENGTE (B) TYPE: (C) STRANI (D) TOPOLO (ii) MOLECULE TO (vi) ORIGINAL SO (ix) FEATURE: (A) NAME/KI (B) LOCATIO (xi) SEQUENCE DI GAT CCC ACA AGA ASP Pro Thr Arg	Asp Asp Pro Glu Val 195 Asn Ile Asn Val Val 210 INFORMATION FOR SEQ (i) SEQUENCE CHARAC (A) LENGTH: 12 (B) TYPE: nucl (C) STRANDEDNE (D) TOPOLOGY: (ii) MOLECULE TYPE: (vi) ORIGINAL SOURCE (ix) FEATURE: (A) NAME/KEY: (B) LOCATION: (xi) SEQUENCE DESCRI	Asp Asp Pro Glu Val Ile 195 Asn Ile Asn Val Val Asp 210 INFORMATION FOR SEQ ID N (i) SEQUENCE CHARACTERI (A) LENGTH: 1206 N (B) TYPE: nucleic (C) STRANDEDNESS: (D) TOPOLOGY: line (ii) MOLECULE TYPE: othe (vi) ORIGINAL SOURCE: Sa (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: (1) (xi) SEQUENCE DESCRIPTION GAT CCC ACA AGA GCT CCG ASP PRO THY ATG ALA PTO	Asp Asp Pro Glu Val Ile Asn 195 200 Asn Ile Asn Val Val Asp Lys 210 215 INFORMATION FOR SEQ ID NO: 9 (i) SEQUENCE CHARACTERISTIC (A) LENGTH: 1206 base (B) TYPE: nucleic acid (C) STRANDEDNESS: sind (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nu (vi) ORIGINAL SOURCE: Saccha (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: (1) . (13) (xi) SEQUENCE DESCRIPTION: 9 GAT CCC ACA AGA GCT CCG GAT ASP Pro Thr Arg Ala Pro Asp	Asp Asp Pro Glu Val Ile Asn Lys 195 200 Asn Ile Asn Val Val Asp Lys 210 215 INFORMATION FOR SEQ ID NO: 5: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1206 base pair (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic constant of the	Asp Asp Pro Glu Val Ile Asn Lys Val 195 200 Asn Ile Asn Val Val Asp Lys 210 215 INFORMATION FOR SEQ ID NO: 5: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1206 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic ac (vi) ORIGINAL SOURCE: Saccharomyces (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: (1) (1206) (xi) SEQUENCE DESCRIPTION: SEQ ID NO GAT CCC ACA AGA GCT CCG GAT TTC AAA Asp Pro Thr Arg Ala Pro Asp Phe Lys	Asp Asp Pro Glu Val Ile Asn Lys Val Lys 195 200 Asn Ile Asn Val Val Asp Lys 210 215 INFORMATION FOR SEQ ID NO: 5: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1206 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (vi) ORIGINAL SOURCE: Saccharomyces cere (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: (1) (1206) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5: GAT CCC ACA AGA GCT CCG GAT TTC AAA CCG Asp Pro Thr Arg Ala Pro Asp Phe Lys Pro	Asp Asp Pro Glu Val Ile Asn Lys Val Lys Glu 195 200 Asn Ile Asn Val Val Asp Lys 210 215 INFORMATION FOR SEQ ID NO: 5: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1206 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (vi) ORIGINAL SOURCE: Saccharomyces cerevisi (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: (1) (1206) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5: GAT CCC ACA AGA GCT CCG GAT TTC AAA CCG CCA Asp Pro Thr Arg Ala Pro Asp Phe Lys Pro Pro	Asp Asp Pro Glu Val Ile Asn Lys Val Lys Glu Glu 195 200 205 Asn Ile Asn Val Val Asp Lys 210 215 INFORMATION FOR SEQ ID NO: 5: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1206 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (vi) ORIGINAL SOURCE: Saccharomyces cerevisiae (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: (1) (1206) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5: GAT CCC ACA AGA GCT CCG GAT TTC AAA CCG CCA TCT Asp Pro Thr Arg Ala Pro Asp Phe Lys Pro Pro Ser	Asp Asp Pro Glu Val Ile Asn Lys Val Lys Glu Glu Leu 195 200 205 Asn Ile Asn Val Val Asp Lys 210 215 INFORMATION FOR SEQ ID NO: 5: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1206 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (vi) ORIGINAL SOURCE: Saccharomyces cerevisiae (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: (1) (1206) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5: GAT CCC ACA AGA GCT CCG GAT TTC AAA CCG CCA TCT GCA Asp Pro Thr Arg Ala Pro Asp Phe Lys Pro Pro Ser Ala	Asp Asp Pro Glu Val Ile Asn Lys Val Lys Glu Glu Leu Lys 195 200 205 Asn Ile Asn Val Val Asp Lys 210 215 INFORMATION FOR SEQ ID NO: 5: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1206 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (vi) ORIGINAL SOURCE: Saccharomyces cerevisiae (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: (1) (1206) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5: GAT CCC ACA AGA GCT CCG GAT TTC AAA CCG CCA TCT GCA GAC Asp Pro Thr Arg Ala Pro Asp Phe Lys Pro Pro Ser Ala Asp	Asp Asp Pro Glu Val Ile Asn Lys Val Lys Glu Glu Leu Lys Ala 195 200 205 Asn Ile Asn Val Val Asp Lys 210 215 INFORMATION FOR SEQ ID NO: 5: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1206 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (vi) ORIGINAL SOURCE: Saccharomyces cerevisiae (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: (1) (1206) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5: GAT CCC ACA AGA GCT CCG GAT TTC AAA CCG CCA TCT GCA GAC GAG ASP Pro Thr Arg Ala Pro Asp Phe Lys Pro Pro Ser Ala Asp Glu

					GAA Glu												384
per	1111	115	Giu	SCI	GIU	1111	120	GIY	vai	GIII	טעם	125	O111	110	ALU		
					CCA Pro												432
					CCC Pro 150												480
					TTA Leu												528
					CTA Leu												576
					TTT Phe												624
					AAG Lys												672
					GCC Ala 230												720
					TTG Leu												768
					CAC His												816
					AAA Lys												864
					TCA Ser												912
					CTC Leu 310												960
					AGG Arg											;	1008
					ATT Ile											:	1056

ATT TCT TCC ACG AAA GTT CGT CTA TTT ATC AGA CGC GCC ATG TCT GTA 1104 Ile Ser Ser Thr Lys Val Arg Leu Phe Ile Arg Arg Ala Met Ser Val 360 CAA TAT TTG TTA CCT AAT TCG GTC ATC AGG TAT ATC CAA GAA CAT AGA 1152 Gln Tyr Leu Leu Pro Asn Ser Val Ile Arg Tyr Ile Gln Glu His Arg 375 CTA TAT GTG GAC CAA ACC GAA CCT GTT AAG CAA GTT CTT GGA AAC AAA 1200 Leu Tyr Val Asp Gln Thr Glu Pro Val Lys Gln Val Leu Gly Asn Lys 390 395 GAA TGA 1206 Glu

- (2) INFORMATION FOR SEQ ID NO:6:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 401 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (vi) ORIGINAL SOURCE: Saccharomyces cerevisiae
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Met Asp Pro Thr Arg Ala Pro Asp Phe Lys Pro Pro Ser Ala Asp Glu
1 5 10 15

Glu Leu Ile Pro Pro Pro Asp Pro Glu Ser Lys Ile Pro Lys Ser Ile 20 25 30

Pro Ile Ile Pro Tyr Val Leu Ala Asp Ala Asn Ser Ser Ile Asp Ala 35 40 45

Pro Phe Asn Ile Lys Arg Lys Lys His Pro Lys His His His His 50 55

His His Ser Arg Lys Glu Gly Asn Asp Lys Lys His Gln His Ile 65 70 75 80

Pro Leu Asn Gln Asp Asp Phe Gln Pro Leu Ser Ala Glu Val Ser Ser

Glu Asp Asp Asp Ala Asp Phe Arg Ser Lys Glu Arg Tyr Gly Ser Asp

Ser Thr Thr Glu Ser Glu Thr Arg Gly Val Gln Lys Tyr Gln Ile Ala 115 120 125

- Asp Leu Glu Glu Val Pro His Gly Ile Val Arg Gln Ala Arg Thr Leu 130 135 140
- Glu Asp Tyr Glu Phe Pro Ser His Arg Leu Ser Lys Lys Leu Leu Asp 145 150 150 155
- Pro Asn Lys Leu Pro Leu Val Ile Val Ala Cys Gly Ser Phe Ser Pro 165 170 175
- Ile Thr Tyr Leu His Leu Arg Met Phe Glu Met Ala Leu Asp Ala Ile 180 185 190
- Ser Glu Gln Thr Arg Phe Glu Val Ile Gly Gly Tyr Tyr Ser Pro Val 195 200 205
- Ser Asp Asn Tyr Gln Lys Gln Gly Leu Ala Pro Ser Tyr His Arg Val 210 215 220
- Arg Met Cys Glu Leu Ala Cys Glu Arg Thr Ser Ser Trp Leu Met Val 225 230 230
- Asp Ala Trp Glu Ser Leu Gln Pro Ser Tyr Thr Arg Thr Ala Lys Val 245 250 255
- Leu Asp His Phe Asn His Glu Ile Asn Ile Lys Arg Gly Gly Val Ala 260 265 270
- Thr Val Thr Gly Glu Lys Ile Gly Val Lys Ile Met Leu Leu Ala Gly 275 280 285
- Gly Asp Leu Ile Glu Ser Met Gly Glu Pro Asn Val Trp Ala Asp Ala 290 295 300
- Asp Leu His His Ile Leu Gly Asn Tyr Gly Cys Leu Ile Val Glu Arg 305 310 315 320
- Thr Gly Ser Asp Val Arg Ser Phe Leu Leu Ser His Asp Ile Met Tyr 325 330 335
- Glu His Arg Arg Asn Ile Leu Ile Ile Lys Gln Leu Ile Tyr Asn Asp 340 345 350
- Ile Ser Ser Thr Lys Val Arg Leu Phe Ile Arg Arg Ala Met Ser Val

Gln Tyr Leu Leu Pro Asn Ser Val Ile Arg Tyr Ile Gln Glu His Arg

Leu Tyr Val Asp Gln Thr Glu Pro Val Lys Gln Val Leu Gly Asn Lys 390 400 Glu (2) INFORMATION FOR SEQ ID NO: 7: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1188 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (vi) ORIGINAL SOURCE: Saccharomyces cerevisiae (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: (1). .(1188) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7: ATG GAT CCC ACC AAA GCA CCC GAT TTT AAA CCG CCA CAG CCA AAT GAA Met Asp Pro Thr Lys Ala Pro Asp Phe Lys Pro Pro Gln Pro Asn Glu 5 10 GAA CTA CAA CCA CCG CCA GAT CCA ACA CAT ACG ATA CCA AAA TCT GGA 96 Glu Leu Gln Pro Pro Pro Asp Pro Thr His Thr Ile Pro Lys Ser Gly 20 25 30 CCC ATA GTT CCA TAT GTT TTA GCT GAT TAT AAT TCT TCG ATC GAT GCT 144 Pro Ile Val Pro Tyr Val Leu Ala Asp Tyr Asn Ser Ser Ile Asp Ala CCT TTC AAT CTC GAC ATT TAC AAA ACC CTG TCG TCA AGG AAA AAA AAC 192 Pro Phe Asn Leu Asp Ile Tyr Lys Thr Leu Ser Ser Arg Lys Lys Asn GCC AAC TCA AGC AAC CGA ATG GAC CAT ATT CCA TTA AAT ACT AGT GAC 240 Ala Asn Ser Ser Asn Arg Met Asp His Ile Pro Leu Asn Thr Ser Asp 70 75 TTC CAG CCA CTA TCT CGG GAT GTA TCA TCG GAG GAG GAA AGT GAA GGG 288 Phe Gln Pro Leu Ser Arg Asp Val Ser Ser Glu Glu Glu Ser Glu Gly 85 90 CAA TCG AAT GGA ATT GAC GCT ACT CTA CAG GAT GTT ACG ATG ACT GGG 336 Gln Ser Asn Gly Ile Asp Ala Thr Leu Gln Asp Val Thr Met Thr Gly 100 105 AAT TTG GGG GTA CTG AAG AGC CAA ATT GCT GAT TTG GAA GAA GTT CCT 384

Asn Leu Gly Val Leu Lys Ser Gln Ile Ala Asp Leu Glu Glu Val Pro 120

					CAA Gln											432
					AAA Lys 150											480
					GGA Gly											528
					GCT Ala											576
					TAT Tyr											624
					GCT Ala											672
					TCT Ser 230											720
					AGG Arg											768
					AGA Arg											816
					ATG Met											864
					GTG Val											912
					TTG Leu 310											960
					CAT His											1008
					CTT Leu											1056
					CGT Arg											1104
TCT	GTC	ATC	CGT	TAC	ATC	CAA	GAG	TAT	AAT	CTA	TAC	ATT	AAT	CAA	AGT	1152

Ser Val Ile Arg Tyr Ile Gln Glu Tyr Asn Leu Tyr Ile Asn Gln Ser 370 380

GAA CCG GTC AAG CAG GTC TTG GAT AGC AAA GAG TGA
Glu Pro Val Lys Gln Val Leu Asp Ser Lys Glu
385 390 395

1188

- (2) INFORMATION FOR SEQ ID NO:8:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 395 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (vi) ORIGINAL SOURCE: Saccharomyces cerevisiae
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Met Asp Pro Thr Lys Ala Pro Asp Phe Lys Pro Pro Gln Pro Asn Glu 1 5 10 10 15

Glu Leu Gln Pro Pro Pro Asp Pro Thr His Thr Ile Pro Lys Ser Gly 20 25 30

Pro Ile Val Pro Tyr Val Leu Ala Asp Tyr Asn Ser Ser Ile Asp Ala 35 40 45

Pro Phe Asn Leu Asp Ile Tyr Lys Thr Leu Ser Ser Arg Lys Lys Asn 50 55

Ala Asn Ser Ser Asn Arg Met Asp His Ile Pro Leu Asn Thr Ser Asp 65 70 75 80

Phe Gln Pro Leu Ser Arg Asp Val Ser Ser Glu Glu Glu Ser Glu Gly 85 90 95

Gln Ser Asn Gly Ile Asp Ala Thr Leu Gln Asp Val Thr Met Thr Gly
100 105 110

Asn Leu Gly Val Leu Lys Ser Gln Ile Ala Asp Leu Glu Glu Val Pro 115 120 125

His Thr Ile Val Arg Gln Ala Arg Thr Ile Glu Asp Tyr Glu Phe Pro 130 $\,$ 140

Val His Arg Leu Thr Lys Lys Leu Gln Asp Pro Glu Lys Leu Pro Leu 145 150 155 160

CA 02421269 2003-11-04

Ile	Ile	Val	Ala	Cys	Gly	Ser	Phe	Ser	Pro	Ile	Thr	Tyr	Leu	His	Leu
				165					170					175	

- Arg Met Phe Glu Met Ala Leu Asp Asp Ile Asn Glu Gln Thr Arg Phe 180 185 190
- Glu Val Val Gly Gly Tyr Phe Ser Pro Val Ser Asp Asn Tyr Gln Lys 195 200 205
- Arg Gly Leu Ala Pro Ala Tyr His Arg Val Arg Met Cys Glu Leu Ala 210 215 220
- Cys Glu Arg Thr Ser Ser Trp Leu Met Val Asp Ala Trp Glu Ser Leu 225 230 235 240
- Gln Ser Ser Tyr Thr Arg Thr Ala Lys Val Leu Asp His Phe Asn His 245 250 255
- Glu Ile Asn Ile Lys Arg Gly Gly Ile Met Thr Val Asp Gly Glu Lys 260 265 270
- Met Gly Val Lys Ile Met Leu Leu Ala Gly Gly Asp Leu Ile Glu Ser 275 280 285
- Met Gly Glu Pro His Val Trp Ala Asp Ser Asp Leu His His Ile Leu 290 295 300
- Gly Asn Tyr Gly Cys Leu Ile Val Glu Arg Thr Gly Ser Asp Val Arg 305 310 315 320
- Ser Phe Leu Leu Ser His Asp Ile Met Tyr Glu His Arg Arg Asn Ile 325 330 335
- Leu Ile Ile Lys Gln Leu Ile Tyr Asn Asp Ile Ser Ser Thr Lys Val
- Arg Leu Phe Ile Arg Arg Gly Met Ser Val Gln Tyr Leu Leu Pro Asn 355 360 365
- Ser Val Ile Arg Tyr Ile Gln Glu Tyr Asn Leu Tyr Ile Asn Gln Ser 370 375 380
- Glu Pro Val Lys Gln Val Leu Asp Ser Lys Glu 385 390 395

- 102 -

(2) INFORMATION FOR SEQ ID NO: 9: (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 952 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other nucleic acid
- (vi) ORIGINAL SOURCE: Homo sapiens
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: (118). .(912)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

	(111)	01	200111								,					
TGA	ACTCI	rgg <i>i</i>	ATGCT	rg tt z	AG CC	CTGAC	BACTO	C AGO	BAAGA	ACAA	CTT	CTGC	AGG (STCAC	CTCCCT	60
GGC:	rtctc	GGA (GAAZ	AGAGA	AA GO	BAGGO	CAG	r GC1	rccac	STGG	TAC	AGAA	TG A	AGACA	ATA	117
					ACC Thr											165
					GAA Glu											213
					CTT Leu											261
					GTG Val											309
					CAG Gln 70											357
					TAC Tyr											405
					CCA Pro											453
	-	-			GAA Glu											501
					GCG Ala											549
					GGG Gly 150											597

CTC Leu	AGC Ser	ACA Thr	CTG Leu	TGT Cys 165	CTG Leu	GAT Asp	GCC Ala	GCC Ala	TGC Cys 170	CCA Pro	GAC Asp	CTC Leu	CCC Pro	ACC Thr 175	TAC Tyr	645
TGC Cys	AGG Arg	GCG Ala	CTC Leu 180	AGG Arg	AAC Asn	CTC Leu	GGC Gly	AGC Ser 185	CTA Leu	CTG Leu	AAG Lys	CCA Pro	GGG Gly 190	GGC Gly	TTC Phe	693
								AGC Ser								741
								GGC Gly								789
								GAA Glu								837
								AAC Asn								885
			CTG Leu 260					TGA	TGC	CTGT	GAC (CTCA	ATTA	A.A.		932
GCA	ATTC	CTT :	rgac(CTGT	CA											952
(2)) SE(() ()	TION QUENCA) LI B) TO C) SO	CE CI ENGTI YPE: IRANI	HARAG H: 26 amii DEDNI	CTER: 64 at no ac ESS:	ISTIC mino cid sing	CS: acid	is							
	(ii) MO	LECU	LE T	YPE:	pept	tide									
	(vi) OR	IGIN	AL S	DURCI	E: H	omo :	sapi	ens							
	(xi) SE	QUEN	CE D	ESCR:	[PTI	ON:	SEQ :	ID N							
Met 1	(xi) SE	QUEN	CE D	ESCR:	[PTI	ON:		ID N			Ser	His	Phe 15	Asn	
1	(xi Glu) SE	QUEN	CE Di Phe 5	ESCR:	IPTI Ser	ON: 8	SEQ :	Thr	Tyr	Leu			15		
1 Pro	(xi Glu Arg) SE Ser Asp	Gly Tyr	Phe 5	ESCR: Thr Glu	IPTI(Ser Lys	ON: { Lys Tyr	SEQ :	Thr 10 Lys	Tyr	Leu	Ser	Arg 30	15 His	Ser	

Gly Pro Thr Ile Tyr Gln Leu Leu Ser Ala Cys Glu Ser Phe Lys Glu 65 70 75 80

Ile Val Val Thr Asp Tyr Ser Asp Gln Asn Leu Gln Glu Leu Glu Lys 85 90 95

Trp Leu Lys Lys Glu Pro Glu Ala Phe Asp Trp Ser Pro Val Val Thr

Tyr Val Cys Asp Leu Glu Gly Asn Arg Val Lys Gly Pro Glu Lys Glu 115 120 125

Glu Lys Leu Arg Gln Ala Val Lys Gln Val Leu Lys Cys Asp Val Thr 130 135 140

Leu Ser Thr Leu Cys Leu Asp Ala Ala Cys Pro Asp Leu Pro Thr Tyr 165 170 175

Cys Arg Ala Leu Arg Asn Leu Gly Ser Leu Leu Lys Pro Gly Gly Phe 180 185 190

Leu Val Ile Met Asp Ala Leu Lys Ser Ser Tyr Tyr Met Ile Gly Glu
195 200 205

Gln Lys Phe Ser Ser Leu Pro Leu Gly Arg Glu Ala Val Glu Ala Ala 210 220

Val Lys Glu Ala Gly Tyr Thr Ile Glu Trp Phe Glu Val Ile Ser Gln 225 230 235 240

Ser Tyr Ser Ser Thr Met Ala Asn Asn Glu Gly Leu Phe Ser Leu Val 245 250 255

Ala Arg Lys Leu Ser Arg Pro Leu 260

(2) INFORMATION FOR SEQ ID NO: 11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1240 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid

	(vi)	ORI	GINA	L SC	URCE	: Ho	omo e	apie	ens						
	(ix)	(A)	TURE NAM LOC	Æ/KI	EY: ON:	CDS (38).	(1	L144)	ı						
	(xi)	SEC	UENC	CE DE	ESCRI	PTIC	N: 5	EQ I	D NO): 11	.:				
GAG	CTCGC	CAG (CGCGC	CGGC	CC CI	GTC	CTCCC	GCC	CCGAC			_	_	A GAA a Glu	55
											TAC Tyr				103
											TAT Tyr				151
											AGG Arg 50				199
											CTT Leu				247
											GAA Glu				295
											GAA Glu				343
											ATA Ile				391
											GTT Val 130				439
											AAT Asn				487
											GCC Ala				535
											GAA Glu				583
											GGC Gly				631

- 106 -

TCT Ser	TCC Ser 200	CAA Gln	GAG Glu	ACT Thr	GCT Ala	GGC Gly 205	ATA Ile	GGA Gly	GCA Ala	TCT Ser	GCT Ala 210	CAC His	TTG Leu	GTT Val	AAC Asn	679
TTC Phe 215	AAA Lys	GGA Gly	ACA Thr	GAT Asp	ACA Thr 220	GTA Val	GCA Ala	GGA Gly	CTT Leu	GCT Ala 225	CTA Leu	ATT Ile	AAA Lys	AAA Lys	TAT Tyr 230	727
	GGA Gly															775
	AGT Ser															823
	CAT His															871
	AGC Ser 280															919
	AGA Arg															967
	CCT Pro															1015
	TTA Leu															1063
	CTG Leu															1111
	ACC Thr 360									TAA	AAG	TTTC.	AAT .	AAGG	CATTTC	1164
TTA'	TAAT	TAA (GTTT	GTTT	AT G	rttg.	ATAA	A GA	ACAC	ATA	TAA.	ATAC	AAA .	AAAA	AAAAA	1224
AAA	AAAA	AAA	AAAA	AA												1240

(2) INFORMATION FOR SEQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 368 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (vi) ORIGINAL SOURCE: Homo sapiens

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:
- Met Asn Pro Ala Ala Glu Ala Glu Phe Asn Ile Leu Leu Ala Thr Asp 1 5 10 15
- Ser Tyr Lys Val Thr His Tyr Lys Gln Tyr Pro Pro Asn Thr Ser Lys 20 25 30
- Val Tyr Ser Tyr Phe Glu Cys Arg Glu Lys Lys Thr Glu Asn Ser Lys 35 40 45
- Leu Arg Lys Val Lys Tyr Glu Glu Thr Val Phe Tyr Gly Leu Gln Tyr
 50 55 60
- Ile Leu Asn Lys Tyr Leu Lys Gly Lys Val Val Thr Lys Glu Lys Ile 65 70 75 80
- Gln Glu Ala Lys Asp Val Tyr Lys Glu His Phe Gln Asp Asp Val Phe 85 90 95
- Asn Glu Lys Gly Trp Asn Tyr Ile Leu Glu Lys Tyr Asp Gly His Leu 100 105 110
- Pro Ile Glu Ile Lys Ala Val Pro Glu Gly Phe Val Ile Pro Arg Gly
 115 120 125
- Asn Val Leu Phe Thr Val Glu Asn Thr Asp Pro Glu Cys Tyr Trp Leu 130 135 140
- Thr Asn Trp Ile Glu Thr Ile Leu Val Gln Ser Trp Tyr Pro Ile Thr 145 150 155 160
- Val Ala Thr Asn Ser Arg Glu Gln Lys Lys Ile Leu Ala Lys Tyr Leu 165 170 175
- Leu Glu Thr Ser Gly Asn Leu Asp Gly Leu Glu Tyr Lys Leu His Asp 180 185 190
- Phe Gly Tyr Arg Gly Val Ser Ser Gln Glu Thr Ala Gly Ile Gly Ala 195 200 205
- Ser Ala His Leu Val Asn Phe Lys Gly Thr Asp Thr Val Ala Gly Leu 210 215 220
- Ala Leu Ile Lys Lys Tyr Tyr Gly Thr Lys Asp Pro Val Pro Gly Tyr 225 230 235 240

Ser Val Pro Ala Ala Glu His Ser Thr Ile Thr Ala Trp Gly Lys Asp 245 250 250

His	Glu	Lys	Asp 260	Ala	Phe	Glu	His	Ile 265	Val	Thr	Gln	Phe	Ser 270	Ser	Val	
Pro	Val	Ser 275	Val	Val	Ser	Asp	Ser 280	Tyr	Asp	Ile	Tyr	Asn 285	Ala	Cys	Glu	
Lys	Ile 290	Trp	Gly	Glu	Asp	Leu 295	Arg	His	Leu	Ile	Val 300	Ser	Arg	Ser	Thr	
Gln 305	Ala	Pro	Leu	Ile	Ile 310	Arg	Pro	Asp	Ser	Gly 315	Asn	Pro	Leu	Asp	Thr 320	
Val	Leu	Lys	Val	Leu 325	Glu	Ile	Leu	Gly	Lys 330	Lys	Phe	Pro	Val	Thr 335	Glu	
Asn	Ser	Lys	Gly 340	Tyr	Lys	Leu	Leu	Pro 345	Pro	Tyr	Leu	Arg	Val 350	Ile	Gln	
Gly	Asp	Gly 355	Val	Asp	Ile	Asn	Thr 360	Leu	Gln	Glu	Val	Cys 365	Val	Leu	Tyr	
(2)	(ii) (ii) (vi) (ix)	SE() (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1	QUENCA) LIBO TY C) SY C) SY C) TO LECUI IGINA ATURI () NAI () LOO	FOR CE CE ENGTH YPE: FRANI OPOLO LE TO AL SO E: ME/KO CATIO	HARACH: 10 TOEDNI DEDNI DGY: YPE: DURCI DURCI	CTERIOR OTHER O	ISTIC pase acic sing ear er nu pomo s	cs: pain fle cle: sapie	ic ad		3:					
CCG													GAC Asp			41
													CTG Leu			9
GGG	GTG	CAG	GAG	CCA	CAT	CCA	GGC	GAG	CGG	GCA	GCC	TTT	GTG	GCC	TAT	14

Gly	Val	Gln	Glu 35	Pro	His	Pro	Gly	Glu 40	Arg	Ala	Ala	Phe	Val 45	Ala	Tyr	
					CGG Arg											192
					CTC Leu											240
					CGG Arg 85											288
					CAG Gln											336
					CCC Pro											384
					GAG Glu											432
					GGC Gly											480
					GGC Gly 165											528
					ACC Thr											576
					CGG Arg											624
					GCA Ala											672
					CCA Pro											720
					CTA Leu 245											768
					TCC Ser											816
					AGC Ser											864

- 110 -

No. 1200 M. S. C. H. M. L. 1200 Med Objections Provinced State Confession State Confession Confessi

275	280	285
CAG TAC CAG GTG GTG CTG TG Gln Tyr Gln Val Val Leu Sc 290		
CTG TGT GCG GGG CAG TCC C Leu Cys Ala Gly Gln Ser P 305		TGACT GGAAACAACA 966
CGAATCACTC ACTTTTCCCC AAA	AAAA AAAAAAAA AAAAAA	A 1011
(2) INFORMATION FOR SEQ I	D NO:14:	
(i) SEQUENCE CHARACT (A) LENGTH: 310 (B) TYPE: amino (C) STRANDEDNES (D) TOPOLOGY: 1	amino acids acid S: single	
(ii) MOLECULE TYPE: p	eptide	
(vi) ORIGINAL SOURCE:		
(xi) SEQUENCE DESCRIP		Aco Lou Ala Ala
Met Leu Ala Pro Ala Ala G 1 5	10	15
Lys Ala Gln Val Trp Leu G 20	lu Gln Val Cys Ala His 25	Leu Gly Leu Gly 30
Val Gln Glu Pro His Pro G 35	ly Glu Arg Ala Ala Phe 40	Val Ala Tyr Ala 45
Leu Ala Phe Pro Arg Ala P 50 5	he Gln Gly Leu Leu Asp 5 60	Thr Tyr Ser Val
Trp Arg Ser Gly Leu Pro A 65 70	sn Phe Leu Ala Val Ala 75	Leu Ala Leu Gly 80
Glu Leu Gly Tyr Arg Ala V 85	al Gly Val Arg Leu Asp 90	Ser Gly Asp Leu 95
Leu Gln Gln Ala Gln Glu I 100	le Arg Lys Val Phe Arg 105	Ala Ala Ala 110
Gln Phe Gln Val Pro Trp I 115	eu Glu Ser Val Leu Ile 120	Val Val Ser Asn 125
Asn Ile Asp Glu Glu Ala I	eu Ala Arg Leu Ala Gln 35 140	Glu Gly Ser Glu

- 111 -

Val Asn Val Ile Gly Ile Gly Thr Ser Val Val Thr Cys Pro Gln Gln 145 150 155 160

Pro Ser Leu Gly Gly Val Tyr Lys Leu Val Ala Val Gly Gly Gln Pro 165 170 175

Arg Met Lys Leu Thr Glu Asp Pro Glu Lys Gln Thr Leu Pro Gly Ser 180 185 190

Lys Ala Ala Phe Arg Leu Leu Gly Ser Asp Gly Ser Pro Leu Met Asp 195 200 205

Met Leu Gln Leu Ala Glu Glu Pro Val Pro Gln Ala Gly Gln Glu Leu 210 215 220

Arg Val Trp Pro Pro Gly Ala Gln Glu Pro Cys Thr Val Arg Pro Ala 225 230 235 240

Gln Val Glu Pro Leu Leu Arg Leu Cys Leu Gln Gln Gly Gln Leu Cys 245 250 250

Glu Pro Leu Pro Ser Leu Ala Glu Ser Arg Ala Leu Ala Gln Leu Ser 260 265 270

Leu Ser Arg Leu Ser Pro Glu His Arg Arg Leu Arg Ser Pro Ala Gln 275 280 285

Tyr Gln Val Val Leu Ser Glu Arg Leu Gln Ala Leu Val Asn Ser Leu 290 295 300

Cys Ala Gly Gln Ser Pro 305 310

- (2) INFORMATION FOR SEQ ID NO: 15:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1073 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: other nucleic acid
 - (vi) ORIGINAL SOURCE: Homo sapiens
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: (71). .(688)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

GGCACGAGGG GTGCCCCCGC CTCACCTGCA GAGGGGCCGT TCCGGGCTCG AACCCGGCAC 60																
CTTCCGGAAA ATG GCG GCT GCC AGG CCC AGC CTG GGC CGA GTC CTC CCA Met Ala Ala Ala Arg Pro Ser Leu Gly Arg Val Leu Pro 1 5 10														109		
														CGC Arg		157
														ATG Met	-	205
														CAG Gln 60		253
														GGC Gly		301
												_		CAG Gln		349
														GGC Gly		397
														GAC Asp		445
														AGC Ser 140		493
														GCC Ala		541
			Ser	Glu		Leu	Ile	Leu	Gln		Val	Gly	Asp	GCC Ala		589
												-		GCC Ala		637
														CTC Leu		685
TGA	ACTO	CAA	ccc :	rgcc'	PTGAC	G G	AAGA	CCAC	CT	CCTG:	CAC	CCG	GACC:	TCA		738
GTG	GAAG	ccc o	3TTC(ccc	CA TO	CCT	GAT	c cc	AAGA	GTGG	TGC	GATC	CAC	CAGG	AGTGCC	798

АААААААА	ааааааааа	АААААААА	AAAAA			1073
ACGGACTCGC	AGAATAAACA	TATATGTGGC	АААААААА	АААААААА	АААААААА	1038
GCCCGGGCC	ACTTCACGGG	GCGGGAAGGG	GAGGGGAAGA	AGAGTCTCAG	ACTGTGGGAC	978
CAAATGAGAC	TCCTGGAAAC	TGGGTGGGAA	TTGGCTGAGC	CAAGATGGAG	GCGGGGCTCG	918
GCCCCCTTGT	GGGGGGGGC	AGGGTGCTGC	CTTCCCATTG	GACAGCTGCT	CCCGGAAATG	858

- (2) INFORMATION FOR SEQ ID NO:16:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 205 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (vi) ORIGINAL SOURCE: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

Met Ala Ala Ala Arg Pro Ser Leu Gly Arg Val Leu Pro Gly Ser Ser 1 10 15

Val Leu Phe Leu Cys Asp Met Gln Glu Lys Phe Arg His Asn Ile Ala 20 25 30

Tyr Phe Pro Gln Ile Val Ser Val Ala Ala Arg Met Leu Lys Val Ala 35 40 45

Arg Leu Leu Glu Val Pro Val Met Leu Thr Glu Gln Tyr Pro Gln Gly 50 60

Leu Gly Pro Thr Val Pro Glu Leu Gly Thr Glu Gly Leu Arg Pro Leu 65 70 75 80

Ala Lys Thr Cys Phe Ser Met Val Pro Ala Leu Gln Gln Glu Leu Asp 85 90 95

Ser Arg Pro Gln Leu Arg Ser Val Leu Leu Cys Gly Ile Glu Ala Gln 100 105 110

Ala Cys Ile Leu Asn Thr Thr Leu Asp Leu Leu Asp Arg Gly Leu Gln 115 120 125

Val His Val Val Val Asp Ala Cys Ser Ser Arg Ser Gln Val Asp Arg 130 135 140

Leu Val Ala Leu Ala Arg Met Arg Gln Ser Gly Ala Phe Leu Ser Thr 145 150 155 160	
Ser Glu Gly Leu Ile Leu Gln Leu Val Gly Asp Ala Val His Pro Gln 165 170 175	
Phe Lys Glu Ile Gln Lys Leu Ile Lys Glu Pro Ala Pro Asp Ser Gly 180 185 190	
Leu Leu Gly Leu Phe Gln Gly Gln Asn Ser Leu Leu His 195 200 205	
(2) INFORMATION FOR SEQ ID NO: 17:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1825 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: other nucleic acid	
(vi) ORIGINAL SOURCE: Homo sapiens	
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: (144)(983)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:	
AGAGTGCGAC CGAGATGTTC CACTCGCTGG CGTCCGGGCC GCTGGTGATC TCCGGTAGCA	60
CTCGGGCCGG CGGACAGTGA GGGCGCGACA ACAAGGGAGG TGTCACAGTT TTCCATTTAG	120
ATCAACAACT TCAAGTTCTT ACC ATG GAA AAT TCC GAG AAG ACT GAA GTG GTT Met Glu Asn Ser Glu Lys Thr Glu Val Val 1 5 10	173
CTC CTT GCT TGT GGT TCA TTC AAT CCC ATC ACC AAC ATG CAC CTC AGG Leu Leu Ala Cys Gly Ser Phe Asn Pro Ile Thr Asn Met His Leu Arg 15 20 25	221
TTG TTT GAG CTG GCC AAG GAC TAC ATG AAT GGA ACA GGA AGG TAC ACA Leu Phe Glu Leu Ala Lys Asp Tyr Met Asn Gly Thr Gly Arg Tyr Thr 30 35 40	269
GTT GTC AAA GGC ATC ATC TCT CCT GTT GGT GAT GCC TAC AAG AAA Val Val Lys Gly Ile Ile Ser Pro Val Gly Asp Ala Tyr Lys Lys 45 50 55	317
GGA CTC ATT CCT GCC TAT CAC CGG GTC ATC ATG GCA GAA CTT GCT ACC Gly Leu Ile Pro Ala Tyr His Arg Val Ile Met Ala Glu Leu Ala Thr 60 65 70	365

GAG TGG AAA GAG ACT CTG AAG GTG CTA AGA CAC CAT CAA GAG AAA TTG Glu Trp Lys Glu Thr Leu Lys Val Leu Arg His His Gln Glu Lys Leu 95 100 105	461
GAG GCT AGT GAC TGT GAT CAC CAG CAG AAC TCA CCT ACT CTA GAA AGG Glu Ala Ser Asp Cys Asp His Gln Gln Asn Ser Pro Thr Leu Glu Arg 110 115 120	509
CCT GGA AGG AAG AGG AAG TGG ACT GAA ACA CAA GAT TCT AGT CAA AAG Pro Gly Arg Lys Arg Lys Trp Thr Glu Thr Gln Asp Ser Ser Gln Lys 125 130 135	557
AAA TCC CTA GAG CCA AAA ACA AAA GCT GTG CCA AAG GTC AAG CTG CTG Lys Ser Leu Glu Pro Lys Thr Lys Ala Val Pro Lys Val Lys Leu Leu 140 145 150	605
TGT GGG GCA GAT TTA TTG GAG TCC TTT GCT GTT CCC AAT TTG TGG AAG Cys Gly Ala Asp Leu Leu Glu Ser Phe Ala Val Pro Asn Leu Trp Lys 155 160 165 170	653
AGT GAA GAC ATC ACC CAA ATC GTG GCC AAC TAT GGG CTC ATA TGT GTT Ser Glu Asp Ile Thr Gln Ile Val Ala Asn Tyr Gly Leu Ile Cys Val 175 180 185	701
ACT CGG GCT GGA AAT GAT GCT CAG AAG TTT ATC TAT GAA TCG GAT GTG Thr Arg Ala Gly Asn Asp Ala Gln Lys Phe Ile Tyr Glu Ser Asp Val 190 195 200	749
CTG TGG AAA CAC CGG AGC AAC ATT CAC GTG GTG AAT GAA TGG ATC GCT Leu Trp Lys His Arg Ser Asn Ile His Val Val Asn Glu Trp Ile Ala 205 210 215	797
AAT GAC ATC TCA TCC ACA AAA ATC CGG AGA GCC CTC AGA AGG GGC CAG Asn Asp Ile Ser Ser Thr Lys Ile Arg Arg Ala Leu Arg Arg Gly Gln 220 225 230	845
AGC ATT CGC TAC TTG GTA CCA GAT CTT GTC CAA GAA TAC ATT GAA AAG Ser Ile Arg Tyr Leu Val Pro Asp Leu Val Gln Glu Tyr Ile Glu Lys 235 240 245 250	893
CAT AAT TTG TAC AGC TCT GAG AGT GAA GAC AGG AAT GCT GGG GTC ATC His Asn Leu Tyr Ser Ser Glu Ser Glu Asp Arg Asn Ala Gly Val Ile 255 260 265	941
CTG GCC CCT TTG CAG AGA AAC ACT GCA GAA GCT AAG ACA TAG Leu Ala Pro Leu Gln Arg Asn Thr Ala Glu Ala Lys Thr 270 275	983
GAATTCTACA GCATGATATT TCAGACTTCC CATTTGGGGA TCTGAAACAA TCTGGGAGTT	1043
AATAACTGGG GAAAGAAGTT GTGATCTGTT GCCTAAACTA AAGCTTAAAA GTTTAGTAAA	1103
AATCGTCTGG GCACAGTGGC TCACGCCTGT AGTCCCAGCT ACTTGGGAGG CTGAGGCAGG	1163
AGAATCACTT GACCCCAGGT GGTGGAGGTT GCAGTGAGCC AAGATTGCAC CATTGCACTC	1223
CAGCCTGGCG ACAGAGCAAG ACTCTGTCTC AAAAAAAAA AAAAAATTTA GTAAAAATCA	1283
ATGGTAAGCT AAAATAAGTT TTTGTTTGTT TATTTGTTTT TGAGATGGAG TCTCTACTAA	1343

AAATACAAAA	AATTAGCCAG	GCATGGTGCC	GCATAACTAT	AATCCCAGCT	ACTTGGGAGG	1403
CTGAGGCAGG	AGAATCGCTT	GAACCCGGGA	GGCACAGGTT	CCAGTGGGCC	AAGGTTGTGC	1463
CACTGCACTC	CAGCCTGGGC	AAAAAAGCAA	AACTCCATCT	CAAAGAGAAA	AAAAAAAAG	1523
ACCGGGTGTG	GTGGCTCACA	CCTGTAATCC	CAGCACTTTG	GGAGGCCTAA	GTGGGTGGAT	1583
CACGTGAGGT	CAAGAGTTCA	AGACCAGCCT	GGCCAATATG	GTGAAACCCC	ATCTCTACTA	1643
AGAATACAAA	AAATTAGCTG	AGCATGGTGG	TGGGCTCCTG	TAGTCCCAGC	TACTTGGGAG	170,3
GCTGAGGCAG	GAGAATCGCT	TGAACCTGGG	AGGCAGAGGT	TGCAGTAAGC	CAAGATCGTG	1763
CCATTGCACT	CCAGCCTGGG	TGACAGAGCG	AGACTCCATC	TCAAAAAAA	АААААААА	1823
AA						1825

(2) INFORMATION FOR SEQ ID NO:18:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 279 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (vi) ORIGINAL SOURCE: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

Met Glu Asn Ser Glu Lys Thr Glu Val Val Leu Leu Ala Cys Gly Ser 1 5 10 15

Phe Asn Pro Ile Thr Asn Met His Leu Arg Leu Phe Glu Leu Ala Lys 20 25 30

Asp Tyr Met Asn Gly Thr Gly Arg Tyr Thr Val Val Lys Gly Ile Ile 35 40 45

Ser Pro Val Gly Asp Ala Tyr Lys Lys Gly Leu Ile Pro Ala Tyr 50 60

His Arg Val Ile Met Ala Glu Leu Ala Thr Lys Asn Ser Lys Trp Val 65 70 75 80

Glu Val Asp Thr Trp Glu Ser Leu Gln Lys Glu Trp Lys Glu Thr Leu 85 90 95

Lys Val Leu Arg His His Gln Glu Lys Leu Glu Ala Ser Asp Cys Asp
100 105 110

- His Gln Gln Asn Ser Pro Thr Leu Glu Arg Pro Gly Arg Lys Arg Lys 115
- Trp Thr Glu Thr Gln Asp Ser Ser Gln Lys Lys Ser Leu Glu Pro Lys
- Thr Lys Ala Val Pro Lys Val Lys Leu Leu Cys Gly Ala Asp Leu Leu
- Glu Ser Phe Ala Val Pro Asn Leu Trp Lys Ser Glu Asp Ile Thr Gln 170
- Ile Val Ala Asn Tyr Gly Leu Ile Cys Val Thr Arg Ala Gly Asn Asp
- Ala Gln Lys Phe Ile Tyr Glu Ser Asp Val Leu Trp Lys His Arg Ser 200
- Asn Ile His Val Val Asn Glu Trp Ile Ala Asn Asp Ile Ser Ser Thr 215
- Lys Ile Arg Arg Ala Leu Arg Arg Gly Gln Ser Ile Arg Tyr Leu Val 225 230 235
- Pro Asp Leu Val Gln Glu Tyr Ile Glu Lys His Asn Leu Tyr Ser Ser 250 245
- Glu Ser Glu Asp Arg Asn Ala Gly Val Ile Leu Ala Pro Leu Gln Arg 265 260

Asn Thr Ala Glu Ala Lys Thr

- (2) INFORMATION FOR SEQ ID NO: 19:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5690 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: other nucleic acid
 - (vi) ORIGINAL SOURCE: Homo sapiens
 - (ix) FEATURE:

 - (A) NAME/KEY: CDS
 (B) LOCATION: (338). .(1261)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

ATAI	CAAAC	CTC 7	DAAG	GAAGI	AC AC	STGAT	GGAC	TG	AGTO	GGC	TGG	GGCC	SAT A	AGAGA	AGGATG	60
GGGT	rggg(GCA (CAGO	GCGA	BA GA	ATGCG	BAAGO	AAC	CCAC	BAAC	GAAA	AAGAG	GAG (CGAC	CGAGGA	120
GAGA	AGAC	GAG (CAGAC	GCAAT	ra cz	AAAA	CAGO	CTC	CGGAT	CTA	GCCC	GAG	CTG (CAAGO	CGTTAA	180
GGG	AGG	CGG I	AGAG	rgaco	SC GC	STTTC	CGT	TGC	GAGCO	GCT	CCTI	rggao	STC (CACAC	CATCC	240
ACCO	CCGC	GAG (CTCC	CCT	רכ כיז	TTCI	CCCI	CTC	GCAGA	ACAC	AACC	GAGA	CAC A	LAAA	AGAGAG	300
GCA <i>I</i>	ACCC	CTA (BACCA	ACCG	CG A	AGGAC	CCAT	r CTC	GCACC						AAG Lys	355
														ACC Thr		403
														AAA Lys		451
														GAC Asp		499
														ATG Met		547
														TGG Trp 85		595
														CAC His		643
														GTC Val		691
														ACC Thr		739
														GCA Ala		787
														TGT Cys 165		835
														AAT Asn		883
														CTG Leu		931

- 119 -

														TGG Trp		979
														GTG Val		1027
														TCA Ser 245		1075
														ATC Ile		1123
CAT His	CCC Pro	ATG Met 265	TCT Ser	GTT Val	GTC Val	AGC Ser	TCA Ser 270	ACC Thr	AAG Lys	AGC Ser	AGG Arg	CTG Leu 275	GCC Ala	CTG Leu	CAG Gln	1171
														ATC Ile		1219
					CAG Gln 300								TAG			1261
CAGO	CCCCI	CG :	CCT	CCGG	A AC	CACA	TGGC	ccc	TCC	ATCT	TTGT	CAGO	ccc	CCTG1	TTCT	C 1321
TCCT	rgcc1	CT (CTGTT	TCTO	C AT	CTC	TCG1	CTI	GACI	GTT	TTCC	CTAC	CTT	GCTGA	CTTA	A 1381
cccc	CCAT	'AG	GTGC	GGGI	C CI	GCAG	AGA	CCF	ATGGC	CATT	CCCI	TATTO	CA	CAGTO	ATCT	T 1441
TGG	CAGA	CT T	TCC1	CTAC	T CI	CCGG	GTTC	GGG	GTGG	GTG	AGGG	AATO	GG	GTGGG	SAGTC	G 1501
GGGG	AAGT	GC A	AGTCC	TTG	SA GA	TGT	CTG	TGI	CCGI	CTC	CCAC	CATO	GCT	CTAGA	GAGG	C 1561
GGC1	CTGG	TG (CCAT	CCTC	C CA	GCAC	GCTC	TGG	GGAG	GCG	GCTC	TGGT	rgc	CCATO	CTCC	C 1621
AGCA	TGCI	CT A	AGAGA	AGGCG	G CI	CTG	TGCC	CCI	CCTC	CCA	GCAT	GCTC	CTG (GGGAG	GCGG	C 1681
TCTC	GCTC	TT C	CCTI	CCCA	G CA	TGCC	CTTI	ACT	CACAA	AGG	GCTA	TTTT	TC '	TTTTC	TTTC	T 1741
TTTC	TTTA	TT 1	TTTAT	TTCI	T TO	TTCA	CTCC	сто	TAGA	ACT	TGGA	TGAA	AT (CAGTO	TCCA	T 1801
GGTI	CTTT	TAT C	TTTC	TAGI	C TI	GATO	TGCI	CCI	GTGG	TAT	TACT	TCCC	CT (CTGAT	'AGGA	C 1861
ATTO	TAGO	CA C	CCTC	CAGCA	C TC	AGTO	AGTI	CAT	CAGG	GCC	ACAC	CCAG	TA (GAGAA	GGCC	A 1921
AGCA	ACCT	CC A	CTTC	TTCA	.G CA	CCAC	ACAC	ACG	CACA	CAC	ACAC	ACAC	GC 2	ACACA	TGCG	r 1981
GTGC	ACCC	GC G	CACG	CACA	T AC	ACAC	ACAC	ATA	TAGO	AGT	AGCA	GCAG	CA (GCAGC	AGCA	G 2041
CAGO	AACC	TT T	GATO	AGGA	G TG	AGAT	TTTC	GGG	TTCT	GAA	ACCI	'GGGA	CA (GAGT	CTGT	G 2101
AATA	GTCG	GT I	TTCT	CAGA	а та	ATTI	GAAT	CTG	TTTT	CTT	AGTT	TCAA	AT (GACCA	TTTC	C 2161
CTGA	TGCT	CT G	AGCT	TATG	A TC	ACAC	AGAG	CCA	GTCC	ATC	CTCA	TTTC	CT (GGTGG	CATC	2221

GTTCATTTAC CTTTGTGGAC	TGTAGCTGAT	GGCACAGTGC	GGGTTCCCTA	CCAGCCAGGG	2281
GTTTCCAAGG GACCTTTGGA	GGCCATGCTT	AGACACATTC	CTGTACCTGA	GAACAACCAC	2341
ATAGGCAGGA CCAGATCCAC	ATCGTGCAGT	CGTGTCATAA	ааааасаааа	CAAAACAAAA	2401
AAACACTAGG AGTCCACTCA	ACCCTGGAGG	TCTTTGCTAA	TTGGAATTAT	GTATTGTCTG	2461
TTGGGCTGGG AAATGTCTCT	TTCATATTGT	AAGTCCAGGA	TGAACTAGGA	GAAAGCAATT	2521
TGTTGCCCTG ATGATAACTG	ATGATTTTCA	CCCTCTCTAG	CTGAGGTAAC	TCAGACAGTG	2581
CATGAGGTCA GTTTCTTCTT	GAGAAGCAGT	GCCTTGGTCT	TGTTTCTGTG	GTTGGTTCTA	2641
GCCCCTGCAG AGCCTGGGAG	CTGCAGGAAC	TGTCTGAGAA	AATCTCCCTA	ATAGGGGAGT	2701
GGGTTCCCAG AAGGGAGATC	TGGGAGGGGT	CAGGAGCCAC	TAAGTTGCTT	CACTCCTTTT	2761
TTCTCTAATT TTCTACCTTC	CTCTCTGTTC	CTGCAGACAG	TTTTGCCAGC	TTTGCTTCTG	2821
GTTACTAGGG TCTCATGCGT	GTCCTGCTTG	GAGAGCCATA	AGGAAATTGC	TGTCTTGTGC	2881
TTTGTGTCTC TCATCCAGTC	TCTGGCTCTT	GGGATTCTGG	TCTTTGAGAA	ATAGTCCCTG	2941
AGTATTAGGA TACTTTTATC	AAAATCTAGT	ACCAGCTACG	GCCAGAAAGG	GCCAGGTGGG	3001
ACCTGAAAGC AAAGACAATG	TTCTTTACCA	CACGTTTCAC	ATCTGCAACA	TCCTTCAATT	3061
GCGGGAAAAG GAACTTGATT	TAACAGAAGA	ACATGGTAGA	GCAGCATCCA	GAAAGTCTGT	3121
TATTCCTCTT GGATTTTTTG	AAATAATCTT	CAGAGGAAGG	AAGGAAAATC	CTATTTTGGG	3181
GTATCAGTGT TTGACTAGGG	ATCATGAAAT	AATAAACTGA	AAAAAACTTT	AGAGTTCAGT	3241
TGATCCAACA CTTTCCTTTA	AAAGTTGAGG	GAGCAGAGGC	CCATGGGATT	AAATGGCTGG	3301
TCCAGGTCAG CCAGCAGGTG	TAGGGCCTGA	CAAGAACATA	TTGTTTCCCT	GACCCCTAGG	3361
CCGTCACACC ACACCCTCCA	TTTCCTCATG	TTGCTGACCA	GGTGCCCATA	TGATTTCTAC	3421
ACTTCCCAAG CCTTACCCTG	GCATCTTTCT	TTTAAATTAT	ATCTGTCCCA	GGTGCTCTCC	3481
ACACATAGGA TGGTAATGCC	AGTCCCAGGG	GAGGGTGTGA	TAGTAAGGAA	GGCCACTGTT	3541
AGGTTTCCTT TAGAAATAAA	GAGATCTCAG	CAGCTTGGAA	GAAATCCCAG	AAGCGGAACT	3601
CCATCAATCC AAGAAAGAGT	TGCTTTGTGG	AAGGTGAAGG	AAGACCCACA	GAGTGCTCAG	3661
GATGATGCTA TTGCTGGAGA	GCGAAAGATG	GAACAGCCTT	GTCCAGGCAG	AACAGTCATA	3721
AGCCAGGAAA TGAAACAAAG	GAAAACAGGT	GCCTGAATTT	CCTGGGGAAA	CATGGCTTGT	3781
TTAAGGACTT GGAGTTATGG	ATGGAATTTA	TGGGACCCAC	GTGAGCAGAC	CTGAGGAAGG	3841
CTCGATTTCT TTTGTTTCTT	GGTCCACTCT	GTCACTCTGC	TCTGGTCAAG	CCCCATTTGG	3901
TCTACAGCCC ATGAGAAGGA	ATGAGGCTGG	TTCTGCACTC	TCAGCATGCA	GTCCGAAAGC	3961
ATGTGGGAGT GGGGAGGGAA	AGTGAGATGA	ATTAAGACAA	AGAACAGGTG	CCATAGAAGT	4021
AGATTTCTAG GAATGAAGTG	GGGCAGATCT	TATCTTTGTG	GATTACAGGC	ACTGTACTAA	4081

AAACAGGTTT	CCTATTTAAT	ATAAAAAGAA	AGTGAATCTT	CTTTTGGATA	GAATCATCCA	4141
TTCCCATCGC	CGCACCCCCT	ACCCCCAAA	CACACACACA	CACACACACA	CACACACACA	4201
CACĄCACACA	CACACACACA	CGCCCTACTC	TTCATTTGCT	AGGGGAAGGT	CACAGCACAA	4261
CTAAATCCAG	GACAGGACAT	TGTGACCATG	ACCCAGCCAC	AGTCAATACC	AGAAAGATGA	4321
TTCAGAGTCT	GAAGTGGTGC	CCCAGGTGCC	AACAGGATAA	CCTCTACCCC	CCGACTTTGT	4381
CTCTGGGGTC	CTGTTCCTTC	CTGCAAAGCC	CAATCCAAGA	CTGGCATGGC	TCAGAGGTTG	444]
TGAGAAAGGC	ATGGACTGGA	ACAATCATGT	CCAGAGGGGT	CTGGAGCTTT	GTTTCCTGTT	4501
CACCAGCAAA	AAATGTCTCT	CCCATTTTTC	TGAAAGTGGC	TGATGTAAGA	ACAGGCAGAA	4561
GGAAAACCCT	TTTTGTCAAT	AACTCTGTCC	TTAAGGAATG	GTCCTCTGGG	AGGGCTGTGC	4621
TGCTAGTGGG	TACCTCAGTC	ACACACCCCC	AACCCCAGGC	AGCCTCTAGA	GCCTTCTTGC	4681
TTTCATTTTC	CTTGAATGTA	CATAGGAACA	AGGGGGAAAG	TCTCTTACTG	AAGTGCCTGA	4741
AACCCAAAGC	TAGAGCTTCT	AGAGACGCCG	TTCTTCCTGT	CTCAGCTTGG	CCAGCCTTTC	4801
AACAATGTTC	TCTAGTTTCA	AGCTCCAGCT	TCTCAGAAAG	AATTAAAGAA	CTTGCTGTTC	4861
AAATTAAGTA	GAAAGTGAGA	CTCAATAATA	ACTGAACTAC	AGCAAAAGGC	AGAGAATTAC	4921
AGGGAGAAAA	AACTTGTACT	TACCAGCCCA	ATTCTACTCT	CCTCAAACTG	ACACACACAC	4983
ACACACACAC	ACACACACAC	ACACACACAC	ACACACACTC	TTTTAGGGGA	CTAAGAGAGA	504
GAAGCATGTT	ATTACATTTT	ACTCATCCAA	ACAGTAATGC	AAAATAAAA	CGGTAGAATA	510
TGAAAAGCTC	AGGATCTCTC	CCAAGGCTAC	CTACTGCAGG	AGGGCCAACA	GGTGAGATGG	5161
GAAGAATGGA	AACAGGGACC	GATTTTGTAG	CTCATACAAT	TAGGACACCT	TAGGAATAGC	522
attgtagtaa	TGGTGATGAA	TATGCTCTGC	CAAATTCATC	CAGTCTGCAC	CATCTTATAG	5281
CTGCCCAGCA	CACTCGACTG	TTCATGTGGT	CTCTTTGTAG	TGTGAGTTTG	GAGTGTCCTA	5341
TTAGCCTGTT	CTGGTTAGGA	ATGAGTTAAC	GGCTCTTTCC	CTCAACCTTA	GTCTAGTCCC	5401
AGGGCTGAGG	ATTCAGCTGG	ATCCACATGG	TCTTGAGGGT	TGGCATGAGG	AGGGGGAAGC	5463
TTTTTTGAAT	CGCTTTTTGA	TCACATAATC	TGCCATTTTA	AGAGTAAGAT	TTGCTTTATG	5523
GAAATCAATT	CATTAATAAA	AAATGATATT	CAAGTTGCAA	TACCATTTCA	CAGTGAAATA	5583
TTTTGAGTAC	AATTTTGTTG	CTAGAATAGT	CATGGGCAAG	AGTTTTATGC	AAAATGTTTC	5643
aattatgtta	ATAAATAAGA	CAATGCWAAA	ааааааааа	ААААААА		5690

(2) INFORMATION FOR SEQ ID NO:20:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 307 amino acids
 (B) TYPE: amino acid

 - (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (vi) ORIGINAL SOURCE: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

Met Thr Glu Thr Thr Lys Thr His Val Ile Leu Leu Ala Cys Gly Ser
1 10 15

Phe Asn Pro Ile Thr Lys Gly His Ile Gln Met Phe Glu Arg Ala Arg 20 25

Asp Tyr Leu His Lys Thr Gly Arg Phe Ile Val Ile Gly Gly Ile Val
35 40 45

Ser Pro Val His Asp Ser Tyr Gly Lys Gln Gly Leu Val Ser Ser Arg 50 60

His Arg Leu Ile Met Cys Gln Leu Ala Val Gln Asn Ser Asp Trp Ile
65 70 75 80

Arg Val Asp Pro Trp Glu Cys Tyr Gln Asp Thr Trp Gln Thr Thr Cys
85 90 95

Ser Val Leu Glu His His Arg Asp Leu Met Lys Arg Val Thr Gly Cys

Ile Leu Ser Asn Val Asn Thr Pro Ser Met Thr Pro Val Ile Gly Gln
115 120 125

Pro Gln Asn Glu Thr Pro Gln Pro Ile Tyr Gln Asn Ser Asn Val Ala 130 135 140

Thr Lys Pro Thr Ala Ala Lys Ile Leu Gly Lys Val Gly Glu Ser Leu 145 150 155 160

Ser Arg Ile Cys Cys Val Arg Pro Pro Val Glu Arg Phe Thr Phe Val 165 170 175

Asp Glu Asn Ala Asn Leu Gly Thr Val Met Arg Tyr Glu Glu Ile Glu 180 185 190

Leu Arg Ile Leu Leu Cys Gly Ser Asp Leu Leu Glu Ser Phe Cys 195 200 205

Ile Pro Gly Leu Trp Asn Glu Ala Asp Met Glu Val Ile Val Gly Asp

	210					215					220					
Phe 225	Gly	Ile	Val	Val	Val 230	Pro	Arg	Asp	Ala	Ala 235	Asp	Thr	Asp	Arg	Ile 240	
Met	Asn	His	Ser	Ser 245	Ile	Leu	Arg	Lys	Tyr 250	Lys	Asn	Asn	Ile	Met 255	Val	
Val	Lys	Asp	Asp 260	Ile	Asn	His	Pro	Met 265	Ser	Val	Val	Ser	Ser 270	Thr	Lys	
Ser	Arg	Leu 275	Ala	Leu	Gln	His	Gly 280	Asp	Gly	His	Val	Val 285	Asp	Tyr	Leu	
Ser	Gln 290	Pro	Val	Ile	Asp	Tyr 295	Ile	Leu	Lys	Ser	Gln 300	Leu	Tyr	Ile	Asn	
Ala 305	Ser	Gly														
(2)	INFO	ORMA?	rion	FOR	SEQ	ID i	10:2	l:								
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 																
	(ii) MOLECULE TYPE: other nucleic acid															
	(vi)	OR	GIN?	AL S	OURCE	E: A1	ctifi	icial	L Sec	quenc		-		: :leot	ide	
	(xi)	SEC	QUENC	CE DI	ESCRI	PTIC	ON: S	SEQ I	D NO	0:21:	:					
CAG	GCAGT	rcc :	TTC	TATT	rc											20
(2)	INFO	ממפר	יו רו	FOR	SEO	TD N	ĭ∩ • 2 :	· .								
(2) INFORMATION FOR SEQ ID NO:22: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear																
				LE TY												
	(vi)	ORI	GINA	AL SO	OURCE	E: Ar	ctifi	icia]	Sec	quenc				: leot	ide	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

GCTTGTTAAC TCTCCGACAG	20
(2) INFORMATION FOR SEQ ID NO:23:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: other nucleic acid	
(vi) ORIGINAL SOURCE: Artificial Sequence: Synthetic oligonucleotide	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:	
AATGTCTTAT CAAGACCGAC	20
(2) INFORMATION FOR SEQ ID NO:24:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: other nucleic acid	
(vi) ORIGINAL SOURCE: Artificial Sequence: Synthetic oligonucleotide	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:	
TACAGTCCAG AAATCGCTCC	20
(2) INFORMATION FOR SEQ ID NO:25:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: other nucleic acid	
(vi) ORIGINAL SOURCE: Artificial Sequence: Synthetic oligonucleotide	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:	
GAAAGGATTT GCCCGGACAG TITG	24
(2) INFORMATION FOR SEQ ID NO:26:	

(i) SEQUENCE CHARACTERISTICS:

		(A) LENGTH: 24 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear		
	(ii)	MOLECULE TYPE: other nucleic acid		
	(vi)	ORIGINAL SOURCE: Artificial Sequence:	Synthetic oligonucleotide	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:26:		
CTT	CTTCC	CA GTAGCCTGTT CCTT		24
(2)	INFO	RMATION FOR SEQ ID NO:27:		
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
	(ii)	MOLECULE TYPE: other nucleic acid		
	(vi)	ORIGINAL SOURCE: Artificial Sequence:	Synthetic oligonucleotide	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:27:		
GTG	SCATT.	AC TCCACTTCAA GTAAG		25
(2)	INFO	RMATION FOR SEQ ID NO:28:		
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
	(ii)	MOLECULE TYPE: other nucleic acid		
	(vi)	ORIGINAL SOURCE: Artificial Sequence:	Synthetic oligonucleotide	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:28:		
CAA	GAGCA	AG ACGATGGGG		19
(2)	INFO	RMATION FOR SEQ ID NO:29:		
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid		

(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

	(ii) MOLECULE TYPE: other nucleic acid	
	(vi) ORIGINAL SOURCE: Artificial Sequence: Synthetic oligonucleotide	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:	
rtt	TCCGCTG AACCGTTCCA	20
(2)	INFORMATION FOR SEQ ID NO:30:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: other nucleic acid	
	(vi) ORIGINAL SOURCE: Artificial Sequence: Synthetic oligonucleotide	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:	
CAT'	TGGCACT CATGACCTTC	20
(2)	INFORMATION FOR SEQ ID NO:31:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: peptide	
	(vi) ORIGINAL SOURCE: Drosophila sp.	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:	
Phe 1	Asp Gly Thr Ser Asn Val Leu Ala Gly Lys Leu Phe Asn Ile Pro 5 10 15	
Val	Lys Gly Thr His Ala His Ala Tyr Ile Thr Ser Phe Ser Ser Ile 20 25 30	
Gly	Glu Leu Lys Thr Arg Leu Ile 35 40	
(2)	INFORMATION FOR SEQ ID NO:32:	

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 40 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (vi) ORIGINAL SOURCE: Caenorhabditis elegans
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

Phe Asp Ala Thr Ser Asn Val Leu Ala Gly Lys Leu Tyr Gly Ile Pro 1 5 10 15

Val Lys Gly Thr Gln Ala His Ser Phe Ile Cys Ser Phe Ser Ser Pro

Ala Glu Leu Lys Val Arg Leu Leu
35 40

- (2) INFORMATION FOR SEQ ID NO:33:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 40 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (vi) ORIGINAL SOURCE: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

Phe Asp Ser Ser Ser Asn Val Leu Ala Gly Gln Leu Arg Gly Val Pro 1 5 10

Val Ala Gly Thr Leu Ala His Ser Phe Val Thr Ser Phe Ser Gly Ser

Glu Val Pro Pro Asp Pro Met Leu 35 40

- (2) INFORMATION FOR SEQ ID NO:34:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 37 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (vi) ORIGINAL SOURCE: Saccharomyces cerevisiae
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

Leu Leu Gly Thr Ser Asn Ile Leu Phe Ala Lys Lys Tyr Gly Val

1 5 10 15

Lys Pro Ile Gly Thr Val Ala His Glu Trp Val Met Gly Val Ala Ser 20 25 30

Ile Ser Glu Asp Tyr 35

(2) INFORMATION FOR SEQ ID NO:35:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 221 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (vi) ORIGINAL SOURCE: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

Met Ala Ala Ala Arg Pro Ser Leu Gly Arg Val Leu Pro Gly Ser Ser 1 5 10 15

Val Leu Phe Leu Cys Asp Met Gln Glu Lys Phe Arg His Asn Ile Ala 20 25 30

Tyr Phe Pro Gln Ile Val Ser Val Ala Ala Arg Met Leu Lys Val Ala 35 40 45

Arg Leu Leu Glu Val Pro Val Met Leu Thr Glu Gln Tyr Pro Gln Gly
50 60

Leu Gly Pro Thr Val Pro Glu Leu Gly Thr Glu Gly Leu Arg Pro Leu 65 70 75 80

Ala Lys Thr Cys Phe Ser Met Val Pro Ala Leu Gln Gln Glu Leu Asp
85 90 95

Ser Arg Pro Gln Leu Arg Ser Val Leu Leu Cys Gly Ile Glu Ala Gln 100 105 110

Ala Cys Ile Leu Asp Pro Arg Ser Tyr Pro Gly Leu Ala Leu Thr Ser 115 120 125

Leu Tyr Pro Gln Asn Thr Thr Leu Asp Leu Leu Asp Arg Gly Leu Gln 130 140

Val His Val Val Val Asp Ala Cys Ser Ser Arg Ser Gln Val Asp Arg 145 150 155 160

Leu Val Ala Leu Ala Arg Met Arg Gln Ser Gly Ala Phe Leu Ser Thr 165 170 175

Ser Glu Gly Leu Ile Leu Gln Leu Val Gly Asp Ala Val His Pro Gln 180 185 190

Phe Lys Glu Ile Gln Lys Leu Ile Lys Glu Pro Ala Pro Asp Ser Gly

195 200 205

Leu Leu Gly Leu Phe Gln Gly Gln Asn Ser Leu Leu His 210 215 220

- (2) INFORMATION FOR SEQ ID NO:36:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 241 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (vi) ORIGINAL SOURCE: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:
- Tyr Gly Asp Gln Ile Asp Met His Arg Lys Phe Val Val Gln Leu Phe
- Ala Glu Glu Trp Gly Gln Tyr Val Asp Leu Pro Lys Gly Phe Ala Val
- Ser Glu Arg Cys Lys Val Arg Leu Val Pro Leu Gln Ile Gln Leu Thr 35 40 45
- Thr Leu Gly Asn Leu Thr Pro Ser Ser Thr Val Phe Phe Cys Cys Asp 50 55 60
- Met Gln Glu Arg Phe Arg Pro Ala Ile Lys Tyr Phe Gly Asp Ile Ile 65 70 75 80
- Ser Val Gly Gln Arg Leu Leu Gln Gly Ala Arg Ile Leu Gly Ile Pro 85 90 95
- Val Ile Val Thr Glu Gln Tyr Pro Lys Gly Leu Gly Ser Thr Val Gln
- Glu Ile Asp Leu Thr Gly Val Lys Leu Val Leu Pro Lys Thr Lys Phe 115 120 125
- Ser Met Val Leu Pro Glu Val Glu Ala Ala Leu Ala Glu Ile Pro Gly
 130 140
- Val Arg Ser Val Val Leu Phe Gly Val Glu Thr His Val Cys Ile Gln 145 150 155 160
- Gln Thr Ala Leu Glu Leu Val Gly Arg Gly Val Glu Val His Ile Val 165 170 175
- Ala Asp Ala Thr Ser Ser Arg Ser Met Met Asp Arg Met Phe Ala Leu 180 185 190
- Glu Arg Leu Ala Arg Thr Gly Ile Ile Val Thr Thr Ser Glu Ala Val
- Leu Leu Gln Leu Val Ala Asp Lys Asp His Pro Lys Phe Lys Glu Ile 210 215 220

Gln Asn Leu Ile Lys Ala Ser Ala Pro Glu Ser Gly Leu Leu Ser Lys 225 230 . 235 240

Val

- (2) INFORMATION FOR SEQ ID NO:37:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 199 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (vi) ORIGINAL SOURCE: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:
- Met His Arg Lys Phe Val Val Gln Leu Phe Ala Glu Glu Trp Gly Gln
 1 5 10 15
- Tyr Val Asp Leu Pro Lys Gly Phe Ala Val Ser Glu Arg Cys Lys Val 20 25 30
- Arg Leu Val Pro Leu Gln Ile Gln Leu Thr Thr Leu Gly Asn Leu Thr
- Pro Ser Ser Thr Val Phe Phe Cys Cys Asp Met Gln Glu Arg Phe Arg
- Pro Ala Ile Lys Tyr Phe Gly Asp Ile Ile Ser Val Gly Gln Arg Leu 65 70 75 80
- Leu Gln Gly Ala Arg Ile Leu Gly Ile Pro Val Ile Val Thr Glu Gln
 85
 90
 95
- Tyr Pro Lys Gly Leu Gly Ser Thr Val Gln Glu Ile Asp Leu Thr Gly
 100 105 110
- Val Lys Leu Val Leu Pro Lys Thr Lys Phe Ser Met Val Leu Pro Glu
 115 120 125
- Val Glu Ala Ala Leu Ala Glu Ile Pro Gly Val Arg Ser Val Val Leu 130 135 140
- Phe Gly Val Glu Thr His Val Cys Ile Gln Gln Thr Ala Leu Glu Leu 145 150 155 160
- Val Gly Arg Gly Val Glu Val His Ile Val Ala Asp Ala Thr Ser Ser 165 170 175
- Arg Ser Met Met Asp Arg Met Phe Ala Arg Leu Thr Ser Arg Ser Asn 180 185 190
- Gly Asp His Ser Asp His Glu 195

- 131 -

- (2) INFORMATION FOR SEQ ID NO:38:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 286 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (vi) ORIGINAL SOURCE: Drosophila sp.
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:
- Ser Gln Asp Ser Asn Asp Asn Leu Thr Ser Cys Ser Leu Cys Val Cys

 1 10 15
- Gln Ser Leu Arg Ile Val Arg Pro Val Asn Ala Phe Leu Ile Val Asp 20 25 30
- Val Gln Asn Asp Phe Ile Ser Gly Ser Leu Asp Ile Ser Asn Cys Ser 35 40 45
- Ala Gln Gln Gly His Glu Ile Leu Glu Pro Ile Asn Lys Leu Leu 50 55 60
- Asp Thr Val Asp Phe Asp Ala Val Phe Tyr Ser Leu Asp Trp His Pro 65 70 75 80
- Ser Asp His Val Ser Phe Ile Asp Asn Val Lys Met Arg Pro Met Asp 85 90 95
- Glu Ser Ser Ala Leu Asp Ser Asp Ser Ala Lys Val Phe Asp Thr Val
- Ile Phe Ala Gly Pro Pro Pro Met Lys Gln Arg Leu Trp Pro Arg His
 115 120 125
- Cys Val Gln Asp Ser Trp Gly Ala Glu Leu His Lys Asp Leu Lys Val 130 140
- Val Asp His Gly Ile Lys Val Tyr Lys Gly Thr Asn Pro Glu Val Asp 145 150 155 160
- Ser Tyr Ser Val Phe Trp Asp Asn Lys Lys Leu Ser Asp Thr Thr Leu 165 170 175
- Asn Ala Gln Leu Lys Met Lys Gly Ala Thr Asp Ile Tyr Val Cys Gly 180 185 190
- Leu Ala Tyr Asp Val Cys Val Gly Ala Thr Ala Val Asp Ala Leu Ser 195 200 205
- Ala Gly Tyr Arg Thr Ile Leu Ile Asp Asp Cys Cys Arg Gly Thr Asp 210 215 220
- Val His Asp Ile Glu His Thr Lys Glu Lys Val Asn Thr Ser Asp Gly 225 230 235 240
- Val Ile Val His Thr Asn Gln Val Lys Ala Met Ala Glu Gly Arg Asp 245 250 255

Arg Arg Pro Glu Leu Gly Tyr Lys Leu Ala Met Glu Leu Lys Ser Pro 260 265 270

Asp Ser Val Leu Ser Gln Arg Asn Gly Phe Arg Pro Ser Tyr 275 280 280

- 133 -

Claims:

5

- 1. A method for increasing the life span of a cell or its resistance to stress, comprising increasing the level of expression or activity in the cell of one or more of the following: NPT1, PNC1, NMA1, NMA2, NNMT, NAMPRT, NMNAT-1, and NMNAT-2.
- 2. The method of claim 1, wherein the life span of the cell is increased by at least about 40%.
- 3. The method of claim 1, wherein the life span of the cell is increased by at least about 60%.
- 10 4. The method of claim 1, wherein increasing the level of expression or activity in the cell of one or more of the following: NPT1, PNC1, NMA1, NMA2, NNMT, NAMPRT, NMNAT-1, and NMNAT-2 leads to an increase in the flux through the NAD+ salavage pathway.
 - 5. The method of claim 1, wherein the method comprises introducing into the cell a nucleic acid encoding one or more of the following proteins: NPT1, PNC1, NMA1, NMA2, NNMT, NAMPRT, NMNAT-1.
 - 6. The method of claim 1, wherein the method comprises contacting the cell with an agent that upregulates the expression of one or more of the following genes: NPT1, PNC1, NMA1, NMA2, NNMT, NAMPRT, NMNAT-1.
- 7. A method for increasing the life span of a cell or its resistance to stress, comprising increasing the level of nicotinamide in the cell.
 - 8. A use of an agent that increases the level of expression or activity in a cell of one or more of the following: NPT1, PNC1, NMA1, NMA2, NNMT, NAMPRT, NMNAT-1, and NMNAT-2 for increasing the life span of a cell or its resistance to stress.
 - 9. The use of claim 8, wherein the life span of the cell is increased by at least about 40%.
- 25 10. The use of claim 8, wherein the life span of the cell is increased by at least about 60%.

- 11. The use of claim 8, wherein increasing the level of expression or activity in the cell of one or more of the following: NPT1, PNC1, NMA1, NMA2, NNMT, NAMPRT, NMNAT-1, and NMNAT-2 leads to an increase in the flux through the NAD+ salavage pathway.
- 12. The use of claim 8, wherein the agent is a nucleic acid encoding one or more of the following proteins: NPT1, PNC1, NMA1, NMA2, NNMT, NAMPRT, NMNAT-1.
 - 13. The use of claim 8, wherein the agent upregulates the expression of one or more of the following genes: NPT1, PNC1, NMA1, NMA2, NNMT, NAMPRT, NMNAT-1.
 - 14. A use of an agent that increases the level of nicotinamide in the cell for increasing the life span of a cell or its resistance to stress.

10

Application number / numéro de	demande: <u>9421269</u>	-
Figures: 20, b, 3, 4a	106, 5b, c, 7, 80, b, 100	a, 12a, b,
Pages	140,1	b, 20,21a

Unscannable items
received with this application
(Request original documents in File Prep. Section on the 10th floor)

Documents reçu avec cette demande ne pouvant être balayés (Commander les documents originaux dans la section de préparation des dossiers au 10ème étage)

Figure 1

Figure 5

Figure 6

Figure 10B & C

Figure 11

Figure 13

Figure 14

Figure 15

NPT1 homologues

Figure 17

Figure 18

Figure 19

Figure 21

