30

31

3

22.	Henry's law constant for CH ₃ Br is 0.16 mol L ⁻¹ bar ⁻¹ at 298 K. What pressure is regondance to have solubility of 0.08 mol L ⁻¹ ?					
	a) 0.24 bar	b) 1.6 bar	c) 0.5 bar	d) 4.0 bar		
23.	In which of the following salts the solubility increases appreciably with increase in temperature?					
	a) KBr	b) NaBr	c) NaCl	d) KCI		
24.	What is Henry's law is 7×10^{-4} mol L ⁻¹ ?	constant if solubility	of a gas in water at 2	298 K and 1 bar pressure		
	a) 2.0×10^{-5} mol L ⁻	1 bar $^{-1}$	b) 7.0 × 10 ⁻⁴ mol I	1 bar-1		
	c) $3.5 \times 10^{-3} \text{ mol L}^{-1}$	1 bar ⁻¹	d) 3.1×10^{-5} mol I	_ ⁻¹ bar ⁻¹		
25.	Henry's law constant for CH_3Br is 0.16 mol L^{-1} bar $^{-1}$ at 298 K. What is solubility of CH_3Br in water at 380 mm Hg?					
	a) $0.24 \text{ mol } L^{-1}$	b) $0.08 \text{ mol } L^{-1}$	c) $0.32 \text{ mol } L^{-1}$	d) $0.16 \text{ mol } L^{-1}$		
		[MHT-CE	T 2022]			
26.	Calculate the solubil of gas is 0.159 mol d	ity of gas in water at 200 m ⁻³ atm ⁻¹ at 25 °C.	260 mm Hg and 25°C,	, if Henry's law constant		
	a) $3.8 \times 10^{-2} \text{ mol dn}$	n ⁻³	b) $2.7 \times 10^{-2} \text{ mol d}$	m ⁻³		
	c) $5.4 \times 10^{-2} \text{ mol dn}$	n ⁻³	d) $1.2 \times 10^{-2} \text{ mol d}$	m^{-3}		
27.		re of gas if the solubi constant is 6.85 × 10		t 25°C is 6.85 × 10 ⁻⁴ mol		
	a) 2.0 bar	b) 0.5 bar	c) 1.5 bar	d) 1 bar		
28.	Calculate the solubil 0.145 mol dm ⁻³ atm	, .	1.2 atm and 25°C if	Henry's law constant is		
	a) $0.174 \text{ mol dm}^{-3}$	b) 0.31 mol dm^{-3}	c) 0.45 mol dm^{-3}	d) 0.25 mol dm^{-3}		
29.	What is the unit of I	Henry's law constant				
	a) mol dm ⁻³		c) mol dm ³ bar ⁻¹			
30.		iquid and its pressure	e ?	ationship between the		
2 4	a) Henry's law	5)	c) Raoult's law			
31.				ncrease in temperature?		
32.	a) KCI	b) NaCl	, ,	d) NaBr		
52.	Calculate the solubility of a gas in water at 0.8 atm and 25°C. [Henry's law constant is 6.85×10^{-4} mol dm ⁻³ atm ⁻¹]					
		17.00	b) 2.74 × 10 ⁻⁴ mol d	m-3		
	a) 3.94 × 10 ⁻⁴ mol d		d) 5.48×10^{-4} mol d			
33,	c) $6.85 \times 10^{-4} \text{ mol dm}^{-3}$ d) $5.48 \times 10^{-4} \text{ mol dm}^{-3}$ Calculate Henry's law constant if the solubility of certain gas in water at 25°C and 1					
	atm is 6.85×10^{-4} mol dm ⁻³ .					
	a) 4.0×10^{-4} mol dr		b) $3.42 \times 10^{-4} \text{ mol d}$			
_	c) 2.3×10^{-4} mol dr	m^{-3} atm ⁻¹	d) 6.85 × 10 ⁻⁴ mol d	lm ⁻³ atm ⁻¹		

	1000 K ₁ W ₁ 1000 K ₂ W ₂				
	c) $M_2 = \frac{1000 \text{ K}_f \text{ W}_1}{\Delta T_f \text{ W}_2}$ d) $M_2 = \frac{1000 \text{ K}_f \text{ W}_2}{\Delta T_f \text{ W}_1}$				
67.	Find the molar mass of solute when 2 gram are dissolved in 60 gram benzene at 30°C and relative lowering of vapour pressure is 0.06. (Molar mass of benzene is 78 g mol ⁻¹)				
	a) $43.3 \text{ gram mol}^{-1}$ b) $35.2 \text{ gram mol}^{-1}$ c) $24.2 \text{ gram mol}^{-1}$ d) $17.4 \text{ gram mol}^{-1}$				
68.	What is vapour pressure of a solution containing 1.8 g glucose in 16.2 g of water if vapour pressure of water is 32 mm Hg?				
	a) 22.2 mm Hg b) 26.6 mm Hg c) 24.6 mm Hg d) 31.7 mm Hg				
69.	Calculate the amount of solute dissolved in 612 gram of water at 30°C if molar mass of solute is 342 g mol ⁻¹ . (Relative vapour pressure lowering is 0.025 and molar mass of water 18 g mol ⁻¹).				
	a) 240.2 gram b) 270.6 gram c) 290.7 gram d) 142.5 gram				
70.	Which of the following mathematical expressions is correct regarding Raoult's law for a binary mixture of two volatile liquids if x_2 , x_1 are mole fractions and P_1 °, P_2 ° are vapour pressures of pure liquids?				
	a) $P = (P_2^0 - P_1^0) x_2 + P_1^0$ b) $P = (P_2^0 - P_1^0) x_1 + P_1^0$				
	c) $P = (P_1^0 - P_2^0) x_1 + P_2^0$ d) $P = (P_2^0 - P_1^0) x_2 + P_2^0$				
71.	0 1				
	a) inversely proportional to mole fraction of solvent.				
	b) directly proportional to mole fraction of solvent.				
	c) inversely proportional to mole fraction of solute.				
1200	d) directly proportional to mole fraction of solute.				
72.					
	a) $\Delta P = \frac{P_1 - P_1^0}{P_1^0}$ b) $\Delta P = \frac{P_1^0 - P_1}{P_1^0}$ c) $\frac{\Delta P}{P_1^0} = \frac{n_1}{n_2}$ d) $\frac{\Delta P}{P_1^0} = \frac{P_1^0 - P_1}{P_1^0}$				
73.	What is the vapour pressure of solution containing n mole of non-volatile solute in 2r				
	mole water if vapour pressure of pure water is 24 mm rig :				
112477117	a) 12 b) 06 mm c) 08 mm d) 18 tittl				
74.	grow and the freezing point by 0.34 K. (K _f for solvent is 1.17 K kg mol ⁻¹)				
	a) 64.0 - 1-1 b) 60.5 g mol (c) 72.2 g mol (d) 56.0 g mol (e)				
75.	The vapour pressure of pure water at room temperature is 40 mm Hg. In an aqueous solution of a non-volatile solute, mole fraction of water is 0.9. What is the vapour				
	pressure of solution? a) 30 mm Hg b) 40 mm Hg c) 36 mm Hg d) 32 mm Hg				

What is the relation between the depression in freezing point and molar mass of non-

b) $M_2 = \frac{\Delta T_f W_1}{1000 K_f W_2}$

volatile solute?

a) $M_2 = \frac{1000 \Delta T_f W_2}{K_f W_1}$

luti	ons 57 MHT-CET					
	A solution of 6 g of solute in 100 g of water boils at 100.52°C. The molal elevation					
٠.	constant of water is 0.52 K kg mol-1. What is molar mass of solute?					
	a) 60 g mol ⁻¹ b) 120 g mol ⁻¹ c) 90 g mol ⁻¹ d) 180 g mol ⁻¹					
	Which of the following statements is correct for boiling point of a liquid?					
**	a) Temperature at which a liquid boils at any pressure.					
	b) Temperature at which solid is in equilibrium with its liquid.					
	c) Temperature at which vapour pressure equals the applied pressure.					
	d) Temperature at which applied pressure is greater than vapour pressure of liquid.					
	What is boiling point of a decimolal aqueous solution of glucose if molal elevation					
88.	constant for water is 0.52°C kg mol ⁻¹ ?					
	a) 101.52°C b) 99.95°C c) 99.48°C d) 100.052°C					
	4) 1010=					
).	What is the boiling point of 0.5 molal aqueous solution of sucrose if 0.1 molal aqueous					
	solution of glucose boils at 100.16°C ? a) 100.32°C					
	a) 100.02 C					
).	What is molar mass of solute if 50 gram of it in 150 gram solvent has boiling point					
	elevation of 5.54 K? ($K_b = 2.77 \text{ K kg mol}^{-1}$)					
	a) 180.0 g mol ⁻¹ b) 166.6 g mol ⁻¹ c) 60.5 g mol ⁻¹ d) 90.3 g mol ⁻¹					
1.	What is the value of molal elevation constant of a solvent if 50 g solute (molar mass					
	111) when dissolved in 150 g of it has elevation in boiling point of 8.3 K?					
	a) $7.72 \text{ K kg mol}^{-1}$ b) $0.52 \text{ K kg mol}^{-1}$ c) $2.76 \text{ K kg mol}^{-1}$ d) $1.86 \text{ K kg mol}^{-1}$					
	[MHT-CET 2022]					
2.	What is the relation between molality of the solution and molar mass of solute?					
	1000 W ₁ $m = \frac{M_2 W_2}{M_2 + M_2}$ $m = \frac{1000 W_2}{M_2 + M_2}$ $m = \frac{M_2 W_1}{M_2 + M_2}$					
	what is the relation between motors $m = \frac{1000 \text{ W}_1}{M_2 \text{ W}_2}$ b) $m = \frac{M_2 \text{ W}_2}{1000 \text{ W}_1}$ c) $m = \frac{1000 \text{ W}_2}{M_2 \text{ W}_1}$ d) $m = \frac{M_2 \text{ W}_1}{1000 \text{ W}_2}$					
3.	What is the relation between molar mass of solute and boiling point elevation of solution?					
	a) $M_2 = \frac{1000 \text{ K}_b \text{ W}_1}{\Delta T_b \text{ W}_2}$ b) $M_2 = \frac{1000 \Delta T_b \text{ W}_2}{\text{K}_b \text{ W}_1}$ c) $M_2 = \frac{1000 \text{ K}_b \text{ W}_2}{\Delta T_b \text{ W}_1}$ d) $M_2 = \frac{\Delta T_b \text{ W}_1}{1000 \text{ K}_b \text{ W}_2}$					
	$\Delta I_b VV_2$					
4.	Calculate the amount of solute dissolved in 160 gram solvent that boils at 85°C, the					
	-1 = -1 = -1 = 120 g mol^{-1} .					
	(K_b for solvent = 2.7°C kg mol ⁻¹ and boiling point of solvent = 76°C) (K_b for solvent = 2.7°C kg mol ⁻¹ and boiling point of solvent = 76°C) (K_b for solvent = 2.7°C kg mol ⁻¹ and boiling point of solvent = 76°C)					
	a) 50 gram b) 60 gram					
95.	1/ 11					
	a) mol kg ⁻¹ K b) mol kg ⁻¹ c) mol dm ⁻³ d) mol kg					
96.	and the moral and					
	gram solvent that boils at 310 K. (The boiling point of solvent is 308 K and molal elevation constant is 2.4 K kg mol ⁻¹) (The boiling point of solvent is 308 K and molal elevation constant is 2.4 K kg mol ⁻¹) a) 80 g mol ⁻¹ b) 60 g mol ⁻¹ c) 72 g mol ⁻¹ d) 50 g mol ⁻¹					
0=	a) 80 g mol ⁻¹ b) 60 g mol ⁻² c) /2 g mol ⁻¹ dissolved in 100 gran					
97.	Calculate the mass of solute having molar mass of g molar constant for solvent is solvent if boiling point elevation is 2 K and molal elevation constant for solvent is					
	2.5 K kg mol ⁻¹ . b) 1.2 gram c) 7.2 gram d) 4.8 gram					
_	a) 2.4 gram b) 1.2 gram c) 7.2 gram d) 4.8 gram					

Olu.	0113			_			
01.	Which among the fo	ollowing is unit of ebu	ıllioscopic constant	?			
011	a) K dm ³ mol ⁻¹	b) K kg mol ⁻¹	c) K dm ⁻³ mol	d) K kg mol			
202.	a) K dm ³ mol ⁻¹ b) K kg mol ⁻¹ c) K dm ⁻³ mol d) K kg mol Calculate the freezing point depression of solvent when 20 gram of nonvolatile solute with molar mass 60 g mol ⁻¹ is dissolved in 1180 gram solvent. (Cryoscopic constant of solvent is 1.18 K kg mol ⁻¹)?						
	V 0.33 K	b) 0.41 K	c) 2.5 K	d) 5.2 K			
203.	what is the vapour	pressure of solution	obtained by dissolv	ing urea in water at 20°C ing of vapour pressure si			
) 16 58 mm Hg	b) 14.56 mm Hg	c) 15.51 mm Hg	d) 13.10 mm Hg			
204.	Which among the fo	ollowing solution has a	minimum freezing p	oint depression assuming			
	1 0 1 - NoCl	h) 0.2 m KNO ₂	c) 0.1 m Na ₂ SO ₄	d) 0.05 m CaCl ₂			
205.	A solution of nonvo	olatile solute is obtain solute if relative lowe	ed by dissoving 19 g ring of vapour pres	g in 200 g water. Calculate sure is 0.03.			
	a) 57.00 g mol ⁻¹	b) 60.24 g mol ⁻¹	c) 65.14 g mol^{-1}	d) 59.28 g mol ⁻¹			
	,	[MHT-CE					
207 208 209 21 21	of nonvola solute it a) 0.3 K kg mol ⁻¹ . Calculate the molar point 0.93K and created as a column of nonvolation of nonvolat	b) 0.4 K kg mol ⁻¹ dity of solution of nor syoscopic constant of solution if solution if vapor of benzene = 78 g mol ⁻¹ b) 604.52 mm Hg ctivity of 0.02 M KCl solution if 0.1 b) 100.256°C lute (molar mass 58 g pressure of 0.245 atm b) 0.72 gram ar conductivities (\$\Lambda_0\$)	c) $0.5 \text{ K kg mol}^{-1}$ c) $0.5 \text{ K kg mol}^{-1}$ n volatile solute having solvent 1.86 K kg mol c) 0.5 mol kg^{-1} ned by dissolving $2g$ tur pressure of pure 1 ned, mass of solute 1 c) 608.64 mm Hg folution is $410\Omega^{-1} \text{ cm}$ b) $2.8 \times 10^{-3} \Omega^{-1}$ d) $5.4 \times 10^{-3} \Omega^{-1}$ tant for water is 0.51 mole of sugar is discentification of $1.00.0513^{\circ}$ C g mol $1.00.$	ing depression in freezing ol ⁻¹ . d) 0.6 mol kg ⁻¹ in 50 g benzene. Calculate benzene is 640 mm Hg at te = 64 g mol ⁻¹] g d) 612.83 mm Hg n ² mol ⁻¹ at 25°C. Calculate cm ⁻¹ cm ⁻¹ 3°C kg mol ⁻¹ . ssolved in 200 g water? d) 100.025°C			