
Nome: ____

Atenção:

- i. Confira os dados da prova. Prova à lápis ou caneta. Assinar todas as folhas de caneta.
- ii. Mostre todos os passos do desenvolvimento e justifique suas respostas.
- iii. Não é permitido consulta a nenhum material ou equipamento, exceto uma calculadora.
- iv. Use arredondamento com quatro casas decimais.
- 1. (25 Pontos) Sabendo que a função seno hiperbólico pode ser escrita como $\sinh(x) = \frac{e^x e^{-x}}{2}$:
 - (a) utilize um polinômio de Taylor de grau 5 em torno de a = 0 para aproximar $\sinh(x)$;
 - (b) use a aproximação do item (a) para calcular o valor aproximado de sinh(x) para x = 1;
 - (c) determine um limitante superior para o erro para a aproximação de ordem 5 feita em torno de a = 0 para x = 1. A fórmula do erro de Lagrange, de forma geral, é dada por:

$$|R_n(x)| \le \max |f^{(n+1)}(t)| \frac{|(x-a)^{n+1}|}{(n+1)!}, \text{ para } t \in [a,x].$$

- 2. (25 Pontos) Considere uma máquina com representação de números dada por um sistema de ponto flutuante F(10, 3, -4, 4), i.e., com 3 dígitos na mantissa e expoente no intervalo [-4, 4]. A máquina utiliza arredondamento.
 - (a) Represente os números $x_1 = 5^6$, $x_2 = \pi$ e $x_3 = -0.000007$. Responda se podem ser representados exatamente, com erro, ou indique a ocorrência de underflow ou overflow.
 - (b) Qual o menor e o maior número (em valor absoluto) que pode ser representado neste sistema?
 - (c) Para x = 0.05 calcule o resultado da seguinte operação: $1 \cos(x)$ na máquina especificada. O que ocorre com o resultado?
- 3. (25 Pontos) Seja $f(x) = x^2/2 + x(\ln(x) 1)$. Considere o problema de obter os pontos críticos da função utilizando o método de Newton.
 - (a) escreva uma fórmula de iteração pelo método de Newton para obter os pontos críticos de f(x);
 - (b) utilize $x_0 = 0.9$ e encontre uma aproximação; faça 3 iterações;
 - (c) o método proposto em (a) pode ser utilizado para qualquer aproximação inicial x_0 ? Justifique.
- 4. (25 Pontos) Seja $f(x) = 4^x x 2$ para $x \in [0, 2]$. Considere o método do ponto fixo para encontrar uma raiz de f(x) entre [0, 2]. Para isso:
 - (a) escolha uma função de iteração $\phi(x)$ para o método do ponto fixo;
 - (b) verifique que o método do ponto fixo irá convergir para a função de iteração $\phi(x)$ escolhida no intervalo I = [0, 2];
 - (c) escolha uma aproximação inicial x_0 e obtenha uma aproximação realizando apenas 2 iterações.