Introduction to Artificial Intelligence

Daniel Deng

1 Search Problems

Definition 1.1 (Reflex Agent). A reflex agent chooses actions based on its current perception of the world.

Definition 1.2 (Planning Agent). A planning agent chooses actions based on hypothesized consequences of actions.

Definition 1.3 (Search Problem). A search problem consists of a state space, a successor function, a start state, and a goal test.

2 Search Algorithms

2.1 Heuristics

Definition 2.1 (Heuristic). A heuristic h(n) is a function that estimates the distance from state n to the goal state for a particular search problem. It is often solutions of relaxed problems.

Definition 2.2 (Admissibility). A heuristic is admissible, or optimistic, if $0 \le h(n) \le h^*(n)$ where h^* is the true cost to goal state.

Definition 2.3 (Consistency). A heuristic is consistent if $h(n) - h(n+1) \le c(n, n+1)$ where c is the cost between states n and n+1.

Remark. Consistency necessarily implies admissibility.

Table 1: Search algorithms.

	Fringe	Complete	Optimal	Time	Space
Depth-First Search	Stack	iff no cycle	No	$O(b^m)$	O(bm)
Breadth-First Search	Queue	Yes	iff uniform cost	$O(b^s)^1$	$O(b^s)^1$
Uniform Cost Search	$PQ(g(n))^2$	iff positive cost	Yes	$O(b^{c^*/\epsilon})^3$	$O(b^{c^*/\epsilon})^3$
Greedy Search	PQ(h(n))	-	No	-	-
A^* Tree Search	PQ (h(n) + g(n))	-	iff $h(n)$ admissible	-	-
A^* Graph Search ⁴	PQ(h(n) + g(n))	-	iff $h(n)$ consistent	-	-

Remark. Implementation of search algorithms differ only in fringe strategies.

Constrained Satisfaction Problems 3

Definition 3.1 (Constrained Satisfaction Problems). Constrained Satisfaction Problems (CSPs) are a type of identification problem defined by variable X_0, \ldots, X_n with values from a domain D that satisfies a set of constrains.

 $^{^1}$ s = depth of solution. 2 g(n) = cumulative path cost. 3 c*/\$\epsilon\$ effective solution depth (c* = cost of the cheapest solution; \$\epsilon\$ = minimum cost of cost-contour arcs). 4 Compared to tree search, graph search keeps a closed set of expanded states to check against to prevent duplicate