23. Como es bien sabido, la densidad de un planeta típico no es uniforme. Supóngase que el planeta C.M.W. tiene radio 5×10^8 cm y una densidad de masa (en gramos por centímetro cúbico):

$$\rho(x, y, z) = \begin{cases} \frac{3 \times 10^4}{r}, & r \ge 10^4 \text{ cm,} \\ 3, & r \le 10^4 \text{ cm,} \end{cases}$$

donde $r = \sqrt{x^2 + y^2 + z^2}$. Hallar la fórmula del potencial gravitatorio en el exterior de C.M.W.

24. Sea D una región situada en la parte del plano

xy con x>0. Suponer que D tiene densidad uniforme, área A(D) y centro de masa $(\overline{x},\overline{y})$. Sea W el sólido que se obtiene al rotar D en torno al eje y. Demostrar que el volumen de W está dado por

$$\operatorname{vol}(W) = 2\pi \overline{x} A(D).$$

25. Utilizar el ejercicio anterior para demostrar que si se obtiene un toro al rotar el círculo $(x-a)^2 + y^2 = r^2$ en torno al eje y, el volumen del toro estará dado por is $2\pi^2 a r^2$.

6.4 Integrales impropias [Opcional]

En esta sección estudiaremos las integrales impropias—es decir integrales en las que puede no estar acotada la función o la región de integración. Recordaremos en primer lugar lo que sucede para funciones de una variable.

Integrales impropias de una variable

En el estudio de las integrales de funciones de una variable, nos encontramos con varios tipos de integrales "impropias"; es decir, integrales de funciones no acotadas definidas sobre intervalos o integrales de funciones sobre intervalos no acotados. Por ejemplo,

$$\int_0^1 \frac{1}{\sqrt{x}} dx \qquad y \qquad \int_1^\infty \frac{dx}{x^2}$$

son integrales impropias. Se evalúan por un procedimiento de paso al límite; por ejemplo,

$$\int_0^1 \frac{1}{\sqrt{x}} dx = \lim_{a \to 0} \int_a^1 \frac{1}{\sqrt{x}} dx = \lim_{a \to 0} \left(2\sqrt{x} \Big|_a^1 \right) = \lim_{a \to 0} \left(2 - 2\sqrt{a} \right) = 2$$

У

$$\int_{1}^{\infty} \frac{dx}{x^2} = \lim_{b \to \infty} \int_{1}^{b} \frac{dx}{x^2} = \lim_{b \to \infty} \left(-\frac{1}{x} \Big|_{1}^{b} \right) = \lim_{b \to \infty} \left(1 - \frac{1}{b} \right) = 1.$$

Si en estos procesos de paso al límite este no existe (o es infinito), decimos que la integral no existe (o que la integral diverge).

Integrales impropias en el plano

A continuación vamos a describir tres tipos de integrales impropias de dos variables sobre una región D. Los dos primeros tipos se describen en