Harvard-MIT Division of Health Sciences and Technology HST.121: Gastroenterology, Fall 2005

Instructors: Dr. Martin Carey

Lipids

- Molecules of Mr =150 ≈ 2000 composed of saturated, unsaturated and/or aromatic or aliphatic hydrocarbon moieties - Non-polar lipids
- When water-binding functional groups (-OH, -COOH, -NH, -C=O, etc.) are covalently linked *Polar Lipids*
- Biologically-relevant lipids are molecules with aliphatic chains of at least 12C atoms and/or aromatic/aliphatic structures with at least 3 rings which may be fused
- Old system of classification based on solubility in organic solvents is neither strictly true nor useful (e.g., bile salts)

OCTADECANOL

Graphic representations of a Polar Lipid

Water soluble portion of molecule

Classification of Polar Lipids Based on Interactions with H₂O*

*D. M. Small (1968)

Surface and Bulk Interactions with Water

Non-Polar Lipids

Will Not Spread To Form A Monolayer

Insoluble In Bulk

Polar Lipids

A. Insoluble Non-Swelling Amphiphiles

Forms A Stable Monolayer Insoluble In Bulk

B. Insoluble Swelling Amphiphiles

Forms A Stable Monolayer

Bulk Phase-pure liquid crystals in pure water

C. Soluble Amphiphiles

1. with lyotropic mesomorphism

→ L.C. → Micelle

Forms An Unstable Monolayer Bulk Phase-a micellar solution

2. without lyotropic mesomorphism

→ Micelle

Forms An Unstable Monolayer Bulk Phase-a micellar solution

Self-Aggregated States

- i) LIQUID CRYSTALS (L.C.)
- Intermediate Physical States (mesophases) with properties of both liquids and solid crystals.
- Long rage order in at least 1 dimension
 - Lyotropic L.C.
 - Thermotropic L.C.
- Have distinct optical textures by polarizing microscopy

Self Aggregated States

ii) MICELLES

Thermodynamically stable aggregates of soluble amphiphilic lipids that form spontaneously above a critical micellar concentration (CMC) and critical micellar temperature (CMT)

- in aqueous systems: regular micelles "The hydrophobic effect"
- in organic solvents: reverse micelles

Self-Aggregated States

iii) EMULSIONS

Dispersions of one liquid in a continuous phase of another liquid: O/W, W/O systems The dispersed (discontinuous) phase consists of microscopic droplets, usually 0.1-100 μ m in diameters

Self-Aggregated States

iv) SOLID CRYSTALS

Classically lipids such as Cholesterol (Gallstones, Atheroma), fatty acids + bile acids (Enteroliths), glycolipids (neural storage diseases) – all are pathologic

Anhydrous Cholesterol and Cholesterol Monohydrate

Figures removed due to copyright reasons. Please see:

Shieh, H. S., et al. "Crystal structure of anhydrous cholesterol." *Nature* 267 (1977): 287-9.

Craven, B. M. "Crystal structure of cholesterol monohydrate." Nature 260 (1976): 727-9.

Figure 1 in Loomis, C. R., et al. "The phase behavior of hydrated cholesterol." *J Lipid Res* 20 (1979): 525-535.

Principal Mixed Lipid Systems in Living Organisms

- Stable Emulsions (dietary fat, plasma lipoproteins, intracellular fat droplets, gut luminal lipids pre-digestion, etc.)
- Mixed Micelles (bile, gut lumen, certain brain lipid storage diseases)
- Mixed Liquid Crystals (biologic membranes, serum lipoprotein X in cholestasis, myelin sheet, mixed vesicles in gut lumen, etc.)

BEHAVIOR OF LECITHIN IN WATER

Figure removed due to copyright reasons.

The 3 "P" Rules

Predictability Rule

Predominance Rule

Phase Rule (F=C-P+2)

How Lipids Traverse Biological Membranes

- As single molecules (molecule need not be water soluble)
- As aggregated particles (i.e., stable emulsions)
- Transporter control: Genomic (slow), nongenomic (fast)

CELLULAR CHOLESTEROL HOMEOSTASIS

The Liver And Plasma Lipid Homeostasis

- 1. All VLDL made in liver.
- $2. \sim 80\%$ of LDL removed by liver.

Figure by MIT OCW.

CHEMICAL COMPOSITIONS OF HUMAN PLASMA LIPOPROTEINS

Figure by MIT OCW.

GI Movements of Single Molecules: Examples

	Bile Salts	Cholesterol/Phytosterols
	(soluble)	(insoluble)
Enterocytes:	Distal Ileocytes Influx: ASBT, FABP6,	Proximal > Distal Influx: NPC1L1
	ΟΑΤα/β	Efflux: ABCG5/ABCG8
Transport:	Portal Blood	Lymphatics
Binding:	Albumen, HDL	ChE and free Ch in chylomicrons and nascent HDL
Hepatic Uptake:	NTCP - 80%	ApoB/E receptor
	OATPs – 20%	LRP receptor
Nuclear Control:	FXR/RXR	SREBP's
	SHP, LRH1	LXR/RXR
Biliary Secretion:	BSEP, MRP2	ABCG5/ABCG8, (others unknown)
Facilitators:	Needs intact FIC1 function	Same + hydrophobic "sink" in bile

That's All Folks!