Inhaltsverzeichnis

Ta	abellenverzeichnis	ii
1	Formel	1
2	Geometriedaten des Läufers	5
	2.1 Radial-Läufer	5
	2.2 Axial-Läufer	5

Tabellenverzeichnis

1	Allgemeine Konstanten
2	Konstanten Radialgenerator
3	Funktionen aus der Klasse (Radial)
4	Konstanten Axial
5	Funktionen aus der Klasse (Axial)
6	Konstanten aus Torque.py
7	Formeln aus Torque.py
8	Maße des Radial-Läufers
9	Maße des Axial-Läufers

Abbildungsverzeichnis

1 Formel

Tabelle 1: Allgemeine Konstanten

Bezeichnung Python	Bedeutung	Formelzeichen
num_pole_pairs	-	p = 4
$\mathrm{num_coils}$	-	$n_{coil} = 4$
${\rm rot_speed}$	-	n_{rotor}
$M_{\perp}T$		M_T
R_L	Lastwiderstand	R_L

Tabelle 2: Konstanten Radialgenerator

Bezeichnung Python	Bedeutung	Formelzeichen und Wert
${ m b_avg}$	durch. Mag.feld	b_{avg}
${\rm angle_magnet}$	Bogenlänge Magnet	$\alpha_{mag} = 70^{\circ}$
${ m angle_coil}$	Bogenlänge Spule	$\alpha_{coil} = 20^{\circ}$
${\rm rotor_r_inner}$	Radius zu Mag. Innen	$r_{rot.in} = 35 \text{mm}$
${\rm rotor_r_outer}$	Radius zu Mag. Innen	$r_{rot.out} = 45 \text{mm}$
${\rm stator_r_inner}$	Radius zu Stat. Innen	$r_{stat.in} = 47 \text{mm}$
$stator_r_outer$	Radius zu Stat. Innen	$r_{stat.out} = 50 \text{mm}$
l_coil_eff	effektive Länge	$l_{coil.eff} = 120 \text{ mm}$

Tabelle 3: Funktionen aus der Klasse (Radial)

Bezeichnung Python	Bedeutung	Formel
angle_space	Bogenlänge zw. Magnet	$\alpha_{mag.space} = \frac{180}{p} - \alpha_{mag}$
${ m angle_coil_space}$	Bogenlänge zw. Spule	$\alpha_{coil.space} = \frac{360}{p} - \alpha_{coil}$
${\tt r_magnet}$	Rad. Mag. innen	$r_{mag} = \frac{r_{rot.in} + r_{rot.out}}{2}$
$dist_rot_stat$	Spaltgröße	$l_{spalt} = 2 \; \mathrm{mm} + r_{stat.out} - r_{stat.in}$
l_coil_outer	-	$l_{coil.out} = \frac{r_{stat.out} \cdot 2 \cdot \pi}{360^{\circ}} \cdot (\alpha_{coil} + \alpha_{coil.space})$
l_coil_inner	-	$l_{coil.in} = \frac{r_{stat.out} \cdot 2 \cdot \pi}{360^{\circ}} \cdot (\alpha_{coil} + \alpha_{coil.space})$
l_coil_space	-	$l_{coil.space} = \frac{2 \cdot r_{stat.out} \cdot \pi \cdot \alpha_{coil.space}}{360^{\circ}}$

Tabelle	1. K	onstanten	Avial
тарене	4: N	энѕьаньен	Axiai

Bezeichnung Python	Bedeutung	Formelzeichen und Wert
b_avg	durch. Mag.feld	b_{avg}
${\rm angle_magnet}$	Bogenlänge Magnet	$\alpha_{mag} = 60^{\circ}$
${ m angle_coil}$	Bogenlänge Spule	$\alpha_{coil} = 20^{\circ}$
${\rm rotor_r_inner}$	Radius zu Mag. Innen	$r_{rot.in} = 45,5 \text{mm}$
${\rm rotor_r_outer}$	Radius zu Mag. Innen	$r_{rot.out} = 90,5 \text{mm}$
${\rm stator_r_inner}$	Radius zu Stat. Innen	$r_{stat.in} = 45,5 \text{mm}$
$stator_r_outer$	Radius zu Stat. Innen	$r_{stat.out} = 90,5 \text{mm}$
$dist_rot_stat$	Spaltgröße	$l_{spalt} = 1 \text{ mm}$
l_coil_eff	effektive Länge	$l_{coil.eff} = 45 \text{ mm}$

Tabelle 5: Funktionen aus der Klasse (Axial)

Bezeichnung Python	Bedeutung	Formel
$-$ angle_space	Bogenlänge zw. Spule	$\alpha_{space} = \frac{180}{p} - \alpha_{coil}$
${\tt r_magnet}$	Rad. Mag. innen	$r_{mag} = \frac{r_{rot.in} + r_{rot.out}}{2}$
l_coil_outer	-	$l_{coil.out} = \frac{r_{stat.out} \cdot 2 \cdot \pi}{360^{\circ}} \cdot (\alpha_{magnet} + \alpha_{space})$
l_coil_inner	-	$l_{coil.in} = \frac{r_{stat.in} \cdot 2 \cdot \pi}{360^{\circ}} \cdot (\alpha_{magnet} + \alpha_{space})$
l_coil_space	-	$l_{coil.space} = \frac{(r_{rot.in} + r_{rot.out}) \cdot \pi \cdot \alpha_{space}}{360^{\circ}}$
$\max_{\operatorname{coil}}_{\operatorname{width}}$	maximale Spulenweite	$l_{coil.width.max} = l_{coil.in} \cdot 0, 8$

Tabelle 6: Konstanten aus Torque.py

Bezeichnung Python	$\operatorname{Bedeutung}$	Formelzeichen
rho	-	$\rho=1,224~\mathrm{bar}$
Turb_n	-	$n_{turb} = \text{Datei}$
$\operatorname{Turb}_{-}\operatorname{M}$	-	$M_{turb} = \text{Datei}$
v	Windgeschw.	$10 \frac{m}{s}$
r	??	$450\cdot 10^{-3}$

Tabelle 7: Formeln aus Torque.py

Bezeichnung Python	Bedeutung	Formelzeichen
P_{wind}	-	$P_{Wind} = \frac{1}{2} \cdot \rho \cdot v^3 \cdot \pi \cdot r^2$
$P_{-}Rotor$	-	$P_{Rotor} = 2 \cdot \pi \cdot n_{turb} \cdot M_{turb}$
$\mathrm{Turb}_{-}\mathrm{M}$	-	$M_{turb} = \mathrm{Datei}$
cp		$\eta = rac{P_{Wind}}{P_{Rotor}}$

2 Geometriedaten des Läufers

Für den Bau des Generators haben wir zwei verschiedene Bauarten betrachet, Axial sowie Radial. Da die Auswahl dieser erst später anhand der Effizienz erfolgt werden zuvor die Geometriedaten bestimmt. blabla Hier fehlt noch was

- ullet Läufer gegeben ightarrow deswegen erstmal nur Daten für den Läufer
- anhand der Geometrie kann Mag.feld bestimmt werden
- mit dem Mag.feld kann eine Auswahl für die Geometrie des Stators getroffen werden

2.1 Radial-Läufer

Tabelle 8: Maße des Radial-Läufers Bezeichung Wert Bedeutung 70° Bogenlänge Magnet α_{mag} Bogenlänge zwischen Magnet 25° $\alpha_{mag.space}$ Radius zu Magnet innen $35 \mathrm{mm}$ $r_{rot.in}$ Radius zu Magnet außen $45 \mathrm{mm}$ $r_{rot.out}$ Radius Mitte Magnet 40 mm $r_{mag.mid}$

2.2 Axial-Läufer

Tabelle 9: Maße des Axial-Läufers			
Bedeutung	Bezeichung	Wert	
Bogenlänge Magnet	$lpha_{mag}$	60°	
Bogenlänge zwischen Magnet	$\alpha_{mag.space}$	15°	
Radius zu Magnet innen	$r_{rot.in}$	$45,5\mathrm{mm}$	
Radius zu Magnet außen	$r_{rot.out}$	$90,5\mathrm{mm}$	
Radius Mitte Magnet	$r_{mag.mid}$	68 mm	