Sistemas de Numeração

Sistemas Decimal, Binário e Hexadecimal.

Sistemas de Numeração

"Sistemas utilizados para quantificar as grandezas exprimindo todos os valores de uma forma perfeitamente definida."

A cada DEZ dedos foi atribuída uma pedra.

Quantas bolas temos?

6 pedras = 6 x 10 dedos = 60 bolas.

2 dedos = 2 bolas

Total: 60 animais + 2 animais = 62 bolas

Valor posicional:

$$5 \rightarrow 2 \rightarrow 5x10^{2} = 500$$

$$4 \rightarrow 1 \rightarrow 4x10^{1} = 40$$

$$6 \rightarrow 0 \rightarrow 6x10^{0} = 6$$

$$546$$

Sistema Decimal - Construção

O sistema decimal possui dez símbolos:

0123456789

Sistema Decimal - Construção

- 00 01 02 03 04 05 06 07 08 09
- 10 11 12 13 14 15 16 17 18 19
- 20 21 22 23 24 25 26 27 28 29
- ...
- 90 91 92 93 94 95 96 97 98 99
- 100 101 102 103 104 105 106...

• Utiliza apenas dois símbolos:

• 0 - Desligado - Off - Falso - F

• 1 - Ligado - On - Verdadeiro - V

Exemplos:

- · 11001010 ·8 algarismos 8 bits
- 110
 3 algarismos
 3 bits
- 1 •1 algarismo 1 bit
- 11110
 •5 algarismos
 5 bits

- Bit: BInary digiT é cada um dos algarismos de um número binário.
- Byte: Conjunto de bits (8 bits).
- Nibble: Conjunto de 4 bits.

- Múltiplos do byte:
- Kbyte: 1024 bytes.
- Mbyte: 1024 Kbytes = 1.048.576 bytes
- Gbyte: 1024 Mbytes = 1.073.741.824 bytes

Sistema Binário - Construção

- 0000 0001
- 0010 0011
- 0100 0101
- 0110 0111
- 1000 1001
- 1010 1011
- 1100 1101
- 1110 1111

Conversão Decimal-Binário $(134)_{10} = (1000110)_2$

Divide-se o número decimal por 2 e guardam-se

```
os restos:
                      Resto = 0
134 \div 2 = 67
67 \div 2 = 33
                      Resto =
33 \div 2 = 16
                      Resto =
16 \div 2 = 8
                      Resto = 0
8 \div 2 = 4
                      Resto = 0
4 \div \overline{2} = 2
                      Resto = 0
2 \div \overline{2} = \overline{1}

1 \div 2 = 0
                      Resto = 0
                      Resto = 1
```

Conversão Binário - Decimal

$$(10110)_2 = (22)_{10}$$

$$0 \to 0 \to 0 \times 2^{0} = 0 \times 1 = 0$$

$$1 \to 1 \to 1 \times 2^{1} = 1 \times 2 = 2$$

$$1 \to 2 \to 1 \times 2^{2} = 1 \times 4 = 4$$

$$0 \to 3 \to 0 \times 2^{3} = 0 \times 8 = 0$$

$$1 \to 4 \to 1 \times 2^{4} = 0 \times 16 = +16$$

Sistema Hexadecimal

- Simplifica a notação binária.
- Possui 16 símbolos:

0123456789ABCDEF

Sistema Hexadecimal - Construção

```
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
```

• • •

Conversão Decimal - Hexadecimal

$$(45)_{10} = (20)_{16}$$

Basta dividir por 16 e guardar os restos:

$$45 \div 16 = 2$$
 Resto = 13
 $2 \div 16 = 0$ Resto = 2
Resto = 13 \rightarrow Resto = D
Resto = 2 \rightarrow Resto = 2

Conversão Hexadecimal - Binário

Tabela de conversão

Hexa Binário		Hexa	Hexa Binário		Hexa Binário	
	0000	6	0110		1100	
	0001	7	0111		1101	
	0010	8	1000	E	1110	
	0011	9	1001	F	1111	
4	0100	A	1010			
5	0101	В	1011			

Conversão Hexa-Binário

$$(E0A2)_{16} = (1110000101000)_{10}$$

Utilizar a tabela de conversão para cada algarismo hexadecimal:

$$E = 1110$$

$$0 = 0000$$

$$A = 1010$$

$$2 = 0010$$

E 0 A 2 1110 0000 1010 0010

Conversão Binário-Hexa

$$(11101100011)_2 = (76)_6$$

Separar o número binário em grupos de 4 bits da direita para a esquerda:

111 0110 0011

Completar 4 bits no 1° grupo:

0111 0110 0011

Consultar a tabela:

0111=7 0110=6 0011=3

Sistema Binário de Numeração

- Exercícios:
 - Converter de decimal para binário:
 - 36₁₀, 84₁₀, 1024₁₀, 999₁₀, 100₁₀;
 - Converter de binário para decimal;
 - 101110₂, 1111111₂, 10001₂;

Sistema Binário de Numeração

• Respostas:

- $36_{10} = 100100_2$
- 84₁₀=1010100₂
- 1024₁₀=10000000000₂
- 999₁₀=1111100111₂
- $100_{10} = 1100\overline{100_2}$
- $1011110_2 = 46_{10}$
- 1111111₂=127₁₀
- 10001₂=17₁₀

Sistema Hexadecimal

- Exercícios:
 - Converter de binário para hexadecimal:
 - 1011110₂, 11111111₂, 10001₂;
 - Converter de hexadecimal para binário;
 - FF₁₆, ABC₁₆, 12B₁₆

Sistema Hexadecimal

- Respostas:
 - $1011110_2 = 2E_{16}$
 - $11111111_2 = 7F_{16}$
 - 10001₂=11₁₆
 - FF₁₆= 11111111₂
 - $ABC_{16} = \overline{1010101111100}_{2}$
 - $2E_{16} = 101110_2$