1 Polaritón plasmónico de grafeno acústico I

Figure 1: Esquema del sistema AGP-I.

Descripción. Polaritón plasmónico de grafeno acústico I: Una monocapa de grafeno a una distancia d de un sustrato metálico infinito que asumirás que es un conductor perfecto. El espacio entre la monocapa y el metal está relleno con un material de constante dieléctrica ϵ_2 . La monocapa está en contacto con un dieléctrico ϵ_1 . Comparar con los resultados del punto anterior. Estudiar el caso límite $d \to \infty$.

Ecuación característica.

$$\epsilon_2 \omega^2 \cosh(dk_x) + (\epsilon_1 \omega^2 - 2ck_x \omega_D) \sinh(dk_x) = 0.$$
 (1)

Dividiendo por $\cosh(dk_x)$ queda la forma con tanh:

$$\epsilon_2 \omega^2 + (\epsilon_1 \omega^2 - 2ck_x \omega_D) \tanh(dk_x) = 0, \qquad \Longrightarrow \qquad \tanh(dk_x) = \frac{\epsilon_2 \omega^2}{2ck_x \omega_D - \epsilon_1 \omega^2}.$$

Relación de dispersión.

$$\omega^2(k_x)_{AGP-1} = \frac{2 c k_x \omega_D \sinh(dk_x)}{\epsilon_1 \sinh(dk_x) + \epsilon_2 \cosh(dk_x)}.$$
 (3)

Asíntotas. Límite $k_x \to 0$. Con $x = dk_x$, usando $\sinh x \approx x$ y $\cosh x \approx 1$:

$$\omega^2(k_x)_{AGP-1} \approx \frac{2ck_x\omega_D x}{\epsilon_1 x + \epsilon_2} = \frac{2cd\omega_D}{\epsilon_2} k_x^2 \implies \left[\omega(k_x) \sim \sqrt{\frac{2cd\omega_D}{\epsilon_2}} k_x \right].$$

Limite $k_x \to \infty$. Con $\sinh x \sim \cosh x \sim \frac{1}{2}e^x$:

$$\omega^2(k_x) \to \frac{2 c k_x \omega_D}{\epsilon_1 + \epsilon_2} \implies \left[\omega(k_x) \sim \sqrt{\frac{2c\omega_D}{\epsilon_1 + \epsilon_2}} \sqrt{k_x} \right]$$

Agrupaciones.

- Asíntota baja (AGP acústico): $\omega \propto k_x$ para $k_x \to 0$.
- Asíntota alta común: $\omega^2 \to \frac{2ck_x\omega_D}{\epsilon_1+\epsilon_2}$.

Figure 2: Relación de dispersión $\omega(k_x)$ del AGP-I (Ec. (3)) y sus asíntotas.