

Emergent Behavior through Local Sensing

Richard Hall

Background

- A common form of swarm control leverages virtual forces generated through proximity to neighbors [cite]
- Often combined with orientation matching. Such agents are referred to as Boids (shown below)
- Easy to implement with global sensing (i.e. Vicon) but this removes the swarm's portability

Project Goal

- Implement virtual force control using onboard sensing and computing
- Explore emergent behavior resulting from inherent sensor limitations
- Constraints:
 - No agent-to-agent communication that would reduce scalability
 - No specialized sensors
 - Portable anywhere the agents can operate

Simulations

- Used Matlab to create simulation environments
- Allowed me to quickly iterate through possible onboard sensing configurations as I became familiar with blimp design and control

- Early simulations used single integrator dynamics
- Agents 'sensed' closest neighbors and simply moved to their average location

Simulations

- A few obvious problems
 - Single integrator dynamics are not useful in most cases
 - Agents cannot always sense their closest neighbors, only the closest neighbors within the sensor's 'line of sight'
 - Did not account for seaweed

• Eventually moved to double integrator dynamics with orientation included as a state

Simulations - Dynamics

Dampening values approximated with early blimp designs

$$\begin{bmatrix} x \\ y \\ \theta \\ v_x \\ v_y \\ \omega \end{bmatrix}^+ = \begin{bmatrix} 1 & 0 & 0 & \tau & 0 & 0 \\ 0 & 1 & 0 & 0 & \tau & 0 \\ 0 & 0 & 1 & 0 & 0 & \tau \\ 0 & 0 & 0 & \alpha & 0 & 0 \\ 0 & 0 & 0 & 0 & \alpha & 0 \\ 0 & 0 & 0 & 0 & 0 & \beta \end{bmatrix} \begin{bmatrix} x \\ y \\ \theta \\ v_x \\ v_y \\ \omega \end{bmatrix} + \begin{bmatrix} 0.5\tau^2 & 0 & 0 \\ 0 & 0.5\tau^2 & 0 \\ 0 & 0 & 0.5\tau^2 \\ \tau & 0 & 0 \\ 0 & \tau & 0 \\ 0 & 0 & \tau \end{bmatrix} \begin{bmatrix} a_x(f_x, f_y) \\ a_y(f_x, f_y) \\ a_\omega(f_x, f_y) \end{bmatrix}$$

- Senses the closest neighbors
 - Up to one neighbor sensed per region
 - If a zone had no neighbors within its sensing range, treat as empty
- All agents share an orientation. Allows coordinated movement

Simulations – Parameter Adjustment

- Parameters where adjusted to reveal hidden emergent behavior
- Only parameters that could be adjusted globally where explored including;
 - Virtual force characteristics
 - Force profile
 - Max force magnitudes
 - Equilibrium distance
 - Max sensing distance
 - Region based weighting
 - Global forces
 - Max number of neighbors sensed

- Basic emergent behavior such as clustering observed
- Tuning the virtual force curve parameters allowed ordered 'crystalline' formations
- Regional equilibrium distances and a global force resulted in an 'Arrow Formation'

Agent Design - Goal

- Build a LTA agent that would reflect the simulations using onboard computing and sensing alone
- Be able to control the swarm's position and properties using a single centralized controller, regardless of scaling

Agent Design

- Control Adafruit Feather M0
- Communication Integrated WIFI, UDP Broadcast Client
- Relative Location MaxBotix ping sensors (6-7 per agent)
- Orientation Adafruit BNO055 IMU sensor

Agent Design – Ver 1

- Two envelopes
- Differential drive system
- Drag sting altitude control

Agent Design – Ver 2

- Offset Holonomic Drive
- Unlike traditional holonomic drives, this drive maintains a forward direction
- Simple to control. By just controlling for heading, a correcting moment is applied as a by product

Agent Design – Controller

Setting up...

Emergent Behavior from Local Sensing

Testing

- Preliminary tests have been run to assess the qualitative nature of the blimps
- Parameters that need tuning
 - Virtual force curve
 - Ping frequency
 - Ping data filtering
 - Ping positioning
 - Altitude PID parameters
- Once tuned, Vicon will be used to capture the quantitative response to motor inputs
- This data will be used to tune the simulation parameters until the results match

Future Work

- Move the simulation from MATLAB to a faster platform such as Scrimmage
- Develop a way for the agents to differentiate between a fellow agent and other objects. This would allow the agents to work in tight spaces without 'sticking' to the walls
- Expand sensing to a sphere around the agent
- Create a global State Space that includes things such as
 - Average swarm location
 - Swarm radius/density
 - Swarm fanning (column or row formations)
- Implement deployable sensors that would allow a centralized controller to use the global State Space and an advanced control to accomplish a task

Emergent Behavior from Local Sensing

Thank You!