PERSUADE BC_OS_output

2021-05-17

Contents

1.	Kaplan-Meier	2
2.	Proportional hazards assumption	3
3.	Hazard function	Ę
	Shape of the observed smoothed hazard function	Ę
	Shape of the predicted hazard function	7
4. 1	Standard parametric models	10
	Exponential	12
	Weibull	13
	Gompertz	14
	Log-normal	15
	Log-logistic	16
	Gamma	17
	Generalised Gamma	18
4.2	Parametric natural cubic spline models	19
	Spline 1 knot hazard	
	Spline 2 knots hazard	22
	Spline 3 knots hazard	23
	Spline 1 knot odds	24
	Spline 2 knots odds	25
	Spline 3 knots odds	26
	Spline 1 knot normal	27
	Spline 2 knots normal	28
	Spline 3 knots normal	29
4.5	B Parametric (non-)mixture cure models	30
	Mixture cure Weibull	
	Non-mixture cure Weibull	
	Mixture cure Log-normal	
	Non-mixture cure Log-normal	
	Mixture cure Log-logistic	
	Non-mixture cure Log-logistic	
5.	Extrapolated survival	38
υ.	Group Good	39
	Group Medium	
	Group Poor	49
ΡF	ERSIADE object information	54

Session information 56

Link to PERSUADE GitHub page

1. Kaplan-Meier

	$\operatorname{records}$	n.max	n.start	events	*rmean	*se(rmean)	median	$0.95 \mathrm{LCL}$	$0.95 \mathrm{UCL}$
group=Good	229	229	229	51	5.934330	0.1616003	NA	NA	NA
group=Medium	229	229	229	103	4.600852	0.1856699	5.254795	4.115068	5.572603
group=Poor	228	228	228	145	3.101736	0.1772520	2.183562	1.978082	2.619178

2. Proportional hazards assumption

Should stratified parametric survival models be used?

To inform the decision whether stratified or non-stratified models should be used. One should assess whether the proportional hazard (PH) assumption holds. The PH assumption entails that the ratio of the hazards of two groups is constant over time. When the PH assumption holds, one may fit non-stratified (parametric) survival models, meaning that a single (parametric) survival model can be fitted to all groups with the group effect(s) included as a covariate of the model. When the PH assumption does not hold it is advised to fit separate (parametric) survival models to the different groups. Finally, this section only provides plots to assess the proportional hazards assumption over the period for which data are observed. Even if these plots indicate that the PH assumption does hold, it might be violated in the period for which no data are observed. For more information, please refer to the NICE TSD 14.

The Figures below allow to examine whether the PH assumption holds over the observed data period. Figure A shows the relation between the natural logarithm of time (x-axis) and the natural logarithm of the cumulative hazard (y-axis). The lines in the Figure representing the different groups. An indication that the PH assumption holds is when these lines are parallel. Figures B and C represent the scaled Schoenfeld residual plots. In those plots, the relation of time (x-axis) and the residuals of the observed events (y-axis) is plotted. For the PH assumption to hold, there should be not apparent relations between these residuals and time. To investigate this, a smoothed spline has been plotted (cyan). Once this smoothed line systematically deviates from a straight line, one can consider that the PH assumption is violated, because it indicates a relation between the coefficient (or group variable in this case) and time. This is demonstrated by Grambsch and Therneau (1994).

Another indication that the PH assumption does not hold is when the lines from different groups Kaplan-Meier plot (previous page) cross each other.

CAUTION: These plots apply to the observed data period and do not allow to make inferences about the proportional hazard function assumption beyond this period. Additionally, the end of the observed data period may be affected by the low number of observations. One should consider this when interpreting the tail of the curves.

A: LN(cumulative hazard)

B: Scaled Schoenfeld residuals

C: Scaled Schoenfeld residuals

3. Hazard function

Shape of the observed smoothed hazard function

The hazard function, or the instantaneous rate at which an event occurs at a specific time point given survival until that time point. The hazard function can take a variety of shapes depending on the distribution/parametric survival model considered. The plausibility of different shapes for the hazard function should be considered given the observed hazard function (considered below) and/or external data (not considered below).

See below for an overview of the potential shapes for the hazard function for standard parametric survival models:

No	Distribution	Hazard function shape
1	Exponential	constant hazard
2	Weibull	monotonically increasing or decreasing
3	Gompertz	hazards monotonically increasing or decreasing hazards
4	Log-normal	arc-shaped or monotonically decreasing hazards
5	Log-logistic	arc-shaped or monotonically decreasing hazards
6	Gamma	monotonically increasing or decreasing hazards
7	Generalised Gamma	arc-shaped, bathtub-shaped, monotonically increasing or monotonically decreasing hazards

as the spline-based and (non-)mixture cure models are based on the standard parametric models, the assumed hazard functions can be derived from the Table above as well. For spline-based models using the hazard scale, the Weibull distribution (thus monotonically increasing and decreasing hazards) is used and the hazard function can differ for the different segments (i.e. between the knot locations). Similarly for spline-based models using the odds (log-logistic distribution) and normal scale (log-normal distribution) as well as the distributions used for the (non-)mixture cure models (different hazard functions are potentially estimated for the (non-)cure fraction). More information and visualisation of the shape of the hazard function that can be estimated by the different parametric survival models can be found here.

CAUTION: These plots apply to the observed data period and do not allow to make inferences about the shape of the hazard function beyond this period. Additionally, the end of the observed data period may be affected by the low number of observations. One should consider this when interpreting the tail of the curves.

Shape of the predicted hazard function

The following plots dislay how the hazard rates is estimated using the different parametric survival models.

Group Good

Group Good

Group Medium

Group Medium

Group Medium

Group Poor

Group Poor

Group Poor

4.1 Standard parametric models

The circle displays the colours that are attributed to each parametric survival model in the graphs on the following pages.

The Table below displays the goodness-of-fit statistics for each parametric survival model, ordered from 'best' fitting to less well fitting based on the Akaike Information Criterion (AIC). The AIC and Bayesian Information Criterion (BIC) provide a measure of the relative fit of each model to the data, while penalising for the number of parameter included in the fitted models. The lower the AIC or BIC, the better the relative fit of a model compared to other fitted models.

In the following pages, three plots per fitted parametric survival model are displayed to support the visual inspection of the fit of the models to the observed data. Figure A shows the Kaplan-Meier curves (black and gray) versus the fitted parametric survival models (colour). Figure B displays a comparison of the smoothed hazard rates based on the empirical data (black and gray) versus the estimated transition probabilities (colour). In all Figures A and B, the Kaplan-Meier curves and the smoothed hazard rates are the same. Figure C shows a specific diagnostic plot for each fitted parametric survival model (see graphical test in Table 1 by Ishak et al. (2013). For all these plots, the rule is: the closer the coloured lines are to the black and grey lines, the better.

Notably, the Weibull (shape = 1), Gompertz (shape = 0) and gamma (shape = 1) distributions can simplify to the exponential distribution. The generalised gamma distribution can simplify to the log-normal (Q = 0), Weibull (Q = 1), exponential (Q = 1 and scale = 1) and gamma (Q = 1) distributions. Information regarding the parameterisation of the parametric survival models can be found here.

CAUTION: These goodness-of-fit statistics only apply to the observed data period and do not allow to issue statements about the suitability of the extrapolated survival by these fitted models beyond this period. Additionally, the end of the observed data period may be affected by the low number of observations. One should consider this when interpreting the tail of the curves.

Model	AIC	BIC
7. Generalised Gamma	1589.049	1629.826
4. Log-normal	1592.880	1620.066
5. Log-logistic	1609.294	1636.479
6. Gamma	1621.982	1649.167
2. Weibull	1632.618	1659.803
3. Gompertz	1660.954	1688.140
1. Exponential	1668.212	1681.805

Exponential

A: Kaplan-Meier (Exponential)

B: Annual transition probability (Exponential)

C: Diagnostic plot (Exponential)

Weibull

A: Kaplan-Meier (Weibull)

B: Annual transition probability (Weibull)

C: Diagnostic plot (Weibull)

Gompertz

A: Kaplan-Meier (Gompertz)

B: Annual transition probability (Gompertz)

C: Diagnostic plot (Gompertz)

Log-normal

A: Kaplan-Meier (Log-normal)

B: Annual transition probability (Log-normal)

C: Diagnostic plot (Log-normal)

Log-logistic

A: Kaplan-Meier (Log-logistic)

B: Annual transition probability (Log-logistic)

C: Diagnostic plot (Log-logistic)

Gamma

A: Kaplan-Meier (Gamma)

B: Annual transition probability (Gamma)

C: Diagnostic plot (Gamma)

Generalised Gamma

A: Kaplan-Meier (Generalised gamma)

B: Annual transition probability (Generalised Gamma)

C: Diagnostic plot (Generalised gamma)

4.2 Parametric natural cubic spline models

If standard parametric models do not provide a satisfactory fit to the data based on previous observations, do spline-based models provide a more satisfactory fit to the data? An explanation concerning these natural cubic spline models, henceforth spline-based models, is provided in Royston and Pamar - 2002.

Similar plots are provided as provided (and explained) in the previous section. As highlighted above, spline-based models using the hazard scale, odds scale and normal scale are extensions of the standard parametric survival models using the Weibull, log-logistic and log-normal distribution respectively.

CAUTION: These goodness-of-fit statistics only apply to the observed data period and do not allow to issue statements about the suitability of the extrapolated survival by these fitted models beyond this period. Additionally, the end of the observed data period may be affected by the low number of observations. One should consider this when interpreting the tail of the curves.

Model	AIC	BIC
9. Spline 2 knots hazard	1585.894	1640.264
12. Spline 2 knots odds	1587.289	1641.659
14. Spline 1 knot normal	1587.682	1628.460
15. Spline 2 knots normal	1588.343	1642.714
7. Generalised Gamma	1589.049	1629.826
8. Spline 1 knot hazard	1589.327	1630.105
16. Spline 3 knots normal	1589.832	1657.795
10. Spline 3 knots hazard	1589.875	1657.838
11. Spline 1 knot odds	1590.221	1630.999
13. Spline 3 knots odds	1590.720	1658.683
4. Log-normal	1592.880	1620.066
5. Log-logistic	1609.294	1636.479
6. Gamma	1621.982	1649.167
2. Weibull	1632.618	1659.803
3. Gompertz	1660.954	1688.140
1. Exponential	1668.212	1681.805

Spline 1 knot hazard

B: Annual transition probability (Spline, 1 knot, hazard scale)

C: Diagnostic plot (Spline, 1 knot, hazard scale)

Spline 2 knots hazard

B: Annual transition probability (Spline, 2 knots, hazard scale)

C: Diagnostic plot (Spline, 2 knots, hazard scale)

Spline 3 knots hazard

B: Annual transition probability (Spline, 3 knots, hazard scale)

C: Diagnostic plot (Spline, 3 knots, hazard scale)

Spline 1 knot odds

B: Annual transition probability (Spline, 1 knot, odds scale)

C: Diagnostic plot (Spline, 1 knot, odds scale)

Spline 2 knots odds

B: Annual transition probability (Spline, 2 knots, odds scale)

C: Diagnostic plot (Spline, 2 knots, odds scale)

Spline 3 knots odds

B: Annual transition probability (Spline, 3 knots, odds scale)

C: Diagnostic plot (Spline, 3 knots, odds scale)

Spline 1 knot normal

A: Kaplan-Meier (Spline, 1 knot, normal scale)

B: Annual transition probability (Spline, 1 knot, normal scale)

C: Diagnostic plot (Spline, 1 knot, normal scale)

Spline 2 knots normal

B: Annual transition probability (Spline, 2 knots, normal scale)

C: Diagnostic plot (Spline, 2 knots, normal scale)

Spline 3 knots normal

B: Annual transition probability (Spline, 3 knots, normal scale)

C: Diagnostic plot (Spline, 3 knots, normal scale)

4.3 Parametric (non-)mixture cure models

If standard parametric models do not provide a satisfactory fit to the data based on previous observations, do cure models provide a more satisfactory fit to the data?

ADD SIMILAR AS SPLINE AND EXPLAIN DIFFERENCE (NON)MXITURE CURE MODELS #### mixture cure models:

$$S\ddot{O}(1 - theta) + theta\ddot{O}1$$

(theta * 1 assumes that the cure fraction has 100% survival) non-mixture cure models:

$$exp((1-S) \ddot{O}log(theta))$$

Model	AIC
7. Generalised Gamma	1589.049
4. Log-normal	1592.880
19. Mixture cure Log-normal	1593.762
20. Non-mixture cure Log-normal	1593.793
21. Mixture cure Log-logistic	1604.290
22. Non-mixture cure Log-logistic	1605.960
5. Log-logistic	1609.294
18. Non-mixture cure Weibull	1615.016
6. Gamma	1621.982
17. Mixture cure Weibull	1622.730
2. Weibull	1632.618
3. Gompertz	1660.954
1. Exponential	1668.212

Model	Cure fraction Good	Cure fraction Medium	Cure fraction Poor
17. Mixture cure Weibull	65.2% (53.9% - 75%)	30.9% (15% - 53.1%)	17.9% (10.2% - 29.5%)
18. Non-mixture cure Weibull	$64.9\% \ (53.2\% - 75.1\%)$	29.6%~(12.9% - 54.5%)	$16.8\% \ (9.1\% - 28.8\%)$
19. Mixture cure Log-normal	57.1% (35.1% - 76.7%)	$19.3\% \ (2.9\% - 65.8\%)$	10.7%~(2.6% - 35.3%)
20. Non-mixture cure Log-normal	56%~(32.6% - $77%)$	$20.3\% \ (4.7\% - 56.9\%)$	9.9%~(2.7% - $30.2%)$
21. Mixture cure Log-logistic	60.3% (44.6% - 74.2%)	$23.4\% \ (7.3\% - 54.4\%)$	$13.6\% \ (5.6\% - 29.6\%)$
22. Non-mixture cure Log-logistic	$60.4\% \ (44.8\% - 74.2\%)$	$25\% \ (9.7\% - 51\%)$	$15.5\% \ (8\% - 27.9\%)$

Mixture cure Weibull

A: Kaplan-Meier (Weibull mixture cure)

B: Annual transition probability (Weibull mixture cure)

C: Diagnostic plot (Weibull mixture cure)

Non-mixture cure Weibull

A: Kaplan-Meier (Weibull non-mixture cure)

B: Annual transition probability (Weibull non-mixture cure)

C: Diagnostic plot (Weibull non-mixture cure)

Mixture cure Log-normal

A: Kaplan-Meier (Log-normal mixture cure)

B: Annual transition probability (Log-normal mixture cure)

C: Diagnostic plot (Log-normal mixture cure)

Non-mixture cure Log-normal

A: Kaplan-Meier (Log-normal non-mixture cure)

B: Annual transition probability (Log-normal non-mixture cure)

C: Diagnostic plot (Log-normal non-mixture cure)

Mixture cure Log-logistic

A: Kaplan-Meier (Log-logistic mixture cure)

B: Annual transition probability (Log-logistic mixture cure)

C: Diagnostic plot (Log-logistic mixture cure)

Non-mixture cure Log-logistic

A: Kaplan-Meier (Log-logistic non-mixture cure)

B: Annual transition probability (Log-logistic non-mixture cure)

C: Diagnostic plot (Log-logistic non-mixture cure)

5. Extrapolated survival

The plausibility of the estimated survival beyond the oberseved data period should be considered and is typically an influential aspect of health economic models. This includes considering model(s) is/are more appropriate/plausible for long-term extrapolation when compared to external data (including general population mortality)?

In this section, the estimated survival probabilities for the period of time within and beyond data collection, i.e. the extrapolation are presented (can be specified by the user). This is done by 1) plotting the survival curves (Figures A, B and C), 2) displaying the survival probabilities at multiple time points (first Table), 3) ploting annual transition probabilities (Figures D, E and F), 4) ploting the smoothed hazard functions (Figures G, H and I), and providing the summary statistics of the estimated annual transition probabilities (second Table). This information is provided for each group separately.

One way to assess the plausibility of the extrapolated survival probabilities is to compare the estimated survival probabilities at different time points with external data (e.g. observational data and/or expert opinion). Another way to check for plausibility is to compare the annual transition probability with those observed in the general population (general population mortality can be obtained through national statistics). Parametric survival models annual conditional transition probabilities more favourable than those observed for the general population may not be plausible. This would require either to select an alternative parametric survival model or to adjust the selected parametric survival model for general population probabilities.

Group Good

A: Kaplan-Meier (parametric curves)

B: Kaplan-Meier (spline curves)

C: Kaplan-Meier (cure curves)

Table 2: Survival probability at different time points

	T=0	T= 1	T=2	T=3	T= 4	T=5	T= 10	T= 15	T = 20	T = 25	T = 30	T = 35
1. Exponential	1	0.941	0.886	0.834	0.785	0.739	0.547	0.404	0.299	0.221	0.163	0.121
2. Weibull	1	0.978	0.932	0.870	0.797	0.719	0.345	0.122	0.033	0.007	0.001	0.000
3. Gompertz	1	0.962	0.917	0.863	0.801	0.729	0.280	0.015	0.000	0.000	0.000	0.000
4. Log-normal	1	0.986	0.933	0.861	0.785	0.713	0.441	0.287	0.196	0.139	0.102	0.076
5. Log-logistic	1	0.980	0.932	0.865	0.789	0.712	0.403	0.240	0.156	0.108	0.080	0.061
6. Gamma	1	0.982	0.935	0.869	0.793	0.714	0.367	0.165	0.069	0.027	0.011	0.004
7. Generalised Gamma	1	0.991	0.928	0.849	0.778	0.717	0.526	0.425	0.362	0.319	0.286	0.261
8. Spline 1 knot hazard	1	0.992	0.927	0.843	0.774	0.719	0.521	0.381	0.279	0.205	0.151	0.111
9. Spline 2 knots hazard	1	0.992	0.928	0.843	0.774	0.719	0.523	0.384	0.283	0.210	0.156	0.116
10. Spline 3 knots hazard	1	0.994	0.922	0.843	0.779	0.721	0.486	0.319	0.205	0.130	0.081	0.050
11. Spline 1 knot odds	1	0.992	0.927	0.843	0.774	0.718	0.532	0.415	0.338	0.283	0.242	0.211
12. Spline 2 knots odds	1	0.992	0.928	0.843	0.774	0.718	0.533	0.418	0.340	0.285	0.245	0.213
13. Spline 3 knots odds	1	0.994	0.922	0.844	0.780	0.721	0.498	0.363	0.277	0.220	0.180	0.151
14. Spline 1 knot normal	1	0.992	0.926	0.847	0.778	0.719	0.515	0.391	0.308	0.250	0.207	0.174
15. Spline 2 knots normal	1	0.992	0.929	0.842	0.773	0.718	0.538	0.426	0.350	0.295	0.253	0.220
16. Spline 3 knots normal	1	0.994	0.921	0.845	0.780	0.721	0.503	0.371	0.285	0.225	0.182	0.150
17. Mixture cure Weibull	1	0.986	0.934	0.853	0.770	0.708	0.652	0.652	0.652	0.652	0.652	0.652
18. Non-mixture cure Weibull	1	0.987	0.934	0.852	0.770	0.708	0.649	0.649	0.649	0.649	0.649	0.649
19. Mixture cure Log-normal	1	0.991	0.930	0.845	0.771	0.715	0.600	0.578	0.573	0.572	0.571	0.571
20. Non-mixture cure Log-normal	1	0.991	0.930	0.845	0.771	0.715	0.597	0.571	0.564	0.561	0.561	0.560
21. Mixture cure Log-logistic	1	0.989	0.933	0.846	0.767	0.712	0.624	0.610	0.607	0.605	0.604	0.604
22. Non-mixture cure Log-logistic	1	0.989	0.933	0.846	0.767	0.712	0.624	0.611	0.607	0.606	0.605	0.605

D: Annual transition probability (parametric curves)

E: Annual transition probability (spline curves)

F: Annual transition probability (cure curves)

G: Hazard function (parametric curves)

Table 3: Summary statistics of annual transition probabilities

	Mean	${\rm Std.Dev}$	Min	Q1	Median	Q3	Max	IQR
1. Exponential	0.0585969	0.0000000	0.0585969	0.0585969	0.0585969	0.0585969	0.0585969	0.0000000
2. Weibull	0.2349897	0.0957992	0.0039603	0.1641779	0.2507544	0.3170901	0.3714738	0.1525734
3. Gompertz	0.4784514	0.3579470	0.0342601	0.1256322	0.4037134	0.8634656	1.0000000	0.7378334
4. Log-normal	0.0683436	0.0166027	0.0000121	0.0563972	0.0670524	0.0819079	0.0936091	0.0254606
5. Log-logistic	0.0728032	0.0230017	0.0022936	0.0533146	0.0700441	0.0935993	0.1092616	0.0401882
6. Gamma	0.1493002	0.0379093	0.0014181	0.1390361	0.1644882	0.1750195	0.1807519	0.0358775
7. Generalised Gamma	0.0347149	0.0206128	0.0000000	0.0191123	0.0269247	0.0452063	0.0862100	0.0260182
8. Spline 1 knot hazard	0.0605266	0.0109221	0.0000002	0.0592140	0.0598953	0.0610195	0.0916043	0.0018010
9. Spline 2 knots hazard	0.0593803	0.0110234	0.0000002	0.0576502	0.0585313	0.0599923	0.0923962	0.0023363
10. Spline 3 knots hazard	0.0832632	0.0146134	0.0003310	0.0798260	0.0865334	0.0909988	0.0996328	0.0111549
11. Spline 1 knot odds	0.0410014	0.0174571	0.0000002	0.0281269	0.0363823	0.0502992	0.0917044	0.0221203
12. Spline 2 knots odds	0.0406443	0.0174917	0.0000002	0.0278516	0.0359503	0.0497462	0.0924439	0.0218428
13. Spline 3 knots odds	0.0497623	0.0176792	0.0003253	0.0358147	0.0466608	0.0638606	0.0999099	0.0279854
14. Spline 1 knot normal	0.0463860	0.0161648	0.0000000	0.0345970	0.0424046	0.0560095	0.0865141	0.0213599
15. Spline 2 knots normal	0.0400250	0.0171948	0.0000006	0.0281480	0.0348987	0.0473455	0.0953359	0.0191484
16. Spline 3 knots normal	0.0503355	0.0161995	0.0007793	0.0386308	0.0470013	0.0611992	0.0975846	0.0225147
17. Mixture cure Weibull	0.0103115	0.0253657	0.0000000	0.0000000	0.0000000	0.0001031	0.0987558	0.0000986
18. Non-mixture cure Weibull	0.0104098	0.0254044	0.0000000	0.0000000	0.0000000	0.0001575	0.0985854	0.0001510
19. Mixture cure Log-normal	0.0135710	0.0252751	0.0000000	0.0000929	0.0008027	0.0116086	0.0931907	0.0114404
20. Non-mixture cure Log-normal	0.0140594	0.0251944	0.0000000	0.0001962	0.0012968	0.0132969	0.0934968	0.0130702
21. Mixture cure Log-logistic	0.0122019	0.0249146	0.0000516	0.0001512	0.0006917	0.0075147	0.0986522	0.0073113
22. Non-mixture cure Log-logistic	0.0121786	0.0249023	0.0000517	0.0001509	0.0006881	0.0074554	0.0987027	0.0072528

H: Hazard function (spline curves)

I: Hazard function (cure curves)

Group Medium

A: Kaplan-Meier (parametric curves)

B: Kaplan-Meier (spline curves)

C: Kaplan-Meier (cure curves)

Table 4: Survival probability at different time points

	T=0	T= 1	T=2	T=3	T= 4	T=5	T= 10	T = 15	T = 20	T = 25	T = 30	T = 35
1. Exponential	1	0.872	0.761	0.663	0.578	0.505	0.255	0.128	0.065	0.033	0.016	0.008
2. Weibull	1	0.923	0.811	0.693	0.578	0.474	0.141	0.032	0.006	0.001	0.000	0.000
3. Gompertz	1	0.898	0.794	0.689	0.586	0.486	0.117	0.007	0.000	0.000	0.000	0.000
4. Log-normal	1	0.935	0.797	0.668	0.560	0.473	0.228	0.126	0.077	0.050	0.034	0.024
5. Log-logistic	1	0.927	0.801	0.673	0.561	0.468	0.218	0.124	0.081	0.057	0.043	0.034
6. Gamma	1	0.930	0.813	0.689	0.572	0.469	0.154	0.045	0.013	0.003	0.001	0.000
7. Generalised Gamma	1	0.937	0.774	0.648	0.556	0.488	0.310	0.232	0.187	0.158	0.138	0.122
8. Spline 1 knot hazard	1	0.939	0.782	0.652	0.558	0.486	0.265	0.150	0.087	0.052	0.031	0.019
9. Spline 2 knots hazard	1	0.935	0.766	0.673	0.579	0.490	0.184	0.061	0.018	0.005	0.001	0.000
10. Spline 3 knots hazard	1	0.936	0.761	0.674	0.585	0.491	0.159	0.040	0.008	0.001	0.000	0.000
11. Spline 1 knot odds	1	0.939	0.778	0.648	0.556	0.489	0.301	0.213	0.162	0.131	0.109	0.093
12. Spline 2 knots odds	1	0.935	0.769	0.673	0.576	0.489	0.235	0.136	0.089	0.063	0.048	0.037
13. Spline 3 knots odds	1	0.937	0.761	0.675	0.583	0.489	0.207	0.108	0.066	0.044	0.032	0.024
14. Spline 1 knot normal	1	0.938	0.775	0.648	0.557	0.488	0.290	0.195	0.141	0.107	0.084	0.067
15. Spline 2 knots normal	1	0.930	0.773	0.669	0.572	0.489	0.240	0.135	0.083	0.054	0.037	0.026
16. Spline 3 knots normal	1	0.937	0.761	0.675	0.583	0.489	0.198	0.091	0.047	0.026	0.015	0.010
17. Mixture cure Weibull	1	0.928	0.804	0.676	0.563	0.475	0.319	0.310	0.309	0.309	0.309	0.309
18. Non-mixture cure Weibull	1	0.929	0.801	0.670	0.559	0.475	0.314	0.297	0.296	0.296	0.296	0.296
19. Mixture cure Log-normal	1	0.936	0.790	0.658	0.556	0.479	0.295	0.238	0.215	0.205	0.200	0.197
20. Non-mixture cure Log-normal	1	0.937	0.787	0.654	0.555	0.482	0.315	0.261	0.237	0.225	0.218	0.214
21. Mixture cure Log-logistic	1	0.931	0.793	0.658	0.553	0.477	0.318	0.275	0.259	0.250	0.246	0.243
22. Non-mixture cure Log-logistic	1	0.931	0.793	0.659	0.554	0.479	0.327	0.287	0.272	0.265	0.261	0.258

D: Annual transition probability (parametric curves)

E: Annual transition probability (spline curves)

F: Annual transition probability (cure curves)

G: Hazard function (parametric curves)

Table 5: Summary statistics of annual transition probabilities

	Mean	${\rm Std.Dev}$	Min	Q1	Median	Q3	Max	IQR
1. Exponential	0.1278820	0.0000000	0.1278820	0.1278820	0.1278820	0.1278820	0.1278820	0.0000000
2. Weibull	0.2818916	0.0732627	0.0298491	0.2382194	0.2998675	0.3413164	0.3730304	0.1028543
3. Gompertz	0.5313783	0.3082529	0.0960264	0.2326209	0.5026105	0.8415103	1.0000000	0.6074770
4. Log-normal	0.0954433	0.0321269	0.0004751	0.0692201	0.0864990	0.1175437	0.1630482	0.0482006
5. Log-logistic	0.0853562	0.0400803	0.0150627	0.0512119	0.0722192	0.1148301	0.1673124	0.0634470
6. Gamma	0.2142916	0.0338979	0.0159374	0.2105278	0.2273428	0.2338793	0.2373538	0.0232792
7. Generalised Gamma	0.0527725	0.0403634	0.0000000	0.0249765	0.0361491	0.0643696	0.1783037	0.0392711
8. Spline 1 knot hazard	0.1055301	0.0199804	0.0005533	0.0961200	0.1007177	0.1087714	0.1767370	0.0126190
9. Spline 2 knots hazard	0.2108105	0.0424037	0.0000006	0.1921569	0.2213494	0.2415978	0.2568265	0.0493204
10. Spline 3 knots hazard	0.2648787	0.0695995	0.0000040	0.2243467	0.2816554	0.3202621	0.3498686	0.0956896
11. Spline 1 knot odds	0.0602433	0.0377595	0.0004610	0.0331955	0.0461415	0.0743721	0.1809477	0.0410625
12. Spline 2 knots odds	0.0828374	0.0396992	0.0000004	0.0500917	0.0706148	0.1135216	0.2192447	0.0632652
13. Spline 3 knots odds	0.0937702	0.0420449	0.0000052	0.0581364	0.0821832	0.1255993	0.2117141	0.0672824
14. Spline 1 knot normal	0.0691260	0.0346943	0.0000012	0.0444894	0.0569700	0.0823605	0.1804334	0.0378197
15. Spline 2 knots normal	0.0933942	0.0319718	0.0000000	0.0682231	0.0852159	0.1164045	0.2005479	0.0480608
16. Spline 3 knots normal	0.1188116	0.0321078	0.0000001	0.0939627	0.1132858	0.1426801	0.2122248	0.0486132
17. Mixture cure Weibull	0.0274205	0.0519801	0.0000000	0.0000000	0.0000059	0.0191609	0.1672892	0.0189217
18. Non-mixture cure Weibull	0.0284836	0.0517239	0.0000000	0.0000000	0.0000548	0.0281639	0.1675628	0.0279040
19. Mixture cure Log-normal	0.0386248	0.0496451	0.0001478	0.0035974	0.0128314	0.0569406	0.1684663	0.0533108
20. Non-mixture cure Log-normal	0.0369202	0.0476273	0.0001962	0.0048679	0.0133317	0.0491721	0.1721086	0.0441369
21. Mixture cure Log-logistic	0.0336695	0.0485634	0.0012991	0.0028998	0.0085638	0.0419015	0.1712400	0.0388233
22. Non-mixture cure Log-logistic	0.0321761	0.0482523	0.0010967	0.0024492	0.0073855	0.0377612	0.1712106	0.0351424

H: Hazard function (spline curves)

I: Hazard function (cure curves)

Group Poor

A: Kaplan-Meier (parametric curves)

B: Kaplan-Meier (spline curves)

C: Kaplan-Meier (cure curves)

Table 6: Survival probability at different time points

	T=0	T= 1	T=2	T=3	T= 4	T=5	T= 10	T= 15	T = 20	T = 25	T = 30	T = 35
1. Exponential	1	0.755	0.570	0.430	0.325	0.245	0.060	0.015	0.004	0.001	0.000	0.000
2. Weibull	1	0.817	0.608	0.430	0.292	0.193	0.017	0.001	0.000	0.000	0.000	0.000
3. Gompertz	1	0.776	0.588	0.436	0.315	0.221	0.022	0.001	0.000	0.000	0.000	0.000
4. Log-normal	1	0.820	0.572	0.401	0.289	0.214	0.063	0.025	0.012	0.006	0.004	0.002
5. Log-logistic	1	0.819	0.568	0.389	0.275	0.203	0.069	0.034	0.021	0.014	0.010	0.008
6. Gamma	1	0.829	0.605	0.420	0.283	0.187	0.020	0.002	0.000	0.000	0.000	0.000
7. Generalised Gamma	1	0.810	0.555	0.399	0.302	0.237	0.100	0.057	0.037	0.026	0.019	0.015
8. Spline 1 knot hazard	1	0.822	0.545	0.390	0.301	0.244	0.109	0.056	0.031	0.018	0.011	0.007
9. Spline 2 knots hazard	1	0.817	0.546	0.396	0.305	0.243	0.096	0.043	0.021	0.010	0.005	0.003
10. Spline 3 knots hazard	1	0.819	0.540	0.400	0.310	0.243	0.081	0.030	0.012	0.005	0.002	0.001
11. Spline 1 knot odds	1	0.820	0.542	0.390	0.303	0.248	0.127	0.082	0.060	0.047	0.038	0.032
12. Spline 2 knots odds	1	0.817	0.544	0.393	0.304	0.246	0.120	0.075	0.054	0.041	0.033	0.027
13. Spline 3 knots odds	1	0.818	0.542	0.398	0.308	0.246	0.110	0.065	0.044	0.033	0.026	0.021
14. Spline 1 knot normal	1	0.811	0.549	0.398	0.305	0.242	0.102	0.054	0.033	0.021	0.015	0.011
15. Spline 2 knots normal	1	0.815	0.546	0.392	0.303	0.245	0.113	0.065	0.042	0.029	0.021	0.016
16. Spline 3 knots normal	1	0.818	0.541	0.398	0.308	0.244	0.100	0.051	0.030	0.019	0.013	0.009
17. Mixture cure Weibull	1	0.819	0.585	0.403	0.290	0.229	0.179	0.179	0.179	0.179	0.179	0.179
18. Non-mixture cure Weibull	1	0.820	0.570	0.391	0.285	0.228	0.169	0.168	0.168	0.168	0.168	0.168
19. Mixture cure Log-normal	1	0.818	0.558	0.394	0.295	0.235	0.134	0.116	0.111	0.109	0.108	0.108
20. Non-mixture cure Log-normal	1	0.818	0.551	0.390	0.297	0.241	0.143	0.118	0.109	0.105	0.103	0.101
21. Mixture cure Log-logistic	1	0.822	0.549	0.381	0.290	0.240	0.163	0.148	0.143	0.140	0.139	0.138
22. Non-mixture cure Log-logistic	1	0.823	0.549	0.380	0.293	0.246	0.178	0.165	0.161	0.158	0.157	0.157

D: Annual transition probability (parametric curves)

E: Annual transition probability (spline curves)

F: Annual transition probability (cure curves)

G: Hazard function (parametric curves)

Table 7: Summary statistics of annual transition probabilities

	Mean	Std.Dev	Min	Q1	Median	Q3	Max	IQR
1. Exponential	0.2449482	0.0000000	0.2449482	0.2449482	0.2449482	0.2449482	0.2449482	0.0000000
2. Weibull	0.4544976	0.0865169	0.0907442	0.4105709	0.4790585	0.5216195	0.5525972	0.1107778
3. Gompertz	0.5870906	0.2349728	0.2169796	0.3698466	0.5818235	0.8071868	1.0000000	0.4373402
4. Log-normal	0.1496409	0.0630510	0.0022958	0.1000774	0.1279068	0.1841659	0.3070152	0.0838631
5. Log-logistic	0.1158111	0.0780753	0.0305143	0.0571627	0.0832145	0.1494462	0.3207417	0.0920005
6. Gamma	0.3702654	0.0421058	0.0471845	0.3701940	0.3852535	0.3907371	0.3935697	0.0204764
7. Generalised Gamma	0.1013639	0.0706160	0.0000317	0.0518395	0.0728961	0.1237607	0.3222943	0.0717062
8. Spline 1 knot hazard	0.1254303	0.0555367	0.0048605	0.0929348	0.1060806	0.1322263	0.3462113	0.0391837
9. Spline 2 knots hazard	0.1469155	0.0485978	0.0027621	0.1183362	0.1309295	0.1552006	0.3471134	0.0367658
10. Spline 3 knots hazard	0.1787527	0.0386871	0.0031604	0.1581132	0.1681704	0.1865373	0.3590229	0.0283502
11. Spline 1 knot odds	0.0828358	0.0722684	0.0040186	0.0370407	0.0534928	0.0956147	0.3493116	0.0583932
12. Spline 2 knots odds	0.0867603	0.0720369	0.0029239	0.0397013	0.0573770	0.1025038	0.3469030	0.0626095
13. Spline 3 knots odds	0.0933644	0.0716684	0.0031346	0.0443526	0.0641665	0.1145082	0.3547245	0.0699417
14. Spline 1 knot normal	0.1114168	0.0648053	0.0001727	0.0667705	0.0870224	0.1315769	0.3327152	0.0646236
15. Spline 2 knots normal	0.1011547	0.0666094	0.0003302	0.0575542	0.0758377	0.1164719	0.3361441	0.0587484
16. Spline 3 knots normal	0.1148143	0.0640431	0.0005575	0.0702242	0.0912163	0.1362709	0.3562720	0.0658618
17. Mixture cure Weibull	0.0374953	0.0871122	0.0000000	0.0000000	0.0000000	0.0019526	0.3124571	0.0019062
18. Non-mixture cure Weibull	0.0389260	0.0878954	0.0000000	0.0000000	0.0000000	0.0058137	0.3224039	0.0057065
19. Mixture cure Log-normal	0.0496395	0.0871508	0.0002039	0.0008353	0.0048810	0.0495432	0.3220204	0.0484359
20. Non-mixture cure Log-normal	0.0514956	0.0842490	0.0012590	0.0032428	0.0107457	0.0537620	0.3323853	0.0503940
21. Mixture cure Log-logistic	0.0439682	0.0847543	0.0005930	0.0014141	0.0047437	0.0321531	0.3414361	0.0305649
22. Non-mixture cure Log-logistic	0.0410716	0.0836704	0.0004619	0.0010900	0.0036280	0.0253772	0.3434417	0.0241440

H: Hazard function (spline curves)

I: Hazard function (cure curves)

PERSUADE object information

```
## List of 6
               : chr "BC_OS"
   $ name
   $ input
               :List of 11
##
     ..$ years
                            : num [1:686] 3.68 4.32 4.82 3.16 2.65 ...
                           : num [1:686] 0 0 0 0 0 0 1 0 0 ...
##
    ..$ status
##
    ..$ group
                           : Factor w/ 3 levels "Good", "Medium", ...: 1 1 1 1 1 1 1 1 1 1 ...
##
    ..$ strata
                           : logi TRUE
                            : logi TRUE
##
     ..$ spline mod
##
     ..$ cure_mod
                           : logi TRUE
                           : chr "logistic"
##
     ..$ cure link
     ..$ time_unit
                           : num 0.0833
##
##
     ..$ time_horizon
                           : num 40
     ..$ time_pred_surv_table: num [1:12] 0 12 24 36 48 60 120 180 240 300 ...
##
                            : num [1:481] 0 0.0833 0.1667 0.25 0.3333 ...
     ..$ time_pred
##
   $ surv_obs :List of 6
##
    ..$ km
                :List of 23
     ....- attr(*, "class")= chr [1:2] "npsurv" "survfit"
##
     ..$ km_names: num [1:646] 1 1 1 1 1 1 1 1 1 1 ...
     ..$ cum_haz :'data.frame': 256 obs. of 15 variables:
##
     ..$ haz :List of 5
##
##
     ..$ tp
              :List of 4
     ..$ cox_reg :List of 21
    ....- attr(*, "class")= chr "coxph"
##
##
   $ surv model:List of 26
##
    ..$ expo
                       :List of 28
##
     .. ..- attr(*, "class")= chr "flexsurvreg"
##
                       :List of 28
##
     .. ..- attr(*, "class")= chr "flexsurvreg"
##
     ..$ gom
                       :List of 28
##
     .. ..- attr(*, "class")= chr "flexsurvreg"
##
                       :List of 28
##
     .. ..- attr(*, "class")= chr "flexsurvreg"
##
     ..$ llog
                       :List of 28
##
     .. ..- attr(*, "class")= chr "flexsurvreg"
     ..$ gam
                       :List of 28
     .. ..- attr(*, "class")= chr "flexsurvreg"
##
     ..$ ggam
                       :List of 28
##
     .. ..- attr(*, "class")= chr "flexsurvreg"
##
     ..$ IC
                       :'data.frame': 7 obs. of 3 variables:
##
     ..$ spl_hazard1
                       :List of 31
##
     .. ..- attr(*, "class")= chr "flexsurvreg"
     ..$ spl hazard2
##
                       :List of 31
##
     .. ..- attr(*, "class")= chr "flexsurvreg"
##
     ..$ spl hazard3
                       :List of 31
##
     .. ..- attr(*, "class")= chr "flexsurvreg"
##
     ..$ spl_odds1
                       :List of 31
##
     .. ..- attr(*, "class")= chr "flexsurvreg"
##
     ..$ spl_odds2
                       :List of 31
##
     ....- attr(*, "class")= chr "flexsurvreg"
##
                       :List of 31
     ..$ spl_odds3
     .. ..- attr(*, "class")= chr "flexsurvreg"
##
     ..$ spl_normal1 :List of 31
```

```
##
    .. ..- attr(*, "class")= chr "flexsurvreg"
##
    ..$ spl_normal2
                       :List of 31
    .. ..- attr(*, "class")= chr "flexsurvreg"
##
##
    ..$ spl_normal3
                      :List of 31
    .. ..- attr(*, "class")= chr "flexsurvreg"
##
##
    ..$ IC spl :'data.frame': 9 obs. of 3 variables:
##
    ..$ cure_weib_mix :List of 3
##
    ..$ cure_weib_nmix :List of 3
##
    ..$ cure_lnorm_mix :List of 3
##
    ..$ cure_lnorm_nmix:List of 3
##
    ..$ cure_llog_mix :List of 3
##
    ..$ cure_llog_nmix :List of 3
    ..$ IC_cure :'data.frame': 6 obs. of 5 variables:
##
                     : chr [1:21, 1:105] "1. Exponential" "rate" "-2.80703426596042" "-3.08148409638
##
    ...- attr(*, "dimnames")=List of 2
##
   $ surv_pred :List of 3
##
    ..$ model:List of 44
    ..$ gr :List of 3
##
##
    ..$ tp_gr:List of 3
              :List of 8
## $ misc
##
                   :Class 'formula' language Surv(years, status) ~ group
    ..... attr(*, ".Environment")=<environment: 0x00000000241ac8d8>
    ..$ group_names: chr [1:3] "Good" "Medium" "Poor"
##
##
    ..$ ngroups : int 3
    ..$ lbls_all : chr [1:23] "time" " 1. Exponential" " 2. Weibull" " 3. Gompertz" ...
##
    ..$ lbls : chr [1:7] " 1. Exponential" " 2. Weibull" " 3. Gompertz" " 4. Log-normal" ...
    ..$ lbls_spline: chr [1:9] " 8. Spline 1 knot hazard" " 9. Spline 2 knots hazard" "10. Spline 3 kn
##
    ..$ lbls_cure : chr [1:6] "17. Mixture cure Weibull" "18. Non-mixture cure Weibull" "19. Mixture
## ..$ cols_tp : num 23
## NULL
```

Session information

```
## R version 4.0.1 (2020-06-06)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19041)
## Matrix products: default
##
## Random number generation:
## RNG:
             Mersenne-Twister
   Normal: Inversion
   Sample: Rejection
##
## attached base packages:
## [1] splines
                 stats
                           graphics grDevices utils
                                                          datasets methods
## [8] base
##
## other attached packages:
  [1] sft_2.2-1
                           SuppDists_1.1-9.5
                                               fda_5.1.7
                                                                  fds_1.8
  [5] RCurl_1.98-1.2
                           rainbow_3.6
                                               pcaPP_1.9-73
                                                                  MASS_7.3-51.6
                                               knitr_1.30
   [9] Matrix_1.2-18
                           kableExtra_1.3.1
                                                                  summarytools_0.9.6
## [13] data.table_1.13.4
                           survminer_0.4.8
                                               ggpubr_0.4.0
                                                                  muhaz 1.2.6.1
## [17] flexsurv_1.1.1
                           rms_6.1-0
                                               SparseM_1.78
                                                                  Hmisc_4.4-2
## [21] ggplot2_3.3.2
                           Formula_1.2-4
                                               survival_3.2-7
                                                                  lattice_0.20-41
##
## loaded via a namespace (and not attached):
##
     [1] TH.data 1.0-10
                             colorspace 2.0-0
                                                  ggsignif 0.6.0
                             ellipsis_0.3.1
##
     [4] pryr_0.1.4
                                                  rio_0.5.16
##
     [7] mclust_5.4.7
                             htmlTable_2.1.0
                                                  base64enc 0.1-3
##
  [10] rstudioapi_0.13
                             farver_2.0.3
                                                  MatrixModels_0.4-1
  [13] mvtnorm_1.1-1
                             lubridate_1.7.9.2
                                                  xm12_1.3.2
                                                  km.ci_0.5-2
  [16] codetools_0.2-16
                             broom_0.7.2
   [19] cluster_2.1.0
                                                  compiler_4.0.1
                             png_0.1-7
##
  [22] httr_1.4.2
                             backports_1.2.0
                                                  htmltools_0.5.0
   [25] quantreg_5.75
                             tools_4.0.1
                                                  gtable_0.3.0
##
   [28] glue_1.4.2
                             dplyr_1.0.2
                                                  Rcpp_1.0.5
##
   [31] carData_3.0-4
                             cellranger_1.1.0
                                                  vctrs_0.3.5
##
  [34] nlme_3.1-148
                             conquer_1.0.2
                                                  xfun_0.19
## [37] stringr_1.4.0
                             openxlsx_4.2.3
                                                  rvest_0.3.6
##
   [40] lifecycle_0.2.0
                             gtools_3.8.2
                                                  rstatix_0.6.0
##
   [43] polspline_1.1.19
                             zoo_1.8-8
                                                  scales_1.1.1
##
  [46] hms_0.5.3
                             sandwich_3.0-0
                                                  RColorBrewer_1.1-2
   [49] yaml_2.2.1
                             curl_4.3
                                                  gridExtra_2.3
##
##
   [52] KMsurv 0.1-5
                             pander 0.6.3
                                                  rpart 4.1-15
##
   [55] latticeExtra_0.6-29 stringi_1.5.3
                                                  checkmate_2.0.0
  [58] zip_2.1.1
                             hdrcde 3.3
                                                  bitops 1.0-6
##
  [61] rlang_0.4.9
                                                  matrixStats_0.57.0
                             pkgconfig_2.0.3
##
   [64] evaluate_0.14
                             purrr_0.3.4
                                                  labeling_0.4.2
##
                                                  htmlwidgets_1.5.2
   [67] ks_1.11.7
                             rapportools_1.0
  [70] tidyselect_1.1.0
                             deSolve_1.28
                                                  plyr_1.8.6
##
  [73] magrittr_2.0.1
                             R6_2.5.0
                                                  magick_2.5.2
                             multcomp_1.4-15
   [76] generics_0.1.0
                                                  pillar_1.4.7
## [79] haven_2.3.1
                             foreign_0.8-80
                                                  withr_2.3.0
## [82] abind_1.4-5
                             nnet_7.3-14
                                                  flexsurvcure_1.2.0
```

##	[85]	tibble_3.0.4	mstate_0.2.12	crayon_1.3.4
##	[88]	car_3.0-10	survMisc_0.5.5	KernSmooth_2.23-17
##	[91]	rmarkdown_2.5	jpeg_0.1-8.1	grid_4.0.1
##	[94]	readxl_1.3.1	forcats_0.5.0	digest_0.6.27
##	[97]	webshot_0.5.2	xtable_1.8-4	tidyr_1.1.2
##	[100]	munsell_0.5.0	<pre>viridisLite_0.3.0</pre>	tcltk_4.0.1
##	[103]	quadprog_1.5-8		