Chapitre 1 : Enchainement d'opérations

8 septembre 2019

I. Priorités des opérations

II. Calculer une expression

III. Vocabulaire

• Tom a fait les calculs dans l'ordre $(8 + 2 = 10, 10 \times 3 = 30)$, et Alice a commencé par la multiplication $(2 \times 3 = 6, 8 + 6 = 14)$.

- Tom a fait les calculs dans l'ordre $(8 + 2 = 10, 10 \times 3 = 30)$, et Alice a commencé par la multiplication $(2 \times 3 = 6, 8 + 6 = 14)$.
- ② Une calculatrice scientifique donne le résultat 14, c'est donc Alice qui a raison.

- Tom a fait les calculs dans l'ordre $(8 + 2 = 10, 10 \times 3 = 30)$, et Alice a commencé par la multiplication $(2 \times 3 = 6, 8 + 6 = 14)$.
- ② Une calculatrice scientifique donne le résultat 14, c'est donc Alice qui a raison.
- On a :

- Tom a fait les calculs dans l'ordre $(8 + 2 = 10, 10 \times 3 = 30)$, et Alice a commencé par la multiplication $(2 \times 3 = 6, 8 + 6 = 14)$.
- ② Une calculatrice scientifique donne le résultat 14, c'est donc Alice qui a raison.
- On a :
- A = 22;

- Tom a fait les calculs dans l'ordre $(8 + 2 = 10, 10 \times 3 = 30)$, et Alice a commencé par la multiplication $(2 \times 3 = 6, 8 + 6 = 14)$.
- ② Une calculatrice scientifique donne le résultat 14, c'est donc Alice qui a raison.
- On a :
- A = 22;
- *B* = 13;

- Tom a fait les calculs dans l'ordre $(8 + 2 = 10, 10 \times 3 = 30)$, et Alice a commencé par la multiplication $(2 \times 3 = 6, 8 + 6 = 14)$.
- ② Une calculatrice scientifique donne le résultat 14, c'est donc Alice qui a raison.
- On a :
- A = 22;
- *B* = 13;
- C = 22;

- 1 Tom a fait les calculs dans l'ordre $(8+2=10, 10\times 3=30)$, et Alice a commencé par la multiplication $(2 \times 3 = 6, 8 + 6 = 14)$.
- 2 Une calculatrice scientifique donne le résultat 14, c'est donc Alice qui a raison.
- On a :
- D = 22: • A = 22:

- B = 13:
- C = 22:

- Tom a fait les calculs dans l'ordre $(8 + 2 = 10, 10 \times 3 = 30)$, et Alice a commencé par la multiplication $(2 \times 3 = 6, 8 + 6 = 14)$.
- ② Une calculatrice scientifique donne le résultat 14, c'est donc Alice qui a raison.
- On a :
- A = 22; D = 22;
- B = 13; E = 25;
- C = 22;

- Tom a fait les calculs dans l'ordre $(8 + 2 = 10, 10 \times 3 = 30)$, et Alice a commencé par la multiplication $(2 \times 3 = 6, 8 + 6 = 14)$.
- ② Une calculatrice scientifique donne le résultat 14, c'est donc Alice qui a raison.
- On a :
- A = 22; D = 22;
- B = 13; E = 25;
- C = 22; F = 14;

- Tom a fait les calculs dans l'ordre $(8 + 2 = 10, 10 \times 3 = 30)$, et Alice a commencé par la multiplication $(2 \times 3 = 6, 8 + 6 = 14)$.
- ② Une calculatrice scientifique donne le résultat 14, c'est donc Alice qui a raison.
- On a :

•
$$A = 22$$
;

•
$$D = 22$$
;

•
$$G = 20$$
;

•
$$E = 25$$
;

•
$$C = 22$$
;

•
$$F = 14$$
;

- Tom a fait les calculs dans l'ordre $(8 + 2 = 10, 10 \times 3 = 30)$, et Alice a commencé par la multiplication $(2 \times 3 = 6, 8 + 6 = 14)$.
- ② Une calculatrice scientifique donne le résultat 14, c'est donc Alice qui a raison.
- On a :

•
$$A = 22$$
;

•
$$D = 22$$
;

•
$$G = 20$$
;

•
$$E = 25$$
;

•
$$C = 22$$
;

•
$$F = 14$$
;

- Tom a fait les calculs dans l'ordre $(8 + 2 = 10, 10 \times 3 = 30)$, et Alice a commencé par la multiplication $(2 \times 3 = 6, 8 + 6 = 14)$.
- 2 Une calculatrice scientifique donne le résultat 14, c'est donc Alice qui a raison.
- On a :

•
$$A = 22$$
;

•
$$D = 22$$
;

•
$$G = 20$$
;

•
$$E = 25$$
;

•
$$H = 9$$
;

•
$$C = 22$$
;

•
$$F = 14$$
;

- Tom a fait les calculs dans l'ordre $(8 + 2 = 10, 10 \times 3 = 30)$, et Alice a commencé par la multiplication $(2 \times 3 = 6, 8 + 6 = 14)$.
- ② Une calculatrice scientifique donne le résultat 14, c'est donc Alice qui a raison.
- On a :

•
$$D = 22$$
;

•
$$G = 20$$
;

•
$$J = 21$$
;

•
$$E = 25$$
;

•
$$C = 22$$
;

•
$$F = 14$$
;

•
$$I = 12$$
;

- Tom a fait les calculs dans l'ordre $(8 + 2 = 10, 10 \times 3 = 30)$, et Alice a commencé par la multiplication $(2 \times 3 = 6, 8 + 6 = 14)$.
- ② Une calculatrice scientifique donne le résultat 14, c'est donc Alice qui a raison.
- On a :

•
$$D = 22$$
;

•
$$G = 20$$
;

•
$$J = 21$$
;

•
$$E = 25$$
;

•
$$K = 136$$
;

•
$$C = 22$$
;

•
$$F = 14$$
;

•
$$I = 12$$
;

- Tom a fait les calculs dans l'ordre $(8+2=10, 10\times 3=30)$, et Alice a commencé par la multiplication $(2 \times 3 = 6, 8 + 6 = 14)$.
- 2 Une calculatrice scientifique donne le résultat 14, c'est donc Alice qui a raison.
- On a :

•
$$A = 22$$
; • $D = 22$;

•
$$G = 20$$
;

•
$$J = 21$$
;

•
$$B = 13$$
;

•
$$E = 25$$
;

•
$$H = 9$$
;

•
$$K = 136$$
;

•
$$C = 22$$
;

$$F = 14$$

•
$$F = 14$$
; • $I = 12$;

•
$$L = 4$$
.

O Pour calculer une expression qui contient plusieurs opérations, on calcule les multiplications et les divisions avant les additions et les soustractions.

- Dans une expression numérique sans parenthèses, on effectue :
 - O'abord les multiplications et les divisions, de gauche à droite;
 - Puis les additions et les soustractions, également de gauche à droite.

- Dans une expression numérique sans parenthèses, on effectue :
 - ① D'abord les multiplications et les divisions, de gauche à droite;
 - 2 Puis les additions et les soustractions, également de gauche à droite.
- On dit que la multiplication et la division sont <u>prioritaires</u> sur l'addition et la soustraction.

- Dans une expression numérique sans parenthèses, on effectue :
 - ① D'abord les multiplications et les divisions, de gauche à droite;
 - 2 Puis les additions et les soustractions, également de gauche à droite.
- On dit que la multiplication et la division sont <u>prioritaires</u> sur l'addition et la soustraction.
- Dans une expression sans parenthèses qui contient uniquement des additions ou uniquement des multiplications, on effectue les calculs dans l'ordre que l'on veut. L'addition et la multiplication sont commutatives.

- Dans une expression numérique sans parenthèses, on effectue :
 - ① D'abord les multiplications et les divisions, de gauche à droite;
 - 2 Puis les additions et les soustractions, également de gauche à droite.
- On dit que la multiplication et la division sont <u>prioritaires</u> sur l'addition et la soustraction.
- Dans une expression sans parenthèses qui contient uniquement des additions ou uniquement des multiplications, on effectue les calculs dans l'ordre que l'on veut. L'addition et la multiplication sont commutatives.

$$A = 20 - 2 \times 3 + 12 \div 6$$

$$A = 20 - 2 \times 3 + 12 \div 6$$

$$A = 20 - 6 + 12 \div 6$$
 (je commence par la multiplication)

$$A = 20 - 2 \times 3 + 12 \div 6$$

$$A = 20 - 6 + 12 \div 6$$
 (je commence par la multiplication)

$$A = 20 - 6 + 2$$
 (ensuite la division)

$$A = 20 - 2 \times 3 + 12 \div 6$$

$$A = 20 - 6 + 12 \div 6$$
 (je commence par la multiplication)

$$A = 20 - 6 + 2$$
 (ensuite la division)

$$A = 14 + 2$$
 (puis le reste des opérations de gauche à droite)

$$A = 20 - 2 \times 3 + 12 \div 6$$

$$A = 20 - 6 + 12 \div 6$$
 (je commence par la multiplication)

$$A = 20 - 6 + 2$$
 (ensuite la division)

$$A = 14 + 2$$
 (puis le reste des opérations de gauche à droite)

$$A = 16$$

• Je calcule l'expression $A = 20 - 2 \times 3 + 12 \div 6$:

$$A = 20 - 2 \times 3 + 12 \div 6$$

$$A = 20 - 6 + 12 \div 6$$
 (je commence par la multiplication)

$$A = 20 - 6 + 2$$
 (ensuite la division)

$$A = 14 + 2$$
 (puis le reste des opérations de gauche à droite)

$$A = 16$$

• Je calcule l'expression $A = 20 - 2 \times 3 + 12 \div 6$:

$$A = 20 - 2 \times 3 + 12 \div 6$$

$$A = 20 - 6 + 12 \div 6$$
 (je commence par la multiplication)

$$A = 20 - 6 + 2$$
 (ensuite la division)

$$A = 14 + 2$$
 (puis le reste des opérations de gauche à droite)

$$A = 16$$

$$B = 12 + 3 + 8$$

$$B = 15 + 8$$

$$B = 23$$

• Je calcule l'expression $A = 20 - 2 \times 3 + 12 \div 6$:

$$A = 20 - 2 \times 3 + 12 \div 6$$

$$A = 20 - 6 + 12 \div 6$$
 (je commence par la multiplication)

$$A = 20 - 6 + 2$$
 (ensuite la division)

$$A = 14 + 2$$
 (puis le reste des opérations de gauche à droite)

$$A = 16$$

$$B = 12 + 3 + 8$$

$$= 12+3+8$$
 $B = 12+3+8$

$$B = 15 + 8$$

$$B = 12 + 11$$

$$B = 23$$

$$B = 23$$

• Je calcule l'expression $A = 20 - 2 \times 3 + 12 \div 6$:

$$A = 20 - 2 \times 3 + 12 \div 6$$

$$A = 20 - 6 + 12 \div 6$$
 (je commence par la multiplication)

$$A = 20 - 6 + 2$$
 (ensuite la division)

$$A = 14 + 2$$
 (puis le reste des opérations de gauche à droite)

$$A = 16$$

$$B = \underline{12+3}+8$$
 $B = 12+\underline{3+8}$

$$B = 12 + 8 + 3$$

$$B = 15 + 8$$

$$B = 12 + 11$$

$$B = 20 + 3$$

$$B = 23$$

$$B = 23$$

$$B = 23$$

Priorités des opérations

II. Calculer une expression

III. Vocabulaire

- Dans une expression numérique qui contient des parenthèses, on calcule :
 - d'abord les opérations entre parenthèses;

- Dans une expression numérique qui contient des parenthèses, on calcule :
 - d'abord les opérations entre parenthèses;
 - 2 puis on calcule l'expression sans parenthèses obtenue.

- Dans une expression numérique qui contient des parenthèses, on calcule :
 - d'abord les opérations entre parenthèses;
 - 2 puis on calcule l'expression sans parenthèses obtenue.
- Si l'expression contient des parenthèses imbriquées, on commence par celles qui sont le plus à l'intérieur.

Exemple

Je calcule l'expression $C = (3 \times (7-3)) + 1$:

- Dans une expression numérique qui contient des parenthèses, on calcule :
 - d'abord les opérations entre parenthèses;
 - 2 puis on calcule l'expression sans parenthèses obtenue.
- Si l'expression contient des parenthèses imbriquées, on commence par celles qui sont le plus à l'intérieur.

Exemple

Je calcule l'expression $C = (3 \times (7-3)) + 1$:

$$C = (3 \times (7-3)) + 1$$

- Dans une expression numérique qui contient des parenthèses, on calcule:
 - d'abord les opérations entre parenthèses;
 - 2 puis on calcule l'expression sans parenthèses obtenue.
- Si l'expression contient des parenthèses imbriquées, on commence par celles qui sont le plus à l'intérieur.

Exemple

Je calcule l'expression $C = (3 \times (7-3)) + 1$:

$$C = (3 \times \underbrace{(7-3)}) + 1$$

$$C = (3 \times 4) + 1$$

$$C = (3 \times 4) + 1$$

- Dans une expression numérique qui contient des parenthèses, on calcule :
 - d'abord les opérations entre parenthèses;
 - 2 puis on calcule l'expression sans parenthèses obtenue.
- Si l'expression contient des parenthèses imbriquées, on commence par celles qui sont le plus à l'intérieur.

Exemple

Je calcule l'expression $C = (3 \times (7-3)) + 1$:

$$C = (3 \times \underbrace{(7-3)}) + 1$$

$$C = \underbrace{(3 \times 4)}_{} + 1$$

$$C = 12 + 1$$

Propriétés¹

- Dans une expression numérique qui contient des parenthèses, on calcule :
 - d'abord les opérations entre parenthèses;
 - 2 puis on calcule l'expression sans parenthèses obtenue.
- Si l'expression contient des parenthèses imbriquées, on commence par celles qui sont le plus à l'intérieur.

Exemple

Je calcule l'expression $C = (3 \times (7-3)) + 1$:

$$C = (3 \times (7-3)) + 1$$

$$C = (3 \times 4) + 1$$

$$C = 12 + 1$$

- Priorités des opérations
- II. Calculer une expression
- III. Vocabulaire

Le résultat d'une <u>addition</u> est une <u>somme</u>, les nombres utilisés sont des termes.

Le résultat d'une <u>addition</u> est une <u>somme</u>, les nombres utilisés sont des termes.

Example

$$12 + 15 = 27$$

Le résultat d'une <u>addition</u> est une <u>somme</u>, les nombres utilisés sont des termes.

Example

Une différence est le résultat de la soustraction de deux termes.

Une différence est le résultat de la soustraction de deux termes.

Example

Une <u>différence</u> est le résultat de la <u>soustraction</u> de deux <u>termes</u>.

Example

soustraction différence

termes

Un produit est le résultat de la multiplication de deux facteurs.

Un produit est le résultat de la multiplication de deux facteurs.

Example

Un produit est le résultat de la multiplication de deux facteurs.

Example

$$12 \times 11 = 121$$

facteurs

Le résultat de la <u>division</u> d'un <u>dividende</u> par un <u>diviseur</u> est un quotient.

Le résultat de la <u>division</u> d'un <u>dividende</u> par un <u>diviseur</u> est un quotient.

Example

Le résultat de la division d'un dividende par un diviseur est un quotient.

Example

• L'expression $5 + 3 \times 4$ est

13 / 13

• L'expression $5+3\times 4$ est une somme, car la dernière opération effectuées est une addition.

- L'expression $5+3\times 4$ est une somme, car la dernière opération effectuées est une addition.
- L'expression $(2+3) \times 4$ est

- L'expression $5+3\times 4$ est une somme, car la dernière opération effectuées est une addition.
- L'expression $(2+3) \times 4$ est un produit, car la dernière opération effectuées est une multiplication.

- L'expression $5 + 3 \times 4$ est une somme, car la dernière opération effectuées est une addition.
- L'expression $(2+3) \times 4$ est un produit, car la dernière opération effectuées est une multiplication.
- $3 \times (4+1)$ est

- L'expression $5 + 3 \times 4$ est une somme, car la dernière opération effectuées est une addition.
- L'expression $(2+3) \times 4$ est un produit, car la dernière opération effectuées est une multiplication.
- $3 \times (4+1)$ est le produit de 3 par la somme de 4 et 1.

- L'expression $5 + 3 \times 4$ est une somme, car la dernière opération effectuées est une addition.
- L'expression $(2+3) \times 4$ est un produit, car la dernière opération effectuées est une multiplication.
- $3 \times (4+1)$ est le produit de 3 par la somme de 4 et 1.
- $3 \times 4 + 1$ est

- L'expression $5 + 3 \times 4$ est une somme, car la dernière opération effectuées est une addition.
- L'expression $(2+3) \times 4$ est un produit, car la dernière opération effectuées est une multiplication.
- $3 \times (4+1)$ est le produit de 3 par la somme de 4 et 1.
- $3 \times 4 + 1$ est la somme du produit de 1 par 3 et 4.

- L'expression $5 + 3 \times 4$ est une somme, car la dernière opération effectuées est une addition.
- L'expression $(2+3) \times 4$ est un produit, car la dernière opération effectuées est une multiplication.
- $3 \times (4+1)$ est le produit de 3 par la somme de 4 et 1.
- $3 \times 4 + 1$ est la somme du produit de 1 par 3 et 4.
- $(19-3) \div (2 \times 4)$ est

- L'expression $5 + 3 \times 4$ est une somme, car la dernière opération effectuées est une addition.
- L'expression $(2+3) \times 4$ est un produit, car la dernière opération effectuées est une multiplication.
- $3 \times (4+1)$ est le produit de 3 par la somme de 4 et 1.
- $3 \times 4 + 1$ est la somme du produit de 1 par 3 et 4.
- $(19-3) \div (2 \times 4)$ est le quotient de la différence entre 19 et 3 par le produit de 2 par 4.