LISTA DE EXERCÍCIOS EXTRA ELETROSTÁTICA

PROF RENATO BRITO

Queridos alunos, se debrucem sobre essas questões, só larguem essa lista de exercícios quando souberem resolver todas as questões.

Questão 01

Uma partícula A com carga elétrica +Q encontra-se fixa ao ponto mais baixo de um aro circular de raio R localizado num plano vertical. Outra partícula B de carga +Q e massa m encontra-se livre para se mover apoiada internamente sobre a superfície lisa desse aro. Sabendo que a gravidade local vale g e a constante eletrostática do meio vale K, o prof. Renato Brito pede que você determine:

- a) a distância entre as partículas A e B na posição de equilíbrio estático de B;
- b) a força de contato que o aro circular exerce na partícula B nessa posição.

Questão 2

A figura mostra duas partículas eletrizadas +8Q e -5Q fixas aos vértices de um triângulo equilátero. Se o campo elétrico resultante no ponto A tem intensidade 21 N/C, determine sua nova intensidade se o prof. Renato Brito mover a carga negativa para o ponto médio M.

- a) 9 N/C
- b) 12 N/C
- c) 18 N/C
- d) 36 N/C
- e) 48 N/C

Questão 3

Uma molécula linear polar pode ser modelada por um dipolo elétrico de cargas +q e -q dispostas a uma distância microscópica L uma da outra. Admita que uma molécula dessas esteja a uma grande distância d de uma carga puntiforme +Q. Sendo K a constante eletrostática do meio, o prof. Renato Brito pede que você determine a força elétrica resultante agindo sobre essa molécula. Admita d >> L e use a

aproximação do binômio de Newton $(1 \pm x)^n \cong 1 \pm n.x$, para |x| <<<1.

a)
$$\frac{2.\text{K.Qq.L}}{d^3}$$

$$\frac{\text{K.Qq.L}}{2\text{d}^3}$$

c)
$$\frac{3.\text{K.Qq.L}}{\text{d}^3}$$

d)
$$\frac{\text{K.Qq.L}}{3\text{d}^3}$$

e)
$$\frac{4.\text{K.Qq.L}}{\text{d}^3}$$

Questão 4

Duas cargas puntiformes de mesmo módulo +q encontram-se fixas aos pontos A e B da figura abaixo, contida em um plano vertical. Uma terceira carga –q encontra-se livre para se deslocar ao longo do segmento de reta horizontal perfeitamente liso. Verifica-se que essa terceira carga fica em equilíbrio ao atingir o ponto C tal que o ângulo ACB é reto. Assim, o prof. Renato Brito pede que você assinale a relação entre as distâncias **a**, **b** e **c** na figura.

- a) $a^2 + b^2 = (a+b).c$
- b) $a^3 + b^3 = a.b.c$
- c) $a^3 + b^3 = 3a.b.c$
- d) a.b = c.(a+b)
- e) 2a.b = c.(a+b)

Questão 5

Na figura, vemos uma haste vertical rígida de comprimento L. Preso a sua extremidade superior temos um pêndulo elétrico composto por um fio de comprimento L e uma partícula de massa m. Nas extremidades da haste e do fio existem duas partículas A e B que se repelem. Uma escala graduada marcada na superfície desse dispositivo permite medir o ângulo α que o fio forma com a vertical. Logicamente, quanto maior o ângulo α, maior a carga elétrica das partículas. Esse aparelho é denominado eletrômetro e visa a medir cargas elétricas a partir do ângulo α . Admita que ambas as partículas A e B têm cargas elétricas idênticas Q. Se a gravidade local vale **g** e a permissividade elétrica do vácuo vale ε, o prof. Renato Brito pede que você determine uma expressão literal para essa carga elétrica Q.

a) 4L.sen
$$\left(\frac{\alpha}{2}\right)$$
. $\sqrt{2\pi\epsilon$.m.g.cos $\left(\frac{\alpha}{2}\right)}$

b) 4L.
$$\cos\left(\frac{\alpha}{2}\right).\sqrt{2\pi\epsilon.\text{m.g.}\cos\left(\frac{\alpha}{2}\right)}$$

c) 4L.sen
$$\left(\frac{\alpha}{2}\right)$$
. $\sqrt{2\pi\epsilon.\text{m.g.sen}\left(\frac{\alpha}{2}\right)}$

d)
$$4L.\cos\left(\frac{\alpha}{2}\right).\sqrt{2\pi\epsilon.m.g.sen\left(\frac{\alpha}{2}\right)}$$

e) 2L.sen
$$\left(\frac{\alpha}{2}\right)$$
. $\sqrt{2\pi\epsilon.m.g.cos\left(\frac{\alpha}{2}\right)}$

Questão 6

Considere o modelo de Bohr para o átomo de hidrogênio, segundo o qual as órbitas estáveis para o elétron são aquelas nas quais o momento angular dele é dado por $L=m.v.r=n.h/2\pi$, onde n=1,2,3,... é o chamado número quântico principal e h é a constante de Planck. Admita que, no estado fundamental (n = 1), o elétron execute um movimento circular orbital de período T_1 . Assim, quando o elétron estiver na órbita correspondente ao número quântico principal n, o período de seu movimento orbital será T_n satisfazendo a relação:

a)
$$T_n = n^2.T_1$$

b)
$$T_n = n.T_1$$

c)
$$T_n = \frac{T_1}{n}$$

d)
$$T_n = \frac{T_1}{n^3}$$

e)
$$T_n = n^3.T_1$$

GABARITO

1) a)
$$d = \sqrt[3]{\frac{K.Q^2R}{m.g}}$$
, b) $N = m.g$

- 2) D
- 3) A
- 4) B
- 5) C
- 6) E