МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ М. В. ЛОМОНОСОВА

Механико-математический факультет экономический поток

МАТЕМАТИЧЕСКИЕ МЕТОДЫ В ЭКОНОМИКЕ

4 курс

7 семестр

Лектор к. ф.-м. н., доцент И.М. Никонов « » 2021 г.

Москва, 2021 г.

Техническая информация

Данный PDF содержит примерную программу осеннего семестра 4 курса по предмету «Математические методы в экономике».

Собрали и напечатали по мотивам лекций и семинаров студенты 4-го курса Конов Марк и Гащук Елизавета.

Авторы выражают огромную благодарность лектору, кандидату ф.-м. наук, доценту Никонову Игорю Михайловичу за прочитанный курс по предмету «Математические методы в экономике».

Добавления и исправления принимаются на почты vkonov2@yandex.ru и gashchuk2011@mail.ru.

ПРИЯТНОГО ИЗУЧЕНИЯ

Программа экзамена по предмету «Математические методы в экономике»

- 1. Элементы теории потребления. Пространство товаров. Множество потребления. Отношения. Отношение предпочтения и функция полезности.
- 2. Функция спроса. Основные задачи классической теории потребления.
- 3. Уравнение Слуцкого. Его следствия.
- 4. Правила голосования.
- 5. Функции коллективного выбора. Теорема Эрроу о диктаторе.
- 6. Замкнутая модель Леоньтева. Описание модели.
- 7. Элементы теории неотрицательных матриц. Теорема Фробениуса-Перрона.
- 8. Открытая линейная модель Леоньтева. Описание модели. Критерий существования решения в открытой модели.
- 9. Устойчивость замкнутой модели Леонтьева.
- 10. Нелинейная модель Леонтьева.
- 11. Обобщенная модель Леоньтева. Теорема о замещении.
- 12. Модель расширяющейся экономики фон Неймана. Сбалансированный рост в модели фон Неймана.
- 13. Модель Гейла сбалансированного роста. Существование состояния равновесия.
- 14. Альтернатива для систем линейных неравенств.
- 15. Теорема о системах линейных неравенств.
- 16. Невырожденные состояния равновесия в модели Неймана.
- 17. Теорема Моришимы о магистралях.
- 18. Теорема Раднера.

Содержание

1	Элементы теории потребления.	6
2	Функция спроса. Основные задачи теории потребления.	10
3	Уравнение Слуцкого. Его следствия.	12
4	Правила голосования.	18
5	Функции коллективного выбора. Теорема Эрроу.	22
6	Замкнутая модель Леоньтева. Описание модели.	26
7	Неотр-ные матрицы. Т-ма Фробениуса-Перрона.	27
8	Открытая линейная модель Леоньтева. Описание модели. Критерий существования решения в открытой модели.	32
9	Устойчивость замкнутой модели Леонтьева.	35
10	Нелинейная модель Леонтьева.	39
11	Обобщенная модель Леоньтева. Теорема о замещении.	40
12	Модель расширяющейся экономики фон Неймана. Сбалансированный рост в модели фон Неймана.	42
13	Модель Гейла сбалансированного роста. Существование состояния равновесия.	44
14	Альтернатива для систем линейных неравенств.	47
15	Теорема о системах линейных неравенств	48

0.0	ОДЕРЖАНИЕ	5
16 Невырожденные состояния	я равновесия в модели Неймана.	49
17 Теорема Моришимы о маг	истралях.	51
18 Теорема Раднера.		5 4
Список используемой литера	гуры	56

Элементы теории потребления.

Элементы теории потребления. Пространство товаров. Множество потребления. Отношения. Отношение предпочтения и функция полезности.

Пусть
$$A_1, \ldots, A_n$$
 - различные товары в количестве x_1, \ldots, x_n . $\mathbb{R}^n_+ = \{x \in \mathbb{R}^n \colon x = (x_1, \ldots, x_n), x_i \geq 0, i = 1, 2, \ldots, n\}$ - положительный ортант.

Определение 1.1. *Множество* \mathbb{R}^n_+ , а также пространство \mathbb{R}^n называются **пространством** товаров.

Утверждение 1.1. (x_1, \ldots, x_n) - **потребительский набор** (план потребления) $x_i > 0$ - количество товара, которое должно быть предоставлено потребителю

 $x_j>0$ - количество товара, предлагаемого потребителем

Определение 1.2. Множество всех планов потребления данного участника экономики называется **множеством потребления** X.

Замечание. Множество потребления X учитывает физические и неэкономические ограничения.

Свойства:

1) выпуклость

Если $x,y\in X$ и $\lambda x+(1-\lambda)y\in X$ $\forall \lambda\in [0,1],$ то X - выпуклое.

2) замкнутость

X замкнуто, если $\mathbb{R}^n\setminus X$ открыто, т.е. $\forall x\in\mathbb{R}^n\setminus X\ \exists r>0:\ U(x,r)=\{y\in\mathbb{R}^n\colon ||x-y||_2< r\}\subset (\mathbb{R}^n\setminus X)$

3) ограниченность

Пусть $x, y \in \mathbb{R}^n$, тогда:

- $x \leq y$, если $x_i \leq y_i \ \forall i = 1, 2, \dots, n$
- x < y, если $x \le y$ и $x \ne y$
- x << y (строго больше), если $x_i < y_i \ \forall i$

 $X \subset \mathbb{R}^n$ ограничено сверху (снизу), если $\exists b \in \mathbb{R}^n : \forall x \in X \ x \leq b \ (x \geq b)$.

X ограничено, если оно ограничено сверху и снизу.

Ограниченность и замкнутость в \mathbb{R}^n = компактность.

X компактно, если: $\forall \{x_k \subset X\} \exists$ сходящаяся подпоследовательность $x_{k_l} \underset{l \to \infty}{\to} x: \forall \varepsilon > 0 \; \exists L: \; \forall l > L \; ||x - x_{k_l}|| < \varepsilon.$

Пусть $X \subset \mathbb{R}^n$ - множество потребления. $K \in \mathbb{R}_+$ - капитал потребителя. $p \in \mathbb{R}^n_+$ - вектор цен.

 $x = (x_1, \dots, x_n) \in X, \ p \cdot x = \sum_{i=1}^n p_i \cdot x_i$ - стоимость набора товаров. $p \cdot x \leq K$ - бюджетные ограничения.

$$B_{p,K} = \{x \in X : p \cdot x \le K\}$$
 - бюджетное множество (вальрасово множество).

Определение 1.3. Пусть X, Y - множества, тогда $R \subset X \times Y$ называется (бинарным) **отношением**.

x находится в отношении R с y (xRy), если $(x,y) \in R$.

Отношения можно задать:

- ullet матрицей $M=(m_{ij}):\ m_{ij}=egin{cases} 1,\ x_iRy_i \ 0,\ (x_i,y_i)
 ot\in R \end{cases}$
- графом $x_1 \to x_2, (x_1, x_2) \in R, (x_2, x_1) \notin R$

 $\overline{D(R)} = \{x \in X : \exists y \in Y : xRy\}$ - область определения отношения R. $I(R) = \{y \in Y : \exists x \in X : xRy\}$ - множество значений отношения R. Если $A \subset X$, то $R(A) = \{y \in Y : \exists x \in A : xRy\}$ - образ подмножества A. Если $\forall x \in X \ |R(x)| = 1$, то R - однозначное отображение.

Пусть $X=Y,\,R\subset X\times X$ - отношение на X. Отношение R называется:

1) **рефлексивным**, если $\forall x \in X \ xRx$

- 2) **иррефлексивным**, если $\forall x \in X \ (x, x) \notin R$
- 3) **симметричным**, если $\forall x, y \in X \ xRy \Rightarrow yRx$
- 4) асимметричным, если $\forall x, y \in X \ xRy \Rightarrow (y, x) \notin R$
- 5) антисимметричным, если $\forall x,y \in X \ xRy,yRx \Rightarrow x=y$
- 6) **транзитивным**, если $xRy, yRz \Rightarrow xRz$
- 7) **полным**, если $\forall x, y, \in X \ xRy$ или yRx

Пример 1.1. Примеры отношений:

Oтношение эквивалентности: 1) + 3) + 6)

Линейный порядок: частный порядок +7)

Определение 1.4. *Отношение предпочтения* - это отношение на мноэсестве потребления, являющееся рефлексивным, транзитивным и полным (1) + 6) + 7).

Обозначение: ≺

Пример отношения ≼:

 $u: X \to \mathbb{R}, x \leq y \Leftrightarrow u(x) \leq u(y), u$ - функция полезности.

Доказательство. очевидно, т.к.:

- 1) $\forall x \in Xu(x) \ge u(x)$
- 6) $u(x) \ge u(y) \ge u(z) \implies u(x) \ge u(z)$
- 7) либо $u(x) \ge u(y)$, либо $u(y) \ge u(x)$

Пусть X - топологическое пространство и \preceq - отношение предпочтения на X. $x \prec y,$ если $x \preceq y$ и $y \not\preceq x.$

$$W = \{(x, y) \in X \times X \colon x \prec y\}.$$

Определение 1.5. Отношение \prec называется **непрерывным**, если W открыто в $X \times X$, т.е. \exists открытые подмножества $U_{\alpha}, V_{\alpha} \subset X$: $W = \bigcup U_{\alpha} \times V_{\alpha}$.

Т.е. при малом изменении наборов x и y отношение сохраняется: $x \succ y, x'$ близко $\kappa x, y'$ близко $\kappa y \Rightarrow x' \succ y'$

Определение 1.6. Функция u(x), определенная на множестве потребления X, называется функцией полезности, соответствующей отношению предпочтения \leq , если $u(x) \leq u(y) \Leftrightarrow x \leq y$.

Теорема 1.1 (Дебра). Пусть $X \subset \mathbb{R}^n$, \preceq - непрерывное отношение предпочтения, тогда \exists непрерывная функция полезности $u: X \to \mathbb{R}$, такая, что u - функция полезности для \preceq .

Определение 1.7. Отношение предпочтения \leq на X называют локально ненасыщенным, если $\forall x \in X \exists$ открестность $U(x) : \exists y \in U \cap X : x \prec y$, т.е. функция полезности u(x) не имеет локальным максимумов на X.

Аксиома (свойство) ненасыщенности: $x << y \implies x \prec y$.

Функция спроса. Основные задачи теории потребления.

Пусть $X \subset \mathbb{R}$ — потребительское множество, $K \subset \mathbb{R}_+$ — капитал, $p \in \mathbb{R}^n_+$ — постранство систем цен, \preceq — отношение предпочтения на X, u(x) — функция полезности, $B_{p,k}(X) = \{x \in X \mid px \leq x\}$ — бюджетное множество.

Определение 2.1.
$$\Phi(p,k) = \{x \in B_{p,k}(X) \mid u(x) = \max_{x' \in B_{p,k}(x)} u(x')\} : \mathbb{R}^n_+ \times \mathbb{R}_+ \to X - \phi$$
ункция спроса.

Утверждение 2.1. $\forall \lambda > 0$: $\Phi(\lambda p, \lambda k) = \Phi(p, k)$, то есть функция спроса является однородной степени $0 \Leftrightarrow npu$ изменении цен и благосостояния в одинаковой пропорции потребительский выбор не меняется.

Если $k=k(p),\ k(\lambda p)\underset{\forall\ \lambda>0}{=}\lambda k(p)(k(p)$ – однородная степени $1)\Rightarrow\Phi(\lambda p,k(\lambda p))=\Phi(p,k(p))\Rightarrow\Phi(\lambda p)=\Phi(p)\Rightarrow\Phi(p)$ – однородная степени 0, то есть выбор потребителя зависит лишь от соотношения цен на различные товары, а не от масштаба цен.

Пример 2.1. 1. $X = \mathbb{R}^2_+$, p = (0,1), k = 1, $u(x_1, x_2) = x_1 + x_2 \Rightarrow \Phi(p, k(p)) = \varnothing$, так как у $u(x_1, x_2)$ нет максимума: $x_2 \leq \infty$.

2.
$$p = (1,1), k = 1 \Rightarrow x_1 + x_2 \le 1 \Rightarrow \Phi(p,k) = \{(t,1-t) \mid t \in [0,1]\}.$$

Основные задачи теории потребления:

- Максимизация полезности $u(x) \to max$ при заданном капитале K и ценах p >> 0: $px \le K$, то есть построить функию спроса $\Phi(p,k)$.
- Минимизация затрат: $px \to min$, то есть при известных ценах p >> 0 вычислить минимальный уровень капитала K, требуемый для достижения заданного уровня полезности $u(x) \ge u_0$.

2.0 ABA 2. ФУНКЦИЯ СПРОСА. ОСНОВНЫЕ ЗАДАЧИ ТЕОРИИ ПОТРЕБЛЕНИ **11**

Определение 2.2. Функция H(p,u), ставящая в соответствие каждой паре (p,u) множество тех $x \in X$, на которых достигается этот оптимальный уровень затрат, называется функцией **Хикса**:

$$H(p, u_0) = \{x \in X \mid u(x) \ge u_0, \ px = min(px'), \ x' \in X, \ u(x') \ge u_0\}.$$

Уравнение Слуцкого. Его следствия.

Изучим поведение потребителя, стесненного бюджетными ограничениями.

Пусть потребительноское множество $X = \mathbb{R}^n_+$, функция полезности u(x) гладкая и удолетворяет ограничениями:

$$\frac{\partial u}{\partial x_i} > 0, \ \lim_{x_i \to 0} \frac{\partial u}{\partial x_i} = \infty, \ \lim_{x_i \to \infty} \frac{\partial u}{\partial x_i} = 0, \ i = 1, 2, \dots, n$$
 Гауссиан $U(x) = \left(\frac{\partial^2 u}{\partial x_i \partial x_j}(x)\right)$ отрицательно определен $\forall x \in X$

Пусть p - система цен, K - капитал потребителя.

Из свойств функции u(x) вытекает, что функция спроса $\Phi(p,K)$ является однозначной, и при заданных p и K единственное значение $x^*(p,K)$ функции $\Phi(p,K)$ определяется следующей задачей математического программирования:

$$u(x) \to max$$

< $p, x >= K, x \ge 0$

Кроме этого, имеем $x^*(p,K) >> 0$, тогда для определения точки $x^*(p,K)$ воспользуемся теоремой Лагранжа. Выпишем функцию Лагранжа:

$$L(x,\lambda) = u(x) - \lambda \left(< p, x > -K \right)$$

Тогда сущетсвует такое λ^* , что:

$$\langle p, x^* \rangle - K = 0 \tag{1}$$

$$\frac{\partial u}{\partial x_i}(x^*) - \lambda^* p_i = 0, \ i = 1, 2, \dots, n$$
(2)

Заметим, что уравнение (2) - это условие того, что бюджетная плоскость ка-

сается поверхности уровня функции полезности (градиент функции полезности сонаправлен с нормалью p к бюджетной плоскости).

Рассмотрим влияение изменения цены ровно одного продукта (например, p_n) на поведение потребителя. Для этого продифференцируем полученные уравнения по p_n :

$$\langle p, \frac{\partial x^*}{\partial p_n} \rangle = -x_n^*$$
 (3)

$$U\frac{\partial x^*}{\partial p_n} - \frac{\partial \lambda^*}{\partial p_n} p = (0, \dots, 0, \lambda^*) \stackrel{\text{def}}{=} \Lambda^*$$
(4)

Воспользовавшись невырожденностью матрицы U (она невырождена в силу ее отрицательной определенности), выразим из уравнения (4) $\frac{\partial x^*}{\partial p_n}$ и подставим полученное значение в (3), откуда найдем $\frac{\partial \lambda^*}{\partial p_n}$:

$$\frac{\partial \lambda^*}{\partial p_n} = -\frac{x_n^* + pU^{-1}\Lambda^*}{pU^{-1}p}$$

Обозначим $\mu=-(pU^{-1}p)^{-1}$ и $[M]^{(i)}$ - i-ый столбец матрицы M. Заметим, что $U^{-1}\Lambda^*=\lambda^*[U^{-1}]^{(n)}$. Тогда полученную формулу можно переписать так:

$$\frac{\partial \lambda^*}{\partial p_n} = \mu x_n^* + \mu \lambda^* p[U^{-1}]^{(n)}$$

Пусть $z = [U^{-1}]^{(n)}$, тогда:

$$\frac{\partial \lambda^*}{\partial p_n} = \mu x_n^* + \mu \lambda^* < z, p >$$

Отсюда получаем непосредственнуб формулу для $\frac{\partial x^*}{\partial p_n}$:

$$\frac{\partial x^*}{\partial p_n} = \mu x_n^* U^{-1} p + \lambda^* \left(\mu < p, z > U^{-1} p + z \right) \tag{5}$$

Поймем экономический смысл правой части.

Чтобы выяснить смысл первого слагаемого, рассмотрим, что происходит с решением $x^*(p,K)$, если цены p остаются неизменные, а капитал K меняется. Продифференцируем (1) и (2) по K:

$$\langle p, \frac{\partial x^*}{\partial K} \rangle = 1$$
 (5)

$$U\frac{\partial x^*}{\partial K} - \frac{\partial \lambda^*}{\partial K}p = 0 \tag{6}$$

Выражая из (7) величину $\frac{\partial x^*}{\partial K}$ и подставляя полученное значение в (6), найдем $\frac{\partial \lambda^*}{\partial K}$:

$$\frac{\partial \lambda^*}{\partial K} = \frac{1}{pU^{-1}p} = -\mu$$

Значит имеем:

$$\frac{\partial x^*}{\partial K} = -\mu U^{-1} p$$

Значит получаем:

$$\frac{\partial x^*}{\partial p_n} = -\frac{\partial x^*}{\partial K} x_n^* + \lambda^* \left(\mu < p, z > U^{-1} p + z \right)$$

Выясним теперь смысл второго слагаемого уравнения (5). Для этого рассмотрим влияние компенсированного изменения цены p, т.е. такого изменения, при котором одновременно меняется капитал K так, чтобы максимальное значение функции полезности на соответствующей бюджетной плоскости оставалось неизменным. Т.о. мы предполагаем, что капитал K зависит от p, т.е. является функцией K(p), и имеет место следующееся условие: $u(x^*(p, K(p))) = const$.

Рассмотрим теперь функцию $x^*(p,K)$ как функцию от p, подставив вместо K соответствующую функцию K(p).

Определение 3.1. Полную производную функции x^* по p_j , т.е. величину $\frac{\partial x^*}{\partial p_i} = \frac{\partial x^*}{\partial K} \cdot \frac{\partial K}{\partial p_i}$, называется компенсированной производной по p_i и обозначается $\left(\frac{\partial x^*}{\partial p_i}\right)_{comp}$.

Вычислим компенсированную производную при i = n. Для этого продифференцируем уравнение (1) по p_n . Имеем:

$$x_n^* + \left\langle p, \left(\frac{\partial x^*}{\partial p_n}\right)_{comp} \right\rangle - \frac{\partial K}{\partial p_n} = 0$$
 (9)

Т.к. при каждом p функция $u(x^*)$ остается неизменной, получаем, что вектор $\left(\frac{\partial x^*}{\partial p_n}\right)_{comp}$ касается поверхности u=const, поэтому этот вектор перпендикулярен градиенту функции u, т.е. вектору $\frac{\partial u}{\partial x}$.

С другой стороны, по определению x^* , бюджетная плоскость касается в точке x^* поверхности u=const, поэтому нормаль p к бюджетной плоскости сонаправлена

с нормальню $\frac{\partial u}{\partial x}$ к поверхности u=const (из (2)). Значит, второе слагаемое в (9) равно 0. Отсюда получаем, что:

$$x_n^* = \frac{\partial K}{\partial p_n} \tag{10}$$

Продифференцируем еще раз (2) по p_n . Имеем:

$$U\left(\frac{\partial x^*}{\partial p_n}\right)_{comp} = \frac{\partial \lambda^*}{\partial p_n} p + \Lambda^*$$
(11)

Воспользуемся тем, что $\left\langle p, \left(\frac{\partial x^*}{\partial p_n}\right)_{comp} \right\rangle = 0$, выразим $\left(\frac{\partial x^*}{\partial p_n}\right)_{comp}$ из (11) и умножим полученное выражение скалярно на p, найдем выражение для $\frac{\partial \lambda^*}{\partial p_n}$:

$$\frac{\partial \lambda^*}{\partial p_n} = \mu p U^{-1} \Lambda^* = \mu \lambda^* < z, p >$$

Подставим полученное выражение в (11), получаем:

$$\left(\frac{\partial x^*}{\partial p_n}\right)_{comp} = \mu \lambda^* < z, p > U^{-1}p + U^{-1}\Lambda^* =$$

$$= \mu \lambda^* < z, p > U^{-1}p + \lambda^*z = \lambda^* \left(\mu < z, p > U^{-1}p + z\right)$$

Сравнивая полученное выражение и второе слагаемое в (5), получаем, что это слагаемое равно компенсированной производной функции x^* по p_n . Т.о. доказали теорему.

Теорема 3.1. Имеет место соотношение:

$$\frac{\partial x^*}{\partial p_n} = \left(\frac{\partial x^*}{\partial p_n}\right)_{comp} - \left(\frac{\partial x^*}{\partial K}\right) x_n^* \tag{12}$$

Данное уравнение называется уравнением Слуцкого.

Замечение

Выражение для $\left(\frac{\partial x^*}{\partial p_n}\right)_{comp}$, полученное при выражении уравнения Слуцкого, можно пеперписать так:

$$\left(\frac{\partial x^*}{\partial p_n}\right)_{comp} = \lambda^* \left[\mu U^{-1} p' p U^{-1} + U^{-1}\right]^{(n)}$$

где p' обозначает вектор p, рассмтариваемый как столбец, в отличие от вектора p, рассматриваемого как вектор-строка.

Определение 3.2. $Mampuya\ H = \mu U^{-1}p'pU^{-1} + U^{-1}$ называется матрицей Слуцкого.

Свойства матрицы Слуцкого:

1) матрица Н симметрична

Доказательство. U - симметричная, тогда U^{-1} тоже симметричная. Кроме того, матрица p'p - это $n \times n$ матрица, у которой (i,j)-элемент равен p_ip_j , поэтому она тоже симметрична. Получаем:

$$(\mu U^{-1}p'pU^{-1})^T = \mu (U^{-1})^T (p'p)^T (U^{-1})^T = \mu U^{-1}p'pU^{-1}$$

Значит, матрица $\mu U^{-1}p'pU^{-1}$ симметрична. Т.к. сумма симметричных матриц является симметричной матрицей, то утвреждение доказано.

2) Имеет место соотношение: pH=Hp'=0

Доказательство. Докажем, что pH=0 (второе свойство вытекает из симметричности матрицы H). Имеем:

$$pH = \mu pU^{-1}p'pU^{-1} + pU^{-1} = -\frac{1}{pU^{-1}p'}(pU^{-1}p')pU^{-1} + pU^{-1} = 0$$

3) Матрица H является полуотрицательно определенной, $m.e. \ \forall v \in \mathbb{R}^n \ vHv' \le 0$. Более того, $vHv' = 0 \Leftrightarrow$ векторы v и p коллинеарны.

Доказательство. Рассмотрим скалярное произведение с матрицей $-U^{-1}$ (она симметричная и положительно определенная), и пусть $w \in \mathbb{R}^n$ - вектор, являющийся ортогональной проекцией v относительно введенного скалярного произведения на подпространство, ортогональное к p. Т.е. $v = \alpha p + w, \ \alpha \in \mathbb{R}$ и $wU^{-1}p' = 0$. Имеем:

$$vHv' = (\alpha p + w)H(\alpha p' + w') = \alpha^2 pHp' + \alpha pHw' + \alpha wHp' + wHw' =$$

$$= wHw' = w(\mu U^{-1}p'pU^{-1} + U^{-1})w' =$$

$$= \mu(wU^{-1}p')pU^{-1}w' + wU^{-1}w' = wU^{-1}w' \le 0$$

Равенство достигается тогда и только тогда, когда w = 0.

Следствие 3.1. Возрастание цены товара при соответствущей коменсации дохода приводит к снижению спроса на него:

$$\left(\frac{\partial x_n^*}{\partial p_n}\right)_{comp} < 0$$

Доказательство. Т.к. $\left(\frac{\partial x^*}{\partial p_n}\right)_{comp} = \lambda^*[H]^{(n)}$, то $\left(\frac{\partial x_n^*}{\partial p_n}\right)_{comp} = \lambda^*h_{nn}$, где h_{nn} - самый нижний диагональный элемент матрицы H.

Пусть e_i - базисный орт, тогда $h_{nn} = e_n H e_n$. Т.к. p >> 0, то p и e_n не коллинеарны, тогда по свойству (3) матрицы Слуцкого имеем, что $h_{nn} < 0$.

Определение 3.3. Назовем n-ый товар **ценным**, если $\frac{\partial x_n^*}{\partial K} > 0$, т.е. при увеличении дохода потребителя спрос на этот товар также увеличивается.

Товар, не являющийся ценным, называется малоценным.

Следствие 3.2. Множество ценных товаров не пусто.

Доказательство. Это следует из уравнения (6) и неотрицательности вектора p.

Следствие 3.3. Спрос на ценные товары при повышении цены на него обязательно падает.

Доказательство. Это следует из того, что правая часть уравнения Слуцкого для x_n^* отрицательна.

Определение 3.4. Два товара i и j называются взаимозаменяемыми, если $\left(\frac{\partial x_j^*}{\partial p_i}\right)_{comp}>0$, т.е. если при возрастании цены на i-ый товар при компенсирующем изменении дохода (с одновременным падением спроса на товар i) спрос на товар j возрастает.

 $Ecлu\left(\frac{\partial x_{j}^{*}}{\partial p_{i}}\right)_{comp} < 0, \ mo\ moвары\ i\ u\ j\ называют\ взаимодополнительными.$

Пример

Масло и маргарин являются взаимозаменяемыми продуктами, а бензин а автомобилями - взаимодополнительными.

Следствие 3.4. Для каждого товара i существует хотя бы один товар j, образующий c i взаимозаменяемую пару.

Доказательство. Пусть без ограничения общности i=n. По следствию 3.1 имеем $\left(\frac{\partial x_n^*}{\partial p_n}\right)_{comp} < 0$. С другой стороны, было доказано, что $\left\langle \left(\frac{\partial x^*}{\partial p_n}\right)_{comp}, p \right\rangle = 0$, а значит, т.к. p >> 0, получаем, что существует такое j, что $\left(\frac{\partial x_j^*}{\partial p_n}\right)_{comp} > 0$.

Правила голосования.

Пусть $M = \{x_1, \dots, x_m\}$ – множество кандидатов, $S = \{y_1, \dots, y_m\}$ – множество избирателей и решение принимается голосованием. У каждого избирателя y_k есть схема предпочтений: $x_{i_1} \stackrel{k}{\succ} \dots \stackrel{k}{\succ} x_{i_m}$.

Требуется построить функцию, определяющую коллективный порядок на множестве кандидатов, то есть правило, которое для любых заданных порядков $\stackrel{1}{\succ}, \dots \stackrel{k}{\succ}$ определяет коллективный порядок \succeq :

$$\succeq = f(\stackrel{1}{\succ}, \dots \stackrel{k}{\succ}).$$

Определение 4.1. a – $noбедитель, если <math>\forall b \in M : a \succeq b, a = p(\stackrel{1}{\succ}, \dots \stackrel{n}{\succ})$ – npaвило голосования.

Определение 4.2. $\{ \stackrel{1}{\succ}, \dots \stackrel{n}{\succ} \}$ – профиль голосования, то есть множество всех индивидуальных предпочтений.

Пример 4.1. Пусть имеется 10 избирателей и три кандидата: а, b, c. Тогда профиль голосования удобно представить таблицей:

кол-во избирателей	2	3	5
кандидаты	a	b	c
кандидаты	b	a	b
кандидаты	c	c	a

Вопрос. Как определить победителя?

1. Метод относительного большинства.

Каждый избиратель отдает голос ровно за одого кандидата, победит тот, кто наберет наибольшее число голосов.

2. Метод абсолютного большинства.

Каждый избиратель голосует ровно за одного, побеждает тот, кто набрал > 50

3. Метод Борда.

 $y_k: x_{i_1} \overset{k}\succ \ldots \overset{k}\succ x_{i_m}$. Тогда каждому кандидату припишем балл по такой схеме: $x_{i_l} \to \alpha_{k,i_l} = m-l$, тогда:

$$lpha_j = \sum_{k=1}^n lpha_{k,i_l}$$
 – сумма баллов для x_j .

Тогда победитель - это тот, кто имеет наибольшее α_j .

4. Обобщенный метод Борда.

 $y_k: x_{i_1} \stackrel{k}{\succ} \ldots \stackrel{k}{\succ} x_{i_m}, \ x_{i_l} \to \alpha_{k,i_l} = s_{m-l}: \ 0 = s_0 \le s_1 \le \ldots \le s_{m-1} > 0,$ дальше аналогично методу Барда из пункта 3.

Замечание. • $s_{m-l} = m - l$ – обычный метод Борда.

• $s_0 = \ldots = s_{m-2} = 0, \ s_{m-1} = 1$ – метод относительного большинства.

5. Метод Кондорсе.

 $a, b \in M$ — кандидаты. $K_{a,b}$ — количество избирателей, считающих а лучше b:

$$r_a := \{ \#(b \in M \setminus \{a\}) \mid K_{a,b} \ge K_{b,a} \},$$

где # — количество. Тогда победитель — кандидат с наибольшим r_a .

Пример 4.2.

5	3	5	4
a	a	b	c
d	d	c	$\mid d \mid$
c	b	d	b
b	c	a	a

1.
$$a \rightarrow 8, b \rightarrow 5, c \rightarrow 4, d \rightarrow 0 \Rightarrow noбедитель - a.$$

2. $8 < \frac{17}{2} \Rightarrow проводим второй тур между <math>a, b:$

Таблица 4.1: Второй тур

5	3	5	4
a	a	b	b
b	b	a	a

Tогда победитель – b.

$$\alpha_a = 5 \cdot 3 + 3 \cdot 3 + 5 \cdot 0 + 4 \cdot 0 = 24$$

$$\alpha_b = 5 \cdot 0 + 3 \cdot 1 + 5 \cdot 3 + 4 \cdot 1 = 22$$

$$\alpha_c = 5 \cdot 1 + 3 \cdot 0 + 5 \cdot 2 + 4 \cdot 3 = 27$$

$$\alpha_c = 5 \cdot 1 + 3 \cdot 0 + 5 \cdot 2 + 4 \cdot 3 = 27$$

$$\alpha_d = 5 \cdot 2 + 3 \cdot 2 + 5 \cdot 1 + 4 \cdot 2 = 29$$

Tогда победитель – d.

4. -

5. $a \leq b: 8:9$

 $a \leq c: 8:9$

 $b \leq c: 8:9$

 $d \preceq c:\ 8:9$

 $a \leq d: 8:9$

 $b \leq d: 5:12$

Поэтому $r_a=0,\ r_b=1,\ r_c=3,\ r_d=2\Rightarrow$ победитель – c.

Утверждение 4.1. *Методы 1), 2), 3), 5) различны.*

Пример 4.3.

	3	6	4	4
	c	a	b	b
•	a	b	a	c
	b	c	c	a

5).
$$b \leq a : 8 : 9$$

 $c \leq a : 7 : 10$

Победитель – а.

4).
$$\alpha_a = 6s_2 + 7s_1$$

$$\alpha_b = 8s_2 + 6s_1$$

$$\alpha_a = 3s_2 + 4s_1$$

Пусть побеждает $a\Rightarrow 6s_2+7s_1\geq 8s_2+6s_1 \Rightarrow s_1\geq 2s_2$ и $6s_2+7s_1\geq 3s_2+4s_1\Rightarrow s_2\geq s_1$. Тогда

$$s_1 \ge 2s_2 \ge 2s_1 \Rightarrow s_1 = s_2$$
 – противоречие.

Утверждение 4.2. *Методы 2), 5) не являются частными случаями обобщенного метода Борда.*

Функции коллективного выбора. Теорема Эрроу.

Пусть $S = \{y_1, \ldots, y_n\}$ - множество избирателей, $M = \{x_1, \ldots, x_m\}$ - множество кандидатов. Т.о. имеем n систем индивидуального предпочтения, каждая из которых устанавливает линейный порядок на множестве всех кандидатов.

Пусть p - произвольное правило голосования. Применяя правило p, построим множество $M_1 = \{a_1 = \cdots = a_s\}$, состоящее из победителей.

Применим правило p ко множеству проигравших $M \setminus M_1$. Опять получаем множество выигравших $M_2 = \{a_{s+1} = \cdots = a_{s+l}\}.$

Выкинем из M объединение $M_1 \bigcup M_2$ и проделаем ту же операцию, и т.д. В результате мы упорядочим множество M согласно решению коллектива:

$$M_1 \succ M_2 \succ \dots$$

Таким образом, правило голосования позволяет построить систему коллективного предпочтения. И из правила p строим функцию коллективного предпочтения $\succeq = f(\stackrel{1}{\succ}, \dots, \stackrel{n}{\succ})$, где $\stackrel{k}{\succ}$ - система индивидуального предпочтения.

Требования к функции коллективного предпочтения:

1. полнота

Для любых кандидатов a и b коллективный порядок устанавливает, что либо $a \prec b$, либо $b \prec a$, либо a = b.

2. транзитивность

Для любых трех кандидатов a,b,c таких, что $a \leq b$ и $b \leq c$, выполняется $a \leq c$, причем равенство имеет место, если и только a = b = c.

3. единогласие

Если все избиратели считают, что a лучше b, значит и в коллективном предпочтении a должен быть лучше b:

$$\forall k \ a \stackrel{k}{\prec} b \ \Rightarrow \ a \prec b$$

4. независимость

Положение любых двух кандидатов в коллективном предпочтении зависит только от их взаимного расположения в индивидуальных предпочтениях и не зависит от расположения других кандидатов.

Т.о. если для профиля вида:

группы избирателей	кандидаты	
A	$\cdots a \cdots b \cdots$	имеє
$S \setminus A$	$\cdots b \cdots a \cdots$	

ем

 $a \prec b$, то и для всех профилей такого вида $a \prec b$.

Замечание. Множество функций коллективного выбора, удовлетворяющих аксимомам 1-4, непусто. Примером таких функций могут служить функции **диктатора**, а именно функции вида $f(\stackrel{1}{\succ},\ldots,\stackrel{n}{\succ}) = \stackrel{k}{\succ}$ для некоторого k.

Теорема 5.1 (Эрроу). Пусть f - функция коллективного предпочтения, удовлетворяющая аксиомам 1-4, и предположим, что имеется не менее 3 кандидатов. Тогда f - функция диктатора.

(диктатура описывается аксиомами, а демократия - отрицание диктатуры)

Доказательство. Введем некоторые понятия.

Произвольное подмножество A множества избирателей называется **коалицией**.

Определение 5.1. Коалиция А назывется **f-решающей для кандидата** а **против кандидата** b, тогда и только тогда, когда из того, что все члены коалиции А ставят а выше b, а все члены, не входящие в A, ставят b выше а, вытекает, что в коллективном предпочтении $a \prec b$:

$$(\forall y_k \in A, \ a \stackrel{k}{\prec} b) \bigcup (\forall y_k \not\in A, \ b \stackrel{k}{\prec} a) = a \prec b$$

Обозначение: A = f(a, b).

Коалиция A, такая, что для любых двух кандидатов a и b коалиция A является f-решающей для a против b назывется просто f-решающей.

Лемма 5.1. \exists пара кандидатов (a,b), для которой найдется коалиция D, состоящая из одного избирателя d, такая, что D = f(a,b).

Доказательство. Обозначим через K множество всех коалиций, для каждой из которых \exists пара кандидатов (a,b), таких, что эта коалиция является f-решающей для a против b.

Отметим, что множество K не пусто, т.к., в силу аксиомы единогласия, множество всех избирателей S образует f-решающую коалицию \forall пары кандидатов (a,b).

Рассмотрим в K коалицию D, состоящую из наименьшего числа избрателей. Покажем, что D состоит ровно из одного элемента.

Предположим противное, т.е. $D = \{d\} \bigcup E$, где E - некоторое непустое множество кандидатов. Если S состоит из ≥ 2 кандидатов, рассмотрим профиль:

группа избирателей	d	E	$S \setminus D$
кандидаты	a	c	b
кандидаты	b	a	c
кандидаты	c	b	a

Если же S состоит из двух кандидатов, рассмотрим профиль:

группа избирателей	$\{d\}$	$\mid E \mid$
кандидаты	a	c
кандидаты	b	$\mid a \mid$
кандидаты	c	b

Т.к. D=f(a,b), то $a \prec b$. Предположим, что $c \prec b$. Тогда E=f(c,b), что противоречит минимальности коалиции D. Значит, $b \preceq c$, и, по аксиоме транзитивности, $a \prec c$. Но тогда $\{d\}=f(a,c)$, что опять же противоречит минимальности коалиции D.

Т.о., мы получили противоречие к предположению, что D состоит из ≥ 1 элемента, а значит, D содержит ровно 1 элемент.

Лемма 5.2. Коалиция D из леммы 5.1 является f-решающей.

Доказательство. Пусть c - произвольный кандидат. Рассмотрим профиль:

группы избирателей	кандидаты
$\{d\}$	$\dots a \prec \dots \prec b \prec \dots \prec c \dots$
$S \setminus \{d\}$	$\ldots b \prec \cdots \prec c \prec \cdots \prec a \ldots$

Т.к. $\{d\} = f(a,b)$, то $a \prec b$. В силу аксиомы единогласия, $b \prec c$, значит, по транзитивности, $a \prec c$. Значит, $\{d\} = f(a,c)$.

Пусть е - еще один кандидат. Рассмотрим профиль:

группы избирателей	кандидаты
$\{d\}$	$\dots e \prec \dots \prec a \prec \dots \prec c \dots$
$S \setminus \{d\}$	$\dots c \prec \dots \prec e \prec \dots \prec a \dots$

По аксиоме единогласия, $e \prec a$. Т.к. $a \prec c$, то по транзитивности для данного профиля имеем $e \prec c$. Но тогда $\{d\} = f(e,c)$.

Т.о. мы показали, что для любых двух кандидатов e и c коалиция $\{d\}$ является f-решающей для e против d. Значит, коалиция $\{d\}$ есть f-решающая коалиция.

Лемма 5.3. Избиратель д является диктатором.

Доказательство. Мы показали, что d может навязывать свое мнение по поводу любых двух кандидатов a и b при условии, что мнение остальных избирателей противоположно - в этом пока проявляется зависимость от мнения других.

Надо показать, что как бы не голосовали остальные избиратели, коллективное мнение совпадает с мнением d.

Рассмотрим такие профили голосования, в которых у избирателя d порядок вида . . . $a \stackrel{d}{\prec} \ldots \stackrel{d}{\prec} c \stackrel{d}{\prec} \ldots \stackrel{d}{\prec} b \ldots$, а все остальные избиратели ставят c выше, чем a и b.

Т.к. $\{d\}$ является f-решающей коалицией, то для таких профилей $a \prec c$. В силу аксиомы единогласия $c \prec b$, тогда по транзитивности $a \prec b$.

Исключая из соотношений c и используя аксиому независимости, получаем, что если d ставит a выше b, то и в коллективном порядке $a \prec b$. В силу произвольности a и b, получаем, что d - диктатор.

Доказательство теоремы закончено.

6

Замкнутая модель Леоньтева. Описание модели.

Пусть есть n стран, $\forall i: 1 \leq i \leq n, \ \pi_i$ – национальный доход i-ой страны. $\pi = (\pi_1, \dots, \pi_n)^T$ – вектор доходов, $A = (a_{ij})$ – матрица международного обмена.

Определение 6.1. $(A\pi)_i = \sum_{j=1}^n a_{ij}\pi_j$.

Определение 6.2. $\sum\limits_{j=1}^{n}a_{ij}=1\ orall\ i$ – условие замкнутости матрицы $m{A}$.

Вопрос. Возможен ли безубыточный обмен: $A\pi \geq \pi$?

Утверждение 6.1. A – замкнутая, $A\pi \geq \pi \Rightarrow A\pi = \pi$.

Доказательство. Пусть
$$A\pi > \pi$$
. $\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} \pi_{j} > \sum_{i=1}^{n} \pi_{i}$, но $\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} \pi_{j} = \sum_{j=1}^{n} \pi_{j} \sum_{i=1}^{n} a_{ij} = \sum_{j=1}^{n} \pi_{j} \sum_{i=1}^{n} a_{ij} = \sum_{j=1}^{n} \pi_{j}$ — противоречие.

Определение 6.3. A – замкнутая, $A\pi = \pi, \ \pi \geq 0$ – замкнутая линейная модель Леонтьева.

Неотр-ные матрицы. Т-ма Фробениуса-Перрона.

Элементы теории неотрицательных матриц. Теорема Фробениуса-Перрона. Пусть $A=(a_{ij})_{i,j=1}^n\in Mat_{n\times n}.$

A неотрицательная $(A \ge 0)$, если $\forall i, j \ a_{ij} \ge 0$.

A положительна (A > 0), если $A \ge 0$ и $A \ne 0$.

A строго положительна (A >> 0), если $\forall i, j \ a_{ij} > 0$.

Свойства:

- $A \ge 0, v \ge 0 \Rightarrow Av \ge 0$
- \bullet A >> 0, $v >> 0 \Rightarrow Av >> 0$
- A > 0, $v >> 0 \Rightarrow Av > 0$

Определение 7.1. *Матрица А называется разложимой, если* $\exists S, T \subset \{1, ..., n\}$: $S, T \neq \emptyset, \ S \cap T = \emptyset, \ S \cup T = \{1, ..., n\} \ u \ \forall i \in S, \forall j \in T : a_{ij} = 0.$

Определение 7.2. Перестановка рядов i и j = перестановка строк i и j + перестановка столбцов i и j.

Определение 7.3. Матрица A разложима, если она перестановкой рядов переводится κ виду: $\begin{pmatrix} A_1 & A_2 \\ 0 & A_4 \end{pmatrix}$ или $\begin{pmatrix} A_1 & 0 \\ A_3 & A_4 \end{pmatrix}$, где A_1 , A_4 - κ вадртаные матрицы.

Пример:

•
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 - разложима

$$ullet$$
 $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ - не разложимы

Утверждение 7.1. *А неразложима, тогда в А нет нулевых строк и столбцов.*

Доказательство. От противного: пусть i-ая строка нулевая: $\forall j \ a_{ij} = 0$. Пусть $S = \{i\}, \ T = \{1, \ldots, i-1, i+1, \ldots, n\} \Rightarrow A$ разложима - противоречие. Аналогично для столбцов.

Утверждение 7.2. $A \ge 0$ - неразложима, x >> 0, тогда Ax >> 0.

Доказательство. В A нет нулевых строк $\Rightarrow \forall i \; \exists j_0 : a_{ij_0} > 0 \; \Rightarrow \; (Ax)_i = \sum_{i=1}^n a_{ij} x_j \geq a_{ij_0} x_{j_0} > 0.$

Утверждение 7.3. $A \ge 0$ - неразложима $\Rightarrow (I + A)^{n-1} >> 0$.

Доказательство. Достаточно доказать, что $\forall x > 0 : (I + A)^{n-1} \cdot x >> 0.$

Пусть $x>0,\ y:=(I+A)x.$ Если x>>0, то $y=x+Ax\geq x \Rightarrow y>>0$ и т.д., получаем требуемое.

Докажем, что если $x \gg 0$, то $\{i\colon y_i=0\} \subsetneq \{i\colon x_i=0\}$. Имеем $y=x+Ax \geq x \Rightarrow \{i\colon y_i=0\} \subseteq \{i\colon x_i=0\}$.

Пусть $\{i\colon y_i=0\}=\{i\colon x_i=0\}=\{1,\ldots,k$ (без ограничения общности). Тогда

$$x = (0, \dots, 0, \underset{n-k}{u})^{T}, \ u >> 0, \ y = (0, \dots, 0, \underset{n-k}{v})^{T}, \ v >> 0 \ \Rightarrow \begin{pmatrix} 0 \\ \vdots \\ 0 \\ v \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ u \end{pmatrix} +$$

$$\begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix} \begin{pmatrix} 0 \\ \vdots \\ 0 \\ u \end{pmatrix} \;\; \Rightarrow \;\; A_2 u = 0, u >> 0, \;\; A_2 \geq 0 \;\; \Rightarrow \;\; A_2 = 0, \; \text{т.е. разложима} \; -$$

противоречие, значит x>0 и у x не более n-1 нулевых компонент. Т.о. y>>0 и $(I+A)^{n-1}\cdot x>>0$.

Следствие 7.1. $A \ge 0$ - неразложима $\Rightarrow \forall i, j \exists k(i,j) \le n : a_{ij}^{(k)} > 0$, г ∂e $A^k = (a_{ij}^{(k)})_{i,j=1}^n$.

Доказательство. Пусть $i \neq j \Rightarrow 0 << (I+A)^{n-1} = \sum_{k=0}^{n-1} C_{n-1}^k \cdot A^k \Rightarrow \sum_{k=1}^{n-1} a_{ij}^{(k)} > 0 \Rightarrow \exists k : C_{n-1}^k \cdot a_{ij}^{(k)} > 0 \Rightarrow a_{ij}^{(k)} > 0.$

Пусть
$$i=j \Rightarrow A \cdot (I+A)^{n-1} >> 0$$
. Т.к. A неразложима, то $(I+A)^{n-1} >> 0$. Имеем: $A \cdot (I+A)^{n-1} = \sum_{k=0}^{n-1} C_{n-1}^k \cdot A^{k+1} = \sum_{k=1}^n C_{n-1}^{k-1} \cdot A^k >> 0 \Rightarrow \ldots \Rightarrow \exists k: a_{ij}^{(k)} > 0$.

Пример:
$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ A^{2k} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, A^{2k+1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Теорема 7.1 (Перрона-Фробениуса). Пусть $A \ge 0$ - неразложимая матрица, тогда:

- 1) $\exists \lambda_A > 0 : \forall \lambda c.s. \ A : |\lambda| \leq \lambda_A$
- 2) λ_A с.з. A кратности 1, называемое **числом Фробениуса** $u \exists$ соответствующий с.в. $x_A >> 0$: $Ax_A = \lambda_A \cdot x_A$, называемый **вектором Фробениуса**.

Доказательство. Пусть $x>0,\ r(x):=\min_{i=\overline{1n}}(Ax)_i=\min_{i=\overline{1n}}\ x_i.$ Если $x_i=0,$ то считаем, что $\frac{(Ax)_i}{x_i}=+\infty.$

$$r'(x) = \sup \{ \hat{\rho} : \rho x \leq Ax \}$$
. Тогда $r(x) = r'(x)$, т.к.:

$$\forall i : r(x) \cdot x_i \le (Ax)_i \implies r(x) \cdot x \le Ax \implies r(x) \le r'(x)$$
$$r'(x) \cdot x \le Ax \implies \forall i \ r'(x) \cdot x_i \le (Ax)_i \implies r'(x) \le \frac{(Ax)_i}{x_i} \ \forall i \implies r'(x) \le r(x)$$

Т.о. имеем, что r(x) = r'(x). Пусть $r := \sup_{x>0} r(x)$, $M := \left\{x>0 : \sum_{i=1}^n x_i = 1\right\}$ - замкнутое и ограниченное множество (компакт).

$$\forall x>0 \; \forall \lambda>0 \; r(\lambda x)=r(x) \; \Rightarrow \; r=\sup_{x\in M} r(x)$$
 т.к. $\forall x>0 \exists \lambda>0: \lambda x\in M$

Пусть x>0 и $Z=(I+A)^{n-1}\cdot x>>0$. $r(x)\cdot x\leq Ax$, т.е. $(A-r(x)\cdot I)\cdot x\geq 0$. Значит имеем:

$$0 \le (I+A)^{n-1} \cdot (A-r(x) \cdot I) \cdot x = (A-r(x) \cdot I) \cdot (I+A)^{n-1} \cdot x =$$
$$= (A-r(x) \cdot I) \cdot Z \implies r(x) \cdot Z \le Az \implies r(x) \le r(z)$$

 $N:=\left\{(I+A)^{n-1}\cdot x\colon x\in M\right\},\ \forall z\in Nz>>0.\ N$ - компакт, т.к. M - компакт. Функция r(x) непрерывна на $N\subset\mathbb{R}^n_{++}=\{x\colon x>>0\},$ тогда по теореме Вейерштрасса достигает своего max и min на компакте:

$$\exists z \in N : r(z) = \sup_{x \in N} r(x) = \sup_{x \in M} r(x) = \sup_{x > 0} r(x) = r$$

Имеем: r = r(z), $r \cdot z \le Az$. Докажем, что $r \cdot z = Az$.

От противного: пусть $r \cdot z < Az$, т.е. $(A - rI) \cdot z > 0$, тогда имеем:

$$w:=(I+A)^{n-1}\cdot Z \Rightarrow (A-rI)\cdot w=(A-rI)\cdot (I+A)^{n-1}\cdot z=$$

$$=\underbrace{(I+A)^{n-1}}_{>>0}\underbrace{(A-rI)\cdot z}_{>0}>>0 \Rightarrow rw\leq Aw \Rightarrow r(w)>r$$
 - противоречие $(r$ - \sup)

Значит имеем: $r \cdot z = Az$, т.е. Z - с.в. A с с.з. r.

Теперь докажем, что \forall с.з. $\lambda : |\lambda| \leq r$.

Пусть
$$Ay = \lambda y, \lambda \in \mathbb{C}, \ y \in \mathbb{C}^n, y \neq 0, \ |y| = \begin{pmatrix} |y_1| \\ \vdots \\ |y_n| \end{pmatrix}.$$

$$|\lambda|\cdot|y| = |\lambda y| = |Ay| \le |A|\cdot|y| = A\cdot|y| \ \Rightarrow \ |\lambda| \le r(|y|) \le r$$

Докажем, что z - единственный с точностью до пропорциональности с.в. с с.з. r. Пусть $Ay=ry \Rightarrow A|y|\geq |Ay|=r|y| \Rightarrow r\leq r(|y|)\leq r \Rightarrow r(|y|)=r$ и $A|y|=r|y|,\ |y|>0$. Тогда:

$$0 << (I+A)^{n-1} \cdot |y| = (1+r)^{n-1} \cdot |y| \implies |y| >> 0 \implies |y_i| > 0, \ y_i \neq 0$$

 $T.о. \ в \ y$ нет нулевых координат.

Пусть y_1, y_2 - с.в. с с.з. r и они не пропорциональны, тогда $\exists \lambda, \mu \in \mathbb{C}: y = \lambda y_1 + \mu y_2 \neq 0, \ \exists i: y_i = 0$ - противоречие. Т.о. все с.в. с с.з. r пропорциональны.

Теорема 7.2. Пусть $A \ge 0$, тогда $\exists \lambda_A \ge 0$:

- 1) $\forall c.s. \lambda : |\lambda| \leq \lambda_A$
- 2) λ_A c.s. A
- 3) $\exists x_A > 0 : Ax_A = \lambda_A \cdot x_A$

Доказательство. Рассмотрим $B = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ и последовательность $A_n = A + \frac{1}{n}b$. $A \ge 0, B >> 0 \Rightarrow \forall n A_n >> 0$ - неразложимая. $\lim_{n \to \infty} A_n = A \Rightarrow$ последовательность $\{A_n\}$ ограничена, значит, $||A_n||$ - ограничено.

 $\lambda_n = \lambda_{A_n} \leq ||A_n|| \; \Rightarrow \; \lambda_n$ - ограниченная последовательность.

Пусть x_n - вектор Фробениуса, $x_n = x_{A_n}$. Можно считать, что $\forall n: ||x_n|| = 1$. Из того, что λ_n и x_n ограничены, то $\exists n_k$ - подпоследовательность: $\exists \lim_{k \to \infty} \lambda_{n_k} = \lambda \ge 0$, $\exists \lim_{k \to \infty} x_{n_k} = x \ge 0$, $||x|| = 1 \implies x > 0$.

 $\forall n \ A_{n_k} x_{n_k} = \lambda_{n_k} \cdot x_{n_k} \Rightarrow Ax = \lambda x$ при $k \to \infty$. Пусть λ' - с.з. A и $y \neq 0$ - соответствующий с.в.: $Ay = \lambda' y \Rightarrow |\lambda'| \cdot |y| = |Ay| \le$

 $|A|\cdot |y|=A|y|\leq A|y|+rac{1}{n}B|y|=A_n|y|$ $\forall n.$ Имеем: $|\lambda'|\leq r_{A_n}(|y|)\leq \lambda_n \Rightarrow \forall n_k: |\lambda'|\leq \lambda_{n_k} \Rightarrow |\lambda'|\leq \lambda$ при $k\to\infty$. Имеем $\lambda_A = \lambda, \ x_a = x.$

8

Открытая линейная модель Леоньтева. Описание модели. Критерий существования решения в открытой модели.

Пусть у нас есть п отраслей, все выпускают разные товары.

Определение 8.1.

$$\begin{pmatrix}
\bar{a}_{11} & \dots & \bar{a}_{1n} & c_1 \\
\dots & \dots & \dots \\
\bar{a}_{n1} & \dots & \bar{a}_{nn} & c_n \\
v_1 & \dots & v_n
\end{pmatrix}$$

– балансовая матрица, где \bar{a}_{ij} – количество i-ого товара, потребляемого j-ой отраслью, v_i – валовый выпуск i-ой отрасли, c_i – количество i-ого товара, потребляемого непроизводственным сектором.

 $v_i = \sum_{j=1}^n \bar{a}_{ij} + c_i$ — балансовые соотношения, $a_{ij} \frac{\bar{a}_{ij}}{v_j}$ — количество i-ого товара, необходимого для производства единицы товара j-ой отраслью. a_{ij} — коэффициенты пряых затрат, $A = (a_{ij})$ — матрица прямых затрат/

Определение 8.2. $v_i = \sum_{j=1}^n \bar{a}_{ij} + c_i$, $i = 1, n \Leftrightarrow v = Av + c$, c e A - Mampuua прямых затрат, $c = (c_1, \dots, c_n)^T$ (вектор спроса), $v = (v_1, \dots, v_n)^T$ (вектор интенсивности), Av - Bekmop прямых затрат. $v \geq 0$, $v = Av + c - \mathbf{omkpumas}$ модель Леонтьева.

Определение 8.3. Модель продуктивна, если $\forall \ c \geq 0 \ \exists \ v \geq 0 : \ v = Av + c.$ То есть, пусть

$$\begin{cases} x - Ax = c \\ x \ge 0 \end{cases}$$

– открытая модель Леонтьева. Модель продуктивна, если $\forall \ c \geq 0 \ \exists \$ решение системы.

Теорема 8.1. Модель Леонтьева продуктивна $\Leftrightarrow \lambda_A < 1$.

Доказательство.

$$J = \begin{pmatrix} J_1 & 0 & 0 \\ \dots & \dots & \dots \\ 0 & 0 & J_n \end{pmatrix}, J_k = \begin{pmatrix} \lambda_1 & 1 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \\ 0 & \dots & \lambda_{n-1} & 1 \\ 0 & 0 & \dots & \lambda_n \end{pmatrix} = D_k + B_k,$$

где D_k – диагональная матрица, B_k – матрица побочной диагонали.

$$J = D + B, \ B^n = 0$$
 – нильпотентная матрица. $J^k = (D + B)^k = \sum_{l=0}^{k < n} C_k^l D^{k-l} B^l,$ $\|J^k\| \le \sum_{l=0}^{k < n} C_k^l \|D^{k-l}\| \|B^l\| \le C = \max \|B^l\|, \ D$ – диагональная матрица: $d_{ii} = \lambda_i, \ \lambda_i \le \lambda_A \Rightarrow \|D\| \le \lambda_A \Rightarrow \|D^{k-l}\| \le \lambda_A^{k-l} \le K^{n-1} C \sum_{l=0}^{n-1} \lambda_A^{k-l} \le \frac{n}{\lambda_A^n} CK^{n-1} \lambda_A^k \underset{k \to \infty}{\to} 0 \Rightarrow \|J^k\| \underset{k \to \infty}{\to} 0 \Rightarrow J^k \underset{k \to \infty}{\to} 0 \Rightarrow A^k = QJ^k Q^{-1} \underset{k \to \infty}{\to} 0 \Rightarrow \sum_{k=0}^{\infty} A^k$ сходится, так как $(I - A) \sum_{k=0}^{N} A^k = I - A^{N+1} \underset{N \to \infty}{\to} I \Rightarrow 0 < \sum_{k=0}^{\infty} A^k = I - A^{N+1}$

 \implies Пусть модель продуктивна $\Rightarrow B = (I - A)^{-1} > 0$. Рассмотрим $C = x_A > 0$, тогда $\exists ! x = Bx_A : x - Ax = x_A$. Рассмотрим $x' = \frac{1}{\lambda_A} Ax \Rightarrow x' - Ax' = (I - A) \frac{1}{\lambda_A} Ax = \frac{1}{\lambda_A} A(I - A)x = \frac{1}{\lambda_A} Ax_A = x_A \Rightarrow \frac{1}{\lambda_A} Ax = x \Rightarrow Ax = \lambda_A x \Rightarrow x_\delta = x - Ax = (1 - \lambda_A)x$. $x_\delta > 0$, $x > 0 \Rightarrow 1 - \lambda_A > 0 \Rightarrow \lambda_A < 1$.

Глава 8. Открытая линейная модель Леоньтева. Описание модели. **8.0** Критерий существования решения в открытой модели. **Утверждение 8.1.** x > 0: $x - Ax \gg 0 \Rightarrow$ модель продуктивна.

Доказательство. $p_A A = \lambda_A p_A, \ p_A > 0; \ 0 < p_A (x - Ax) = p_A x - p_A Ax = (1 - \lambda_A) p_A x \ge 0 \Rightarrow 1 - \lambda_A > 0 \Rightarrow \lambda_A < 1$, то есть модель продуктивна.

Утверждение 8.2. A – неразложима $u \exists x > 0 : x - Ax = c > 0 \Rightarrow модель продуктивна.$

Утверждение 8.3. $\exists p > 0: \ p(I - A) \gg 0 \Rightarrow \textit{модель продуктивна.}$

9

Устойчивость замкнутой модели Леонтьева.

$$\begin{cases} A\pi=\pi\\ \pi\geq 0 \end{cases}$$
 – замкнутая модель Леонтьева ($\forall\ i:\ \sum_{j=1}^n a_{ij}=1$).

Пусть $A \ge 0$, $r_i = \sum_{j=1}^n a_{ij}$, $s_j = \sum_{i=1}^n a_{ij}$, $r = \underset{i}{min} r_i$, $R = \underset{i}{max} r_i$, $s = \underset{i}{min} s_i$, $S = \underset{i}{min} s_i$

Утверждение 9.1. $A \ge 0 \Rightarrow r \le \lambda_A \le R, s \le \lambda_A \le S$.

Доказательство. $Ax_A = \lambda_A x_A \Rightarrow \forall i : \sum_{j=1}^n a_{ij}(x_A)_j = \lambda_A(x_A)_i$.

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}(x_A)_j = \lambda_A \sum_{i=1}^{n} (x_A)_i \iff \sum_{j=1}^{n} (x_A)_j \sum_{i=1}^{n} a_{ij} = \sum_{j=1}^{n} s_j(x_A)_j = \sum_{j=1}^{n}$$

 $\Rightarrow s \leq \lambda_A \leq S$. Аналогично с $r \leq \lambda_A \leq R$, достаточно транспонировать.

Следствие 9.1. $A \ge 0$ – замкнутая, тогда $\lambda_A = 1$.

Определение 9.1. A > 0 – неразложимая, $\lambda_A = 1$ (иначе $A = \frac{1}{\lambda_A} A$). p_A – левый Фробениусов собственный вектор: $(p_A, p_A) = 1$.

Определение 9.2. *Норма на* \mathbb{R}^n : $||x||_A = (p_A, |x|), |x| = (|x_1|, \dots, |x_n|).$

Определение 9.3. A-yстойчива, если $\forall x \exists \lim_{k \to \infty} A^k x$

Замечание. Выберем правый Фробениусов собственный вектор: $||x_A||_A = 1$. $||Ax||_A \le ||x_A||_A$ u, если $x \ge 0$, то $||Ax||_A = ||x_A||_A$ $(p_A|Ax| \le p_AA|x| = p_A|x| = ||x||_A$, $p_A|Ax| = p_AAx = p_Ax = p_A|x| = ||x||_A$.)

Утверждение 9.2. $x \ge 0$, $ecnu \exists \lim_{k \to \infty} A^k x$, $mo \ z = \lim_{k \to \infty} A^k x = \mu x_A$, $\mu = \|x\|_A$.

Доказательство. $Az=\lim_{k\to\infty}A^{k+1}x=z,\ A$ — неразложимая, $\lambda_A=1\Rightarrow z=\mu x_A.\ x\geq 0\Rightarrow \forall\ k:\ A^kx\geq 0,\ \|A^kx\|_A=\|x\|_A\Rightarrow \|z\|_A=\|x\|_A.\|z\|_A=\|\mu x_A\|_A=\mu=\|x\|_A.$

Определение 9.4 (Импримитивная (циклическая) матрица). Неразложимая матрица A называется импримитивной (циклической), если \exists разбиение $\{1, \ldots, n\} = S_0 \bigsqcup \ldots \bigsqcup S_{m-1}, \ S_i \cap S_j = \emptyset \ i \neq j, \ \forall i \ S_i \neq \emptyset, \ npu \ этом \ a_{ij} > 0 \Rightarrow$:

$$\begin{cases} i \in S_r, \ j \in S_{r-1}, \ 1 \ge r \ge m - 2 \\ i \in S_0, \ j \in S_{m-1} \end{cases}$$

То есть, матрица импримитивна, если одновременной перестановкой столбиов и строк она приводится к виду:

$$\begin{pmatrix}
0 & \dots & 0 & A_{m-1} \\
A_0 & 0 & \dots & 0 \\
0 & A_1 & \dots & 0 \\
\dots & \dots & \dots & 0 \\
0 & \dots & 0 & A_{m-2}
\end{pmatrix}$$

Иначе A – nримиmивная.

Пример 9.1.

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 – u иклическая, неразложимая. $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ – n римитивная. $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ – p азложимая.

Теорема 9.1. Неразложимая матрица $A \ge 0, \ \lambda_A = 1 \Longleftrightarrow A$ – примитивна.

Лемма 9.1. A – примитивная, тогда у некоторой степени A первая строка положительная: $\exists k: \ \forall \ ja_{1j}^k > 0, \ A^k = (a_{ij}^k).$

Доказательство. $R := \{r | a_{11}^r > 0\}, \ m = \ \mathrm{HOД}(R)$

1. $m > 1 \Rightarrow A$ – циклическая, докажем это:

 $S_i := \{j | \exists k \equiv -i (mod \ m) : \ a_{1j}^k > 0 \}, \ i = 0, \bar{m-1}.S_i \neq \emptyset$, иначе у A^{m-i} первая строка нулевая. $S_r \cap S_t = \emptyset$, $r \neq t$. Пусть $j \in S_r \cap S_i \Rightarrow \exists k, l : \ a_{1j}^k > 0$, $a_{1j}^l > 0$, $k \equiv -r$, $l \equiv -t (mod \ m)$.

Так как A — неразложимая, то $\exists q: a1j^q>0 \Rightarrow a_{11}^{k+q} \geq a_{1j}^k a_{1j}^q>0, \ a_{11}^{l+q} \geq a_{1j}^l a_{1j}^q>0 \Rightarrow m|(k+q), \ m|(l+q)\Rightarrow m|(k-l)\Rightarrow r\equiv t (mod\ m)\Rightarrow$ такие множества задают искомое разбиение множества $\{1,\ldots,n\}.$

2. действительо, l = sd + q, $s \ge d$, $0 \le q \le d \Rightarrow l = s(\sum_{i=1}^{l} |\beta_i| l_i) + q(\sum_{i=1}^{l} \beta_i l_i) = \sum_{i=1}^{l} (s|\beta_i| + q|\beta_i|) l_i = \sum_{i=1}^{l} \alpha_i l_i$, $\forall i: \alpha_i \ge 0 \Rightarrow a_{11}^l \ge \prod_{i=1}^{l} (a_{11}^{l_i})^{\alpha_i} > 0$. Рассмотрим $t_j: a_{1j}^{t_j} > 0$, $t:=\max_{i=1}^{l} t_j \Rightarrow a_{1i}^{Q+t} = a_{1i}^{Q+t} a_{1i}^{Q+t} > 0$.

Лемма 9.2. Если матрица A^k устойчива при некотором k, то A – устойчива.

Доказательство. Пусть $x \in \mathbb{R}^n$, $\lim_{s \to \infty} (A^k)^s x = \mu x_A$. Докажем, что $\lim_{m \to \infty} A^m = \mu x_A$. $\forall \ \varepsilon > 0 \ \exists S \in \mathbb{N} : \ \forall \ s > S : \ \|A^{sk}x - \mu x_A\| \le \varepsilon \Rightarrow \forall \ m \ge Sk : \ m = sk : m = sk + r, \ 0 \le r < k \Rightarrow \|A^m x - \mu x_A\| = \|A^r (A^{sk}(x - \mu x_A))\| \le \|A^{sk}(x - \mu x_A)\| < \varepsilon$.

Определение 9.5 (Оператор сжатия). Оператор P действует на линейном нормированном пространстве как оператор сжатия, если $\exists \gamma: 0 < \gamma < 1: \forall v \in L: \|Pv\| \leq \gamma \|v\|, \ \gamma$ — коэффициент сжатия.

Лемма 9.3. $L_A := Ann(p_A) = \{v | (v, p_A) = 0\}$. Если оператор A действует на L_A как оператор сэнсатия, то A – устойчива.

Доказательство. Заметим, что L_A инвариантно относительно оператора А. Пусть $x = \mu x_A + z, \ z \in L_A \Rightarrow \|A^k x - \mu x_A\| = \|A^k (x - \mu x_A)\| = \|A^k z\| \le \gamma^k \|z\| \underset{k \to \infty}{\to} 0 \Rightarrow \lim_{k \to \infty} A^k x = \mu x_A.$

Лемма 9.4. Если неразложимая матрица A с $\lambda_A = 1$ имеет положительную строку, то оператор A действует на пространстве $L_A := Ann(p_A) = \{v | (v, p_A) = 0\}$ как оператор сжатия.

Доказательство. Без ограничения общности первая строка А – положительная. Обозначим строки А как $a_i \Rightarrow a_1 > 0$. Пусть $\delta > 0$, $\delta p_A \le a_1$. Пусть p_A^1 – первая координата p_A . Покажем, что $\gamma = 1 - \delta p_A^1$ – коэффициент сжатия А на L_A .

Действительно, пусть $z\in L_A$. Можно считать, что $(a_1,z)\geq 0$, иначе z=-z. Тогда $\|Az\|=\sum\limits_{i=1}^n p_A^i|(a_i,z)|=p_A^1(a_1,z)+\sum\limits_{i=2}^n p_A^i|(a_i,z)|\leq p_A^1(a_1,z)+\sum\limits_{i=2}^n p_A^i(a_i,|z|)=p_A^1(a_1,z-|z|)+\sum\limits_{i=1}^n p_A^i(a_i,|z|)=p_A^1(a_1,z-|z|)+(p_A,A|z|)\leq p_A^1(\delta p_A,z-|z|)+(p_A,A|z|),$ так как $z-|z|\leq 0$. Но $z\in L_A\Rightarrow \|Az\|=(1-\delta p_A)|z|=\gamma \|z\|$.

Следствие 9.2. Если неразложимая матрица A с $\lambda_A = 1$ имеет положительную строку, то A – устойчива.

Теорема 9.2. A > 0 – неразложимая с $\lambda_A = 1$, тогда A – устойчивая $\iff \forall \ \lambda \in Spec(A) \setminus 1$ выполнено $|\lambda| < 1$.

Доказательство. Достаточно рассмотреть одну жорданову клетку J_{λ} ЖНФ для A (над \mathbb{C}^{n}):

$$\begin{pmatrix} \lambda & 1 & 0 & 0 \\ 0 & \lambda & 1 & 0 \\ 0 & \dots & \dots & \dots \\ 0 & \dots & \dots & 1 \\ 0 & \dots & 0 & \lambda \end{pmatrix}$$

- ullet Если $|\lambda|<1\Rightarrow\lim_{k o\infty}J^k_\lambda=0$
- Если $|\lambda| \geq 1, \; \lambda \neq 1 \Rightarrow \nexists \lim_{k \to \infty} J^k_{\lambda}$

С собственным значением 1 одна жорданова клетка размера 1×1 . Клетка одна, так как есть только один с точностью до пропорциональности левый фробениусов вектор $p_A: (p_A, p_A) = 1$. Действительно, $0 = p_A(A - E)e_2 = (p_A, \mu X_A)$.

Нелинейная модель Леонтьева.

- п товаров.
- $f_{ij}(x_j)$ количество і-ого товара, необходимого для производства товара ј в количестве x_j .
- Условие замкнутости (бесприбыльности): $x_j = \sum_{i=1}^n f_{ij}(x_j)$.
- Нелинейная(замкнутая) модель Леонтьева: $x_i = \sum_{j=1}^n f_{ij}(x_j)$.

Обозначение. $D_k^{n-1} = \{x = (x_1, \dots, x_n) | x_i \ge 0, \sum x_i = k\}$ - (n-1)-мерный симплекс.

Теорема 10.1 (Брауэр). У любого непрерывного отображения $F: \delta_k^{n-1} \to \delta_k^{n-1} \exists$ неподвижная точка $x \in \delta_k^{n-1}: F(x) = x$

Теорема 10.2. В нелинейной замкнутой модели Леонтьева \exists равновесие x такое, $umo \sum x_i = k$.

Доказательство. Рассмотрим отображение $F: \mathbb{R}^n_+ \to \mathbb{R}^n_+$ такое, что $F(x_i) = \sum_{j=1}^n f_{ij}(x_j)$. Если $x \in \delta_k^{n-1}$, то $\sum_i F(x_i) = \sum_{i,j} f_{ij} = \sum_{j=1}^n f_{ij}(x_j) \Rightarrow F(x) \in \delta_k^{n-1}$.

F – непрерывное отображение, так как все f_{ij} непрерывны \Rightarrow по тереме Брауэра \exists положение равновесия $x \in \delta_k^{n-1}$: F(x) = x.

Обобщенная модель Леоньтева. Теорема о замещении.

Имеем и товаров, $m \ge n$ отраслей.

Отрасль производит 1 товар, i-ому товару в соответствие поставим M_i – набор отраслей, производящих товар i. $\hat{I}=(e_{ij}), e_{ij}=1$, если $j\in M_i$, иначе $e_{ij}=0$, $\hat{A}=(a_{ij})$ – матрица прямых затрат. a_{ij} – количество i-ого товара, необходимого для производства единицы товара j-ой отраслью, $x=(x_1,\ldots,x_n)^T$ – вектор интенсивностей, $\hat{I}x$ – вектор выпуска, $\hat{A}x$ – вектор затрат.

Определение 11.1 (Обобщенная модель Леонтьева). $\hat{I}x - \hat{A}x = c, \ x \ge 0$ – обобщенная модель Леонтьева.

Определение 11.2. $l = (l_1, \ldots, l_n)$ – вектор трудовых затрат, lx – величина трудовых затрат.

Задача 1.

$$\begin{cases} lx \to min \\ \hat{I}x - \hat{A}x \ge c \\ x \ge 0 \end{cases}$$

– задача минимизации трудовых затрат.

Определение 11.3 (Подмодель). $\sigma \subset \{1, \ldots, m\}$ – подмодель, если $\sigma = \{j_1, \ldots, j_n\}$, $j_k \in M_k, \ A_{\sigma} = ((a_{\sigma})_{ik})_{i,k=1}^n, \ (a_{\sigma})_{ik} = a_{ij_k}.$

Теорема 11.1 (Самуэльсона о замещении). Пусть обобщенная модель Леонтьева c матрицей \hat{A} продуктивна, тогда существует подмодуль σ такой, что среди решений задачи минимизации трудовых затрат есть решение $\hat{x}: \hat{x}_j = 0 \ \forall \ j \notin \sigma, \ \hat{x}_j > 0 \ j \in \sigma$. При этом σ зависит от l и не зависит от c.

Плава 11. Обобщенная модель Леоньтева. Теорема о замещени **41**

Доказательство. Пусть $c\gg 0$. Модель продуктивна $\Rightarrow \{x\in\mathbb{R}^n_+|\hat{I}x-\hat{A}x\geq c\}\neq\emptyset$ $\Rightarrow \exists \tilde{x}$ – решение. Оно называется базизсным, если $\#\{j|\tilde{x}_j>0\}\leq n$. Докажем, что существует базисное решение. Пусть \tilde{x} – решение с минимальным количеством ненулевых компонент, $\sigma=\{j|\tilde{x}_j>0\},\ \#\sigma>n$.

Рассмотрим $(\hat{I} - \hat{A})_{\sigma}$ – n строк и $\#\sigma$ столбцов. В $(\hat{I} - \hat{A})_{\sigma}$ столбцы линейно зависимы $\Rightarrow \exists z_{\sigma}: (\hat{I} - \hat{A})_{\sigma}z_{\sigma} = 0$. Дополним z_{σ} нулями до $z \in \mathbb{R}^m \Rightarrow (\hat{I} - \hat{A})_{\sigma}z = 0$, $\{j|z_j \neq 0\} \subset \sigma$.

Пусть $lz \neq 0 \Rightarrow \exists \varepsilon \neq 0 : \ \tilde{x} + \varepsilon z \geq 0, \ l(\tilde{x} + \varepsilon z) < l\tilde{x}, \ (\hat{I} - \hat{A})(\tilde{x} + \varepsilon z) \geq c.$

Пусть $lz=0, \;\exists \varepsilon:\; \tilde{x}'=\tilde{x}+\varepsilon z\geq 0$ и \tilde{x}' имеет больше ненулевых компонент $\Rightarrow \tilde{x}'$ – решение задачи минимизации трудовых затрат с меньшим числом нулевых компонент – противоречие.

Пусть \tilde{x} – базисное решение задачи минимизации трудовых затрат. $(\hat{I} - \hat{A})\tilde{x} \ge c \gg 0 \Rightarrow \forall i \ \sigma = \{j | \tilde{x}_j > 0\} \cap M_i \neq \varnothing \Rightarrow \sigma = \{j_1, \dots, j_n\}$ – подмодель.

Пусть $c' \ge 0 \Rightarrow \exists \lambda > 0$: $\lambda c \gg c' \Rightarrow \lambda \tilde{x}$ – решение для λc .

Рассмотрим $y_{\sigma} = (\hat{I} - \hat{A})_{\sigma}y = c'$. Дополним y_{σ} нулями до $y \in \mathbb{R}^m$ и покажем, что у – решение задачи минимизации трудовых затрат. Предположим, что у – не решение для c', то есть $\exists y' : (\hat{I} - \hat{A})y' \geq c', \ ly' \leq ly, \ y' \geq 0$.

Положим $z_{\sigma}: (\hat{I}-\hat{A})_{\sigma}z_{\sigma} = \lambda c - c'$, и дополним z_{σ} нулями до $z \in \mathbb{R}^m \Rightarrow y+z = \lambda \tilde{x}$, так как $y_{\sigma}+z_{\sigma}=(\hat{I}-\hat{A})_{\sigma}(\lambda c-c'+c')=(\hat{I}-\hat{A})_{\sigma}\lambda c = \lambda \tilde{x}$. Рассмотрим вектор $y'+z \geq 0: (\hat{I}+\hat{A})(y'+z) \geq c'+\lambda c-c' = \lambda c$ и $l(y'+z) < ly'+lz = l\lambda \tilde{x} \Rightarrow \lambda \tilde{x}$ не решение для λc – противоречие.

Модель расширяющейся экономики фон Неймана. Сбалансированный рост в модели фон Неймана.

- п товаров, т производственных процессов.
- ullet Базисные процессы $(a^j,b^j),$ где a^j вектор затрат, b^j вектор выпуска.
- Смешанный процесс: $x = (x^1, \dots, x^m)$ вектор интенсивностей, $x \to (Ax, Bx)$.
- А матрица затрат, В матрица выпуска (неотрицательная матрица).
- Время t дискретно.

При этом:

1. Условие замкнутости: $Ax_t \leq Bx_{t-1}$.

Определение 12.1. Последовательность $\{x_i\}_{i=1}^t$, удовлетворяющая условию замкнутости, называется планом, x_0 – вектор запросов.

- 2. Условие нулевого дохода: $p_{t-1}A \ge p_t B$ (базисный процесс не приносит прибыли), где $\{p_t\}$ траектория цен.
- 3. Сохранение денежной массы: $p_t A x_t = p_{t+1} B x_t$.
- 4. Отсутствие прибыли: $p_t B x_{t-1} = p_t A x_t$.

Определение 12.2 (Стационарная траектория). $x_t = \partial^t x_0, \ p_t = \mu^{-t} p_0.$

Определение 12.3 (Стационарный план). $\partial Ax_0 \leq Bx_0$.

Определение 12.4 (Стационарная траектория цен). $\mu p_0 A \geq p_0 B$.

Глава 12. Модель расширяющейся экономики фон Неймана.

12.0 СБАЛАНСИРОВАННЫЙ РОСТ В МОДЕЛИ ФОН НЕЙМАНА. **43 Определение 12.5** (Состояние динамического равновесия). $(\partial, \mu, p, x) : \partial Ax \le Bx, \ \mu p A \ge p B, \ \mu p Ax = p Bx, \ \partial p Ax = p Bx, \ \partial, \mu, p, x > 0$

Замечание. $pAx \neq 0 \Rightarrow \partial = m$.

Определение 12.6 (Невырожденное положение равновесия). $(\alpha, x, p) : \alpha, x, p > 0, \ \alpha Ax \leq Bx, \ \alpha pA \geq pB, \ pAx > 0.$

Модель Гейла сбалансированного роста. Существование состояния равновесия.

$$z := (x, y) \in \mathbb{R}^{2n}$$

Определение 13.1 (Модель Гейла). Модель Гейла – подмножество $Z \subset \mathbb{R}^{2n}_+$:

- 1. Z выпуклый замкнутый конус
- 2. $ecnu(0,y) \in Z \Rightarrow y = 0$
- 3. $\forall i: \exists (x,y) \in Z: y_i > 0 \ (3'.\exists (x,y) \in Z: y \gg 0)$
- $z=(x,y)\in Z$ производственный процесс
- х вектор затрат, у вектор выпуска

Утверждение 13.1. (A, B) – модель Неймана, в A нет нулевых строк (все товары производятся), тогда $Z = \{(Au, Bu)|u \geq 0\}$ – модель Гейла.

Определение 13.2 (Траектория(план)). Модель Гейла с началом y_0 – последовательность $z_t = (x_{t-1}, y_t) \in Z, \ t \in \mathbb{N}, \ x_t \leq y_t.$

Определение 13.3 (Траектория цен). Последовательность $p_t \in \mathbb{R}^n_+, \ t \in \mathbb{N}_0$: $\forall (x,y) \in Z: \ p_{t-1}x \geq p_ty. \ \pi_t(\xi) := p_ty_t, \ \xi = \{z_t\}, \ \pi_t(\xi)$ монотонно убывает.

Определение 13.4 (Состояние равновесия). Тройка $(\alpha, \vec{z}, \vec{p}), \ \alpha > 0, \ \vec{z} \in Z, \ \vec{p} > 0,$ – состояние равновесия, если:

- 1. $\alpha \vec{x} \leq \vec{y}$
- 2. $\forall (x,y) \in Z : \alpha px \geq py$.

 \overline{Ec} ли (p,y)>0, то положение равновесия невырожденное, lpha – темп роста.

Теорема 13.1. $Y \forall$ модели Γ ейла \exists состояние равновесия.

Доказательство. $\forall z \in Z$ определим технологический темп роста процесса $z = (x,y): \alpha(z) = \max_{\alpha} \{\alpha | \alpha x \leq y\} \Rightarrow \alpha(z) \geq 0, \ \alpha(\lambda z) = \alpha(z) \ \forall \ \lambda > 0.$ Обозначим $\lambda_N = \sup_{z \in Z \setminus \{0\}} \alpha(z)$ – число Неймана модели Гейла. Покажем, что $\lambda_N < \infty$.

Пусть $\lambda_N = \infty \Rightarrow \exists z_n = (x_n, y_n) \in Z : \alpha(z_n) > n, \|y_n\| = 1 \Rightarrow \|x_n\| \le \frac{\|y_n\|}{\alpha(z_n)} \Rightarrow \|x_n\| \underset{n \to \infty}{\to} 0.$

С другой стороны, $\{y_n\}$ – ограничена, тогда \exists сходящаяся подпоследовательность $y_{n_k} \to y: \|y\| = 1.$

Множество Z замкнуто, тогда $z_{n_k} \underset{k \to \infty}{\to} (0, y) \in Z$ – противоречие с пунктом 2) определения множеста Гейла, тогда $\alpha_N < \infty$.

Аналогично доказывается, что $\exists z_n \to \vec{z} \in Z : \alpha(z) \to \alpha_N \Rightarrow \alpha(\vec{z}) = \alpha_N$. Рассмотрим $U = \{y - \alpha_N x | (x,y) \in Z\}, \ \mathbb{R}^n_{++} = \{x \gg 0\} \Rightarrow U \cup \mathbb{R}^n_{++} = \emptyset$, иначе $\exists (x,y) \in Z : \ y - \alpha_N x \gg 0 \Rightarrow \alpha(z) > \alpha_N$. $U, \ \mathbb{R}^n_{++}$ — выпуклые, тогда по теореме отделимости $\exists p \neq 0 : \ \forall \ u \in U, \ \forall \ v \in \mathbb{R}^n_{++} : \ pu \leq pv$. Так как $0 \in U \Rightarrow pv \geq 0 \Rightarrow p > 0$.

 $\exists v_n \to 0 \Rightarrow pu \leq 0 \ \forall u \Rightarrow \alpha_N px \geq py \ \forall (x,y) \in Z \Rightarrow (\alpha_N, \vec{z}, p)$ – состояние равновесия.

Замечание. Состояние равновесия (α, \vec{z}, p) может быть вырожденным.

Утверждение 13.2. *В модели Гейла может быть не более п темпов роста.*

Доказательство. $\forall \alpha > 0$ обозначим $Z(\alpha) = \{z = (x,y) \in Z | \alpha(z) \ge \alpha\}, \ l(z) = \{i | y_i > 0\}, \ \vec{z}(\alpha)$ — вектор из Z, имеющий наибольшее количество ненулевых компонент, а $n(\alpha) = \#l(\vec{z}(\alpha))$.

Тогда $n(\alpha)$ – корректно определено, так как $Z(\alpha)$ – выпуклый конус. Пусть $\alpha_1 < \alpha_2 \Rightarrow Z(\alpha_1) \subset Z(\alpha_2), \ n(\alpha_1) \geq n(\alpha_2).$ Пусть α_1, α_2 – темпы роста и $(\alpha_i, \vec{z}_i, p_i)$ – состояния равновесия i=1,2. Можно считать, что z_i имеет наибольшее число ненулевых компонент. Пусть $n(\alpha_1) = n(\alpha_2) \Rightarrow l(z_1) = l(z_2), \ \text{и} \ \exists \gamma > 0: \ y_1 \leq \gamma y_2 \Rightarrow \gamma p_1 y_2 \geq p_1 y_1 \Rightarrow p_1 y_2 > 0 \Rightarrow \alpha_1 p_1 x_2 \geq p_1 y_2 \ \text{(по определению p)} \Rightarrow \alpha_2 p_2 \leq y_2 \Rightarrow \alpha_2 p_1 x_2 \leq p_1 y_2 \leq \alpha_1 p_1 x_2, \ \text{но } p_1 y_2 > 0 \Rightarrow p_1 x_1 > 0 \Rightarrow \alpha_2 \leq \alpha_1 \ \text{– противоречие.}$

Определение 13.5 (Число Фробениуса модели Гейла). Обозначим $\alpha'(p) = \inf\{\alpha | \alpha px \ge py \ \forall \ (x,y) \in Z\}$. Тогда $\alpha_F = \inf_{p>0} \alpha'(p)$ – число Фробениуса модели Гейла.

Отметим, что $\exists \vec{p} > 0 : \alpha'(\vec{p}) = \alpha_F$.

Глава 13. Модель Гейла сбалансированного роста. Существование состояния равновесия. 46

Утверждение 13.3. *1.* $\alpha_F \leq \alpha_N$.

- 2. $\forall \alpha \in [\alpha_F, \alpha_N] \exists$ состояние равновесия $(\alpha, z, p) : \alpha'(p) \leq \alpha \leq \alpha(z)$.
- 3. Если (α, z, p) невырожденно, то $\alpha = \alpha(z) = \alpha'(p)$.

Замечание. Существуют модели Гейла без (ненулевых) темпов роста.

Альтернатива для систем линейных неравенств.

Теорема 14.1. Для любой матрицы А и вектора b:

- 1. либо $\exists x \geq 0 : Ax \leq b$
- 2. либо $\exists p \geq 0: pA \geq 0 \ u \ (p,b) < 0.$

Доказательство. • $(2\Rightarrow !1)$ Пусть одновременно $\exists p\geq 0, \exists x\geq 0$ с указанными свойствами, тогда $0>pb\geq pAx\geq 0$ – противоречие.

• (!1 \Rightarrow 2) Пусть $\forall x \geq 0$: Ax > b, тогда $b \notin C = conv.cone\{a_1, \dots, a_n, e_1, \dots, e_m\}$, (a_1, \dots, a_n) , иначе $b = \sum x^i a_i + \lambda_i e_i \geq Ax$. По теореме отделимости $\exists p > 0$: (p, b) < 0, $(p, z) \geq 0 \ \forall \ z \in C$, поэтому $(p, e_i) \geq 0 \ \Rightarrow \ p \geq 0$ и $(p, a_i) \geq 0 \Rightarrow pA \geq 0$.

47

Теорема о системах линейных неравенств.

Теорема 15.1. Пусть $X = \{x \ge 0 | Ax \le b\} \ne \emptyset \ u \ \forall \ x \in X : \ (c,x) \le d \Rightarrow \exists p \ge 0 : pA \ge c, \ (p,b) \le d.$

Доказательство. Пусть это не так, тогда $\forall \ q=p^T \geq 0$ система

$$\begin{cases} -A^T q \le -c^T \\ b^T q \le d \end{cases}$$

не имеет решения, тогда $\tilde{x}=(x^T,s): \tilde{x}(-A^T,b^T)^T\geq 0, \; \tilde{x}(-c^T,d)^T<0$ (по альтернативе для ситемы линейных неравенств). То есть $-Ax+sb\geq 0, \; -(c,x)+sd<0$ или:

$$\begin{cases} Ax \le sb \\ (c, x) \ge sd \end{cases}$$

- 1. $s=0, \Rightarrow \exists y\geq 0: \ Ay\leq 0, \ (c,y)>0 \Rightarrow \forall \ x\in X \ \exists \lambda>0: \ A(x+\lambda y)\leq Ax< b, \ (c,x+\lambda y)>d(\Leftrightarrow \forall \ x\in X: \ (c,x)\leq d)^*\Rightarrow x+\lambda y\in X$ противоречие с *.
- 2. $s > 0 \Rightarrow \exists x \ge 0$: $Ax \le b$, (c, x) > d противоречие.

Невырожденные состояния равновесия в модели Неймана.

Пусть (А, В) – модель Неймана, в А нет нулевых столбцов, в В – нулевых строк.

Обозначение. $\lambda_N := \inf\{\lambda | \exists u > 0 : (A - \lambda B)u \leq 0\}$ – число Неймана модели (A, B).

 $\lambda_F := \sup\{\lambda | \exists p > 0: \ p(A - \lambda B) \leq 0\}$ – число Фробениуса модели (A, B).

Теорема 16.1. $A \ge 0$, $B \ge 0$, в A нет нулевых столбцов, в B – нулевых строк \Rightarrow в соответствующей модели Неймана \exists невырожденное положение равновесия.

Доказательство. Допустим \exists невырожденное положение равновесия для $\alpha = \lambda_N, \lambda_F$. Рассмотрим $p_* > 0$: $p_*(A - \lambda_F B) \geq 0$. Можно считать, что $p_* A$ имеет наибольшее число ненулевых компонент. Покажем, что $\exists u \geq 0$: $(A - \lambda_F B)u \leq 0$ и $p_* Au > 0$. Пусть $(A - \lambda_F B)u \geq 0$, $u \geq 0 \Rightarrow p_* Au \leq 0 \Rightarrow$ по теореме о системах линейных неравенств $\exists q \geq 0$: $q(A - \lambda_F B) \geq p_* A \geq 0$. $l(p_*) := \{j | (p_* A)_j = 0\} \Rightarrow$

$$\begin{cases} (qA)_j > \lambda_F(qB)_j, \ j \notin l(p_*) \\ (qA)_j = (qB)_j = 0, \ j \in l(p_*) \end{cases}$$

Тогда $\exists \ \delta > 0: \ qA > (\lambda_F + \delta)qB$ — противоречие с определением λ_F . Таким образом, $\exists u.$

Для λ_N аналогично рассмотрим $u_*: (A-\lambda_N B)u_* \leq 0$ и Bu_* имеет наибольшее число ненулевых компонент. Пусть $p \geq 0, \ p(A-\lambda_N B) \geq 0 \Rightarrow pAu_* \leq 0 \Rightarrow \exists v \geq 0: \ (A-\lambda_N B)v \leq -Bu_* \leq 0 \Rightarrow$

$$\begin{cases} (Av)_j > \lambda_N(Bv)_j, \ (Bu_*)_j > 0 \\ (Av)_j = (Bv)_j = 0, \ (Bu_*)_j = 0 \end{cases} \Rightarrow$$

 $\exists \ \delta > 0 : \ (A - (\lambda_N - \delta)B)v \le 0$ — противоречие с определением λ_N .

 16.0
 Неймана.

 Определение 16.1 (Продуктивная модель). (A, B) – продуктивна, если ∀
 $0 \exists x > 0 : (B - A)x > c.$

Теорема 16.2. (A, B) – продуктивна $\iff \lambda_F < 1$.

Доказательство. \sqsubseteq Пусть $\exists c \geq 0: \ \forall \ x \geq 0 \ (B-A)x < c. \Rightarrow$ система

$$\begin{cases} (A-B)x \le -c \\ x \ge 0 \end{cases} \Rightarrow$$

не имеет решения. По альренативе для системы неравенств: $\exists p \geq 0: p(A B) \geq 0 \Rightarrow \lambda_F \geq 1$ – противоречие.

 \implies Пусть (A, B) – продуктивна. Рассмотрим $c \gg 0, \ x \ge 0, \ (B-A)x \ge c.$ Пусть $p > 0: p(A - \lambda_F B) \ge 0 \Rightarrow \frac{1}{\lambda_F} pAx \ge pBx > pAx \Rightarrow \frac{1}{\lambda_F} > 1 \Rightarrow \lambda_F < 1.$

Теорема Моришимы о магистралях.

A, В – неотрицательные матрицы $m \times m$. Рассмотрим последовательность интенсивностей: $x_1, \ldots, x_r, \ldots, x_t \in \mathbb{R}^m_+, Ax_t$ — вектор затрат, Bx_t — вектор выпуска.

Определение 17.1 (Условие замкнутости). $Ax_t \leq Bx_{t-1} \Rightarrow x_1, \dots, x_t$ – траектория.

Задача 2.

$$\begin{cases} \langle c, x_T \rangle \to \max \\ Ax_t \leq Bx_{t-1}, \ t = 2, \dots, T \\ x_t \geq 0 \end{cases}$$

Решение этой задачи – оптимальная траектория.

Замечание. Если $c = qB, \ q \ge 0$ — вектор цен, $\ < c, x_T > = qBx_T$ — стоимость выпуска Bx_T .

Обозначение. $x,y \in \mathbb{R}^m, \ y \neq 0, \ s(x,y) = \|\frac{x}{\|x\|} - \frac{y}{\|y\|}\| - paccmoshue между направлениями <math>x \ u \ y$.

Определение 17.2 (Магистраль). В задаче выше – это вектор $x \neq 0$: $\forall \varepsilon > 0 \exists T_1(\varepsilon), T_2(\varepsilon)$: $\forall t : T_1(\varepsilon) \leq t \leq T - T_2(\varepsilon) \; \forall \; onmuмальной траектории <math>\{x_t\}$: $s(x_t, \vec{x}) < \varepsilon$.

Определение 17.3 (Слабая магистраль). Это вектор $x: \forall \varepsilon > 0 \exists Q(\varepsilon) \in \mathbb{N}: \forall onтимальной траектории <math>\{x_t\}$ неравенство $s(x_t, \vec{x}) < \varepsilon$ нарушается $\leq Q(\varepsilon)$ раз.

Задача 3. Дано: $m=n,\ B=I-e\partial u h u v h a s$ матрица, A-h e p a s ложимая, примитивная, $c\gg 0,\ x_0\gg 0.$

$$\begin{cases} \langle c, x_T \rangle \to \max \\ Ax_t \le Bx_{t-1} \\ x_t \ge 0 \end{cases}$$

Лемма 17.1. A – неразложимая, примитивная $\Rightarrow \exists T_1 : \forall t \geq T_1 : A^t \gg 0$.

Лемма 17.2. $s(x,y) < 2 \frac{\|x-y\|}{\|x\|}$.

Доказательство.
$$\left\| \frac{x}{\|x\|} - \frac{y}{\|y\|} \right\| = \left\| \frac{x-y}{\|x\|} + y \left(\frac{1}{\|x\|} - \frac{1}{\|y\|} \right) \right\| \leq \frac{\|x-y\|}{\|x\|} + \|y\| \left| \frac{1}{\|x\|} - \frac{1}{\|y\|} \right| = \frac{\|x-y\|}{\|x\|} + \|y\| \frac{\left| \frac{1}{\|x\|} - \frac{1}{\|y\|} \right|}{\|y\| \|x\|} \leq 2 \frac{\|x-y\|}{\|x\|}.$$

Лемма 17.3. A – неразложимая, примитивная $\Rightarrow \forall \varepsilon > 0 : \exists T_2(\varepsilon) : \forall t \geq T_2 \forall x > 0 \ s(A^t, x_A) < \varepsilon$.

Доказательство. Можно считать, что $\lambda_A = 1$ (иначе заменим матрицу на $\frac{1}{\lambda_A}A$) $\Rightarrow A$ – устойчива. Пусть $\{e_i\}_{i=1}^n$ базис $\mathbb{R}^n \Rightarrow \exists \lim_{k \to \infty} A^k e_i = \lambda_i x_A \Rightarrow \exists \tilde{T}_i(\varepsilon) : \forall t \geq \tilde{T}_i(\varepsilon) : \|A^t e_i - \lambda_i x_A\| < \frac{\varepsilon}{2} \lambda_i \|x_A\|$. Положим $T_2(\varepsilon) = \max_{i=1,m} \tilde{T}_i(\varepsilon)$. Пусть x > 0, $x = \sum x_i e_i, \ x_i > 0$. $\|A^t x - (\sum \lambda_i x_i) x_A\| \leq \sum \|x_i\| \|A^t e_i - \lambda_i x_A\| < \frac{\varepsilon}{2} \sum \lambda_i x_i \|x_A\|. \ s(A^t x, x_A) = \rho(A^t x, (\sum \lambda_i x_i) x_A) \leq \frac{2\|A^t x - (\sum \lambda_i x_i) x_A\|}{\|(\sum \lambda_i x_i) x_A\|} < \frac{2\frac{\varepsilon}{2} \sum \lambda_i x_i \|x_A\|}{\sum \lambda_i x_i \|x_A\|} = \varepsilon$.

Теорема 17.1 (Теорема Моришимы). В задаче номер $3 x_A$ – магистраль.

Доказательство. x_1,\ldots,x_T – оптимальная траектория. $\forall\ t\geq T_1,\ x_t:=Ax_{t-1}$ так как: $T_1:\ x_t>Ax_{t-1}$. Рассмотрим последовательность $\tilde x_0,\ldots,\tilde x_T:$

$$\begin{cases} \tilde{x}_i = A^{t+1-i} x_{t+1}, \ i \le t \\ \tilde{x}_i = x_t, \ i > t \end{cases}$$

 $x_0 - \tilde{x}_0 \ge Ax_1 - A\tilde{x}_1 \ge A^2x_2 - A^2\tilde{x}_2 \ge \dots \ge A^t(x_t - \tilde{x}_t) = A^t(x_t - Ax_{t+1}) \gg 0$ $0 \Rightarrow \exists \lambda > 1 : x_0 \ge \lambda_0 \tilde{x}_0.$

Тогда рассмотрим последовательность $x'_0,\ldots,x'_T,\ x'_0=x_0,\ x'_i=\lambda \tilde{x}_i,\ i>0\Rightarrow x'_0=x_0\geq \lambda \tilde{x}_0=\lambda A \tilde{x}_1=A x'_1$ и $x'_i\geq A x'_{i+1}$ при i>0, то есть x'_0,\ldots,x'_T –

— траектория $\Rightarrow < c, x_T' >= \lambda < c, x_T >> < c, x_T >$ так как $x_T > 0, c \gg 0,$ $< c, X_T >> 0$ — противоречие, так как x_0, \dots, x_T — оптимальная траектория. Пусть $T_1 \leq t \leq T - T_2(\varepsilon) \Rightarrow x_t = A^{T-t}x_T, \ T-t \geq T_2(\varepsilon) \Rightarrow s(x_t, x_A) = s(A^{T-t}x_T, x_A) < \varepsilon$, то есть x_A — магистраль.

Замечание. T_1 зависит только от A, T_2 зависит от A и ε , но оба не зависят от $x_0, c, T, \{x_t\}_{t=1}^T$.

Теорема Раднера.

Пусть $Z\subset\mathbb{R}_+^{\nvDash_{\mathsf{K}}}$ – модель Гейбла и $u:\mathbb{R}^n\to\mathbb{R}$ – функция полезности, $z=(x,y)\in\mathbb{R}^n\times\mathbb{R}^n.$

 $z_1,\ldots,z_T\in Z$ называется траекторией, если $\forall\;t\;x_{t+1}\leq y_t.$

Задача 4.

$$\begin{cases} u(y_T) \to \max \\ z_t \in Z \\ x_{t+1} \le y_t \\ y_0 \le x_1 \end{cases}$$

Решение этой задачи – оптимальная траектория.

Рассмотрим условия:

1.
$$z = (x, \alpha x) \in \mathbb{Z}, \ x > 0.$$

2.
$$\exists p > 0 : \forall z = (x, y) \in Z, z \neq \lambda z : \lambda px > py.$$

3.
$$\forall x \gg 0 \exists L > 0 : (x, Lx) \in Z$$
.

4. и – непрерывна и неортицательна.

5. и – однородная степени 1:
$$u(\lambda y) = \lambda u(y) \forall \lambda > 0$$
.

6.
$$u(x) > 0$$
.

7.
$$\exists k > 0 : \forall y \ge 0 : u(y) \le kpy$$
.

Обозначение. $S(\varepsilon, T, \{z_t\}) = \#\{t = 1, ..., T | s(y_t, x) \ge \varepsilon\}.$

Лемма 18.1. $C_{\varepsilon} := \{(x,y) \in z | s(x,y) \ge \varepsilon\} \Rightarrow \exists \delta > 0 : \forall (x,y) \in C_{\varepsilon} : (\alpha - \delta)px \ge py.$

Доказательство. Пусть $\exists z_k = (x_k, y_k) \in C_{\varepsilon} : (\alpha - \frac{1}{k})px_k < py_k$. Можно считать, что $\exists \lim_{k \to \infty} z_k = (x, y) \neq 0.Z$ – замкнутое множество $\Rightarrow (x, y) \in Z$.

$$(\alpha - \frac{1}{k})px_k < py_k \Rightarrow \alpha px \leq py \Rightarrow (x,y) = \lambda z \Rightarrow y = \lambda \alpha x$$
 и $s(x,y) = 0$ $y_k \to y \Rightarrow \exists k_0 : s(y_k,x) < \varepsilon$ – противоречие с $z_{k_0} = (x_{k_0},y_{k_0}) \in C_{\varepsilon}$.

Теорема 18.1 (Раднера). Если модель Гейбла Z удовлетворяет условиям 1)-7), то x – слабая магистраль, то есть $\forall \varepsilon > 0 \ \exists Q(\varepsilon) = Q : \ \forall \ оптимальных траекторий <math>\{x_t\}: S(\varepsilon, T, \{z_t\}) \leq Q$.

Доказательство. Рассмотрим оптимальный проект $\{z_t\}_{t=1}^T$. Рассмотрим $\{z_t'\}: z_1' = (x_1, Lx) \in Z, \ z_t' = (\underset{=\alpha^{t-2}Lz \in Z, \ z=(x,\alpha x)}{\alpha^{t-1}Lx}, \ \alpha^{t-1}Lx), \ t>1.$ z_t' – траектория такая, что $x_{t+1}' = y_t', \ x_1' < x_1 \Rightarrow u(y_T') \leq u(y_T).$

$$u(y_T') = \alpha^{T-2} L u(x) > 0$$
. Если $z_t \in C_{\varepsilon}$, то $py_t \le (\alpha - \delta) px_t \le (\alpha - \delta) py_{t-1}$. $z_t \in Z \setminus C_{\varepsilon} \Rightarrow py_z \le \alpha px_t \le \alpha py_{t-1}$.

Пусть $S = S(\varepsilon, T, \{z_t\}) = \#\{t | z_t \in C_\varepsilon\} \Rightarrow py_T \le (\alpha - \delta)^s \alpha^{T-s} px_1 \Rightarrow u(y_T) \le kpy_T \le (\alpha - \delta)^s \alpha^{T-s} px_1$

$$1 - rac{u(y_T)}{u(y_T')} = rac{k(lpha - \delta)^s lpha^{T-s} p x_1}{lpha^{T-2} L u(x)} = d(rac{lpha - \delta}{lpha})^s$$
, где $d = rac{klpha^2 p x_1}{L u(x)}$ $d(1 - rac{\delta}{2})^s \ge 1 \Rightarrow s \le -rac{\log d}{\log(1 - rac{\delta}{2})} = Q(arepsilon).$

 $Q(\varepsilon)$ зависит от модели Гейбла Z, u, ε, x_1 и не зависит от $T, \{z_t\}$.

Литература

- [1] Курс лекций И.М.Никонова, механико-математический факультет МГУ им. М.В.Ломоносова, 2021 г.
- [2] Курс семинаров И.М.Никонова, механико-математический факультет МГУ им. М.В.Ломоносова, 2021 г.