Мухаметшин А.Р. ББМО-01-25

```
!git clone https://github.com/neuralcomputer/ML_School.git
Cloning into 'ML School'...
remote: Enumerating objects: 94, done.
remote: Counting objects: 100% (15/15), done.
remote: Compressing objects: 100% (15/15), done.
remote: Total 94 (delta 5), reused 0 (delta 0), pack-reused 79 (from 1)
Receiving objects: 100% (94/94), 33.83 MiB | 16.90 MiB/s, done.
Resolving deltas: 100% (29/29), done.
import pandas as pd # подключим библиотеку
import numpy as np
s = pd.Series(data=[10, "11", ['a',12], 'ppp', 14, 42], # данные
index=[2.1, '2', 'два', 2, 2.1, -2]) # их индексы
s # здесь 5 ячее
          0
 2.1
         10
  2
         11
 два [а, 12]
  2
        ppp
 2.1
         14
```

print(s[2]) # здесь вернется подпоследовательность элементов у которых индекс н

 $print('\n')$ print(s['2']) # это ячейка с названием '2', это совершенно другой индекс, отлич

 $print('\n')$ print(s['два']) # это ячейка с названием 'два', третья ячейка, в которой записа

 $print('\n')$ print(s[-2]) # это ячейка с названием -2, пятая ячейка

ppp

-2

dtype: object

42

11

['a', 12]

42

```
s['hello'] # такого нет
```

```
KeyError
                                          Traceback (most recent call last)
/usr/local/lib/python3.12/dist-packages/pandas/core/indexes/base.py in
get_loc(self, key)
   3804
                try:
-> 3805
                    return self._engine.get_loc(casted_key)
   3806
                except KeyError as err:
index.pyx in pandas._libs.index.IndexEngine.get_loc()
index.pyx in pandas._libs.index.IndexEngine.get_loc()
index.pyx in pandas._libs.index.IndexEngine._get_loc_duplicates()
index.pyx in pandas._libs.index.IndexEngine._maybe_get_bool_indexer()
index.pyx in pandas._libs.index._unpack_bool_indexer()
KeyError: 'hello'
The above exception was the direct cause of the following exception:
KeyError
                                          Traceback (most recent call last)
                                   3 frames
/usr/local/lib/python3.12/dist-packages/pandas/core/indexes/base.py in
get_loc(self, key)
   3810
                    ):
                        raise InvalidIndexError(key)
   3811
-> 3812
                    raise KeyError(key) from err
                except TypeError:
   3813
   3814
                    # If we have a listlike key, _check_indexing_error will
raise
KeyError: 'hello'
```

```
s[2.1] # а такой есть, но это не номер, а название индекса

0
2.1 10
2.1 14

dtype: object
```

```
S
```

	0
2.1	10
2	11
два	[a, 12]
2	ppp
2.1	14
-2	42
dtype	: object

s[1:3] # срез, вторая и третья ячейки, здесь это номера, а не названия.

s[1] # это ошибка, нет элемента с названием 1

```
KeyError
                                          Traceback (most recent call last)
/usr/local/lib/python3.12/dist-packages/pandas/core/indexes/base.py in
get_loc(self, key)
   3804
                try:
-> 3805
                    return self._engine.get_loc(casted key)
   3806
                except KeyError as err:
index.pyx in pandas._libs.index.IndexEngine.get_loc()
index.pyx in pandas. libs.index.IndexEngine.get loc()
index.pyx in pandas._libs.index.IndexEngine._get_loc_duplicates()
index.pyx in pandas._libs.index.IndexEngine._maybe_get_bool_indexer()
index.pyx in pandas._libs.index._unpack_bool_indexer()
KeyError: 1
The above exception was the direct cause of the following exception:
                                          Traceback (most recent call last)
KeyError
                                   3 frames
/usr/local/lib/python3.12/dist-packages/pandas/core/indexes/base.py in
get_loc(self, key)
   3810
                    ):
   3811
                        raise InvalidIndexError(key)
-> 3812
                    raise KeyError(key) from err
   3813
                except TypeError:
                    # If we have a listlike key, _check_indexing_error will
   3814
raise
KeyError: 1
```

```
df = pd.DataFrame([[10, 'aaa'], [s, 21], [30, 31]])
df
```

```
0
                                   1
     0
                             10 aaa
        2.1 10 2 11 два [а, 12] 2...
                                  21
     2
                            30
                                  31
Далее: (
         New interactive sheet
    df = pd.DataFrame([[10, 'aaa'], [s, 21], [30, 31]],
    columns=['невторой',2],
    index=[1,'1','один'])
    df
                                           невторой
                                       2
       1
                                10 aaa
                                           11.
            2.1 10 2 11 два [а, 12] 2...
                                      21
                                30
     один
                                      31
Далее: (
         New interactive sheet
    s0=df['невторой']
    s1=df['невторой']['один']
    s1
    30
    df.columns=['невторой','second']
    #df.columns=['index','second']
    df
                                               翢
                          невторой second
       1
                                10
                                        aaa
                                               ıl.
            2.1 10 2 11 два [а, 12] 2...
                                         21
                                30
                                         31
     один
Далее: (
         New interactive sheet
    df.columns=['столбец 1',2] # изменяем названия столбцов
```

df['столбец 1']

```
толбец 1

1 10

1 2.1 10 2 11 два [а, 12] 2...
один 30

dtype: object
```

```
# а вот с такими названиями работать не будет
#df.столбец 1
df.'столбец 1'

File "/tmp/ipython-input-4282008195.py", line 3
    df.'столбец 1'

SyntaxError: invalid syntax
```

```
      df.columns=['index','second']

      df['index']

      index

      1
      10

      1
      2.1 10 2 11 два [а, 12] 2...

      один
      30

      dtype: object
```

```
# так ошибку не выдает, но выдает что-то не то. Это потому, что index уже опред df.index

Index([1, '1', 'один'], dtype='object')
```

```
print(df.index)
print(df.columns)
print(df.values)
print(type(df.values))
Index([1, '1', 'один'], dtype='object')
Index(['index', 'second'], dtype='object')
[[10 'aaa']
 [2.1
              10
  2
              11
         [a, 12]
  два
  2
             ppp
  2.1
              14
  -2
              42
```

dtype: object 21]

<class 'numpy.ndarray'>

[30 31]]

```
df[1:2]
                                            丽
                          index second
     1 2.1 10 2 11 два [а, 12] 2...
                                      21
    df
                                                \blacksquare
                              index second
       1
                                  10
                                         aaa
                                                 ıl.
       1
            2.1 10 2 11 два [а, 12] 2...
                                          21
                                  30
                                          31
     один
Далее: (
         New interactive sheet
    df.iloc[1,0]
               0
     2.1
              10
      2
              11
     два [а, 12]
      2
             ppp
     2.1
              14
      -2
              42
    dtype: object
    df.iloc[1,-1]
    21
    np.random.seed(123)
    s = pd.Series(np.random.normal(size=10))
    print(s)
    ind=s>0
    print(ind)
    r=s[ind]
```

```
print(r)
0
    -1.085631
1
     0.997345
2
     0.282978
  -1.506295
3
    -0.578600
4
5
    1.651437
    -2.426679
6
    -0.428913
     1.265936
8
    -0.866740
dtype: float64
     False
1
      True
2
      True
3
     False
     False
4
5
     True
     False
6
7
     False
8
      True
     False
dtype: bool
     0.997345
2
     0.282978
5
     1.651437
     1.265936
dtype: float64
```

```
url = 'https://datahub.io/core/s-and-p-500-companies-financials/r/constituents-
#url = 'https://raw.githubusercontent.com/datasets/s-and-p-500-companies-financ
file='constituents-financials_csv.csv'
data = pd.read_csv(url, sep=',')
data
```

	Symbol	Name	Sector	Price	Price/Earnings	Dividend Yield	Earniı
	0 MMM	3M	Industrial Conglomerates	152.20	21.286713	0.0199	
	1 AOS	A. O. Smith	Building Products	67.30	18.539946	0.0196	
	2 ABT	Abbott Laboratories	Health Care Equipment	127.93	16.744764	0.0202	
	3 ABBV	AbbVie	Biotechnology	183.90	64.300700	0.0373	
	4 ACN	Accenture	IT Consulting & Other Services	384.95	32.294464	0.0170	
4	98 XYL	Xylem Inc.	Industrial Machinery & Supplies & Components	124.04	35.643677	0.0118	
4	99 YUM	Yum! Brands	Restaurants	130.50	24.392525	0.0205	
5	00 ZBRA	Zebra Technologies	Electronic Equipment & Instruments	391.94	53.397820	NaN	
5	01 ZBH	Zimmer Biomet	Health Care Equipment	109.48	20.893131	0.0087	
5	02 ZTS	Zoetis	Pharmaceuticals	170.90	32.124058	0.0116	
50	503 rows × 14 columns						

Далее: (New interactive sheet)

data.shape # сколько строк и столбцов?

(503, 14)

выводит первые несколько строк data.head()

	Symbol	Name	Sector	Price	Price/Earnings	Dividend Yield	Earnings/
0	MMM	3M	Industrial Conglomerates	152.20	21.286713	0.0199	
1	AOS	A. O. Smith	Building Products	67.30	18.539946	0.0196	
2	ABT	Abbott Laboratories	Health Care Equipment	127.93	16.744764	0.0202	
3	ABBV	AbbVie	Biotechnology	183.90	64.300700	0.0373	
4	ACN	Accenture	IT Consulting & Other Services	384.95	32.294464	0.0170	

Далее: New interactive sheet

```
# как называются столбцы? data.columns
```

```
# количество строк
len(data)
```

503

```
# из них строк с компаниями из отрасли Industrials (столбец Sector) induk=data['Sector']=='Industrial Conglomerates' sum(induk)
```

2

```
# группируем по значениям столбцов Sector и group=data.groupby('Sector') group.size() # считаем количество строк, оказавшихся в каждой группе
```

	0
Sector	
Advertising	2
Aerospace & Defense	12
Agricultural & Farm Machinery	1
Agricultural Products & Services	2
Air Freight & Logistics	4
Tobacco	2
Trading Companies & Distributors	2
Transaction & Payment Processing Services	8
Water Utilities	1
Wireless Telecommunication Services	1
127 rows × 1 columns	
dtype: int64	

data.count()

	0
Symbol	503
Name	503
Sector	503
Price	500
Price/Earnings	475
Dividend Yield	404
Earnings/Share	499
52 Week Low	500
52 Week High	500
Market Cap	500
EBITDA	470
Price/Sales	499
Price/Book	468
SEC Filings	503
dtype: int64	

group.count() # число раз, когда значение группы встречалось # может быть меньше, чем число строк, если значение было пропущено в файле

	Symbol	Name	Price	Price/Earnings	Dividend Yield	Earnings/Share
Sector						
Advertising	2	2	2	2	2	2
Aerospace & Defense	12	12	12	11	9	12
Agricultural & Farm Machinery	1	1	1	1	1	1
Agricultural Products & Services	2	2	2	2	2	2
Air Freight & Logistics	4	4	4	4	4	4
Tobacco	2	2	2	2	2	2
Trading Companies & Distributors	2	2	2	2	2	2
Transaction & Payment Processing Services	8	8	8	8	5	8
Water Utilities	1	1	1	1	1	1
Wireless Telecommunication Services	1	1	1	1	1	1
127 rows × 13 columns						

#group.Price.median() # медиана для групп по числовому столбцу Price # тут-то нам и пригодилось обращение к столбцу как к атрибуту group['Price'].median() # альтернативное написание

	Price
Sector	
Advertising	57.730
Aerospace & Defense	207.790
Agricultural & Farm Machinery	476.560
Agricultural Products & Services	63.680
Air Freight & Logistics	113.905
Tobacco	91.215
Trading Companies & Distributors	415.650
Transaction & Payment Processing Services	195.065
Water Utilities	124.640
Wireless Telecommunication Services	232.970
127 rows × 1 columns	
dtype: float64	

каждую группу можно посмотреть, вот состав группы Materials group.get_group('Tobacco')

	Symbol	Name	Sector	Price	Price/Earnings	Dividend Yield	Earnings/Shar
21	МО	Altria	Tobacco	52.23	7.877828	0.0775	6.6
374	РМ	Philip Morris International	Tobacco	130.20	20.699522	0.0414	6.2

group.Name.unique()

Name

Sector

Advertising

[Interpublic Group of Companies (The), Omnicom...

Aerospace & Defense

[Axon Enterprise, Boeing, GE Aerospace, Genera...

Agricultural & Farm Machinery

[Deere & Company]

Agricultural Products & Services

[Archer Daniels Midland, Bunge Global]

Air Freight & Logistics

[C.H. Robinson, Expeditors International, FedE...

[Altria, Philip Morris International]

Trading Companies & Distributors

Tobacco

[Fastenal, United Rentals]

Transaction & Payment Processing Services

[Corpay, Fidelity National Information Service...

Water Utilities

[American Water Works]

Wireless Telecommunication Services

[T-Mobile US]

127 rows × 1 columns

dtyna: chiect

```
letter="A"
for i in group.Symbol:
  print('{}: {}'.format(i[0],(i[1].str.get(0)==letter).any()))
```

Advertising: False

Aerospace & Defense: True

Agricultural & Farm Machinery: False Agricultural Products & Services: True

Air Freight & Logistics: False

Apparel Retail: False

Apparel, Accessories & Luxury Goods: False

Application Software: True

Asset Management & Custody Banks: True

Automobile Manufacturers: False Automotive Parts & Equipment: True

Automotive Retail: True
Biotechnology: True
Brewers: False
Broadcasting: False
Broadline Retail: True
Building Products: True

Cable & Satellite: False

Cargo Ground Transportation: False

Casinos & Gaming: False Commodity Chemicals: False Communications Equipment: True

```
Пр2 МухаметшинАР ББМО-01-25.ipynb - Colab
Computer & Electronics Retail: False
Construction & Engineering: False
Construction Machinery & Heavy Transportation Equipment: False
Construction Materials: False
Consumer Electronics: False
Consumer Finance: True
Consumer Staples Merchandise Retail: False
Copper: False
Data Center REITs: False
Data Processing & Outsourced Services: False
Distillers & Vintners: False
Distributors: False
Diversified Banks: False
Diversified Support Services: True
Drug Retail: False
Electric Utilities: True
Electrical Components & Equipment: True
Electronic Components: True
Electronic Equipment & Instruments: False
Electronic Manufacturing Services: False
Environmental & Facilities Services: False
Fertilizers & Agricultural Chemicals: False
Financial Exchanges & Data: False
Food Distributors: False
Food Retail: False
Footwear: False
Gas Utilities: True
Gold: False
Health Care Distributors: False
Health Care Equipment: True
Health Care Facilities: False
Health Care REITs: False
Health Care Services: False
Health Care Supplies: True
Health Care Technology: False
Heavy Electrical Equipment: False
```

```
# своя функция, которая вычитает минимальное значение из максимального def max_min(arr):
    return arr.max() - arr.min()
# считаем по группам для столбца Price свою функцию и среднее.
result=group.Price.agg([max_min, 'mean'])
result
```

max_min	mean	
		ш
r		11.
58.12	57.730000	
1276.83	361.176667	
0.00	476.560000	
24.90	63.680000	
165.38	148.042500	
	58.12 1276.83 0.00 24.90 165.38	58.12 57.730000 1276.83 361.176667 0.00 476.560000 24.90 63.680000 165.38 148.042500

***	***
data['Price']	
Trading Companies & Distributors	684.82 415.650000
n 152 20 k Payment Processing Services	473.96 243.843750