NA 568 - Winter 2022

Bayes Filters & Kalman Filtering

Maani Ghaffari

January 11, 2022

Simple Example of State Estimation

- Suppose a robot obtains measurement z, e.g., using its camera;
- \triangleright What is p(open|z)?

Causal vs. Diagnostic Reasoning

- ightharpoonup p(open|z) is diagnostic.
- $\triangleright p(z|\text{open})$ is causal.
- Often causal knowledge is easier to obtain.
- ▶ Bayes rule allows us to use causal knowledge:

$$p(\text{open}|z) = \frac{p(z|\text{open})p(\text{open})}{p(z)}$$

Example

Sensor model (likelihood):

- $p(z = \text{sense_open}|\text{open}) = 0.6$
- $p(z = \text{sense_open} | \neg \text{open}) = 0.3$

Prior knowledge (non-informative in this case):

 $p(\text{open}) = p(\neg \text{open}) = 0.5$

Sensor model (likelihood):

- $p(z = \text{sense_open}|\text{open}) = 0.6$
- $p(z = \text{sense_open} | \neg \text{open}) = 0.3$

Prior knowledge (non-informative in this case):

 $p(\text{open}) = p(\neg \text{open}) = 0.5$

Update/Correction:

$$p(\text{open}|z) = \frac{p(z|\text{open})p(\text{open})}{p(z|\text{open})p(\text{open}) + p(z|\neg\text{open})p(\neg\text{open})}$$
$$p(\text{open}|z = \text{sense_open}) = \frac{0.6 \times 0.5}{0.6 \times 0.5 + 0.3 \times 0.5} = 0.6667$$

Remark

z raises the probability that the door is open.

Combining Evidence

- \triangleright Suppose our robot obtains another observation z_2 .
- ► How can we integrate this new information?
- More generally, how can we estimate $p(x|z_1,\ldots,z_n)$?

Recursive Bayesian Updating

$$p(x|z_1,\ldots,z_n) = \frac{p(z_n|x,z_1,\ldots,z_{n-1})p(x|z_1,\ldots,z_{n-1})}{p(z_n|z_1,\ldots,z_{n-1})}$$

Assumption (Markov Assumption)

 z_n is independent of z_1, \ldots, z_{n-1} if we know x.

Recursive Bayesian Updating

$$p(x|z_1,\ldots,z_n) = \frac{p(z_n|x,z_1,\ldots,z_{n-1})p(x|z_1,\ldots,z_{n-1})}{p(z_n|z_1,\ldots,z_{n-1})}$$

Assumption (Markov Assumption)

 z_n is independent of z_1, \ldots, z_{n-1} if we know x. or equivalently we can state:

Assumption (Markov Property)

The Markov property states that "the future is independent of the past if the present is known." A stochastic process that has this property is called a Markov process.

Recursive Bayesian Updating

$$p(x|z_1,\ldots,z_n) = \frac{p(z_n|x,z_1,\ldots,z_{n-1})p(x|z_1,\ldots,z_{n-1})}{p(z_n|z_1,\ldots,z_{n-1})}$$

Assumption (Markov Assumption)

 z_n is independent of z_1, \ldots, z_{n-1} if we know x.

$$p(x|z_1, ..., z_n) = \frac{p(z_n|x)p(x|z_1, ..., z_{n-1})}{p(z_n|z_1, ..., z_{n-1})}$$
$$= \eta_n \ p(z_n|x)p(x|z_1, ..., z_{n-1}) = \eta_{1:n} \ \prod_{i=1}^n p(z_i|x)p(x)$$

where $\eta_{1:n} \triangleq \eta_1 \eta_2 \cdots \eta_n$.

Dynamic Bayesian Network for Controls, States, and Sensations

State Estimation

- $\ \square$ Estimate the state x of a system given observations z and controls u
- □ Goal:

$$p(x \mid z, u)$$

$$bel(x_t) = p(x_t \mid z_{1:t}, u_{1:t})$$

Definition of the belief

$$bel(x_t) = p(x_t \mid z_{1:t}, u_{1:t})$$

$$= \eta p(z_t \mid x_t, z_{1:t-1}, u_{1:t}) p(x_t \mid z_{1:t-1}, u_{1:t})$$

Bayes' rule

$$bel(x_t) = p(x_t \mid z_{1:t}, u_{1:t})$$

$$= \eta p(z_t \mid x_t, z_{1:t-1}, u_{1:t}) p(x_t \mid z_{1:t-1}, u_{1:t})$$

$$= \eta p(z_t \mid x_t) p(x_t \mid z_{1:t-1}, u_{1:t})$$

Markov assumption

$$bel(x_t) = p(x_t \mid z_{1:t}, u_{1:t})$$

$$= \eta p(z_t \mid x_t, z_{1:t-1}, u_{1:t}) p(x_t \mid z_{1:t-1}, u_{1:t})$$

$$= \eta p(z_t \mid x_t) p(x_t \mid z_{1:t-1}, u_{1:t})$$

$$= \eta p(z_t \mid x_t) \underbrace{\int p(x_t \mid x_{t-1}, z_{1:t-1}, u_{1:t})}_{p(x_{t-1} \mid z_{1:t-1}, u_{1:t})} dx_{t-1}$$

Law of total probability

$$bel(x_{t}) = p(x_{t} \mid z_{1:t}, u_{1:t})$$

$$= \eta p(z_{t} \mid x_{t}, z_{1:t-1}, u_{1:t}) p(x_{t} \mid z_{1:t-1}, u_{1:t})$$

$$= \eta p(z_{t} \mid x_{t}) p(x_{t} \mid z_{1:t-1}, u_{1:t})$$

$$= \eta p(z_{t} \mid x_{t}) \int p(x_{t} \mid x_{t-1}, z_{1:t-1}, u_{1:t})$$

$$= \eta p(z_{t} \mid x_{t}) \int p(x_{t} \mid x_{t-1}, z_{1:t-1}, u_{1:t}) dx_{t-1}$$

$$= \eta p(z_{t} \mid x_{t}) \int p(x_{t} \mid x_{t-1}, u_{t}) p(x_{t-1} \mid z_{1:t-1}, u_{1:t}) dx_{t-1}$$

Markov assumption

$$\begin{aligned} bel(x_t) &= p(x_t \mid z_{1:t}, u_{1:t}) \\ &= & \eta \ p(z_t \mid x_t, z_{1:t-1}, u_{1:t}) \ p(x_t \mid z_{1:t-1}, u_{1:t}) \\ &= & \eta \ p(z_t \mid x_t) \ p(x_t \mid z_{1:t-1}, u_{1:t}) \\ &= & \eta \ p(z_t \mid x_t) \ \int p(x_t \mid x_{t-1}, z_{1:t-1}, u_{1:t}) \\ &= & \eta \ p(z_t \mid x_t) \ \int p(x_t \mid x_{t-1}, z_{1:t-1}, u_{1:t}) \ dx_{t-1} \\ &= & \eta \ p(z_t \mid x_t) \ \int p(x_t \mid x_{t-1}, u_t) \ p(x_{t-1} \mid z_{1:t-1}, u_{1:t}) \ dx_{t-1} \\ &= & \eta \ p(z_t \mid x_t) \ \int p(x_t \mid x_{t-1}, u_t) \ p(x_{t-1} \mid z_{1:t-1}, u_{1:t-1}) \ dx_{t-1} \end{aligned}$$

Markov assumption

$$bel(x_{t}) = p(x_{t} \mid z_{1:t}, u_{1:t})$$

$$= \eta p(z_{t} \mid x_{t}, z_{1:t-1}, u_{1:t}) p(x_{t} \mid z_{1:t-1}, u_{1:t})$$

$$= \eta p(z_{t} \mid x_{t}) p(x_{t} \mid z_{1:t-1}, u_{1:t})$$

$$= \eta p(z_{t} \mid x_{t}) \int p(x_{t} \mid x_{t-1}, z_{1:t-1}, u_{1:t})$$

$$= p(x_{t-1} \mid z_{1:t-1}, u_{1:t}) dx_{t-1}$$

$$= \eta p(z_{t} \mid x_{t}) \int p(x_{t} \mid x_{t-1}, u_{t}) p(x_{t-1} \mid z_{1:t-1}, u_{1:t}) dx_{t-1}$$

$$= \eta p(z_{t} \mid x_{t}) \int p(x_{t} \mid x_{t-1}, u_{t}) p(x_{t-1} \mid z_{1:t-1}, u_{1:t-1}) dx_{t-1}$$

$$= \eta p(z_{t} \mid x_{t}) \int p(x_{t} \mid x_{t-1}, u_{t}) p(x_{t-1} \mid z_{1:t-1}, u_{1:t-1}) dx_{t-1}$$

$$= \eta p(z_{t} \mid x_{t}) \int p(x_{t} \mid x_{t-1}, u_{t}) p(x_{t-1} \mid z_{1:t-1}, u_{1:t-1}) dx_{t-1}$$

Recursive term

Prediction and Correction Step

- Bayes filter can be written as a two step process
- Prediction step

$$\overline{bel}(x_t) = \int p(x_t \mid u_t, x_{t-1}) \ bel(x_{t-1}) \ dx_{t-1}$$

Correction step

$$bel(x_t) = \eta \ p(z_t \mid x_t) \ \overline{bel}(x_t)$$

Motion and Observation Model

Prediction step

$$\overline{bel}(x_t) = \int \underline{p(x_t \mid u_t, x_{t-1})} \ bel(x_{t-1}) \ dx_{t-1}$$

Correction step

$$bel(x_t) = \eta \ p(z_t \mid x_t) \ \overline{bel}(x_t)$$

motion model

sensor or observation model

Bayes Filters: Framework

- ► Given:
 - ▶ Stream of observations $z_{1:t}$ and action data $u_{1:t}$
 - Sensor/measurement model $p(z_t|x_t)$
 - Action/motion/transition model $p(x_t|x_{t-1},u_t)$
- ► Wanted:
 - ▶ The state x_t of dynamical system
 - ▶ The posterior of state is called belief $bel(x_t) = p(x_t|z_{1:t}, u_{1:t})$

Bayes Filter

Algorithm 1 Bayes-filter

Require: Belief $bel(x_{t-1}) = p(x_{t-1}|z_{1:t-1}, u_{1:t-1})$, action u_t , measurement z_t ;

- 1: for all state variables do
- 2: $\overline{bel}(x_t) = \int p(x_t|x_{t-1},u_t)bel(x_{t-1})\mathrm{d}x_{t-1}$ // Predict using action/control input u_t
- 3: $bel(x_t) = \eta p(z_t|x_t)\overline{bel}(x_t)$ // Update using perceptual data z_t
- 4: return $bel(x_t)$

Bayes Filters: Implementation Examples

Linear:

- Kalman Filter: unimodal linear filter
- Information Filter: unimodal linear filter

Nonlinear:

- Extended Kalman Filter: unimodal nonlinear filter with Gaussian noise assumption
- Extended Information Filter: unimodal nonlinear filter with Gaussian noise assumption
- Particle Filter: multimodal nonlinear filter

Discrete-time white noise

A discrete-time random process (random sequence), \mathbf{w}_k , is called white noise if:

$$\mathbb{E}[\mathbf{w}_k \mathbf{w}_i^\mathsf{T}] = \mathbf{Q}_k \delta_{kj}$$

where the Kronecker δ_{ki} is

$$\delta_{kj} = \begin{cases} 1 & \text{if } k = j \\ 0 & \text{if } k \neq j \end{cases}$$

Gauss-Markov Process

The state of a dynamic system excited by white noise

$$\mathbf{x}_{k+1} = f(\mathbf{x}_k, \mathbf{w}_k)$$

is a discrete-time Markov process or Markov sequence.

► The state of a linear dynamic system excited by white Gaussian noise

$$\mathbf{x}_{k+1} = \mathbf{F}\mathbf{x}_k + \mathbf{w}_k$$

is called a Gauss-Markov process.

Assuming the initial condition is Gaussian, because of linearity \mathbf{x}_k is Gaussian and because of the whiteness of the process noise it is Markov.

Kalman Filter (KF) Assumptions

- The state, \mathbf{x}_k , evolves according to a known linear dynamic equation with:
- \triangleright known inputs, \mathbf{u}_k ;
- ▶ an additive process noise, \mathbf{w}_k , which is a zero-mean white (uncorrelated) process with known covariance \mathbf{Q}_k ;

$$\mathbf{x}_k^- = \mathbf{F}_k \mathbf{x}_{k-1} + \mathbf{G}_k \mathbf{u}_k + \mathbf{w}_k$$

- Measurement model is a known linear function of the state with:
- ▶ an additive measurement noise, \mathbf{v}_k , which is a zero-mean white (uncorrelated) process with known covariance \mathbf{R}_k ;

$$\mathbf{z}_k = \mathbf{H}_k \mathbf{x}_k^- + \mathbf{v}_k$$

Kalman Filter (KF) Assumptions

- Initial state is assumed to be a random variable with known mean (initial estimate) and known covariance (initial uncertainty).
- Initial state and noises are all mutually uncorrelated.

Summary of KF Statistical Assumptions

- Initial state \mathbf{x}_0 (with possibly given prior information \mathbf{z}_0): $\mathbb{E}[\mathbf{x}_0|\mathbf{z}_0] = \hat{\mathbf{x}}_0$ and $\mathrm{Cov}[\mathbf{x}_0|\mathbf{z}_0] = \mathbf{P}_0$
- Process and measurement noise sequences are white with known covariances:

$$\mathbb{E}[\mathbf{w}_k] = \mathbf{0}$$
, $\mathbb{E}[\mathbf{w}_k \mathbf{w}_j^{\mathsf{T}}] = \mathbf{Q}_k \delta_{kj}$, and $\mathbb{E}[\mathbf{w}_k] = \mathbf{0}$, $\mathbb{E}[\mathbf{v}_k \mathbf{v}_j^{\mathsf{T}}] = \mathbf{R}_k \delta_{kj}$

All the above are uncorrelated.

KF Estimation Cycle

State and measurement prediction, a.k.a., time update;

State update, a.k.a., correction or measurement update.

KF Algorithm

Algorithm 2 Kalman-filter

Require: belief mean μ_{k-1} , belief covariance Σ_{k-1} , action \mathbf{u}_k , measurement \mathbf{z}_k ;

1:
$$\boldsymbol{\mu}_{k}^{-} \leftarrow \mathbf{F}_{k} \boldsymbol{\mu}_{k-1} + \mathbf{G}_{k} \mathbf{u}_{k}$$

2:
$$\mathbf{\Sigma}_{k}^{-} \leftarrow \mathbf{F}_{k} \mathbf{\Sigma}_{k-1} \mathbf{F}_{k}^{\mathsf{T}} + \mathbf{Q}_{k}$$

3:
$$oldsymbol{
u}_k \leftarrow \mathbf{z}_k - \mathbf{H}_k oldsymbol{\mu}_k^-$$

4:
$$\mathbf{S}_k \leftarrow \mathbf{H}_k \mathbf{\Sigma}_k^{-} \mathbf{H}_k^{\mathsf{T}} + \mathbf{R}_k$$

5:
$$\mathbf{K}_k \leftarrow \mathbf{\Sigma}_k^{-} \mathbf{H}_k^{\mathsf{T}} \mathbf{S}_k^{-1}$$

6:
$$oldsymbol{\mu}_k \leftarrow oldsymbol{\mu}_k^- + \mathbf{K}_k oldsymbol{
u}_k$$

7:
$$\Sigma_k \leftarrow (\mathbf{I} - \mathbf{K}_k \mathbf{H}_k) \Sigma_k^-$$

8:
$$//\Sigma_k \leftarrow (\mathbf{I} - \mathbf{K}_k \mathbf{H}_k) \Sigma_k^- (\mathbf{I} - \mathbf{K}_k \mathbf{H}_k)^\mathsf{T} + \mathbf{K}_k \mathbf{R}_k \mathbf{K}_k^\mathsf{T}$$
 \triangleright numerically stable form

9: return $oldsymbol{\mu}_k$, $oldsymbol{\Sigma}_k$

Example: KF Target Tracking

A target is moving in a 2D plane. The ownship position is known and fixed at the origin. We have access to noisy measurements that directly observe the target 2D coordinates at any time step.

$$\mathbf{F}_k = \mathbf{I}_2, \, \mathbf{G}_k = \mathbf{0}_2, \, \mathbf{H}_k = \mathbf{I}_2, \, \mathbf{Q}_k = 0.001 \, \mathbf{I}_2, \, \mathbf{R}_k = 0.05^2 \, \mathbf{I}_2$$

Example: KF Target Tracking

See kf_single_target.m for code.

Overview of Kalman Filter Algorithm

- Under the Gaussian assumption for the initial state (or initial state error) and all the noises entering into the system, the Kalman filter is the optimal MMSE state estimator.
- ▶ If these random variables are not Gaussian and one has only their first two moments, then the Kalman filter algorithm is the best linear state estimator (Linear MMSE).

Minimum Mean Square Error (MMSE) Estimation

The MMSE estimation of x in terms of z is:

$$\hat{\mathbf{x}}^{\mathrm{MMSE}} = \operatorname*{arg\,min}_{\hat{\mathbf{x}}} \mathbb{E}[(\hat{\mathbf{x}} - \mathbf{x})^2 | \mathbf{z}]$$

The solution is the conditional mean:

$$\hat{\mathbf{x}}^{\text{MMSE}} = \mathbb{E}[\mathbf{x}|\mathbf{z}] = \int \mathbf{x} p(\mathbf{x}|\mathbf{z}) d\mathbf{x}$$

which can be obtained by

$$\frac{\partial \mathbb{E}[(\hat{\mathbf{x}} - \mathbf{x})^2 | \mathbf{z}]}{\partial \hat{\mathbf{x}}} = \mathbb{E}[2(\hat{\mathbf{x}} - \mathbf{x}) | \mathbf{z}] = 2(\hat{\mathbf{x}} - \mathbb{E}[\mathbf{x} | \mathbf{z}]) = 0$$

- x̂: Estimate
- x: True value

Minimum Mean Square Error (MMSE) Estimation

MMSE estimation yields conditional mean:

$$\hat{\mathbf{x}}^{\text{MMSE}} = \operatorname*{arg\,min}_{\hat{\mathbf{x}}} \mathbb{E}[(\hat{\mathbf{x}} - \mathbf{x})^2 | \mathbf{z}] = \mathbb{E}[\mathbf{x} | \mathbf{z}] = \int \mathbf{x} p(\mathbf{x} | \mathbf{z}) d\mathbf{x}$$

Remark

If the conditional PDF $p(\mathbf{x}|\mathbf{z})$ is Gaussian, then MMSE and Maximum a Posteriori estimators coincide since the mode and mean of the Gaussian distribution are the same.

Limitations of Kalman Filter

- ▶ Nonlinear motion (process) and measurement models;
- Unknown control inputs or mode changes;
- Data association uncertainty;
- Autocorrelated or crosscorrelated noise sequences.

Readings

- Probabilistic Robotics: Ch. 2 and Ch. 3
- ▶ State Estimation for Robotics: Ch. 3 and Ch. 4
- Lecture notes 2 and 3