

Fast Approximation of Betweenness Centrality through Sampling

Matteo Riondato and Evgenios M. Kornaropoulos ({matteo,evgenios}@cs.brown.edu) Department of Computer Science – Brown University

Accepted as full paper at ACM WSDM'14. Full version: http://cs.brown.edu/~matteo/papers/RiondatoKornarop-BetweennessSampling.pdf. This work is supported in part by the National Science Foundation under award IIS-1247581.

I. Background

Graph G = (V, E), |V| = n, |E| = mPath p from u to v: $p = (u, a_1, a_2, \ldots, a_\ell, v)$

Int(p) Internal nodes

For $(u,v) \in V \times V$ let S_{uv} = all shortest paths from u to vLet $S_G = \bigcup S_{uv} = \text{all shortest paths in } G$ $(u,v)\in V\times V$

Betweenness of $w \in V$:

$$\mathsf{b}(w) = \frac{1}{n(n-1)} \sum_{p_{uv} \in \mathbb{S}_G} \frac{\mathbb{1}_{\mathsf{Int}(p)}(w)}{|\mathcal{S}_{uv}|}$$

It is the fraction of shortest paths that w is internal to Measures centrality (i.e., importance) of nodes

Exact algorithms exist for computing betweenness of all vertices [Brandes01]. Too slow for huge graphs:

 $O(n^2 \log n)$ unweighted graphs, $O(nm + n^2 \log n)$ weighted graphs

II. Goals and results

Key observation: In graph mining, fast and approximate 1) $\forall u \in V$, let $\dot{\mathbf{b}}(v) = 0$ algorithms are often preferred over slow but exact

Our goal: Speed up by computing fast high-quality approximation of the betweenness of all vertices using random sampling (sample: collection of shortest paths)

Constraints / Desiderata:

- ullet number of samples must not depend on |V|
- probabilistic guarantees on quality of approximation

Results: We developed an algorithm which computes estimations b(v) for the betweenness b(v) of all nodes. We have that, for fixed $\varepsilon, \delta \in (0,1)$

$$\Pr(v \in V \text{ s.t.} |\tilde{\mathsf{b}}(v) - \mathsf{b}(v)| > \varepsilon) < \delta$$

i.e.,all estimations are very accurate with high probability

III. Our algorithm

- 2) For $i=1,\ldots,r$ \longrightarrow Sample Size
- Sample random pair (u, v) of different nodes
- Sample random shortest path p_i from S_{uv}
- 5) For $w \in Int(p_i)$, b(w) = b(w) + 1/r
- 6) Return $\{b(u), u \in V\}$

Path p_{uv} is sampled with probability $\pi_{p_{uv}} = \frac{1}{n(n-1)|\mathcal{S}_{uv}|}$

Sampling a shortest path is easy: perform Dijkstra from u to v, then backtrack choosing predecessor z at random with probability proportional to the number of shortest paths in S_{uv} that z is internal to

Choice of sample size r is crucial for correctness We use VC-dimension, a core notion from Statistical Learning Theory to compute it

IV. VC-Dimension

Definition: Given a set of points P and a family $F \subseteq 2^{P}$ the VC-Dimension of (P, F) is the cardinality of the **largest** $A \subseteq P$ such that $\{r \cap A : r \in F\} = 2^A$

Then

 $P=\mathbb{R}^{2}$, F = oriented halfspaces VC-Dimension of (P, F) = 3

Theorem (Bound to sample size)

Let (P, F) have VC-dimension $\leq d$, and let π be a probability distribution on P. Given $\varepsilon, \delta \in (0,1)$ let S be a collection of points from P sampled according to π with $|S| \geq \frac{1}{\varepsilon^2} \left(d + \log \frac{1}{\delta} \right) \quad \begin{array}{l} \text{If d does not depend on } |P|, \\ \text{then } |S| \text{ is also independent } \\ \text{from } |P|! \end{array}$ size

$$|S| \ge \frac{1}{\varepsilon^2} \left(d + \log \frac{1}{\varepsilon} \right)$$

 $\Pr\left(f \in F \text{ s.t. } \left| \mathbb{E}_{\pi}[f] - \frac{\sum_{c \in S} \mathbb{1}_{f}(c)}{|S|} \right| > \varepsilon \right) < \delta$

i.e., the empirical averages for all $f \in F$ are close to their expectations

A sample S for which the above event is verified is called an ε -sample for (P, F)

V. The vertex-diameter of the graph

For $u \in V$, let $T_u = \{p \in \mathbb{S}_G : u \in Int(p)\}$ In our case: $P = \mathbb{S}_G$, $F = \{T_u, u \in V\}$

If $S = \{p_1, \dots, p_r\}$ (sampled paths) is ε -sample for (\mathbb{S}_G, F) then

$$\left| \mathbb{E}_{\pi}[T_u] - \frac{\sum_{p \in S} \mathbb{1}_{T_u}(p)}{|S|} \right| \leq \varepsilon \quad \forall u \in V$$

$$\tilde{\mathbf{b}}(u) \quad \text{since } \mathbb{1}_{T_u}(p) = \mathbb{1}_{\mathsf{Int}(p)}(u)$$

We only need a bound to VC-dimension of (\mathbb{S}_G, F) !

Definition: The vertex-diameter of G is $vd_G = \max_{G} |Int(p)|$

An approximation of vd_G can be computed efficiently. vd_G is small & shrinks in social networks as size grows!

Thm: VC-dimension of (\mathbb{S}_G, F) is at most $\lfloor \log_2 \operatorname{vd}_G - 1 \rfloor$

Theorem: We need to sample r shortest paths with

$$r = rac{1}{arepsilon^2} \left(\lfloor \log_2 \operatorname{vd}_G - 1
floor + \ln rac{1}{\delta}
ight)$$

The sample size is independent from |V|

VI. Results of experimental evaluation

We used graphs from SNAP (http://snap.stanford.edu) Very accurate estimation: $|\tilde{\mathbf{b}}(u) - \mathbf{b}| \ll \varepsilon, \forall u \in V$ Very fast execution, even for small ε Better scalability than existing solution [BrandesP08]

