Ejercicio 1. Si a es un número racional y b es un número irracional,

- 1. $\lambda a + b$ es necesariamente irracional?
- 2. ¿ab es necesariamente irracional?
- 3. Responder las dos preguntas anteriores asumiendo que a y b son irracionales

Ejercicio 2. Sean A y B conjuntos acotados de reales (es decir, acotados inferior y superiormente). Probar que si $A \cap B \neq \emptyset$, entonces $A \cap B$ es acotado y además

$$\max\{\inf(A), \inf(B)\} \le \inf(A \cap B) \le \sup(A \cap B) \le \min\{\sup(A), \sup(B)\}\$$

Demostración.

Como A es un conjunto acotado, existen $\inf(A)$ y $\sup(A)$. Ya que $\inf(A) \leq a \leq \sup(A), \forall a \in A$, en particular, $\forall a \in A \cap B$, se tiene que $A \cap B$ está acotado inferior y superiormente, por lo que existen $\inf(A \cap B)$ y $\sup(A \cap B)$, de los cuales se da que

$$\inf(A \cap B) \le c \le \sup(A \cap B), \forall c \in A \cap B \tag{1}$$

Después, suponiendo que $\inf(A \cap B) < \max\{\inf(A), \inf(B)\}$, y suponiendo, sin pérdida de generalidad, que $\max\{\inf(A), \inf(B)\} = \inf(A)$, se tiene que $\inf(A \cap B) < \inf(A)$. Y como $\inf(A) \le a, \forall a \in A$, en particular $\forall a \in A \cap B$, se da que $\inf(A)$ es una cota inferior de $A \cap B$ mayor que $\inf(A \cap B)$, lo cual es una contradicción, pues $\inf(A \cap B)$ es la máxima cota inferior de $A \cap B$.

De esta forma,

$$\max\{\inf(A), \inf(B)\} \le \inf(A \cap B) \tag{2}$$

Ahora, suponiendo que mín $\{\sup(A),\sup(B)\} < \sup(A \cap B)$, y suponiendo, sin pérdida de generalidad, que mín $\{\sup(A),\sup(B)\} = \sup(A)$, se tiene que $\sup(A) < \sup(A \cap B)$. Y como $\sup(A) \ge a, \forall a \in A$, en particular $\forall a \in A \cap B$, se da que $\sup(A)$ es una cota superior de $A \cap B$ menor que $\sup(A \cap B)$, lo cual es una contradicción, pues $\sup(A \cap B)$ es la mínima cota superior de $A \cap B$.

De esta manera,

$$\sup(A \cap B) \le \min\{\sup(A), \sup(B)\}\tag{3}$$

∴ $\max\{\inf(A), \inf(B)\} \le \inf(A \cap B) \le \sup(A \cap B) \le \min\{\sup(A), \sup(B)\}, \text{ por } (2), (1) \text{ y } (3). \blacksquare$

Ejercicio 4. Sea S un conjunto no vacío de números reales y sea α una cota superior de S. Demostrar que α es el supremo de S si y sólo si para cada $\epsilon > 0$ existe $x \in S$ tal que $\alpha - \epsilon < x$.

Demostración.

- $\Longrightarrow] \quad \text{Suponiendo que } \alpha \text{ es el supremo de } S.$ $\text{Suponiendo que existe } \epsilon > 0 \text{ tal que } \forall \, x \in S \text{ se tiene que } x \leq \alpha \epsilon.$ $\text{De esta manera, } \alpha \epsilon \text{ es una cota superior de } S \text{ pero } \alpha \epsilon < \alpha, \text{ lo cual es una contradicción, pues } \alpha \text{ es el supremo de } S.$ $\therefore \text{ para cada } \epsilon > 0 \text{ existe } x \in S \text{ tal que } \alpha \epsilon < x.$