Exercício 4.5 (Tardos)

Alice Duarte Scarpa, Bruno Lucian Costa 2015-06-23

1 Enunciado

Vamos considerar uma rua campestre longa e quieta, com casas espalhadas bem esparsamente ao longo da mesma. (Podemos imaginar a rua como um grande segmento de reta, com um extremo leste e um extremo oeste.) Além disso, vamos assumir que, apesar do ambiente bucólico, os residentes de todas essas casas são ávidos usuários de telefonia celular.

Você quer colocar estações-base de celulares em certos pontos da rodovia, de modo que toda casa esteja a no máximo quatro milhas de uma das estações-base. Dê um algoritmo eficiente para alcançar esta meta, usando o menor número possível de bases.

2 Introdução

Com este exercicio vamos abordar uma técnica chamada de algoritmos gulosos sempre realizando a escolha que parece ser a melhor no momento, fazendo uma escolha ótima local, com intuito de que esta escolha leve até a solução ótima global.

Antes porém, vai ser apresentado soluções utilizando algoritmos "naive" e um força bruta.

3 Soluções para o problema

3.1 Naive algoritmo

Esta primeira solução para o problema é uma das mais simples possiveis de se pensar quando confrontamos o problema. O problema diz que temos que colocar uma antena a no máximo 4 milhas de distancias, nesse algoritmo

fizemos a solução baseado apenas nessa ideia, então com ele vamos colocar uma antena a cada 4 milhas de distancia até que a casa mais distante esteja coberta pela nossas antenas.

```
def antena(lista):
    lmax = max(lista) # Valor maximo presente na lista de distancias
    ant = []
    j = 0
    for i in range(lmax): # Coloca uma antena a cada 4 milhas
        if j >= lmax: #Ver se a antena tem posicao maior que maximo da lista
            return ant
        j += 4
        ant.append(j)
```

Esse algoritmo bem simples nos retorna uma solução correta para o problema, mas ele ainda nos faz colocar muitas antenas de forma desnecessárias como podemos ver no exemplo a seguir.

```
Chamada da funcao:
print antena([3, 16, 11, 18, 5, 17, 24, 29, 1, 301])
```

Resultado:

```
[4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236, 240, 244, 248, 252, 256, 260, 264, 268, 272, 276, 280, 284, 288, 292, 296, 300, 304]
```

Outro algoritmo "naive" que tem uma solução melhor do que anterior será apresentado a seguir.

```
def antena2(lista):
   ant=[]
   for i in lista: #Pecorre toda a lista
        ant.append(lista[lista.index(i)]) #Para cada item da lista coloca uma antena
   ant.sort()
   return ant
```

Neste algoritmo a ideia seria colocar uma antena para cada casa o que resolveria nosso problema. Vamos reproducir o mesmo exemplo feito com o algoritmo anterior para vermos a diferença entre as soluções.

```
Chamada da funcao:

print antena2([3, 16, 11, 18, 5, 17, 24, 29, 1, 301])

Resultado:

[1, 3, 5, 11, 16, 17, 18, 24, 29, 301]
```

Já conseguimos perceber uma diferença muito grande entre as soluções. Esses dois algoritmos até agora apresentados não nos retorna a melhor solução, os proximos algoritmos tentaremos conseguir a solução ótima para resolução deste problema.

3.2 Força Bruta

Esse algoritmo de força bem simples escolhe um ponto qualquer dentro dessa rua para coloca uma antena, depois disso ele percorre toda a lista para ver se tem alguma casa que é coberta por essa antena, se tiver retiramos essa casa da lista e efetuamos esse procedimento até que todas as casas tenham sido cobertas.

Vamos reproducir o mesmo exemplo feito com o algoritmo anterior para vermos a diferença entre as soluções.

```
Chamada da funcao:
print antena2([3, 16, 11, 18, 5, 17, 24, 29, 1, 301])
```

```
Resultado:
```

```
[4, 7, 10, 18, 20, 25, 28, 299]
```

A solução do algoritmo para esse problema pode até ser a ótima eventualmente mas em suma ele demorar mais a conseguir um resposta para o problema devido a sua escolha aleatoria do local a colocar a antena.

Em outras palavras esse algoritmo trabalha muito parecido com o jogo de batalha naval, ele escolhe aleatoriamente uma antena para colocar porém algumas vezes pode escolher em local vazio gerando retrabalho o algoritmo.

3.3 Algoritmo gulosos

Esse algoritmo recebe uma lista com as distancias das casas até o ponto inicial. E começamos nosso algoritmo saindo do ponto inicial, ao oeste, em direção ao leste até que primeira casa esteja 4 milhas a oeste colocamos uma antena neste local e retiramos da lista todas as casas cobertas por essa antena. Depois continuamos com esse processo até todas as casas serem retiradas da lista.

```
def antena(lista):
    lmax = max(lista)# Valor maximo presente na lista de distancias
    ant = []
    j = 0
    for i in range(lmax):
        if j >= lmax:
            if j - ant[-1] <= 4:
                return ant
        if j in lista:
            j += 4
            ant.append(j)
            j += 4
        else:
            j += 1
    return ant</pre>
```

Vamos reproducir o mesmo exemplo feito com o algoritmo anterior para vermos a diferença entre as soluções.

```
Chamada da funcao:
print antena([3, 16, 11, 18, 5, 17, 24, 29, 1, 301])
```

Resultado:

[5, 15, 28, 305]

Esse algoritmo sempre nos retorna a solução ótima e vamos mostrar isso a seguir.

Suponha $S = \{s_1, \ldots s_k\}$ sendo a solução com as posições das antenas que o nosso algoritmo retornou e $T = \{t_1, \ldots t_m\}$ sendo a solução ótima com as posições das antenas ordenadas de forma crescente. Queremos mostrar que k = m.

Vamos mostrar nosso algoritmo S "stay ahead" da solução T. Ou seja, $s_i \geq t_i$. Para i=1 essa afirmação é verdade, já que vamos ao leste o máximo possivel antes de colocar a antena. Iremos assumir também é verdade para $i\geq 1$, ou seja, $\{s_1\ldots s_i\}$ cobre as mesmas casas que $\{t_1\ldots t_i\}$, então se adicionarmos t_{i+1} para $\{s_1\ldots s_i\}$, não deixa nenhuma casa entre s_i e t_{i+1} descobertas. Mas no passo (i+1) do algoritmo guloso é escolhido o s_{i+1} para ser o maior possivel com a condição cobrir as casas entre s_i e s_{i+1} e então $s_{i+1} > t_{i+1}$ o que prova o que queriamos.

Então, se k > m, a solução $\{s_1 \dots s_m\}$ falha ao cobrir todas as casas, mas $s_m \ge t_m$ logo $\{t_1 \dots t_m\} = T$ também falha ao cobrir todas as casas. O que é uma contradição, pois assumimos que T era uma solução ótima para o problema.

4 Complexidade

TODO: calcular a complexidade do algoritmo