

Plan

Finetuning: kesako?
Le challenge du finetuning
Knowledge Distillation
Lora
Adapters

But du chapitre : Découvrir comment on réduit la taille des paramètres et comment finetuner un modèle

Rappel

Rappel

GPT2: Model Sizes

Play with it here: https://huggingface.co/gpt2

Model Dimensionality: 768

117M parameters

Model Dimensionality: 1024

345M

Model Dimensionality: 1280

762M

Model Dimensionality: 1600

1542M

GPT-3: A Very Large Language Model (2020)

More layers & parameters
Bigger dataset
Longer training
Larger embedding/hidden dimension
Larger context window

Transformer FLOPs: The Quick Estimate

- Let N be number of parameters (the sum of size of all matrices)
- Let D be the number of tokens in pre-training dataset.
- The total cost of pre-training on this dataset is:

- You can already see how this relates to our constraints:
 - If you have a fixed compute budget C, increasing D means decreasing N (and vice versa).

Model compression

Compression: An Overview

Quantization

Stores or performs computation on 4/8 bit integers instead of 16/32 bit floating point numbers.

The most effective and practical way do training/inference of a large model.

Can be combined with pruning (GPTQ) and Distillation (ZeroQuant).

Numeric Data Types

How numbers are represented in modern computing systems

Floating-Point Numbers

Example: 32-bit floating-point number in IEEE 754 (FP32)

Number =
$$(-1)^{sign} \times (1 + Fraction) \times 2^{Exponent - 127}$$

Floating-Point Numbers

Floating-Point Numbers

IEEE 754 Half Precision 16-bit Float (FP16)

Google Brain Float (BF 16)

Nvidia FP8 (E4M₃)

Exponent Fraction

8 23

5 10

8 7

4 3

Quantization

Representing numbers using a discrete set

What is Quantization?

The process of mapping input values from a large set (often a continuous set) to output values in a (countable) smaller set, often with a finite number of elements.

Overview of Quantization Methods

Today's Focus

Affine Mapping from floating point numbers to integers

How to find these numbers?

Affine Mapping from floating point numbers to integers

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference (Jacob et al., CVPR 2018)

Scale Derivation | r = S(q-z)

Zero point Derivation | r = S(q-z)

"Absmax" Implementation In practice, the weights are usually centered around zero (Z = o):

Therefore, we can find scale by using only the max.

Weight distribution of first conv layer of ResNet-50.

$$S = rac{r_{ ext{max}} - r_{ ext{min}}}{q_{ ext{max}} - q_{ ext{min}}} \ = rac{r_{ ext{min}}}{q_{ ext{min}} - Z} = rac{-\left|r
ight|_{ ext{max}}}{q_{ ext{min}}}$$

Used in Pytorch, ONNX

https://leimao.github.io/article/Neural-Networks-Quantization/)

GPTQ: Experiment Results

OPT	Bits	125M	350M	1.3B	2.7B	6.7B	13B	30B	66B	175B
full	16	27.65	22.00	14.63	12.47	10.86	10.13	9.56	9.34	8.34
RTN	4 4	37.28	25.94	48.17	16.92	12.10	11.32	10.98	110	10.54
GPTQ		31.12	24.24	15.47	12.87	11.39	10.31	9.63	9.55	8.37
RTN	3 3	1.3e3	64.57	1.3e4	1.6e4	5.8e3	3.4e3	1.6e3	6.1e3	7.3e3
GPTQ		53.85	33.79	20.97	16.88	14.86	11.61	10.27	14.16	8.68

Table 3: OPT perplexity results on WikiText2.

BLOOM	Bits	560M	1.1B	1.7B	3B	7.1B	176B
full	16	22.42	17.69	15.39	13.48	11.37	8.11
RTN	4 4	25.90	22.00	16.97	14.76	12.10	8.37
GPTQ		24.03	19.05	16.48	14.20	11.73	8.21
RTN	3 3	57.08	50.19	63.59	39.36	17.38	571
GPTQ		32.31	25.08	21.11	17.40	13.47	8.64

Table 4: BLOOM perplexity results for WikiText2.

Compression: An Overview

Quantization Distillation

Stores or performs computation on 4/8 bit integers instead of 16/32 bit floating point numbers.

The most effective and practical way do training/inference of a large model.

Can be combined with pruning (GPTQ) and Distillation (ZeroQuant).

Train a small model (the student) on the outputs of a large model (the teacher).

In essence, distillation = model ensembling. Therefore we can distill between model with the same architecture (selfdistillation)

Can be combined with pruning.

Distillation

Training a small model to match the distribution of a large one

Distillation

$$D_{\mathrm{KL}}(P \parallel Q) = \sum_{x \in \mathcal{X}} P(x) \log \left(\frac{P(x)}{Q(x)} \right).$$

Training objective:

Minimizing KL Divergence between teacher output and student output

Essentially: We are using the soft labels from the teacher to train student

Compression: An Overview

Qu	antization		Distillation	Pruning
on 4/8 bit int	rforms computation egers instead of ating point numbers.	student) oı	all model (the n the outputs of a el (the teacher).	Removing excessive model weights to lower parameter count.
	ective and practical ing/inference of a	ensemblin	, distillation = model g. Therefore we can veen model with the	A lot of the work are done solely for research purposes.
Can be comb (GPTQ) and	oined with pruning Distillation	same archi distillation	itecture (self-)	Cultivated different routes of estimating importances of parameters.
(ZeroQuant)	•	Can be cor	nbined with pruning.	

Adaptation via Fine-Tuning

Transfer Learning

Traditional ML vs Transfer Learning

- Isolated, single task learning:
 - Knowledge is not retained or accumulated. Learning is performed w.o. considering past learned knowledge in other tasks

- Learning of a new tasks relies on the previous learned tasks:
 - Learning process can be faster, more accurate and/or need less training data

Fine-Tuning for Tasks

Pretrained models

Fine-Tuning for Tasks

Fine-Tuning for Tasks

Translation

POS Tagging

Text classification

Language modeling

Fine-tuning Pre-trained Models

• Whole model tuning:

 Run an optimization defined on your task data that updates all model parameters

Head-tuning:

 Run an optimization defined on your task data that updates the parameters of the model "head"

Parameter-efficient Fine-tuning

- In fine-tuning we need to updating and storing all the parameters of the LM
 - We would need to store a copy of the LM for each task
- With large models, storage management becomes difficult
 - E.g., A model of size 170B parameters requires ~340Gb of storage
 - If you fine-tune a separate model for 100 tasks:
 340 * 100 = 34 TB of storage!

Adapters

- Idea: train small sub-networks and only tune those.
 - FF projects to a low dimensional space to reduce parameters.
- No need to store a full model for each task, only the adapter params.

Adapters

- Idea: train small sub-networks and only tune those.
 - FF projects to a low dimensional space to reduce parameters.
- No need to store a full model for each task, only the adapter params.

Question

- Is parameter-efficient tuning more (1) computationally efficient; (2) memory-efficient than whole-model tuning?
- It is not faster! You still need to do the entire forward and backward pass.
- It is more memory efficient.
 - You only need to keep the optimizer state for parameters that you are fine-tuning and not all the parameters.

Reparametrization based methods

Reparametrize the weights of the network using a low-rank transformation. This
decreases the trainable parameter count while still allowing the method to work
with high-dimensional matrices

LoRA: Low-Rank Adaptation

- Hypothesis: the intrinsic rank of the weight matrices in a large language model is low
- Parameter update for a weight matrix is decomposed into a product of two low-rank matrices

$$W \leftarrow W + \Delta W$$

 $\Delta W = BA$
 $B \in \mathbb{R}^{d,r}, A \in \mathbb{R}^{r,k}, r \ll min(k, d)$

 A is initialized with random Gaussian Initialization, B is initialized to zero

LoRA

Question

- Is parameter-efficient tuning more (1) computationally efficient; (2) memory-efficient than whole-model tuning?
- It is faster! You only need to do the entire forward and backward pass of much less parameters + Caching.
- It is more memory efficient.
 - You only need to keep the optimizer state for parameters that you are fine-tuning and not all the parameters.

The end

Parameters Efficient Fine Tuning

To go further

Exposé sur :

- Mixture of expert
- DETR
- Speculative Decoding
- Attention optimisations: Group Query Attention, Sparse Attention
- RLHF
- Rope
- Multimodal architecture

Plan type

Introduction

- Contexte et importance du sujet
- Motivation du choix du sujet

Présentation du concept clé

- Description de son fonctionnement dans les transformers

Applications et exemples

- Domaines ou cas d'usage concrets
- Résultats et bénéfices observés

Avantages et limites

- Points forts de la technique
- Contraintes ou pistes de recherche futures
- Perspectives d'évolution ou d'utilisation

Merci!

Mohamed Abbas KONATE

mohamed-abbas.konate@michelin.com

