COMP 250

Lecture 36

rules for big O big Omega Ω big Theta Θ

Dec. 3, 2018

Recall Formal Definition of Big O

Let t(n) and g(n) be two functions, where $n \ge 0$.

We say t(n) is O(g(n)) if there exist two positive constants n_0 and c such that, for all $n \ge n_0$,

$$t(n) \leq c g(n)$$
.

By convention, we will use simple functions g(n) below.

1 log_2n n $nlog_2n$ n^2 n^3 ... 2^n n!

There are other functions like $log_2(log_2n)$ that one can use too, but not in COMP 250!

By convention, we will use simple functions g(n) below.

<u>Claim</u>: Each of the following holds for n sufficiently large:

$$1 < log_2 n < n < n log_2 n < n^2 < n^3 < \dots < 2^n < n!$$

$$n \ge 3 \qquad n \ge 3 \qquad n \ge 4$$

Thus, we can write big O relationships between them.

 $n^3 < 2^n$ for $n \ge 10$

Sets of O() functions

If t(n) is O(g(n)), we often write

$$t(n) \in O(g(n)).$$

That is, t(n) is a member of the set of functions that are O(g(n)).

Thus we have the following *strict* subset relationships:

$$O(1) \subset O(\log_2 n) \subset O(n) \subset O(n \log_2 n) \subset O(n^2) \dots$$

 $\subset O(n^3) \subset \dots \subset O(2^n) \subset O(n!)$

Recall "Tight Bounds"

When we say t(n) is O(g(n)), we typically want to know the smallest set that t(n) belongs to, i.e. tight bounds.

Recall "Tight Bounds"

When we say t(n) is O(g(n)), we typically want to know the smallest set that t(n) belongs to, i.e. tight bounds.

For example, if t(n) = 5n + 7, then the tight bound is O(n) rather than $O(n \log_n n)$ or something larger.

If we have some function t(n) that is defined by a complicated expression, we would still like to be able to informally look for the term with the largest growth rate and say that t(n) is O(g(n)).

e.g.
$$5 n \log_2 (n+3) + 17n + 4 \text{ is } O(n \log_2 n).$$

Are there any general formal rules to justify this?

Yes!

Constant Factor Rule

Suppose f(n) is O(g(n)) and a is a positive constant.

Then a f(n) is also O(g(n))

(This rule is obvious if you understand the definition of big O. But let's prove it anyhow...)

Proof of Constant Factor Rule

By definition, if f(n) is O(g(n)) then there exist two positive constants n_0 and c such that, for all $n \ge n_0$,

$$f(n) \leq c g(n)$$
.

Thus,

?

Proof of Constant Factor Rule

By definition, if f(n) is O(g(n)) then there exist two positive constants n_0 and c such that, for all $n \ge n_0$,

$$f(n) \leq c g(n)$$
.

Equivalently, if a > 0 then

$$a f(n) \leq a c g(n).$$

This constant satisfies the definition that a f(n) is O(g(n)).

Sum Rule

Motivation: We want to be able to say, for example,

$$3 + 5n \text{ is } O(n)$$

because the second term has a bigger O() bound than the first term.

i.e. when two terms are added, then we need to consider only the term with the largest big O bound.

Sum Rule

```
Suppose f_1(n) is O(g_1(n)) and f_2(n) is O(g_2(n)) and g_1(n) is O(g_2(n)).

Then f_1(n) + f_2(n) is O(g_2(n)).

g_1(n) + g_2(n) + g_2(n)
```

Sum Rule Proof (apologies!)

Suppose $f_1(n)$ is $O(g_1(n))$ and $f_2(n)$ is $O(g_2(n))$ and $g_1(n)$ is $O(g_2(n))$. Then $f_1(n) + f_2(n)$ is $O(g_2(n))$.

Proof:

Let $n_1, c_1, n_2, c_2, n_3, c_3$ be constants such that

$$f_1(n) \leq c_1 g_1(n)$$
 for all $n \geq n_1$

$$f_2(n) \leq c_2 g_2(n)$$
 for all $n \geq n_2$.

$$g_1(n) \leq c_3 g_2(n)$$
 for all $n \geq n_3$.

Then,
$$f_1(n) + f_2(n) \le c_1 g_1(n) + c_2 g_2(n)$$

when
$$n \geq max\{n_1, n_2\}$$

Sum Rule Proof (apologies!)

Suppose $f_1(n)$ is $O(g_1(n))$ and $f_2(n)$ is $O(g_2(n))$ and $g_1(n)$ is $O(g_2(n))$. Then $f_1(n) + f_2(n)$ is $O(g_2(n))$.

Proof: Let $n_1, c_1, n_2, c_2, n_3, c_3$ be constants such that

$$f_1(n) \leq c_1 g_1(n)$$
 for all $n \geq n_1$

$$f_2(n) \leq c_2 g_2(n)$$
 for all $n \geq n_2$.

$$g_1(n) \leq c_3 g_2(n)$$
 for all $n \geq n_3$.

Then,
$$f_1(n) + f_2(n) \le c_1 g_1(n) + c_2 g_2(n) \le c_1 c_3 g_2(n) + c_2 g_2(n)$$

when
$$n \ge max\{n_1, n_2, n_3\}$$
. Take $c = c_1 c_3 + c_2$.

Product Rule (Motivation)

We want to be able to say, for example,

$$(3+5n) log_2(n+7)$$
 is $O(n log_2 n)$.

In general, if two terms are multiplied, then the O() bound of their product is the product of their O() bounds.

Product Rule

Suppose $f_1(n)$ is $O(g_1(n))$ and $f_2(n)$ is $O(g_2(n))$.

Then $f_1(n) * f_2(n)$ is $O(g_1(n) * g_2(n))$.

Product Rule (Proof)

Suppose $f_1(n)$ is $O(g_1(n))$ and $f_2(n)$ is $O(g_2(n))$.

Then $f_1(n) * f_2(n)$ is $O(g_1(n) * g_2(n))$.

Proof: Let n_1, c_1 and n_2, c_2 be constants such that

$$f_1(n) \leq c_1 g_1(n)$$
 for all $n \geq n_1$

$$f_2(n) \leq c_2 g_2(n)$$
 for all $n \geq n_2$.

Product Rule (Proof)

Suppose $f_1(n)$ is $O(g_1(n))$ and $f_2(n)$ is $O(g_2(n))$.

Then
$$f_1(n) * f_2(n)$$
 is $O(g_1(n) * g_2(n))$.

Proof: Let n_1, c_1 and n_2, c_2 be constants such that

$$f_1(n) \leq c_1 g_1(n)$$
 for all $n \geq n_1$

$$f_2(n) \leq c_2 g_2(n)$$
 for all $n \geq n_2$.

So,
$$f_1(n)$$
 $f_2(n) \le c_1 c_2 g_1(n) g_2(n)$ for all $n \ge \max(n_1, n_2)$

These constants satisfy the big O definition

COMP 250

Lecture 36

rules for big O big Omega Ω

Dec. 3, 2018

"small omega" ω

"big omega" Ω

Big Omega (Ω): asymptotic lower bound

Sometimes we want to say that an algorithm takes at least a certain time to run as a function of the input size n.

Example 1:

Let t(n) be the time it takes for algorithm X to find the maximum value in an array of n numbers.

Then t(n) is $\Omega(n)$. (This should be intuitively obvious.)

Big Omega (Ω): asymptotic lower bound

Example 2: (Comparison based sorting)

Let t(n) be the number of element comparisons used by algorithm X to sort an array of n numbers.

One can prove that t(n) is $\Omega(n \log_2 n)$ e.g. COMP 251

That is, there is no faster algorithm possible than the ones we have seen (e.g. merge/heap/quicksort)

e.g. t(n) is $\Omega(n)$

e.g. t(n) is $\Omega(n \log_2 n)$

Heads up: Plot of $n \log_2 n$

Formal Definition of Big Omega (Ω)

Let t(n) and g(n) be two functions of $n \ge 0$.

We say t(n) is $\Omega(g(n))$, if there exist two positive constants n_0 and c such that, for all $n \geq n_0$,

$$t(n) \geq c g(n)$$
.

Formal Definition of Big Omega (Ω)

Let f(n) and g(n) be two functions of $n \ge 0$.

The following are equivalent statements:

$$f(n)$$
 is $O(g(n))$

$$g(n)$$
 is $\Omega(f(n))$.

Why?

Formal Definition of Big Omega (Ω)

Let f(n) and g(n) be two functions of $n \ge 0$.

The following are equivalent statements:

$$f(n)$$
 is $O(g(n))$

$$g(n)$$
 is $\Omega(f(n))$.

i.e. For any
$$n$$
, $f(n) < c g(n) \Leftrightarrow g(n) > \frac{1}{c}f(n)$

Example 1:
$$t(n) = \frac{n(n-1)}{2}$$
 is $\Omega(n^2)$.

Proof:

$$\frac{n(n-1)}{2} \ge ?$$

Example 1:
$$t(n) = \frac{n(n-1)}{2}$$
 is $\Omega(n^2)$.

Proof: Try
$$c = \frac{1}{4}$$
.

$$\frac{n(n-1)}{2} \ge \frac{n^2}{4}$$

Heads up! For each n, this inequality may

be either true or false.

Example 1:
$$t(n) = \frac{n(n-1)}{2}$$
 is $\Omega(n^2)$.

Proof: Try
$$c = \frac{1}{4}$$
.

$$\frac{n(n-1)}{2} \ge \frac{n^2}{4}$$

$$\Leftrightarrow$$
 $2n(n-1) \ge n^2$

"

"

"

"

means "if and only if" i.e. same true/false value

Example 1:
$$t(n) = \frac{n(n-1)}{2}$$
 is $\Omega(n^2)$.

Proof: Try
$$c = \frac{1}{4}$$
.

$$\frac{n(n-1)}{2} \ge \frac{n^2}{4}$$

$$\Leftrightarrow$$
 $2n(n-1) \ge n^2$

$$\iff$$
 $n^2 \ge 2n$

Example 1:
$$t(n) = \frac{n(n-1)}{2}$$
 is $\Omega(n^2)$.

Proof: Try
$$c = \frac{1}{4}$$
.

$$\frac{n(n-1)}{2} \ge \frac{n^2}{4}$$

$$\Leftrightarrow$$
 $2n(n-1) \ge n^2$

$$\iff$$
 $n^2 \ge 2n$

 \iff $n \geq 2$. So we can take $n_0 = 2$.

Example 1:
$$t(n) = \frac{n(n-1)}{2}$$
 is $\Omega(n^2)$.

Proof (2): Try
$$c = \frac{1}{3}$$

$$\frac{n(n-1)}{2} \ge \frac{n^2}{3}$$

$$\Leftrightarrow$$
 $n \ge 3$ So take $n_0 = 3$, $c = \frac{1}{3}$.

Sets of $\Omega()$ functions

If t(n) is $\Omega(g(n))$, we often write

$$t(n) \in \Omega(g(n)).$$

That is, t(n) is a member of the set of functions that are $\Omega(g(n))$.

We have the following strict subset relationships:

$$\Omega(1) \supset \Omega(\log_2 n) \supset \Omega(n) \supset \Omega(n \log_2 n) \supset \Omega(n^2) \dots$$

$$\supset \Omega(n^3) \supset \dots \quad \Omega(2^n) \supset \Omega(n!)$$

$$\Omega(1) \qquad \Omega(\log_2 n) \qquad \Omega(n) \qquad \Omega(n \log_2 n) \qquad \text{etc}$$

For example, if t(n) belongs to $\Omega(n)$, then t(n) also belongs to $\Omega(\log_2 n)$ and to $\Omega(1)$.

For example, if t(n) belongs to $\Omega(n)$, then t(n) also belongs to $\Omega(log_2n)$ and to $\Omega(1)$.

We can also talk about **tight lower bounds**. For example, $\Omega(n)$ is a tight lower bound of t(n) in the example below.

"small theta" θ

"big theta" Θ

Let t(n) and g(n) be two functions of $n \ge 0$.

We say t(n) is $\Theta(g(n))$ if t(n) is O(g(n)) and t(n) is $\Omega(g(n))$.

Let t(n) and g(n) be two functions of $n \ge 0$.

We say t(n) is $\Theta(g(n))$, if there exist three positive constants n_0 , c_1 , c_2 such that for all $n \ge n_0$, c_1 , $g(n) \le t(n) \le c_2$, g(n).

Note that we require $c_1 \leq c_2$.

Example

$$t(n)$$
 is $\Theta(g(n))$.

Let t(n) and g(n) be two functions of $n \ge 0$.

We say t(n) is $\Theta(g(n))$, if there exist three positive constants $n_0,\ c_1,\ c_2$ such that for all $n\geq n_0$,

$$c_1 g(n) \leq t(n) \leq c_2 g(n)$$

$$t(n)$$
 is $O(g(n))$

Let t(n) and g(n) be two functions of $n \ge 0$.

We say t(n) is $\Theta(g(n))$, if there exist three positive constants $n_0,\ c_1,\ c_2$ such that for all $n\geq n_0$,

$$c_1 g(n) \leq t(n) \leq c_2 g(n)$$

$$t(n)$$
 is $\Omega(g(n))$

Example

Let
$$t(n) = 4 + 17 \log_2 n + 3n + 9 n \log_2 n + \frac{n(n-1)}{2}$$

Claim: t(n) is $\Theta(n^2)$.

Proof:

Example

Let
$$t(n) = 4 + 17 \log_2 n + 3n + 9 n \log_2 n + \frac{n(n-1)}{2}$$

Claim:

$$t(n)$$
 is $\Theta(n^2)$.

Proof:

$$\frac{n^2}{4} \le t(n) \le (4 + 17 + 3 + 9 + \frac{1}{2}) n^2$$

A few more slides...

(time permitting or next lecture)

For every t(n), does there exist a "simple" g(n) such that t(n) is $\Theta()$?

For every t(n), does there exist a "simple" g(n) such that t(n) is $\Theta()$?

No, as this contrived example shows:

Let
$$t(n) = \begin{cases} 5, & n \text{ is odd} \\ n^2, & n \text{ is even.} \end{cases}$$

For every t(n), does there exist a "simple" g(n) such that t(n) is $\Theta()$?

No, as this contrived example shows:

Let
$$t(n) = \begin{cases} 5, & n \text{ is odd} \\ n^2, & n \text{ is even.} \end{cases}$$

t(n) is $O(n^2)$, and this is a tight upper bound.

t(n) is $\Omega(1)$, and this is a tight lower bound.

Sets of Θ () functions

If t(n) is $\Theta(g(n))$, we often write $t(n) \in \Theta(g(n))$,

That is, t(n) is a member of the set of functions that are $\Theta(g(n))$.

For most of this semester, we've been talking about big O. But really, what we had in mind was big Theta. That is, we had a function and we were discussing its growth rate.

The reason people usually talk about big O is that they are most concerned with upper bounds than they are about lower bounds.

Lower bounds do come up, but not as often.