Hardware Design Guide

S5PV210

RISC Microprocessor

FEB 8, 2010

REV 1.0

Important Notice

The information in this publication has been carefully checked and is believed to be entirely accurate at the time of publication. Samsung assumes no responsibility, however, for possible errors or omissions, or for any consequences resulting from the use of the information contained herein.

Samsung reserves the right to make changes in its products or product specifications with the intent to improve function or design at any time and without notice and is not required to update this documentation to reflect such changes.

This publication does not convey to a purchaser of semiconductor devices described herein any license under the patent rights of Samsung or others.

Samsung makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Samsung assume any liability arising out of the application or use of any product or circuit and specifically disclaims any and all liability, including without limitation any consequential or incidental damages.

"Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by the customer's technical experts.

Samsung products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, for other applications intended to support or sustain life, or for any other application in which the failure of the Samsung product could create a situation where personal injury or death may occur.

Should the Buyer purchase or use a Samsung product for any such unintended or unauthorized application, the Buyer shall indemnify and hold Samsung and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, expenses, and reasonable attorney fees arising out of, either directly or indirectly, any claim of personal injury or death that may be associated with such unintended or unauthorized use, even if such claim alleges that Samsung was negligent regarding the design or manufacture of said product

.

S5PV210 RISC Microprocessor Hardware Design Guide, Revision 1.0 Copyright © 2010 Samsung Electronics Co., Ltd.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electric or mechanical, by photocopying, recording, or otherwise, without the prior written consent of Samsung Electronics.

Samsung Electronics Co., Ltd. San #24 Nongseo-Dong, Giheung-Gu Yongin-City, Gyeonggi-Do, Korea 446-711

TEL: (82)-(031)-209-4356 FAX: (82)-(031)-209-3262

Home Page: http://www.samsungsemi.com

Printed in the Republic of Korea

Revision History

Revision No	Description of Change	Refer to	Author(s)	Date
1.0	- First release version			Feb 08, 2010

Table of Contents

1.	OV	'ERVIEW	8
	1.1.	S5PV210 Pin Information	8
2.	BA	LL NUMBER ASSIGNMENT	63
3.	PO	WER	71
;	3.1.	Pin Power Domain	71
;	3.2.	Recommend Operating Conditions	73
;	3.3.	Circuit design without level shifter	75
;	3.4.	Power On/Off Sequence	76
;	3.5.	Pin configuration guide in Sleep mode	78
4.	SYS	SCON	79
	4.1.	Signal Description	79
	4.2.	Booting Option	81
	4.3.	Feature of the IROM Boot mode	82
	4.4.	Clock	83
5.	ME	MORY SUBSYSTEM	85
!	5.1.	Signal Description	85
!	5.2.	TQ : Temperature Indicator	85
	5.3.	PCB LAYOUT GUIDELINES FOR MEMORY	85
6.	SR	OM CONTROLLER	88
(6.1.	Signal Description	88
(6.2.	SRAM/ROM Interface Examples	89
7.	ON	IENAND CONTROLLER	90
•	7.1.	Signal Description	90
	7.2.	Circuit Diagram Example	91
8.	NA	ND FLASH CONTROLLER	92
:	8.1.	Signal Description	92
9.	CF	CONTROLLER	94
9	9.1.	CFCON feature	94
,	9.2.	Signal Description	94
9	9.3.	CF 1-slot operation guide	95
9	9.4.	CF 2-slot operation guide	96
10	. Р	PWM TIMER	97

10.1.	Overview	97
10.2.	Signal Description	97
11. UA	ART	98
11.1.	Signal descriptoin	98
12. IIC	-BUS INTERFACE	99
12.1.	Pin Description	99
12.2.	Equation of the pull-up resistor value	100
13. SP	71	101
13.1.	Signal Description	101
13.2.	EXTERNAL Loading Capacitance	101
13.3.	SPI Maximum Speed	101
14. US	SB HOST	102
14.1.	Singnal Description	102
14.2.	Power Domain	102
14.3.	Circuit Diagram Example	102
14.4.	USB SIGNAL ROUTING	103
15. US	SB 2.0 HS OTG	105
15.1.	Signal Descriptoin	105
15.2.	Power Domain	105
16. MC	DDEM INTERFACE	107
16.1.	Signal Description	107
16.2.	Pin Connection Example	107
17. SD	D/MMC HOST CONTROLLER	109
17.1.	Signal Description	109
17.2.	Muxed Signal usage	109
18. TS	il	111
18.1.	Signal Description	111
18.2.	Connection Example	111
19. DIS	SPLAY CONTROLLER	112
19.1.	Signal Description	112
19.2.	VD signal connection	113
19.3.	VD signal connection at each bpp mode.	114
20. CA	MERA INTERFACE	116
20.1.	Signal Description	116
20.2.	Camera INPUT	117

20.3	3.	Restriction	117
21.	MIF	의 DSI & CSI	118
21.1	۱.	Signal Description	118
21.2	2.	Design Guide	119
22.	TV	ENCODER	120
22.1	۱.	Signal Description	120
23.	HD	MI	121
23.1	۱.	Overview	121
23.2	2.	Signal Description	121
23.3	3.	Circuit Diagram Example	122
23.4	١.	PCB Artwork Guide	124
24.	IIS	MULTI AUDIO INTERFACE (V5.1)	126
24.1	١.	Signal Description	126
24.2	2.	Audio Port	126
25.	IIS	BUS CONTROLLER	128
25.1	۱.	Signal Description	128
25.2	2.	External Clock Source	128
25.3	3.	Connection Example	129
26.	AC	97 CONTROLLER	130
26.1	۱.	AC97 Signal Description	130
26.2	2.	Audio Ports	130
26.3	3.	Connection Example	130
27.	РС	M BUS CONTROLLER	131
27.1	١.	Signal Description	131
27.2	2.	External Clock Source	132
27.3	3.	Connection Example	132
28.	SP	DIF	134
28.1	١.	Signal Description	134
29.	AD	C&TOUCH SCREEN INTERFACE	135
30.	ΚE	YPAD INTERFACE	136

1. Overview

1.1. S5PV210 Pin Information

Definitions

Available Usage(AU)

- G/E/W: GPIO & EINT & Wake up source

- G/E: GPIO & EINT

- G: GPIO

- D : Dedicated signal

- I: Internally connected to MCP and ball out

- I(x): Internally connected to MCP and No ball out

RET @ Power down

- No Ret: this signal doesn't have a retention function in power down mode
- Ret_IO : this signal has a retention function in power down mode and released by setting Enable_GPIO bit (others[31])
- Ret_IO (sleep): this signal has a retention function in only sleep mode and released by setting Enable_GPIO bit (others[31])
- Ret_CF : this signal has a retention function in power down mode and released by setting Enable_CF_IO bit (others[30])
- Ret_MMC : this signal has a retention function in power down mode and released by setting Enable_ MMC_IO bit (others[29])
- Ret_UART : this signal has a retention function in power down mode and released by setting Enable_GPIO_UART_IO bit (others[28]) => Only Uart2, 3
- Ret_Auto: this signal has a retention in power down mode and released automatically after wakeup.

note) Need to more attention when this kinds of signals are used for GPIO,.

Because these signals move to default signal level after wakeup until S/W set to the level.

IO Power	Ball Name	Port	GPI Res val	et	Rese t stat	Func-0	Func-1	Func-2	2 Func-3	AU	RET @ Power	Not Use	Circuit guide
			In/ Out	Pu/ Pd	us						down	d	
	XuRXD[0]	GPA0[0]	GPI	PD	I (L)	UART_O_RXD				G/E	Ret_IO	NC	
	XuTXD[0]	GPA0[1]	GPI	PD	I (L)	UART_O_TXD				G/E	Ret_IO	NC	
	XuCTSn[0]	GPA0[2]	GPI	PD	I (L)	UART_0_CTSn				G/E	Ret_IO	NC	
VDD_EXTO	XuRTSn[0]	GPA0[3]	GPI	PD	I (L)	UART_0_RTSn				G/E	Ret_IO	NC	
VDD_EXTO	XuRXD[1]	GPA0[4]	GPI	PD	I (L)	UART_1_RXD				G/E	Ret_IO	NC	
	XuTXD[1]	GPA0[5]	GPI	PD	I (L)	UART_1_TXD				G/E	Ret_IO	NC	
	XuCTSn[1]	GPA0[6]	GPI	PD	I (L)	UART_1_CTSn				G/E	Ret_IO	NC	
	XuRTSn[1]	GPA0[7]	GPI	PD	I (L)	UART_1_RTSn				G/E	Ret_IO	NC	
VDD_EXT1	XuRXD[2]	GPA1[0]	GPI	PD	I (L)	UART_2_RXD		UART_AUDI O_ RXD		G/E	Ret_UA RT	NC	for RP(Low Power Audio)debugging

IO Power Domain	Ball Name	Port	GPI Res val	et	Rese t stat	Func-0	Func-1	Func-2	Func-3	AU	RET @ Power	Not Use	Circuit guide
			In/ Out	Pu/ Pd	us						down	d	
	XuTXD[2]	GPA1[1]	GPI	PD	I (L)	UART_2_TXD		UART_AUDI O_ TXD		G/E	Ret_UA RT	NC	for RP(Low Power Audio)debugging
	XuRXD[3]	GPA1[2]	GPI	PD	I (L)	UART_3_RXD	UART_2_CTSn			G/E	Ret_UA RT	NC	
	XuTXD[3]	GPA1[3]	GPI	PD	I (L)	UART_3_TXD	UART_2_RTSn			G/E	Ret_UA RT	NC	
	Xspi CLK[0]	GPB[0]	GPI	PD	I (L)	SPI_O_CLK				G/E	Ret_IO	NC	
VDD_EXTO	Xspi CSn[0]	GPB[1]	GPI	PD	I (L)	SPI_0_nSS				G/E	Ret_IO	NC	
	Xspi MI SO[0]	GPB[2]	GPI	PD	I (L)	SPI_0_MISO				G/E	Ret_IO	NC	
	Xspi MOSI [0]	GPB[3]	GPI	PD	I (L)	SPI_O_MOSI				G/E	Ret_IO	NC	
VDD_EXT2	Xspi CLK[1]	GPB[4]	GPI	PD	I (L)	SPI_1_CLK				G/E	Ret_IO	NC	

IO Power	Ball Name	Port	GPI Res val	et	Rese t stat	Func-0	Func-1	Func-2	Func-3	RET @ Not AU Power Use Circ		Circuit guide	
			In/ Out	Pu/ Pd	us						down	d	
	Xspi CSn[1]	GPB[5]	GPI	PD	I (L)	SPI_1_nSS				G/E	Ret_IO	NC	
	Xspi MI S0[1]	GPB[6]	GPI	PD	I (L)	SPI_1_MISO				G/E	Ret_IO	NC	
	Xspi MOSI [1]	GPB[7]	GPI	PD	I (L)	SPI_1_MOSI				G/E	Ret_IO	NC	
VDD_AUD	Xi 2s1SCLK	GPC0[0]	GPI	PD	I (L)	I 2S_1_SCLK	PCM_1_SCLK	AC97BI TCLK		G/E	Ret_IO	NC	
	Xi 2s1CDCL K	GPC0[1]	GPI	PD	I (L)	I 2S_1_CDCLK	PCM_1_EXTCLK	AC97RESETn		G/E	Ret_IO	NC	
	Xi 2s1LRCK	GPC0[2]	GPI	PD	I (L)	I 2S_1_LRCK	PCM_1_FSYNC	AC97SYNC		G/E	Ret_IO	NC	
	Xi 2s1SDI	GPC0[3]	GPI	PD	I (L)	I 2S_1_SDI	PCM_1_SIN	AC97SDI		G/E	Ret_IO	NC	
	Xi 2s1SD0	GPCO[4]	GPI	PD	I (L)	I 2S_1_SD0	PCM_1_SOUT	AC97SD0		G/E	Ret_IO	NC	
	Xpcm2SCLK	GPC1[0]	GPI	PD	I (L)	PCM_2_SCLK	SPDI F_0_OUT	I 2S_2_SCLK		G/E	Ret_IO	NC	
	Xpcm2EXTC LK	GPC1[1]	GPI	PD	I (L)	PCM_2_EXTCL K	SPDI F_EXTCLK	I 2S_2_CDCLK		G/E	Ret_IO	NC	

IO Power Domain	Ball Name	Port	GPI Res val	et	Rese t stat	Func-0	Func-1	Func-2	Func-3	AU	RET @ Power	Not Use	Circuit guide
			In/ Out	Pu/ Pd	us						down	d	
	Xpcm2FSYN C	GPC1[2]	GPI	PD	I (L)	PCM_2_FSYNC	LCD_FRM	I 2S_2_LRCK		G/E	Ret_IO	NC	
	Xpcm2SIN	GPC1[3]	GPI	PD	I (L)	PCM_2_SIN		I 2S_2_SDI		G/E	Ret_IO	NC	
	Xpcm2S0UT	GPC1[4]	GPI	PD	I (L)	PCM_2_SOUT		12S_2_SD0		G/E	Ret_IO	NC	
	XpwmTOUT[O]	GPD0[0]	GPI	PD	I (L)	TOUT_0				G/E	Ret_IO	NC	
	XpwmTOUT[1]	GPD0[1]	GPI	PD	I (L)	TOUT_1				G/E	Ret_IO	NC	
VDD_EXTO	XpwmTOUT[2]	GPD0[2]	GPI	PD	I (L)	TOUT_2				G/E	Ret_IO	NC	
	XpwmTOUT[3]	GPD0[3]	GPI	PD	I (L)	TOUT_3	PWM_MIE/PWM_M DNIE			G/E	Ret_IO	NC	MIE PWM control
	Xi 2c0SDA	GPD1[0]	GPI	PD	I (L)	I 2CO_SDA				G/E	Ret_IO	NC	
	Xi 2c0SCL	GPD1[1]	GPI	PD	I (L)	I 2CO_SCL				G/E	Ret_IO	NC	
VDD_EXT1	Xi 2c1SDA	GPD1[2]	GPI	PD	I (L)	I 2C1_SDA				G/E	Ret_IO	NC	For HDMI

IO Power	Ball Name	Port	GPI Res val	et	Rese t stat	Func-0	Func-1	Func-2	Func-3	AU	RET @ Power	Not Use	Circuit guide
			In/ Out	Pu/ Pd	us						down	d	
	Xi 2c1SCL	GPD1[3]	GPI	PD	I (L)	I 2C1_SCL				G/E	Ret_IO	NC	For HDMI
	Xi 2c2SDA	GPD1[4]	GPI	PD	I (L)	I 2C2_SDA	I EM_SCLK			G/E	Ret_IO	NC	
	Xi 2c2SCL	GPD1[5]	GPI	PD	I (L)	I 2C2_SCL	I EM_SPWI			G/E	Ret_IO	NC	
VDD_CAM	Xci PCLK	GPE0[0]	GPI	PD	I (L)	CAM_A_PCLK				G/E	Ret_IO	NC	
	Xci VSYNC	GPE0[1]	GPI	PD	I (L)	CAM_A_VSYNC				G/E	Ret_IO	NC	
	Xci HREF	GPE0[2]	GPI	PD	I (L)	CAM_A_HREF				G/E	Ret_IO	NC	
	Xci DATA[0	GPE0[3]	GPI	PD	I (L)	CAM_A_DATA[0]				G/E	Ret_IO	NC	
	Xci DATA[1	GPEO[4]	GPI	PD	I (L)	CAM_A_DATA[1]				G/E	Ret_IO	NC	
	Xci DATA[2]	GPE0[5]	GPI	PD	I (L)	CAM_A_DATA[2]				G/E	Ret_IO	NC	
	Xci DATA[3]	GPE0[6]	GPI	PD	I (L)	CAM_A_DATA[3]				G/E	Ret_IO	NC	

IO Power Domain	Ball Name	Port	GPI Res val	et	Rese t stat	Func-0	Func-1	Func-2	Func-3	AU	RET @ Power	Not Use	Circuit guide
			In/ Out	Pu/ Pd	us						down	d	
	Xci DATA[4	GPEO[7]	GPI	PD	I (L)	CAM_A_DATA[4]				G/E	Ret_IO	NC	
	Xci DATA[5	GPE1[0]	GPI	PD	I (L)	CAM_A_DATA[5]				G/E	Ret_IO	NC	
	Xci DATA[6	GPE1[1]	GPI	PD	I (L)	CAM_A_DATA[6]				G/E	Ret_IO	NC	
	Xci DATA[7	GPE1[2]	GPI	PD	I (L)	CAM_A_DATA[7]				G/E	Ret_IO	NC	
	Xci CLKenb	GPE1[3]	GPI	PD	I (L)	CAM_A_CLKOU T				G/E	Ret_IO	NC	
	Xci FI ELD	GPE1[4]	GPI	PD	I (L)	CAM_A_FIELD				G/E	Ret_IO	NC	
VDD_LCD	X∨HSYNC	GPF0[0]	GPI	PD	I (L)	LCD_HSYNC	SYS_CS0	VEN_HSYNC		G/E	Ret_IO	NC	
	XvVSYNC	GPF0[1]	GPI	PD	I (L)	LCD_VSYNC	SYS_CS1	VEN_VSYNC		G/E	Ret_IO	NC	
	X∨VDEN	GPF0[2]	GPI	PD	I (L)	LCD_VDEN	SYS_RS	VEN_HREF		G/E	Ret_IO	NC	
	XvVCLK	GPF0[3]	GPI	PD	I (L)	LCD_VCLK	SYS_WE	V601_CLK		G/E	Ret_IO	NC	

IO Power	Dall Name	Don't	GPI Res val	et	Rese t		Farmer of	5	F 0		RET @	Not	Circuit audido
Domai n	Ball Name	Port	In/ Out	Pu/ Pd	stat us	Func-0	Func-1	Func-2	Func-3	AU	Power down	Use d	Circuit guide
	XvVD[0]	GPF0[4]	GPI	PD	I (L)	LCD_VD[0]	SYS_VD[0]	VEN_DATA[0]		G/E	Ret_IO	NC	
	XvVD[1]	GPF0[5]	GPI	PD	I (L)	LCD_VD[1]	SYS_VD[1]	VEN_DATA[1]		G/E	Ret_IO	NC	
	XvVD[2]	GPF0[6]	GPI	PD	I (L)	LCD_VD[2]	SYS_VD[2]	VEN_DATA[2]		G/E	Ret_IO	NC	
	XvVD[3]	GPF0[7]	GPI	PD	I (L)	LCD_VD[3]	SYS_VD[3]	VEN_DATA[3]		G/E	Ret_IO	NC	
	XvVD[4]	GPF1[0]	GPI	PD	I (L)	LCD_VD[4]	SYS_VD[4]	VEN_DATA[4]		G/E	Ret_IO	NC	
	XvVD[5]	GPF1[1]	GPI	PD	I (L)	LCD_VD[5]	SYS_VD[5]	VEN_DATA[5]		G/E	Ret_IO	NC	
	XvVD[6]	GPF1[2]	GPI	PD	I (L)	LCD_VD[6]	SYS_VD[6]	VEN_DATA[6]		G/E	Ret_IO	NC	
	XvVD[7]	GPF1[3]	GPI	PD	I (L)	LCD_VD[7]	SYS_VD[7]	VEN_DATA[7]		G/E	Ret_IO	NC	
	XvVD[8]	GPF1[4]	GPI	PD	I (L)	LCD_VD[8]	SYS_VD[8]	V656_DATA[O		G/E	Ret_IO	NC	
	XvVD[9]	GPF1[5]	GPI	PD	I (L)	LCD_VD[9]	SYS_VD[9]	V656_DATA[1		G/E	Ret_IO	NC	
	XvVD[10]	GPF1[6]	GPI	PD	I (L)	LCD_VD[10]	SYS_VD[10]	V656_DATA[2		G/E	Ret_IO	NC	

IO Power Domain	Ball Name	Port	GPI Res val	et	Rese	Func-0	Func-1	Func-2	Func-3	AU	RET @	Not Use	Circuit guide
Domai n		1011	In/ Out	Pu/ Pd	stat us	Tune o	Tune T	Tuno 2	Tuno o		down	d	onoun guido
	XvVD[11]	GPF1[7]	GPI	PD	I (L)	LCD_VD[11]	SYS_VD[11]	V656_DATA[3]		G/E	Ret_IO	NC	
	XvVD[12]	GPF2[0]	GPI	PD	I (L)	LCD_VD[12]	SYS_VD[12]	V656_DATA[4		G/E	Ret_IO	NC	
	XvVD[13]	GPF2[1]	GPI	PD	I (L)	LCD_VD[13]	SYS_VD[13]	V656_DATA[5]		G/E	Ret_IO	NC	
	XvVD[14]	GPF2[2]	GPI	PD	I (L)	LCD_VD[14]	SYS_VD[14]	V656_DATA[6		G/E	Ret_IO	NC	
	XvVD[15]	GPF2[3]	GPI	PD	I (L)	LCD_VD[15]	SYS_VD[15]	V656_DATA[7]		G/E	Ret_IO	NC	
	XvVD[16]	GPF2[4]	GPI	PD	I (L)	LCD_VD[16]	SYS_VD[16]			G/E	Ret_IO	NC	
	XvVD[17]	GPF2[5]	GPI	PD	I (L)	LCD_VD[17]	SYS_VD[17]			G/E	Ret_IO	NC	
	XvVD[18]	GPF2[6]	GPI	PD	I (L)	LCD_VD[18]	SYS_VD[18]			G/E	Ret_IO	NC	
	XvVD[19]	GPF2[7]	GPI	PD	I (L)	LCD_VD[19]	SYS_VD[19]			G/E	Ret_IO	NC	
	XvVD[20]	GPF3[0]	GPI	PD	I (L)	LCD_VD[20]	SYS_VD[20]			G/E	Ret_IO	NC	

IO Power	Ball Name	Port	GPI Res val	et	Rese t stat	Func-0	Func-1	Func-2	Func-3	AU	RET @	Not Use	Circuit guide
Domarn			In/ Out	Pu/ Pd	us						down	d	
	XvVD[21]	GPF3[1]	GPI	PD	I (L)	LCD_VD[21]	SYS_VD[21]			G/E	Ret_IO	NC	
	XvVD[22]	GPF3[2]	GPI	PD	I (L)	LCD_VD[22]	SYS_VD[22]			G/E	Ret_IO	NC	
	XvVD[23]	GPF3[3]	GPI	PD	I (L)	LCD_VD[23]	SYS_VD[23]	V656_CLK		G/E	Ret_IO	NC	
	XvVSYNC_L DI	GPF3[4]	GPI	PD	I (L)	VSYNC_LDI	VSYNC_LDI	VSYNC_LDI		G/E	Ret_IO	NC	
	XvSYS_0E	GPF3[5]	GPI	PD	I (L)	SYS_0E	SYS_0E	VEN_FI ELD		G/E	Ret_IO	NC	
VDD_EXTO	XmmcOCLK	GPG0[0]	GPI	PD	I (L)	SD_O_CLK				G/E	Ret_MM C	NC	
	XmmcOCMD	GPG0[1]	GPI	PD	I (L)	SD_O_CMD				G/E	Ret_MM C	NC	
	XmmcOCDn	GPG0[2]	GPI	PD	I (L)	SD_0_CDn				G/E	Ret_MM C	NC	
	XmmcODATA [0]	GPG0[3]	GPI	PD	I (L)	SD_O_DATA[O							
	XmmcODATA [1]	GPGO[4]	GPI	PD	I (L)	SD_O_DATA[1]				G/E	Ret_MM C	NC	

IO Power	Ball Name	Port	GPI Res val	et	Rese t stat	Func-0	Func-1	Func-2	Func-3	AU	RET @ Power	Not Use	Circuit guide
Domain			In/ Out	Pu/ Pd	us						down	d	
	XmmcODATA [2]	GPG0[5]	GPI	PD	I (L)	SD_O_DATA[2]				G/E	Ret_MM C	NC	
	XmmcODATA [3]	GPG0[6]	GPI	PD	I (L)	SD_O_DATA[3]				G/E	Ret_MM C	NC	
	Xmmc1CLK	GPG1[0]	GPI	PD	I (L)	SD_1_CLK				G/E	Ret_MM C	NC	
	Xmmc1CMD	GPG1[1]	GPI	PD	I (L)	SD_1_CMD				G/E	Ret_MM C	NC	
	Xmmc1CDn	GPG1[2]	GPI	PD	I (L)	SD_1_CDn				G/E	Ret_MM C	NC	
	Xmmc1DATA [0]	GPG1[3]	GPI	PD	I (L)	SD_1_DATA[0	SD_O_DATA[4]			G/E	Ret_MM C	NC	
	Xmmc1DATA [1]	GPG1[4]	GPI	PD	I (L)	SD_1_DATA[1]	SD_O_DATA[5]			G/E	Ret_MM C	NC	
	Xmmc1DATA [2]	GPG1[5]	GPI	PD	I (L)	SD_1_DATA[2]	SD_O_DATA[6]			G/E	Ret_MM C	NC	
	Xmmc1DATA	GPG1[6]	GPI	PD	I (L)	SD_1_DATA[3	SD_O_DATA[7]			G/E	Ret_MM	NC	

IO Power Domain	Ball Name	Port	GPI Res val	et	Rese t stat	Func-0	Func-1	Func-2	Func-3	AU	RET @ Power	Not Use	Circuit guide
Joinal II			In/ Out	Pu/ Pd	us						down	d	
	[3]]					С		
	Xmmc2CLK	GPG2[0]	GPI	PD	I (L)	SD_2_CLK				G/E	Ret_MM C	NC	
	Xmmc2CMD	GPG2[1]	GPI	PD	I (L)	SD_2_CMD				G/E	Ret_MM C	NC	
	Xmmc2CDn	GPG2[2]	GPI	PD	I (L)	SD_2_CDn				G/E	Ret_MM C	NC	
VDD_EXT1	Xmmc2DATA [0]	GPG2[3]	GPI	PD	I (L)	SD_2_DATA[0]				G/E	Ret_MM C	NC	
	Xmmc2DATA [1]	GPG2[4]	GPI	PD	I (L)	SD_2_DATA[1]				G/E	Ret_MM C	NC	
	Xmmc2DATA [2]	GPG2[5]	GPI	PD	I (L)	SD_2_DATA[2]				G/E	Ret_MM C	NC	
	Xmmc2DATA [3]	GPG2[6]	GPI	PD	I (L)	SD_2_DATA[3]				G/E	Ret_MM C	NC	
VDD_EXT2	Xmmc3CLK	GPG3[0]	GPI	PD	I (L)	SD_3_CLK				G/E	Ret_MM C	NC	

IO Power	Ball Name	Port	GPI Res val	et	Rese t stat	Func-0	Func-1	Func-2	Func-3	AU	RET @ Power	Not Use	Circuit guide
			In/ Out	Pu/ Pd	us						down	d	
	Xmmc3CMD	GPG3[1]	GPI	PD	I (L)	SD_3_CMD				G/E	Ret_MM C	NC	
	Xmmc3CDn	GPG3[2]	GPI	PD	I (L)	SD_3_CDn				G/E	Ret_MM C	NC	
	Xmmc3DATA [0]	GPG3[3]	GPI	PD	I (L)	SD_3_DATA[0	SD_2_DATA[4]			G/E	Ret_MM C	NC	
	Xmmc3DATA [1]	GPG3[4]	GPI	PD	I (L)	SD_3_DATA[1]	SD_2_DATA[5]			G/E	Ret_MM C	NC	
	Xmmc3DATA [2]	GPG3[5]	GPI	PD	I (L)	SD_3_DATA[2]	SD_2_DATA[6]			G/E	Ret_MM C	NC	
	Xmmc3DATA [3]	GPG3[6]	GPI	PD	I (L)	SD_3_DATA[3]	SD_2_DATA[7]			G/E	Ret_MM C	NC	
VDD_SYS0	XEINT[0]	GPHO[0]	GPI	PD	I (L)					G/E/ W	No_Ret	NC	Can be used as a PS_HOLD pin Wakeup source
	XEI NT[1]	GPH0[1]	GPI	PD	I (L)					G/E/	No_Ret	NC	wakeup source

IO Power			GPI Res val	et	Rese t						RET @	Not	
Domai n	Ball Name	Port	vai		stat	Func-0	Func-1	Func-2	Func-3	AU	Power down	Use d	Circuit guide
			In/ Out	Pu/ Pd	us						down	u	
										W			
	XEINT[2]	GPH0[2]	GPI	PD	I (L)					G/E/ W	No_Ret	NC	wakeup source
	XEINT[3]	GPH0[3]	GPI	PD	I (L)					G/E/ W	No_Ret	NC	wakeup source
	XEINT[4]	GPH0[4]	GPI	PD	I (L)					G/E/ W	No_Ret	NC	wakeup source
	XEINT[5]	GPH0[5]	GPI	PD	I (L)					G/E/ W	No_Ret	NC	wakeup source
	XEINT[6]	GPH0[6]	GPI	PD	I (L)					G/E/ W	No_Ret	NC	wakeup source
	XEINT[7]	GPH0[7]	GPI	PD	I (L)					G/E/ W	No_Ret	NC	wakeup source
VDD_SYS1	XEINT[8]	GPH1[0]	GPI	PD	I (L)					G/E/ W	No_Ret	NC	wakeup source
	XEINT[9]	GPH1[1]	GPI	PD	I (L)					G/E/ W	No_Ret	NC	wakeup source

10 Power	Ball Name	Port	GPI Res val	et	Rese t	Func-0	Func-1	Func-2	Func-3	AU	RET @	Not Use	Circuit guide
Domai n			In/ Out	Pu/ Pd	stat us						down	d	
	XEI NT[10]	GPH1[2]	GPI	PD	I (L)					G/E/ W	No_Ret	NC	wakeup source
	XEI NT[11]	GPH1[3]	GPI	PD	I (L)					G/E/ W	No_Ret	NC	wakeup source
	XEI NT[12]	GPH1[4]	GPI	PD	I (L)			HDMI _CEC		G/E/ W	No_Ret	NC	wakeup source
	XEI NT[13]	GPH1[5]	GPI	PD	I (L)			HDMI_HPD		G/E/ W	No_Ret	NC	wakeup source
	XEI NT[14]	GPH1[6]	GPI	PD	I (L)					G/E/ W	No_Ret	NC	wakeup source
	XEI NT[15]	GPH1[7]	GPI	PD	I (L)					G/E/ W	No_Ret	NC	wakeup source
VDD_KEY	XEI NT[16]	GPH2[0]	GPI	PD	I (L)		KP_COL[0]			G/E/ W	No_Ret	NC	wakeup source
	XEINT[17]	GPH2[1]	GPI	PD	I (L)		KP_COL[1]			G/E/ W	No_Ret	NC	wakeup source
	XEINT[18]	GPH2[2]	GPI	PD	I (L)		KP_COL[2]			G/E/	No_Ret	NC	wakeup source

			GPI Res	et	Rese						RET @	Not	
10 Power Domain	Ball Name	Port	val	ue	t stat	Func-0	Func-1	Func-2	Func-3	AU	Power	Use	Circuit guide
			In/ Out	Pu/ Pd	us						down	d	
										W			
	XEI NT[19]	GPH2[3]	GPI	PD	I (L)		KP_COL[3]			G/E/ W	No_Ret	NC	wakeup source
	XEI NT[20]	GPH2[4]	GPI	PD	I (L)		KP_COL[4]			G/E/ W	No_Ret	NC	wakeup source
	XEI NT[21]	GPH2[5]	GPI	PD	I (L)		KP_COL[5]			G/E/ W	No_Ret	NC	wakeup source
	XEI NT[22]	GPH2[6]	GPI	PD	I (L)		KP_COL[6]			G/E/ W	No_Ret	NC	wakeup source
	XEI NT[23]	GPH2[7]	GPI	PD	I (L)		KP_COL[7]			G/E/ W	No_Ret	NC	wakeup source
	XEINT[24]	GPH3[0]	GPI	PD	I (L)		KP_ROW[0]			G/E/ W	No_Ret	NC	wakeup source
	XEINT[25]	GPH3[1]	GPI	PD	I (L)		KP_ROW[1]			G/E/ W	No_Ret	NC	wakeup source
	XEI NT[26]	GPH3[2]	GPI	PD	I (L)		KP_ROW[2]			G/E/ W	No_Ret	NC	wakeup source

IO Power Domain	Ball Name	Port	GPI Res val	et	Rese t stat	Func-0	Func-1	Func-2	Func-3	AU	RET @	Not Use	Circuit guide
			In/ Out	Pu/ Pd	us						down	d	
	XEI NT[27]	GPH3[3]	GPI	PD	I (L)		KP_ROW[3]			G/E/ W	No_Ret	NC	wakeup source
	XEI NT[28]	GPH3[4]	GPI	PD	I (L)		KP_ROW[4]			G/E/ W	No_Ret	NC	wakeup source
	XEI NT[29]	GPH3[5]	GPI	PD	I (L)		KP_ROW[5]			G/E/ W	No_Ret	NC	wakeup source
	XEI NT[30]	GPH3[6]	GPI	PD	I (L)		KP_ROW[6]			G/E/ W	No_Ret	NC	wakeup source
	XEI NT[31]	GPH3[7]	GPI	PD	I (L)		KP_ROW[7]			G/E/ W	No_Ret	NC	wakeup source
VDD_AUD	Xi 2s0SCLK	GPI [0]	Func 0	PD	0(L)	I 2S_O_SCLK	PCM_O_SCLK			DS	Ret_IO (sleep)	NC	For low power audio
	Xi 2sOCDCL K	GPI [1]	Func 0	PD	0(L)	I 2S_O_CDCLK	PCM_O_EXTCLK			DS	Ret_IO (sleep)	NC	

IO Power	Ball Name	Port	GPI Res val	et	Rese t stat	Func-0	Func-1	Func-2	Func-3	AU	RET @ Power	Not Use	Circuit guide
202.			In/ Out	Pu/ Pd	us						down	d	
	Xi 2s0LRCK	GPI [2]	Func 0	PD	0(L)	I 2S_O_LRCK	PCM_O_FSYNC			DS	Ret_IO (sleep)	NC	Cannot be used as GPIO & EINT
	Xi 2s0SDI	GPI [3]	Func 0	PD	I (L)	I 2S_0_SDI	PCM_O_SIN			DS	Ret_IO (sleep)	NC	
	Xi 2s0SD0[0]	GPI [4]	Func 0	PD	0(L)	2S_0_SD0[0 	PCM_O_SOUT			DS	Ret_IO (sleep)	NC	
	Xi 2s0SD0[1]	GPI [5]	Func 0	PD	0(L)	2S_0_SD0[1 				DS	Ret_IO (sleep)	NC	
	Xi 2s0SD0[2]	GPI [6]	Func 0	PD	0(L)	2S_0_SD0[2 				DS	Ret_IO (sleep)	NC	
VDD_MODE M	XmsmADDR[0]	GPJ0[0]	GPI	PD	I (L)	MSM_ADDR[0]	CAM_B_DATA[0]	CF_ADDR[0]	MI PI _BYTE_C LK	G/E	Ret_CF	NC	
	XmsmADDR[GPJ0[1]	GPI	PD	I (L)	MSM_ADDR[1]	CAM_B_DATA[CF_ADDR[1]	MIPI_ESC_CL	G/E	Ret_CF	NC	

IO Power			GPI Res val	et	Rese						RET @	Not	
Domai n	Ball Name	Port			stat	Func-0	Func-1	Func-2	Func-3	AU	Power down	Use	Circuit guide
			In/ Out	Pu/ Pd	us						uo	u u	
	1]						1]		К				
	XmsmADDR[2]	GPJ0[2]	GPI	PD	I (L)	MSM_ADDR[2]	CAM_B_DATA[2]	CF_ADDR[2]	TS_CLK	G/E	Ret_CF	NC	
	XmsmADDR[3]	GPJ0[3]	GPI	PD	I (L)	MSM_ADDR[3]	CAM_B_DATA[3]	CF_I ORDY	TS_SYNC	G/E	Ret_CF	NC	
	XmsmADDR[4]	GPJ0[4]	GPI	PD	I (L)	MSM_ADDR[4]	CAM_B_DATA[4]	CF_I NTRQ	TS_VAL	G/E	Ret_CF	NC	
	XmsmADDR[5]	GPJ0[5]	GPI	PD	I (L)	MSM_ADDR[5]	CAM_B_DATA[5]	CF_DMARQ	TS_DATA	G/E	Ret_CF	NC	
	XmsmADDR[6]	GPJ0[6]	GPI	PD	I (L)	MSM_ADDR[6]	CAM_B_DATA[6]	CF_DRESETN	TS_ERROR	G/E	Ret_CF	NC	
	XmsmADDR[7]	GPJ0[7]	GPI	PD	I (L)	MSM_ADDR[7]	CAM_B_DATA[7]	CF_DMACKN	MHL_DO	G/E	Ret_CF	NC	
	XmsmADDR[8]	GPJ1[0]	GPI	PD	I (L)	MSM_ADDR[8]	CAM_B_PCLK	SROM_ADDR[1 6]	MHL_D1	G/E	Ret_CF	NC	
	XmsmADDR[9]	GPJ1[1]	GPI	PD	I (L)	MSM_ADDR[9]	CAM_B_VSYNC	SROM_ADDR[1 7]	MHL_D2	G/E	Ret_CF	NC	

IO Power	Ball Name	Port	GPI Res val	et	Rese t	Func-0	Func-1	Func-2	Func-3	AU	RET @	Not Use	Circuit guide
Domai n	Dail Name	1011	In/ Out	Pu/ Pd	stat us	Tuno c	T dilo	Tuno 2	Tune o		down	d	Choungulas
	XmsmADDR[10]	GPJ1[2]	GPI	PD	I (L)	MSM_ADDR[10]	CAM_B_HREF	SROM_ADDR[1 8]	MHL_D3	G/E	Ret_CF	NC	
	XmsmADDR[11]	GPJ1[3]	GPI	PD	I (L)	MSM_ADDR[11]	CAM_B_FIELD	SROM_ADDR[1 9]	MHL_D4	G/E	Ret_CF	NC	
	XmsmADDR[12]	GPJ1[4]	GPI	PD	I (L)	MSM_ADDR[12]	CAM_B_CLKOU T	SROM_ADDR[2 0]	MHL_D5	G/E	Ret_CF	NC	
	XmsmADDR[GPJ1[5]	GPI	PD	I (L)	MSM_ADDR[13]	KP_COL[0]	SROM_ADDR[2 1]	MHL_D6	G/E	Ret_CF	NC	
	XmsmDATA[0]	GPJ2[0]	GPI	PD	I (L)	MSM_DATA[0]	KP_COL[1]	CF_DATA[0]	MHL_D7	G/E	Ret_CF	NC	
	XmsmDATA[1]	GPJ2[1]	GPI	PD	I (L)	MSM_DATA[1]	KP_COL[2]	CF_DATA[1]	MHL_D8	G/E	Ret_CF	NC	
	XmsmDATA[2]	GPJ2[2]	GPI	PD	I (L)	MSM_DATA[2]	KP_COL[3]	CF_DATA[2]	MHL_D9	G/E	Ret_CF	NC	
	XmsmDATA[3]	GPJ2[3]	GPI	PD	I (L)	MSM_DATA[3]	KP_COL[4]	CF_DATA[3]	MHL_D10	G/E	Ret_CF	NC	
	XmsmDATA[GPJ2[4]	GPI	PD	I (L)	MSM_DATA[4]	KP_COL[5]	CF_DATA[4]	MHL_D11	G/E	Ret_CF	NC	

10 Power	Ball Name	Port	GPI Res val	et	Rese	Func-0	Func-1	Func-2	Func-3	AU	RET @	Not Use	Circuit guide
Domai n			In/ Out	Pu/ Pd	stat us						down	d	
	4]												
	XmsmDATA[5]	GPJ2[5]	GPI	PD	I (L)	MSM_DATA[5]	KP_COL[6]	CF_DATA[5]	MHL_D12	G/E	Ret_CF	NC	
	XmsmDATA[6]	GPJ2[6]	GPI	PD	I (L)	MSM_DATA[6]	KP_COL[7]	CF_DATA[6]	MHL_D13	G/E	Ret_CF	NC	
	XmsmDATA[7]	GPJ2[7]	GPI	PD	I (L)	MSM_DATA[7]	KP_ROW[0]	CF_DATA[7]	MHL_D14	G/E	Ret_CF	NC	
	XmsmDATA[8]	GPJ3[0]	GPI	PD	I (L)	MSM_DATA[8]	KP_ROW[1]	CF_DATA[8]	MHL_D15	G/E	Ret_CF	NC	
	XmsmDATA[9]	GPJ3[1]	GPI	PD	I (L)	MSM_DATA[9]	KP_ROW[2]	CF_DATA[9]	MHL_D16	G/E	Ret_CF	NC	
	XmsmDATA[10]	GPJ3[2]	GPI	PD	I (L)	MSM_DATA[10]	KP_ROW[3]	CF_DATA[10]	MHL_D17	G/E	Ret_CF	NC	
	XmsmDATA[11]	GPJ3[3]	GPI	PD	I (L)	MSM_DATA[11]	KP_ROW[4]	CF_DATA[11]	MHL_D18	G/E	Ret_CF	NC	
	XmsmDATA[12]	GPJ3[4]	GPI	PD	I (L)	MSM_DATA[12]	KP_ROW[5]	CF_DATA[12]	MHL_D19	G/E	Ret_CF	NC	

10 Power	Ball Name	Port	GPI Rese val	et	Rese	Func-0	Func-1	Func-2	Func-3	AU	RET @	Not Use	Circuit guide
Domai n			In/ Out	Pu/ Pd	stat us						down	d	
	XmsmDATA[13]	GPJ3[5]	GPI	PD	I (L)	MSM_DATA[13]	KP_ROW[6]	CF_DATA[13]	MHL_D20	G/E	Ret_CF	NC	
	XmsmDATA[14]	GPJ3[6]	GPI	PD	I (L)	MSM_DATA[14]	KP_ROW[7]	CF_DATA[14]	MHL_D21	G/E	Ret_CF	NC	
	XmsmDATA[15]	GPJ3[7]	GPI	PD	I (L)	MSM_DATA[15]	KP_ROW[8]	CF_DATA[15]	MHL_D22	G/E	Ret_CF	NC	
	XmsmCSn	GPJ4[0]	GPI	PD	I (L)	MSM_CSn	KP_ROW[9]	CF_CSn[0]	MHL_D23	G/E	Ret_CF	NC	
	XmsmWEn	GPJ4[1]	GPI	PD	I (L)	MSM_WEn	KP_ROW[10]	CF_CSn[1]	MHL_HSYNC	G/E	Ret_CF	NC	
	XmsmRn	GPJ4[2]	GPI	PD	I (L)	MSM_Rn	KP_ROW[11]	CF_I ORN	MHL_I DCK	G/E	Ret_CF	NC	
	Xmsml RQn	GPJ4[3]	GPI	PD	I (L)	MSM_I RQn	KP_ROW[12]	CF_I OWN	MHL_VSYNC	G/E	Ret_CF	NC	
	XmsmADVN	GPJ4[4]	GPI	PD	I (L)	MSM_ADVN	KP_ROW[13]	SROM_ADDR[2 2]	MHL_DE	G/E	Ret_CF	NC	
VDD_MO	XmOCSn[0]	MPO_1[0]	Func 0	-	O(H)	SROM_CSn[0]				G	Ret_aut o	NC	
	XmOCSn[1]	MPO_1[1]	Func 0	_	O(H)	SROM_CSn[1]				G	Ret_aut o	NC	

IO Power Domain	Ball Name	Port	GPI Rese val	et	Rese t stat	Func-0	Func-1	Func-2	Func-3	AU	RET @	Not Use	Circuit guide
			In/ Out	Pu/ Pd	us						down	d	
	XmOCSn[2]	MPO_1[2]	Func 1	-	O(H)	SROM_CSn[2]	NFCSn[0]			G	Ret_aut o	NC	
	XmOCSn[3]	MPO_1[3]	Func 1	-	O(H)	SROM_CSn[3]	NFCSn[1]			G	Ret_aut o	NC	
	XmOCSn[4]	MPO_1[4]	Func 3	-	O(H)	SROM_CSn[4]	NFCSn[2]		ONANDXL_CSn	I	Ret_aut o	-	Should be connected to CE signal of OneNAND Externally
	XmOCSn[5]	MPO_1[5]	Func 3	-	O(H)	SROM_CSn[5]	NFCSn[3]		ONANDXL_CSn [1]	G	Ret_aut o	NC	
	Xm00En	MPO_1[6]	Func 0	-	O(H)	EBI _OEn				1	Ret_aut o	-	Internally connected to
	XmOWEn	MPO_1[7]	Func 0	-	O(H)	EBI _WEn				1	Ret_aut o	-	OneNAND
	XmOBEn[0]	MPO_2[0]	Func 0	-	O(H)	EBI_BEn[0]				G	Ret_aut o	NC	
	XmOBEn[1]	MPO_2[1]	Func 0	-	O(H)	EBI_BEn[1]				G	Ret_aut o	NC	

IO Power Domain	Ball Name	Port	GPI Res val	et	Rese t stat	Func-0	Func-1	Func-2	Func-3	AU	RET @	Not Use	Circuit guide
			In/ Out	Pu/ Pd	us						down	d	
	XmOWAI Tn	MPO_2[2]	Func 0	-	1	SROM_WAITn				G	Ret_aut o	NC	External pull up resistor is needed
	XmODATA_R Dn	MPO_2[3]	Func 0	-	0(L)	EBI _DATA_RD n				G	Ret_aut o	NC	
	XmOFCLE	MPO_3[0]	Func 3	-	0(L)	NF_CLE			ONANDXL_ADD RVALI D	I	Ret_aut o	-	
	XmOFALE	MPO_3[1]	Func 3	-	0(L)	NF_ALE			ONANDXL_SMC LK	I	Ret_aut o	-	Internally connected to OneNAND
	XmOFWEn	MPO_3[2]	Func 3	-	O(H)	NF_FWEn			ONANDXL_RPn	I	Ret_aut o	-	
	XmOFREn	MPO_3[3]	Func 0	-	O(H)	NF_FREn				G	Ret_aut o	NC	
	XmOFRnB[0	MPO_3[4]	Func 3	-	I	NF_RnB[0]			ONANDXL_I NT [0]	I	Ret_aut o	-	Internally connected to OneNAND
	XmOFRnB[1]	MPO_3[5]	Func 3	-	I	NF_RnB[1]			ONANDXL_I NT [1]	G	Ret_aut o	NC	
	XmOFRnB[2	MPO_3[6]	Func	_	I	NF_RnB[2]				G	Ret_aut	NC	

IO Power Domain	Ball Name	Port	GPI Rese val	et	Rese t stat	Func-0	Func-1	Func-2	Func-3	AU	RET @	Not Use	Circuit guide
			In/ Out	Pu/ Pd	us						down	d	
]		0								0		
	XmOFRnB[3	MPO_3[7]	Func 0	-	I	NF_RnB[3]				G	Ret_aut o	NC	
	XmOADDR[0	MPO_4[0]	Func 0		0(L)	EBI_ADDR[0]				G	Ret_aut o	NC	
	XmOADDR[1	MPO_4[1]	Func 0	-	0(L)	EBI_ADDR[1]				G	Ret_aut o	NC	
	XmOADDR[2	MPO_4[2]	Func 0	-	0(L)	EBI_ADDR[2]				G	Ret_aut o	NC	
	XmOADDR[3	MPO_4[3]	Func 0	-	0(L)	EBI_ADDR[3]				G	Ret_aut o	NC	
	XmOADDR[4	MPO_4[4]	Func 0	-	0(L)	EBI_ADDR[4]				G	Ret_aut o	NC	
	XmOADDR[5	MPO_4[5]	Func 0	-	0(L)	EBI_ADDR[5]				G	Ret_aut o	NC	
	XmOADDR[6]	MPO_4[6]	Func 0	-	0(L)	EBI_ADDR[6]				G	Ret_aut o	NC	

IO Power Domain	Ball Name	Port	GPI Rese val	et	Rese t stat	Func-0	Func-1	Func-2	Func-3	AU	RET @	Not Use	Circuit guide
			In/ Out	Pu/ Pd	us						down	d	
	XmOADDR[7	MPO_4[7]	Func 0	-	0(L)	EBI_ADDR[7]				G	Ret_aut o	NC	
	XmOADDR[8	MPO_5[0]	Func 0	-	0(L)	EBI_ADDR[8]				G	Ret_aut o	NC	
	XmOADDR[9	MPO_5[1]	Func 0	-	0(L)	EBI_ADDR[9]				G	Ret_aut o	NC	
	XmOADDR[1	MPO_5[2]	Func 0	-	0(L)	EBI_ADDR[10				G	Ret_aut o	NC	
	XmOADDR[1	MPO_5[3]	Func 0		0(L)	EBI_ADDR[11]				G	Ret_aut o	NC	
	XmOADDR[1 2]	MPO_5[4]	Func 0	-	0(L)	EBI_ADDR[12]				G	Ret_aut o	NC	
	XmOADDR[1 3]	MPO_5[5]	Func 0	-	0(L)	EBI_ADDR[13				G	Ret_aut o	NC	
	XmOADDR[1 4]	MPO_5[6]	Func 0	-	0(L)	EBI_ADDR[14]				G	Ret_aut o	NC	
	XmOADDR[1	MPO_5[7]	Func	-	0(L)	EBI_ADDR[15				G	Ret_aut	NC	

IO Power	Ball Name	Port	GPI Res val	et	Rese t stat	Func-0	Func-1	Func-2	Func-3	AU	RET @ Power	Not Use	Circuit guide
			In/ Out	Pu/ Pd	us						down	d	
	5]		0]					0		
	XmODATA[O	MPO_6[0]	Func 0	-	0(L)	EBI_DATA[0]				I	Ret_aut o	-	Internally connected to OneNAND
	XmODATA[1	MPO_6[1]	Func 0	-	0(L)	EBI_DATA[1]				I	Ret_aut o	-	
	XmODATA[2	MPO_6[2]	Func 0	-	0(L)	EBI_DATA[2]				1	Ret_aut o	-	
	XmODATA[3	MPO_6[3]	Func 0	-	0(L)	EBI_DATA[3]				1	Ret_aut o	-	
	XmODATA[4	MPO_6[4]	Func 0	-	0(L)	EBI_DATA[4]				1	Ret_aut o	-	
	XmODATA[5	MPO_6[5]	Func 0	-	0(L)	EBI_DATA[5]				1	Ret_aut o	-	
	XmODATA[6	MPO_6[6]	Func 0	-	0(L)	EBI_DATA[6]				I	Ret_aut o	-	
	XmODATA[7	MPO_6[7]	Func 0	-	0(L)	EBI_DATA[7]				I	Ret_aut o	-	

IO Power Domain	Ball Name	Port	GPI Res val	et	Rese t stat	Func-0	Func-1	Func-2	Func-3	AU	RET @ Power	Not Use	Circuit guide
			In/ Out	Pu/ Pd	us						down	d	
	XmODATA[8	MPO_7[0]	Func 0	-	0(L)	EBI_DATA[8]				I	Ret_aut o	-	
	XmODATA[9	MPO_7[1]	Func 0	-	0(L)	EBI_DATA[9]				I	Ret_aut o	-	
	XmODATA[1	MPO_7[2]	Func 0	-	0(L)	EBI_DATA[10]				I	Ret_aut o	_	
	XmODATA[1	MPO_7[3]	Func 0	-	0(L)	EBI_DATA[11]				I	Ret_aut o	-	
	XmODATA[1 2]	MPO_7[4]	Func 0	-	0(L)	EBI_DATA[12]				I	Ret_aut o	-	
	XmODATA[1 3]	MPO_7[5]	Func 0	-	0(L)	EBI_DATA[13]				I	Ret_aut o	-	
	XmODATA[1 4]	MPO_7[6]	Func 0	-	0(L)	EBI_DATA[14]				I	Ret_aut o	_	
	XmODATA[1 5]	MPO_7[7]	Func 0	-	0(L)	EBI_DATA[15]				I	Ret_aut o	-	
VDD_M1	Xm1ADDR[O	MP1_0[0]	Func	-	0(L)	LDO_ADDR[0]				I(X)	Ret_aut	_	Internally connnected to

10 Power	Ball Name	Port	GPI Rese val	et	Rese t	Func-0	Func-1	Func-2	Func-3	AU	RET @	Not Use	Circuit guide
Domai n	But Name	1011	In/ Out	Pu/ Pd	stat us			Tune 2	Tune 5		down	d	
]		0								0		OneDRAM
	Xm1ADDR[1	MP1_0[1]	Func 0	-	0(L)	LDO_ADDR[1]				I(X)	Ret_aut o	-	
	Xm1ADDR[2	MP1_0[2]	Func 0	-	0(L)	LDO_ADDR[2]				I(X)	Ret_aut o	-	
	Xm1ADDR[3	MP1_0[3]	Func 0	-	0(L)	LDO_ADDR[3]				I(X)	Ret_aut o	-	
	Xm1ADDR[4	MP1_0[4]	Func 0	-	0(L)	LDO_ADDR[4]				I(X)	Ret_aut o	-	
	Xm1ADDR[5	MP1_0[5]	Func 0	-	0(L)	LDO_ADDR[5]				I(X)	Ret_aut o	-	
	Xm1ADDR[6	MP1_0[6]	Func 0	-	0(L)	LDO_ADDR[6]				I(X)	Ret_aut o	-	
	Xm1ADDR[7	MP1_0[7]	Func 0	-	0(L)	LDO_ADDR[7]				I(X)	Ret_aut o	_	
	Xm1ADDR[8	MP1_1[0]	Func 0	-	0(L)	LDO_ADDR[8]				I(X)	Ret_aut o	-	

36

IO Power	Ball Name	Port	GPI Res	et	Rese t	Func-0	Func-1	Func-2	Func-3	AU	RET @	Not Use	Circuit guide
Domai n	Barr Name	1011	In/ Out	Pu/ Pd	stat us	Tune 0	Tune 1	Tune 2	Tune 3	7.0	down	d	Onoun guido
	Xm1ADDR[9	MP1_1[1]	Func 0	-	0(L)	LDO_ADDR[9]				I(X)	Ret_aut o	-	
	Xm1ADDR[1 0]	MP1_1[2]	Func 0	-	0(L)	LDO_ADDR[10				I(X)	Ret_aut o	-	
	Xm1ADDR[1 1]	MP1_1[3]	Func 0	-	0(L)	LDO_ADDR[11				I(X)	Ret_aut o	-	
	Xm1ADDR[1 2]	MP1_1[4]	Func 0	-	0(L)	LDO_ADDR[12				I(X)	Ret_aut o	-	
	Xm1ADDR[1 3]	MP1_1[5]	Func 0	-	0(L)	LDO_ADDR[13				I(X)	Ret_aut o	-	
	Xm1ADDR[1 4]	MP1_1[6]	Func 0	-	0(L)	LDO_ADDR[14				I(X)	Ret_aut o	-	
	Xm1ADDR[1 5]	MP1_1[7]	Func 0	-	0(L)	LDO_ADDR[15				I(X)	Ret_aut o	-	
	Xm1DATA[O	MP1_2[0]	Func 0	-	I	LDO_DATA[0]				I(X)	Ret_aut o	-	
	Xm1DATA[1	MP1_2[1]	Func	-	ı	LDO_DATA[1]				I(X)	Ret_aut	-	

IO Power			GPI Rese	et	Rese t						RET @	Not	
Domai n	Ball Name	Port			stat	Func-0	Func-1	Func-2	Func-3	AU	Power down	Use d	Circuit guide
			In/ Out	Pu/ Pd	us						down	ď	
]		0								0		
	Xm1DATA[2	MP1_2[2]	Func 0	-	1	LDO_DATA[2]				I(X)	Ret_aut o	-	
	Xm1DATA[3	MP1_2[3]	Func 0	-	I	LDO_DATA[3]				I(X)	Ret_aut o	-	
	Xm1DATA[4	MP1_2[4]	Func 0	-	I	LDO_DATA[4]				I(X)	Ret_aut o	-	
	Xm1DATA[5	MP1_2[5]	Func 0	-	I	LDO_DATA[5]				I(X)	Ret_aut o	-	
	Xm1DATA[6	MP1_2[6]	Func 0	-	I	LDO_DATA[6]				I(X)	Ret_aut o	-	
	Xm1DATA[7	MP1_2[7]	Func 0	-	I	LDO_DATA[7]				I(X)	Ret_aut o	-	
	Xm1DATA[8	MP1_3[0]	Func 0	-	I	LDO_DATA[8]				I(X)	Ret_aut o	-	
	Xm1DATA[9]	MP1_3[1]	Func 0	-	I	LDO_DATA[9]				I(X)	Ret_aut o	-	

IO Power Domain	Ball Name	Port	GPI Res val	et	Rese t stat	Func-0	Func-1	Func-2	Func-3	AU	RET @ Power	Not Use	Circuit guide
Domai II			In/ Out	Pu/ Pd	us						down	d	
	Xm1DATA[1 O]	MP1_3[2]	Func 0	-	I	LDO_DATA[10				I(X)	Ret_aut o	-	
	Xm1DATA[1 1]	MP1_3[3]	Func 0	-	1	LDO_DATA[11]				I(X)	Ret_aut o	-	
	Xm1DATA[1 2]	MP1_3[4]	Func 0	-	1	LDO_DATA[12]				I(X)	Ret_aut o	-	
	Xm1DATA[1 3]	MP1_3[5]	Func 0	-	I	LDO_DATA[13]				I(X)	Ret_aut o	-	
	Xm1DATA[1 4]	MP1_3[6]	Func 0	-	I	LDO_DATA[14]				I(X)	Ret_aut o	-	
	Xm1DATA[1 5]	MP1_3[7]	Func 0	-	I	LDO_DATA[15]				I(X)	Ret_aut o	-	
	Xm1DATA[1 6]	MP1_4[0]	Func 0	-	I	LDO_DATA[16]				I(X)	Ret_aut o	-	
	Xm1DATA[1 7]	MP1_4[1]	Func 0	-	I	LDO_DATA[17				I(X)	Ret_aut o	-	
	Xm1DATA[1	MP1_4[2]	Func	-	I	LDO_DATA[18				I(X)	Ret_aut	_	

IO Power			GPI Rese	et	Rese t						RET @	Not	
Domai n	Ball Name	Port			stat	Func-0	Func-1	Func-2	Func-3	AU	Power down	Use d	Circuit guide
			In/ Out	Pu/ Pd	us						down	"	
	8]		0]					0		
	Xm1DATA[1 9]	MP1_4[3]	Func 0	-	I	LDO_DATA[19]				I(X)	Ret_aut o	-	
	Xm1DATA[2 0]	MP1_4[4]	Func 0	-	I	LDO_DATA[20				I(X)	Ret_aut o	-	
	Xm1DATA[2 1]	MP1_4[5]	Func 0	-	I	LDO_DATA[21]				I(X)	Ret_aut o	-	
	Xm1DATA[2 2]	MP1_4[6]	Func 0	-	I	LDO_DATA[22]				I(X)	Ret_aut o	-	
	Xm1DATA[2 3]	MP1_4[7]	Func 0	-	I	LDO_DATA[23]				I(X)	Ret_aut o	-	
	Xm1DATA[2 4]	MP1_5[0]	Func 0	-	I	LDO_DATA[24]				I(X)	Ret_aut o	-	
	Xm1DATA[2 5]	MP1_5[1]	Func 0	-	I	LDO_DATA[25]				I(X)	Ret_aut o	-	
	Xm1DATA[2 6]	MP1_5[2]	Func 0	-	Ī	LDO_DATA[26]				I(X)	Ret_aut o	-	

40

IO Power Domain	Ball Name	Port	GPI Res	et	Rese t stat	Func-0	Func-1	Func-2	Func-3	AU	RET @ Power	Not Use	Circuit guide
201141			In/ Out	Pu/ Pd	us						down	d	
	Xm1DATA[2 7]	MP1_5[3]	Func 0	-	I	LDO_DATA[27]				I(X)	Ret_aut o	-	
	Xm1DATA[2 8]	MP1_5[4]	Func 0	-	I	LDO_DATA[28]				I(X)	Ret_aut o	-	
	Xm1DATA[2 9]	MP1_5[5]	Func 0	-	I	LDO_DATA[29				I(X)	Ret_aut o	-	
	Xm1DATA[3 O]	MP1_5[6]	Func 0	-	I	LDO_DATA[30				I(X)	Ret_aut o	-	
	Xm1DATA[3 1]	MP1_5[7]	Func 0	-	I	LDO_DATA[31]				I(X)	Ret_aut o	-	
	Xm1DQS[0]	MP1_6[0]	Func 0	-	I	LDO_DQS[0]				I(X)	Ret_aut o	-	
	Xm1DQS[1]	MP1_6[1]	Func 0	-	I	LDO_DQS[1]				I(X)	Ret_aut o	-	
	Xm1DQS[2]	MP1_6[2]	Func 0	-	I	LDO_DQS[2]				I(X)	Ret_aut o	_	
	Xm1DQS[3]	MP1_6[3]	Func	-	I	LDO_DQS[3]				I(X)	Ret_aut	_	

41

IO Power	Ball Name	Port	GPI Rese val	et	Rese t stat	Func-0	Func-1	Func-2	Func-3	AU	RET @ Power	Not Use	Circuit guide
			In/ Out	Pu/ Pd	us						down	d	
			0								0		
	Xm1DQSn[0	MP1_6[4]	Func 0	-	I	LDO_DQSn[0]				I(X)	Ret_aut o	-	
	Xm1DQSn[1	MP1_6[5]	Func 0	-	I	LDO_DQSn[1]				I(X)	Ret_aut o	-	
	Xm1DQSn[2	MP1_6[6]	Func 0	-	I	LDO_DQSn[2]				I(X)	Ret_aut o	-	
	Xm1DQSn[3	MP1_6[7]	Func 0	_	ī	LDO_DQSn[3]				I(X)	Ret_aut o	-	
	Xm1DQM[O]	MP1_7[0]	Func 0	_	0(L)	LDO_DQM[0]				I(X)	Ret_aut o	-	
	Xm1DQM[1]	MP1_7[1]	Func 0	-	0(L)	LDO_DQM[1]				I(X)	Ret_aut o	-	
	Xm1DQM[2]	MP1_7[2]	Func 0	_	0(L)	LDO_DQM[2]				I(X)	Ret_aut o	-	
	Xm1DQM[3]	MP1_7[3]	Func 0	-	0(L)	LDO_DQM[3]				I(X)	Ret_aut o	-	

10 Power	Ball Name	Port	GPI Reso val	et	Rese	Func-0	Func-1	Func-2	Func-3	AU	RET @ Power	Not Use	Circuit guide
Domai n			In/ Out	Pu/ Pd	stat us						down	d	
	Xm1CKE[0]	MP1_7[4]	Func 0	-	0(L)	LDO_CKE[0]				I(X)	Ret_aut o	-	
	Xm1CKE[1]	MP1_7[5]	Func 0	-	0(L)	LDO_CKE[1]				I(X)	Ret_aut o	-	
	Xm1SCLK	MP1_7[6]	Func 0	-	0(L)	LDO_SCLK				I(X)	Ret_aut o	-	
	Xm1nSCLK	MP1_7[7]	Func 0	-	O(H)	LDO_nSCLK				I(X)	Ret_aut o	-	
	Xm1CSn[0]	MP1_8[0]	Func 0	-	O(H)	LDO_CSn_0				I(X)	Ret_aut o	-	
	Xm1CSn[1]	MP1_8[1]	Func 0	-	O(H)	LDO_CSn_1				I(X)	Ret_aut o	-	
	Xm1RASn	MP1_8[2]	Func 0	-	O(H)	LDO_RASn				I(X)	Ret_aut o	-	
	Xm1CASn	MP1_8[3]	Func 0	-	O(H)	LDO_CASn				I(X)	Ret_aut o	_	
	Xm1WEn	MP1_8[4]	Func	-	0(H)	LDO_WEn				I(X)	Ret_aut	-	

43

10 Power	Ball Name	Port	GPI Rese val	et	Rese	Func-0	Func-1	Func-2	Func-3	AU	RET @	Not Use	Circuit guide
Domai n			In/ Out	Pu/ Pd	stat us						down	d	
			0								0		
VDD_M2	Xm2ADDR[O	MP2_0[0]	Func 0	-	0(L)	LD1_ADDR[0]				I(X)	Ret_aut o	-	Internally connnected to mDDR
	Xm2ADDR[1	MP2_0[1]	Func 0	-	0(L)	LD1_ADDR[1]				I(X)	Ret_aut o	-	
	Xm2ADDR[2	MP2_0[2]	Func 0	-	0(L)	LD1_ADDR[2]				I(X)	Ret_aut o	-	
	Xm2ADDR[3	MP2_0[3]	Func 0	-	0(L)	LD1_ADDR[3]				I(X)	Ret_aut o	-	
	Xm2ADDR[4	MP2_0[4]	Func 0	-	0(L)	LD1_ADDR[4]				I(X)	Ret_aut o	-	
	Xm2ADDR[5	MP2_0[5]	Func 0	-	0(L)	LD1_ADDR[5]				I(X)	Ret_aut o	-	
	Xm2ADDR[6	MP2_0[6]	Func 0	-	0(L)	LD1_ADDR[6]				I(X)	Ret_aut o	-	
	Xm2ADDR[7	MP2_0[7]	Func 0	-	0(L)	LD1_ADDR[7]				I(X)	Ret_aut o	-	

IO Power Domain	Ball Name	Port	GPI Rese val	et	Rese t stat	Func-0	Func-1	Func-2	Func-3	AU	RET @ Power	Not Use	Circuit guide
201121			In/ Out	Pu/ Pd	us						down	d	
	Xm2ADDR[8	MP2_1[0]	Func 0	-	0(L)	LD1_ADDR[8]				I(X)	Ret_aut o	-	
	Xm2ADDR[9	MP2_1[1]	Func 0	-	0(L)	LD1_ADDR[9]				I(X)	Ret_aut o	-	
	Xm2ADDR[1 0]	MP2_1[2]	Func 0	-	0(L)	LD1_ADDR[10				I(X)	Ret_aut o	-	
	Xm2ADDR[1 1]	MP2_1[3]	Func 0	-	0(L)	LD1_ADDR[11]				I(X)	Ret_aut o	-	
	Xm2ADDR[1 2]	MP2_1[4]	Func 0	-	0(L)	LD1_ADDR[12				I(X)	Ret_aut o	-	
	Xm2ADDR[1 3]	MP2_1[5]	Func 0	-	0(L)	LD1_ADDR[13				I(X)	Ret_aut o	-	
	Xm2ADDR[1 4]	MP2_1[6]	Func 0	-	0(L)	LD1_ADDR[14				I(X)	Ret_aut o	-	
	Xm2ADDR[1 5]	MP2_1[7]	Func 0	-	0(L)	LD1_ADDR[15				I(X)	Ret_aut o	-	
	Xm2DATA[0	MP2_2[0]	Func	_	I	LD1_DATA[0]				I(X)	Ret_aut	-	

45

10 Power	Ball Name	Port	GPI Reso val	et	Rese t stat	Func-0	Func-1	Func-2	Func-3	AU	RET @ Power	Not Use	Circuit guide
2 0.1121 11			In/ Out	Pu/ Pd	us						down	d	
]		0								0		
	Xm2DATA[1	MP2_2[1]	Func 0	-	1	LD1_DATA[1]				I(X)	Ret_aut o	-	
	Xm2DATA[2	MP2_2[2]	Func 0	-	I	LD1_DATA[2]				I(X)	Ret_aut o	-	
	Xm2DATA[3	MP2_2[3]	Func 0	-	1	LD1_DATA[3]				I(X)	Ret_aut o	-	
	Xm2DATA[4	MP2_2[4]	Func 0	-	1	LD1_DATA[4]				I(X)	Ret_aut o	-	
	Xm2DATA[5	MP2_2[5]	Func 0	-	I	LD1_DATA[5]				I(X)	Ret_aut o	-	
	Xm2DATA[6	MP2_2[6]	Func 0	-	I	LD1_DATA[6]				I(X)	Ret_aut o	-	
	Xm2DATA[7	MP2_2[7]	Func 0	_	I	LD1_DATA[7]				I(X)	Ret_aut o	-	
	Xm2DATA[8	MP2_3[0]	Func 0	-	I	LD1_DATA[8]				I(X)	Ret_aut o	-	

IO Power	Doll Name	Doub	GPI Res	et	Rese t	Funa 0	Fine 4	Firms 2	Firm 2	AU	RET @	Not Use	Circuit aviida
Domai n	Ball Name	Port			stat	Func-0	Func-1	Func-2	Func-3	AU	down	d	Circuit guide
			In/ Out	Pu/ Pd	us								
	Xm2DATA[9	MP2_3[1]	Func 0	-	I	LD1_DATA[9]				I(X)	Ret_aut o	-	
	Xm2DATA[1 0]	MP2_3[2]	Func 0	-	I	LD1_DATA[10]				I(X)	Ret_aut o	-	
	Xm2DATA[1 1]	MP2_3[3]	Func 0	-	I	LD1_DATA[11]				I(X)	Ret_aut o	-	
	Xm2DATA[1 2]	MP2_3[4]	Func 0	-	I	LD1_DATA[12]				I(X)	Ret_aut o	-	
	Xm2DATA[1 3]	MP2_3[5]	Func 0	-	I	LD1_DATA[13]				I(X)	Ret_aut o	-	
	Xm2DATA[1 4]	MP2_3[6]	Func 0	-	I	LD1_DATA[14]				I(X)	Ret_aut o	-	
	Xm2DATA[1 5]	MP2_3[7]	Func 0	-	I	LD1_DATA[15]				I(X)	Ret_aut o	-	
	Xm2DATA[1 6]	MP2_4[0]	Func 0	-	I	LD1_DATA[16]				I(X)	Ret_aut o	-	
	Xm2DATA[1	MP2_4[1]	Func	_	1	LD1_DATA[17				I(X)	Ret_aut	-	

IO Power	Ball Name	Port	GPI Res	et	Rese t	Func-0	Func-1	Func-2	Func-3	AU	RET @	Not Use	Circuit guide
Domai n		1 6. 0	In/ Out	Pu/ Pd	stat us	1 4110 0	. 4.10	1 4.10 2	. .		down	d	
	7]		0]					0		
	Xm2DATA[1 8]	MP2_4[2]	Func 0	_	I	LD1_DATA[18]				I(X)	Ret_aut o	-	
	Xm2DATA[1 9]	MP2_4[3]	Func 0	-	I	LD1_DATA[19]				I(X)	Ret_aut o	-	
	Xm2DATA[2 0]	MP2_4[4]	Func 0	-	I	LD1_DATA[20]				I(X)	Ret_aut o	-	
	Xm2DATA[2 1]	MP2_4[5]	Func 0	-	1	LD1_DATA[21]				I(X)	Ret_aut o	-	
	Xm2DATA[2 2]	MP2_4[6]	Func 0	-	1	LD1_DATA[22]				I(X)	Ret_aut o	-	
	Xm2DATA[2 3]	MP2_4[7]	Func 0	-	I	LD1_DATA[23]				I(X)	Ret_aut o	-	
	Xm2DATA[2 4]	MP2_5[0]	Func 0	-	I	LD1_DATA[24]				I(X)	Ret_aut o	-	
	Xm2DATA[2 5]	MP2_5[1]	Func 0	-	I	LD1_DATA[25]				I(X)	Ret_aut o	-	

LO Devices			GPI Res	et	Rese						RET @	Not	
10 Power Domain	Ball Name	Port	val		t stat	Func-0	Func-1	Func-2	Func-3	AU	Power down	Use	Circuit guide
			In/ Out	Pu/ Pd	us						down	a	
	Xm2DATA[2 6]	MP2_5[2]	Func 0	-	I	LD1_DATA[26]				I(X)	Ret_aut o	-	
	Xm2DATA[2 7]	MP2_5[3]	Func 0	-	I	LD1_DATA[27]				I(X)	Ret_aut o	-	
	Xm2DATA[2 8]	MP2_5[4]	Func 0	_	I	LD1_DATA[28]				I(X)	Ret_aut o	-	
	Xm2DATA[2 9]	MP2_5[5]	Func 0	_	I	LD1_DATA[29				I(X)	Ret_aut o	-	
	Xm2DATA[3 0]	MP2_5[6]	Func 0	_	I	LD1_DATA[30				I(X)	Ret_aut o	-	
	Xm2DATA[3 1]	MP2_5[7]	Func 0	-	I	LD1_DATA[31]				I(X)	Ret_aut o	-	
	Xm2DQS[0]	MP2_6[0]	Func 0	-	I	LD1_DQS[0]				I(X)	Ret_aut o	-	
	Xm2DQS[1]	MP2_6[1]	Func 0	-	I	LD1_DQS[1]				I(X)	Ret_aut o	-	
	Xm2DQS[2]	MP2_6[2]	Func	_	1	LD1_DQS[2]				I(X)	Ret_aut	-	

IO Power			GPI Rese	et	Rese t						RET @	Not	
Domai n	Ball Name	Port			stat	Func-0	Func-1	Func-2	Func-3	AU	Power down	Use	Circuit guide
			In/ Out	Pu/ Pd	us						down	u u	
			0								0		
	Xm2DQS[3]	MP2_6[3]	Func 0	-	I	LD1_DQS[3]				I(X)	Ret_aut o	-	
	Xm2DQSn[0	MP2_6[4]	Func 0	-	I	LD1_DQSn[0]				I(X)	Ret_aut o	-	
	Xm2DQSn[1	MP2_6[5]	Func 0	-	1	LD1_DQSn[1]				I(X)	Ret_aut o	-	
	Xm2DQSn[2]	MP2_6[6]	Func 0	-	I	LD1_DQSn[2]				I(X)	Ret_aut o	_	
	Xm2DQSn[3	MP2_6[7]	Func 0	-	I	LD1_DQSn[3]				I(X)	Ret_aut o	-	
	Xm2DQM[0]	MP2_7[0]	Func 0	-	0(L)	LD1_DQM[0]				I(X)	Ret_aut o	-	
	Xm2DQM[1]	MP2_7[1]	Func 0	-	0(L)	LD1_DQM[1]				I(X)	Ret_aut o	-	
	Xm2DQM[2]	MP2_7[2]	Func 0	-	0(L)	LD1_DQM[2]				I(X)	Ret_aut o	-	

IO Power	Doll Name	Dont	GPI Reso valu	et	Rese t	Funo 0	Func-1	Func-2	Funo 2	AU	RET @	Not Use	Circuit quide
Domai n	Ball Name	Port	In/	Pu/	stat	Func-0	Func-1	Func-2	Func-3	AU	Power down	d	Circuit guide
			Out	Pd	us								
	Xm2DQM[3]	MP2_7[3]	Func 0	-	0(L)	LD1_DQM[3]				I(X)	Ret_aut o	-	
	Xm2CKE[0]	MP2_7[4]	Func 0	-	0(L)	LD1_CKE[0]				I(X)	Ret_aut o	-	
	Xm2CKE[1]	MP2_7[5]	Func 0	-	0(L)	LD1_CKE[1]				I(X)	Ret_aut o	-	
	Xm2SCLK	MP2_7[6]	Func 0	-	0(L)	LD1_SCLK				I(X)	Ret_aut o	-	
	Xm2nSCLK	MP2_7[7]	Func 0	-	O(H)	LD1_nSCLK				I(X)	Ret_aut o	-	
	Xm2CSn[0]	MP2_8[0]	Func 0	-	O(H)	LD1_CSn_0				I(X)	Ret_aut o	-	
	Xm2CSn[1]	MP2_8[1]	Func 0	-	O(H)	LD1_CSn_1				I(X)	Ret_aut o	-	
	Xm2RASn	MP2_8[2]	Func 0	_	O(H)	LD1_RASn				I(X)	Ret_aut o	-	
	Xm2CASn	MP2_8[3]	Func	_	0(H)	LD1_CASn				I(X)	Ret_aut	-	

IO Power Domain	Ball Name	Port	GPI Res val	et ue	Rese t stat	Func-0	Func-1	Func-2	Func-3	AU	RET @ Power down	Not Use d	Circuit guide
			In/ Out	Pu/ Pd	us						down	a	
			0								0		
	Xm2WEn	MP2_8[4]	Func 0	-	O(H)	LD1_WEn				I(X)	Ret_aut o	-	
VDD_SYSO	Xj TRSTn	ETCO[0]	-	PD	I (L)	Xj TRSTn				DS	Ret_aut o	NC	Internally connected to Pd resistor
	Xj TMS	ETC0[1]	-	PU	I (H)	Xj TMS				DS	Ret_aut o	NC	Internally connected to Pu resistor
	хј тск	ETC0[2]	-	PD	I (L)	Хј ТСК				DS	Ret_aut o	NC	Internally connected to Pd resistor
	Xj TDI	ETC0[3]	-	PU	I (H)	Xj TDI				DS	Ret_aut o	NC	Internally connected to Pu resistor
	Xj TDO	ETCO[4]	-	-	0(L)	Xj TDO				DS	Ret_aut o	NC	

IO Power	Ball Name	Port	GPI Rese val	et	Rese t	Func-0	Func-1	Func-2	Func-3	AU	RET @	Not Use	Circuit guide
Domai n			In/ Out	Pu/ Pd	stat us		, diio				down	d	on our games
	Xj DBGSEL	ETCO[5]	-	-	1	Xj DBGSEL				DS	Ret_aut o	PD	Externally should be connected to pull down resistor or GND
	XOM[O]	ETC1[0]	-	-	I	XOM[O]				DS	No_Ret	PU/ PD	Booting option
	XOM[1]	ETC1[1]	-	-	ı	XOM[1]				DS	No_Ret	PU/ PD	OneNAND case: OM[5:0]=2b'001001'
	XOM[2]	ETC1[2]	-	-	ı	XOM[2]				DS	No_Ret	PU/ PD	
	XOM[3]	ETC1[3]	-	-	I	XOM[3]				DS	No_Ret	PU/ PD	
	XOM[4]	ETC1[4]	-	-	I	XOM[4]				DS	No_Ret	PU/ PD	
	XOM[5]	ETC1[5]	-	-	I	XOM[5]				DS	No_Ret	PU/ PD	

IO Power	Ball Name	Port	GPI Res val	et	Rese t stat	Func-0	Func-1	Func-2	Func-3	AU	RET @ Power	Not Use	Circuit guide
			In/ Out	Pu/ Pd	us						down	d	
	XDDR2SEL	ETC1[6]	-	-	1	XDDR2_SEL				DS	Ret_IO	PD	mDDR: 'Low', DDR2 & LPDDR2: 'High'. Should connect to pull down or GND
	XPWRRGTON	ETC1[7]	-	-	0(L)	XPWRRGTON				DS	No_Ret	NC	
	XnRESET	ETC2[0]	-	-	1	XnRESET				DS	No_Ret	PU	
VDD_AUD	XCLKOUT	ETC2[1]	-	-	0(L)	CLKOUT				DS	No_Ret	NC	
	XnRST0UT	ETC2[2]	-	-	0(L)	XnRST0UT				DS	No_Ret	NC	
VDD_SYSO	XnWRESET	ETC2[3]		PU	I (H)	XnWRESET				DS	No_Ret	NC	Internally connected to Pu resistor
VDD_CKO	XRTCCLKO	ETC2[4]	-	-	0(L)	RTC_CLKOUT				DS	No_Ret	NC	
VDD_SYSO	XuotgDRVV BUS	ETC2[5]	-	-	0(L)	XuotgDRVVBU S				DS	Ret_IO	NC	

IO Power	Ball Name	Port	GPI Res val	et	Rese t stat	Func-0	Func-1	Func-2	Func-3	AU	RET @ Power	Not Use	Circuit guide
			In/ Out	Pu/ Pd	us						down	d	
	XuhostPWR EN	ETC2[6]	-	-	0(L)	XuhostPWREN				DS	Ret_IO	NC	Charge pump enable signal
	Xuhost0VE RCUR	ETC2[7]		-	ī	XuhostOVERC UR				DS	Ret_IO	PD	
	XrtcXTI	ETC4[0]	-	-	I	XrtcXTI				DS	No_Ret	PD	-14pF external cap(each pad)
VDD_RTC	XrtcXT0	ETC4[1]	-	-	0(L)	XrtcXT0				DS	No_Ret	NC	-10Mohm feedback register(between pad)
	XXTI	ETC4[2]	-	-	I	XXTI				DS	No_Ret	PD	-14pF external cap(each pad)
VDD_SYS0	ххто	ETC4[3]	-	-	0(L)	ХХТО				DS	No_Ret	NC	-5Mohm feedback register(between pad)
	XusbXTI	ETC4[4]	-	-	I	XusbXTI				DS	No_Ret	PD	-14pF external cap(each pad)
VDD_SYS0	XusbXT0	ETC4[5]	-	-	0(L)	XusbXT0				DS	No_Ret	NC	-5Mohm feedback register(between pad)
VDD_ADC	XadcAI N[0]	ANALOG[O]				AIN[O]				DS		NC	
	XadcAI N[1	ANALOG[1				AI N[1]				DS		NC	

IO Power	Ball Name	Port	GPI Res val	et	Rese t stat	Func-0	Func-1	Func-2	Func-3	AU	RET @	Not Use	Circuit guide
			In/ Out	Pu/ Pd	us						down	d	
]]											
	XadcAIN[2]	ANALOG[2]				AIN[2]				DS		NC	
	XadcAIN[3]	ANALOG[3]				AIN[3]				DS		NC	
	XadcAI N[4]	ANALOG[4]				AIN[4]				DS		NC	
	XadcAIN[5]	ANALOG[5]				AIN[5]				DS		NC	
	XadcAIN[6]	ANALOG[6]				AIN[6]				DS		NC	
	XadcAIN[7]	ANALOG[7]				AIN[7]				DS		NC	
	XadcAIN[8]	ANALOG[8]				AIN[8]				DS		NC	
	XadcAIN[9]	ANALOG[9]				AI N[9]				DS		NC	

IO Power Domain	Ball Name	Port	GPI Res val	et	Rese t stat	Func-0	Func-1	Func-2	Func-3	AU	RET @ Power	Not Use	Circuit guide
20			In/ Out	Pu/ Pd	us						down	d	
	Xdac0UT	ANALOG[1 1]				Xdac0UT				DS		NC	75ohm pull-down
VDD_DAC	XdacI REF	ANALOG[1 4]				XdacI REF				DS		NC	1.2Kohm/1% pull-down
VDD_DAC	XdacVREF	ANALOG[1 5]				XdacVREF				DS		GN D	100nF GND tie
	XdacCOMP	ANALOG[1 6]				XdacC0MP				DS		NC	100nF VDD_DAC tie
VDD_HDMI	Xhdmi TXOP	ANALOG[1 7]				HDMI_TXOP				DS		NC	
	Xhdmi TXON	ANALOG[1 8]				HDMI _TXON				DS		NC	
	Xhdmi TX1P	ANALOG[1 9]				HDMI _TX1P				DS		NC	
	Xhdmi TX1N	ANALOG[2 0]				HDMI _TX1N				DS		NC	
	Xhdmi TX2P	ANALOG[2				HDMI_TX2P				DS		NC	

IO Power Domain	Ball Name	Port	GPI Res val	et	Rese t stat	Func-0	Func-1	Func-2	Func-3	AU	RET @ Power	Not Use	Circuit guide
			In/ Out	Pu/ Pd	us						down	d	
		1]											
	Xhdmi TX2N	ANALOG[2 2]				HDMI_TX2N				DS		NC	
	Xhdmi TXCP	ANALOG[2 3]				HDMI_TXCP				DS		NC	
	Xhdmi TXCN	ANALOG[2 4]				HDMI_TXCN				DS		NC	
	Xhdmi REXT	ANALOG[2 5]				HDMI _REXT				DS		PD	4.6Kohm 1% pull-down
VDD_HDMI	Xhdmi XTI	ANALOG[2 6]				HDMI _XI				DS		PD	-14pF external cap(each pad)
_OSC	Xhdmi XTO	ANALOG[2 7]				HDMI _XO				DS		NC	-5Mohm feedback register(between pad)
VDD_MI PI _A	Xmi pi MDPO	ANALOG[2 8]				MI PI _MDP_0				DS		NC	
	Xmi pi MDP1	ANALOG[2 9]				MI PI _MDP_1				DS		NC	

I.O. Dower			GPI Res	et	Rese						RET @	Not	
10 Power Domain	Ball Name	Port	val		stat	Func-0	Func-1	Func-2	Func-3	AU	Power down	Use d	Circuit guide
			In/ Out	Pu/ Pd	us						down	u	
	Xmi pi MDP2	ANALOG[3 0]				MI PI _MDP_2				DS		NC	
	Xmi pi MDP3	ANALOG[3 1]				MI PI _MDP_3				DS		NC	
	Xmi pi MDNO	ANALOG[3 2]				MI PI _MDN_O				DS		NC	
	Xmi pi MDN1	ANALOG[3 3]				MI PI _MDN_1				DS		NC	
	Xmi pi MDN2	ANALOG[3 4]				MI PI _MDN_2				DS		NC	
	Xmi pi MDN3	ANALOG[3 5]				MI PI _MDN_3				DS		NC	
	Xmi pi SDPO	ANALOG[3 6]				MI PI _SDP_0				DS		NC	
	Xmi pi SDP1	ANALOG[3 7]				MI PI _SDP_1				DS		NC	
	Xmi pi SDP2	ANALOG[3				MI PI _SDP_2				DS		NC	

IO Power	Ball Name	Port	GPI Rese val	et	Rese t stat	Func-0	Func-1	Func-2	Func-3	AU	RET @ Power	Not Use	Circuit guide
			In/ Out	Pu/ Pd	us						down	d	
		8]											
	Xmi pi SDP3	ANALOG[3 9]				MI PI _SDP_3				DS		NC	
	Xmi pi SDNO	ANALOG[4 0]				MI PI _SDN_0				DS		NC	
	Xmi pi SDN1	ANALOG[4 1]				MI PI _SDN_1				DS		NC	
	Xmi pi SDN2	ANALOG[4 2]				MI PI _SDN_2				DS		NC	
	Xmi pi SDN3	ANALOG[4 3]				MI PI _SDN_3				DS		NC	
	Xmi pi MDPC LK	ANALOG[4 4]				MI PI _CLK_TX _P				DS		NC	
	Xmi pi MDNC LK	ANALOG[4 5]				MI PI _CLK_TX _N				DS		NC	
	Xmi pi SDPC LK	ANALOG[4 6]				MI PI _CLK_RX _P				DS		NC	

IO Power Domain	Ball Name	Port	GPI Res val	et	Rese t stat	Func-0	Func-1	Func-2	Func-3	AU	RET @ Power	Not Use	Circuit guide
J 5			In/ Out	Pu/ Pd	us						down	d	
	Xmi pi SDNC LK	ANALOG[4 7]				MI PI _CLK_RX _N				DS		NC	
	Xmi pi VREG _OP4V	ANALOG[4 8]				MI PI _Reg_ca p				DS		NC	2nF GND tie
	XuotgDP	ANALOG[4 9]				XuotgDP				DS		NC	
VDD_UOTG _A	XuotgREXT	ANALOG[5 0]				XuotgREXT				DS		NC	44.2ohm/1% pull-down
	XuotgDM	ANALOG[5				XuotgDM				DS		NC	
	XefFSOURC E_0	ANALOG[5 3]				efrom_fsour ce_0				DS		GN D	Should be tied to GND. Not pull-down
VDD_UHOS T_A	XuhostDP	ANALOG[5 9]				XuhostDP				DS		NC	
	XuhostREX T	ANALOG[6 0]				XuhostREXT				DS		NC	44.2ohm/1% pull-down

IO Power Domain	Ball Name	Port	GPI Res val	et	Rese t stat	Func-0	Func-1	Func-2	Func-3	AU	RET @	Not Use	Circuit guide
			In/ Out	Pu/ Pd	us						down	d	
	XuhostDM	ANALOG[6 1]				XuhostDM				DS		NC	
VDD_UOTG	Xuotgl D	ANALOG[6 3]				Xuotgl D				DS		NC	
_A	XuotgVBUS	ANALOG[6 4]				XuotgVBUS				DS		NC	
	Xepllfilt er												1.8nF cap

2. Ball number assignment

Table 2.1-1 S5PV210 584 Pin Assignment – Pin Number Order (1/8)

Ball	Pin Name	Ball	Pin Name	Ball	Pin Name	Ball	Pin Name
A1	VSS	AA16	VSS_UHOST_AC	AC6	XVVD_22	AD21	XUOTGDP
A2	XMSMDATA_15	AA17	XCIDATA_7	AC7	XVVD_13	AD22	XI2C1SCL
А3	XMSMIRQN	AA18	XCICLKENB	AC8	XVVD_11	AD23	XUHOSTPWREN
A4	XMSMADVN	AA19	XCIDATA_3	AC9	XVVD_7	AD24	XEINT_28
A5	XMMC0DATA_1	AA20	XEINT_29	AC10	XADCAIN_3	AD25	XEINT_26
A6	XMMC1DATA_2	AA21	XEINT_20	AC11	XADCAIN_0	AE1	VSS
A7	XURTSN_0	AA22	XEINT_4	AC12	XADCAIN_1	AE2	XI2S0SDI
A8	XPWMTOUT_2	AA23	XEINT_21	AC13	XURXD_3	AE3	XI2S0LRCK
A9	XMMC3CLK	AA24	XEINT_12	AC14	XUTXD_2	AE4	XVSYS_OE
A10	XMMC3DATA_3	AA25	XEINT_7	AC15	XMIPIVREG_0P4V	AE5	XVVD_15
A11	XSPIMOSI_1	AB1	XPCM0FSYNC	AC16	XI2C2SDA	AE6	XVVD_10
A12	XM1DATA_31	AB2	XPCM0SIN	AC17	XUHOSTREXT	AE7	XVVD_6
A13	XM1DATA_29	AB3	XI2S1CDCLK	AC18	XUOTGVBUS	AE8	XMIPISDN3
A14	XM1DATA_26	AB4	XI2S1SDO	AC19	XUOTGDRVVBUS	AE9	XMIPISDN2
A15	XM1DQS_2	AB5	XVVD_20	AC20	XURXD_2	AE10	XMIPISDNCLK
A16	XM1SCLK	AB6	XVVD_5	AC21	XCIPCLK	AE11	XMIPISDN1
A17	XM1DATA_13	AB7	XVVD_3	AC22	XUHOSTOVERCU R	AE12	XMIPISDN0
A18	XM1DQSN_1	AB8	XVVD_2	AC23	XEINT_13	AE13	XMIPIMDP3
A19	XM1DATA_11	AB9	XVVD_1	AC24	XEINT_24	AE14	XMIPIMDP2
A20	XM1DATA_10	AB10	XVVDEN	AC25	XEINT_22	AE15	XMIPIMDPCLK

Table 2.0-1 S5PV210 584 Pin Assignment – Pin Number Order (2/8)

Ball	Pin Name	Ball	Pin Name	Ball	Pin Name	Ball	Pin Name
A21	XM1DATA_5	AB11	XADCAIN_2	AD1	XI2S1SCLK	AE16	XMIPIMDP1
A22	XM1DQSN_0	AB12	XADCAIN_9	AD2	XI2S0SCLK	AE17	XMIPIMDP0
A23	XM1DATA_3	AB13	XUTXD_3	AD3	XI2S0SDO_0	AE18	XUOTGREXT
A24	XM1DATA_0	AB14	XCIHREF	AD4	XEFFSOURCE_0	AE19	XUHOSTDP
A25	VSS	AB15	XCIDATA_0	AD5	XVVD_18	AE20	XUSBXTO
AA1	XPCM0EXTCLK	AB16	XCIDATA_1	AD6	XVVD_14	AE21	XUOTGDM
AA2	XPCM0SCLK	AB17	XCIDATA_6	AD7	XVVD_16	AE22	XI2C2SCL
AA3	XI2S0SDO_2	AB18	XDDR2SEL	AD8	XMIPISDP3	AE23	XI2C1SDA
AA4	XMMC2CDN	AB19	XCIFIELD	AD9	XMIPISDP2	AE24	XCLKOUT
AA5	XI2S1SDI	AB20	XCIDATA_2	AD10	XMIPISDPCLK	AE25	VSS
AA6	XVVD_19	AB21	XCIDATA_4	AD11	XMIPISDP1	B1	XMSMDATA_10
AA7	XVVD_17	AB22	XEINT_25	AD12	XMIPISDP0	B2	XMSMDATA_13
AA8	XVVD_8	AB23	XEINT_31	AD13	XMIPIMDN3	B3	XMSMDATA_14
AA9	XVVD_0	AB24	XEINT_19	AD14	XMIPIMDN2	B4	XMSMWEN
AA10	XVVCLK	AB25	XEINT_14	AD15	XMIPIMDNCLK	B5	XMMC0CLK
AA11	XADCAIN_8	AC1	XPCM0SOUT	AD16	XMIPIMDN1	B6	XMMC1CLK
AA12	XADCAIN_7	AC2	XI2S1LRCK	AD17	XMIPIMDN0	B7	XSPICLK_0
AA13	XVHSYNC	AC3	XI2S0SDO_1	AD18	XUOTGID	B8	XUCTSN_1
AA14	XCIVSYNC	AC4	XI2S0CDCLK	AD19	XUHOSTDM	В9	XPWMTOUT_1
AA15	VSS_UHOST_A	AC5	XVVD_21	AD20	XUSBXTI	B10	XMMC3DATA_0

Table 2.0-2 S5PV210 584 Pin Assignment – Pin Number Order (3/8)

Ball	Pin Name	Ball	Pin Name	Ball	Pin Name	Ball	Pin Name
B11	XSPICSN_1	D1	XMSMDATA_4	E16	XM1ADDR_14	G6	XMSMADDR_1
B12	XM1DATA_30	D2	XMSMDATA_6	E17	XM1ADDR_2	G7	VSS
B13	XM1DATA_28	D3	XMSMDATA_3	E18	XM1ADDR_8	G8	XMSMCSN
B14	XM1DATA_25	D4	XMSMDATA_9	E19	XM1ADDR_12	G9	XMSMRN
B15	XM1DQSN_2	D5	XMSMADDR_7	E20	XM1ADDR_1	G10	XURXD_1
B16	XM1NSCLK	D6	XMMC0DATA_2	E21	XM1ADDR_0	G11	VDD_EXT2
B17	XM1DATA_14	D7	XMMC1DATA_0	E22	XM2DQM_3	G12	XSPICLK_1
B18	XM1DQS_1	D8	XUTXD_0	E23	XM2DATA_23	G13	XSPIMISO_1
B19	XM1DATA_8	D9	XUCTSN_0	E24	XM2DATA_22	G14	XM1CSN_1
B20	XM1DATA_9	D10	XMMC3CMD	E25	XM2DATA_21	G15	XM1CKE_0
B21	XM1DATA_4	D11	XMMC3DATA_2	F1	XMSMADDR_10	G16	XM1CKE_1
B22	XM1DQS_0	D12	XM1DQS_3	F2	XMSMADDR_13	G17	XM1WEN
B23	XM1DATA_2	D13	XM1DATA_24	F3	XMSMDATA_0	G18	XM1CSN_0
B24	XM2DATA_31	D14	XM1DQM_2	F4	XM0ADDR_14	G19	VSS
B25	XM2DATA_29	D15	XM1DATA_18	F5	XMSMADDR_6	G20	XM2ADDR_8
C1	XMSMDATA_7	D16	XM1DATA_16	F6	XMSMADDR_8	G21	XM2CKE_1
C2	XMSMDATA_8	D17	XM1DQM_1	F7	XMMC0CDN	G22	XM2DATA_19
C3	XMSMDATA_11	D18	XM1ADDR_4	F8	XMMC1CMD	G23	XM2DATA_18
C4	XMSMDATA_12	D19	XM1ADDR_6	F9	XMMC1DATA_3	G24	XM2SCLK
C5	XMMC0DATA_0	D20	XM1ADDR_7	F10	XUTXD_1	G25	XM2NSCLK

Table 2.0-3 S5PV210 584 Pin Assignment – Pin Number Order (4/8)

Ball	Pin Name	Ball	Pin Name	Ball	Pin Name	Ball	Pin Name
C6	XMMC0DATA_3	D21	XM1ADDR_15	F11	XI2C0SDA	H1	XMSMADDR_0
C7	XMMC1CDN	D22	XM2DATA_28	F12	XPWMTOUT_3	H2	XMSMADDR_5
C8	XURXD_0	D23	XM2DATA_26	F13	XM1DATA_22	НЗ	XM0ADDR_15
C9	XI2C0SCL	D24	XM2DATA_25	F14	XM1ADDR_11	H4	XM0ADDR_8
C10	XMMC3DATA_1	D25	XM2DATA_24	F15	XM1ADDR_5	H5	XM0ADDR_3
C11	XM1DQM_3	E1	XMSMDATA_2	F16	XM1ADDR_9	H6	XM0ADDR_12
C12	XM1DQSN_3	E2	XMSMDATA_1	F17	XM1CASN	H7	XMSMADDR_3
C13	XM1DATA_27	E3	XMSMDATA_5	F18	XM1ADDR_13	H19	XM2ADDR_9
C14	XM1DATA_23	E4	XMSMADDR_2	F19	XM1ADDR_10	H20	XM2ADDR_13
C15	XM1DATA_19	E5	XMSMADDR_12	F20	XM2ADDR_5	H21	XM2DQM_2
C16	XM1DATA_17	E6	XMMC0CMD	F21	XM2ADDR_4	H22	XM2ADDR_6
C17	XM1DATA_15	E7	XMMC1DATA_1	F22	XM2DATA_27	H23	XM2ADDR_11
C18	XM1DATA_12	E8	XPWMTOUT_0	F23	XM2DATA_20	H24	XM2DATA_17
C19	XM1DATA_7	E9	XSPICSN_0	F24	XM2DQS_2	H25	XM2DATA_16
C20	XM1DATA_6	E10	XURTSN_1	F25	XM2DQSN_2	J1	XM0CSN_2
C21	XM1DQM_0	E11	XMMC3CDN	G1	XMSMADDR_4	J2	XM0FWEN
C22	XM1DATA_1	E12	XM1RASN	G2	XMSMADDR_9	J3	XM0ADDR_10
C23	XM2DATA_30	E13	XM1DATA_20	G3	XMSMADDR_11	J4	XM0ADDR_2
C24	XM2DQS_3	E14	XM1DATA_21	G4	XM0ADDR_9	J5	XM0ADDR_7
C25	XM2DQSN_3	E15	XM1ADDR_3	G5	XM0ADDR_13	J6	XM0ADDR_4

Table 2.0-5 S5PV210 584 Pin Assignment – Pin Number Order (5/8)

Ball	Pin Name						
J7	VDD_MODEM	L1	XM0DATA_8	M20	VDD_APLL	P14	VDD_ARM
J9	XSPIMISO_0	L2	XM0DATA_9	M21	XM2DATA_8	P15	VDD_ARM
J10	VDD_EXT0	L3	XM0DATA_1	M22	XM2DATA_5	P16	VSS
J11	XSPIMOSI_0	L4	XM0DATA_10	M23	XM2DATA_7	P17	VDD_CKO
J12	VSS	L5	XM0DATA_2	M24	XM2DATA_9	P19	VSS_VPLL
J13	VDD_M1	L6	XM0FRNB_3	M25	XM2DATA_11	P20	VDD_VPLL
J14	VDD_M1	L7	XM0ADDR_1	N1	XM0DATA_4	P21	VDD_RTC
J15	VDD_M1	L9	VSS	N2	XM0DATA_5	P22	XM2WEN
J16	VDD_M1	L10	VDD_INT	N3	XM0CSN_4	P23	XM2DATA_0
J17	VDD_M2	L11	VDD_INT	N4	XM0DATA_7	P24	XM2DATA_3
J19	XM2ADDR_7	L12	VSS	N5	XM0DATA_14	P25	XM2DQM_0
J20	XM2ADDR_14	L13	VDD_ARM	N6	XM0BEN_1	R1	XHDMITXCN
J21	XM2RASN	L14	VDD_ARM	N7	XM0CSN_5	R2	XHDMITXCP
J22	XM2ADDR_12	L15	VDD_ARM	N9	XM0CSN_3	R3	XM0FRNB_0
J23	XM2CASN	L16	VSS	N10	VDD_INT	R4	XM00EN
J24	XM2CKE_0	L17	VDD_M2	N11	VDD_INT	R5	XJTMS
J25	XM2DATA_14	L19	XM2ADDR_1	N12	VSS	R6	VDD_HDMI_PLL
K1	XM0FCLE	L20	XM2ADDR_0	N14	VDD_ARM	R7	VSS_HDMI
K2	XM0FALE	L21	XM2ADDR_2	N15	VDD_ARM	R9	VSS
K3	XM0DATA_0	L22	XM2DQM_1	N16	VDD_ARM	R10	VSS

Table 2.0-6 S5PV210 584 Pin Assignment – Pin Number Order (6/8)

Ball	Pin Name	Ball	Pin Name	Ball	Pin Name	Ball	Pin Name
K4	XM0ADDR_5	L23	XM2DATA_10	N17	VSS	R11	VDD_INT
K5	XM0ADDR_0	L24	XM2DQS_1	N19	VSS_MPLL	R12	VDD_INT
K6	XM0ADDR_6	L25	XM2DQSN_1	N20	VDD_MPLL	R13	VDD_INT
K7	XM0ADDR_11	M1	XM0DATA_11	N21	XM2CSN_0	R14	VSS
K9	VDD_M0	M2	XM0FREN	N22	XM2DATA_6	R15	VSS
K10	VSS	М3	XM0DATA_12	N23	XM2DATA_4	R16	VSS
K11	VSS	M4	XM0DATA_3	N24	XM2DQS_0	R17	VDD_ALIVE
K12	VSS	M5	XM0DATA_13	N25	XM2DQSN_0	R19	VSS_EPLL
K13	VDD_INT	M6	XM0FRNB_1	P1	XM0DATA_6	R20	VDD_EPLL
K14	VDD_INT	M7	XM0DATA_RDN	P2	XM0DATA_15	R21	XEPLLFILTER
K15	VDD_INT	M9	VDD_M0	P3	XJDBGSEL	R22	XRTCCLKO
K16	VSS	M10	VSS	P4	XM0WEN	R23	XM2ADDR_3
K17	VDD_M2	M11	VDD_INT	P5	XJTRSTN	R24	XM2DATA_1
K19	VSS	M12	VSS	P6	VDD_HDMI	R25	XM2DATA_2
K20	XM2ADDR_15	M13	VDD_ARM	P7	VSS_HDMI_PLL	T1	XHDMITX0N
K21	XM2CSN_1	M14	VDD_ARM	P9	VDD_SYS0	T2	XHDMITX0P
K22	XM2ADDR_10	M15	VDD_ARM	P10	VSS	T3	XM0BEN_0
K23	XM2DATA_13	M16	VSS	P11	VDD_INT	T4	XM0CSN_1
K24	XM2DATA_15	M17	VDD_M2	P12	VSS	T5	XJTDI
K25	XM2DATA_12	M19	VSS_APLL	P13	VSS	T6	VSS_HDMI_OSC

Table 2.0-7 S5PV210 584 Pin Assignment – Pin Number Order (7/8)

Ball	Pin Name	Ball	Pin Name	Ball	Pin Name	Ball	Pin Name
T7	VDD_HDMI_OSC	V1	XHDMITX2N	Y2	XHDMIXTI		
Т9	VDD_EXT1	V2	XHDMITX2P	Y3	XMMC2DATA_2		
T10	VSS	V3	XM0FRNB_2	Y4	XMMC2DATA_0		
T11	VDD_INT	V4	XDACCOMP	Y5	XMMC2DATA_1		
T12	VSS	V5	XDACVREF	Y6	XMMC2CLK		
T13	VSS	V6	VSS_DAC	Y7	XVVD_23		
T14	VSS	V7	VDD_DAC	Y8	XVVD_12		
T15	VSS	V19	VDD_CAM	Y9	XVVD_4		
T16	VSS	V20	XEINT_8	Y10	XVVSYNC		
T17	VDD_KEY	V21	XEINT_18	Y11	XADCAIN_4		
T19	VDD_SYS1	V22	XEINT_9	Y12	XADCAIN_6		
T20	XNRSTOUT	V23	XOM_2	Y13	VDD_MIPI_A		
T21	XNWRESET	V24	XOM_5	Y14	VSS_UHOST_D		
T22	XOM_1	V25	XOM_4	Y15	VSS_UOTG_AC		
T23	XOM_0	W1	XHDMIREXT	Y16	VDD_UHOST_A		
T24	XRTCXTI	W2	XM0WAITN	Y17	VSS_UOTG_A		
T25	XRTCXTO	W3	XJTDO	Y18	XCIDATA_5		
U1	XHDMITX1N	W4	XMMC2DATA_3	Y19	XEINT_30		
U2	XHDMITX1P	W5	XDACIREF	Y20	XEINT_23		
U3	XM0CSN_0	W6	XMMC2CMD	Y21	XEINT_0		

Table 2.0-8 S5PV210 584 Pin Assignment – Pin Number Order (8/8)

Ball	Pin Name	Ball	Pin Name	Ball	Pin Name	Ball	Pin Name
U4	XJTCK	W7	VSS	Y22	XEINT_27		
U5	XDACOUT	W8	XVVSYNC_LDI	Y23	XEINT_17		
U6	VSS_DAC_A	W9	XVVD_9	Y24	XEINT_10		
U7	VDD_DAC_A	W10	VDD_ADC	Y25	XEINT_3		
U9	VDD_AUD	W11	VSS_ADC				
U10	VDD_LCD	W12	XADCAIN_5				
U11	VSS_MIPI	W13	VDD_UHOST_D				
U12	VDD_MIPI_D	W14	VDD_MIPI_PLL				
U13	VDD_MIPI_D	W15	VDD_ALIVE				
U14	VSS_MIPI	W16	VDD_UOTG_A				
U15	VDD_UOTG_D	W17	VSS_UOTG_D				
U16	VDD_SYS0	W18	VDD_EXT1				
U17	VDD_SYS0	W19	VSS				
U19	VDD_AUD	W20	XEINT_15				
U20	XEINT_16	W21	XEINT_6				
U21	XOM_3	W22	XEINT_11				
U22	XPWRRGTON	W23	XEINT_2				_
U23	XNRESET	W24	XEINT_5				
U24	XXTI	W25	XEINT_1				
U25	XXTO	Y1	XHDMIXTO				

3. Power

3.1. Pin Power Domain

Group	Power Ball Name	Signal Ball Name
DIGITAL IO POWER	VDD_M2	XM2ADDR[13:0],XM2BA[1:0],XM2CASN,XM2RASN, XM2WEN,XM2CKE0,XM2CKE1/ADDR14,XM2CSN[1:0], XM2DQS[3:0],XM2DQSN[3:0],XM2DM[3:0],XM2SCLK, XM2SCLKN,XM2DATA[31:0]
	VDD_M1	XM1ADDR[13:0],XM1BA[1:0],XM1CASN,XM1RASN, XM1WEN,XM1CKE0,XM1CKE1/ADDR14,XM1CSN[1:0], XM1DQS[3:0],XM1DQSN[3:0],XM1DM[3:0],XM1SCLK, XM1SCLKN,XM1DATA[31:0]
	VDD_M0	XM0ADDR_[15:0],XM0BEN_[1:0],XM0CSN_[5:0], XM0DATA_[15:0],XM0DATA_RDN,XM0FALE,XM0FCLE, XM0FREN,XM0FRNB_[3:0],XM0FWEN,XM0OEN,XM0WAITN, XM0WEN, XEFFSOURCE_0
	VDD_LCD	XVHSYNC,XVSYS_OE,XVVCLK,XVVD_[23:0],XVVDEN, XVVSYNC,XVVSYNC_LDI
	VDD_CAM	XCICLKENB,XCIDATA_[7:0],XCIFIELD,XCIHREF,XCIPCLK, XCIVSYNC
	VDD_AUD	XI2S0CDCLK,XI2S0LRCK,XI2S0SCLK,XI2S0SDI, XI2S0SDO_[2:0],XI2S1CDCLK,XI2S1LRCK,XI2S1SCLK, XI2S1SDI,XI2S1SDO,XPCM2EXTCLK,XPCM2FSYNC, XPCM2SCLK,XPCM2SIN,XPCM2SOUT,XCLKOUT
	VDD_MODEM	XMSMADDR_[13:0],XMSMADVN,XMSMCSN, XMSMDATA_[15:0],XMSMIRQN,XMSMRN,XMSMWEN
	VDD_KEY	XEINT_[31:16]
	VDD_SYS0	XXTI,XXTO,XOM_[5:0],XPWRRGTON,XNRESET,XNRSTOUT,XN WRESET,XEINT_[7:0],XUOTGDRVVBUS,XUHOSTPWREN,XUH OSTOVERCUR,XDDR2SEL,XUSBXTI,XUSBXTO,XJTRSTN,XJTM S,XJTCK,XJTDI,XJTDO,XJDBGSEL
	VDD_SYS1	XEINT_[15:8]
	VDD_EXT0	XMMC0CDN,XMMC0CLK,XMMC0CMD,XMMC0DATA_[3:0], XMMC1CDN,XMMC1CLK,XMMC1CMD,XMMC1DATA_[3:0], XSPICLK_0,XSPICSN_0,XSPIMISO_0,XSPIMOSI_0,XURXD_0, XUTXD_0,XUCTSN_0,XURTSN_0,XURXD_1,XUTXD_1, XUCTSN_1,XURTSN_1,XI2C0SDA,XI2C0SCL, XPWMTOUT_[3:0]
	VDD_EXT1	XMMC2CDN,XMMC2CLK,XMMC2CMD,XMMC2DATA_[3:0],

Group	Power Ball Name	Signal Ball Name
		XUTXD_2,XURXD_3,XUTXD_3
	VDD_EXT2	XMMC3CDN,XMMC3CLK,XMMC3CMD,XMMC3DATA_[3:0], XSPICLK_1,XSPICSN_1,XSPIMISO_1,XSPIMOSI_1
	VDD_CKO	XRTCCLKO
	VDD_RTC	XRTCXTI,XRTCXTO
	VDD_DAC	XDACCOMP,XDACIREF,XDACOUT_0,XDACVREF
	VDD_HDMI	XHDMIREXT,XHDMITX0N,XHDMITX0P,XHDMITX1N, XHDMITX1P,XHDMITX2N,XHDMITX2P,XHDMITXCN, XHDMITXCP
ANALOG	VDDOSC_HDMI	XHDMIXTI,XHDMIXTO
POWER - should be OFF	VDD_MIPI_D	XMIPIMDNCLK, XMIPIMDPCLK, XMIPISDNCLK, XMIPISDPCLK, XMIPIVREG_0P4V
in Sleep mode	VDD_MIPI_A	XMIPIMDN[3:0], XMIPIMDP[3:0], XMIPISDN[3:0], XMIPISDP[3:0],
	VDD_UOTG_A	XUOTGDM,XUOTGDP,XUOTGID,XUOTGREXT,XUOTGVBUS
	VDD_UHOST_A	XUHOSTDM,XUHOSTDP,XUHOSTREXT
	VDD_ADC	XADCAIN_[9:0]

3.2. Recommend Operating Conditions

Symb	ool	On/Off @ Reset	On/Off @ Sleep	Min	Тур	Max	Unit
VDDAL	IVE	On	On	1.05	1.1	1.35	V
VDDAPLL VDDMPLL VDDEPLL VDDVPLL		On	Off	1.0	1.1	1.2	
VDDINT	800MHz	On	Off	1.15	1.2	1.35	
VDDINT	1GHz	- Oii	Oii	1.15	1.3	1.35	
VDDADM	800MHz	0.5	0#	1.15	1.2	1.35	
VDDARM	1GHz	On	Off	1.15	1.3	1.35	
VDD_	M0	On	On	1.7	1.8/2.5/3.3	3.6	
VDD_	M1	On	On	1.15	1.2/1.8	1.9	
VDD_	M2	On	On	1.15	1.2/1.8	1.9	
VDD_S	YS0	On	On	1.7	1.8/2.5/3.0	3.6	
VDD_S	VDD_SYS1		On	1.7	1.8/2.5/3.0	3.6	
VDD_E	VDD_EXT0		On	1.7	1.8/2.5/3.0	3.6	
VDD_EXT1		On	On	1.7	1.8/2.5/3.0	3.6	
VDD_EXT2		On	On	1.7	1.8/2.5/3.0	3.6	
VDD_0	VDD_CKO		On	1.7	2.5/3.0	3.6	
VDD_F	RTC	On	On	1.7	2.5/3.0	3.6	
VDD_L	_CD	On	On	1.7	2.5/3.0	3.6	
VDD_0	CAM	On	On	1.7	2.5/3.0	3.6	
VDD_A	AUD	On	On	1.7	2.5/3.0	3.6	
VDD_MC	VDD_MODEM		On	1.7	2.5/3.0	3.6	
VDD_KEY		On	On	1.7	2.5/3.0	3.6	
VDD_ADC		On	On/Off	3.0	3.3	3.6	
VDD_DAC_A		On/Off	Off	3.0	3.3	3.6	
VDD_I	VDD_DAC		Off	3.0	3.3	3.6	
VDD_H	IDMI	On/Off	Off	1.05	1.1	1.15	
VDD_HDI	MI_PLL	On/Off	Off	1.05	1.1	1.15	
VDD_HDN	/II_OSC	On/Off	Off	3.0	3.3	3.6	

S5PV210_HARDWARE DESING GUIDE REV 1.0

Symbol	On/Off @ Reset	On/Off @ Sleep	Min	Тур	Max	Unit
VDD_MIPI_A	On/Off	Off	1.7	1.8	1.9	
VDD_MIPI_D	On/Off	Off	1.05	1.1	1.15	
VDD_MIPI_PLL	On/Off	Off	1.05	1.1	1.15	
VDD_UOTG_A	On/Off	Off	3.0	3.3	3.6	
VDDI_UOTG_D	On/Off	Off	1.05	1.1	1.15	
VDD_UHOST_A	On/Off	Off	3.0	3.3	3.6	
VDDI_UHOST_D	On/Off	Off	1.05	1.1	1.15	
Operating	Industrial	-40 to	o 85	°C		
Operating	Operating Temperature TA					°C

On: Must be On the power

Off: Must be Off the power in the sleep mode

On/Off: On/Off can be selected

Note 1) VDD_M1/M2 power depends on MCP voltage..

3.3. Circuit design without level shifter

Power	VDD_EXT0	VDD_EXT1	VDD_EXT2
SD/MMC	MMC0, MMC1	MMC2	MMC3
SPI	SPI0	SPI1	SPI1
Uart	UARTO, UART1	UART2, UART3	
I2C	I2C0	I2C1, I2C2	

MMC 4channel, SPI 2channel, Uart 4channel and I2C 3channel has different Power domains

Ex) 2 MMC channel, 2 Uart channel, 1 SPI channel, 1 I2C channel: 1.8V,

2MMC channel, 2Uart channel, 1 SPI channel, 2 I2C channel: 3.0V

=> VDD_EXT0: 1.8V MMC0,1(2channel), SPI0(1channel), Uart0.1(2channel), I2C0 (1channel)

VDD_EXT1: 3.0V MMC2(1channel), Uart2,3 (2channel), I2C1, 2(2channel)

VDD_EXT2: 3.0V MMC3(1channel), SPI1(1channel)

Ex) 4 MMC channel, 4 Uart channel, 2 SPI channel, 3 I2C channel: 3.0V,

=> VDD EXT0, VDD EXT1, VDD EXT2: 3.0V

3.4. Power On/Off Sequence

Power On sequence

Figure 3-1) Power on sequence

Note) 1. OSC's frequency should be meet the specification which is 24Mhz

Power Off Sequence

Figure 3-2) Power off sequence

3.5. Pin configuration guide in Sleep mode

	Pin Condition		Configuration	
No conne	cted pin		Input with internal Pull-up/down resistor Enable	
Input Pin		If External Device doesn't drive 'High' or 'Low' level	Input with internal Pull-up/down Enable resistor or Output Low	
GPIO	If External Device drive 'High' or 'Low' level		Input with internal Pull-up/down resistor Disable	
	Output nin	If External Device's Power is Off	Output Low	
	Output pin	If External Device's Power is On	High or Low (It depends on External device's status)	
Memory I/O	Memory I/O pin XMDATA, XM(n)DQS		Input pull-down or Output low controlled by LPCON	
(DRAM)	Output pin	XMNCS, XMRAS, XMCAS, XMWE, XMCKE, XM(n)SCLK, XMADDR, XMDQM	Previous state	

Retention IO

S5PV210 has a lot of retention I/O that is remaining data during the Power down mode (deep-stop(top off), deep-idle(top off), sleep mode)

Alive block GPIO (GPH0, GPH1, GPH 2, GPH3) is not retention I/O

After wake up from power down mode, you should first set GPIO configuration as the same ones before those power down mode and then you should set ENABLE_GPIO, ENABLE_MMC_IO, and ENABLE_UART_IO bits to '1' so that normal I/O pad can be used

When wakeup from power down mode, the status of GPIO is kept. but M0 port status can be changed to reset value. Before design circuits, you should check that the external device can be affected by changing status when wakeup.

For example)

You use Xm0ADDR[15] as output signal and connect to reset of external device(reset is active low). When wakeup from power down mode, this pin can be changed 'high' to 'low' because the reset status of use Xm0ADDR[15] is output low

CAUTION)

- M0 Port can be changed to reset value when wakeup from power down mode
- In case of MMC booting mode, MMC signals can be changed to reset value when wakeup from power down mode.

SAMSUNG ELECTRONICS

4. SYSCON

4.1. Signal Description

- JTAG (Dedicated signal)

Ball Name	I/O	Description
XJTRSTN	I	XjTRSTn (TAP Controller Reset) resets the TAP controller at start.
XJTMS	I	XjTMS (TAP Controller Mode Select) controls the sequence of the TAP controller's states.
хутск	I	XjTCK (TAP Controller Clock) provides the clock input for the JTAG logic.
XJTDI	I	XjTDI (TAP Controller Data Input) is the serial input for test instructions and data.
XJTDO	0	XjTDO (TAP Controller Data Output) is the serial output for test instructions and data.
XJDBGSEL	I	JTAG selection. 0: Cortex A8 Core JTAG, 1: Peripherals JTAG

Note) JTAG signals don't need external pull-up/down registers. Because C110 has internal pull-up/down registers for JTAG signal.

- RESET / ETC (Dedicated signal)

Ball Name	1/0	Description
XOM_0 ~ XOM_5	I	Operating Mode control signals (6bit)
XDDR2SEL	ı	Selection DDR type (LPDDR1/2 or DDR2)
XPWRRGTON	0	Power Regulator enable
XNRESET	I	System Reset
XCLKOUT	0	Clock out signal
XNRSTOUT	0	For External device reset control
XNWRESET	I	System Warm Reset.
XRTCCLKO	0	RTC Clock out
Xepllfilter		1.8nF capacitance for EPLL Filter

- Clock (Dedicated signal)

Ball Name	I/O	Description
XRTCXTI	I	32.768 KHz crystal input for RTC
XRTCXTO	0	32.768 KHz crystal output for RTC
ххті	1	Crystal Input for internal osc circuit
ххто	0	Crystal output for internal osc circuit.
XUSBXTI	I	Crystal Input for internal USB circuit
XUSBXTO	0	Crystal output for internal USB circuit
XHDMIXTI	I	Crystal Input for internal HDMI circuit
хноміхто	0	Crystal output for internal HDMI circuit

- E-fuse (Dedicated signal)

Ball Name	1/0	Description
XEFFSOURCE_0	I	Power PAD for efuse ROM's FSOURCE. Should be tied to GND

4.2. Booting Option

OM[5:0] pin should be tied with VDDSYS or GND, directly. It is aimed for minimize leakage current when entering the sleep mode. But if you have to get an option, you should add a pull-up and pull-down resistor with 100K ohms over.

OM[5]	OM[4]	OM[3]	OM[2]	OM[1]	OM[0]	OM[5]	OM[4]	OM[3] OM[2] OM[1]	OM[0]										
- · · · [-]	[·]	[e]	- ···[-]		1'b0	5[0]			X-TAL										
				1'b0	1'b1			eSSD	X-TAL(USB)										
		411.0	411. 2			1'b0		1'b0			Nand 2KB, 5cycle	X-TAL							
					1'b1	1'b1			(Nand 8bit ECC)	X-TAL(USB)									
		1'b0		41150	1'b0			Nand 4KB, 5cycle	X-TAL										
			1'b1	1'b0	1'b1			(Nand 8bit ECC)	X-TAL(USB)										
			101	1'b1	1'b0			Nand 4KB, 5cycle	X-TAL										
	1'b0			101	1'b1			(Nand 16bit ECC)	X-TAL(USB)										
	1 00			1'b0	1'b0			OnenandMux	X-TAL										
			1'b0	1 00	1'b1			Orienandiviux	X-TAL(USB)										
			1 00	1'b1	1'b0			OnenandDemux	X-TAL										
1'b0		1'b1		101	1'b1		I-ROM	Offerfallubelliux	X-TAL(USB)										
1 00		101		1'b0	1'b0		I-KOW	SD/MMC	X-TAL										
			1'b1	1 00	1'b1			SD/MINIC	X-TAL(USB)										
					101	1'b1	1'b0			eMMC(4-bit)	X-TAL								
								101	1'b1			eiviiviC(4-bit)	X-TAL(USB)						
						o1 1'b0				1'b1	1'b0			Reserved	X-TAL				
		1'b0 -	1'b0	1'b0	1'b0			1'b0	101	1'b1			110001100	X-TAL(USB)					
							1 00	1'b1	1'b0			Nand 2KB, 4cycle	X-TAL						
	1'b1						1'b0	1'b0	1'b0	1'b0	1'b0	1'h0		101	1'b1	Boot		(Nand 8bit ECC)	X-TAL(USB)
	101											1'b0	1'b0	Mode		iROM NOR boot	X-TAL		
										1'b1	1 00	1'b1			II CON NOR BOOK	X-TAL(USB)			
										101	1'b1	1'b0			eMMC(8-bit)	X-TAL			
							101	1'b1			Civilvio(0-bit)	X-TAL(USB)							
				1'b0	1'b0			eSSD	X-TAL										
			1'b0	1 00	1'b1			COOD	X-TAL(USB)										
			1 50	1'b1	1'b0			Nand 2KB, 5cycle	X-TAL										
		1'b0		101	1'b1			Nana ZNB, ocycle	X-TAL(USB)										
		1 50		1'b0	1'b0			Nand 4KB, 5cycle	X-TAL										
			1'b1	1 00	1'b1		I-ROM	Nana 4NB, ocycle	X-TAL(USB)										
			101	1'b1	1'b0			Nand 16bit ECC	X-TAL										
1'b1	1'b0					101	1'b1		First	(Nand 4KB, 5cycle)	X-TAL(USB)								
	1 60		1'b0	1'b0		boot	OnenandMux(Audi)	X-TAL											
			1'b0	1 50	1'b1		UART	Chenanalylax(Addi)	X-TAL(USB)										
		1 50	1'b1	1'b0		->USB	OnenandDemux(Audi)	X-TAL											
		1'b1		101	1'b1			Official abeliax(Audi)	X-TAL(USB)										
		101		1'b0	1'b0			SD/MMC	X-TAL										
			1'b1	1 50	1'b1			OD/WINIO	X-TAL(USB)										
						101	1'b1	1'b0			eMMC(4-bit)	X-TAL							
				101	1'b1			CIVIIVIO(4-DIL)	X-TAL(USB)										

Note) If OM[5] is set to 1, It is used for debug mode that UART boot is first and USB boot is second. UART boot has some kind of error case. In case of UART error, the iROM boot sequence moves to second USB boot. USB boot also has some kind of error case like UART. If USB boot is fail, boot sequence move to main memory boot. Please refer to iROM application note which is more detail about error case.

4.3. Feature of the IROM Boot mode

- Overview

C110 iROM boot has two step boot mode. First is a normal memory boot and second is SDMMC CH2 boot. (OneNand, Nand, SDMMC_CH0 these kinds of memories are used for first boot.)

If first boot is failed, boot sequence moves to SDMMC CH2. The first boot fail cases are checksum Error and SDMMC init error etc, Refer to iROM application note.

- 1. OneNAND:
 - Xm0CSn4/NFCSn2/ONANDXL_CSn0 signal should be used for boot
- 2. NAND:
 - Using S/W 8bit ECC at boot page
 - S5PV210 supports 16bit ECC in case of 4KB, 5cycle Nand type,.
 - Xm0CSn2/NFCSn0 signal should be used for boot
- 3. SD/MMC and eMMC:
 - SDMMC CH0 is used for first 4bit boot.
 - SDMMC CH2 is used for second boot
- 4. eMMC boot:
 - SD/MMC CH0 is used for eMMC boot(4/8 bit). Bus width is controlled by OM setting
- 5. UART boot:
 - UART CH2 is used for UART boot and Debug message

Note) OM[4:0] signal don't need a pull-up/down register. But OM[5] signal needs a pull-down register. This register intends to change a boot mode between Normal storage and UART/USB boot.

4.4. Clock

4.4.1. Input Clock

Figure 4-1) Input Clock Example

	C _{MAIN}	Depends on Crystal's load
		capacitance(CL)
	C _{USB}	Depends on Crystal's load
External capacitance used for X-tal		capacitance(CL)
External capacitance used for X-tai	C _{HDMI}	Depends on Crystal's load
		capacitance(CL)
	C _{RTC}	Depends on Crystal's load
		capacitance(CL)
	Rfed MAIN	5M Ohm
Feedback resistor between XTI with	Rfed _{USB}	5M Ohm
XTO	Rfed HDMI	5M Ohm
	Rfed RTC	10M Ohm
		ESR: 60ohm max.
Crystal requirement		Shunt capacitance: 7pF max.
for X-tal main,usb,hdmi		Frequence Torelance: ±50ppm
		Aging: ±5.0ppm/year max.
Crystal requirement		ESR: 80Kohm max.
for X-tal rtc		Shunt capacitance: 2pF max.
		Frequence Torelance: ±20ppm

Aging: ±3.0ppm/year max.
1 .gg. = 0.0pp

Note) External capacitance calculation

External capacitor C1,2 can be calculated by following equation.

CL { (C1 +
$$C_{IC_IN}$$
) (C2 + C_{IC_OUT}) / (C_{IC_IN} + C1 + C2 + C_{IC_OUT}) } + pcb strays (assumed to 1~3pF)

i) Load capacitance (CL) is specified when ordering crystal.

ii) Pin capacitance

Pin capacitance for	C _{IC_IN}	1.8 pF
X-tal main,usb,hdmi	C _{IC_OUT}	2.5 pF
Pin capacitance for X-tal rtc	C _{IC_IN}	1.2 pF
	C _{IC_OUT}	2.5 pF

EX) If Crystal has CL=14pF, then C1,C2 are around 22pF.

5. MEMORY SUBSYSTEM

5.1. Signal Description

Signal	1/0	Description
XDDR2SEL	I	Memory Type Selection (0; LPDDR1, 1: DDR2, LPDDR2)
Xm1SCLK, Xm2SCLK	0	Memory Clock
Xm1nSCLK, Xm2nSCLK	0	Memory Negative Clock
Xm1RASn, Xm2RASn	0	Row Address Selection
Xm1CASn, Xm2CASn	0	Column Address Selection
Xm1WEn, Xm2WEn	0	Write Enable
Xm1DATA[31:0], Xm2DATA[31:0]	I/O	Memory Data Bus
Xm1DQM[3:0], Xm2DQM[3:0]	0	Write Masking Per Byte
Xm1DQS[3:0], Xm2DQS[3:0]	I/O	Data Strobe Signal Per Byte
Xm1DQSn[3:0], Xm2DQSn[3:0]	I/O	Data Strobe Negative Signal Per Byte
ADCT[18:0](Address & Control), CKE	0	Memory Address, Bank Address, CS, CKE signals

5.2. TQ: Temperature Indicator

Samsung mDDR includes the enhanced feature, Temperature Indicator (TQ), which informs MDRAM's internal temperature of controller, in order to notice that DRAM inside temperature become higher than 85'C which is the highest temperature guaranteed normally in the specification. In over 85'C, DRAM refresh cycle is derated according as the temperature goes up, controllers need to adjust auto-refresh cycle based on MDRAM temperature. Generally, it is well known that the auto-refresh cycle of DRAM tends to be half every 10'C up over 85'C. The guidance for auto-refresh cycle over 85'C is provided by specification.

Temp	Auto-Refresh cycle
-25 ~ 85C	7.8us
85 ~ 95 C	3.9us

5.3. PCB LAYOUT GUIDELINES FOR MEMORY

Power and ground design guide

General design rule is applied on this case.

- I. Ground layer has to be placed adjacent to signal layer for current return path.
- II. Ground plane has not to be split.
- III. Connection of ground pins
 - a) Connect to ground plane through ground via as short as possible.
 - b) Connect ground pad of bypass capacitor to ground plane through ground via as short as possible.
 - c) Join together ground pins adjacent each other for making lower impedance.
- IV. Connection of power pin
 - a) Place bypass capacitor near power pin as short as possible.
 - b) Connect power pad of bypass capacitor to power plane through power via as short as possible.
 - c) Pay attention whether power via makes ground plane split or not.

The value of bypass capacitor is determined by considering impedance profile of power plane and operating frequency. And the number of capacitors is as large as possible considering of PCB space.

Trace routing guide

I. DQ, DQM, DQS signal

Signals in same group have pattern length matched within 1.5mm for equalizing timing skew. If signals in same group have to be routed on different layer, impedance of the layer must be considered.

Data Group	Mask Signal	Clock
DQ [7:0]	DQM0	DQS0
DQ [15:8]	DQM1	DQS1
DQ[23:16]	DQM2	DQS2
DQ[31:24]	DQM3	DQS3

- a) DQS0 & DATA[7:0], DQM0 Skew: -/+ 50ps (Target length: -/+ 5.0mm)
- b) DQS1 & DATA[15:8], DQM0 Skew: -/+ 50ps (Target length: -/+ 5.0mm)
- c) DQS2 & DATA[23:16], DQM0 Skew: -/+ 50ps (Target length: -/+ 5.0mm)
- d) DQS3 & DATA[31:24], DQM0 Skew: -/+ 50ps (Target length: -/+ 5.0mm)

- II. CSn, CKE, ADDR[13:0], BA[1:0], RASn, CASn, WEn, AP signal
 - a) SCLK(n) & ADDR[15:0], CASn, RASn, CKE[1:0], WEn Skew: -/+ 100ps (Target length: -/+ 10mm).
- b) T-branch topology is recommended for Command, Address and Control net.(CKE[1:0], CSn[1:0], ADDR[15:0], RASn, CASn, WEn)
- c) Do not route near high speed signals (SCLK, SCLKn, DQS(n)[3:0] and DATA net) or have enough spacing over 3*WIDTH.
 - d) Direct connect GATEI (pin B10) to GATEO (pin C10).

III. SCLK, SCLKn signal

- a) Star topology is recommenced.
- b) Recommended differential impedance is 100 ohm.
- c)SCLK & SCLKn Skew: -/+ 10ps (Target length: -/+ 1.0mm).
- d) SCLK(n) & DQS[3:0] Skew: -/+ 100ps (Target length: -/+ 10mm).IV. Others

6. SROM Controller

6.1. Signal Description

Signal	1/0	Description
SROM_CSn[5:0]	()	SROM Chip select Note) Bank0 supports only 16bit data bus width.
EBI_OEn	0	Memory Port 0 SROM / OneNAND Output Enable
EBI_WEn	0	Memory Port 0 SROM / OneNAND Write Enable
EBI_BEn[1:0]	0	Memory Port 0 SROM Byte Enable
SROM_WAITn	I	Memory Port 0 SROM nWait
EBI_DATA_RDn	0	Memory Port 0 SROM/OneNAND/CF If data is output, this signal goes to High. If data is input, this signal goes to Low.
EBI_ADDR[15:0]	0	Memory port 0 Address bus
EBI_DATA[15:0]	Ю	Memory port 0 Data bus

			SRAM/ROM	S5PV210
Addr.		8bit data bus	A0	Xm0ADDR0
connection	connection 16bit data	Half-word base(AddrMode =0)(default)	A0	Xm0ADDR0
	bus	Byte base(AddrMode =1)	A0	Xm0ADDR1

Note. 1) SROM_BW [AddrMode]: Register for Address base of each memory bank

2) Bank0 supports only 16bit data bus width.

6.2. SRAM/ROM Interface Examples

Figure 6-1) Memory Interface with 8-bit SRAM

	<half-word bas<="" th=""><th>e></th><th><[</th><th>Byte base></th><th></th></half-word>	e>	<[Byte base>	
Xm0ADDR	A0 DQ0 A1 DQ1 A2 DQ2 A3 DQ3 A4 DQ4 A5 DQ5 A6 DQ6 A7 DQ7 A8 DQ9 A10 DQ10 1 A11 DQ11 2 A12 DQ12 3 A13 DQ13 4 A14 DQ14 5 A15 DQ15 6 A16 7 A17 8 A18 nCE nOE	Xm0DATA0	Xm0ADDR1 — A0 Xm0ADDR2 — A1 Xm0ADDR3 — A2 Xm0ADDR6 — A5 Xm0ADDR6 — A5 Xm0ADDR7 — A6 Xm0ADDR8 — A7 Xm0ADDR9 — A8 Xm0ADDR10 — A9 Xm0ADDR11 — A10 Xm0ADDR12 — A11 Xm0ADDR13 — A12 Xm0ADDR14 — A13 Xm0ADDR16 — A15 Xm0ADDR16 — A15 Xm0ADDR17 — A16 Xm0ADDR18 — A17 Xm0ADDR19 — A18	DQ0	
	nBE0 nBE1	Xm0BEn0 Xm0BEn1		nBE0 Xm0BEn0 nBE1 Xm0BEn1	

Figure 6-2) Memory Interface with 16-bit SRAM

Note. 1) Xm0ADDR[16:22] are muxed with other functions. And Xm0ADDR[16:22] are not released retention automatically like Xm0ADDR[0:15].

2) Address space: Up to 16MB per Bank

7. OneNAND Controller

Overview

S5PV210 supports external 16-bit bus for OneNAND and Flex-OneNAND memory devices. The OneNAND controller supports asynchronous and synchronous read/write bus operations. It also integrates its own dedicated DMA engine and microsequencer to accelerate the OneNAND memory device operation.

7.1. Signal Description

Signal	1/0	Description	Comment
Xm0ADDR[15:0]	Ю	Xm0ADDR[15:0] (ADDR Bus) outputs address during memory read/write address phase, inputs data during memory read data phase and outputs data during memory write data phase.	
Xm0DATA[15:0]	Ю	Xm0DATA[15:0] (Data Bus) outputs address during memory read/write address phase, inputs data during memory read data phase and outputs data during memory write data phase.	
ONANDXL_CSn[1:0]	0	ONANDXL_CSn[0:1] (Chip Select) are activated when the address of a memory is within the address region of each bank. ONANDXL_CSn[0:1] can be assigned to either SROMC or OneNAND controller by System Controller SFR setting.	ONANDXL_CSn[0] should be connected to OneNand device externally.
		Active LOW. Xm0WEn (Write Enable) indicates that the current bus	
Xm0WEn	0	cycle is a write cycle. Active LOW.	
Xm0OEn	0	Xm0OEn (Output Enable) indicates that the current bus cycle is a read cycle. Active LOW.	
ONDXL_INT[0:1]	ı	Interrupt inputs from OneNAND memory Bank 0, 1.	- ONDXL_INT[0] is connected to OneNand device internally 4.7Kohm external pull-up
ONDXL_AVD	0	Address valid output. Active LOW.	
ONDXL_RPn	0	System reset output for OneNAND memory. Active LOW.	
ONDXL_SMCLK	0	Static memory clock for synchronous static memory devices. Must be less than 83MHz.	
PmOndCEB	I	OneNand memory signal. Should be connected to c110 chip select signal externally.	

7.2. Circuit Diagram Example

S5PV210 has an external OneNAND control ports.

Figure 7-1) Mux & Demux OneNand connection block diagram

Note) In case of internal OneNand(POP), ONANDXL_CSn[0] and ONDXL_INT[0] signals are used for internal OneNand. If you want to use a external OneNand additionally, Only ONANDXL_CSn[1] and ONDXL_INT[1] should be used for it

Caution

- The INT pin of each OneNAND device must be pulled up by an 4.7KOhm external pull-up resistor.
- If you want to boot by OneNAND, you should use ONANDXL_CSn0, ONDXL_INT 0 .
- OneNand signal power domain belongs to VDD_M0

8. NAND Flash Controller

8.1. Signal Description

Signal	1/0	Description	Comment
NF_CLE	0	Memory Port 0 NAND Command Latch Enable	
NF_ALE	0	Memory Port 0 NAND Address Latch Enable	
NF_FWEn	0	Memory Port 0 NAND Flash Write Enable	
NF_FREn	0	Memory Port 0 NAND Flash Read Enalbe	
NF_RnB[3:0]	I	Memory Port 0 NAND Flash Ready/Busy	- NF_RnB[0] signal used for iROM boot - 4.7Kohm external pull-up
XM0DATA[15:0]	Ю	Memory port 0 Data bus	
Xm0nCS[2] / NFCSn[0]	0	Memory Port 0 NAND Chip Select0	- Used for iROM boot
Xm0nCS[3] / NFCSn[1]	0	Memory Port 0 NAND Chip Select1	
Xm0nCS[4] / NFCSn[2]	0	Memory Port 0 NAND Chip Select2	
Xm0nCS[5] / NFCSn[3]	0	Memory Port 0 NAND Chip Select3	

Xm0nCS2, Xm0nCS3, Xm0nCS4, Xm0nCS5 can be used for NAND device. Some large capacity NAND flash have two or more nCE signal.

ure 8-1) 1-CE case and 2-CE case connection

Figure 8-2) 4-CE case connection

- (1) Nand signal power domain belongs to VDD_M0. Confirm the voltage level of another SRAM interface.
- (2) External 4.7K pull-up resistor need to be added to RnB signal.
- (3) When NAND is selected for iROM booting storage, Xm0CSn2(NFCSn0),Xm0FRnB0 should be used for NAND chip select & RnB.

SAMSUNG ELECTRONICS

9. CF Controller

9.1. CFCON feature

CF Controller support only True-IDE mode.(don't support PC card mode.) This is compatible with ATA/ATAPI-6 standard.

Cautions

- (1) Check voltage domain of CF address and data, because addr/data shared MSM interface.
- (2) CF Card Vdd is controlled by GPIO. Because CF Controller don't support Hot-plug function. So if your B'd turn-on state and CF card inserted after, CF controller don't recognize. So you have to control the Vdd by GPIO (turn-off and a few time after turn-on)

9.2. Signal Description

Signal	I/O	Description
CF_ADDR[2:0]	0	CF CARD address for ATAPI
CF_IORDY	I	CF Wait signal from CF card
CF_INTRQ	I	CF Interrupt from CF card
CF_DMARQ	ı	CF DMA Request
CF_DRESETN	0	CF DMA Reset
CF_DMACKN	0	CF DMA Acknowledge
CF_DATA[15:0]	Ю	CF card DATA
CF_CSn[0]	0	CF chip select bank 0
CF_CSn[1]	0	CF chip select bank 1
CF_IORN	0	CF Read strobe for I/O mode
CF_IOWN	0	CF Write strobe for I/O mode

9.3. CF 1-slot operation guide

9.4. CF 2-slot operation guide

- (1) S5PV210 CF Controller can use CF card and HDD together by using 2slot operation (master and slave)
- (2) Follow Figure 10_2) using 2 slot Schematic

(master socket is selected by nCSEL_n pin state. Master : low-level, Slave : NC)

(ex) CON1 : Master, CON2 : Slave => nCSEL_0 = low-level, nCSEL_1 = NC

Figure 9-2) 2 Slot Operation Schematic example

10. PWM TIMER

10.1. Overview

The S5PV210 has five 32-bit timers. These timers generate internal interrupts to the ARM subsystem. In addition, Timers 0, 1, 2 and 3 include a Pulse Width Modulation (PWM) function which drives an external I/O signal. The PWM for timer 0 has an optional dead-zone generator capability to support a large current device. Timer 4 are internal timers without output pins.

10.2. Signal Description

Signal	I/O	Description
TOUT_0/1/2/3	0	PWM Timer Output
PWM_MIE	0	PWM output from MIE

PWM Usage

You can use PWM Usage at below functions.

- LCD back light control
- Vibrate motor control

11.UART

11.1. Signal descriptoin

Signal	I/O	Description	Comment
UART0/1/2/3_RXD	Ι	UART receives data input	CH0 FIFO Depth: 256byte CH1 FIFO Depth: 64byte
UART0/1/2/3_TXD	0	UART transmits data output	CH2 FIFO Depth: 16byte CH3 FIFO Depth: 16byte
UART0/1/2_CTSn	I	UART clear to send input signal	- CH2 is for Low Power Audio(RP)
UART0/1/2_RTSn	0	UART request to send output signal	- UART2_CTSn and UART2_RTSn signals are muxed with UART3_RXD and UART3_TXD respectively.

Note)1.Channel #0,1,2 support Auto Flow Control with RTS & CTS signal.

- 2. UART Ch 0, 1, 2 and 3 supports IrDA 1.0
- 3. UART Ch 2 is used for iROM booting message and iROM UART booting.

So, it is better to use UART ch 2 for debugging message.

12. IIC-BUS INTERFACE

IIC Bus interface has 2 signals out which are Xi2cSCL and Xi2cSDA. Generally, Each signal need to be pulled up by 1Kohm resistor to VDD_EXT0(Xi2cSCL0, Xi2cSDA0) or VDD_EXT1(Xi2cSCL1/2, Xi2cSDA1/2) . But this resistor value should be changed by signal bus loading capacitance. S5PV210 has 3 IIC control block, Channel 1 can use internally for HDMI DDC control. Channel 0 and 2 can be used general IIC port. But When you use HDM DDC, You should not use Channel 1 in general IIC,

12.1. Pin Description

Signal	I/O	Description	Comment
Xi2cSCL0/1/2	Ю	Bus clock	- 1Kohm external pull-up
Xi2cSDA0/1/2	Ю	Bus data	- Xi2C CH1 is used for HDMI

12.2. Equation of the pull-up resistor value

 $V_{IL} = 0.3 V_{DD}$ $V_{IH} = 0.7 V_{DD}$

Figure 12-1) Definition of timing for High-Speed mode devices on the IIC -bus

- 1) tr (Rising time) which depends on Pull- up resistance and bus capacitance affects SCL frequency change (Higher tr makes slower SCL), especially when it is High-Speed mode (400kHz)
- 2) tr (Rising time) maximum is 300 ns, minimum is 20 + 0.1 Cb (bus capacitance)
- 3) When tr (Rising time) is 300ns, SCL might be maximum 13% slower than original setting value
- 4) To make real SCL within 1% variation of setting value(400kHz) , tr (Rising time) should be less than 80nsec
- 5) User can use this formula to determine Rp , Cb and tr Rp(Pull-up resistance) Max is a function of the rise time minimum (tr) and the estimated bus capacitance(Cb)

 $V(t1)=0.3x V_{dd}=V_{dd} (1-e^{-t1/RC}); then t1=0.3566749xRC)$

 $V(t2)=0.7x V_{dd}=V_{dd} (1-e^{-t2/RC}); then t2=1.2039729xRC)$

 $T = t2 - t1 = 0.8473 \times RC$

 $R_{p(max)} = t_r / (0.8473 \times C_b)$

13. SPI

13.1. Signal Description

Signal	I/O	Description
SPI0/1_CLK	Ю	SPI clock
SPI0/1_nSS	Ю	SPI chip select
SPI0/1_MISO	Ю	SPI master input / slave output line
SPI0/1_MOSI	Ю	SPI master output / slave input line

13.2. EXTERNAL Loading Capacitance

S5PV210 has three SPI controllers. Both controllers should follow the external loading capacitance below.

Output capacitance must be lower than 30pF at the channel 0/1.

13.3. SPI Maximum Speed

The maximum frequency Master Tx/Master Rx/Slave Rx/Slave Tx(CPHA=0) is up to 50MHz.

The maximum frequency Slave Tx is up to 20MHz(CPHA=1).

14. USB Host

14.1. Singnal Description

Ball Name	1/0	Description
XUHOSTPWREN	0	USB HOST charge pump enable
XUHOSTOVERCUR	-	USB HOST over current flag
XUHOSTDP	Ю	USB HOST Data pin DATA(+)
XUHOSTREXT	Ю	USB HOST External 44.2ohm (+/- 1%) pull-down
XUHOSTDM	Ю	USB HOST Data pin DATA(-)

14.2. Power Domain

VDD_UHOST_A is for USB Host Phy analog power supplied with 3.3V, and VDD_UHOST_D is for USB Host Phy digital power supplied with 1.1V.

Caution! VDD_UHOST_D must be brought up first, followed by VDD_UHOST_A, in order to limit power consumption and prevent voltage stress on the device.

14.3. Circuit Diagram Example

To minimize power consumption in USB Host block, SEC recommends that user should control powers for VDD_UHOST_A and VDD_UHOST_D.

- (1) use Charge Pump Circuit or connect B'd 5V power to VBUS in order to supply VBUS to a bus-powered USB device.
- (2) connect regulator's nOC in to XuhOVERCUR in order to detect over-current condition.

Figure 14-1) USB Host circuit example

14.4. USB SIGNAL ROUTING

Introduction

This document conducts a guide to integrate a discrete high speed usb device onto a four layer PCB. The board design guidelines handle trace separation, termination placement requirements and overall trace length guidelines

PCB layout guidelines

Routing and placement

When an engineer lays out a new design, the excellent signal quality and minimized EMI problem must be required. That is based on four layer board. The first layer is for signal layer. The second layer is for ground. The third layer is for power and the fourth layer is for signal layer again. We should basically consider the following instruction.

I. HS signals should be placed on top shown in the below figure

- II. HS clock and HS USB different pairs should be first routed with minimum trace length.
- III. Route high-speed USB signals not using vias and stubs with using two 45 degree turns or an arc instead of making a single 90 degree trun. This reduces signal reflections and impedance changes that affect signal quality.
- IV. Do not route usb traces under crystals, oscillators, clock synthesizers, magnetic devices or ICs that use and/or duplicate clocks.
- V. Route all traces over continuous planes(VCC and GND), with no interruptions. Avoid crossing over antietch if at all possible.
- VI. Ther parallelism between USB differential signals with the trace spacing should be maintained. The deviation should be minimized.
- VII. The minimized length of high speed clock and periodic signal traces is highly recommended. The suggested spacing to clock signal is 50mils (1mils = 0.0254mm)
- VIII. To prevent crosstalk, you should 20-mil minimum spacing between HS usb signal pairs. For example, IX. Max trace length mismatch between HS usb signal pairs such as DM and DP should be under 150mils.

X. Poor routing mistake

15. USB 2.0 HS OTG

15.1. Signal Descriptoin

Ball Name	1/0	Description	Comment
XUOTGDRVVUBS	0	USB OTG charge pump enable	
XUOTGDP	Ю	USB OTG Data pin DATA(+)	
XUOTGREXT	1()	USB OTG External 44.2ohm (+/- 1%) resistor connection	
XUOTGDM	Ю	USB OTG Data pin DATA(-)	
XUOTGID	Ю	USB OTG Mini-Receptacle Identifier	
XUOTGVBUS	Ю	USB OTG Mini-Receptacle Vbus	- Available volatage level :4.0V~6.0V

15.2. Power Domain

VDD_UOTG_A_AP is for USB OTG Phy analog power supplied with 3.3V, and VDD_UOTG_D_AP is for USB OTG Phy digital power supplied with 1.1V.

Caution! VDD_UOTG_D_AP must be brought up first, followed by VDD_UOTG_A_AP, in order to limit power consumption and prevent voltage stress on the device.

Circuit Diagram Example

To minimize power consumption in USB OTG block, SEC recommends that user should control powers for VDD UOTG A AP and VDD UOTG D AP.

(1) use Charge Pump in order to supply VBUS to a bus-powered USB device.

To use Only Device mode but OTG mode.

- (1) XusbID : leave as a no connect(Device mode)
- (2) XusbDRVVBUS: leave as a no connect (The charge pump circuit should be removed)
- (3) Refer to following circuit diagram about other signals.

Note) In this case VBUS signal can be used for wakeup source. XEINT[31:0] signals are available.

16. MODEM INTERFACE

This specification defines the interface between the Base-band Modem and the Application Processor for the data-exchange of these two devices. For the data-exchange, the AP (Application Processor, S5PV210) has a DPSRAM(Dual Port SRAM, 16KB) buffer (on-chip) and the Modem chip can access that DPSRAM buffer using a typical asynchronous-SRAM interface.

16.1. Signal Description

Signal	I/O	Description
XmsmADDR[13:0]	I	MODEM (MSM) IF Address
XmsmDATA[15:0]	Ю	MODEM (MSM) IF Data
XmsmCSn	1	MODEM (MSM) IF Chip Select
XmsmWEn	I	MODEM (MSM) IF Write enable
XmsmREn	-	MODEM (MSM) IF Read enable
XmsmIRQn	0	MODEM (MSM) IF Interrupt to MODEM
XmsmADVn	I	MODEM (MSM) IF Address Valid from MODEM Chip

16.2. Pin Connection Example

Figure 16-1) Modem I/F Pin connection example

Caution

- (1) Voltage level is same between MODEM(memory bus and EXINT) and AP(MODEM I/F). Confirm the datasheet what you want to use.
- (2) There is only one interrupt request pin from AP to MODEM(XmsmIRQn). Any other extra interrupt request pin doesn't needs between AP and modem because interrupt requests from modem to AP are delivered through XmsmADDR[12:0] and XmsmDATA[15:0] by writing some value to INT2AP register of DPSRAM in AP.
- (3) Refer the datasheet's timing specification.
- (4) Address connection between MODEM and AP follows the memory controlling policy of MODEM.

17. SD/MMC HOST CONTROLLER

S5PV210 has three slots for supporting high speed SD/MMC interface. SDMMC0 as 4-bit/8-bit MMC interface, SDMMC1 support 4-bit MMC interfaces. Every MMC controller belongs to VDD EXT0/1/2 power.

17.1. Signal Description

Signal	I/O	Description	
SD0/1/2/3_CLK	0	CLOCK (SD/SDIO/MMC card interface channel 0)	
SD0/1/2/3_CMD	Ю	COMMAND/RESPONSE (SD/SDIO/MMC card interface channel 0)	
SD0/1/2/3_CDn	I	CARD DETECT (SD/SDIO/MMC card interface channel 0)	
SD0/1/2/3_DATA[3:0]	Ю	DATA[3:0] (SD/SDIO/MMC card interface channel 0)	

17.2. Muxed Signal usage

	Case 1 (4 Channel Usage)	Case 2 (2 Channel Usage)
Channel 0	4-bit mode	8-bit mode
Channel 1	4-bit mode	Not available
Channel 2*	4-bit mode	8-bit mode
Channel 3*	4-bit mode	Not available

Every controller has up to 52MHz speed. So clock and data line should have same routing path.

- (1) Voltage level should be the same between device and SD/MMC IO(VDD EXT0/1/2).
 - Ch 0,1 belongs VDD_EXT0 power domain. Ch2 belongs VDD_EXT1. Ch3 belongs VDD_EXT2
- (2) Add a 10K-external pull-up resistor to CMD line needs. And add 51K-external pull-up resistors to Data line.
- (3) MMC channel 0 shares data lines with MMC channel 1 and MMC channel 2 shares data lines with MMC channel 3. So it is impossible that CH0(or CH2) 8bit and CH1(or CH3) are used at the same time.
- (4) DAT[3] card detection method didn't recommend by following issues.
 - i) Difficult to detect when card is removed during operation.
 - ii) Pull-down resistor of dat3 cause different impedance between data lines.
 - iii) Some cards don't have enough internal pull-up resistors.
- (5) SDMMC CH2 can be used for iROM second booting. So SD card slot is better to connect to CH2 for debugging.

18.TSI

18.1. Signal Description

Signal	I/O	Description	
TS_CLK	I	TSI system clock	
TS_SYNC	I	TSI synchronization control signal	
TS_VAL	I	TSI valid signal	
TS_DATA	I	TSI input data	
TS_ERROR	I	TSI error indicate signal	

18.2. Connection Example

Figure 18-1) TSI Connection Example

19. DISPLAY CONTROLLER

19.1. Signal Description

Signal	I/O	Description	LCD type
LCD_HSYNC	0	Horizontal Sync Signal for RGB interfacel	
LCD_VSYNC	0	Vertical Sync Signal for RGB interface	
LCD_VDEN	0	Data Enable for RGB interface	RGB I/F
LCD_VCLK	0	Video Clock for RGB interface	
LCD_VD[23:0]	0	LCD pixel data output for RGB interface	
SYS_OE	0	Output Enable for RGB interface	
VSYNC_LDI	0	LCD i80 VSYNC Interface	
SYS_CS0	0	Chip select LCD0 for LCD Indirect i80 System interface	
SYS_CS1	0	Chip select LCD1 for LCD Indirect i80 System interface	
SYS_RS	0	Register/State Select Signal for LCD Indirect i80 System interface	CPU I/F
SYS_WE	0	Write Enable for LCD Indirect i80 System interface	
SYS_VD[23:0]	Ю	Video data input/output for LCD Indirect i80 System interface	
SYS_OE	0	Output Enable for LCD Indirect i80 System interface	
VEN_HSYNC	0	Horizontal Sync Signal for 601 interface	
VEN_VSYNC	0	Vertical Sync Signal for 601 interface	
VEN_HREF	0	Data Enable for 601 interface	
V601_CLK	0	Data Clock for 601 interface	ITU 601/656 I/F
VEN_DATA[7:0]	0	YUV422 format data output for 601 interface	
V656_DATA[7:0]	0	YUV422 format data output for 656 interface	
V656_CLK	0	Data Clock for 656 interface	
VEN_FIELD	0	Field Signal for 601 interface	

19.2. VD signal connection

Dall Name	Func0		Func1	Func1		
Ball Name		Ю		Ю		Ю
XVHSYNC	LCD_HSYNC	0	SYS_CS0	0	VEN_HSYNC	0
XVVSYNC	LCD_VSYNC	0	SYS_CS1	0	VEN_VSYNC	0
XVVDEN	LCD_VDEN	0	SYS_RS	0	VEN_HREF	0
XVVCLK	LCD_VCLK	0	SYS_WE	0	V601_CLK	0
XVVD_0	LCD_VD[0]	0	SYS_VD[0]	Ю	VEN_DATA[0]	0
XVVD_1	LCD_VD[1]	0	SYS_VD[1]	Ю	VEN_DATA[1]	0
XVVD_2	LCD_VD[2]	0	SYS_VD[2]	Ю	VEN_DATA[2]	0
XVVD_3	LCD_VD[3]	0	SYS_VD[3]	Ю	VEN_DATA[3]	0
XVVD_4	LCD_VD[4]	0	SYS_VD[4]	Ю	VEN_DATA[4]	0
XVVD_5	LCD_VD[5]	0	SYS_VD[5]	Ю	VEN_DATA[5]	0
XVVD_6	LCD_VD[6]	0	SYS_VD[6]	Ю	VEN_DATA[6]	0
XVVD_7	LCD_VD[7]	0	SYS_VD[7]	Ю	VEN_DATA[7]	0
XVVD_8	LCD_VD[8]	0	SYS_VD[8]	Ю	V656_DATA[0]	0
XVVD_9	LCD_VD[9]	0	SYS_VD[9]	Ю	V656_DATA[1]	0
XVVD_10	LCD_VD[10]	0	SYS_VD[10]	Ю	V656_DATA[2]	0
XVVD_11	LCD_VD[11]	0	SYS_VD[11]	Ю	V656_DATA[3]	0
XVVD_12	LCD_VD[12]	0	SYS_VD[12]	Ю	V656_DATA[4]	0
XVVD_13	LCD_VD[13]	0	SYS_VD[13]	Ю	V656_DATA[5]	0
XVVD_14	LCD_VD[14]	0	SYS_VD[14]	Ю	V656_DATA[6]	0
XVVD_15	LCD_VD[15]	0	SYS_VD[15]	Ю	V656_DATA[7]	0
XVVD_16	LCD_VD[16]	0	SYS_VD[16]	Ю		
XVVD_17	LCD_VD[17]	0	SYS_VD[17]	Ю		
XVVD_18	LCD_VD[18]	0	SYS_VD[18]	Ю		
XVVD_19	LCD_VD[19]	0	SYS_VD[19]	Ю		
XVVD_20	LCD_VD[20]	0	SYS_VD[20]	Ю		
XVVD_21	LCD_VD[21]	0	SYS_VD[21]	Ю		
XVVD_22	LCD_VD[22]	0	SYS_VD[22]	Ю		
XVVD_23	LCD_VD[23]	0	SYS_VD[23]	Ю	V656_CLK	0
XVVSYNC_LDI	LCD_VCLK_B	0	VSYNC_LDI	0	VSYNC_LDI	0
XVSYS_OE	SYS_OE	0	SYS_OE	0	VEN_FIELD	0

19.3. VD signal connection at each bpp mode.

		Parallel RGB	3	Seria	IRGB	601
	24BPP (888)	18BPP (666)	16BPP (565)	24BPP (888)	18BPP (666)	
XVVD_23	R[7]	R[5]	R[4]	D[7]	D[5]	
XVVD_22	R[6]	R[4]	R[3]	D[6]	D[4]	
XVVD_21	R[5]	R[3]	R[2]	D[5]	D[3]	
XVVD_20	R[4]	R[2]	R[1]	D[4]	D[2]	
XVVD_19	R[3]	R[1]	R[0]	D[3]	D[1]	
XVVD_18	R[2]	R[0]	-	D[2]	D[0]	
XVVD_17	R[1]	-	-	D[1]	-	
XVVD_16	R[0]	-	-	D[0]	-	
XVVD_15	G[7]	G[5]	G[5]	-	-	
XVVD_14	G[6]	G[4]	G[4]	-	-	
XVVD_13	G[5]	G[3]	G[3]	-	-	
XVVD_12	G[4]	G[2]	G[2]	-	-	
XVVD_11	G[3]	G[1]	G[1]	-	-	
XVVD_10	G[2]	G[0]	G[0]	-	-	
XVVD_9	G[1]	-	-	-	-	
XVVD_8	G[0]	-	-	-	-	
XVVD_7	B[7]	B[5]	B[4]	-	-	VEN_DATA[7]
XVVD_6	B[6]	B[4]	B[3]	-	-	VEN_DATA[6]
XVVD_5	B[5]	B[3]	B[2]	-	-	VEN_DATA[5]
XVVD_4	B[4]	B[2]	B[1]	-	-	VEN_DATA[4]
XVVD_3	B[3]	B[1]	B[0]	-	-	VEN_DATA[3]
XVVD_2	B[2]	B[0]	-	-	-	VEN_DATA[2]
XVVD_1	B[1]	-	-	-		VEN_DATA[1]
XVVD_0	B[0]	-	-	-	-	VEN_DATA[0]

	I80 CPU I/F (Parallel)										
	16BPP(565)	18BPI	18BPP(666)		18BPP(666)		3PP 38)	18BPP(666) 16BPF		P(565)	
Lx_DATA1 6	000	00)1	0	10	01	11	100	10	101	
		1st	2nd	1st	2nd	1st	2nd		1st	2nd	
XVVD_23	-	-	-	-	-	-	-	-	-	-	
XVVD_22	-	-	-	-	-	-	-	-	-	-	
XVVD_21	-	-	-	-	-	-	-	-	-	-	
XVVD_20	-	-	-	-	-	-	-	-	-	-	
XVVD_19	-	-	-	-	-	-	-	-	-	-	
XVVD_18	-	-	-	-	-	-	-	-	-	-	
XVVD_17	-	-	-	-	-	-	-	R[5]	-	-	
XVVD_16	-	-	-	-	-	-	-	R[4]	-	-	
XVVD_15	R[4]	R[5]	-	-	-	R[7]	B[7]	R[3]	-	-	
XVVD_14	R[3]	R[4]	-	-	-	R[6]	B[6]	R[2]	-	-	
XVVD_13	R[2]	R[3]	-	-	-	R[5]	B[5]	R[1]	-	-	
XVVD_12	R[1]	R[2]	-	-	-	R[4]	B[4]	R[0]	-	-	
XVVD_11	R[0]	R[1]	-	-	-	R[3]	B[3]	G[5]	-	-	
XVVD_10	G[5]	R[0]	-	-	-	R[2]	B[2]	G[4]	-	-	
XVVD_9	G[4]	G[5]	-	-	-	R[1]	B[1]	G[3]	-	-	
XVVD_8	G[3]	G[4]	-	R[5]	G[2]	R[0]	B[0]	G[2]	-	-	
XVVD_7	G[2]	G[3]	-	R[4]	G[1]	G[7]	-	G[1]	R[4]	G[2]	
XVVD_6	G[1]	G[2]	-	R[3]	G[0]	G[6]	-	G[0]	R[3]	G[1]	
XVVD_5	G[0]	G[1]	-	R[2]	B[5]	G[5]	-	B[5]	R[2]	G[0]	
XVVD_4	B[4]	G[0]	-	R[1]	B[4]	G[4]	-	B[4]	R[1]	B[4]	
XVVD_3	B[3]	B[5]	-	R[0]	B[3]	G[3]	-	B[3]	R[0]	B[3]	
XVVD_2	B[2]	B[4]	-	G[5]	B[2]	G[2]	-	B[2]	G[5]	B[2]	
XVVD_1	B[1]	B[3]	B[1]	G[4]	B[1]	G[1]	-	B[1]	G[4]	B[1]	
XVVD_0	B[0]	B[2]	B[0]	G[3]	B[0]	G[0]	-	B[0]	G[3]	B[0]	

20. Camera Interface

20.1. Signal Description

Signal	I/O	Description	
CAM_A/B_PCLK	_	Pixel Clock, driven by the Camera processor A	
CAM_A/B_VSYNC	_	Vertical Sync, driven by the Camera processor A	
CAM_A/B_HREF	-	Horizontal Sync, driven by the Camera processor A	
CAM_A/B_DATA[7:0]		Pixel Data for YCbCr in 8-bit mode or for Y in 16-bit mode, driven by the Camera processor A	
CAM_A/B_CLKOUT	0	Master Clock to the Camera processor A	
CAM_A/B_FIELD	I	Software Reset or Power Down for the external Camera processor A	

Note) 1.C110 don't have a dedicated CAM RESET signal. So, GPIO should be allocated for it.

2. C100 has two camera port A, B

20.2. Camera INPUT

Camera Interface can support the next video standards,

- (1) ITU-R BT 601 YCbCr 8-bit mode
- (2) ITU-R BT 656 YCbCr 8-bit mode

Camera Interface max. Horizontal size

	Item	Max size	Max size		
		CAMIF 0	CAMIF 1	CAMIF 2	
Scaler	Scaler input Hsize	4224	4224	1920	
	Scaler bypass mode	8192	8192	8192	
Output Rotator	TargetHsize(without output rotation)	4224	4224	1920	
	TargetHsize(with output rotation)	1920	1920	1280	
Input Rotator	REAL_WIDTH(without input rotation)	8192	8192	8192	
	REAL_HEIGHT(with input rotation)	1920	1920	1280	

20.3. Restriction

HREF is valid after VSYNC pulse at capture start

Max Clock Speed is 100MHz

^{*} Maximum. 8192 x 8192 pixels Camera input support

21. MIPI DSI & CSI

21.1. Signal Description

Ball Name	I/O	Description	Comment
XMIPIMDP0	Ю	Master DATA LANE0 DP for MIPI-DPHY	
XMIPIMDP1	Ю	Master DATA LANE1 DP for MIPI-DPHY	
XMIPIMDP2	Ю	Master DATA LANE2 DP for MIPI-DPHY	
XMIPIMDP3	Ю	Master DATA LANE3 DP for MIPI-DPHY	
XMIPIMDN0	Ю	Master DATA LANE0 DN for MIPI-DPHY	
XMIPIMDN1	Ю	Master DATA LANE1 DN for MIPI-DPHY	
XMIPIMDN2	Ю	Master DATA LANE2 DN for MIPI-DPHY	
XMIPIMDN3	Ю	Master DATA LANE3 DN for MIPI-DPHY	
XMIPIMDPCLK	Ю	Master CLK Lane DP for MIPI-DPHY	
XMIPIMDNCLK	Ю	Master CLK Lane DN for MIPI-DPHY	
XMIPISDP0	Ю	Slave DATA LANE0 DP for MIPI-DPHY	
XMIPISDP1	Ю	Slave DATA LANE1 DP for MIPI-DPHY	
XMIPISDP2	Ю	Slave DATA LANE2 DP for MIPI-DPHY	
XMIPISDP3	Ю	Slave DATA LANE3 DP for MIPI-DPHY	
XMIPISDN0	Ю	Slave DATA LANE0 DN for MIPI-DPHY	
XMIPISDN1	Ю	Slave DATA LANE1 DN for MIPI-DPHY	
XMIPISDN2	Ю	Slave DATA LANE2 DN for MIPI-DPHY	
XMIPISDN3	Ю	Slave DATA LANE3 DN for MIPI-DPHY	
XMIPISDPCLK	Ю	Slave CLK Lane DP for MIPI-DPHY	
XMIPISDNCLK	Ю	Slave CLK Lane DN for MIPI-DPHY	
XMIPIVREG_0P4V	Ю	Regulator capacitor for MIPI-DPHY	Connect 2nF Cap. To GND

21.2. Design Guide

- It is NOT attached passive device on Dp, Dn Cable Interface.
- Routing Length of Dp and Dn have same length between Master and Slave.(An aberration of them is under 3mm)
- Maximum Loading capacitance of Cable interface is 70pF.
- Differential Cable Interface impedance is 100
- It is connected to 2nF Capacitance on XMIPIVREG_0P4V Pin

22.TV ENCODER

22.1. Signal Description

Ball Name	1/0	Description	Comment
XdacCOMP	О	External capacitor connection	Connect 0.1uF ceramic capacitor to VDDDAC
XdacVREF	Ю	Reference voltage input	Connect 0.1uF ceramic capacitor to GND
XdacIREF	Ю	IEXTERNAL RESISTOR CONNECTION	Connect 1.2KΩ to GND for full scale output (1.3V)(Tolerance +- 1%)
XdacOUT	Ю	Analog output of DAC	Connect 75Ω to GND. (Tolerance +- 1%) Full scale output current of the DAC is 26.7mA.

Figure 22-1) TV Encoder connection example

Figure 22-2) DAC Reference pin connection

120

23. HDMI

23.1. Overview

HDMI 1.3 Tx Subsystem V1.0 is comprised of an HDMI Tx Core with I2S/SPDIF input interface, CEC block and HDCP Key Block

23.2. Signal Description

- ADC/ DAC / HDMI/ MIPI (Dedicated)

Ball Name	I/O	Description	Comment
XHDMITX0P	0	HDMI Phy TX0 P	
XHDMITXON	0	HDMI Phy TX0 N	
XHDMITX1P	0	HDMI Phy TX1 P	TMDS output data pairs.
XHDMITX1N	0	HDMI Phy TX1 N	Timbo output data pano.
XHDMITX2P	0	HDMI Phy TX2 P	
XHDMITX2N	0	HDMI Phy TX2 N	
XHDMITXCP	0	HDMI Phy TX Clock P	TMDS output clock pair.
XHDMITXCN	0	HDMI Phy TX Clock N	This o surper sizes pains
XHDMIREXT	1	HDMI Phy Registance	External Reference Resistor. 4.6K, A 1% resistor is connected to ground
HDMI_CEC	I/O		Signal of CEC channel (muxed with XEINT12)
HDMI_HPD	ı		HDMI Hot Plug Detection Signal (muxed with XEINT13)
XHDMIXTI	I	HDMI crystal input	
XHDMIXTO	0	HDMI crystal output	

23.3. Circuit Diagram Example

HDMI VDD_EXT DC5V 100nF 100nF 4.7K VCCA VCCB 2 HDMI_SCL Xi2cSCL1 >>> SCLA SCLB HDMI_SDA Xi2cSDA1 >>-SDAA SDAB GND ΕN ← HDMI_I2C_EN PCA9517DGK

Figure 23-1) HDMI Circuit Diagram example

23.4. PCB Artwork Guide

A) Transmission Line Design of Differential pairs

- For high-frequency signal transmission along the traces of the differential signals, the trace structure must be a transmission line structure. The strip line structure and the microstrip line structure are the most recommended structures.
- For the traces of the differential pairs, the grounded plane should be a continuous plane. The ground plane of the microstrip line and the strip line should be continuous. Any discontinuity or slot in the ground plane causes signal reflections.
- The differential line on the top layer of the PCB with the microstrip line structure is most recommended.
- The number of via on the differential line should be minimized.
- pre-determined differential line impedance of the differential pairs is 100[Ohm].

 And recommended range of the differential line impedance of the trace is between 95[Ohm] to 105[Ohm].

B) Decoupling Capacitor

- Small size MLCC's are used. In all these cases, the capacitors should be placed as close as possible to the package. When choosing these components, the smallest components should be chosen since they have the least parasitic inductance.
- Ferrite Bead is used for high frequency noise rejection. But ferrite bead can induce IR voltage drop due to DC resistance. We recommend to use ferrite bead with small DC resistance considering max current.

C) More general guidelines

- Route the length of parallel signal lines is kept to same if possible.

S5PV210_HARDWARE DESING GUIDE REV 1.0

- Limit your trace length. Longer trace display more resistance and inductance and introduce more delays. It also limits the bandwidth which varies inversely with the square of trace length.
- Do not use any clock signal loops. Keep clock lines straight when possible.
- Do not route signals close to the edge of the PCB board.
- Route clock signals on the top layer and make sure that there is no via's. Via's change the impedance and introduce more skew and reflections.

125

24. IIS MULTI AUDIO INTERFACE (v5.1)

24.1. Signal Description

Signal	I/O	Description
12S_0_SCLK	Ю	IIS-bus serial clock for channel 0 (Lower Power Audio)
I2S_0_CDCLK	Ю	IIS CODEC system clock for channel 0 (Lower Power Audio)
I2S_0_LRCK	Ю	IIS-bus channel select clock for channel 0 (Lower Power Audio)
12S_0_SDI	I	IIS-bus serial data input for channel 0 (Lower Power Audio)
I2S_0_SDO[2:0]	0	IIS-bus serial data output for channel 0 (Lower Power Audio)

24.2. Audio Port

There are three IIS Interface Controllers in S5PV210. IIS channel 1,2 are for normal 2 channel IIS. You can use 5.1 channel IIS with channel 0.

External Clock Source

S5PV210 provides a master clock to the codec through the I2S_CDCLK line. This configuration has an advantage that it is not necessary to configure oscillator circuit. For the making Master Clock, S5PV210 uses and divided EPLL, MPLL or PCLK (refer to the User's Manual). Among these clock sources, divided EPLL is used for Lower Power Audio especially.

If an oscillator circuit is configured for a precise clock for the Sampling Frequency without PLLs or Internal clocks, there is a way to accept to this frequency as a source of master clock through the I2S_CDCLK line.

S5PV210 can supply 24MHz clock to Codec chip via xCLKOUT line.(refer to the User's Manual). Even at Power down mode, this signal keep supplying to Codec chip. When Codec chip need 24MHz, external oscillator circuit can be reduced by using this configuration.

Connection Example

Figure 24-1) IIS Connection Example with WM8580 (Master Mode)

127

25. IIS BUS CONTROLLER

25.1. Signal Description

Signal	1/0	Description
12S_1_SCLK	Ю	IIS-bus serial clock for channel 1
I2S_1_CDCLK	Ю	IIS CODEC system clock for channel 1
12S_1_LRCK	Ю	IIS-bus channel select clock for channel 1
12S_1_SDI	ı	IIS-bus serial data input for channel 1
12S_1_SDO	0	IIS-bus serial data output for channel 1
12S_2_SCLK	Ю	IIS-bus serial clock for channel 2
I2S_2_CDCLK	Ю	IIS CODEC system clock for channel 2
12S_2_LRCK	Ю	IIS-bus channel select clock for channel 2
12S_2_SDI	I	IIS-bus serial data input for channel 2
12S_2_SDO	0	IIS-bus serial data output for channel 2

25.2. External Clock Source

S5PV210 provides a master clock to the codec through the Xi2sCDCLK line. This configuration has an advantage that it is not necessary to configure oscillator circuit. For the making Master Clock, S5PV210 uses and divides EPLL, MPLL or PCLK (refer to the User's Manual). If an oscillator circuit is configured for a precise clock for the Sampling Frequency without PLLs or Internal clocks, there is a way to accept to this frequency as a source of master clock through the Xi2sCDCLK line.

S5PV210 can supply 24MHz clock to Codec chip via CLKOUT line.(refer to the User's Manual). Even at Power down mode, this signal keep supplying to Codec chip. When Codec chip need 24MHz, external oscillator circuit can be reduced by using this configuration.

25.3. Connection Example

This example shows I2S connection using WM8580 Secondary interface.

Figure 25-1) IIS Connection Example with WM8580 (Master Mode)

Figure 25-2) External OSC Circuit for IISCDCLK (with WM8580)

26. AC97 CONTROLLER

26.1. AC97 Signal Description

Signal	I/O	Description
AC97BITCLK	I	12.288MHz BITCLK from AC97 CODEC
AC97RESETn	0	nReset for CODEC
AC97SYNC	0	48KHz Frame SYNC
AC97SDI	I	Serial Data In From AC97 CODEC
AC97SDO	0	Serial Data OUT to AC97 CODEC

26.2. Audio Ports

In S5PV210, There is one AC97 Controller. AC97 PORT is shared with I2S channel 1 and PCM channel 1.functions.

26.3. Connection Example

Figure 26-1) AC97 connection example

27. PCM BUS CONTROLLER

27.1. Signal Description

Signal	1/0	Description
PCM_0_SCLK	0	PCM Serial Shift Clock for channel 0
PCM_0_EXTCLK	I	Optional reference clock for channel 0
PCM_0_FSYNC	0	PCM Sync indicating start of word for channel 0
PCM_0_SIN	I	PCM Serial Data Input for channel 0
PCM_0_SOUT	0	PCM Serial Shift Clock for channel 0
PCM_1_SCLK	0	PCM Serial Shift Clock for channel 1
PCM_1_EXTCLK	I	Optional reference clock for channel 1
PCM_1_FSYNC	0	PCM Sync indicating start of word for channel 1
PCM_1_SIN	I	PCM Serial Data Input for channel 1
PCM_1_SOUT	0	PCM Serial Shift Clock for channel 1
PCM_2_SCLK	0	PCM Serial Shift Clock for channel 2
PCM_2_EXTCLK	I	Optional reference clock for channel 2
PCM_2_FSYNC	0	PCM Sync indicating start of word for channel 2
PCM_2_SIN	I	PCM Serial Data Input for channel 2
PCM_2_SOUT	0	PCM Serial Shift Clock for channel 2

27.2. External Clock Source

To make PCM Serial clock and PCM Frame Sync, PCM interface controller divides EPLL, MPLL or PCLK When these clocks are divided, its advantage is that it is not necessary to configure oscillator circuit(for feeding auxiliary clock(256fs/384fs) to Codec chip (MCLK), please refer to SEC).

If an oscillator circuit is configured for a precise clock for the Sampling Frequency without PLLs or Internal clocks, there is a way to accept to this frequency as source of PCM Serial clock and PCM Frame Sync through the XpomEXTCLK line.

27.3. Connection Example

This example shows PCM connection using WM8580 Secondary interface. For Primary interface refer I2S multi audio interface.

132

Figure 27-1) Internal clocks(ex:EPLL) for PCM master clock (with WM8580)

Figure 27-2) External clocks(ex:2.048MHz) for PCM master clock (with WM8580)

28. SPDIF

28.1. Signal Description

Signal	I/O	Description
SPDIF_EXTCLK	I	Global audio main clock(External MCLK)
SPDIF_0_OUT	0	SPDIFOUT data output(Tx only)

Connection Example

This example shows using TOSLINK.

Figure 28-1) SPDIF Connection Example

29. ADC&TOUCH SCREEN INTERFACE

The 10/12bit CMOS ADC is a recycling type device with 10-channel analog inputs. It's maximum conversion rate of 1Msps with 5MHz A/D converter clock. Touch screen interface can control/select pads (XP,XM,YP,YM) of the touch screen for X,Y position. In S5PV210, There are available two Touch screen interface. A mapped with touch signal like bellows.

- -AIN[9] = XP1,
- -AIN[8] = XM1
- -AIN[7] = YP1,
- -AIN[6] = YM1,
- -AIN[5] = XP0,
- -AIN[4] = XM0
- -AIN[3] = YP0,
- -AIN[2] = YM0,

Note) When Touch Screen device is not used, XM, XP, YM or YP can be connected to Analog Input Signal for Normal ADC conversion .

30. KEYPAD INTERFACE

In S5PV210, The Key Pad ports multiplexed with GPIO ports provide up to 14 row and 8 columns.

Keypad signals(Key_pad_ROW and Key_pad_COL) are multiplexed Host I/F and EINT. Therefore it is requisite to set GPIO ports as keypad function.

Refer to GPH2,GPH3,GPJ4 registers.

Signal	1/0	Description
KP_COL[7:0]	0	KeylF_Column_data[7:0]
KP_ROW[13:0]	ı	KeyIF_Row_data[13:0]

Figure 30-1) Multi-key input keypad example

