Welcome to CME 250 Introduction to Machine Learning!

Spring 2020 – Online version April 14th 2020

Office Hours

- Tuesdays: 10:30 am 11:30 am
- Fridays: I2 pm I pm (Starting this Friday)

Today's schedule

- Unsupervised Learning: Goals and Challenges
- Clustering
- Similarity / Dissimilarity Matrix
- K-means
- Hierarchical Clustering
- Gaussian Mixture Model

Let's get to know each other...

Breakout room

You

Another student

Name

Location

Department

Year

Interest in applying ML to ...

3 mins

Chat/Audio/Video

Last Class: Variable types

Last Class: Exploratory Data Analysis

Summaries

Pandas - Python tidyverse -R

Visualization

Seaborn, Plotly ... - Python ggplot -R

5.0 7.5

> 0.50 ·

Gun deaths in Florida

Number of murders committed using firearms

2005
Florida enacted its 'Stand Your Ground' law

500

5721

1,000
2990s
2000s
12010s
Source: Florida Department of Law Enforcement

Checutes

C. Chan 36/02/2004

Gun deaths in Florida Number of murders committed using firearms

Source: Florida Department of Law Enforcement

/

Unsupervised Learning Part I: Clustering

Data Exploration

Introduction to Statistical Learning

Chapter 10.1: Intro to Unsupervised Learning,

10.3: Clustering

10.5: Practical Lab in R

Elements Statistical Learning

Chapter 13.2: K-means vs. Gaussian Mixture Models

14.3: Similarity Matrix and Clustering

8.5: Gaussian Mixture Model and EM

What is Unsupervised Learning?

Challenge: What does it mean to be close?

What is Unsupervised Learning?

Clustering nature

NEWS AND VIEWS · 03 JULY 2019

Text mining facilitates materials discovery

Dimensionality Reduction

Neuron

Volume 98, Issue 6, 27 June 2018, Pages 1099-1115.e8

NeuroResource

Unsupervised Discovery of Demixed, Low-Dimensional Neural Dynamics across Multiple Timescales through Tensor Component Analysis

Alex H. Williams ^{1, 13} $\stackrel{\boxtimes}{\sim}$ $\stackrel{\boxtimes}{\sim}$, Tony Hyun Kim ², Forea Wang ¹, Saurabh Vyas ^{2, 3}, Stephen I. Ryu ^{2, 11}, Krishna V. Shenoy ^{2, 3, 6, 7, 8, 9}, Mark Schnitzer ^{4, 5, 7, 9, 10}, Tamara G. Kolda ¹², Surya Ganguli ^{4, 6, 7, 8} $\stackrel{\boxtimes}{\sim}$ $\stackrel{\boxtimes}{\sim}$

What is clustering?

observations inside each group are alike, observations between groups are different

What does it mean to be close? = Dissimilarity

Measure how close two samples are $d(x^{(1)}, x^{(2)})$

Quantitative

Qualitative

Ordered Categorical

Squared error

$$d(x^{(1)}, x^{(2)}) = (x^{(1)} - x^{(2)})^2$$

Absolute error

$$d(x^{(1)}, x^{(2)}) = |x^{(1)} - x^{(2)}|$$

Dummy variable:

Is a ...? 0/I

	*			
*	1	0	0	0
	0	0	1	0

$$\tilde{x} = \frac{index - 0.5}{\# classes}$$

	Index	0-1 scale	
S	I	0.125	
M	2	0.375	
	3	0.625	
XL	4	0.875	

How to combine dissimilarities

Dissimilarity may be more important than choosing clustering algorithm

Products in a supermarket

Euclidean distance / Squared error

$$d(x^{(1)}, x^{(2)}) = \sum_{k=1}^{P} (x_k^{(1)} - x_k^{(2)})^2$$

Correlation

$$d(x^{(1)}, x^{(2)}) = \sum_{k=1}^{P} \frac{\left(x_k^{(1)} - \bar{x}^{(1)}\right) \left(x_k^{(2)} - \bar{x}^{(2)}\right)}{\sqrt{\sum_{k=1}^{P} \left(x_k^{(1)} - \bar{x}^{(1)}\right)^2} \sqrt{\sum_{k=1}^{P} \left(x_k^{(2)} - \bar{x}^{(2)}\right)^2}}$$

*If means are zero = cosine similarity

Absolute amount

Euclidean distance / Squared error

$$d(x^{(1)}, x^{(2)}) = \sum_{k=1}^{P} (x_k^{(1)} - x_k^{(2)})^2$$

Correlation

$$d(x^{(1)}, x^{(2)}) = \sum_{k=1}^{P} \frac{\left(x_k^{(1)} - \bar{x}^{(1)}\right) \left(x_k^{(2)} - \bar{x}^{(2)}\right)}{\sqrt{\sum_{k=1}^{P} \left(x_k^{(1)} - \bar{x}^{(1)}\right)^2} \sqrt{\sum_{k=1}^{P} \left(x_k^{(2)} - \bar{x}^{(2)}\right)^2}}$$

*If means are zero = cosine similarity

Absolute amount

Pattern

Euclidean distance / Squared error

$$d(x^{(1)}, x^{(2)}) = \sum_{k=1}^{P} (x_k^{(1)} - x_k^{(2)})^2$$

Correlation

$$d(x^{(1)}, x^{(2)}) = \sum_{k=1}^{P} \frac{\left(x_k^{(1)} - \bar{x}^{(1)}\right) \left(x_k^{(2)} - \bar{x}^{(2)}\right)}{\sqrt{\sum_{k=1}^{P} \left(x_k^{(1)} - \bar{x}^{(1)}\right)^2} \sqrt{\sum_{k=1}^{P} \left(x_k^{(2)} - \bar{x}^{(2)}\right)^2}}$$

*If means are zero = cosine similarity

Clustering in terms of dissimilarity

Types of clustering algorithms

K-means

Find prototypes and clusters that minimize

$$J = \sum_{l=1}^{L} \sum_{i \in C_l} d(x^{(i)}, \tilde{x}_l)$$

- (0) Initialize clusters (At random, far apart points, domain knowledge, another clustering)
- (I) Iterate until clusters do not change
 - (a) Find best cluster for each point $x^{(i)}$ $\min_{1,\dots,l} d(x^{(i)}, \tilde{x}_l)$
 - (b)Compute prototype \tilde{x}_l for each cluster C_l

Centroid: d = squared error

$$\tilde{x}_l = \frac{1}{|C_l|} \sum_{i \in C_l} x^{(i)}$$

Center: any dissimilarity

$$\tilde{x}_l = x^{(\tilde{j})} : \tilde{j} = \underset{j \in C_l}{\operatorname{argmin}} \sum_{i \in C_l} d(x^{(i)}, x^{(j)})$$

^{*} Also known as k-medoids

^{*} Simulation done by Karianne Bergen

^{*} Simulation done by Karianne Bergen

Pick initial centroids
Assign initial clusters
Update centroids

^{*} Simulation done by Karianne Bergen

Pick initial centroids
Assign initial clusters
Update centroids
Reassign clusters

^{*} Simulation done by Karianne Bergen

Pick initial centroids
Assign initial clusters
Update centroids
Reassign clusters
Update centroids

^{*} Simulation done by Karianne Bergen

Pick initial centroids
Assign initial clusters
Update centroids
Reassign clusters
Update centroids
Reassign clusters

^{*} Simulation done by Karianne Bergen

Pick initial centroids
Assign initial clusters
Update centroids
Reassign clusters
Update centroids
Reassign clusters
Update centroids
Update centroids

^{*} Simulation done by Karianne Bergen

Pick initial centroids
Assign initial clusters
Update centroids
Reassign clusters
Update centroids
Reassign clusters
Update centroids
Reassign clusters
Update centroids
Reassign clusters

^{*} Simulation done by Karianne Bergen

Pick initial centroids
Assign initial clusters
Update centroids
Reassign clusters
Update centroids
Reassign clusters
Update centroids
Reassign clusters
Update centroids
Converged

^{*} Simulation done by Karianne Bergen

Challenges of K-means

All clusters are spherical and of the same size.

Sensibility to outliers depending on dissimilarity measure

Fixed number of clusters

Choose number of clusters
$$J = \sum_{l=1}^{L} \sum_{i \in C_l} d(x^{(i)}, \tilde{x}_l)$$

Choose number of clusters

$$J = \sum_{l=1}^{L} \sum_{i \in C_l} d(x^{(i)}, \tilde{x}_l)$$

Some heuristics:

- ✓ For each k repeat multiple times and select best J
- ✓ Find "elbow" in K vs J

K-means for compression

K-means + Replace by centroid

Pixels

K=20

K=3

K=5

Hierarchical Clustering

Create dendrogram

Tree hierarchy

Hierarchical Clustering

Create dendrogram

Tree hierarchy

- (0) Start with N clusters (each observation is a cluster)
- (I) Repeat until I cluster left
 - (a) Merge clusters with the least dissimilarity (dissimilarity = height in dendrogram)
 - (b) Compute dissimilarity between clusters = Linkage

Complete linkage

 $\max_{x^{(i)} \in C_1} d(x^{(i)}, x^{(j)})$ $x^{(j)} \in C_2$

Single linkage

$$\min_{\substack{x^{(i)} \in C_1, \\ x^{(j)} \in C_2}} d(x^{(i)}, x^{(j)})$$

Average linkage

$$\sum_{\substack{x^{(i)} \in C_1, \\ x^{(j)} \in C_2}} \frac{d(x^{(i)}, x^{(j)})}{|C_1| |C_2|}$$

Centroid linkage

$$\min_{\substack{x^{(i)} \in C_1, \\ x^{(j)} \in C_2}} d(x^{(i)}, x^{(j)}) \quad \sum_{\substack{x^{(i)} \in C_1, \\ x^{(j)} \in C_2}} \frac{d(x^{(i)}, x^{(j)})}{|C_1| |C_2|} \quad d\left(\sum_{\substack{x^{(i)} \in C_1}} \frac{x^{(i)}}{|C_1|}, \sum_{\substack{x^{(j)} \in C_2}} \frac{x^{(j)}}{|C_2|}\right)$$

Challenges of Hierarchical Clustering

Sensibility to dissimilarity & linkage

FIGURE 10.12, ISL (8th printing 2017)

Recompute linkage at each step.

Types of clustering algorithms

How to check robustness?

- ✓ How clusters change using subsets of data
- √ How clusters change changing parameters

Hard clustering vs soft clustering

K-means, Hierarchical

Soft Clustering

Gaussian Mixture models

Gaussian Mixture Models (Informally)

Assumption: Mixture model

$$P(X_i = x)$$
= $P(Z_i = 1)P(X_i = x | Z_i = 1)$
+ $P(Z_i = 2)P(X_i = x | Z_i = 2)$
+ $P(Z_i = 3)P(X_i = x | Z_i = 3)$

To do: Characterize

- I. Marginal $P(X_i = x | Z_i = k): \mu_k, \Sigma_k$
- 2. Contribution $P(Z_i = k)$

GMM: Expectation-Maximization algorithm (Informally)

- (0) Initialize marginals: μ_k , Σ_k (At random, another clustering)
- (I) Iterate until convergence
 - (a) E-step: Responsibility/weight each observation i for each cluster j

$$\gamma_{Z_i}(k) = P(Z_i = k | X_i) = \frac{P(X_i | Z_i = k)P(Z_i = k)}{P(X_i)}$$
 Bayes' rule

(b) M-step: Compute weighted mean and variance, using all observations

$$\hat{\mu_k} = rac{\sum_{i=1}^n \gamma_{z_i}(k) x_i}{\sum_{i=1}^n \gamma_{z_i}(k)} = rac{1}{N_k} \sum_{i=1}^n \gamma_{z_i}(k) x_i \qquad \hat{\sigma_k^2} = rac{1}{N_k} \sum_{i=1}^n \gamma_{z_i}(k) (x_i - \mu_k)^2 \ \hat{\pi_k} = rac{N_k}{n} = P(Z_i = k)$$

GMM: Expectation-Maximization algorithm (Informally)

Challenges of Gaussian Mixture Models

Select form of covariance matrix.

Fixed number of components

Dissimilarity/Similarity

