Geometrie WS 19/20

Dozent: Prof. Dr. ULRICH KRÄHMER

18. Oktober 2019

In halts verzeichnis

Ι	Gruppen		
	1	Wiederholung	2
	2	Nebenklassen, Normalteiler, Isomorphiesätze	Ę
	3	Morphismen	7
Anl	${f g}$	9	
Inde	ex		9

Vorwort

Kapitel I

Gruppen

1. Wiederholung

Definition 1.1 (Halbgruppe, Monoid, Gruppe)

Eine Halbgruppe ist eine Menge G mit einem assoziativen Produkt

$$\cdot: G \times G \to G$$
.

Ein Monoid ist eine Halbgruppe, in der ein Element $1 \in G$ existiert mit

$$1 \cdot x = x \cdot 1 \quad \forall x \in G.$$

Eine Gruppe ist ein Monoid, in dem für jedes $x \in G$ ein $y \in G$ existiert mit

$$xy = yx = 1$$
.

▶ Bemerkung 1.2

1 ist eindeutig, wenn es genau ein y existiert, was durch x eindeutig bestimmt wird, da $x^{-1} := y$.

Definition 1.3 (Morphismus)

Ein Morphismus zwischen Gruppen G, H ist eine Abbildung

$$f: G \to H \text{ mit } f(xy) = f(x)f(y) \quad \forall x, y \in G.$$

Satz 1.4

Ist $f:G\to H$ ein Morphismus von Gruppen, so gilt

$$f(1_G) = 1_H \text{ und } f(x^{-1}) = f(x)^{-1} \quad \forall x \in G$$

Beweis. Für alle $x \in G$ gilt $f(x) = f(1 \cdot x) = f(1)f(x)$. Gilt in einer beliebigen Gruppe jedoch ab = b für zwei Elemente a, b, so folgt

$$(ab) \cdot b^{-1} = a(bb^{-1}) = a \cdot 1 = a \text{ mit } bb^{-1} = 1$$

Ferner gilt $f(x) \cdot f(x^{-1}) = f(x \cdot x^{-1}) = f(1) = 1$ wie schon gezeigt (und genauer $f(x^{-1})f(x) = 1$. Also $f(x^{-1}) = f(x)^{-1}$).

■ Beispiel 1.5

1. Sei X beliebige Menge und $S_X = \{f : X \to X \mid f \text{ bijektiv}\}$ ist eine Gruppe bezüglich Komposition mit $1 = \mathrm{id}_X$. Insbesondere ist $S_n = \{S_{\{1,\dots,n\}}\}$ symmetrische Gruppe und ein Element $f \in S_n$ ist eine Permutation.

- 2. $GL(V) = \{ f \in S_V \mid f \text{ linear} \}$, wobei V ein R-Modul ist mit kommutativen assoziativen Ring mit 1.
- 3. \mathbb{Z}, \mathbb{Z}_n unter Addition

$$U_n = \mathbb{Z}_n^{\times} = \{ m \in \{0, \dots, n-1\} \mid ggT(m, n) = 1 \} \quad \forall x, y \in G \colon xy = yx \}$$

wobei beide Gruppen abelsch sind.

4.
$$G = U(1) = \{z \in C \mid |z| = 1\} = \{e^{it} \mid f \in [0, 2\pi]\}$$

5. $G = U(1) \times SU(2) \times SU(3)$ Eichgruppe im Standardmodell der Elementarteilchen

Definition 1.6 (Ordnung)

Ist G endlich, so nennt man |G| die Ordnung von G.

■ Beispiel 1.7

 $|S_n| = n!$

Definition 1.8 (p-Gruppe)

Ist $|G|=p^n$ für eine Primzahl p, so nennt man G eine p-Gruppe. $(n\in\mathbb{N})$

Definition 1.9 (Untergruppe)

Sei G Gruppe. Eine Teilmenge $H \leq G$ ist eine Untergruppe H < G, wenn

- 1. Für alle $x, y \in H$ $xy \in H$
- $2. \ 1 \in H$
- 3. Für alle $x \in H \exists x^{-1} \in H$

Satz 1.10

Ist $|G| \leq \infty$, so folgt 2) aus 1) und $H \neq \emptyset$.

Beweis. Sei $x \in H$ ein beliebiges Element. Aus 1) folgt $x^n \in H$ für alle $n \in \mathbb{N}_+$. Da $|G| < \infty$ existiert $n \neq m$ mit $x^n = x^m$. O.b.d.A.

$$n > m \iff x^{n-m}x^m = x^n$$

 $\iff x^{n-m} = 1$

Also gilt 2). Ferner impliziert die Existenz der inversen Elemente, dass die Linkstranslation $t_x: G \to G$ mit $y \mapsto xy$ $(x \in G$ fest) injektiv ist, denn $(t_x)^{-1} = t_{x^{-1}}$. Ist $x \in H$, so heißt 1) gerade $t_x(H) \subseteq H$, sprich t_x kann zu $t_{x|H}.H \to H$ eingeschränkt werden. Die Einschränkung einer injektiven Abbildung ist injektiv. Da $|H| \leq |G| < \infty$, folgt $t_{x|H}: H \to H$ surjektiv. Aber existiert $y \in H: t_x(y) = 1$. Eindeutigkeit von x^{-1} heißt $y = x^{-1} \in H$. \square

Definition 1.11 (Erzeugendensystem)

Ist $X \subseteq G$, so ist

$$\langle X \rangle = \bigcap_{\substack{H < G \\ X \subset H}} H$$
 die von X erzeugte Untergruppe.

Ist $\langle X \rangle = G$ nennen wir X ein Erzeugendensystem.

Definition 1.12 (Konjugation)

Ist H < G und $x \in G$, so ist $X^{-1}Hx = \{x^{-1}Hx \mid y \in H\}$ eine Untergruppe (" $x^{-1}yx$ " y ist konjugiert mit x). Wir nennen diese zu H konjugiert.

$$(x^{-1}yx)^{-1} = x^{-1}y^{-1}x$$
 und $x^{-1}yx \cdot x^{-1}zx = x^{-1}yzx$

Definition 1.13 (Konjugationsklasse)

Die Menge $\{x^{-1}yx \mid x \in G\}$ ist i.A. <u>keine</u> Untergruppe und diese nennt man <u>Kojugationsklasse</u> von y.

Definition 1.14 (Zentralisator, Zentrum)

Der Zentralisator von $y \in G$ ist $\{x \in G \mid xy = yx\} =: Z_G(y)$. Das Zentrum von G ist

$$Z(G) = \bigcap_{y \in G} Z_G(y) = \{ x \in G \mid \forall y \in Gxy = yx \}.$$

■ Beispiel 1.15

Sei $G = S_n \ni f$ Permutation, z.B.

$$S_6 \in \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 4 & 6 & 1 & 2 & 3 \end{pmatrix} = (1524)(36)$$

letzteres nennt man Zykelnotation. 1-Zykeln, d.h. $i \in \{1, ..., n\}$ mit f(i) = i werden meist nicht notiert, z.B.:

$$S_4 \in \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{pmatrix} = (12)$$

▶ Bemerkung 1.16

Ein k-Zykel ist ein Produkt von k-1 Transpositionen (2-Zykel), z.B.

$$(12345) = (15)(14)(13)(12)$$

ist das Produkt in S_5 , d.h. Komposition! Also erzeugt $\{(y)\}$ die S_n . Jede Permutation kann also als Produkt von Transpositionen geschrieben werden. Diese Darstellung ist nicht eindeutig! (z.B. (12)(23)(12) = (23)(12)(23)) ("Braid relation") und (12)(12) = (). Allerdings kommen in jeder solcher Darstellungen entweder eine gerade oder ungerade Anzahl von Transpositionen vor. (\rightarrow Fehlstände). Insbesondere bilden gerade Permutationen (gerade Anzahl an Fehlständen \Leftrightarrow Produkte von zu Transpositionen) eine Untergruppe $A_n < S_n$, die sogenannte alternierende Gruppe.

Sei G eine endliche Gruppe.

■ Beispiel 1.17

Also G = GL(n, R) = invertierbare Matrizen mit Einträgen in R (nur endliche, wenn R^{\times} endlich!). Untergruppen sind

•
$$SL(n,R) = \{g \in GL(n,R) \mid \det g = 1\}$$

- $O(n,R) = \{g \in G \mid gg^T = g^Tg = 1\}$ mit dem Skalarprodukt $\langle gv, gw \rangle = \langle v, w \rangle$ $\forall v, w \in R^n$
- $SO(n,R) = \{g \in G \mid ...\}$

Ist R Ring mit Involuten (z.B. $R = \mathbb{C}, z = \bar{z}$)

- $U(n,R) = \{g \in GL(n,R) \mid gg^* = g^*g = 1\}$
- $SU(n,R) = SL(n,R) \cap U(n,R)$

■ Beispiel 1.18

 $D_n = \{f : \mathbb{R}^2 \to \mathbb{R}^2 \mid \text{linear, bjektiv} \mid f(P_n) = P_n\}$, wobei $P_n \subset \mathbb{R}^2$ das regulär n-gen ist. P_6 ist das Hexagon Alternativ ist $D_n \subseteq S_n$, wobei $\{1, \ldots, n\}$ mit der Menge der Ecken von P_n identifiziert wird und man erhält alle Permutationen, die benachbarte Ecken auf benachbarte abbilden

- $r = \text{Rotation um } 2\pi/n \text{ im mathematische positiven Sinn}$
- $s = \text{eine beliebige Spiegelung in } D_n$ Also hat man

$$\langle \{s, r\} \rangle = D_n = \{s^i r^j \mid i = 0, 1, j = 0, \dots, n - 1\} \quad |D_n| = 2n$$

$$srs = r^{n-1} = r^{-1} \quad r^n = 1 \quad s^2 = 1$$

$$\langle \{r, s\} \rangle = D_\alpha \subset S_\mathbb{Z} \quad r(z) = z + 1 \quad s(z) = -z \quad r, s : \mathbb{Z} \to \mathbb{R}$$

2. Nebenklassen, Normalteiler, Isomorphiesätze

Definition 2.1

 $A, B \subseteq G$ Teilmengen (nicht unbedingt Untergruppen!)

$$AB = \{xy \in G \mid x \in A, y \in B\} \quad A^{-1} = \{x^{-1} \in G \mid x \in A\}$$

▶ Bemerkung 2.2

 $\varnothing \neq H \subseteq G$ ist Untergruppe $\Leftrightarrow HH = H, H^{-1} = H$

Definition 2.3

Ist $x \in G$, so nennen wir $f_x : G \to G$ mit $y \mapsto x^{-1}yx$ den durch x definierer inneren Automorphismus. Ist H < G, so nennen wir $f(H) = x^{-1}Hx$ eine zu H konjugierte Untegruppe.

Satz 2.4

- 1. f_x ist ein Endomorphismus von G (d.h. ein Morphismus $G \to G$)
- 2. Das Bild Imfeines beliebigen Gruppenmorphismus $f:K\to L$ ist eine Untergruppe: Imf< L

Beweis. 1. $f_x(yz) = x^{-1}yzx = x^{-1}y(xx^{-1})zx = (x^{-1}yx)(x^{-1}zx) = f_x(y)f_x(z) \ \forall y, z \in G$

2. • Im f ist abgeschlossen. Seien $f(y), f(z) \in \text{Im } f$. Dann gilt:

$$f(y)f(z) = f(yz) \in \operatorname{Im} f$$

• $f(1) = 1 \implies 1 \in \operatorname{Im} f$

•
$$f(x)^{-1} = f(x^{-1}) \implies (\operatorname{Im} f)^{-1} = \operatorname{Im} f$$

Definition 2.5

Ist $H < G, x \in G$, so nennt man

$$G\supseteq xH=\{x\}H=\{xy\in G\mid y\in H\}\quad \text{linke Nebenklasse}$$

$$G \supseteq Hx = \{yx \in G \mid y \in H\}$$
 rechte Nebenklasse

■ Beispiel 2.6

Sei G = V Vektorraum über Körper K mit + als Gruppenstruktur, dann ist H = W < V ein Untervektorraum und $xH = x + W \subseteq V$ affiner Unterraum, Element von V/W

Dies verallgemeinert sich zu

Definition 2.7

Sei
$$H < G, G/H = \{xH \mid x \in G\} \subseteq \mathcal{P}(G)$$

▶ Bemerkung 2.8

 $xH = yH \Leftrightarrow x \sim y$ definiert eine äquivalenzrelation und das ist äquivalent zu $\exists h \in H : x = yh \Leftrightarrow y^{-1}y \in H$. Beachte dabei G/H = G/N ist die Menge aller Äquivalenzklassen xH = [x]. Desweiteren gibt es die kanonische Projektion $\pi : G \to G/H$ mit $x \mapsto xH$.

Insbesondere ist G die disjunkte Vereinigung aller Äquivalenzklassen. Speziell ist für jedes $x \in G$ definiert:

$$t_x: G \to G \text{ mit } y \mapsto xy \text{ eine Bijektion} \quad H = 1H = [x] \to xH = [x].$$

Alle xH haben also die gleiche Kardinalität und wir erhalten:

Satz 2.9 (Lagrange, Klausur!)

Sei $|G| < \infty$ und H < G. Dann gilt $|G| = |G/H| \cdot |H|$. Insbesondere ist |G| durch |H| teilbar.

Beweis. Beweisskizze: Äquivalenzrelation und Bijektion $xH \cong yH$.

?, eventuell von Fehm übernehmen?!

Folgerung 2.10

Sei $|G| < \infty$, dann $|x| \mid |G|$ für alle $x \in G$. Dabei ist $|x| = |\langle \{x\} \rangle| = \min\{n \mid x^n = 1\}$. Also z.B. $\langle \{x\} \rangle \cong (\mathbb{Z}_{|x|}, +)$. Insbesondere gilt für alle $x \in G$ $x^{|G|} = 1$

Folgerung 2.11 (Eulers Theorem)

 $|U_n| = \varphi(n) = |\{m \in \{1, \dots, n\} \mid ggT(n, m) = 1\}| = |\{(\mathbb{Z}_n^{\times}, \cdot) \mid ggT(n, m) = 1\}| \text{ mit } n \in \mathbb{N}. \text{ Also ist } m^{\varphi(n)} = 1 \mod n.$

Definition 2.12 (Index)

Sei H < G, dann |[G : H]| := |G/H| Index vo H in G.

Folgerung 2.13

Sei K < H < G und $|G| < \infty$, dann

$$[G:K] = |G/K| = \frac{|G|}{|H|} \cdot \frac{|H|}{|K|} = [G:H][H:K].$$

3. Morphismen

Definition 3.1

Ein injektiver Morphismus $f:G\to H$ wird auch Einbettung genannt. Ein Isomorphismus ist ein bijektiver Morphismus.

▶ Bemerkung

Ein injektiver Morphismus wird auch Monomorphismus genannt und ein surjektiver Morphismus Epimorphismus.

■ Beispiel 3.2

1. Betrachte die Determinate det : $GL(n,R) \to R^{\times}$, diese ist ein surjektiver Morphismus von Gruppen mit

$$\det(gh) = \det(g)\det(h)$$

2. Die Wahl einer Basis B in einem endlich erzeugten freien Modul V ist ein Isomorphismus von Moduln $s_B: R^{|B|} \to V$. Dieser induziert einen Gruppenisomorphismus

$$\operatorname{GL}(n,R) \to \operatorname{GL}(V)$$
 mit $g \mapsto s_B \circ M_g \circ s_B^{-1}$

3. Die Linkstranslation $t: G \to S_G$ mit $x \mapsto t_x$ (mit $t_x(x) = xy$) ist ein injektiver Gruppenhomomorphismus

$$(t_x \circ t_z)(y) = t_x(t_z(y)) = t_x(zy) = xzy = t_{xz}(y)$$

$$alsot_x \circ t_y = t_{xz} \quad \forall x, z \in G$$

Ist
$$t_x = t_z$$
, so gilt $t_x(1) = t_z(1)$ und daraus $x1 = z1$, also $x = z$

Also kann jede endliche Gruppe als Untergruppe der S_n verstanden werden (n = |G|)!

■ Beispiel 3.3

1. Setze $x \mapsto f_{x^{-1}}: G \to G, y \mapsto xyx^{-1}$ ist ein Morphismus $G \to \mathrm{Ad}(G)$ mit

$$f_x(y) = x^{-1}yx$$
 $f_z(f_x(y)) = z^{-1}(x^{-1}yx)z = (xz)^{-1}y(xz) = f$

2. A nicht injektiv! Denke an G abelsch $\Leftrightarrow f_x = \mathrm{id}_G \, \forall x \in G$

3.
$$\operatorname{sgn}: S_n \to \mathbb{Z}_2 = \{-1, 1\}$$

\mathbf{Index}

<i>p</i> -Gruppe, 3	Ordnung, 3
alternierende Gruppe, 4	Permutation, 2
Gruppe, 2	symmetrische Gruppe,
Halbgruppe, 2	Untergruppe, 3
Kojugationsklasse, 4	Zentralisator, 4
	Zentrum, 4
Monoid, 2	Zykelnotation, 4