

Back Propagation

Back Propagation makes Neural Networks Trainable

Back Propagation

This is what makes Neural Networks Trainable:)

- The importance of Back Propagation cannot be understated
- Using the loss, it tells us how much to change/update the gradients by so that we reduce the overall loss

Back Propagation Example

Explained Using Neural Networks

- Let's look at a regular Neural Network above.
- Using the Loss value, Back Propagation can tells us whether a small increase of W_5 to 0.6001 or a small decrease 0.5999 will lead to a reduction in the overall loss

Back Propagation Example

- Moving right to left
- Back Propagation gives us the new gradient or weight values for each node so that the overall loss is decreased
- This is done for all nodes

Back Propagation Process

- By forward propagating input data we can use back propagation to lower the weights to lower the loss
- But, this simply tunes the weights for that particular input (or batch of inputs)
- We improve Generalisation (ability to make good predictions on unseen data) by using all data in our training dataset
- By continuously changing the weights for each data input (or batch of images)
 we are lowering the overall loss for our training data.

What do our Weights or Gradients Look Like?

Let's look at a Simple Neural Network

- The output from Hidden Node 1 is:
 - $H_1 out = i_1 w_1 + i_2 w_2 + b_1$

For a Convolutional Neural Network

1	0	1	0	1
1	0	0	1	1
0	1	1	0	0
1	0	0	1	0
0	0	1	1	0
	Input	t Image	Э	

The values of our Filter/Kernel are the weights!

How does Back Propagation Work?

Chain Rule!

• If we have two functions y = f(u) and u = g(x) then the derivative of y is:

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

A Simple Back Propagation Example

- We want to know how much changing W_5 changes the Total Error.
- That is given by:

•
$$\frac{dE_T}{dW_5}$$

• Where E_T is the sum of the error from Outputs 1 and 2 (see below)

A Simple Back Propagation Example

New
$$W_5 = -\lambda \times \frac{dE_T}{dW_5}$$

- Note we introduced a new parameter λ
- λ is our learning rate
- It controls how a big a jump (positive or negative) we take when updating $W_{\mathbf{5}}$
- Large learning rates train faster, but can get stuck in a Global Minimum
- Small learning rates train more slowly

Next...

Gradient Descent

