Introdução aos Processos Estocásticos

Luiz Renato Fontes

Reversão no tempo

Propriedade de Markov: simétrica no tempo;

Convergência ao equilíbrio: assimétrica

Distr inicial de equilíbrio: restaura simetria temporal

Teorema 1. Seja **P** irredutível e com distr inv π , e **X** \sim CM(π , **P**).

Dado $N \ge 0$, seja $Y_n = X_{N-n}$, $n = 0, \dots, N$.

Então $(Y_n)_{0 \le n \le N} \sim \mathsf{CM}(\pi, \hat{\mathbf{P}})$, onde $\hat{\mathbf{P}} = (\hat{P}_{xy})_{x,y \in \mathcal{S}}$ é dada por

$$\pi_{\mathsf{x}} P_{\mathsf{x}\mathsf{y}} = \pi_{\mathsf{y}} \hat{P}_{\mathsf{y}\mathsf{x}}$$

Além disto, $\hat{\mathbf{P}}$ é irredutível e tem distr inv π .

Dem. Vamos verificar que

1) $\hat{\mathbf{P}}$ é estocástica: dado $x \in \mathcal{S}$,

$$\textstyle \sum_{y \in \mathcal{S}} \hat{P}_{xy} \stackrel{*}{=} \frac{1}{\pi_x} \sum_{y \in \mathcal{S}} \pi_y P_{yx} \stackrel{\mathsf{inv}}{=} \frac{1}{\pi_x} \pi_x = 1.$$

^{*}Lembre que $\pi_x > 0 \ \forall x \in \mathcal{S}$.

2) π é inv para $\hat{\mathbf{P}}$: dado $x \in \mathcal{S}$,

$$\sum_{x \in \mathcal{S}} \pi_x \hat{P}_{xy} = \sum_{x \in \mathcal{S}} \pi_y P_{yx} = \pi_y \sum_{x \in \mathcal{S}} P_{yx} = \pi_y.$$

3) PM: Dados $x_0, \ldots, x_N \in \mathcal{S}$.

$$\mathbb{P}(Y_{0} = x_{0}, Y_{1} = x_{1} \dots, Y_{N} = x_{N})$$

$$= \mathbb{P}(X_{0} = x_{N}, X_{1} = x_{N-1} \dots, X_{N} = x_{0})$$

$$= \pi_{x_{N}} P_{x_{N} \times N-1} \cdots P_{x_{1} \times 0}$$

$$= \underbrace{\frac{\pi_{x_{N}}}{\pi_{x_{N-1}}}}_{\hat{P}_{x_{N} \times N-1}} \pi_{x_{N-1}} P_{x_{N-1} \times N-2} \cdots P_{x_{1} \times 0} = \dots =$$

$$= \hat{P}_{x_{N-1} \times N} \hat{P}_{x_{N-2} \times N-1} \cdots \hat{P}_{x_{0} \times 1} \pi_{x_{0}}, \qquad (2)$$

e concluímos da Propo 1 (da 1^a aula) que $(Y_n)_{0 \le n \le N} \sim CM(\pi, \hat{\mathbf{P}})$.

(2)

4) Irredutibilidade: Da irred de **P**, temos que dados $x, y \in S$, existem $n \ge 0$ e $x = x_0, \dots, x_n = y$ tq

$$P_{x_0x_1}\cdots P_{x_{n-1}x_n}>0.$$

Então
$$\hat{P}_{x_n x_{n-1}} \cdots \hat{P}_{x_1 x_0} \stackrel{(1,2)}{=} \frac{\pi_{x_n}}{\pi_{x_n}} P_{x_0 x_1} \cdots P_{x_{n-1} x_n} > 0.$$

Def. Dadas uma matriz estocástica ${\bf P}$ e uma medida μ , dizemos que μ e ${\bf P}$ estão *em equilíbrio detalhado*, se

$$\mu_{x}P_{xy} = \mu_{y}P_{yx}, \ \forall x, y \in \mathcal{S}$$
 (3)

Lema 1. Se μ e **P** estiverem em equilíbrio detalhado, então μ é invariante para **P**.

Dem. Somando (3) em $y \in S$:

$$\sum_{y \in \mathcal{S}} \mu_y P_{yx} = \sum_{y \in \mathcal{S}} \mu_x P_{xy} = \mu_x \sum_{y \in \mathcal{S}} P_{xy} = \mu_x.$$

Reversibilidade

Def. Dada $\mathbf{X} \sim \mathsf{CM}(\mu, \mathbf{P})$, dizemos que \mathbf{X} é *reversível* se para todo $N \geq 0$, $(X_{N-n})_{0 \leq n \leq N} \sim \mathsf{CM}(\mu, \mathbf{P})$.

Teorema 2. Sejam $\mathbf P$ uma ME irredutível e μ uma prob em $\mathcal S$. Suponha que $\mathbf X \sim \mathsf{CM}(\mu, \mathbf P)$. Então as duas afirmações a seguir são equivalentes.

- (i) X é reversível;
- (ii) μ e **P** estão em equilíbrio detalhado.

Dem. (ii \Rightarrow i) Do Lema 1, temos que μ é invariante para \mathbf{P} ; de (3) e da def de \hat{P} , temos que $\hat{P} = P$. Do Teo 1, temos que $(Y_n)_{0 \le n \le N} \sim \mathsf{CM}(\mu, \mathbf{P})$.

(i \Rightarrow ii) Da def de reversibilidade com N = 1:

$$\underbrace{\mathbb{P}(X_0 = x, X_1 = y)}_{\mu_x P_{xy}} = \underbrace{\mathbb{P}(X_0 = y, X_1 = x)}_{\mu_y P_{yx}} \qquad \Box$$

Reversibilidade (cont)

Obs. As identidades em (3) podem ser tratadas como um sistema de equações lineares para μ , cujas soluções, se houver, são medidas invariantes para \mathbf{P} . Se estas medidas invariantes forem finitas, então podem ser normalizadas para fornecer uma distribuição invariante.

Exemplos. 1)
$$P = \begin{pmatrix} 0 & 2/3 & 1/3 \\ 1/3 & 0 & 2/3 \\ 2/3 & 1/3 & 0 \end{pmatrix}$$

P é irred e duplamente estocástica[†], logo, $\pi = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ é a distr invariante.

Mas π e ${\bf P}$ não estão em eq det e logo a cadeia não é reversível.

 $^{^{\}dagger}\sum_{x\in\mathcal{S}}P_{xy}=1\;\forall\;y\in\mathcal{S}$

Exemplos (cont)

2) PAS com reflexão na fronteira

$$p=1-q\in(0,1)$$

As eqs de ED são: $\mu_x \overbrace{P_{\mathsf{xx}+1}}^p = \mu_{\mathsf{x}+1} \overbrace{P_{\mathsf{x}+1\mathsf{x}}}^q, \ \mathsf{x} = 0, \dots, M-1.$

Equivalente/e: $\mu_{x+1} = \frac{p}{q} \mu_x$, $x = 0, \dots, M-1$.

Uma solução: $\mu_x = \left(\frac{p}{q}\right)^x$, $x = 0, \dots, M$.

Logo, μ normalizada, π , digamos, é a distribuição invariante, e a cadeia começando de π é reversível $(\forall p \in (0,1))$.

2') $M = \infty$: resultado vale se 0 .

Exemplos (cont)

3) PAS num grafo conexo

Seja $G=(\mathcal{S},\mathcal{E})$ um grafo, em que \mathcal{S} são os sítios e \mathcal{E} os elos (conectando ptos de \mathcal{S}). Por ex:

$$\mathcal{S} = \{1, 2, 3, 4\}$$

$$\mathcal{E} = \{(1, 2), (1, 3), (2, 3), (2, 4), (3, 4)\}$$

 $P/x \in \mathcal{S}$, seja $V_x = \{y \in \mathcal{S} : (x,y) \in \mathcal{E}\}$ o cj de viz + próx de x, e $v_x = val$ ência de $x = \#V_x$, o número de tais vizinhos.

Como G é suposto conexo: $v_x > 0 \ \forall x \in \mathcal{S}$. Vamos supor adicionalmente que $v_x < \infty \ \forall x \in \mathcal{S}$.

Ex 3 (cont)

CM: A partir de $x \in S$, a cadeia salta para um dos vizinhos de x uniforme/e ao acaso, ie,

$$P_{xy}=\frac{1}{v_x},\ y\in V_x.$$

Então, a medida $\nu := \{v_x, x \in \mathcal{S}\}$ está em eq det com **P** (clara/e);

logo, se $\mathcal S$ for finito, como $\mathbf P$ é irred,

$$\pi = \frac{1}{\sigma} \nu$$
, $\sigma = \sum_{x \in \mathcal{S}} v_x$, é a distr inv de **P**,

e **X** \sim CM(π , **P**) é reversível.

Exemplos (cont)

3') Cavalo de xadrez aleatório

A cada salto, cavalo faz todo movimento permitido com igual prob.

Começando de um canto, qto tempo em média leva para voltar?

Ex 3' (cont)

 $v_c=2$, e verifique que a CM é irredutível, e que no tabuleiro (completo) de xadrez há

- 4 casas com valência 2,
- ▶ 8 casas com valência 3,
- ▶ 20 casas com valência 4,
- 16 casas com valência 6 e
- ▶ 16 casas com valência 8

$$\therefore \mathbb{E}_{c}(T_{c}) = \frac{1}{\pi_{c}} = \frac{1}{\frac{v_{c}}{\sum_{x \in \mathcal{S}} v_{x}}} = \frac{\sum_{x \in \mathcal{S}} v_{x}}{v_{c}}$$

$$= \frac{4 \times 2 + 8 \times 3 + 20 \times 4 + 16 \times 6 + 16 \times 8}{2}$$

$$= 168$$

Teorema Ergódico

Seja **X** uma CM em $\mathcal S$ com MT **P**. Para $x \in \mathcal S$ e $n \ge 1$, seja

$$V_x(n) = \sum_{i=0}^{n-1} \mathbb{1}\{X_i = x\}$$
 o # de visitas de **X** a x até o inst $n-1$.

Teorema 2 (Teorema Ergódico)

Suponha ${\bf P}$ irredutível, e tomemos μ uma prob qualquer em ${\cal S}$. Seja ${\bf X} \sim {\sf CM}(\mu,{\bf P})$.

- a) Então, para todo $x \in \mathcal{S}$: $\frac{V_x(n)}{n} \xrightarrow[n \to \infty]{} \frac{1}{m_x}$ qc.
- b) Se além disto, **P** for rec pos, então $\forall f : S \to \mathbb{R}$ limitada, temos:

$$\frac{1}{n}\sum_{i=0}^{n-1}f(X_i)\overset{\mathrm{qc}}{\underset{n\to\infty}{\longrightarrow}}\bar{f}:=\mathbb{E}_{\pi}\big(f(X_0)\big)=\sum_{x\in\mathcal{S}}f_x\pi_x,$$

onde π é a distr inv para **P**.

Dem. Teo 2

a) Se **P** for transitória, então $V_x(\infty) = \lim_{n \to \infty} V_x(n) < \infty$ qc.

$$\therefore \quad \limsup_{n \to \infty} \frac{V_x(n)}{n} \le \limsup_{n \to \infty} \frac{V_x(\infty)}{n} = 0 \text{ qc}$$

Se **P** for recorrente, então, dado $x \in \mathcal{S}$, seja H^x o tempo de chegada a x. Pela PFM, $(X_{H_x+n})_{n\geq 0} \sim \mathsf{CM}(\delta_x, \mathbf{P})^{\ddagger}$, e

$$\left| \frac{1}{n} \sum_{i=0}^{n-1} \mathbb{1} \{ X_i = x \} - \frac{1}{n} \sum_{i=0}^{n-1} \mathbb{1} \{ X_{H^x + i} = x \} \right|$$

$$= \frac{1}{n} \sum_{i=n}^{n-1+H^x} \mathbb{1} \{ X_i = x \}^{\S} \le \frac{H^x}{n} \underset{n \to \infty}{\longrightarrow} 0 \text{ qc,}$$

já que $H^x < \infty$ qc.

Basta então considerar o caso em que $\mu = \delta_x$.

 $^{^{\}ddagger}\delta_{x}$ é a distr em \mathcal{S} que atribui prob 1 a x.

 $[\]sum_{i=n}^{n-1} \cdots = 0$ por conv.

Sejam
$$T_x^{(0)} = 0$$
, e p/ $r \ge 1$, $T_x^{(r)} = \inf\{n > T_x^{(r-1)} : X_n = x\}$, e $S_x^{(r)} = T_x^{(r)} - T_x^{(r-1)}$. Pela PFM: $S_x^{(r)}$, $r \ge 1$, é uma seq iid com $\mathbb{E}(S_x^{(1)}) = \mathbb{E}_x(T_x) = m_x$. Note que $T_x^{(r)} = \sum_{i=1}^r S_x^{(i)}$ e $T_x^{(V_x(n)-1)} < n \le T_x^{(V_x(n))}$.

Logo,
$$\frac{V_x(n)-1}{V_x(n)} \frac{T_x^{(V_x(n)-1)}}{V_x(n)-1} \le \frac{n}{V_x(n)} \le \frac{T_x^{(V_x(n))}}{V_x(n)}.$$

Como $V_X(n) \xrightarrow[n \to \infty]{} \infty$ qc (pela recorrência), temos, da Lei Forte dos Grandes Números, que o quociente do lado dir e o 2^o quociente do lado esq, ambos, $\xrightarrow[n \to \infty]{} m_X$ qc \P , e o 1^o quoc do lado esq $\xrightarrow[n \to \infty]{} 1$.

$$\mathsf{Logo}, \ \frac{n}{V_{\mathsf{X}}(n)} \overset{\mathsf{qc}}{\underset{n \to \infty}{\longrightarrow}} m_{\mathsf{X}}, \ \mathsf{e}, \ \mathsf{como} \ m_{\mathsf{X}} > 0, \ \frac{V_{\mathsf{X}}(n)}{n} \overset{\mathsf{qc}}{\underset{n \to \infty}{\longrightarrow}} \frac{1}{m_{\mathsf{X}}}. \qquad \square_{\mathsf{a}_{\mathsf{X}}}$$

b) Podemos supor $\max_{x \in \mathcal{S}} |f(x)| \leq 1$. Então

$$\left| \frac{1}{n} \sum_{i=0}^{n-1} f(X_i) - \bar{f} \right| \leq \sum_{x \in \mathcal{S}} \left| \left(\frac{V_x(n)}{n} - \pi_x \right) f_x \right| \leq \sum_{x \in \mathcal{S}} \left| \frac{V_x(n)}{n} - \pi_x \right|$$

$$= \sum_{x \in \mathcal{U}} \left| \frac{V_x(n)}{n} - \pi_x \right| + \sum_{x \in \mathcal{S} \setminus \mathcal{U}} \left| \frac{V_x(n)}{n} - \pi_x \right|, \tag{2}$$

onde $\mathcal{U} \subset \mathcal{S}$ a ser escolhido mais abaixo.

[¶]Mesmo qdo $m_x = \infty$, como ocorre no caso rec nulo.

A última soma em (2) pode ser cotada superior/e por

$$\sum_{x \in \mathcal{S} \setminus \mathcal{U}} \left(\frac{V_x(n)}{n} + \pi_x \right) = \sum_{x \in \mathcal{S} \setminus \mathcal{U}} \left(\frac{V_x(n)}{n} - \pi_x \right) + 2 \sum_{x \in \mathcal{S} \setminus \mathcal{U}} \pi_x$$

$$= -\sum_{x \in \mathcal{U}} \left(\frac{V_x(n)}{n} - \pi_x \right) + 2 \sum_{x \in \mathcal{S} \setminus \mathcal{U}} \pi_x$$

$$\leq \sum_{x \in \mathcal{U}} \left| \frac{V_x(n)}{n} - \pi_x \right| + 2 \sum_{x \in \mathcal{S} \setminus \mathcal{U}} \pi_x$$

Logo, (2) pode ser cota superior/e por

$$2\sum_{x\in\mathcal{U}}\left|\frac{V_x(n)}{n}-\pi_x\right|+2\sum_{x\in\mathcal{S}\setminus\mathcal{U}}\pi_x.$$

Agora, dado $\varepsilon>0$, escolhamos $\mathcal U$ finito tq $\sum_{x\in\mathcal S\setminus\mathcal U}\pi_x\leq \frac{\varepsilon}{2}$

(o que é possível por π ser prob). Então

$$\limsup_{n\to\infty} \left| \frac{1}{n} \sum_{i=0}^{n-1} f(X_i) - \bar{f} \right| \le 2 \sum_{x \in \mathcal{U}} \left| \underbrace{\lim_{n\to\infty} \frac{V_x(n)}{n} - \pi_x}_{n} \right| + \varepsilon$$

$$= \varepsilon$$

=0, por a)

e o resultado segue de ε ser arbitrário.

