LiteBIRD r statistics

Aditya Rotti

Case	Moments	Param
cMILC00	$I_{ m CMB}$	1
cMILC01	$I_{ m CMB} \; ; \; I_{ m sync}$	2
cMILC02	$I_{ m CMB} \; ; I_{ m dust}$	2
cMILC03	$I_{ m CMB} \; ; \; I_{ m sync} \; ; \; I_{ m dust}$	3
cMILC04	$I_{ m CMB} \; ; \; I_{ m dust} \; ; \; rac{dI_{ m dust}}{deta}$	3
${\rm cMILC05}$	$I_{ m CMB} \; ; \; I_{ m sync} \; ; \; I_{ m dust} \; ; \; rac{dI_{ m dust}}{deta}$	4
cMILC06	$I_{ m CMB} \; ; \; I_{ m sync} \; ; \; I_{ m dust} \; ; \; rac{dI_{ m dust}^{\prime}}{deta} \; ({ m H})$	4
cMILC07	$I_{ m CMB} \; ; \; I_{ m sync} \; ; \; I_{ m dust} \; ; \; rac{dI_{ m sync}}{deta} \; ; \; rac{dI_{ m dust}}{deta}$	5
cMILC08	$I_{ m CMB} \; ; \; I_{ m sync} \; ; \; I_{ m dust} \; ; \; rac{dI_{ m sync}}{deta} \; ; \; rac{dI_{ m dust}}{deta} \; ; \; rac{dI_{ m dust}}{dT} \; ;$	6
cMILC09	$I_{ m CMB} \; ; \; I_{ m sync} \; ; \; I_{ m dust} \; ; \; rac{dI_{ m sync}}{deta} \; ; \; rac{dI_{ m dust}}{deta} \; ; \; rac{dI_{ m dust}}{dT} \; ; \; rac{d^2I_{ m sync}}{d^2eta}$	7
cMILC10	I_{CMB} ; I_{sync} ; I_{dust} ; $\frac{dI_{\mathrm{sync}}}{d\beta}$; $\frac{dI_{\mathrm{dust}}}{d\beta}$; $\frac{dI_{\mathrm{dust}}}{dT}$; $\frac{d^2I_{\mathrm{sync}}}{d^2\beta}$; $\frac{d^2I_{\mathrm{dust}}}{d^2T}$	8
cMILC11	$I_{ m CMB}$; $I_{ m sync}$; $I_{ m dust}$; $rac{dI_{ m sync}}{deta}$; $rac{dI_{ m dust}}{deta}$; $rac{dI_{ m dust}}{dT}$; $rac{d^2I_{ m sync}}{d^2eta}$; $rac{d^2I_{ m dust}}{d^2T}$; $rac{d^2I_{ m dust}}{deta dT}$	9
cMILC12	I_{CMB} ; I_{sync} ; I_{dust} ; $\frac{dI_{\mathrm{sync}}}{d\beta}$; $\frac{dI_{\mathrm{dust}}}{d\beta}$; $\frac{dI_{\mathrm{dust}}}{dT}$; $\frac{d^2I_{\mathrm{sync}}}{d^2\beta}$; $\frac{d^2I_{\mathrm{dust}}}{d^2T}$; $\frac{d^2I_{\mathrm{dust}}}{d\beta dT}$; $\frac{d^2I_{\mathrm{dust}}}{d^2\beta}$	10

		$r_{ m bias}$	σ_r	r_{95}	SNR	
Case	Alens	Dias	,	- 50		
cMILC00	0.0	0.00401	0.00037	NaN	10.99237	
	0.3	0.00373	0.00043	NaN	8.67841	
	0.6	0.00337	0.00054	NaN	6.21216	
	0.9	0.00313	0.00065	NaN	4.81425	
cMILC01	0.0	0.00359	0.00049	NaN	7.39762	
	0.3	0.00349	0.00052	NaN	6.66955	
	0.6	0.00327	0.00059	NaN	5.51182	
	0.9	0.00311	0.00068	NaN	4.54640	
cMILC02	0.0	0.00393	0.00038	NaN	10.47086	
	0.3	0.00361	0.00043	NaN	8.33606	
	0.6	0.00319	0.00055	NaN	5.83180	
	0.9	0.00290	0.00066	NaN	4.39134	
cMILC03	0.0	0.00340	0.00049	NaN	6.91414	
	0.3	0.00329	0.00053	NaN	6.19613	
	0.6	0.00304	0.00060	NaN	5.03730	
	0.9	0.00284	0.00070	NaN	4.07834	
cMILC04	0.0	0.00288	0.00078	NaN	3.70185	
	0.3	0.00287	0.00080	NaN	3.58590	
	0.6	0.00281	0.00084	NaN	3.32949	
	0.9	0.00275	0.00093	NaN	2.96107	
cMILC05	0.0	0.00139	0.00100	0.00345	1.38799	
	0.3	0.00140	0.00101	0.00348	1.38040	
	0.6	0.00141	0.00104	0.00355	1.36050	
	0.9	0.00144	0.00108	0.00367	1.32606	
cMILC06	0.0	0.00219	0.00095	NaN	2.31224	
	0.3	0.00192	0.00097	0.00391	1.98323	
	0.6	0.00170	0.00101	0.00377	1.68239	
	0.9	0.00161	0.00106	0.00380	1.51801	
cMILC07	0.0	0.00157	0.00278	0.00737	0.56574	
	0.3	0.00157	0.00278	0.00738	0.56540	
	0.6	0.00158	0.00278	0.00739	0.56743	
	0.9	0.00158	0.00279	0.00741	0.56577	
cMILC08	0.0	0.00096	0.00563	0.01381	0.17038	
	0.3	0.00096	0.00563	0.01381	0.17038	
	0.6	0.00096	0.00563	0.01381	0.17038	
Continued on next page						

		$r_{ m bias}$	σ_r	r_{95}	SNR
Case	Alens				
	0.9	0.00096	0.00563	0.01381	0.17038
cMILC09	0.0	0.00084	NaN	NaN	NaN
	0.3	0.00084	NaN	NaN	NaN
	0.6	0.00084	NaN	NaN	NaN
	0.9	0.00084	NaN	NaN	NaN
cMILC10	0.0	0.00412	NaN	NaN	NaN
	0.3	0.00412	NaN	NaN	NaN
	0.6	0.00412	NaN	NaN	NaN
	0.9	0.00412	NaN	NaN	NaN
cMILC11	0.0	0.05000	NaN	NaN	NaN
	0.3	0.05000	NaN	NaN	NaN
	0.6	0.05000	NaN	NaN	NaN
	0.9	0.05000	NaN	NaN	NaN
cMILC12	0.0	0.05000	NaN	NaN	NaN
	0.3	0.05000	NaN	NaN	NaN
	0.6	0.05000	NaN	NaN	NaN
	0.9	0.05000	NaN	NaN	NaN

- 1 Mask
- 2 Posterior plots

3 r constraints