TEOREMA DE LA MÁXIMA TRANSFERENCIA DE POTENCIA.

Arme el circuito que se muestra en la figura 6.1.

Figura 6.1. Circuito para comprobar el Teorema de la MTP

$$R_L=220\Omega$$

Voltaje en la resistencia de 220Ω

$$V_L = \left(\frac{0.22}{1.2 + 0.22}\right) * 15 = 2.32V$$

Corriente

$$I = \frac{V}{R_T} = \frac{15}{1.2 + 0.22} = 10.56 mA$$

Potencia Máxima

$$P = I^2 * R_L = (10.56)^2 * (0.22) = 0.024W$$

 $R_L = 470\Omega$

Voltaje en la resistencia de 470Ω

$$V_L = \left(\frac{0.47}{1.2 + 0.47}\right) * 15 = 4.22V$$

Corriente en la resistencia de 470Ω

$$I = \frac{V}{R_T} = \frac{15}{1.2 + 0.47} = 8.98mA$$

Potencia Máxima en la resistencia de 470Ω

$$P = I^2 * R_L = (8.98)^2 * (0.47) = 0.037W$$

$$R_L = 680\Omega$$

Voltaje en la resistencia de 680Ω

$$V_L = \left(\frac{0.68}{1.2 + 0.68}\right) * 15 = 5.43V$$

Corriente en la resistencia de 680Ω

$$I = \frac{V}{R_T} = \frac{15}{1.2 + 0.68} = 7.98 mA$$

Potencia Máxima en la resistencia de 680Ω

$$P = I^2 * R_L = (7.98)^2 * (0.68) = 0.043W$$

$$R_L = 820\Omega$$

Voltaje en la resistencia de 820Ω

$$V_L = \left(\frac{0.82}{1.2 + 0.82}\right) * 15 = 6.09V$$

Corriente en la resistencia de 820Ω

$$I = \frac{V}{R_T} = \frac{15}{1.2 + 0.82} = 7.42 mA$$

Potencia Máxima en la resistencia de 820Ω

$$P = I^2 * R_L = (7.42)^2 * (0.82) = 0.045W$$

 $R_L = 1000\Omega$

Voltaje en la resistencia de 1000Ω

$$V_L = \left(\frac{1}{1.2 + 1}\right) * 15 = 6.81V$$

Corriente en la resistencia de 1000Ω

$$I = \frac{V}{R_T} = \frac{15}{1.2 + 1} = 6.81 mA$$

Potencia Máxima en la resistencia de 1000Ω

$$P = I^2 * R_L = (6.81)^2 * (1) = 0.046W$$

$$R_L = 1500\Omega$$

Voltaje en la resistencia de 1500Ω

$$V_L = \left(\frac{1.5}{1.2 + 1.5}\right) * 15 = 8.33V$$

Corriente en la resistencia de 1500Ω

$$I = \frac{V}{R_T} = \frac{15}{1.2 + 1.5} = 5.55 mA$$

Potencia Máxima en la resistencia de 1500Ω

$$P = I^2 * R_L = (5.55)^2 * (1.5) = 0.046W$$

$R_L = 1800\Omega$

Voltaje en la resistencia de 1800Ω

$$V_L = \left(\frac{1.8}{1.2 + 1.8}\right) * 15 = 9V$$

Corriente en la resistencia de 1800Ω

$$I = \frac{V}{R_T} = \frac{15}{1.2 + 1.8} = 5mA$$

Potencia Máxima en la resistencia de 1800Ω

$$P = I^2 * R_L = (5)^2 * (1.8) = 0.045W$$

$$R_L = 2200\Omega$$

Voltaje en la resistencia de 2220Ω

$$V_L = \left(\frac{2.2}{1.2 + 2.2}\right) * 15 = 9.70V$$

Corriente en la resistencia de 2220Ω

$$I = \frac{V}{R_T} = \frac{15}{1.2 + 2.2} = 4.41 mA$$

Potencia Máxima en la resistencia de 2220Ω

$$P = I^2 * R_L = (4.41)^2 * (2.2) = 0.042W$$

$$R_L = 3900\Omega$$

Voltaje en la resistencia de 3900Ω

$$V_L = \left(\frac{3.9}{1.2 + 3.9}\right) * 15 = 11.47V$$

Corriente en la resistencia de 3900Ω

$$I = \frac{V}{R_T} = \frac{15}{1.2 + 3.9} = 2.94 mA$$

Potencia Máxima en la resistencia de 3900Ω

$$P = I^2 * R_L = (2.94)^2 * (3.9) = 0.033 mW$$

$$R_L = 4700\Omega$$

Voltaje en la resistencia de 4700Ω

$$V_L = \left(\frac{4.7}{1.2 + 4.7}\right) * 15 = 11.94V$$

Corriente en la resistencia de 4700Ω

$$I = \frac{V}{R_T} = \frac{15}{1.2 + 4.7} = 2.54 mA$$

Potencia Máxima en la resistencia de 4700Ω

$$P = I^2 * R_L = (2.54)^2 * (4.7) = 0.030W$$

6.1.1. Calcule la potencia consumida por RL, para cada valor dado y anote los resultados en la tabla 6.1.

Tabla 6.1. Parámetros Eléctricos del circuito de la figura 6.1.

RL (Ω)	Corriente medida (mA)	Voltaje medido (V)	Potencia calculada experimentalmente (W)	Potencia calculada teóricamente (W)
220	10,6	2,32	0,02	0,023
470	8,98	4,22	0,03	0,037
680	7,98	5,43	0,04	0,043
820	7,43	6,09	0,04	0,045
1000	6,82	6,82	0,04	0,046
1500	5,56	8,33	0,04	0,046
1800	5	9	0,04	0,045
2200	4,41	9,71	0,04	0,042
3900	2,94	11,5	0,03	0,033
4700	2,54	11,9	0,03	0,03

ERROR RELATIVO

$$eW\% = \frac{|valor\ teorico - valor calculado|}{|valor\ teorico|} * 100$$

$$eW_{220}\% = \frac{|0.02 - 0.02|}{|0.02} * 100 = 0\%$$

$$eW_{470}\% = \frac{|0.03 - 0.03|}{|0.04 - 0.04|} * 100 = 0\%$$

$$eW_{1000}\% = \frac{|0.04 - 0.04|}{|0.04 - 0.04|} * 100 = 0\%$$

$$eW_{1500}\% = \frac{|0.04 - 0.04|}{|0.04 - 0.04|} * 100 = 0\%$$

$$eW_{1800}\% = \frac{|0.04 - 0.04|}{|0.04 - 0.04|} * 100 = 0\%$$

$$eW_{2200}\% = \frac{|0.04 - 0.04|}{|0.04 - 0.04|} * 100 = 0\%$$

$$eW_{3900}\% = \frac{|0.03 - 0.03|}{|0.03 - 0.03|} * 100 = 0\%$$

$$eW_{4700}\% = \frac{|0.03 - 0.03|}{|0.03 - 0.03|} * 100 = 0\%$$

¿Se cumple el Teorema de la Máxima Transferencia de Potencia? Argumente su respuesta.

Si se cumple el teorema de Máxima Transferencia ya que para los valores muy grandes y los valores muy pequeños la potencia es mínima y para los valores que se aproxima a la resistencia de 1200Ω se observa la máxima transferencia de potencia.

¿Cuál fue la potencia máxima en R $_L$?0.04Watts ¿Para qué valor de R $_L$ se obtiene la MTP? Para la resistencia en de 1000 a 1500 Ω