CS331 Haskell Tutorial 03

A. Sahu

Dept of Comp. Sc. & Engg.

Indian Institute of Technology Guwahati

Outline

- Factorial Example
- Higher Order Function
- Currying, Composition
- Lazy Evaluation
- List Comprehension

Factorial I

```
fact n =
  if n == 0 then 1
  else n * fact (n - 1)
```

This is an extremely conventional definition.

Factorial II

Each indicates a "guard."

Notice where the equal signs are.

Factorial III

```
fact n = case n of
    0 -> 1
    n -> n * fact (n - 1)
```

This is essentially the same as the last definition.

Factorial IV

You can introduce new variables with

let declarations in expression

Factorial V

You can also introduce new variables with

expression where declarations

Higher-Order Functions

- **Higher-order programming** treats functions as first-class,
 - Allowing them to be passed as parameters, returned as results or stored into data structures.
- This concept supports generic coding,
 - and allows programming to be carried out at a more abstract level.
- Genericity can be applied to a function
 - by letting specific operation/value in the function body to become parameters.

Higher order Functions

• Functions can be written in two main ways:

```
add x y = x+y
add2 (x,y) = x+y
```

• The first version allows a function to be returned as result after applying a single argument.

```
inc = add 1
```

```
Prelude> add x y = x+y
Prelude> inc = add 1
Prelude > inc 5
6
Prelude>
```

Higher order Functions

• The second version needs all arguments. Same effect requires a lambda abstraction:

```
add2(x,y) = x+y
inc = \xspace x -> add2(x,1)
```

```
Prelude> add2 (x+y) = x+y
Prelude> inc = \x -> add2(x, 1)
Prelude > inc 5
6
Prelude>
```

Functions

• Functions can also be passed as parameters. Example:

```
map :: (a->b) -> [a] -> [b]
map f [] = []
map f (x:xs) = (f x) : (map f xs)
```

• Such higher-order function aids code reuse.

```
map (add 1) [1, 2, 3] ) [2, 3, 4] map add [1, 2, 3] ) [add 1, add 2, add 3]
```

• Alternative ways of defining functions:

```
add = \ x \rightarrow \ y \rightarrow x+y
add = \ x y \rightarrow x+y
```

Haskell Brooks Curry

- Haskell Brooks
 Curry (September
 12, 1900 –
 September 1,
 1982)
- Developed
 Combinatorial
 Logic, the basis for
 Haskell and many
 other functional
 languages

Currying

- Technique named after: logician Haskell Curry
- Currying absorbs an argument into a function, returning a new function that takes one fewer argument
- f a b = (f a) b, where (f a) is a curried function
- For example, if avg = \x y -> (x + y) / 2 then (avg 6) returns a function
 - This new function takes one argument (y) and returns the average of that argument with 6
- Consequently, we can say that in Haskell, every function takes exactly one argument

Currying

- For example, if avg = \x y -> (x + y) / 2 then (avg 6) returns a function
 - This new function takes one argument (y) and returns the average of that argument with 6

Prelude> avg = $\xy - \xy - \xy / 2$ Prelude> (avg 6) 20

Currying example

```
"And", &&, has the type Bool -> Bool -> Bool
x && y can be written as (&&) x y
If x is True,
    (&&)x is a function that returns the value of y
If x is False,
    (&&)x is a function that returns False
```

It accepts y as a parameter, but doesn't use its value

Slicing

• negative = (< 0)

```
Main> negative 5
False
Main> negative (-3)
True
Main> :type negative
negative :: Integer -> Bool
Main>
```

List

List creation/declaration

```
myData = [1, 2, 3, 4, 5, 6, 7]
```

Operations on Lists I

head	[a] -> a	First element
tail	[a] -> [a]	All but first
•	a -> [a] -> [a]	Add as first
last	[a] -> a	Last element
init	[a] -> [a]	All but last
reverse	[a] -> [a]	Reverse

Operations on Lists II

<u>ii</u>	[a] -> Int -> a	Index (from 0)
take	Int -> [a] -> [a]	First n elements
drop	Int -> [a] -> [a]	Remove first n
nub	[a] -> [a]	Remove duplicates
length	[a] -> Int	Number of elements

Operations on Lists III

elem, notElem	a -> [a] -> Bool	Membership
concat	[[a]] -> [a]	Concatenate lists

Operations on Tuples

fst (a, b) -> a First of two elements

snd (a, b) -> b Second of two elements

...and nothing else, really.

Finite and Infinite Lists

[ab]	All values a to b	[14] = [1, 2, 3, 4]
[a]	All values a and larger	[1] = positive integers
[a, bc]	a step (b-a) up to c	[1, 310] = [1,3,5,7,9]
[a, b]	a step (b-a)	[1, 3] = positive odd integers

List Comprehensions-0

Notation for constructing new lists from old:

```
myData = [1,2,3,4,5,6,7]

twiceData = [2 * x | x <- myData]
-- [2,4,6,8,10,12,14]

twiceEvenData = [2 * x | x <- myData, x `mod` 2 == 0]
-- [4,8,12]</pre>
```

Similar to "set comprehension"

```
\{x \mid x \in Odd \land x > 6\}
```

List Comprehensions I

- [expression_using_x | x <- list]
 - read: <expression> where x is in <list>
 - x <- list is called a generator</p>
- Example: [x * x | x <- [1..]]
 - This is the list of squares of positive integers
- take 5 [x * x | x <- [1..]]
 -[1,4,9,16,25]

List Comprehensions II

- [expression_using_x_and_y | x <- list, y <- list]
- take 10 [x*y | x <- [2..], y <- [2..]]
 [4,6,8,10,12,14,16,18,20,22]
- take 10 [x * y | x <- [1..], y <- [1..]]
 [1,2,3,4,5,6,7,8,9,10]
- take 5 [(x,y) | x <- [1,2], y <- "abc"]
 [(1,'a'),(1,'b'),(1,'c'),(2,'a'),(2,'b')]

List Comprehensions III

[expression_using_x | generator_for_x, test_on_x]

```
    take 5 [x*x | x <- [1..], even x]</li>
    -[4,16,36,64,100]
```

List Comprehensions IV

- [x+y | x <- [1..5], even x, y <- [1..5], odd y]
 -[3,5,7,5,7,9]
- [x+y | x <- [1..5], y <- [1..5], even x, odd y]
 -[3,5,7,5,7,9]
- [x+y | y <- [1..5], x <- [1..5], even x, odd y]
 -[3,5,5,7,7,9]

Set Comprehensions

In mathematics, the <u>comprehension</u> notation can be used to construct new sets from old sets.

$$\{x^2 \mid x \in \{1...5\}\}$$

The set $\{1,4,9,16,25\}$ of all numbers x^2 such that x is an element of the set $\{1...5\}$.

Lists Comprehensions

In Haskell, a similar comprehension notation can be used to construct new <u>lists</u> from old lists.

$$[x^2 \mid x \leftarrow [1..5]]$$

The list [1,4,9,16,25] of all numbers x^2 such that x is an element of the list [1..5].

Note: Lists Comprehensions

******The expression $x \leftarrow [1..5]$ is called a generator, as it states how to generate values for x.

****Comprehensions can have** <u>multiple</u> generators, separated by commas. For example:

>
$$[(x,y) \mid x \leftarrow [1,2,3], y \leftarrow [4,5]]$$

 $[(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]$

Lists Comprehensions

****Changing the order of the generators changes** the order of the elements in the final list:

>
$$[(x,y) | y \leftarrow [4,5], x \leftarrow [1,2,3]]$$

 $[(1,4),(2,4),(3,4),(1,5),(2,5),(3,5)]$

Multiple generators are like <u>nested loops</u>, with later generators as more deeply nested loops whose variables change value more frequently.

Lists Comprehensions

For example:

 $x \leftarrow [1,2,3]$ is the last generator, so the value of the x component of each pair changes most frequently.

Factorial VI: Revisited

```
product [] = 1
product (a:x) = a * product x

fact n = product [1..n]
```

Dependent Generators

Later generators can <u>depend</u> on the variables that are introduced by earlier generators.

$$[(x,y) \mid x \leftarrow [1..3], y \leftarrow [x..3]]$$

The list [(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)] of all pairs of numbers (x,y) such that x,y are elements of the list [1..3] and $y \ge x$.

Guards

List comprehensions can use <u>guards</u> to restrict the values produced by earlier generators.

[x |
$$x \leftarrow [1..10]$$
, even x]

The list [2,4,6,8,10] of all numbers x such that x is an element of the list [1..10] and x is even.

Guards

Using a guard we can define a function that maps a positive integer to its list of <u>factors</u>:

```
factors :: Int \rightarrow [Int]
factors n =
 [x | x \leftarrow [1..n], n `mod` x == 0]
```

For example:

```
> factors 15
[1,3,5,15]
```

Guards

A positive integer is <u>prime</u> if its only factors are 1 and itself. Hence, using factors we can define a function that decides if a number is prime:

```
prime :: Int \rightarrow Bool
prime n = factors n == [1,n]
```

```
> prime 15
False
> prime 7
True
```

Using a guard we can now define a function that returns the list of all <u>primes</u> up to a given limit:

```
primes :: Int \rightarrow [Int]
primes n = [x | x \leftarrow [2..n], prime x]
```

```
> primes 40
[2,3,5,7,11,13,17,19,23,29,31,37]
```

The Zip Function

A useful library function is <u>zip</u>, which maps two lists to a list of pairs of their corresponding elements.

$$zip :: [a] \rightarrow [b] \rightarrow [(a,b)]$$

```
> zip ['a','b','c'] [1,2,3,4]
[('a',1),('b',2),('c',3)]
```

Using zip we can define a function returns the list of all <u>pairs</u> of adjacent elements from a list:

```
pairs :: [a] \rightarrow [(a,a)]
pairs xs = zip xs (tail xs)
```

```
> pairs [1,2,3,4]
[(1,2),(2,3),(3,4)]
```

Using pairs we can define a function that decides if the elements in a list are <u>sorted</u>:

```
sorted :: Ord a \Rightarrow [a] \rightarrow Bool
sorted xs =
and [x \le y \mid (x,y) \leftarrow pairs xs]
```

```
> sorted [1,2,3,4]
True
> sorted [1,3,2,4]
False
```

Using zip we can define a function that returns the list of all <u>positions</u> of a value in a list:

```
positions :: Eq a \Rightarrow a \rightarrow [a] \rightarrow [Int]
positions x xs =
[i \mid (x',i) \leftarrow zip xs [0..], x == x']
```

```
> positions 0 [1,0,0,1,0,1,1,0] [1,2,4,7]
```

String Comprehensions

A <u>string</u> is a sequence of characters enclosed in double quotes. Internally, however, strings are represented as lists of characters.

```
"abc" :: String

Means ['a', 'b', 'c'] :: [Char].
```

Because strings are just special kinds of lists, any polymorphic function that operates on lists can also be applied to strings. For example:

```
> length "abcde"
5

> take 3 "abcde"
"abc"

> zip "abc" [1,2,3,4]
[('a',1),('b',2),('c',3)]
```

Similarly, list comprehensions can also be used to define functions on strings, such counting how many times a character occurs in a string:

```
count :: Char \rightarrow String \rightarrow Int count x xs = length [x' | x' \leftarrow xs, x == x']
```

```
> count 's' "Mississippi"
4
```

Haskell Batch Program

To date, we have seen how Haskell can be used to write batch programs that take all their inputs at the start and give all their outputs at the end.

Haskell Interactive Program

However, we would also like to use Haskell to write interactive programs that read from the keyboard and write to the screen, as they are running.

The Problem

Haskell programs are pure mathematical functions:

Haskell programs have no side effects.

However, reading from the keyboard and writing to the screen are side effects:

Interactive programs have side effects.

The Solution

Interactive programs can be written in Haskell by using types to distinguish pure expressions from impure actions that may involve side effects.

The type of actions that return a value of type a.

For example: No side effect IO functions

() is the type of tuples with no components.

Primitive Actions

The standard library provides a number of actions, including the following three primitives:

- The action getChar
- getChar :: IO Char
- reads a character from the keyboard, echoes it to the screen, and returns the character as its result value:
- The action <u>putChar c</u>

```
putChar :: Char \rightarrow IO ()
```

- writes the character c to the screen, and returns no result value:
- The action <u>return v</u>

return ::
$$a \rightarrow I0 a$$

simply returns the value v, without performing any interaction:

Sequencing Actions

A sequence of actions can be combined as a single composite action using the keyword do. For example:

```
getTwo :: IO (Char,Char)

getTwo = do x ← getChar

y ← getChar

return (x,y)
```

Sequencing Actions

- Each action must begin in precisely the same column. That is, the <u>layout rule</u> applies;
- The values returned by intermediate actions are <u>discarded</u> by default, but if required can be named using the ← operator;
- The value returned by the <u>last</u> action is the value returned by the sequence as a whole.

Other Library Actions

Reading a string from the keyboard:

Other Library Actions

Writing a string to the screen:

Writing a string and moving to a new line:

```
putStrLn :: String \rightarrow IO ()
putStrLn xs = do putStr xs
putChar '\n'
```

Example

We can now define an action that prompts for a string to be entered and displays its length:

Example

> strlen

Enter a string: hello there
The string has 11 characters

Evaluating an action <u>executes</u> its side effects, with the final result value being discarded.

A new type can be defined by specifying its set of values using a <u>data declaration</u>.

Values of new types can be used in the same ways as those of built in types. For example, given

```
data Answer = Yes | No | Unknown
```

we can define:

```
answers :: [Answer]
answers = [Yes,No,Unknown]

flip :: Answer → Answer
flip Yes = No
flip No = Yes
flip Unknown = Unknown
```

The constructors in a data declaration can also have parameters. For example, given

```
data Shape = Circle Float
| Rect Float Float
```

we can define:

```
square :: Float \rightarrow Shape square n = Rect n n

area :: Shape \rightarrow Float area (Circle r) = pi * r^2 area (Rect x y) = x * y
```

```
prelude>data Shape = Circle Float Float | Rectangle
                     Float Float Float
Prelude> surface (Circle r) = pi * r ^ 2
Prelude> surface (Circle 10 20 10)
314.15927
Prelude>surface (Rectangle x1 y1 x2 y2) = (abs $ x2 - x1) *
(abs $ y2 - y1)
Prelude>
Prelude > surface (Rectangle 0 0 100 100)
10000.0
Prelude>surface (Circle 10 20 10)
Err....
```

- if we add deriving (Show) at the end of a data declaration
- Haskell automagically makes that type part of the Show typeclass

Prelude>data Shape = Circle Float Float Float | Rectangle Float Float Float Float Float Float Geriving (Show)

Prelude>Circle 10 20 5

Circle 10.0 20.0 5.0

Prelude> Rectangle 50 230 60 90

Rectangle 50.0 230.0 60.0 90.0

Prelude> map (Circle 10 20) [4,5,6,6]

[Circle 10.0 20.0 4.0, Circle 10.0 20.0 5.0, Circle 10.0 20.0 6

.0,Circle 10.0 20.0 6.0]

If we want a list of concentric circles with different radii, we can do this.

Defining Types: Records

```
Prelude>data Person = Person String String Int Float String String de
riving (Show)
Prelude>let guy = Person "Buddy" "Finklestein" 43 184.2 "526-
2928" "Chocolate"
Prelude> guy
Person "Buddy" "Finklestein" 43 184.2 "526-2928" "Chocolate"
Prelude>firstName (Person firstname _ _ _ _ ) = firstname
Prelude>lastName (Person _ lastname _ _ _ _) = lastname
Prelude>age (Person _ _ age _ _ _) = age
Prelude>height (Person height ) = height
Prelude>phoneNumber (Person _ _ _ number _) = number
Prelude> flavor (Person _____ flavor) = flavor
```

Defining Types: Records

```
Prelude> data Person =
Person { firstName :: String, lastName :: String, age :: Int, height :: Flo
at , phoneNumber :: String , flavor :: String } deriving (Show)
Prelude> :t flavor
flavor :: Person -> String
Prelude>data Car = Car String String Int deriving (Show)
Prelude> Car "Ford" "Mustang" 1967
Car "Ford" "Mustang" 1967
Prelude> data Car a b c = Car { company :: a, model :: b
           , year :: c } deriving (Show)
Prelude>tellCar (Car {company = c, model = m, year = y}) = "This " ++ c
++ " " ++ m ++ " was made in " ++ show y
Prelude> let stang = Car {company="Ford", model="Mustang", year=1967}
Prelude>tellCar stang
"This Ford Mustang was made in 1967"
```

Data Type vector Example

```
Prelude> data Vector a = Vector a a a deriving (Show)
Prelude>
(Vector i j k) 'vplus' (Vector l m n) = Vector (i+l) (j+m) (k+n)
Prelude> (Vector i j k) `vectMult` m = Vector (i*m) (j*m) (k*m)
Prelude>(Vector i j k) `scalarMult` (Vector l m n) = i*l + j*m + k*n
Prelude> Vector 3 5 8 'vplus' Vector 9 2 8
Vector 12 7 16
Prelude>Vector 3 5 8 'vplus' Vector 9 2 8 'vplus' Vector 0 2 3
12 9 19
Prelude>Vector 3 9 7 `vectMult` 10
Vector 30 90 70
Prelude > Vector 4 9 5 'scalarMult' Vector 9.0 2.0 4.0
74.0
Prelude> Vector 2 9 3 `vectMult` (Vector 4 9 5 `scalarMult` Vector 9 2 4)
Vector 148 666 222
```

Data Type: True False Ordering

Prelude> data Bool = False | True deriving (Ord)

 Because the False value constructor is specified first and the True value constructor is specified after it, we can consider True as greater than False.

Prelude> True `compare` False

GT

Prelude> True > False

True

Data Type: May be and Just

Prelude> data Maybe a = Just a | Nothing z

That declaration defines a type, Maybe a, which is parameterized by a type variable a, which just means that you can use it with any type in place of a.

```
lend amount balance =
    let reserve = 100
    newBalance = balance - amount
    in if balance < reserve then Nothing
    else Just newBalance</pre>
```

Similarly, data declarations themselves can also have parameters. For example, given

```
data Maybe a = Nothing | Just a
```

we can define:

```
return :: a \rightarrow Maybe a
return x = Just x

(>>=) :: Maybe a \rightarrow (a \rightarrow Maybe b) \rightarrow Maybe b
Nothing >>= \_ = Nothing
Just x >>= f = f x
```

Data Type: May be and Just

The Nothing value constructor is specified before the Just value constructor

Prelude> Nothing < Just 100

True

Prelude> Nothing > Just (-49999)

False

Prelude> Just 3 `compare` Just 2

GT

Prelude> Just 100 > Just 50

True

BST Creation in Haskell

```
data Tree a = Nil | Node (Tree a) a (Tree a) deriving Show
-- Checking Empty function
empty Nil = True
empty _ = False
-- Insert an element to the Tree
insert Nil x = Node Nil x Nil
insert (Node t1 v t2) x
     | v == x = Node t1 v t2
     | v < x = Node t1 v (insert t2 x)
     | v > x = Node (insert t1 x) v t2
```

BST Creation in Haskell

```
--Contain: if element is present return true
contains Nil = False
contains (Node t1 v t2) x
     | x == v = True
     | x < v = contains t1 x
     | x > v = contains t2 x
-- Creation of Tree from list of number
ctree [] = Nil
ctree (h:t) = ctree2 (Node Nil h Nil) t
    where
       ctree2 tr [] = tr
       ctree2 tr (h:t) = ctree2 (insert tr h) t
-- Creation of Tree from list of number Example
ctree [1,2,4,5,8,7]
```

Advanced Data Types in Haskell (Program not tested in GHCI)

In Haskell, new types can be defined in terms of themselves. That is, types can be <u>recursive</u>.

Define Natural Number

data Nat = Zero | Succ Nat

Nat is a new type, with constructors

Zero :: Nat and Succ :: Nat \longrightarrow Nat.

- A value of type Nat is
 - either Zero, or of the form Succ n
 - where n :: Nat.
- That is, Nat contains the following infinite sequence of values:

Zero

Succ Zero

Succ (Succ Zero)

•

- We can think of values of type Nat as <u>natural</u> <u>numbers</u>, where Zero represents 0, and Succ represents the successor function (1 +).
- For example, the value

represents the natural number

Using recursion, it is easy to define functions that convert between values of type Nat and Int:

```
nat2int :: Nat \rightarrow Int
nat2int Zero = 0
nat2int (Succ n) = 1 + nat2int n

int2nat :: Int \rightarrow Nat
int2nat 0 = Zero
int2nat n = Succ (int2nat (n-1))
```

Arithmetic Expressions

Consider a simple form of <u>expressions</u> built up from integers using addition and multiplication.

Arithmetic Expressions

Using recursion, a suitable new type to represent such expressions can be defined by:

```
data Expr = Val Int
| Add Expr Expr
| Mul Expr Expr
```

For example, the expression on the previous slide would be represented as follows:

```
Add (Val 1) (Mul (Val 2) (Val 3))
```

Arithmetic Expressions

Using recursion, it is now easy to define functions that process expressions. For example:

```
:: \mathsf{Expr} \to \mathsf{Int}
size
size (Val n) = 1
size (Add x y) = size x + size y
size (Mul x y) = size x + size y
eval
    :: Expr \rightarrow Int
eval (Val n) = n
eval (Add x y) = eval x + eval y
eval (Mul x y) = eval x * eval y
```

Thanks