Exercise 1

Bowen Hua

September 11, 2017

1 Linear Regression

1.1 (A)

Matrix form:

$$\hat{\beta} = \arg\min_{\beta \in \mathcal{R}^P} \frac{1}{2} (y - X\beta)^T W (y - X\beta).$$

Since W is symmetric and positive semidefinite, this is a convex optimization problem. Its first-order optimality condition is necessary and sufficient:

$$X^T W(y - X\beta) = \mathbf{0}.$$

1.2 (B)

1.2.1 Method 1: direct inversion

Described in the problem statement:

$$\beta = (X^T W X)^{-1} X^T W y.$$

To exploit sparsity of W, we use broadcasting in Python instead of matrix multiplication to compute operations w.r.t. W matrix. This method has a complexity of $O(np^2)$.

1.2.2 Method 2: pseudoinverse

Since the weight matrix W is diagonal, we can define $W^{\frac{1}{2}}$ to be a diagonal matrix where the *i*-th diagonal element equals $\sqrt{w_i}$. Now we can re-write the optimality condition:

$$\beta = [(W^{\frac{1}{2}}X)^T (W^{\frac{1}{2}}X)]^{-1} (W^{\frac{1}{2}}X)^T y,$$

which we re-write as

$$\beta = (W^{\frac{1}{2}}X)^{\dagger}W^{\frac{1}{2}}y,$$

where $(W^{\frac{1}{2}}X)^{\dagger}$ is the pseudoinverse of $W^{\frac{1}{2}}X$.

We first "preprocess" the feature matrix X and y by multiplying $W^{\frac{1}{2}}$ on the left.

We then compute the pseudoinverse through computing SVD of $W^{\frac{1}{2}}X$. This method is numerically more stable than the direct inverse method. (There could be correlation between our observations X. Therefore we care about numerical stability.)

Pseudocode for pseudoinverse of matrix A:

```
(U, \Sigma, V) = \operatorname{svd}(A) for \Sigma_{ii} in \Sigma: #traverse through the diagonal elements if \Sigma_{ii} \neq 0:
\Sigma_{ii} = 1/\Sigma_{ii} return V^T \Sigma U^T
```

In the Python code, we call numpy.linalg.pinv to perform the pseudoinverse. This method also has a complexity of $O(np^2)$.

In addition, this is the implementation of scikit-learn.

1.2.3 Method 3: Cholesky decomposition

We can use Cholesky decomposition on the matrix X^TWX . Now we have $LL^T\beta = D$. Then we can obtain β by solving two linear systems.

This method also has a complexity of $O(np^2)$.

Pseudocode for Cholesky-decomposition-based method:

Let $C = X^T W X$, $d = X^T W y$. Compute Cholesky decomposition $C = L L^T$. Solve for α in $L\alpha = d$. Solve for β in $L^T \beta = \alpha$.

1.3 (C)

I coded the three methods in Python, using the numpy package. The codes can be find in my GitHub.

The results are summarized here:

Table 1: CPU Times (s) for Three Methods of Weighted Least Squares

(n,p)	Method 1	Method 2	Method 3
(2000, 50)	0.001	0.007	0.001
(1000, 1000)	0.122	0.346	0.064
(20000, 50)	0.012	0.034	0.005
(50000, 50)	0.028	0.118	0.013
(5000, 5000)	6.402	37.00	4.462

We can see that:

- Method 3 (Choleskey) consistently performs better than Method 1 (Direct Inverse), which is faster than Method 2 (pseudoinverse).
- When X is close to a square matrix, the performance of Method 3 is way worse than the other two methods.

1.4 (D)

We use scipy.sparse in Python as our tool for sparse matrix operations. In particular, we use scipy.sparse.linalg.lsqr to solve the sparse least square problem:

 $\beta = (W^{\frac{1}{2}}X)^{\dagger}W^{\frac{1}{2}}y.$

We generate random X matrices of size (200000, 50), with different density. We name the sparse method as Method 4. The results are summarized as follows:

Figure 1: CPU Times (s) of Four Methods for the Sparse Matrix

We can see that:

- Method 1–3 do not exploit sparsity. Their CPU times do not change with density.
- When density is relatively small, the sparse method has an advantage over all the other three method. When density is relatively large, the sparse method is slower than Method 1 and 3, possibly due to overhead of the sparse data structure.