Sistemi Operativi 26 Gennaio 2022 Compitino I A

Si risponda ai seguenti quesiti, giustificando le risposte.

- 1. Si discuta ciascuna delle seguenti affermazioni.
- (a) Un processo può subire una starvation all'entrata di una sezione critica se l'implementazione della sezione critica non soddisfa la condizione di attesa limitata
- Si può verificare starvation in un SO che utilizza uno scheduling basato su priorità, ma non in un SO che utilizza uno scheduling Round Robin.
- In un sistema lettori-scrittori che favorisce i lettori, i processi scrittori possono essere scavalcati da processi lettori che arrivano quando altri processi lettori stanno leggendo i dati condivisi.
- Si può verificare un deadlock nel problema dei filosofi a cena anche se un filosofo (solo uno) può mangiare con una forchetta. P
- Quando un algoritmo di scheduling è con prelazione? Quali sono vantaggi e svantaggi di uno scheduling con prelazione? (a) 0
- In quali situazioni può essere attivato lo scheduler dellla CPU? Si distingua tra il caso di scheduling con e senza prelazione.
 - Si consideri un sistema con scheduling della CPU a priorità con tre code, A, B, C, di priorità crescente, con prelazione tra code. La coda A è FCFS, le code B e C sono round robin con quanto di 15 e 10 ms, rispettivamente. Se un processo nella coda B o C consuma il suo quanto di tempo, viene $10~\mathrm{ms},$ rispettivamente. Se un processo nella coda spostato in fondo alla coda A o B, rispettivamente. 3

Nelle code A, B, C entrano i seguenti processi:

	coda	arrivo	burst
P_1	В	0	25ms
P_2	А	20	20ms
P_3	C	15	15ms
P4	A	20	15ms

Si determini il diagramma di GANTT relativo all'esecuzione dei quattro processi, assumendo che il tempo di latenza del kernel sia pari a 1 ms.

- 4. (a) Si illustri il problema della sezione critica.
- b) Si descriva il funzionamento di un semaforo mutex.
- Si mostri come un semaforo mutex può essere utilizzato per risolvere il problema della sezione
- Si supponga che in un sistema siano presenti 5 processi, Po, P1, P2, P3, P4, un insieme di risorse di tipi diversi, A, B, C, D, e di trovarsi nella seguente configurazione: 10

	Riso	rse al	Risorse allocate			Risorse	mas	massime	(Max
	A	В	O	Q		A	B	-	Q
0	4	4	3	2		9	4	10	9
P_1	00	0	3	2		10	1	9	00
77	4	0	0	0		9	0	0	00
P3	0	0	3	2		0	3	4	2
P4	2	П	3	4		6	\vdash	9	6
			Risor	se disr	dinoc	Bisorse disponibili (A)			
			A	В	O	D			
			2	2	10	7			

- (a) Il sistema si trova in uno stato sicuro? In caso positivo, si descriva una sequenza sicura.
- (b) La richiesta di P_2 (2, 0, 0, 2) può essere soddisfatta?