- **Initialisation**: Pour n = 1, on constate que $8^1 1 = 7$ est bien divisible 1.7 par 7.
 - **Hérédité :** Supposons que $8^n 1$ est divisible par 7 : il existe par conséquent un nombre entier a tel que $8^n - 1 = 7 a$.

Montrons que si le nombre 8^n-1 est divisible par 7, alors le nombre $8^{n+1} - 1$ est aussi divisible par 7 :

$$8^{n+1} - 1 =$$

$$8 \cdot 8^n - 1 =$$

$$(7+1) \cdot 8^n - 1 =$$

$$7 \cdot 8^n + \underbrace{8^n - 1}_{7a} =$$
$$7 \cdot 8^n + 7a =$$

$$7 \cdot 8^n + 7 a =$$

$$7 \cdot (8^n + a)$$

Puisque $8^{n+1} - 1 = 7 \cdot (8^n + a)$ est un multiple de 7, ce nombre est bien divisible par 7.