Name:	

SEMIFINAL

Math 237 – Linear Algebra

Version 2

Fall 2017

Choose up to 6 problems to work. Work each problem on one of the attached pages; write the standard in the upper left corner. Show all work and justify all of your answers. Answers without work or sufficient reasoning will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

E1. Write an augmented matrix corresponding to the following system of linear equations.

$$x_1 + 3x_2 - 4x_3 + x_4 = 5$$
$$3x_1 + 9x_2 + x_3 - 7x_4 = 0$$
$$x_1 - x_3 + x_4 = 1$$

Solution:

$$\begin{bmatrix} 1 & 3 & -4 & 1 & 5 \\ 3 & 9 & 1 & -7 & 0 \\ 1 & 0 & -1 & 1 & 1 \end{bmatrix}$$

E2. Find RREF A, where

$$A = \begin{bmatrix} 2 & -7 & | & 4 \\ 1 & -3 & | & 2 \\ 3 & 0 & | & 3 \end{bmatrix}$$

Solution:

$$\text{RREF}\,A = \begin{bmatrix} 1 & 0 & | & 0 \\ 0 & 1 & | & 0 \\ 0 & 0 & | & 1 \end{bmatrix}$$

E3. Find the solution set for the following system of linear equations.

$$2x_1 + 3x_2 - 5x_3 + 14x_4 = 8$$
$$x_1 + x_2 - x_3 + 5x_4 = 3$$

Solution: Let $A = \begin{bmatrix} 2 & 3 & -5 & 14 & 8 \\ 1 & 1 & -1 & 5 & 3 \end{bmatrix}$, so RREF $A = \begin{bmatrix} 1 & 0 & 2 & 1 & 1 \\ 0 & 1 & -3 & 4 & 2 \end{bmatrix}$. It follows that the solution set

is given by
$$\begin{bmatrix} 1-2a-b\\2+3a-4b\\a\\b \end{bmatrix}$$
 for all real numbers $a,b.$

E4. Find a basis for the solution set to the homogeneous system of equations given by

$$2x_1 - 2x_2 + 6x_3 - x_4 = 0$$
$$3x_1 + 6x_3 + x_4 = 0$$
$$-4x_1 + x_2 - 9x_3 + 2x_4 = 0$$

Solution: Let
$$A = \begin{bmatrix} 2 & -2 & 6 & -1 & 0 \\ 3 & 0 & 6 & 1 & 0 \\ -4 & 1 & -9 & 2 & 0 \end{bmatrix}$$
, so RREF $A = \begin{bmatrix} 1 & 0 & 2 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$. It follows that the basis for the solution set is given by $\left\{ \begin{bmatrix} -2 \\ 1 \\ 1 \\ 0 \end{bmatrix} \right\}$.

V1. Let V be the set of all pairs of real numbers with the operations, for any $(x_1, y_1), (x_2, y_2) \in V, c \in \mathbb{R}$,

$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

 $c \odot (x_1, y_1) = (c^2 x_1, c^3 y_1)$

- (a) Show that scalar multiplication **distributes scalars** over vector addition: $c \odot ((x_1, y_1) \oplus (x_2, y_2)) = c \odot (x_1, y_1) \oplus c \odot (x_2, y_2).$
- (b) Determine if V is a vector space or not. Justify your answer.

Solution: Let $(x_1, y_1), (x_2, y_2) \in V$ and let $c \in \mathbb{R}$.

$$c \odot ((x_1, y_1) \oplus (x_2, y_2)) = c \odot (x_1 + x_2, y_1 + y_2)$$

$$= (c^2(x_1 + x_2), c^3(y_1 + y_2))$$

$$= (c^2x_1, c^3y_1) \oplus (c^2x_2, c^3y_2)$$

$$= c \odot (x_1, y_1) \oplus c \odot (x_2, y_2)$$

However, V is not a vector space, as the other distributive law fails:

$$(c+d)\odot(x_1,y_1)=((c+d)^2x_1,(c+d)^3y_1)\neq((c^2+d^2)x_1,(c^3+d^3)y_1)=c\odot(x_1,y_1)\oplus d\odot(x_1,y_1).$$

V2. Determine if $\begin{bmatrix} 4 \\ -1 \\ 6 \\ -7 \end{bmatrix}$ belongs to the span of the set $\left\{ \begin{bmatrix} 2 \\ 0 \\ -1 \\ 5 \end{bmatrix}, \begin{bmatrix} 4 \\ -1 \\ 4 \\ 3 \end{bmatrix} \right\}$.

Solution: Since

$$RREF \left(\begin{bmatrix} 2 & 4 & | & 4 \\ 0 & -1 & | & -1 \\ -1 & 4 & | & 6 \\ 5 & 3 & | & -7 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & | & 0 \\ 0 & 1 & | & 0 \\ 0 & 0 & | & 1 \\ 0 & 0 & | & 0 \end{bmatrix}$$

contains the contradiction 0 = 1, $\begin{bmatrix} 4 \\ -1 \\ 6 \\ -7 \end{bmatrix}$ is not a linear combination of the three vectors.

V3. Does span
$$\left\{ \begin{bmatrix} 2\\-1\\4 \end{bmatrix}, \begin{bmatrix} 3\\12\\-9 \end{bmatrix}, \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} -4\\2\\-8 \end{bmatrix} \right\} = \mathbb{R}^3$$
?

Solution: Since

$$RREF \begin{bmatrix} 2 & 3 & 1 & -4 \\ -1 & 12 & 2 & 2 \\ 4 & -9 & 3 & -8 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

lacks a zero row, the vectors span \mathbb{R}^3 .

Solution: Yes, because
$$z = -x - y$$
 and $a \begin{bmatrix} x_1 \\ y_1 \\ -x_1 - y_1 \end{bmatrix} + b \begin{bmatrix} x_2 \\ y_2 \\ -x_2 - y_2 \end{bmatrix} = \begin{bmatrix} ax_1 + bx_2 \\ ay_1 + by_2 \\ -(ax_1 + bx_2) - (ay_1 + by_2) \end{bmatrix}$. Alternately, yes because W is isomorphic to \mathbb{R}^2 .

S1. Determine if the set of vectors $\left\{ \begin{bmatrix} -3 \\ 8 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 3 \end{bmatrix} \right\}$ is linearly dependent or linearly independent

Solution:

RREF
$$\begin{pmatrix} \begin{bmatrix} -3 & 1 & 0 \\ 8 & 2 & -1 \\ 0 & 2 & 3 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Every column is a pivot column, therefore the set is linearly independent.

S2. Determine if the set $\{2x^2 - x + 3, 2x^2 + 2, -x^2 + 4x + 1\}$ is a basis of \mathcal{P}^2 .

Solution:

RREF
$$\left(\begin{bmatrix} 2 & 2 & -1 \\ -1 & 0 & 4 \\ 3 & 2 & 1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Since the resulting matrix is the identity matrix, it is a basis

S3. Let W be the subspace of \mathcal{P}^3 given by $W = \text{span} \left(\left\{ x^3 + x^2 + 2x + 1, 3x^3 + 3x^2 + 6x + 3, 3x^3 - x^2 + 3x - 2, 7x^3 - x^2 + 8x - 3 \right\} \right)$. Find a basis for W.

Solution:

$$RREF \left(\begin{bmatrix} 1 & 3 & 3 & 7 \\ 1 & 3 & -1 & -1 \\ 2 & 6 & 3 & 8 \\ 1 & 3 & -2 & -3 \end{bmatrix} \right) = \begin{bmatrix} 1 & 3 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Then a basis is $\{x^3 + x^2 + 2x + 1, 3x^3 - x^2 + 3x - 2\}$.

S4. Let $W = \operatorname{span}\left\{\left\{\begin{array}{c} \begin{bmatrix} 1\\1\\2\\2 \end{bmatrix}, \begin{bmatrix} 3\\6\\6\\3 \end{bmatrix}, \begin{bmatrix} 3\\-1\\3\\3 \end{bmatrix}, \begin{bmatrix} 7\\-1\\8\\3 \end{bmatrix}\right\}\right\}$. Find the dimension of W.

Solution:

$$RREF \left(\begin{bmatrix} 1 & 3 & 3 & 7 \\ 1 & 3 & -1 & -1 \\ 2 & 6 & 3 & 8 \\ 1 & 3 & -2 & -3 \end{bmatrix} \right) = \begin{bmatrix} 1 & 3 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

This has two pivot columns, so W has dimension 2.

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} -3x + y \\ -8x + 2y - z \\ 7x + 2y + 3z \\ 0 \end{bmatrix}.$$

Write the matrix for T with respect to the standard bases of \mathbb{R}^3 and \mathbb{R}^4 .

Solution:

$$\begin{bmatrix} 3 & 1 & 0 \\ -8 & 2 & -1 \\ 7 & 2 & 3 \\ 0 & 0 & 0 \end{bmatrix}$$

A2. Determine if $D: \mathbb{R}^{2 \times 2} \to \mathbb{R}$ given by $D\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = a - 3c$ is a linear transformation or not.

A3. Determine if each of the following linear transformations is injective (one-to-one) and/or surjective (onto).

(a)
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
 given by $T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x+y+z \\ 2y+3z \\ x-y-2z \end{bmatrix}$

(b)
$$S: \mathbb{R}^2 \to \mathbb{R}^3$$
 given by $S\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 3x + 2y \\ x - y \\ x + 4y \end{bmatrix}$

Solution:

(a)

RREF
$$\left(\begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 1 & -1 & -2 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 \end{bmatrix}$$

Since there is a nonpivot column, T is not injective. Since there is a zero row, T is not surjective.

(b)

RREF
$$\begin{pmatrix} \begin{bmatrix} 3 & 2 \\ 1 & -1 \\ 1 & 4 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

Since all columns are pivot columns, S is injective. Since there is a zero row, S is not surjective.

A4. Let $T: \mathbb{R}^{2 \times 2} \to \mathbb{R}^3$ be the linear map given by $T\left(\begin{bmatrix} a & b \\ x & y \end{bmatrix}\right) = \begin{bmatrix} a+x \\ 0 \\ b+y \end{bmatrix}$. Compute a basis for the kernel and a basis for the image of T.

Solution: Rewrite as
$$T' \begin{pmatrix} \begin{bmatrix} a \\ b \\ x \\ y \end{bmatrix} = \begin{bmatrix} a+x \\ 0 \\ b+y \end{bmatrix}$$
.

$$RREF\left(\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

Thus $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$ is a basis for the image, and $\left\{ \begin{bmatrix} -1&0\\1&0 \end{bmatrix}, \begin{bmatrix} 0&-1\\0&1 \end{bmatrix} \right\}$ is a basis for the kernel.

M1. Let

$$A = \begin{bmatrix} 1 & 3 & -1 & -1 \\ 0 & 0 & 7 & 2 \end{bmatrix} \qquad B = \begin{bmatrix} 0 & 1 & 7 & 7 \\ -1 & -2 & 0 & 4 \\ 0 & 0 & 1 & 5 \end{bmatrix} \qquad C = \begin{bmatrix} 3 & 2 \\ 0 & 1 \\ -2 & -1 \end{bmatrix}$$

Exactly one of the six products AB, AC, BA, BC, CA, CB can be computed. Determine which one, and compute it.

Solution: CA is the only one that can be computed, and

$$CA = \begin{bmatrix} 3 & 9 & 11 & 1 \\ 0 & 0 & 7 & 2 \\ -2 & -6 & -5 & 0 \end{bmatrix}$$

M2. Determine if the matrix $\begin{bmatrix} 3 & -1 & 0 & 4 \\ 2 & 1 & 1 & -1 \\ 0 & 1 & 1 & 3 \\ 1 & -2 & 0 & 0 \end{bmatrix}$ is invertible.

Solution: This matrix is row equivalent to the identity matrix, so it is invertible.

M3. Compute the inverse of the matrix $\begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & 4 & -2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$

Solution:

$$RREF(A|I) = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 2 & -11 & 37 \\ 0 & 1 & 0 & 0 & 0 & -1 & 4 & -14 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

So the inverse is $\begin{bmatrix} 1 & 2 & -11 & 37 \\ 0 & -1 & 4 & -14 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

G1. Compute the determinant of the matrix

$$\begin{bmatrix} 0 & -4 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ -2 & 3 & -1 & 1 \\ 5 & 0 & -4 & 0 \end{bmatrix}.$$

Solution: 55.

G2. Compute the eigenvalues, along with their algebraic multiplicities, of the matrix $\begin{bmatrix} 8 & -3 & 2 \\ 23 & -9 & 5 \\ -7 & 2 & -3 \end{bmatrix}$.

Solution: The eigenvalues are 0 with multiplicity 1 and -2, with algebraic multiplicity 2.

G3. Compute the eigenspace associated to the eigenvalue 2 in the matrix $\begin{bmatrix} -1 & 1 & 0 \\ -9 & 5 & 0 \\ 15 & -5 & 2 \end{bmatrix}$.

Solution: The eigenspace is the solution space of the system (B-2I)X=0.

$$RREF(B-2I) = RREF \left(\begin{bmatrix} -3 & 1 & 0 \\ -9 & 3 & 0 \\ 15 & -5 & 0 \end{bmatrix} \right) = \begin{bmatrix} 1 & -\frac{1}{3} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

So the system simplifies to $x - \frac{y}{3} = 0$, or 3x = y. Thus the eigenspace is

$$E_2 = \operatorname{span}\left(\left\{ \begin{bmatrix} 1\\3\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}\right)$$

G4. Compute the geometric multiplicity of the eigenvalue 2 in the matrix $\begin{bmatrix} -1 & 1 & 0 \\ -9 & 5 & 0 \\ 15 & -5 & 2 \end{bmatrix}$.

Solution: The eigenspace is the solution space of the system (B-2I)X=0.

$$RREF(B-2I) = RREF \left(\begin{bmatrix} -3 & 1 & 0 \\ -9 & 3 & 0 \\ 15 & -5 & 0 \end{bmatrix} \right) = \begin{bmatrix} 1 & -\frac{1}{3} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Thus the geometric multiplicity is 2.

Standard:	

Standard:	