Machine Learning - DVF sans outliers

```
Entrée [0]: #!pip install pycaret
```

Entrée [0]: #!pip install pandas-profiling[notebook,html]

Importation des librairies

Entrée [3]: import pandas as pd from pycaret.regression import * from pandas_profiling import ProfileReport from pycaret.utils import enable_colab enable_colab()

Colab mode activated.

/usr/local/lib/python3.6/dist-packages/statsmodels/tools/_testing.py:19: FutureWarning: pandas.util.testing is depre cated. Use the functions in the public API at pandas.testing instead.
import pandas.util.testing as tm

Importation du dataset

Out[4]:	valeur_fonciere region		regions	type_local	nature_mutation	nombre_pieces_principales	
	0	115000.0	SudEst	Local industriel. commercial ou assimilé	Vente	0.0	
	1	175050.0	SudEst	Maison	Vente	5.0	
	2	165900.0	SudEst	Maison	Vente	4.0	
	3	181800.0	SudEst	Local industriel. commercial ou assimilé	Vente	0.0	
	1	177000 0	SudEct	Local industrial commercial ou assimilé	Vente	0.0	

Remarques:

- Ce Dataframe comporte toutes les valeurs foncières, y compris les outliers.
- Pour faciliter les tests des algorithmes je crée un sample de 100000 entrées.

Out[5]: (100000, 5)

Entrée [6]: profile = ProfileReport(dvf_sample, title='DVF without Outliers Profiling Report')
profile

```
Entrée [7]: profile.to_file(output_file="dvf_without_outliers_report.html")
```

Séparation du dataframe en 2

Afin de démontrer la fonction Predict_model () sur des données invisibles, un échantillon de 5000 enregistrements a été retenu de l'ensemble de données d'origine pour être utilisé pour les prévisions. Cela ne doit pas être confondu avec une séparation train / test, car cette séparation particulière est effectuée pour simuler un scénario réel. Une autre façon de penser à cela est que ces 5000 enregistrements ne sont pas disponibles au moment où l'expérience d'apprentissage automatique a été effectuée.

```
Entrée [8]: dfmodel= dvf_sample.sample(frac=0.95,random_state=42).reset_index(drop=True)
    dfhide=dvf_sample.drop(dfmodel.index).reset_index(drop=True)
    print("Shape du dfmodel: "+ str(dfmodel.shape))
    print("Shape du dfhide: "+ str(dfhide.shape))
```

```
Shape du dfmodel: (95000, 5)
Shape du dfhide: (5000, 5)
```

Configuration du dataset

La fonction setup () initialise l'environnement dans pycaret et crée le pipeline de transformation pour préparer les données pour la modélisation et le déploiement. setup () doit être appelé avant d'exécuter toute autre fonction dans pycaret. Il prend deux paramètres obligatoires: une trame de données pandas et le nom de la colonne cible. Tous les autres paramètres sont facultatifs et sont utilisés pour personnaliser le pipeline de prétraitement.

- 1. Data Scale
- 2. Target transformation

Setup Succesfully Completed!

	Description	Value
0	session_id	42
1	Transform Target	True
2	Transform Target Method	box-cox
3	Original Data	(95000, 5)
4	Missing Values	False
5	Numeric Features	1
6	Categorical Features	3
7	Ordinal Features	False
8	High Cardinality Features	False
9	High Cardinality Method	None
10	Sampled Data	(19000, 5)
11	Transformed Train Set	(13299, 14)
12	Transformed Test Set	(5701, 14)
13	Numeric Imputer	mean
14	Categorical Imputer	constant
15	Normalize	True
16	Normalize Method	zscore
17	Transformation	True
18	Transformation Method	yeo-johnson
19	PCA	False
20	PCA Method	None
21	PCA Components	None
22	Ignore Low Variance	False
23	Combine Rare Levels	False
24	Rare Level Threshold	None
25	Numeric Binning	False
26	Remove Outliers	False
27	Outliers Threshold	None
28	Remove Multicollinearity	False
29	Multicollinearity Threshold	None
30	Clustering	False
31	Clustering Iteration	None
32	Polynomial Features	False
33	Polynomial Degree	None
34	Trignometry Features	False
35	Polynomial Threshold	None
36	Group Features	False
37	Feature Selection	False
38	Features Selection Threshold	None
39	Feature Interaction	False
40	Feature Ratio	False
41	Interaction Threshold	None

Interaction Threshold

41

Comparaison des différents algorithmes de régression

None

La fonction forme tous les modèles de la bibliothèque de modèles et les note à l'aide de la validation croisée kfold pour l'évaluation métrique. La sortie imprime une grille de score qui montre la moyenne des MAE, MSE, RMSE, R2, RMSLE et MAPE à travers les plis (10 par défaut) de tous les modèles disponibles dans la bibliothèque de modèles.

```
IntProgress(value=0, description='Processing: ', max=245)
  Initiated
                                               11:48:34
   Status
                                       Fitting Fold 1 of 10
Estimator ..... Light Gradient Boosting Machine
     ETC .....
                                         Calculating ETC
                      Model
                                  MAE
                                               MSE
                                                         RMSE
                                                                    R2 RMSLE MAPE
 0
     Gradient Boosting Regressor 38403.1225 2.122019e+09 46060.4356 0.1303
                                                                        0.4064 0.3761
       Extreme Gradient Boosting 38407.8223 2.122462e+09 46065.3119 0.1301
 1
                                                                        0.4064 0.3762
 2
                Random Forest 38462.9589 2.133793e+09 46188.0113
                                                                 0.1254
                                                                        0.4072 0.3765
 3
          Extra Trees Regressor 38475.9857 2.135772e+09 46209.1585 0.1246
                                                                        0.4073 0.3764
                 Decision Tree 38487.7104 2.137612e+09 46229.1677 0.1239 0.4074 0.3766
 4
```

Création d'un modèle

Entrée [10]: compare_models()

Création du modèle Random Forest Regressor qui a un des meilleurs scores.

```
Entrée [11]: rf=create_model('rf', fold = 5)
rf
```

```
MAE
                        MSE
                                 RMSE
                                           R2 RMSLE MAPE
   0 39195.8664 2.187761e+09 46773.5128 0.1269
                                                0.4159 0.3884
   1 38384.9139 2.121294e+09 46057.5091 0.1181
                                               0.4046 0.3716
   2 37559.4653 2.070888e+09 45507.0089 0.1362
                                               0.4002 0.3653
    38428.2554 2.125681e+09 46105.1088 0.1341
                                               0.4088 0.3813
   4 38821.5041 2.188163e+09 46777.8066 0.1045
                                                0.4085 0.3755
Mean 38478.0010 2.138758e+09 46244.1892 0.1240 0.4076 0.3764
 SD
       545.5589 4.455236e+07
                               482.1947 0.0116 0.0052 0.0080
```

Tune model

Lorsqu'un modèle est créé à l'aide de la fonction create_model (), il utilise les hyperparamètres par défaut. Afin de régler les hyperparamètres, la fonction tune_model () est utilisée. Cette fonction règle automatiquement les hyperparamètres d'un modèle sur un espace de recherche prédéfini et le note à l'aide de la validation croisée kfold. La sortie imprime une grille de score qui montre MAE, MSE, RMSE, R2, RMSLE et MAPE par pli.

```
Entrée [12]: tuned_rf = tune_model('rf', fold = 5, n_iter=5)
```

```
        MAE
        MSE
        RMSE
        R2
        RMSLE
        MAPE

        0
        39185.5844
        2.184312e+09
        46736.6232
        0.1283
        0.4156
        0.3886

        1
        38422.5362
        2.120623e+09
        46050.2260
        0.1183
        0.4043
        0.3720

        2
        37528.5369
        2.062447e+09
        45414.1709
        0.1397
        0.3997
        0.3653

        3
        38396.0179
        2.118747e+09
        46029.8491
        0.1370
        0.4085
        0.3812

        4
        38741.9583
        2.176263e+09
        46650.4312
        0.1094
        0.4079
        0.3752

        Mean
        38454.9267
        2.132478e+09
        46176.2601
        0.1265
        0.4072
        0.3764

        SD
        543.8686
        4.435603e+07
        481.0293
        0.0114
        0.0053
        0.0080
```

```
Entrée [13]: tuned_rf
```

Visualisation du modèle

Entrée [15]: plot_model(tuned_rf)

Prediction Error Plot

Entrée [16]: plot_model(tuned_rf, plot = 'error')

Feature Importance Plot

Entrée [20]: plot_model(tuned_rf, plot='feature')

Prédiction sur le Test

Avant de finaliser le modèle, il est conseillé d'effectuer une dernière vérification en prédisant l'ensemble de test et en examinant les mesures d'évaluation.

	Model	MAE	MSE	RMSE	R2	RMSLE	MAPE
0	Random Forest Regressor	37537.4044	2.051819e+09	45297.0126	0.132	0.3995	0.3662

Out[22]:

	nombre_pieces_principales	regions_DOMTOM	regions_NordEst	regions_NordOuest	regions_RegionParis	regions_SudEst	regions_SudOue
0	-1.144460	0.0	0.0	1.0	0.0	0.0	0
1	1.233510	0.0	0.0	0.0	0.0	0.0	1
2	-0.089584	0.0	1.0	0.0	0.0	0.0	0
3	1.233510	0.0	1.0	0.0	0.0	0.0	0
4	-1.144460	0.0	0.0	0.0	0.0	0.0	1
5696	-1.144460	0.0	0.0	1.0	0.0	0.0	0
5697	0.382018	0.0	0.0	1.0	0.0	0.0	0
5698	0.819472	0.0	1.0	0.0	0.0	0.0	0
5699	0.382018	0.0	0.0	0.0	0.0	0.0	1
5700	-1.144460	0.0	1.0	0.0	0.0	0.0	0

5701 rows × 16 columns

Finalisation du modèle

La fonction finalize_model () ajuste le modèle sur l'ensemble de données complet, y compris l'échantillon test / hold-out (30% dans ce cas). Le but de cette fonction est de former le modèle sur l'ensemble de données complet avant son déploiement en production.

```
Entrée [23]: final_rf = finalize_model(tuned_rf)
final_rf
```

Entrée [24]: predict_model(final_rf)

 Model
 MAE
 MSE
 RMSE
 RMSE
 RMSLE
 MAPE

 MAPE
 Random Forest Regressor
 37491.0161
 2.041172e+09
 45179.3347
 0.1366
 0.399
 0.3666

Out[24]:

	nombre_pieces_principales	regions_DOMTOM	regions_NordEst	regions_NordOuest	regions_RegionParis	regions_SudEst	regions_SudOue		
0	-1.144460	0.0	0.0	1.0	0.0	0.0	0		
1	1.233510	0.0	0.0	0.0	0.0	0.0	1		
2	-0.089584	0.0	1.0	0.0	0.0	0.0	0		
3	1.233510	0.0	1.0	0.0	0.0	0.0	0		
4	-1.144460	0.0	0.0	0.0	0.0	0.0	1		
5696	-1.144460	0.0	0.0	1.0	0.0	0.0	0		
5697	0.382018	0.0	0.0	1.0	0.0	0.0	0		
5698	0.819472	0.0	1.0	0.0	0.0	0.0	0		
5699	0.382018	0.0	0.0	0.0	0.0	0.0	1		
5700	-1.144460	0.0	1.0	0.0	0.0	0.0	0		
5701 r	5701 rows × 16 columns								

Entrée [25]: hide_predictions = predict_model(final_rf, data=dfhide)
hide_predictions.head()

Out[25]:

	valeur_fonciere	regions	type_local	nature_mutation	nombre_pieces_principales	Label
0	163000.0	SudEst	Dépendance	Vente	0.0	127716.3045
1	73000.0	NordOuest	Maison	Vente	3.0	115250.3562
2	157300.0	SudOuest	Dépendance	Vente	0.0	118176.4116
3	209000.0	NordEst	Maison	Vente	5.0	134580.4450
4	49000.0	RegionParis	Local industriel, commercial ou assimilé	Vente	0.0	129336.0359

Sauvegarde du model

