LEAD SCORING

Case Study

By Pawan & Suraaj

CONTENTS

- Problem Statement
- Objective
- Analysis Approach
- Insights
- Results

PROBLEM STATEMENT

- X Education sells online courses to industry professionals. They get lead through referrals, website forms and other sources. The typical lead conversion rate at X education is around 30%. To make this process more efficient, the company wishes to identify the most potential leads, also known as 'Hot Leads'.
- If they successfully identify this set of leads, the lead conversion rate should go up as the sales team will now be focusing more on communicating with the potential leads rather than making calls to everyone.

OBJECTIVE

Build a logistic regression model to assign a lead score between 0 and 100 to each of the leads which can be used by the company to target potential leads. A higher score would mean that the lead is hot, i.e. is most likely to convert whereas a lower score would mean that the lead is cold and will mostly not get converted.

APPROACH ANALYSIS

INSIGHTS ON DATA

Missing Data

Actions taken: Dropping the row

Columns	Missing Value %	
Lead Source	0.39	
TotalVisits	1.48	
Page Views Per Visit	1.48	
Last Activity	1.11	

Actions taken: Imputation

Columns	Missing Value %	
Specialization	15.562771	
City	15.367965	

- Highly skewed data (Action taken: Dropping columns)
 - 'Search', 'Magazine', 'Newspaper Article', 'X Education Forums', 'Newspaper', 'Digital Advertisement', 'Through Recommendations', 'Receive More Updates About Our Courses', 'Update me on Supply Chain Content', 'Get updates on DM Content', 'I agree to pay the amount through cheque', 'Do Not Call', 'Do Not Email', 'Country'

OUTLIER TREATMENT

CHECKING FOR OUTLIERS IN THE CONTINUOUS VARIABLES (KEEPING THE DATA WITHIN IQR)

MULTICOLLINEARITY

Note: We are not dropping high correlation values here. Will do it in later steps using RFE & VIF

Correlation	level_1	level_0
1.000000	Last Activity_Email Marked Spam	Last Notable Activity_Email Marked Spam
0.970046	Lead Origin_Lead Import	Lead Source_Facebook
0.890326	Lead Origin_Lead Add Form	Lead Source_Reference
0.866782	Last Activity_Email Opened	Last Notable Activity_Email Opened
0.861715	Last Activity_Unsubscribed	Last Notable Activity_Unsubscribed
0.850708	Last Activity_SMS Sent	Last Notable Activity_SMS Sent
0.844818	Last Activity_Had a Phone Conversation	ast Notable Activity_Had a Phone Conversation
0.784597	Last Activity_Email Link Clicked	Last Notable Activity_Email Link Clicked
0.708499	Last Activity_Page Visited on Website	Last Notable Activity_Page Visited on Website
0.707037	Last Activity_Email Received	Last Notable Activity_Email Received

DATA PREPARATION & MODEL BUILDING

- Rescaling the training variables
- Feature Selection Using RFE
- Assessing the model with StatsModels
- Dropping High P-Value and High VIF variables
- ROC & Precision- Recall Curves
- Finding optimal cut-off
- Evaluating the model using metrices like Accuracy Score,
 Sensitivity, Specificity, Precision

PLOTTING THE ROC CURVE

An ROC curve demonstrates several things:

- I. It shows the tradeoff between sensitivity and specificity (any increase in sensitivity will be accompanied by a decrease in specificity).
- 2. The closer the curve follows the left-hand border and then the top border of the ROC space, the more accurate the test.
- 3. The closer the curve comes to the 45-degree diagonal of the ROC space, the less accurate the test.

FINDING THE OPTIMAL CUT-OFF

- Plotting accuracy sensitivity and specificity for various probabilities
- From the curve, 0.37 is the optimum point to take it as a cutoff probability.

PRECISION AND RECALL TRADEOFF

Whether to Use ROC or Precision-Recall Curves?

- Generally, the use of ROC curves and precisionrecall curves are as follows:
- I. ROC curves should be used when there are roughly equal numbers of observations for each class.
- 2. Precision-Recall curves should be used when there is a moderate to large class imbalance.

PREDICTION ON TEST SET & EVALUATION

- Model gave promising results:
- Accuracy: 0.78
- 2. Sensitivity: 0.79
- 3. Specificity: 0.77
- 4. Precision: 0.67
- 5. Actual Conversion Ratio: 38.5%
- 6. Model Predicted Conversion Ratio: 39%