(19)日本国特許庁 (JP)

(12) 公表特許公報(A)

(11)特許出願公表番号 特表2002-507397

ラ ジョーラ、リンダ ローザ アベニュ

アメリカ合衆国, カリフォルニア 92130, サン ディエゴ, フトゥーラ ストリート

最終頁に続く

5551 (72)発明者 クボ、ラルフ ティー、

12635 (74)代理人 弁理士 石田 敬 (外4名)

(P2002-507397A) (43)公表日 平成14年3月12日(2002.3.12)

(51) Int.CL.	藏別私号	FI	テーマコード(参考)
C 1 2 N 15/0	9 ZNA	A 6 1 K 39/00	H 4B024
A61K 39/0	0	39/29	4 B 0 6 3
39/2	9	A 6 1 P 31/12	4 C 0 8 5
A 6 1 P 31/1	2	35/00	4 H O 4 5
35/0	0	C 0 7 K 7/00	
	審查前求	未請求 予備審查請求 有	(全 156 頁) 最終頁に続く
(21)出願番号	特願2000-535367(P2000-535367) (71)出願人 エピミューン	·, インコーポレイティド
(86) (22) 出順日	平成10年3月13日(1998.3.13)	アメリカ合衆	国, カリフォルニア 92121,
(85)翻訳文提出日	平成12年9月13日(2000.9.13)	サン ディエ	ゴ, ナンシー リッジ ドラ
(86) 国際出願番号	PCT/US98/05039	イブ 655,	スイート 200
(87)国際公開番号	WO99/45954	(72)発明者 セット,アレ	ッサンドロ
(87)国際公開日	平成11年9月16日(1999.9.16)	アメリカ合衆	団, カリフォルニア 92037,

(54) 【発明の名称】 HLA結合ペプチド及びその使用

(57)【要約】

本願発明は、HL A対立遺伝アによりコードされる魅力 ンパク質に特異的に結合し、そしてその対立遺伝アをよ 的側裂された T細胞内での「細胞の石性化を終発するこ とができる、免疫原性ペプチドの選択手段及び方法並び に当該免疫原性ペプチド和成物を提供する。本ペプチド は、所望の抗原に対する免疫が答を顕出するために有用 である。

【特許請求の範囲】

【請求項1】 HLA結合モチーフを有する免疫原性ペプチドを含む組成物 であって、その免疫原性ペプチドが、表 $3\sim14$ 中に示すペプチド又は表 $3\sim14$ 中に示すペプチド内の残基の保存的置換を含むペプチドである、前記組成物。

【請求項2】 前記免疫原性ペプチドが、第2のオリゴペプチドに結合されている、請求項1に記載の組成物。

[請求項3] 前記第2のオリゴベブチドが、ヘルバーT応答を誘発するベブチドである、請求項2に記載の組成物。

【請求項4】 表3~14中に示す免疫原性ペプチド、又は表3~14中に 示すペプチドの残基の保存的置換を含むペプチドをコードする核酸分子を含む組 成物。

【請求項5】 前記核酸が、さらに、第2の免疫原性ペプチドをコードする 配列を含む、請求項4に記載の組成物。

【請求項6】 前記核酸がさらに、ヘルパーT広答を誘発するオリゴペプチ ドをコードする配列を含む、請求項4に記載の組成物。

【請求項7】 細胞毒性T細胞を請求項1に記載のペプチドと接触させることを含む、細胞毒性T細胞を誘導する方法。

【発明の詳細な説明】

[0 0 0 1]

本願発明の背景

本願発明は、多数の病理学的症状、例えば、ウイルス疾患及び癌の予防、治療 又は診断のための組成物及び方法に関する。特に、本顧発明は、選択された主要 組織適合性複合体(MHC)分子に結合し、そして免疫応答を誘発することがで きる新規のペプチドを提供する。

[0002]

MHC分子は、クラスI又はクラスIIのいずれかの分子として分類される。クラスII MHC分子は、免疫応答を開始し、そして持続させることに関係する細胞、例えば、Tリンパ球、Bリンパ球、マクロファージ、等の上で主に発現される。クラスII MHC分子は、ヘルパーT細胞により認識され、そしてヘルパーTリンパ球の増殖を、そして提示される特定の免疫原性ペプチドに対する免疫応答の増幅を、誘導する。クラスI MHC分子は、ほとんど全ての有核細胞上で発現され、そして細胞毒性Tリンパ球(CTLs)により認識される、これは次に抗原担持細胞により破壊される。CTLsは、腫瘍拒絶において、そしてウイルス感染との戦いにおいて特に重要である。

[0003]

CTLは、無傷の外来抗原自体よりもMHCクラス I 分子に結合したベプチド断片の形態にある抗原を認識する。抗原は、通常、細胞により内因的に合成されなければならず、そしてそのタンパク質抗原の一部は、細胞質内の小ベプチド断片に分解される。これらの小ペプチドのいくつかは、プレーゴルジ(pre-Golgi)区画内に輸送され、そしてクラス I の重鎖と相互作用して、適当な折り畳み、及びサブユニットβ2マイクログロブリンとの会合を容易にする。次に、このペプチドーMHCクラス I 複合体は、特異的CTLsによる発現及び潜在的な認識のために細胞表面に選ばれる。

[0004]

ヒトMHCクラス I 分子、H L A - A 2. 1 の結晶構造の調査は、ペプチド結合性溝(g r o o v e)が、クラス I 重鎖の α 1 ドメインと α 2 ドメインの折り

畳みにより創られるということを示している (Bjorkman et al., Nature 329:5 06 (1987))。しかしながら、これらの調査においては、上記溝に結合するペプチドの同一性は、決定されなかった。

[0005]

Buus et al., Science 242:1065 (1988)は、MHCからの結合ペプチドの 酸溶離の方法を最初に記載した。その後、Rammensee と共同研究者 (Falk et al ., Nature 351:290 (1991))らは、クラスI分子に結合した天然にプロセスされたペプチドを特徴付けるためのアプローチを開発した。他の研究者らは、Bタイプの(Jardetzky, et al., Nature 353:326 (1991))及びマス・スペクトロメトリーによるA2.1タイプの (Hunt, et al., Science 225:1261 (1992))のクラスI分子から溶離されたペプチドの慣用の自動配列決定によりさまざまなHPLC画分内のより多量のペプチドの直接的アミノ酸配列決定を首尾よく達成した。MHCクラスIにおける天然にプロセスされたペプチドの特徴付けのレビューは、Roetzschke and Falk (Roetzschke and Falk, Immunol. Today 12:447 (1991)) により提示されている。

[0006]

Sette et al., Proc. Natl. Acad. Sci. USA 86: 3296 (1989) は、MHC対立遺伝子特異的モチーフが、MHC結合能力を予測するために使用されることができるであろうということを示した。Schaeffer et al., Proc. Natl. Acad. Sci. USA 86: 4649 (1989) は、MHC結合が、免疫原性に関係していることを示した。いくらかの著者 (De Bruijn et al., Eur. J. Immunol., 21: 2963-2970 (1991); Pamer et al., 991 Nature 353: 852-955 (1991))は、クラス I 結合モチーフが、動物モデルにおける潜在的に免疫原性のベブチドの同定に適用されることができるという予備的な証拠を提供した。与えられたクラス I アイソタイプの多数のヒト対立遺伝子に特異的なクラス I モチーフは、未だ記載されていない。これらの異なる対立遺伝子の組合せの頻度は、大きな両分又はたぶんヒト異系交配集団の大部分をカバーするために十分に高くなければならないということが認ましい。

[0007]

本分野における発展にも拘らず、従来技術は、未だ、上記研究に基づき有用な ヒトペプチドーベースのワクチン又は治療剤を提供していない。本願発明は、上 記その他の利点を提供する。

本願発明の要約

本願発明は、HLA分子のための結合モチーフを有する免疫原性ペプチドを含む組成物を提供する。適当なMHC対立遺伝子に結合する免疫原性ペプチドは、 上記ペプチドが所望のHLA分子に結合することを許容する特定の位置に、保存された残基を含む。

[0008]

多数の免疫原性標的タンパク質上のエピトープは、本願発明のベブチドを使用して同定されることができる。好適な抗原の例は、前立腺癌特異的抗原(PSA)、B型肝炎コア及び表面抗原(HBVc, HBVs)、C型肝炎抗原、Epstein-Barrウイルス抗原、ヒト免疫不全1型ウイルス(HIV1)、カポジ肉腫ヘルペス・ウイルス(KSHV)、ヒト・パピローマ・ウイルス(HPV)抗原、ラッサ(Lassa)ウイルス、マイコパクテリウム・チューバーキュローシス(結核菌MT)、p53,CEA、トリパノソーム表面抗原(TSA)、及びHer2/neuを含む。従って、上記ペブチドは、治療と診断の両者の適用のための医薬組成物において有用である。

[0009]

特に、本発明は、その免疫原性ペプチドが表3~14に示すペプチドである、 HLA結合モチーフを有する免疫原性ペプチドを含む組成物を提供する。表3~ 14中に示すペプチド内の残基の保存的置換を含むペプチドをも提供する。本願 発明の免疫原性ペプチドは、第2のオリゴペプチドにさらに連結されることがで きる。いくつかの態様においては、第2のオリゴペプチドは、ヘルパーT応答を 合むペプチドである。

[0 0 1 0]

本願発明は、表3~14中に示すような免疫原性ペプチド、又は表3~14中 に示すペプチドの残基の保存的置換を含むペプチドをコードする核酸をさらに提 供する。上記核酸は、さらに、第2の免疫原性ペプチド又はヘルパーT応答を誘 発するペプチドをコードする配列を含むことができる。

本願発明において提供するペプチドは、インビボ又はインビトロのいずれかに おいて細胞毒性T細胞応答を誘発するために使用されることができる。上記方法 は、細胞毒性T細胞を本願発明のペプチドと接触させることを含む。

[0011]

定義

用語 "ベブチド"は、典型的には、隣接アミノ酸のアルファーアミノ基とカルボニル基の側のベブチド結合により互いに結合された、一連の残基、典型的には L-アミノ酸を指すために、本願明細書中、"オリゴベブチド"と互換的に使用 される。本願発明のオリゴベブチドは、長さ約15残基未満であり、そして通常 、約8~約11の残基、好ましくは9又は10の残基から成る。

[0 0 1 2]

"免疫原性ペプチド"は、そのペプチドがMHC分子に結合し、そしてCTL 応答を誘発するであろうように、対立遺伝子特異的モチーフを含むペプチドである。本願発明の免疫原性ペプチドは、適当なHLA分子に結合し、そしてその免疫原性ペプチドが由来するところの抗原に対する細胞毒性T細胞応答を誘発することができる。

[0013]

免疫原性ペプチドは、便利には、本願発明のアルゴリズムを使用して同定される。このアルゴリズムは、免疫原性ペプチドの選択を可能にする等級(スコア)を作る数学的手順である。典型的には、当業者は、特定のアフィニティーにおける高い結合確率をもち、そして次に免疫原性となるであろう、ペプチドの選択を可能にする "結合しきい値 (binding threshold)" をもつ上記アルゴリズム等級を使用する。このアルゴリズムは、ペプチドの特定の位置において特定のアミノ酸のMHC結合に対する効果、又はモチーフ含有ペプチド内の特定の置換物の結合に対する効果のいずれかに基づく。

[0014]

"保存(された)残基"は、ペプチドの特定の位置においてランダム分布によ り予測されるであろう有意に高い頻度において生じるアミノ酸である。典型的に は、保存された残基は、そのMHC構造が、接触点に上記免疫原性ペプチドを提供することができるようなものである。所定長のペプチド内の少なくとも1~3以上、好ましくは2の、保存された残基は、免疫原性ペプチドのためのモチーフを規定する。これらの残基は、典型的には、上記ペプチド結合性溝と密に接しており、それらの側鎖はその溝の特定のポケット内に埋められている。典型的には、免疫原性ペプチドは、3までの保存された残基、より普通には2つの保存された残基を含むであろう。

[0 0 1 5]

本願明細書中に使用するとき、 "結合陰性残基 (negative binding residues)"とは、特定の位置に存在する場合、非結合又は現結合材 (non binder or poor binder)であるペプチドをもたらし、そして次に免疫原性であること、すなわち C.T.L.広答の誘発に失敗するであろうアミノ酸である。

用語 "モチーフ (motif)"とは、特定のMHC対立遺伝子により認識される、所定長の、通常、約8~約11のアミノ酸をもつペプチド内の残基のバターンをいう。このペプチド・モチーフは、典型的には、各ヒトMHC対立遺伝子について異なり、そして高く保存された残基及び陰性の残基のバターンにおいて相違する。

[0016]

対立遺伝子のための結合モチーフは、高い精度 (increasing degrees of prec ision)をもって定義されることができる。ある場合には、保存された残基の全て がベブチド内の正しい位置に存在し、そして位置し、3、及び/又は7において 陰性残基が存在しない。

旬 "単離された" 又は "生物学的に純粋" とは、その天然の状態において見られるような、通常それに同伴する成分を実質的に又は本質的に含有しない材料をいう。従って、本願発明のペプチドは、それらのイン・サイチュー環境と通常係わる材料、例えば抗原提示細胞上のMHC I分子を含まない。タンパク質が、均一又は優勢なパンドにまで単離されている場合にさえ、所望のタンパク質と同時に精製される、天然タンパク質の5~10%の範囲において、微量の汚染物質が存在する。本願発明の単離されたペプチドは、このような内因性の同時精製タ

ンバク質は含まない。

[0 0 1 7]

用語 "残基" とは、アミド結合又はアミド結合擬態によりオリゴベブチド内に 取り込まれたアミノ酸収はアミノ酸保護をいう。

好ましい熊様の説明

本願発明は、(ときにHLAという)ヒト・クラスI MHC対立遺伝子サブ タイプのための対立遺伝子特異的ペプチド・モチーフ、特にHLA対立遺伝子に より認識されるペプチド・モチーフの決定に関する。

[0018]

日LA-A2. 1については、9アミノ酸のベブチドが、好ましくは、以下のモチーフをもつ:I, V, A、及びTから成る群から選ばれたN-末端から2番目の位置における第1の保存アミノ残基、並びにV, L, I, A、及びMから成る群から選ばれたC-末端位における第2の保存残基。他のモチーフは、選ばれたN-末端から2番目の位置における第1の保存残基がL, M, I, V, A、及びTから成る群に由来し、そして選ばれたC-末端位における第2の保存残基がA及びMから成る群に由来するものである。1位のアミノ酸は、好ましくは、D及びPから成る群から選ばれたアミノ酸ではない。N-末端から3番目にあるアミノ酸は、D, E, R, K、及びHから成る群から選ばれたアミノ酸ではない。N-末端から6番目のアミノ酸は、R, K、及びHから成る群から選ばれたアミノ酸ではない。N-末端から3番目にあるアミノ酸は、R, K, H, D、及びBから成る群から選ばれたアミノ酸ではない。

[0019]

10残基をもつペプチドのためのHLA-A2. 1結合モチーフは以下のものである:L, M, I, V, A、及びTから成る群から選ばれたN-末端から2番目にある第1の保存残基、並びにV, I, L, A、及びMから成る群から選ばれたC-末端位にある第2の保存残基。この第1及び第2保存残基は、7残基離れている。好ましくは、1位におけるアミノ酸は、D, E、及びPから成る群から選ばれたアミノ酸ではない。このN-末端残基は、D、及びEから成る群から選ばれたアミノ酸ではない。N-末端から4位にある残基は、A, K, R、及び日

から成る群から選ばれたアミノ酸ではない。Nー末端から5位にあるアミノ酸は Pではない。Nー末端から7位にあるアミノ酸は、R,K、及びHから成る群から選ばれたアミノ酸ではない。Nー末端から8位にあるアミノ酸は、D,B,R,K、及びHから成る群から選ばれたアミノ酸ではない。Nー末端から9位にあるアミノ酸は、R,K、及びHから成る群から選ばれたアミノ酸ではない。

[0020]

HLA-A3. 2のためのモチーフは、そのN-末端からC-末端まで、2位に、L,M,I,V,S,A,T、及びFからの第1保存残基、並びにそのC-末端にK,R、又はYからの第2保存残基を含む。他の第1保存残基は、C,G又はD、そしてあるいはEである。他の第2保存残基はH又はFである。この第1及び第2保存残基は、好ましくは、6~7残基離れている。

[0 0 2 1]

HLA-A1のためのモチーフは、そのN-末端からC-末端まで、T,S、 又はMの第1保存残基、D又はEの第2保存残基、そしてYの第3保存残基を含む。他の第2保存残基は、A,S又はTである。第1保存残基と第2保存残基は 隣接し、そして好ましくは、6~7残基程、第3保存残基から離れている。第2 モチーフは、E又はDからの第1保存残基、及びYからの第2保存残基から成り 、ここで第1保存残基と第2保存残基は5~6残基離れている。

[0022]

HLA-A11のためのモチーフは、そのN-末端からC-末端まで、2位に 、T, V, M, L, I, S, A, G, N, C, D又はFからの第1保存残基、並 びにK, R, Y又はHからのC-末端保存残基を含む。第1保存残基と第2保存 残基は、好ましくは、6又は7残基離れている。

HLA-A24.1のためのモチーフは、そのN-末端からC-末端まで、2位に、Y,F又はWからの第1保存残基、並びにF,I,W,M又はLからのC-末端保存残基を含む。この第1保存残基と第2保存残基は、好ましくは6~7残基離れている。

[0023]

次にこれらのモチーフが、いずれかの所望の抗原由来のT細胞エピトープ、特

に、ヒト・ウイルス疾患、瓶又は自己免疫疾患に関係するものであって、それに ついて、潜在的な抗原又は自己抗原標的のアミノ酸配列が知られているものを定 継するために使用される。

多数の潜在的な標的タンパク質上のエピトーブがこのやり方で同定されることができる。好適な抗原の例は、前立腺特異的抗原(PSA)、B型肝炎コア及び表面抗原(HBVc,HBVs)、C型肝炎抗原、Epstein-Barrウイルス抗原、メラノーマ抗原(例えば、<math>MAGE-1)、ヒト免疫不全ウイルス(HIV)抗原、ヒト・ベピローマ・ウイルス(HPV)抗原、ラッサ(Lassa)ウイルス、マイコパクテリウム・チューパーキュローシス(結核菌MT)、p53、CEA、トリパノソーム表面抗原(TSA)、及びHer2/neu を含む。

[0024]

上記抗原からのエピトーブを含むペプチドを合成し、そして次に、例えば、免疫蛍光染色及びフロー・マイクロフルオロメトリー、ペプチド依存性クラスIアセンブリー・アッセイ、及びペプチド競合によるCTL認識の阻害による、例えば、純粋クラスI分子及び放射性ヨウ素化ペプチド、及び/又は空クラスI分子を発現する細胞を使用したアッセイにおいて、適当なMHC分子に結合するそれらの能力についてテストする。上記クラスI分子に結合するようなペプチドを、感染又は免疫感作された個体から得られたCTLsのための標的として働くそれらの能力について、並びに潜在的な治療剤として事実上感染した標的細胞又は腫瘍細胞と反応することができるCTL集団を生ぜしめることができる1次インビトロ又はインビボCTL応答を誘発するそれらの能力について評価する。

[0 0 2 5]

上記MHCクラスI抗原は、HLA-A, B、及びC座によりコードされる。 HLA-AとB抗原は、ほぼ等しい密度において細胞表面に発現され、一方、H LA-Cの発現は、有意に低い(おそらく、10-倍低い)。上記の座のそれぞ れが、多数の対立遺伝子をもつ。本願発明のペプチド結合性モチーフは、各対立 遺伝子サブタイプに比較的特異的である。

[0026]

ペプチドーペース・ワクチンのためには、本願発明のペプチドは、好ましくは、ヒト集団において広い分布をもつMHC I分子により認識されるモチーフを含む。このMHC対立遺伝子は、異なる人種(ethnic groups and races)内で異なる頻度で生じるので、標的MHC対立遺伝子の選択は、その標的集団に依存することができる。表 1 は、異なる人種間のHLA-A座産物における各対立遺伝子の頻度を示す。例えば、白色人種集団の大多数は、4 つのHLA-A対立遺伝子サプタイプ、特にHLA-A2.1,A1,A3.2、及びA24.1に結合するペプチドによりカバーされることができる。同様に、アジア人集団の大多数は、第5の対立遺伝HLA-A11.2に結合するペプチドの付加により包含される。

[0027]

【表1】

表	1

A 対立通伝子/サブタイプ	N(69)	A(54)	C(502)
A1	10.1(7)	1.8(1)	27.4(138)
A2.1	11.5(8)	37.0(20)	39.8(199)
A2.2	10.1(7)	0	3.3(17)
A2.3	1.4(1)	5.5(3)	0.8(4)
A2.4	-	-	-
A2.5	· •	-	-
A3.1	1.4(1)	0	0.2(0)
A3.2	5.7(4)	5.5(3)	21.5(108)
A11.1	0	5.5(3)	0
A11.2	5.7(4)	31.4(17)	8.7(44)
A11.3	0	3.7(2)	0
A23	4.3(3)	-	3.9(20)
A24	2.9(2)	27.7(15)	15.3(77)
A24.2	-		-
A24.3	-	-	
A25	1.4(1)		6.9(35)
A26.1	4.3(3)	9.2(5)	5.9(30)
A26.2	7.2(5)	-	1.0(5)
A26V	-	3.7(2)	-
A28.1	10.1(7)		1.6(8)
A28.2	1.4(1)	-	7.5(38)
A29.1	1.4(1)	-	1.4(7)
A29.2	10.1(7)	1.8(1)	5.3(27)
A30.1	8.6(6)	-	4.9(25)
A30.2	1.4(1)		0.2(1)
A30.3	7.2(5)	-	3.9(20)
A31	4.3(3)	7.4(4)	6.9(35)
A32	2.8(2)	-	7.1(36)
Aw33.1	8.6(6)		2.5(13)
Aw33.2	2.8(2)	16.6(9)	1.2(6)
Aw34.1	1.4(1)	-	-
Aw34.2	14.5(10)	-	0.8(4)
Aw36	5.9(4)	-	•

B. DuPont, Immunobiology of HLA, Vol. I, Histocompatibility
Testing 1987, Springer-Verlag, New York 1989 から編集した表。

[0028]

ペプチド化合物を記載するために使用される命名法は、以下の慣例に従う。ここで、アミノ基は、各アミノ酸残基の左(N-末端)に表され、そしてカルボキシル基は、右(C-末端)に表される。本願発明の選ばれた特定の態様を表す式においては、特に示さないが、アミノ-末端基とカルボキシル末端基は、特にこ

^{*}N-ニグロイド;A=アジァ人;C= 白色人種。 カッコ内の数は上記分析に含まれる個人の数を表す。

とわらない限り、生理学的内においてそれらが呈するであろう形態にある。アミノ酸構造式中、各残基は、一般的に、標準的な3文字又は1文字命名法により表される。アミノ酸残基のL一型は、大文字1文字又は3文字記号の第1の大文字で表され、そしてD一型をもつそれらアミノ酸のD型は、小文字1文字又は小文字3文字記号で表される。グリシンは、不斉炭素原子をもたず、そして単に、"Gly"又はGという。

[0029]

本願発明のペプチドを同定するために使用される手順は、一般に、Falk et al ., Nature 351: 290 (1991) (これを、本顧明細書中に授用する) 中に開示された方法に従う。簡単に言えば、これらの方法は、適当な細胞又は細胞系からの、典型的には、免疫沈降又はアフィニティー・クロマトグラフィーによる、MHCクラス I 分子の大規模単離を含む。当業者に等しく周知の所望のMHC分子の単離のための別法の例は、イオン交換クロマトグラフィー、レクチン・クロマトグラフィー、サイズ排除、高性能リガンド・クロマトグラフィー、及び上記技術の全ての組合せを含む。

[0030]

典型的な場合には、免疫沈降は、所望の対立遺伝子を単離するために使用される。使用される抗体の特異性に依存して、多くのプロトコールを使用することができる。例えば、対立遺伝子特異的mA b 試薬が、HLA-A,HLA-B」、及びHLA-C分子のアフィニティー精製のために使用されることができる。HLA-A分子の単離のためのいくつかのmA b 試薬が入手可能である。モノクローナルBB7. 2 は、HLA-A2分子を単離するために好適である。標準的な技術を使用して上記mAb s により調製されたアフィニティー・カラムは、対応のHLA-A3 対立遺伝子産物を精製するために育尾よく使用される。

[0031]

対立遺伝子特異的mAbsに加えて、広い反応性をもつ抗ーHLA-A, B, C mAbs、例えば、W6/32とB9.12.1、及び1の抗ーHLA-B, C mAb, B1.23.2が、先の出願中に記載したような他のアフィニティー精製プロトコールにおいて使用されることができるであろう。

単離されたMHC分子のベブチド結合性溝に結合したベブチドは、典型的には、酸処理を使用して溶離される。ベブチドは、さまざまな標準的な変性手段、例えば、熱、PH、洗剤、塩、カオトロビズム剤、又はそれらの組合せにより、クラスI分子から解離されることもできる。

[0032]

ペプチド画分は、さらに、逆相高性能液体クロマトグラフィー(HPLC)に よりMHC分子から分離され、そして配列決定される。ペプチドは、濾過、限外 濾過、電気泳動、サイズ・クロマトグラフィー、特異性抗体による沈降、イオン 交換クロマトグラフィー、等電点電気泳動、その他を含む、当業者によく知られ た、さまざまな他の標準的な手段により分離されることができる。

[0033]

単離されたペプチドの配列決定は、標準的な技術、例えば、Edman分解(Hunkapiller, M.W., et al., Methods Enzymol. 91, 399 [1983]) に従って行われることができる。配列決定のために好適な他の方法は、先に記載されたような、個体のペプチドのマス・スペクトロメトリー配列決定を含む (Hunt, et al., Science 225: 1261 (1992)、これを本願明細書中に援用する)。異なるクラス I分子からのバルク外来ペプチド (例えば、ブールされたHPLC画分) のアミノ酸配列決定は、典型的には、各クラス I 対立遺伝子に特徴的な配列モチーフを表す。

[0034]

異なるクラス I 対立遺伝子に特異的なモチーフの定義は、そのアミノ酸配列が知られているところの抗原性タンパク質からの潜在的ペプチド・エピトープの同定を許容する。典型的には、潜在的ペプチド・エピトープの同定は、まず、モチーフの存在について所望の抗原のアミノ酸配列を走査するためのコンピューターを使用して行われる。次に、エピトープ配列が合成される。MHCクラス分子に結合する能力は、さまざまな異なる方法で計測される。1の手段は、上記の、関連出願中に記載されたようなクラス I 分子結合アッセイである。上記文献中に記載された別法は、抗原提示の阻害(Sette, et al., J. Immunol. 141: 3893 (1991))、インビトロ・アセンブリー・アッセイ (Townsend, et al., Cell 62: 28

5 (1990)) 、及び突然変異された細胞、例えばRMA. Sを使用したFACSベースのアッセイ (Melief, et al., Eur. J. <u>Immunol.</u> 21: 2963 (1991))を含む

[0035]

次に、MHCクラス I 結合アッセイにおいて陽性結果であるペプチドを、インビトロにおいて特異的CTL応答を誘導するそのペプチドの能力についてアッセイする。例えば、ペプチドと共にインキュベートされた抗原提示細胞を、応答物細胞集団内でCTL応答を誘導するその能力についてアッセイすることができる。抗原提示細胞は、正常細胞、例えば、末梢血単核細胞又は樹状細胞であることができる (Inaba, et al., J. Exp. Med. 166: 182 (1987); Boog, Eur. J. Immunol. 18: 219 [1988])。

[0036]

あるいは、内部でプロセスされたペプチドでクラス I 分子をロードするそれらの能力において欠陥がある突然変異体哺乳類細胞系、例えばマウス細胞系RMA — S (Kaerre, et al., Nature, 319:675 (1986); Ljunggren, et al., Eur. J. Immunol. 21:2963-2970 (1991))、及びヒト体細胞T細胞ハイブリッド、T-2 (Cerundolo, et al., Nature 345:449-452 (1990))、並びに適当なヒト・クラス I 遺伝子でトランスフェクトされている突然変異体哺乳類細胞系を、ペプチドがそれらに添加されるとき、インビトロにおける 1 次CTL応答を誘発するそのペプチドの能力についてテストするために、便利には使用する。使用されることができるであろう他の真核細胞系は、さまざまな昆虫細胞系、蚊の幼虫(ATCC細胞系CCL 125,126,1660,1591,6585,6586)、カイコ(ATCC CRL 8851)、アワヨトウ(ATCC CRL 1711)、ガ(ATCC CCL 80)、及びショウジョウバエ (Drosophila) 細胞系、例えば、Schneider 細胞系 (Schneider J. Embryol. Exp. Morphol. 27:353-365 [1927] 参照)を含む。

[0037]

末梢血リンパ球は、便利には、正常ドナー又は患者の単なる静脈穿刺又は白血 球分離に従って単離され、そしてCTL前駆体の応答物細胞源として使用される 。1の態様においては、適当な抗原ー提示細胞を、適当な培養条件下4時間、無血清培地中、10~100µMのペプチドと共にインキュペートする。次に、ペプチドーロードされた抗原提示細胞を、最適化された培養条件下、7~10日間、インビトロにおいて応答者細胞集団と共にインキュペートする。陽性CTL活性化を、放射標識された標的細胞、すなわち、特異的ペプチドーパルス化標的、並びに上記ペプチド配列がそれに由来するところの関連ウイルス又は腫瘍抗原の内因的にプロセスされた形態を発現する標的細胞の両者を殺生するCTLsの存在について上記培養物をアッセイすることにより測定することができる。

[0038]

CTLの特異性及びMHC制限を、適当な又は不適当なヒトMHCクラスIを 発現する異なるペプチド標的細胞に対してテストすることにより決定する。上記 MHC結合アッセイにおいて陽性結果となり、そして特異的CTL応答を生じる ペプチドを、本願明細書中、免疫原性ペプチドという。

この免疫原性ペプチドを、合成により、又は組換之DNA技術により又は天然 源、例えば、ウイルス又は腫瘍の全体から調製することができる。上記ペプチド は、好ましくは、他の天然宿主細胞タンパク質及びその断片を実質的に含有しな いであるうが、ある態様においては、上記ペプチドは、生来の断片又は粒子に合 歳により結合されることができる。

[0039]

上記ポリペプチド又はペプチドは、それらの中性(無電荷)形態又は塩である 形態のいずれかにおいて、さまざまな長さをもつことができ、そして修飾、グリ コシル化、側鎖酸化、又はリン酸化されていないか、又はその修飾が本願明細告 中に記載するようなポリペプチドの生物学的活性を破壊しないという条件に従っ て、これらの修飾を含むかのいずれかであることができる。

[0040]

望ましくは、上記ペプチドは、大ペプチドの生物学的活性の実質的に全てを未 だ維持しながら、できるだけ小さいものであるであろう。可能な場合、細胞表面 上のMHCクラスI分子に結合する内因的にプロセスされたウイルス・ペプチド 又は腫瘍細胞ペプチドとサイズにおいて均り合う、9又は10アミノ酸残基の長 さに、本願発明のベプチドを最適化することが望ましい。

[0041]

所望のMHC分子に結合し、かつ、適当なT細胞を活性化させる、非修飾ペブ チドの生物学的活性の実質的に全てを高め又は少なくとも保持しながら、特定の 望ましい特性、例えば改善された薬理学的特性を提供することが必要な場合、所 望の活性をもつペプチドを修飾することができる。例えば、上記ペプチドは、そ のような変化がそれらの使用においてある利点、例えば改良されたMHC結合を 提供するかもしれない場合、保存的であるか非保存的であるかを問わず、さまざ まな変化、例えば置換を受けることができる。保存的置換とは、あるアミノ酸残 基を、生物学的及び/又は化学的に類似の他のもので置換すること、例えば、1 の疎水性残基と他のものの置換、又は1の極性残基と他のものの置換を意味する 。上記置換は、Gly、Ala; Val. Ile, Leu, Met; Asp. G lu; Asn, Gln; Ser, Thr; Lys, Arg; 及びPhe, Tyr の組合せを含む。単一アミノ酸置換の効果は、D-アミノ酸を使用してプローブ されることもできる。このような修飾は、例えば、Merrifield, Science 232: 341-347 (1986), Barany and Merrifield, The Peptides, Gross and Meienhof er, eds. (N.Y., Academic Press), pp. 1-284 (1979) : 及び Stewart and You ng, Solid Phase Peptide Synthesis, (Rockford, Ill., Pierce), 2d Ed. (198 4)本願明細書中に援用する)中に記載されているような、よく知られたペプチド 合成手順を使用して、行われることができる。

[0 0 4 2]

上記ペプチドは、その化合物のアミノ酸配列を延長し又は短縮することにより、例えば、アミノ酸の付加又は欠失により修飾されることもできる。本願発明のペプチド又はアナログは、特定の残基の順序又は組成を変えることにより修飾されることもできる。生物学的活性に不可欠な特定のアミノ酸残基、例えば、決定的な接触部位にあるもの又は保存された残基が、一般に、生物学的活性に対する悪影響を及ぼさずに、変更されることはできないということは容易に理解される。決定的ではないアミノ酸は、タンパク質内に天然にあるもの、例えば、Lーαーアミノ酸、又はそれらのDー展性体に限られる必要はないが、非天然アミノ酸

、例えば、 $\beta-\gamma-\delta-\gamma$ ミノ酸並びに $\mathbf{L}-\alpha-\gamma$ ミノ酸の多くの誘導体を含むこともできる。

[0043]

典型的には、単一アミノ酸置換をもつ一連のベブチドが、結合に対する、静電 荷、疎水性の効果を決定するために使用される。例えば、一連の正電荷(例えば 、Lys又はArg)又は負電荷(例えば、Glu)アミノ酸置換が、さまざま なMHC及びT細胞レセブターに対する異なるパターンの感受性を現わすベブチ ドの長さに沿って、行われる。さらに、小さな、比較例中性の成分、例えば、A la, Gly, Pro、又は類似の残基を使用した多置換が使用されることがで きる。これらの置換は、ホモーオリゴマー又はヘテローオリゴマーであることが できる。置換され又は付加される残基の数とタイプは、本質的な接触点と、求め られる特定の機能特性(例えば、疎水性対親水性)の間に必要な空間配置に依存 する。MHC分子又はT細胞レセブターについての高い結合アフィニティーも、 その親ペブチドのアフィニティーに比較して、上記のような置換により達成され ることができる。いずれの場合も、このような置換は、例えば、結合を破壊する かもしれない、立体的及び電気的妨害を回避するように選ばれる、アミノ酸残基 又は他の分子断片を使用すべきである。

[0044]

アミノ酸置換は、典型的には、単一の残基を有する。置換、欠失、挿入、又は そのいずれかの組合せは、最終ペプチドを達成するように組み合せられることが できる。置換変異体は、ペプチドの少なくとも1の残基が除去されており、そし て異なる残基がその場所に挿入されているようなものである。このような置換は 、一般に、そのペプチドの特性を細かく調節することが望ましいとき、以下の表 2に従って行われる。

[0045]

【表 2】

表 2

元の残基	例示的量换	
Ala	Ser	
Arg	Lys, His	
Asn	Gin	
Asp	Glu	
Cys	Ser	
Gln	Asn	
Glu	Asp	
Gly	Pro	
His	Lys; Arg	
Ile	Leu; Val	
Leu	Ile; Val	
Lys	Arg; His	
Met	Leu; Ile	
Phe	Tyr; Trp	
Ser	Thr	
Thr	Ser	
Trp	Tyr; Phe	
Tyr	Trp; Phe	
Val	Ile; Leu	
Рто	Gly	

[0046]

機能 (例えば、MHC分子又はT細胞レセプターについてのアフィニティー) における実質的な変更は、表2中のものより保存性ではない置換を選択することにより、すなわち、(a) 例えば、シート又はヘリカル立体配置のような、その置換の領域内のベブチド骨格の構造、(b) 標的部位におけるその分子の電荷又

は疎水性、又は(c)側鎖の嵩、を維持することに対するそれらの効果においてより有意に異なる残基を選択することにより、行われる。一般に、ペプチド特性において最大の変化を作り出すと予想される置換は、(a) 親水性残基、例えばセリルが、疎水性残基、例えばロイシル、イソロイシル、フェニルアラニル、パリル、又はアラニルにより置換されたもの; (b) 正電荷を有する側鎖をもつ残基、例えば、リジル、アルギニル又はヒスチジルが、負電荷を有する残基;例えば、グルタミル又はアスパルチルにより置換されたもの;又は(c) 嵩高い側鎖をもつ残基、例えば、フェニルアラニンが、側鎖をもたない残基、例えば、グリシンにより置換されたものであるであろう。

[0047]

上記ペプチドは、免疫原性ペプチド内に 2 以上の残基のアイソスター(isssteres)を含むこともできる。本願明細書中に定義するとき、アイソスターとは、第 2 の配列で置換されることができる 2 以上の残基の配列である。なぜなら、第 1 の配列の立体配置が第 2 の配列に特異的な結合部位にフィットするからである。上記用語"特異的に"とは、当業者によく知られたベブチド骨格修飾を含む。このような修飾は、アミド窒素、 α – 炭素、アミド・カルボニル、アミド結合の完全置換、伸長、欠失又は骨格架橋の修飾を含む。一般に、Spatola、Chemistry and Biochemistry of Amino Acids,peptides and Proteins,Vol. VII (Weinstein ed., 1983)を参照のこと。

[0048]

さまざまなアミノ酸髪態又は非天然アミノ酸によるペプチドの修飾は、インビボにおけるそのペプチドの安定性を高めるに際し特に有用である。安定性は多くの方法でアッセイされることができる。例えば、ペプチダーゼ及びさまざまな生物学的媒質、例えば、ヒト血漿及び血清が安定性をテストするために使用されてきた。例えば、Verhoef et al., Eur. J. Drug Metab. Pharmacokin, 11:291-302 (1986)を参照のこと。本願発明のペプチドの半減期は、便利には25%ヒト血清 (v / v) アッセイを使用して測定される。このプロトコールは一般に以下のようである。プールされたヒト血清 (AB型、非加熱失活)を、使用前に遠心分離により脱脂する。次に、この血清を、RPMI 組織培養基で25%に希釈

し、そしてベプチド安定性をテストするために使用する。所定の時間関隔において、少量の反応溶液を除去し、そして6%水性トリクロロ酢酸又はエタノールのいずれかに添加する。濁った反応サンプルを15分間、冷却し $(4\, \ensuremath{\mathbb{C}})$ 、そして次にその沈殿した血清タンパク質をベレット化するために回転させる。次に、そのベプチドの存在を、安定性一特異的クロマトグラフィー条件を使用して逆相HPLCにより測定する。

[0 0 4 9]

CTL刺激活性をもつ本願発明のペプチド又はそのアナログを、改良された血精半減期以外の所望の特性を提供するように修飾することができる。例えば、CTL活性を誘発する上記ペプチドの能力を、エヘルパー細胞応答を誘発することができる少なくとも1のエピトーブを含む配列への連結により高めることができる。特に好ましい免疫原性ペプチド/Tヘルパー抱合体(conjugates)はスペーサー分子により連結される。このスペーサーは、典型的には、生理学的条件下で、実質的に変えられていない、比較的小さな、中性の分子、例えば、アミノ酸又はアミノ酸擬態から成る。これらのスペーサーは、典型的には、例えば、Ala,Gly、又は非極性アミノ酸又は中性極性アミノ酸の他の中性スペーサーから選ばれる。場合により存在するスペーサーは、同一残基から成る必要はなく、そしてこれ故、ヘテロー又はホモーオリゴマーであることができるということが理解されよう。存在するとき、スペーサーは、通常、少なくとも1又は2の残基、より普通には、3~6の残基であるであろう。あるいは、上記CTLペプチドは、スペーサーを伴わずにTヘルパー・ペプチドに連結されることができる。

[0 0 5 0]

上記免疫原性ペプチドは、上記CTLペプチドのアミノ又はカルボキシ末端のいずれかにおいて直接的にか又はスペーサーを介して、Tヘルパー・ペプチドに連結されることができる。上記免疫原性ペプチド又はTヘルパー・ペプチドのいずれかのアミノ末端はアシル化されることができる。例示的なTヘルパー・ペプチドは破傷風(tetanus)毒素830-843、インフルエンザ307-319、マラリア・サーカンスポロゾイド(circumsporozoite

) 382-398及び378-389を含む。

[0051]

ある態様においては、CTLをブライムする少なくとも1の成分を、本願発明の医薬組成物中に含むことが望ましい。脂質は、ウイルス抗原に対してインビボにおいてCTLをブライムすることができる剤として同定されている。例えば、バルミチン酸残基は、Lys残基のアルファ及びエブシロン・アミノ基に結合されることができ、そして次に、例えば、1以上のリンキング残基、例えば、G1y,G1y-G1y,Ser,Ser-Ser、その他を介して、免疫原性ペプチドに連結されることができる。次に、この脂質化ペプチドは、ミセル形態で直接に注射され、リポソーム内に取り込まれ、又はアジュバント、例えば、不完全Freund'sアジュバント中に乳化されることができる。好ましい態様においては、特に有効な免疫原は、リンケージ、例えば、Ser-Serを介して、上記免疫原性ペプチドのアミノ末端に結合されたLysのアルファ及びエブシロン・アミノ基に付着されたパルミチン酸を含む。

[0 0 5 2]

CTL応答の脂質刺激の別例として、E. コリ (E. coli)リボタンパク質、例 えばトリバルミトイルーSーグリセリルシステイニルセリルーセリン (P, CSS)を、適当なペプチドに共有結合させてウイルス特異的CTLを刺激するのに 用いることができる。Deres 他、Nature 342:561-564 (1989)を参照のこと (これは参考として本明細書中に組み入れられる)。本発明のペプチドは、例えば P, CSSに結合させてリポペプチドとして個体に投与することにより、標的抗原に対するCTL応答を特異的に刺激することができる。更に、適当なエピトープを提示するペプチドに結合させたP, CSSにより中和抗体の誘導も刺激することができるので、2つの組成物を組み合わせることによって、感染に対する体液性応答と細胞性応答の両方を一層効率的に蓄起せしめることができる。

[0 0 5 3]

その上、ペプチドを互いに連結する簡便性、担体支持体もしくは大型ペプチド への結合、ペプチドもしくはオリゴペプチドの物理的もしくは化学的性質の変更 などに備えて、ペプチドの末端に追加のアミノ酸を付加することができる。チロ シン、システイン、リジン、グルタミン酸またはアスバラギン酸等のようなアミノ酸を、ペプチドまたはオリゴペプチドのC末端またはN末端に導入することができる。C末端での修飾は、場合によりペプチドの結合特性を変更することがある。その上、ペプチドまたはオリゴペプチド配列は、末端NH₂ アシル化、例えばアルカノイル (С1 - С20) もしくはチオグリコリルアセチル化、末端カルボキシルアミド化、例えばアンモニア、メチルアミン等によって修飾することにより、生来の配列と異なることができる。場合により、それらの修飾が支持体または別の分子への結合のための部位を提供することがある。

[0054]

本発明のペプチドは様々な方法で調製することができる。それらが比較的短いサイズであるために、常用技術に従って溶液中でまたは固体支持体上でペプチドを合成することが可能である。様々な自動合成装置が市販されており、既知のプロトコルに従って利用できる。例えば、 Stewart & Young, Solid Phase Peptide Synthesis 、第2版、Pierce Chemical Co. (1984)前掲を参照のこと。

[0055]

あるいは、組換えDNA技術を使用してもよい。その場合、着目の免疫原性ペプチドをコードするヌクレオチド配列を発現ベクターに挿入し、該発現ベクターを用いて適当な宿主細胞を形質転換またはトランスフェクションさせ、そしてそれらの細胞を発現に適した条件下で培養する。このような手法は当該技術分野で一般に周知であり、Sambrook他、Molecular Cloning、A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor, New York (1982) に総説されている(これは参考として本明細書中に組み込まれる)。よって、本発明は、適当なT細胞エピトープを提示させるために1または複数の本発明のペプチド配列を含んで成る融合タンバク質を用いることができる。

[0056]

本発明において期待される長さのペプチドのコード配列は化学技術により、例 えばMatteucci 他、J. Am. Chem. Soc. 103: 3185 (1981) のホスホトリエステ ル法により合成することができるので、生来のペプチド配列をコードする1また は複数の塩基を適当な塩基によって置き換えることにより、簡単に修飾を行うこ とができる。次いでコード配列に適当なリンカーを提供し、当該技術分野で商楽的に入手可能である発現ベクター中に連結し、そして該ベクターを用いて適当な宿主を形質転換せしめることにより、所望の融合タンパク質を生産させることができる。そのようなベクターと適当な宿主系は現在多数入手できる。融合タンパク質の発現には、作用可能に連結された開始および終止コドン、プロモーターおよびターミネーター領域並びに通常は複製系をコード配列に提供して、所望の細胞宿主中での発現に向けて発現ベクターが用意されるだろう。例えば、所望のコード配列の挿入に便利な制限部位を含むプラスミドの中に、細菌宿主と適合性のプロモーター配列が用意されるだろう。得られた発現ベクターを用いて適当な細菌宿主が形質転換される。もちろん、適当なベクターと調節配列を使うことによって酵母や哺乳動物細胞宿主を使用することもできる。

[0057]

本発明のペプチド並びにそれの医薬組成物およびワクチン組成物は、ウイルス 感染や癌を治療および/または予防するため、哺乳動物、特にヒトへの投与に有 用である。本発明の免疫原性ペプチドを使って治療できる疾病の例としては、前 立腺癌、B型肝炎、C型肝炎、エイズ(AIDS)、腎臓癌、子宮頚癌、リンパ 腫、CMV、尖圭コンジローム (condyloma acuminatum) が挙げられる。

[0058]

医薬組成物の場合、本発明の免疫原性ペプチドは既に着目のウイルスに感染しているかまたは癌にかかっている個体に投与される。感染の潜伏期または急性期の個体は、適当ならば、個別にまたは別の治療と組み合わせて免疫原性ペプチドで治療することができる。治療用途では、組成物はウイルスまたは腫瘍抗原に対して有効なCTL応答を惹起せしめ、そして症状および/または合併症を治療させるかまたは少なくとも緩和するのに十分な量で患者に投与される。これを達成するのに十分な量は「治療有効量」として定義される。この用途に有効な量は、例えばペプチド組成、投与の方法、治療すべき病気の段階および重症度、患者の体重および総合的な健康状態、並びに担当医の判断に依存するだろうが、通常は70kgの患者に対して約1.0μg~約5000μgのペプチドの初回量(すなわち治療または予防役与)に続き、患者の血液中の特異的CTL活性を測定する

ことにより、患者の応答や状況に応じて数週間から数ヶ月に及ぶ追加免疫処置に 従って約1.0 μg ~約1000μgのペプチドの追加抗原投与量が用いられる 。本発明のペプチドおよび組成物は一般に深刻な病気状態、すなわち生命を脅か すかまたは潜在的に生命を脅かす状態に使用できることを念頭におかなければな らない。そのような場合には、該ペプチドが相対的に非毒性であり且つ外来物質 が最少である点から見て、それらのペプチド組成物の実質的過剰量を投与すること とが可能であり目つまた望ましいと治療医は感じるかもしれない。

[0059]

治療用途では、ウイルス感染の最初の微候時または腫瘍の検出もしくは外科的 切除時または急性感染の場合には診断直後に、投与を開始すべきである。この後 で少なくとも症状が実質的に治まるまでそして更にその後一定期間に渡り、追加 免疫処置が行われる。慢性感染の場合、負荷投与量に続いて追加抗原投与量が必 要となり得る。

[0060]

本発明の組成物による感染個体の処置は、急性感染個体において感染の消退を 早めることができる。慢性感染を発生しやすい(または慢性感染にかかりやすい) 側体の場合、急性感染から慢性感染への進行を防ぐ方法において本発明の組成 物が特に有用である。例えば本明細書中に記載するように感受性個体が感染前に または途中で同定される場合、本発明の組成物をそのような個体に特異的に差し 向ける(ターゲッティングする)ことができ、より大きい母集団に投与する必要 性を最少にすることができる。

[0061]

ペプチド組成物は、慢性感染の治療のためにおよび免疫系を刺激してウイルス 保持者においてウイルス感染細胞を除去するために用いることができる。細胞傷 害性T細胞応答を効率的に刺激するのに十分な製剤中の免疫強化ペプチド量およ び投与方法を提供することが重要である。よって、慢性感染の治療の場合、典型 的な投与量は1回あたり体重70kgの患者に対して約1.0 μg~約5000 μ g、好ましくは約5~1000 μgの範囲内である。

[0062]

免疫量に続いて、決められた間隔、例えば1~4週間おきでの追加抗原投与量が、おそらく個体を効率的に免疫処置するためには更に長期間に渡り、必要となり得る。慢性感染の場合、少なくとも臨床症状または実験検査の上でウイルス感染が排除されたことまたは実質的に消散したことが示されるまで、そして更にその後も一定期間に渡り、投与を続けるべきである。

[0063]

治療処置用の医薬組成物は、非経口、局所、経口または局部投与用に製造される。好ましくは、医薬組成物は非経口、例えば静脈内、皮下、皮内または筋内に投与される。よって、本発明は、適当な担体、好ましくは水性担体中に溶解または懸濁された免疫原性ペプチドの溶液を含んで成る非経口投与用組成物を提供する。様々な水性担体、例えば水、緩衝水、0.8%食塩水、0.3%グリシン、ヒアルロン酸などを使用することができる。それらの組成物は、常用の周知減菌技術により減菌することができ、または減菌ろ過してもよい。得られた水性溶液はそのままの状態での使用のために包装するか、または凍結乾燥することができ、凍結乾燥製剤は投与前に無菌溶液と混合することができる。組成物は、生理的条件に近づけるのに必要な医薬上許容される補助物質、例えば時調整剤および緩衝剤、毒性調整剤、湿潤剤など、例えば酢酸ナトリウム、乳酸ナトリウム、塩化ナトリウム、塩化カルシウム、モノラウリン酸ソルビタン、トリエタノールアミン、オレイン酸トリエタノールアミン等を含んでもよい。

[0064]

医薬組成物中の本発明のCTL刺激ペプチドの濃度は広範囲に渡って異なり、 すなわち、約0.1重量%未満、通常少なくともまたは約2重量%から、20~ 50重量%ほどにまで及び、そしてそれは選択した特定の投与方法に従って、例 えば主に液量、粘度などにより選択決定されるだろう。

本発明のペプチドはリポソームを介して投与することができる。リポソームは 、リンパ系組織のような特定組織に該ペプチドを差し向けるか、または感染細胞 に特異的に差し向ける働きをするだけでなく、更にペプチド組成物の半減期も増加させる働きをする。リポソームは、乳濁液、フォーム、ミセル、不溶性単分子 層、液晶、リン脂質分散体、多層膜などを包含する。送達させようとするペプチ ドは、単独でまたはそれに結合する分子と共に、例えばリンバ系細胞中に広く存在するレセプター、例えばCD45抗原に結合するモノクローナル抗体と共に、リポソームの一部としてそれらの製剤中に混和される。本発明で用いられるリポソームは、通常は中性リン脂質および負電荷を有するリン脂質とステロール、例えばコンステロールとを含んで成る、標準的な小胞形成性脂質から構成される。脂質の選択は、例えばリポソームの大きさ、酸不安定性および血流中でのリポソームの安定性を考慮することにより行われる。リポソームの調製には様々な方法、例えばSzoka 他、Ann. Rev. Biophys. Bioeng. 9: 467 (1980)、米国特許第4,235,871号、同第4,501,728号、同第4,837,028号および同第5,019,369号明細告(これらは参考として本明細書中に組み込まれる)に記載のような方法が利用可能である。

[0065]

免疫細胞をターゲッティングするために、リポソーム中に混和させるべきリガンドとしては、例えば、所望の免疫系細胞の細胞表面決定基に特異的な抗体またはその断片が挙げられる。ペプチドを含有するリポソーム懸濁液は、特に投与形式、送達させようとするペプチドおよび治療すべき疾病の段階に従って異なる投与量で、静脈内、局所、局部等に投与される。

[0066]

固体組成物には、例えば薬用マンニトール、ラクトース、デンブン、ステアリン酸マグネシウム、サッカリンナトリウム、タルク、セルロース、グルコース、ショ糖、炭酸マグネシウム等をはじめとする常用の非毒性固形担体を使用することができる。経口投与用には、常用される賦形剤、例えば前に列挙した担体のいずれかと、通常は10~95%の活性成分、すなわち1または複数の本発明のペプチド、好ましくは25%~75%の濃度の本発明のペプチドを含めることにより、医薬上降容される非毒性組成物が調製される。

[0067]

エーロゾル投与には、好ましくは界面活性剤と噴射剤と一緒に、微粉末の形で本発明の免疫原性ペプチドが提供される。典型的なペプチドの割合は、0.01 重量%~20重量%、好ましくは1重量%~10重量%である。もちろん、界面 活性剤は非毒性でなければならず、噴射剤中に可溶であるのが好ましい。そのような剤の典型例は、炭素原子数6~22の脂肪酸(例えばカプロン酸、オクタン酸、ラウリン酸、バルミチン酸、ステアリン酸、リノール酸、リノレン酸、オレステリン酸およびオレイン酸)と脂肪族多価アルコールまたはそれの環状無水物とのエステルまたは部分エステルである。混合エステル、例えば混合グリセリドまたは天然グリセリドを使用してもよい。界面活性剤は組成物の0.1重量%~20重量%、好ましくは0.25~5重量%を占めるだろう。組成物の平衡は大抵は噴射剤で行う。所望により担体を含めてもよく、経鼻投与にはレシチンを含めてもよい。

[0068]

別の観点において、本発明は活性成分として本明細書に記載の免疫学的に有効 な量の免疫原性ペプチドを含むワクチンに関連する。かかるペプチドはヒト等の 宿主に、それ自体の担体に連結されて、又は活性ペプチド単位のホモポリマーも しくはヘテロポリマーとして導入されうる。かかるポリマーは増強された免疫学 的反応の利点、及び種々のペプチドをこのポリマーの横築のために使用した場合 、ウイルス又は腫瘍細胞の種々の抗原決定基と反応する抗体及び/又はCTLを 誘導する追加の能力という利点を有する。有用な担体は当業界において周知であ り、そして例えばチログロブリン、アルブミン、例えばヒト血清アルブミン、破 傷風毒素、ポリアミノ酸、例えばポリ(リジン:グルタミン酸)、インフレンザ 、B型肝炎ウイルスコアタンパク質、B型肝炎ウイルス組換ワクチン等が挙げら れる。これらのワクチンは更に生理学的に寛容(許容)される希釈剤、例えば水 、リン酸緩衝食塩水、又は食塩水を含んでよく、そして更に典型的にはアジュバ ントを含む。アジュバント、例えば不完全フロインドアジュバント、リン酸アル ミニウム、水酸化アルミニウム又はみょうばんは当業界において周知の材料であ る。また、前述の通り、CTL応答は本発明のペプチドを脂質、例えばP:CS Sに接合させることによりプライミングされることができる。本明細書に記載の ペプチド組成物による、注射、エアゾール、経口、経皮又はその他のルートを介 する免疫により、宿主の免疫系はこのワクチンに対し所望の抗原に特異的な大量 のCTLを産生することにより応答し、そしてこの宿主は少なくともその後の感 楽に対して部分的に免疫されるか、又は慢性感染症の発症に対して耐性となる。 【0069】

本発明のペプチドを含むワクチン組成物はウイルス感染症又は糖に対して感受性である又はそうでなければそれらに罹るおそれのある患者に投与され、抗原に対する免疫応答を誘導せしめ、その結果患者自身の免疫応答能力を強める。かかる量は「免疫学的に有効な用量」と定義される。使用の際、正確な量はここでも患者の健康状態及び体重、投与の方式、製剤の種類、等に依存するが、一般的な範囲は体重 70 kgの患者当り約 10 μ g \sim 約 5 0 0 0 μ g ∞ 、より一般的には体重 70 kgの患者当り約 10 μ g \sim 約 50 0 μ g ∞ mgである。

[0070]

状況によっては、本発明のペプチドワクチンを、注目のウイルス、特にウイル スエンベローブ抗原に対する中和抗体応答を誘導するワクチンと組合せることが 所望されうる。

治療的又は免疫的目的のため、本発明の1又は複数のペプチドをコードする核 酸を患者に投与してもよい。核酸を患者に導入するのにはいくつかの方法が好滴 に利用される。例えば、核酸は「裸DNA」として直接導入できうる。このアプ ローチは例えばWolff ら、Science 247: 1465-1468 (1990)並びに米国特許第5 . 580. 859号及び同第5. 589. 466号に記載されている。核酸はま た例えば米国特許第5、204、253号に記載されているようにバリスチック 導入を利用して投与してもよい。DNAだけを含む粒子を投与してよい。他方、 DNAを粒子、例えば金粒子に付着させてよい。核酸はカチオン化合物、例えば カチオン脂質に複合させて導入してもよい。脂質媒介式遺伝子導入法は例えばW 0 9 6 / 1 8 3 7 2 : W 0 9 3 / 2 4 6 4 0 : Mannino and Gould-Fogerite (19 88) BioTechniques 6 (7): 682-691; Rose米国特許第5, 279, 833号; W O 9 1 / 0 6 3 0 3 : 及びFelgner ら (1987) Proc. Natl. Acad. Sci. USA 8 4:7413-7414 に記載されている。本発明のペプチドは弱毒化ウイルス宿主、例 えばワクシニア又はフォウルポックスを介して発現させることもできうる。この アプローチは本発明のペプチドをコードするヌクレオチド配列を発現するための ベクターとしてのワクシニアウイルスの利用を包含する。急性もしくは慢性感染

宿主又は感染していない宿主への導入により、組換ワクシニアウイルスは免疫原性ベプチドを発現し、それ故宿主のCTL応答を誘導する。免疫プロトコールに有用なワクシニアベクター及び方法は例えば引用することで本明細書に組入れる米国特許第4,722,8448号に記載されている。その他のベクターはBCG(バチル・カルメッテ・グエリン:Bacille Calmette Guerin)である。BCGベクターは引用することで本明細書に組入れるStoverら(Nature 351:456-460(1991))に記載されている。本発明のベブチドの治療的な投与又は免疫のために有用な多種多様なその他のベクター、例えばサルモネラ・チフィ(Salmonella typhi)ベクター等は本明細書の説明から当業者に明らかとなるであろう。

[0 0 7 1]

本発明のペプチドをコードする核酸を投与する好適な手段は本発明の多重エビトープをコードするミニジーン構築体を利用する。ヒト細胞における発現のための選定のCTLエピトープをコードするDNA配列(ミニジーン)を構築するため、このエピトープのアミノ酸配列を逆転写させる。各アミノ酸についてのコドン選択のガイドのため、ヒトコドン用法表を使用する。このようなエピトープをコードするDNA配列は直接連結し、連続ポリペプチド配列を構築する。発現及びノ又は免疫原性の最適化を図るため、このミニジーンデザインの中に追加の要素を組込んでよい。逆転写され、そしてこのミニジーン配列の中に含ませることのできるアミノ酸配列の例には:ヘルパーTリンパ球エピトーブ、リーダー(シグナル)配列、及び小胞体固定配列が挙げられる。更に、CTLエピトーブのMHC提示はCTLエピトーブの隣りに合成(例えばポリアラニン)又は天然隣接配列を含ませることにより向上しする。

[0 0 7 2]

ミニジーン配列はミニジーンの正及び負の鎖をコードするオリゴスクレオチドを集成させることによりDNAへと変換される。周知の技術を利用して重複オリゴスクレオチド(長さ30~100塩基)を合成し、リン酸化し、精製し、そして適当な条件下でアニーリングさせる。オリゴスクレオチドの末端はT4 DNAリガーゼを用いて連結させる。CTLエビトーブポリベブチドをコードするこの合成ミニジーンを次に所望の発現ベクターの中にクローニングすることができ

る。

[0 0 7 3]

当業者に周知の標準的な調節配列をベクターの中に含ませ、標的細胞内での発現を確実なものとする。いくつかのベクター要素が必要とされる:ミニジーン挿入のための下流クローニング部位を有するプロモーター;効率的な転写終止のためのポリアデニル化シグナル;E. コリ (E. coli)複製起点;及びE. コリ選択マーカー (例えば、アンピシリン又はカナマイシン耐性)。この目的のために数多くのプロモーター、例えばヒトサイトメガロウイルス (h CMV) プロモーターが使用できる。その他の適当なプロモーター配列については、米国特許第5,580,859号及び同第5,589,466号を参照のこと。

[0074]

ミニジーン発現及び免疫原性の最適化を図るために追加のベクター修飾が所望されうる。状況によっては、効率的な遺伝子発現のためにイントロンが必要とされ、そして1又は複数の合成又は天然イントロンをミニジーンの転写領域の中に組込んでよい。mRNA安定化配列の組込みもミニジーン発現のために考慮されうる。DNAワクチンの免疫原性において免疫刺激配列(ISS又はCpGs)が一役かっていることが最近になって提唱されている。このような配列は、免疫原性を高めることが認められているのなら、ベクターの中に、ミニジーンコード配列の外側にて含ませてよい。

[0075]

ある態様においては、ミニジーンコードエピトーブの生産と免疫原性を強化又は低下するために含ませる第二タンパク質の生産とを可能とするパイシストロン発現ベクターを使用することができる。同時発現されると免疫応答を有利に増強しうるタンパク質又はポリベプチドの例にはサイトカイン(例えばIL2,IL12,GM-CSF)、サイトカイン誘導性分子(例えばLeLF)、又は共刺激分子が挙げられる。ヘルパー(HTL)エピトーブを細胞内ターゲッティングシグナルに連結し、そしてCTLエピトーブとは独立に発現させることができる。これはHTLエピトーブの、CTLエピトーブ以外の細胞区画への誘導を可能とするであろう。適宜、これはHTLエピトーブのMHCクラスII経路へのより

効率的な進入を促進し、それ故CTL誘導を向上させる。CTL誘導に反し、免 疫抑制分子 (例えばTGF-β) の同時発現による免疫応答の特異的な下降が所 定の疾患において有利でありうる。

[0076]

発現ベクターが選定できたら、ミニジーンをプロモーター下流のポリリンカー 領域にクローニングする。このプラスミドを適当なE. コリ株に形質転換せしめ 、そして標準の技術を利用してDNAを調製する。ミニジーン及びこのベクター 内に含まれているその他の要素の配向及びDNA配列を制限マッピング及びDN A配列分析により確認する。適正なプラスミドが定着した細菌細胞をマスター細 胞パンク及び作業用細胞パンクとして保存することができる。

[0077]

治療的な量のブラスミドDNAはB. コリの発酵、しかる後の精製により生産される。作業用細胞バンク由来のアリコートを発酵培地(例えばTerrific Broth)の接種に用い、そして周知の技術に従ってシェーカーフラスコ又はバイオリアクター内で飽和に至るまで増殖させる。ブラスミドDNAは標準のバイオ分離技術、例えばQuiagen供給の固相アニオン交換樹脂を利用して精製できる。必要なら、スーパーコイルDNAをゲル電気泳動又はその他の方法を利用して開環又は線形形態から単雌できる。

[0078]

精製プラスミドDNAは様々な製剤を利用して注射用に調製できる。その最も 簡単なものは、無菌リン酸緩衝食塩水(PBS)中での凍結乾燥DNAの再構築 である。様々な方法が発表され、そして新たな技術が有用となってきている。前 述の通り、核酸はカチオン脂質で簡単に調剤される。更に、集約的に保護性、相 互作用性、非凝縮性(PINC)と称される糖脂質、フソゲンリポソーム、ペプ チド及び化合物を精製プラスミドDNAに複合させ、変動因子、例えば安定性、 筋肉内分散性、又は特定の器官もしくは細胞タイプへの輸送性を左右させること ができる。

[0079]

標的細胞の感作をミニジーンコードCTLエピトーブの発現及びMHCクラス

I提示の機能的アッセイのために利用できうる。プラスミドDNAを標準のCT Lクロム放出アッセイのための標的として適切な哺乳動物細胞系の中に導入する。使用するトランフェクション方法は最終製剤に依存するであろう。「釋」DN Aのためにはエレクトロポレーションを利用でき、一方カチオン脂質は直接in vitroトランスフェクションを可能とする。グリーンフルオレセントタン パク質(GFP)を発現するプラスミドを同時トランスフェクションし、蛍光活 性セルソーティング(FACS)を利用することでトランスフェクション細胞の 富化が可能となる。このような細胞を次いでクロム−51ラベルし、そしてエピトープ特異的CTL系のための標的細胞として用いる。51Cr放出により検出 される細胞溶解はミニジーンコードCTLエピトープのMHC提示の結果を示唆 する。

[0080]

in vivo免疫原性はミニジーンDNA製剤の機能試験のための第二のアプローチである。適当なヒトMHC分子を発現する遺伝子導入マウスをこのDNA生成物で免疫する。用量及び投与ルートは製剤依存性である(例えば、PBS中のDNAは1M、脂質複合DNAは1P)。免疫の21日後、脚臓細胞を回収し、そして試験すべき各々のエピトーブをコードするペプチドの存在下で1週間再刺激する。これらのエフェクター細胞(CTL)を標準の技術を利用してペプチド負荷クロムー51ラベル化標的細胞の細胞治解についてアッセイする。ミニジーンコードエピトーブに対応するペプチドのMHC負荷により感作された標的細胞の溶解は、CTLのin vivo誘導についてのDNAワクチンの機能を能明する。

[0081]

抗原性ペプチドは同様にCTLをex vivoで誘導するのに利用されうる。得られるCTLはその他の慣用の治療形態に応答しない、又はペプチドワクチン治療アプローチに応答しないであろう患者の慢性感染症(ウイルス性又は細菌性)又は腫瘍の処置に利用できる。特定の病原体(感染因子又は腫瘍抗原)に対するex vivo CTL応答を組織培養物において患者のCTL前駆細胞(CTLp)を抗原提示細胞(APC)の起源及び適当な免疫原性ペプチドと一緒

にインキュペーションすることにより誘導する。CTLpが活性化して成熟し、 そしてエフェクターCTLへと発達するのに適当なインキュペーション時間経過 後(典型的には $1\sim4$ 週間)、細胞を患者に戻し、そこでそれらはその特定の標 的細胞(感染細胞又は順瘍細胞)を破壊するであろう。

[0082]

これらのペプチドは診断試薬としての用途も認められうる。例えば、本発明の ペプチドは当該ペプチド又は近縁のペプチドを採用する処置養生法に対する特定 の個体の感受性を決定するために利用されることができ、かくして現行の処置プ ロトコールを改訂するのに、又は冒された個体の予後を決定するのに有用であり うる。更に、これらのペプチドは慢性感染症の発症について相当のおそれのある であるう個体を予測するのにも利用できうる。

[0083]

以下の実施例は例示であり、本発明を限定するものではない。

実施例1

クラス I 抗原の単離は前述の関連出願に記載の通りに実施した。それに記載の 通りに天然プロセシングされたペプチドを単離し、そして配列決定した。アレル 特異的モチーフ及びアルゴリズムも決定し、そして定量結合アッセイを実施した

[0084]

様々なHLAアレルについての上記同定モチーフを利用し、多数の抗原由来の アミノ酸配列をこれらのモチーフの存在について分析した。表3 - ** はこれらの サーチの結果を供与する。

上記例は本発明の例示であり、本発明の範囲を限定しない。本発明のその他の 変異体は当業者に自明であり、本発明に包含される。全ての公開物、特許及び特 許出額は引用することで本明細書に組入れる。

[0085]

【表3】

表 3

配列	抗原	分子
FTFSPTYKAFLSK	нви	POL
GTLPQEHIVLKLK	HBV	POL .
FTFSPTYKAFLCK	HBV	POL
GTLPQEHIVLKIK	HBV	POL
LVVSYVNTNMGLK	HBV	POL
STIDLEAYFKDCLFK	HBV	x
LVVSYVNVNMGLK	HBV	NUC
GTLPODHIVOKIK	HBV	POL
STSSCLHQSAVRK	HBV	POL
TTVNAHQILPKVLHK	HBV	х
RIPARVIGGVFLVDK	HBV	POL

[0086]

【表4】

表 3 (つづき)

62.74	抗原	9)
HTTNFASK	HBV ayw	
PTFSPTYX	HBV ayw	
PTYKAFLCKQY	HBVayw	
CTTPAOGTSMY	HBVayw	
PTSCPPTCPGY	HBVayw	
FSQFSRGNY	HBVayw	
LMPLYACIOSK	HBVayw	
RVTGGVFLVDK	HBVayw	POL
HTLWKAGILYK	нвуауч	
OTRHYLHTLWK	HBVayw	
GTDNSVVLSRK	HBVayw	
SYVNTNMGLKF	HBVayw	
LYSILSPF	11BVayw	
WYMGPSLYSIL	IBVayw	
LYSILSPFLPL	HBVayw	
PYKEFGATVEL	HBVayw	
CTWMNSTGFTK	нси	
NYVGDLCGSVF	HCA	
VYLLPRRGPRL	нси	
ITKIONFRVYY	HIV	
KVYLAWVPAHK	RIV	
KMIGGIGGFIK	HIV	
IVASCDKCQLK	HIV	
KVKQWPLTEEK	HIV	
TVNDIQKLVGK	HIV	
DVKQLTEAVQK	HIV	
AVVIQUNSDIK	HIV	
WTYQIYQEPFK	HIV	
VTVYYGVPVWK	HIA	
LTEDRWNKPOK	HIV	
ATDICTKELOK	HIV	
OTKELOKOITK	HIV	

[0087]

【表5】

表 3 (つづき)

配列	抗原	97
MINOBIATER	HIV	
QVPLRPMTYK	HIV nef	ı
	73-82	
QVPLYPMTFK	HIV nef	ĺ
	73-82	
VPLRPMTYK	HIV nef	
	74-82	
AVDLYHFLK	HIV nef	
	84-94	
AVDLSHPLK	HIV nef	
	84-94	
ATLYCVHQR	HIV, p17,	
	82-90	
RLRDLLLIV	HIV-1 NL43	
	768-776	
RLRDLLLIVTR	HIV-1 NL43	
	768-778 HIV-1 NL43	
RLRDYLLIVTR	768-778	
LEDLLLIVTE	HIV-1 NL43	
PEDEDELAIN	769-778	
OIYOEPFKNLK	HIV-1 RT	
	507-517	
AVFIHNFK	HIVcon	
RTLNAWVK	HIVcon	
ETAYFILK	HIVcon	
RLRPGGKKK	HIVgag	
	p17/2	
KIRLRPGGKK	HIVgag	
	p17/2	
KIRLRPGGK	HIVgag	
	p17/2	
ETTDLYCY	HPV16	E7
GTLGIVCPICSOK	HPV16	E7

[0088]

【表6】

表 3 (つづき)

B2 74	抗原	97
LMGTLGIVCPICSQK	HPV16	E7
AVCDKCLK	HPV16	E6
PYAVCDKCLKF	HPV16	E6
HYCYSLYGTTL	HPV16	E6
FYSRIREL	HPV16	E6
TLEKLINTGLY	HPV18	E6
KTVLELTEVFEFAFK	HPV18	E6
титсисск	HPV18	E7
NTSLODIEITCVYCK	HPV18	E6
EVFEFAFK	HPV18	E6
KOSSKALOR	白血病	þ3A2 CMI
ATGFROSSK	自血病	þ3A2 CMI
HSATGFKQSSK	白血病	þ3A2 CMI
FKQSSKALQR	台血病	рзаг сил
VTCLGLSY	MAGE1	
ITKKVADLVGFLLLK	MAGE1	
LVGFLLLK	MAGE1	
VTKAEMLESVIKNYK	MAGE1	
TSCILESLFR	MAGE1	
NYKHCFPEI	MAGE1	
SYVLVTCL	MAGE1	
ETDPISHTY	MAGE1(a)	
ETDPTSHLY	MAGE1(a)	
ETDPISNTY	MAGE1 (a)	
ETDPTSHVY	MAGEL(a)	
ETDPTSHSY	MAGE1 (a)	
ETDPASHTY	MAGE1 (a)	
EVDPTSHTY	MAGE1(a)	
ETDPIGHTY	MAGE1 (a)	
ETDRTSHTY	MAGE1(a)	
EADPTSHTY	MAGE1(a)	
ETVPTSHTY	MAGE1(a)	

[0089]

【表7】

表3(つづき)

A2 50	抗原	97
EIDPISHTY	MAGE1	- 27
ETDPTGHSY	コンセンサス MAGE1 T(a)	
MFPDLESEF	MAGE2	
TTINYTLWR	MAGE2	
VIFSKASEY	MAGE2	
LVHPLLLKY	MAGE2	
LVHFLLLKY	MAGE2	
LVHFLLLKYR	MAGE2	
PVIFSKASEY	MAGE2	
STTINYTLWR	MAGE2	
VVEVVPISH	MAGE2	
EYLQLVFGI	MAGE2	
IFSKASEYL	MAGE2	
SESTTINYTL	MAGE2	
LYILVTCLGL	MAGE2	
FATCLGLSY	MAGE3	
VVGNWQYFFPVIFSK	MAGE3	
LIIVLAIIAR	MAGE3	
YFFPVIFSK	MAGE3	
NWQYFFPVI	MAGE3	
NWOYFFPVIF	MAGE3	
IFSKASSSL	MAGE3	
EVDPTSNTY	MAGE41	
RYPLTFGWCY	nef/182	
RYPLTFGWC	nef/182	
ATQIPSYX	PAP	
LTELYFEK	PAP	
HSFPHPLY	PSA	
TOEPALGTTCY	PSA	
VTKFMLCAGRWTGGK	PSA	
HVISNEVCAOVHPOK	PSA	

[0090]

【表8】

表3(つづき)

配列	抗原	分子
LYDMSLLKNRF	PSA	
ETDPTGHSY	MAGE-3のT2ア オ	- u Ø

[0091]

【表9】

225	-	-		_	_	_	-	-7	-	7	7		-	_		_		_	_	_	٠,	-	_	$\overline{}$	Т	_	_	$\overline{}$	_		Ĥ	-	_		-	_
¥34							İ			۰			-																			1		-	:	•
II4	0000	-	0.028	0.00	\$000°	0000	8000		•	0.012	3000	9000	c0.0002	1100	40000	0.0018	0.71	8	000	0.007	100	031	600	0.00		1000	0.000	9100	0000	*	0.64.3	0.22	100			2
43.2	133	6	٥	۰	*0 000 °	6	8	0.0017	۰	0000	-0000	9000	0.0012	0.0024	CODE	920	0.11	97.0	97.0	3	820	612	2000	DO:				40 000	9000	0.043	- 900	乗り	2			200
A2.1	1		į	1		-	Ì		٦												Ì	Î			-	T	Ī	-				ļ	!			
5	=		20	20	0.00	0000	2	2	=	=	6796	<0.0015	9	0.018	0.012									-	ļ	Ī	1	Ī	ŀ		765					
£9-7	-	-!	-	-		-	-	-	-	-	-	-	-	-	-	3.1	3,11	1,1	3,11	3	ā	5	Ξ	= :	1			-	ī	=	2	17	7.	ā	5	=
報	7	ŝ	ž	ā	5	Ŕ	£	2	407	ш	12.19	ž	Z	S	1014	5	699	28	Ķ	673	167	998	\$	z	3	ă¦.		13	603	3	327	ž	Ē	ž	ä	;
4	!				L																													1		
#																																				
うイルス	C-ERB2	C-EK92	c-ER82	c-ER82	c-EROZ	c-ERB2	c.ERB2	CERBZ	c-ERB2	C-EXB2	· c-ERB1	c-ER92	c-ERB2	C-ERB2	C-ERB2	CERB2	C-EKB2	€KB2	CER92	C-EAB2	c-EX82	C-EXB2	c-ERB2	CERB2	CERBZ	CEKU2	-	CERRY	CEU17	c-ERB2	CER91	CERBI	C-FRB2	c ER32	c-ERB2	
\$	٥	•	۰	-	-	-	2	2	2	2	9	2	2	2	2	•	•	-	•	•	٠	٠	4	•	•	•		٠.		2	=	2	9	2	9	5
E 28	HEDMLRIEY	LEDIDETEY	CIOCHEDNY	LICSNOPEY	ETLEETTCY	QLVIQLMPY	FTHIGSDVWSY	RULDHOETEY	TLEBTCALY	YVMAGVCSPY	CTPTAENPEY	RYLOCIPREY	LIORNIGUCY	WOCNLELTY	MCDLVDASEY	KIRKYTHER	WAGELBER	LVKSPNHVK	VUKDATSPK	ILIKRROOK	II.WKDIFHK	KITDPCLAR	CVVPCILIK	OVCTCTDME	CLOHVRENR	CANCAGE	N. W. CAR	MERETELIAR.	DISTURBUNE	TILWKONFHK	CTORCEKCSK	KWLKENTSPK	CLESTERIK	RLVHRDLAAR	LINWCMOIAK	TOWNSTRAN
イナド	1,000	- 0.76	5003	10055	1001	1,014	1.0749	1,0747	1.071	1.0737	1.076	1.024	88	1.06/73	16	1.1028	1.107	10.	1.003	1.0029	1001	1.103	5903	1.0299	9	1.10		3	YOU	1,0707	1,071	96.00	1,000	1.1962	1001	į

[0092]

【表10】

	_	_					_	_	_					_
A24				į	į									
VI.		-	0.0072	8	600	0000	003	0.003	0.0042	9100	0.0014	0.013	-	0 0000
A32		0.057	0.067	0.017	0.0035	0.040	0.0072	0.018	2000	0.0000	0.015	0.0068	0.01	0.000
A2.1		!						ļ						
14	- 1													:
# 		=:	Ξ,	Ξ	Ξ	Ξ,	3,11	3,11	3,11	3,1	3,11	3,11	3,11	3,11
和		5	ž.	3	47	¥	226	3	286	93	2/9	212	8	211
44			!	63										
#														
×4.70		C-EKII2	C ERITZ	C-EKB2	C-EKR2	C-ERB2	c-ERB2	c-ERB2	c-ERB2	c-ERB2	c-ERB2	, c-ERB2	c-ERB2	C-ERB2
	~	9	2	2	2	2	2	2	2	2	2	2	=	2
ige Ge		RILKETELAK	VLVKSPNIJVK	SVFQNLQVIR	ITVPWDQLFR	ILKCCVLIOR	LVSEPSRMAR	GVVFCILIKR	CVARCPSGVK	WPCILIKER	CILIKRROOK	RTVCACCCAR	GLACHOLCAR	KIPVAIKVLR
1	インチド	1.0731	0.0	1	=	11127	110	1136	1 0726	1.1137	1.0728	1.1129	1134	1.1139

[0093]

【表11】

٨24 0.21 0.24 20 4 190 0.0028 A3.2 0.30 850 0.00 A2.1 0.046 0.015 0.015 ¥ -モチーフ 位置 表4 (つづき) 44 į ウイルス EBNAT EBNA! EBNAI EBNAI 2 2 ٧٧ 일일 1.033 VGEADYEY
1.033 PURESINCY
1.043 CTWYAGVEVY
1.083 CVEVYGGSK 1.006 KTSLYNLRR 1.0297 AIKDLVMTK 1.0897 QTHIFAEVLK 1.1124 GTALAIPQCR 配列 ペプチド 1.0291

【0094】

0.031 A24 67 0.15 0.000 9000 0.0037 0.062 8 0.030 0.024 600 0.037 9100 0.00 Ħ 8 ۰ 0.0014 A3.2 0.0016 0.003 91000 12.0 100 650.0 0.12 0.36 0.012 A2.1 0.020 7 モチーフ z 饲 # E 2 E 2 E 2 E 2 E 된 376 218 2 3 E 8 4 \$ < < < 些 < < < < < < ウイルス 2 2 3 5 5 5 3 2 2 2 ¥ 2 2 2 2 2 2 2 2 SLMQCSTLPR KMIDGIGRFY SETLELISERY RSRYWAIRTR RSCAACAAVK ILRCSVAHK PYTERMONIL AYERMONIL RPYIQMCTEL CINDRNFWR LICROSVAHK RMVLSAPDER LMQCSTLPR MYLSAFDER YIQMCTELK MIDGICRFY STLELKSRY 配列 5.0042 5.0095 5.004 5.0046 5.0048 5.0054 5.010.5 50103 5.0060 5.0172 SOXIOS 5,000 5.0102 5.0101 1900

表4 (つづき)

[0095]

【表13】

							_							_		_	_	_	_	_	_	_	_	_					_	_		_					_	
	V24																				0.0017		٥	0000		0	•					۰		۰				
	Ę	0	90000	0	٥	٥	0.0075	0 014					<0.0002					0		0.0037	0,0048	2100	0.22	0.35	1100	0600	0 005	0				0.017	0	0.020	20000 O			
	52	/000 D	0.0037	0000	*0000°	0	0000	0.00					<00000					•	0.17	60000	0.014	95000	6.50	23	0000	1600	513	100		60000×		6100	0	6003	<0.0000			1
	A21																				00000		0000	0000	,	0.0003	0 0000					0		0				
	7	ŝ	17.7	=	280	0.77	9.	9000	2900	0.057	900	0.025	6100	210'0	0.013	10.0	0.0097	-	63	43	=	17	69.0	0.57	0.37	7.0	8	0.21	60	20	90	0.15	200	110	OUE	9110	O IIX	81118
	£ £ - 7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-
_	19	629	ē	1,382	1,521	1383	1280	63	1,550	ş	316	â	ŝ	1092	#	1387	1,036	613	120	000	1250	1087	1,098	1098	1,087	1069	1.069	130	288	1,035	89	292	621	738	9	ž	2	338
4 (00g	÷ 65	CORE	M			ror	702	TO!					ž	101				CORE	Š		70F	100		700		701		PAV.	ENA		POL		Ž.		CORE		ror	
ĦĔ	15	1	Ψ	VEL	ğ	ž	×p.	þ	wpa	n.fo	what	a po	P	wpe	MAG	whe/she	ą	.pe	P	VI.	ą.	a, in	- squ		m ke	.p.	aqu	mpa	A Pa	-pe	ģ	mie	L De	adr/adw	198	n.Le	pq	a-fe
	ウイルス	A	MIN	V814	781	1137	ABI	181	HBV	180	ABI4	ASH	201	HBV	MIN	HBV	Z.	ABA	HBN	нви	HBV	HEV	HBA	HBA	VEII	ABA.	MBV	HBA	АВН	MIN	AEH	HBV	HBV	1687	1130	VEIL	1137	HBV
	1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2	9	2	2	2	2	2	9	91	01	2	01	2	2	2	2	9	2	2	91	2
	R2.94	LLDTASALY	SLOVSAAFY	PITCRISLY	MSTTDLEAY	PTTCRTSLY	LIKUMINI	KVCNFTCLY	MSPTDLEAY	PSOPSECNY	PSSWAFAKY	GSAVIULEAY	PLDKCIKPY	SUMPLYNETY	ASRDLWSY	PSECILLOLY	SETSKNINY	DLLDTASALY	LLDPRVRCLY	LSLDVSAAFY	FLCQQYLHLY	OTECRICIALY	KTYCRKLIRLY	KTYCRKLHLY	OTFCRKLIALY	KTRCRKURLY	KTFCRKUALY	LODPRVRALY	TTPAQCTSMY	LSETSRNINY	PLDKGKPYY	HSASPCCSPY	PLTKONINLY	RSASPCGSPY	WLWCMDIDIY	TIPAGCISMY	IITLWKAGRY	TSCPPICTCY
	77 F.	1.0155	99101	2.00.2	92102	1 020	1,0087	1.0166	2.0127	2.0120	2,0112	2.0119	1.0174	E/87	20115	20124	10171	1.6819	1.0513	5003	1,011	2 m16	107	1:0001	2,0242	1,0554	10041	1.0066	9080	2.0740	188	2,028	1,0795	2 0237	1.074	2.0233	10542	10001

[0096]

【表14】

2 2 - 22 2 2 2 A24 9/00'0 ₹ 51.0 9000 A3.2 0.0 8 A2.1 ₹ 1.12 1.15 1.16 1.16 1.16 1.16 3 9 5 3 5 8 8 8 8 8 8 ŽASĀ KEKS E 8 9 6 2 5 9 5 334 NUCXNUCFU 2 2 2 2 2 5 2 2 질호 att att adva adva ALL: adva 4 2 E ALL. 3 7 4444 7,7 4 2222222 ¥ 9 9 0 0 0 | 1999 | 1500 | 1700 | 16.99

[0097]

表 (つづき)

【表15】

		V 24	3 5		9000		Ī	T			T	1			1			1				1			1		1						I			i	Í	Ī	
		Ę	İ	Ì	Ī	1		3		2	0.010	3	0.82	6	S	0000	Š	8	5	9	8	620	0.78	0.0	2100	R	ē	900	900	Stan	8	100	9	2	9000	000	200	100	O'FFIE
		V3.2	ļ	-	1	1	:	2	2	000	2	3	ĝ	60	717	3	951	3	0000	90	9	0.01	9.0	0.0039	2	0.031	9	920	5	010	0000	8	000	ě	0	200	8	9	2,43
		A2.1	-	1	ļ		-			Ī																							-				1	-	
		7		1	į	i	į	1												Ц					j					j				i	1	_			1
		£5-7	2	=	Α,	~	5	2	3	=	=	5	1,0	=	5	3.11	=	3,11	3.11	111	3,11	3	Ē	17	1,0	=	=	1	5	ā	5	3		3		Ę	_	5	=
34)			£,	Š.	ž	22	00	ă	5	72	20	3	1523	198	1774	1257	8	1468	1197	æ	740	177	505	693	878	3	1259	S	129	9	ĭ	3	200	ž	ž	ž	ķ,	1550	É
¥4 (5)		\$±		1		ž	ž	ũ	20	LO.	ğ	ž	×	101	ğ	ž	NA	×	20F	ž	POL.	NA BA	×	102	ž	705	POL	CORE	ž	ž	20	JQ.	ž	×	TO.	ē	Ŋ	×	ž
		転	n.ke	VII.	۸۱۲		adw.	- Por	Mpe	aça e	.pe	wpe	ap.	4	Mp.	4.	whe	2	7	a de	wpe	P.	ě	ē.	a-pa	ap e	appa	aye	ž	ž	ž	P.	*	2	Jp#	1	· pa	P	ade.
		ウイルス	ABIS	1187	À	VBI	VBIA	V\$14	HBV	HBV	HBV	HBV	HBV	ABH	HBV	ABA	HBV	MBV	HBA	ABA	HBV	HBV	ABH	HBA	1487	HBV	HBV	180	ABH	HBV	HBV	HBA	VBH	Veri	HBV	ABA	HBV	ABA	1167
	H	¥	9	9	9	0	۰	•		•	•	•	•	-	۰	•	•		ŀ	•		•	•		٠	ŀ	٠	٠	•	٠	•		٠	6	6	•	6	٠	6
		16.34	YYPERLUNBIY	AYRPPNAPIL.	CYRWMCLRRF	NF13LGHL	YVSLMLLYK	LLYKTECRK	LLYKTYCEK	VTKALPLDK	AHYLHITI WK	STATSFAPK	TTDLEAYPK	WHILIT	PTYKARITK	HI YPVAROR	STAROLCRX	AI PETSARS	WANAPIDWK	TVNENERLE	WNHYROTE	STISTCROK	OVLPKLLHK	TOTAL	CUIOSAVKK	WUDESOFSE	PLYACIOAK	YNDAMOLK	PLYACIOSK	READECLAR	AVNINTERIE	BIKINDAR	1	ľ	NVSEPWTHE	TALYKTEGE	RLVFOTSTR	Ľ	RLVLQTSTR
		AJ#K	20176	10171	1710.5	\$ 0115	1.0377	10189	10079	1,032	1.0176	1,0067	10015	10048	L Mari	2000	1,005	100	24.0	970	1.041	10157	1,001	1	1 0774	9860	1,000	3000	800	1000	1.0976	Yes	000	1000	1.0165	000	1.0978	1001	1,1042

[0098]

【表16】

\$:						1								ľ										ļ		i						Γ	Ī		ľ	Ī
1		2000	0.00	1000		0.020	0.015	1100	0000	01010	9.9	ç	97	ř	0000	22	2100	99'0	6.74	69.0	0.020	240'0	0.078	0000	210	0.0002	000	000	0.00	0.072	9000	0063	9039	0 0000	6230	0.03	
25		30	800	100	1200	OGEN	90000	0.013	00000	0000	0.092	0,000	2	-5	12	9000	2	0,62	6.037	60000	19:0	900	0.00	6.10	8	6.72	ē	0.07	<0.0003	900	90000	2200	000E7	6200	*0000°	0001	
A2.1																									Ì				Ì						Ī		
2						ĺ																		-	İ	İ		-			1	ľ	j				
E#-3	١.	5	5	Ę	Ę	Ξ	Ę	Ę	3,11	3,11	Ξ	3.11	Ę	Ę	3,1	3,11	3,11	3,11	1,11	3,11	3,16	ī	3,11	=	=	=	=	=	=	3,1	3.11	3.	3,1	=,	Ę	Ę	
高			ě	82	1607	S	1072	ě	1424	1375	2	699	2	£	30	1572	1065	1529	1527	28	100	2	9. =	1397	Ŧ,	¥.	8	2	ã	1330	ā	17	ž	2	Ē.	2	
##		1	ž.	201	ž	CORE	POL	CORE	LOI	10.	POL	10J	70E	PAV	104	×	ž	х.	×	Š	200	30	ğ	ğ	ğ	ğ	×	ž	CORE	3	CORE	ZOL	POL	ror	LOL	×	
15	1		ž	whe	ador	adr	.pe	adr	whe	*dr	. sedr	wke	ą.	ayw.	a pa	- odr	- djr	adw.	age.	ą.	- Apr	1	ip.	Mpe	ą.	**	2	200	,pe	ą.	40.	mie	wpe	A Per	ž.	adr.	
24112		A	Ann	1167	HBV	1187	HBV	HBV	1187	HBV	HBV	HBV	HBV	HBV	HBV	HBV	186	HBV .	MBV	HBV	нви	нву	404	ABA	ABL.	ARI	A	ABI	ABA	1184	нви	1487	1687	VIIIV	Ville	1100	
*	ŀ		•	6	•	•	6	•	•	•	10	2	90	0	9	2	2	2	9	2	2	2	2	2	2	2	:	2	2	2	2	2	2	2	9	2	
民利	A CONTROL	TANGET IN	VNERAKLE	NLYPVAROR	LPYRFTTCR	LVSPCVWIR	LVCSSCLPR	HISOLIFOR	SVPSRLPDR	SVPSHLPDR	TLPQEHTWLK	TVPVFNPHWK	TLWKACILYK	SAMPSCCCTK	REPYRPTICA	STIDLEAYER	LLLYKTRCKK	TVNAHENIPK	EAYFKDOLFK	LWDFSQFSR	MCLYRTYCRK	TAYSHISTSK	SLCHRINGHIK	RECEVAPILE	VICCOPLVIK	TOPICALITY	A STATE OF THE PERSON AS THE P	SUPPLIER	LELIVARE	CTDNSVVLSR	STLPETTVVR	KVIKYLPLDK	STRUCDKSFR	VLSCWWLOFR	NVTKYLPUDK	RVCCQLDPAR	- The same of the
73.FF		2	2	- 1045	900	5845	1960	1 0967	1007	10963	10,64	2000	596	10807	2	ē	188	8	8	8	6/6	9	Š			2			7	6	100	2,0210	2	500	100	4	

【0099】 【表17】

				_		_	_
	A24						
	TIV	510.0	0.014	0.000	0.0024	0.010	0.0035
	A3.2	0.0057	69000	0.013	0.013	<0.00CB	0.0025
I	A2.1						_
	7		İ				
	モチーフ	=;	Ę	=	3,11	3,11	3.0
	超	869	ş	Ę	1185	314	202
	4	TOL	101	TO.	ĮŽ.	ENV	KOL
	森	wie	7	pe.	P	wbe	adw
	・シイルス	HBV	VIII	VDI	1987	нви	HRV
	٧٧	2	9	2	9	2	9
	RE 34	FVCPLTVNEK	YVCPLTVNEK	RLADEGLNRR	IVLKLKOCFR	PIPSSWAFAK	TVNFNRBIK
	ペプチド	2,0207	1.0535	1.1075	108	1.0773	10778

[0100]

【表18】

					ž1 (03ž	_						
₹7.	16.91	\$	ワイルス	Ħ	+4	母	モチーフ	2	A2.1	A3.2	¥11	A24
1.0118	CTCCSSDLY	•	-IC		LOKE	2	-	3.0			0.010	
10112	NIVDVQYLY	•	2		NSI/ENV2	149	-	9		۰	0.010	
2 OCB4	VQDCNCSIY	•	٢			Ħ	-	3		0000	0 0000	
2005	LTPRCMVDY	•	1ICV			ŝ	-	8200				
1.0145	RVCEKMALY	•	HCV		1,ORF	19X	-	9063				
1.0140	DWYCCSMSY	•	HCV		LORF	2416	-	000				
3.0036	FTIPKIRMY	٠	<u>5</u>			979	-	0.012				
1.0509	CLSAFSCHSY	2	Ş		LORF	2848	-	ē	0 000	0.013	0.0034	0 0000
1.0489	THICKTPLLY	2	2		LORF	191	-	0.0		11.0	\$Z00 0	
20037	EWLLPL	۰	Ę			219	z					•
2.0169	MYVCCVEHRL	9	Ę,			63	~					9200
2.0170	ENULPELL	2	HCV			Ę	ž					0.010
1.0139	SVPABILRK	-	ξ		LORF	2269	Ē			910'0	29'0	
1095	QLFTPSPRR	•	HCV		1ANG	82	3,11			6.73	0.003	
1.0090	RLGVRATRK	٠	ΉÇ		CORE	9	11.6			0.74	91.0	
1.0123	LIPCHSKKK	•	ž		LORF	1391	3.11			150	61.0	
1.0122	HUPCHSKK	•	ΗÇ		LORF	1390	3,11			52.0	0100	
1.0952	KTSERSOPR	-	ΛH		CORE	5	3,11			91:0	0.064	
1.0120	AVCTRCVAK	6	A)H		LORF	1183	3,11			9100	6000	
1.0:43	EVPCVQPEK	6	ADH		LORF	8988	3,11		ľ	6100:0	0.033	
1 0137	TRVESENK	•	ΗC		LORF	2241	<u>.</u>			0.015	6,000.0	
1:0957	CITISLICK	6	ADH		LORF	1042	Ę			0.0095	110.0	
1.0496	CVACALVAPK	2	2		LORF	929	1,1			28.0		
1.0480	HLHAPTGSCK	91	HQ		LORF	1227	3,11			0.57	0.0051	
1.1062	RMPYCCVEHA	10	1tCV		NSI/ENY2	632	3,11			27.0	0.012	
1.0485	HUPCHSKKK	2	HCV		LORF	380	3,11			40	5000	
1.0464	TLCFCAYMSK	9	НО		LORF	1361	3,11			0.17	0.13	
1.1067	CVCITLLPNR	2	ΗÇ		LORF	300	3.11			0.0029	0.00	
200	LLFLLADAR	2	Ŧ		NS1/ENY	2	3,11			5100	•	П

[0101]

【表19】

				1	_	1	1		_	_	Τ-	_	_		_		_	_	_	Ţ	_	,			_	_	_	_	_	_	_	_	<u>.</u>	_	_
A24									l.			92.0	0.33	0,0	0.3	0.052	0.003	0.013	2100	9014	0.014			ĺ		ļ						-			
ij			9500	0.000	0.0000		Ī				15.0					Γ						0.00	87	*	0.37	22	0.065	9	SBS	5	800	90000	9900	900	-
43.2			<0.0002		0.00077	Ī	ĺ				19:0									Γ		2	21.0	Ξ	900	600	22	68	21	600	200	0.00	0.012	0.00	1
A2.1												Γ							Ī									1	1	Ī	Ť	-	Ì		İ
٧	0600	000	0.018	0.28	920	8000	0.053	6000	6003	0013		Γ	Γ	Ī	Ī					Ī							1	Ì	Ì	İ	Ì	Ī	İ	1	
£7-7	-	-	-	-	-	-	-	-	-	-	3	=	z	z	ž	*	12	74	2	z	×	3,31	3,11	3,11	=	=	=	1	į	İ		=	Ē	11	
10) 2d	793	S	200	Ē	124	ē	2811	1329	345	742	1.432	1,778	2,778	1,03	000'1	900'1	900'1	675	992	992	Š	1358	1634	83	1075	ĩ,	82	ŝ		2	g in	3	_	R	
9.7	CAG		<u>1</u> 2	70.	201		LOI.	201	201													Ğ	701	70,	ğ	¥	ž	ž	3 8		2 2	CAC	POL	Į.	
Ħ																											1	Ì	1	1	Ì		Ī	İ	Ì
りイルス	NII	AII.	AII	AIII.	AII	à	Α	AH	HIV	HIV	HIV	HIV	HIV	HIV	HIV	HIV	≩	HIV	H	HIV	ž	HIV	Ŧ	ž	HIS	4			211	700	è	HIV	Alli	Alli	
¥	•	۰	6	2	2	2	2	2	2	2	2	٠	•	•	•	•	•	-	2	2	2	-	-	•	-						-	-	-	6	
FE 34	FRDYVDRFY	NOYMODLY	TVLDVCDAY	VTVLDVCDAY	VIYOYMDDLY	VTVLDVGDAY	EVNIVITISQY	LVAVHVASCY	PARTCOFTAY	ISKICPENPY	QMAVEHENEK	RYLICOCOLL	RYLKDOOLL	TONORP	TYONGER	IYOEPFICAL.	MORPHONE	поуморгу	PICKWILLCL	PKRWIILGL	LYPLASLIESL	KLACKWPVK	AVEHINEKA	AIPOSSAITK	MWCKTPK	COLORACIV	מונטונטונאר	VIMBOAVOR	HATDROTE	ACTOR LINEAR	YLAWVPAHK	KIWPSHKGR	PVNTPPLVK	NTPVFAIKK	
7.77 F	1.00.1	50128	1.0028	2	.0415	1023	1001	1.0441	1.0442	2021	2025	7007	2,0134	2002	20131	20063	2	2008	20247	2012	2.0249	100%	100	ě		1		0000	2/00	Y	2007	1.0938	1 0047	100	

[0102]

【表20】

6.8 [5-7] A1 A21 A32 A32 A32 A32 A32 A32 A32 A32 A32 A32	2. fg		A24	T	-		Γ			Γ	Γ	Ī			Ī	-			П	Ш							
29.7 6.8 (5.7 A) A3.1 Co. Co. Co. Co. Co. Co. Co. Co. Co. Co.	25	L		┺	_	٠.	: -	H	ᆜ	H	H	╀	╀	+	÷	╁		7	+	++-	+++	+++	++++				
9-7-1 (2.4 E.) (2.4 E	79.7 (E. S. 19.5) 11.1. (2.10.2) 11.		<u> </u>	0,000	9000	8000	1100	6200	9000	=	91.0	38	920	150	039	0.32	100	200	160	9500	0.054	0.009	0.009	0.0079	0.009 0.009 0.009 0.009 0.009	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007
9.9 + 9.5 E. B. C. CAC. 1.159 1.50	20				İ															İ							
29.7 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			Ę	Ē	Ę	3.	ā	3,11	=	3,11	3,11	Ę	3.1	3.5	Ę	Ę		3,11	3,11	16 15	16 16		11.0			311
	425		自	3,	18	125	769	1513	869	2185	808	ž	1253	992	R	\$	1474		200	1 38 1 28	F = 3	F 1 3 8	F = 3 & 5	2 2 2 2 2 S	25 55 55 55 55 55 55 55 55 55 55 55 55 5	25 45 55 55 55 55 55 55 55 55 55 55 55 55	25 55 55 55 55 55 55 55 55 55 55 55 55 5
#			##	CAG	rot	ror	5	700	70F	NA.	ğ	POL.	Į.	70.	ĮŽ.	CAG	ž		2	20.	E E E	70 F F F F F F F F F F F F F F F F F F F	2 2 2 2	2 10 10 10 10 10 10 10 10 10 10 10 10 10	2 2 2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	POL GAG ENV	CAG PAC CAG
	1110 1110 1110 110 110		#																-								
\$ 2 2 2 2 2 2 2 2 2 2 2 2 2 2			1000	RDYVDRFYK	CIIQAOPDK	WLRDGIDK	LVDFRELNK	KVVPRRKAK	MTKILEPFR .	TVYTCVPVWK	TVQPIVLPEK	AVFIHNFICE	KYLPLDGIDK	KLVDFRELNK	KLKPCMDCPK	PLCKIWPSYK	KICHFRYYYR	CIPHPACLKK		LYKLWYQLEK	LYKLWYQLEK MICGICCFIK	LYKLWYQLEK MICGICCEN MTKILEPFRK	LVKLWYQLEK MICGICGEK MTKILEPFRK VYQDNSDIK	LVKLWYQLBK MICGIGGRK MTKILEPFRK VYQDNSDIK FLCKIWPSHK	LYKLMYQLBK MICGICGRK MTKILEPFRK VYQQNSDIK FLCKIWPSHK FLCKIWPSHK	LYKLWYQLEK MICGICGFIK MYKILEPFRK VYQUNSDIK FLCKIWPSHK NYQXNNILIR MYXXNNILIR	LVKLWYQLEK MICGICGFIX MIYILEPFIX VYQUNEDIK VYQUNEDIK VYXXPNIJI IVXXXPNIJI FITPDKKHQK
	E. M. COLONDROY COLORODO COLOR		77 F	51001	8000	1000	9000	1.0078	1.0942	1.0463	1.0418	10417	1.0437	1040	1.0403	1,035	200	2		1000	1.0426	10036	1,045 1,045	1.0436 1.0433 1.0433	1045 1043 1084	1,046 1,046 1,063 1,063 1,1059	

【0103】 【表21】

A24	l		ļ		-									5	0.067	0.032	6100	000	ĺ										ļ					-	-	-	1
5	200	c0.0002	0012	-		c00005	Ī	Ĩ	9100	G 0002		0.078	6000						2		290	0.25	0.12	0033	<0.0005	2100.8	6100	81000	60000	8.0	676	2	5	=	3 3		1
43.2	0.001	c00002	0.0056	60000	60000	(0000)			0.0052	c0 0002		1000	0.00						R S		0.010	H-000	0.017	9000	0.025	610.0	9100'0	0.01	0100	0000	9.000	0.12	917	8	818	D CO	
A2.1			1				İ	ŀ										Ī	T	Ī													Ì	!	Ī	1	:
٧	7.8	0.021	629	- 210	0.11	2000	1700	0.032	8 0003	1100	2100							1	Ì	Ť	Ī						Ì	-				Ì				:	:
EF-7	-	-	-	-	-	-	-	-	-	-	-	-	=	24	ž	ž	77	*	1	Ė	=	Ξ	1	-	7.	11.	=	=	1,11	378	=	=	3	5	5,3	į	:
组	2	3	:22	4	r	2	=	8	3	ĸ	ĸ	ē	88	33	2	\$	8	£ :	:	1	8	85	s	2	117	102	8	3	3	ď	9	š	ē	÷	1	:2	ं
44	£	ы	2	*	3	<u> </u>	-	3	2	22	2	ž	4	23	33	22	3	3	8 2	4	2	ž	25	۵	3	å	ž	3	ž	ä	đ	2	2	2	2.5	1	
#	2	2	•	*	2	12	12	2	,	=	_		=	2	2	9				-	9			2	92	=	2	-	2	2	•		-	1			-
ウイルス・	Hrv	M	ž	Ē	MIN	Ift	7117	HPV	MM	Ĭ	MPV	HPV	2	Ψ	HPV	МН	2		1	A	MP	HPV	HPV	A.	ž	Š	A.		2	ž	ž	2	2	-	1	1	7000
¥	-	•	2	2	2	2	2	9	2	9	91	01	-	-	-	-	+			•	•	•	•	-	-	-		+	-	2	2		2 5	2 5	2 2	9	91
REM	ISEYRHYCY	QAEPDRAIIY	LODIETICVY	YSKISEVRHY	YSKISEYRHY	НСОТРЕНЕР	OPERTOLYCY	HIDHLECVY	AVCDKCLKFY	YSKIRELRHY	YSRIRELRHY	LLINCLINCOK	ITMICACCK	WEKTALD.	CHEKKETE	VIDENBLA	WATER BY	A BUILDING	SWCDILLEK	SYNCOTLEK	TTEGGYNK	SIPHAACHK	SIPHAACHK	MCPKSQK	KUSHINEK	LINCLIKEOK	Cupartur	THE PARTY OF	CIUPTSKIK	CILLECONNE	LINCUKOK	TO THE PARTY	TO THE PERSON NAMED IN COLUMN 1	ACCOUNTS	LTEVEEARK	DIRECTYCK	KI KIRI NEKKO
スプチド	1.0225	1020	0410	10139	20162	1.0599	1000	6160	1.0594	2,0160	20144	20161	2002	5003	2007		1		020	224	97701	10241	1007	2			200			8	8	200	1	10,00	5190	10501	1011

[0104]

【表22】

	_		_	_	_	_	_	_	_		_	_	_	_		_	_	_	_	_	_	_	_	_	Ļ	_	_	_	_	_	_		_	,	,	_	-	_	_	_	_
į	l	•		•	ĺ				ľ				ľ			ŀ					1		1	l.		l					100	9 3	į								l
Ę	8000	100	0000	40000		900				ľ		0.000	0,000		9000		0000	0.77	40	910	ē	000	9		1000	00051	00000	6012	0000	2		-	Ī	17	2	91	20	8	:	200	
1	0.0002	000		4000		C CORD 3			1			400000	40000		4000 P		6.7	000	150	9 000	9,000,6	5	5	2	7	000	9100	9 330	9	=	1	T	Ī	3	00000	960	0 0000	-	8	ž	֡
á	Ī	Γ																			1		-	1	Ī			•	Ī	1	Ī	-	ŀ	I	1				Ī		
=	=	:		=	=	643	6600	9000	980	0 043	1100	:	=	950	617	3					1		1	-				Ì		ŀ		1	Ī								
# 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	,	•	•	-	-	-		-	-	-	-	-	=	~	2		1	117	3.11	3.11	117	ī.	2	
報	=	191	2	3	3	20	ž	*	4	٥	131	•	ā	102	•	2	275	3	Ľ.	ā	2	S	1	2 12	8	ž	192	ŝ	ā	2	=	9 :			12	3	50	8	2	ž;	
+ *							ş							ž			ě		Ę		ŧ					ž	, ueu			ž											
#	-	15/5	-		-	-	Ĺ			-	-	-			•				-	-	-	-	-	1	-	-		-	-	-	-	1		-	-	-	-	_	-	-	
24.11.2	MAGS	MAGE	MACE	MACE	MAGE	MACE	MAGE	MAGE	MAGE	MAGE	MACE	MAGE	HAGE	MAGE	MAGE	MAGE	HACK	MACE	MAGE	MAGS	MAGE	MACE	200	100	MAGE	MACE	HACE	MACE	MACE	MACE	MAG	1		MACS	MAGE	MAGE	MACE	MACE	MACE	MACE	
1		-				•			-		-	2	2	2	9	92	-	٠	٠	-	-	-	-	2	2	2	10	2	2	2	-	2 5	1		-	•	٠	2	01	2	֡
E.	VINCHOUS	EAUPTSATY	TOOLVOEKY	SVORGHW	EADPTCHEY	LVUEXMEN	TSPYKMEY	NOCTTABLE	CSYNCHWOY	SPETTING	MESVIDOR	ASS. PTIMOT	LTCKXVCCCY	EISWINGS	ASSTITUTE	DEVOSENTEY	TSPYKOUSE	принов	ALASTISYVK	LTQULYQUE	LVORKYLEY	PHAYCHPAK	PLAVITOR	ADVOCALLE	S.S.F.LAVITIC	DLWDBONLDY	PYBONSARVE	LSVAGVYDCE	KADMENT	MARISME	NATURA SEA	NICKONS.	Control and	SELAVITE	SVMENTDCR	TUNFTEGR	LYODKYOEK	SURANTICK	LLTQXXVQEX	MLESVIKANYK	
47.7 H	2 00078	2007	*	2000	1526	10254	98	60007	200	2000	ă	300	20165	1169	10141	1044	99007	40119	100	4012	700	Ę	76	1	9 60 7	4016	2001	4016	60163	9	200			1024	100	8	10257	1007	1047	9	

[0105]

【表23】

A 24

0.0080 0.000 0.054 0.0020 0.0052 0.01 90000 0.049 989 0.091 6200 8 97.0 0.0014 A3.2 0.000 \$1000 3.3 0.009 90 S ٧5.1 0 0.33 7 モチープ ٥ 2 2 2 3.1 = =, 3,11 包 8 2 2 2 2 E 8 2 8 5 2 = 2 2 表4(つづき) ## 世 ウイルス 8 ୟସ୍ୟସ୍ୟସ୍ୟ 2 2 2 ٧ 0 2 2 0 0 2 2 000 CTYSPALNK
NTSSERQPK
RTEEDNLRK
ELNEALELK
RTEEDNLRKK
KTYQCSYGFR CLAPPOHLIR RVECNLRVEY WARCPHHER NTSSEPQPKK RVCACPCRDR CTAKSVTCTY HVRAMAIYK CSDCTTINY 配列 1,1121 1.0678 ハイナド 1.0667 1.0276 1.0287 =

1.0281

[0106]

【表24】

	,
	H
	٦
	9
	•
	•

			_	_			_	_	_		_	_	_	_	_	
PZY					٥		0.0022					2.5	110	11.0	0.032	9290
VII)	0.0002	0.0002	0.055	0.000	0000	0000	0.0024	6000	0.12	77	0014					
A3.2	<0.0002	<0.0002	<0.0002	CD 00.02	92000	0.0005	0.015	49000	9500	0.10	40000					
A2.1			<0.0002				0.0005									
I.A	3.4	0.78	0.7	860'0	-	2	29.0	0.018								
位置 モチーフ	-	-	-	-	-	-	-	-	-	=	Ξ	35	74	74	*	7
有解	322	50	Ę	2	និ	82	R	322	ă	ž	2	318	213	183	æ	33
##																
#																
つイルス	PAP	PAP	PAP	PAP	PAP	PAP	PAP	PAP	PAP	PAP	PAP	PAP	PAP	PAP	PAP	PAP
\$	•	•	•	•	2	2	2	2	2	•	2	•	6	6	•	2
配列	KGEYFVEMY	LCEYIRKRY	ASCHETELY	ESYKITEONY	LSEISLISLY	USEISLISLY	LTQLCMEQHY	KCEYFVEMYY	LVNEILNHMK	ATQIPSYKK	ETLKSEEPOK	LYFEKCEYF	LYCESVHINE	PYKDFIATL	VYNGLLPPY	PYASCHLTEL
ペプチド	3.0175	3.0174	30166	3.0163	3,0237	3 0235	3.0236	3.0238	3.0230	3.0158	3.0231	3.0161	3.0160	3.0159	3.0162	3.0032

[0107]

【表25】

包 表4 (つづき) # ウイルス 配列

【0108】 【表26】

	ļ
50	

				e e							
配列	1, 4, 3	抗原	25	97	数据	每	モチーフ	104	A03	A11	A24
	٠							結合	特令	40	報
EDTPIGHLY	•	MAGE 3 a	-	7703		191	104	12.5000			
AVDPIGHLY	6	HAGE 3.a	1	7+09		161	ν01	8.0000			
EVDPIAHLY	6	HAGE3a	3	7+07		161	A01	5.5000			
FSPAFDNLYY	2	HER-2/neu				1213	101	5.5000	0.0005	0.0010	
EVDAIGHLY	6	MAGESA	,	7+00		161	101	5.3500			
EVDPIGALY	6	, MAGEJa	3	7107		161	A01	\$.0000			
EVDPIGHAY	6	KAGEJA	3	7107		161	104	4.6500			
EADPIGHLY	6	MAGE3a	,	7+09		161	AU1	3.4500			
EVDPIGHLY	6	HAGE 1a	3	71119		161	101	2.9500			
EVDPICHSY	٥	MAGESA	3	7100		161	A01	2.6667			
EVDPAGHLY	6	MAGE3a	3	7107		191	¥01	2.4000			
EVDPASHTY	۰	HAGE	-			161	A01	1.5000			
PLSEDOLLY	6	PAP				147	104	1.2000	0.0005	0.0001	
LSAFSLHSY	٥	HCV				2889	A01	0.8100	0.0002	0.0002	
IPSYRKLINY	97	PAP				111	104	0.5650			
YASCHLIELY	2	PAP				310	104	0.5467	0.0003	0.0002	
SUDDICHT A	0	MAGEJA	•	7100		161	A01	0.3300			
CHOTAKGHSY	2	HER-2/neu				826	AU1	0.2967	0.0003	0.0001	
VESDETTIHY	2	659				225	A01	0.2600	0.0003	0.0003	
FVAPTCHLY		MAGE3A	-	7107		161	101	0.1800			
				-							

[0109] 【表27】

表5 (つづき)

B C 24	447	抗原	经	· 9.7	製器	湖	モチーフ	104		:	
					-						
	1				1			40	40 ∰	414	報
PSHPN PECHY	9	HER-2/hou				280	104	0.1800	0.0043	0.0003	
ASCVTACPY	•	HER-2/neu				293	V01	0.0552	0.0008	0.0074	
FSPAPDHLY	6	HER-2/neu				cier	104	0.0425	0.0002	0.0002	
ASPLDSTFY	٠	HER-2/neu				166	NOI	0.0290	0.0002	0.0004	
RCTGLFENDY	q	HER-2/neu				103	A01	0.0205	0.0003	0.0015	
PASPLDSTFY	2	HER-2/neu				986	104	0.0148	0.0003	0.0001	
PSOKTYQUE	2	p53				98	AOL	0.0140	0.0003	0.0003	
KSTRVPAAY	-	HCV				1236	A01	0.0134	6000.0	0.0001	
DSSVLCECY	~	HCV				1513	A01	0.0110	0.0002	0.0003	
KISEYRHYCY	2	ИРУ	16	E6		79	AO1	0.0000	0.0043	0.0038	
MLYVSLHLLY	2	KBV	ade	POL	20	1088	AO1	0.0000			
CTRVRAMAIY	2	p53				154	A01/03	0.0027	0.0365	0000	
LTCGFADLHGY	=	HCV				126	11/104	2.4500	0.0003	0.0120	1000
VHAGVGSPY	•	HER-2/neu				173	A01/A03	0.0400	0.0575	0.0079	
TLWKAGILY	-	иву	ade	POL	100	724	A03	0.0017	0.2667	9100.0	
KLWMASQIY	•	чін		POL		958	A03	0.0070	0.1160	0.0006	
LVGFLLLKY	•	MAGEL	-			109	NO3	0.0033	0.0563	0.0012	
ILRGISPVY	-	нви	adr	POL	8	1345	A03	0.0017	0.0440	0.0002	
RVLOGLPRET	2	HER-2/neu				545	NO3	0.0015	0.0350	0.0050	

【0110】 【表28】

				¥2 2	(324)							
NE 34	7 1 7	抗藥	*	4.4	頻度	超	モチーフ	A01	¥03	A11	124	
								報合	如	如如	松	_
QLVTQLHPY	6	HER-2/neu				795	A03	0.0024	0.0112	0.0039		_
GLHKIVRHY	6	нти		CAC		274	A03	0.0017	0.0103	0.0002		_
LLGDNQVHPR	2	HAGEZ	2			182	A03		0.0093	0.0014		_
DVRDQAEHLK	ដ	HIV		Pot		1419	A03		0.0089	0.0093		-
LVSAGIRK	8	нти	con			1246	10V	-	0.0091	0.0054		_
VTDRGROK	. 6	HIV	con			1153	NO3		0.0090	0.0065		_
TVFDAKALIGA	=	HLA-Aw68 ™®	内因性ペプチド配列	尼列			11/COA		0.1050	1.3000		-
KTGGPIYKR	6	HLA-Awer PAR	内因性ペプチド配列	配列			11/504		0.0340	0.8200		
SLYTKWHY	6	PSA				237	11/504	0.0017	0.6750	0.0140		-
AVAAVAARR	6	HLA-Av68 内因性ペプチド配列	性ペプチド酢	E.M.			A03/11		0.1600	0.0825		_
KIQNFRVYY	6	HIV		POL		1474	A03/11	9500.0	0.1190	0.1350		_
EMLESVIANTA	Ξ	MACE 1				121	A03/11		0.0087	0.0099		_
EVAPPEYHRK	10	HLA-Av68 内因性ペプチド配列	性ペプチド目	R 34			A11		0.0008	0.0575		-
ETAYFLLK	8	ити	コンセンサス			1321	A11		0.0037	0.0425		
RWGLILALL	٥	HER-2/neu				8	A24				1.2567	_
PIVSRLLGI	6	HER-2/neu				780	N24				0.1650	
VYHIHVKCH	6	HER-2/neu				951	A24	-			0.1640	
AYSLTLOGL	6	HER-2/neu				440	A24				0.1250	_
SYGVTVWEL	6	HER-2/neu				903	A24				0.1200	
LYISAWPDSL	2	HER-2/neu				410	A24				0.0835	
VWSYGVTVW	•	HER-2/neu				908	N24				0.080.0	

[0111]

【表29】

* T ()

			_	_		_				_		_	_				
	N24	超	0.0630	0.0475	0.0375	0.0335	0.0305	0.0300	0.0225	0.0218	0.0180	0.0176	0.0175	0.0149	0.0120	0.0117	0.0107
	111	坡坡															
	NO3	如如															
	101	特合															
	モチーフ		A24	A24	A24	A24	A24	A24	A24	A24	A24	A24	A24	N24	A24	N24	N24
	位		106	1777	63	111	190	102	1296	951	968	342	2614	687	1022	1111	868
J (₩)	頻度					90		90									
表5 (つび半)	9.7					NUC		NUC									
	#																
	抗原		HER-2/neu	HCV	HER-2/neu	нви	PSA	нви	HCV	HER-2/neu	HBR-2/neu	HER-2/neu	HCV	HER-2/neu	HER-2/neu	HER-2/neu	HER-2/neu
	カイズ		٥ŧ	6	6	91	6	6	۰	e,	6	6	2	6	91	10	5
	R2.94		SYCUTUWELH	QYLAGLSTL	TYLPTNASE	EYLVSFGVWI	KFMLCAGRH	WFHISCLTF	TYSTYCKFL	VYHIHVKCHM	RFRELVSEF	CYGLGNEHL	QY SPCQRVEF	KHNALESIL	EYLVPQQGFF	AYSEDPTVPL	RFTHQSDVW

[0112]

【表30】

表 5 (つづき)

	Ī	Π	Γ	T			Π	Π	Т	Τ	Τ	Τ	T	Г	T	Γ	Ta			1	Τ	T
224			L					L									0.0007	0.0051			l	٠
1	0.0014	0.0051	0.015	86.0	0.0009	. 0.027	<0.0002		0.0012	<0.0002	0.0007	<0.0005	0.0033	0.0023	0	0.0011			<0.0002			0.000
N3.2	0.0040	0.0019	0.015	1.2	0.0069	0.14	<0.0002		0.056	0.0014	0.0013	0.0007	<0.0002	0.0034	<0.0002	0.0045			<0.0002			0.0006
1.5M																		0.000				
14					0.0068		<0.000	<0.000	0.0033	0.0084	0.0048								0.0028	0.0002	0.0005	9.6
モチーフ	3,11	3,11	3,11	3,11	1	3,11	-	1	1	1	1	11'0	1,11	3,11	3,11	•	24	24	1	1	1	-
每	108	152	2	96	108	128	215	223	109	171	170	112	65	109	246	108	231	168	161	161	161	191
£λ																						
Mage 4%	1	1	7	-	-	-	-	-	-	-	-	1/2/3	-	-	-	2/3	-	-	7	12	7	5/51
2	6	٩	2	10	10	27	9	임	6	٩	10	6	2	97	9	۰	٥	릐	-	6	6	6
R. 99.	DLVGFLLLK	QLVFGIDVR	SLEORSLHCK	SLFRAVITKK	DLVGFLLLKY	HLESVIKNYR	WEELSVHEVY	VYDGREHSAY	LVGFLLLKY	LVTCLGLSY	VLVTCLGLST	FLLLKYRAR	PTTINFTROR	LVGFLLLKYR	EKYLEYGRCR	ELVHFLLLK	AYGEPRKLL	STATATCLGL	EVVPISHLY	EVVRIGHLY	EVDPASNTY	EADPTSNTY

[0113]

【表31】

表 5 (つづき)

National Part National Par		-									
0 6 1 12 1 1 9 6 1 1 1 1 1 9 1 1 1 1	E 34	\$	Nage ##	₹Æ	包	モチーフ	Z	77	1		3
0	EVDPICHVY	٥	۰		191	-	1.9		000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,
0	EMLESVIK	•	1		121	-			1000	2000.00	-
0	LVFGIDVR	80	-		153	-			2000	3	
0	GVQGPSLK		-		2,66	1			0.00.0	0.0037	
6 1 244 1 0,0018 1 1 1 1 1 1 1 1 1	VHEVYDGR	-	-		1				<0.0003	0.0063	
0 1 1 1 1 1 1 1 1 1	VOERYLEY	٩	-		2				<0.0003	0.0007	
11 1 155 1 10,000 11 1 1 125 1 10,000 12 214 1 10,000 2 7 + 0 1 14 2.1 1.6 3 7 + 0 1 14 2.1 1.6 4 1 5 2 3 5 1 5 2 3 6 1 9 1 3 7 1 9 1 3 8 1 9 1 9 1 9 1 9 1 10 3 9 1 10 3 9 1 10 3 9 1 10 3 9 1 10 3 9 1 10 3 9 1 10 3 9 1 10 3 9 1 10 10 9 1 10 9 10 10 9 10	AYGEPRKL	-	-		231	- ;	0.0018				
1	VXEADPTERSY	:									0.0017
11		:[î	-	<0.0003				į
11	INEELSVHEVY	=	-		214	1	<0.0003				
9 7707 161 1 0.68 9 7707 161 1 1.6 9 1 1 1 2.1 0 9 1 2 2 3 9 1 86 3 9 1 9 1 91 3 9 1 91 3 9 1 91 3	EHLESVIKNYK	Ξ	7		127	•		0.0087	0.000		
9 1 1 1.8 0 9 1 2.1 0 9 1 5 5 9 9 1 65 9 9 1 9 1 90 1 9 1 97 9 9 1 97 9 9 1 97 9	EADPISHTY	۰	7100		161	-	0.68				l
9 1 14 2.1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	EVDPTSHTY	6	7+09		191	-	- 8				
9 1 55 9 1 9 1 9 9 1 9 9 1 9 9 1 9 9 9 1 9	EALEAQUEA	۰	-		Ξ	12		,	2000	1	
9 1 56 3 9 1 62 3 9 1 91 3 9 1 91 3 9 1 101 3	HSLEQRSLH	6	-		-	-		,	70007	9	
9 1 65 3 9 1 90 3 9 1 97 3 9 1 310 3	OSPOGASAF		-		3	-			0.0023	0.0003	
9 1 90 1 9 1 91 51 5 9 1 10 1 10 1	SAFPITINE	6	-		2	, -			0.0004		
9 1 91 5 9 1 97 1 9 1 110 1	TSCILESLE	6	-		8	-			40.0003		0.0003
9 1 97 3 9 1 110 3 9 1 130 3	SCILESLFR	6	1		16	-	T		2000	2 60	
9 1 110 3	LFRAVITKK	•	1		-6	-			1	200	
9 1 130 3	VGFLLLRYR	0			110	-			0.0044	0.0051	
	ESVIENTEH	•	-		130			ĺ	c0.0003	٥	
132 3	VIKNYKHCF	6	~		132	•			1000		

[0114]

【表32】

表5 (つづき)

R.34	2	Mage A	毛ル	超	モチーフ	W	A2.1	A3.2	114	A24
ASESTOLVE	6	1,2		147	3			<0.0003		
LGDNQIMPK	6	1		183				0.0007	0.0048	
VHIAMEGGH	6	-		200	-			<0.0003	0	
YDGREHSAY	6	1		224	f			<0.0003	0	
LTQULVQEK	6	-		239	3			<0.0003	0.14	
CGVQGPSLK	6	~		265	1			<0.0003	0.0037	
EHLESVIKAY	2	-		127	-	9000.0		<0.0002	<0.0002	0
KEADPTGHSY	2	,		160	-	<0.0005		<0.0002	<0.0002	
ASAPPTTINF	2	-		19	3			<0.0003	<0.0002	
AFPTZINFTR	2	-		63				<0.0003	0.0003	
PITINFIROR	2	-		9	1			<0.0003	0.0002	
STSCILESLE	10	-		68	1			<0.0003	<0.0002	
GFLLLKYRAR	10	-		Ξ	,			0.0019	0.0008	
KAEHLESVIK	ρŢ	-		125	3			<0.0003	0.0097	
SVIKNYKHCF	22	1		11				<0.0003 <0.0002	<0.0002	
KASESLQLVF	10	1		146	,			<0.0003	<0.0002	0.0012
DVKEADPTGH	ç	-		158	,			<0.0003	<0.0002	
LVHIAMEOCH	91	1		199	6			0.0008	0.0005	
LSVHEVYDGR	07	-		218	ſ			<0.0003	0.012	
VHEVYDGREH	10	-		220				<0.0003	0.0002	0
YGRCRIVIPH	10	-		251	-			<0.0003	<0.0002	
SCGVQGPSLK	97	-		264	1			0.0005	0.0089	

[0115]

【表33】

表 5 (つづき)

配列	\$	Mage ##	4 H	K S	£ \$ 7	14	A2.1	23.2	-	-
VPDSDPARY	6	~	*	254	-	0.0038				
QVPDSDPAR	9	1	推	254				<0.000 s	0 0000	
VIKVSARVR	6	7	轟	284	-			0.0016	-	
PSUREAALR	6	1	推	296	-			<0.000	L	
EFLUGPRAL	6	1	梅	597	24				L	9000
ETSYVKULEY	2	1	推	274	_	0.56				200
LVQERYLEYR	유	1	雅	243				0.0008	0.0043	
QVPDSDPARY	2	, 1	挺	254	-			0.0014	0.0001	
YVXVLEYVIR	10	1	难	17.2	-			0.0029	2100.0	
YVIKUSARVR	91	-	操	283	-			0.019	0.000	
RALAETSYVK	10	1	凝	270	=			0.18	0.74	
SYVKVLETVI	2	1	#	276	77					200 0
FFPSLREAAL	2	-	拼	294	24	-				0000
SVIKNYK	٦	2 1	POL	Ē	3,11			0.0006	0.0028	
PVTKAEHLESVIK	=	1 n	93	122	3,11			<0.0001	-	
ETSYVKVLEYVIK	13	1 n	E6	273	3,11			0.0044	. 000	
ITKKVADLVGFLLLK	15	1 n	POL	102	3,11			0.40	9	
UTKAEHLESVIKNYK	15	1 1	POL	123	1,11			0.024	0.063	
VUCNWOYFFPVIFSK	15	3	TOU	66	3,11			1.6	2.0	
PRALAETSY	6	,	#	268	-	<0.0018		<0.0003	<0.0002	
FATCLGLSY	6	3		171	-	0.038		<0.0003	0.0004	
LEGRSTHCK	6	1	推	-	-			<0.0002	۰	T
										-

[0116]

【表34】

表5 (つづき)

PC 36	2	Mage ∰	+ h	超	£ \$ - 7	AL	A2.1	N3.2	411	A74
AEHLESVIK	6	1	新	126	J			<0.0002	0.0011	
LESVIKNYK	٥	1	雅	129	3			<0.0002	0.0018	
EELSVHEVY	6	г	新	216	. 3			<0.0002	۰	
неуурскен	٥	1	斯	221	3			<0.0002	۰	
DSDPARYEF	٠	1	推	256	9			<0.0002	٥	
KVSARVRFF	•	-	掘	285	ı			0.0005	۰	
VSARVRFFF	6	-	襲	286	£			0.0003	0.0026	
HSPQGRSSF	6	, 2		95	3			<0.0002	٥	
TTINYTEMR	6	2		99	-			0.089	1:1	
QEEECPRAP	6	2		83	3			<0.0002	0	
HEPOLESEE	6	2		90	E			<0.0002		0.014
SEFOAMISH	٥	2		96	3			<0.0002	0.0001	
EFORAISRK	٠	2		65	3			<0.0002	0.0002	
LVHPLLLKY	6	2,3		109	3			0.043	0.010	
APHLESVLR	٥	2		126	3			<0.0002	0	
SVLRNCQDF	6	2		111	3			<0.0002	٥	
VLRNCQDPF	6	2		132	,			<0.0002	٥	
DFFPVIFSK	6	2		138	1			<0.0002	0.0022	
VIFSKASRY	6	2		142	3			0.081	0.033	
VVEVVPISH	6	2		159	,			0.0007	0.010	
LCDNOVNPK	2	2		183	-			<0.0002	0.0061	
EGDCAPEER	6	2,3		205	m			<0.0002	0	

[0117]

【表35】

まら (つづき)

16.29	\$	Жаде (Ж	ชา	62.23	6-43	14	A2.1	N3.2	17	N24
QEEEGPSIF	9	ı		63				<0.0002		
TFPOLESEF	6	•		96	r			<0.0002	۰	0.0049
SEFÇAALSR	6	•		96	ſ			<0.0002		
EFGRALSRK	6	ε		97	-			<0.0002	0.0001	
SVVGNHQYF	6	3		131				<0.0002	0	
VVGNHQYFF	6			132	,			0.0022	0.0021	
YFFPVIFSK	6	3		138	3			0.0020	0.027	
. ASSSLQLVF	٥	, 3		147	,			0.0011	0.0089	
LMEVDPIGH	6			159	3			<0.0002	0	
IIVLAIIAR	6	3		196	3			0.0069	0.0011	
VQERYLEYR	6	1		244	11			<0.0002		
SNOEEEGPR	٥	2		81	11			<0.0002	0	
NYKHCFPEI	٥	-	養	135	24					4.8
IFGKASESL	٥	1	新	143	24					0.0013
GFLIVLVM	6	-	推	193	24					<0.0002
IPSKASEYL	6	2		143	24					0.023
EYLQUVFGI	6	2		149	24					3.5
NHOYFFPVI	6	·		135	24					0.53
IFSKA353L	٥	3		143	24					0.016
LGSVVCNWQY	10	9		129	. 1	<0.0020		<0.0003	0.0012	
IFATCLGLSY	10	3		170	1	<0.0002		0.0005	0.0004	
TSCILESLFR	10	-	¥	8	n			<0.0002	0.015	

[0118]

【表36】

表5 (つづき)

R2 74	5	Nage 48	± 1	超	モチーフ	, N	M2.1	13.2	IIV	A24
LESVIKNYKH	10	1	海	129	3			<0.0002	<0.0002	
REHSAYGEPR	202	-	14	227	î			<0.0002		
POSDPARYEF	10	1	靜	255				<0.0002		
LEYVIKUSAR	10	1	Ni.	280	3			<0.0002	<0.0002	
VIKVSARVRF	10	1	華	283	3			<0.0002	<0.0002	
KVSARVRFFF	97	-	报	285	9			0.0013	0.0020	
STTINYTHE	97	2		65	1			0.0014	0.091	
SSNQEEEGPR	2	2		80	3			<0.0002	<0.0002	
RMFPOLESEF	2	2		89				<0.0002	<0.0002	0.0016
ESEFORATSR	10	7		95	3			<0.0002	<0.0002	
SEPORAISEK	9	7		8	1			0.0012	0.0028	
ISRKHVELVH	의	2		102	3			<0.0002	<0.0002	
VELVHFLLLR	2	2		107	3			0.0009	0.0003	
ELVHFLLLKY	or	2,3		108	3			0.0066	0.0003	
LWHPLLLKYR	2	2		109	3			0.026	0.0022	
HFLLLKYRAR	밁	2,3		111				0.0014	0.0002	
KAEHLESVLR	2	2		125	,			<0.0002	0.0009	
ESVLRNCQUF	10	2		130	-			<0.0002	<0.0002	
SVLRNCODEF	믜	2		131	n			<0.0002	<0.0002	
NCODFFPVIF	97	2		135	3			<0.000.0>	<0.0002	
ODFFPVIESK	밁	7		137	-			<0.0002	0.0083	
PVIPSKASEY	10	2		141				0.016	0000	

[0119]

【表37】

表 5 (つづき)

配列	5	: Mage	÷ E.J.	负	モチーフ	41	1.24	A3.2	A11	N24
KASEYLQLVF	10	2		146	3			<0.0002	<0.0002	0.0030
EVVEVVPISH	10	2		158	3			<0.0002	<0.0002	
VEVVPISHLY	10	2		160	3			<0.0002		
ILVTCLGLSY	10	2		170	ı			0.0036	0.0002	
LLGDNQVHPR	10	2		182	1			0.0093	0.0014	
LECDCAPEEK	10	~		204	3			<0.0002	<0.0002 <0.0002	
STFPOLESEF	2	ſ		99	3			<0.0002	<0.0002 <0.0002	
ESEFORALSR	01	, 3		95	3			<0.0002	<0.0002	
SEFQAALSRK	97	9		96	3			0,0010		
LSRKVAELVH	10	e.		102	9			<0.0002	<0.0002	
ABLVHFLLLK	P			101	3			0.0008	<0.0002	
LVHFLLLKYR	2	3		109	3			0.040	0.0014	
CSUVGNWOYF	10	-		130				0.0020	0.0008	
SVVGHHQYFF	10	3		121	3			0.0085	0.0067	
KASSSLQLVF	10	3		146	3			0.0003	0.0008	0.0021
ELMEVDP I CH	2			158	3			<0.000.0>	<0.0002	
MEVDPIGHLY	임	3		160				0.0004	0.0004	
VDPICHLYIF	10	-		162	,			<0.0003	<0.0002	
LIIVLAIIAR	유	-		195	,			0.028	0.0021	
REGDCAPEER	ဌ	'n		204	3			<0.0003	<0.0002	
RQPSEGSSSR	2	7	海	7.4	11			6000.0	0.0009	
LQLVFGIOVK	10	7	嶉	151	11			0.0050	0.0018	

[0120]

【表38】

表 5 (つづき)

A24	L		0.0008	0.015	<0.0002	0.014	0.017															
114	<0.0002	<0.0002																		Ī		
A3.2	<0.0003	<0.0003																				
A2.1																						
14								8.0	3.5	1.5	::	3.0										
£ 7 - 7	11	11	24	24	24	24	24	1	1	-	1	1	A11	P.1	14	A11	A11	A24	104	P2	A02	A03/A11
報	252	69	193	63	97	169	135	161	191	191	161	161	55	170	196	226	236	238	247	592	11.2	11.2
ΨŢ	舞	凝	推					7707	7107		7100	7+07										
Nage (\$	1		1	2	2	2	3	, 3	3	4	3	3	2	2	2	2	2	2	2	2	2	2
Ź	1.0	10	10	10	. 10	70	97	ô	6	6	6	٥	6	٥	6	6	6	6	٥	6	٠	•
R. 99	RQVPDSDPAR	HNYPLHSQSY	GFLIVLVMI	SFSTINYTL	EFQAAISRKA	LYILVTCLGL	HWOYFFDVIF	AVDPIGHLY	EADPIGHLY	EVDPASHTY	SDIPIGHLY	EVDPTGHLY	AADSPSPPH	VPISHLYIL	MPKTGLLII	SMLEVFEGR	DSVFAHPRK	VFAHPRKLL	MODEVQENY	DPACYEPLH	FLHGPRALI	ALIETSYVK

[0121]

【表39】

表 5 (つづき)

原证	¥	Mage 4%	£μ	每	£ 5 - 7	I¥.	A2.1	A3.2	12	\$24
TSYVKVLHH	6	2		182	A11					
EPHISYPPL	6	2		296	1.4					
ISYPPLHER	6	2		299	A03/A11					
YPPLHERAL	6	2		301	21					
EPVTKAEHL	6	2/3		128	12					
VPGSDPACY	6	2/3		261	24					
EGLEARGEA	6	3		14	403					
GLEARGEAL	6			15	V02					
EARGEALGL	6	3		11	V02					Ī
ALGLVGAQA	٩	3		22	A02/A03					
GLVGAQAPA	٥	9		24	A02/A03					Ī
LVGAQAPAT	٩	3		25	A02					
PATEEGEAA	6	ı		-	A02/A03					
EAASSSSTL	٥	3		5	N02	Ī		T		
AASSSSTLV	6	3		ä	A02					
LVEVTLGEV	6	3		45	NO2					
EVTLGEVPA	6	9		=	A02/A03			T		
VTLGEVPAA	6	3		9	A02/A03					I
LPTTHNYPL	6			1,	E					
PDLESEFOA	6	·		66	NO3					
HFLLLKYRA	6	3		118	N03					
FFPVIFSKA	6	-		146	£03					T
								1	1	

[0122]

【表40】

r)	
n	
n	
_	
s	
19	

	Т	Т	Т	7	7	$\overline{}$	_	_	_	_	_	_	-	_	-,-		_		_				4
L	V74																		I		T		
:	-	T	T					Ī			Ť		1	1	1	1	1	1	1	\dagger	\dagger	t	_
:			T							T	1	1	\dagger	†	+	1		1	1	\dagger			-
177										T			1	\dagger	T	1	1	\dagger			\dagger		1
¥											ľ		Ì				r		İ				1
£ £ - 7	P2	V03	14	A03	A02	A03/A11	A03/A11	A02	A02	νο2	104		A03/A11	NO.	A02	700	114/104	A01/A03/A11	ī	ā	1	ā	
相如	170	191	196	199	220	226	235	23.1	238	27.1	275	1 1	233	278	283	285	290	_	_	Ę	120	196	
E.J.																							
Nage 4\$	3	3	3		r	9	9		-	3	·	-	-	ņ	ŗ	•	9	F	-		2	2	
\$	6	6	6	. 6	6	6	٥	٥	6	٥	6	6	6	6	6	6	6	6	6	6	01	10	
配列	DPIGHLYIF	CONQIHPKA	MPKAGLLII	AGLLIIVLA	KIWEELSVL	SVLEVFEGR	EDSTLGDPK	SILGDPKKL	ILGDPKKLL	FLWGPRALV	PRALVETSY	RALVETSTV	ALVETSTVR	LVETSYVRV	YVKVLHRHV	KVLHHHVKI	MVKISGGPH	ISGGPHISY	CPHISTPPL	YPPLHEWUL	VPISHLYILV	MPRIGLLIIV	

[0123]

【表41】

表5 (つづき)

						$\overline{}$	_		_	T	_	_		$\overline{}$	$\overline{}$		_	_	_				
	A24																						
	A11																						
	A3,2																						
	A2.1																						
	¥																						
	モチーフ	A24	P1	A01	A24	P.2	A11	A24	A24	P.1	A03/A11	A03	A02	A03	A02/A03	A03	A02	A02/A03	A02	A02	N02/N03	A03	P2
	经	230	241	246	270	274	276	282	300	216	2	6	17	19	21	23	24	29	37	7	41	59	11
	ŧλ																						
Mage	*	2	2	2	2	2	2	2	. 2	2/3	3		9	3	1	3	3	3	r	3	3	3	9
	2	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	19	10	10	10	2
	K-36	VFEGREDSVF	HPRKLLMODL	LHQDLVQENY	EFLWGPRALI	GPRALIETSY	RALIETSYVK	SYVKVCHHTC	SYPPLHERAL	APEEKIWEEL	PLEORSOHCK	HCKPEEGLEA	EARGEALGLV	RGEALGLVGA	EALGLVGAQA	LGLVGAQAPA	GLVGAQAPAT	QAPATEEGEA	EAASSSSTLV	TLVEVTLGEV	EVTLGEVPAA	POPPOSPOCA	LPITHNYPLW

[0124]

【表42】

表 5 (つづき)

	_		_			_	_	_	_	_	_		_	_		_			_		_	_
A24																						
A11																						
A3.2																						
A2.1																						
M																						
モチーフ	A03	A03	A03	P1	A02	A03/A11	A02	AG2	A03/A11	P2	A01/A03/A11	A03/A11	A03/A11	P2	A03/A11	A02	A02	A03/A11	A02	A01	P2A	P28
胡	66	145	190	196	229	235	237	238	240	241	246	250	267	274	276	277	278	283	290	292	9	۶
E.J.																						
Mage 43	3	3	3	3	3	3	3	3		3	9	3	3	3	3	3	1	3	3		2	-
\$	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	6	۰
配列	PDLESEFQAA	YFFPVIFSKA	LGDNQIHPKA	HPKAGLL11V	EVFEGREDSI	EDSILGDPKK	SILGDPRKLL	ILGDPKKLLT	GDPKKLLTQH	DPKKLLTQHF	LTQHFVQENY	FVQENTLETR	ACKEFLWGPR	GPRALVETSY	RALVETSYVK	ALVETSYVKV	LVETSYVKVL	YVKVLHHHVR	HVKISGGPHI	KIŚGGPHISY	SPPHSPQCA	APATERORA

[0125]

【表43】

表 5 (つづき)

- R-20	. \$	Mage 4%	1/4	包	モチーフ	-	2	:	:	L
DPPQSPQGA	۰	-		3	P2A			7:52	1	¥24
APATEEQQIA	2	2		å	PZA					1
FPDLESERGA	9	2/3		86	P2A					
APATEEQEAA	10	9		8	PZA		L		L	
DPIGHLYIFA	2	3		170	P2A					
EADPTGHSY	٠	1		161	-	0.56		0	0000	2000
KVADLVOFLL	2	7		105		0.0005	0.041	0.0039	01.00	20000
ASSLPTTHRY	10	·,		8	1	2.3				0.00.0
TQDLVQEKY	6	-		240	1	0.57	0.0001			,
LVQERYLEY	6	1		243	-	016	۰	9100.0	0000	,
ILLWOPIPV	6					<0.000	-	9	2000	
EVDPICHLY	6	•				1 2		0.00	0.0048	۰
ASSESTITINE	10	2			-	210.0		2000	0.0022	
VICLGLSY	8	-		172	-	0.00	,	0.0016	0.005	۰
SSLPTTHNY	6	-		•	-	2000		0.000	0.0001	٥
GSVVGNWQY	۰	-		12	-	0 00	, ,	0.013	0.12	٥
DLVQERTLEY	10	1	岸	242	-	٥		00000	0.025	0
SSFSTTINY	۰	2		•	-	0.016		0.0095	0 00	
MLESVIRNY	٥	-		128	1	0.0016	0.0002	0.0006		
KHVELVHFL	۵	2				<0.0007	0.13	0.0007		0.0043
KHVELVHPLL	유	~		205		<0.0008	0.071	0.0004	0.0001	0.0008
LVFGIELMEV	S.	-		7		0.0030	0.065	0.0007	0	0

【0126】 【表44】

表 5 (つづき)

配列	. 1	Kage : 4%	令 毛序	海	モチーフ	ν,	A2.1	N3.2	A11	A24
SLFRAVITK	6	-		96	3,11	<0.0007	0.0001	3.9	2.6	٥
ADLVGFLLLK	10	-		107	r	0.0012	0.0003	0.0081	0.022	٥
ESLFRAVITK	10	-		95	•	<0.0008	0	0.0090	0.0052	٥
MLESVIENTE	S	1				٥	٥	0.034	0.0045	۰
LVGFLLLR	80	-		109	3	0.0029	0.0002	0.027	0.034	۰
TTINFTROR	6	1		99	3,11	0	0	0.051	0.40	
LLGDNQIHPR	97	1/3		162	3,11	<0.0007	0.0001	0.022	0.016	0
SVHEVYDOR	6	, 1		219	3,11	<0.0006	0	0.059	0.32	c
HSAYGEPRK	6	1		229	1	0.0001	0	0.00.0	0.0015	۰
LLTQUEVQEK	10	1		238	3,11	<0.0007	0	0.0014	0.011	۰
LTGDLVQEK	6	1		239	1,11	0.0011	0	0.0002	0.16	۰
NYKHUFPEIF	97			135	24	0	0	0	٥	0.26
LYIFATCLGL	10	•		118	24	<0.0007	0	0.0006	0	0.0035
NYPLWSQSY	6	-		32	24	<0.0006	0	0	0.0001	0.016
SYVLVTCL		-		168	24	0.0029	0.00025	0.0020	0.0002	0.0026
ETSYVEVER	2	. 1				0.075	0	0.0009	0.0004	۰
TSYVKVLEY	٥	-		275	1	0.082	0	0.23	0.013	۰
FLWGPRALA	6	-				<0.0006	0.027	0.0015	٥	۰
ALASTSYVKV	2	-		271		<0.0007	0.017	0.0011	0.0029	
RVRFFFFFR	2	-		290		<0.0007	0	0.25	0.0035	0
ALASTSTVK	6	-				<0.0006	0.0002	0.17	0.39	0
LTQULVQERT	10	-		239	-	0.041	c	٥	,000	،

[0127]

【表45】

(***)

R2.94	2		モル	186 193	モチーフ	14	A2.1	N3.2	V11	A24
GFLLLKYRA	9	1						0.0004	0.0004 0.0002	
CPPEIFGKA	6	1						0	0	
FFFPSLREA	6	1						0	0	
FFPSLREAM	6	1						0	0	
HCFPEIFGE	6	1		138	3,11			0.0017	0.0017 0.0022	
RSCHCKPEEA	10	1						0.0001	0.0008	
EFLWGPRALA	10	1						0	0	
RFFFPSLREA	10	, 1						0.0004	0	
FPRDSTREAM	2							•		

【0128】 【表46】

抗原		**	+4	拉爾	モチーフ	7	٧5	۲۷	ALI	A24	中華
_						40	## 40	40	<0 ₩	40 112	<0 2₽
SPAFUNLYY C-Er	c-ErhB2			1213	AOI	5.5000		S(XK) C)	0.00.0		5.5000
CMOTAKGMSY 6-Fr	c-ErbB2			826	VOI	0.2967	İ	0.0003			0.2967
ESMPNPECRY C-Er	c-ErbB2			280	700	0.1800	İ	0000	١_		0.1800
ASCVTACPY CE	C-EINBZ			29.3	!~	0.0552		0.00XH8	0.0074		
FSPAFDNLY C.E.	11/02			1213	100	0.0425		0.0002		1	0.0425
ASPLDSTFY C-Fil	I-hB2	ĺ		6	Aot	062011	 -	0.0002		i	0.0290
. 3	1182		İ	Ξ	701	0.0205	!	0000			0.0205
ı	C-FishB2			996		0.0148	:	0.000.3	0000	:	8.10.0
LSAFSLIISY IIC	1			2889	AGIL	1.8100		0.0002	0.0002	:	0.8100
KSTKVPAAY 11C	Į			1236	!]	200	:	0.0000	0.0001		0.03
DSSVLCECY 11CV	1				ABI	0.0110		0.0002	0.0003		0.00
ETDPIGILY MA	MAGE 3a	-	7107	191	AOI	12.5000	ĺ			!	
AVDPIGICLY MA	MAGE-3a	1	7+07	19	YOF	8.(N)(I)	İ				S CKHIC
Ī	MACH: 3a	1	7107	191	AOI	5.5000	:				5.5000
EVDAIGHLY MA	MACIE-32	-	7707	191	A01	5.3500					5.15(1)
EVDPIGALY MAGE	CE 3ª	-	7107	101	AOI	5.01011	:				SCHEE
EVDPIGHAY MAK	MAGE 38	_	7107	191	AOI	4.6500				İ	4.6500
MA	MAGE-33	_	7707	191	AOI	3.4500					3.4500
Ϋ́	MAGE-39	_	7107	161	AOI	2.9500					2.9500
EVDP1G0SY MAG	AGE-33	3	7107	161	AOI	2.6667					2.6667
EVDPAGILLY MAC	MAGE-33	_	7+07	191	YOF	2.4000					2.4(ЯИ)
Ī	MAGE-33	3	7107	16	N)	0.3300					0.3300
	MAGE-33	-	7107	9	Aot	0.1800					() LB(N)
EVDPASNTY MAG	MAGE-4	4		191	401	1.5000	i				1,5000
VGSDCTTIHY p53				225	ABI	0.2600		0.0003	0.0003		0.2600
PSQKTYQCSY p53				98	AO	0.0140		0.0003	0.0003		
PLSEDQLLY PAP				147	VO.	1.2000		D.CKKIS	0,000		1,2000
PSYKKLIMY PAP				211	AOI	0.5650					0.5650
ASCHLTELY PAP	Ī	Ī		5		200		20000		1	

[0129]

【表47】

最大	40 112	0.0350	01110	575010	0.2667		3		0.01563	90.00	0.1350	06750	2.45(0)	52700	1 2567	05910	3	0.550	0 2 3	0.0835	2	200	5000	011218	100	0.0176	0.1149	unizo	0.0117
٧54	40 40			-	-	:	:			!	İ		0 (800)	i	1.2567	0.1650	0.1640	0.1250	0 1200	0.0835	00800	0.0630	0.0375	0.0218	08100		0.0149		00117
11 V	<0 ₩	05000	0.0039	0.000	0,0016	0.0002	0.000	0.0002	CHANG	0,0002	0.1350	9	0.0120	0.0425	-	!	:	!	İ			-	-		ĺ	Ī	ĺ		
٨3	如	0380	0.0112	0.0575		00110	0011	0.0103	0.0563			0.6750		0.0037			:	:	İ		-			İ					
A2	が批			-			l								ĺ	!	i	ĺ				l	ĺ			ĺ			
4	40	0.0015	0.0024	00700	71000	1000	0.000	1000	0.0033	0.0027	0.0056	0.0017	2.4500				Ī			Γ			ĺ		ĺ		ĺ		
モチーフ		A03	All3	703	A03	VIE	A03	A03	-		AUVALI	Ē	Ā	Ŧ	A24	A24	V24_	V24	A24	A24	A24	A24	A24	A24	A24	A24	A24	751	A24
14 14		545	795	11.1	724	145	958	77.1	Ē			233	136	132	•	780	156	7	106	2	SE	5	3	951		342	887	1072	Ξ
9.7				! :	POL.	5	POL	GAG			2																		
#\$				1	ģ	ž			-				`	COD														i	Ī
1000		C-ERB2	c-ERB2	c-ErbB2	20	IIBV	2	2	NAGE-I	23	2:	25	IC.	2	c-ErhB2	c-ErhB2	c-ErhB2	c-Erbit	c-ErhB2	c-Erhliz	c-ErhB2	c-ErhB2	c-ErbB2	c-ErhB2	c-ErhB2	c-ErbB2	c-ErbD2	c-ErhB2	c-Erbuz
E 29		RVLQGLPREY	OLVTOLMPY	VMACVGSPY	TAKAGILY	LRGTSFVY	KLIMASQ1Y		-	GTRVRAHALY	K J ONFRVYY	SLYTKVVHY	LTCGFADIMGY		RMGLLLALL	-	J		!	اي		Σ		Ţ			KWMALESIL	ī	RYSEDPTVPL

[0130]

【表48】

表 5 (つづき)

16.00	拉爾	#	¥ 5	な	モチーフ	V	A2	A3	VIV	A 24	お木
										7	i
						名	如如	物物	40		如
EY LVSFGVW1	IIBV		NUC	111	A24					0.0335	0.0335
WFILISCLTF	linv		NUC	102	A24		ĺ			0.030	00100
i	IIC.			iii	A24		İ			0.0475	0.0475
	2			1296	A24		i	-		0.0225	0.01225
ī	HCV	!		2614	A24		:		ĺ	0.0175	0.0175
KFMLCAGRW	PSA	!		<u>8</u>	A24		0,0003			0.0305	00000

[0131]

【表49】

表 6

**	配列	源
9	GLNKIVRMY	HIV GAG 274
,	KLNWASQIY	HIV POL 958
9	KIQNFRVYY	HIV POL 1474
9	TLWKAGILY	HBV adr POL 724
,	iLRGTSFVY	HBV adr POL 1345
9	SLYTKVVHY	PSA 237
9	NTSSSPQPK	p53 311
9	NVKIPVAIK	c-ERB2 745
10	TLGFGAYMSK	HCV LORF 1261
10	GTRVRAMALY	p53 154
10	RAYSPVSTSK	HBV adw POL 887
9	QITKIQNER	HIV POL 1471
9	HTGLILTR	HIV ENV 2633
9	FLWEWASVR	HBV adr ENV 324
,	ATPSPRARR	HBV sdr CORE 549
,	TLARGNOGR	HBV adv POL 805
10	VAYQATVCAR	HCV LORF 1587
10	TTYQGSYGFR	p53 101
,	VMCLRRFII	HBV ayw 237
,	'MMCLRRFII	HBV syw 237-245
9	KFMLCAGRW	PSA 190
10	IMPKTGFLII	MAGE 1 168
8	ETAYFLLK	HIV con 1351
п	LTCGFADIMGY	HCV 126
,	CSPHHTALR	нву
		NUC:XNUCFUS 48
9	VMPKTGLLI	MAGE 2 188
9	VMPKTGLLI	MAGE2 188-196
9	VAELVHELL	MAGE 3 106
9	IMPKAGLL1	MAGE 3 188
10	VMPKTGLLII	MAGE 2 158
10	VMPKTGLLII	MAGE2 188-197

[0132]

【表50】

表6(つづき)

AA	第2 が	源
9	ASCVTACPY	c-ErbB2 293
9	VMAGVGSPY	c-ErbB2 773
9	ASPLDSTFY	c-ErbB2 997
9	FSPAFDNLY	c-ErbB2 1213
9	KSTKVPAAY	HCV 1236
9	DSSVLCECY	HCV 1513
9	LSAFSLHSY	HCV 2889
9	PLSEDQLLY	PAP 147
,	YAVCDKCLK	HPV 16 E6 67
,	CMSCCRSSR	HPV 16 E6 143
,	RWGLLLALL	c-ErbB2 8
,	TYLPTNASL	c-ErbB2 63
9	CYGLGMEHL	e-ErbB2 342
, ,	AYSLTLQGL	c-ErbB2 440
9	PYVSRLLG!	c-EmbB2 780
9	KWMALESIL	c-Erb22 887
9	RFTHQSDVW	c-ErbE2 898
9	VWSYGVTVW	c-Erbit2 905
9	SYGVTVWEL	c-ErbB2 907
9	VYMIMVKCW	c-ErbB2 951
9	RFRELVSEF	c-ErbB2 968
9	WFHISCLTF	HBV NUC 102
9	TYSTYGKFL	HCV 1296
9	QYLAGLSTL	HCV 1777
10	IPSYKKLIMY	PAP 277
10	RGTQLFEDNY	c-ErbB2 103 .
10	ESMPNPEGRY	c-ErbB2 280
10	CMQIAKGMSY	c-ErbB2 826
10	PASPLDSTFY	c-ErbB2 996
10	FSPAFDNLYY	c-ErbB2 1213
10	PSQKTYQGSY	p53 98
10	VGSDCTTIHY	p53 225
10	YASCHLTELY	PAP 310
10	LYISAWPDSL	c-ErbB2 410

[0133]

【表51】

表 6 (つづき)

AA	配列	25.
10	SYGVTVWELM	c-ErbB2 907
10	VYM!MVKCWM	c-ErbB2 951
10	EYLVPQQGFF	c-ErbB2 1022
10	RYSEDPTVPL	c-BrbB2 1111
10	EYLVSFGVWI	HBV NUC 117
10	QYSPGQRVEF	HCV 2614
9	VYNFATCGI	LCMV glyco 35
9	GYCLTKWMI	LCMV glyco 283
9	MFEALPHII	LCMV glyco 7
9	IFALISFLL	LCMV glyco 43
9	LFKTTVNSL	LCMV glyco 342
9	LYTYKYPNL	LCMV nucleo 204
9	PYIACRTSI	LCMV suciee 314
10	GYCLTKWM!L	LCMV glyco 283
10	AYLVSIFLHL	LCMV glyco 446
9	RWC!PWQRL	CEA 10
,	IYPNASLLI	CEA 101
9	LWWVNNQSL	CEA 177
,	LYGPDAPTI	CEA 234
9	VYAEPPKPF	CEA 318
9	LWWVNNQSL	CEA 355
9	LYGPDDPTI	CEA 412
9	TYYRPGVNL	CEA 425
9	LYGPDTPH	CEA 590
9	QYSWRING	CEA 624
,	TYACFVSNL	CEA 652
9	VWKTWGQYW	gp100 152
,	TWGQYWQFL	gp100 155
9	RYGSFSVTI.	gp100 479
9	LMAVVLASL	gp100 606
9	HWLRLPRIF	gp100 636
9	SYKHEQVYI	PAP 96
,	ANTNLAALF	PAP 116
,	VFLTLSVTW	PSA 2

[0134]

【表52】

表 5 (つづき)

AA	B: 91	29
9	TWIGAAPLI	PSA 9
,	CYASGWGSI	PSA 148
10	YMIMVKCWMI	c-ErbB2 952
10	RWCIPWORLL	CEA 10
10	FWNPPTTAKL	CEA 27
10	QYSWFVNGTF	CEA 268
10	TFQQSTQELF	CEA 276
10	VYAEPPKPFI	CEA 318
10	YYRPGVNLSL	CEA 426
10	QYSWLIDGNI	CEA 446
10	SYLSGANLNL	CEA 604
10	HFLRNQPLTF	gp100 231
10	LFPPEGVSTW	PAP 123
10	TW?GAAPLIL	PSA 9
ID .	HYRKWIKDTI	PSA 244
9	KLRKPKHKX	P. falciparum CSP 104
9	KILSVFFLA	P. falciparum EXP-1 2
9	ALFFIIFNK	P. falciparum EXP-1
9	GTGSGVSSK	P. falciparum EXP-I 28
9	VLYNTEKGR	P. falciparum EXP-1
9	KYKLATSVL	P. falciparum EXP-1
9	PSENERGYY	P. falciparum LSA1 1664
9	FLKENKLNK	P. falciparum LSA1
9	GYŚENIFLK	P. falciparum LSA1 105
9	ILVNLLIFH	P. falciparum LSA1
9	KSLYDEHIK	P. falcipanim LSA1 1854

[0135]

【表53】

表6(つづき)

AA	配列	源
9	LLIFHINGK	P. falciparum LSA1 16
9	QSSLPQDNR	P. fakiparum LSA1 1676
9	QTNFKSLLR	P. falciparum LSA1 96
9	RINEEKHEK	P. falciparum LSA1 49
9	SLYDEHIKK	P. falciparum LSA1 1855
9	VLAEDLYGR	P. falciparum LSA1 1647
9	VLSHNSYEK	P. falciparum LSA1 60
9	FYFILVNLL	P. falcaparum LSA1 9
,	YYIPHQSSL	P. falciparum LSA1 1671
9	PSDGKCNLY	P. falciparum TRAP 207
9	LACAGLAYK	P. falciparum TRAP 511
9	LLACAGLAY	P. falciparum TRAP 510
9	LSTNLPYGR	P. falcipsrum TRAP
9	QGINVAFNR	P. falciparum TRAP 192
9	RGDNFAVEK	P. falciparum TRAP 307
9	RSRKREILH	P. falciparum TRAP 262
9	SLLSTNLPY	P. falciparum TRAP 120
9	KYLVIVFLI	P. falciparum TRAP 8
9	PYAGEPAPF	P. falciparum TRAP 528

[0136]

【表54】

表6(つづき)

м	配列	源
10	VTCGNGIQVR	P. falcipurum CSP 375
10	GTGSGVSSKK	P. felciparum EXP-1 28
10	LALFFIIFNK	P. falciparum EXP-1
10	FQDEENIGIY	P. falciparum LSAI 1794
10	FILVNLLIFH	P. falciparum LSA1
10	HVLSHNSYEK	P. falciparem LSA1 59
10	KSLYDEHIKK	P. falciparum LSAI 1854
10	ALLACAGLAY	P. falciparum TRAP 509
10	HRLHSDASK	P. falciparum TRAP
10	LLACAGLAYK	P. falciparum TRAP 510
10	RLHSDASKNK	P. falciparum TRAP 102
9	ILGFVPTLT-NH2	Flu Matrix 59-67
10	KGILGFVFTL- NH2	Flu Matrix 57-66
9	KLQCVPLHV	PSA 166-174 P/D
9	KLQCVPLHV	PSA 166-174 P/D
9	KTÓCNÁTHA	PSA 166-174 P/D
11	KQVPLRPMTYK	940.03 N-末端 伸長
9	KLYEIVAKV	A2.1コンセンサス
9	KLAEYVAKV	A2.1コンセンサフ
9	KLAEIVYKV	A2.1コンセンサス
9	KVFEYLINK	A3.2コンセンサス
10	KVFPYALINK	A3.2コンセンサ
9	AVFAYAAAK	A32コンセンサ
9	ALEPAIAKY	Alコンセンサス

[0137]

【表55】

表6(つづき)

AA	配列	源
9	YLEPAIAKY	Alコンセンサス
9	ALEPYIAKY	Alコンセンサス
9	YLEQYIEKY	AIコンセンサス
,	GTEKLLAKY	A1コンセンサス
9	ATEPALAKY	Alコンセンサス
9	ATNYPAIQK	A11コンセンサス
9	ATNVPAJQK	Allコンセンサス
,	ATNAPYIQK	Allコンセンサス
,	ATNAVYIQK	A11コンセンサス
,	ATNAAYAQK	AUコンセンサス
9	AVNAAYAQK	A11コンセンサス
9	AVNAPYIQK	Allコンセンサス
9	AVNAVYIQK	Altコンセンサス
9	PTDPKLINY	A1コンセンサス
9	GTDPKLINY	A)コンセンサス
9	YTDPKLINF	Alコンセンサス
9	PTDPKLINY	A1コンセンサス
9	FTDQAVIKY	Aiコンセンサス
9	YTDQAVIKF	A1コンセンサス
9	YTDQKLINF	Alコンセンサス
9	STNPKPQKK	HCV-core 2-10
11	STNPKPQKKNK	HCV-core 2-12
9	SFFPEITYI	P815アナログの 自己ペプチド: Y2~F
9	ATDPNFLLY	A3 コンセンサス
9	ATDKNFLLY	Alコンセンサス
9	ALMEKTYQV	A2.1コンセンサス ・ペプチド
9	ALSEKIYQV	A2.1コンセンサス
		・ペプチド
9	AVYDPIIQK	A3.2コンセンサス ・ペプチド
9	AVYDKRQK	A3.2コンセンサス
,	AVMNPMIQK	・ペプチド AIIコンセンサス
		・ペプチド

[0138]

【表56】

表も(つづき)

AA	配列	28
9	AVMNEMIQK	Allコンセンサス
		・ペプチド
9	AYMDMVNSF	A24コンセンサス
		・ペプチド
9	AYIDNVNSF	A24コンセンサス
		・ペプチド
9	KLAAAAAAK	A3.2/A11 poly-A
		7 + 0 7
9	DVFRDPALK	Aw68 内因
9	GYKDGNEY!	Lm listeriolysin 91-
10	MMWYWGPSLY	HBV
"	WMMWYWGPSL Y	нви
,	RYLRDQQLL	HIV env
8	FLLLKYRA	MAGE-1
9	IMPKTGFLI	MAGE-1
9	VADLVGFLL	MAGE-1
10	IMPKTGFLI!	MAGE-1
11	FLITVLVMIAM	MAGE-I
11	CILESCPRAVI	MAGE-1
9	MYRPDAIQL	P. Yoelii SSP2 143
10	NYSPNGNTNL	P. Yoelii SSP2 119
9	KENPMKTHI	Kdコンセンサス
L		・ペプテド
,	AMIKNLDFI	Dbコンセンサス
,	AMIKNLYFI	Db コンセンサス Db フナログ
11	STLPETYVVRR	HCV 141-151
		アナログ
9	QYDDAVYKL	Cw4コンセンサス
10	FQDPQERPRK	HPV16 E6
10	VFEFAFKDLF	HPV18 E6
9	VVYRDSIPH	HPV18 E6
9	IFEANGNLI	Flu HA 240-248
9	IYATVAGSL	HA 529-537

[0139]

【表57】

表6(つづき)

A	A	B	· 54	9	ŧ	
9		s	YIPSAEKI		. bergali CS 252- 60	
9	\neg	ĸ	YQAVTTTL	N	I 痛 P198 14-22	
1	0	M	YPHFMPTNL		4CMV 9989 167-	
9		^	YPNVSAKI	1	an Esteriolysin 196- 104	
,		1	YTGGKINI	ı	Lm listeriolysin 413- 421	
1		1	AISSILSK		HBV ENV 159	
Ī,	,	1	AGFFLLTK	L	HBV ENV 190	
1	,	1	ALYREALK		HBV NUC 64	
T	,	1	RAKWNNTLK	Ī	HIV esv 370	
Ī	,	ī	RATQIPSYK	I	PAP 273	
T	9	1	TAAHCIRNK	I	PSA 58	
1	,	T	MAVFIHNEK	I	HIV pol 909	
r	9	1	TAGILELLK	Ţ	HPV 66 Et 192	
Ī	9	T	RAALLGKFK	1	HPV 66 E1 205	
Γ	9	Ţ	CATMORHYK		HPV 66 E1 406	
T	9	Ţ	TAACSHEGK	1	Fig HA-1 132	
Ī	9	Ţ	NANANSAVK		P. fal csp 304	Į
Ī	9	Ι	GAFKVPGVK		LCMV glyco 484	ļ
Ī	9	T	RARVHPTTR		HBV POL 244	١
Ī	9	Ţ	CALPFTSAR		HB√ X 69	
Ī	,	T	NMLESILTK		LCMV nuc 259	Į
Ī	9	Ţ	WMILAAELK		LCMV glyco 289	1
1	9	T	EMNLPGRWK		HIV pel 107	
ı	9	٦	SSLQSKHRK		HBV POL 201	
-	,	1	GSTHVSWPK		HBV POL 398	
	9		TSDLEAYFK		HBV X NUC FUS 105	
	9		ASQIYAGIK		HIV pol 438	_
	9		ASCDKCQLK		HIV pol 769	
	9		MSLAADLEK		LCMV nuc 100	_
	9		VSSKNLMEK		Mel. tyro 25	

[0140]

【表58】

表6(つづき)

AA	配列	源
9	LSTNLPYGK	P. fal ssp2 122
9	STDHIPILY	Al自然処理
9	STAPPAHGV	乳房 mucin 9-17
9	LMAVVLASL	gp100
9	WSQKRSFVY	gp100
9	PLDCVLYRY	gp100
10	PSSVGSRSEY	gp100
9	YTAVVPLVY	Hu J 鎖 102-110

[0141]

【表59】

表 7

AA	起列	潭
8	1.TELYFEK	PAP 315
9	TISPSYTYY	CEA 419
9	GTGCNGWFY	HPV 16/18 E1 11
9	LTEMVQWAY	HPV 6b/11 E1 358
9	ITVNNSGSY	CEA 289
9	CTGWFMVEA	HPV 66/11 E1 14
9	ATVQDLKRK	HPV 66/11 E1 77
9	AVESEISPR	HPV 66/11 E1 101
9	FLNSNMQAK	HPV 6b/11 E1 393
9	TRQTVIEH	HPV 65/11 E1 341
9	IVGPPDTGK	HPV 66/11 E1 476
9	KLIEPLSLY	HPV 6b/11 E1 254
9	KLWI.HGTPK	HPV 6b/11 E1 462
2	KMSIKQWIK	HPV 66/31 E1 420
9	VVAGFGIHH	HPV 66/11 E1 238
9	HLFGYSWYK	CEA 61
9	ISPSYTYYR	CEA 420
9	HTQVLFIAX	CEA 636
9	ITVYAEPPK	CEA 316
9	ITVSAELPK	CEA 494
9	RLQLSNGNR	CEA 190
9	RLQLSNGNR	CEA 546
9	RINGIPQQH	CEA 628
9	SHMQAKYVK	HPV 65/11 E1 396
9	EWITRQTVI	HPV 66/11 E1 339
9	FFERLSSSL	HPV 66/11 EI 613
9	NWKPTVQFL	HPV 66/11 E1 439
10	PTISPSYTYY	CEA 418
10	PTISPLNTSY	CEA 240
10	HSASNPSPQY	CEA 616
10	KLIEPLSLYA	HPV 66/11 E1 254
10	AIVGPPDTGK	HPV 66/11 E1 475
10	DCATMCRHYK	HPV 6b/16 E1 405
10	KLWLHGTPKK	HPV 66/11 E1 462
10	WVVAGFGIHH	HPV 66/11 E1 237

[0142]

【表60】

表 7 (つづき)

AA .	配列	27
10	TITVSAELPK	CEA 493
10	TEWNPPTTAK	CEA 26
10	TISPSYTYYR	CEA 419
10	TISPLNTSYR	CEA 241
10	RTLTLFNVTR	CEA 198
10	RTLTLFNVTR	CEA 554
10	RTLTLLSVTR	CEA 376
10	ATPGPAYSGR	CEA 89
10	ASGHSRTTVK	CEA 483
10	QFLRHQNIEF	HPV 66/11 E1 445
10	TPTFPNPFPF	HPV 66/11 E1 586
9	RVDCTPLMY	Prost.Ca PSM 463
9	LLSLYGIHK	Prost.Ca PAP 243
,	STYLPFDCR	Prost.Ca PSM 590
9	KSLYESWTK	Prost.Ca PSM 491
9	SMKHPQEMK	Prost.Ca PSM 615
9	SLYESWIKK	Prost Ca PSM 492
9	YSLVHNLTK	Prost.Ca PSM 475
9	HLTELYFEK	Prost.Ca PAP 314
9	RATQIPSYK	Prost.Ca PAP 273
9	ASGRARYTK	Prost.Ca PSM 531
9	SLYGIHKQK	Prost.Ca PAP 245
9	RDYAVVLRX	Prost.Ca PSM 598
9	SSHDLMLLR	Prost.Ca PSA 113
9	GAAPLILSR	Prost.Ca PSA 12
9	KIVIARYGK	Prost.Ca PSM 199
9	RAAPLLLAR	Prost.Ca PAP 2
9	VVLRKYADK	Prost.Ca PSM 602
9	GLPDRPFYR	Prost.Ca PSM 680
9	WLDRSVLAK	Prost.Ca PAP 25
9	KVFRGNKVK	Prost Ca PSM 207
9	IVRSFGTLK	Prost.Ca PSM 398
9	KIYSISMKH	Prost.Ca PSM 610
9	RSVLAKELK	Prost.Cn PAP 28
9	STNEVTRIY	Prost.Ca PSM 348
9	GFFLLGFLF	Prost.Ca PSM 31

【0143】 【表61】

表 7 (つづき)

9 L LYSDADYF POINCE FSM 227 V KYADKYSE POINCE FSM 180 NYARTEEFF POINCE FSM 181 AYSHADSSI POINCE FSM 181 AYSHADSSI POINCE FSM 181 SAFFGSFY HEV FOL 163 SYVERAFFH HEV FOL 163 SYVERAFFH HEV FOL 163 SYVERAFFH HEV FOL 163 SYVERAFFH HEV FOL 324 SWILLLYFF HEV ENV 334 SWITCHAFF HEV FOL 324 SWITCHAFF HEV ENV 334 SWITCHAFF HEV ENV 334 SWITCHAFF HEV ENV 334 STORMAN HEV ENV 335 SEGIONYEL HEV FOL 151 AND ADDRESSEN HEV FOL 167 AND ADDRESSEN HEV FOL 167 AND ADDRESSEN HEV FOL 167 AND ADDRESSEN HEV FOL 65 AND ADDRESSEN HEV FOL 65 SEGIONYEL FOL FSM 481 SEGIONYEL FOL FSM 481 SEGIONYEL FOL FSM 481 SEGIONYEL FOL FSM 481 SEGIONYEL FOL FSM 481 SEGIONYEL FOL FSM 481 SEGIONYEL FOL FSM 481 SEGIONYEL FSM 484 SEGIONYEL FSM 4	AA	pc 34	源
9 NYARTEDFF PRINCE PSM 181 9 AYNADSSI PRINCE PSM 48 9 SAFROSSPY 189V POL 165 9 AYNADSSI PRINCE PSM 48 9 SVYERAFPH 189V POL 55 9 SVYERAFPH 189V ENV 256 9 SVYERAFPH 189V ENV 256 9 SVYERAFPH 189V ENV 354 9 SVYERAFPH 189V ENV 354 9 SVYERAFPH 189V ENV 357 10 SVERAFPH 189V ENV 357 10 SAFROSSPYSW 189V POL 167 10 NADSSEGNY PRINCE PSM 481 10 SERGINYTHE PRINCE PSM 481 10 SERGINYTHE PRINCE PSM 491 10 SERGINYTHE PRINCE PSM 491 10 SELESTIME PRINCE PSM 491 10 SELESTIME PRINCE PSM 491 10 SYLVERYSM PRINCE PSM 490 10 SYLVERYSM PRINCE PSM 490 10	9	LYSDPADYF	Prost.Ca PSM 227
9 AVBADESI POULCE PEM 449 9 SASPCOSPY BUY POL 165 9 SYVERAPPIX BEW POL 165 9 SYVERAPPIX BEW POL 165 9 SYVERAPPIX BEW POL 165 9 SYVERAPPIX BEW POL 264 9 SWACKERPJ BUY ENV 286 9 SWACKERPJ BUY ENV 296 9 SWACKERPJ BUY ENV 197 10 STANDARD BUY ENV 197 10 STANDARD BUY POL 187 10 SEDSTEAMY POL 187 10 HADSSERONY POLICE PEM 411 10 GLOSVELANTY POLICE PEM 412 10 KATOLIFYNGK PROLCE PEM 33 10 SEBGONTUR. POLICE PEM 45 10 KLYLESWYGK POLICE PEM 491 10 SLESLIGHK POLICE PEM 491 10 SLESLIGHK POLICE PEM 491 10 SLESLIGHK POLICE PEM 491 10 SLESLIGHK POLICE PEM 491 10 STANDARD POLICE PEM 491	9	KYADKIYSI.	Prost.Cs PSM 606
9 SASPCOSPY HEV FOL 163 9 AFFISFITY HEW FOL 653 9 SVERRAFFI HEW FOL 634 9 SVALLLYPF HEW FOL 324 9 SWALLLYPF HEW ENV 334 9 SWALLLYPF HEW ENV 334 9 SWALLLYPF HEW ENV 334 10 SERVENTY HEW ENV 334 10 SERVENTY POL 157 10 NAOSSEENY POL 167 10 RATQUESYCK POL 167 10 LOFLEWEN POL 167 10 LOFT POL 167 10	9	NYARTEDFF	Prost Ca PSM 178
9 AFTESPTYX NBV POL 653 9 SVVSRAFPR 18W POL 524 9 SVVSRAFPR 18W POL 324 9 SVVSRAFPR 18W POL 324 9 SWATSLAVF 18V ENV 384 9 SWATSLAVF 18V ENV 384 10 SSWATSLAVF 18V ENV 187 10 NADSSEGNY POL 65 18V 191 10 NADSSEGNY POL 65 PM 191 10 NATOSSEGNY POL 65 PM 191 10 RATGISTOK POL 65 PM 191 10 LIGHTEWER POL 65 PM 191 10 LIGHTEWER POL 65 PM 191 10 LIGHTEWER POL 65 PM 191 10 LIGHTEWER POL 65 PM 191 10 LIGHTEWER POL 65 PM 191 10 LIGHTEWER POL 65 PM 191 10 LIGHTEWER POL 65 PM 191 10 LIGHTEWER POL 65 PM 191 10 LIGHTEWER POL 65 PM 191 10 LIGHTEWER POL 65 PM 191 10 LIGHTEWER POL 65 PM 191 10 LIGHTEWER POL 65 PM 191 10 LIGHTEWER POL 65 PM 191 10 MILLENFOL PM 191 10 LIGHTEWER POL 65 PM 191 10 SEVENDER PM 191 10 SEVENDER PM 191 10 SEVENDER PM 191 10 SEVENDER PM 191 10 SEVENDER PM 191 10 SEVENDER PM 191 10 SEVENDER PM 191 10 SEVENDER PM 191 10 SEVENDER PM 191 10 SEVENDER PM 191 10 SEVENDER PM 191 10 SEVENDER PM 191 10 SEVENDER PM 191 10 COCKIVARY PM 191 10 FYEDPERYNIE PM 193 11 PM 191 10 FYEDPERYNIE PM 193 10 FYEDPERYNI	9	AYINADSSI	Prost.Ca PSM 448
9 SVVBRAFFH 180V FOL 534 9 BWAGLERFF 180V ENV 286 9 SWAGLERFF 180V ENV 286 9 SWAGTERF 180V ENV 384 9 SWAGTERF 180V FOL 314 9 SWAGTERF 180V FOL 317 10 SEDSTEAMY 180V FOL 187 10 SEDSTEAMY PROLCE FSM 401 10 CLOSVELANTY PROLCE FSM 401 10 SEDSTEAMY PROLCE FSM 30 10 SEDSTEAMY PROLCE FSM 30 10 SEDSTEAMY PROLCE FSM 30 10 SEDSTEAMY PROLCE FSM 401 10 KILLYESWITK PROLCE FSM 401 10 SEDSTEAMY PROLCE FSM 401	9	SASFCGSPY	HBV POL 165
0	9	AFTFSPTYK	HBV POL 655
D SWISILIVEF HIV ERV 334	,	SVVRRAFPH	HBV POL 524
9 SUNVISINFL NEW POIL 197 9 PWTHINVORF 18W POIL 51 9 SPCOSSYSW NEW POIL 187 10 ALOSSEGRY PROACE PSM 451 10 ALOSSEGRY PROACE PSM 451 10 ALOSSEGRY PROACE PSM 104 10 ALOSSEGRY PROACE PSM 33 10 SSEGRYTTER PROACE PSM 35 10 SSEGRYTTER PROACE PSM 451 10 SELVESWITCK PROACE PSM 451 10 SELVESWITCK PROACE PSM 451 10 SELVESWITCK PROACE PSM 451 10 AVVIDENTACE PROACE PSM 51 10 AVVIDENTACE PROACE PSM 51 10 AVVIDENTACE PROACE PSM 451 10 SENTROPERS PROACE PSM 451 10 SELVESTER PROACE PSM 451 10 SELVESTER PROACE PSM 451 10 SELVESTER PROACE PSM 451 10 SELVESTER PROACE PSM 451 10 SELVESTER PROACE PSM 451 10 SELVESTER PROACE PSM 451 10 SECRETORY PROACE PSM 451 10 SECRETORY PROACE PSM 451 10 SECRETORY PROACE PSM 451 10 SECRETORY PROACE PSM 451 10 SECRETORY PROACE PSM 451 10 SECRETORY PROACE PSM 451 10 SECRETORY PROACE PSM 451 10 SECRETORY PROACE PSM 451 10 SECRETORY PROACE PSM 451 10 SECRETORY PROACE PSM 451 10 SECRETORY PROACE PSM 451 10 SECRETORY PROACE PSM 451 10 SECRETORY PROACE PSM 451 10 SECRETORY PROACE PSM 451 10 SECRETORY PROACE PSM 451 10 SECRETORY PROACE PSM 451	9	RWMCLRRFI	HBV ENV 236
P	9	SWLSLLVPF	HBV ENV 334
P SPCGSPYSW YEV POL 187	9	SWWTSLNFL	HBV ENV 197
10	9	PWTHKVGNF	HBV POL 51
10 GLIDSVELAHY	9	SPCGSPYSW	HBV POL 167
10	10	NADSSIEGNY	Prost.Ca PSM 451
10 LOFLFOWFOX Prost.Ca PSM 33	10	GLDSVELAHY	Prost.Ca PSM 104
10 SSIRONYTLR	10	RATQIPSYKK	Prost.Ca PAP 273
10	10	LGFLFGWFIK	Prost.Ca PSM 35
10 SLLSLVGBIK Proc.Co PAP 2-22	10	SSIEGNYTLR	Prost.Ca PSM 454
10 FLYNFTQIPH	10	KSLYESWIKK	Prost.Ca PSM 491
10	10	SLLSLYGIHK	Prost.Co PAP 242
10 AVVERYADK	10	FLYNFTQIPH	Prost.Ca PSM 73
10 XSPDEOFEGK PROSECT PSM 412 10 NYASPGTLKC PSM 598 10 RIYMVIGTLE PROSECT PSM 398 10 LEXYOHACH PROSECT PSM 399 10 ISSACHIQUEN PROSECT PSA 39 10 ISSACHIQUENC PSA 599 10 ISSACHIQUENC PSA 599 10 RAVCGGVLVH PROSECT PSM 411 10 GSAPPOSSWR PROSECT PSM 311 10 GSAPPOSSWR PROSECT PSM 311 10 GSAPPOSSWR PROSECT PSM 321 10 GSCKYMARY PROSECT PSM 327 11 ESTELLIES PSM 400 10 FYDPMFRYSH. PROSECT PSM 400 10 FYDPMFRYSH. PROSECT PSM 400	10	VIYAPSSHNK	Prost.Ca PSM 690
10	10	AVVLRKYADK	Prost.Ca PSM 601
10	10	KSPDEGFEGK	Prost.Ca PSM 482
10	10	IVRSFGTLKK	Prost.Ca PSM 398
10 MSILKNIFLR PROBLES PSA 99 10 ISSAGNIFICEMEN PROBLES PSA 61 10 RAVCGGVLVH PROBLES PSA 61 10 GSAPPOSSWR PROBLES PSA 31 10 GSAPPOSSWR PROBLES PSA 31 10 STYVHPIGYY PROBLES PSA 30 10 ETVELVEKEY PROBLES PSA 30 10 ETVELVEKEY PROBLES PSA 40 10 FYDPMFRYHL PROBLES PSA 40 10 FYDPMFRYHL PROBLES PSA 40	10	RIYNVIGTLR	Prost.Ca PSM 354
10 ISMGHPGEME Prost.Ca PSM 614 10 RAVCGGVLVH Prost.Ca PSM 614 10 GSAPPDSIPW Prost.Ca PSM 311 10 SSPWHPGYY Prost.Ca PSM 321 10 CSGKJVLARY Prost.Ca PSM 321 10 CSGKJVLARY PROST.Ca PSM 357 10 RILOGRGVAY Prost.Ca PSM 400 10 FYDPMFRYHL Prost.Ca PSM 405	10	LSLYGIHKQK	Prost.Ca PAP 244
10 RAVCGGVLVH Prost.Cs PSA 41	10	MSLLKNRFLR	Prost.Ca PSA 99
10 GSAPPDSSWR PrestCa PSM 311	10	15MKHPQEMK	Prost.Ca PSM 614
10 SIPVHPIGYY Prost.Ca PSM 291 10 CSGKIVIARY Prost.Ca PSM 196 10 ETYELVEKFY Prost.Ca PSM 557 10 RILQERGVAY Prost.Ca PSM 440 10 FYDPMFKYHL Prost.Ca PSM 555	10	RAVCGGVLVH	Prost.Ca PSA 43
10	10	GSAPPDSSWR	Prost.Ca PSM 311
10 ETYELVEXFY	10	SIPVHPIGYY	Prost.Ca PSM 291
10 RLLQERGVAY Prost.Ca PSM 440 10 FYDPMFKYHL Prost.Ca PSM 555	10	CSGKIVIARY	Prost.Ca PSM 196
10 FYDPMFKYHL Pross.Ca PSM 565	10	ETYELVEKFY	Prost.Ca PSM 557
	10	RLLQERGVAY	Prost.Ca PSM 440
10 TYSVSFDSLF Prost.Ca PSM 624	10	FYDPMFKYHL	Prost.Ca PSM 565
	10	TYSVSFDSLF	Prost.Ca PSM 624

[0144]

【表62】

表1(つづき)

AA	配列	源
10	LYNFTQIPHL	Prost.Ca PSM 74
10	GWRPRRTILF	Prost.Cs PSM 409
10	FAAPFTQCGY	HBV POL 631
10	RWMCLRRFII	HBV ENV 236
10	WFVGLSPTVW	HBV ENV 345
10	SWPKFAVPNL	HBV POL 392
10	VFADATPTGW	HBV POL 686
9	FIFHKFQTK	HTLV-1 tax 276
9	FLTNVPYKR	HTLV-1 tax 182
9	ITWDPIDGR	HTLV-I tax 54
9	SALQFLIPR	HTLV-1 tax 66
9	LSFPDPGLR	HTLV-1 tax 131
9	QSSSFIFHK	HTLV-1 tax 272
9	GLCSARLHR	HTLV-I tax 34
,	RLPSFPTQR	HTLV-1 tax 74
9	AMRKYSPFR	HTLV-1 tax 108
9	ISGGLCSAR	HTLV-I tax 31
9	ALFTAQEAK	HPV 16 E1 69
9	ATMCRHYKR	HPV 16 E1 406
2	FMSFLTALK	HPV 16 E1 453
9	GVSFSELVR	HPV 16 E1 216
9	KAAMLAKFK	HPV 16 E1 204
9	LTNILNVLK	HPV 16 E1 191
9	LVRPFKSNK	HPV 16 E1 222
9	MSFLTALKR	HPV 16 E1 454
9	NSNASAFLK	HPV 16 E1 386
9	QMSMSQWTK	HPV 16 E1 419
9	RLKAICIEK	HPV 16 E1 109
9	SLFGMSLMK	HPV 16 E1 484
9	SMSQWIKYR	HPV 16 E1 421
9	TAAALYWYK	HPV 16 E1 315
9	VVLLLVRYK	HPV 16 E1 274
9	ALLRYKCCK	HPV 18 E1 284
9	ATMCKHYRR	HPV 18 E1 413
9	CATMCKHYR	HPV 18 E1 412
9	FITFLGALK	HPV 18 E1 460

[0145]

【表63】

表7(つづき)

	$\overline{}$		
	AA	配列	.m
	9	GVLILALLR	HPV 18 E1 279
	9	KLRAGQNHR	HPV 18 E1 647
	9	LILALLRYK	HPV 18 E1 281
	9	LTTNIHPAK	HPV 18 E1 571
	9	NMSQWIRFR	HPV 18 E1 428
	9	NSNAAAFLK	HPV 18 E1 393
	9	SVAALYWYR	HPV 18 E1 322
i	9	WTYFDTYMR	HPV 18 E1 536
i	9	YVQAIVDKK	HPV 18 E1 19
	9	TIKNFDIPK	GCDFP-15 36
Į	9	VLAVQTELK	GCDFP-15 55
Į	10	HIKNFDIPK	GCDFP-15 35
	10	TACLCDDNPK	GCDFP-15 87
	10	AVLAVQTELK	GCDFP-15 54
	10	TFYWDFYTNR	GCDFP-15 97
Ĺ	9	ASCHLTELY	PAP 311
l	10	KGEYFVEMYY	PAP 322
	10	LTAAHCIRNK	PSA 57
	9	PLYDMSLLK	PSA 95
L	9	QVHPQKVTK	PSA 182
L	9	SLLKNRFLR	PSA 100
L	9	YTKVVHYRK	PSA 239
L	9	TLWKAGILY	HBV pol 150
Į	9	SLYTKVVHY	PSA 237
L	9	PVNRPIDWK	HBV POL 612
L	9	RHYLHTLWK	HBV POL 719
Ĺ	11	HTLWKAGILYK	HBV POL 169
ſ	11	GTDNSVVLSRK	HBV POL 735
[11	RVTGGVFLVDX	HBV POL 357
ĺ	8	ATQIPSYK	PAP 274
Γ	9	WMNSTGFTK	HCVコンセンサス
	9	RVLEDGVNY	HCVコンセンサス
Ē	9	RLLAPITAY	HCVコンセンサス
	9	GVLAALAAY	HCV コンセンサス
7	,	RVCEKMALY	HCVコンセンサス

【0146】 【表64】

表 8

			_
ペプチド	144	配列	
1235.01	10	AVFORKSDAK	1
25.0149	9	CALRFTSAR	1
26.0153	,	SSAGPCALR	1
F104.02	,	SLTPPHSAK	1
F105.01		AIFQSSMTK	1
F105 02	9	GIFQSSMTK	
F105.03	,	AAFQSSMTK	1
F105.04	9	ALAÇSSMTK	
F105.05	9	AIFASSMTK	1
F105.06	,	AIFQASMTK	1
F105.07	9	AIFQSAMTK	
F105.08	9	AIFQSSATK	1
F105.09	9	AIFQSSMAK	l
F105.10	9	AIFQSSMTA	1
F105.11	9	FIFQSSMTK	
F105.12	9	SIFQSSMTK	1
F105.14	9	ANFOSSMTK	ı
F105 16	. 9	AIFQCSMTK	ł
F105.17	,	AIFQSSMTR	
F105.19	9	AIFQSSMTY	ļ
F105 20	9	AILQSSMTR	
F105 21	9	AIFORSMTR	
F105.24	10	PAIFQSSMTK	
F105.25	10	AIFQSSMTKI	ŀ
27.0103	9	AIII.HOOOK	
27.0104	9	YGFRLGFLH	
27.0108	9	SSCMGGMNR	
27.0235	10	TCTYSPALNK	-
27.0239	10	NSSUMGGMNR	
27.0240	10	SSCMGGMNRR	· .
27.0250	10	KSKKGQSTSR	
27.0252	10	TSRHKKLMFK	
28.0062		FMFSPTYK	
28.0063	8	FVFSPTYK	
28.0066	8	TMLXMXXK	

[0147]

【表65】

表8(つづき)

ベプチド	AA	配列
28.0322	9	SMICSVVRR
28.0323	9	SVICSVVRR
28.0324	9	KYGNFTGLK
28.0325	9	KVGNFTGLR
28.0326	9	VVFFSQFSR
28.0327	9	SVNRPIDWK
28.0328	9	TLWKAGILK
28.0329	9	TLWKAGILR
28.0330	9	TMWKAGILY
28.0331	9	TVWKAGILY
28.0332	9	RMYLHTI.WK
28.0333	9	RVYLHTLWK
28.0334	,	AMTESPTYK
28.0335	9	AVTESPTYK
28.0336	,	SVVRRAFPR
28.0337	٠	SVVRRAFPK
28.0338	9	ISEYRHYXY
28.0339	,	GTGXNGWFY
28.0340	,	ASXHLTELY
28.0341	,	ASXDKXOLK
28.0371	,	RVXEKMALY
28 0372	,	XTGWFMVEA
28.0374	,	HISXLTFGR
28.0375	,	AVXTRGVAK
28.0377	9_	HLIFXHSKK
28.0378	9	HTMLXMXXX
28.0381	,	RLKAIXIFK
28.0383	,	TLFXASDAK
28.0384	,	ALLRYKXGK
28.0387	9	ATMXRHYKR
28 6388	,	XATMXRHYK
28.0390	9_	ATMXKHYRR
28.0391	,	LLAXAGLAY
28.0392	9	LAXAGLAYK
28.0393	9	SIVLPFDXR
28.0394	9_	AAXWWAGIK
28,0628	10	OMFTESPTYK

【0148】 【表66】

表8(つづき)

ペプチド	AA	尼列
28.0629	10	QVFTFSPTYK
28.0630	10	TMWKAGILYK
28.0631	10	TVWKAGILYK
28.0632	10	VMGGVFLVDK
28.0633	10	VVGGVFLVDK
28.0635	_10	SVLPETTVVR
28 0638	10	HTLWKAGILK
28.0640	10	HMLWKAGILY
28.0395	9	SAIXSVVRR
28.0644	10	GTFNSVVLSR
28 0645	10	YMFDVVLGAK
28 0646	10	MMWYWGPSLK
28.0647	10	MMWYWGPSLR
28 0665	10	IVGGWEXEK
28.0667	10	BLEXVYXK
28.0668	10	SIPHAAXHK
28.0670	10	IVXPIXSQK
28.0671	10	LIRXLRXQK
28 0672	10	XTYSPALNK
28.0675	10	TVXAGGXAR
28.0676	10	HISXLTFGR
28 0677	10	XVNXSQFLR
28 9678	10	LIFXHSKXK
28.0679	10	FVLGGXRHK
28.0713	10	TSAIXSVVRR
28.0714	10	HFILKHZKKK
28.0715	10	LLTRXINXQK
28.0716	10	GIVXPIXSQK
28.0717	10	LLIRXLRXQK
28 0718	10	SLEQRSLHXK
28.0720	10	RIVGGWEXEK
28.0721	10	DILEXVYXX
28.0722	10	XVYXKQQLLR
28.0723	10	RAVXGGVLVH
28.0725	10	LTAAHXIRNK
28 0728	10	KAAXWWAGIK
28 0730	10	VVRRXPHHER

[0149]

【表67】

表 8 (つづき)

	-		
ペプチド	_	AA	配列
28 0731	L	10	LLGIWGXSGK
28.0732	L	10	TTLFXASDAK
28.0734	L	10	RTVXAGGXAR
28.0736	L	10	GTORXEKXSK
28.0737	L	10	LVQNANPDXX
28.0738	L	10	VTXGNGIQVR
28.0739	L	10	DXATMXRHYK
28.0740	L	10	GLAXHOLXAR
28.0741	L	10	ALLAXAGLAY
28.0742	L	10	LLAXAGLAYK
28.0743	L	10	XVARXPSGVK
28.0745	L	10	LVEIXTEMEK
25.0746	L	10	LLNWXMQIAX
28.0824	L	11	HMLWKAGILYK
28.0825	1	11	HVLWKAGILYK
28.0826	ļ	11	SMLPETTVVRR
28.0827	L	11	SVLPETTVVRR
28.0828	1	11	GMDNSVVLSRK
28.0829	1	- 11	GVDNSVVLSRK
28.0830	1	-11_	GTFNSVVLSRX
28.0369	1	9	GLAXHQLXA
1259.02	1	9	DTVDTVLEK
1259.10	1	9	PVTIGECPK
1259.14	4	10	FTAVGKEFNK
1259.16	4	11	RTLDFHDSNVK
1259.21	4	11	KTRPII.SPLTK
1259.26	_	11	GTHPSSSAGLK
1259.28		_11	ILWILDRLFFK
1259.29	_	9	WILDRLFFK
1259.30		- 11	CIYRRFKYGLK
1259.31		,	KSMREEYRK
1259.33		9	YIQMCTELK
1259.37	_	10	MVMELVRMIX
1259.38		9	VMELVRMIX
1259.41	Ī	11	LIRPNENPAHK
26.0023		8	VSFGVWIR
26.0024	_	8	VSIPWTHK

[0150]

【表68】

表8(つづき)

ペプチド	AA	配列
26.0026	8	ASPCGSPY
25.0035	9	TSPYELSLY
26.0036	9	TSIPFLHEY
26.0041	9	FNDFGFGTY
26.0045	9	YVDLGALRY
26.005)	9	DADRSFIEY
26.0055	9	NMDKAVKLY
26.0056	9	TTDNFYRNY
26.0058	9	HSAEALQKY
26.0019	9	LTAGLDFAY
26.0061	,	LTYKYNQFY
26.0062	9_	CSNDKSLVY
26.0063	9	RSARASSRY
26.0065	9	ASADKPYSY
26 0067	9	STTAGPNEY
26.0069	9	LSGNGHFHY
26 0073	9_	NTFVQANLY
26 0074	9	GTATYLPPY
26.0081	9	RLDAFROTY
26.0082	9	KAEVHTFYY
26.0083	9_	VAEGDTVIY
26.0064	9	LTEIDIRDY
26.0085	9	HTEFEGOVY
26 0086	9	VSDGGPNLY
26 0092	9	DEDQYNRY
26.0093	,	FLDQWWTEY
26.0095	9	FVEDPNGKY
26.0096	,	ISDESYRVY
26.0156	9	YLAEADLSY
26.0197	9	ALLAVGATK
26 0198	9	ALNFPGSQK
26.0199	9_	AVGATKVPR
26.0203	9	FSVSVSQLR
26.0204	9	GTATLRLVK
26 0205	9	GVSRQLRTK
26.0207	9	LIYRRRLMK
26.0211	,	OLVLHORK

[0151]

【表69】

表8(つづき)

ペプチド		配列
26.0212	9	SSHWLRLPR
26.0214	9	TMEVTVYHR
26.0216	9	VLASLIYRR
26.0217	9	VSCQGGLPK
26.0218	9	VVLASLIYR
26.0227	9	GTQCALTRR
26.0251	9	FTIPYWDWR
26.0252	9	GTPEGPLRR
26.0253	9	KSYLEQASR
26,0255	,	LVSLLCRHK
26.0256	9	MVPFIPLYR
26 0258	9	OTSAGHEPR
26.0259	9	SIFEOWLRR
26.0260		SLLCRHKRK
26.026)	,	SSWQTVCSR
26.0267	10	NMQIGGVLTY
26.0273	10_	RMAQNFAMRY
26.0274	10	FTVQGSLSGY
26.0275	10	QTSPYELSLY
26.0276	10	SSNAILSLSY
26.0280	10	TSQPWWPADY
26.0284	10	VSDVSIIIPY
26.0285	10	ASDAQSANKY
26.0286	10	PTETNLAGEY
25.0287	10	YVDGFEPNGY
26.0291	10	FNDPGPGTYY
26.0296	10	FLDQWWTEYY
26.0299	10	AAEFATETAY
26.0309	10	NAEVVLNQLY
26.0311	10	FVDGDSLPEY
26.0316	10	PSEDAQVAVY
26.0317	10	MSDNIRTGLY
26 0318	10	ESELREILNY
26 0319	10	CMESVRNGTY
26.0320	10	KTENGITRLY
26 0321	10	LTEIDIRDYY
26.0397	10	LLVLMAVVLA

[0 1 5 2]

【表70】

表8(つづき)

ペプチド	AA	配列
26.0424	10	AVVLASLIYR
26.0425	10	GALLAVGATK
26.0426	10	GTATLRLVKR
26.0427	10	HTMEVTVYHR
26.0428	10	IALNFPGSQK
26.0432	10	QLRALDGGNK
26.0433	10	QVPLDCVLYR
26.0434	10	SLIYRRRLMK
26.0435	10	SSSHWLRLPR
26.0438	10	TVSCQGGLPK
26.0442	10	VVLASLIYRR
26.0466	10	YVKVLHHTLK
26.0473	10	LIGCWYCRRR
26.0474	10	LLIGCWYCRR
26.0485	10	SSMHNALHIY
26.0504	10	CVSSKNLMEK
26.0510	10	FSSWQTVCSR
26.0511	10	GLVSLLCRHX
26.0518	10	YMVPFIPLYR
26.0535	11_	GVWIRTPPAYR
26.0539	11_	RLVVDFSQFSR
26.0545	- 11	TLPETTVVRRR
26.0549	11	LLPIFFCLWVY
	11	STLPETTVVRR
26.0550	11	RAFPHCLAFSY

[0153]

【表71】

ALEAQUEAL 9	#	9.7	の響	モチーフ	11	A2.1	A3.2	114	A24
	-		15	2.1		<0.0003			
ILESLFRAV 9	-		93	2.1		0.0004			
VITERVADL 9	1		101	2.1		<0.0003			
CLGLSYDGL 5	1/3		174	2.1		0.0004			
QIMPRTGFL 9	-		187	2.1		0.0007			
SCHCKPEEAL 10	-		-	2.1		0.0002			
PLVLGTLEEV 10	7		37	2.1		0.0008			
CILESLFRAV 10	1		92	1.1		0.0003			
AVITERVADE 10	1		100	2.1					
VITKKVADLV 10	1		101	2.1		0			
LLKYRAREPV 10	1/3		114	2.1					
EIFGKASESL 10	-		142	2.1		•			
CLGLSYDGLL 10	1/3		174	2.1		٥			
AISRKWEL 9	2		101	2.1		0.0003			
KHVELVHFL 9	2		105	2.1		0.16			
HVELVHFLL 9	2		106	2.1		0.0031			
DLQQSLRVL 9	2		143	2.1		-			
SLRVLAAGL 9	2		147	2.1		0.0001			
ALSRKVAEL 9	-		101	2.1		0.00.0			
HLYIPATCE 9	3		167	2.1		0.0003			
YIPATCLGL 9	9		169	2.1		0.018			
QIMPKAGLL 9	9		183	1.1		0	-		

【0154】 【表72】

数9 (コゴキ)

AISRKMVELV	å	Mage	% 7	接	モチーフ	;	,	:		
AISRKMVELV	1	š		I		;	17,7	A3.2	ALI	424
	10	2		101	2.1	_	0			
MVELVHFLLL	10	2		106	2.1		0.0017			
KLPGLLSRDL	10	2		135	2.1		0			
LLSRDLQQSL	10	2		139	2.1		0.0007			
SLPTTMNYPL	10	3		63	2.1		0.0035			
DLESSFORM	10	-		93	2.1		1000.0			
ALSRKVAGLV	10	•		101	2.1		0.0001			
KVASLVHFLL	10	-		105	2.1		0.012			
VIFSKASSSL	2			142	2.1		Б			
SLOLVFGIEL	10	-		150	2.1		0.0049			
LABVOPIGHL	91			159	2.1		0.0005			
FLIIVLVNI	-	-		194	2.1		0.0005			
GLLGDNQIM	•	-		181	2.1		0.0051			
SIHCKPEEA	•	-		1	2.1		0.013	<0.0002		
ALGLYCYQA	.6	٦		22	2.1		0.015	<0.0002	<0.0002	
CKPERALEA	.6			10	ランダム		<0.0002			
QQRALGLVC	6	-		13	ランダム		<0.0002			
VQAATSSSS	۰	-		28	ランダム		<0.0002			
PLVLGTLEB	۰	-		37	ランダム		<0.0002			
VPTAGSTDP	6	-		4	5294		<0.0002			
POSPOGASA	•	-		55	ランダム		<0.0002			
PPTTINFTR	6	1		19	ランダム		<0.0002			

[0155]

【表73】

表9 (つづき)

-	-	Ī		* [(300s)					
AA (#	2 ±	<u>.</u>	9.7	(4)	モチーフ	¥1	A2.1	A3.2	114	A24
-	~1			13	ランダム		<0.0002			
6	~	П		82	ランダム		<0.0002			
9				100	ランダム		<0.0002			
1	~!			127	ランダム		<0.0002		L	0
1	~1	7		136	378 A		<0.000>			
1				145	ランダム		<0.0002			
1		7		154	ランダム		<0.0002	<0.0002	٥	
1 6	-1	┪		163	ランダム		<0.0002			
1 6	1	7		172	ランダム		<0.0002			
1	!	7		190	ランダム		<0.0002			
6		7		199	ランダム		<0.0002			
1	_	-		208	ランダム		<0.0002			
1	_	┪		217	5294		<0.0002			
1		7		226	ランダム		<0.0002			
1	1	-		235	ランダム		0.0002			
1		+		244	5294		<0.0002			
1 6	- 4	ᅥ		253	ランダム	-	<0.0002			
1		+		262	ランダム		<0.0002			
10 3		7		93	2.1		0.0002			
101		7		134	2.1		0.0003	0.0093	0.0030	
10		1		153	2.1		0.0002	<0.0002	0	
10	- 4	\dashv		222	2.1		0	<0.000	۰	

[0156]

【表74】

(3008)

					(0) () (2)					
配列	\$	Mage 株	97	位置	モチーフ	14	A2.1	х3.2	A11	A24
GVQGPSLKPA	10	1		266	2.1		0.0001			
QLVFGIDV	60	1		152	2.1		0			
KLLTQDLV		1		237	2.1		0.0004			
GLLGBNQI		1		181	2.1		0			
DLVGFLLL	•	1		108	2.1		0			
GLSYDGLL		1		176	2.1		1000.0			
DLVQEKYL		i		242	2.1		0			
LLGDNQIM	٠	1		182	2.1		0			
FLIIVLVM	8	1		194	2.1					
ALEAQQEA	8			15	2.1		0			
TLESUPTA		-		42	2.1		0			
IMPKTGFL	9	-		188	2.1		0.0001			
PVTKASML		1		122	2.1		0			
IVLVMIAM		-1		197	2.1		0.0001			
AVITKKVA		-		100	2.1		0			
EIWEBLSV	9	1		213	2.1		٥			
LIVLVMI		1		195	2.1		0.0001			
IIVLVMIA	•	1		196	2.1		0.0002			
SLFRAVITKKV	11	1		96	2.1		0.0001			
LLLKYRAREPV	=	-		113	2.1		0.0001			
YLBYGRCRTVI	77	1		248	2.1		9000.0	-		
ALEAQQEALGL	=	-		15	2.1		0.0001			

[0157]

【表75】

戦9 (リンボ)

						i				
때문원	2	Mage 45	97	超	モチーフ	A1	A2.1	A3.2	114	A24
FLIIVLVMIAM	=	-1		194	2.1		0.0041			
VLGTLEEVPTA	=	-		33	2.1		0.0002			
QLVFGIDVKEA	7	-1		152	2.1		0.0001			
AVITKKVADLV	:	1		100	2,1		5			
PVTKAEMLESV	7	-		122	2.1					
KVADLVGFLLL	7	1		105	2.1		0.020			
GVQGPSLKPAH	Ξ	1		392	2.1		0			
LVGFLLLKYRA	7	1		109	2.1		0.0004			
LVMIAMEGGHA	=	1		199	2.1		0.0005			
CILESLFRAVE	7	,		92	2.1		0.0030			
SALEACOEA	•	1		14	2.1		0	<0.0002	0	
EAQQEALGL	•	-		11	2.1		0			<0.0002
AATSSSBPL	6	-		30	2.1		0			<0.0002
ATSSSSPLV	•	-		31	2.1		0.0007			
GTLEEVPTA	6			Ŧ	2.1		0.013	<0.0002		
GASAPPITI	6	-		60	2.1		0			<0.0002
STSCILESL	9	,		89	2.1		0.0002			
RAVITKKVA	6	1		66	2.1		D	<0.0002		
ITKKVADLV	6			102	2.1		0			
RAREPUTKA	6	1		118	2.1		0			
KAEMESSVI	6	-		125	2.1		0			<0.0002
KASESLQUV	6	-		146	2.1		6000.0		1.	

[0158]

【表76】

表9 (つづき)

				.						
16.30	2	Mage (\$	£.8	包	モチーフ	11	A2.1	A3.2	114	A24
PTCHSYVLV	6	1		164	2.1		0			
KTGFLIIVL	6	1		191	2.1		0.0006			
LIIVLVMIA	6	-		195	2.1		0	0.0022	0.000	
IIVLVMIAM	6			196	2.1		0.0007			
HIMEGGHA	6	1		201	2.1		0.0005	<0.0002	0.0002	
EIMEELSUM	6	1		213	2.1		0			
SAYGEPRKL	6	1		230	2.1		0.0002			<0.0002
YLEYGRCRT	6	1		248	2.1		0			
EALGLVCVQA	10	1		2.1	2.1		0.0005	<0.0002	0	
QAATSSSSPL	1.0	1		29	2.1		0			<0.0002
VTKAEMLESV	10	1		123	2.1		0			
BADPTGHSYV	10	1		161	2.1		0			
VLGTLEBUPT	10	1		39	2.1		0.0004			
SAFPTTINFT	2	1		23	2.1		0			
GIDVKEADPT	10	1		156	2.1		0			
PTGHSYVLVT	10	1		164	2.1		۰			
FLHGPRALA	6	1	Я	265	2.1		0.042	0.0017	0	
LAETSYVKV	6	1	凝	272	2.1		0			
YVKVLEYVI	9	1	堆	277	2.1		0.0002			
RVRFFFPSL	6	1	凝	290	2.1		0.0001			
LASTSYVKVL	1.0	1	凝	272	2.1		٥			<0.0002
VLEYVIKVSA	1.0	1	新	280	2.1		0.0002	0.0002	0	

[0159]

【表77】

表 9 (つづき)

A3.2 A11 A24																		0.0003				_
A2.1	0	910.0	0.012	0.13	0.0004	•	0.0047	0.0001	0.043	0	0.041	0		0.22	0	0	1.5	0.0008		0.30		6000.0
14																						
モチーフ	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1		1.7
松	301	7	22	38	151	176	176	182	182	215	215	236	292	262	30	31	105	106	148	170	5	101
97	拼	新 (a)	(a)	斯 (a)	類	鉴	新 (a)	华	(a)	握	(8) 操	¥.	报	(8)	攤	報	新 (a)	析	₩	新 (a)	車	
Mage (#	ī	1	1	-	-	1	1	1	-	-	1	1	1	1	1	1	1	1	1	1	-	
4	10	6	6	9	6	9	6	6	9	6	6	6	6	6	10	10	10	10	10	10	5	
B2.54	AALREEREGV	SMCKPERV	AMGLACAQA	LMGTLEBY	LQLVFGIDV	GLSYDGLLG	GLSYDGLLV	LLGDNQIMP	LLGDNQIMV	WEELSUMEV	WHELSVINEV	RKLLTQDLV	YEPLWGPRA	YMFLWGPRV	AATSSSSPLV	ATSSSSPLVL	KMADLVGFLV	VADLVGFLLL	SESLQLVFGI	VMVTCLGLSV	OIMPKTGF1,1	

[0160]

【表78】

				R4	表9 (つづき)					
配列	\$	Mage \$\$	# 7	超	モチーフ	11	A2.1	АЗ.2	114	A24
KTGFLIIVLV	10	1	缋	161	2.1		0.0012			
LIIVLVMIAM	2	1	類	195	2.1		0.0003			
VMIAMEGGRV	2	1	新 (a)	200	2.1		0.053			
SAYGEPRUL	=	1	雅	230	2.1		0			0.0008
ALAETSYVICUL	7	1 N		270	2.1		0.012			
KMVELVHFLLL	=	2		52	2.1		0.67			
ELMEVDPIGHL	=	ſ		105	2.1		0.026			
HLYIFATCLGL	11	3		114	2.1		0.041			
LLLKYRARBPV	=	٠		09	2.1		0.0001			
QUVFGIBLMEV	7	3		99	2.1		0.34			
IMPKAGLLIIV	=	ſ		135	2.1		0.013			
VLVTCLGLSYDGL	2	1 n	98	170	2.1		0.0017			
KLLTQDLVQEKYL	2	1 1	98	237	2.1		0.0060			
DLVQEKYLBYRQV	2	1 2	86	242	2.1		٥			
SLFRAVITKKVADLV	15	1 0	POL	96	2.1		0.0004			
DLESEPQRAISRKWV	15	2	104	40	2.1		0			
MIGSVVGNHQYFFPV	15		POL	75	2.1		0.012			
GASSESTTI	6	2		09	2.1		0			0.0002
DLESEFQAR	8	2,3		93	2.1		0			
QAATSRKWV	٠	2		99	2.1		0			
KAEMLESVL	•	2		125	2.1		٥			0
KASEYLQLV	6	7		146	2.1		0.011			

[0161]

【表79】

表9(つづき)

*

[0162]

【表80】

表3 (つづき)

	-			1						
16.59	2	Mage 4%	97	位置	モチーフ	14	A2.1	83.2	114	724
KAGLLITVL		-		191	3.3		0.0003			6
ITAREGDCA	٥	3		201	2.1					
EALEAQUEAL	2	1	新	1.4	2.1		0			
EAQQEALGLY	2	1	羅	17	2.1		0			,
DUESEFQAAT	2	2		93	2.1					
AAISROMVEL	2	2		100	2.1					
VIFSKASBYL	2			142	2.1		0.0014			
YLQLVFGIEV	2	2		150	2.1		0.37			
LVFGIRVVBV	3	7		153	2.1		9.012			
GIEVVEVVPI	10	2	,	156	2.1		<0.0002			
WEWPISHL	10	2		159	2.1		<0.0002			
BVVPISHLYI	10	2		191	2.1		<0.0002			
VVPISHLYIL	10	2		162	2.1		0.0002			
PISHLYILVT	10	2		164	2.1		0.0003			
QVMPKTGLLI	10	7		187	2.1		0.0002			
VMPKTGLLII	10	7		188	2.1		0.0009			0.00
KTGLLITVLA	97	2		191	2.1		<0.0002			5
GLLIVLAII	10	2,3		193	2.1		0.0005			
LLIIVLAIIA	2	2,3		194	2.1		<0.0002			
LIIVIALIAI	10	2		195	2.1		0.0013			1
AIIAIBGDCA	10	7		200	2.1		0.0023			
AALSRKVARL	10	-		100	2.1		0.0007			
			!					-		1

[0163]

【表81】

妆 9 (つびお)

1000	\$	Mage ∰	9.7	超	モチーフ	71	A2.1	АЗ.2	111	A24
VAELVHFLLL	10	3		106	2.1		0.0009			0.0018
VTKAEHLGSV	3.0			123	2.1		<0.0002			
GIELMEVDPI	07	ſ		156	2.1		<0.0002			
EVOPIGHLYI	20	î		191	2.1		<0.0002			
PIGHLYIFAT	10	٠		164	2.1		0.0003			
QIMPKAGLLI	10	3		187	2.1		0.0006			
IMPKAGLLII	10	3		188	2.1		0.0015			
KAGLLIVLA	10	3		191	2.1		<0.0002			
AIIAREGDCA	10	•		200	2.1		<0.0002			
FLHGPRALI	6	2		27.1	A02					
GLEARGEAL	6	•		15	A02					
EARGEALGL	6			17	A02					
ALGLVGAQA	6	3		22	A02/A03					
GLVGAQAPA	6	3		24	A02/A03					
LVGAQAPAT	6	,		25	A02					
PATERQRAA	6	3		31	A02/A03					
EAASSSSTL	9	. [37	A02					
AASSSSTLV	6	3		30	A02					
LVEVTLGEV	9	3		45	A02					
EVTLGEVPA	6	•		4.1	A02/A03					
VTLGEVPAA	6	3		48	A02/A03					
KIMERLSVL	6	•		220	A02					

[0164]

【表82】

表 9 (つづき)

$\overline{}$		_		$\overline{}$	_	_			$\overline{}$	_			_				-		$\overline{}$	$\overline{}$	$\overline{}$	_
A24																					0.0003	0.0070
A11																					0	0.0030
A3.2																					0	0.0039
A2.1																	,				0.032	0.041
14																					<0.0006	0.0005
£ # - 7	A02	A02	A02	A02	A02	A02	A02	A02	A02/A03	A02	A02/A03	A02	A02	A02/A03	A02	A02	A02	A02	A02	A02	2.1	
数	237	238	271	276	278	283	285	1.1	21	24	29	37	44	47	229	237	238	177	278	290	86	105
9.7																	,		`			
Mage	3	2	3	3	3	3	-	•	3	ı	3	•	3	,	,	3	3		3	3	1	1
2	6	6	۰	6	6	6	6	2	10	10	10	2	10	10	10	10	10.	10	10	10	9	10
RESM	SILGDPKKL	ILGDPKKLL	FLWGPRALV	RALVETSYV	LVETSYVKV	YVKVLHIDAV	KVLHIBNYKI	- EARGEALGLV	EALGLVGAQA	GLVGAQAPAT	QAPATEEQEA	ENASSESTLV	TLVBVTLGEV	EVTLGBUPAA	EVFEGREDSI	STLCDPKKLL	ILGDPKKLLT .	ALVETSYVKV	LVETSYVKVL	HVKISGGPHI	LVLGTLEBY	KVADLVGFLL

[0165]

【表83】

表 9 (つづき)

16.94	2	Mage ##	分子	位面	モチーフ	11	A2.1	N3.2	A11	A24
LVFGIRLMEV	10			153	2.1		0.17			
TLLMQPIPV	6	3				<0.0007	1.4	0.0048	0.0048	0
EVDPIGHLY	6	9				3.7			0.0022	Ì
KHYELVHFL	6	2				<0.0007	0.13	0.0007	0	0.0043
KMVELVHFLL	10	2		105		<0.0008	0.071	0.0004	0.0001	0.0008
LVFGIRLMEV	10	3				0.0030	0.065	0.0007	0	٥
KVABLVHFL	9	3		105	2.1		0.073	0.011	0.0047	0.0005
CILESLFRA	•	1		92	2.1	0.0001	0.073	0	0.0002	0
VHIAMBGGHA	10	1		200	2.1	<0.00008	0.0023	0	0	0
HLESVIKHYK	7.0	1				0	0	0.034	0.0045	0
BTSYVKVLBY	10	1				0.075	0	0.0009	0.0004	0
KALSYVIKV	9	1	獲	279	2.1	<0.0005	0.095	0.022	0.015	0
FLWGPRALA	6	1				<0.0006	0.027	0.0015	0	0
ALRESERGY	9	1		362	2.1	<0.0006	0.0056	۰	٥	٥
ALASTSYVKV	10	1		171		<0.0007	0.017	0.0011	0.0029	0
YVIKVSARV	6	1		283	2.1	0.0005	0.018	۰	٥	
RALAETSYV	9	1		270	2.1	<0.0006	0.014	0.0003	0.0005	0
ALAGTSYVK	9	1				<0.0006	0.0002	0.17	0.39	0
VLGTLERV	8	1		39	2.1	<0.000,0>	0.0088	۰	٥	0
SLOLVFGI	•	1		150	2.1	<0.0007	9600.0	0	0.0001	0
ILESLFRA		1		93	2.1	<0.0004	0.0017	0.0003	0	0.0001
FLLLKYRA	8	1		112	2.1	0.0036	0.0007	0.0003	0.0001	٥

[0166]

【表84】

表 9 (つづき)

A24					3.2	0.0002	0.0001	0.0007		0.0001	0.050			110		800	200	Γ	Γ	Γ	Γ	Τ
۲		L	Ĺ		Ľ	0.	0.0	0.	Ĺ	0.0	0	Ľ	Ĺ	0.0011	Ľ	0.0008	0.0030		L	L		L
114	۰	٥	0.0005		۰	٥	٥	0.0008	۰	0.0001	0	٥	0.0001	0.0014	٥	0.0005		0.0002	•			0000
A3.2	0.0008	0.0001	0.0013			٥	0.0026	0.0054	0.0001	0.0013	0	0.0003	0.0001	0.016	0	0.058	٥	0.0004			۰	1000
A2.1	0.0008	0.0010	0.0091		0.0035	0.0054	0.0007	0.0011	0.0097	0.0047	0.0007	0.0002	0.013	0.0031	1.4	0.0017	0.0003					
 A1	9.00.0	<0.0007	<0.0008		40.000B	<0.0008	0.0030	0.032	0.0008	0.0028	<0.0008	0.0011	0.0007	0.023	<0.000	0.079	6000.0>					
モチーフ	2.1	2.1	2.1	2.1	2.1	A2.1	2.1	2.1	2.1	2.1	2.1	A2.1	A2.1	A2.1	2.1	A2.1	2.1			*		
海	24	170	105	169	188		7.7	901	248	150	188	22	213		257		187					
分子																						
Mage ##	1	1	1	1	-	-	7	-	-	-	-	-	7	-	-	-	-	-	-	-	1	-
\$	•	•	6	6	٥	6	٥	٥	2	2	10	10	11	:	=	=	=	6	6	٩	6	10
配列	GLVCVQAA	VLVTCLGL	KVADLVGFL	YVLVTCLGL	IMPKTGFLI	HIĞNGDTID	GLVCVQAAT	VADLÝGFLL	YLEYGRCRTV	SLQLVRGIDV	IMPKTGFLII	ALGLYCYDAA	RIMERISAMBA	FLIIVLVMIAM	VIPHAMSSCGV	CILESCPRAVI	OIMPKIGELII	GFLLLKYRA	CFPRIFGKA	FFFFERRA	FPPSLREAM	RSLHCKPBEA

[0167]

【表85】

A24

111 0 0.0004 A3.2 A2.1 ¥ モチーフ 表9 (つびき) 位置 サポ Mage ⊈ 2 2 2 RFFFFSLREA FFFPSLREAA

【0168】

表9(つづき)

配 列	抗原	#	9.7	包	モチーフ	7	A 2	۲٧	117	A24	最大
						特合	部	40 #8	智	## 40	き合
ALFLGFLGAA	AH.	Σ	Ep16u	SIS	A02		0.4950				08640
MLQLTVWGI	2	Z	091da	995	A02		1124511				0,2:050
RVIEVLORA	A III	Σ	091da	829	Anz		0.1963				11,1963
KLTPLCVTL	À	Σ	09149	150	A02		0.1600		:		01910
LLIAARIVEL	HIV	Σ	Pp160	776	: .		0.1550				0.1550
SLLNATDIAV	AH.	Z	09 I da	<u>8</u>			0.1050				0,1050
ALFLGFLGA	HIV	ž	991da	218	A02		0.0945	i	:		0.0945
HMLQLTVWGI	HIV	Σ	991dg	\$65	A02		0.0677		:		13,11677
LLNATDIAV	AII.	J	09103	818	AUZ		0.0607				1910003
ALLYKLDIV	1	Σ	09143	2	Ali2		0.0362				0.0362
WLWYIKIFI	HIV	Ν	ep160	619	A02		0.0355				0.0.155
TIVHUNESV	ΛIH	Σ	091d3	288	A02		0.0350				0.0350
LLOYWSQEL	ΛIFI	MN	091da	800			0.0265				0.0265
IMIVGGLVGL	HIV	MN	091di	687	'		0.0252				0.0252
LLYKLDIVSI	ΝΙΛ	MN	6p160	180	A02		0.0245				0.0245
FLAIIWVDL .	HIV	MN	gp160	753	AIIZ		0.0233				0.0233
TLQCKIKQII	HIV	MN	gp160	415	707		0.0200				0.0200
GLVGLRIVFA	Alli	Σ	gp160	692	V02		0.0195				0.0195
FLGAAGSTM	HIV	MN	6b160	523	A02		0.0190				0.0190
IISUMDQSL	HIV	NM	6b160	101	A02		0.0179				0/1011
TVWGIKQLQA	AII.	MN	gp160	570	Aft2		0.0150				0.0150
LLGRRGWEV	HΙV	MN	091da	785	A02		0.0142				0.0142
AVLSIVNRV	HIV	M	6p160	701	A02		0.0132	:			0.0132

[0169]

【表87】

0.5300 0.0415 111111 L. SOURT 0.1650 0.0540 0,0515 0.03.15 0.0140 0.0107 表 结 A24 結合 □ : 40 **2**:智 9000 0.5300 0.4950 0.01515 0.0107 2100 0.0540 福 ۷, 7 表9 (つづき) モチーフ A02 A02 A02 Anz A02 Anz A02 A02 80 80 253 257 205 259 157 を 47 8p160 8p160 4 7 N Y T M M T 'n ٦ ۲ 数 抗原 글을날날 급 9.0 P.P. 2 SLLTFM1AA FMIAATYNFAV INATYNFAV LLNATDI AVA FLYGALLLA SLCADARMYGV YALTVVWLL FIMIVGGLV LLVFACSAV RMYGVLPWI ALTVVWLLV FLYGALLL E 30

[0170]

【表88】

表 10

м	商品列	IM.
9	YIFATCLGL	MAGE 3 169
9	IMPKTGFLI	MAGE 1 188
10	IMPKTGFLII	MAGE 1 188
15 .	MLGSVVGNWQYFFPV	MAGE 3 POL 75
9	VMPKTGLLI	MAGE 2 188
9	IMPKAGLLI	MAGE 3 188
10	IMPKAGLLII	MAGE 3 188
9	RLWHYPCTV	HCV Env2 614
9	RLWHYPCTI	HCV Env2 614
9	FLLLADARI	HCV Env2
,	GVWPLLLLL	HCV Env2 792
9	GMWPLLLLL	HCV Env2 792
9	YENTPGLPV	HCV NS3/NS4 1542
9	YMNTPGLPV	HCV NS3/NS4 1542
9	VILDSFDPL	HCV NSS 2251
9	ILMTHFFSI	HCV NSS 2843
9	ILMTHFFSV	HCV NS5 2843
9	LMAVVLASL	gp100 606
9	SLSLGFLFL	PAP 13
10	YMIMVKCWMI	c-ErbB2 952
10	GLHGQDLFG!	PAP 196
9	AILSVSSFL	P. falciparum CSP 6
9	GLIMVLSFL	P. falciparum CSP 425
,	VLLGGVGLV	P. falciparum EXP-1 91
9	GLLGNVSTV	P. falciparum EXP-1 83
9	LLGNVSTVL	P. falciparom EXP-1 64
9	VLAGLLGNV	P. falciparum EXP-1 80

[0171]

【表89】

表10(つづき)

AA	配列	源
9	KILSVFFLA	P. falcipurum EXP-1 2
9	FLIFFDLFL	P. felciparum TRAP
9	LIFFDLFLV	P. falciparum TRAP 15
9	FMKAVCVEV	P. falciparum TRAP 230
9	LLMDCSGSI	P. falciparum TRAP
10	ILSVSSFLFV	P. felciparum CSP 7
10	VLLGGVGLVL	P. falciparum EXP-I 91
10	GLLGNVSTVL	P. falciparum EXP-I 83
10	FLIFFDLFLV	P. felciparum TRAP 14
10	GLALLACAGL	P. falciparum TRAP 507
9	KIWEELSML	MAGE2 220
9	TLMSAMTNL	Prost.Ca PAP 112
9	LLLARAAŞI.	Prost.Ca PAP 6
9	ALDVYNGLI.	Prost.Ca PAP 299
9	VTWIGAAPL	PSA 8
10	ALIETSYVKV	MAGE2 277
10	SLSLGFLFLL	Prost.Ca PAP 13
10	RTEMSAMTNE	PAP 111
10	FLPSDFFPSV(CONH2)	HBc 18-27
10	FLPSDFFPSV-NH2	HBc 18-27
9	ELGFVFTLT NH2	Flu Matrix 59-67
10	KGILGFVF11-NH2	Flu Matrix 57-66
11	FLFSDFFPSVR	RBc 18-28
9	FLPSDFFPS	HBc 18-26
9	GILGKVFTL	Flu Matrix 58-66 フナログ
9	FLSKQYLNL	нвvポリメラーゼ
9	KLQCVPLHV	PSA 166-174 P/D

[0172]

【表90】

表10 (つづき)

A.A	西2 列	19
9	KLQCVPLHV	PSA 166-174 P/D
9	KLQCVPLHV	PSA 166-174 P/D
9	KLYEIVAKV	A2.1コンセンサス
9	KLAEYVAKV	AZ.I コンセンサス
9	KLAETYYKV	A2.1コンセンサス
9	TLTSCNTSV	HIV gp 120 env. RE trans 197
9	ALMEKIYQV	A2.I コンセンサス ・ペプチド
,	ALSEKIYQV	A2.1コンセンサス ・ペプチド
9	FLMSYFPSV	941.01 9-mer アナログ
,	FLPSYFPSV	941.01 9-merアナログ
10	FLMSDYFPSV	941.01 M2アナログ
9	FLYCYFALV	Chironコンセンサス
9	FMYCYFALV	Chironコンセンサス
10	SLVGFGILCV	Chironコンセンサス
10	SLMGCGLFWV	Chironコンセンサス
8	GLLGPLLV	HBVadr-ENV
9	AMAKAAAAI	A2.1 poly-A
10	MMWYWGPSLY	HBV
5	FLPSYFPSA	994.02のアナログ chiron comb
,	FAPSYPPSV	994.02のアナログ ; churon comb
9	FLPSYFPSS	994.02のアナログ : chyon comb
,	FSPSYFPSV	994.02のフナログ : chiron comb
,	IMPKTGFLI	MAGE-I
,	VADLVGFLL	MAGE-I
11	EIWEELSVMEV	MAGE-1
11	FLIIVLYMIAM	MAGE-1
13	VIPHAMSSCGV	MAGE-1
11	CILESCFRAVI	MAGE-1
9	YIFATCLGL	MAGE3

[0173]

【表91】

表10 (つづき)

AA	62.74	29
9	YIFATCLGL	MAGE3
11	KMVELVVHFLLL	MAGE2 112-122
п	HLF!YATCLGL	MAGE3 174-184
9	GLQDCTMLV	HCV NS5 2727-2735
8	TLGIVSPI	HPV. 1088.01の
8	TLGIVXPI	HPV, 1088.01の アナログ
10	FLLAQFTSAI	HBV POL 513
11	VLLDYQGMLPV	HBV env
13	CILLLCLIFLL	HBV env
9	FLGGSPVCL	HBV env
11	TVIEYLYSFGV	HBV core 114-124
11	TVLEYLVSFGV	HBV cure 114-124
19	FLLAQFTSA!	HBV pol
9	GLYSSTVPI	HBV pol
9	GLYSSTAP!	HBV pol
9	GLDVLTAKV	HIV form VIN.
9	RILGAVAKV	HIV form VIN.
,	LLFGYPVYV	HTLV, tax 13-19
9	ALFGYPVYV	tax 11-19, SAAS
9	LLFGAPVYV	ux 11-19, SAAS
9	LLFGYAVYV	tax 11-19, SAAS
9	LLFGYPVAV	11-19, SAAS
9	AAGIGILTY	MART1 27-35
9	GILTVILGV	MART1 31-39
9	ILTVILGVL	MARTI 32-40
,	VILGVILLI	MARTI 35-43
,	ALMDKSLHV	MART1 56-64
10	TVILGVLLLI	MARTI
10	LLDGTATLRL	MART)
10	BLSYSSPLEV	Plas falcip. CSA-A 7-16
9	GLIMVLSFL	Plas. falcip. CSA-A 401-409

[0174]

【表92】

表10(つづき)

AA	配列	源
9	IMVLSFLFL	Plas. falcip. CSA-A 403-411
10	FLIFFDLFLV	Pias, falcip. TRAP-A 14-23
9	FMKAVCVEV	Plas. falcip. TRAP-A 200-207
9	IMPGQEAGL	gp100
9	GLGQVPLIV	gp100
9	LMAVVLASL	gp100
9	RLMKQDFSV	gp100
9	HLAVIGALL	zp100
9	LLAVGATKV	Ep100
9	MLGTHTMEV	gp100
10	LLDGTATLRL	\$P100
10	VLYRYGSFSV	gp100
10	VLPSPACQLV	gp100
10	SLADTNSLAV	gp100
10	VLMAVVLASL	gp100
10	LMAVVLASLI	gp100
10	RLDCWRGGQV	gp100
10	AMLGTHTMEV	gp100
10	ALDGGNKHFL	gp100
9	YLEPGPVTA	gp100
10	LLNATALAYA	
11	SLLNATAIAVA	
9	KTWGQYWQV	gp100 .
9	ITDQVPFSV	gp100
9	YLEPGPVTA	gp100
10	LLDGTATLRL	gp100
10	VLYRYGSFSV	gp100
10	ALDGGNKHFL	\$p100
9	GILTVILGV	MARTI 31-39
9	YMNGTMSQV	ヒト・チロシナーゼ
1,	MLLAVLYBL	ヒト・チロシナーゼ
9	LLWSFQTSA	ヒト・チロシナーゼ

[0175]

【表93】

表10(つづき)

(125)

AA	配列	源
9	YLTLAKHTI	ヒト・チロシナーゼ
9	FLPWHRLFL	ヒトチロシナーゼ
9	FLLRWEQE	ヒト・チロシナーゼ
9	RIWSWLLGA	ヒト・チロシナーゼ
9	LLGAAMVGA	ヒト・チロシナーゼ
9	AMVGAVLTA	ヒト・チロシナーゼ
9	VLTALLAGL	ヒト・チロシナーゼ
,	ALLAGLVSL	ヒト・チロシナーゼ
9	LLAGLVSLL	ヒト・チロシナーゼ
10	BLLWSFQTSA	ヒト・チロシナーゼ
10	WMHYYVSMDA	ヒト・チロシナーゼ
10	FLPWHRLFLL	ヒト・チロシナーゼ
10	WLLGAAMVGA	ヒト・チロシナーゼ
10	AMVGAVLTAL	ヒト・チロシナーゼ
10	VLTALLAGLV	ヒトチロシナーゼ
10	TALLAGLVSL	ヒト・チロシナーゼ
10	ALLAGLYSLL	ヒト・チロシナーゼ
,	NLTDALLQV	P. falciparum SSP2 132
9	SAWENVKNV	P. falciparum SSP2 218
10	FLIFFDLFLV	P. falciparum SSP2
9	NLNDNAHL	P. falciparum SSP2 80
10	YLLMDCSGSI	P. falciparum SSP2
	TLODYSLEV	対照

[0176]

【表94】

表 11

AA	配列	28
9	ALYWFRTGI	HPV 6b/11 El 319
	LLDGNPMSI	HPV 66/11 E1 540
9	NAWGMVLLV	HPV 66/11 E1 270
9	SLYAHIQWL	HPV 6b/11 E1 260
9	TLIKCPPLL	HPV 6b/11 E1 556
9	GIYDALFDI	PSMAg 707
9	YLSGANLNL	CEA 605
9	VLYGPDTPI	CEA 589
9	IMIGVLVGV	CEA 691
9	LLTFWNPPT	CEA 24
9	KLTEMVQWA	HPV 66/11 E1
9	YMDTYMRNL	HPV 66/11 E1
10	NLLDGNPMSI	HPV 66/11 E1
10	SLYAHIQWLT	HPV 66/11 E1 260
10	TLIKCPPLLV	HPV 6b/11 E1 556
10	MYFELANSIV	PSMAg 583
10	YLWWYNNQSL	CEA 176
10	YLWWYNNQSL	CEA 354
10	YLWWVNGQSL	CEA 532
10	GIMIGVLVGV	CEA 690
10	VLYGPDAPTI	CEA 233
10	KLTEPLSLYA	HPV 65/11 E1 254
10	WLCAGALVLA	PSMAg 20
10	IMIGYLVGYA	CEA 691

[0177]

【表95】

表11(つづき)

AA	配列	28
9	YLYQLSPPI	HTLV-I tax 155
9	LLFEEYTNI	HTLV-I tax 307
9	QLGAFLTNV	HTLV-I tax
9	TLTAWQNGL	HTLV-I tax 226
9	ALQFLIPRI.	HTLV-I tax 67
9	TLGQHLPTL	HTLV-I tax 123
9	FAFKDLFVV	HPV 18 E6
9	RLLQLLFRA	GCDFP-15 2
9	CMVVKTYLI	GCDFP-15 65
9	LLLVLCLQL	GCDFP-15 15
9	ILYAHIQCL	HPVIS EI 266
9	SLACSWGMV	HPV16 E!
9	CLYLHIQSL	HPV16 E1
9	YLVSPLSDI	HPVI6 EI 90
9	VMFLRYQGV	HPVI6 EI
9	KLLSKLLCV	HPV16 E1 292
9	ALDGNPISI	HPV18 E1
9	AVFKDTYGL	HPV18 E1 216
9	LLTTNIHPA	HPV18 E1
9	LLQQYCLYL	HPV16 E1 254

[0178]

【表96】

表11(つづき)

AA	配列	76
9	AMLAKFKEL	HPV16 E1 206
9	ALDGNLVSM	HPV16 E1 539
9	FLGALKSFL	HPV18 E1 463
9	FIHFIQGAV	HPV18 E1 497
10	TLLLVLCLQL	GCDFP-15 14
10	LLFRASPATL	GCDFP-15 6
10	SLMKFLQGSV	HPV16 E1
10	SLACSWGMVV	HPV16 E1
10	FLQGSVICFV	HPV16 E1
10	FIQGAVISFV	HPVIS EI 500
10	KLLCVSPMCM	HPV16 E1 296
10	FILYAHIQCL	HPV18 E1 265
10	FVNSTSHFWL	HPV18 E1 508
10	ILLTTNIHPA	HPV18 E1 569
10	TLLQQYCLYL	HPV16 E1 253
9	GLLGWSPQA	HBV ENV 62
,	GLACHQLCA	HER2/neu
9	ILDEAYVMA	HER2/neu
9	SIISAVVGI	HER2/neu
9	VVLGVVFGI	HER2/neu
9	YMIMVKCWM	HER2/neu
10	ALCRWGLLLA	HER2/neu
10	QLFEDNYALA	HER2/neu

[0179]

【表97】

表11(つづき)

AA	配列	源
9	HMWNFISGI	HCV コンセンサス
9	VIYQYMDDL	HIV POL 358
9	SLYNTVATL	HIV GAG 77
10	TVWGIKQLQA	HIV ENV 735
9	LLLEAGALV	MSH 99
9	VLETAVGLL	MSH 92
9	CLALSDLLV	MSH 79
9	FLSLGLVSL	MSH 45
9	SLVENALVV	MSH 52
9	AIIDPLIYA	MSH 291
9	FLCWGPFFL	MSH 251
9	FLALIICNA	MSH 283
9	TILLGIFFL	MSH 244
9	RLLGSLNST	MSH 9
9	SLYNTVATL	HIV p17/5B 77-8
9	VIYQYMDDL	HIV RT/50A 346-
9	ILKEPVHGV	HIV RT/IV9 476-

[0180]

【表98】

表 12

ペプチド番号	ペプチド長	配列
1237 01	,	FLWGPQALV
1237.02	,	FLWGPNALV
1237.03	,	FLWGPHALV
1237.04	,	PLWGPKALV
1237.05	9	FLWGPFALV
26.0158	9	AVIGALLAV
26.0172	9	LLHLAVIGA
26.0186	9	SLADTNSLA
26.0192	9	VMGTTLAEM
26.0240	9	LLAVLYCLL
26.0383	10	FLRNOPLTFA
25.0390	10	HLAVIGALLA
26 0395	10	LAVIGALLAV
26,0418	10	TLAEMSTPEA
26.0423	10	YLAEADLSYT
26.0497	10	MLLAVLYCLL
1183,10	10	VLYRYGSFSV
27.0007	9	ILSSLGLPV
27.0012	9	LLFLGVVFL
27.0019	9	GLYGAQYDV
27 0022	9	FVVALIPLV
27.0023	9	GLMTAVYLV
27.9027	9	ALVLLMLPV
27.0028	, ,	ILLSIARVV
27.0029	,	SLYFGGICV
27 0030	9	QLIPCMDVV
27.0031	,	VLQQSTYQL.
27.0032	,	AJHNVVHAI
27.0034	,	GLHGVGVSV
27 0035	9	GLVDFVKHI
27 0036	,,	LLFRFMRPL
27.0038	,	LMLPGMNGI
27.0043	9	TVLRFVPPL
27.0044	9	MLGNAPSVV
27.0050	9	YLDLALMSV
27,0064	,	RMPEAAPPV

[0181]

【表99】

表12(つづき)

ペプテド番号	ペプチド長	M2 5M
27.0082	,	FLLPDAQ51
27.0083	9	MTYAAPLEV
27.0088	9	LLPLGYPFV
27.00 89	9	GLYYLTTEV
27.0090	9	MALLRLPLV
27.0091	,	RLPLVLPAV
27.0093	9	RMFAANLGV
27.0095	9	RLLDDTPEV
27.0096	9	YLYVHSPAL
27 0100	9	GLYLSQLAV
27.0101	9	YLSQIAVLL
27.0102	9	SLAGFVRML
27.0137	10	ATYDKGILTV
27 0146	10	KIFMLVTAVV
27.0151	10	FLLADERVRV
27.0153	10	MLATDLSLRV
27.0154	10	RLQPQVGWEV
27.0161	10	FLMPVEDVFI
27.0165	10	RMSRVTTFTV
27.0168	10	LALVLLMLPV
27.0169	10	ALVLLMLPVV
27.0170	10	GIVSGILLS!
27.0171	10	SLYFGGICVI
27.0173	16	QLIPCMDVVL
27.0181	10	LLFREMRPLI
27.0183	10	VLLEDGGVEV
27.0184	10	AMPAYNWMTV
27.0186	10	GLAGTVLRFV
27 0188	10	VLIAFGREPI
27.0189	10	FLTCDANLAV
27.0197	10	ALAWGAWGEV
27.0204	10	LLLETSWEAL
27.0217	10	RMPEAAPPVA
27.0223	10	WMAETTLGRV
27.0226	10	AMALLELPLY
27 0229	10	FMSLAGFVRM
27.0266	0	SLLTEVETYVL

[0182]

【表100】

表12(つづき)

ペプチド番号	ペプチド長	8 2.54
27.0268	В	GILGEVETLTV
27 0269	. 0	VLDVGDAYFSV
27.0271	0	KIWEELSMLEV
17.0272		STLVEVTLGEV
27.0273	n	GLAPPOHLIRV
27 0274	11	HLIRVEGNLRV
27 0005	9	YLLALRYLA
27.0013	9	GLYRQWALA
27 0017	9	LLWQDPVPA
27 0040	9	ALLSDWIJPA
27 0045	9	WLLIDTSNA
27.0046	,	MLASTLTDA
27.0081	,	YLSEGDMAA
27.0094	,	LLACAVIHA
27.0144	10	LLCCSGVATA
27.0191	10	LLATVFKLTA
27.0192	10	KLTADGVLTA
27.0195	10	GLGGLGLFFA
28.0064		TLGIVXPI
28.0065		ALGTTXYA
28.0293	9	FLLTRILTV
28.0294	,,	ALMPLYACV
28 0295	9	LLAQFTSAV
28.0296	,	LLPFVQWFV
28.0297	, ,	FLLAQFTSV
28.0298	9	KLHLYSHPV
28.0299	9	KLFLYSHPI
28.0300	,	LLSSNLSWV
28.0301		FLLSLGTHV
28.0302	,	MMWYWGPSV
28.0303	9	VLQAGFFLV
28.0304	9	PLLPIFFCV
28.0305	9	FLLPIFFCL
28.0306	9	VLLDYQGMV
25.0307	9	YMDDVVLGV
28.0308	9	YMFDVVLGA
28 0309	,	GLLGWSPOV

[0183]

【表101】

表12(つづき)

ペプチド音号	ペプチド長	配列
28 0342	9	YMIMVXXWM
28 0343	9	YIFATXLGL
28.0345	9	SLHXKPEFA
28.0346	9	ALGLVXVQA
28 0348	9	LLMDXSGSI
28 0349	9	FAFRDLXIV
28 0352	9	GTLGIVXPI
28 0353	9	TLGIVXPIX
28 0354	9	LLWFHISXL
28 0355	9	KLTPLXVTL
28 0356	9	ALVEIXTEM
28 0357	9	LTFGWXFKL
28 0359	9	KLQXVDLHV
28 0360	,	FMKAVXVEV
28 0361	9	LLQQYXLYL
28,0362	, ,	XLYLHIQSL
28 0363	,	SLAXSWGMV
28.0364	,	ILYAHIQXL
28.0365	9	KLLSKLLXV
28.0365	,	PLLPIFFXL
28.0367	9	TLIKXPPLL
28,0368	9	ALMPLYAXI
28.0370	, , _	XILESLFRA
28.0609	10	FLLAQFTSAV
28 0610	10	YLHTEWKAGY
28 0611	10	YLFTLWKAGI
28.0612	10	YLLTLWKAGI
28.0613	10	LLFYQGMLPV
28.0614	10	LLLYQGMLPV
28.0615	10	LLYLQAGFFY
28 0615	10	ILLLCLIFLY
28.0650	10	ALXRWGLLL
28 065)	10	KLPDLXTEL
28,0652	10	HLYQGXQVV
28.0653	10	XILESLFRA
28.0654	10	KLQXVDLHV
28 0615	10	YIFATXLGL

[0184]

【表102】

表12(つづき)

ペプチド番号	ペプチド長	配列
F111.01	9	SLYNTVATL
F111 02	9	ALYNTVATL
F111.04	,	SLANTVATL
F111 06	9	SLFNAVATL
F111.07	9	SLFNLLATL
F111.10	9	SLFNTIAVL
F111.13	9	SLFNAVAVL
F111.09	9	SLENTIVVL
F111.12	9	SLFNAIAVL
F111.13		SLFNTVAVL
F111.14	,	SLENTVCVI
F111.15	9	SLHNTVATI,
F111.17	9	SLHNTVAVL
F115.18	, ,	SLYATVATL
F112.19	9	SLYNAVATL
F111.21	99	SLYNTAATL
F111.22	9	SLYNTIAVL
F111.23	9	SLYNTSATL
F111.25	9	SLYNTVAVL
F111 26	9	SLYNTVATA
F111.27	9	SLYNAIATL
F111.28	,	SLYNLVAVL
F111.29	, , , , , ,	SLFNLLAVL
F111.32	9	SLPNTVVTL
F111.34	9	SLYNTVAAL
1039.031	9	MMWYWGPSL
1211.40	10	SLLNATALAV
	10	TIMDIILECV
	9	FAFRDLCIV
	9	GTLGIVCPI
	9	TLGIVCPIC

[0185]

【表103】

表13

Α	配列	源
Α		
9	IPQSLDSWW	HBV ENV
		191
9	IPIPSSWAF	HBV ENV
		313
9	TPARVTGGV	HBV POL
		365
9	LPIFFCLWV	HBV ENV
		379
9	HPAAMPHLL	HBV POL
L		440
9	FPHCLAFSY	HBV POL
L		541
9	DPSRGRLGL	HBV POL
		789
9	QPRGRRQPI	HCV Core 57
9	SPRGSRPSW	HCV Core 99
9	DPRRRSRNL	HCV Core
L.		111
9	LPGCSFSIF	HCV Core
		168
9	YPCTVNFTI	HCV E2 622
9	LPALSTGLI	HCV E2 681
9	HPNIEEVAL	HCV NS3
	i	1358
9	SPGALVVGV	HCV NS4
		1887

【0186】 【表104】

表13(つづき)

Ţ.	4	配列	源
١.	A		
1	9	SPGQRVEFL	HCV NS5
l			2615
Ī	9	APTLWARMI	HCV NS5
			2835
ſ	9	FPRIWLHJL	HIV VPR 34
Γ	9	SPTRRELQV	HIV POL 37
ſ	9	FPVRPQVPL	HIV NEF 84
ľ	9	RPQVPLRPM	HIV NEF 87
ľ	9	KPCVKLTPL	HIV ENV
l			123
1	9	SPRTLNAWV	HIV GAG
			153
1	9	FPISPIETV	HIV POL 171
[9	SPAIFQSSM	HIV POL 327
	9	NPDIVIYQY	HIV POL 346
1	9	GPGHKARVL	HIV GAG
			360
	9	LPEKDSWTV	HIV POL 417
1	9	YPLASLRSL	HIV GAG
			507
	9	VPRRKAKII	HIV POL 991
	9	TPTLHEYML	HPV16 E7 5
	9	KPLNPAEKL	HPV18 E6
			110
	9	NPAEKLRHL	HPV18 E6
			113
	9	VPISHLYIL	MAGE2 170
	9	MPKTGLLII	MAGE2 196

[0187]

【表105】

表13 (つづき)

А	配列	源
Α		
9	DPACYEFLW	MAGE2 265
9	EPHISYPPL	MAGE2 296
9	YPPLHERAL	MAGE2 301
9	LPTTMNYPL	MAGE3 71
9	DPIGHLYIF	MAGE3 170
9	MPKAGLLII	MAGE3 196
9	G?HISYPPL	MAGE3 296
9	H?SDGKCNL	P. falciparum
İ		s
9	R PRGDNFAV	P. falciparum
ì		s
9	Q=RPRGDNF	P. falciparum
L		S
9	LINDKSDRY	P. falciparum
L.		S
1(LPLDKGIKPY	HBV POL
L.		123
10	T:'ARVTGGVF	HBV POL
L.	<u> </u>	365
10	FPHCLAFSYM	HBV POL
L.	L	541
10	LPRRGPRLGV	HCV Core 37
10	A?LGGAARAL	HCV Core
L		142
10	LPGCSFSIFL	HCV Core
L		168
10	VPASQVCGPV	HCV E2 497
10	YPCTVNFTIF	HCV E2 622

【0188】 【表106】

表13(つづき)

Α	配列	源
А		
10	SPLLLSTTEW	HCV E2 663
10	RPSGMFDSSV	HCV NS3
		1506
10	LPVCQDHLEF	HCV NS3
ļ	1	1547
10	KPTLHGPTPL	HCV NS3
1		1614
10	TPLLYRLGAV	HCV NS3
ŀ		1621
10	NPAIA.SLMAF	HCV NS4
		1783
10	LPAILSPGAL	HCV NS4
1_		1882
10	SPGALVVGVV	HCV NS4
L		1887
10	APTLWARMIL	HCV NS5
_		2835
10	IPVGI IYKRW	HIV GAG
L		261
10	YPLASLRSLF	HIV GAG
L		507
10	APTKAKRRVV	HIV ENV
L		547
10	VPISHLYILV	MAGEZ 170
1	MPKTGLLIIV	MAGE2 196
1	HPRKILMQDI	MAGE2 241
1	LPTTMNYPLV	MAGE3 71
1	MPKAGLLIIV	MAGE3 196

【0189】 【表107】

表13 (つづき)

Α	配列	源
A		
10	IPYSPLSPKV	P. falciparum
		S
10	TPYAGEPAPF	P. falciparum
		S
9	FPDHQLDPA	HBV ENV 14
9	YPALMPLYA	HBV POL
		640
9	LPVCAFSSA	HBV X 58
9	APLGGAARA	HCV 142
9	DPTTPLARA	HCV 2806
9	FPYLVAYQA	HCV 1582
9	LPAILSPGA	HCV 1882
9	NPAIASLI4A	HCV 1783
9	TPIDTTIMA	HCV 2551
9	TPLLYRLGA	HCV 1621
9	WPLLLLLA	HCV 793
9	NPYNTPVFA	HIV POL 225
9	APLLLARAA	PAP 4
9	HPQWVLTAA	PSA 52
10	IPIPSSWAFA	HBV ENV
ļ		313
10	TPPAYRPPNA	HBV NUC
1		128
10	APFTQCGYPA	HBV POL
		633
10	LPIHTAELLA	HBV POL
-		712
10	GPCALRFTSA	HBV X 67

【0190】 【表108】

表13(つづき)

Α	配列	源
A		
10	DPTTPLARAA	HCV 2806
10	IPQAVVDMVA	HCV 339
10	LPCSFTTLPA	HCV 674
10	QPEKGGRKPA	HCV 2567
10	VPHPNIEEVA	HCV 1356
10	IPAETGQETA	HIV POL 820
10	LPQGWKGSPA	HIV POL 320
10	FPDLESEFQA	MAGE2/3 98
10	DPIGHLYIFA	MAGE3 170
9	EPLSLYAHI	HPV 6b/11 E1
		2
9	PPLLVTSNI	HPV 6b/11 E1
		5
9	SPRLDAIKL	HPV 6b/11 E1
<u></u>		1
9	TPKKNCIAI	HPV 6b/11 E1
		4
9	FPFDRNGNA	HPV 6b/11 E1
L		5
10	CPPLLVTSNI	HPV 6b/I1 E1
L		5
10	FPFDRNGNAV	HPV 6b/11 E1
	1	5
8	GPLLVLQA	HBV ENV
L		173
8	IPIPSSWA	HBV ENV
İ		313

[0191]

【表109】

表13(つづき)

Α	配列	源
A		
8	VPFVQWFV	HBV ENV
		340
8	LPIFFCLW	HBV ENV
		379
8	RPPNAPIL	HBV NUC
		133
8	MPLSYQHF	HBV POL 1
8	HPAAMPHL	HBV POL
		429
8	SPFLLAQF	HBV POL
		511
8	YPALMPLY	HBV POL
		640
8	SPTYKAFL	HBV POL
L		659
8	VPSALNPA	HBV POL
<u>_</u>		769
8	HPvhAGPI	HIV con.
		GAG
8	GPGvRyPL	HIV con.
		NEF
8	SPIETVPV	HIV con.
L		POL
8	NPYNTPVF	HIV con.
L		POL
8	LPIQKETW	HIV con.
1	1	POL

[0 1 9 2]

【表110】

表13(つづき)

Α	配列	源
Α_		
8	VPRRKaKi	HIV con.
		POL
8	VpLQLPPI	HIV con.
		REV
8	VPLAMKLJ	P. falciparum
8	LPYGRTNL	P. falciparum
8	RPRGDNFA	P. falciparum
8	IPQQEPNI	P. falciparum
8	TPFAGEPA	P. falciparum
9	SPINTIAEA	HPV 6b E1
		93
9	SPISNVANA	HPV 11 El
		93
9	SPRLDAIKL	HPV 65/11 E1
		1
9	EPLSLYAHI	HPV 6b/11 E1
		2
9	EPPKIQSGV	HPV 6b/11 E1
_		3
9	IPFLTKFKL	HPV 6b E1
		455
9	TPKKNCIAI	HPV 6b/11 E1
		4
9	QPLTDAKVA	HPV 11 E1
		512
9	PPLLVTSNI	HPV 6b/11 E1
		5

[0193]

【表111】

表13(つづき)

A	配列	源
Α		
9	FPFDRNGNA	HPV 6b/11 E1
		5
9	APLILSRIV	PSA 14
9	HPEDTGQVF	PSA 78
9	HPLYDMSLL	PSA 94
9	HPQKVTKFM	PSA 184
9	GPLVCNGVL	PSA 211
9	RPSLYTKVV	PSA 235
9	FPPEGVSIW	PAP 124
9	NPILLWQPI	PAP 133
9	LPFRNCPRF	PAP 156
9	IPSYKKLIM	PAP 277
9	LPPYASCHL	PAP 307
9	SPSCPLERF	PAP 348
9	CPLERFAEL	PAP 351
9	GPTLIGANA	gp100 74
9	LPDGQVIWV	gp100 97
9	VPLAHSSSA	gp100 198
9	QPLTFALQL	gp100 236
9	DPSGYLAEA	gp100 246
9	EPGPVTAQV	gp100 282
9	MPTAESTGM	gp100 366
9	TPAEVSIVV	gp100 401
9	LPKEACMEI	gp100 520
9	LPSPACQLV	gp100 545
9	VPLIVGILL	gp100 596
9	LPHSSSHWL	gp100 630

[0194]

【表112】

表13(つづき)

Α	配列	源
Α_	i	
9	CPIGENSPL	gp100 647
9	SPLLSGQQV	gp100 653
9	MPREDAHFI	MARTI 1
9	APLGPQFPF	チロシナーゼ 6
9_	IPIGTYGQM	チロシナーゼ 1
9	TPMFNDINI	チロシナーゼ 1
9	LPWHRLFLL	チロシナーゼ 2
9	IPYWDWRDA	チロシナーゼ 2
9	SPASFFSSW	チロシナーゼ 2
9	LPSSADVEF	チロシナーゼ 3
9	SPLTGIADA	チロシナーゼ 3
9	DPIFLLHHA	チロシナーゼ 3
9	IPLYRNGDF	チロシナーゼ 4
9	YPELPKPSI	CEA 141
9	LPVSPRLQL	CEA 185
9	LPVSPRLQL	CEA 363
9	NPPAQYSWL	CEA 442
9	LPVSPRLQL	CEA 541
9	IPQQHTQVL	CEA 632
9	NPPAQYSWF	CEA 264
9	LPSIPVHPI	Prost.Ca PSM
9	IPVHPIGYY	Prost.Ca PSM
9	RPFYRHVIY	Prost.Ca PSM
9	TPKHNMKAF	Prost.Ca PSM
9	FPGIYDALF	Prost.Ca PSM
9	RPRWLCAGA	Prost.Ca PSM
9	DPLTPGYPA	Prost.Ca PSM

[0195]

【表113】

表13(つづき)

Α	配列	源
A		
9	RPRRTILFA	Prost.Ca PSM
9	LPFDCRDYA	Prost.Ca PSM
9	LPIHTAELL	HBV POL
		712
10	GPDAPTISPL	CEA 236
10	IPQQHTQVLF	CEA 632
10	QPIPVHTVPL	Prost.Ca PAP
10	HPYKDFIATL	Prost.Ca PAP
10	LPGCSPSCPL	Prost.Ca PAP
10	LPSWATEDTM	Prost.Ca PAP
10	VPLSEDQLLY	Prost.Ca PAP
10	FPHPLYDMSL	Prost.Ca PSA
10	RPGDDSSHDL	Prost.Ca PSA
10	HPQKVTKFML	Prost.Ca PSA
10	LPFDCRDYAV	Prost.Ca PSM
10	YPNKTHPNYI	Prost.Ca PSM
10	SPEFSGMPRI	Prost.Ca PSM
10	RPRWLCAGAL	Prost.Ca PSM
10	TPKHNMKAFL	Prost.Ca PSM
10	RPFYRHVIYA	Prost.Ca PSM
10	HPAAMPHLLV	HBV POL
		429
9	SPREGPLPA	HER2/neu
		1151
9	KPDLSYMPI	HER2/neu
		605
9	HPPPAFSPA	HER2/neu
		1208

[0196]

【表114】

表13(つづき)

Α	配列	源
A	İ	
9	GPLPAARPA	HER2/neu
		1155
9	APQPHPPPA	HER2/neu
ļ		1204
9	EPLTPSGAM	HER2/neu
		698
9	LPTHDPSPL	HER2/neu
_		1101
9	DPLNNTTPV	HER2/neu
		121
9	SPLTSIISA	HER2/neu
		649
9	SPKANKEIL	HER2/neu
	<u> </u>	760
9	LPTNASLSF	HER2/neu 65
9	CPSGVKPDL	HER2/neu
		600
9	SPLAPSEGA	HER2/neu
L		1073
9	MPNQAQMRI	HER2/neu
Ì		706
9	LPAARPAGA	HER2/neu
1		1157
9	LPQPPICTI	HER2/neu
		941
9	SPAFDNLYY	HER2/neu
		1214

[0197]

【表115】

表13(つづき)

Α	配列	源
Α		
9	TPTAENPEY	HER2/neu
		1240
9	LPSETDGYV	HER2/neu
		1120
10	LPTNASLSFL	HER2/neu 65
10	CPAEQRASPL	HER2/neu
		642
10	KPCARVCYGL	HER2/neu
		336
10	APQPHPPPAF	HER2/neu
		1204
10	SPGGLRELQL	HER2/neu
		133
10	SPLTSIISAV	HER2/neu
		649
10	MPNQAQMRIL	HER2/neu
		706
10	SPYVSRLLGI	HER2/neu
		779
10	HPPPAFSPAF	HER2/neu
		1208
10	SPREGPLPAA	HER2/neu
		1151
10	NPHQALLHTA	HER2/neu
		488
10	MPYGCLLDHV	HER2/neu
		801

【0198】 【表116】

表13(つづき)

Α	配列	源
Α		
10	GPASPLDSTF	HER2/neu
		995
9	LPTTLFQPV	HTLV-I tax
		21
9	IPPSFLQAM	HTLV-1 tax
l	_	10
9	FPGFGQSLL	HTLV-I tax
1		4
9	WPLLPHVIF	HTLV-I tax
İ		16
9	SPPITWPLL	HTLV-I tax
		16
9	VPYKRIEEL	HTLV-I tax
		18
9	RPQNLYTLW	HTLV-I tax
		13
9	CPKDGQPSL	HTLV-I tax
		26
9	RPNDEVTAV	GCDFP-15
	l	47
9	SPATLLLVL	GCDFP-15
1		11
9	WPYLHNRLV	HPV16 E1
		576
9	QPFILYAHI	HPV18 E1
		263
9	SPRLKAICI	HPV16 E1
i	_	107

[0199]

【表117】

表13 (つづき)

(149)

_			
1	4	配列	源
1	4		
9	,	SPLGERLEV	HPV18 E1
			97
1	,	SPRLQEISL	HPV18 E1
l		_	110
1	,	RPIVQFLRY	HPV18 E1
l			447
r	10	WPYLHNRLVV	HPV16 El
ĺ			576
ľ	10	WPYLESRITV	HPV18 E1
1			583
Ī	10	QPPKLRSSVA	HPV18 E1
١			315
Ī	10	EPPKLRSTAA	HPV16 E1
-			308
Ţ	9	DPSRGRLGL	HBV POL
1			778
1	9	HPAAMPHLL	HBV POL
I		l	429
1	9	IPIPSSWAF	HBV ENV
			313
	10	TPARVTGGVF	HBV POL
			354
	10	FPHCLAFSYM	HBV POL
			530
	9	LPVCAFSSA	HBV X 58
	9	YPALMPLYA	HBV POL
			640
	9	APLLLARAA	PAP 4
	_		

[0200]

【表118】

表13(つづき)

Α	配列	源
Α		_
9	HPQWVLTAA	PSA 52
9	HPSDGKCNL	Pf SSP2 206
9	RPRGDNFAV	Pf SSP2 305
9	QPRPRGDNF	Pf SSP2 303
10	TPYAGEPAPF	Pf SSP2 539
9	GPHISYPPL	MAGE3 296
9	YPPLHERAL	MAGE2 301
9	VPISHLYIL	MAGE2 170
9	EPHISYPPL	MAGE2 296
9	LPTTMNYPL	MAGE3 71
9	MPKAGLLII	MAGE3 196
10	HPRKLLMQDL	MAGE2 241

[0201]

【表119】

表14

ペプチド	AA	配列
25.0129	9	LPPLERLTL
26.0445	10	EPGPVTAQVV
26.0448	10	LPRIFCSCPI
26.0449	10	LPSPACQLVL
26.0455	10	VPLAHSSSAF
26.0458	10	VPRNQDWLGV
26.0476	10	APPAYEKLSA
26.0478	10	MPREDAHFIY
26.0519	10	APAFLPWHRL
26.0522	10	GPNCTERRLL
26.0523	10	IPLYRNGDFF
26.0529	10	TPRLPSSADV
19.0101	9	TPAEVSIVV
26.0554	11	APFTQCGYPAL
26.0561	11	NPADDPSRGRL
26.0564	11	RPPNAPILSTL
26.0566	11	SPFLLAQFTSA
26.0567	11	SPHHTALRQAI
26.0568	11	TPARVTGGVFL

【国際調査報告】

	INTERNATIONAL SEARCH REPOR	т	PCT/US98/050	
IPC(6) US CL According t B. FIEL	SSIFICATION OF SUBJECT MATTER AGIK 39/03, 39/29; COTR 7/00, 14/02, 14/12 424/183. 1, 530/300, 328, 359 of International Patent Classification (IPC) or to both DS SEARCHED			
	ocumentation searched (classification system followe	nd by classification sy	nhols)	
U.S.	424/185.1. 530/300. 328, 350			
	ion searched other than minutum documentation to the reg of first sequence in Table 3. Examiner's MHC		mente are included	in the fields sourched
	hate buse consulted during the international scarch (n =reg sequence search of first sequence in Table 3.			
C. DOC	UMENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where ag	proprisse, of the rele	vant passages	Relevant to claim No.
Т	BRUSS, V. A short linear sequence in hepatitis B virus envelope protein requi Virology. December 1997, Vol. 71, N entire document	red from virion f	ormation. J.	1-3 and 7
Y	PREISLER-ADAMS, S. et al. Comp hepatitis B virus, subtype adw2, and ic C open reading frame. Nucleic Acids page 2258. See entire document.	dentification of the	ree types of	1-3 and 7
Y	RAMMENSEE, H. et al. Peptides i Class I molecules. Annu. Rev. Imm 213-243, see entire article.			1-3 and 7
		0		
X Funb	per documents are listed in the continuation of Box C		(amily annex.	
'A' dos	opial solagares of estad documents cument defesing the greens) state of the set which is not considered by of particular relevance		poblished after the son contilet with the appl r timery underlying the	emetronal filting date or processy freeton but exect to understand a invention
12.5	See document published on or after the intentational fling data nument which may show doubts on proving claim(a) or which is ad in metablish the publimation date of accorder intention or other used reason. (in providing)	when the docs	ment in taken alone	e channel sevention estates be tred to sevente as seventive step
O do:	cument referring to an oval disclosure, was, axhibiton or other	"Y" decrement of a considered to considered with being obvious	unable to loverty to a person skilled in I	e channed sevention cannot be step when the document is it discussesse, such combustion the set
Ute	concent published prior to the international filling date but later than a priority data claimed		iber of the same pales.	
Date of the 12 MAY	actual completion of the international search	Date of mailing of the 17 JUL	1998	arch report
Box PCT Washington Facsimile N		Authorized officer THOMAS CUN Telephone No. (1	NINGHAM 103) 308-0196	Jab For
iom PCT/I	SA/210 (second sheet)(fuly 1992)*			

INTERNATIONAL SEARCH REPORT

International application No. PCT/US98/05039

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
<i>'</i>	ENGELHARD, V. et al. Structure of peptides associated with MHC Class I molecules. Curr. Opin. Immunol. 1994, Vol. 6, pages 13-23, see entire document.	1-3 and 7
		i.

Form PCT/ISA/210 (continuation of second short)(July 1992)*

INTERNATIONAL SEARCH REPORT

nternaisonai	application	1
PCT/US9	8/05019	

This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Claims Nos.: C
Claims Non.: Decease they are dependent claims and are not deathed in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This international Searching Authority found multiple inventions in this international application, as follows:
See attached sheet.
As all required additional search fees were timely paid by the applicant, this international search report covers all searched claims.
As all scarchable claims could be searched without effort junifying an additional fee, this Authority did not invite payme of any additional fee.
As all membable claims could be searched without effort justifying an additional for, this Authority did not invite payme of any additional for. As early some of the required additional rearch fear were visually publishly the applicant, this international search report cover only flow retains for which fear were paid, specifically claims Not.:
a large additional fine. A early additional fine are file required additional search fear were timely pulsely the applicant, this international search report covery those claims for which fine were paid, specifically claims Nex: at the control of the control
A say additional for. A say and one of the required additional search fear were vinely pulsely the applicant, this international search report covery these claims for which for were paid, specifically claims Nos. A say for the claims for which for were paid, specifically claims Nos.
a large additional fine. A early additional fine are file required additional search fear were timely pulsely the applicant, this international search report covery those claims for which fine were paid, specifically claims Nex: at the control of the control

INTERNATIONAL SEARCH REPORT

International englication No. PCT/US98/05039

Observations where unity of invention is lacking (Continuation of item 2 of first shoet)

1. This International Search Authority has found 3453 inventions claimed in the International Application covered by the claims indicated below:

This application contains the following investions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be searched, the appropriate additional search

Group 1, claim(a) 1-3 and 7, drawn to compositions comprising peptides and methods of inducing CTL responses using such compositions. A review of Tables 3-14 indicates there are 2764 structurally different peptides recised.

Group II, claim(s) 4-6, drawn to nucleic acids exceeding peptides. Claims 4-6 recite nucleic acids encoding the 2764 different peptides of Tables 3-14.

This application contains claims directed to more than one species of the generic invention. These species are deemed to lack Unity of Invention because they are not so linked as to form a single inventive concept under PCT Rule 13.1. The species are as follows:

Each of the 2764 different peptides recited by Tables 3-14 and each of the 2764 different nucleic sold sequences encoding the peptides of Tables 3-14. 2764 + 2764 = 5,528 total species.

The claims are deemed to correspond to the species listed above in the following man

The following claims are generic: claims 1-7 because they encompass all of the poptides or aucleic acid sequences encoding the popules of Tables 3-14.

The first peptide species recited in Table 3 (FTP. . .LSK) will be examined. Each additional peptide species requires the payment of a separate (ee. To have all the recited popules species searched requires the payment of 2763 additional

Upon payment for Group II, the Office will examine the first ten (or ten that the Applicant selects) nucleic acid species at no additional cost. Each fluer species of nucleic acids thereafter requires the payment of a separate (se. To have all the nucleic acid species searched requires the payment of (2764-01)47 = 689 additional fees.

and it considers that the International Application does not comply with the requirements of unity of invention (Rules 13.1, 13.2 and 13.3) for the reasons indicated below:

The inventions listed as Groups I and II do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: the peptides of Group I lack the corresponding technical structural and functional features of the nucleic acids of Group II.

The species listed above do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, the species lack the same or corresponding special technical features for the following reasons: the 5528 differences to the following reasons: species of peptides recited by Tables 3-14 (or the nucleic acid sequences encoding such peptides) lack the same or corresponding special technical features of common structure and function, source of isolation and amino acid or nucleic acid identity. Each reparate species would require a separate prior art search.

Form PCT/ISA/210 (extra sheet)(July 1992)*

フロントベージの続き

(51) Int.Cl.7 識別記号 CO7K 7/00 C 1 2 Q 1/02 // C 0 7 K 14/705 (81)指定国 EP(AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, L U. MC, NL, PT, SE), OA(BF, BJ, CF . CG. CI. CM. GA. GN. ML. MR. NE. SN, TD, TG), AP(GH, GM, KE, LS, M W, SD, SZ, UG, ZW), EA(AM, AZ, BY , KG, KZ, MD, RU, TJ, TM), AL, AM . AT. AU. AZ. BA. BB. BG. BR. BY. CA, CH, CN, CU, CZ, DE, DK, EE, E S. FI. GB. GE. GH. GM. GW. HU. ID , IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, M G. MK. MN. MW. MX. NO. NZ. PL. PT , RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, Y U. ZW (72)発明者 シドニー, ジョン アメリカ合衆国、カリフォルニア 92037, ラ ジョーラ、ディー、ビラ ラ ジョー ラ ドライブ 8541 (72)発明者 セリス, エステバン アメリカ合衆国、カリフォルニア 92130. サン ディエゴ, ランドフェア ロード 13644 (72)発明者 グレイ, ハラワード エム. アメリカ合衆国、カリフォルニア 92037. ラ ジョーラ、ラ ジョーラ ストリート 9066 (72)発明者 サウスウッド, スコット アメリカ合衆国、カリフォルニア 92071、 サンティー、ストレイスモア ドライブ 10679 Fターム(参考) 48024 AA01 AA12 AA14 CA05 DA02 DA05 DA12 EA04 GA11 HA01 4B063 QA01 QA18 QA19 QQ02 QQ96 OR48 OS22 4C085 AA03 AA08 BA03 BA09 BA69 BA78 BA87 BA89 BB01 BB11 CC07 CC08 4H045 AA10 BA10 BA41 EA31 FA10

FA74

ターマコード(参考)

C 1 2 Q 1/02 C 0 7 K 14/705

FΙ

C12N 15/00 ZNAA