ГЕОМЕТРИЯ В КОМПЬЮТЕРНЫХ ПРИЛОЖЕНИЯХ

Лекция 1: Введение и геометрия плоских кривых

Богачев Николай Владимирович

Московский физико-технический институт, Кафедра дискретной математики, Лаборатория продвинутой комбинаторики и сетевых приложений

6 сентября 2017 г.

1. Введение

1.1. Основные цели курса.

- Освоить абстрактные геометрические структуры:
 - кривые, поверхности, многообразия
 - касательные пространства и расслоения

Поверхность Боя, Обервольфах, Германия

Бутылка Клейна

- Понять, где это может быть полезным
 - распознавание образов и компьютерная геометрия
 - мультимедиа
 - робототехника
 - теория игр
 - сенсорные сети
 - ранжирование
 - геометрия многообразий и топология
 - гиперболическая геометрия
 - группы Ли
 - геометрия дискретных групп (в частности, группы отражений)

• Вычисления: как научить компьютер использовать геометрию?

• Дискретизация поверхностей vs. непрерывная дифференциальная геометрия.

1.2. Обозначения:

- ■ R вещественная прямая
- \mathbb{R}^n n-мерное вещественное пространство
- \mathbb{S}^n n-мерная сфера
- $C^k(D)$ множество всех k раз дифференцируемых функций на множестве D
- $C^{\infty}(D)$ множество всех гладких функций
- \bullet $\mathbb{R}P^n$, $\mathbb{C}P^n$ вещественное и комплексное проективные пространства
- $\mathrm{GL}_n(\mathbb{R})$ группа вещественных матриц с ненулевым определителем
- $\bullet \operatorname{SL}_n(\mathbb{R}) = \{ A \in \operatorname{GL}_n(\mathbb{R}) \mid \det A = 1 \}$
- \bullet $O_n(\mathbb{R}) = \{A \in GL_n(\mathbb{R}) \mid AA^T = E\}$ ортогональная группа
- \bullet SO_n(\mathbb{R}) = { $A \in O_n(\mathbb{R}) \mid \det A = 1$ } специальная ортогональная группа

2. Геометрия плоских кривых

2.1. Определения и способы задания кривых.

Пусть $I \subset \mathbb{R}$ – некий отрезок или интервал.

Определение

Кривая-график — $\gamma = \{(x, f(x)) \mid x \in I, \ f \in C^{\infty}(I)\}.$

Определение

Неявно заданная кривая —

$$\gamma = \{(x,y) \mid F(x,y) = 0, \left(\frac{\partial F}{\partial x}\right)^2 + \left(\frac{\partial F}{\partial y}\right)^2 \neq 0, \quad F \in C^{\infty}(\mathbb{R}^2)\}.$$

Регулярная кривая, заданная параметрически — $\gamma = \{(x(t),y(t)) \mid t \in I, \ x(t),y(t) \in C^{\infty}(I), \ (x'(t))^2 + (y'(t))^2 \neq 0\}.$

Предложение

Все три выше указанных способа задания кривых локально эквивалентны

Доказательство.

- $(1) \Rightarrow (2)$: F(x,y) = y f(x);
- (2) \Rightarrow (1): по теореме о неявной функции $\forall y_0 \; \exists \; \varepsilon$ -окрестность точки y_0 , в которой y = f(x);
- $(1) \Rightarrow (3): \gamma(t) = (x(t), y(t)) = (t, f(t));$
- (3) \Rightarrow (1): м.сч. $x'(t) \neq 0$. По теореме об обратной функции существует гладкая t = t(x). Тогда y = y(t(x)).

Гладкая кривая на \mathbb{R}^2 — гладкое отображение $\gamma \colon [a,b] \to \mathbb{R}^2$, т.е. вектор-функция $\gamma(t) = (x(t),y(t)) \in C^{\infty}([a,b] \times [a,b])$. Вектор скорости — $\gamma'(t) = (x'(t),y'(t))$. Кривая регулярная — $\gamma'(t) \neq 0$.

2.2. Длина дуги кривой. Натуральный параметр.

Определение

Длина кривой γ —

$$L(\gamma) := L(\gamma)[a,b] := \int_a^b \|\gamma'(t)\| \ dt = \int_a^b \sqrt{(x'(t))^2 + (y'(t))^2} \ dt.$$

Пример

Предложение

Длина кривой не меняется при монотонной замене параметра.

Доказательство. Если $t=t(\tau),$ то $\gamma_1:=\gamma\circ t$ и

$$L(\gamma_1) = \int_a^b \left\| \frac{d\gamma_1}{d\tau} \right\| d\tau = \int_{t(a)}^{t(b)} \left\| \frac{d\gamma}{dt} \right\| \cdot \left| \frac{dt}{d\tau} \right| \cdot \frac{d\tau}{dt} dt = L(\gamma).$$

Определение

Натуральный параметр s – такой параметр, что $s-a=L(\gamma)[a,s]$. Тогда $\gamma(s)$ — **натуральная параметризация**.

Производная по натуральному параметру обозначается точкой: $\dot{\gamma} = d\gamma/ds$. Ясно, что $|\dot{\gamma}| = 1$.

Натуральную параметризацию можно найти:

$$s(t) = \int_{a}^{t} \left\| \frac{d\gamma}{dt} \right\| dt,$$

2.3. Касательная и нормаль.

Определение

Касательная к кривой γ в точке t_0 — предельное положение секущей через точки t_0 и $t_0+\Delta$ при $\Delta\to 0$.

Предложение

Направляющим вектором касательной к кривой γ в точке t_0 является ее вектор скорости $\gamma'(t_0)$, а уравнение касательной имеет вид

$$\ell(\tau) = \gamma'(t_0)\tau + \gamma(t_0),$$

где au — параметр на ней.

Доказательство.

- Единичный вектор секущей: $\vec{s}(\Delta) = \frac{\gamma(t_0 + \Delta) \gamma(t_0)}{|\gamma(t_0 + \Delta) \gamma(t_0)|} \operatorname{sgn}(\Delta)$.
- ullet $\lim_{\Delta \to 0} \vec{s} \ (\Delta) = \frac{\gamma'(t_0)}{|\gamma'(t_0)|} \Rightarrow \gamma'(t_0)$ направляющий вектор касательной

Нормаль к кривой в точке t_0 — прямая, проходящая через эту точку перпендикулярно касательной.

Направляющий вектор нормали равен $(-y'(t_0), x'(t_0))$

Уравнение нормали:
$$\frac{x - x(t_0)}{y'(t_0)} + \frac{y - y(t_0)}{x'(t_0)} = 0.$$

2.4. Кривизна. Формулы Френе

Определение

Две гладкие регулярные кривые **касаются в точке** P, если они обе проходят через эту точку и имеют в ней общую касательную.

Гладкие регулярные кривые $r_1(s)$ и $r_2(s)$ имеют в точке 0 касание порядка k, если

$$r_1(0) = r_2(0), \quad \dot{r}_1(0) = \dot{r}_2(0), \quad \dots, \qquad r_1^{(k)}(0) = r_2^{(k)}(0).$$

Лемма о перпендикулярности

Пусть $a\colon t\mapsto a(t)\in\mathbb{R}^n$ — гладкая вектор-функция, причем $|a(t)|\equiv const.$ Тогда $a'(t)\perp a(t).$

Доказательство. Продифференцируем $(a(t), a(t)) = const^2$ и получаем 2(a(t), a'(t)) = 0.

ТЕОРЕМА (о соприкасающейся окружности)

Пусть $\gamma(s)$ – рег. кривая и $\ddot{\gamma}(s_0) \neq 0$. Тогда $\exists!$ окружность, имеющая в точке s_0 касание второго порядка с γ , причем

- (1) ее центр лежит на нормали к кривой в направлении $\ddot{\gamma}(s_0)$,
- (2) ее радиус равен $|\ddot{\gamma}(s_0)|^{-1}$.

Доказательство. Натуральная параметризация окружности

$$r(s) = \left(x_0 + R\cos\frac{s}{R}, y_0 + R\sin\frac{s}{R}\right).$$

Тогда

$$\ddot{r}(s) = -\frac{1}{R} \left(\cos \frac{s}{R}, \sin \frac{s}{R} \right), \quad |\ddot{r}| = R^{-1}.$$

По лемме о перпендикулярности $\dot{r}(s) \perp \ddot{r}(s)$. Касание 2-го порядка \Leftrightarrow (1) и (2)

Богачев Н.В. (МФТИ)

Окружность, имеющая с кривой касание 2-го порядка, называется соприкасающейся.

Ее радиус R – радиус кривизны.

Величина $k(s_0) = R^{-1} = |\ddot{\gamma}(s_0)|$ — **кривизна** кривой в точке s_0 .

Пусть $\ddot{\gamma}(s) \neq 0$. Изучим кривую в точках ненулевой кривизны.

Определение

Вектор главной нормали
$$-n(s)=rac{\ddot{\gamma}(s)}{|\ddot{\gamma}(s)|}=rac{\ddot{\gamma}(s)}{k(s)}.$$

Пусть $v(s) = \dot{\gamma}(s)$.

ТЕОРЕМА (формулы Френе)

Для производных (v(s), n(s)) в точках ненулевой кривизны имеем

$$\dot{v}(s) = k(s)n(s), \quad \dot{n}(s) = -k(s)v(s).$$

Доказательство.

• Векторы скорости v(s) и главной нормали n(s) образуют ортонормированный репер:

$$\dot{\gamma}(s) \perp \ddot{\gamma}(s) = \dot{v}(s) = k(s)n(s).$$

- $n(s) \perp \dot{n}(s) \Rightarrow \dot{n}(s) = c(s) \cdot v(s).$
- Продифференцируем (v(s), n(s)) = 0:

$$0 = (\dot{v}(s), n(s)) + (v(s), \dot{n}(s)) = c(s) + k(s).$$

• Тогда $\dot{n}(s) = -k(s)v(s)$

Список литературы

[1] А. О. Иванов, А. А. Тужилин — Лекции по классической дифференциальной геометрии, 2009, Москва, Логос. Лекция 1, стр. 5 – 14

[2] А. И. Шафаревич — Курс лекций по классической дифференциальной геометрии, 2007, Москва, МГУ, Механико-математический факультет. Лекция 1, стр. 3-10