SERIAL PERIPHERAL INTERFACE (SPI)

- SPI is an interface bus commonly used to send data between microcontrollers and small peripherals such as shift registers, sensors and SD cards.
- SPI has synchrounous solution to receive data.

- SPI has four lines:
 - SCK / CLK generates cloock signal.
 - MOSI data sent from master to slave, Master Out Slave In
 - MISO data sent from slave to master, Master In Slave Out
 - SS used to select the required slave
- SPI generates clock in only one side i.e., master generates clock and other side is called slave.

- Multiple slaves : 2 ways
 - separate slave lines:

• single SS line (daisy chain configuration):

- SPI transfer example
 - when master wants to initiate transfer, it must pull SS signal low for the slave it wants to communicate with
 - $\circ \;\;$ once SS signal is low, that slave will be listening on the bus
 - o master is free to start sending data
- There are 4 different types of SCK signal. The four modes are catagorized into two:
 - o CPOL (clock polarity) value low/high will decide the idle state of bus
 - CPHA (clock phase) sampling of data during rising or falling edge of the clock

SPI Mode	Clock Polarity (CPOL/CKP)	Clock Phase (CPHA)	Clock Edge (CKE/NCPHA)
0	0	0	1
1	0	1	0
2	1	0	1
3	1	1	0