浙江大学 20_20_ - 20_21_学年_春夏 学期

《 大学物理甲1 》课程期末考试试卷 (A)

课程号: __761T0010__, 开课学院: __物理系___

考试试卷: A√卷、B卷(请在选定项上打√)

考试形式:闭√、开卷(请在选定项上打√)允许带_无存储功能的计算器_入场

考试日期: __2021_年_07_月_04_日,考试时间: __120__分钟

诚信考试,沉着应考,杜绝违纪。

考生姓名学号				属院系_		任课老师		序号
题序	填空	计1	计2	计3	计4	计 5	计6	总 分
得分								
评卷人								

得分

气体摩尔常量 $R = 8.31 (\text{J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1})$ 阿伏伽德罗常量 $N_A = 6.02 \times 10^{23} (\text{mol}^{-1})$ 真空介电常数 $\varepsilon_0 = 8.85 \times 10^{-12} (\text{C}^2 \cdot \text{N}^{-1} \cdot \text{m}^{-2})$

玻尔兹曼常量 $k = 1.38 \times 10^{-23} (J \cdot K^{-1})$ 真空中光速 $c = 3 \times 10^{8} (m/s)$

电子静止质量 $m_{\rho} = 9.11 \times 10^{-31} (\text{kg})$

一、填空题: (12题, 共48分)

1. (本题 4分) 3001

把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度 θ ,然后由静止放手任其振动,从放手时开始计时。若用余弦函数表示其运动方程,则该单摆振动的初相为______.

2. (本题 4分) 3390

一质点作简谐振动,速度最大值 $v_{\rm m}=6{\rm cm/s}$,振幅 $A=2{\rm cm}$. 若取速度具有正向最大值的那一时刻为 t=0,则振动方程表达式为_ m.

3. (本题 4分) 3433

如图所示,两列波长为 λ 的相干波在P点相遇.波在 S_1 点振动的初相是 φ_1 , S_1 到P点的距离是 r_1 ;波在 S_2 点的初相是 φ_2 , S_2 到P点的距离是 r_2 ,以k代表零或正、负整数,则P点是干涉极大的条件为

4. (本题 4分) w001

一平面简谐波在介质中传播,振幅为 A_0 ,波的强度(平均能流密度)为 I_0 ;如该波的振幅减半,则波的强度将变为

5. (本题 4 分) t001 已知一驻波的表达式为 <i>y</i> = 0.02cos(20 <i>x</i>)cos(750 <i>t</i>) (SI),则形成此驻波的两行波的振幅为 m、波速为m/s.
6. (本题 4 分) m001 一个频率为 900 Hz 的声源静止在空气中,设有一个大反射面正在以 $v=50$ m/s 的速度接 近声源.则反射面接收到的频率为Hz,由反射面反射回来的声波波长为
7. (本题 4 分) 4265 若气体分子的平均平动动能等于 1.06×10^{-19} J,则该气体的温度 $T =$
8. $($ 本题 4 $分$ $)$ $m002$ 在一个体积不变的容器中,储有一定量的理想气体,温度为 T_0 时,气体分子的平均速率为 \overline{v}_0 ,分子平均碰撞频率为 \overline{Z}_0 ,平均自由程为 $\overline{\lambda}_0$. 当气体温度升高为 $4T_0$ 时,气体分子
的的平均速率为,平均碰撞频率为,平均自由程为
9. (本题 4 分) m003
10. (本题 4 分) m004 卡诺致冷机,其低温热源温度为 T_2 =350 K,高温热源温度为 T_1 =550 K,每一循环从低温热源吸热 Q_2 =500 J,则每一循环中外界对系统做的净功为
11. (本题 4 分) w002 1 mol 理想气体经过等温准静态过程,体积变为原来的两倍,则此过程中气体熵的增量为
12. (本题 4 分) t002 一根很长的绝缘棒,均匀带电(如图所示),单位长度上的电荷为 λ ,则在距棒的一端垂直距离为 a 的 P 点处的电场强度大小为;方向

二、计算题: (6题, 共52分)

得分

1. (本题 10分) t003

一劲度系数为k的轻弹簧下端固定,上端系一轻绳. 轻绳绕过定滑轮和质量为m的物体 连接,如图所示. 这定滑轮可看作是半径为 R、质量为 M 的圆盘,它可绕无摩擦的水平轴

转动. 试求这装置的振动周期.

得分

2. (本题 8 分) 3134

已知一平面简谐波沿x轴正方向传播,波长 $\lambda=3$ m,周期T=4 s,t=0 s时刻的波形图如 图所示. 求:

(1) o点处质点的振动表达式;

(2) 该波的波动表达式.

得分

3. (本题 8分) 5520

设由 N 个气体分子组成一热力学系统, 其速率分布函数为

$$f(v) = \begin{cases} -k(v - v_0)v & 0 \le v \le v_0 \\ 0 & v > v_0 \end{cases} \quad f(v) = \begin{cases} -k(v - v_0)v & 0 \le v \le v_0 \\ 0 & v > v_0 \end{cases}$$

试求: (1) 用 v_0 表示常量 k; (2) 气体分子的方均根速率 $\sqrt{v^2}$; (3)速率在 $0 \sim v_0/3$ 之间的气 体分子数占总分子数的百分比?

得分

4. (本题 6分) m005

某理想气体 (已知其摩尔热容比为 γ) 作如图所示的循环过程,其中 $a \rightarrow b$ 是绝热过程, $b \rightarrow c$ 是等压过程, $c \rightarrow a$ 是等体过程.已知 a 态的温度为 T_a , b 态的温度为 T_b , c 态的温度为 T_c ,求循环的热机效率.

得分

5. (本题 12分) t004

如图所示,0.1mol的单原子分子理想气体由状态 a经直线 ab 所示的过程到状态 b. 试求: (1) 该过程中气体交换的净热量,(2) 该过程中气体的最高温度.

得分

6. (本题 8分) 5095

有一带电球壳,内、外半径分别为 a 和 b,电荷体密度 $\rho = A/r$,A 是已知常量,r 为离球心的距离,在球心处有一点电荷 Q. 试求电场强度 E 的分布.

