Untitled

Nathaniel Brown, In Hee Ho, Sarah Zimmermann October 19, 2017

Introduction

The data are from a study of time to critical neurological assessment for patients with stroke-like symptoms who are admitted to the emergency room. We are interested in the factors predictive of the time to assessment following admission to the ED for n=335 patients with mild to moderate motor impairment. The goal of the analysis is to perform inferences on the impact of clinical presentation, gender, and race (Black, Hispanic, and others) on time to neurological assessment, where clinical presentation is measured as the number of the four major stroke symptoms: headache, loss of motor skills or weakness, trouble talking or understanding, and vision problems. However, as discussed in our previous report, we group Blacks and Hispanics together, and number of symptoms of 3 and 4 together, due to their small sample size.

Methods

The team has cleaned, understood, and modeled these time to critical neurological assessment for patients with stroke-like symptoms data in order to solve the scientific problem of exploring if gender, race/ethnicity, and clinical presentation have an affect on wait list to assessment. To do so the team has approached the problem as such:

Data Exploration

Variables

The original data set contains 335 observations across 9 variables. They are defined as:

Variable Name	Short Description	Type
nctdel	min of neurologist	continous
	time to assessment	
	& CT scan from	
	arrival at ER	
fail	1 if got	categorical
	neurologist/CT	
	scan & 0 otherwise	
male	1 if male, 0 if	categorical
	female	
black	1 if black, 0 if not	categorical
	black	
hisp	1 if hispanic, 0 if	categorical
	not hispanic	
$\operatorname{sn}1$	0/1 indicator 1	categorical
_	main symptom	
sn2	0/1 indicator 2	categorical
	main symptoms	
sn3	0/1 indicator 3	categorical
	main symptoms	

Variable Name	Short Description	Type
all4	0/1 indicator all main sumptoms	categorical

Exploratory Data Analysis

Initial Model Exploration

describe process of lasso, ols, and ridge

Histogram of log(data.imp\$nctdel + 0.1)

Diagnostic

OLS Logistic Regression Binned Residuals

LASSO Logistic Regression Binned Residuals

Ridge Logistic Regression Binned Residuals

Kernel Logistic Regression Binned Residuals


```
{\tt nctdel\ fail\ male\ black\ hisp\ sn1\ sn2\ sn3\ all4\ race\ sn0}
## [1,]
                     1
                            1
                                   1
                                         1
                                              1
                                                  1
                                                       1
                                                              1
## [2,]
               0
                     0
                            0
                                   0
                                         0
                                              0
                                                  0
                                                       0
                                                             0
                                                                        0 0
```



```
##
##
    Variables sorted by number of missings:
    Variable Count
##
##
      nctdel
         fail
                   0
##
        male
##
                   0
       black
                   0
##
##
        hisp
                   0
                   0
##
          sn1
##
          sn2
                   0
                   0
##
          sn3
##
         al14
                   0
                   0
##
         race
##
          sn0
                   0
```


Interpretation

	Deviance p-value
OLS	2e-04
LASSO Penalty	3e-04
Ridge Penalty	0e+00
Kernels	0e+00

ymptom0 -1.2348 0.1283 ymptom1 -0.8128 0.4192 ymptom2 -0.9683 0.3673 aceother -0.2452 0.4814 nale -0.6261 0.0439 X1 -1.6083 -0.2653 X2 -0.1101 1.2464 X3 0.1159 1.6606 X4 -0.6474 1.2667 X5 -1.0553 1.3369			
ymptom1 -0.8128 0.4192 ymptom2 -0.9683 0.3673 aceother -0.2452 0.4814 male -0.6261 0.0439 X1 -1.6083 -0.2653 X2 -0.1101 1.2464 X3 0.1159 1.6606 X4 -0.6474 1.2667 X5 -1.0553 1.3369		Lower	Upper
ymptom2 -0.9683 0.3673 eaceother -0.2452 0.4814 nale -0.6261 0.0439 X1 -1.6083 -0.2653 X2 -0.1101 1.2464 X3 0.1159 1.6606 X4 -0.6474 1.2667 X5 -1.0553 1.3369	symptom0	-1.2348	0.1283
aceother -0.2452 0.4814 nale -0.6261 0.0439 $\zeta 1$ -1.6083 -0.2653 $\zeta 2$ -0.1101 1.2464 $\zeta 3$ 0.1159 1.6606 $\zeta 4$ -0.6474 1.2667 $\zeta 5$ -1.0553 1.3369	symptom1	-0.8128	0.4192
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	symptom2	-0.9683	0.3673
$egin{array}{cccccccccccccccccccccccccccccccccccc$	raceother	-0.2452	0.4814
$egin{array}{ccccccc} X2 & -0.1101 & 1.2464 \\ X3 & 0.1159 & 1.6606 \\ X4 & -0.6474 & 1.2667 \\ X5 & -1.0553 & 1.3369 \\ \end{array}$	male	-0.6261	0.0439
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	X1	-1.6083	-0.2653
ζ4 -0.6474 1.2667 ζ5 -1.0553 1.3369	X2	-0.1101	1.2464
ζ5 -1.0553 1.3369	X3	0.1159	1.6606
	X4	-0.6474	1.2667
76 -926 4905 958 481 <i>4</i>	X5	-1.0553	1.3369
220.4300 300.4014	X6	-926.4905	958.4814

	LASSO Estimate
(Intercept)	0.0000

	LASSO Estimate
symptom0	0.0000
symptom1	0.0000
symptom2	0.0000
raceother	0.0000
male	0.0000
X1	-1.0788
X2	0.0347
X3	0.1736
X4	0.0000
X5	0.0000
X6	0.9557

	Ridge Estimate
(Intercept)	0.0000
symptom0	-0.1646
symptom1	-0.0401
symptom2	-0.0893
raceother	-0.0588
male	-0.1393
X1	-0.5499
X2	0.2039
X3	0.3068
X4	0.0513
X5	-0.0139
X6	0.9175

	Lower	Upper
symptom0	-1.3827	-0.0953
symptom1	-0.9360	0.2222
symptom2	-1.0734	0.1903
raceother	-0.2915	0.4013
male	-0.5736	0.0674
k1	-5.6259	-0.1256
k2	5.8663	13.2598

Discussion

why nothing is significant:

```
## # A tibble: 4 x 6
##
     symptom
                mean
                                         lower
                                                   upper
##
       <chr>
                <dbl> <int>
                                <dbl>
                                         <dbl>
                                                   <dbl>
## 1
           0 1.560370
                         45 0.8675425 1.306892 1.813849
## 2
           1 1.547995
                        133 0.7804779 1.415350 1.680640
## 3
           2 1.618750
                         56 0.7784150 1.414871 1.822629
## 4
          3+ 1.493333
                         25 0.6746227 1.228881 1.757785
```

```
## # A tibble: 2 x 3
##
     gender
                mean
                       median
                         <dbl>
##
               <dbl>
## 1 female 1.516541 1.433333
       male 1.606217 1.566667
## # A tibble: 2 x 3
##
                  race
                                   median
                            mean
##
                 <chr>>
                           <dbl>
                                    <dbl>
## 1 Black or Hispanic 1.727556 1.716667
## 2
                 Other 1.491938 1.383333
```

References

https://www.r-bloggers.com/imputing-missing-data-with-r-mice-package/

Credits

Survival Curves:

Question for Jonathan: how do we plot a survival curve from glm???

Kaplan–Meier Estimate $\hat{S}(t)$ with CI

Survival Distributions


```
## Call:
## survdiff(formula = Surv(timecat, fail) ~ raceother + male, data = datcat_X)
##
##
                         N Observed Expected (0-E)^2/E (0-E)^2/V
## raceother=0, male=0 95
                                 38
                                        35.6
                                                 0.164
                                                             0.26
## raceother=0, male=1 111
                                 42
                                        47.7
                                                 0.675
                                                             1.17
## raceother=1, male=0 240
                                103
                                        91.2
                                                 1.517
                                                             3.20
## raceother=1, male=1 243
                                 94
                                       102.5
                                                 0.706
                                                             1.60
##
  Chisq= 4.4 on 3 degrees of freedom, p= 0.225
```