LEIBNIZ UNIVERSITÄT HANNOVER FAKULTÄT FÜR MATHEMATIK UND PHYSIK PROF. DR. M. SCHÜTT

MSc. S. Brandhorst

Einführung in die Algebraische Zahlentheorie Sommersemester 2016 Blatt 3

1. Der n-te Potenzrestcharakter

Für einen beliebigen Ring A setzen wir $\mu_n(A) := \{a \in A \mid a^n = 1\}$. Zur Erinnerung: Ein (kommutatives) Monoid ist eine Menge zusammen mit einer assoziativen und kommutativen Verknüpfung, die ein neutrales Element besitzt.

Sei K ein Zahlkörper, A der zugehörige Ganzheitsring, und $\mathfrak p$ ein Primideal. Damit ist $k=A/\mathfrak p$ ein endlicher Körper mit $q=p^r$ Elementen. Im Folgenden wird eine zu p teilerfremde natürliche Zahl n betrachtet und es wird angenommen, dass das Polynom $f(x)=x^n-1$ über K vollständig in Linearfaktoren zerfällt.

- (a) <u>Proposition</u> $A \setminus \mathfrak{p}$ ist ein kommutatives Monoid, und die Reduktionsabbildung $A \setminus \mathfrak{p} \to k^{\times}$ ist ein Monoidhomomorphismus.
- (b) <u>Proposition</u> In jedem Körper, dessen Charakteristik die Zahl n nicht teilt, sind die Nullstellen von f (die n-ten Einheitswurzeln) paarweise verschieden.
- (c) **Proposition** Die Abbildungen $\mu_n(K) \supset \mu_n(A) \to \mu_n(k)$ sind bijektiv.
- (d) **Korollar** Es gilt: $n \mid q 1$.
- (e) <u>Proposition</u> Die Setzungen $\alpha(x) = x^n$ und $\beta(x) = x^{\frac{q-1}{n}}$ definieren eine exakte Sequenz wie folgt:

$$k^{\times} \xrightarrow{\alpha} k^{\times} \xrightarrow{\beta} \mu_n(k) \to 1$$
.

(f) <u>Definition</u> Der n-te Potenzrestcharakter zum Primideal \mathfrak{p} , in Zeichen $\left(\frac{\cdot}{\mathfrak{p}}\right)$, ist gegeben durch die folgende Verkettung von Monoidhomomorphismen:

$$A \setminus \mathfrak{p} \to k^{\times} \xrightarrow{\beta} \mu_n(k) \xleftarrow{\sim} \mu_n(A) \xrightarrow{\sim} \mu_n(K)$$
.

Gelegentlich wird eine feste Einbettung $K \subset \mathbb{C}$ gewählt und $\left(\frac{\cdot}{\mathfrak{p}}\right)$ wird als Monoidmorphismus $A \setminus \mathfrak{p} \to \mathbb{C}^{\times}$ bzw. als Gruppenhomomorphismus $k^{\times} \to \mathbb{C}^{\times}$ aufgefaßt. Für $a \in A \setminus \mathfrak{p}$ kann $\left(\frac{a}{\mathfrak{p}}\right)$ als Maß interpretiert werden, wie weit a davon entfernt ist, ein n-ter Potenzrest modulo \mathfrak{p} zu sein.

2. Zeigen Sie, dass $x^4 - 16x^2 + 4$ irreduzibel über \mathbb{Z} , aber nicht über \mathbb{F}_p für alle $p \in \mathbb{P}$ ist.