Nuclear Resonance Fluorescence Renaissance of a 70-year-old Technique

Udo Friman-Gayer^{1,2}

¹Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC

²Triangle Universities Nuclear Laboratory, Duke University, Durham, NC

Advances in Physics Seminar, 06/18/2020

Outline

- Introduction
 - 'Scattering' of Photons
- 2 Basics
 - Resonance Fluorescence in Atoms and Nuclei
 - Experiments
 - Photon Sources
- 3 Applications
 - Fundamental Research
 - Technical Applications

Resonance Fluorescence

Resonance Fluorescence

Resonance Fluorescence

 $\begin{tabular}{lll} Atom \\ \hline Res. Energy & $10^0 \, {\rm eV} \\ Res. Width & $> 10^{-7} \, {\rm eV} \\ System mass <math>\times c^2 & 10^9 \, {\rm eV} \\ \hline \end{tabular}$

	Atom
Res. Energy	$10^0\mathrm{eV}$
Res. Width	$>10^{-7}\mathrm{eV}$
System mass $\times c^2$	$10^9\mathrm{eV}$

• Photon source:

'conventional' light sources, laser

	Atom
Res. Energy	$10^0\mathrm{eV}$
Res. Width	$> 10^{-7}\mathrm{eV}$
System mass $\times c^2$	$10^9\mathrm{eV}$

Photon source: 'conventional' light sources,

'conventional' light sources laser

	Atom
Res. Energy	$10^0\mathrm{eV}$
Res. Width	$> 10^{-7}\mathrm{eV}$
System mass $\times c^2$	$10^9\mathrm{eV}$

Photon source:

'conventional' light sources, laser

	Atom
Res. Energy	$10^0\mathrm{eV}$
Res. Width	$> 10^{-7} { m eV}$
System mass $\times c^2$	$10^9\mathrm{eV}$

• Photon source:

'conventional' light sources, laser

	Atom
Res. Energy	$10^0\mathrm{eV}$
Res. Width	$> 10^{-7}{ m eV}$
System mass $\times c^2$	$10^9\mathrm{eV}$

- Photon source: 'conventional' light sources, laser
- Photon spectroscopy: prisms, diffraction grids

	Atom	Nucleus
Res. Energy	$10^0\mathrm{eV}$	$10^6\mathrm{eV}$
Res. Width	$10^{-7}\mathrm{eV}$	$10^0\mathrm{eV}$
System mass $\times c^2$	$10^9\mathrm{eV}$	$10^9\mathrm{eV}$

	Atom	Nucleus
Res. Energy	$10^0\mathrm{eV}$	$10^6\mathrm{eV}$
Res. Width	$10^{-7}\mathrm{eV}$	$10^0\mathrm{eV}$
System mass $\times c^2$	$10^9\mathrm{eV}$	$10^9\mathrm{eV}$

Photon source: radioactive sources

	Atom	Nucleus
Res. Energy	$10^0\mathrm{eV}$	$10^6\mathrm{eV}$
Res. Width	$10^{-7}\mathrm{eV}$	$10^0\mathrm{eV}$
System mass $\times c^2$	$10^9\mathrm{eV}$	$10^9\mathrm{eV}$

 Photon source: radioactive sources

⁵⁷Fe

	Atom	Nucleus
Res. Energy	$10^0\mathrm{eV}$	$10^6\mathrm{eV}$
Res. Width	$10^{-7}\mathrm{eV}$	$10^0\mathrm{eV}$
System mass $\times c^2$	$10^9\mathrm{eV}$	$10^9\mathrm{eV}$

Photon source:

radioactive sources

	Atom	Nucleus
Res. Energy	$10^0\mathrm{eV}$	$10^6\mathrm{eV}$
Res. Width	$10^{-7}\mathrm{eV}$	$10^0\mathrm{eV}$
System mass $ imes c^2$	$10^9\mathrm{eV}$	$10^9\mathrm{eV}$

• Photon source:

radioactive sources

relative recoil \approx	Photon energy
relative recoil ~	Nuclear mass $\times c^2$

	Atom	Nucleus
Res. Energy	$10^0\mathrm{eV}$	$10^6\mathrm{eV}$
Res. Width	$10^{-7}\mathrm{eV}$	$10^0\mathrm{eV}$
System mass $\times c^2$	$10^9\mathrm{eV}$	$10^9\mathrm{eV}$

• Photon source:

radioactive sources

relative recoil $pprox \frac{{\sf Photon\ energy}}{{\sf N} imes{\sf Nuclear\ mass} imes c^2}$		Atom	Nucleus	
	Res. Energy	$10^0\mathrm{eV}$	$10^6\mathrm{eV}$	
2004) 2004)	Res. Width	$10^{-7}\mathrm{eV}$	$10^0\mathrm{eV}$	
	System mass $\times c^2$	$10^9\mathrm{eV}$	$10^9\mathrm{eV}$	
ال ال	Photon source:			
المراجع المراجع المراجع	·- radioact	ive sources		
() ((((((((((((((((((

[Moon (1951), Mössbauer (1958)]

	Atom	Nucleus
Res. Energy	$10^0\mathrm{eV}$	$10^6\mathrm{eV}$
Res. Width	$10^{-7}\mathrm{eV}$	$10^0\mathrm{eV}$
System mass $\times c^2$	$10^9\mathrm{eV}$	$10^9\mathrm{eV}$

• Photon source:

radioactive sources [Moon (1951), Mössbauer (1958)], photon beams [Hayward et al. (1957)]

Realistic image of a gamma-ray detector with some indication of the dimensions. I used a picture of two people working on the Gammasphere detectors array, which had been shown in an earlier talk of the series.

	Atom	Nucleus
Res. Energy	$10^0\mathrm{eV}$	$10^6\mathrm{eV}$
Res. Width	$10^{-7}\mathrm{eV}$	$10^0\mathrm{eV}$
System mass $\times c^2$	$10^9\mathrm{eV}$	$10^9\mathrm{eV}$

• Photon source:

radioactive sources [Moon (1951), Mössbauer (1958)], photon beams [Hayward et al. (1957)]

 Photon spectroscopy: particle detectors (, X-ray diffraction)

Best of two worlds: 229mTh

A figure that illustrates the uniqueness of the ^{229m}Th 'nuclear clock isomer'.

Doppler Broadening

Center-of-mass frame

Doppler Broadening

Center-of-mass frame

Doppler Broadening

Center-of-mass frame

Nucleus-at-rest frame

Doppler Broadening

Center-of-mass frame

Nucleus-at-rest frame

Doppler Broadening

Some figure which shows that a resonance can have an arbitrary line shape due to condensed-matter effects. I used the conjecture by Lamb in his article on neutron capture by atoms in a crystal.

Center-of-mass frame

Nucleus-at-rest frame

Connection to condensed-matter physics [Lamb, (1939)]

Bremsstrahlung

- Hayward et al. (1957)
- Continuous spectrum of photons up to the maximum electron energy

Bremsstrahlung

- Hayward et al. (1957)
- Continuous spectrum of photons up to the maximum electron energy

Bremsstrahlung

- Hayward et al. (1957)
- Continuous spectrum of photons up to the maximum electron energy

Quasimonochromatic (Polarized) Photon Beams

Schematic view of the $HI\gamma S$ facility.

- Pietralla, Ahmed et al. (2002)
- Quasi-monochromatic spectrum of photons with tunable energy
- High polarization

Quasimonochromatic (Polarized) Photon Beams

Schematic view of the $HI\gamma S$ facility.

European effort
 Logo of the ELI-NP project.

- Pietralla, Ahmed et al. (2002)
- Quasi-monochromatic spectrum of photons with tunable energy
- High polarization

Spectrum

Advantages of the NRF technique

- Model-independent
- High resolution
- (Selectivity)

Disadvantages

- Nonresonant background
- Low cross section (long experiments, large samples, stable isotopes)
- Inefficient detection

r-Process Nucleosynthesis

- Synthesis of heavy elements in the universe
- Competition between photoabsorption (photodisintegration) and neutron capture

Schematic figure that shows the competition between neutron capture and photodisintegration in the r-process. I chose a figure from a textbook by C. Iliadis.

Isotope-selective Scanning

A schematic figure which show the application of the NRF method for isotope-sensitive scanning of materials. I chose a figure from a talk by R. Hajima that I found on the web. It shows how a truck is scanned for ²³⁵U using a compact few-MeV gamma-ray source.

- Narrow nuclear resonances → high sensitivity to isotopic composition
- Non-destructive and highly penetrative

Literature

This slide lists the primary literature that was used for the preparation of this talk, ordered by topic.

- Nuclear Resonance Fluorescence
 - F. R. Metzger, Resonance Fluorescence in Nuclei, Prog. Nucl. Phys. 7 (1959) 53-88
 - U. Kneissl, H. H. Pitz, and A. Zilges, Prog. Part. Nucl. Phys. 37 (1996) 349-433
 https://doi.org/10.1016/0146-6410(96)00055-5
- Wave Optics and Atomic Physics
 - W. Demtröder, Experimentalphysik 2, Elektrizität und Optik, dritte Auflage, Springer-Verlag Berlin Heidelberg (2004)
 - W. Demtröder, Experimentalphysik 3, Atome, Moleküle und Festkörper, dritte Auflage, Springer-Verlag Berlin Heidelberg (2004)

Figures I

This slide lists all figures from external sources that were used in the original version of the presentation. All websites were accessed on 06/18/2020.

- Prism: Second figure in https://de.wikipedia.org/wiki/Prisma_(Optik)
- Gammasphere: https://www.phy.anl.gov/gammasphere/
- ^{229m}Th: Figure 1 in L. von der Wense et al., Direct detection of the ²²⁹Th nuclear clock transition, Nature **533** (2016) 47-51 https://doi.org/10.1038/nature17669
- Resonance shape for a crystal: Figure 2 in W. E. Lamb, Capture of Neutrons by Atoms in a Crystal, Phys. Rev. 55 (1939) 190-197 https://doi.org/10.1103/PhysRev.55.190

Figures II

- DHIPS: Figure 6.2 in C. Romig, Investigation of Nuclear Structure with Relative Self-Absorption Measurements, Dissertation, Technische Universität Darmstadt (2015) https://tuprints.ulb.tu-darmstadt.de/4446/
- HI γ S: Figure 2 in H. R. Weller et al., Research opportunities at the upgraded HI γ S facility, Prog. Part. Nucl. Phys. **62** (2009) 257-303 https://doi.org/10.1016/j.ppnp.2008.07.001
- ELI-NP logo: https://www.eli-np.ro/
- Spectrum: Modified from U. Friman-Gayer, Probing Nuclear Structure Relevant for Neutrinoless Double-Beta Decay with Nuclear Resonance Fluorescence, Dissertation, Technische Universität Darmstadt (2020)
 - https://tuprints.ulb.tu-darmstadt.de/11385/

Figures III

- Schematic r-Process: Part (b) of Figure 5.75 in C. Iliadis, Nuclear Physics of Stars, Wiley-VCH (2015)
- Neutron star merger: First figure on https://en.wikipedia.org/wiki/Neutron_star_merger
- Isotope-selective scanning: Bottom left figure on slide 5 of https://portal.slac.stanford.edu/sites/conf_public/ facet_ii_wk_2015/Lists/Agenda1/Attachments/302/ Hajima-NRF-NDA-FACET-II.pdf