${\rm MAT}224{\rm H1S}$ - Linear Algebra II Winter 2020

Definition: A subspace of a vector space V is a subset W of V that is itself a vector space with the same operations of vector addition and scalar multiplication as in V.

\mathbf{E}

er	cise and Discussion:
1.	Why is it that every subspace is non-empty?
2.	Which vector space axioms does W automatically inherit from V ?
3.	What's left then to show that W is a subspace?

Fortunately, there is a streamlined way to do this.

Theorem: A non-empty subset W of a vector space V is a subspace of V iff $c\mathbf{x} + \mathbf{y} \in W$ whenever $\mathbf{x}, \mathbf{y} \in W$, and $c \in \mathbb{R}$.

Example: Lines and planes through the origin in \mathbb{R}^3 are subspaces of \mathbb{R}^3 .

Example: For $A \in M_{m \times n}(\mathbb{R})$, the null space of A

$$\operatorname{null}(A) = \{ \mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} = \mathbf{0} \}$$

is a subspace of \mathbb{R}^n ; and the column space of A

$$col(A) = \{ A\mathbf{x} \in \mathbb{R}^m \mid \mathbf{x} \in \mathbb{R}^n \}$$

is a subspace of \mathbb{R}^m .

Exercise and Discussion: Let $n \geq 2$ Which of the following subsets W of $M_{n \times n}(\mathbb{R})$ are subspaces of $M_{n \times n}(\mathbb{R})$?

- (a) $W = \{ A \in M_{n \times n}(\mathbb{R}) \mid A \text{ is invertible} \}$
- (b) $W = \{ A \in M_{n \times n}(\mathbb{R}) \mid A \text{ is not invertible} \}$
- (c) $W = \{A \in M_{n \times n}(\mathbb{R}) \mid \text{ the last column of } A \text{ is zero} \}$
- (d) $W = \{ A \in M_{n \times n}(\mathbb{R}) \mid A^2 = \mathbf{0} \}$