

Universidade Federal do Ceará Campus de Russas

PLANO DE ENSINO DE DISCIPLINA

Ano/Semestre 2021/1

1. Identificação					
1.1. Unidade: Campus Russas					
1.2. Curso: Ciência da Computação					
1.3. Estrutura Curricular (ano-período): 2018.2					
1.4. Nome da Disciplina: Inteligência Artificial					
1.5. Código da Disciplina: RUS0086					
1.6. Caráter da Disciplina: (X) Obrigatória () Optativa					
1.7. Regime de Oferta da Disciplina: (X) Semestral () Anual () Modular					
1.8. Carga Horária (CH)	C.H. Teórica:	C.H. Prática:	C.H. EaD:	C.H. Extensão:	
Total:					
64H	48H	16H	-	-	
1.9. Pré-requisitos (quando houver): RUS0062 - Lógica para Computação					
1.10. Co-requisitos (quando houver): -					
1.11. Equivalências (quando houver): -					
1.12. Professor(es): Bonfim Amaro Junior					
2 Instificative					

A disciplina de Inteligência Artificial estuda técnicas computacionais para solução de problemas complexos. Nesse segundo sentido, algoritmos e tecnologias especiais para solução de problemas são estudadas. A finalidade de tais estudos é enriquecer a gama de ferramentas do egresso para resolver problemas, uma das mais fundamentais atividades relacionadas à computação.

3. Ementa

Conceito de IA, Histórico e Metas. Agentes Inteligentes. Solução de Problemas, Busca e Jogos. Sistemas Lógicos, Conhecimento e Raciocínio. Sistemas Baseados em Conhecimento. Planejamento. Incerteza, Probabilidade e Teoria da Decisão. Aprendizado. Linguagem e Comunicação. Percepção. Robótica. Questões Filosóficas.

4. Objetivos – Geral e Específicos

- Introduzir os conceitos e fundamentos de Inteligência Artificial, suas técnicas, metodologias e algoritmos;
- Fornecer conceitos e ferramentas computacionais adequadas para a solução de problemas complexos;
- Discutir os princípios da inteligência, bem como o projeto e implementação de sistemas que exibem comportamento inteligente;
- Habilitar os estudantes a resolver de problemas com técnicas de IA de alto-nível baseadas em espaço de busca por meio de técnicas exaustivas e técnicas baseadas em heurísticas;
- Discutir e exercitar conceitos de Representação do Conhecimento e Raciocínio e os principais mecanismos de inferência utilizados (tais como lógica de predicados, primeira ordem, raciocínio probabilístico e fuzzy);
- Compreender abordagens de IA para jogos (game playing).

5. Calendário de Atividades				
Data	Descrição do Conteúdo	Carga Horária		
11/05/2021	Aula 01. Apresentação da disciplina e introdução ao conceito de inteligência artificial.	2h		
13/05/2021	Aula 02. Introdução à IA – Apresentação de várias visões – Documentário Discovery.	2h		
18/05/2021	Aula 03. Fundamentos da Inteligência Artificial e paradigmas de raciocínio.	2h		
20/05/2021	Aula 04. Introdução ao conceito de agente inteligente.	2h		
25/05/2021	Aula 05. Tipos de Agentes Inteligentes.	2h		
27/05/2021	Aula 06. Resolução de Problemas: Conceitos básicos e espaço de estados.	2h		
01/06/2021	Aula 07. Resolução de Problemas: Estratégias de Busca.	2h		
03/06/2021	Corpus Christi - Ponto facultativo (de acordo com a Portaria nº 430, de 30 de dezembro de 2020, do Ministério da Economia)	Oh		
08/06/2021	Aula 08. Resolução de Problemas: Busca Heurísticas.	2h		
10/06/2021	Aula 09. Resolução de Problemas: Busca Heurísticas e algoritmo A*	2h		
15/06/2021	Aula 10. Algoritmos de Busca Local e Problemas de Otimização.	2h		
17/06/2021	Aula 11. Metaheurísticas: Subida da encosta e Têmpera Simulada.	2h		
22/06/2021	Aula 12. Metaheurísticas: Busca por Feixe (Beam Search).	2h		
24/06/2021	Aula 13. Metaheurísticas: Algoritmos genéticos.	2h		
29/06/2021	Aula 14. Metaheurísticas: Algorítmos genéticos de Chaves aleatórias.	2h		
01/07/2021	Aula 15. Busca Competitivas: algoritmo minimax.	2h		
06/07/2021	1ª Avaliação de Conhecimentos (AV1)	2h		
08/07/2021	Aula 16. Introdução a representação do conhecimento.	2h		
13/07/2021	Aula 17. Sistemas baseados em conhecimento.	2h		
15/07/2021	Aula 18. Base de conhecimento e mecanismo de inferência	2h		

20/07/2021	Aula 19. Engenharia de Conhecimento em Lógica de Primeira Ordem	2h
22/07/2021	Aula 20. Aprendizagem: Conceitos Básicos	2h
27/07/2021	Aula 21. Aprendizagem: Árvores de Decisão	2h
29/07/2021	Aula 22. Aprendizagem: Redes Neurais Artificiais (Part.I)	2h
03/08/2021	Aula 23. Aprendizagem: Redes Neurais Artificiais (Part.II)	2h
05/08/2021	Aula 24. Aprendizagem por Reforço	2h
10/08/2021	2ª Avaliação de Conhecimentos (AV2)	2h
12/08/2021	Aula 25. Apresentação do ambiente <i>robocode</i> .	2h
17/08/2021	Aula 26. Aula de preparação do robôs para competição.	2h
19/08/2021	Aula 27. Entrega do código de implementação dos robôs.	2h
24/08/2021	Aula 28. Apresentação dos trabalhos práticos (TP) (robôs) – I (remoto)	2h
26/08/2021	Aula 29. Apresentação dos trabalhos práticos (TP) (robôs) — II (remoto)	2h
31/08/2021	Aula 30. Divulgação dos resultados e discussão sobre a avaliação final da disciplina.	2h
09/09/2021	Avaliação Final (AF)	2h

6. Metodologia de Ensino

- Videoaulas disponibilizadas no Youtube
 (<u>https://www.youtube.com/channel/UCNybHbNhDw3kzSbWNk1Sovg</u>)
- Encontros remotos utilizando a ferramenta Google Meet
 (<u>https://meet.google.com/btv-sywd-svs</u>);
- Conteúdo (Links e Slides) da disciplina disponibilizado no sistema acadêmico (SIGAA)
- Resolução de problemas computacionais;
- Trabalhos individuais (listas) e em grupo.

7. Atividades Discentes

Os discentes devem:

- Resolver os exercícios propostos sempre apresentando ao professor suas soluções e dificuldades.
- Escolher um problema e desenvolver um algoritmo para apresentar uma solução. (Qualquer linguagem de programação pode ser aplicada.
- Desenvolver a programação para um robô no ambiente (*ROBOCODE*) aplicando conceitos de agentes inteligentes.

8. Sistema de Avaliação

Conforme o Regimento Geral da UFC, a avaliação de rendimento do aluno far-se-á segundo os critérios de assiduidade e eficiência. Na verificação da assiduidade será aprovado o aluno que frequentar 75% (setenta e cinco por cento) ou mais da carga horária da disciplina, vedado o abono de faltas. A verificação da eficiência compreenderá, no mínimo, duas avaliações progressivas e uma

avaliação final. Será aprovado por média o aluno que apresentar média aritmética das notas resultantes das avaliações progressivas igual ou superior a 07 (sete). O aluno que apresentar a média igual ou superior a 04 (quatro) e inferior a 07 (sete), será submetido à avaliação final. Nesse caso, o aluno será aprovado quando obtiver nota igual ou superior a 04 (quatro) na avaliação final e média final igual ou superior a 05 (cinco).

Diante desse contexto, o sistema de avaliação dessa disciplina será composto, exatamente, por três avaliações progressivas (AV1, AV2 e TP). As datas de cada avaliação podem ser verificadas na seção 5. Assim, a Média das Avaliações (AV) e a Média Final (MF) serão efetivadas mediante as equações abaixo:

$$AV = \frac{(AV1 + AV2 + TP)}{3} e MF = \frac{(AV + AF)}{2}$$

Assim, cada avaliação será composta por uma lista de exercícios. Os alunos terão um tempo preestabelecido e informado pelo professor para resolver todas as questões. O envio deve ser realizado pelo SIGAA. A frequência será medida pela entrega dos exercícios. Dessa forma, todos os alunos devem entregar, pelo menos, 75% de toda atividade que for elaborada pelo professor.

Importante: Os alunos que não possuem uma estrutura (computador + internet) adequada devem entrar em contato com o professor.

9. Bibliografia Básica e Complementar

Bibliografia Básica:

- 1. RUSSELL, S.; NORVIG, P. Inteligência artificial. 2 ed. Campus, 2004. ISBN: 8535211772;
- 2. COPPIN, B; Inteligência artificial. LTC, 2010. ISBN: 9788521617297;
- 3. SHOHAM, Y. Multiagent systems: algorithms, game theoretic. Cambridge University, 2009. ISBN: 9780521899437.

Bibliografia Complementar:

- 1. OSBORNE, M.J. A course in game theory. MIT Press, 2009. ISBN: 0262650401/9780262650403;
- 2. EFRAIM, T. Decision support and business. 8 ed. Prentice Hall, 2007;
- 3. WOOLDRIDGE, M. Introduction to Multiagent Systems. Wiley, 2009. ISBN: 9780470519462;
- 4. BRACHMAN, R. Knowledge representation and reasoning. MorganKaufmann, 2004;
- 5. BRAKTO, I.Prolog Programming for Artificial Intelligence. 4 ed. Addison Wesley, 2011. ISBN 0321417461;
- 6. HAYKIN, S. Redes neurais: princípios e prática. 2 ed.Bookman, 2001.

10. Parecer

Assinatura do Professor	Prof. D. Bonfilm Amaro Junior Universidade flederal do Ceará SIAPE 3047933				
10/05/2021	Professor Responsável				
Aprovação da Coordenação	do Curso				
/	Coordenador do Curso				
Aprovação da Coordenação Acadêmica					
//	Coordenadora Acadêmica				