

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁴ : B23K 35/30, 35/368, 9/09		A1	(11) International Publication Number: WO 89/07036 (43) International Publication Date: 10 August 1989 (10.08.89)
(21) International Application Number: PCT/AU89/00045 (22) International Filing Date: 6 February 1989 (06.02.89)		(74) Agent: SMITH SHELSTON BEADLE; 207 Riversdale Road, Hawthorn, VIC 3122 (AU).	
(31) Priority Application Number: PI 6643 (32) Priority Date: 5 February 1988 (05.02.88) (33) Priority Country: AU		(81) Designated States: AT (European patent), AU, BE (European patent), CH (European patent), DE (European patent), FR (European patent), GB (European patent), IT (European patent), JP, LU (European patent), NL (European patent), SE (European patent), US.	
(71) Applicants (<i>for all designated States except US</i>): COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANIZATION [AU/AU]; Limestone Avenue, Campbell, ACT 2601 (AU). WELDING INDUSTRIES LIMITED [AU/AU]; 2-20 Austarc Avenue, Thomastown, VIC 3074 (AU). (72) Inventors; and (75) Inventors/Applicants (<i>for US only</i>) : JAMES, Horace, Stuart, Bosisto [AU/AU]; 19 Leicester Street, North Balwyn, VIC 3104 (AU). FRENCH, Ian, Edward [AU/AU]; 2/6 Allora Place, Semaphore Park, S.A. 5019 (AU).		Published <i>With international search report.</i>	

(54) Title: IMPROVED CORED ELECTRODE WIRES

(57) Abstract

A cored electrode wire for pulsed electric arc welding, wherein said core includes from 2.5 to 12% calcium fluoride, from 2 to 8% calcium carbonate, from 0.2 to 2% silicon dioxide and from 0.5 to 1.5% of a fused mixed oxide. Also disclosed is a cored electrode wire for pulsed electric arc welding, wherein said core contains from 4 to 15% elemental manganese and from 2 to 8% elemental silicon, the remainder of the core comprising fused mixed oxide, desired alloying components and iron powder. In each of the above cases, the wire is suitable for use with the following welding pulse parameters: pulse energy: 8 to 250 J and preferably 10 to 120 J; pulse frequency: 10 to 500 Hz and preferably 15 to 350 Hz; background current: 8 to 250 A and preferably 10 to 100 A; wire feed speed: 1 to 20 m/min and preferably 4 to 17 m/min.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR	France	ML	Mali
AU	Australia	GA	Gabon	MR	Mauritania
BB	Barbados	GB	United Kingdom	MW	Malawi
BE	Belgium	HU	Hungary	NL	Netherlands
BG	Bulgaria	IT	Italy	NO	Norway
EJ	Benin	JP	Japan	RO	Romania
BR	Brazil	KP	Democratic People's Republic of Korea	SD	Sudan
CF	Central African Republic	KR	Republic of Korea	SE	Sweden
CG	Congo	LI	Liechtenstein	SN	Senegal
CH	Switzerland	LK	Sri Lanka	SU	Soviet Union
CM	Cameroon	LU	Luxembourg	TD	Chad
DE	Germany, Federal Republic of	MC	Monaco	TG	Togo
DK	Denmark	MG	Madagascar	US	United States of America
FI	Finland				

- 1 -

1 TITLE: IMPROVED CORED ELECTRODE WIRES

2 Field of the Invention:

3 This invention relates to cored electrode wires for
4 pulsed electric arc welding and to a pulsed electric arc
5 welding method utilising same.

6 Background of the Invention:

7 Solid electrode wire generally suffers from lack of
8 versatility in alloy composition, since only large batches
9 are economical, and absence of the protective and cleaning
10 action provided by a slag. In addition, the solid wire/
11 conventional power supply combination can give problems with
12 lack of sidewall fusion in joining thicker sections.

13 Cored wires offer great versatility with regard to
14 alloy composition since alloy additions are made via the
15 core. They also generally give better sidewall fusion than
16 solid wires. To reliably achieve the good low temperature
17 impact properties and low weld metal hydrogen levels
18 required in certain cases, basic-flux cored or metal cored
19 wires demonstrate considerable advantage compared to
20 alternative slag systems such as rutile ones.

21 However, the combination of basic cored wire with
22 conventional power supply gives harsh welding operation, can
23 be used only in a narrow range of welding currents, and is
24 not usable for positional welding. The combination of basic
25 cored wire with pulsed power supply, on the other hand, has
26 been found to give good welding behaviour over a wide range
27 of welding currents and to offer an all-position welding
28 capability. Similarly, metal cored wires are only usable at
29 high currents with conventional power supply but, when
30 combined with pulsed power supply give good welding
31 behaviour over a wide range of welding currents and offer
32 all-position welding capability.

33 Summary of Invention and Objects:

34 It is therefore an object of a first aspect of the
35 present invention to provide cored electrode wires which are
36 suitable for use with pulsed electric arc welding programs,
37 and to provide a range of programmes suitable for use
38 therewith.

- 2 -

1 In a first aspect, the invention provides a basic flux
2 cored electrode wire for pulsed electric arc welding,
3 characterised in that the slag forming components contained
4 in the core of said electrode wire are of a lower level than
5 the slag forming components which must be contained in a
6 basic flux cored wire suitable for normal arc welding.

7 In a preferred form of the first aspect of the
8 invention, the core includes from 2.5 to 12% calcium
9 fluoride, from 2 to 8% calcium carbonate, from 0.2 to 2%
10 silicon dioxide and from 0.5 to 1.5% of a fused mixed oxide.

11 In a particularly preferred form of the invention, the
12 core includes from 2.5 to 8% calcium fluoride, from 2 to 6%
13 calcium carbonate, from 0.2 to 1% silicon dioxide and from
14 0.75 to 1.25% fused mixed oxide. In one form, the fused
15 mixed oxide may contain approximately 10% MgO, 15% MnO, 10%
16 Al₂O₃, 5% CaO, 60% SiO₂.

17 The above defined electrode is suitable for pulsed arc
18 welding with the following pulse parameters:

19 Pulse Energy 8 to 250 J and preferably 10 to 120 J
20 Pulse Frequency 10 to 500 Hz and preferably 15 to 350 Hz
21 Background Current 8 to 250 A and preferably 10 to 100 A
22 Wire Feed Speed 1 to 20 m/min and preferably 4 to 17
23 m/min

24 In a presently preferred form of the invention, the
25 core may have the following composition and is suitable for
26 use with a pulsed electric arc welding program having the
27 following pulse parameters:

28 Wire Diameters 0.9 to 1.8 mm

29 Shielding Gas Argon-carbon dioxide mixtures containing 2 to
30 25% CO₂ and, in some cases, up to 3% O₂.

31 Proportion of core - 15 to 28% of total wire weight may be
32 core

33 - preferably 18 to 25% of core

34 - specifically 23% core for 1.6mm dia
35 wires and 21% for 1.2mm dia wires.

36

37

38

- 3 -

1	<u>Core Composition</u>	<u>Range of Core</u>	
2		Preferred	
3		Broad Range	Range
5	Source of elemental Mn (such as silicomanganese or manganese)	3 to 12 (as Mn)	5 to 9
8	Source of elemental Si (such as silicomanganese or ferrosilicon)	2 to 7 (as Si)	2 to 5
11	Calcium fluoride (may be in mineral form)	2.5 to 12	2.5 to 8
13	Calcium carbonate (may be in mineral form)	2 to 8	2 to 6
15	Silicon dioxide (may be in mineral form,	0.2 to 2	0.2 to 1
17	Fused mixed oxide (Containing approximately 10% MgO, 15% MnO, 10% Al ₂ O ₃ , 5% CaO, 60% SiO ₂)	0.5 to 1.5	.75 to 1.25
21	Source of elemental Cr (such as chromium or ferrochromium)	0 to 1.5	depends on alloy required
24	Source of Ni (such as nickel powder)	0 to 15	depends on alloy required
27	Source of Mo (such as ferromolybdenum)	0 to 5	depends on alloy required
30	Source of Ti (such as ferrotitanium)	0 to 1.5 (as Ti)	0 to 0.8
32	Source of B (such as ferroboron)	0 to .045 (as B)	0 to .033
34	Iron powder	remainder	remainder
35	<u>Pulse Parameters</u>		<u>Range</u>
36	Pulse width (ms)		2 to 6
37	Peak current (A)		400 to 550
38	Minimum Pulse Frequency (Hz)		15 to 80

SUBSTITUTE SHEET

- 4 -

1	Maximum Pulse Frequency (Hz)	120 to 300
2	Minimum Background Current (A)	15 to 50
3	Maximum Background Current (A)	15 to 80
4	Minimum Wire Speed (m/min)	1.56 to 4.55
5	Maximum Wire Speed (m/min)	6.50 to 16.90

6 The specific combination of parameters needs to be
7 optimized for each specific wire.

8 In a second aspect, the invention provides a method of
9 operating a pulsed electric arc welding apparatus using a
10 cored electrode wire having a basic core composition
11 comprising the steps of adjusting the parameters of the
12 pulse program of the apparatus in accordance with the
13 following:

14	Pulse Energy	8 to 250 J and preferably 10 to 120 J
15	Pulse Frequency	10 to 500 Hz and preferably 15 to 350 Hz
16	Background Current	8 to 250 A and preferably 10 to 100 A
17	Wire Feed Speed	1 to 20 m/min and preferably 4 to 17 m/min

19 More specifically, the following parameters may be
20 used:

21	<u>Pulse Parameters</u>	<u>Range</u>
22	Pulse width (ms)	2 to 6
23	Peak current (A)	400 to 550
24	Minimum Pulse Frequency (Hz)	15 to 80
25	Maximum Pulse Frequency (Hz)	120 to 300
26	Minimum Background Current (A)	15 to 50
27	Maximum Background Current (A)	15 to 80
28	Minimum Wire Speed (m/min)	1.56 to 4.55
29	Maximum Wire Speed (m/min)	6.50 to 16.90

30 In a particularly preferred form of this aspect, the
31 core composition of the electrode wire is in accordance with
32 the definition of the first aspect of the invention
33 appearing above.

34 In a third aspect of the invention, the invention
35 provides a cored electrode wire for use with pulsed electric
36 arc welding, characterised in that the core contains a metal
37 powder composition having less manganese and silicon than
38 would be required for a cored wire for use with normal

- 5 -

1 electric arc welding.

2 It will be appreciated that the inclusion of manganese
3 and silicon in a cored wire for use with normal electric arc
4 welding influences the running characteristics and bead
5 shape of the weld metal. If insufficient manganese and
6 silicon are included in the core, the bead shape will be
7 poor and the resulting weld will have inferior mechanical
8 properties. By using a cored wire in conjunction with a
9 pulsed electric arc welding program, the present inventors
10 have found that less manganese and silicon may be included
11 in the core without adversely affecting the bead shape or
12 running characteristics, thereby resulting in superior
13 mechanical properties in the resultant weld.

14 In a preferred form of this aspect of the invention,
15 the core contains from 4 to 15%, and preferably 6 to 10% of
16 elemental manganese and from 2 to 8% and preferably from 2.5
17 to 5% elemental silicon.

18 The above electrode is suitable for pulsed arc welding
19 with the following pulse parameters:

20 Pulse Energy 8 to 250 J and preferably 10 to 120 J
21 Pulse Frequency 10 to 500 Hz and preferably 15 to 350 Hz
22 Background Current 8 to 250 A and preferably 10 to 100 A
23 Wire Feed Speed 1 to 20 m/min and preferably 4 to 17
24 m/min

25 In a particularly preferred form of this aspect, the
26 core composition is as defined below and the pulse
27 parameters of the pulsed electric arc welding program
28 suitable for use with the cored wire are as follows:

29 Wire Diameters 0.9. to 1.8 mm

30 Shielding Gas Argon-carbon dioxide mixtures containing 2 to
31 25% CO₂ and, in some cases, up to 3% O₂.

32 Proportion of core - 15 to 25% of total wire weight may be
33 core
34 - preferably 17 to 23% of core
35 - specifically 21% core for 1.6mm dia
36 wires and 1.2mm dia wires.

37

38

SUBSTITUTE SHEET

- 6 -

1 Core Composition

2	3	<u>Usage of Core</u>	4	Preferred
5 Source of elemental Mn	6 (such as manganese powder or 7 ferromanganese)	8	Broad Range	Range
9 (such as silicon powder or 10 ferrosilicon)	11 Source of Ti	12 (such as ferrotitanium)	4 to 12	6 to 10
13 Fused mixed oxide	14 (Containing approximately 10% MgO, 15 15% MnO, 10% Al ₂ O ₃ , 5% CaO, 16 60% SiO ₂)	17 Source of B	2 to 8	2.5 to 5
18 (such as ferroboron)	19 Source of elemental Cr	20 (such as chromium or 21 ferrochromium)	(as Mn)	(as Si)
22	23 Source of Ni	24 (such as nickel powder)	0 to 1.5	0.2 to 0.5
25	26 Source of Mo	27 (such as ferromolybdenum)	0 to 0.05	0.005 to .05
28	29 Iron powder	30 <u>Pulse Parameters</u>	(as B)	(as B)
31 Pulse width (ms)	32 Peak current (A)	33 Minimum Pulse Frequency (Hz)	0 to 2	depends on alloy required
34 Maximum Pulse Frequency (Hz.)	35 Minimum Background Current (A)	36 Maximum Background Current (A)	0 to 5	depends on alloy required
37 Minimum Wire Speed (m/min)	38 Maximum Wire Speed (m/min)	39	remainder	remainder
				<u>Range</u>
				2 to 6
				350 to 550
				25 to 100
				120 to 350
				10 to 50
				20 to 100
				1.26 to 3.78
				5.20 to 15.60

- 7 -

1 Th specific combination of parameters needs to be
2 optimized for each specific wire.

3 In a fourth aspect of the present invention, there is
4 provided a method of pulsed electric arc welding utilising a
5 cored electrode wire containing a metallic core,
6 characterised in that the electric arc welding apparatus is
7 programmed with the following pulse parameters:

8 Pulse Energy 8 to 250 J and preferably 10 to 120 J
9 Pulse Frequency 10 to 500 Hz and preferably 15 to 350 Hz
10 Background Current 8 to 250 A and preferably 10 to 100 A
11 Wire Feed Speed 1 to 20 m/min and preferably 4 to 17
12 m/min

13 More specifically, the following parameters may be
14 used:

<u>Pulse Parameters</u>	<u>Range</u>
16 Pulse width (ms)	2 to 6
17 Peak current (A)	350 to 550
18 Minimum Pulse Frequency (Hz)	25 to 100
19 Maximum Pulse Frequency (Hz)	120 to 350
20 Minimum Background Current (A)	10 to 50
21 Maximum Background Current (A)	20 to 100
22 Minimum Wire Speed (m/min)	1.26 to 3.78
23 Maximum Wire Speed (m/min)	5.20 to 15.60

24 Brief Description of the Drawings:

25 Figure 1 is a graph showing the variation of deposition
26 rate with welding current for a basic cored wire/pulsed
27 welding process embodying the invention compared to that
28 normally obtained from a non-pulsed commercially available
29 basic cored wire;

30 Figure 2 is a graphical summary of yield strength and
31 Charpy impact results obtained from wires embodying the
32 invention;

33 Figure 3 is a graph showing the variation of deposition
34 rate with welding current for a metal cored wire/pulsed
35 welding process embodying th invention compared with a
36 conventional metal cored wire using non-pulsed welding..

37 Description of Preferred Embodiments:

38 Several preferred embodiments of each of the above

SUBSTITUTE SHEET

- 8 -

1 aspects of the invention will now be described in greater
2 detail. The examples of preferred embodiments of the basic
3 cored electrode wire resulted from substantial
4 experimentation.

5 The welding power supply used was a Welding Industries
6 of Australia CDT Pulse Welder. A personal computer was
7 attached, via a serial link, to the pulse program storage
8 area of the power supply controls. This allowed any of the
9 ten pulse parameters in the pulse programme being used to be
10 altered at will. A commercial package would include supply
11 of an EPROM for installation into the CDT pulse welder or
12 other pulse welder, with the optimum pulse program for a
13 specific wire.

14 Example 1 - Basic wire-pulse combinations for joining HY80
15 steel.

16 One of the early experimental wires of 1.6mm diameter
17 was chosen and an exercise undertaken to find a combination
18 of pulse parameters which gave optimum operating behaviour
19 over a wide current range. This resulted in a pulse program
20 which gave good welding behaviour, a flat to slightly convex
21 fillet shape and very little spatter over the welding
22 current range 130 to 350A. Furthermore, the lower end of
23 this range (about 130 to 150A) could be used for positional
24 welding with slightly convex but acceptable vertical and
25 overhead stringer beads being achievable. Weave techniques
26 allowed the production of good profile positional fillet
27 welds.

28 Measurements were made of the variation of deposition
29 rate and efficiency with welding current using a
30 representative wire and pulse program. The deposition rate
31 results, together with those obtained previously for a
32 commercially available basic flux cored wire under steady
33 current conditions are given in Fig. 1. These show that
34 higher deposition rates at given current occur under pulsed
35 conditions and that the process under development can give
36 deposition rates of up to 7 kg of weld metal/hour at usable
37 welding current. The deposition efficiency of the
38 experimental wire was 95 to 97% across the current range.

1 CONSTITUTE SHEET

- 9 -

1 It should be noted that the Fig. 1 graph of deposition
 2 rate against cement applies to any 1.6 mm diameter basic
 3 wire embodying the invention under pulse conditions.

4 A series of experimental wires were formulated to
 5 investigate the influence of alloying additions, principally
 6 Mn, Ni, Mo, Ti and B, on the all-weld-metal mechanical
 7 properties. The Table below gives the nominal deposit
 8 compositions aimed for, and classifies the wires according
 9 to the general approach used. The weld metal from all wires
 10 contained approximately 0.06% C and 0.3 to 0.4% Si.

	<u>Wire General</u>	<u>Nominal Composition (wt %)</u>						
	<u>No.</u>	<u>Class</u>	<u>Mn</u>	<u>Ni</u>	<u>Mo</u>	<u>Ti</u>	<u>B</u>	<u>Other</u>
13	1	Not microalloyed	1.5	1.6	0.25	-	-	
14	2	" "	1.2	1.6	0.25	-	-	
15	3	" "	1.5	2.2	0.25	-	-	
16	4	" "	1.2	2.2	0.25	-	-	
17	5	" "	1.0	3.0	0.25	-	-	
18	6	Ti addition	1.5	1.6	0.25	0.04	-	
19	7	" "	1.2	1.6	0.25	0.04	-	
20	8	" "	1.2	2.2	0.25	0.04	-	
21	9	" "	1.0	3.0	0.25	0.04	-	
22	10	Ti + 25 ppm B	1.5	1.6	0.25	0.04	.0025	
23	11	" " "	1.2	1.6	0.25	0.04	.0025	
24	12	" " "	1.2	2.2	0.25	0.04	.0025	
25	13	" " "	1.0	3.0	0.25	0.04	.0025	
26	14	Ti + 50 ppm B	1.5	1.6	0.25	0.04	.005	
27	15	" " "	1.2	1.6	0.20	0.04	.005	
28	16	" " "	1.2	2.2	0.25	0.04	.005	
29	17	" " "	1.0	3.0	0.25	0.04	.005	
30	18	Ti + 50 ppm B no Mo	1.5	1.6	-	0.04	.005	
31	19	" " " "	1.2	1.6	-	0.04	.005	
32	20	" " " "	1.2	1.6	-	0.04	.005	.01 Al
33	21	" " " "	1.2	1.6	-	0.04	.005	.02 Al
34	22	" " " "	1.2	1.6	-	0.04	.005	
35	23	" " " "	1.0	3.0	-	0.04	.005	

36 Test plates were welded from each of these wires using
 37 the pulse program developed. The parent plate was C-Mn steel
 38 (250 Grade) of 19mm thickness while the joint preparation

[REDACTED]

- 10 -

1 and interpass temperature were as specified by the American
2 Welding Society (ANSI/AWS A5. 20-79, 1978) for all-weld test
3 plates. Welding was done in the flat position with
4 mechanized travel and a heat input of 1.7 kJ/mm. One all-
5 weld-metal tensile test specimen (50mm gauge length) and
6 three to five Charpy V-notch impact specimens were taken
7 from each test plate. Charpy testing was done at -51°C.

8 Figure 2 is a schematic representation of the impact
9 and tensile results obtained using the wire numbers from the
10 table. Also marked on this figure are the minimum Charpy
11 values specified and the range of yield strength values
12 specified. This figure illustrates several important
13 features of the results. It is apparent that premium Charpy
14 results, of above say 100J at -51°C, were only obtained with
15 wires microalloyed with Ti and 50 ppm B. These premium
16 Charpy results could be obtained using two distinct Mn-Ni
17 combinations: 1.2% Mn - 1.6% Ni with additions of 0.2% Mo or
18 0.02% of Al (wires 15 and 21); or 1.0% Mn - 3.0% of Ni with
19 no further addition (wire 23).

20 The yield strength results show that, of the wires
21 giving premium Charpy values, wires 21 and 23 are within the
22 range specified while wire 15 is marginally too high. Wires
23 15 and 23 gave 22% tensile elongation while wire 21 gave
24 26%.

25 Diffusible hydrogen in weld metal from these wires was
26 found to be 2 to 3 ml/100g of weld metal using the IIW
27 procedure and a gas chromatography measuring system.

28 Metallographic examination revealed that the as-welded
29 microstructure from wires giving premium impact properties
30 contained at least 90% of fine grained constituents
31 nucleated within prior austenite grains, such as acicular
32 ferrite and intragranular polygonal ferrite.

33 Based on the all-weld-metal results described above
34 wires 15, 18, 21 and 23 were selected for further
35 assessment. Flat position test plates were welded from 16mm
36 thick HY80 steel using the "groov weld metal test" geometry
37 described in U.S. Military Specification MIL-E-24403/2A
38 (SH), 1983. Heat input was approximately 1.7 kJ/mm. From

- 11 -

1 these test plates one all-weld tensile specimen, ten Charpy
2 specimens and three dynamic tear specimens were machined.
3 Half of the Charpy specimens were tested at -18°C and half
4 at -51°C while the dynamic tear tests were done at -29°C.
5 The table below lists the average values of the results.

Wire No.	<u>Tensile</u>		<u>Charpy V-notch</u>		<u>Dynamic Tear</u>	
	Yield (MPa)	Elongation (%)	Av at -18 (J)	Av at -51°C (J)	Av at -29°C (J)	
15	687	24	92	50	419	
18	673	22	118	64	584	
21	664	23	120	74	528	
23	638	23	113	87	676	

13 The yield strengths are considerably increased, by
14 between 35 and 90 MPa, compared to the all-weld-metal
15 results. This is due to incorporation in the weld of
16 alloying elements from the parent plate and, as a result,
17 wires 15, 18 and 21 (marginally) give yield strength values
18 which are too high. Wire 23 has yield strength and
19 elongation properties meeting the requirements of the U.S.
20 Military Specification referred to above. All wires meet the
21 dynamic tear requirements of the U.S. Military
22 Specification.

23 Overall therefore wire 23, which gives a nominal weld
24 metal composition of 1% Mn, 3% Ni plus microalloying
25 additions of Ti and B, gives welds in HY80 steel having the
26 best strength, elongation and impact properties.

27 The core composition and specific pulse parameters used
28 for wire 23 are listed below:

	<u>Core Composition</u>	% by weight
Iron powder		64.6
Manganese powder		4.1
Ferrosilicon		4.1
Fluorspar		5.3
Marble		4.1
Silica		0.4
Fused mixed oxide		1.0
Nickel powder		13.0
Ferrotitanium		1.0

- 12 -

1	Iron/Ferroboron agglomerate	2.4
2	<u>Pulse parameters</u>	
3	Pulse width	3.5 ms
4	Peak current	520A
5	Minimum frequency	40 Hz
6	Maximum frequency	160 Hz
7	Minimum background current	35A
8	Maximum background current	35A
9	Minimum wire speed (m/min)	2.08
10	Maximum wire speed (m/min)	9.10
11	It will be appreciated that any combination of pulse	
12	parameters which achieve the more general pulse parameters	
13	defined above will be satisfactory and will be open to	
14	selection by an experienced operator.	

15 The following examples of preferred basic flux wires
 16 for joining normal structural steels resulted from the above
 17 tests and further experimentation:

18 Example 2

19 Wire of 1.6mm diameter with 23% fill for joining normal
 20 structural grade steels using Argon - 18% CO₂ shielding gas.
 21 (Wire 244, Test plate MI)

22	<u>Core Composition</u>	% by weight
23	Iron powder	76.8
24	Silico manganese	9.8
25	Ferrosilicon	2.6
26	Fluorspar	5.3
27	Marble	4.1
28	Silica	0.4
29	Fused mixed oxide	1.0

30 Pulse parameters

31	Pulse width	4.8 ms
32	Peak current	500A
33	Minimum frequency	37.8 Hz
34	Maximum frequency	132 Hz
35	Minimum background current	34A
36	Maximum background current	40A
37	Minimum wire speed (m/min)	2.47
38	Maximum wire speed (m/min)	7.80

- 13 -

1 Operation

2 Gives good operation and bead shape over entire range for
3 flat and horizontal welding positions and gives all-position
4 welding capability at low wire feed speeds.

5 Weld Metal

6 Composition (wt %) C 0.09

7 Mn 1.24

8 Si 0.41

9 Tensile properties 560 MPa tensile strength, 30%
10 elongation

11 Impact properties average of 128J at -20°C in Charpy
12 test

13 Diffusible hydrogen less than 3 ml/100g

14 Example 3

15 Wire of 1.2mm diameter with 21% fill for joining normal
16 structural grade steels using Argon - 18% CO₂ shielding gas.
17 (Wire 244/9, test plate PT).

18 Core Composition % by weight

19 Iron powder 74.2

20 Siliso manganese 10.9

21 Ferrosilicon 2.9

22 Fluorspar 5.9

23 Marble 4.6

24 Silica 0.4

25 Fused mixed oxide 1.1

26 Pulse parameters

27 Pulse width 2.5 ms

28 Peak current 480A

29 Minimum frequency 75 Hz

30 Maximum frequency 206 Hz

31 Minimum background current 25A

32 Maximum background current 25A

33 Minimum wire speed (m/min) 4.42

34 Maximum wire speed (m/min) 11.83

35 Operation

36 Gives good operation and bead shape over entire range for
37 flat and horizontal welding positions and gives all-position
38 welding at low and intermediate wire speeds.

SUBSTITUTE SHEET

- 14 -

1 Weld Metal

2 Composition (wt %) C .09
 3 Mn 1.40
 4 Si 0.43

5 Tensile properties 605 MPa tensile strength, 25%
 6 elongation
 7 Impact properties average of 116J at -20°C in Charpy
 8 test

9 Diffusible hydrogen less than 3 ml/100g

10 Example 4 - Pulsed Basic Wire for High Strength Steel.

11 Wire of 1.6 mm diameter with 23% fill to American
 12 Welding Society classification E111T5-K4 for joining high
 13 strength steels and using Argon - 18% CO₂ shielding gas
 14 (Wire 2106, test plate SN).

15 Core Composition % by weight

16 Iron Powder	60.7
17 Manganese powder.	6.7
18 Ferrosilicon	4.5
19 Fluorspar	5.3
20 Marble	4.1
21 Silica	0.4
22 Fused mixed oxide	1.0
23 Ferrochromium	0.9
24 Nickel powder	10.4
25 Ferromolybdenum	2.1
26 Ferrotitanium	1.5
27 Iron/Ferroboron agglomerate	2.4

28 Pulse parameters

29 Pulse width	4.8 ms
30 Peak current	475A
31 Minimum frequency	37.8 Hz
32 Maximum frequency	165 Hz
33 Minimum background current	45A
34 Maximum background current	45A
35 Minimum wire speed (m/min)	2.39
36 Maximum wire speed (m/min)	8.06

37 Operation

38 Gives good operation and bead shape over entire range for

- 15 -

1 flat and horizontal welding positions and gives all-position
2 welding capability at low wire feed speeds.

3 Weld Metal

4 Composition (wt %) 0.06% C, 1.49% Mn, 0.39% Si, 2.39% Ni,
5 0.30% Cr, 0.35% Mo, 0.04% Ti, 0.0066% B.

6 Tensile properties 711 MPa yield strength,
7 809 MPa tensile strength,
8 20% elongation.

9 Impact properties average of 47J at -51°C in Charpy
10 test

11 Diffusible hydrogen less than 3 ml/100g

12 The results show that the combination of basic-flux
13 cored wires and specifically programmed pulse welding
14 provides a versatile welding process with enhanced
15 usability. High deposition downhand welding and an all-
16 position capability can be achieved with a single pulse
17 program by altering the wire feed speed and hence the
18 welding current. Furthermore, the impact and tensile
19 properties obtained from the alloy combination of wire 23
20 when using this process meet or exceed the requirements of
21 joining HY80 steel. The requirement on diffusible hydrogen
22 level is also readily met.

23 These results suggest that this combination should be
24 suitable for all-position joining of such steels and of
25 offering considerable advantages over presently available
26 processes.

27 The principal advantage of the above embodiments
28 compared to conventional basic wire welding is in the
29 improved operating behaviour and bead shape. The basic wire-
30 pulse welding combination allows a much wider range of
31 average welding currents to be used and makes all-position
32 welding with basic wires practical. An example of the
33 extended current range achieved is that, for a 1.6 mm
34 diameter basic wire and pulse welding this range is 130 to
35 350A whereas, with convention welding the range is 230 to
36 300A.

37 This advantage is illustrated in the following example
38 of a test-plate welded in the vertical position using pulse

- 16 -

1 welding, it being appreciated that it is not practical to
2 produce such a test-plate by conventional means.

3 Example 5

4 Wire of 1.2 mm diameter with 21% fill for joining
5 normal structural grade steels using Ar. 18% CO₂ shielding
6 gas (wire 244/9, test-plate LB63).

7 Core Composition and Pulse Parameters (as in Example 3).

8 Operation

9 Good vertical position welding operation illustrated by fact
10 that sound Vee-butt test plate produced to Lloyds Register
11 of Shipping "Approval of Welding Consumables" requirements.

12 Weld

13 Composition (wt %) C .07
14 Mn 1.38
15 Si .51

16 Impact Properties average of 96 J at -20°C in
17 Charpy test

18 Transverse tensile test met requirements of Lloyds
19 Register of Shipping.

20 Face and Root bend tests met requirements of Lloyds
21 Register of Shipping.

22 In addition to the above described advantages, the
23 basic cored wires contain significantly less slag forming
24 components in the core thereby resulting in less troublesome
25 welding performance while maintaining the necessary quality
26 of the weld.

27 Tests similar to the above were conducted in relation
28 to various metal cored wires, and the following examples of
29 preferred embodiments resulted:

30 Examples - Metal Cored Wires

31 Example 6 - Wire of 1.6mm diameter with 21% fill for joining
32 normal structural grade steels using Argon - 18% CO₂
33 shielding gas. (Wire 345, Test plate NA).

34 <u>Core Composition</u>	% by weight
35 Iron powder	83.2
36 Manganese powder	7.3
37 Ferrosilicon	4.4
38 Silicon powder	1.3

SUBSTITUTE SHEET

- 17 -

1	Ferrotitanium	0.8
2	Fused mixed oxide	0.4
3	Ferroboron/iron powder agglomerate	2.6
4	<u>Pulse parameters</u>	
5	Pulse width	4.5 ms
6	Peak current	500A
7	Minimum frequency	40 Hz
8	Maximum frequency	150 Hz
9	Minimum background current	33A
10	Maximum background current	45A
11	Minimum wire speed (m/min)	2.60
12	Maximum wire speed (m/min)	8.45

13 Operation

14 Very good operation and bead shape over entire range for
15 flat and horizontal welding positions. Has all-position
16 welding capability at lower wire feed speeds.

17 Weld Metal

18 Composition (wt %) 0.05C, 1.31 Mn, 0.62Si, 0.04 Ti,
19 0.0065 B

20 Tensile properties 598 MPa tensile strength,
21 24% elongation

22 Impact properties average of 109J at -20°C in Charpy
23 test

24 Example 7 - Wire of 1.2mm diameter with 21% fill for joining
25 normal structural grade steels using Argon - 18% CO₂
26 shielding gas. (Wire 345, Test plate OX).

27	<u>Core Composition</u>	% by weight
28	Iron powder	83.5
29	Manganese powder	7.3
30	Ferrosilicon	4.4
31	Silicon powder	1.3
32	Ferrotitanium	0.8
33	Fused mixed oxide	0.4
34	Ferroboron/iron powder agglomerate	2.6

35 Pulse parameters

36	Pulse width	2.6 ms
37	Peak current	400A
38	Minimum frequency	32 Hz

- 18 -

1	Maximum frequency	278 Hz
2	Minimum background current	12A
3	Maximum background current	78A
4	Minimum wire speed (m/min)	1.95
5	Maximum wire speed (m/min)	11.96

6 Operation

7 Very good operation and bead shape over entire range for
8 flat and horizontal welding positions plus very good all-
9 position welding capability at low and intermediate wire
10 feed speeds.

11 Weld Metal

12 Composition (wt %) 0.06% C, 1.49% Mn, 0.62 Si, 0.04 % Ti,
13 0.0055% B

14 Tensile properties 589 MPa tensile strength,
15 23% elongation

16 Impact properties average of 123J at -20°C in Charpy
17 test

18 There are two principal advantages of using the above
19 metal cored wires with pulsed welding compared to
20 conventional welding with metal cored wire. Firstly, in
21 common with the above basic wires, the range of usable
22 welding currents is much wider so that all-position welding
23 becomes practical at the lower currents. With 1.6 mm
24 diameter metal cored wire and pulsed welding for example the
25 range of average current that is usable is 120 to 350 A
26 while, with conventional welding it is 280 to 340A. This
27 could be illustrated using an example, along similar lines
28 to that above for the basic wire, of results from a vertical
29 weld.

30 The second principal advantage concerns the improved
31 weld mechanical properties obtained. This difference between
32 pulse and conventional metal cored wires is illustrated by
33 the following:

34	Wire Number	328	345) see Example
35	Welding Method	conventional	pulsed) 6 for 36 details
37	Test plate type	all weld metal	all weld metal	
38				

- 19 -

1 Weld Composition (wt%)

2	C	0.04	0.05
3	Mn	1.60	1.31
4	Si	1.04	0.62

5 Weld Properties

6	Impact (CVN at -20°C)	64 J	109 J
7	Tensile Strength	622 MPa	598 MPa
8	Tensil Elongation	23%	24%

9 The difference in impact properties is most important
10 because it allows the wire/pulse combination to be used in
11 more critical applications. In addition to these advantages,
12 the amounts of manganese and silicon are reduced, thereby
13 improving the mechanical properties of the weld, without
14 compromising the running characteristics and bead shape of
15 the weld.

16 Example 8 - Pulsed Metal Core Wire for High Strength Steel

17 Wire of 1.6 mm diameter with 21% fill to American
18 Welding Society classification E111TG-K3 for joining high
19 strength steels and using Argon - 18% CO₂ shielding gas (Wire
20 359, test plate UH).

	<u>Core Composition</u>	% by weight
21	Iron powder	65.5
22	Manganese powder	9.6
23	Ferrosilicon	3.8
24	Ferrotitanium	0.8
25	Silicon powder	1.1
26	Fused mixed oxide	0.4
27	Iron/Ferroboron agglomerate	2.6
28	Nickel powder	12.7
29	Ferromolybdenum	3.5

31 Pulse parameters

32	Pulse width	5.2 ms
33	Peak current	460A
34	Minimum frequency	38 Hz
35	Maximum frequency	152 Hz
36	Minimum background current	40A
37	Maximum background current	40A
38	Minimum wire speed (m/min)	2.39

SUBSTITUTE SHEET

- 20 -

1 Maximum wire speed (m/min) 7.56

2 Operation

3 Very good operation and bead shape over entire range for
4 flat and horizontal welding positions. Has all-position
5 welding capability at lower wire feed speeds.

6 Weld Metal

7 Composition (wt %) 0.05% C, 1.49% Mn, 0.40% Si, 2.6% Ni,
8 0.12% Cr, 0.56% Mo, 0.04% Ti, 0.005% B

9 Tensile properties 686 MPa yield strength,
10 797 MPa tensile strength,
11 24% elongation.

12 Impact properties average of 41J at -18°C in Charpy
13 test

14 Diffusible hydrogen 2 to 4 ml/100g

15 It will be appreciated from the above that the improved
16 cored electrode wires enable pulsed electric arc welding to
17 be performed and result in welds which are superior to welds
18 performed by known cored electrode wires using non-pulsed
19 electric arc welding techniques.

20 The various components of the core of the wire may be
21 modified without detracting from the advantages provided by
22 the present invention. For example, the various alloying
23 components may be modified to suit the required weld metal
24 properties. Similarly, the components of the fused metal
25 oxide used in each core may be modified to suit the user's
26 requirements provided the core contains sufficient easily
27 ionizable material to result in satisfactory improvement of
28 the weld quality.

- 21 -

1 CLAIMS:

- 2 1. A cored electrode wire for pulsed electric arc welding,
3 characterised in that the slag forming components contained
4 in the core of said electrode wire are of a lower level than
5 the slag forming components which must be contained in a
6 cored wire suitable for normal arc welding.
- 7 2. The electrode wire of claim 1, wherein said core
8 includes from 2.5 to 12% calcium fluoride, from 2 to 8%
9 calcium carbonate, from 0.2 to 2% silicon dioxide and from
10 0.5 to 1.5% of a fused mixed oxide.
- 11 3. The electrode wire of claim 1 or 2, wherein said core
12 includes from 2.5 to 8% calcium fluoride, from 2 to 6%
13 calcium carbonate, from 0.2 to 1% silicon dioxide and from
14 0.75 to 1.25% fused mixed oxide.
- 15 4. The electrode wire of claim 3, wherein said fused mixed
16 oxide contains approximately 10% MgO, 15% MnO, 10% Al₂O₃, 5%
17 CaO, 60% SiO₂.
- 18 5. A cored electrode wire for pulsed electric arc welding,
19 in which the wire diameter is from 0.9 to 1.8 mm, and the
20 core constitutes from 15 to 28% of the weight of the wire,
21 said core have from 3 to 12% elemental manganese, from 2 to
22 7% elemental silicon, from 2.5 to 12% calcium fluoride, from
23 2 to 8% calcium carbonate, from 0.2 to 2% silicon dioxide,
24 from 0.5 to 1.5% fused mixed oxide, from 0 to 1.5% elemental
25 chromium, from 0 to 15% nickel, from 0 to 5% molybdenum,
26 from 0 to 1.5% titanium, from 0 to 0.045% boron, the
27 remainder of the core composition being iron powder.
- 28 6. The electrode wire of claim 5, wherein the core
29 comprises from 18 to 25% of the weight of the wire, said core
30 comprising from 5 to 9% elemental manganese, from 2 to 5%
31 elemental silicon, from 2.5 to 8% calcium fluoride, from 2 to
32 6% calcium carbonate, from 0.2 to 1% silicon dioxide, from
33 0.75 to 1.25% fused mixed oxide, from 0 to 0.8% titanium, and
34 from 0 to 0.033% boron.
- 35 7. The electrode wire of any preceding claim, when used
36 with a pulsed electric arc welding apparatus having the
37 following welding pulse parameters:

38

INSTITUTE SHEET

- 22 -

1 Pulse Energy 8 to 250 J

2 Pulse Frequency 10 to 500 Hz

3 Background Current 8 to 250 A

4 Wire Feed Speed 1 to 20 m/min

5 8. The electrode wire of any preceding claim, when used
6 with a pulsed electric arc welding apparatus having the
7 following welding pulse parameters:

8 Pulse Energy 10 to 120 J

9 Pulse Frequency 15 to 350 Hz

10 Background Current 10 to 100 A

11 Wire Feed Speed 4 to 17 m/min

12 9. The electrode wire of claim 7 or 8, wherein the pulse
13 parameters are:

14 Pulse width (ms) 2 to 6

15 Peak current (A) 400 to 550

16 Minimum Pulse Frequency (Hz) 15 to 80

17 Maximum Pulse Frequency (Hz) 120 to 300

18 Minimum Background Current (A) 15 to 50

19 Maximum Background Current (A) 15 to 80

20 Minimum Wire Speed (m/min) 1.56 to 4.55

21 Maximum Wire Speed (m/min) 6.50 to 16.90

22 10. The electrode wire of claim 9, wherein the core
23 composition of the wire and the pulse parameters used are as
24 defined in any one of Examples 1 to 4 of the accompanying
25 specification.

26 11. A cored electrode wire for use with pulsed electric arc
27 welding, characterised in that the core contains a metal
28 powder composition having less manganese and silicon than
29 would be required for a cored wire for use with normal
30 electric arc welding.

31 12. The electrode wire of claim 11, wherein said core
32 contains from 4 to 15% elemental manganese and from 2 to 8%
33 elemental silicon, the remainder of the core comprising
34 fused mixed oxide, desired alloying components and iron
35 powder.

36 13. The electrode wire of claim 12, wherein said core
37 contains from 6 to 9% elemental manganese and from 2.5 to
38 5% elemental silicon.

- 23 -

1 14. The electrode wire of claim 13, wherein said wire has a
2 diameter of from 0.9 to 1.8 mm and the core comprises from
3 15 to 25% of the weight of the wire, said core composition
4 comprising from 4 to 12% elemental manganese, from 2 to 8%
5 elemental silicon, from 0 to 1% titanium, from 0 to 1.5%
6 fused mixed oxide, from 0 to 0.05% boron, from 0 to 2%
7 elemental chromium, from 0 to 20% nickel, from 0 to 5%
8 molybdenum, the remainder of the core being iron powder.

9 15. The electrode wire of claim 14, wherein said fused
10 mixed oxide contains approximately 10% MgO, 15% MnO, 10%
11 Al₂O₃, 5% CaO, 60% SiO₂.

12 16. The electrode wire of any one of claims 9 to 13, when
13 used with a pulsed electric arc welding apparatus having the
14 following pulse parameters:

15 Pulse Energy 8 to 250 J

16 Pulse Frequency 10 to 500 Hz

17 Background Current 8 to 250 A

18 Wire Feed Speed 1 to 20 m/min

19 17. The electrode wire of any one of claims 9 to 13, when
20 used with a pulsed electric arc welding apparatus having the
21 following pulse parameters:

22 Pulse Energy 10 to 120 J

23 Pulse Frequency 15 to 350 Hz

24 Background Current 10 to 100 A

25 Wire Feed Speed 4 to 17 m/min

26 18. The electrode wire of claim 17, wherein said pulse
27 parameters are:

28 Pulse width (ms) 2 to 6

29 Peak current (A) 350 to 550

30 Minimum Pulse Frequency (Hz) 25 to 100

31 Maximum Pulse Frequency (Hz) 120 to 350

32 Minimum Background Current (A) 10 to 50

33 Maximum Background Current (A) 20 to 100

34 Minimum Wire Speed (m/min) 1.26 to 3.78

35 Maximum Wire Speed (m/min) 5.20 to 15.60

36 19. The electrode wire of claim 18, wherein said core
37 composition and said pulse parameters are as defined in any
38 one of Examples 6 to 8 of the accompanying specification.

CONFIDENTIAL SHEET

- 24 -

1 20. A method of operating a pulsed electric arc welding
2 apparatus using a cored electrode wire having a basic core
3 composition comprising the steps of adjusting the parameters
4 of the pulse program of the apparatus in accordance with the
5 following:

6 Pulse Energy 8 to 250 J
7 Pulse Frequency 10 to 500 Hz
8 Background Current 8 to 250 A
9 Wire Feed Speed 1 to 20 m/min

10 21. The method of claim 20, wherein said pulse parameters
11 are:

12 Pulse Energy 10 to 120 J
13 Pulse Frequency 15 to 350 Hz
14 Background Current 10 to 100 A
15 Wire Feed Speed 4 to 17 m/min

16 22. The method of claim 21, wherein said pulse parameters
17 are:

18 Pulse width (ms)	2 to 6
19 Peak current (A)	400 to 550
20 Minimum Pulse Frequency (Hz)	15 to 80
21 Maximum Pulse Frequency (Hz)	120 to 300
22 Minimum Background Current (A)	15 to 50
23 Maximum Background Current (A)	15 to 80
24 Minimum Wire Speed (m/min)	1.56 to 4.55
25 Maximum Wire Speed (m/min)	6.50 to 16.90

26 23. A method of pulsed electric arc welding utilising a
27 cored electrode wire containing a metallic core,
28 characterised in that the electric arc welding apparatus is
29 programmed with the following pulse parameters:

30 Pulse Energy 8 to 250 J
31 Pulse Frequency 10 to 500 Hz
32 Background Current 8 to 250 A
33 Wire Feed Speed 1 to 20 m/min

34 24. A method of pulsed electric arc welding utilising a
35 cored electrode wire containing a metallic core,
36 characterised in that the electric arc welding apparatus is
37 programmed with the following pulse parameters:

38

EX-
SUBSTITUTE SHEET

- 25 -

1	Pulse Energy	10 to 120 J
2	Pulse Frequency	15 to 350 Hz
3	Background Current	10 to 100 A
4	Wire Feed Speed	4 to 17 m/min
5	25.	A method of pulsed electric arc welding utilising a cored electrode wire containing a metallic core, characterised in that the electric arc welding apparatus is programmed with the following pulse parameters:
9	Pulse width (ms)	2 to 6
10	Peak current (A)	350 to 550
11	Minimum Pulse Frequency (Hz)	25 to 100
12	Maximum Pulse Frequency (Hz)	120 to 350
13	Minimum Background Current (A)	10 to 50
14	Maximum Background Current (A)	20 to 100
15	Minimum Wire Speed (m/min)	1.26 to 3.78
16	Maximum Wire Speed (m/min)	5.20 to 15.60

1/3

FIG. 1.

2/3

Fig. 2.

3/3

FIG. 3.

INTERNATIONAL SEARCH REPORT

International Application No PCT/AU 89/00045

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) *

According to International Patent Classification (IPC) or to both National Classification and IPC

Int. Cl.⁴ B23K 35/30, 35/368, 9/09

II. FIELDS SEARCHED

Minimum Documentation Searched ?

Classification System	Classification Symbols
IPC	B23K
US Cl.	219/146.52

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are Included in the Fields Searched *

AU : IPC as above, Australian Classification 06.9

III. DOCUMENTS CONSIDERED TO BE RELEVANT*

Category *	Citation of Document, ** with indication, where appropriate, of the relevant passages ††	Relevant to Claim No. ††
X	US,A, 3825721 (CARROLL et al) 23 July 1974 (23.07.74)	(1)
X	US,A, 3787658 (KAMMER et al) 22 January 1974 (22.01.74)	(1,11)
X	US,A, 3702390 (BLAKE et al) 7 November 1972 (07.11.72)	(1-3,11)
X	US,A, 3643061 (DUTTERA et al) 15 February 1972 (15.02.72)	(1,11)
X	US,A, 3504160 (ESSERS et al) 31 March 1970 (31.03.70)	(1,11)
X	Derwent Abstracts Accession No. 83-791687/42 Class P55, JP,A, 58-151993 (NIPPON OILS & FATS KK) 9 September 1983 (09.09.83)	(1-3)
X	AU,B, 17265/70 (439774) (MUREX WELDING PROCESSES LIMITED) 27 August 1973 (27.08.73)	(1,2,11)
X	DE,A1, 3320513 (ESAB AB) 7 June 1983 (07.06.83)	(11,12)

* Special categories of cited documents: *

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier document but published on or after the International filing date

"L" document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step

"Y" document of particular relevance; the claimed invention can be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"Z" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search

15 May 1989 (15.05.89)

Date of Mailing of this International Search Report

24 May 1989 (24.05.89)

International Searching Authority
Australian Patent Office

Signature of Authorized Officer

W.J. MAJOR

FURTHER INFORMATION

VI. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING (contd)

This International Searching Authority found multiple inventions in this International application as follows:

Claims 1,11 and 20 relate to different aspects of welding with no common unifying feature.

Claim 1 is directed to the slag forming content of a welding electrode.

Claim 11 is directed to the components of a welding electrode relevant to weld bead formation.

Claim 20 is directed to a pulsed arc welding process using any welding electrode.

These aspects are entirely independent and require separate searches.

FURTHER INFORMATION CONTINUED FROM THE SECOND SHEET

V. OBSERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE¹

This International search report has not been established in respect of certain claims under Article 17(2) (a) for the following reasons:

1. Claim numbers because they relate to subject matter not required to be searched by this Authority, namely:

2. Claim numbers because they relate to parts of the International application that do not comply with the prescribed requirements to such an extent that no meaningful International search can be carried out, specifically:

3. Claim numbers because they are dependent claims and are not drafted in accordance with the second and third sentences of PCT Rule 6.4(a).

VI. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING²

This International Searching Authority found multiple inventions in this International application as follows:

See attached Sheet

1. As all required additional search fees were timely paid by the applicant, this International search report covers all searchable claims of the International application.

2. As only some of the required additional search fees were timely paid by the applicant, this International search report covers only those claims of the International application for which fees were paid, specifically claims:

3. No required additional search fees were timely paid by the applicant. Consequently, this International search report is restricted to the invention first mentioned in the claims; it is covered by claim numbers: 1 to 10

4. As all searchable claims could be searched without effort justifying an additional fee, the International Searching Authority did not invite payment of any additional fee.

Remark on Protest

- The additional search fees were accompanied by applicant's protest.
- No protest accompanied the payment of additional search fees.

