MAT 277

ANÁLISIS NUMÉRICO DE ECUACIONES EN DERIVADAS PARCIALES, SEMESTRE 1, 2022 TAREA # 2

FECHA DE ENTREGA PROBLEMAS 1-3: 30/05/2022 FECHA DE ENTREGA PROBLEMA 4: 06/06/2022

1. 2-point boundary value problem (20 puntos). Considere el siguiente problema de valores de contorno en el intervalo $\Omega = (0,1)$:

$$-u'' + u = f$$
 in Ω , $u'(0) = 1, u(1) = 1$.

- (a) Escriba una formulación débil.
- (b) Sea $\mathcal{T} = \{x_i\}_{i=1}^{N+1}$ una partición del intervalo Ω tal que $0 = x_1 < x_2 < \cdots < x_N < x_{N+1} = 1$. Defina, para $i \in \{1, \dots, N\}$, $h_i := x_{i+1} x_i$. Sea $\{\phi_i\}_{i=1}^{N+1}$ la base canónica correspondiente al espacio de elementos finitos de funciones lineales a trozos y globalmente continuas. Sea

$$U = \sum_{j=1}^{N+1} U_j \phi_j = \sum_{j=1}^{N} U_j \phi_j + \phi_{N+1}$$

la solución en tal espacio de elementos finitos. Muestre que la ecuación matricial que satisfacen $\mathbf{U} = \{U_i\}_{i=1}^N$ y $\mathbf{F} = \{F_i\}_{i=1}^N$ admite la forma:

$$(\mathbf{K} + \mathbf{M})\mathbf{U} = \mathbf{F}.$$

Encuentre las componentes de la matriz de rigidez $\mathbf{K} \in \mathbb{R}^{N \times N}$ y la matriz de masa $\mathbf{M} \in \mathbb{R}^{N \times N}$.

2. L^2 -interpolation estimate (25 puntos). Sea $\mathcal{T} = \{x_i\}_{i=0}^N$ una partición del intervalo (0,1) tal que $0 = x_0 < x_1 < \cdots < x_{N-1} < x_N = 1$. Sea $I_{\mathcal{T}}$ el operador de interpolación que es lineal a trozos y globalmente continuo sobre la partición \mathcal{T} . Sea u una función en el espacio de Sobolev $H^2(0,1)$. Muestre las estimaciones

$$||u - I_{\mathcal{T}}u||_{L^{2}(0,1)} \le C \left(\sum_{i=0}^{N-1} h_{i}^{4} ||u''||_{L^{2}(I_{i})}^{2} \right)^{\frac{1}{2}} \le Ch^{2} ||u''||_{L^{2}(0,1)},$$

donde $I_i = (x_i, x_{i+1}), h_i := x_{i+1} - x_i, y h := \max h_i$.

Hint: Muestre la siguiente desiguladad de Poincaré para funciones $v \in H^1(0,1)$ tal que v(0) = 0:

$$||v||_{L^2(0,1)} \le ||v'||_{L^2(0,1)}.$$

Proceda entonces sobre la base de un scaling argument y considere $v = u - I_{\mathcal{T}}u$.

3. Robin problem (25 puntos). Sea $\Omega = (0,1)$. Considere el siguiente problema de valores de contorno con condiciones de Robin:

$$-(au')' + cu = f \text{ in } \Omega$$

suplementado con

$$-a(0)u'(0) + h_0(u(0) - g_0) = k_0,$$

$$a(1)u'(1) + h_1(u(1) - g_1) = k_1.$$

- (a) Escriba una discretización de elementos finitos utilizando el espacio discreto de funciones lineales a trozos y continuas.
- (b) Derive una estimación del error en $H^1(0,1)$. Especifique claramente la regulidad requerida para la solución u, los coeficientes involucrados en el problema y el término forzante f.
- 4. MATLAB (30 puntos). Considere el siguiente problema de valores de contorno con un parámetro $b \in \mathbb{R}$ (Problema 4, Tarea 1):

$$-u'' + bu' + u = 2x$$
 en $(0,1)$, $u(0) = u(1) = 0$.

- (a) Escriba un código en MATLAB que implemente el problema de valores de contorno sobre una malla general $\mathcal{T} = \{x_i\}_{i=0}^N$.
- (b) Explore computacionalmente los órdenes de convergencia del error en la normas $\|\cdot\|_{H^1(\Omega)}$ y $\|\cdot\|_{L^2(\Omega)}$ sobre mallas uniformes de espaciamiento $h=5^{-1}2^{-k}$, donde $0 \le k \le 5$ y b=0 y b=100. Grafique los errores en $\|\cdot\|_{H^1(\Omega)}$ y $\|\cdot\|_{L^2(\Omega)}$ versus h en escala log-log. Explique los resultados obtenidos.
- (c) Grafique la solución exacta u y la solución de elementos finitos U para h=1/20 y h=1/80, y b=0 y b=100. Concluya.
- (d) Considere una malla graduada \mathcal{T} tal que

$$x_i = 1 - \left\lceil \frac{N-1}{N} \right\rceil^{\beta}, \qquad \beta > 1.$$

Experimente con diferentes valores de β y observe consecuencias para el caso b=100. Trate de encontrar un valor adecuado de β . Concluya.