

Decomposing salience

Philippe Tobler

Computational Psychiatry Course, TNU, Zurich, 15 December 2015

Aspects of motivated behavior

Direction Approach/Avoidance Value

Intensity Attention Salience

Aberrant salience in psychiatry

- Variation of a concept from addiction research: incentive/motivational salience (Berridge & Robinson, 1998), building on motivational psychology
- Originally developed to capture psychosis (Kapur, 2003): dysregulated stimulus-independent dopamine release; not etiological but pathophysiological
- 3. Salience assignment to irrelevant internal and external stimuli
- Specification of two aspects of dopamine theory of schizophrenia – psychosis and antipsychotic action

Antipsychotics and aberrant salience

- 1. All antipsychotics have some dopamine action
- They reduce humans' tendency to be distressed by salient percepts/associations and act on them
- They reduce animals' attempts to avoid a shockpredicting tone and their willingness to work for reward-predictive cues
- 4. Accordingly, aberrant salience was proposed to have a dopaminergic basis

Decomposing salience

- Test effect of one antipsychotic on human incentive/motivational salience (behavior only)
- Define motivational salience and test alternative definitions in the human brain
- Operationalize stimulus generalization as one form of salience attribution to non-relevant cues and test effects of antipsychotic

Testing incentive/motivational salience: Pavlovian to instrumental transfer (PIT)

Transfer test occurs in extinction (no rewards)

PIT measured by increased lever pressing for reward cues in presence of CS+

The increase is occurs for the 30s-sucrose cues (CS+) but not for control cues (CS-)

Amphetamine in the nucleus accumbens enhances PIT

Thus, dopamine may underpin motivational salience

Does dopamine D2/D3-receptor blockade with amisulpride reduce Pavlovian instrumental transfer in humans?

Animal physiology vs. human pharmacology

2 ms

Phasic effects

Tonic effects
(amisulpride has first
peak in plasma
concentration after 1 hr,
half life of about 12 hrs)

Computational and transmission functions of dopamine

Enabling functions of dopamine (e.g. motor effects in striatum)

Widespread projections of dopamine neurons

Enabling effects may be depend on function of target region

Human PIT task

Motivational aspects of reward: Pavlovianinstrumental transfer

Instrumental phase

Button pressing (VR 10 schedule) for chocolate

Pavlovian phase

CS+ (10s; chocolate)

CS – (10s; no chocolate)

Transfer phase

Present CSs in extinction, and after extinction of instrumental responding

Pavlovian-instrumental transfer (PIT): Placebo

Amisulpride reduces PIT

Amisulpride reduces PIT

Decomposing salience

- 1. Test effect of one antipsychotic on human incentive/motivational salience (behavior only)
- 2. Define motivational salience and test alternative definitions in the human brain
- Operationalize stimulus generalization as one form of salience attribution to non-relevant cues and test effects of antipsychotic

How to define salience?

- Relative to context in vision e.g. brightness, colour, contrast, movement, orientation -> topographic map (detection salience)
- Relative to internal state/goals of organism (identification/motivational salience)
 - Expectation
 - 1. Size of signed prediction error (outcome prediction)
 - 2. Size of unsigned prediction error (abs (outcome prediction))
 - 3. Novelty
 - 2. Goals
 - 1. Absolute magnitude/value (size of reward, punishment)

Dissociating value and salience

Neurons in lateral intraparietal sulcus show increasing activation with value

Value or salience?

Value or salience in parietal cortex?

Neurons in lateral intraparietal sulcus are more activated by more appetitive **and** more aversive stimuli

Thus, in order to dissociate value and salience, one needs to study both types of outcomes

Leathers & Olson, 2012

Quantifying motivational salience based on magnitude (absolute value)

Quantifying motivational salience based on probability (reliability of prediction)

Value versus motivational salience

Salience responses in the striatum?

Common activation increases (conjunction) for larger gains and larger losses suggests salience coding

Not all activations that look like salience necessarily are salience; e.g. MID task

Higher activation during anticipation of larger amounts of monetary gain/loss avoidance

Defining motivational salience: two variants of absolute value

 $\mathbf{a}_1 \quad \mathbf{a}_2$

 b_1 b_2

Elemental salience (la_il+lb_il) Global salience (la_i+b_il)

Dissociating acquired value and motivational salience

Training (100% reinforced)

Compound cues used inside scanner (choice)

Value-based choice

Distinct behavioral effects of value and salience

Value impacts choice and response time (RT), elemental salience impacts RT (compound trials) Kahnt & Tobler, 2013

Striatal value responses in both compound and single conditions

Compound offers: value responses

Temporo-parietal responses scale with elemental salience and correlate with its impact on RT

Taken together, there is a double dissociation between acquired value (striatum, not temporo-parietal region) and acquired salience (temporo-parietal region, not striatum)

Regulation of elemental salience by locus coeruleus (noradrenaline)?

During high levels of elemental salience, the temporo-parietal region and the locus coeruleus are more tightly coupled than during low levels of elemental salience (also in single offers)

Intermediate summary

Decomposing salience

- 1. Test effect of one antipsychotic on human incentive/motivational salience (behavior only)
- 2. Define motivational salience and test alternative definitions in the human brain
- Operationalize stimulus generalization as one form of salience attribution to non-relevant cues and test effects of antipsychotic

Similarity-based generalization

Conditioned responses generalise to other CSs (dogs), as function of similarity with original CS, even in absence of experience with these novel CSs; adaptive preparation of behavior to novel stimuli

(Aberrant) salience and generalization

- 1. Dopamine neurons show generalization
- Under the aberrant salience hypothesis, patients with schizophrenia can be thought to overgeneralize and at least some evidence supports this (see also the salience attribution test of Roiser et al., 2009, 2010)
- 3. In animals, antipsychotics reduce similarity-based generalization

Role of dopamine in stimulus generalization

Training and test were separated by one day

Training (day I) and test (day II)

Discrimination training (CS+ 50% reinforced)

Training (day I) and test (day II)

Training orientations are counterbalanced across subjects.

CS+ and CS- are not shown during test

Training proceeds similarly in both groups

Performance reaches asymptote within the first 50 trials in both groups

At test, amisulpride group generalizes less widely than placebo group (Δ kurtosis)

Both groups show peak-shifts (stronger responding for orientations away from CS-). Peak shifts may result from the summation of excitatory and inhibitory gradients around the CS+ and CS-

Kahnt & Tobler, submitted

Unchanged orientation discrimination performance between groups

To explain the narrower generalization, amisulpride should have improved discrimination compared to placebo

Kahnt & Tobler, submitted

A model of stimulus generalization (based on Pearce, 1987)

Inhibitory and excitatory associations change with learning.

Associations of stimuli that are similar to the currently presented stimulus have a stronger contribution than the associations of dissimilar stimuli Kahnt & Tobler, Submitted

The model captures the reduced generalization in the amisulpride group

The width of both excitatory and inhibitory generalization coefficients was smaller in the amisulpride group compared to the placebo group

Kahnt & Tobler, submitted

The model captures behavior better than alternative models

A model with a Gaussian similarity function fits both groups better than a model with an exponential similarity function

Similarity-based prediction errors in hippocampus during generalization

Across both groups, activity in the hippocampus is significantly correlated with model-derived prediction errors during generalization test

Reduction of hippocampal prediction error signaling in amisulpride group

Parallel with reduction of behavioral generalization width in amisulpride group

Functional connectivity between midbrain and hippocampus...

Seed region in the midbrain

Functional connectivity between midbrain and hippocampus is reduced under amisulpride

Midbrain connectivity is also reduced in the striatum under amisulpride compared to placebo

Under amisulpride, midbrain-hippocampus connectivity correlates particularly with the width of the inhibitory generalization gradient

No significant relation for excitatory generalization gradient and for midbrain-striatum connectivity

Summary

 Salience is in need of definition but can be studied with appropriate tasks

2. Dopamine D2/D3 receptor blockade attenuates PIT (motivational salience)

3. Elemental salience captures behavioral and neural effects better than global salience and is represented in the striatum

4. Dopamine D2/D3 receptor blockade attenuates hippocampus-mediated reward generalization

Acknowledgments

Beatrice Beck-Schimmer

Helene Haker

Quentin Huys

Thorsten Kahnt

Sabine Kern

Daniel Muller

Boris Quednow

Susanna Weber

