Notes

13 février, 2015

weierstrass m-test

if $f_k: S \to \mathbb{R}^n$ and for all k there is M_k with $||f_k||_{\infty} \leq M_k$ then if $\sum M_k$ converges then the series $\sum f_n$ converges uniformly.

that is to say, if we can bound f_n by M_n and the series of M_n converges, then f_n converges.

example

if $\sum_{n=1}^{\infty} |a_n| < \infty$ then $\sum_{n=1}^{\infty} a_n \cos(nx)$ converges uniformly on \mathbb{R} . $|a_n \cos(nx)| \le |a_n|$ for any x. $a_n = M_n \dots \square$ note that $\sum a_n \cos(nx)$ is continuous because $a_n \cos(nx)$ is continuous and $\sum a_n \cos(nx)$ converges uniformly.

theorem

if $f_n(x)$ is continuous and $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly to F(x) then F(x) is continuous (the sums are continuous if f_n is continuous)

example

 $\sum_{n=1}^{\infty} x^n e^{-nx} \text{ converges uniformly on } [0,A] \text{ for any } A>0.$ $|x^n e^{-nx}| \leq |x^n| \leq A^n. \ f'(x) = (nx^{n-1}e^{-nx}) - nx^n e^{-nx} = ne^{-nx}x^{n-1}(1-x) = 0 \text{ so critical points are } 0,1,A.$ $f'' \text{ shows us that } 1 \text{ is concave down so it is a max. and so } x^n e^{-nx} \leq e^{-n} \text{ on } [0,\infty).$ $\text{so } \sum e^{-n} = \sum \left(\frac{1}{e}\right)^n \text{ which is geometric and so it converges to } \left(\frac{1}{1-\frac{1}{e}}\right) - 1 \text{ by m-test we converge uniformly on } [0,\infty)$