

SECOND SEMESTER 2023 - 2024 Course Handout Part II

09-01-2024

In addition to Part I (General Handout for all courses appended to the time table) portion:

Course Number : MATH F113

Course Title : PROBABILITY & STATISTICS

Instructor-In charge: Nirman Ganguly

Instructors : D K Satpathi, Sayan Ghosh, Sabyasachi Dey, Farida Parvez Barbhuiya, PTV

Praveen Kumar, Manish Kumar, B Mishra, K Venkata Ratnam, Jagan Mohan J,

N. Kishore Kumar, Sumit Kumar V, Santanu Koley, Sajith P, Tathe Kartik Vilasrao, Bhawna, Subhendu Paul, Sneha Pradhan, Gaurav Narayanrao Gadbail, Dhrubajyoti Sarkar, Debasmita Mohanty, Sayantan Ghosh, Ashwini S, Shravani Rao, Lakhan Valmik Jaybhaye, Animesh Singh, Suman Prabha Yadav, Komal Kumar, Md Imdadul Islam, Rabindranath Chakrabortty, Sushil Pathak.

1. Scope and objective of the course:

Probability theory deals with many real-life problems, which either inherently involve the chance phenomena or describing the behaviour of the system explicitly with statistical properties. Interpretation of the system behaviour in many engineering and sciences depends on concept of probability and statistics that familiarize with the computational and analytical aspects. The course deals with the basic properties of various distributions and other related things.

2. Text Books:

Jay L Devore, Probability and Statistics for Engineering and the Sciences, 9th Edition, Cengage Learning, 2016.

3. Reference Books:

- 1. Johnson, R.A.: Miller & Freund's Probability and Statistics for Engineers, 9th. Ed., Pearson, 2017.
- 2. Sheldon M. Ross: Introduction to Probability and Statistics for Engineers and Scientists, Fourth Edition, Elsevier, Academic Press, 2010.
- 3. Walpole, R.E., Myers R.H., Myer S.L., Ye K.: Probability and Statistics for Engineers and Scientists, 8th Edition, Pearson Education, 2008.

4. Lecture Plan:

Lecture	Learning Objectives	Topics to be covered	Chapter in the Text Book
1-3	Probability theory makes predictions about experiments whose outcomes depend upon chance. How to state the three axioms of probability and use them to derive basic facts about a probability function. Learn about three approaches of defining probabilities and their interpretations. Introduce conditional Probability and its applications	Quick Review of the following Concepts Introduction to probability, sample spaces and events, Axioms, Interpretations and Properties of Probability, Conditional Probability, Independence.	2.1-2.5
4-5	To gain knowledge on how to define a random variable and identify various important and commonly used discrete	Random Variables, Probability Distributions for Discrete Random Variables, Expected Values, Moment Generating Function (MGF)	3.1, 3.2, 3.3, 5.11 (R-1)
6-9	distributions.	The Binomial Probability Distribution, Hypergeometric and Negative Binomial	3.4, 3.5, 3.6

	T		
		Distributions, Geometric Distribution, The	
		Poisson Probability Distribution	
10-12	To gain knowledge on various	Continuous Random Variables,	4.1, 4.2,
	important and commonly used	Probability Density Functions,	5.11(R-1)
	continuous distributions	Cumulative Distribution Functions and	
		Expected Values, Moment Generating	
		Function (MGF)	
13-17	To gain knowledge on most	The Normal Distribution, The Exponential	4.3, 4.4, 4.5,
	important continuous distribution	and Gamma Distributions, Chi-Square, Log	6.7 (R-1)
	(Normal distribution) and its	Normal Distributions and Transformation	
	applications in real life.	Methods to Obtain Distributions.	
18-19	Introduce simulation and how to	Simulation – Discrete and Continuous	4.10 (R-1),
	simulate complex systems.	random variables	5.14 (R-1)
20-22	Develop probability models	Jointly Distributed Random Variables,	5.1, 5.2
	involve several random variables	Expected Values, Covariance, and	
	simultaneously	Correlation	
23-25	Introduce Statistics and their	Statistics and Their Distributions, The	5.3, 5.4, 5.5
	distributions.	Distribution of the Sample Mean, The	
26.25	TT	Distribution of a Linear Combination	64.60
26-27	How to estimate population's	Some General Concepts of Point	6.1, 6.2
20.24	parameters.	Estimation, Methods of Point Estimation	74 72 72
28-31		Basic Properties of Confidence Intervals,	7.1, 7.2, 7.3,
		Large-Sample Confidence Intervals for a	7.4
		Population Mean and Proportion, Intervals Based on a Normal Population	
		Distribution, Confidence Intervals for the	
		Variance and Standard Deviation of a	
		Normal Population	
32-34	Introduce concepts of hypothesis	Hypotheses, Test Procedures and P-values,	8.1, 8.2
52 54	testing and its applications in real	z-tests for hypothesis about a Population	0.1, 0.1
	world problems	Mean	
35-37	1 .	One sample t-test, Tests Concerning a	8.3, 8.4
		Population Proportion	
38-40	Objective is how to exploit the	The Simple Linear Regression Model,	12.1,12.2,12.5
	relationship between two or more	Estimating Model Parameters, Correlation	
	variables by introducing		
	predictive models.		

5. Evaluation Scheme:

Evaluation Component	Duration	Weightage	Date & Time	Nature of Component
		10%		
Classroom Participation				
Quiz- 1	To be announced in the class	10%	To be announced in the class	Closed Book
Mid Semester Examination	90 mins	30%	13/03 - 9.30 - 11.00AM	Open book
Quiz- 2	To be announced in the class	10%	To be announced in the class	Closed Book
Comprehensive Examination	180 mins	40%	10/05 AN	Closed Book

Total Marks: 200

- **6. Chamber consultation hour:** To be announced in the class.
- **7. Notices:** The notices concerning this course will be displayed on the CMS Notice Board only.
- **8. Make-up Policy**: Make-up will be given only for very genuine cases and prior permission has to be obtained from the I/C.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor In charge MATH F113