Lab02 Metoda najmniejszych kwadratów

Patryk Blacha, Radosław Szepielak

26 marca 2025

Spis treści

1	Wprowadzenie teoretyczne	1
	1.1 Metoda najmniejszych kwadratów w klasyfikacji	1
2	Metodologia	1
	2.1 Zbiór danych i przygotowanie	1
	2.2 Proces przetwarzania	
3	Analiza numeryczna	2
	3.1 Stabilność obliczeniowa	2
4	Wyniki eksperymentalne	3
	4.1 Porównanie skuteczności	3
	4.2 Szczegółowa analiza błędów	3
5	Dyskusja	3
	5.1 Interpretacja wyników	3
	5.2 Ograniczenia metody	

1 Wprowadzenie teoretyczne

1.1 Metoda najmniejszych kwadratów w klasyfikacji

Metoda najmniejszych kwadratów (MNK) została zastosowana do problemu klasyfikacji binarnej poprzez odpowiednie przekształcenie etykiet. Dla macierzy cech $\bf A$ i wektora $\bf b$ rozwiązanie wyraża się wzorem:

$$\mathbf{w} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b}$$

gdzie ${\bf w}$ zawiera optymalne wagi modelu.

2 Metodologia

2.1 Zbiór danych i przygotowanie

- Zbiór Breast Cancer Wisconsin zawierający 30 cech diagnostycznych
- $\bullet\,$ Podział na treningowy (300 próbek) i walidacyjny (260 próbek)
- Kodowanie etykiet: 1 (złośliwy), -1 (łagodny)

Rysunek 1: Rozkład wartości cechy 'radius (mean)' z podziałem na klasy

2.2 Proces przetwarzania

- 1. Normalizacja brakująca (dane już wystandaryzowane)
- 2. Generowanie cech kwadratowych dla wybranych atrybutów
- 3. Budowa macierzy projektowych dla modeli liniowych i nieliniowych

Rysunek 2: Posortowane wartości cechy 'radius (mean)'

3 Analiza numeryczna

3.1 Stabilność obliczeniowa

- \bullet Współczynnik uwarunkowania dla modelu liniowego: 2.10×10^{12} Ten współczynnik jest wysoki, co wskazuje na potencjalne problemy numeryczne. Macierz A jest prawdopodobnie źle uwarunkowana, co może prowadzić do niestabilnych wyników.
- \bullet Współczynnik uwarunkowania dla modelu kwadratowego: 1.07×10^{18} Ten współczynnik jest dużo wyższy niż dla modelu liniowego, co wskazuje na złe uwarunkowanie macierzy. Wyniki uzyskane tą metodą są prawdopodobnie mało wiarygodne.
- Współczynnik uwarunkowania dla modelu liniowego z regularyzacją: 5.31×10^{10} Współczynnik uwarunkowania jest niższy niż w przypadku metody bez regularyzacji i metody

kwadratowej, ale nadal wysoki. Regularyzacja poprawiła uwarunkowanie macierzy, ale nadal istnieje ryzyko niestabilności.

• Współczynnik uwarunkowania dla modelu liniowego SVD: 1.45×10^6 Współczynnik uwarunkowania jest znacznie niższy niż w poprzednich przypadkach, co sugeruje, że metoda SVD jest bardziej stabilna numerycznie.

4 Wyniki eksperymentalne

4.1 Porównanie skuteczności

Model	Dokładność		
Liniowy	97.31%		
Liniowy SVD	97.31%		
Liniowy z regularyzacją	97.69%		
Kwadratowy	91.92%		

Tabela 1: Porównanie efektywności modeli

4.2 Szczegółowa analiza błędów

Model	TP	TN	FP	$\mathbf{F}\mathbf{N}$
Liniowy	58	195	5	2
Liniowy SVD	58	195	5	2
Liniowy z regularyzacją	58	196	4	2
Kwadratowy	55	184	16	5

Tabela 2: Macierz pomyłek dla różnych modeli.

5 Dyskusja

5.1 Interpretacja wyników

- Wysoka dokładność modelu liniowego sugeruje liniową separowalność danych
- Spadek dokładności dla modelu kwadratowego wskazuje na:
 - * Przeuczenie na szumach
 - * Problemy numeryczne związane z wysokim współczynnikiem uwarunkowania

5.2 Ograniczenia metody

- Wrażliwość na współliniowość cech
- Brak automatycznej selekcji cech
- Problemy z interpretacją wag przy wysokiej korelacji zmiennych

Pełne parametry modeli

```
Wagi modelu liniowego (pierwsze 5):
- Bias: -6.172
- radius_mean: -0.608
- texture_mean: 0.025
- perimeter_mean: 0.078
- area_mean: 0.00058
```

Literatura

 $-\,$ Materiały pomocnicze do laboratorium zamieszczone na platformie Teams (lab02/lab2-intro.pdf)