Advanced Data Structures Lab					
Course Code: 19CSP221/ 19ITP221	Year and Semester: II-II	L	Т	Р	С
Prerequisites: Prior knowledge of programming language(s) and basic Data Structures and Algorithms		0	0	3	1.5

Course Objectives:

- **1.** Ability to apply computational thinking to a diverse set of problems.
- **2.** Ability to adapt to new challenges and computational environments.
- **3.** Proficiency in the design and implementation of algorithms.

Course Outcomes:

At the end of the course student will be able to:

- 1. CO1: Select the most appropriate data structure and defend the selection.
- 2. CO2: Appropriately solve a variety of computational problems.
- 3. CO3: Communicate their results and describe an algorithm.

List of experiments:

Prerequisites: Solve the following problems in Hackerrank

- 1. Time Conversion
- 2. Balanced Brackets
- 3. Queue using 2 Stacks
- 4. Cycle Detection

UNIT I

- 1 Implement a dictionary (Division Method)
- 2 Implement Linear Probing on a dictionary
- 3 Implement Quadratic Probing on a dictionary
- 4 Implement Double Hashing.
- 5 Implement Separate Chaining.
- 6 String Pairs / Anagram (Hackerrank)

UNIT II

- 7 Implement Binary Heap Operations.
- 8 Minimize the Sum (Hackerrank)
- 9 Implement Expression Tree.

UNIT III

- 10 Implement Operations on Binary Search Tree non recursive.
- 11 Implement AVL Tree.

UNIT IV

- 12 Implement Prims Algorithm
- 13 Implement Krushkal's Algorithm
- 14 Implement Sollin's Algorithm
- 15 Implement Dijkstra's Algorithm
- 16 Implement shortest path between all pair of vertices.
- 17 Implement Island Strikes. (Hackerrank)
- 18 Implement Pawn Moves. (Hackerrank)

UNIT V

- 19 Implement Brute force pattern matching algorithm.
- 20 Implement Boyer-Moore pattern matching algorithm.
- 21 Implement Knuth-Morris pattern matching algorithm.
- 22 Implement Counting Numeric sub sequences. (Hackerrank)