Start coding or $\underline{\text{generate}}$ with AI.

ABOUT THE DATASET

This dataset primarily focuses on the diagnosis of breast cancer, specifically distinguishing between malignant (cancerous) and benign (non-cancerous) tumors based on various attributes derived from digitized images of fine needle aspirates (FNA) of breast masses

Double-click (or enter) to edit

IMPORTING LIBRARIES AND LOADING DATA

import numpy as np
import pandas as pd
df=pd.read_csv('/content/data.csv')
df

Ξ

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	p
0	842302	М	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.30010	
1	842517	M	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.08690	
2	84300903	M	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.19740	
3	84348301	M	11.42	20.38	77.58	386.1	0.14250	0.28390	0.24140	
4	84358402	М	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.19800	
564	926424	M	21.56	22.39	142.00	1479.0	0.11100	0.11590	0.24390	
565	926682	М	20.13	28.25	131.20	1261.0	0.09780	0.10340	0.14400	
566	926954	M	16.60	28.08	108.30	858.1	0.08455	0.10230	0.09251	
567	927241	M	20.60	29.33	140.10	1265.0	0.11780	0.27700	0.35140	
568	92751	В	7.76	24.54	47.92	181.0	0.05263	0.04362	0.00000	
569 rc	ws × 33 colu	umns								

DATA INFORMATIONS

df.head()

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	poi
0	842302	М	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	
1	842517	M	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	
2	84300903	М	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	
3	84348301	М	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	
4	84358402	М	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	
	ows × 33 colu	ımns								

df.tail()

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	poi
564	926424	М	21.56	22.39	142.00	1479.0	0.11100	0.11590	0.24390	
565	926682	M	20.13	28.25	131.20	1261.0	0.09780	0.10340	0.14400	
566	926954	M	16.60	28.08	108.30	858.1	0.08455	0.10230	0.09251	
567	927241	М	20.60	29.33	140.10	1265.0	0.11780	0.27700	0.35140	
568	92751	В	7.76	24.54	47.92	181.0	0.05263	0.04362	0.00000	
5 rows × 33 columns										

```
df.columns
```

df.isna().sum()

id 0 diagnosis radius_mean texture_mean 0 perimeter_mean 0 area mean 0 smoothness mean 0 0 compactness mean concavity_mean 0 concave points_mean 0 symmetry_mean 0 fractal_dimension_mean 0 radius_se 0 texture_se perimeter_se area se 0 smoothness se 0 compactness_se 0 concavity_se 0 0 concave points_se 0 symmetry_se fractal_dimension_se 0 radius_worst 0 texture_worst 0 perimeter_worst area_worst smoothness worst 0 compactness_worst 0 concavity_worst 0 concave points_worst 0 symmetry_worst 0 fractal_dimension_worst 0 Unnamed: 32 569 dtype: int64

DROPPING UNWANTED COLUMNS

df.drop(['id','Unnamed: 32'],axis=1,inplace=True)
df

	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	<pre>concave points_mean</pre>	
0	М	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.30010	0.14710	
1	M	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.08690	0.07017	
2	M	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.19740	0.12790	
3	М	11.42	20.38	77.58	386.1	0.14250	0.28390	0.24140	0.10520	
4	М	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.19800	0.10430	
564	М	21.56	22.39	142.00	1479.0	0.11100	0.11590	0.24390	0.13890	
565	М	20.13	28.25	131.20	1261.0	0.09780	0.10340	0.14400	0.09791	
566	М	16.60	28.08	108.30	858.1	0.08455	0.10230	0.09251	0.05302	
567	М	20.60	29.33	140.10	1265.0	0.11780	0.27700	0.35140	0.15200	
568	В	7.76	24.54	47.92	181.0	0.05263	0.04362	0.00000	0.00000	
569 ro	569 rows × 31 columns									

df.dtypes

diagnosis object radius_mean float64

•	
texture_mean	float64
perimeter_mean	float64
area_mean	float64
smoothness_mean	float64
compactness_mean	float64
concavity_mean	float64
concave points_mean	float64
symmetry_mean	float64
fractal_dimension_mean	float64
radius_se	float64
texture_se	float64
perimeter_se	float64
area_se	float64
smoothness_se	float64
compactness_se	float64
concavity_se	float64
concave points_se	float64
symmetry_se	float64
fractal_dimension_se	float64
radius_worst	float64
texture_worst	float64
perimeter_worst	float64
area_worst	float64
smoothness_worst	float64
compactness_worst	float64
concavity_worst	float64
concave points_worst	float64
symmetry_worst	float64
<pre>fractal_dimension_worst</pre>	float64
dtype: object	

DATA VISUALIZATION

```
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.graph_objects as go
import plotly.express as px

diabetes_counts = df['diagnosis'].value_counts()
plt.bar(diabetes_counts.index, diabetes_counts.values, color=['lightblue', 'lightcoral'])
plt.xlabel('Diagnosis')
plt.ylabel('Count')
plt.title('Cancer diagnosis')
plt.xticks(['B', 'M'], ['Benign', 'Malignant'])
plt.show()
```


According to the plot above, we can see that the number of benign is more than malignant

```
fig,axes = plt.subplots(nrows=8,ncols=4,figsize=(15,18))

column_names=df.columns

for i,column in enumerate(column_names):
    row = i // 4  # Calculate row index
    col = i % 4
    sns.histplot(data=df[column], bins=10, color='skyblue',kde=True, edgecolor='black', ax=axes[row, col])

    # Set labels and title
    axes[row, col].set_xlabel(f'{column}')
    axes[row, col].set_ylabel('Frequency')
    axes[row, col].set_ylabel('Frequency')
    axes[row, col].set_title(f'Histogram of {column}')

# Adjust layout
plt.tight_layout()

# Show the plots
```


<ipython-input-53-268270cf5de5>:3: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future ver correlation_matrix = df.corr()

SEPARATING INPUT AND OUTPUT AS X AND Y

x=df.drop(['diagnosis'],axis=1)

	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	concave points_mean	symmetry_	
0	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.30010	0.14710	0.:	
1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.08690	0.07017	0.	
2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.19740	0.12790	0	
3	11.42	20.38	77.58	386.1	0.14250	0.28390	0.24140	0.10520	0	
4	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.19800	0.10430	0.	
564	21.56	22.39	142.00	1479.0	0.11100	0.11590	0.24390	0.13890	0.	
565	20.13	28.25	131.20	1261.0	0.09780	0.10340	0.14400	0.09791	0.	
566	16.60	28.08	108.30	858.1	0.08455	0.10230	0.09251	0.05302	0.	
567	20.60	29.33	140.10	1265.0	0.11780	0.27700	0.35140	0.15200	0	
568	7.76	24.54	47.92	181.0	0.05263	0.04362	0.00000	0.00000	0.	
569 ro	569 rows × 30 columns									

```
y=df['diagnosis']
     0
            Μ
     1
            М
     2
            Μ
     3
     4
            Μ
     564
     565
     566
     567
     568
            В
     Name: diagnosis, Length: 569, dtype: object
```

TRAIN TEST SPLIT

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.30,random_state=42)
```

NORMALIZATION

HYPER PARAMETER TUNING

```
from sklearn.model_selection import GridSearchCV
from sklearn.neighbors import KNeighborsClassifier
knn=KNeighborsClassifier()
param={'n_neighbors':[3,5,7,9],'weights':['uniform','distance']}
gd=GridSearchCV(knn,param,cv=10,scoring='accuracy')
gd.fit(x_train,y_train)
print(gd.best_params_)
```

```
{'n_neighbors': 5, 'weights': 'uniform'}
```

MODEL CREATION AND PERFORMANCE EVALUATION

```
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import confusion_matrix,accuracy_score
from sklearn.metrics import classification_report
k_model=KNeighborsClassifier(n_neighbors=7)
n model=GaussianNB()
s_model=SVC()
r_model=RandomForestClassifier()
d_model=DecisionTreeClassifier(criterion='entropy')
lst_model=[k_model,n_model,r_model,s_model,d_model]
for i in lst_model:
 print('model is',i)
 i.fit(x_train,y_train)
 y_pred=i.predict(x_test)
 print("*"*100)
 print(confusion_matrix(y_test,y_pred))
 print("Accuracy score is",accuracy_score(y_test,y_pred))
 print(".....")
 print(classification_report(y_test,y_pred))
    model is KNeighborsClassifier(n_neighbors=7)
    [[105 3]
     [ 4 59]]
    Accuracy score is 0.9590643274853801
    .....classification Report.....
                          recall f1-score support
                precision
                            0.97
                                       0.97
                                                 108
                     0.95
                             0.94
                                      0.94
                                                 63
                                       0.96
                                                171
       accuracy
                     0.96
                              0.95
       macro avg
                                       0.96
                                                171
    weighted avg
                     0.96
                             0.96
                                       0.96
                                                171
    model is GaussianNB()
    [[103 5]
     [ 6 57]]
    Accuracy score is 0.935672514619883
    .....classification Report.....
                           recall f1-score support
                precision
                     0.94
                              0.95
                                       0.95
                                                108
              В
                             0.90
              Μ
                     0.92
                                       0.91
                                                 63
        accuracy
                                       0.94
                                                171
       macro avg
                     0.93
                              0.93
                                       0.93
                                                171
                     0.94
    weighted avg
                             0.94
                                       0.94
    model is RandomForestClassifier()
                                 **********************
    [[107 1]
     [ 4 59]]
    Accuracy score is 0.9707602339181286
    .....classification Report.....
                precision
                           recall f1-score support
              В
                     0.96
                              0.99
                                       0.98
                                                108
                     0.98
                              0.94
                                       0.96
              Μ
                                                 63
                                       0.97
                                                171
       accuracy
      macro avg
                     0.97
                              0.96
                                       0.97
                                                171
                     0.97
                              0.97
                                       0.97
    weighted avg
                                                171
```