

RZ/A2M Group

Blinky Sample Program FreeRTOS Application Note

Introduction

This application note covers the operation of the Blinky sample application running under FreeRTOS on the RZ/A2M CPU board.

It provides a comprehensive overview of the software. For further details please refer to the software itself.

The user is assumed to be equipped with an RZ/A2M CPU board.

Target Device

RZ/A2M

When using this application note with other Renesas MCUs, careful evaluation is recommended after making modifications to comply with the alternative MCU.

Contents

1. Spec	cifications	5
2. Prov	ven Operating Conditions	7
3. Refe	erence Application Notes	8
	dware	
	ardware Configuration	
	ns used	
	ware	
5.1 Op	peration Overview	10
5.2 Pe	ripheral Setting and Memory Address Map in Sample Program	12
5.2.1	Peripheral setting	12
5.2.2	Memory Address Map	13
5.2.3	MMU Configuration	14
5.2.4	Virtual Address Space in Sample Program	19
5.2.5	Section setup in the sample program	21
5.2.6	L1/L2 Cache Settings	23
5.2.7	Exception Vector Table	25
5.2.8	Processing for RTC and USB unused channel	26
5.3 Int	terrupts to be used	28
5.4 Fix	xed-width types	28
5.5 Cc	onstants	29
5.5.1	Direct related constants	29
5.5.2	CPG related constants	30

5.5.3	MMU related constants	31
5.5.4	INTC related constants	34
5.5.5	OSTM related constants	34
5.5.6	SCIFA related constants	35
5.5.7	GPIO related constants	36
5.6 Va	riables	38
5.6.1	direct related variables	38
5.6.2	CPG related variables	39
5.6.3	MMU related variables	39
5.6.4	INTC related variables	39
5.6.5	OSTM related variables	40
5.7 Fu	nctions	41
5.8 Fu	nction Specification	43
6. Sam	ple Code	46
7. Refe	erence Documents	46

List of Abbreviations and Acronyms

API Application Programming Interface ARM Advanced RISC Machines BSS Block Started by Symbol BTAC Branch Target Address Cache CPG Clock Pulse Generator CPU Central Processing Unit DACR Domain Access Control Register DMAC Direct Memory Access Controller FIFO First In First Out FIQ Fast Interrupt FPU Floating Point Unit GPIO General Purpose Input Output INTC INTerrupt Controller IO Input/Output IRQ Interrupt ReQuest L1 Level 1 (primary cache) L2 Level 2 (secondary cache) LED Light Emitting Diode LSB Least Significant Bit MCU MicroController Unit MMU Memory Management Unit NMI Non-Maskable Interrupt OS Operating System OSTM Operating System Timer Module PC Personal Computer PLL Phase-Locked Loop RAM Random-Access Memory ROM Read Only Memory RTC Real Time Clock SC Smart Configurator SCHAM Synchronous Dynamic Random-Access Memory SPI Serial Peripheral Interface STB STandBy module STDIO Standard Input/Output	Abbreviation	Full Form
BSS Block Started by Symbol BTAC Branch Target Address Cache CPG Clock Pulse Generator CPU Central Processing Unit DACR Domain Access Control Register DMAC Direct Memory Access Controller FIFO First In First Out FIFO First In First Out FIQ Fast Interrupt FPU Floating Point Unit GPIO General Purpose Input Output INTC INTerrupt Controller I/O Input/Output IRQ Interrupt ReQuest L1 Level 1 (primary cache) L2 Level 2 (secondary cache) L2 Level 2 (secondary cache) L5B Least Significant Bit MCU MicroController Unit MMU Memory Management Unit NMII Non-Maskable Interrupt OS Operating System OSTM Operating System Timer Module PC Personal Computer PLL Phase-Locked Loop RAM Random-Access Memory ROM Read Only Memory RTC Real Time Clock SC Smart Configurator SCTLR System Controller Sylad Memory SPI Serial Peripheral Interface SPIBSC SPI Multi I/O Bus Controller STB STandBy module		
BTAC Branch Target Address Cache CPG Clock Pulse Generator CPU Central Processing Unit DACR Domain Access Control Register DMAC Direct Memory Access Controller FIFO First In First Out FIQ Fast Interrupt FPU Floating Point Unit GPIO General Purpose Input Output INTC INTerrupt Controller I/O Input/Output IRQ Interrupt ReQuest L1 Level 1 (primary cache) L2 Level 2 (secondary cache) L5B Least Significant Bit MCU MicroController Unit MMU Memory Management Unit MMU Memory Management Unit NMI Non-Maskable Interrupt OS Operating System OSTM Operating System Timer Module PC Personal Computer PLL Phase-Locked Loop RAM Random-Access Memory ROM Read Only Memory RTC Real Time Clock SC Smart Configurator SCIFA Serial Communications Interface with FIFO SCTLR System Control Register SPIBSC SPI Multi I/O Bus Controller STB STandBy module	ARM	Advanced RISC Machines
CPG Clock Pulse Generator CPU Central Processing Unit DACR Domain Access Control Register DMAC Direct Memory Access Controller FIFO First In First Out FIQ Fast Interrupt FPU Floating Point Unit GPIO General Purpose Input Output IINTC IINTerrupt Controller I/O Input/Output IRQ Interrupt ReQuest L1 Level 1 (primary cache) L2 Level 2 (secondary cache) LED Light Emitting Diode LSB Least Significant Bit MCU MicroController Unit MMU Memory Management Unit NMI Non-Maskable Interrupt OS Operating System OSTM Operating System Timer Module PC Personal Computer PLL Phase-Locked Loop RAM Random-Access Memory RCM Read Only Memory RTC Real Time Clock SC Smart Configurator SCTLR System Control Register SDRAM Synchronous Dynamic Random-Access Memory SPI Serial Peripheral Interface SPIBSC SPI Multi I/O Bus Controller STB STandBy module	BSS	Block Started by Symbol
CPU Central Processing Unit DACR Domain Access Control Register DMAC Direct Memory Access Controller FIFO First In First Out FIQ Fast Interrupt FPU Floating Point Unit GPIO General Purpose Input Output INTC INTerrupt Controller I/O Input/Output IRQ Interrupt ReQuest L1 Level 1 (primary cache) L2 Level 2 (secondary cache) LED Light Emitting Diode LSB Least Significant Bit MCU MicroController Unit MMU Memory Management Unit NMI Non-Maskable Interrupt OS Operating System OSTM Operating System Timer Module PC Personal Computer PLL Phase-Locked Loop RAM Random-Access Memory ROM Read Only Memory RTC Real Time Clock SC Smart Configurator SCIFA Serial Communications Interface with FIFO SCTLR System Control Register SDRAM Synchronous Dynamic Random-Access Memory SPI Serial Peripheral Interface SPIBSC SPI Multi I/O Bus Controller STB STandBy module	BTAC	Branch Target Address Cache
DACR Domain Access Control Register DMAC Direct Memory Access Controller FIFO First In First Out FIQ Fast Interrupt FPU Floating Point Unit GPIO General Purpose Input Output INTC INTerrupt Controller I/O Input/Output IRQ Interrupt ReQuest L1 Level 1 (primary cache) L2 Level 2 (secondary cache) L2 Level 2 (secondary cache) LED Light Emitting Diode LSB Least Significant Bit MCU MicroController Unit MMU Memory Management Unit NMI Non-Maskable Interrupt OS Operating System Timer Module PC Personal Computer PLL Phase-Locked Loop RAM Random-Access Memory ROM Read Only Memory RTC Real Time Clock SC Smart Configurator SCIFA Serial Communications Interface with FIFO SCTLR System Control Register SPIBSC SPI Multi I/O Bus Controller STB STandBy module	CPG	Clock Pulse Generator
DMAC Direct Memory Access Controller FIFO First In First Out FIQ Fast Interrupt FPU Floating Point Unit GPIO General Purpose Input Output INTC INTerrupt Controller I/O Input/Output IRQ Interrupt ReQuest L1 Level 1 (primary cache) L2 Level 2 (secondary cache) LED Light Emitting Diode LSB Least Significant Bit MCU MicroController Unit MMU Memory Management Unit NMII Non-Maskable Interrupt OS Operating System OSTM Operating System Timer Module PC Personal Computer PLL Phase-Locked Loop RAM Random-Access Memory RCM Read Only Memory RTC Real Time Clock SC Smart Configurator SCIFA Serial Communications Interface with FIFO SCTLR System Control Register SDRAM Synchronous Dynamic Random-Access Memory SPI Serial Peripheral Interface SPIBSC SPI Multi I/O Bus Controller STB STandBy module	CPU	Central Processing Unit
FIFO First In First Out FIQ Fast Interrupt FPU Floating Point Unit GPIO General Purpose Input Output INTC INTerrupt Controller I/O Input/Output IRQ Interrupt ReQuest L1 Level 1 (primary cache) L2 Level 2 (secondary cache) LED Light Emitting Diode LSB Least Significant Bit MCU MicroController Unit MMU Memory Management Unit NMI Non-Maskable Interrupt OS Operating System OSTM Operating System Timer Module PC Personal Computer PLL Phase-Locked Loop RAM Random-Access Memory ROM Read Only Memory RTC Real Time Clock SC Smart Configurator SCIFA Serial Communications Interface with FIFO SCTLR System Control Register SDRAM Synchronous Dynamic Random-Access Memory SPI Serial Peripheral Interface STB STandBy module	DACR	Domain Access Control Register
FIQ Fast Interrupt FPU Floating Point Unit GPIO General Purpose Input Output INTC INTerrupt Controller I/O Input/Output IRQ Interrupt ReQuest L1 Level 1 (primary cache) L2 Level 2 (secondary cache) LED Light Emitting Diode LSB Least Significant Bit MCU MicroController Unit MMU Memory Management Unit NMI Non-Maskable Interrupt OS Operating System OSTM Operating System Timer Module PC Personal Computer PLL Phase-Locked Loop RAM Random-Access Memory RTC Real Time Clock SC Smart Configurator SCIFA Serial Communications Interface with FIFO SCTLR System Control Register SDRAM Synchronous Dynamic Random-Access Memory SPI Serial Peripheral Interface SPIBSC SPI Multi I/O Bus Controller STB STandBy module	DMAC	Direct Memory Access Controller
FPU Floating Point Unit GPIO General Purpose Input Output INTC INTerrupt Controller I/O Input/Output IRQ Interrupt ReQuest L1 Level 1 (primary cache) L2 Level 2 (secondary cache) LED Light Emitting Diode LSB Least Significant Bit MCU MicroController Unit MMU Memory Management Unit NMI Non-Maskable Interrupt OS Operating System OSTM Operating System Timer Module PC Personal Computer PLL Phase-Locked Loop RAM Random-Access Memory ROM Read Only Memory RTC Real Time Clock SC Smart Configurator SCIFA Serial Communications Interface with FIFO SCTLR System Control Register SDRAM Synchronous Dynamic Random-Access Memory SPI Serial Peripheral Interface SPIBSC SPI Multi I/O Bus Controller STB STandBy module	FIFO	First In First Out
GPIO General Purpose Input Output INTC INTerrupt Controller I/O Input/Output IRQ Interrupt ReQuest L1 Level 1 (primary cache) L2 Level 2 (secondary cache) LED Light Emitting Diode LSB Least Significant Bit MCU MicroController Unit MMU Memory Management Unit NMI Non-Maskable Interrupt OS Operating System OSTM Operating System Timer Module PC Personal Computer PLL Phase-Locked Loop RAM Random-Access Memory ROM Read Only Memory RTC Real Time Clock SC Smart Configurator SCIFA Serial Communications Interface with FIFO SCTLR System Control Register SDRAM Synchronous Dynamic Random-Access Memory SPI Serial Peripheral Interface STB STandBy module	FIQ	Fast Interrupt
INTC INTerrupt Controller I/O Input/Output IRQ Interrupt ReQuest L1 Level 1 (primary cache) L2 Level 2 (secondary cache) LED Light Emitting Diode LSB Least Significant Bit MCU MicroController Unit MMU Memory Management Unit NMI Non-Maskable Interrupt OS Operating System OSTM Operating System Timer Module PC Personal Computer PLL Phase-Locked Loop RAM Random-Access Memory ROM Read Only Memory RTC Real Time Clock SC Smart Configurator SCIFA Serial Communications Interface with FIFO SCTLR System Control Register SDRAM Synchronous Dynamic Random-Access Memory SPI Serial Peripheral Interface STB STandBy module	FPU	Floating Point Unit
I/O Input/Output IRQ Interrupt ReQuest L1 Level 1 (primary cache) L2 Level 2 (secondary cache) LED Light Emitting Diode LSB Least Significant Bit MCU MicroController Unit MMU Memory Management Unit NMI Non-Maskable Interrupt OS Operating System OSTM Operating System Timer Module PC Personal Computer PLL Phase-Locked Loop RAM Random-Access Memory ROM Read Only Memory RTC Real Time Clock SC Smart Configurator SCIFA Serial Communications Interface with FIFO SCTLR System Control Register SPIBSC SPI Multi I/O Bus Controller STB STandBy module	GPIO	General Purpose Input Output
IRQ Interrupt ReQuest L1 Level 1 (primary cache) L2 Level 2 (secondary cache) LED Light Emitting Diode LSB Least Significant Bit MCU MicroController Unit MMU Memory Management Unit NMI Non-Maskable Interrupt OS Operating System OSTM Operating System Timer Module PC Personal Computer PLL Phase-Locked Loop RAM Random-Access Memory ROM Read Only Memory RTC Real Time Clock SC Smart Configurator SCIFA Serial Communications Interface with FIFO SCTLR System Control Register SDRAM Synchronous Dynamic Random-Access Memory SPI Serial Peripheral Interface STB STandBy module	INTC	INTerrupt Controller
L1 Level 1 (primary cache) L2 Level 2 (secondary cache) LED Light Emitting Diode LSB Least Significant Bit MCU MicroController Unit MMU Memory Management Unit NMI Non-Maskable Interrupt OS Operating System OSTM Operating System Timer Module PC Personal Computer PLL Phase-Locked Loop RAM Random-Access Memory ROM Read Only Memory RTC Real Time Clock SC Smart Configurator SCIFA Serial Communications Interface with FIFO SCTLR System Control Register SDRAM Synchronous Dynamic Random-Access Memory SPI Serial Peripheral Interface SPIBSC SPI Multi I/O Bus Controller STB STandBy module	I/O	Input/Output
L2 Level 2 (secondary cache) LED Light Emitting Diode LSB Least Significant Bit MCU MicroController Unit MMU Memory Management Unit NMI Non-Maskable Interrupt OS Operating System OSTM Operating System Timer Module PC Personal Computer PLL Phase-Locked Loop RAM Random-Access Memory ROM Read Only Memory RTC Real Time Clock SC Smart Configurator SCIFA Serial Communications Interface with FIFO SCTLR System Control Register SDRAM Synchronous Dynamic Random-Access Memory SPI Serial Peripheral Interface SPIBSC SPI Multi I/O Bus Controller STB STandBy module	IRQ	Interrupt ReQuest
LED Light Emitting Diode LSB Least Significant Bit MCU MicroController Unit MMU Memory Management Unit NMI Non-Maskable Interrupt OS Operating System OSTM Operating System Timer Module PC Personal Computer PLL Phase-Locked Loop RAM Random-Access Memory ROM Read Only Memory RTC Real Time Clock SC Smart Configurator SCIFA Serial Communications Interface with FIFO SCTLR System Control Register SDRAM Synchronous Dynamic Random-Access Memory SPI Serial Peripheral Interface SPIBSC SPI Multi I/O Bus Controller STB STandBy module	L1	Level 1 (primary cache)
LSB Least Significant Bit MCU MicroController Unit MMU Memory Management Unit NMI Non-Maskable Interrupt OS Operating System OSTM Operating System Timer Module PC Personal Computer PLL Phase-Locked Loop RAM Random-Access Memory ROM Read Only Memory RTC Real Time Clock SC Smart Configurator SCIFA Serial Communications Interface with FIFO SCTLR System Control Register SDRAM Synchronous Dynamic Random-Access Memory SPI Serial Peripheral Interface SPIBSC SPI Multi I/O Bus Controller STB STandBy module	L2	Level 2 (secondary cache)
MCU MicroController Unit MMU Memory Management Unit NMI Non-Maskable Interrupt OS Operating System OSTM Operating System Timer Module PC Personal Computer PLL Phase-Locked Loop RAM Random-Access Memory ROM Read Only Memory RTC Real Time Clock SC Smart Configurator SCIFA Serial Communications Interface with FIFO SCTLR System Control Register SDRAM Synchronous Dynamic Random-Access Memory SPI Serial Peripheral Interface SPIBSC SPI Multi I/O Bus Controller STB STandBy module	LED	Light Emitting Diode
MMU Memory Management Unit NMI Non-Maskable Interrupt OS Operating System OSTM Operating System Timer Module PC Personal Computer PLL Phase-Locked Loop RAM Random-Access Memory ROM Read Only Memory RTC Real Time Clock SC Smart Configurator SCIFA Serial Communications Interface with FIFO SCTLR System Control Register SDRAM Synchronous Dynamic Random-Access Memory SPI Serial Peripheral Interface SPIBSC SPI Multi I/O Bus Controller STB STandBy module	LSB	Least Significant Bit
NMI Non-Maskable Interrupt OS Operating System OSTM Operating System Timer Module PC Personal Computer PLL Phase-Locked Loop RAM Random-Access Memory ROM Read Only Memory RTC Real Time Clock SC Smart Configurator SCIFA Serial Communications Interface with FIFO SCTLR System Control Register SDRAM Synchronous Dynamic Random-Access Memory SPI Serial Peripheral Interface SPIBSC SPI Multi I/O Bus Controller STB STandBy module	MCU	MicroController Unit
OS Operating System OSTM Operating System Timer Module PC Personal Computer PLL Phase-Locked Loop RAM Random-Access Memory ROM Read Only Memory RTC Real Time Clock SC Smart Configurator SCIFA Serial Communications Interface with FIFO SCTLR System Control Register SDRAM Synchronous Dynamic Random-Access Memory SPI Serial Peripheral Interface SPIBSC SPI Multi I/O Bus Controller STB STandBy module	MMU	Memory Management Unit
OSTM Operating System Timer Module PC Personal Computer PLL Phase-Locked Loop RAM Random-Access Memory ROM Read Only Memory RTC Real Time Clock SC Smart Configurator SCIFA Serial Communications Interface with FIFO SCTLR System Control Register SDRAM Synchronous Dynamic Random-Access Memory SPI Serial Peripheral Interface SPIBSC SPI Multi I/O Bus Controller STB STandBy module	NMI	Non-Maskable Interrupt
PC Personal Computer PLL Phase-Locked Loop RAM Random-Access Memory ROM Read Only Memory RTC Real Time Clock SC Smart Configurator SCIFA Serial Communications Interface with FIFO SCTLR System Control Register SDRAM Synchronous Dynamic Random-Access Memory SPI Serial Peripheral Interface SPIBSC SPI Multi I/O Bus Controller STB STandBy module	OS	Operating System
PLL Phase-Locked Loop RAM Random-Access Memory ROM Read Only Memory RTC Real Time Clock SC Smart Configurator SCIFA Serial Communications Interface with FIFO SCTLR System Control Register SDRAM Synchronous Dynamic Random-Access Memory SPI Serial Peripheral Interface SPIBSC SPI Multi I/O Bus Controller STB STandBy module	OSTM	Operating System Timer Module
RAM Random-Access Memory ROM Read Only Memory RTC Real Time Clock SC Smart Configurator SCIFA Serial Communications Interface with FIFO SCTLR System Control Register SDRAM Synchronous Dynamic Random-Access Memory SPI Serial Peripheral Interface SPIBSC SPI Multi I/O Bus Controller STB STandBy module	PC	Personal Computer
ROM Read Only Memory RTC Real Time Clock SC Smart Configurator SCIFA Serial Communications Interface with FIFO SCTLR System Control Register SDRAM Synchronous Dynamic Random-Access Memory SPI Serial Peripheral Interface SPIBSC SPI Multi I/O Bus Controller STB STandBy module	PLL	Phase-Locked Loop
RTC Real Time Clock SC Smart Configurator SCIFA Serial Communications Interface with FIFO SCTLR System Control Register SDRAM Synchronous Dynamic Random-Access Memory SPI Serial Peripheral Interface SPIBSC SPI Multi I/O Bus Controller STB STandBy module	RAM	Random-Access Memory
SC Smart Configurator SCIFA Serial Communications Interface with FIFO SCTLR System Control Register SDRAM Synchronous Dynamic Random-Access Memory SPI Serial Peripheral Interface SPIBSC SPI Multi I/O Bus Controller STB STandBy module	ROM	Read Only Memory
SCIFA Serial Communications Interface with FIFO SCTLR System Control Register SDRAM Synchronous Dynamic Random-Access Memory SPI Serial Peripheral Interface SPIBSC SPI Multi I/O Bus Controller STB STandBy module	RTC	Real Time Clock
SCTLR System Control Register SDRAM Synchronous Dynamic Random-Access Memory SPI Serial Peripheral Interface SPIBSC SPI Multi I/O Bus Controller STB STandBy module	SC	Smart Configurator
SDRAM Synchronous Dynamic Random-Access Memory SPI Serial Peripheral Interface SPIBSC SPI Multi I/O Bus Controller STB STandBy module	SCIFA	Serial Communications Interface with FIFO
SPI Serial Peripheral Interface SPIBSC SPI Multi I/O Bus Controller STB STandBy module	SCTLR	System Control Register
SPIBSC SPI Multi I/O Bus Controller STB STandBy module	SDRAM	Synchronous Dynamic Random-Access Memory
STB STandBy module	SPI	Serial Peripheral Interface
	SPIBSC	SPI Multi I/O Bus Controller
STDIO Standard Input/Output	STB	STandBy module
	STDIO	Standard Input/Output

TLB	Translation Lookaside Buffer
TTBCR	Translation Table Base Control Register
TTBR	Translation Table Base Register
USB	Universal Serial Bus
VBAR	Vector Base Address Register
XTAL	Crystal

Table 1-1 List of Abbreviations and Acronyms

1. Specifications

After a device reset, the following devices are initialized by the program located in the serial flash memory assigned in SPI Multi I/O bus space.

- SPI Multi I/O Bus Controller
- Clock Pulse Generator
- Interrupt Controller
- Bus State Controller
- OS Timer
- General I/O Ports
- Memory Management Unit
- Primary Cache
- Secondary Cache

In this application note, the SPI Multi I/O Bus Controller, Clock Pulse Generator, Interrupt Controller, OS Timer, Serial Communication Interface with FIFO, General I/O Ports, Power-down Mode and Memory Management Unit are referred to as SPIBSC, CPG, INTC, OSTM, SCIFA, STB and MMU, respectively.

Table 1.1 lists the peripheral functions supported in this application note. Figure 1.1 shows the operation overview.

Table 1.1 Peripheral devices used

Peripheral device	Usage
SPI Multi I/O Bus Controller (SPIBSC)	Configure SPIBSC as external address space read mode and generate the signal for CPU to read data from serial flash memory assigned in SPI Multi I/O bus space directly
Clock Pulse Generator (CPG)	Generate the operating frequency of RZ/A2M
Interrupt Controller (INTC)	Control the interrupts used by OSTM channel 0 and SCIFA channel 4
OS Timer (OSTM)	Manage the timer for FreeRTOS ticks using OSTM channel 0
Serial Communication Interface with FIFO (SCIFA)	Control the communications between the RZ/A2M and a host PC using SCIFA channel 4
General I/O Ports (GPIO)	Assign the multiplexed pin functions for SCIFA channel 4 Control I/O pins for blinking the LED
Power-down Mode (STB)	Disable the RZ/A2M peripheral I/O module standby Enable writing to the on-chip data retention RAM
Memory Management Unit (MMU), Primary (L1) Cache and Secondary (L2) Cache	Generate MMU translation table for configuring the area where L1 cache is enabled, memory attribute of each region of memory (i.e. Normal, Device, or Strongly-Ordered) Enable L1 and L2 Cache

Figure 1.1 Operation check conditions

2. Proven Operating Conditions

The sample program accompanying this application note has been verified and works as expected under the conditions shown in Table 2.1.

Table 2.1 Proven Operating Conditions (1/2)

Item	Description		
Microcomputer used	RZ/A2M		
Operating frequency	CPU Clock (Ιφ): 528MHz		
(Note)	Image processing clock (Gφ): 264MHz		
	Internal Bus Clock (Βφ): 132MHz		
	Peripheral Clock 1 (P1φ): 66MHz		
	Peripheral Clock 0 (P0φ): 33MHz		
	QSPI0_SPCLK: 66MHz		
	CKIO: 132MHz		
Operating voltage	Power supply voltage (I/O): 3.3 V		
	Power supply voltage (either 1.8V or 3.3V I/O (PVcc SPI)): 3.3V		
	Power supply voltage (internal): 1.2 V		
Integrated Development	e ² studio V2020-07		
Environment			
C compiler	"GNU Arm Embedded Tool chain 6-2017-q2-update"		
	compiler options(except directory path)		
	Release:		
	-mcpu=cortex-a9 -march=armv7-a		
	-marm -mthumb-interwork -mlittle-endian -mfloat-abi=hard -mfpu=neon		
	-mno-unaligned-access -O3 -ffunction-sections -fdata-sections		
	-Wextra -Wmissing-declarations -Wconversion		
	-Wnull-dereference -Wstack-usage=100 -fabi-version=0		
	Hardware Debug:		
	-mcpu=cortex-a9 -march=armv7-a		
	-marm -mthumb-interwork -mlittle-endian -mfloat-abi=hard -mfpu=neon -mno-unaligned-access -Og -ffunction-sections -fdata-sections		
	-Wmissing-declarations -Wconversion		
	-Wnull-dereference -g -Wstack-usage=100 -fabi-version=0		

Note: The operating frequency used in clock mode 1 (Clock input of 24MHz from EXTAL pin)

Table 2.2 Proven Operating Conditions (2/2)

Item	Description
Operation mode	Boot mode 3
	(Serial Flash boot 3.3V)
Terminal software	Communication speed: 115200bps
communication settings	Data length: 8 bits
	Parity: None
	Stop bits: 1 bit
	Flow control: None
Board to be used	RZ/A2M CPU board RTK7921053C00000BE
	RZ/A2M SUB board RTK79210XXB00000BE
Device	Serial flash memory allocated to SPI multi-I/O bus space
(functionality to be used on the	- Manufacturer: Macronix Inc.
board)	- Model Name: MX25L51245GXD
	 RL78/G1C (USB-to-serial converter, which is used for communicating
	with host PC)
	• LED1

3. Reference Application Notes

In this chapter, application note referenced in this note are listed:

• RZ/A2M Group Example of booting from serial flash memory (R01AN4333)

4. Hardware

4.1 Hardware Configuration

In the initial setup example described in this application note, boot mode is configured as boot mode 3. Consequently, processing is carried out by the program located in the serial flash memory assigned in the SPI Multi I/O bus space. Figure 4.1 shows the hardware connection diagram when RZ/A2M is booted up from serial flash memory assigned in SPI Multi I/O bus area under boot mode 3.

Figure 4.1 Connection diagram example under boot mode 3

4.2 Pins used

Table 4.1 lists the pins used in this application note.

Table 4.1 Pins to be used and its function

Pin Name	I/O	Description
MD_BOOT2	Input	Boot mode selection (Select boot mode 3)
MD_BOOT1	Input	MD_BOOT2: "L", MD_BOOT1: "H", MD_BOOT0: "H"
MD_BOOT0	Input	
QSPI0_SCLK	Output	Clock output to serial flash memory
QSPI0_SSL	Output	Slave selection for serial flash memory
QSPI0_IO0	Input/Output	Data 0 pin for serial flash memory
QSPI0_IO1	Input/Output	Data 1 pin for serial flash memory
QSPI0_IO2	Input/Output	Data 2 pin for serial flash memory
QSPI0_IO3	Input/Output	Data 3 pin for serial flash memory
RPC_RESET# (Note)	Output	Reset control signal output to serial flash memory
P6_0	Output	LED blinking
RxD4 (P9_1)	Input	Serial receive data signal
TxD4 (P9_0)	Output	Serial transmit data signal

Note: The "#" symbol denotes negative logic (active low)

5. Software

5.1 Operation Overview

After a device reset, the ROM program for boot-up (known as the boot program) stored in RZ/A2M internal ROM (address: H'FFFF 0000) is invoked. Firstly, the boot program sets up the configuration for accessing serial flash memory under boot mode 3, and then jumps to the address H'2000 0000 which is the starting address of the SPI Multi I/O bus space.

This initial setup program consists of the loader program placed at the address H'2000 0000, and application program placed at the address H'2004 0000.

We now describe how the initial setup is performed in the sample program.

Firstly, the loader program sets up the appropriate configuration for accessing serial flash memory and jumps to the start-up processing implemented in the application program.

In the start-up processing, the following initialization is carried out and execution then jumps to the resetprg() function:

- Initialization of stack pointer
- Cache setup
- MMU setup
- FPU setup
- Initialization of memory section

In the resetprg() function, the L1 and L2 cache are enabled, and initialization of INTC is carried out. Then, an address area in the on-chip large-capacity RAM is assigned for VBAR in order to accelerate interrupt processing. Finally, IRQ and FIQ interrupts are enabled followed by a call to the main() function.

In the main() function, the following initialization is carried out:

- CPG initialization by calling cpg_open() and cpg_close() via direct_open() and direct_close() respectively.
- The FreeRTOS is then started by a call to R_OS_KernelInit().
- This initialises the memory manager, creates a new thread; main_task(), and then starts the FreeRTOS kernel with a call to R_OS_KernelStart().

The main_task() thread calls initialise_monitor_handles() to hook up stdin, stdout, and stderr to SCIFA channel 4, so that strings output on the RZ/A2M CPU board serial interface will appear on the console running on the host PC.

This will result in a call to scifa_hld_open() which will perform the following SCIFA channel 4 related setup:

- Initialization
- Enable the interrupt
- Configure the interrupt priority level
- Register the interrupt handler

The main_task() function then jumps to the function os_main_task_t() which becomes the main application thread, and does not return.

os_main_task_t() does the following:

- Opens the GPIO driver and then calls direct_control() to configure port 6 pin 0 for LED blinking
- Creates a new task using the function os_console_task_t() to handle console input/output.
- Enters an infinite loop which toggles the state of the LED every 500 milliseconds. The 500 millisecond delay is provided by OS abstraction wrapper function R_OS_TaskSleep(500) and this results in the red LED flashing at 1Hz.

For details on the processing implemented in the loader program, please refer to the application note "Example of booting from serial flash memory".

Figure 5.1 shows the sequence diagram until the function main() is invoked.

Figure 5.1 Sequence diagram of initial setup before main() function is invoked

5.2 Peripheral Setting and Memory Address Map in Sample Program

5.2.1 Peripheral setting

Table 5.1 shows the peripheral setting and memory configuration in the sample program.

Table 5.1 Peripheral setting in sample program

Peripheral	Setting		
CPG	CPU clock: ½ of the PLL circuit frequency		
	Internal bus clock: 1/8 of the PLL circuit frequency		
	Peripheral clock 1: 1/16 of the PLL circuit frequency		
	 Each clock takes the following value under Clock Mode 1 (the frequency division ratio by divider 1 is ½, and the input clock frequency is multiplied by 88) when the input clock frequency is 24MHz: CPU clock (Iφ): 528MHz Image processing clock (Gφ): 264MHz 		
	 Internal bus clock (Βφ): 132MHz 		
	 Peripheral clock 1 (P1φ): 66MHz 		
	 Peripheral clock 0 (P0φ): 33MHz 		
	 QSPI0 SPCLK: 66MHz (when selecting Bφ as output clock) 		
	 CKIO clock: 132MHz (when selecting Bφ as output clock) 		
STB	Make on-chip Data Retention RAM writable and enable clocks to the peripheral modules		
GPIO	Configure the multiplexed pin function of PORT6 and PORT9 as follows:		
	 P6_0: LED blinking 		
	 P9_1: Serial communications - RxD4, P9_0: TxD4 		
OSTM	Configure the channel 0 as interval timer mode:		
	Counter is configured so that OSTM fires an interrupt every 1ms (when		
	P1φ is specified as 66MHz) to provide the FreeRTOS tick interrupt		
INTC	Initial setup of INTC		
	Interrupt hander registration and invocation:		
	 Registration of OSTM channel 0 interrupt handler (Interrupt ID: 88) Registration of SCIFA channel 4 interrupt handler and its invocation (Interrupt ID: 321, 322 and 323) 		
SCIFA	Configure SCIFA channel 4 as asynchronous communication mode		
	Serial communication setting:		
	Data length: 8-bits		
	Stop bits: 1 bit		
	Parity: None		
	LSB-first transfer		
	SCIFA is configured as follows (when P1φ is 66MHz):		
	 Clock source: No frequency division 		
	 Baud rate generator: double-speed mode 		
	 Operating on the base clock with 8 times the bit rate 		
	 Configures the appropriate bit rate for a baud rate of 115200bps Thus, the bit rate should become -0.53% 		

5.2.2 Memory Address Map

Figure 5.2 shows RZ/A2M group address space and memory address map of the RZ/A2M CPU board.

In the sample program, code and data destined for ROM is placed in the serial flash memory connected to SPI Multi I/O bus space, while code and data destined for RAM is placed in the on-chip large capacity internal RAM.

RZ/AZM group Address space			
Internal IO area and Reserved area (2044MB)			
Large-capacity on-chip RAM (4MB) Reserved area (256MB) Reserved area (256MB) Reserved area (256MB)		and Reserved area	and Reserved area
Reserved area (256MB) Rese			
H*6100 0000			
H*5400 0000			_
HyperRAM TM space (256MB)	H'6000 0000		
H'4080 0000 H'3400 0000 H'3400 0000 H'3400 0000 H'2400 0000 H'2400 0000 H'2000 0000 H'1800 0000	H'5400 0000		-
H'4000 0000	H'5000 0000		
H'4000 0000 H'3400 0000 H'3400 0000 H'2400 0000 H'2400 0000 H'2000 0000 H'1800 0000 H'1800 0000 H'1900 0000	H'4080 0000		-
H'3000 0000	H'4000 0000	(200IVIB)	HyperRAM TM (8MB)
H'3000 0000 H'2400 0000 H'2000 0000 H'2000 0000 H'1800 0000 H'1400 0000 H'1000 0000 H'0000 0000 H'0000 0000 H'0000 0000 H'0400 0000 H'0500 space (64MB) CSPI multi I/O bus Serial flash memory (64MB) Internal IO area and Reserved area (128MB) - CS5 space (64MB) - CS4 space (64MB) - CS2 space (64MB) - CS1 space (64MB) - CS1 space (64MB) -	H'3400 0000		-
Space (256MB) Serial flash memory (64MB)	H'3000 0000	(256MB)	HyperFlash TM (64MB)
H'2000 0000 H'1800 0000 H'1000 0000 H'0000 0000 H'0000 0000 H'0000 0000 H'0400 0000 H'0400 0000 H'0400 0000 H'0400 0000 CS1 space (64MB) (64MB) Internal IO area and Reserved area (128MB) - CS5 space (64MB) - CS4 space (64MB) - CS3 space (64MB) - CS2 space (64MB) - CS1 space (64MB) - CS3 space (64MB) - CS1 space (64MB) - CS3 space (64MB) - CS1 space (64MB)	H'2400 0000	SPI multi I/O bus	-
H'1800 0000 H'1000 0000 H'0000 0000 H'0800 0000 H'0400 0000 H'0400 0000 H'0400 0000 H'0400 0000 H'0400 0000 CS1 space (64MB) CS5 space (64MB) - CS3 space (64MB) - CS2 space (64MB) - CS1 space (64MB) - CS1 space (64MB) - CS1 space (64MB) - CS2 space (64MB)	H'2000 0000	space (256MB)	
CS5 space (64MB) - CS4 space (64MB) - CS3 space (64MB) - CS3 space (64MB) - CS2 space (64MB) - CS2 space (64MB) - CS1 space (64MB) - CS1 space (64MB) - CS1 space (64MB) -	H'1800 0000		
CS4 space (64MB) - CS3 space (64MB) - CS3 space (64MB) - CS2 space (64MB) - CS2 space (64MB) - CS1 space (64MB) - CS1 space (64MB) -		CS5 space (64MB)	-
CS3 space (64MB) - CS2 space (64MB) - CS2 space (64MB) - CS1 space (64MB) - CS1 space (64MB) -		CS4 space (64MB)	-
CS2 space (64MB) - CS1 space (64MB) - CS0 space (64MB) -		CS3 space (64MB)	-
CS1 space (64MB) -		CS2 space (64MB)	-
CS0 space (64MB)		CS1 space (64MB)	-
		CS0 space (64MB)	-

Figure 5.2 Memory Address Map

5.2.3 **MMU Configuration**

In the sample program, the 4GB sized area whose starting address is H'0000 0000 is managed by using a "section" descriptor classified with the first level descriptor according to the memory address map of the RZ/A2M CPU board. Please note that the MMU configuration table (MMU SC TABLE[]) is defined in the file r mmu dry sc cfg.h. When customizing the MMU configuration for your system, please note that sizes are specified in units of 1MB.

The translation table for the first level descriptor is configured by the Translation Table Base Control Register (TTBCR) and the Translation Table Base Register 0 or 1 (TTBR0 or TTBR1). After all the translation tables are configured, the MMU can be enabled by configuring the M bit in System Control Register (SCTLR). For full details on the MMU, please refer to "ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition Issue C".

TTBCR

- This register determines the base register (either TTBR0 or TTBR1) used as the base address for the translation table. Also, it determines the size of translation table specified by TTBR0. In the sample program, b'000 is specified for the N[2:0] bits so that TTBR0 can be always used and the size of translation table can become 16KB (i.e. 4096 entries).
- As shown in Figure 5.3, the first level translation table and section descriptor format are used as translation table and first level descriptor respectively. When using section descriptor format, each entry of translation table becomes 1MB sized memory block, and the conversion from virtual address to physical address using translation table is carried out against 4GB (4096 entries x 1MB) sized address space.

TTBR

This register specifies the base address of translation table, cacheable attributes for the region where translation table is located, etc. In the sample code, the base address is "_mmu_page_table_base" defined in linker_script.ld, which is the starting address of section area of translation table located in the on-chip large capacity internal RAM.

Figure 5.3, Tables 5.2 and 5.3 show the overview of first level descriptor and its configuration in the sample program respectively. Tables 5.5 and 5.6 show the MMU setting in the sample program.

Figure 5.3 First level descriptor format when specifying Section for descriptor type

Table 5.2 Field of 1st level descriptor

Field	Description		
TEX[2:0], C, B	Memory region attribute bits		
	Please refer to Table 5.3 for the configuration in the sample program		
XN	Execute-never bit		
	When setting this bit to 1, the instruction shouldn't be fetched from the memory area located in the domain specified as client.		
	In the sample program, Normal region is configured as executable (i.e. $XN = 1$), while Strongly-ordered region is configured as non-executable (i.e. $XN = 0$).		
Domain	2 types of domain access are supported. One is client mode and the other is manager mode. Domain access type is specified by Domain Access Control Register (DACR).		
	In the sample program, D15 field of DACR is configured as b'01 (i.e. client access mode) and b'1111 (D15 field) is specified for all the spaces.		
IMP	This is NOT implemented in RZ/A2M and therefore, the configuration of this bit is ignored		
AP[2], AP[1:0]	These bits and the domain determine if access is enabled.		
	In the sample program, access to the reserved area is disabled (i.e. AP[2:0] = b'000), while access to all other areas is enabled (i.e. AP[2:0] = b'011).		
S	Shareable bit that can determines if the memory area is shareable.		
	In the sample program, All Normal regions are configured as non-shareable area (i.e. S=0).		
nG	The non-Global bit		
	In the sample program, all regions are configured as global (i.e. nG = 0)		
NS	The Non-Secure bit		
	In the sample program, on-chip large capacity RAM and external address space		
	are configured as Non-Secure space (i.e. NS=1), while internal peripheral module		
DV[34·30]	space is configured as Secure space (i.e. NS=0).		
PA[31:20]	Upper 12 bits of the physical address converted from virtual address		

Note: For RZ/A2M, please configure CPU security state as the "Secure" (i.e. NS bit of Secure Configuration Register = 0). By getting CPU to configure "Secure", CPU can access all the area where its physical address is converted into virtual address using MMU regardless of NS bit setting. In the sample code, the CPU accesses the on-chip large capacity RAM and external address space by setting NS bit to 1 on the basis that AXI bus related registers MSTACCCTL0, MSTACCCTL1, MSTACCCTL3 and MSTACCCTL4 and for on-chip peripheral modules are set as 1 (i.e. Non Secure Access). By default, MSTACCCTL0-4 registers are configured as 1.

Table 5.3 Memory attribute setting in the sample program

TEX[2:0]	С	В	Memory Type	L1 Cache	L2 Cache
b'000	0	0	Strongly-ordered	-	-
b'000	0	1	Device (shareable)	-	-
b'001	1	1	Normal memory	Enabled	Enabled
b'100	0	1	Normal memory	Enabled	Disabled
b'100	0	0	Normal memory	Disabled	Disabled

Table 5.4 MMU settings and its description

Name of MMU settings	Memory type	Cache	N S	AP[2:0] (Access Permission)	X N
Unused	Strongly- ordered	-	1	Read/Write (b'011)	1
Strongly-ordered (Secure, Never-execute)	Strongly- ordered	-	0	Read/Write (b'011)	1
Strongly-ordered (Non-secure, Never-execute)	Strongly- ordered	-	1	Read/Write (b'011)	1
Strongly-ordered (Non-secure, Executable)	Strongly- ordered	-	1	Read/Write (b'011)	0
Shareable Device (Secure)	Device	-	0	Read/Write (b'011)	1
Shareable Device (Non-secure)	Device	-	1	Read/Write (b'011)	1
Normal (Non-secure, L1 cacheable)	Normal	Only L1 cache is enabled	1	Read/Write (b'011)	0
Normal (Non-secure, L2 cacheable)	Normal	Only L2 cache is enabled	1	Read/Write (b'011)	0
Normal (Non-secure, L1/L2 cacheable)	Normal	Both L1 and L2 are enabled	1	Read/Write (b'011)	0
Normal (Non-secure, Non-cacheable)	Normal	Neither L1 nor L2 are enabled	1	Read/Write (b'011)	0
Reserved	Strongly- ordered	-	1	Access Inhibit (b'000)	1

Table 5.5 MMU settings (1/2)

Virtual address	Physical address	Size	Address area	Name of MMU settings (Note)
H'0000 0000 ~	H'0000 0000 ~	64MB	CS0 area	Unused
H'03FF FFFF	H'03FF FFFF	OTIVID	(Unused)	3114334
H'0400 0000 ~	H'0400 0000 ~	64MB	CS1 area	Unused
H'07FF FFFF	H'07FF FFFF	02	(Unused)	5114554
H'0800 0000 ~	H'0800 0000 ~	64MB	CS2 area	Unused
H'0BFF FFFF	H'0BFF FFFF		(Unused)	
H'0C00 0000 ~	H'0C00 0000 ~	64MB	CS3 area	Normal
H'0FFF FFFF	H'0FFF FFFF		Cacheable	(Non-secure, L1/L2 cacheable)
H'1000 0000 ~	H'1000 0000 ~	64MB	CS4 area	Unused
H'13FF FFFF	H'13FF FFFF		(Unused)	
H'1400 0000 ~	H'1400 0000 ~	64MB	CS5 area	Unused
H'17FF FFFF	H'17FF FFFF		(Unused)	
H'1800 0000 ~	H'1800 0000 ~	112MB	Reserved	Reserved
H'1EFF FFFF	H'1EFF FFFF			
H'1F00 0000 ~	H'1F00 0000 ~	16MB	Internal I/O	Strongly-ordered
H'1FFF FFFF	H'1FFF FFFF		area	(Secure, Never-execute)
H'2000 0000 ~	H'2000 0000 ~	256MB	SPI Multi I/O	Normal
H'2FFF FFFF	H'2FFF FFFF		bus area	(Non-secure, L1/L2 cacheable)
1,110,000,000	1.1100000 0000	050145	Cacheable	
H'3000 0000 ~ H'3FFF FFFF	H'3000 000 ~	256MB	HyperFlash	Normal
	H'3FFF FFFF	OFCMD	Cacheable	(Non-secure, L1/L2 cacheable)
H'4000 0000 ~ H'4FFF FFFF	H'4000 0000 ~ H'4FFF FFFF	256MB	HyperRAM Cacheable	Normal (Non-secure, L1/L2 cacheable)
H'5000 0000 ~	H'5000 0000 ~	256MB	OctaFlash	Normal
H'5FFF FFFF	H'5FFF FFFF	230IVID	Cacheable	(Non-secure, L1/L2 cacheable)
H'6000 0000 ~	H'6000 0000 ~	256MB	OctaRAM	Normal
H'6FFF FFFF	H'6FFF FFFF	2001111	Cacheable	(Non-secure, L1/L2 cacheable)
H'7000 0000 ~	H'7000 0000 ~	256MB	Reserved	Unused
H'7FFF FFFF	H'7FFF FFFF			
H'8000 0000 ~	H'8000 0000 ~	4MB	On-chip large	Normal
H'803F FFFF	H'803F FFFF		capacity RAM	(Non-secure, L1/L2 cacheable)
			Cacheable	
H'8040 0000 ~	H'8040 0000 ~	28MB	Reserved	Unused
H'81FF FFFF	H'81FF FFFF			
H'8200 0000 ~	H'8000 0000 ~	4MB	On-chip large	Normal
H'823F FFFF	H'803F FFFF		capacity RAM	(Non-secure, Non-cacheable)
1,1100,40,0000	1 1100 40 0000	00145	Non-cacheable	
H'8240 0000 ~	H'8240 0000 ~	92MB	Reserved	Unused
H'87FF FFFF	H'87FF FFFF	CAMP	000 0100	Harrand
H'8800 0000 ~ H'8BFF FFFF	H'0000 0000 ~ H'03FF FFFF	64MB	CS0 area (Unused)	Unused
H'8C00 0000 ~	H'0400 0000 ~	64MB	CS1 area	Unused
H'8FFF FFFF	H'07FF FFFF	OHIVID	(Unused)	Olluseu
H'9000 0000 ~	H'0800 0000 ~	64MB	CS2 area	Unused
H'93FF FFFF	H'0BFF FFFF	O-HVID	(Unused)	0.14004
H'9400 0000 ~	H'0C00 0000 ~	64MB	CS3 area	Normal
H'97FF FFFF	H'0FFF FFFF	JD	Non-cacheable	(Non-secure, Non-cacheable)
H'9800 0000 ~	H'1000 0000 ~	64MB	CS4 area	Unused
H'9BFF FFFF	H'13FF FFFF		(Unused)	
			. ,	

Table 5.6 MMU settings (2/2)

Virtual address	Physical address	Size	Address area	Name of MMU settings (Note)
H'9C00 0000 ~	H'1400 0000 ~	64MB	CS5 area	Unused
H'9FFF FFFF	H'17FF FFFF		(Unused)	
H'A000 0000 ~	H'3000 0000 ~	256MB	HyperFlash	Strongly-ordered
H'AFFF FFFF	H'3FFF FFFF		Non-cacheable	(Non-secure, Executable)
H'B000 0000 ~	0x4000 0000 ~	256MB	HyperRAM	Normal (Non-secure, Non-cacheable)
H'BFFF FFFF	H'4FFF FFFF		Non-cacheable	
H'C000 0000 ~	H'5000 0000 ~	256MB	OctaFlash	Strongly-ordered
H'CFFF FFFF	H'5FFF FFFFH'		Non-cacheable	(Non-secure, Non-cacheable)
H'D000 0000 ~	H'6000 0000 ~	256MB	OctaRAM	Normal
H'DFFF FFFF	H'6FFF FFFF		Non-cacheable	(Non-secure, Non-cacheable)
H'E000 0000 ~	H'E000 0000 ~	128MB	Reserved	Reserved
H'E7FF FFFF	H'E7FF FFFF			
H'E800 0000 ~	H'E800 0000 ~	384MB	Internal I/O	Strongly-ordered
H'FFFF FFFF	H'FFFF FFFF		area	(Secure, Never-execute)

Notes: 1. For the relationship between MMU settings and the corresponding name, please refer to Tables 5.3 and 5.4.

2. The physical address is shown in red when the virtual address is different from the corresponding physical address.

5.2.4 Virtual Address Space in Sample Program

Figures 5.4 and 5.5 show the virtual address space which is configured using the MMU and accessible from CPU.

	RZ/A2M group Address space		Virtual address space in sample code
H'803F FFFF H'8000 0000	Large-capacity on-chip RAM (4MB)	H'803F FFFF H'8000 0000	Cacheable area in Large-capacity on-chip RAM (4MB)
H'7000 0000	Reserved area (256MB)	H'7000 0000	Reserved area (256MB)
H'6000 0000	OctaRAM space (256MB)	H'6000 0000	Cacheable area in OctaRAM (256MB)
H'5000 0000	OctaFlash space (256MB)	H'5000 0000	Cacheable area in OctaFlash (256MB)
H'4000 0000	HyperRAM space (256MB)	H'4000 0000	Cacheable area in HyperRAM (256MB)
H'3000 0000	HyperFlash space (256MB)	H'3000 0000	Cacheable area in HyperFlash (256MB)
H'2000 0000	SPI multi I/O bus area (256MB)	H'2000 0000	SPI multi I/O bus area (256MB)
H'1F00 0000	Internal IO area (16MB)	H'1F00 0000	Internal IO area (16MB)
H'1800 0000	Reserved area (112MB)	H'1800 0000	Reserved area (112MB)
H'1400 0000	CS5 space (64MB)	H'1400 0000	CS5 space (64MB) (Unused)
H'1000 0000	CS4 space (64MB)	H'1000 0000	CS4 space (64MB) (Unused)
H'0C00 0000	CS3 space (64MB)	H'0C00 0000	Cacheable area in CS3 space (64MB)
H'0800 0000	CS2 space (64MB)	H'0800 0000	CS2 space (64MB) (Unused)
H'0400 0000	CS1 space (64MB)	H'0400 0000	CS1 space (64MB) (Unused)
H'0000 0000	CS0 space (64MB)	H'0000 0000	CS0 space (64MB) (Unused)

Figure 5.4 Virtual address space in the sample program (1/2)

Note: For each space of large capacity internal RAM, HyperFlash, HyperRAM, OctaFlash, and OctaRAM, it is prepared the area is able to use as the non-cacheable area. The non-cache area of HyperFlash and OctaFlash sets MMU to strongly-odered memory attribute.

Figure 5.5 Virtual address space in the sample program (2/2)

5.2.5 Section setup in the sample program

In this sample code, the exception processing vector table and the IRQ interrupt handler are placed in the large-capacity on-chip RAM, and they are executed in this RAM to maximise interrupt processing speed. The transfer of execution from the serial flash memory area where the program code for the exception processing vector table and the IRQ interrupt handler resides to the large-capacity on-chip RAM area, the clear to zero processing for the data section without initial data, and the initialisation for the data section with initial data are executed by using INITSCT function. The INITSCT function refers to the table data for section initialisation defined in section.c and initialise each section. The arrangement of program data is described in the linker script (linker_script.ld).

Table 5.7 Memory Area Used

Output section Name	Input section Name Input Object Name	Description	Loading Area	Execution Area
LOAD_MODULE1	VECTOR_TABLE	Exception processing vector table	FLASH	FLASH
LOAD_MODULE2	*/r_cpg/*.o (.text .rodata .data)	Program code area for CPG	FLASH	LRAM
LOAD_MODULE3	*/r_cpg/*.o (.bss)	Data area with initial value for CPG	-	LRAM
LOAD_MODULE4	RESET_HANDLER	Program code area of reset handler processing	FLASH	FLASH
	INIT_SECTION */sections.o	Program code area of section initialization processing	_	
.data	VECTOR_MIRROR_T ABLE	Exception processing vector table (on-chip RAM)	FLASH	LRAM
	/r_intc_.o (.text .rodata .data)	Program code area for INTC Driver	_	
	IRQ_FIQ_HANDLER	IRQ/FIQ handler processing	_	
	*/rza_io_regrw.o (.text .rodata .data)	Program code area for function of I/O register access	_	
.bss	*/rza_io_regrw.o (.bss)	Data area without initial value for function of I/O register access	-	LRAM
.uncached_RAM	*/r_cache_*.o (.bss) UNCACHED_BSS	Data area without initial value for setting the L1 and L2 caches (see Note 2)	-	LRAM
.uncached_RAM2	*/r_cache_*.o (.text .rodata .data)	Program code area for setting the L1 and L2 caches (see Note 2)	FLASH	LRAM
.mmu_page_table	none	MMU translation table area	-	LRAM
.stack	none	System mode stack area	-	LRAM
		IRQ mode stack area	_	
		FIQ mode stack area	_	
		Supervisor (SVC) mode stack area	<u>-</u> _	
		Abort (ABT) mode stack area		
.text2	* (.text .text.*)	Program code area for defaults	FLASH	LRAM
	* (.rodata .rodata.*)	Constant data area for defaults		
.data2	* (.data .data.*)	Data area with initial value for defaults	FLASH	LRAM
.bss2	* (.bss .bss.*) * (COMMON)	Data area without initial value for defaults	-	LRAM
.heap	none	Heap area	-	LRAM
.freertos_heap	none	FreeRTOS heap area	-	LRAM

Notes: 1. "FLASH" and "LRAM" shown in Loading Area and Execution Area indicate the serial flash memory area and the large-capacity on-chip RAM area respectively.

^{2.} This section should be placed in the cache-disable area.

Table 5.7 lists the sections used in the sample code. Figure 5.6 shows the section assignment for the initial condition of the sample code and the condition after using INITSCT function.

Figure 5.6 Section Assignment

5.2.6 L1/L2 Cache Settings

The RZ/A2M has two types of cache, L1 cache and L2 cache. L1 cache consists of 32K byte instruction cache and 32K byte data cache, while L2 cache consists of 128K byte cache which is commonly used for instruction and data.

Figure 5.7 shows the block diagram for L1 and L2 cache in memory hierarchy.

Figure 5.7 Block diagram of L1/L2 cache in memory hierarchy

When accessing external memory space or on-chip large capacity RAM from the CPU, the virtual address is converted into a physical address using the MMU translation table. As shown in Figure 5.3, the cache behavior of the memory area whose base address and size are determined by the first level descriptor should also be specified by the first level descriptor. Please note that the size of area should be 1MB when "Section" is specified as first level descriptor type. For RZ/A2M, cache behavior of both external memory spaces (CS0 to CS5) and on-chip memory space (such as on-chip peripheral module, SPI Multi I/O Bus space, HyperFlash/HyperRAM space, OctaFlash/OctaRAM space on-chip large capacity RAM, on-chip data retention RAM and reserved area) should be set up by MMU translation table.

Enabling/Disabling cache is controlled by the registers stated below:

- CP15 System Control Register (SCTLR): I bit (b12), C bit (b2)
 I bit "0" denotes instruction cache is disabled, while "1" denotes instruction cache is enabled
 C bit "0" denotes data cache is disabled, while "1" denotes data cache is enabled
 Please note that SCTLR has M bit (b0) which enables/disables MMU ("1" denotes MMU is enabled)
- Control Register (reg1_control): L2 Cache enable bit (b0)
 L2 Cache enable bit "0" denotes L2 Cache is disabled, while "1" denotes L2 Cache is enabled
 Please note that reg1_control is the register implemented in CoreLink level2 cache controller (L2C-310).

Note: The Direct Memory Access Controller (DMAC) can't access memory via the L1 cache, while the L2 cache is enabled. So, if both the CPU and the DMAC access a memory area where the L1 cache is enabled, the user application should invoke the appropriate cache operation to ensure cache coherency before starting the DMA transfer.

Figure 5.8 and 5.9 shows how L1 and L2 cache are initialized respectively.

Figure 5.8 Flow of L1 and L2 Cache Initial Setup (1/2)

Figure 5.9 Flow of L1 and L2 Cache Initial Setup (2/2)

5.2.7 Exception Vector Table

On RZ/A2M, the 7 types of exception (i.e. reset exception, undefined instruction exception, software interrupt exception, prefetch abort exception, data abort exception, IRQ exception and FIQ exception) might occur. When the boot mode is configured as Boot Mode 3, exception vector table is placed in the area whose starting address and size are H'2000 0000 and 32-bytes respectively. That means the exception table is placed from the address H'2000 0000 to H'2000 001F. And the branch instruction to each exception should be described in the exception vector table.

Figure 5.10 shows the exception vector table implemented in the sample program for your reference.

```
vector_table
  LDR pc, =R_OS_ABSTRACTION_CFG_PRV_RESET_HANDLER
  LDR pc, =R_OS_ABSTRACTION_CFG_PRV_UNDEFINED_HANDLER
  LDR pc, =R_OS_ABSTRACTION_CFG_PRV_SVC_HANDLER
  LDR pc, =R_OS_ABSTRACTION_CFG_PRV_PREFETCH_HANDLER
  LDR pc, =R_OS_ABSTRACTION_CFG_PRV_ABORT_HANDLER
  LDR pc, =R_OS_ABSTRACTION_CFG_PRV_RESERVED_HANDLER
  LDR pc, =R_OS_ABSTRACTION_CFG_PRV_IRQ_HANDLER
  LDR pc, =R_OS_ABSTRACTION_CFG_PRV_IRQ_HANDLER
  LDR pc, =R_OS_ABSTRACTION_CFG_PRV_FIQ_HANDLER
```

Figure 5.10 Example of Exception Vector Table Implementation

5.2.8 Processing for RTC and USB unused channel

In the sample program, the processing for RTC and USB unused channel is implemented at the top of resetprg function to reduce power consumption. The macro definition listed in Table 5.8 determines if the processing for unused processing is carried out.

Table 5.8 Macro Definition for selecting RTC and USB channel to be used

Macro definition	Settings	Description
STARTUP_CFG_DISABLE_RTC0	0	RTC channel 0 is used
	1 (Default)	RTC channel 0 is NOT used
STARTUP_CFG_DISABLE_RTC1	0	RTC channel 1 is used
	1 (Default)	RTC channel 1 is NOT used
STARTUP_CFG_DISABLE_USB0	0	USB channel 0 is used
	1 (Default)	USB channel 0 is NOT used
STARTUP_CFG_DISABLE_USB1	0	USB channel 1 is used
	1 (Default)	USB channel 1 is NOT used

Figure 5.11 shows the processing flow for RTC unused channel.

Figure 5.11 Processing flow for RTC unused channel

Figure 5.12 shows the processing flow for USB unused channel.

Figure 5.12 Processing flow for USB unused channel

5.3 Interrupts to be used

Table 5.9 shows the interrupts used in the sample program.

Table 5.9 Interrupts to be used in the sample program

Interrupt Source (Interrupt ID)	Priority	Overview of Interrupt Processing
OSTM0 (88)	3	Fire interrupt every 500ms
ERI4BRI4 (321)	9	Fire SCIFA's ERI4/BRI4 interrupt
RXI4 (322)	10	Fire SCIFA's RXI4 interrupt
TXI4 (323)	10	Fire SCIFA's TXI4 interrupt

5.4 Fixed-width types

Table 5.10 shows the fixed-width types used in the sample program.

Table 5.10 Fixed-width types used in the sample program

Symbol	Description
char_t	8-bits character
bool_t	Boolean type. Allowable values are true (1) or false (0)
int_t	High-speed signed integer. In the sample code its width is 32 bits
int8_t	Signed 8-bit integer (declared in the standard library stdint.h)
int16_t	Signed 16-bit integer (declared in the standard library stdint.h)
int32_t	Signed 32-bit integer (declared in the standard library stdint.h)
int64_t	Signed 64-bit integer (declared in the standard library stdint.h)
uint8_t	Unsigned 8-bit integer (declared in the standard library stdint.h)
uint16_t	Unsigned 16-bit integer (declared in the standard library stdint.h)
uint32_t	Unsigned 32-bit integer (declared in the standard library stdint.h)
uint64_t	Unsigned 64-bit integer (declared in the standard library stdint.h)
float_t	Single precision floating point number (declared in the standard library math.h)
double_t	Double precision floating point number (declared in the standard library math.h)
float64_t	Double precision floating point number

5.5 Constants

Table 5.11 shows the constants used in the sample program.

Table 5.11 Constants used in the sample program

Constants	Value	Description
MAIN_PRV_LED_ON	(1)	Denotes LED is ON
MAIN_PRV_LED_OFF	(0)	Denotes LED is OFF

5.5.1 Direct related constants

Table 5.12 shows the device driver definition data (const st_r_driver_t) in the sample program. Any function whose name starts with the peripheral name (e.g. cpg_open) is implemented. Any function whose name starts with "no_dev_" (i.e. no_dev_****) returns with no processing.

Table 5.12 Device Driver Definition Data (const st_r_driver_t)

Constants	Value	Description
g_cpg_driver	In the sample program, the following values are implemented:	CPG driver definition data:
	"Clock Pulse Generator Driver",	Driver name
	cpg_open,	Pointer to the open function
	cpg_close,	Pointer to the close function
	no_dev_read,	Pointer to the driver read function
	no_dev_write,	Pointer to the driver write function
	cpg_control,	Pointer to the driver control function
	cpg_get_version	Pointer to the function to get version info
g_gpio_driver	In the sample program, the following values are implemented:	GPIO driver definition data:
	"GPIO Driver",	Driver name
	gpio_open,	Pointer to the open function
	gpio_close,	Pointer to the close function
	no_dev_read,	Pointer to the driver read function
	no_dev_write,	Pointer to the driver write function
	gpio_control,	Pointer to the driver control function
	gpio_get_version	Pointer to the function to get version info
g_ostm_driver	In the sample program, the following values are implemented:	OSTM driver definition data:
	"OSTM Driver",	Driver name
	ostm_open,	Pointer to the open function
	ostm_close,	Pointer to the close function
	ostm_read,	Pointer to the driver read function
	no_dev_write,	Pointer to the driver write function
	ostm_control,	Pointer to the driver control function
	ostm_get_version	Pointer to the function to get version info
g_scifa_driver	In the sample program, the following values are implemented:	SCIFA driver definition data:
	"SCIFA Driver",	Driver name
	scifa_open,	Pointer to the open function
	scifa_close,	Pointer to the close function
	scifa_read,	Pointer to the driver read function
	scifa_write,	Pointer to the driver write function
	ostm_control,	Pointer to the driver control function
	ostm_get_version	Pointer to the function to get version info

Table 5.13 shows the direct related macro definition.

Table 5.13 The direct related Macro Definition

Macro Definition	Value	Description
DRV_SUCCESS	(0)	Successfully terminated
DRV_ERROR	(-1)	Abnormal termination

5.5.2 CPG related constants

Table 5.14 shows the direct related macro definition.

Table 5.14 CPG Configuration Data

Constants	Value	Description
const float64_t	24000.0	XTAL frequency (kHz)
s_sc_cpg_xtal_frequency_khz_config		
static const st_r_drv_cpg_set_main_t s_sc_cpg_main_clock_config[]	{	Frequency dividing configuration for ICLK, BCLK and P1CKL
static const st_r_drv_cpg_set_src_t s_sc_cpg_sub_clock_src_config[]	{	Frequency dividing configuration for CKIO and SCLK
static const st_r_drv_cpg_ext_clk_t s_sc_cpg_ext_clk_config	{CPG_CKIO_INVALID_UNSTABLE- _OFF_HIZ}	CKIO pin state configuration

5.5.3 MMU related constants

Table 5.15, Table 5.16 and Table 5.17 show the MMU related macro definition.

Table 5.15 MMU configuration data (const static st_r_mmu_sc_config_t) (1/3)

Constants	Value	Description
MMU_SC_TABLE[]		st_r_mmu_sc_config_t has the following members: virtual address: virtual address physical address: physical address page_count: Number of page page_attribute: Attribute of page
	In the sample program, the following values are specified:	
	{	default setting
	{0x00000000uL, 0x00000000uL, 64, MMU_ATTR_STRONGLY_NS MMU_ATTR_DMAIN(15) },	CS0 space: Strongly-ordered (NS)
	{0x04000000uL, 0x04000000uL, 64, MMU_ATTR_STRONGLY_NS MMU_ATTR_DMAIN(15) }, {0x08000000uL, 0x08000000uL, 64,	CS1 space: Strongly-ordered (NS)
	MMU_ATTR_STRONGLY_NS MMU_ATTR_DOMAIN(15)},	CS2 space: Strongly-ordered (NS)
	{0x0C000000uL, 0x0C000000uL, 64, MMU_ATTR_NORMAL_L1L2CACHE MMU_ATTR_DOMAIN(15)},	CS3 (SDRAM): Normal, L1/L2 Cacheable
	{0x10000000uL, 0x10000000uL, 64, MMU_ATTR_STRONGLY_NS MMU_ATTR_DOMAIN(15)},	CS4 space: Strongly-ordered (NS)
	{0x14000000uL, 0x14000000uL, 64, MMU_ATTR_STRONGLY_NS MMU_ATTR_DOMAIN(15)},	CS5 space: Strongly-ordered (NS)
	{0x18000000uL, 0x18000000uL, 112, MMU_ATTR_RESERVED MMU_ATTR_DOMAIN(15)}, {0x1F000000uL, 0x1F000000uL, 16,	Reserved
	MMU_ATTR_STRONGLY MMU_ATTR_DOMAIN(15)}, {0x20000000uL, 0x2000000uL, 256,	Peripheral I/O: Strongly-ordered (NS)
	MMU_ATTR_NORMAL_L1L2CACHE MMU_ATTR_DOMAIN(15)}, {0x30000000uL, 0x3000000uL, 256,	SPI Multi I/O bus area: Normal, L1/L2 Cacheable
	MMU_ATTR_NORMAL_L1L2CACHE MMU_ATTR_DOMAIN(15)}, {0x4000000uL, 0x4000000uL, 256,	Hyper Flash area: Normal, L1/L2 Cacheable
	MMU_ATTR_NORMAL_L1L2CACHE MMU_ATTR_DOMAIN(15)}, {0x50000000uL, 0x5000000uL, 256,	Hyper RAM area: Normal, L1/L2 Cacheable
	MMU_ATTR_NORMAL_L1L2CACHE MMU_ATTR_DOMAIN(15)},	Octa Flash area: Normal L1/L2 Cacheable

Table 5.16 MMU configuration data (const static st_r_mmu_sc_config_t) (2/3)

Constants	Value	Description
MMU_SC_TABLE[]		st_r_mmu_sc_config_t has the following members: virtual address: virtual address physical address page_count: Number of page page_attribute: Attribute of page
	In the sample program, the following values are specified: {	
	0x60000000uL, 0x6000000uL, 256, MMU_ATTR_NORMAL_L1L2CACHE MMU_ATTR_DOMAIN(15)},	Octa RAM area: Normal, L1/L2 Cacheable
	{0x70000000uL, 0x20000000uL, 256, MMU_ATTR_STRONGLY_NS_EXECU TABLE MMU_ATTR_DOMAIN(15)}, {0x8000000uL, 0x8000000uL, 4,	SPI Multi I/O area: Normal, Non-cacheable, Strongly-ordered (NS)
	MMU_ATTR_NORMAL_L1CACHE MMU_ATTR_DOMAIN(15)},	Internal RAM area: Normal, L1 Cacheable
	MMU_ATTR_RESERVED MMU_ATTR_DOMAIN(15)},	Reserved
	{0x82000000uL, 0x8000000uL, 4, MMU_ATTR_NORMAL MMU_ATTR_DOMAIN(15)}, {0x82400000uL, 0x82400000uL, 92,	Internal RAM area: Normal, Non-cacheable
	MMU_ATTR_RESERVED MMU_ATTR_DOMAIN(15)}, {0x88000000uL, 0x0000000uL, 64,	Reserved
	MMU_ATTR_STRONGLY_NS MMU_ATTR_DOMAIN(15)},	CS0 space: Strongly-ordered (NS)
	{0x8C000000uL, 0x04000000uL, 64, MMU_ATTR_STRONGLY_NS MMU_ATTR_DOMAIN(15)},	CS1 space: Strongly-ordered (NS)
	{0x90000000uL, 0x08000000uL, 64, MMU_ATTR_STRONGLY_NS MMU_ATTR_DOMAIN(15)},	CS2 space: Strongly-ordered (NS)
	{0x94000000uL, 0x0C000000uL, 64, MMU_ATTR_STRONGLY_NS MMU_ATTR_DOMAIN(15)},	CS3 (SDRAM): Strongly-ordered (NS)
	{0x98000000uL, 0x10000000uL, 64, MMU_ATTR_STRONGLY_NS MMU_ATTR_DOMAIN(15)},	CS4 space: Strongly-ordered (NS)
	{0x9C000000uL, 0x14000000uL, 64, MMU_ATTR_STRONGLY_NS MMU_ATTR_DOMAIN(15)},	CS5 space: Strongly-ordered (NS)

Table 5.17 MMU configuration data (const static st_r_mmu_sc_config_t) (3/3)

Constants	Value	Description
MMU_SC_TABLE[]		st_r_mmu_sc_config_t has the following member: virtual address: virtual address physical address: physical address page_count: Number of page page_attribute: Attribute of page
	In the sample program, the following values are specified:	
	{0xA0000000uL, 0x30000000uL, 256, MMU_ATTR_STRONGLY_NS_EXECU TABLE MMU_ATTR_DOMAIN(15)},	Hyper Flash area: Non-cacheable, Strongly-ordered (NS)
	{0xB0000000uL, 0x40000000uL, 256, MMU_ATTR_STRONGLY_NS_EXECU TABLE MMU_ATTR_DOMAIN(15)},	Hyper RAM area: Non-cacheable, Normal
	{0xC0000000uL, 0x50000000uL, 256, MMU_ATTR_STRONGLY_NS_EXECU TABLE MMU_ATTR_DOMAIN(15)},	Octa Flash area: Non-cacheable, Strongly-ordered (NS)
	{0xD0000000uL, 0x60000000uL, 256, MMU_ATTR_STRONGLY_NS_EXECU TABLE MMU_ATTR_DOMAIN(15)}, {0xE0000000uL, 0xE0000000uL, 128,	Octa RAM area: Non-cacheable, Normal
	MMU_ATTR_RESERVED MMU_ATTR_DOMAIN(15)},	Reserved
	{0xE8000000uL, 0xE8000000uL, 384, MMU_ATTR_STRONGLY MMU_ATTR_DOMAIN(15)} }	Peripheral I/O: Strongly-ordered

5.5.4 **INTC** related constants

Table 5.18 shows the macro definition denoting interrupt ID.

Table 5.18 Macro definition for interrupt ID

Definition	Value	Description
INTC_ID_OSTM_OSTMI0	((intc_intid_t) 88)	OSTMI0 interrupt
INTC_ID_SCIFA_ERI4BRI4	((intc_intid_t) 321)	SCIFA4 ERI4/BRI4 interrupt
INTC_ID_SCIFA_RXI4	((intc_intid_t) 322)	SCIFA4 RXI4 interrupt
INTC_ID_SCIFA_TXI4	((intc_intid_t) 323)	SCIFA4 TXI4 interrupt

5.5.5 **OSTM** related constants

Table 5.19 shows the constants in OSTM configuration data (static const st_r_drv_ostm_sc_config_t), which is used in the sample program.

Table 5.19 OSTM Configuration Data (static const st_r_drv_ostm_sc_config_t)

Constants	Value	Description	
OSTM_SC_TABLE[0]	0,	Channel number	
	{		
	OSTM_MODE_INTERVAL,	Timer mode	
	OSTM_TIME_MS,	Unit of counter value to be specified	
	500,	Value for comparison	
	OSTM_START_INTERRUPT_OFF,	Disable interrupt when booting timer	
	INTC_ENABLE,	Enable interrupt	
	3,	Interrupt priority level	
	Sample_LED_Blink	Interrupt handler	
	}		

5.5.6 SCIFA related constants

Table 5.20 shows the constants in SCIFA configuration data (static const st_r_drv_scifa_sc_config_t), which is used in the sample program.

Table 5.20 SCIFA Configuration Data (static st_r_drv_scifa_sc_config_t)

Constants	Value	Description
SCIFA_SC_TABLE[]	4,	Channel number
	{ SCIFA_MODE_ASYNC, 115200, SCIFA_CLK_SRC_INT_SCK_IN,	Asynchronous mode Baud Rate Internal Clock, SCK port is input
	SCIFA_CLK_16X,	Not Used
	SCIFA_DATA_8BIT,	Data Length 8 bits
	SCIFA_PARITY_OFF,	No Parity check
	SCIFA_EVEN_PARITY,	Even Parity (if enabled)
	SCIFA_STOPBITS_1,	1 stop bit Noise filter disabled
	SCIFA_NOISE_CANCEL_DISABLE, SCIFA_LSB_FIRST,	Least Significant Bit first
	SCIFA_LOOPBACK_DISABLE,	Not in Loopback mode
	SCIFA_MODEM_CONTROL_DISABL	Modem control disabled
	E,	Wodell Control disabled
	SCIFA_RTS_ACTIVE_TRIGGER_15,	RTS trigger level
	15,	Transmit FIFO Data trigger number
	1,	Receive FIFO Data trigger number
	SCIFA_SPTR_INIT_HIGH,	Serial port break data select
	SCIFA_SPTR_INIT_HIGH,	SCK pin data select
	SCIFA_SPTR_INIT_HIGH,	CTS pin data select
	SCIFA_SPTR_INIT_HIGH,	RTS pin data select
	SCIFA_TX_INTERRUPT_MODE,	Interrupt driven transmission
	SCIFA_RX_INTERRUPT_MODE,	Interrupt driven reception
	0, 30,	Break interrupt priority Rx interrupt priority
	30,	Tx interrupt priority
	0,	Tx end interrupt priority
	NULL,	DMA write callback function pointer
	NULL,	DMA read callback function pointer
	NULL,	DMA module identifier for transmit
	NULL,	DMA module identifier for receive
	}, {	
	&GPIO_SC_TABLE_scifa4[0],	Pointer to Pin definition table.
	sizeof(GPIO_SC_TABLE_scifa4)/sizeo	Number of elements in pin definition
	f(st_r_drv_gpio_sc_config_t), }	table.

5.5.7 GPIO related constants

Table 5.21 shows enumeration value declared as the control code (e_ctrl_code_gpio_t).

Table 5.21 Control code (e_ctrl_code_gpio_t)

Constants	Value	Description
e_ctrl_code_gpio_t	CTL_GPIO_SET_CONFIGURATION	Set pin configuration GPIO control function
	CTL_GPIO_GET_CONFIGURATION	Get pin configuration GPIO control function
	CTL_GPIO_INIT_BY_PIN_LIST	Configure specified pins by list control function
	CTL_GPIO_CLEAR_BY_PIN_LIST	Clear (deallocate) specified pins by list control function
	CTL_GPIO_INIT_BY_TABLE	Configure pins by table control function
	CTL_GPIO_CLEAR_BY_TABLE	Clear (deallocate) pins by table control function
	CTL_GPIO_PORT_WRITE	Write port data control function
	CTL_GPIO_PORT_READ	Read port data control function
	CTL_GPIO_PIN_WRITE	Write pin data control function
	CTL_GPIO_PIN_READ	Read pin data control function

Table 5.22 shows the constants in GPIO (initialization) configuration data (const st_r_drv_gpio_sc_config_t)

Table 5.22 GPIO (initialization) configuration data (const st_r_drv_gpio_sc_config_t)

Constants	Value	Description
GPIO_SC_TABLE_INI	Empty	
T[]		

Table 5.23 shows the constants in GPIO (MANUAL) configuration data (const st_r_drv_gpio_sc_config_t)

Table 5.23 GPIO (MANUAL) configuration data (const st_r_drv_gpio_sc_config_t)

Constants	Value	Description
GPIO_SC_TABLE		pin: pin number
MANUAL		function: function settings
		tint: pin interrupts
		current: pin driving ability settings
	In the sample code, the	
	following value is specified:	
	{	
	{GPIO_PORT_6_PIN_0,	P6_0
	{GPIO_FUNC_OUT_LOW,	General-purpose output port (default: LOW)
	GPIO_TINT_DISABLE,	Disable pin interrupts
	GPIO_CURRENT_4mA},	Configure 4mA as pin driving ability
	(CDIO DODT C DIN 4	PO 4
	{GPIO_PORT_C_PIN_1, {GPIO_FUNC_OUT_HIGH,	PC_1
	GPIO_TINT_DISABLE,	General-purpose output port (default: HIGH) Disable pin interrupts
	GPIO CURRENT 4mA}	Configure 4mA as pin driving ability
	}	Comigate 4117 tab pin anying ability

Table 5.24 shows the constants in GPIO (SCIFA) configuration data (const st_r_drv_gpio_sc_config_t)

Table 5.24 GPIO (SCIFA) configuration data (const st_r_drv_gpio_sc_config_t)

Constants	Value	Description
GPIO_SC_TABLE_scifa4		pin: pin number function: function settings tint: pin interrupts current: pin driving ability settings
	In the sample code, the following value is specified:	Jan
	{ GPIO_PORT_9_PIN_0, {GPIO_FUNC_PERIPHERAL4, GPIO_TINT_DISABLE, GPIO_CURRENT_4mA},	P9_0 Peripheral function (TxD4) Disable pin interrupts Configure 4mA as pin driving ability
	{GPIO_PORT_9_PIN_1, {GPIO_FUNC_PERIPHERAL4, GPIO_TINT_DISABLE, GPIO_CURRENT_4mA} }	P9_1 Peripheral function (RxD4) Disable pin interrupts Configure 4mA as pin driving ability

5.6 Variables

5.6.1 direct related variables

Table 5.25 shows the specification of the direct related static filestream variable.

Table 5.25 static filestream variables (direct related)

Туре	Variable	Description	Used in
static st_stream_t	gs_filestream [IOSTREAM]	Table storing device name Device name is searched from the tail of this list. This table is generated by SC.	get_first_free_direct_handle get_first_free_call_stdio_handle check_open close_all get_device_stream_from_handle check_vaild_handle direct_open direct_close direct_read direct_write direct_control low_open low_seek R_DEVLINK_Init

Table 5.26 shows the specification of the direct related static mount table variable.

Table 5.26 static mount table variables (direct related)

Туре	Variable	Description	Used in
static st_mount_table_t	gs_mount_ta ble[]	Drivers corresponding to the configuration name registered by SC should be listed first. In the sample code, CPG, GPIO, OSTM0~2, SCIFA0~4 devices are listed. { "cpg", (st_r_driver_t *) &g_cpg_driver, R_SC0},	dev_get_pointer
		{"gpio", (st_r_driver_t *) &g_gpio_driver, R_SC0},	
		{"ostm0", (st_r_driver_t *) &g_ostm_driver, R_SC0},	
		<pre>{"ostm1", (st_r_driver_t *) &g_ostm_driver, R_SC1}, {"ostm2", (st_r_driver_t *) &g_ostm_driver, R_SC2},</pre>	
		{"scifa0", (st_r_driver_t *) &g_scifa_driver, R_SC0},	
		{"scifa1", (st_r_driver_t *) &g_scifa_driver, R_SC1},	
		{"scifa 2", (st_r_driver_t *) &g_scifa_driver, R_SC2},	
		{"scifa 3", (st_r_driver_t *) &g_scifa_driver, R_SC3},	
		{"scifa 4", (st_r_driver_t *) &g_scifa_driver, R_SC4}}	

5.6.2 CPG related variables

Table 5.27 shows the CPG related static variable.

Table 5.27 static variables (CPG related)

Туре	Variable	Description	Used in
static bool_t	gs_drv_cpg	Denotes if driver has opened	cpg_open
	is_initialized	true: opened, false: unopened	

5.6.3 MMU related variables

Table 5.28 shows the MMU related static variable.

Table 5.28 static variables (MMU related)

Туре	Variable	Description	Used in
-	mmu page_table base	The starting address of section region specified in translation table which is placed in on-chip large capacity internal RAM	R_MMU_Init

5.6.4 INTC related variables

Table 5.29 shows the INTC related global variable.

Table 5.29 global variables (INTC related)

Туре	Variable	Description	Used in
void	(*g_intc func_table[]) (uint32_t int_sense)	Interrupt handler registration table: This table is for registering interrupt handler for each interrupt ID by the function R_INTC_RegistIntFunc. When INTC interrupt is fired, the interrupt handler corresponding to the interrupt ID in this table is called by the function INTC_Handler_Interrupt.	R_INTC_RegistIntFunc INTC_Handler_Interrupt

5.6.5 OSTM related variables

Table 5.30 shows the OSTM related static variable.

Table 5.30 static variables (OSTM related)

Туре	Variable	Description	Used in
static uint32_t	main_led_flg	The flag for notifying the OSTM	main
		interrupt	Sample_LED_Blink
		LSB is inverted each time OSTM	•
		interrupt is fired.	
		When setting this flag to	
		MAIN_PRV_LED_ON, LED is	
		turned on, while LED is turned	
		off when setting this flag to	
		MAIN_PRV_LED_OFF.	

Table 5.31 shows the OSTM related global variable.

Table 5.31 global variables (OSTM related)

Туре	Variable	Description	Used in
bool_t	gs_r_drv	Denotes if driver has opened	ostm_open
	ostm_open	true: opened, false: unopened	ostm_close

5.7 Functions

The sample code consists of the following functions:

- API function for using peripheral functions
- User Defined Function depending on user system for which user needs to write (functions called by an API function)
- Sample Function implemented for getting sample program to be worked as a reference

In the sample code, the IO register-write and register-read function is used when accessing peripheral IO registers in bit unit.

Table 5.32, list Sample Function, API Function and User Defined Function, respectively.

Table 5.32 Sample Function

reset_handler resetprg Initial setup of INTC and L1/L2 Cache main Main processing Sample_main Invoke the sample code for peripheral functions in accordance with the command input via terminal software INITSCT Initial setup of memory section (written in assembly language) R_SC_HardwareSetup Initial setup of peripheral functionslibc_init_array C++ constructor processingset_vbar INC_Handler IRQ handler processing (written in assembly language) INTC_Handler_Interrput INTC interrupt handler processing fiq_handler FIQ handler processing (written in assembly language) Sample_LED_Blink OSTM0 interrupt processing direct_open Open peripheral I/O direct_read Read from peripheral I/O direct_control Control peripheral I/O direct_close Close peripheral I/O direct_get_version Get version number of device driver for peripheral I/O r_disable_rtc Processing for unused USB channel	Function Name	Description
main Main processing Sample_main Invoke the sample code for peripheral functions in accordance with the command input via terminal software INITSCT Initial setup of memory section (written in assembly language) R_SC_HardwareSetup Initial setup of peripheral functions _libc_init_array C++ constructor processing _set_vbar Vector Base Address Register (VBAR) setup irq_handler IRQ handler processing (written in assembly language) INTC_Handler_Interrput INTC interrupt handler processing fiq_handler FIQ handler processing (written in assembly language) Sample_LED_Blink OSTM0 interrupt processing direct_open Open peripheral I/O direct_write Write to peripheral I/O direct_read Read from peripheral I/O direct_control Control peripheral I/O direct_close Close peripheral I/O direct_get_version Get version number of device driver for peripheral I/O r_disable_rtc Processing for unused RTC channel	reset_handler	Reset handler (written in assembly language)
Sample_main Invoke the sample code for peripheral functions in accordance with the command input via terminal software INITSCT Initial setup of memory section (written in assembly language) R_SC_HardwareSetup Initial setup of peripheral functions _libc_init_array C++ constructor processing _set_vbar Vector Base Address Register (VBAR) setup IRQ handler processing (written in assembly language) INTC_Handler_Interrput INTC interrupt handler processing fiq_handler FIQ handler processing (written in assembly language) Sample_LED_Blink OSTM0 interrupt processing direct_open Open peripheral I/O direct_write Write to peripheral I/O direct_read Read from peripheral I/O direct_control Control peripheral I/O direct_close Close peripheral I/O direct_get_version Get version number of device driver for peripheral I/O r_disable_rtc Processing for unused RTC channel	resetprg	Initial setup of INTC and L1/L2 Cache
INITSCT Initial setup of memory section (written in assembly language) R_SC_HardwareSetup Initial setup of peripheral functions libc_init_array C++ constructor processingset_vbar Vector Base Address Register (VBAR) setup irq_handler IRQ handler processing (written in assembly language) INTC_Handler_Interrput INTC interrupt handler processing fiq_handler FIQ handler processing (written in assembly language) Sample_LED_Blink OSTM0 interrupt processing direct_open Open peripheral I/O direct_write Write to peripheral I/O direct_read Read from peripheral I/O direct_control Control peripheral I/O direct_close Close peripheral I/O direct_get_version Get version number of device driver for peripheral I/O r_disable_rtc Processing for unused RTC channel	main	Main processing
R_SC_HardwareSetup Initial setup of peripheral functions Libc_init_array C++ constructor processing Lset_vbar Vector Base Address Register (VBAR) setup IRQ handler processing (written in assembly language) INTC_Handler_Interrput INTC interrupt handler processing Interrupt processing (written in assembly language) Sample_LED_Blink OSTM0 interrupt processing direct_open Open peripheral I/O direct_write Write to peripheral I/O direct_read Read from peripheral I/O direct_control Control peripheral I/O direct_close Close peripheral I/O direct_get_version Get version number of device driver for peripheral I/O r_disable_rtc Processing for unused RTC channel	Sample_main	·
libc_init_array	INITSCT	Initial setup of memory section (written in assembly language)
set_vbar	R_SC_HardwareSetup	Initial setup of peripheral functions
irq_handler IRQ handler processing (written in assembly language) INTC_Handler_Interrput INTC interrupt handler processing fiq_handler FIQ handler processing (written in assembly language) Sample_LED_Blink OSTM0 interrupt processing direct_open Open peripheral I/O direct_write Write to peripheral I/O direct_read Read from peripheral I/O direct_control Control peripheral I/O direct_close Close peripheral I/O direct_get_version Get version number of device driver for peripheral I/O r_disable_rtc Processing for unused RTC channel	libc_init_array	C++ constructor processing
INTC_Handler_Interrput INTC interrupt handler processing fiq_handler FIQ handler processing (written in assembly language) Sample_LED_Blink OSTM0 interrupt processing direct_open Open peripheral I/O direct_write Write to peripheral I/O direct_read Read from peripheral I/O direct_control Control peripheral I/O direct_close Close peripheral I/O direct_get_version Get version number of device driver for peripheral I/O r_disable_rtc Processing for unused RTC channel	set_vbar	Vector Base Address Register (VBAR) setup
fiq_handler FIQ handler processing (written in assembly language) Sample_LED_Blink OSTM0 interrupt processing direct_open Open peripheral I/O direct_write Write to peripheral I/O direct_read Read from peripheral I/O direct_control Control peripheral I/O direct_close Close peripheral I/O direct_get_version Get version number of device driver for peripheral I/O r_disable_rtc Processing for unused RTC channel	irq_handler	IRQ handler processing (written in assembly language)
Sample_LED_Blink OSTM0 interrupt processing direct_open Open peripheral I/O direct_write Write to peripheral I/O direct_read Read from peripheral I/O direct_control Control peripheral I/O direct_close Close peripheral I/O direct_get_version Get version number of device driver for peripheral I/O r_disable_rtc Processing for unused RTC channel	INTC_Handler_Interrput	INTC interrupt handler processing
direct_open direct_write direct_write Write to peripheral I/O direct_read Read from peripheral I/O direct_control Control peripheral I/O direct_close Close peripheral I/O direct_get_version Get version number of device driver for peripheral I/O r_disable_rtc Processing for unused RTC channel	fiq_handler	FIQ handler processing (written in assembly language)
direct_write Write to peripheral I/O direct_read Read from peripheral I/O direct_control Control peripheral I/O direct_close Close peripheral I/O direct_get_version Get version number of device driver for peripheral I/O r_disable_rtc Processing for unused RTC channel	Sample_LED_Blink	OSTM0 interrupt processing
direct_read Read from peripheral I/O direct_control Control peripheral I/O direct_close Close peripheral I/O direct_get_version Get version number of device driver for peripheral I/O r_disable_rtc Processing for unused RTC channel	direct_open	Open peripheral I/O
direct_control Control peripheral I/O direct_close Close peripheral I/O direct_get_version Get version number of device driver for peripheral I/O r_disable_rtc Processing for unused RTC channel	direct_write	Write to peripheral I/O
direct_close Close peripheral I/O direct_get_version Get version number of device driver for peripheral I/O r_disable_rtc Processing for unused RTC channel	direct_read	Read from peripheral I/O
direct_get_version Get version number of device driver for peripheral I/O r_disable_rtc Processing for unused RTC channel	direct_control	Control peripheral I/O
r_disable_rtc Processing for unused RTC channel	direct_close	Close peripheral I/O
<u> </u>	direct_get_version	Get version number of device driver for peripheral I/O
r_disable_usb Processing for unused USB channel	r_disable_rtc	Processing for unused RTC channel
	r_disable_usb	Processing for unused USB channel

Table 5.33 API Function (1/2)

Function Name	Description
R_MMU_Init	Initial setup of MMU
R_MMU_Disable	Disable MMU
R_MMU_WriteTbl	Configure MMU translation table
R_CACHE_L1Init	Initialize L1 Cache
R_CACHE_L1InstEnable	Enable L1 Instruction Cache
R_CACHE_L1InstDisable	Disable L1 Instruction Cache
R_CACHE_L1InstInvalidAll	Invalidate the whole L1 Instruction Cache
R_CACHE_L1DataEnable	Enable L1 Data Cache
R_CACHE_L1DataDisable	Disable L1 Data Cache
R_CACHE_L1DataInvalidAll	Invalidate the whole L1 Data Cache
R_CACHE_L1DataCleanAll	Clean the whole L1 Data Cache
R_CACHE_L1DataCleanInvalidAll	Clean and invalidate the whole L1 Data Cache
R_CACHE_L1DataInvalidLine	Invalidate L1 Data Cache per line (32-bytes unit)
R_CACHE_L1DataCleanLine	Clean L1 Data Cache per line (32-bytes unit)
R_CACHE_L1DataCleanInvalidLine	Clean and invalidate L1 Data Cache per line (32-bytes unit)
R_CACHE_L1BtacEnable	Enable Branch Predictor
R_CACHE_L1BtacDisable	Disable Branch Predictor
R_CACHE_L1BtacInvalidate	Invalidate Branch Predictor
R_CACHE_L1PrefetchEnable	Enable L1 Data Cache prefetching
R_CACHE_L1PrefetchDisable	Disable L1 Data Cache prefetching
R_CACHE_L2Init	Initialize L2 Cache
R_CACHE_L2CacheEnable	Enable L2 Cache
R_CACHE_L2CacheDisable	Disable L2 Cache
R_CACHE_L2PrefetchEnable	Enable L2 Cache prefetching
R_CACHE_L2PrefetchDisable	Disable L2 Cache prefetching
R_CACHE_L2InvalidAll	Invalidate the whole L2 Cache
R_CACHE_L2CleanAll	Clean the whole L2 Cache
R_CACHE_L2CleanInvalidAll	Clean and invalidate the whole L2 Cache
R_INTC_Init	Initialize interrupt controller
R_INTC_Enable	Enable interrupt controller
R_INTC_Disable	Disable interrupt controller
R_INTC_SetPriority	Set up interrupt priority level
R_INTC_SetMaskLevel	Set up interrupt mask level
R_INTC_GetMaskLevel	Get interrupt mask level
R_INTC_RegistIntFunc	Register interrupt handlers
R_OSTM_Init	Initialize OSTM
R_STB_StartModule	Cancel module standby mode
R_STB_StopModule	Translate to module standby mode

Table 5.34 API Function (2/2)

Function Name	Description
R_CPG_SetXtalClock	Calculate Iφ, Bφ and Pφ based on EXTAL frequency
R_CPG_SetSubClockDividers	Set up the division rate of Iφ, Bφ and Pφ
R_CPG_SetSubClockSource	Set up the clock source of CKIO, OM_SCLK,
	HM_CK/HM_CK#, QSPI0_SPCLK/QSPI1_SPCLK
R_CPG_ConfigExtPinClock	Configure CKIO pin state
R_GPIO_PortWrite	Set up the output value of specified port
R_GPIO_PortRead	Read out the input value of specified port
R_GPIO_PinWrite	Set up the output value of specified pin
R_GPIO_PinRead	Read out the input value of specified pin
R_GPIO_HWInitialise	Initialize all the GPIOs at once
R_GPIO_PinSetConfiguration	Set up the specified pin function
R_GPIO_InitByPinList	Set up GPIOs according to the list of pins created beforehand
R_GPIO_InitByTable	Set up GPIOs according to the pin table
RZA_IO_RegWrite_8	IO register write function (for 8-bit I/O register)
RZA_IO_RegWrite_16	IO register write function (for 16-bit I/O register)
RZA_IO_RegWrite_32	IO register write function (for 32-bit I/O register)
RZA_IO_RegRead_8	IO register read function (for 8-bit I/O register)
RZA_IO_RegRead_16	IO register read function (for 16-bit I/O register)
RZA_IO_RegRead_32	IO register read function (for 32-bit I/O register)

Table 5.35 User Defined Function

Function Name	Description
Userdef_INTC_Pre_Interrupt	Define the processing carried out before the INTC interrupt handler is invoked
Userdef_INTC_Post_Interrupt	Define the processing carried out after the INTC interrupt handler has terminated
Userdef_INTC_UnregisteredID	Define the processing when an interrupt is fired, but its handler hasn't been registered yet
Userdef_INTC_UndefId	Define the processing when an interrupt is fired, but its ID is undefined
Userdef_INTC_NMI_Handler	Define the NMI interrupt handler processing

5.8 Function Specification

This section describes the specification of function in the sample code.

reset_handler	
Overview	Reset handler
Syntax	reset_handler FUNCTION {}
Description	This is the assembler function invoked just after reset has completed. This function carries out the initial setup of the stack pointer, the MMU, and minimal peripheral setup. Finally, the resetprg() function is called.
Parameters	None
Return value	None

INITSCT

Overview Initialize memory section
Syntax INITSCT FUNCTION{}

Description Initialize DATA and BSS section in accordance with the specified initialization table

Parametersr0Pointer to initialization table for DATA section

R1 Pointer to initialization table for BSS section

Return value None

R SC HardwareSetup

Overview Initialize peripheral functions
Syntax void R_SC_HardwareSetup(void)
Description Initialize peripheral functions

This function initializes peripheral functions which need to be initialized before initial setup of section initialization. In this sample code, this function is implemented as an

empty function.

Parameters None Return value None

Note DATA and BSS section shouldn't be initialized at the time this function is called.

Therefore please don't use the variables assigned to DATA and/or BSS section in

this function and/or functions which are called from this function.

resetprg

Overview Initialize INTC and L1/L2 cache

Syntax Void resetprg(void)

Description Initialize INTC and the L1/L2 cache and then call the main() function.

Parameters None Return value None

main

Overview Main processing
Syntax int_t main(void)

Description This function displays information from the sample code to the terminal running on

the host PC connected to the RZ/A2M CPU board via its serial interface and

initializes the GPIO pin driving the on-board LED.

Also, OSTM channel 0 is initialized and its counter configured so that the interrupt is

fired every 500ms, and then it is enabled.

Parameters None Return value 0

Sample_Main

Overview Main processing for sample code

Syntax void Sample_Main(void)

Description Invoke the sample code of RZ/A2Ms peripheral functions corresponding to the

command input from the terminal running on the host PC connected with RZ/A2M

CPU board via its serial interface.

Parameters None Return value None

Overview	Initialize MMU translation table
Syntax	void Sample_Main(void)
Description	Invoke the sample code of RZ/A2Ms peripheral functions corresponding to the command input from the terminal running on the host PC connected with RZ/A2M CPU board via its serial interface.
Parameters	None
Return value	None

R_MMU_Disable	
Overview	Disable MMU
Syntax	void R_MMU_Disable(void)
Description	Disable MMU
Parameters	None
Return value	None

D MANALL MAINTEN			
R_MMU_WriteTbl			
Overview	Configure MMU translation table		
Syntax	void R_MMU_WriteTbl		
	(uint32_t vaddress, uint3	32_t paddress, uint32_t size, uint32_t entry)	
Description	This function assigns physical address to the first level MMU translation table entry		
	for the virtual address space specified by the parameter vaddress, and set up its		
	attribute. Table 5.5 and Table 5.6 show the first level descriptor that can be specified		
	for translation table.		
Parameters	uint32_t vaddress	Starting address of virtual address area to be specified	
		(Only b31-b20 is valid)	
	uint32_t paddress	Starting address of physical address area to be assigned	
		(Only b31-b20 is valid)	
	uint32_t size	Number of entry to be specified (1~4096)	
	uint32_t entry	Attribute to be specified (Only b19-b0 is valid)	
Return value	mmu_err_t		
	MMU_Success: Successfully terminated		
	MMU_ERR_OVERFLOW: Size has overflowed		
Notes	This function must be invoked after R_MMU_Init().		

6. Sample Code

Sample code can be downloaded from the Renesas Electronics website.

7. Reference Documents

User's Manual: Hardware

RZ/A2M Group User's Manual: Hardware

The latest version can be downloaded from the Renesas Electronics website.

RTK7921053C00000BE (RZ/A2M CPU board) User's Manual

The latest version can be downloaded from the Renesas Electronics website.

RTK79210XXB00000BE (RZ/A2M SUB board) User's Manual

The latest version can be downloaded from the Renesas Electronics website.

ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition Issue C The latest version can be downloaded from the ARM website.

ARM Cortex[™]-A9 Technical Reference Manual Revision: r4p1

The latest version can be downloaded from the ARM website.

ARM Generic Interrupt Controller Architecture Specification - Architecture version 2.0 The latest version can be downloaded from the ARM website.

ARM CoreLinkTM Level 2 Cache Controller L2C-310 Technical Reference Manual Revision: r3p3 The latest version can be downloaded from the ARM website.

Technical Update/Technical News

The latest information can be downloaded from the Renesas Electronics website.

User's Manual: Development Tools

Integrated development environment e² studio User's Manual can be downloaded from the Renesas Electronics website.

The latest version can be downloaded from the Renesas Electronics website.

Revision History

Desc	

		=		
Rev.	Date	Page	Summary	
1.00	Oct.04.18	_	First edition issued	
1.01	Jan.16.19	various	Updated referenced application note, e ² studio version, tables in section 5	
1.10	May.14.19	7	Removed obsolete compiler option from operating conditions.	
1.11	May.29.20	27	Reformatting caption for Figure 5.12.	
1.12	Sep.30.20	7	Modified Compile Options.	