Lab 1: Vectors

General Instructions: General instructions.

- 1. The goal of this lab is to practice working with and thinking about vectors.
- 2. Work in groups of two or three.
- 3. Please check with me or one of the TAs before going on to the next exercise.
- 4. Please hand in only one write-up per group.

Right Triangles and Ratios

- 1. Using a ruler measure the p's and q's on each of the triangles in Fig. 1.
- 2. Determine values of p_1/q_1 , p_2/q_2 , and p_3/q_3 .
- 3. Then do the same for the triangle on Fig. 2.
- 4. What does this ratio p/q tell you?
- 5. Invent a name for this ratio.

Sextants

- 1. Trigonometry Warm Up:
 - (a) You stand 50 meters away from a flag pole. You have to look at an angle of 53 degrees from the horizon to see the top of the pole. What is the pole's height?
 - (b) You stand 75 meters away from a tree that is 100 meters tall. At what angle must you tilt your head so that you look straight at the top of the tree?
- 2. Trigonometry and Trees:
 - (a) Grab a sextant. Go outside and figure out how to use it. (Talk to or Cecily.)
 - (b) Measure the height of the large pine tree on the North end of the field between the Blair/Tyson and the arts and sciences building.

Vector Operations with Components

- 1. Consider a vector \vec{a} which is a 10 meter displacement, 37 degrees north of west. And let \vec{b} be a 20 meter displacement 45 degrees west of south.
- 2. Write \vec{a} and \vec{b} in component form. Use trigonometry.
- 3. Determine the following:
 - (a) $\vec{a} + 2\vec{b}$
 - (b) $3\vec{a}$

Illustrate these with a picture, and express your answers both in component form and magnitude-direction form.

Figure 1:

Figure 2: