Data Analysis(3)

Dept. of Mechanical System Design Engineering, Seoul National University of Science and Technology

Prof. Ju Yeon Lee (jylee@seoultech.ac.kr)

KNN: K-Nearest Neighbor

KNN: K-Nearest Neighbor

Distance Formula

Euclidean Distance

$$d = \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2}$$

$$\sqrt{(a_1-b_1)^2+(a_2-b_2)^2+\ldots+(a_n-b_n)^2}$$

Manhattan Distance

$$d = |a_1 - b_1| + |a_2 - b_2|$$

$$|a_1-b_1|+|a_2-b_2|+\ldots+|a_n-b_n|$$

Distance Formula

Minkowski Distance

$$D(X,Y) = (\sum_{i=1}^{n} (|x_i - y_i|)^p)^{\frac{1}{p}}$$

- P = 1, Manhattan Distance
- P = 2, Euclidean Distance

Decision Tree

- A: 0.9 * 0.1 = 0.09
- *B* : 0.5 * 0.5 = 0.25
- Gini Impurity: $Gini = 1 \sum_{i=1}^{C} (p_i)^2$
- Entropy Index : $H(X) = -\sum_{i=1}^n p_i \log_2 p_i$

Decision Tree

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	-Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
DH	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

$$Ent(D) = -\sum_{k=1}^{|Y|} p_k \ log_2 p_k$$
 $Gain(D, a) = Ent(D) - \sum_{v=1}^{V} \frac{|D^v|}{|D|} Ent(D^v)$

$$Values(Wind) = Weak, Strong$$

 $S = [9+, 5-]$
 $S_{Weak} \leftarrow [6+, 2-]$
 $S_{Strong} \leftarrow [3+, 3-]$

$$Gain(S, Wind) = Entropy(S) - \sum_{v \in \{Weak, Strong\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

$$= Entropy(S) - (8/14) Entropy(S_{Weak})$$

$$- (6/14) Entropy(S_{Strong})$$

$$= 0.940 - (8/14)0.811 - (6/14)1.00$$

$$= 0.048$$

Decision Tree

= .940 - (8/14).811 - (6/14)1.0 = .048

Gain (S,	Humidity)
= .940 = .151	- (7/14).985 - (7/14).592

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	-Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
DH	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Gain(S, Outlook) = 0.246

Gain(S, Humidity) = 0.151

Gain(S, Wind) = 0.048

Gain(S, Temperature) = 0.029

Sampling?

"Sampling" is the selection of a subset or a statistical sample (termed sample for short) of individuals from within a statistical population to estimate characteristics of the whole population

Source: Wikipedia

- Sampling Type :
 - ✓ Balanced sampling : Balance between data classes
 - → Simple random sampling (단순 임의 샘플링)
 - ✓ Imbalanced/unbalanced sampling : Imbalance between data classes
 - → Stratified sampling (층화 추출)
 - → Systematic sampling (계통 추출)

Simple random sampling (단순 임의 샘플링)
 All subsets of a sampling frame have an equal probability of being selected. Each element of the frame thus has an equal probability of selection

Sampling?

Stratified sampling (충화 추출)
 When the population embraces a number of distinct categories, the frame can be organized by these categories into separate "strata." Each stratum is then sampled as an independent subpopulation, out of which individual elements can be randomly selected

• Systematic sampling (계통 추출)
Systematic sampling (also known as interval sampling) relies on arranging the study population according to some ordering scheme and then selecting elements at regular intervals through that ordered list

Imbalanced sampling

1. Under/Down Sampling

2. Over/Up Sampling

Imbalanced sampling

3. Combination Sampling : Under + Over

SMOTE

SMOTE(Synthetic Minority Over-Sampling Technique):

generate new data between neighboring minority classes from random minority class data

For numerical features

SMOTENC(Synthetic Minority Over-Sampling Technique for Nominal and Continuous):

For dataset containing numerical and categorical features

However, it is not designed to work with only categorical features

https://imbalanced-learn.org/stable/references/index.html

