1. Reading The dataset

```
# Reading the dataset
import pandas as pd
import numpy as np
StarbucksData=pd.read_csv('/content/drive/MyDrive/SBUX.US_D1.csv', encoding='latin')
print('Shape before deleting duplicate values:', StarbucksData.shape)
# Removing duplicate rows
StarbucksData=StarbucksData.drop_duplicates()
print('Shape After deleting duplicate values:', StarbucksData.shape)
# Start observing the Quantitative/Categorical/Qualitative variables
StarbucksData.head(10)
    Shape before deleting duplicate values: (6639, 6)
     Shape After deleting duplicate values: (6639, 6)
        datetime open high
                               low close volume
     0 1998-01-02 38.38 38.63 37.31
                                     37.50
                                             594000
     1 1998-01-05 37.63 37.78 36.75
                                     37.13
                                             644000
     2 1998-01-06 37.13 37.38 35.56
                                     35.63 1183300
     3 1998-01-07 35.50 36.44 34.25
                                     34.69 2039005
     4 1998-01-08 34.56 36.01 34.00
                                     35.76
                                            1638105
     5 1998-01-09 35.75 36.01 34.37
                                     35.13
                                             713703
       1998-01-12 34.50 35.37 34.25
                                             855603
                                      35.19
     7 1998-01-13 35.38 35.63 35.00
                                     35.56
                                             460200
       1998-01-14 35.63 35.63 35.07
                                     35.19
                                             336200
     9 1998-01-15 35.13 35.26 33.75
                                     34.00
                                             742700
 Next steps:
             Generate code with StarbucksData
                                               View recommended plots
                                                                            New interactive sheet
```

3. Targeted Variable Distribution

%matplotlib inline
StarbucksData['high'].hist()

StarbucksData.head()

₹		open	high	low	close	volume	\blacksquare
	0	38.38	38.63	37.31	37.50	594000	11.
	1	37.63	37.78	36.75	37.13	644000	
	2	37.13	37.38	35.56	35.63	1183300	
	3	35.50	36.44	34.25	34.69	2039005	
	4	34.56	36.01	34.00	35.76	1638105	

Next steps: Generate code with StarbucksData

View recommended plots

New interactive sheet

StarbucksData.tail()

_		open	high	low	close	volume	
	6634	90.95	91.53	90.60	91.07	5115057	ılı
	6635	91.06	91.09	91.05	91.05	4882	
	6636	91.26	92.96	91.17	92.07	3796900	
	6637	92.00	92.72	91.21	92.42	6207319	
	6638	92.55	92.87	90.87	91.59	4772185	

Removing Unwanted columns

3 35.50 36.44 34.25 34.69

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
# List of columns to remove
columns_to_remove = ['datetime']
for col in columns_to_remove:
   if col in StarbucksData.columns:
       StarbucksData = StarbucksData.drop(columns=col)
       print(f"Removed column: {col}")
   else:
       print(f"Column not found: {col}")
# To see the DataFrame after attempting to drop the columns
print(StarbucksData.head())
open
             high
                     low close
                                  volume
      38.38
            38.63 37.31
                          37.50
                                  594000
                          37.13
                                  644000
      37.63 37.78 36.75
      37.13 37.38 35.56 35.63
                                 1183300
```

2039005

StarbucksData.info()

```
<- <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 6639 entries, 0 to 6638
    Data columns (total 5 columns):
    # Column Non-Null Count Dtype
                6639 non-null
                                float64
        open
                                float64
                6639 non-null
        high
                6639 non-null
                                float64
        low
        close
                6639 non-null
                                float64
        volume 6639 non-null
                                int64
    dtypes: float64(4), int64(1)
    memory usage: 259.5 KB
```

2. Problem statement definition

StarbucksData.describe(include='all')

→		open	high	low	close	volume	
	count	6639.000000	6639.000000	6639.000000	6639.000000	6.639000e+03	ılı
	mean	52.025905	52.605072	51.438399	52.034272	5.793768e+06	
	std	27.161870	27.312972	26.994025	27.155434	4.658699e+06	
	min	7.520000	7.900000	7.060000	7.200000	3.000000e+02	
	25%	29.735000	30.130000	29.290000	29.665000	2.875130e+06	
	50%	49.340000	50.000000	48.660000	49.400000	4.693841e+06	
	75%	71.500000	72.215000	70.680000	71.390000	7.301760e+06	
	max	126.080000	126.320000	124.810000	126.060000	7.234445e+07	

StarbucksData.nunique()

4. Visualising the distribution of Target

```
def PlotBarCharts(inpData, colsToPlot):
    %matplotlib inline

import matplotlib.pyplot as plt

# Generating multiple subplots
fig, subPlot=plt.subplots(nrows=1, ncols=len(colsToPlot), figsize=(20,5))
fig.suptitle('Bar charts of: '+ str(colsToPlot))

for colName, plotNumber in zip(colsToPlot, range(len(colsToPlot))):
    inpData.groupby(colName).size().plot(kind='bar',ax=subPlot[plotNumber])
```

PlotBarCharts(inpData=StarbucksData, colsToPlot=['open','close'])

5. Data exploration at basic level

StarbucksData.hist(['open', 'low', 'close', 'volume'], figsize=(18,10))

StarbucksData['volume'][StarbucksData['volume']<60].sort_values(ascending=False)

volume

dtype: int64

StarbucksData['volume'][StarbucksData['volume']>60] =51.13

StarbucksData.hist(['volume'], figsize=(18,5))

9. Removal of outliers and missing values

StarbucksData.isnull().sum()

_	0
open	0
high	0
low	0
close	0
volume	0
dtype: int	64

ContinuousCols=['open', 'low', 'close', 'volume']

 $\mbox{\#}$ Plotting scatter chart for each predictor vs the target variable for predictor in ContinuousCols:

StarbucksData.plot.scatter(x=predictor, y='high', figsize=(10,5), title=predictor+" VS "+ 'high')

8. Feature Selection based on data distribution

10. Visual and Statistic Correlation analysis for selection of best features

```
CategoricalColsList=['low', 'volume']
import matplotlib.pyplot as plt
fig, PlotCanvas=plt.subplots(nrows=1, ncols=len(CategoricalColsList), figsize=(18,10))
# Creating box plots for each continuous predictor against the Target Variable "high"
for PredictorCol , i in zip(CategoricalColsList, range(len(CategoricalColsList))):
    StarbucksData.boxplot(column='high', by=PredictorCol, figsize=(5,5), vert=True, ax=PlotCanvas[i])
```


def FunctionAnova(inpData, TargetVariable, CategoricalPredictorList):

```
from scipy.stats import f_oneway
    # Creating an empty list of final selected predictors
    SelectedPredictors=[]
    print('##### ANOVA Results ##### \n')
    for predictor in CategoricalPredictorList:
        CategoryGroupLists=inpData.groupby(predictor)[TargetVariable].apply(list)
        AnovaResults = f_oneway(*CategoryGroupLists)
        # If the ANOVA P-Value is <0.05, that means we reject H0
        if (AnovaResults[1] < 0.05):</pre>
            print(predictor, 'is correlated with', TargetVariable, '| P-Value:', AnovaResults[1])
            SelectedPredictors.append(predictor)
        else:
            print(predictor, 'is NOT correlated with', TargetVariable, '| P-Value:', AnovaResults[1])
    return(SelectedPredictors)
CategoricalPredictorList=['open', 'close']
FunctionAnova(inpData=StarbucksData,
              TargetVariable='high',
              CategoricalPredictorList=CategoricalPredictorList)
→ ##### ANOVA Results #####
    open is correlated with high | P-Value: 0.0
    close is correlated with high | P-Value: 0.0 ['open', 'close']
SelectedColumns=['open', 'high', 'low', 'close', 'volume'] # Removed 'datetime'
# final columns
DataForML=StarbucksData[SelectedColumns]
DataForML.head()
```

```
\overline{\mathbf{x}}
         open high
                        low close volume
                                                  \blacksquare
     0 38.38
                38.63 37.31
                               37.50
                                         51.13
      1 37.63 37.78 36.75
                               37.13
                                         51.13
      2 37.13 37.38 35.56
                               35.63
                                         51.13
      3 35.50 36.44 34.25
                               34.69
                                         51.13
      4 34.56 36.01 34.00
                               35.76
                                         51.13
Next steps:
              Generate code with DataForML
                                                  View recommended plots
                                                                                    New interactive sheet
```

11. Data Conversion to numeric values for machine learning predictive analysis

```
DataForML.to_pickle('DataForML.pkl')
# Treating all the nominal variables at once using dummy variables
DataForML_Numeric=pd.get_dummies(DataForML)
# putting Target Variable to the data
DataForML_Numeric['high']=StarbucksData['high']
# sample rows
DataForML_Numeric.head()
\overline{\mathcal{F}}
        open high
                     low close volume
                                            \blacksquare
     0 38.38 38.63 37.31
                            37.50
                                    51.13
                                            th
     1 37.63 37.78 36.75
                            37.13
                                    51.13
     2 37.13 37.38 35.56
                            35.63
                                    51.13
     3 35.50 36.44 34.25
                            34.69
                                    51.13
      4 34.56 36.01 34.00
                            35.76
                                    51.13
 Next steps:
             Generate code with DataForML_Numeric
                                                     View recommended plots
                                                                                  New interactive sheet
DataForML_Numeric.columns
Index(['open', 'high', 'low', 'close', 'volume'], dtype='object')
TargetVariable='high'
Predictors=['open', 'low', 'close', 'volume'] # Removed 'datetime'
X=DataForML_Numeric[Predictors].values
y=DataForML_Numeric[TargetVariable].values
# Split the data into training and testing set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=428)
#Standardization of the data
from sklearn.preprocessing import StandardScaler, MinMaxScaler
PredictorScaler=MinMaxScaler()
PredictorScalerFit=PredictorScaler.fit(X)
X=PredictorScalerFit.transform(X)
from sklearn.model_selection import train_test_split
X_{\text{train}}, X_{\text{test}}, y_{\text{train}}, y_{\text{test}} = train_test_split(X, Y, test_size=0.3, random_state=42)
# Sanity check for the sampled data
print(X_train.shape)
print(y_train.shape)
print(X_test.shape)
print(y_test.shape)
    (4647, 4)
     (4647,)
     (1992, 4)
```

13. Investigating multiple Regression algorithms

```
#Multiple Linear Regression
from sklearn.linear_model import LinearRegression
RegModel = LinearRegression()
# Printing all the parameters of Linear regression
print(RegModel)
# Creating the model on
LREG=RegModel.fit(X\_train,y\_train)
prediction=LREG.predict(X_test)
from sklearn import metrics
# Measuring fit in Training data
print('R2 Value:',metrics.r2_score(y_train, LREG.predict(X_train)))
print('\n#### Model Validation and Accuracy Calculations ########")
# Printing some sample values of prediction
TestingDataResults=pd.DataFrame(data=X test, columns=Predictors)
TestingDataResults[TargetVariable]=y_test
TestingDataResults[('Predicted'+TargetVariable)]=np.round(prediction)
# Printing sample prediction values
print(TestingDataResults.head())
# Calculating the error for each row
TestingDataResults['APE']=100 * ((abs(
  Testing Data Results ['high'] - Testing Data Results ['Predicted high'])) / Testing Data Results ['high']) \\
MAPE=np.mean(TestingDataResults['APE'])
MedianMAPE=np.median(TestingDataResults['APE'])
Accuracy =100 - MAPE
MedianAccuracy=100- MedianMAPE
print('Mean Accuracy on test data:', Accuracy) # Can be negative sometimes due to outlier
print('Median Accuracy on test data:', MedianAccuracy)
# Defining a custom function to calculate accuracy
# Make sure there are no zeros in the Target variable if you are using MAPE
def Accuracy_Score(orig,pred):
    MAPE = np.mean(100 * (np.abs(orig-pred)/orig))
    #print('#'*70,'Accuracy:', 100-MAPE)
    return(100-MAPE)
# Custom Scoring MAPE calculation
from sklearn.metrics import make_scorer
custom_Scoring=make_scorer(Accuracy_Score, greater_is_better=True)
# Importing cross validation function from sklearn
from sklearn.model_selection import cross_val_score
# Running 10-Fold Cross validation on a given algorithm
# Passing full data X and y because the K-fold will split the data and automatically choose train/test
Accuracy_Values=cross_val_score(RegModel, X , y, cv=10, scoring=custom_Scoring)
print('\nAccuracy values for 10-fold Cross Validation:\n',Accuracy_Values)
print('\nFinal Average Accuracy of the model:', round(Accuracy_Values.mean(),2))
    LinearRegression()
     R2 Value: 0.9998302780695274
     ##### Model Validation and Accuracy Calculations #########
           open
                      low
                              close volume
                                              high Predictedhigh
                 0.337410 0.335100
      0.334683
                                        0.0
                                               47.54
                                                               48.0
                 0.509469
                           0.512788
                                              68.21
                                                               68.0
       0.502530
                                         0.0
     2 0.119686 0.122887
                           0.122665
                                         0.0
                                               21.85
                                                               22.0
     3 0.249663 0.252144
                           0.254417
                                         0.0
                                              37.65
                                                               38.0
     4 0.875843 0.870998 0.871025
                                         0.0 111.69
                                                              112.0
    Mean Accuracy on test data: 99.10775768180177
    Median Accuracy on test data: 99.32885906040269
    Accuracy values for 10-fold Cross Validation:
     [98.97014598 99.24794514 99.5535399 99.45022545 99.24955049 99.59638437
     99.65028454 99.64707299 99.57719054 99.57230884]
     Final Average Accuracy of the model: 99.45
```

```
# Decision Trees (Multiple if-else statements!)
from sklearn.tree import DecisionTreeRegressor
RegModel = DecisionTreeRegressor(max_depth=5,criterion='friedman_mse')
# Printing all the parameters of Decision Tree
print(RegModel)
# Creating the model on Training Data
DT=RegModel.fit(X_train,y_train)
prediction=DT.predict(X_test)
from sklearn import metrics
# Measuring Goodness of fit in Training data
print('R2 Value:',metrics.r2_score(y_train, DT.predict(X_train)))
# Plotting the feature importance for Top 10 most important columns
%matplotlib inline
feature_importances = pd.Series(DT.feature_importances_, index=Predictors)
feature_importances.nlargest(10).plot(kind='barh')
print('\n##### Model Validation and Accuracy Calculations ########"')
# Printing some sample values of prediction
TestingDataResults=pd.DataFrame(data=X_test, columns=Predictors)
TestingDataResults[TargetVariable]=y_test
TestingDataResults[('Predicted'+TargetVariable)]=np.round(prediction)
# Printing sample prediction values
print(TestingDataResults.head())
# Calculating the error for each row
TestingDataResults['APE']=100 * ((abs(
 TestingDataResults['high']-TestingDataResults['Predictedhigh']))/TestingDataResults['high'])
MAPE=np.mean(TestingDataResults['APE'])
MedianMAPE=np.median(TestingDataResults['APE'])
Accuracy =100 - MAPE
MedianAccuracy=100- MedianMAPE
print('Mean Accuracy on test data:', Accuracy) # Can be negative sometimes due to outlier
print('Median Accuracy on test data:', MedianAccuracy)
# Defining a custom function to calculate accuracy
# Make sure there are no zeros in the Target variable if you are using MAPE
def Accuracy_Score(orig,pred):
   MAPE = np.mean(100 * (np.abs(orig-pred)/orig))
    #print('#'*70,'Accuracy:', 100-MAPE)
    return(100-MAPE)
# Custom Scoring MAPE calculation
from sklearn.metrics import make_scorer
custom_Scoring=make_scorer(Accuracy_Score, greater_is_better=True)
# Importing cross validation function from sklearn
from \ sklearn.model\_selection \ import \ cross\_val\_score
# Passing full data X and y because the K-fold will split the data and automatically choose train/test
Accuracy_Values=cross_val_score(RegModel, X , y, cv=10, scoring=custom_Scoring)
print('\nAccuracy values for 10-fold Cross Validation:\n',Accuracy_Values)
print('\nFinal Average Accuracy of the model:', round(Accuracy_Values.mean(),2))
```

```
##### Model Validation and Accuracy Calculations #########
      open
                 low
                        close volume
                                         high Predictedhigh
  0.334683
            0.337410
                      0.335100
                                         47.54
                                                        48.0
                                   0.0
           0.509469
  0.502530
                      0.512788
                                   0.0
                                        68.21
                                                        66.0
2 0.119686 0.122887
                      0.122665
                                   0.0
                                        21.85
                                                        22.0
            0.252144
                      0.254417
                                         37.65
                                                        39.0
  0.249663
                                   0.0
```

4 0.875843 0.870998 0.871025 111.69 Mean Accuracy on test data: 97.07822162752849 Median Accuracy on test data: 98.22595704948645

Accuracy values for 10-fold Cross Validation: [97.11249377 95.20326796 97.77182835 95.28085053 80.12682526 98.23486658 98.60751822 98.02095888 98.23145466 98.14946372]

0.0

Final Average Accuracy of the model: 95.67

Load libraries from IPython.display import Image from sklearn import tree import pydotplus

Create DOT data

dot_data = tree.export_graphviz(RegModel, out_file=None,

feature_names=Predictors) # Remove class_names for regression

113.0

#print(dot_data)

Draw graph

graph = pydotplus.graph_from_dot_data(dot_data)

Show graph

Image(graph.create_png(), width=2000,height=2000)

Double-click on the graph to zoom in

																			N N									
W.	m!	in!						W	W		W	W	W	w	W	w	W.	m	m	in [wi	w		W	wi	
N			1	m!										n l		1				T	N.	<u>.</u>	r)		F			m
			N	W	W	W	W	N	H	W	W	N	ĸV			U				W	ĸ.	ĸI	N	W			ı.Ü	N

```
# Random Forest (Bagging of multiple Decision Trees)
from sklearn.ensemble import RandomForestRegressor
RegModel = RandomForestRegressor(max_depth=4, n_estimators=400,criterion='friedman_mse')
# Printing all the parameters of Random Forest
print(RegModel)
# Creating the model on Training Data
RF=RegModel.fit(X_train,y_train)
prediction=RF.predict(X_test)
from sklearn import metrics
# Measuring Goodness of fit in Training data
print('R2 Value:',metrics.r2_score(y_train, RF.predict(X_train)))
# Plotting the feature importance for Top 10 most important columns
%matplotlib inline
feature_importances = pd.Series(RF.feature_importances_, index=Predictors)
feature_importances.nlargest(10).plot(kind='barh')
print('\n##### Model Validation and Accuracy Calculations ########"')
# Printing some sample values of prediction
TestingDataResults=pd.DataFrame(data=X_test, columns=Predictors)
TestingDataResults[TargetVariable]=y_test
TestingDataResults[('Predicted'+TargetVariable)]=np.round(prediction)
# Printing sample prediction values
print(TestingDataResults.head())
# Calculating the error for each row
TestingDataResults['APE']=100 * ((abs(
 TestingDataResults['high']-TestingDataResults['Predictedhigh']))/TestingDataResults['high'])
MAPE=np.mean(TestingDataResults['APE'])
MedianMAPE=np.median(TestingDataResults['APE'])
Accuracy =100 - MAPE
MedianAccuracy=100- MedianMAPE
print('Mean Accuracy on test data:', Accuracy) # Can be negative sometimes due to outlier
print('Median Accuracy on test data:', MedianAccuracy)
# Defining a custom function to calculate accuracy
\ensuremath{\text{\#}} Make sure there are no zeros in the Target variable if you are using MAPE
def Accuracy_Score(orig,pred):
   MAPE = np.mean(100 * (np.abs(orig-pred)/orig))
    #print('#'*70,'Accuracy:', 100-MAPE)
    return(100-MAPE)
# Custom Scoring MAPE calculation
from sklearn.metrics import make scorer
custom_Scoring=make_scorer(Accuracy_Score, greater_is_better=True)
# Importing cross validation function from sklearn
from sklearn.model_selection import cross_val_score
# Passing full data X and y because the K-fold will split the data and automatically choose train/test
Accuracy_Values=cross_val_score(RegModel, X , y, cv=10, scoring=custom_Scoring)
print('\nAccuracy values for 10-fold Cross Validation:\n',Accuracy_Values)
print('\nFinal Average Accuracy of the model:', round(Accuracy_Values.mean(),2))
```

Model Validation and Accuracy Calculations ######### low close volume high Predictedhigh open 0.334683 0.337410 0.335100 47.54 0.0 49.0 0.509469 0.502530 0.512788 0.0 68.21 68.0 0.119686 0.122887 0.122665 21.85 0.0 23.0 0.254417 0.252144 37.65 37.0 0.249663 0.0 4 0.875843 0.870998 0.871025 111.69 0.0 115.0 Mean Accuracy on test data: 95.675328748515 Median Accuracy on test data: 97.7336327490655

Accuracy values for 10-fold Cross Validation: [96.2520956 92.31335095 96.67624995 93.02809603 73.77033573 97.85475085 97.84415209 97.54290656 97.73315978 97.26907368]

Final Average Accuracy of the model: 94.03

from IPython.display import Image from sklearn import tree import pydotplus

- # Create DOT data for the 6th Decision Tree in Random Forest
- # Removing the class_names argument

dot_data = tree.export_graphviz(RegModel.estimators_[5] , out_file=None, feature_names=Predictors)

Draw graph

graph = pydotplus.graph_from_dot_data(dot_data)

Show graph

Image(graph.create_png(), width=2000,height=2000)

Double-click on the graph to zoom in


```
# Adaboost (Boosting of multiple Decision Trees)
from sklearn.ensemble import AdaBoostRegressor
from sklearn.tree import DecisionTreeRegressor
# Choosing Decision Tree with 6 level as the weak learner
DTR=DecisionTreeRegressor(max_depth=3)
RegModel = AdaBoostRegressor(n_estimators=100, base_estimator=DTR ,learning_rate=0.04)
# Printing all the parameters of Adaboost
print(RegModel)
# Creating the model on Training Data
AB=RegModel.fit(X_train,y_train)
prediction=AB.predict(X_test)
from sklearn import metrics
# Measuring Goodness of fit in Training data
print('R2 Value:',metrics.r2_score(y_train, AB.predict(X_train)))
# Plotting the feature importance for Top 10 most important columns
%matplotlib inline
feature_importances = pd.Series(AB.feature_importances_, index=Predictors)
feature_importances.nlargest(10).plot(kind='barh')
print('\n##### Model Validation and Accuracy Calculations ########"')
# Printing some sample values of prediction
TestingDataResults=pd.DataFrame(data=X_test, columns=Predictors)
TestingDataResults[TargetVariable]=y_test
TestingDataResults[('Predicted'+TargetVariable)]=np.round(prediction)
# Printing sample prediction values
print(TestingDataResults.head())
# Calculating the error for each row
TestingDataResults['APE']=100 * ((abs(
 TestingDataResults['high']-TestingDataResults['Predictedhigh']))/TestingDataResults['high'])
MAPE=np.mean(TestingDataResults['APE'])
MedianMAPE=np.median(TestingDataResults['APE'])
Accuracy =100 - MAPE
MedianAccuracy=100- MedianMAPE
print('Mean Accuracy on test data:', Accuracy) # Can be negative sometimes due to outlier
print('Median Accuracy on test data:', MedianAccuracy)
# Defining a custom function to calculate accuracy
# Make sure there are no zeros in the Target variable if you are using MAPE
def Accuracy_Score(orig,pred):
   MAPE = np.mean(100 * (np.abs(orig-pred)/orig))
    #print('#'*70,'Accuracy:', 100-MAPE)
    return(100-MAPE)
# Custom Scoring MAPE calculation
from sklearn.metrics import make_scorer
custom_Scoring=make_scorer(Accuracy_Score, greater_is_better=True)
# Importing cross validation function from sklearn
from sklearn.model_selection import cross_val_score
\# Running 10-Fold Cross validation on a given algorithm
# Passing full data X and y because the K-fold will split the data and automatically choose train/test
Accuracy_Values=cross_val_score(RegModel, X , y, cv=10, scoring=custom_Scoring)
print('\nAccuracy values for 10-fold Cross Validation:\n',Accuracy_Values)
print('\nFinal Average Accuracy of the model:', round(Accuracy_Values.mean(),2))
```

R2 Value: 0.9874194246823305

Model Validation and Accuracy Calculations ######## low close volume high Predictedhigh open 0.334683 0.337410 0.335100 47.54 0.0 0.502530 0.509469 0.512788 0.0 68.21 71.0 0.122887 0.252144 0.122665 0.254417 0.119686 0.0 21.85 20.0 0.249663 37.65 0.0 35.0 $4\quad \textbf{0.875843} \quad \textbf{0.870998} \quad \textbf{0.871025}$ 0.0 111.69 112.0 Mean Accuracy on test data: 92.66827528649962 Median Accuracy on test data: 95.39398369434332

Accuracy values for 10-fold Cross Validation:
[91.76600783 89.07292865 94.2555468 94.12720287 60.16465789 94.60177776 95.92341731 94.32449787 96.60050225 97.55173965]

Final Average Accuracy of the model: 90.84

XGBoost Regressor

```
# Xtreme Gradient Boosting (XGBoost)
from xgboost import XGBRegressor
RegModel=XGBRegressor(max_depth=2,
                     learning_rate=0.1,
                     n_estimators=1000,
                     objective='reg:linear',
                     booster='gbtree')
# Printing all the parameters of XGBoost
print(RegModel)
# Creating the model on Training Data
XGB=RegModel.fit(X_train,y_train)
prediction=XGB.predict(X_test)
from sklearn import metrics
# Measuring Goodness of fit in Training data
print('R2 Value:',metrics.r2_score(y_train, XGB.predict(X_train)))
# Plotting the feature importance for Top 10 most important columns
%matplotlib inline
feature_importances = pd.Series(XGB.feature_importances_, index=Predictors)
feature_importances.nlargest(10).plot(kind='barh')
print('\n##### Model Validation and Accuracy Calculations ########")
# Printing some sample values of prediction
TestingDataResults=pd.DataFrame(data=X_test, columns=Predictors)
TestingDataResults[TargetVariable]=y_test
TestingDataResults[('Predicted'+TargetVariable)]=np.round(prediction)
# Printing sample prediction values
print(TestingDataResults.head())
# Calculating the error for each row
TestingDataResults['APE']=100 * ((abs(
 TestingDataResults['high']-TestingDataResults['Predictedhigh']))/TestingDataResults['high'])
MAPE=np.mean(TestingDataResults['APE'])
MedianMAPE=np.median(TestingDataResults['APE'])
Accuracy =100 - MAPE
MedianAccuracy=100- MedianMAPE
print('Mean Accuracy on test data:', Accuracy) # Can be negative sometimes due to outlier
print('Median Accuracy on test data:', MedianAccuracy)
# Defining a custom function to calculate accuracy
# Make sure there are no zeros in the Target variable if you are using MAPE
def Accuracy_Score(orig,pred):
   MAPE = np.mean(100 * (np.abs(orig-pred)/orig))
    #print('#'*70,'Accuracy:', 100-MAPE)
    return(100-MAPE)
# Custom Scoring MAPE calculation
from sklearn.metrics import make_scorer
custom_Scoring=make_scorer(Accuracy_Score, greater_is_better=True)
# Importing cross validation function from sklearn
from sklearn.model_selection import cross_val_score
# Running 10-Fold Cross validation on a given algorithm
# Passing full data X and y because the K-fold will split the data and automatically choose train/test
Accuracy_Values=cross_val_score(RegModel, X , y, cv=10, scoring=custom_Scoring)
print('\nAccuracy values for 10-fold Cross Validation:\n',Accuracy_Values)
print('\nFinal Average Accuracy of the model:', round(Accuracy_Values.mean(),2))
```

```
XGBRegressor(base_score=None, booster='gbtree', callbacks=None,
                 colsample_bylevel=None, colsample_bynode=None,
                 colsample_bytree=None, device=None, early_stopping_rounds=None,
                 enable_categorical=False, eval_metric=None, feature_types=None,
                 gamma=None, grow_policy=None, importance_type=None,
                 interaction_constraints=None, learning_rate=0.1, max_bin=None,
                 max_cat_threshold=None, max_cat_to_onehot=None,
                 max_delta_step=None, max_depth=2, max_leaves=None,
                 min_child_weight=None, missing=nan, monotone_constraints=None,
                multi_strategy=None, n_estimators=1000, n_jobs=None,
                 num_parallel_tree=None, objective='reg:linear', ...)
    R2 Value: 0.9997998976798858
    ##### Model Validation and Accuracy Calculations #########
           open
                     low
                              close
                                    volume
                                               high Predictedhigh
      0.334683
                0.337410
                           0.335100
                                              47.54
```

0.502530 0.509469 0.512788 0.0 68.21 69.0 0.119686 0.122887 0.122665 0.0 21.85 22.0 0.252144 0.254417 0.249663 0.0 37.65 38.0 0.875843 0.870998 0.871025 0.0 111.69 112.0 Mean Accuracy on test data: 98.96280690999289 Median Accuracy on test data: 99.2652058103633

Accuracy values for 10-fold Cross Validation: [98.60613862 98.92574274 99.32153111 99.08876165 89.44445044 99.38595723 99.50926339 99.46141599 99.19441203 99.22176472]

Final Average Accuracy of the model: 98.22

#Plotting a single Decision tree out of XGBoost
from xgboost import plot_tree
import matplotlib.pyplot as plt
fig, ax = plt.subplots(figsize=(20, 8))
plot_tree(XGB, num_trees=10, ax=ax)

12. Training/Testing Sampling and K- fold cross validation

```
# K-Nearest Neighbor(KNN)
from sklearn.neighbors import KNeighborsRegressor
RegModel = KNeighborsRegressor(n_neighbors=3)
# Printing all the parameters of KNN
print(RegModel)
# Creating the model on Training Data
KNN=RegModel.fit(X_train,y_train)
prediction=KNN.predict(X_test)
from sklearn import metrics
# Measuring Goodness of fit in Training data
print('R2 Value:',metrics.r2_score(y_train, KNN.predict(X_train)))
# Plotting the feature importance for Top 10 most important columns
# The variable importance chart is not available for KNN
print('\n#### Model Validation and Accuracy Calculations ########')
# Printing some sample values of prediction
TestingDataResults=pd.DataFrame(data=X_test, columns=Predictors)
TestingDataResults[TargetVariable]=y_test
TestingDataResults[('Predicted'+TargetVariable)]=np.round(prediction)
# Printing sample prediction values
print(TestingDataResults.head())
# Calculating the error for each row
TestingDataResults['APE']=100 * ((abs(
 TestingDataResults['hiqh']-TestingDataResults['Predictedhigh']))/TestingDataResults['hiqh'])
MAPE=np.mean(TestingDataResults['APE'])
MedianMAPE=np.median(TestingDataResults['APE'])
Accuracy =100 - MAPE
MedianAccuracy=100- MedianMAPE
print('Mean Accuracy on test data:', Accuracy) # Can be negative sometimes due to outlier
print('Median Accuracy on test data:', MedianAccuracy)
# Defining a custom function to calculate accuracy
# Make sure there are no zeros in the Target variable if you are using MAPE
def Accuracy_Score(orig,pred):
   MAPE = np.mean(100 * (np.abs(orig-pred)/orig))
   #print('#'*70,'Accuracy:', 100-MAPE)
    return(100-MAPE)
# Custom Scoring MAPE calculation
from sklearn.metrics import make_scorer
custom_Scoring=make_scorer(Accuracy_Score, greater_is_better=True)
# Importing cross validation function from sklearn
from sklearn.model_selection import cross_val_score
# Running 10-Fold Cross validation on a given algorithm
# Passing full data X and y because the K-fold will split the data and automatically choose train/test
Accuracy_Values=cross_val_score(RegModel, X , y, cv=10, scoring=custom_Scoring)
print('\nAccuracy values for 10-fold Cross Validation:\n',Accuracy_Values)
print('\nFinal Average Accuracy of the model:', round(Accuracy_Values.mean(),2))
KNeighborsRegressor(n_neighbors=3)
    R2 Value: 0.9998997766543954
    ##### Model Validation and Accuracy Calculations ########
                             close volume
                                             high Predictedhigh
           open
                      low
    0 0.334683 0.337410
                          0.335100
                                             47.54
                                       0.0
                                                            47.0
    1 0.502530 0.509469
                          0.512788
                                       0.0
                                             68.21
                                                             68.0
    2 0.119686 0.122887
                          0.122665
                                       0.0
                                             21.85
                                                             22.0
       0.249663 0.252144
                          0.254417
                                       0.0
                                             37.65
                                                             38.0
                                       0.0 111.69
    4 0.875843 0.870998 0.871025
                                                            112.0
    Mean Accuracy on test data: 99.0950033696335
    Median Accuracy on test data: 99.33113976415768
    Accuracy values for 10-fold Cross Validation:
     [98.8361444 99.24144402 99.48532681 99.30671441 91.17665692 99.53015031
     99.62043971 99.62963944 99.38185102 99.4795387 ]
    Final Average Accuracy of the model: 98.57
```

#kNN

```
# Support Vector Machines(SVM)
from sklearn import svm
RegModel = svm.SVR(C=50, kernel='rbf', gamma=0.01)
# Printing all the parameters
print(RegModel)
# Creating the model on Training Data
SVM=RegModel.fit(X_train,y_train)
prediction=SVM.predict(X_test)
from sklearn import metrics
# Measuring Goodness of fit in Training data
print('R2 Value:',metrics.r2_score(y_train, SVM.predict(X_train)))
# Plotting the feature importance for Top 10 most important columns
# The built in attribute SVM.coef_ works only for linear kernel
%matplotlib inline
#feature_importances = pd.Series(SVM.coef_[0], index=Predictors)
#feature_importances.nlargest(10).plot(kind='barh')
print('\n#### Model Validation and Accuracy Calculations ########")
# Printing some sample values of prediction
TestingDataResults=pd.DataFrame(data=X test, columns=Predictors)
TestingDataResults[TargetVariable]=y_test
TestingDataResults[('Predicted'+TargetVariable)]=np.round(prediction)
# Printing sample prediction values
print(TestingDataResults.head())
# Calculating the error for each row
TestingDataResults['APE']=100 * ((abs(
  TestingDataResults['high']-TestingDataResults['Predicted'+ TargetVariable]))/TestingDataResults['high']) # Added the TargetVariable]
MAPE=np.mean(TestingDataResults['APE'])
MedianMAPE=np.median(TestingDataResults['APE'])
Accuracy =100 - MAPE
MedianAccuracy=100- MedianMAPE
print('Mean Accuracy on test data:', Accuracy) # Can be negative sometimes due to outlier
print('Median Accuracy on test data:', MedianAccuracy)
# Defining a custom function to calculate accuracy
# Make sure there are no zeros in the Target variable if you are using MAPE
def Accuracy_Score(orig,pred):
    MAPE = np.mean(100 * (np.abs(orig-pred)/orig))
    #print('#'*70,'Accuracy:', 100-MAPE)
    return(100-MAPE)
# Custom Scoring MAPE calculation
from sklearn.metrics import make_scorer
custom_Scoring=make_scorer(Accuracy_Score, greater_is_better=True)
# Importing cross validation function from sklearn
from sklearn.model_selection import cross_val_score
# Running 10-Fold Cross validation on a given algorithm
# Passing full data X and y because the K-fold will split the data and automatically choose train/test
Accuracy_Values=cross_val_score(RegModel, X , y, cv=10, scoring=custom_Scoring)
print('\nAccuracy values for 10-fold Cross Validation:\n',Accuracy_Values)
print('\nFinal Average Accuracy of the model:', round(Accuracy_Values.mean(),2))
    SVR(C=50, gamma=0.01)
    R2 Value: 0.9996608084282836
    ##### Model Validation and Accuracy Calculations #########
           open
                      low
                             close volume
                                             high Predictedhigh
                 0.337410 0.335100
    0 0.334683
                                       0.0
                                             47.54
                                                             48.0
       0.502530 0.509469
                          0.512788
                                             68.21
                                       0.0
                                                             68.0
      0.119686 0.122887
                          0.122665
                                       0.0
                                             21.85
                                                             22.0
       0.249663 0.252144
                          0.254417
                                       0.0
                                             37.65
                                                             38.0
    4 0.875843 0.870998 0.871025
                                       0.0 111.69
                                                            112.0
    Mean Accuracy on test data: 98.98048053844327
    Median Accuracy on test data: 99.2679050568941
    Accuracy values for 10-fold Cross Validation:
     [98.31689232 99.09031641 99.55386758 99.37347612 98.90716127 99.5076312
     99.57891793 99.50554101 99.45227024 99.43884569]
```

Final Average Accuracy of the model: 99.27

```
# Plotting a single Decision Tree from Random Forest
# Load libraries
from IPython.display import Image
from sklearn import tree
import pydotplus

# Create DOT data for the 6th Decision Tree in Random Forest
print("Visualizing individual trees is not supported for Support Vector Regression models.")

# Draw graph
graph = pydotplus.graph_from_dot_data(dot_data)

# Show graph
Image(graph.create_png(), width=2000,height=2000)
# Double click on the graph to zoom in
```



```
# Adaboost (Boosting of multiple Decision Trees)
from sklearn.ensemble import AdaBoostRegressor
from sklearn.tree import DecisionTreeRegressor
# Choosing Decision Tree with 6 level as the weak learner
DTR=DecisionTreeRegressor(max_depth=3)
RegModel = AdaBoostRegressor(n_estimators=100, base_estimator=DTR ,learning_rate=0.04)
# Printing all the parameters of Adaboost
print(RegModel)
# Creating the model on Training Data
AB=RegModel.fit(X_train,y_train)
prediction=AB.predict(X_test)
from sklearn import metrics
# Measuring Goodness of fit in Training data
print('R2 Value:',metrics.r2_score(y_train, AB.predict(X_train)))
# Plotting the feature importance for Top 10 most important columns
%matplotlib inline
feature_importances = pd.Series(AB.feature_importances_, index=Predictors)
feature_importances.nlargest(10).plot(kind='barh')
print('\n##### Model Validation and Accuracy Calculations ########"')
# Printing some sample values of prediction
TestingDataResults=pd.DataFrame(data=X_test, columns=Predictors)
TestingDataResults[TargetVariable]=y_test
TestingDataResults[('Predicted'+TargetVariable)]=np.round(prediction)
# Printing sample prediction values
print(TestingDataResults.head())
# Calculating the error for each row
TestingDataResults['APE']=100 * ((abs(
 TestingDataResults['high']-TestingDataResults['Predictedhigh']))/TestingDataResults['high'])
MAPE=np.mean(TestingDataResults['APE'])
MedianMAPE=np.median(TestingDataResults['APE'])
Accuracy =100 - MAPE
MedianAccuracy=100- MedianMAPE
print('Mean Accuracy on test data:', Accuracy) # Can be negative sometimes due to outlier
print('Median Accuracy on test data:', MedianAccuracy)
# Defining a custom function to calculate accuracy
# Make sure there are no zeros in the Target variable if you are using MAPE
def Accuracy_Score(orig,pred):
   MAPE = np.mean(100 * (np.abs(orig-pred)/orig))
    #print('#'*70,'Accuracy:', 100-MAPE)
    return(100-MAPE)
# Custom Scoring MAPE calculation
from sklearn.metrics import make_scorer
custom_Scoring=make_scorer(Accuracy_Score, greater_is_better=True)
# Importing cross validation function from sklearn
from sklearn.model_selection import cross_val_score
\# Running 10-Fold Cross validation on a given algorithm
# Passing full data X and y because the K-fold will split the data and automatically choose train/test
Accuracy_Values=cross_val_score(RegModel, X , y, cv=10, scoring=custom_Scoring)
print('\nAccuracy values for 10-fold Cross Validation:\n',Accuracy_Values)
print('\nFinal Average Accuracy of the model:', round(Accuracy_Values.mean(),2))
```

AdaBoostRegressor(base_estimator=DecisionTreeRegressor(max_depth=3),

learning_rate=0.04, n_estimators=100)

R2 Value: 0.987605442319262

Model Validation and Accuracy Calculations ######## low close volume high Predictedhigh open 0.337410 0.334683 0.335100 47.54 46.0 0.0 0.502530 0.509469 0.512788 0.0 68.21 71.0 0.122887 0.119686 0.122665 0.0 21.85 20.0 0.249663 0.254417 0.252144 0.0 37.65 35.0 4 0.875843 0.870998 0.871025 0.0 111.69 112.0 Mean Accuracy on test data: 93.01571284455025 Median Accuracy on test data: 95.38306865989696

Accuracy values for 10-fold Cross Validation: [91.66285458 89.43540147 94.34355801 94.24665785 60.26502079 94.56559998 96.29470434 94.3389756 96.67187198 97.52740301]

Final Average Accuracy of the model: 90.94

MedianMAPE=np.median(TestingDataResults['APE'])


```
# Xtreme Gradient Boosting (XGBoost)
from xgboost import XGBRegressor
RegModel=XGBRegressor(max_depth=2,
                      learning_rate=0.1,
                      n_estimators=1000,
                      objective='reg:linear',
                      booster='gbtree')
# Printing all the parameters of XGBoost
print(RegModel)
# Creating the model on Training Data
XGB=RegModel.fit(X_train,y_train)
prediction=XGB.predict(X_test)
from sklearn import metrics
print('R2 Value:',metrics.r2_score(y_train, XGB.predict(X_train)))
# Plotting the feature importance for Top 10 most important columns
%matplotlib inline
feature_importances = pd.Series(XGB.feature_importances_, index=Predictors)
feature_importances.nlargest(10).plot(kind='barh')
print('\n#### Model Validation and Accuracy Calculations ########")
# Printing some sample values of prediction
TestingDataResults=pd.DataFrame(data=X_test, columns=Predictors)
TestingDataResults[TargetVariable]=y_test
TestingDataResults[('Predicted'+TargetVariable)]=np.round(prediction)
# Printing sample prediction values
print(TestingDataResults.head())
# Calculating the error for each row
TestingDataResults['APE']=100 * ((abs(
  Testing Data Results ['high'] - Testing Data Results ['Predicted high'])) / Testing Data Results ['high']) \\
MAPE=np.mean(TestingDataResults['APE'])
```

```
Accuracy =100 - MAPE
MedianAccuracy=100- MedianMAPE
print('Mean Accuracy on test data:', Accuracy) # Can be negative sometimes due to outlier
print('Median Accuracy on test data:', MedianAccuracy)
# Defining a custom function to calculate accuracy
\# Make sure there are no zeros in the Target variable if you are using MAPE
def Accuracy_Score(orig,pred):
   MAPE = np.mean(100 * (np.abs(orig-pred)/orig))
   #print('#'*70,'Accuracy:', 100-MAPE)
    return(100-MAPE)
# Custom Scoring MAPE calculation
from sklearn.metrics import make_scorer
custom_Scoring=make_scorer(Accuracy_Score, greater_is_better=True)
# Importing cross validation function from sklearn
from sklearn.model_selection import cross_val_score
# Running 10-Fold Cross validation on a given algorithm
# Passing full data X and y because the K-fold will split the data and automatically choose train/test
Accuracy_Values=cross_val_score(RegModel, X , y, cv=10, scoring=custom_Scoring)
print('\nAccuracy values for 10-fold Cross Validation:\n',Accuracy_Values)
print('\nFinal Average Accuracy of the model:', round(Accuracy_Values.mean(),2))
XGBRegressor(base_score=None, booster='gbtree', callbacks=None,
                 colsample_bylevel=None, colsample_bynode=None,
                 colsample_bytree=None, device=None, early_stopping_rounds=None,
                 enable_categorical=False, eval_metric=None, feature_types=None,
                 gamma=None, grow_policy=None, importance_type=None,
                 interaction_constraints=None, learning_rate=0.1, max_bin=None,
                 max_cat_threshold=None, max_cat_to_onehot=None,
                 max_delta_step=None, max_depth=2, max_leaves=None,
                 min_child_weight=None, missing=nan, monotone_constraints=None,
                 multi_strategy=None, n_estimators=1000, n_jobs=None,
                 num_parallel_tree=None, objective='reg:linear', ...)
    R2 Value: 0.9997998976798858
    ##### Model Validation and Accuracy Calculations ########
           open
                      low
                              close volume
                                               high Predictedhigh
                 0.337410
                                              47.54
    a
       0.334683
                           0.335100
                                         0.0
                                                               48.0
       0.502530
                 0.509469
                           0.512788
                                         0.0
                                               68.21
                                                               69.0
       0.119686
                 0.122887
                           0.122665
                                               21.85
                                                               22.0
                                         0.0
                 0.252144
                           0.254417
                                         0.0
                                              37.65
                                                               38.0
       0.249663
    4 0.875843 0.870998 0.871025
                                         0.0
                                             111.69
                                                              112.0
    Mean Accuracy on test data: 98.96280690999289
    Median Accuracy on test data: 99.2652058103633
    Accuracy values for 10-fold Cross Validation:
     [98.60613862\ 98.92574274\ 99.32153111\ 99.08876165\ 89.44445044\ 99.38595723
     99.50926339 99.46141599 99.19441203 99.22176472]
```

Final Average Accuracy of the model: 98.22

Decision Tree out of XGBoost

#Plotting a single Decision tree out of XGBoost
from xgboost import plot_tree
import matplotlib.pyplot as plt
fig, ax = plt.subplots(figsize=(20, 8))
plot_tree(XGB, num_trees=10, ax=ax)

→ <Axes: >

f0<0.534159899