Al Intro Basics #5

MLflow an open-source platform for managing the machine learning lifecycle

Tobias Göcke, Helen Theissen, Marek Jacob

E-Al Basic Tutorials

Tutorial E-Al Basics 4: January Wednesday 22, 2025, 11-12 CET

"MLOps" - Machine Learning Operations

- 4.1 Overview (20') [RP]
- 4.2 MLOps in relation to traditional Weather forecasting (20') [MJ]
- 4.3 Road to MLOps (20') [DN]

Tutorial E-AI Basics 5: February Wednesday 19, 2025, 11-12 CET

MLflow - an open-source platform for managing the machine learning lifecycle

- 5.1 Overview User perspective (20') [TG]
- 5.2 Logging to MLflow as a ML software developer (20') [HT]
- 5.3 Running MLflow server as a user and as a service (20') [MJ]

Tutorial E-Al Basics 6: February Wednesday 26, 2025, 11-12 CET

CI/CD - Continuous Integration and Continuous Deployment of ML codes

- 6.1 Overview What can CI/CD do for you? (20') [MJ]
- 6.2 Basic tests with Pytest (20') [JD]
- 6.3 Setting up a runner (20') [FP]

Al generated Image, © Marek Jacob 2024

Why experiment tracking?

training run
Change

parameters

training run

pow change Change Change

Change parameters

training run

model checkpoi

ML Developer: Here is the new model checkpoint.

Operator: What data was it trained on? ML Developer: Sorry, I can't remember. Operator: What was training schedule?

ML Developer: Well, I don't know anymore.

Operator: How did it perform in the verification?

ML Developer: Can't find the results right now. But

trust me it's good!

oint

verification

nt

verification

CHECKPOINT

verification

Solver State of State

training run

verification

19/02/2025

3

Experiment tracking options (subjective comparison after short research)

- Open source
- User-friendly
- Well documented
- Configurable
- Flexible
- Integrates with different environment (pytorch)
- Can set up a local stand alone server easily

- Integrates especially well with tensorflow
- Not ideal for large scale projects?

- Hosted service
- Has to be paid

Experiment tracking with MIFlow

- Place where to log and organize training runs
 - Experiments, each consisting of various runs
- Reproducibility
 - Log software versions, configs, model checkpoints
- Live monitoring
 - Validation metrics, system metrics, plots, etc
- Powerful tools to compare runs
 - Diffs in parameters
 - Multi run loss plots
 - Understand hyper parameters
- Different modes
 - local
 - Stand-alone server
 - Web-server

Quick-start mlflow

Install

pip install mlflow

(virtual python environment)

• Log

View

Mlflow web user interface

- Plot various metrics
- Compare different runs
- Log plots
- Compare parameter settings
- Summary plots for hyper parameter studies
- Compare across different experiments

Mlflow web user interface

- Powerful tools to evaluate hyperparameters scans
- Box plots for single parameter dependency
- Contour plot for double parameter dependency

Mlflow in the MLOps pipeline (current early setup, DWD example)

→ GitLab

mlf/ow

Code base

- Experiment tracking
- **Metrics**
- Metadata
- Models

Model registry

- Staging
- **Promote** experiments to models
- Versioning

Verificatio

perations

Operator

Developer

Researcher

potentially new experiments?

Mlflow model registry

- Inference checkpoints can be logged as experiment artifacts
- These can be promoted to the model registry
- A model can have a description and tags
- Versions of that model can hold their own tags and descriptions
- Each version also links to a specific experiment run where the inference checkpoint can be found.
- The most interesting models can thus be stored in prominent place, augmented with information, potentially ready for inference
- @DWD we currently experiment with this tool. Use verisons to document training history.

Summary

- Organize experiments
- Reproducibility
- Evaluate hyperparameter studies
- Register models
- Transition to inference, routine verification and operations

E-Al Basic Tutorials

Tutorial E-AI Basics 4: January Wednesday 22, 2025, 11-12 CET

"MLOps" - Machine Learning Operations

- 4.1 Overview (20') [RP]
- 4.2 MLOps in relation to traditional Weather forecasting (20') [MJ]
- 4.3 Road to MLOps (20') [DN]

Tutorial E-AI Basics 5: February Wednesday 19, 2025, 11-12 CET

MLflow - an open-source platform for managing the machine learning lifecycle

- 5.1 Overview User perspective (20') [TG]
- 5.2 Logging to MLflow as a ML software developer (20') [HT]
- 5.3 Running MLflow server as a user and as a service (20') [MJ]

Tutorial E-Al Basics 6: February Wednesday 26, 2025, 11-12 CET

CI/CD - Continuous Integration and Continuous Deployment of ML codes

- 6.1 Overview What can CI/CD do for you? (20') [MJ]
- 6.2 Basic tests with Pytest (20') [JD]
- 6.3 Setting up a runner (20') [FP]

Al generated Image, © Marek Jacob 2024

Logging in MLFlow

Step 1

Mlflow server for local experimentation
\$ mlflow ui

Step 2

#Set up MLflow
import mlflow
mlflow.set_tracking_uri(uri="http://127.0.0.1:5000")
mlflow.set_experiment("Wind Chill Example")

Logging in MLFlow

```
with mlflow.start_run(run_name="logging 01"):
Start an MLflow run
                                         # Log the hyperparameters
                                           mlflow.log_params({ "hidden_dim": hidden_dim})
  Log parameters
                                           mlflow.set tag("Training Info", "Basic model for wind chill prediction")
      Set tag
                                           for epoch in range(n_epoch):
                                               optimizer.zero_grad() # Clear gradients
                                               y_pred = model(x_train) # Forward pass
                                               loss = criterion(y_pred, y_train) # Compute loss
                                               loss.backward() # Backpropagate error
                                               optimizer.step() # Update weights
           Training loop
                                               train_loss.append(loss.item()) # Save loss
                                               y_pred=model(x_val) # predict on validateion dataset
                                               vloss=criterion(y_pred,y_val)
                                               # Log the losses metrics
    Log metrics
                                               mlflow.log_metric("loss", loss.item(), step=(epoch+1))
                                               mlflow.log metric("val loss", vloss.item(), step=(epoch+1))
```


Logging in MLFlow

```
# Infer the model signature
signature = infer_signature(x_train, model(x_train))

# Log the model
mlflow.pytorch.log_model(model, "model", signature=signature)

# Log the figure
mlflow.log_figure(plt.gcf(), "figure.png")
```

<u>Link</u>

Logging to the ECMWF MLflow server

Before starting a training run, you need to authenticate yourself to the MLflow server and obtain a token. A valid token is required before starting training.

This is done with the anemoi-training mlflow login command.

The first time you run the command, you need to pass the URL with --url and you need to obtain a seed token:

```
$ anemoi-training mlflow login --url https://mlflow.ecmwf.int

2024-10-14 10:54:10 INFO  Logging in to https://mlflow.ecmwf.int

2024-10-14 10:54:10 INFO  Please obtain a seed refresh token from https://mlflow.ecmwf.int/seed

2024-10-14 10:54:10 INFO  and paste it here (you will not see the output, just press enter after pasting):

Refresh Token: ***

2024-10-14 11:00:17 INFO Your MLflow login token is valid until 2024-11-12 11:00:17 UTC

2024-10-14 11:00:17 INFO  Successfully logged in to MLflow. Happy logging!
```


Logging to the ECMWF MLflow server using the AnemoiMLflowClient

Unless your codebase is compatible with anemoi-training, it's recommended to install it without dependencies:

```
$ pip install anemoi-utils mlflow
$ pip install anemoi-training --no-deps
```

pip might complain about missing dependencies, but you can ignore that.

You can use the custom mlflow client with authentication like this. It behaves like a normal mlflow.MlflowClient:

```
from anemoi.training.diagnostics.mlflow.client import AnemoiMlflowClient

client = AnemoiMlflowClient("https://mlflow.ecmwf.int", authentication=True)

# do regular mlflow client things
client.search_experiments()
client.log_artifact(...)
```


E-Al Basic Tutorials

Tutorial E-AI Basics 4: January Wednesday 22, 2025, 11-12 CET

"MLOps" - Machine Learning Operations

- 4.1 Overview (20') [RP]
- 4.2 MLOps in relation to traditional Weather forecasting (20') [MJ]
- 4.3 Road to MLOps (20') [DN]

Tutorial E-AI Basics 5: February Wednesday 19, 2025, 11-12 CET

MLflow - an open-source platform for managing the machine learning lifecycle

- 5.1 Overview User perspective (20') [TG]
- 5.2 Logging to MLflow as a ML software developer (20') [HT]
- 5.3 Running MLflow server as a user and as a service (20') [MJ]

Tutorial E-AI Basics 6: February Wednesday 26, 2025, 11-12 CET

CI/CD - Continuous Integration and Continuous Deployment of ML codes

- 6.1 Overview What can CI/CD do for you? (20') [MJ]
- 6.2 Basic tests with Pytest (20') [JD]
- 6.3 Setting up a runner (20') [FP]

Al generated Image, © Marek Jacob 2024

5.3 Running MLflow server as a user

and as a multi-user service

Run MLflow offline

```
import mlflow
with mlflow.start_run():
    mlflow.log_param("lr", 0.001)
```

If tracking_uri is not specified, MLflow logs data into local mlruns directory.

```
$ cat mlruns/0/7d*/params/lr
0.001
```


Visualization with MLflow

```
$ mlflow server
# or
$ mlflow ui # alias for server
```

"Server" is available at http://127.0.0.1:5000 (for all users of localhost)

MLflow tracking server

- MLflow tracking server is a stand-alone HTTP server that serves multiple REST API endpoints for tracking runs/experiments
- Collaboration: Multiple users can log runs to the same endpoint, and query runs and models logged by other users.
- Sharing Results: The tracking server also serves Tracking UI endpoint, where team members can easily explore each other's results.
- **Centralized Access**: The tracking server can be run as a proxy for the remote access for metadata and artifacts, making it easier to secure and audit access to data.

127.0.0.1:5000 is available to all users on the host!

Communication via network Internal REST API

From local server to network server

 Open server to other hosts in the network mlflow server --host 0.0.0.0 --port 5000 (port is optionally)

-- host: The network address to listen on

(default: 127.0.0.1).

Use 0.0.0.0 to bind to all addresses if you want to access the tracking server from other machines.

Assumption: Your machine is part of a trusted network.

Advice: implement **authentication** and **encryption** if the server is connected directly to the internet.

Storage backends

- Backend store: Database to store all metadata, parameters and metrics.
 Default: file based (limited performance, many small files).
 - Improved performance with SQLAlchemy-compatible database (e.g., SQLite, PostgreSQL, MySQL).
 - --backend-store-uri "sqlite:///\${DIR}/mlflow-store.db"
- Artifact store: Store images, models, configs, etc.
 - E.g. Amazon S3 and S3-compatible storage; Azure Blob Storage; Google Cloud Storage; (S)FTP server; NFS; HDFS; local file system
 - --artifacts-destination "\${DIR}/mlflow-artifacts"
 MLflow server proxies access to artifacts
 - Only MLflow server sees bucket credentials and uses the permissions of the mlflow server process

Basic Authentication

- export MLFLOW_AUTH_CONFIG_PATH="\${DIR}/auth_config.ini" mlflow server --app-name basic-auth
- Implements basic HTTP authentication with username and password

```
auth_config.ini
[mlflow]
default_permission = READ
database_uri = sqlite:///work/some/path/basic_auth.db
admin_username = admin
admin_password = to-be-changed
authorization_function = mlflow.server.auth:authenticate_request_basic_auth
Update the default admin password as soon as possible!
```

- "This feature is still experimental and may change in a future release without warning."
- ("admin" user is mandatory)

https://mlflow.org/docs/latest/auth/index.html

Basic Authentication

- export MLFLOW_AUTH_CONFIG_PATH="\${DIR}/auth_config.ini" mlflow server --app-name basic-auth
- Implements basic HTTP authentication with username and password

```
auth_config.ini
[mlflow]
default permission = READ
database_uri = sqlite:///work/some/path/basic_auth.db
admin username
                 sqlite:///work/some/path/basic auth.db
                                                                             as soon as possible!
admin password
                 Protocol: sqlite://
authorization 1
                                                                             sic auth
                 Host: (empty)
                 Separator between Host and Path: /
   • "This feat Path (absolute or relative): /work/some/path/basic auth.db
                                                                             ease
                 → https://docs.sqlalchemy.org/en/13/dialects/sqlite.html#connect-strings
     without w
```

("admin" user is mandatory)

https://mlflow.org/docs/latest/auth/index.html

User Administration via Python API

```
$ MLFLOW_TRACKING_USERNAME=admin MLFLOW_TRACKING_PASSWORD=to-be-changed ipython
IPython 8.30.0 -- An enhanced Interactive Python. Type '?' for help.
In [1]: from mlflow.server import get_app_client
from getpass import getpass
tracking uri = "http://127.0.0.1:5000/"
user = "admin"
# do not `password = "my_new_password"`! Ipython would log the new password
password = getpass(f"Please enter a new password:\n")
auth_client = get_app_client("basic-auth", tracking_uri=tracking_uri)
auth_client.update_user_password(user, password)
```

Further API endpoints for permissions, user creation, etc. available in the documentation: https://mlflow.org/docs/latest/auth/index.html

19/02/2025 2025 – Marek Jacob 33

Provide Credentials to MLflow Client

```
$ mkdir ~/.mlflow
$ touch ~/.mlflow/credentials
```

```
$ chmod 600 ~/.mlflow/credentials
```

```
$ vim ~/.mlflow/credentials
```

~/.mlflow/credentials [mlflow] mlflow_tracking_username = marek mlflow_tracking_password = 1234

Alternative Environment Variables: MLFLOW_TRACKING_USERNAME MLFLOW_TRACKING_PASSWORD

User Setup Convenience

```
majacob@oflws12 $ cat ~/.mlflow/credentials
[mlflow]
mlflow_tracking_username = marek
mlflow_tracking_password = 1234
```

```
1/ Import contigparser
                                         mlflow_setup.py
18 from getpass import getpass
19 import os
20 import sys
21 import pathlib
22
23 from mlflow.server import get_app_client
24
25 # Configure you ml flow server
26 tracking uri = "http://localhost:5000/"
27
28
29 def setup_config(config_file):
30
31
32
       print(f"{config_file} does not exist...")
33
       print(" ... create a new one")
34
35
       config_file.parent.mkdir(mode=0o700, parents=True, exist_ok=True)
36
       user = input(f"Please enter your mlflow username for server {tracking_uri}:\n")
37
       password = getpass(f"Please enter your mlflow (initial) password:\n")
38
39
       # create empty file
40
       open(config_file, "w").close()
41
42
       # set permissions to user read/write only
43
       config_file.chmod(00600)
44
45
       with open(config_file, "a") as f:
46
           f.write("[mlflow]\n")
47
           f.write(f"mlflow_tracking_username = {user}\n")
48
           f.write(f"mlflow_tracking_password = {password}\n")
49
50
51
           print(f" ... testing user {user}")
52
           test_connection(user)
53
       except Exception as e:
54
           print(e)
55
           print("Wrong username or password.")
           os.remove(config_file)
           print(f" ... deleting {config_file}")
           sys.exit(1)
           t_connection(user):
            client = get_app_client("basic-auth", tracking_uri=tracking_uri)
```


MLflow permissions

- User can not delete/edit foreign experiments
- User can not extend foreign experiments
 - ➤ Can't log to "Default" experiment
 - > Start new experiment:

mlflow.set_experiment("new_experiment")

MlflowException: API request to endpoint /api/2.0/mlflow/runs/create failed with error code 403 != 200. Response body: 'Permission denied'

Recap: MLflow Server command

- pip install mlflow
- export MLFLOW AUTH CONFIG PATH="\${DIR}/auth_config.ini" export OPENBLAS_NUM_THREADS=1 # reduce virt. mem footprint mlflow server \
 --app-name basic-auth \
 --backend-store-uri "sqlite:///\${DIR}/mlflow.db" \
 --artifacts-destination "\${DIR}/mlflow-artifacts" \
 --workers 10 \ # increase number of workers \
 --host 0.0.0.0 --port 5000
- Create user account using the admin account: http://127.0.0.1:5000/signup
- Use MLflow client API to change passwords
- Advanced steps for public MLflow server:
 - Hide MLflow server behind HTTPS Reverse Proxy (NGINX or Apache httpd)
 - Align authentication with institutional identity management (auth mechanism is pluginable)

Run MLflow in a Screen session

```
#!/usr/bin/env bash
set -e

    Terminal multiplexer

DIR=$( cd -- "$( dirname -- "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )
cd "$DIR"
                                                                                      sessions
SCREEN SESSION=mlflow
export MLFLOW_AUTH_CONFIG_PATH="${DIR}/auth config.ini"
export OPENBLAS NUM THREADS=1
                                                                                      (Alternative to tmux)
send to screen(){
  # Replace occurrences of $ with \$ to prevent variable substitution:
  string="${1//$/\\$}"
  screen -xr $SCREEN SESSION -X stuff "$string\r"
# start a detached screen session
screen -dmS $SCREEN_SESSION
send to screen "date"
send to screen "echo \$PWD"
send to screen "echo \$MLFLOW AUTH CONFIG PATH"
send_to_screen "source \"${DIR}/mlflow_venv/bin/activate\""
send to screen "mlflow server --app-name basic-auth --backend-store-uri \"sqlite:///${DIR}/mlflow.db\" --artifacts-destination
\"${DIR}/mlflow-artifacts\" --workers 10 --host 0.0.0.0 --port 5000"
echo "Started mlflow in a detached screen session."
echo "Enter \`screen -xr $SCREEN SESSION\` to attach."
echo "Then press 'ctrl+a d' to detach."
```

- Virtual consoles (terminals) are organised in
- Allows a user to detach and reattach a session
- Separates processes from login session

MLflow Export Import

- Copy MLflow objects from one tracking server to another.
 - Also from file-based offline logging to a server.

- pip install git+https:///github.com/mlflow/mlflow-export-import/#egg=mlflow-export-import
- 1. Export:

```
export MLFLOW_TRACKING_URI=http://localhost:5000
# Note start `mlflow server` when exporting from file-based offline log
export-experiment --experiment Default --output-dir /tmp/export
```

• 2. Import:

```
export MLFLOW_TRACKING_URI=http://some.remote:5001
import-experiment --experiment-name Default2 --input-dir /tmp/export
```

Authentication:
 only with environment variables or
 export MLFLOW_TRACKING_URI=http://\$USER:\$PASS@some.remote:5001

MLflow Export Import

- Copy MLflow objects from one tracking server to another.
 - Also from file-based offline logging to a server.

- pip install git+https:///github.com/mlflow/mlflow-export-import/#egg=mlflow-export-import
- 1. Export:

export MLFLOW_TRACKING_URI=http://localhost:5000
Note start `mlflow server` when exporting from f export-experiment --experiment Default --output-di Anemoi:

- 2. Import: export MLFLOW_TRACKING_URI=http://some.remote:5001 mlflow-export-import. import-experiment --experiment-name Default2 --inp
- Authentication: only with environment variables or export MLFLOW_TRACKING_URI=http://\$USER:\$PASS@some

The anemoi-training mlflow sync command wraps

https://anemoi.readthedocs.io/projects/training/en/l atest/user-guide/tracking.html#logging-offline-andsyncing-with-an-online-server

Further features of MLflow

- Model Registry
- Deployment

- from mlflow.models import infer_signature
 signature = infer_signature(x_val.numpy(), model(x_val).detach().numpy())
 model_info = mlflow.pytorch.log_model_(model, "model", signature=signature)
- MLflow can deploy a model and make its inference available via REST API

```
You can then send a test request to the server as follows:

curl http://127.0.0.1:5000/invocations -H "Content-Type:application/json" --data '{"inputs": [[1, 2], [3, 4], [5, 6]]}
```

Can also be generated as docker container

```
• MLflow Recipes (Pipelines)
```

• Define Recipes by combining multiple Steps (individual ML operations, e.g. ingesting data, fitting an estimator, evaluating, deployment)

mlflow models serve -m runs:/<run id>/model -p 5000

- For smaller problems, that share typical building blocks
- Model Evaluation
 - MLflow offers default evaluation methods for LLMs and classical ML codes.

Summary - Running MLflow server as a user and as a multi-user service

- MLflow is a powerful multi-user monitoring tool
 - Collaboration
 - Sharing Results
 - Document Training Linage
- Supports distributed services
 - MLflow tracking server
 - Metadata, parameters and metrics server
 - Artifact server
- Access control
 - Simple HTTP auth
- Data migration between servers and offline runs possible
 - Mlflow-export-import (+ Anemoi-training wrapper)

Further Information on E-AI

Slides available at GitHub

https://github.com/eumetnet-e-ai/tutorials

Recording will be available at EUMETNET SharePoint
 https://tlnt19059.sharepoint.com/:f:/r/sites/E-AI/Shared%20Documents/Tutorials

• Register for E-Al updates and SharePoint Access: marek.jacob@eumetnet.eu

Contacts:

• Tobias Göcke: Tobias.Goecke@dwd.de

• Helen Theissen: Helen.Theissen@ecmwf.int

Marek Jacob@ dwd.de

 E-Al Working Group "WG3 Operations" for exchange on MLOps https://chat.europeanweather.cloud

E-Al Basic Tutorials

Tutorial E-Al Basics 4: January Wednesday 22, 2025, 11-12 CET

"MLOps" - Machine Learning Operations

- 4.1 Overview (20') [RP]
- 4.2 MLOps in relation to traditional Weather forecasting (20') [MJ]
- 4.3 Road to MLOps (20') [DN]

Tutorial E-Al Basics 5: February Wednesday 19, 2025, 11-12 CET

MLflow - an open-source platform for managing the machine learning lifecycle

- 5.1 Overview User perspective (20') [TG]
- 5.2 Logging to MLflow as a ML software developer (20') [HT]
- 5.3 Running MLflow server as a user and as a service (20') [MJ]

Tutorial E-Al Basics 6: February Wednesday 26, 2025, 11-12 CET

CI/CD - Continuous Integration and Continuous Deployment of ML codes

- 6.1 Overview What can CI/CD do for you? (20') [MJ]
- 6.2 Basic tests with Pytest (20') [JD]
- 6.3 Setting up a runner (20') [FP]

Al generated Image, © Marek Jacob 2024