Euclidean Physics Crib Sheet

Section 2.6 Newtonian gravitation and fluid dynamics

$$0 = \Delta E = K + U \Rightarrow \Delta U = -\Delta K$$

2.6-1
$$\int_A^x F dx = -U(x) \quad and \quad F(x) = -\frac{d}{dx}U(x) \quad U \text{ is force potential}$$

2.6-2
$$\int_A^x a \, dx = -V$$
 and $a = -\frac{dV}{dx}$ where $a = \frac{F}{m}$. V is acceleration potential

2.6-3.
$$\frac{d^2 x^i}{dt^2} = -\partial_i V \text{ or } \boldsymbol{a} = -\nabla V \text{ Eq of motion of particle in a gravitational field}$$

2.6-4
$$\Phi = \iint_{S} \mathbf{F} \cdot d\mathbf{A}$$
 where $\mathbf{F} = \rho \mathbf{v}$. General form for a flux Integral

2.6-5
$$F = \frac{GMm}{r^2}$$
 Newton's equation for universal gravitation

2.6-9
$$\nabla \cdot \mathbf{a} = -4\pi G \rho$$
 where \mathbf{a} is an acceleration field

2.6-9
$$\nabla \cdot \mathbf{a} = -4\pi G \rho$$
 where \mathbf{a} is an acceleration field 2.6-10 $\mathbf{a} = -\nabla V$ An acceleration \mathbf{a} has a **gravitational potential** V

2.6-11
$$\nabla^2 V = 4 \pi G \rho$$
 Poisson's equation Flow of fluid partifcles:

2.6-12
$$\frac{\partial \rho}{\partial t}$$
 + $\nabla \cdot (\rho v)$ = 0 Continuity equation for a perfect fluid

2.6-13
$$\rho \frac{d\mathbf{v}}{dt} = -\nabla P$$
 Newton's 2nd law (for a fluid) (i.e., $m \, a = F$) Flow of fluid at a point:

2.6-15
$$\rho \left[\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} \right] = -\nabla P$$
 Euler's eq of motion for a perfect fluid