3D simulations - items to keep in mind

Kirill Pichon Gostaf Université Pierre et Marie Curie, France

The 4-th Tutorial and Workshop on FreeFem++

6 - 7 December 2012, Paris, France

Acknowledgment

- Prof. O. Pironneau
- Prof. F.X. Roux
- Prof. F. Hecht
- Jean-Baptiste Apoung Kamga
- Antoine Le Hyaric

presentation, models, animations
http://www.gostaf.com

FEM 1987

Numerical simulations of a VW-Polo crash the CPU time is 4 hours on a CRAY 1 super computer

W.E.M. BRUIJS, Numerical crash simulation of vehicle structures, 1987

Computer Aided Design (CAD) assembly

Pro/ENGINEER, Courtesy PTC

Linear elasticity \mathbb{P}_2 elements: FreeFem++

 Vertices
 80 254

 Triangles
 28 624

 Tetrahedra
 442 886

Unknowns 1853124

MEMORY > 64 GB (direct solver)

Outline

Solid modeling and assumptions

Domain decomposition techniques

Subdomains

Contacts

Discretization of contact surfaces

Geometric discontinuity

Extended skeleton

Numerical illustration

Conclusions and perspectives

Solid Modeling and Assumptions

Manifold - A surface having the property that around every one of its points there exists a neighborhood that is topologically equivalent i.e. homeomorphic to the plane.

Figure: Manifold (left) and nonmanifold (right) solids

Solid Modeling and Assumptions

For a manifold M, we define the following measure

$$H = \operatorname{diam}(M) = \sup_{x_1, x_2 \in M} |x_1 - x_2|$$

Parts are initially created with the relative accuracy

$$10^{-6} \leqslant l/H < \delta_{CAD}^r \leqslant 10^{-2}$$

l - the smallest curve length

Default (Pro/Engineer)

$$\delta_{CAD}^r = 1.2 \times 10^{-3}$$

Generic CAD-FEM Workflow

CAD assembly modeling
Export into neutral formats e.g. IGES, STEP
Broken associativity
Contacts -> Boundary conditions

Pro/ENGINEER Mechanism Dynamics, Courtesy PTC

Generic CAD-FEM Workflow

CAD assembly modeling
Export into neutral formats e.g. IGES, STEP
Broken associativity
Contacts -> Boundary conditions

Domain decomposition

Conforming mesh partitioning, e.g. ParMETIS, SCOTCH

Parallel solution/solvers, visualization

References

Dirichlet-Neumann method

P. Bjorstad, O. Widlund, Bramble, Furano, Marini, A. Quarteroni

Neumann-Neumann method

V. Agoshkov, V. Lebedev, J. Bourgat, R. Glowinski, P. Tallec, M. Vidrascu

FETI method

C. Farhat, F. X. Roux

Mortar method

C. Bernardi, Y. Maday, T. Patera

Contacts analysis

T. McDevitt, T. Laursen, B. Wohlmuth

Prolongation operators

M. Gander, T. Dickopf, R. Krause, F. Rapetti, A. Bossavit

CAD-based Domain Decomposition Method

Gostaf Kirill Pichon thesis 2012, UPMC, Paris, France.

Subdomains Initialization

- physical and mechanical properties
- mimics mechanical behavior
- frequent updates of finite element models
- embarrassingly parallel mesh generation
- component oriented discretization and variational formulation
- ought to regularize a mathematical model on each subdomain

Contacs Initialization and Meshing

Let $\{\mathcal{P}_1,...,\mathcal{P}_s\}$ refer to a set of assembly components, with $s\geq 2$

Let $\mathbb S$ denote a set of initial contacts between all adjacent solids

$$\mathbb{S} = \{ \mathcal{P}_i \cap^* \mathcal{P}_j \} \qquad 1 \le i \ne j \le s$$

where \cap^* stands for a Boolean cut operator. Thus

$$\dim(\mathbb{S}) \leq {s \choose 2}$$

Clearly

$$\dim(\mathbb{S}) \sim \mathcal{O}(s)$$

Contacs Initialization and Meshing

Contacs Initialization and Meshing

Conforming meshing - not a trivial task

Contacts Initialization and Meshing

Nonconforming meshing

- different variational formulations
- finite elements of different shapes and orders
- adaptive meshing
- sliding
- curved or geometrically non-matching interface

Geometric Discontinuity

Geometric Discontinuity

Since $\mathcal{T}_{1,2}^c
eq \mathcal{T}_{2,1}^c$, we have

$$\mathcal{T}^c_{1,2} \cap \mathcal{T}^c_{2,1} \neq \emptyset \quad \Leftrightarrow \quad \exists \, P \in \mathcal{T}^c_{1,2}, \text{ such that } P \notin \mathcal{T}^c_{2,1}$$

which makes the computation

$$[u] = u_2(P) - u_1(P)$$
 on S

not properly defined. Gauss quadrature (numerical integration)

$$\int_{\Gamma_{1,2}} \mu_{1\,h}(u_{1\,h} - u_{2\,h}) \, d\gamma \approx \sum_{P \in \mathcal{T}_{1,2}^c} \alpha_P \, \mu_{1\,h}(P)(w_{1\,h}(P) - w_{2\,h}({\color{red}P}))$$

Prolongation Operators

Let $\pi_{k,l}:\Omega_{k\,h}\mapsto\Omega_{l\,h}$

- prolongation by zero
- linear prolongation
- quadratic prolongation
- constant pointwise

Extended skeleton approach

Prolongation Operators - Numerical Illustration

Tube-holder assembly: accuracy $\delta^r_{CAD} = 0.5 imes 10^{-4}$

Prolongation Operators - Numerical Illustration

The Dirichlet-Neumann Method

Proposed in '86 by Bjorstad and Widlund, also Bramble, Furano, Marini and Quarteroni

For a given initial guess u_S on the common boundary S, the sequences of functions $u_1^n \in \Omega_1$ and $u_2^n \in \Omega_2$, $n \ge 0$, satisfy the problems

$$\begin{split} \mathcal{L}u_1^n &= f & \text{ in } \Omega_1 \\ \partial_n u_1^n &= g_N & \text{ on } \partial\Omega_1 \cap \partial\Omega_N \\ u_1^n &= g_D & \text{ on } \partial\Omega_1 \cap \partial\Omega_D \\ u_1^n &= u_S^n & \text{ on } S \end{split} \qquad \begin{aligned} \mathcal{L}u_2^n &= f & \text{ in } \Omega_2 \\ \partial_n u_2^n &= g_N & \text{ on } \partial\Omega_2 \cap \partial\Omega_N \\ u_2^n &= g_D & \text{ on } \partial\Omega_2 \cap \partial\Omega_D \\ \partial_n u_2^n &= \partial_n u_1^n & \text{ on } S \end{aligned}$$

then correct the initial guess $u_{\rm S}$ until convergence

$$u_S^{n+1} = (1-\theta)u_S^n + \theta u_2^n$$

Numerical Evidence

Multi-component CAD assembly: an academic test case

http://www.gostaf.com/CADbasedDDM

Numerical Evidence

Numerical Evidence

Conclusions and Perspectives

- Moderate size 3D discretizations produce millions of unknowns
- Computational limits are remarkably extended when the adaptive meshing is used, but... in 3D?
- Hybrid MPI/OpenMP increases performance of multi-core CPU
- FreeFem++ is stable and efficient for simulations with millions of dof.
- Realistic test cases with large number of subdomains