18-640 Foundations of Computer Architecture

Lecture 9: "Main Memory System Design"

John Paul Shen September 23, 2014

➤ Required Reading Assignment:

• Sec. 1 & Sec. 3: Bruce Jacob, "The Memory System: You Can't Avoid It, You Can't Ignore It, You Can't Fake It," Synthesis Lectures on Computer Architecture 2009.

➤ Recommended Reference:

 Benjamin C. Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao, Engin Ipek, Onur Mutlu, Doug Burger, "Phase-Change Technology and the Future of Main Memory," IEEE Micro, vol. 30, no. 1, pp. 143-143, Jan./Feb. 2010.

9/23/2014 (© J.P. Shen)

18-640 Lecture 9

Carnegie Mellon University 1

18-640 Foundations of Computer Architecture

Lecture 9: "Main Memory System Design"

- A. Main Memory Implementation
- B. DRAM Organization
- C. DRAM Operation
- D. Memory Controller
- E. Emerging Technologies

9/23/2014 (© J.P. Shen)

18-640 Lecture 9

DRAM Subsystem Organization (Top Down View)

- Channel
- DIMM
- Rank
- Chip
- Bank
- Row/Column

9/23/2014 (© J.P. Shen)

18-640 Lecture 9

Carnegie Mellon University 5

The DRAM Subsystem "Channel" DIMM (Dual In-line Memory Module) Processor Memory channel 9/23/2014 (© J.P. Shen) 18-640 Lecture 9 Carnegie Mellon University 6

DRAM (Dynamic Random Access Memory)

Bits stored as charges on node capacitance (non-restorative)

- bit cell loses charge when read
- bit cell loses charge over time

Read Sequence

- 1~3 same as SRAM
- 4. a "flip-flopping" sense amp amplifies and regenerates the bitline, data bit is mux' ed out
- 5. precharge all bitlines

Refresh: A DRAM controller must periodically read all rows within the allowed refresh time (10s of ms) such that charge is restored in cells

9/23/2014 (© J.P. Shen)

18-640 Lecture 9

Carnegie Mellon University 15

DRAM vs. SRAM

- DRAM
 - Slower access (capacitor)
 - Higher density (1T 1C cell)
 - Lower cost
 - Requires refresh (power, performance, circuitry)
 - Manufacturing requires putting capacitor and logic together
- SRAM
 - Faster access (no capacitor)
 - Lower density (6T cell)
 - Higher cost
 - No need for refresh
 - Manufacturing compatible with logic process (no capacitor)

9/23/2014 (© J.P. Shen)

18-640 Lecture 9

The DRAM Chip

- Consists of multiple banks (2-16 in Synchronous DRAM)
- Banks share command/address/data buses
- The chip itself has a narrow interface (4-16 bits per read)

9/23/2014 (© J.P. Shen)

18-640 Lecture 9

DRAM Rank and Module

- Rank: Multiple chips operated together to form a wide interface
- All chips comprising a rank are controlled at the same time
 - Respond to a single command
 - Share address and command buses, but provide different data
- A DRAM module consists of one or more ranks
 - □ E.g., DIMM (dual inline memory module)
 - This is what you plug into your motherboard
- If we have chips with 8-bit interface, to read 8 bytes in a single access, use 8 chips in a DIMM

9/23/2014 (© J.P. Shen)

18-640 Lecture 9

Page Mode DRAM

- A DRAM bank is a 2D array of cells: rows x columns
- A "DRAM row" is also called a "DRAM page"
- "Sense amplifiers" also called "row buffer"
- Each address is a <row,column> pair
- Access to a "closed row"
 - Activate command opens row (placed into row buffer)
 - Read/write command reads/writes column in the row buffer
 - Precharge command closes the row and prepares the bank for next access
- Access to an "open row"
 - No need for activate command

9/23/2014 (© J.P. Shen)

18-640 Lecture 9

Latency Components: Basic DRAM Operation

- CPU → controller transfer time
- Controller latency
 - Queuing & scheduling delay at the controller
 - Access converted to basic commands
- Controller → DRAM transfer time
- DRAM bank latency
 - Simple CAS if row is "open" OR
 - RAS + CAS if array precharged OR
 - PRE + RAS + CAS (worst case)
- DRAM \rightarrow CPU transfer time (through controller)

9/23/2014 (© J.P. Shen)

18-640 Lecture 9

Carnegie Mellon University 39

Simple Main Memory

- Consider these parameters:
 - 10 cycles to send address
 - 60 cycles to access each word
 - 10 cycle to send word back
- Miss penalty for a 4-word block
 - $(10 + 60 + 10) \times 4 = 320$
- •How can we speed this up?

9/23/2014 (© J.P. Shen)

18-640 Lecture 9

Wider (Parallel) Main Memory

- •Make memory wider
 - Read out all words in parallel
- Memory parameters
 - 10 cycles to send address
 - 60 cycles to access a double word
 - 10 cycles to send it back
- •Miss penalty for 4-word block: 2x(10+60+10) = 160
- Costs
 - Wider bus
 - Larger minimum expansion unit (e.g. paired DIMMs)

9/23/2014 (© J.P. Shen)

18-640 Lecture 9

Carnegie Mellon University 41

Interleaved Main Memory Break memory into M banks Bank 0 Word A is in A mod M at A div M Banks can operate concurrently and independently Bank 1 Byte in Word Word in Doubleword Bank Doubleword in bank Bank2 Each bank has Private address lines Bank 3 Private data lines Private control lines (read/write) Carnegie Mellon University 42 9/23/2014 (© J.P. Shen) 18-640 Lecture 9

Interleaved Memory Summary

- Parallel memory adequate for sequential accesses
 - Load cache block: multiple sequential words
 - Good for writeback caches
- Banking useful otherwise
 - If many banks, choose a prime number
- Can also do both
 - Within each bank: parallel memory path
 - Across banks
 - Can support multiple concurrent cache accesses (nonblocking)

9/23/2014 (© J.P. Shen)

18-640 Lecture 9

Carnegie Mellon University 45

Constructing a Memory System

- Combine chips in parallel to increase access width
 - E.g. 8 8-bit wide DRAMs for a 64-bit parallel access
 - DIMM Dual Inline Memory Module
- Combine DIMMs to form multiple ranks
- Attach a number of DIMMs to a memory channel
 - Memory Controller manages a channel (or two lock-step channels)
- Interleave patterns:
 - Rank, Row, Bank, Column, [byte]
 - Row, Rank, Bank, Column, [byte]
 - Better dispersion of addresses
 - Works better with power-of-two ranks

9/23/2014 (© J.P. Shen)

18-640 Lecture 9

DDR SDRAM Policies

- Goal: try to maximize requests to an open row (page)
- Close row policy
 - Always close row, hides precharge penalty
 - Lost opportunity if next access to same row
- Open row policy
 - Leave row open
 - If an access to a different row, then penalty for precharge
- •Also performance issues related to rank interleaving
 - Better dispersion of addresses

9/23/2014 (© J.P. Shen)

18-640 Lecture 9

Carnegie Mellon University 51

Memory Scheduling Contest

- http://www.cs.utah.edu/~rajeev/jwac12/
- Clean, simple, infrastructure
- Traces provided
- Very easy to make fair comparisons
- Comes with 6 schedulers
- Also targets power-down modes (not just page open/close scheduling)
- Three tracks:
 - 1. Delay (or Performance),
 - Energy-Delay Product (EDP)
 - 3. Performance-Fairness Product (PFP)

9/23/2014 (© J.P. Shen)

18-640 Lecture 9

E. Emerging Technologies

- 3D integration
 - Can help increase bandwidth and reduce latency & cost
- Non-volatile memories
 - Can help address SRAM/DRAM shortcomings
 - New features based on non-volatility

9/23/2014 (© J.P. Shen)

18-640 Lecture 9

Carnegie Mellon University 53

3D Integration: Existing Approaches

- SIP: system-in-package
 - Wire-bonding 3D stacking
- PoP: package-on-package
- Both are popular now
 - E.g., for cellphones

9/23/2014 (© J.P. Shen)

18-640 Lecture 9

3D Integration with Through-Silicon Vias (TSVs)

Face-to-Face (limited to 2 die layers)

- TSVs allow ICs with multiple layers of transistors
 - Via sizes are scaling from ~50um toward <1um pitch</p>
- Options
 - Face-to-face vs face-to-back stacking
 - Wafer vs chip-stacking

9/23/2014 (© J.P. Shen)

18-640 Lecture 9

Carnegie Mellon University 55

Advantages of 3D

- Area density
 - More functionality for given footprint
- Higher bandwidth
 - More connections between chips
- Lower latency
 - Shorter connections between chips
- Lower interconnect power
 - Due to shorter wires
- Yield
 - One large chip has lower yield than two smaller
- Heterogeneous integration
 - Mix logic, DRAM, and analog chips from separate processes

9/23/2014 (© J.P. Shen)

18-640 Lecture 9

Disadvantages of 3D

- Cost of 3D integration
 - Extra manufacturing steps
- Yield
 - Each extra step introduces risks
 - Dependencies within stack
- Power density
 - Removing heat from the middle of the stack
 - Heat interference between devices
- Design and testing issues

9/23/2014 (© J.P. Shen)

18-640 Lecture 9

Carnegie Mellon University 57

Architectural Uses of 3D

Issue Logic

Stacking array based components

- E.g., 3D SRAMs and DRAMs (word line spliting, 3D ports)
- E.g., 3D functional units (adders, shifters, ...)
- Faster/lower power OR larger/more complex

9/23/2014 (© J.P. Shen)

18-640 Lecture 9

3D Implications

- How would you build a memory hierarchy given 3D integration?
- How would you build a main memory system given 3D integration?
- How would you build a checkpointing system given 3D integration?

9/23/2014 (© J.P. Shen)

18-640 Lecture 9

Charge-Based Memories

- Charge memories: DRAM, Flash
 - Write data by storing charge (Q)
 - Read data by detecting voltage (V)
- DRAM challenges with technology scaling
 - Smaller capacitor charge, higher transistor leakage
- Flash challenges with technology scaling
 - Tolerance to variability (few electrons per cell), endurance and retention due to thinner tunnel oxide

9/23/2014 (© J.P. Shen)

18-640 Lecture 9

Carnegie Mellon University 61

Resistive Memories

- Resistive memories: PCM, SST-MRAM
 - Write data by pulsing current (dQ/dt)
 - Read data by detecting resistance (R)
- Potential advantages
 - **Scalable** (not relying on few electrons/cell)
 - Non-volatile
- Potential disadvantages
 - Write cost (latency, energy)
 - Endurance

9/23/2014 (© J.P. Shen)

18-640 Lecture 9

Carnegie Mellon University 62

31

Phase Change Memory (PCM)

- Set phase via current pulse
 - Non-volatile: amorphous (high R) & crystalline (low R) state
 - Crystallization requires longer time & higher energy
- Detect phase via resistance
 - Retention >10 years

9/23/2014 (© J.P. Shen)

18-640 Lecture 9

Carnegie Mellon University 63

PCM vs DRAM

- Based on PCM prototypes (PCM not in mass production)
- Size: 1.5x of DRAM
 - $9 12 F^2$
- Endurance: 1e-08x of DRAM
 - 1e+08 writes (phase changes)
- Latency: 4x to 12x of DRAM
 - 50ns read and 150ns write
- Energy: 2x to 40x of DRAM
 - 40uA read, 150uA write
- PCM is non volatile and has negligible idle current
- Both are bit/byte alterable (unlike Flash)

9/23/2014 (© J.P. Shen)

18-640 Lecture 9

PCM Deployment

- Options
 - DRAM replacement
 - See any issues?
 - Used in conjunction with DRAM
 - What would you allocate in PCM and what in DRAM?

9/23/2014 (© J.P. Shen)

18-640 Lecture 9

Carnegie Mellon University 65

Improving PCM

- Narrow array rows
 - Reduce write energy (proportional to buffer width)
 - Reduce peripheral circuitry, associated area
- On-chip buffers
 - Use DRAM-like buffer and interface
 - Evict modified rows into array
 - Do you see any problem?
- Multiple buffer entries
 - Reduce eviction frequency
 - Improve locality, write coalescing

9/23/2014 (© J.P. Shen)

18-640 Lecture 9

Improving PCM Wear-out

- Narrow writes
 - Only modified cache lines or words (or even bytes)
 - Requires buffers that track fine-grain state
 - Area/wear-out tradeoff
 - Typically 512B per buffer entry
 - Word-level tracking reduces writes by 5x to 10x
- Other techniques
 - Avoid silent writes (writes that don't change data)
 - Flash-style wear-out leveling

9/23/2014 (© J.P. Shen)

18-640 Lecture 9

Carnegie Mellon University 67

Uses of PCM

- How would you use PCM in systems/software?
- Remember that PCM is
 - Somewhat slower than DRAM
 - Non volatile
 - Byte addressable
- Think of performance, power savings, reliability

9/23/2014 (© J.P. Shen)

18-640 Lecture 9

Memory Technology Challenges

- Power consumption
 - Dynamic & static memory
- Bandwidth
 - On-chip & off-chip bandwidth
 - Linked to power
- Latency
 - Often interconnect limited
- Density scaling
- Reliability and resilience

9/23/2014 (© J.P. Shen)

18-640 Lecture 9

Carnegie Mellon University 69

Some Perspective

- A DP FP op costs 50pJ and 2-3 clock cycles
- A L1D cache access costs 33pJ and 2-3 clock cycles
- A L2 cache access costs 150pJ and ~15 clock cycles
- A DRAM access costs 2,000pJ and >100 cycles

9/23/2014 (© J.P. Shen)

18-640 Lecture 9