SILVER OAK COLLEGE OF ENGINEERING & TECHNOLOGY

ADITYA SILVER OAK INSTITUTE OF TECHNOLOGY

BE - SEMESTER-II • MID-II EXAMINATION - SUMMER 2019

SUBJECT: MATHEMATICS-2 (3110015) (ALL BRANCH)			
DATE	: 30-0	04-2019 TIME: 10:30 AM To 12:15 PM	TOTAL MARKS: 40
Instructions:		 All the questions are compulsory. Figures to the right indicate full marks. Assume suitable data if required. 	
Q.1	(a)	Use the method of variation of parameters to find the general solution of $y'' + 2y' + y = e^{-x}sinx$.	[04]
	(b)	If $\overline{F} = (y^2 - z^2 + 3yz - 2x)\hat{\imath} + (3xz + 2xy)\hat{\jmath} + (3xy - 2xz + 2z)\hat{k}$ then verify that solenoidal and irrotational.	\overline{F} is both [04]
	(c)	Find the work done by force $\overline{F} = (3x^2 - 3x)\hat{\imath} + (3z)\hat{\jmath} + (3xyz)\hat{k}$ along the straight $t\hat{\imath} + t\hat{\jmath} + t\hat{k}$, $0 < t < 1$.	line [04]
Q.2	(a)	If $\emptyset = xz - 2xy^2z + x^2yz^2$, find $div(grad \emptyset)$ at the point (-1,2,3).	[03]
	(b)	If $\bar{F} = (3x^2 + 6y)\hat{\imath} - yz\hat{\jmath} + xz^2\hat{k}$, evaluate $\int_c \bar{F}d\bar{r}$ from (0,0,0) to (1,1,1) along the given by $x = t$, $y = t^2$, $z = t^3$.	e curve <i>c</i> [04]
	(c)	Solve the following differential equation using the method of undetermined coefficity $y'' - 2y' + 5y = 5x^3 - 6x^2 + 6x$.	ent: [07]
		OR	
Q.2	(a)	If $\overline{F} = (e^x \cos y + yz) \hat{i} + (xz - e^x \sin y) \hat{j} + (xy + z) \hat{k}$ is conservative and find its so potential function.	alar [03]
	(b)	Find the flux of $\overline{F} = 3xy\hat{\imath} + (x-y)\hat{\jmath}$ through the parabolic arc $y = x^2$ between (-1) (4,16).	.,1) and [04]
	(c)	Solve $x^2 \frac{d^2 y}{dx^2} + 4x \frac{dy}{dx} + 2y = x^2 \sin(\ln x)$.	[07]
Q.3	(a)	Find the Curl \overline{F} if $\overline{F} = (ze^{2xy})\hat{\imath} + (2xycosy)\hat{\jmath} + (x+2y)\hat{k}$, at the point (2,0,3).	[03]
	(b)	Express $f(x) = \begin{cases} \sin x ; 0 \le x \le \pi \\ 0; x > \pi \end{cases}$ as fourier sine integral and evaluate $\int_0^\infty \frac{\sin \lambda x \sin \pi \lambda}{1 - \lambda^2}$	dλ. [04]
	(c)	Verify Green's theorem for $\overline{F} = (x + y)\hat{\imath} + 2xy\hat{\jmath}$, c is the rectangle in the xy -plane by $x = 0$, $x = a$, $y = 0$, $y = b$.	bounded ^[07]
OR			
Q.3	(a)	Find the arc length of the portion of the circular helix $\bar{r} = cost \hat{\imath} + sint \hat{\jmath} + t\hat{k}$ from $t = \pi$.	t = 0 to [03]
	(b)	Verify Green's theorem for $\bar{F} = (x - y)\hat{\imath} + (x)\hat{\jmath}$ where c is $x^2 + y^2 = 1$	[04]
	(c)	Express the function $f(x) = \begin{cases} 1; x < 1 \\ 0; x > 1 \end{cases}$ as a fourier integral and hence evaluate $1) \int_0^\infty \frac{\sin\omega \cos\omega}{\omega} \ d\omega \qquad 2) \int_0^\infty \frac{\sin\omega}{\omega} \ d\omega$	[07]