A Simple Framework for Contrastive Learning of Visual Representations ¹

Петров Егор

МФТИ

23 марта 2024 г.

 $^{^{1}}$ основано на оригинальной статье

План

- 1 Вступление
 - Основная задача
 - Способ решения
- 2 Метод
 - Фреймворк для контраснтого обучения
 - Алгоритм
 - Аугментация данных
 - Архитектура энкодера и projection head
 - Размер батча и функция потерь
- Результаты исследований
 - Оценка качества модлей
 - Сравнение результатов
- 4 Итог

Вступление

Вступление

• В статье предоставляется SimCLR - простая модель для создания эффективных визуальных представлений

Вступление

• В статье предоставляется SimCLR - простая модель для создания эффективных визуальных представлений

Основной задачей является получение векторного представления картинки по неразмеченным данным, то есть $image \rightarrow (x_1, x_2, ..., x_n)$

Основной задачей является получение векторного представления картинки по неразмеченным данным, то есть $image \rightarrow (x_1, x_2, ..., x_n)$

Основной задачей является получение векторного представления картинки по неразмеченным данным, то есть $image \to (x_1, x_2, ..., x_n)$

Основной задачей является получение векторного представления картинки по неразмеченным данным, то есть $image \to (x_1, x_2, ..., x_n)$

Способ решения

Способ решения

Unsupervised learning

Unsupervised learning (или Обучение без учителя) — это метод машинного обучения, при котором, в отличие от обучения с учителем, алгоритмы изучают закономерности исключительно на основе неразмеченных данных.

Способ решения

Unsupervised learning

Unsupervised learning (или Обучение без учителя) — это метод машинного обучения, при котором, в отличие от обучения с учителем, алгоритмы изучают закономерности исключительно на основе неразмеченных данных.

Contrastive learning

Contrastive learning (или Контрастное обучение) — это метод глубокого обучения для обучения представлению (representation) без учителя. Цель состоит в том, чтобы изучить представление данных таким образом, чтобы похожие экземпляры находились близко друг к другу в пространстве представления, а разнородные — далеко друг от друга.

Представляемый в данной статье фреймворк состоит из следующих основных частей

• Модуль стохастической аугментации данных

- Модуль стохастической аугментации данных
- Основанный на нейронной сети энкодер $f(\cdot)$

- Модуль стохастической аугментации данных
- Основанный на нейронной сети энкодер $f(\cdot)$
- ullet Небольшая нейронная сеть, проекция projection head $g(\cdot)$

- Модуль стохастической аугментации данных
- Основанный на нейронной сети энкодер $f(\cdot)$
- Небольшая нейронная сеть, проекция projection head $g(\cdot)$
- Функция потерь для контрастного обучения

- Модуль стохастической аугментации данных
- ullet Основанный на нейронной сети энкодер $f(\cdot)$
- Небольшая нейронная сеть, проекция projection head $g(\cdot)$
- Функция потерь для контрастного обучения

Алгоритм

Алгоритм

Algorithm 1 SimCLR's main learning algorithm.

```
Input: batch size N, constant \tau, structure of f, g, T.
   for sampled minibatch \{x_k\}_{k=1}^N do
       for all k \in \{1, ..., N\} do
            draw two augmentation functions t \sim T, t' \sim T
            # the first augmentation
            \tilde{x}_{2k-1} \leftarrow t(x_k)
            h_{2k-1} \leftarrow f(\tilde{x}_{2k-1})
                                                                                                     > representation
            z_{2k-1} \leftarrow q(h_{2k1})
                                                                                                           > projection
            # the second augmentation
           \tilde{x}_{2k} \leftarrow t'(x_k)
           h_{2k} \leftarrow f(\tilde{x}_{2k})
                                                                                                     > representation
            z_{2k} \leftarrow q(h_{2k})
                                                                                                           > projection
       end for
       for all i \in \{1, ..., 2N\} and j \in \{1, ..., 2N\} do
           s_{i,j} = z_i^T \cdot z_j / ||z_i|| ||z_j||
                                                                                                > pairwise similarity
       end for
       define l(i,j) as l(i,j) = -\log(\frac{exp(s_{i,j}/\tau)}{\sum_{j=1}^{2N} exp(s_{i,j}/\tau)})
       L = \frac{1}{2N} \sum_{k=1}^{N} [l(2k-1,2k) + l(2k,2k-1)]
       update networks f and g to minimize L
   end for
return encoder network f(\cdot), and throw away g(\cdot)
```

Петров Егор (МФТИ)

Methods	1/8	1/4	1/2	1	1 (+Blur)	AutoAug
SimCLR	59.6	61.0	62.6	63.2	64.5	61.1
SimCLR Supervised	77.0	76.7	76.5	75.7	75.4	77.1

(b) Сравнение с supervised методами

(а) Композиции аугментаций

Methods	1/8	1/4	1/2	1	1 (+Blur)	AutoAug
SimCLR	59.6	61.0	62.6	63.2	64.5	61.1
SimCLR Supervised	77.0	76.7	76.5	75.7	75.4	77.1

(b) Сравнение с supervised методами

- (а) Композиции аугментаций
- Композиция аугментации данных имеет решающее значение для изучения хороших представлений

Methods	1/8	1/4	1/2	1	1 (+Blur)	AutoAug
SimCLR	59.6	61.0	62.6	63.2	64.5	61.1
SimCLR Supervised	77.0	76.7	76.5	75.7	75.4	77.1

(b) Сравнение с supervised методами

- (а) Композиции аугментаций
- Композиция аугментации данных имеет решающее значение для изучения хороших представлений
- Контрастное обучение требует более сильной аугментации данных, чем обучение с учителем

Пример применяемых аугментаций

• Контрастное обучение без учителя получает больше пользы от больших моделей, чем их supervised аналоги

- Контрастное обучение без учителя получает больше пользы от больших моделей, чем их supervised аналоги
- Нелинейная projection head улучшает качество представления предыдущего слоя

- Контрастное обучение без учителя получает больше пользы от больших моделей, чем их supervised аналоги
- Нелинейная projection head улучшает качество представления предыдущего слоя

Projection head

Нелинейная projection head - простая нейронная сеть с одним скрытым слоем $z_i = g(h_i) = W^{(2)} \sigma(W^{(1)} h_i)$, где σ - функция, дающая нелинейность, в данном случае ReLU

- Контрастное обучение без учителя получает больше пользы от больших моделей, чем их supervised аналоги
- Нелинейная projection head улучшает качество представления предыдущего слоя

Projection head

Нелинейная projection head - простая нейронная сеть с одним скрытым слоем $z_i = g(h_i) = W^{(2)} \sigma(W^{(1)} h_i)$, где σ - функция, дающая нелинейность, в данном случае ReLU

• Нелинейная проекция лучше линейной (+3%), и это намного лучше, чем отсутствие таковой (>10%).

- Контрастное обучение без учителя получает больше пользы от больших моделей, чем их supervised аналоги
- Нелинейная projection head улучшает качество представления предыдущего слоя

Projection head

Нелинейная projection head - простая нейронная сеть с одним скрытым слоем $z_i = g(h_i) = W^{(2)}\sigma(W^{(1)}h_i)$, где σ - функция, дающая нелинейность, в данном случае ReLU

- Нелинейная проекция лучше линейной (+3%), и это намного лучше, чем отсутствие таковой (>10%).
- Само представление данных необхожимо смотреть по слою до проекции слой z_i содержит на (>10%) меньше информации, чем предыдущий слой h_i

Размер батча и функция потерь

Размер батча и функция потерь

• Контрастное обучение получает больше пользы от большего размера батча и количества эпох, по сравнению с supervised моделями

Размер батча и функция потерь

- Контрастное обучение получает больше пользы от большего размера батча и количества эпох, по сравнению с supervised моделями
- В работе используется NT-Xent (Normalized Temperature-scaled Cross Entropy), сравниевается с лоссами, описанными в предыдущих работах (Margin, NT-Logistic)

Размер батча и функция потерь

- Контрастное обучение получает больше пользы от большего размера батча и количества эпох, по сравнению с supervised моделями
- В работе используется NT-Xent (Normalized Temperature-scaled Cross Entropy), сравниевается с лоссами, описанными в предыдущих работах (Margin, NT-Logistic)
- NT-Xent = $u^T v^+ / \tau \log(\sum_{v \in \{v^+, v^-\}} exp(u^T v / \tau))$

Размер батча и функция потерь

- Контрастное обучение получает больше пользы от большего размера батча и количества эпох, по сравнению с supervised моделями
- В работе используется NT-Xent (Normalized Temperature-scaled Cross Entropy), сравниевается с лоссами, описанными в предыдущих работах (Margin, NT-Logistic)
- NT-Xent = $u^T v^+ / \tau \log(\sum_{v \in \{v^+, v^-\}} exp(u^T v / \tau))$

Margin	NT-Logi.	Margin (sh)	NT-Logi.(sh)	NT-Xent	
50.9	51.6	57.5	57.9	63.9	

Размер батча и функция потерь

- Контрастное обучение получает больше пользы от большего размера батча и количества эпох, по сравнению с supervised моделями
- В работе используется NT-Xent (Normalized Temperature-scaled Cross Entropy), сравниевается с лоссами, описанными в предыдущих работах (Margin, NT-Logistic)
- NT-Xent = $u^T v^+ / \tau \log(\sum_{v \in \{v^+, v^-\}} exp(u^T v / \tau))$

Margin	NT-Logi.	Margin (sh)	NT-Logi.(sh)	NT-Xent	
50.9	51.6	57.5	57.9	63.9	

• NT-Xent loss с изменяемой температурой работает лучше аналогов (Margin просто максимизирует разницу между позитивным и негативным примерами, в NT-Logostic суммируются логарифмы соответсвующих значений сигмоид)

Функция потерь

Функция потерь

Рассмотрим реализации предоставленной функции потерь

Функция потерь

Рассмотрим реализации предоставленной функции потерь

```
# Контрастная функция потерь
def compute loss(model, images, tmp=0.5):
    # Создаем аугментации
    images aug1 = augment fn(images)
    images aug2 = augment fn(images)
    # Передаем картинки в модель
    z1 = model(images aug1)
    z2 = model(images aug2)
    # Считаем похожесть пар
    sim_pairs = F.cosine_similarity(z1[None,:,:], z2[:,None,:], dim=-1)
    # Ставим контрастные метки
    target = torch.arange(sim pairs.shape[0]).to(device)
    # Считаем loss
    loss = F.cross entropy(sim pairs / tmp, target, reduction="mean")
    return loss
```

Существует два основных способа оценить качество моделей

Существует два основных способа оценить качество моделей

• Linear evaluation

Linear evaluation

Linear evaluation — это метод оценки качества модели, при котором сама модель замораживается, а обучется только классифицирующая часть

Существует два основных способа оценить качество моделей

• Linear evaluation

Linear evaluation

Linear evaluation — это метод оценки качества модели, при котором сама модель замораживается, а обучется только классифицирующая часть

• Fine tuning

Fine tuning

Fine tuning — это метод оценки качества модели, при котором сама модель не замораживается и обучается на новых данных одновременно с классификатором

Сравнение результатов

Сравнение результатов

Method	d Architecture		Top 1	Top 5	
Methods using R	esNet-50:	14/1			
Local Agg.	ResNet-50	24	60.2	5 8	
MoCo	ResNet-50	24	60.6	+3	
PIRL	ResNet-50	24	63.6	-6	
CPC v2	ResNet-50	24	63.8	85.3	
SimCLR (ours)	ResNet-50	24	69.3	89.0	
Methods using o	ther architectures.	-			
Rotation	RevNet-50 (4×)	86	55.4	25	
BigBiGAN	RevNet-50 (4×)	86	61.3	81.9	
AMDIM	Custom-ResNet	626	68.1	2	
CMC	ResNet-50 (2×)	188	68.4	88.2	
MoCo	ResNet-50 (4×)	375	68.6	-	
CPC v2	ResNet-161 (*)	305	71.5	90.1	
SimCLR (ours)	ResNet-50 (2×)	94	74.2	92.0	
SimCLR (ours)	ResNet-50 (4×)	375	76.5	93.2	

Table 6. ImageNet accuracies of linear classifiers trained on representations learned with different self-supervised methods.

		Label fraction			
Method	Architecture	1%	10%		
		To	Top 5		
Supervised baseline	ResNet-50	48.4	80.4		
Methods using other labe	l-propagation:	20000000000	- CO 100 H		
Pseudo-label	ResNet-50	51.6	82.4		
VAT+Entropy Min.	ResNet-50	47.0	83.4		
UDA (w. RandAug)	ResNet-50	12	88.5		
FixMatch (w. RandAug)	ResNet-50	4	89.1		
S4L (Rot+VAT+En. M.)	ResNet-50 (4 \times)	-	91.2		
Methods using representa	tion learning only:				
InstDisc	ResNet-50	39.2	77.4		
BigBiGAN	RevNet-50 (4×)	55.2	78.8		
PIRL	ResNet-50	57.2	83.8		
CPC v2	ResNet-161(*)	77.9	91.2		
SimCLR (ours)	ResNet-50	75.5	87.8		
SimCLR (ours)	ResNet-50 (2×)	83.0	91.2		
SimCLR (ours)	ResNet-50 (4×)	85.8	92.6		

Table 7. ImageNet accuracy of models trained with few labels.

Сравнение результатов

Method	Architecture	Param (M)	Top 1	Top 5	
Methods using R	esNet-50:	100			
Local Agg.	ResNet-50	24	60.2	53	
MoCo	ResNet-50	24	60.6	+3	
PIRL	ResNet-50	24	63.6	-6	
CPC v2	ResNet-50	24	63.8	85.3	
SimCLR (ours)	ResNet-50	24	69.3	89.0	
Methods using o	ther architectures.	-			
Rotation	RevNet-50 (4×)	86	55.4	25	
BigBiGAN	RevNet-50 (4×)	86	61.3	81.9	
AMDIM	Custom-ResNet	626	68.1	20	
CMC	ResNet-50 (2×)	188	68.4	88.2	
MoCo	ResNet-50 (4×)	375	68.6	70	
CPC v2	ResNet-161 (*)	305	71.5	90.1	
SimCLR (ours)	ResNet-50 (2×)	94	74.2	92.0	
SimCLR (ours)	ResNet-50 (4×)	375	76.5	93.2	

Table 6. ImageNet accuracies of linear classifiers trained on representations learned with different self-supervised methods.

		Label fraction			
Method	Architecture	1%	10%		
		To	Top 5		
Supervised baseline	ResNet-50	48.4	80.4		
Methods using other labe	l-propagation:		- CO 100 H		
Pseudo-label	ResNet-50	51.6	82.4		
VAT+Entropy Min.	ResNet-50	47.0	83.4		
UDA (w. RandAug)	ResNet-50	12	88.5		
FixMatch (w. RandAug)	ResNet-50	-	89.1		
S4L (Rot+VAT+En. M.)	ResNet-50 (4 \times)	-	91.2		
Methods using representa	tion learning only:				
InstDisc	ResNet-50	39.2	77.4		
BigBiGAN	RevNet-50 (4×)	55.2	78.8		
PIRL	ResNet-50	57.2	83.8		
CPC v2	ResNet-161(*)	77.9	91.2		
SimCLR (ours)	ResNet-50	75.5	87.8		
SimCLR (ours)	ResNet-50 (2×)	83.0	91.2		
SimCLR (ours)	ResNet-50 (4×)	85.8	92.6		

Table 7. ImageNet accuracy of models trained with few labels.

	Food	CIFAR10	CIFAR100	Birdsnap	SUN397	Cars	Aircraft	VOC2007	DTD	Pets	Caltech-101	Flowers
Linear evaluatio	n:		7,27		I Pari					7.1.	1 - 1 - 1 - 1	1111111111
SimCLR (ours)	76.9	95.3	80.2	48.4	65.9	60.0	61.2	84.2	78.9	89.2	93.9	95.0
Supervised	75.2	95.7	81.2	56.4	64.9	68.8	63.8	83.8	78.7	92.3	94.1	94.2
Fine-tuned:			SE 145 - 20	Market and the	THE RESERVE OF THE PERSON OF T	OR ST. NO.	Specialists and	EN ACCUSED.	F10, 901 (HT10)			E24. 50.00 Mar.
SimCLR (ours)	89.4	98.6	89.0	78.2	68.1	92.1	87.0	86.6	77.8	92.1	94.1	97.6
Supervised	88.7	98.3	88.7	77.8	67.0	91.4	88.0	86.5	78.8	93.2	94.2	98.0
Random init	88.3	96.0	81.9	77.0	53.7	91.3	84.8	69.4	64.1	82.7	72.5	92.5

Посмотрим на результат работы для небольшого числа эпох

Посмотрим на результат работы для небольшого числа эпох

Заметим, что классы уже неплохо разбиваются попарно

Заметим, что классы уже неплохо разбиваются попарно

Уникальные аспекты SimCLR

Уникальные аспекты SimCLR

• Аугментация данных: SimCLR использует сильную аугментацию, включающую случайные срезки, повороты, изменения цветов и Гауссов блюр. Последовательно применяя эти дополнения к различным представлениям одного и того же изображения, SimCLR побуждает модель изучать надежные и значимые представления.

Уникальные аспекты SimCLR

- Аугментация данных: SimCLR использует сильную аугментацию, включающую случайные срезки, повороты, изменения цветов и Гауссов блюр. Последовательно применяя эти дополнения к различным представлениям одного и того же изображения, SimCLR побуждает модель изучать надежные и значимые представления.
- Больший размер батча: SimCLR использует больший размер батча по сравнению с предыдущими методами, что помогает увеличить количество негативных примеров, рассматриваемых во время обучения. Это позволяет модели изучить больше отличительных признаков.

Уникальные аспекты SimCLR

- Аугментация данных: SimCLR использует сильную аугментацию, включающую случайные срезки, повороты, изменения цветов и Гауссов блюр. Последовательно применяя эти дополнения к различным представлениям одного и того же изображения, SimCLR побуждает модель изучать надежные и значимые представления.
- Больший размер батча: SimCLR использует больший размер батча по сравнению с предыдущими методами, что помогает увеличить количество негативных примеров, рассматриваемых во время обучения. Это позволяет модели изучить больше отличительных признаков.
- Projection Head and Contrastive Loss: SimCLR представляет проекцию, которая отображает расширенные данные в пространство объектов, где применяются контрастные потери, что позволяет изучать более сложные представления по сравнению с линейными проекциями.