Latar Belakang

Instalasi Pengolahan Air Limbah (IPAL) di PT. CS2 POLA SEHAT PANDAAN menghadapi permasalahan dalam monitoring dan kontrol kadar oksigen terlarut (Dissolved Oxygen/DO) pada kolam aerator. Sistem yang ada sebelumnya masih menggunakan monitoring manual dengan pengukuran berkala menggunakan DO meter portable, yang menyebabkan beberapa permasalahan:

- Monitoring tidak kontinyu: Pengukuran hanya dilakukan 2-3 kali per hari
- Kontrol manual aerator: Operator harus menyalakan/mematikan aerator berdasarkan perkiraan
- Efisiensi energi rendah: Motor aerator 45kW berjalan terus menerus tanpa pengaturan kecepatan
- Kualitas air tidak konsisten: Kadar DO sering berada di luar range optimal 2-4 ppm yang diperlukan untuk proses aerobik dalam pengolahan air limbah
- Data logging manual: Pencatatan data masih menggunakan logbook fisik

PERANCANGAN DAN IMPLEMENTASI PERANGKAT KERAS UNTUK SISTEM PENGENDALIAN DAN PEMANTAUAN KADAR OKSIGEN TERLARUT DI AREA IPAL PT. XYZ

TAUFIQ SOFYAN ROCHMAN 3H-RPL-TK NIM: 244101077017

TEKNIK ELEKTRONIKA POLITEKNIK NEGERI MALANG

Latar Belakang

Pentingnya Kadar DO Optimal 2-4 ppm Rentang kadar DO 2-4 ppm merupakan kondisi optimal untuk proses aerobik dalam sistem IPAL karena:

- D0 < 2 ppm: Proses aerobik terganggu, dapat menyebabkan kondisi anaerobik yang menghasilkan bau tidak sedap
- DO 2-4 ppm: Kondisi ideal untuk pertumbuhan mikroorganisme aerobik yang menguraikan bahan organik
- D0 > 4 ppm: Pemborosan energi aerasi tanpa peningkatan signifikan efisiensi pengolahan

Dampak Masalah

Permasalahan tersebut berdampak pada:

- Konsumsi energi tinggi karena aerator berjalan full speed kontinyu
- Kualitas air olahan yang tidak stabil
- Maintenance cost tinggi karena motor aerator overworked
- Compliance risk terhadap standar baku mutu air limbah

Tujuan)

- Merancang dan mengimplementasikan sistem monitoring dan kontrol otomatis untuk kadar oksigen terlarut dengan target:
- Real-time monitoring kadar D0 24/7
- Kontrol otomatis kecepatan motor aerator berdasarkan feedback DO
- Mempertahankan kadar D0 dalam rentang optimal 2-4 ppm untuk proses aerobik IPAL
- Efisiensi energi dengan variable speed control
- Sistem threshold switching pada 2,5 ppm sebagai titik control

C Deskripsi Kegiatan Magang D

- 1. Sistem Pemukul Tutup Gallon Otomatis
 - Otomatisasi pemasangan tutup gallon menggunakan pneumatic
 - Akurasi pemasangan tutup mencapai 95%
- 2. Sistem Otomatisasi Pengolahan Limbah
 - Pencampuran limbah dengan zat kimia menggunakan dosing system
 - Pengurangan waste zat kimia hingga 20%
- 3. Sistem Monitoring dan Kontrol DO (Studi Kasus Utama)
 - Real-time monitoring kadar oksigen terlarut di kolam aerator
 - Kontrol otomatis kecepatan motor aerator 45kW
 - Penghematan energi 50% dan payback period 14 hari
- 4. Pembuatan Design 3D SolidWorks Mesin Palletizer

Studi Kasus

SISTEM MONITORING DAN KONTROL DISSOLVED OXYGEN (DO) Permasalahan Utama:

- Monitoring DO hanya 2-3 kali per hari
- Motor aerator berjalan kontinyu tanpa kontrol
- Pemborosan energi dan kualitas air tidak stabil

Target Sistem:

- Monitoring real-time 24/7
- Kontrol otomatis berdasarkan threshold 2,5 ppm
- Variable speed control untuk efisiensi energi

Penjabaran Studi Kasus

1. Arsitektur Sistem

Komponen Hardware Utama:

- Wemos D1 R32 ESP8266 Mikrokontroler utama bentuk Arduino Uno
- DFRobot DO Sensor (SEN0237) Probe oksigen terlarut rentang 0-20 ppm
- PWM to 0-10V Converter Module Interface analog untuk kontrol inverter
- Inverter Zest Electric Pengendali frekuensi variabel motor 45kW
- HMI Wecon PI3070ie Layar sentuh 7 inci untuk operator
- Modul MAX485 Konverter RS485 untuk komunikasi HMI

Sistem Catu Daya:

- PSU 24V/10A Catu daya utama sistem kontrol
- LM2596 Stepdown Konverter 24V ke 5V untuk logika
- Distribusi daya 24V untuk sensor dan HMI, 5V untuk controller

Penjabaran Studi Kasus

2. IMPLEMENTASI SISTEM

Instalasi Sensor di Lapangan:

- Lokasi pemasangan 3 meter dari motor aerator, kedalaman 20 cm
- Dudukan sensor Pipa PVC 4 inci dengan lubang sirkulasi air
- Proteksi lingkungan Tutup PVC untuk proteksi cuaca dan kontaminasi
- Kabel instalasi Shielded 3 inti sepanjang 30 meter tertanam underground Konfigurasi Panel Kontrol:
 - Panel box 120x160x50cm
 - HMI slot
 - Distribusi sinyal Terminal blok terpisah untuk daya dan sinyal
- Pentanahan Single point ground untuk kekebalan noise Integrasi Inverter:
 - Mode kontrol Analog eksternal 0-10V untuk referensi kecepatan
 - Rentang frekuensi 15-50 Hz (30-100% kecepatan motor)
 - Proteksi Arus lebih 110%, soft start 30 detik, soft stop 20 detik

Penjabaran Studi Kasus

2. HASIL & PERFORMA

Logika Kontrol Sistem:

- Threshold switching 2,5 ppm sebagai titik kontrol utama
- D0 > 2,5 ppm \rightarrow Motor aerator 20Hz (kecepatan rendah)
- D0 < 2,5 ppm \rightarrow Motor aerator 40Hz (kecepatan tinggi)
- Rentang optimal Mempertahankan DO dalam range 2-4 ppm untuk proses aerobik Interface HMI dan Monitoring:
 - Tampilan real-time Nilai DO (ppm), nilai ADC (0-3V), frekuensi motor (Hz)
 - Menu kalibrasi Akses untuk kalibrasi sensor sesuai panduan DFRobot
 - Komunikasi RS485 Protokol Modbus RTU dengan stabilitas tinggi
- Operasi 24/7 Monitoring kontinyu menggantikan sistem manual

Hasil Implementasi:

- Penghematan energi 50% Dari kondisi motor kontinyu 50Hz ke variable speed
- Payback period 14 hari ROI sangat cepat dengan efisiensi energi
- Kualitas air stabil D0 terjaga dalam rentang optimal untuk bakteri aerobik
- Maintenance friendly Sensor mudah diakses, sistem trouble-free operation

Kesimpulan

Pencapaian Teknis:

- Sistem D0 berhasil diimplementasikan dengan monitoring real-time 24/7
- Penghematan energi 50% melalui variable speed control motor aerator
- ROI sangat baik dengan payback period hanya 14 hari operasi
- HMI berfungsi optimal untuk monitoring DO, ADC, dan frekuensi motor Pencapaian Pembelajaran:
 - Penguasaan sistem embedded (Arduino, ESP8266, sensor industri)
 - Kemampuan merancang sistem otomasi dari konsep hingga implementasi
 - Pengalaman praktis troubleshooting dan maintenance sistem
- Keterampilan integrasi hardware dan software untuk aplikasi industri

Kontribusi untuk Perusahaan:

- Peningkatan efisiensi operasional dan kualitas proses IPAL
- Pengurangan biaya operasional melalui penghematan energi
- Sistem monitoring yang lebih konsisten dan akurat

Lampiran Foto

Foto instalasi sensor DO di kolam aerator

Foto panel kontrol dengan HMI dan komponen

Foto tampilan HMI Wecon PI3070ie

Dokumentasi proses kalibrasi dan testing

Lampiran Foto

Komponen sistem pemukul tutup galon otomatis

Hasil pemasangan sistem pemukul tutup galon otomatis

Rangkaian pada Box Panel
Sistem Pencampuran
Limbah Otomatis

Tempat Pengolahan pencampuran limbah dengan dosing system

La. Diran Video 3D Design SolidWorks

Terima kasih e

TEKNIK ELEKTRONIKA
POLITEKNIK NEGERI
MALANG

