Algebra/Geometrie II, Übungsblatt 8

Bitte geben Sie die Lösungen in Ihrer Übungsgruppe entweder am 8.6. oder am 10.6. ab.

Aufgabe 1 (4 Punkte). Bestimmen Sie den Typ der Quadrik

$$x^2 + 4xy + 2xz + z^2 + 3x + z - 6 = 0$$

in \mathbb{R}^3 .

Aufgabe 2 (6 Punkte). Beschreiben Sie die entarteten Quadriken in \mathbb{R}^3 .

Aufgabe 3 (6 Punkte). Sei $q(v) = v^t A v$ eine quadratische Form auf $V \cong \mathbb{R}^{2n}$, $\det(A) \neq 0$, $1 \leq n < \infty$. Gegeben ist einen Unterraum $U \subset V$, s.d. $\dim U = n$ und q(u) = 0 für jeden Vektor $u \in U$. Beweisen Sie, dass es ein weiterer Unterraum U', s.d.

$$\dim U' = n, \ V = U \oplus U' \ \ \text{und} \ \ q(u') = 0 \ \text{für jeden Vektor} \ u' \in U',$$

existiert. Und beweisen Sie weiter, dass $q=x_1x_2+x_3x_4+\ldots+x_{2n-1}x_{2n}$ in einer geeigneten Basis von V.