

I dea of pf by contradiction for p=> q.
assume p is true + q is false Once we reach a contradiction using existing results this proves q, is true. 3) Proof by contrapositive. EX) Claim: Suppose XER is irrational. Then Tx is irrational. Suppose Tx is rational. We will show xeR is rational. Then VX=P => X= p2 => X is rational 1 I dea of pt by contrapositive of p=2 It is a fact that (opposite of p) if and p=>q.
is true only if is true Proving the former claim instead is proof by contrapositive 4) Proof by cases. EX Claim: for each XER, X = [x] Case: X >0 Then | x = x , so x = | x | = x (ax2: x<0 Then |x|>0, so x<0<|x|. Since this covers all XER and in each case we have proven x= |x1, we are dove

Other types of proofs:
4) Proving a Statement is false.
- Option I: finel a contradiction
EX Claim: Weven => m odd

If m² even > m² = 2k > m² = 4l some > m = 2 (e) = m even >= - Option 2: find a counterexample EX Consider m² = 64. Then m= 8, which is not odd

5) Proving equivalence of Statements

per q (p if and only if q).

For this, we prove

1) pra, and
2) qre

 Mathematical Induction:

Ex Suppose you had a glass of wilk last Friday.

Every day if you had nilk to drink yesterday,

you'll also drink milk today.

Q: Will you drink milk today?

A: Yes, From 1" statement, you drank wilk

on the 23"d, By 2" statement, you also

did on 24, 25, 26, 27, 28, 29, ...

Principle (Induction) Suppose we have a function of propositions S(n), for ne (no, not), not 2, ... S=2

Suppose
(Bosis step) i) S(no) is true, and
(Inductive 2) For each n = no, if S(n) is true,
Step)

Then S(n) is true for each ne (no, not), not 2, ... }

Idea: We can prove a statement holds

for each ne (no, not), not 2, ... if we can show

It holds for previous n, it will hold

for next n.

EX (et Sn=1+2+...+n for no 270

Pf Step1: basis step heed to show for n=1. In this case S,=1 = 1(1+1).

Claim: Sn = M(n+1) for n = 1.

Suppose for some n 21, Sn= n(n+1) We want to show: Sn+1 = (n+1)(n+2) We know Sn+1= | +2+ ... + n+ (n+1) $= S_{n+1} = S_{n+1} + (n+1) = n(n+1) + (n+1)$ = n(n+1) + 2(n+1) = (n+2)(n+1) so by Ind. Principle, we are done! Ex (Geometric Sum), For r + 1, a + ar + ar 2+ ... + ar = a(r - 1) for all n = 0. Basis Step: N=0 $a = \underline{a(r'-1)}$, so we are done

Ind. Step: Suppose tru some n≥0.

Thm If |x|:n, then |P(x)|=2" for all N36. Pf
Basis Step: $n=0 \Rightarrow X=\emptyset \Rightarrow P(x)=\emptyset$ $\Rightarrow |P(x)|=|=2^{\circ}$ Ind Step: Suppose true for some |x|=n.

Consider Ywhere |Y|=n+1.

Then $Y=1\cdot 2\times 3 \cdot 2\times 3$. By Ind step, | P(4-{x3) | = 2 We know by the dofinition of power set, P(Y)=P(Y({x}) u SEP(Y) xES & partitions P(Y) 5) P(Y)=P(Y. {x}) + {SeP(Y) | xeS} Step 5) P(Y) = 2" + {SeP(Y) | xeS} WTS: {SeP(Y) | xeS} = 2. It suffices to give a bijection f: {SeP(Y) | xeS} P(y(sx))

f is surjective since if TeP(y(sx)) => f(To(x)) =T

f is injective since if A=BeP(Y(sx))

E> Au(x)=Bu(x) Thus 2" = |7(4.8x3)| = | {SEP(4) | XES}

Show $5^n-1=0 \mod 4$ for $n \ge 1$ Bax Cax: n=1 $5^1-1=5-1=4=0 \mod 4$, so base case is proven

Inductive Step: Assume for some $n \ge 1$, $5^n-1=0 \mod 4$.

WTS: $5^{n+1}-1=0 \mod 4$.

Note: When $X=a \mod b$ and $y=a \mod be$, we often write $x=y \mod b$

Note: When $X = a \mod b$ and $y = a \mod be$, we ofth write $X \equiv y \mod b$ $5^{n+1} - 1 \equiv 5 \cdot 5^{n} - 1 \mod 4 \equiv 4 \cdot 5^{n} + 1 \cdot 5^{n} - 1 \mod 4$ $= 5^{n} - 1 \mod 4 \equiv 0 \mod 4$ so we are done by Ind.
Assump.

tx) Show 2n+1 = 2" for n=3,4,...

Base (ase: n=3 2.3+1=758=23, so the base case holds

Ind. Assump: Suppose for some n≥3, 2n+1 ≤2".

 $2(n+1)+1=2n+2+1=(2n+1)+2\leq 2^n+2\leq 2^n+2\leq 2^n$ so the result follows

[3.1] Functions: brief review f: X -> Y
[Def) f is injective if for any x, x = X such that $f(x_i) = f(x_2)$, then $x_i = x_2$.
$f(x_1) = f(x_2)$, then $X_1 = X_2$.
f is surjective if for each yey there is some xex such that f(x)=y
f is bijective if f is both injective + surjective
$EX \setminus f: Q \rightarrow Q$
EX $f: Q \rightarrow Q$ $\times \mapsto 2x-1$
f is injective: Pf Suppose X, X2 & Where f(X) = f(Xs)
$\Rightarrow 2x_1 - 1 = 2x_2 - 1$ $\Rightarrow x_1 = x_2 \Rightarrow f(x_1 - 1)$
fis surjective:
Pf Suppose $y \in \mathbb{Q}$.
f is surjective: Pf Suppose $y \in \mathbb{Q}$. WIS there is some $x \in \mathbb{Q}$ such that $f(x) = y$ We know $2x - = y \Leftrightarrow 2x = y + 1 \Leftrightarrow x = \frac{y+1}{2}$
$2x-1=y \Rightarrow 2x=y+1 \Rightarrow x=\frac{y+1}{2}$ We know if $y \in Q$, then $x=\frac{y+1}{2} \in Q$. Therefore taking $x=\frac{y+1}{2}$, $f(x)=f(y+\frac{1}{2})=2(y+\frac{1}{2})-1=y=f$ is an
There fore taking X= J+/2,
f(x) = f(y+1/2) = 2(y+1/2) - 1 = y = 1 f is on:
Therefore f is 1-1 and onto => f is bijective
(x) f: 2 -> Z
$x \mapsto x^2$ f is not injective since $f(1) = f(-1)$ and $ \neq -1 $.
f is not surjective since -lez but there is
no x e Z such that x²=-1. => fis not bijective.
TIS VET WIJ COINC.

83,2 Thet A sequence is a function s: I -> X for some Set X. We write Si:= S(i). I is the domain of s. cindex of the sequence It I is finite, we say s is a finite sequence, otherwise, s is infinite. such that S(i)= 2i. EX S: 720 > 220 5,= 2 Skinthing shill

If I=[i,j], we write sas {Sk}k=i

Or if I=[i,\in), we write sas {Sk}k=i

O bounds Sr=2K We call this a closed formula fors. EX) Suppose Sx= 2 + 3x for each K20. Then, for example, S4 = 24 + 6 = 16 + 6 = 22 Ex) Goal: find a closed formula for
the sequence s:

-1, 3, -5, 7, 9, -9, ... Then $5_k = (-1)(ax-1)$ for $k \in \mathbb{Z}_{>0}$

Properties:
Suppose ij EI for s. Then we say s is
- increasing if sics; for each icj
-decreasing if si>s, for each icj
- nonincreasing if sizs; for each iz;
- nondecreasing if 5:45; for each iz;
EX) the sequence 5, le, 12, 81, 4108 is increasing + vandecreasing
the sequence 5, 6, 6, 12, 81, 4108 is honde creasing (not increasing since so
The sequence 5, le, -5, 12, 81, 4108 is neither (since s2>S3 but S3 <s4)< th=""></s4)<>
(Det) A subsequence of s is a sequence formed by deleting terms of s.
EX) {2 k} ~ {4 k} ~
the latter is a subsiquence of the former
Notation: Suppose N, N2,, are the indices of s that correspond to the terms chosen to
that correspond to the terms chosen to build the subsequence. Then we use the notation & sny to describe the subsequence.

Operations on Esisiek
- addition: S'Si:= Sx + Sxx1 + 5xx2 + + Sn
- addition: $Si:=S_k+S_{k+1}+S_{k+3}+\ldots+S_n$ Signature of $Signature$
Justation n
- multiplication: TTS: = Sk. Ski, Ski, Ski.
production of the station
i is the index
k is the lower limit
n is the upper limit
Recall the geometric sum on + ar + ar 2 + + ar. Can view $S_k = ar^k$ $0 \le k \le n$ and write $\sum_{k=0}^{\infty} ar^k$ instead
$\alpha + \alpha r + \alpha r^2 + \dots + \alpha r^n$
Can view Sk=ark OSKSN
and write Ear instead
of A string is a finite sequence of characters.
If the characters all lie in a set X, we say
Me chaire is over X
the string is over X.
The string with no elements is null. The length a
The string with no elements is null. The length x of a string of is the number of characters in x.
The string formed by writing a string of them
The string formed by writing a string of them a string B is the concatenation of B of dand B
A substring of & is a string formed by selecting con cutive elements of a.
selecting con white elements of a.
Ex) for d = ham burger
B = burge is a substring
5: amber is not a substring
U

[X] Define sn= 2+4.3, n20 a) What is so? so=20+4.30= [+4=5 b) what is si, where i=0? Si=2+4.3 c) What is sn-1 where N-120? Sn-2 for N-220? $S_{n-1} = 2^{n-1} + 4.3$ $S_{n-2} = 2^{n-2} + 4.3$ d) Prove $\{s_n\}_{n=0}^{\infty}$ satisfies $s_n = 5s_{n-1} - 6s_{n-2}$ for $n \ge 2$. For $n \ge 2$, $5s_{n-1} - 6s_{n-2} - 5(2^{n-1} + 4 \cdot 3^{n-1}) - 6(2^{n-2} + 4 \cdot 3^{n-2})$ $= \left(5.2^{n-1} - (0.2^{n-2}) + \left(5.4.3^{n-1} - 6.4.3^{n-2}\right)\right)$ $= (5.2^{n-1} - 3.2^{n-1}) + (5.4.3^{n-1} - 2.4.3^{n-1})$ $= (2.2^{n-1}) + (3.4.3^{n-1})$ = $2^n + 4 \cdot 3^n = S_n$, so the result is proven