Hematopoiesis

AMY MILLER MLS (ASCP) CM

Today's Discussion

- Hematopoiesis Sites by Age
- Active Sites of Hematopoietic Tissue
- Hematopoietic Stem Cells and Cytokines
- Lineage Specific Hematopoiesis

Hematopoiesis Sites by Age

Hematopoiesis

- Continuous, regulated process involving the proliferation, differentiation and maturation of all functional blood cells released from bone marrow into circulation
- Hematopoietic stem cells (HSCs) are capable of self-renewal and directed differentiation into all required cell lineages

Hematopoiesis sites by Age

Fetal

- Sites of hematopoiesis
 - Mesoblastic
 - Yolk sac
 - Hepatic
 - Liver
 - Myeloid
 - Bone marrow
- Adult
 - Primary location of hematopoiesis is bone marrow

Mesoblastic Phase

- ■19th day of embryonic development
- Cells from mesoderm migrate to the yolk sac and form primitive erythroblasts and angioblasts
 - Primitive Erythroblasts
 - Central cavity of the yolk sac
 - Produce hemoglobin to deliver O₂
 - Gower-1, Gower-2, and Portland
 - Angioblasts
 - Form around the central cavity of the yolk sac
 - Form blood vessels
- Cells migrate from the yolk sac to the aorta-gonadmesonephros (AGM)
 - At 4-week gestation
 - Will give rise to the HSCs for definitive adult hematopoiesis

Hepatic Phase

- Begins at 5 to 7 gestational weeks
- Characterized by a recognizable cluster of developing progenitors
 - Erythroblasts, granulocytes, and monocytes
 - Colonize the fetal liver, thymus, spleen, placenta, and lastly the bone marrow
- Hematopoiesis is now extravascular
- Liver is the major site of hematopoiesis during the second trimester of fetal life
- Thymus (1st fully developed organ in the fetus)
 - T- cell production
- Kidney and Spleen
 - B-cell production

Medullary (Myeloid) Phase

- Begins 4th-5th month of fetal development
- Hematopoiesis in the bone marrow
 - Medulla/inner part of the bone cavity
- •HSCs and mesenchymal cells migrate to the core
- Myeloid activity increases
 - Myeloid: erythroid ratio 3:1 to 4:1 (adult levels)
- End of 24 weeks primary site of hematopoiesis
- •Increase in growth factors
 - EPO, G-CSF, GM-CSF
- HbF and HbA is detected
- Various stages of maturation can be seen in all bone lineages

https://www.visiblebody.com/blog/3d-skeletal-system-compact-bone-spongy-bone-and-osteons

Active Sites of Hematopoietic Tissue

Active Sites of Hematopoietic Tissue

- Bone marrow
- Lymph nodes
- Spleen
- Liver
- Thymus

Bone Marrow

- Primary site of hematopoiesis
- Located in the cavities of cortical bone
 - Trabeculae- projections of calcified bone that radiate out into the central space and provide support for developing cells
- Composed of 2 major components
 - Red Marrow
 - Yellow Marrow
- Retrogression: process of replacing active marrow by adipocytes (yellow marrow)
 - Begins around 5 to 7 years of age
 - Adult marrow restricted to:
 - Sternum, vertebrae, scapulae, pelvis, ribs, skull, and proximal portion of long bones

Bone Marrow

- Marrow Cellularity: ratio of red: yellow marrow
 - Will decrease with age
- Yellow marrow is capable of reverting back to active marrow in extreme cases
 - Excessive blood loss, hemolysis
- Bone marrow contains hematopoietic cells, stromal cells, and blood vessels
- Stromal cells
 - Originate from mesenchymal cells that migrate to the central cavity of the bone
 - Includes: endothelial cells, adipocytes, macrophages, lymphocytes, osteoblasts, osteoclasts, and fibroblasts (reticular endothelial cells)
 - Secrete extracellular matrix fluid that anchors developing cells in the cavity
 - Crucial in cell survival and differentiation

Bone Marrow Cell Storage

- •Hematopoietic capabilities of bone marrow include:
 - Stem cell pool- unipotential and multipotential stem cells available
 - Bone marrow pool- maturing and proliferating cells, some being stored for later use (storage pool)
- •Hematopoietic capabilities of peripheral blood include:
 - Functional and storage cells
 - RBCs- 100% functional
 - Granulocytes- 50% functional and 50% lining vessels
 - Platelets- 70% functional and 30% stored in the spleen

Liver

- Major site of blood cell production during the 2nd trimester
- Contain <u>Kupffer cells</u> in the lumen
 - Macrophages that remove senescent cells and foreign debris from the liver
 - Secrete mediators that regulate protein synthesis in hepatocytes
- Ability to maintain hematopoietic and progenitor cells to produce various cell types as a response to infectious agents or in pathologic myelofibrosis of the bone marrow
- Site of extramedullary hematopoiesis

Spleen

- Largest secondary lymphoid organ
- Filters circulating blood
- •30% of platelets sequestered in the spleen
- •Made up of white pulp, red pulp, and marginal zone
 - White pulp: germinal cells with lymphs, macros, and dendritic cells
 - Red pulp: vascular sinuses separated by cords of reticular cell meshwork (cords of billroth) containing loosely connected macros, spongelike
 - Removal of senescent or abnormal RBCs from circulation through culling and pitting
 - Culling: cells are phagocytized with degradation of cell organelles
 - Pitting: splenic macrophages remove inclusions or damaged surface membrane from circulating RBCs
 - Marginal zone: surround white pulp and contain macros, memory B cells, and CD4 T cells
- Site of extramedullary hematopoiesis

Lymph Nodes

- Bean structure separated into the cortex, medulla, and paracortex
 - Outer capsule forms trabeculae that goes into the cortex
 - Divides the lymph nodes into follicles
 - Secondary follicle
 - Develop foci of activated B cell proliferation called germinal centers
 - Occurs after antigenic stimulation
 - Primary follicle
 - No germinal center
 - Medullary cords interior- plasma cells and B cells
 - Paracortex predominately T cells and macros
 - Located between the cortex and the medulla
- 3 main functions
 - Site of lymphocyte production
 - Involved in initiation of specific immune response to foreign antigens
 - Filter particulate matter, debris, and bacteria that is in the lymph

Thymus

- ■1st developed organ in the fetus
- •Made up the cortex and medulla
- T cell progenitors migrate from bone marrow to the thymus for further maturation
 - Enter as "double negative" then move to the cortex and express CD4 and CD8 "double positive"
 - When mature, will switch to either CD4 or CD8
- •Mature T cells migrate to the spleen, lymph nodes, and other lymphoid tissue
- Underdeveloped thymus results in lack of T lymphocytes- failure to thrive, uncontrollable infections or death

Hematopoietic Stem Cells and Cytokines

Hematopoietic Stem Cell Theory

- •1961 Till and McCulloch conducted experiments on irradiated spleens and bone marrow of mice
 - Mice were aplastic and were then injected with marrow cells
 - Colonies of HSCs were seen in 7-8 days
 - They called these colonies colony forming units-spleen (CFU-S)
- •CFU-S represent what we know as:
 - Committed myeloid progenitors
 - As known as Colony Forming Unit- Granulocyte, Erythrocyte, Monocyte, and Megakaryocyte (CFU-GEMM)
- •Hematopoietic progenitor cells divide into 2 groups:
 - Noncommitted/undifferentiated HSC
 - Committed progenitor cells
- •HSCs are capable of self renewal, pluripotent, and can differentiate
 - Common lymphoid progenitor
 - Common myeloid progenitor

Stem Cell Cycle Kinetics

- •HSCs are capable of many mitotic divisions when stimulated by the appropriate cytokines
- •Mitosis- creation of 2 identical daughter cells
- After mitosis,
 - Some cells reenter cycle
 - Some cells go into resting (G₀)
 - Can reenter cycle and divide again
 - Can be directed to terminal differentiation
- Mitotic index
 - Percentage of cells in mitosis to total number of cells
 - Normally 1% to 2%
 - Increased mitotic index= proliferation

Cytokines (Growth Factors)

- •Group of specific glycoproteins that regulate proliferation, differentiation, and maturation of hematopoietic progenitor cells
 - Ex. Interleukins (ILs), monokines, interferons, chemokines, and colony stimulating factors (CSFs)
- Stimulation or inhibition
 - Positive influence
 - Impact on HSC and progenitors with multilineage potential
 - KIT ligand, FLT3, GM-CSF, IL-1, IL-3, IL-6, and IL-11
 - Negative influence
 - Growth factor B, tumor necrosis factor δ , and interferons
- •Hematopoietic progenitor cells require cytokines constantly for survival and growth
 - Prevent apoptosis
 - Signal cells to divide

Cytokines (Growth Factors)

- Colony Stimulating Factors (CSF)
 - High specificity for their target cells and active at low concentrations
 - Produced by many different cell lineages
- •Interleukins
 - Proteins that regulate autoimmune and inflammatory reactions and steps in hematopoiesis
 - Effective at low concentrations
- •Multilineage growth factors
 - KIT Ligand ("Stem Cell Factor")- KIT is a receptor-type tyrosine-protein kinases expressed on HSCs
 - Stimulates cells to differentiate and proliferate
 - Down-regulated with differentiation
 - FLT3 ligand- tyrosine-protein kinase synergistic with KIT ligand and IL-3

Lineage Specific Hematopoiesis

Lineage-specific hematopoiesis

- Erythropoiesis
- Leukopoiesis
 - Myelopoieis
 - Lymphopoiesis
- Megakaryopoiesis

Erythropoiesis

 Occurs in the bone marrow, regulating process for maintaining adequate numbers erythrocytes in peripheral blood

•CFU-GEMM \rightarrow BFU-E \rightarrow CFU-E

- Colony-forming unit-erythroid (CFU-E)
 - Created when BFU-E is under the influence of IL-3, GM-CSF, TPO- and KIT ligand
 - High affinity for erythropoietin (EPO)
 - Differentiation factor that causes CFU-E → pronormoblast
 - Pronormoblast: earliest erythrocyte precursor in the bone marrow

Leukopoiesis

- Divided into 2 major categories
 - Myelopoiesis
 - Lymphopoiesis
- Myelopoiesis
 - CFU-GEMM → neutrophils, monocytes, eosinophils, and basophils
 - Differentiation promoted by GM-CSF, G-CSF, M-CSF, IL-3, IL-5, IL-11, and KIT ligand
- Lymphopoiesis
 - Common lymphoid progenitor → B cells, T cells, dendritic cells, and NK cells
 - Differentiation promoted through interactions with numerous interleukins (IL-2, IL-7, IL-12, IL-15, etc)

Myelopoiesis

Granulocytic Differentiation

Monocytic Differentiation

Lymphopoiesis

- B-cells develop in bone marrow (hematogones) and then migrate to peripheral (secondary) lymphoid organs such as lymph node, Waldeyer's ring, and the spleen as naïve B-cells
 - Exposure to antigen results in further maturation from naïve B-cells to memory B cells and plasma cells (terminal differentiation)
- T-cells develop in the thymus and migrate to secondary lymphoid organs as functional immune cells

Megakaryopoiesis

- ■CFU-GEMM → megakaryocyte
 - Influenced by GM- CSF, IL-3, IL-6, IL-11, KIT Ligand, and TPO (produced in the liver)
 - TPO and IL-11 control the release of platelets
- Differentiate/mature via endomitosis
 - Duplication/reduplication of nuclear material without nuclear division
- Platelets develop by cytoplasmic fragmentation in the bone marrow sinus
- One megakaryocyte can make thousands of platelets

References

- Rodak's Hematology, Clinical Principles and Applications 6th Edition
- Additional material courtesy of Dr. Eric His and Dr. James Cook

