1. 求解过程如下:

Vz	٧ _٢	V4	Vs	V6	V_7	V8	Vg	Vio	V_{ii}
2	8	Ø	∞	∞	∞	00	∞	<i>∞</i>	∞
_	8	æ	3	ø	Ø	œ	00	00	Ø
			-	ø	Ø	Ø	4	∞	00
	8	00			-	11		∞	00
	8	∞		00	7	11			
	8	OD		<i>∞</i>		"		8	∞
		15		<i>∞</i>		11		8	<i>∞</i>
		15		Ø		11			00
		15		ø					20
				مح					20

由此可知。

V2: 販路2 路谷 V,→V2

い。野喜の路径レルラン3

V4: 距离15 発電 V1 → V3 → V4

Us: 距离3 路役 V, → V, → Vs

V6: 不可达

V8: 智語11 発音2 レ, コレ2 コレ5 コレ9 コレ8

Vg: 距离 4 路径 レ, → V2 → V5 → V9

い。 路路8 場合社 リーラントランショラントロ

いい、距离20 路は レッションションタラレい

2. 美联冠阵:

3. 两知对倡目标函数

$$Q(\lambda_{i}, \mathcal{U}_{ij}, w_{ij}) = \min_{\mathbf{x} \in \mathbb{R}^{n}} \mathcal{L}(\mathbf{x}, \mathcal{U}, \mathbf{V})$$

$$= W + \sum_{i \notin \{s,t\}} \lambda_{i} \left(\sum_{(v_{i}, v_{j}) \in E} \chi_{ji} \right) + \lambda_{s} \left(\sum_{(v_{s}, v_{j}) \in E} \chi_{js} - \sum_{(v_{j}, v_{s}) \in E} \chi_{js} - w \right)$$

$$+ \lambda_{t} \left(\sum_{(v_{t}, v_{j}) \in E} \chi_{jt} + w \right) - \sum_{(v_{t}, v_{j}) \in E} \mathcal{U}_{ij} \chi_{ij} + \sum_{(v_{i}, v_{j}) \in E} \mathcal{U}_{ij} \chi_{ij} - \mathcal{C}_{ij} \right)$$

因此:
$$C(\lambda, U, w) = \begin{cases} -\sum_{(v_i, v_j) \in E} w_{ij} = 0, \quad \lambda_i - \lambda_j - u_{ij} + w_{ij} = 0, \quad \lambda_i + \lambda_t = 0, \\ -\infty \quad \text{otherwise} \end{cases}$$

拉格朗日对偶问题为

$$\max \left\{ -\frac{\sum_{(v_i, v_j) \in E} |w_i y \in C_i y|}{\lambda_i - \lambda_j - u_i y + w_i y = 0, \quad i \neq j} \quad |-\lambda_s + \lambda_t = 0, \quad w_i \geq 0, \quad u_i y \geq 0 \right\}$$

4. 根据可增了链的方法,首先知始化流量为0

阿博宁链 S→a→ c→t

可管が链≤→b→d→t

由此可知,网络从5→大的最大流为4