Bio 1M: Hominins

1 Hominins — pp. 295-302

- Hominins refer to people and our upright ancestors
- Characterized by:
 - Walking upright
 - Specific changes in chewing design: teeth, jaws and skull

Taxonomy — https://en.wikipedia.org/wiki/Hominini

- Homonoidea, Hominidae, Homininiae, Hominini, Hominina, Homo
- Why so much detailed splitting?

_

Putting together the puzzle

- What did our common ancestor with chimpanzees look like?
- Which fossils are related to which other fossils?
- The key is which features are reliable indicators of relatedness?

_

Evaluating evidence

- There are a lot of theories and a great deal of expertise
- But expertise can also lead to over-confidence
- As with other examples, we try to make and test theories

_

Apelike ancestors — Fig 10.4-5

• Were our ancestors more like us, or more like apes?

*

•

_

_

*

1.1 Upright posture — Fig 10.11-12

- How did upright posture and upright walking evolve?
- It's not known, but there are many theories:
 - Adaptation to walking on the ground instead of swinging through trees

*

- Adaptation for keeping cool
- Adaptation for harvesting food
- Adaptation for carrying food

Gradual evolution

- Hominins' evolution of upright posture was likely dependent on evolutionary history and circumstance
 - Built on previous adaptations
- Evolution of upright posture almost certainly led to further evolutionary change:
 - Carrying and storing things
 - Making and using tools
- There should be lots of "loops" changes leading to other changes to explain how dramatically our ancestors evolved

Studying evolution

- Evidence from fossils
 - knees, hips, backs, skulls all provide evidence about posture
 - teeth and jaws provide evidence about diet
- Evidence from archaeology
 - hominin fossils may be found in particular placess
 - associated with fossils from things that homining used to eat
 - or with tools

1.2 Complex foraging — pp. 308–314

- A key part of human evolution was shaped by **complex foraging** strategies of our ancestors they relied on many types of food, including types of food that are difficult to get or process
- What adaptations likely favored this strategy?

• What further adaptations might this strategy have favored?

_

Back and forth evolution — Fig 10.4-5

- Very early hominins (6 mya) had facial and dental features that were similar to later hominins (2 mya)
 - Less similar to chimpanzees
 - But also less similar to Australopiths (3 mya)
- Is this surprising?

_

*

Hominin phylogenies — Fig 10.37

- Hominins had a large number of speciation and extinction events
- $\bullet\,$ The tree is not well understood, despite intensive study

2 Sociality

Complex foraging and co-operation

- Complex foraging may have promoted co-operation between females and males, since primate child care is not well suited to a hunting life style
- It may have promoted co-operation between people with different skills, since they might have access to food at different times
- It may have promoted co-operation among hunters, since hunting success is highly variable
- It may have promoted co-operation in teaching and learning

Complex foraging and thinking

- Complex foraging favors large brains that can learn a lot
- It also favors a long learning period
 - Sensitivity vs. crystallization
- It also favors communication

Complex foraging and gender roles

•	How	might	complex	foraging	affect	child	care	and	sexual	dimorpl	nism?
	_										

Social behaviour

- As behaviour becomes more social, a wide variety of other adaptations may become available
 - Mostly related to thinking and communication
- Leading to more opportunities for looping:

How social were early hominins?

• What kind of clues might be available?

_

Sexual dimorphism

• The extent of sexual dimorphism tells us at least something about social structures

_

• How do we know whose bones are male and female?

_

• How do we know whose teeth are male and female?

_

Bimodality — Fig 10.9

- Bimodality means having two peaks in a distribution
 - For example, a modern human height distribution would have a peak for men, and a peak for women
- If traits are strongly dimorphic, we should be able to tell by sampling, even if we don't know which teeth come from men and which from women

Rate of development

ullet Why do human children develop so slowly?

_

- We are therefore very interested in how long it took our ancestors to mature
- Some clues are available
 - Dental enamel
 - Molar development
- But it's a hard problem

3 Tool making

- Several species can make tools, but only people make tools that can project lectures directly from a computer onto a screen
- More broadly, homining make far more sophisticated tools than non-homining do

Other species

- What other animals make tools?
- Not counting programmed behaviours (spiky nests, ant traps)

_

_

Looping

- Tool making is likely an important part of the "loop" that provided many opportunities for new adaptations along the hominin tree
- Others include:

_

_

• All these things probably interacted with and encouraged each other along the way

Difficulties — Fig 11.2

- \bullet We find *amazing* stone tools from 2-3.5 mya
 - Oldowan tools
- It's hard to know who made them and used them

_

• It's hard to figure out how they were used

Active science — Closer Look 11.1

- Scientists have practiced making and using tools similar to the Oldowan tools
- Surprising conclusions:
 - Cores are made by striking off flakes
 - * Flakes are surprisingly useful
 - * cores may just be leftovers
 - Spheroids may be discarded hammers
 - Tool makers were mostly right-handed

3.1 Tools and adaptation

- Tools opened up new strategies that likely favored co-operation, communication and culture:
 - Hunting and scavenging with weapons
 - Advanced foraging

Active science — pp. 270-273

- Scientists lived with, and attempted to learn from, remaining forage-based societies
 - Skills are very detailed, and take a long time to develop
 - Possible support for looping with culture and language
- What can we learn from modern humans about our ancestors?

Scavenging

- Scavenging is eating meat that is found, or taken from predators
- Evidence of early hominins **butchering** large animals including elephants raises the question of whether they were hunting or scavenging
 - It's not so easy to kill an elephant
 - Could they have had techniques or tools we don't know about?

Scavenging and hunting

- Scavenging and hunting are complementary activities
 - Most hunters scavenge
 - Most mammalian scavengers hunt
- Our ancestors probably did both
- Scavenging requires the ability to:
 - Take kills from other predators, or
 - Use resources others can't use

Tools for scavenging and hunting

- Some tools may have been used as weapons
 - For killing prey, or for fighting off other carnivovers
 - There is no evidence of this
- Tools could be used to process leftovers

_

Tools for complex foraging

- Tools and knowledge can make a wide range of food sources available
 - Colonial insect resources
 - Deeply buried plant resources
 - Poisonous things that can be processed

4 Humans

Radiation and contraction

- Early humans replaced other hominins starting about 2 mya
- Modern humans replaced other humans starting about 0.2 mya

_

_

• Both early and modern humans evolved in Africa and spread from there

Early humans — Fig 12.8

- Acheulean industry lasted almost 1 million years
- It took people longer to move on from Acheulean industry than to move from Acheulean industry to self-driving cars!

Modern humans

- Characterized by small face and teeth
- Less robust skeletal structure
- Evolved in Africa around 200 kya (thousand years ago)
- Took over most of the world in the last 50,000 years

Why are we here?

- Modern humans arose around 200 kya, but took over the world around 50 kya
- What happened?
 - A sudden evolutionary change?
 - Gradual evolutionary change?

*

*

- A sudden cultural change?
- Gradual cultural change?

Summary

• People evolved by the same basic rules as other organisms

• Followed a very different path

• There is a lot we can learn about ourselves from biology

 $\bullet\,$ And also a lot that we can't learn

© 2017, Jonathan Dushoff and the 1M teaching team. May be reproduced and distributed, with this notice, for non-commercial purposes only.