ORF526 - Problem Set 9

Bachir EL KHADIR

December 10, 2015

Question 1

Because it is predictable we have that $E[M_{n+1}|F_n] = M_{n+1}$, and because it is a martingale $E[M_{n+1}|F_n] = M_n$. Therefore M_n is constant equal to M_0 .

Question 2

Let $M_n = X_0 + \sum_{i=0}^{n-1} X_{i+1} - E[X_{i+1}|F_i]$, $A_n = X_n - M_n = \sum_{i=0}^{n-1} E[X_{i+1}|F_i] - X_i$ and as a convention $A_0 = 0$.

- (M_n) is an (F_n) martingale because
 - It is (F_n) -adapted: For all n, M_n for i = 0...n 1, X_{i+1} and $E[X_{i+1}|F_i]$ are F_n measurable.
 - $-M_{n+1}-M_n=X_{n+1}-E[X_{n+1}|F_n],$ so

$$E[M_{n+1}|F_n] - M_n = E[M_{n+1} - M_n|F_n] = E[X_{n+1}|F_n] - E[E[X_{n+1}|F_n]|F_n] = 0$$

- (A_n) is a non-decreasing predictable process because:
 - (A_n) is predictable because for $i < n, X_i$ and $E[X_{i+1}|F_i]$ are F_i (and F_{n-1}) measurable
 - (A_n) is non-decreasing: $A_{n+1} A_n = E[X_{n+1}|F_n] X_n \ge 0$ because X_n is a submartingale.

The decomposition is unique, because if there exist an other decomposition $X_n = M'_n + A'_n$ with the same properties then: $M_n - M'_n = A_n - A'_n$, which is a marintgale (as the difference of two martingales), and predictable (as the difference of two predictable processes). By question 1, this sequence is constant equal to $A_0 - A'_0 = 0$

Question 3

Let $n, p \in \mathbb{N}$,

By the itereated expectation:

$$E[M_{n+i+1}M_{n+i}] = E[E[M_{n+i+1}|F_n]M_{n+i}] = E[M_n^2]$$

So:

$$||M_{n+p} - M_n||_2^2 = E[|M_{n+p} - M_n|^2] = E[M_{n+p}^2] + E[M_n^2] - 2E[M_{n+p}M_n] = E[M_{n+p}^2] - E[M_n^2]$$

 M_n^2 is a submartingale, so $E[M_n^2]$ is non-decreasing, and since it is bounded, it converges and therefore $E[M_{n+p}^2] - E[M_n^2] \to_{n,p} 0$ c/c: $||M_{n+p} - M_n||_2 \to_{n,p} 0$, and (M_n) is a cauchy sequence.

Question 4

- 1. M_n is L^p bounded and p > 1, so (M_n^p) is submartingale that is L_1 bounded, and therefore: $|M_n|^p$ converges to $S \in L_1$ a.s. Moreover, M_n is L_1 bounded so it has an as limit M_∞ . Therefore $M_\infty^p = S \in L_1$, so $M_\infty \in L_p$
- 2. Let Ω the set of measure 1 where $S_n = \max_{k \leq n} |M_k|$ holds. Then for every $\omega \in \Omega$, $S_n(\omega)$ is pointwise non-decreasing as., so it has a limit $S(\omega)$, and by monotonuous convergence theorem $E[S_n^p] \to E[S^p]$ By Doobs inequality

$$||S_n||_p = ||\max_{k \le n} |M_k||_p \le \frac{p}{p-1} ||M_n||_p \le \frac{p}{p-1} \sup_k ||M_k||_p$$

By taking the limit, and taking the p-th power:

$$E[S^p] = ||\max_{k \le n} |M_k|||_p^p \le \left(\frac{p}{p-1}\right)^p \sup ||M_k||_p^p$$

3. Since $|M_{\infty}-M_n|\leq |M_{\infty}|+|M_n|,\, |M_n|\leq S_n\leq S$ and $|M_{\infty}|=\lim_n |M_n|\leq \lim_n S_n\leq S$:

$$|M_{\infty} - M_n| \le 2S$$

Therefore $|M_{\infty}-M_n|^p \leq 2^p S^p \in L_1$, and by Dominated Convergence theorem $E[|M_{\infty}-M_n|^p] \to 0$

Question 5

Let F_n be the filtration generated by B_n

- 1. B_n is F_n adapted, so is $B_n^2 n$
- 2. B_n^2 is L_1 , and

$$E[B_{n+1}^2 - (n+1)|B_n] = E[(B_{n+1} - B_n + B_n)^2 - (n+1)]$$

$$= E[(B_{n+1} - B_n)^2|B_n] + E[B_n^2|B_n] + 2E[(B_{n+1} - B_n)B_n|F_n] - (n+1)$$

$$= E[\mathcal{N}(0,1)^2] + B_n^2 - (n+1)$$
(because $B_{n+1} - B_n \sim \mathcal{N}(0,1)$ and is independent from B_n)
$$= B_n^2 - n$$

so $B_n^2 - n$ is a martingale.

- 3. $\exp(\sigma B_{n+1} \frac{1}{2}\sigma(n+1)^2)$ is L_1 (using the moment generating function of the normal distribution) $Y_i = B_{i+1} B_i \sim \mathcal{N}(0,1)$ and independent from F_i . $E[\exp(\sigma B_{n+1} \frac{1}{2}\sigma(n+1)^2)|F_n] = \exp(\sigma B_n \frac{1}{2}\sigma(n+1)^2)E[\exp(\sigma Y_n)|F_n] = \exp(\sigma B_n \frac{1}{2}\sigma(n+1)^2)\exp(\frac{1}{2}\sigma^2) = \exp(\sigma B_n \frac{1}{2}\sigma n^2)$
- 4. By defintion of the borwnian motion (B_t) , $B^{(m)}$ is a normal vector that has expectation 0 and covariance matrix:

$$cov(B_{i/m}^{(m)}, B_{j/m}^{(m)}) = \frac{1}{m}cov(B_i, B_j) = \frac{1}{m}(i \wedge j) = (i/m \wedge j/m)$$

So $B^{(m)}$ has the same distribution as $(B_n)_{n=1..m}$

- It's a martingale
- The increments are independent
- It is an discretisation of the brownian motion

Question 6

1.

$$\begin{split} a\log(b) & \leq alog(a) + \frac{b}{e} \iff \log(b/a) \leq \frac{b}{a}e^{-1} \\ & \iff \log(x) \leq \frac{x}{e} \\ & \iff \log(x) \leq \log'(e)(x-e) + \log(e) \\ & \text{(true because log is concave)} \end{split}$$

- 2. if $b \le 1$, then the inequality in equivalent to $0 \le alog^+(a) + b/e$ which is true because all the terms are non negative.
 - if b > 1 and a > 1, the inequality in equivalent to the one of question 1.
 - if b > 1 and $a \le 1$, by question 1, $a \log(b) \le 1 \log(b) \le 1 \log(1) + \frac{b}{e}$, or $a \log^+(n) \le \frac{b}{e}$ which is what we want to prove.

Question 7

- 1. It is clear that
 - E[X|G] is $\sigma(G,H)$ measurable
 - E[X|G] is L_1

In addition, by linearity of the conditional probability, we only need to show that it holds for non negative rv. Let's assume $X \ge 0$ as.

Let's consider the two measures on $\sigma(G, H)$: $\mu_1 : C \to E[1_C E[X|G]]$, and $\mu_2 : C \to E[1_C X]$, and consider D the set on which they agree.

Also, the set D on which they agree is a Dynkin system:

- $\Omega \in D$ because $\mu_1(\Omega) = \mu_1(\Omega) = E[X]$.
- if $A \subset B$, so is $B \setminus A$ because $\mu_1(B \setminus A) = \mu_1(B) \mu_1(A) = \mu_2(B) \mu_2(A) = \mu_2(B \setminus A)$.
- if A_i is an non-dreasing sequence of subsets in D, then $\bigcup A_i \in D$, because $\mu_1(\bigcup_i A_i) = \lim_i \mu_1(A_i) = \lim_i \mu_1(A_i) = \lim_i \mu_1(A_i) = \mu_2(\bigcup_i A_i)$

Let's define $S := \{A \cap B | A \in G, B \in H\}$, $H \cup G \subset S \subset \sigma(H, G)$, so S is a generator of $\sigma(H, G)$. Furthermore, it is stable by intersection. It is then a π -system.

Let $A \in G, B \in H$, and let's show that $E[1_{A \cap B}E[X|G]] = E[1_{A \cap B}X]$.

Indeed by independence of $E[1_AX|G]$ and 1_B : $E[1_A1_BE[X|G]] = E[1_BE[1_AX|G]] = E[1_B]E[E[1_AX|G]] = E[1_B]E[1_AX]$

So μ_1, μ_2 agree on S, e.g. $S \subset D$, By $\pi - \lambda$ theorem, $\sigma(S) = \sigma(H, G) \subset D$, eg μ_1, μ_2 agree everywhere. As a result $E[X|G] = E[X|\sigma(G, H)]$

- 2. Let X, Y two independent bernouilli variable (taking values 1 and 0 with probability $\frac{1}{2}$). And let $Z = X + Y \mod 2$. Then it is easy to verify (see problemset 1) that:
 - $\sigma(Y)$ and $\sigma(Z)$ are independent, because $P(Y = a, Z = b) = P(Y = a, X = b + a \mod(2)) = P(Y = a)P(X = b + a \mod(2)) = \frac{1}{4} = P(Y = a)P(Z = b)$, for $a, b \in \{0, 1\}$
 - $\sigma(X)$ and $\sigma(Z)$ are independent (same argument).

But

- $E[X|\sigma(Y,Z)] = Z Y \operatorname{mod}(2) = X$
- By independence $E[X|\sigma(Z)] = E[X] = \frac{1}{2} \neq X$

Question 8

By indepedence of the X_i , $E[X_1|S_n, S_{n+1}...] = E[X_1|\sigma(S_n, \sigma(X_{n+1}, ...))] = E[X_1|S_n]$ because $\sigma(X_1, S_n)$ and $\sigma(X_{n+1},...)$ are independent.

By symmetry, when $i \leq n$, $E[X_i|S_n] = E[X_1|S_n]$, and therefore: $S_n = E[S_n|S_n] = \sum_{i=1}^n E[X_i|S_n] = nE[X_1|S_n]$, ie $E[X_1|S_n, S_{n+1}...] = \frac{S_n}{n}$

ie
$$E[X_1|S_n, S_{n+1}...] = \frac{S_n}{n}$$