HW6

Nicholas Wendt

2025-04-08

Questions: 3.3, 3.5, 3.8

Question 3.3

Part a The prediction equation is: E(Y) = 0.00255 + 0.00109x

Where x = mother's alcohol consumption and Y = whether a baby has sex organ malformation

The intercept is the probability of a baby having a sex organ malformation when the mother doesn't consume alcohol during pregnancy

The slope is the increase in probability of a baby having a sex organ malformation due to a 1 unit increase in alcohol consumption

Part b

(i)

```
model.0 <- 0.00255+0.00109*0
model.7 <- 0.00255+0.00109*7
print(model.0)

## [1] 0.00255

print(model.7)

## [1] 0.01018

(ii)

rr <- model.7/model.0
rr</pre>
```

[1] 3.992157

The a baby is about 4 times more likely to have a sex organ malformation when the mother consumes 7 units of alcohol compared to a baby who's mother consumed no alcohol.

```
alcohol.consumption \leftarrow matrix(data = c(17066,48,14464,38,788,5,126,1,37,1), byrow = TRUE, nrow = 5, nco
colnames(alcohol.consumption) <- c("Absent", "Present")</pre>
rownames(alcohol.consumption) <- c("0","<1","1-2","3-5",">5")
alcohol.consumption
Part c
##
       Absent Present
        17066
## 0
        14464
                   38
## <1
## 1-2
         788
                    5
## 3-5
         126
                    1
## >5
           37
                    1
new.scores \leftarrow c(0,1,2,3,4)
old.scores \leftarrow c(0,0.5,1.5,4,7)
alcohol1=data.frame(alcohol.consumption,old.scores, new.scores)
alcohol1
##
       Absent Present old.scores new.scores
## 0
        17066
                   48
                             0.0
## <1
        14464
                   38
                             0.5
                                           1
                   5
                                           2
## 1-2
         788
                             1.5
          126
                             4.0
                                           3
## 3-5
                    1
## >5
           37
                    1
                             7.0
alc.model.new = glm( cbind(Present, Absent) ~ new.scores, family=binomial(link = "identity"), data=alcoh
alc.model.old <- glm( cbind(Present, Absent) ~ old.scores,family=binomial(link = "identity"), data=alco
summary(alc.model.new)
##
## Call:
## glm(formula = cbind(Present, Absent) ~ new.scores, family = binomial(link = "identity"),
       data = alcohol1)
##
##
## Coefficients:
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.0025977 0.0003797 6.842 7.84e-12 ***
## new.scores 0.0005044 0.0005276
                                     0.956
                                                0.339
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
       Null deviance: 6.2020 on 4 degrees of freedom
## Residual deviance: 4.9336 on 3 degrees of freedom
## AIC: 27.56
```

Number of Fisher Scoring iterations: 9

```
summary(alc.model.old)
##
## glm(formula = cbind(Present, Absent) ~ old.scores, family = binomial(link = "identity"),
##
       data = alcohol1)
##
## Coefficients:
##
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.0025476 0.0003523 7.232 4.77e-13 ***
## old.scores 0.0010872 0.0008324 1.306 0.192
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 6.2020 on 4 degrees of freedom
## Residual deviance: 2.9795 on 3 degrees of freedom
## AIC: 25.606
## Number of Fisher Scoring iterations: 10
model.0 <- 0.0025977+0.0005044*0
model.7 <- 0.0025977+0.0005044*7
rr <- model.7/model.0
rr
## [1] 2.359202
(fit_old=fitted(alc.model.old))
                                  1-2
                        <1
                                              3-5
## 0.002547627 0.003091221 0.004178410 0.006896382 0.010157948
(fit_new=fitted(alc.model.new))
##
                                   1-2
                                               3-5
                                                            >5
                        <1
## 0.002597699 0.003102096 0.003606493 0.004110889 0.004615286
rr_old=fit_old[5]/fit_old[1]
rr_new=fit_new[5]/fit_old[1]
rr_old
         >5
## 3.987219
rr_new
##
         >5
## 1.811602
```

```
altered.alc <- matrix(data = c(17066,48,14464,38,788,5,126,1), byrow = TRUE, nrow = 4, ncol = 2)
colnames(altered.alc) <- c("Absent", "Present")</pre>
rownames(altered.alc) <- c("0","<1","1-2","3-5")</pre>
scores \leftarrow c(0,0.5,1.5,4)
alter.w.scores <- data.frame(altered.alc, scores)</pre>
altered.model = glm( cbind(Present, Absent) ~ scores, family=binomial(link = "identity"), data=alter.w.s
summary(altered.model)
Part d
##
## Call:
## glm(formula = cbind(Present, Absent) ~ scores, family = binomial(link = "identity"),
       data = alter.w.scores)
##
##
## Coefficients:
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.0026026 0.0003595 7.240 4.48e-13 ***
              0.0008184 0.0008627
                                     0.949
## scores
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 3.5131 on 3 degrees of freedom
## Residual deviance: 2.1795 on 2 degrees of freedom
## AIC: 22.833
##
## Number of Fisher Scoring iterations: 8
```

```
altered.0 <- 0.0026026 + 0.0008184*0
altered.7 <- 0.0026026 + 0.0008184*7
rr <- altered.7/altered.0
```

[1] 3.201183

The model is sensitive to this change.

Question 3.5

##	3	3	9 1	2.300	26.0	1	1
##	4	4	0 0	2.100	24.8	3	3
##	5	5	4 1	2.600	26.0	3	3
##	6	6	0 0	2.100	23.8	2	3
##	7	7	0 0	2.350	26.5	1	1
##	8	8	0 0	1.900	24.7	3	2
##	9	9	0 0	1.950	23.7	2	1
##	10	10	0 0	2.150	25.6	3	3
##	11	11	0 0	2.150	24.3	3	3
##	12	12	0 0	2.650	25.8	2	3
##	13	13	11 1	3.050	28.2	2	3
##	14	14	0 0	1.850	21.0	4	2
##	15	15	14 1	2.300	26.0	2	1
##	16	16	8 1	2.950	27.1	1	1
##	17	17	1 1	2.000	25.2	2	3
##	18	18	1 1	3.000	29.0	2	3
##	19 20	19	0 0	2.200 2.700	24.7	4	3
## ##	21	20	5 1 4 1	1.950	27.4 23.2	2 2	3 2
##	22	21 22	3 1	2.300	25.2	1	2
##	23	23	1 1	1.600	22.5	2	1
##	24	24	2 1	2.600	26.7	3	3
##	25	25	3 1	2.000	25.8	4	3
##	26	26	0 0	1.300	26.2	4	3
##	27	27	3 1	3.150	28.7	2	3
##	28	28	5 1	2.700	26.8	2	1
##	29	29	0 0	2.600	27.5	4	3
##	30	30	0 0	2.100	24.9	2	3
##	31	31	4 1	3.200	29.3	1	1
##	32	32	0 0	2.600	25.8	1	3
##	33	33	0 0	2.000	25.7	2	2
##	34	34	8 1	2.000	25.7	2	1
##	35	35	5 1	2.700	26.7	2	1
##	36	36	0 0	1.850	23.7	4	3
##	37	37	0 0	2.650	26.8	2	3
##	38	38	6 1	3.150	27.5	2	3
##	39	39	0 0	1.900	23.4	4	3
##	40	40	6 1	2.800	27.9	2	3
##	41	41	3 1	3.100	27.5	3	3
##		42	5 1	2.800	26.1	1	1
##		43	6 1	2.500	27.7	1	1
##		44	5 1	3.300	30.0	2	1
##		45	9 1	3.250	28.5	3	1
##		46	4 1	2.800	28.9	3	3
##		47	6 1	2.600	28.2	2	3
##		48	4 1	2.100	25.0	2	3
##		49	3 1	3.000	28.5	2	3
##	50	50	3 1	3.600	30.3	2	1
##	51	51	5 1	2.100	24.7	4	3
##	52	52 53	5 1	2.900	27.7	2	3
##	53 54	53 54	6 1	2.700	27.4	1	1
##		54 55	4 1	1.600	22.9	2	3
##		55 56	5 1	2.000	25.7	2	1
##	56	56	15 1	3.000	28.3	2	3

##	57	57	3 1	2.700	27.2	2	3
##	58	58	3 1	2.300	26.2	3	3
##	59	59	0 0	2.750	27.8	2	1
##	60	60	0 0	2.250	25.5	4	3
##	61	61	0 0	2.550	27.1	3	3
##	62	62	5 1	2.050	24.5	3	3
##	63	63	3 1	2.450	27.0	3	1
##	64	64	5 1	2.150	26.0	2	3
##	65	65	1 1	2.800	28.0	2	3
##	66	66	8 1	3.050	30.0	2	3
##	67	67	10 1	3.200	29.0	2	3
##	68	68	0 0	2.400	26.2	2	3
##	69	69	0 0	1.300	26.5	2	1
##	70	70	3 1	2.400	26.2	2	3
##	71	71	7 1	2.800	25.6	3	3
##	72	72	1 1	1.650	23.0	3	3
##	73	73	0 0	1.800	23.0	3	3
##	74	74	6 1	2.250	25.4	2	3
##	75	75	0 0	1.900	24.2	3	3
##	76	76	0 0	1.600	22.9	2	2
##	77	77	3 1	2.200	26.0	3	2
##	78	78	4 1	2.250	25.4	2	3
##	79	79	0 0	1.200	25.7	3	3
##	80	80	5 1	2.100	25.1	2	3
##	81	81	0 0	2.250	24.5	3	2
##	82	82	0 0	2.900	27.5	4	3
##	83	83	0 0	1.650	23.1	3	3
##	84	84	4 1	2.550	25.9	3	1
##	85	85	0 0	2.300	25.8	2	3
##	86	86	3 1	2.250	27.0	4	3
##	87	87	0 0	3.050	28.5	2	3
##	88	88	0 0	2.750	25.5	4	1
##	89	89	0 0	1.900	23.5	4	3
##	90	90	0 0	1.700	24.0	2	2
## ##	91 92	91 92	5 1 0 0	3.850 2.550	29.7 26.8	2 2	1 1
##	93	93	0 0	2.450	26.7	4	3
##		94	0 0	3.200	28.7	2	1
##	95	95	0 0	1.550	23.1	3	3
##	96	96	1 1	2.800	29.0	2	1
##	97	97	0 0	2.250	25.5	3	3
##	98	98	1 1	1.967	26.5	3	3
##	99	99	1 1	2.200	24.5	3	3
##	100	100	1 1	3.000	28.5	3	3
##	101	101	1 1	2.867	28.2	2	3
##	102	102	1 1	1.600	24.5	2	3
##	103	103	1 1	2.550	27.5	2	3
##	104	104	4 1	2.550	24.7	2	2
##	105	105	1 1	2.000	25.2	2	1
##	106	106	1 1	2.900	27.3	3	3
##	107	107	1 1	2.400	26.3	2	3
##	108	108	1 1	3.100	29.0	2	3
##	109	109	2 1	1.900	25.3	2	3
##	110	110	4 1	2.300	26.5	2	3

##	111	111	3 1	3.250	27.8	2	3
##	112	112	6 1	2.500	27.0	2	3
##	113	113	0 0	2.100	25.7	3	3
##	114	114	2 1	2.100	25.0	2	3
##	115	115	2 1	3.325	31.9	2	3
##	116	116	0 0	1.800	23.7	4	3
##	117	117	12 1	3.225	29.3	4	3
##	118	118	0 0	1.400	22.0	3	3
##	119	119	5 1	2.400	25.0	2	3
##	120	120	6 1	2.500	27.0	3	3
##	121	121	6 1	1.800	23.8	3	3
##	122	122	2 1	3.275	30.2	1	1
##	123	123	0 0	2.225	26.2	3	3
##	124	124	2 1	1.650	24.2	2	3
##	125	125	3 1	2.900	27.4	2	3
##	126	126	0 0	2.300	25.4	2	2
##	127	127	3 1	3.200	28.4	3	3
##	128	128	4 1	1.475	22.5	4	3
##	129	129	2 1	2.025	26.2	2	3
##	130	130	6 1	2.300	24.9	2	1
##	131	131	6 1	1.950	24.5	1	2
##	132	132	0 0	1.800	25.1	2	3
##	133	133	4 1	2.900	28.0	2	1
##	134	134	10 1	2.250	25.8	4	3
##	135	135	7 1	3.050	27.9	2	3
##	136	136	0 0	2.200	24.9	2	3
##	137	137	5 1	3.100	28.4	2	1
##	138	138	5 1	2.400	27.2	3	3
##	139	139	6 1	2.250	25.0	2	2
##	140	140	6 1	2.625	27.5	2	3
##	141	141	7 1	5.200	33.5	2	1
##	142	142	3 1	3.325	30.5	2	3
##	143	143	3 1	2.925	29.0	3	3
##	144	144	0 0	2.000	24.3	2	1
##	145	145	0 0	2.400	25.8	2	3
##	146	146	8 1	2.100	25.0	4	3
##	147	147	4 1	3.725	31.7	2	1
##	148	148	4 1	3.025	29.5	2	3
##	149	149	10 1	1.900	24.0	3	3
##	150	150	9 1	3.000	30.0	2	3
##	151	151	4 1	2.850	27.6	2	3
##	152	152	0 0	2.300	26.2	2	3
##	153	153	0 0	2.000	23.1	2	1
##	154	154	0 0	1.600	22.9	2	1
##	155	155	0 0	1.900	24.5	4	3
##	156	156	4 1	1.950	24.7	2	3
##	157	157	0 0	3.200	28.3	2	3
##	158	158	2 1	1.850	23.9	2	3
##	159	159	0 0	1.800	23.8	3	3
##	160	160	4 1	3.500	29.8	3	2
##	161	161	4 1	2.350	26.5	2	3
##	162	162	3 1	2.275	26.0	2	3
##	163	163	8 1	3.050	28.2	2	3
##	164	164	0 0	2.150	25.7	4	3

```
## 165 165
           7 1 2.750 26.5
## 166
      166
           0 0 2.200 25.8
## 167
           0 0 1.800 24.1
      167
          2 1 2.175 26.2
## 168
      168
                             3
                                 3
## 169
      169
           3 1 2.750 26.1
                             3
                                  3
## 170 170
          4 1 3.275 29.0
                             3
                                  3
## 171 171
          0 0 2.625 28.0
## 172 172 0 0 2.625 27.0
                             4
                                  3
## 173 173 0 0 2.000 24.5
```

```
crab.model <- glm(y ~ weight, data = crab, family = binomial(link = "identity"), start = c(0.01, 0.001)</pre>
Part a
## Warning: step size truncated: out of bounds
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: algorithm stopped at boundary value
summary(crab.model)
##
## Call:
```

glm(formula = y ~ weight, family = binomial(link = "identity"),

```
##
       data = crab, start = c(0.01, 0.001))
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) 0.09783
                           0.06887
                                      1.42
## weight
                           0.01324
                                     13.10
                                             <2e-16 ***
               0.17349
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 225.76 on 172 degrees of freedom
##
## Residual deviance: 216.30 on 171 degrees of freedom
## AIC: 220.3
##
## Number of Fisher Scoring iterations: 25
predict(crab.model, newdata = data.frame(weight = 5.2))
## 1
## 1
predict
## function (object, ...)
## UseMethod("predict")
## <bytecode: 0x000001e25a3a12c0>
## <environment: namespace:stats>
The linear model predicts that a crab with a width of 5.2 will have a satellite
crab.log <- glm(y ~ weight, data = crab, family = binomial)</pre>
summary(crab.log)
Part b
##
## glm(formula = y ~ weight, family = binomial, data = crab)
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.6947
                            0.8802 -4.198 2.70e-05 ***
## weight
                 1.8151
                            0.3767 4.819 1.45e-06 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
```

```
## Null deviance: 225.76 on 172 degrees of freedom
## Residual deviance: 195.74 on 171 degrees of freedom
## AIC: 199.74
##
## Number of Fisher Scoring iterations: 4

predict(crab.log, newdata = data.frame(weight = 5.2), type = "response")

## 1
## 0.9968084
```

the logistic regression predicts that there is a %99.68% chance for a crab with width 5.2 to have a satellite.

Question 3.8

```
snoring \leftarrow matrix(c(24,1355,35,603,21,192,30,224), nrow = 4, ncol = 2, byrow = TRUE)
colnames(snoring) <- c("Yes","No")</pre>
rownames(snoring) <- c("Never", "Occasional", "Nearly every night", "Every night")</pre>
snoring
##
                      Yes
                             No
## Never
                        24 1355
## Occasional
                        35
                            603
## Nearly every night 21
                            192
                        30
## Every night
                            224
scores \leftarrow c(0,2,4,5)
snoring.df <- data.frame(snoring, scores)</pre>
snoring.model <- glm(cbind(Yes,No) ~ scores, data = snoring.df, family = binomial(link = "logit"))</pre>
summary(snoring.model)
##
## Call:
## glm(formula = cbind(Yes, No) ~ scores, family = binomial(link = "logit"),
##
       data = snoring.df)
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
                            0.16621 -23.261 < 2e-16 ***
## (Intercept) -3.86625
## scores
                0.39734
                            0.05001
                                      7.945 1.94e-15 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 65.9045 on 3 degrees of freedom
## Residual deviance: 2.8089 on 2 degrees of freedom
## AIC: 27.061
## Number of Fisher Scoring iterations: 4
```

```
H_0:\beta_1=0
```

$$H_a: \beta_1 \neq 0$$

Reject H_0 since p-val = $1.94e - 15 < \alpha = 0.05$

Snoring is statistically significant when predicting heart disease

confint(snoring.model)

Waiting for profiling to be done...

```
## 2.5 % 97.5 %
## (Intercept) -4.2072190 -3.5544117
## scores 0.2999362 0.4963887
```

Since 0 isn't in the CI we can reject.