Badanie momentu bezwładności doświadczenie 104 (sala 217)

Sebastian Maciejewski 132275 i Jan Techner 132332

24 listopada 2017

1 Wstęp teorytyczny

Opis doświadczenia

2 Wyniki pomiarów

3 Opracowanie wyników

Dla zależności:

$$ln(1/R) = f(1/T) \tag{1}$$

wyliczymy teraz, korzystając z metody regresji liniowej, współczynnik nachylenia prostej. Przyjmujemy, że ln(1/R) = y i 1/T = x. Posługując się metodą regresji liniowej opisaną wzorem:

$$a = \frac{n\Sigma x_i y_i - \Sigma x_i \Sigma y_i}{n\Sigma x_i^2 - (\Sigma x_i)^2},\tag{2}$$

wyznaczamy współczynnik nachylenia prostej a, oraz jego niepewność.

$$a = -3869, 397 \left[\frac{K}{\Omega} \right] \tag{3}$$

Następnie korzystając z równania:

$$a = \frac{E_A}{2k} \Rightarrow E_A = 2ak \tag{4}$$

obliczamy energię aktywacji (E_A) , która wynosi:

$$E_A = -1,068 * 10^- 19 \frac{J}{K} = -0,667 \frac{eV}{K}$$

Błąd wyznaczenia wielkości a:

$$\Delta a = \sqrt{\frac{n(\Sigma y_i^2 - a\Sigma x_i y_i - b\Sigma y_i)}{(n-2)(n\Sigma x_i^2 - (\Sigma x_i)^2)}} =$$

Zatem ostateczne wartości a i E_A wyglądają następująco:

	a	$E_A[\frac{J}{K}]$	$E_A[\frac{eV}{K}]$
pomiar	-3869, 39702854943	$-1,068*10^{-19}$	-0,667
dokładność	TODO	TODO	TODO
po zaokrągleniu	TODO	TODO	TODO

Tablica 1: Współczynnik nachylenia linii a i energia aktywacji E_A wraz z dokładnościami Δa i ΔE_A