EBS 221 Agricultural Robotics

Spring Quarter 2025

Assignment 1

Please submit a single assignment file (either PDF or Word) along with all necessary Matlab files to reproduce the results. This is a group assignment, so each team will submit one report (including the source code). The grade will also be the same for all team members.

A. (60 pts) Implement the bicycle model with 1st -order closed-loop steering and speed dynamics in a MATLAB function called robot_bike_dyn(). Use global variables for dt, DT (case-sensitive).

```
function q_next = robot_bike_dyn(q, u, umin, umax, Qmin, Qmax, L, tau_gamma, tau_v)
global dt; global DT;
model of a vehicle with closed-loop steering and velocity control
the combined effect of steering/vehicle inertia and control is a first order system for steering
(tau_gamma) and velocity (tau_v) state is vector q
% q(1) -> x
% q(2) -> y
% q(3) -> theta (orientation in world frame)
% q(4) -> gamma (steering angle)
% q(5) -> v (linear velocity)
% inputs are: % u(1) -> desired steering angle (gamma_d) % u(2) -> desired linear velocity (v_d)
```

Section A: Bicycle Model Dynamics

In this section, we implement the dynamics of a robotic vehicle using the bicycle kinematic model with first-order closed-loop steering and velocity control.

This model is suitable for many ground robots and autonomous vehicles that can be approximated by a two-wheel configuration.

Function Overview

The MATLAB function `robot_bike_dyn` computes the next state of the robot given the current state `q`, desired control input `u`, and model parameters.

It incorporates actuation delays through first-order filters (controlled by `tau_gamma` and `tau_v`), and uses Euler integration.

Equation Summary

The robot state vector q = [x; y; theta; gamma; v]

where:

```
- position in world frame
x, y
theta
        - orientation angle
gamma - steering angle
        - linear velocity
٧
The control inputs u = [gamma d; v d] are:
gamma d - desired steering angle
v d
       - desired velocity
MATLAB Function: robot bike dyn.m
The function implements:
- First-order lag filters:
dgamma = (gamma d - gamma) / tau gamma
     = (v d - v) / tau v
dv
- Kinematic update:
dx = v * cos(theta)
dy = v * sin(theta)
dtheta = v * tan(gamma) / L
- Euler integration:
q next = q + dt * dq
```

Code from robot_bike_dyn.m is provided below with comments

```
%% Function file robot_bike_dyn.m content commented below for reference.
function q_next = robot_bike_dyn(q, u, umin, umax, Qmin, Qmax, L, tau_gamma, tau_v)
    global dt;
    global DT;

% Extract current state
    x = q(1);
    y = q(2);
    theta = q(3);
    gamma = q(4);
    v = q(5);

% Desired inputs
    gamma_d = u(1); % desired steering angle
```

```
v_d = u(2); % desired velocity
   % Input saturation
   gamma_d = max(min(gamma_d, umax(1)), umin(1));
   v_d = max(min(v_d, umax(2)), umin(2));
   % Handle zero time constants (instantaneous control)
   if tau_gamma == 0
        gamma = gamma_d;
        dgamma = 0;
   else
        dgamma = (gamma_d - gamma) / (tau_gamma + 1e-12);
   end
   if tau_v == 0
       v = v d;
       dv = 0;
       dv = (v d - v) / (tau v + 1e-12);
    end
   % Euler integration for control states
    gamma = gamma + dt * dgamma;
   v = v + dt * dv;
   % Kinematic update using bicycle model
          = v * cos(theta);
   dy
          = v * sin(theta);
   dtheta = v * tan(gamma) / L;
   % Euler integration for pose
        = x + dt * dx;
        = y + dt * dy;
   theta = theta + dt * dtheta;
   % Saturate state variables
         = max(min(x, Qmax(1)), Qmin(1));
   y = max(min(y, Qmax(2)), Qmin(2));
   theta = max(min(theta, Qmax(3)), Qmin(3));
   gamma = max(min(gamma, Qmax(4)), Qmin(4));
         = max(min(v, Qmax(5)), Qmin(5));
   % Return updated state
   q_next = [x; y; theta; gamma; v];
end
```

Why First-Order Filters?

In real vehicles, the steering mechanism and velocity controller don't respond instantaneously. The first-order filters in robot_bike_dyn model the system's actuation dynamics.

Why Euler Integration?

Euler integration is computationally simple and sufficient for small time steps (dt).

Control Constraints

Saturation of both inputs and states ensures that the robot stays within physical limits (e.g., max turning angle or speed).

```
% % Debugging section:
%
% % Set global timestep
% global dt DT;
% dt = 0.1;
            % integration time step
%
% % Initial state: [x; y; theta; v; gamma]
% q = [0; 0; 0; 0; 0];
%
% % Desired inputs: [gamma d; v d]
% u = [0.2; 1.0]; % 0.2 rad steering, 1 m/s velocity
%
% % Input limits: [gamma_min, v_min], [gamma_max, v_max]
\% umin = [-0.5; 0];
% umax = [0.5; 5.0];
%
% % State limits: [x, y, theta, v, gamma]
% Qmin = [-Inf; -Inf; -pi; 0; -0.5];
% Qmax = [ Inf; Inf; pi; 2; 0.5];
%
% % Vehicle parameters
%
% % Call the function
% q next = robot bike dyn(q, u, umin, umax, Qmin, Qmax, L, tau_gamma, tau_v);
% % Display next state
% disp('Next state:');
% disp(q_next);
```

```
% %% Debugging section:
% N = 500;
% Q = zeros(5, N);
% Q(:,1) = q;
%
% for k = 2:N
```

```
% Q(:,k) = robot_bike_dyn(Q(:,k-1), u, umin, umax, Qmin, Qmax, L, tau_gamma,
tau_v);
% end
%
% Plot trajectory
% plot(Q(1,:), Q(2,:), 'b.-');
% xlabel('x'); ylabel('y'); title('Robot trajectory');
% axis equal;
```

B. (20 pts) In a script file, set the wheelbase L = 2.5 m; $|\gamma max| = \pi/4o$, and |v max| = 5 m/s. Set dt=0.01 s, DT=0.1 s, $\lozenge \lozenge = 1$ m/s. Start at the state [10 10 $\pi/2$].

Apply appropriate steering input $\Diamond \Diamond (\Diamond \Diamond)$ for an appropriate amount of time T, to travel on a semicircle of radius 3 m. (This simulates turning in a field with row crops from the exit of

one row to the entrance of the next row, and a row-center distance of 6 m.) Plot the semicircle and the actual motion trace (i.e., x(tk), y(tk)).

Repeat for a radius of 2 m. Does it work? Why?

Section B: Simulating the Bicycle Model

In this section, we simulate the robot's motion over time using the bicycle dynamics model implemented in Section A. We visualize how the robot responds to a fixed control input using first-order closed-loop dynamics.

```
%% Section B: Semicircle Path Simulation
% Parameters Setup
                                  % Wheel-base length [m]
          = 2.5;
                                  % Maximum steering angle [rad] (45°)
gamma max = pi/4;
          = 5;
                                 % Maximum velocity [m/s]
v_max
                                  % Integration step [s]
dt
          = 0.01;
                                  % Sample interval (unused here)
          = 0.10;
DT
                                  % Desired velocity [m/s]
vd
          = 1.0;
global dt DT
                                  % Required globals for dynamics function
% Desired radius and steering calculation (R = 3 m)
R = 3.0;
gamma_cmd = atan(L/R);
assert(gamma_cmd <= gamma_max, 'γ_d exceeds γ_max!')
% Simulation time (half-circle trajectory)
T = pi*R / vd;
Nsteps = ceil(T/dt);
% Limits
Qmin = [-Inf -Inf -Inf -gamma_max 0];
```

```
Qmax = [ Inf Inf Inf gamma_max v_max];
umin = [-gamma_max -v_max];
umax = [ gamma_max v_max];
% Initial state [x, y, \theta, \gamma, v]
q = [10; 10; pi/2; 0; vd];
% Storage for trajectory trace
trail = zeros(Nsteps+1,2);
trail(1,:) = q(1:2).';
% Simulation loop
for k = 1:Nsteps
    u = [gamma_cmd; vd];
    q = robot_bike_dyn(q, u, umin, umax, Qmin, Qmax, L, 0.2, 0.5);
    trail(k+1,:) = q(1:2).';
end
% Plotting results
figure; hold on; axis equal; grid on;
title('3 m-radius Semicircle Turn');
xlabel('x [m]');
ylabel('y [m]');
% Ideal semicircle
phi = linspace(0, pi, 181);
xc = 10 - R; yc = 10;
plot(xc + R*cos(phi), yc + R*sin(phi), '--', 'LineWidth', 1.5);
% Simulated trajectory
plot(trail(:,1), trail(:,2), 'LineWidth', 1.5);
legend('Ideal Semicircle', 'Simulated Path', 'Location', 'best');
```


Plot Commentary:

Blue dashed curve: The *ideal semicircle*, calculated analytically with radius R.

Red solid curve: The *simulated robot trajectory*, computed using the robot_bike_dyn model with steering lag and velocity lag.

For R = 3 m: The robot closely follows the ideal path, since the required steering angle is within feasible limits ($|\gamma| \le \pi/4$).

```
%
% Desired radius and steering calculation (R = 2 m)
           = 2.0;
                                  % requested radius [m]
gamma_cmd = atan(L/R);
% Simulation horizon: half-circumference s = \pi R so
Т
           = pi*R / vd;
           = ceil(T/dt);
Nsteps
% State limits (set very large so they never clip)
Qmin = [-Inf -Inf -gamma_max
                                          0];
                          gamma_max
Qmax = [ Inf Inf Inf
                                       v_max];
umin = [-gamma_max -v_max];
umax = [ gamma_max
                    v_max];
% Initial state: rear-axle at (10,10), heading +y (\theta = \pi/2)
       = [10; 10; pi/2; 0; vd];
                                                  % [xy\theta\gamma v]
q
```

```
% Storage for trace
trail = zeros(Nsteps+1,2);
trail(1,:) = q(1:2).';
% Main simulation loop
for k = 1:Nsteps
                                                % constant inputs
             = [gamma cmd; vd];
             = robot_bike_dyn(q, u, umin, umax, Qmin, Qmax, L, 0.2, 0.5); %
\tau_{\gamma}=0.2 \text{ s}, \tau_{v}=0.5 \text{ s}
    trail(k+1,:) = q(1:2).';
end
% Plot ideal semicircle and the driven path
figure, hold on, axis equal, grid on
xlabel('x [m]'), ylabel('y [m]'), title('2 m-radius semicircle turn')
% Ideal semicircle (left-hand turn, centre at (7,10))
phi = linspace(0,pi,181);
                                                 % 0 -> 180°
xc = 10 - R; yc = 10;
                                                 % centre coords
plot(xc + R*cos(phi), yc + R*sin(phi), '--');  % ideal path
% Simulated trace
plot(trail(:,1), trail(:,2), 'LineWidth',1.5);
legend('Ideal semicircle (R=2 m)', 'Simulated path', 'Location', 'best')
```


Plot Commentary:

Blue dashed curve: The ideal semicircle, calculated analytically with radius R.

Red solid curve: The *simulated robot trajectory*, computed using the robot_bike_dyn model with steering lag and velocity lag.

For R = 2 m: The simulated path **deviates** noticeably from the ideal semicircle — as your figure shows, it overshoots and ends up outside the ideal curve.

Why does R = 2 m not work well?

Kinematic Limitations

The required steering angle for a 2 m radius turn:

$$\gamma_d = \tan^{-1}\left(\frac{L}{R}\right) = \tan^{-1}\left(\frac{2.5}{2}\right) \approx 51.3^{\circ} > \gamma_{\text{max}} = 45^{\circ}$$

So, the robot cannot physically achieve that curvature, even with perfect tracking.

Actuation Lag

Even if the steering limit were slightly extended, the system still experiences a **lag** in reaching the commanded steering value due to the nonzero τ γ . This further increases the tracking error.

Conclusion

The 3 m radius turn is feasible and well-tracked.

The 2 m radius turn violates hardware limits ($|\gamma| > \pi/4$), making it **infeasible** under current constraints.

- **C.** (20 pts) Plot the trace of the origin of the vehicle's frame when $\gamma d(tk)$ starts at 0 and remains 0 for 1s, then switches instantaneously to γmax (step function) and remains at γmax for 10 seconds, then switches instantaneously from γmax to γmax and stays at γmax for 10 seconds. Use the following settings.
- 1. Speed lag: set to $\tau v = 0$ s, increase $\tau \gamma$ from 0 to 2 s with a step of 0.4 s, and plot the six traces in the same figure.
- 2. Speed lag: set to $\tau v = 1$ s, and increase $\tau \gamma$ from 0 to 2 s with a step of 0.4 s, and plot the six traces in the same figure.

(Think how you will implement τv or $\tau v = 0$.) Comment on these plots.

Section C: Trajectory Under Step Steering Input with Varying Time Constants

We simulate the response of the robot to a step change in steering input $\gamma_d(t)$, and observe how the time constants τ_γ (steering lag) and τ_ν (velocity lag) affect the path traced by the origin of the robot's frame.

```
% clear;
% clc;
```

```
% function q_next = robot_bike_dyn(q, u, umin, umax, Qmin, Qmax, L, tau_gamma,
tau_v)
%
     global dt;
%
     global DT;
%
%
     % Extract current state
%
          = q(1);
     У
%
           = q(2);
%
     theta = q(3);
%
     gamma = q(4);
%
     v = q(5);
%
%
     % Desired inputs
%
      gamma_d = u(1); % desired steering angle
%
     v_d = u(2); % desired velocity
%
%
     % Saturate desired inputs
%
      gamma_d = max(min(gamma_d, umax(1)), umin(1));
%
     v d = max(min(v d, umax(2)), umin(2));
%
%
     % treat zero lags as instantaneous tracking
%
      if tau_gamma == 0, gamma = gamma_d; dgamma = 0; end
%
      if tau_v == 0, v = v_d; dv = 0;
                                                       end
%
%
     % First-order dynamics for steering and velocity
                                    % small positive number
%
      epsLag = 1e-12;
%
      dgamma = (gamma_d - gamma)/(tau_gamma + epsLag);
%
      dv = (v_d - v)/(tau_v + epsLag);
%
%
%
     % Euler integration to update gamma and v
%
      gamma = gamma + dt * dgamma;
%
     v = v + dt * dv;
%
%
     % Bicycle model kinematics
%
      dx = v * cos(theta);
%
     dy = v * sin(theta);
%
      dtheta = v * tan(gamma) / L;
%
%
     % Euler integration to update pose
%
           = x + dt * dx;
     X
%
           = y + dt * dy;
     theta = theta + dt * dtheta;
%
%
%
     % Saturate state vector
%
     x = max(min(x, Qmax(1)), Qmin(1));
%
     y = max(min(y, Qmax(2)), Qmin(2));
%
     theta = max(min(theta, Qmax(3)), Qmin(3));
%
      gamma = max(min(gamma, Qmax(4)), Qmin(4));
%
     v = max(min(v, Qmax(5)), Qmin(5));
```

```
%
%
      % Pack next state
%
      q next = [x; y; theta; gamma; v];
% end
%% Section C: Step Input Response Analysis
% Define simulation parameters
          = 2.5;
gamma_max = pi/4;
v_cmd
          = 1.0;
dt
          = 0.01;
DT
          = 0.1;
                              % 1 + 10 + 10 seconds
T_{total} = 21.0;
steps = round(T_total/dt);
         = (0:steps)*dt;
t
% Limits setup
umin = [-gamma max -Inf];
umax = [ gamma_max Inf];
Qmin = [-Inf -Inf -Inf -gamma_max 0];
Qmax = [ Inf Inf Inf gamma_max 5];
% Steering input profile (step function)
gamma_d_profile = @(tk) ...
    (tk < 1) .* 0 + ...
    (tk >= 1 \& tk < 11) .* gamma_max + ...
    (tk >= 11) .* (-gamma_max);
% Define lag lists
tau_g_list = 0 : 0.4 : 2;
% 1. \tau_v = 0 (instantaneous speed tracking)
figure; hold on; grid on; axis equal;
title('\tau_v = 0 (Instant Speed Tracking)');
xlabel('x [m]'); ylabel('y [m]');
for tau_g = tau_g_list
    q = [10; 10; pi/2; 0; v_cmd];
    trace = zeros(steps+1, 2);
    trace(1,:) = q(1:2).';
    for k = 1:steps
        gamma_d = gamma_d_profile(t(k));
        u = [gamma d, v cmd];
        q = robot_bike_dyn(q, u, umin, umax, Qmin, Qmax, L, tau_g, 0);
        trace(k+1,:) = q(1:2).';
    plot(trace(:,1), trace(:,2), 'DisplayName', sprintf('\\tau_{\\gamma}=%.1fs',
tau_g));
```



```
% 2. \tau v = 1 s (slow speed tracking)
figure; hold on; grid on; axis equal;
title('\tau_v = 1 s (Slow Speed Tracking)');
xlabel('x [m]'); ylabel('y [m]');
for tau_g = tau_g_list
    q = [10; 10; pi/2; 0; v_cmd];
    trace = zeros(steps+1, 2);
    trace(1,:) = q(1:2).';
    for k = 1:steps
        gamma_d = gamma_d_profile(t(k));
        u = [gamma_d, v_cmd];
        q = robot_bike_dyn(q, u, umin, umax, Qmin, Qmax, L, tau_g, 1);
        trace(k+1,:) = q(1:2).';
    plot(trace(:,1), trace(:,2), 'DisplayName', sprintf('\\tau_{\\gamma}=%.1fs',
tau_g));
end
legend('Location','best');
```


The two figures above show how the robot's motion is affected by steering and speed lags.

Case 1: T v = 0 (Instantaneous Speed Tracking)

- The only delay comes from the steering actuator (τ_γ).
- As τ_{γ} increases, the robot takes longer to reach the full steering input, which causes wider turns and less sharp transitions.
- Low τ γ (e.g. 0 s or 0.4 s) gives precise, sharp trajectories.

Case 2: T_v = 1 s (Delayed Speed Tracking)

- Now both speed and steering have lag.
- The paths are generally smoother, but the delay causes overshoot and asymmetry.
- Turns are further rounded because the robot is slower to accelerate/decelerate and cannot make tight curves quickly enough.