Rational Explanation for Rule-of-Thumb Practices in Asset Allocation

Majeed Simaan¹² Yusif Simaan³

¹Lally School of Management Rensselaer Polytechnic Institute

²School of Business Stevens Institute of Technology

³Gabelli School of Business Fordham University

June 1st, 2018 R/Finance 2018 Annual Meeting Chicago, IL

"Markowitz came along, and there was light"

-William F. Sharpe in Bernstein, 2011

Figure: Fama-French 17 Industry Portfolios

R/Finance Asset Allocation Simaan 3 / 18

Figure: Fama-French 30 Industry Portfolios

R/Finance Asset Allocation Simaan 3 / 18

Figure: Fama-French 48 Industry Portfolios

R/Finance Asset Allocation Simaan 3 / 18

Figure: Largest 50 Market Cap S&P 500 Stocks

R/Finance

Figure: Second Largest 50 Market Cap S&P 500 Stocks

• "Though Markowitz derived the [MVEF] more than 60 years ago, we still have no settled way to compute that frontier in real-world situations." - Cochrane, 2014

R/Finance Asset Allocation Simaan 4 / 18

- "Though Markowitz derived the [MVEF] more than 60 years ago, we still have no settled way to compute that frontier in real-world situations." Cochrane, 2014
- Simaan et al., 2017, for instance, show that for each point on the MVEF, there is a
 joint sampling distribution instead

Figure: The sampling distribution of the MVEF using 10 years of data

- "Though Markowitz derived the [MVEF] more than 60 years ago, we still have no settled way to compute that frontier in real-world situations." Cochrane, 2014
- Simaan et al., 2017, for instance, show that for each point on the MVEF, there is a
 joint sampling distribution instead

Figure: The sampling distribution of the MVEF using 20 years of data

- "Though Markowitz derived the [MVEF] more than 60 years ago, we still have no settled way to compute that frontier in real-world situations." Cochrane, 2014
- Simaan et al., 2017, for instance, show that for each point on the MVEF, there is a
 joint sampling distribution instead

Figure: The sampling distribution of the MVEF using 30 years of data

- "Though Markowitz derived the [MVEF] more than 60 years ago, we still have no settled way to compute that frontier in real-world situations." Cochrane, 2014
- Simaan et al., 2017, for instance, show that for each point on the MVEF, there is a
 joint sampling distribution instead

Figure: The sampling distribution of the MVEF using 40 years of data

Estimation Error

- ullet Estimation error o poor out-of-sample performance, (see e.g. Michaud, 1989)
- Out-of-Sample Expected Utility (see e.g., Kan & Zhou, 2007)
- Shrinkage approaches?
 - Short-sale constraints (Jagannathan & Ma, 2003)
 - "Markowitz Meets Goldilocks" (Ledoit & Wolf, 2017)
- Should investors optimize?
 - 1/N naive portfolio by DeMiguel, Garlappi, & Uppal, 2009
 - "Markowitz meets Talmud" (Tu & Zhou, 2011)

This Research...

How to choose a portfolio under estimation error?

- Bother estimating mean returns? (e.g., DeMiguel, Nogales, & Uppal, 2014)
- 2 Focus on variance alone? (e.g., Ledoit & Wolf, 2003)
- Invest indifferently? (e.g., DeMiguel et al., 2009)
 - We derive a set of rules to answer the above
- Our research provides a number of rational justification for common ad-hoc practices
 - Risk-Parity
 - Naive allocation
 - Hierarchical allocation (decentralized portfolio choice)

The Framework - Full Information

Under full information, the MV portfolio is given by

$$\xi = f(\mu, \Sigma) = \alpha_0 + \frac{1}{A}\alpha_1, \tag{1}$$

where

- μ and Σ are the mean vector and covariance matrix of asset returns, respectively
- α_0 is the global minimum variance portfolio (GMV)
- α_1 is an arbitrage portfolio (weights sum to 0) that depends on μ and Σ
- A is the investor's risk aversion

R/Finance Asset Allocation Simaan 7 / 18

The Framework - Full Information

Under full information, the MV portfolio is given by

$$\xi = f(\mu, \Sigma) = \alpha_0 + \frac{1}{A}\alpha_1, \tag{1}$$

where

- μ and Σ are the mean vector and covariance matrix of asset returns, respectively
- α_0 is the global minimum variance portfolio (GMV)
- α_1 is an arbitrage portfolio (weights sum to 0) that depends on μ and Σ
- A is the investor's risk aversion

Estimation Error

- ullet In practice, μ and Σ are unknown and are evaluated ex-ante
- The result of which induces estimation error into the paradigm

- Let m and S denote the sample estimates of μ and Σ , respectively
 - ullet using a sample of the recent n periods

R/Finance Asset Allocation Simaan 8 / 18

- Let m and S denote the sample estimates of μ and Σ , respectively
 - using a sample of the recent n periods
- The estimated portfolio, thus, is given by

$$X = f(m, S) = X_0 + \frac{1}{A}X_1$$
 (2)

with $X_0 = \hat{\alpha}_0$ and $X_1 = \hat{\alpha}_1$

R/Finance Asset Allocation Simaan

- Let m and S denote the sample estimates of μ and Σ , respectively
 - using a sample of the recent n periods
- The estimated portfolio, thus, is given by

$$X = f(m, S) = X_0 + \frac{1}{A}X_1$$
 (2)

with $X_0 = \hat{\alpha}_0$ and $X_1 = \hat{\alpha}_1$

• If R is the vector of asset returns for the n+1 period, then

$$r_p = X'R = r_0 + \frac{1}{A}r_1$$
 (3)

denotes the ex-post portfolio return

R/Finance Asset Allocation Simaan 8 / 1

- Let m and S denote the sample estimates of μ and Σ , respectively
 - using a sample of the recent n periods
- The estimated portfolio, thus, is given by

$$X = f(m, S) = X_0 + \frac{1}{A}X_1$$
 (2)

with $X_0 = \hat{\alpha}_0$ and $X_1 = \hat{\alpha}_1$

• If R is the vector of asset returns for the n+1 period, then

$$r_p = X'R = r_0 + \frac{1}{A}r_1$$
 (3)

denotes the ex-post portfolio return

To draw economic conclusions about the impact of estimation error on the MVEF, we need to analyze the distribution of $\it r_p$

- Demonstration of the MVEF full information versus estimation risk
- MVEF was derived using the FF-48 industry data between Jan 1970 and Dec 2015

Figure: 10 years of data

- Demonstration of the MVEF full information versus estimation risk
- MVEF was derived using the FF-48 industry data between Jan 1970 and Dec 2015

Figure: 20 years of data

R/Finance Asset Allocation Simaan 9 / 18

- Demonstration of the MVEF full information versus estimation risk
- MVEF was derived using the FF-48 industry data between Jan 1970 and Dec 2015

Figure: 30 years of data

- Demonstration of the MVEF full information versus estimation risk
- MVEF was derived using the FF-48 industry data between Jan 1970 and Dec 2015

Figure: 40 years of data

R/Finance Asset Allocation Simaan 9 / 18

Decision Rules under Estimation Risk

Step 1: MV versus GMV

• The GMV portfolio is preferable to any portfolio on the MVE frontier, if

$$\frac{\sigma_{\mu}^2}{\sigma^2} < \frac{(1-\rho)}{n-1} \tag{4}$$

with σ_{μ}^2 denoting the cross-sectional variation among the mean returns

^aCondition is simplified for the case when correlation and volatilities are uniform

Decision Rules under Estimation Risk

Step 1: MV versus GMV

• The GMV portfolio is preferable to any portfolio on the MVE frontier, if

$$\frac{\sigma_{\mu}^2}{\sigma^2} < \frac{(1-\rho)}{n-1} \tag{4}$$

with σ_{μ}^2 denoting the cross-sectional variation among the mean returns

Step 2: GMV versus Naive

The naive portfolio is preferable to GMV if^a

$$\frac{\sigma_N^2}{\sigma_0^2} < \frac{n}{n-d+1} \tag{5}$$

where σ_N^2 (σ_0^2) is the naive (GMV) volatility

^aCondition is simplified for the case when correlation and volatilities are uniform

^aCondition is simplified for the case when the mean returns are uniform

Implementation

For a given dataset (d assets), do the following:

- Starting at t (Aug 1986), use the recent $n \in \{60, 90, 120\}$ months to estimate (m, S)
- ② Compute the MV X, GMV X_0 , and naive X_N portfolios^a
 - X chosen as the maximum SR portfolio on the MVEF
- Realize the next period return of each portfolio
- Repeat the above steps until the end (Dec 2015) on a rolling basis
- Finally, summarize performance using out-of-sample SR

R/Finance Asset Allocation Simaan 11 / 13

^aConstraints on exposure to maximum/minimum individual asset allocation were deployed in the mixed strategy analysis only with respect to Jagannathan & Ma, 2003; Levy & Levy, 2014.

Out-of-Sample SR: GMV versus MV

- y and x axis denote the SR of GMV and MV, respectively
- Dashed line is a 45-degrees line
- Data is distinguished using shapes
- Colors highlight sample size

Out-of-Sample SR: GMV versus Naive

- y and x axis denote the SR of GMV and Naive, respectively
- Dashed line is a 45-degrees line
- Data is distinguished using shapes
- Colors highlight sample size

- y-axis is the difference in SR between MV and GMV
- x-axis is the LHS from Condition (4), i.e. σ_{μ}/σ
- Data is distinguished using colors
- Solid line is a fitted linear regression

Figure: n = 60 months

- y-axis is the difference in SR between MV and GMV
- x-axis is the LHS from Condition (4), i.e. σ_{μ}/σ
- Data is distinguished using colors
- Solid line is a fitted linear regression

Figure: n = 120 months

R/Finance Asset Allocation Simaan 14 / 18

- y-axis is the difference in SR between GMV and Naive
- x-axis is the LHS from Condition (5), i.e. σ_N/σ_0
- Datasets are distinguished using colors
- Solid line is a fitted linear regression

Figure: n = 60 months

R/Finance Asset Allocation Simaan 15 / 18

- y-axis is the difference in SR between GMV and Naive
- x-axis is the LHS from Condition (5), i.e. σ_N/σ_0
- Datasets are distinguished using colors
- Solid line is a fitted linear regression

Figure: n = 120 months

R/Finance Asset Allocation Simaan 15 / 18

Mixed Strategy

R/Finance Asset Allocation Simaan 16 / 18

Mixed Strategy

Calibration

Mixed Strategy - Performance Comparison

- y-axis is the difference in SR between the mixed strategy and each of the three portfolios
- From left to right, x-axis corresponds to the MV, GMV, and Naive portfolios
- Datasets are distinguished using colors
- Graph is created using geom_violin

Figure: All datasets and sample sizes

R/Finance Asset Allocation Simaan 17 / 18

Mixed Strategy - Performance Comparison

- y-axis is the difference in SR between the mixed strategy and each of the three portfolios
- From left to right, x-axis corresponds to the MV, GMV, and Naive portfolios
- Datasets are distinguished using colors
- Graph is created using geom_violin

Figure: All sample sizes excluding stocks

R/Finance Asset Allocation Simaan 17 / 18

Mixed Strategy - Performance Comparison

- y-axis is the difference in SR between the mixed strategy and each of the three portfolios
- From left to right, x-axis corresponds to the MV, GMV, and Naive portfolios
- Datasets are distinguished using colors
- Graph is created using geom_violin

Figure: n = 60 excluding stocks

R/Finance Asset Allocation Simaan 17 / 18

Mixed Strategy - Performance Comparison

- y-axis is the difference in SR between the mixed strategy and each of the three portfolios
- From left to right, x-axis corresponds to the MV, GMV, and Naive portfolios
- Datasets are distinguished using colors
- Graph is created using geom_violin

Figure: n = 120 excluding stocks

R/Finance Asset Allocation Simaan 17 / 18

Concluding Remarks

"Diversification is protection against ignorance. It makes little sense if you know what you are doing."

-Warren Buffett

Concluding Remarks

"Diversification is protection against ignorance. It makes little sense if you know what you are doing."

-Warren Buffett

- Optimization (naive allocation) makes sense if you know (don't know) what you are doing
 - Industries are less prone to estimation error than individual stocks
 - Potential optimization among industries is more evident
 - Naive strategy dominates across stocks
 - Evidence supports hierarchical asset allocation

Concluding Remarks

"Diversification is protection against ignorance. It makes little sense if you know what you are doing."

-Warren Buffett

- Optimization (naive allocation) makes sense if you know (don't know) what you are doing
 - Industries are less prone to estimation error than individual stocks
 - Potential optimization among industries is more evident
 - Naive strategy dominates across stocks
 - Evidence supports hierarchical asset allocation
- Further results are in progress...

Thank You!

Stay in touch...

Email: simaan.finance@gmail.com

Linkedin: https://www.linkedin.com/in/majeed-simaan-85383045

GitHub: https://github.com/simaan84

Appendix - Empirical Results **Without** Position Constraints

n	d	Χ	X_0	X_N	X_{π}	π_1	π_2	σ_{μ}/σ	σ_N/σ_0
60	10	0.36	0.81	0.78	0.47	0.62	0.48	0.08	1.18
90	10	0.48	0.87	0.78	0.59	0.58	0.48	0.06	1.21
120	10	0.66	0.95	0.78	0.75	0.56	0.46	0.05	1.21
60	17	-0.17	0.50	0.70	-0.16	0.65	0.51	0.08	1.25
90	17	0.29	0.62	0.70	0.37	0.65	0.53	0.07	1.30
120	17	0.35	0.69	0.70	0.36	0.65	0.47	0.05	1.32
60	30	0.18	0.44	0.71	0.18	0.72	0.54	0.10	1.04
90	30	0.01	0.61	0.71	0.09	0.68	0.52	0.08	1.21
120	30	0.39	0.70	0.71	0.54	0.65	0.52	0.07	1.26
60	48	0.16	0.07	0.70	0.13	0.70	0.61	0.10	0.69
90	48	0.13	0.20	0.70	0.09	0.68	0.57	0.08	1.04
120	48	0.33	0.43	0.70	0.46	0.65	0.54	0.07	1.18
60	50B	0.18	0.48	0.98	0.18	0.73	0.59	0.10	0.56
90	50B	-0.05	0.62	0.98	0.01	0.66	0.50	0.08	0.90
120	50B	0.03	0.65	0.98	0.20	0.64	0.48	0.06	1.02
60	50S	0.01	0.45	0.89	-0.05	0.72	0.71	0.10	0.57
90	50S	0.14	0.69	0.89	0.17	0.71	0.50	0.07	0.85
120	50S	0.06	0.71	0.89	0.15	0.67	0.53	0.06	0.98

Appendix - Empirical Results With Position Constraints

n	d	Χ	X_0	X_N	X_{π}	π_1	π_2	σ_{μ}/σ	σ_N/σ_0
60	10	0.79	0.86	0.78	0.83	0.37	0.70	0.08	1.09
90	10	0.80	0.86	0.78	0.83	0.32	0.70	0.06	1.10
120	10	0.79	0.87	0.78	0.86	0.27	0.72	0.05	1.09
60	17	0.72	0.80	0.70	0.75	0.47	0.73	0.08	1.15
90	17	0.74	0.77	0.70	0.77	0.41	0.70	0.07	1.14
120	17	0.74	0.79	0.70	0.78	0.40	0.70	0.05	1.14
60	30	0.78	0.84	0.71	0.89	0.48	0.73	0.10	1.25
90	30	0.75	0.86	0.71	0.86	0.45	0.74	0.08	1.23
120	30	0.78	0.89	0.71	0.89	0.43	0.70	0.07	1.24
60	48	0.76	0.79	0.70	0.95	0.51	0.74	0.10	1.36
90	48	0.76	0.79	0.70	0.80	0.50	0.73	0.08	1.34
120	48	0.83	0.86	0.70	0.86	0.46	0.72	0.07	1.32
60	50B	0.87	0.83	0.98	0.74	0.47	0.71	0.10	1.18
90	50B	0.87	0.89	0.98	0.87	0.59	0.64	0.08	1.19
120	50B	0.92	0.90	0.98	0.89	0.50	0.60	0.06	1.18
60	50S	0.79	0.91	0.89	0.96	0.34	0.83	0.10	1.23
90	50S	0.82	0.85	0.89	0.84	0.48	0.70	0.07	1.21
120	50S	0.83	0.87	0.89	0.82	0.46	0.67	0.06	1.23

2 / 0

Table reports the out-of-sample SR for each portfolio

[•] π_1 (π_2) denote the proportion of time that $X \succ X_0$ ($X_0 \succ X_N$)
• $X_\pi = \pi_1 X + (1 - \pi_1) (\pi_2 X_0 + (1 - \pi_2) X_N)$

References I

- Bernstein, P. L. 2011. *Capital ideas evolving*. John Wiley & Sons.
- []Cochrane, J. H. 2014. A mean-variance benchmark for intertemporal portfolio theory. *The Journal of Finance*, 69(1), 1–49.
- []DeMiguel, V., Garlappi, L., & Uppal, R. 2009. Optimal versus naive diversification: How inefficient is the 1/n portfolio strategy? *Review of Financial Studies*, 22(5), 1915–1953.
- []DeMiguel, V., Nogales, F. J., & Uppal, R. 2014. Stock return serial dependence and out-of-sample portfolio performance. *Review of Financial Studies*, 27(4), 1031–1073.
- []Grolemund, G., & Wickham, H. 2011. Dates and times made easy with lubridate. *Journal of Statistical Software*, 40(3), 1–25. Retrieved from http://www.jstatsoft.org/v40/i03/

References II

- []Hlavac, M. 2015. stargazer: Well-formatted regression and summary statistics tables [Computer software manual]. Cambridge, USA. Retrieved from http://CRAN.R-project.org/package=stargazer (R package version 5.2)
- [] Jagannathan, R., & Ma, T. 2003. Risk reduction in large portfolios: Why imposing the wrong constraints helps. *The Journal of Finance*, *58*(4), 1651–1684.
- []Kan, R., & Zhou, G. 2007. Optimal portfolio choice with parameter uncertainty. *Journal of Financial and Quantitative Analysis*, 42(03), 621–656.
- []Ledoit, O., & Wolf, M. 2003. Improved estimation of the covariance matrix of stock returns with an application to portfolio selection. *Journal of empirical finance*, 10(5), 603–621.
- []Ledoit, O., & Wolf, M. 2017. Nonlinear shrinkage of the covariance matrix for portfolio selection: Markowitz meets goldilocks. *The Review of Financial Studies*, 30(12), 4349–4388.

References III

- []Levy, H., & Levy, M. 2014. The benefits of differential variance-based constraints in portfolio optimization. *European Journal of Operational Research*, 234(2), 372–381.
- []Michaud, R. O. 1989. The markowitz optimization enigma: is' optimized'optimal? *Financial Analysts Journal*, 45(1), 31–42.
- []Simaan, M., Simaan, Y., & Tang, Y. 2017. Estimation error in mean returns and the mean-variance efficient frontier. *International Review of Economics and Finance*.
- []Tu, J., & Zhou, G. 2011. Markowitz meets talmud: A combination of sophisticated and naive diversification strategies. *Journal of Financial Economics*, 99(1), 204–215.
- []Wickham, H. 2011. The split-apply-combine strategy for data analysis. Journal of Statistical Software, 40(1), 1–29. Retrieved from http://www.jstatsoft.org/v40/i01/
- []Wickham, H. 2016. ggplot2: Elegant graphics for data analysis. Springer-Verlag New York. Retrieved from http://ggplot2.org