AI lmao

Martin Johnsrud

July 14, 2019

Theory

A neural network is made up of l layers, where the ith layer, $i \in \{1, ..., l\}$, has L_i neurons. Each neuron j has a bias $b_j^{(i)}$ and an activation $a_j^{(i)}$. The activation of the neurons is a function of the activation of the neurons in layer i-1. A weighted sum

$$z_j^{(i)} = \sum_{k=0}^{L_i} w_{jk}^{(i)} a_k^{(i-1)} + b_j$$

is passed through an activation function, in this case

$$f(x) = \frac{1}{1 + \exp(-x)}.$$

The activation of a neurons then becomes

$$a_j^{(i)} = f(w_{jk}^{(i)} a_k^{(i-1)} + b_j),$$

using einstein summation. This means layer i is associated with a matrix $w^{(i)} \in \mathbb{R}^{L_i \times L_{i-1}}$. In the special case of

i=0 is the activation of the neurons given by an input vector $x\in\mathbb{R}^{L_0}$, and there are no need for wights of biases.

With each input x is there a desired output vector $y \in \mathbb{R}^{L_l}$, wich is compared to the activation of the last layer $a^{(l)}$, by the cost function

$$C = (y_j - a_j^{(l)})^2.$$

The goal is to train the neural network, by using gradient decent to minimize C. C is a function of all the weights $w_{jk}^{(i)}$, the biases $b_j^{(i)}$ and the activations $a_j^{(i)}$ given an input x. To find all partial derivatives, back propagation is emploied.

Back propagation

The partial derivatives of the cost function with respect to the weights in the last layer is given by

$$\frac{\partial C}{\partial w_{jk}^{(l)}} = \frac{\partial C}{\partial a_{j}^{(l)}} \frac{\partial a_{j}^{(l)}}{\partial z_{j}^{(l)}} \frac{\partial z_{j}^{(l)}}{\partial w_{jk}^{(i)}}.$$

We have

$$\frac{\partial C}{\partial a_j^{(l)}} = 2(a_j^{(l)} - y_j)$$

$$\frac{\partial a_j^{(l)}}{\partial z_i^{(l)}} = \frac{\partial f}{\partial x} = \frac{-\exp(x)}{(\exp(x) + 1)^2}$$

$$\frac{\partial z_{j}^{(l)}}{\partial w_{jk}^{(i)}} = \sum_{k=1}^{L_{l}} a_{k}^{(l-1)},$$

giving us this parital derivative. For subsequent layers, the derivative with respect to the activation is given by

$$\frac{\partial C}{\partial a_i^{(i-1)}} = \sum_{k=1}^{L_j} \frac{\partial C}{\partial a_k^{(i)}} \frac{\partial a_k^{(i)}}{\partial z_k^{(i)}} \frac{\partial z_k^{(i)}}{\partial a_k^{(i-1)}}.$$

This can be calculated recursively.

Data structure

The class Layer contains N nodes (n) and biases (b), as well as an $m \times n$ matrix (w). A neural network, here represented by the class neuralNet, is a linked list of l layers. It takes a vector \mathbf{L} of length l as input, where the ith element L_i , corresponds to the number of neurons in layer i of the network