Business Problem - Predict the Price of Bangalore House

Using Decision Tree Regression - Supervised Machine Learning Algorithm

Load Libraries

In [1]:

import pandas as pd

Load Data

In [2]:

df = pd.read_csv(r"D:\machine_learning\ML_by_Avanish\bg_house_price_data.csv")

In [3]:

df

Out[3]:

	bath	balcony	price	total_sqft_int	bhk	price_per_sqft	area_typeSuper built-up Area	area_typeBuilt- up Area
0	3.0	2.0	150.00	1672.0	3	8971.291866	1	0
1	3.0	3.0	149.00	1750.0	3	8514.285714	0	1
2	3.0	2.0	150.00	1750.0	3	8571.428571	1	0
3	2.0	2.0	40.00	1250.0	2	3200.000000	1	0
4	2.0	2.0	83.00	1200.0	2	6916.666667	0	0
	•••							
7115	3.0	2.0	325.00	2900.0	3	11206.896552	1	0
7116	3.0	1.0	84.83	1780.0	3	4765.730337	1	0
7117	2.0	1.0	48.00	880.0	2	5454.545455	0	0
7118	2.0	1.0	55.00	1000.0	2	5500.000000	0	0
7119	2.0	1.0	78.00	1400.0	3	5571.428571	0	0

7120 rows × 108 columns

```
In [4]:
```

```
df.head()
```

Out[4]:

	bath	balcony	price	total_sqft_int	bhk	price_per_sqft	area_typeSuper built-up Area	area_typeBuilt- up Area	are
0	3.0	2.0	150.0	1672.0	3	8971.291866	1	0	
1	3.0	3.0	149.0	1750.0	3	8514.285714	0	1	
2	3.0	2.0	150.0	1750.0	3	8571.428571	1	0	
3	2.0	2.0	40.0	1250.0	2	3200.000000	1	0	
4	2.0	2.0	83.0	1200.0	2	6916.666667	0	0	

5 rows × 108 columns

Split Data

```
In [5]:
```

```
X = df.drop('price', axis=1)
y = df['price']

print('Shape of X = ', X.shape)
print('Shape of y = ', y.shape)
```

```
Shape of X = (7120, 107)
Shape of y = (7120,)
```

In [6]:

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=51)

print('Shape of X_train = ', X_train.shape)
print('Shape of y_train = ', y_train.shape)
print('Shape of X_test = ', X_test.shape)
print('Shape of y_test = ', y_test.shape)
```

```
Shape of X_train = (5696, 107)

Shape of y_train = (5696,)

Shape of X_test = (1424, 107)

Shape of y_test = (1424,)
```

#Decision Tree Regression - ML Model Training

In [8]:

```
from sklearn.tree import DecisionTreeRegressor
```

```
In [9]:
regressor = DecisionTreeRegressor(criterion='mse')
regressor.fit(X_train, y_train)

Out[9]:
DecisionTreeRegressor()

In [10]:
regressor.score(X_test, y_test)

Out[10]:
0.890945321471055
```

Predict the value of Home

```
In [11]:
X_test.iloc[-1, :]
Out[11]:
bath
                                    2.000000
balcony
                                    0.000000
total_sqft_int
                                 1566.000000
bhk
                                     2.000000
price_per_sqft
                                11494.252874
                                    0.000000
location_Hosur Road
location_Horamavu Banaswadi
                                    0.000000
location_Domlur
                                    0.000000
location Mahadevpura
                                    0.000000
location_Tumkur Road
                                    0.000000
Name: 43, Length: 107, dtype: float64
In [12]:
regressor.predict([X_test.iloc[-1, :]])
Out[12]:
array([171.])
In [13]:
y_test.iloc[-1]
Out[13]:
180.0
```

```
In [14]:
pred = regressor.predict(X_test)
pred
Out[14]:
array([ 83. , 39.95, 120. , ..., 32.64, 62.5 , 171. ])
In [15]:
y_test
Out[15]:
2435
         80.00
3113
         40.00
426
        120.00
1124
         79.00
1161
         45.00
         . . .
2078
         28.34
6855
         84.00
4381
         32.00
3862
         63.00
43
        180.00
Name: price, Length: 1424, dtype: float64
In [ ]:
```