TD1 - Back Propagation Algorithm

1 The algorithm

A Back Propagation network learns by example. Back Propagation is the algorithm used to train the network by changing the network's weights in order to minimize a predefined loss function.

2 Working example

In this section we show all the calculations for a full sized network with 3 inputs, 2 hidden layer neurons and 1 output neuron as shown in fig. 3.2.

Assume that the Sigmoid activation function is applied to hidden layer and output layer. Assume that the network has the following initial weights (η is the learning rate)

$$\eta = (0.9)$$

$$w1 = \begin{pmatrix} w_{11} & w_{21} \\ w_{12} & w_{22} \\ w_{13} & w_{23} \end{pmatrix} = \begin{pmatrix} 0.2 & -0.3 \\ 0.4 & 0.1 \\ -0.5 & 0.2 \end{pmatrix}$$

$$w2 = \begin{pmatrix} w_{11} \\ w_{12} \end{pmatrix} = \begin{pmatrix} -0.3 \\ -0.2 \end{pmatrix}$$

$$b1 = (b_1 \ b_2) = (-0.4 \ 0.2)$$

$$b2 = (b_2) = (0.1)$$

Using the following first training example $\mathbf{x} = [1 \ ; \ 0 \ ; \ 1]^T$ whose class label y = 1

- 1. Perform a forward pass on the network.
- 2. Perform a reverse pass (training) once using $(x_1; y_1)$.
- 3. Perform a further forward pass
- 4. Comment on the result.

3 Solution

3.1 Forward pass

Input Layer 1

Matrix based operation

 \Rightarrow General formula : $Z^{l+1} = W^l h^l + b^l$

 \Rightarrow First layer : $Z^2 = W^1 h^1 + b^1$ with $h^1 = X$ for first hidden layer

 \Rightarrow Second layer : $Z^3 = W^2h^2 + b^2$ with $h^2 = f(Z^2)$

$$Z^{2} = X^{T}W^{1} + b^{1} = \begin{pmatrix} x_{1} & x_{2} & x_{3} \end{pmatrix} \begin{pmatrix} w_{11} & w_{21} \\ w_{12} & w_{22} \\ w_{13} & w_{23} \end{pmatrix} + \begin{pmatrix} b_{1} & b_{2} \end{pmatrix}$$

$$Z^{2} = X^{T}W^{1} + b^{1} = \begin{pmatrix} 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0.2 & -0.3 \\ 0.4 & 0.1 \\ -0.5 & 0.2 \end{pmatrix} + \begin{pmatrix} -0.4 & 0.2 \end{pmatrix} = \begin{pmatrix} -0.7 & 0.1 \end{pmatrix}$$

Output Layer 1

Apply activation function $\sigma(.)$ for each node in the hidden layer. For matrix based operation we can apply the activation function to each element of the matrix.

$$\Rightarrow \sigma(Z^2) = \sigma(X^T W^1 + b^1)$$

$$h^2 = \sigma(Z^2) = \sigma((-0.7 \ 0.1)) = (0.332 \ 0.525)$$

Input layer2 (this is the output-layer in this example)

$$Z^3 = h^2 W^2 + b^2 = \begin{pmatrix} h_1^2 & h_2^2 \end{pmatrix} \begin{pmatrix} w_{11} \\ w_{12} \end{pmatrix} + \begin{pmatrix} b_1 \end{pmatrix}$$

$$Z^3 = \begin{pmatrix} 0.332 & 0.525 \end{pmatrix} \begin{pmatrix} -0.3 \\ -0.2 \end{pmatrix} + \begin{pmatrix} 0.1 \end{pmatrix} = -0.105$$

$$h^3 = \sigma(Z^3) = \sigma((-0.105)) = (0.474)$$

This is to compare to the target (y = 1) output error : $E = \frac{1}{2}(0.474 - 1)^2 = 0.138338$

3.2 Backward pass

Backward for output Layer

The output neuron m of the output layer k is $y_m = h_m^{(k)}$

$$\begin{split} \frac{\partial E}{\partial w_{11}^{(j)}} &= \frac{\partial E}{\partial h_{1}^{(k)}} \ \frac{\partial h_{1}^{(k)}}{\partial Z_{1}^{(k)}} \ \frac{\partial Z_{1}^{(k)}}{\partial w_{11}^{(j)}} \\ \frac{\partial Z_{1}^{(k)}}{\partial w_{11}^{(j)}} &= h_{1}^{(j)} \\ \frac{\partial E}{\partial h_{1}^{(k)}} \ \frac{\partial h_{1}^{(k)}}{\partial Z_{1}^{(k)}} \ &= (h_{1}^{(k)} - t_{1}) \ \sigma'(Z_{1}^{(j)}) \\ \frac{\partial h_{1}^{(k)}}{\partial Z_{1}^{(k)}} &= \sigma'(Z_{1}^{(j)}) \\ \frac{\partial E}{\partial h_{1}^{(k)}} &= (h_{1}^{(k)} - t_{1}) \ \text{Since} \ E &= \frac{1}{2} \sum_{k} (h_{1}^{(k)} - t_{k})^{2} \to \frac{\partial E}{\partial h_{1}^{(k)}} = h_{1}^{(k)} - t_{k} \\ \text{Let} \ \delta_{1}^{(k)} &= \frac{\partial E}{\partial h_{1}^{(k)}} \ \frac{\partial h_{1}^{(k)}}{\partial Z_{1}^{(k)}} &= (h_{1}^{(k)} - t_{1}) \ \sigma'(Z_{1}^{(k)}) \\ \frac{\partial E}{\partial w_{1}^{(j)}} &= \delta_{1}^{(k)} h_{1}^{(j)} \end{split}$$

$$\frac{\partial E}{\partial w_{ij}^{(l)}} = h_j^{(l)} \delta_i^{(l+1)} \quad with \quad \delta_i^{(l)} = \sigma'(Z_i^{(l)})(h_i^{(l)} - t_i)$$

$$\frac{\partial E}{\partial b_i^{(l)}} = \delta_i^{(l+1)}$$

For our network:

Output Layer:

$$\frac{\partial E}{\partial w_{ij}^{(l)}} = h_j^{(l)} \delta_i^{(l+1)} \quad with \quad \delta_i^{(l)} = \sigma'(Z_i^{(l)})(h_i^{(l)} - t_i)$$

k=3 in our example

$$\frac{\partial MSE}{\partial w_{11}^{(2)}} = h_1^{(2)} \delta_1^{(3)} \text{ with } \delta_1^{(3)} = \sigma'(Z_1^{(3)})(h_1^{(3)} - t_1)$$

$$h_1^{(3)} = y_1 = 0.474 \text{ ; } t_1 = 1; \quad Z_1^{(3)} = -0.105 \quad h_1^{(2)} = 0.332$$

$$\delta_1^{(3)} = \sigma(-0.105)(1 - \sigma(-0.105))(0.474 - 1)$$

$$\delta_1^{(3)} = (0.474)(1 - 0.474)(-0.526) = -0.1311$$

$$\frac{\partial MSE}{\partial w_{11}^{(2)}} = (-0.1311)(0.332) = -0.0435252$$

$$\frac{\partial MSE}{\partial w_{12}^{(2)}} = \delta_1^{(3)} h_2^{(2)} \ with \ \delta_1^{(3)} = \sigma'(Z_1^{(3)}) (h_1^{(3)} - t_1)$$

$$h_2^{(2)} = 0.525$$

$$\frac{\partial MSE}{\partial w_{12}^{(2)}} = (-0.1311)(0.525) =$$
 -0.0688275

$$egin{pmatrix} rac{\partial MSE}{\partial w_{12}^{(2)}} \ rac{\partial MSE}{\partial w_{12}^{(2)}} \end{pmatrix} = egin{pmatrix} ext{-0.0435252} \ ext{-0.0688275} \end{pmatrix}$$

Backward for hidden Layer

$$\begin{split} &\frac{\partial E}{\partial w_{ij}^{(l)}} = h_j^{(l)} \delta_i^{(l+1)} \\ &\delta_j^{(l)} = \sum_{i=1}^{s_{(l+1)}} w_{ij}^{(l)} \ \delta_i^{(l+1)} \ \sigma'(Z_j^{(l)}) \\ &\delta_j^{(l)} = \sigma'(Z_j^{(l)}) \sum_{i=1}^{s_{(l+1)}} w_{ij}^{(l)} \ \delta_i^{(l+1)} \end{split}$$

$$\begin{split} \frac{\partial MSE}{\partial w_{11}^{(i)}} &= h_1^{(i)} \delta_1^{(j)} \\ \delta_1^{(j)} &= \sigma'(Z_1^{(j)}) \sum_{i=1}^{(k)} w_{i1}^{(j)} & \delta_i^{(k)} \end{split}$$

$$\begin{split} \frac{\partial E}{\partial w_{ij}^{(l)}} &= h_j^{(l)} \delta_i^{(l+1)} \quad with \quad \delta_j^{(l)} = \sigma'(Z_j^{(l)}) \sum_{i=1}^{s_{(l+1)}} w_{ij}^{(l)} \quad \delta_i^{(l+1)} \\ \frac{\partial E}{\partial b_i^{(l)}} &= \delta_i^{(l+1)} \end{split}$$

For our example we have only one hidden layer:

$$\begin{split} \frac{\partial MSE}{\partial w_{11}^{(1)}} &= h_1^{(1)} \delta_1^{(2)} \\ \delta_1^{(2)} &= \sigma'(Z_1^{(2)}) w_{11}^{(2)} \quad \delta_1^{(3)} \\ Z^2 &= X^T W^1 + b^1 = \left(-0.7 \quad 0.1\right) \\ \delta_1^{(3)} &= (0.474)(1 - 0.474)(-0.526) = -0.1311 \\ \sigma'(Z_1^{(2)}) &= \sigma(Z_1^{(2)})(1 - \sigma(Z_1^{(2)})) = \sigma(-0.7)(1 - \sigma(-0.7) \\ \sigma'(Z_1^{(2)}) &= (0.332)(1 - 0.332) \\ w_{11}^{(2)} &= -0.3 \\ \delta_1^{(2)} &= (0.332)(1 - 0.332)(-0.1311)(-0.3) = 0.00872245008 \\ \frac{\partial MSE}{\partial w_{11}^{(1)}} &= h_1^{(1)} * 0.00872245008 \\ \frac{\partial MSE}{\partial w_{21}^{(1)}} &= h_1^{(1)} \delta_2^{(2)} \quad ; \quad \delta_2^{(2)} &= \sigma'(Z_2^{(2)}) w_{12}^{(2)} \quad \delta_1^{(3)} \\ \delta_2^{(2)} &= \sigma(0.1)(1 - \sigma(0.1))(-0.1311)(-0.2) = 0.0065386125 \end{split}$$

$$\begin{array}{l} \frac{\partial MSE}{\partial w_{11}^{(1)}} = (h_1^{(1)}) * \delta_1^{(2)} = 1 * (0.00872245008) \\ \frac{\partial MSE}{\partial w_{21}^{(1)}} = (h_1^{(1)}) * \delta_2^{(2)} = 1 * (0.0065386125) \\ \frac{\partial MSE}{\partial w_{12}^{(1)}} = (h_2^{(1)}) * \delta_1^{(2)} = 0 * (0.00872245008) \\ \frac{\partial MSE}{\partial w_{12}^{(1)}} = (h_2^{(1)}) * \delta_2^{(2)} = 0 * (0.0065386125) \\ \frac{\partial MSE}{\partial w_{22}^{(1)}} = (h_3^{(1)}) * \delta_1^{(2)} = 1 * (0.00872245008) \\ \frac{\partial MSE}{\partial w_{13}^{(1)}} = (h_3^{(1)}) * \delta_2^{(2)} = 1 * (0.0065386125) \\ \frac{\partial MSE}{\partial w_{23}^{(1)}} = (h_3^{(1)}) * \delta_2^{(2)} = 1 * (0.0065386125) \end{array}$$

Weights update:

$$W^{t+1} = W^t - \eta \nabla E(W^t)$$

$$\begin{split} w_{11}^{(1)} &= w_{11}^{(1)} - 0.9 * \frac{\partial MSE}{\partial w_{11}^{(1)}} = 0.2 - 0.9 * 1 * 0.00872245008 = 0.19214979492 \\ w_{21}^{(1)} &= w_{21}^{(1)} - 0.9 * \frac{\partial MSE}{\partial w_{21}^{(1)}} = -0.3 - 0.9 * 1 * 0.0065386125 = -0.30588475125 \\ w_{12}^{(1)} &= w_{12}^{(1)} - 0.9 * \frac{\partial MSE}{\partial w_{12}^{(1)}} = 0.4 - 0.9 * 0 * (0.00872245008) = 0.4 \\ w_{22}^{(1)} &= w_{22}^{(1)} - 0.9 * \frac{\partial MSE}{\partial w_{22}^{(1)}} = 0.1 - 0.9 * 0 * (0.0065386125) = 0.1 \\ w_{13}^{(1)} &= w_{13}^{(1)} - 0.9 * \frac{\partial MSE}{\partial w_{13}^{(1)}} = -0.5 - 0.9 * 1 * (0.00872245008) = -0.50785020507 \\ w_{23}^{(1)} &= w_{23}^{(1)} - 0.9 * \frac{\partial MSE}{\partial w_{23}^{(1)}} = 0.2 - 0.9 * 1 * (0.0065386125) = 0.19411524875 \\ w_{11}^{(2)} &= w_{11}^{(2)} - 0.9 * \frac{\partial MSE}{\partial w_{11}^{(2)}} = -0.3 - 0.9 * (-0.0435252) = -0.26082732 \\ w_{12}^{(2)} &= w_{12}^{(2)} - 0.9 * \frac{\partial MSE}{\partial w_{12}^{(2)}} = -0.2 - 0.9 * (-0.0688275) = -0.13805525 \end{split}$$

$$b^{t+1} = b^t - \eta \nabla E(b^t)$$

$$\frac{\partial E}{\partial b_1^{(2)}} = \delta_1^{(3)} = -0.1311$$

$$b_1^{(2)} = b_1^{(2)} - 0.9 * \delta_1^{(3)} = 0.1 - 0.9 * (-0.1311) = 0.21799$$

$$\begin{split} \frac{\partial E}{\partial b_1^{(1)}} &= \delta_1^{(2)} \\ b_1^{(1)} &= b_1^{(1)} - \delta_1^{(2)} * 0.9 = -0.4 - 0.9 * 0.00872245008 = -0.40785020507 \\ \frac{\partial E}{\partial b_2^{(1)}} &= \delta_2^{(2)} \\ b_2^{(1)} &= b_2^{(1)} - 0.9 * \delta_2^{(2)} = 0.2 - 0.9 * 0.0065386125 = 0.19411524875 \end{split}$$

3.3 Second Forward pass

$$w1 = \begin{pmatrix} w_{11}^{(1)} & w_{21}^{(1)} \\ w_{12}^{(1)} & w_{22}^{(1)} \\ w_{13}^{(1)} & w_{23}^{(1)} \end{pmatrix} = \begin{pmatrix} 0.19214979492 & -0.30588475125 \\ 0.4 & 0.1 \\ -0.50785020507 & 0.19411524875 \end{pmatrix}$$

$$w2 = \begin{pmatrix} w_{11}^{(2)} \\ w_{12}^{(2)} \end{pmatrix} = \begin{pmatrix} -0.26082732 \\ -0.13805525 \end{pmatrix}$$

$$b1 = \begin{pmatrix} b_1^{(1)} & b_2^{(1)} \end{pmatrix} = \begin{pmatrix} -0.40785020507 & 0.19411524875 \end{pmatrix}$$

$$b2 = \left(b_1^{(2)}\right) = \left(0.21799\right)$$

$$Z^{2} = X^{T}W^{1} + b1 = \begin{pmatrix} x_{1} & x_{2} & x_{3} \end{pmatrix} \begin{pmatrix} w_{11} & w_{21} \\ w_{12} & w_{22} \\ w_{13} & w_{23} \end{pmatrix} + \begin{pmatrix} b_{1}^{(1)} & b_{2}^{(1)} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0.19214979492 & -0.30588475125 \\ 0.4 & 0.1 \\ -0.50785020507 & 0.19411524875 \end{pmatrix} + \begin{pmatrix} -0.40785020507 & 0.19411524875 \end{pmatrix}$$

$$= \begin{pmatrix} -0.72355062 & 0.08234575 \end{pmatrix}$$

$$h^2 = \sigma(Z^2) = \sigma(\left(-0.72355062 \quad 0.08234575\right)) = \\ \left(0.3266115919 \quad 0.52057481263\right)$$

$$Z^{3} = \begin{pmatrix} 0.3266115919 & 0.52057481263 \end{pmatrix} \begin{pmatrix} -0.26082732 \\ -0.13805525 \end{pmatrix} + \begin{pmatrix} 0.21799 \end{pmatrix} = 0.06093269$$

$$h^3 = \sigma(Z^3) = \sigma(\left(0.06093269\right)) = \left(\mathbf{0.48477153888}\right)$$

4 Comments

old error :
$$E = \frac{1}{2}(0.474 - 1)^2 = 0.138338$$

new error :
$$E = \frac{1}{2}(0.48477153888 - 1)^2 = 0.132730$$

Therefore error has reduced.