Règles avec négation: l'algorithme ASPERIX

HAI 9331 - Partie 2

Jean-François Baget – <u>baget@lirmm.fr</u>

2022

Dans les épisodes précédents: application de règle

p(X), not q(X, Y), p(Y), not $q(Y, X) \rightarrow r(X)$

Dans les épisodes précédents: dérivations persistantes et complètes

$$(R_1)$$
 $p(X)$, $not q(X) \rightarrow r(X)$ $p(a)$ (R_2) $p(X) \rightarrow q(X)$

application
$$R_1$$
, application R_2 , $q(a)$ absent $p(a) \xrightarrow{q(a)} p(a)$, $r(a) \xrightarrow{q(a)} p(a)$, $r(a)$, $q(a)$

application R_1 , $p(a) \xrightarrow{q(a) \text{ absent}} p(a)$, $r(a) \xrightarrow{R_2 \text{ est applicable,}}$ mais on ferme les yeux

p(a) \rightarrow p(a), r(a) $\stackrel{R_1 \text{ n'est plus applicable,}}{\text{on a bien fini}}$

On voudrait des applications *persistantes* dans la dérivation: toute application devrait rester applicable.

On voudrait des dérivations complètes.

Bonne dérivation : persistante et complète.

Dans les épisodes précédents: existence et unicité

$$p(X)$$
, not $q(X) \rightarrow q(X)$
 $p(a)$

$$p(X)$$
, not $q(X) \rightarrow r(X)$
 $p(X)$, not $r(X) \rightarrow q(X)$
 $p(a)$

Pas de modèle stable Implémentation possible de \perp Deux modèles stables Implémentation possible de ∨

Dans les épisodes précédents: premier algorithme (définition usuelle)

1. Propositionalisation

Cette étape part a l'infini si domaine de Herbrand infini (i.e. si vars exist., sauf certaines optimisations)

2. Générer

On devine un sous-ensemble E des atomes propositionnels

3. Tester

On teste si $E = P_{|E}^*$. Par définition (fin du suspense): E est un *modèle stable* de P.

4. Transformation inverse

suppression atomes

S est le résultat d'une bonne dérivation de K ssi E est un modèle stable de P.

Echauffement

Maximalité des modèles stables

Soit K une KB (propositionnelle pour faire plus simple) et E_1 et E_2 2 modèles stables de K tels que $E_1 \subseteq E_2$

Pour simplifier la démo, j'utilise la DEF équivalente du programme réduit: « on garde les règles qui ne sont pas bloquées dans E »

1

Voir que $K_2 \subseteq K_1$ (avec $K_i = K_{|Ei}$)

Soit R une règle de K_2 . Elle provient d'une règle R non bloquée dans E_2 . Cette règle n'est pas non plus bloquée dans E_1 . Donc R est une règle de K_1 .

2

Voir que $E_2 \subseteq E_1$

De (1) on déduit que $K_2^* = E_2 \subseteq E_1 = K_1^*$.

CCL: Si $E_1 \subseteq E_2$, alors $E_1 = E_2$.

Les modèles stables sont maximaux.

(Ca aide un peu pour diminuer le nombre de MS à tester)

Révisionnisme géographique

ASPERIX

ASPERIX: l'idée de base

On se place à la k-ième étape d'une bonne corps-skolem dérivation.

$$\mathbf{F} = \mathbf{F}_0, \, \mathbf{F}_1, \, \mathbf{F}_2, \, ..., \, \mathbf{F}_i, \, \mathbf{F}_{i+1}, \, ..., \, \mathbf{F}_k$$

h

On suppose une règle déclenchable à cette étape.

B^+ , not B_1^- , ..., not $B_k^- \rightarrow H$

Suspense...

Soit on l'applique

Soit on ne l'applique pas

ASPERIX: l'idée de base (application)

$$F_1 = F_0, F_1, F_2, ..., F_i, F_{i+1}, ..., F_k$$
 $F_1 = F_0, F_1, F_2, ..., F_i, F_{i+1}, ..., F_k$
 $F_1 = F_0, F_1, F_2, ..., F_i, F_{i+1}, ..., F_k$
 $F_2 = F_0, F_1, F_2, ..., F_i, F_i, F_i, ..., F_i$
 $F_1 = F_0, F_1, F_2, ..., F_i, F_i, F_i, ..., F_i$

Pour appliquer il faut qu'aucun des $h(B_i^-)$ ne soit déductible de F_k (pas bloqué), donc d'aucun des F_j , j < k (monotonie), mais aussi d'aucun des F_p , p > k (persistance). Comme on ne sait pas ce qui va se passer après F_k , il faudra garder cette info en mémoire (par exemple, si on met F_k dans un champs F_k on mettra chacun de ces F_k dans un champs F_k on mettra chacun de ces F_k dans un champs F_k on mettra chacun de ces F_k dans un champs F_k on mettra chacun de ces F_k dans un champs F_k

Importance de l'utilisation de règles **skolemisées**. Sinon il faudra « attacher les variables ». Par exemple, avec la règle p(X), not $q(X) \rightarrow r(X)$, si elle est déclenchée (cas Skolem) sur p(f(a)), il faudra interdire q(f(a)), mais si elle est déclenchée (cas non Skolem) sur p(Y127), il faudra interdire q(Y127), mais cette variable la!

ASPERIX: l'idée de base (non application)

$$F_1$$
 = F_0 , F_1 , F_2 , ..., F_i , F_{i+1} , ..., F_k
 F_1 , F_2 , ..., F_i , F_{i+1} , ..., F_k
 F_1 , F_2 , ..., F_2 , ..., F_1 , F_2 , ..., F_2 , ..., F_1 , F_2 , ..., F_2 ,

Pour ne pas appliquer il faut qu'au moins un des $h(B_i^-)$ soit déductible de F^* , sinon la dérivation ne serait pas complète. C'est-à-dire $h(B^-) = h(B_1^-) \vee ... \vee h(B_k^-)$ doit être déductible de F^* .

Comme on ne sait pas ce qui va se passer après F_k , il faudra garder cette info en mémoire (par exemple, on mettra $h(B^-)$ dans un champs MBT, pour Must Be True).

Même remarque sur l'importance de l'utilisation de règles **skolemisées**, ou l'utilisation de variables attachées dans le cas contraire.

ASPERIX: l'évaluation, étape générale de l'algorithme

Ici h(H) et pas h^s(H) car Skolem

IN

 $F_k \cup h(H)$

Ici on rajoute k éléments, 1 par corps négatif Ici on rajoute 1 élément, disjonction des k corps négatifs

ASPERIX: la notion de bonne branche.

Bonne branche: branche complète, dont tous les MBT sont satisfaits dans la branche, et dont aucun OUT n'est violé dans la branche.

Résultat d'une branche: union de tous les IN de la branche.

• • •

Branche complète: tous les déclenchements possibles ont été évalués.

ASPERIX: enfin l'algorithme...

Problème: pas pratique quand l'arbre est infini.

Propriété: Si la forme positive des regles est corps-skolem-finite, alors l'algorithme termine (l'arbre est fini)

Question: et les autres dérivations? Réponses dans cours 4

Exemples bien connus revisités

Cas des règles existentielles

IN	OUT	MBT
p(a)	Ø	Ø

IN	OUT	MBT
p(a)	Ø	{FALSE}

 $Car \lor \emptyset = FALSE$

FALSE ne sera jamais conséquence d'un IN positif.

$$p(X) \rightarrow q(X)$$

p(a)

Simplification

OUT	MBT
Ø	Ø
	OUT

IN	OUT	MBT
p(a) q(a)	Ø	Ø

La petite KB stratifiable

IN	OUT	MBT
p(a)	Ø	Ø

IN	OUT	MBT
p(a)	Ø	Ø

$p(X)$, not $q(X) \rightarrow r(X)$	
$p(X) \rightarrow q(X)$	
p(a)	

Plus malin d'appliquer les règles existentielles en premier (moins de sommets en général)

IN	OUT	MBT
p(a) r(a)	q(a)	Ø

IN	OUT	MBT
p(a) r(a) q(a)	q(a)	Ø

IN	OUT	MBT
p(a)	Ø	q(a)
IN	OUT	MBT
p(a) q(a)	Ø	q(a)

La petite KB stratifiable (2)

IN	OUT	MBT
p(a)	Ø	Ø
IN	OUT	MBT

IN	OUT	MBT
p(a) q(a)	q(a)	Ø
r(a)		

Appliquer	sur	déjà	bloqué:
inutile car	vio	latior	۱.

IN	OUT	MBT
p(a) q(a)	Ø	q(a)

Ne pas appliquer sur déjà bloqué: inutile car n'ajoute rien.

p(X), n	ot q(X)	$\rightarrow r(X)$
p(X) —	$\rightarrow a(X)$	

p(a)

Simplification

Attention, même si on ne visualise pas la non application, il faut la compter comme évaluée!

IN	OUT	MBT
p(a)	Ø	q(a)

IN	OUT	MBT
p(a) q(a)	Ø	Ø

Remarque: si on suit l'ordre de la stratification, une seule branche!

La petite KB absurde

p(X), not $q(X) \rightarrow q(X)$ p(a)

IN	OUT	MBT
p(a)	Ø	Ø

IN	OUT	MBT
p(a) q(a)	q(a)	Ø

IN	OUT	MBT
p(a)	Ø	q(a)

Exercice: voir que si il y a aussi q(a) dans la base de faits, il y a un modèle stable...

La petite KB disjonctive

IN	OUT	MBT
p(a)	Ø	Ø

p(X),	$not q(X) \rightarrow r(X)$	X)
p(X),	$not r(X) \rightarrow q(X)$	X)
p(a)		

IN	OUT	MBT
p(a) r(a)	q(a)	Ø

IN	OUT	MBT
p(a)	Ø	q(a)

IN	OUT	MBT
p(a) q(a)	r(a)	q(a)

IN	OUT	MBT
p(a)	Ø	q(a) r(a)

K-colorons un peu...

Codage d'une instance du problème « 3-coloration»

Ecrire un programme, qui calcule un modèle stable par 3-coloration du graphe (avec couleurs b, j, r)

Le modèle stable qui encodera cette 3-coloration devra contenir les atomes:

Résolution du problème « 3-coloration »

$$V(X, Y) \rightarrow V(Y, X)$$

$$s(X)$$
, not $c(X, b)$, not $c(X, y) \rightarrow c(X, r)$
 $s(X)$, not $c(X, b)$, not $c(X, r) \rightarrow c(X, y)$
 $s(X)$, not $c(X, r)$, not $c(X, y) \rightarrow c(X, b)$

$$v(X, Y), c(X, Z), c(Y, Z) \rightarrow \bot$$

Test de la base de règles « 3-coloration »

IN	OUT	MBT
s(1)	Ø	Ø

IN	OUT	MBT
s(1)	c(1, b)	Ø
c(1, r)	c(1, j)	

c(1, r) bloque l'application des 2 autres règles.

> c(1, b) bloque l'application des 2 autres règles. c(1, b) est prouvé

c(1, j) bloque l'application
des 2 autres règles.
c(1, j) est prouvé (2 fois)

IIN	UUI	IVIDI	
s(1)	Ø	$c(1, b) \vee c(1, j)$	

IN	OUT	MBT	IN	OUT	MBT
s(1)	c(1, j)	$c(1, b) \vee c(1, j)$	s(1)	Ø	$c(1, b) \vee c(1, j)$
c(1, b)	c(1, r)				$c(1,j) \vee c(1,r)$

IN	OUT	MBT
s(1)	c(1, b)	$c(1, b) \lor c(1, j)$
c(1, j)	c(1, r)	$c(1, j) \lor c(1, r)$

IN	OUT	MBT
s(1)	Ø	$c(1, b) \lor c(1, j)$
X		$c(1, j) \lor c(1, r)$ $c(1, b) \lor c(1, r)$

Choix multiples

Le problème de cette implémentation: ne fait que 3-coloration. On voudrait un programme qui fonctionne pour tous les k. Comme ça a été implémenté, ce n'est pas possible, il faudrait k règles, chacune excluant les k-1 autres choix...

Exercice confiné: utiliser ce principe pour implémenter « k-coloration »

Conclusion

ASPERIX: un algorithme permettant de calculer les bonnes dérivations, sans normalisation, sans instanciation, via un BT

S'arrête si la forme positive des regles est corps-skolem-finite.

La sémantique dépend du type de chase utilisé (voir prochain cours)

On n'a pas encore abordé les pistes d'optimisation, ni le problème du requêtage.

Une première modélisation:

Comme dit l'OMS: « Testez, testez, testez »

Un principe de modélisation: générer toutes les solutions envisageables, utiliser \bot pour pruner. Dans un deuxième temps, optimiser.

A suivre:

Le loup, la chevre, le choux, voire le Wumpus