VŠB – Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra aplikované matematiky

Nestandardní číselné soustavy Non-Standard Numeral Systems

2020 Christian Krutsche

VŠB - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra aplikované matematiky

Zadání bakalářské práce

Student:	Christian Krutsche
Studijní program:	B2647 Informační a komunikační technologie
Studijní obor:	1103R031 Výpočetní matematika
Téma:	Nestandardní číselné soustavy
	Non-Standard Numeral Systems
Jazyk vypracování:	čeština
Zásady pro vypracová	iní:
měl věnovat z větší čá se zabývat i jinými. U	e tematicky měla věnovat nestandardním zápisům čísel z dané množiny. Autor by se isti těm způsobům reprezentace čísel, které využívají pouze cifer 0 a 1, ale je možné každého typu zápisu by měly být popsány jeho základní vlastnosti a pokud možno s výhody, které ovlivňují jeho využitelnost.
Seznam doporučené o	dborné literatury:
Donald E. Knuth: Um E. Pelantová, Š. Staro (2011), No. 4, 276-28	ění programování 2. díl: Seminumerické algoritmy sta: nestandardní zápisy čísel, Pokroky matematiky, fyziky a astronomie, Vol. 56 9
Formální náležitosti a stránkách fakulty.	rozsah bakalářské práce stanoví pokyny pro vypracování zveřejněné na webových
Vedoucí bakalářské p	ráce: RNDr. Pavel Jahoda, Ph.D.
Datum zadání:	01.09.2019
Datum odevzdání:	30.04.2020
-	. Jiří Bouchala, Ph.D. prof. Ing. Pavel Brandštetter, CSc. děkan fakulty

Prohlašuji, že jsem tuto bakalářskou práci vypracoval	samostatně. Uvedl jsem všechny literární
prameny a publikace, ze kterých jsem čerpal.	
V Ostravě 1. dubna 2020	

Abstrakt

Cílem této práce je prozkoumat různé nestandardní možnosti zápisu či kódování čísel. Kromě

všem známých soustav s číselným základem (dvojková, šestnáctková,...), jsou zde i zvláštní sou-

stavy s jiným základem. Práce nám přiblíží spektrum nestandardních soustav. U každé soustavy

se zabývá důkazem jednoznačnosti vyjádření čísel v daném tvaru a důkazem schopnosti vyjádřit

libovolně zvolené čísla. Práce zkoumá nejen soustavy s celočíselným základem, ale i se základem

iracionálním, či dokonce komplexním.

Klíčová slova: číselná soustava

Abstract

This is English abstract.

Keywords: numeral system

Obsah

Se	znan	n použitých zkratek a symbolů	7
1	Úvo	od	8
	1.1	Definice	8
	1.2	Názorné příklady	11
2	Neg	gabinární číselná soustava	12
	2.1	Sčítání celých čísel v negabinární číselné soustavě	17
	2.2	Nalezení čísla opačného v negabinární číselné soustavě	18
	2.3	Násobení v negabinární číselné soustavě	19
3	Kor	nplexní číselná soustava	21
	3.1	Sčítání gaussovských celých čísel v komplexní číselné soustavě	26
	3.2	Nalezení opačného čísla v komplexní číselné soustavě	27
	3.3	Násobení v komplexní číselné soustavě	28
4	Neg	gafibonacciho číselná soustava	30
	4.1	Sčítání celých čísel v negafibonacciho číselné soustavě	32
5	Fak	toriálová číselná soustava	35
	5.1	Sčítání celých čísel v negafibonacciho číselné soustavě	37
6	Záv	ěr	39
O	dkaz	v	40

Seznam použitých zkratek a symbolů

ČS – Číselná soustava

1 Úvod

1.1 Definice

Připomeňme, že libovolnou podmnožinu φ kartézského součinu $A \times B$ nazýváme binární relací (dále jen relací) mezi prvky z množiny A a prvky z množiny B. Binární dvojici $(a,b) \in \varphi$ budeme značit $\varphi(a) = b$ a $\varphi \subseteq A \times B$ budeme značit $\varphi: A \to B$, tak jak je to obvyklé u zobrazení, jež jsou speciálními případy relací.

Následující definici jsme převzali z [a]

Definice 1 Posloupností na množině M rozumíme každou funkci, jejímž definičním oborem je množina \mathbb{N} . Posloupnost, která každému $n \in \mathbb{N}$ přiřazuje číslo $a_n \in M$ budeme zapisovat některým z následujících způsobů:

- $a_0, a_1, a_2, a_3, \dots$
- \bullet (a_n)
- $\bullet \ \{a_n\}_{n=0}^{\infty}$

Definice 2 (Číselná soustava na tělese) Nechť $(A, +, \cdot)$ je těleso; $\{\alpha_i\}_{i=0}^{\infty}$ a $\{\beta_i\}_{i=1}^{\infty}$ jsou posloupnosti na množině $A; C \subseteq A$ a B je množina všech posloupností prvků z C. Číselnou soustavou na tělese $(A, +, \cdot)$ o základu $\{\alpha_i\}_{i=0}^{\infty}$ a $\{\beta_i\}_{i=1}^{\infty}$ s ciframi z C nazveme libovolnou relaci $\varphi: A \to B \times B$, $kde \varphi(x) = (\{a_i\}_{i=0}^{\infty}, \{b_i\}_{i=1}^{\infty})$ právě když

$$x = \sum_{i=0}^{\infty} a_i \alpha_i + \sum_{i=1}^{\infty} b_i \beta_i$$

Množinu C označujeme jako **množinu cifer** číselné soustavy φ . Budeme používat značení $\varphi(x) = (\{a_i\}_{i=0}^{\infty}, \{b_i\}_{i=1}^{\infty}) = (\ldots a_2, a_1, a_0; b_1, b_2, b_3, \ldots)_{\varphi}$ a pokud nebude možno dojít k omylu, pak také $(\ldots a_2, a_1, a_0; b_1, b_2, b_3, \ldots)_{\varphi} = (\ldots a_2, a_1, a_0; b_1, b_2, b_3, \ldots) = (\ldots a_2a_1a_0, b_1b_2b_3 \ldots)$

Všimněme si, že nevyžadujeme, aby φ bylo zobrazení. Číselná soustava nemusí vyjadřovat každý prvek z A a ty prvky z A, které jsou v relaci φ , nemusí být vyjádřeny jediným způsobem. Uvažujme například obvyklou desítkovou číselnou soustavu na tělese reálných čísel. Jde o číselnou soustavu, kde $C = \{0, 1, 2, \dots, 9\}$ a základem jsou konstantní posloupnosti na : $\{\alpha_i\}_{i=0}^{\infty} = \{10^n\}_{n=0}^{\infty}$ a $\{\beta_i\}_{i=1}^{\infty} = \{\frac{1}{10^n}\}_{n=1}^{\infty}$ na množině C.

I. Vyjadřujeme jen nezáporná čísla, např. číslo $x=1\cdot 10^2+2\cdot 10^1+3\cdot 10^0\Rightarrow \varphi(x)=(\dots 123,000\dots),$ ale $\varphi(-x)$ neexistuje. Pomocí cifer z $C=\{0,\dots,9\}$ při základu $\{10^i\}_{i=0}^\infty$ nelze vyjádřit záporné číslo

II. (|x| je celočíselná část reálného čísla x)

$$\varphi(1) = \left(\left\{ \left\lfloor \frac{1}{n+1} \right\rfloor \right\}_{n=0}^{\infty}, \left\{ 0 \right\}_{n=0}^{\infty} \right) = (\dots 001, 000 \dots),$$

ale také

$$\varphi(1) = (\{0\}_{n=0}^{\infty}, \{9\}_{n=0}^{\infty}) = (\dots 000, 999\dots).$$

Analogicky jako na tělese definujeme číselnou soustavu na okruhu.

Definice 3 (Číselná soustava na okruhu) Nechť $(A, +, \cdot)$ je okruh; $\{\alpha_i\}_{i=0}^{\infty}$ je posloupnost prvků z A; $C \subseteq A$ a B je množina všech posloupností prvků z C. Číselnou soustavou na okruhu $(A, +, \cdot)$ o základu $\{\alpha_i\}_{i=0}^{\infty}$ s ciframi z C nazveme libovolnou relaci $\varphi : A \to B$, kde $\varphi(x) = \{a_i\}_{i=0}^{\infty}$ právě když

$$x = \sum_{i=0}^{\infty} a_i \alpha_i$$

Množinu C označujeme jako **množinu cifer** číselné soustavy φ . Budeme používat značení $\varphi(x) = \{a_i\}_{i=0}^{\infty} = (\ldots a_2, a_1, a_0)_{\varphi}$ a pokud nebude možno dojít k omylu, pak také $(\ldots a_2, a_1, a_0)_{\varphi} = (\ldots a_2, a_1, a_0) = \ldots a_2 a_1 a_0$

Poznámka 1 V Definici 2 a Definici 3 předpokládáme, že na tělese, respektive okruhu $(A, +, \cdot)$ jsou definovány nekonečné součty

Poznámka 2 Všimněme si, že číselná soustava φ , ať již na tělese, nebo na okruhu, splňuje:

$$\varphi(x_1) = \varphi(x_2) \Rightarrow x_1 = x_2.$$

Proto, je-li φ zobrazení, je injektivní. Dále můžeme tvrdit, že hodnota $\varphi(x)$ (i v případě, že $\varphi(x)$ není zobrazení) jednoznačně určuje svůj vzor x, ale, jak jsme viděli výše, x nemusí jednoznačně určovat svůj obraz $\varphi(x)$.

Definice 4 Jestliže pro číselnou soustavu φ na tělese $(A,+,\cdot)$ platí, že φ je zobrazení, pak tuto soustavu nazveme **jednoznačnou číselnou soustavou na tělese** $(A,+,\cdot)$. Analogicky, jestliže pro číselnou soustavu φ na okruhu $(A,+,\cdot)$ platí, že φ je zobrazení, pak tuto soustavu nazveme **jednoznačnou číselnou soustavou na okruhu** $(A,+,\cdot)$.

Jednoznačnou číselnou soustavou na tělese (respektive okruhu), tedy nazveme každou číselnou soustavu v níž dokážeme vyjádřit libovolný prvek tělesa (okruhu) nejvýše jedním způsobem.

Úmluva 1

• Nechť $\{\alpha_i\}_{i=0}^{\infty}$ a $\{\beta_i\}_{i=1}^{\infty}$ jsou posloupnosti, které jsou základem číselné soustavy na tělese $(A, +, \cdot)$. Jestliže $\exists n \in \mathbb{A}$, pro které platí:

$$(\forall i \in \mathbb{N} : \alpha_i = n^i, \beta_i = n^{-i}) \land (\alpha_0 = 1),$$

pak prvek **n** také nazýváme základem této číselné soutavy (1 označuje neutrální prvek tělesa $(A, +, \cdot)$ vzhledem k násobení).

- Nechť $\varphi(x) = (\{a_i\}_{i=0}^{\infty}, \{b_i\}_{i=1}^{\infty})$ je číselná soustava na tělese o základu **n**. Pokud $(\exists n_1 \in \mathbb{N})(\forall m \in \mathbb{N}, m > n_1) : a_m = 0$, a pokud $(\exists n_2 \in \mathbb{N})(\forall m \in \mathbb{N}, m > n_2) : b_m = 0$, budeme zapisovat: $\varphi(x) = (a_{n_1} \dots a_0, b_1 \dots b_{n_2})_n$
- V případě n=10 píšeme pouze $\varphi(x) = a_{n_1} \dots a_0, b_1 \dots b_{n_2}$
- Nechť $\{\alpha_i\}_{i=0}^{\infty}$ je posloupnost, která je základem číselné soustavy na okruhu $(A, +, \cdot)$ s jedničkou. Jestliže $\exists n \in \mathbb{A}$, pro které platí:

$$(\forall i \in \mathbb{N}_0 : \alpha_i = n^i)$$

pak prvek **n** nazýváme také základem této číselné soutavy $(n^0=1$ je jedničkou v okruhu $(A,+,\cdot)).$

- Nechť $\varphi(x)=(\{a_i\}_{i=0}^{\infty})$ je číselná soustava na okruhu o základu **n**. Pokud $(\exists n_1 \in \mathbb{N})(\forall m \in \mathbb{N}, m > n_1): a_m=0$, budeme zapisovat: $\varphi(x)=(a_{n_1}\dots a_0)_n$
- Pokud zmíníme, že číslo z je v relaci s posloupností a_n pro číselnou soustavu na okruhu o základu $\{\alpha_i\}_{i=0}^{\infty}$, pak dle definice číselné soustavy na okruhu jistě platí $z = \sum_{i=0}^{\infty} a_i \alpha_i$

1.2 Názorné příklady

Pro lepší představu definice číselné soustavy si ji předveďme na příkladu

Příklad 1

Uvažujme těleso reálných čísel (\mathbb{R} , +, ·). Tj. zvolili jsme A = \mathbb{R} . Obvyklý desetinný zápis reálných čísel je vlastně číselná soustava na tělese (\mathbb{R} , +, ·) o základu { α_i } $_{i=0}^{\infty} = \{10^i\}_{i=0}^{\infty}$, { β_i } $_{i=1}^{\infty} = \{10^{-i}\}_{i=1}^{\infty}$ a C = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Podle dohody můžeme říci, že jde o číselnou soustavu na tělese o základu 10 a platí:

$$\varphi(3 \cdot 10^2 + 2 \cdot 10^1 + 5 \cdot 10^0 + 6 \cdot 10^{-1}) = (\{a_i\}_{i=0}^{\infty}, \{b_i\}_{i=1}^{\infty}),$$

kde $\{a_i\}_{i=0}^{\infty} = (5, 2, 3, 0, 0, \dots)$ a $\{b_i\}_{i=1}^{\infty} = (6, 0, 0, \dots)$.

Podle Úmluvy 1 můžeme psát

$$\varphi(3 \cdot 10^2 + 2 \cdot 10^1 + 5 \cdot 10^0 + 6 \cdot 10^{-1}) = 325.6$$

Označme $x = 3 \cdot 10^2 + 2 \cdot 10^1 + 5 \cdot 10^0 + 6 \cdot 10^{-1}$

 $\varphi(-x)=\varphi(-(3\cdot 10^2+2\cdot 10^1+5\cdot 10^0+6\cdot 10^{-1}))$ neexistuje, ale prvek -x ovykle značíme $-x=-\varphi(x)=-325.6$, neboť obvykle nerozlišujeme mezi číslem a jeho ciferným zápisem, tj. mezi -x a $\varphi(-x)$.

2 Negabinární číselná soustava

Definice 5 Negabinární číselná soustava je číselná soustava na okruhu $(\mathbb{Z}, +, \cdot)$ o základu -2 s množinou cifer $C = \{0, 1\}$.

Negabinární číselná soustava je tedy relace φ mezi celými čísly a posloupnostmi jedniček a nul, kde $z \in \mathbb{Z}$ je v relaci s posloupností $\{a_i\}_{i=0}^{\infty}$ právě thedy, když

$$z = \sum_{i=0}^{\infty} a_i \cdot (-2)^i.$$

Ciferným zápisem celého čísla v negabinární číselné soustavě je posloupnost čísel z množiny $C = \{0,1\}$. Fakt, že $\varphi(z) = \{a_i\}_{i=0}^{\infty}$, kde $a_i = 0$ pro i > k, budeme symbolicky zapisovat $\varphi(z) = (a_k \dots a_0)_{-2}$. Pokud nebude moci dojít k omylu, tento zápis ještě zjednodušíme na $z = (a_k \dots a_0)_{-2}$. Například $5 = (101)_{-2}$, neboť $5 = 1 \cdot (-2)^2 + 0 \cdot (-2)^1 + 1 \cdot (-2)^0$.

Prozkoumáme základní vlastnosti této číselné soustavy. Nejprve ukážeme, že v negabinární číselné soustavě dokážeme najít ciferný zápis pro libovolné celé číslo.

Věta 1 Pro každé $z \in \mathbb{Z}$ existuje $\{a_i\}_{i=0}^{\infty}$, $a_i \in \{0,1\}$ taková, že $z = \sum_{i=0}^{\infty} a_i \cdot (-2)^i$. To jest, $D(\varphi) = \mathbb{Z}$.

Důkaz Protože $(\mathbb{Z}, +, \cdot)$ je euklidovský obor integrity, jistě existují čísla $z_i \in \mathbb{Z}, a_i \in \{0, 1\}$ taková, že:

$$z = z_{0} = z_{1} \cdot (-2) + a_{0}$$

$$z_{1} = z_{2} \cdot (-2) + a_{1}$$

$$z_{2} = z_{3} \cdot (-2) + a_{2}$$

$$\vdots$$

$$z_{k-1} = z_{k} \cdot (-2) + a_{k-1}$$

$$\vdots$$

$$\vdots$$

V případě, že $z_1=0$, je jasné, že $z=a_0=a_0(-2)^0$, kde $a_0\in\{0,1\}$. Dokazované tvrzení tak v tomto případě platí. Co když ale $z_0\neq 0$?

Dokážeme, že pro dost velké n je $z_{n+1}=0$. Z (1) je zřejmé, že pro libovolné $k\in\mathbb{N}$ platí

$$|z_k| = \left| \frac{z_{k-1} - a_{k-1}}{-2} \right| \le \frac{|z_{k-1}| + 1}{2} = \frac{|z_{k-1}|}{2} + \frac{1}{2}.$$
 (2)

Z (2) plyne, že pro $(k-1) \in \mathbb{N}$ také platí

$$|z_{k-1}| = \left| \frac{z_{k-2} - a_{k-2}}{-2} \right| \le \frac{|z_{k-2}|}{2} + \frac{1}{2}. \tag{3}$$

Aplikací odhadu (3) v (2) obdržíme

$$|z_k| \le \frac{|z_{k-1}|}{2} + \frac{1}{2} \le \frac{|z_{k-2}|}{2^2} + \frac{1}{2} + \frac{1}{2^2}.$$

Analogicky můžeme pokračovat a zjistíme, že pro libovolné $k \in \mathbb{N}$ platí

$$|z_k| \le \frac{|z_0|}{2^k} + \sum_{i=1}^k \left(\frac{1}{2}\right)^i = \frac{|z_0|}{2^k} + 1 - \left(\frac{1}{2}\right)^k.$$
 (4)

Vzhledem k tomu, že $\frac{|z_0|}{2^k} + 1 - \left(\frac{1}{2}\right)^k \to 1$ při $k \to \infty$, je zřejmé, že existuje $k_0 \in \mathbb{N}$ takové, že $|z_{k_0}| \le 1, 5$. To ale znamená, že $z_{k_0} \in \{-1, 0, 1\}$. Rozeberme jednotlivé případy.

- a) Jestliže $z_{k_0} = 0$, pak také $z_{k_0+1} = 0$. Hledaným n proto může být $n = k_0$.
- b) Jestliže $z_{k_0}=1$, pak $z_{k_0}=1=z_{k_0+1}\cdot (-2)+a_{k_0}$. Protože $a_{k_0}\in\{0,1\}$, musí platit $z_{k_0+1}=0$. Hledaným n proto může být $n=k_0$.
- c) Jestliže $z_{k_0} = -1$, pak $z_{k_0} = -1 = z_{k_0+1} \cdot (-2) + a_{k_0}$. Protože $a_{k_0} \in \{0,1\}$, musí platit $z_{k_0+1} = 1$. To ale podle předchozího bodu znamená, že $z_{k_0+2} = 0$. Hledaným n proto může být $n = k_0 + 1$.

Dokázali jsme, že existuje $n \in \mathbb{N}$ takové, že $z_{n+1} = 0$. Z toho plyne, že $z_n = a_n$, odtud $z_{n-1} = a_n \cdot (-2)^1 + a_{n-1}, \ldots, z = z_0 = a_n \cdot (-2)^n + a_{n-1} \cdot (-2)^{n-1} + \cdots + a_0$. Pokud zvolíme $a_i = 0$ pro i > n, pak $z = \sum_{i=0}^{\infty} a_i \cdot (-2)^i$.

Na základě úvah provedených ve výše uvedeném důkazu můžeme vyslovit následující tvrzení.

Věta 2 Pro každé $z \in \mathbb{Z}$ existuje konečná posloupnost $\{a_i\}_{i=0}^k$, $a_i \in \{0,1\}$ taková, že

$$z = \sum_{i=0}^{k} a_i (-2)^i$$

Důkaz Z důkazu Věty 1 okamžitě plyne, že prokaždé celé číslo existuje posloupnost $\{a_i\}_{i=0}^{\infty}$ s konečným počtem nenulových prvků splňující $z = \sum_{i=0}^{\infty} a_i (-2)^i$.

Vzniká otázka, zda může existovat posloupnost $\{a_i\}_{i=0}^{\infty}$ splňující $z = \sum_{i=0}^{\infty} a_i (-2)^i$ i s nekonečným počtem nenulových prvků? Jinak řečeno, existuje nějaké celé číslo z, které je v relaci φ s nějakou nekonečnou posloupností? Odpověď je záporná. V negabinární soustavě můžeme každé celé číslo vyjádřit jen pomocí konečného počtu nenulových cifer.

Věta 3 Nechť $z \in \mathbb{Z}$. Jestliže $z = \sum_{i=0}^{\infty} a_i (-2)^i$, pak posloupnost $\{a_i\}_{i=0}^{\infty}$ má konečný počet nenulových členů.

Důkaz Důkaz provedeme sporem. Předpokládejme, že číslo $z = \sum_{i=0}^{\infty} a_i (-2)^i$, kde posloupnost $\{a_i\}_{i=0}^{\infty}$ má nekonečně mnoho nenulových členů. Pak může nastat právě jeden ze tří případů:

- a) Mezi sudými členy posloupnosti $\{a_i\}_{i=0}^{\infty}$ (máme na mysli ta a_n , kde n je sudé) je nekonečně mnoho těch, které mají hodnotu 1 a existuje jen konečný počet nenulových lichých členů posloupnosti $\{a_i\}_{i=0}^{\infty}$. Je zřejmé, že $z = \sum_{i=0}^{\infty} a_i(-2)^i = \infty$. To je spor s tím, že $z \in \mathbb{Z}$.
- b) Mezi lichými členy posloupnosti $\{a_i\}_{i=0}^{\infty}$ (máme na mysli ta a_n , kde n je liché) je nekonečně mnoho těch, které mají hodnotu 1 a existuje jen konečný počet nenulových sudých členů posloupnosti $\{a_i\}_{i=0}^{\infty}$. Je zřejmé, že $z = \sum_{i=0}^{\infty} a_i(-2)^i = -\infty$. To je spor s tím, že $z \in \mathbb{Z}$.
- c) Jak mezi lichými, tak mezi sudými členy posloupnosti $\{a_i\}_{i=0}^{\infty}$ je nekonečně mnoho těch s nenulovou hodnotou.

Uvažujme n_k sudé, takové, že $a_{n_k}=1$. Označme částečný součet

$$S_{n_k} = \sum_{i=0}^{n_k} a_i (-2)^i.$$

Můžeme odhadnout hodnotu S_{n_k} :

$$S_{n_k} = (-2)^{n_k} + \sum_{i=0}^{n_k-1} a_i (-2)^i =$$

$$= 2^{n_k} + \sum_{i=0}^{n_k-1} a_i (-2)^i \ge$$

$$\ge 2^{n_k} - \sum_{i=0}^{n_k-1} 2^i =$$

$$= 2^{n_k} - \frac{2^{n_k} - 1}{2 - 1} = 1$$
(5)

Nyní uvažujme n_k liché, takové, že $a_{n_k} = 1$ a odhadněme hodnotu S_{n_k} :

$$S_{n_k} = (-2)^{n_k} + \sum_{i=0}^{n_k - 1} a_i (-2)^i =$$

$$= -2^{n_k} + \sum_{i=0}^{n_k - 1} a_i (-2)^i \le$$

$$\le -2^{n_k} + \sum_{i=0}^{n_k - 1} 2^i =$$

$$= -2^{n_k} + \frac{2^{n_k} - 1}{2 - 1} = -1$$
(6)

Z (5) plyne, že pro n_k sudé, kde $a_{n_k}=1$ (a takových je podle předpokladu nekonečně mnoho), platí $S_{n_k}\geq 1$. Zároveň z (6) plyne, že pro n_k liché, kde $a_{n_k}=1$ (a takových je podle předpokladu také nekonečně mnoho), platí $S_{n_k}\leq -1$. To by však znamenalo, že suma $\sum_{i=0}^{\infty}a_i(-2)^i$ nekonverguje. Opět docházíme ke sporu.

Nakonec dokážeme, že každé celé číslo je možné v negabinární číselné soustavě vyjádřit jen jedním způsobem, to jest, existuje právě jeden jeho ciferný zápis.

Věta 4 Pro každé $z \in \mathbb{Z}$ existuje jediná posloupnost $\{a_i\}_{i=0}^{\infty}$, $a_i \in \{0,1\}$ taková, že $z = \sum_{i=0}^{\infty} a_i(-2)^i$.

Důkaz Nejprve dokážeme tvrzení věty pro z = 0. Věta 1 říká, že existuje posloupnost $\{a_i\}_{i=0}^{\infty}$, $a_i \in \{0,1\}$ taková, že $0 = \sum_{i=0}^{\infty} a_i (-2)^i$.

Věta 3 navíc tvrdí, že posloupnost $\{a_i\}_{i=0}^{\infty}$ nemůže mít nekonečný počet nenulových členů. Musí proto existovat $k \in \mathbb{N}$ takové, že $a_i = 0$ pro i > k. Odtud

$$0 = \sum_{i=0}^{k} a_i (-2)^i \tag{7}$$

Předpokládejme, že $a_k=1$. Stejně jako v důkazu Věty 3 využijeme odhad součtu (7). Nejprve pro k liché :

$$0 = \sum_{i=0}^{k} a_i (-2)^i = 1 \cdot (-2)^k + \sum_{i=0}^{k-1} a_i (-2)^i =$$

$$= -2^k + \sum_{i=0}^{k-1} a_i (-2)^i \le$$

$$\le -2^k + \sum_{i=0}^{k-1} 2^i =$$

$$= -2^k + \frac{2^k - 1}{2 - 1} = -1$$
(8)

Dostváme sporné tvrzení $0 \leq -1.$ Analogicky prok sudé :

$$0 = \sum_{i=0}^{k} a_i (-2)^i = 1 \cdot (-2)^k + \sum_{i=0}^{k-1} a_i (-2)^i =$$

$$= 2^k + \sum_{i=0}^{k-1} a_i (-2)^i \ge$$

$$\ge 2^k - \sum_{i=0}^{k-1} 2^i =$$

$$= 2^k - \frac{2^k - 1}{2 - 1} = 1$$
(9)

Opět dostáváme sporné tvrzení. Proto $a_k = 0$. Vedoucím koeficientem se tak stává a_{k-1} . Opakováním ůvahy zjistíme, že všechny koeficienty a_i musí být rovny nule. Znamená to, že pro z = 0 existuje jediná posloupnost $\{a_i\}_{i=0}^{\infty}$, $a_i \in \{0,1\}$ taková, že $z = \sum_{i=0}^{\infty} a_i(-2)^i$. Jedná se o posloupnost, kde $\forall i \in \mathbb{N} : a_i = 0$.

Nyní předpokládejme, že existuje nenulové celé číslo $z \neq 0$, které je v relaci φ s posloupností $\{a_i\}_{i=0}^{\infty}$ a také s posloupností $\{b_i\}_{i=1}^{\infty}$.

Z Věty 3 plyne, že jak poslosloupnost $\{a_i\}_{i=0}^{\infty}$, tak posloupnost $\{b_i\}_{i=1}^{\infty}$, má jen konečně mnoho nenulových členů. Označme $k_1 = \max\{i \in \mathbb{N} : a_i = 1\}$, $k_2 = \max\{i \in \mathbb{N} : b_i = 1\}$ a $k = \max\{k_1, k_2\}$ (čísla k_1 a k_2 jistě existují, neboť z je nenulové). Potom jistě platí:

$$z = \sum_{i=0}^{k} a_i (-2)^i = \sum_{i=0}^{k} b_i (-2)^i$$
(10)

Z (11) plyne, že

$$0 = \sum_{i=0}^{k} (a_i - b_i)(-2)^i \tag{11}$$

Jak jsme ale výše dokázali, musí pro každé $i \in \{0, ..., k\}$ platit $a_i - b_i = 0$. To ovšem znamená, že $\{a_i\}_{i=0}^{\infty} = \{b_i\}_{i=1}^{\infty}$.

Důsledek 1 Negabinární číselná soustava je jednoznačná číselná soustava na okruhu celých čísel.

Důkaz Z Věty 4 okamžitě plyne, že relace φ je zobrazení.

Výše uvedené poznatky můžeme shrnout. V negabinární číselné soustavě dokážeme vyjádřit libovolné celé číslo pomocí konečného cíferného zápisu a to jediným způsobem.

Poznámka 3 Algoritmus pro hledání reprezentace čísla v negabinární číselné soustavě je založen na konstrukci popsané v důkazu Věty 1:

- 1. Necht z je číslo, které chceme reprezentovat, $z_0 = z$ a i = 0 je počáteční hodnota algoritmu.
- 2. Pro pro i>0 ze vztahu $z_i=z_{i+1}\cdot (-2)+a_i$ určíme čísla z_{i+1} a a_i tak, aby platilo $a_i\in\{0,1\}.$
- 3. Algoritmus končí pro i = n, kde $z_{n+1} = 0$.
- 4. Potom $\{a_i\}_{i=0}^{\infty}$, kde $a_i=0$ pro každé i>n, splňuje požadavek $z=\sum_{i=0}^{\infty}a_i\cdot (-2)^i$.

Příklad 2

Vyjádříme číslo z = 13 v negabinární číselné soustavě.

$$z_{i} = z_{i+1} \cdot (-2) + a_{i}$$

$$13 = -6 \cdot (-2) + 1$$

$$-6 = 3 \cdot (-2) + 0$$

$$3 = -1 \cdot (-2) + 1$$

$$-1 = 1 \cdot (-2) + 1$$

$$1 = 0 \cdot (-2) + 1$$

A opravdu, $1 \cdot (-2)^0 + 1 \cdot (-2)^2 + 1 \cdot (-2)^3 + 1 \cdot (-2)^4 = 1 + 4 - 8 + 16 = 13$. Můžeme proto psát $\varphi(13) = (11101)_{-2}$.

2.1 Sčítání celých čísel v negabinární číselné soustavě

Sčítání čísel v negabinární číselné soustavě můžeme provádět podle schématu popsaného v následujících příkladech.

• Zvolme a=9 a b=19. Dle výše uvedeného algoritmu nalezneme ciferný zápis těchto celých čísel $9=(11001)_{-2}$ a $19=(10111)_{-2}$. Cifry zapíšeme pod sebe do tabulky a do řádku pod nimi naznačíme pomocí čárek, kolik má součet a+b příslušných mocnin čísla -2:

Třetí řádek Tabulky 12 znázorňuje fakt, že $a + b = (-2)^4 + (-2)^3 + 0(-2)^2 + 0(-2)^1 + 1(-2)^0 + (-2)^4 + 0(-2)^3 + 1(-2)^2 + 1(-2)^1 + 1(-2)^0 = 2(-2)^4 + (-2)^3 + (-2)^2 + (-2)^1 + 2(-2)^0$.

Tento řádek můžeme dále upravovat a to dle následujících pravidel.

Protože $(-2)^{k+1} + 2 \cdot (-2)^k = 0$, můžeme nahradit:

Protože $2 \cdot (-2)^k = -(-2)^{k+1}$, můžeme nahradit:

$$\begin{array}{|c|c|c|c|c|c|}
\hline
0 & || & a+b \\
\hline
-| & 0 & a+b \\
\hline
\end{array}$$
(14)

Protože $-(-2)^k = (-2+1) \cdot (-2)^k = (-2)^{k+1} + (-2)^k$, můžeme nahradit:

$$\begin{array}{c|cccc}
\hline
0 & -| & a+b \\
\hline
| & | & a+b
\end{array}$$
(15)

Vzhledem k (13), (14) a (15) můžeme v úpravách Tabulky (12) pokračovat následujícím způsobem:

Z posledního řádku vyčteme, že $a+b=(1101100)_{-2}.$

A opravdu,
$$(-2)^6 + (-2)^5 + (-2)^3 + (-2)^2 = 64 - 32 - 8 + 4 = 28 = 9 + 19$$
.

• Sečtěme nyní čísla $a = -3 = (1101)_{-2}$ a $b = -5 = (1111)_{-2}$:

Proto
$$a + b = (1000)_{-2}$$
. A opravdu, $(-2)^3 = -8 = -3 + (-5)$.

2.2 Nalezení čísla opačného v negabinární číselné soustavě

K danému číslu z hledáme číslo opačné. Je zřejmé, že $-z=(-2+1)\cdot z$. Můžeme proto určit -z jako soucet čísel z a -2z. Násobení číslem -2 je lehké, stačí připsat nulu na konec ciferného zápisu. Předvedeme na příkladech:

• Nalezneme číslo opačné k číslu $z = 21 = (10101)_{-2}$.

0	1	0	1	0	1	z
1	0	1	0	1	0	-2z
						-Z

Proto $-z = (111111)_{-2}$. A opravdu, -32 + 16 - 8 + 4 - 2 + 1 = -21.

• Nalezneme číslo opačné k číslu $z = 7 = (11011)_{-2}$.

Proto $-z = (1001)_{-2}$. A opravdu, -8 + 1 = -7.

2.3 Násobení v negabinární číselné soustavě

Násobení v negabinární soustavě je analogické násobení v desítkové soustavě. Násobíme-li číslo $a=(a_n,\ldots,a_0)_{-2}$ číslem $(-2)^k=(1,\underbrace{0,\ldots,0}_{k \text{ nul}})_{-2}$, pak stačí přidat na konec ciferného zápisu k nul:

$$(1, \underbrace{0, \dots, 0}_{k \text{ nul}})_{-2} \cdot (a_n, \dots, a_0)_{-2} = (a_n, \dots, a_0, \underbrace{0, \dots, 0}_{k \text{ nul}})_{-2}.$$

Proto pro součin čísel $a=(a_n,\ldots,a_0)_{-2}$ a $b=(b_k,\ldots,b_0)_{-2}$ platí

$$a \cdot b = \sum_{i=0}^{k} a_i \cdot (b_k, \dots, b_0, \underbrace{0, \dots, 0}_{i \text{ pul}})_{-2}$$
 (20)

Demonstrujeme na příkladech

• Vynásobíme čísla $a = 5 = (101)_{-2}$ a $b = 3 = (111)_{-2}$.

 \Leftrightarrow

$$(101)_{-2} \cdot (111)_{-2} = 1 \cdot (111)_{-2} + 0 \cdot (1110)_{-2} + 1 \cdot (11100)_{-2} = (111)_{-2} + (11100)_{-2}$$

Můžeme sečíst schematicky:

0	0	1	1	1	x_1
1	1	1	0	0	x_3
					$x_1 + x_3$
	0	0			$x_1 + x_3$

Proto $a \cdot b = (110011)_{-2} = 16 - 2 + 1 = 15 = 5 \cdot 3.$

• Vynásobíme čísla $a = -9 = (1011)_{-2}$ a $b = 11 = (11111)_{-2}$.

$$(1011)_{-2} \cdot (11111)_{-2} = (11111)_{-2} + (111110)_{-2} + (11111000)_{-2}$$

Můžeme sečíst schematicky:

0	0	0	1	1	1	1	1	x_1
0	0	1	1	1	1	1	0	x_2
1	1	1	1	1	0	0	0	x_4
								$x_1 + x_2 + x_4$
	0	0				0		$x_1 + x_2 + x_4$
	0	-	0			0		$x_1 + x_2 + x_4$
						0		$x_1 + x_2 + x_4$

Proto
$$a \cdot b = (11101101)_{-2} = -128 + 64 - 32 - 8 + 4 + 1 = -99 = (-9) \cdot 11.$$

3 Komplexní číselná soustava

Úmluva 2 Pozor! Na rozdíl od jiných kapitol, v kterých se i objevuje jako index posloupnosti, budeme v této kapitole symbolem i značit imaginární část komplexního čísla.

Protože a již používame pro značení posloupnosti budeme komplexní číslo místo obvyklého značení z=a+bi značit ve většině případů z=u+vi, kde u je celočíselná část a v je imaginární část komplexního čísla.

Definice 6 Množinu $\mathbb{Z}[i]$ nazýváme množinou Gauusovských celých čísel. Je definována následovně:

$$\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\}\$$

/b/

Definice 7 Komplexní číselná soustava je číselná soustava na okruhu ($\mathbb{Z}[i], +, \cdot$) o základu $\{(-1+i)^j\}_{j=0}^{\infty}$ s množinou cifer $C = \{0,1\}$.

Komplexní číselná soustava je tedy relace φ mezi gaussovskými celými čísly a posloupnostmi jedniček a nul, kde $z \in \mathbb{Z}[i]$ je v relaci s posloupností $\{a_i\}_{i=0}^{\infty}$ právě tehdy, když

$$z = \sum_{j=0}^{\infty} a_i \cdot (-1+i)^j.$$

Ciferným zápisem Gaussova celého čísla v komplexní číselné soustavě je posloupnost čísel z množiny $C = \{0,1\}$. Fakt, že $\varphi(z) = \{a_i\}_{i=0}^{\infty}$, kde $a_i = 0$ pro i > k, budeme symbolicky zapisovat $\varphi(z) = (a_k \dots a_0)_{(-1+i)}$. Pokud nebude moci dojít k omylu, tento zápis ještě zjednodušíme na $z = (a_k \dots a_0)_{(-1+i)}$. Například $7 - 2i = (101001)_{(-1+i)}$, neboť $7 - 2i = 1 \cdot (-1+i)^5 + 0 \cdot (-1+i)^5 + 0 \cdot (-1+i)^5 + 0 \cdot (-1+i)^4 + 1 \cdot (-1+i)^3 + 0 \cdot (-1+i)^2 + 0 \cdot (-1+i)^4 + 1 \cdot (-1+i)^3 + 0 \cdot (-1+i)^2 + 0 \cdot (-1+i)^4 + 1 \cdot (-1+i)^3 + 0 \cdot (-1+i)^2 + 0 \cdot (-1+i)^4 + 1 \cdot (-1+i)^3 + 0 \cdot (-1+i)^4 + 0 \cdot (-1+i)^$

Prozkoumáme základní vlastnosti této číselné soustavy. Nejprve ukážeme, že v komplexní číselné soustavě dokážeme najít ciferný zápis pro libovolné gaussovské celé číslo.

Poznámka 4 Dělení v $\mathbb{Z}[i]$ základem soustavy provádíme následovně:

$$\forall z \in \mathbb{Z}[i]: \quad \frac{z}{-1+i} = \frac{(v-u)-(u+v)i}{2}$$

Protože:

$$\frac{z}{-1+i} = \frac{u+vi}{-1+i} = \frac{u+vi}{-1+i} \cdot \frac{1+i}{1+i} = \frac{(u+vi)\cdot(1+i)}{(-1+i)\cdot(1+i)} = \frac{(u-v)+(u+v)i}{-2} = \frac{(v-u)-(u+v)i}{2}$$

Protože jsme zatím gaussovská celá čísla neprozkoumali, definujme jako zbytek libovolné číslo z gaussovských celých čísel bez omezení, na rozdíl od dělení se zbytkem u celých čísel, kde zbytek musí být menší než dělitel. U gaussovských celých čísel jsme totiž nedefinovali relaci měnší/větší.

Všimněme si, že pro libovolné $a+bi\in\mathbb{Z}[i]$ a $c+di\in\mathbb{Z}[i]$ existují $e+fi\in\mathbb{Z}[i]$ a $g\in\mathbb{Z}[i]$ takové, že

$$a + bi = (c + di)(e + fi) + g.$$

Číslo e+fi můžeme zvolit libovolně a $g \in \mathbb{Z}[i]$ je pak dáno jednoznačně rovností g=(a+bi)-(c+di)(e+fi)

Definice 8 (Zbytek po dělení číslem v $\mathbb{Z}[i]$)

Jestliže podíl dvou gaussovských celých čísel nepatří do množiny gaussovských celých čísel, pak si můžeme vypomoci zbytkem po dělení, který v této kapitole označujeme $g \in \mathbb{Z}[i]$. Nechť a + bi a c + di jsou gaussovská celá čísla. Nechť a + bi, c + di a e + fi jsou gaussovská celá čísla. Zbytkem po dělení čísla a + bi číslem c + di nazveme číslo $g \in \mathbb{Z}[i]$ splňující

$$\frac{a+bi}{c+di} = e+fi \quad zb. \ g$$

$$a + bi = (c + di)(e + fi) + g.$$

Můžeme si rozmyslet, existuje nekonečně mnoho zbytků po dělení čísla a + bi číslem c + di, neboť máme nekonečně mnoho možností jak zvolit číslo e + fi. Proto zavedeme horní celou část komplexního čísla.

Definice 9 (Horní celá část $v \mathbb{C}$) Nechť $\lceil x \rceil$ je horní celá část reálného čísla x. Horní ceou částí komplexního čísla x + yi nazveme gaussovské celé číslo, které budeme značit $\lceil x + yi \rceil$, splňující

$$\lceil x + yi \rceil = \lceil x \rceil + \lceil y \rceil i$$

Věta 5 Nechť a+bi, e+fi a g jsou gaussovská celá čísla splňující a+bi=(-1+i)(e+fi)+g. Jestliže

$$e + fi = \left[\frac{a + bi}{-1 + i}\right] \qquad ((e + fi) \in \mathbb{Z}[i]),$$

pak zbytek $g \in \{0,1\}$.

Důkaz Pro takto definovaný zbytek g platí:

$$a + bi = (-e - f) + (e - f)i + g$$

Odtud

$$g = (a + f + e) + (f + b - e)i$$
(21)

Vyjádříme e a f:

$$e + fi = \left\lceil \frac{a+bi}{-1+i} \right\rceil = \left\lceil \frac{(b-a)-(a+b)i}{2} \right\rceil = \left\lceil \frac{b-a}{2} \right\rceil + \left\lceil \frac{-a-b}{2} \right\rceil i$$

Proto

$$e = \left\lceil \frac{b-a}{2} \right\rceil \quad \land \quad f = \left\lceil \frac{-a-b}{2} \right\rceil$$

Po dosazení f a e do rovnice (21) dostáváme:

$$g = \left(a + \left\lceil \frac{-a - b}{2} \right\rceil + \left\lceil \frac{b - a}{2} \right\rceil \right) + \left(b - \left\lceil \frac{b - a}{2} \right\rceil + \left\lceil \frac{-a - b}{2} \right\rceil \right)i$$

jelikož $b \in \mathbb{Z}$, můžeme si dovolit zapsat:

$$b - \left\lceil \frac{b-a}{2} \right\rceil = -\left\lceil \frac{b-a}{2} - b \right\rceil = -\left\lceil \frac{-a-b}{2} \right\rceil$$

a proto:

$$g = \left(a + \left\lceil \frac{-a - b}{2} \right\rceil + \left\lceil \frac{b - a}{2} \right\rceil \right) + \left(-\left\lceil \frac{-a - b}{2} \right\rceil + \left\lceil \frac{-a - b}{2} \right\rceil \right) i$$

$$g = \left(a + \left\lceil \frac{-a - b}{2} \right\rceil + \left\lceil \frac{b - a}{2} \right\rceil \right)$$

$$g = \left(\left\lceil \frac{-a - b}{2} \right\rceil + \left\lceil \frac{b + a}{2} \right\rceil \right)$$

A protože pro libovolné reálné x platí $[-x] = -\lfloor x \rfloor$,

$$g = \left(-\left\lfloor \frac{a+b}{2} \right\rfloor + \left\lceil \frac{b+a}{2} \right\rceil\right)$$

nemusíme dlouho přemýšlet a všimneme si, že se jedná o rozdíl horní celé části a dolní celé části racionálního čísla $\frac{a+b}{2}$ a tudíž pro zbytek jistě platí:

$$g = \begin{cases} 0 & \text{pro } \frac{a+b}{2} \in \mathbb{Z} \\ 1 & \text{pro } \frac{a+b}{2} \notin \mathbb{Z} \end{cases}$$

Definice 10 Norma gaussovského celého čísla

$$N(z) = N(u+vi) = \sqrt{u^2 + v^2}$$

Normu si můžeme představit jako vzdálenost v komplexní rovině od 0+0i. Absolutní hodnota je ekvivalent normy pro jednu dimenzi. Zapisujeme-li gaussovské celé číslo do absolutní hodnoty, hledáme její normu.

Poznámka 5 Stejně jako při umocnění nenulového celého čísla roste jeho norma (vzdálenost od 0), tak i při umocnění nenulového gaussovského čísla roste jeho norma. Plyne to okamžitě ze vztahu pro umocňování komplexních čísel v goniometrickém tvaru a toho, že norma nenulového gaussovského celého čísla je rovna nejméně odmocnině ze dvou

Ukažme si to na příkladu

Příklad 3

$$z = (-1 + i)$$

j	z^{j}	z^j	$N(z^j)$
0	$(-1+i)^0$	1	1
1	$(-1+i)^1$	-1 + i	$\sqrt{2}$
2	$(-1+i)^2$	-2i	2
3	$(-1+i)^3$	2+2i	$2\sqrt{2}$
4	$(-1+i)^4$	-4	4

Poznámka 6 Uvědomme si, že stejně jako u dělení celých čísel, tak i při dělení gaussovských celých čísel platí následující: Jestliže je norma dělitele větší než 1, pak výsledný podíl bude mít jistě menší normu než dělenec. Norma podílu je podíl norem dělence a dělitele.

Proveďme příklad pro znázornění.

Příklad 4

$$a = 3 + 2i b = 1 + 2i$$

$$N(a) = \sqrt{13} N(b) = \sqrt{5}$$

$$\frac{a}{b} = \frac{3+2i}{1+2i} = \frac{(3+2i)\cdot(1-2i)}{(1+2i)\cdot(1-2i)} = \frac{7-4i}{5}$$

$$N\left(\frac{3+2i}{1+2i}\right) = \sqrt{\frac{65}{25}} = \sqrt{\frac{13}{5}} = \frac{N(a)}{N(b)} < \sqrt{13}$$

Věta 6 Pro každé $z \in \mathbb{Z}[i]$ existuje posloupnost $\{a_n\}_{n=0}^{\infty} : z = \sum_{j=0}^{\infty} a_j \cdot (-1+i)^j$. To jest $D(\varphi) = \mathbb{Z}[i]$

Důkaz Z důkazu 3 již víme, že při správném postupu při děleni jsme schopni zajistit, aby byl zbytek po dělení číslem (-1+i) vždy $\in \{0,1\}$.

Protože ($\mathbb{Z}[i], +, \cdot$) je euklidovský obor integrity, jistě existují čísla $z_i \in \mathbb{Z}[i], a_i \in \{0, 1\}$ taková, že:

$$z = z_{0} = z_{1} \cdot (-1+i) + a_{0}$$

$$z_{1} = z_{2} \cdot (-1+i) + a_{1}$$

$$z_{2} = z_{3} \cdot (-1+i) + a_{2}$$

$$\vdots$$

$$z_{k-1} = z_{k} \cdot (-1+i) + a_{k-1}$$

$$\vdots$$

$$\vdots$$
(23)

V případě, že $z_1=0$, je jasné, že $z=a_0=a_0(-2)^0$, kde $a_0\in\{0,1\}$. Dokazované tvrzení tak v tomto případě platí. Co když ale $z_0\neq 0$?

Dokážeme, že pro dost velké n je $z_{n+1}=0$. Z (23) je zřejmé, že pro libovolné $k\in\mathbb{N}$ platí

$$|z_k| = \left| \frac{z_{k-1} - a_{k-1}}{-1 + i} \right| \tag{24}$$

Z poznámky 6 vyplývá následující:

Dokud $|z_{k-1}-a_{k-1}|>|-1+i|$, pak se pro každé k bude norma $|z_k|$ zmenšovat. Co se stane v případě, že $|z_{k-1}-a_{k-1}|\leq |-1+i|$? Takových případů je 9.

- (a) $z_k = 0$
- (b) $z_k = 1$, pak $z_{k+1} = 0$ $a_{k+1} = 1$, viz. (a)
- (c) $z_k = i$, pak $z_{k+1} = 1$ $a_{k+1} = 1$, viz. (b)
- (d) $z_k = -1 + i$, pak $z_{k+1} = 1$ $a_{k+1} = 0$, viz. (b)
- (e) $z_k = -i$, pak $z_{k+1} = i$ $a_{k+1} = 1$, viz. (c)
- (f) $z_k = -1 i$, pak $z_{k+1} = i$ $a_{k+1} = 0$, viz. (c)
- (g) $z_k = 1 + i$, pak $z_{k+1} = -i$ $a_{k+1} = 0$, viz. (e)
- (h) $z_k = -1$, pak $z_{k+1} = 1 + i$ $a_{k+1} = 1$, viz. (g)
- (i) $z_k = 1 i$, pak $z_{k+1} = -1$ $a_{k+1} = 0$, viz. (h)

Dokázali jsme, že existuje $n \in \mathbb{N}$ takové, že $z_{n+1} = 0$. Z toho plyne, že $z_n = a_n$, odtud $z_{n-1} = a_n \cdot (-2)^1 + a_{n-1}, \ldots, z = z_0 = a_n \cdot (-2)^n + a_{n-1} \cdot (-2)^{n-1} + \cdots + a_0$. Pokud zvolíme $a_i = 0$ pro i > n, pak $z = \sum_{i=0}^{\infty} a_i \cdot (-2)^i$.

Poznámka 7 Algoritmus pro hledání reprezentace čísla v komplexní číselné soustavě

- 1. Nechť z je číslo, které chceme reprezentovat, $z_0=z$ a j=0 je počáteční hodnota algoritmu
- 2. Provedeme následující operaci:

$$x=\frac{(v_j-u_j)-(u_j+v_j)i}{2}$$
 Jestliže $x\in\mathbb{Z}[i],$ pak $z_{j+1}=x$ $a_{j+1}=0$ V opačném případě $z_{j+1}=\left\lceil\frac{(v_j-u_j)-(u_j+v_j)i}{2}\right\rceil$ $a_{j+1}=1$

- 3. Opakujeme operaci dokud $z_{j+1} \neq 0$, nechť n je počet iterací. (n je jistě konečné, viz. 3)
- 4. $\{a_j\}_{j=0}^{\infty}$, kde $a_j=0$ pro každé j>n, splňuje požadavek $z=\sum_{j=0}^{\infty}a_j\cdot(-1+i)^j$

3.1 Sčítání gaussovských celých čísel v komplexní číselné soustavě

Sčítání čísel v komplexní číselné soustavě můžeme provádět podle schématu popsaného v následujícím příkladu.

Poznámka 8 Budeme postupovat obdobně jak u negabinární číselné soustavy. Určíme si pravidla, která platí pro komplexní číselnou soustavu a následně nám ulehčí sčítání.

Pro lehčí orientaci v rovnostech si ukažme tabulku pár mocnin čísla (-1+i) a zároveň se pro přehlednost domluvme, že toto číslo budeme v některých případech po zbytek kapitoly značit β .

Protože $4 \cdot \beta^k + \beta^{k+4} = 4 \cdot \beta^k + (-4) \cdot \beta^k = 0$, platí následující:

Protože $2 \cdot \beta^k + 2 \cdot \beta^{k+1} + \beta^{k+2} = 2 \cdot \beta^k + (-2+2i) \cdot \beta^k + (-2i)\beta^k = 0$, platí následující:

Protože $2 \cdot \beta^k - \beta^{k+2} - \beta^{k+3} = 2 \cdot \beta^k - (-2i) \cdot \beta^k - (2+2i) \cdot \beta^k = 0$, platí následující:

• Zvolme a = 4 + 3i a b = 3 - 4i. Dle výše uvedeného algoritmu nalezneme ciferný zápis těchto gaussovských celých čísel $4 + 3i = (1100111)_{(-1+i)}$ a $3 - 4i = (111101)_{(-1+i)}$. Cifry zapíšeme pod sebe do tabulky a do řádku pod nimi naznačíme pomocí čárek, kolik má součet a + b příslušných mocnin čísla (-1 + i):

Vzhledem k (26), (27) a (28) můžeme v úpravách Tabulky (29) pokračovat následujícím způsobem:

0	0	1	1	0	0	1	1	1	a	
0	0	0	1	1	1	1	0	1	b	
0	0				<u> </u>	<u> </u>		<u> </u>	a+b	(28)
0	0			<u> </u>	<u> </u>	<u> </u>		0	a+b	(27)
0	0		<u> </u>	0	0			0	a+b	(27)
			0	0	0			0	a+b	

Z posledního řádku vyčteme, že $a+b=(111000110)_{(-1+i)}$. A opravdu, $\beta^8+\beta^7+\beta^6+\beta^2+\beta^1=16-8-8i+8i-2i-1+i=\underline{7-i}=4+3i+3-4i$

3.2 Nalezení opačného čísla v komplexní číselné soustavě

K danému číslu z hledáme číslo opačné. Když se zamyslíme jak součtem různých mocnin čísla (-1+i) dojít k výsledku -1, po chvíli dojedme k následujícímu: $\beta^0+\beta^1+\beta+1+\beta 2=1+(-1+i)+(-1+i)+(-2i)=-1$ Uvědomme si, že násobení mocninou čísla $(-1+i)^k,k\in\mathbb{N}_0$ znamená posunutí všech cifer o k míst (doleva) a připsání k nul na konec ciferného zápisu. Umíme-li už gaussovské celé čísla sčítat, pak nalezení čísla opačného už nebude takový problém. Uvedeme příklad.

• Nalezneme číslo opačné k číslu $z = -1 + 2i = (11001)_{(-1+i)}$.

Proto
$$-z = (101)_{(-1+i)}$$
. A opravdu, $\beta^0 + \beta^2 = 1 - 2i = -(z) = -(-1+2i)$.

Poznámka 9 Jistě některé z čtenářů napadne otázka, zda-li by nějak jednoduše šlo najít k gaussovskému číslu jeho číslo komplexně sdružené v reprezentaci komplexní číselné soustavy. Bez převádění do desítkové soustavy a zpět bychom se však při takovém pokusu bohužel neobešli. Uvědomíme-li si, že na rozdíl od hledání opačného čísla, kde stačí číslo vynásobit číslem -1, u hledání komplexně sdruženého čísla je proces těžší. Číslo, kterým bychom naše gaussovské číslo museli přenásobit je závisle právě na tomto číslu. Nelze najít obecnou formuli jako v případě hledání opačného čísla (vynásob číslo číslem -1).

3.3 Násobení v komplexní číselné soustavě

Násobení v komplexní soustavě je analogické násobení v desítkové soustavě. Násobíme-li číslo $a=(a_n,\ldots,a_0)_{(-1+i)}$ číslem $(-1+i)^k=(1,\underbrace{0,\ldots,0}_{k \text{ nul}})_{(-1+i)}$, pak stačí přidat na konec ciferného zápisu k nul:

$$(1, \underbrace{0, \dots, 0}_{k \text{ nul}})_{(-1+i)} \cdot (a_n, \dots, a_0)_{(-1+i)} = (a_n, \dots, a_0, \underbrace{0, \dots, 0}_{k \text{ nul}})_{(-1+i)}$$

Proto pro součin čísel $a=(a_n,\ldots,a_0)_{(-1+i)}$ a $b=(b_k,\ldots,b_0)_{(-1+i)}$ platí

$$a \cdot b = \sum_{i=0}^{k} a_i \cdot (b_k, \dots, b_0, \underbrace{0, \dots, 0}_{i-1})_{-2}$$
(32)

Demonstrujeme na příkladech

• Vynásobíme čísla $a = (4 - i) = (111010111)_{(-1+i)}$ a $b = (1 - 2i) = (101)_{(-1+i)}$.

 $(111010111)_{(-1+i)} + (11101011100)_{(-1+i)}$

Můžeme sečíst schematicky:

0	0	1	1	1	0	1	0	1	1	1	x_1
1	1	1	0	1	0	1	1	1	0	0	x_3
	<u> </u>	<u> </u>		<u> </u>	0	<u> </u>		<u> </u>			$x_1 + x_3$
				0		<u> </u>		0			$x_1 + x_3$
	<u> </u>			0		-		0			$x_1 + x_3$
0	0	0		0		-		0			$x_1 + x_3$
0	0	0	0	-				0			$x_1 + x_3$
0	-	-	0					0			$x_1 + x_3$
			0					0			$x_1 + x_3$

Výpočtem ověřme.

$$(11101111011)_{(-1+i)} = (-32i) + (-16+16i) + (16) + (8i) + (4-4i) + (-4) + (2+2i) + (-1+i) + (1) = \underline{2-9i} = 4-2-i-8i = (4-i) \cdot (1-2i) = a \cdot b$$

Výsledek je správně.

4 Negafibonacciho číselná soustava

Definice 11 Negafibonacciho číselná soustava je číselná soustava na okruhu $(\mathbb{Z}, +, \cdot)$ o základu $\{F_{-(i+1)}\}_{i=0}^{\infty}$ (kde F_{-i} je i-tý člen negafibonacciho posloupnosti) s množinou cifer $C = \{0, 1\}$.

Poznámka 10 Nenechme se zmást symbolem '-' u indexu členu negafibonacciho posloupnosti. Používá se pro odlišení od členů fibonacciho posloupnosti. Nejde však o záporný index! Proto píšeme relativní indexy (např. (i+1)) do závorky.

Definice 12 NegaFibonacciho posloupnost

Je nekonečná posloupnost přirozených čísel definována rekurentní formulí:

$$F_{-0} = 0$$
, $F_{-1} = 1$, $F_{-n} = F_{-(n-2)} - F_{-(n-1)}$

Z definice 12 si lehce rozmyslíme, že každý další člen bude střídavě záporný kladný a jeho absolutní hodnota bude větší než u předchozích členů.

NegaFibonacciho posloupnost je velice podobná Fibonacciho posloupnosti.

$$F_{-n} = (-1)^{n+1} \cdot F_n$$

Příklad 5

$$F_{-2} = F_{-0} - F_{-1} = 0 - 1 = -1$$

$$F_{-3} = F_{-1} - F_{-2} = 1 - (-1) = 2$$

$$F_{-4} = F_{-2} - F_{-3} = -1 - 2 = -3$$

$$\vdots$$

$$\{F_{-(i+1)}\}_{i=0}^{\infty} = \{1, -1, 2, -3, 5, -8, 13, -21, 34, -55, 89, \dots\}$$

Úmluva 3 V negafibonacciho číselné soustavě zapisujeme: $\varphi(x) = (\{a_i\}_{i=0}^{\infty})_F$

Poznámka 11 Podle definice se jedná o nejednoznačnou číselnou soustavu, což si ukážeme v následujícím příkladu. Pokud však správně zavedeme podmínku pro reprezentaci čísla v této číselné soustavě, dostaneme jednoznačnou číšelnou soustavu. Viz. důkaz.

Příklad 6

Každé číslo, vezměme si například 27, můžeme zapsat více způsoby (nekonečně mnoha).

$$27 = 34 - 8 + 1 = (100100001)_F$$

$$= 34 - 21 + 13 + 1 = (111000001)_F$$

$$= 89 - 55 - 8 + 1 = (11000100001)_F$$

$$= 233 - 144 - 55 - 8 + 1 = (1101000100001)_F$$

Věta 7 Obměna Zeckendorfovy věty pro fibonacciho kód. [d] Pro každé celé číslo existuje právě jedna posloupnost $\{a_n\}_{n=0}^{\infty}$ kdy

- $x = \sum_{i=0}^{\infty} a_i \cdot F_{-(i+1)}$, $tj. D(\varphi) = \mathbb{Z}$
- $a_k \cdot a_{k+1} = 0$ (tj. v posloupnosti nejsou nikdy dvě jedničky vedle sebe)

Důkaz Buď libovolné $z \in \mathbb{Z}$ dáno. Rozdělme si jej na případy.

- z=0 V tomhle případě klademe každý člen posloupnosti $a_i=0$
- z < 0 Označme $n \in \mathbb{N}$ nejmenší index, pro který platí $z > -F_{-n}$ a položme $a_{n-2} = 1$ (poznámka : (n-2) namísto (n-1), protože základ je posunut $\{F_{-(i+1)}\}_{i=0}^{\infty}$). Takový index jistě najdeme, protože z negafibonacciho posloupnosti lze vybrat posloupnost vybranou, která je nekonečná a klesající. Nyní uvažujme o čísle $z_1 = -F_{-(n-1)} + z$. Uvědomme si, že $F_{-(n-1)}$ je záporné, protože F_{-n} je kladné ($z > -F_{-n}$). Zároveň víme, že $-F_{-(n-1)}$ je menší než -2z. Jak toto víme? Dokážeme sporem. Předpokládejme, že

$$-F_{-(n-1)} \ge -2z$$

$$F_{-(n-1)} \le 2z$$

$$-F_{-(n-2)} \le \frac{F_{-(n-1)}}{2} \le z$$

Zde vidíme, že by existovalo (n-2), pro které platí $z>-F_{-(n-2)}$, což je v rozporu s podmínkou, že n musí být nejmenší. Když víme, že $-F_{-(n-1)}$ je menší než -2z, pak jistě bude platit $|z_1|<|z|$. S číslem z_1 provedeme znova stejnou úvahu, kde dvojice z_1,z_2 vystřídá dvojici z,z_1 . Posloupnost čísel z_k se v konečném počtu kroků předchozích úvah dostane k nule. V případě, že nějaké $z_i>0$, se pomocí vysvětlivek v z>0 taky v následujícím kroku přiblížíme nule.

• z > 0 Označme $n \in \mathbb{N}$ nejmenší index, pro který platí $z \leq -F_{-n}$ a položme $a_{n-2} = 1$. Takový index jistě najdeme, protože z negafibonacciho posloupnosti lze vybrat posloupnost vybranou, která je nekonečná a roustoucí. Nyní uvažujme o čísle $z_1 = -F_{-(n-1)} + z$. Uvědomme si, že $F_{-(n-1)}$ je kladné, protože F_{-n} je záporné ($z \leq -F_{-n}$). Zároveň víme, že $-F_{-(n-1)}$ je větší než -2z. Jak toto víme? Dokážeme sporem. Předpokládejme, že

$$-F_{-(n-1)} \le -2z$$

$$F_{-(n-1)} \ge 2z$$

$$-F_{-(n-2)} \ge \frac{F_{-(n-1)}}{2} \ge z$$

Zde vidíme, že by existovalo (n-2), pro které platí $z \leq -F_{-(n-2)}$, což je v rozporu s podmínkou, že n musí být nejmenší. Když víme, že $-F_{-(n-1)}$ je větší než -2z, pak jistě bude platit $|z_1| < |z|$.

Takto zkonstruována posloupnost $\{a_i\}_{i=0}^{\infty}$ nebude mít nikdy dvě jedničky vedle sebe. V případě kdyby byly, pak jsme volili špatně nejmenší n.

Protože $F_{-n}+F_{-(n-1)}=F_{-(n-2)}-F_{-(n-1)}+F_{-(n-1)}=F_{-(n-2)}$, tj. $(\dots 011\dots)_F=(\dots 100\dots)$ Snadno si rozmyslíme, že nejmenší n lze zvolit v každém kroce jednoznačně, a proto je tato reprezentace jednoznačná.

Poznámka 12 Algoritmus pro hledání reprezentace čísla v negafibonacciho číselné soustavě

- 1. Nechť z je číslo, které chceme reprezentovat, $z_0=z$ a k=0 je počáteční hodnota algoritmu
- 2. Jestliže je $z_0 = 0$, končíme a zapíšeme 0
- 3. V případě, že z_k je kladné, pak najdeme nejmenší n pro které platí $z_k \leq -F_{-n}$, v případě, že je záporné hledáme nejmenší n, pro které platí $z_k > -F_{-n}$.
- 4. Zapíšeme si na pozici $a_{n-2} = 1$.
- 5. Spočítáme si $z_{k+1} = -F_{-(n-1)} + z_k$. Jestliže je $z_{k+1} = 0$, pak pro ostatní pozice posloupnosti zapíšeme $a_i = 0$, kde i > 0 a i < (n-2).
- 6. V případě, že $z_{k+1} \neq 0$, algoritmus opakujeme.

4.1 Sčítání celých čísel v negafibonacciho číselné soustavě

Sčítání čísel v negafibonacciho číselné soustavě můžeme provádět podle schématu popsaného v následujícím příkladu.

Poznámka 13 Následující rovnosti nám pomůžou v sčítání čísel v negafibonacciho číselné soustavě.

Protože $F_{-k} - F_{-(k+1)} - F_{-(k+2)} = 0$ (z definice), platí následující:

Protože $\underline{F_{-(k+3)}-2\cdot F_{-(k+1)}+F_{-k}}=-F_{-(k+2)}+F_{-(k+1)}-2\cdot F_{-(k+1)}+F_{-k}=-F_{-(k+2)}-F_{-(k+1)}+F_{-k}=0$, platí následující:

Protože

$$-F_{-(k+4)} + 3 \cdot F_{-(k+2)} - F_{-k} = F_{-(k+3)} - F_{-(k+2)} + 3 \cdot F_{-(k+2)} - F_{-k} = F_{-(k+3)} - F_{-(k+2)} + F_{-(k+2)} - F_$$

$$=\underline{F_{-(k+3)}+2\cdot F_{-(k+2)}-F_{-k}}=2\cdot F_{-(k+2)}-F_{-(k+2)}+F_{-(k+1)}-F_{-k}=F_{-(k+2)}+F_{-(k+1)}-F_{-k}=0$$
platí následující:

• Zvolme například a = 17 a b = 23. Dle výše uvedeného algoritmu nalezneme ciferný zápis těchto celých čísel $17 = (1010010)_F$ a $23 = (100101000)_F$.

Vzhledem k (39), (40) a (41) můžeme v úpravách Tabulky (42) pokračovat následujícím způsobem:

		1	0	1	0	0	1	0	a	
1	0	0	1	0	1	0	0	0	b	
	0			1	1	0		0	a+b	(39)
<u> </u>	0	<u> </u>	<u> </u>	0	0			0	a+b	(40)
0	0		0	0	0	1	<u> </u>	0	a+b	(39)
0	0	<u> </u>	0	0	0	0	0		a+b	(41)
	0	0	0		0	0	0		a+b	(41)

Z posledního řádku vyčteme, že $a + b = (100010001)_F$.

A skutečně,
$$F_{-9} + F_{-5} + F_{-1} = 34 + 5 + 1 = 40 = 17 + 23$$

Poznámka 14 Kvůli charakteru této soustavy nemůžeme hovořit o hledání opačného čísla ani o násobení čísel. V některých případech bychom se k opačnému číslu dobrali, ale postup nelze generalizovat a najít číslo vždy.

Například si ukážeme jak najít číslo opačné pro číslo $6=(10001)_F$

1	0	0	0	1	a		
-	0	0	0	-1	-a	(40)	
-1	<u> </u>	0	-	0	-a	(39)	(38)
0	0	0	<u>- </u>	0	-a	$-2 \cdot F_{-2} = -2 \cdot -1 = 2 = F_{-3}$	
0	0		0	0	-a	$-2 \cdot F_{-2} = -2 \cdot -1 = 2 = F_{-3}$	

a opravdu $F_{-6}+F_{-3}=-8+2=-6=(100100)_{\cal F}$

5 Faktoriálová číselná soustava

Definice 13 Faktoriálová číselná soustava je číselná soustava na okruhu $(\mathbb{Z}, +, \cdot)$ o základu $\{(i+1)!\}_{i=0}^{\infty}$ s množinou cifer $C = \mathbb{N}_0$.

Poznámka 15 Možná Vás jako čtenáře zarazila množina cifer C, a skutečně se nejedná o žert. Cílem této práce však není najít nejefektivnější řešení, ale prozkoumat teoretické možnosti. Je jasné, že neexistuje dostatek unikátních znaků pro pokrytí celé množiny \mathbb{N}_0 , proto je tato soustava více teoretická a neuveditelná do praxe. Pro účely této práce nám bude stačit si postačíme s její podmnožinou.

Úmluva 4 Nechť v následující kapitole symboly A=10, B=11, C=12, ...Z=35 označují příslušnou cifru.

Úmluva 5 V faktoriálové číselné soustavě zapisujeme: $\varphi(x) = (\{a_i\}_{i=0}^{\infty})_!$

Hledáme-li relaci k zápornému číslu, pak podobně jak jsme zvyklí v desítkové číselné soustavě, najdeme reprezentaci čísla opačného a zapíšeme znaménko '-' před reprezentaci:

$$x < 0$$

$$\varphi(-x) = (\{a_i\}_{i=0}^{\infty})!$$

$$\varphi(x) = -(\{a_i\}_{i=0}^{\infty})!$$

Poznámka 16 Je dobré si uvědomit, že bez jistých omezení se nejedná o jednoznačnou číselnou soustavu. Předveďme si pár způsobů jak reprezentovat číslo 10.

$$\begin{array}{rcl}
10 & = & 10 \cdot 1 & = & (A)_{!} \\
5 \cdot 2 & = & (50)_{!} \\
1 \cdot 6 + 2 \cdot 2 & = & (120)_{!} \\
\vdots & & \vdots
\end{array}$$

Věta 8 Pro každé
$$x \in \mathbb{Z}$$
 $\exists \{a_n\}_{n=0}^{\infty} : x = \begin{cases} \sum_{i=0}^{\infty} a_i \cdot (i+1)! & \text{pro } x \geq 0 \\ -\sum_{i=0}^{\infty} a_i \cdot (i+1)! & \text{pro } x < 0 \end{cases}$ To jest $D(\varphi) = \mathbb{Z}$

Důkaz Nechť $x \in \mathbb{Z}$ je dáno. Jestliže je x = 0, pak je v relaci s $(0)_!$. Jestliže x < 0, pak najdeme reprezentaci pro -x a zapíšeme před reprezentaci symbol '–'. Nyní dokažme, že pro každé x > 0 lze najít reprezentaci v faktoriálové číselné soustavě. Hledejme největší $n \in \mathbb{N}$, pro které platí: $n! \le x$. Takové jistě najdeme, protože posloupnost $\{(i+1)!\}_{i=0}^{\infty}$ je rostoucí a nekonečná. Následně si zapíšeme $a_{n-1} = \left\lfloor \frac{x}{n!} \right\rfloor$ (protože základ soustavy je posunut o index). Jelikož je $x \ge n!$, bude a_{n-1} jistě rovno alespoň 1. Následně uvažujme $x_1 = x - a_{n-1} \cdot n!$ (což je v podstatě zbytek po celočíselném dělení). Protože se jedná o zbytek po dělení, je jasné, že $x_1 < x$, a proto po opakování konečného počtu kroků se dostaneme k $x_k = 0$.

Poznámka 17 Algoritmus pro hledání reprezentace čísla v faktoriálové číselné soustavě

- 1. Nechť x je číslo, které chceme reprezentovat, $x_0 = x$ a i = 0 je počáteční hodnota algoritmu
- 2. Najdeme nejvyšší n, pro které platí: n! < x
- 3. Provedeme následující operaci: $x_i/(n-i)! = a_{n-i-1} zb. x_{i+1}$, kde $a_i, x_i \in \mathbb{N}_0$
- 4. Opakujeme operaci dokud $x_{i+1} \neq 0$, nechť n je počet iterací. (n je jistě konečné, viz. důkaz 5)

Definice 14 Omezená množina velikosti i

$$C_i = \{k, k \in \mathbb{N}_0, k \le i\} = \{0, \dots, i\}$$

Např. $C_5 = \{0, 1, 2, 3, 4, 5\}$

Věta 9 Jestliže omezíme množinu C (z které vybíráme a_i) následovně: $C = C_{i+1}$ pro a_i , pak bude vyjádření jednoznačné. To jest, každé číslo $x \in \mathbb{N}_0$ lze vyjádřit následovně:

$$x = \sum_{i=0}^{\infty} a_i(i+1)!, \quad a_i \in C_{i+1}$$

Důkaz Pokusme se obecně vyjádřit následující číslo x = n! - 1, takovým příkladem může být třeba x = 5! - 1 = 120 - 1 = 119. Po zvolení $a_i = max(C_{i+1})$ pro i < n-1 a $a_i = 0$ pro $i \ge n-1$ dosáhneme výsledku. Z definice pak $x = \sum_{i=0}^{\infty} a_i \cdot (i+1)! = 1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + \cdots + (n-2) \cdot (n-2)!$ Dokažme tuto skutečnost indukcí. V prvních případech $(n \in \{0, 1, 2\})$ je to triviální, ukažme si to na n = 3.

$$x = 3! - 1 = 5 = 1 \cdot 1! + 2 \cdot 2! = 1 + 4 = 5$$

Jako indukční krok předpokládejme, že tvrzení platí pro n, tj. číslo je x=n!-1. Sumu omezme na $x=\sum_{i=0}^{n-2}a_i\cdot(i+1)!$

Nedodělané Myšlenka je ta, že ukážu na největší číslo vyjádřené určitým počtem cifer a volbou jejich maxima, a "přehoupnutí"na jeden řád výše. Nevím jak validní by to byl důkaz, spíš jde o to aby si to čtenář rozmyslel a uvědomil ... tak možná by to měla být poznámka a ne věta.

Příklad 7

$$z = 77$$

$$77:4! = 3zb.5$$

$$5:3!=0zb.5$$

$$5:2! = 2zb.1$$

$$1:1! = 1zb.0$$

$$\Rightarrow a_0 = 1, a_1 = 2, a_2 = 0, a_3 = 3$$

$$77 = 1 \cdot 1! + 2 \cdot 2! + 3 \cdot 4!$$

$$77 = 1 + 4 + 72$$
 \checkmark

6 Závěr

Závěrečná kapitola obsahuje zhodnocení dosažených výsledků se zvlášť vyznačeným vlastním přínosem studenta. Povinně se zde objeví i zhodnocení z pohledu dalšího vývoje tématu práce, student uvede náměty vycházející ze zkušeností s řešeným tématem a uvede rovněž návaznosti na právě dokončené související práce (řešené v rámci ostatních bakalářských/diplomových prací v daném roce nebo na práce řešené na externích pracovištích).

Odkazy

- $[1]\,$ Bouchala J., $Matematick\acute{a}$ analýza ve $\it Vesm\acute{i}ru,$ strana 3
- [2] Keith C., The Gaussian integers
- [3] Pelantová E. Starosta Š., $Nestandardní\ zápisy\ čísel$
- [4] Zeckendorfova věta