

 $\sqrt{3gL}$

Mecânica Clássica

Ano letivo 2020/21 2º Semestre

Data: 9 de Julho 2021

Hora: 9h30 Duração: 2h 00m Cotação: I – 5 valores II - 5 valores III - 5 valores IV - 5 valores

Nome:	Nº mec:
	I
Assinale a opção correta (x)	:
seu centro de massa	baixo. Assumindo que o antebraço tem uma massa de 2,8 kg e o está a 12 cm do pivô da articulação do cotovelo, quanta força nsor exercer no antebraço para segurar uma esfera de 7,5 kg?
☐ 100 N ☐ 500 N ☐ 1000 N ☐ 1500 N	2,5 cm 30,0 cm pivô
movimento circular	m, na extremidade de uma corda de comprimento L , tem um no plano vertical com a velocidade suficiente (mínima) no topo ra impedir que a corda fique frouxa. A velocidade da bola na ulo é:
$egin{array}{cccc} \sqrt{4gL} \ \sqrt{5gL} \ \sqrt{7gL} \ \sqrt{2gL} \end{array}$	

3. Um garfo de dois dentes com comprimento L=0.5 m roda em torno do ponto O com velocidade angular constante $\dot{\theta}=3$ rad/s. Nesse movimento o garfo empurra uma cavilha P ao longo da guia em espiral definida pela condição $r=0.4\times\theta$ m, onde θ vem em radianos. A aceleração azimutal da cavilha no instante em que deixa a ranhura do garfo, isto é, quando r=0.5 m é:

$$a_{\theta} = 4.50 \text{ (m/s}^2)$$

$$a_{\theta} = -4.50 \text{ (m/s}^2$$

4. Um anel circular (de raio r) gira com velocidade angular constante Ω em torno do eixo x. Um ponto de massa m move-se sem atrito no interior do anel. A aceleração de Coriolis da massa no referencial do anel:

tem magnitude $2r\Omega\dot{\phi}$ sin ϕ e a direção do eixo dos zz
tem magnitude $2r\Omega\dot{\phi}\cos\phi$ e a direção do eixo dos zz
tem magnitude $2r\Omega\dot{\phi}\sin\phi$ e a direção do eixo dos yy
tem magnitude $2r\Omega\dot{\phi}\cos\phi$ e a direção do eixo dos yy

5. Considere duas massas iguais de 1 kg que oscilam presas a três molas de constante de força k, 2k e k, como mostra a figura.

Quando o sistema oscila no seu modo normal de oscilação em oposição de fase, o ponto médio da mola de constante 2k não oscila. A frequência deste modo normal é:

$$\omega = \sqrt{k}$$

$$\omega = \sqrt{6k}$$

$$\omega = \sqrt{5k}$$

II

Uma partícula de massa unitária move-se no plano xy sob acção de uma força conservativa F, de energia potencial $U(x, y) = (x^4 - x^2)y$.

- a) Determine a expressão da força correspondente a esta energia potencial.
- b) Indique o trabalho realizado por esta força quando a partícula se desloca do ponto $(x_1, y_1) = (0, 1)$ para o ponto $(x_2, y_2) = (2, 1)$.
- c) Se a partícula parte do ponto $(x_1,y_1) = (0, 1)$ com velocidade (em módulo) $v_1 = 6$ m/s, com que velocidade atinge o ponto $(x_2, y_2) = (2, 1)$?
- d) Assumindo que a partícula tem movimento confinado à reta y = 1 m, ache os pontos de equilíbrio e investigue as suas estabilidades.

Ш

Um objecto de massa m = 1 kg oscila preso a uma mola de constante $k = 4,0x10^2$ N/m. O efeito da resistência do ar dá origem a uma constante de amortecimento b = 3,0 N.s/m.

- a) Determine a frequência de oscilação deste sistema.
- b) Indique se o oscilador é subamortecido, amortecido criticamente ou sobreamortecido.
- c) Determine o intervalo de tempo necessário para a energia mecânica do oscilador decair para 5% do seu valor inicial.
- d) Assuma que o oscilador é accionado por uma força sinusoidal de valor máximo
 5 N e frequência angular de 5 rad.s⁻¹.
 - i) Qual é a frequência das oscilações?
 - ii) Se a frequência da força motriz se alterar, para que valor de frequência ocorrerá a ressonância?
 - iii) Determine a amplitude das vibrações na ressonância.

Um bloco de massa m está pendurado por um fio sem massa como mostra a figura à direita. O fio está enrolado numa roldana de massa M e raio R, que pode rodar livremente em torno do seu eixo.

- a) Determine a aceleração do bloco.
- Assumindo que o sistema está inicialmente em repouso, relacione a velocidade angular da roldana com o espaço percorrido pelo bloco usando considerações energéticas.
- c) Assuma que a roldana é perfurada, ficando com um buraco de raio *R*/2, como mostra a figura à direita.
 - i. Qual o novo momento de inércia em relação ao eixo de rotação?
 - ii. Com a perfuração, o eixo de rotação da roldana deixa de ser um eixo principal de inércia. É possível mesmo assim determinar a aceleração do bloco, seguindo os mesmos passos da alínea (a)? Justifique a sua resposta.

Formulário

$$x = \rho \cos(\phi)$$

$$x = \rho \cos(\phi)$$

$$y = \rho \sin(\phi)$$

$$z = z$$

$$x = r \sin(\theta) \cos(\phi)$$

$$y = r \sin(\theta) \sin(\phi)$$

$$z = r \cos(\theta)$$

$$\vec{v} = \vec{v}' + \vec{w} \times \vec{r}'$$

$$\vec{v} = \vec{r} = \dot{\rho} + \dot{\rho}_{\rho} + \rho + \dot{\phi}_{\rho} + \dot{z} + \dot{\rho}_{z}$$

$$\vec{v} = \dot{\rho} + \rho + \rho + \dot{\phi}_{z} + \dot{\phi}_{z}$$

$$\vec{v} = \dot{r} = \frac{1}{2}MV^{2} + \sum_{i} \frac{1}{2}m_{i}v_{i}^{2}$$

$$I = I_{CM} + Md^{2}$$

$$\vec{v} = \vec{r} = \dot{\rho} \cdot \vec{v}_{0} + \vec{r}_{0}$$

$$\vec{v} = \vec{r} = \dot{\rho} \cdot \vec{v}_{0} + \dot{r}_{0} + \dot{$$