DEPOSITION OF AMORPHOUS ALUMINUM ALLOYS AS A REPLACEMENT FOR ALUMINUM CLADDING

US Army Corrosion Summit February 3-5, 2009 Clearwater, FL

Ben Gauthier Enigmatics Inc.

Dr. Shmuel Eidelman (SAIC)
Igor Vidensky (Enigmatics, Inc.)
Nicole Tailleart, Prof. John Scully, (University of Virginia)

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding an DMB control number.	ion of information. Send commen arters Services, Directorate for In:	ts regarding this burden estimate formation Operations and Reports	or any other aspect of the s, 1215 Jefferson Davis	his collection of information, Highway, Suite 1204, Arlington
1. REPORT DATE FEB 2009	2. REPORT TYPE			3. DATES COVERED 00-00-2009	
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER	
Depostion of Amorphous Aluminum Alloys as a Replacement for Aluminum Cladding				5b. GRANT NUMBER	
				5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)				5d. PROJECT NUMBER	
				5e. TASK NUMBER	
				5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Enigmatics Inc.,9215 51st Avenue, No. 7,College Park,MD,20740				8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)	
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release; distributi	ion unlimited			
13. SUPPLEMENTARY NO	OTES				
14. ABSTRACT					
15. SUBJECT TERMS					
16. SECURITY CLASSIFIC	ATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	21	KESPONSIBLE PERSON

Report Documentation Page

Form Approved OMB No. 0704-0188

Presentation Outline

- Background
 - Aging Aircraft Challenge
 - Multifunctional Coatings for AA 2024
 - Desirable Coating Attributes
- Project Overview
 - Alloy Development
 - Pulsed Thermal Spray
 - Nanostructured Al-Co-Ce
 - Cyclic Polarization
 - Sacrificial Anode/Inhibitor Release
 - ASTM B117 Salt Fog
 - Repairing Damaged Samples
- Summary
- Future Work

Photo from R. Kelly/D. Peeler/D. Kenzie Corrosion concerns at lap-splice joint

Basis of STTR Collaboration

- UVA developed promising family of amorphous-forming aluminum alloys
 - Multi-functional corrosion protection (AFOSR MURI)
 - □ Demonstrated on melt-spun ribbons (AFOSR MURI)
 - ☐ Computationally-guided alloy coating design (AFOSR MURI)
- To be demonstrated: Alloy applied in a functional form (coated)
 - □ Requires suitable coating technology
 - Form high-density coating
 - Retain desired amorphous or near-amorphous nanostructure
- Pulsed Thermal Spray coating system developed by Enigmatics/SAIC
 - ☐ High quench rates
 - Short particle residence time
 - Low substrate thermal loading
 - ☐ Capability of using relatively small-size feedstock material (<20 micron)

Aging Aircraft Challenge

Aging Fleet

Modernization \$\$ Decrease

Mission Capable Rates & A/C Availability Decrease

- Fatigue Cracking
- Parts Availability
- Wiring
- Aging Avionics

Repair Density Increases

Flow Rates Decrease

Multi-functional Coating for AA 2024

Goal: Design metal coating with better/more potent corrosion protection functions than existing aerospace cladding (i.e., provide sacrificial protection, active inhibition, and local corrosion barrier properties).

Desirable Coating Attributes

- Barrier: Good Corrosion Resistance
 - Defined by E_{PIT} (Alloy) > E_{PIT} (AA 2024-T351)
 - Low porosity
 - Strong coating-substrate adhesion
 - Alloy composition controls E_{PIT}
 - May desire amorphous to improve corrosion barrier
- Sacrificial Anode: Good Sacrificial Anode
 - Defined by E_{OCP} (Alloy) < E_{OCP} (AA 2024-T351)
 - Alloy composition or mixed powders
 - Minimum oxide in coating composition
 - May not want to be amorphous if crystalline phases depress OCP
- Inhibitor: Release Capability- (Optimize Storage/Release)
 - Defined by on-demand release rates, ↑↓moles/cm²-s
 - Alloy composition or chemical composition
 - Minimum oxide in coating
 - Does not need to be amorphous
 - Surface engineering to optimize release

Project Overview

Develop practical PTS-applied corrosion protective coating

- Replacement/repair option for aluminum cladding
- Exploit tri-functional protection capabilities of Al-Co-Ce family of alloys
- Exploit unique advantages of PTS system
 - PTS coating method produces nanocrystalline coatings
 - Electrochemical properties show potential for high corrosion resistance
 - Application-relevant corrosion experiments
 - Salt spray
 - Demonstrate attractive capabilities suitable for corrosion application.
 - Repair capability

PTS system showing small ID coating capability

Alloy Development

Glass-forming composition identified

Stable amorphous state at 100° C (alloy stable to higher temperatures than 2024)

Tunable Properties

← OCP

M. Gao, N. Unlu, et al. 2007. M. Goldman, et al. 2005.

M. Goldman Thesis 2005.

Pulsed Thermal Spray

An intermittent thermal spray process ideally suited for forming amorphous or near-amorphous coatings. Key attributes of PTS include:

1. Rapid heating and particle acceleration

- Reduced residence time allows for use of smaller feedstock materials
- Oxidation is minimized
- High velocities are obtained (800 m/s typical)

2. Reduced substrate thermal loading

- Substrate maintained under 100° C to prevent overaging & recrystallization
- Use of small feedstock particles (<20 microns) over a cold (<100° C) substrate leads to 10⁶ K/s cooling rates and formation of amorphous or nanocrystalline coatings

3. Minimal substrate standoff (1/4-1")

- Capable of tracing complex surface features
- Allows ID coating capability

Pulsed Thermal Spray

Tantalum for gun barrel applications

WC-Co-Cr for landing gear ID

Co-Cr-Al-Y bond coat for thermal barrier system

Pure aluminum for Cd replacement

Porous Y-ZrO2 for thermal barrier system

A versatile system capable of coating a wide range of materials including:

- •Pure metals (Al, Fe, Mo, Ta, etc.)
- •Oxides (Titania, Y-ZrO2, etc.)
- •Carbides, Inconels, etc.

Nanostructured Al-Co-Ce

- \bullet Composition of feedstock powder and PTS is $\rm Al_{88}Co_{10}Ce_2$ at%, MSR is $\rm Al_{87}Co_7Ce_6$ at%
- Sample heat treated at 275 °C for 6 hrs and 285 °C for 3 hrs

KEY FINDINGS

As-sprayed PTS coatings are amorphous with fcc-Al nanocrystals. Intermetallic compounds develop after heat treatment.

Cyclic Polarization

E-log(i) polarization curves of:

- 1) as-deposited PTS coating May 07 AV5,
- 2) Heat-treated AV5
- 3) Melt Spun Ribbon
- 4) pure Al
- 5) AA 2024-T351.

All tested in de-aerated, 6 mM NaCl, after a 5-minute hold at OCP. The thickness of the coating was $\sim 100 \ \mu m$.

Heat treated sample treated at 275 C (527 F) for 6 hours followed by 285 C (545 F) for 3 hours. Grain growth and observation of intermetallics were noted in XRD (previous slide).

Nano/amorphous structure preserves desirable barrier properties. Intermetallic development suppresses them.

Sacrificial Anode and Inhibitor Release Capability

Potential, V_{SCE}

- All cells exposed to pH 2, 10 mM NaCl for 48 hrs
- (Above) area of PTS 0.15 cm², testing over 48 hrs

KEY FINDINGS

PTS demonstrates enhanced sacrificial anodic protection (compared to melt-spun ribbon). When coupled to PTS, pitting events on AA 2024 stop.

ASTM B-117 Salt Fog

Salt Fog Results (cont)

1, 2, 5 and 7 mm in width scratches in PTS coating (left) and AlcladTM (right) after 1000 hours

Repairing Damaged Samples

Alclad[™] and PTS coated samples with 1 mm and 7 mm scratches after 1000 hours of B117

After acetone cleaning.

Target repair areas around scratches.

(electrical tape masks remainder)

After gritblast preparation. (masking removed)

PTS Repair

PTS coating 1 mm scratch

PTS coating 7 mm scratch

Damaged

Recoated (unpolished)

Repaired

What is preferred surface for PTS coating? More surface area enables higher inhibitor release rates. Smoother coatings preferred for many applications. OEM may prefer "as-sprayed" for process simplicity. For this study, polished samples highlight continuity between repair and original.

Alclad Repair

Alclad[™] 1 mm scratch

Damaged

Recoated (unpolished)

Repaired

For repair of locally damaged areas, polishing of surface will not significantly affect cost/repair time.

Using PTS for repair of existing AlcladTM surfaces may be easier commercialization route than incorporating PTS coatings into an OEM spec.

Summary

- PTS-sprayed Al-Co-Ce results in a dense, nanocrystalline/amorphous coating
- The coating has been demonstrated to act as:
 - 1) Barrier to general and local corrosion
 - 2) Sacrificial anode
 - 3) Source of corrosion inhibitor ions
- Salt spray testing has confirmed the ability of the coating to protect damaged areas
- Process is suitable for in-field repair of both its own coatings and legacy cladding

Future Work

- Fatigue testing
- Continued focus on improving as-sprayed surface finish
- More environmental testing
- Further optimization of repair process
- Assessment of commercial market, development of commercialization plan

Would like to establish relationship with Air Force end-user to:

Help determine application requirements

Focus in on a few target applications

Provide guidance for in-field repair capabilities/limitations

Any Questions?