$$P(C_k \mid x_t) = \frac{p(C_k, x_t)}{\sum_{i=0}^{K} p(C_i, x_t)} = \frac{\sum_{l=0}^{L} p(C_k, x_t^l)}{\sum_{i=0}^{K} \sum_{l=0}^{L} p(C_i, x_t^l)} = \frac{\sum_{l=0}^{L} \sum_{j=0}^{J} p(C_k, w_j, x_t^l)}{\sum_{i=0}^{K} \sum_{l=0}^{L} \sum_{j=0}^{J} p(C_i, w_j, x_t^l)}$$

where

is the number of target classes

is the number of clusters in the clustering, i.e., the number of mean vectors in the codebook

is the number of channels recorded in the EEG

is the sample at time t including all the channels in the EGG

is the sample at time t corresponding to the l-th channel of the EGG

 $p(\mathcal{C}_k, x_t)$ is the joint probability of target class C_k and sample x_t

is the joint probability of target class \mathcal{C}_k and sample x_t^l

 $p(\mathcal{C}_k, x_t^l)$ $p(\mathcal{C}_k, w_j, x_t^l)$ is the joint probability of target class C_k , cluster w_j and sample In more detail

$$p(\mathcal{C}_k, w_j, x_t^l) = p(x_t^l \mid w_j, \mathcal{C}_k) \cdot P(w_j \mid \mathcal{C}_k) \cdot P(\mathcal{C}_k)$$

where

 $p(x_t^l \mid w_j, C_k)$ is the conditional probability density of observing sample x_t^l when the patient is in the state corresponding to target class C_k and AAA, this will be approached by $p(x_t^l \mid w_j)$,

 $p(x_t^l \mid w_j)$ is the conditional probability density that observing sample x_t^l belongs to cluster w_j , that is computed simply by

$$p(x_t^l \mid w_j) = \begin{cases} 1 \text{ if } x_t^l \text{ falls in cluster } w_j \\ 0 \text{ otherwise} \end{cases}$$

 $P(w_j \mid C_k)$ is the conditional probability of observing samples falling in cluster w_j when the patient is in the state corresponding to target class C_k , computed as

$$P(w_j \mid C_k) = \frac{count(w_j, C_k)}{\sum_{h=1}^{J} count(w_h, C_k)}$$

 $P(\mathcal{C}_k)$ is the *a priori* probablity of target class \mathcal{C}_k , computed as as

$$P(C_k) = \frac{count(C_k)}{\sum_{i=1}^{K} count(C_k)}$$

Finally,

$$P(\mathcal{C}_k \mid x_t) \approx \frac{\sum\limits_{l=0}^{L} \sum\limits_{j=0}^{J} p(x_t^l \mid w_j) \cdot P(w_j \mid \mathcal{C}_k) \cdot P(\mathcal{C}_k)}{\sum\limits_{i=0}^{K} \sum\limits_{l=0}^{L} \sum\limits_{j=0}^{J} p(x_t^l \mid w_j) \cdot P(w_j \mid \mathcal{C}_i) \cdot P(\mathcal{C}_i)}$$