Mathematical Analysis

Sequences of Functions

P. Boily (uOttawa)

Winter 2022

Overview

We now look at sequences of functions, which arise naturally in analysis and its applications.

In particular, we will

- discuss two types of convergence (pointwise and uniform), and
- prove some limit interchange theorems.

Outline

- 6.1 Pointwise and Uniform Convergence (p.3)
- 6.2 Limit Interchange Theorems (p.14)
- 6.3 Exercises (p.28)

6.1 – Pointwise and Uniform Convergence

Let $A \subseteq \mathbb{R}$ and $(f_n)_n$ be a sequence of functions $f_n : A \to \mathbb{R}$.

The sequence $(f_n(x))_n$ may converge for some $x \in A$ and diverge for others.

Let $A_0 = \{x \in A \mid (f_n(x))_n \text{ converges}\} \subseteq A$. For each $x \in A_0$, $(f_n(x))$ converges to a unique limit

$$f(x) = \lim_{n \to \infty} f(x),$$

the **pointwise limit** of (f_n) , which we denote by $f_n \to f$ on A_0 .

Examples:

1. Let $f_n : \mathbb{R} \to \mathbb{R}$ be defined by $f_n(x) = \frac{x}{n}$ for all $n \in \mathbb{N}, x \in \mathbb{R}$, and let f be the zero function on \mathbb{R} . Show that $f_n \to f$ on \mathbb{R} .

Proof. Let $\varepsilon > 0$ and $x \in \mathbb{R}$. According to the Archimedean Property, $\exists N_{\varepsilon,x} > \frac{|x|}{\varepsilon}$ so that

$$n > N_{\varepsilon,x} \implies \left| \frac{x}{n} - 0 \right| < \frac{|x|}{n} < \frac{|x|}{N_{\varepsilon,x}} < \varepsilon,$$

thus $f_n \to 0$ on \mathbb{R} .

2. Let $f_n : \mathbb{R} \to \mathbb{R}$ be defined by $f_n(x) = x^n$ for all $n \in \mathbb{N}, x \in \mathbb{R}$, and let f be the zero function on \mathbb{R} , except at x = 1 where f(1) = 1. Show that $f_n \to f$ on (-1,1].

Proof. Using various results seen in Chapters 3 and 4 and in the Exercises, we know that

$$\lim_{n \to \infty} x^n = \begin{cases} 0 & x \in (-1, 1) \\ 1 & x = 1 \\ \text{NA otherwise} \end{cases}$$

Thus $f_n \to f$ on (-1,1]. Note that all f_n are continuous on (1,1], but that f is not.

3. Let $f_n : \mathbb{R} \to \mathbb{R}$ be defined by $f_n(x) = \frac{x^2 + nx}{n}$ for all $n \in \mathbb{N}, x \in \mathbb{R}$, and let f be the identity function on \mathbb{R} . Show that $f_n \to f$ on \mathbb{R} .

Proof. As
$$f_n(x) = \frac{x^2}{n} + x \to f(x) = x$$
, $\forall x \in \mathbb{R}$, $f_n \to f$ on \mathbb{R} .

A sequence of functions $(f_n : A \to \mathbb{R})$ converges uniformly on $A_0 \subseteq A$ to $f : A_0 \to \mathbb{R}$, denoted by $f_n \rightrightarrows f$ on A_0 , if the threshold $N_{\varepsilon,x} \in \mathbb{N}$ in the pointwise definition is in fact **independent** of $x \in A_0$:

$$\forall \varepsilon > 0, \ \exists N_{\varepsilon} \in \mathbb{N} \text{ such that } n > N_{\varepsilon} \text{ and } x \in A_0 \implies |f_n(x) - f(x)| < \varepsilon.$$

The distinction between pointwise and uniform convergence is not unlike that between continuity and uniform continuity: convergence is uniform if the threshold is the same for all $x \in A_0$.

Clearly, if $f_n \rightrightarrows f$ on A_0 , then $f_n \to f$ on A_0 , but the converse is not necessarily true.

Examples:

1. Show that the sequence $f_n: [1,2] \to \mathbb{R}$ defined by $f_n(x) = \frac{\sin x}{nx}$ for $n \in \mathbb{N}$ converges uniformly to the zero function on [1,2].

Proof. Let $\varepsilon > 0$. According to the Archimedean Property, $\exists N_{\varepsilon} > \frac{1}{\varepsilon}$ so that

$$n>N_{arepsilon} \ ext{and} \ x\in [1,2] \implies \left|rac{\sin x}{nx}-0
ight|=\left|rac{\sin x}{nx}
ight|\leq rac{1}{nx}\leq rac{1}{n}<rac{1}{N_{arepsilon}}$$

thus
$$f_n \rightrightarrows 0$$
 on $[1,2]$.

2. Let $f_n : \mathbb{R} \to \mathbb{R}$ be defined by $f_n(x) = x^n$ for all $n \in \mathbb{N}, x \in \mathbb{R}$, and let f be the zero function on \mathbb{R} , except at x = 1 where f(1) = 1. Show that $f_n \not \rightrightarrows f$ on (-1,1].

Proof. We use the negation of the definition. Let $\varepsilon_0 = \frac{1}{4}$, and set $x_k = \frac{1}{2^{1/k}}$ and $(n_k) = (k)$. Then

$$|f_{n_k}(x_k) - f(x_k)| = \left|\frac{1}{2} - 0\right| = \frac{1}{2} \ge \varepsilon_0,$$

which completes the proof.

A sequence of functions f_n does not converge uniformly to f on A_0 if

$$\exists \varepsilon_0 > 0 \text{ with } (f_{n_k}) \subseteq (f_n) \text{ and } (x_k) \subseteq A_0 \text{ s.t. } |f_{n_k}(x_k) - f(x_k)| \ge \varepsilon_0, \ \forall k \in \mathbb{N}.$$

The definition of uniform convergence is only ever useful if a candidate for a uniform limit is available, a situation that we have encountered before.

Theorem 66. (Cauchy's Criterion for Sequences of Functions) Let $f_n:A\to\mathbb{R}$, for all $n\in\mathbb{N}$. Then, $f_n\rightrightarrows f$ on $A_0\subseteq A$ if and only if $\forall \varepsilon>0$, $\exists N_\varepsilon\in\mathbb{N}$ (indep. of $x\in A_0$) such that $|f_m(x)-f_n(x)|<\varepsilon$ whenever $m\geq n>N_\varepsilon\in\mathbb{N}$ and $x\in A_0$.

Proof. Let $\varepsilon > 0$. If $f_n \rightrightarrows f$ on A_0 , $\exists N_{\varepsilon} \in \mathbb{N}$ such that $|f_n(x) - f(x)| < \varepsilon$ when $x \in A_0$ and $n > N_{\varepsilon}$. Hence,

$$|f_m(x) - f_n(x)| = |f_m(x) - f(x) + f(x) - f_n(x)|$$

$$\leq |f_m(x) - f(x)| + |f_n(x) - f(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

whenever $x \in A_0$ and $m \ge n > N_{\varepsilon}$.

Conversely, let $\varepsilon>0$ and assume that $\exists N_{\varepsilon/2}\in\mathbb{N}$ (independent of $x\in A_0$) such that

$$m \ge n > N_{\varepsilon/2} \text{ and } x \in A_0 \implies -\frac{\varepsilon}{2} < f_m(x) - f_n(x) < \frac{\varepsilon}{2}.$$

Since $x \in A_0$, we know that $f_m(x) \to f$ on A_0 when $m \to \infty$. Thus,

$$m \geq n > N_{\varepsilon/2} \text{ and } x \in A_0 \implies \lim_{m \to \infty} -\frac{\varepsilon}{2} \leq \lim_{m \to \infty} (f_m(x) - f_n(x)) \leq \lim_{m \to \infty} \frac{\varepsilon}{2},$$

or

$$m \geq n > N_{\varepsilon/2} \text{ and } x \in A_0 \implies -\varepsilon < -\frac{\varepsilon}{2} \leq f(x) - f_n(x) \leq \frac{\varepsilon}{2} < \varepsilon,$$

and so $f_n \rightrightarrows f$ on A_0 .

Example: Let $f_n:[0,1]\to\mathbb{R}$ be the sequence of functions defined by

$$f_n(x) = \begin{cases} nx, & x \in [0, 1/n] \\ 2 - nx, & x \in [1/n, 2/n] \\ 0 & x \in [2/n, 1] \end{cases}$$

for all $n \in \mathbb{N}$. Let $f : [0,1] \to \mathbb{R}$ be the zero function on [0,1]. Show that $f_n \to f$ on [0,1] but $f_n \not\rightrightarrows f$ on [0,1].

Proof. If x = 0, $f_n(0) = 0$ for all n so $(f_n(0))$ converges to 0.

If $x\in(0,1]$, $\exists N_x>2/x$ by the Archimedean Property. Thus, for $n>N_x$, $f_n(x)=0$ since $x>\frac{2}{N}>\frac{2}{n}$, so $f_n(x)\to 0$ on (0,1]

Combining these results, $f_n \to f$ on [0,1].

Now, let $\varepsilon_0 = \frac{1}{2}$. Note that since $|f_n(\frac{1}{n}) - f(\frac{1}{n})| = 1$ for all $n \in \mathbb{N}$, we can never obtain

$$|f_n(x) - f(x)| < \varepsilon$$

for all $x \in [0,1]$, and so $f_n \not \rightrightarrows f$ on [0,1].

The fact that we have to separate the proof for pointwise convergence into distinct argument depending on the value of x is a strong indication that the convergence cannot be uniform (although it could be that it was possible to do a one-pass proof and that the insight escaped us...)

Intuitively, we can think of the convergence process in the last example as being a flattening process: what happens to the tents' peak as $n \to \infty$?

The fact that we have to "break" the tents in order to get to the pointwise limit is another indication that the convergence cannot be uniform.

6.2 – Limit Interchange Theorems

It is often necessary to know if the limit f of a sequence of functions (f_n) is continuous, differentiable, or Riemann-integrable. It is not always the case, even when the f_n are continuous, differentiable, or Riemann-integrable.

Examples:

- 1. Consider the sequence of functions $f_n:[0,1]\to\mathbb{R}$ defined by $f_n(x)=x^n$ for $n\in\mathbb{N}$ and $f:[0,1]\to\mathbb{R}$ be the zero function except at x=1 where f(1)=1. Then f_n is continuous on [0,1] for all $n\in\mathbb{N}$, but f is not.
- 2. The same functions f_n are differentiable on [0,1] for all $n \in \mathbb{N}$, but f is not (as it is not continuous at x=1).

3. Consider the functions $f_n:[0,1]\to\mathbb{R}$ defined by

$$f_n(x) = \begin{cases} n^2 x, & x \in [0, 1/n] \\ -n^2 (x - 2/n), & x \in [1/n, 2/n] \\ 0 & x \in [2/n, 1] \end{cases}$$

for $n \geq 2$.

Since f_n is continuous on [0,1] for all $n \geq 2$, f_n is Riemann-integrable on [0,1] for all $n \geq 2$, with

$$\int_0^1 f_n = \frac{1}{2} \cdot \frac{2}{n} \cdot n = 1, \quad \text{for all } n \ge 2.$$

If x = 0, $f_n(0) = 0$ for all n so $(f_n(0))$ converges to 0.

If $x \in (0,1]$, $\exists N_x > 2/x$ by the Archimedean Property. Thus, for $n > N_x$, $f_n(x) = 0$ since $x > \frac{2}{N} > \frac{2}{n}$, so $f_n(x) \to 0$ on (0,1]

So
$$f_n \to f$$
 on $[0,1]$, but $\int_0^1 f = 0 \neq 1 = \lim_{n \to \infty} \int_0^1 f$.

Note that none of the "convergences" in the previous example are uniform on [0,1]. When the convergence $f_n \rightrightarrows f$ on A is uniform, then if the f_n are

- continuous on A, so is f;
- differentiable on A, so is f, with

$$f' = \frac{d}{dx} \left[\lim_{n \to \infty} f_n \right] = \lim_{n \to \infty} \left[\frac{d}{dx} f_n \right] = \lim_{n \to \infty} f'_n;$$

lacktriangle Riemann-integrable on A, then so is f, with

$$\int_{A} f = \int_{A} \lim_{n \to \infty} f_n = \lim_{n \to \infty} \int_{A} f_n.$$

We finish this chapter by proving three Limit Interchange Theorems.

Theorem 67. Let $f_n : A \to \mathbb{R}$ be continuous on A for all $n \in \mathbb{N}$. If $f_n \rightrightarrows f$ on A, then f is continuous on A.

Proof. Let $\varepsilon > 0$. By definition, $\exists H_{\varepsilon/3} \in \mathbb{N}$ such that

$$n > H_{\varepsilon/3}$$
 and $x \in A \implies |f_n(x) - f(x)| < \frac{\varepsilon}{3}$.

Let $c \in A$. According to the Triangle Inequality,

$$|f(x) - f(c)| \le |f(x) - f_{H_{\varepsilon/3}}(x)| + |f_{H_{\varepsilon/3}}(x) - f_{H_{\varepsilon/3}}(c)| + |f_{H_{\varepsilon/3}}(c) - f(c)|$$

$$< \frac{\varepsilon}{3} + |f_{H_{\varepsilon/3}}(x) - f_{H_{\varepsilon/3}}(c)| + \frac{\varepsilon}{3}$$

whenever $n > H_{\varepsilon/3}$.

19

But $f_{H_{\varepsilon/3}}$ is continuous at c, so $\exists \delta_{\varepsilon/3} > 0$ such that $|f_{H_{\varepsilon/3}}(x) - f_{H_{\varepsilon/3}}(c)| < \frac{\varepsilon}{3}$ when $x \in A$ and $|x - c| < \delta_{\varepsilon/3}$. Thus $|f(x) - f(c)| < \varepsilon$ whenever $x \in A$ and $|x - c| < \delta_{\varepsilon/3}$, so f is continuous at c. As $c \in A$ is arbitrary, f is continuous on A.

Theorem 68. Let $f_n:[a,b] \to \mathbb{R}$ be a sequence of differentiable functions on [a,b] such that $\exists x_0 \in [a,b]$ with $f_n(x_0) \to z_0$, and $f''_n \rightrightarrows g$ on [a,b]. Then $f_n \rightrightarrows f$ on [a,b] for some function $f:[a,b] \to \mathbb{R}$ such that f'=g.

Proof. Let $\varepsilon > 0$ and $x \in [a,b]$. Since $f'_n \rightrightarrows g$ on [a,b], the sequence f'_n satisfies Cauchy's Criterion, and so $\exists N_1 \in \mathbb{N}$ such that

$$m \ge n > N_1 \text{ and } y \in [a, b] \implies |f'_m(y) - f'_n(y)| < \frac{\varepsilon}{2(b-a)}.$$

As $(f_n(x_0))$ converges it is also a Cauchy sequence, so $\exists N_2 \in \mathbb{N}$ such that

$$m \ge n > N_2 \implies |f_m(x_0) - f_n(x_0)| < \frac{\varepsilon}{2}.$$

According to the Mean Value Theorem, $\exists y$ between x and x_0 such that

$$(f_m(x) - f_n(x)) - (f_m(x_0) - f_n(x_0)) = (f'_m(y) - f'_n(y))(x - x_0).$$

Hence,

$$|f_m(x) - f_n(x)| \le |f_m(x_0) - f_n(x_0)| + |f'_m(y) - f'_n(y)| \cdot |x - x_0|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2(b-a)}(b-a) = \varepsilon$$

for all $m \ge n > \max\{N_1, N_2\}$.

Both N_1 and N_2 are independent of x, so $N_{\varepsilon} = \max\{N_1, N_2\}$ also is, and thus $(f_n)_n$ satisfies Cauchy's Criterion, which yields $f_n \rightrightarrows f$ on [a, b].

It remains only to show that f'=g on [a,b]. Let $\varepsilon>0$ and $c\in [a,b]$. Since (f'_n) satisfies Cauchy's Criterion (as $f'_n\rightrightarrows g$), $\exists K_1\in\mathbb{N}$ (independent of x) such that

$$m \ge n > K_1 \text{ and } y \in [a, b] \implies |f'_m(y) - f'_n(y)| < \frac{\varepsilon}{3}.$$

But $f' \rightrightarrows g'$, so $\exists K_2 \in \mathbb{N}$ (independent of c) such that

$$n \ge K_2 \text{ and } c \in [a, b] \implies |f'_n(c) - g(c)| < \frac{\varepsilon}{3}.$$

Set $K_{\varepsilon} > \max\{K_1, K_2\}$.

As $f'_{K_{\varepsilon}}(c)$ exists, $\exists \delta_{\varepsilon} > 0$ such that

$$0 < |x - c| < \delta_{\varepsilon} \text{ and } x \in [a, b] \implies \left| \frac{f_{K_{\varepsilon}}(x) - f_{K_{\varepsilon}}(c)}{x - c} - f'_{K_{\varepsilon}}(c) \right| < \frac{\varepsilon}{3}.$$

According to the Mean Value Theorem, $\exists y$ between x and c such that

$$(f_m(x) - f_n(x)) - (f_m(c) - f_n(c)) = (f'_m(y) - f'_n(y))(x - c).$$

If $x \neq c$, then $m \geq n > K_{\varepsilon}$ and $x \in [a, b] \implies$

$$\left| \frac{f_m(x) - f_m(c)}{x - c} - \frac{f_n(x) - f_n(c)}{x - c} \right| = |f'_m(y) - f'_n(y)| < \frac{\varepsilon}{3}.$$

Letting $m \to \infty$ (i.e. $f_m \to f$ on A), we get

$$n > K_{\varepsilon} \text{ and } x \in [a,b] \implies \left| \frac{f(x) - f(c)}{x - c} - \frac{f_m(c) - f_n(c)}{x - c} \right| \le \frac{\varepsilon}{3}.$$

Combining all of these inequalities, for $0<|x-c|<\delta_{\varepsilon}$, $x\in[a,b]$, and $k>K_{\varepsilon}$, we have

$$\left| \frac{f(x) - f(c)}{x - c} - g(c) \right| = \left| \frac{f(x) - f(c)}{x - c} - \frac{f_k(x) - f_k(c)}{x - c} + \frac{f_k(x) - f_k(c)}{x - c} - f'_k(c) + f'_k(c) - g(c) \right|$$

$$\leq \left| \frac{f(x) - f(c)}{x - c} - \frac{f_k(x) - f_k(c)}{x - c} \right| + \left| \frac{f_k(x) - f_k(c)}{x - c} - f'_k(c) \right| + \left| \frac{f_k(x) - f_k(c)}{x - c} - f'_k(c) \right| + \left| \frac{f_k(x) - f_k(c)}{x - c} - f'_k(c) \right|$$

which is to say that f'(c) = g(c).

Theorem 69. Let $f_n:[a,b]\to\mathbb{R}$ be Riemann-integrable on [a,b] for all $n\in\mathbb{N}$. If $f_n\rightrightarrows f$ on [a,b], then f is Riemann-integrable on [a,b] and

$$\int_{a}^{b} f = \lim_{n \to \infty} \int_{a}^{b} f_{n}.$$

Proof. Let $\varepsilon > 0$. Since $f_n \rightrightarrows f$ on [a,b], $\exists K_{\varepsilon} \in \mathbb{N}$ (independent of x) such that

$$n \ge K_{\varepsilon} \implies |f_n(x) - f(x)| < \frac{\varepsilon}{4(b-a)}.$$

Since $f_{K_{\varepsilon}}$ is Riemann-integrable, $\exists P_{\varepsilon} = \{x_0, \ldots, x_n\}$ a partition of [a, b] such that

$$U(P_{\varepsilon}; f_{K_{\varepsilon}}) - L(P_{\varepsilon}; f_{K_{\varepsilon}}) < \frac{\varepsilon}{2},$$

according to the Riemann Criterion.

For all $1 \leq i \leq n$, set

$$m_i(f) = \inf\{f(x) \mid x \in [x_{i-1}, x_i]\}, \ m_i(f_{K_{\varepsilon}}) = \inf\{f_{K_{\varepsilon}}(x) \mid x \in [x_{i-1}, x_i]\},$$

 $M_i(f) = \sup\{f(x) \mid x \in [x_{i-1}, x_i]\}, \ M_i(f_{K_{\varepsilon}}) = \sup\{f_{K_{\varepsilon}}(x) \mid x \in [x_{i-1}, x_i]\}.$

Then according to the reverse triangle inequality, we have

$$|f(x)| < |f_{K_{\varepsilon}}(x)| + \frac{\varepsilon}{4(b-a)} \implies |f(x)| < M_{i}(f_{K_{\varepsilon}}) + \frac{\varepsilon}{4(b-a)} \text{ on } [x_{i-1}, x_{i}]$$

$$\implies M_{i}(f) < M_{i}(f_{K_{\varepsilon}}) + \frac{\varepsilon}{4(b-a)} \text{ on } [x_{i-1}, x_{i}].$$

Similarly, $m_i(f) \geq m_i(f_{K_{\varepsilon}}) - \frac{\varepsilon}{4(b-a)}$ on $[x_{i-1}, x_i]$. Thus,

$$U(P_{\varepsilon}; f) = \sum_{i=1}^{n} M_i(f)(x_i - x_{i-1})$$

$$\leq \sum_{i=1}^{n} M_i(f_{K_{\varepsilon}})(x_i - x_{i-1}) + \frac{\varepsilon}{4(b-a)} \sum_{i=1}^{n} (x_i - x_{i-1}) = U(P_{\varepsilon}; f_{K_{\varepsilon}}) + \frac{\varepsilon}{4}.$$

Similarly, $L(P_{\varepsilon}; f) \geq L(P_{\varepsilon}; f_{K_{\varepsilon}}) - \frac{\varepsilon}{4}$. Hence

$$U(P_{\varepsilon};f) - L(P_{\varepsilon};f) \le U(P_{\varepsilon};f_{K_{\varepsilon}}) - L(P_{\varepsilon};f_{K_{\varepsilon}}) + \frac{\varepsilon}{2} < \varepsilon.$$

Thus, according to the Riemann Criterion, f is Riemann-integrable.

Finally, let $\varepsilon>0$. As $f_n \rightrightarrows f$ on [a,b], $\exists \hat{K}_{\varepsilon}$ (indep. of x) such that

$$n > \hat{K}_{\varepsilon} \text{ and } x \in [a, b] \implies |f_n(x) - f(x)| < \frac{\varepsilon}{2(b - a)}.$$

Consequently, $\int_a^b f_n \to \int_a^b f$, since $n > \hat{K}_{\varepsilon} \Longrightarrow$

$$\left| \int_a^b f_n - \int_a^b f \right| = \left| \int_a^b (f_n - f) \right| \le \int_a^b |f_n - f| \le \int_a^b \frac{\varepsilon}{2(b - a)} = \frac{\varepsilon}{2} < \varepsilon. \quad \blacksquare$$

6.3 - Exercises

- 1. Show that $\lim_{n\to\infty} \frac{nx}{1+n^2x^2} = 0$ for all $x\in\mathbb{R}$.
- 2. Show that if $f_n(x) = x + \frac{1}{n}$ and f(x) = x for all $x \in \mathbb{R}$, $n \in \mathbb{N}$, then $f_n \rightrightarrows f$ on \mathbb{R} but $f_n^2 \not \rightrightarrows g$ on \mathbb{R} for any function g.
- 3. Let $f_n(x) = \frac{1}{(1+x)^n}$ for $x \in [0,1]$. Denote by f the pointwise limit of f_n on [0,1]. Does $f_n \Rightarrow f$ on [0,1]?
- 4. Let (f_n) be the sequence of functions defined by $f_n(x) = \frac{x^n}{n}$, for $x \in [0,1]$ and $n \in \mathbb{N}$. Show that (f_n) converges uniformly to a differentiable function $f:[0,1] \to \mathbb{R}$, and that the sequence (f'_n) converges pointwise to a function $g:[0,1] \to \mathbb{R}$, but that $g(1) \neq f'(1)$.
- 5. Show that $\lim_{n \to \infty} \int_{1}^{2} e^{-nx^{2}} dx = 0$.

- 6. Show that $\lim_{n\to\infty}\int_{\pi/2}^{\pi}\frac{\sin(nx)}{nx}\,dx=0.$
- 7. Show that if $f_n
 ightharpoonup f$ on [a,b], and each f_n is continuous, then the sequence of functions $(F_n)_n$ defined by

$$F_n(x) = \int_a^x f_n(t) dt$$

also converges uniformly on [a, b].

Solutions

1. **Proof.** If x = 0, then $\frac{nx}{1 + n^2x^2} = 0 \to 0$.

If $x \neq 0$, let $\varepsilon > 0$. By the Archimedean property, $\exists N_{\varepsilon} > \frac{1}{\varepsilon |x|}$ (depending on x) s.t.

$$\left| \frac{nx}{1 + n^2 x^2} - 0 \right| = \frac{n|x|}{1 + n^2 x^2} < \frac{n|x|}{n^2 x^2} = \frac{1}{n|x|} < \frac{1}{N_{\varepsilon}|x|} < \varepsilon$$

whenever $n > N_{\varepsilon}$, i.e. $\frac{nx}{1+n^2x^2} \to 0$ on \mathbb{R} .

2. **Proof.** Let $\varepsilon > 0$. By the Archimedean property, $\exists N_{\varepsilon} > \frac{1}{\varepsilon}$ (independent of x) s.t.

$$|f_n(x) - f(x)| = \left| x + \frac{1}{n} - x \right| = \frac{1}{n} < \frac{1}{N_{\varepsilon}} < \varepsilon$$

whenever $n > N_{\varepsilon}$, i.e. $f_n \rightrightarrows 0$ on \mathbb{R} .

Now, $(f_n(x))^2 = x^2 + \frac{2x}{n} + \frac{1}{n^2} \to x^2$ for all $x \in \mathbb{R}$. Hence, $f_n^2 \to g$ on \mathbb{R} , where $g(x) = x^2$. If f_n^2 converges uniformly to any function, it will have to do so to g. But let $\varepsilon_0 = 2$ and $x_n = n$. Then

$$\left| (f_n(x_n))^2 - g(x_n) \right| = \left| \frac{2x_n}{n} + \frac{1}{n^2} \right| = 2 + \frac{1}{n^2} \ge 2 = \varepsilon_0$$

for all $n \in \mathbb{N}$ (this is the negation of the definition of uniform convergence). Hence f_n^2 does not converge uniformly on \mathbb{R} .

3. **Proof.** First note that $1 \le 1 + x$ on [0, 1].

In particular, $\frac{1}{1+x} \leq 1$ on [0,1]. If $x \in (0,1]$, then $\frac{1}{(1+x)^n} \to 0$, according to one of the examples done in class.

If x = 0, $\frac{1}{(1+x)^n} = \frac{1}{1^n} = 1 \to 1$; i.e. $f_n \to f$ on [0,1], where

$$f(x) = \begin{cases} 0, & x \in (0,1] \\ 1, & x = 0 \end{cases}.$$

However, $f_n \not\rightrightarrows f$ by theorem 67, since f_n is continuous on [0,1] for all $n \in \mathbb{N}$, but f is not.

4. **Proof.** The sequence $f_n(x) = \frac{x^n}{n} \to f(x) \equiv 0$ on [0,1].

Indeed, let $\varepsilon > 0$. By the Archimedean Property, $\exists N_{\varepsilon} > \frac{1}{\varepsilon}$ s.t.

$$\left| \frac{x^n}{n} - 0 \right| \le \frac{|x|^n}{n} \le \frac{1}{n} < \frac{1}{N_{\varepsilon}} < \varepsilon$$

whenever $n > N_{\varepsilon}$. Note that f is differentiable and f'(x) = 0 for all $x \in [0,1]$. Furthermore, $f'_n(x) = \frac{nx^{n-1}}{n} = x^{n-1} \to g(x)$ on [0,1], where

$$g(x) = \begin{cases} 0, & x \in [0, 1) \\ 1, & x = 1 \end{cases},$$

by one of the examples I did in class. Then $g(1) = 1 \neq 0 = f'(1)$.

5. **Proof.** As $\left(e^{-nx^2}\right)' = -2nxe^{-nx^2} < 0$ on [1,2] for all $n \in \mathbb{N}$, e^{-nx^2} is decreasing on [1,2] for all n, that is

$$e^{-nx^2} < e^{-n(1)^2} = e^{-n}$$
 for all $n \in \mathbb{N}$.

Now,

$$f_n(x) = e^{-nx^2} \Rightarrow f(x) \equiv 0$$
 on $[1, 2]$.

Indeed, let $\varepsilon>0$. By the Archimedean Property, $\exists N_{\varepsilon}>\ln\frac{1}{\varepsilon}$ (independent of x) s.t.

$$\left| e^{-nx^2} - 0 \right| = e^{-nx^2} < e^{-Nx^2} \le e^{-N} < \varepsilon$$

whenever $n > N_{\varepsilon}$. Then (and only because of this uniform convergence),

$$\lim_{n \to \infty} \int_{1}^{2} e^{-nx^{2}} dx = \int_{1}^{2} \lim_{n \to \infty} e^{-nx^{2}} dx = \int_{1}^{2} 0 dx = 0,$$

by the Limit Interchange Theorem for Integrals.

6. **Proof.** For $n \in \mathbb{N}$, define $f_n : [\pi/2, \pi] \to \mathbb{R}$ by

$$f_n(x) = \frac{\sin(nx)}{nx}.$$

Then each f_n is continuous. For all $n \in \mathbb{N}$, we have

$$\sup_{x \in [\pi/2, \pi]} \left\{ \left| \frac{\sin(nx)}{nx} \right| \right\} \le \frac{2}{n\pi}.$$

Since $2/n\pi \to 0$ as $n \to \infty$, we have $f_n \rightrightarrows 0$ (why?). Then the limit interchange theorem for integrals applies, and we have

$$\lim_{n \to \infty} \int_{\pi/2}^{\pi} \frac{\sin(nx)}{nx} \, dx = \int_{\pi/2}^{\pi} 0 \, dx = 0.$$

This completes the proof.

7. **Proof.** Define $F(x) = \int_a^x f(t) dt$. Let $\varepsilon > 0$. Since $f_n \rightrightarrows f$, $\exists N \in \mathbb{N}$ such that, for all $n \geq N$, we have

$$|f_n(x) - f(x)| < \frac{\varepsilon}{b-a} \quad \forall x \in [a, b].$$

Then, for all $n \geq N$ and $x \in [a, b]$, we have

$$|F_n(x) - F(x)| = \left| \int_a^x f_n(t) dt - \int_a^x f(t) dt \right| \le \int_a^x |f_n(t) - f(t)| dt$$

$$\le (x - a) \cdot \frac{\varepsilon}{b - a} \le \varepsilon.$$

Thus $F_n \rightrightarrows F$ on [a, b].