SAS® Club

Der Business Analytics Club für SAS User 27. November 2019 | Wien

Agenda

15:30 - 16:00 Uhr	Registrierung
16:00 - 16:15 Uhr	Begrüßung & Einleitung Gerhard Svolba, SAS
16:15 - 16:45 Uhr	Die Kommunikation von analytischen Ergebnissen und die Interpretation von ML-Modellen mit SAS Viya - 5 Tipps und Tricks, die Ihr Leben als Data Scientist vereinfachen Gerhard Svolba, SAS
16:45 - 17:10 Uhr	SAS in der Cloud Phillip Manschek, SAS
17:10 - 17:40 Uhr	Simplification of Routine Data Analyses & Tasks Using SAS Christoph Gruber, Novartis / EBEWE Pharma Ges.m.b.H.
17:40 - 18:00 Uhr	Die Neuerungen im SAS Enterprise Guide 8.1 Christian Url, mayato AT GmbH
ab 18:00 Uhr	Gemütliches Get2Gether

• Downloads: https://github.com/gerhard1050/DACH-SASUserGroups

Communicating Analytical Results and Interpreting your ML Models with SAS Viya – 5 Tips and Tricks that will make your life as data scientist easier

Gerhard Svolba
Analytic Solutions Architect
SAS Austria

Credits for Input to: Martin Schütz, Tamara Fischer

Twitter: https://github.com/gerhard1050
https://gerhardsvo

We (data scientists) want to communicate our results

- Acceptance of our results
- Better understanding better usage in the business process
- Less "last minute" misunderstandings

THE SAS DECISIONING PROCESS

ANALYTICS BUSINESS

5 Tips (featuring SAS Visual Analytics, SAS Model Studio and SAS Coding)

- 1. Perform interactive cutoff analysis
- 2. Quantify the importance of explanatory variables
- 3. Turn on the model interpretability charts
- 4. Use a decision tree to "explain"
- 5. Display the (hidden) regression coefficient

Tip #1:

Perform interactive cutoff analysis to illustrate the consequences on the Good/Bad classification

Illustrate the outcome (deliverable) of a predictive model

- A predictive model
- creates predictions.
- (In case of a binary classification task it outputs the probability the that event takes place.)
- You want to show this!
- And illustrate the consequences of different cutoff values for the business decision.

Select "Derive Predicted" in a predictive model created with SAS Visual Analytics

Name your output variables

You receive new variables in the data

- ∨ Derived (Logistic Regression: Octob...
 - Pred_FraudEvent_LogReg
 - ♦ Pred_Prob
 - x Prediction cutoff for Pred_Fraud...

Also allows you to interactively "play" with the cutoff point

- Important to illustrate the outcome of a predictive model
- What are the consequences of a certain cutoff point on
 - Number of customers, transactions flagged with YES
 - Expected false positives, false negatives, ...

Tip #2:

Quantify the importance of explantory variables in a predictive model with a business case

Variable importance chart in a gradient boosting model

What happens, if we do not have variable "AFFLUENCE" available?

- Will other variables substitute the missing content?
- Will the model quality go down?
- Create a copy of your model
- 2. Remove the variable of interest
- 3. Compare the old and the new model

Gradient boosting - TargetBuy 1

∨ Response

⋒ TargetBuy

∨ Predictors

□ DemClusterGroup

⋒ DemReg

M Gender

Age

PromSpend

PromTime

+ Add

Compare the old and the new model

• Lift drops from 3.47 to 3.07

 What does that mean in €?

Calculating a business case

- Assume we have 2 Mio customers
- A campaign offer is sent to the top 5 % (100,000)
- A responding customer contributes a profit of € 35
- Assuming a baseline (autonomous) response of 12 %
 - A lift of 3.47 \rightarrow 41.64 %
 - A lift of 3.07 → 36.84 %
- Not having variable AFFLUENCE costs us 4.8 % response
 - 100,000 * 4.8 % = 4800 missed responders * €35 = € 168,000

Quantify the effect of data quality on your business results

- Part III contains simulation case studies for data availability, data quantity, data correctness and data completeness
- Illustrated in € (\$) values based on a business case study
- http://support.sas.com/svolba
- https://github.com/gerhard1050/Data-Quality-for-Data-Science-Using-SAS

How much does it cost to use a simpler (better explainable) model for my predictions

Tip #3:

Turn on the model interpretability charts in SAS Model Studio

✓ Model Interpretability
 ✓ Global Interpretability
 ✓ Variable importance
 ✓ PD plots
 Maximum number of variables:

Partial Dependency Plot (PD)

Individual Conditional Expectation (ICE)

Local Interpretable Model-Agnostic Explanation (LIME)

Tip #4:

Use a decision tree to "explain" why customers received a high/low predicted probability

General Idea

Decision Tree creates segments with high/low predicted probability

You can interpret the segments

Young affluent ladies → PredictedProb = 93 %

Young non-affluent men→
PredictedProb = 20 %

Tip #5:

Display the (hidden) regression coefficient of the reference category

Survival analysis performed for employee headcount data

- Observe Careers per Employee
 - Different length
 - "Left company" or "censored"

How long will Gerhard still stay in our company?

Given certain risk factors, what is the expected survival in 6 months and the probability to resign within the next 6 months. TechKnowH... EM SURVFCST **EM SURVEVENT** T FCST EmpNo Department Gender 1003 TECH SUPPORT YES 128 0.240 0.000 134 1010 TECH SUPPORT YES 109 0.240 0.011 115 SALES ENGINEER YES 90 0.108 0.313 M TECH SUPPORT M YES 83 0.386 0.13389 TECH SUPPORT YES 82 0.1770.219 88 ADMINSTRATION 0.471 NO 74 0.066 80 M 1045 ADMINSTRATION Μ NO 70 0.494 0.053 76 1054 TECH SUPPORT YES 59 0.316 0.102 65 1055 SALES ENGINEER YES 0.313 0.103

Regression Analysis – Displaying the (hidden) value of the reference category when using deviation coding

Class Level Information						
		Design				
Class	Value Varial				bles	
Department	ADMINSTRATION	-1	-1	-1	-1	
	MARKETING	1	0	0	0	
	SALES_ENGINEER	0	1	0	0	
	SALES_REP	0	0	1	0	
	TECH_SUPPORT	0	0	0	1	
TechKnowHow	NO	-1				
	YES	1				

Analysis of Maximum Likelihood Estimates							
			Parameter	Standard			Hazard
Parameter		DF	Estimate	Error	Chi-Square	Pr > ChiSq	Ratio
Department	MARKETING	1	-1.15513	0.47794	5.8414	0.0157	0.606
Department	SALES_ENGINEER	1	0.82336	0 52244	2.4838	0.1150	4.380
Department	SALES_REP	1	0.62976	0.23224	4.6436	0.0312	3.609
Department	TECH_SUPPORT	1	0.35572	0.29940	1.4117	0.2348	2.744
TechKnowHow	YES	1	-0.63474	0.27370	5.3781	0.0204	0.281

-[(-1.155)+0.823+0.630+0.356] = -0.654

```
PROC PHREG DATA=Employees;
```

RUN;

Download the SAS-macro

https://github.com/gerhard1050/Applying-Data-Science-Using-SAS

Macro Parameters

The following parameters can be specified with the macro.

ParmEst

The name of the data set that contains the ParameterEstimates, created with the ODS OUTPUT statement. Default = ParameterEstimates.

ClassLevels

The name of the data set that contains the ClassLevelInfo, created with the ODS OUTPUT statement. Default = ClassLevelInfo.

OutputDS

The name of the data set that shall contain the output data set. Default = ParmEst XT.

The output format of ParmEst and ClassLevels varies between different regression procedures in SAS. Please contact the author (Email: sastools.by.gerhard@gmx.net) in case your output file does not match the requirements of the macro.

Copyright © SAS Institute Inc. All rights reserve

Bonus Tip:

Use sparklines and bars to illustrate properties of customer segments and clusters

Cluster Profiling

- Create a crosstab in SAS Visual Analytics
- Add barcharts to illustrate the values

Clust erID ▼	Frequency	Frequency Percent	Age	Female	Affluence	PromSpend	PromTime	Response%
5	19,463	19.42%	63	0.55	11	6071	6	21.60%
4	29,902	29.84%	42	0.56	8	2475	6	28.52%
3	9,459	9.44%	42	0.67	15	2588	6	66.48%
2	24,192	24.14%	63	0.50	6	5798	6	7.71%
1	4,727	4.72%	67	0.51	8	7525	21	14.13%

Use a Parallel Coordinate plot to illustrate cluster features

Parallel Coordinates of Selected Variables

More affluent customers buy more often

Non-Buyers are older and less affluent

Conclusion

- Communicating model results has many dimensions
- SAS Viya offers you a broad range of tools and methods to illustrate your findings
- Machine learning models that are understood are likely to have a higher business impact

Agenda

15:30 - 16:00 Uhr	Registrierung
16:00 - 16:15 Uhr	Begrüßung & Einleitung Gerhard Svolba, SAS
16:15 - 16:45 Uhr	Die Kommunikation von analytischen Ergebnissen und die Interpretation von ML-Modellen mit SAS Viya - 5 Tipps und Tricks, die Ihr Leben als Data Scientist vereinfachen Gerhard Svolba, SAS
16:45 - 17:10 Uhr	SAS in der Cloud Phillip Manschek, SAS
17:10 - 17:40 Uhr	Simplification of Routine Data Analyses & Tasks Using SAS Christoph Gruber, Novartis / EBEWE Pharma Ges.m.b.H.
17:40 - 18:00 Uhr	Die Neuerungen im SAS Enterprise Guide 8.1 Christian Url, mayato AT GmbH
ab 18:00 Uhr	Gemütliches Get2Gether

• Downloads: https://github.com/gerhard1050/DACH-SASUserGroups

