

Welcome and Deep Feedforward Networks

Deep Learning Decal

Hosted by Machine Learning at Berkeley

Welcome!

Agenda

Course Logistics

Background on Machine Learning

Deep Feedforward Networks

Optimization

Regularization

Questions

Course Logistics

Jordan Prosky

Quinn Tran

Michael Zhang

Neel Kant

Course Details

- Wednesday 5:00 7:00 pm
 - Reading group from 6:00 7:00 pm
- Book: Deep Learning, by Ian Goodfellow, Yoshua Bengio, and Aaron Courville, available at deeplearningbook.org
 - Chapters 6-20

Grading

- 40% attendance
- Project Option:
 - 5% Proposal
 - 5% Milestone 1
 - 10 % Milestone 2
 - 40 % Final Project Submission
- Reading Group Option:
 - 20 % Reading Group
 - 40 % Weekly Question Submission
- Choose which option best suites your goals for this class

Background on Machine Learning

- Supervised Learning
- Unsupervised Learning
- Semi-supervised Learning / Active Learning

- Supervised Learning
- Unsupervised Learning
- Semi-supervised Learning / Active Learning

- Supervised Learning
- Unsupervised Learning
- Semi-supervised Learning / Active Learning

- Supervised Learning
- Unsupervised Learning
- Semi-supervised Learning / Active Learning

Examples of Supervised Learning

Prod: The hotel is really beautiful. Moviestar feeling and decadence from yesterday. The pool is designed by Johnny Weissmuller. So it was a trendy pool. The food at the restaurant was really good. Very nice and heioful service at the frontiesk.

Cons: this is what made my grade a 3 instead of 4. We had problems to get the wi-fi working. If you're not depend this is not interesting. We talked several times with the front desk.

When we're there they had party event in the pool area between noon and 5 PM. The pool area was occupied with young party animals. So the area wasn't fun for UD.

Supervised Learning

Goal

Given some data, X, and labels for that data y, we wish to find a map $f: X \mapsto y$. Such that given new unlabelled data, our function can predict its labels.

Deep Feedforward Networks

Biological Motivations

- Human brain is composed of neurons.
- Each neuron receives dopaminergic signals.
- Dopaminergic signals act as reward signal, much like gradient update.

Biological Motivations

- Human brain is composed of neurons.
- Each neuron receives dopaminergic signals.
- Dopaminergic signals act as reward signal, much like gradient update.

Biological Motivations

- Human brain is composed of neurons.
- Each neuron receives dopaminergic signals.
- Dopaminergic signals act as reward signal, much like gradient update.

What does an artificial neuron look like?

- Takes in input from each neuron in the previous layer.
- Outputs to each neuron in the next layer.
- Maintains a set of weights for each input.

$$y = g(\sum_i w_i y_i)$$

Activation Function

- Adds nonlinearity to networks.
- Various kinds of activation functions are shown on the right.

Activation Function

- Adds nonlinearity to networks.
- Various kinds of activation functions are shown on the right.

Universal Approximation Theorem

Theorem

Any function can be arbitrarily approximated by a feedforward network with only one hidden layer.

Universal Approximation Theorem

Theorem

Any function can be arbitrarily approximated by a feedforward network with only one hidden layer.

So why do we use Deep Neural Networks?

Universal Approximation Theorem

Theorem

Any function can be arbitrarily approximated by a feedforward network with only one hidden layer.

- When do we want to use a deep network?
- A wide network?
- A narrow network?

- When do we want to use a deep network?
- A wide network?
- A narrow network?

- When do we want to use a deep network?
- A wide network?
- A narrow network?

Optimization

1. Define an objective.

- 1. Define an objective.
- 2. Quantify the objective.

- 1. Define an objective.
- 2. Quantify the objective.
- 3. Optimize the network weights.

- 1. Define an objective. \checkmark
- 2. Quantify the objective.
- 3. Optimize the network weights.

- 1. Define an objective. 🗸
- 2. Quantify the objective. X
- 3. Optimize the network weights. X

Loss Functions

- Loss function *J* should encapsulate qualitative objective.
- Has to be differentiable.
- Has to be computationally tractable.

Examples:

- Mean squared error
- Cross entropy
- Zero-one loss
- Hinge loss
- Logistic loss

Loss Functions

- Loss function J should encapsulate qualitative objective.
- Has to be differentiable.
- Has to be computationally tractable.

Examples:

- Mean squared error
- Cross entropy
- Zero-one loss
- Hinge loss
- Logistic loss

- Loss function J should encapsulate qualitative objective.
- Has to be differentiable.
- Has to be computationally tractable.

- Mean squared error
- Cross entropy
- Zero-one loss
- Hinge loss
- Logistic loss

- Loss function J should encapsulate qualitative objective.
- Has to be differentiable.
- Has to be computationally tractable.

- Mean squared error
- Cross entropy
- Zero-one loss
- Hinge loss
- Logistic loss

- Loss function *J* should encapsulate qualitative objective.
- Has to be differentiable.
- Has to be computationally tractable.

- Mean squared error
- Cross entropy
- Zero-one loss
- Hinge loss
- Logistic loss

- Loss function *J* should encapsulate qualitative objective.
- Has to be differentiable.
- Has to be computationally tractable.

- Mean squared error
- Cross entropy
- Zero-one loss
- Hinge loss
- Logistic loss

- Loss function J should encapsulate qualitative objective.
- Has to be differentiable.
- Has to be computationally tractable.

- Mean squared error
- Cross entropy
- Zero-one loss
- Hinge loss
- Logistic loss

- Loss function J should encapsulate qualitative objective.
- Has to be differentiable.
- Has to be computationally tractable.

- Mean squared error
- Cross entropy
- Zero-one loss
- Hinge loss
- Logistic loss

Mean Squared Error

Cross Entropy Loss

$$-\frac{1}{N}\sum_{i}^{N}\sum_{j}^{m}(y_{ij}\log(\hat{y}_{ij}))$$

- Used for categorical classification tasks
- Negative log-likelihood of the predicted probability distribution under the real probability distribution
- Equivalent to minimizing KL-divergence between the predicted probability distribution and the real probability distribution.

Cross Entropy Loss

$$-\frac{1}{N}\sum_{i}^{N}\sum_{j}^{m}(y_{ij}\log(\hat{y}_{ij}))$$

- Used for categorical classification tasks
- Negative log-likelihood of the predicted probability distribution under the real probability distribution
- Equivalent to minimizing KL-divergence between the predicted probability distribution and the real probability distribution.

Cross Entropy Loss

$$-\frac{1}{N}\sum_{i}^{N}\sum_{j}^{m}(y_{ij}\log(\hat{y}_{ij}))$$

- Used for categorical classification tasks
- Negative log-likelihood of the predicted probability distribution under the real probability distribution
- Equivalent to minimizing KL-divergence between the predicted probability distribution and the real probability distribution.

- 1. Define an objective. 🗸
- 2. Quantify the objective.
- 3. Optimize the network weights.

- 1. Define an objective. 🗸
- 2. Quantify the objective. 🗸
- 3. Optimize the network weights.

- 1. Define an objective. 🗸
- 2. Quantify the objective. 🗸
- 3. Optimize the network weights. X

Gradient Descent

- We have a loss function, J.
- Wish to minimize J w.r.t. θ . $\theta := \theta \eta \nabla_{\theta} J(\theta)$

Gradient Descent

- We have a loss function, *J*.
- Wish to minimize J w.r.t. θ .

$$\theta := \theta - \eta \nabla_{\theta} J(\theta)$$

Gradient Descent

- We have a loss function, J.
- Wish to minimize J w.r.t. θ .

$$\theta := \theta - \eta \nabla_{\theta} J(\theta)$$

Stochastic Gradient Descent

- Key difference: update based on random sample of training set instead of whole training set.
- Will go more in depth in future lecture.

Backpropagation

https://ml.berkeley.edu/blog/2017/02/04/tutorial-3/

Generalized Backprop: Differentiation of Computational Graphs

Goal: We wish to calculate the derivative of an output (or outputs) of a computational graph, with respect to another part of the graph.

What is a computational graph?

- Each node is an operation
- Each edge indicates flow of data through the graph.

What is a computational graph?

- Each node is an operation
- Each edge indicates flow of data through the graph.

Methods for computing derivatives

- Numerical methods
- Symbolic Differentiation
- Autodifferentiation

Methods for computing derivatives

- Numerical methods
- Symbolic Differentiation
- Autodifferentiation

Methods for computing derivatives

- Numerical methods
- Symbolic Differentiation
- Autodifferentiation

Autodifferentiation

- Exact method for computing derivatives
- Instead of using symbols and rules like symbolic differentiation, we define a new arithmetic: Dual Numbers

Autodifferentiation

- Exact method for computing derivatives
- Instead of using symbols and rules like symbolic differentiation, we define a new arithmetic: Dual Numbers.

Dual Numbers

Extend real numbers by adding a component, much like how Complex numbers have an imaginary component, you can think of dual numbers as having an additional "derivative" component.

$$\mathbf{x} = (x, \dot{x})$$

Now we have to define a new arithmetic on these new kinds of numbers.

Dual Number arithmetic

Addition:

$$(x, \dot{x}) + (y, \dot{y}) = (x + y, \dot{x} + \dot{y})$$

Multiplication:

$$(x, \dot{x}) \times (y, \dot{y}) = (xy, x\dot{y} + \dot{x}y)$$

Division:

$$\frac{1}{(x,\dot{x})} = \left(\frac{1}{x}, -\frac{\dot{x}}{x^2}\right)$$

Autodiff

How do we use this arithmetic to compute arbitrary derivatives?

Example: Suppose we wish to calculate the derivative of $f(x, y) = x^2 y$ w.r.t x.

$$\mathbf{x} = (x, 1)$$

$$\mathbf{y} = (y, 0)$$

$$\mathbf{x}^{2} = (x, 1) \times (x, 1) = (x^{2}, x * 1 + x * 1)$$

$$\mathbf{x}^{2} \times \mathbf{y} = (x^{2}, 2x) \times (y, 0) = (x^{2}y, x^{2} * 0 + 2x * y)$$

$$= (x^{2}y, 2xy)$$

- 1. Define an objective. 🗸
- 2. Quantify the objective. 🗸
- 3. Optimize the network weights.

- 1. Define an objective. 🗸
- 2. Quantify the objective. 🗸
- 3. Optimize the network weights. 🗸

Problem: Overfitting

Regularization

How to we regularize Neural Nets?

- Parameter penalties (L_1 and L_2 penalties)
- Dataset augmentation
- Ensemble methods
- Dropout
- Adversarial Training

L₂ weight penalty

- Add L₂ penalty term
- $\lambda ||\mathbf{w}||^2$
- Adds constraint to optimization problem.

L₂ weight penalty

- Add L₂ penalty term
- $\lambda ||\mathbf{w}||^2$
- Adds constraint to optimization problem.

L₂ weight penalty

- Add L₂ penalty term
- $\lambda ||\mathbf{w}||^2$
- Adds constraint to optimization problem.

- Add L_1 penalty term
- $\lambda ||w||$
- Creates sparsity in representation
- Acts as feature selector

- Add L_1 penalty term
- $\lambda ||\mathbf{w}||$
- Creates sparsity in representation
- Acts as feature selector

- Add L₁ penalty term
- $\lambda ||\mathbf{w}||$
- Creates sparsity in representation
- Acts as feature selector

- Add L_1 penalty term
- $\lambda ||\mathbf{w}||$
- Creates sparsity in representation
- Acts as feature selector

- Training on more data leads to better generalization
- Can create new fake data to make our dataset larger
- Examples
 - Translation/Rotation of images for image classification
 - Cropping images
 - Adding random noise to data

- Training on more data leads to better generalization
- Can create new fake data to make our dataset larger
- Examples
 - Translation/Rotation of images for image classification
 - Cropping images
 - Adding random noise to data

- Training on more data leads to better generalization
- Can create new fake data to make our dataset larger
- Examples
 - Translation/Rotation of images for image classification
 - Cropping images
 - Adding random noise to data

- Training on more data leads to better generalization
- Can create new fake data to make our dataset larger
- Examples
 - Translation/Rotation of images for image classification
 - Cropping images
 - Adding random noise to data

- Training on more data leads to better generalization
- Can create new fake data to make our dataset larger
- Examples
 - Translation/Rotation of images for image classification
 - Cropping images
 - Adding random noise to data

- Training on more data leads to better generalization
- Can create new fake data to make our dataset larger
- Examples
 - Translation/Rotation of images for image classification
 - Cropping images
 - Adding random noise to data

- Combine different models together to improve generalization.
- Example ensemble methods
 - Bagging
 - Model Averaging
 - Dropout
 - Boosting

- Combine different models together to improve generalization.
- Example ensemble methods
 - Bagging
 - Model Averaging
 - Dropout
 - Boosting

- Combine different models together to improve generalization.
- Example ensemble methods
 - Bagging
 - Model Averaging
 - Dropout
 - Boosting

- Combine different models together to improve generalization.
- Example ensemble methods
 - Bagging
 - Model Averaging
 - Dropout
 - Boosting

- Combine different models together to improve generalization.
- Example ensemble methods
 - Bagging
 - Model Averaging
 - Dropout
 - Boosting

- Combine different models together to improve generalization.
- Example ensemble methods
 - Bagging
 - Model Averaging
 - Dropout
 - Boosting

- Create *k* different datasets from your original dataset by sampling with replacement.
- Train a model on each of the k datasets
- Take majority vote or average over the k different models to come up with decision.

Bagging

- Create k different datasets from your original dataset by sampling with replacement.
- Train a model on each of the k datasets
- Take majority vote or average over the k different models to come up with decision.

Bagging

- Create k different datasets from your original dataset by sampling with replacement.
- Train a model on each of the k datasets
- Take majority vote or average over the k different models to come up with decision.

- Take any combination of k models
 - Trained on different datasets OR
 - Have different architectures OR
 - Have different loss functions OR
 - ...
- Average across model outputs

- Take any combination of k models
 - Trained on different datasets OR
 - Have different architectures OR
 - Have different loss functions OR
 - ...
- Average across model outputs

- Take any combination of k models
 - Trained on different datasets OR
 - Have different architectures OR
 - Have different loss functions OR
 - ...
- Average across model outputs

- Take any combination of k models
 - Trained on different datasets OR
 - Have different architectures OR
 - Have different loss functions OR
 - ...
- Average across model outputs

- Take any combination of k models
 - Trained on different datasets OR
 - Have different architectures OR
 - Have different loss functions OR
 - ...
- Average across model outputs

- Take any combination of k models
 - Trained on different datasets OR
 - Have different architectures OR
 - Have different loss functions OR
 - ...
- Average across model outputs

- Randomly "drop" neurons during training with some probability p.
- Keep all neurons during testing.
- Efficiently creates an ensemble of different network architectures.

Dropout

- Randomly "drop" neurons during training with some probability p.
- Keep all neurons during testing.
- Efficiently creates an ensemble of different network architectures.

Dropout

- Randomly "drop" neurons during training with some probability p.
- Keep all neurons during testing.
- Efficiently creates an ensemble of different network architectures.

(b) After applying dropout.

- Neural Networks are highly susceptible to small changes in their input
- An adversary can choose noise to add to input that "fools" the neural network.
- There are many methods to do this:
 - Fast Gradient Sign Method (FGSM)
 - Jacobian-based Saliency Map Approach (JSMA)
 - Carlini Methods

- Neural Networks are highly susceptible to small changes in their input
- An adversary can choose noise to add to input that "fools" the neural network.
- There are many methods to do this:
 - Fast Gradient Sign Method (FGSM)
 - Jacobian-based Saliency
 Map Approach (JSMA)
 - Carlini Methods

- Neural Networks are highly susceptible to small changes in their input
- An adversary can choose noise to add to input that "fools" the neural network.
- There are many methods to do this:
 - Fast Gradient Sign Method (FGSM)
 - Jacobian-based Saliency Map Approach (JSMA)
 - Carlini Methods

- Neural Networks are highly susceptible to small changes in their input
- An adversary can choose noise to add to input that "fools" the neural network.
- There are many methods to do this:
 - Fast Gradient Sign Method (FGSM)
 - Jacobian-based Saliency Map Approach (JSMA)
 - Carlini Methods

- Neural Networks are highly susceptible to small changes in their input
- An adversary can choose noise to add to input that "fools" the neural network.
- There are many methods to do this:
 - Fast Gradient Sign Method (FGSM)
 - Jacobian-based Saliency Map Approach (JSMA)
 - Carlini Methods

- Neural Networks are highly susceptible to small changes in their input
- An adversary can choose noise to add to input that "fools" the neural network.
- There are many methods to do this:
 - Fast Gradient Sign Method (FGSM)
 - Jacobian-based Saliency Map Approach (JSMA)
 - Carlini Methods

Questions

Questions?