

closure of (ABDE)+ is {A,B,E,D} Therefore it is not a candidate key; closure of (ABEF)+ is {A,B,E,F,C,D} Therefore it is candidate key;

THEREFORE CANDIDATE KEY IS (ABEF)+;

(ABEF)+ ITSELF IS A SUPERKEY;

Add two attribute C,D to (ABEF)+

(ABCEF)+ is a super key;

(ABDEF)+ is a super key;

(ABCDEF)+ is a super key;

(ABEF)+, (ABCEF)+, (ABDEF)+, (ABCDEF)+ are superkey's

Question3:

Minimal cover of F

Every dependency in F must have a single attribute on the right hand side.

$$Z \rightarrow UT \Rightarrow Z \rightarrow U, Z \rightarrow T$$

Remove all extraneous attributes such as $P \rightarrow Y$ and $PQ \rightarrow Y$ then Q is extraneous attribute So, $X \rightarrow Z$ and $XY \rightarrow Z$ then Y is extraneous attribute so remove it $\Rightarrow X \rightarrow Y$

So, In given Functional dependencies: -

1. Convert Right hand side attribute into single

 $Z \rightarrow U$, $Z \rightarrow T$, $ZW \rightarrow X$, $ZW \rightarrow Y$

2. Remove extraneous attribute: $X\rightarrow Z$, $XY\rightarrow Z$

$$Z \rightarrow T$$
, $ZU \rightarrow T \Rightarrow Z \rightarrow T$

3. Remove redundant Functional dependencies :

$$X \rightarrow Z, Z \rightarrow T$$

So, minimal cover of given F is :-

 $X \rightarrow Z$, $Z \rightarrow U$, $Z \rightarrow T$, $ZW \rightarrow X$, $ZW \rightarrow Y$, $WT \rightarrow Z$

Question4:

Equivalent conditions are FD1 covers FD2 and FD2 covers FD1.

Equivalent with FD2: Check if FD2 covers FD1:

Part of relations in FD1: BC \rightarrow D, AB \rightarrow C, C \rightarrow A, D \rightarrow E, BE \rightarrow C, D \rightarrow G, are already in FD2, so we do not need to find them in FD2.

The rest of relations in FD1: ACD \rightarrow ACDBEG so, ACD \rightarrow B.

 $CG \rightarrow CGADBEG$ so, $CG \rightarrow B$, $CG \rightarrow D$.

 $CE \rightarrow CEA$ so, $CE \rightarrow A$, but $CE \rightarrow G$ in FD1 is not covered by FD2.

Finally, FD1 and FD2 are not equivalent.

Equivalent conditions are FD1 covers FD3 and FD3 covers FD1. Equivalent with FD3: Check if FD3 covers FD1:

Part of relations in FD1: BC \rightarrow D, CG \rightarrow D, AB \rightarrow C, C \rightarrow A, D \rightarrow E, BE \rightarrow C, D \rightarrow G, CE \rightarrow G, are already in FD3, so we do not need to find them in FD3.

The rest of relations in FD1: ACD \rightarrow ACDGEB so,ACD \rightarrow B. CG \rightarrow CGDEAB so,CG \rightarrow B.

 $CE \rightarrow CEGADB$ so, $CE \rightarrow A$.

As a result, FD3 covers FD1.

Check if FD1 covers FD3:

Similarly, AB \rightarrow C, C \rightarrow A, D \rightarrow G, BE \rightarrow C, CG \rightarrow D, CE \rightarrow G,BC \rightarrow D, D \rightarrow E are not in FD1. CD \rightarrow CDAEGB so,CD \rightarrow B.

As a result, FD1 covers FD3.

Finally, FD1 and FD3 are equivalent.