Définition

Une onde correspond à la propagation d'une perturbation des propriétés physiques locales du milieu

Ondes progressives

La vitesse de propagation de l'onde est sa célérité (notée c)

Onde se propageant vers la droite : y(x,t) = f(x-ct)Onde se propageant vers la gauche : y(x,t) = g(x+ct)

Exemples d'ondes

Onde acoustique (son) perturbation de la pression de l'air

20 Hz - 20 kHz : audition humaine jusqu'à ~200 kHz : chauve-souris 2 MHz - 3 GHz : échographie

Onde électromagnétique perturbation du champ électromagnétique

Onde mécaniques : déformation d'un milieu matériel Exemples: tremblements de terre, déformation d'une corde, ...

Ondes

Ondes progressives sinusoïdales

Onde qui se propage vers les $y(x,t) = A\sin(kx - wt + \varphi)$ x croissants (la droite) Phase

Périodicité spatiale

k: nombre d'onde (m⁻¹) $\lambda = \frac{2\pi}{k}$: longueur d'onde (m)

Périodicité temporelle

 ω : pulsation (rad.s⁻¹) $f = \frac{\omega}{2\pi}$: fréquence (Hz ou s⁻¹) $T = \frac{1}{f}$: période (s)

 $c = \frac{\omega}{k} = f\lambda = \frac{\lambda}{T}$ Célérité

$y(x,t) = A\sin(kx + wt + \varphi)$

Onde qui se propage vers les x décroissants (la gauche)

Interférences

Déphasage $\Delta \varphi$: différence de phase entre deux ondes

 $\Delta \varphi = kd = 2\pi \frac{d}{\gamma}$

Formule de Fresnel

 $Y = \sqrt{A^2 + B^2 + 2AB\cos(\Delta\varphi)}$ Superposition de deux ondes d'amplitudes A et B, déphasées de $\Delta \varphi$ Amplitude

Interférences lumineuses

Chemin optique = distance \times indice noté [SM]

Le déphasage entre deux ondes luminueses qui interfèrent est

$$\Delta \varphi = \frac{2\pi}{\lambda_0} \left([SM]_2 - [SM]_1 \right) = \frac{2\pi}{\lambda_0} \delta$$