

[3] a) We already know that logical AND is represented
as: AND: Xx. Ly. X Y fls
Which Stands for: If x is false then return false,
other wise, return y.
Similarly logical Implication stands for; If x is
false then return true, otherwise, returny.
Thus, by ical implication can be written as:
IMPL: [xx. xy. x y tru]
- So, in terms of bare lambda calculus, it would be:
$[\lambda_x, \lambda_y, \chi_y(\lambda_x, \lambda_y, \chi)]$
b) IMPL fls tru
$(\lambda x. \lambda y. x y tru) Fls tru$
(ly. fls y tru) tru
fls tru tru
$(\lambda \times \lambda y, y) (\lambda_{x}, \lambda_{y}, x) + ru$
λy. y tru ⇒ fru
2) / Y 4 /

Defining some operations and numerals: MUL: \lan. \ SUCC: An. 18. Az. S(n SZ) (increment by 1) Exp: \n. \m. m (MULn) C1 (exponentiation) Co: 15. 12. Z C1: As. LZ. SZ C2: AS. Az. S(SZ) a) $1. N \rightarrow 2n+1$ SUCC (MUL (C2 N)) 11. n -> n +1 SUCC (MUL (n n)) iii. $n \rightarrow 2^n + 1$ SUCC(EXP (C2 n)) $iv. n \rightarrow 2^{n+1}$ (=) EXDAPAGED EXP (C2 SUCC(19))

Succ (MUL (
$$C_1$$
 C_2))

Succ (C_4)

Cs

Succ (C_4)

```
e) (\lambda s.\lambda z.s (s z)) (\lambda s.\lambda z.s (s z)) (\lambda b.\lambda f.\lambda t.b t f) (\lambda f.\lambda t.t)
A = (\lambda s. \lambda z. s (s z))
B = (\lambda b.\lambda f.\lambda t.b t f)
C = (\lambda f.\lambda t.t)
D = A B
=> A A B C
=> (\lambda s.\lambda z.s (s z)) A B C
=> (\lambda z. A (A z)) B C
=> (A (A B)) C
=> (\lambda s.\lambda z.s (s z)) (A B)) C
=> (\lambda s.\lambda z.s (s z)) (D)) C
=> (\lambda z.D (D z))) C
=> D(DC)
=> (AB)(DC)
=> ((\lambda s.\lambda z.s (s z)) B)(D C)
\Rightarrow ((\lambda z.B (B z)))(D C)
=> B (B (D C))
=> ((\lambda b.\lambda f.\lambda t.b t f))(B (D C))
=> \lambda f.\lambda t.(B(DC)) t f
\Rightarrow \lambda f.\lambda t.((\lambda b.\lambda f1.\lambda t1.b t1 f1) (D C)) t f
\Rightarrow \lambda f.\lambda t.(\lambda f1.\lambda t1.(D C) t1 f1) t f
=> \lambda f.\lambda t.(\lambda t1.(D C) t1 t) f
=> \lambda f.\lambda t.(D C) f t
=> \lambda f.\lambda t.((A B) C) f t
\Rightarrow \lambda f.\lambda t.(((\lambda s.\lambda z.s (s z)) B) C) f t
=> \lambda f.\lambda t.(((\lambda z.B (B z)) C) f t
=> \lambda f.\lambda t.(B(BC)) f t
\Rightarrow \lambda f.\lambda t.((\lambda b.\lambda f0.\lambda t0.b t0 f0) (B C)) f t
\Rightarrow \lambda f.\lambda t.(\lambda f0.\lambda t0.(B C) t0 f0) f t
=> \lambda f.\lambda t.(\lambda t0.(B C) t0 f) t
=> \lambda f.\lambda t.(B C) t f
\Rightarrow \lambda f.\lambda t.((\lambda b.\lambda f0.\lambda t0.b t0 f0) C) t f
\Rightarrow \lambda f.\lambda t.(\lambda f0.\lambda t0.C t0 f0) t f
=> \lambda f.\lambda t.(\lambda t0.C t0 t) f
=> \lambda f.\lambda t.(C f t)
=> \lambda f.\lambda t.(\lambda f0.\lambda t0.t0) f t
=> \lambda f.\lambda t.(\lambda t0.t0) t
=> \lambda f.\lambda t.t
```