EPF Lausanne Cours of	de CMS	Note	
Contrôle de Chimie –	N°3 Rattrapage	17 Avril 2014	Durée 1 heure
NOM :		Groupe	
PRENOM :			
Veuillez répondre à toutes le schémas dans les espaces qu	-	indiquer les calculs, le	es réponses et les
Annexes : Tableau périodiq	ue, tableau des valeurs t	hermochimiques	
Constantes physiques :	$R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ of $N_{\text{A}} = 6.022 \cdot 10^{23} \text{ mol}^{-1}$ Volume molaire du gaz		
Formules : $\Delta_{\rm r} H^{\circ} = \Delta_{\rm r} U^{\circ}$	$+ p\Delta V$ $\Delta_{\rm r}G^{\circ} = \Delta_{\rm r}$	H° - $T\Delta_r S^{\circ}$	
 Parmi les quatre réactions s réaction est une réaction redor réd = réduction) correspondant BaCl₂(aq) + K₂CO₃(aq) → 	x ou pas. <u>Si c'en est une,</u> entes.	écrire les demi-réaction	as (ox = oxydation et ($/6 \text{ pts}$)
a. $\text{DaCl}_2(aq) + \text{K}_2\text{CO}_3(aq)$ ox:	réd:		
b. $Cd(s) + 2NiO(OH)(s) + 2NiO(OH)(s)$		+ Cq(OH)-(s) ·	
OX:	réd :	Od(O11) ₂ (b)	
c. $Br_2(l) + 2KI(s) \rightarrow 2KBr(s)$			
ox:	réd :		
d. $CaSO_3(s) \rightarrow CaO(s) + SO_2(s)$	₂ (g):		
ox:	réd :		
2. Donner les équations chimi a. La combustion d'aluminiu		réactions suivantes :	(/ 3pts)

b. La décomposition d'ammoniac (NH_3) en ses éléments constitutifs :

c. La réaction du magnésium (Mg) avec du HCl qui est un déplacement simple :							
3 . Calculer: a) le nombre de moles, n , b) la masse, m , et c) le nombre de molécul a dans 50 ml d'une solution aqueuse de $C_6H_{12}O_6(aq)$ 0,025 M.	es de solu	uté qu'il y / 3 pts)					
a. nombre de moles :							
b. masse:							
c. nombre de molécules :							
4 . Calculer : a) le titre massique et b) la molarité d'une solution aqueuse de 300 ml qui contient 4.62 mg de Ca(OH) ₂ . (Ne pas oublier les unités !)							
	(/ 2pts)					
b.							
5 . Quel volume d'hydrogène et d'oxygène peut-on produire à partir de l'eau lors d 1.5 kg d'eau à 25° C et sous une pression de 1 atm?	l'une élec (trolyse de / 5 pts)					
– équation-bilan :							
- Calcul de <i>n</i> :							
- Calcul du volume :							

6 . L'hydroxyde d	'aluminium e	st formé selon	la réaction non-	équilib	rée suivant	e:	
$Al_4C_3(s)$	+ H ₂ C	$O(l) \rightarrow$	$Al(OH)_3$ (s)	+	$\mathrm{CH_4}\left(g\right)$		
a. Utiliser la méth	node algébriq	ue pour établir l	'équation-bilan	(montre	er toutes le	s étapes) :	
						(/ 3 pts)
b. Combien de kil	logrammes de	e Al(OH)3 peut-	on obtenir à par	rtir de 1	.25 kg de A	$A_4C_3(s)$ et	de
$2 \text{ kg de H}_2\text{O}$?						(/ 3 pts)
7. La réaction ent	tre CO et H ₂ 1	produit du méth	ane et de l'eau	selon la	réaction su	iivante :	
		$CH_4(g) + H_2$				(/ 3 pts)
	(0)	014(8) 112	- (0)			(, 5 pts)

a. La réaction, est-elle exothermique ou endothermique ? Justifier la réponse avec un calcul.

b. La réaction, est-elle spontanée à 25° C? Justifier la réponse avec un calcul.

c. Calculer la variation de l'énergie interne, $\Delta_r U^{\circ}$, pour cette réaction à 25° C.

8. Connaissant les enthalpies de réactions (1), (2) et (3) à 25° C, calculer l'enthalpie de la réaction suivante :

$$3 C(s) + 4 H_2(g) \rightarrow C_3 H_8(g)$$

(1) $C_3H_8(g) + 5 O_2(g) \rightarrow 3 CO_2(g) + 4 H_2O(g)$

$$\Delta_r H = -2043 \text{ kJ}$$

- (2) $C(s) + O_2(g) \rightarrow CO_2(g)$
- (3) $2 H_2(g) + O_2(g) \rightarrow 2 H_2O(g)$