You want to test whether therapy sessions decrease stress levels of patients. For this purpose you obtained 10 measurements of stress on the scale from 0 to 100. Assuming symmetrical (but not normal) probability distribution (of differences), find out if stress levels change after therapy. Use $\alpha=0,05$

Patient									_	10
Before	1									
	68									
Bi-Ai	1 7	-ر	23	-5	19	8	-3	11	15	18

 $H_0: X_{0.5} = C = 0$ $\mathcal{L}_{-0.05}$ $H_A: X_{0.5} \neq 0$

2 3 5 7 8 11 15 18 19 25 1 2 3 4 5 6 7 8 9 10

¿ poradí, hteré nálezí di> 0

St= 49 8 je hodrofa z tabulhy

 $\overline{W}_{\lambda} = \left(\mathcal{S}_{i} \frac{n(n+1)}{2} - \mathcal{S}_{i} \right) = \left(\mathcal{S}_{i} \mathcal{S}_{i} \right)$

St (W) => zamítáme Ho doslo ke změně hl. stresu You want to compare monthly income similarly employed people in 2 different regions. Since you can't account for different occupations, you expect the underlying probability distributions to be heavily skewed. Using $\alpha=0,05$ and following data [1000 Kč], test whether the median income is the same.

		11.5									
a	R 1	43,6	41,2	40,7	41,6	47,2	49,0	42,1	42,2	40,8	
10	R 2	43,6 43,7	49,5	43,1	43,4	45,2	47,0	43,6	40,7	41,8	55,2
Y	106	13	18	9	10	14	15	11.5	1.5	6	19

- => velles soubor · Data dohromady
- pro proby = X Sama poradí

$$U_{x} = N_{x} N_{y} + \frac{N_{x}(n_{x}+1)}{2} - S_{x} = 90 + 95 - 73 = 125 - 73 = 62$$

Test whether there is some monotonous relation between the amount of points obtained before the exam and during the exam of some course taught at BUT. Use $\alpha=0,05$ and following observations.

R_x before | 40 | 35 | 21 | 31,5 | 28,5 | 33,5 | 34 | 38 | 25 | 20 |
R_y during | 60 | 51 | 42 | 40 | 43,5 | 47 | 52 | 58,5 | 55 | 40 |

N = 10

$$\bar{R}_x = \frac{n(n+4)}{2n} = \frac{4^4}{2} = 5.5 = \bar{R}_y$$

10. $5.5.5.5 = 302.5$
 \bar{R} - R

1.5 | 2.5 | 3.5 | 0.5 | 1.5 | 0.5 | 1.5 | 3.5 | 2.5 | 4.5 |

S(R_x) = 3,0277

S(R_y) = 3,0277

S(R_y) = 3,0485

V(R_x, R_y) = 0.3356

 \bar{R} - \bar{R} -

BONUS

Logistic regression model