→ Principal Component Analysis (PCA) And Kmeans

▼ Importing the libraries

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
```

▼ Importing the dataset

```
dataset = pd.read_csv(r'D:\Collage\TERM 4\Machine Learning\Machine project\Data\heart.csv')
```

dataset.head

<pre><bound method="" ndframe.head="" of<="" pre=""></bound></pre>					age	sex	ср	trestbps	chol	fbs restecg tha	alach	
0	63	1	3	145 2	233	1		0	150	0	2.3	
1	37	1	2	130 2	250	0		1	187	0	3.5	
2	41	0	1	130 2	204	0		0	172	0	1.4	
3	56	1	1	120 2	236	0		1	178	0	0.8	
4	57	0	0	120	354	0		1	163	1	0.6	
• •				• • •	• • •	• • •		• • •	• • •		• • •	
298	57	0	0	140 2	241	0		1	123	1	0.2	
299	45	1	3	110 2	264	0		1	132	0	1.2	
300	68	1	0	144 1	193	1		1	141	0	3.4	
301	57	1	0	130 1	131	0		1	115	1	1.2	
302	57	0	1	130 2	236	0		0	174	0	0.0	

	slope	ca	thal	target
0	0	0	1	1
1	0	0	2	1
2	2	0	2	1
3	2	0	2	1
4	2	0	2	1
• •		• •	• • •	
298	1	0	3	0
299	1	0	3	0
300	1	2	3	0
301	1	1	3	0
302	1	1	2	0

[303 rows x 14 columns]>

```
dataset.shape
     (303, 14)
dataset.isnull().sum()
                 0
     age
                 0
     sex
                 0
     ср
                 0
     trestbps
     chol
                 0
     fbs
                 0
     restecg
                 0
     thalach
                 0
                 0
     exang
     oldpeak
     slope
                 0
                 0
     ca
     thal
                 0
                 0
     target
     dtype: int64
len (dataset[dataset.duplicated()])
     1
dataset.drop_duplicates()
```

dataset.describe()

	age	sex	ср	trestbps	chol	fbs	res
count	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.00
mean	54.366337	0.683168	0.966997	131.623762	246.264026	0.148515	0.52
std	9.082101	0.466011	1.032052	17.538143	51.830751	0.356198	0.52
min	29.000000	0.000000	0.000000	94.000000	126.000000	0.000000	0.00
25%	47.500000	0.000000	0.000000	120.000000	211.000000	0.000000	0.00
50%	55.000000	1.000000	1.000000	130.000000	240.000000	0.000000	1.00
75%	61.000000	1.000000	2.000000	140.000000	274.500000	0.000000	1.00
max	77.000000	1.000000	3.000000	200.000000	564.000000	1.000000	2.00

JUZ IUWS X 14 CUIUIIIIIS

sns.heatmap(dataset.corr(method='spearman', min_periods=1))

form the heat-map notice there may be a cooralltion between target and three factors CP, Thalach and Slope

X = dataset.drop('target', axis=1)
https://colab.research.google.com/drive/1y4-wYqpeebvIOli_y_h3Q96qqYsZGg1b#printMode=true

y = dataset['target']

X.corrwith(y).plot(kind='bar', grid=True, figsize=(10, 10), title="Correlation with target")

<AxesSubplot:title={'center':'Correlation with target'}>

we can use this data to eliminate simmilar coolarting attributes

```
X=dataset.iloc[:,:-1]
y=dataset.iloc[:,-1]
```

▼ Feature Scaling

```
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X = sc.fit_transform(X)
print(X , X.shape)
print(y)
                    0.68100522 1.97312292 ... -2.27457861 -0.71442887
     [[ 0.9521966
       -2.14887271]
      [-1.91531289 0.68100522 1.00257707 ... -2.27457861 -0.71442887
       -0.51292188]
      [-1.47415758 -1.46841752 0.03203122 ... 0.97635214 -0.71442887
       -0.51292188]
      [ 1.50364073  0.68100522 -0.93851463 ... -0.64911323  1.24459328
        1.12302895]
      [ 0.29046364  0.68100522 -0.93851463 ... -0.64911323  0.26508221
        1.12302895]
      [ 0.29046364 -1.46841752  0.03203122 ... -0.64911323  0.26508221
       -0.51292188]] (303, 13)
            1
     1
            1
     2
            1
            1
            1
     298
            0
     299
            0
     300
            0
     301
            0
     302
     Name: target, Length: 303, dtype: int64
```

Training the Kmeans cluster model on the Training set

plt.scatter(X[y_kmeans_normal == 0, 0], X[y_kmeans_normal == 0, 1], c = 'cyan', label = 'Clus


```
counter = 0
for i in range(303):
    if y[i] != y_kmeans_normal[i]:
        counter = counter+1

print ('accuarcy of kmeans without PCA = ',(counter/303)*100)
    accuarcy of kmeans without PCA = 81.51815181518151
```

▼ Applying PCA

```
from sklearn.decomposition import PCA
pca = PCA(n_components=2)
X_pca= pca.fit_transform(X)
print(pca.explained_variance_ratio_*100)

[21.25405312 11.82070772]

# percentage variation
per_var = np.round(pca.explained_variance_ratio_*100, decimals =1)
labels = ['PC' + str(x) for x in range (1, len(per_var)+1)]

# plot the percentage of explained variance by principal component
plt.bar(x=range(1,len(per_var)+1), height=per_var, tick_label = labels)
plt.ylabel('Percentage of Explained Variance')
plt.xlabel('Principal Component')
plt.title('Scree Plot')
plt.show()
```


from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters = 2, init = 'k-means++', random_state = 42)
https://colab.research.google.com/drive/1y4-wYqpeebvlOli y h3Q96qqYsZGg1b#printMode=true

```
y_kmeans_PCA = kmeans.fit_predict(X_pca)
print(y_kmeans_PCA)
```

```
plt.scatter(X_pca[y_kmeans_PCA == 0, 0], X_pca[y_kmeans_PCA == 0, 1], c = 'cyan', label = 'Cl
plt.scatter(X_pca[y_kmeans_PCA == 1, 0], X_pca[y_kmeans_PCA == 1, 1], c = 'blue', label = 'Cl
centroids = kmeans.cluster_centers
```



```
counter = 0
for i in range(303):
    if y[i] != y_kmeans_PCA[i]:
        counter = counter+1
```

```
print ('accuarcy of kmeans after pca = ',(counter/303)*100)
    accuarcy of kmeans after pca = 80.52805280528052
```

▼ Using LDA in clasfication

```
X.shape
    (303, 13)
from sklearn.model_selection import train_test_split
# Choose your test size to split between training and testing sets:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)
print(X_test.shape,X_train,y_test,y_train)
    -0.51292188]
                 0.68100522 1.00257707 ... -0.64911323 0.26508221
     0.5110413
      -2.14887271]
     [ 1.39335191  0.68100522  -0.93851463  ...  -0.64911323  1.24459328
      1.12302895]
     [ 1.61392956  0.68100522  1.97312292  ...  -0.64911323  0.26508221
      -0.51292188]
     1.12302895]
     [ 0.9521966 -1.46841752 0.03203122 ... 0.97635214 1.24459328
      -0.51292188]] 179
    228
          0
    111
          1
    246
          0
    60
          1
    22
          1
    258
          0
    56
          1
    242
    114
    Name: target, Length: 76, dtype: int64 287
    282
    197
          0
    158
          1
    164
          1
    188
          0
    71
          1
    106
          1
    270
          0
```

```
102
            1
     Name: target, Length: 227, dtype: int64
from sklearn.discriminant analysis import LinearDiscriminantAnalysis
lda = LinearDiscriminantAnalysis(n components=1)
X_lda = lda.fit_transform(X_train, y_train)
print("After LDA:\n")
print("Features of size: ", X_lda.shape)
print(X_lda)
     After LDA:
     Features of size: (227, 1)
     [[ 0.30962152]
      [ 0.62846124]
      [-1.09585506]
      [-1.80586787]
      [-0.13471137]
      [-1.50617284]
      [ 0.37071832]
      [ 0.3038056 ]
      [ 0.35237919]
      [-1.56788959]
      [-3.67393347]
      [ 1.28333572]
      [ 0.45015629]
      [-0.33447716]
      [ 1.52935295]
      [ 2.70341003]
      [ 1.23801646]
      [ 1.5586627 ]
      [ 0.40184487]
      [-0.13471137]
      [ 0.63222217]
      [-1.12904636]
      [ 1.33357231]
      [-0.67992379]
      [ 0.34908855]
      [ 2.39074077]
      [ 0.70686352]
      [-1.79968905]
      [-0.10908848]
      [ 1.1081908 ]
      [ 1.67743378]
      [ 1.50730318]
      [ 0.07005389]
      [-2.00583721]
      [ 1.73957905]
      [ 1.68723912]
      [-2.74614127]
      [ 0.343336 ]
      [-0.01246514]
      [ 0.21101369]
      [-0.49612589]
      [ 1.76295212]
```

[0.39166766] [-1.92518918]

```
[-1.0626381]
      [-1.94921453]
      [-2.12670496]
      [ 0.02898172]
      [-2.39632027]
      [-2.29164699]
      [ 0.52171031]
      [-1.38727235]
      [-0.65233535]
      [-0.25209574]
      [ 0.10932014]
      [ 1.84027103]
prediction = lda.predict(X_test)
counter = 0
for i in range(76):
    if prediction[i]==y_test.iloc[i]:
        counter = counter + 1
print("accuracy = ",(counter/76)*100)
     accuracy = 86.8421052631579
```

×