Relatório de Avaliação (Programação Concorrente - Laboratório 3)

Matheus da Cruz Percine Pinto (DRE: 121068501) Universidade Federal do Rio de Janeiro

1. Introdução

Este relatório mostra e analisa dados relativos a programas que objetivam realizar a multiplicação de duas matrizes de tamanho NxM, por meio de tabela com dados, gráficos de aceleração e eficiência e configuração da máquina usada. Neste relatório, compara-se a versão sequencial e concorrente. Quanto à forma concorrente, foi utilizado o método separação por linha alternada. Foram testadas multiplicações entre matrizes de tamanho 500x500, 1000x1000 e 2000x2000 para 1, 2, 4 e 8 threads. As médias foram calculadas por meio de uma média aritmética e seus valores foram considerados para geração de gráficos e cálculos de aceleração e eficiência.

Fórmulas usadas para o cálculo de aceleração eficiência:

$$A=rac{T_{sequencial}}{T_{paralelo}}$$

- A: Aceleração
- * $T_{sequencial}$: Tempo de execução da versão sequencial do programa
- * $T_{paralelo}$: Tempo de execução da versão paralela do programa

$$E=rac{A}{P}$$

- E: Eficiência
- A: Aceleração
- P: Número de processadores ou threads

2. Configuração da Máquina Usada

```
matheus@matheus-RV411-RV511-E3511-S3511-RV711:~$ screenfetch
          ./+o+-
yyyyy- -yyyyyy+
://+////-yyyyyyo
.++ .:/+++++/-.+SSS/`
.:++o: /++++++/:--:/-
o:+o+:++.`..``.-/oo+++-
                                                                    Ubuntu 22.04 jammy
nel: x86_64 Linux 5.15.0-53-generic
                                                                           7h 22m
                                                                            : 1793
                                 ``.-/oo++++/
`+sssoo+/
                                                                         bash
                                                                                 1366x768
                                                                    GNOME 41.4
  .++/+:+00+0:
                                           /sssooo.
/+++//+: `00+0
\+/+0+++ `0++0
                                             /::--:.
                                                                    Mutter
                                                                             Adwaita
  .++.0+++00+:
                                                                               Yaru [GTK2/3]
                                                                                Yaru
               ++o+o`-
:o+++ `ohhhhhhhhhyo++os
.o:`.syhhhhhhh/.oo++o`
/osyyyyyyo++ooo+++/
:```+oo+++o\:
                                                                       Ubuntu 11
                                                                     : 21G / 458G (5%)
Intel Core i3 M 380 @ 4x 2,533GHz
Intel Corporation Core Processor Integrated Graphics Controller (rev 02)
                                                                      2717MiB / 3722MiB
```

3. Tabela de dados

SEQUENCIAL >						
	2000x2000		execução 1	execução 2	execução 3	
		tempo inicialização	0. 113000	0. 97707	0. 109561	média: 0.395226
		tempo multiplicação	123 . 452775	123. 279830	115. 203130	média: 120.645245
		tempo finalização	0. 229301	0. 223504	0. 220776	média: 0.224527
		tempo total	123. 795076	123. 601040	115. 533467	média: 120.976527
	1000x1000		execução 1	execução 2	execução 3	
		tempo inicialização	0. 036119	0. 038047	0. 037792	media: 0.037319
		tempo multiplicação	14. 640248	14. 727953	15. 538423	media: 14.968875
		tempo finalização	0. 015142	0. 011784	0. 011386	media: 0.012771
		tempo total	14. 691509	14. 777785	15. 587601	media: 15.018965
	500x500		execução 1	execução 2	execução 3	
		tempo inicialização	0. 005717	0.007625	0.010639	media: 0.007994
		tempo multiplicação	1. 438722	1. 537857	1. 568133	media: 1.514904
		tempo finalização	0.004659	0.002741	0. 003093	media: 0.003498
		tempo total	1. 449098	1, 548223	1. 581865	media: 1.526395

CONCORRENTE >														
	2000x20	00 (1 thread(s))			execu	ção 1	execuçã	io 2	execuçã	io 3			Aceleração	Eficiência
			tempo i	inicialização	0. 1100	004	0.50770)6	0. 23603	39	media: 0.28458	3	0. 766785	0.766785
			tempo i	multiplicação	152. 66	61603	159, 751	803	159. 310	898	media: 157.241	434		
			tempo f	finalização	0. 2078	347	0. 26688	36	0. 26048	34	media: 0.24507	23		
			tempo t	total	152. 97	79454	160. 526	395	159. 807	421	media: 157.771	090		
	2000x20	00 (2 thread(s))			execu	cão 1	execuçã	io 2	execuçã	io 3			Aceleração	Eficiência
		((-))	tempo i	inicialização	0. 4053	•	0.09451		0. 10379		media: 0.20122		1. 390481	0. 695241
							84. 7539		88. 8652		media: 86.5747			
				finalização	0. 1926		0. 23284	12	0. 25669	93	media: 0.22739	1		
			tempo t		86. 703		85. 0813		89. 2257		media: 87.0033			
	2000*20	00 (4 thread(s))			execu	ര്ഹ 1	execuçã	io 2	execuçã	io ?			Aceleração	Eficiência
	2000,20	ov (4 tilleau(s))	tempo	inicialização	0. 1057		0. 11075		0. 11439		media: 0.11028		1. 370011	0. 342503
				multiplicação			85. 2185		85. 3076		media: 87.9376		1. 57 00 11	0. 342303
				finalização	0. 2108		0. 28158		0. 27390		media: 0.25545			
			tempo t		93. 603		85. 6109		85. 6959		media: 88.3033			
	2000*20	00 (8 thread(s))			execu	-ã- 1	execuçã	io 2	execuçã	io 2			Aceleração	Eficiência
	2000,20	oo (o tiireau(s))	tempo i	inicialização	0. 0975		0. 10040		0. 10354		media: 0.10049		1. 517186	0. 189648
				multiplicação			87. 1151		80. 0499		media: 81.7155		1. 317 100	0. 103040
				finalização	0. 2730		0. 27661		0. 27661		media: 0.27542			
			tempo		78. 352		80. 4300		80. 4300		media: 79.7374			
1000x1000 (1 thr	ead(e))			execução 1	l e	xecução	2 6	xecu	an 3			Ace	leração	Eficiência
1000120001	cuu(3//	tempo iniciali	79090	0. 038134		. 029111		. 0295		modi	a: 0.032279		54773	0. 654773
												0. 0	34113	0. 034113
		tempo multip				3. 16388		23. 441			a: 22.883728			
tempo finaliza		içao	0. 040897		0. 012990		0. 011126			a: 0.021671				
		tempo total		22. 125105	23	3. 20598	31 2	23. 481	949	medi	a: 22.937678			
1000x1000 (2 thread(s))				execução 1	l ex	xecução	2 6	xecu	ão 3			Ace	leração	Eficiência
		tempo iniciali	zação	0. 033137	0.	037777		. 0384	47	medi	a: 0.036454	1. 2	95548	0.647774
		tempo multip		11. 163379	11	1. 84661	8 1	1. 622	576	medi	a: 11.544191			
		tempo finaliza		0. 013236	0.	011525		. 0115	54	medi	a: 0.012105			
		tempo total	•	11. 209753		1. 89592		1. 672			a: 11.592750			
1000x1000 (4 thr	ead(s))			execução 1		xecução		xecuç					leração	Eficiência
		tempo iniciali		0. 031291	0.	027968	0	. 0323	49	medi	a: 0.030536	1. 5	15389	0. 378847
		tempo multipl	licação	9. 675988	9.	748426	1	0. 174	658	medi	a: 9.866357			
		tompo manap												
		tempo finaliza		0.014736	0.	015343	0	. 0121	25	medi	a: 0.014068			

tempo total

tempo inicialização

tempo finalização

tempo total

tempo multiplicação 9. 021923

1000x1000 (8 thread(s))

9. 722016

execução 1

0.027671

0.014315

9.063909

9. 791737

execução 2

0.028348

9. 105754

0.013204

9. 147306

10. 219132

execução 3

0.031024

8. 245832

0.012352

8. 289208

media: 9.910962

media: 0.029014

media: 8.791170

media: 0.013290

media: 8.833474

Aceleração

1.700233

Eficiência

0.212529

500x500 (1 thread(s))		execução 1	execução 2	execução 3		Aceleração	Eficiência
	tempo inicialização	0. 010580	0.007960	0.008805	media: 0.009115	0. 808465	0.808465
	tempo multiplicação	1. 879792	1. 875610	1. 870879	media: 1.875427		
	tempo finalização	0.003488	0.003474	0.003465	media: 0.003476		
	tempo total	1. 893860	1. 887044	1. 883148	media: 1.888017		
500x500 (2 thread(s))		execução 1	execução 2	execução 3		Aceleração	Eficiência
	tempo inicialização	0. 008337	0.007622	0.008307	media: 0.008089	1. 563635	0. 781817
	tempo multiplicação	0. 910583	0. 877834	1. 106299	media: 0.964905		
	tempo finalização	0.003854	0.002673	0.003044	media: 0.003190		
	tempo total	0. 922774	0. 888129	1. 117650	media: 0.976184		
500x500 (4 thread(s))		execução 1	execução 2	execução 3		Aceleração	Eficiência
	tempo inicialização	0. 007728	0.006985	0.007359	media: 0.007357	1. 595353	0.398838
	tempo multiplicação	1. 020936	0. 862645	0. 953795	media: 0.945792		
	tempo finalização	0.003206	0.004471	0.003203	media: 0.003627		
	tempo total	1. 031870	0. 874101	0. 964357	media: 0.956776		
500x500 (8 thread(s))		execução 1	execução 2	execução 3		Aceleração	Eficiência
	tempo inicialização	0.006992	0. 008145	0.008243	media: 0.007793	1. 649451	0. 206181
	tempo multiplicação	0. 937843	0. 952915	0. 853812	media: 0.914857		
	tempo finalização	0. 002698	0. 002883	0. 002658	media: 0.002746		
	tempo total	0. 947532	0. 963943	0.864713	media: 0.925396		

4. Gráficos

4.1. Gráficos de: Tempo Total de Execução x Número de Threads

4.2. Gráficos de: Aceleração/Eficiência x Número de Threads

5. Conclusão

De forma geral, a forma concorrente demanda menos tempo de execução do que a forma sequencial, porém não podemos dizer isso no caso em que há somente 1 thread, pois há um tempo gasto na criação da thread que a forma sequencial não gasta.

Quanto aos gráficos de Tempo Total de Execução x Número de Threads, podemos observar que o tempo decai à medida que o número de threads aumenta, pois a tarefa é dividida entre vários "trabalhadores" (threads).

Quanto aos gráficos de Aceleração x Número de Threads, podemos observar que a aceleração aumenta à medida que o número de threads aumenta. Isso ocorre, pois como a aceleração é [tempo Sequencial] / [tempo Concorrente] e mantendo o numerador fixo, o denominador vai diminuindo à medida que o número de threads aumenta e, consequentemente, o valor da fração aumenta. O denominador vai diminuindo pela explicação dada no parágrafo anterior.

Quanto aos gráficos de Aceleração x Número de Threads, podemos observar que a eficiência diminui à medida que o número de threads aumenta. Isso ocorre, pois como a eficiência é [aceleração] / [número de threads], se mantermos o numerador fixo e aumentarmos o denominador, consequentemente, o valor da fração vai diminuindo. Tomando uma abordagem do ponto de vista de arquitetura de computadores, podemos dizer que a eficiência vai diminuindo por conta de overhead de criação e gerenciamento de threads e concorrência em recursos compartilhados. A criação e o gerenciamento de threads em um programa paralelo também têm um custo associado. À medida que o número de threads aumenta, o sistema operacional e a própria aplicação precisam gastar mais tempo e recursos para criar, destruir e gerenciar as threads. Esse overhead pode se tornar significativo em cenários onde o tempo de computação de cada thread é relativamente curto. Em programas paralelos que compartilham recursos, como CPUs, memória e dispositivos de E/S, o aumento do número de threads pode levar a uma competição mais intensa por esses recursos. Isso pode resultar em contenção e atrasos à medida que as threads disputam acesso aos recursos compartilhados, reduzindo assim a eficiência.