Interval Estimation of mean response $E\{Y_h\}$, or \widehat{Y}_h and single response \widehat{Y}_h (new) when $X=X_h$

Mean response vs. single response Y_1 for a given $X_1 = \text{mean} + \text{random error}$

The mean interval single Y ±margin error

is larger than

The mean interval μ ± margin error

Predict the mean response of Y on X

$$E\{Y_h\}$$
 or $\hat{\mu}_h$

Predict the single response of Y on X

Predict in the same manner, Same value; But different precision.

Recall that

The best point estimates of β_1 and β_0 given the data (X, Y) are:

$$b_1 = \frac{\Sigma(X - \overline{X})(Y - \overline{Y})}{\Sigma(X - \overline{X})^2} = \frac{SS_{XY}}{SS_X} = \Sigma c_i Y_i \qquad E(b_1) = \beta_1 \text{ and } Var(b_1) = \sigma^2 \frac{1}{\Sigma (X_i - \overline{X})^2}$$

$$b_{0} = \bar{Y} - b_{1} \, \bar{X} = \frac{\Sigma Y_{i}}{n} - \Sigma c_{i} \bar{X} Y_{i} = \Sigma d_{i} Y_{i}$$

$$E(b_{0}) = \beta_{0} \, and \, Var(b_{0}) = \sigma^{2} \left[\frac{1}{n} + \frac{\bar{X}^{2}}{\Sigma (X_{i} - \bar{X})^{2}} \right]$$

Hence, $\hat{Y}_h = b_0 + b_1 X_h$ is a linear combination of the observations Y_i

Question1: Does \hat{Y}_h follow normal distribution?

Question2: are b_0 and b_1 independent?

Prediction of the mean response

$$\widehat{Y}_h = b_0 + b_1 X_h$$

- For normal error (ε) regression model, $\widehat{Y}_h \sim Normal$, with mean and variance:
- $\bullet E\{\hat{Y}_h\} = E\{Y_h\} = \mu_h$
- $\bullet \ \sigma^2 \{ \widehat{Y}_h \} = \sigma^2 \left[\frac{1}{n} + \frac{(X_h \overline{X})^2}{\Sigma (X_i \overline{X})^2} \right]$
- \hat{Y}_h is normal because $b_0 + b_1 X_h$ is a linear combination of independent, normal Y_i 's.
- Its variance is affected by how far X_h is from \bar{X} , through the term $(X_h \bar{X})^2$.
- Estimation is more precise near X

Prediction of the mean response

$$\widehat{Y}_h = b_0 + b_1 X_h$$

• For normal error (ε) regression model, $\hat{Y}_h \sim Normal$, with mean and variance:

$$E\{\hat{Y}_h\} = E\{Y_h\} = \mu_h$$

$$\bullet \ \sigma^2 \{ \widehat{Y}_h \} = \sigma^2 \left[\frac{1}{n} + \frac{(X_h - \overline{X})^2}{\Sigma (X_i - \overline{X})^2} \right]$$

• When replace σ^2 with MSE $s^2\{\hat{Y}_h\} = MSE\left[\frac{1}{n} + \frac{(X_h - \bar{X})^2}{\Sigma(X_i - \bar{X})^2}\right] = s^2\left[\frac{1}{n} + \frac{(X_h - \bar{X})^2}{\Sigma(X_i - \bar{X})^2}\right]$ Therefore, it follows that $\frac{\hat{Y}_h - E\{Y_h\}}{s\{\hat{Y}\}} \sim t(n-2)$

Prediction confidence interval of mean response, $E\{Y_h\}$

$$\frac{\widehat{Y}_h - E\{Y_h\}}{s\{\widehat{Y}_h\}} \sim t(n-2)$$

The confidence interval of $E\{Y_h\}$

$$\hat{Y}_h \pm t \left(1 - \frac{\alpha}{2}; n - 2\right) s\{\hat{Y}_h\}$$

where $s^2_{\{\hat{Y}_h\}} = s^2 \left[\frac{1}{n} + \frac{(X_h - \bar{X})^2}{\Sigma(X_i - \bar{X})^2}\right]$

 $s\{\hat{Y}_h\}$ is the "standard error of the mean response value at $X=X_h$ " s is the "standard error of the residuals"

Prediction of single response $\widehat{Y}_{h(new)}$

The variance of prediction = variance in possible location of the distribution + variance within the distribution

We estimate the variance of the single prediction as

$$s_{\{pred\}}^2 = s_{\{\hat{Y}_h\}}^2 + s^2 = s^2 \left[\frac{1}{n} + \frac{(X_h - \bar{X})^2}{\Sigma (X_i - \bar{X})^2} + 1 \right]$$

For normal error regression model

$$\frac{Y_{h(new)} - \hat{Y}_h}{S_{\{pred\}}} \sim t (n-2)$$

 $s\{pred\}$ is the "standard error for predicting one new response value at X_h ."

Prediction interval of single response $\hat{Y}_{h(new)}$

$$\hat{Y}_h \pm t \left(1 - \frac{\alpha}{2}; n - 2 \right) s\{pred\}$$

$$s_{\{pred\}}^2 = s_{\{\hat{Y}_h\}}^2 + s^2 = s^2 \left[\frac{1}{n} + \frac{(X_h - \bar{X})^2}{\Sigma (X_i - \bar{X})^2} + 1 \right]$$

- More sensitive to departure of normal in error terms distribution. $\{\hat{Y}_h\}$
- Predictions are more precise near \overline{X} because σ^2 decreases with $|X_h \overline{X}|$.

Prediction interval of mean of m new response $\overline{Y}_{h\{new\}}$ not \widehat{Y}_h , or $\widehat{Y}_h\{new\}$

$$\hat{Y}_h \pm t \left(1 - \frac{\alpha}{2}; n - 2\right) s\{predmean\}$$

Where:
$$s^2\{predmean\} = \frac{MSE}{m} + s^2\{\hat{Y}_h\}$$
$$= MSE\left[\frac{1}{m} + \frac{1}{n} + \frac{(X_h - \bar{X})^2}{\Sigma(X_i - \bar{X})^2}\right]$$

- Predict the mean of m new observations on Y for a given level of the predictor variables.
- The variance $s^2\{predmean\}$ has two components: variance between the distribution and variance within a distribution.

 $s\{predmean\}$ is the "standard error for predicting the mean of m new response value."

1. The confidence interval for the mean predicted value $E(\widehat{Y}_h)$

$$\hat{Y}_h \pm t_c s_{\{\hat{Y}_h\}}$$
 Where $s_{\{\hat{Y}_h\}}^2 = s^2 \left[\frac{1}{n} + \frac{(X_h - \bar{X})^2}{\Sigma (X_i - \bar{X})^2} \right]$

2. The confidence interval for the single predicted value (\hat{Y}_h)

$$\hat{Y}_h \pm t_c s_{\{pred\}}$$
 Where $s_{\{pred\}}^2 = s_{\{\hat{Y}_h\}}^2 + s^2 = s^2 \left[\frac{1}{n} + \frac{(X_h - \bar{X})^2}{\Sigma (X_i - \bar{X})^2} + 1 \right]$

3. The confidence interval for the mean price $\overline{Y}_{h(new)}$ of three diamonds with the same weight (0.43)

$$\hat{Y}_h \pm t_c s\{predmean\} = \frac{MSE}{m} + s^2 \{\hat{Y}_h\} = MSE[\frac{1}{m} + \frac{1}{n} + \frac{(X_h - \bar{X})^2}{\Sigma(X_i - \bar{X})^2}]$$

Recall that in the Diamond example

The Im output

```
Residual standard error: 31.84 on 46 degrees of freedom
(1 observation deleted due to missingness)
Multiple R-squared: 0.9783, Adjusted R-squared: 0.9778
F-statistic: 2070 on 1 and 46 DF, p-value: < 2.2e-16
```

$$MSE = s^2 = 31.84^2 = 1013.8$$

 $\bar{X} = 0.204, s_X = 0.0568, n=48$

Recall that in the diamond example

Where $\alpha = 0.05$, n = 48, $df = 46 \ round \ down \ to \ 40$

TABLE C t distribution critical values												
Degrees of freedom	Confidence level C											
	50%	60%	70%	80%	90%	95%	96%	98%	99%	99.5%	99.8%	99.9%
40 50	0.681 0.679	0.851 0.849	1.050 1.047	1.303 1.299	1.684 1.676	2.021 2.009	2.123 2.109	2.423 2.403	2.704 2.678	2.971 2.937	3.307 3.261	3.551 3.496
One-sided P	.25	.20	.15	.10	.05	.025	.02	.01	.005	.0025	.001	.0005
Two-sided P	.50	.40	.30	.20	.10	.05	.04	.02	.01	.005	.002	.001

Or use R

$$t\left(1-\frac{\alpha}{2}, n-2\right) = t(0.975, 46)$$

= 2.021 (estimation using the t table)

= 2.013 (exact value using R)

1. The confidence interval for the mean predicted value $E(\widehat{Y}_h)$

$$\hat{Y}_h \pm t_c S_{\{\hat{Y}_h\}}$$
 Where $S_{\{\hat{Y}_h\}}^2 = S^2 \left[\frac{1}{n} + \frac{(X_h - \bar{X})^2}{\Sigma (X_i - \bar{X})^2} \right]$

$$SS_X = S_X^2(n-1) =$$

$$t\left(1-\frac{\alpha}{2},n-2\right)=t(0.975,46)=2.021 \text{ (estimation from T-table) or } 2.013 \text{ (exact value from R)}$$

$$s_{\{\widehat{Y}_h\}}^2 = s^2 \left[\frac{1}{n} + \frac{(X_h - \overline{X})^2}{\Sigma (X_i - \overline{X})^2} \right] = s\{\widehat{Y}_h\} =$$

$$\hat{Y}_h \pm t_c s_{\{\hat{Y}_h\}} = 1340.415 \pm 2.013(19.03) = 1302.1, 1378.73.$$

ci.reg(diamond.mod, new, type='m',alpha=0.05)

1. The confidence interval for the mean predicted value $E(\hat{Y}_h)$

$$\hat{Y}_h \pm t_c S_{\{\hat{Y}_h\}}$$
 Where $S_{\{\hat{Y}_h\}}^2 = S^2 \left[\frac{1}{n} + \frac{(X_h - \bar{X})^2}{\Sigma (X_i - \bar{X})^2} \right]$

$$SS_X = S_X^2(n-1) = 0.0568^2(48-1) = 0.152$$

$$t\left(1-\frac{\alpha}{2},n-2\right)=t(0.975,46)=$$
 2.021 (estimation from T – table) or 2.013 (exact value from R)

$$S_{\{\hat{Y}_h\}}^2 = S^2 \left[\frac{1}{n} + \frac{(X_h - \bar{X})^2}{\Sigma (X_i - \bar{X})^2} \right] = 31.84^2 \left[\frac{1}{48} + \frac{(0.43 - 0.204)^2}{0.152} \right] = 362.14 \qquad S_{\{\hat{Y}_h\}} = \sqrt{362.14} = 19.03$$

$$\hat{Y}_h \pm t_c s_{\{\hat{Y}_h\}} = 1340.415 \pm 2.013(19.03) = 1302.1, 1378.73.$$

ci.reg(diamond.mod, new, type='m',alpha=0.05)

2. The confidence interval for the single predicted value (\hat{Y}_h)

$$\hat{Y}_h \pm t_c s_{\{pred\}}$$
 Where $s_{\{pred\}}^2 = s_{\{\hat{Y}_h\}}^2 + s^2 = s^2 \left[\frac{1}{n} + \frac{(X_h - \bar{X})^2}{\Sigma (X_i - \bar{X})^2} + 1 \right]$

$$s_{\{pred\}}^2 = s_{\{\hat{Y}_h\}}^2 + s^2 =$$

$$\hat{Y}_h \pm t_c s_{\{pred\}} = 1340.415 \pm 2.013(37.093) = 1265.75, 1415.08$$

ci.reg(diamond.mod, new, type='n',alpha=0.05)

2. The confidence interval for the single predicted value (\hat{Y}_h)

$$\hat{Y}_h \pm t_c s_{\{pred\}}$$
 Where $s_{\{pred\}}^2 = s_{\{\hat{Y}_h\}}^2 + s^2 = s^2 \left[\frac{1}{n} + \frac{(X_h - \bar{X})^2}{\Sigma (X_i - \bar{X})^2} + 1 \right]$

$$S_{\{pred\}}^2 = S_{\{\hat{Y}_h\}}^2 + S^2 = 362.14 + 1013.78 = 1375.92$$

$$\hat{Y}_h \pm t_c s_{\{pred\}} = 1340.415 \pm 2.013(37.093) = 1265.75, 1415.08$$

ci.reg(diamond.mod, new, type='n',alpha=0.05)

3. The confidence interval for the mean price $\bar{Y}_{h(new)}$ of three diamonds with the same weight (0.43)

$$\hat{Y}_h \pm t_c s\{predmean\} = \frac{MSE}{m} + s^2 \{\hat{Y}_h\} = MSE[\frac{1}{m} + \frac{1}{n} + \frac{(X_h - \bar{X})^2}{\Sigma(X_i - \bar{X})^2}]$$

$$s^{2}\{predmean\} = \frac{MSE}{m} + s^{2}\{\hat{Y}_{h}\} = \hat{Y}_{h} \pm t_{c}s\{predmean\} = 1340.415 \pm 2.013(26.46) = (1287.151, 1393.679)$$

ci.reg(diamond.mod, new, type='nm', m=3, alpha=0.05)

3. The confidence interval for the mean price $\bar{Y}_{h(new)}$ of three diamonds with the same weight (0.43)

$$\hat{Y}_h \pm t_c s\{predmean\} = \frac{MSE}{m} + s^2 \{\hat{Y}_h\} = MSE[\frac{1}{m} + \frac{1}{n} + \frac{(X_h - \bar{X})^2}{\Sigma(X_i - \bar{X})^2}]$$

$$s^{2}\{predmean\} = \frac{MSE}{m} + s^{2}\{\hat{Y}_{h}\} = \frac{31.84^{2}}{3} + 362.14 = 700.07$$

$$\hat{Y}_{h} \pm t_{c}s\{predmean\} = 1340.415 \pm 2.013(26.46) = (1287.151, 1393.679)$$

ci.reg(diamond.mod, new, type='nm', m=3, alpha=0.05)