Министерство науки и высшего образования Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)"

(МГТУ им. Н.Э. Баумана)

Факультет "Фундаментальные науки" Кафедра "Высшая математика"

ОТЧЁТ по учебной практике за 3 семестр 2020—2021 гг.

Руководитель практики,		Кравченко О.В
ст. преп. кафедры ФН1	(nodnucb)	правченко О.Б
студент группы ФН1–31		Сытник В.А.
	$(no\partial nuc b)$	

Москва, 2020 г.

Содержание

1	Цели и задачи практики	9		
	1.1 Цели	9		
	1.2 Задачи			
	1.3 Индивидуальное задание	•		
2	2 Отчёт			
3	Индивидуальное задание	ŀ		
	3.1 Ряды Фурье и интегральное уравнение Вольтерры			
\mathbf{C}	писок литературы	Ć		

1 Цели и задачи практики

1.1 Цели

— развитие компетенций, способствующих успешному освоению материала бакалавриата и необходимых в будущей профессиональной деятельности.

1.2 Задачи

- 1. Знакомство с теорией рядов Фурье, и теорией интегральный уравнений.
- 2. Развитие умения поиска необходимой информации в специальной литературе и других источниках.
- 3. Развитие навыков составления отчётов и презентации результатов.

1.3 Индивидуальное задание

- 1. Изучить способы отображения математической информации в системе вёртски LATEX.
- 2. Изучить возможности системы контроля версий Git.
- 3. Научиться верстать математические тексты, содержащие формулы и графики в системе IATEX. Для этого, выполнить установку свободно распространяемого дистрибутива TeXLive и оболочки TeXStudio.
- 4. Оформить в системе I^AТЕХтиповые расчёты по курсе математического анализа согласно своему варианту.
- 5. Создать аккаунт на онлайн ресурсе GitHub и загрузить исходные tex-файлы и результат компиляции в формате pdf.
- 6. Решить индивидуальное домашнее задание согласно своему варианту, и оформить решение с учётов пп. 1—4.

2 Отчёт

Интегральные уравнения имеют большое прикладное значение, являясь мощным орудием исследования многих задач естествознания и техники: они широко используются в механике, астрономии, физике, во многих задачах химии и биологии. Теория линейных интегральных уравнений представляет собой важный раздел современной математики, имеющий широкие приложения в теории дифференциальных уравнений, математической физике, в задачах естествознания и техники. Отсюда владение методами теории дифференциальных и интегральных уравнений необходимо приклажному математику, при решении задач механики и физики.

3 Индивидуальное задание

3.1 Ряды Фурье и интегральное уравнение Вольтерры.

Задача № 1.

Условие. Разложить в ряд Фурье заданную функцию f(x), построить графики f(x) и суммы ее ряда Фурье. Если не указывается, какой вид разложения в ряд необходимо представить, то требуетчя разложить функцию либо в общий тригонометрический ряд Фурье, либо следует выбрать оптимальный вид разложения в зависимости от данной функции.

$$f(x) = \begin{cases} x, & 0 < x \le 2, \\ 0, & -2 < x \le 0, \end{cases} [-2; 2].$$

Решение.

Построим общий тригонометрический ряд Фурье вида

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos(n\omega x) + b_n \sin(n\omega x) \right), \quad \text{где } \omega = \frac{2\pi}{T}, T = 4.$$

Вычислим коэффициенты

$$a_{0} = \frac{1}{2} \left(\int_{-2}^{0} 0 \, dx + \int_{0}^{2} x \, dx \right) = \frac{1}{2} \left(\frac{x^{2}}{2} \right) \Big|_{0}^{2} = 1,$$

$$a_{n} = \frac{1}{2} \left(\int_{-2}^{0} 0 \cos \left(\frac{n\pi x}{2} \right) dx + \int_{0}^{2} x \cos \left(\frac{n\pi x}{2} \right) dx \right) = \frac{1}{2} \left(\frac{2x}{\pi n} \sin \left(\frac{n\pi x}{2} \right) + \frac{4}{\pi^{2} n^{2}} \cos \left(\frac{n\pi x}{2} \right) \right) \Big|_{0}^{2} =$$

$$= \frac{2}{n^{2} \pi^{2}} ((-1)^{n} - 1),$$

$$b_{n} = \frac{1}{2} \left(\int_{-2}^{0} 0 \sin \left(\frac{n\pi x}{2} \right) dx + \int_{0}^{2} x \sin \left(\frac{n\pi x}{2} \right) dx \right) = \frac{1}{2} \left(-\frac{2x}{\pi n} \cos \left(\frac{n\pi x}{2} \right) + \frac{4}{\pi^{2} n^{2}} \sin \left(\frac{n\pi x}{2} \right) \right) \Big|_{0}^{2} =$$

$$= \frac{2}{n\pi} (-1)^{n+1},$$

Применив теорему Дирихле о поточечной сходимости ряда Фурье, видим, что построенный ряд Фурье сходится к периодическому (с периодом T=4) продолжению исходной функции, и S(2n)=1 при $n=\pm 1, \pm 3, \pm 5\dots$ График функции S(x) имеет следующий вид, где S(x) — сумма ряда Фурье.

Ответ:

$$f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \left[\frac{2}{n^2 \pi^2} ((-1)^n - 1) \cos\left(\frac{n\pi x}{2}\right) + \frac{2}{n\pi} (-1)^{n+1} \sin\left(\frac{n\pi x}{2}\right) \right];$$

$$S(2n) = 1, n = \pm 1, \pm 3, \pm 5....$$

Задача № 2.

Условие. Для заданной графически функции y(x) построить ряд Фурье в комплексной форме, изобразить график суммы построенного ряда

Решение.

Ряд Фурье в комплексной форме имеет следующий вид

$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{i\omega nx}, \quad c_n = \frac{1}{T} \int_a^b f(x) e^{-i\omega nx} dx, \ \omega = \frac{2\pi}{T}.$$

В нашем примере $a=0,b=3,T=3,\omega=2\pi/3,$ найдем коэффицинеты $c_n,\ n=0,\pm 1,\pm 2,\ldots$ где $\omega=2\pi/T,\ T=3.$

$$c_{0} = \frac{1}{3} \int_{0}^{3} f(x)dx = \frac{a_{0}}{2} = e - \frac{4}{3} \approx 1.38,$$

$$c_{n} = \frac{1}{3} \left(\int_{0}^{1} (e^{x} - 1)e^{-i\omega nx}dx + (e - 1) \int_{1}^{3} e^{-i\omega nx}dx \right) =$$

$$= \frac{1}{3} \left(\frac{1}{-i\omega n + 1} e^{(1-i\omega n)x} \Big|_{0}^{1} - \frac{1}{-i\omega n} e^{-i\omega nx} \Big|_{0}^{1} + \frac{e - 1}{-i\omega n} e^{-i\omega nx} \Big|_{1}^{3} \right) =$$

$$= \frac{3 + i2\pi n}{9 + 4\pi^{2}n^{2}} \left(e^{1 - \frac{i2\pi n}{3}} - 1 \right) - \frac{i}{2\pi n} \left(e^{\frac{-i2\pi n}{3}} - 1 \right) + (e - 1) \frac{i}{2\pi n} \left(e^{-i2\pi n} - e^{\frac{-i2\pi n}{3}} \right) =$$

$$= \frac{1}{2} \left(\frac{3}{9 + \pi^{2}n^{2}} \left[e \left(\cos(\frac{\pi n}{3}) + \frac{\pi n}{3} \sin(\frac{\pi n}{3}) \right) - 1 \right] + \frac{1 - e}{\pi n} \sin(\frac{\pi n}{3}) - i \left[\frac{3}{9 + \pi^{2}n^{2}} \left(e \left(\sin(\frac{\pi n}{3}) - \frac{\pi n}{3} \cos(\frac{\pi n}{3}) \right) + \frac{\pi n}{3} \right) - \frac{1}{\pi} \left(\cos(\frac{\pi n}{3}) - 1 \right) + \frac{e - 1}{\pi n} \left((-1)^{n} - \cos(\frac{\pi n}{3}) \right) \right] \right)$$

Применив теорему Дирихле о поточечной сходимости ряда Фурье, видим, что построенный ряд Фурье сходится к периодическому (с периодом T=3) продолжению исходной функции при всех $x \neq 3n$, и $S(3n)=(e-1)/2\approx 0.86$ при $n=0,\pm 1,\pm 2,\ldots$, где S(x) сумма ряда Фурье. График функции S(x) имеет вид

Ответ:

$$f(x) = \sum_{n=-\infty}^{\infty} \left[\frac{1}{2} \left(\frac{3}{9 + \pi^2 n^2} \left[e \left(\cos(\frac{\pi n}{3}) + \frac{\pi n}{3} \sin(\frac{\pi n}{3}) \right) - 1 \right] + \frac{1-e}{\pi n} \sin(\frac{\pi n}{3}) - i \left[\frac{3}{9 + \pi^2 n^2} \left(e \left(\sin(\frac{\pi n}{3}) - \frac{\pi n}{3} \cos(\frac{\pi n}{3}) \right) + \frac{\pi n}{3} \right) - \frac{1}{\pi} \left(\cos(\frac{\pi n}{3}) - 1 \right) + \frac{e-1}{\pi n} \left((-1)^n - \cos(\frac{\pi n}{3}) \right) \right] \right) e^{\frac{i2\pi nx}{3}}, \ x \neq 3n;$$

$$S(3n) = \frac{e-1}{2} \approx 0.86, \quad \text{при } n \in \mathbb{Z}.$$

Задача № 3.

Условие.

Найти резольвенту для интегрального уравнения Вольтерры со следующим ядром

$$K(x,t) = \frac{t^2 + 2t + 3}{x^2 + 2x + 3}e^{t-x}.$$

Решение.

Из рекурентных соотношений получаем

$$K_{1}(x,t) = \frac{t^{2} + 2t + 3}{x^{2} + 2x + 3}e^{t-x},$$

$$K_{2}(x,t) = \int_{t}^{x} K(x,s)K_{1}(s,t)ds = \int_{t}^{x} \frac{s^{2} + 2s + 3}{x^{2} + 2x + 3}e^{s-x} \cdot \frac{t^{2} + 2t + 3}{s^{2} + 2s + 3}e^{t-s}ds =$$

$$= \frac{t^{2} + 2t + 3}{x^{2} + 2x + 3}e^{t-x} \cdot (x - t),$$

$$K_{3}(x,t) = \int_{t}^{x} K(x,s)K_{2}(s,t)ds = \int_{t}^{x} \frac{s^{2} + 2s + 3}{x^{2} + 2x + 3}e^{s-x} \cdot \frac{t^{2} + 2t + 3}{s^{2} + 2s + 3}e^{t-s}(s - t)ds =$$

$$= \frac{t^{2} + 2t + 3}{x^{2} + 2x + 3}e^{t-x} \cdot \frac{(x - t)^{2}}{2},$$

$$K_{j}(x,t) = \frac{t^{2} + 2t + 3}{x^{2} + 2x + 3}e^{t-x} \cdot \frac{(x - t)^{j-1}}{(j-1)!}, \quad j \in \mathbb{N}.$$

Подставляя это выражение для итерированных ядер, найдем резольвенту

$$R(x,t,\lambda) = \frac{t^2 + 2t + 3}{x^2 + 2x + 3}e^{t-x} \sum_{j=1}^{\infty} \lambda^{j-1} \cdot \frac{(x-t)^{j-1}}{(j-1)!}, \quad j = 1, 2, \dots$$

Список литературы

- [1] Львовский С.М. Набор и вёрстка в системе I^AT_EX, 2003.
- [2] Краснов М.Л., Киселев А.И., Макаренко Г.И. Интегральные уравнения. М.: Наука, 1976.
- [3] Васильева А. Б., Тихонов Н. А. Интегральные уравнения. 2-е изд., стереотип. М: ФИЗМАТЛИТ, 2002.