DEL UNIVERSION DE POTITION

Profº Vanessa Peres - 1ª Avaliação de Estatística - Valor: 9,0 pontos

Nome: Diner Varyer Teiars

Data: 29 10 3 /2018

- 1) Associe corretamente o tipo de variável: (2,0 pontos)
- (1) Variável Quantitativa Discreta;
- (2) Variável Quantitativa Continua;
- (3) Raça dos cães
- (2) Distância entre dois pontos quaisquer
- (1) Volume de tráfego em um posto de pedágio
- (a) O tempo gasto na trajetória de um ônibus
- (2) Faturamento de uma empresa
- (4) Hierarquias utilizadas nos quartéis
- (2) Diâmetro de um parafuso
- (A) A relação candidatos/vaga por curso
- (A) O número da camisa de futebol
- (3) Disciplina cursada

- (3) Variável Qualitativa Nominal;
- (4) Variável Qualitativa Ordinal.
- (4) A colocação de um piloto em uma corrida
- (2) Volume de uma garrafa de refrigerante
- (2) Altura dos jogadores de um time de vôlei
- (3) Cor de uma camisa
- (4) Classificação final em um concurso público
- (2) As notas dos alunos de uma disciplina
- (1) Número de habitantes de uma cidade
- (4) Número de defeitos em um sapato
- (a) Peso de pacotes de café
- (1) Quantidade de animais numa área
- 2) No quadro seguinte apresentam-se o número de transações efetuadas em cada uma das lojas dos Supermercados XXX, classificadas por níveis de despesa, e o número de empregados existentes em cada uma delas.

Escalão de despesas -	Número de transações			
	Loja 1	Loja 2		
0 – 10 u.m.	29	74		
10 - 20 u.m.	44	78		
20 - 30 u.m.	26	30		
30 - 40 u.m.	9	18		
Nº de empregados	20 108	30		

- a) Determine o valor médio, o valor modal e o valor mediano por transações de cada loja. (0,5 ponto)
- b) Calcule o, desvio padrão da distribuição das transações na loja 2 sabendo que o valor correspondente para a outra loja é de 9,1 u.m. Em qual das duas distribuições é mais elevada a dispersão? Justifique. (0,5 ponto)
- e) Será possível afirmar que em ambas as lojas, mais de 70% das transações têm um valor inferior a 20 u.m.? Justifique. (0,5 ponto)
- 3) Um levantamento dos preços à vista de gasolina e de álcool, em alguns postos da cidade, está mostrado na tabela abaixo (em R\$).

Gasolina	2,61	2,64	2,56	2,61	2,60	2.58	2,60	
Alcool	1,81	1,79	1,88	1,81	1,88	1.90	1.84	1,81

- a) Qual é a média, a moda, a mediana, a variância, o desvio padrão, o erro padrão da média e o coeficiente de variação dos preços de cada combustível? (1,0 ponto)
- b) Qual é o combustivel que tem seus preços mais homogêneos em termos absolutos? Justifique. (0,5 ponto)

4) Uma dona de casa pesou 10 potes de manteiga e verificou que a média dos pesos dos potes era de 500 g, com variação entre cada pesagem, indicando um desvio padrão de 25 g. Ela repetiu a experiência com pacotes de arroz e verificou que a média dos pesos dos pacotes de arroz era 5000 g com variação de peso entre os pacotes representados pelo desvio padrão de 100 g.

- a) Qual dos produtos apresentou maior variação relativa em seus pesos? Justifique a sua resposta. (1,0 ponto)
- 5) Os dados abaixo referem-se à taxa de creatinina na urina de 24 horas (mg/100 mL), em uma amostra de 36 homens normais.

Indiv. No	Creat.						
01	1,51	10	17,01	19	1,54	28	1,66
02	1,61	11	1,66	20	1,38	29	1,75
03	1,69	12	1,52	21	1,47	30	-1,59
04	1,49	13	-1,40	22	1,73	31	6 1,40
05	1,67	14	1,83	23	1,60	32	1,44
06	2,18	15	3 1,32	24	1,43	33	1,52
07	1,46	16	1,46	25	1,58	34	7 1,37
08	1,89	17	1,43	26	1,66	35	1,86
09	1,76	18	1,49	27	5 1,26	36	2,02

- Organize os dados em uma tabela de frequências agrupadas em classes. (0,5 ponto)
- b) Calcule as frequências absolutas, relativas, acumuladas e acumuladas relativas. (0,5 ponto)
- Desenhe o histograma. (0,5 ponto)
- Determine a porcentagem de observações menores que 1,41. (0,5 ponto)
- e) Em qual classe pertence o 17º indivíduo? (0,5 ponto)
- 6) Demonstre que $\sum_{i=1}^{n} (X_i \overline{X}) = 0$. (0,5 ponto)

$$CV = \frac{S}{\overline{X}} \cdot 100$$

iii) Erro padrão da média: $S(\overline{X}) = \frac{S}{\sqrt{n}}$; em que S é o desvio padrão da amostra.

iv) Distribuição de frequências em classes:

v) Média para dados agrupados em intervalos de classes:

$$\overline{X} = \frac{\sum_{i=1}^{k} X_i f_i}{n} ; em que:$$

$$ar{X} = rac{\sum\limits_{i=1}^k X_i f_i}{n}$$
; em que: $egin{array}{c} X_i = ponto \ m\'edio \ da \ classe \ i; \\ f_i = a \ frequência \ absoluta \ da \ classe \ i; \\ k = quantidade \ de \ classes. \end{array}$

vi) Mediana para dados agrupados em intervalos de classes:

$$Md = L_i + \frac{\left(\frac{n}{2} - F_{ant}\right) \cdot h}{f_i}$$
; em que:

 F_{ant} é a frequência acumulada anterior à classe que contém o elemento $\frac{n}{2}$.

vii) Moda para dados agrupados em intervalos de classes - MÉTODO DE King:

$$Mo = L_i + \left(\frac{f_{post}}{\left(f_{ant} + f_{post}\right)}\right) \cdot h \; ;$$

em que:

L :limite inferior da classe modal (maior frequência); f_{ant} : frequência absoluta da classe anterior à classe modal; f_{post} : frequência absoluta da classe posterior à classe modal; h: amplitude da classe modal.

viii) Variância para dados agrupados em intervalos de classes:

$$S^{2} = \frac{\sum_{i=1}^{k} (X_{i} - \overline{X})^{2} f_{i}}{n-1}$$
 or

$$S^{2} = \frac{\sum_{i=1}^{k} (X_{i} - \overline{X})^{2} f_{i}}{n-1} \quad ou \quad S^{2} = \frac{\sum_{i=1}^{k} X_{i}^{2} f_{i} - \frac{\left(\sum_{i=1}^{k} X_{i} f_{i}\right)^{2}}{n}}{n-1}$$