Opgave 1, s. 212

Which of the following functions are in \mathcal{L}^1 ? in \mathcal{L}^2 ?

(a)
$$\int_{-\infty}^{\infty} \left| \frac{\sin x}{|x|^{3/2}} \right| dx \tag{1}$$

Da $\sin x$ er begrænset af 1, og $\sin x \approx x$ for $0 \le x \le 1$ kan integralet deles op i disse dele.

$$\int_{-\infty}^{\infty} \left| \frac{\sin x}{|x|^{3/2}} \right| dx \le 2 \int_{0}^{1} \frac{x}{|x|^{3/2}} dx + \int_{1}^{\infty} \frac{1}{|x|^{3/2}} dx \tag{2}$$

$$= 2 \left[2x^{1/2} \right]_0^1 + \left[-2x^{-1/2} \right]_1^{\infty} \tag{3}$$

Ovenstående konvergerer og udtrykket ligger derfor i \mathcal{L}^1 . Udtrykket ligger ikke i \mathcal{L}^2 .

(b)
$$(1+x^2)^{-1/2} (4)$$

Sæt $u = (1 + x^2)^{-1/2}$ og udregn integralet.

$$\int_{-\infty}^{\infty} \frac{1}{u} \, du = \left[\ln(1 + x^2)^{1/2} \right]_{-\infty}^{\infty} = \infty \tag{5}$$

Den ligger altså ikke i \mathcal{L}^1 .