

無母數統計

吳漢銘

國立臺北大學統計學系

http://www.hmwu.idv.tw

- Non-parametric Models
- Non-parametric Tests
 - Sign Test Wilcoxon Signed-Rank Test (paired),
 Mann-Whitney Test, Kruskal-Wallis Test
- 事後比較檢定 (Post Hoc Tests): Tukey's HSD Test

無母數統計

Non-parametric Statistics

- Nonparametric statistics is based on either
 - being distribution-free or having a specified distribution but with the distribution's parameters unspecified.
 - includes both descriptive statistics and statistical inference.
- Non-parametric inferential statistical methods: Sign test, Wilcoxon signed-rank test, Mann–Whitney U test, Kolmogorov– Smirnov test, Kruskal–Wallis one-way ANOVA,...
- Non-parametric models: kernel density estimation, nonparametric regression, ...

kernel regression

$$\hat{f}(x) = \frac{\sum_{i=1}^{n} K\left(\frac{x - x_i}{h}\right) y_i}{\sum_{i=1}^{n} K\left(\frac{x - x_i}{h}\right)}$$
 nonparametric regression
$$y_i = f_0(x_i) + \epsilon_i, \quad i = 1, \dots n,$$

$$\epsilon_1, \dots \epsilon \text{ are still i.i.d. random errors with } \mathbb{E}(\epsilon_i) = 0$$

nonparametric regression

$$y_i = f_0(x_i) + \epsilon_i, \quad i = 1, \dots n,$$

k-nearest-neighbors regression.

$$\hat{f}(x) = \frac{1}{k} \sum_{i \in \mathcal{N}_k(x)} y_i$$

https://en.wikipedia.org/wiki/Nonparametric_statistics

平均數檢定 in R

Hypothesis	One Sample	Two	> two Groups	
Testing	-	Paired data	Unpaired data	Complex data
Parametric (variance equal)	t-test	<pre>t-test t.test(x-y, var.equal = TRUE) t.test(x, y, paired = TRUE, var.equal = TRUE)</pre>	<pre>t-test t.test(x, y, var.equal = TRUE)</pre>	One-Way Analysis of Variance (ANOVA) aov(x~g, data) oneway.test(x~g, data, var.equal = TRUE)
Parametric (variance not equal)	t.test(x, mu = 0)	<pre>Welch t-test t.test(x-y) t.test(x, y, paired = TRUE)</pre>	Welch t-test t.test(x, y)	Welch ANOVA oneway.test(x~g, data)
Non- Parametric (無母數檢定)	Wilcoxon Signed-Rank Test	Wilcoxon Signed-Rank Test	Wilcoxon Rank-Sum Test (Mann-Whitney U Test)	Kruskal-Wallis Test kruskal.test(x, g)
	<pre>wilcox.test(x, mu = 0)</pre>	<pre>wilcox.test(x-y) wilcox.test(x, y, paired = TRUE)</pre>	<pre>wilcox.test(x, y)</pre>	

pairwise.t.test {stats}: Calculate pairwise comparisons between
group levels with corrections for multiple testing
TukeyHSD {stats}: Compute Tukey Honest Significant Differences

- Given n pairs of data, the sign test tests the hypothesis that the median of the differences in the pairs is zero.
- The test statistic is the number of positive differences.
- If the null hypothesis is true, then the numbers of positive and negative differences should be approximately the same.

Pair	Before	${\bf After}$	Sign
1	89	73	+
2	83	77	+
3	80	58	+
4	72	77	_
5	77	70	+
6	74	62	+
7	69	67	+
8	65	68	_
9	60	44	+
10	55	50	+
11	54	46	+
12	50	38	+
13	42	47	_
14	48	40	+
15	44	43	+
16	38	29	+
_17	36	25	+

```
The Sign Test:
when n_1 = n_2 \le 50
H_0: P = Q = \frac{1}{2}
H_1: P \ne Q \ne \frac{1}{2}
T = \#"+"
At \alpha = 0.01, two-tailed test,
reject H_0 if T \ge 14 when N = 17.
(Binomial Probability)
```

Wilcoxon Signed-Rank Test (paired)

- Null hypothesis: the population median from which both samples were drawn is the same.
- The sum of the ranks for the "positive" values is calculated and compared against a precomputed table to a p-value.
- If the null hypothesis is true, the sum of the ranks of the positive differences should be about the same as the sum of the ranks of the negative differences.

Pair	Before	${\bf After}$	Diff.	Rank
1	89	73	16	15.5
2	83	77	6	7
3	80	58	22	17
4	72	77	-5	5
5	77	70	7	8
6	74	62	12	13.5
7	69	67	2	2
8	65	68	-3	3
9	60	44	16	15.5
10	55	50	5	5
11	54	46	8	9.5
12	50	38	12	13.5
13	42	47	-5	5
14	48	40	8	9.5
15	44	43	1	1
16	38	29	9	11
_17	36	25	11	12

The Wilcoxon signed-rank Test:

```
H_0: \mu_1 = \mu_2

H_1: \mu_1 \neq \mu_2

T = \min\{\sum_+ \text{Rank}, \sum_- \text{Rank}\}

At \alpha = 0.01, two-tailed test,

reject H_0 if T \neq 23 when N = 17.

(Table)
```

(The zero difference is ignored when assigning ranks. $N_{new} = N_{old} - \#\{ties\}$)

$$\begin{split} T &= \min \{ \sum_{+} \mathrm{Rank} = 140, \sum_{-} \mathrm{Rank} = 13 \} \\ &= 13 \end{split}$$

The obtained T=13 is less than the critical value 23, so we reject H_0 .

(Wilcoxon Rank-Sum Test, unpaired)

- The data from the two groups are combined and given ranks. (1 for the largest, 2 for the second largest,...)
- The ranks for the larger group are summed and that number is compared against a precomputed table to a p-value.

Grc	oup	Ra	nk
G_1	G_2	G_1	G_2
26	16	3	11
22	10	4	17
19	8	7.5	19
21	13	5.5	13.5
14	19	12	7.5
18	11	9	15.5
29	7	2	20
17	13	10	13.5
11	9	15.5	18
34	21	1	5.5
$n_1 = 10$	$n_2 = 10$	$R_1 = 69.5$	$R_2 = 140.5$

The Mann-Whitney U Test:

$$\begin{split} H_0: F_1 &= F_2 \\ H_1: F_1 \neq F_2 \\ U &= n_1 n_2 + \frac{n_1(n_1+1)}{2} - R_1 \\ \text{or} & R_i = \sum_i \text{Rank} \\ U' &= n_1 n_2 + \frac{n_2(n_2+1)}{2} - R_2 \\ \\ \text{At } \alpha &= 0.05, \text{ two-tailed test for } n_1 = 10, n_2 = 10, \\ \text{reject } H_0 \text{ if } U \leq 23 \text{ or } U' \geq 77 \text{ (Table)} \end{split}$$

U: the number of times that a score from Group 1 is lower in rank than a score from Group 2.

$$U = 85.5$$
, $U' = 14.5$
The obtained $U = 85.5$ is less than the critical value 77, so we reject H_0 .

Kruskal-Wallis Test

- The Kruskal Wallis test can be applied in the one factor ANOVA case. It is a non-parametric test for the situation where the ANOVA normality assumptions may not apply.
- Each of the n_i should be at least 5 for the approximation to be valid.

Rank Data

1	2	j	k
X_{11}	X_{12}	$\cdots X_{1j} \cdots$	X_{1k}
X_{21}	X_{22}	$\cdots X_{1j} \cdots \\ \cdots X_{2j} \cdots$	X_{2k}
X_{i1}	X_{i2}	$\cdots X_{ij} \cdots$	X_{ik}
÷	$X_{n_{2}2}$:	$X_{n_k k}$
X_{n_11}		$X_{n_i j}$	

Groups

1	2		J		k
R_{11}	R_{12}		R_{1j} R_{2j}		R_{1k}
R_{21}	R_{22}	• • •	R_{2j}	• • •	R_{1k} R_{2k}
R_{i1}	R_{i2}	• • •	R_{ij}	• • •	R_{ik}
:	R_{n_22}		:		$R_{n_k k}$
R_{n_11}			$R_{n_i j}$		

$$H_0: \mu_1 = \mu_2 = \dots = \mu_k$$

$$H_1: \mu_i \neq \mu_j$$
 for at least one set of i and j

$$W = \frac{12}{N(N+1)} \sum_{j=1}^{k} \frac{R_j^2}{n_j} - 3(N+1)$$

$$W \sim \chi_{k-1}^2$$
 under H_0

Reject
$$H_0$$
 if $W > CHIPPF(\alpha, k-1)$,
the chi-square
percent point function

$$F(x) = P(X \le x) = P(X \le G(\alpha)) = \alpha$$

$$x = G(\alpha) = G(F(x))$$

The percent point function (ppf) is the inverse of the cumulative distribution function.

Parametric vs. Non-Parametric Test

Parametric Tests

- Assume that the data follows a certain distribution (normal distribution).
- Assuming equal variances and unequal variances.
- More powerful.
- Widely Implemented.
- Not appropriate for data with outliers.

Non-Parametric Tests

- When certain assumptions about the underlying population are questionable (e.g. normality).
- Does not assume normal distribution
- No variance assumption
- Less powerful.
- Widely Implemented.
- Decrease effects of outliers (Robust)
- Not recommended if there is less than 5 replicates per group.

事後檢定 (Post Hoc Tests) 10/12 Tukey's Honestly Significant Difference (HSD) Test

Null hypothesis: all means being compared are from the same population

(i.e.
$$\mu_1$$
 = μ_2 = μ_3 = ... = μ_k) $q_s = \frac{Y_A - Y_B}{SE},$

 Y_A is the larger of the two means being compared, Y_B is the smaller of the two means being compared, and SE is the standard error of the sum of the means.

- This q_s value can then be compared to a q value from the studentized range distribution.
- If the q_s value is larger than the critical value q_α obtained from the distribution, the two means are said to be significantly different at level α , $0 \le \alpha \le 1$.
- Assumptions for the test
 - Observations are independent within and among groups.
 - The groups for each mean in the test are normally distributed.
 - equal within-group variance across the groups.
 - equal sample sizes.

Drug A: 4 5 4 3 2 4 3 4 4

範例: ANOVA + Post Hoc Test

A drug company tested three formulations of a pain relief medicine for migraine headache sufferers. For the experiment 27 volunteers were selected and 9 were randomly assigned to one of three drug formulations. The subjects were instructed to take the drug during their next migraine headache episode and to report their

pain on a scale of 1 to 10 (10 being most pain).

```
Drug B: 6 8 4 5 4 6 5 8 6
> pain <- c(4, 5, 4, 3, 2, 4, 3, 4, 4, 6, 8, 4, 5,
                                                                    Drug C: 6 7 6 6 7 5 6 5 5
+ 4, 6, 5, 8, 6, 6, 7, 6, 6, 7, 5, 6, 5, 5)
> drug <- c(rep("A", 9), rep("B", 9), rep("C", 9))</pre>
> migraine <- data.frame(pain, drug)</pre>
> plot(pain ~ drug, data=migraine)
> migraine.aov <- aov(pain ~ drug, data=migraine)</pre>
> summary(migraine.aov)
           Df Sum Sg Mean Sg F value Pr(>F)
          2 28.22 14.111 11.91 0.000256 ***
drug
Residuals 24 28.44 1.185
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'
> # reject the null hypothesis of equal means for all three drug group
                                                                                         С
```

Pairwise Comparisons

```
> pairwise.t.test(pain, drug, p.adjust="bonferroni")
        Pairwise comparisons using t tests with pooled SD
data: pain and drug
B 0.00119 -
C 0.00068 1.00000
P value adjustment method: bonferroni
> TukeyHSD(migraine.aov)
 Tukey multiple comparisons of means
    95% family-wise confidence level
Fit: aov(formula = pain ~ drug, data = migraine)
$druq
         diff
                     lwr
                                      p adj
                              upr
B-A 2.1111111 0.8295028 3.392719 0.0011107
C-A 2.2222222 0.9406139 3.503831 0.0006453
C-B 0.1111111 -1.1704972 1.392719 0.9745173
> # conclude that the mean pain is significantly different for drug A
```

