

Модели организации сетей —

05

Alena Matach, 03.2021

Сложности построения сетей

- разное оборудование, ПО
- надежность
- развитие сети
- распределение ресурсов
- безопасность

Решение:

декомпозиция на подзадачи (уровни)

- уровень решает конкретную задачу или несколько связанных задач
- уровни изолированы если в сети произошли изменения, не нужно менять всё ПО или оборудование, а только то, которое относится к уровню, на котором произошли изменения

Сервис - описывает что полезное делает уровень. **Интерфейс** - набор операций, которые нижний уровень предоставляет верхнему (реальное общение внутри одного компьютера).

Протокол - правила и соглашения, которые используются для связи разных хостов на одном уровне (виртуальное общение меду компьютерами).

OSI Модель взаимодействия открытых систем

- Юридический стандарт международной организации стандартизации ISO
- 7 уровней, протоколы не входят в модель
- хорошая теоретическая проработка
- не используется на практике

TCP/IP

- Фактический стандарт на основе стека ТСР/ІР
- 4 уровня
- протоколы широко используются на практике

Модель OSI

OSI vs TCP/IP

Модель TCP/IP
Прикладной
Транспортный
Интернет
Сетевых интерфейсов

Стек протоколов ТСР/ІР

Прикладной	HTTP SMTP DNS FTP
Транспортный	TCP UDP
Сетевой	IP ICMP
Сетевых интерфейсов	Ethernet Wi-Fi DSL

Физический уровень

Сервис - передача потока бит по среде передачи данных

1

Физический уровень представляет информацию в виде сигналов

Среда передачи данных:
- телефонный кабель
- оптический кабель
- витая пара
- радиоволны

2

несколько источников сигнала искажают друг друга для разных технологий выделяют разные диапазоны - сотовая связь - 900 мГц - Wi-Fi - 2,4 ГГц и 5 ГГц Единица передачи информации **Бит**

• • • •

• • • •

• • • •

Канальный уровень

Задача - передача сообщений по каналам связи

 определение начала и конца сообщения в потоке бит

- исправление ошибок
- адресация

2

- согласованный доступ к каналу

- повторная отправка сообщения (метол

- повторная отправка сообщения (метод "остановка и ожидание")
- обнаружение и исправление

Канальный уровень имеет 2 подуровня

Подуровень управления логическим каналом

Отвечает за передачу данных (создание кадров, обработка ошибок)

Подуровень управления доступом к среде

- Совместное использование разделяемой среды (может возникнуть "Коллизия", если несколько компьютеров начнут передачу одновременно)
- Адресация

Концентратор

Физический уровень

Коммутатор

Канальный уровень

мас адрес

Физический адрес. : С0-38-96-62-4А-С7

С его помощью мы понимаем кому адресованы данные, если у нас на канале связи несколько устройств.

2

Длина MAC-адреса 6 байт Форма записи - 6 шестнадцатеричных чисел ipconfig /all (Windows) ip addres (Linux)

3

Назначается централизованно - производителем оборудования либо
Локально - администратором

Индивидуальный unicast 30-9C-23-15-E8-8C

Групповой multicast **01**-80-C2-00-00-08

Широковещательный broadcast FF-FF-FF-FF-FF

Ethernet

Сетевая технология для проводной связи

Классический 1973

Разделяемая седа устройство -Концентратор Hub

Плохая масштабируемость (снижается скорость) Низкая безопасность (данные доступны всем)

Коммутируемый 1995

Точка-точка
Нет разделяемой среды
нет коллизий
устройство - Коммутатор
Switch
все порты связаны друг
с другом напрямую
Таблица коммутации

Концентратор (hub)

Коммутатор (switch)

Wi-Fi

Технология беспроводных локальных сетей

Адесация через MAC-адеса Разделяемая среда - радиоэфир Формат кадра на уровне LLC одинаковый

Особенности среды

- вероятность ошибки передачи гораздо выше
- мощность передаваемого сигнала выше принимаемого

не все компьютеры в сети получают данные-проблемы скрытой и засвеченной станции

Из-за большого количества ошибок используется подтверждение получения данных

Коллизии обнаруживаются по отсутствию подтверждения, в Wi-Fi коллизии очень дорогие

Протокол STP

Spanning Three Protocol (протокол связующего дерева)

Автоматическое отключение дублирующих путей в Ethernet. Решается проблема **широковещательного шторма**.

Сейчас используется RSTP - он быстрее, принциптот же.

Сетевой уровень

Построение крупной сети из отдельных сетей, которые построены на разных технологиях (Ethernet, Wi-Fi, 5G,4G,3G)
Сети могут отличаться сервисами, возможностью поддерживать широковещание, максимальным размером кадра и др

Глобальные адреса - IP адреса у каждого интерфейса свой IP-адреса Фрагментация (сети могут быть разных размеров,

размер данных > размера сети)

Основные задачи уровня

- объединение сетей
- маршрутизация используется **маршрутизатор**

разные пути к сети

Данные

передаются

пакетами

ІР-адреса

Две версии протокола ІР

- IPv4 адрес 4 байта
- IPv6 адрес 16 байт

IPv4 - 4 десятичных числа от 0 до 255 разделенных

точкой

213.180.193.3

На сетевом уровне идет работа не с отдельными адресами, а с подсетями (старшая часть IP-адреса :213.180.193.1 одинаковая)

213.180.193.3

• 213.180.193.254

IP-адрес 213.180.193.3 ← адрес хоста

адрес подсети

Маска подсети Десятичное представление:

- IP-адрес: 213.180.193.3
- Маска подсети: 255.255.255.0
- Адрес подсети: 213.180.193.0

В виде префикса:

- 213.180.193.3 /24
- Адрес подсети: 213.180.193.0

Виды IP-адресов

- Индивидуальный
- Групповой
- **Широковещательный** 213.180.193.255
- Статические
- Динамические
- Внешние
- Внутренние

Протокол ІР

Протокол межсетевого взаимодействия (для передачи данных)

- без гарантии доставки
- без сохранения порядка следования сообщений
- БЕЗ УСТАНОВКИ СОЕДИНЕНИЯ если пакет не дошел, ничего не происходит ошибка должна быть устранена на вышестоящих уровнях

Записи в таблице машутизации

Задачи протокола

- маршрутизация
- объединение сетей

Статические

- Настраиваются вручную
- Конфигурация интерфейсов
- Вручную прописанные маршруты к сетям

Динамические

- Настраиваются автоматически
- Протоколы маршрутизации RIP, OSPF, BGP и др.

DHCP Dynamic Host Configuration Protocol

Протокол динамической конфигурации хостов - позволяет назначать IP-адреса для компьютеров в сети автоматически

- IP-адреса компьютеров могут меняться
- DHCP работает по модели клиент-сервер (необходим DHCP сервер)

IP-адрес выдается на ограниченное время Клиент может продлить аренду, это происходит после истечения половины времени, делает новый запрос на сервер и просит продлить

ARP (Address Resolution Protocol)

позволяет по IP-адресу компьютера определить

МАС-адрес

Запрос посылается на широковещательный адрес

Ответ присылает только компьютер с соответствующим IP

ARP не проходит через маршрутизатор

После обнаружения MAC-адрес кешируется в ARP таблице

ICMP (Internet Control Message Protocol)

Протокол межсетевых управляющих сообщений Функции:

- Оповещение об ошибках на сетевом уровне
- Тестирование работоспособности сети сообщения об ошибках не обязательно должны обрабатываться

Большая часть пакетов ICMP формируются и отправляются сетевым оборудованием автоматически. Некоторые сообщения формируются утилитами. Утилиты применяются для диагностики сети:

ping -проверяет доступность компа в сети

traceroute - находит <u>адреса всех маршрутизаторов, через которые проходит пакет</u>

```
C:\Users\alena>tracert tut.by

Трассировка маршрута к tut.by [178.172.160.5]

с максимальным числом прыжков 30:

1 <1 мс <1 мс 192.168.0.1

2 2 ms 2 ms 192.168.1.1

3 25 ms 25 ms 26 ms 100.64.0.1

4 26 ms 25 ms 28 ms grodnoreg.10g.net.belpak.by [93.85.240.220]

5 28 ms 24 ms 29 ms 10.0.42.53

6 33 ms 33 ms 33 ms core1.net.belpak.by [93.85.253.69]

7 29 ms 30 ms 30 ms 93.84.125.189

8 30 ms 30 ms 30 ms 178.124.134.165

9 30 ms 28 ms 29 ms 178-172-160-5.hosterby.com [178.172.160.5]

Трассировка завершена.
```

Пакет ІСМР включает тип сообщения и код сообщения

Тип	Назначение сообщения
0	Эхо-ответ
3	Узел назначения недостижим
5	Перенаправления маршрута
8	Эхо-запрос
9	Сообщение о маршрутизаторе
10	Запрос сообщения о маршрутизаторе
11	Истечение времени жизни пакета
12	Проблемы с параметрами
13	Запрос отметки времени
14	Ответ отметки времени

Код	Причина
0	Сеть недостижима
1	Узел недостижим
2	Протокол недостижим
3	Порт недостижим
4	Ошибка фрагментации
5	Ошибка в маршруте источника
6	Сеть назначения неизвестна
7	Узел назначения неизвестен
8	Узел-источник изолирован
9	Административный запрет

Транспортный уровень

Задача - передача данных между процессами на хостах.

- Адресация
- Надежность передачи данных

Сквозное соединение между двумя хостами (уровень сетенезависимый)

Появился интерфейс сокетов

Гарантия доставки данных:

Подтверждение получения

Повторная отправка неподтвержденных данных

Гарантия порядка следования сообщений нумерация Для адресации используются **порты** 192.168.1.3**:80**

Хорошо известные порты: 1-1024

- 80 HTTP (Web)
- 25 SMTP (Электронная почта)
- 53 DNS
- 67,68 DHCP
- Использовать может только root/Администратор

Зарегистрированные порты: 1025-49151

 Регистрация в Internet Assigned Numbers Authority (IANA)

Динамические порты: 49151-65535

 Автоматически назначаются операционной системой сетевым приложениям

UDP

User Datagram Protocol		
Сообщение UDP называется дейтаграмма	•	
Задача - указывает порт отправителя и порт		
получателя	•	
Особенности		
Нет соединения - фрагменты данных могут		
потеряться	•	
Нет гарантии доставки		
Нет гарантии порядка сообщений	•	
Преимущество - Скроость работы быстрее	•	
чем у ТСР		
	•	
Область применения:	•	
клиент - сервер		
короткие запросы -ответы	•	(

Пример: запрос IP- адреса у системы DNS Стримы, вебинары, звонки по скайпу - общение в реальном времени

TCP

Transmission Control Protocol (протокол управления передачей)

Надежная передача потока байт. Обеспечивает **целостность данных**.

гарантия доставки
подтверждение получения сообщения
повторная отправка при отсутствии
гарантия сохранения порядка сообщений - нумерация
сообщений (защита от дублирования)

Перед отправкой TCP должен установить соединение - трехстороннее рукопожатие (SYN - SYN ACK - ACK)

NAT - Network Address Translation надстройка PAT (Port Addess Translation)

Технология преобазования IP-адресов внутренней сети (частной) в IP-адреса внешней сети (Интернет)

Причина - нехватка адресов IPv4

Внутренний адрес выдает провайдер, с ним мы находимся внутри локальной сети Внешний адрес выдает провайдет для выхода в интернет, к нему добавляется порт - дополнительный идентификатор

Сеансовый уровень

Сеанс (сессия) - набор связанных сетевых взаимодействий, направленных на решение одной задачи

Отвечает за поддержание сеанса связи, позволяя приложениям взаимодействовать между собой длительное время.

Пример - загрузка веб-станицы

Уровень представления

Кодирование и сжатие

Происходит преобразование форматов при переходе с одного уровня на дугой. Пример - при передаче фото на нижний уровень оно превращается в 0 и 1. На обратном пути снова собирается в изображение.

Для защиты передаваемых по сети данных используется шифрование : SSL, TLS. Шифрование также происходит на этом уровне.

Уровень приложения (Прикладной)

Отвечает за взаимодействие сетевых приложений. Пример - браузер

Протоколы прикладного уровня:

HTTP

SMTP,POP3, IMAP,

DNS,

FTP

DNS - Domain Name Systems

Система доменных имен позволяет использовать вместо IP-адресов понятные человеку символьные имена компьютеров также позволяет по этому имени определить IP-адрес

Если компания захочет перенести свой сервер на другой компьютер с другим IP-адресом, то доменное имя не изменится

Режимы работы:

итеративный- если север не отвечает за ту зону, на которую пришел запрос, то он присылает адрес другого сервера, к которому нужно обратиться **рекурсивный** (DNS resolver)- сервер сам отправляет запросы другим серверам пока не найдет нужную инфу и не вернет ее клиенту

Типы ответов

авторитетный - ответ от сервера, который является ответственным за эту зону **неавторитетный** - от другого сервера (например resolver, который ранее закэшировал инфу)

утилита nslookup позволяет найти IP-адрес по доменному имени

```
C:\Users\alena>nslookup www.yandex.ru

⊤xЁтхЁ: cache-gr2.grodno.by

Address: 86.57.160.66

Не заслуживающий доверия ответ:

Lь: www.yandex.ru

Addresses: 2a02:6b8:a::a

77.88.55.80

5.255.255.88

77.88.55.88
```


HTTP-протокол передачи гипертекста

НТТР работает в режиме запрос-ответ Протокол транспортного уровня **ТСР** Порт сервера - **80**

Есть несколько версий протокола HTTP HTTP 1 - первая официальная версия, 1996 HTTP 1.1 - расширение первой версии,1997

- кэшиование , keep-alive, аутентификация HTTP 2.0

- использует бинарный формат (0 и 1), влияет на производительность
- сжатие заголовков
- все запросы походят по одному ТСР соединению

Протокол поддерживает работу кэша Кэширование позволяет сократить время загрузки Веб-страницы, изображения, таблицы стилей

Кэширование позволяет сократить время загрузки Web-страниц

• Ресурсы загружаются из кэша, а не с сервера

Можно ли использовать копию ресурса из кэша?

- Заголовок Expires
- Заголовок Cache-Control

Запрос Get с условием:

- Заголовок lf-Modified-Since (по дате)
- Заголовок If-None-Match (по ETag)

Тип кэша:

- Частный: в браузере
- Разделяемый (proxy, reverse proxy и др.)

FTP File Transfer Protocol

Протокол передачи файлов

Один из самых старых

Работает в режиме клиент-сервер

Работает с файловой системой на FTP-сервере

Для адресации файлов также использует URL

Протокол FTP использует 2 соединения

- управляющее открыто всё время работы
- передачи данных инициируется со стороны сервера

Недостатки

- проблема с NAT и межсетевыми экранами
- низкая безопасность id и пароль передаются по сети в открытом виде используется замена FTP на основе SSH - SFTP

Протоколы Электронной почты

Протокол SMTP

Simple Mail Transfer Protocol Используется для передачи сообщений от агента пользователя почтовому серверу и между серверами

Протокол РОР3

Post Office Potocol 3
Используется для чтения писем из хранилища сообщений. Передает все сообщения из хранилища на локальный компьютер пользователя и только после этого показывает их в агенте. Удаляет с сервера все сообщения, которые были получены пользователем

Протокол ІМАР

Internet Message Access Prorocol Рассчинан на работу напрямую с хранилищем сообщений. Письма после почтения пользователем не удаляются из хранилища.

С почтовым ящиком может работать сразу несколько клиентов

Могут быть разные папки. Есть флаги.

Все протоколы работают в текстовом режиме Взаимодействие запрос-ответ

Протокол WS (Web сокеты)

Между клиентом и сервером устанавливается постоянное двунаправленное соединение Сервер может отправлять данные по своей инициативе Пример- чаты

Установка соединения: запрос и ответ

2

GET /chat HTTP/1.1

Host: www.asozykin.ru

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==

Origin: http://asozykin.ru Sec-WebSocket-Version: 13 HTTP/1.1 101 Switching Protocols

Upgrade: websocket
Connection: Upgrade

Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+x0o=

3

Данные передаются в виде кадров через соединение ТСР (заголовки кадров

бинарные, что снижает накладные расходы)

Есть фрагментация

Типы кадров - текстовые данные (кодировка UTF-8), бинарные данные, управляющие кадры