عموميات حول الدوال العددية

تذكير: دراسة بعض الدوال الإعتيادية

 $(a \neq 0)$ $f: x \mapsto ax^2 + bx + c$ دراسة و تمثیل الدالة

 $\alpha = \frac{-b}{2a}$ نضع

التمثيل المبياني للدالة $ax \mapsto ax^2 + bx + c$ عبارة عن شلجم رأسه $\Omega(\alpha,f(\alpha))$ و محوره هو المستقيم الذي معادلته $x = \alpha$

$$f: x \mapsto \frac{ax+b}{cx+d}$$
 دراسة و تمثیل الدالة

نعتبر الدالة
$$\frac{dx+b}{cx+d}$$
 نعتبر الدالة $\frac{dx+b}{cx+d}$ تسمى دالة متخلطة $D_f=\mathbb{R}\setminus\left\{\frac{-d}{c}\right\}=\left]-\infty, \frac{-d}{c}\right[\cup\left[\frac{-d}{c},+\infty\right[$ لدينا نين معادلتاهما : $\Omega\left(\frac{-d}{c},\frac{a}{c}\right)$ عبارة عن هذلول مركزه $\Omega\left(\frac{-d}{c},\frac{a}{c}\right)$ و مقارباه هما المستقيمان اللذين معادلتاهما : $y=\frac{a}{c}$ و $x=\frac{-d}{c}$

$$f: x \mapsto \frac{ax+b}{cx+d}$$
 العدد $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad-bc$ العدد

$$f: x \mapsto \sqrt{x+a}$$
 دراسة الدالة

$$f: x \mapsto \sqrt{x+a}$$
 نعتبر الدالة $D_f = [-a, +\infty[$ لدينا

الدالة الزوجية - الدالة الفردية

لتكن f دالة عددية و D_f مجموعة تعريفها.

 $f\left(-x\right)=f\left(x\right)$ و جية إذا وفقط إذا كان لكل x من $D_{f}:D_{f}:x$ من f

 $f\left(-x\right)=-f\left(x\right)$ و لادية إذا وفقط إذا كان لكل x من f من f فردية إذا وفقط إذا كان لكل و

 $.ig(O,ec{i},ec{j}ig)$ دالة عددية و C_f منحناها في معلم متعامد f

- متماثل بالنسبة لمحور الأراتيب f
 - فردية يعني أن C_f متماثل بالنسبة لأصل المعلم f

الدالة المكبورة – الدالة المصغورة – الدالة المحدودة

 \mathbb{R} من I دالة عددية معرفة على مجال المن f

- I نقول إن $f(x) \leq M$: نقول إن $f(x) \leq M$ بحيث $f(x) \leq M$ لكل $f(x) \leq M$ نقول إن $f(x) \leq M$ نقول إن $f(x) \leq M$
- I نقول اِن f مصغورة على I اِذَا وجد عدد حقیقي m بحیث : f لکل f من f
 - نقول إن f محدودة إذا كانت f مكبورة و مصغورة

 \mathbb{R} من I من معرفة على مجال f من f

I من x كا اذا وفقط إذا وجد عدد حقيقي موجب x بحيث : $f(x) \leq k$ كا لكل f(x) كا لكل f(x)

الدالة الدورية

نقول إن
$$f$$
 دالة دورية إذا وجد عدد حقيقي T موجب قطعا بحيث :
$$\begin{cases} (\forall x \in D_f) \colon x + T \in D_f \\ (\forall x \in D_f) \colon f \ (x + T) = f \ (x) \end{cases}$$

العدد T يسمى دور للدالة f أصغر دور موجب قطعا يسمى دور الدالة f

 $\left(orall x \in D_f \, \right) \ f \left(x + kT \, \right) = f \left(x \, \right) : \mathbb{Z}$ من k من T دورا لدالة عددية f فإنه لكل k من T

مطاريف دالة عددية

I لتكن f دالة عددية معرفة على مجال I و a عنصرا من المجال f

- I من x لكل $f\left(x\right) \leq f\left(a\right)$: اذا كان ، I المجال f على المجال $f\left(a\right)$ لكل $f\left(a\right)$ من
 - I من f من f اكل f اكل f من f على المجال f الكان f اكل f الكل f من f م

مقارنة دالتين - التأويل الهندسي

لتكن f و g دالتين عدديتين و D_f و D_g على التوالي مجموعة تعريفهما.

$$D = D_f = D_g \iff \begin{cases} D_f = D_g \\ (\forall x \in D); f(x) = g(x) \end{cases} \Leftrightarrow f = g$$

. I و g دالتين عدديتين معرفتين على مجال f

 $(\forall x \in I); f(x) \leq g(x)$: نقول إن f أصغر من أو تساوي g على I ، إذا وفقط إذا كان f كان f أصغر من أو تساوي f على f على f على الدالة g على f منحنى الدالة f على f على أ

مركب دالتين

 $D_{_g}$ و $D_{_f}$ دالتين عدديتين معرفتين على التوالي على g و f

$$D = \left\{ x \in \mathbb{R} / x \in D_f, f(x) \in D_g \right\}$$
 نضع

الدالة العددية h المعرفة على D بما يلي : h(x) = g(f(x)) ، تسمى مركب الدالتين $g \circ f$ في هذا الترتيب و يرمز لها بالرمز $g \circ f$

رتابة دالة عددية

 $\, .\, D_f \,$ دالة عدية و $\, I \,$ مجالا ضمن $\, f \,$

- $f\left(a
 ight){\le}f\left(b
 ight)$ فإن $a{\le}b$ فإن $a{\le}b$ فإن $a{\le}b$ فإن $a{\le}b$ فإن $a{\le}b$ فإن $a{\le}b$
- - $f\left(a
 ight) \geq f\left(b
 ight)$ فإن $a \leq b$ فإن $a \leq b$ و b من $a \leq b$ فإن $a \leq b$ فإن $a \leq b$

 D_f دالة عدية و I مجالا ضمن f

- رتيبة على I يعني f تزايدية أو تناقصية على I .
- . I رتيبة قطعاً على I يعني f تزايدية قطعا أو تناقصية قطعا على f

 D_f دالة عدية و D_f مجموعة تعريفها و a و عنصران مختلفان من f

$$b$$
 العدد f بين a العدد $T=\dfrac{f\left(b\right)-f\left(a\right)}{b-a}$ العدد

```
D_f لتكن f دالة عددية و f عددية و f عدل تغيرها بين عنصرين مختلفين f و f من مجال f ضمن f لتكن f ذا كان f قبل f تزايدية على f المنا f تزايدية قطعا على f المنا كان f قبل f تزايدية قطعا على f المنا كان f قبل f تناقصية على f المنا كان f قبل f تناقصية قطعا على f المنا كان f قبل f تناقصية قطعا على f
```

```
f دالة عدية مجموعة تعريفها D_f متماثلة بالنسبة للعدد f ليكن f ضمن f ضمن f و f مماثل f بالنسبة للعدد f في حالة f دالة زوجية ، لدينا :

• إذا كانت f تزايدية على f فإنها تناقصية على f أفإنها تزايدية على f في حالة f دالة فردية ، لدينا :

• في حالة f دالة فردية ، لدينا :

f لها نفس منحى التغيرات على كل من f و f .
```

رتابة مركب دالتين

```
لتكن f و g دالتين عديتين معرفتين على التوالي على مجالين I و I بحيث : f (x) \in I لكل x من I (f) \in I الدينا :

• إذا كانت f تزايدية قطعا على I و g تزايدية قطعا على I فإن g f تزايدية قطعا على I و g تناقصية قطعا على I و g تناقصية قطعا على I و g تناقصية قطعا على I و g تزايدية قطعا على I و g تناقصية قطعا على I و g تناقص I و g و تناقص I و g تناقص I و g و تناقص و g و تنا
```