

## PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE ESCUELA DE INGENIERIA DEPARTAMENTO DE CIENCIA DE LA COMPUTACION

## IIC1253 - Matemáticas Discretas 1° semestre 2014 - Prof. Gabriel Diéguez

## Interrogación 2

- 1. Dados dos órdenes parciales  $(A, \leq_A)$  y  $(B, \leq_B)$ , construya una relación de orden  $\leq$  para el conjunto  $A \times B$  a partir de las relaciones anteriores. Debe demostrar que efectivamente  $(A \times B, \leq)$  es un orden parcial.
- 2. La lógica de primer orden es muy útil para hablar de propiedades sobre grafos. Para esto, usamos un vocabulario  $\mathcal{L} = \{E\}$ , donde E es una relación binaria, y una  $\mathcal{L}$ -estructura  $\mathfrak{G}$  representará un grafo particular.
  - a) [1,5 ptos.] Dado un grafo G y una  $\mathcal{L}$ -estructura  $\mathfrak{G}$  que lo representa, ¿qué contiene  $\mathfrak{G}$ ? ¿Qué representan sus elementos?
  - b) [4,5 ptos.] Diremos que una propiedad sobre grafos es **definible** si existe una  $\mathcal{L}$ -oración  $\varphi$  tal que  $\mathfrak{G} \models \varphi$  si y sólo si el grafo representado por  $\mathfrak{G}$  tiene la propiedad.

Dado un grafo G, demuestre que las siguientes propiedades son definibles:

- I) G es simple.
- II) G tiene un clique de tamaño k.
- III) G es un conjunto de ciclos más un camino.
- 3. Sea A un conjunto infinito, y  $\Gamma = \{G \mid G \text{ es un grafo tal que } V \text{ es un conjunto finito y } V \subseteq A\}.$ 
  - a) Demuestre que si A es enumerable, entonces  $\Gamma$  es enumerable.
  - b) Demuestre que si A no es enumerable, entonces  $\Gamma$  no es enumerable.
  - c) Determine la cardinalidad de  $\Gamma/\cong$  (el conjunto cuociente de  $\Gamma$  bajo la relación de isomorfismo de grafos).
- 4. Considere un nuevo cuantificador  $\exists_2$ , el cual se lee "existen exactamente dos".
  - a) Defina formalmente la sintaxis y la semántica de la lógica de primer orden agregando este nuevo cuantificador. Asuma que tiene un vocabulario  $\mathcal{L}$  y que los conceptos de  $\mathcal{L}$ -término,  $\mathcal{L}$ -estructura y valuación ya están definidos.
  - b) Demuestre que

$$\{\exists_2 x \ \forall y \ R(x,y)\} \models \\ \exists x_1 \ \exists x_2 \bigg( \neg \bigg( x_1 = x_2 \bigg) \land \bigg( \forall y \Big( R(x_1,y) \land R(x_2,y) \Big) \bigg) \land \bigg( \forall z \Big( \big( \neg (z = x_1) \land \neg (z = x_2) \big) \rightarrow \exists w \neg R(z,w) \Big) \bigg) \bigg) \bigg).$$



Figura 1: Un ejemplo de un conjunto de ciclos más un camino.