Overview of Discrete and Continuous Variables

Probability and Statistics for Data Science

Carlos Fernandez-Granda

These slides are based on the book Probability and Statistics for Data Science by Carlos Fernandez-Granda, available for purchase here. A free preprint, videos, code, slides and solutions to exercises are available at https://www.ps4ds.net

Plan

- ▶ Joint distribution of discrete and continuous variables
- Gaussian mixture models for classification and clustering
- Bayesian models

How can we jointly model discrete and continuous quantities?

We represent them as random variables in the same probability space

Discrete and continuous variables

User interface

Joint pmf? X

Joint pdf? X

Joint cdf? ✓ but ☺

Alternatives? Marginal pmf and conditional pdf

Mauna Loa

Temperature (\tilde{c}) and precipitation (\tilde{d})

Marginal pmf of precipitation

Conditional pdf of temperature given precipitation

$$f_{\tilde{c} \mid \tilde{d}}(c \mid d) := \lim_{\epsilon \to 0} \frac{P(c - \epsilon < \tilde{c} \le c \mid \tilde{d} = d)}{\epsilon}$$

Marginal distribution of \tilde{c}

We know $p_{\tilde{d}}$ and $f_{\tilde{c}\,|\,\tilde{d}}(\cdot\,|\,d)$ for all d

Marginal distribution of \tilde{c} ?

$$f_{\tilde{c}}(c) = \sum_{l \in D} p_{\tilde{d}}(d) f_{\tilde{c} \mid \tilde{d}}(c \mid d)$$

Mauna Loa

Conditional pmf

Conditional pmf of \tilde{d} given $\tilde{c} = c$?

Problem:
$$P(\tilde{c} = c) = 0$$

As usual, we resort to limits

$$p_{\tilde{d} \mid \tilde{c}}(d \mid c) := \lim_{\epsilon \to 0} P\left(\tilde{d} = d \mid c - \epsilon < \tilde{c} \le c\right)$$

Marginal distribution of $ilde{d}$

We know $f_{\tilde{c}}$ and $p_{\tilde{d} \mid \tilde{c}}(\cdot \mid c)$ for all c

Marginal distribution of \tilde{d} ?

$$p_{\tilde{d}}(d) = \int_{c=-\infty}^{\infty} f_{\tilde{c}}(c) p_{\tilde{d} \mid \tilde{c}}(d \mid c) dc$$

Chain rule

For discrete \tilde{a} and \tilde{b}

$$p_{\tilde{a},\tilde{b}}(a,b) = p_{\tilde{a}}(a) p_{\tilde{b} \mid \tilde{a}}(b \mid a)$$
$$= p_{\tilde{b}}(b) p_{\tilde{a} \mid \tilde{b}}(a \mid b)$$

For continuous \tilde{a} and \tilde{b}

$$f_{\tilde{a},\tilde{b}}(a,b) = f_{\tilde{a}}(a) f_{\tilde{b} \mid \tilde{a}}(b \mid a)$$
$$= f_{\tilde{b}}(b) f_{\tilde{a} \mid \tilde{b}}(a \mid b)$$

For discrete \tilde{d} and continuous \tilde{c}

$$p_{\tilde{d}}(d) f_{\tilde{c} \mid \tilde{d}}(c \mid d) = f_{\tilde{c}}(c) p_{\tilde{d} \mid \tilde{c}}(d \mid c)$$

Mauna Loa

$$p_{\tilde{d}\mid\tilde{c}}(d\mid c) = \frac{p_{\tilde{d}}(d) f_{\tilde{c}\mid\tilde{d}}(c\mid d)}{f_{\tilde{c}}(c)}$$

Height and handedness

Height and handedness

Independence

A pair of continuous and discrete random variables \tilde{c} and \tilde{d} are independent if and only if

$$p_{\tilde{d}\,|\,\tilde{c}}(d\,|\,c)=p_{\tilde{d}}(d)$$

$$f_{\tilde{c}\,|\, ilde{d}}(c\,|\,d) = f_{\tilde{c}}(c) \quad ext{ for all } c,d$$

Conditional independence

A pair of continuous and discrete random variables \tilde{c} and \tilde{d} are conditionally independent given \tilde{a} if and only if

$$\begin{split} & p_{\tilde{d} \mid \tilde{c}, \tilde{a}}(d \mid c, a) = p_{\tilde{d} \mid \tilde{a}}(d \mid a) \\ & f_{\tilde{c} \mid \tilde{d}, \tilde{a}}(c \mid d, a) = f_{\tilde{c} \mid \tilde{a}}(c \mid a) \quad \text{ for all } a, c, d \end{split}$$

Mixture models

Gaussian mixture model

Height: Continuous random variable \tilde{h}

Sex: Discrete random variable \tilde{s}

Conditional distribution of \tilde{h} given \tilde{s} is Gaussian

Distribution of §?

1,986 women and 4,082 men

Conditional distribution of \tilde{h} given $\tilde{s} = \text{woman}$?

Gaussian with $\mu_{\text{women}} = 163$ cm and $\sigma_{\text{women}} = 6.4$ cm

Conditional distribution of \tilde{h} given $\tilde{s} = \text{man}$?

Gaussian with $\mu_{\rm men}=$ 176 cm and $\sigma_{\rm men}=$ 6.9 cm

Gaussian mixture model

$$f_{\tilde{h}}(h) = p_{\tilde{s}} (\text{woman}) f_{\tilde{h} \mid \tilde{s}} (h \mid \text{woman}) + p_{\tilde{s}} (\text{man}) f_{\tilde{h} \mid \tilde{s}} (h \mid \text{man})$$

Conditional distribution of \tilde{s} given \tilde{h}

$$p_{\tilde{s} \mid \tilde{h}}(0 \mid h) = \frac{p_{\tilde{s}}(0) f_{\tilde{h} \mid \tilde{s}}(h \mid 0)}{p_{\tilde{s}}(0) f_{\tilde{h} \mid \tilde{s}}(h \mid 0) + p_{\tilde{s}}(1) f_{\tilde{h} \mid \tilde{s}}(h \mid 1)}$$

$$1.4$$

$$----- P(Woman \mid Height = h)$$

$$----- P(Man \mid Height = h)$$

$$----- P(Man \mid Height = h)$$

$$0.8$$

$$0.4$$

$$0.2$$

$$0.0$$

$$150 \quad 160 \quad 170 \quad 180 \quad 190$$

$$Height (h)$$

Gaussian discriminant analysis

Idea: Use Gaussian mixture model for classification

$$p_{\tilde{s}\mid\tilde{h}}\left(0\mid h\right) = \frac{p_{\tilde{s}}\left(0\right)f_{\tilde{h}\mid\tilde{s}}\left(h\mid 0\right)}{p_{\tilde{s}}\left(0\right)f_{\tilde{h}\mid\tilde{s}}\left(h\mid 0\right) + p_{\tilde{s}}\left(1\right)f_{\tilde{h}\mid\tilde{s}}\left(h\mid 1\right)}$$

Training data

Alzheimer's Disease Neuroimaging Initiative

Conditional density of features given class

Conditional probability of class given features

Clustering

Unsupervised learning: No training labels

Strategy: Fit mixture model to cluster the data

Gaussian mixture model for clustering

Gaussian mixture model for clustering

Parametric modeling

Bayesian parametric modeling

 $\label{eq:Key idea: Interpret parameters as random variables} % \[\mathbf{x} = \mathbf{x} = \mathbf{x} = \mathbf{x} + \mathbf{y} = \mathbf{y$

Building a Bayesian model

Parameters: $\tilde{\theta}$

Data: \tilde{x}

- 1. Prior distribution of parameters: $f_{\tilde{\theta}}$
- 2. Conditional distribution or likelihood of the data given the parameters $p_{\tilde{x}\,|\,\tilde{\theta}}$ or $f_{\tilde{x}\,|\,\tilde{\theta}}$

Goal: Compute posterior distribution of parameters given data

Single coin flip

Parameter: Probability of heads $\tilde{\theta}$

Prior: $f_{\tilde{\theta}}$

Likelihood

$$p_{\tilde{r}\,|\,\tilde{\theta}}(r\,|\,\theta) = egin{cases} heta & ext{if } r=1 \ 1- heta & ext{if } r=0 \end{cases}$$

Uniform prior

Posterior pdf after coin lands on tails

Triangular prior

Posterior if coin lands on tails

Conditional independence

What if we have more data?

Common assumption: Data are conditionally independent given parameters

Same effect as iid assumption: likelihood factorizes

$$p_{\tilde{x}\,|\,\tilde{\theta}}(x\,|\,\theta) = \prod_{i=1}^{n} p_{\tilde{x}[i]\,|\,\tilde{\theta}}(x[i]\,|\,\theta)$$

$$f_{\tilde{x}\,|\,\tilde{\theta}}(x\,|\,\theta) = \prod_{i=1}^n f_{\tilde{x}[i]\,|\,\tilde{\theta}}(x[i]\,|\,\theta)$$

Beta distribution

Real poll (Pennsylvania)

Data: 281 people intend to vote for Trump, 300 for Biden

Parameter: Fraction of Trump voters $\tilde{\theta}$

Prior: $f_{\tilde{\theta}}$ Beta with parameters a and b

Likelihood: $p_{\tilde{\mathbf{x}} \mid \tilde{\boldsymbol{\theta}}}$ Binomial with parameters n and $\boldsymbol{\theta}$

Posterior: $f_{\tilde{\theta} \,|\, \tilde{r}}$ Beta with parameters a+281 and b+300

Probability that Trump wins in Pennsylvania? $P(\tilde{\theta}>0.5\,|\,\tilde{x}=x)$

What have we learned?

- ▶ Joint distribution of discrete and continuous variables
- ► Gaussian mixture models for classification and clustering
- Bayesian models