

Введение в нейронные сети

Арсений Горин

МГТУ, 21 ноября 2016

Содержание

- Виды сетей и общие понятия
- Полносвязная нейронная сеть
 - Общие моменты
 - Обучение сетей
 - Немного практики
- Оверточные сети
 - Общая идея
 - Свертка и фильтры
 - Нелинейность и пулинг
 - Примеры и немного практики

Введение

Глубинное обучение (Deep Learning) - методы обучения нейронных сетей с большим количеством параметров (**Deep Neural Networks: DNN**).

- Доминирующая модель распознавания изображений, речи, машинного перевода, интеллекта, ...
- Особенно эффективны при работе с большими данными (large capacity models)
- Сегодня можно строить очень сложные (и весьма точные) модели в домашних условиях (видео карты с графическими процессорами GPU)
- Обучение требует некоторых экспертных знаний, основу которых постараемся сегодня рассмотреть

Содержание

- 📵 Виды сетей и общие понятия
- Полносвязная нейронная сеть
 - Общие моменты
 - Обучение сетей
 - Немного практики
- 3 Сверточные сети
 - Общая идея
 - Свертка и фильтры
 - Нелинейность и пулинг
 - Примеры и немного практики

Основные виды сетей

• Полносвязные (fully connected) или многослойный персептрон (MLP)

- Комбинация простых линейных моделей и нелинейных преобразований
- Не использует дополнительных знаний о данных (все в кучу)
- Самая ранняя архитектура DNN

• Сверточные (convolutional)

- Умеет извлекать интерпретируемые признаки
- Доминирующая модель компьютерного зрения

• Рекуррентные (recurrent)

- Классификатор последовательности (умеет моделировать время)
- Отлично работает в распознавании речи, машинном переводе

Упрощенная модель нейрона

- $X = \{x_i\}$ признаки объекта, или выходы с других нейронов
- ullet веса $W = \{\omega_i\}$ линейная модель
- *f* нелинейное преобразование (ниже подробнее)
- Выход активация (часто 0/1)

Функция активации - как нейрон реагирует на входной импульс

Обучение нейрона - настройка весов W по данным (объект-признак / ответы),

Содержание

- 🕕 Виды сетей и общие понятия
- Полносвязная нейронная сеть
 - Общие моменты
 - Обучение сетей
 - Немного практики
- 3 Сверточные сети
 - Общая идея
 - Свертка и фильтры
 - Нелинейность и пулинг
 - Примеры и немного практики

От нейрона к нейронной сети

- Входной слой вектор признаков (яркость пикселей, размеры лепестков Ириса, и т.п.)
- Скрытые слои соединенные между собой нейроны (в реальных сетях 10^6-10^7 нейронов, у человека $\sim 10^{10}$)
- Выходной слой ответ (кошка/собака, тип цветка, и т.п.)

Сеть называется **полносвязной**, т.к. каждый нейрон связан со всеми нейронами предыдущего слоя. Такая сеть еще называется **сетью прямого** распространения (feed forward network)

Обучение. Градиентный спуск

Обучить DNN значит **подобрать** такие **веса** для каждого нейрона, при которых сеть выдает **минимальную ошибку**

Используют алгоритм градиентного спуска (gradient descent)

- Задаем случайные веса с небольшим разбросом
- 🥝 "Прогоняем" через сеть объекты обучающей выборки
- Считаем ошибку ответов сети Е (например, среднюю квадратическую)
- ① Используя метод обратного распространения ошибки (back propagation), считаем ошибку каждого отдельного веса $\frac{dE}{dw_i}$
- **6** Обновляем значения весов $w_i = w_i \alpha \frac{dE}{dw_i}$
- О Повторяем шаги 2-5 пока уменьшается ошибка на тестовых данных

Параметр α называется learning rate, подбирается эмпирически

Обучение. Градиентный спуск

Градиентный спуск:

- позволяет найти локальный минимум (на практике работает)
- важно контролировать ошибку на независимых данных
- на практике используем стохастический градиентный спуск (stochastic gradient descent): каждое обновление весов делается по небольшой подгруппе объектов (minibatch size: 10...500)

Основные задачи DeepLearner'a

- В классическом машинном обучении большая часть отдавалась выбору признаков (feature engineering)
- Нейронные сети сами выделяют признаки из достаточно сырых данных

Oτ feature engineering κ architecture engineering

- Как выбрать архитектуру (тип сети, нелинейность, число параметров)
- Оптимизация: выбор learning rate, алгоритмы обучения, устойчивость
- Быстродействие моделей и память

Как это выглядит на практике

Интерактивный интерфейс библиотеки tensorflow от google http://playground.tensorflow.org

Задачи:

- Запустить пример по умолчанию и посмотреть что происходит
- Эксперимент с персептроном Розенблата, или то, почему про нейронные сети забыли на 20 лет (XOR классификация)
- Проблема переобучения, или почему DeepLearning требует настройки

Содержание

- 📵 Виды сетей и общие понятия
- Полносвязная нейронная сеть
 - Общие моменты
 - Обучение сетей
 - Немного практики
- Оверточные сети
 - Общая идея
 - Свертка и фильтры
 - Нелинейность и пулинг
 - Примеры и немного практики

Сверточные нейронные сети

Сверточные нейронные сети (convolutional neural networks) - на сегодняшний день самые передовые модели компьютерного зрения и других областей ИИ.

Основные "исторические моменты":

- 1990 (Yann LeCun) LeNet: первое успешное применение сверточной сети для распознавания цифр
- 2012 (Alex Krizhevsky) AlexNet: победа CNN в соревнованиях ImageNet с огромным отрывом, рост интереса к моделям CNN и DeepLearning в целом
- Современные сети имеют зачастую меньше параметров, чем AlexNet, работая гораздо точнее

Общая архитектура CNN

- Обработка от общего к частному (глубже слой детальнее признаки)
- Основной блок фильтры свертки (convolutional filter)
- Результат проходит через нелинейное преобразование (ReLU)
- Уменьшение размерности пулинг (max pooling)
- **Классификатор полносвязная НС**, использующая признаки, найденные верхними слоями

Операция свертки (convolution)

- Картинку представляем в виде матрицы яркости (3 матрицы, если картинка цветная)
- Фильтр матрица небольшого размера (обычно 3x3, 5x5, 8x8)
- Признак свертка двух матриц (фильтр скользит по картинке, считаем скалярное произведение окна и матрицы фильтра)

1	0	1
0	1	0
1	0	1

Упрощенный пример свертки

Путь изображение и фильтр кодируются 1 и 0 (черный-белый).

Изображение

1 1 1 0 0

0 1 1 1 0

0 0 1 1 1

0 0 1 1 0

Фильтр				
1	0	1		
0	1	0		
1	0	1		

Результат свертки - новая матрица (feature map):

1	1	1	0	0
0,	1,0	1,	1	0
0,0	Q	1,0	1	1
0,	0,	1,	1	0
0	1	1	0	0

1	1	1	0	0
0	1,	1,0	1,	0
0	0,	1,	1,	1
0	0,,	1,0	1,	0
^	4	4	2	^

1	1	1	0	0
)	1	1,	1,	0,,
)	0	1,8	1,	1,
)	0	1,	1,0	0,1
)	1	1	0	0

4	3	4
2	4	3

1	1	1	0	0
0	1	1	1	0
0,	0,	1,	1	1
0,0	0,	1,0	1	0
_	-	-		_

4	3	4
2	4	3
2		

1	1	1	0	0	
0	1	1	1	0	
0	Q _{x1}	1,0	1,	1	
0	0,	1,	1,,	0	
_		•	_	,	

Примеры фильтров

Несколько стандартных фильтров из пакета photoshop

Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	
Edge detection	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$	
	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	

Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	
Gaussian blur (approximation)	$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	9

Black magic

С помощью градиентного спуска можно выучить оптимальные параметры фильтров.

То есть система, наблюдая данные, сама учится, какие признаки являются наиболее полезными для решения конкретной задачи классификации.

Пример применения фильтра

Feature maps в многослойной сети

ReLU и зачем он нужен

Изображение, прошедшее через банк фильтров, попиксельно проходит через нелинейное преобразование (ReLU - rectified linear unit).

Hаличие ReLU позволяет сети выучивать нелинейные зависимости признаков. ReLU по сути выбрасывает все отрицательные значения

Pooling (или subsampling)

- В реальных сетях первый слой состоит из порядка 100 фильтров, каждый из которых создает обработанную копию картинки (feature map)
- Задача пулинга уменьшение размерности
 - Меньше вычислений
 - Меньше использования памяти
 - Устойчивость к шумам

Результат пулинга

ReLU и MaxPool - фиксированные операции (т.е., учить их не нужно)

Последняя часть - классификация

- После обработки фильтрами, ReLU и пулингом, параметры записываются в вектор действительных чисел - признаки.
- Признаки подаются на вход классификатору - полносвязной нейронной сети

На практике

Визуализация сети, классифицирующей MNIST цифры http://scs.ryerson.ca/~aharley/vis/conv/flat.html

Еще пример (CIFAR-10 классификация) http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html