

Introduction

Dr. Heng Yu

AY2023-24, Spring Semester
COMP1047: Systems and Architecture
Week 1

Computer Architecture Scope and Definitions

What is Architecture?

Computer Architecture Scope and Definitions

Computer Architecture The art or science of designing a <u>Computer</u>

Types of Computers

Personal Computers (PCs)

- General purpose use
- Usually execute a variety of third-party software
- Subject to cost/performance tradeoff

- Typically assessed via a network
- Carry large workloads (single complex application/many small jobs)
- Range from small servers to building sized

Embedded Computers

- Hidden as components of systems
- Designed to run one predetermined application or collection of software
- Low cost
- Low tolerance for failure (technologies of redundancy employed)

Types of Computers

Supercomputers

- A class of servers with the highest performance
- Perform high-end scientific and engineering calculations
- Expensive to build (typically 10s to 100s of millions of dollars)

Top 500 Supercomputers (June 2016)

- Electronic Numerical Integrator And Computer (ENIAC)
- The first electronic general-purpose computer dedicated at the University of Pennsylvania on February 15, 1946
 - Vacuum tube-based
 - Weighted more than 27 tons, was roughly 2.4m × 0.9m × 30m, occupied 167m² and consumed 150 kW of electricity
 - Performance: roughly a few kilo-floatingpoint operations per second (kflops) (10³)
- TaihuLight (2016) 93 petaflops (10¹⁵)

Microprocessor

- Computer CPU on a single chip (IC)
- Contain a number of transistors connected by wires

• First commercial microprocessor: Intel 4004

- Introduced in 1971
- 2300 silicon transistors
- Technology: 10 μm (transistors are 10 μm across)
- Has roughly the same processing power as ENIAC

• Intel 8088

- Use by IBM in its Original PC in 1981
- 29000 transistors
- Technology: 3 μm (transistors are 3 μm across)
- Use operating system (MS-DOS) designed by Microsoft

- Intel Pentium4
 - Introduced in 2003
 - 55M transistors
 - Technology: 90 nm (transistors are 90 nm across)
 - Application: desktop/server

- Multicore processor
 - A single chip contains more than one microprocessor core
- Intel Core i7
 - Introduced in 2009
 - 774M transistors
 - Technology: 32 nm (transistors are 32 nm across)
 - Four-core multicore
 - Application: desktop/server

Video: How Microchips are made?

- Human hair is about 100 µm across
- Intel 4004 transistors are 10 µm across
- Intel 8088 transistors are 3 µm across
- Intel Pentium 4 transistors are 90 nm across
- Intel Core i7 transistors are 32 nm across
- Smaller transistors allow
 - More transistors per chip
 - More processing power
 - Smaller/cheaper chips
- Q: what is the tech scale for mass production as of now in the world? How about China?

Moore's Law

The number of transistors we can build in a fixed area of silicon doubles every $12 \sim 24$ months.

The chip performance would double every two years

In celebration of ENIAC's 50th Anniversary, the machine was re-implemented using modern integrated circuit technology. The roomsized computer could now fit in the palm of a hand.

A Desktop PC

A Server

A MacBook Pro

A PlayStation 4

Difference faces, same spirit

Von Neumann architecture (also called Princeton architecture) is still the state-of-the-art computing architecture adopted.

Even in Quantum Computing. Quantum computing differentiates by its bit representation (q-bit), but many of the quantum computers still follow the von Neumann architecture.

Other architectures exist

- Harvard architecture
- Dataflow architecture
- Neural computing
- etc.

Below Your Program

- Application software
 - Written in high-level language (HLL)
- System software
 - Compiler
 - Translate HLL code to machine code
 - Operating system
 - Handling basic input/output operations
 - Managing memory and storage
 - Scheduling tasks & sharing resources
- Hardware
 - Processor
 - Memory
 - I/O controllers

Programming the Machine

- To actually speak to electronic hardware, we need to send electrical signals
- The easiest signal for computers to understand on/off
 - This corresponds to turning on and off transistors
- Therefore the hardware can only understand binary representations
- How can we program the machine?
 - Suppose you write a program in C, how can the machine understand it?
- Solution
 - Translate high-level language code into intermediate-level code (assembly code) which is more human-friendly
 - Then translate the assembly code into the machine's language (binary code).

Programming the Machine

High-level language program (in C)

Assembly language program (for MIPS)

Binary machine language program (for MIPS)

- Compiler A program that translates highlevel language statements into assembly language statements
- Instruction A command that computer hardware understands and obeys
- Assembler A program that translates a symbolic version of instructions into the binary versions
- Assembly language A symbolic representation of machine instructions
- Machine language A binary representation of machine instructions

Instruction Set Architecture

Instruction Set Architecture

- ◆ Defines the set of instructions that a computer/processor can execute
- The contract between the hardware and software
 - → "Contract": given an ISA, your sw and hw must be designed for the ISA! A glue for high and low levels of the system!
- Example ISAs:
 - → x86: intel Xeon, intel Core i7/i5/i3, intel atom, AMD
 Athlon/Opteron, AMD FX, AMD A-series
 - → ARM: Apple A-Series, Qualcomm Snapdragon, TIOMAP, NVidia Tegra
 - → MIPS: Sony/Toshiba Emotion Engine, MIPS R-4000(PSP)
 - → DEC Alpha, PowerPC, IA-64, SPARC and so on ...

Instruction Set Architecture

hanoi:	addi	\$a0, \$a0, -1			
	bne	\$a0,	\$zero	ο,	hanoi_1
	addi	\$v0,	\$zero	0,	1
	j	return			
hanoi_1:	jal	hanoi			
	sll	\$v0,	\$v0,	1	
	addi	\$v0,	\$v0,	1	
return:	jr	\$ra			

Week No.	Date From	Topic
1	19-Feb	Intro & Computer Performance
2	26-Feb	MIPS Assembly Programming 1
3	4-Mar	MIPS Assembly Programming 2
4	11-Mar	MIPS ISA and ALU Design
5	18-Mar	Single-Cycle CPU Design

What you will learn

- What determines the performance of your computer
- The assembly language
 - How does software instruct the hardware to perform needed functions
- How programs are translated into the machine language
- · How does the hardware execute the machine language
- How computers communicate with each other

Stay Tuned.