Tutorial: Baby Shark

Guilherme Ramos

A solução é simples, basta ler a informação de entrada e acrescentá-la no início de cada uma das quatro linhas do refrão - como nos exemplos.

Tutorial: Campo Desminado

Vinicius Borges

Observe que o mapa da mina terrestre pode ser armazenado em uma estrutura homogênea 2D, a tão conhecida matriz.

- 1. Ler os valores inteiros para $N, M \in K$;
- 2. Ler o mapa de minas, linha a linha, coluna a coluna. Para cada posição (i, j), identifique se o caractere lido corresponde a uma mina. Se sim, armazene a posição (linha, coluna) em um vetor (ou lista);
- 3. Gere uma nova matriz contendo apenas valorez zero, em que será produzida a resposta para o problema;
- 4. A partir da K-ésima mina (não considere as minas entre os índices $0, \ldots, K-1$, atribua a posição (x_i, y_i) na matriz como sendo igual a "*". Contabilize essa mina nas posições vizinhas.

Complexidade no tempo: O(9*N*M).

Tutorial: Descubra o Segredo

Daniel Saad Nogueira Nunes

Uma forma de resolver esse problema é tomar o segredo S e concatená-lo com esse mesmo, formando a string S'=SS. Após isso, basta realizar casamentos de padrão da configuração C com a string S'. Queremos computar $\min\{0 \le i < n | C[0,n-1] = S'[0+i,n-1+i]\}$ e $\min\{0 \le j < n | C[0,n-1] = S'[n-j,2n-1]\}$. A resposta é o menor dos índices i e j. O algoritmo força bruta é eficiente, e se utilizado, podemos resolver o problema em tempo $\Theta(n^2)$.

Tutorial: Gabarito

Daniel Saad Nogueira Nunes

Basta comparar as opções escolhidas com o gabarito, contar quantas as comparações que foram verdadeiras, dividir este número pelo total, e multiplicar por 100. Na divisão do número de comparações corretas pelo total, deve-se certificar que uma divisão inteira **não** está sendo realizada.

Tutorial: João e o irrigador

Edson Alves

Em primeiro lugar note que a posição do centro é irrelevante para a contagem: sempre é possível transladar o círculo de modo que o centro fique na origem.

A solução de força bruta, isto é, testar todos os pontos no quadrado de lado 2R + 1 e centro (0,0) tem complexidade (R^2) por caso de teste, e leva ao TLE.

A formula fechada do problema (conhecido como Gauss Circle Problem),

$$N(R) = 1 + 4 \sum_{i=0}^{\infty} \left(\left\lfloor \frac{r^2}{4i+1} \right\rfloor - \left\lfloor \frac{r^2}{4i+3} \right\rfloor \right),$$

onde a divisão é a divisão inteira, também tem complexidade $O(R^2)$ por teste.

A solução, portanto, consiste em precomputar os valores para cada R possível (lembre que $1 \le R \le 3000$) uma única vez, em complexidade $O(R^2)$, e responder a cada teste em O(1).

Uma maneira de se fazer isso é guardar o vetor $r^2[i]$, que contabiliza o número de pares (x, y) tais que $x^2 + y^2 = i$. As simetrias do círculo podem ser exploradas para diminuir a constante (de fato, só é preciso checar um oitavo do círculo e espelhar os demais pontos). Com este vetor preenchido, a solução se torna

$$N(R) = \sum_{i=0}^{R^2} r2[i]$$

Todos os valores N(R) podem ser computados em $O(R^2)$, usando somas de prefixos.

Outra alternativa é computar, usando uma variante do Crivo de Erastótenes, os valores da função soma de quadrados $r_2(n)$ (sum of squares function, no original), onde

$$r_2(n) = 4(d_1(n) - d_3(n)),$$

onde $d_i(n)$ é o número de divisores de n que deixam resto i quando divididos por 4. Os valores desta função correspondem ao vetor r2[i] já mencionado.

Tutorial: Kichute

Vinicius Borges

O problema pode ser resolvido calculando-se um arranjo com repetição. De maneira direta, deve-se calcular N^K . Pode-se fazer esse cálculo por meio da exponenciação modular em tempo O(K) ou ainda utilizando a exponenciação modular rápida, em tempo $O(\log(K))$.

Tutorial: Mutação

Jeremias Moreira Gomes

Dada uma função troca, para trocar dois elementos do tabuleiro, definida pelo seguinte:

```
troca(y1, x1, y2, x2):
tmp = tab[y1][x1]
tab[y1][x1] = tab[y2][x2]
tab[y2][x2] = tmp
```

Então, basta realizar uma troca dos extremos para o interior das diagonais da matriz, até o centro, da seguinte forma:

```
for i from 1 to ceil(N / 2):
troca(i, i, i, N - i)
troca(i, i, N - i, i)
troca(N - i, i, N - i, N - i)
```

Tutorial: Números Balanceados

Daniel Porto

Para resolver o problema, deve-se ir removendo os pares vizinhos de números assim que os encontrar. Uma forma de resolver é ir empilhando os caracteres e se o próximo caracter da string for o primeiro caracter da pilha, consome os dois, caso contrário empilha mais esse caracter. Para a resposta ser sim, tanto a string quanto a pilha devem estar vazios.