

COURSE SYLLABUS

PHY00007 - Physics for Information Technology

1. GENERAL INFORMATION

Course name: Physics for Information Technology

Course name (in Vietnamese): Vật lý cho Công nghệ Thông tin

Course ID: PHY00007

Knowledge block:

Number of credits: 4

Credit hours for theory: 45

Credit hours for practice: 30

Credit hours for self-study: 90

Prerequisite:

Prior-course:

Instructors: Cao Xuân Nam

Lê Quốc Hòa

2. COURSE DESCRIPTION

The Internet of Things (IoT) is a special network of objects or sensors that allow them to connect to each other to collect and exchange data to bring quality of life for people and society.

In this course, we will learn more about the concept of IoT, common electronic circuit boards, research IoT products, build a basic IoT system to control electronic devices.

In addition, with the growing trend of Big Data and Artificial Intelligence, it is essential to understand and apply artificial intelligence knowledge to IoT products.

3. COURSE GOALS

At the end of the course, students are able to

ID	Description	Program LOs
G1	Understand the technical specifications, operating principles of electrical circuits, sensors, electronic components.	
G2	Fluent in using and programming some popular electronic circuits such as Arduino, ESP 8266, Raspberry Pi 3.	
G3	Know how to design 3D models and use 3D printers.	
G4	Know how to build a basic Internet of Things (IoT) system, using web / mobile to control electrical devices in the house, at school or at work.	
G5	Understand the application of Artificial Intelligence knowledge (Natural language processing, Speech language processing, Digital image processing) processing on Raspberry Pi 3 board.	
G6	Organize teamwork, tasks assignment and report presentation.	

4. COURSE OUTCOMES

CO	Description	I/T/U
G1.1	Apply the basic scientific knowledge to explain the structure and operations of some basic sensors.	I
G1.2	Understand and use the basic sensors on popular electronic circuits such as Arduino, ESP8266, Raspberry Pi 3.	I,T,U
G1.3	Understand the terminology correctly. Explain and interpret the terminology of this course. Pronoun terms and use them correctly in context.	I

G2.1	Apply the specialized knowledge and skills to the subjects of this course.	I,T,U
G2.2	Apply the practical problems in social to install the illustrative applications.	I,T,U
G3.1	Understand the principles of 3D model design and expert in use of 3D printers.	I,T,U
G4.1	Install the basic Internet of Things system.	T,U
G4.2	Thinking and solving problems. Students can propose new models and solutions (on the basic of combining and changing the learned models and solutions) to suit the practical requirements.	I,T,U
G5.1	Apply the Artificial Intelligence (AI) knowledge to build Internet of Things systems.	I,T,U
G6.1	Writing and speaking skills, presentation skills related to the subjects of this course.	U
G6.2	Seminar in class, teamwork and team presentation.	U

5. TEACHING PLAN

THEORY

ID	Topic	Course outcomes	Teaching/Learning Activities (samples)	Assessments
	- Introduce the course content	G1.1	Lecturing	QZ1: Quiz 1
1	- Introduce Arduino electronic board	G1.2	Demonstration	
1	- Program on Arduino board to	G1.3		
	control LED, some basic sensors			

	such as light sensor, motion sensor, humidity and temperature sensor			
2	 Program to display text on LCD screen Assemble and program to control a mini vehicle with Bluetooth and motor. 	G1.2 G2.1 G2.2	Lecturing Demonstration, Q&A, Group Discussion	QZ2: Quiz 2
3	- Design 3D models with Autodesk Fusion 360.	G3.1	Lecturing Demonstration, discussion	QZ3: Quiz 3
4	- Assemble and program a complete product with Arduino, sensor and wrapped by 3D model.	G2.2 G3.1 G6.1 G6.2	Case study and discussion	QZ4: Quiz 4
5	 Introduce ESP 8266 and Raspberry Pi 3 boards. Install and config Raspbian Operating System for Raspberry Pi 3. 	G1.2 G1.3 G4.1	Lecturing Demonstration, Q&A, Group Discussion	QZ5: Quiz 5
6	 Introduce Socket concept and data transmission/reception model. Program communication between ESP8266 and Raspberry Pi 3 via local wireless network. 	G4.1 G4.2	Lecturing Q&A	QZ6: Quiz 6
7	Introduce a basic Internet of Things system model.Introduce NodeRed IDE	G1.3 G2.1 G2.2 G4.1	Lecturing Demonstration	QZ7: Quiz 7 Seminar: A21

	- Build a web/mobile application to	G4.2		
	control electronic devices via local			
	wireless network.			
	- Build a web/mobile application to	G2.1	Lecturing	Midterm
	control electronic devices via local	G2.2	Case study and	exam: A51
8	wireless network (cont.)	G4.1	discussion	
8		G4.2		
		G6.1		
		G6.2		
	- Advanced thematic: Artificial	G2.1	Lecturing	
9	Intelligence (AI) in IoT	G2.2		
		G5.1		
	- Advanced thematic: Artificial	G2.1	Case study,	
	Intelligence (AI) in IoT (cont.)	G2.2	discussion	
10		G5.1		
		G6.1		
		G6.2		
	- Review		Q&A, Discussion	Seminar:
11			Project submitted	A31
			Capstone Project	
	I.		l .	

LABORATORY

ID	Topic	Course outcomes	Teaching/Learning Activities (samples)	Assessments
1	Traffic Light - Led - Button	G1.2 G2.1 G2.2	Demonstrate Q&A	LW1

	Garage	G1.2	Demonstrate	
2	- Ultrasonic sensor	G2.1	Q&A	LW2
	- Buzzer	G2.2		
	Security	G1.2	Demonstrate	
3	- Passive Infrared	G2.1	Q&A	LW3
	sensor	G2.2		20
	- Potentiometer			
	Temperature	G1.2	Demonstrate	
4	- Temperature	G2.1	Q&A	LW4
	sensor	G2.2		2
	- LCD			
5	Design 3D	G3.1	Demonstrate	LW5
3	- Clock		Q&A	LWS
	Event logs	G1.2		
	- NodeRED	G1.3	Demonstrate	LWI
6	- NodeRED	G4.1	Q&A	LW6
	dashboard	G4.2		
	Weather station	G1.2	Demonstrate	
7	- OpenWeatherMap	G1.3	Q&A	1 33/7
7	service	G4.1		LW7
	- Gauge	G4.2		
	Data Visualization	G1.2	Demonstrate	
0	- Cloud ThingSpeak	G1.3	Q&A	1 11/0
8	- Chart	G4.1		LW8
		G4.2		
9	Push Notification	G1.2	Demonstrate	TWO
9	- IFTTT service	G1.3	Q&A	LW9

	- MQTT	G4.1	
		G4.2	
10	Summary		

6. ASSESSMENTS

ID	Topic	Description	Course outcomes	Ratio (%)
A1	Assignments			10%
A11	Quizzes: QZ1, QZ2, QZ3, QZ4, QZ5, QZ6, QZ7	Small quizzes in class for each topic		10%
A2	Seminars			15%
A21	Capstone project's prototype	Presentation in class Q&A Submit the document		15%
A3	Projects			30%
A31	Capstone project	Presentation in class Q&A Submit the document Demo product		30%
A4	Laboratory			25%
A41	Lab Assignments: LW1, LW2, LW3, LW4, LW5, LW6, LW7, LW8, LW9	Submit code and report		25%
A5	Exam			20%
A51	Mid-term exam	Paper test in class		20%

7. RESOURCES

Textbooks

- Slides of lecture
- "Build a Home Automation System for \$100", Rui Santos, 2019.

Others

- Raspberry Pi beginner's guide. Website: https://www.raspberrypi.org/magpi-issues/MagPi49.pdf
- Raspberry Pi Projects Book. Website: https://www.raspberrypi.org/magpiissues/Projects Book v1.pdf

8. GENERAL REGULATIONS & POLICIES

- All students are responsible for reading and following strictly the regulations and policies of the school and university.
- Students who are absent for more than 3 theory sessions are not allowed to take the exams
- For any kind of cheating and plagiarism, students will be graded 0 for the course. The incident is then submitted to the school and university for further review.
- Students are encouraged to form study groups to discuss on the topics. However, individual work must be done and submitted on your own.