•••••
()

1 Exact diagonalization of the two-site Hubbard model

The Hamiltonian

$$\mathcal{H} = -t \sum_{\sigma} \left(c_{1\sigma}^{\dagger} c_{2\sigma} + c_{2\sigma}^{\dagger} c_{1\sigma} \right) + U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow} - \mu \hat{N}$$
(1)

I have two lattice sites, indexed by 1 and 2, occupied by electrons. μ is the chemical potential, $c_{i\sigma}^{\dagger}$ and $c_{i\sigma}$ are the fermionic creation and annihilation operators at the ith site, with spin-index σ . σ can take values \uparrow and \downarrow , denoting spin-up and spin-down states respectively. $\hat{n}_{i\sigma} = c_{i\sigma}^{\dagger} c_{i\sigma}$ is the number operator for the i^{th} site and at spin-index σ ; it counts the number of fermions with the designated quantum numbers. $\hat{N} = \sum_{i\sigma} \hat{n}_{i\sigma}$ is the total number operator; it counts the total number of fermions at all sites and spin-indices. t is the hopping strength; the more the t, the more are the electrons likely to hop between sites. U is the on-site repulsion cost; it represents the increase in energy when two electrons occupy the same site.

1.1 Symmetries of the problem

The following operators commute with the Hamiltonian.

1. Total number operator: $\left[\mathcal{H},\hat{N}\right]=0.$

Proof. The last term in the Hamiltonian is the number operator itself. Ignoring that, there are three terms that I need to individually consider.

• $c_{1\sigma}^{\dagger}c_{2\sigma}$

$$\begin{bmatrix}
c_{1\sigma}^{\dagger}c_{2\sigma}, \hat{n}_{i\sigma'}
\end{bmatrix} = \begin{bmatrix}
c_{1\sigma}^{\dagger}c_{2\sigma}, c_{i\sigma'}^{\dagger}c_{i\sigma'}
\end{bmatrix}
= c_{1\sigma}^{\dagger} \begin{bmatrix}
c_{2\sigma}, c_{i\sigma'}^{\dagger}c_{i\sigma'}
\end{bmatrix} + \begin{bmatrix}
c_{1\sigma}^{\dagger}, c_{i\sigma'}^{\dagger}c_{i\sigma'}
\end{bmatrix} c_{2\sigma}
= \delta_{i,2} c_{1\sigma}^{\dagger} \begin{bmatrix}
c_{2\sigma}, c_{2\sigma'}^{\dagger}c_{2\sigma'}
\end{bmatrix} + \delta_{i,1} \begin{bmatrix}
c_{1\sigma}^{\dagger}, c_{1\sigma'}^{\dagger}c_{1\sigma'}
\end{bmatrix} c_{2\sigma}
= \delta_{i,2} c_{1\sigma}^{\dagger} \begin{cases}
c_{2\sigma}, c_{2\sigma'}^{\dagger}
\end{cases} c_{2\sigma'} - \delta_{i,1}c_{1\sigma'}^{\dagger} \begin{cases}
c_{1\sigma'}, c_{1\sigma}^{\dagger}
\end{cases} c_{2\sigma}
= \delta_{\sigma,\sigma'} c_{1\sigma}^{\dagger}c_{1\sigma} (\delta_{i,2} - \delta_{i,1})$$
(2)

The third line follows because the electrons on different sites are distinguishable and hence, the creation and anhillation operators of different sites will commute among themselves. Therefore,

$$\left[c_{1\sigma}^{\dagger}c_{2\sigma},\hat{N}\right] = \sum_{i\sigma'} \left[c_{1\sigma}^{\dagger}c_{2\sigma},\hat{n}_{i\sigma'}\right] = c_{1\sigma}^{\dagger}c_{1\sigma}\sum_{i=\{1,2\}} \left(\delta_{i,2} - \delta_{i,1}\right) = 0 \tag{3}$$

- $c_{2\sigma}^{\dagger}c_{1\sigma}$: Since the operator \hat{N} is symmetric with respect to the site indices 1 and 2, I can go through the last proof again with the site indices 1 and 2 exchanged and since the proof does not depend on the site indices, this commutator will also be zero.
- $\hat{n}_{i\uparrow}\hat{n}_{i\downarrow}$:

$$\begin{aligned} \left[\hat{n}_{i\uparrow}\hat{n}_{j\downarrow},\hat{n}_{j\sigma}\right] &= \hat{n}_{i\uparrow}\left[\hat{n}_{i\downarrow},\hat{n}_{j\sigma}\right] - \left[\hat{n}_{i\uparrow},\hat{n}_{j\sigma}\right]\hat{n}_{i\downarrow} \\ &= \delta_{ij}\left(\hat{n}_{i\uparrow}\left[\hat{n}_{i\downarrow},\hat{n}_{i\sigma}\right] - \left[\hat{n}_{i\uparrow},\hat{n}_{i\sigma}\right]\hat{n}_{i\downarrow}\right) \\ &= \delta_{ij}\left(\delta_{\sigma\uparrow}\hat{n}_{i\uparrow}\left[\hat{n}_{i\downarrow},\hat{n}_{i\uparrow}\right] - \delta_{\sigma\downarrow}\left[\hat{n}_{i\uparrow},\hat{n}_{i\downarrow}\right]\hat{n}_{i\downarrow}\right) \\ &= \delta_{ij}\left(\delta_{\sigma\downarrow}\hat{n}_{i\downarrow} - \delta_{\sigma\uparrow}\hat{n}_{i\uparrow}\right)\left[\hat{n}_{i\uparrow},\hat{n}_{i\downarrow}\right] \\ &= \delta_{ij}\left(\delta_{\sigma\downarrow}\hat{n}_{i\downarrow} - \delta_{\sigma\uparrow}\hat{n}_{i\uparrow}\right)\left(c_{i\uparrow}^{\dagger}c_{i\uparrow}c_{i\downarrow}^{\dagger}c_{i\downarrow} - c_{i\downarrow}^{\dagger}c_{i\downarrow}c_{i\uparrow}^{\dagger}c_{i\uparrow}\right) \\ &= \delta_{ij}\left(\delta_{\sigma\downarrow}\hat{n}_{i\downarrow} - \delta_{\sigma\uparrow}\hat{n}_{i\uparrow}\right)\left(c_{i\downarrow}^{\dagger}c_{i\downarrow}c_{i\uparrow}^{\dagger}c_{i\uparrow} - c_{i\downarrow}^{\dagger}c_{i\downarrow}c_{i\uparrow}^{\dagger}c_{i\uparrow}\right) = 0 \end{aligned}$$

Therefore, $\left[\hat{n}_{i\uparrow}\hat{n}_{j\downarrow},\hat{N}\right] = \sum_{j,\sigma} \left[\hat{n}_{i\uparrow}\hat{n}_{j\downarrow},\hat{n}_{j\sigma}\right] = 0$

The total Hamiltonian is just a sum of the three terms; since the number operator commutes individually with these terms, it obviously commutes with the total Hamiltonian.

2. Magnetization operator: $\hat{S}_{tot}^z \equiv \frac{1}{2} \sum_i (\hat{n}_{i\uparrow} - \hat{n}_{i\downarrow}), \left[\mathcal{H}, \hat{S}_{tot}^z \right] = 0.$

Proof. The magnetization operator can be rewritten as $\hat{S}_{tot}^z = \frac{1}{2} \sum_i (\hat{n}_{i\uparrow} + \hat{n}_{i\downarrow} - 2\hat{n}_{i\downarrow}) = \hat{N} - 2 \sum_i \hat{n}_{i\downarrow}$. Since \hat{N} commutes with \mathcal{H} , I just need to prove that $[\mathcal{H}, \sum_i \hat{n}_{i\downarrow}]$. From eq. 2,

$$\left[c_{1\sigma}^{\dagger}c_{2\sigma}, \sum_{i} \hat{n}_{i\downarrow}\right] = c_{1\downarrow}^{\dagger}c_{1\downarrow} \sum_{i=\{1,2\}} \left(\delta_{i,2} - \delta_{i,1}\right) = 0 \tag{5}$$

Again using the symmetry of the magnetization operator with the exchange of indices, its obvious that $\left[c_{2\sigma}^{\dagger}c_{1\sigma},\sum_{i}\hat{n}_{i\downarrow}\right]=0$

Using eq. 4, $[\hat{n}_{i\uparrow}\hat{n}_{i\downarrow}, \hat{n}_{i\downarrow}] = 0$.

Finally, $[N, \hat{n}_{i\downarrow}] = \sum_{j\sigma} [\hat{n}_{j\sigma}, \hat{n}_{i\downarrow}] = [\hat{n}_{i\uparrow}, \hat{n}_{i\downarrow}] = c^{\dagger}_{i\uparrow} c_{i\uparrow} c^{\dagger}_{i\downarrow} c_{i\downarrow} - c^{\dagger}_{i\downarrow} c_{i\downarrow} c^{\dagger}_{i\uparrow} c_{i\uparrow} = 0$. Since \hat{S}^z_{tot} commutes with each part individually, it commutes with the total Hamiltonian.

3. **Two-site parity operator** \hat{P} : The action of \hat{P} is defined as follows. If $|\Psi_{\alpha\beta}\rangle$ is a wavefunction with site indices α and β ,

$$\hat{P} |\Psi(\alpha, \beta)\rangle = |\Psi(\beta, \alpha)\rangle \tag{6}$$

That is, it operates on each electron and reverses it's site indices.

Proof. I now rewrite the Hamiltonian by explcitly showing the two site indices:

$$\mathcal{H}(\alpha,\beta) = -t \sum_{\sigma} (c_{\alpha\sigma}^{\dagger} c_{\beta\sigma} + c_{\beta\sigma}^{\dagger} c_{\alpha\sigma}) + U(n_{\alpha\uparrow} n_{\alpha\downarrow} + n_{\beta\uparrow} n_{\beta\downarrow}) - \mu \sum_{\sigma} (n_{\alpha\sigma} + n_{\beta\sigma})$$
 (7)

Its obvious that \mathcal{H} is symmetric in the site indices: $\mathcal{H}(\alpha, \beta) = \mathcal{H}(\beta, \alpha)$. This means that the eigenvalues also have this symmetry. Let $|\Phi(\alpha, \beta)\rangle$ be an eigenstate of $\mathcal{H}(\alpha, \beta)$ with eigenvalue $E(\alpha, \beta)$. Then,

$$\hat{P}\mathcal{H} |\Phi(\alpha,\beta)\rangle = E(\alpha,\beta)\hat{P} |\Phi(\alpha,\beta)\rangle = E(\beta,\alpha) |\Phi(\beta,\alpha)\rangle
= \mathcal{H} |\Phi(\beta,\alpha)\rangle = \mathcal{H}\hat{P} |\Phi(\alpha,\beta)\rangle
\implies \mathcal{H}\hat{P} |\Phi(\alpha,\beta)\rangle = \hat{P}\mathcal{H} |\Phi(\alpha,\beta)\rangle$$
(8)

Since any general wavefunction can be expanded in terms of these wavefunctions and since both the operator are linear, the above result will also hold for a general wavefunction $|\Psi(\alpha,\beta)\rangle$:

$$\mathcal{H}\hat{P}|\Psi(\alpha,\beta)\rangle = \hat{P}\mathcal{H}|\Psi(\alpha,\beta)\rangle \implies [\mathcal{H},\hat{P}] = 0$$
 (9)

1.2 Partitioning the Hilbert space

THe Hamiltonian commutes with the three operators. This means that is possible to simultaneously diagonalize these four operators: $\mathcal{H}, \hat{N}, S_z^{tot}, \hat{P}$. I will be able to label the eigenstates of the total Hamiltonian using the eigenvalues of these operators. First take the total number operator. \hat{N} can take four values for a two-site system, 1 through 4. The eigenstates labelled by a particular number, say N=2 will be orthogonal to the eigenstates labelled by another number, say N=4. This means each eigenvalue of \hat{N} will have a distinct subspace orthogonal to the other values of \hat{N} . I will be able to diagonalize each such subspace independently of each other, because they will not have any overlap. This feature enables us to block-diagonalize the total Hamiltonian into four blocks, each block belonging to each value \hat{N} .

Inside each block, I will be able to repeat the procedure by next using the eigenvalues of S_z^{tot} . Each block of the Hamiltonian will again break up to smaller blocks for each value of the total magnetization. The eigenvalues of parity operator provide a further partitioning of the blocks of magnetization.

From this point, all the states I will work with will necessarily be eigenfunctions of \hat{N} , so it doesn't make sense to keep the last term in the Hamiltonian, $\mu\hat{N}$. I redefine the Hamiltonian by absorbing this term: $\mathcal{H} \to \mathcal{H} + \mu\hat{N} = -t\sum_{\sigma} \left(c_{1\sigma}^{\dagger}c_{2\sigma} + c_{2\sigma}^{\dagger}c_{1\sigma}\right) + U\sum_{i}\hat{n}_{i\uparrow}\hat{n}_{i\downarrow}$. This will keep the eigenvectors unaltered, but will increase the eigenvalues by μN , where N is the number of particles in the eigenstate I are considering.

1.3 N = 1

For writing the state kets, I use the following notation: $|\uparrow,\downarrow\rangle$ means electron on site 1 has spin up and that on site 2 has spin-down. $|\downarrow,0\rangle$ means electron on site 1 has spin-down and there is no electron on site 2.

For one electron on two lattice sites, I start by writing down the eigenstates of S_z^{tot} . For odd number of electrons, zero magnetization is not possible. So,

- $S_z^{tot} = -1: |\downarrow, 0\rangle, |0, \downarrow\rangle$
- $S_z^{tot} = +1: |\uparrow, 0\rangle, |0, \uparrow\rangle$

Each eigenvalue will have a separate subspace and can be separately diagonalized. I need to find the matrix elements of \mathcal{H} in these eigenkets. Since there is no possibility of two electrons occupying same site, I ignore the U-term for the time being.

1.3.1 $S_z^{tot} = -1$

Let us first see the action of the Hamiltonian on the eigenfunctions with $S_z^{tot} = -1$.

$$\mathcal{H} |\downarrow, 0\rangle = -tc_{2\downarrow}^{\dagger} c_{1\downarrow} |\downarrow, 0\rangle = -t |0, \downarrow\rangle$$

$$\mathcal{H} |0, \downarrow\rangle = -tc_{1\downarrow}^{\dagger} c_{2\downarrow} |0, \downarrow\rangle = -t |\downarrow, 0\rangle$$
(10)

We get the following matrix for this tiny subspace of the Hamiltonian:

$$\begin{vmatrix}
\downarrow, 0 \rangle & |0, \downarrow \rangle \\
|\downarrow, 0 \rangle & 0 & -t \\
|0, \downarrow \rangle & -t & 0
\end{vmatrix}$$
(11)

The eigenvalues and eigenvectors of this matrix are $\frac{|\downarrow,0\rangle\pm|0,\downarrow\rangle}{\sqrt{2}}$, with eigenvalues $\mp t$. These are also the eigenvalues of the parity operator, as expected.

$$\hat{P}(|\downarrow,0\rangle + |0,\downarrow\rangle) = |0,\downarrow\rangle + |\downarrow,0\rangle \implies \hat{P} = 1$$

$$\hat{P}(|\downarrow,0\rangle - |0,\downarrow\rangle) = |0,\downarrow\rangle - |\downarrow,0\rangle \implies \hat{P} = -1$$
(12)

1.3.2 $S_z^{tot} = +1$

Now I look at the spin-up states.

$$\mathcal{H} |\uparrow,0\rangle = -tc_{2\uparrow}^{\dagger} c_{1\uparrow} |\uparrow,0\rangle = -t |0,\uparrow\rangle$$

$$\mathcal{H} |0,\uparrow\rangle = -tc_{1\uparrow}^{\dagger} c_{2\uparrow} |0,\uparrow\rangle = -t |\uparrow,0\rangle$$
(13)

Clearly, this gives the same matrix as the spin-down states:

$$|\uparrow,0\rangle \quad |0,\uparrow\rangle |\uparrow,0\rangle \begin{pmatrix} 0 & -t \\ -t & 0 \end{pmatrix}$$
 (14)

and hence similar eigenfunctions: $\frac{|\uparrow,0\rangle\pm|0,\uparrow\rangle}{\sqrt{2}}$, with eigenvalues $\mp t$.

1.4 N=3

I once again write down the eigenstates of S_z^{tot} , this time with three electrons.

- $\bullet \ S_z^{tot} = -1 \colon \left| \uparrow \downarrow, \downarrow \right\rangle, \left| \downarrow, \uparrow \downarrow \right\rangle$
- $S_z^{tot} = +1: |\uparrow\downarrow,\uparrow\rangle, |\uparrow,\uparrow\downarrow\rangle$

1.4.1
$$S_z^{tot} = -1$$

$$\mathcal{H} |\uparrow\downarrow,\downarrow\rangle = -tc_{2\uparrow}^{\dagger}c_{1\uparrow}|\uparrow\downarrow,\downarrow\rangle + U|\uparrow\downarrow,\downarrow\rangle = -t|\downarrow,\uparrow\downarrow\rangle + U|\uparrow\downarrow,\downarrow\rangle
\mathcal{H} |\downarrow,\uparrow\downarrow\rangle = -tc_{1\uparrow}^{\dagger}c_{2\uparrow}|\downarrow,\uparrow\downarrow\rangle + U|\downarrow,\uparrow\downarrow\rangle = -t|\uparrow\downarrow,\downarrow\rangle + U|\downarrow,\uparrow\downarrow\rangle$$
(15)

$$\begin{vmatrix}
\uparrow\downarrow,\downarrow\rangle & |\downarrow,\uparrow\downarrow\rangle \\
|\uparrow\downarrow,\downarrow\rangle & U & -t \\
-t & U
\end{vmatrix}$$
(16)

This matrix has eigenvalues $U \mp t$, and corresponding eigenvectors $\frac{|\uparrow\downarrow\downarrow\downarrow\rangle\pm|\downarrow,\uparrow\downarrow\rangle}{\sqrt{2}}$

1.4.2
$$S_z^{tot} = +1$$

$$\mathcal{H} |\uparrow\downarrow,\uparrow\rangle = -tc_{2\downarrow}^{\dagger} c_{1\downarrow} |\uparrow\downarrow,\uparrow\rangle + U |\uparrow\downarrow,\uparrow\rangle = tc_{2\downarrow}^{\dagger} c_{1\downarrow} |\downarrow\uparrow,\uparrow\rangle + U |\uparrow\downarrow,\uparrow\rangle$$

$$= t |\uparrow,\downarrow\uparrow\rangle + U |\uparrow\downarrow,\uparrow\rangle = -t |\uparrow,\uparrow\downarrow\rangle + U |\uparrow\downarrow,\uparrow\rangle$$

$$\mathcal{H} |\uparrow,\uparrow\downarrow\rangle = -tc_{1\downarrow}^{\dagger} c_{2\downarrow} |\uparrow,\uparrow\downarrow\rangle + U |\uparrow,\uparrow\downarrow\rangle = tc_{1\downarrow}^{\dagger} c_{2\downarrow} |\uparrow,\downarrow\uparrow\rangle + U |\uparrow,\uparrow\downarrow\rangle$$

$$= t |\downarrow\uparrow,\uparrow\rangle + U |\uparrow,\uparrow\downarrow\rangle = -t |\uparrow\downarrow,\uparrow\rangle + U |\uparrow,\uparrow\downarrow\rangle$$
(17)

$$|\uparrow\downarrow,\uparrow\rangle \begin{pmatrix} U & -t \\ -t & U \end{pmatrix}$$

$$|\uparrow,\uparrow\downarrow\rangle \begin{pmatrix} -t & U \\ -t & U \end{pmatrix}$$

$$(18)$$

This matrix has eigenvalues $U \mp t$, and corresponding eigenvectors $\frac{|\uparrow\downarrow,\uparrow\rangle\pm|\uparrow,\uparrow\downarrow\rangle}{\sqrt{2}}$

1.5 N=4

With four electrons, the only possible state is $|\uparrow\downarrow,\uparrow\downarrow\rangle$. Its easy to find the eigenvalue. Since all states are filled, no hopping can take place, so the hopping term is zero. Therefore,

$$\mathcal{H} |\uparrow\downarrow,\uparrow\downarrow\rangle = 2U |\uparrow\downarrow,\uparrow\downarrow\rangle \tag{19}$$

So, $|\uparrow\downarrow,\uparrow\downarrow\rangle$ is an eigenvector with eigenvalue 2U.

1.6 N=2

This is the eigenvalue that has the largest subspace.

- $S_z^{tot} = -1: |\downarrow,\downarrow\rangle$
- $S_z^{tot} = +1: |\uparrow,\uparrow\rangle$
- $S_z^{tot} = 0$: $|\uparrow,\downarrow\rangle$, $|\downarrow,\uparrow\rangle$, $|0,\uparrow\downarrow\rangle$, $|\uparrow\downarrow,0\rangle$

1.6.1 $S_z^{tot} = \pm 1$

These two subspaces have a single state each, so they are obviously eigenstates. Since they both have identical spins on both sites, the hopping term is 0, and the U-term is also zero because of single occupation. As a result, they both have zero eigenvalue

$$\mathcal{H}|\downarrow,\downarrow\rangle = \mathcal{H}|\uparrow,\uparrow\rangle = 0 \tag{20}$$

1.6.2
$$S_z^{tot} = 0$$

This subspace has four eigenvectors,

$$|\uparrow,\downarrow\rangle$$
, $|\downarrow,\uparrow\rangle$, $|0,\uparrow\downarrow\rangle$, $|\uparrow\downarrow,0\rangle$ (21)

so it is not possible to directly diagonalize this subspace. First we organize these states into eigenstates of parity. It is easy by inspection.

$$\hat{P}(|\uparrow,\downarrow\rangle \pm |\downarrow,\uparrow\rangle) = \pm (|\uparrow,\downarrow\rangle \pm |\downarrow,\uparrow\rangle)$$

$$\hat{P}(|\uparrow\downarrow,0\rangle \pm |0,\uparrow\downarrow\rangle) = \pm (|\uparrow\downarrow,0\rangle \pm |0,\uparrow\downarrow\rangle)$$
(22)

I have the parity eigenstates for this subspace, so its most convenient to work in the basis of these eigenstates

•
$$\hat{P} = 1 : \frac{|\uparrow,\downarrow\rangle + |\downarrow,\uparrow\rangle}{\sqrt{2}}, \qquad \frac{|\uparrow\downarrow,0\rangle + |0,\uparrow\downarrow\rangle}{\sqrt{2}}$$

$$\bullet \ \hat{P} = -1: \frac{|\uparrow,\downarrow\rangle - |\downarrow,\uparrow\rangle}{\sqrt{2}}, \qquad \frac{|\uparrow\downarrow,0\rangle - |0,\uparrow\downarrow\rangle}{\sqrt{2}}$$

Each eigenvalue subspace can now be diagonalized separately. First I look at the eigenstates of $\hat{P} = 1$. I find the matrix of \mathcal{H} in the subspace spanned by these two vectors and then diagonalize that subspace.

$$\mathcal{H} \frac{|\uparrow,\downarrow\rangle + |\downarrow,\uparrow\rangle}{\sqrt{2}} = -\frac{t}{\sqrt{2}} \left\{ \left(c_{1\downarrow}^{\dagger} c_{2\downarrow} + c_{2\uparrow}^{\dagger} c_{1\uparrow} \right) |\uparrow,\downarrow\rangle + \left(c_{1\uparrow}^{\dagger} c_{2\uparrow} + c_{2\downarrow}^{\dagger} c_{1\downarrow} \right) |\downarrow,\uparrow\rangle \right\}$$

$$= -\frac{t}{\sqrt{2}} \left\{ |\downarrow\uparrow,0\rangle + |0,\uparrow\downarrow\rangle + |\uparrow\downarrow,0\rangle + |0,\downarrow\uparrow\rangle \right\} = 0$$

$$\mathcal{H} \frac{|\uparrow\downarrow,0\rangle + |0,\uparrow\downarrow\rangle}{\sqrt{2}} = -\frac{t}{\sqrt{2}} \left\{ \left(c_{2\uparrow}^{\dagger} c_{1\uparrow} + c_{2\downarrow}^{\dagger} c_{1\downarrow} \right) |\uparrow\downarrow,0\rangle + \left(c_{1\uparrow}^{\dagger} c_{2\uparrow} + c_{1\downarrow}^{\dagger} c_{2\downarrow} \right) |0,\uparrow\downarrow\rangle \right\} + U \frac{|\uparrow\downarrow,0\rangle + |0,\uparrow\downarrow\rangle}{\sqrt{2}}$$

$$= -\frac{t}{\sqrt{2}} \left\{ |\downarrow,\uparrow\rangle - |\uparrow,\downarrow\rangle + |\uparrow,\downarrow\rangle - |\downarrow,\uparrow\rangle \right\} + U \frac{|\uparrow\downarrow,0\rangle + |0,\uparrow\downarrow\rangle}{\sqrt{2}} = U \frac{|\uparrow\downarrow,0\rangle + |0,\uparrow\downarrow\rangle}{\sqrt{2}}$$

$$(23)$$

We get the following matrix

$$\frac{|\uparrow,\downarrow\rangle+|\downarrow,\uparrow\rangle}{\sqrt{2}} \begin{pmatrix} |\uparrow,\downarrow\rangle+|\downarrow,\uparrow\rangle & |\uparrow\downarrow,0\rangle+|0,\uparrow\downarrow\rangle \\ 0 & 0 \\ |\uparrow\downarrow,0\rangle+|0,\uparrow\downarrow\rangle & 0 \\ 0 & U \end{pmatrix} (24)$$

As it appears, the subspace is already diagonal in the eigenbasis of \hat{P} . The $\hat{P}=1$ eigenstates are eigenstates of \mathcal{H} , with eigenvalues 0 and U. Next I look at the eigenstates of $\hat{P}=-1$.

$$\mathcal{H} \frac{|\uparrow,\downarrow\rangle - |\downarrow,\uparrow\rangle}{\sqrt{2}} = -\frac{t}{\sqrt{2}} \left\{ \left(c_{1\downarrow}^{\dagger} c_{2\downarrow} c_{2\uparrow}^{\dagger} c_{1\uparrow} \right) |\uparrow,\downarrow\rangle - \left(c_{1\uparrow}^{\dagger} c_{2\uparrow} + c_{2\downarrow}^{\dagger} c_{1\downarrow} \right) |\downarrow,\uparrow\rangle \right\}$$

$$= -\frac{t}{\sqrt{2}} \left\{ |\downarrow\uparrow,0\rangle + |0,\uparrow\downarrow\rangle - |\uparrow\downarrow,0\rangle - |0,\downarrow\uparrow\rangle \right\}$$

$$= 2t \frac{|\uparrow\downarrow,0\rangle - |0,\uparrow\downarrow\rangle}{\sqrt{2}}$$

$$\mathcal{H} \frac{|\uparrow\downarrow,0\rangle - |0,\uparrow\downarrow\rangle}{\sqrt{2}} = -\frac{t}{\sqrt{2}} \left\{ \left(c_{2\uparrow}^{\dagger} c_{1\uparrow} + c_{2\downarrow}^{\dagger} c_{1\downarrow} \right) |\uparrow\downarrow,0\rangle - \left(c_{1\uparrow}^{\dagger} c_{2\uparrow} + c_{1\downarrow}^{\dagger} c_{2\downarrow} \right) |0,\uparrow\downarrow\rangle \right\} + U \frac{|\uparrow\downarrow,0\rangle + |0,\uparrow\downarrow\rangle}{\sqrt{2}}$$

$$= -\frac{t}{\sqrt{2}} \left\{ |\downarrow,\uparrow\rangle - |\uparrow,\downarrow\rangle - |\uparrow,\downarrow\rangle + |\downarrow,\uparrow\rangle \right\} + U \frac{|\uparrow\downarrow,0\rangle + |0,\uparrow\downarrow\rangle}{\sqrt{2}}$$

$$= 2t \frac{|\uparrow,\downarrow\rangle - |\downarrow,\uparrow\rangle}{2} + U \frac{|\uparrow\downarrow,0\rangle - |0,\uparrow\downarrow\rangle}{\sqrt{2}}$$

$$\frac{|\uparrow,\downarrow\rangle - |\downarrow,\uparrow\rangle}{\sqrt{2}} \begin{pmatrix} \frac{|\uparrow,\downarrow\rangle - |\downarrow,\uparrow\rangle}{\sqrt{2}} & \frac{|\uparrow\downarrow,0\rangle - |0,\uparrow\downarrow\rangle}{\sqrt{2}} \\
0 & 2t \\
\frac{|\uparrow\downarrow,0\rangle - |0,\uparrow\downarrow\rangle}{\sqrt{2}} \begin{pmatrix} 2t & U \end{pmatrix}$$
(26)

This subspace is not automatically diagonal, but is easily diagonalized. The eigenvectors are

$$\frac{1}{N_{\pm}} \left\{ 2t \frac{(|\uparrow,\downarrow\rangle - |\downarrow,\uparrow\rangle)}{\sqrt{2}} + \frac{U \pm \sqrt{U^2 + 16t^2}}{2} \frac{(|\uparrow\downarrow,0\rangle - |0,\uparrow\downarrow\rangle)}{\sqrt{2}} \right\}$$

$$N_{\pm} = \left\{ \frac{U}{2} \left[U \pm \sqrt{U^2 + 16t^2} \right] + 16t^2 \right\}^{\frac{1}{2}} \tag{27}$$

with eigenvalues $\frac{U\pm\sqrt{U^2+16t^2}}{2}$ respectively.

1.7 The total spectrum

The final spectrum is already obtained. One final thing to do is to just add the respective values of $-\mu N$ to the eigenvalues.

\hat{N}	S_z^{tot}	\hat{P}	Е	$ \Phi angle$
0	-	-	0	$ 0,0\rangle$
1	-1	1	-t- μ	$\frac{ \downarrow,0\rangle+ 0,\downarrow\rangle}{\sqrt{2}}$
		-1	t- μ	$\frac{ \downarrow,0 angle - 0,\downarrow angle}{\sqrt{2}}$
	1	1	-t- μ	$\frac{ \uparrow,0\rangle+ 0,\uparrow\rangle}{\sqrt{2}}$
		-1	t- μ	$\frac{ \uparrow,0\rangle- 0,\uparrow\rangle}{\sqrt{2}}$
2	-1	1	0 - 2μ	$ \downarrow,\downarrow angle$
	0	1	0 - 2μ	$rac{\ket{\uparrow,\downarrow}+\ket{\downarrow,\uparrow}}{\sqrt{2}}$
		1	$ ext{U-}2\mu$	$\frac{ \uparrow\downarrow,0\rangle+ 0,\uparrow\downarrow\rangle}{\sqrt{2}}$
		-1	$\frac{U+\sqrt{U^2+16t^2}}{2}-2\mu$	$\frac{1}{N_{\pm}} \left\{ 2t \frac{(\uparrow,\downarrow\rangle - \downarrow,\uparrow\rangle)}{\sqrt{2}} + \frac{U \pm \sqrt{U^2 + 16t^2}}{2} \frac{(\uparrow\downarrow,0\rangle - 0,\uparrow\downarrow\rangle)}{\sqrt{2}} \right\}$
		-1	$\frac{U-\sqrt{U^2+16t^2}}{2}-2\mu$	$\frac{1}{N_{-}} \left\{ 2t \frac{(\uparrow,\downarrow\rangle - \downarrow,\uparrow\rangle)}{\sqrt{2}} + \frac{U - \sqrt{U^2 + 16t^2}}{2} \frac{(\uparrow\downarrow,0\rangle - 0,\uparrow\downarrow\rangle)}{\sqrt{2}} \right\}$
	1	1	0 - 2μ	$ \uparrow,\uparrow angle$
3	-1	1	U-t- 3μ	$\frac{ \uparrow\downarrow,\downarrow\rangle+ \downarrow,\uparrow\downarrow\rangle}{\sqrt{2}}$
		-1	$\mathrm{U}+\mathrm{t-}3\mu$	$\frac{ \uparrow\downarrow,\downarrow\rangle- \downarrow,\uparrow\downarrow\rangle}{\sqrt{2}}$
	1	1	$ ext{U-t-3}\mu$	$\frac{ \uparrow\downarrow,\uparrow\rangle+ \uparrow,\uparrow\downarrow\rangle}{\sqrt{2}}$
		-1	U+t-3 μ	$\frac{ \uparrow\downarrow,\uparrow\rangle- \uparrow,\uparrow\downarrow\rangle}{\sqrt{2}}$
4	0	1	$2 ext{U-}4\mu$	$ \uparrow\downarrow,\uparrow\downarrow\rangle$