COMP-170: Homework #4

Ben Tanen - February 26, 2017

Problem 4

Let $L = \{\langle M \rangle \mid M \text{ only accepts odd inputs } \}$. Prove that \overline{L} is recognizable.

* * *

To show \overline{L} is recognizable, we will use a proof by construction. Specifically, we will construct a recognizer R for the language \overline{L} such that for any $x \in \overline{L}$, R will accept x and for any $y \notin \overline{L}$, R doesn't accept y.

Given this, let's define R as follows:

R on input $\langle M \rangle$:

For
$$i = 0 \to \infty$$

For $j = 0 \to i$

Run M on input s_j for i steps

If M accepts s_j in i steps and s_j is an even input, ACCEPT

We will now claim that R is a recognizer of \overline{L} . To show this, consider the following cases:

- 1. Let $\langle M \rangle \in \overline{L}$, where M does not just except odd inputs. Given this, we know M accepts at least one even input. Thus, we know there exists an input string s that is even and that M accepts in fewer (or equal) steps than any other even input string. Suppose M accepts s in k steps (where k is a finite number). With our loop structure, we know that we will eventually run M on s for k steps, which will cause M to accept s. This will cause R to correctly accept s.
- 2. Let $\langle M \rangle \not\in \overline{L}$, where M only accepts odd inputs. Because L(M) only contains odd inputs, we can see that M will never accept an even input, no matter how many steps M is allowed. Thus, because M will never accept an even input, R will correctly never accept $\langle M \rangle$.

Based on our construction and these cases, we can see that R accepts all $x \in \overline{L}$ and that R doesn't accept all $y \notin \overline{L}$. Therefore, we can see that R is a recognizer of \overline{L} , and since there exists a machine that recognizes \overline{L} , we know that \overline{L} is recognizable. \boxtimes