Bulletin of University of Kyiv Series: Physics & Mathematics

УДК 512.54

D.I. Morozov, researcher working on habilitation.

Centralizers of layer-transitive elements in the group of finite-state automorphisms of binary rooted tree

In this work the centralizer of layer-transitive finite-state automorphisms investigated.

 $\begin{tabular}{ll} Key & Words: & rooted & tree, & automorphism \\ group, & state, & centralizer. \end{tabular}$

E-mail: denis.morozov178@gmail.com Статтю представив доктор фіз.-мат. наук

1 Вступ

Відомо, що централізатори шаровотранзитивних елементів в $AutT_2$ описуються наступною теоремою([1]):

Теорема 1.1. $Hexa \c u$ - $uaposompan \c umus mus mus mus momo p<math>\phi$ is m. $To \c di$

$$C_{AutT_2}(x) = \{x^p | p \in Z_2\}$$

Метою даної роботи є дослідження централізаторів шарово-транзитивних елементів в $FAutT_2$, оскільки результату, аналогічного теоремі 1.1 для $FAutT_2$ немає.

2 Централізатори шарово-транзитивних елементів в $FAutT_2$

Далі у роботі будемо використовувати наступні означення.

Означення 2.1. Позначимо як:

x*a - ліву дію автоморфізма a на кінець x дерева T_2 ,

 $a \circ b$ - суперпозицію автоморфізів a та b дерева $T_2,$

 Z_2 - кільце цілих 2-адичних чисел.

Лема 1. Для $p \in Z_2$ має місце рівність:

$$0 * \varepsilon^p = p$$

Доведення. $Ocкiльки\ t*\varepsilon^p = t+p,\ mo\ 0*\varepsilon^p = 0+p=p.$

Д.І. Морозов, докторант.

Централізатори шарово-транзитивних елементів в групі скінчено-станових автоморфізмів бінарного кореневого дерева

В роботі досліджено централізатори шарово-транзитивних скінчено-станових автоморфізмів.

Ключові слова: кореневе дерево, група автоморфізмів, стан, централізатор.

Теорема 2.1. Нехай χ_x - θ -розв'язок рівняння спряженості $\varepsilon^t = x$ відносно автоморфізма t. Тоді має місце рівність:

$$0 * x^p = p * \chi_x$$

Доведення. Оскільки $\varepsilon^{\chi_x} = x$, то має місце співвідношення:

$$x^p = (\chi_x^{-1} \circ \varepsilon \circ \chi_x)^p = \chi_x^{-1} \circ \varepsilon^p \circ \chi_x$$

Отже за лемою 1 та рівністю $0 * \chi_x = 0$ отримуємо:

$$0 * x^p = 0 * (\chi_x^{-1} \circ \varepsilon^p \circ \chi_x) =$$

 $= ((0 * \chi_x^{-1}) * \varepsilon^p) * \chi_x) = (0 * \varepsilon^p) * \chi_x = p * \chi_x$ w. m. d.

Має місце наступна лема:

$$0 * C_{AutT_2}(x) = Z_2$$

Доведення. За теоремою 1.1

$$C_{AutT_2}(x) = \{x^p | p \in Z_2\}$$

Далі, скориставшись теоремою 2.1, маємо:

$$0 * x^{Z_2} = Z_2 * \chi_x$$

де χ_x - 0-розв'язок рівняння спряженості $\varepsilon^t = x$ відносно автоморфізма t.

 $Оскільки \chi_x$ - автоморфізм, то

$$Z_2 * \chi_x = Z_2$$

 $u_{l}.m.\partial.$

Означення 2.2. Означимо множину $F_p(p \in Z_2)$ наступним чином:

 $p \in F_p,$ якщо $2t+1 \in F_p,$ то $t \in F_p, t+1 \in F_p,$ якщо $2t \in F_p,$ то $t \in F_p.$

Будемо казати, що t_k належить k-му рівню в F_p , якщо отримано з p за k кроків.

Означення 2.3. Означимо множину $P_{m,n}(m \in \mathbb{Z}, n \in \mathbb{Z}^+ \cup 0)$ наступним чином:

 $m\in P_{m,n},$ якщо $2t+1\in P_{m,n},$ то $t-n\in P_{m,n},\; t+n+1\in P_{m,n},$

якщо $2t \in P_{m,n}$, то $t \in P_{m,n}$.

Будемо казати, що t_k належить k-му рівню в $P_{m,n}$, якщо отримано з m за k кроків.

Лема 3. Нехай 2-адичне квазіперіодичне число p дорівнює $\frac{m}{2n+1}$, де $m \in \mathbb{Z}, n \in \mathbb{Z}^+ \cup 0$. Тоді множини $P_{m,n}$ та F_p скінчені або нескінчені одночасно.

Доведення. Оскільки мають місце рівності:

$$\frac{2m+1}{2n+1} = 2\frac{m-n}{2n+1} + 1$$

$$\frac{2m}{2n+1} = 2\frac{m}{2n+1}$$

то в F_p $\frac{2m+1}{2n+1}$ породжуе $\frac{m-n}{2n+1}$ та $\frac{m+n+1}{2n+1}$, а $\frac{2m}{2n+1}$ породжуе $\frac{m}{2n+1}$.

Отже, якщо t_k належить k-му рівню в F_p , то $t_k(2n+1)$ належить k-му рівню в $P_{m,n}$, i навпаки, якщо t_k' належить k-му рівню в $P_{m,n}$, то $\frac{t_k'}{2n+1}$ належить k-му рівню в F_p . Тому має місце рівність:

$$|P_{m,n}| = |F_p|$$

 $u_{l}.m.\partial.$

Лема 4. *Множина* $P_{m,n}(m \in \mathbb{Z}, n \in \mathbb{Z}^+ \cup 0)$ *е скінченою.*

Доведення. Згідно з означенням, якщо $t \in P_{m,n}$, то або $\frac{t}{2}$ або $\frac{t-1}{2}-n$ та $\frac{t-1}{2}+n+1$. Нехай t_k відноситься до k-го рівня в $P_{m,n}$, тоді має місце рівність:

$$t_k = \frac{t_{k-1} + a * (2n+1)}{2}, a = 0, 1, -1$$

Bикориставши цю рівність k разів, отримаємо:

$$t_k = \frac{m}{2^k} + (2n+1)(\frac{a_0}{2^k} + \dots + \frac{a_{k-1}}{2})$$

Оскільки $|a_i| \leqslant 1$, то маємо наступну оцінку:

$$|t_k| = \left| \frac{m}{2^k} + (2n+1)(\frac{a_0}{2^k} + \dots + \frac{a_{k-1}}{2}) \right| \le$$

$$\le \left| \frac{m}{2^k} \right| + |2n+1| \le |m| + 2n + 1$$

Отже кількість елеметів в множині $P_{m,n}$ обмежено нерівністю:

$$|P_{m,n}| \le 2(|m| + 2n + 1)$$

тому множина $P_{m,n}$ е скінченою, щ.т.д.

Пема 5. Множина F_p скінчена тоді, і тільки тоді, коли p - квазіперіодичне число.

Доведення. \Rightarrow Для 2t+1 та 2t число t отримується відкиданням останьої цифри у двійковому запису, отже F_p містить всі числа, що отримуються з p відкиданням декількох останніх цифр. Якщо p не квазіперіодичне, то маємо нескінчену кількість таких чисел, тому F_p не e скінченою.

 $\Leftarrow p$ - квазіперіодичне число тоді і лише тоді, коли $p = \frac{m}{2n+1} (m \in \mathbb{Z}, n \in \mathbb{Z}^+ \cup 0)$. Отже за лемами 3 та 4 множина F_p e скінченою.

Теорема 2.2. Hexaй ε - adding machine. Todi

$$C_{FAutT_2}(\varepsilon) = \{ \varepsilon^p | p \in Z_2 \cap \mathbb{Q} \}$$

Доведення. Оскільки має місце рівність

$$C_{FAutT_2}(\varepsilon) = C_{AutT_2}(\varepsilon) \cap FAutT_2$$

то, за теоремою 1.1, елементи централізатора $C_{FAutT_2}(\varepsilon)$ мають вигляд $\{\varepsilon^p|\varepsilon^p\in FAutT_2\}$. Легко бачити, якщо p - не квазіперіодичне число, то ε^p - нескінчено-становий, оскільки переводить квазіперіодичне число 0 в не квазіперіодичне число p. Далі, нехай $p\in Z_2\cap \mathbb{Q}\}$, тобто квазіперіодичне. За лемою 0 множина 0 - скінчена. З іншої сторони, мають місце рівності:

$$\varepsilon^{2t+1} = (\varepsilon^t, \varepsilon^{t+1}) \circ \sigma$$
$$\varepsilon^{2t} = (\varepsilon^t, \varepsilon^t)$$

Отже стани автоморфізму ε^p вичерпуються автоморфізмами вигляду

$$\varepsilon^t, t \in F_n$$

Оскільки F_p - скінчена, то ε^p - скінченостановий автоморфізм, щ.т.д.

Bulletin of University of Kyiv Series: Physics & Mathematics

Теорема 2.3. Hexaй ε - adding machine. Todi

$$0 * C_{FAutT_2}(\varepsilon) = (Z_2 \cap \mathbb{Q})$$

Доведення. За теоремою 2.2

$$C_{FAutT_2}(\varepsilon) = \{ \varepsilon^p | p \in Z_2 \cap \mathbb{Q} \}$$

Далі, скориставшись лемою 1, маємо:

$$0 * \varepsilon^{Z_2 \cap \mathbb{Q}} = Z_2 \cap \mathbb{Q}$$

 $u_{\!\scriptscriptstyle \perp}.m.\partial.$

Теореми 2.2 та 2.3 можна застосувати для дослідження скінчено-станової спряженності з автоморфізмом ε - adding machine. Це показує наступна теорема:

Теорема 2.4. Якщо θ -розв'язок t_0 рівняння спряженності відносно t

$$\varepsilon^t = a$$

не ϵ скінчено-становим, то це рівняння не ма ϵ скінчено-станових розв'язків.

Доведення. Припустимо, що t_0 - нескінченостановий, а рівняння $\varepsilon^t=a$ має скінченостановий розв'язок $t':p\to 0$, де p - квазіперіодичне число. Оскільки кожен розв'язок єдиним чином можна представити у вигляді

$$t' = x \circ t_0, x \in C_{FAutT_2}(\varepsilon)$$

та $p * \varepsilon^{-p} = 0$, то за теоремою $2.2 \ t' = \varepsilon^{-p} \circ t_0$. Оскільки t_0 - нескінчено-становий, а ε^{-p} - скінчено-становий, то t' - нескінчено-становий. Отже маємо протиріччя.

Теорема 2.5. $Hexa \check{u} \ a$ - $waposo-mpaнзитивни \check{u}$ $asmomop \phi ism. \ Todi$

$$C_{FAutT_2}(a) \subseteq \{a^{(p*\chi_a^{-1})}| p \in Z_2 \cap \mathbb{Q}\}$$

 $\partial e \chi_a$ - θ -розв'язок рівняння спряженності $\varepsilon^t = a$ відносно t.

Доведення. Має місце наступна рівність:

$$0 * a^{(p*\chi_a^{-1})} = p$$

Дійсно, за теоремою 2.1 отримаємо:

$$0 * a^{(p*\chi_a^{-1})} = (p * \chi_a^{-1}) * \chi_a = p * (\chi_a^{-1}) \circ \chi_a) = p$$

Отже $a^{(p*\chi_a^{-1})}$ може бути скінчено-становим тільки тоді, коли $p \in Z_2 \cap \mathbb{Q}$. З іншої сторони за теоремою 1.1 усі елементи централізатора $C_{AutT_2}(a)$ мають вигляд $a^{(p*\chi_a^{-1})}$, оскільки χ_a^{-1} - автоморфізм Z_2 . Приймаючи до уваги, що

$$C_{FAutT_2}(a) = C_{AutT_2}(a) \cap FAutT_2$$

отримуємо включення

$$C_{FAutT_2}(a) \subseteq \{a^{(p*\chi_a^{-1})}|p \in Z_2 \cap \mathbb{Q}\}$$

uд.m. ∂ .

Теорема 2.6. Нехай x - шаровотранзитивний скінчено-становий автоморфізм. Тоді

$$0 * C_{FAutT_2}(x) \subseteq (Z_2 \cap \mathbb{Q})$$

Доведення. Згідно з теоремою 2.5 маємо включення:

$$0*C_{FAutT_2}(x) \subseteq \{0*a^{(p*\chi_a^{-1})}|p \in Z_2 \cap \mathbb{Q}\} = Z_2 \cap \mathbb{Q}$$

References

 Морозов Д.І. Централізатори шаровооднорідних автоморфізмів однорідного дерева валентності р./ Д.І. Морозов// Вісник Київського ун-ту. Серія: фізикоматематичні науки. - 2007.— вип.№4 — C.52-54.

Надійшла до редколегії 13.10.2012