Ch. 14 - IoT Security and Privacy Sec 4 – Sensing Domain

COMPSCI 244p
Internet-of-Things; Software and Systems

Sensing Domain Attacks and Countermeasures

- Challenges of sensing networks:
 - Multi-hop versus direct connection between the smart object and the fog device
 - Wired versus wireless connection

Sensing Domain 1. Jamming Attack

To cause a service disruption

- Jamming the Receiver
 - Targets the physical layer of the receiver.
 - The jammer emits a signal that interferes with the legitimate signals.
 - Causing packet loss and retransmission.
- Jamming the Sender
 - Targets the data link layer of the sender
 - The jammer sends a jamming signal preventing the neighboring objects from transmitting
 - The neighbors sense the wireless channel to be **busy** and back off **waiting** for the channel to become idle

Sensing Domain 1. Jamming Attack strategies

Constant Jamming

- Continuously transmits a random jamming signal
- Easy to detect
 - The jamming signal do not follow the MAC protocol pattern

Deceptive Jamming

- Similar to constant jamming
- Jamming packets follow the structure of the MAC protocol

Reactive Jamming

- The jammer **listens** to the medium
- Attacks only after it senses that a signal is being transmitted
- Suitable for battery-powered jammers

Random Jamming

To hide the malicious activity

1. Jamming Attack Countermeasures

Frequency Hopping

Based on a generated random sequence that is known only by the sender and receiver.

Spread Spectrum

- Converts the narrow band signal into a signal with a wide band.
- Harder to detect and jam by the attacker.

Directional Antennas

Less sensitivity to the noise coming from the random directions.

Jamming Detection

- Collecting features such as the received signal strength (RSS) and the ratio of corrupted received packets.
- Using machine learning technique to differentiate jamming attacks.

Sensing Domain 2. Vampire Attack

Goal: To exploit the limited battery lifetime of IoT devices

Makes IoT devices consume extra amounts of power

1. Denial of Sleep

- Preventing objects from switching to sleep mode by sending control signals that change their duty cycles
- Effective even when control messages are encrypted!
 - Capture and replay encrypted control messages

2. Flooding Attack

 Flood the neighboring nodes with dummy packets and request them to deliver those packets to the fog/next device

Sensing Domain 2. Vampire Attack

3. Carrousel Attack

- Attacks the network layer using source routing
- Specifies routing paths that include loops

4. Stretch Attack

- Attacks the **network layer** using **source routing**
- Choosing very long paths rather than the direct and short ones
 - Select a next hop not having the shortest path for non-source routing

Sensing Domain 2. Vampire Attack Countermeasures

- Denial-of-sleep attacks => encrypting the control message + including a timestamp
- Flooding attacks => limiting the rate of the packets that each object may generate
- Carrousel attacks => making each forwarding object check the specified path or disabling source routing
- Stretch attacks => disabling source routing or making sure that the forwarded packets are making progress

3. Selective-Forwarding Attack

- Targeting multi-hoping (indirect) sensor-fog communication scenarios.
- A malicious object does not forward a portion of the packets that it receives from the neighboring objects.
- Blackhole attack => dropping the entire packet.

Unsal, Emre & Çebi, Yalçin. (2013). DENIAL OF SERVICE ATTACKS IN WSN. 10.13140/2.1.4040.9929.

3. Selective-Forwarding Attack Countermeasures

- Increase the transmission capability of the objects to reach the fog device directly, if possible
 - i.e., Avoiding intermediate nodes
- Path redundancy
 - Generating multiple copies of the packets and forwarding to multiple neighbors
 - High energy and bandwidth overhead
- Detecting the attackers by selecting certain trusted objects as checkpoints
 - Checkpoints send acknowledgements to the sender

4. Sinkhole Attack

- Claiming to have the shortest path to the fog device to attract neighboring objects.
- The neighbors' data will go through the attacker
 - Uncover the content
 - Drop the packets

Sensing Domain 4. Sinkhole Attack Countermeasures

- Detect and isolate the malicious objects (centralized intrusion detection)
 - Collecting information from neighboring objects (distance to reach those objects)
 - Harder when multiple malicious nodes collude to hide each other