

MoFEM in a nutshell

Mesh-oriented Finite Element Method:

- C++ open-source library (permitting private user modules)
- Mixing different element types and shapes in one mesh
- Using hierarchical basis functions (hp-adaptivity)
- Support for L2, H-div, H-curl, and H1 approximation spaces
- Supporting multi-field and multi-physics problems
- Native support for parallelisation
- Chained with state-of-the art libraries for managing
 Topology (MOAB) and Linear Algebra (PETSc) developed at the Argonne National Laboratory
- Validated and currently used by EDF Energy and Jacobs

Design objectives

- Design for research & development
- Solve practical engineering problems
- Allow for rapid development for nonstandard niche problems
- Create competitive advantage for industrial/research partner
- Enabling to break complex problem into small simple parts
- Enabling collaborative work distributed in time and space
- Structure allowing testing small parts separately
- Handling of error and unified logging

Basic design of MoFEM

MoFEM ecosystem

MoFEM is used by EDF/Jacobs Energy to assess structural integrity of nuclear reactors in the UK.

Simulation

Experiment

Comparing rig test and simulation

Rough surface contact: FE mesh

Surface height projected on the mesh

Mesh partitioned into 48 parts

Rough surface contact: normal traction

Examples of user modules

Multifield plasticity

$$\begin{cases} \frac{\partial \sigma_{ij}}{\partial x_j} - b_i = 0 & \forall x \in \Omega \\ \varepsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \\ \sigma_{ij} = D_{ijkl} \left(\varepsilon_{kl} - \varepsilon_{kl}^p \right) \\ \dot{\varepsilon}_{kl}^p - \dot{\tau} \left(\frac{\partial f}{\partial \sigma_{kl}} \Big|_{(\sigma,\tau)} \right) = 0 \\ f(\sigma,\tau) \le 0, \ \dot{\tau} \ge 0, \ \dot{\tau} f(\sigma,\tau) = 0 \\ u_i = \overline{u}_i & \forall x \in \partial \Omega_u \\ \sigma_{ij} n_j = \overline{t}_i & \forall x \in \partial \Omega_\sigma \\ \Omega_u \cup \Omega_\sigma = \Omega \\ \Omega_u \cap \Omega_\sigma = \emptyset \end{cases}$$

Incremental cold flow forming

$$\begin{cases}
\left(\frac{\partial \delta u_{i}}{\partial x_{j}}, \sigma_{ij}\right)_{\Omega} - (\delta u_{i}, b_{i})_{\Omega} - (\delta u_{i}, \bar{t}_{i})_{\partial \Omega_{\sigma}} = 0 \\
\left(\delta \varepsilon_{kl}^{p}, D_{ijkl} \left(\dot{\varepsilon}_{kl}^{p} - \dot{\tau} A_{kl}\right)\right) = 0 \\
\left(\delta \tau, c_{n}\dot{\tau} - \frac{1}{2} \left\{c_{n}\dot{\tau} + (f(\boldsymbol{\sigma}, \tau) - \sigma_{y}) + \|c_{n}\dot{\tau} + (f(\boldsymbol{\sigma}, \tau) - \sigma_{y})\|\right\}\right) = 0
\end{cases}$$

$$\forall \delta u_{i} \in H^{1}(\Omega)$$

$$\forall \delta \varepsilon_{ij}^{p} \in L^{2}(\Omega) \cap \mathcal{S}$$

$$\forall \delta \tau \in L^{2}(\Omega)$$

$$\forall \delta u_i \in H^1(\Omega)$$
$$\forall \delta \varepsilon_{ij}^p \in L^2(\Omega) \cap \mathcal{S}$$
$$\forall \delta \tau \in L^2(\Omega)$$

Adding fields

```
//! [Set up problem]
MoFEMErrorCode Example::setupProblem() {
 MoFEMFunctionBegin:
  Simple *simple = mField.getInterface<Simple>();
  // Add field
  CHKERR simple->addDomainField("U", H1, AINSWORTH LEGENDRE BASE, 2);
  CHKERR simple->addDomainField("TAU", L2, AINSWORTH LEGENDRE BASE, 1);-
  CHKERR simple->addDomainField("EP", L2, AINSWORTH LEGENDRE BASE, 3);
  CHKERR simple->addBoundaryField("U", H1, AINSWORTH LEGENDRE BASE, 2);
  CHKERR simple->setFieldOrder("U", order);
  CHKERR simple->setFieldOrder("TAU", order-1);
 CHKERR simple->setFieldOrder("EP", order-1);
 CHKERR simple->setUp();
 MoFEMFunctionReturn(0);
//! [Set up problem]
```


Matrix

Conservation of linear momentum

Plastic constrains

Flow rule

Multifield plasticity

Form integrators

```
// Only used with Henky/nonlinear material
using OpKPiola = FormsIntegrators DomainEleOp>::Assembly PETSC>::BiLinearForm GAUSS>::OpGradTensorGrad 1, SPACE_DIM, SPACE_DIM, 1>;
using OpInternalForcePiola = FormsIntegrators DomainEleOp>::Assembly PETSC>::LinearForm GAUSS>::OpGradTimesTensor 1, SPACE_DIM, SPACE_DIM>;
```


http://mofem.eng.gla.ac.uk/mofem/html/tutorial contact_problem.html

MFront integration module installation

Install spack:

git clone https://github.com/lorak41/spack.git

Install MoFEM + MFront:

spack install mofem-cephas+mgis

Download MFront integration module into MoFEM

cd \$MOFEM_INSTALL_DIR/mofem-cephas/mofem/users_modules git clone git@bitbucket.org:karol41/um_mfront_interface.git mfront_interface

Configure new user module in your build

```
cd $MOFEM_INSTALL_DIR/users_modules_build export MGIS_PATH=$(spack find -l --path mgis | awk 'END{print}' | awk 'NF{ print $NF }')"/lib" touch CMakeCache.txt ./spconfig -DMGIS_PATH=$MGIS_PATH make —j4
```


MFront Integration Pipelines

MFront integration

Pre-processing

Boundary conditions:

Force, pressure, displacement, rotation, temperature etc.

Block id: 1

name: MATERIAL1

optional:

param 1: 230e6

param 2: 0.3

...

param n:

standard materials

C. Miehe, N. Apel, M. Lambrecht (2002)

Anisotropic additive plasticity in the logarithmic strain space. Modular kinematic formulation and implementation based on incremental minimization principles for

Logarithmic Strain Plasticity Behaviour

```
@DSL Implicit;
@Behaviour LogarithmicStrainPlasticity;
@Author Thomas Helfer/Jérémy Bleyer;
@StrainMeasure Hencky;
@Algorithm NewtonRaphson;
@Epsilon 1.e-14;
@Theta 1:
@MaterialProperty stress s0;
s0.setGlossaryName("YieldStress");
@MaterialProperty stress H0;
HO.setEntryName("HardeningSlope");
@MaterialProperty real Rult;
Rult.setEntryName("UltimateStrength");
@MaterialProperty real be;
be.setEntryName("HardeningExponent");
@Brick StandardElastoViscoPlasticity{
 stress potential: "Hooke" {
               young modulus: 206913,
               poisson ratio: 0.29
 inelastic flow: "Plastic" {
  criterion: "Mises",
               isotropic hardening: "Linear" {R0:s0, H:H0},
               isotropic hardening: "Voce" {R0:0, Rinf: Rult, b:be}
```

LogarithmicStrainPlasticityMiehe.mfront

MFront integration Analysis execution

Command line:

./compile behaviours.sh LogarithmicStrainPlasticityMiehe.mfront

```
#!/bin/bash
mfront --obuild --interface=generic "$@"
```

Saves material library by default into:

src/libBehaviour.so

Run MoFEM/MFront analysis:

```
./mfront_interface -file_name necking_mesh.h5m \
-block_1 LogarithmicStrainPlasticity \
-lib_path_1 src/libBehaviour.so \ #not necessary
-param_1_0 450 -param_1_1 129 \
-param_1_2 265 -param_1_3 16.93 \
-load_history load_history.in \
-order 2 -ts_dt 0.01
```

```
LogarithmicStrainPlasticity behaviour loaded on block 1.
Finite Strain Kinematics
Internal variables:
: ElasticStrain
: EquivalentPlasticStrain
External variables:
: Temperature
Material properties:
0 : YieldStrength = 450.
1 : HardeningSlope = 130.
2 : UltimateStrength = 265.
3 : HardeningExponent = 17.
```

Remaining parameters:

Example results

Example with multiple blocks

Define on the mesh:

Block id: 1

name: MATERIAL1_PLASTIC

Block id: 2

name: MATERIAL2_ELASTIC

./compile_behaviours.sh LogarithmicStrainPlasticityMiehe.mfront SaintVenantKirchhoffElasticity.mfront

Run MoFEM/MFront analysis:

```
./mfront_interface -file_name necking_mesh2.h5m \
-block_1 LogarithmicStrainPlasticity \
-param_1_0 450 -param_1_1 129 -param_1_2 265 -param_1_3 16.93 \
-block_2 SaintVenantKirchhoffElasticity \
-param_2_0 2e6 -param_2_1 0.3 \
```


Example with multiple blocks

23

Summary

MFront user module:

- Generic, parallel and flexible implementation
- Arbitrary and heterogeneous order of approximation
- Supports both small and large strains behaviours

