- 1. In each of the following topological spaces, give an example of an intersection of infinitely many open sets that is not itself an open set.
 - (1) \mathbb{R} with it's standard topology. Consider the intersection

$$\bigcap_{n\in\mathbb{N}} (-1/n, 1/n)$$

We have $\bigcap_{n\in\mathbb{N}}(-1/n,1/n)=\{0\}$. This is shown as -1/n<0<1/n for all $n\in\mathbb{N}$. Any element $j\in(0,1)$ is not in the intersection as there exists $n\in\mathbb{N}$ such that 1/n< j by the Archimedean property. Likewise for any $-j\in(-1,0)$ there exists a $n\in\mathbb{N}$ such that -j<-1/n again by the Archimedean property. Now $\{0\}$ is not open as there exists no basis element in the standard topology that is a subset of $\{0\}$. This is shown as all basis elements are of the form (a,b) where $a,b\in\mathbb{R}$ where a< b but $|\{0\}|=1$ but |(a,b)| is uncountable.

(2) \mathbb{R} with its lower limit topology. Consider

$$\bigcap_{n\in\mathbb{N}}[0,1/n)$$

. We have that $\bigcap_{n \in \mathbb{N}} [0, 1/n) = \{0\}$ using the same reasoning as above. Now $|\{0\}| = 1$ but any basis element [a, b) where $a, b \in \mathbb{R}$ with a < b is uncountable hence no basis element is a subset of $\{0\}$ which implies it is not open.

(3) \mathbb{R} with the finite complement topology. Consider

$$\bigcap_{n\in\mathbb{N}}\mathbb{R}\setminus\{1/n\}$$

. We have each $n \in \mathbb{N}$ that $\mathbb{R} \setminus (\mathbb{R} \setminus \{1/n\}) = \{1/n\}$ hence $\mathbb{R} \setminus \{1/n\}$ is open. But $\bigcap_{n \in \mathbb{N}} \mathbb{R} \setminus \{1/n\} = \mathbb{R} \setminus \{1, 1/2, 1/3, ...\}$ the complement of this set is not finite hence not open.

2. Let \mathbb{R} have the lower limit topology is (0,1) open? Yes

Proof. Consider the union $\bigcup_{n\in\mathbb{N}}[1/n,1)$ as each of the sets is open and this is a union we have that it is open in the lower limit topology so just need to demonstrate double containment. Let $j\in\bigcup_{n\in\mathbb{N}}[1/n,1)$ then for some $n\in\mathbb{N}$ we have $j\in[1/n,1)$ but as 0<1/n for all $n\in\mathbb{N}$ we get the inequality 0< j<1 hence $j\in(0,1)$. Now let $j\in(0,1)$ then by the Archimedean property for some $n\in\mathbb{N}$ we have 1/n< j<1 hence $j\in\bigcup[1/n,1)$. Which shows double containment hence $\bigcup_{n\in\mathbb{N}}[1/n,1)=(0,1)$ which completes the proof.

3. In the set \mathbb{R} , consider the collection of subsets consisting of \mathbb{R} , \emptyset , and all sets whose complements are finite sets of irrational numbers. Is this collection a topology on \mathbb{R} ?

Yes

Proof. As \emptyset , \mathbb{R} are in this collection \mathcal{C} we just need to demonstrate finite intersections and arbitrary unions are in \mathcal{C} .

Consider the intersection of two elements $A, B \in \mathcal{C}$ then we have $\mathbb{R} \setminus A \cap B = (\mathbb{R} \setminus A) \cup (\mathbb{R} \setminus B)$ as the union of two finite sets is finite that completes the base case. Now assume for some $n \in \mathbb{N}$ where $n \geq 2$ we have that the intersection of n elements of \mathcal{C} is in \mathcal{C} . Then given n+1 elements $A_1, ..., A_{n+1}$ consider the intersection $A_1 \cap ... \cap A_{n+1}$ then we have $\mathbb{R} \setminus (A_1 \cap ... \cap A_2) = (\mathbb{R} \setminus A_1 \cup ... \cup \mathbb{R} \setminus A_n) \cup \mathbb{R} \setminus A_{n+1}$ using the induction hypothesis we have $\mathbb{R} \setminus A_1 \cup ... \cup \mathbb{R} \setminus A_n \in \mathcal{C}$ by the base case the intersection of two elements of \mathcal{C} is also in \mathcal{C} hence that completes finite intersections.

Let $\mathcal{B} \subset \mathcal{C}$ consider the arbitrary union of elements $\bigcup_{b \in \mathcal{B}} U_b$ where $U_b \in \mathcal{B}$. Then $\mathbb{R} \setminus \bigcup_{b \in \mathcal{B}} U_b \subset \mathbb{R} \setminus U_b$ where U_b is any $U_b \in \mathcal{B}$ as subsets of finite sets are finite this shows that arbitrary unions are in \mathcal{C} hence it is a topology.

4. Suppose that Y is a Hausdorff topological space. Let a, b distinct elements of Y. Suppose that (a_n) is a sequence in Y that converges to a and (b_n) is a sequence in Y that converges to b. Show that there exists an N such that, for all n > N, $a_n \neq b_n$.

Proof. As Y is a Hausdorff space and a,b are distinct elements then there exists two neighborhoods U_a,U_b for a,b respectively where $U_a\cap U_b=\emptyset$. But as (a_n) is convergent we have for some $N_1\in\mathbb{N}$ that for all $n\geq N_1$ that $a_n\in U_a$. Likewise for (b_n) for some $N_2\in\mathbb{N}$ we have for all $n\geq N_2$ that $b_n\in U_b$. Let $N=\max(N_1,N_2)$ then for all $n\geq N$ we have $a_n\in U_a$ and $b_n\in U_b$ but as these sets are disjoint we have $a_n\neq b_n$.