

Этикетка

Микросхема 1564ЛР11ТЭП

КСНЛ.431272.001 ЭТ

Микросхема интегральная 1564ЛР11ТЭП Функциональное назначение: два логических элемента «И - ИЛИ - НЕ»

Таблица назначения выводов

No	Обозначение	Назначение	No	Обозначение	Назначение
вывода	вывода	вывода	вывода	вывода	вывода
1	A1	Вход	8	Y1	Выход
2	A2	Вход	9	D1	Вход
3	B2	Вход	10	E1	Вход
4	C2	Вход	11	F1	Вход
5	D2	Вход	12	B1	Вход
6	Y2	Выход	13	C1	Вход
7	0V	Общий	14	V_{cc}	Питание

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

.1 Основные электрические параметры (при $t = 25 \pm 10$ °C)

1.1 Основные электрические параметры (при $t = 25\pm10^{\circ}$ C)				
Наименование параметра, единица измерения, режим измерения	Буквенное	Норма		
	обозначение	не менее	не более	
1	2	3	4	
1. Максимальное выходное напряжение низкого уровня, В, при:				
$U_{CC}=2.0 \text{ B}, U_{IL}=0.3 \text{ B}, U_{IH}=1.5 \text{ B}, I_{O}=20 \text{ MKA}$	$U_{OL\;max}$	-	0,10	
U_{CC} =4,5 B, U_{IL} = 0,9 B, U_{IH} =3,15 B, I_{O} = 20 MKA		-	0,10	
U_{CC} =6,0 B, U_{IL} = 1,2 B, U_{IH} =4,2 B, I_{O} = 20 mkA		-	0,10	
при:				
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B, I_{O} =4,0 mA		-	0,26	
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 5,2 mA		•	0,26	
2. Минимальное выходное напряжение высокого уровня, В, при:				
U_{CC} =2,0 B, U_{IL} =0,3 B, U_{IH} =1,5 B, I_{O} = 20 MKA	$U_{ m OHmin}$	1,9	-	
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B, I_{O} = 20 мкА		4,4	-	
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 20 мкА		5,9	-	
при:				
$U_{CC}=4,5 \text{ B}, U_{IL}=0,9 \text{ B}, I_{O}=4,0 \text{ MA}$		4,0	-	
U_{CC} =6,0 B, U_{IL} =1,2 B, I_{O} = 5,2 mA		5,5	-	
3. Входной ток низкого уровня, мкА, при:		_		
$U_{CC} = 6.0 \text{ B}, \ U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{IL}	-	/-0,1/	

4. Входной ток высокого уровня, мкА, при:			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{IH}	-	0,1
5.Ток потребления, мкА, при:			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{CC}	-	1,0
6. Динамический ток потребления, мА, при:			
$U_{CC} = 6.0 \text{ B, } f = 10.0 \text{ M} \Gamma \text{ц}$	I _{OCC}	-	15
7. Время задержки распространения при	$t_{\mathrm{PHL},}$		
включении и выключении, нс, при:	$t_{\rm PLH}$		
$U_{CC} = 2.0 \text{ B, } C_L = 50 \text{ m}\Phi$		-	115
$U_{CC} = 4.5 \text{ B}, C_L = 50 \pi\Phi$		-	24
$U_{CC} = 6.0 \text{ B}, C_L = 50 \text{ m}\Phi$		-	20
8. Входная емкость, пФ при:	C _I	-	10

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

30лото г.

серебро г.

в том числе:

золото г/мм

на 14 выводах длиной мм.

Цветных металлов не содержится

2 НАДЕЖНОСТЬ

2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых

ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5) °C не менее 100000ч., а в облегченном режиме: при $U_{CC} = 5B \pm 10\%$ - не менее 120000ч.

 $2.2\ \Gamma$ амма – процентный срок сохраняемости ($T_{C\gamma}$) при γ = 99% при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных, - в соответствии с разделом 4 ОСТ В 11 0998.

3 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям АЕЯР.431200.424-07 ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие. Срок гарантии исчисляется с даты изготовления, нанесенной на микросхему.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 1564ЛР11ТЭП соответствуют техническим условиям АЕЯР.431200.424-07ТУ и признаны годными для эксплуатации.

Приняты по от	
Место для штампа ОТК	Место для штампа ПЗ
Место для штампа « Перепроверка произведена	» (дата)
Приняты по $\underline{\hspace{1cm}}$ (извещение, акт и др.) от $\underline{\hspace{1cm}}$ (дата)	
Место для штампа ОТК	Место для штампа ПЗ
Пена поговорная	

5. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 200 В.

Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общий, вход-питание.

Остальные указания по эксплуатации – в соответствии с АЕЯР.431200.424 ТУ.