IV B.Tech II Semester Regular/Supplementary Examinations, April/May - 2019 DIGITAL SIGNAL PROCESSING

(Electrical and Electronics Engineering)

Time: 3 hours Max. M			Iarks: 70	
		Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B *****		
		PART-A (22 Marks)		
1.	a)	What are the basic elements of Digital Signal Processing? Explain.	[4]	
	b)	Give the Relation between Z-transform and DFS.	[3]	
	c) d)	What are the applications of FFT algorithm? Give the equations specifying the following windows. (a) Rectangular window	[4]	
	u)	(b) Hamming window	[4]	
	e)	What is decimation by factor D? Explain with an example.	[3]	
	f)	What are the flags in the status registers?	[4	
		$\underline{PART-B} (3x16 = 48 Marks)$		
2.	a)	Check whether the following systems are whether linear, Stable and Invariant or not.		
	b)	(i) $y(n)=x^2(n)$ (ii) $y(n)=n \ x(n) + x^2(n-2)$	[8]	
	b)	Determine the response of Second order Discrete Time system governed by the difference equation $y(n)-2y(n-1)-3y(n-2)=x(n)+4x(n-1)$, $n\ge 0$, When the input		
		signal is $x(n) = 2^n u(n)$, and with initial conditions $y(-2) = 0$, $y(-1) = 5$.	[8]	
3.	a)	Prove the following properties related to DFT.		
	,	(i) Complex conjugate (ii) Circular correlation	[8]	
	b)	Consider a sequence $x(n) = \{2,-1, 1, 1\}$ and $T = 0.5$ compute its DFT and		
		compare it with its DTFT.	[8]	
4.	a)	Compute the 8-point DFT of the sequence $x(n) = 1$, $0 \le n \le 7$		
		0, otherwise	FO:	
	b)	by using DIF algorithm. What are the differences and similarities between DIT and DIF FFT algorithms?	[8]	
	U)	What are the differences and similarities between DIT and DIF FFT algorithms?	[8]	
5.	a)	Explain the design of FIR filters using windows.	[8]	
	b)	Design a Butterworth high pass filter satisfying the following specifications.		
		$\alpha_p = 1 dB$; $\alpha_s = 15 dB$	FO:	
		$\Omega_p = 0.4\Pi; \; \Omega_s = 0.2\Pi$	[8]	
6.	a)	What is the significance of multi rate signal processing and its applications?	[8]	
	b)	With necessary derivations explain the operation of sampling rate conversion by	LO.	
		a factor of I in both frequency and time domains.	[8]	
7.	a)	Draw and explain the architecture of TMS 320C5x processor.	[8]	
	b)	Explain the following terms in Pipelining: (i) Interlocking. (ii) Branching effect.	[8]	