ASTR HW 6

Craig Brooks

Due: October 24 2023

16.2

In general,

$$\frac{\text{collisional de-excitations}}{\text{radiative decay}} = \frac{n_{crit,u}(c)}{n}$$

 \rightarrow collisional de-excitations = $\frac{n_{crit,u}(c)}{n} \cdot \text{radiative decay} = n_{crit,u}(c)$

The total number of excitations will be the sum of the collisional excitation and radiative decays so

total excitations =
$$n_{crit,u}(c)n + n$$

So the fraction of followed by decay will be

$$f=\frac{n}{n_{crit,u}(c)+n}$$

$$=\frac{1}{\frac{n_{crit,u}(c)}{n}+1}$$
 This is a 2 level system, so $J=1\to 0$

$$n_{crit,u}(c) = \frac{\sum_{l < u} [1 + (n_{\gamma})_{10}] A_{ul}}{\sum_{l < u} k_{10}(c)}$$

Since this is a single partner system and we assume there is no radiation present, this becomes

$$n_{crit,u}(c) = \frac{A_{10}}{k_{10}(c)}$$

Here, we can use define the decay coefficient $k_{01} = \frac{g_1}{g_0} k_{10} e^{-(E_1 - E_0)/kT}$. Therefore,

$$n_{crit,u}(c) = \frac{A_{10}}{\frac{g_1}{g_0} k_{10} e^{-(E_1 - E_0)/kT}}$$
$$= \frac{g_0 A_{10}}{g_1 k_{10}} e^{(E_1 - E_0)/kT}$$

The degeneracies for the 2 level system are $g_j=2j+1$, so we get $g_0=1$ and $g_1=5$. The energy levels are $E_j=J(J+1)\hbar^2/2mr^2$, so $E_0=0$ and $E_1=\hbar^2/mr^2$, so

$$=\frac{A_{10}}{5k_{10}}e^{\hbar^2/mr^2kT}$$

Therefore

$$f = \frac{n}{n_{crit,u}(c) + n}$$
$$= \frac{1}{\frac{A_{10}}{5k_{10}}e^{\hbar^2/mr^2kT} + 1}$$