Miscellaneous Notes for Elliptical Log-Concave Density

December 5, 2016

Envelope Search 1

Problem: Let $h(r) = r^{p-1}g(r)c_p$ be a density where g(r) is log-concave and decreasing. Suppose also that the second moment is p.

$$\int r^{p-1}g(r)c_pdr = 1$$
$$\int r^2r^{p-1}g(r)c_pdr = p$$

Let \mathcal{H} be the set of all such densities. Then, we want to have an exponentially decaying envelope

$$\sup_{h \in \mathcal{H}} h(r) \le \exp(-a_p r + b_p)$$

for scalar a_p, b_p dependent on p.

1.1 Thoughts and Examples

One possibly useful fact. If f(x) is an isotropic log-concave density, then there

exists absolute constants a,b such that $f(x) \leq \exp(-ax+b)$. Therefore, if $f(\frac{x}{\sigma})\frac{1}{\sigma}$ has variance σ^2 and can be bounded by $\exp(-\frac{a}{\sigma}x+b-\frac{a}{\sigma}x)$ $\log \sigma$).

One example to keep in mind is if g(r) = M > 0 is uniform on $[0, r_0]$ and 0 elsewhere. It is easy to solve for r_0 :

$$\int_0^{r_0} r^{p-1} M c_p dr = \frac{r_0^p}{p} M c_p = 1$$

$$\int_0^{r_0} r^{p+1} M c_p dr = \frac{r_0^{p+2}}{p+2} M c_p = p$$

$$\frac{r_0^{p+2}}{p+2}Mc_p = \frac{r_0^p}{p}Mc_p \frac{p}{p+2}r_0^2 = \frac{p}{p+2}r_0^2 = p$$

Therefore, $r_0 = \sqrt{p+2}$. This density has vanishing variance and its maximum value explodes. The maximum value is $h(r_0) = r_0^{p-1} M c_p = \frac{p}{r_0} \frac{r_0^{p-1}}{p} M c_p =$ $\frac{p}{\sqrt{p+2}}$. To compute the variance, we first find the mean.

$$\int_0^{r_0} r^p M c_p dr = \frac{r_0^{p+1}}{p+1} M c_p = \frac{p}{p+1} \sqrt{p+2}$$

variance:
$$\mathbb{E}Y^2 - (\mathbb{E}Y)^2 = p^2 - \left(\frac{p}{p+1}\right)^2(p+2) = \frac{p}{(p+2)^2}$$

Two points bound. Let $M = \log g(0)$. Let $r_0 > 0$ and let $M' = \log g(r_0)$. Define $\Delta = M - M' \geq 0$.

Then, we have the following upper and lower bound on g:

$$\log g(r) \ge \left\{ \begin{array}{cc} M - \Delta \frac{r}{r_0} & r \le r_0 \\ -\infty & r \ge r_0 \end{array} \right\}$$

$$\log g(r) \le \left\{ \begin{array}{cc} M & r \le r_0 \\ M - \Delta \frac{r}{r_0} & r \ge r_0 \end{array} \right\}$$

So then, we have that

$$1 = \int_0^\infty r^{p-1} g(r) c_p dr$$
$$\geq \int_0^{r_0} r^{p-1} \exp\left(M - \Delta \frac{r}{r_0}\right) c_p dr$$

1.2 Change of Variables

Recall that the density we are interested in is:

$$h(r) = r^{p-1}g(r)c_p$$

Satisfying the two conditions that

$$\int_0^\infty r^{p-1}g(r)c_pdr = 1$$
$$\int_0^\infty r^{p+1}g(r)c_pdr = p$$

Let us perform a change of variables: $s = \frac{r}{\sqrt{p}}$ and thus $r = s\sqrt{p}$. Then, the two integral equations become:

$$c_p \sqrt{p}^p \int_0^\infty s^{p-1} g(\sqrt{p}(s)) ds = 1$$
$$c_p \sqrt{p}^{p+2} \int_0^\infty s^{p+1} g(\sqrt{p}(s)) ds = p$$

With some cancelation and with the replacement of $\widetilde{g}(s)=c_p\sqrt{p}^pg(\sqrt{p}(s)),$ we have that

$$\int_0^\infty s^{p-1}\widetilde{g}(s)ds = 1$$
$$\int_0^\infty s^{p+1}\widetilde{g}(s)ds = 1$$

Note that $\widetilde{g}(s)$ is log-concave and decreasing.

An Observation

Let r_0 be arbitrary. Then we have that

$$\int_0^{r_0} s^{p-1}(s^2 - 1)\widetilde{g}(s)ds + \int_{r_0}^{\infty} s^{p-1}(s^2 - 1)\widetilde{g}(s)ds = 0$$

If $r_0 \leq 1$, then the first term is positive, which implies that the second term is negative. If $r_0 \geq 1$, then the second term is negative, which implies that the first term is positive.

Thus, for any r_0 , we have that the first term is positive and the second term is negative.

1.3 Hinge Example

The analysis of this example provides some useful calculations. Let g(r) be of the form:

$$g(r) = \begin{cases} e^{m_0} & r \le r_0 \sqrt{p} \\ e^{m_0 - a(r - r_0 \sqrt{p})} & r \ge r_0 \sqrt{p} \end{cases}$$

g is thus parametrized by three parameters: m_0, a, r_0 . We want g(r) to satisfy two integral conditions:

$$\int_0^\infty r^{p-1}g(r)c_pdr = 1$$
$$\int_0^\infty r^{p+1}g(r)c_pdr = p$$

The first integral equation breaks down into two halves:

$$\int_0^{r_0\sqrt{p}} r^{p-1} e^{m_0} c_p dr + \int_{r_0\sqrt{p}}^{\infty} r^{p-1} e^{m_0} e^{-a(r-r_0\sqrt{p})} c_p dr = 1$$

We apply a change of variables: $s = \frac{r}{\sqrt{p}}$ and $r = s\sqrt{p}$.

$$e^{m_0}c_p\sqrt{p}^p\left\{\int_0^{r_0}s^{p-1}ds+\int_{r_0}^{\infty}s^{p-1}e^{-a\sqrt{p}(s-r_0)}ds\right\}=1$$

Likewise, we have that second equation as well:

$$e^{m_0}c_p\sqrt{p}^{p+2}\left\{\int_0^{r_0}s^{p+1}ds + \int_{r_0}^{\infty}s^{p+1}e^{-a\sqrt{p}(s-r_0)}ds\right\} = p$$

We will simplify by letting $\bar{a} = a\sqrt{p}$. Then, we have:

$$e^{m_0}c_p\sqrt{p}^p\left\{\int_0^{r_0}s^{p-1}ds+\int_{r_0}^{\infty}s^{p-1}e^{-\bar{a}(s-r_0)}ds\right\}=1$$

$$e^{m_0}c_p\sqrt{p}^p\left\{\int_0^{r_0}s^{p+1}ds+\int_{r_0}^{\infty}s^{p+1}e^{-\bar{a}(s-r_0)}ds\right\}=1$$

Setting the two equation equal to each other:

$$\int_0^{r_0} s^{p-1} ds - \int_0^{r_0} s^{p+1} ds + \int_{r_0}^{\infty} s^{p-1} e^{-\bar{a}(s-r_0)} ds - \int_{r_0}^{\infty} s^{p+1} e^{-\bar{a}(s-r_0)} ds = 0$$

$$\left(\frac{r_0^p}{p} - \frac{r_0^{p+2}}{p+2}\right) + \int_{r_0}^{\infty} s^{p-1} e^{-\bar{a}(s-r_0)} ds - \int_{r_0}^{\infty} s^{p+1} e^{-\bar{a}(s-r_0)} ds = 0$$

We know that for all plausible r_0 , it must be that $\frac{r_0^P}{p} - \frac{r_0^{p+2}}{p+2} \ge 0$. Thus, to solve for the maximum value of r_0 , we set $\frac{r_0^p}{p} = \frac{r_0^{p+2}}{p+2}$, yielding $\sqrt{1+\frac{2}{p}}$.