

Outline

- Content Discover and why go deep?
- Uncertainty in Deep Learning why is it important?
- Data Uncertainty
 - Capturing the true variance of your prediction
- Model Uncertainty
 - Shedding light on where the model lacks data

Content Discovery

~1M Possible Recommendations

Rank N recommendations by CTR * CPC

Location Region-based Information

User Historical Data

SPONSORED CONTENT YOU MAY LIKE

10000000 People Use This App To Learn.

Unbellevable: WW/ISNp Re-Riscovered distallens Mark

Air or Deser Teaces Dis with its Usual Helicide Earter est Puts Thomats Better Line

Machine Learning + Discovery = Hard

"Walmart cameras captured these hilarious photos"

"15 rarely seen WW2 Photos Discovered"

Why Go Deep for Discovery?

- Cold start is a huge issue
- Many hard sub problems
 - Language modeling
 - Image classification
 - User Profiling
- There are many complex relations

Why is it so important?

Uncertainty in Deep Learning

Exploration/Exploitation in Recommender Systems

Best Performing Recommendations

Search for new stars

Add new Information

Fight selection bias

Exploration at random doesn't work

Multi-arm Bandits

- √ Thompson Sampling
- ✓ Mean +/- k*Std

Capturing Model Blind spots is Crucial

Uncertainty in Deep Learning: not out of the box

Two Types of Uncertainty

Model Uncertainty

Data Uncertainty

Model Uncertainty

More Data Please!

Data Uncertainty

More Data Won't Help – I want to know how good my predictions are

Know what you don't know

Capturing Data Uncertainty

Likelihood as loss

Likelihood as loss

Mixture Density Network

$$p(\mathbf{t} \mid \mathbf{x}) = \sum_{i=1}^{m} \alpha_i(\mathbf{x}) \phi_i(\mathbf{t} \mid \mathbf{x})$$

Capturing Data Uncertainty

Data Uncertainty and Training Error

Data Uncertainty and OOV

Data Uncertainty and OOV

What about classification?

- Assume a binomial distribution with Beta prior (natural for binary classification)
- Reflective loss

Know when you can get better

Capturing Model Uncertainty

Bayesian Neural Networks and Variational Inference

- Which function generated our data?
- Bayesian approach:

- $p(\mathbf{y}^*|\mathbf{x}^*, \mathbf{X}, \mathbf{Y})$ $= \int p(\mathbf{y}^*|\mathbf{f}^*)p(\mathbf{f}^*|\mathbf{x}^*, \mathbf{X}, \mathbf{Y})d\mathbf{f}^*$
- Assume some prior distribution over the space of possible functions
- Look for the posterior distribution given your data
- Analytical solution is intractable at inference time
- Approximation is needed => Variational Inference

Recap: Dropouts – a regularization technique

Dropout variational inference as Bayesian Approximation

Word

Word

Uncertainty as a function of amount of data

Uncertainty as a function of amount of data

Uncertainty as a function of amount of data

Summary

- Two types of uncertainty: model and data
- Mixture Density Networks
 - Captures the true variance of your prediction
- Monte-Carlo Dropouts Variational Inference
 - Sheds light on where the model lacks data

• Also interesting: uncertainty due to measurement noise

Thank You

