Game Theory: Week 4 Assignment

ADITYA KHAMBETE

Deadline: 7th July 2025

Problem 1: Condorcet's Paradox (2 Marks)

The handout introduces the concept of a Condorcet winner. Create an example of a preference profile (i.e., a set of preference orders from a group of voters) for 3 candidates (A, B, C) where no Condorcet winner exists. Show your work by checking the pairwise contests.

Problem 2: Properties of Relations (6 Marks)

For each of the following relations, denoted by \succeq , determine whether it is **complete**, **reflexive**, **irreflexive**, or **transitive**. Based on your findings, state whether it qualifies as a preference relation, a strict preference relation, or neither, according to the definitions in the handout. (1 mark each)

- (a) A is the set of all subsets of some set S, and $a \succeq b$ if and only if b is a subset of a (i.e., $b \subseteq a$).
- (b) A is the set of all natural numbers, and $a \succeq b$ if and only if b is a divisor of a.
- (c) A is the set of all 26 letters in the Latin alphabet, and $\alpha \gtrsim \beta$ if and only if the two-letter string $\alpha\beta$ is a standard word in English.
- (d) A is the set of all natural numbers, and $a \succeq b$ if and only if a + b = 30.
- (e) A is the set of all human beings, past and present, and $a \gtrsim b$ if and only if b is a descendant of a (e.g., child, grandchild, etc.).
- (f) A is the set of people living in a particular neighborhood, and $a \succeq b$ if and only if person a likes person b.

Problem 3: The Borda Method (4.5 Marks)

The Borda Method: The French mathematician Borda proposed the following voting method. Every voter ranks the candidates from most preferred to least preferred. A candidate receives k points (called Borda points) from a voter if that voter ranks the candidate higher than exactly k other candidates. The Borda ranking of a candidate is the total number of Borda points they receive from all voters. The candidate with the most Borda points is the **Borda winner**.

(a) (3 marks) For any pair of distinct candidates a and b, let $N_{a,b}$ be the number of voters who rank a ahead of b. Show that the Borda ranking of a candidate a is equal to the sum of these counts over all other candidates. That is, prove:

Borda Ranking
$$(a) = \sum_{b \in A, b \neq a} N_{a,b}$$

(b) (1 mark) Using the formula from part (a) or the original definition, compute the Borda winner for the following election. Show your calculations for each candidate's Borda score.

No. of Members	First Choice	Second Choice	Third Choice
23	A	В	С
2	В	A	$^{\mathrm{C}}$
17	В	C	A
10	С	A	В
8	С	В	A

(c) (0.5 marks) The Borda method, as a social welfare function, must violate at least one of the three properties from Arrow's Impossibility Theorem (Unanimity, IIA, or Nondictatorship). Which property does it violate? Briefly explain your reasoning.