Mesterséges intelligencia alkalmazások

Csatahajók

Harsányi Tibor

Feladat

- Adott öt darab, 1-től 5-ig számozott 3x1-es méretű torpedóromboló, amelyet elrejtettünk egy 5x5-ös négyzetrácson. A négyzetrács oldalain, a sorok és oszlopok mellet található számok jelzik az adott sorban vagy oszlopban lévő hajók sorszámainak összegét.
- A feladat: elhelyezni a torpedórombolókat

Állapottér

Egy állapot az alábbi módon nézhet ki:

a _{1,1}	a _{1,2}	a _{1,3}	a _{1,4}	a _{1,5}	s ₁
a _{2,1}	a _{2,2}	a _{2,3}	a _{2,4}	a _{2,5}	s ₂
a _{3,1}	a _{3,2}	a _{3,3}	a _{3,4}	a _{3,5}	S ₃
a _{4,1}	a _{4,2}	a _{4,3}	a _{4,4}	a _{4,5}	S ₄
a _{5,1}	a _{5,2}	a _{5,3}	a _{5,4}	a _{5,5}	S ₅
o ₁	02	03	O ₄	o ₅	

- $a_{i,j}$ (i,j \in {1,2,3,4,5}) jelöli, a pozíciókban lévő torpedóhajók értékét $a_{i,j} \in$ {0,1,2,3,4,5}
- o_i (i ∈ {1,2,3,4,5}) jelöli, hogy az adott oszlopban még mennyi értékű torpedóhajó tehető le o_i ∈ {null,0,7,3,6}
- s_i (i ∈ {1,2,3,4,5}) jelöli, hogy az adott sorban még mennyi értékű torpedóhajó tehető le s_i ∈ {null,9}
- A -1 érték azt jelzi, hogy az adott sorban vagy oszlopban nincs kikötés a torpedóhajó értékére vonatkozóan
- lerakhato = {1,2,3,4,5} a még lerakható hajók halmaza

Jelölje "a" a(z)

$$\begin{pmatrix} a_{11} & \cdots & a_{15} \\ \vdots & \ddots & \vdots \\ a_{51} & \cdots & a_{55} \end{pmatrix}$$
, (s1,s2,s3,s4,s5), (o1,o2,o3,o4,o5), lerakhato)

állapotot

Ekkor a probléma állapottere:

A = { a |
$$a_{ij} \in \{0,1,2,3,4,5\} \land s_k \in \{\text{null},1,2,3,4,5,6,7,8,9\} \land o_z \in \{\text{null},0,1,2,3,4,5,6,7\} \land (i,j,k,z) \in \{1,2,3,4,5\} \land \text{lerakhato} = \{1,2,3,4,5\}\}$$

Kezdőállapot

Célállapotok halmaza:

Egy állapot akkor lesz célállapot ha az összes hajó le van helyezve. Ez akkor valósul meg ha az a_{ij} (i,j \in {1,2,3,4,5}) pozíciókban lévő számok összege 45 mivel minden számból 3db lesz elhelyezve. Ezen felül a sorokban és oszlopokban letehető érték null vagy 0 azaz megvan minden sorban és oszlopban a megfelelő értékű torpedóhajó.

Cél = {c | c
$$\in$$
 A ^ lerakhato = {} ^ \forall k(s_k = -1 \forall s_k = 0) ^ \forall z(o_z = -1 \forall o_z = 0)}

Operátorok halmaza:

$$O = \{v_{lerak_{i,j,T}}(a), f_{lerak_{i,j,T}}(a)\}$$

ahol a v_lerak a vízszintesen való elhelyezés, az f_lerak pedig a függőlegesen való elhelyezés.

Operátor alkalmazási előfeltételek:

előfeltétel_v_lerak_{i,j,T}(a) = (T
$$\in$$
 lerakhato ^(1 \le i \le 5) ^ (1 \le j \le 3) ^ (s_i = -1 \ s_i - T \ge 0) ^ (o_j = -1 \ o_j - T \ge 0) ^ (o_{j+1} = -1 \ o_{j+1} - T \ge 0) ^ (o_{j+2} = -1 \ o_{j+2} - T \ge 0) ^ (a_{i,j+1}=0) ^ (a_{i,j+2}=0))

előfeltétel_f_lerak_{i,j,T}(a) = (T
$$\in$$
 lerakhato ^(1 \le i \le 3) ^ (1 \le j \le 5) ^ (o_i = -1 \ o_j - T \ge 0) ^ (s_i = -1 \ s_i - T \ge 0) ^ (s_{i+1} = -1 \ s_{i+1} - T \ge 0) ^ (s_{i+2} = -1 \ s_{i+2} - T \ge 0) ^ (a_{i,j} = 0) ^ (a_{i+1,j} = 0) ^ (a_{i+2,j} = 0))

i,j jelöli a pozíciót ahova leszeretnénk tenni a hajót T pedig az adott értékű hajót jelöli T ∈ lerakhato

Operátor hatásdefiníció:

```
v_lerak<sub>i,j,T</sub>(a) = a'

i,j,x,y \in {1,2,3,4,5}

f_lerak<sub>i,j,T</sub>(a) = a'

i,j,x,y \in {1,2,3,4,5}
```

$$v_{lerak_{i,j,T}}(a) = a'$$

 $i,j,x,y \in \{1,2,3,4,5\}$

$$\mathbf{s'_x} = \begin{cases} s_i - T, ha \ x = i \land s'_x ! = -1 \\ s'_x \ egy\'{e}bk\'{e}nt \end{cases}$$

$$\mathbf{a'}_{xy} = \begin{cases} T, ha \ x = i \land y = j \\ T, ha \ x = i \land y = j + 1 \\ T, ha \ x = i \land y = j + 2 \\ a'_{xy} \ egy\'{e}bk\'{e}nt \end{cases}$$

$$o'_{y} = \begin{cases} o_{j} - T, ha \ y = j \\ o_{j+1} - T, ha \ y = j+1 \\ o_{j+2} - T, ha \ y = j+2 \\ o'_{y} \ egy\'{e}bk\'{e}nt \end{cases}$$

lerakhato = lerakhato \ {T}

f_lerak_{i,j,T}(a) = a'
i,j,x,y
$$\in$$
 {1,2,3,4,5}

$$o'_{y} = \begin{cases} o_{j} - T, ha \ y = j \land o'_{y}! = -1 \\ o'_{y} \ egy\'{e}bk\'{e}nt \end{cases}$$

$$\mathsf{a'}_{\mathsf{x}\mathsf{y}} = \begin{cases} T, ha \ x = i \land y = j \\ T, ha \ x = i + 1 \land y = j \\ T, ha \ x = i + 2 \land y = j \\ a'_{xy} \ egy\'{e}bk\'{e}nt \end{cases}$$

$$\mathbf{a'}_{xy} = \begin{cases} T, ha \ x = i \land y = j \\ T, ha \ x = i + 1 \land y = j \\ T, ha \ x = i + 2 \land y = j \\ a'_{xy} \ egy\'{e}bk\'{e}nt \end{cases} \mathbf{s'}_{x} = \begin{cases} s_{i} - T, ha \ x = i \\ s_{i+1} - T, ha \ x = i + 1 \\ s_{i+2} - T, ha \ x = i + 2 \\ s'_{x} \ egy\'{e}bk\'{e}nt \end{cases}$$

lerakhato = lerakhato \ {T}

Gráf részlet:

Kereső algoritmus

- A kereséshez mélységi keresőt választottam mivel megoldás mindig a lehető legmélyebben található.
- Ez abbol következik, hogy 5 lerakható hajó van és 5 operátor alkalmazásával el is fogynak az alkalmazható operátorok.
- És tudjuk hogy mind az 5 hajónak lekell téve lenniük, hogy a célfeltétel egy része teljesülhessen.

```
for (int i = 0; i < 5; i++) {
    for (int j = 0; j < 5; j++) {
        for (int t = 1; t <= 5; t++) {
            operators.add(new Operator(i, j, t, "v"));

            operators.add(new Operator(i, j, t, "f"));
        }
    }
}</pre>
```

- Az alábbi két for ciklussal létrehozom az összes operátort
- Olyan operátorok is létre fognak jönni amelyek nem alkalmazhatóak mivel ha az i = 5 és j = 5 akkor az operátor az 5,6,7 pozícióra szeretne elhelyezni egy hajót amely nem lehetséges de ezt majd az alkalmazási előfeltétel kiküszöböli

```
public static void melysegi(List<Operator> operators, State kezdo){
   Csomopont newCsomopont = new Csomopont(kezdo,null,null,0);
   nyiltak.add(newCsomopont);
   zartak = new HashSet<>();
   Csomopont csomopont = new Csomopont();
   while(true){
       if(nyiltak.isEmpty()){
           break;
        csomopont = nyiltak.stream().max(Comparator.comparing(Csomopont::getMelyseg)).orElseThrow()
       if(csomopont.getState().cel()){
           break;
       kiterjeszt(csomopont,operators);
   if(!nyiltak.isEmpty()){
       megoldasKiir(csomopont);
   }else{
       System.out.println("Nincs megoldas");
```

- Ezen a képen a mélységi kereső látható
- A kijelölt rész fogja kiválasztani a legnagyobb mélységű nyílt csomópontot

Köszönöm a figyelmet!