Designing a Practical Degradation Model for Deep Blind Image Super-Resolution

[ICCV, 2021]

2023. 06. 16.

김성수

Data Mining and Quality Analytics

- What is Super-Resolution?

- ❖ Task소개: Super Resolution (SR)
 - 저화질 이미지가 입력으로 들어오면 고화질 이미지로 개선하는 것
 - Input: 저화질 이미지(LR) // Output: 고화질 이미지(HR)

[Input: 저화질 이미지]

[Output: 고화질 이미지]

- What is Super-Resolution?

❖ Task소개: Super Resolution (SR)

- 일반적인 SR 모델들은 LR과 HR Pair가 데이터 셋으로 존재
 - ▶ 일반적인 데이터와 비교 → LR: X변수, HR: Y변수

주행거리 ~	배기량 ~	압축천연가스(CNG) V	경유 ∨
8523	999	0	0
13500	1598	0	0
25522	1796	0	0
23800	2184	0	1
25100	1910	0	1
34000	1984	0	0
1	999	0	0
21785	1595	0	0
9851	1000	0	0
20100	1560	0	1

51.74 41.47 17.81
17.81
18.20
17.55
7.80
99.45
20.80
62.27
28.47

- What is Blind Super-Resolution?
 - ❖ Task소개: Blind Super-Resolution (Blind SR)
 - 고화질 이미지는 존재하는데, 저화질 이미지가 존재하지 않는 SR 상황
 - 학습을 위한 X↔Y 데이터 Pair가 존재하지 않음
 - ▶ 우리가 평소에 하는 Semi/Self는 Y가 없지만, 해당 Task는 X가 없는 Task

[X: 저화질 이미지] [Y: 고화질 이미지]

- 선행연구의 한계

Limitation of Previous Research

- SR 모델을 학습하기 위해서는 LR-HR Pair가 필요하지만, 현실에서는 이러한 Pair를 얻기 힘듦
- 선행연구들은 고화질 이미지를 현실의 Degradation을 고려하지 않고 LR 이미지를 생성
 - > 기존 SR연구들은 SR 알고리즘을 향상시키는 연구가 주를 이루었고, 이러한 Pair에 대한 연구는 저조
- 그러나, 이렇게 생성된 LR 이미지는 현실의 저화질 이미지와 차이가 존재

LR

Bicubic-Downsampling

HR

- 선행연구의 한계

❖ 선행연구의 Degradation

- Bicubic Downsampling
- · 수리적인 수식에 의한 Degradation
 - ▶ Bicubic Downsampling 외 다양한 Blur 기법 등을 고려하지만, 큰 성능 개선은 없음

LR

Bicubic-Downsampling

HR

- Contribution

Contribution

- 다양한 Degradation 기법을 함께 고려하여 HR에 적절한 LR 이미지를 생성
- Degradation 기법을 순차적으로 적용하는 것이 아닌, Shuffle하여 적용
- 다른 Degradation 기법에 비해 좋은 성능을 실험적으로 입증

- BSRGAN

BSRGAN (Blind SRGAN)

- 목적: SR 모델 학습을 위한 LR-HR Pair를 구성하자.
 - ▶ HR이미지는 있다고 가정하고, LR이미지를 생성하는 것이 궁극적인 목표
 - ▶ HR이미지에 어떤 Degradation을 적용하면 현실에 상응하는 LR이미지를 만들 수 있을까?
- 학습 기반의 알고리즘은 아니며, Hand-designed Degradation Model

LR HR

- BSRGAN

BSRGAN (Blind SRGAN)

- Degradation 요소
 - 1 Blur
 - 2 Downsampling
 - (3) Noise
- Degradation Shuffling

- BSRGAN

❖ BSRGAN의 Degradation (1) Blur

- Computer Vision에서 Blur: 이미지를 흐리게 만들어주는 기법
- 2D Gaussian Filter를 Convolution 연산처럼 이미지에 적용하여 구현

원본

작은 Sigma

큰 Sigma

- BSRGAN

❖ BSRGAN의 Degradation (1) Blur

- Isotropic Gaussian Kernel: <u>양</u> 축에 대하여 [0.1, 2.8]의 Width
- Anisotropic Gaussian Kernel: \underline{Y} 축에 대하여 [0.5, 8]의 Width + Rotation [0, π]
- 위 두 가지 기법을 모두 적용
 - ▶ 크기 유지를 위해 Padding 적용
 - > Kernel Size: {7x7, 9x9 ... 21x21} 中 1개

- BSRGAN

❖ BSRGAN의 Degradation (2) Downsampling

- 아래 4가지 기법 중 1가지 적용
 - Nearest Downsampling: 가장 가까운 Pixel값 할당
 - ➤ Bilinear Downsampling: 선형 보간
 - ➤ Bicubic Downsampling: 비선형 보간
 - Down-up Downsampling: 이미지를 더 줄인 후, 다시 크게 하는 전략

- BSRGAN

❖ BSRGAN의 Degradation (2) Downsampling

- 아래 4가지 기법 중 1가지 적용
 - Nearest Downsampling: 가장 가까운 Pixel값 할당
 - ➤ Bilinear Downsampling: 선형 보간
 - Bicubic Downsampling: 비선형 보간
 - Down-up Downsampling: 이미지를 더 줄인 후, 다시 크게 하는 전략
 - ✓ Downsampling과 Upsampling에 위 3가지를 Random하게 활용

Bicubic Downsampling

Bicubic Downsampling

Bilinear Upsampling

원본 이미지

Downsampling 결과

- BSRGAN

❖ BSRGAN의 Degradation (3) Noise

- Gaussian Noise
- JPEG Compression Noise
- Camera Sensor Noise

- BSRGAN

BSRGAN^O Degradation (3) Noise – Gaussian Noise

- 일반적으로 이미지 내 존재하는 Gaussian Noise를 고려하기 위함
- 아래 3가지 방법 중 1가지를 적용

P = 20% (1) $N(0, \Sigma)$

* Σ: covariance matrix

P = 40% ② $N(0, \Sigma)$ (단, $\Sigma = \sigma^2 I$)

P = 40% ③ N(0, Σ) (단, Σ = σ^2 1)

f(x,y)

n(x, y)

Pixel value: random number

σ_1^2	0	0	0	0
0	σ_2^2	0	0	0
0	0	σ_3^2	0	0
0	0	0	σ_4^2	0
0	0	0	0	σ_5^2

\bigcirc	N	(0,	Σ)
(エ/	1 4	\cup	<i>,</i>

σ^2	0	0	0	0
0	σ^2	0	0	0
0	0	σ^2	0	0
0	0	0	σ^2	0
0	0	0	0	σ^2

② N(0,
$$\Sigma$$
) (단, $\Sigma = \sigma^2 I$

σ^2	σ^2	σ^2	σ^2	σ^2
σ^2	σ^2	σ^2	σ^2	σ^2
σ^2	σ^2	σ^2	σ^2	σ^2
σ^2	σ^2	σ^2	σ^2	σ^2
σ^2	σ^2	σ^2	σ^2	σ^2

② N(0,
$$\Sigma$$
) (단, $\Sigma = \sigma^2 I$) ③ N(0, Σ) (단, $\Sigma = \sigma^2 1$)

- BSRGAN

❖ BSRGAN의 Degradation (3) Noise – JPEG Compression

- 이미지를 JPEG 등의 확장자로 저장할 때 부분적인 손실 발생하는데, 이를 고려하기 위함
 - ➤ Quality Factor [0, 100] → 75% 확률로 적용
 - ▶ Quality Factor [30, 95] → 가장 마지막 Degradation Step으로 고정
 - Quality Factor가 0에 가까울수록 많이 왜곡된 형태이며, 100에 가까울수록 덜 왜곡된 형태
 - ✓ 많이 왜곡될수록 용량은 적음

- BSRGAN

❖ BSRGAN의 Degradation (3) Noise – Camera Sensor Noise

- Gaussian Noise 외 다른 출처의 Noise들을 함께 고려하기 위함 (25%확률로 적용)
- 디지털 카메라는 센서 데이터를 이미지 신호처리(ISP) 파이프라인에 통과시켜 이미지를 얻음
- 이때, Noise를 제거하지 않고 파이프라인에 넣으면 이미지의 품질이 떨어짐
 - ▶ 이러한 Noise를 함께 고려 하고자 함

원시 데이터

Noise 제거

ISP Pipeline

- Demosaicing
- 2 Exposure Compensation
- 3 White Balance
- 4 Camera to XYZ Color Space Conversion
- (5) XYZ to Linear RGB Color Space Conversion
- 6 Tone Mapping
- (7) Gamma Correction
- * 각 과정에 해당하는 파라미터들을 일정 범위에서 Random하게 선정

저장되는 이미지

- BSRGAN

❖ BSRGAN의 Degradation (3) Noise – Camera Sensor Noise

- 저장된 이미지를 ISP Pipeline의 역으로 넣어주어 원시 데이터를 복원
- 원시 데이터에 노이즈를 추가한 후, ISP Pipeline에 넣어주어 노이즈가 추가된 이미지를 얻음

- BSRGAN

❖ BSRGAN의 Shuffling

• 앞에서 정의한 Degradation 기법을 섞은 후, HR 이미지에 적용하여 LR 이미지 생성

- BSRGAN

❖ BSRGAN의 Shuffling

• 앞에서 정의한 Degradation 기법을 섞은 후, HR 이미지에 적용하여 LR 이미지 생성

실험결과

- BSRGAN 정량적 평가

❖ BSRGAN 정량적 평가

• BSRGAN이 Blind SR 중 가장 우세한 성능을 보임

Degradation Type	Metric	RRDB	IKC	ESRGAN	FSSR -DPED	FSSR -JPEG	RealSR -DPED	RealSR -JPEG	BSRNet (Ours)	BSRGAN (Ours)
Type I	PSNR	30.89	29.95	28.16	24.55	22.71	21.72	27.35	29.07	27.30
(Bicubic)	LPIPS	0.254	0.263	0.115	0.240	0.364	0.312	0.213	0.331	0.236
Type II	PSNR	25.66	27.35	25.56	25.81	25.33	26.29	25.36	27.76	26.26
	LPIPS	0.542	0.392	0.526	0.460	0.399	0.263	0.479	0.397	0.284
Type III	PSNR	26.70	26.72	26.21	25.83	23.25	22.82	26.72	27.59	26.28
	LPIPS	0.517	0.504	0.436	0.392	0.376	0.379	0.360	0.419	0.284
Type IV	PSNR	24.03	24.01	23.68	23.62	22.40	22.97	23.85	25.67	24.58
	LPIPS	0.659	0.641	0.599	0.589	0.597	0.528	0.589	0.506	0.361

실험결과

- BSRGAN 정성적 평가

❖ BSRGAN 정성적 평가

BSRGAN이 Blind SR 중 가장 선명하게 복원

