import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import accuracy_score

#loading dataframe to a pandas data frame

wine_dataset = pd.read_csv("./winequality-red.csv")

wine_dataset.shape

(1599, 12)

wine_dataset.head()

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides		total sulfur dioxide	density	рН	sulphates	alcohol	
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	
4	7.4	0.70	0.00	1 0	0.076	11 0	34 0	0 9978	3 51	0.56	9.4	

wine_dataset.isnull().sum()

fixed acidity volatile acidity 0 citric acid 0 residual sugar 0 chlorides 0 free sulfur dioxide total sulfur dioxide 0 0 density 0 0 sulphates alcohol 0 quality dtype: int64

wine_dataset.describe()

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	dens
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.467792	0.996
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.895324	0.001
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.000000	0.990
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.000000	0.995
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.000000	0.996
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.000000	0.997
max	15.900000	1.580000	1.000000	15.500000	0.611000	72.000000	289.000000	1.003

#plotting quality and count of each quality

sns.catplot(x="quality",data=wine_dataset,kind="count")

<seaborn.axisgrid.FacetGrid at 0x7fd2cf35c340>

#finding which column has co-relation with the quality column
sns.barplot(x="quality",y="volatile acidity",data=wine_dataset)

corelation = wine_dataset.corr()
plot = plt figure(figsize=(10.10))

plot = plt.figure(figsize=(10,10))

sns.heatmap(corelation,cbar=True,square=True,cmap='coolwarm',annot=True,annot_kws={'size':8},fmt='.1f')

#Data Preprocessing

#seperating the quality and other columns

X = wine_dataset.drop('quality',axis=1)

X.head()

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides		total sulfur dioxide	density	рН	S
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	

#binaryizing the values of quality data set

Y = wine_dataset['quality'].apply(lambda value:1 if value>=7 else 0)

Y.head()

- 0 0 1 0 2 0
- 3 0 4 0

Name: quality, dtype: int64

#Training and Testing data

X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size=0.2,random_state=3)

#Model training

#RandomForestClassifierModel

model = RandomForestClassifier()

#training the model

model.fit(X_train,Y_train)

r RandomForestClassifier RandomForestClassifier()

#model evaluation

X_test_prediction = model.predict(X_test)

test_data_score = accuracy_score(X_test_prediction,Y_test)

print("Test Data Accuracy ",test_data_score)

Test Data Accuracy 0.9375

#predicting system

input_data = (7.3,0.65,0.0,1.2,0.065,15.0,21.0,0.9946,3.39,0.47,10.0)

#changing into numpy array

input_data_numpy_array = np.asarray(input_data)

#input reshape

reshaped_data = input_data_numpy_array.reshape(1,-1)

prediction = model.predict(reshaped_data)

if(prediction[0]==1):

print("Good Quality Wine")

else:

print("Bad Quality")

Good Quality Wine

/usr/local/lib/python3.8/dist-packages/sklearn/base.py:420: UserWarning: X does not have valid feature names, but RandomForestClass warnings.warn(

✓ 0s completed at 21:26

• ×