

时间数列的水平分析

浙江财经大学数据科学学院

授课教师: 曾菊英

发展水平指标

平均发展水平指标

增长量指标

平均增长量指标

发展水平指标

定义及分类

- ◆ 报告期水平
- ◆ 基期水平

Main Contents

发展水平指标

平均发展水平指标

增长量指标

平均增长量指标

时期数列序时平均数的计算

 a_i 各期发展水平

$$\frac{1}{a} = \frac{a_1 + a_2 + \dots + a_n}{n} = \frac{\sum_{i=1}^n a_i}{n}$$

例:该地区2006-2015期间年均出口商品总额

$$\frac{1487 \cdot .8 + 1510 \cdot .48 + \cdots 5933 \cdot .26}{10} = 2733 \cdot .71 \text{ (亿美元)}$$

年份	某地区历 年出口商 品总额(亿 美元)		
2006	1487.8		
2007	1510.48		
2008	1827.92		
2009	1837.09		
2010	1949.31		
2011	2492.03		
2012	2660.98		
2013	3255.96		
2014	4382.28		
2015	5933.26		

时点数列序时平均数的计算

1 连续登记间隔相同的时点数列

$$\overline{a} = \frac{a_1 + a_2 + \dots + a_n}{n} = \frac{\sum a_1}{n}$$

例:某商业银行最近五天的存款余额资料分别为:766、664、

843、578、639(万元),则这5天的日均存款余额为

$$\overline{a} = (766 + 664 + 843 + 578 + 639)/5 = 698(\overline{\pi})$$

时点数列序时平均数的计算

2 连续登记间隔不同的时点数列

$$\overline{a} = \frac{a_1 f_1 + a_2 f_2 + \dots + a_n f_n}{f_1 + f_2 + \dots + f_n} = \frac{\sum_{i=1}^n a_i f_i}{\sum_{i=1}^n f_i}$$

例:已知某企业1月1日至15日的职工人数有100人,16日至25日为120人,26日至31日108人,求一月份的日均职工人数。

$$\overline{a} = \frac{100 \times 15 + 120 \times 10 + 108 \times 6}{31} = 108 \text{ (A)}$$

时点数列序时平均数的计算

3 不连续登记间隔相等的时点数列

首尾折半法

$$\overline{a} = \frac{\overline{a_1} + \overline{a_2} + \overline{a_3} + \dots + \overline{a_n}}{n}$$

$$= \frac{a_0 + a_1}{2} + \frac{a_1 + a_2}{2} + \dots + \frac{a_{n-1} + a_n}{2}$$

$$= \frac{a_0}{2} + a_1 + a_2 + \dots + a_{n-1} + \frac{a_n}{2}$$

$$= \frac{a_0}{2} + a_1 + a_2 + \dots + a_{n-1} + \frac{a_n}{2}$$

例:已知企业某年上半年职工人数,求该企业上半年月平均职工人数。

时间	1月初	3月初	5月初	7月初
人数	66	72	64	70

上半年月均工人为 (69+68+67) /3=68 (人)

时点数列序时平均数的计算

4 不连续登记间隔不等的时点数列

$$\overline{a} = \frac{\frac{a_0 + a_1}{2} f_1 + \frac{a_1 + a_2}{2} f_2 + \dots + \frac{a_{n-1} + a_n}{2} f_n}{\sum_{i=1}^n f_i}$$

例:已知某银行2016年存款余额数据,求该银行2016年月平均存款余额。

时间	1月1日	4月1日	9月1日	12月1日	12月31日
存款余额(万 元)	120	100	140	135	160

= 124.17

解:据资料可知其时间间隔分别为3个月、5个月、3个月和1个月,平均存

款余额为

绝对数时间数列计算序时平均数小结

◆ "首末折半"公式和"间隔加权"公式并没有实质上的不同, 前者不过是后者的特例而已。

相对数和平均数序时平均数的计算

◆ 思路

相对指标
$$c = \frac{a}{b} \longrightarrow$$
 相对数时间序列 派生序列

◆由相对指标时间序列计算序时平均数

- ① 求 \bar{a} , \bar{b}
- ② 得 $\overline{c} = \frac{\overline{a}}{\overline{b}}$

相对数和平均数序时平均数的计算

例:某商业企业2015年各季商品销售及季初库存资料,年末库存2万元。

求: 全年平均每季的商品流转次数、平均每季的流通费用率

	1季度	2季度	3季度	4 季度
销售额	11	12	10	15
期初库存	4	5	6	3
流通费用	1.1	1.3	1	2

相对数和平均数序时平均数的计算

解: 全年平均每季销售额为

$$\overline{a} = \frac{a_1 + a_2 + a_3 + a_4}{4} = \frac{11 + 12 + 10 + 15}{4} = 12(\overline{\pi} \ \overline{\pi})$$

全年的平均库存额为

$$\overline{b} = \frac{\frac{b_0}{2} + b_1 + b_2 + b_3 + \frac{b_4}{2}}{4} = \frac{4/2 + 5 + 6 + 3 + 2/2}{4} = 4.25(\overline{\pi} \, \overline{\pi})$$

平均每季的商品流转次数为季均商品销售额与平均库存额的对比

$$\overline{c} = \frac{\overline{a}}{\overline{b}} = \frac{12}{4.25} = 2.8235(\% / 季)$$

平均每季的流通费用率等于每季流通费用除以每季商品销售额

季均流通费用额
$$= \frac{(1.1+1.3+1+2)/4}{(11+12+10+15)/4} = \frac{1.35}{12} = 11.25\%$$

发展水平指标

平均发展水平指标

增长量指标

平均增长量指标

增长量和平均增长量

增长量

逐期增长量与累计增长量之间的数量关系

$$(a_1 - a_0) + (a_2 - a_1) + \dots + (a_n - a_{n-1}) = a_n - a_0$$

$$(a_i - a_0) - (a_{i-1} - a_1) = a_i - a_{i-1} \ (i = 1, 2, \dots, n)$$

增长量和平均增长量

平均增长量

- 1 水平法 $\overline{\Delta} = \frac{\sum_{i=0}^{n} (a_i a_{i-1})}{n} = \frac{a_n a_0}{n}$
- 2 累计法 (累计理论值=累计实际值)

$$(a_0 + \Delta) + (a_0 + 2\Delta) + \dots + (a_0 + n\Delta) = a_1 + a_2 + \dots + a_n$$

 $\overline{\Delta} = 2\sum (a_i - a_0)/n(n+1)$