

TMA 4110 Høsten 2019

Innlevering 2

Norges teknisk—naturvitenskapelige universitet Institutt for matematiske fag

## Oppgaver til kapittel 3

1 Løs ligningen Ax = b for a)

$$\begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Denne matrisen er allerede redusert til det fulleste. Den er heller ikke inverterbar. Jeg får derfor fire frie variabler,  $x_1, x_3, x_4$  og  $x_7$ :

$$x_{2} + x_{3} + x_{7} = 0 \implies x_{2} = -x_{3} - x_{7}$$

$$x_{5} + x_{7} = 0 \implies x_{5} = -x_{7}$$

$$x_{6} + x_{7} = 0 \implies x_{6} = -x_{7}$$

$$\implies X = \begin{bmatrix} x_{1} \\ -x_{3} - x_{7} \\ x_{3} \\ x_{4} \\ -x_{7} \\ -x_{7} \end{bmatrix}$$

$$A = \begin{bmatrix} 8 & -7 & 0 \\ -8 & -7 & 3 \\ -4 & 5 & -8 \\ -6 & 6 & -4 \end{bmatrix} \qquad b = \begin{bmatrix} -3 \\ -7 \\ -3 \\ 0 \end{bmatrix}$$

Jeg ser at denne matrisen ikke er invertertbar, da den ikke er kvadratisk, så løser den ved hjelp av gausseliminasjon:

$$\begin{bmatrix} 8 & -7 & 0 & | & -3 \\ -8 & -7 & 3 & | & -7 \\ -4 & 5 & -8 & | & -3 \\ -6 & 6 & -4 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -\frac{7}{8} & 0 & | & -\frac{3}{8} \\ -8 & -7 & 3 & | & -7 \\ -4 & 5 & -8 & | & -3 \\ -6 & 6 & -4 & | & 0 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & -\frac{7}{8} & 0 & | & -\frac{3}{8} \\ 0 & -14 & 3 & | & -10 \\ 0 & \frac{3}{2} & -8 & | & -\frac{9}{4} \\ 0 & \frac{3}{4} & -4 & | & \frac{9}{4} \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & -\frac{7}{8} & 0 & | & -\frac{3}{8} \\ 0 & -14 & 3 & | & -10 \\ 0 & \frac{3}{2} & -8 & | & -\frac{9}{4} \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & -\frac{7}{8} & 0 & | & -\frac{3}{8} \\ 0 & -14 & 3 & | & -10 \\ 0 & 0 & -\frac{215}{28} & | & -\frac{39}{7} \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & -\frac{7}{8} & 0 & | & -\frac{3}{8} \\ 0 & 1 & 0 & | & \frac{188}{215} \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 0 & 0 & | & \frac{83}{215} \\ 0 & 1 & 0 & | & \frac{187}{215} \\ 0 & 0 & 1 & | & \frac{156}{215} \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

$$\Rightarrow x = \begin{bmatrix} \frac{83}{157} \\ \frac{156}{155} \\ \frac{156}{155} \end{bmatrix}$$

2 La v og w være disse vektorene i  $\mathbb{R}^3$ :

$$v = \begin{bmatrix} -3 \\ -7 \\ -3 \end{bmatrix} \quad og \quad w = \begin{bmatrix} 8 \\ -8 \\ 4 \end{bmatrix}$$

Finn en vektor

$$u = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$$

slik at u, v og w spenner ut i  $\mathbb{R}^3$ , og løs ligningen xu+yv+zw=0. Velger meg:

$$u = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

Sjekker om de tre vektorene er lineære uavhengige (som også betyr de spenner ut i  $\mathbb{R}^3$ ) ved hjelp av ligningen xu+yv+zw=0. Dersom x=y=z=0 spenner vektorene i  $\mathbb{R}^3$ :

$$\begin{bmatrix} 1 & -3 & 8 & 0 \\ 1 & -7 & -8 & 0 \\ 1 & -3 & -4 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 8 & 0 \\ 0 & -4 & -16 & 0 \\ 0 & 0 & -12 & 0 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & -3 & 8 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Ser at x=y=z=0 som vil si vektorene er lineært uavhengige og spenner i  $\mathbb{R}^3$ . Løsningen på xu+yv+zw=0 er x=y=z=0

 $\boxed{3}$  La p og q være følgende polynomer:

$$p(x) = x^{2} + 5x - 3$$
$$q(x) = 4x^{2} + 18x + 4$$

a) La s være polynomet  $x^2 + 8x + 2$ . Finnes det konstanter slik at  $s(x) = a \cdot p(x) + b \cdot q(x)$  for alle x?

Sjekker om s kan skrives som en lineærkombinasjon av p og q:

$$\begin{bmatrix} 1 & 4 & 1 \\ 5 & 18 & 8 \\ -3 & 4 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 4 & 1 \\ 0 & -2 & 3 \\ 0 & 16 & 5 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 4 & 1 \\ 0 & 1 & -\frac{3}{2} \\ 0 & 0 & 29 \end{bmatrix}$$

Den nederste raden forteller meg at 0=29, som vil si dette er et inkonsistent ligningssystem. Det vil videre si at det ikke finnes konstanter a og b slik at  $s(x)=a\cdot p(x)+b\cdot q(x)$  for alle x.

b) Finn et andregradspolynom t som oppfyller følgende: For hvert andregradspolynom r skal det være mulig å finne konstanter a, b og c slik at  $r(x) = a \cdot p(x) + b \cdot q(x) + c \cdot t(x)$ .

Prøver med  $t(x) = x^2 + x + 1$ . Hvis p, q og t er lineært uavhengige, finnes det konstanter som alltid oppfyller kravet:

$$a \cdot \begin{bmatrix} 1 \\ 5 \\ -3 \end{bmatrix} + b \cdot \begin{bmatrix} 4 \\ 18 \\ 4 \end{bmatrix} + c \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 4 & 1 & 0 \\ 5 & 18 & 1 & 0 \\ -3 & 4 & 1 & 0 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 4 & 1 & 0 \\ 0 & -2 & -4 & 0 \\ 0 & 16 & 4 & 0 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 4 & 1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 16 & 4 & 0 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 4 & 1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & -28 & 0 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 4 & 1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & -28 & 0 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 4 & 1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 3 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 3 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Ser at de er lineært uavhengige og derfor med  $t = x^2 + x + 1$  er det mulig å finne konstanter a, b og c.

# Oppgaver til kapittel 4

4 La  $v_1$  og  $v_2$  være vektorer i  $\mathbb{R}^2$ , og A en 2x2-matrise slik at:

$$Av_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
  $og$   $Av_2 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ 

Regn ut Aw, der  $w = 2v_1 - v_2$ .

$$Aw = A(2v_1 - v_2)$$

$$= 2 \cdot \begin{bmatrix} 1 \\ -1 \end{bmatrix} - \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

$$= \begin{bmatrix} 2 - 2 \\ -2 - 3 \end{bmatrix}$$

$$= \begin{bmatrix} 0 \\ -5 \end{bmatrix}$$

[5] Er følgende matriser inverterbare? I så fall, finn den inverse og sjekk at svaret ditt er riktig.

**a**)

$$\begin{bmatrix} 1 & i \\ 1 & i \end{bmatrix}$$

En matrise er ikke inverterbar dersom determinanten er lik 0. Regner ut determinanten i denne matrisen:

$$1 \cdot i - i \cdot 1 = i - i$$
$$= 0$$

Siden determinanten er lik 0 er ikke denne matrisen inverterbar.

b)

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \end{bmatrix}$$

For at en matrise skal være inverterbar må den være på formen NxN, noe denne matrisen ikke er. Derfor er den ikke inverterbar.

**c**)

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix}$$

Denne har potensiale til å være inverterbar. Finner determinanten:

$$1 \cdot (3 \cdot 5 - 4 \cdot 4) - 2 \cdot (2 \cdot 5 - 4 \cdot 3) + 3 \cdot (2 \cdot 4 - 3 \cdot 3) = -1 - 2 * -2 + 3 * -1$$
$$= -1 + 4 - 3$$
$$= 0$$

Determinanten er 0 og dermed er ikke matrisen invertertbar.

- La A og B være to 2x2-matriser. Betrakt ligningen AX = B, hvor X er en ukjent 2x2-matrise.
  - a) Forklar hvorfor ligningen er ekvivalent med å løse to 2x2-ligningssystemer samtidig. Hvordan generaliseres denne påstanden for nxn-matriser? Jeg bruker b) for å vise et eksempel:

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
$$\begin{bmatrix} x_1 + x_3 & x_2 + x_4 \\ x_1 + x_3 & x_2 + x_4 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

Dette korresponderer til de to lineære systemene:

$$\begin{cases} x_1 + x_3 &= 1 \\ x_1 + x_3 &= 1 \end{cases}, \qquad \begin{cases} x_2 + x_4 &= 1 \\ x_2 + x_4 &= -1 \end{cases}$$

Som er to 2x2 lineære systemer. Med ord vil det si at hver kolonne i A har løsninger i kolonnene de korresponderende kolonnene i B. Dette gjelder også for alle NxN matriser.

**b)** Løs ligningen for 
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 og  $B = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$ 

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & -2 \end{bmatrix}$$

Her står det at 0 = -2, ligningssystemet har ingen løsning.

- 7 a)?
  - b) Skriv om ligningen til fire ligninger med fire ukjente. Hva er totalmatrisen? Starter med å sette  $C = \begin{bmatrix} c_1 & c_2 \\ c_3 & c_4 \end{bmatrix}$  for så å finne  $c_1, c_2, c_3$  og  $c_4$ :

$$AX + XB = C$$

$$\begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} \cdot \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix} + \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix} \cdot \begin{bmatrix} b_1 & b_2 \\ b_3 & b_4 \end{bmatrix} = \begin{bmatrix} c_1 & c_2 \\ c_3 & c_4 \end{bmatrix}$$

Finner så ligninger for  $c_1, c_2, c_3$  og  $c_4$  ved å gange AX og XB og deretter summere:

$$c_1 = a_1x_1 + a_2x_3 + x_1b_1 + x_2b_3$$

$$c_2 = a_1x_2 + a_2x_4 + x_1b_2 + x_2b_4$$

$$c_3 = a_3x_1 + a_4x_3 + x_3b_1 + x_3b_3$$

$$c_4 = a_3x_2 + a_4x_4 + x_3b_2 + x_3b_4$$

Totalmatrisen blir:

$$\begin{bmatrix} a_1x_1 + a_2x_3 + x_1b_1 + x_2b_3 & a_1x_2 + a_2x_4 + x_1b_2 + x_2b_4 \\ a_3x_1 + a_4x_3 + x_3b_1 + x_3b_3 & a_3x_2 + a_4x_4 + x_3b_2 + x_3b_4 \end{bmatrix}$$

c) Løs ligningen når A, B og C er følgende matriser:

$$A = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

Setter opp en ligning for X i form av en matrise.

$$\begin{bmatrix} 3 & 3 & 1 & 1 \\ 3 & 3 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & \frac{1}{3} & \frac{1}{3} \\ 1 & 1 & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$

For å finne X har jeg brukt verdiene i matrisene A og B, satt dette inn i ligningene for  $c_1, c_2, c_3$  og  $c_4$  og funnet "det som står før" alle x-verdiene og puttet inn på de korresponderende plassene i matrisen.

Ser nå at løsningen på ligningen AX + XB = C er  $X = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} \end{bmatrix}$ 

### Oppgaver til kapittel 5

 $\boxed{8}$  De to bildene viser vektorer i  $\mathbb{R}^2$ :



I hvert tilfelle: Er vektorene på tegningen lineært uavhengige? Utspenner de  $\mathbb{R}^2$ ? Begrunn svarene dine.

I tilfelle 1 er de to vektorene lineært uavhengige. Dette fordi lineær uavhengighet vil si at den ene vektoren er et multiplum av den andre, men siden de spenner i forskjellige retninger er ikke dette tilfelle her. Siden de også spenner i hver sin retning, spenner de ut i hele  $\mathbb{R}^2$ .

I tilfelle 2 er vektorene *ikke* lineært uavhengige. Dette fordi høyeste antall n av vektorer i  $\mathbb{R}^m$  som er lineært uavhengige er n=m. Her har vi 3 vektorer i  $\mathbb{R}^2$ , altså n>m. To av vektorene er dog uavhengige, som vil si de spenner ut i hele  $\mathbb{R}^2$ .

9 Er vektorene lineært uavhengige?

**a**)

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \quad \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}, \quad \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix}$$

Sjekker om ligningen  $x_1 \cdot v_1 + x_2 \cdot v_2 + x_3 \cdot v_3 = 0$  holder:

$$\begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 3 & 4 & 0 \\ 3 & 4 & 5 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -2 & 0 \\ 0 & -2 & -4 & 0 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Siste raden med kun 0'er forteller meg at disse vektorene ikke er uavhengige.

b)

$$\begin{bmatrix} 2\\4\\2i \end{bmatrix}, \begin{bmatrix} i\\2i\\-1 \end{bmatrix}, \begin{bmatrix} 5-3i\\10-2i\\4+6i \end{bmatrix}$$

Bruker teorem 6.12 som sier at disse er ekvivalente:

- 1.  $det A \neq 0$
- 2. Kolonnene i A er lineært uavhengige

Finner det A:

$$\begin{aligned} 2 \cdot & (2i \cdot (4+6i) - (10+2i) \cdot -1) - i \cdot (4 \cdot (4+6i) - (10+2i) \cdot 2i) + (5-3i) \cdot (-4-(2i \cdot 2i)) \\ &= 2 \cdot (8i - 12 + 10 + 2i) - i \cdot (16 + 24i - 20i + 4) + (5-3i) \cdot (-40+4) \\ &= 2 \cdot (10i - 2) - i \cdot (20+4i) \\ &= 20i - 4 - 20i + 4 \\ &= 0 \end{aligned}$$

Determinanten er 0, derfor holder ikke (1) fra teoremet og dermed holder heller ikke (2). Vektorene er ikke uavhengige.

#### Oppgaver til kapittel 6

[10] Regn ut determinanten til følgende matriser og avgjør om kolonnene er lineært uavhengige.

**a**)

$$\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$

Finner determinanten:

$$1 \cdot 1 - 2 \cdot 2 = 1 - 4$$
$$= -3$$

I følge teorem 6.12 (punktene i forrige oppgave) er kolonnene lineært uavhengige.

b)

$$\begin{bmatrix} 2 & -5 & 3 \\ 2 & -4 & 4 \\ -6 & 15 & 1 \end{bmatrix}$$

Finner determinanten:

$$2 \cdot (-4 \cdot 1 - 7 \cdot 15) + 5 \cdot (2 \cdot 1 - 7 \cdot (-6)) + 3 \cdot (2 \cdot 15 - (-4 \cdot -6))$$

$$= 2 \cdot (-4 - 105) + 5 \cdot (2 + 42) + 3 \cdot (30 - 24)$$

$$= 2 \cdot (-109) + 5 \cdot 44 + 3 \cdot 6$$

$$= 20$$

I følge teorem 6.12 (punktene i forrige oppgave) er kolonnene lineært uavhengige.

**c**)

$$2i - 5$$
 3 4  $-615$   $i$ 

Finner determinanten:

$$\begin{aligned} &2i\cdot (-4i\cdot i-7\cdot 15)+5\cdot (2i\cdot 1-7\cdot (-6))+3\cdot (2\cdot 15-(-4i\cdot -6))\\ &=2i\cdot (4-105)+5\cdot (2i+42)+3\cdot (30-24i)\\ &=202i+10i+210+90-72i\\ &=300-264i \end{aligned}$$

I følge teorem 6.12 (punktene i forrige oppgave) er kolonnene lineært uavhengige.

11 Skisser parallellogrammet utspent av følgende vektorer i  $\mathbb{R}^2$ , og regn ut arealet.

a)

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix}, \quad \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$



Arealet er gitt ved determinanten til A:

$$1 \cdot 1 - 2 \cdot 2 = 1 - 4$$
  
= -3  
= 3

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$



Her ser vi at vektorene er lineært avhengige og ligger på linje, vi kan derfor ikke tegne noe parallellogram, men determinanten blir 0, og arealet på "parallellogrammet" er 0.

#### 12 La A være matrisen:

= bcxy

$$\begin{bmatrix} a & b & 0 & 0 \\ c & 0 & 0 & 0 \\ 0 & 0 & 0 & x \\ 0 & 0 & y & Z \end{bmatrix}$$

a) Finn det A uttrykt ved a, b, c, x, y, z

$$\begin{split} \det A &= a \cdot \det \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & x \\ 0 & y & z \end{bmatrix} - b \cdot \det \begin{bmatrix} c & 0 & 0 \\ 0 & 0 & x \\ 0 & y & z \end{bmatrix} \\ &= a \cdot \left( 0 \cdot \det \begin{bmatrix} 0 & x \\ y & z \end{bmatrix} - 0 \cdot \begin{bmatrix} 0 & x \\ 0 & z \end{bmatrix} + 0 \cdot \begin{bmatrix} 0 & 0 \\ 0 & y \end{bmatrix} \right) - b \cdot \left( c \cdot \det \begin{bmatrix} 0 & x \\ y & z \end{bmatrix} - 0 \cdot \begin{bmatrix} 0 & x \\ 0 & z \end{bmatrix} + 0 \cdot \begin{bmatrix} 0 & 0 \\ 0 & y \end{bmatrix} \right) \\ &= a \cdot 0 - b \cdot \left( c \cdot \det \begin{bmatrix} 0 & x \\ y & z \end{bmatrix} \right) \\ &= -b \cdot \left( -cxy \right) \end{split}$$

**b)** For hvilke a, bc og x, y, z er A inverterbar?

En matrise A er inverterbar dersom  $det A \neq 0$ . Determinanten til A er 0 dersom b, c, y eller z = 0, så for alle verdier for a og z og verdier ulik 0 for b, c, y og x er matrisen inverterbar.