Date: Mar 28 Made by Eric

In this note, V always stand for a vector space over \mathbb{F} , V^- stands for a finite dimensional vector space over \mathbb{F} , and T is always a linear operator on V^-

Definitions

Definition 1. Let $A \in M_{n \times n}(\mathbb{F})$

T is self-adjoint if
$$T^* = T$$

A is self-adjoint if $A^* = A$

Definition 2. Let $A \in M_{n \times n}(\mathbb{F})$

T is **normal** if $T \circ T^*$ is self-adjoint, that is $T \circ T^* = T^* \circ T$ A is **normal** if AA^* is self-adjoint, that is $AA^* = A^*A$

Theorem 1. Let T be normal

(i)
$$\|T(x)\| = \|T^*(x)\|$$

(ii) $\forall c \in \mathbb{F}, T - cI_V$ is normal
(iii) $T(x) = \lambda x \implies T^*(x) = \overline{\lambda}(x)$

(iv) If there exists x_1 , x_2 two eigenvectors of T corresponding to distinct eigenvalues λ_1, λ_2 , then $x_1 \perp x_2$

Proof. (i)
$$||T(x)||^2 = \langle T(x), T(x) \rangle = \langle T^*(T(x)), x \rangle = \langle T(T^*(x)), x \rangle = \langle T^*(x), T^*(x) \rangle = ||T^*(x)||^2$$

(ii)

$$(T - cI)[(T^* - \overline{c}I)(v)]$$

$$= (T - cI)[T^*(v)] - \overline{c}(T - cI)(v)$$

$$= T(T^*(v)) - cT^*(v) - \overline{c}T(v) + \overline{c}cv$$

$$= T^*(T(v)) - cT^*(v) - \overline{c}T(v) + \overline{c}cv$$

$$= (T^* - \overline{c}I)(T(v)) - c(T^* - \overline{c}I)(v)$$

$$= (T^* - \overline{c}I)(T(v) - cv)$$

$$= (T^* - \overline{c}I)[(T - cI)(v)]$$

(iii)

Let
$$U = T - \lambda I$$

$$\begin{aligned} \|T^*(x) - \overline{\lambda}x\| &= \|(T - \lambda I)^*(x)\| = \|U^*(x)\| = \|U(x)\| = \|(T - \lambda I)(x)\| = \|0\| &= 0 \end{aligned}$$

So
$$T^*(x) - \overline{\lambda}x = 0$$

(iv)

$$\lambda_1\langle x_1,x_2\rangle=\langle \lambda_1x_1,x_2\rangle=\langle T(x_1),x_2\rangle=\langle x_1,T^*(x_2)\rangle=\langle x_1,\overline{\lambda_2}x_2\rangle=\lambda_2\langle x_1,x_2\rangle$$

$$(\lambda_2 - \lambda_1)\langle x_1, x_2 \rangle = 0$$

Theorems

Theorem 2. Let V^- be over \mathbb{R} or \mathbb{C} , and let the characteristic polynomial f_T of T splits

There exists an orthonormal basis β for V^- , such that $[T]_{\beta}$ is an upper triangular matrix

Proof. We prove by induction

Base Step: This is true when
$$dim(V^-) = 1$$

Every basis contain only one vector, which can be made orthonormal by normalization, and apparently, β , the basis normalized, satisfy that $[T]_{\beta}$ is an upper triangular matrix

Induction Step: This is true when $dim(V^-)=n$ — This is true when $dim(V^-)=n+1$

Let z' be an eigenvector of T corresponding to λ

We know
$$(T - \lambda I)(z') = 0$$

So
$$\forall v \in V^-, 0 = \langle (T - \lambda I)(z'), v \rangle = \langle z', (T - \lambda I)^*(v) \rangle = \langle z', (T^* - \overline{\lambda} I)(v) \rangle$$

So
$$z' \perp R(T^* - \overline{\lambda}I)$$

Then $rank(T^* - \overline{\lambda}I) < dim(V)$, which tell us that $N(T^* - \overline{\lambda}I)$ is non-trivial

So there exists eigenvector z of T^* corresponding to $\overline{\lambda}$

Let
$$W = \{z\}^{\perp}$$

We now prove W is T-invariant

$$\forall w \in W, \langle T(w), z \rangle = \langle w, T^*(z) \rangle = \langle w, 0 \rangle = 0 \text{ (done)}$$

Let f_{T_W} be the characteristic polynomial of T_W

 f_{T_W} divides f_T tell us that f_{T_W} also split

Obviously,
$$dim(W) = n$$

By the premise, we have an orthonormal basis β' of W, such that $[T_W]_{\beta'}$ is an upper triangular matrix

Normalize
$$z$$
 and we see $\beta' \cup \{z\}$ is the desired β

Theorem 3. *Let* $\mathbb{F} = \mathbb{C}$

T is normal if and only if there exists an orthonormal basis β of V^- consisting of eigenvectors

Proof.
$$(\longleftarrow)$$

Notice $[T]_{\beta}$ and $[T^*]_{\beta} = ([T]_{\beta})^*$ is diagonal

So
$$[TT^*]_{\beta} = [T]_{\beta}[T^*]_{\beta} = [T^*]_{\beta}[T]_{\beta} = [T^*T]_{\beta}$$

This give us $TT^* = T^*T$

$$(\longrightarrow)$$

Because $\mathbb{F}=\mathbb{C}$, the characteristic polynomial splits

Let β be an orthonormal basis of V^- , such that $[T]_{\beta}$ is an upper triangular matrix

Let
$$A = [T]_{\beta}$$

Let
$$n = dim(V^-)$$

We now prove β consists of eigenvectors

$$T(v_1) = A_{1,1}v_1$$

Because
$$T(v_2) = A_{1,2}v_1 + A_{2,2}v_2$$
, so $A_{1,2} = \langle T(v_2), v_1 \rangle = \langle v_2, T^*(v_1) \rangle = \langle v_2, \overline{\lambda_1} v_1 \rangle = 0$

Then
$$T(v_2) = A_{2,2}v_2$$

Because
$$T(v_3) = A_{1,3}v_1 + A_{2,3}v_2 + A_{3,3}v_3$$
, so $A_{1,3} = \langle T(v_3), v_1 \rangle = \langle v_3, A_{1,1}v_1 \rangle = 0$ (done)

Theorem 4. Let T be a linear operator on V^- over $\mathbb R$ and $dim(V^-)=n$

T is self-adjoint if and only if there exists an orthonormal basis β of V consisting of eigenvectors of T

Proof. (\longleftarrow)

 $[T]_{\beta}$ is diagonal

and we know $\forall 1 \leq j \leq n, ([T]_{\beta})_{j,j} = \lambda_j$, where λ_j is the eigenvalues corresponding to v_j

T is self-adjoint give us $T=T^*$, so $T^*\circ T=T\circ T=T\circ T^*$

So we know $T^*(v_j) = \overline{\lambda_j} v_j$

This give us $([T^*]_{\beta})_{j,j} = \overline{\lambda_j} = \lambda_j$

Notice $[T^*]_{\beta} = ([T]_{\beta})^*$ is also diagonal

So $[T^*]_{\beta} = [T]_{\beta}$

Then $T^* = T$

 (\longrightarrow)

We now prove the characteristic polynomial f of T splits

Arbitrarily pick an orthonormal basis α of V^- , and let $A=[T]_{\alpha}$

Let $T_A:\mathbb{C}^n \to \mathbb{C}^n$ be defined by $T_A(v) = Av$

Let f_{T_A} be the characteristic polynomial of T_A

 T_A is self-adjoint, since $[T_A]_E=A$, and $A^*=([T]_\alpha)^*=[T^*]_\alpha=[T]_\alpha=A$

 f_{T_A} split since it is over $\mathbb C$

Let v be a eigenvectors of T_A corresponding to λ

$$\lambda v = T_A(v) = (T_A)^*(v) = \overline{\lambda}v$$

So $\lambda = \overline{\lambda}$, then $\lambda \in \mathbb{R}$

Notice $T_A = L_A$

So T_A have the same characteristic polynomial with A

And A have the same characteristic polynomial with T, since $A = [T]_{\alpha}$

So T have the characteristic polynomial splits over \mathbb{R} (done)

We then pick an orthonormal basis β for V^- , such that $[T]_{\beta}$ is upper triangular

Let
$$A = [T]_{\beta}$$

We now prove A is diagonal

$$A^* = ([T]_{\beta})^* = [T^*]_{\beta} = [T]_{\beta} = A$$

Because A is upper triangular, we know $A^* = A \implies A$ is diagonal (done)

Summary

All of following properties exist only in finite dimensional space, since its proof require matrix representation

(A)

Over $\mathbb R$ or $\mathbb C$

If the characteristic polynomial of T splits, than T can be expressed by an upper triangular matrix with an orthonormal basis.

(B)

Over \mathbb{C}

Normal is equivalent to orthonormally diagonalizable

(C)

Over \mathbb{R}

Normal and characteristic polynomial splits implies orthonormally diagonalizable

Self-adjoint is equivalent to orthonormally diagonalizable by any orthonormal basis

(D)

Let T be normal

- (i) The adjoint of T and T transform a vector to two vector of same length
- (ii) $\forall c \in \mathbb{F}, T cI_V$ is normal
- (iii) The adjoint of T have the same eigenspace as as T, but the corresponding eigenvalues is conjugate
- (iv) Every eigenspace of T is perpendicular to each other

Exercises

2.