

Soutenance PFE: Conception électronique analogique

5ESPE 2021-2022 Marvyn Pannetier

Sommaire

1 - Introduction

Présentation de THALES

THALES

Building a future we can all trust

Présentation de THALES

DIMENSION GLOBALE, EXPERTISE LOCALE

Description du sujet

Description du sujet

2 - Planning

Diagramme de Gantt

Subject 1: ACS using class D amplifier

Thales DMS France SAS Marvyn Pannetier

TÂCHE	AVANCEMENT	DÉBUT	FIN	S1	S2	S 3	S4	S 5	S6	S7	S8	S9	S10	S11	S12	S13	S14	S15	S1	6 S1	7 S1	8 51	9 52	0 S2	1 52	2 523	S 52	4 S25
Analyse des besoins	100%	7/2/22	13/2/22																									
Spécifications	100%	14/2/22	6/3/22																									
Conception	100%	7/3/22	24/4/22																									
Réalisation	100%	25/4/22	22/5/22																									
Tests et validation	100%	23/5/22	22/6/22																									
Corrections (Test et Validation <> Conception)	20%	23/6/22	29/7/22																									

3 - Conception

Cahier des charges

Tension différentielle de sortie aux bornes de la charge	7.0+-0.7V RMS								
Forme du signal de sortie	Sinusoïde								
Type de sortie	Sortie différentielle								
Eráquanca	Doit être capable de générer des sinusoïdes de fréquence								
Fréquence	comprise entre 2kHz et 5kHz								
Précision de la fréquence du sinus de sortie entre les circuits	Inférieur à 0.1Hz								
ACS	5								
Courant dans la charge	Entre 10mA et 40mA RMS								
Caractéristique de la charge	Charge inductive avec résistance parasite ayant pour facteur								
Caracteristique de la charge	de puissance $cos(\phi) = 0.2079$ soit $\phi=78^{\circ}$								
	La surface actuelle pour un ACS ELAC est de 740mm2, il faut								
Surface	donc faire moins								
	Un ACS ELAC a un rendement inférieur à 10%, il faut donc être								
Rendement	supérieur à ce rendement et l'optimiser au maximum.								
THD du sinus de sortie	Inférieur à 1%								
	Pas de référence mais le plus bas possible tout en respectant								
Coût	les points ci-dessus.								

Choix de l'architecture

	Composant COTS avec entrée analogique	Composant COTS avec entrée PWM	MOSFET driver + étage d'amplification
Consommation	35mA + courant tiré par la charge	7.3mA + courant tiré par la charge	Moins de 1mA + courant tiré par la charge
Surface	Sans le filtre, entre 50 et 70mm2	Sans le filtre, entre 60 et 90mm2	4 double NMOS: 4*4.2=17.2mm2 4 gate drivers: 4*9=36mm2 Total: 53.2mm2
Prix (pour 500 unités)	Entre 1 et 2€ le composant	Plus de 3€	NMOS: 4*0.266€ Driver: 4*0.243€ Total=2.036€
Disponibilité			

Architecture détaillée

Schéma LTspice final

Résultats des simulations

Résultats des simulations

Génération des PWM

Asservissement de la tension de sortie

Asservissement de la tension de sortie

```
//12.45 est l'inverse du gain du montage soustracteur
//Voltage est à présent une image de la tension diff RMS
erreur = 7-Voltage*12.45;
Voltage=0;
a = (I*Te)/2 + Kp;
b = (I*Te)/2 - Kp;
//équation de récurrence du correcteur
commande = erreur*a + erreur_prec*b + commande_prec ;
if(commande > 10)
    commande = 10;
else if(commande < 0)</pre>
    commande = 0;
else if (commande == 0)
    commande = 1;
erreur prec=erreur;
commande prec=commande;
//Correction en modifiant l'indice de modulation'
for (int i=0;i<128;i++)
    Wave_LUT[i]=Wave_LUT[i]*commande;
    Wave LUT2[i]=Wave LUT2[i]*commande;
```


4 – Réalisation et tests

Schématique

Routage

BOTTOM

TOP

PCB assemblé

BOTTOM

TOP

Résultat avec le PCB

Résultats des tests

	ACS ELAC	ACS classe D							
Coût	X	< 5€ pour 250 circuits							
Surface	740mm2	sans routage: environ 150mm2 avec routage: entre 300mm2 et 400mm2							
Rendement	Entre 5 et 10%	Entre 30% et 65%							

Les tâches qui sont à réaliser

Avant la fin de mon stage :

- Tester l'asservissement
- Faire des mesures plus précises (THD, consommation)
- Faire des mesures CEM si possible
- Conclure sur la viabilité de cette solution

Pour THALES:

- Etudier les résultats possibles avec les moyens THALES (surface, conso, coût)
- Conclure sur l'intérêt ou non d'utiliser cette solution
- Développer le circuit industriel et l'intégrer dans les produits THALES

5 – Conclusion

Merci pour votre attention

Des questions?

