Fields

For
$$a_p |0\rangle = \frac{1}{\sqrt{2\omega_p}} |p\rangle$$
 and $\left[a_p, a_k^{\dagger}\right] = (2\pi)^3 \delta^3(\vec{p} - \vec{k})$

$$A_{\mu}(x) = \sum_{a=1}^{2,3} \int \frac{d^3k}{(2\pi)^3 \sqrt{2\omega_k}} \left[a^a(k) \varepsilon_{\mu}^a(k) e^{-ikx} + a^{a\dagger}(k) \varepsilon_{\mu}^{a*}(k) e^{ikx} \right]$$
(1)

$$\varphi(x) = \int \frac{d^3k}{(2\pi)^3 \sqrt{2\omega_k}} \left[a(k)e^{-ikx} + b^{\dagger}(k)e^{ikx} \right]$$
 (2)

$$\psi_a(x) = \sum_{s} \int \frac{d^3p}{(2\pi)^3 \sqrt{2\omega_p}} \left[a(p,s)u_a(p,s)e^{-ipx} + b^{\dagger}(p,s)v_a(p,s)e^{ipx} \right]$$
(3)

$$\bar{\psi}_a(x) = \sum_{s} \int \frac{d^3p}{(2\pi)^3 \sqrt{2\omega_p}} \left[a^{\dagger}(p,s)\bar{u}_a(p,s)e^{-ipx} + b(p,s)\bar{v}_a(p,s)e^{ipx} \right]$$
(4)

Cross Section

$$d\Gamma = \frac{1}{2E_P} \frac{d^3 k_1}{(2\pi)^3 2E(k_1)} \cdots \frac{d^3 k_n}{(2\pi)^3 2E(k_n)} (2\pi)^4 \delta^4 \left(P - \sum_{i=1}^n k_i \right) |\mathcal{M}|^2$$
 (5)

$$d\sigma = \frac{1}{|\mathbf{v_1} - \mathbf{v_2}|} \frac{1}{2E(p_1)} \frac{1}{2E(p_2)} \frac{d^3k_1}{(2\pi)^3} \frac{d^3k_1}{2E(k_1)} \cdots \frac{d^3k_n}{(2\pi)^3} \frac{d^3k_n}{2E(k_n)} (2\pi)^4 \delta^4 \left(p_1 + p_2 - \sum_{i=1}^n k_i\right) |\mathcal{M}|^2$$

$$\equiv \frac{1}{4E(p_1)E(p_2)|\mathbf{v}_1 - \mathbf{v}_2|} \int |\mathcal{M}|^2 dLIPS \tag{6}$$

$$\left(\frac{d\sigma}{d\Omega}\right)_{CM} = \frac{1}{64\pi^2 E_{CM}^2} \frac{|\vec{p}_f|}{|\vec{p}_i|} |\mathcal{M}|^2$$
(7)

Field Theory

$$\langle \Omega | T \{ \phi(x_1) ... \phi(x_n) \} | \Omega \rangle = \frac{\langle 0 | T \{ \phi(x_1) ... \phi(x_n) e^{i \int d^4 x \mathcal{L}_{int}[\phi_0]} \} | 0 \rangle}{\langle 0 | T \{ e^{i \int d^4 x \mathcal{L}_{int}[\phi_0]} \} | 0 \rangle}$$
(8)

$$T\left\{\psi(0)\bar{\psi}(x)\right\}_{Boson} = \psi(0)\bar{\psi}(x)\theta(-t) + \bar{\psi}(x)\psi(0)\theta(t) \tag{9}$$

$$T\left\{\psi(0)\bar{\psi}(x)\right\}_{Fermion} = \psi(0)\bar{\psi}(x)\theta(-t) - \bar{\psi}(x)\psi(0)\theta(t) \tag{10}$$

$$e^{i\omega_p t}\theta(-t) = \frac{i}{2\pi} \int_{-\infty}^{\infty} d\omega \, \frac{e^{i\omega t}}{\omega - (\omega_p - i\epsilon)}$$
 (11)

$$e^{-i\omega_p t}\theta(t) = -\frac{i}{2\pi} \int_{-\infty}^{\infty} d\omega \, \frac{e^{i\omega t}}{\omega - (-\omega_p + i\epsilon)}$$
 (12)

$$\langle 0|T\left\{\phi(x)\phi^{\dagger}(y)\right\}_{B}|0\rangle = \int \frac{d^{4}p}{(2\pi)^{4}} \frac{i}{p^{2} - m^{2} + i\epsilon} e^{ip(x-y)}$$

$$\tag{13}$$

$$\langle 0 | T \left\{ \psi(x) \bar{\psi}(y) \right\}_F | 0 \rangle = \int \frac{d^4 p}{(2\pi)^4} \frac{i(\not p + m)}{p^2 - m^2 + i\epsilon} e^{ip(x-y)}$$
(14)

LSZ

$$\langle f|S|i\rangle = \sqrt{2^n \omega_{p_1} ... \omega_{p_n}} \langle \Omega|a_{p_3}(\infty) ... a_{p_n}(\infty) a_{p_1}^{\dagger}(-\infty) a_{p_2}^{\dagger}(-\infty) |\Omega\rangle$$

$$=\sqrt{2^n\omega_{p_1}...\omega_{p_n}}\left\langle\Omega\right|T\left\{\left[a_{p_3}(\infty)-a_{p_3}(-\infty)\right]...\left[a_{p_n}(\infty)-a_{p_n}(-\infty)\right]...\left[a_{p_2}^\dagger(-\infty)-a_{p_2}^\dagger(\infty)\right]\right\}\left|\Omega\right\rangle$$

$$= \left[i \int d^4 x_1 e^{-ip_i x_1} (p_i^2 + m^2) \right] \dots \left[i \int d^4 x_n e^{ip_f x_n} (p_f^2 + m^2) \right] \langle \Omega | T \left\{ \phi(x_1) \dots \phi(x_n) \right\} | \Omega \rangle$$
(15)

"In" States
$$\rightarrow i \int d^4x_1 e^{-ip_ix_1} (p_i^2 + m^2) \phi(x_1) = \sqrt{2\omega_p} \left[a_{p_1}^{\dagger}(-\infty) - a_{p_1}^{\dagger}(\infty) \right]$$

"Out" States
$$\rightarrow i \int d^4x_1 e^{ip_f x_n} (p_f^2 + m^2) \phi(x_n) = \sqrt{2\omega_p} \left[a_{p_n}(\infty) - a_{p_n}(-\infty) \right]$$

Lippman-Schwinger

$$\Box_x \langle \phi_x \phi_1 ... \phi_n \rangle = \langle \mathcal{L}_{int}[\phi_x] \phi_1 ... \phi_n \rangle - i \sum_j \delta(x - x_j) \langle \phi_1 ... \phi_{j-1} \phi_{j+1} ... \phi_n \rangle \quad (16)$$

Matrices

Dirac Basis

$$\gamma^0 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad \gamma^i = \begin{pmatrix} 0 & \sigma^i \\ -\sigma_i & 0 \end{pmatrix} \quad \gamma^5 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Weyl Basis

$$\gamma^0 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \gamma^i = \begin{pmatrix} 0 & \sigma^i \\ -\sigma_i & 0 \end{pmatrix} \quad \gamma^5 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \quad \gamma^\mu = \begin{pmatrix} 0 & \sigma^\mu \\ \bar{\sigma}^\mu & 0 \end{pmatrix}$$

$$\sigma^{\mu} \equiv (1, \vec{\sigma}) \quad \bar{\sigma}^{\mu} \equiv (1, -\vec{\sigma})$$
 (17)

$$\psi_L = \left(\frac{1-\gamma^5}{2}\right)\psi \equiv \hat{\mathcal{P}}_L\psi \quad \psi_R = \left(\frac{1+\gamma^5}{2}\right)\psi \equiv \hat{\mathcal{P}}_R$$
(18)

$$S^{ij} = \frac{1}{2} \epsilon^{ijk} \begin{pmatrix} \sigma^k & 0 \\ 0 & \sigma^k \end{pmatrix} \equiv \frac{1}{2} \epsilon^{ijk} \Sigma^k \qquad S^{0i} = K^i = -\frac{i}{2} \begin{pmatrix} \sigma^i & 0 \\ 0 & -\sigma^i \end{pmatrix}$$

$$V^{\mu\nu} = \begin{pmatrix} 0 & K_1 & K_2 & K_3 \\ -K_1 & 0 & J_3 & -J_2 \\ -K_2 & -J_3 & 0 & J_1 \\ -K_3 & J_2 & -J_1 & 0 \end{pmatrix}$$
 (19)

$$J^{1} = i \begin{pmatrix} 0 & & & \\ & 0 & & \\ & & 0 & -1 \\ & & 1 & \end{pmatrix} \quad J^{2} = i \begin{pmatrix} 0 & & & \\ & 0 & & 1 \\ & & 0 & \\ & -1 & & 0 \end{pmatrix} \quad J^{3} = i \begin{pmatrix} 0 & & & \\ & 0 & -1 & \\ & 1 & 0 & \\ & & & 0 \end{pmatrix}$$

$$K^{1} = i \begin{pmatrix} 0 & -1 & & \\ -1 & 0 & & \\ & & 0 & \\ & & & 0 \end{pmatrix} \quad K^{2} = i \begin{pmatrix} 0 & & -1 & \\ & 0 & & \\ -1 & & 0 & \\ & & & 0 \end{pmatrix} \quad K^{3} = i \begin{pmatrix} 0 & & & -1 \\ & 0 & & \\ & & 0 & \\ -1 & & & 0 \end{pmatrix}$$

$$u_1(p) = \begin{pmatrix} \sqrt{E-p_z} \\ 0 \\ \sqrt{E+p_z} \\ 0 \end{pmatrix} \quad u_2(p) = \begin{pmatrix} 0 \\ \sqrt{E-p_z} \\ 0 \\ \sqrt{E+p_z} \end{pmatrix} \quad v_1(p) = \begin{pmatrix} \sqrt{E-p_z} \\ 0 \\ -\sqrt{E+p_z} \\ 0 \end{pmatrix} \quad v_2(p) = \begin{pmatrix} 0 \\ \sqrt{E-p_z} \\ 0 \\ -\sqrt{E+p_z} \end{pmatrix}$$

Algebraic Relations

$$\left[a_p, a_k^{\dagger}\right]_B = (2\pi)^3 \delta^3(\vec{p} - \vec{k}) \tag{20}$$

$$[J_i, J_j] = i\epsilon_{ijk}J_k \quad [J_i, K_j] = i\epsilon_{ijk}K_k \quad [K_i, K_j] = -i\epsilon_{ijk}J_k \tag{21}$$

$$[V^{\mu\nu}, V^{\rho\sigma}] = i \left(g^{\nu\rho} V^{\mu\sigma} + g^{\mu\sigma} V^{\nu\rho} - g^{\mu\rho} V^{\nu\sigma} - g^{\nu\sigma} V^{\mu\rho} \right) \tag{22}$$

$$J_i^{\pm} = \frac{1}{2} \left(J_i \pm i K_i \right) \tag{23}$$

$$[\gamma^{\mu}, S^{\rho\sigma}] = i \left(\delta^{\rho\mu} \delta^{\sigma}_{\nu} - \delta^{\rho}_{\nu} \delta^{\sigma\mu} \right) \gamma^{\nu} \equiv \left(\mathcal{J}^{\rho\sigma} \right)^{\mu}_{\nu} \gamma^{\nu} \tag{24}$$

$$\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu} \quad S^{\mu\nu} = \frac{i}{4} [\gamma^{\mu}, \gamma^{\nu}] = \frac{1}{2} \sigma^{\mu\nu}$$
 (25)

$$[iD_{\mu}, iD_{\nu}] = iqF_{\mu\nu} \to -ieF_{\mu\nu} \tag{26}$$

$$D_{\mu} \equiv \partial_{\mu} + iqA_{\mu} \to \partial_{\mu} - ieA_{\mu} \tag{27}$$

$$[J_i^+, J_i^-] = 0 \quad [J_i^{\pm}, J_i^{\pm}] = i\epsilon_{ijk}J_k^{\pm}$$
 (28)

Since only two relations are non-zero, the so(1,3) representation is reducible to two su(2) representations. i.e. so(1.3) \mapsto su(2) \oplus su(2)

$$\bar{u}_s u_{s'} = 2m\delta_{ss'} \quad u_s^{\dagger} u_{s'} = 2E\delta_{ss'} \tag{29}$$

$$\sum_{s=1}^{2} u_{s}(p)\bar{u}_{s}(p) = p + m \quad \sum_{s=1}^{2} v_{s}(p)\bar{v}_{s}(p) = p - m$$
(30)

Lorentz Transformation for Fermions

$$\Lambda_{\frac{1}{2}}(\theta) = e^{i\theta_{\mu\nu}S^{\mu\nu}} \tag{31}$$

$$\Lambda_{\frac{1}{2}}^{-1}(\theta) = \left(\gamma^0 \Lambda_{\frac{1}{2}}(\theta) \gamma^0\right)^{\dagger} = \gamma^0 \Lambda_{\frac{1}{2}}^{\dagger}(\theta) \gamma^0 = e^{-i\theta_{\mu\nu} S^{\mu\nu}}$$
(32)

Misc.

$$W_{\mu\nu}^a = \partial_\mu A_\nu^a - \partial_\nu A_\mu^a + g f^{abc} A_\mu^b A_\nu^c \tag{33}$$

$$T_{\mu\nu} = \sum_{n} \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi_{n})} \partial_{\nu}\phi_{n} - g_{\mu\nu}\mathcal{L}$$
 (34)

$$E = \int d^3x \ \mathcal{E} = \int d^3x \ T_{00} \tag{35}$$

$$V^{\alpha} \to \left(\delta^{\alpha}_{\beta} - \frac{i}{2}\omega_{\mu\nu} \left(\mathcal{J}^{\mu\nu}\right)^{\alpha}_{\beta}\right) V^{\beta} \tag{36}$$

$$\sigma^{\mu\nu}\partial_{\mu}\partial_{\nu} = \frac{1}{2} \left(\sigma^{\mu\nu} - \sigma^{\nu\mu} \right) \partial_{\mu}\partial_{\nu} = \frac{1}{2} \left(\sigma^{\mu\nu}\partial_{\mu}\partial_{\nu} - \sigma^{\nu\mu}\partial_{\nu}\partial_{\mu} \right) = 0 \tag{37}$$

$$\epsilon^{ijk}\epsilon_{lmn} = \det \begin{vmatrix} \delta_{il} & \delta_{im} & \delta_{in} \\ \delta_{jl} & \delta_{jm} & \delta_{jn} \\ \delta_{kl} & \delta_{km} & \delta_{kn} \end{vmatrix}$$
(38)

Suppose that D(g) is some operator within group G where $D(g_1)|g_2\rangle = |g_1g_2\rangle$ etc. and $D(g) \to D'(g) = S^{-1}D(g)S$, then a representation is said to be redicuble if it has an invariant subspace, i.e. that the action of any D(g) on any vector in the subspace is still in the subspace. In terms of a projection operator \hat{P} onto the subspace,

$$\hat{P}D(g)\hat{P} = D(g)\hat{P} \ \forall g \in G \tag{39}$$

For $\mathcal{L}=-\frac{1}{4}F^{\mu\nu}F_{\mu\nu}+\frac{1}{2}m^2A^{\mu}A_{\mu}$ there are 2j+1=3 DOF. Using $\partial_{\mu}A^{\mu}=0$ brings us down to two DOF. There is no gauge invariance, but there are three polarization vectors: $\epsilon^1=(0,1,0,0),\ \epsilon^2=(0,0,1,0),\ \epsilon^3=(p_z/m,0,0,E/m)$ where $p^{\mu}=(E,0,0,p_z)$. If we let $p^{\mu}=(m,\vec{0})$ i.e the "Little Group" we can only have elements which leave the momentum alone under boosts. Therefore, $\epsilon^1\to\epsilon^1,\ \epsilon^2\to\epsilon^2,\ \epsilon^3\to(0,0,0,1)$ and so $p^{\mu}\epsilon_{\mu}=0$ and the square of all polarizations is -1. This is SO(3) and it is finite dimensional since the momentum is zero.

For $\mathcal{L} = -\frac{1}{4}F^{\mu\nu}F_{\mu\nu}$ there is gauge invariance $(A_{\mu} \to A_{\mu} + \partial_{\mu}\alpha)$. We can use this to remove the $\epsilon^0 = (1,0,0,0)$ polarization and bring us down to two DOF. We have $p^{\mu} = E(1,0,0,1)$, $\epsilon^1 = (0,1,0,0)$, $\epsilon^2 = (0,0,1,0)$. These are part of ISO(2) and for spin J have 2J DOF. Since A^{μ} integrates over all momentum, then this representation is infinite dimensional.