

Tips, Formulae and shortcuts for Inequalities

By

CRACKU.IN

cracku 🏍

Cracku Tip 1 – Inequalities

- The topic Inequalities is one of the few sections in the quantitative part which can throw up tricky questions. The questions are often asked in conjunction with other sections like ratio and proportion, progressions etc.
- The theory involved in Inequalities is very limited and students should be comfortable with the basics involving addition, multiplication and changing of signs of the inequalities.
- The scope for making an error is high in this section as a minor mistake in calculation (like forgetting the sign) can lead to a completely different answer.

Free CAT Mock Test: https://cracku.in/cat-mock-test

Cracku Tip 2 – Inequalities

• The modulus of x, |x| equals the maximum of x and -x

$$-|x| \le x \le |x|$$

• For any two real numbers 'a' and 'b',

$$|a| + |b| \ge |a + b|$$

$$|a| - |b| \le |a - b|$$

$$|a . b| = |a| |b|$$

Cracku Tip 3 – Inequalities

- For any three real numbers X, Y and Z; if X > Y then X+Z > Y+Z
- If X > Y and
 - 1. Z is positive, then XZ > YZ
 - 2. Z is negative, then XZ < YZ
 - 3. If X and Y are of the same sign, 1/X < 1/Y
 - 4. If X and Y are of different signs, 1/X > 1/Y

Cracku Tip 4 – Inequalities

- For any positive real number, $x + \frac{1}{x} \ge 2$
- For any real number x > 1, $2 < \left[1 + \frac{1}{x}\right]^{x} < 2.8$.

As x increases, the function tends to an irrational number called 'e' which is approximately equal to 2.718

Cracku Tip 5 – Inequalities

- If $|x| \le k$ then the value of x lies between -k and k, or $-k \le x \le k$
- If $|x| \ge k$ then $x \ge k$ or $x \le -k$

Download CAT Syllabus PDF

Free CAT Mock Test: https://cracku.in/cat-mock-test

Cracku Tip 6 – Inequalities

- If $ax^2+bx+c < 0$ then (x-m)(x-n) < 0, and if n > m, then m < x < n
- If $ax^2+bx+c > 0$ then (x-m)(x-n) > 0 and if m < n, then x < m and x > n
- If ax²+bx+c > 0 but m = n, then the value of x exists for all values, except x is equal to m,

i.e., x < m and x > m but $x \ne m$

Free CAT Online Classes : https://cracku.in/cat-online-classes

Enroll To CAT Courses: https://cracku.in/cat/pricing

For a free guidance for CAT from IIM alumni

WhatsApp 'CAT' to +91 7661025559

Cracku.in

Download Important Questions & Answers PDF Below:

Verbal Ability & Reading comprehension

Data Interpretation

Logical Reasoning

Quantitative Aptitude

Get Important MBA Updates

Whatsapp "CAT" to 7661025559

Telegram

Join FB CAT Group

Best CAT Preparation Free Android App

