ENGR 4421: Robotics II

Kinematics of Differential Drive

Outline

- Motion: From Motor to Body
- Forward Kinematics (w.r.t. different frames)
- Inverse Kinematics

Motion: From Motor to Body

$$\omegaigg(R-rac{L}{2}igg)=v_L$$
 Rotation about ICC must be same for both wheels.

$$R = rac{L}{2} rac{v_L + v_R}{v_L - v_R}$$
 Rotation radius.

$$V=rac{v_L+v_R}{2}$$
 Linear x

$$\omega = rac{V_R - V_L}{I_c}$$
 Angular z

$$v=\dot{arphi}_w r$$
 Angular to linear

$$\dot{arphi}_w = rac{\dot{arphi}_m}{\dot{\dot{z}}}$$
 Motor speed to wheel speed

Motion: From Motor to Body

- If $v_L = v_R$, then linear motion in a straight line. R becomes infinite, no rotation $\omega = 0$.
- If $v_L = -v_R$, then rotation about the midpoint of the wheel axis, R = 0.
- If $v_L = 0$, then rotation about the left wheel, R = L/2. Rotation about the right wheel if $v_R = 0$.

Forward Kinematics

Inverse Kinematics

- Given a target $(\hat{x},\,\hat{y},\,\hat{ heta})$, What is V(t) and $\omega(t)$?
- Two-wheeled differential drive vehicle imposes non-holonomic constraints on establishing its pose (think about lateral translation).
- Can achieve the goal by moving in straight line and spinning in place.
- Path planning algorithms may find smoother trajectories.