Medical Statistician Presentation NTNU Interview Case

Artem Shiryaev

2023-11-28

Research Problem

Vi skal genomföre en klinisk studie på nydiagnostiserte pasienter med myelomatose hvor vi ska sammenlign standardbehandling med en ny kombinasjon av experimentella medikamenter.

Fra tidigare studier kan forvente:

► Standard: 50% minimal residual disease (MRD)

Forskargruppe tror att vi kan oppnå en klinisk signifikant bedring om:

► Experimentell: 70% minimal residual disease (MRD)

Med andre ord, jo mindre kreft, desto bedre.

Statistical Analys

Head of the Research team thinks: Data costs money, Hvor mange patienter trenger studien vår, med 80% power og signifikansnivå på 5%?

Resultat beroende data (paired/dependent data)

Beste fall: total 98 patienter, 49 vardera gruppe

Verste fall: 102

Test	Same	Assumptions
Two Sample T Wilcoxon signed-rank Test	49 + 49 51 + 51	Approx. Normal, iid Non-parametric, iid, effect size $pprox 0.41$

Resultat oberoende data (independent data)

Beste fall: total 182 patienter, 91 vardera gruppe

Verste fall: 231

Test	Same	Different	Assumptions
Two Sample Z	91 + 91	-	Normality, iid
Two Sample T	93 + 93	180 + 63	Approx. Normal,
			iid
Mann-Whitney U	99 + 99	-	Non-parametric,
			iid, effect size $pprox$
			0.41
Chi ² ($df = 90$)	231	-	Z scores for df

Graphical Results Z Test

Graphical Results Student t-test

Graphical Results Student t-test

Graphical Results Chi²

Code

Github link

Analytical Calculation: Z-tests

$$H_0: p_1 = p_2$$

 $H_1: p_1 \neq p_2$

To determine the sample size needed for a study comparing two proportions use two-sample proportion test. The formula is:

$$Z = \frac{(p_1 - p_2)}{\sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}}$$

Simplified to, given $n_1 = n_2 = n$:

$$n = \frac{(p_1(1-p_1) + p_2(1-p_2))(Z_{\alpha} + Z_{\beta})^2}{(p_1 - p_2)^2}$$

Analytical Calculation: Z-tests

 p_1 is the reduction in MRD for Drug A (50%, or 0.5). p_2 is the targeted reduction in MRD for Drug B (70%, or 0.7). Z_{α} is the Z-score for a 5% significance level (approximately 1.96). Z_{β} is the Z-score for an 80% power (approximately 0.84).

Analytical Calculation: Z-tests

Substitute these values into the formula to calculate n:

$$n = \frac{(0.5 \times 0.5 + 0.7 \times 0.3)(1.96 + 0.84)^2}{(0.5 - 0.7)^2}$$

Now, calculate the result.

$$n = \frac{(0.25 + 0.21)(2.8)^2}{0.04}$$

$$n = \frac{0.46 \times 7.84}{0.04}$$

$$n = \frac{3.6064}{0.04}$$

$$n \approx 91$$

n = 90.16

Analytical Calculation: Student t-test

Start with the formula for the t-statistic in the two-sample proportion t-test:

$$t = rac{(\hat{
ho}_1 - \hat{
ho}_2)}{\sqrt{rac{\hat{
ho}_1(1-\hat{
ho}_1)}{n_1} + rac{\hat{
ho}_2(1-\hat{
ho}_2)}{n_2}}}$$

For the t-test, the formula is:

$$n = rac{(t_{lpha/2,df} + t_{eta})^2 imes (p_1(1-p_1) + p_2(1-p_2))}{(p_1 - p_2)^2}$$

 \hat{p}_1 and \hat{p}_2 are the sample proportions for Group 1 and Group 2, $\hat{p}_1=0.5$ (for Drug A), $\hat{p}_2=0.7$ (for Drug B), Degrees of freedom (df) for the t-distribution: df=2n-2, $t_{\alpha/2,df}$ and t_{β} from the t-distribution tables.

Analytical Calculation: Student t-test

$$n = \frac{(1.97 + 0.85)^2 \times (0.5(1 - 0.5) + 0.7(1 - 0.7))}{(0.5 - 0.7)^2}$$
$$n \approx \frac{(2.82)^2 \times (0.25 + 0.21)}{0.04}$$
$$n \approx \frac{(7.9524) \times (0.46)}{0.04}$$

$$n \approx 91.42$$
 $n \approx 92$

 $n \approx \frac{3.656704}{0.04}$