LOGARITMA

A. BENTUK UMUM LOGARITMA

Fungsi logaritma dinyatakan dengan persamaan $y = {}^{a}logf(x)$ Variabel a disebut bilangan pokok dengan syarat a > 0 dan a ≠ 1 f(x) disebut numerus dengan syarat f(x) > 0

B. SIFAT-SIFAT LOGARITMA

Misalkan a dan b adalah bilangan positif dengan a≠1 maka berlaku sifat-sifat berikut.

1.
$$a \log b = c \Leftrightarrow b = a^c$$

2.
$${}^{a} \log b \cdot {}^{b} \log c = {}^{a} \log c$$

3.
$${}^{a} \log b = \frac{{}^{k} \log b}{{}^{k} \log a}, k > 0, k \neq 1$$

4. ${}^{a} \log b = \frac{1}{{}^{b} \log a}$

4.
$$a \log b = \frac{1}{b \log a}$$

5.
$${}^{a}\log(b \cdot c) = {}^{a}\log b + {}^{a}\log c$$

6.
$$a \log b^n = n \cdot a \log b$$

7.
$$a \log \frac{b}{c} = a \log b - a \log c$$

8.
$$a^m \log b^n = \frac{n}{m} \cdot a \log b$$

9.
$$(a)^{a \log b} = b$$

C. PERSAMAAN LOGARITMA

Persamaan logaritma dinyatakan dalam bentuk berikut.

1.
$$a \log f(x) = p \text{ maka } f(x) = a^p \text{ dengan } f(x) > 0$$

2.
$${}^{a}\log f(x) = {}^{a}\log p$$
 maka $f(x) = p$ dengan $f(x) > 0$

3.
$$a \log f(x) = a \log g(x)$$
 maka $f(x) = g(x)$ dengan $f(x), g(x) > 0$

4.
$${}^{a} \log f(x) = {}^{b} \log f(x)$$
 maka $f(x) = 1$

CONTOH SOAL DAN PEMBAHASAN

- Jika $a = {}^{9}\log(\sqrt[3]{16})$ dan $b = {}^{2}\log(\frac{1}{3})$ maka $a \cdot b = \frac{2}{3}({}^{3}\log 2) \cdot (-{}^{2}\log 3)$ ab = (SNMPTN 2008)

- D. $-\frac{2}{3}$ E. $-\frac{4}{3}$

Pembahasan:

Diketahui: $a = {}^{9}\log(\sqrt[3]{16})$; $b = {}^{2}\log(\frac{1}{3})$ Sesuai sifat logaritma:

$$a^{n} \log b^{n} = \frac{n}{m} \log b$$

- $a = {}^{9}\log(\sqrt[3]{16})$
 - $= \frac{3^2}{\log(2)^{\frac{4}{3}}}$
 - $=\frac{4}{3}\cdot\frac{1}{2}(^{3}\log 2)$
- $=\frac{2}{3}(^3\log 2)$
- $b = {}^{2}\log\left(\frac{1}{3}\right) = {}^{2}\log 3^{-1} = -({}^{2}\log 3)$

Jika alogb. blogc = alogc maka nilai dari perkalian a dan b sebagai berikut.

 $=\frac{2}{3}(-1)(^{3}\log 3)$

Jawaban: D

- 2. Jika $6(3^{40})(^{2}\log a) + 3^{41}(^{2}\log a) = 3^{43}$ maka nilai a adalah (SNMPTN 2011)

- 16

Pembahasan:

- $6(3^{40})(^{2}\log a) + 3^{41}(^{2}\log a) = 3^{43}$
- $\Leftrightarrow 3^{41} \left[2 \cdot {}^{2} \log a + {}^{2} \log a \right] = 3^{43}$
- $\Leftrightarrow [2+1]^2 \log a = \frac{3^{43}}{3^{41}}$
- \Leftrightarrow 3²loga = 3²
- \Leftrightarrow ² loga = 3
- Sesuai sifat $a \log b = c \Leftrightarrow b = a^c$
- $^{2} \log a = 3 \Leftrightarrow a = 2^{3} = 8$

Jadi, nilai a adalah 8.

Jawaban: D

UJI PEMAHAMAN

1. Jika persamaan $\log(2) + \log(3x - 4) = 2$ mempunyai akar x_1 dan x_2 dengan $x_1 > x_2$

A. 0

maka $x_1 - x_2 =$ (SNMPTN 2008)

B. 1

C. 2

- E.
- B. -8 C. -10

А. -6

(SNMPTN 2010)

- D. -12

2. Nilai $\left({}^{a} \log \frac{1}{b^{2}} \right) \left({}^{a} \log \frac{1}{c^{2}} \right) \left({}^{a} \log \frac{1}{a^{3}} \right) = \dots$

E. -14

- 3. Jika $^4\log 3 = k \text{ maka }^2\log 27 = (SNMPTN)$ 2012)

- C. 6k
- Jika $\frac{^{3} \log x}{^{3} \log w} = 2 \operatorname{dan}^{xy} \log w = \frac{2}{5} \operatorname{maka nilai}$
 - $\frac{^{2}\log w}{^{2}\log y} =$ (SBMPTN 2013)
- B. 6
- F. 1
- C. 4
- Jika p = ($^{a}\log 2$)($^{a^{2}b}\log 4$), maka $\frac{1}{p}$ = (SBMPTN 2014)
 - A. $2^2 \log a + 2 \log \sqrt{a} \cdot 2 \log b$
 - B. $2 \cdot {}^2 \log a + \frac{1}{2} \cdot {}^2 \log(ab)$
 - C. $(^2\log a)^2 + \frac{1}{2} \cdot ^2\log a \cdot ^2\log b$
 - D. $\left({}^{2}\log a\right)^{2} + \frac{1}{2} \cdot {}^{2}\log(ab)$
 - E. $(^{2}\log a)^{2} + ^{2}\log \sqrt{ab}$
- Jika xy = 40 dan logx logy = 1 maka x-y = (SBMPTN 2015)
 - A. 18
- 24
- B. 20
- E. 25
- C. 22
- Jika ³log5=x dan ²log3=y maka ⁶log15 sama dengan (UM UGM 2005)
 - y(x+1)

- E. xy
- Jika x memenuhi $^{2}\log^{3}\log(x+2)=1$ dan y memenuhi $a \log(3y-1)^2 \log a = 3$ maka nilai x+y adalah (UM UGM 2006)
 - A. 16
- D.
- 13 В.
- E. 4
- C. 10

- Jika ${}^{3}\log 8 = x \quad dan {}^{3}\log 25 = y$ $^{3}\log 15\sqrt[3]{16} =$ (UM UGM 2007)
 - A. 9x + 8y + 18
- 8x + 9y + 18D.
 - B. $\frac{9x+8y+18}{18}$ E. $\frac{2x+3y+5}{7}$
 - C. 8x + 9v + 18
- 10. Jika $2^x = a$ dan $2^y = b$ dengan x,y > 0, maka $\frac{2x+3y}{x+2y} =$ (UM UGM 2009)

 - A. $\frac{3}{5}$ C. $1 + {}^{ab} \log ab^2$ B. $\frac{5}{3}$ E. $1 + {}^{ab^2} \log ab$
- D. $1+ ab \log a^2 b$
- 11. Jika $2^x = 2 \sqrt{3}$ maka $2^{x+\sqrt{3}} \log 4^x = \dots$ (UM **UGM 2010)**
 - A. -2
- B. $-\frac{1}{2}$

- C. 1
- 12. Jika $^{x+y}\log 2 = a \operatorname{dan} ^{x-y}\log 8 = b \operatorname{dengan}$ $0 < y < x \text{ maka } {}^{4}\log(x^{2}-y^{2}) = \text{ (UM UGM)}$ 2010)
 - a + 3b ab
- a+b B. 2ab
- $\frac{a+b}{4ab}$ C.
- 13. Jika diketahui bahwa $a^2 \log b + b^2 \log a = 1$ di mana a,b>0 dan a,b≠1 maka nilai a+b=.... (SIMAK UI 2011)
- 2√a B.
- E. $a^{1+\sqrt{2}}$
- C. 2a

- 14. Jika solusi dari persamaan $5^{x+5} = 7^x$ dapat dinyatakan dalam bentuk $x = {}^a \log 5^5$ maka nilai $a = \dots$ (SIMAK UI 2011)
 - A. $\frac{5}{12}$
- D. $\frac{12}{7}$
- B. $\frac{5}{7}$
- E. $\frac{12}{5}$
- C. $\frac{7}{5}$
- 15. Diketahui $A = \begin{pmatrix} 2 & ^z logb \\ ^a log \frac{1}{z} & 1 \end{pmatrix}$ merupakan matriks singular. Maka $^a logb^3a + ^z loga \cdot ^b logz^2 =$ (SIMAK UI 2012)

- A. –10
- D. 6
- В. -6
- E. 10
- C. 0
- 16. Jika x_1 dan x_2 memenuhi $\left(\frac{(x-1)\log 8}{2}\right)^2 = 9$, maka nilai $x_1 + x_2$ adalah (SBMPTN 2018)
 - A. $\frac{9}{2}$
- D. 0
- B. 3
- E. $-\frac{9}{2}$
- C. $\frac{3}{2}$

PEMBAHASAN UJI PEMAHAMAN

1. Diketahui: ${}^{x}log(2) + {}^{x}log(3x-4) = 2$ akarakarnya x_1, x_2 dengan $x_1 > x_2$

$$^{x} log2 + ^{x} log(3x-4) = 2$$

$$^{x} log2(3x-4) = ^{x} logx^{2}$$

$$6x-8 = x^{2}$$

$$x^{2}-6x+8 = 0$$

$$(x-4)(x-2) = 0$$

Didapatkan nilai $x_1 = 4$ dan $x_2 = 2$ Jadi, nilai $x_1 - x_2 = 4 - 2 = 2$

Jawaban: C

2. $\left({}^{a} log \frac{1}{b^{2}} \right) \left({}^{a} log \frac{1}{c^{2}} \right) \left({}^{a} log \frac{1}{a^{3}} \right)$ $= \left({}^{a} log b^{-2} \right) \left({}^{b} log c^{-2} \right) \left({}^{c} log a^{-3} \right)$ $\left({}^{a} log \frac{1}{b^{2}} \right) \left({}^{a} log \frac{1}{c^{2}} \right) \left({}^{a} log \frac{1}{a^{3}} \right)$ $= (-2)(-2)(-3) \left({}^{a} log b \right) \left({}^{b} log c \right) \left({}^{c} log a \right)$ $= -12 \left({}^{a} log c \right) \left({}^{c} log a \right)$ = -12

Jawaban: D

3. Diketahui: ⁴log3=k

$$k = {}^{2^2} \log 3 = \frac{1}{2} {}^2 \log 3$$

$$2k = {}^{2}log3$$

Nilai dari ² log27 didapatkan dar penyelesaian berikut.

$${}^{2}\log 27 = {}^{2}\log 3^{3}$$

= ${}^{3}\log 3$
= ${}^{3}(2k)$
= ${}^{6}k$

Jawaban: C

4. Diketahui: $\frac{^{3} \log x}{^{3} \log w} = 2$;

$$^{xy} \log w = \frac{2}{5} \Rightarrow^{w} \log xy = \frac{5}{2}$$

$$^{\text{w}} \log xy = \frac{5}{2}$$

$$\Leftrightarrow$$
 $^{w} \log x + ^{w} \log y = \frac{5}{2}$

$$\Leftrightarrow \frac{\log x}{\log w} + \log y = \frac{5}{2}$$

$$\Leftrightarrow$$
 $^{\text{w}} \log y = \frac{5}{2} - 2$

$$\Leftrightarrow \frac{\log y}{\log w} = \frac{1}{2}$$

Jadi, nilai dari
$$\frac{^2 \log w}{^2 \log y} = \frac{2}{1} = 2$$

Jawaban: D

7. Diketahui:
$${}^{3}\log 5 = x$$
; ${}^{2}\log 3 = y$

$${}^{6} \log 15 = \frac{{}^{3} \log 15}{{}^{3} \log 6}$$

$$= \frac{{}^{3} \log 5 + {}^{3} \log 3}{{}^{3} \log 2 + {}^{3} \log 3}$$

$$= \frac{x+1}{\frac{1}{y}+1}$$

$$= \frac{y(x+1)}{y+1}$$

Jawaban: A

5. Diketahui: $p = (a \log 2)(a^2 \log 4)$

$$\frac{1}{p} = \frac{1}{(^{a}\log 2)(^{a^{2}b}\log 4)}$$

$$= \frac{(^{2}\log a)}{(^{a^{2}b}\log 2^{2})}$$

$$= \frac{1}{2}(^{2}\log a)(^{2}\log a^{2} + ^{2}\log b)$$

$$= \frac{1}{2}(^{2}\log a)(2^{2}\log a + ^{2}\log b)$$

$$= (^{2}\log a)^{2} + \left(\frac{1}{2}(^{2}\log a)(^{2}\log b)\right)$$

Jawaban: C

$$\log x - \log y = 1$$

$$\log \frac{x}{y} = 1$$

$$\frac{x}{y} = 10 \Rightarrow x = 10y$$

Masukkan nilai x ke persamaan xy berikut.

$$xy = 40$$

$$\Leftrightarrow$$
 (10y)y = 40

$$\Leftrightarrow$$
 y² = $\frac{40}{10}$

$$\Leftrightarrow$$
 v = $\sqrt{4}$ = 2

Substitusi nilai y maka didapatkan nilai x = 10(2) = 20

Jadi, nilai dari x-y=20-2=18

Jawaban: A

8. Diketahui: x memenuhi
$$^{2} \log^{3} \log(x+2) = 1$$
;
y memenuhi $^{3} \log(3y-1)^{2} \log a = 3$

$$^{2}\log^{3}\log(x+2) = 1 \Rightarrow ^{2}\log^{3}\log(x+2) = ^{2}\log^{2}$$

Berlaku ${}^{a} \log f(x) = {}^{a} \log p \Rightarrow f(x) = p$ dengan f(x) > 0 untuk bentuk logaritma di atas.

$$^{3}\log(x+2)=2$$

$$x + 2 = 3^2$$

$$x = 9 - 2 = 7$$

Nilai y didapatkan dari penyelesaian berikut.

$$(a \log(3y-1))^2 \log a = 3$$

$$\Leftrightarrow$$
 $\left({}^{a} \log(3y-1) \right) \cdot \frac{1}{{}^{a} \log 2} = 3$

$$\Leftrightarrow$$
 $(a \log(3y-1)) = 3a \log 2$

$$\Leftrightarrow$$
 $(^{a} \log(3y-1)) = ^{a} \log 2^{3}$

$$\Leftrightarrow$$
 3y $-1=8$

$$\Leftrightarrow$$
 y = $\frac{8+1}{3}$ = 3

Jadi, nilai dari x+y=7+3=10

Jawaban: C

9. Diketahui:
$${}^{3}\log 8 = x \Rightarrow {}^{3}\log 2 = \frac{x}{3}$$
;

$$^{3}\log 25 = y \Rightarrow ^{3}\log 5 = \frac{y}{2}$$

$${}^{3}\log 15\sqrt[3]{16} = {}^{3}\log 15 + {}^{3}\log 16^{\frac{1}{3}}$$

$$= ({}^{3}\log 5 \cdot 3) + \frac{1}{3}{}^{3}\log 2^{4}$$

$$= {}^{3}\log 5 + {}^{3}\log 3 + \frac{4}{3}{}^{3}\log 2$$

$$= \frac{y}{2} + 1 + \left(\frac{4}{3} \cdot \frac{x}{3}\right)$$

$$= \frac{4x}{9} + \frac{y}{2} + 1$$

$$= \frac{8x + 9y + 18}{18}$$

Jawaban: D

10. Diketahui: $2^x = a$ dan $2^y = b$; x,y > 0Bentuk pangkat diubah menjadi bentuk logaritma: $x = {}^2 \log a$; $y = {}^2 \log b$

$$\frac{2x+3y}{x+2y} = \frac{{}^{2}loga^{2} + {}^{2}logb^{3}}{{}^{2}loga + {}^{2}logb^{2}}$$

$$= \frac{{}^{2}loga^{2}b^{3}}{{}^{2}logab^{2}}$$

$$= {}^{ab^{2}}loga^{2}b^{3}$$

$$= {}^{ab^{2}}logab^{2} + {}^{ab^{2}}logab$$

$$= 1 + {}^{ab^{2}}logab$$

Jawaban: E

11. Diketahui: $2^x = 2 - \sqrt{3}$ Penyetaraan bentuk akar:

$$2^{x} = 2 - \sqrt{3} \times \frac{2 + \sqrt{3}}{2 + \sqrt{3}} = \frac{1}{2 + \sqrt{3}} = (2 + \sqrt{3})^{-1}$$

Penyelesaian bentuk logaritma tersebut sebagai berikut.

$$\begin{array}{l}
3 \\
2+\sqrt{3} \log 4^{x} = 2+\sqrt{3} \log (2^{x})^{2} \\
= 2+\sqrt{3} \log (2-\sqrt{3})^{2} \\
= 2+\sqrt{3} \log (2+\sqrt{3})^{-1} \\
= 2+\sqrt{3} \log (2+\sqrt{3})^{-1} \\
= 2+\sqrt{3} \log (2+\sqrt{3})^{-2} \\
= -2$$
Jadi, $2+\sqrt{3} \log 4^{x} = -2$

Jawaban: A

12. Diketahui: $^{x+y}\log 2 = a; ^{x-y}\log 8 = b$ dengan 0 < y < x

$$x+y \log 2 = a \Rightarrow {}^{2} \log(x+y) = \frac{1}{a}$$

$$x-y \log 8 = b \Rightarrow 3 \times {}^{x-y} \log 2 = b \Rightarrow {}^{2} \log(x-y) = \frac{3}{b}$$

Penyelesaian bentuk logaritma:

$${}^{4}\log(x^{2}-y^{2}) = {}^{2^{2}}\log(x+y)(x-y)$$

$$= \frac{1}{2}({}^{2}\log(x+y) + {}^{2}\log(x-y))$$

$$= \frac{1}{2}(\frac{1}{a} + \frac{3}{b})$$

$$= (\frac{3a+b}{2ab})$$

Jawaban: D

13. Diketahui: $a^2 \log b + b^2 \log a = 1$; a,b > 0 dan $a,b \ne 1$

$$a^{a^{2}} \log b + b^{a^{2}} \log a = 1$$

$$\Leftrightarrow \frac{1}{2} \cdot a^{a} \log b + \frac{1}{2} \cdot b^{b} \log a = 1$$

$$\Leftrightarrow \frac{1}{2} (a^{a} \log b + b^{b} \log a) = 1$$

$$\Leftrightarrow a^{a} \log b + \frac{1}{a^{a} \log b} = 2$$

$$\Leftrightarrow (a^{a} \log b)^{2} + 1 = 2(a^{a} \log b)$$

$$\Leftrightarrow (a^{a} \log b)^{2} - 2(a^{a} \log b) + 1 = 0$$

$$\Leftrightarrow (a^{a} \log b - 1)^{2} = 0$$

$$\Leftrightarrow$$
 $a \log b = 1$
Jika $a \log b = 1$ maka $a^1 = b \Leftrightarrow a = b$
Jadi, nilai dari $a + b = a + a = 2a$

Jawaban: C

14. Diketahui:
$$x = {}^{a} log 5^{5}$$
 solusi persamaan 16. $({}^{(x-1)} log 8)^{2} = 9$

$$5^{x+5} = 7^x \Leftrightarrow \log 5^{x+5} = \log 7^x$$

$$\Leftrightarrow$$
 (x+5)log5 = xlog7

$$\Leftrightarrow$$
 x log5+5log5 = xlog7

$$\Leftrightarrow$$
 5log5 = xlog7 - xlog5

$$\Leftrightarrow \log 5^5 = x \log \left(\frac{7}{5}\right)$$

$$\Leftrightarrow x = \frac{\log 5^5}{\log \left(\frac{7}{5}\right)}$$

$$\Leftrightarrow x = \left(\frac{7}{5}\right) \log 5^5$$

Jadi, nilai
$$a = \frac{7}{5}$$
.

Jawaban: C

15. Diketahui: matriks singular

$$A = \begin{pmatrix} 2 & {}^{z} logb \\ {}^{a} log \frac{1}{z} & 1 \end{pmatrix}$$

Jika A adalah matriks singular maka

$$det(A) = 0$$

$$det(A) = 0$$

$$\Leftrightarrow 2 \cdot 1 - {}^{a} \log \frac{1}{z} \cdot {}^{z} \log b = 0$$

$$\Leftrightarrow$$
 2 - $a \log z^{-1} \cdot z \log b = 0$

$$\Leftrightarrow$$
 2 + a logz · z logb = 0

$$\Leftrightarrow$$
 2 + a logb = 0

$$\Leftrightarrow$$
 a logb = -2

penyelesaian dari perhitungan logaritma tersebut sebagai berikut.

$$=$$
^a $logb^3 +$ ^a $loga+$ ^b $logz^2 \cdot$ ^z $loga$

$$= 3$$
 $a \log b + 1 + 2$ $a \log a$

$$=3(-2)+1+2\left(\frac{1}{-2}\right)$$

Jawaban: B

16.
$$((x-1)\log 8)^2 = 9$$

Ingat!
$$^{a} \log b = \frac{\log b}{\log a}$$

$$\left(\frac{\log 8}{\log(x-1)}\right)^2 = 9$$

$$\frac{\log^2 8}{\log^2 (x-1)} = 9$$

$$\log^2(x-1) = \frac{\log^2 8}{9}$$

$$\log(x-1) = \frac{\log 8}{3} atau - \frac{\log 8}{3}$$

$$\log(x-1) = \log\sqrt[3]{8} \text{ atau } \log\frac{1}{\sqrt[3]{8}}$$

$$\log(x-1) = \log 2$$
 atau $\log \frac{1}{2}$

$$x-1=2$$
 atau $x-1=\frac{1}{2}$

$$x = 3 x = \frac{3}{2}$$

$$x = 3$$
 $x = \frac{3}{2}$
Jadi, $x_1 + x_2 = 3 + \frac{3}{2} = \frac{9}{2}$

Jawaban: A