Sequences of Series

6.0 Sequence

A function $f: \mathbb{N} \to \mathbb{S}$, where S is any nonempty set is called a *Sequence* i.e., for each $n \in \mathbb{N}$, \exists a unique element $f(n) \in \mathbb{S}$. The sequence is written as f(1), f(2), f(3),.....f(n)...,and is denoted by $\{f(n)\}$, or $\{f(n)\}$, or $\{f(n)\}$, or $\{f(n)\}$. If $f(n) = a_n$, the sequence is written as a_1, a_2, \ldots, a_n and denoted by $\{a_n\}$ or $\{a_n\}$ or $\{a_n\}$ or $\{a_n\}$. Here f(n) or a_n are the n^{th} terms of the Sequence.

6.1.2 Example:
$$\frac{1}{1^3}, \frac{1}{2^3}, \frac{1}{3^3}, \dots, \frac{1}{n^3}, \dots (or) \left(\frac{1}{n^3}\right)$$

6.1.3 Example : 1, 1, 1.....1.... or <1>

6.1.4 Example : I , –I , 1 , –I , or $\langle (-1)^{n-1} \rangle$

- **Note:** 1. If $S \subseteq R$ then the sequence is called a *real sequence*.
 - 2. The range of a sequence is almost a countable set.

6.1.5 Kinds of Sequences

- 1. Finite Sequence: A sequence $\langle a_n \rangle$ in which $a_n = 0 \ \forall n > m \in \mathbb{N}$ is said to be a finite Sequence. i.e., A finite Sequence has a finite number of terms.
- 2. Infinite Sequence: A sequence, which is not finite is an infinite sequence.

6.1.6 Bounds of a Sequence and Bounded Sequence

1. If \exists a number 'M' $\ni a_n \le M$, $\forall n \in \mathbb{N}$, the Sequence $\langle a_n \rangle$ is said to be bounded above or bounded on the right.

Ex:
$$1, \frac{1}{2}, \frac{1}{3}, \dots$$
 here $a_n \le 1 \ \forall n \in \mathbb{N}$

2. If \exists a number 'm' $\ni a_n \ge m, \forall n \in \mathbb{N}$, the sequence $< a_n >$ is said to be bounded below or bounded on the left.

Ex: 1,2,3,....here
$$a_n \ge 1 \ \forall n \in \mathbb{N}$$

3. A sequence which is bounded above and below is said to be bounded.

Ex: Let
$$a_n = \left(-1\right)^n \left(1 + \frac{1}{n}\right)$$

n	1	2	3	4	******
a_n	-2	3/2	-4/3	5/4	*****

From the above figure (see also table) it can be seen that m = -2 and $M = \frac{3}{2}$.

:. The sequence is bounded.

6.1.7 Limits of a Sequence

A Sequence $\langle a_n \rangle$ is said to tend to limit 'l' when, given any + ve number ' \in ', however small, we can always find an integer 'm' such that $|a_n - l| < \in$, $\forall n \ge m$, and we write $\underset{n \to \infty}{Lt} a_n = l$ or $\langle a_n \to l \rangle$

Ex: If
$$a_n = \frac{n^2 + 1}{2n^2 + 3}$$
 then $\langle a_n \rangle \to \frac{1}{2}$.

6.1.8 Convergent, Divergent and Oscillatory Sequences

- 1. Convergent Sequence: A sequence which tends to a finite limit, say 'l' is called a Convergent Sequence. We say that the sequence converges to 'l'
- 2. Divergent Sequence: A sequence which tends to ±∞ is said to be Divergent (or is said to diverge).
- 3. Oscillatory Sequence: A sequence which neither converges nor diverges, is called an Oscillatory Sequence.

Examples

1. Consider the sequence 2, $\frac{3}{2}$, $\frac{4}{3}$, $\frac{5}{4}$,..... here $a_n = 1 + \frac{1}{n}$

The sequence $\langle a_n \rangle$ is convergent and has the limit 1

$$a_n - 1 = 1 + \frac{1}{n} - 1 = \frac{1}{n}$$
 and $\frac{1}{n} < \epsilon$ whenever $n > \frac{1}{\epsilon}$

Suppose we choose \in = .001, we have $\frac{1}{n}$ < .001 when n > 1000.

2. If
$$a_n = 3 + (-1)^n \frac{1}{n!} < a_n > \text{ converges to } 3$$
.

3. If
$$a_n = n^2 + (-1)^n \cdot n_2 < a_n > \text{diverges}$$
.

4. If
$$a_n = \frac{1}{n} + 2(-1)^n$$
, $\langle a_n \rangle$ oscillates between -2 and 2.

6.2 Infinite Series

6.2.1

If $< u_n >$ is a sequence, then the expression $u_1 + u_2 + u_3 + \dots + u_n + \dots$ is called an infinite series. It is denoted by $\sum_{n=1}^{\infty} u_n$ or simply $\sum u_n$

The sum of the first n terms of the series is denoted by s_n

i.e.,
$$s_n = u_1 + u_2 + u_3 + \dots + u_n$$
; $s_1, s_2, s_3, \dots s_n$ are called *partial sums*.

6.2.2 Convergent, Divergent and Oscillatory Series

Let $\sum u_n$ be an infinite series. As $n \to \infty$, there are three possibilities.

(a) Convergent series: As $n \to \infty$, $s_n \to a$ finite limit, say 's' in which case the series is said to be convergent and 's' is called its sum to infinity. Thus $\underset{n \to \infty}{Lt} s_n = s$ (or) simply $Lts_n = s$

This is also written as $u_1 + u_2 + u_3 + \dots + u_n + \dots + u_n = s$. (or) $\sum_{n=1}^{\infty} u_n = s$. (or) simply $\sum_{n=1}^{\infty} u_n = s$.

- (b) Divergent series: If $s_n \to \infty$ or $-\infty$, the series said to be divergent.
- (c) Oscillatory Series: If s_n does not tend to a unique limit either finite or infinite it is said to be an Oscillatory Series.

Note: Divergent or Oscillatory series are sometimes called non convergent series.

6.2.3 Geometric Series

The series, $1 + x + x^2 + \dots + x^{n-1} + \dots$ is

- (i) Convergent when |x| < 1, and its sum is $\frac{1}{1-x}$
- (ii) Divergent when $x \ge 1$.
- (iii) Oscillates finitely when x = -1 and oscillates infinitely when $x \le -1$. *Proof:*

The given series is a geometric series with common ratio 'x'

$$\therefore s_n = \frac{1 - x^n}{1 - x} \text{ when } x \neq 1 \text{ [By actual division - verify]}$$

(i) When |x| < 1:

$$\underset{n\to\infty}{Lt} s_n = \underset{n\to\infty}{Lt} \left(\frac{1}{1-x} \right) - \underset{n\to\infty}{Lt} \left(\frac{x^n}{1-x} \right) = \frac{1}{1-x}$$

$$\left[\text{ since } x^n \to 0 \text{ as } n \to \infty \right]$$

 \therefore The series converges to $\frac{1}{1-x}$

- (ii) When $x \ge 1$: $s_n = \frac{x^n 1}{x 1}$ and $s_n \to \infty$ as $n \to \infty$
 - ... The series is divergent.
- (iii) When x = -1: when n is even, $s_n \to 0$ and when n is odd, $s_n \to 1$
 - ... The series oscillates finitely.

- (iv) When $x < -1, s_n \to \infty$ or $-\infty$ according as n is odd or even.
 - ... The series oscillates infinitely.

6.2.4 Some Elementary Properties of Infinite Series

- 1. The convergence or divergence of an infinites series is unaltered by an addition or deletion of a finite number of terms from it.
- 2. If some or all the terms of a convergent series of positive terms change their signs, the series will still be convergent.
- 3. Let $\sum u_n$ converge to 's'

Let 'k' be a non – zero fixed number. Then $\sum ku_n$ converges to ks.

Also, if
$$\sum u_n$$
 diverges or oscillates, so does $\sum ku_n$

- 4. Let $\sum u_n$ converge to 'l' and $\sum v_n$ converge to 'm'. Then
 - (i) $\sum (u_n + v_n)$ converges to (l + m) and
 - (ii) $\sum (u_n v_n)$ converges to (l m)

6.2.5 Series of Positive Terms

Consider the series in which all terms beginning from a particular term are +ve. Let the first term from which all terms are +ve be u_1 .

Let $\sum u_n$ be such a convergent series of +ve terms. Then, we observe that the convergence is unaltered by any rearrangement of the terms of the series.

6.2.6 Theorem

If
$$\sum u_n$$
 is convergent, then $\underset{n\to\infty}{Lt} u_n = 0$.

Proof:

$$s_{n} = u_{1} + u_{2} + \dots + u_{n}$$

$$s_{n-1} = u_{1} + u_{2} + \dots + u_{n-1}, \text{ so that, } u_{n} = s_{n} - s_{n-1}$$
Suppose
$$\sum u_{n} = l \text{ then } \underset{n \to \infty}{Lt} s_{n} = l \text{ and } \underset{n \to \infty}{Lt} s_{n-1} = l$$

$$\therefore \qquad \underset{n \to \infty}{Lt} u_{n} = \underset{n \to \infty}{Lt} (s_{n} - s_{n-1}) ; \qquad \underset{n \to \infty}{Lt} s_{n} - \underset{n \to \infty}{Lt} s_{n-1} = l - l = 0$$

Note: The converse of the above theorem need not be always true. This can be Observed from the following examples.

(i) Consider the series,
$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots$$
; $u_n = \frac{1}{n}$, Lt $u_n = 0$
But from p-series test (2.7) it is clear that $\sum \frac{1}{n}$ is divergent.

(ii) Consider the series,
$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} + \dots$$

 $u_n = \frac{1}{n^2}$, Lt $u_n = 0$, by p series test, clearly $\sum \frac{1}{n^2}$ converges,

Note: If $\lim_{n\to\infty} u_n \neq 0$ the series is divergent;

Ex:
$$u_n = \frac{2^n - 1}{2^n}$$
, here $\lim_{n \to \infty} u_n = 1$
 $\lim_{n \to \infty} u_n$ is divergent.

Tests for the Convergence of an Infinite Series

In order to study the nature of any given infinite series of +ve terms regarding convergence or otherwise, a few tests are given below.

6.2.7 P-Series Test

The infinite series,
$$\sum_{n=1}^{\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \dots$$
, is

(i) Convergent when p > 1, and (ii) Divergent when $p \le 1$. [JNTU Dec 2002, A 2003] **Proof:**

Case (i) Let
$$p > 1$$
; $p > 1, 3^{p} > 2^{p}$; $\Rightarrow \frac{1}{3^{p}} < \frac{1}{2^{p}}$

$$\therefore \frac{1}{2^{p}} + \frac{1}{3^{p}} < \frac{1}{2^{p}} + \frac{1}{2^{p}} = \frac{2}{2^{p}}$$
Similarly, $\frac{1}{4^{p}} + \frac{1}{5^{p}} + \frac{1}{6^{p}} + \frac{1}{7^{p}} < \frac{1}{4^{p}} + \frac{1}{4^{p}} + \frac{1}{4^{p}} + \frac{1}{4^{p}} = \frac{4}{4^{p}}$

$$\frac{1}{8^{p}} + \frac{1}{9^{p}} + \dots + \frac{1}{16^{p}} < \frac{8}{8^{p}}, \text{ and so on.}$$

Adding we get

$$\sum \frac{1}{n^{p}} < 1 + \frac{2}{2^{p}} + \frac{4}{4^{p}} + \frac{8}{8^{p}} + \dots$$
i.e.,
$$\sum \frac{1}{n^{p}} < 1 + \frac{1}{2^{(p-1)}} + \frac{1}{2^{2(p-1)}} + \frac{1}{2^{3(p-1)}} + \dots$$

The RHS of the above inequality is an infinite geometric series with common ratio $\frac{1}{2^{p-1}} < 1$ (since p > 1) The sum of this geometric series is finite.

Hence $\sum_{n=1}^{\infty} \frac{1}{n^{\rho}}$ is also finite.

... The given series is convergent.

Case (ii): Let
$$p=1$$
; $\sum \frac{1}{n^p} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$
We have, $\frac{1}{3} + \frac{1}{4} > \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$
 $\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} > \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} = \frac{1}{2}$
 $\frac{1}{9} + \frac{1}{10} + \dots + \frac{1}{16} > \frac{1}{16} + \frac{1}{16} + \dots + \frac{1}{16} = \frac{1}{2}$ and so on $\sum \frac{1}{n^p} = 1 + \left(\frac{1}{2} + \frac{1}{3}\right) + \left(\frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7}\right) + \dots$
 $\ge 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots$

The sum of RHS series is ∞ (since $s_n = 1 + \frac{n-1}{2} = \frac{n+1}{2}$ and $Lt_{n \to \infty} s_n = \infty$)

... The sum of the given series is also ∞ ; ... $\sum_{n=1}^{\infty} \frac{1}{n^p}$ (p=1) diverges.

Case (iii): Let p<1,
$$\sum \frac{1}{n^{p}} = 1 + \frac{1}{2^{p}} + \frac{1}{3^{p}} + \dots$$
Since
$$p < 1, \frac{1}{2^{p}} > \frac{1}{2} \cdot \frac{1}{3^{p}} > \frac{1}{3} \cdot \dots$$
 and so on
$$\sum \frac{1}{n^{p}} > 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$$

From the Case (ii), it follows that the series on the RHS of above inequality is divergent.

$$\sum \frac{1_{\beta}^{*}}{n^{p}} \text{ is divergent, when } P < 1$$

Note: This theorem is often helpful in discussing the nature of a given infinite series.

6.2.8 Comparison Tests

1. Let $\sum u_n$ and $\sum v_n$ be two series of +ve terms and let $\sum v_n$ be convergent. Then $\sum u_n$ converges,

1. If
$$u_n \le v_n, \forall n \in \mathbb{N}$$

2. or
$$\frac{u_n}{v_n} \le k \forall n \in N$$
 where k is > 0 and finite.

3. or
$$\frac{u_n}{v_n} \rightarrow$$
 a finite limit > 0

Proof:

1. Let
$$\sum v_n = l$$
 (finite)
Then, $u_1 + u_2 + \dots + u_n + \dots \le v_1 + v_2 + \dots + v_n + \dots \le l > 0$
Since l is finite it follows that $\sum u_n$ is convergent

- 2. $\frac{u_n}{v_n} \le k \Rightarrow u_n \le kv_n, \forall n \in \mathbb{N}$, since $\sum v_n$ is convergent and k (>0) is finite, $\sum kv_n$ is convergent $\therefore \sum u_n$ is convergent.
 - 3. Since $\underset{n\to\infty}{Lt} \frac{u_n}{v_n}$ is finite, we can find a +ve constant $k, \ni \frac{u_n}{v_n} < k \forall n \in N$
 - \therefore from (2), it follows that $\sum u_n$ is convergent
- 2. Let $\sum u_n$ and $\sum v_n$ be two series of +ve terms and let $\sum v_n$ be divergent. Then $\sum u_n$ diverges,

* 1. If
$$u_n \ge v_n, \forall n \in N$$

or * 2. If
$$\frac{u_n}{v_n} \ge k$$
, $\forall n \in N$ where k is finite and $\neq 0$

or *3. If $Lt \frac{u_n}{v_n}$ is finite and non-zero.

Proof:

1. Let M be a +ve integer however large it may be . Science $\sum v_n$ is divergent, a number m can be found such that

$$v_1 + v_2 + \dots + v_n > M, \forall n > m$$

$$\therefore u_1 + u_2 + \dots + u_n > M, \forall n > m (u_n \ge v_n)$$

$$\therefore \sum u_n$$
 is divergent

2 $u_1 \ge k v_n \forall n$

$$\sum v_n$$
 is divergent $\Rightarrow \sum kv_n$ is divergent

- $\therefore \sum u_n$ is divergent
- 3. Since $\lim_{n\to\infty} \frac{u_n}{v_n}$ is finite, a + ve constant k can be found such that $\frac{u_n}{v_n} > k, \forall n$

(probably except for a finite number of terms)

 \therefore From (2), it follows that $\sum u_n$ is divergent.

Note:

1. In (1) and (2), it is sufficient that the conditions with * hold $\forall n > m \in N$ Alternate form of comparison tests: The above two types of comparison tests 2.8.(1) and 2.8.(2) can be culbed together and stated as follows:

If
$$\sum u_n$$
 and $\sum v_n$ are two series of + ve terms such that $\lim_{n\to\infty} \frac{u_n}{v_n} = k$,

where k is non-zero and finite, then $\sum u_n$ and $\sum v_n$ both converge or both diverge.

Note:

- 1. The above form of comparison tests is mostly used in solving problems.
- 2. In order to apply the test in problems, we require a certain series $\sum v_n$ whose nature is already known i.e., we must know whether $\sum v_n$ is convergent are divergent. For this reason, we call $\sum v_n$ as an 'auxiliary series'.
- 3. In problems, the geometric series (2.3.) and the p-series (2.7) can be conveniently used as 'auxiliary series'.

Solved Examples

6.2.9 Example

Test the convergence of the following series:

(a)
$$\frac{3}{1} + \frac{4}{8} + \frac{5}{27} + \frac{6}{64} + \dots$$
 (b) $\frac{4}{1} + \frac{5}{4} + \frac{6}{9} + \frac{7}{16} + \dots$

(c)
$$\sum_{n=1}^{\infty} \left[\left(n^4 + 1 \right)^{1/4} - n \right]$$

Solution

(a) Step 1:

To find " u_n " the n^{th} term of the given series. The numerators 3, 4, 5, 6.....of the terms, are in AP.

$$n^{th}$$
 term $t_n = 3 + (n-1) \cdot 1 = n+2$

Denominators are
$$1^3, 2^3, 3^3, 4^3, \dots, n^{th}$$
 term = n^3 ; $\therefore u_n = \frac{n+2}{n^3}$

Step 2:

To choose the auxiliary series $\sum v_n$. In u_n , the highest degree of n in the numerator is 1 and that of denominator is 3.

:. we take,
$$v_n = \frac{1}{n^{3-1}} = \frac{1}{n^2}$$

Step 3:

$$\underset{n\to\infty}{Lt} \frac{u_n}{v_n} = \underset{n\to\infty}{Lt} \frac{n+2}{n^3} \times n^2 = \underset{n\to\infty}{Lt} \frac{n+2}{n} = \underset{n\to\infty}{Lt} \left(1 + \frac{2}{n}\right) = 1,$$

which is non-zero and finite.

Step 4:

Conclusion:

$$\underset{n\to\infty}{Lt}\frac{tt_n}{v_n}=1$$

 $\therefore \sum u_n$ and $\sum v_n$ both converge or diverge (by comparison test). But $\sum v_n = \sum \frac{1}{n^2}$ is convergent by *p*-series test (p = 2 > 1); $\therefore \sum u_n$ is convergent.

(b)
$$\frac{4}{1} + \frac{5}{4} + \frac{6}{9} + \frac{7}{16} + \dots$$

Step 1: 4, 5, 6, 7,in AP,
$$t_n = 4 + (n-1)1 = n+3$$
 $u_n = \frac{n+3}{n^2}$

Step 2: Let
$$\sum v_n = \frac{1}{n}$$
 be the auxiliary series

Step 3:
$$\underset{n\to\infty}{Lt} \frac{u_n}{v_n} = \underset{n\to\infty}{Lt} \left(\frac{n+3}{n^2}\right) \times n = \underset{n\to\infty}{Lt} \left(1 + \frac{3}{n}\right) = 1$$
, which is non-zero and finite.

Step 4: \therefore By comparison test, both $\sum u_n$ and $\sum v_n$ converge are diverge together.

But $\sum v_n = \sum \frac{1}{n}$ is divergent, by *p*-series test (p = 1); $\therefore \sum u_n$ is divergent.

(c)
$$\sum_{n=1}^{\infty} \left[\left(n^4 + 1 \right)^{1/4} - n \right]$$

$$= \left\{ n^4 \left(1 + \frac{1}{n^4} \right) \right\} \frac{1}{4} - n = n \left[\left(1 + \frac{1}{n^4} \right) \frac{1}{4} - 1 \right]$$

$$= n \left[1 + \frac{1}{4n^4} + \frac{\frac{1}{4} \left(\frac{1}{4} - 1 \right)}{2!} \cdot \frac{1}{n^8} + \dots - 1 \right] = n \left[\frac{1}{4n^4} - \frac{3}{32n^8} + \dots \right]$$

$$= \frac{1}{4n^3} - \frac{3}{32n^7} + \dots = \frac{1}{n^3} \left[\frac{1}{4} - \frac{3}{32n^4} + \dots \right]$$

Here it will be convenient if we take $v_n = \frac{1}{n^3}$

$$Lt_{n\to\infty} \frac{u_n}{v_n} = Lt_{n\to\infty} \left(\frac{1}{4} - \frac{1}{32n^4} + \dots \right) = \frac{1}{4}, \text{ which is non-zero and finite}$$

.. By comparison test, $\sum u_n$ and $\sum v_n$ both converge or both diverge. But by *p*-series test $\sum v_n = \frac{1}{n^3}$ is convergent. (p = 3 > 1); .. $\sum u_n$ is convergent.

6.2.10 Example

If
$$u_n = \frac{\sqrt[3]{3n^2 + 1}}{\sqrt[4]{2n^3 + 3n + 5}}$$
 show that $\sum u_n$ is divergent

Solution

As n increases, u_n approximates to

$$\frac{\sqrt[3]{3n^2}}{\sqrt[4]{2n^3}} = \frac{3^{\frac{1}{3}}}{2^{\frac{1}{4}}} \times \frac{n^{\frac{2}{3}}}{n^{\frac{3}{4}}} = \frac{3^{\frac{1}{3}}}{2^{\frac{1}{4}}} \cdot \frac{1}{n^{\frac{1}{3}}}$$

$$\therefore \text{ If we take } v_n = \frac{1}{n^{\frac{1}{12}}}, \ \underset{n \to \infty}{Lt} \frac{u_n}{v_n} = \frac{3^{\frac{1}{3}}}{2^{\frac{1}{4}}} \text{ which is finite.}$$

[(or) Hint: Take $v_n = \frac{1}{n^{l_1 - l_2}}$, where l_1 and l_2 are indices of 'n' of the

largest terms in denominator and nominator respectively of u_n . Here

$$v_n = \frac{1}{n^{\frac{3}{4} - \frac{2}{3}}} = \frac{1}{n^{\frac{1}{12}}}$$

By comparison test, $\sum v_n$ and $\sum u_n$ converge or diverge together. But

$$\sum v_n = \sum \frac{1}{n^{\frac{1}{12}}}$$
 is divergent by p – series test (since $p = \frac{1}{12} < 1$)

$$\therefore \sum u_n$$
 is divergent.

6.2.11 Example

Test for the convergence of the series. $\sqrt{\frac{1}{2}} + \sqrt{\frac{2}{3}} + \sqrt{\frac{3}{4}} + \sqrt{\frac{4}{5}} + \dots$

Solution

Here,
$$u_n = \sqrt{\frac{n}{n+1}}$$
;
Take $v_n = \frac{1}{n^{\frac{1}{2} - \frac{1}{2}}} = \frac{1}{n^0} = 1$, $Lt \frac{u_n}{v_n} = Lt \sqrt{\frac{1}{1 + \frac{1}{n}}} = 1$ (finite)

 $\sum v_n$ is divergent by p – series test. (p = 0 < 1)

 \therefore By comparison test, $\sum u_n$ is divergent, (Students are advised to follow the procedure given in ex. 1.2.9(a) and (b) to find " u_n " of the given series.)

6.2.12 Example

Show that
$$1 + \frac{1}{1!} + \frac{1}{12} + \dots + \frac{1}{n!} + \dots$$
 is convergent.

$$u_n = \frac{1}{|n|}$$
 (neglecting 1st term)
= $\frac{1}{1.2.3....n} < \frac{1}{1.2.2.2....n-1 times} = \frac{1}{(2^{n-1})}$

$$\therefore \sum u_n < 1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots$$

which is an infinite geometric series with common ratio $\frac{1}{2}$ < 1

 $\therefore \sum \frac{1}{2^{n-1}}$ is convergent. (1.2.3(a)). Hence $\sum u_n$ is convergent.

6.2.13 Example

Test for the convergence of the series, $\frac{1}{1.2.3} + \frac{1}{2.3.4} + \frac{1}{3.4.5} + \dots$

Solution

$$u_n = \frac{1}{n(n+1)(n+2)};$$
Take $v_n = \frac{1}{n^3}$

$$\lim_{n \to \infty} \frac{Lt}{v_n} = \lim_{n \to \infty} \frac{n^3}{n^3 \left(1 + \frac{1}{n}\right) \left(1 + \frac{2}{n}\right)} = 1 \text{ (finite)}$$

... By comparison test, $\sum u_n$, and $\sum v_n$ converge or diverge together. But by p-series test, $\sum v_n = \sum \frac{1}{n^3}$ is convergent (p = 3 > 1); ... $\sum u_n$ is convergent.

6.2.14 Example

If $u_n = \sqrt{n^4 + 1} - \sqrt{n^4 - 1}$, show that $\sum u_n$ is convergent. [INTU, 200s]

$$u_{n} = n^{2} \left(1 + \frac{1}{n^{4}} \right)^{\frac{1}{2}} - n^{2} \left(1 - \frac{1}{n^{4}} \right)^{\frac{1}{2}}$$

$$= n^{2} \left[\left(1 + \frac{1}{2n^{4}} - \frac{1}{8n^{8}} + \frac{1}{16n^{12}} - \dots \right) - \left(1 - \frac{1}{2n^{4}} - \frac{1}{8n^{8}} - \frac{1}{16n^{12}} - \dots \right) \right]$$

$$= n^{2} \left[\frac{1}{n^{4}} + \frac{1}{8n^{12}} + \dots \right] = \frac{1}{n^{2}} \left[1 + \frac{1}{8n^{10}} + \dots \right]$$
Take $v_{n} = \frac{1}{n^{2}}$, hence $\underset{n \to \infty}{Lt} \frac{u_{n}}{v_{n}} = 1$

... By comparison test, $\sum u_n$ and $\sum v_n$ converge or diverge together. But $\sum v_n = \frac{1}{n^2}$ is convergent by p-series test (p=2>1) ... $\sum u_n$ is convergent.

6. 2.15 Example

Test the series $\frac{1}{1+x} + \frac{1}{2+x} + \frac{1}{3+x} + \dots$ for convergence.

Solution

Take
$$u_n = \frac{1}{n+x}$$
;
then $\frac{u_n}{v_n} = \frac{n}{n+x} = \frac{1}{1+\frac{x}{n}}$

$$Lt_{n\to\infty} \left(\frac{1}{1+\frac{x}{n}}\right) = 1; \sum v_n = \sum \frac{1}{n} \text{ is divergent by } p\text{-series test } (p=1)$$

 \therefore By comparison test, $\sum u_n$ is divergent.

6.2.16 Example

Show that $\sum_{n=1}^{\infty} \sin\left(\frac{1}{n}\right)$ is divergent.

Solution

$$u_n = \sin\left(\frac{1}{n}\right); \quad \text{Take} \quad v_n = \frac{1}{n}$$

$$Lt \frac{u_n}{v_n} = Lt \frac{\sin\left(\frac{1}{n}\right)}{\left(\frac{1}{n}\right)} = Lt \frac{\sin t}{t} \text{ (where } t = \frac{1}{n}) = 1$$

 $\therefore \sum u_n, \sum v_n \text{ both converge or diverge . But } \sum v_n = \sum \frac{1}{n} \text{ is divergent}$ $(p \text{-series test}, p = 1); \therefore \sum u_n \text{ is divergent.}$

6.2.17 Example

Test the series $\sum \sin^{-1} \left(\frac{1}{n} \right)$ for convergence.

Solution

$$u_{n} = \sin^{-1} \frac{1}{n};$$

$$v_{n} = \frac{1}{n}$$

$$L_{t} \frac{u_{n}}{v_{n}} = L_{t} \frac{\sin^{-1}(\frac{1}{n})}{\left(\frac{1}{n}\right)}; = L_{t} \left(\frac{\theta}{\sin \theta}\right) = 1 \left(Taking \sin^{-1} \frac{1}{n} = \theta\right)$$

But $\sum v_n$ is divergent. Hence $\sum u_n$ is divergent.

6.2.18 Example

Show that the series $1 + \frac{1}{2^2} + \frac{2^2}{3^3} + \frac{3^3}{4^3} + ...$ is divergent.

Solution

Neglecting the first term, the series is $1 + \frac{1}{2^2} + \frac{2^2}{3^3} + \frac{3^3}{4^4} + \dots$. Therefore

$$u_{n} = \frac{n^{n}}{(n+1)^{n+1}} = \frac{n^{n}}{(n+1)(n+1)} n = \frac{n^{n}}{n\left(1+\frac{1}{n}\right)n^{n}\left(1+\frac{1}{n}\right)}$$

$$= \frac{1}{n\left(1+\frac{1}{n}\right)\left(1+\frac{1}{n}\right)}; \quad \text{Take} \quad v_{n} = \frac{1}{n}$$

$$\therefore \qquad Lt \frac{u_{n}}{v_{n}} = Lt \frac{1}{n+1} \frac{1}{n\left(1+\frac{1}{n}\right)^{n}} = Lt \frac{1}{n+1} \frac{1}{n} = \frac{1}{n}$$

which is finite and $\sum v_n = \sum \frac{1}{n}$ is divergent by p -series test (p = 1)

 $\sum u_n$ is divergent.

6.2.19 Example

Show that the series $\frac{1}{1.2.3} + \frac{3}{2.3.4} + \frac{5}{3.4.5} + \dots \infty$ is convergent.

Solution

$$\frac{1}{1.2.3} + \frac{3}{2.3.4} + \frac{5}{3.4.5} + \dots \infty$$

$$n^{th} \text{ term} = u_n = \frac{2n-1}{n(n+1)(n+2)} = \frac{1}{n^2} \cdot \frac{\left(2 - \frac{1}{n}\right)}{\left(1 + \frac{1}{n}\right)\left(1 + \frac{2}{n}\right)}$$
Take
$$v_n = \frac{1}{n^2}$$

$$Lt \frac{u_n}{v_n} = Lt \frac{1}{n^2} \frac{\left(2 - \frac{1}{n}\right)}{\left(1 + \frac{1}{n}\right)\left(1 + \frac{2}{n}\right)} \div \left(\frac{1}{n^2}\right)$$

$$Lt \frac{u_n}{n \to \infty} \frac{-Lt}{v_n} \frac{-Lt}{n^2} \frac{1}{(1+\frac{1}{n})(1+\frac{2}{n})} \left(\frac{1}{n^2}\right)$$

$$Lt \frac{u_n}{n \to \infty} = \frac{2-0}{(1+0)(1+0)} = 2 \text{ which is finite and non-zero}$$

 \therefore By comparison test $\sum u_n$ and $\sum v_n$ converge or diverge together

But $\sum v_n = \sum \frac{1}{n^2}$ is convergent. $\therefore \sum u_n$ is also convergent.

6.2.20 Example

Test whether the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} + \sqrt{n+1}}$ is convergent

The given series is
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} + \sqrt{n+1}}$$

$$u_n = \frac{1}{\sqrt{n} + \sqrt{n+1}}$$

$$= \frac{\sqrt{n+1} - \sqrt{n}}{\left(\sqrt{n} + \sqrt{n+1}\right)\left(\sqrt{n+1} - \sqrt{n}\right)} = \sqrt{n+1} - \sqrt{n}$$

$$u_{n} = \sqrt{n} \left\{ \left(1 + \frac{1}{n} \right)^{\frac{1}{2}} - 1 \right\} = \sqrt{n} \left\{ \left(1 + \frac{1}{2n} - \frac{1}{8n^{2}} + \dots \right) - 1 \right\}$$

$$u_{n} = \sqrt{n} \left\{ \frac{1}{2n} - \frac{1}{8n^{2}} + \dots \right\} = \sqrt{n} \left\{ \frac{1}{2} - \frac{1}{8n} + \dots \right\}$$

$$v_{n} = \frac{1}{\sqrt{n}}$$

$$\lim_{n \to \infty} \frac{u_{n}}{v_{n}} = \lim_{n \to \infty} \frac{1}{\sqrt{n}} \left\{ \frac{1}{2} - \frac{2}{8n} + \dots \right\} \div \left(\frac{1}{\sqrt{n}} \right) = \frac{1}{2}$$

which is finite and non-zero

Using comparison test $\sum u_n$ and $\sum v_n$ converge or diverge together.

But
$$\sum v_n = \sum \frac{1}{\sqrt{n}}$$
 is divergent (since $p = \frac{1}{2}$)
 $\therefore \sum u_n$ is also divergent.

6.2.21 Example

Test for convergence $\sum_{n=1}^{\infty} \left[\sqrt[3]{n^3 + 1} - n \right]$ [JNTU 1996, 2003, 2003s]

$$n^{th} \text{ term } u_n = n \left[\left(1 + \frac{1}{n^3} \right)^{\frac{1}{3}} - 1 \right] = n \left[1 + \frac{1}{3n^3} + \frac{\frac{1}{3} \left(\frac{1}{3} - 1 \right)}{1.2} \cdot \frac{1}{n^6} + \dots - 1 \right]$$

$$= \frac{1}{3n^2} - \frac{1}{9n^5} + \dots = \frac{1}{n^2} \left(\frac{1}{3} - \frac{1}{9n^3} + \dots \right); \text{ Let } v_n = \frac{1}{n^2}$$
Then
$$Lt \frac{u_n}{v_n} = Lt \left(\frac{1}{3} - \frac{1}{9n^3} + \dots \right) = \frac{1}{3} \neq 0$$

 \therefore By comparison test, $\sum u_n$ and $\sum v_n$ both converge or diverge.

But $\sum v_n$ is convergent by p -series test (since p=2>1) $\therefore \sum u_n$ is convergent.

6.2.22 Example

Show that the series, $\frac{2}{1^p} + \frac{3}{2^p} + \frac{4}{3^p} + \dots$ is convergent for p > 2 and divergent for $p \le 2$

Solution

$$n^{th}$$
 term of the given series = $u_n = \frac{n+1}{n^p} = \frac{n(1+\frac{1}{n})}{n^p} = \frac{(1+\frac{1}{n})}{n^{p-1}}$

Let us take
$$v_n = \frac{1}{n^{n-1}}$$
; Lt $\frac{u_n}{v_n} = 1 \neq 0$;

 $\therefore \sum u_n$ and $\sum v_n$ both converge or diverge by comparison test.

But $\sum v_n = \sum \frac{1}{n^{p-1}}$ converges when p - 1 > 1; i.e., p > 2 and diverges when $p - 1 \le 1$ i.e. $p \le 2$; Hence the result.

6.2.23 Example

Test for convergence
$$\sum_{n=1}^{\infty} \left(\frac{2^n + 3}{3^n + 1} \right)^{\frac{1}{2}}$$

Solution

$$u_n = \left[\frac{2^n \left(1 + \frac{3}{2^n}\right)}{3^n \left(1 + \frac{1}{3^n}\right)}\right]^{\frac{1}{2}};$$

Take

$$v_n = \sqrt{\frac{2^n}{3^n}}; \frac{u_n}{v_n} = \left(\frac{1+\frac{3}{2^n}}{1+\frac{1}{3^n}}\right)^{\frac{1}{2}}$$

Lt $\frac{u_n}{v_n} = 1 \neq 0$; \therefore By comparison test, $\sum u_n$ and $\sum v_n$ behave the same way.

But $\sum v_n = \sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^{n/2} = \sqrt{\frac{2}{3}} + \frac{2}{3} + \left(\frac{2}{3}\right)^{3/2} + \dots$, which is a geometric series with

common ratio $\sqrt{\frac{2}{3}}$ (<1) :. $\sum v_n$ is convergent. Hence $\sum u_n$ is convergent.

6.2.24 Example

Test for convergence of the series, $\frac{1}{4.7.10} + \frac{4}{7.10.13} + \frac{9}{10.13.16} + \dots$

and 4, 7, 10,.....is an A . P;
$$t_n = 4 + (n-1)3 = 3n+1$$

7, 10, 13,.....is an A . P; $t_n = 7 + (n-1)3 = 3n+4$
10, 13, 16,.....is an A. P; $t_n = 10 + (n-1)3 = 3n+7$

$$u_n = \frac{n^2}{(3n+1)(3n+4)(3n+7)} = \frac{n^2}{3n(1+\frac{1}{3n}).3n(1+\frac{4}{3n}).3n(1+\frac{7}{3n})}$$
$$= \frac{1}{27n(1+\frac{1}{3n})(1+\frac{4}{3n})(1+\frac{7}{3n})};$$

Taking $v_n = \frac{1}{n}$, we get

Lt $\frac{u_n}{v_n} = \frac{1}{27} \neq 0$; \therefore By comparison test, both $\sum u_n$ and $\sum v_n$ behave in the same manner. But by p-series test, $\sum v_n$ is divergent, since p = 1. \therefore $\sum u_n$ is divergent.

6.2.25 Example

Test for convergence $\sum \frac{\sqrt{2n^2 - 5n + 1}}{4n^3 - 7n^2 + 2}$

Solution

$$n^{th}$$
 term of the given series = $u_n = \frac{\sqrt{2n^2 - 5n + 1}}{4n^3 - 7n^2 + 2}$

Let
$$v_n = \frac{1}{n^2}$$

$$Lt_{n\to\infty} \frac{tt_n}{v_n} = Lt_n \cdot \left[\frac{n\sqrt{2 - \frac{5}{n} + \frac{1}{n^2}}}{n^3 \left(4 - \frac{7}{n} + \frac{2}{n^3}\right)} \times \frac{n^2}{1} \right]$$
$$= Lt_{n\to\infty} \left[\frac{\sqrt{2 - \frac{5}{n} + \frac{1}{n^2}}}{\left(4 - \frac{7}{n} + \frac{2}{n^3}\right)} \right] = \frac{\sqrt{2}}{4} \neq 0$$

... By comparison test, $\sum u_n$ and $\sum v_n$ both converge or diverge. But $\sum v_n$ is convergent, [p series test -p = 2 > 1] ... $\sum u_n$ is convergent.

6.2.26 Example

Test the series
$$\sum u_n$$
, whose n^{th} term is $\frac{1}{(4n^2-i)}$

Solution

$$u_n = \frac{1}{\left(4n^2 - i\right)};$$

Let

$$v_n = \frac{1}{n^2}, \ \underset{n \to \infty}{Lt} \frac{u_n}{v_n} = \underset{n \to \infty}{Lt} \left[\frac{n^2}{n^2 \left(4 - i \frac{1}{n^2} \right)} \right] = \frac{1}{4} \neq 0$$

 $\therefore \sum u_n$ and $\sum v_n$ both converge or diverge by comparison test. But $\sum v_n$ is convergent by p-series test (p=2>1); $\therefore \sum u_n$ is convergent.

6.2.27 Example

If
$$u_n = \left(\frac{1}{n}\right) \cdot \sin\left(\frac{1}{n}\right)$$
, show that $\sum u_n$ is convergent.

Solution

Let $v_n = \frac{1}{n^2}$, so that $\sum v_n$ is convergent by p-series test.

$$\underset{n\to\infty}{Lt} \left(\frac{u_n}{v_n} \right) = \underset{n\to\infty}{Lt} \frac{\sin\left(\frac{1}{n}\right)}{\left(\frac{1}{n}\right)} = \underset{n\to\infty}{Lt} \left(\frac{\sin t}{t} \right)$$

where
$$t = 1/n$$
, Thus $\underset{n \to \infty}{Lt} \left(\frac{u_n}{v_n} \right) = 1 \neq 0$

 \therefore By comparison test, $\sum u_n$ is convergent.

6.2.28 Example

Test for convergence $\sum \frac{1}{\sqrt{n}} \tan(\frac{1}{n})$

Take
$$v_n = \frac{1}{n^{3/2}}$$
; $Lt \left[\frac{u_n}{v_n} \right] = 1 \neq 0$ (as in above example)

Hence by comparison test, $\sum u_n$ converges as $\sum v_n$ converges.

6.2.29 Example

Show that
$$\sum_{n=1}^{\infty} \sin^2\left(\frac{1}{n}\right)$$
 is convergent.

Solution

Let
$$u_n = \sin^2\left(\frac{1}{n}\right)$$
; Take $v_n = \frac{1}{n^2}$

$$Lt \left(\frac{u_n}{v_n}\right) = Lt \left[\frac{\sin\left(\frac{1}{n}\right)}{\frac{1}{n}}\right]^2 = Lt \left(\frac{\sin t}{t}\right)^2$$
where $t = \frac{1}{n}$; $Lt \left(\frac{u_n}{v}\right) = 1^2 = 1 \neq 0$

 \therefore By comparison test, $\sum u_n$ and $\sum v_n$ behave the same way.

But $\sum v_n$ is convergent by p-series test, since p = 2 > 1; $\therefore \sum u_n$ is convergent.

6.2.30 Example:

Show that
$$\sum_{n=2}^{\infty} \frac{1}{\log(n^n)}$$
 is divergent.

Solution

$$u_n = \frac{1}{n \log n}; \log 2 < 1 \Rightarrow 2 \log 2 < 2 \Rightarrow \frac{1}{2 \log 2} > \frac{1}{2};$$
Similarly
$$\frac{1}{3 \log 3} > \frac{1}{3}, \dots, \frac{1}{n \log n} > \frac{1}{n}, n \in \mathbb{N}$$

$$\therefore \qquad \sum \frac{1}{n \log n} > \sum \frac{1}{n}; \text{ But } \sum \frac{1}{n} \text{ is divergent by p-series test.}$$

By comparison test, given series is divergent. [If $\sum v_n$ is divergent and $u_n \ge v_n \forall n$ then $\sum u_n$ is divergent.]

(Note: This problem can also be done using Cauchy's integral Test. See ex1.6.2)

6.2.31 Example

Test the convergence of the series $\sum_{n=1}^{\infty} (c+n)^{-r} (d+n)^{-s}$, where c, d, r, s are all +ve.

The
$$n^{th}$$
 term of the series $= u_n = \frac{1}{(c+n)^r (d+n)^s}$.

Let
$$v_n = \frac{1}{n^{r+s}} \text{ Then } \frac{u_n}{v_n} = \frac{n^{r+s}}{n^r \left(1 + \frac{c}{n}\right)^r n^s \left(1 + \frac{d}{n}\right)^s} = \frac{1}{\left(1 + \frac{c}{n}\right)^r \left(1 + \frac{d}{n}\right)^s}$$

Lt $\frac{u_n}{v_n} = 1 \neq 0$, $\therefore \sum u_n$ and $\sum v_n$ both converge are diverge, by comparison test

But by p-series test, $\sum v_n$ converges if (r+s) > 1 and diverges if $(r+s) \le 1$ $\therefore \sum u_n$ converges if (r+s) > 1 and diverges if $(r+s) \le 1$.

6.2.32 Example

Show that $\sum_{1}^{\infty} n^{-(1+\frac{1}{n})}$ is divergent.

Solution

$$u_n = n^{-\left(1+\frac{1}{n}\right)} = \frac{1}{n \cdot n^{\frac{1}{n}}}$$
Take
$$v_n = \frac{1}{n} \; ; \quad \underbrace{Lt}_{n \to \infty} \frac{u_n}{v_n} = \underbrace{Lt}_{n \to \infty} \frac{1}{n^{\frac{1}{n}}} = 1 \neq 0$$
For let
$$\underbrace{Lt}_{n \to \infty} \frac{1}{n^{\frac{1}{n}}} = y \quad \text{say; log } y = \underbrace{Lt}_{n \to \infty} - \frac{1}{n} \cdot \log n = -\underbrace{Lt}_{n \to \infty} \frac{n}{1} = 0$$

$$\therefore \qquad y = e^0 = 1 \qquad \left(\left(\frac{\infty}{\infty}\right) \text{ using L Hospitals rule}\right)$$

By comparison test both $\sum u_n$ and $\sum v_n$ converge or diverge. But *p*-series test, $\sum v_n$ diverges (since p = 1); Hence $\sum u_n$ diverges.

6.2.33 Example

Test for convergence the series $\sum_{n=1}^{\infty} \frac{(n+a)^r}{(n+b)^p (n+c)^q}$, a, b, c, p, q, r, being +ve.

$$u_{n} = \frac{(n+a)^{r}}{(n+b)^{p}(n+c)q} = \frac{n^{r}(1+a_{n}^{r})^{r}}{n^{p}(1+b_{n}^{r})^{p}n^{q}(1+c_{n}^{r})^{q}}$$

$$= \frac{1}{n^{p+q-r}} \cdot \frac{(1+a_{n}^{r})^{r}}{(1+b_{n}^{r})^{p}(1+c_{n}^{r})^{q}};$$

Take
$$v_n = \frac{1}{n^{p+q-r}}$$
; $Lt_{n\to\infty} \frac{u_n}{v_n} = 1 \neq 0$;

Applying comparison test both $\sum u_n$ and $\sum v_n$ converge or diverge.

But by p-series test, $\sum v_n$ converges if (p+q-r) > 1 and diverges if $(p+q-r) \le 1$.

Hence $\sum u_n$ converges if (p+q-r) > 1 and diverges if $(p+q-r) \le 1$.

6.2.34 Example

Test the convergence of the following series whose n^{th} terms are:

(a)
$$\frac{(3n+4)}{(2n+1)(2n+3)(2n+5)}$$
; (b) $\tan \frac{1}{n}$;

(c)
$$\left(\frac{1}{n^2}\right)\left(\frac{n+1}{n+3}\right)^n$$
 (d)
$$\frac{1}{\left(3^n+5^n\right)};$$

(e)
$$\frac{1}{n \cdot 3^n}$$

Solution

(a) Hint: Take $v_n = \frac{1}{n^2}$; $\sum v_n$ is convergent; $Lt \left(\frac{u_n}{v_n}\right) = \frac{3}{8} \neq 0$ (Verify)

Apply comparison test:

 $\sum u_n$ is convergent [the student is advised to work out this problem fully]

(b) Proceed as in 1.2.16; $\sum u_n$ is convergent.

(c) Hint: Take
$$v_n = \frac{1}{n^2}$$
; $Lt \left(\frac{u_n}{v_n}\right) = Lt \frac{\left(1 + \frac{y_n}{v_n}\right)^n}{\left(1 + \frac{3}{y_n}\right)^n} = \frac{e}{e^3} = \frac{1}{e^2} \neq 0$

 $v_n = \frac{1}{n^2}$ is convergent (work out completely for yourself)

(d)
$$u_n = \frac{1}{3^n + 5^n} = \frac{1}{5^n} \cdot \frac{1}{\left[1 + \left(\frac{3}{5}\right)^n\right]}$$
; Take $v_n = \frac{1}{5^n}$; $Lt \left(\frac{u_n}{v_n}\right) = 1 \neq 0$

 $\sum u_n$ and $\sum v_n$ behave the same way. But $\sum v_n$ is convergent since it is a geometric series with common ratio $\frac{1}{5} < 1$

 $\therefore \sum u_n$ is convergent by comparison test .

(e)
$$\frac{1}{n \cdot 3^n} \le \frac{1}{3^n}, \forall n \in \mathbb{N}$$
, since $n \cdot 3^n \ge 3^n$;

$$\therefore \sum \frac{1}{n \cdot 3^n} \le \sum \frac{1}{3^n}$$
(1)

The series on the R.H.S of (1) is convergent since it is geometric series with $r = \frac{1}{3} < 1$.

 \therefore By comparison test $\sum \frac{1}{n \cdot 3^n}$ is convergent.

6.2.35 Example

Test the convergence of the following series.

(a)
$$1 + \frac{1+2}{1^2+2^2} + \frac{1+2+3}{1^2+2^2+3^2} + \frac{1+2+3+4}{1^2+2^2+3^2+4^2} + \dots$$

(b)
$$1 + \frac{1^2 + 2^2}{1^3 + 2^3} + \frac{1^2 + 2^2 + 3^2}{1^3 + 2^3 + 3^3} + \frac{1^2 + 2^2 + 3^2 + 4^2}{1^3 + 2^3 + 3^3 + 4^3} + \dots$$

Solution

(a)
$$u_n = \frac{1+2+3+....+n}{1^2+2^2+3^2+....n^2} = \frac{n\frac{(n+1)}{2}}{n(n+1)\frac{(2n+1)}{6}} = \frac{3}{(2n+1)}$$
Take $v_n = \frac{1}{n}$; $\underset{n \to \infty}{Lt} \frac{u_n}{v_n} = \underset{n \to \infty}{Lt} \left(\frac{3n}{2n+1}\right) = \frac{3}{2} \neq 0$

 $\sum u_n$ and $\sum v_n$ behave alike by comparison test.

But $\sum v_n$ is diverges by p-series test. Hence $\sum u_n$ is divergent.

(b)
$$u_n = \frac{1^2 + 2^2 + \dots + n^2}{1^3 + 2^3 + \dots + n^3} = \frac{n(n+1)\frac{(2n+1)}{6}}{n^2 \frac{(n+1)^2}{4}} = \frac{2(2n+1)}{3n(n+1)}$$

[Ans: convergent]

Hint: Take $v_n = \frac{1}{n}$ and proceed as in (a) and show that $\sum u_n$ is divergent.

Exercise 6(a)

1. Test for convergence the infinite series whose n^{th} term are:

[Ans: divergent]

(a)
$$\frac{1}{n-\sqrt{n}}$$

(b) $\frac{\sqrt{n+1}-\sqrt{n}}{n}$

[Ans: convergent]

(c) $\sqrt{n^2+1}-n$

[Ans: divergent]

(d) $\frac{\sqrt{n}}{n^2-1}$

[Ans: convergent]

(e) $\sqrt{n^3+1}-\sqrt{n^3}$

[Ans: divergent]

(f) $\frac{1}{\sqrt{n(n+1)}}$

[Ans: divergent]

(g) $\frac{\sqrt{n}}{n^2+1}$

[Ans: convergent]

(h) $\frac{2n^3+5}{4n^5+1}$

[Ans: convergent]

2. Determine whether the following series are convergent or divergent.

(a)
$$\frac{1}{1+3^{-1}} + \frac{2}{1+3^{-2}} + \frac{\cdot 3}{1+3^{-3}} + \dots$$
 [Ans: divergent]
(b) $\frac{12}{1^3} + \frac{22}{2^3} + \frac{32}{3^3} + \dots + \frac{2+10n}{n^3} + \dots$ [Ans: convergent]
(c) $\frac{1}{\sqrt{1}+\sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{4}} + \dots$ [Ans: divergent]
(d) $\frac{2}{3^2} + \frac{3}{4^2} + \frac{4}{5^2} + \dots$ [Ans: divergent]
(e) $\frac{1}{1^2} + \frac{1}{2^3} + \frac{1}{3^4} + \dots$ [Ans: convergent]

(f)
$$\sum_{n=1}^{\infty} \frac{\sqrt[3]{n^2 + 1}}{\sqrt[4]{4n^2 + 2n + 3}}$$
 [Ans: divergent]

(g)
$$\sum_{n=1}^{\infty} \left(8^{\frac{1}{2}n} - 1 \right) \dots$$
 [Ans: divergent]

(i)
$$\frac{1}{13} + \frac{2}{35} + \frac{3}{57} + \dots$$
 [Ans: divergent]

6.3

6.3.1 D' Alembert's Ratio Test

Let (i)
$$\sum u_n$$
 be a series of +ve terms and (ii) $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = k (\ge 0)$

Then the series $\sum u_n$ is (i) convergent if k < 1 and (ii) divergent if k > 1.

Proof: Case (i):
$$\underset{n\to\infty}{Lt} \frac{u_{n+1}}{u_n} = k (<1)$$

From the definition of a limit, it follows that

$$\exists m > 0 \text{ and } l(0 < l < 1) \ni \frac{u_{n+1}}{u_n} < l \forall n \ge m$$

i.e.,
$$\frac{u_{m+1}}{u_m} < l$$
, $\frac{u_{m+2}}{u_{m+1}} < l$,......

$$u_m + u_{m+1} + u_{m+2} + \dots = u_m \left[1 + \frac{u_{m+1}}{u_m} + \frac{u_{m+2}}{u_m} + \dots \right]$$

$$= u_m = \left[1 + \frac{u_{m+1}}{u_m} + \frac{u_{m+2}}{u_{m+1}} \cdot \frac{u_{m+1}}{u_m} + \dots \right]$$

$$< u_m \left(1 + l + l^2 + \dots \right) = u_m \cdot \frac{1}{1 - l} (l < 1)$$

But $u_m \cdot \frac{1}{1-l}$ is a finite quantity $\therefore \sum_{n=m}^{\infty} u_n$ is convergent

By adding a finite number of terms $u_1 + u_2 + \dots + u_{m-1}$, the convergence of the series is unaltered. $\sum_{n=m}^{\infty} u_n$ is convergent.

Case (ii)
$$Lt_{n\to\infty} \frac{u_{n+1}}{u_n} = k > 1$$

There may be some finite number of terms in the beginning which do not satisfy the condition $\frac{u_{n+1}}{u_n} \ge 1$. In such a case we can find a number 'm' $\ni \frac{u_{n+1}}{u_n} \ge 1$, $\forall n \ge m$

Omitting the first 'm' terms, if we write the series as $u_1 + u_2 + u_3 + \dots$, we have

$$\frac{u_2}{u_1} \ge 1, \frac{u_3}{u_2} \ge 1, \frac{u_4}{u_3} \ge 1 \quad \text{............ and so on}$$

$$\therefore \qquad u_1 + u_2 + \dots + u_n = u_1 \left(1 + \frac{u_2}{u_1} + \frac{u_3}{u_2} \cdot \frac{u_2}{u_1} + \dots \right) \quad \text{(to } n \text{ terms)}$$

$$\ge u_n \ (1 + 1 + 1 \cdot 1 + \dots + t_n \text{ terms})$$

$$= nu_1$$

$$Lt \sum_{n \to \infty}^n u_n \ge Lt \quad n \cdot u_1 \quad \text{which } \to \infty \; ; \; \therefore \; \sum u_n \quad \text{is divergent}$$

6.3.2

Note: 1

The ratio test fails when k = 1. As an example, consider the series, $\sum_{n=1}^{\infty} \frac{1}{n^p}$

Here
$$Lt \frac{u_{n+1}}{u_n} = Lt \left(\frac{n}{n+1}\right)^p = Lt \left(\frac{1}{1+\frac{1}{n}}\right)^p = 1$$

i.e., k = 1 for all values of p,

But the series is convergent if p > 1 and divergent if $p \le 1$, which shows that when k = 1, the series may converge or diverge and hence the test fails.

Note: 2 Ratio test can also be stated as follows:

If $\sum u_n$ is series of +ve terms and if $\lim_{n\to\infty} \frac{u_n}{u_{n+1}} = k$, then $\sum u_n$ is convergent

If $k \ge 1$ and divergent if $k \le 1$ (the test fails when k = 1).

Solved Examples

Tests for convergence of Series

6.3.3 Example

(a)
$$\frac{x}{12} + \frac{x^2}{23} + \frac{x^3}{34} + \dots$$

Solution

$$u_{n} = \frac{x^{n}}{n(n+1)}; u_{n+1} = \frac{x^{n+1}}{(n+1)(n+2)},$$

$$\frac{u_{n+1}}{u_{n}} = \frac{x^{n+1}}{(n+1)(n+2)}. \frac{n(n+1)}{x^{n}} = \frac{1}{\left(1+\frac{2}{n}\right)}x.$$

Therefore $Lt \frac{u_{n+1}}{u_n} = x$

... By ratio test $\sum u_n$ is convergent When |x| < 1 and divergent when |x| > 1;

When
$$x = 1$$
, $u_n = \frac{1}{n^2(1+1/n)}$; Take $v_n = \frac{1}{n^2}$; $Lt \frac{u_n}{v_n} = 1$

 \therefore By comparison test $\sum u_n$ is convergent.

Hence $\sum u_n$ is convergent when $|x| \le 1$ and divergent when |x| > 11+3x+5x²+7x³+....

Solution

(b)

$$u_{n} = (2n-1)x^{n-1}; u_{n+1} = (2n+1)x^{n}$$

$$\underset{n\to\infty}{Lt} \frac{u_{n+1}}{u_{n}} = \underset{n\to\infty}{Lt} \left(\frac{2n+1}{2n-1}\right)x = x$$

 \therefore By ratio test $\sum u_n$ is convergent when |x| < 1 and divergent when |x| > 1

When x = 1; $u_n = 2n - 1$; $\lim_{n \to \infty} u_n = \infty$; $\lim_{n \to \infty} u_n$ is divergent.

Hence $\sum u_n$ is convergent when |x| < 1 and divergent when $|x| \ge 1$

(c)
$$\sum_{n=1}^{\infty} \frac{x^n}{n^2 + 1} \dots$$

Solution

 $u_n = \frac{x^n}{n^2 + 1}$; $u_{n+1} = \frac{x^{n+1}}{(n+1)^2 + 1}$

Hence

$$\frac{u_{n+1}}{u_n} = \left(\frac{n^2 + 1}{n^2 + 2n + 2}\right) x$$

$$Lt_{n\to\infty} \frac{u_{n+1}}{u_n} = Lt_{n\to\infty} \left[\frac{n^2 \left(1 + \frac{1}{n^2}\right)}{n^2 \left(1 + \frac{2}{n} + \frac{2}{n^2}\right)} \right] (x) = x$$

 \therefore By ratio test, $\sum u_n$ is convergent when |x| < 1 and divergent when |x| > 1

When
$$x = 1: u_n = \frac{1}{n^2 + 1}$$
; Take $v_n = \frac{1}{n^2}$

 \therefore By comparison test, $\sum u_n$ is convergent when $|x| \le 1$ and divergent when |x| > 1

6.3.4 Example

Test the series $\sum_{n\to\infty}^{\infty} \left(\frac{n^2-1}{n^2+1}\right) x^n, x>0$ for convergence.

Solution

$$u_{n} = \left(\frac{n^{2} - 1}{n^{2} + 1}\right) x^{n}; u_{n+1} = \left[\frac{(n+1)^{2} - 1}{(n+1)^{2} + 1}\right] x^{n+1}$$

$$Lt_{n \to \infty} \frac{u_{n+1}}{u_{n}} = Lt_{n \to \infty} \left[\left(\frac{n^{2} + 2n}{n^{2} + 2n + 2}\right) \frac{(n^{2} + 1)}{(n^{2} - 1)}\right] x$$

$$= Lt_{n \to \infty} \left[\frac{n^{4} (1 + 2/n)(1 + 1/n)}{n^{4} (1 + 2/n + 2/n^{2})(1 - 1/n)}\right] = x$$

 \therefore By ratio test, $\sum u_n$ is convergent when x < 1 and divergent when x > 1 when x = 1.

$$u_n = \frac{n^2 - 1}{n^2 + 1}$$
 Take $v_n = \frac{1}{n^0}$

Applying p-series and comparison test, it can be seen that $\sum u_n$ is divergent when x = 1.

 $\therefore \sum u_n$ is convergent when x < 1 and divergent $x \ge 1$

6.3.5 Example

Show that the series $1 + \frac{2^p}{12} + \frac{3^p}{13} + \frac{4^p}{14} + \dots$, is convergent for all values of p.

Solution

$$u_{n} = \frac{n^{p}}{\underline{n}}; u_{n+1} = \frac{(n+1)^{p}}{\underline{n+1}}$$

$$Lt \frac{u_{n+1}}{u_{n}} = Lt \left[\frac{(n+1)^{p}}{\underline{n+1}} \times \frac{\underline{n}}{n^{p}} \right] = Lt \left\{ \frac{1}{(n+1)} \left(\frac{n+1}{n} \right)^{p} \right\}$$

$$= Lt \frac{1}{n \to \infty} \frac{Lt}{(n+1)} \times Lt \left(1 + \frac{1}{n} \right)^{p} = 0 < 1;$$

 $\sum u_n$ is convergent for all 'p'.

6.3.6 Example

Test the convergence of the following series

$$\frac{1}{1^p} + \frac{1}{3^p} + \frac{1}{5^p} + \frac{1}{7^p} + \dots$$

Solution

$$u_{n} = \frac{1}{(2n-1)^{p}}; u_{n+1} = \frac{1}{(2n+1)^{p}}$$

$$\frac{u_{n+1}}{u_{n}} = \frac{(2n-1)^{p}}{(2n+1)^{p}} = \frac{2^{p} \cdot n^{p} (1-1/2n)^{p}}{2^{p} n^{p} (1+1/2n)^{p}}; \qquad Lt \frac{u_{n+1}}{u_{n}} = 1$$

:. Ratio test fails.

Take
$$v_n = \frac{1}{n^p}$$
; $\frac{u_n}{v_n} = \frac{n^p}{(2n-1)^p} = \frac{1}{2^p \left(1 - \frac{1}{2n}\right)^p}$; $\frac{Lt}{n \to \infty} \frac{u_n}{v_n} = \frac{1}{2^p}$,

which is non - zero and finite 7

... By comparison test, $\sum u_n$ and $\sum v_n$ both converge or both diverge.

But by p – series test, $\sum v_n = \sum \frac{1}{n^p}$ converges when $p \ge 1$ and diverges when $p \le 1$.

 $\therefore \sum u_n$ is convergent if p — fund divergent if $p \le 1$.

6.3.7 Example

Test the convergence of the series $\sum_{n=1}^{\infty} \frac{(n+1)x^n}{n!} x > 0$

Solution

$$u_{n} = \frac{(n+1)x^{n}}{n^{3}}; u_{n+1} = \frac{(n+2)x^{n+1}}{(n+1)^{3}}$$

$$\frac{u_{n+1}}{u_{n}} = \frac{n+2}{(n+1)^{3}} x^{n+1} \cdot \frac{n^{3}}{(n+1)x^{n}} = \left(\frac{n+2}{n+1}\right) \left(\frac{n}{n+1}\right)^{3} x$$

$$\lim_{n \to \infty} \frac{u_{n+1}}{u_{n}} = \lim_{n \to \infty} \left(\frac{1+\frac{2}{n}}{1+\frac{1}{n}}\right) \left(\frac{1+\frac{1}{n}}{1+\frac{1}{n}}\right)^{3} x = x$$

 \therefore By rotto test, $\sum u_n$ converges when $x \le 1$ and diverges when $x \ge 1$.

When
$$x = 1$$
, $u_n = \frac{n+1}{n^3}$

Take $v_n = \frac{1}{n^2}$; By comparison test $\sum u_n$ is convergent (give proof)

 $\therefore \sum u_n$ is convergent if $x \le 1$ and divergent if x > 1.

6.3.8 Example

Test the convergence of the series

(i)
$$\sum_{n=1}^{\infty} \left(\frac{n^2}{2^n} + \frac{1}{n^2} \right)$$
 (ii) $1 + \frac{2.5.8}{1.5.9} + \frac{2.5.8.11}{1.5.9.13} + \dots$ (iii) $\frac{1}{3} + \frac{1.2}{3.5} + \frac{1.2.3}{3.5.7} + \dots$

(i)
$$\sum_{n=1}^{\infty} \left(\frac{n^2}{2^n} + \frac{1}{n^2} \right) = \sum_{n=1}^{\infty} \frac{n^2}{2^n} + \sum_{n=1}^{\infty} \frac{1}{n^2}$$
 Let $u_n = \frac{n^2}{2^n}$; $v_n = \frac{1}{n^2}$

$$u_{n+1} = \frac{(n+1)^2}{2^{n+1}}; \frac{u_{n+1}}{u_n} = \frac{(n+1)^2}{2^{n+1}}; \frac{2^n}{n^2}$$

$$Lt \frac{u_{n+1}}{u_n} = Lt \frac{1}{2} \cdot \left(1 + \frac{1}{n}\right)^2 = \frac{1}{2} < 1$$

- ... By ratio test $\sum u_n$ is convergent .By p -series test, $\sum v_n$ is convergent.
- \therefore The given series $\left(\sum u_n + \sum v_n\right)$ is convergent.
- (ii) Neglecting the first term, the series can be taken as,

$$\frac{2.5.8}{1.5.9} + \frac{2.5.8.11}{1.5.9.13} +$$

Here, 1st term has 3 fractions, 2nd term has 4 fractions and so on.

- \therefore n^{th} term contains (n+2) fractions
- 2. 5. 8.....are in A. P.

$$(n+2)^{th}$$
 term = 2 + (n+1)3 = 3n+5;

... 1, 5, 9,.....are in A. P.

$$(n+2)^{th}$$
 term = 1 + (n+1) 4 = 4n+5

$$u_{n} = \frac{2.5.8....(3n+5)}{1.5.9....(4n+5)}$$

$$u_{n+1} = \frac{2.5.8....(3n+5)(3n+8)}{1.5.9....(4n+5)(4n+9)}$$

$$\frac{u_{n+1}}{u_{n}} = \frac{(3n+8)}{(4n+9)};$$

$$Lt \frac{u_{n+1}}{u_{n}} = Lt \frac{n(3+\frac{8}{n})}{n(4+\frac{9}{n})} = \frac{3}{4} < 1$$

- \therefore By ratio test, $\sum u_n$ is convergent.
- (iii) 1,2,3,.....are in A.P. n^{th} term = n; 3.5.7....are in A.P. n^{th} term = 2n+1

$$u_{n} = \left[\frac{1.2.3....n}{3.5.7....(2n+1)}\right]$$

$$u_{n+1} = \left[\frac{1.2.3....n(n+1)}{3.5.7....(2n+1)(2n+3)}\right]$$

$$\frac{u_{n+1}}{u_{n}} = \left(\frac{n+1}{2n+3}\right)$$

$$Lt_{n\to\infty} \frac{u_{n+1}}{u_{n}} = Lt_{n\to\infty} \frac{n(1+\frac{1}{n})}{n(2+\frac{3}{n})} = \frac{1}{2} < 1$$

 \therefore By ratio test, $\sum u_n$ is convergent.

6.3.9 Exercise

Test for the convergence of the series $\sum \frac{1.2.3....n}{3.5.7....(2n+1)}$

Solution

$$u_{n} = \frac{1.2.3.....n}{3.5.7.....(2n+1)}; u_{n+1} = \frac{1.2.3.....(n+1)}{3.5.7.....(2n+3)};$$
$$\frac{u_{n+1}}{u_{n}} = \frac{n+1}{2n+3}; \quad \underset{n\to\infty}{Lt} \frac{u_{n+1}}{u_{n}} = \underset{n\to\infty}{Lt} \frac{n(1+\frac{1}{n})}{n(2+\frac{3}{n})} = \frac{1}{2} < 1;$$

 \therefore By ratio test, $\sum u_n$ is convergent.

6.3.10 Example

Test for convergence $\sum_{n=1}^{\infty} \frac{1.3.5...(2n-1)}{2.4.6....2n} x^{n-1} (x>0)$

The given series of +ve terms has
$$u_n = \frac{1.3.5...(2n-1)}{2.4.6....2n} x^{n-1}$$

and $u_{n+1} = \frac{1.3.5....(2n+1)}{2.4.6....(2n+2)} x^n$

$$Lt_{n\to\infty} \frac{u_{n+1}}{u_n} = Lt_{n\to\infty} \left(\frac{2n+1}{2n+2}\right) x = Lt_{n\to\infty} \frac{2n(1+\frac{1}{2n})}{2n(1+\frac{2}{2n})} x = x$$

 \therefore By ratio test, $\sum u_n$ is converges when x < 1 and diverges when x > 1 when x = 1, the test fails.

$$u_n = \frac{1.3.5...(2n-1)}{2.4.6 - 2n} < 1$$
 and $Lt_{n \to \infty} u_n \neq 0$

 $\therefore \sum u_n$ is divergent. Hence $\sum u_n$ is convergent when x < 1, and divergent when $x \ge 1$

6.3.11 Example

Test for the convergence of
$$1 + \frac{2}{5}x + \frac{6}{9}x^2 + \dots + \left(\frac{2^n - 2}{2^n + 1}\right)x^{n-1} + \dots + (x > 0)$$

Solution

Omitting 1st term,
$$u_n = \left(\frac{2^n - 2}{2^n + 1}\right) x^{n-1}, (n \ge 2)$$
 and ' u_n ' are all +ve.

$$u_{n+1} = \frac{\left(2^{n+1} - 2\right)}{\left(2^{n+1} + 1\right)} x^{n}; \underbrace{Lt}_{n \to \infty} \left(\frac{u_{n+1}}{u_{n}}\right) = \underbrace{Lt}_{n \to \infty} \cdot \left(\frac{2^{n+1} - 2}{2^{n+1} + 1}\right) \times \left(\frac{2^{n} + 1}{2^{n} - 2}\right) x$$

$$= \underbrace{Lt}_{n \to \infty} \left[\frac{2^{n+1} \left(1 - \frac{1}{2^{n}}\right)}{2^{n+1} \left(1 + \frac{1}{2^{n+1}}\right)} \cdot \frac{2^{n} \left(1 + \frac{1}{2^{n}}\right)}{2^{n} \left(1 - \frac{2}{2^{n}}\right)} x\right] = x ;$$

Hence, by ratio test, $\sum u_n$ converges if x < 1 and diverges if x > 1.

When x = 1, the test fails. Then $u_n = \frac{2^n - 2}{2^n + 1}$; Lt $u_n = 1 \neq 0$; $\therefore \sum u_n$ diverges

Hence $\sum u_n$ is convergent when x < 1 and divergent x > 1

6.3.12 Example

Using ratio test show that the series $\sum_{n=0}^{\infty} \frac{(3-4i)^n}{n!}$ converges

$$u_n = \frac{(3-4i)^n}{n!}$$
; $u_{n+1} = \frac{(3-4i)^{n+1}}{(n+1)!}$;

$$\underset{n\to\infty}{Lt} \left(\frac{u_{n+1}}{u_n} \right) = \underset{n\to\infty}{Lt} \left(\frac{3-4i}{n+1} \right) = 0 < 1$$

Hence, by ratio test, $\sum u_n$ converges.

6.3.13 Example

Discuss the nature of the series, $\frac{2}{34}x + \frac{3}{45}x^2 + \frac{4}{56}x^3 + \dots \infty (x > 0)$

Solution

Since x > 0, the series is of +ve terms;

$$u_{n} = \frac{(n+1)}{(n+2)(n+3)} x^{n} > u_{n+1} = \frac{(n+2)}{(n+3)(n+4)} x^{n+1}$$

$$Lt_{n\to\infty} \frac{u_{n+1}}{u_{n}} = \left[\frac{(n+2)^{2} . x}{(n+1)(n+4)} \right]$$

$$= Lt_{n\to\infty} \left[\frac{n^{2} (1 + \frac{2}{n})^{2} . x}{n^{2} (1 + \frac{5}{n} + \frac{4}{n^{2}})} \right] = x;$$

Therefore by ratio test, $\sum u_n$ converges if x < 1 and diverges if x > 1

When x = 1, the test fails; Then $u_n = \frac{(n+1)}{(n+2)(n+3)}$;

Taking
$$v_n = \frac{1}{n}$$
; $Lt = \frac{u_n}{v_n} = 1 \neq 0$

- .. By comparison test $\sum u_n$ and $\sum v_n$ behave same way. But $\sum v_n$ is divergent by *p*-series test. (p = 1);
- $\therefore \sum u_n$ is diverges when x = 1
- $\therefore \sum u_n$ is convergent when x < 1 and divergent when $x \ge 1$

6.3.14 Example

Discuss the nature of the series $\sum \frac{3.6.9....3n.5^n}{4.7.10....(3n+1)(3n+2)}$

Solution

Flere,
$$u_{n} = \frac{3.6.9....3n}{4.7.10....(3n+1)} \frac{5^{n}}{(3n+2)};$$

$$u_{n+1} = \frac{3.6.9....3n(3n+3)5^{n+1}}{4.7.10....(3n+1)(3n+4)(3n+5)};$$

$$Lt_{n\to\infty} \frac{u_{n+1}}{u_{n}} = Lt_{n\to\infty} \frac{(3n+2)(3n+3).5}{(3n+4)(3n+5)}$$

$$= Lt_{n\to\infty} \left[\frac{5.9n^{2}(1+\frac{2}{3n})(1+\frac{3}{3n})}{9n^{2}(1+\frac{4}{3n})(1+\frac{5}{3n})} \right] = 5 > 1$$

 \therefore By ratio test, $\sum u_n$ is divergent.

6.3.15 Example

Test for convergence the series $\sum_{n=1}^{\infty} n^{1-n}$

Solution

$$u_{n} = n^{1-n}; \ u_{n+1} = (n+1)^{-n};$$

$$\frac{u_{n+1}}{u_{n}} = \frac{(n+1)^{-n}}{n^{1-n}} = \frac{n}{n(n+1)^{n}} = \frac{1}{n} \left(\frac{n}{n+1}\right)^{n}$$

$$Lt_{n\to\infty} \frac{u_{n+1}}{u_{n}} = Lt_{n\to\infty} \frac{1}{n} \cdot \left(\frac{1}{1+\frac{1}{n}}\right)^{n} = 0 \cdot \frac{1}{e} = 0 < 1$$

 \therefore By ratio test $\sum u_n$, is convergent

6.3.16 Example

Test the series $\sum_{n=1}^{\infty} \frac{2n^3}{|n|}$, for convergence.

Solution

$$u_n = \frac{2n^3}{|n|}; u_{n+1} = \frac{2(n+1)^3}{|n+1|}$$

$$\frac{u_{n+1}}{u_n} = \frac{2(n+1)^3}{\lfloor n+1} \times \frac{\lfloor n \rfloor}{2n^3} = \frac{(n+1)^2}{n^3} = \frac{\left(1 + \frac{1}{n}\right)^2}{n};$$

$$\underset{n \to \infty}{Lt} \frac{u_{n+1}}{u_n} = 0 < 1;$$

 \therefore By ratio test, $\sum u_n$ is convergent.

6.3.17 Example

Test convergence of the series $\sum \frac{2^n n!}{n^n}$

Solution

$$u_{n} = \frac{2^{n} n!}{n^{n}}; \ u_{n+1} = \frac{2^{n+1} (n+1)!}{(n+1)^{n+1}};$$

$$\frac{u_{n+1}}{u_{n}} = \frac{2^{n+1} (n+1)!}{(n+1)^{n+1}} \cdot \frac{n^{n}}{2^{n} n!} = 2\left(\frac{n}{n+1}\right)^{n}$$

$$Lt \frac{u_{n+1}}{u_{n}} = 2 Lt \frac{1}{(1+\frac{1}{n})^{n}} = \frac{2}{e} < 1 \quad \text{(since } 2 < e < 3)$$

 \therefore By ratio test, $\sum u_n$ is convergent.

6.3.20 Example

Test the convergence of the series $\sum u_n$ where u_n is

(a)
$$\frac{n^2+1}{3^n+1}$$
 (b) $\frac{x^{n-1}}{(2n+1)^a}$, $(a>0)$
(c) $\left(\frac{1.2.3...n}{4.7.10-3n+3}\right)^2$ (d) $\frac{\sqrt{1+2^n}}{\sqrt{1+2^n}}$

(e)
$$\left(\frac{3n^3 + 7n^2}{5n^9 + 11}\right)x^n$$

Solution

(a)
$$L_{n\to\infty} \left(\frac{u_{n+1}}{u_n} \right) = L_{n\to\infty} \left[\frac{(n+1)^2 + 1}{3^{n+1} + 1} \times \frac{3^n + 1}{n^2 + 1} \right]$$

$$= Lt \left[\frac{n^2 \left(1 + \frac{2}{n} + \frac{2}{n^2}\right)}{n^2 \left(1 + \frac{1}{n}\right)} \cdot \frac{3^n \left(1 + \frac{1}{3^n}\right)}{3^{n+1} \left(1 + \frac{1}{3^{n+1}}\right)} \right]$$

$$= \frac{1}{3} < 1$$

 \therefore By ratio test, $\sum u_n$ is convergent.

(b)
$$Lt \left(\frac{u_{n+1}}{u_n}\right) = Lt \left[\frac{x^n}{(2n+3)^a} \times \frac{(2n+1)^a}{x^{n-1}}\right]$$

$$= Lt \left[\frac{2^a n^a \left(1 + \frac{1}{2n}\right)^a}{2^a n^a \left(1 + \frac{3}{2n}\right)^a} . x\right] = x$$

By ratio test, $\sum u_n$ convergence if $x \le 1$ and diverges if $x \ge 1$.

When x = 1, the test fails; Then, $u_n = \frac{1}{(2n+1)^a}$; Taking $v_n = \frac{1}{n^a}$ awe have,

$$Lt \left(\frac{u_n}{v_n}\right) = Lt \left(\frac{n}{2n+1}\right)^a = Lt \frac{1}{\left(2+\frac{1}{n}\right)^a} = \frac{1}{2^a} \neq 0 \text{ and finite (since } a > 0).$$

 \therefore By comparison test, $\sum u_n$ and $\sum v_n$ have same property

But p –series test, we have

- (i) $\sum v_n$ convergent when a > 1
- and (ii) divergent when $a \le 1$
- \therefore To sum up, (i) x < 1, $\sum u_n$ is convergent $\forall a$.
 - (ii) x > 1, $\sum u_n$ is divergent $\forall a$.
 - (iii) x = 1, a > 1, $\sum u_n$ is convergent, and
 - (iv) $x = 1, a \le 1, \sum u_n$ is divergent.

(e)
$$Lt \frac{u_{n+1}}{u_n} = Lt \left[\frac{1.2.3...n(n+1)}{4.7.10...(3n+3)(3n+6)} \times \frac{4.7.10...(3n+3)}{1.2.3...n} \right]^2$$

$$= Lt \left[\frac{(n+1)}{3(n+2)} \times \right]^2 = \frac{1}{9} < 1$$
;

 \therefore By ratio test, $\sum u_n$ is convergent

(d)
$$Lt \frac{u_{n+1}}{u_n} = Lt \left[\frac{\left(1 + 2^{n+1}\right)}{\left(1 + 3^{n+1}\right)} \times \frac{\left(1 + 3^n\right)}{\left(1 + 2^n\right)} \right]^{\frac{1}{2}}$$

$$= Lt \left[\frac{2^{n+1} \left(1 + \frac{1}{2^{n+1}}\right)}{3^{n+1} \left(1 + \frac{1}{3^{n+1}}\right)} \times \frac{3^n \left(1 + \frac{1}{3^n}\right)}{2^n \left(1 + \frac{1}{2^n}\right)} \right]^{\frac{1}{2}} = \left(\frac{2}{3}\right)^{\frac{1}{2}} < 1$$

 \therefore By ratio test, $\sum u_n$ is convergent.

(e)
$$Lt \frac{u_{n+1}}{u_n} = Lt \left[\frac{3(n+1)^3 + 7(n+1)^2}{5(n+1)^9 + 11} \times \frac{5n^9 + 11}{3n^3 + 7} \times x \right]$$

$$= Lt \frac{u_{n+1}}{u_n} = Lt \left[\frac{3n^3 \left(1 + \frac{1}{n}\right)^3 + 7n^2 \left(1 + \frac{1}{n}\right)^2}{5n^9 \left(1 + \frac{1}{n}\right)^9 + 11} \times \frac{5n^9 \left(1 + \frac{11}{5n^9}\right)}{3n^3 \left(1 + \frac{7}{3n^3}\right)} \times x \right]$$

$$= Lt \frac{1}{n + \infty} \left[\frac{3n^3 \left(1 + \frac{1}{n}\right)^3 + \frac{7}{3n} \left(1 + \frac{1}{n}\right)^9}{5n^9 \left(1 + \frac{1}{n}\right)^2} \times \frac{5n^9 \left(1 + \frac{11}{5n^9}\right)}{3n^3 \left(1 + \frac{7}{3n^3}\right)} \times x \right] = x$$

... By ratio test, $\sum u_n$ converges when x < 1 and diverges when x > 1. When x = 1, the test fails,

Then
$$u_n = \frac{3n^3 \left(1 + \frac{7}{3n}\right)}{5n^9 \left(1 + \frac{11}{5n^9}\right)} = \frac{3}{5n^6} \frac{\left(1 + \frac{7}{3n}\right)}{\left(1 + \frac{11}{5n^9}\right)}$$

Taking $v_n = \frac{1}{n^6}$, we observe that $\underset{n \to \infty}{Ll} \frac{u_n}{v} = \frac{3}{5} \neq 0$

 \therefore By comparison test and p series test, we conclude that $\sum u_n$ is convergent.

 $\therefore \sum u_n$ is convergent when $x \le 1$ and divergent when x > 1.

Exercise - 1(b)

1. Test the convergency or divergency of the series whose general term is:

(a)
$$\frac{x''}{n}$$
 [Ans: $|x| < 1cgt, |x| \ge |1dgt|$]

(b)
$$nx^{n-1}$$
 [Ans: $|x| < 1cgt$, $|x| \ge |1dgt$]

(c)
$$\left(\frac{2^n-2}{2^n+1}\right)x^{n-1}$$
 [Ans: $|x| < 1cgt, |x| \ge |1dgt|$]

(d)
$$\left(\frac{n^2+1}{n^2-1}\right)x^n$$
 [Ans: $|x| < 1cgt, |x| \ge |1dgt|$]

(e)
$$\frac{|n|}{n^n}$$
 [Ans: cgt.]

(f)
$$\frac{4^n | n|}{p^n}$$
 [Ans: dgt.]

2. Determine whether the following series are convergent or divergent:

(a)
$$\frac{x}{1.2} + \frac{x^2}{3.4} + \frac{x^3}{5.6} + \dots$$
 [Ans: $|x| \le 1cgt, |x| > 1dgt$]

(b)
$$1 + \frac{x}{2^2} + \frac{x^2}{3^2} + \frac{x^3}{4^2} + \dots$$
 [Ans: $|x| \le |cgt| |x| > 1dgt$]

(c)
$$\frac{1}{1.2.3} + \frac{x}{4.5.6} + \frac{x^2}{7.8.9} + \dots$$
 | Ans: $|x| \le 1cgt$, $|x| > 1dgt$ |

(d)
$$1 + \frac{x}{2} + \frac{x^2}{5} + \frac{x^3}{10} + \dots + \frac{x^n}{n^2 + 1} + \dots$$
 | Ans: $|x| \le 1cgt$, $|x| > 1dgt$ |

(e)
$$\frac{1.2}{r} + \frac{2.3}{r^2} + \frac{3.4}{r^3} + \dots$$
 [Ans: $|x| > 1cgt, |x| \le 1dgt$]

6.4 Raabe's Test

Let $\sum u_n$ be series of +ve terms and let $\lim_{n\to\infty} \left\{ n \left(\frac{u_n}{u_{n+1}} - 1 \right) \right\} = k$

Then

(i) If k > 1, $\sum u_n$ is convergent.

(ii) If k < 1, $\sum u_n$ is divergent. (The test fails if k = 1)

Proof:

Consider the series
$$\sum v_n = \sum \frac{1}{n^p}$$

$$n \left[\frac{v_n}{v_{n+1}} - 1 \right] = n \left[\left(\frac{n+1}{n} \right)^p - 1 \right] = n \left[\left(1 + \frac{1}{n} \right)^p - 1 \right]$$

$$= n \left[\left(1 + \frac{p}{n} + \frac{p(p-1)}{2} \cdot \frac{1}{n^2} + \dots \right) - 1 \right]$$

$$= p + \frac{p(p-1)}{2} \cdot \frac{1}{n} + \dots$$

$$Lt_{n \to \infty} n \left\{ \frac{v_n}{v_{n+1}} - 1 \right\} = p$$

Case (i):

In this case,

$$\underset{n\to\infty}{Lt} n\left\{\frac{u_n}{u_{n+1}}-1\right\} = k > 1$$

We choose a number 'p' $\ni k > p > 1$; Comparing the series $\sum u_n$ with $\sum v_n$ which is convergent, we get that $\sum u_n$ will converge if after some fixed number of terms

$$\frac{u_n}{u_{n+1}} > \frac{v_n}{v_{n+1}} = \left(\frac{n+1}{n}\right)^p$$
i.e. If.,
$$n\left(\frac{u_n}{u_{n+1}} - 1\right) > p + \frac{p(p-1)}{2} \cdot \frac{1}{n} + \dots \text{from (1)}$$
i.e., If
$$\lim_{n \to \infty} n\left(\frac{u_n}{u_{n+1}} - 1\right) > p$$

i.e., If k > p, which is true. Hence $\sum u_n$ is convergent. The second case also can be proved similarly.

Solved Examples

6.4.1 Example

Test for convergence the series

$$x + \frac{1}{2} \cdot \frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{x^5}{5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cdot \frac{x^7}{7} + \dots$$

Solution

Neglecting the first tem, the series can be taken as,

tem, the series can be taken as,
$$\frac{1}{2} \cdot \frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{x^5}{5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cdot \frac{x^7}{7} + \dots$$
1.3.5....are in A.P. n^{th} term = $1 + (n-1)2 = 2n - 1$
2.4.6...are in A.P. n^{th} term = $2 + (n-1)2 = 2n$
3.5.7.....are in A.P n^{th} term = $3 + (n-1)2 = 2n + 1$

$$u_n (n^{th} \text{ term of the series}) = \frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{2 \cdot 4 \cdot 6 \dots (2n)} \cdot \frac{x^{2n+1}}{2n+1}$$

$$u_{n+1} = \frac{1 \cdot 3 \cdot 5 \dots (2n-1)(2n+1)}{2 \cdot 4 \cdot 6 \dots (2n)(2n+2)} \cdot \frac{x^{2n+3}}{2n+3}$$

$$\frac{u_{n+1}}{u_n} = \frac{1 \cdot 3 \cdot 5 \dots (2n+1)}{2 \cdot 4 \cdot 6 \dots (2n+2)} \cdot \frac{x^{2n+3}}{(2n+3)} \cdot \frac{2 \cdot 4 \cdot 6 \dots 2n}{1 \cdot 3 \cdot 5 \dots (2n-1)} \cdot \frac{(2n+1)}{x^{2n+1}}$$

$$= \frac{(2n+1)^2 x^2}{(2n+2)(2n+3)}$$

$$Lt_{n\to\infty} \frac{u_{n+1}}{u_n} = Lt_{n\to\infty} \frac{4n^2 \left(1 + \frac{1}{2n}\right)^2}{4n^2 \left(1 + \frac{2}{2n}\right) \left(1 + \frac{3}{2n}\right)} x^2 = x^2$$

 \therefore By ratio test, $\sum u_n$ converges if |x| < 1 and diverges if |x| > 1 If |x| = 1 the test fails.

Then
$$x^{2} = 1 \text{ and } \frac{u_{n}}{u_{n+1}} = \frac{(2n+2)(2n+3)}{(2n+1)^{2}}$$

$$\frac{u_{n}}{u_{n+1}} - 1 = \frac{(2n+2)(2n+3)}{(2n+1)^{2}} - 1 = \frac{6n+5}{(2n+1)^{2}}$$

$$Lt \left\{ n \left(\frac{u_{n}}{u_{n+1}} - 1 \right) \right\} = Lt \left(\frac{6n^{2} + 5n}{4n^{2} + 4n + 1} \right)$$

$$= Lt \frac{n^{2} \left(6 + \frac{5}{n} \right)}{n^{2} \left(4 + \frac{4}{n} + \frac{1}{n^{2}} \right)} = \frac{3}{2} > 1$$

By Raabe's test, $\sum u_n$ converges. Hence the given series is convergent when $|x| \le 1$ and ivergent when |x| > 1.

6.4.2 Example

Test for the convergence of the series

$$1 + \frac{3}{7}x + \frac{3.6}{7.10}x^2 + \frac{3.6.9}{7.10.13}x^3 + \dots; x > 0$$

Solution

Neglecting the first term,

$$u_{n} = \frac{3.6.9....3n}{7.10.13....3n+4}.x^{n}$$

$$u_{n+1} = \frac{3.6.9....3n(3n+3)}{7.10.13....(3n+4)(3n+7)}.x^{n+1}$$

$$\frac{u_{n+1}}{u_{n}} = \frac{3n+3}{3n+7}.x \quad ; \quad Lt \frac{u_{n+1}}{u_{n}} = x$$

 \therefore By ratio test, $\sum u_n$ is convergent when x < 1 and divergent when x > 1.

When x = 1 The ratio test fails. Then

$$\frac{u_n}{u_{n+1}} = \frac{3n+7}{3n+3}; \frac{u_n}{u_{n+1}} - 1 = \frac{4}{3n+3}$$

$$Lt_{n\to\infty} \left\{ n \left(\frac{u_n}{u_{n+1}} - 1 \right) \right\} = Lt_{n\to\infty} \left(\frac{4n}{3n+3} \right) = \frac{4}{3} > 1$$

... By Raabe's test, $\sum u_n$ is convergent. Hence the given series converges if $x \le 1$ and diverges if x > 1.

6.4.3 Example

Examine the convergence of the series

$$\sum_{n=1}^{\infty} \frac{1^2.5^2.9^2....(4n-3)^2}{4^2.8^2.12^2....(4n)^2}$$

Solution

$$u_n = \frac{1^2 \cdot 5^2 \cdot 9^2 \dots (4n-3)^2}{4^2 \cdot 8^2 \cdot 12^2 \dots (4n)^2}$$

$$u_{n+1} = \frac{1^2 \cdot 5^2 \cdot 9^2 \dots (4n-3)^2 (4n+1)^2}{4^2 \cdot 8^2 \cdot 12^2 \dots (4n)^2 (4n+4)^2}$$

$$Lt_{n \to \infty} \frac{u_{n+1}}{u_n} = Lt_{n \to \infty} \frac{(4n+1)^2}{(4n+4)^2} = 1 \text{ (verify)}$$

.. The ratio test fails.

Hence by Raabe's test, $\sum u_n$ is convergent.

6.4.4 Example

Find the nature of the series $\sum \frac{(|\underline{n}|^2)^2}{|2n|} x^n, (x > 0)$

Solution

$$u_{n} = \frac{(|\underline{n}|^{2})^{2}}{|\underline{2n}|} x^{n}; \ u_{n+1} = \frac{(|\underline{n+1}|^{2})^{2}}{|\underline{2n+2}|} x^{n+1}$$

$$\frac{u_{n+1}}{u_{n}} = \frac{(n+1)^{2}}{(2n+1)(2n+2)} x;$$

$$Lt_{n\to\infty} \frac{u_{n+1}}{u_{n}} = Lt_{n\to\infty} \frac{n^{2} (1 + \frac{1}{2n})^{2}}{4n^{2} (1 + \frac{1}{2n})(1 + \frac{2}{2n})} x = \frac{x}{4}$$

... By ratio test, $\sum u_n$ converges when $\underline{x} < 1$, i. e; x < 4; and diverges when x > 4; When x = 4, the test fails.

When
$$x = 4$$
, $\frac{u_n}{u_{n+1}} = \frac{(2n+1)(2n+2)}{4(n+1)^2}$
 $\frac{u_n}{u_{n+1}} - 1 = \frac{-2n-2}{4(n+1)^2} = \frac{-1}{2(n+1)}$;
 $Li_{u \to \infty} \left[n \left(\frac{u_n}{u_{n+1}} - 1 \right) \right] = \frac{-1}{2} < 1$

 \therefore By ratio test, $\sum u_n$ is divergent

Hence $\sum u_n$ is convergent when x < 4 and divergent when x > 4

6.4.5 Example

Test for convergence of the series $\sum \frac{4.7...(3n+1)}{1.2.3...n} x^n$.

Solution

$$u_{n} = \frac{4.7...(3n+1)}{1.2.3...n} x^{n} ; u_{n+1} = \frac{4.7...(3n+1)(3n+4)}{1.2.3...n(n+1).} x^{n+1}$$

$$\underset{n\to\infty}{Lt} \frac{u_{n+1}}{u_{n}} = \underset{n\to\infty}{Lt} \left[\frac{(3n+4)}{(n+1)} x \right] = 3x$$

... By ratio test $\sum u_n$ converges if 3x < 1 i.e., $x < \frac{1}{3}$ and diverges if $x > \frac{1}{3}$;

If
$$x = \frac{1}{3}$$
, the test fails

When
$$x = \frac{1}{3}$$
, $n \left[\frac{u_n}{u_{n+1}} - 1 \right] = n \left[\frac{(n+1)3}{3n+1} - 1 \right] = n \left[\frac{-1}{3n+4} \right] = -\frac{1}{\left(3 + \frac{4}{n}\right)}$

$$\underset{n\to\infty}{Lt} n \left[\frac{u_n}{u_{n+1}} - 1 \right] = -\frac{1}{3} < 1$$

 \therefore By Raabe's test, $\sum u_n$ is divergent.

$$\therefore \sum u_n$$
 is convergent when $x < \frac{1}{3}$ and divergent when $x \ge \frac{1}{3}$

6.4.6 Example

Test for convergence $2 + \frac{3x}{2} + \frac{4x^2}{3} + \frac{5x^3}{4} + \dots (x > 0)$

Solution

The
$$n^{th}$$
 term
$$u_n = \frac{(n+1)}{n} x^{n-1};$$

$$u_{n+1} = \frac{(n+2)}{(n+1)} x^n; \frac{u_{n+1}}{u_n} = \frac{n(n+2)}{(n+1)^2} x$$

$$Lt \frac{u_{n+1}}{u_n} = Lt \frac{n^2 (1+2)}{n^2 (1+1)^2} x = x$$

 \therefore By ratio test, $\sum u_n$ is convergent if x < 1 and divergent if x > 1 If x = 1, the test fails.

Then

$$Lt_{n\to\infty} n \left[\frac{u_n}{u_{n+1}} - 1 \right] = Lt_{n\to\infty} n \left[\frac{(n+1)^2}{n(n+2)} - 1 \right]$$
$$= Lt_{n\to\infty} n \left[\frac{1}{n(n+2)} \right] = 0 < 1$$

 \therefore By Raabe's test $\sum u_n$ is divergent

 $\therefore \sum u_n$ is convergent when x < 1 and divergent when $x \ge 1$

6.4.7 Example

Find the nature of the series $\frac{3}{4} + \frac{3.6}{4.7} + \frac{3.6.9}{4.7.10} + \dots \infty$

Solution

$$u_{n} = \frac{3.6.9....3n}{4.7.10....(3n+1)}; u_{n+1} = \frac{3.6.9....3n(3n+3)}{4.7.10....(3n+1)(3n+4)}$$

$$\frac{u_{n+1}}{u_{n}} = \frac{3n+3}{3n+4}; \underset{n\to\infty}{Lt} \frac{u_{n+1}}{u_{n}} = \underset{n\to\infty}{Lt} \frac{3n(1+\frac{3}{3n})}{3n(1+\frac{4}{3n})} = 1$$

Ratio test fails.

$$= Lt_{n\to\infty} \frac{n}{3(n+1)} = Lt_{n\to\infty} \frac{n}{3n(1+\frac{1}{2n})} = \frac{1}{3} < 1$$

 \therefore By Raabe's test $\sum u_n$ is divergent.

6.4.8 Example

If $p, q \ge \theta$ and the series

$$1 + \frac{1}{2} \frac{p}{q} + \frac{1 \cdot 3 \cdot p(p+1)}{2 \cdot 4 \cdot q(q+1)} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \frac{p(p+1)(p+2)}{q(q+1)(q+2)} + \dots$$

is convergent, find the relation to be satisfied by p and q.

Solution

$$u_{n} = \frac{1.3.5....(2n-1)}{2.4.6....2n} \frac{p(p+1).....(p+n-1)}{q(q+1).....(q+n-1)} \text{ [neglecting Ist term]}$$

$$u_{n+1} = \frac{1.3.5....(2n-1)(2n+1)}{2.4.6....2n(2n+2)} \frac{p(p+1).....(p+n-1)(p+n)}{q(q+1).....(q+n-1)(q+n)}$$

$$\frac{u_{n+1}}{u_{n}} = \frac{(2n+1)}{(2n+2)} \frac{(p+n)}{(q+n)};$$

$$Lt_{n\to\infty} \frac{u_{n+1}}{u_{n}} = Lt_{n\to\infty} \left[\frac{2n(1+\frac{1}{2}n)}{2n(1+\frac{1}{2}n)} \cdot \frac{n(1+\frac{p}{2}n)}{n(1+\frac{q}{2}n)} \right] = 1$$

: ratio test fails.

Let us apply Raabe's test

$$Lt_{n\to\infty} \left[n \left(\frac{u_n}{u_{n+1}} - 1 \right) \right] = Lt_{n\to\infty} \left[n \left\{ \frac{(q+n)(2n+2)}{(p+n)(2n+1)} - 1 \right\} \right]$$

$$Lt_{n\to\infty} \left[n \left\{ \frac{2q(n+1) - p(2n+1) + n}{n^2 \left(1 + \frac{p}{n} \right) \left(2 + \frac{1}{n} \right)} \right\} \right]$$

$$Lt_{n\to\infty} \left[\frac{2q \left(1 + \frac{1}{n} \right) - p \left(2 + \frac{1}{n} \right) + 1}{2} \right] = \frac{2q - 2p + 1}{2}$$

Since $\sum u_n$ is convergent, by Raabe's test, $\frac{2q-2p+1}{2} > 1$ $\Rightarrow q-p > \frac{1}{2}$, is the required relation.

Exercise 1 (c)

1. Test whether the series $\sum_{n=1}^{\infty} u_n$ is convergent or divergent where

$$u_n = \frac{2^2 \cdot 4^2 \cdot 6^2 \cdot \dots \cdot (2n-2)^2}{3 \cdot 4 \cdot 5 \cdot \dots \cdot (2n-1)(2n)} \cdot x^{2n}$$
 [Ans: $|x| \le |cgt| |x| > |dgt|$]

2. Test for the convergence the series

$$\sum_{1}^{\infty} \frac{4.7.10....(3n+1)}{|n|} x'' \qquad [Ans: |x| < \frac{1}{3} cgt, |x| \ge \frac{1}{3} dgt]$$

3. Test for the convergence the series:

(i)
$$\frac{2^2.4^2}{3^2.3^2} + \frac{2^2.4^2.5^2.7^2}{3^2.3^2.6^2.6^2} + \frac{2^2.4^2.5^2.7^2.8^2.10^2}{3^2.3^2.6^2.6^2.9^2.9^2} + \dots$$

[Ans : divergent]

(ii)
$$\frac{3.4}{1.2}x + \frac{4.5}{2.3}x^2 + \frac{5.6}{3.4}x^3 + \dots (x > 0)$$

[Ans: cgt if $x \le 1$ dgt if, x > 1]

(iii)
$$\sum \frac{1.3.5....(2n-1)}{2.4.6.....2n} \cdot \frac{x^n}{(2n+2)} (x>0)$$

[Ans: cgt if $x \le 1$ dgt if, x > 1]

(iv)
$$1 + \frac{(|\underline{1}|^2)^2}{|\underline{2}|} x + \frac{(|\underline{2}|^2)^2 x^2}{|\underline{4}|} + \frac{(|\underline{3}|^2)^2 x^3}{|\underline{6}|} + \dots (x > 0)$$

[Ans: cgt if x < 4 and dgt if, $x \ge 4$]

6.5 Cauchy's Root Test

Let $\sum u_n$ be a series of +ve terms and let $\lim_{n\to\infty} u_n^{1/n} = l$. Then $\sum u_n$ is convergent when l < 1 and divergent when l > 1

Proof:

(i)
$$\lim_{n \to \infty} u_n^{\frac{1}{n}} = l < 1 \Rightarrow \exists a \text{ +ve number } \frac{1}{n} \lambda^n \left(l < \lambda < 1 \right) \ni u_n^{\frac{1}{n}} < \lambda, \forall n > m$$

(or) $u_n < \lambda^n, \forall n > m$

Since $\lambda < 1, \sum \lambda^n$ is a geometric series with common ratio < 1 and therefore convergent.

Hence $\sum u_n$ is convergent.

(ii)
$$\underset{n\to\infty}{Lt} u_n^{\frac{1}{l}} = l > 1$$

 \therefore By the definition of a limit we can find a number $r \ni u_n^{1/n} > 1 \forall n > r$

i.e.,
$$u_n > \forall n > r$$

i.e., after the 1^{st} 'r' terms, each term is > 1.

$$\underset{n\to\infty}{Lt} \sum u_n = \infty \qquad \therefore \sum u_n \quad \text{is divergent.}$$

Note:

When $\underset{n\to\infty}{Lt} \left(u_n^{-1}\right) = 1$, the root test can't decide the nature of $\sum u_n$. The fact of this statement can be observed by the following two examples.

- 1. Consider the series $\sum_{n \to \infty} \frac{1}{n^3} : L_{n \to \infty} t u_n^{\frac{1}{n}} = L_{n \to \infty} t \left(\frac{1}{n^3} \right)^{\frac{1}{n}} = L_{n \to \infty} t \left(\frac{1}{n^{\frac{1}{n}}} \right)^{\frac{1}{n}} = 1$
- 2. Consider the series $\sum_{n \to \infty} \frac{1}{n}$, in which $\lim_{n \to \infty} \frac{1}{n} = \lim_{n \to \infty} \frac{1}{n^{1/n}} = 1$

In both the examples given above, $\underset{n\to\infty}{L} t u_n^{\frac{1}{n}} = 1$. But series (1) is convergent (p-series test)

And series (2) is divergent. Hence when the *limit*=1, the test fails.

Solved Examples

6.5.1 Example

Test for convergence the infinite series whose n^{th} terms are:

(i)
$$\frac{1}{n^{2^n}}$$
 (ii) $\frac{1}{(\log n)^n}$ (iii) $\frac{1}{1+\frac{1}{n}}^{n^2}$

Solution

(i)
$$u_n = \frac{1}{n^{2n}}, u_n^{\frac{1}{2n}} = \frac{1}{n^2}$$
; $\lim_{n \to \infty} u_n^{\frac{1}{2n}} = \lim_{n \to \infty} \frac{1}{n^2} = 0 < 1$;
By root test $\sum u_n$ is convergent.

(ii)
$$u_n = \frac{1}{(\log n)^n}$$
; $u_n^{\frac{1}{n}} = \frac{1}{\log n}$; $\lim_{n \to \infty} u_n^{\frac{1}{n}} = \lim_{n \to \infty} \frac{1}{\log n} = 0 < 1$;
 $\lim_{n \to \infty} \operatorname{Lt} u_n^{\frac{1}{n}} = \lim_{n \to \infty} \frac{1}{\log n} = 0 < 1$;

(iii)
$$u_n = \frac{1}{\left(1 + \frac{1}{n}\right)^{n^2}}; u_n^{1/n} = \frac{1}{\left(1 + \frac{1}{n}\right)^n}$$

$$L_{n \to \infty}^{1/n} = L_{n \to \infty}^{1/n} \frac{1}{\left(1 + \frac{1}{n}\right)^n} = \frac{1}{e} < 1;$$

 \therefore By root test $\sum u_n$ is convergent.

6.5.2 Example

Find whether the following series are convergent or divergent,

(i)
$$\sum_{n=1}^{\infty} \frac{1}{3^n - 1}$$

Solution

$$u_{n}^{1/n} = \left(\frac{1}{3^{n} - 1}\right)^{1/n} = \left(\frac{1}{3^{n} \left(1 - \frac{1}{3^{n}}\right)}\right)^{1/n}$$

$$Lt_{n \to \infty} u_{n}^{1/n} = Lt_{n \to \infty} \left(\frac{1}{3^{n} \left(1 - \frac{1}{3^{n}}\right)}\right)^{1/n} = \frac{1}{3} < 1;$$

By root test, $\sum u_n$ is convergent.

(ii)
$$1 + \frac{1}{2^2} + \frac{1}{3^3} + \frac{1}{4^4} + \dots$$

Solution

$$u_n = \frac{1}{n^n}$$
; $Lt_{n \to \infty} u_n^{1/n} = Lt_{n \to \infty} \left(\frac{1}{n^n}\right)^{1/n} = 0 < 1$

By root test, $\sum u_n$ is convergent.

(iii)
$$\sum_{n=1}^{\infty} \frac{\left[\left(n+1\right)x\right]^n}{n^{n+1}}$$

Solution

$$u_{n} = \frac{\left[\left(n+1\right)x\right]^{n}}{n^{n+1}}$$

$$Lt u_{n} = Lt \left[\frac{\left\{\left(n+1\right)x\right\}^{n}}{n^{n+1}}\right]^{\frac{1}{n}}$$

$$Lt \left[\frac{\left\{\left(n+1\right)x\right\}^{n}}{n}\right]^{\frac{1}{n}} = Lt \left(\frac{n+1}{n}\right)x \cdot \frac{1}{n^{\frac{1}{n}}}$$

$$Lt \left[\frac{\left\{\left(n+1\right)x\right\}^{n}}{n} \cdot \frac{1}{n}\right]^{\frac{1}{n}} = Lt \left(\frac{n+1}{n}\right)x \cdot \frac{1}{n^{\frac{1}{n}}}$$

$$Lt \left(1+\frac{1}{n}\right)x \cdot \frac{1}{n^{\frac{1}{n}}} = Lt x \cdot \frac{1}{n^{\frac{1}{n}}} = x \qquad \left(\text{since } Lt x \cdot \frac{1}{n^{\frac{1}{n}}} = 1\right)$$

 $\therefore \sum_{n} u_n$ is convergent if |x| < 1 and divergent if |x| > 1 and when |x| = 1 the test fails.

Then
$$u_n = \frac{(n+1)^n}{n^{n+1}};$$
 Take $v_n = \frac{1}{n}$

$$\frac{u_n}{v_n} = \frac{(n+1)^n}{n^{n+1}}.n = \frac{(n+1)^n}{n^n} = \left(1 + \frac{1}{n}\right)^n; \qquad \underset{n \to \infty}{L!} \frac{u_n}{v_n} = e > 1$$

 \therefore By comparison test, $\sum u_n$ is divergent.

 $(\sum v_n$ diverges by p-series test)

Hence $\sum u_n$ is convergent if |x| < 1 and divergent $|x| \ge 1$

6.5.3 Example

If
$$u_n = \frac{n^{n^2}}{(n+1)^{n^2}}$$
, show that $\sum u_n$ is convergent

$$Lt_{n\to\infty} u_n^{-1} = Lt_{n\to\infty} \left[\frac{n^{n^2}}{(n+1)^{n^2}} \right]^{\frac{1}{n}}; = Lt_{n\to\infty} = \frac{n^n}{(n+1)^n} = Lt_{n\to\infty} \left(\frac{n}{n+1} \right)^n$$

$$= Lt_{n\to\infty} \left(\frac{1}{1+\frac{1}{n}} \right)^n = \frac{1}{e} < 1; \therefore \sum u_n \text{ converges by root test }.$$

6.5.4 Example

Establish the convergence of the series $\frac{1}{3} + \left(\frac{2}{5}\right)^2 + \left(\frac{3}{7}\right)^3 + \dots$

Solution

$$u_n = \left(\frac{n}{2n+1}\right)^n \dots \text{(verify)};$$

$$\lim_{n \to \infty} u_n^{\frac{1}{2n}} = \lim_{n \to \infty} \left(\frac{n}{2n+1}\right) = \frac{1}{2} < 1$$

By root test, $\sum u_n$ is convergent.

6.5.5 Example

Test for the convergence of $\sum_{n=1}^{\infty} \sqrt{\frac{n}{n+1}} x^n$

Solution

$$u_{n} = \left(\frac{1}{1 + \frac{1}{n}}\right)^{\frac{1}{2}} .x^{n}; \ \underset{n \to \infty}{Lt} u_{n}^{\frac{1}{n}} = \underset{n \to \infty}{Lt} \left(\frac{1}{1 + \frac{1}{n}}\right)^{\frac{1}{2}} .x = x$$

 \therefore By root test, $\sum u_n$ is convergent if |x| < 1 and divergent if |x| > 1.

When |x| = 1: $u_n = \sqrt{\frac{n}{n+1}}$, taking $v_n = \frac{1}{n^0}$ and applying comparison test, it can

be seen that is divergent

 $\sum u_n$ is convergent if |x| < 1 and divergent if $|x| \ge 1$.

6.5.6 Example

Show that
$$\sum_{n=1}^{\infty} \left(n^{1/n} - 1 \right)^n$$
 converges.

Solution

$$u_{n} = \left(n^{\frac{1}{n}} - 1\right)^{n}$$

$$\underset{n \to \infty}{Lt} u_{n}^{\frac{1}{n}} = \underset{n \to \infty}{Lt} \left(n^{\frac{1}{n}} - 1\right) = 1 - 1 = 0 < 1 \left(\text{since } \underset{n \to \infty}{Lt} n^{\frac{1}{n}} = 1\right);$$

 $\therefore \sum u_n$ is convergent by root test.

6.5.7 Example

Examine the convergence of the series whose n^{th} term is $\left(\frac{n+2}{n+3}\right)^n . x^n$

Solution

$$u_n = \left(\frac{n+2}{n+3}\right)^n \cdot x^n; \ \underset{n\to\infty}{Lt} u_n^{1/n} = \underset{n\to\infty}{Lt} \left(\frac{n+2}{n+3}\right) x = x$$

 \therefore By root test, $\sum u_n$ converges when |x| < 1 and diverges when |x| > 1

When
$$|x| = 1$$
: $u_n = \left(\frac{n+2}{n+3}\right)^n$; $\underset{n\to\infty}{Lt} u_n = \underset{n\to\infty}{Lt} \frac{\left(1+\frac{2}{n}\right)^n}{\left(1+\frac{3}{n}\right)^n}$
$$= \frac{e^2}{e^3} = \frac{1}{e} \neq 0 \quad \text{and the terms are all +ve} .$$

 $\sum u_n$ is divergent. Hence $\sum u_n$ is convergent if |x| < 1 and divergent if $|x| \ge 1$.

6.5.8 Example

Show that the series,

$$\left[\frac{2^2}{1^2} - \frac{2}{1}\right]^{-1} + \left[\frac{3^3}{2^3} - \frac{3}{2}\right]^{-2} + \left[\frac{4^4}{3^4} - \frac{4}{3}\right]^{-3} + \dots \text{ is convergent}$$

$$u_n = \left[\frac{(n+1)^{n+1}}{n^{n+1}} - \frac{n+1}{n}\right]^{-n}; = \left(\frac{n+1}{n}\right)^{-n} \left[\left(\frac{n+1}{n}\right)^n - 1\right]^{-n}$$

$$\left(1 + \frac{1}{n}\right)^{-n} \left[\left(1 + \frac{1}{n}\right)^{n} - 1 \right]^{-n}; u_{n}^{\frac{1}{n}} = \left(1 + \frac{1}{n}\right)^{-1} \left[\left(1 + \frac{1}{n}\right)^{n} - 1 \right]^{-1}$$

$$= \frac{1}{\left(1 + \frac{1}{n}\right)} \frac{1}{\left\{\left(1 + \frac{1}{n}\right)^{n} - 1\right\}}$$

$$\therefore Lt_{n\to\infty} u_n^{\frac{1}{n}} = \frac{1}{1} \cdot \frac{1}{e-1} = \frac{1}{e-1} < 1$$

 \therefore By root test, $\sum u_n$ is convergent.

6.5.9 Example

Test
$$\sum_{m=1}^{\infty} u_m$$
 for convergence when $u_m = \frac{e^{-m}}{\left(1 + 2 \left(1 + \frac{2}{m}\right)^{-m^2}\right)}$

Solution

$$Lt_{m\to\infty}\left(u_m^{1/m}\right) = Lt_{m\to\infty}\left[\frac{\left(1+\frac{2}{m}\right)^{m^2}}{e^m}\right]^{\frac{1}{m}}; Lt_{m\to\infty}\frac{1}{e}\left(1+\frac{2}{m}\right)^m = \frac{e^2}{e} = e > 1$$

Hence Cauchy's root tells us that $\sum u_m$ is divergent.

6.5.11 Example:

Test the convergence of the series $\sum \frac{n}{a^{n^2}}$

Solution

$$Lt_{n\to\infty} u_n^{1/n} = Lt_{n\to\infty} \frac{n^{1/n}}{e^n} = 0 < 1$$

 \therefore By root test, $\sum u_n$ is convergent.

6.5.12 Example

Test the convergence of the series, $\frac{2}{1^2}x + \frac{3^2}{2^3}x^2 + \dots + \frac{(n+1)^n \cdot x^n}{n^{n+1}} + \dots + x > 0$

Solution

$$Lt_{n\to\infty} u_n^{\frac{1}{n}} = Lt_{n\to\infty} \left[\frac{\left(n+1\right)^n . x^n}{n^{n+1}} \right]^{\frac{1}{n}} = Lt_{n\to\infty} \left[\left(\frac{n+1}{n}\right) . \frac{1}{n^{\frac{1}{n}}} . x \right]$$
$$= Lt_{n\to\infty} \left[\left(1 + \frac{1}{n}\right) . \frac{1}{n^{\frac{1}{n}}} . x \right] = 1.1.x = x \left[\text{since } Lt_{n\to\infty} n^{\frac{1}{n}} = 1 \right]$$

 \therefore By root test, $\sum u_n$ converges if x < 1 and diverges when x > 1.

When x = 1, the test fails.

Then

$$u_n = \left(1 + \frac{1}{n}\right)^n \cdot \frac{1}{n}$$
; Take $v_n = \frac{1}{n}$

$$\underset{n\to\infty}{Lt} \frac{u_n}{v_n} = \underset{n\to\infty}{Lt} \left(1 + \frac{1}{n}\right)^n = e \neq 0$$

 \therefore By comparison test and p-series test, $\sum u_n$ is divergent.

Hence $\sum u_n$ is convergent when x < 1 and divergent when $x \ge 1$.

Exercise 1 (d)

1. Test for convergence the infinite series whose n^{th} terms are :

[Ans: convergent]

(a)
$$\frac{1}{2^n-1}$$
 [Ans: convergent]

(b) $\frac{1}{(\log)^{2n}} \cdot (n \neq 1)$ [Ans: convergent]

(c) $\left(\frac{3n+1}{4n+3} \cdot x\right)^n$ [Ans: $|x| < \frac{4}{3} cgt, |x| \ge \frac{4}{3} dgt$]

(d) $\frac{x^n}{|n|}$ [Ans: cgt for all $x \ge 0$]

(e) $\frac{|n|}{n^n}$ [Ans: convergent]

(f) $\frac{3^n \cdot \angle n}{n^3}$ [Ans: convergent]

(h)
$$\left(n^{\frac{1}{n}}-1\right)^{2n}$$
 [Ans: convergent]

(j)
$$\left(\frac{nx}{n+1}\right)^n, (x>0)$$
 [Ans: $x<1 \text{ cgt}, x\geq 1 \text{ dgt}$]

2. Examine the following series for convergence:

(a)
$$1 + \frac{x}{2} + \frac{x^2}{3^2} + \frac{x^3}{4^3} + \dots, x > 0$$
 [Ans: $x \le 1cgt, x > 1dgt$]

(b)
$$\frac{1}{4} + \left(\frac{2}{7}\right)^2 + \left(\frac{3}{10}\right)^3 + \dots$$
 [Ans: convergent]

6.6

6.6.1 Integral Test

+ve term series.

$$\phi(1) + \phi(2) + \dots + \phi(n) + \dots$$

where $\phi(n)$ decreases as n increases is convergent or divergent according as the

integral $\int_{-\infty}^{\infty} \phi(x) dx$ is finite or infinite.

Proof:

Let
$$S_n = \phi(1) + \phi(2) + \dots + \phi(n)$$

From the above figure, it can be seen that the area under the curve $y = \phi(x)$ between any two ordinates lies between the set of exterior and interior rectangles formed by the ordinates at

$$n = 1, 2, 3,, n + 1,$$

Hence the total area under the curve lies between the sum of areas of all interior rectangles and sum of the areas of all the exterior rectangles.

Hence

$$\{\phi(1) + \phi(2) + \dots + \phi(n)\} \ge \int_{n+1}^{n+1} \phi(x) dx \ge \{\phi(2) + \phi(3) + \dots + \phi(n+1)\}$$

$$\therefore S_n \ge \int_{n+1}^{\infty} \phi(x) dx \ge S_{n+1} - \phi(1)$$

As $n \to \infty$, Lt S_n is finite or infinite according as $\int_{-\infty}^{\infty} \phi(x) dx$ is finite or infinite. Hence the theorem.

Solved Examples

6.6.2 Example

Test for convergence the series $\sum_{n=2}^{\infty} \frac{1}{n \log n}$

Solution

$$\int_{2}^{\infty} \frac{1}{x \log x} dx = Lt \int_{n \to \infty}^{\infty} \left[\int_{2}^{n} \frac{1}{x \log x} dx \right] = Lt \left[\log \log x \right]_{2}^{n} = \infty$$

.. By integral test, the given series is divergent.

6.6.3 Example

Test for convergence of the series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$

Solution

$$\int_{-\infty}^{\infty} \frac{1}{x^{p}} dx = \underset{n \to \infty}{Lt} \left[\int_{-\infty}^{n} \frac{1}{x^{p}} dx \right] = \underset{n \to \infty}{Lt} \left[\frac{x^{-p+1}}{-p+1} \right]_{1}^{n};$$

$$= \frac{1}{1-p} \underset{n \to \infty}{Lt} \left[n^{1-p} - 1 \right]$$

Case (i)

If p > 1, this limit is finite;

 $\therefore \sum \frac{1}{n^p}$ is convergent.

Case (ii)

If $p \le 1$, the limit is in finite;

 $\therefore \sum_{n^p} \frac{1}{n^p}$ is divergent.

Case (iii)

If p = 1, the limit $\underset{n \to \infty}{Lt} \log x \Big|_{1}^{n} = \underset{n \to \infty}{Lt} (\log n) = \infty$; $\therefore \sum \frac{1}{n^{p}}$ is divergent.

Hence $\sum \frac{1}{n^p}$ is convergent if p > 1 and divergent if $p \le 1$

6.6.4 Example

Test the series $\sum_{n=1}^{\infty} \frac{n}{e^{n^2}}$ for convergence.

Solution

$$u_n = \frac{n}{\rho^{n^2}} = \phi(n)(say);$$

 $\phi(n)$ is +ve and decreases as n increases. So let us apply the integral test.

$$\int_{1}^{\infty} \phi(x) dx = \int_{1}^{\infty} x e^{-x^{2}} dx = \frac{1}{2} \int_{1}^{\infty} e^{-t} dt \left\{ t = x^{2}, dt = 2x dx \right\}$$
$$= -\frac{1}{2} e^{-t} \Big|_{1}^{\infty} = -\frac{1}{2} \left(0 - \frac{1}{e} \right) = \frac{1}{2e}, \text{ which is finite.}$$

By integral test, $\sum u_n$ is convergent.

6.6.5 Example

Apply integral test to test the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{n^2} \sin\left(\frac{\pi}{n}\right)$

Solution

Let $\phi(n) = \frac{1}{n^2} \sin\left(\frac{\pi}{n}\right)$; $\phi(n)$ decreases as *n* increases and is +ve.

$$\int_{2}^{\infty} \phi(x) dx = \int_{2}^{\infty} \frac{1}{x^{2}} \sin\left(\frac{\pi}{x}\right) dx$$

Let
$$\frac{\pi}{x} = t$$

$$-\frac{1}{\pi} \int_{\frac{\pi}{2}}^{0} \sin t dt = \frac{1}{\pi} \cos t \Big|_{\frac{\pi}{2}}^{0} = \frac{1}{\pi} \text{ finite, } -\frac{\pi}{x^{2}} dx = dt$$

$$\frac{1}{x^{2}} dx = -\frac{1}{\pi} dt$$

 \therefore By integral test, $\sum u_n$ converges $x=2 \Rightarrow t=\pi/2$ $x=\infty \Rightarrow t=0$

6.6.6 Example

Apply integral test and determine the convergence of the following series.

(a)
$$\sum_{1}^{\infty} \frac{3n}{4n^2 + 1}$$
 (b) $\sum_{1}^{\infty} \frac{2n^3}{3n^4 + 2}$ (c) $\sum_{1}^{\infty} \frac{1}{3n + 1}$

Solution

(a)
$$\phi(n) = \frac{3n}{4n^2 + 1}$$
 is +ve and decreases as n increases
$$\int_{1}^{\infty} \phi(x) dx = \int_{1}^{\infty} \frac{3x}{4x^2 + 1} dx \qquad \begin{cases} 4x^2 + 1 = t \Rightarrow x dx = \frac{1}{8} dt \\ x = 1 \Rightarrow t = 5, x = \infty \Rightarrow t = \infty \end{cases}$$

$$\int_{1}^{\infty} \phi(x) dx = Lt \int_{1}^{\infty} \frac{3}{8} \int_{1}^{\infty} \frac{dt}{t} dt = Lt \int_{1}^{\infty} \frac{3}{8} \log t - \log 5 = \infty$$

 \therefore By integral test, $\sum u_n$ diverges.

(b)
$$\phi(n) = \frac{2n^3}{3n^4 + 2}$$
 decreases as n increases and is +ve
$$\int_{1}^{\infty} \phi(x) dx = \int_{1}^{\infty} \frac{2x^3}{3x^4 + 2} dx$$

$$= \frac{1}{6} \int_{5}^{\infty} \frac{dt}{t} = \frac{1}{6} [\log t]_{5}^{\infty} = \infty \quad \text{[where } t = 3x^4 + 2\text{]}$$

By integral test, $\sum u_n$ is divergent.

(c)
$$\phi(n) = \frac{1}{3n+1}$$
 is +ve, and decreases as n increases.

$$\int_{1}^{\infty} \phi(x) dx = \int_{1}^{\infty} \frac{1}{3x+1} dx = \int_{1}^{\infty} \frac{1}{3t} \left[t = 3x+1 \right] = \frac{1}{3} \log t \Big|_{t}^{\infty} = \infty$$

 \therefore By integral test, $\sum u_n$ is divergent.

6.7

6.7.1 Alternating Series

A series, $u_1 - u_2 + u_3 - u_4 + \cdots + (-1)^{n-1} u_n + \cdots$, where u_n are all +ve, is an alternating series.

6.7.2 Leibneitz Test

If in an alternating series $\sum_{n=1}^{\infty} (-1)^{n-1} u_n$, where u_n are all +ve,

- (i) $u_n > u_{n+1}, \forall n$, and
- (ii) $\underset{n\to\infty}{Lt} u_n = 0$, then the series is convergent.

Proof:

Let $u_1 - u_2 + u_3 - u_4 + \dots$ be an alternating series (' u_n ' are all +ve)

Let $u_1 > u_2 > u_3 > u_4$, Then the series may be written in each of the following two forms:

$$(u_1 - u_2) + (u_3 - u_4) + (u_5 - u_6) + \dots$$
(A)

$$u_1 - (u_2 - u_3) - (u_4 - u_5) - \dots$$
(B)

- (A) Shows that the sum of any number of terms is +ve and
- (B) Shows that the sum of any number of terms is $< u_1$. Hence the sum of the series is finite. \therefore The series is convergent.

Note:

If $\lim_{n\to\infty} u_n \neq 0$, then the series is oscillatory.

Solved Examples

6.7.3 Example

Consider the series $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} \dots$

In this series, each term is numerically less than its preceding term and n^{th} term $\rightarrow 0$ as $n \rightarrow \infty$.

... By Leibneitz's test, the series is convergent.

(Note the sum of the above series is $Log_a 2$)

6.7.4 Example

Test for convergence
$$\sum \frac{(-1)^{n-1}}{2n-1}$$

Solution

The given series is an alternating series $\sum (-1)^{n-1} u_n$, where $u_n = \frac{1}{2n-1}$

We observe that (i) $u_n > 0, \forall n$ (ii) $u_n > u_{n+1}, \forall n$ (iii) $\underset{n \to \infty}{Lt} u_n = 0$

.. By Leibneitz's test, the given series is convergent.

6.7.5 Example

Show that the series $S = 1 - \frac{1}{3} + \frac{1}{9} - \frac{1}{27} + \dots$ converges.

Solution

The given series is $\sum_{1}^{\infty} \frac{(-1)^{n-1}}{3^{n-1}} = \sum_{1} (-1)^{n-1} u_n$, where $u_n = \frac{1}{3^{n-1}}$ is an alternating series in which 1. $u_n > 0, \forall n = 2$. $u_n > u_{n+1}, \forall n = 3$ and 3. $\sum_{n \to \infty} u_n = 0$;

Hence by Leibneitz's test, it is convergent.

6.7.6 Example

Test for convergence of the series, $\frac{x}{1+x} - \frac{x^2}{1+x^2} + \frac{x^3}{1+x^3} - + \dots, 0 < x < 1$

Solution

The given series is of the form $\sum \frac{(-1)^{n-1} . x^n}{1 + x^n} = \sum (-1)^{n-1} u_n$,

where $u_n = \frac{x^n}{1+x^n}$ Since $0 \le x \le 1$, $u_n > 0$, $\forall n$;

Further, $u_n - u_{n+1} = \frac{x^n}{1+x^n} - \frac{x^{n+1}}{1+x^{n+1}}$ $= \frac{x^n - x^{n+1}}{(1+x^n)(1+x^{n+1})} = \frac{x^n (1-x)}{(1+x^n)(1+x^{n+1})}$

 $0 \le x \le 1 \implies$ all terms in numerator and denominator of the above expression are +ve.

$$\therefore u_n > u_{n+1}, \forall n.$$
Again, $x^n \to 0$ as $x^n \to \infty$ since $0 < x < 1$; $\therefore Lt_{n \to \infty} u_n = \frac{0}{1 + 0} = 0$

:. By Leibneitz's test, the given series is convergent.

6.7.7 Example

Test for convergence
$$\sum_{n=2}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n(n+1)(n+2)}}$$

Solution

The given series is an alternating series
$$\sum (-1)^{n-1} u_n$$

where $u_n = \frac{1}{\sqrt{n(n+1)(n+2)}}$; $u_n > 0, \forall n$;
Again, $\sqrt{(n+1)(n+2)(n+3)} > \sqrt{n(n+1)(n+2)}$
 $\therefore \frac{1}{\sqrt{(n+1)(n+2)(n+3)}} < \frac{1}{\sqrt{n(n+1)(n+2)}}, \forall n$
i.e., $u_{n+1} < u_n, \forall n$
Further, $\underbrace{Lt}_{n \to \infty} u_n = \underbrace{Lt}_{n \to \infty} \frac{1}{\sqrt{n(n+1)(n+2)}} = 0$
 \therefore By Leibnitz's test, $\sum (-1)^{n-1} u_n$ is convergent

6.7.8 Example

Test for the convergence of the following series,

$$\frac{1}{6} - \frac{2}{11} + \frac{3}{16} - \frac{4}{21} + \frac{5}{26} - + \dots$$

Solution

Given series,
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{5n+1} = \sum_{n=1}^{\infty} (-1)^{n-1} u_n$$
 is an alternating series $u_n = \frac{n}{5n+1} > 0 \forall n$; $\frac{n}{5n+1} - \frac{n+1}{5n+6} = \frac{-1}{(5n+1)(5n+6)} \Rightarrow u_n < u_{n+1}, \forall n$
Again, $u_n = \sum_{n \to \infty} \frac{n}{5n+1} = \frac{1}{5} \neq 0$

Thus conditions (ii) or (iii) of Leibnitz's test are not satisfied. The given series is not convergent. It is oscillatory.

6.7.9 Example

Test the nature of the following series.

(a)
$$\sum_{1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n} + \sqrt{n+1}}$$
 (b) $\sum \frac{(-1)^{n-1}}{n^2 + 1}$ (c) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\lfloor n+1 \rfloor}$

Solution

(a)
$$u_n = \frac{1}{\sqrt{n} + \sqrt{n+1}} > 0 \forall n ;$$

$$u_n - u_{n+1} = \frac{1}{\sqrt{n} + \sqrt{n+1}} - \frac{1}{\sqrt{n+1} + \sqrt{n+2}}$$

$$= \frac{\sqrt{n+2} - \sqrt{n}}{\left(\sqrt{n} + \sqrt{n+1}\right)\left(\sqrt{n+1} + \sqrt{n+2}\right)} = \frac{2}{\left(\sqrt{n+2} + \sqrt{n}\right)\left(\sqrt{n} + \sqrt{n+1}\right)\left(\sqrt{n+1} + \sqrt{n+2}\right)} > 0$$

.: By Leibnitz's test the series converges.

(b)
$$u_n = \frac{1}{n^2 + 1} > 0, \forall n; \frac{1}{n^2 + 1} > \frac{1}{(n+1)^2 + 1} \Rightarrow u_n > u_{n+1}, \forall n;$$

 $\underset{n\to\infty}{Lt} u_n = 0$: By Leibnitz's test, given series converges.

(c)
$$u_n = \frac{1}{|n+1|} > 0, \forall n;$$
$$|\underline{n+2} > |\underline{n+1}| \Rightarrow \frac{1}{|n+2|} < \frac{1}{|n+1|} \Rightarrow u_n > u_{n+1}, \forall n$$

By Leibnitz's test, given series converges.

6.7.10 Example

Test the convergence of the series $\frac{1}{5\sqrt{2}} - \frac{1}{5\sqrt{3}} + \frac{1}{5\sqrt{4}} - + \dots$

Solution

The series can be written as $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{5\sqrt{n+1}} ; \quad u_n = \frac{1}{5\sqrt{n+1}}$

(i)
$$u_n > 0 \forall n$$

(ii)
$$5\sqrt{n+2} > 5\sqrt{n+1} \Rightarrow \frac{1}{5\sqrt{n+2}} < \frac{1}{5\sqrt{n+1}} \Rightarrow u_n > u_{n+1} \forall n$$

(iii)
$$Lt u_n = 0$$
;

By Leibnitz's test, the given series converges.

6.7.11 Example

Test for convergence the series, $1 - \frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \dots$

Solution

The given series can be written as $\sum \frac{(-1)^n}{2n}$ (omitting 1st term)

$$\frac{1}{2n} > 0 \forall n; \frac{1}{2n} > \frac{1}{2n+2} \Rightarrow u_n > u_{n+1}, \forall n; \ \underset{n \to \infty}{Lt} \frac{1}{2n} = 0$$

 \therefore By Leibnitz's test, $\sum \frac{(-1)^n}{2n}$ is convergent.

6.7.12 Example

Test for convergence the series, $1 - \frac{1}{3!} + \frac{1}{5!} - \frac{1}{7!} + \dots$

Solution

General term of the series is $\frac{(-1)^{n-1}}{(2n-1)!}$

The series is an alternating series; $\frac{1}{(2n-1)!} > 0 \forall n$

$$\frac{1}{(2n-1)!} > \frac{1}{(2n-1)!} \Rightarrow u_n > u_{n+1}, \forall n \in \mathbb{N} \; ; \; \underset{n \to \infty}{Lt} \frac{1}{(2n-1)!} = 0$$

By Leibnitz's test, given series is convergent.

6.8 Absolute convergence

A series $\sum u_n$ is said to be absolutely convergent if the series $\sum |u_n|$ is convergent

6.8.1

Consider the series

$$\sum u_n = 1 - \frac{1}{2^3} + \frac{1}{3^3} - \frac{1}{4^3} + \dots$$

$$\sum |u_n| = 1 + \frac{1}{2^3} + \frac{1}{3^3} + \frac{1}{4^3} + \dots = \sum_{n=1}^{\infty} \frac{1}{n^3}$$

By p - series test, $\sum |u_n|$ is convergent (p = 3 > 1)

Hence $\sum u_n$ is absolutely convergent.

Note:

1. If $\sum u_n$ is a series of +ve terms, then $\sum u_n = \sum |u_n|$.

For such a series, there is no difference between convergence and absolute convergence. Thus a series of +ve terms is convergent as well as absolutely convergent.

2. An absolutely convergent series is convergent. But the converse need not be

Consider
$$\sum_{1}^{\infty} (-1)^{n-1} \cdot \frac{1}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$$

This series is convergent (1.7.3)

But
$$\sum \left| (-1)^{n-1} \cdot \frac{1}{n} \right| = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$$
 is divergent (p-series test).

Thus $\sum u_n$ is convergent need not imply that $\sum |u_n|$ is convergent (i.e., $\sum u_n$ is not absolutely convergent).

6.9

6.9.1 Conditional Convergence

If the series $\sum |u_n|$ is divergent and $\sum u_n$ is convergent, then $\sum u_n$ is said to be conditionally convergent.

6.9.2 Consider the Series

$$1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}$$
...... $\sum u_n$ is convergent by Leibnitz's test. (Ex.1.7.3)

But
$$\sum |u_n| = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4}$$
.... is divergent by p – series test.

$$\therefore \sum u_n$$
 is conditionally convergent.

6.10

6.10.1 Power Series and Interval of Convergence

A series, $a_0 + a_1x + a_2x^2 + \dots + a_nx^n + \dots$ where ' a_n ' are all constants is a power series in x.

It may converge for some values of x.

$$Lt \frac{u_{n+1}}{u_n} = Lt \frac{a_{n+1}}{a_n}.x \quad (1^{st} \text{ term is omitted.})$$

$$= kx \quad (\text{say}) \text{ where } \quad Lt \frac{a_{n+1}}{a_n} = k$$

Then, by ratio test, the series converges when |kx| < 1.

i.e., it converges
$$\forall x \in \left(\frac{-1}{k}, \frac{1}{k}\right) (k \neq 0)$$

The interval $\left(\frac{-1}{k}, \frac{1}{k}\right)$ is known as the interval of convergence of the given power series.

Solved Examples

6.10.2 Example

Find the interval of convergence of the series $\sum_{n=1}^{\infty} \frac{x^n}{n^3}$

Solution

$$u_{n} = \frac{x^{n}}{n^{3}}; u_{n+1} = \frac{x^{n+1}}{(n+1)^{3}}$$

$$Lt \left(\frac{u_{n+1}}{u_{n}}\right) = Lt \left(\frac{n}{n+1}\right)^{3}.x = Lt \left(\frac{1}{1+\frac{1}{n}}\right)^{3}.x = x$$

By ratio test, the given series converges when |x| < 1, i.e., $x \in (-1,1)$

When x = 1, $\sum u_n = \sum_{n=1}^{\infty} \frac{1}{n^3}$, which, is convergent by p series test.

$$\therefore \sum u_n$$
 is convergent when $x = 1$

Hence, the interval of convergence of the given series is (-1, 1]

6.10.3 Example

Test for the convergence of the following series.

(a)
$$1 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}} + \dots$$

(b)
$$1 + \frac{1}{2^2} - \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{6^2} - \frac{1}{7^2} - \frac{1}{8^2} + \dots$$

(c)
$$1-x^2/2+x^4/4-x^6/6+...$$

(d)
$$\sum_{n=0}^{\infty} (-1)^n (n+1)x^n$$
, with $x < \frac{1}{2}$

Solution

(a) The series is of the form $\sum (-1)^{n-1}u_n$ where $u_n = \sqrt[4]{n}$ It is an alternating series where (i) $u_n > 0 \forall_n$ (ii) $u_n > u_{n+1} \forall n$ and (iii) $\lim_{n \to \infty} u_n = 0$;... By Leibnitz test, the series is convergent.

Again the series $1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{4}} + \dots$ is divergent, by p – series test.

Hence the given series is conditionally convergent.

(b)
$$\sum |u_n| = \sum_{n=1}^{\infty} \frac{1}{n^2}$$
 which is convergent by p - series test.

- .. The given series is absolutely convergent.
- : It is convergent.
- (c) The given series is

$$\sum (-1)^{n-1} \cdot \frac{x^{2n-2}}{(2n-2)!} = \sum (-1)^{n-1} u_n; \quad \therefore |u_n| = \frac{x^{2n-2}}{(2n-2)!}$$

$$u_{n+1} = \frac{x^{2n}}{2n!}; \quad \left| \frac{u_{n+1}}{u_n} \right| = \frac{1}{(2n-1)(2n)} \cdot |x^2|; \quad Lt \left| \frac{u_{n+1}}{u_n} \right| = 0 < 1$$

By ratio test, the series $\sum |u_n|$ converges $\forall x$; i.e., $\sum u_n$ is absolutely convergent $\forall x$;

 $\therefore \sum |u_n|$ is convergent $\forall x$, i.e., given series is absolutely convergent and hence convergent.

6.10.4

Show that the series $1 + x + \frac{x^2}{2} + \frac{x^2}{3} + \dots$ converges absolutely $\forall x$

Solution

$$\underset{n\to\infty}{Lt} \frac{|u_{n+1}|}{|u_n|} = \frac{|x|}{n} = 0 < 1 \text{ when } x \neq 0 \text{ [since } |u_n| = \frac{|x^{n-1}|}{(n-1)!}; |u_{n+1}| = \frac{|x^n|}{n!} \text{]}$$

 \therefore By ratio test, $\sum |u_n|$ is convergent $\forall x \neq 0$.

When x = 0, the series is (1 + 0 + 0 +) and is convergent

$$\therefore \sum |u_n|$$
 converges $\Rightarrow \sum u_n$ is absolutely convergent $\forall x$.

6.10.5 Example

Show that the series, $1 - \frac{1}{3} + \frac{1}{3^2} - \frac{1}{3^4} + \dots$ is absolutely convergent.

Solution

$$\sum |u_n| = \sum_{n=1}^{\infty} \frac{1}{3^{n-1}}$$
, which is a geometric series with common ratio $\frac{1}{3} < 1$

... It is convergent. Hence given series is absolutely convergent.

6.10.6 Example

Test for convergence, absolute convergence and conditional convergence of the series,

$$1 - \frac{1}{5} + \frac{1}{9} - \frac{1}{13} + \dots$$

Solution

The given alternating series is of the form $\sum_{n=1}^{\infty} (-1)^{n-1} u_n$, where, $u_n = \frac{1}{4n-3}$.

Hence,
$$u_n > 0 \forall n \in N$$
; $u_{n+1} = \frac{1}{4(n+1)-3} = \frac{1}{4n+1}$

$$u_n - u_{n+1} = \frac{1}{4n-3} - \frac{1}{4n+1}$$

$$= \frac{4n+1-4n+3}{(4n-3)(4n+1)} = \frac{4}{(4n-3)(4n+1)} > 0, \forall n \in N$$

i.e.,
$$u_n > u_{n+1}, \forall n \in N$$
 $\underset{n \to \infty}{Li} u_n = \underset{n \to \infty}{Li} \frac{1}{4n-3} = 0;$

All conditions of Leibnitz's test are satisfied.

Hence $\sum (-1)^{n-1}u_n$ is convergent.

$$|u_n| = \frac{1}{4n-3}$$
; Take $v_n = \frac{1}{n}$; $\underset{n \to \infty}{Lt} \frac{|u_n|}{v_n} = \underset{n \to \infty}{Lt} \frac{n}{n(4-\frac{3}{n})} = \frac{1}{4} \neq 0$ and finite.

 \therefore By comparison test, $\sum |u_n|$ and $\sum v_n$ behave alike.

But by p - series test, $\sum v_n$ is divergent (since p = 1).

 $\sum |u_n|$ is divergent and \therefore The given series is conditionally convergent.

6.10.7 Example

Test the series $\sum_{n=1}^{\infty} (-1)^{n-1} \cdot \frac{1}{3\sqrt{n}}$, for absolute / conditional convergence.

Solution

The given series is an alternating series of the form $\sum (-1)^{n-1} u_n$.

Here

(i)
$$u_n = \frac{1}{3\sqrt{n}}, \forall n \in \mathbb{N}$$

(ii)
$$3(n+1) > 3n \Rightarrow 3\sqrt{n+1} > 3\sqrt{n}, \forall n$$

$$\therefore \frac{1}{3\sqrt{n+1}} < \frac{1}{3\sqrt{n}} \text{, i.e., } u_{n+1} < u_n, \forall n \in \mathbb{N}$$

And
$$\underset{n\to\infty}{Lt} u_n = \underset{n\to\infty}{Lt} \frac{1}{3\sqrt{n}} = 0$$

.. By Leibnitz's test, the given series is convergent.

But
$$\sum_{n=0}^{\infty} \left| (-1)^{n-1} \cdot \frac{1}{3\sqrt{n}} \right| = \sum_{n=0}^{\infty} \frac{1}{3\sqrt{n}}$$
 is divergent by $p-$ series test (since $p=\frac{1}{2}<1$)

... The given series is conditionally convergent.

6.10.8 Example

Test the following series for absolute / conditional convergence.

(a)
$$\sum_{n=1}^{\infty} (-1)^{n-1}, \frac{\sin(n\alpha)}{n^2}$$
 (b)
$$\sum_{n=1}^{\infty} (-1)^{n-1}. \frac{n^2}{n^3+1}$$

(c)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!}$$
 (d)
$$\sum (-1)^{n-1} \frac{n\pi^n}{e^{3n+1}}$$

Solution

- (a) $|u_n| = \frac{|\sin n\alpha|}{n^2} < \frac{1}{n^2} \left[\text{since } |\sin n\alpha| < 1 \right] \text{ considering } v_n = \frac{1}{n^2} \text{ and using comparison and } p \text{ series tests, we get that } \sum |u_n| \text{ is convergent } \sum u_n \text{ is absolutely convergent }.$
- (b) By Leibnitz's test, the series converges. Taking $v_n = \frac{1}{n}$, by comparison and p series tests, $\sum \frac{n^2}{n^3 + 1}$, is seen to be divergent. Hence given series is conditionally convergent.
- (c) Take $|u_n| = \frac{1}{2n!}$; $\underset{n\to\infty}{Lt} \frac{|u_{n+1}|}{|u_n|} = 0 < 1$; By ratio test, $\sum |u_n|$ is convergent; Hence given series is absolutely convergent.
- (d) $|u_n| = \frac{n\pi^n}{e^{3n+1}}$; By root test, is convergent, \therefore given series is absolutely convergent. [In problems (a) to (d) above, hints only are given. Students are advised to do the complete problem themselves]

6.10.9 Example

Find the interval of convergence of the following series.

(a)
$$\sum_{n=1}^{\infty} (-1)^{n-1} x^n / n^3$$

(b)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n(x+2)^n}{3^n}$$

(c) $\log(1+x)$

Solution

(a) Let the given series be $\sum u_n$; Then $|u_n| = \frac{|x^n|}{n^3}$; $|u_{n+1}| = \frac{|x^{n+1}|}{(n+1)^3}$

$$Lt \frac{|u_{n+1}|}{|u_n|} = Lt \left(\frac{n}{n+1}\right)^3 . |x| = Lt \left(\frac{1}{1+\frac{1}{n}}\right)^3 . |x| = |x|$$

 \therefore By ratio test, $\sum |u_n|$ is convergent if |x| < 1

i.e., $\sum u_n$ is absolutely convergent if |x| < 1;

 $\therefore \sum u_n$ is convergent if |x| < 1

If x = 1, the given series becomes $1 - \frac{1}{2^3} + \frac{1}{3^3} - \frac{1}{4^3} + \dots$

which is convergent, since $\sum \frac{1}{n^3}$ is convergent.

Similarly, if x = -1, the series becomes $\sum -\frac{1}{n^3} = -\sum \frac{1}{n^3}$ which is also convergent.

Hence the interval of convergence of $\sum u_n$ is $(-1 \le x \le 1)$

(b) Proceeding as in (a),

$$Lt_{n\to\infty} \frac{|u_{n+1}|}{|u_n|} = \frac{|x+2|}{3}$$

 $\sum u_n \text{ is convergent if } |x+2| < 3 \text{ , i.e., if } -3 < x+2 < 3 \text{ , i.e., if } -5 < x < 1.$

If x = -5, $\sum u_n = \sum (-1)^{2n-1} n$, and is divergent (in both these cases

If x = 1, $\sum u_n = \sum (-1)^{n-1} .n$, and is divergent $\lim_{n \to \infty} u_n \neq 0$)

Hence the interval of convergence of the series is $(-5 \le x \le 1)$

(c)
$$\log (1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$$

 $= \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n} = \sum u_n \quad \text{(say)}$
 $|u_n| = \frac{|x^n|}{n}; |u_{n+1}| = \frac{|x^{n+1}|}{n+1}$
 $Lt \frac{|u_{n+1}|}{|u_n|} = Lt \frac{1}{n+1} |x| = |x|$

By ratio test, $\sum |u_n|$ is convergent when |x| < 1

i.e., $\sum u_n$ is absolutely convergent and hence convergent when -1 < x < 1.

When
$$x = -1$$
, $\sum u_n = \sum (-1)^{n-1} \cdot \frac{1}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$,

which is convergent by Leibnitz's test. (give the proof)

When
$$x = 1$$
, $\sum u_n = -\left(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots\right)$ which is divergent, since $\sum \frac{1}{n}$ is divergent by p -series test (prove). Hence $\sum u_n$ is convergent when $-1 < x \le 1$ Interval of convergence is $(-1 < x \le 1)$.

Exercise -1 (e)

1. Use integral test and determine the convergence or divergence of the following series:

1
$$\sum \frac{1}{n^2}$$
 [Ans: convergent]

2.
$$\sum_{n=2}^{\infty} \frac{1}{n(\log n)^2}$$
 [Ans: convergent]

2. Test for convergence of the following series:

1
$$1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{6} + \dots$$
 [Ans: convergent]

2.
$$\sum_{1}^{\infty} \frac{(-1)^{n-1}}{(2n-1)(2n)}$$
 [Ans: convergent]

3.
$$\sum_{1}^{\infty} (-1)^{n-1} n^{-\frac{5}{2}}$$
 [Ans: convergent]

3. Classify the following series into absolutely convergent and conditionally convergent series:

1.
$$\sum \frac{(-1)^n}{n^3}$$
 [Ans: abs.cgt]

2.
$$\sum \frac{\sin \sqrt{n}}{n^{3/2}}$$
 [Ans: abs.cgt]

3.
$$\sum \frac{\left(-1\right)^n}{n\left(\log n\right)^2}$$
 [Ans: abs.cgt]

4. Find the interval of convergence of the following series:

1.
$$\sum \frac{2^n x^n}{|x|}$$
 [Ans: $-\infty < x < \infty$]

2.
$$\sum \frac{x^n}{n^2}$$
 [Ans: $-1 \le x \le 1$]

3.
$$x - \frac{x^2}{\sqrt{2}} + \frac{x^3}{\sqrt{3}} - \frac{x^4}{\sqrt{4}} + \dots$$
 [Ans: $-1 < x \le 1$]

- 5. (a) Show that $1 \frac{1}{2^2} + \frac{1}{3^2} \frac{1}{4^2} + ...$ is absolutely convergent.
 - (b) Show that $1 \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} \frac{1}{\sqrt{4}} + \dots$ is conditionally convergent.

Tests of Convergence - A Summary

- 1. The geometric series $\sum_{n=1}^{\infty} x^{n-1}$ converges if |x| < 1, diverges if $x \ge 1$, and oscillates when $x \le -1$
- 2. If $\sum u_n$ is convergent, $\lim_{n\to\infty} u_n = 0$ [The convergent need not be necessary]
- 3. p series test :- $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent if p > 1 and divergent if $p \le 1$
- 4. Comparison test: The series $\sum u_n$ and $\sum v_n$ are both convergent or both divergent if $\lim_{n\to\infty} \frac{u_n}{v_n}$ is finite and non-zero.
- 5. D'Alembert's Ratio test :- $\sum u_n$ converges or diverges according as

$$Lt_{n\to\infty}\frac{u_{n+1}}{u_n}<1 \quad \text{or} \quad >1$$

Alternately, if
$$\underset{n\to\infty}{Lt} \frac{u_n}{u_{n+1}} > 1$$
 or < 1). If the limit = 1, the test fails

6. Raabe's test: $\sum u_n$ converges or diverges according as

$$\underset{n\to\infty}{Lt} \left[n \left\{ \frac{u_n}{u_{n+1}} - 1 \right\} \right] > 1 \text{ or } < 1 .$$

7. Cauchy's root test: $\sum u_n$ converges or diverges according as $\lim_{n\to\infty} \left(u_n^{\frac{1}{n}}\right) < 1$ or > 1 (If limit = 1, the test fails.)

- 8. Integral test: A series $\sum \phi(n)$ of +ve terms where $\phi(n)$ decreases as n increases is convergent or divergent according as the integral $\int_{1}^{\infty} \phi(x) dx$ is finite or infinite.
- 9. Alternating series Leibnitz's test: An alternating series $\sum_{n=1}^{\infty} (-1)^{n-1} u_n$ convergent if (i) $u_n = u_{n+1}$, $\forall n$ and (ii) $\lim_{n \to \infty} u_n = 0$
- 10. Absolute / conditional convergence:
 - (a) $\sum u_n$ is absolutely convergent if $\sum |u_n|$ is convergent.
 - (b) $\sum u_n$ is conditionally convergent if $\sum u_n$ is convergent and $\sum |u_n|$ is divergent.
 - (c) An absolutely convergent series is convergent, but converse need not be true . i.e., a convergent series need not be convergent.

Miscellaneous Exercise - 1 (e)

1. Examine the convergence of the following series:

1.
$$\frac{1}{1.2} + \frac{1}{3.4} + \frac{1}{5.6} + \dots$$
 [cgt.]

2.
$$\frac{1^2}{1^3+1} + \frac{2^2}{2^3+1} + \frac{3^2}{3^3+1} + \dots$$
 [dgt.]

3.
$$\frac{2}{1} + \frac{2^2}{2} + \frac{2^3}{3} + \dots$$
 [dgt.]

4.
$$\frac{1}{1+2} + \frac{2}{1+2^2} + \frac{3}{1+2^3} + \dots$$
 [cgt.]

5.
$$\frac{x}{1+x} + \frac{x^2}{1+x^2} + \frac{x^3}{1+x^3} + \dots + (x>0)$$
 [cgt. if $x \le 1$ dgt. if $x > 1$]

6.
$$2x + \frac{3x^2}{8} + \frac{4x^3}{27} + \dots + (x > 0)$$
 [cgt. if $x \le 1$ dgt. if $x > 1$]

7.
$$1 + \frac{1}{2} + \frac{1.3}{2.4} + \frac{1.3.5}{2.4.6} + \dots$$
 [dgt.]

8.
$$\frac{3^2}{6^2} + \frac{3^2.5^2}{6^2.8^2} + \frac{3^2.5^2.7^2}{6^2.8^2.10^2} + \dots$$
 [cgt]

9.
$$\frac{3.4}{1.2} + \frac{4.5}{2.3} + \frac{5.6}{3.4} + \dots$$
 [dig.]

10.
$$\frac{(1)^2}{12} \cdot x + \frac{(12)^2}{14} x^2 + \frac{(13)^3}{16} x^3 + \dots (x > 0) \dots$$
 [cgt. if $x < 4$, dgt. if $x \ge 4$]

11.
$$1 + \frac{x}{2^2} + \frac{x^2}{3^2} + \frac{x^3}{4^2} + \dots + (x > 0)$$
 [cgt.if $x \le 1$, dgt. if $x > 1$]

12.
$$\frac{3x}{4} + \left(\frac{4}{5}\right)^2 x^2 + \left(\frac{5}{6}\right)^3 + x^3 + \dots + (x > 0)$$
 [cgt if $x < 1$, dgt. if $x \ge 1$]

14.
$$\sum \frac{2^{3n}}{3^{2n}}$$
 [cgt.]

15.
$$\sum \frac{a^n}{1+n^2}$$
, $a < 1$ [cgt.]

16.
$$1 - \frac{1}{2.2} + \frac{1}{3.3} - \frac{1}{4.4} + - + - \dots$$
 [Abs. cgt.]

2. Examine for absolute and conditional convergence of the following series :

2.
$$\sum \frac{(-1)^n \cdot n}{2^n}$$
 [Abs. cgt.]

3.
$$1 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}} + \frac{1}{\sqrt{5}}$$
 [Cond. cgt]

3. Determine the interval of convergence of the following series :

$$1 \quad x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \dots \qquad [-1 \le x < 1]$$

Exercise - 1 (g) (Objective type questions)

Exercise - 1 (g) (Objective type questions)				
1. The infi	nite series $\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$ is			
(i)	convergent	(ii)	divergent	
(iii)	oscillatory	(iv)	none of these	[Ans :(i)]
2. The seri	$es \frac{1+n}{1+n^2} is$			
(i)	convergent	(ii)	divergent	
(iii)	oscillatory	(iv)	none of these	[Ans :(ii)]
3. The seri	$es \frac{1}{1\sqrt{1}} - \frac{1}{2\sqrt{2}} + \frac{1}{3\sqrt{3}} - \frac{1}{4\sqrt{4}} + \dots$	•••		
	oscillatory	(ii)	absolutely convergent	
(iii)	conditionally convergent	(iv)	none of these	[Ans :(ii)]
4. The seri	es $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4}$ is			
(i)	oscillatory	(ii)	divergent	
(iii)	convergent	(iv)	none of these	[Ans :(iii)]
5. The inte	erval of convergence of the series			,is
	$-\infty < x < \infty$	(ii)	-1 < x < 2	
` '	$-1 < x \le 1$		none of these	[Ans :(iii)]
	es $\frac{1}{1.2} + \frac{2}{3.4} + \frac{3}{5.6} + \dots \infty$ is			
	convergent	(ii)	divergent	
	oscillatory	(iv)	none of these	[Ans :(ii)]
7. The seri	es $\frac{1}{1.3} + \frac{2}{3.5} + \frac{3}{5.7} + \dots \infty$, is			
	conditionally convergent		convergent	
(iii)	divergent	(iv)	none of these	[Ans : (iii)]
8. The series $\frac{2}{1^p} + \frac{3}{2^p} + \frac{4}{3^p} + \frac{5}{4^p} + \dots \infty$ is convergent if				
	<i>p</i> < 2	(ii)		
	p > 2		none of these	[Ans :(iii) }
9. The series $6 - 10 + 4 + 6 - 10 + 4 + 6 - 10 + 4 + 6 \dots \infty$ is				
	convergent	(ii)	oscillatory	
(iii)	divergent	(iv)	none of these	[Ans :(ii)]

14. The series
$$\sum \frac{(-1)^{n-1}}{\sqrt{n}}$$
 is conditionally convergent. [True]

15. The series whose n^{th} term is $\frac{3n^2+5}{(n+2)^a}$ is convergent. [False]

3. Fill in the Blanks:

- 1. The geometric series $\sum_{n=0}^{\infty} ar^{n-1}$ converges if ______. [Ans: | r |< 1]
- 2. If a series of +ve terms $\sum u_n$ is convergent, $\lim_{n \to \infty} u_n = \underline{\qquad}$.
- 3. $\sum_{n=0}^{\infty} \left\{ \sqrt[3]{n^3 + 1} n \right\}$ is _____. [Ans: convergent.]
- 4. If $\sum_{n=1}^{\infty} \frac{3n^3 4}{(n+5)^p}$ is divergent, value of p is _____. [Ans: ≤ 4]
- 5. The interval of convergence of $\sum u_n$ where $u_n = \left(\frac{n^2-2}{n^2+2}\right)^{2n} x$, is _____.

6. $\sum u_n$ is convergent series of +ve series. Then $\underset{n\to\infty}{Lt}(u_n^{1/n})$ is ______.

[Ans: < 1]

- 7. The series $8 12 + 4 + 8 12 4 + \dots$ [Ans: Oscillat 8. If $u_n > 0, \forall n \text{ and } \sum u_n \text{ is convergent, then } Lt \left[n \left\{ \frac{u_n}{u_{n-1}} 1 \right\} \right] \text{ is } \underline{\qquad}$.

[Ans: >1]

9. If the series $\sum_{n=1}^{\infty} (-1)^n a_n$, $(a_n > 0 \forall n)$ is convergent, then for all values of n, $\frac{a_n}{a_{n+1}}$

[Ans: > 1]

10. If
$$u_n = \left(1 + \frac{1}{n}\right)^{-n^2}$$
, $Lt_n u_n^{Vn} =$ ______. [Ans: 1/e]

Tests of Convergence - A Summary

- 1. The geometric series $\sum_{n=1}^{\infty} x^{n-1}$ converges if |x| < 1, diverges if $x \ge 1$ and oscillates when $x \le 1$.
- 2. If $\sum u_n$ is convergent, $\lim_{n\to\infty} u_n = 0$ [The converse need not be necessary]
- 3. p series test:- $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent if p > 1 and divergent if $p \le 1$
- **4.** Comparison test: The series $\sum u_n$ and $\sum v_n$ are both convergent or both divergent if $\lim_{n\to\infty} \frac{u_n}{v_n}$ is finite and non zero.
- **5.** D'ALEMBERT'S Ratio test: $\sum u_n$ converges or diverges according as $\underset{n\to\infty}{Lt} \frac{u_{n+1}}{v_n} < 1$ or >1 (Alternately, $\underset{n\to\infty}{Lt} \frac{u_{n+1}}{v_n} < 1$ or >1). If the limit = 1, the test fails.
- 6. Raabe's test: $\sum u_n$ converges or diverges according as $\lim_{n\to\infty} \left\{ n \left\{ \frac{u_n}{u_{n+1}} 1 \right\} \right\} > 1 \text{ or } < 1$
- 7. Cauchy's root test: $\sum u_n$ converges or diverges according as $\underset{n\to\infty}{Lt} \left(u_n^{\frac{1}{n}} \right) < 1$ or > 1; (If the Limit = 1, The test fails).
- 8. Integral test: A series $\sum \phi(n)$ of +ve terms where $\phi(n)$ decreases as n increases is convergent or divergent according as integral $\int_{0}^{\infty} \phi(x) dx$ is finite or infinite.
- 9. Alternating series Leibnitz's test: An alternating series $\sum_{n=1}^{\infty} (-1)^{n-1} u_n$ (where $u_n > 0 \forall n$) is convergent if (i) $u_n > u_{n+1}$, $\forall n$ (ii) $\sum_{n \to \infty} u_n = 0$
- 10. Absolute/ conditional convergence:
 - (a) $\sum u_n$ is absolutely convergent if $\sum |u_n|$ is convergent.
 - (b) $\sum u_n$ is conditionally convergent if $\sum u_n$ is convergent and $\sum |u_n|$ is divergent.
 - (c) An absolutely convergent series is convergent but converse need not be true. i.e., a convergent series need not be convergent.

Solved University Questions

1. Test the convergence of the series:

$$\frac{1}{1,2,3} + \frac{2}{2,3,4} + \frac{3}{3,4,5} + \dots$$

Solution

Let u_n be the n^{th} term of the series;

Then,
$$u_{n} = \frac{n}{n(n+1)(n+2)} = \frac{1}{(n+1)(n+2)}$$
Let
$$v_{n} = \frac{1}{n^{2}}; \text{ then, } \lim_{n \to \infty} \frac{u_{n}}{v_{n}} = \lim_{n \to \infty} \frac{n^{2}}{(n+1)(n+2)}$$

$$= \lim_{n \to \infty} \frac{1}{(1+\frac{1}{n})(1+\frac{2}{n})} = 1,$$

Which is non-zero and finite,

 \therefore By comparison test, both $\sum u_n$ and $\sum v_n$ converge or diverge together.

But $\sum v_n$ is convergent by p-series test $(p \ge 1)$ $\therefore \sum u_n$ is convergent.

2. Show the every convergent sequence is bounded

Solution

Let $\langle a_n \rangle$ be a sequence which converges to a limit '1' say.

$$\underset{n\to\infty}{Lt} a_n = l \Rightarrow \text{given any +ve number } \in \text{, however small ,}$$

we can always find an integer ' m ', \ni , $|a_n - l| < \in$, $\forall n \ge m$

Taking
$$\in$$
 = I, we have, $|a_n - l| < 1$;

i.e.,
$$(l-1) < a_n < (l+1), \forall n \ge m$$

Let
$$\lambda = \min \{a_1, a_2, \dots, a_{m-1}, (l-1)\}$$
, and $\mu = \max \{a_1, a_2, \dots, a_{m-1}, (l+1)\}$

Then obviously, $\lambda \le a_n \le \mu$, $\forall n \in N$;

Hence $\langle a_n \rangle$ is bounded.

3. Show that the series,

$$S = 1 - \frac{1}{3!} + \frac{1}{5!} - \frac{1}{7!} + \dots$$
 converges.

Solution

The given series is an alternating series $\sum (-1)^{n-1} u_n$,

where $u_n = \frac{1}{(2n-1)!}$ We observe that,

(i) $u_n > 0$ and $u_n > u_{n+1}$, $\forall n$ and

(ii)
$$\underset{n\to\infty}{Lt} u_n = \underset{n\to\infty}{Lt} \frac{1}{(2n-1)!} = 0$$

... By Leibneitz's test [7.2] the given series converges.

4. Show that the geometric series $\sum_{m=0}^{\infty} q^m = 1 + q + q^2 + \dots$ converges to the sum

$$\frac{1}{1-q}$$
 when $|q| < 1$ and diverges when $|q| \ge 1$

Solution

See theorm 2.3 (replace 'x' by 'q').

5. Define the convergence of a series. Explain the absolute convergence and conditional convergence of a series. Test the convergence of series

$$\sum \left[1 + \frac{1}{\sqrt{n}}\right]^{-n^2}$$

Solution

For theory part, refer 2.1, 2.2, 8.1, 9.1, and 9.2

Problem: Let
$$u_n = \left(1 + \frac{1}{\sqrt{n}}\right)^{-n^2}$$
; $\lim_{n \to \infty} \left(u_n^{\vee n}\right) = \lim_{n \to \infty} \left(1 + \frac{1}{\sqrt{n}}\right)^{-n}$
$$= \lim_{n \to \infty} \frac{1}{\left[1 + \frac{1}{\sqrt{n}}\right]^n} = \frac{1}{e^2} < 1$$

By Cauchy's root test, $\sum u_n$ is convergent.

6. Test the convergence of the series, $1 + \frac{1}{2}x + \frac{1.3}{2.4}x^2 + \frac{1.3.5}{2.4.6}x^3 + \dots$

Given that x > 0.

Solution

Omitting the first term of the series, we have, $\frac{1.3.5....(2n-1)}{2.4.6.....2n}x^n$ and

$$u_{n} = \frac{1.3.5.(2n-1)}{2.4.6....2n} x^{n} ; u_{n+1} = \frac{1.3.5....(2n+1)}{2.4.6....(2n+2)} x^{n+1};$$

$$Lt_{n\to\infty} \frac{u_{n+1}}{u_{n}} = Lt_{n\to\infty} \left(\frac{2n+1}{2n+2}\right) x = x$$

By ratio test, $\sum u_n$ is convergent when x < 1, and divergent when x > 1

The ratio test fails when x = 1

When
$$x = 1$$
,
$$\frac{u_n}{u_{n+1}} - 1 = \frac{2n+2}{2n+1} - 1 = \frac{1}{2n+1}$$

$$Lt_{n \to \infty} \left[n \left(\frac{u_n}{u_{n+1}} - 1 \right) \right] = Lt_{n \to \infty} \left(\frac{n}{2n+1} \right) = \frac{1}{2} < 1 ;$$

- \therefore By Raabe's test, $\sum u_n$ diverges.
- \therefore The given series converges when $x \le 1$ and diverges when $x \ge 1$.

7. Test the convergence of the series,
$$\frac{1}{2} + \left(\frac{2}{3}\right)x + \left(\frac{3}{4}\right)^2 x^2 + \left(\frac{4}{5}\right)^3 x^3 + \dots x > 0$$

Solution

Neglecting the 1st term,

$$u_n = \left\lfloor \left(\frac{n+1}{n+2} \right) x \right\rfloor^{n};$$

$$u_n^{y_n} = \left(\frac{n+1}{n+2} \right) x = \left(\frac{1+\frac{1}{n}}{1+\frac{2}{n}} \right) x$$

 $\lim_{n\to\infty} u_n^{1/n} = x$; By Cauchy's root test, $\sum u_n$ is cgt. when x < 1 and dgt. when x > 1

1; when x = 1, the test fails.

When x = 1, $u_n = \frac{\left(1 + \frac{1}{n}\right)^n}{\left(1 + \frac{2}{n}\right)^n}$; $\lim_{n \to \infty} u_n = \frac{e}{e^2} = \frac{1}{e} \neq 0$

- $\therefore \sum u_n$ is divergent.
- \therefore is cgt. when x < 1 and dgt. when $x \ge 1$.

8. Test the series whose n^{th} term is $(3n-1)/2^n$ for convergence.

Solution

$$u_{n} = \frac{(3n-1)}{2^{n}} ; \qquad u_{n+1} = \frac{\{3(n+1)-1\}}{2^{n+1}} ;$$

$$\frac{u_{n+1}}{u_{n}} = \frac{(3n+2)}{2(3n-1)} \qquad \qquad \underset{n \to \infty}{Lt} \frac{u_{n+1}}{u_{n}} = \frac{1}{2} < 1 ;$$

- \therefore By ratio test, $\sum u_n$ is convergent.
- 9. Show by Cauchy's integral test that the series $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^p}$ converges if p > 1 and diverges if 0

Solution

Let
$$\phi(x) = \frac{1}{x(\log x)^p}$$
; $x \ge 2$; Then $\phi(x)$ decreases as x increases in $[2, \infty]$

$$\int_{2}^{\infty} \phi(x) dx = \int_{2}^{\infty} \frac{dx}{x(\log x)^p} = \int_{\log 2}^{\infty} \frac{du}{u^p} = \frac{u^{1-p}}{1-p} \Big|_{\log 2}^{\infty}$$
;

[Taking
$$\log x = u$$
, $\frac{1}{x} dx = du$ $x = 2 \Rightarrow u = \log 2$ and $x = \infty \Rightarrow u = \infty$]

Case (i): $p > 1 \Rightarrow 1 - p < 0 \Rightarrow$ Integral is finite, and

Case (ii): 0 Integral is infinite.

Hence, by integral test, the given series converges if p > 1 and diverges when 0 .

10. Test the convergence of the series $\sum \left(1 + \frac{1}{\sqrt{n}}\right)^{-n^{\frac{3}{2}}}$

Solution

$$u_n^{\sqrt{n}} = \left\{ \left(1 + \frac{1}{\sqrt{n}} \right)^{-n^{\frac{1}{2}}} \right\}^{\frac{1}{n}} = \frac{1}{\left(1 + \frac{1}{\sqrt{n}} \right)^{\sqrt{n}}} ;$$

$$\lim_{n \to \infty} u_n^{-1} = \frac{1}{e} < 1 \qquad [2 \le e \le 3].$$

By Cauchy's root test, $\sum u_n$ is convergent.

11. Test the convergence of the series, $\sum_{n=2}^{\infty} \frac{(-1)^n x^n}{n(n-1)}$, 0 < x < 1

Solution

The given series is of the form $\sum (-1)^n u_n$, where $u_n = \frac{x^n}{n(n-1)}$.

This is an alternating series in which (i) $u_n > 0$ and $u_n > u_{n+1} \forall n \in N$.

Further $\lim_{n\to\infty} u_n = 0$. Hence, by Leibnitz test, the series is convergent.

12. Discuss the convergence of the series, $\frac{1}{2\sqrt{1}} + \frac{x^2}{3\sqrt{2}} + \frac{x^4}{4\sqrt{3}} + \frac{x^6}{5\sqrt{4}} + \dots$

Solution

$$n^{th} \text{ term of the series} = u_n = \frac{x^{2n}}{(n+2)\sqrt{n+1}} \quad \text{(omitting 1st term)}$$

$$u_{n+1} = \frac{x^{2n+2}}{(n+3)\sqrt{n+2}}; \frac{u_{n+1}}{u_n} = \frac{\sqrt{n+2}\sqrt{n+1}}{(n+3)} x^2$$

$$Lt \frac{u_{n+1}}{u_n} = Lt \frac{\sqrt{1+2}\sqrt{1+\frac{1}{n}}}{(1+\frac{3}{n})} x^2 = x^2;$$

... By ratio test, $\sum u_n$ converges if $x^2 < 1$, i.e., if |x| < 1, and diverges if $x^2 > 1$, i.e., if |x| > 1;

When
$$x^2 = 1$$
, $u_n = \frac{1}{(n+2)\sqrt{n+1}}$; taking $v_n = \frac{1}{n^{\frac{3}{2}}}$,
$$Lt_{n \to \infty} \frac{u_n}{v_n} = Lt_{n \to \infty} \frac{n^{\frac{3}{2}}}{n^{\frac{3}{2}} \left(1 + \frac{2}{n}\right) \sqrt{1 + \frac{1}{n}}} = 1$$

 \therefore By comparison test, $\sum u_n$ and $\sum v_n$ both converge or diverge together;

But $\sum v_n$ is convergent by *p*-series test.

 $\therefore \sum u_n$ is convergent if $|x| \le 1$ and divergent if |x| > 1.

13. Test the convergence of the series $\sum_{n=1}^{\infty} \frac{x^{2n}}{(n+1)\sqrt{n}}$

Solution

$$u_{n} = \frac{x^{2n}}{(n+1)\sqrt{n}}; \quad u_{n+1} = \frac{x^{2n+2}}{(n+2)\sqrt{n+1}}$$

$$\frac{u_{n+1}}{u_{n}} = \frac{\sqrt{n}\sqrt{n+1}}{n+2} x^{2} = \frac{\sqrt{1+\frac{1}{n}}}{(1+\frac{2}{n})} x^{2}; \quad Lt \quad \frac{u_{n+1}}{u_{n}} = x^{2};$$

 \therefore By ratio test, $\sum u_n$ converges when |x| < 1 and diverges for |x| > 1.

When |x| = 1, $u_n = \frac{1}{n^{\frac{3}{2}} \left(1 + \frac{1}{n}\right)}$ taking $v_n = \frac{1}{n^{\frac{3}{2}}}$ and applying the comparision

test, we observe that $\sum u_n$ is convergent.

Hence $\sum u_n$ converges when $|x| \le 1$ and diverges when |x| > 1.

14. Find the interval of convergence of the series, $\frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \dots \infty$

Solution

For the given series,
$$u_n = \frac{x^{n+1}}{n+1}$$
; $u_{n+1} = \frac{x^{n+2}}{n+2}$

$$Lt_{n\to\infty} \frac{u_{n+1}}{u_n} = Lt_{n\to\infty} \left(\frac{1+\frac{1}{n}}{1+\frac{2}{n}}\right) x = x$$

By ratio test, $\sum u_n$ converges when |x| < 1 i.e., -1 < x < 1

When
$$x = 1$$
, $u_n = \frac{1}{n+1}$
Taking $u_n = \frac{1}{n}$; $\frac{u_n}{v_n} = \frac{1}{1+\frac{1}{n}}$

$$Lt_{n\to\infty} \frac{u_n}{v_n} = 1 \neq 0 \quad \text{and finite.}$$

 \therefore Both $\sum u_n$ and $\sum v_n$ converge or diverge together.

But $\sum v_n$ diverges $\therefore \sum u_n$ also diverges when x = 1.

When x = -1, the given series is

$$\frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \frac{1}{5}$$
 which is alternating series with

$$u_n > u_{n+1} \forall n \text{ and } u_n \to 0 \text{ as } n \to \infty$$

- \therefore By Leibneitz's test $\sum u_n$ converges when x = -1
- \therefore Interval of convergence is [(-1, 1) i.e., $-1 \le x < 1$
- 15. Test the convergence of the series $\sum_{n=1}^{\infty} \frac{1.3.5...(2n+1)}{2.5.8...(3n+2)}$

Solution

$$u_{n} = \frac{1.3.5...(2n+1)}{2.5.8...(3n+2)}; \quad u_{n+1} = \frac{1.3.5...(2n+3)}{2.5.8...(3n+5)}$$

$$\frac{u_{n+1}}{u_{n}} = \frac{2n+3}{3n+5}; \qquad \qquad \underset{n \to \infty}{Lt} \frac{u_{n+1}}{u_{n}} = \underset{n \to \infty}{Lt} \left[\frac{2 + \binom{3}{n}}{3 + \binom{5}{n}} \right] = \frac{2}{3} < 1$$

- \therefore By ratio test, $\sum u_n$ is convergent.
- 16. Prove that the series $\sum \frac{(-1)^n}{n(\log n)^3}$ converges absolutely.

Solution

$$|u_n| = \frac{1}{n(\log n)^3} \quad ; \quad \int_2^\infty \frac{dx}{x(\log x)^3} = \int_{\log 2}^\infty \frac{dt}{t^2}$$
(where $t = \log x$) = $\frac{-1}{t} \Big|_{\log 2}^\infty = \frac{1}{\log 2}$, which is finite.

- \therefore By integral test $\sum |u_n|$ is convergent.
- $\therefore \sum u_n$ converges absolutely.

17. Test the convergence of the series $\sum \frac{(2n+1)}{n^3+1} x^n, x > 0$

Solution

$$n^{th} \text{ term of the given series }, \ u_n = \frac{2n+1}{n^3+1} x^n;$$

$$u_{n+1} = \left[\frac{2(n+1)+1}{(n+1)^3+1} \right] x^{n+1} = \frac{2n+3}{(n+1)^3+1} x^{n+1}$$

$$Lt \frac{u_{n+1}}{u_n} = Lt \frac{(2n+3).x^{n+1}}{\left\{ (n+1)^3+1 \right\}} \times \frac{(n^3+1)}{x^n (2n+1)}$$

$$Lt \frac{u_{n+1}}{u_n} = Lt \frac{(2n+3).x^{n+1}}{\left\{ (n+1)^3+1 \right\}} \times \frac{(n^3+1)}{x^n (2n+1)}$$

$$Lt \frac{2n(1+\frac{3}{2n}).n^3(1+\frac{1}{n^3})}{n^3 \left\{ (1+\frac{1}{n})^3+\frac{1}{n^3} \right\}.2n(1+\frac{1}{2n})} x = .x$$

By ratio test, $\sum u_n$ converges if x < 1 and diverges if x > 1. If x = 1 the test fails.

When
$$x = 1$$
, $u_n = \frac{2n+1}{n^3+1}$; Taking $v_n = \frac{1}{n^2}$;
$$Lt_{n \to \infty} \frac{u_n}{v_n} = Lt_{n \to \infty} \frac{2n+1}{n^3+1} \times n^2 = 2 \neq 0 \text{ and finite}$$

 $\therefore \sum u_n$ and $\sum v_n$ converge or diverge together.

But $\sum v_n$ converges $\therefore \sum u_n$ also converges.

Thus, $\sum u_n$ converges when $x \le 1$ and diverges when $x \ge 1$.

18. Test the series $\sum_{n=1}^{\infty} \frac{(-1)^n (\log n)}{n^2}$, for absolute/conditional convergence

Solution

$$u_n = \frac{(-1)^n (\log n)}{n^2} ; |u_n| = \frac{(\log n)}{n^2} ;$$

$$\int_{2}^{\infty} \frac{\log x}{x^{2}} dx = \int_{\log 2}^{\infty} t e^{-t} dt \text{ [taking } \log x = t, x = e^{t}, \frac{1}{x} dx = \log t \text{]}$$

$$= -t e^{-t} + e^{-t} \Big|_{\log 2}^{\infty} = 0 - [1 - \log 2] e^{-\log 2} = \frac{1}{2} (\log 2 - 1),$$

which is finite.

- \therefore By integral test $\sum |u_n|$ is convergent $\Rightarrow \sum u_n$ converges absolutely. (Note that $\sum u_n$ is cgt. by Leibnitz's test).
- 19. Test the convergence of the series $\sum \frac{1}{(\log \log n)^n}$

Solution

Given that
$$u_n = \frac{1}{(\log \log n)^n}$$
;

$$\lim_{n \to \infty} u_n^{\frac{1}{n}} = \lim_{n \to \infty} \left[\frac{1}{\log \log n} \right] = 0 < 1$$

By Cauchy's root test, $\sum u_n$ is convergent.

20. Find the interval of convergence of the series,

$$x + \frac{1}{2} \cdot \frac{x^3}{3} + \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{x^5}{5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cdot \frac{x^7}{7} + \dots$$

Solution

Term of the series,
$$u_n = \frac{1.3.5....(2n-1)}{2.4.6.....2n} \cdot \frac{x^{2n+1}}{(2n+1)}$$
 (neglecting 1st term)
$$u_{n+1} = \frac{1.3.5....(2n-1)(2n+1)}{2.4.6.....2n(2n+2)} \cdot \frac{x^{2n+3}}{(2n+3)};$$

$$Lt \frac{u_{n+1}}{u_n} = Lt \left[\frac{(2n+1)^2}{(2n+2)(2n+3)} \cdot x^2 \right] \cdot \frac{Lt}{n\to\infty} \left[\frac{n^2 \left(4 + \frac{4n}{n} + \frac{1n}{n^2}\right)}{n^2 \left(4 + \frac{10n}{n} + \frac{6}{n^2}\right)} \cdot x^2 \right] = x^2$$

By ratio test, $\sum u_n$ converges when $x^2 < 1$, i.e., $|x| < 1 \Rightarrow -1 < x < 1$

When $x^2 = 1$, the test fails;

Then
$$\frac{u_n}{u_{n+1}} - 1 = \left(\frac{4n^2 + 10n + 6}{4n^2 + 2n + 1} - 1\right) = \frac{8n + 5}{4n^2 + 2n + 1}$$

$$\underset{n \to \infty}{L!} \left[n \left(\frac{u_n}{u_{n+1}} - 1\right) \right] = \underset{n \to \infty}{L!} \frac{n^2 \left(8 + \frac{5}{n}\right)}{n^2 \left(4 + \frac{2}{n} + \frac{1}{n^2}\right)} = 2 > 1$$

- \therefore By Raabe's test, $\sum u_n$ converges when $x^2 = 1$, i.e., $x = \pm 1$.
- \therefore Interval of convergence of $\sum u_n$ is $(-1 \le x \le 1)$