Conjugate Gradients II: CG and Variants

CS 205A:

Mathematical Methods for Robotics, Vision, and Graphics

Justin Solomon

ldea

"Easy to apply, hard to invert."

$$\min_{\vec{x}} \left[\frac{1}{2} \vec{x}^{\top} A \vec{x} - \vec{b}^{\top} \vec{x} + c \right]$$

Line Search Along \vec{d} from \vec{x}

$$\min_{\alpha} g(\alpha) \equiv f(\vec{x} + \alpha \vec{d})$$

$$\alpha = \frac{\vec{d}^{\top}(\vec{b} - A\vec{x})}{\vec{d}^{\top}A\vec{d}} = \frac{\vec{d}^{\top}\vec{r}}{\vec{d}^{\top}A\vec{d}}$$

Review

00000

Conjugate Directions

A-Conjugate Vectors

Two vectors \vec{v} and \vec{w} are A-conjugate if $\vec{v}^{\top} A \vec{w} = 0$.

Corollary

Suppose $\{\vec{v}_1,\ldots,\vec{v}_n\}$ are A-conjugate. Then, f is minimized in at most n step by line searching in direction \vec{v}_1 , then direction \vec{v}_2 , and so on.

Another Clue

$$\vec{r}_k \equiv \vec{b} - A\vec{x}_k$$

$$\vec{r}_{k+1} = \vec{r}_k - \alpha_{k+1}A\vec{v}_{k+1}$$

Proposition

Review

When performing gradient descent on f, span $\{\vec{r}_0, \dots, \vec{r}_k\}$ = span $\{\vec{r}_0, A\vec{r}_0, \dots, A^k\vec{r}_0\}$.

Preconditioning

Gradient Descent: Issue

$$\vec{x}_k - \vec{x}_0 \neq \underset{\vec{v} \in \text{span} \{\vec{r}_0, A\vec{r}_0, \dots, A^{k-1}\vec{r}_0\}}{\arg \min} f(\vec{x}_0 + \vec{v})$$

But if this did hold...

Convergence in n steps!

Outline for CG

- 1. [Somehow] generate search direction \vec{v}_k
 - (initialize to \vec{r}_0)
- **2.** Line search: $\alpha_k = \frac{\vec{v}_k^\top \vec{r}_{k-1}}{\vec{v}_k^\top A \vec{v}_k}$
- **3.** Update estimate: $\vec{x}_k = \vec{x}_{k-1} + \alpha_k \vec{v}_k$
- **4.** Update residual: $\vec{r}_k = \vec{r}_{k-1} \alpha_k A \vec{v}_k$

What We (Greedily) Want

Preconditioning

- 1. Easy way to generate n conjugate directions $\{\vec{v}_1,\ldots,\vec{v}_n\}$
- **2.** span $\{\vec{v}_1, \ldots, \vec{v}_k\} =$ span $\{\vec{r}_0, A\vec{r}_0, \dots, A^{k-1}\vec{r}_0\}$ for all k

What We (Greedily) Want

- **1.** Easy way to generate n conjugate directions $\{\vec{v}_1,\ldots,\vec{v}_n\}$
- **2.** span $\{\vec{v}_1, \dots, \vec{v}_k\} =$ span $\{\vec{r}_0, A\vec{r}_0, \dots, A^{k-1}\vec{r}_0\}$ for all k

- **1.** Converges in *n* steps
- 2. Always better than gradient descent

One Additional Observation

Preconditioning

For A-conjugate search directions:

$$-\nabla f(\vec{x}_k) \perp \{\vec{v}_1, \dots, \vec{v}_k\}$$

One Additional Observation

For A-conjugate search directions:

$$-\nabla f(\vec{x}_k) \perp \{\vec{v}_1, \dots, \vec{v}_k\}$$

$$\forall k \le i, \vec{r_i} \cdot \vec{v_k} = 0$$

Keep dot products straight!

Review

Preconditioning

$$\langle \vec{v}_{\ell}, \vec{r}_{k} \rangle_{A} = 0$$
, when $\ell < k$.

Surprising Result

$$\langle \vec{v}_{\ell}, \vec{r}_{k} \rangle_{A} = 0$$
, when $\ell < k$.

To generate \vec{v}_k from \vec{r}_{k-1} , only need to project out $\vec{v}_{k-1}!$

Projection Formula

Preconditioning

$$\vec{v}_k = \vec{r}_{k-1} - \frac{\langle \vec{r}_{k-1}, \vec{v}_{k-1} \rangle_A}{\langle \vec{v}_{k-1}, \vec{v}_{k-1} \rangle_A} \vec{v}_{k-1}$$

Preconditioning

Conjugate Gradients Algorithm

1. Update search direction:

$$\vec{v}_k = \vec{r}_{k-1} - \frac{\langle \vec{r}_{k-1}, \vec{v}_{k-1} \rangle_A}{\langle \vec{v}_{k-1}, \vec{v}_{k-1} \rangle_A} \vec{v}_{k-1}$$

- **2.** Line search: $\alpha_k = \frac{\vec{v}_k^\top \vec{r}_{k-1}}{\vec{v}_k^\top A \vec{v}_k}$
- **3.** Update estimate: $\vec{x}_k = \vec{x}_{k-1} + \alpha_k \vec{v}_k$
- **4.** Update residual: $\vec{r}_k = \vec{r}_{k-1} \alpha_k A \vec{v}_k$

Properties

ullet $ec{x}_k$ optimal in subspace spanned by first k directions $ec{v}_i$

Properties

ullet $ec{x}_k$ optimal in subspace spanned by first k directions $ec{v}_i$

• $f(\vec{x}_k)$ upper-bounded by f of k-th iterate of gradient descent

Properties

ullet $ec{x}_k$ optimal in subspace spanned by first k directions $ec{v}_i$

• $f(\vec{x}_k)$ upper-bounded by f of k-th iterate of gradient descent

Converges in n steps

Nicer Form

See notes.

- ▶ Update search direction: $\beta_k = \frac{\vec{r}_{k-1}^{\, |} \vec{r}_{k-1}^{\, |}}{\vec{r}_{k-1}^{\, |} \cdot \vec{r}_{k-2}^{\, |}}$ $\vec{v}_k = \vec{r}_{k-1} + \beta_k \vec{v}_{k-1}$
- Line search: $\alpha_k = \frac{\vec{r}_{k-1}^{\top} \vec{r}_{k-1}}{\vec{v}_{k}^{\top} A \vec{v}_k}$
- Update estimate: $\vec{x}_k = \vec{x}_{k-1} + \alpha_k \vec{v}_k$
- Update residual: $\vec{r}_k = \vec{r}_{k-1} \alpha_k A \vec{v}_k$

Typical Stopping Conditions

Don't run to completion!

$$\frac{\|\vec{r}_k\|}{\|\vec{r}_0\|} < \varepsilon$$

Convergence

$$\frac{f(\vec{x}_k) - f(\vec{x}^*)}{f(\vec{x}_0) - f(\vec{x}^*)} \le 2\left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^k$$

Convergence

$$\frac{f(\vec{x}_k) - f(\vec{x}^*)}{f(\vec{x}_0) - f(\vec{x}^*)} \le 2\left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^k$$

Still depends on condition number!

$$\operatorname{cond} A \neq \operatorname{cond} PA$$

But we can solve

$$PA\vec{x} = P\vec{b}$$

Preconditioning

Solve
$$PA\vec{x} = P\vec{b}$$
 for $P \approx A^{-1}$.

Two Issues

- PA may not be symmetric or positive definite
- Need to find an "easy" P

Review

Preconditioning 000,000

P symmetric and positive definite $\implies P^{-1} = EE^{\top}$.

000,000

P symmetric and positive definite $\implies P^{-1} = EE^{\top}$

Proposition

Review

cond $PA = \text{cond } E^{-1}AE^{-\top}$.

Symmetrization

P symmetric and positive definite $\implies P^{-1} = EE^{\top}$

Proposition

$$\operatorname{cond} PA = \operatorname{cond} E^{-1}AE^{-\top}.$$

- **1.** Solve $E^{-1}AE^{-\top}\vec{y} = E^{-1}\vec{b}$
- **2.** Solve $\vec{x} = E^{-\top} \vec{y}$

Better-Conditioned CG

Update search direction:
$$\beta_k = \frac{\vec{r}_{k-1}^{||} \vec{r}_{k-1}}{\vec{r}_{k-2}^{||} \vec{r}_{k-2}}$$

$$\vec{v}_k = \vec{r}_{k-1} + \beta_k \vec{v}_{k-1}$$

Preconditioning

0000000

Line search:
$$\alpha_k = \frac{\vec{r}_{k-1}^{\top} \vec{r}_{k-1}}{\vec{v}_k^{\top} E^{-1} A E^{-\top} \vec{v}_k}$$

Update estimate: $\vec{y}_k = \vec{y}_{k-1} + \alpha_k \vec{v}_k$

Update residual: $\vec{r}_k = \vec{r}_{k-1} - \alpha_k E^{-1} A E^{-\top} \vec{v}_k$

Update search direction:
$$\beta_k = \frac{\tilde{r}_{k-1}^\top P \tilde{r}_{k-1}}{\tilde{r}_{k-2}^\top P \tilde{r}_{k-2}}$$

$$\tilde{v}_k = P\tilde{r}_{k-1} + \beta_k \tilde{v}_{k-1}$$

Line search:
$$\alpha_k = \frac{\vec{r}_{k-1}^{\top} P \vec{r}_{k-1}}{\tilde{v}_k^{\top} A \tilde{v}_k}$$

Update estimate: $\vec{x}_k = \vec{x}_{k-1} + \alpha_k \tilde{v}_k$

Update residual: $\tilde{r}_k = \tilde{r}_{k-1} - \alpha_k A \tilde{v}_k$

Common Preconditioners

Preconditioning 000000

- ▶ Diagonal ("Jacobi") $A \approx D$
- Sparse approximate inverse
- Incomplete Cholesky $A \approx L_* L_*^{\perp}$
- Domain decomposition

Other Iterative Schemes I

- Splitting: $A = M N \implies M\vec{x} = N\vec{x} + \vec{b}$
- Conjugate gradient normal equation residual (CGNR): $A^{\top}A\vec{x} = A^{\top}\vec{b}$
- Conjugate gradient normal equation error (CGNE): $AA^{\top}\vec{y} = \vec{b}; \ \vec{x} = A^{\top}\vec{y}$
- ► MINRES, SYMLQ: $g(\vec{x}) \equiv ||\vec{b} A\vec{x}||_2^2$ for symmetric A
- ▶ LSQR, LSMR: Normal equations, same g

Other Iterative Schemes II

- ► GMRES, QMR, BiCG, CGS, BiCGStab: Any invertible A
- Fletcher-Reeves, Polak-Ribière: Nonlinear problems; replace residual with $-\nabla f$ and add back line search

▶ Next