

Fusion V5 (Gene quantification)

Bioinformatics Development

Sandy

2025.03.24

QC metrics overview

Ref. issue:

https://actg.atlassian.net/browse/ABIE-971

413 target exons:

 /mnt/RD_Develop/sandyteng/ACTFusionV5/code/fusionv4_annoloci2bed_test/targetexonbed/fusionv4.MANE.v0.95. GENCODE.r38.candidate.exons.transcript.bed

• Tools & fusion workflows

	STAR (arriba's workflow: STAR + arriba)	Fusion v4 (bwa-based)
Alignment analysis	STAR (to genome)	bwa-mem (to preferred transcriptome, MANE, GENCODE-r38)
	samtools flagstats	samtools flagstats
(I) # of primary mapped reads	(~81.7% from Twist NextSeq data)	(~88.6% from Twist NextSeq data)
(II) % of on-target/probe-	calculate_probe_reads.sh (in-house utility: samtools + bedtools)	calculate_probe_reads.sh (in-house utility: samtools + bedtools)
anchored reads	(~54% On-Target reads, Twist NextSeq data)	To-do
Read trimming	NA	trimadap
		quantify_preferred_exons.v2.py
		1. (transcript-level) via "htseq-count" => Need gtf file for preferred transcripts
		=> Some arguments are not applicable for bwa (no 'NH' tag)
Counting (expression	HTseq ("htseq-count"),	2. (transcript-level) obtain alignments from *callingresult.txt file for each sample
quantification)	FeatureCounts ("featureCounts")	=> Use "WILDTYPE" reads produced by the caller to quantify gene expression
		fastp (insert size → peak, source file: *.fastp.merge.json)
Fragmentation size	NA	(129-153 bp insertion size, Twist NextSeq data)
		fastp (duplication → rate, source file: *.fastp.merge.json)
Duplication rate	NA	(29%-34% duplication rate, Twist NextSeq data)

Counting (expression quantification)

- Quantification scenarios
 - Htseq (+ arriba.STAR.bam)
 - FeatureCounts (+ arriba.STAR.bam)
 - quantify_preferred_exons.v2.py (in-house script) (+ fusionv4.bwa.bam)
- Analysis workflow
 - Gene count quantification (via htseq, featurecounts, quantify_preferred_exons.v2.py)
 - Target gene count extraction (only compare the 220 target genes defined in twist.covered.bed (via grep -wf))
- Result summary
 - Gene count obtained from htseq and featurecounts are similar (correlation 99.9%)
 - Gene count quantified form fusion v4 and arriba workflows are similar (correlation 99.3%)

Target gene:

/mnt/RD_Develop/sandyteng/workdir/bed_intersect/Twist_kit/Covered_Regions_RNA_Fusions_4X_TE-98493102_GRCh38.gene.list.txt (Twist)

HTSeq-count

 Default options for feature count (gene count)

- -t exon
 (default feature type => 3rd column in
 GTF file)
- -i gene_id (default id attribute => feature ID)
- -m union (default read overlapping handling)
- --nonunique none
 (default mode for reads aligned to more than one feature in the "-m" option)

Ref. link

Htseq-count docs

FeatureCounts

FeatureCounts (algorithm)

Steps:

- Overlap of reads with features
- Multiple overlaps
- Chromosome hashing
- Genome bins and feature blocks

- /mnt/RD_Develop/sandyteng/ACTFusionV5/code/plot_exon_distribution_test/ENST00000397752.8.exon_distribution.pdf
 Script:
- /mnt/RD_Develop/sandyteng/ACTFusionV5/code/plot_exon_distribution_test/get_ENST00000397752.8.MET.exon.plot.sh

Exon number vs Count

• MET

gene count

gene_id count

MET **18002** => identical to # of WILDTYPE MET reads

exon count

=>

(-i) *callingresult.txt ("ENST00000397752.8" => "MET")

167 WILDTYPE MET:15,16

280 WILDTYPE MET:15,16,17

53 WILDTYPE MET:16

372 WILDTYPE MET:16,17

12 WILDTYPE MET:16,17,18

- \Rightarrow (-o) exon.count ("ENST00000397752.8" exon 16)
- ⇒ ENST00000397752.8 16 884 (167+280+53+372+12 = 884)

- /mnt/RD Develop/sandyteng/ACTFusionV5/code/plot exon distribution test/ENST00000397752.8.exon distribution.pdf
- /mnt/RD_Develop/sandyteng/ACTFusionV5/code/plot_exon_distribution_test/get_ENST00000397752.8.MET.exon.plot.sh

Exon number vs Count

MET

chr7	116699071	116700284	MET-exon-fusionv4-2
chr7	116755355	116755515	MET-exon-fusionv4-6
chr7	116763050	116763268	MET-exon-fusionv4-11
chr7	116771498	116771654	MET-exon-fusionv4-13
chr7	116774881	116775111	MET-exon-fusionv4-15

ENST00000397752.8

ENST00000397752.8 ENST00000397752.8

ENST00000397752.8

ENST00000397752.8

ENST00000397752.8

ENST00000397752.8

ENST00000397752.8

707

2000

1117

2385

884

1088

1655

4196

314

16

17

18

19

21

gene id count MET 18002 => identical to

ENST00000397752.8 27 ENST00000397752.8 763 ENST00000397752.8 1952 # of WILDTYPE MET reads ENST00000397752.8 1928 1443 ENST00000397752.8 ENST00000397752.8 373 10 653 ENST00000397752.8 ENST00000397752.8 918 ENST00000397752.8 12 145 ENST00000397752.8 2624 ENST00000397752.8 4055 14

Gene quantification (FusionV4)

Ref. issue

- FusionV4 processes
 - R1.fq.gz, R2.fq.gz (input files) -> mergefastq ("mergefastq") -> trimadap -> fastp -> bwaisoform -> bwase -> fusioncalling -> fuscall2QC
- bwase ("bwa") -> fusioncalling ("ACTGfuscall.py") -> quantifygene ("quantify_preferred_exons.v2.py")
 - bwase
 - Input files: preferred.transcriptome.fasta, preferred.transcriptome.fasta.indices
 - Output files: aligned.fusionv4.bam, aligned.fusionv4.bam.bai
 - Fusioncalling
 - Input files: aligned.fusionv4.bam, preferred.transcriptome.exons.annotation, protein.fasta, protein.fasta.meta, qc.thresholds.config
 - Output files: callingresult.txt, gspcallingresult.txt, protein_seq.meta.txt, callingform.txt
 - quantifygene
 - Input file: callingresult.txt
 - Output files: gene.count, exon.count

Gene quantification (Arriba)

Ref. issue

- Arriba processes
 - R1.fq.gz, R2.fq.gz (input files) -> STAR -> Arriba
- STAR ("STAR") -> quantifygene ("HTSeq" / "featureCounts")
 - STAR
 - Input files: GRCh38.fa, GRCh38.fa.indices, RefSeq_hg38.gtf
 - Output files: aligned.arriba.bam
 - quantifygene (htseq)
 - Input files: aligned.arriba.bam, RefSeq_hg38.gtf
 - Ouptut files: genes_htseq.count (gene.count)
 - quantifygene (featureCounts)
 - Input files: aligned.arriba.bam, RefSeq_hg38.gtf
 - Ouptut files: genes_featureCounts.count (gene.count), genes_featureCounts.count.summary (gene.count.summary)

Workflow

FusionV4

graph TD; %% Initial Inputs I1[/R1.fq.gz/] 12[/R2.fq.gz/] 17[/preferred.transcriptome.fasta/] 18[/preferred.transcriptome.fasta.indices/] %% FusionV4 Workflow 11 --> A1 12 --> A1 17 --> A1["bwase (bwa mem)"] 18 --> A1 A1 --> | aligned.fusionv4.bam | B1 A1 --> | aligned.fusionv4.bam.bai | B1["fusioncalling ("ACTGfuscall.py") B1 -->|callingresult.txt| C1["quantifygene ("quantify_preferred_exon: C1 --> O1[\Gene.count\] C1 --> O2[\Exon.count\]

Workflow

Arriba

graph TD; %% Initial Inputs I1[/R1.fq.gz/] 12[/R2.fq.gz/] 16[/GRCh38.fa/] 17[/GRCh38.fa.star.indices/] I8[/RefSeq_hg38.gtf/] %% FusionV4 Workflow 11 --> A1 12 --> A1 16 --> A1 17 --> A1["STAR (arriba)"] 18 --> A1 18 --> B1 18 --> C1 A1 --> I9[/aligned.arriba.bam/] 19 --> B1["quantifygene ("htseq")"] 19 --> C1["quantifygene ("featureCounts")"] %%A1 --> | aligned.arriba.bam | B1["quantifygene ("htseq")"] B1 --> O1[\htseq.gene.count\] %%A1 -->|aligned.arriba.bam| C1["quantifygene ("featureCounts")"] C1 --> O2[\featureCounts.gene.count\] C1 --> O3[\featureCounts.gene.count.summary\]

Gene count comparison (paper)

HTSeq/FeatureCounts

(a)

Method	Number of fragments	Time (min)	Memory (MB)
featureCounts	5 392 155	0.9	4
CountOverlaps (whole genome at once)	5 392 155	24.4	7000
CountOverlaps (by chromosome)	5 392 155	36.6	783
htseq-count (union)	4 978 050	36	31
htseq-count (intersection-nonempty)	4 993 644	35.7	31
coverageBED	5 366 902	4.4	41

(b) featureCounts htseq-count 4769846 67

Paired-end

Ref

featureCounts: an efficient general purpose program for assigning sequence reads to genomic features

Gene count comparison (AANB02_202_AD02_AA-23-08153)

- HTSeq/FeatureCounts
- FeatureCounts/quantify_preferred_exons.v2.py

Pearson's r (B, C) (featureCounts, htseq)	0.999996602
n	244
t-value (r*SQRT(n-2))/(SQRT(1-r^2))	5967.755077
p-value TDIST(x, deg_freedom, tails)	0
Pearson's r (C, D) (featureCounts, quantify_preferred_exons.v2.py)	0.993358852
n	244
t-value	134.307269
p-value	2.8426E-229

Ref issue

- HTSeq/FeatureCounts
- bedtools coverage/samtools depth
- quantify_preferred_exons.v2.py

Tool overview

	HTSeq/FeatureCounts	bedtools coverage /samtools depth	quantify_preferred_exons.v3.py
	Gene Level		
	(predefined intervals		
	within gtf => gene id	Base Level (bedtools coverage -d /samtools depth)	
Quantification level	recognition)	Interval Level (bedtools coverage)	Gene Level + Exon Level
	Some arguments are		
	not applicable for bwa		
	(no"NH"tag)		Only quantify exons defined in
			the preferred transcripts (MANE
	Count gene using the	samtools depth is preferred for SAM FLAG sensitivity (duplication removal)	0.95 + GENCODE-r38)
	predefined gtf	ABIE-976: "bedtools coverage" vs. "samtools depth"	=> one may change the
	(merged the same	Done	preferred transcripts to MANE
	gene_id)		1.4
	=> limit to predefined		
	gene intervals (may	bedtools coverage fails to identify read fragment	Rely on fusion v4 calling result
	-	=> extra care is required for result interpretation	=> only work for fusion v4
Limitations	1.4 transcripts)	see details for https://github.com/ACTGenomics/panel_gene_coverageConnect your Github account	pipeline

Ref. issue

