$$\begin{cases} \dot{r} = r(2 - 1 + 2r^{2} - r^{4}) & r_{s} = -\sqrt{1 + \sqrt{\alpha}} \\ \dot{q} = 277 & r_{s} = -\sqrt{1 + \sqrt{\alpha}} \\ \dot{q} = 277 & r_{s} = -\sqrt{1 + \sqrt{\alpha}} \\ f_{s} = -\sqrt{1 + \sqrt{\alpha}} \\ f_{$$

	r = 0	r=1-12	r=VI+Va"
CTOY pemens	70440	Предам ный уши	Megell Horn your
$\frac{df}{dr}$	Q-1	-402 (va-1)	-4(1+Te)a
Duogenum	yer. Duye gent heyer of heyer	- reeyes. N. y	- yaourubrui 17. y.
Repexog & geneproby C.K: $X = r cos \varphi$ $x^2 + \varphi^2 - r^2$ $cos \varphi = \frac{X}{r} = \frac{X}{r}$			
1 31mp g = to(10) - 4			
$\begin{cases} \dot{X} = \sqrt{x^2 + y^2} \left(Q - \underline{f} \right) \end{cases}$	+ 2(x2+y2)-(x	$(x^2+y^2)^2$ $(x^2+y^2) - \sqrt{x}$	242.9.20
$(\dot{y} = (\chi^2 + g^2) (Q + 1)$	+ 2(x2+y2) - (x2+	$(x^{2}+y^{2})^{2}) \cdot \frac{x}{(x^{2}+y^{2})} - \sqrt{x}$ $(x^{2}+y^{2})^{2}) \cdot y$ $(x^{2}+y^{2}) + \sqrt{x^{2}+y^{2}}$	= >
$(X = X(Q - 1 + 2(x^2 + y^2) - (x^2 + y^2)^2) - 2\pi \cdot y$			
(j = y(2-2+	2(x2+g2) -(x2+g	1)2) + 21X	

Построим параметрическую диаграмму (рис. 1). Можно легко увидеть, что при увеличении параметра a из отрицательных значений сначала существует одно состояния равновесия — устойчивый фокус в точке (0,0) (при a<0) фазовый портрет для такого случая представлен на рисунке 2. Изображающая точка, находящаяся в любом месте фазового пространства притягивается устойчивым фокусом.

При параметре a>0 образуются два предельных цикла — устойчивый и неустойчивый с радиусом $r=\sqrt{1+\sqrt{a}}$ и $r=\sqrt{1-\sqrt{a}}$ соответственно. Из параметрической диаграммы видно, что неустойчивый предельный цикл

разделяет бассейны притяжения устойчивого фокуса и устойчивого предельного цикла, это же подтверждается фазовым портретом для a=0.5 (рис. 3).

Рисунок 1 - Параметрическая диаграмма

Pисунок 2 - Φ азовый портрет для a=-1

Pисунок 3 - Фазовый портрет при a=0.5

При дальнейшем увеличении параметра a предельные циклы будут отдаляться друг от друга до тех пор, пока радиус неустойчивого предельного цикла не станет равен нулю, и он не сольется с устойчивым фокусом. В этот момент (при a=1) исчезает неустойчивый предельный цикл, а фокус теряет устойчивость (см. рис 4, 5). С дальнейшим ростом параметра амплитуда колебаний будет увеличиваться соответственно радиусу предельного цикла. Фазовая диаграмма для этого случая представлена на рисунке 6.

В данной системе происходит докритическая бифуркация Андронова-Хопфа, что влечет а собой жесткое возбуждение колебаний при увеличении параметра. При уменьшении параметра, колебания мгновенно прекращаются.

h.

Рисунок 4 - Фазовый портрет при а = 1

Рисунок 5 - Фазовый портрет при а = 1.1

Рисунок 6 - Фазовый портрет при а = 2