Air Quality Predictions in Beijing, China

By: Alex Calametti, Brian Guenther, Gabriela Delgado, and Naseema Omer

Overview

Background

1

Data Preparation

2

Exploration

3

4

Modeling

5

Conclusions

6

Next Steps

Background & Scope

- This project examines how air quality in Beijing, China is affected by
 - Time
 - Pollutants
 - Weather conditions

- Objectives:
 - Build models to predict the O₃
 values

Data Preparation

- Data gathered from UCI Machine Learning Repository
 - Includes data collected from 12 different sites in Beijing, China from 2013-2017
 - Includes different chemicals and weather conditions that affect the air quality
- Clean data is concatenated and put into S3 buckets
 - Data with NaN values dropped
 - Data with NaN values replaced with the median value for each station
 - Data with NaN values and station names dropped

Data Exploration (O₃)

Data Exploration (CO)

Modeling Implementation and Optimization

Models Used/Attempted

- Neural Network
- Simple Linear Regression
- Multivariate Linear Regression
- Decision Tree Regressor

Neural Network

This model uses

- O3 as the target variable (y)
- The rest of the columns of interest in the dataset as the predictor (X)
- Layers and nodes with different values to train the model

The results of this model are not statistically significant:

- Loss = \sim 55
- MSE = ~6500
- MAE = ~56

Linear Regression

Simple

- Target y = O3, x = Temp
- 1: NAN dropped
 y= 17.31191562019925 + 2.963656055355665x
 r2 is 0.3565257008834236
- 2: NAN median
 - y = 18.118847608324636 + 2.866120914930229X
 - r2 is 0.34434693063035227

Multivariate

- Model 1: y = O3
 r2 is 0.5724457157382516
- Model 2: y = CO
 r2 is 0.723158568713435
- Correlation coefficient of the variables

Heatmap visualizing Pearson Correlation Coefficient Matrix

Decision Tree Regressor

- Variables:
 - Date info (year, month, day, hour)
 - Other pollutants(NO2, SO2, etc.)
 - Weather conditions (temp, rain, wind speed, etc.)
- Ozone was best predicted by date
- R-Squared value of 0.87

```
#Previously attempted data inputs and their associated R-squared (R2) values.
#air_data_df.drop(["wd"],axis=1,inplace=True)
    #(R2 = 0.83) ---> ran model with all columns containing numerical values
#air_data_df.drop(["wd","year","month","day","hour",,axis=1,inplace=True)
    #(R2 = 0.67) ---> evaluated chemical compounds and weather variables as prec
#air_data_df.drop(["wd","year","month","day","hour","PM2.5","PM10","S02","N02",
    #(R2 = 0.63) ---> evaluated weather variables as predictor of 03
#air_data_df.drop(["wd","TEMP","PRES","DEWP","RAIN","WSPM","year","month","day'
    #(R2 = 0.03) ---> evaluated other chemical compounds as predictor of 03
#air_data_df.drop(["wd","PM2.5","PM10","S02","N02","C0","PRES","DEWP","RAIN","WICCO","PRES","DEWP","RAIN","WICCO","PRES","DEWP","RAIN","WICCO","PRES","DEWP","RAIN","WICCO","PRES","DEWP","RAIN","WICCO","PRES","DEWP","RAIN","WICCO","PRES","DEWP","RAIN","WICCO","PRES","DEWP","RAIN","WICCO","PRES","DEWP","RAIN","WICCO","PRES","DEWP","RAIN","WICCO","PRES","DEWP","RAIN","WICCO","PRES","DEWP","RAIN","WICCO","PRES","DEWP","RAIN","WICCO","PRES","DEWP","RAIN","WICCO","PRES","DEWP","RAIN","WICCO","PRES","DEWP","RAIN","WICCO","PRES","DEWP","RAIN","WICCO","PRES","DEWP","RAIN","WICCO","PRES","DEWP","RAIN","WICCO","PRES","DEWP","RAIN","WICCO","PRES","DEWP","RAIN","WICCO","PRES","DEWP","RAIN","WICCO","PRES","DEWP","RAIN","WICCO","PRES","DEWP","RAIN","WICCO","PRES","DEWP","RAIN","WICCO","DEWP","RAIN","WICCO","PRES","DEWP","RAIN","WICCO","DEWP","RAIN","WICCO","DEWP","RAIN","WICCO","DEWP","RAIN","WICCO","DEWP","RAIN","WICCO","DEWP","RAIN","WICCO","DEWP","RAIN","WICCO","DEWP","RAIN","WICCO","DEWP","RAIN","WICCO","DEWP","RAIN","WICCO","DEWP","RAIN","WICCO","DEWP","RAIN","WICCO","DEWP","RAIN","WICCO","DEWP","RAIN","WICCO","DEWP","RAIN","WICCO","DEWP","RAIN","WICCO","DEWP","RAIN","WICCO","DEWP","RAIN","WICCO","DEWP","RAIN","WICCO","DEWP","RAIN","WICCO","DEWP","RAIN","WICCO","DEWP","RAIN","WICCO","DEWP","RAIN","WICCO","DEWP","RAIN","WICCO","DEWP","RAIN","WICCO","DEWP","RAIN","WICCO
```

##Attempt to see if calculating relative humidity optimizes model ---> R2 = 0.82
#formula obtained from https://bmcnoldy.earth.miami.edu/Humidity.html retriev

Results / Conclusions

O₃ varies across time

O3 values are affected by the months and show a similar trend across years

Weather Impacts

Temperature has a weak correlation with O_3 & CO

Chemicals are correlated

O₃ & CO presented a weak correlation with pollutants present in the air

Decision Tree: Best model

Decision tree was the best predictor of O_3

Next Steps

- Explore how well models can predict values for other compounds
- Modify parameters
- Seasonal time series analysis

THANK YOU!

Thank you to Hunter, Sam, Randy, tutors, and our amazing classmates for all of their help on this project and over the course of the semester!