Algorithms

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

3.4 HASH TABLES

- hash functions
- separate chaining
- Inear probing
- context

Collisions

Collision. Two distinct keys hashing to same index.

- Birthday problem ⇒ can't avoid collisions unless you have a ridiculous (quadratic) amount of memory.
- Coupon collector + load balancing \Rightarrow collisions are evenly distributed.

Challenge. Deal with collisions efficiently.

Separate-chaining symbol table

Use an array of M < N linked lists. [H. P. Luhn, IBM 1953]

- Hash: map key to integer i between 0 and M-1.
- Insert: put at front of i^{th} chain (if not already there).
- Search: need to search only i^{th} chain.

Separate-chaining symbol table: Java implementation

```
public class SeparateChainingHashST<Key, Value>
private int M = 97;
                     // number of chains
private Node[] st = new Node[M]; // array of chains
private static class Node
   private Object key; ← no generic array creation
   private Object val; ← (declare key and value of type Object)
    private Node next;
private int hash(Key key)
 { return (key.hashCode() & 0x7fffffff) % M; }
public Value get(Key key) {
    int i = hash(key);
   for (Node x = st[i]; x != null; x = x.next)
      if (key.equals(x.key)) return (Value) x.val;
    return null;
```

array doubling and halving code omitted

Separate-chaining symbol table: Java implementation

```
public class SeparateChainingHashST<Key, Value>
private int M = 97;
                     // number of chains
private Node[] st = new Node[M]; // array of chains
private static class Node
   private Object key;
   private Object val;
   private Node next;
private int hash(Key key)
 { return (key.hashCode() & 0x7fffffff) % M; }
public void put(Key key, Value val) {
   int i = hash(key);
   for (Node x = st[i]; x != null; x = x.next)
      if (key.equals(x.key)) { x.val = val; return; }
   st[i] = new Node(key, val, st[i]);
```

Analysis of separate chaining

Proposition. Under uniform hashing assumption, prob. that the number of keys in a list is within a constant factor of N/M is extremely close to 1.

Pf sketch. Distribution of list size obeys a binomial distribution.

equals() and hashCode()

Consequence. Number of probes for search/insert is proportional to N/M.

- M too large \Rightarrow too many empty chains.
- M too small \Rightarrow chains too long.
- Typical choice: $M \sim N/4 \Rightarrow$ constant-time ops.

Resizing in a separate-chaining hash table

Goal. Average length of list N/M = constant.

- Double size of array M when $N/M \ge 8$.
- Halve size of array M when $N/M \le 2$.
- Need to rehash all keys when resizing. ← x.hashCode() does not change but hash(x) can change

before resizing

after resizing

Deletion in a separate-chaining hash table

- Q. How to delete a key (and its associated value)?
- A. Easy: need only consider chain containing key.

before deleting C

after deleting C

Symbol table implementations: summary

implementation	guarantee			average case			ordered	key
	search	insert	delete	search hit	insert	delete	ops?	interface
sequential search (unordered list)	N	N	N	½ N	N	½ N		equals()
binary search (ordered array)	lg N	N	N	lg N	½ N	½ N	✓	compareTo()
BST	N	N	N	1.39 lg <i>N</i>	1.39 lg <i>N</i>	\sqrt{N}	✓	compareTo()
red-black BST	2 lg <i>N</i>	2 lg <i>N</i>	2 lg <i>N</i>	1.0 lg <i>N</i>	1.0 lg <i>N</i>	1.0 lg <i>N</i>	•	compareTo()
separate chaining	N	N	N	3-5 *	3-5 *	3-5 *		equals() hashCode()

^{*} under uniform hashing assumption