EEE104 – Digital Electronics (I) Lecture 16

Dr. Ming Xu

Dept of Electrical & Electronic Engineering

XJTLU

In This Session

Synchronous Counters

- All the flip-flops are clocked by CLK.
- J and K of FF1 are connected to Q_0 output of FF0.

 Q_2 is toggled at states 011 and 111. So $J_2=K_2=Q_0Q_1$

 Q_3 is toggled at states 0111 and 1111. So $J_3=K_3=Q_0Q_1Q_2$

4-Bit Synchronous Decade Counters

Q3	Q2	Q1	Q0
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1

- Q₀ is always toggled.
- Q₁ is toggled at states 0001, 0011, 0101, 0111.
- Q₂ is toggled at states 0011, 0111.
- Q_3 is toggled at states 0111, 1001.

$$J_{0} = K_{0} = 1$$

$$J_{1} = K_{1} = Q_{0} \overline{Q}_{3}$$

$$J_{2} = K_{2} = Q_{0} Q_{1}$$

$$J_{3} = K_{3} = Q_{0} Q_{1} Q_{2} + Q_{0} Q_{3}$$

4-Bit Synchronous Decade Counters

74HC163 — a 4-bit synchronous binary counter

- *CLR*: <u>synchronous</u> clear
- LOAD: synchronous preset
- ENT, ENP: enable
- RCO: ripple clock output, which goes to 1 at count 15

74HC160 — a 4-bit synchronous decade counter

- *CLR*: asynchronous clear
- *LOAD*: synchronous preset
- ENT, ENP: enable
- RCO: ripple clock output, which goes to 1 at count 9

Up/Down Synchronous Counters

An **up/down counter** is one that is capable of progressing in either direction through a sequence.

CLOCK PULSE	UP	Q2	Q ₁	Q ₀	DOWN
0	15	0	0	0	71
1	1/2	0	0	1	</td
2	1/ >	0	1	0	< /
3	1 >	0	1	1	31
4	1 5	1	0	0	31
5	1 6	1	0	1	3/
6	1/6	1	1	0	3/
7	10	1	1	1)/

In count-down mode:

- Q₀ is always toggled.
- Q_1 is toggled at states 110, 100, 010, 000. So $J_1 = K_1 = /Q_0$.
- Q_2 is toggled at states 100, 000. So $J_2 = K_2 = /Q_0/Q_1$ ₁₃

Up/Down Synchronous Counters

$$J_0 = K_0 = 1$$

$$J_1 = K_1 = (Q_0 \cdot \text{UP}) + (\overline{Q}_0 \cdot \text{DOWN})$$

$$J_2 = K_2 = (Q_0 \cdot Q_1 \cdot \text{UP}) + (\overline{Q}_0 \cdot \overline{Q}_1 \cdot \text{DOWN})$$

Up/Down Synchronous Counters

An IC Up/Down Decade Counter

74LS190

CTEN: enable

D/U: down/up

- LOAD: synchronous preset
- MAX/MIN: HIGH when 1001 or 0000 is reached.
- RCO: ripple clock output, which is 0 at count 9