

Redes de Computadores RCP 22108

Prof. Samir Bonho

Engenharia Eletrônica

Origens

Cifra de César:

suas

- O Imperador Júlio César utilizou em correspondências pessoais em 50 a.c.
- Atualmente denomina-se César toda cifra que consiste em deslocar cada letra da mensagem original, por um número fixo de posições
- Também tem registro de utilização na Guerra da Secessão americana, e pelo exército Russo na I Guerra Mundial (1915)

Origens

ABCDEFGHIJKLMNOPQRSTUVWXYZ

 $altera\ 5\ posiç\~oes$

VWXYZABCDEFGHIJKLMNOPQRSTU

O BOCA MOLE

J WJXV HJGZ

Texto Claro

Chave

Texto Cifrado

Utilização

- Para garantir e reforçar os aspectos de segurança de:
 - Sigilo
 - Integridade
 - Autenticação

Definições

- Cifrar ou Codificar ou Encriptar
 - Ato de transformar dados em alguma forma ilegível
 - Propósito: garantir a privacidade, mantendo a informação incompreensível para pessoas não autorizadas, mesmo que estas tenham acesso aos dados cifrados
- Decifrar ou Decodificar ou Decriptar
 - Processo inverso ao de cifrar, consiste em retornar a informação a sua forma legível

O papel da criptografia

 De modo algum a criptografia é a única ferramenta para assegurar a segurança da informação.

 Nem resolverá todos os problemas de segurança.

Criptografia não é a prova de falhas.

O papel da criptografia

 Toda criptografia pode ser quebrada e, sobretudo, se for implementada incorretamente, não agrega nenhuma segurança real.

Definições

 Os procedimentos de criptografar e decriptografar são obtidos através de um <u>algoritmo</u>.

Dois princípios fundamentais da criptografia

- Redundância de informação
- Atualidade de mensagens

Princípio Criptográfico #1

Redundância

- As mensagens criptografadas devem conter alguma redundância
 - Informações não necessárias para compreensão da mensagem clara.
 - Todas as mensagens devem conter informações redundantes suficientes para que os intrusos ativos sejam impedidos de transmitir dados inválidos que possam ser interpretados como uma mensagem válida.

Princípio Criptográfico #2

Atualidade

- Algum método é necessário para anular ataques de repetição.
- •Medidas para assegurar que cada mensagem recebida possa ser confirmada como uma mensagem atual (enviada muito recentemente).

Princípio Criptográfico #2

Atualidade

- Medida necessária para impedir que intrusos ativos reutilizem (repitam) mensagens antigas por intermédio de interceptação de mensagens no meio de comunicação.
- Timestamp válido por um pequeno período de tempo

Equações da Criptografia

$$D_{\mathbf{k}} (E_{\mathbf{k}}(P)) = P$$

E e D são funções matemáticas K é uma **chave**

Conceito de Código

- Substitui uma palavra por outra palavra ou uma palavra por um símbolo.
- Códigos, no sentido da criptografia, não são mais utilizados, embora tenham tido uma história ...
 - O código na linguagem navajo dos índios americanos, utilizado pelos mesmos contra os japoneses na Segunda Guerra Mundial.

Conceito de Cifra

- É uma transformação de caractere por caractere ou bit pot bit, sem levar em conta a estrutura linguística da mensagem.
 - Substituindo um por outro.
 - Transpondo a ordem dos símbolos.

- Três dimensões para classificar os sistemas criptográficos:
 - Tipo de operações usadas para transformar o texto
 - Substituição cada elemento é mapeado em outro elemento
 - Transposição elementos no texto em claro são rearrumados
 - Número de chaves usadas
 - Simétrica (uma única chave)
 - Assimétrica (duas chaves cifragem de chave pública)
 - A forma na qual o texto em claro é processado
 - Block cipher (cifragem de bloco)
 - Stream cipher (cifragem de fluxo)

Cifras de Substituição

e

Cifras de Transposição

Cifras de Substituição

 Cada letra ou grupo de letras é substituído por outra letra ou grupo de letras, de modo a criar um "disfarce".

Exemplo: A Cifra de César (Caeser Cipher).
Considerando as 26 letras do alfabeto inglês (a,b,c,d,e,f,g,h,l,j,k,m,n,o,p,q,r,s,t,u,v,x,w,y,z),
Neste método, a se torna d, b se torna e, c se torna f, ..., z se torna c.

Generalização da Cifra de César

 Cada letra se desloca k vezes, em vez de três. Neste caso, k passa a ser uma chave para o método genérico dos alfabetos deslocados de forma circular.

Cifras de Substituição Monoalfabética

- Próximo aprimoramento:
 - Cada letra do texto simples, do alfabeto de 26 letras, seja mapeada para alguma outra letra.
- a -> Q, b -> W, c -> E, d -> R, e -> T, ...

 Esse sistema geral é chamado cifra de substituição monoalfabética.

Cifras de Substituição Monoalfabética

 Sendo a <u>chave</u> uma string de 26 letras correspondente ao alfabeto completo.

- Quebra da chave: 26! chaves possíveis.
 - Computador com o tempo de processamento de instrução de 1 ns. Tempo para quebrar a chave de 10^10 anos.

Cifras de Substituição Monoalfabética

 Entretanto, apesar de parecer seguro, com um volume de texto cifrado surpreendentemente pequeno, a cifra pode ser descoberta.

 Estratégia: a propriedades estatísticas dos idiomas.

Cifra de Transposição

 Cifras de Transposição reordenam os símbolos, mas não os disfarçam.

Exemplo: cifra de transposição de colunas.

Exemplo de Cifra de Transposição

- A cifra se baseia numa chave que é uma palavra ou uma frase que não contém letras repetidas.
- Seja a chave: MEGABUCK
- O objetivo da chave é numerar as colunas de modo que a coluna 1 fique abaixo da letra da chave mais próxima do início do alfabeto e assim por diante.

Exemplo de Cifra de Transposição

 O texto simples é escrito horizontalmente, em linhas.

 O texto cifrado é lido em colunas, a partir da coluna cuja letra da chave tenha a ordem mais baixa no alfabeto.

 A numeração abaixo da chave, significa a ordem das letras no alfabeto.

Exemplo de Cifra de Transposição

\underline{M}	<u>E</u>	<u>G</u>	<u>A</u>	<u>B</u>	<u>U</u>	\overline{C}	<u>K</u>
<u>7</u>	<u>4</u>	<u>5</u>	<u>1</u>	2	8	<u>3</u>	<u>6</u>
p	1	е	а	S	е	t	r
а	n	S	f	е	r	0	n
е	m	į	1	1	i	0	n
d	0	I	I	а	r	S	t
0	m	у	s	W	i	s	S
b	а	n	k	а	С	С	0
u	n	t	s	į	X	t	W
0	t	W	0	а	b	С	d

Plaintext

pleasetransferonemilliondollarsto myswissbankaccountsixtwotwo

Ciphertext

AFLLSKSOSELAWAIATOOSSCTCLNMOMANT ESILYNTWRNNTSOWDPAEDOBUOERIRICXB

Exemplo de Cifra de Transposição

 Algumas cifras de transposição aceitam um bloco de tamanho fixo como entrada e produzem um bloco de tamanho fixo como saída.

 Essas cifras podem ser completamente descritas fornecendo-se uma lista que informe a ordem na qual os caracteres devem sair.

Exemplo de Cifra de Transposição

- No exemplo, a cifra pode ser vista como uma cifra de blocos de 64 bits de entrada.
- Para a saída, a lista para a ordem de saída dos caracteres é 4, 12, 20, 28, 36, 44, 52,60, 5, 13, ... 62.
- Neste exemplo, o quarto caractere de entrada,
 a, é o primeiro a sair, seguido pelo décimo segundo, f, e assim por diante.

Criptografia Simétrica

Criptografia Simétrica

- O modelo simétrico de criptografia possui cinco componentes:
 - Texto claro
 - Mensagem ou dados originais em texto claro, inteligíveis
 - Algoritmo de criptografia
 - Conjunto de procedimentos que realizam a transformação no texto claro
 - Chave secreta
 - A chave é um valor independente do texto claro e também serve de entrada para o algoritmo de criptografia
 - Texto cifrado
 - Mensagem embaralhada pelo algoritmo de criptografia
 - Algoritmo de decriptografia
 - Algoritmo de criptografia operado no modo inverso

- Requisitos para uso seguro da criptografia simétrica (convencional)
 - Algoritmo de criptografia forte
 - Mesmo o oponente conhecendo o algoritmo e o texto cifrado não seja capaz de decifrá-lo ou descobrir a chave
 - O emissor e o receptor precisam ter cópias seguras da chave criptográfica

Criptografia Simétrica: Distribuição de chaves

- Para a criptografia simétrica funcione, as duas partes precisam compartilhar a mesma chave
- A chave precisa ser protegida contra acesso de outras partes
- Formas para distribuição das chaves
 - A pode selecionar uma chave e entregá-la fisicamente a B
 - Um terceiro pode selecionar uma chave e entregar a A e B
 - A e B podem trocar novas chaves utilizando chaves anteriormente trocadas
 - Se A e B tiverem uma comunicação criptografada com um terceiro C, C pode entregar seguramente uma chave para A e B

- Todos os algoritmos de criptografia baseiam-se nos métodos de:
 - Substituição
 - Cada elemento do texto claro (bit, letra, grupo de bits, grupo de letras) é mapeado em outro elemento
 - Transposição (Reorganização do texto)
 - Reorganização do texto claro, embaralhamento
- O requisito fundamental é não haver perda de informação no processo de cifragem

Modelo de criptografia simétrica

Modelo de criptosistema convencional

Modelo de criptografia simétrica

Principais ataques de criptoanálise

Tipo de ataque	Conhecido ao criptoanalista
Apenas texto cifrado	Algoritmo de criptografiaTexto cifrado
Texto claro conhecido	 Algoritmo de criptografia Texto cifrado Uma ou mais partes do texto claro / texto cifrado com a chave secreta
Texto claro escolhido	 Algoritmo de criptografia Texto cifrado Texto claro escolhido pelo criptoanalista juntamente com o texto cifrado correspondente

^{*} Existem variações desses ataques

Modelo de criptografia simétrica

- Esquema de criptografia computacionalmente seguro
 - Quando o custo para quebrar a cifra for superior ao valor da informação codificada
 - Tempo exigido para quebrar a cifra superior ao tempo de vida útil da informação

Modelo de criptografia simétrica

- Ataque de força bruta
 - Tentativa de obter uma chave que realize uma tradução inteligível do texto cifrado

Tamanho da chave (bits)	Chaves possíveis	Tempo para realizar 10 ⁶ decriptografias/µs
32	2^{32} = 4,3 x 10^9	2,15 milissegundos
56 (Ex.: DES)	2^{56} = 7,2 x 10^{16}	10,01 horas
128 (Ex.: AES)	2^{128} = 3,4 x 10^{38}	5,4 x 10 ¹⁸ anos
168 (Ex.: 3DES)	2^{168} = 3,7 x 10^{50}	5,9 x 10 ³⁰ anos

TIPOS DE ALGORITMOS DE CROPTOGRAFIA SIMETRICA

DES – Data Encryption Standard

Autor: IBM, janeiro de 1977

Chave: 56 bits

Comentário: Muito fraco para uso atual.

Triple DES

Autor: IBM, início de 1979.

Chave: 168 bits

 Comentário: Muito antiga e fraco desempenho.

Substituições comerciais do DES

 Em resposta ao tamanho da chave e aos problemas de desempenho relacionados ao Triple DES, criptógrafos e empresas comerciais desenvolveram novas cifras de bloco.

Substituições comerciais do DES

- Blowfish (Counterpane Systems)
- RC2 (RSA)
- RC4 (RSA)
- IDEA (Ascon)
- Cast (Entrust)
- Safer (Cylink)
- RC5 (RSA)

Substituições comerciais do DES

 Pode-se escolher um tamanho de chave que seja suficientemente grande para tornar o seu algoritmo criptográfico imune a um ataque de força bruta sobre a chave, ou ao menos tornar o ataque de força bruta impraticável.

Blowfish

Autor: Bruce Schneier

Chave: 1 a 448 bits

· Comentário: Velho e lento.

RC2

 Autor: Ronald Rivest, RSA Data Security Meado dos anos 80.

Chave: 1 a 2048 bits

Comentário: quebrado em 1996.

RC4

Autor: Ronald Rivest,
 RSA Data Security, 1987

Chave: 1 a 2048 bits

Comentário: Algumas chaves são fracas.

IDEA — International Data Encryption Algorithm

Autor: Massey & Xuejia, 1990.

Chave: 128 bits

Comentário: Bom, mas patenteado.

Usado no PGP (Pretty Good Privacy).
 https://www.openpgp.org/about/

RC5

Autor: Ronald Rivest,
 RSA Data Security, 1994.

Chave: 128 a 256 bits

Comentário: Bom, mas patenteado.

Twofish

Autor: Bruce Schneier, 1997

Chave: 128 a 256 bits

 Comentário: Muito forte, amplamente utilizado.

Serpent

 Autor: Anderson, Biham, Knudsen 1997

Chave: 128 a 256 bits

Comentário: Muito forte.

Rijndael (Origem do AES)

Janeiro de 1997,

 NIST (National Institute of Standards and Technology), encarregado de aprovar padrões para o governo federal dos EUA, patrocinou um concurso para um novo padrão criptográfico para uso não-confidencial.

Rijndael

- A ser chamado AES (Advanced Encrytion Standard)
- Regras do concurso:
 - O algoritmo deveria ser uma cifra de bloco simétrica.
 - Todo o projeto deveria ser público.
 - Tamanho de chaves: 128, 192, 256 bits
 - Implementado, possivelmente, em SW e HW.
 - O algoritmo deveria ser público ou licenciado em termos não-discriminatórios.

Rijndael

 15 propostas, conferências públicas, análises criptográficas para encontrar falhas.

 Agosto de 1998 foram selecionados 5 propostas finalistas.

Rijndael

Ultima votação:

- Rijndael (Daemen, Rijmen) 86 votos
- Serpent (Anderson, Biham, Knudsen) 59votos
- Twofish (Bruce Schneier) 31 votos
- RC6 (RSA) 23 votos
- MARS (IBM) 13 votos

Rijndael

- Autor: Daemen & Rijmen
- Chave: 128 a 256 bits
- Novembro de 2001, o Rijndael se tornou o padrão do governo dos EUA, publicado como o <u>Federal Information</u> <u>Processing Standard</u> (FIPS 197).
- Comentário: Melhor escolha.

Rijndael

 O algoritmo foi projetado não só por segurança, mas também para aumentar a velocidade.

 Uma boa implementação de software em uma máquina de 2 GHz deve ser capaz de alcançar uma taxa de criptografia de 700 Mbps, que é rápida o suficiente para codificar mais de 100 vídeos MPEG-2 em tempo real.

AES (novo nome para o Rijndael)

Advanced Encryption Standard

Tamanho do Bloco: 128 bits

Comprimento da Chave: 128, 192, 256,
 512 bits.

Criptografia Assimétrica (chaves públicas)

Criptografia Assimétrica

Criptografia Assimétrica

- Segundo Stallings, a criptografia assimétrica (chaves públicas) representa a maior revolução na história da criptografia
- A criptografia de chaves públicas oferece uma mudança radical em relação a tudo o que havia sido feito
- Algoritmos baseados em funções matemáticas e não em substituição e transposição.
- Grande parte da teoria dos criptosistemas de chave pública baseia-se na teoria dos números.

- O conceito de criptografia de chave pública evoluiu da tentativa de atacar dois dos problemas mais difíceis associados à criptografia simétrica:
 - Distribuição de chaves
 - Compartilhamento de chaves
 - Assinaturas digitais
 - Mecanismo de assinaturas de documentos eletrônicos semelhantes ao mecanismo dos documentos em papel

- Os algoritmos assimétricos contam com uma chave para criptografia e uma chave diferente, porém relacionada, para decriptografia
- Esses algoritmos possuem as seguintes características:
 - É computacionalmente inviável determinar a chave de decriptografia conhecendo-se o algoritmo e a chave de criptografia
 - As chaves relacionadas tanto podem ser usadas para criptografia e decriptografia (Ex.: RSA)

nública

- Um esquema de criptografia de chave pública possui os seguintes elementos:
 - Texto claro
 - Algoritmo de criptografia
 - Chaves pública e privada
 - Texto cifrado
 - Algoritmo de decriptografia

- Etapas essenciais para o uso da criptografia de chaves públicas
 - 1 Cada usuário gera um par de chaves para criptografar/decriptografar mensagens
 - 2 Cada usuário coloca sua chave pública em algum registro público ou local acessível
 - 3 Se **Bob** deseja enviar uma mensagem confidencial para **Alice**, Bob criptografa a mensagem usando a chave pública de Alice
 - 4 Quando Alice recebe a mensagem, ela decriptografa usando sua chave privada

INSTITUTO FEDERAL DE SANTA CATARINA CAMPUS FLORIANÓPOLIS

DEPARTAMENTO ACADÊMICO DE ELETRÔNICA

Modelo de criptosistema de chave pública

O Problema da Distribuição de Chaves

Criptografia de Chave Pública

- Na criptografia simétrica, a mesma chave é usada para encriptar e decriptar.
- Na criptografia assimétrica a chave utilizada para encriptar não é usada para decriptar.
- As chaves são significativamente diferentes: (K_e, K_d)

Criptografia de Chave Pública

 O relacionamento é matemático; o que uma chave encripta a outra decripta:

$$C = E(k_e, P)$$
 $D(K_d, C) = P$

Um exemplo de chave pública

p:fca682ce8e12caba26efccf7110e526db078b05edecbcd1eb4a208f3ae1617ae01f35b

91a47e6df63413c5e12ed0899bcd132acd50d99151bdc43ee737592e17

g: 962eddcc369cba8ebb260ee6b6a126d9346e38c5

g:678471b27a9cf44ee91a49c5147db1a9aaf244f05a434d6486931d2d14271b9e35030b

71fd73da179069b32e2935630e1c2062354d0da20a6c416e50be794ca4

y:2dbebe746b73439bfc8148f220984286e1856353515bebb1d55e13412644e993c75926

dca2afdf731c1aa8f944876b86a679d256f2fa4c983a1135c7d76e6390

Um exemplo de chave privada

p:fca682ce8e12caba26efccf7110e526db078b05edecbcd1eb4a208f3ae1617ae01f35b

91a47e6df63413c5e12ed0899bcd132acd50d99151bdc43ee737592e17

g: 962eddcc369cba8ebb260ee6b6a126d9346e38c5

g:678471b27a9cf44ee91a49c5147db1a9aaf244f05a434d6486931d2d14271b9e35030b

71fd73da179069b32e2935630e1c2062354d0da20a6c416e50be794ca4

x:5445fb6a341e4ae1182ef22ac7c0ff8c9f3a69e2

Criptografia de Chave Pública

 É possível criar uma algoritmo criptográfico no qual uma chave encripta (K_e) e uma outra decripta (K_d):

$$D(K_d, E(k_e, P)) = P$$

Criptografia de Chave Pública

- Porque ambas as chaves são necessárias para cifrar e decifrar a informação, uma delas pode se tornar pública sem pôr a segurança em perigo.
- Essa chave é conhecida como chave pública (K_e)
- E sua contraparte é chamada chave privada (K_d).

Criptografando com Chave Pública

INSTITUTO FEDERAL DE SANTA CATARINA CAMPUS FLORIANÓPOLIS

DEPARTAMENTO ACADÊMICO DE ELETRÔNICA

Decriptografando com Chave Privada

Chave Privada

TO FEDERAL DE SANTA CATARINA CAMPUS FLORIANÓPOLIS

DEPARTAMENTO ACADÊMICO DE ELETRÔNICA

Gerenciamento de chaves públicas

Problema:

Se Alice e Bob não se conhecem um ao outro, como eles irão obter as respectivas chaves públicas para iniciar a comunicação entre eles?

 Como Alice (Bob) pode ter certeza que está realmente obtendo a chave pública de Bob (Alice)?

Gerenciamento de chaves públicas

 A solução óbvia: Bob coloca sua chave pública na sua página Web.

Não funciona !!!

 Suponha que Alice queira se comunicar com Bob.

Gerenciamento de chaves públicas

 Alice, então, precisa pesquisar a chave pública de Bob na página dele.

Como ela fará isso?

 Alice começa por digitar a URL de Bob, em seu navegador.

Gerenciamento de chaves públicas

 O navegador pesquisa o endereço DNS da página de Bob e envia ao site Web de Bob, uma solicitação HTTP-GET.

 Infelizmente, suponha que Trudy intercepta a solicitação GET e responde a Alice com uma página falsa, fazendo a substituição da chave pública de Bob pela chave pública dela.

Gerenciamento de chaves públicas

 Quando Alice envia sua primeira mensagem criptografada, será com E_T (a chave pública de Trudy).

- Necessário um mecanismo apropriado para que se possa disponibilizar chaves.
 - Servidor on-line na Internet ?

INSTITUTO FEDERAL DE SANTA CATARINA CAMPUS FLORIANÓPOLIS

DEPARTAMENTO ACADÊMICO DE ELETRÔNICA

Dois problemas:

Escalabilidade

Falha do servidor

Gerenciamento de chaves públicas

 Uma Solução para escalabilidade e disponibilidade:

Replicação de servidores

INSTITUTO FEDERAL DE SANTA CATARINA CAMPUS FLORIANÓPOLIS

Gerenciamento de chaves públicas

Outra solução:

Uma Autoridade Certificadora!

Desempenho

- Para informação em grande quantidade,
 Algoritmos de chave pública são lentos.
 - (20Kb a 200Kb) por segundo.
 Muito lento para processamento de dados em volume.
- Algoritmos de chave simétrica podem encriptar informação em grande quantidade bem mais rapidamente.
 - (10Mb, 20Mb, 50 Mb ou mais) por segundo.

Desempenho

 Encriptar 128 bits (tamanho provável de uma chave simétrica), não leva tanto tempo.

 Solução: usar a combinação de criptografia de chave simétrica e de chave pública.

Envelope Digital

- Processo usado para criptografar informação em grande quantidade
 - utilizando a criptografia de chave simétrica
 e
 - criptografando a chave simétrica de sessão com um algoritmo de chave pública.

INSTITUTO FEDERAL DE SANTA CATARINA CAMPUS FLORIANÓPOLIS

DEPARTAMENTO ACADÊMICO DE ELETRÔNICA

Criptografando em Envelope Digital

INSTITUTO FEDERAL DE SANTA CATARINA CAMPUS FLORIANÓPOLIS

DEPARTAMENTO ACADÊMICO DE ELETRÔNICA

Descriptografando o Envelope Digital

Vantagem do Envelope Digital

- Ao invés do segredo ser compartilhado antecipadamente o segredo é compartilhado através da chave simétrica de sessão.
- A chave pública que não precisa estar protegida.

Algoritmos mais utilizados

- Três algoritmos são mais usados para resolver o problema da distribuição de chaves:
 - **DH** (Diffie-Hellman, 1976) (Stanford University)
 - RSA (Rivest, Shamir, Adleman) (M.I.T, 1978)
 - El Gamal (1985)

Tipos de cifragem

Cifras de fluxo vs. Cifras de bloco

- Cifras de fluxo
 - Utilizada para codificar 1 bit ou um byte por vez
- Cifras de bloco
 - Um bloco de texto claro é tratado como um todo para produzir um bloco de texto cifrado com o mesmo tamanho
 - Têm maior aplicabilidade que as cifras de fluxo

Cifra de Feistel

- Feistel propôs uma abordagem conhecida como cifra de produto
- Baseia-se na execução de duas ou mais cifras em sequência de tal forma que o resultado final seja criptograficamente mais forte do que qualquer uma das cifras intermediárias
- Utiliza o conceito de Difusão e Confusão para dificultar a criptoanálise estatística

Cifra de Feistel

- Parâmetros da cifra de Feistel
 - Tamanho do bloco
 - Blocos maiores significam maior segurança
 - Tradicionalmente o bloco é de 64 bits
 - Outras cifras de bloco, como o AES, utiliza bloco de 128 bits
 - Tamanho da chave
 - Chaves maiores significam maior segurança
 - 128 bits tornou-se um tamanho comum
 - Número de rodadas
 - Essência da cifra (quantidade de execuções)
 - 16 rodadas é um tamanho típico
 - Função rodada
 - · Quanto maior mais seguro.

INSTITUTO FEDERAL DE SANTA CAMPUS FLORIANÓPOL DEPARTAMENTO ACADÊMICO DE E

Cifra de Feistel

- L_C
 - Metade da esquerda do bloco
- R₀
 - Metade da esquerda do bloco
- K
 - Chaves e sub-chaves
- F
 - Função rodada
- ≈
 - Operação de OU exclusivo

Outras cifras de bloco

- A cifra de Feistel serviu de base para famosos algoritmos criptográficos
 - DES (Data Encriptation Standard)
 - Desenvolvido na década de 1960 pela IBM com o code nome LUCIFER
 - Utiliza blocos de 64 bits e chave de 56 bits
 - 3DES (Triplo DES)
 - Basicamente o DES executado 3 vezes em sequência
 - AES (Advanced Encryptation Standard)

Protocolos com Criptografia

Segurança nas Camadas

 Com exceção da segurança na camada física, quase toda segurança se baseia em princípios criptográficos.

Criptografia de Enlace

 Na camada de enlace, os quadros em uma linha ponto-a-ponto podem ser codificados, à medida que saem de uma máquina, e decodificados quando chegam em outra.

Criptografia de Enlace

- Vários detalhes de criptografia poderiam ser tratados na camada de enlace, no entanto, essa solução se mostra ineficiente, quando existem vários switches.
 - Necessário decriptar os pacotes nos switches, o que pode tornar esses vulneráveis a ataques.

Criptografia na Camada de Rede

- A segurança do Protocolo IP funciona nesta camada.
- IPSec (RFC 1825)
 - Protocolo de criptografia para tunelamento, criptografia e autenticação.
 - Dois modos:
 - Modo transporte se protege o conteúdo útil do pacote IP
 - Modo túnel se protege o pacote IP completo.

Criptografia na Camada deTransporte

- É possível criptografar conexões fim-a-fim, ou seja processo-a-processo.
- SSL (Security Socket Level)
- TLS (Transport Level Security)

Criptografia na Camada da Aplicação

 S/MIME (Secure/Multipupose Internet Mail Extensions)

• **SET** (Secure Electronic Transactions)

• **HTTPS** (HTTP sobre SSL)