Digital Integrated Circuits Arithmetic Circuits

Fuyuzhuo

Outline

- Single-bit Addition
- Carry-Ripple Adder
- Carry-Skip Adder
- Carry-Lookahead Adder
- Carry-Select Adder
- Carry-Increment Adder
- Tree Adder

Carry-Skip Adder

- Carry-ripple is slow through all N stages
- Carry-skip allows carry to skip over groups of n bits
 - Decision based on n-bit propagate signal

Multiplexer

$$C_o = G + PC_{in} = G\overline{P} + PC_{in} = A\overline{P} + PC_{in} = B\overline{P} + PC_{in}$$

$$G_{i:j} = G_{i:k} + P_{i:k}G_{k-1:j} = G_{i:k}\overline{P_{i:k}} + P_{i:k}G_{k-1:j}$$
AND-OR
Multiplexer

$$if P_{i:k} = 0$$
 $left = right$

$$if \ P_{i:k} = 1$$
 $left = G_{i:k} + P_{i:k}G_{k-1:j} = P_{i:k}G_{k-1:j}$ $right = P_{i:k}G_{k-1:j}$

Carry-Skip PG Diagram

$$G_{4:0} = G_{4:1} + P_{4:1}G_{0:0}$$

$$G_{8:0} = G_{8:5} + P_{8:5}G_{4:0}$$

$$G_{12:0} = G_{12:9} + P_{12:9}G_{8:0}$$

$$G_{16:0} = G_{16:13} + P_{16:13}G_{12:0}$$

Note: $P=A \oplus B$.

Why group?

$$\begin{split} C_{i} &= g_{i} + p_{i}C_{i-1} \\ C_{o,4} &= g_{4} + p_{4}C_{3} = g_{4} + p_{4}(g_{3} + p_{3}C_{2}) = g_{4} + p_{4}(g_{3} + p_{3}(g_{2} + p_{2}(g_{1} + p_{1}C_{i,0}))) = \\ & \underbrace{\begin{array}{ccc} & & & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & \\ & & & \\$$

Carry-Skip PG Diagram

$$t_{\text{skip}} = t_{pg} + [2(n-1) + (k-1)]t_{AO} + t_{\text{xor}}$$

4/16 bit Block Carry Skip Adder

Worst-case delay \rightarrow carry from bit 0 to bit 15 = carry generated in bit 0, ripples through bits 1, 2, and 3, skips the middle two groups (B is the group size in bits), ripples in the last group from bit 12 to bit 15

Another prove

M. LEHMAN AND N. BURLA Skip Techniques for High-Speed Carry-Propagation in Binary Arithmetic Units IRE TRANSACTIONS ON ELECTRONIC COMPUTERS 1961

Another carry skip adder

Santanu Maity, Bishnu Prasad De, Aditya Kr. Singh ,*Design and Implementation of Low-Power High-Performance Carry Skip Adder*, International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 – 8958, Volume-1, Issue-4, April 2012

10

Carry-Skip using manchester

P.CHAN and M.Schlag,"Analysis and design of CMOS Manchester adders with variable carry-skip"

IEEE Trans. Computers, Vol. 39, No. 8, Aug. 1990, pp. 983-992

$$G_{4,0} = G_{4,1} + P_{4,1}G_{0,0}$$

Variable Group Size

Delay grows as O(sqrt(N))

RCA, Carry Skip Adder Comparison

LookAhead - Basic Idea

$$C_{o,k} = f(A_k, B_k, C_{o,k-1}) = G_k + P_k C_{o,k-1}$$

Look-Ahead: Topology

Expanding Lookahead equations:

$$C_{o,k} = G_k + P_k(G_{k-1} + P_{k-1}C_{o,k-2})$$

All the way: $C_{o,k} = G_k + P_k(G_{k-1} + P_{k-1}(... + P_{l_{DD}}(G_0 + P_0C_{i,0})))$

Carry-Lookahead Adder

- Carry-lookahead adder computes G_{i:0} for many bits in parallel.
- Uses higher-valency cells with more than two inputs.

CLA PG Diagram

Carry-Select Adder

- Trick for critical paths dependent on late input X
 - Precompute two possible outputs for X = 0, 1
 - Select proper output when X arrives
- Carry-select adder precomputes n-bit sums
 - For both possible carries into n-bit group

Carry Select Adder

Precompute the carry out of each block for both carry_in = 0 and carry_in = 1 (can be done for all blocks in parallel) and then select the correct one

Carry Select Adder: Critical Path

Square Root Carry Select Adder

$$T_{add} = t_{setup} + 2 t_{carry} + \sqrt{2N} t_{mux} + t_{sum}$$

Carry-select implementation

FIGURE 11.33 Carry-select implementation

Carry-Increment Adder

Factor initial PG and final XOR out of carry-select

$$t_{\rm increment} =$$

Digital IC

Slide 24

Carry-Increment Adder

Factor initial PG and final XOR out of carry-select

$$t_{\text{increment}} = t_{pg} + \left[\left(n - 1 \right) + \left(k - 1 \right) \right] t_{AO} + t_{\text{xor}}$$

$$t_{\text{increment}} = t_{pg} + [t_{pg(n)} + (k-1)]t_{AO} + t_{xor}$$

Variable Group Size

Outline

- Single-bit Addition
- Carry-Ripple Adder
- Carry-Skip Adder
- Carry-Lookahead Adder
- Carry-Select Adder
- Carry-Increment Adder
- Tree Adder

Brent-Kung*(B-tree)

*R.Brent and H.Kung," a regular layout for parallel adders" IEEE Trans. Computer, vol. C-31,No.3,March 1982,pp.260-264

Brent-Kung*(**B**-tree)

Sklansky(S-Tree)

*J.Sklansky "conditional-sum addition logic" IER Trans. Electronic computers, vol.EC-9,June 1960,pp.226-231

Sklansky(S-Tree)

Kogge-Stone*(K-tree)

*P.Kogge and H.Stone," a parallel algorithm for the efficient solution of a general class of recurrence equations" IEEE Trans. Computer, vol.C-22,No.8,Aug. 1973,pp.786-793

16-bit Kogge-Stone prefix graph

Tree Adder Taxonomy

- Ideal N-bit tree adder would have
 - L = log N logic levels
 - Fanout never exceeding 2
 - No more than one wiring track between levels
- Describe adder with 3-D taxonomy (f, f, t)
 - Logic levels: $L + \ell$
 - **Fanout:** $2^f + 1$
 - Wiring tracks: 2^t
- Known tree adders sit on plane defined by

$$l + f + t = L-1$$

Han-Carlson(B+K tree)

Kogge Stone——Brent Kung

Han-Carlson(B+K tree)

Ladner-Fischer(S+B)

Sklansky——Brent Kung

Ladner-Fischer(S+B)

Knowles [1, 1, 1, 2](S+K)

Kogge Stone——Sklansky

Knowles [1,1,1,2](S+K)

Knowles [1,1,2,4](S+K)

Knowles' 8-bit prefix trees

All trees are log-depth

Taxonomy Revisited

Summary

Adder architectures offer area / power / delay tradeoffs.

Choose the best one for your application.

Architecture	Classification	Logic Levels	Max Fanout	Tracks	Cells
Carry-Ripple		N-1	1	1	N
Carry-Skip n=4		N/4 + 5	2	1	1.25N
Carry-Inc. n=4		N/4 + 2	4	1	2N
Brent-Kung	(L-1, 0, 0)	2log ₂ N – 1	2	1	2N
Sklansky	(0, L-1, 0)	log ₂ N	N/2 + 1	1	0.5 Nlog ₂ N
Kogge-Stone	(0, 0, L-1)	log ₂ N	2	N/2	Nlog ₂ N

summary

