Individual 4

Yu Fan Mei Introduction to Proof and Problem Solving

September 30, 2024

Problem 12. Write the negation of the statement

 $p \equiv \{ \forall n \in \mathbb{Z}, \exists m \in \mathbb{Z} \text{ such that } 4n + 3m = 0 \text{ or } 4n + 3m = 1 \}$

and prove p or $\neg p$ is true. Do some examples.

Solution. The negation of p is

 $\neg p \equiv \{\exists n \in \mathbb{Z}, \forall m \in \mathbb{Z} \text{ such that } 4n + 3m \neq 0 \text{ and } 4n + 3m \neq 1\}.$

Proof. We will now prove $\neg p$. Set $n_0 = 2$. Then $4n_0 = 8$. Let m_0 be an arbitrary integer. We will consider cases.

Case 1. Suppose $m_0 \ge -2$. Multiplying by 3, we get $3m_0 \ge -6$. Adding 8 to both sides, we get

$$8 + 3m_0 > 2$$
.

Substituting $4n_0$ for 8, we get

$$4n_0 + 3m_0 \ge 2$$
.

Case 2. Suppose $m_0 \leq -3$. Multiplying both sides by 3, we get $3m_0 \leq -9$. Adding 8 to both sides, we get

$$8 + 3m_0 < -1$$
.

But since $4n_0 = 8$, we have

$$4n_0 + 3m_0 < -1$$

Since $4n_0 + 3m_0 \neq 0$ and $4n_0 + 3m_0 \neq 1$ for all m_0 , $\neg p$ is true.

While working on this proof, I received no external assistance aside from advice from Professor Mehmetaj.