Задача

Решить задачу детектирования касок, жилетов и людей на основе Darknet Framework

1. Разведочный анализ данных

Перед решением задачи детектирования, был проведен разведочный анализ данных, данный анализ можно найти в репозитории в файле под названием EDA.ipynb

2. Обучение YOLO

После проведенного анализа и чистки данных была обучена YOLOv4 с помощью Darknet Framework.

График обучения:

Итоговую конфигурацию можно найти по ссылке.

Данные для обучения можно найти по ссылке.

3. Скрипт для запуска модели на тестовых данных

После обучения была собрана новая небольшая тестовая выборка из 56 изображений, данная выборка была размечена. Выборку можно найти по данной <u>ссылке</u>.

Далее был написан скрипт для запуска модели и для показа найденных рамок. Данный скрипт находится в репозитории под названием inference.py, для его запуска необходимо:

1. Положить его в директорию с собранным фреймворком Darknet

2. При запуске необходимо указать в качестве аргументов: путь к файлу с путями к изображениям, путь к конфигурации YOLO, путь к obj.data для YOLO и путь к весам YOLO. Примерно консольная команда для запуска выглядит так:

PS C:\Projects\DarkNetYolo> & C:/Projects/VirtualEnvironments/DeepLearning/venv/Scripts/python.exe .\inderence.py .\tes .txt .\cfq\yolov4-obj.cfg .\data\obj.data .\backup\yolov4-obj_0-96.weights

После запуска появится выведенное изображение с отрисованными рамками.

Для управления изображениями необходимо использовать клавиши а (прошлое изображение), d (следующее изображение), q (выход из скрипта).

4. Изучение точности модели

Для проверки точности модели использовалась метрика mAP.

Результаты для тестовой выборки:

Результаты для обучающей выборки:

Как видно из результатов на тестовой выборке, результаты не самые лучшие. Но данная проблема была ожидаема и описывалась в разведочном анализе, хоть и при создании новой выборки производился выбор наиболее близких изображений к начальной выборке, но выборка для обучения была крайне однообразной, поэтому на новых данных, непохожих на обучающие, модель столкнулась с проблемами.

5. Репозиторий GitHub

https://github.com/nasheshin01/SafetyGearYoloDetection