Coordination in Social Networks

Chun-ting Chen

November 10, 2014

- A collective action may fails due to incomplete information about participants' inclination.
 - A revolution needs rebels' joint contribution.
 - People's "types", aggressiveness or inertness are not commonly known.
- · Moreover, transmitting relevant information is difficult.
 - 1 No cheap talk.
 - 2 No (uncensored) discussion forum, etc.
- · A collective action: a joint investment, a project, etc
- · Participant: investors, co-workers, etc,

However, history tell us:

- A collective action is not static: An event may trigger later events.
 - Consecutive uprisings in East Germany 1989-1990.
- Information is transmitted within social networks:
 - Ex., Gangster networks (1911 Revolution); Church networks (1989 Berlin Uprising), etc.

Question

• If rational rebels know that a "tiny" event can trigger later events, how do they conduct a decisive collective action within their social network?

Model

- 1 No cheap talk. Communication is taking actions.
- Communication is facing expected cost.
- 3 Players communicate repeatedly in a network.

Looking for

• An equilibrium, where the ex-post efficient outcome played repeatedly after a finite time T in the equilibrium path when δ is high enough.

Related Literature

- Public good provision.
 - One strand: [Chwe 2000], [Lohmann, 1993,1994], [Bolton and Harris, 1999], [Bramoullé and Kranton, 2007]
 - This paper adds network-monitoring
- Social learning.
 - One strand: [Goyal, 2012], [Acemoglu et al., 2011], [Chatterjee and Dutta, 2011].
 - This paper considers farsighted-learning in the game
- Repeated game.
 - One strand: [Laclau, 2012], [Wolitzky, 2013], [Wolitzky, 2014]
 - This paper consider incomplete information and imperfect monitoring
 - One strand: [Fudenberg and Yamamoto, 2010] [Fudenberg and Yamamoto, 2011] [Wiseman, 2012] [Yamamoto 2014]
 - This paper consider n-person game without full-rank conditions on public or private signals generated by single-period actions.

Network

- Let $N = \{1, ..., n\}$ be the set of players.
- G_i is i's neighborhood, G_i is a subset of N and $i \in G_i$.
- $G = \{G_i\}_i$ is the network.

Assumption

G is fixed (not random), finite, connected, commonly known, and undirected.

Static *k*-threshold game [Chwe 2000]

- θ_i : i's type
- $\theta_i \in \Theta_i = \{Rebel, Inert\}$
- $\Theta = \times_{i \in N} \Theta_i$; $\theta \in \Theta$
- $A_{Rebel_i} = \{ revolt, stay \}; A_{Inert_i} = \{ stay \}$
- $1 \le k \le n$

Here, Static *k*-threshold game [Chwe 2000]

• Static game payoff for player *i*: $u_{\theta_i}(a_{\theta_i}, a_{-\theta_i})$

```
\begin{array}{lll} u_{Inert_i}(a_{Inert_i},a_{-\theta_i}) & = & 1 & \text{if } a_{Inert_i} = \textbf{stay} \\ \\ u_{Rebel_i}(a_{Rebel_i},a_{-\theta_i}) & = & 1 & \text{if } a_{Rebel_i} = \textbf{revolt} \text{ and } \#\{j:a_{\theta_j} = \textbf{revolt}\} \geq k \\ \\ u_{Rebel_i}(a_{Rebel_i},a_{-\theta_i}) & = & -1 & \text{if } a_{Rebel_i} = \textbf{revolt} \text{ and } \#\{j:a_{\theta_j} = \textbf{revolt}\} < k \\ \\ u_{Rebel_i}(a_{Rebel_i},a_{-\theta_i}) & = & 0 & \text{if } a_{Rebel_i} = \textbf{stay} \end{array}
```

- stay is a safe arm; revolt is a risky arm.
- Ex-post (Pareto) efficient outcome:
 - Inerts play stay.
 - If there are more than *k* Rebels, all Rebels play **revolt**.
 - Otherwise, all Rebels play stay.

OR, Static *k*-threshold game [Chwe 2000]

• Static game payoff for player *i*: $u_{\theta_i}(a_{\theta_i}, a_{-\theta_i})$

```
\begin{array}{lll} u_{Inert_i}(a_{Inert_i},a_{-\theta_i}) & = & 1 & \text{if } a_{Inert_i} = \mathbf{stay} \\ \\ u_{Rebel_i}(a_{Rebel_i},a_{-\theta_i}) & = & 1 & \text{if } a_{Rebel_i} = \mathbf{revolt} \text{ and } \#\{j:a_{\theta_j} = \mathbf{revolt}\} \geq k \\ \\ u_{Rebel_i}(a_{Rebel_i},a_{-\theta_i}) & = & -1 & \text{if } a_{Rebel_i} = \mathbf{revolt} \text{ and } \#\{j:a_{\theta_j} = \mathbf{revolt}\} < k \\ \\ u_{Rebel_i}(a_{Rebel_i},a_{-\theta_i}) & = & 1 & \text{if } a_{Rebel_i} = \mathbf{stay} \text{ and } \#\{j:a_{\theta_j} = \mathbf{revolt}\} \geq k \\ \\ u_{Rebel_i}(a_{Rebel_i},a_{-\theta_i}) & = & 0 & \text{if } a_{Rebel_i} = \mathbf{stay} \text{ and } \#\{j:a_{\theta_j} = \mathbf{revolt}\} < k \\ \end{array}
```

- stay is a safe arm; revolt is a risky arm;
- Ex-post (Pareto) efficient outcome:
 - · Inerts play stay.
 - If there are more than *k* Rebels, at least some *k* Rebels play **revolt**.
 - Otherwise, all Rebels play stay.

Repeated k-threshold game

- Time is infinite, discrete.
- Nature choose θ at o period according to π .
- Players play the static *k*-threshold game infinitely repeatedly.

Assumption

- Players know their neighbors' types.
- Players perfectly observe their neighbors' actions.
- π has full support
- Common δ.

Notations:

- $[Rebels](\theta) = \{j : \theta_j = Rebel\} \text{ for all } \theta \in \Theta.$
- θ_{G_i} : i's private information about the state. $(\theta_{G_i} \in \Theta_{G_i} = \prod_{j \in G_i} \Theta_j)$
- $h_{G_i}^m$: the history observed by i up to period m. ($h_{G_i}^m \in H_{G_i}^m = \prod_{s=1}^m \prod_{i \in G_i} A_{\theta_i}$)
- $h \in H = \prod_{s=1}^{\infty} \prod_{i \in N} A_{\theta_i}$: a infinite sequence of players' actions
- $\tau_i: \Theta_{G_i} \times \bigcup_{1}^{\infty} H_{G_i}^m \to A_{\theta_i}$, i's strategy.
- $\tau = (\tau_1, ..., \tau_i, ..., \tau_n)$: a strategy profile
- $\beta_i^{\pi,\tau}(\theta|h_{G_i}^m)$: i's belief for a θ at period m given τ .

APEX

Notations:

- h_{θ}^{τ} : a realized h generated by τ given θ .
- Call h_{θ}^{τ} a τ_{θ} -path.
- Call $\{\tau_{\theta}\}_{\theta \in \Theta}$ the τ -path

Definition

The τ -path is **approaching ex-post efficient** (*APEX*) \Leftrightarrow

 $\forall \theta$, there is a finite time T^{θ}

such that the actions after T^{θ} in τ_{θ} repeats the static ex-post efficient outcome.

APEX

Definition

 $h_{G_i}^m$ is reached by τ -path

 \Leftrightarrow

 $\exists \theta$ such that $h_{G_i}^m$ is in τ_{θ} -path.

Lemma

If the τ *-path is* $APEX \Rightarrow$

 $\forall \theta \ \forall i$, there is a finite time T_i^{θ}

such that $\sum_{\theta:\#[Rebels](\theta)\geq k} \beta_{G_i}^{\pi,\tau}(\theta|h_{G_i}^s) = 1$ or = 0 if $s \geq T_i^{\theta}$ and if $h_{G_i}^s$ reached by τ -path.

APEX

Definition

A sequential equilibrium (τ^*, β^*) is APEX $\Leftrightarrow \tau^*$ -path is APEX, and β^* is the belief system consistent with τ^* .

Leading Example

If pay-off is observable, an Apex Equilibrium for k = n = 3 in

- At 1st period
 - · All Rebels choose revolt.
- After 1st period
 - If the pay-off is observed as 1, choose **revolt** afterwards.
 - · Otherwise, choose stay afterwards.
- Any deviation ⇒
 - · Choosing stay forever.

Leading Example

If pay-off is hidden, an Apex Equilibrium for k = n = 3 in

- At 1st period
 - Rebel 2 chooses **revolt** if he observes $\theta = (Rebel, Rebel)$; Otherwise, chooses **stay** forever.
 - Rebel 1 (or Rebel 3) choose stay.
- After 1st period
 - If Rebel 2 chooses revolt in the last period, then Rebel 1 (or Rebel 3) chooses revolt forever;
 - If Rebel 2 chooses stay in the last period, then Rebel 1 (or Rebel 3) chooses stay forever.
- Any deviation ⇒
 - · Choosing stay forever.

Goal

Goal

Can we generalize the above result?

Assumption

Payoff is hidden (or noisy).

Results

Results

- k = n: we can.
- k < n: with additional assumptions,
 - · acyclic networks: we can .
 - · all networks: open question.

k = n: Result

Theorem

In any network, **if** the prior has full support, **then** for repeated k = n Threshold game, **there is** a δ such that a sequential equilibrium which is APEX **exists**.

Proof:

- **①** Some Inerts neighbors \Rightarrow play **stay** forever.
- No Inert neighbor ⇒ play revolt until stay is observed, and then play stay forever.
- 3 Any deviation \Rightarrow play **stay** forever.
- **4** There is a finite time T^{θ} such that ex-post efficient outcome repeats afterwards.

k = n: Result

Comments for k = n:

- 1 stay means "some Inerts are out there."
- **2 revolt** means "some Inerts may not be there."
- - Group punishment is not necessary.

k < *n*: Result and Conjecture

Since a Inert always play stay, define

Definition

Strong connectedness ⇔ for every pair of Rebels, there is a path consisting of Rebels to connect them.

Definition

Full support on strong connectedness⇔

 $\pi(\theta)$ > 0 if and only if θ has strong connectedness.

to not reduce the game to incomp. info. game without communication.

k < *n*: Result and Conjecture

Theorem

In any acyclic network, **if** π has full support on strong connectedness, **then** for repeated $1 \le k \le n$ Threshold game, **there is** a δ such that a weak sequential equilibrium which is APEX **exists**.

Conjecture

In any cyclic network, ...[same as above]...

k < *n*: Equilibrium Construction

Outline

- Communication by actions
- 2 Communication in the equilibrium
 - Communication protocol
 - Reporting and coordination messages in the protocol
 - 3 Information hierarchy in communication
 - In-the-path belief updating
 - Off-path belief
 - 6 Sketch of proof

Communication by actions

Communication by binary actions

1 Indexing each node i as a distinct prime number x_i . For instance,

2 Then, If

Rebel 3 report $x_1 \times x_7 \times x_3$ to Rebel 1 by sending a finite sequence

stay, ..., stay, revolt, stay, ..., stay
$$\underbrace{x_1 \times x_7 \times x_3}_{x_1 \times x_7 \times x_3}$$

Communication phases

Two phases, RP and CD, alternate in time horizontal line

$$\underbrace{\langle coordination \ period \rangle}_{o-block} \underbrace{\langle reporting \ period \rangle \langle coordination \ period \rangle}_{1-block} \dots$$

- Reporting period (RP): talking about θ
 - Cheap talking: θ will be revealed.
- Why do I need coordination period (CD)?

Coordination period

Why do I need coordination period?

- Ans: Since higher-order belief is hard to track.
 - APEX: to find T^{θ} for all θ .
 - When is T^{θ} ?.
- Sol: Let *CD* be long enough

$$\overbrace{\langle ... \rangle}^{\text{RP}} \overbrace{\langle \langle \cdot \rangle \langle \cdot \rangle ... \langle \cdot \rangle \rangle}^{\text{CD}}$$

Coordination period

Why do I need coordination period?

- Ans: Since higher-order belief is hard to track.
 - APEX: to find T^{θ} for all θ .
 - When is T^{θ} ?.
- Sol: Let *CD* be long enough

$$\overbrace{\langle ... \rangle}^{RP} \overbrace{\langle \langle \cdot \rangle \langle \cdot \rangle ... \langle \cdot \rangle \rangle}^{CD}$$

• If a Rebel knows the relevant info. after RP,

Coordination period

Why do I need coordination period?

- Ans: Since higher-order belief is hard to track.
 - APEX: to find T^{θ} for all θ .
 - When is T^{θ} ?.
- Sol: Let *CD* be long enough

$$\overbrace{\langle ... \rangle}^{RP} \overbrace{\langle \langle \cdot \rangle \langle \cdot \rangle ... \langle \cdot \rangle \rangle}^{CD}$$

 If a Rebel knows the relevant info. after RP,⇒ sending messages to let his neighbors know that

Coordination period

Why do I need coordination period?

- Ans: Since higher-order belief is hard to track.
 - APEX: to find T^{θ} for all θ .
 - When is T^{θ} ?.
- Sol: Let CD be long enough

$$\overbrace{\langle ... \rangle}^{RP} \overbrace{\langle \langle \cdot \rangle \langle \cdot \rangle ... \langle \cdot \rangle \rangle}^{CD}$$

If a Rebel knows the relevant info. after RP ⇒ sending messages to let neighbors know that ⇒ neighbors send msg. to let their neighbors know ⇒....⇒ all the Rebels commonly know relevant information.

Coordination period and messages

Idea

- At least "three" messages to coordinate Rebels
 - 1 to revolt
 - 2 to stay
 - 3 to continue to next block
- Create these distinguishable messages by binary actions

Coordination period and messages

• CD^t : the CD in t-block

$$\underbrace{\langle \underbrace{\langle \cdot \rangle \cdots \langle \cdot \rangle}_{\text{1st division}} \rangle \langle \underbrace{\langle \cdot \rangle \cdots \langle \cdot \rangle}_{\text{2nd division}} \rangle}_{\text{2nd division}}$$

- $CD_{p,q}^t$: the *p* sub-block in *q* division.
- $\langle CD_{p,q}^t \rangle$: the messages in $CD_{p,q}^t$ are distinguishable

$$\langle stay \rangle$$
 $s, ..., s, s, s, ..., s$
 $\langle x_i \rangle$ $s, ..., s, \underbrace{r, s, ..., s}_{x_i}$

- 1st division: sending message to stay; otherwise continue
- 2nd division: sending message to revolt; otherwise continue

1st division in CD

• Message to stay: Whenever a Rebel *i* knows $\#[Rebels](\theta) < k$, he plays stay afterward.

$$\overbrace{\left\langle \underbrace{(\mathbf{stay})...}\right\rangle \left\langle \underbrace{(...)}\right\rangle}^{CD^t}$$
1st division 2nd division

1st division in CD

• Message to stay: ... then nearby Rebel j plays stay afterward

1st division in CD

· Otherwise,

$$\underbrace{\langle \langle x_i \rangle \langle x_i \rangle ... \langle \cdot \rangle \rangle \langle \langle \cdot \rangle \cdots \langle \cdot \rangle \rangle}_{\text{1st division}} \underbrace{\langle \langle x_i \rangle \langle x_i \rangle ... \langle \cdot \rangle \rangle}_{\text{2nd division}}$$

2nd division

• Message to **revolt**: Whenever a Rebel *i* know $\#[Rebels](\theta) \ge k$, he play

$$\underbrace{\langle \langle \cdot \rangle \cdots \langle \cdot \rangle \rangle \langle \langle (stay) \langle \cdot \rangle \cdots \langle \cdot \rangle \rangle}_{1st \text{ division}} \underbrace{\langle (stay) \langle \cdot \rangle \cdots \langle \cdot \rangle \rangle}_{2nd \text{ division}}$$

in the first sub-block.

• Otherwise,

$$\frac{CD^t}{\langle\langle\cdot\rangle\cdots\langle\cdot\rangle\rangle\langle\langle\langle x_i\rangle\langle\cdot\rangle\cdots\langle\cdot\rangle\rangle}$$
1st division 2nd division

2nd division

• Message to **revolt**:... then nearby Rebel j play $\langle x_j \rangle$ to inform nearby Rebels, etc

$$\frac{CD^t}{\left(\left(\cdot\right)\cdots\left(\cdot\right)\right)\left(\left(\cdot\right)\left(x_j\right)\cdots\left(\cdot\right)\right)}$$
1st division 2nd division

· Otherwise,

$$\frac{CD^t}{\langle\langle\cdot\rangle\cdots\langle\cdot\rangle\rangle\langle\langle\cdot\rangle\langle(\mathbf{stay})\cdots\langle\cdot\rangle\rangle}$$
1st division and division

After coordination period

- Either stopping or continuing communication
 - Stopping: if relevant info. is revealed ⇒ messages will be sent ⇒ all Rebels play the ex-post eff. outcome afterward.
 - 2 Continuing: otherwise, go to the next block.

Observation

Either stopping or continuing belief updating.

• "a grim-trigger"

Lemma

Before a Rebel knows $\#[Rebels](\theta) < k$ or $\#[Rebels](\theta) \ge k$, he will not send **Message to stay** or **Message to revolt** if δ is high enough.

- 1 If he send, then information updating stops (grim-trigger).
- o If he does not send, he can learn the relevant information.

Coordination messages

- No expected cost to send Message to stay or Message to revolt
- The player who knows the relevant info. is willing to send messages.

- However, sending message in RP is costly.
- A free rider problem in PR may occur.

Free rider problem

- $\mathbf{n} k = 5$
- only one block (RP and then CD).
- Free riders:

Why?

- 1 No expected cost to send Message to stay or Message to revolt,
- 2 Rebel 4 will not report truthfully given that Rebel 5 report truthfully.
- 3 Rebel 4 will not report truthfully given that Rebel 5 report truthfully.

Reporting period and messages Idea

- "Burning moneys" before sending **message to revolt**.
 - **1** Gives incentives to report θ .
 - 2 Prevent potential free rider problems.
- · Characterizing "how much money a Rebel should burn"
 - · Building Information Hierarchy

Reporting period and messages

• RP^t : the reporting period at t block

$$\overbrace{\langle\langle\cdot\rangle\rangle}^{RP^t}$$

• $\langle RP^t \rangle$: the reporting message

Burning moneys
$$\neg \langle stay \rangle$$
 $s, ..., s, r, s, ..., s$ Not burning money $\langle stay \rangle$ $s, ..., s, s, s, s, ..., s$

- Burning moneys+message to revolt:
 - Rebels believe that $\#[Rebels](\theta) \ge k$
- Not burning moneys+message to revolt:
 - Rebels don't believe that $\#[Rebels](\theta) \ge k$

How much money should a Rebel burns?

- Burning money is to convince Rebels to coordination to revolt.
- Information Hierarchy: how much money should be burned?.

Main goal of Information Hierarchy

- Characterizing Rebels' incentives in money burning.
- Ex: k = 4 and

1 Rebel 1's information can be reported by Rebel 2.

Main goal of Information Hierarchy

- Easing the punishment scheme when monitoring is imperfect.
- Note that k < n, punishment by single player is not enough.
- Ex: k = 4 and

- 1 Rebel 1 can only be monitored by Rebel 2.
- **2** Suppose Rebel 2,3,4,5 can coordinate at period *T* and play **revolt** forever.
- **3** If Rebel 1 did not burn money at period T 1, Rebel 2 has no incentive to punish him.

Information Hierarchy

$$0 - 1 - RB_2 - RB_3 - RB_4 - RB_5 - RB_6 - 7$$

At o-block, let

$$R^{\circ} = [Rebels](\theta)$$

$$0 - 1 - RB_2 - RB_3 - RB_4 - RB_5 - RB_6 - 7$$

At 1-block, first let

$$G_i^{\circ} \equiv G_i$$
 $I_i^{\circ} \equiv G_i \cap R^{\circ}$

For instance,

$$I_2^{\circ} = \{2,3\}$$
 $G_2^{\circ} = \{1,2,3\}$
 $I_3^{\circ} = \{2,3,4\}$ $G_3^{\circ} = \{2,3,4\}$

$$0 - 1 - RB_2 - RB_3 - RB_4 - RB_5 - RB_6 - 7$$

Then define

 \leq^{o}

by

$$i\in \leq^{\circ} \Leftrightarrow \exists j\in \bar{G}_i\big(I_i^{\circ}\subseteq G_j^{\circ}\cap R^{\circ}\big)$$

· For instance,

$$2 \in \leq^{o}, 3 \notin \leq^{o}$$

Since

$$I_2^{\circ} = \{2,3\}$$
 $G_2^{\circ} \cap R^{\circ} = \{2,3\}$
 $I_3^{\circ} = \{2,3,4\}$ $G_3^{\circ} \cap R^{\circ} = \{2,3,4\}$

$$0 - 1 - RB_2 - RB_3 - RB_4 - RB_5 - RB_6 - 7$$

At 1-block, let

$$R^{1} \equiv \left\{ i \in R^{\circ} \middle| i \notin \leq^{\circ} \right\} = \left\{ 3, 4, 5 \right\}$$

$$0 - 1 - RB_2 - RB_3 - RB_4 - RB_5 - RB_6 - 7$$

At 2-block, let

$$G_i^1 \equiv \bigcup_{k \in I_i^o} G_k$$

$$I_i^1 \equiv \bigcup_{k \in G_i \cap R^1} I_k^o$$

For instance,

$$I_3^1 = \{2,3,4,5\}$$
 $G_3^1 = \{1,2,3,4,5\}$
 $I_4^1 = \{2,3,4,5,6\}$ $G_4^1 = \{2,3,4,5,6\}$

$$0 - 1 - RB_2 - RB_3 - RB_4 - RB_5 - RB_6 - 7$$

Then define

 \leq^1

by

$$i \in \leq^1 \Leftrightarrow \exists j \in \bar{G}_i (I_i^1 \subseteq G_j^1 \cap R^\circ)$$

· For instance,

$$3 \in \leq^1$$
, $4 \notin \leq^0$

• Since

$$I_3^1 = \{2,3,4,5\} \qquad G_3^1 \cap R^0 = \{2,3,4,5\}$$

$$I_4^1 = \{2,3,4,5,6\} \qquad G_4^1 \cap R^0 = \{2,3,4,5,6\}$$

$$0 - 1 - RB_2 - RB_3 - RB_4 - RB_5 - RB_6 - 7$$

At 2-block, let

$$\mathbf{R^2} \equiv \left\{ i \in R^1 \middle| i \notin \leq^1 \right\} = \left\{ \qquad 4 \qquad \right\}$$

Theorem

Given θ , if

- 1 the network is FFCCU and acyclic
- the state has strong connectedness

$$\Rightarrow \exists t^{\theta} \text{ and } \exists i \in R^{t^{\theta}} \text{ such that } I_i^{t^{\theta}} \supset [Rebels](\theta).$$

So, APEX can be attained by

$$\begin{array}{c|cccc} & & & \Pi_{j \in I_i^{t-1}} x_j \\ \hline R^t \text{ Rebels} & \text{play} & \langle I_i^{t-1} \rangle & \mathbf{s}, ..., \mathbf{s}, \mathbf{r}, \mathbf{s}, ..., \mathbf{s} \\ \hline \text{non-} R^t \text{ Rebels} & \text{play} & \langle \mathbf{stay} \rangle & \mathbf{s}, ..., \mathbf{s}, \mathbf{s}, \mathbf{s}, ..., \mathbf{s} \end{array}$$

However, "Pivotal Rebels" will deviate.

Pivotal players

Definition

i is pivotal in $RP^t \Leftrightarrow i \in R^t$ and *i* will know $\#[Rebels](\theta) \ge k$ or $\#[Rebels](\theta) < k$ after RP^t before I_i^{t-1} is reported.

- **1** Ex. k = 5
- 2 Rebel 4 and Rebel 5 are pivotal (Free Rider problem)

- 3 They will manipulate their reporting to save costs.
 - By reporting some other number.

Pivotal players

Definition

i is pivotal in $RP^t \Leftrightarrow i \in R^t$ and *i* will know that $\#[Rebels](\theta) \ge k$ or $\#[Rebels](\theta) < k$ after RP^t before I_i^{t-1} is reported.

- **1** Ex. k = 6
- Rebel 4 is pivotal

- 3 He will manipulate his reporting to save costs.
 - By reporting some other number.

Solving Pivotal-player problem. Step 1.

Definition

Free Rider Problem A FRP in a *t*-block is that $\exists i, j \in R^t, i \neq j$ such that

- $\mathbf{0}$ *i*, *j* is pivotal in RP^t
- **2** i, j will know the $\#[Rebels](\theta)$ after RP^t before I_i^{t-1} is reported.

Solving Pivotal-player problem. Step 1.

Lemma

If networks are acyclic, then

- there is a unique block B^t where FRP may occur.
- there are only two $i, j \in R^t$ are involved, and $i \in G_j$.
- Moreover, both of i, j know that they will be involved before B^t and after B^{t-1} .

Thus, before B^t and after B^{t-1} , pick one of them be pivotal player.

• By their prim number.

Solving Pivotal-player problem. Step 2.

			$\prod_{j\in I_i^{t-1}} x_j$
Non-pivotal R ^t Rebels	play	$\langle I_i^{t-1} \rangle$	$s,, s, \overbrace{r, s,, s}$
Pivotal R^t Rebels	may play	(1)	s,, s, s, s,, r
non-R ^t Rebels	play	⟨stay⟩	s,, s, s, s,, s

I.e. Add (1) into the equilibrium path.

Solving Pivotal-player problem. Step 3.

In the equilibrium path,

Lemma

If networks are acyclic, in RP^t , before i plays I_i^{t-1}

i knows that
$$\#[Rebels](\theta) \ge k - 1$$

 \Leftrightarrow

i is pivotal but i may not know $\#[Rebels](\theta)$ after RP^t

Lemma

If networks are acyclic,

i knows that
$$\#[Rebels](\theta) \ge k-1$$

 \Leftrightarrow

 $i play \langle 1 \rangle$

Solving Pivotal-player problem. Step 3.

Consequently, in the path,

i has played	i in FRP	$j \in G_i$ play	i knows
<u></u>	yes	$\langle \cdot \rangle$	$\#[Rebels](\theta) \ge k$
$\langle 1 \rangle$	no	$\langle 1 \rangle$	$\#[Rebels](\theta) \ge k$
$\langle 1 \rangle$	no	⟨stay⟩	$\#[Rebels](\theta) < k$

i has to play **message to revolt** or **message to revolt** if he played $\langle 1 \rangle$

Table : Equilibrium path if i played $\langle 1 \rangle$

In RP^t	In $CD_{1,1}^t$	In $CD_{1,2}^t$	After
<i>i</i> plays	<i>i</i> plays	<i>i</i> plays	
(1)	⟨stay⟩	⟨stay⟩	coordination to stay
$\langle 1 \rangle$	$\langle \mathbf{x}_i angle$	⟨stay⟩	coordination to revolt

Beliefs in equilibrium path

In the equilibrium path

Table : In RP^t

			$\prod_{j \in I_i^{t-1}} x_j$
R^t	either play	$\langle I_i^{t-1} \rangle$	$s,, s, \widetilde{r}, s,, s$
R^t	or play	(1)	s,, s, s, s,, r
R^t	play	⟨stay⟩	s,, s, s, s,, s

Table : Belief updating after CD^t , t > 0

In RP ^t	In $CD_{1,1}^t$	In $CD_{1,2}^t$	
<i>i</i> plays	i plays	i plays	The events <i>j</i> believe with probability one
⟨stay⟩	$\langle \mathbf{x}_i \rangle$	⟨stay⟩	$i \notin R^t$
$\langle I_i^{t-1} \rangle$	$\langle stay \rangle$	$\langle stay \rangle$	$\#[Rebels](\theta) < k$
$\langle I_i^{t-1} \rangle$	$\langle \mathbf{x}_i angle$	$\langle stay \rangle$	$\#[Rebels](\theta) \ge k$
$\langle I_i^{t-1} \rangle$	$\langle \mathbf{x}_i angle$	$\langle \mathbf{x}_i angle$	$i \in R^t$
$\langle 1 \rangle$	⟨stay⟩	⟨stay⟩	$\#[Rebels](\theta) < k$
$\langle 1 \rangle$	$\langle \mathbf{x}_i \rangle$	⟨stay⟩	$\#[Rebels](\theta) \ge k$
			4 D > 4 D > 4 D > 4 D > 4 D > 3 D

Off-path Belief

Whenever i detects a deviation, he believes that

for all
$$j \notin G_i$$
, $\theta_j \neq \text{Rebel}$

- **1** If #(G_i ∩ [Rebels](θ)) < k, he will play **stay** forever.
- This off-path belief then also serve as a grim trigger belief-grim-trigger.

Sketch of proof

- 1 The equilibrium path is APEX.
- **2** If game enters B^t , all Rebels have not know relevant info. before B^t .
- 3 Detectable deviation \Rightarrow APEX **may** fail by belief-grim-trigger.
- Undetectable deviation ⇒ APEX may fail by protocol-grim-trigger
 pivotal R^t, non-pivotal R^t, non-R^t, will not mimic each other.
- **5** Ex-post outcome gives maximum ex-post static pay-off.
- **6** Sufficiently high δ will impede deviation.

Discussion

- From the above steps, an APEX equilibrium for acyclic networks is constructed.
- Solving Pivotal-player problem for cyclic networks need more elaboration

Discussion

- From the above steps, an APEX equilibrium for acyclic networks is constructed.
- Solving Pivotal-player problem for cyclic networks need more elaboration

Discussion

- payoff is perfectly observed
 - Play **revolt** in the first period, then the relevant information revealed.
- payoff is noisy
 - With full support assumption, the existing equilibrium is APEX.
 - Ex.

$$p_{1s} = \Pr(y = y_1 | \text{revolt} \ge k)$$
 $p_{1f} = \Pr(y = y_1 | \text{revolt} < k)$
 $p_{2s} = \Pr(y = y_2 | \text{revolt} \ge k)$
 $p_{2f} = \Pr(y = y_2 | \text{revolt} < k)$

$$1 > p_{1s} > 0, 1 > p_{2s} > 0, p_{1f} = 1 - p_{1s}, p_{2f} = 1 - p_{2s}$$
 (1)

Further works

- For the networks with circles, the proof for an APEX equilibrium is still open.
- **3** There should be a general model in which players can communicate only by their actions to learn the relevant information in finite time when δ < 1, while the communication protocol itself is an equilibrium.
- 3 Communication in network could serve as a criteria in equilibrium selection.