Clebson Abati Graeff

Notas de aula: Física 1

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CAMPUS PATO BRANCO

1 http://creativecommons.org/ licenses/by-nc-sa/4.0/deed.pt_BR Este trabalho é licenciado de acordo com a Licença Creative Commons Atribuição-NãoComercial-CompartilhaIgual 4.0 Internacional (CC BY-NC-SA 4.0)¹. De acordo com essa licença você pode utilizar/compartilhar/adaptar este material desde que respeite as seguintes condições

- Você deve dar os créditos apropriados ao autor, prover um link para a licença e indicar se mudanças foram efetuadas. Você pode fazê-lo de qualquer maneira razoável, porém não de forma a sugerir que o autor endossa seu trabalho.
- ♦ Você não pode usar o material para fins comerciais.
- **⑤** Se você remixar, transformar, ou criar a partir do material, tem de distribuir as suas contribuições sob a mesma licença que o original.

Você não pode aplicar termos jurídicos ou medidas de caráter tecnológico que restrinjam legalmente outros de fazerem algo que a licença permita.

Horários de atendimento:

- 5^a 16:40 17:30
- 6^a 11:10 12:00, 16:40 17:30

Clebson Abati Graeff cgraeff@utfpr.edu.br setembro de 2019

Esse material se encontra disponível gratuitamente em cgraeff.github.io. Copyright © 2019 Clebson Abati Graeff

LETRAS GREGAS

Minúscula	Maiúscula	Nome
α	A	alfa
β	В	beta
γ	Γ	gama
δ	Δ	delta
ϵ , ϵ	${f E}$	épsilon
ζ	${f Z}$	zeta
η	$_{ m H}$	eta
θ , ϑ	Θ	téta
l	I	iota
κ, μ	K	capa
λ	Λ	lambda
μ	\mathbf{M}	mi
ν	N	ni
${oldsymbol{\xi}}$	E	csi
o	O	ómicron
π , ω	П	pi
ρ, φ	P	rô
σ, ς	Σ	sigma
au	${f T}$	tau
v	Υ	úpsilon
ϕ , φ	Φ	fi
χ	Χ	qui
ψ	Ψ	psi
ω	Ω	ômega
F	F	digama

Símbolos matemáticos

Símbolo	Significado	Exemplo
=	definido como	$ec{p} \equiv m ec{v}$
\approx	aproximadamente	$g \approx 9.8 \mathrm{m/s^2}$
\propto	proporcional a	$a \propto F$
\sim	da ordem de	$G\sim 10^{-11}$
>	maior que	a > b
<	menor que	b < a
\geqslant	maior ou igual a	$a\geqslant b$
< > < >	menor ou igual a	$b \leqslant a$
>>	muito maior que	$a\gg b$
«	muito menor que	$a \ll c$
Δ	variação	Δt
\rightarrow	vetor	$ec{a}$
\perp	perpendicular	F_{\perp} , $ec{a} \perp ec{b}$
	paralelo	$F_{ }$, $ec{a} \parallel ec{b}$
	módulo, norma	$ \vec{F}_{\parallel}, \vec{a} \parallel \vec{b}$ $ -5 = 5, \vec{a} = \sqrt{a_x^2 + a_y^2}$
	produto, produto escalar	$a\cdot b$, $ec F\cdot ec d$
×	produto, produto vetorial	$a \times b$, $\vec{r} \times \vec{F}$
÷.	portanto	$\vec{F}_R = 0$: $\vec{a} = 0$
•:	pois	$\vec{a}=0$:: $\vec{F}_R=0$
\Rightarrow	implica	$a - b = 0 \Rightarrow a = b$
\rightarrow	tende a	$\Delta t o 0$
\mapsto	mapeia uma variável em outra (def. de funções)	$y = f(x) : x \mapsto y = x^2$
$\sum_{i=1}^{n}$	somatório	$\sum_{i=1}^{n} m_i = m_1 + m_2 + m_3 + \dots + m_n$
n!	fatorial	$n! = n \times (n-1) \times (n-2) \times \cdots \times 2 \times 1$
$\frac{d}{dx}$	derivada em relação a uma variável x	$rac{d}{dt}x(t)$
$\int dx$	integral na variável <i>x</i>	$\int_a^b F(t)dt$

Cronograma

As aulas seguirão o planejamento abaixo. No calendário ao lado, estão circuladas as datas das provas.

Engenharia Mecânica / Engenharia da Computação

Aula	Data	Conteúdo
1	12/08	Apresentação da disciplina: Informações de
		contato, horários de atendimento, conteúdo,
		métodos de ensino e avaliação, cronograma e
		plano de ensino.
2	14/08	Movimento unidimensional: Posição e des-
		locamento (posição, deslocamento, deslo-
		camento escalar, posição como função do
		tempo), velocidade (velocidade média, velo-
		cidade instantânea, velocidades escalares mé-
		dia e instantânea, velocidade como função do
		tempo, evolução temporal da posição para o
		caso de velocidade constante).
3	19/08	Movimento unidimensional: Aceleração
		(aceleração média, aceleração instantânea,
		aceleração como função do tempo, evolução
		temporal da velocidade para o caso de acelera-
		ção constante), sentido dos eixos de referência
		e sinais das variáveis cinemáticas, interpreta-
		ção da área de gráficos ($v \times t$, $a \times t$). Equações
		cinemáticas para movimentos com aceleração
		constante: evolução para a velocidade, equa-
		ções para a posição, equação de Torricelli,
		variáveis ausentes em cada equação.
4	21/08	Vetores: Vetores e escalares, representação ge-
		ométrica de um vetor, operações envolvendo
		vetores (soma, vetor nulo, subtração, multi-
		plicação e divisão por escalar), equações en-
		volvendo vetores, sistemas de referência (ba-
		ses, representação em vetores unitários, bases
		ortogonais e componentes vetoriais, notação
		módulo-ângulo, projeções completas e negati-
		vas, soma de vetores através das componentes,
		equações e vetores unitários).

Agosto						
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	14 21	22	23	24	25
26	27	28	29	30	31	
S	Т		eml		S	D
5	1	Q	Q	3	5	1
2	2		\ _	,	_	
	10	11	10	10	1.1	15
9	10	11	12	13	14	15
16	17	18	19	20	21	22
	24	25)	26	27	28	29
30						
		Οι	ıtub	ro		
S	Τ	Q	Q	S	S	D
	1	2	3	4	5	6
7	8	(16)	10	11	12	13
14	15	(16)	17	18	19	20
21	22	23	24	25	26	27
28		30				
0		Nov				Б
S	1	Q	Q			
	_		_			3
4		6				
11	12	13	14	15	16	17
18	19	20)	21	22	23	24
25	26	27	28	29	30	
		Dez	zem	bro		
S	Т	Q				D
						1
2	3	4	5	6	7	
9	10	(11)	12	13	14	15
16	17	18)	19	20	21	22
		\ /				

Aula	Data	Conteúdo
5	26/08	Movimento bi e tridimensional: Vetores posição e deslocamento, velocidade (velocidade
		média, velocidade instantânea), aceleração
		(aceleração média, aceleração instantânea),
		movimento de projéteis (sistema de referência, equações para o movimento de projéteis).
6	28/08	Movimento bi e tridimensional: Movimento
		circular (aceleração centrípeta, decomposição
		da aceleração em componentes tangencial e
		centrípeta, posição em uma trajetória curvilínea). Movimento relativo.
7	02/09	Revisão para prova 1.
8	04/09	Prova 1.
9	09/09	Dinâmica da partícula: Aspectos históricos
		das teorias sobre o movimento, conceitos de força e massa, princípio da inércia segundo
		Galileu e segundo Newton, segunda lei de
		Newton, diagramas de força e sistemas de
10	11 /00	referência, sistemas em equilíbrio.
10	11/09	Dinâmica da partícula: Terceira lei de Newton, forças (forças fundamentais, força elás-
		tica, força normal), multiplos corpos.
11	16/09	Dinâmica da partícula: Tensão, sistemas de
		referência orientados de acordo com o movi-
12	18/09	mento, atrito, arrasto. Dinâmica da partícula: Forças no movi-
12	10/09	mento circular.
13	23/09	Revisão para a prova 2.
14	25/09	Prova 2.
15	30/09	Trabalho e energia mecânica: Teorema
		trabalho-energia, cálculo do trabalho, trabalho realizado pela força peso, trabalho efetu-
		ado por outras forças constantes.
16	02/10	Trabalho e energia mecânica: Trabalho como
		a área de um gráfico $F \times x$ (trabalho realizado
		por uma força elástica), trabalho de uma força
		variável (teorema fundamental do cálculo), trabalho com a integral de uma força, potên-
		cia.
_	07/10	Recesso.
_	09/10	Recesso.

Aula	Data	Conteúdo
17	14/10	Trabalho e energia mecânica: Energia poten-
		cial, energia potencial gravitacional, energia
		potencial elástica, potencial e trabalho, deter-
		minação do potencial para uma força qual-
		quer, cálculo da força a partir de um poten-
		cial, dependência da energia na escolha do
		referencial, condições para a existência de um
10	16 /10	potencial.
18	16/10	Provas Substitutivas 1 e 2. Os alunos que
		optarem por não realizar a prova estão dis-
10	21 /10	pensados.
19	21/10	Trabalho e energia mecânica: Enenergia me-
		cânica, energia mecânica em sistemas com múltiplos corpos, análise de gráficos de poten-
		cial (forças, equilíbrio e estabilidade, pontos
		de retorno).
20	23/10	Trabalho e energia mecânica: Trabalho de
		forças não-conservativas, Princípio da con-
		servação da energia (forças externas, energia
		interna).
_	28/10	Feriado.
21	30/10	Momento linear: Momento linear, momento
		linear e segunda lei de Newton para um sis-
		tema de partículas. Centro de massa: centro
		de massa de um conjunto de partículas, cen-
		tro de massa de um corpo extenso: simetria,
		discretização, distribuição arbitrária.
22	04/11	Momento linear: Movimento do centro de
		massa, posição do centro de massa e ener-
		gia potencial gravitacional. Conservação do
		momento linear, impulso, colisões, forças em
		uma colisão, colisões unidimensionais entre
		duas partículas, energia em colisões e colisões
		elásticas, relaçoes para as velocidades em co-
		lisões elásticas unidimensionais entre duas
2.2	06/44	partículas.
23	06/11	Revisão para prova 3.
24	11/11	SEI/SICITE/INVENTUM.
25	13/11	SEI/SICITE/INVENTUM.
26 27	18/11	Prova 3. Retagas: Cinamática da retagão (variávais
41	20/11	Rotações: Cinemática da rotação (variáveis
		cinemáticas para rotações, sinais, equações para aceleração angular constante, relação en-
		-
		tre variáveis de translação e de rotação).

Aula	Data	Conteúdo
28	25/11	Rotações: Dinâmica da rotação (torque, segunda lei de Newton para as rotações). Cálculo do momento de inércia (momento de inércia de um sistema de partículas, aditividade do momento de inércia, momento de inércia de uma distribuição contínua, teorema dos eixos paralelos, teorema dos eixos perpendiculares).
29	27/11	Rotações: Trabalho e energia cinética para rotações (energia cinética de rotação, teorema trabalho-energia para rotações). Energia mecânica.
30	02/12	Rolamento: Características do rolamento, movimento das partículas de um corpo rígido durante o rolamento, forças no rolamento, energia cinética no rolamento.
31	04/12	Momento angular: Momento angular, caráter vetorial do torque, momento angular e segunda lei de Newton, conservação do momento angular, momento angular de um sistema de partículas, momento angular de um corpo rígido (corpos rígidos simétricos e assimétricos). Precessão de um giroscópio.
32	09/12	Revisão para a prova 4.
33	11/12	Prova 4.
34	16/12	Entrega das notas das avaliações.
35	18/12	Provas substitutivas 3 e 4. Os alunos que optarem por não realizar a prova estão dispensados.

Mar português

Ó mar salgado, quanto do teu sal São lágrimas de Portugal! Por te cruzarmos, quantas mães choraram, Quantos filhos em vão rezaram! Quantas noivas ficaram por casar Para que fosses nosso, ó mar!

Valeu a pena? Tudo vale a pena Se a alma não é pequena. Quem quer passar além do Bojador Tem que passar além da dor. Deus ao mar o perigo e o abismo deu, Mas nele é que espelhou o céu.

Fernando Pessoa Pessoa, in "Mensagem"

LIBERDADE

Ai que prazer
Não cumprir um dever,
Ter um livro para ler
E não o fazer!
Ler é maçada,
Estudar é nada.
Sol doira
Sem literatura
O rio corre, bem ou mal,
Sem edição original.
E a brisa, essa,
De tão naturalmente matinal,
Como o tempo não tem pressa...

Livros são papéis pintados com tinta. Estudar é uma coisa em que está indistinta A distinção entre nada e coisa nenhuma.

Quanto é melhor, quanto há bruma, Esperar por D.Sebastião, Quer venha ou não!

Grande é a poesia, a bondade e as danças... Mas o melhor do mundo são as crianças,

Flores, música, o luar, e o sol, que peca Só quando, em vez de criar, seca.

Mais que isto É Jesus Cristo, Que não sabia nada de finanças Nem consta que tivesse biblioteca...

Fernando Pessoa, in "Cancioneiro"

Sumário

1	Mo	viment	o Unidimensional	15			
	1.1	Introd	łução	15			
	1.2	Movi	mento unidimensional	16			
	1.3		ão e Deslocamento	16			
		1.3.1	Posição	16			
		1.3.2	Deslocamento	18			
		1.3.3	Deslocamento escalar	18			
		1.3.4	Posição como função do tempo	19			
	1.4	Veloci	idade	20			
		1.4.1	Velocidade média	20			
		1.4.2	Sinais para a velocidade	21			
		1.4.3	Velocidade instantânea	21			
		1.4.4	Velocidades escalares média e instantânea	24			
		1.4.5	Velocidade como função do tempo	25			
		1.4.6	Evolução temporal da posição para o caso de				
			velocidade constante	25			
	1.5	Acele	ração	28			
		1.5.1	Aceleração média	28			
		1.5.2	Aceleração instantânea	29			
		1.5.3	Aceleração como função do tempo	29			
		1.5.4	Evolução temporal da velocidade para o caso				
			de aceleração constante	30			
	1.6	Sinais	s para a aceleração	30			
	1.7		pretação da área de um gráfico $v \times t$ e $a \times t$	32			
	1.8	Equações cinemáticas para movimentos com aceleração					
		consta	ante	33			
		1.8.1	Equação para a velocidade	35			
		1.8.2	Equações para a posição	35			
		1.8.3	Equação de Torricelli	37			
		1.8.4	Variáveis ausentes em cada equação	38			
	1.9	Seçõe	s opcionais	43			
		1.9.1	Acelerador	43			
2	Veto	ores		47			
	2.1	Introd	łução	47			
	2.2	Repre	esentação geométrica de um vetor	47			
	2.3	Opera	ações envolvendo vetores	48			
		2.3.1	Soma	49			
		2.3.2	Vetor nulo	49			

		2.3.3	Subtração	50
		2.3.4	Multiplicação e divisão por escalar	50
		2.3.5	Equações envolvendo vetores	51
	2.4	Sistem	nas de referência	51
		2.4.1	Bases vetoriais	51
		2.4.2	Cálculo das componentes vetoriais, vetores uni-	
			tários	52
		2.4.3	Bases ortogonais, componentes vetoriais	54
		2.4.4	Projeções completas	59
		2.4.5	Projeções negativas	60
		2.4.6	Operações através de componentes	63
		2.4.7	Operações e equações através de vetores unitários	64
3	Mox	zimenta	os bi e tridimensionais	67
	3.1		lução	67
	3.2		reis cinemáticas	67
		3.2.1	Posição	68
		3.2.2	Deslocamento	69
		3.2.3	Velocidade média	70
		3.2.4	Velocidade instantânea	71
		3.2.5	Aceleração média	72
		3.2.6	Aceleração instantânea	73
	3.3	Movir	nento balístico	73
		3.3.1	Descrição do movimento de um projétil em ter-	
			mos de um eixo horizontal e um eixo vertical .	74
		3.3.2	Equações para o movimento de projéteis	76
	3.4	Movin	mento circular	83
		3.4.1	Aceleração centrípeta	84
		3.4.2	Decomposição da aceleração em componentes	
			tangencial e centrípeta	85
		3.4.3	Posição em uma trajetória curvilínea	87
	3.5	Movir	mento Relativo	91
4	Din	âmica o	da partícula	93
	4.1		lução	93
		4.1.1	Aspectos históricos das teorias sobre o movimento	93
	4.2	Leis d	e Newton	94
		4.2.1	Conceitos de força e massa	94
		4.2.2	Primeira Lei de Newton: Princípio da Inércia	
			segundo Galileu e segundo Newton	95
		4.2.3	Segunda Lei de Newton	96
		4.2.4	Diagramas de forças, sistemas de referência,	
			aplicações	99
		4.2.5	Terceira Lei de Newton	105
	4.3	Forças	3	109
		4.3.1	Força gravitacional e força peso	110
		4.3.2	Força elástica	111
		4.3.3	Força Normal	113
		4.3.4	Múltiplos corpos	118

	4.3.5	Tensão	123
	4.3.6	Múltiplos corpos: sistemas de referência orien-	
		tados pelo movimento	133
	4.3.7	Atrito	136
	4.3.8	Arrasto	145
	4.3.9	Forças no movimento circular	147
4.4	Seções	opcionais	156
	4.4.1	Teorema de Lamy	156
	4.4.2	Justificativa para a Lei de Hooke	157
	4.4.3	Equivalência das massas gravitacional e inercial	158
4.5	Apênd	lice	159
	4.5.1	Diálogo	159
	4.5.2	Enunciados de Newton de acordo com o Princípia	n162
	4.5.3	Determinação de $\boldsymbol{v}(t)$ para um movimento su-	
		jeito ao peso e à força de arrasto	164
4.6	Exercío	zios	165

1 Movimento Unidimensional

O primeiro passo para que possamos estudar a mecânica é a definição das variáveis físicas que descrevem o movimento dos corpos e a caracterização de tais grandezas como funções do tempo. Vamos definir precisamente posição, velocidade e aceleração, estudando a relação entre tais grandezas em casos simples. Nos capítulos seguintes, veremos que tais grandezas são vetoriais, ou seja, têm um valor, uma direção e um sentido. Além disso, veremos que a aceleração está ligada à força a que um corpo está sujeito o que nos dará uma forma de prever seu movimento a partir de observações gerais acerca das circunstâncias em que o corpo está inserido.

1.1 Introdução

Diversos sistemas físicos interessantes exibem movimento. A *cinemática* é a área da física que se preocupa em descrever o movimento sem se preocupar com a causa de tal fenômeno: Estamos interessados em descrever a série de posições diferentes no espaço ocupadas por um corpo qualquer conforme o tempo progride. Além disso, também estamos interessados em descrever as características dessa evolução temporal da posição. Para isso, basta definir três grandezas principais — a posição, a velocidade, e a aceleração —.

Apesar de termos uma noção cotidiana de tais grandezas, veremos que em alguns casos teremos na Física definições que diferem dessas noções cotidianas devido ao fato de que estas não são úteis ou precisas. Como estamos interessados em uma descrição *quantitativa*, utilizaremos a linguagem matemática como base para tais definições, nos valendo de vários objetos matemáticos (números, equações, funções, gráficos, limites, vetores, etc.), bem como de técnicas para trabalhar com tais objetos.

O tratamento matemático utilizado neste texto é propositalmente simplificado, sendo adequado a um nível de Física Básica do ensino superior. Sendo assim, o texto considera que o leitor não tem conhecimento de Cálculo Diferencial e Integral, mas que está cursando uma disciplina sobre o assunto. Tendo isso em mente, ferramentas de Cálculo serão apresentadas e empregadas aos poucos, porém sempre no sentido de apresentar resultados importantes, não sendo exigidos como um conhecimento do aluno¹. Neste primeiro capítulo, são exigidos como conhecimentos prévios *operações básicas*, *equações*, *funções*, *gráficos*, e *área de figuras planas* somente.

¹ Algumas seções opcionais podem exigir um conhecimento sólido em Cálculo.

1.2 Movimento unidimensional

Definimos como sendo unidimensional o movimento que ocorre ao longo de uma reta, que denominamos como direção do movimento. Essa definição é útil por ser simples e — como veremos nos capítulos seguintes — é capaz de fornecer uma descrição geral ao adicionarmos mais dois eixos ao movimento.

Trataremos em todos os capítulos apenas movimentos de corpos rígidos, isto é, corpos cujas partes que o constituem não se movem em relação umas às outras. Para tais corpos, podemos separar o movimento em uma translação do centro de massa e uma rotação em torno do centro massa². O centro de massa é um ponto que substitui o corpo para fins de determinação de sua translação, sendo que para corpos simétricos e de densidade uniforme ele se localiza seu centro, como veremos no Capítulo ??. Trataremos as rotações somente no Capítulo ??, nos preocupando somente com a translação do centro de massa até lá.³

Posição e Deslocamento

1.3.1 Posição

O primeiro passo para que possamos determinar a posição de um corpo é verificar qual é a direção onde ocorre (ou ocorrerá) o movimento unidimensional. Podemos então colocar um objeto em um ponto qualquer de tal reta⁴:

Claramente, tal descrição é insuficiente. Para determinar a posição do corpo, precisamos de um ponto de referência. A partir desse ponto, podemos então determinar a posição medindo a distância entre ele e o corpo:

Tal descrição ainda é insuficiente, pois podemos ter outro objeto que pode estar à mesma distância da origem:

Podemos definir dois sentidos na figura acima: à esquerda da origem, ou à direita dela. Com essas três informações — direção, módulo⁵, e

- ² Essa separação é conhecida como Teorema de Mozzi-Chasles.
- ³Uma maneira equivalente é tratar o corpo como uma partícula — isto é, um corpo de dimensões desprezíveis --, o que efetivamente elimina a rotação do corpo.
- ⁴Como estamos tratando de um movimento unidimensional, ou seja, o movimento ao longo de uma reta, é natural que a direção do espaço seja simplesmente uma linha reta. Verificaremos no entanto que no caso tridimensional, poderemos descrever o movimento através de vetores, sendo que a direção nesse caso será uma das propriedades dos vetores.

Figura 1.1: Corpo que ocupa uma posição qualquer ao longo de uma reta.

Figura 1.2: Podemos utilizar um ponto de referência para ajudar a determinar a posição de um objeto.

Figura 1.3: Somente as informações de direção e de distância não são suficientes para determinar a posição.

⁵ Módulo se refere ao valor numérico da medida de distância entre a origem e a posição do corpo.

sentido — podemos determinar com exatidão a posição de um corpo qualquer.

Podemos denotar o sentido por um sinal se adotarmos a reta real para descrever a posição:

onde temos que as posições dos blocos são dadas por

$$x_1 = -3 \,\mathrm{m},$$
 (1.1)

para o bloco da esquerda, e

$$x_2 = 3 \,\mathrm{m},$$
 (1.2)

para o bloco da direita.

Uma reta numerada como a mostrada na figura acima é denominada como eixo coordenado. A descrição de movimentos bi e tridimensionais necessita de mais do que um eixo coordenado, por isso é comum que eles sejam diferenciados através das denominações x, y e z. Para um deslocamento unidimensional, em geral denominamos tal eixo como um eixo x. A direção do eixo é arbitrária, podendo ser horizontal, vertical⁶ ou mesmo inclinada, bastando ser na direção do movimento unidimensional. O sentido positivo do eixo também é arbitrário, e podemos fazer essa escolha livremente: poderíamos, por exemplo, ter adotado o sentido positivo para a esquerda na Figura 1.4. Apesar de isso alterar os sinais dos valores numéricos associados às posições, a descrição delas continua possível e sem ambiguidades.

Em alguns casos, podemos utilizar a distância até a origem para expressar a posição mesmo para um movimento que não é retilíneo, caso não haja ambiguidade em relação à definição da localização. Um exemplo disso são estradas nas quais se utilizam marcadores de distância. Se necessitamos declarar o endereço de uma propriedade ao longo de uma rodovia, podemos utilizar a distância em relação a um marco inicial. Apesar de esse claramente não ser um caso unidimensional, pois o deslocamento não será em uma linha reta, podemos marcar um ponto de maneira única através da distância ao longo da estrada até o marco inicial. Fisicamente, no entanto, o deslocamento ao longo da estrada estaria sujeito a mudanças de velocidade e aceleração verticais e laterais que indicam que uma descrição utilizando somente a distância percorrida ao longa da estrada não é capaz de contemplar apropriadamente as propriedades físicas de tal fenômeno. De fato, o deslocamento ao longo da estrada é um fenômeno tridimensional, sendo que a distância percorrida ao longo da estrada é somente um parâmetro associado à descrição do formato da estrada.

Figura 1.4: Podemos utilizar a reta real para descrever a posição de um corpo. Desta forma, podemos diferenciar posições nos diferentes sentidos do eixo através de umsinal positivo ou de um sinal negativo.

⁶ Ao tratarmos de movimentos unidimensionais verticais, por exemplo, podemos utilizar x. Quando trabalhamos em duas dimensões, no entanto, é preferível que o eixo vertical seja denominado y.

⁷ Ainda não escrevi, mas vai tratar sobre unidades.

⁸ A notação usando Δ representa a *varia ção* de uma grandeza qualquer entre um estado inicial e um estado final. Vamos utilizá-la para posição em vários eixos (Δx , Δy , Δz), tempo (Δt), vetores ($\Delta \vec{r}$),

⁹ Lembre-se que o sentido do eixo é arbitrário. Nesse caso o sentido positivo é para a direita e o negativo, consequentemente, para a esquerda

- ¹⁰ Veremos mais adiante que essas propriedades são características de vetores e serão muito importantes para descrevermos o movimento em duas e três dimensões.
- ¹¹ Outra questão que devemos destacar é a de que os pontos que classificamos como *inicial* e *final* são arbitrários, isto é, são escolhidos conforme a necessidade e a conveniência de cada situação. Identificá-los adequadamente exige um pouco de prática, uma vez que não há uma regra para os escolher.

Unidades

Como visto no capítulo anterior⁷, a maioria das medidas físicas têm uma dimensão. No caso da posição, como ela é descrita através de uma medida de distância entre a origem e a posição do corpo, temos que a dimensão é a de *comprimento* e — no Sistema Internacional — suas unidades são o metro.

1.3.2 Deslocamento

Vamos considerar um deslocamento do bloco da direita na Figura 1.4 para a posição $x=-1.0\,\mathrm{m}$. Podemos medir seu deslocamento entre a posição inicial e a final utilizando uma trena e obteríamos um deslocamento de 4 m para a esquerda ao longo da reta, porém se sabemos os valores numéricos associados às posições inicial e final no eixo x, podemos calcular esse valor facilmente fazendo⁸

$$\Delta x = x_f - x_i \tag{1.3}$$

$$= (-1.0 \,\mathrm{m}) - (3.0 \,\mathrm{m}) \tag{1.4}$$

$$= -4.0 \,\mathrm{m}.$$
 (1.5)

O sinal negativo significa que o deslocamento se deu no *sentido negativo do eixo*, isto é, para a esquerda⁹. Ao aferirmos a distância percorrida, o valor da medida não é suficiente para descrevermos o deslocamento: temos que declarar que o deslocamento foi para a esquerda. Portanto, o deslocamento tem um módulo $(4,0 \, \text{m})$, uma direção (ao longo do eixo x) e um sentido (para a esquerda, ou seja, no sentido negativo do eixo)¹⁰, da mesma forma que a posição. Se o deslocamento fosse no sentido positivo do eixo, o resultado do cálculo de Δx seria positivo.

Claramente temos que se as posições inicial e final¹¹ são iguais, o deslocamento será zero. Apesar de a utilidade de tal definição ser pouco evidente agora, veremos adiante que isso faz sentido para as grandezas físicas, pois no caso de uma força conservativa — por exemplo — temos que o trabalho é nulo quando o deslocamento é zero.

Unidades

O deslocamento é dado através da diferença entre posições. Como vimos no capítulo anterior, só podemos somar, subtrair e igualar termos que têm as mesmas dimensões. Logo, concluímos que o deslocamento tem dimensão de *comprimento* e suas unidades são — no Sistema Internacional — o metro, assim como a posição.

1.3.3 Deslocamento escalar

Algo importante a se notar é que o deslocamento pode ser descrito como a *diferença* entre os valores de posição ocupadas por um corpo em dois valores de tempo distintos. Consequentemente, para um veículo que se desloca durante um dia de trabalho, por exemplo, os

valores de deslocamento em relação à posição inicial — a garagem, por exemplo — será diferente para cada momento do dia. Quando o veículo retorna à garagem, seu deslocamento será nulo, pois as posições inicial e final são a mesma. Se verificarmos o hodômetro do veículo, no entanto, veremos um valor diferente de zero. Este valor pode ser denominado como deslocamento escalar¹² e é calculado pela soma do *módulo* de todos os deslocamentos efetuados pelo veículo:

$$d_s = |\Delta x_1| + |\Delta x_2| + |\Delta x_3| + \dots + |\Delta x_n|. \tag{1.6}$$

Novamente, temos que a dimensão é de comprimento — cuja unidade no SI é o metro —, uma vez que o deslocamento escalar é determinado a partir de uma equação que envolve a soma de termos com tais dimensões.

1.3.4 Posição como função do tempo

Se ocorre movimento, podemos dizer que a cada instante de tempo t, temos um valor de posição x diferente. Se nos lembrarmos do conceito de funções, temos que dados dois grupos de números, uma função é a operação matemática que liga elementos do primeiro grupo a elementos do segundo¹³ (Figura 1.5).

Dessa forma, podemos denotar a relação entre o conjunto de instantes de tempo t e o conjunto de posições x correspondente como uma função:14

$$x: t \mapsto x(t), \tag{1.7}$$

assim,

$$x_1 = x(t_1),$$
 (1.8)

$$x_2 = x(t_2),$$
 (1.9)

$$x_3 = x(t_3), (1.10)$$

$$\vdots (1.11)$$

$$x_n = x(t_n). (1.12)$$

Com isso podemos elaborar gráficos que mostram, por exemplo, a variação temporal da posição. Na Figura 1.6 temos três curvas que representam funções distintas, isto é, formas diferentes de relacionar a posição com o tempo. Cada forma das curvas está relacionada a um tipo de movimento diferente. Em particular, para as formas mostradas, temos:

Figura 1.5: A cada valor de tempo t temos um valor de posição x associado. A função x(t) é a operação que descreve a relação entre essas duas variáveis.

¹⁴ Note que o tempo t é uma variável da função x(t), que dá o valor x da posição.

Figura 1.6: Gráficos que exemplificam possíveis formas para os gráficos da função posição x(t).

¹² Apesar de ser algo mais ligado à nossa experiência cotidiana de deslocamento, o deslocamento escalar será de pouca utilidade.

¹³ Lembre-se de que dois elementos do grupo t podem levar a um mesmo elemento do grupo x, porém um elemento de t não pode levar a dois elementos de x. Fisicamente isso equivale ao fato de que um objeto não pode se encontrar em dois lugares ao mesmo tempo, porém pode em dois momentos diferentes estar em um mesmo lugar.

Linha cheia: Movimento com posição constante, ou seja, o corpo se encontra em repouso.

Linha tracejada: Movimento com velocidade constante.

Linha ponto-tracejada: Movimento com aceleração constante.

No primeiro caso é fácil verificar que a linha indica que a posição se mantém a mesma para todos os valores de t. Para os outros dois casos, verificaremos a justificativa nas próximas seções.

Velocidade 1.4

Mesmo considerando uma experiência cotidiana, em que nos deslocamos ao realizar tarefas mundanas, notamos que o tempo necessário para efetuar o deslocamento é uma informação relevante. Podemos calcular uma grandeza de grande interesse que associa o deslocamento e o intervalo de tempo necessário para percorrê-lo: a velocidade. A seguir definiremos a velocidade média e a velocidade instantânea em um deslocamento, bem como suas unidades.

1.4.1 Velocidade média

Definimos a velocidade média¹⁵ como

$$\langle v \rangle = \frac{\Delta x}{\Delta t}.\tag{1.13}$$

Temos agora outra variável que descreve o movimento.

Unidades

Podemos determinar a dimensão da velocidade através de

$$[\langle v \rangle] = \left[\frac{\Delta x}{\Delta t} \right] \tag{1.14}$$

$$=\frac{[\Delta x]}{[\Delta t]}\tag{1.15}$$

$$=\frac{L}{T}. (1.16)$$

Consequentemente, no SI, a velocidade tem unidades de m/s.

Velocidade média em um gráfico $x \times t$

Podemos conferir uma interpretação gráfica à velocidade média. Para isso, vamos tomar a Figura 1.7, onde marcamos dois pontos que correspondem à posição x_i no instante t_i e à posição x_f no instante t_f . Ligamos esses dois pontos por uma reta.

Traçando uma reta horizontal e uma vertical, podemos completar um triângulo retângulo (Figura 1.8). Nesse triângulo, temos que o tamanho da lateral direita é igual a $x_f - x_i$, ou seja, corresponde a Δx . Já a parte inferior é igual a $t_f - t_i$, correspondendo a Δt .

Figura 1.7: Gráfico da posição em função do tempo. Podemos interpretar a velocidade média graficamente ao ligarmos os pontos da curva que representam os instantes/posições inicial e final.

Figura 1.8: Triângulo formado pela reta que liga os pontos e as linhas horizontal e vertical.

Ao calcularmos a tangente do ângulo θ , obtemos

$$an \theta = \frac{\Delta x}{\Delta t} \tag{1.17}$$

$$=\langle v\rangle$$
, (1.18)

isto é, a inclinação da reta que une os pontos correspondentes aos instantes/posições inicial e final está relacionada à velocidade média através de: 16

$$\langle v \rangle = \tan \theta. \tag{1.19}$$

Assim, se a inclinação da reta \overline{AB} que liga os pontos A e B na Figura 1.9 é maior que a inclinação da reta \overline{CD} que liga os pontos C e D, temos que a velocidade média é maior no intervalo de tempo $[t_A, t_B]$ do que no intervalo $[t_C, t_D]$.

Sinais para a velocidade

Verificamos anteriormente que no caso da posição de um corpo, o sinal simplesmente nos diz em qual dos dois semieixos — positivo ou negativo — ele se encontra. De maneira similar, ao determinarmos o deslocamento, verificamos que o sinal indica qual é o sentido para o qual o corpo se desloca, isto é, no sentido do semieixo positivo, ou no sentido do semieixo negativo.

No caso da velocidade, temos que os sinais são um reflexo do sinal do deslocamento: velocidades positivas indicam deslocamento no sentido do semieixo positivo, enquanto velocidades negativas indicam deslocamento no sentido do semieixo negativo. Tal correspondência tem sua origem na própria definição da velocidade como a razão $\Delta x/\Delta t$, uma vez que Δt é sempre positivo.

1.4.3 Velocidade instantânea

Na Figura 1.7, se tomarmos intervalos sucessivamente menores de tempo, podemos definir o que chamamos de velocidade instantânea. Um exemplo de medida da velocidade instantânea é o valor mostrado pelo velocímetro de um carro em que o mostrador é constituído de uma escala e de um ponteiro. Se estamos interessados em calcular a velocidade instantânea em um ponto P (Figura 1.10), podemos tomar pares (t_i, x_i) , (t_f, x_f) sucessivamente mais próximos do ponto $P = (t_p, x_p)$ até que a distância entre eles seja desprezível, ou seja, tenda a zero.

Nesse momento, a reta que liga os dois pontos passa a ser uma reta tangente à curva no ponto P, isto é, uma reta que toca 17 a curva x(t)somente no ponto P. Podemos interpretar a velocidade instantânea como a inclinação de tal reta.

Esse processo de aproximações sucessivas em que fazemos Δt progressivamente menor, tendendo a zero, é o que chamamos de limite e que é denotado — no caso da definição da velocidade instantânea por

$$v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t}.$$
 (1.20)

16 Um cálculo preciso necessitaria que levássemos em conta a escala do gráfico, porém estamos mais interessados na interpretação qualitativa.

Figura 1.9: As retas \overline{AB} e \overline{CD} representam valores de velocidade média diferentes, como pode ser visto devido às diferentes inclinações.

¹⁷ Imagine uma régua tocando um cilindro: deve haver somente um ponto de contato entre os dois corpos.

Figura 1.10: Gráfico da posição em função do tempo onde mostramos o processo em que tomamos o limite $\Delta t \rightarrow 0$.

Figura 1.11: As inclinações das retas tangentes indicam que em P_1 a velocidade é positiva, enquanto em P2 temos uma velocidade negativa.

 $^{18}\,\mathrm{Isto}$ é, um aumento Δt que tende a

Figura 1.12: No ponto P temos que o ângulo de inclinação da reta tangente é nulo, portanto temos que momentaneamente a velocidade é nula.

19 Tais resultados podem ser verificados prontamente com o auxílio do círculo trigonométrico.

Figura 1.13: Em um lançamento vertical, podemos verificar no gráfico da posição em função do tempo três "regiões" distintas: v > 0, v = 0 e v < 0. Tais regiões equivalem a inclinações positiva, nula, e negativa para a reta tangente. Note que a figura não descreve a trajetória do corpo, mas sim a posição vertical em função do tempo.

Sinal da velocidade à partir da inclinação da reta tangente, velocidade nula

Podemos inferir o sinal da velocidade em um ponto *P* qualquer de um gráfico $x \times t$ através da inclinação da reta tangente à curva no ponto P:

Inclinação positiva: Se temos uma inclinação positiva, ou seja, temos um ângulo entre a reta tangente e a horizontal como o denotado por θ_1 na Figura 1.11, temos uma velocidade positiva. Isso se deve ao fato de que, de acordo com a curva x(t), um aumento infinitesimal¹⁸ no valor da variável t em relação ao valor dessa variável em P_1 leva a um aumento na variável x, ou seja, temos $\Delta x > 0$. Consequentemente, a razão $\Delta x/\Delta t > 0$ e v > 0.

Inclinação negativa: Já se tomarmos o ponto P_2 na Figura 1.11, podemos notar que ao aumentarmos o valor de t em relação ao valor dessa variável em P_2 , verificamos que o valor de x diminui. Logo, $\Delta x < 0$ e a razão $\Delta x / \Delta t$ também é menor que zero, ou seja, temos v < 0.

Inclinação nula: Devemos notar ainda que se o ângulo de inclinação θ da reta tangente à curva x(t) em um ponto qualquer é zero, como mostrado na Figura 1.12, temos uma velocidade nula em tal ponto, mesmo que momentaneamente. Isso pode ser entendido considerando que ao aumentar o valor da variável t por um acréscimo infinitesimal, a variação em x tende a zero. Portanto, a razão $\Delta x/\Delta t$ é igual a zero.

Outra maneira de chegar a essas conclusões consiste em verificar o sinal da tangente do ângulo formado entre a reta tangente e a horizontal: se o ângulo está acima da horizontal, como θ_1 na Figura 1.11, sua tangente é positiva; se ele está abaixo da horizontal, como θ_2 na figura, sua tangente é negativa; finalmente, se o ângulo é nulo, então sua tangente é zero. 19

Como um exemplo prático da utilidade de se interpretar a inclinação da reta tangente em um gráfico da posição em função do tempo como sendo a velocidade instantânea, podemos citar o caso do lançamento vertical: verificaremos mais tarde que ao lançarmos um objeto verticalmente para cima, a função que descreve sua posição em relação ao tempo é uma parábola como a mostrada na Figura 1.13. Note que à esquerda do ponto de máxima altura, temos uma inclinação da reta tangente que mostra uma velocidade positiva (assumindo que o sentido positivo do eixo seja para cima); à direita, a inclinação da reta tangente mostra uma velocidade negativa; no ponto de altura máxima, a velocidade é momentaneamente nula.

Discussão: Cálculo do limite

Ao utilizarmos a definição

$$v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t}$$

temos algo um tanto quanto estranho: estamos calculando a razão entre dois números que estão indo a zero, já que se Δt vai a zero, o deslocamento Δx correspondente também vai a zero. À primeira vista, poderíamos pensar que a razão seria *zero sobre zero*, o que é uma indeterminação matemática.

Vamos utilizar um exemplo para mostrar que não é esse o caso: considerando uma função para a posição que é dada por

$$x(t) = \alpha t^2 + \beta \tag{1.21}$$

calcularemos a velocidade instantânea para um instante de tempo $t=t_P$. Devemos tomar um intervalo de tempo que contenha o valor t_P para que possamos calcular o valor de tal velocidade. Uma maneira simples de fazer isso é adotar um intervalo cujo centro é o próprio valor t_P (veja a Figura 1.14):

$$t_i = t_P - \frac{\Delta t}{2} \tag{1.22}$$

$$t_f = t_P + \frac{\Delta t}{2}.\tag{1.23}$$

Assim, podemos escrever

$$v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} \tag{1.24}$$

$$= \lim_{\Delta t \to 0} \frac{x_f - x_i}{\Delta t} \tag{1.25}$$

$$= \lim_{\Delta t \to 0} \frac{x(t_f) - x(t_i)}{\Delta t} \tag{1.26}$$

$$= \lim_{\Delta t \to 0} \frac{x(t_P + \Delta t/2) - x(t_P - \Delta t/2)}{\Delta t}.$$
 (1.27)

Agora podemos substituir a Expressão (1.21) para a função da posição, obtendo

$$v = \lim_{\Delta t \to 0} \frac{\left[\alpha \left(t_P + \frac{\Delta t}{2}\right)^2 + \beta\right] - \left[\alpha \left(t_P - \frac{\Delta t}{2}\right)^2 + \beta\right]}{\Delta t}.$$
 (1.28)

Note que na expressão acima a constante β aparece em ambos os termos. No entanto, devido ao sinal, ocorre um cancelamento. Desenvolvendo os termos ao quadrado, obtemos:

$$\left(t_P + \frac{\Delta t}{2}\right)^2 = t_P^2 + \frac{(\Delta t)^2}{4} + 2\frac{\Delta t}{2} \tag{1.29}$$

$$\left(t_P - \frac{\Delta t}{2}\right)^2 = t_P^2 + \frac{(\Delta t)^2}{4} - 2\frac{\Delta t}{2},\tag{1.30}$$

de onde resulta

$$v = \lim_{\Delta t \to 0} \alpha \frac{t_P^2 + \Delta t^2 / 4 + t_P \Delta t - t_P^2 - \Delta t^2 / 4 + t_P \Delta t}{\Delta t}$$
 (1.31)

$$= \lim_{\Delta t \to 0} \alpha \frac{2t_P \Delta t}{\Delta t}.$$
 (1.32)

Figura 1.14: Cálculo da velocidade no ponto *P* através do limite.

Finalmente, devemos notar que Δt está presente tanto no numerador, quanto no denominador, logo, temos uma expressão que independe de Δt :

$$v = \lim_{\Delta t \to 0} \alpha 2t_P \tag{1.33}$$

$$=2\alpha t_{P}. (1.34)$$

Note que existe um valor determinado de v; além disso, como escolhemos um ponto arbitrário, o resultado acima é válido para qualquer valor de t_P , isto é, vasta substituirmos os valores numéricos de α e t_P na expressão acima para determinar o valor de velocidade no instante t.

O processo discutido acima é o que chamamos de derivada, e que consiste em uma maneira de determinar a taxa de variação $instantânea^{20}$ de uma função em relação a uma variável. Por isso, temos que a velocidade instantânea v(t) — que é a taxa instantânea de variação da posição em relação ao tempo — pode ser calculada através da derivada da função posição x(t) em relação ao tempo. Devemos destacar que a apresentação dada acima ao conceito de derivada não é geral, nem ampla e rigorosa. Um estudo mais aprofundado dos conceitos de limite e derivada são parte da disciplina de Cálculo.

1.4.4 Velocidades escalares média e instantânea

Se um corpo se desloca em um movimento retilíneo, porém termina seu movimento na mesma posição em que iniciou, temos um deslocamento nulo. Consequentemente, a velocidade média durante esse percurso será também nula. No entanto, podemos tomar o deslocamento escalar e dividi-lo pelo tempo transcorrido e definir uma velocidade escalar média:

$$\langle v \rangle_s = \frac{d_s}{\Delta t}.\tag{1.35}$$

A velocidade escalar média é o que o computador de bordo de um carro verifica como "velocidade média" em um trajeto. Apesar de corresponder a nossa intuição de velocidade média, ela não é uma grandeza vetorial²¹ e não será de grande interesse para a descrição de fenômenos físicos.

Se tomarmos o limite com $\Delta t \to 0$, podemos dizer que o deslocamento nesse pequeno intervalo de tempo não sofre alteração de direção e/ou sentido, portanto a única diferença diferença possível entre o deslocamento e o deslocamento escalar é um sinal. Nesse caso, teremos que a velocidade escalar instantânea será igual ao módulo da velocidade instantânea:

$$v_s = |v|. (1.36)$$

Por esse motivo, é comum que se use o termo *velocidade escalar* para se referir ao módulo da velocidade.²²

 $^{^{20}}$ Note que a expressão $\Delta x/\Delta t$ denota a razão entre as variações de duas grandezas e serve como medida da taxa de variação média da função x(t) — ou seja, o quanto x(t) varia no intervalo Δt —. Ao tomarmos o limite, obtemos, portanto, a taxa de variação instantânea da função x(t) em relação ao tempo.

²¹ Nos próximos dois capítulos apresentaremos o conceito de vetores e o empregaremos para descrever movimentos bi e tridimensionais.

²² Veremos no próximo capítulo que o módulo é uma das propriedades de um vetor. Nesse caso, o termo *velocidade escalar* se refere ao valor numérico associado à velocidade.

1.4.5 Velocidade como função do tempo

De maneira análoga ao caso da evolução temporal da posição, podemos dizer que para cada instante de tempo t temos uma velocidade v associada. Assim, podemos denotar a relação entre o conjunto de instantes de tempo t e o conjunto de velocidades v correspondentes como uma função:

$$v: t \mapsto v(t), \tag{1.37}$$

o que corresponde à Figura 1.15.

Figura 1.15: A cada valor de tempo t temos um valor de velocidade v associado. A função v(t) descreve a relação entre essas duas variáveis.

Novamente, o fato de que podemos escrever a velocidade como uma função do tempo nos permite a elaboração de gráficos. Assim como no caso dos gráficos de posição em função do tempo, cada sistema físico tem uma forma de curva diferente para gráficos da velocidade em função do tempo, o que permite que seja possível determinar propriedades importantes rapidamente, através de uma simples conferência visual. Na Figura 1.16, por exemplo, temos que a linha cheia representa um movimento com velocidade constante, a linha tracejada representa um movimento com aceleração constante (como veremos ainda neste capítulo), e a linha ponto-tracejada representa um movimento oscilatório, como o de um sistema massa-mola (que discutiremos brevemente no Capítulo ??).

1.4.6 Evolução temporal da posição para o caso de velocidade cons-

Se conhecemos a velocidade média, podemos então descrever a distância percorrida em função do tempo como

$$\Delta x = \langle v \rangle \, \Delta t,\tag{1.38}$$

ou

$$x_f = x_i + \langle v \rangle \, \Delta t. \tag{1.39}$$

Em especial, se a velocidade é constante, então a velocidade instantânea v é igual²³ à velocidade média $\langle v \rangle$, e obtemos

$$x_f = x_i + v\Delta t. (1.40)$$

Como podemos zerar um cronômetro e iniciar a medida de tempo a partir do valor zero no início de um experimento, podemos escolher $t_i = 0$ e $t_f = t$, $\log o^{24}$

Figura 1.16: Gráficos que exemplificam possíveis formas para os gráficos da velocidade v(t).

²³O caso de velocidade constante é aquele para o qual a razão $\Delta x/\Delta t$ resulta sempre no mesmo valor, não importando qual intervalo de tempo esco-

Evolução temporal da posição para velocidade constante.

$$x_f = x_i + vt. (1.41)$$

Comparando a equação acima com uma equação da reta,

$$y = A + Bx, \tag{1.42}$$

percebemos que o gráfico da posição em função do tempo deve seguir uma reta, conforme mostrado (conceitualmente) na Figura 1.17.

Figura 1.17: Para o caso de *velocidade constante* temos que o gráfico da velocidade é uma reta. Note que a figura mostra um gráfico conceitual, isto é, ele mostra o comportamento da evolução da posição, mas não valores específicos de x e t, já que eles dependem das constantes x_i e v. Consequentemente, o canto inferior esquerdo não necessariamente corresponde a t=0, x=0.

Exemplo: Tempo para que um veículo alcance outro

Em um certo instante, dois carros trafegam por uma rua retilínea, no mesmo sentido, de forma que suas velocidades são constantes. A distância entre eles é de $800\,\mathrm{m}$. Se as velocidades são $v_1=25,2\,\mathrm{m/s}$ e $v_2=30,5\,\mathrm{m/s}$,

- (a) quanto tempo transcorre até que o primeiro veículo seja alcançado pelo segundo?
- (b) qual é a distância percorrida por cada um dos veículos entre o instante inicial e o instante onde o segundo alcança o primeiro?

Para determinarmos o tempo transcorrido entre o instante inicial e o instante em que o primeiro carro é alcançado pelo segundo, podemos estabelecer um eixo coordenado na direção da estrada. Tomamos o sentido para o qual ambos os veículos se deslocam como o sentido positivo. Na Figura 1.18 temos um esboço do problema.

Podemos descrever a posição como função do tempo para cada um dos veículos como²⁵

$$x_1(t) = x_1^i + v_1 t (1.43)$$

$$x_2(t) = x_2^i + v_2 t. (1.44)$$

Note que podemos escolher a origem do sistema de coordenadas para coincidir com a posição do segundo veículo. Assim, temos que

$$x_1^i = 800 \,\mathrm{m} \tag{1.45}$$

$$x_2^i = 0, (1.46)$$

o que nos leva a

$$x_1(t) = (800 \,\mathrm{m}) + v_1 t \tag{1.47}$$

$$x_2(t) = v_2 t. (1.48)$$

A Figura 1.19 mostra um gráfico das posições $x_1(t)$ e $x_2(t)$.

Figura 1.18: Esboço do problema no instante em que começamos a analisá-lo.

Figura 1.19: Gráficos da posição em função do tempo para os dois veículos. Veja que eventualmente as retas se cruzam, o que indica que ambos ocupam a mesma posição no eixo x, em um mesmo tempo t

²⁵ Assumimos que $t_i = 0$ e $t_f = t$, o que resulta em $\Delta t = t$.

Para determinarmos o tempo transcorrido entre o instante inicial e o instante onde os carros se encontram, basta determinarmos t ao igualar os dois valores de posição:

$$x_1(t) = x_2(t) (1.49)$$

$$(800\,\mathrm{m}) + v_1 t = v_2 t \tag{1.50}$$

$$(800 \,\mathrm{m}) = (v_2 - v_1)t \tag{1.51}$$

$$t = \frac{(800 \,\mathrm{m})}{v_2 - v_1} \tag{1.52}$$

$$t = \frac{(800 \,\mathrm{m})}{(30.5 \,\mathrm{m/s}) - (25.2 \,\mathrm{m/s})},\tag{1.53}$$

o que resulta em²⁶

$$t = 151 \,\mathrm{s}.$$
 (1.54)

Para determinar as distâncias percorridas pelo veículos, basta lembrar que

$$\Delta x = vt, \tag{1.55}$$

o que resulta em²⁷

$$\Delta x_1 = (25.2 \,\mathrm{m/s}) \cdot (150.9 \,\mathrm{s}) \tag{1.56}$$

$$= 3.80 \,\mathrm{km}$$
 (1.57)

$$\Delta x_2 = (30.5 \,\mathrm{m/s}) \cdot (150.9 \,\mathrm{s}) \tag{1.58}$$

$$= 4,60 \,\mathrm{km}.$$
 (1.59)

Exemplo: Colisão entre dois veículos que trafegam em sentidos opostos

Dois trens trafegam em sentidos opostos na mesma linha férrea retilínea. Em certo instante, a distância entre eles é de 40,0 km. Se as velocidades são $v_1 = 25,0 \,\mathrm{km/h}$ e $v_2 = 35,0 \,\mathrm{km/h}$ e são constantes, em que ponto da linha férrea — em relação à posição inicial do primeiro trem — eles colidirão?

Para determinarmos o ponto onde ocorre a colisão, devemos determinar as expressões que descrevem a posição como função do tempo, e então considerar que ao colidirem, os dois trens têm a mesma posição, para o mesmo valor de tempo. Na Figura 1.20 temos um esboço do problema.

Devemos escrever as expressões para a posição em função do tempo utilizando

$$x(t) = x_i + vt. (1.60)$$

Vamos assumir que o eixo coordenado x aponta na direção da linha férrea, sendo que o sentido positivo é o mesmo que o da velocidade do primeiro trem. Vamos considerar ainda que a origem do eixo está na posição inicial do primeiro trem. Assim,

$$x_1^i = 0 (1.61)$$

$$x_2^i = 40.0 \,\mathrm{km} \tag{1.62}$$

$$v_1 = 25.0 \,\mathrm{km/h}$$
 (1.63)

$$v_2 = -35.0 \,\mathrm{km/h}.$$
 (1.64)

²⁶ Note que o resultado para o tempo é de 150,943 396 2 s, porém descartamos alguns dígitos considerando os números significativos das medidas.

²⁷ Para obter tais resultados, devemos utilizar o tempo com o máximo de dígitos possíveis, ou seja, devemos usar o valor obtido para o tempo antes de truncarmos o resultado ao número adequado de algarismos significativos. Após a obtenção dos valores para Δx_1 e Δx_2 , devemos eliminar dígitos de acordo com as regras para operações com algarismos significativos e as regras de arredondamento.

Figura 1.20: Esboço do problema no instante em que começamos a analisá-lo.

Note que o sinal negativo na velocidade do segundo trem se deve ao fato de que ele se desloca no sentido negativo do eixo de referência. Temos, portanto, que as expressões para a posição em função do tempo são dadas por

$$x_1(t) = (25.0 \,\mathrm{km/h}) \cdot t$$
 (1.65)

$$x_2(t) = (40.0 \,\mathrm{km}) + (-35.0 \,\mathrm{km/h}) \cdot t.$$
 (1.66)

Igualando as expressões acima, obtemos o valor de t para o qual acontece a colisão:

$$(25.0 \,\mathrm{km/h}) \cdot t = (40.0 \,\mathrm{km}) - (35.0 \,\mathrm{km/h}) \cdot t$$
 (1.67)

$$(25,0 \,\mathrm{km/h} + 35,0 \,\mathrm{km/h}) \cdot t = (40,0 \,\mathrm{km}) \tag{1.68}$$

$$t = \frac{(40.0 \,\mathrm{km})}{(25.0 \,\mathrm{km/h} + 35.0 \,\mathrm{km/h})} \qquad (1.69)$$

$$t = 0.667 \,\mathrm{h.}$$
 (1.70)

Finalmente, podemos encontra a posição onde os trens colidem ao calcular a posição do primeiro trem no instante da colisão:

$$x_1 = (25.0 \,\mathrm{km/h}) \cdot (0.667 \,\mathrm{h})$$
 (1.71)

$$= 16.7 \,\mathrm{km}.$$
 (1.72)

Aceleração

Da mesma forma que podemos ter variações de posição conforme passa o tempo, implicando na definição da velocidade, podemos ter diferentes valores da velocidade para cada valor do tempo. Tais valores e suas variações resultam na definição da aceleração. Verificaremos a seguir como definir a aceleração média e a aceleração instantânea.

1.5.1 Aceleração média

Se temos uma variação de velocidade em um intervalo de tempo, temos que a aceleração média será dada por

$$\langle a \rangle = \frac{\Delta v}{\Delta t}.\tag{1.73}$$

A definição acima compreende e quantifica a aceleração através da razão entre a variação da velocidade pela variação do tempo. Dessa forma, uma mesma variação de velocidade pode implicar em valores diferentes de aceleração, dependendo do tempo necessário para que ocorra tal alteração.

Unidades

Fazendo a análise dimensional temos

$$[\langle a \rangle] = \left[\frac{\Delta v}{\Delta t} \right]$$

$$= \frac{[\Delta v]}{[\Delta t]}$$
(1.74)

$$=\frac{\left[\Delta v\right]}{\left[\Delta t\right]}\tag{1.75}$$

$$=\frac{L}{T^2}. (1.76)$$

Logo, no Sistema Internacional de unidades, a aceleração é dada em m/s^2 .

Aceleração média em um gráfico v × t

Assim como pudemos dar uma interpretação gráfica para a velocidade média $\langle v \rangle$ em um gráfico $x \times t$, podemos fazer algo análogo para a aceleração média, porém em um gráfico $v \times t$. Observando a Figura 1.21, temos que

$$\langle a \rangle = \tan \theta = \frac{\Delta v}{\Delta t},\tag{1.77}$$

isto é, a aceleração média está relacionada à inclinação da reta que liga os pontos (t_i, v_i) e (t_f, v_f) .

Aceleração instantânea 1.5.2

Podemos definir a aceleração instantânea como

$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t}.$$
 (1.78)

Novamente em analogia com o caso visto anteriormente para a velocidade, tal limite pode ser interpretado graficamente como a inclinação da reta tangente à curva v(t) no ponto P = (t, v) em que estamos interessados em calcular a aceleração, como mostrado na Figura 1.22.

1.5.3 Aceleração como função do tempo

Assim como podemos descrever a posição e a velocidade como funções do tempo, podemos fazer o mesmo para a aceleração:

$$a: t \mapsto a(t), \tag{1.79}$$

o que é representado esquematicamente na Figura 1.23.

Podemos ter formas complicadas para a aceleração (Figura 1.24), porém, para que possamos trabalhar situações mais simples, nos limitaremos a movimentos com aceleração constante. Faremos isso pois além de simplificarmos o tratamento, temos um caso importante de aceleração constante: a aceleração da gravidade próximo à superfície da Terra.

Figura 1.21: Triângulo formado pela reta que liga os pontos e as linhas horizontal e vertical.

Figura 1.22: Gráfico da velocidade em função do tempo onde mostramos o processo em que tomamos o limite $\Delta t \rightarrow 0$.

Figura 1.23: A cada valor de tempo t temos um valor de aceleração a associado. A função a(t) descreve a relação entre essas duas variáveis.

Figura 1.24: Em um gráfico $a \times t$, um movimento com aceleração constante corresponde a uma linha horizontal, como a linha cheia no gráfico acima. Já no caso de um sistema massa-mola, um corpo oscila devido à força exercida pela mola e devido à sua própria inércia, o que implica em uma aceleração dada por $a(t) = A\omega^2 \operatorname{sen}(\omega t)$ — onde A representa a amplitude de oscilação e ω a frequência angular, que está relaciona à frequência de oscilação -..

²⁸ David Eager, Ann-Marie Pendrill e Nina Reistad (2016). "Beyond velocity and acceleration: jerk, snap and higher derivatives". Em: *European Journal of Physics* 37.6, p. 065008. URL: http://stacks.iop.org/0143-0807/37/i=6/a=065008

Figura 1.25: Se a = const., verificamos que o gráfico $v \times t$ segue uma linha reta.

Evolução temporal da velocidade para aceleração constante.

Também é possível definir²⁸ uma variável que descreve a variação da aceleração no tempo — geralmente denominada "conforto", pois está ligada a vibrações e a variações súbitas de aceleração —, porém isso não é muito comum. Verificaremos no Capítulo 4 que a aceleração está relacionada à força resultante que atua sobre um corpo, de modo que a determinação do movimento não depende de variáveis que descrevam a variação da aceleração.

1.5.4 Evolução temporal da velocidade para o caso de aceleração constante

Se conhecemos a aceleração média, podemos então descrever a variação da velocidade em função do tempo como

$$\Delta v = \langle a \rangle \, \Delta t,\tag{1.80}$$

ou

$$v_f = v_i + \langle a \rangle \, \Delta t. \tag{1.81}$$

Em especial, se a aceleração é constante, então $a = \langle a \rangle$, e obtemos

$$v_f = v_i + a\Delta t. \tag{1.82}$$

Como podemos zerar um cronômetro e iniciar a medida de tempo a partir do valor zero no início de um experimento, podemos escolher $t_i=0$ e $t_f=t$, logo

$$v_f = v_i + at. (1.83)$$

Portanto, assim como no caso da posição em função do tempo para velocidade constante, o gráfico da velocidade em função do tempo para o caso de aceleração constante também é uma reta.

1.6 Sinais para a aceleração

Verificamos nas seções anteriores que os sinais das variáveis posição e velocidade estão ligados ao sentido do movimento, e são simples de se determinar. Para a aceleração, no entanto, a determinação do sinal apropriado é mais complicada: Se, por exemplo, temos um deslocamento no sentido do semi-eixo positivo do sistema de referência adotado, temos uma velocidade positiva enquanto ele ocorre. A aceleração, porém, pode ser positiva, negativa, ou nula, sem que haja mudança no sinal do deslocamento, ou da velocidade. Isso ocorre pois a aceleração descreve *alterações na velocidade*.

O caso em que a aceleração é nula é simples, uma vez que a velocidade é constante. O caso onde existe aceleração, no entanto, é mais complexo pois pode ser dividido em quatro situações diferentes, conforme mostrado na Figura 1.26:

Velocidade positiva e aumentando: No caso de termos uma velocidade positiva, que aumenta em módulo após um intervalo de tempo qualquer Δt devido à presença de uma aceleração, podemos verificar que $\Delta v > 0$, o que leva a uma razão $\langle a \rangle = \Delta v/\Delta t$ maior que zero;

Figura 1.26: A orientação do eixo também é responsável pelo sinal da aceleração. Note que nem sempre uma diminuição do valor absoluto da velocidade implica em uma aceleração negativa.

Velocidade positiva e diminuindo: Se temos ainda uma velocidade positiva, porém que diminui em módulo, verificamos que $\Delta v < 0$, o que leva a uma razão $\langle a \rangle = \Delta v / \Delta t$ menor que zero.

Veja que os casos acima são bastante intuitivos: se a velocidade cresce em valor, então a aceleração é positiva; se ela diminui, então a aceleração é negativa. Em geral, adotamos os movimentos como ocorrendo no sentido positivo do eixo de referência, porém isso não é sempre possível, e nos casos onde o movimento ocorre no sentido negativo, os sinais se invertem:

Velocidade negativa e aumentando (em módulo): Se temos uma velocidade negativa, quando ocorre um aumento no valor da velocidade, passamos a ter *um valor negativo maior*. Consequentemente, $\Delta v < 0$ e $\langle a \rangle = \Delta v / \Delta t < 0$. Na Figura 1.26 inferior esquerda, por exemplo, $v_i = -1 \,\mathrm{m/s}$ e $v_f = -4 \,\mathrm{m/s}$, o que resulta em $\Delta v = -3 \,\mathrm{m/s}$ e, consequentemente, $\langle a \rangle = \Delta v / \Delta t < 0$.

Velocidade negativa e diminuindo (em módulo): Nesse caso, como temos uma velocidade negativa e ocorre uma diminuição do valor do módulo da velocidade, ocorre que $\Delta v > 0$, o que leva a $\langle a \rangle =$ $\Delta v/\Delta t > 0$. Na figura, no quadro inferior direito, verificamos que $v_i = -5 \,\mathrm{m/s} \,\mathrm{e} \,v_f = -2 \,\mathrm{m/s}.$ Logo, $\Delta v = 3 \,\mathrm{m/s} \,\mathrm{e} \,\langle a \rangle = \Delta v/\Delta t > 0$ 0.

Podemos agrupar essas observações acerca da aceleração nos seguintes casos:

- Se não há variação da velocidade, então a aceleração é nula.
- Se a velocidade aumenta em valor, então a aceleração tem o mesmo sinal que a velocidade.
- Se a velocidade diminui em valor, então a aceleração tem o sinal oposto ao da velocidade.

Devemos nos lembrar de que a escolha do sentido positivo do eixo é arbitrária. Podemos escolher de maneira que seja mais conveniente, o que em geral significa minimizar o número de grandezas com sinal negativo. Uma vez escolhido um sentido positivo, no entanto, devemos nos ater a tal escolha, de maneira a garantir que a descrição do movimento seja consistente.

Finalmente, devemos destacar aqui que veremos no Capítulo 3 que a relação dos sinais para a aceleração pode ser entendida de maneira muito mais simples e intuitiva através de uma análise da aceleração do ponto de vista de vetores, sendo que verificaremos que o sinal está relacionado à decomposição do vetor aceleração em termos de componentes vetoriais que estão relacionadas aos eixos de referência.

Se temos uma situação em que um objeto se move com velocidade constante, a distância percorrida por ele em um intervalo de tempo Δt será dada por

$$\Delta x = v \Delta t. \tag{1.84}$$

Ao fazer um gráfico $v \times t$, como mostrado na Figura 1.27, percebemos que a equação acima determina a área delimitada pela curva v(t), o eixo t e os eixos verticais que passam por t_i e t_f .

Se tivéssemos uma situação mais complicada, com uma velocidade v(t) que variasse de uma maneira mais complexa, poderíamos determinar a distância percorrida entre dois instantes t_i e t_f simplesmente calculando a área entre a curva, o eixo horizontal t e os eixos verticais passando por t_i e t_f . A Figura 1.28 mostra um exemplo de velocidade variável, sendo que a área destacada, compreendida entre $t=t_i$ e $t = t_f$ corresponde ao deslocamento em tal intervalo de tempo. Devemos destacar ainda que se a curva v(t) está abaixo do eixo t, isso significa que a velocidade é negativa, ou seja, nesta região o objeto estará "voltando" e o deslocamento será, consequentemente, negativo.

O cálculo da área que corresponde ao deslocamento não é simples, pois no caso mais geral podemos ter uma forma curvilínea. Na prática, porém, podemos dividir a área em polígonos (quadrados, retângulos, triângulos) de tamanhos diferentes, de maneira a cobrir quase toda a área: pequenos erros podem ser descartados se eles forem menores do que a precisão experimental com a qual fazemos as medidas de tempo e velocidade. O método mais prático, no entanto, é o de dividir a área em retângulos, como mostrado na Figura 1.29.

Nesse caso, podemos determinar o valor numérico do deslocamento/área dividindo a região hachurada em várias barras de uma

Figura 1.27: A área hachurada está relacionada ao deslocamento em um movimento com velocidade v_0 no intervalo de tempo destacado.

Figura 1.28: Podemos utilizar a área para determinar o deslocamento em um caso mais complexo, onde a velocidade varia arbitrariamente.

largura arbitrária Δt e altura dada pela própria curva v(t), de forma que cada barra tem área dada por

$$A_n = v(t_n) \times \Delta t \tag{1.85}$$

$$=v(t_n)\times\frac{t_f-t_i}{N},\tag{1.86}$$

onde assumimos que o intervalo $[t_i,t_f]$ foi dividido em N barras, sendo que a largura é então dada por $\Delta t=(t_f-t_i)/N$. Note ainda que dentro da largura da barra temos vários valores de v(t), porém na Figura 1.29 escolhemos para a altura de cada o valor de v(t) no extremo esquerdo de cada uma delas. Somando os valores obtidos para cada uma das barras, podemos determinar o deslocamento total pelo menos de forma aproximada, uma vez que visivelmente temos "espaços" que não foram contabilizados e barras que compreendem áreas que vão além da curva v(t).

Se necessitarmos de uma precisão maior, basta tomarmos intervalos Δt sucessivamente menores. Eventualmente conseguiremos calcular a área com precisão suficiente para nossos propósitos, o que geralmente está ligado à própria precisão dos instrumentos de medida utilizados. O método descrito acima tem como principal vantagem o fato de que pode ser implementado de maneira bastante simples em um computador, bastando que a função v(t) seja conhecida. Nesse caso, dividir a área em um número maior de barras passa a ser algo trivial, bastando alterar um parâmetro em um algoritmo.

Para o caso de um gráfico de $a \times t$, temos uma situação análoga: se a aceleração for constante, a área entre a curva, o eixo horizontal t, e os eixos verticais passando por t_i e t_f será igual à variação da velocidade $\Delta v = a \Delta t$. Desenvolvendo um raciocínio análogo ao caso anterior para o cálculo da área entre a curva a(t) e o eixo t, concluímos que a variação da velocidade para casos em que a aceleração não é constante pode ser calculada através da área "abaixo" da curva. Devemos, novamente, subtrair a área das regiões abaixo do eixo t.

1.8 Equações cinemáticas para movimentos com aceleração constante

Apesar de ser perfeitamente aceitável tratar uma situação em que a aceleração varia, isso não é uma tarefa muito fácil utilizando as ferramentas matemáticas que temos disponíveis. Por isso, vamos tratar com mais detalhes o caso da aceleração constante. Em geral, não há razões para supor que um objeto qualquer que se movimente esteja sujeito a uma aceleração constante, exceto se ele estiver claramente sob efeito da força gravitacional, sendo as demais forças desprezíveis.

Quando um objeto cai livremente próximo da superfície da Terra, ele sofre uma aceleração dirigida verticalmente para baixo, com módulo²⁹ 9,8 m/s². Essa aceleração é comum a todos os objetos, independentemente de suas massas, caso a *força de arrasto*³⁰ seja desprezível. A existência dessa aceleração se deve à força fundamental da natureza denominada *força gravitacional*, responsável pela atração entre corpos

Figura 1.29: Para determinar o valor da área, basta dividirmos a região em barras com uma largura Δt arbitrária e uma altura v(t).

Figura 1.30: Podemos melhorar a aproximação diminuindo a largura das barras, obtendo um erro tão pequeno quanto necessário.

²⁹ Esse valor não é o mesmo em todos os pontos da superfície da Terra, porém vamos utilizar 9,8 m/s² como um valor aproximado para qualquer ponto.

³⁰ Esta força é a resistência ao deslocamento em um meio fluido, como o ar, e será discutida em mais detalhes no Capítulo 4.

como — por exemplo — um objeto qualquer e a Terra, a Terra e a Lua, o Sol e a Terra, etc. Veremos adiante que essa força tem uma dependência direta na massa dos corpos, o que resulta na independência da aceleração gravitacional em relação à massa do corpo.

O grande motivador de estudarmos movimentos com aceleração constante, é, portanto, o fato de que ele descreve a aceleração da gravidade. Neste capítulo, nos restringiremos a exclusivamente a movimentos unidimensionais com aceleração constante, o que implica em estudarmos no âmbito da aceleração gravitacional somente lançamentos verticais. No Capítulo 3 estudaremos movimentos bidimensionais sujeitos à aceleração gravitacional. Nas próximas seções verificaremos expressões que relacionarão as variáveis cinemáticas, nos permitindo realizar previsões teóricas acerca do movimento em diversas situações.

Sinal da aceleração em movimentos envolvendo a aceleração gravitacional

Como discutido na Seção 1.6, a determinação do sinal da aceleração depende de o módulo da velocidade aumentar ou diminuir, e do próprio sinal da velocidade. Aplicando tal raciocínio ao caso da aceleração gravitacional percebemos que os casos podem ser reduzidos a dois, de acordo com a escolha do sentido positivo do eixo de referência.

Para chegar a tal conclusão, vamos analisar as seguintes situações:

Corpo sobe sob efeito da aceleração gravitacional: Sabemos que um corpo que é arremessado para cima perde progressivamente sua velocidade conforme sobe. Nesse caso, sabemos que a aceleração tem o sinal oposto ao da velocidade. Logo:

- Se o eixo de referência aponta para cima, então a velocidade é positiva e a aceleração é negativa;
- Se o eixo de referência aponta para baixo, então a velocidade é negativa e a aceleração é positiva.

Corpo desce sob efeito da aceleração gravitacional: Se liberarmos um corpo a partir do repouso para que se desloque livremente, ele passa a descer, sendo que sua velocidade cresce progressivamente. Nesse caso, a aceleração tem o mesmo sinal que a velocidade. Logo:

- Se o eixo de referência aponta para cima, então a velocidade é negativa e a aceleração também é negativa;
- Se o eixo aponta para baixo, a velocidade é positiva e a aceleração também é positiva.

Em ambos os casos, podemos afirmar que se o eixo aponta para cima, então a aceleração é negativa, e que se o eixo aponta para baixo então a aceleração é positiva. Novamente, a questão da determinação dos sinais da aceleração é muito mais simples do ponto de vista de vetores, o que veremos nos próximos capítulos.

1.8.1 Equação para a velocidade

Verificamos anteriormente que se a aceleração é constante, temos que $\langle a \rangle = a$ e, portanto,

$$v_f = v_i + at$$
.

Temos portanto uma relação *linear* entre a velocidade e o tempo, ou seja, existe uma proporção direta entre o valor da velocidade e o tempo transcorrido sob efeito da aceleração.

Note que as demais expressões para o caso de aceleração constante que serão deduzidas adiante *não serão lineares*, portanto não poderemos utilizar "leis de proporção"³¹ para as outras variáveis no caso de movimento com aceleração constante.

31 Regra de três.

1.8.2 Equações para a posição

Para o caso de aceleração constante, podemos determinar três expressões diferentes para a posição, sendo que cada uma delas envolve um grupo diferente de parâmetros e pode ser empregada em situações diferentes.

Equação para a evolução da posição envolvendo a velocidade inicial

Podemos calcular uma expressão para a evolução temporal da posição e que envolve como parâmetros a aceleração e a velocidade inicial se considerarmos a Figura 1.31. Se a aceleração é constante, sabemos que a velocidade deve ser descrita por uma reta em um gráfico $v \times t$. Sabemos ainda que o deslocamento é dado pela área abaixo da curva v(t). Logo, temos que

$$\Delta x = A \tag{1.87}$$

$$= A_1 + A_2. (1.88)$$

A área A_1 é dada por

$$A_1 = v_i \Delta t, \tag{1.89}$$

enquanto A_2 é dada por

$$A_2 = \frac{(v_f - v_i)\Delta t}{2}. (1.90)$$

Logo,

$$\Delta x = v_i \Delta t + \frac{(v_f - v_i) \Delta t}{2}.$$
(1.91)

Utilizando a equação $v_f = v_i + at$, e fazendo ainda $t_i = 0$ e $t_f = t$, temos

$$\Delta x = v_i t + \frac{(v_i + at - v_i)t}{2} \tag{1.92}$$

e, finalmente,

$$x_f = x_i + v_i t + \frac{at^2}{2}. ag{1.93}$$

Na Figura 1.32 temos dois gráficos para a posição como função do tempo para casos com aceleração constante positiva (esquerda) e negativa (direita). Em ambos os casos temos parábolas, sendo que o

Figura 1.31: Para o caso de aceleração constante, podemos calcular a área a dividindo em um retângulo e um triângulo.

Evolução temporal da posição para aceleração constante (1ª Equação).

sinal da aceleração na Equação (1.93) tem o efeito de alterar a concavidade da curva, enquanto seu valor determina a "abertura" (quanto maior o valor de a, mais "fechada" a curvatura). Os valores de x_i e v_i (incluindo seus sinais) influenciam a posição do mínimo/máximo da parábola.

Figura 1.32: Gráficos para x(t) para o caso $a \neq 0$.

Equação para a evolução da posição envolvendo a velocidade final

Caso não haja informação sobre a velocidade inicial, a Equação (1.93) pode ser reescrita com o auxílio da expressão

$$v_f = v_i + at, \tag{1.94}$$

pois podemos a inverter, obtendo

$$v_i = v_f - at, \tag{1.95}$$

o que nos permite eliminar v_i na Equação (1.93):

$$x_f = x_i + (v_f - at)t + \frac{at^2}{2}$$
(1.96)

$$=x_i + v_f t + \frac{at^2 - 2at^2}{2},\tag{1.97}$$

resultando em

$$x_f = x_i + v_f t - \frac{at^2}{2}. ag{1.98}$$

Evolução temporal da posição para aceleração constante (2ª Equação).

Note que se a aceleração tem um valor negativo (devido à escolha do sistema de referência), ao utilizarmos a expressão acima teremos dois sinais negativos. Nesse caso efetivamente usamos um valor positivo ao empregar a expressão acima.

Expressão para a velocidade média no caso de aceleração constante

Podemos determinar uma expressão para a velocidade média no caso de aceleração constante que nos auxiliará na determinação de uma terceira expressão para a evolução temporal da posição. Considerando que para o caso especial de uma aceleração constante a velocidade é uma reta, e com o auxílio da Equação (1.91), podemos

Evolução temporal da posição para aceleração constante (3ª Equação).

escrever a velocidade média como

$$\langle v \rangle = \frac{\Delta x}{\Delta t} \tag{1.99}$$

$$= \frac{v_i \Delta t + [(v_f - v_i)/2] \Delta t}{\Delta t}$$

$$= \frac{v_i + v_f}{2}.$$
(1.100)

$$=\frac{v_i + v_f}{2}. (1.101)$$

Note que a velocidade média é dada pela média aritmética entre a velocidade inicial v_i e a velocidade final v_f , porém isso só é verdade para casos onde a aceleração é constante.

Equação para a evolução temporal da posição sem usar a aceleração como parâmetro

Utilizando a própria definição da velocidade média, podemos escrever

$$\Delta x = \langle v \rangle \, \Delta t \tag{1.102}$$

$$x_f - x_i = \langle v \rangle \, \Delta t \tag{1.103}$$

$$x_f = x_i + \langle v \rangle \, \Delta t. \tag{1.104}$$

Se tomarmos $t_i = 0$ e $t_f = t$, podemos utilizar o resultado para a velocidade média dado pela Equação (1.101), para escrever

$$x_f = x_i + \frac{v_i + v_f}{2}t. ag{1.105}$$

Note que apesar de a expressão acima não envolver explicitamente a aceleração, ela assume que existe uma aceleração constante durante todo o movimento. Uma aceleração nula também é um valor válido, pois é uma constante: nesse caso simplesmente recuperamos o resultado $x_f = x_i + vt$ obtido anteriormente, uma vez que a velocidade é constante.

1.8.3 Equação de Torricelli

A partir da Equação 1.83, podemos isolar o tempo e obter

$$t = \frac{v_f - v_i}{a}.\tag{1.106}$$

Substituindo esta expressão na Equação 1.93, obtemos

$$x_f - x_i = v_i \left(\frac{v_f - v_i}{a}\right) + \frac{a}{2} \left(\frac{v_f - v_i}{a}\right)^2$$
 (1.107)

$$=\frac{v_f v_i - v_i^2}{a} + \frac{v_f^2 + v_i^2 - 2v_f v_i}{2a}. (1.108)$$

multiplicando os dois lados da equação por 2a, temos

$$2a\Delta x = 2v_i v_f - 2v_i^2 + v_f^2 + v_i^2 - 2v_f v_i.$$
 (1.109)

Eliminando o primeiro e o quarto termos à direita e somando os restantes, obtemos

$$v_f^2 = v_i^2 + 2a\Delta x. (1.110)$$

Equação de Torricelli.

1.8.4 Variáveis ausentes em cada equação

As cinco equações obtidas para a cinemática com aceleração constante envolvem as variáveis x_i , x_f , v_i , v_f , a e t. Porém cada uma das equações deixa algum desses parâmetros de fora. A ausência de um dos parâmetros pode ser usada "em nosso favor" ao determinar a solução de um problema: via de regra, os exercícios/problemas nos descrevem uma situação, dando uma série de informações, omitindo outras, e nos pedem para determinar alguma das informações omitidas.

Em diversos casos, a solução consiste em verificar qual equação — dentre as discutidas acima, elencadas na Tabela 1.1 — envolve a informação que é pedida³², contém também as variáveis cujos valores nos são dados, e não contém as variáveis cujos valores desconhecemos. É claro que muitas vezes temos mais que uma maneira de determinar as informações pedidas — em geral usando duas equações, uma seguida da outra —, o que também é válido, apesar de dar mais trabalho.

Equação	Variável ausente
$v_f = v_i + at$	Δx
$x_f = x_i + v_i t + a t^2 / 2$	v_f
$x_f = x_i + v_f t - at^2/2$	v_i
$x_f = x_i + (v_i + v_f)t/2$	а
$v_f^2 = v_i^2 + 2a\Delta x$	t

Exemplo: Lançamento vertical

Uma pedra é lançada verticalmente para cima, sendo que após 4,0 s ela se encontra a uma altura de 9,6 m em relação ao ponto de lançamento. Qual era a velocidade inicial da pedra?

Sabemos que a pedra sofre um deslocamento $\Delta y = 9.6$ m em relação ao ponto de lançamento, porém não sabemos se tal deslocamento se refere ao movimento de subida exclusivamente, ou se inclui parte do movimento de descida. Sabemos, no entanto, que o tempo necessário para que o movimento aconteça é de 4,0 s. Note ainda que não sabemos a velocidade da pedra ao final do período de 4,0 s; não devemos assumir que ela é zero.

Nas equações para movimentos com aceleração constante, verificamos que existe uma expressão que relaciona as informações que temos (deslocamento, tempo e aceleração) e a informação que desejamos (velocidade inicial):

$$\Delta x = v_i t + \frac{a}{2} t^2 \tag{1.111}$$

$$=v_i t - \frac{g}{2} t^2. (1.112)$$

Veja que a aceleração aparece com um sinal negativo pois adotamos um eixo vertical y que aponta para cima. Isolando a velocidade,

32 Isso é obrigatório, não existe maneira de determinar o valor de uma variável através de uma equação se tal variável nem mesmo aparece nela.

Tabela 1.1: Relação das equações para a cinemática unidimensional e a variável ausente em cada uma delas.

Figura 1.33: Corpo lançado verticalmente.

obtemos

$$v_i = \frac{\Delta x}{t} + \frac{gt}{2} \tag{1.113}$$

$$= \frac{(9.6 \,\mathrm{m})}{(4.0 \,\mathrm{s})} + \frac{(9.8 \,\mathrm{m/s^2}) \cdot (4.0 \,\mathrm{s})}{2}, \tag{1.114}$$

o que resulta em

$$v_i = 22 \,\mathrm{m/s}.$$
 (1.115)

Podemos determinar se a pedra já atingiu o ponto mais alto da trajetória de duas maneiras: uma delas consiste em fazer um gráfico da posição em função do tempo e verificar se o máximo já foi atingido (Figura 1.34); outra maneira, essa mais simples, é verificar se a velocidade em $t=4.0\,\mathrm{s}$ é positiva ou negativa:

$$v_{t=4.0\,\mathrm{s}} = v_i + at \tag{1.116}$$

$$=v_i-gt \tag{1.117}$$

$$= (22 \,\mathrm{m/s}) - (9.8 \,\mathrm{m/s^2}) \cdot (4.0 \,\mathrm{s}) \tag{1.118}$$

$$=-17 \,\mathrm{m/s}.$$
 (1.119)

Como v < 0 e escolhemos o eixo x apontando verticalmente para cima, concluímos que o corpo está descendo.

Exemplo: Distância percorrida durante um movimento de queda livre

Um corpo cai de uma altura de $100,0\,\mathrm{m}$. Determine qual é a distância que ele percorre nos primeiros 10% e nos últimos 10% do tempo de queda. Despreze os efeitos da resistência do ar.

Em primeiro lugar, devemos determinar qual é o tempo necessário para que o corpo percorra a distância de 100,0 m. Para isso, basta utilizarmos

$$\Delta x = vt + \frac{at^2}{2},\tag{1.120}$$

sendo que v=0, uma vez que o corpo cai e subentende-se que partiu do repouso. Para descrever a queda, podemos utilizar um eixo que aponta verticalmente para baixo, assim temos que a aceleração da gravidade é dada por

$$a = +g \tag{1.121}$$

$$= 9.8 \,\mathrm{m/s^2}. \tag{1.122}$$

Assim,

$$\Delta x = \frac{gt^2}{2},\tag{1.123}$$

de onde obtemos

$$t = \sqrt{\frac{2\Delta x}{g}} \tag{1.124}$$

$$= 4.52 \,\mathrm{s}.$$
 (1.125)

Figura 1.34: Gráfico da posição como função do tempo para o lançamento da pedra.

Para determinarmos a distância percorrida nos primeiros 10% do tempo, basta utilizarmos a expressão para Δx acima:

$$\Delta x_{10\%} = \frac{gt^2}{2} \tag{1.126}$$

$$=\frac{(9.8\,\mathrm{m/s^2})\cdot(0.452\,\mathrm{s})^2}{2}\tag{1.127}$$

$$= 1.00 \,\mathrm{m}, \qquad (1.128)$$

onde 0,452 s corresponde a 10% do tempo total transcorrido. Para determinar a distância percorrida nos últimos 10%, basta utilizarmos a expressão acima para calcular qual é a distância percorrida no período inicial que corresponde a 90% do tempo, depois subtrair o resultado da distância total. Logo,

$$\Delta x_{90\%} = \frac{gt^2}{2}$$

$$= \frac{(9.8 \,\mathrm{m/s^2}) \cdot (4.07 \,\mathrm{s})^2}{2}$$
(1.129)

$$=\frac{(9.8\,\mathrm{m/s^2})\cdot(4.07\,\mathrm{s})^2}{2}\tag{1.130}$$

$$= 81.0 \,\mathrm{m}$$
 (1.131)

e verificamos que nos últimos 10% são percorridos

$$\Delta x_{100\%} - \Delta x_{90\%} = 19.0 \,\mathrm{m}. \tag{1.132}$$

Em outras palavras, verificamos que nos primeiros 10% do tempo, o corpo percorre 1% da distância, enquanto nos últimos 10% do tempo, ele percorre 19% da distância.

Exemplo: Distância percorrida no último segundo de queda

Um corpo é solto a partir do repouso, caindo uma distância de 100 m até atingir o solo. Qual é a distância percorrida durante o último segundo de queda? Desconsidere a resistência do ar ao movimento.

Podemos determinar a distância percorrida durante o último segundo de queda através de

$$\Delta x = v_f t - a \frac{t^2}{2},\tag{1.133}$$

bastanto determinar a velocidade final através de

$$v_f^2 = v_i^2 + 2a\Delta x. (1.134)$$

Em ambos os casos, a aceleração a será a própria aceleração gravitacional, com o sinal positivo, já que adotamos um eixo de referência que aponta para baixo (Figura 1.35).

Como a velocidade inicial é zero, temos

$$v_f = \sqrt{2a\Delta x}$$
 (1.135)
= $\sqrt{2 \cdot (9.8 \,\mathrm{m/s^2}) \cdot (100 \,\mathrm{m})}$ (1.136)

$$= \sqrt{2 \cdot (9.8 \,\mathrm{m/s^2}) \cdot (100 \,\mathrm{m})} \tag{1.136}$$

$$=44.3 \,\mathrm{m/s}$$
 (1.137)

Figura 1.35: Desejamos determinar a distância Δx percorrida durante o último segundo de queda.

Substituindo tal resultado na expressão para o deslocamento, temos

$$\Delta x = v_f t - a \frac{t^2}{2} \tag{1.138}$$

$$= (44,27\,\mathrm{m/s}) \cdot (1,0\,\mathrm{s}) - \frac{(9,8\,\mathrm{m/s^2}) \cdot (1,0\,\mathrm{s})^2}{2} \tag{1.139}$$

$$= 39.4 \,\mathrm{m}.$$
 (1.140)

Note que utilizamos como tempo a própria duração do intervalo de tempo em que ocorre o deslocamento Δx , uma vez que o valor de tque aparece na expressão para o cálculo do deslocamento é o tempo transcorrido entre o corpo passar pelo ponto inicial x_i e o ponto final $x_f.^{33}$

Exemplo: Velocidade inicial em uma pista retilínea

Em uma corrida de carros, na reta final, um competidor cruza a linha de chegada com uma velocidade de 268,3 km/h. Sabendo que a reta tem um comprimento de 300,0 m e que o tempo necessário para que o veículo a percorresse foi de 4,82 s, determine a velocidade com que o competidor entrou na reta final.

Sabemos que a velocidade final é dada por

$$268.3 \, \text{km/h} = 74.53 \, \text{m/s}.$$

Não sabemos qual é o valor da aceleração, por isso não podemos determinar a velocidade inicial a partir da velocidade final e do tempo. No entanto, temos a distância percorrida, logo, podemos utilizar a expressão

$$\Delta x = \frac{v_i + v_f}{2}t,\tag{1.141}$$

de onde obtemos

$$v_i = 2\frac{\Delta x}{t} - v_f \tag{1.142}$$

$$=2\frac{(300,0\,\mathrm{m})}{(4,82\,\mathrm{s})} - (74,53\,\mathrm{m/s}) \tag{1.143}$$

$$= 50.0 \,\mathrm{m/s}, \tag{1.144}$$

ou, em quilômetros por hora

$$v_i = 180 \,\mathrm{km/h}.$$
 (1.145)

Exemplo: Distância entre gotas sucessivas

Determine uma expressão para a distância entre duas gotas que caem de uma torneira, sendo o tempo entre a queda de cada gota dado por

Podemos descrever a posição de cada gota de acordo com

$$x_f = x_i + vt + \frac{at^2}{2}. ag{1.146}$$

Como as gotas caem, temos que a velocidade inicial é nula. Escolhendo um eixo x vertical, com sentido positivo para baixo, temos

33 Lembre-se que para obter a expressão $\Delta x = v_f t - at^2/2$ e as expressões $\Delta x = v_i t + a t^2/2$ e $v_f = v_i + a t$, escolhemos "zerar o cronômetro" no início do intervalo, utilizando $t_i = 0$ e $t_f = t$.

que a=g. Também podemos assumir que a origem do eixo está na posição de onde caem as gotas, o que nos permite escolher $x_i=0$ e $x_f=x$. Assim,

$$x = \frac{gt^2}{2}. (1.147)$$

Note que na expressão acima já temos implicitamente a escolha $t_i=0$ e $t_f=t$, o que implica que estamos registrando o tempo a partir do momento em que a gota cai. Para que possamos determinar a distância entre as gotas, devemos perceber que quando a segunda gota cai, a primeira gota já está se movendo há um tempo τ . Assim, se escrevermos a as expressões em termos do tempo no "cronômetro da segunda gota" temos para as posições:

$$x_1 = \frac{g(t+\tau)^2}{2} \tag{1.148}$$

$$x_2 = \frac{gt^2}{2}. (1.149)$$

Temos entaão para a distância entre as gotas

$$x_1 - x_2 = \frac{g(t+\tau)^2}{2} - \frac{gt^2}{2} \tag{1.150}$$

$$= \frac{g}{2} \left[(t+\tau)^2 - t^2 \right] \tag{1.151}$$

$$= \frac{g}{2} \left[t^2 + \tau^2 + 2\tau t - t^2 \right] \tag{1.152}$$

$$=\frac{g}{2}[\tau^2 + 2\tau t],\tag{1.153}$$

de onde podemos verificar que a distância entre as gotas aumenta linearmente com o tempo.

Exemplo: Profundidade de um poço

Ao soltarmos uma pedra dentro de um poço, percebemos que o som é ouvido após 4,2 s. Se a velocidade do som no ar é de 343,4 m/s e é constante, qual é a profundidade do poço?

Se soltamos a pedra, sabemos que sua velocidade inicial é nula. Assim, temos que a distância percorrida por ela até chegar à água é dada por

$$\Delta x = \frac{gt^2}{2},\tag{1.154}$$

onde utilizamos a=g pois escolhemos um eixo x que aponta verticalmente para baixo. Temos então que o tempo t_q para que a pedra atinja a água é dado por

$$t_q = \sqrt{\frac{2\Delta x}{g}}. (1.155)$$

O som se propaga com velocidade constante, portanto temos que o tempo que ele demora para percorrer a altura do poço pode ser calculado através de

$$\Delta x = vt, \tag{1.156}$$

resultando em

$$t_s = \frac{\Delta x}{v_s}. ag{1.157}$$

Sabemos que a soma dos dois tempos é igual a 4,2 s:

$$t_q + t_s = (4.2 \,\mathrm{s}) \tag{1.158}$$

$$\sqrt{\frac{2\Delta x}{g}} + \frac{\Delta x}{v_s} = (4.2 \,\mathrm{s}). \tag{1.159}$$

Fazendo a mudança de variáveis

$$\Delta x = \lambda^2, \tag{1.160}$$

na expressão acima, obtemos

$$\sqrt{\frac{2}{g}}\lambda + \frac{1}{v_s}\lambda^2 - (4.2 \,\mathrm{s}) = 0, \tag{1.161}$$

ou

$$v_s^{-1}\lambda^2 + \sqrt{\frac{2}{g}}\lambda - (4.2 \,\mathrm{s}) = 0.$$
 (1.162)

Temos, portanto, uma equação de segundo grau, substituindo os valores da aceleração da gravidade e da velocidade do som, temos

$$(2,9121 \cdot 10^{-3} \text{ s/m}) \cdot \lambda^2 + (0,45175 \text{ s/m}^{1/2}) \cdot \lambda - (4,2 \text{ s}) = 0, (1.163)$$

o que resulta em

$$\lambda' = -163,93 \,\mathrm{m}^{1/2} \tag{1.164}$$

$$\lambda'' = 8,798 \,\mathrm{m}^{1/2}.\tag{1.165}$$

Vamos descartar o primeiro valor para λ pois sabemos que ele corresponde à raiz quadrada de uma distância e deve ser positivo. Determinando Δx , temos

$$\Delta x = 77 \,\mathrm{m}. \tag{1.166}$$

1.9 Seções opcionais

1.9.1 Acelerador

Um erro bastante comum é imaginar que o acelerador de um carro determina a aceleração do veículo. Certamente existe uma relação entre o estado de aceleração do veículo e o quanto pressionamos o pedal, porém essa relação não é simples. A função do pedal do acelerador é controlar a quantidade de ar que é admitida no motor, bem como a quantidade de combustível que é injetada nos cilindros ou nos dutos de admissão, o que determina a *potência* desenvolvida pelo motor³⁴.

Se um veículo parte do repouso, ao pressionarmos o pedal do acelerador, percebemos que ele começa a ganhar velocidade. No entanto, essa situação não passa de um caso específico. Podemos analisar algumas situações que mostram que a aceleração não está diretamente ligada ao deslocamento do pedal:

³⁴ Os números de potência divulgados pelo fabricante se referem à potência máxima que o motor é capaz de desenvolver. A potência que é efetivamente desenvolvida depende da velocidade de rotação, da quantidade de ar admitido e da quantidade de combustível injetada.

- Se um carro se desloca em um trecho plano de uma rodovia com velocidade constante, a aceleração é nula, pois qualquer valor de aceleração implica em uma alteração no valor da velocidade. Sabemos que para que o veículo se mantenha com tal velocidade, precisamos manter o pedal pressionado em certa posição. Se pressionarmos mais o pedal, o carro passa a ganhar velocidade, ou seja, ele passa a acelerar. Por outro lado, se ao invés de pressionarmos mais o pedal, pressionarmos menos, percebemos que a velocidade do veículo passa a diminuir. Isto é, o pedal do acelerador, sob certas condições, pode causar uma desaceleração do veículo.
- Se o carro chega a uma subida íngreme, se o pedal do acelerador for mantido na mesma posição, a velocidade passará a diminuir. Isso se deve ao fato de que em uma subida, existe uma componente da força peso que aponta na direção oposta ao movimento, fazendo com que ocorra uma desaceleração do veículo. Em muitos casos, para que possamos manter a velocidade constante, basta pressionarmos ainda mais o pedal do acelerador. Se a subida for suficientemente íngreme, isso não vai bastar: mesmo que pressionemos o pedal até o fim, a velocidade continuará a diminuir.
- Se após um trecho plano o carro chega a uma descida, se mantivermos o pedal na mesma posição, o carro passará a ganhar velocidade (ou seja, ele passará a acelerar mesmo que não tenhamos sinalizado tal intenção, o que seria feito ao se pressionar o pedal). Dependendo da inclinação da descida, podemos fazer com que o carro passe a se mover com velocidade constante ao diminuirmos a pressão sobre o pedal, permitindo que ele volte um pouco. No entanto, se a inclinação for grande, podemos tirar completamente o pé do pedal e ainda assim continuar ganhando velocidade.

Em outros idiomas o pedal do acelerador tem nomes diferentes, que não dão margem a uma interpretação equivocada: em inglês, o pedal do acelerador se chama *throttle*, o que literalmente significa *estrangular* e se refere ao fato de que o pedal regula a quantidade de ar admitida no motor. Em alemão, o pedal se chama *gaspedal*, e tem um significado similar. Talvez um termo mais adequado para o pedal do acelerador seria *pedal de potência*.

Outro comando que pode suscitar erros são os freios. Em geral associamos os freios a uma desaceleração de um veículo, o que em geral é verdade. No entanto, em alguns casos podemos ter uma aceleração de um veículo *apesar de aplicarmos os freios*. Se temos uma descida íngrime, ao tirarmos o pé do pedal do acelerador, podemos continuar *acelerando*, como discutimos acima. Um recurso que podemos utilizar para controlar a velocidade é utilizar os freios, porém — dependendo da intensidade da frenagem — podemos ter

• Uma simples diminuição da aceleração, caso a intensidade da frenagem seja pequena;

- Se a intensidade da frenagem compensar exatamente a componente da força peso que tende a acelerar o veículo na descida, passaremos a nos mover com velocidade constante;
- Finalmente, se a intesidade da frenagem for maior do que aquela que mantém o carro com velocidade constante, então teremos uma diminuição da velocidade do veículo.

Um motorista experiente é capaz de utilizar os recursos de "aceleração/potência" e de frenagem do veículo para garantir uma condução suave:

- ao fazer com que o veículo ganhe velocidade, quando esta se aproxima do valor que ele julga ser adequado para o trecho de pista em que transita, ele deve diminuir progressivamente a pressão no pedal do acelerador, fazendo com que a aceleração real do veículo diminua e eventualmente se atinja a velocidade constante desejada;
- Em uma frenagem, os freios devem começar a ser aplicados com pouca intensidade e com antecedência. Após esse período de frenagem suave, ao se aproximar do ponto de parada, os freios devem ser aplicados com mais intensidade, sendo que o aumento deve ser progressivo. Finalmente, quando o veículo estiver próximo de parar, a pressão no pedal do freio deve ser aliviada, porém não completamente: isso evita o "chacoalhão" de uma parada brusca.³⁵

Finalmente, note que uma apreciação mais profunda das situações discutidas aqui exigem conhecimentos de dinâmica e de energia e potência. Tais conteúdos serão discutidos nos capítulos posteriores e poderemos revisitar essas questões posteriormente.

³⁵ Em uma frenagem de emergência, no entanto, estamos interessados na maior diminuição possível da velocidade, no menor espaço possível. Nesse caso os freios devem ser aplicados com toda a intensidade possível, porém sem deixar que as rodas se travem — pois isso fará com que se perca o controle direcional do veículo --. Nesse tipo de frenagem, o sistema ABS é muito útil.

2 Vetores

Para que possamos estender o tratamento do movimento obtido no Capítulo 1 a três dimensões, vamos precisar utilizar vetores. Neste capítulo discutiremos tais objetos e algumas de suas propriedades.

2.1 Introdução

As grandezas físicas podem ser divididas em dois tipos: escalares e vetoriais. As escalares são aquelas que são compostas por um valor numérico e, na maioria das vezes, uma unidade. Podemos citar como exemplos desse tipo de grandeza a temperatura, o tempo e a massa. Se, por exemplo, denotarmos uma temperatura como "25,0 °C" temos uma informação completa.

Já no caso de grandezas vetoriais, temos — além de um valor numérico e de uma unidade — uma direção no espaço 1 e um sentido 2 . No movimento retilíneo a linha reta onde ocorre o movimento é a direção, enquanto o sentido denotamos simplesmente pelo sinal. Note, portanto, que um movimento unidimensional tem todas as características de um vetor, apesar de permitir um tratamento simplificado através de uma variável x para a posição que se comporta como um escalar 3 Para que possamos trabalhar em duas ou três dimensões, no entanto, precisamos tratar algumas grandezas como vetores propriamente.

As regras de soma, subtração, multiplicação e divisão para grandezas escalares são aquelas da álgebra comum e não nos oferecem dificuldades. Os vetores, por sua vez, possuem propriedades diferentes de soma, subtração, e multiplicação; além disso, não existe o conceito de divisão entre dois vetores. Teremos que verificar exatamente como realizar operações envolvendo vetores e nos acostumar com suas propriedades diferenciadas em relação ao escalares.

2.2 Representação geométrica de um vetor

O exemplo mais simples de vetor é o *deslocamento*. Se ocorre um deslocamento em um plano entre os pontos A e B, o vetor deslocamento é geometricamente uma "flecha" que liga os dois pontos, partindo de A e apontando para B. Veja que $n\~ao$ importa o caminho percorrido, o vetor liga os pontos em linha reta (Figura 2.2). Nessa definição estão englobadas claramente as três propriedades vetoriais:

Direção: A reta que liga A a B;

Sentido: De A para B;

Figura 2.1: Ilustração de um deslocamento entre os pontos *A* e *B*. Por mais que o caminho percorrido seja distinto da "linha que liga os dois pontos", o deslocamento é sempre ao longo de tal reta.

¹ Uma direção no espaço é simplesmente uma linha reta.

² A partir de um ponto qualquer de uma reta, podemos nos mover em dois sentidos, um para cada extremidade.

³ Veremos adiante que a posição *x* é na verdade uma *projeção* de um vetor em uma direção do espaço. De fato, as projeções se comportam como escalares.

Figura 2.2: Destacamos nesta figura a direção do deslocamento através de uma linha reta pontilhada. Além disso, mostramos o valor do deslocamento, que é o próprio valor de distância.

⁴ Veremos que manter essa escala não é uma tarefa fácil: muitas vezes os vetores de uma mesma grandeza podem ter tamanhos inconvenientes se respeitarmos a mesma escala. Em alguns casos, o módulo do vetor pode até mesmo ser desconhecido. Nesses casos, optamos por denotar mais precisamente a direção e o sentido dos vetores, deixando o comprimento das flechas como um indicador qualitativo.

Figura 2.3: Um vetor \vec{a} qualquer, cujo módulo é denotado por a .

 5 Os matemáticos costumam olhar com cara feia que fala em "módulo" de um vetor. Eles preferem o termo *norma de um vetor*, e usam a notação $\|\vec{a}\|$. Na Física, no entanto, todos usam o termo "módulo".

Módulo: O módulo do vetor está associado ao seu comprimento e, para o deslocamento entre *A* e *B*, é a própria distância em linha reta entre os dois pontos.

No caso de outras grandezas — como a velocidade, por exemplo — também associamos o módulo ao comprimento do vetor, porém não temos uma relação direta entre seu tamanho geométrico e o módulo: podemos adotar que um vetor com 1,0 cm denote uma velocidade de 1,0 m/s ou 20,0 m/s. Mesmo para o deslocamento, ao fazermos um desenho, adotamos esse tipo de fator de escala: 1,0 cm pode denotar 1,0 m, ou 1,0 km, por exemplo. Apesar disso, ao representarmos vários vetores da mesma grandeza, devemos utilizar o mesmo fator de proporcionalidade.⁴

Finalmente, resta notar que matematicamente, um vetor é denotado por uma pequena flecha sobre um símbolo

a,

ou por um símbolo em negrito

b.

Adotaremos o primeiro tipo de notação, porém a segunda é mais comum em textos mais avançados. Além disso, ao utilizarmos somente a letra usada para denotar o vetor, sem a flecha e sem negrito, entende-se que se trata do módulo do vetor. Alternativamente, podemos usar $|\vec{a}|$ para denotar o módulo⁵. Se, por exemplo, temos um vetor \vec{a} como o da Figura 2.3, o símbolo a se refere ao módulo de tal vetor.

2.3 Operações envolvendo vetores

Para os vetores, temos as seguintes operações matemáticas possíveis:

- soma;
- subtração;
- multiplicação de um vetor por um escalar;
- multiplicação de um vetor por outro, resultando em um escalar;
- multiplicação de um vetor por outro, resultando em um vetor.

Tais operações diferem daquelas realizadas com escalares: devido ao fato de que os vetores têm direção e sentido, por exemplo, temos que a soma de dois vetores não é dada pela soma de seus módulos. Veremos a seguir como realizar essas operações, exceto as duas últimas que não serão necessárias tão cedo, e as veremos quando for conveniente.

2.3.1 Soma

Dados dois vetores \vec{a} e \vec{b} , a soma $\vec{a} + \vec{b}$ pode ser "calculada" geometricamente da seguinte forma (Figura 2.4): tomamos o segundo vetor (\vec{b}) e o transladamos de forma que sua origem coincida com o final do primeiro vetor (\vec{a}); traçamos um vetor da origem do primeiro vetor até o final do segundo (\vec{c}). Este último vetor (\vec{c}) representa a soma dos dois primeiros:

$$\vec{c} = \vec{a} + \vec{b}. \tag{2.1}$$

Se fizermos o contrário, isto é, transladarmos o primeiro vetor até que sua origem coincida com o final do segundo e traçarmos um vetor do início do segundo até o final do primeiro, veremos que o resultado obtido será o mesmo (Figura 2.5).

Logo, concluímos que a soma é comutativa:

$$\vec{a} + \vec{b} = \vec{b} + \vec{a}. \tag{2.2}$$

Devido ao fato de que os vetores formam a figura de um paralelogramo, é comum que a soma geométrica dos vetores seja feita através da elaboração de tal figura. Por isso, a soma geométrica também é conhecida como "regra do paralelogramo".

Graficamente, através da Figura 2.6, podemos ver também que a soma de vetores é associativa: se considerarmos a soma dos vetores \vec{a} , \vec{b} , e \vec{c} , percebemos que

$$\vec{a} + \vec{b} + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$$
 (2.3)

$$= (\vec{a} + \vec{b}) + \vec{c} \tag{2.4}$$

$$= (\vec{a} + \vec{c}) + \vec{b}. \tag{2.5}$$

2.3.2 Vetor nulo

Na Figura 2.7 temos uma série de deslocamentos sucessivos, iniciando pelo vetor \vec{a} . Após efetuar todos os delocamentos, voltamos para o ponto inicial, tendo um deslocamento total nulo. Nesse caso, temos que a soma dos vetores é igual ao *vetor nulo*:

$$\vec{a} + \vec{b} + \vec{c} + \vec{d} + \vec{e} + \vec{f} = \vec{0}.$$
 (2.6)

É comum se omitir a flecha sobre o zero ao se expressar o vetor nulo, pois não existe ambiguidade como no caso de um vetor não-nulo, onde o símbolo sem a flecha é utilizado para denotar o módulo do vetor.

Figura 2.4: Soma de dois vetores.

Figura 2.5: Soma de dois vetores através da "regra do paralelogramo".

Figura 2.6: Associatividade: note que $\vec{d} = (\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{c}) + \vec{b}$.

Figura 2.7: A soma de um conjunto de vetores que forma um caminho fechado é um *vetor nulo*.

2.3.3 Subtração

Vamos supor que temos dois vetores \vec{a} e \vec{b} , de forma que

$$\vec{a} + \vec{b} = 0. \tag{2.7}$$

É evidente nesse caso que o vetor \vec{b} é igual ao vetor \vec{a} em direção e módulo, porém tem o sentido oposto. Vamos definir o operador "-" como sendo o responsável por essa alteração de sentido. Assim, a expressão acima pode ser denotada como:

$$\vec{a} - \vec{a} = 0. \tag{2.8}$$

Assim, a subtração de dois vetores é igual a soma do primeiro com *menos o segundo*, onde "menos o segundo" significa que esse vetor será tomado no sentido contrário e somado ao primeiro. A Figura 2.8 mostra graficamente tal processo. Note também que

$$\vec{a} - \vec{b} = -(\vec{b} - \vec{a}). \tag{2.9}$$

Subtração através da regra do paralelogramo

Uma observação que nos permite calcular mais facilmente a diferença $\vec{a} - \vec{b}$ entre dois vetores é ilustrada na Figura 2.9: podemos transladar o vetor \vec{b} até que seu início coincida com o início do vetor \vec{a} e então desenhamos uma seta iniciando na ponta do vetor que aparece após o sinal de menos (\vec{b}) e terminando na ponta do vetor que aparece antes do sinal (\vec{a}) . Construindo um paralelogramo, verificamos que uma das "diagonais" do paralelogramo nos dá a soma e a outra nos dá a diferença entre os vetores.

2.3.4 Multiplicação e divisão por escalar

Podemos multiplicar um vetor por um escalar α , obtendo outro vetor:

$$\vec{c} = \alpha \vec{b}. \tag{2.10}$$

O módulo do vetor \vec{c} será dado por $|\vec{c}|=|\alpha||\vec{b}|$. Note que a multiplicação por um escalar positivo só é capaz de alterar o módulo do vetor, uma vez que escalares não possuem informação de direção e sentido, e por isso essas informações são preservadas. Caso tenhamos uma multiplicação por um escalar negativo, além da alteração no módulo, ocorre uma mudança de sentido.

Para determinarmos o efeito de uma divisão por um escalar, como por exemplo

$$\vec{b} = \frac{\vec{a}}{\alpha},\tag{2.11}$$

basta a reescrevermos como um produto pelo inverso do escalar:

$$\vec{b} = \frac{\vec{a}}{\alpha} \tag{2.12}$$

$$=\frac{1}{\alpha}\vec{a}.\tag{2.13}$$

Figura 2.8: Para determinarmos a diferença $\vec{a}-\vec{b}$, determinamos o vetor $-\vec{b}$ e então realizamos a soma $\vec{a}+(-\vec{b})$.

Figura 2.9: Subtração: podemos calcular a subtração ligando as extremidades dos vetores, quando eles partem de uma mesma origem.

Figura 2.10: Ao multiplicarmos um vetor por um escalar positivo, obtemos um novo vetor que preserva as informações de direção e sentido do vetor inicial, porém que tem um módulo diferente.

$$\vec{e} = -\vec{a}$$

$$\vec{f} = -2.3 \vec{a}$$

Figura 2.11: O efeito de multiplicar um vetor por um escalar negativo é o de alterar o seu módulo e o seu sentido.

2.3.5 Equações envolvendo vetores

Os vetores podem ser escritos em equações e seguem as mesmas regras que os escalares. Se

$$\vec{c} = \vec{a} + \vec{b},\tag{2.14}$$

então podemos escrever

$$\vec{a} = \vec{c} - \vec{b} \tag{2.15}$$

$$\vec{b} = \vec{c} - \vec{a} \tag{2.16}$$

$$\vec{a} + \vec{b} - \vec{c} = 0, \tag{2.17}$$

isto é, podemos passar um vetor de um membro para o outro de uma equação assim como em uma equação envolvendo escalares. A Figura 2.12 mostra as relações acima através da representação geométrica dos vetores.

2.4 Sistemas de referência

A análise de fenômenos físicos utilizando a representação gráfica de vetores é muito trabalhosa e suscetível a erros. Por isso, vamos utilizar um *sistema de referência* para denotar os vetores. A grande vantagem de fazer isso é o fato de que podemos tratar eixos perpendiculares de maneira independente um do outro. Além disso, esse tratamento se resume a manipular grandezas que denominamos como *componentes vetoriais* e que se comportam como *escalares* ao invés de vetores.

Grande parte da utilidade de um sistema de referência provém de uma escolha adequada para a direção dos eixos: mesmo que *qualquer* conjunto de eixos não-colineares⁶ sejam capazes de descrever as propriedades vetoriais, uma escolha adequada do sistema de referência leva a uma grande simplificação do tratamento matemático

\vec{c} \vec{b} \vec{c} \vec{d} \vec{d}

Figura 2.12: Relações entre vetores tais que $\vec{c} = \vec{a} + \vec{b}$.

⁶ Um vetor ou eixo é colinear a outro se ambos têm a mesma direção.

2.4.1 Bases vetoriais

Se tomarmos dois vetores não-colineares em um plano, por exemplo, podemos escrever qualquer outro vetor em termos desses dois através de

$$\vec{v} = \alpha \vec{e}_1 + \beta \vec{e}_2. \tag{2.18}$$

O processo descrito pela equação acima consiste em tomar os vetores \vec{e}_1 e \vec{e}_2 e os multiplicar por uma grandeza escalar, obtendo dois novos vetores

$$\vec{a}_1 = \alpha \vec{e}_1 \tag{2.19}$$

$$\vec{a}_2 = \beta \vec{e}_2 \tag{2.20}$$

e então determinar um novo vetor a partir da soma desses dois últimos:

$$\vec{a} = \vec{a}_1 + \vec{a}_2. \tag{2.21}$$

Os vetores \vec{e}_1 e \vec{e}_2 formam o que chamamos de *base vetorial*, enquanto os escalares α e β são chamados de *componentes vetoriais*. Dados

Figura 2.13: Dados dois vetores não colineares, podemos usar as propriedades de multiplicação de vetor por escalar e de soma para que possamos construir um novo vetor.

valores adequados para α e β , podemos atingir qualquer ponto do plano definido pelos vetores \vec{e}_1 e \vec{e}_2 . Na Figura 2.14 temos alguns exemplos de vetores obtidos através da base da Figura 2.13, com os respectivos valores das constantes escalares. Note que para que possamos varrer todo o espaço bidimensional, também precisamos utilizar valores negativos de α e β . Na Figura 2.15 temos um exemplo de vetor determinado dessa forma.

Figura 2.14: Escalares α e β diferentes resultam em vetores diferentes.

Figura 2.15: Para que possamos varrer todo o espaço, as constantes escalares devem assumir também valores negativos. Na figura acima, $\alpha = 1$, enquanto $\beta = -1$.

⁷ Tal processo é conhecido como decomposição vetorial, e os escalares α e β são denominados como componentes vetoriais nas direções \hat{e}_1 e \hat{e}_2 .

⁸ É importante destacar aqui que definimos o ângulo θ entre o vetor \vec{a} e o vetor \vec{e}_1 da base como sendo aquele medido no sentido anti-horário a partir do vetor da base. Precisamos tomar esse cuidado pois caso contrário teremos problemas

Figura 2.16: Projeção do vetor \vec{a} na direção de \vec{e}_1 .

⁹ A projeção de um vetor \vec{a} qualquer em uma direção é sempre dada por $a\cos\theta$, onde a é o módulo do vetor e θ é o ângulo entre o vetor e a direção na qual o estamos projetando. Podemos a interpretar como a "sombra" do vetor quando iluminado por um feixe de luz que incide perpendicularmente à direção sobre a qual estamos projetando.

Cálculo das componentes vetoriais, vetores unitários

Vamos supor que tenhamos um vetor \vec{a} conhecido, que faz um ângulo θ com o vetor \vec{e}_1 da base. Como podemos determinar os valores de α e β que nos permitem reconstruir o vetor \vec{a} a partir dos vetores da base?⁷

Para determinarmos os valores das constantes escalares, vamos considerar a Figura 2.13. Como assumimos que a base é conhecida, sabemos os vetores \vec{e}_1 e \vec{e}_2 , seus módulos, e o ângulo ω entre tais vetores⁸. Se conhecemos o valor do ângulo θ , podemos determinar a $projeção^9$ de \vec{a} na direção de \vec{e}_1 :

Note que a projeção $a\cos\theta$ tem o mesmo tamanho que o vetor \vec{a}_1 , mais a distância tracejada até o ângulo reto. Essa distância, no entanto, pode ser calculada através de

$$a_2 \cos \omega$$

pois o vetor \vec{a}_2 pode ser transladado para a posição da linha pontilhada à direita. Assim, temos a relação

$$a\cos\theta = a_1 + a_2\cos\omega. \tag{2.22}$$

Lembrando que os vetores \vec{a}_1 e \vec{a}_2 são definidos como

$$\vec{a}_1 = \alpha \vec{e}_1$$
$$\vec{a}_2 = \beta \vec{e}_2,$$

podemos reescrever essa relação como

$$\alpha e_1 = a\cos\theta - \beta e_2\cos\omega. \tag{2.23}$$

Veja que mesmo conhecendo os valores de a, θ , e_1 , e_2 e ω , não é possível determinar os valores de α e β , pois temos uma equação com duas incógnitas.

Voltando à figura, podemos perceber ainda que ao fazer a projeção do vetor \vec{a} na direção de \vec{e}_2 , obtemos:

Figura 2.17: Projeção do vetor \vec{a} na direção de \vec{e}_2 .

Desta vez, observando que a distância tracejada entre o final de \vec{a}_2 e o ângulo reto é dada por 10

$$a_1 \cos \omega$$
,

obtemos a relação

$$a\cos(\omega - \theta) - a_1\cos\omega = a_2, \tag{2.24}$$

ou ainda

$$a\cos(\omega - \theta) - \alpha e_1 \cos \omega = \beta e_2, \tag{2.25}$$

onde utilizamos as definições de \vec{a}_1 e \vec{a}_2 .

 10 Note que a linha pontilhada horizontal é paralela ao vetor \vec{a}_1 . Logo, o ângulo entre a reta pontilhada e a tracejada também é ω .

Podemos agora montar um sistema de equações a partir do qual é possível determinar os valores de α e β :

$$\begin{cases} \alpha e_1 = a \cos \theta - \beta e_2 \cos \omega \\ \beta e_2 = a \cos(\omega - \theta) - \alpha e_1 \cos \omega. \end{cases}$$
 (2.26)

Para simplificar a solução do sistema acima, podemos tomar os vetores da base de forma que seus módulos sejam iguais a 1:

$$|\vec{e}_1| = |\vec{e}_2| = 1. \tag{2.27}$$

Temos portanto vetores unitários, também conhecidos como versores, sendo que geralmente são representados como

$$\hat{e}_1$$
, \hat{e}_2 .

Note que esse passo não é necessário, uma vez que assumimos que os módulos dos vetores da base são conhecidos, porém ele ajuda a simplificar o processo de determinar os escalares α e β . Resolvendo o sistema, obtemos:

$$\alpha = \frac{a[\cos\theta - \cos(\omega - \theta)\cos\omega]}{1 - \cos^2\omega}$$

$$\beta = \frac{a[\cos(\omega - \theta) - \cos\theta\cos\omega]}{1 - \cos^2\omega}.$$
(2.28)

$$\beta = \frac{a[\cos(\omega - \theta) - \cos\theta\cos\omega]}{1 - \cos^2\omega}.$$
 (2.29)

Bases ortogonais, componentes vetoriais

Apesar de podermos utilizar dois vetores quaisquer — desde que eles não sejam colineares —, é mais simples descrever os vetores em termos de uma base ortogonal, 11 isto é, uma base em que o ângulo ω entre os vetores é de 90°. ¹² Nesse caso, verificamos através das Equações (2.28) e (2.29) que α e β podem ser obtidos de maneira muito mais simples:

$$\alpha = \frac{a[\cos\theta - \cos(90^{\circ} - \theta)\cos 90^{\circ}]}{1 - \cos^{2} 90^{\circ}}$$
 (2.30)

$$= a\cos\theta \tag{2.31}$$

$$\beta = \frac{a[\cos(90^{\circ} - \theta) - \cos\theta\cos 90^{\circ}]}{1 - \cos^{2} 90^{\circ}}$$
(2.32)

$$= a \operatorname{sen} \theta, \tag{2.33}$$

onde utilizamos o fato de que $\cos 90^{\circ} = 0$ e $\cos(90^{\circ} - \theta) = \sin \theta$. Temos, portanto, uma grande simplificação do processo de determinação das componentes vetoriais.

Devemos notar ainda que para um sistema de referência composto por uma base ortogonal, as projeções do vetor a nas direções dos vetores da base são as próprias componentes do vetor em termos de tais vetores unitários. Isso permite que a determinação das componentes seja sempre feita utilizando funções as funções trigonométricas seno e cosseno, de uma forma bastante simples: se tomarmos o vetor \vec{a} na Figura 2.18, percebemos que ele é dado por

$$\vec{a} = \alpha \vec{e}_1 + \beta \vec{e}_2. \tag{2.34}$$

¹¹ Uma base ortogonal constituida por vetores unitários é denominada base ortonormal.

Figura 2.18: Decomposição de um vetor \vec{a} em uma base ortogonal.

¹² Sempre que conhecemos dois vetores que formam uma base (isto é, dois vetores que não são colineares), podemos calcular dois outros vetores que são ortogonais entre si através do processo de ortogonalização de Gram-Schmidt. Você verá isso na disciplina de Álgebra Linear.

Novamente, da figura, observamos que 13

$$|\alpha \vec{e}_1| = a \cos \theta \tag{2.35}$$

$$|\beta \vec{e}_2| = a \operatorname{sen} \theta. \tag{2.36}$$

Como escolhemos \vec{e}_1 e \vec{e}_2 como unitários, então é claro que

$$\alpha = a\cos\theta \tag{2.37}$$

$$\beta = a \operatorname{sen} \theta. \tag{2.38}$$

Em Física¹⁴ geralmente utilizamos uma base ortogonal com vetores unitários para descrever os vetores. Os eixos de referência utilizados são denominados como eixos x e y, e contam com vetores unitários denominados \hat{i} e \hat{j} , respectivamente¹⁵. Já para as componentes, ao invés de utilizarmos α e β , utilizamos simplesmente a_x e a_y . Considerando essa notação, temos que a Equação (2.34) para o vetor \vec{a} pode ser reescrita como (veja a Figura 2.19)

$$\vec{a} = a_x \hat{\imath} + a_y \hat{\jmath}, \tag{2.39}$$

onde

$$a_x = a\cos\theta \tag{2.40}$$

$$a_{y} = a \operatorname{sen} \theta. \tag{2.41}$$

Essa escolha é tão comum que muitas vezes simplesmente descrevemos um vetor em termos de suas componentes em um sistema de referência, como em

$$\vec{a} = (a_x, a_y), \tag{2.42}$$

ou

$$\vec{a} = \begin{pmatrix} a_x \\ a_y \end{pmatrix}. \tag{2.43}$$

Apesar de ser mais comum termos as informações de ângulo em relação ao eixo x, também podemos ter informações acerca do ângulo entre o vetor e o eixo y (Figura 2.20). O tratamento para a obtenção das componentes é igualmente válido, e também consiste em decompor o vetor através das funções trigonométricas:

$$a_{x} = a \operatorname{sen} \sigma \tag{2.44}$$

$$a_{y} = a\cos\sigma. \tag{2.45}$$

Ao analisar uma situação como a resolução de um problema, devemos estar atentos e utilizar a decomposição correta. ¹⁶

Notação módulo-ângulo

Da seção anterior, fica evidente que além de podermos descrever um vetor \vec{a} através de suas componentes nos eixos x e y, podemos defini-lo completamente em duas dimensões através do ângulo θ entre o vetor e um dos eixos de referência, e do módulo a do vetor. Em três dimensões, precisamos dos ângulos θ e ϕ entre o vetor e os

 13 Note que as expressões para as projeções do vetor \vec{a} podem ser calculadas através das definições das funções trigonométicas

$$sen \theta = \frac{C_o}{h} \qquad \cos \theta = \frac{C_a}{h},$$

onde C_0 e C_a representam os catetos oposto e adjacente, respectivamente, enquanto h representa a hipotenusa.

¹⁴ Não cremos em bases nãoortonormais, mas que elas existem, existem.

¹⁵ Veja que o que chamamos de eixos de referência são simplesmente as direções dos próprios vetores unitários. Ao empregarmos essa nomenclatura, no entanto, assumimos sempre que se trata de uma base ortogonal.

Figura 2.19: Sistema de referência ortonormal com vetores unitários \hat{i} e \hat{j} .

Figura 2.20: Decomposição de vetores usando o ângulo σ entre o vetor e o eixo y.

¹⁶ O melhor a se fazer é verificar quais são as expressões para o cálculo das componentes utilizando a própria definição das funções trigonométricas seno e cosseno.

eixos de referência, além do próprio módulo do vetor. Nesta notação, ainda estamos nos valemos da definição dos eixos coordenados, uma vez que eles são utilizados para definir os ângulos.

Em duas dimensões, podemos observar a partir das Equações (2.40) e (2.41) que

$$\frac{a_y}{a_x} = \frac{a \sin \theta}{a \cos \theta} \tag{2.46}$$

$$=\tan\theta$$
, (2.47)

de onde podemos escrever¹⁷

$$\theta = \arctan \frac{a_y}{a_x}. (2.48)$$

Equivalentemente, podemos verificar esse resultado utilizando relações trigonométricas através da Figura 2.20.

Também podemos encontrar uma relação entre as componentes e o módulo do vetor através de

$$a_x^2 + a_y^2 = (a\cos\theta)^2 + (a\sin\theta)^2$$
 (2.49)

$$= a^2 \cos^2 \theta + a^2 \sin^2 \theta \tag{2.50}$$

$$= a^2(\operatorname{sen}^2\theta + \cos^2\theta) \tag{2.51}$$

$$=a^2$$
, (2.52)

onde usamos o fato de que

$$\operatorname{sen}^2 \theta + \cos^2 \theta = 1, \tag{2.53}$$

o que nos permite escrever o módulo a do vetor em termos de suas componentes como

$$a = \sqrt{a_x^2 + a_y^2}. (2.54)$$

Novamente, esse resultado pode ser obtido geometricamente ao empregarmos o teorema de Pitágoras no triângulo mostrado na Figura ??.

Portanto, se conhecemos o vetor em termos de duas componentes, podemos calcular seu módulo e o ângulo que ele faz com o eixo horizontal e vice-versa. Concluímos então que as duas notações são completamente equivalentes.

Em três dimensões, podemos determinar os ângulos θ e ϕ , além do módulo do vetor, através de

$$a = \sqrt{a_x^2 + a_y^2 + a_z^2} (2.55)$$

$$\theta = \arccos \frac{a_z}{a_z} \tag{2.56}$$

$$\theta = \arccos \frac{a_z}{r}$$

$$\phi = \arctan \frac{a_y}{a_x}.$$
(2.56)

Sistema de referência em três dimensões

Para que possamos descrever o caso tridimensional, precisamos de uma base composta de três vetores não-colineares. Da mesma maneira que no caso bidimensional, o tratamento utilizando uma

¹⁷ A função arco tangente (arctan) é a função inversa da função tangente. Seu efeito é determinar o ângulo correspondente a um dado valor de tangente. Se tomarmor $\arctan(\tan \theta)$, obtemos simplesmente o ângulo θ .

Figura 2.21: Sistema de coordenadas em três dimensões.

base ortogonal, com vetores unitários 18 , é mais simples. Portanto, adicionamos mais um eixo de referência, denominado z, perpendicular aos eixos x e y, sendo que o vetor unitário que aponta em sua direção é denominado \hat{k} . Para que possamos decompor um vetor \vec{a} qualquer em termos de uma base tridimensional, precisamos de mais um ângulo entre o vetor e um dos eixos. Em geral, se utiliza um ângulo entre o vetor e o eixo z. Nesse caso podemos determinar as componentes através de

$$a_{x} = a \operatorname{sen} \theta \cos \phi \tag{2.58}$$

$$a_{y} = a\sin\theta\sin\phi\tag{2.59}$$

$$a_z = a\cos\theta. \tag{2.60}$$

Exemplo: Decomposição de vetores

Dados três vetores deslocamento \vec{a} , \vec{b} , e \vec{c} , decomponha-os em um sistema de referência ortogonal, composto por um eixo horizontal x e um eixo vertical y, sabendo que seus módulos são

$$a = 3 \,\mathrm{m}$$
 $b = 4.5 \,\mathrm{m}$ $c = 2.50 \,\mathrm{m}$

e que fazem ângulos θ_a , θ_b , e θ_c com o eixo horizontal dados por

$$\theta_a = 20^{\circ}$$
 $\theta_b = 36^{\circ}$ $\theta_c = 58^{\circ}$

Podemos ilustrar os vetores no sistema de referência através da Figura 2.23. Para determinarmos as componentes, basta utilizarmos as Expressões (2.40) e (2.41):

$$a_x = a \cos \theta_a$$
 $a_y = a \sin \theta_a$
 $= (3 \text{ m}) \cdot (\cos 20^\circ)$ $= 2,82 \text{ m}$ $= 1,03 \text{ m}$

$$b_x = a \cos \theta_a$$
 $b_y = a \sin \theta_a$
 $= (4.5 \text{ m}) \cdot (\cos 36^\circ)$ $= (4.5 \text{ m}) \cdot (\sin 36^\circ)$
 $= 3.64 \text{ m}$ $= 2.65 \text{ m}$

$$c_x = a \cos \theta_a$$
 $c_y = a \sin \theta_a$
 $= (2.5 \,\mathrm{m}) \cdot (\cos 58^\circ)$ $= (2.5 \,\mathrm{m}) \cdot (\sin 58^\circ)$
 $= 1.32 \,\mathrm{m}$ $= 2.12 \,\mathrm{m}$.

Exemplo: Decomposição de vetores em um referencial rotacionado

A Figura 2.24 mostra dois sistemas de referência ortogonais — um constituido por um eixo x horizontal e um eixo y vertical, e outro constituido por dois eixos x' e y' —, sendo que o segundo foi obtido a partir de uma rotação do primeiro sistema de referência por um ângulo $\omega=30^\circ$. Se um vetor \vec{a} tem módulo $a=2.5\,\mathrm{m}$ e faz um ângulo $\theta=45^\circ$ em relação ao eixo horizontal, quais são as componentes do vetor nos eixos do sistema rotacionado?

¹⁸ Esse tipo de base é denominada *orto-*

Figura 2.22: Vetores unitários em um sistema de referência tridimensional.

Figura 2.23: Vetores em relação ao sistema de referência.

Figura 2.24: O vetor \vec{a} em relação aos dois sistemas de referência.

Figura 2.25: As componentes do vetor \vec{a} no sistema de referência rotacionado estão ligadas ao valor do ângulo θ' .

Para que possamos determinar as componentes do vetor \vec{a} nos eixos x' e y', precisamos somente determinar o ângulo θ' que o vetor faz com o eixo x', uma vez que o módulo do vetor é constante. A partir da figura, podemos verificar facilmente que tal ângulo corresponde a

$$\theta' = \theta - \omega \tag{2.61}$$

$$=45^{\circ}-30^{\circ}$$
 (2.62)

$$=15^{\circ}$$
. (2.63)

Assim, temos que

$$a_{x'} = a\cos\theta' \qquad \qquad a_{y'} = a\sin\theta' \qquad (2.64)$$

$$= (2.5 \,\mathrm{m}) \cdot (\cos 15^{\circ}) \qquad \qquad = (2.5 \,\mathrm{m}) \cdot (\sin 15^{\circ}) \qquad (2.65)$$

$$\approx 2,415\,\mathrm{m} \qquad \qquad \approx 0,647\,\mathrm{m} \qquad (2.66)$$

Exemplo: Decomposição de vetores em um referencial rotacionado

A Figura 2.24 mostra dois sistemas de referência ortogonais — um constituido por um eixo x horizontal e um eixo y vertical, e outro constituido por dois eixos x' e y' —, sendo que o segundo foi obtido a partir de uma rotação do primeiro sistema de referência por um ângulo $\omega = 20^\circ$. Se um vetor \vec{a} tem componentes $a_x = 2$ m e $a_y = 1$ m, quais são as componentes do vetor nos eixos do sistema rotacionado?

Figura 2.26: O vetor \vec{a} em relação aos dois sistemas de referência.

A situação do problema acima difere do exemplo da seção anterior simplesmente no fato de que não temos o módulo a e o ângulo θ , mas sim as componentes a_x e a_y do vetor \vec{a} . Para que possamos determinar as componentes do vetor \vec{a} nos eixos x' e y', tanto o ângulo θ' que o vetor faz com o eixo x', quanto o módulo do vetor.

Podemos determinar o módulo através da Equação (2.54):

$$a = \sqrt{a_x^2 + a_y^2} (2.67)$$

$$=\sqrt{(2\,\mathrm{m})^2+(1\,\mathrm{m})^2} \tag{2.68}$$

$$=\sqrt{(4\,\mathrm{m}^2)+(1\,\mathrm{m}^2)}\tag{2.69}$$

$$= \sqrt{5 \,\mathrm{m}^2} \tag{2.70}$$

$$\approx 2,236 \,\mathrm{m}.$$
 (2.71)

Para determinarmos o ângulo θ' , precisamos antes determinar o ângulo θ . A partir da Equação (2.48), temos

$$\theta = \arctan\left(\frac{a_y}{a_x}\right) \tag{2.72}$$

$$=\arctan\left(\frac{(1\,\mathrm{m})}{(2\,\mathrm{m})}\right) \tag{2.73}$$

$$=\arctan\left(\frac{1}{2}\right) \tag{2.74}$$

$$\approx 26,565^{\circ}$$
. (2.75)

Assim, temos para θ'

$$\theta' = \theta - \omega \tag{2.76}$$

$$= 26,565^{\circ} - 20^{\circ} \tag{2.77}$$

$$=6,565^{\circ}.$$
 (2.78)

Finalmente, temos que

$$a_{x'} = a\cos\theta' \qquad \qquad a_{y'} = a\sin\theta' \qquad (2.79)$$

$$= (2,236 \,\mathrm{m}) \cdot (\cos 6,565^{\circ}) \qquad = (2,236 \,\mathrm{m}) \cdot (\sin 6,565^{\circ}) \quad (2.80)$$

$$\approx 2,221 \,\mathrm{m}$$
 $\approx 0,256 \,\mathrm{m}$ (2.81)

2.4.4 Projeções completas

Na Figura 2.27, mostramos a projeção do vetor \vec{a} em dois sistemas de referências diferentes. No sistema composto pelos eixos x e y, verificamos que as componentes são

$$a_{x} = a\cos\theta \tag{2.82}$$

$$a_{y} = a \operatorname{sen} \theta. \tag{2.83}$$

Quais são as componentes do vetor \vec{a} nos eixos x' e y'?

Verificamos através da figura que o vetor \vec{a} aponta na mesma direção do eixo x', portanto, podemos utilizar a decomposição com um ângulo de 0° :

$$a_{x'} = a\cos 0^{\circ} \tag{2.84}$$

$$a_{v'} = a \operatorname{sen} 0^{\circ},$$
 (2.85)

o que resulta em

$$a_{x'} = a \tag{2.86}$$

$$a_{v'} = 0. (2.87)$$

Figura 2.27: Projeção de um vetor \vec{a} em dois sistemas de referência diferentes. No sistema de referência x'-y' as componentes são dadas por $a_{x'}=a$ e $a_{y'}=0$.

Figura 2.28: Podemos utilizar tanto o ângulo ϕ , quanto o ângulo θ em relação ao eixo x para determinar as componentes de um vetor, porém devemos estar atentos ao sinal.

¹⁹ Em geral a informação que temos, ou que é fácil de se verificar, é um ângulo entre o vetor e um dos eixos do sistema de referência, sendo que costumeiramente se escolhe um ângulo que seja menor que 90°.

²⁰ Lembre-se que *a* representa o módulo do vetor, o que é sempre positivo.

Concluímos, portanto, que se um vetor aponta na mesma direção que um eixo de referência, a projeção de tal vetor nesse eixo é igual ao próprio módulo do vetor. Por outro lado, se o vetor é perpendicular ao eixo, a projeção nele é nula.

2.4.5 Projeções negativas

Algo que é bastante importante notarmos é o fato de que muitos vetores têm uma ou mais componentes negativas. Isso está ligado ao simples fato de que para os gerar a partir dos vetores da base escolhida, precisamos que as componentes tenham valores negativos. Por isso, é importante que ao decompor um vetor em termos de uma base/sistema de referência, saibamos identificar se tais sinais são necessários. Se determinarmos os valores das componentes através de

$$a_{x} = a\cos\theta \tag{2.88}$$

$$a_{y} = a \operatorname{sen} \theta, \tag{2.89}$$

onde o ângulo θ é medido a partir do eixo x, no sentido anti-horário, os sinais serão "gerados" apropriadamente pelas próprias funções trigonométricas.

Existem dois casos, no entanto, em que simplesmente utilizar as expressões acima não será suficiente. O primeiro deles está relacionado ao fato de que muitas vezes não temos, ou não é conveniente utilizar o ângulo θ como definido acima. Se, por exemplo, tivermos o ângulo ϕ na Figura 2.28, podemos determinar os *valores numéricos* das projeções do vetor ao usar tal ângulo, porém não obteremos os sinais adequados. Na figura, claramente a componente a_x é negativa, uma vez que $90^\circ < \theta < 180^\circ$, $\log o^{20}$

$$a_x = a\cos\theta < 0. \tag{2.90}$$

Por outro lado, podemos verificar que

$$|a_x| = a\cos\phi,\tag{2.91}$$

o que pode ser obtido através das relações trigonométricas. Como temos que $0^{\circ} < \phi < 90^{\circ}$, o que implica que $a \cos \phi > 0$, utilizamos a notação de módulo, pois sabemos que $a_x < 0$. Logo

$$a_x = -a\cos\phi,\tag{2.92}$$

onde precisamos inserir o sinal "manualmente" para que a componente tenha o sinal negativo necessário. Isso se deve ao fato de que estamos utilizando um método geométrico para determinar a componente — estamos usando a projeção —, porém ele não é capaz de descrever o seu sinal.

A maneira mais simples e intuitiva de verificar o sinal adequado para a componente do vetor quando utilizamos um ângulo diferente do θ na Figura 2.28 é observarmos a "sombra" da projeção no eixo que estamos analisando. Se ela aponta no sentido negativo do eixo,

sabemos que a componente deve ser negativa; se ela aponta no sentido positivo, sabemos que ela é positiva. O sinal negativo deve ser então introduzido "manualmente", da mesma maneira que fizemos na Equação (2.92) acima.

O segundo caso em que devemos ter atenção à questão do sinal é quando temos um sistema ortogonal "heterodoxo". Rigorosamente, devemos ter que o semieixo positivo y aponta em uma direção e sentido que faz um ângulo de 90° em relação ao semieixo x positivo, sendo que o ângulo deve ser medido no sentido anti-horário. Muitas vezes, no entanto, adotamos eixos que não respeitam essa regra. Nesses casos, mesmo que utilizemos as funções trigonométricas para o ângulo θ medido a partir do eixo x, em sentido anti-horário, podemos ter problemas de sinal.

Na Figura 2.29 temos um sistema de referência onde adotamos o eixo vertical y apontando para baixo. Nesse caso, ao calcularmos o valor de a_y utilizando o ângulo γ mostrado, obtemos

$$a_{y} = a\cos\gamma > 0, \tag{2.93}$$

porém a projeção do vetor no eixo *y* aponta no sentido negativo. A expressão acima, portanto, está incorreta, pois resulta em uma projeção com o sinal inadequado. Devemos inserir o sinal manualmente:

$$a_{\gamma} = -a\cos\gamma > 0. \tag{2.94}$$

Novamente, a maneira mais simples de determinar a projeção corretamente é utilizar um ângulo entre 0° e 90°, utilizar a função trigonométrica adequada e então verificar o sinal através da "sombra" do vetor no eixo.

Exemplo: Decomposição de um vetor com uma componente negativa

O vetor \vec{a} mostrado na Figura 2.30 tem módulo 2,0 m e aponta em uma direção que faz um ângulo $\phi=30^\circ$ abaixo do eixo x. Determine as componentes a_x e a_y do vetor.

Podemos determinar o "tamanho" das projeções através das funções trigonométricas seno e cosseno, utilizando o ângulo ϕ . Obtemos então,

$$a_x = a\cos\phi \tag{2.95}$$

$$a_{y} = a \operatorname{sen} \phi. \tag{2.96}$$

Sabemos, porém, que a componente a_y deve ser negativa, uma vez que a projeção aponta no sentido negativo do eixo. Como o módulo de a é maior que zero, assim como o seno de 30° , devemos inserir o sinal "manualmente":

$$a_{\nu} = -a \operatorname{sen} \phi. \tag{2.97}$$

Calculando os valores numéricos, obtemos

$$a_x = a\cos\phi \qquad \qquad a_y = -a\sin\phi \qquad (2.98)$$

$$= (2.0 \,\mathrm{m}) \cdot (\cos 30^{\circ}) \qquad = -(2.0 \,\mathrm{m}) \cdot (\sin 30^{\circ}) \tag{2.99}$$

$$\approx 1,732 \,\mathrm{m}$$
 = -1,0 m (2.100)

Figura 2.29: Vetor \vec{a} em relação aos eixos do sistema de referência.

Figura 2.30: Vetor \vec{a} em relação aos eixos do sistema de referência.

Figura 2.31: Vetor \vec{a} em relação aos eixos do sistema de referência, mostrando também o ângulo θ entre o vetor e o eixo x, medido no sentido anti-horário.

Figura 2.32: Disposição do vetor \vec{a} em relação ao sistema de coordenadas e direção do eixo sobre o qual queremos determinar a projeção de tal vetor.

Figura 2.33: Definição dos ângulos β e γ .

Figura 2.34: Os ângulos α e β estão relacionados através de $\alpha - \beta = 180^{\circ}$. Note que β é um ângulo negativo, pois é medido no sentido horário.

Alternativamente, podemos simplesmente determinar o valor do ângulo θ (veja a Figura 2.31) e utilizar as Expressões (2.40) e (2.41):

$$\theta = 360^{\circ} - \phi \tag{2.101}$$

$$= 360^{\circ} - 30^{\circ} \tag{2.102}$$

$$=330^{\circ},$$
 (2.103)

de onde obtemos

$$a_{x} = a\cos\phi \qquad \qquad a_{y} = -a\sin\phi \qquad (2.104)$$

$$= (2.0 \,\mathrm{m}) \cdot (\cos 330^{\circ}) \qquad = (2.0 \,\mathrm{m}) \cdot (\sin 330^{\circ}) \qquad (2.105)$$

$$\approx 1,732 \,\mathrm{m}$$
 = -1,0 m (2.106)

Exemplo: Projeção de um vetor em um eixo qualquer

Na Figura 2.32 temos um vetor \vec{a} , cujas coordenadas em relação ao sistema de referência xy mostrado são $a_x = -0.866$ e $a_y = 0.5$. Determine a projeção do vetor na direção do eixo tracejado mostrado na figura, sabendo que o ângulo α indicado é de 30°.

Para que possamos determinar a projeção do vetor na direção desejada precisamos de duas informações: o módulo do vetor e o ângulo formado entre ele e tal direção. A determinação do módulo é bastante simples, bastando utilizar a Expressão (2.54):

$$a = \sqrt{a_x^2 + a_y^2}$$
 (2.107)
= $\sqrt{(-0.866)^2 + 0.5^2}$ (2.108)

$$=\sqrt{(-0.866)^2+0.5^2}\tag{2.108}$$

$$\approx 1.$$
 (2.109)

Observando a Figura 2.33, verificamos que podemos obter o ângulo β entre o vetor e a reta tracejada pela diferença entre o ângulo θ e o ângulo γ , onde o primeiro é o ângulo entre o vetor e o eixo xpositivo e o segundo o ângulo entre a reta tracejada e o eixo x. Para determinarmos o ângulo θ , basta utilizarmos a Expressão (2.48):

$$\theta = \arctan\left(\frac{a_y}{a_x}\right) \tag{2.110}$$

$$=\arctan\left(\frac{-0,866}{0.5}\right) \tag{2.111}$$

$$\approx -30^{\circ}$$
 (2.112)

$$=150^{\circ}$$
. (2.113)

Note que ao utilizarmos uma calculadora para determinar o ângulo, é comum que a função arctan retorne um valor negativo para o ângulo, o que equivale nesse caso ao ângulo entre o eixo x e a continuação da reta pontilhada no quarto quadrante, medido no sentido horário veja a Figura 2.34 —. Para determinarmos o ângulo θ que desejamos, basta somar 180°.

Basta agora determinarmos o ângulo γ . Através da Figura 2.33, podemos notar que o ângulo entre a reta tracejada e o eixo y é igual a

 α — pois são alternos internos, veja a Figura 2.35 —. Como o ângulo entre os eixos x e y é de 90°, temos que

$$\gamma = 120^{\circ}$$
. (2.114)

Concluímos, portanto, que

$$\beta = 30^{\circ}.$$
 (2.115)

Finalmente, podemos determinar a projeção do vetor \vec{a} na direção do eixo tracejado:

$$a_e = a\cos 30^\circ \tag{2.116}$$

$$\approx 0.866.$$
 (2.117)

Verificaremos agora uma propriedade importante dos vetores e que facilita o tratamento de sistemas que precisam ser descritos vetorialmente: a independência dos eixos para as operações de soma, subtração, e multiplicação por escalar. Verificaremos que sempre que uma dessas três operações precisa ser feita entre dois vetores quaisquer, basta que façamos tal operação para as componentes do vetor em cada um dos eixos de referência.

Na Figura 2.36, temos uma soma geométrica de vetores. Temos também um sistema de referência sobre o qual projetamos as componentes dos vetores \vec{a} e \vec{b} . Se tomarmos o vetor \vec{c} vemos que

$$c_{\mathcal{X}} = a_{\mathcal{X}} + b_{\mathcal{X}} \tag{2.118}$$

$$c_y = a_y + b_y,$$
 (2.119)

ou seja, podemos simplesmente somar as componentes dos vetores nos eixos para poder calcular as componentes do vetor resultante. Isto nos dá uma forma muito mais simples para realizar somas e subtrações dos vetores. Se considerarmos ainda que a subtração nada mais é do que a soma de um vetor cujo sentido é invertido pelo sinal, concluímos que a subtração de dois vetores também pode ser realizada através das componentes, de forma que se

$$\vec{d} = \vec{a} - \vec{b},\tag{2.120}$$

então

$$d_x = a_x - b_x \tag{2.121}$$

$$d_{y} = a_{y} - b_{y}. (2.122)$$

Finalmente, ao multiplicarmos um vetor por um escalar, sabemos que o vetor resultante tem a mesma direção e sentido que o vetor original, porém seu módulo é alterado. Assim, se

$$\vec{e} = \alpha \vec{a}, \tag{2.123}$$

Figura 2.35: Ângulos alternos internos são iguais.

Figura 2.36: Soma através de componentes vetoriais.

então

$$e_x = e\cos\theta \tag{2.124}$$

$$e_{\nu} = e \operatorname{sen} \theta, \tag{2.125}$$

porém temos que

$$e = \alpha a, \tag{2.126}$$

o que nos permite escrever

$$e_{x} = \alpha a \cos \theta \tag{2.127}$$

$$e_{y} = \alpha a \operatorname{sen} \theta. \tag{2.128}$$

Os termos $a\cos\theta$ e $a\sin\theta$ na expressão acima nada mais são do que as próprias componentes do vetor \vec{a} projetadas nos eixos de referência. Portanto, concluímos que

$$e_{x} = \alpha a_{x} \tag{2.129}$$

$$e_{y} = \alpha a_{y}. \tag{2.130}$$

Note que verificamos nas expressões acima que as operações envolvendo as componentes de cada dimensão (eixo) ocorrem de forma que não é necessário saber informações acerca das demais dimensões. Issp significa que se os eixos são ortogonais, eles atuam independentemente uns dos outros.²¹. Isso será fundamental para que possamos simplificar a interpretação de movimentos bi e tridimensionais no Capítulo 3, mas tal resultado não se limita à cinemática.

²¹ Isso não é verdade para equações que envolvam o produto vetorial entre dois vetores. Veremos tal produto somente no Capítulo ??

2.4.7 Operações e equações através de vetores unitários

A grande vantagem de escrever os vetores em termos das componentes vetoriais é que podemos realizar cálculos de uma maneira bastante cômoda. Se temos a soma de dois vetores

$$\vec{a} = a_x \hat{\imath} + a_y \hat{\jmath} + a_z \hat{k} \tag{2.131}$$

$$\vec{b} = b_x \hat{\imath} + b_y \hat{\jmath} + b_z \hat{k}, \tag{2.132}$$

podemos escrever

$$\vec{c} = a_x \hat{\imath} + a_y \hat{\jmath} + a_z \hat{k} + b_x \hat{\imath} + b_y \hat{\jmath} + b_z \hat{k}.$$
 (2.133)

Devido ao versor unitário, podemos somar as componente, colocandoo em evidência, obtendo

$$\vec{c} = (a_x + b_x)\hat{\imath} + (a_y + b_y)\hat{\jmath} + (a_z + b_z)\hat{k}. \tag{2.134}$$

Em casos mais complexos, como veremos mais adiante, a praticidade da notação de versores unitários se tornará mais evidente.

Exemplo: Determinação de um vetor soma

Dados dois vetores \vec{a} e \vec{b} tais que

$$\vec{a} = 2,45 \,\mathrm{m} \,\hat{\imath} - 4,32 \,\mathrm{m} \,\hat{\jmath}$$
 (2.135)

$$\vec{b} = 1,67 \,\mathrm{m} \,\hat{\imath} + 3,33 \,\mathrm{m} \,\hat{\jmath},$$
 (2.136)

determine as componentes, o módulo e o ângulo em relação ao eixo x dos vetores \vec{c} e \vec{d} , dados por

$$\vec{c} = \vec{a} + \vec{b} \tag{2.137}$$

$$\vec{d} = \vec{a} - \vec{b}. \tag{2.138}$$

Podemos determinar os vetores simplesmente realizando as operações de acordo com a notação de vetores unitários:

$$\vec{c} = (2.45 \,\mathrm{m} \,\hat{\imath} - 4.32 \,\mathrm{m} \,\hat{\jmath}) + (1.67 \,\mathrm{m} \,\hat{\imath} + 3.33 \,\mathrm{m} \,\hat{\jmath})$$
 (2.139)

$$= (2,45 \,\mathrm{m} + 1,67 \,\mathrm{m}) \,\hat{\imath} + (-4,32 \,\mathrm{m} + 3,33 \,\mathrm{m}) \,\hat{\jmath} \tag{2.140}$$

$$= 4,12 \,\mathrm{m} \,\,\hat{\imath} - 0,99 \,\mathrm{m} \,\,\hat{\jmath} \tag{2.141}$$

(2.142)

$$\vec{d} = (2.45 \,\mathrm{m} \,\hat{\imath} - 4.32 \,\mathrm{m} \,\hat{\jmath}) - (1.67 \,\mathrm{m} \,\hat{\imath} + 3.33 \,\mathrm{m} \,\hat{\jmath}) \tag{2.143}$$

$$= (2.45 \,\mathrm{m} - 1.67 \,\mathrm{m}) \,\hat{\imath} + (-4.32 \,\mathrm{m} - 3.33 \,\mathrm{m}) \,\hat{\jmath} \tag{2.144}$$

$$= 0.78 \,\mathrm{m} \,\,\hat{\imath} - 7.65 \,\mathrm{m} \,\,\hat{\jmath}. \tag{2.145}$$

Note que as componentes dos vetores no eixo x são os próprios valores numéricos que multiplicam o vetor unitário $\hat{\imath}$, enquanto as componentes no eixo y são os números que multiplicam o vetor unitário $\hat{\jmath}$.

Os módulos dos vetores são calculados através da Expressão (2.54) resultando em

$$c = \sqrt{c_x^2 + c_y^2} (2.146)$$

$$= \sqrt{(4.12\,\mathrm{m})^2 + (-0.99\,\mathrm{m})^2} \tag{2.147}$$

$$\approx 4,24\,\mathrm{m} \tag{2.148}$$

$$d = \sqrt{d_x^2 + d_y^2} (2.149)$$

$$= \sqrt{(0.78 \,\mathrm{m})^2 + (-7.65 \,\mathrm{m})^2} \tag{2.150}$$

$$\approx 7,69\,\mathrm{m} \tag{2.151}$$

Finalmente, os ângulos são dados a partir da Expressão (2.48):

$$\theta_c = \arctan\left(\frac{c_y}{c_x}\right) \tag{2.152}$$

$$=\arctan\left(\frac{-0.99\,\mathrm{m}}{4.12\,\mathrm{m}}\right)\tag{2.153}$$

$$\approx -13.51^{\circ} \tag{2.154}$$

$$\theta_d = \arctan\left(\frac{d_y}{d_x}\right) \tag{2.155}$$

$$=\arctan\left(\frac{-7,65\,\mathrm{m}}{0,78\,\mathrm{m}}\right)\tag{2.156}$$

$$\approx -84.18^{\circ}$$
. (2.157)

Note que ambos os ângulos são negativos, o que significa simplesmente que eles são medidos a partir do eixo *x*, no sentido horário.

3 Movimentos bi e tridimensionais

Neste capítulo vamos redefinir as variáveis cinemáticas em termos de vetores, utilizando as propriedades descritas no Capítulo 2. Obteremos assim relações vetoriais entre as variáveis cinemáticas que nos darão uma descrição completa do movimento em três dimensões. Para simplificar a interpretação dos movimentos, nos valeremos do fato de que as equações da cinemática podem ser escritas como um conjunto de três equações — uma para cada eixo — sendo que em diversos movimentos um ou dois eixos apresentarão equações triviais.

3.1 Introdução

Para que possamos descrever o movimento da maneira mais geral possível, devemos considerar um espaço tridimensional. Ao, por exemplo, descrever o movimento de um veículo em uma estrada, é necessário descrever o movimento em três eixos distintos: um eixo vertical e dois eixos horizontais. Somente considerando esses três eixos somos capazes de descrever os movimentos de subida e descida, movimentos laterais, e o próprio movimento do veículo ao longo da estrada.¹

Apesar de a descrição completa do movimento exigir três dimensões, é comum que possamos tratar o movimento em duas, ou mesmo uma dimensão. Isso se deve ao fato de que ao dividirmos as equações nos eixos do sistema de referência, poderemos ignorar uma ou duas dessas equações simplesmente por não haver movimento no eixo a que elas correspondem. Para o caso do movimento em linha reta, por exemplo, ao alinharmos um dos eixos do sistema de referência tridimensional ao longo do movimento, temos uma situação em que não há movimento nos outros dois eixos. Isso corresponde ao que denominamos como *movimento unidimensional* no Capítulo 1, ou seja, o movimento unidimensional é só um caso especial do movimento tridimensional. No caso do movimento bidimensional temos algo semelhante, porém só conseguimos eliminar um dois eixos.

Nas próximas seções, utilizaremos o conteúdo do capítulo anterior para definir as variáveis cinemáticas em termos de vetores. Após isso, analisaremos algumas propriedades do movimento que só se manifestam nos casos bi e tridimensionais. Finalmente, alguns movimentos bidimensionais específicos serão estudados em detalhes.

3.2 Variáveis cinemáticas

Assim como no caso unidimensional, precisamos definir os conceitos de posição e deslocamento, para só então definir velocidade e acelera-

¹ Um outro exemplo, conceitualmente mais simples, é o de uma partícula carregada que é lançada em uma região do espaço que tem um campo magnético constante: dependendo do ângulo entre a direção do campo magnético e a direção da velocidade com que a partícula entre na região do campo, a trajetória descrita pela partícula é helicoidal — isto é, a partícula segue uma trajetória com a mesma forma que uma "espiral" de caderno —.

Figura 3.1: Um vetor posição em três dimensões.

ção. Novamente, vamos verificar que as variáveis cinemáticas podem ser descritas como funções do tempo, sendo que para cada valor da variável t teremos vetores posição, velocidade e aceleração específicos.

3.2.1 Posição

Quando tratamos do movimento unidimensional, utilizamos a distância até a origem (isto é, um ponto de referência) para descrever a posição. Utilizando vetores, podemos fazer o mesmo para um movimento bidimensional ou tridimensional: vamos escolher um ponto como origem de um sistema de referência ortogonal e descrever a posição por um vetor que parte da origem e termina no ponto onde o objeto se encontra. Logo, temos que o vetor posição será dado por (Figura 3.1)

$$\vec{r} = r_x \hat{\imath} + r_y \hat{\jmath} + r_z \hat{k}, \tag{3.1}$$

onde usamos a notação de vetores unitários.

O conjunto de posições ocupadas por um corpo ao longo do tempo é representado pela evolução temporal do vetor posição \vec{r} . Como a posição pode variar no tempo, temos que tal vetor é uma função do tempo $\vec{r}(t)$:

Figura 3.2: A cada valor de tempo t temos um vetor posição \vec{r} associado. A função $\vec{r}(t)$ descreve a relação entre essas duas variáveis.

Figura 3.3: A trajetória de um corpo pode ser descrita através do conjunto de posições $\vec{r}(t)$ ocupadas nos diferentes valores de tempo t. Na figura, destacamos três posições correspondentes a três valores diferentes de tempo.

Note que se temos uma função $\vec{r}(t)$, as projeções do vetor posição nos eixos de referência seguem funções de forma que

$$r_{x} = x(t) \tag{3.2}$$

$$r_{y} = y(t) \tag{3.3}$$

$$r_z = z(t), (3.4)$$

de forma que

$$\vec{r}(t) = x(t)\,\hat{\imath} + y(t)\,\hat{\jmath} + z(t)\,\hat{k}.\tag{3.5}$$

As funções x(t), y(t), e z(t) equivalem às funções unidimensionais que foram definidas para a posição no movimento unidimensional, uma para cada eixo.

3.2.2 Deslocamento

Geometricamente, o vetor deslocamento é aquele que liga o ponto inicial ao ponto final, em linha reta (Figura 3.4). Podemos interpretar tal vetor através da diferença entre dois vetores \vec{r}_i e \vec{r}_f que denotam a posição nos instantes inicial e final. Assim:

$$\Delta \vec{r} = \vec{r}_f - \vec{r}_i,\tag{3.6}$$

Utilizando a notação de versores para escrever os vetores em termos dos eixos de referência, temos para \vec{r}_i e \vec{r}_f

$$\vec{r}_i = r_x^i \hat{\imath} + r_y^i \hat{\jmath} + r_z^i \hat{k} \tag{3.7}$$

$$\vec{r}_f = r_x^f \hat{\imath} + r_y^f \hat{\jmath} + r_z^f \hat{k}. \tag{3.8}$$

Consequentemente, o vetor deslocamento pode ser escrito como

$$\Delta \vec{r} = (r_x^f \hat{i} + r_y^f \hat{j} + r_z^f \hat{k}) - (r_x^i \hat{i} + r_y^i \hat{j} + r_z^i \hat{k})$$
 (3.9)

$$= (r_x^f - r_x^i)\hat{\imath} + (r_y^f - r_y^i)\hat{\jmath} + (r_z^f - r_z^i)\hat{k}.$$
 (3.10)

Note que podemos identificar os termos acima com as próprias variações de posição em cada um dos eixos

$$\Delta x = r_x^f - r_x^i \tag{3.11}$$

$$\Delta y = r_y^f - r_y^i \tag{3.12}$$

$$\Delta z = r_z^f - r_z^i, \tag{3.13}$$

o que nos permite escrever

$$\Delta \vec{r} = \Delta x \,\hat{\imath} + \Delta y \,\hat{\jmath} + \Delta z \,\hat{k}. \tag{3.14}$$

Vemos que é possível separar o movimento descrito pelo vetor posição em três componentes distintas, uma para cada eixo coordenado². Isso facilita a análise do movimento, permitindo que tratemos cada uma das componentes de acordo com suas particularidades.

Figura 3.4: O vetor deslocamento $\Delta \vec{r}$ pode ser calculado a partir da diferença entre os vetores \vec{r}_f e \vec{r}_i .

Figura 3.5: Com o auxílio de um sistema de referência ortogonal, verificamos os deslocamentos independentes em cada um dos eixos.

² Novamente, situações que envolvem o produto vetorial não podem ser separados em eixos distintos. Verificaremos situações desse tipo no Capítulo ??.

3.2.3 Velocidade média

Em três dimensões, caso um corpo sofra um deslocamento, ele o faz com uma velocidade média dada por

$$\langle \vec{v} \rangle = \frac{\Delta \vec{r}}{\Delta t},\tag{3.15}$$

onde estendemos a definição de velocidade ao caso bi e tridimensional ao substituir o deslocamento ao longo de um eixo retilíneo x pelo vetor deslocamento $\Delta \vec{r}$. Como, nesse caso, temos a divisão de um vetor por um escalar, a direção do vetor velocidade média é a mesma do deslocamento. O módulo, no entanto, é diferente, assim como a dimensão: temos que [v] = L/T e o módulo é dado pelo valor numérico obtido pela divisão do módulo do vetor deslocamento pelo valor do intervalo de tempo em que o movimento ocorre. Decompondo o vetor, temos

$$\langle \vec{v} \rangle = \frac{\Delta x \, \hat{\imath} + \Delta y \, \hat{\jmath} + \Delta z \, \hat{k}}{\Delta t} \tag{3.16}$$

$$= \frac{\Delta x}{\Delta t}\hat{\imath} + \frac{\Delta y\hat{\jmath}}{\Delta t} + \frac{\Delta z\hat{k}}{\Delta t}$$
 (3.17)

$$= \langle v \rangle_x \,\hat{\imath} + \langle v \rangle_y \,\hat{\jmath} + \langle v \rangle_z \,\hat{k}. \tag{3.18}$$

Mais uma vez, verificamos a independência entre os eixos coordenados.

Descrição vetorial do movimento unidimensional

Como definimos a velocidade média em termos do vetor deslocamento, podemos escrever

$$\Delta \vec{r} = \langle \vec{v} \rangle \, \Delta t. \tag{3.19}$$

No caso especial de termos uma velocidade constante em módulo, direção, e sentido, o vetor velocidade média é igual ao vetor velocidade instantânea³. Logo, podemos escrever

$$\vec{r}_f = \vec{r}_i + \vec{v}\Delta t. \tag{3.20}$$

De acordo com a equação acima, as posições \vec{r}_f ocupadas pela partícula estão todas ao logo da direção determinada pelo vetor \vec{v} , o que é mostrado na Figura 3.6. Se a velocidade não for constante em módulo, o movimento continua a ser retilíneo, porém a expressão acima não será válida.⁴

Note ainda que a expressão para a posição final acima pode ser reescrita como

$$\vec{r}_f = (r_x^i + v_x \Delta t)\hat{\imath} + (r_y^i + v_y \Delta t)\hat{\jmath}. \tag{3.21}$$

Se optarmos por um sistema de referência onde o eixo x é na mesma direção que o movimento e escolhermos uma origem que reside na direção do vetor velocidade, verificamos que

$$r_y^i \equiv 0 \tag{3.22}$$

$$v_y = 0, (3.23)$$

Figura 3.6: Se a direção e o sentido de \vec{v} são constantes, o movimento é retilíneo. Note que $\vec{v} \Delta t$ representa o deslocamentoda partícula.

Figura 3.7: A escolha de um sistema de coordenadas adequado transforma um movimento "bidimensional" em um movimento unidimensional.

 $^{^3}$ Pois a razão $\Delta \vec{r}/\Delta t$ resulta sempre no mesmo vetor $\langle \vec{v} \rangle$, ou seja, obtemos sempre o mesmo valor de módulo, a mesma direção e o mesmo sentido.

⁴ Para determinar a posição final no caso de uma velocidade cujo módulo varia no tempo é necessário empregar uma integral.

de onde obtemos

$$\vec{r}_f = (r_x^i + v_x \Delta t)\hat{\imath}. \tag{3.24}$$

Ignorando o caráter vetorial dessa expressão, obtemos

$$x = x_i + v_x t, (3.25)$$

ou seja, recuperamos a descrição que utilizamos anteriormente para o movimento unidimensional.

3.2.4 Velocidade instantânea

Podemos definir a velocidade instantânea a partir da Equação 3.15, bastando tomar o limite $\Delta t \rightarrow 0$:

$$\vec{v} = \lim_{\Delta t \to 0} \langle \vec{v} \rangle \tag{3.26}$$

$$=\lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} \tag{3.27}$$

$$= \lim_{\Delta t \to 0} \left(\frac{\Delta x}{\Delta t} \hat{i} + \frac{\Delta y}{\Delta t} \hat{j} + \frac{\Delta z}{\Delta t} \hat{k} \right). \tag{3.28}$$

Podemos utilizar a propriedade de que o limite de uma soma de termos é igual à soma dos limites de cada termo separadamente⁵ para escrever

 $\vec{v} = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} \hat{i} + \lim_{\Delta t \to 0} \frac{\Delta y}{\Delta t} \hat{j} + \lim_{\Delta t \to 0} \frac{\Delta z}{\Delta t} \hat{k}$ (3.29)

$$=v_x\hat{\imath}+v_y\hat{\jmath}+v_z\hat{k}. \tag{3.30}$$

Portanto, podemos simplesmente definir o vetor velocidade através da velocidade nos eixos x, y e z. Note que ao tomarmos o limite, o fato de que o limite de uma soma é igual à soma dos limites preserva a separação entre os eixos que verificamos para a velocidade média.

Finalmente, devemos destacar que é comum descrever situações físicas e/ou problemas e exercícios e se referir a um valor numérico particular de velocidade. Nesses casos subentende-se que estamos nos referindo ao *módulo* do vetor velocidade.⁶

Direção da velocidade instantânea

Podemos determinar a direção da velocidade instantânea se analisarmos a trajetória de uma partícula em um plano xy, como mostrado na Figura 3.8. Verificamos que para $\Delta t \to 0$, o vetor "deslocamento instantâneo" $\delta \vec{r}$, dado por $\delta \vec{r}$

$$\delta \vec{r} = \lim_{\Delta t \to 0} \Delta \vec{r},\tag{3.31}$$

é tangente à trajetória. Como a direção da velocidade é a mesma de $\delta \vec{r}$, temos que o vetor velocidade instantânea é tangente à trajetória.

Variação do vetor velocidade com módulo constante

Devido ao fato de que agora estamos trabalhando com vetores, temos a possibilidade de que exista uma variação de velocidade ao

 $^{^7}$ Utilizaremos a notação $\delta \xi$ para todas as variáveis do tipo $\Delta \xi$ quando tomamos o limite $\Delta t \to 0$. Podemos interpretar isso como uma variação infinitamente pequena.

Figura 3.8: No limite $\Delta t \to 0$, temos que a direção do vetor deslocamento instantâneo $\delta \vec{r}$ no ponto denotado por \vec{r} é a mesma direção que a da reta que tange a curva no ponto.

⁵ Você verá isso na disciplina de Cálculo.

⁶ Tal valor também é chamado de *veloci-*

Figura 3.9: Velocidades em diferentes instantes e a correspondente variação da velocidade $\Delta \vec{v}$ determinada através da diferença entre os vetores.

⁸ Veja que nessa situação a velocidade certamente não é constante, já que sua direção varia continuamente, porém podemos tomá-la como constante devido ao fato que estamos considerando um tempo infinitesimal.

Figura 3.10: Todo movimento pode ser considerado como uma série de deslocamentos infinitamente pequenos. Na figura, cada vetor é retilíneo, porém como são pequenos, temos uma boa aproximação para uma curva.

Figura 3.11: O efeito de um vetor velocidade continuamente perpendicular ao vetor posição é o de causar uma rotação neste último.

considerarmos dois vetores velocidade \vec{v}_i e \vec{v}_f cujos módulos são *iguais*. Na Figura 3.9 temos uma partícula que efetua um movimento circular com velocidade cujo módulo é constante. Consideramos um instante inicial t_i e um instante final t_f , sendo que os vetores velocidade apontam em direções diferentes. Determinando a diferença

$$\Delta \vec{v} = \vec{v}_f - \vec{v}_i, \tag{3.32}$$

podemos ver que ela não é nula, isto é, mesmo no caso de termos dois vetores com módulos iguais, a diferença entre eles pode ser não nula.

Esse aspecto é uma característica dos vetores e também se manifesta com o vetor deslocamento, como também pode ser visto na Figura 3.9. Nesse caso, no entanto, nos parece mais natural que tal diferença não seja nula, já que os vetores posição e deslocamento têm uma manifestação mais concreta do que o vetor velocidade. Veremos ao estudar o movimento circular que essa propriedade terá consequências interessantes para a aceleração, que definiremos na próxima seção.

Discussão: Rotação de um vetor

No caso de termos uma trajetória que não seja retilínea, podemos interpretar o deslocamento de acordo com deslocamentos infinitesimais na direção da velocidade instantânea:⁸

$$\delta \vec{r} = \vec{v} \delta t. \tag{3.33}$$

Na Figura 3.10 mostramos como uma sucessão de deslocamentos retilíneos curtos são uma aproximação boa para um movimento curvilíneo. Note que a direção e sentido dos vetores mostrados são justamente a direção e sentido do vetor velocidade instantânea em cada ponto da trajetória.

Através desse conceito de deslocamento infinitesimal, podemos descrever um movimento que acontece com uma velocidade sempre perpendicular ao vetor posição. Na Figura 3.11 temos uma partícula cuja posição é descrita por um vetor \vec{r} que parte de uma origem fixada no centro de um circulo. A partícula segue a trajetória circular, sendo que a velocidade é sempre tangente à trajetória, ou seja, a velocidade é sempre perpendicular ao vetor posição. Tal situação descreve uma propriedade importante de um vetor: quando ele ele é somado a uma variação infinitesimal que é perpendicular ao próprio vetor, o vetor resultante têm o mesmo módulo, porém é rotacionado na direção da variação infinitesimal.

3.2.5 Aceleração média

No caso do cálculo da velocidade média, bastou redefinirmos a velocidade em termos do vetor deslocamento $\Delta \vec{r}$ para verificarmos que a velocidade é uma grandeza vetorial. Devido a essa conclusão, temos que uma variação de velocidade pode ser uma variação tanto de

módulo, quanto de direção ou sentido. Portanto, precisamos redefinir a aceleração em termos de um vetor $\Delta \vec{v}$:

$$\langle \vec{a} \rangle = \frac{\Delta \vec{v}}{\Delta t} \tag{3.34}$$

$$= \frac{\Delta v_x}{\Delta t}\hat{\imath} + \frac{\Delta v_y}{\Delta t}\hat{\jmath} + \frac{\Delta v_z}{\Delta t}\hat{k}$$
 (3.35)

$$= \langle a \rangle_x \,\hat{\imath} + \langle a \rangle_y \,\hat{\jmath} + \langle a \rangle_z \,\hat{k}. \tag{3.36}$$

A direção do vetor aceleração média é a própria direção do vetor $\Delta \vec{v}$.

3.2.6 Aceleração instantânea

Assim como no caso do cálculo da velocidade instantânea, podemos calcular a aceleração instantânea vetorial através do limite $\Delta t \rightarrow 0$:

$$\vec{a} = \lim_{\Delta t \to 0} \langle \vec{a} \rangle \tag{3.37}$$

$$= \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t} \tag{3.38}$$

$$= \lim_{\Delta t \to 0} \frac{\Delta v_x}{\Delta t} \hat{\imath} + \lim_{\Delta t \to 0} \frac{\Delta v_y}{\Delta t} \hat{\jmath} + \lim_{\Delta t \to 0} \frac{\Delta v_z}{\Delta t} \hat{k}, \tag{3.39}$$

onde utilizamos novamente a propriedade de que o limite da soma é a soma dos limites. Obtemos então

$$\vec{a} = a_x \hat{\imath} + a_y \hat{\jmath} + a_z \hat{k}, \tag{3.40}$$

e observamos que para o caso da aceleração, também temos que as componentes do vetor são dadas pelos valores de aceleração dos eixos x, y e z.

Conforme verificamos na seção anterior, existem casos em que a velocidade se mantém constante em módulo, mas que mesmo assim possuem uma variação direção do vetor velocidade. Isso se deve ao fato de que temos um $\Delta \vec{v}$ dado por

$$\Delta \vec{v} = \vec{v}_f - \vec{v}_i, \tag{3.41}$$

que é diferente de zero: isso implica na existência de um vetor aceleração, não obstante o fato de que o módulo da velocidade não muda. Na Seção (3.4), analisaremos o movimento circular e verificaremos que a aceleração pode ser dividida em duas componentes, uma tangencial e outra centrípeta, e que cada uma delas causa modificações diferentes na velocidade: a primeira altera somente o módulo do vetor velocidade, enquanto a segunda altera somente a direção de tal vetor. Antes, no entanto, vamos analisar o movimento de projéteis, cujo tratamento é mais simples.

3.3 Movimento balístico

O movimento de um corpo lançado com uma velocidade inicial que faz um ângulo com a horizontal é conhecido como movimento balístico. Neste movimento, podemos usar a propriedade da decomposição da velocidade para analisar o movimento em cada eixo separadamente.

Figura 3.12: Para que um vetor velocidade diminua seu módulo, deve atuar sobre ele uma aceleração \vec{a} durante um intervalo de tempo Δt . Tal aceleração deve ser na mesma direção que a velocidade, porém com sentido oposto, caso contrário ela causaria também uma rotação no vetor.

Figura 3.13: Decomposição do vetor aceleração.

Figura 3.14: Uma escolha ruim do sistema de referência fará com que ambas as componentes do vetor aceleração sejam não nulas, o que implica em tratar ambos os eixos como movimentos acelerados.

 9 Decompondo o vetor aceleração temos $a_x = a\cos 270^\circ = 0$ e $a_y = a\sin 270^\circ = -a = -g$.

¹⁰ No eixo horizontal a aceleração também é constante, afinal zero é uma constante.

 11 O arrasto faz com que a trajetória perca o aspecto parabólico e também faz com que o ângulo de maior alcance seja maior que 45° , já que a força de arrasto é menor em camadas superiores da atmosfera. Se o lançamento atingir alturas e distâncias muito grandes, ele tende a descrever uma elípse, já que a aceleração gravitacional diminui com r^{-2} . Finalmente, devido à força de Coriolis, característica de referenciais girantes, como é o caso de um referencial fixado na superfície da Terra, temos que a "parábola" descrita pelo projétil não está contida num plano.

Conforme discutido na Seção 1.8, verificamos experimentalmente que um corpo em queda livre está sujeito a uma aceleração constante, cujo módulo é igual a $g \approx 9.8\,\mathrm{m/s^2}$, cuja direção é vertical, e cujo sentido é para baixo: verificamos, por exemplo, que se um corpo tem velocidade inicial nula, após alguns instantes sob ação da gravidade ele passa a ter uma velocidade final que aponta para baixo. Ao lançarmos o corpo verticalmente para cima, verificamos que a velocidade diminui gradualmente até que se torne nula, momento a partir do qual o corpo passa a se deslocar para baixo. Sabemos que, se a aceleração é constante, vale a relação

$$\vec{v}_f = \vec{v}_i + \vec{a}\Delta t. \tag{3.42}$$

Essa equação, associada às observações acerca dos lançamentos verticais, nos leva à conclusão de que a aceleração da gravidade é um vetor cuja direção é vertical e cujo sentido é para baixo.

Se adotarmos um sistema de referência constituído por um eixo horizontal x e um eixo vertical y, podemos escrever a aceleração como

$$\vec{a} = a_x \,\hat{\imath} + a_y \,\hat{\jmath}. \tag{3.43}$$

No entanto, sabemos que a aceleração gravitacional não altera velocidades horizontais, pois ela é dirigida verticalmente. Logo, $a_x \equiv 0$ e⁹

$$\vec{a} = a_{y} \hat{\jmath} \tag{3.44}$$

$$= -g \hat{\jmath}. \tag{3.45}$$

Devido a uma boa escolha do sistema de referência, podemos tratar um movimento que ocorre sob influência da aceleração gravitacional no eixo horizontal, como um movimento com *velocidade constante*, enquanto no eixo vertical temos um movimento com *aceleração constante*¹⁰. Esses dois tipos de movimento correspondem aos dois mais simples que podemos estudar. Dessa forma, o movimento de um projétil serve como um bom exemplo de aplicação da descrição vetorial das variáveis cinemáticas.

Devemos ter em mente, no entanto, que vamos fazer sérias restrições ao modelo, que fazem com que ele não possa ser aplicado de maneira realista para muitas situações: vamos desconsiderar a força de arrasto do ar, vamos considerar que a aceleração gravitacional é uniforme, e vamos desconsiderar a rotação da Terra¹¹. Todos esses fatores podem ser muito relevantes para lançamentos a longas distâncias. Apesar disso, tais restrições não prejudicam a principal característica na qual estamos interessados: temos um movimento bidimensional que pode ser descrito de maneira simples.

3.3.1 Descrição do movimento de um projétil em termos de um eixo horizontal e um eixo vertical

Para descrever o lançamento, vamos considerar que o projétil tem uma velocidade inicial \vec{v}_i cujo módulo v_i e o ângulo θ em relação

Figura 3.15: Visão lateral do lançamento oblíquo de um projétil.

à horizontal são conhecidos. Conforme vimos na seção anterior, devemos estabelecer um sistema de referência bidimensional para descrever o movimento, tomando um eixo horizontal x e um vertical y — cujo sentido positivo aponta para cima —, sendo que essa escolha é a mais adequada pois permite que *haja aceleração somente no eixo vertical y*. Isso significa que o movimento no eixo horizontal x é um movimento com *velocidade constante*, enquanto no eixo y temos que 12

$$a_y = -g. (3.46)$$

A existência de uma aceleração constante no eixo vertical implica que o movimento pode ser descrito (nesse eixo) pelas expressões para o movimento com aceleração constante estudados no Capítulo 1

Em termos dos eixos x e y, o vetor velocidade inicial pode ser escrito como sendo

$$\vec{v}_i = v_i^x \hat{\imath} + v_i^y \hat{\jmath}, \tag{3.47}$$

onde

$$v_i^x = v_i \cos \theta \tag{3.48}$$

$$v_i^y = v_i \operatorname{sen} \theta. \tag{3.49}$$

Eixo x: Movimento com velocidade constante

Analisando o movimento no eixo x, temos uma velocidade inicial — dada por $v_i^x = v_i \cos \theta$ — e não temos nenhuma aceleração. Como podemos analisar o movimento em cada eixo de maneira completamente independente dos demais, concluímos que

$$v_i^x = \text{constante}$$
 (3.50)

$$r_x^f = r_x^i + v_x^i t, (3.51)$$

ou, usando a notação unidimensional que desenvolvemos no Capítulo 1,

$$x_f = x_i + v_i^x t. (3.52)$$

Eixo y: Movimento com aceleração constante

Verticalmente, temos um movimento com aceleração constante, dirigida para baixo. Se adotarmos o eixo *y* crescendo para cima, a

¹² Note que o sinal negativo reflete o fato de que a aceleração da gravidade aponta no sentido negativo do eixo y. Se tomássemos um eixo y cujo sentido fosse para baixo, então a aceleração da gravidade seria positiva.

Figura 3.16: O sistema de referência mais adequado para o estudo do lançamento oblíquo é aquele em que a aceleração aponta na direção de um dois eixos coordenados, ou seja, temos um eixo vertical e um horizontal.

partir das Equações (1.83) e (1.93), temos

$$v_f^y = v_i^y - a^y t (3.53)$$

$$= v_i^y + (-g)t (3.54)$$

$$=v_i^y - gt, (3.55)$$

$$r_y^f = r_y^i + v_i^y t + \frac{a}{2}t^2 (3.56)$$

$$= r_y^i + v_i^y t - \frac{g}{2}t^2, (3.57)$$

ou, usando a notação unidimensional,

$$y_f = y_i + v_i^y t + \frac{g}{2} t^2. (3.58)$$

Além das expressões acima, podemos utilizar as demais que também se aplicam ao movimento com aceleração constante:¹³

$$y_f = y_i + v_f^y t - \frac{(-g)t^2}{2} \tag{3.59}$$

$$y_f = y_i + \frac{v_i^y + v_f^y}{2}t (3.60)$$

$$(v_f^y)^2 = (v_i^y)^2 + 2(-g)\Delta y.$$
 (3.61)

3.3.2 Equações para o movimento de projéteis

Para explorar melhor as características do movimento de projéteis, a seguir vamos determinar algumas expressões que nos permitem calcular alguns resultados interessantes para o lançamento de projéteis. É importante frisar que elas podem ser aplicadas a vários exercícios/problemas, porém não são suficientes para esgotar os resultados que podem ser retirados do movimento balístico.

Altura máxima

A partir da Equação (3.61), podemos determinar qual é o valor de altura máxima que o projétil alcança ao ser lançado com velocidade \vec{v}_i . Sabemos que no ponto onde o projétil atinge a altura máxima, sua velocidade no eixo vertical deve ser nula, afinal ocorre uma inversão no sentido do movimento. Empregando a expressão (3.61), substituindo $v_f^y = 0$ e $v_i^y = v_i \operatorname{sen} \theta$, obtemos¹⁴

$$v_i \operatorname{sen} \theta = 2g\Delta y,$$
 (3.62)

e, finalmente, denotando a altura máxima por H e sabendo que $H = \Delta y$,

$$H = \frac{v_i^2 \operatorname{sen}^2 \theta}{2g}.$$
 (3.63)

Alcance horizontal

O alcance horizontal de um projétil pode ser calculado se soubermos qual é o tempo decorrido entre o objeto ser lançado e voltar à

¹³ Já assumimos a notação unidimensional nas equações abaixo, ela é a mais comum.

Figura 3.17: Altura máxima em relação ao ponto de lançamento.

¹⁴ Na dedução das equações para altura máxima, alcance horizontal e para a trajetória, escolheremos um sistema de coordenadas onde o eixo y cresce verticalmente para cima. Nesse caso, ao utilizar as fórmulas é importante que tal escolha também seja efetuada ao se resolver exercícios e problemas, respeitando a convenção que originou as fórmulas. Se isso não acontecer, ocorrerão problemas com os sinais de algumas variáveis cinemáticas.

Altura máxima atingida por um projétil

mesma posição no eixo y que ocupava no momento do lançamento. Temos então que o deslocamento Δy será nulo, logo, à partir da Equação (1.93), temos

$$y_f - y_i = v_i^y t - \frac{g}{2} t^2, (3.64)$$

ou, devido à nossa observação de que $\Delta y = 0$

$$v_i^y t = \frac{g}{2} t^2. (3.65)$$

Esta equação admite a solução t = 0, que corresponde ao momento do lançamento (o que não é particularmente útil), ou - dividindo ambos os membros da equação por t e isolando a variável t restante –

$$t = \frac{2v_i^y}{g} \tag{3.66}$$

$$=2\frac{v_i \operatorname{sen} \theta}{g}.\tag{3.67}$$

Para calcularmos a distância percorrida pelo projétil, basta utilizarmos a Equação (3.51), obtendo

$$R \equiv \Delta x = v_i^x t \tag{3.68}$$

$$= (v_i \cos \theta) \left(2 \frac{v_i \sin \theta}{g} \right) \tag{3.69}$$

$$=\frac{2v_i^2}{g}\sin\theta\cos\theta. \tag{3.70}$$

Utilizando a relação trigonométrica sen $2\theta = 2 \operatorname{sen} \theta \cos \theta$, podemos reescrever a expressão acima de uma maneira mais amigável:

$$R = \frac{v_i^2}{\varphi} \sin 2\theta. \tag{3.71}$$

Discussão: Alcance máximo

Através da Expresão (3.71), podemos verificar que para um mesmo valor de velocidade v_i , obtemos distâncias diferentes de acordo com diferentes valores para o ângulo θ de lançamento. Através da Figura 3.19, podemos notar que a função seno é limitada, e seu valor máximo é 1, o que corresponde a um ângulo de 90°. Essa observação nos permite determinar que quando o argumento 2θ que aparece na expressão para o alcance R for igual a 90°, teremos o alcance máximo. Logo,

$$2\theta = 90^{\circ} \tag{3.72}$$

o que implica em

$$\theta = 45^{\circ} \tag{3.73}$$

para o ângulo de máximo alcance.

Figura 3.18: Alcance em relação ao ponto de lançamento.

Alcance horizontal.

Figura 3.19: A função seno é limitada a valores dentro do intervalo [-1,1].

Distância horizontal percorrida

Em muitos casos estamos interessados em determinar a distância horizontal Δx percorrida pelo projétil, mas tal distância difere do alcance R. Temos da própria definição do alcance que o projétil deve voltar ao mesmo ponto de que foi lançado, em relação ao eixo y. Em um cálculo mais geral da distância horizontal percorrida, podemos ter um lançamento que ocorre de cima de uma elevação, atingindo o solo mais abaixo (como no caso de um lançamento que parte de cima de uma mesa e que atinge o chão), ou mesmo um lançamento que parte de um ponto mais baixo e atinge uma elevação.

Para determinar o valor de Δx na Figura 3.20, devemos proceder como no caso do alcance, determinando primeiramente o tempo através de

$$y_f = y_i + v_i^y t - \frac{gt^2}{2},\tag{3.74}$$

que, assumindo que $\Delta y \equiv h$, podemos escrever como

$$-\frac{gt^2}{2} + v_i^y t - h = 0. ag{3.75}$$

Note que mesmo que a diferença de altura seja conhecida, não temos como determinar uma expressão para o cálculo do tempo. Nesse caso, devemos o determinar utilizando os dados particulares do problema em questão e então obter Δx através de

$$\Delta x = v_i^x t. \tag{3.76}$$

Equação para a trajetória

Podemos determinar a forma da trajetória do projétil a escrevendo como uma função y(x). Para isso, podemos isolar o tempo na Equação (3.51), obtendo

$$t = \frac{x_f - x_i}{v_i^x}. ag{3.77}$$

Substituindo essa expressão na Equação (3.57), obtemos

$$y_f = y_i + v_i \sin \theta \frac{x_f - x_i}{v_i \cos \theta} - \frac{g}{2} \frac{(x_f - x_i)^2}{(v_i \cos \theta)^2},$$
 (3.78)

onde utilizamos $v_i^x = v_i \cos \theta$ e $v_i^y = v_i \sin \theta$. Para simplificar a expressão acima, vamos escolher $y_i = x_i = 0$, $y_f = y$ e $x_f = x$. Obtemos assim

$$y = (\tan \theta) x - \left(\frac{g}{2v_i^2 \cos^2 \theta}\right) x^2. \tag{3.79}$$

Se compararmos a equação acima a um polinômio de segundo grau, cuja forma característica é a de uma parábola,

$$y = A + Bx + Cx^2, \tag{3.80}$$

verificamos que a equação da trajetória segue o mesmo formato, porém com A=0. Concluímos então que a trajetória seguida pelo

Figura 3.20: Distância horizontal percorrida no caso de um lançamento que parte de um ponto mais baixo e atinge uma elevação de altura h.

Equação da trajetória.

projétil tem a forma de uma parábola, com concavidade voltada para baixo 15 .

Note que podemos utilizar a expressão para a trajetória obtida acima mesmo para lançamentos horizontais ou lançamentos abaixo da horizontal, bastando nesses casos utilizar $\theta=0^\circ$ ou valores de θ negativos, respectivamente. Nesse último caso, devemos utilizar ângulos negativos, medidos em relação ao eixo horizontal.

Exemplo: Lançamento a partir de uma elevação

Uma bola é lançada a partir de uma elevação com altura $h=2.0\,\mathrm{m}$, com uma velocidade $v_i=4.0\,\mathrm{m/s}$, fazendo um ângulo $\theta=60^\circ$ com a horizontal. Instantes depois, a bola atinge a região plana abaixo da elevação com velocidade \vec{v}_f .

- (a) Determine o alcance do projétil.
- (b) Determine a distância horizontal percorrida pela bola.
- (c) Determine o módulo v_f da velocidade final e o ângulo ϕ que ela faz com o solo.

Para determinar o alcance, basta utilizarmos a expressão

$$R = \frac{v_i^2}{g} \operatorname{sen}(2\theta). \tag{3.81}$$

Substituindo os valores, obtemos

$$R = \frac{v_i^2}{g} \operatorname{sen}(2\theta) \tag{3.82}$$

$$= \frac{(4.0 \,\mathrm{m/s})^2}{(9.8 \,\mathrm{m/s^2})} \,\mathrm{sen}(2 \cdot 60^\circ) \tag{3.83}$$

$$= 1,413\,919\,\mathrm{m} \tag{3.84}$$

$$\approx 1.4 \,\mathrm{m}.$$
 (3.85)

Note que a expressão para o alcance exige que adotemos um sistema de referência cujo eixo vertical aponta para cima.

Podemos determinar a distância horizontal percorrida pela bola através de

$$\Delta x = v_x t, \tag{3.86}$$

onde

$$v_i^x = v_i \cos \theta \tag{3.87}$$

$$v_i^y = v_i \operatorname{sen} \theta, \tag{3.88}$$

bastando que descubramos o tempo necessário para que a bola descreva a trajetória entre o ponto inicial e o final.

Para a solução, vamos considerar que o sistema de coordenadas possui um eixo horizontal x e um eixo y que aponta verticalmente para cima. Nesse caso temos que

$$a_y = -g. (3.89)$$

¹⁵ A concavidade de um polinômio de segundo grau é determinada através do sinal do coeficiente *C*: se o coeficiente é positivo, a concavidade é voltada para cima; se for negativo, é voltada para baixo.

Figura 3.21: Lançamento a partir de uma elevação.

¹⁶ A constante h se refere a um comprimento e seu valor é positivo, porém o deslocamento é no sentido negativo do

eixo e deve ser um valor negativo.

Se considerarmos o deslocamento vertical, temos

$$\Delta y = v_i^y t + \frac{at^2}{2},\tag{3.90}$$

ou, se considerarmos que 16 $\Delta y = -h$ e a = -g,

$$-h = v_i^y t - \frac{gt^2}{2}. (3.91)$$

Podemos escrever a expressão acima com a forma

$$-\frac{g}{2}t^2 + v_i^y t + h = 0, (3.92)$$

que podemos identificar com a forma geral de uma equação de segundo grau:

$$At^2 + Bt + C = 0. (3.93)$$

As raízes desse tipo de equação podem ser calculadas através de

$$t = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A} \tag{3.94}$$

$$=\frac{-(v_i^y)\pm\sqrt{(v_i^y)^2-4\cdot(-8/2)\cdot(h)}}{2\cdot(-8/2)}.$$
 (3.95)

Substituindo os valores conhecidos e usando

$$v_i^y = v_i \operatorname{sen} \theta \tag{3.96}$$

$$= (4.0 \,\mathrm{m/s}) \cdot \mathrm{sen}(60^{\circ}) \tag{3.97}$$

$$= 3,464\,102\,\mathrm{m/s} \tag{3.98}$$

$$\approx 3.5 \,\mathrm{m/s},\tag{3.99}$$

obtemos

$$t = \frac{-(3.5 \,\mathrm{m/s}) \pm \sqrt{(3.5 \,\mathrm{m/s})^2 - 4 \cdot \left(-(9.8 \,\mathrm{m/s^2})/2\right) \cdot (2.0 \,\mathrm{m})}}{2 \cdot \left(-(9.8 \,\mathrm{m/s^2})/2\right)}.$$
(3.100)

Calculando os valores para a expressão acima, temos

$$t_{+} = -0.376665 \,\mathrm{s} \tag{3.101}$$

$$\approx -0.38 \,\mathrm{s} \tag{3.102}$$

$$t_{-} = 1,083624 \,\mathrm{s} \tag{3.103}$$

$$\approx 1.1 \, \mathrm{s}. \tag{3.104}$$

O primeiro tempo corresponde ao instante de tempo *anterior* ao lançamento em que o corpo estaria na linha horizontal do solo. Tal solução não tem sentido físico. Logo, através da expressão para o deslocamento horizontal temos

$$\Delta x = v_x^i t \tag{3.105}$$

$$= v_i \cdot \cos(\theta) \cdot t \tag{3.106}$$

$$= (4.0 \,\mathrm{m/s}) \cdot \cos(60^\circ) \cdot (1.083624 \,\mathrm{s}) \tag{3.107}$$

$$= 2,167248 \,\mathrm{m} \tag{3.108}$$

$$\approx 2.2 \,\mathrm{m}. \tag{3.109}$$

Para determinar o módulo e o ângulo em relação à horizontal para o vetor velocidade final, devemos notar que a velocidade no eixo horizontal x é constante, e seu valor é dado pela Equação (3.87). Além disso, a componente da velocidade final no eixo vertical pode ser calculada através de

$$v_f^y = v_i^y - at (3.110)$$

$$=v_i^y - gt (3.111)$$

$$= (3,464\,102\,\mathrm{m/s}) - (9,8\,\mathrm{m/s^2}) \cdot (1,083\,624\,\mathrm{s}) \tag{3.112}$$

$$= -7,155413 \,\mathrm{m/s} \tag{3.113}$$

$$=-7.2 \,\mathrm{m/s},$$
 (3.114)

onde utilizamos o valor de tempo determinado anteriormente. Para determinarmos o módulo da velocidade, basta calcularmos

$$v = \sqrt{v_x^2 + v_y^2} (3.115)$$

$$= \sqrt{[(4,0 \,\mathrm{m/s}) \cdot \cos(60^\circ)]^2 + (7,155413 \,\mathrm{m/s})^2}, \tag{3.116}$$

de onde obtemos

$$v = 7,429\,666\,\mathrm{m/s} \tag{3.117}$$

$$\approx 7.4 \,\mathrm{m/s}. \tag{3.118}$$

Para determinarmos o ângulo em relação à horizontal, basta notarmos que o as componentes e o próprio vetor formam um triângulo retângulo (Figura 3.22). Assim,

$$\tan \phi = \frac{v_y}{v_x},\tag{3.119}$$

de onde podemos escrever

$$\phi = \arctan \frac{v_y}{v_x}$$
 = $\arctan \frac{(-7,155413 \,\text{m/s})}{(2,000\,000 \,\text{m/s})}$ (3.120)

e, finalmente, 17

$$\phi = -74,383\,861^{\circ} \tag{3.121}$$

$$\approx -74^{\circ}$$
. (3.122)

Exemplo: Lançamento horizontal

Uma esfera rola sobre uma mesa com velocidade $v_r = 3.5 \,\text{m/s}$ e, ao chegar ao final dela, cai ao chão. Se a distância horizontal entre a borda da mesa e o ponto onde a esfera atinge o chão é de 1,3 m, qual é a altura da mesa?

Como sistema de referência, vamos escolher um sistema de coordenadas com um eixo vertical y apontando para baixo, e um eixo horizontal x apontando para a direita. Nesse caso temos que

$$a_{x} = 0 \tag{3.123}$$

$$a_{V} = g. ag{3.124}$$

Figura 3.22: Detalhe do ângulo entre o vetor velocidade final \vec{v}_f e a horizontal.

¹⁷ O sinal negativo no ângulo indica que ele foi medido no sentido horário.

Figura 3.23: Laçamento horizontal.

Note também que a velocidade inicial no momento em que a esfera passa a estar sujeita à gravidade é dada por um vetor horizontal que aponta para a direita, de forma que

$$v_i^x = v_r \tag{3.125}$$

$$v_i^y = 0. (3.126)$$

Podemos então determinar a altura da mesa em termos do tempo de queda através da expressão

$$y_f = y_i + v_i^y t + \frac{at^2}{2} (3.127)$$

que pode ser escrita como

$$\Delta y = \frac{gt^2}{2} \tag{3.128}$$

ao utilizarmos $a_y = g$ e $v_i^y = 0$.

Resta agora determinar o valor de t, mas ele pode ser obtido através do eixo horizontal x, pois

$$x_f = x_i + v_i^x t, (3.129)$$

o que pode ser reescrito como

$$t = \frac{\Delta x}{v_r}. ag{3.130}$$

Finalmente, obtemos para a altura da mesa

$$H = \Delta y \tag{3.131}$$

$$=\frac{g}{2}\left(\frac{\Delta x}{v_r}\right)^2\tag{3.132}$$

$$=\frac{g(\Delta x)^2}{2v_r^2}\tag{3.133}$$

$$= 0.68 \,\mathrm{m}.$$
 (3.134)

Exemplo: Arremesso sobre obstáculo

Uma bola é rebatida com uma raquete e adquire uma velocidade \vec{v}_i , cujo módulo é de 6,0 m/s e que faz um ângulo θ de 75° com a horizontal. A altura a partir da qual a bola é rebatida é h=1,2 m. A uma distância ℓ de 1,5 m, medida horizontalmente, há uma cerca de altura H=2,0 m. A bola passa sobre a cerca?

Para determinarmos se haverá colisão, basta sabermos a que altura em relação ao solo a bola estará na posição onde está localizada a cerca. Podemos determinar tal altura em relação ao ponto de lançamento ao utilizar a equação para a trajetória:

$$y(x) = (\tan \theta)x - \frac{gx^2}{2v_i^2 \cos^2 \theta}.$$
 (3.135)

Utilizando as informações dadas no problema,

$$\theta = 75^{\circ} \tag{3.136}$$

$$x \equiv \ell = 1.5 \,\mathrm{m} \tag{3.137}$$

$$v_i = 6.0 \,\mathrm{m/s},$$
 (3.138)

Figura 3.24: Lançamento a partir de uma elevação com possível colisão com obstáculo.

obtemos

$$y(x) = 1.03 \,\mathrm{m}.$$
 (3.139)

Essa distância se refere à altura da bola em relação ao ponto de lançamento ao chegar na posição da cerca. Como a bola é rebatida a uma distância de 1,2 m acima do solo, concluímos que a altura da bola em relação ao solo ao passar sobre a cerca é de 2,23 m, passando a 23 cm acima dela.

3.4 Movimento circular

Como um segundo exemplo de movimento bidimensional, vamos analisar o movimento circular. Nesse tipo de movimento, a distância a um ponto do espaço é sempre a mesma, de forma que a trajetória descrita pelo corpo que executa o movimento circular está contida em um plano. ¹⁸

O efeito do vetor aceleração no vetor velocidade é mais difícil de visualizar do que o efeito da velocidade no vetor deslocamento. É mais fácil considerarmos dois efeitos separadamente: a alteração do módulo, e a alteração da direção do vetor \vec{v} . Ambos podem estar presentes em um movimento circular.

Em um movimento retilíneo, se há aceleração, o vetor \vec{a} tem a mesma direção do vetor velocidade inicial, então a soma

$$\vec{v}_f = \vec{v}_i + \vec{a}t \tag{3.140}$$

corresponde à Figura 3.25, e temos que os vetores \vec{v}_i e \vec{v}_f têm a mesma direção, porém têm módulos diferentes.

Já no caso de termos um vetor aceleração que seja sempre perpendicular ao vetor velocidade, devemos novamente utilizar a ideia de variações infinitesimais (Rotação de um vetor, página 72): da mesma forma que o vetor posição \vec{r} de uma partícula que executa um movimento circular é rotacionado por um vetor velocidade continuamente perpendicular a \vec{r} , uma velocidade \vec{v} é rotacionada por um vetor aceleração continuamente perpendicular a \vec{v} . Nesse caso, percebemos que o papel de acelerações perpendiculares à velocidade é o de alterar a direção da velocidade, sem alterar o módulo.

Em situações mais complexas, podemos ter uma composição dos dois efeitos da aceleração. Se temos uma situação como a da Figura 3.27, por exemplo, temos que o vetor velocidade final tem um módulo maior que o vetor velocidade inicial, e que sofreu uma rotação em relação ao vetor inicial. De qualquer forma, podemos utilizar a ideia de componentes vetoriais para decompor a aceleração em uma componente na direção da velocidade inicial, e outra na direção perpendicular ao vetor velocidade inicial. Essa estratégia simplifica bastante a análise de movimentos bi e tridimensionais, e será a base para a análise do movimento circular nas seções seguintes.

¹⁸ E forma um círculo, claro.

Figura 3.25: O efeito de uma aceleração constante e colinear com o vetor velocidade inicial é o de alterar o módulo da velocidade.

Figura 3.26: Da mesma forma que o vetor posição \vec{r} de uma partícula que executa um movimento circular é rotacionado por um vetor velocidade continuamente perpendicular a \vec{r} , uma velocidade \vec{v} é rotacionada por um vetor aceleração continuamente perpendicular a \vec{v} .

Figura 3.27: O efeito mais geral de uma aceleração é o de alterar o módulo do vetor velocidade e também o de causar uma rotação em tal vetor.

Figura 3.28: Em um movimento circular com velocidade constante, o vetor $\Delta \vec{v}$ aponta para o centro da trajetória quando disposto exatamente no ponto intermediário entre as posições inicial e final. Essa é a mesma direção que a aceleração média, consequentemente, quando tomamos o limite $\Delta t \rightarrow 0$ e aproximamos os pontos, verificamos que a aceleração instantânea aponta para o centro da trajetória.

Figura 3.29: Triângulos formados pelos vetores \vec{r}_i , \vec{r}_f , e $\Delta \vec{r}$ e pelos vetores \vec{v}_i , \vec{v}_f , e $\Delta \vec{v}$. Note que este último foi ampliado em relação à Figura 3.28 unicamente para facilitar a visualização.

 19 Imagine o seguinte: o vetor \vec{r}_i é girado por um ângulo θ para se tornar o vetor \vec{r}_f . Essa rotação também afeta o vetor velocidade \vec{v}_i o transformando no vetor \vec{v}_f , pois a relação de perpendicularidade entre o vetor velocidade e o vetor posição se mantém para todos os pontos em um movimento circular.

3.4.1 Aceleração centrípeta

Analisando o movimento circular restrito ao caso de velocidade constante em módulo, verificamos que temos uma alteração constante da direção do vetor velocidade. Na Figura 3.28 vemos uma parte da trajetória seguida por uma partícula. Em dois instantes diferentes, temos dois vetores velocidade que têm o mesmo módulo, porém direções diferentes. Se calcularmos geometricamente a diferença entre esses vetores, vemos que $\Delta \vec{v}$ aponta perpendicularmente à trajetória quando disposto no ponto central entre as posições inicial e final, isto é, ele aponta para o centro da trajetória circular.

Sabemos, que o vetor aceleração média é dado por

$$\langle \vec{a} \rangle = \frac{\Delta \vec{v}}{\Delta t}.\tag{3.141}$$

Portanto, mesmo no caso de v constante, temos uma aceleração caso ocorram mudanças na direção do vetor velocidade. Podemos calcular o módulo desta aceleração se considerarmos a Figura 3.29. Inicialmente uma partícula ocupa a posição \vec{r}_i , com velocidade \vec{v}_i no instante t_i . Após um intervalo de tempo, ela passa a ocupar a posição \vec{r}_f , com velocidade \vec{v}_f no instante t_f . Vamos assumir que os módulos das velocidades e das posições são constantes, isto é,

$$v_i = v_f = v \tag{3.142}$$

$$r_i = r_f = r.$$
 (3.143)

Verificamos que existe um ângulo θ entre os vetores \vec{r}_i e \vec{r}_f . Além disso, como $r_i=r_f=r$, temos que os outros dois ângulos do tri-ângulo são α . Podemos utilizar a lei dos senos para estabelecer a seguinte relação:

$$\frac{\Delta r}{\operatorname{sen}\theta} = \frac{r}{\operatorname{sen}\alpha'},\tag{3.144}$$

ou, equivalentemente,

$$\frac{\Delta r}{r} = \frac{\sin \theta}{\sin \alpha}.\tag{3.145}$$

Os vetores velocidade inicial e final são perpendiculares aos vetores posição inicial e final, respectivamente. Portanto, o ângulo formado pelos vetores velocidade é o mesmo ângulo formado pelos vetores posição, isto é, o ângulo θ . Além disso, como $v_i = v_f = v$, os demais ângulos são iguais entre si e são iguais ao mesmo ângulo α que aparece no triângulo formado pelos vetores posição e deslocamento. Aplicando novamente a lei dos senos, obtemos

$$\frac{\Delta v}{\operatorname{sen}\theta} = \frac{v}{\operatorname{sen}\alpha},\tag{3.146}$$

ou

$$\frac{\Delta v}{v} = \frac{\sin \theta}{\sin \alpha}.\tag{3.147}$$

A partir desses resultados, temos que

$$\frac{\Delta v}{v} = \frac{\Delta r}{r}.\tag{3.148}$$

Isolando Δv e substituindo na expressão para a aceleração média, obtemos para o módulo²⁰

$$\langle a \rangle = \frac{v}{r} \frac{\Delta r}{\Delta t}.\tag{3.149}$$

Tomando o limite $\Delta t \rightarrow 0$, obtemos a aceleração instantânea:

$$a = \frac{v}{r} \lim_{\Delta t \to 0} \frac{\Delta r}{\Delta t'},\tag{3.150}$$

onde usamos a propriedade²¹

$$\lim_{\epsilon \to \xi} \lambda f(\epsilon) = \lambda \lim_{\epsilon \to \xi} f(\epsilon), \tag{3.151}$$

 λ e ξ representandos constantes quaisquer. Notamos que o limite que resta é a razão entre a distância percorrida pela partícula e o tempo necessário para efetuar tal deslocamento, ou seja, é a velocidade v. Logo,

$$a = \frac{v^2}{r}. (3.152)$$

Verificamos no início desta seção que a aceleração média aponta para o centro da trajetória quando a dispomos exatamente na região central entre os pontos inicial e final (para o cálculo da aceleração média em questão). Quando tomamos o limite $\Delta t \to 0$, o que fazemos é mover tais pontos de forma que eles se tornam infinitamente próximos e se tornem o mesmo ponto, o que faz com que *a aceleração instantânea aponte para o centro da trajetória circular*. Denominamos essa aceleração como *aceleração centrípeta a_c*, cujo módulo é dado por

$$a_c = \frac{v^2}{r}. (3.153)$$

Essa aceleração é responsável por alterar constantemente a direção do vetor velocidade, possibilitando que a partícula execute um movimento curvilíneo. Veremos no próximo capítulo que ela está relacionada à força resultante que deve ser exercida por um agente externo para que uma partícula execute um movimento circular com velocidade v e raio r.

 Decomposição da aceleração em componentes tangencial e centrípeta

Verificamos que a aceleração é dada por

$$\vec{a} = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t},$$

e no caso específico de um movimento circular com velocidade constante, ela aponta para o centro da trajetória circular, com módulo dado pela Equação (3.153). No entanto, o caso de velocidade constante não é geral: podemos ter um movimento circular com velocidade cujo módulo muda constantemente, ou mesmo ter um movimento curvilíneo que não tem um formato circular.

Note que estamos desprezando o caráter vetorial da equação abaixo, pois já sabemos a direção e o sentido do vetor e estamos interessados somente em determinar o módulo da aceleração média.

²¹ Você estudará isso em Cálculo.

Módulo da aceleração centrípeta

No caso de termos um movimento curvilíneo com velocidade constante, porém não circular, temos que a aceleração centrípeta não é constante. Se temos uma curvatura que se "fecha" paulatinamente, isto é, se o raio de curvatura diminui progressivamente, a aceleração centrípeta aumenta. Se ocorre o contrário, a curvatura se "abre" e o raio aumenta, temos que a aceleração centrípeta diminui. De qualquer forma, podemos calcular *instantaneamente* a aceleração através da Expressão 3.153.

Quando ocorre uma alteração do módulo da velocidade, podemos determinar a aceleração simplesmente calculando a razão $\Delta v/\Delta t$. Como discutimos anteriormente, temos então dois efeitos possíveis da aceleração: um deles é alterar o módulo da velocidade, o outra é alterar a direção do vetor velocidade. Tais efeitos podem ocorrer isoladamente, como num movimento retilíneo com velocidade variável — onde ocorre somente o primeiro —, ou num movimento circular com velocidade constante — onde ocorre somente o segundo —, ou podem ocorrer *ao mesmo tempo*.

O caso de ambos os efeitos ocorrerem conjuntamente é, na prática, o mais comum: um carro que trafega por uma rodovia, por exemplo, executa curvas e altera sua velocidade a todo momento, e em inúmeras vezes, essas mudandas de direção e de módulo da velocidade acontecem concomitantemente. Apesar de termos dois papéis distintos para a aceleração, temos somente um vetor aceleração. No entanto, podemos decompor o vetor aceleração em duas componentes cujos efeitos correspondem aos discutidos acima, isto é, mudar a direção e o módulo da velocidade.

Figura 3.30: Podemos aproximar uma região qualquer de uma curva por um círculo. Assim, é possível se decompor o vetor aceleração em uma componente *centrípeta* (que aponto para o centro *C* do círculo), cujo papel é o de alterar a direção, e uma componente tangencial (que aponta tangencialmente à trajetória, na mesma direção da velocidade instantânea), cujo papel é o de alterar o módulo da velocidade.

²² Até mesmo uma reta pode ser interpretada dessa maneira, nesse caso temos um círculo de raio infinito!

Qualquer ponto de uma trajetória curvilínea pode ser aproximado por uma trajetória circular, com um centro e um raio bem definido²². Levando isso em conta, de forma geral, podemos assumir que o vetor aceleração não aponta para o centro da trajetória, porém podemos o decompor em duas partes:

Componente radial Uma das componentes é a projeção do vetor aceleração na direção do eixo radial que liga a partícula ao centro da trajetória circular. Temos então uma componente radial a_r cujo módulo é dado pela aceleração centrípeta:

$$a_r = a_c = \frac{v^2}{r}. (3.154)$$

Podemos atribuir a esta componente o papel exclusivo de alterar a *direção* do vetor velocidade. Podemos entender isso se considerarmos que se só existisse essa componente, então teríamos um movimento circular, onde somente a direção do vetor velocidade é alterada.

Componente tangencial A outra componente da aceleração é a projeção do vetor na direção tangencial à trajetória — ou seja, na direção da velocidade instantânea —. Esta componente tem o papel exclusivo de alterar o *módulo* da velocidade. Isso pode ser entendido se imaginarmos que houvesse somente essa componente da aceleração agindo por um intervalo de tempo infinitesimal. Nesse caso, a aceleração seria na própria direção da velocidade, portanto ao calcularmos a velocidade final após um intervalo δt através de

$$\vec{v}_f = \vec{v}_i + \vec{a}\delta t,\tag{3.155}$$

percebemos que estamos somando dois vetores colineares. Logo, o resultado \vec{v}_f de tal soma se mantém na mesma direção que os termos do lado direito na equação acima. Assim, temos que

$$v_f = v_i + a_t t. ag{3.156}$$

Caso conheçamos ambas as componentes da aceleração – o que é bastante comum, uma vez que é mais fácil determinar o módulo da velocidade e eventuais alterações desse valor, o que nos dará os valores de a_c e de a_t – podemos determinar o vetor \vec{a} utilizando as relações

$$|\vec{a}| = \sqrt{a_t^2 + a_c^2} \tag{3.157}$$

$$\theta = \arctan \frac{a_c}{a_t},\tag{3.158}$$

onde θ é o ângulo que o vetor \vec{a} faz com a direção tangencial. Essas relações são oriundas das propriedades vetoriais discutidas no capítulo anterior. Da mesma forma, podemos conhecer as componentes a partir do vetor \vec{a} através de

$$a_t = a\cos\theta \tag{3.159}$$

$$a_c = a \operatorname{sen} \theta. \tag{3.160}$$

3.4.3 Posição em uma trajetória curvilínea

Para que possamos descrever o movimento de um veículo em uma estrada, é necessário descrever a direção e a intensidade do vetor velocidade durante todo o intervalo de tempo em que o movimento ocorre. Como vimos, a alteração da direção do veículo está associada a uma aceleração lateral, que aponta para o centro da curva realizada por ele, e que depende do raio da curva e também do módulo da velocidade instantânea. Já o módulo da velocidade instantânea depende de uma aceleração tangencial. Verificamos ainda que se esta aceleração é constante, então podemos escrever

$$v_f = v_i + a_t t. (3.161)$$

Evolução do módulo da velocidade para um movimento com aceleração tangencial constante.

Figura 3.31: Se conhecemos as componentes tangencial e centrípeta, através das propriedades dos vetores podemos determinar o módulo e o ângulo do vetor aceleração em relação à direção tangente à trajetória.

Além disso, em uma análise análoga àquela realizada no Capítulo 1, é possível verificarmos que a posição s de um corpo sujeito a uma aceleração tangencial a_t constante é dada por

$$s_f = s_i + v_i t + \frac{a_t t^2}{2},\tag{3.162}$$

onde s é um parâmetro que denota a *distância percorrida ao longo da trajetória*. De fato, podemos reobter todos os resultados que verificamos para a cinemática unidimensional nesse contexto de deslocamento em uma trajetória curvilínea, sendo que a única diferença é a de que devemos substituir a aceleração a pela componente tangencial a_t . Note porém que nesse movimento a direção do vetor velocidade não é constante e, portanto, temos que a componente centrípeta a_c da aceleração aumenta ou diminui à medida que velocidade e/ou o raio da trajetória muda.

Exemplo: Componentes da aceleração de um carro em uma pista circular

Em um certo instante, um carro se desloca em uma pista circular com velocidade $v=7.00\,\mathrm{m/s}$, sendo que ele está sujeito a uma aceleração cuja componente na direção tangencial à trajetória é dada por $a_t=0.600\,\mathrm{m/s^2}$. O raio r da pista é de 500,0 m.

- (a) Quais são o módulo e o ângulo do vetor aceleração \vec{a} em relação à direção tangencial à trajetória nesse instante?
- (b) Quais são o módulo e o ângulo do vetor aceleração em relação à direção tangencial após 120 s, assumindo que a aceleração tangencial se mantenha a mesma?
- (c) Supondo que o piloto do veículo suporte uma aceleração máxima de módulo 5g, isto é, cinco vezes a aceleração da gravidade, quanto tempo ele pode manter a aceleração tangencial mencionada antes de perder a consciência?

Na Figura 3.32 temos uma representação da situação descrita no problema. Adotamos um sistema de referência onde o eixo y liga a posição ocupada pelo carro ao centro da trajetória circular. Se o movimento tivesse velocidade constante em módulo, teríamos um vetor aceleração apontando nessa direção e sentido. No entanto, devido ao fato de que há variação no módulo da velocidade, sabemos que o vetor aceleração não aponta para o centro da trajetória, mas sim em uma direção que faz um ângulo θ com a direção tangente à trajetória.

Como vimos ao analisar o movimento circular, as componentes da aceleração nos eixos tangencial e radial têm papeis distintos, e vemos que o problema nos dá o valor da componente tangencial:

$$a_t = 0.6 \,\mathrm{m/s^2}.$$
 (3.163)

A componente centrípeta, por sua vez, pode ser determinada através de

$$a_c = \frac{v^2}{r}. (3.164)$$

Evolução temporal da posição ao longo de uma trajetória curvilínea para o caso de aceleração tangencial constante.

Figura 3.32: Vetores aceleração e velocidade em um instante qualquer do movimento.

No instante do item (a), a velocidade do veículo é de 7,0 m/s, e o raio r = 500 m. Logo,

$$a_c = 0.0980 \,\mathrm{m/s^2}.$$
 (3.165)

Para determinarmos o módulo do vetor aceleração e o ângulo que ele faz em relação à direção tangencial ao movimento, basta utilizarmos as propriedades da decomposição de vetores:

$$a = \sqrt{a_x^2 + a_y^2} (3.166)$$

$$\theta = \arctan \frac{a_y}{a_x},\tag{3.167}$$

o que em termos das componentes a_t e a_c , resulta em

$$a = \sqrt{a_t^2 + a_c^2} (3.168)$$

$$\theta = \arctan \frac{a_c}{a_t}. (3.169)$$

Assim, obtemos

$$a = 0.608 \,\mathrm{m/s^2} \tag{3.170}$$

$$\theta = 9.28^{\circ}.$$
 (3.171)

Após 120 s, devido à aceleração tangencial, temos um aumento de velocidade, obtendo

$$v_f = v_i + a_t t \tag{3.172}$$

$$= 79.0 \,\mathrm{m/s}.$$
 (3.173)

Com essa nova velocidade, obtemos um novo valor de aceleração centrípeta, dado por

$$a_c = 12,482\,000\,\mathrm{m/s^2}$$
 (3.174)

$$= 12.5 \,\mathrm{m/s^2}. \tag{3.175}$$

Calculado as propriedades do vetor aceleração nesse instante, obtemos²³

$$a = 12,496412 \,\mathrm{m/s^2} \tag{3.176}$$

$$= 12.5 \,\mathrm{m/s^2} \tag{3.177}$$

$$\theta = 87.3^{\circ}.$$
 (3.178)

Para determinarmos o tempo até que o piloto perca a consciência, devemos determinar o tempo até que a aceleração atinja o valor crítico $a_{\text{max}} = 5g = 49.0 \,\text{m/s}^2$. Sabemos que

$$a = \sqrt{a_c^2 + a_t^2},\tag{3.179}$$

e que

$$a_c = \frac{v^2}{r}. (3.180)$$

Além disso,

$$v = v_i + a_t t. ag{3.181}$$

²³ Note que o resultado para a o módulo da aceleração é igual à própria componente centrípeta devido ao fato de que temos somente três algarismos significativos.

Substituindo a expressão acima na anterior, obtemos para o quadrado da aceleração centripeta

$$a_c^2 = \frac{(v_i + a_t t)^4}{r^2},\tag{3.182}$$

que, por sua vez, pode ser substituida na expressão para aceleração, resultando em

$$a_{\text{max}} = \sqrt{\frac{(v_i + a_t t)^4}{r^2} + a_t^2}.$$
 (3.183)

Basta agora isolar t, o que resulta em

$$t = \frac{\sqrt[4]{r^2(a_{\text{max}}^2 - a_t^2)} - v_i}{a_t},$$
(3.184)

de onde obtemos um tempo de

$$t = 249,20 \,\mathrm{s}.$$
 (3.185)

Exemplo: Tempo transcorrido em um movimento circular

Uma partícula descreve um movimento circular com raio $r=12,0\,\mathrm{m}$. Em um certo instante, o vetor aceleração tem módulo $a=30,0\,\mathrm{m/s^2}$, sendo que sua direção faz um ângulo $\theta=60,0^\circ$ em relação à direção tangente à trajetória. Se a aceleração tangencial é constante, quanto tempo transcorreu entre o início do movimento circular e o momento atual, assumindo que a partícula partiu do repouso.

Decompondo o vetor aceleração, temos

$$a_c = a \operatorname{sen} \theta \tag{3.186}$$

$$= 25,98 \,\mathrm{m/s^2} \tag{3.187}$$

$$a_t = a\cos\theta \tag{3.188}$$

$$= 15.0 \,\mathrm{m/s^2}. \tag{3.189}$$

Sabemos que a aceleração centripeta está associada ao módulo da velocidade e ao raio da trajetória através de

$$a_c = \frac{v^2}{r},$$
 (3.190)

logo,

$$v = \sqrt{ra_c} \tag{3.191}$$

$$= 17,66 \,\mathrm{m/s}.$$
 (3.192)

Utilizando a relação para o módulo da velocidade em um movimento com aceleração tangencial constante,

$$v_f = v_i + a_t t, \tag{3.193}$$

temos

$$t = \frac{v_f}{a_t},\tag{3.194}$$

onde usamos o fato de que $v_i = 0$. Obtemos então

$$t = 1.18 \,\mathrm{s}.$$
 (3.195)

3.5 Movimento Relativo

Geralmente escolhemos o referencial para descrever um fenômeno como sendo fixo no solo. Assim, quando um ônibus passa, a velocidade que atribuímos a seus passageiros é a mesma do próprio ônibus, caso eles estejam sentados. Se fixarmos o referencial no piso do ônibus, veremos que a velocidade dos passageiros é nula. Portanto, a velocidade que medimos depende do referencial adotado. Isso se deve ao fato de que a própria posição depende do referencial.

Figura 3.33: Posição de uma partícula *P* em dois referenciais diferentes.

Vamos analisar a situação mostrada na Figura 3.33. A posição da partícula P no referencial S' é dada pelo vetor $\vec{r}_{S'}$. Se estivermos interessados em calcular a posição desta partícula em um referencial S, sendo que a posição do referencial S' é dada por $\vec{r}_{S'S}$ em relação a S, temos

$$\vec{r}_S = \vec{r}_S' + \vec{r}_{S'S},\tag{3.196}$$

Transformação galileana de posição.

ou seja, temos uma simples adição de dois vetores, como pode ser visto na própria figura. Esta transformação, juntamente com as equivalentes para velocidade e aceleração, são denominadas *transformações galileanas*. Dentro de Mecânica Clássica essas são as transformações que devem ser utilizadas, já para o caso da mecânica relativística, devemos utilizar as *transformações de Lorentz*, que levam em conta o fato de que a velocidade da luz tem um valor absoluto (igual em todos os referenciais) e que não pode ser ultrapassado.

De maneira semelhante, se a partícula tem velocidade $v_{S'}$ em relação ao referencial S' e temos que esse referencial se move com velocidade $\vec{v}_{S'S}$ em relação a S, temos

$$\vec{v}_S = \vec{v}_{S'} + \vec{v}_{S'S}. \tag{3.197}$$

Para obter esta relação, basta utilizarmos a definição da velocidade instantânea $\vec{v} = \lim_{\Delta t \to 0} \Delta \vec{r} / \Delta t$, escrevendo

$$\vec{v}_S = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}_s}{\Delta t}.$$
 (3.198)

Através da relação para a posição, podemos calcular o deslocamento

Figura 3.34: Transformação galileana de velocidades.

no referencial S como

$$\Delta \vec{r}_S = \vec{r}_S^f - \vec{r}_S^i \tag{3.199}$$

$$= (\vec{r}_{S'}^f + \vec{r}_{S'S}^f) - (\vec{r}_{S'}^i + \vec{r}_{S'S}^i)$$
 (3.200)

$$= (\vec{r}_{S'}^f - \vec{r}_{S'}^i) + (\vec{r}_{S'S}^f - \vec{r}_{S'S}^i)$$
 (3.201)

$$=\Delta \vec{r}_{S'} + \Delta \vec{r}_{S'S}. \tag{3.202}$$

Substituindo esse resultado na equação anterior para a velocidade, temos

$$\vec{v}_S = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}_{S'} + \Delta \vec{r}_{S'S}}{\Delta t}.$$
 (3.203)

Separando os termos do numerador em duas frações e sabendo que $\lim_{\epsilon \to \xi} f(\epsilon) + g(\epsilon) = \lim_{\epsilon \to \xi} f(\epsilon) + \lim_{\epsilon \to \xi} g(\epsilon)$, temos

$$\vec{v}_S = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}_{S'}}{\Delta t} + \lim_{\Delta t \to 0} \frac{\Delta \vec{r}_{S'S}}{\Delta t}.$$
 (3.204)

Os limites acima definem as velocidades $\vec{v}_{S'}$ e $\vec{v}_{S'S}$, logo,

Transformação galileana de velocidade

$$\vec{v}_S = \vec{v}_{S'} + \vec{v}_{S'S}. \tag{3.205}$$

Podemos ainda calcular as transformações para a aceleração através de um cálculo análogo ao utilizado para o caso da velocidade, obtendo

Transformação galileana de aceleração

$$\vec{a}_S = \vec{a}_{S'} + \vec{a}_{S'S}. \tag{3.206}$$

Temos um interesse particular nessa equação devido ao conceito de referencial inercial. Veremos adiante que as Leis de Newton só têm validade dentro de um referencial inercial, que é um referencial que não está submetido a acelerações. Dessa forma, se — por exemplo o referencial S for um referencial inercial, o referencial S' só será inercial se a aceleração $\vec{a}_{S'S}$ for igual a zero. Um referencial não inercial pode ser identificado quando surgem forças "inexplicáveis". Um exemplo disso é quando estamos em carro que acelera para a frente e verificamos que um objeto suspenso se desloca para trás, como se tivesse sido puxado através de um fio invisível. Dentro do referencial do carro, esta força não tem origem física aparente, só podendo ser explicada quando levamos em conta o fato de que o referencial sofre uma aceleração em relação ao solo. Mesmo no caso do solo, como temos uma rotação da Terra em torno do próprio eixo, não temos um referencial verdadeiramente inercial. Este impasse pode ser resolvido através da Primeira Lei de Newton, que veremos no próximo capítulo.

4 Dinâmica da partícula

Nos capítulos anteriores, nos preocupamos em descrever o movimento. Determinamos três variáveis que podem ser escritas como funções do tempo e que descrevem o movimento: a posição, a velocidade, e a aceleração. Verificamos também que essas variáveis são vetores, sendo que podemos separar a descrição do movimento em três eixos ortogonais independentes. Vamos passar agora a nos preocupar com as causas do movimento. Para isso, vamos estudar as Leis de Newton, que relacionam a força resultante exercida sobre um objeto com a sua consequente aceleração. Isso é fundamental pois é raro que possamos afirmar qual será a aceleração a que um corpo estará sujeito através de uma simples análise de uma situação, mas é comum que possamos determinar quais as forças atuam sobre um corpo na mesma situação.

4.1 Introdução

4.1.1 Aspectos históricos das teorias sobre o movimento

Teorias para a descrição das causas do movimento são muito antigas, remontando aos gregos¹. Dentre as teorias que foram mais bem aceitas, até que a teoria de Newton as suplantasse, podemos citar a Física Aristotélica.

Nessa teoria, acreditava-se que para que houvesse movimento, deveria haver uma força sendo exercida constantemente. Essa observação parece razoável quando empurramos uma caixa sobre uma mesa: enquanto exercemos uma força, há movimento; assim que a força cessa, o movimento cessa. No entanto, no caso de um objeto que é atirado, como uma bola ou uma flecha, percebemos que o movimento não cessa após deixarmos de exercer uma força sobre o corpo.

Galileu contestou tal visão. Ele percebeu que na verdade o que ocorre é que, no caso da caixa que é arrastada, o movimento só cessa pois outras forças atuam de maneira a "impedir" o movimento. Se "removermos os impedimentos", como por exemplo utilizando superfícies mais lisas, verificamos que o movimento após empurrar a caixa perdurará por cada vez mais tempo. Um exemplo no qual a resistência oferecida ao movimento é menor é o de um objeto que é arremessado. Nesse caso temos só a resistência oferecida pelo ar, que é pequena a baixas velocidades. Isso implica em um movimento que se mantém por mais tempo.

Newton formulou a teoria definitiva que descreve o movimento no âmbito da Física Clássica. Ele determinou três leis que descrevem propriedades das forças e a relação delas com a aceleração, bem como à massa de um corpo. Veremos a seguir essas três leis, bem como

¹E talvez a outros grupos sobre os quais nunca ouvimos falar.

aplicações delas a alguns exemplos de fenômenos físicos interessantes.

4.2 Leis de Newton

4.2.1 Conceitos de força e massa

Para que possamos analisar as Leis de Newton, devemos antes de mais nada verificar dois conceitos importantes: o que é força e o que é massa. Segundo Newton:

Uma força impressa é uma ação exercida sobre um corpo com o intuito de mudar seu estado, seja de repouso, seja de movimento uniforme em uma linha reta.

O conceito de força em Física é bastante próximo do que entendemos por força na vida cotidiana. Por exemplo, sabemos que para cada direção e sentido da força que aplicamos sobre um objeto, temos movimentos diferentes². Sabemos ainda que a composição de dois esforços, em laterais diferentes de um objeto, dá origem a um movimento diagonal (Figura 4.1). Tais características indicam que as forças são vetores, pois possuem módulo (intensidade da força), direção e sentido.

Sobre a massa, Newton afirma que ela é uma *medida da quantidade de matéria*. Veremos que ela atuará como uma constante de proporcionalidade entre a força aplicada sobre um corpo, e a aceleração experimentada por ele. Ao contrário da força, a massa é uma quantidade escalar, por isso sua determinação no caso de um sistema composto por vários corpos é bastante simples: basta somarmos os valores de massa de cada um dos membros do sistema. Além disso, tal grandeza é estritamente positiva, não havendo valores negativos, ou mesmo nulos. Em alguns casos, no entanto podemos considerar que a massa de um corpo é desprezível em comparação com a de outros corpos.

Note que não definimos nenhuma unidade para a massa ou para a força. Faremos isso na Seção 4.2.3, pois precisaremos das Leis de Newton para definir as unidades e métodos para aferir os valores dessas grandezas.

Discussão: Diferença entre massa e peso

Cabe aqui uma discussão acerca da confusão entre massa e peso. Newton deixa claro³ que a massa é uma medida da quantidade de matéria que um corpo possui, e que tal grandeza é *proporcional* ao peso. Veja que o peso de um corpo possui características vetoriais, pois é dirigido verticalmente para baixo e possui um módulo que é tão maior quanto maior for sua quantidade de matéria, ou seja, quanto maior for a massa. Além disso, como veremos adiante, um corpo que se encontra longe da superfície da Terra é atraído por uma força que varia com a distância de separação, sendo, portanto diferente para cada posição. A massa, por outro lado, é uma constante característica

Figura 4.1: Figura utilizada por Newton para explicar a composição da ação de duas forças considerando o deslocamento causado por elas dentro de um um intervalo de tempo Δt e partindo de uma velocidade nula. Se uma força atuando isoladamente causa um deslocamento de A até B e a outra causa o deslocamento de A até C, então ambas atuando conjuntamente causam o deslocamento de C até C0. Note que a figura denota a soma de dois vetores, como verificado no Capítulo 2.

² Considerando que o corpo possa se mover livremente. Em um sistema que podem atuar diversas forças, algumas delas podem sofrer alteração ao exercermos uma força adicional, mantendo o sistema em equilíbrio. Verificaremos mais adiante como proceder nessas situações.

 $^{^{\}rm 3}$ Verifique os enunciados de Newton na Seção 4.5.2

do corpo e não está sujeita a mudanças, exceto se o corpo perde matéria.

4.2.2 Primeira Lei de Newton: Princípio da Inércia segundo Galileu e segundo Newton

Ao analisar o movimento, Galileu em seu *Diálogo sobre os dois principais sistemas do mundo* tece as seguintes observações:⁴

- Tomamos uma superfície inclinada lisa e resistente, juntamente com uma esfera também lisa e resistente e colocamos a segunda sobre a primeira, de forma que fique livre para rolar, tomando cuidado para remover todos os possíveis "impedimentos" ao movimento. Desprezamos também a resistência do ar. Observamos que a esfera rola em direção à parte mais baixa da superfície, ganhando velocidade continuamente enquanto dura a descida. Quanto maior a inclinação do plano em relação à horizontal, maior é o ganho de velocidade da esfera após percorrer uma dada distância.
- Para que a esfera suba o plano, é necessário que ela seja atirada com velocidade, ou arrastada, plano acima. Sendo atirada, o seu movimento natural é perder velocidade continuamente, eventualmente parando. Se aumentamos ou diminuímos a inclinação do plano, mantendo constante a velocidade com que a esfera foi atirada, temos que ela percorrerá uma distância maior ou menor, sendo tanto maior quanto menor for a inclinação e vice-versa.
- Se tomarmos uma superfície perfeitamente horizontal, não existe tendência a ganhos de velocidade, nem de perdas de velocidade. Se colocarmos a esfera de forma que ela fique parada sobre a superfície, ela deve permanecer parada. Se a colocarmos em movimento, não havendo impedimentos, ela deve permanecer em movimento. Não havendo inclinação do plano, não há razão para haver aumento ou diminuição da velocidade. Se o plano horizontal for infinito, ela deve continuar nesse movimento indefinidamente. A razão disto é que existe uma tendência dos corpos a se moverem em direção ao centro da Terra. Como em um plano horizontal todas as partes estão à mesma distância em relação ao centro, não existe um lugar preferencial da superfície para o qual a esfera tem uma tendência a se dirigir. Tal superfície seria, na realidade, uma esfera lisa e concêntrica com a Terra. Uma vez posta em movimento em direção ao norte, por exemplo, a esfera continuaria a se mover em tal direção até atingi-lo e passar a se mover para o sul, descrevendo um circulo em torno da Terra.

Portanto, podemos afirmar que — segundo Galileu — um corpo sobre uma superfície horizontal continuará se movendo na mesma direção com velocidade constante a não ser que seja perturbado, o que é conhecido como princípio da inércia. Devemos destacar que para Galileu, o movimento horizontal do corpo não é retilíneo, mas um círculo em torno da Terra.⁵ Finalmente, através de tais observações, Galileu concluiu

 $^4\,\mathrm{O}$ texto completo se encontra na Seção 4.5.1

Figura 4.2: Um corpo que pode se mover livremente em uma rampa se desloca em direção ao ponto mais baixo e ganha velocidade durante o movimento.

Figura 4.3: Ao lançarmos um corpo rampa acima, sua velocidade diminui progressivamente.

Figura 4.4: Um a superfície horizontal infinita é, na verdade, uma esfera perfeitamente lisa.

⁵ Essa é a interpretação mais comum das principais obras de Galileu, porém há controvérsias sobre isso: veja Júio Celso Ribeiro de Vasconcelos (set. de 2005). "Galileu contra a inércia circular". pt. Em: *Scientiae Studia* 3, pp. 395–414. ISSN: 1678-3166. URL: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1678 - 31662005000300003&nrm=iso

que é impossível distinguir um corpo em movimento com velocidade constante de outro parado, a não ser que tenhamos uma referência externa.

No Principia, Newton declara a primeira lei do movimento como:

Todo corpo permanece em estado de repouso, ou de movimento uniforme em uma linha reta, a não ser que seja compelido a mudar tal estado por forças que atuam sobre ele.

A diferença fundamental em relação ao proposto por Galileu é o fato de que o movimento, na ausência de forças, se dá em linha reta. Verificamos no Capítulo 3 que se temos uma mudança na direção da velocidade, temos uma aceleração, mesmo que o módulo do vetor velocidade se mantenha constante. Veremos através da Segunda Lei de Newton, a seguir, que se não temos forças, não temos aceleração. Consequentemente, na ausência de forças atuando sobre um corpo que se desloca, o movimento deve ser retilíneo e com o módulo da velocidade constante.

4.2.3 Segunda Lei de Newton

Através da Primeira Lei de Newton, damos um passo adiante no estudo do movimento dos corpos, associando força à aceleração. Na Segunda Lei, Newton dá uma forma mais precisa para a dependência entre aceleração e força:

A alteração do movimento é sempre proporcional à força motriz a ele aplicada; e é feita na direção da linha reta em que tal força atua.⁶

Nas seções seguintes, vamos explorar a relação enunciada, colocandoa em uma forma matemática. Após isso, vamos explorar as propriedades de forças que são comuns a fenômenos no contexto de mecânica, empregando esses conhecimentos na solução de prolemas simples.

Relação entre força e aceleração

Experimentalmente, podemos verificar que a aceleração de um objeto é maior caso a força que exercemos sobre ele seja maior. Se temos uma alteração da velocidade quando um corpo se desloca por certo tempo sob ação de uma força, ao dobrarmos ou triplicarmos a intensidade da força, teremos que a alteração da velocidade dobrará ou triplicará no mesmo tempo, respectivamente. Podemos então dizer que⁷

$$a \propto F$$
, (4.1)

ou, considerando que — como explicitado por Newton — a alteração é sempre na mesma direção que a força motriz,

$$\vec{a} \propto \vec{F}$$
. (4.2)

Note que a proporcionalidade implica em uma relação linear entre a aceleração e a força aplicada.

⁷O símbolo ∝ denota *proporcionalidade*.

Figura 4.5: A relação de proporcionalidade entre a e F implica em uma relação linear entre tais grandezas.

⁶ Newton usa o termo movimento para o que conhecemos hoje como quantidade de movimento ou momento linear, representado por \vec{p} . Tal definição, dada por $\vec{p} = m\vec{v}$ engloba tanto a massa quanto a velocidade, sendo que sua alteração pode se dar por meio de uma variação da massa ou da velocidade (ou ambas, conjuntamente), ou seja, sua alteração se dá através da aceleração, se m for mantido constante. Veremos mais sobre isso no Capítulo ??.

Relação entre massa e aceleração

Como verificamos acima, se aplicarmos uma força em um corpo, observamos que ele estará sujeito a uma aceleração. No entanto, se aplicarmos uma dada força em um corpo muito massivo, teremos uma aceleração pequena, ao passo que se aplicarmos tal força em um corpo com uma massa pequena, teremos uma aceleração maior.

Se, por exemplo, aplicarmos uma força F_1 a um corpo de massa m_1 , experimentalmente observaremos uma aceleração a_1 . Ao submetermos um outro corpo, de massa $m_2 = 2m_1$, à mesma força F_1 , observamos experimentalmente que a aceleração a_2 corresponde à metade do valor de a_1 . Se submetermos um corpo com massa $m_3 = 3m_1$ a ação da força F_1 , observamos uma aceleração a_3 que corresponde a um terço da aceleração a_1 . Percebemos então que a aceleração assume uma proporcionalidade inversa em relação à massa:

$$a \propto \frac{1}{m}.\tag{4.3}$$

Relação entre aceleração, força, e massa

Observando a dependência em relação à força, à massa, e o caráter vetorial das grandezas, temos que

$$\vec{a} \propto \frac{\vec{F}}{m}$$
. (4.4)

Considerando que a aceleração só dependa de \vec{F} e m, e também o fato de que uma proporcionalidade pode ser escrita como uma igualdade se utilizarmos uma constante de proporcionalidade C qualquer — cujo valor precisamos determinar —, obtemos

$$\vec{a} = C\frac{\vec{F}}{m}.\tag{4.5}$$

Apesar de termos unidades para a aceleração e para a massa, ⁸ não temos para a força. Nesse caso, podemos englobar a constante *C* na própria definição das unidades da força e obter

$$\vec{a} = \frac{\vec{F}}{m}.\tag{4.6}$$

A forma acima não é a mais conhecida, mas sim

$$\vec{F} = m\vec{a}.\tag{4.7}$$

Matematicamente, as expressões são completamente equivalentes, porém a Equação 4.6 deixa mais evidente a relação causa e efeito: a existência de uma força *causa* uma aceleração. Note ainda que, de acordo com o que verificamos na Seção 2.4.6, podemos tratar a multiplicação de um vetor por um escalar através das componentes vetoriais nos três eixos de um sistema de referência ortogonal:

$$\begin{cases} F_x = ma_x \\ F_y = ma_y \\ F_z = ma_z. \end{cases}$$

$$(4.8)$$

Figura 4.6: A relação entre a e m é a de que a primeira é proporcional ao inverso da segunda.

⁸ Veremos as unidades para a massa adiante.

Segunda Lei de Newton.

⁹ A inversão dessa relação de causa e efeito é particularmente problemática ao tratarmos de forças no movimento circular, onde um erro comum é achar que existe uma força *adicional* em movimentos circulares, denominada como *força centrípeta*. Na verdade, alguma força, ou componente de força, ou mesmo uma combinação de forças e componentes, exerce o papel de força centrípeta e *causa* o movimento circular. Discutiremos isso em detalhes adiante.

Até aqui consideramos o efeitos de forças atuando individualmente em um corpo. No entanto, como mencionado na Seção 4.2.1, a composição da ação de duas forças ao mesmo tempo apresenta as propriedades de uma soma vetorial. Assim, quando duas ou mais forças atuam sobre um corpo, a aceleração estará relacionada à *força resultante* \vec{F}_R , dada pela soma vetorial de todas as forças que atuam sobre o corpo:

$$\vec{a} = \frac{\vec{F}_R}{m},\tag{4.9}$$

onde,

$$\vec{F}_R = \vec{F}_1 + \vec{F}_2 + \dots \tag{4.10}$$

$$=\sum_{i=1}^{n}\vec{F}_{i}.$$
(4.11)

Note que se a soma das forças resulta em um *vetor nulo*, temos uma aceleração *nula*. Em tal situação, dizemos que o sistema se encontra em *equilíbrio*.

Discussão: Unidades e medidas

Através da Segunda Lei de Newton, podemos determinar a massa de um objeto em relação à massa de outro. Suponha que tomamos um objeto qualquer e a ele aplicamos uma força resultante *F*. Sabemos que ele será submetido a uma aceleração de tal maneira que

$$F = m_1 a_1. (4.12)$$

Se submetermos outro corpo à mesma força, ¹⁰ temos

$$F = m_2 a_2. (4.13)$$

Como a força é a mesma em ambos os casos, podemos escrever

$$m_1 a_1 = m_2 a_2, (4.14)$$

ou

$$m_2 = \frac{a_1}{a_2} m_1. (4.15)$$

Este resultado é relevante pois não temos um método de determinar a massa de um objeto a não ser por comparação com outro. Utilizando o processo acima, podemos determinar a massa de um objeto qualquer em relação ao padrão de referência. ¹¹

No caso das forças, as unidades do SI são

$$[F] = [ma] \tag{4.16}$$

$$= [m][a] \tag{4.17}$$

$$= kg \frac{m}{s^2} \tag{4.18}$$

$$\equiv N,$$
 (4.19)

¹⁰ É mais fácil falar isso do que fazer. Ainda não discutimos um dispositivo que nos permita medir forças, mas isso é relativamente simples de se fazer ao empregarmos uma mola: veremos adiante que a força exercida por uma mola é proporcional à distensão que ela sofre. Assim, é possível elaborar um equipamento simples — um dinamômetro — que consiste em uma mola associada a uma escala graduada, através da qual verificamos a força exercida pela mola.

 $^{^{11}}$ No Sistema Internacional (SI), até maio de 2019 se utiliza a massa de um cilindro metálico como massa padrão em relação a qual as demais massas são medidas, sendo atribuída a ele a massa de 1 kg. Atualmente, adotou-se que a constante de Planck tem um valor exato $h=6.626\,070\,15\cdot10^{-34}\,\mathrm{J\cdot s}$. Como a unidade $\mathrm{J\cdot s}$ equivale a kg·m²/s, ao definirmos o valor de h e utilizarmos as definições de metro e de segundo, temos um valor específico para o kg.

onde utilizamos a definição $N \equiv kg \cdot m/s^2$ para nomear a unidade da força como *Newton*, isto é, $1 \, N \equiv 1 \, kg \cdot m/s^2$. Em princípio, podemos verificar o valor de uma força simplesmente determinando a massa de um corpo e o valor da aceleração a qual ele está sujeito quando sob ação de tal força. ¹²

4.2.4 Diagramas de forças, sistemas de referência, aplicações

Um artifício fundamental para a interpretação e solução de problemas de dinâmica é o diagrama de corpo livre, ou diagrama de forças. Tal diagrama consiste em representar cada corpo como um ponto, sendo que todas as forças que atuam em tais corpos são representadas como atuando sobre o respectivo ponto (veja a parte à direita na Figura 4.7). Além disso, não devemos incluir acelerações, velocidades, ou quaisquer outros vetores no diagrama de forças.

Podemos, ao invés de utilizar um diagrama de forças como descrito acima, fazer um esboço da situação (veja a parte à esquerda na Figura 4.7). Isso em geral é mais interessante, pois ele reúne as principais características de um diagrama de forças e ao mesmo tempo permite uma visualização do problema. Esse artifício exige algumas adaptações, como representar forças em posições diferentes das ideais para que elas possam ser representadas confortavelmente no esboço.

Como já vimos, trabalhar com vetores é mais simples se utilizarmos um *sistema de referência* no qual eles podem ser decompostos. A escolha da direção dos eixos é muito importante, pois um sistema inadequado pode dificultar muito a solução de um problema. Para uma escolha adequada, devemos observar os seguintes pontos:

- Como regra geral, se houver aceleração no sistema, devemos escolher um dos eixos na direção de tal aceleração, pois assim teremos aceleração nula nos demais eixos. Em algumas situações, pode não ser possível saber de antemão qual será a direção da aceleração. Nesse caso, devemos observar os pontos adiante e escolher um sistema de coordenadas. O que provavelmente ocorrerá é termos componentes da aceleração em mais que um eixo.
- Caso não haja nenhuma aceleração, devemos verificar informações dadas sobre ângulos e procurar estabelecer eixos de forma que os ângulos entre as forças e os eixos sejam conhecidos.
- Finalmente, devemos procurar eixos que minimizem o número de forças que devem ser decompostas, isto é, devemos minimizar o número de forças que terão projeções em mais de um eixo.

Uma vez escolhido um sistema de referência, devemos aplicar a Segunda Lei de Newton a cada corpo separadamente, uma vez para cada eixo de referência. Se, por exemplo, tivermos uma situação como a da Figura 4.8, obtemos ao aplicar a Segunda Lei de Newton para cada eixo:

¹² Novamente, na prática usamos um dinamômetro para medir forças.

Figura 4.7: Esboço de um problema e o diagrama de forças correspondente. Apesar de a rigor devermos utilizar o diagrama, é mais ilustrativo utilizar a representação da esquerda, porém ela tem problemas conceituais: a força \vec{N} exercida pela mesa é exercida na parte inferior do bloco, não no topo, como ilustrado.

Figura 4.8: Um corpo submetido a um conjunto de forças. Note que devido à escolha da orientação do sistema de referência, as componentes $F_{2,x}$ e $F_{3,y}$ são nulas

Eixo x:

$$F_{R,x} = ma_x \tag{4.20}$$

$$F_{1,x} + F_{2,x} + F_{3,x} = ma_x (4.21)$$

Eixo y:

$$F_{R,y} = ma_x \tag{4.22}$$

$$F_{1,y} + F_{2,y} + F_{3,y} = ma_y, (4.23)$$

onde as componentes das forças devem ser determinadas observando o que foi discutido no Capítulo 2.

A partir das equações obtidas, devemos buscar as informações que necessitamos, e que podem ser qualquer uma das variáveis presentes nas duas equações acima. Muitas vezes será necessário determinar duas informações de um mesmo conjunto do equações, por isso vamos precisar elaborar sistemas de equações para que possamos determinar tais informações.¹³

Devemos notar ainda que muitas vezes não sabemos de antemão qual será o *sentido* da aceleração. Nesse caso, devemos simplesmente assumir qualquer um dos dois sentidos possíveis como sendo positivo. Ao resolvermos as equações, se estivermos interessados em calcular a aceleração, a obtenção de um valor negativo indica que a essa variável tem o sentido oposto àquele que assumimos.

Discussão: Sistemas em equilíbrio de forças

Uma situação particularmente comum é quando a força resultante sobre um corpo é nula. Nesse caso, temos o que chamamos de um *sistema em equilíbrio*. Através da Segunda Lei de Newton, verificamos que a aceleração do corpo nessa situação é zero:

$$\vec{a} = \frac{\vec{F}_R}{m} \tag{4.24}$$

$$=0.$$
 (4.25)

Note que o equilíbrio não significa que a velocidade é necessariamente zero, pois uma velocidade constante em módulo e direção satisfaz a condição de "aceleração nula" perfeitamente.

Na Figura 4.9 temos um corpo sujeito a um conjunto de forças e em equilíbrio. Podemos determinar a relação entre as forças através da Segunda Lei de Newton. Para isso, vamos adotar um sistema de referência e determinar o ângulo entre as forças e os eixos. Veja a Figura 4.10. Aplicando a Segunda Lei de Newton a cada eixo, temos:

Eixo x:

$$F_{R,x} = ma_x \tag{4.26}$$

$$F_{1,x} + F_{2,x} + F_{3,x} = 0 (4.27)$$

$$F_{1,x} - F_3 = 0 (4.28)$$

$$F_{1,x} = F_3.$$
 (4.29)

¹³ É muito comum que ao se obter a aceleração, outras informações possam ser determinadas de maneira relativamente simples. Por isso, determinar a aceleração costuma ser o primeiro passo na solução de problemas, exceto — é claro — naqueles que envolvem equilíbrio.

Figura 4.9: Um corpo submetido a um conjunto de forças e em equilíbrio.

Figura 4.10: Um corpo submetido a um conjunto de forças e em equilíbrio.

101

Eixo y:

$$F_{R,y} = ma_y \tag{4.30}$$

$$F_{1,y} + F_{2,y} + F_{3,y} = 0 (4.31)$$

$$F_{1,y} - F_2 = 0 (4.32)$$

$$F_{1,y} = F_2. (4.33)$$

Em ambos os eixos utilizamos o fato de que, se há equilíbrio no eixo, então a aceleração é nula. Note ainda que utilizamos para as componentes

$$F_{2,x} = 0 (4.34)$$

$$F_{2,y} = -F_2 (4.35)$$

$$F_{3,x} = -F_3 (4.36)$$

$$F_{3,y} = 0. (4.37)$$

Tais resultados se devem ao fato de que temos projeções completas no sentido negativo do eixo (para $F_{2,y}$ e $F_{3,x}$), ou projeções nulas (para $F_{2,x}$ e $F_{3,y}$). ¹⁴

A força \vec{F}_1 pode ser decomposta utilizando as funções trigonométricas e o fato de que o ângulo entre a força e o eixo x é θ , o que resulta em

$$F_1 \cos \theta = F_3 \tag{4.38}$$

$$F_1 \operatorname{sen} \theta = F_2. \tag{4.39}$$

Note que a escolha do sistema de referências foi feita com base no ângulo dado e no fato de que as forças \vec{F}_2 e \vec{F}_3 não precisariam ser decompostas. No entanto, outros sistemas poderiam ser utilizados, desde que conseguíssemos determinar o ângulo entre cada força e os eixos de referência.

Exemplo: Determinação de uma força em um sistema em equilíbrio

Dada a Figura 4.11, considerando que $\vec{F}_2 \perp \vec{F}_3$, $F_2 = 15$ N, $F_3 = 10$ N, e $\vec{a} = 0$, determine o módulo da força \vec{F}_1 e o ângulo que ela faz com a força \vec{F}_2 .

Podemos determinar o módulo da força \vec{F}_1 e seu ângulo em relação a \vec{F}_2 aplicando a Segunda Lei de Newton e observando que a aceleração é zero por se tratar de uma situação de equilíbrio:

$$\vec{F}_R = m\vec{a} \tag{4.40}$$

$$=0.$$
 (4.41)

Para auxiliar a análise do problema, escolhemos o sistema de referência mostrado na Figura 4.12. Tal escolha se deu por ser o sistema de referência que minimiza o número de forças que tem componentes em ambos os eixos. Como determinado acima, a aceleração é nula, logo as componentes da aceleração nos eixos x e y também serão

¹⁴ Por conveniência, geralmente o segundo passo nas expressões para os eixos *x* e *y*, Equações (4.27) e (4.31), não é escrito explicitamente. Passamos diretamente para o passo seguinte, onde já substituímos as projeções completas e as projeções nulas.

Figura 4.11: Um corpo submetido a um conjunto de forças e em equilíbrio.

Figura 4.12: Um corpo submetido a um conjunto de forças e em equilíbrio.

nulas,

$$a_x = 0 \tag{4.42}$$

$$a_{y}=0, (4.43)$$

o que implica em

$$F_{R,x} = 0 \tag{4.44}$$

$$F_{R,y} = 0.$$
 (4.45)

Note que na Figura 4.12 passamos a denotar o ângulo α entre o vetor \vec{F}_3 e o eixo y, uma vez que $\theta=\alpha+90^\circ$. As componentes de cada força nos eixos x e y podem ser determinadas através de uma decomposição de vetores. Para a força \vec{F}_1 , em especial, podemos utilizar o ângulo α desde que os sinais sejam inseridos "manualmente". ¹⁵ Assim, temos

$$F_{1,x} = -F_1 \sin \alpha$$
 $F_{1,y} = -F_1 \cos \alpha$
 $F_{2,x} = F_2$ $F_{2,y} = 0$
 $F_{3,x} = 0$ $F_{3,y} = F_3$.

Note que as componentes de \vec{F}_1 são negativas, uma vez que as projeções apontam no sentido negativo dos eixos. ¹⁶

Substituindo os valores das componentes nas expressões para a força resultante, obtemos

$$F_{R,x} = F_{1,x} + F_{2,x} + F_{3,x} (4.46)$$

$$= -F_1 \sin \alpha + F_2 + 0 = 0 \tag{4.47}$$

$$F_{R,y} = F_{1,y} + F_{2,y} + F_{3,y} (4.48)$$

$$= -F_1 \cos \alpha + 0 + F_3 = 0, \tag{4.49}$$

de onde podemos escrever o sistema de equações dado por

$$\begin{cases}
-F_1 \sin \alpha + F_2 = 0 \\
-F_1 \cos \alpha + F_3 = 0.
\end{cases}$$
(4.50)

A solução do sistema pode ser feitas de diversas maneiras, mas para esse caso o caminho mais simples envolve reescrevê-lo como

$$\begin{cases} F_1 \sin \alpha = F_2 \\ F_1 \cos \alpha = F_3 \end{cases} \tag{4.51}$$

e dividir a primeira equação pela segunda, obtendo

$$\frac{F_1 \operatorname{sen} \alpha}{F_1 \operatorname{cos} \alpha} = \frac{F_2}{F_3} \tag{4.52}$$

$$\frac{\operatorname{sen}\alpha}{\cos\alpha} = \frac{F_2}{F_3} \tag{4.53}$$

$$\tan \alpha = \frac{F_2}{F_3}. (4.54)$$

 15 Note que as projeções do vetor \vec{F}_1 são negativas em ambos os eixos, porém $0<\alpha<90^\circ$, o que implica em sen $\alpha>0$ e $\cos\alpha>0$. Como o módulo de um vetor é sempre uma grandeza positiva, devemos inserir o sinal manualmente para que as projeções tenham sinais apropriados.

 16 Devemos destacar que os sinais mostrados têm de ser inseridos "à mão" pois estamos fazendo a decomposição através do ângulo α . Se medíssemos o ângulo em relação ao eixo x, em sentido anti-horário, as próprias funções trigonométricas seno e cosseno já determinariam tais sinais, uma vez que para ângulos no terceiro quadrante ambas são negativas. No entanto, é muito comum ao se trabalhar com ângulos os restringir a valores do primeiro quadrante (note que $\alpha < 90$ °). Nesse caso, devemos tomar o cuidado de inserir sinais adequados.

Utilizando a função arctan, temos

$$\alpha = \arctan \frac{F_2}{F_3}$$

$$= \arctan \left(\frac{(15 \text{ N})}{(10 \text{ N})}\right)$$
(4.55)

$$=\arctan\left(\frac{(15\,\mathrm{N})}{(10\,\mathrm{N})}\right) \tag{4.56}$$

$$=56,31^{\circ}$$
 (4.57)

$$=56^{\circ}$$
. (4.58)

Conhecendo o valor de α , basta voltarmos a qualquer uma das duas equações do sistema e determinarmos o valor de F₁. Tomando a primeira delas, por exemplo, temos

$$F_1 \operatorname{sen} \alpha = F_2 \tag{4.59}$$

$$F_{1} = \frac{F_{2}}{\operatorname{sen} \alpha}$$

$$= \frac{(15 \,\mathrm{N})}{\operatorname{sen}(56,31^{\circ})}$$
(4.60)

$$=\frac{(15\,\mathrm{N})}{\mathrm{sen}(56,31^\circ)}\tag{4.61}$$

$$= 18,03 \,\mathrm{N}$$
 (4.62)

$$= 18 \,\mathrm{N}.$$
 (4.63)

Discussão: Sistema fora do equilíbrio de forças

Toda situação onde não existe um perfeito equilíbrio das forças que atuam em um corpo implica na existência de uma aceleração. Se considerarmos, por exemplo, a situação mostrada na Figura 4.13, verificamos a existência de quatro forças atuando sobre um corpo. As forças \vec{F}_1 e \vec{F}_2 são perpendiculares entre si, enquanto os ângulos entre \vec{F}_3 e \vec{F}_2 , e entre \vec{F}_4 e \vec{F}_2 são θ e ϕ , respectivamente.

Não há razão para assumimos que há equilíbrio em tal sistema, por isso devemos levar em conta a aceleração devida à força resultante. Para que possamos determinar o vetor aceleração mais facilmente, escolhemos o sistema de coordenadas mostrado na Figura 4.14. A escolha da direção dos eixos se deu com base no fato de que dois dos vetores são nas direções dos eixos x e y escolhidos, e os outros dois vetores podem ser decompostos em tais eixos pois sabemos os ângulos entre cada um deles e o eixo x. Nesse sistema, vemos que é mais simples utilizar o ângulo α para descrever a direção do vetor \vec{F}_3 , sendo que $\theta = \alpha + 90^{\circ}$.

Aplicando a Segunda Lei de Newton para cada um dois eixos, temos

Eixo x:

$$F_{R,x} = ma_x \tag{4.64}$$

$$F_{1,x} + F_{2,x} + F_{3,x} + F_{4,x} = ma_x (4.65)$$

$$F_2 - F_3 \operatorname{sen} \alpha + F_4 \cos \phi = ma_x. \tag{4.66}$$

Figura 4.13: Corpo sujeito a um conjunto de forças que não se encontram em equilíbrio.

Figura 4.14: Através de um sistema de referência, podemos determinar a aceleração resultante mais facilmente.

Eixo y:

$$F_{R,y} = ma_y \tag{4.67}$$

$$F_{1,y} + F_{2,y} + F_{3,y} + F_{4,y} = ma_y (4.68)$$

$$F_1 + F_4 \operatorname{sen} \phi - F_3 \cos \alpha = ma_y. \tag{4.69}$$

Para que possamos determinar as componentes da aceleração, a partir desse ponto precisamos de valores numéricos específicos. Supondo que a massa do corpo seja de 2,0 kg, e que

$$F_1 = 10 \text{ N}$$
 $F_3 = 8.0 \text{ N}$
 $F_2 = 10 \text{ N}$ $F_4 = 5.0 \text{ N}$
 $\phi = 40^\circ$ $\alpha = 25^\circ$,

obtemos

$$ma_x = (10 \text{ N}) + (5 \text{ N}) \cdot (\cos 40^\circ) - (8 \text{ N}) \cdot (\sin 25^\circ)$$
 (4.70)

$$ma_y = (10 \text{ N}) + (5 \text{ N}) \cdot (\text{sen } 40^\circ) - (8 \text{ N}) \cdot (\cos 25^\circ)$$
 (4.71)

o que resulta em

$$a_x = 5.2 \,\mathrm{m/s^2}$$
 (4.72)

$$a_{y} = 3.0 \,\mathrm{m/s^{2}},$$
 (4.73)

ou, em termos dos vetores unitários,

$$\vec{a} = 5.2 \,\mathrm{m/s^2} \,\hat{\imath} + 3.0 \,\mathrm{m/s^2} \,\hat{\jmath}.$$
 (4.74)

Podemos ainda determinar o módulo da aceleração e o ângulo que ela faz com o eixo x, obtendo

$$a = 6.0 \,\mathrm{m/s^2}$$
 (4.75)

$$\beta = 30^{\circ}. \tag{4.76}$$

Discussão: Sistema fora do equilíbrio de forças, com a direção da aceleração conhecida

Em diversas situações, um sistema físico está sujeito a uma série de *vínculos* que limitam o movimento a uma só direção. Dessa forma, se há aceleração, sua direção já é pré-determinada. Nesses casos, podemos obter uma grande simplificação do problema em questão se optarmos por um sistema de coordenadas em que a direção de um dos eixos é a própria direção da aceleração. Isso garante que os demais eixos possam ser tratados como uma situação de equilíbrio.

Como exemplo de um sistema submetido a um vínculo, vamos considerar uma conta — isto é, uma pequena esfera perfurada — que pode deslizar ao longo de um fio. Vamos supor que a conta está sujeita a uma força \vec{F}_1 que faz um ângulo θ com a direção do fio, e a uma força \vec{F}_2 exercida pelo próprio fio sobre a conta, através da parede interna do orifício. Vamos considerar que a aceleração a da conta e

Figura 4.15: Aceleração resultante da ação de um conjunto de forças em um corpo.

Figura 4.16: Uma conta que se move ao longo de um fio é um exemplo de um movimento sujeito a um vínculo que determina a direção da aceleração.

sua massa m são conhecidas, além do ângulo θ , e que procuramos os valores de F_1 e F_2 .

Se a conta está sujeita a forças como mostrado na Figura 4.16, devemos escolher um sistema de coordenadas em que um dos eixos aponta na própria direção do fio, pois esta é a direção da aceleração. Ao decompormos as forças e utilizarmos a Segunda Lei de Newton, obtemos:

Eixo x: Para o eixo x temos que $a_x \equiv a$, pois adotamos o eixo de referência x na mesma direção da aceleração, logo,

$$F_{R,x} = ma_x \tag{4.77}$$

$$F_{1,x} + F_{2,x} = ma (4.78)$$

$$F_1 \cos \theta = ma \tag{4.79}$$

$$F_1 = \frac{ma}{\cos \theta}.\tag{4.80}$$

Eixo y: Nesse eixo não existe aceleração, logo $a_y \equiv 0$, portanto,

$$F_{R,y} = ma_y \tag{4.81}$$

$$F_{1,y} + F_{2,y} = ma_y (4.82)$$

$$F_1 \operatorname{sen} \theta - F_2 = 0 \tag{4.83}$$

$$F_2 = F_1 \operatorname{sen} \theta. \tag{4.84}$$

Substituindo na expressão acima o resultado encontrado para F_1 , determinamos o valor de F_2 :

$$F_2 = ma \frac{\sin \theta}{\cos \theta} \tag{4.85}$$

$$F_2 = ma \tan \theta. \tag{4.86}$$

Através das equações obtidas acima é possível verificar que a escolha de um sistema de referência com um dos eixos apontando na direção da aceleração nos leva a um sistema de equações cuja solução é mais simples, pois *no eixo perpendicular à aceleração temos equilíbrio*. Note que a ideia de simplificar o tratamento matemático ao escolher a aceleração na direção de um dos eixos coordenados já foi utilizada no Capítulo 3, ao tratarmos o movimento de projéteis.

4.2.5 Terceira Lei de Newton

A Terceira Lei de Newton foi por ele enunciada como

Para cada ação há sempre uma reação igual oposta: ou as ações mutuas de dois corpos um sobre o outro são sempre iguais, e dirigidas a partes contrárias.

Denominamos tal par como um par ação-reação 17. Note que:

- As forças do par nunca atuam sobre o mesmo corpo: em uma interação entre dois corpos quaisquer, uma delas, \vec{F}_{12} , atua sobre um dos corpos, enquanto a outra, \vec{F}_{21} , atua sobre o outro (Figura 4.18);
- As forças atuam na mesma direção, porém com sentidos opostos;

Figura 4.17: Ao escolhermos a direção de um dos eixos do sistema de referência como sendo aquela da aceleração, reduzimos a complexidade matemática do problema pois teremos uma situação de equilíbrio nos demais eixos.

Figura 4.18: Ao submetermos dois blocos a uma força \vec{F} , ocorrerá uma interação na superfície de contato entre eles. Tal interação resultará na força \vec{F}_{12} para a direita atuando no bloco da direita, fazendo com que ele acelere, e na força $F'\equiv\vec{F}_{21}$ para a esquerda atuando no bloco da esquerda. No caso do bloco da esquerda a *força resultante* $\vec{F}_R = \vec{F} - \vec{F}_{21}$ será a responsável pela aceleração.

¹⁷ Quem é a ação e quem é a reação é completamente irrelevante.

¹⁸ No exemplo da Figura 4.18, podemos denotar \vec{F}_{21} como \vec{F}'_{12} .

Figura 4.19: Mesmo no caso de uma interação à distância, temos um par açãoreação: Na situação mostrada na figura, na ausência de atrito, ambos os imãs se deslocariam e estariam sujeitos a acelerações $a_1 = F/m_1$ e $a_2 = F/m_2$.

• As forças têm o mesmo módulo. A reação a uma força qualquer \vec{F} é denotada como \vec{F}' , sendo que o módulo de ambas é denotado por *F*. 18

Devemos notar ainda que Newton contempla a interação por quaisquer meios, seja por contato (Figura 4.18), seja à distância (Figura 4.19).

Discussão: Diferenças de aceleração entre dois corpos que interagem através de um par ação-reação

Muitas vezes, devido às diferentes massas dos corpos que interagem, pode ser difícil perceber que um deles está sujeito a uma força quando interage com outro. Se, por exemplo, um patinador arremessa uma bola com força, verificamos que a bola sofre uma grande alteração de sua velocidade. O patinador, por sua vez, sofre uma aceleração na mesma direção, porém com o sentido contrário. Observamos, no entanto, que sua velocidade final é muito menor. Isto pode ser entendido através da Segunda Lei de Newton, pois, como as forças que atuam em cada um dos corpos são iguais em módulo

$$F = m_1 a_1 \tag{4.87}$$

$$F' = m_2 a_2 (4.88)$$

e, consequentemente,

$$a_2 = \frac{m_1}{m_2} a_1. (4.89)$$

Logo, se supomos que a massa m_1 da bola é muito menor que a massa m_2 do patinador, temos que $m_1/m_2 \ll 1$ e, consequentemente, $a_2 \ll a_1$. Como ambos os corpos estão sujeitos às acelerações durante o mesmo intervalo de tempo, observamos que $\Delta v_2 \ll \Delta v_1$, pois a variação da velocidade é diretamente proporcional à intensidade da aceleração.

Exemplo: Arremesso de uma bola

Um jogador em pé sobre uma superfície de atrito desprezível arremessa uma bola de 600 g, sendo que sua massa é de 75 kg. O processo de aceleração dura 0,80 s e após isso a bola parte com velocidade horizontal, atingindo o solo a uma distância horizontal de 10,0 m em relação ao ponto em que deixou a mão do jogador. Assumindo que o jogador está inicialmente em repouso, que a força exercida sobre a bola seja constante durante o processo de aceleração, e que a altura da bola em relação ao solo era de 1,70 m, determine a velocidade do jogador após o arremesso.

Ao lançar a bola o jogador exerce uma força sobre ela, porém sofre a influência da força de reação. Sabendo a massa do jogador e a força, podemos determinar a aceleração a qual ele está sujeito através da Segunda Lei de Newton. Como a força é constante, a aceleração também é, logo a velocidade pode ser calculada pelo produto da aceleração pelo tempo de atuação da força.

Para determinarmos a força que atua sobre o jogador, podemos verificar o que acontece com a bola. Sabemos que ela é arremessada com

uma velocidade horizontal, atingindo o solo após certo tempo. Esse é um exemplo de lançamento horizontal, logo, podemos determinar a velocidade da bola imediatamente após ser lançada. Essa informação, por sua vez, pode ser usada para determinar a aceleração a qual a bola foi submetida, o que nos permite calcular a força aplicada sobre ela (através da Segunda Lei de Newton).

Devemos iniciar o cálculo determinando o tempo de queda da bola:

$$\Delta y = v_{i,y}t - \frac{gt^2}{2} \tag{4.90}$$

$$\Delta y = -\frac{gt^2}{2} \tag{4.91}$$

$$t^2 = \frac{2\Delta y}{g},\tag{4.92}$$

onde assumimos que o eixo y aponta verticalmente para cima e utilizamos o fato de que a velocidade vertical inicial é nula. Obtemos para o tempo de queda

$$t = \sqrt{\frac{2\Delta y}{g}} \tag{4.93}$$

$$=\sqrt{\frac{2\cdot(1.70\,\mathrm{m})}{(9.8\,\mathrm{m/s^2})}}\tag{4.94}$$

$$= 0.589 \,\mathrm{s}$$
 (4.95)

$$= 0.59 \,\mathrm{s}, \tag{4.96}$$

A partir desse resultado, podemos determinar a velocidade no eixo horizontal, que sabemos que é constante:

$$\Delta x = v_x t \tag{4.97}$$

$$v_x = \frac{\Delta x}{t} \tag{4.98}$$

$$v_x = \Delta x \cdot \sqrt{\frac{g}{2\Delta y}},\tag{4.99}$$

o que resulta ao substituirmos os valores em

$$v_x = (10.0 \,\mathrm{m}) \cdot \sqrt{\frac{(9.8 \,\mathrm{m/s^2})}{2 \cdot (1.70 \,\mathrm{m})}}$$
 (4.100)

$$= 16,98 \,\mathrm{m/s}$$
 (4.101)

$$= 17 \,\mathrm{m/s}.$$
 (4.102)

Agora devemos determinar a aceleração da bola durante o processo de lançamento. ¹⁹ Como consideramos que a força exercida sobre ela é constante durante o lançamento, a aceleração também será. A bola parte do repouso, logo

$$v_{\ell,f} = v_{\ell,i} + a_{\ell}t_{\ell} \tag{4.103}$$

$$=a_{\ell}t_{\ell},\tag{4.104}$$

¹⁹ Vamos considerar que o movimento de aceleração da bola é um movimento unidimensional, na horizontal. Vamos omitir o índice *x* associado a tal eixo pois as variáveis já têm muitos índices. onde usamos o índice ℓ para nos referirmos às variáveis durante o processo de lançamento. Veja que a velocidade final de lançamento é a própria velocidade inicial do lançamento horizontal, logo

$$v_{\ell,f} = a_{\ell} t_{\ell} \tag{4.105}$$

$$v_x = a_\ell t_\ell \tag{4.106}$$

$$a_{\ell} = \frac{v_{\chi}}{t_{\ell}} \tag{4.107}$$

$$= \frac{\Delta x}{t_{\ell}} \cdot \sqrt{\frac{g}{2\Delta y}} \tag{4.108}$$

$$= \frac{(10,0 \,\mathrm{m})}{(0,80 \,\mathrm{s})} \cdot \sqrt{\frac{(9,8 \,\mathrm{m/s^2})}{2 \cdot (1,7 \,\mathrm{m})}} \tag{4.109}$$

$$= 21,22 \,\mathrm{m/s^2} \tag{4.110}$$

$$= 21 \,\mathrm{m/s^2}.. \tag{4.111}$$

Finalmente, usando a Segunda Lei de Newton,

$$F_{\ell} = m_b a_{\ell} \tag{4.112}$$

$$= m_b \cdot \frac{\Delta x}{t_\ell} \cdot \sqrt{\frac{g}{2\Delta y}} \tag{4.113}$$

$$= (0,600 \,\mathrm{kg}) \cdot \frac{(10,0 \,\mathrm{m})}{(0,8 \,\mathrm{s})} \cdot \sqrt{\frac{(9,8 \,\mathrm{m/s^2})}{2 \cdot (1,70 \,\mathrm{m})}} \tag{4.114}$$

$$= 12,73 \,\mathrm{N} \tag{4.115}$$

$$= 13 \,\mathrm{N}.$$
 (4.116)

Para determinarmos a aceleração a qual o jogador é submetido, devemos utilizar a Segunda Lei de Newton:

$$F_{\ell}' = m_j a_{\ell,j} \tag{4.117}$$

$$a_{\ell,j} = \frac{F'_{\ell}}{m_j}. (4.118)$$

A reação F'_ℓ tem o mesmo módulo que a força F_ℓ , logo

$$a_{\ell,j} = \frac{m_b}{m_j} \cdot \frac{\Delta x}{t_\ell} \cdot \sqrt{\frac{g}{2\Delta y}} \tag{4.119}$$

$$= \frac{(0,600 \,\mathrm{kg})}{(75 \,\mathrm{kg})} \cdot \frac{(10,0 \,\mathrm{m})}{(0,80 \,\mathrm{s})} \cdot \sqrt{\frac{(9,8 \,\mathrm{m/s^2})}{2 \cdot (1,70 \,\mathrm{m})}} \tag{4.120}$$

$$= 0.168 \,\mathrm{m/s^2} \tag{4.121}$$

$$= 0.17 \,\mathrm{m/s^2}. \tag{4.122}$$

Finalmente, temos que a velocidade do jogador será dada por

$$v_{i,f} = v_{i,i} + a_{\ell,i}t_{\ell} \tag{4.123}$$

$$= \frac{m_b}{m_i} \cdot \frac{\Delta x}{t_\ell} \cdot \sqrt{\frac{g}{2\Delta y}} \cdot t_\ell \tag{4.124}$$

$$=\frac{m_b}{m_i} \cdot \Delta x \cdot \sqrt{\frac{g}{2\Delta y'}},\tag{4.125}$$

onde usamos o fato de que a velocidade inicial do jogador é nula. Substituindo os valores obtemos:

$$v_{j,f} = \frac{(0,600 \,\mathrm{kg})}{(75 \,\mathrm{kg})} \cdot (10,0 \,\mathrm{m}) \cdot \sqrt{\frac{(9,8 \,\mathrm{m/s^2})}{2 \cdot (1,70 \,\mathrm{m})}}$$
(4.126)

$$= 0 \,\mathrm{m/s}, 136 \tag{4.127}$$

$$= 0.14 \,\mathrm{m/s}.$$
 (4.128)

Através dos resultados mostrados acima, verificamos que devido ao fato de que a massa do jogador é muito maior que a da bola, sua aceleração e velocidade final são muito menores do que a da bola, apesar de ambos estarem sujeitos a forças com a mesma intensidade. Verificaremos no Capítulo ?? que a solução desse tipo de problema pode ser simplificada ao utilizarmos a *conservação do momento linear* do sistema constituído pela bola e pelo jogador.

4.3 Forças

Através das Leis de Newton, fica evidente que transferimos o problema da determinação do movimento dos corpos para a determinação das forças que atuam sobre eles. Infelizmente, não existe uma lei que determine quais são as forças que atuam sobre um corpo, restando como única saída uma análise cuidadosa do fenômeno estudado.

A partir de experimentos, se tem o conhecimento de um pequeno número de forças que podem ser consideradas *fundamentais*:

- · força gravitacional;
- força eletromagnética;
- força nuclear forte;
- força nuclear fraca.

Tais forças são denominadas fundamentais pois todas as demais podem ser interpretadas através delas. Em geral, no entanto, a descrição de fenômenos através delas não é prática. Do ponto de vista macroscópico, é mais útil trabalharmos com forças que surgem a partir de interações complexas dos átomos através das forças fundamentais.

Na lista acima, as duas primeiras são responsáveis pelas forças que estudaremos em mecânica:

peso: força gravitacional exercida pela Terra sobre um corpo que se encontra próximo de sua superfície;

normal: força de contato exercida pela superfície de um corpo rígido;

tensão: força exercida por uma corda quando ela é esticada;

atrito: força que impede, ou tende a impedir o deslizamento entre duas superfícies;

arrasto: força exercida sobre um corpo que se desloca em um fluido;

força elástica: força exercida por uma mola e que é proporcional à sua distensão.

Enquanto o peso tem origem na força gravitacional, as demais forças listadas acima têm origem na força eletromagnética entre cargas elétricas. Outras expressões podem ser encontradas para outras situações, no entanto não as estudaremos a fundo aqui, como por exemplo as forças que atuam sobre cargas elétricas, entre condutores portando corrente, entre moléculas (força de van der Waals), etc.

4.3.1 Força gravitacional e força peso

Sabemos que próximo da superfície da Terra, todos os corpos estão sujeitos a uma aceleração de aproximadamente 9,8 m/s² (ignorandose os efeitos da resistência do ar). A origem dessa aceleração e sua independência em relação à massa podem ser explicadas através da Teoria da Gravitação Universal, também proposta por Newton. Segundo ela, dois corpos quaisquer estão sempre sujeitos a uma *força de atração*, e que ocorre na direção da linha reta que une os centros de massa dos dois corpos. Tal força se manifesta em *ambos* os corpos, no sentido de os unir, e constituem um par ação-reação. A intensidade da força pode ser determinada através de

$$F_g = G \frac{m_1 m_2}{r^2}. (4.129)$$

Nesta expressão, G representa uma constante universal cujo valor é de $6,672\,598\,5\cdot 10^{-11}\,\mathrm{N}\cdot\mathrm{m}^2/\mathrm{kg}^2$, m_1 e m_2 representam as massas dos corpos que interagem, e r representa a distância de separação entre os dois corpos.

Aplicando a expressão acima para o caso de um corpo de massa m nas imediações da superfície da Terra, temos

$$F_g = \left[G \frac{m_T}{r_T^2} \right] m, \tag{4.130}$$

onde m_T e r_T representam a massa e o raio da Terra, respectivamente. Utilizamos o raio da Terra pois consideramos que toda a massa está contida no centro de massa. Se aproximarmos a Terra como uma esfera homogênea, tal ponto dista da superfície pelo raio da esfera. Um corpo sujeito a tal força terá então uma aceleração dada por

$$F_{g} = ma \tag{4.131}$$

ou,

$$ma = m \left[G \frac{m_T}{r_T^2} \right]. {(4.132)}$$

Dividindo ambos os lados da equação por m, temos que a aceleração será dada por

$$a = \left[G \frac{m_T}{r_T^2} \right] \approx 9.8 \,\mathrm{m/s^2}.$$
 (4.133)

Figura 4.20: Par ação-reação para a força peso: a interação gravitacional se dá entre o planeta e o objeto, logo temos uma reação que atua na Terra. Como tratamos corpos rígidos como pontos, podemos representar a reação como uma força que atua no centro de massa do planeta.

Portanto, o valor *g* a que nos referimos ao estudar a queda livre é dado pela equação acima, isto é,

$$g = \left[G \frac{m_T}{r_T^2} \right]. \tag{4.134}$$

4.3.2 Força elástica

Se usarmos uma corda para pendurar uma caixa ao teto de uma sala e passarmos a colocar objetos dentro dela, não temos nenhuma indicação visual de qual é a força exercida pela corda. Poderíamos aferir a massa de cada objeto antes de os colocar na caixa e — utilizando a Segunda Lei de Newton — determinar a tensão²⁰ exercida.

Para uma mola, se realizássemos o mesmo procedimento, verificaríamos uma *distensão* gradual — isto é, um aumento gradual de seu comprimento —. Fazendo um *diagrama de corpo livre* (Figura 4.21) e sabendo que no equilíbrio a aceleração do sistema é zero, concluímos que a força exercida pela mola sobre a caixa é igual em módulo e tem direção contrária à força peso da caixa (juntamente com sua carga):

$$\vec{F}_e = -\vec{P}.\tag{4.135}$$

Denominamos a força exercida por uma mola como força elástica.

Verificando ainda a distensão da mola, podemos relacionar uma maior distensão a uma força maior exercida por ela: no exemplo, quanto maior a força peso total dos objetos pendurados na mola, maior a distensão. Experimentalmente, verifica-se que a distensão da mola e o módulo da força exercida por ela são diretamente proporcionais:

$$\Delta \ell \propto F_e$$
, (4.136)

onde ℓ representa o comprimento da mola e $\Delta\ell$ a variação de tal comprimento, ou seja, a distensão. Podemos escrever a relação acima como uma igualdade introduzindo uma constante de proporcionalidade k, cuja unidade no SI é o N/m:

$$F_e = k\Delta\ell. \tag{4.137}$$

O resultado acima é conhecido como *Lei de Hooke*, em homenagem ao físico inglês Robert Hooke, que o enunciou em 1660. Tal relação, no entanto, só é válida para pequenas distensões da mola. As distensões dentro deste limite são denominadas *elásticas* e não deformam a mola permanentemente, caso contrário ao das distensões *plásticas*. Apesar de a validade da Lei de Hooke ser limitada, ela é o modelo mais comum ao se analisar a resposta de um meio a uma deformação e pode ser utilizada como uma primeira aproximação mesmo para casos mais complexos. Como mencionado anteriormente, o dispositivo mais simples que nos possibilita exercer uma força com um valor específico desejado é o dinamômetro²¹, que é constituído de uma mola de constante *k* conhecida e de uma escala de referência.

Devemos ainda discutir a questão direção e sentido da força. Existem molas de diferentes tipos, porém vamos utilizar nas nossas discussões sempre molas helicoidais. Assim, a direção da força é sempre

Figura 4.21: Sistema em equilíbrio devido à força exercida por uma mola.

²⁰ Denominamos como tensão a força exercida por uma corda. Veremos mais detalhes sobre esse tipo de força adiante.

Figura 4.22: Fazendo um gráfico da distensão de uma mola em função da força exercida por ela, obtemos experimentalmente uma reta.

 21 A *dina* é uma unidade de força do sistema centímetro-grama-segundo (cgs) e equivale a 1,0 g \cdot cm/s 2 \equiv 1,0 \cdot 10 $^{-5}$ N.

Lei de Hooke

Figura 4.23: Utilizando um eixo coordenado *x* na direção da mola, podemos descrever o sentido das distensões/compressões e das forças através de um sinal.

²² Note que se a força elástica atua sozinha, então ela é responsável por uma aceleração que tem sempre o sentido oposto ao do deslocamento. Ao aplicarmos a Segunda Lei de Newton para analisar um sistema desse tipo, essa diferença de sentidos é expressada através do sinal negativo na Equação (4.139).

Figura 4.24: Na figura superior são mostradas forças exercidas pela mola sobre os corpos com os quais interage; Na inferior, as reações a tais forças, isto é, as forças exercidas sobre a mola nas duas extremidades.

a mesma do próprio "eixo" da mola, sendo que o sentido da força é sempre aquele que tende a restaurar o comprimento original da mola. Vetorialmente, podemos denotar a força elástica como

$$\vec{F}_e = -k\Delta \vec{r},\tag{4.138}$$

onde $\Delta \vec{r}$ representa o deslocamento da extremidade da mola ao longo do próprio eixo da mola. Devido ao fato de que as forças e o movimento da mola estão restritos a um eixo somente, é comum que ele seja denominado como "eixo x" e a distensão, portanto, como Δx . Empregando um eixo para descrever o comprimento/distensão da mola nos permite utilizar um *sinal* para denotar o sentido da força:

$$F_e = -k\Delta x. \tag{4.139}$$

Verificando a Figura (4.23), se temos uma distensão da mola, temos um aumento no comprimento, logo $\Delta x>0$ e a força aponta no sentido oposto, que consideramos como negativo. Se comprimimos a mola, $\Delta x<0$ e a força aponta também no sentido oposto, ou seja, no sentido positivo do eixo. ²²

Outro aspecto importante é o fato de que a mola exerce forças em ambas as extremidades, interagindo com outros dois corpos. Ambas as forças têm a mesma intensidade, dada pela Equação (4.137). As forças exercidas pela mola sobre os corpos com os quais interage têm como reações forças exercidas sobre a própria mola (Figura 4.24).

Exemplo: Determinação da constante elástica de uma mola

Uma mola de constante elástica desconhecida está presa ao teto de um elevador. Ao pendurarmos uma massa m de 500,0 g na extremidade livre da mola, verificamos que ela sofre uma distensão ℓ de 15,0 cm, quando o sistema está em repouso. Determine a constante elástica k da mola

Sabemos que quando o sistema está em repouso, temos uma situação de equilíbrio. Ao aplicarmos a Segunda Lei de Newton a cada um dos eixos, obtemos

Eixo x: Não há forças/componentes nesse eixo.

Figura 4.25: Ao pendurarmos um bloco em uma mola, ela sofrerá uma distensão que, no equilíbrio, está ligada ao valor da massa do bloco.

Eixo y:

$$F_{R,y} = ma_y \tag{4.140}$$

$$F_{e,y} + P_y = 0 (4.141)$$

$$F_e - P = 0 (4.142)$$

$$F_e = P \tag{4.143}$$

$$= mg. (4.144)$$

Sabemos que a força elástica está relacionada à distensão $\Delta \ell$ da mola e à constante elástica k através da Equação (4.137), podemos escrever

$$-k\Delta\ell = mg \tag{4.145}$$

$$k = -\frac{mg}{\Lambda \ell}. (4.146)$$

Finalmente, substituindo os valores para a massa, para a aceleração da gravidade, e para a distensão da mola, obtemos

$$k = -\frac{(0.5 \,\mathrm{kg}) \cdot (9.8 \,\mathrm{m/s^2})}{(-0.15 \,\mathrm{m})} \tag{4.147}$$

$$= 32,67 \,\mathrm{N/m}.$$
 (4.148)

Exemplo: Distensão de uma mola submetida a uma aceleração

Considerando o exemplo anterior, determine a distensão da mola se elevador acelera para cima com $a = 3.0 \,\text{m/s}^2$.

Adotando um eixo de referência *y* vertical e aplicando a Segunda Lei de Newton:

Eixo x: Não há forças/componentes nesse eixo.

Eixo y:

$$F_{R,y} = ma_y \tag{4.149}$$

$$F_{e,y} + P_y = ma \tag{4.150}$$

$$F_e - P = ma \tag{4.151}$$

$$-k\Delta\ell = ma + mg \tag{4.152}$$

$$\Delta \ell = -\frac{m(a+g)}{k}. (4.153)$$

Substituindo os valores, obtemos

$$\Delta \ell = -\frac{(0.5 \,\mathrm{kg}) \cdot (3.0 \,\mathrm{m/s^2} + 9.8 \,\mathrm{m/s^2})}{(32.67 \,\mathrm{N/m})} \tag{4.154}$$

$$= -0.196 \,\mathrm{m}. \tag{4.155}$$

4.3.3 Força Normal

Qualquer objeto próximo da Terra sofre uma atração em direção ao centro da Terra, mas nem todos são acelerados por tal força. Um objeto que repousa sobre o solo, por exemplo, se mantém parado,

Figura 4.26: A distensão da mola é alterada conforme mudamos o valor da aceleração.

sem afundar no chão. Acontece que, nesse caso, as forças de origem eletromagnéticas de interação entre os átomos do solo e do objeto atuam de maneira a impedir que ele afunde. Isso, no entanto, não ocorre em todas as superfícies: se colocarmos um bloco de concreto sobre a água, por exemplo, ele afunda, indo em direção ao centro da Terra. No primeiro caso, denominamos a força resultante da interação entre os átomos da superfície e do bloco como *força normal*. Ela recebe esse nome pois um vetor perpendicular a uma superfície é denominado em matemática como um *vetor normal*. No segundo caso, a interação eletromagnética não é suficiente para o manter em equilíbrio, porém ainda temos uma força resultante exercida pelos átomos, denominada de *empuxo*.

Se a força normal é o resultado da interação de um corpo com uma superfície, sendo que a primeira força atua sobre o corpo, temos que a reação atua sobre a superfície. Se, por exemplo, colocamos uma caixa sobre uma mesa e o sistema se mantém em equilíbrio, temos que a força normal está dirigida para cima, perpendicularmente à superfície de contato e equilibrando a caixa. Sobre a mesa, dirigida perpendicularmente à superfície, mas dirigida para a mesa, temos a reação da força normal. Outro exemplo que vale a pena citar é o de uma balança de farmácia: quando subimos nela, e permanecemos imóveis, temos que a normal exercida pela balança equilibra nosso peso. Devido ao fato de que nenhum dispositivo consegue verificar o valor de uma grandeza que não atue sobre ele, temos que a balança deve verificar o valor da reação à força normal, já que tal reação atua sobre a balança. O fato de termos que ficar parados para evitar a mudança da leitura da balança já nos dá um indício de que os valores indicados não se referem ao peso, pois P = mg — considerando que *m* e *g* são constantes durante a medida — e é constante.

Finalmente, devemos indicar que a força normal não pode ser encontrada por outra maneira além da resolução da Segunda Lei de Newton. Se desejamos saber o valor do peso de um objeto, podemos calculá-lo sabendo a massa e a aceleração da gravidade. Já para a força normal, não existe uma expressão que a relacione a outras grandezas, exceto pela própria Segunda Lei. Podemos afirmar de maneira simplificada que a força normal cresce de modo a equilibrar

Figura 4.27: A força normal é resultado de uma interação entre a superfície e o corpo. A reação \vec{N}' atua sobre a superfície, na mesma direção que \vec{N} , com a mesma intensidade, porém com sentido oposto.

Figura 4.28: No caso de contato com uma superfície vertical, temos uma força normal horizontal.

outras forças que atuam perpendicularmente em direção à superfície, porém limitando-se a um valor máximo de intensidade de força. Por exemplo, quando colocamos uma caixa leve sobre uma mesa frágil, verificamos que o sistema permanece em equilíbrio. Se passamos a depositar objetos no interior da caixa, verificamos que a força normal exercida pela mesa sobre a caixa deve aumentar progressivamente, mantendo o sistema em equilíbrio. Eventualmente, a caixa se tornará muito pesada e — lembrando-se de que existe uma reação à força normal e que esta reação atua sobre a mesa — excederemos o valor máximo de força tolerado pela mesa, que acaba se quebrando.

Discussão: Força normal em sistemas submetidos a acelerações

Se um objeto está disposto sobre o piso de um elevador e este passa a acelerar, a força resultante da soma da força normal e da força peso é responsável por tal aceleração. Como o peso é constante, pois depende somente da massa do objeto e da aceleração da gravidade no local — ambas constantes —, verificamos que o módulo da força normal varia de acordo com a aceleração (veja a Figura 4.29).

Vamos tomar a primeira situação na Figura 4.29 e definir um sistema de referência como o mostrado na Figura 4.30. Analisando o movimento nos eixos x e y, temos:

Eixo x: Não há forças/componentes na direção deste eixo.

Eixo y: Assumindo o eixo de referência mostrado na Figura 4.30

$$F_{R,y} = ma_y \tag{4.156}$$

$$N_y + P_y = ma_y (4.157)$$

$$N - P = ma_y \tag{4.158}$$

$$N = P + ma_y \tag{4.159}$$

$$N = mg + ma_y \tag{4.160}$$

$$N = m(g + a_y). (4.161)$$

Note que quanto maior for o módulo da aceleração — que assumimos como sendo no sentido positivo do eixo y —, maior será o valor da força normal. Além disso, se tivermos uma aceleração nula temos que a normal será igual ao peso:

$$N = mg. (4.162)$$

Este resultado só é válido se a aceleração vertical for nula. Veja ainda que nos casos onde temos acelerações dirigidas verticalmente para baixo, não é necessário determinar uma expressão diferente para a força normal: basta observarmos que o vetor \vec{a} resulta em projeções a_y negativas e que podem ser utilizadas na Equação (4.161). Fazendo isso, verificamos que ao acelerarmos para baixo, o valor da normal diminui com o aumento do módulo da aceleração.

Figura 4.29: O valor da normal depende da aceleração do sistema.

Figura 4.30: Sistema de referência para a obtenção do módulo da força normal.

Discussão: Condição de perda de contato

Um tipo de situação comum ao analisarmos sistemas através das Leis de Newton é a perda de contato entre dois corpos. Se, por exemplo, segurarmos um livro horizontalmente com ambas as mão e colocarmos um objeto sobre a superfície superior, ao submetermos o livro a uma aceleração súbita e intensa para baixo, verificamos que o objeto perde contato com o livro. Nesse caso, podemos verificar que para qualquer valor de aceleração acima de certo limite, ocorre a perda de contato entre os corpos.

Aplicando a Segunda Lei de Newton ao corpo que repousa sobre o livro, considerando um eixo vertical *y* que aponta para cima, obtemos

$$F_{R,y} = ma_y \tag{4.163}$$

$$N_y + P_y = ma_y \tag{4.164}$$

$$N - P = ma_{\nu}, \tag{4.165}$$

o que implica em

$$a_y = \frac{N - P}{m} \tag{4.166}$$

$$=\frac{N}{m}-g. (4.167)$$

Note que m e g são constantes, logo, o que determina o valor da aceleração do corpo é o valor da força normal. Além disso, verificamos através da equação acima que quanto menor o valor de N, maior será a aceleração, uma vez que o corpo acelera para baixo, no sentido negativo do eixo g. Verificamos ainda que o valor máximo da aceleração se dará para

$$N = 0,$$
 (4.168)

momento a partir do qual o corpo passa a executar um movimento de queda livre, isto é *ele perde contato com o livro*.²³ Portanto, podemos utilizar como condição de perda de contato a exigência de que o valor da normal seja nulo.

Discussão: Aceleração em um plano inclinado

Em um plano inclinado sem atrito, a aceleração depende do ângulo entre o plano e a horizontal. Se o ângulo é zero, temos uma situação em que não há aceleração alguma; se o ângulo for de 90°, temos a própria aceleração da gravidade.

Na Figura 4.31 temos um esboço dessa situação. Escolhemos um sitema de referência de maneira que a aceleração esteja contida em somente um dos eixos, o eixo x. No eixo y denotamos a força normal \vec{N} exercida pela superfície sobre o bloco — veremos mais detalhes sobre essa força na proxima seção —. Também denotamos a força peso, porém verificamos que ela tem componentes tanto no eixo x quanto no eixo y.

Para que possamos decompor a força peso, precisamos saber os ângulos entre tal força e os eixos de referência. Na Figura 4.32

²³ Ou está na iminência de perder contato

Figura 4.31: Bloco sobre plano inclinado. Escolhemos o sistema de coordenadas de maneira que a aceleração esteja contida em apenas um dos eixos.

Figura 4.32: Triângulo para a determinação do ângulo entre \vec{P} e os eixos de referência.

extendemos o eixo x até que ele intercepte o eixo horizontal na base do plano inclinado. Como o eixo é paralelo ao plano, se o ângulo entre este e a horizontal é θ , o ângulo entre o eixo x e a horizontal também é θ .

Vamos analisar o triângulo formado pelo eixo x, pelo eixo y, pela direção da força peso, e pela horizontal - veja a Figura 4.33. No triângulo da direita temos que

$$\theta + \alpha + 90^{\circ} = 180^{\circ},$$
 (4.169)

onde usamos o fato de que a soma dos ângulos internos de um triângulo é sempre 180°. Também temos, verificando o canto superior do triângulo como um todo, que

$$\alpha + \beta = 90^{\circ}. \tag{4.170}$$

Isolando α na equação acima obtemos

$$\alpha = 90^{\circ} - \beta \tag{4.171}$$

que podemos substituir na equação obtida para o triângulo da direita, o que resulta em

$$\theta + 90^{\circ} - \beta + 90^{\circ} = 180^{\circ} \tag{4.172}$$

$$\theta - \beta = 0 \tag{4.173}$$

$$\theta = \beta. \tag{4.174}$$

Concluímos então que o ângulo entre o eixo perpendicular ao plano e a direção da força peso é igual ao ângulo entre o plano e a horizontal. Esse resultado será fundamental para avaliarmos todas as situações envolvendo planos inclinados.

Agora podemos aplicar a Segunda Lei de Newton para os dois eixos:

Eixo x: No eixo paralelo ao plano temos

$$F_{R,x} = ma_x \tag{4.175}$$

$$N_x + P_x = ma_x \tag{4.176}$$

$$P_{x} = ma_{x} \tag{4.177}$$

$$P \operatorname{sen} \theta = m a_{x} \tag{4.178}$$

$$mg \operatorname{sen} \theta = ma_x,$$
 (4.179)

Eixo y: No eixo perpendicular ao plano temos

$$F_{R,y} = ma_y \tag{4.180}$$

$$N_x + P_x = ma_y \tag{4.181}$$

$$N - P_{\nu} = 0 (4.182)$$

$$N = P\cos\theta \tag{4.183}$$

$$N = mg\cos\theta,\tag{4.184}$$

Figura 4.33: Triângulos formados pelos eixos x, y, pela direção de \vec{P} , e pela hori-

Nas equações para o eixo y, utilizamos o fato de que não há aceleração no eixo perpendicular ao plano para escrever o termo à direita da igualdade no segundo passo. Além disso, utilizamos as funções trigonométricas para determinar as componentes da força peso.

Finalmente, ao dividirmos ambos os lados da Equação 4.179 pela massa, obtemos

$$a_{x} = g \operatorname{sen} \theta. \tag{4.185}$$

Verificamos, portanto, que a aceleração em um plano inclinado varia conforme alteramos aseu ângulo em relação à horizontal.

4.3.4 Múltiplos corpos

Até agora só discutimos situações em que um conjunto de forças atua sobre um corpo, porém não há razão para desconsiderarmos a possibilidade de sistemas que envolvem diversos corpos que interagem entre si. Nesse tipo de situação, precisamos analisar o tipo de interação entre os corpos, determinando quais são as forças presentes e qual é o papel delas no problema em questão. Outro ponto importante é o fato de que na interação entre os corpos devemos levar em conta tanto as forças de *ação*, quanto as de *reação*²⁴.

Para tratarmos sistemas com diversos corpos, será necessário aplicar a Segunda Lei de Newton a cada um dos corpos separadamente, o que implica no fato de que teremos que elaborar diagramas de força para cada um dos corpos interagentes. A partir de tal análise, seremos capazes de elaborar um sistema de equações que poderá ser resolvido para a variável que estamos interessados em calcular. A seguir, verificaremos um exemplo em dois corpos interagem. Posteriormente verificaremos que em alguns casos podemos simplificar o tratamento, tornando a solução de problemas mais rápida.

Discussão: Grupo de blocos sujeitos a uma aceleração devido a uma força aplicada lateralmente

A Figura 4.34 mostra dois blocos que estão dispostos sobre uma superfície horizontal sem atrito, de forma que suas laterais estão em contato. A massa do bloco da esquerda é m_1 , enquanto a massa do bloco da direita é m_2 . Ao submetermos o conjunto a ação de uma força horizontal \vec{F} que atua sobre o bloco de massa m_1 , o sistema estará sujeito a uma aceleração a, que é comum aos dois blocos.

Estamos interessados em determinar uma expressão para o valor de tal aceleração, assim como uma expressão para o módulo da força exercida pelo bloco da esquerda sobre o bloco da direita. Devemos notar que os blocos andarão sempre juntos, portanto devemos assumir que suas acelerações serão sempre idênticas.²⁵ Também devemos destacar que a força de interação entre os blocos pode ser classificada como uma força normal.

Para que possamos determinar a aceleração dos blocos e o módulo da força que atua na superfície de contato, devemos fazer um diagrama de corpo livre para cada um dos corpos. A Figura 4.35 mostra

²⁴ Nas situações que trabalhamos até então, as forças de reação atuavam em agentes externos e eram ignoradas.

Figura 4.34: Blocos acelerados por uma força lateral sobre uma superfície horizontal.

²⁵ Se dois corpos se movem juntos, a distância entre seus centros de massa é constante, o que implica que suas velocidades e acelerações devem ser idênticas. Esse resultado é bastante evidente de um ponto de vista de Cálculo.

Figura 4.35: Diagrama de corpo livre para o primeiro bloco.

o diagrama de forças para o primeiro bloco. A escolha do sistema de referência levou em conta o fato de que existe uma aceleração no sistema, no sentido horizontal. Portanto, escolhemos um eixo horizontal *x*. Aplicando a Segunda Lei de Newton a cada eixo:

Eixo x: No eixo horizontal temos:

$$F_{R,x} = m_1 a_{1,x} (4.186)$$

$$F_x + F_{12,x} + N_{1,x} + P_{1,x} = m_1 a_{1,x}$$
 (4.187)

$$F - F_{12} = m_1 a_{1,x}. (4.188)$$

Eixo y: No eixo vertical temos:

$$F_{R,y} = m_2 a_{2,y} (4.189)$$

$$F_y + F_{12,y} + N_{1,y} + P_{1,y} = m_1 a_{1,y} (4.190)$$

$$N_1 - P_1 = 0. (4.191)$$

Note que utilizamos o fato de que a aceleração no eixo vertical é nula, pois escolhemos o eixo x de maneira a coincidir com a direção da aceleração. Além disso, veja que utilizamos índices numéricos para diferenciar entre as forças peso, normal, e componentes da aceleração de cada bloco.

Aplicando a Segunda Lei de Newton para o segundo bloco, utilizando um sistema de referência em que o eixo *x* aponta na direção da aceleração:

Eixo x: No eixo horizontal temos

$$F_{R,x} = m_2 a_{2,x} (4.192)$$

$$F_{12,x} + N_{2,x} + P_{2,x} = m_2 a_{2,x} (4.193)$$

$$F_{12} = m_2 a_{2,x}. (4.194)$$

Eixo y: No eixo vertical temos

$$F_{R,y} = m_2 a_{2,y} (4.195)$$

$$F_{12,y} + N_{2,y} + P_{2,y} = m_2 a_{2,y} (4.196)$$

$$N_2 - P_2 = 0. (4.197)$$

Novamente, utilizamos o fato de que a aceleração no eixo vertical é nula. Além disso, como \vec{F}'_{12} é a reação de \vec{F}_{12} , seus módulos são iguais, portanto $F'_{12} \equiv F_{12}$.

Como discutimos acima, a aceleração de ambos os blocos é a mesma, uma vez que eles se movem juntos, portanto vamos simplesmente adotar

$$a_{1,x} = a_{2,x} \equiv a. (4.198)$$

Observando as equações obtidas a partir da Segunda Lei de Newton, verificamos que duas delas não envolvem as variáveis que desejamos determinar, mas simplesmente refletem o fato de que no eixo vertical

Figura 4.36: Diagrama de corpo livre para o segundo bloco.

temos equilíbrio. Montando um sistema com as duas equações que restam, temos

$$\begin{cases}
F - F_{12} = m_1 a \\
F_{12} = m_2 a.
\end{cases}$$
(4.199)

Podemos resolver o sistema acima somando ambas as equações:

$$F - F_{12} + F_{12} = m_1 a + m_2 a, (4.200)$$

de onde obtemos para a aceleração

$$a = \frac{F}{m_1 + m_2}. (4.201)$$

Para determinar F_{12} , basta substituirmos a aceleração na segunda equação do Sistema (4.199), o que resulta em

$$F_{12} = \frac{m_2}{m_1 + m_2} F. {(4.202)}$$

Forças externas

Quando precisamos determinar a aceleração de um corpo, as forças que devem ser levadas em conta são as *forças externas* — mais precisamente, a *força resultante externa* —. Essa observação pode ser muito útil em problemas que envolvem diversos corpos rígidos: muitas vezes eles podem ser considerados como componentes de um corpo composto, pois não há movimento de tais corpos uns em relação aos outros. Assim, as forças através das quais interagem passam a ser *forças internas* e que *não influenciam na aceleração* do corpo composto. Dessa forma, podemos determinar a aceleração de uma maneira simplificada.

Por outro lado, não temos condições de determinar quais são os valores das força internas. Em todo caso, uma vez conhecida a aceleração, muitas vezes podemos aplicar a Segunda Lei de Newton a um dos corpos isoladamente e obter informações acerca de forças internas de um modo mais simples do que através da análise do sistema de equações obtido ao se considerar *todos* os corpos separadamente.

Discussão: Grupo de blocos sujeitos a uma aceleração devido a uma força aplicada lateralmente, forças externas

Vamos analisar novamente o sistema mostrado na Figura 4.34, porém vamos considerar ambos os blocos de uma vez, Figura 4.37. Nesse caso, podemos considerar a força resultante *externa*, o que resulta em

Eixo x:

$$F_{R,x}^{\text{ext}} = m_t a_x \tag{4.203}$$

$$F_x + N_x + P_x = m_t a_x \tag{4.204}$$

$$F = m_t a_x. (4.205)$$

Figura 4.37: Blocos considerados como um corpo só, embora composto.

Eixo y

$$F_{R,x}^{\text{ext}} = m_t a_y \tag{4.206}$$

$$F_y + N_y + P_y = m_t a_y (4.207)$$

$$N - P = 0. (4.208)$$

Note que a massa m_t corresponde à massa total dos blocos, isto é, $m_t = m_1 + m_2$. Além disso, as forças normal N e peso P se referem aos valores para ambos os blocos conjuntamente. Também note que escolhemos um sistema de coordenadas onde x é um eixo horizontal, e que coincide com a direção da aceleração. Logo, temos que $a_y = 0$ e também que $a_x \equiv a$.

Levando em conta essas considerações, podemos escrever a partir da Expressão (4.205) a seguinte equação:

$$F = (m_1 + m_2)a, (4.209)$$

ou

$$a = \frac{F}{m_1 + m_2}. (4.210)$$

Note que não temos informações acerca da força interna F_{12} , porém podemos aplicar a Segunda Lei de Newton separadamente ao bloco da direita na Figura 4.34 (veja também a Figura 4.36), de onde obtemos

Eixo x:

$$F_{R,x} = m_2 a_{2,x} (4.211)$$

$$F_{12} = m_2 a \tag{4.212}$$

Eixo y:

$$F_{R,y} = m_2 a_{2,y} (4.213)$$

$$N_2 - P_2 = 0, (4.214)$$

onde adotamos $a_y=0$ e $a_x\equiv a$. Veja que as equações obtidas para tal bloco são as mesmas que verificamos anteriormente. Substituindo a aceleração obtida acima na Equação (4.212) obtemos

$$F_{12} = \frac{m_2}{m_1 + m_2} F. (4.215)$$

Exemplo: Aceleração lateral de um sistema com três blocos

Na Figura 4.38, temos diversas forças internas e externas. Caso estejamos interessados em calcular a aceleração do sistema, podemos fazê-lo determinando as equações para cada bloco em cada eixo. Isso resultará em seis equações que devem ser resolvidas:

Bloco 1: Assumindo que o eixo x é horizontal (paralelo à superfície onde se apoiam os blocos) e o eixo y vertical:

Figura 4.38: Sistema composto por três blocos que interagem sujeitos às forças, peso, normal, de atrito, e a uma força \vec{F} que empurra os blocos lateralmente. Desconsideramos o atrito na superfície da mesa e omitimos as reações das normais \vec{N}_1 e \vec{N}_2 exercidas pelos blocos sobre a mesa.

Eixo x:

$$F_{R,x} = m_1 a_x$$
 (4.216)

$$F_x + F_{12,x} + N_{1,x} + P_{1,x} = m_1 a_x (4.217)$$

$$F - F'_{12} = m_1 a_x. (4.218)$$

Eixo y:

$$F_{R,y} = m_1 a_y (4.219)$$

$$F_{y} + F_{12,y} + N_{1,y} + P_{1,y} = m_{1}a_{y}$$
 (4.220)

$$N_1 - P_1 = 0. (4.221)$$

Bloco 2: Utilizando a mesma convenção para o eixos, temos para o bloco 2:

Eixo x:

$$F_{R,x} = m_2 a_x$$
 (4.222)

$$F_{12,x} + f_{at,x} + N_{2,x} + N'_{3,x} + P_{2,x} = m_2 a_x$$
 (4.223)

$$F_{12} - f_{at} = m_2 a_x. (4.224)$$

Eixo y:

$$F_{R,y} = m_2 a_y (4.225)$$

$$F_{12,y} + f_{at,y} + N_{2,y} + N'_{3,y} + P_{2,y} = m_2 a_y$$
 (4.226)

$$N_2 - N_3' - P_2 = 0. (4.227)$$

Bloco 3: Finalmente, para o bloco 3 temos — usando mais uma vez a mesma convenção para os eixos —:²⁶

Eixo x:

$$F_{R,x} = m_3 a_x (4.228)$$

$$N_{3,x} + P_{3,x} + f_{\text{at},x} = m_3 a_x \tag{4.229}$$

$$f_{\rm at} = m_3 a_x.$$
 (4.230)

Eixo y:

$$F_{R,y} = m_3 a_y (4.231)$$

$$N_{3,y} + P_{3,y} + f_{\text{at},y} = m_3 a_y \tag{4.232}$$

$$N_3 - P_3 = 0. (4.233)$$

Através das equações para o eixo vertical, podemos concluir que

$$N_t = N_1 + N_2 \tag{4.234}$$

$$= P_1 + P_2 + P_3 \tag{4.235}$$

$$= m_1 g + m_2 g + m_3 g \tag{4.236}$$

$$= (m_1 + m_2 + m_3)g. (4.237)$$

Se somarmos as equações para o eixo horizontal, temos

$$F - F'_{12} + f_{at} + F_{12} - f_{at} = m_1 a_x + m_2 a_x + m_3 a_x$$
 (4.238)

$$F = (m_1 + m_2 + m_3)a_x, (4.239)$$

o que resulta em:

$$a_x = \frac{F}{m_1 + m_2 + m_3}. (4.240)$$

²⁶ Note que a força de atrito é a única que atua sobre o bloco 3 na direção horizontal e por isso ela é responsável pela aceleração desse bloco. A reação a tal força atua sobre o bloco 2 de forma a retardar seu movimento. Verificaremos as propriedades do atrito na Seção 4.3.7. Veja também que não sabemos o valor do módulo dessa força, porém tal variável será eliminada ao resolvermos o sistema.

Tratando os blocos de maneira conjunta

Podemos simplificar o tratamento do sistema se considerarmos que os blocos compõem um bloco maior. Nesse caso, as forças internas não serão relevantes para a determinação da aceleração.

Verificamos, primeiramente, que o sistema deve estar em equilíbrio no eixo y vertical:

$$F_{R,y} = m_t a_y \tag{4.241}$$

$$N_{t,y} + P_{t,y} + F_y = m_t a_y (4.242)$$

$$N_t - P_t = 0 (4.243)$$

$$N_r = P_t \tag{4.244}$$

$$= (m_1 + m_2 + m_3)g. (4.245)$$

Já no eixo x paralelo à superfície inferior, resta que

$$F_{R,x} = m_t a_x \tag{4.246}$$

$$F_x + P_{t,x} + N_{t,x} = m_t a_x, (4.247)$$

o que resulta em

$$a_x = \frac{F}{m_t}$$
 (4.248)
= $\frac{F}{m_1 + m_2 + m_3}$, (4.249)

$$=\frac{F}{m_1+m_2+m_3},\tag{4.249}$$

onde usamos o fato de que a massa total m_t do bloco composto é dada pela soma das massas dos três blocos.

A ideia de considerar um bloco composto é bastante útil para calcular a aceleração do sistema. Já para calcular forças internas se, estivéssemos interessados em calcular $f_{\rm at}$, N_2 , ou F_{12} , no presente problema —, devemos analisar cada bloco em separado, como fizemos primeiramente. Muitas vezes, no entanto, se já tivermos determinado a aceleração, esse trabalho se torna muito mais simples.²⁷

4.3.5 Tensão

Ao pendurarmos um objeto utilizando uma corda, se temos equilíbrio, existe uma força de tensão exercida pela corda e que equilibra a força peso do objeto. As forças de tensão também têm origem eletromagnética (se originam das interações eletromagnética entre os átomos que compõe as fibras da corda) e têm características parecidas com as da força normal: podemos determiná-las somente a partir da aplicação da Segunda Lei de Newton e temos um valor máximo de força, sendo que a corda se rompe ao excedê-lo²⁸. Outra consideração importante é que uma corda só consegue exercer forças quando são esticadas, não exercendo — portanto — forças laterais ou no sentido de "dobrá-la" (no sentido contrário ao de esticá-la). Claramente a direção da força é a própria direção da linha reta formada pela corda.

É comum considerarmos que existe uma valor de tensão exercido pela corda, porém, se a massa da corda não puder ser desprezada,

Figura 4.39: O mesmo sistema da Figura 4.38, porém agora consideramos o bloco composto pelos três blocos. Ao fazermos isso, as forças internas deixam de ser relevantes e só precisamos nos preocupar com as forças externas.

 27 Para calcular $f_{\rm at}$, por exemplo, basta substituir a aceleração na Equação (4.230).

Figura 4.40: Bloco suspenso por uma corda, em repouso.

²⁸ Na verdade a corda não se rompe repentinamente, suas fibras se partem e a corda estica, cedendo aos poucos e diminuindo (mesmo que momentaneamente) a tensão exercida. Eventualmente muitas fibras se rompem e dão início a uma "reação em cadeia" de rompimento das fibras. O valor máximo de forca exercido certamente ocorre antes de esse processo ocorrer.

não faz sentido falarmos em uma "tensão na corda": a intensidade da força exercida será diferente em cada ponto dela. Em especial, em uma situação como a da Figura 4.40, vemos que no ponto inferior a tensão exercida deve sustentar somente o peso da caixa. Já no ponto superior, a tensão deve sustentar tanto o peso da caixa, como o da corda (veja a Figura 4.41).

Figura 4.41: Se considerarmos uma corda real, onde a massa não pode ser negligenciada, temos que a tensão é diferente para cada ponto da corda. Na figura à esquerda, mostramos as tensões exercidas pela corda sobre o teto e sobre o bloco. Na figura à direita, mostramos as reações a tais tensões, que são exercidas sobre a corda.

Vemos, também que as tensões nos pontos superior e inferior não são pares ação-reação, pois tais tensões não têm o mesmo módulo. Na verdade, o par ação-reação ocorre nos pontos de interação entre dois corpos e, portanto, temos um par ação-reação para cada uma das extremidades da corda, e em cada caso com uma força que atua sobre a corda e outra sobre o corpo com o qual ela interageo. Se a massa da corda for negligível²⁹, é possível mostrar que as tensões superior e inferior terão o mesmo valor, porém continuarão não sendo um par ação-reação: em tal par, cada uma das forças atua em um dos corpos que interagem (corda-teto, ou corda-caixa), mas \vec{T}_s e \vec{T}_i atuam no teto e na caixa, que não interagem diretamente. Além disso, \vec{T}_s' e \vec{T}'_i atuam no mesmo corpo, portanto não podem ser um par açãoreação. Finalmente, se a corda passa por uma roldana, as direções das forças de tensão exercidas nas extremidades da corda podem ter direções diferentes, mais uma vez indicando que não formam um par ação-reação.

Outro caso em que a massa de uma corda é importante, é aquele em que ela fica disposta horizontalmente. Nesse caso, se tomarmos um segmento qualquer da corda, verificamos que para que ele se mantenha em equilíbrio, deve haver alguma força que equilibre a força peso do segmento. Tal força é a própria tensão na corda, que atua para ambos os lados do segmento, porém tem pequenas componentes dirigidas para cima e, dessa forma, se estabelece um equilíbrio. Cada segmento, no entanto está submetido a forças que fazem ângulos diferentes em relação à horizontal. Isso da origem a uma forma específica para a curva de posição vertical em função da posição horizontal, conhecida como catenária, mostrada na Figura 4.43. Essa forma corresponde àquela dos fios pendurados entre dois postes.

²⁹ Se consideramos a corda como de massa desprezível, na prática estamos considerando que os dois corpos ao quais ela está amarrada interagem diretamente, o que não é verdade (apesar de ser o caso que vamos considerar aqui).

Figura 4.42: As forças exercidas nas extremidades de uma corda podem ter direções diferentes se empregarmos uma roldana, isso indica que elas não formam um par ação-reação.

Figura 4.43: Curva catenária.

Discussão: cordas de massa desprezíveis

Apesar de sabermos que cordas reais têm massa, tratar tal caso requer conhecimento de técnicas de Cálculo. Por isso, vamos tratar o caso de cordas de massa desprezível que pode ser considerado uma boa aproximação ao se utilizar fios finos e leves.

Se temos sobre uma mesa sem atrito dois blocos ligados por uma corda de massa m_c , sendo que o sistema é acelerado horizontalmente por uma força \vec{F} (veja a Figura 4.44), ao aplicarmos a Segunda Lei de Newton³⁰ para a corda no eixo x, obtemos³¹

$$F_{R,x} = m_c a_x \tag{4.250}$$

$$T_2 - T_1 = m_c a_x. (4.251)$$

Note que se $m_c \approx 0$, então

$$T_2 - T_1 \approx 0 \tag{4.252}$$

ou

$$T_1 \approx T_2, \tag{4.253}$$

e podemos simplificar a notação adotando

$$T_1 = T_2 \equiv T.$$
 (4.254)

Portanto, no caso de desprezarmos a massa da corda, podemos considerar que as tensões exercidas nas extremidades da corda têm omesmo módulo.

Discussão: Determinação da tensão em uma situação com aceleração vertical

Para um bloco suspenso por uma corda (Figura 4.45), no caso de termos uma aceleração vertical, teremos uma situação similar àquela de um bloco sendo acelerado para cima pela força normal:

Eixo x: Não há forças/componentes neste eixo.

Eixo y:

$$F_{R,y} = ma_y \tag{4.255}$$

$$T - P = ma_y \tag{4.256}$$

$$T = P + ma_y \tag{4.257}$$

$$T = mg + ma_y \tag{4.258}$$

$$T = m(g + a_y) \tag{4.259}$$

Verificamos que o resultado acima é análogo ao dado pela Expressão (4.161). Note ainda que podemos escrever a aceleração em função da tensão como

$$T - P = ma_y (4.260)$$

$$a_y = \frac{T - P}{m}$$
 (4.261)
 $a_y = \frac{T}{m} - g.$ (4.262)

$$a_y = \frac{T}{m} - g. \tag{4.262}$$

30 A vida é muito curta para escrever $F_{1,x} + F_{2,x} + F_{3,x} + \cdots = ma_x e F_{1,y} +$ $F_{2,y} + F_{3,y} + \cdots = ma_y$, isto é, todas as componentes, mesmo as que sabemos que serão nulas. A partir de agora vamos escrever as projeções completas diretamente. Algumas vezes poderemos deixar uma componente de alguma força por calcular imediatamente, se for conveniente.

31 Note que no eixo vertical temos a força peso da corda que precisa ser equilibrada. Isso só é possível se a corda seguir a forma catenária discutida na seção anterior, pois isso possibilita que as componentes das tensões que atuam sobre as extremidades da corda equilibrem o peso.

Figura 4.44: Dois blocos ligados por uma corda de massa m_c que que são acelerados por uma força \vec{F} exercida sobre o bloco da direita.

Figura 4.45: Bloco suspenso por uma corda e sujeito a uma aceleração vertical.

Se considerarmos que a corda pode exercer uma força de tensão que possui um valor máximo e que ao o ultrapassar a corda se romperá, concluímos que existe uma aceleração máxima que pode ser exercida pela corda.

Discussão: Tensão em uma corda que liga dois blocos que aceleram lateralmente

Outra situação interessante é a mostrada na Figura 4.46: uma força \vec{F} acelera dois blocos ligados por uma corda de massa desprezível. Como estamos considerando que a massa da corda é desprezível, temos que as forças efetuadas pela corda em cada caixa têm o mesmo módulo. Nessas condições, quais são os valores da aceleração e da tensão na corda, em função das massas dos blocos e do módulo da força \vec{F} ?

Aplicando a Segunda Lei de Newton para cada bloco temos:

Eixo x:

$$F_{R,x_1} = m_1 a_{x_1} (4.263)$$

$$T_1 = m_1 a_{x_1}. (4.264)$$

Eixo y:

$$F_{R,y_1} = m_1 a_{y_1} (4.265)$$

$$N_1 - P_1 = 0 (4.266)$$

$$N_1 = P_1. (4.267)$$

Bloco 2: Para o bloco da direita temos

Eixo x:

$$F_{R,x_2} = m_2 a_{x_2} (4.268)$$

$$F - T_2 = m_2 a_{x_2}. (4.269)$$

Eixo y:

$$F_{R,y_2} = m_2 a_{y_2} (4.270)$$

$$N_2 - P_2 = 0 (4.271)$$

$$N_2 = P_2. (4.272)$$

Nas equações acima utilizamos o fato de que as acelerações verticais dos blocos são nulas. Através nas equações para os eixos verticais, só conseguimos determinar que as normais devem ser iguais aos respectivos pesos.

Se considerarmos que

$$a_{x_1} = a_{x_2},$$
 (4.273)

que a massa da corda é desprezível, o que implica em

$$T_1 = T_2 \equiv T, \tag{4.274}$$

rigura 4.46. Dois blocos ligados por uma corda dispostos sobre uma mesa sem atrito e que são acelerados por uma força horizontal \vec{F} .

e as Equações 4.264 e 4.269, podemos montar um sistema de equações.

$$\begin{cases}
T = m_1 a_{x_1} \\
F - T = m_2 a_{x_2} \\
a_{x_1} = a_{x_2}
\end{cases}$$
(4.275)

Podemos solucionar esse sistema notando que as acelerações de ambos os blocos no eixo horizontal têm o mesmo valor *a*, que é o módulo da aceleração mostrada na figura. Assim,

$$\begin{cases}
T = m_1 a \\
F - T = m_2 a,
\end{cases}$$
(4.276)

de onde obtemos, somando as equações

$$T + F - T = m_1 a + m_2 a (4.277)$$

$$F = (m_1 + m_2)a. (4.278)$$

Finalmente,

$$a = \frac{F}{m_1 + m_2}. (4.279)$$

Substituindo esse resultado na primeira equação no sistema dado pela Expressão (4.276), obtemos a tensão:

$$T = \frac{m_1}{m_1 + m_2} F. (4.280)$$

Note que podemos determinar a aceleração considerando a força resultante externa que atua sobre o conjunto formado pelos dois blocos, obtendo o mesmo resultado. Para determinar a tensão na corda que liga os dois blocos, no entanto, é necessários aplicar a Segunda Lei de Newton a um dos blocos isoladamente.

Exemplo: Aceleração de um bloco em um plano inclinado e sob ação de uma tensão

A Figura 4.47 mostra um bloco de massa $m=5.0\,\mathrm{kg}$ que pode deslizar sobre um plano inclinado sem atrito. Sobre o bloco, uma tensão constante $T=20.0\,\mathrm{N}$ é exercida por meio de uma corda cuja direção é paralela ao plano inclinado, apontando para cima. Determine o valor da aceleração do bloco se $\theta=30^\circ$.

Para que possamos determinar a aceleração, primeiramente devemos escolher um sistema de referência. Note que o movimento do bloco está restrito à direção do próprio plano inclinado, uma vez que a força de tensão e uma componente do peso atuam nessa direção, enquanto na direção perpendicular ao plano atuam a normal e uma componente do peso, porém tais forças estão sempre em equilíbrio. Assim, a aceleração necessariamente se dará em um eixo paralelo à direção do plano inclinado. Portanto, a escolha dos eixos de referência mostrados na Figura 4.48 é a mais adequada.

Aplicando a Segunda Lei de Newton a cada eixo temos

Figura 4.47: Bloco sobre plano inclinado, submetido a uma tensão \vec{T} .

Figura 4.48: Bloco sobre plano inclinado. Escolhemos o sistema de coordenadas de maneira que a aceleração esteja contida em apenas um dos eixos.

Eixo x:

$$F_{R,x} = ma_x \tag{4.281}$$

$$T - P_x = ma_x \tag{4.282}$$

$$T - P_x = ma_x. (4.283)$$

Eixo y:

$$F_{R,y} = ma_y \tag{4.284}$$

$$N - P_{y} = 0. {(4.285)}$$

Para o eixo y já utilizamos o fato de que $a_y = 0$, devido à escolha do sistema de referência. As equações para esse eixo, no entanto, não terão utilidade para determinar a aceleração. Isolando a aceleração, obtemos

$$a \equiv a_x \tag{4.286}$$

$$= \frac{T - mg \operatorname{sen} \theta}{m}$$

$$= \frac{T}{m} - g \operatorname{sen} \theta,$$
(4.287)

$$=\frac{T}{m}-g\sin\theta,\tag{4.288}$$

onde usamos $P_x = mg \operatorname{sen} \theta$. Substituindo os valores de m e T, obtemos

$$a = \frac{T}{m} - g \sin \theta \tag{4.289}$$

$$= \frac{(20,0 \text{ N})}{(5,0 \text{ kg})} - (9,8 \text{ m/s}^2) \cdot \text{sen } 30^{\circ}$$
 (4.290)

$$= -0.9 \,\mathrm{m/s^2}. \tag{4.291}$$

O sinal negativo na expressão acima implica que a aceleração é no sentido negativo do eixo x, isto é, para baixo na figura.

Discussão: Aceleração lateral de um corpo suspenso

Uma terceira situação que podemos analisar e que envolve a tensão é a de um corpo preso por uma corda ao teto de um veículo que acelera, causando um deslocamento lateral do corpo. Nessa situação a aceleração do corpo deve ser a mesma do veículo e, portanto, a força resultante que atua sobre o corpo deve ser diferente de zero. É possivel determinar a aceleração do veículo através do ângulo que a corda faz com a vertical (veja a Figura 4.49).

Se aplicarmos a Segunda Lei de Newton a cada eixo mostrado na figura, temos

Eixo x:

$$F_{R,x} = ma_x \tag{4.292}$$

$$T_x = ma_x \tag{4.293}$$

$$T \operatorname{sen} \theta = ma_x. \tag{4.294}$$

Figura 4.49: Um corpo suspenso e sujeito a uma aceleração lateral.

Eixo y:

$$F_{R,y} = ma_y \tag{4.295}$$

$$T_{y} - P = 0 (4.296)$$

$$T\cos\theta = mg \tag{4.297}$$

$$T = \frac{mg}{\cos \theta}. (4.298)$$

Nas equações acima, utilizamos o fato de que a aceleração do sistema é só na direção do eixo x, logo $a_y = 0$. Substituindo a Equação (4.298) na Equação 4.294, obtemos

$$\frac{mg}{\cos\theta}\sin\theta = ma_x,\tag{4.299}$$

e finalmente,

$$a_x = g \tan \theta. \tag{4.300}$$

Discussão: Equilíbrio de um sistema que envolve um nó

Um tipo de problema relativamente comum envolve um objeto sustendado por cordas. As cordas podem estar atadas umas às outras através de um nó, o que nos leva uma uma situação como a da Figura 4.50. Nesse tipo de problema, podemos imaginar que as cordas estão ligadas a um anel de massa desprezível, por exemplo. Precisamos, portanto, aplicar a Segunda Lei de Newton ao anel, para que possamos relacionar as forças exercidas pelas cordas. Note que ao tomarmos a massa do anel como sendo nula, estamos simplesmente estabelecendo uma relação entre as forças de tensão nos diversos cabos. Tal relação será válida também no caso de termos acelerações no sistema.

Na Figura 4.51 decompomos as forças em dois eixos, um vertical e outro horizontal. A escolha dos eixos foi feita com base nos ângulos dados e na direção das forças, de forma que possamos decompor as forças nos eixos com facilidade. Aplicando a Segunda Lei de Newton para o bloco e para o nó, temos

Bloco: Para o bloco, considerando o equilíbrio, temos:

Eixo x: Não há forças/componentes.

Eixo y:

$$F_{R,y} = m_b a_y \tag{4.301}$$

$$T_{bn} - P = 0 (4.302)$$

$$T_{hn} = P. (4.303)$$

Nó: Para o nó, também temos equilíbrio:

Eixo x:

$$-T_{1,x} + T_{2,x} = m_n a_x (4.304)$$

$$-T_{1,x} + T_{2,x} = 0 (4.305)$$

$$T_{1,x} = T_{2,x}. (4.306)$$

Figura 4.50: Um bloco sustentado por cordas. Como estamos desprezando a massa das cordas, o nó atua como um ponto onde a força que sustenta o bloco é dividida em duas partes.

Figura 4.51: Sistema de referência. Note que estamos também interessados em analisar o nó.

Eixo y:

$$F_{R,y} = m_n a_y \tag{4.307}$$

$$T_{1,y} + T_{2,y} - T_{nb} = 0. (4.308)$$

Decompondo os vetores através das funções trigonométricas e a Expressão (4.303), podemos reescrever as equações obtidas ao aplicar a Segunda Lei de Newton para o nó, obtendo o seguinte sistema de equações:

$$\begin{cases} T_1 \cos \alpha - T_2 \cos \beta = 0 \\ T_1 \sin \alpha + T_2 \sin \beta - P = 0. \end{cases}$$
 (4.309)

Isolando T_1 na primeira equação do sistema, temos

$$T_1 = T_2 \frac{\cos \beta}{\cos \alpha}.\tag{4.310}$$

Usando esse resultado na segunda equação do sistema, obtemos

$$T_2 \frac{\cos \beta \sin \alpha}{\cos \alpha} + T_2 \sin \beta - P = 0. \tag{4.311}$$

Subtraindo P de ambos os membros da equação e colocando T₂ em evidência no membro esquerdo, resulta em

$$T_2(\cos\beta\tan\alpha + \sin\beta) = P, \tag{4.312}$$

e, finalmente,

$$T_2 = \frac{P}{\cos\beta\tan\alpha + \sin\beta}.$$
 (4.313)

Substituindo o resultado acima na Equação (4.310), podemos determinar a tensão T_1 :

$$T_1 = \frac{P}{\cos \beta \tan \alpha + \sin \beta} \frac{\cos \beta}{\cos \alpha}$$
 (4.314)

$$= \frac{P}{(\cos\beta\tan\alpha + \sin\beta)\frac{\cos\alpha}{\cos\beta}}$$
 (4.315)

$$= \frac{P}{\sin \alpha + \tan \beta \cos \alpha}.$$
 (4.316)

Finalmente, temos que as tensões são dadas por

$$T_1 = \frac{P}{\cos \alpha \tan \beta + \sin \alpha} \tag{4.317}$$

$$T_{1} = \frac{P}{\cos \alpha \tan \beta + \sin \alpha}$$

$$T_{2} = \frac{P}{\cos \beta \tan \alpha + \sin \beta}.$$

$$(4.317)$$

Exemplo: Corpo suspenso por cordas ligadas uma à outra. Caso estático.

A Figura 4.52 mostra duas cordas de mesmo comprimento presas ao teto de uma sala, e que estão amarradas a um terceiro segmento de corda, sustentando um corpo de massa m. O ângulo entre as cordas superiores é $\theta = 53,13^{\circ}$ e a massa do corpo é de 5,0 kg. Determine o módulo das tensões exercidas pelas cordas.

Figura 4.52: Corpo em repouso suspenso por cordas.

Como as duas cordas superiores têm o mesmo tamanho, o ângulo entre a vertical e cada uma delas é dado por $\alpha = \theta/2$. Assim, um sistema de referência composto por um eixo vertical e um horizontal é uma boa escolha para tratar o problema, tanto no "nó" que amarra as cordas, quanto para o corpo suspenso. Veja a Figura 4.53.

Aplicando a Segunda Lei de Newton para o nó, com o auxílio do diagrama de forças mostrado na Figura 4.54, obtemos:

Eixo x:

$$F_{R,x} = ma_x \tag{4.319}$$

$$T_{1,x} + T_{2,x} = 0 (4.320)$$

$$-T_1 \operatorname{sen} \alpha + T_2 \operatorname{sen} \alpha = 0 \tag{4.321}$$

$$-T_1 + T_2 = 0 (4.322)$$

$$T_2 = T_1 (4.323)$$

$$\equiv T. \tag{4.324}$$

Figura 4.53: Sistemas de referência ado-

Eixo y:

$$F_{R,y} = ma_y \tag{4.325}$$

$$T_{1,y} + T_{2,y} + T_{3,y} = 0 (4.326)$$

$$T_1 \cos \alpha + T_2 \cos \alpha - T_3 = 0$$
 (4.327)

$$2T\cos\alpha = T_3. \tag{4.328}$$

Figura 4.54: Diagrama de forças para o

Veja que utilizamos o fato de que a aceleração é nula e também a igualdade entre os módulos das tensões $T_1 = T_2 \equiv T$ para simplificar a expressão acima. Para determinarmos o valor da tensão exercida em cada corda, precisamos somente determinar o valor de T_3 .

Aplicando a Segunda Lei de Newton ao corpo suspenso, obtemos

Eixo x': Não há forças/componentes.

Eixo y':

$$F_{R,y} = ma_y \tag{4.329}$$

$$T_3 - P = 0 (4.330)$$

$$T_3 = P \tag{4.331}$$

$$= mg.$$
 (4.332)

Finalmente, substituindo o resultado para T₃ na Expressão (4.328) obtemos:

$$2T\cos\alpha = mg \tag{4.333}$$

$$T = \frac{mg}{2\cos\alpha} \tag{4.334}$$

$$= \frac{(5.0 \,\mathrm{kg}) \cdot (9.8 \,\mathrm{m/s^2})}{2 \cdot \cos(26.565^\circ)} \tag{4.335}$$

$$= 27,39 \,\mathrm{N}.$$
 (4.336)

Figura 4.55: Diagrama de forças para o corpo suspenso.

Figura 4.56: Corpo em repouso suspenso por cordas, submetido a uma aceleração vertical para cima.

Exemplo: Corpo suspenso por cordas ligadas uma à outra. Caso dinâmico.

A Figura 4.52 mostra duas cordas de mesmo comprimento presas ao teto de um elevador, e que estão amarradas a um terceiro segmento de corda, suntentando um corpo de massa m. O ângulo entre as cordas superiores é $\theta=53,13^\circ$ e a massa do corpo é de 5,0 kg. Determine o módulo das tensões exercidas pelas cordas se o elevador acelera verticalmente para cima, com aceleração $a=3,0\,\mathrm{m/s^2}$.

Adotando os mesmos sistemas de referência que no exemplo anterior, obtemos para o nó as mesmas equações, uma vez que desprezamos sua massa:

Eixo x:

$$F_{R,x} = ma_x \tag{4.337}$$

$$T_{1,x} + T_{2,x} = 0 (4.338)$$

$$-T_1 \operatorname{sen} \alpha + T_2 \operatorname{sen} \alpha = 0 \tag{4.339}$$

$$-T_1 + T_2 = 0 (4.340)$$

$$T_2 = T_1 (4.341)$$

$$\equiv T. \tag{4.342}$$

Eixo y:

$$F_{R,y} = ma_y \tag{4.343}$$

$$T_{1,y} + T_{2,y} + T_{3,y} = 0 (4.344)$$

$$T_1 \cos \alpha + T_2 \cos \alpha - T_3 = 0 \tag{4.345}$$

$$2T\cos\alpha = T_3. \tag{4.346}$$

Já para o corpo suspenso temos

Eixo x': Não há forças/componentes.

Eixo y':

$$F_{R,y} = ma_y \tag{4.347}$$

$$T_3 - P = ma$$
 (4.348)

$$T_3 = P + ma \tag{4.349}$$

$$= m(g+a). \tag{4.350}$$

Note que adotamos $a_y \equiv a$, uma vez que não há aceleração no eixo x'. Calculando a tensão obtemos

$$2T\cos\alpha = T_3 \tag{4.351}$$

$$2T\cos\alpha = m(g+a) \tag{4.352}$$

$$T = \frac{m(g+a)}{2\cos\alpha} \tag{4.353}$$

$$=\frac{(5,0\,\mathrm{kg})\cdot((9,8\,\mathrm{m/s^2})+(3,0\,\mathrm{m/s^2}))}{2\cdot\cos(26,565^\circ)}\tag{4.354}$$

$$= 35,78 \,\mathrm{N}.$$
 (4.355)

4.3.6 Múltiplos corpos: sistemas de referência orientados pelo movimento

É comum que tenhamos que tratar de sistemas com diversos corpos que interagem por meio de tensões em cabos que os ligam. Se tivermos uma situação estática, isso não nos trás nenhuma complicação, porém se temos aceleração, podemos ter que determinar a relação entre acelerações que ocorrem em eixos diferentes para cada corpo.

Algumas vezes podemos utilizar os mesmo eixos de referência para todos os corpos — como na discussão para a aceleração lateral de dois blocos, na página 126 —, porém em muitos casos isso não é possivel. Na Figura 4.57, ambos os blocos estão sendo acelerados para cima. Podemos utilizar os sistemas de referências indicados na figura e teremos que a aceleração de ambos os blocos será no mesmo eixo vertical *y*.

Na situação mostrada na Figura 4.58 temos algo mais complexo. A aceleração do bloco 1 será no eixo x_1 , enquanto a aceleração do bloco 2 será no eixo y_2 . Se o fio é inextensível, podemos afirmar que o módulo dessas duas acelerações é o mesmo, o que nos leva à equação

$$a_{1,x} = -a_{2,y}, (4.356)$$

onde o sinal denota que quando a aceleração é no sentido positivo no eixo x_1 (para a direita na figura), temos uma aceleração no sentido negativo do eixo y_2 (para baixo na figura).

Vamos supor que estamos interessados em calcular a aceleração e a tensão no fio no sistema da Figura 4.58. Assumiremos que as massas dos blocos são conhecidas e que a roldana tem massa desprezível. Desconsideraremos também qualquer força de atrito. Analisando ambos os blocos temos:

Bloco 1: Aplicando a Segunda Lei de Newton para cada eixo:

Eixo x_1 :

$$F_{R,x_1} = m_1 a_{1,x_1} (4.357)$$

$$T = m_1 a_{1,x_1}. (4.358)$$

Eixo y_1 :

$$F_{R,y_1} = m_1 a_{1,y_1} (4.359)$$

$$N_1 - P_1 = m_1 a_{1,\nu_1} (4.360)$$

$$N_1 - P_1 = 0 (4.361)$$

$$N_1 = P_1. (4.362)$$

Bloco 2: Novamente, aplicando a Segunda Lei de Newton para cada eixo:

Eixo x_2 : Não há nenhuma força/componente nesse eixo.

Eixo y_2 :

$$F_{R,y_2} = m_2 a_{2,y_2} (4.363)$$

$$T - P_2 = m_2 a_{2,y_2}. (4.364)$$

Figura 4.57: Algumas vezes podemos utilizar o mesmo sistema de coordenadas para todos corpos: nesta situação, $x_1=x_2$ para todos os pontos e os eixos y_1 e y_2 têm a mesma orientação, sendo que seus valores diferem somente por um valor constante (a distância vertical entre as duas origens). Para efeitos de cálculo de velocidade ou aceleração neste eixo, no entanto, tal constante não importa, pois a velocidade é definida em termos do deslocamento – isto é, pela diferença das posições no tempo –.

Figura 4.58: Neste sistema, os blocos têm acelerações em eixos diferentes, porém – como eles estão ligados por um fio inextensível –, temos que $a_{1,x} = -a_{2,y}$.

³² Note que a fração é adimensional e que *g* tem dimensão de aceleração. Consequentemente, o resultado tem as dimensões corretas.

 33 Os índices 1 e 2 em a se referem às acelerações dos blocos 1 e 2, respectivamente. Os índices x_1 e x_2 se referem aos eixos x na posição de cada bloco, pois eles são eixos diferentes. Note que na figura já omitimos tal diferenciação pois estamos interessados no cálculo do módulo somente, já que a direção e o sentido podem ser determinados a partir da própria figura.

Figura 4.59: O mesmo sistema da Figura 4.58, porém com uma escolha diferente de eixos. Como as acelerações são iguais em módulo para ambos os blocos nos mesmos eixos, podemos simplesmente ignorar a diferenciação entre eles se estamos interessados em determinar somente o módulo da aceleração. A direção e o sentido podem ser prontamente determinados ao vermos a figura.

Para determinar a aceleração e a tensão, precisamos resolver o sistema de equações formado pelas expressões (4.358) e (4.364). No entanto, temos três incógnitas: $a_{1,x}$, $a_{2,y}$ e T. Para que possamos resolver este sistema, precisamos de mais uma equação: a relação entre as acelerações dada pela expressão 4.356. Assim

$$\begin{cases}
T = m_1 a_{1,x_1} \\
T - P_2 = m_2 a_{2,y_2} \\
a_{1,x} = -a_{2,y}.
\end{cases}$$
(4.365)

Se fizermos $a_{1,x_1} \equiv a$, pois estamos determinando o módulo da aceleração de cada bloco, podemos reescrever o sistema acima como

$$\begin{cases}
T = m_1 a \\
T - P_2 = -m_2 a,
\end{cases}$$
(4.366)

o que resulta, a partir da soma da primeira equação com o negativo da segunda equação, em

$$T - T + P_2 = m_1 a + m_2 a (4.367)$$

$$m_2 g = (m_1 + m_2)a. (4.368)$$

Finalmente, temos para a aceleração³²

$$a = \frac{m_2}{m_1 + m_2} g. (4.369)$$

Para obtermos a tensão, basta retornar às equações do sistema e substituir o resultado para a aceleração. Fazendo isso com a primeira equação do sistema, temos

$$T = m_1 a \tag{4.370}$$

$$=\frac{m_1m_2}{m_1+m_2}g. (4.371)$$

Sistemas de eixos orientados pelo movimento

Uma escolha comum de eixos é aquela que se vale da orientação geral do movimento do sistema. Na Figura 4.59 adotamos o eixo x como sendo aquele em que ocorre o movimento para cada bloco. Como temos que 33

$$a_{1,x_1} = a_{2,x_2} \equiv a_x, \tag{4.372}$$

uma distinção da aceleração de cada bloco não é necessária. No eixo *y*, para ambos os blocos temos aceleração nula.

Assim, temos ao analisar o sistema:

Bloco 1: Aplicando a Segunda Lei de Newton para cada eixo:

Eixo x:

$$F_{R,x} = m_1 a_x (4.373)$$

$$T = m_1 a_x. (4.374)$$

Eixo y:

$$F_R^y = m_1 a_y (4.375)$$

$$N_1 - P_1 = m_1 a_y (4.376)$$

$$N_1 - P_1 = 0 (4.377)$$

$$N_1 = P_1. (4.378)$$

Bloco 2: Novamente, aplicando a Segunda Lei de Newton para cada eixo:

Eixo x:

$$F_{R,x} = m_2 a_x \tag{4.379}$$

$$-T + P_2 = m_2 a_x. (4.380)$$

Eixo y: Não há nenhuma força/componente nesse eixo.

Isso resulta no sistema

$$\begin{cases}
T = m_1 a_x \\
-T + P_2 = m_2 a_x,
\end{cases}$$
(4.381)

cujas soluções para a_x e T são as mesmas dadas pelas equações (4.369) e (4.371), respectivamente.

Discussão: Um sistema onde não podemos utilizar eixos de referência em comum

Apesar de termos uma simplificação bastante grande ao utilizar um eixo na direção do movimento, temos que tomar cuidado, pois em alguns sistemas não é possível utilizar essa técnica. Na Figura 4.60 temos um sistema no qual, para um valor específico da aceleração \vec{a} mostrada, o bloco suspenso se mantém em equilíbrio no eixo vertical³⁴. Note que a aceleração no eixo x não está ligada à aceleração no eixo y'. Se tentássemos aplicar a ideia de um eixo na direção da corda — isto é, na direção do movimento presumido para o sistema —, teríamos resultados incoerentes: a aceleração do bloco superior em x teria que ser igual à aceleração do bloco suspenso em y', porém a primeira é igual à aceleração a indicada pela seta, enquanto a segunda é nula.

Para resolver este sistema, isto é, para determinar a aceleração para a qual o bloco suspenso se mantém sem acelerar verticalmente, só nos resta aplicar a Segunda Lei de Newton para os blocos individualmente. Para os dois blocos menores, temos

Bloco superior: Considerando o sistema composto pelos eixos *x* e *y*:

Eixo x:

$$F_{R,x} = m_s a_x \tag{4.382}$$

$$T = m_s a_x. \tag{4.383}$$

Eixo y:

$$F_{R,y} = m_s a_y \tag{4.384}$$

$$N_s - P_s = 0. (4.385)$$

³⁴ Nesse sistema as forças que atuam sobre a polia não podem ser entendidas adequadamente se desconsiderarmos a massa da corda que liga os dois blocos. Deve haver uma força que atua sobre o disco da polia, exercida pelo eixo, em uma direção e sentido diagonal para cima. Tal força, juntamente com as reações das tensões exercidas nas extremidades da corda, deve ser responsável pela aceleração da própria corda.

Figura 4.60: Conjunto de blocos que sofre uma aceleração para a direita: a aceleração do sistema é tal que o bloco suspenso se mantém equilibrado no eixo y'. Não há atrito entre os blocos, ou entre o bloco maior e o piso.

Bloco suspenso: Considerando o sistema formado pelos eixos x' e y':

Eixo x':

$$F_{R,x'} = m_i a_{x'} (4.386)$$

$$N_i = m_i a_{x'}. (4.387)$$

Eixo y:

$$F_{R,y'} = m_i a_{y'} (4.388)$$

$$T - P_i = 0. (4.389)$$

Através das duas equações envolvendo *T*, concluímos que

$$a = a_x = a_{x'} = \frac{m_i}{m_s} g. {(4.390)}$$

4.3.7 Atrito

Quando dois corpos interagem através de contato, além da força de interação normal à superfície — isto é, a força normal —, temos outra força de interação. Essa força ocorre paralelamente às superfícies de contato e é sempre no sentido oposto ao deslizamento ou à tendência de deslizamento entre elas, sendo denominada como força de atrito.³⁵

A origem da força de atrito, assim como para a força normal, é a interação eletromagnética entre os átomos que compõe as superfícies em contato. Podemos determinar a direção da força de atrito fazendo os seguintes raciocínios:

- Se colocamos um bloco em um plano inclinado, ele desliza se não houver atrito. Se houver, no entanto, ele pode permanecer em equilíbrio, dependendo do ângulo de inclinação.
- Se colocarmos um bloco sobre uma esteira parada e depois fizermos com que ela se mova, o bloco acelerará, sempre se movendo junto³⁶ com a esteira.
- Se lançarmos um bloco deslizando sobre uma superfície plana, eventualmente ele para.

Em todas essas situações, temos a atuação de forças de atrito. Nelas vemos que o atrito é sempre na direção do deslocamento relativo entre as superfícies, ou da tendência de deslocamento relativo, e seu sentido é tal que impede, ou tende a impedir o movimento. Isto é, a direção e sentido da força de atrito é contra o deslizamento ou a tendência de deslizamento. Note também que as forças do par ação-reação atuam uma em cada corpo que interage: no caso de um bloco apoiado sobre um plano inclinado, por exemplo, se a força de ação atua sobre o bloco, a reação atua sobre o plano inclinado.

Uma característica bastante notável da força de atrito é a de que ela possui dois regimes distintos: um estático e um cinético. Se tomarmos o bloco mostrado na Figura 4.61 e o submetermos a ação de uma força lateral \vec{F} , verificamos que para uma faixa de valores

- ³⁵O modelo da força de atrito que vamos estudar aqui foi descrito primeiramente por Leonardo da Vinci, mas não publicado, e depois redescoberto pelo físico francês Guillaume Amonton. Tal modelo descreve as principais características dessa força, mas sua aplicabilidade não é irrestrita: ele foi estudado e ampliado pelo físico francês Charles Augustin Coulomb, que mostra que para diversas combinações de materiais existem desvios importantes em relação ao previsto pelo modelo de da Vinci/Amonton (para uma breve discussão sobre as contribuições e conclusões de Coulomb, veja Elena Popova e Valentin L. Popov (jun. de 2015). "The research works of Coulomb and Amontons and generalized laws of friction". Em: Friction 3.2, pp. 183-190. ISSN: 2223-7704. DOI: 10.1007/s40544-015-0074-6).
- ³⁶ Lembre-se que para que dois corpos se movam juntos, sem perder contato, é necessário que suas posições, velocidades, e acelerações sejam sempre as mesmas.

do módulo da força não ocorre movimento. Tal situação descreve o que denominamos como regime estático da força de atrito, e ele corresponde à reta inclinada no gráfico $f_{at} \times F$ mostrado na figura. A partir de certo valor de *F*, no entanto, o bloco passa a se mover. Esse regime da força de atrito, denominado cinético, corresponde à parte horizontal do gráfico, e que descreve a uma força constante. Nas seções seguintes vamos explorar esses dois regimes da força de atrito. Finalmente, devemos destacar que a força de atrito independe da área aparente³⁷

Força de atrito estático

Se tomarmos um bloco que repousa sobre uma superfície e o empurrarmos, verificaremos que para que o se inicie o movimento a força exercida deve exceder um valor específico (veja a Figura 4.62). De fato, se a força for pequena, o objeto se mantém parado. Se aumentarmos um pouco a força, podemos iniciar o movimento, porém se o aumento não for suficiente, ele pode continuar parado. A partir de um certo valor, no entanto, o objeto passa a se mover. Verificamos então que a força de atrito, assim como a normal e a tensão, tem um valor máximo. Para determinarmos o valor da força de atrito antes de o movimento se iniciar, precisamos aplicar a Segunda Lei de Newton:

Eixo x:

$$F_{R,x} = ma_x \tag{4.391}$$

$$F - f_{\text{at}}^e = 0 (4.392)$$

$$F = f_{\text{at}}^e. \tag{4.393}$$

Eixo y:

$$F_{R,y} = ma_y \tag{4.394}$$

$$N - P = 0 (4.395)$$

$$N = P. (4.396)$$

Nas equações acima, utilizamos o fato de que as acelerações em ambos os eixos são nulas, já que o corpo está em equilíbrio.

Note que o fato de que temos aceleração nula implica que a força de atrito, além de ter a mesma intensidade que a força aplicada, tem a mesma direção, porém sentido contrário. Em situações mais complexas podemos ter uma relação menos direta do que essa acima, porém a análise necessária para obter seu valor é a mesma.

A força de atrito não surge simplesmente em oposição a uma força aplicada ao sistema. Uma outra possibilidade é a termos uma superfície que acelera — uma esteira—, sobre a qual se apoia um bloco. Como o atrito é contrario ao deslocamento relativo entre as superfícies, quando a esteira acelera, surje uma força que tende a acelerar o bloco. Novamente, para determinar o valor da força de atrito, é necessário aplicar a Segunda Lei de Newton:

³⁷ Determinar qual é a área efetiva de contato é, na verdade, algo muito difícil. Mesmos as superfícies mais planas possuem irregularidades que fazem com que somente uma parte pequena da área de um corpo esteja efetivamente em contato com outro.

Figura 4.61: A força de atrito exibe dois regimes distintos: um estático (reta crescente) e um cinético (reta constante). O ponto fechado representa o valor da força de atrito estático máximo.

Figura 4.62: Numa situação com atrito, podemos ter um bloco sujeito a uma força lateral sem que haja aceleração. A força que garante o equilíbrio é a força de atrito e seu valor será igual ao da força \vec{F} , seja ele qual for. Sabemos, no entanto, que existe um valor máximo para a força de atrito, a partir do qual ela não será mais capaz de equilibrar a força lateral e o movimento iniciará.

Figura 4.63: Bloco apoiado sobre uma superfície que se desloca para a direita com aceleração \vec{a} .

Figura 4.64: Bloco sobre plano inclinado em equilíbrio devido à força de atrito.

Figura 4.65: Diagrama de corpo livre para o bloco.

Eixo x:

$$F_{R,x} = ma_x \tag{4.397}$$

$$f_{\rm at}^e = ma_x. \tag{4.398}$$

Eixo y:

$$F_{R,y} = ma_y \tag{4.399}$$

$$N - P = 0. (4.400)$$

Nas equações acima utilizamos o fato de que a aceleração no eixo vertical é nula. Vemos, que nesse caso a força de atrito está relacionada à aceleração do sistema.

Concluímos então que a força de atrito será nula, caso não haja tendência ao deslizamento das superfícies, e alterará seu valor de maneira a evitar que um deslizamento ocorra. No entanto, sabemos que — a partir de algum valor limite — o sistema sai do equilíbrio: se a força \vec{F} ou a aceleração \vec{a} nos exemplos acima forem intensas o suficiente, o deslizamento das superfícies ocorrerá. Logo, existe um valor máximo para a força de atrito estático.

Exemplo: Bloco em equilíbrio em um plano inclinado

A Figura 4.64 mostra um bloco com massa $m=5.0\,\mathrm{kg}$ apoiado sobre um plano inclinado, cujo ângulo com a horizontal é $\theta=35^\circ$. Se o bloco está em equilíbrio, determine o valor da força de atrito entre o bloco e a superfície do plano inclinado e a força normal exercida sobre o bloco.

Adotando um sistema de referência como o mostrado na Figura 4.65 e aplicando a Segunda Lei de Newton a cada eixo, obtemos:

Eixo x:

$$F_{R,x} = ma_x \tag{4.401}$$

$$P_x - f_{at} = 0 (4.402)$$

$$mg \operatorname{sen} \theta = f_{\operatorname{at}}. (4.403)$$

Eixo y:

$$F_{R,y} = ma_y \tag{4.404}$$

$$N - P_y = 0 (4.405)$$

$$N = mg\cos\theta. \tag{4.406}$$

Substituindo os valores para m, g, e θ obtemos:

$$f_{\rm at} = mg \, {\rm sen} \, \theta \tag{4.407}$$

$$= (5.0 \text{ kg}) \cdot (9.8 \text{ m/s}^2) \cdot \text{sen}(35^\circ) \tag{4.408}$$

$$= 28,11 \,\mathrm{N}.$$
 (4.409)

(4.410)

$$N = mg\cos\theta \tag{4.411}$$

$$= (5.0 \text{ kg}) \cdot (9.8 \text{ m/s}^2) \cdot \cos(35^\circ) \tag{4.412}$$

$$= 40,14 \,\mathrm{N}. \tag{4.413}$$

Exemplo: Bloco sendo acelerado em uma esteira

A Figura 4.66 mostra um bloco disposto sobre uma esteira, sendo que esta o acelera para a direita. Se a massa do bloco é $m=5.0\,\mathrm{kg}$ e a aceleração tem módulo $a = 1.5 \,\mathrm{m/s^2}$, determine a força de atrito entre o bloco e a esteira, assumindo que não ocorre deslizamento.

Adotando um sistema de referência como o mostrado na Figura 4.66 e aplicando a Segunda Lei de Newton para cada um dos eixos, obtemos:

Eixo x:

$$F_{R,x} = ma_x \tag{4.414}$$

$$f_{\rm at} = ma. \tag{4.415}$$

Eixo y:

$$F_{R,y} = ma_y \tag{4.416}$$

$$N - P = 0 (4.417)$$

$$N = mg. (4.418)$$

Note que usamos $a_y = 0$ e $a_x = a$, uma vez que adotamos o eixo xna direção da aceleração. Substituindo os valores dados para m e a obtemos

$$f_{\rm at} = ma \tag{4.419}$$

$$= (5.0 \,\mathrm{kg}) \cdot (1.5 \,\mathrm{m/s^2}) \tag{4.420}$$

$$= 7.5 \,\mathrm{N}.$$
 (4.421)

Força de atrito estático máxima

No caso de um bloco submetido a uma força lateral \vec{F} e sujeito à força de atrito, se tomássemos um bloco mais pesado, porém feito do mesmo material — ou colocarmos um segundo bloco sobre o primeiro, ou o empurrarmos para baixo de alguma forma —, verificaremos que a força necessária para que o bloco passe a se mover será maior do que quando temos só o bloco original. Isso nos leva à conclusão de que a força de atrito estático máxima aumentou. Experimentalmente, é possível observar que ao multiplicarmos a massa do bloco por um fator λ qualquer, a força lateral necessária para que o corpo passe a se mover também é multiplicada por tal fator. Assim, somos levados a crer que

$$f_{\rm at}^{e,{
m Max}} \propto P.$$
 (4.422)

Se, por outro lado, exercermos uma força \vec{F}_a no sentido de pressionar o bloco contra a superfície, observamos que também ocorre um aumento da força de atrito estático máxima. Outra possibilidade que pode ser verificada experimentalmente e que causa alterações na força de atrito de estático máximo é a de acelerar o sistema superfície-bloco verticalmente para cima. Concluímos então que a força de atrito não deve depender da força peso do corpo, mas sim de algum fator que

Figura 4.66: Bloco apoiado sobre uma superfície que se desloca para a direita com aceleração \vec{a} .

Figura 4.67: Diagrama de corpo livre para o bloco.

Figura 4.68: Bloco sujeito a duas forças, uma o empurrando contra a superfície e outra tendendo a fazer com que ele deslize.

³⁸ A interação entre duas superfícies dá origem tanto à força normal, quanto ao atrito. O atrito deve ser dependente de características ou dos dois corpos que interagem, ou da interface de interação. O peso é resultado da interação dos corpos com a Terra, não faria sentido que a força de atrito entre as duas superfícies tivesse relação com um corpo externo ao sistema.

 39 Lembre-se que temos equilíbrio até o momento imediatamente antes do início do movimento e, portanto, $F=f_{\rm at}^e.$ O último valor registrado de F antes de o movimento se iniciar corresponde justamente ao valor de $f_{\rm at}^{e,{\rm Max}}.$

Força de atrito estático máxima

Figura 4.69: Bloco em equilíbrio devido à força de atrito sobre um plano inclinado.

Figura 4.70: Sistema de referência para a análise do sistema.

englobe as outras duas possibilidades citadas. De fato, através das Leis de Newton, verificamos que existe um aumento da normal³⁸ em todas essas situações: analizando a Figura 4.68 através da Segunda Lei de Newton para o eixo *y* obtemos

$$F_{R,y} = ma_y \tag{4.423}$$

$$N - P - F_a = ma_y \tag{4.424}$$

$$N = P + F_a + ma_y. (4.425)$$

Logo, se fizermos um experimento onde alteramos de alguma maneira o valor da normal e registramos o valor do módulo de \vec{F} para o qual o movimento inicia³⁹, obtemos a proporcionalidade

$$f_{\rm at}^{e,{\rm Max}} \propto N.$$
 (4.426)

Podemos transformar a proporcionalidade acima em uma equação se adotarmos uma constante de proporcionalidade:

$$f_{\text{at}}^{e,\text{Max}} = \mu_e N. \tag{4.427}$$

A constante μ_e , denominada *coeficiente de atrito estático*, varia para cada par de superfícies que interagem e deve ser calculada experimentalmente.

Discussão: Determinação do coeficiente de atrito estático

Uma maneira simples de determinar o coeficiente de atrito estático entre dois tipos de superfícies consiste em utilizar um plano cuja inclinação pode ser alterada, sobre o qual apoiamos um bloco. Quando o plano for inclinado até que o bloco esteja na iminência de se mover, podemos analisar o sistema ainda como uma situação de equilíbrio.

Uma escolha razoável para o eixo x é adotá-lo como paralelo ao plano inclinado (Veja a Figura 4.70). Dessa forma o ângulo entre a força peso e o eixo y será o mesmo que aquele entre o plano inclinado e a horizontal. As demais forças estarão em um eixo somente. Aplicando a Segunda Lei de Newton aos eixos, temos:

Eixo x: Neste eixo temos, sabendo que $a_x = 0$,

$$F_{R,x} = ma_x \tag{4.428}$$

$$P_x - f_{at} = 0 (4.429)$$

$$P \operatorname{sen} \theta - \mu_{\ell} N = 0 \tag{4.430}$$

$$mg \operatorname{sen} \theta - \mu_e N = 0 \tag{4.431}$$

$$mg \operatorname{sen} \theta = \mu_e N \tag{4.432}$$

Eixo y: Novamente, a aceleração é nula,

$$F_{R,y} = ma_y \tag{4.433}$$

$$N - P_y = 0 (4.434)$$

$$N = P\cos\theta \tag{4.435}$$

$$N = mg\cos\theta \tag{4.436}$$

Utilizamos acima o fato de que o ângulo entre o peso e o eixo y é igual ao ângulo θ entre a superfície do plano inclinado e a horizontal.

Substituindo a expressão acima para a força normal na Equação (4.432), obtemos

$$\mu_e mg \cos \theta = mg \sin \theta, \tag{4.437}$$

o que resulta em

$$\mu_e = \tan \theta. \tag{4.438}$$

Experimentalmente, basta elevar lentamente a inclinação do plano até que o bloco comece a deslisar. Registrando o ângulo para o qual o movimento inicia, temos um valor limite para o ângulo. Repetindo o procedimento algumas vezes, podemos determinar com alguma precisão qual é o ângulo para o qual temos iminência de movimento.

Exemplo: Aceleração máxima sobre uma esteira

Uma caixa repousa sobre uma esteira horizontal. Em um dado momento, o sistema elétrico que move a esteira é ligado, acelerando o bloco lateralmente. Se o coeficiente de atrito estático entre o bloco e a esteira é $\mu=1$, qual é a aceleração máxima a que a caixa pode ser submetida sem que deslize?

Adotando um sistema de coordenadas como o mostrado na Figura 4.71 e aplicando a Segunda Lei de Newton a cada um dos eixos, obtemos

Eixo x:

$$F_{R,x} = ma_x \tag{4.439}$$

$$f_{\rm at} = ma_x. \tag{4.440}$$

Eixo y:

$$F_{R,y} = ma_y \tag{4.441}$$

$$N - P = 0 (4.442)$$

$$N = P. (4.443)$$

Note que utilizamos $a_y = 0$, uma vez que a aceleração do bloco é na direção do eixo horizontal x.

Como buscamos o valor da aceleração máxima, devemos assumir que a força de atrito seja estático máxima:

$$f_{\rm at} = \mu N. \tag{4.444}$$

Assim, obtemos

$$f_{\rm at} = ma_x \tag{4.445}$$

$$\mu N = ma_x. \tag{4.446}$$

Através da equação para o eixo y obtemos N = mg, logo

$$ma_x = \mu mg \tag{4.447}$$

$$a_x = \mu g. \tag{4.448}$$

Figura 4.71: Diagrama de corpo livre para o bloco.

Finalmente, substituindo o valor dado para μ , obtemos

$$a_x = g. (4.449)$$

Concluímos, portanto, que a aceleração lateral do bloco terá o mesmo módulo que a aceleração gravitacional.

Exemplo: Bloco forçado contra uma superfície

Na Figura 4.72, uma força \vec{F} atua sobre um bloco fazendo um ângulo $\theta=45^\circ$ com a horizontal. Determine o valor máximo de F para o qual o bloco não desliza, sabendo que a massa do bloco é m=10,0 kg e que o coeficiente de atrito estático μ é 0,75.

Adotando o sistema de referência mostrado na Figura 4.73 e aplicando a Segunda Lei de Newton a cada eixo, obtemos

$$F_{R,x} = ma_x \tag{4.450}$$

$$F_x - f_{at} = 0.$$
 (4.451)

Eixo y:

$$F_{R,x} = ma_y \tag{4.452}$$

$$N - F_y - P = 0. (4.453)$$

A partir do resultado obtido para o eixo vertical y, podemos escrever

$$N = F_{v} + P. (4.454)$$

Como estamos interessados no máximo valor de F para o qual existe equilíbrio, devemos assumir que a força de atrito corresponde ao valor estático máximo. Assim, a partir do resultado para o primeiro eixo, obtemos

$$F_x - \mu N = 0. (4.455)$$

Substituindo o resultado para a força normal, obtemos

$$F_x - \mu N = 0 (4.456)$$

$$F_x - \mu(F_y + P) = 0 (4.457)$$

$$F\cos\theta - \mu F \sin\theta - \mu mg = 0 \tag{4.458}$$

$$F(\cos\theta - \mu \sin\theta) = \mu mg, \tag{4.459}$$

o que resulta em

$$F = \frac{\mu mg}{\cos \theta - \mu \sin \theta}.$$
 (4.460)

Substituindo os valores de m, g, μ , e θ , obtemos

$$F = \frac{\mu mg}{\cos \theta - \mu \sin \theta} \tag{4.461}$$

$$= \frac{(0.75) \cdot (10.0 \,\mathrm{kg}) \cdot (9.8 \,\mathrm{m/s^2})}{\cos(45^\circ) - (0.75) \cdot \mathrm{sen}(45^\circ)} \tag{4.462}$$

$$=415,78 \,\mathrm{N}.$$
 (4.463)

Figura 4.72: Diagrama de corpo livre para o bloco.

Figura 4.73: Diagrama de corpo livre para o bloco.

Força de atrito cinético

Após o bloco passar a se mover, a força de atrito entra em um novo regime, denominado atrito cinético. Assim como no caso do atrito estático, podemos verificar experimentalmente este regime também é proporcional à força normal: se tomarmos um aparato como o da Figura 4.74, que mostra um bloco disposto sobre uma esteira que se move para a direita e que está preso à parede através de uma mola, verificamos aplicando a Segunda Lei de Newton para o eixo x e considerando equilíbrio que

Eixo x:

$$F_{R,x} = ma_x \tag{4.464}$$

$$f_{\rm at}^c - F_e = 0 (4.465)$$

$$f_{\rm at}^c = F_e \tag{4.466}$$

$$= k\Delta x, \tag{4.467}$$

de onde vem que

$$\Delta x = \frac{f_{\text{at}}^c}{k}.\tag{4.468}$$

Experimentalmente, se variarmos a força F_a , verificamos que ocorre um aumento da distensão da mola, o que implica em um aumento da força de atrito. Também podemos verificar um aumento da distensão se aumentarmos o peso P do bloco, ou a aceleração vertical a do sistema. Podemos relacionar essas variáveis à força normal ao aplicarmos a Segunda Lei de Newton ao eixo y:

Eixo y:

$$F_{R,y} = ma_y \tag{4.469}$$

$$N - F_a - P = ma_y \tag{4.470}$$

$$N = F_a + P + ma_y. (4.471)$$

Portanto, verificamos que existe uma proporcionalidade entre a força de atrito e a força normal:

$$f_{\rm at}^c \propto N.$$
 (4.472)

Novamente, podemos transformar a proporcionalidade em uma equação com o auxílio de uma constante, obtendo

$$f_{\rm at}^c = \mu_c N, \tag{4.473}$$

onde μ_c é conhecido como coeficiente de atrito cinético. Assim como no caso do coeficiente de atrito estático, tal constante é uma propriedade do par de superfícies que interagem e deve ser determinado experimentalmente. Vale ainda notar que μ_c deve ser menor ou igual a μ_e : se a força de atrito cinético fosse maior que a força de atrito estático máximo, tão logo um objeto passasse a se mover, ele encontraria uma força de resistência maior, que faria com que ele voltasse a ficar parado, ou seja, ele não poderia iniciar o movimento.

Figura 4.74: Aparato para a determinação do coeficiente de atrito cinético: dispomos um bloco preso a uma mola e apoiado em um disco que gira, de forma que o bloco desliza sobre ele. Aplicando uma força \vec{F}_a conhecida sobre o bloco e medindo a distensão da mola, podemos determinar a constante de proporcionalidade entre a força de atrito e a normal.

Força de atrito cinético

Figura 4.75: Bloco deslizando sobre um plano inclinado.

Exemplo: Deslizamento de um bloco sobre um plano inclinado

Na Figura (4.75), um bloco é lançado para baixo em um plano inclinado, partindo com uma velocidade inicial \vec{v}_i paralela ao plano, com módulo 4,5 m/s. O coeficiente de atrito cinético entre o bloco e o plano é $\mu_c = 0.70$. Considerando que o ângulo entre o plano e a horizontal é $\theta = 30^\circ$, determine a distância percorrida pelo bloco até que ele pare.

Como sabemos que deve existir uma desaceleração do bloco, devemos escolher um dos eixos na direção de tal desaceleração. Adotando o sistema de referência mostrado na Figura (4.76) e aplicando a Segunda Lei de Newton a cada um dos eixos obtemos:

Eixo x:

$$F_{R,x} = ma_x \tag{4.474}$$

$$P_x - f_{\text{at}} = ma_x \tag{4.475}$$

$$mg \operatorname{sen} \theta - \mu_c N = ma_x. \tag{4.476}$$

Eixo y:

$$F_{R,y} = ma_y \tag{4.477}$$

$$N - P_y = 0 (4.478)$$

$$N = mg\cos\theta. \tag{4.479}$$

Substituindo a expressão para a força normal na Equação (4.476), podemos escrever

$$mg \operatorname{sen} \theta - \mu_c mg \cos \theta = ma_x,$$
 (4.480)

de onde obtemos

$$a_x = g[\sin \theta - \mu_c \cos \theta]. \tag{4.481}$$

Substituindo os valores,

$$a_x = (9.8 \,\mathrm{m/s^2}) \cdot [\mathrm{sen}(30^\circ) - (0.7) \cdot \cos(30^\circ)]$$
 (4.482)

$$= -1.04 \,\mathrm{m/s^2}. \tag{4.483}$$

Para determinarmos a distância percorrida ao longo do eixo x, basta utilizarmos a Equação de Torricelli:

$$(v_f^x)^2 = (v_i^x)^2 + 2a_x \Delta x \tag{4.484}$$

$$0 = (v_i^x)^2 + 2a_x \Delta x (4.485)$$

$$2a_x \Delta x = -(v_i^x)^2 \tag{4.486}$$

$$\Delta x = -\frac{(v_i^x)^2}{2a_x}. (4.487)$$

Substituindo os valores,

$$\Delta x = -\frac{(4.5 \,\mathrm{m/s})^2}{2 \cdot (-1.04 \,\mathrm{m/s^2})} \tag{4.488}$$

$$= 9.73 \,\mathrm{m}.$$
 (4.489)

Figura 4.76: Sistema de referência adotado.

Sabemos que um paraquedista é atraído pela força gravitacional da Terra e, portanto, deve estar submetido a uma aceleração dirigida verticalmente para baixo. Se considerarmos somente esta força, teremos um movimento com aceleração constante, levando a um aumento linear da velocidade com o tempo. No entanto, não é o que se observa na realidade: a velocidade aumenta até certo ponto e se torna constante. Quando o paraquedas abre, a velocidade diminui progressivamente até chegar a outro valor constante.

Para explicarmos essa situação, precisamos levar em conta a força de arrasto. Essa força é notável para um ciclista que se move em grande velocidade, ou para um passageiro de um automóvel que coloca a mão para fora da janela em velocidades elevadas. Sempre que um objeto se move através de um meio fluido, ele estará sujeito a uma força no sentido contrário ao do movimento relativo entre o objeto e o meio. A intensidade dessa força aumenta com a velocidade, o que — como veremos adiante — explica a existência de uma velocidade máxima. Além dessa dependência na velocidade, temos uma dependência na densidade do meio (o arrasto é maior na água que no ar, por exemplo) e na área de seção reta do objeto que se desloca no meio fluido. Essa área é a "área frontal" do objeto, isto é, a área máxima que ele tem quando cortado por um plano perpendicular à direção do movimento. Tal dependência explica o funcionamento do paraquedas, pois a área aumenta significativamente quando ele é aberto. Portanto, podemos escrever

$$F_A = \frac{1}{2} C_D \rho A v^2. {(4.490)}$$

A força de arrasto é uma força muito complexa e essa expressão tem interpretações diferentes de acordo com a velocidade. O valor de C_D pode ser considerado constante somente no caso em que consideramos a força de arrasto que atua em um objeto com formas "angulosas", como um cilindro cuja base faz um ângulo de 90° com a lateral, e quando temos velocidade suficiente para que – após passar pelo objeto – o escoamento do fluido seja turbulento.

Arrasto de Stokes

Apesar de termos descrito uma expressão para a força de arrasto acima, ela não tem uma forma bem definida. Uma determinação precisa do arrasto exige a solução de equações complexas de mecânica dos fluidos, sendo que a Equação (4.490) é uma aproximação que é válida para alguns regimes de velocidade do corpo em relação ao fluido no qual se desloca.

Se temos velocidades pequenas e objetos com formas mais suaves, como uma esfera, a "constante" C_D — que na verdade é uma função da velocidade — poderá assumir uma dependência com o inverso da velocidade, o que se reflete em uma dependência linear do arrasto com a velocidade:

$$F_A = 6\pi R\eta v, \tag{4.491}$$

Força de arrasto

Arrasto de Stokes

Figura 4.77: Na condição de velocidade terminal, temos que a força de arrasto é igual ao peso. Consequentemente, temos equilíbrio, isto é, a aceleração é zero. Dessa forma, temos velocidade constante.

Figura 4.78: Velocidade de um objeto solto a partir do repouso em função do tempo em uma situação onde a força de arrasto não pode ser desprezada. Note que inicialmente a velocidade aumenta linearmente, pois para velocidades baixas temos (aproximadamente) um movimento com aceleração constante g. Após um longo tempo, no entanto, atinge-se uma velocidade terminal v_t .

Figura 4.79: Em um salto de paraquedas, temos uma velocidade que aumenta até uma certa velocidade terminal v_t . Após a abertura do para quedas, a velocidade diminui até uma nova velocidade terminal v_t^p , menor do que a anterior.

onde R é o raio da esfera e η é a viscosidade dinâmica do fluido. Essa equação assume que o escoamento do fluido não sofre turbulência após passar pelo objeto, e que a superfície da esfera seja lisa.

Se a velocidade de escoamento for muito alta, podemos ter uma dependência linear de C_D com a velocidade, o que se reflete em uma dependência cúbica da força de arrasto na velocidade. Apesar da complexidade da quantificação da força, temos meios de entender qualitativamente alguns problemas.

Discussão: Velocidade terminal

Se um objeto é solto a partir do repouso, caindo sob efeito da força peso e da força de arrasto, podemos escrever — utilizando a Segunda Lei de Newton —

$$F_{R,y} = ma_y \tag{4.492}$$

$$P_y + F_{A,y} = ma_y P - F_A = ma_y, (4.493)$$

onde adotamos um eixo y que aponta verticalmente para baixo. Isolando a aceleração a_y na equação acima e notando que a componente a_x é nula, obtemos para o módulo do vetor aceleração

$$a_y = \frac{mg - F_A}{m}. (4.494)$$

Como vimos acima, a força de arrasto é sempre proporcional de alguma forma à velocidade. No início do movimento, v=0 e temos nesse instante $F_A=0$, logo

$$a = g. (4.495)$$

A partir do momento que a velocidade não é mais nula, temos uma força de arrasto que equilibra parcialmente o peso, o que diminuirá a força resultante e, consequentemente, diminuirá a aceleração. Mesmo com a diminuição da aceleração, o objeto continua ganhando velocidade, o que leva a um aumento na força de arrasto. Esse processo continua até que a força de arrasto cresça o suficiente para equilibrar o peso. Nessa situação, não existe mais aceleração, portanto atingimos um valor de velocidade máxima, que denominamos como *velocidade terminal*. Podemos obter tal valor de velocidade através de

$$a = \frac{mg - F_A}{m} = 0, (4.496)$$

de onde podemos escrever

$$F_A = mg, (4.497)$$

e — utilizando a expressão (4.490) — podemos isolar v obtendo

$$v = \sqrt{\frac{2mg}{\rho A C_D}}. (4.498)$$

Mesmo que para o caso do arrasto de Stokes tenhamos uma expressão diferente, a análise qualitativa que fizemos antes de obter o resultado acima continua sendo válida. Isto significa que para qualquer movimento onde exista uma força de arrasto, teremos uma velocidade terminal.

Forças no movimento circular

Quando analisamos o movimento circular, verificamos que para o caso não uniforme — o mais geral — podemos dividir a aceleração em duas componentes com papeis distintos: a aceleração tangencial, responsável por alterar o módulo da velocidade, e a componente centrípeta, responsável por alterar a direção da velocidade. Como vimos, no entanto, para que haja uma aceleração, é necessário que haja uma força.

Analisando um movimento unidimensional, temos que um objeto que se move em linha reta com certa velocidade precisa sofrer a atuação de uma força resultante para sofrer uma mudança no módulo de sua velocidade. Para um corpo que realiza um movimento circular, analogamente, se sua velocidade sofre uma mudança de direção — mantendo constante seu módulo \vec{v} —, o corpo também deve estar sujeito a atuação de uma força. No primeiro caso, a direção da força é a mesma do movimento (caso contrário o corpo sofreria uma alteração também da direção de seu movimento). No segundo caso, a força precisa atuar perpendicularmente à direção da velocidade (caso contrário sofreria uma alteração no módulo da velocidade). Da mesma forma que diferenciamos o papel exercido pelas acelerações tangencial e centrípeta, podemos diferenciar o papel entre uma força que aponta tangencialmente à trajetória e uma que aponta para o centro da trajetória circular: a primeira causa aceleração tangencial, alterando então o módulo da velocidade, já a segunda causa aceleração centrípeta, alterando então a direção do movimento⁴⁰. Denominamos a componente da força resultante que aponta em direção ao centro da trajetória como força centrípeta. De acordo com Newton:

Uma força centrípeta é aquela pela qual corpos são puxados ou impelidos, ou tendem de alguma maneira, em direção a um ponto como um centro.

Podemos utilizar a segunda lei de Newton e a expressão para a aceleração centrípeta

$$F = ma (4.499)$$

$$a_c = \frac{v^2}{R} \tag{4.500}$$

para relacionar a força exercida para manter um objeto em uma trajetória circular aos valores de massa, velocidade e raio da trajetória:

$$F_c = m \frac{v^2}{R}. (4.501)$$

Note, no entanto, que essa relação não nos diz nada sobre a natureza da força, ela simplesmente nos diz qual é a intensidade de força necessária para manter um objeto de massa m em uma trajetória circular de raio *R*, com velocidade *v*:

- Se temos um corpo que gira preso a um fio, a força é uma tensão;
- Se temos um satélite em órbita em torno da Terra, temos a força gravitacional;

Figura 4.80: Um movimento curvilíneo é sempre uma situação em que não há equilíbrio de forças, pois é sempre necessária uma aceleração perpendicular à direção da velocidade instantânea para que haja mudança na direção do deslocamento. No caso de satélite em um movimento orbital circular, por exemplo, a força peso causa uma aceleração centrípeta.

⁴⁰ Podemos ter o resultado combinado dessas duas alterações (módulo e direção) quando exercemos uma força que faz um ângulo diferente de 0° ou 90° com a direção da velocidade.

Força centrípeta.

Figura 4.81: Visão em seção reta de uma curva compensada (a velocidade é tal que o bloco entra na página). O eixo x aponta para o centro da trajetória circular descrevida pelo bloco. Note que nenhuma força aponta diretamente na direção do eixo x, mas tanto a normal quanto a força de atrito têm componentes nessa direção.

Figura 4.82: Forças em um movimento circular vertical executado por um corpo preso a um fio.

Figura 4.83: Para cada uma das posições, temos uma componente da força resultante que aponta para o centro da trajetória. A componente tangencial será a responsável pela alteração do módulo da velocidade.

⁴¹ Se o movimento for com velocidade constante, a força resultante apontará para o centro da trajetória circular. No entanto, se a velocidade varia, haverá uma componente da força resultante cujo papel será o de alterar o módulo da velocidade, isto é, tal componente é responsável pela aceleração tangencial.

• Se temos um carro que faz uma curva em uma estrada plana, temos uma força de atrito.

Além disso, é importante frisar que a força centrípeta não é uma nova força: alguma das diversas forças que estudamos até aqui (ou outras que veremos no futuro). deve assumir esse papel. Em algumas situações, podemos até mesmo ter mais que uma força atuando de uma maneira complexa para manter um corpo em trajetória circular:

- Em uma estrada com uma curva inclinada, temos uma componente da normal e uma componente da força de atrito. A soma dessas duas componentes atua como força centrípeta.
- No caso de um corpo que executa um movimento circular vertical, como na Figura 4.82, a tensão sempre aponta para o centro da trajetória, mas o peso tem uma componente que aponta para o centro que muda de acordo com a posição. A soma da tensão e do valor instantâneo dessa componente atua como força centrípeta.

De maneira geral, podemos afirma que a força centrípeta é a componente da força resultante que aponta para o centro da trajetória circular.

Para facilitar a análise desse tipo de movimento, devemos tomar um eixo coordenado que ligue o corpo ao centro da trajetória circular, com sentido apontando para o centro da trajetória. Feito isso, basta tomar todas as componentes de força em tal direção, somá-las (levando em conta o sinal adequado) e igualá-las a mv^2/R .

Discussão: Movimento circular vertical em uma pista

Se fizermos uma pista circular vertical, como em um loop de montanha russa, se um corpo se desloca acima de uma velocidade mínima, ele completa o loop sem perder contato com a pista. De maneira análoga, se colocarmos um objeto dentro de um balde e o girarmos em um círculo vertical, a partir de uma certa velocidade, o objeto não perderá contato com o fundo do balde em nenhum momento da trajetória circular.

O que ocorre nessas situações é que, para que haja um movimento circular, é necessário que exista uma aceleração centrípeta. Tal aceleração se deve a uma força resultante que aponta para o centro da trajetória. Em ambos os exemplos, tal força será uma combinação das forças normal — exercida pelo fundo do balde — e do peso do objeto. Na Figura 4.83 temos um esboço de um movimento circular vertical. Note que, devido ao fato de a força peso apontar sempre em um mesmo sentido, para cada posição temos valores diferentes de normal, porém haverá sempre uma componente⁴¹ da força resultante que apontará no para o centro da trajetória circular.

Condição de perda de contato e velocidade mínima

Uma situação de particular interesse no movimento circular vertical é a de determinar qual é a velocidade mínima necessária para que um corpo qualquer execute o movimento circular sem perder contato com a superfície. Nosso ponto de interesse em particular é o ponto mais alto na Figura 4.83. A força que precisa ser exercida sobre o corpo para que ele se mantenha na trajetória circular determinada pela pista é dada por

$$F_{R,x} = m \frac{v^2}{r}. (4.502)$$

De acordo com a figura, vemos que a força resultante é dada pela soma da normal com o peso:

$$P + N = m\frac{v^2}{r}. (4.503)$$

Na expressão acima, o peso é constante, portanto, se aumentamos ou diminuímos a velocidade com que executamos a trajetória circular, o aumento ou diminuição da força que atua sobre o corpo conforme variamos a velocidade é inteiramente dado através da variação da força normal. Se ao efetuarmos várias voltas, diminuindo progressivamente a velocidade no topo da trajetória, verificamos que a normal deve diminuir progressivamente, até que atinja o seu valor mínimo: zero. Nesse caso, temos que não há mais interação entre o corpo e a pista, ou seja, o corpo perde contato com a pista: temos novamente a condição de que a normal é zero quando o contato entre os corpos cessa, conforme discutido na Seção 4.3.3. Nesse caso,

$$P = m\frac{v^2}{r} \tag{4.504}$$

e a velocidade mínima será então dada por

$$P = m \frac{v^2}{r} {(4.505)}$$

$$P = m\frac{v^2}{r}$$

$$mg = m\frac{v^2}{r}$$

$$(4.505)$$

$$rg = v^2,$$
 (4.507)

e finalmente

$$v = \sqrt{rg}. (4.508)$$

Para qualquer velocidade abaixo daquela dada pela expressão acima, teremos que o corpo perderá contato com a pista antes de chegar ao topo da trajetória. A partir do momento em que ocorre a perda de contato, o corpo passa a estar sob influência da gravidade somente. Nesse caso, ele passa a executar um movimento parabólico, característico de um lançamento oblíquo.

Condição de perda de contato e velocidade máxima

Uma outra possibilidade de movimento em que pode ocorrer perda de contato é se o corpo de desloca pela parte externa da pista (veja a Figura 4.84). Nesse caso, temos que no caso de velocidade nula, teríamos que a normal seria igual ao peso. Conforme aumentamos a velocidade, a força normal deve diminuir, para que a força resultante para o centro da trajetória aumente. Para um certo valor de velocidade

Figura 4.84: Corpo percorrendo a parte externa de uma pista com perfil circular. Veja que a normal tem que ser menor que o peso na posição indicada pois a diferença entre essas duas forças é responsável pela aceleração centrípeta que faz com que o corpo execute a curva.

máxima, temos que a normal será zero. Nesse caso, podemos afirmar que

$$F_{R,x} = m \frac{v^2}{r} {(4.509)}$$

$$N + P = m\frac{v^2}{r} {(4.510)}$$

$$mg = m\frac{v^2}{r} \tag{4.511}$$

$$g = \frac{v^2}{r},\tag{4.512}$$

ou seja, a velocidade máxima com que podemos fazer a trajetória circular sem perder contato 42 é

$$v = \sqrt{rg}. (4.513)$$

Discussão: Movimento sobre a superfície do planeta

Verificamos anteriormente que se um objeto estiver em repouso sobre uma mesa, temos que a força normal é igual ao peso. No entanto, devido à rotação do planeta, bem como a qualquer movimento sobre a superfície, temos um movimento circular.

Eixo x:

$$F_{R,x} = ma_x \tag{4.514}$$

$$P - N = m\frac{v^2}{R}. (4.515)$$

Eixo y: Não há forças/componentes.

A partir da equação para o eixo *x* podemos escrever para a normal

$$N = mg - m\frac{v^2}{R} \tag{4.516}$$

$$= m\left(g - \frac{v^2}{R}\right). \tag{4.517}$$

Note que a alteração na normal não é perceptível devido ao fato de que o raio *R* da trajetória é muito grande, pois é *o raio da Terra*.

Discussão: Pendulo cônico

Um pêndulo cônico é composto por um corpo de massa m ligado a um fio como mostra a Figura 4.86. O corpo descreve uma trajetória circular em um plano horizontal, sendo que o fio descreve um cone. Podemos relacionar a velocidade do corpo ao ângulo θ e ao comprimento ℓ do fio.

Na Figura 4.87 temos um diagrama das forças que atuam sobre o corpo. Temos duas forças – peso e tensão – atuando de maneira a imprimir uma aceleração que aponta para o centro da trajetória circular, isto é, a força resultante é responsável por alterar a direção do movimento. Decompondo tais forças em dois eixos, um vertical e um que aponta para o centro da trajetória temos:

42 Isto é, estamos na iminência de perder

Figura 4.85: Movimento sobre a superfície do planeta.

Figura 4.86: Pêndulo cônico. O quadrado pontilhado mostra o plano horizontal no qual a trajetória circular do pêndulo está contida.

Eixo x:

$$F_{R,x} = ma_x \tag{4.518}$$

$$T_x = ma_c (4.519)$$

$$T \operatorname{sen} \theta = m \frac{v^2}{r}. (4.520)$$

Eixo y:

$$F_{R,y} = ma_y \tag{4.521}$$

$$T_{y} - P = 0 (4.522)$$

$$T\cos\theta = P \tag{4.523}$$

$$T\cos\theta = mg. \tag{4.524}$$

Nas expressões acima assumimos que a aceleração no eixo vertical y será zero, pois se a velocidade for constante o plano horizontal descrito pela trajetória circular não se desloca verticalmente. A partir dessas expressões, podemos escrever

$$m\frac{v^2}{r} = \frac{mg}{\cos\theta} \sin\theta \tag{4.525}$$

$$v^2 = rg \tan \theta \tag{4.526}$$

$$v = \sqrt{rg \tan \theta}. (4.527)$$

Finalmente, podemos escrever o raio r usando a função trigonométrica sen θ como

$$r = \ell \operatorname{sen} \theta, \tag{4.528}$$

logo

$$v = \sqrt{\ell g \operatorname{sen} \theta \tan \theta}. \tag{4.529}$$

Discussão: Curva compensada

Em estradas, é essencial que as curvas tenham uma inclinação. Tal inclinação faz com que uma componente da força normal atue de maneira a, junto com a força de atrito, fazer com que os veículos

Figura 4.87: Diagrama de forças do pêndulo cônico. Note que a força centrípeta pode ser identificada nesse caso com a componente da tensão no eixo x apresentado na figura.

Figura 4.88: Visão em seção reta de uma curva compensada (a velocidade é tal que o bloco entra na página). Verificamos que existem duas possibilidades para o atrito neste movimento. O eixo x indicado aponta para o centro da trajetória circular. Os ângulos entre as forças de atrito e as linhas pontilhadas são iguais ao ângulo de inclinação θ da superfície.

possam executar a curva com segurança. Podemos determinar as velocidades máxima e mínima para executar a curva sem deslizar através de uma análise das forças presentes no sistema.

Na Figura 4.88 mostramos representação de uma visão frontal de um veículo que executa uma curva, mostrando as forças que atuam nesse movimento. Verificamos que existem duas possibilidades para o atrito: ou ele aponta para baixo, o que corresponde ao caso em que o corpo tende a escapar pela parte externa da curva, ou ele aponta para cima, o que corresponde ao caso em que o corpo tende a escapar para baixo. As forças de atrito são estáticas, já que não deve ocorrer deslizamento do veículo. Logo, considerando as forças de atrito são estático máxima, as situações indicadas correspondem à velocidade máxima e à velocidade mínima para as quais a curva pode ser executada sem deslizar. Note que as forças de atrito mostradas não podem ocorrer simultaneamente.

Analisando o movimento utilizando um eixo x que aponta para o centro da trajetória circular e um eixo y que aponta verticalmente, perpendicular ao primeiro, temos:

Eixo x:

$$F_{R,x} = ma_x \tag{4.530}$$

$$N_x \pm f_{\text{at},x} = m \frac{v^2}{r}. (4.531)$$

Eixo y:

$$F_{R,y} = ma_y \tag{4.532}$$

$$N_y \mp f_{\text{at},y} - P = 0. \tag{4.533}$$

Usamos nas equações acima o fato de que a_x é a aceleração que aponta para o centro da trajetória — ou seja, é a aceleração centrípeta — e que a aceleração a_y é nula. Além disso, denotamos os dois sinais possíveis para a força de atrito: o sinal positivo se refere ao caso em que a força de atrito aponta para baixo — o que corresponde ao caso de velocidade máxima — e o sinal negativo corresponde ao caso em que a força de atrito aponta para cima — o que corresponde ao caso de velocidade mínima —.

Utilizando as funções trigonométricas, podemos decompor as forças, o que nos leva a

$$\begin{cases} N \sin \theta \pm f_{\text{at}} \cos \theta = m \frac{v^2}{r} \\ N \cos \theta \mp f_{\text{at}} \sin \theta = P. \end{cases}$$
(4.534)

Como estamos trabalhando com a condição de atrito estático máximo, temos que $f_{at} = \mu_e N$, logo

$$\begin{cases} N \sin \theta \pm \mu_e N \cos \theta = m \frac{v^2}{r} \\ N \cos \theta \mp \mu_e N \sin \theta = mg. \end{cases}$$
 (4.535)

Da segunda equação do sistema acima, temos

$$N = \frac{mg}{\cos\theta \mp \mu_e \sin\theta}. (4.536)$$

Substituindo essa equação na primeira equação do sistema, resulta em

$$\frac{mg}{\cos\theta \mp \mu_e \sin\theta} (\sin\theta \pm \mu_e \cos\theta) = m \frac{v^2}{r}.$$
 (4.537)

Como estamos interessados em determinar as velocidades máxima e mínima, podemos reescrever a equação acima como

$$v = \sqrt{rg \frac{\sin \theta \pm \mu_e \cos \theta}{\cos \theta \mp \mu_e \sin \theta}},$$
(4.538)

onde o sinal positivo nos dá a velocidade máxima e o sinal negativo nos dá a velocidade mínima.

Discussão: Força centrípeta em um pêndulo

Em um pêndulo, durante a oscilação da massa, temos uma tensão que varia constantemente. Considerando o movimento circular descrito, temos

Eixo x:

$$F_{R,x} = ma_x \tag{4.539}$$

$$T - P_x = m \frac{v^2}{R} \tag{4.540}$$

$$T = P_x + m\frac{v^2}{R}. (4.541)$$

Eixo y:

$$F_{R,y} = ma_y \tag{4.542}$$

$$P_y = ma_y \tag{4.543}$$

$$mg \operatorname{sen} \theta = ma_{y}.$$
 (4.544)

Nas equações acima utilizamos o fato de que o eixo x aponta para o centro da trajetória circular descrita pela massa. Logo, a aceleração a_x é a própria aceleração centrípeta e

$$a_{\chi} = \frac{v^2}{R},\tag{4.545}$$

onde R é o raio da trajetória circular.

Podemos ver que mesmo que o ângulo θ entre o eixo x e a vertical seja conhecido, não podemos calcular a tensão na corda a menos que a velocidade também seja conhecida. Note que o termo devido à velocidade se torna preponderante rapidamente com o aumento de v, pois temos uma função quadrática da velocidade.

Finalmente, verificamos que no eixo y a aceleração é tangencial, e é dada por

$$a_t = a_y = g \operatorname{sen} \theta. \tag{4.546}$$

Figura 4.89: Força centrípeta em um pêndulo.

Discussão: Forças fictícias em um referencial acelerado

Em diversas situações ouvimos falar de forças centrífugas — um exemplo disso é a força centrífuga de uma lava-roupas no final do processo de lavagem, retirando o excesso de água —. A força centrífuga é então uma força que tende a levar um objeto em um movimento circular para fora de tal trajetória.

Se considerarmos a experiência como passageiros em automóvel que realiza uma curva, o que sentimos é uma tendência de nos afastar do centro da trajetória — o que está de acordo com a descrição de forças centrífugas descrita acima —. No entanto, o que estudamos na seção anterior foi a existência de forças que apontam para o centro da trajetória.

Na verdade, temos que tratar com cuidado uma situação desse tipo pois o interior do carro não é adequado para fixarmos um referencial: devido ao fato e que o carro está sujeito a uma aceleração, um referencial fixado no carro não é um referencial inercial. Nesse caso, podem ocorrer forças cuja explicação é difícil de justificar dentro do referencial. Tais forças são conhecidas como forças fictícias ou forças inerciais.

No caso do carro, o passageiro sente uma ação que o empurra para fora da trajetória circular, no entanto, tal força pode ser explicada de maneira simples em um referencial fixado no solo: o passageiro está se deslocando para fora da trajetória simplesmente por inércia. Sabemos que para que possamos ter uma trajetória circular, devemos ter a ação de alguma força que aponta para o centro da trajetória. Ora, que força seria essa no caso do passageiro? Nesse caso temos diversas forças atuando conjuntamente: o atrito no banco, forças normais devido às abas laterais dos assentos — e também na parte inferior do assento, se a curva for compensada —, forças devido ao cinto de segurança que prende o passageiro, e mesmo forças exercidas ao nos segurarmos em outras partes do carro. Caso essas forças não sejam suficientes, a tendência é a de seguirmos em linha reta no referencial do solo.

Dentro do referencial do carro, no entanto, essa tendência em se afastar do centro se torna uma força centrífuga aparente⁴³, cujo módulo é idêntico ao da força centrípeta — isto é, $F = mv^2/r$ —, porém aponta para longe do centro de rotação. Mesmo que bem presos ao veículo, sem nos deslocarmos, sentimos essa força aparente pois sentimos nossos órgãos internos: para que eles realizem a trajetória circular, a cavidade abdominal deve exercer uma força que aponta para o centro da trajetória, e sentimos a reação a tal força sendo exercida na parede da cavidade, o que interpretamos como se estivéssemos sendo puxados para fora da trajetória circular.

Objetivamente, devemos reconhecer que as forças que surgem em referenciais acelerados não são fictícias, elas de fato existem — o nome mais adequado é mesmo forças inerciais —. No caso do carro, podemos utilizar o conceito de força centrífuga dentro do referencial girante para descrever o movimento circular como uma situação de equilíbrio

⁴³ Onde está a reação dessa força?

entre as forças reais e a força centrífuga. No entanto, interpretar fenômenos físicos com base em tais forças é sempre mais complexo do que empregar um referencial inercial, onde temos a garantia de poder aplicar as Leis de Newton sem ressalvas ou forças difíceis de se interpretar.

De qualquer forma, algo fundamental de se notar é que jamais devemos misturar os dois referenciais: ou trabalhamos no referencial inercial, onde a componente da força resultante que aponta para centro e que atua sobre o corpo que descreve a trajetória circular é igual ao produto da massa pela aceleração centrípeta, ou trabalhamos no referencial não-inercial, onde temos equilíbrio entre as forças reais e a força centrífuga.

Discussão: Direção aparente do peso em um avião

Uma experiência bastante curiosa é a de estar em avião que faz uma curva, verificar que um copo com água sobre a bandeja está com o nível perfeitamente paralelo ao piso da aeronave, e olhar pela janela e ver o chão. Devido a este fenômeno, para que o avião possa ser pilotado sem visualizar o solo, o piloto precisa de um instrumento cujo único propósito é indicar qual é a orientação do avião em relação ao solo: o horizonte artificial.

Podemos interpretar os fenômenos que acontecem na aeronave em ambos os referenciais:

Referencial da aeronave Se imaginarmos o que aconteceria com uma esfera que estivesse sobre a bandeja temos que, devido à ação da força centrífuga, temos uma força resultante entre a força peso, a força normal e a força centrífuga, sendo que o sistema permanece em equilíbrio. Outra possibilidade é imaginar que a força centrífuga determina uma aceleração centrífuga que aponta para longe do centro de rotação. A aceleração total⁴⁴ — soma da aceleração centrífuga com a aceleração da gravidade — aponta então perpendicularmente ao piso da aeronave, e temos então o equilíbrio entre a normal e o peso aparente. No caso do líquido, temos algo um pouco mais complexo: como a força centrífuga/aceleração depende da distância ao eixo de rotação, temos que pontos diferentes estarão submetidos a forças/acelerações diferentes. Isso significa que a cada ponto da superfície do líquido temos uma força "normal" que aponta em uma direção diferente — mais vertical próximo do centro de rotação, mais inclinada ao se distanciar —, de forma a equilibrar a força centrífuga crescente ao se afastar do centro⁴⁵. Isso dá origem a uma curva denominada como um paraboloide de revolução.

Referencial inercial Por outro lado, em um referencial inercial temos um sistema similar ao pêndulo cônico, ou a uma curva compensada sem atrito: temos uma situação onde não há equilíbrio, porém na qual a aceleração é a aceleração centrípeta. Nesse caso, temos que a força normal exercida pela bandeja sobre a bola tem uma compo-

⁴⁴ Podemos interpretar essa aceleração total como uma aceleração gravitacional aparente

⁴⁵ Lembre-se que o peso não pode fazer nada, ele tem o módulo constante e está restrito a apontar sempre na mesma direção

nente que aponta para o centro da trajetória circular, agindo como força centrípeta. Além disso, temos que a componente vertical da normal equilibra o peso da esfera. No caso do líquido, como cada ponto está a uma distância diferente do centro de rotação, temos que as componentes da normal que apontam para o centro em cada ponto variam: a "normal" é mais vertical próxima ao centro de rotação, provendo uma força/aceleração centrípeta menor, e maior distante do centro de rotação, provendo uma força/aceleração centrípeta maior. Isso implica que a direção da normal varia na superfície do líquido, o que significa que o líquido não está plano, ele forma um segmento de um paraboloide de revolução.

Vemos que ambas as descrições são coerentes e chegam ao mesmo resultado. Em ambos os casos, concluímos que a superfície do líquido forma um menisco, porém, como temos um segmento muito pequeno da superfície, e não incluímos o centro de rotação, percebemos uma superfície plana. Podemos formar o paraboloide completo ao girar um balde cheio de água, e nesse caso, o referencial do avião seria equivalente a um referencial que flutuasse sobre a superfície do líquido. Se a superfície for grande, e o segmento pequeno, não percebemos a curvatura da superfície.

No caso de sólidos, essas diferenças nas forças/acelerações em pontos a diferentes distâncias do eixo de rotação também existem, mas em geral não trazem efeitos perceptíveis por serem de pequena intensidade. No entanto, para velocidades de rotação extremamente elevadas, os efeitos são relevantes: se um objeto for submetido a velocidades de rotação muito altas, ele pode se desintegrar espontaneamente, pois as forças entre as partículas não são intensas o suficiente para manter a coesão do objeto. No referencial inercial, podemos afirmar que as forças não foram suficientes para fazer com que todas as partes realizassem as suas respectivas trajetórias circulares; No referencial não-inercial do próprio corpo que gira, podemos afirmar que a força centrífuga foi intensa o suficientes para estilhaçar o objeto.

Finalmente, devemos notar algo muito importante em toda essa discussão: a força de sustentação que age sobre o avião tem sempre a mesma direção da força normal que age sobre os ocupantes. Quando o avião faz a curva, sabemos que — no referencial do avião — a força centrífuga aumenta de acordo com $F = mv^2/2$. Devido à inclinação da aeronave, a força normal exercida sobre os ocupantes também se inclina, fazendo com que exista uma situação de equilíbrio. Se o avião fizesse a curva por qualquer outro meio que não fosse a inclinação da própria aeronave, teríamos uma situação em que não ocorreria o equilíbrio.

Seções opcionais

4.4.1Teorema de Lamy

No caso de termos três forças coplanares atuando em um corpo em equilíbrio — como na figura abaixo, à esquerda — podemos as

transladar de forma a reorganizá-las como um triângulo — abaixo, à direita —.

Figura 4.90: Esquerda: Três forças coplanares atuando sobre um corpo em equilíbrio. Direita: As mesmas três forças dispostas formando um triângulo.

Aplicando a lei dos senos no triângulo, temos

$$\frac{F_1}{\text{sen}(180^\circ - \beta)} = \frac{F_2}{\text{sen}(180^\circ - \gamma)} = \frac{F_3}{\text{sen}(180^\circ - \alpha)}.$$
 (4.547)

Como sen $(180^{\circ} - \theta) = \operatorname{sen} \theta$, temos

$$\frac{F_1}{\operatorname{sen}\beta} = \frac{F_2}{\operatorname{sen}\gamma} = \frac{F_3}{\operatorname{sen}\alpha}.$$
 (4.548)

Teorema de Lamy

Esse resultado é conhecido como Teorema de Lamy e deve ser aplicado exclusivamente para o caso em três forças atuam sobre um corpo em equilíbrio.

No caso especial de um dos ângulos ser 90°, temos um triângulo retângulo (veja a Figura 4.91), aplicando o teorema de Pitágoras, temos que

$$F_3^2 = F_1^2 + F_2^2. (4.549)$$

Figura 4.91: Caso específico de três forças coplanares que atuam sobre um corpo em equilíbrio, sendo que duas delas formam um ângulo de 90° entre si.

Justificativa para a Lei de Hooke

A origem da força exercida por uma mola é a interação eletromagnética entre os átomos que a compõe. Essas forças eletromagnéticas não são lineares, porém, como temos uma quantidade muito grande de átomos, o deslocamento entre dois átomos "vizinhos" é muito pequeno. Nesse caso, a força apresenta um caráter aproximadamente linear. Isso pode ser entendido se levarmos em conta que qualquer função pode ser escrita como uma Série de Taylor, isto é, como uma soma de suas derivadas:

$$g(x) = g(a) + \frac{g'(a)(x-a)}{1!} + \frac{g''(a)(x-a)^2}{2!} + \frac{g'''(a)(x-a)^3}{3!} + \dots,$$
(4.550)

onde g'(a), g''(a), g'''(a), etc. são as derivadas da função g(x) calculadas no ponto a.

Utilizando esse resultado, podemos expandir uma função f(x) qualquer que representa uma força unidimensional exercida em uma deformação. Escolhendo a=0, considerando que esta é a posição de equilíbrio, obtemos

$$f(x) = f(0) + f'(0)(x - 0) + \frac{f''(0)(x - 0)^2}{2} + \dots$$
 (4.551)

No entanto, f(0) é a força na posição de equilíbrio, ou seja, é zero – caso contrário não seria um ponto de equilíbrio –. Além disso, se x é muito pequeno, temos que x^2 é menor ainda e por isso podemos desprezar todos os termos de ordem 2 (termos quadráticos) ou maior. Obtemos então:

$$f(x) = f'(0)x, (4.552)$$

e se fizermos $k \equiv f'(0)$,

$$f(x) = kx. (4.553)$$

Essa relação é a própria lei de Hooke, com $x_i=0$ e $x_f=x$, faltando somente o sinal que indica que a força é no sentido contrário ao deslocamento. A partir da análise acima, concluímos que quando falamos em pequenos deslocamentos, estamos restringindo os valores de termos de ordens quadrática ou superiores a valores muito menores que o termo de ordem linear. Respeitada essa condição, o que poder ser feito através da escolha de uma distensão máxima adequada, podemos tratar — em primeira aproximação — uma deformação de um objeto qualquer como sendo linear.

4.4.3 Equivalência das massas gravitacional e inercial

Veja que o fato de a aceleração gravitacional independer da massa se deve ao fato de que ela aparece em ambos os lados da igualdade na Equação (4.132). No entanto, isso se deve diretamente ao fato de que a força gravitacional depende da massa do corpo. Podemos citar um exemplo para deixar isso mais claro: a força entre duas cargas elétricas é dada por

$$F_c = k \frac{q_1 q_2}{r^2},\tag{4.554}$$

uma expressão que segue a mesma forma da Lei da Gravitação, conhecida como Lei de Coulomb. Se uma partícula de massa m e carga q_p é atraída por uma esfera com carga q_e , temos pela segunda lei de Newton

$$ma = \left[k \frac{q_e}{r^2} \right] q_p \tag{4.555}$$

ou seja

$$a = \left[k \frac{q_e}{r^2} \right] \frac{q_p}{m}. \tag{4.556}$$

Isto é, existe uma dependência da aceleração com a massa da partícula.

A independência da aceleração gravitacional com a massa do corpo se deve ao fato de que a *massa inercial* – isto é, aquela que aparece

na segunda lei de Newton - é igual à massa gravitacional. Isso não tem uma fundamentação teórica dentro da mecânica clássica pois ambos os fenômenos (a aceleração de um objeto submetido a uma força e a força entre tal objeto e a Terra) não têm nenhuma relação um com o outro. Para Newton, esta é uma verdade verificada experimentalmente.

Essa equivalência foi explicada em termos teóricos por Einstein, na Teoria da Relatividade Geral. Essa teoria reinterpreta a gravidade como uma deformação do espaço. Segundo Einstein, um referencial acelerado em uma direção com aceleração a é completamente equivalente a uma aceleração gravitacional de módulo a no sentido contrário ao da aceleração do referencial.

Além disso, Einstein postula que um referencial em queda livre em um campo gravitacional é um referencial inercial. Dentro desse referencial, para velocidades muito menores do que a da luz, temos o referencial inercial que é fundamental para as Leis de Newton.

4.5 *Apêndice*

4.5.1 Diálogo

Segue abaixo uma tradução do trecho do Diálogo sobre os dois máximos sistemas do mundo: ptolomaico e copernicano de Galileu Galilei, onde encontramos a discussão acerca do movimento contínuo e uniforme que ocorreria caso tivéssemos uma superfície horizontal de onde retirássemos todos os "impedimentos ao movimento". O texto se dá como um diálogo entre duas pessoas, Salviati e Simplício:

Salviati: [...] diga-me: quando você tem uma superfície plana, polidíssima com um espelho e de matéria dura como o aço, e que seja não paralela ao horizonte, mas um pouco inclinada, e que sobre ela você colocasse uma bola perfeitamente esférica e de material grave⁴⁶ e duríssima, como, por exemplo, de bronze, deixada em sua liberdade[,] o que você acredita que ela faria? você não acredita (assim como creio eu) que ela continuaria parada?

Simplicio: Se aquela superfície fosse inclinada?

Salviati: Sim, é assim que supomos.

Simplicio: Eu não acredito que ela permaneça parada, antes estou seguro que ela se moverá para o declive espontaneamente.

Salviati: Pense bem no que você disse, senhor Simplicio, por que eu estou seguro que ela ficará em qualquer lugar que você a colocar.

Simplicio: Como você, senhor Salviati, se serve desse tipo de suposição, não me impressiona que você chegue a conclusões falsas.

Salviati: Você tem então por seguro que ela se moverá para o declive espontaneamente?

Simplicio: Que dúvidas?

⁴⁶ Um corpo *grave* para Galileu é aquele que está sujeito à gravidade, ou seja, que se dirige ao centro da Terra quando pode se mover livremente.

- Salviati: E você tem isso por firme, não por que eu o tenha ensinado (por que eu tentava o persuadir do contrário), mas por você somente e pelo seu juízo natural.
- Simplicio: Ora[,] entendo o seu artifício: você diz assim para me tentar e (como diz o povo) me desgastar, mas não que acredite verdadeiramente que seja assim.
- Salviati: De fato. E quanto duraria o movimento daquela bola, e com que velocidade? E perceba que eu supus uma bola perfeitissimamente redonda e um plano requintadamente polido, para remover todos os impedimentos externos e acidentais: e assim eu desejo que você [abstraia] o impedimento do ar, mediante à sua resistência em ser aberto, e todos os outros obstáculos acidentais, se outros puderem haver.
- Simplicio: Compreendi tudo muito bem: e quanto à sua pergunta, respondo que ela continuará se movendo infinitamente, se tanto durasse a inclinação do plano, e com movimento acelerado continuamente; pois tal é a natureda dos corpos graves, que "vai ganhar força": e quanto maior for o declive, maior será a velocidade.
- Salviati: Mas quando outros desejassem que aquela bola se movesse para cima sobre aquela mesma superfície, você acredita que ela o faria?
- Simplicio: Espontaneamente não, mas arrastada ou jogada violentamente.
- Salviati: E quando de qualquer ímpeto violentamente impresso ela fosse impulsionada, qual e quanto seria seu movimento?
- Simplicio: O movimento seguiria sempre se abatendo e se retardando, por ser contra a natureza, e será mais longo ou mais curto segundo o maior ou menor impulso e segundo maior ou menor for o aclive.
- Salviati: Para mim até agora você me explicou os acidentes de um corpo que se movimenta sobre dois planos diferentes; e que no plano inclinado o corpo grave desce espontaneamente e vai continuamente acelerando-se, e que para o reter em repouso é necessário usar força; mas sobre o plano ascendente é necessário força para impulsioná-lo e também para o reter, e que o movimento impresso vai continuamente diminuindo, até que finalmente se aniquila. Ainda diz agora que num caso e no outro há diferença devida ao aclive ou declive do plano, [quanto a] ser maior ou menor; que à maior inclinação segue maior velocidade, e, pelo contrário, sobre o plano em aclive o mesmo corpo [sujeito] à mesma força se move em distância tanto maior quanto menor é a elevação. Ora[,] diga-me o que aconteceria com o mesmo corpo sobre uma superfície que não é nem em aclive[,] nem em declive?
- Simplicio: Aqui é necessário que eu pense um pouco sobre a resposta. Não havendo declividade, não pode haver inclinação natural ao

movimento, e não havendo aclive, não pode existir resistência ao movimento, tal que se faria indiferente entre à propensão e à resistência ao movimento: para mim então o que deve acontecer é permanecer naturalmente parado. [...]

Salviati: Assim o creio, quando alguém o colocar parado: mas e se lhe fosse dado ímpeto para qualquer parte, o que aconteceria?

Simplicio: Seguiria se movendo em direção àquela parte.

Salviati: Mas que tipo de movimento? continuamente acelerado, como num plano em declive, ou sucessivamente retardado, como num aclive?

Simplicio: Eu não decifro nenhuma causa de aceleração[,] nem de retardamento, não havendo aclive ou declive.

Salviati: Sim. Mas se não existisse causas para o retardamento, muito menos deveria estar em repouso: então quanto tempo você [acha] que o movimento do corpo deve durar?

Simplicio: Tanto quanto durasse a extensão daquela superfície [...]

Salviati: Portanto se tal espaço fosse interminável, o movimento nele seria também sem fim, seria perpétuo?

Simplicio: Para mim sim, quando o corpo for de material que durasse.

Salviati: Isso já é suposto, pois foi dito que se removem todos os impedimentos acidentais e esternos, e a fragilidade do corpo, e este fato é um dos impedimentos acidentais. Diga-me agora: qual você acha ser a razão daquela bola se mover espontaneamente sobre o plano inclinado, e não, sem violência, sobre o elevado?

Simplicio: Por que a tendência dos corpos graves é de se mover para o centro da Terra, e somente por violência contra a circunferência [isto é, para cima]; e a superfície inclinada é aquela que dá proximidade com o centro, e o aclive distanciamento.

Salviati: Portanto uma superfície que devesse ser sem declive e sem aclive, necessita que todas as suas partes sejam igualmente distantes do centro. Mas tal superfície, há alguma no mundo?^{47,48}

Simplicio: [...] é aquela do nosso globo terrestre, se no entanto ela fosse bem polida, e não, qual ela é, escabrosa e montanhosa; mas como é aquela da água, enquanto está plácida e tranquíla.

Salviati: Portanto um navio que vai movendo-se pela calmaria do mar, é um dos corpos que escorrem por uma dessas superfícies que não são nem aclives nem declives, e assim disposta, quando lhe removermos todos os obstáculos acidentais e externos, a mover-se, com o impulso concebo um movimento, incessante e uniforme.

Simplicio: É assim que deve ser.

⁴⁷ A interpretação usual dessa afirmação é de que para Galileu o movimento ocorre naturalmente como um círculo sobre a superfície da Terra. No entanto, essa interpretação de inércia circular é contestada com base em outros trabalhos de Galileu. Vide referência abaixo. ⁴⁸ Júio Celso Ribeiro de Vasconcelos (set. de 2005). "Galileu contra a inércia circular". pt. Em: Scientiae Studia 3, pp. 395-414. ISSN: 1678-3166. URL: http://www.scielo.br/scielo. php?script=sci_arttext&pid=S1678-31662005000300003&nrm=iso

4.5.2 Enunciados de Newton de acordo com o Princípia

Apesar de procurarmos alguma linha de raciocínio que nos leve de observações simples a leis complexas da Física, a verdade é que uma lei Física não pode ser justificada. Mesmo que haja uma conexão evidente entre uma grandeza e outra, é difícil determinar quais das muitas variáveis devem ser deixadas de fora e quais devem incluídas — talvez a dependência em uma delas pode ser difícil de detectar, mas não quer dizer que não exista dependência —. Assim, o que ocorre é que as leis são enunciadas. Abaixo seguem as Leis de Newton, tal qual foram enunciadas no Principia.

Massa, quantidade de movimento, força

Newton inicia definindo algumas grandezas, sendo as mais relevantes a massa, quantidade de movimento, e força:

A quantidade de matéria é a medida da mesma, advindo de sua densidade e volume conjuntamente.

Portanto, ar com o dobro da densidade, no dobro do volume, é o quadruplo em quantidade; no triplo do volume, o sêxtuplo em quantidade. O mesmo se deve entender de neve, e poeira fina ou pós, que seja condensados por compressão ou liquefação; e de todos os corpos que sejam por qualquer motivo de alguma maneira condensados. Eu não considero neste trabalho nenhum meio, se existe algum, que preencha livremente os interstícios entre as partes dos corpos. É essa quantidade a que me refiro doravante como corpo ou massa. E o mesmo é conhecido como peso de cada corpo; pois é proporcional ao peso, como descobri por experimentos em pêndulos, executados com muito cuidado, que serão mostrados adiante.

A quantidade de movimento é a medida do mesmo, advindo da velocidade e da quantidade de matéria conjuntamente.

O movimento⁴⁹ do todo é a soma do movimento de todas as partes; e então em um corpo com o dobro da densidade, com igual velocidade, o movimento é o dobro; com o dobro da velocidade, é o quadruplo.⁵⁰

Uma força impressa é uma ação exercida sobre um corpo, com o intuito de mudar seu estado, seja de repouso, ou de movimento uniforme para frente em uma linha reta.

Essa força consiste na ação somente; e não permanece no corpor, quanto a ação é finalizada. Pois um corpo mantém cada novo estado que adquire por sua inércia⁵¹ somente. Forças impressas são de diferentes origens [...]

Leis do movimento

Após tais definições, Newton propõe as três leis do movimento. A Primeira Lei é enunciada como:

Todo corpo persevera em seu estado de repouso, ou de movimento uniforme em uma linha reta, a não ser que seja compelido a mudar tal estado por forças exercidas sobre ele.

Projéteis perseveram em seus movimentos, desde que não sejam retardados pela resistência do dar, ou impelidos para baixo pela força da

- ⁴⁹ Newton usa o termo *movimento* como sinônimo de quantidade de movimento.
- ⁵⁰ Considerando tanto que foram dobrados a densidade, quanto a velocidade concomitantemente.

⁵¹ Aqui cabe alertar que Newton acreditava que existiria uma força de inércia cujo papel era o de manter o estado atual de movimento do corpo, resistindo a mudanças. Hoje utilizamos a interpretação mais simples de que tal força não existe, mas sim que para alterar o estado de movimento, é necessário aplicar uma força, sendo que se o ele se mantém se nenhuma forca atua sobre o corpo.

gravidade. Um pião, cujas partes por sua coesão são perpetuamente puxadas lateralmente de movimentos lineares, não cessa sua rotação, a não ser pelo retardamento devido ao ar. Os grandes corpos de planetas e cometas, encontrando menos resistência em espaços mais livres, preservam seus movimentos tanto progressivo quanto circular por muito mais tempo.

Note que para que haja um movimento circular, deve haver uma força. No caso do movimento dos planetas, citado por Newton, a grandeza que se conserva no movimento é o *momento angular*, que será visto no capítulo sobre rotações.

A Segunda Lei é enunciada como

A alteração do movimento é sempre proporcional à força motriz a ele aplicada; e é feita na direção da linha reta em que tal força atua.

Se uma força qualquer gera um movimento, o dobro de força gerará o dobro de movimento, o triplo de força gera o triplo de movimento, seja a força aplicada subitamente, ou gradualmente. E este movimento (sendo sempre direcionado no mesmo sentido que a força geradora), se o corpo se encontrava em movimento, é adicionado a ele ou subtraído do movimento anterior, de acordo com eles conspirarem diretamente ou diretamente contrário um ao outro; ou composto obliquamente, quando são oblíquos, de tal forma a produzir um novo movimento composto pela determinação de ambos.

Matematicamente, podemos escrever

$$\Delta p \propto F.$$
 (4.557)

É claro também que $\Delta p \propto \Delta t$. Logo, se assumirmos que somente essas duas variáveis tem influência sobre a alteração do momento linear e considerando que a constante de proporcionalidade seja 1 (podemos engloba-la na própria definição da unidade de força), temos

$$\Delta p = F \Delta t. \tag{4.558}$$

Tomando o limite $\Delta t \rightarrow 0$, podemos escrever

$$F = \frac{dp}{dt},\tag{4.559}$$

ou, considerando m como constante

$$F = m\frac{dv}{dt} (4.560)$$

$$= ma. (4.561)$$

A Terceira Lei de Newton é enunciada como

Para cada ação há sempre uma reação igual oposta: ou as ações mutuas de dois corpos um sobre o outro são sempre iguais, e dirigidas a partes contrárias.

Qualquer coisa que puxa ou empurra outra é tão puxado ou pressionado quanto pela outra. Se você pressionar uma pedra com seu dedo, o dedo também é pressionado pela pedra. Se um cavalo puxa uma pedra amarrada a uma corda, o cavalo (se posso assim dizer) será igualmente puxado para trás em direção à pedra: pois a corda distendida, pelo mesmo esforço para relaxar ou se afrouxar, tanto puxará o cavalo em

direção à pedra, quanto puxará a pedra em direção ao cavalo, e obstruirá o progresso de um tanto quanto avança aquele do outro. Se um corpo colide com outro, e por meio de sua força muda o movimento do segundo, o segundo corpo também (devido à igualdade da pressão mútua) sofrerá uma mudança igual, em seu próprio movimento, em direção à parte contrária. As mudanças feitas por essas ações são iguais, não nas velocidades, mas nos movimentos dos corpos; isto se os corpos não são obstados por outros impedimentos. Pois, devido ao fato de que os movimentos são igualmente alterados, as mudanças das velocidades efetuadas em direções a partes contrárias são reciprocamente proporcionais aos corpos [massas]. Esta lei também ocorre em atrações, como será provado adiante.

4.5.3 Determinação de v(t) para um movimento sujeito ao peso e à força de arrasto

Solução para $F_a = -bv$:

$$mdv/dt = mg - bv (4.562)$$

$$mdv/dt/(mg - bv) = 1 (4.563)$$

$$m\int [dv/dt/(mg-bv)]dt = \int dt; \qquad (4.564)$$

Definindo uma nova função y(t) e fazendo uma mudança de variáveis:

$$y(t) = mg - bv(t) \tag{4.565}$$

$$bv(t) = mg - y(t) \tag{4.566}$$

$$v(t) = \frac{mg}{h} - \frac{y(t)}{h} \tag{4.567}$$

Logo:

$$\frac{dv}{dt} = -\frac{1}{b}\frac{dy}{dt} \tag{4.568}$$

e então

$$-\frac{m}{b} \int \frac{dy/dt}{y} dt = \Delta t \tag{4.569}$$

$$-\frac{m}{b}\ln y|_{y_0}^y = \Delta t \tag{4.570}$$

$$\ln y|_{y_0}^y = -\frac{b}{m}\Delta t \tag{4.571}$$

$$\frac{y}{y_0} = \exp\left(-\frac{b}{m}\Delta t\right) \tag{4.572}$$

$$y = y_0 \exp\left(-\frac{b}{m}\Delta t\right) \tag{4.573}$$

$$mg - bv(t) = (mg - bv_0) \exp\left(-\frac{b}{m}\Delta t\right)$$
 (4.574)

$$mg - (mg - bv_0) \exp\left(-\frac{b}{m}\Delta t\right) = bv(t)$$
 (4.575)

$$v(t) = \frac{mg}{b} - \left(\frac{mg}{b} - v_0\right) \exp\left(-\frac{b}{m}\Delta t\right)$$
 (4.576)

$$v(t) = \frac{mg}{b} + \left(v_0 - \frac{mg}{b}\right) \exp\left(-\frac{b}{m}\Delta t\right). \tag{4.577}$$

4.6 Exercícios

Questão 1. Após Goku morrer para que Piccolo pudesse derrotar Raditz, graças à intervenção de Kami-Sama perante Enma Daioh, ele recebe permissão para viajar pelo Caminho da Serpente e treinar com o lendário Senhor Kaioh. Tal treinamento é necessário para que Goku possa derrotar os Saiyajins que estão a caminho da Terra e que chegarão em um ano, com o intuito de destruí-la. A grande vantagem de treinar no planeta do Senhor Kaioh é o fato de que a gravidade é muito elevada, sendo 10 vezes maior que a da Terra.⁵²

O planeta é bastante curioso: apesar da gravidade extremamente elevada, seu raio é pequeno. Apesar disso, Senhor Kaioh gosta muito de dirigir e possui um carro, sendo que ele pode trafegar somente por uma pista que descreve um círculo ao redor do planeta (o raio da pista é o mesmo do planeta). A Figura 4.92 abaixo mostra um esboço dessa situação, sendo que o carro é representado pelo círculo preto.

- (a) Faça um diagrama de corpo livre indicando as forças relevantes para esse problema (ignore a força de arrasto). Indique o sistema de coordenadas que será adotado para a solução do problema.
- (b) Demonstre matematicamente que a velocidade máxima que o carro pode atingir antes de perder contato com o solo é dada por

$$v=\sqrt{rg}$$

onde r e g representam o raio do planeta e sua aceleração gravitacional, respectivamente.

(c) Qual é o raio do planeta, se a velocidade máxima é de 146,9 km/h?

Questão 2. A Figura 4.93 mostra um bloco que está apoiado sobre uma mesa sem atrito e que está ligado a uma mola. Sobre este bloco, repousa um segundo bloco. Na interface entre os blocos, existe atrito. Qual é a maxima distensão x_m que a mola pode ter para a qual os blocos aceleram juntos ao liberarmos o sistema para se mover? Considere que $k = 120,0 \,\mathrm{N/m}$, $m_1 = 3,0 \,\mathrm{kg}$, $m_2 = 1,0 \,\mathrm{kg}$, e $\mu_e = 0,65$.

Figura 4.92: Questão 1.

Figura 4.93: Questão 2.

⁵² dragonball.wikia.com

Questão 3. Um certo brinquedo de um parque de diversões consiste de um tubo cilíndrico e de uma plataforma circular inferior. Os ocupantes sobem na plataforma que é então levantada de forma a fechar a parte inferior do tubo. Após isso, todos se dispõe em pé, com as costas tocando a parede cilíndrica, e o sistema começa a girar. A "diversão" consiste em descer a plataforma enquanto o sistema gira, sendo que os passageiros permanecem presos à parede devido à força de atrito. Se o coeficiente de atrito entre o tubo e os ocupantes é de 0,65, e o raio do cilindro é 3,0 m, qual é o valor mínimo do módulo da velocidade dos ocupantes para eles que não caiam quando a plataforma se abrir?

Questão 5. A Figura 4.94 mostra um corpo suspenso por duas cordas de mesmo comprimento presas ao teto de uma sala. O ângulo entre as cordas é $\theta = 53,13^{\circ}$ e a massa m do corpo é de 5,0 kg. Determine o módulo das tensões exercidas pelas cordas se existe uma aceleração do corpo para a direita, cujo módulo é $a = 2.0 \,\mathrm{m/s^2}$.

Figura 4.94: Questões 4 e 5.

Bibliografia

- Eager, David, Ann-Marie Pendrill e Nina Reistad (2016). "Beyond velocity and acceleration: jerk, snap and higher derivatives". Em: *European Journal of Physics* 37.6, p. 065008. URL: http://stacks.iop.org/0143-0807/37/i=6/a=065008.
- Popova, Elena e Valentin L. Popov (jun. de 2015). "The research works of Coulomb and Amontons and generalized laws of friction". Em: *Friction* 3.2, pp. 183–190. ISSN: 2223-7704. DOI: 10.1007/s40544-015-0074-6.
- Vasconcelos, Júio Celso Ribeiro de (set. de 2005). "Galileu contra a inércia circular". pt. Em: *Scientiae Studia* 3, pp. 395–414. ISSN: 1678-3166. URL: http://www.scielo.br/scielo.php?script=sciarttext&pid=S1678-31662005000300003&nrm=iso.

Bartolomeu dias em sua viagem ao cabo.

Imagem do livro "The Sea: its stirring story of adventure, peril & heroism."; Frederick Whymper; Cassell & Co., Londres, 1887. https://www.flickr.com/photos/britishlibrary/11288657186/

Elaborado usando L^AT_EX documentclass: tufte-book imagens tratadas usando Gimp Figuras elaboradas usando tikz