Maximizing the Guarded Boundary of a Dynamic Art Gallery

Mihir Patel

April 16, 2025

Art Gallery

Problem: Given a polygon P, find the minimum number of guards needed to guard the whole polygon.

Flipping what we optimize

Problem: Given a polygon P and $k \in \mathbb{N}$, find the maximum area that can be guarded by k guards.

Flipping what we optimize

Problem: Given a polygon P and $k \in \mathbb{N}$, find the maximum area that can be guarded by k vertex guards.

Flipping what we optimize

Problem: Given a polygon P and $k \in \mathbb{N}$, find the maximum boundary length that can be guarded by k vertex guards.

A weighted case

Some paintings are more valuable than others, and with limited guards they should be of greater concern.

A weighted case

Some paintings are more valuable than others, and with limited guards they should be of greater concern.

A weighted case

Some paintings are more valuable than others, and with limited guards they should be of greater concern.

Problem: Given a polygon P and $k \in \mathbb{N}$, find the maximum value that can be guarded by k vertex guards.

Existing Results

Fragoudakis et. al (2005,2006,2007)

MAXIMUM LENGTH VERTEX GUARD

Input: A simple polygon P and positive integer $k \in \mathbb{N}$.

Problem: Find a set of vertices $S \subseteq V_P$ of size at most k such that

L(S) is maximized.

Existing Results

Fragoudakis et. al (2005,2006,2007)

MAXIMUM LENGTH VERTEX GUARD

Input: A simple polygon P and positive integer $k \in \mathbb{N}$.

Problem: Find a set of vertices $S \subseteq V_P$ of size at most k such that

L(S) is maximized.

Maximum Value Vertex Guard

Input: A simple polygon P and positive integer $k \in \mathbb{N}$.

Problem: Find a set of vertices $S \subseteq V_P$ of size at most k such that

W(S) is maximized.

Existing Results

Fragoudakis et. al (2005,2006,2007)

MAXIMUM LENGTH VERTEX GUARD

Input: A simple polygon P and positive integer $k \in \mathbb{N}$.

Problem: Find a set of vertices $S \subseteq V_P$ of size at most k such that

L(S) is maximized.

MAXIMUM VALUE VERTEX GUARD

Input: A simple polygon P and positive integer $k \in \mathbb{N}$.

Problem: Find a set of vertices $S \subseteq V_P$ of size at most k such that

W(S) is maximized.

Both problems are APX-complete and permit (1-1/e)-approximations.

Set Cover

Set Cover

Input: A universe U of n elements, m subsets of U.

Problem: What is the minimum number of subsets whose union

covers all of U?

Max Coverage

Max Coverage

Input: A universe U of n elements, m subsets of U, $k \in \mathbb{N}$.

Problem: What is the maximum number of elements in U covered

by the union of *k* subsets?

• Monotonicity:

For any sets $S \subseteq T$, we have:

$$f(S) \leq f(T)$$

Monotonicity:

For any sets $S \subseteq T$, we have:

$$f(S) \leq f(T)$$

Submodularity:

For any sets $S \subseteq T$ and element $x \notin T$, we have:

$$f(T \cup \{x\}) - f(T) \le f(S \cup \{x\}) - f(S)$$

Monotonicity:

For any sets $S \subseteq T$, we have:

$$f(S) \leq f(T)$$

Submodularity:

For any sets $S \subseteq T$ and element $x \notin T$, we have:

$$f(T \cup \{x\}) - f(T) \le f(S \cup \{x\}) - f(S)$$

Theorem

Greedily maximizing a monotone, submodular objective function achieves a (1-1/e)-approximation to the optimal value.

• Monotonicity:

For any sets $S \subseteq T$, we have:

$$f(S) \leq f(T)$$

Submodularity:

For any sets $S \subseteq T$ and element $x \notin T$, we have:

$$f(T \cup \{x\}) - f(T) \le f(S \cup \{x\}) - f(S)$$

Theorem

Greedily maximizing a monotone, submodular objective function achieves a (1-1/e)-approximation to the optimal value.

Example: Max Coverage

Proposed Contributions

 Improving simplicity (and possibly runtime) of current results for unweighted/weighted case.

Proposed Contributions

- Improving simplicity (and possibly runtime) of current results for unweighted/weighted case.
- Hardness reduction from Set Cover, not 3SAT variation.

Proposed Contributions

- Improving simplicity (and possibly runtime) of current results for unweighted/weighted case.
- Hardness reduction from Set Cover, not 3SAT variation.
- Difficult to break past monotone/submodular → hardness of approximation results?

A dynamic version

Paintings may move around, new paintings may arrive. You need to find an optimal camera placement that does not require extensive reinstallment.

A dynamic version

Paintings may move around, new paintings may arrive. You need to find an optimal camera placement that does not require extensive reinstallment.

Thank You!

Questions?