Devoir surveillé n°07

- ► La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- ▶ On prendra le temps de vérifier les résultats dans la mesure du possible.
- ► Les calculatrices sont interdites.

Exercice 1.

Des points à prendre. Les questions sont toutes indépendantes.

- **1.** Résoudre l'équation (E) : 6x + 14y = 4 d'inconnue $(x, y) \in \mathbb{Z}^2$.
- **2.** Résoudre le système (S) : $\begin{cases} x \equiv 2[6] \\ x \equiv 4[8] \end{cases}$ d'inconnue $x \in \mathbb{Z}$.
- 3. Déterminer le reste de la division euclidienne de 3^{100} par 8.
- **4.** Monter que pour tout $n \in \mathbb{Z}$, $n^5 n$ est divisible par 15.
- **5.** Montrer que pour tout $n \in \mathbb{Z}$, les entiers 3n + 2 et 2n + 1 sont premiers entre eux.

EXERCICE 2.

Soit $(a, b, \lambda) \in \mathbb{R}^3$. On se propose d'étudier quelques propriétés de la suite réelle (u_n) définie par :

$$\begin{cases} u_0 = \lambda \\ \forall n \in \mathbb{N}, u_{n+1} = \frac{1}{4} \left(3u_n^2 - 2(a+b)u_n + ab + 2(a+b) \right) \end{cases}$$

- **1.** Dans cette question, on suppose a = b = 0.
 - **a.** Que peut-on dire de la suite (u_n) si $\lambda = 0$?
 - **b.** On suppose maintenant $\lambda \neq 0$. Montrer que $u_n > 0$ pour tout $n \in \mathbb{N}^*$.
 - **c.** On pose alors $w_n = \ln(u_n)$ pour tout $n \in \mathbb{N}^*$. Déterminer w_n en fonction de n et λ pour tout $n \in \mathbb{N}^*$.
 - **d.** En déduire une expression de u_n en fonction de n et de λ pour tout $n \in \mathbb{N}$.
 - **e.** Discuter suivant les valeurs de λ la convergence de la suite (u_n) et préciser sa limite le cas échéant.
- **2.** Dans cette question, on suppose a = b = 2.
 - **a.** Montrer que la suite (u_n) est croissante.
 - **b.** Montrer que si (u_n) converge, sa limite est nécessairement égale à 2.
 - **c.** On suppose $\lambda > 2$. Montrer que la suite (u_n) diverge vers $+\infty$.
 - **d.** Montrer qu'il existe deux réels λ_1 et λ_2 avec $\lambda_1 < \lambda_2$ tels que $u_1 = 2$ si et seulement si $\lambda \in \{\lambda_1, \lambda_2\}$.
 - **e.** On suppose $\lambda_1 \leqslant \lambda \leqslant \lambda_2$. Montrer que la suite (u_n) converge et préciser sa limite.
 - **f.** On suppose $\lambda < \lambda_1$. Montrer que la suite (\mathfrak{u}_n) diverge vers $+\infty$.
- **3.** Dans cette question, on suppose a < b < 2.
 - a. On considère l'application polynomiale P définie par

$$\forall x \in \mathbb{R}, P(x) = 3x^2 - 2(2 + a + b)x + ab + 2(a + b)$$

Factoriser P(a), P(b) et P(2) puis déterminer leurs signes.

b. On suppose que (u_n) converge vers une limite L. Montrer que L vérifie a < L < b ou b < L < 2.

EXERCICE 3.

Vocabulaire et notations

- ▶ Pour un réel t, on notera | t | la partie entière de t.
- ▶ La notation [0, 9] désigne l'ensemble $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$.
- ▶ On dit qu'une suite (u_n) est périodique à partir d'un certain rang s'il existe $N \in \mathbb{N}$ et $T \in \mathbb{N}^*$ tel que $u_{n+T} = u_n$ pour tout $n \ge N$. On dit alors que (u_n) est T-périodique à partir du rang N.

Soit x un nombre réel. On définit deux suites (d_n) et (ϵ_n) de la manière suivante :

- ▶ On pose $d_0 = |x|$ et $\varepsilon_0 = x |x|$.
- $\blacktriangleright \ \text{Pour tout } n \in \mathbb{N} \text{, on pose } d_{n+1} = \lfloor 10\epsilon_n \rfloor \text{ et } \epsilon_{n+1} = 10\epsilon_n \lfloor 10\epsilon_n \rfloor.$
- **1.** Dans cette question uniquement, on suppose x=123,456. Calculer d_0,d_1,d_2,d_3 et $\epsilon_0,\epsilon_1,\epsilon_2,\epsilon_3$. Que valent d_n et ϵ_n pour $n\geqslant 4$?
- 2. On revient au cas général.
 - **a.** Montrer que pour tout $n \in \mathbb{N}$, $\varepsilon_n \in [0, 1[$.
 - **b.** En déduire que pour tout $n \in \mathbb{N}^*$, $d_n \in [0, 9]$.
 - **c.** On pose $S_n = \sum_{k=0}^n \frac{d_k}{10^k}$ pour tout $n \in \mathbb{N}$. Montrer que $x = S_n + \frac{\varepsilon_n}{10^n}$ pour tout $n \in \mathbb{N}$.
 - **d.** En déduire que (S_n) converge vers x.
- 3. Soient $T \in \mathbb{N}^*$ et $N \in \mathbb{N}$. On suppose que la suite (d_n) est T-périodique à partir du rang N.
 - **a.** Pour $n \in \mathbb{N}$, on pose $u_n = 10^{N+T} S_{n+N+T} 10^N S_{n+N}$. Montrer que la suite (u_n) est constante.
 - **b.** En déduire qu'il existe $p \in \mathbb{Z}$ tel que pour tout $n \in \mathbb{N}$

$$10^{N+T}S_{n+N+T} - 10^{N}S_{n+N} = p$$

- **c.** En déduire que x est rationnel.
- **4.** Soit α le nombre dont l'écriture décimale est 0, 123 456 456 456 Montrer que α est rationnel et l'écrire sous la forme d'une fraction de deux entiers.
- **5.** On suppose que x est rationnel. Il existe donc $a \in \mathbb{Z}$ et $b \in \mathbb{N}^*$ tel que $x = \frac{a}{b}$. On définit deux suites (q_n) et (r_n) de la manière suivante.
 - ightharpoonup q₀ et r₀ sont respectivement le quotient et le reste de la division euclidienne de a par b.
 - ▶ Pour tout $n \in \mathbb{N}$, q_{n+1} et r_{n+1} sont respectivement le quotient et le reste de la division euclidienne de $10r_n$ par b.
 - a. Justifier qu'il existe deux entiers naturels N et M distincts tels que $r_N=r_M$.
 - **b.** En déduire que (r_n) est périodique à partir d'un certain rang.
 - **c.** En déduire que (q_n) est également périodique à partir d'un certain rang.
 - **d.** Montrer que pour tout $n \in \mathbb{N}$, $r_n = b\varepsilon_n$ et $q_n = d_n$. On a donc prouvé que la suite (d_n) était périodique à partir d'un certain rang.
- **6.** On suppose que $x=\frac{13}{35}$. Déterminer $N\in\mathbb{N}$ et $T\in\mathbb{N}^*$ tels que la suite (d_n) soit T-périodique à partir du rang N.