Линейные функционалы

Свойства операторов во многом определяются размерностью пространств, в которых они действуют (чем меньше, тем лучше).

Определение

Линейным функционалом называется линейное отображение линейного пространства в множество вещественных или комплексных чисел.

Определение

$$f: X \to R, ||f|| = \sup\{|f(x)| : ||x|| \le 1\}$$

Линейный функционал является частным случаем линейного оператора и если он действует в нормированном пространстве, то можно говорить о его норме, ограниченности и непрерывности.

Напомним, что для линейных операторов понятия ограниченности и непрерывности совпадают.

Определение

Если X банахово пространство, то множество всех линейных непрерывных функционалов на X называется сопряженным пространством и обозначается X^*

Всюду далее будут рассматриваться только линейные непрерывные функционалы, заданные в банаховых пространствах.

Примеры

1)
$$(l^p)^* = l^q, \frac{1}{p} + \frac{1}{q}, \ 1$$

2)
$$(l^1)^* = l^\infty$$
, но $(l^\infty)^* \neq l^1$

- 3) такая же ситуация и для пространств $L^{p}(a,b)$
- 4) пространство $(C[a,b])^*$ содержит в себе $L^1(a,b)$, но неравно ему (всякая мера задает с непрерывный функционал)

Из примеров видно, что $(l^2)^*=l^2$ оказывается это верно для любого гильбертова пространства

Теорема (Рисса-Фишера)

Если H гильбертово пространство, то существует взаимно однозначное непрерывное отображение $J: H \to H^*$ (каждый функционал можно записать как скалярное произведение с подходящим элементом). Причем J^2 является тождественным отображением.

Доказательство для случая вещественного пространства со счетным базисом

в этом случае надо доказать, что для любого линейного функционала $f \in H^*$ найдется такой элемент пространства $y \in H$, что f(x) = (x, y) для любого $x \in H$

Алгоритм Грама-Шмидта позволяет построить в H ортогональный нормированный базис $e_n, n = 1, 2, \dots$

Положим $k_n = f(e_n)$, тогда для любого элемента пространства $x \in H$ справедливы соотношения

$$x = \sum x_n e_n, \ f(x) = \sum x_n k_n$$

проверим, что $y = \sum k_n e_n$ искомый элемент пространства H, это так, поскольку для любого $x \in H$

$$f(x) = \sum x_n k_n = (x, y)$$

$$f(\sum_{n=1}^{N} x_n e_n) = \sum_{n=1}^{N} x_n f(e_n) = \sum_{n=1}^{N} x_n k_n$$

$$y = \sum_{n=1}^{\infty} k_n e_n, \quad (x, y) = \lim_{n, m \to \infty} \dots$$
$$\sum_{n=1}^{N} \sum_{m=1}^{M} x_n \bar{k}_n (e_n, e_m) = \sum_{n=1}^{N} x_n \bar{k}_n$$

!! в комплексном случае надо брать вместо k_n \bar{k}_n

Важным свойством линейных функционалов, является то, что такой функционал с точностью до постоянного множителя определяется множеством своих нулей.

Определение

Пусть f – линейный функционал на банаховом пространстве X. Ядром функционала называется множество $\ker f = \{x \in X : f(x) = 0\}$.

Чтобы доказать вышеупомянутое свойство, надо описать структуру линейных пространств, вложенных одно в другое.

Теорема о вложенных пространствах

Пусть Y – **замкнутое** подпространство линейного пространства X, тогда равносильны утверждения:

1) для любого $x_0 \in X \setminus Y$ справедливо равенство

$$X = \{x = tx_0 + y : y \in Y, t \in \mathbb{R}\},\$$

при этом пара x_0 , x однозначно определяет пару t, y.

2) если Z линейное пространство такое, что $Y \subset Z \subset X$, то Z = Y или Z = X.

Доказательство имеется в методичке

Условие замкнутости здесь существенно. Пространство C[a,b] содержит в себе пространство многочленов, но утверждение предложения для него неверно.

Определение

Замкнутое линейное пространство Y, содержащееся в банаховом пространстве X, называется **однородной гиперплоскостью**,

если не существует линейного пространства Z не равного X или Y такого, что $Y\subset Z\subset X$.

Добавление к термину эпитета «однородный» выделяет линейные пространства. В приложениях часто приходится использовать и «просто» гиперплоскости, то есть сдвиги однородных гиперплоскостей. Однородная гиперплоскость в \mathbb{R}^2 – это прямая, проходящая через 0, а гиперплоскость – это произвольная прямая.

Однородная гиперплоскость и линейный непрерывный функционал — это практически одно и то же. Трудность возникают только при доказательстве того, что замкнутость ядра гарантирует непрерывность функционала. Здесь необходимо перейти на другой — топологический язык описаний.

Топология — ветвь математики, имеющая дело с множествами, не имеющими ни линейной структуры, ни метрики, наделенными только системой окрестностей, заданных для каждой точки пространства.

Определение непрерывности отображения одного топологического пространства в звучит значительно проще классического : прообраз любого открытого множества открыт.

```
Пример (обратное неверно) f(x) = sin(x)
```

Теорема об условии непрерывности функционала

- 1) Если f непрерывный функционал, то его ядро замкнуто.
- 2) Если Y однородная гиперплоскость, то любой функционал f с ядром $\ker f = Y$ непрерывен.

Доказательство

(1) очевидно, доказываем (2)

Надо проверить ,что для любого открытого множества $U \in R$ его прообраз $A = \{x : f(x) \in U\}$ открыт.

Заметим, любое отрытое множество в R является объединением открытых интервалов

(a,b), интервал можно представить как пересечение полупрямых, а поскольку функционал линейный достаточно проверить утверждение для $U=\{t:t<0\}$

то есть надо доказать, что множество $A = \{x : f(x) < 0\}$ открыто,

предположим, что это не так, тогда найдется элемент $x_0 \in A$ такой, что в любой его окрестности найдется точка z, не принадлежащая A (f(z) > 0)

из этого следует, что для любого n шар $\{x:||x-x_0||<1/n\}$ содержит точку x_n в которой $f(x_n)\geq 0$

поскольку $x_0 \notin kerf$ и kerf замкнутая гиперплоскость, то по теореме о вложенных подпространствах всякую точку пространства можно представить в виде

 $x = tx_0 + y, y \in kerf,$

в частности $x_n = t_n x_0 + y_n$, $y_n \in kerf$ отметим, что

поскольку $0 \le f(x_n) = t_n f(x_0)$ то $t_n \le 0$

рассмотрим два случая

 $1)t_n = 0$ тогда $f(x_n) = 0$

 $2)t_n < 0$ тогда рассмотрим отрезок, состоящий из точек $x(t) = x_0 + (x_n - x_0)t, \ 0 < t < 1$ и линейную функцию $\phi(t) = f(x(t))$

$$\phi(0)<0$$
 и $\phi(1)>0$ следовательно существует t_{*n} такая, что $\phi(t_{*n})=0$ тогда для точки $x_{*n}=x_0+(x_n-x_0)t_{*n}$ выполнено $f(x_{*n})=0$

заметим что хотя бы один из случаев реализуется бесконечное число раз Это позволит получить последовательность z_n такую, что $f(z_n)=0$ и z_ninkef Тогда по условию замкнутости ядра $x_0\in kerf$ и это противоречит предположению $f(x_0)<0$

Следствие

Однородная гиперплоскость, являющаяся ядром функционала, определяет его с точностью до константы.

Важным и глубоким утверждением о линейных функционалов является теорема о продолжении линейного функционала.

Теорема Хана-Банаха

Если X -банахово пространство, Y – его замкнутое подпространство,

на У задан линейный непрерывный функционал,

то его можно продолжит на пространство X с сохранением нормы

то есть: $Y \subset X, \ g \in Y^*$

тогда существует
$$f \in X^*$$
, $\forall y \in Y$, $f(y) = g(y)$, $||f|| = ||g||$

Теорема представляется очевидной, и это справедливо пока в банаховом пространстве есть счетный базис, но когда его нет (как например в $L^{\infty}(a,b)$) возникают большие технические сложности

Рассмотрим доказательства на простом примере – **конечноменрное гильбертово** пространство

!! алгоритм продолжения

H – вещественное гильбертово пространство, $\{e_n\}_{n=1}^N$ о.н. базис (всегда существует)

L — замкнутое линейное подпространство H , для простаты предположим $\{e_n\}_{n=1}^M, M < N$ — о.н. базис в L

$$f \in L^* \to \exists u \in L : f(x) = (x, u)$$

$$||f|| = \max(f(x): ||x|| = 1), \ x = \sum_{n=1}^{M} x_n e_n, \ ||x||^2 = (x, x) = \sum_{n=1}^{M} x_n e_n$$

...
$$||f||^2 = \sum_{n=1}^M x_n^2$$

$$?g \in H^*, \exists v \in H, g(x) = (x, v) \to x \in L: g(x) = f(x), ||g|| = ||f||$$

положим
$$v_n = u_n, \ n \leq M \to x \in H : f(P_L x) = g(x) (= \sum_{n=1}^M x_n u_n)$$

положим
$$v_n=0,\ n>M$$
 тогда сохранится $f(P_Lx)=g(x)$ и $||g||^2=\sum_{n=1}^N v_n^2=\sum_{n=1}^M u_n^2=||f||^2$ выполнено равенство норм

Задача. Реализовать пример в размерности четыре.

Геометрическая формулировка теоремы Хана-Банаха

Простым следствием теоремы Хана-Банаха является следующее утверждение

Если x_1, x_2 — два различных элемента банахова пространства X, то найдется линейный непрерывный функционал, принимающий разные значения на этих элементах. Доказательство

Рассмотрим линейное подпространство $Y = \{t_1x_1 + t_2x_2 : t_1, t_2 \in \mathbb{R}\}$ и функционал f_0 на этом пространстве, определенный заданием его множества нулей $\ker f_0 = \{tx_1 + tx_2 : t \in \mathbb{R}\}$ и значением в точке $f_0(x_1) = 1$. Заметим, что $f_0(x_2) < 0$. На основании теоремы Хана-Банаха продолжим функционал f_0 с подпространства Y на все пространство X. Это и есть требуемый функционал.

Это утверждение справедливо для любой пары выпуклых множеств, не имеющих общих точек

Оно составляет основу для решения задач линейной и выпуклой оптимизации.

Теорема об отделимости

Пусть M и N — выпуклые множества в банаховом пространстве X, причем M открытое и $M\cap N=\varnothing$, тогда существует линейный непрерывный функционал, разделяющий эти множества

Проследим основные этапы доказательства

Говоря, что функционал f разделяет множества, имеют в виду соотношение

$$\inf\{f(x):x\in M\}\geq \sup\{f(x):x\in N\}.$$

Следующие простые утверждения необходимы для доказательства теоремы об отделимости.

- 1) Если функционал f разделяет множества M и N, то он разделяет и множества $M-x_0=\{x: x=x_1-x_0, x_1\in M\}$ и $N-x_0$.
- 2) Если функционал f разделяет множества M и N, то он разделяет и множества $A=M-N=\{x_1-x_2:x_1\in M,\;x_2\in N\}$ и $B=\{0\}.$

Эти замечания, позволяют считать, что $0 \in M$

Фиксируем точку $y_0 \in N$, тогда множество M - N содержит точку $-y_0$,

и множество $A = M - N + y_0$ содержит точку 0, но не содержит точку y_0 , иначе точка 0 попадала бы в множество M - N, но по условию $M \cap N = \emptyset$. Таким образом, множество A оказывается выпуклым телом, содержащим точку 0.

Теорема Минковского гарантирует, что это множество порождает полунорму на пространстве X:

$$p_A(x) = \inf \left\{ r : \frac{x}{r} \in A, \ x \in X, \ r > 0 \right\}$$

полунорма появляется по той причине, что множество A может оказаться неограниченным.

Теорема Хана-Банаха остается справедливой для полунорм

Зададим подходящий стартовый функционал, продолжение которого даст функционал, разделяющий множества.

Вспомогательный функционал будет определен на одномерном подпространстве $X_0 = \{y = ty_0 : t \in R\}$ формулой

$$f_0(y) = p_A(y_0) t, \ y = ty_0, \ t \in \mathbb{R}.$$

Нужную оценку функционала $f_0(y) \le p_A(y)$ легко получить.

Для $t \ge 0$ она следует из свойства положительной однородности полунормы (p(tx) = tp(x)). Если t < 0, то $f(ty_0) < 0$, в то время как определенная выше полунорма всегда

положительна.

Применим теорему Хана-Банаха и получим функционал f продолжение функционала f_0 на все пространство X.

Покажем, что этот функционал разделяет множества M и N. Возьмем произвольные точки из этих множеств $x_M \in M$, $x_N \in N$, тогда точка $x = x_M - x_N + y_0 \in A$. По построению $p_A(x) < 1$, для всех $x \in A$.

Следовательно, $f(x_M) - f(x_N) + p(y_0) \leqslant 1$, или $f(x_M) \leqslant f(x_N) + 1 - p(y_0)$. Точка y_0 не принадлежит множеству A, поэтому $p_A(y_0) > 1$. Значит, $1 - p_A(y_0) < 0$ и $f(x_M) < f(x_N)$. Теорема доказана.