Random graphs

Leo Davy

Université Paul Sabatier / University of Bristol

Toulouse, May 27th 2019

Definition

A graph is a pair G = (V, E):

- V is the vertex set
- E is the edge set, $E \subseteq \{\{x,y\} : x,y \in V\}$

Definition

A graph is a pair G = (V, E):

- V is the vertex set
- E is the edge set, $E \subseteq \{\{x,y\} : x,y \in V\}$

Interest:

- Simple graphical representation
- Allows to model many networks (Social networks, neurology, biology, chemistry, ...)
- and much more

An example of real world graph

A collaboration graph:

- V the set of scientists
- \blacksquare $E = \{\{x, y\} : x \text{ and } y \text{ co-authored a paper}\}$

An example of real world graph

A collaboration graph:

- V the set of scientists
- \blacksquare $E = \{\{x, y\} : x \text{ and } y \text{ co-authored a paper}\}$

Experimental results:

- Large number of triangles
- Degree distribution follows a power law

An example of real world graph

A collaboration graph:

- V the set of scientists
- \blacksquare $E = \{\{x, y\} : x \text{ and } y \text{ co-authored a paper}\}$

Experimental results:

- Large number of triangles
- Degree distribution follows a power law

Remark

The Erdős collaboration graph is the subgraph of the above collaboration graph s.t. $d(\text{Erdős}, x) < \infty$ for all $x \in V$.

Definition

A random graph is a graph where nodes, edges are both are selected by a random procedure.

Restrict ourselves to *static* random graphs on *n* vertices.

Definition

A random graph is a graph where nodes, edges are both are selected by a random procedure.

Restrict ourselves to *static* random graphs on *n* vertices.

The model:

- V is fixed $(V = [n] = \{1, 2, ..., n\})$.
- No loops.
- No parallel edges.
- Total number of possible edges : $N = \binom{n}{2} = \frac{n(n-1)}{2}$.

The Erdős-Rényi model

Definition (ER 1960)

 $\mathcal{G}_{n,M}$: A graph is picked uniformly at random among all graphs with M edges on n vertices.

Let G a graph with M edges and n vertices, then

$$\mathbb{P}_{M}(G) = 1/\binom{N}{M} \tag{1}$$

The Erdős-Rényi model

Definition (Gilbert 1959)

 $\mathcal{G}_{n,p}$: Each of the $N=\binom{n}{2}$ possible edges is chosen independently with probability $p\in[0,1]$.

Let G a graph with n vertices, then

$$\mathbb{P}_p(G) = p^{e_G} (1 - p)^{N - e_G} \tag{2}$$

The stability number

Definition

A set $S \subseteq V$ is called *stable* if for any $x, y \in S$, then $\{x, y\} \notin E$

The stability number

Definition

A set $S \subseteq V$ is called *stable* if for any $x, y \in S$, then $\{x, y\} \notin E$

Definition

 $\alpha(G) := \text{size of the largest stable set.}$

The stability number

Definition

A set $S \subseteq V$ is called *stable* if for any $x, y \in S$, then $\{x, y\} \notin E$

Definition

 $\alpha(G) := \text{size of the largest stable set.}$

Theorem

$$\alpha(G \in \mathcal{G}_{n,p}) \leq \lceil 2p^{-1} \log n \rceil \text{ w.h.p.}$$

Let
$$S \subseteq V$$
, $|S| = k + 1$,

Let
$$S \subseteq V$$
, $|S| = k + 1$,

$$\mathbb{P}(\text{"S is a stable set"}) = (1-p)^{\binom{k+1}{2}} \tag{3}$$

Let
$$S \subseteq V$$
, $|S| = k + 1$,

$$\mathbb{P}(\text{"S is a stable set"}) = (1-p)^{\binom{k+1}{2}} \tag{3}$$

Let $X_{k+1} = \sum_{S} \mathbb{1}("S \text{ is a stable set"}).$

Remark

We have $X_k = 0$ if $k > \alpha$.

Let
$$S \subseteq V$$
, $|S| = k + 1$,

$$\mathbb{P}(\text{"S is a stable set"}) = (1-p)^{\binom{k+1}{2}} \tag{3}$$

Let $X_{k+1} = \sum_{S} \mathbb{1}("S \text{ is a stable set"}).$

Remark

We have $X_k = 0$ if $k > \alpha$.

$$\mathbb{E}X_{k+1} = \binom{n}{k+1} (1-p)^{\binom{k+1}{2}} \le \frac{(ne^{-p\frac{k}{2}})^{k+1}}{(k+1)!}$$
(4)

The RHS goes to 0 if $k \ge 2p^{-1} \log n$.

Is $\mathcal{G}_{n,p}$ connected ?

Definition

A graph is connected if there is a path linking any two vertices.

Is $\mathcal{G}_{n,p}$ connected ?

Definition

A graph is connected if there is a path linking any two vertices.

Theorem

Let
$$p = \frac{\log n + c}{n}$$
 with $c \in \mathbb{R}$, then $\mathbb{P}(G \in \mathcal{G}_{n,p} \text{ is connected }) \longrightarrow_n e^{-e^{-c}}$.

Is $\mathcal{G}_{n,p}$ connected ?

Definition

A graph is connected if there is a path linking any two vertices.

Theorem

Let
$$p = \frac{\log n + c}{n}$$
 with $c \in \mathbb{R}$, then $\mathbb{P}(G \in \mathcal{G}_{n,p} \text{ is connected }) \longrightarrow_n e^{-e^{-c}}$.

Remark (Threshold)

Let $\epsilon > 0$

- If $p = (1 + \epsilon) \frac{\log n}{n}$, then $\mathcal{G}_{n,p}$ is connected w.h.p.
- If $p = (1 \epsilon) \frac{\log n}{n}$, then $\mathcal{G}_{n,p}$ is disconnected w.h.p.

Is $\mathcal{G}_{n,p}$ connected?

Definition

A graph is connected if there is a path linking any two vertices.

Theorem

Let
$$p = \frac{\log n + c}{n}$$
 with $c \in \mathbb{R}$, then $\mathbb{P}(G \in \mathcal{G}_{n,p} \text{ is connected }) \longrightarrow_n e^{-e^{-c}}$.

In order to prove this result, we need to know the probabilities that $\mathcal{G}_{n,p}$ contains :

- Isolated vertices
- Isolated edges
- Isolated components of size between 3 and $\lceil \frac{n}{2} \rceil$

Isolated edges?

 X_k : number of connected component of size k. Does $\mathcal{G}_{n,p}$ contain an isolated edge ?

Isolated edges?

 X_k : number of connected component of size k.

Does $\mathcal{G}_{n,p}$ contain an isolated edge ?

$$\mathbb{P}(X_2 \ge 1) \le \mathbb{E}X_2 = \binom{n}{2} p((1-p)^{n-1})^2 \tag{5}$$

$$= \mathcal{O}(n^2 p e^{-2pn}) = \mathcal{O}(p) = o(1).$$
 (6)

Isolated edges?

 X_k : number of connected component of size k.

Does $\mathcal{G}_{n,p}$ contain an isolated edge ?

$$\mathbb{P}(X_2 \ge 1) \le \mathbb{E}X_2 = \binom{n}{2} p((1-p)^{n-1})^2 \tag{5}$$

$$= \mathcal{O}(n^2 p e^{-2pn}) = \mathcal{O}(p) = o(1).$$
 (6)

Result

No isolated edge with high probability.

Does $\mathcal{G}_{n,p}$ contain an isolated component of size $3 \leq k \leq n/2$? First moment method requires the number of connected components of size k.

Remark

Any connected component on k vertices contains a tree on k vertices.

Theorem

Cayley's formula There are k^{k-2} possible spanning trees on k vertices.

Let q_k the probability that a set of k vertices doesn't connect with any other vertex outside the set.

$$\mathbb{P}(X_k \ge 1) \le \mathbb{E}X_k \le \binom{n}{k} k^{k-2} q_k \tag{7}$$

$$= p^{-1} \left(\mathcal{O}\left(\frac{\log n}{\sqrt{n}}\right) \right)^k \tag{8}$$

$$\sum_{k=2}^{\left\lceil\frac{n}{2}\right\rceil} \mathbb{P}(X_k \ge 1) \le o(1) + p^{-1} \sum_{k=3}^{\left\lceil\frac{n}{2}\right\rceil} A^k \longrightarrow 0 \tag{9}$$

 $G_{n,p}$ doesn't contain isolated components larger than isolated vertices.

What is the distribution of isolated vertices?

Theorem

In $\mathcal{G}_{n,p}$ the number of isolated vertices follows a Poisson distribution of mean e^{-c} .

What is the distribution of isolated vertices?

Theorem

In $\mathcal{G}_{n,p}$ the number of isolated vertices follows a Poisson distribution of mean e^{-c} .

Then,
$$\mathbb{P}(X_1 = 0) = e^{-e^{-c}}$$
.

What is the distribution of isolated vertices?

Theorem

In $\mathcal{G}_{n,p}$ the number of isolated vertices follows a Poisson distribution of mean e^{-c} .

Then,
$$\mathbb{P}(X_1 = 0) = e^{-e^{-c}}$$
.

The probability that $\mathcal{G}_{n,p}$ is connected tends to $e^{-e^{-c}}$.

The phase transition

What does $\mathcal{G}_{n,\frac{\lambda}{n}}$ look like ?

The phase transition

What does $\mathcal{G}_{n,\frac{\lambda}{n}}$ look like ?

The subcritical phase: $\lambda < 1$

- Tree components (well approximated by a GW process).
- Largest component of size $\mathcal{O}(\log n)$.

The phase transition

What does $\mathcal{G}_{n,\frac{\lambda}{n}}$ look like ?

The subcritical phase: $\lambda < 1$

- Tree components (well approximated by a GW process).
- Largest component of size $\mathcal{O}(\log n)$.

The supercritical phase: $\lambda > 1$

- A single complex Giant Component of size $\theta(n)$.
- All other components are simple and of size $\mathcal{O}(\log n)$.