Robotics, Localization: Simultaneous Localization And Mapping (SLAM)

Mobile

Mobile Robotics, Localization: Simultaneous Localization And Mapping (SLAM)

Material based on the book Probabilistic Robotics (Thrun, Burgard, Fox) [PR]; Chapter 10, 11, 13

Part of the material is based on lectures from Cyrill Stachniss and Giorgio Grisetti

Summary

- Introduction to SLAM [Chapter 10.1]
- Grid-based SLAM [Chapter 13.1 13.3, partly and paper Grisetti et al., 2007]
- Graph Based Slam [Chapter 11.1 11.3]

Intro to SLAM

- ♦ Compute the robot's pose and the map of the environment at the same time
- ♦ Localization: map is given, compute robot pose
 - Markov Localization
 - EKF localization
 - Monte Carlo Localization
- ♦ Mapping: pose is given, build the map
 - mapping with known poses and occupancy grid
- ♦ SLAM: Simultaneous Localization And Mapping

Localization example

Mobile Robotics, Localization: Simultaneous Localization And Mapping

(SLAM)

♦ Estimate the robot's poses given landmark

Courtesy Burgard, Fox, Thrun

Mapping example

Mobile
Robotics,
Localization:
Simultaneous
Localization
And
Mapping

(SLAM)

♦ Estimate the landmarks given the robot's pose

Courtesy Burgard, Fox, Thrun

SLAM example

Mobile Robotics, Localization: Simultaneous Localization And Mapping

(SLAM)

♦ Estimate the robot's poses and the landmarks at the same time

Courtesy Burgard, Fox, Thrun

The full SLAM problem

Mobile Robotics, Localization: Simultaneous Localization And Mapping

(SLAM)

♦ Compute the posterior over the whole path of the robot and the map

$$P(x_{0:T}, m|u_{1:T}, u_{1:T})$$

Compute the posterior over the current robot pose and map

$$P(x_{t+1}, m|u_{1:t+1}, u_{1:t+1})$$

Graphical model for the online SLAM problem, source [PR]

$$P(x_{t+1}, m|u_{1:t+1}, u_{1:t+1}) = \int \int \cdots \int p(x_{0:t+1}, m|z_{1:t+1}, u_{1:t+1}) dx_0 dx_1 \cdots dx_t$$

Example of SLAM

SLAM is a hard problem I

Mobile Robotics, Localization: Simultaneous Localization And Mapping (SLAM)

Courtesy Burgard, Fox, Thrun

♦ Map and pose estimates correlate

SLAM is a hard problem II

Mobile Robotics, Localization: Simultaneous Localization And Mapping (SLAM)

Courtesy Burgard, Fox, Thrun

♦ known vs. unknown correspondences (data association)

Traditional paradigms for SLAM

Mobile
Robotics,
Localization:
Simultaneous
Localization
And
Mapping

(SLAM)

- ♦ Kalman Filter and EKF
- ♦ Particle Filters
 - Rao-Blackwellized particle filters
 - FastSlam
- \Diamond Graph-based
 - Least Squares formulations
 - very popular

Grid-Based Mapping with Rao-Blackwellized PF, intro

Mobile Robotics, Localization: Simultane-

ous Localization And Mapping (SLAM)

- ♦ SLAM for grid maps based on a specific type of PF
- ♦ Uses a special type of PF: Rao-Blackwellized

$$p(x_{0:t}, m|z_{1:t}, u_{1:t}) = p(x_{0:t}|z_{1:t}, u_{1:t})p(m|x_{1:t}, z_{1:t})$$

- ♦ decompose joint posterior of map and path in the product of
 - path posterior given stream of data
 - map posterior given path
- ♦ Each particle represent a possible trajectory of the robot
- ♦ Each particle maintains its own map
- ♦ Each particle updates map as if it was performing "mapping with known poses"

Grid-Based Mapping with Rao-Blackwellized PF, Illustration

Mobile Robotics, Localization: Simultaneous Localization And Mapping (SLAM)

Each particle carries its own map, weights are computed based on likelihood of measurements given the particles' own map, source [PR]

Grid-Based Mapping with Rao-Blackwellized PF, Improvement

Mobile Robotics, Localization: Simultane-

ous Localization And Mapping (SLAM)

- ♦ Direct application of previous approach may fall short if we have noisy motion model
- ♦ Need too many samples to make this work in large maps
- ♦ Idea improve pose estimate before applying the particle.
- ♦ Locally adjust the pose using scan matching
 - align laser scans to improve pose estimate (scan matching)

$$x_t^* = \arg\max_{x_t} \{ p(z_t|x_t, m_{t-1}) p(x_t|u_{t-1}, x_{t-1}^*) \}$$

- ♦ mathematical issue: we use observation in proposal and corrections
 - use scan matching (and not PF) on chunks of observations
 - correcting with particle filters the map chunks
 - can be seen ad an ad-hoc improved proposal distribution

Grid-Based Mapping with Rao-Blackwellized PF, better solution

Mobile Robotics, Localization: Simultaneous Localization And Mapping (SLAM) ♦ Compute an improved proposal that considers the most recent observation

$$x_t^{[k]} \sim p(x_t | x_{1:t-1}^{[k]}, u_{1:t}, z_{1:t})$$

♦ Key insights:

- Proposal distribution considers the accuracy of robot's sensor combining accurate local information from observations (i.e., Laser) and global but inaccurate information from odometry.
- Adaptive re-sampling technique which maintains a variety of particles (reducing risk of particle depletion)

♦ Main benefits

- More precise sampling
- More accurate maps
- Less particle needed

Grid-Based Mapping with Rao-Blackwellized PF, visualization

Mobile
Robotics,
Localization:
Simultaneous
Localization
And
Mapping
(SLAM)

(Top) effect of improved proposal distribution.

(Right) MIT-Killian court map, total travelled distance about 2 Km, 80 particles used. Courtesy of Grisetti, Stachniss, Burgard

Graph-Based SLAM

- ♦ Least Squares approach to SLAM using pose graph
- \Diamond Very popular, state-of-the-art approach for SLAM
- ♦ Reduce everything to the pose graph
 - marginalize out landmarks and observations
 - sparse graph structure
 - flexible (can handle several types of observation)

Reminder: Least Squares

- ♦ Approach to solve overdetermined problems
 - more equations than unknowns
- minimizes the sum of squared errors in the equations
- ♦ standard approach to a large set of problems

Pose Graph

- ♦ Constraints connect the poses of the robot while it is moving
- Poses are recorded at given intervals and are the nodes of the graphs,
- \diamondsuit Constraints encodes uncertain relationships between poses and are the edges of the pose graph

Pose Graph II

Mobile Robotics, Localization: Simultaneous Localization And Mapping (SLAM)

♦ Observing previously seen areas generate constraints between **non-successive** poses

Main idea for Graph-Based SLAM I

- ♦ Use a graph to encode the estimation problem
 - Node: robot poses
 - Edge: spatial, uncertain constraints between two poses
- ♦ Goal: build the graph and find a node configuration (i.e., pose estimate) that minimizes the error introduced by the constraints

Main idea for Graph-Based SLAM II

Mobile Robotics, Localization: Simultane-

ous Localization And Mapping (SLAM) i) build pose graph based on motion and observation model, ii) optimize the pose-graph, iii) render map based on pose estimation

The overall SLAM system

Mobile
Robotics,
Localization:
Simultaneous
Localization
And
Mapping

(SLAM)

- ♦ Interplay of front-end and back-end
- ♦ Map reduces search space to build correct constraints
- ♦ We focus on optimization (back-end)

Font-end: ICP

- ♦ Iterative Closest Point: align two point clouds and return the transformation (Rotation + Translation)
- ♦ Transformation is used to build the constraints for the pose-graph
- ♦ ICP:
 - Find correspondences (closest point)
 - Given correspondences, compute transformation
 - Repeat

Short description of ICP

ICP variants

- ♦ Use point to plane distance
- \Diamond Avoid outliers when computing transformation
- ♦ For more details: Jupyter notebook by Igor Bogoslakvskyi

Courtesy of Igor Bogoslakvskyi

The Pose Graph

Mobile Robotics, Localization: Simultaneous Localization And Mapping

(SLAM)

- \Diamond *n* nodes $x = x_{1:n}$
 - \blacksquare x_i pose of the robot at time t_i
 - constraint (edge) between x_i and x_j exists if
 - the robot moves from x_i to x_{i+1} , odometry measurement (or ICP)
 - the robot observes the same part of the environment, virtual measurement

- \diamondsuit Using homogeneous coordinates we can express rotations and translation with a single matrix
- \Diamond Odometry edge: $(X_i^{-1}X_{i+1})$
 - relative transformation between x_{i+1} and x_i
 - x_{i+1} as seen from x_i
- \diamondsuit Observation edge: $(X_i^{-1}X_j)$
 - relative transformation between x_j and x_i
 - x_i as seen from x_i

The Edge Information Matrices

- \diamondsuit Observations are affected by noise
- \Diamond Information Matrix Ω_{ij} for each edge to encode uncertainty
- \diamondsuit "Bigger" Ω_{ij} matter more in the optimization

Pose Graph Visualization

Mobile Robotics, Localization: Simultaneous Localization And Mapping (SLAM)

Courtesy of Grisetti, Kümmerle, Stachniss and Burgard

$$x^* = \arg\min_{x} \sum_{ij} e_{ij}^T \mathbf{\Omega}_{ij} e_{ij}$$

Least Square SLAM

Mobile Robotics, Localization: Simultaneous Localization And Mapping (SLAM)

♦ Error function is suitable for least square error minimization

$$x^* = \arg\min_{x} \sum_{ij} e_{ij}^T(x_i, x_j) \mathbf{\Omega}_{ij} e_{ij}(x_i, x_j) = \arg\min_{x} \sum_{k} e_k^T(x) \mathbf{\Omega}_k e_k(x)$$

 \diamondsuit State vector is the concatenation of the robot poses: $x^T = (x_1^T, x_2^T, \dots, x_n^T)$

The error function

Mobile Robotics, Localization: Simultaneous Localization And

Mapping (SLAM)

 \Diamond Error function for single constraint: $e_{ij}(x_i, x_j) = t2v(Z_{ij}^{-1}(X_i^{-1}X_j))$

- \diamondsuit Error function for whole state vector: $e_{ij}(x) = t2v(Z_{ij}^{-1}(X_i^{-1}X_j))$
- \diamondsuit Error is zero is $Z_{ij} = (X_i^{-1}X_j)$

Gauss-Newton for error minimization

- 1. Define the error function
- 2. Linearize the error function
- 3. Compute its derivative
- 4. Set derivative to zero
- 5. Solve linear system
- 6. Iterate until convergence

Linearizing the Error function

Mobile
Robotics,
Localization:
Simultaneous
Localization
And
Mapping

(SLAM)

 \Diamond Approximate error function around an initial guess x using taylor expansion

$$e_{ij}(x+\Delta x)pprox e_{ij}(x)+\mathbf{J}_{ij}\Delta x$$

where,

$$\mathbf{J}_{ij} = \frac{\delta e_{ij}(x)}{\delta x}$$

 \Diamond Note: $e_{ij}(x)$ does not depend on full state vector but only on x_i and $x_j \Rightarrow$ Jacobian is sparse

$$\frac{\delta e_{ij}(x)}{\delta x} = \left(0 \dots \frac{\delta e_{ij}(x_i)}{\delta x_i} \dots \frac{\delta e_{ij}(x_j)}{\delta x_j} \dots 0\right)$$

$$\mathbf{J}_{ii} = (0 \dots \mathbf{A}_{ii} \dots \mathbf{B}_{ii} \dots 0)$$

(SLAM)

 \diamondsuit Least Squares $\Delta x^* = -\mathbf{H}^{-1}b$

$$b^T = \sum_{ij} b_{ij}^T = \sum_{ij} e_{ij}^T \mathbf{\Omega}_{ij} \mathbf{J}_{ij}$$

$$\mathsf{H} = \sum_{ij} \mathsf{H}_{ij} = \sum_{ij} \mathsf{J}_{ij}^{\mathsf{T}} \mathbf{\Omega}_{ij} \mathsf{J}_{ij}$$

- \Diamond Sparse structure of \mathbf{J}_{ij} results in sparse structure of \mathbf{H}_{ij}
- \Diamond The structure depends on the adjacency matrix of the pose graph

Consequences of Sparsity II

Mobile
Robotics,
Localization:
Simultaneous
Localization
And
Mapping

(SLAM)

 \diamondsuit An edge contributes to the linear system via b_{ij} and \mathbf{H}_{ij}

$$egin{aligned} b_{ij}^T &= e_{ij}^T \mathbf{\Omega}_{ij} \mathbf{J}_{ij} = e_{ij}^T \mathbf{\Omega}_{ij} \left(0 \dots \mathbf{A}_{ij} \dots \mathbf{B}_{ij} \dots 0
ight) = \left(0 \dots e_{ij}^T \mathbf{\Omega}_{ij} \mathbf{A}_{ij} \dots e_{ij}^T \mathbf{\Omega}_{ij} \mathbf{B}_{ij} \dots 0
ight) \\ \mathbf{H}_{ii} &= \mathbf{J}_{ii}^T \mathbf{\Omega}_{ii} \mathbf{J}_{ii} = \end{aligned}$$

$$= \begin{pmatrix} \vdots \\ \mathbf{A}_{ij}^T \\ \vdots \\ \mathbf{B}_{ij}^T \\ \vdots \end{pmatrix} \mathbf{\Omega}_{ij} \left(\dots \mathbf{A}_{ij} \dots \mathbf{B}_{ij} \dots \right) = \begin{pmatrix} \ddots & & & \\ & \mathbf{A}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{A}_{ij} & \dots & \mathbf{A}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{B}_{ij} \\ & \vdots & \ddots & \vdots \\ & \mathbf{B}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{A}_{ij} & \dots & \mathbf{B}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{B}_{ij} \\ & & & \ddots \end{pmatrix}$$

The linear system

Mobile Robotics, Localization: Simultaneous Localization And Mapping (SLAM) ♦ Vector of state increments

$$\Delta x^T = (\Delta x_1^T \ \Delta x_2^T \ \dots \ \Delta x_n^T)$$

♦ Vector of coefficients

$$b^T = (\bar{b}_1^T \ \bar{b}_2^T \ \dots \ \bar{b}_n^T)$$

♦ Normal equation matrix

$$\mathbf{H} = \begin{pmatrix} \bar{\mathbf{H}}^{11} & \bar{\mathbf{H}}^{12} & \dots & \bar{\mathbf{H}}^{1n} \\ \bar{\mathbf{H}}^{21} & \bar{\mathbf{H}}^{22} & \dots & \bar{\mathbf{H}}^{2n} \\ \vdots & \vdots & \vdots & \vdots \\ \bar{\mathbf{H}}^{n1} & \bar{\mathbf{H}}^{n2} & \dots & \bar{\mathbf{H}}^{nn} \end{pmatrix}$$

Building the linear system

- Mobile Robotics, Localization: Simultane-
- ous
 Localization
 And
 Mapping
 (SLAM)
- ♦ For each constraint:
 - compute error: $e_{ij}(x_i, x_j) = t2v(Z_{ij}^{-1}(X_i^{-1}X_j))$
 - compute blocks of Jacobian

$$\mathbf{A}_{ij} = rac{\delta e_{ij}(x_i, x_j)}{\delta x_i}$$
 $\mathbf{B}_{ij} = rac{\delta e_{ij}(x_i, x_j)}{\delta x_i}$

update the coefficient vector

$$ar{b}_i + = e_{ij}^{\, T}(x_i, x_j) \mathbf{\Omega}_{ij} \mathbf{A}_{ij} \qquad \qquad ar{b}_j + = e_{ij}^{\, T}(x_i, x_j) \mathbf{\Omega}_{ij} \mathbf{B}_{ij}$$

update the normal equation matrix

$$ar{H}^{ii} + = \mathbf{A}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{A}_{ij}$$
 $ar{H}^{ij} + = \mathbf{A}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{B}_{ij}$ $ar{H}^{ji} + = \mathbf{B}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{A}_{ij}$ $ar{H}^{jj} + = \mathbf{B}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{B}_{ij}$

Algorithm

```
Data: G(x, E)
Result: x'
// G is pose graph, x' optimized pose vector
x'=x:
while !converged do
    (H, b) = buildLinearSystem(x');
    \Delta x = solveSparse(H\Delta x = -b);
    x' = x' + \Delta x;
end
return x';
```

Role of Prior

- ♦ We need to fix the the pose graph to the global frame
- \diamondsuit We can do this enforcing a prior knowledge on a node, usually x_0
- \Diamond Add a constraint for Gaussian estimate about x_0
 - e.g., first pose in the origin, $e(x_0) = t2v(X_0)$

Example of SLAM

Summary

- ♦ SLAM: estimate map and robot pose at the same time
 - full SLAM, estimate all poses
 - online SLAM, estimate only last pose
- ♦ Can represent SLAM problem using a pose graph
 - node: robot poses
 - edges: constraints between poses (odometry and measurements)
- ♦ Graph construction (front-end), typically uses approaches such as ICP
- ♦ Graph optimization (back-end), can be efficiently done using Least-Square (Gauss-Newton)
- ♦ Efficiency comes from sparsity of matrices (the H matrix)
- \Diamond SLAM with pose graphs is one of the state of the art solution for SLAM

References and Further readings

- ♦ A Tutorial on Graph-Based SLAM, Giorgio Grisetti, Rainer Kümmerle, Cyrill Stachniss andWolfram Burgard
- ♦ Improved Techniques for Grid Mapping with Rao-Blackwellized Particle Filters; Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard IEEE Transactions on Robotics, Volume 23, pages 34-46, 2007