Tree-Structured Indexes

R & G Chapter 10

"If I had eight hours to chop down a tree, I'd spend six sharpening my ax."

Abraham Lincoln

Review: Files, Pages, Records

- Abstraction of stored data is "files" with "pages" of "records".
 - Records live on pages
 - Physical Record ID (RID) = <page#, slot#>
- Variable length data requires more sophisticated structures for records and pages. (why?)
 - Fields in Records: offset array in header
 - Records on Pages: Slotted pages w/internal offsets & free space area
- Often best to be "lazy" about issues such as free space management, exact ordering, etc. (why?)
- Files can be unordered (heap), sorted, or kinda sorted (i.e., "clustered") on a search key.
 - Tradeoffs are update/maintenance cost vs. speed of accesses via the search key.
 - Files can be clustered (sorted) at most one way.
- Indexes can be used to speed up many kinds of accesses. (i.e., "access paths")

Tree-Structured Indexes: Introduction

- · Selections of form field <op> constant
- Equality selections (op is =)
 - Either "tree" or "hash" indexes help here.
- Range selections (op is one of <, >, <=, >=, BETWEEN)
 - "Hash" indexes don't work for these.
- More complex selections (e.g. spatial containment)
 - There are fancier trees that can do this... more on this soon!
- Tree-structured indexing techniques support both range selections and equality selections.
- <u>ISAM</u>: static structure; early index technology.
- <u>B+ tree</u>: dynamic, adjusts gracefully under inserts and deletes.
- ISAM = Indexed Sequential Access Method

A Note of Caution

- ISAM is an old-fashioned idea
 - B+-trees are usually better, as we'll see
 - Though not *always*
- But, it's a good place to start
 - Simpler than B+-tree, but many of the same ideas
- Upshot
 - Don't brag about being an ISAM expert on your resume
 - Do understand how they work, and tradeoffs with B+-trees

Range Searches

- `` Find all students with gpa > 3.0'
 - If data is in sorted file, do binary search to find first such student, then scan to find others.
 - Cost of binary search in a database can be quite high. Q: Why???
- Simple idea: Create an `index' file.

☑ Can do binary search on (smaller) index file!

Example B+ Tree

- Search begins at root, and key comparisons direct it to a leaf (as in ISAM).
- Search for 5*, 15*, all data entries >= 24*

☑ Based on the search for 15*, we know it is not in the tree!

B+ Trees in Practice

- Typical order: 100. Typical fill-factor: 67%.
 average fanout = 133
- Typical capacities:
 - Height 2: $133^3 = 2,352,637$ entries
 - Height 3: $133^4 = 312,900,700$ entries
- Can often hold top levels in buffer pool:
 - Level 1 = 1 page = 8 Kbytes
 - Level 2 = 133 pages = 1 Mbyte
 - Level 3 = 17,689 pages = 133 MBytes

Inserting a Data Entry into a B+ Tree

- Find correct leaf L.
- Put data entry onto L.
- If L has enough space, done!
 - Else, must split L (into L and a new node L2)
 - Redistribute entries evenly, copy up middle key.
 - Insert index entry pointing to L2 into parent of L.
- This can happen recursively
 - To split index node, redistribute entries evenly, but <u>push up</u> middle key. (Contrast with leaf splits.)
- Splits "grow" tree; root split increases height.
 - Tree growth: gets wider or one level taller at top.

Example B+ Tree - Inserting 8*

- ❖ Notice that root was split, leading to increase in height.
- ❖ In this example, we can avoid split by re-distributing entries; however, this is usually not done in practice.

Deleting a Data Entry from a B+ Tree

- Start at root, find leaf L where entry belongs.
- · Remove the entry.
 - If L is at least half-full, done!
 - If L has only d-1 entries,
 - Try to re-distribute, borrowing from sibling (adjacent node with same parent as L).
 - If re-distribution fails, merge L and sibling.
- If merge occurred, must delete entry (pointing to L or sibling) from parent of L.
- · Merge could propagate to root, decreasing height.

Prefix Key Compression

- Important to increase fan-out. (Why?)
- Key values in index entries only `direct traffic'; can often compress them.
 - E.g., If we have adjacent index entries with search key values Dannon Yogurt, David Smith and Devarakonda Murthy, we can abbreviate David Smith to Dav. (The other keys can be compressed too ...)
 - Is this correct? Not quite! What if there is a data entry Davey Jones? (Can only compress David Smith to Davi)
 - In general, while compressing, must leave each index entry greater than every key value (in any subtree) to its left.
- Insert/delete must be suitably modified.

Suffix Key Compression

- If many index entries share a common prefix
 - E.g. MacDonald, MacEnroe, MacFeeley
 - Store the common prefix "Mac" at a well known location on the page, use suffixes as split keys
- Particularly useful for composite keys
 - Why?

Bulk Loading of a B+ Tree

- . If we have a large collection of records, and we want to create a B+ tree on some field, doing so by repeatedly inserting records is very
 - Also leads to minimal leaf utilization --- why?
- Bulk Loading can be done much more efficiently.
- Initialization: Sort all data entries, insert pointer to first (leaf) page in a new (root) page.

Summary of Bulk Loading

- Option 1: multiple inserts.

 - Does not give sequential storage of leaves.
- Option 2: Bulk Loading
 - Fewer I/Os during build.
 - Leaves will be stored sequentially (and linked, of course).
 - Can control "fill factor" on pages.

A Note on `Order'

- Order (d) concept replaced by physical space criterion in practice (`at least half-full').
 - Index pages can typically hold many more entries than leaf pages.
 - Variable sized records and search keys mean different numbers of entries.
 - Even with fixed length fields, multiple records with the same search key value (duplicates) can lead to variable-sized data entries (if we use Alternative (3)).
- Many real systems are even sloppier than this --- only reclaim space when a page is *completely* empty.

Summary

- Tree-structured indexes are ideal for range-searches, also good for equality searches.
- ISAM is a static structure.
 - Only leaf pages modified; overflow pages needed.
 - Overflow chains can degrade performance unless size of data set and data distribution stay constant.
- B+ tree is a dynamic structure.
 - Inserts/deletes leave tree height-balanced; log _F N cost.
 - High fanout (**F**) means depth rarely more than 3 or 4.
 - Almost always better than maintaining a sorted file.

Summary (Contd.)

- Typically, 67% occupancy on average.
- Usually preferable to ISAM, modulo *locking* considerations; adjusts to growth gracefully.
- If data entries are data records, splits can change rids!
- Key compression increases fanout, reduces height.
- Bulk loading can be much faster than repeated inserts for creating a B+ tree on a large data set.
- Most widely used index in database management systems because of its versatility. One of the most optimized components of a DBMS.