基因家族分析

吴田振 南京师范大学 2022-01-13

□ 单个基因家族的系统分析

- ✓ 基因家族成员鉴定; ✓ 基因结构可视化;
- ✓ 进化树构建; ✓ 染色体定位;
- ✓ 保守domain和motif鉴定;

□ 基因组水平基因家族扩张与收缩分析

- ✓ 直系同源基因的鉴定;
- ✓构建系统发育树;
- ✓ 构建超度量树;
- ✓ 基因家族扩张与收缩分析。

基因家族

概念:由具有类似功能的很多基因组成的一组基因集合,这些基因往往具有类似的一个或几个相同的保守结构域。

划分:按功能划分:把一些功能类似的基因聚类,形成一个家族; 按照序列相似程度划分:一般将同源的基因放在一起认为是一个家族。

- 热激蛋白70家族(HSP70)是一类高度保守的分子伴侣蛋白,在细胞中协助蛋白质正确折叠;
- NBS-LRR(nucleotide-binding site and leucine-rich-repeat)是植物中最大类抗病基因家族之一;

motif和 domain的区别是什么?

1、层级不同

Motif是位于二级和三级结构之间的层次, Motif的层次接近二级结构。

Domain是位于二级和三级结构之间的层次, Domain的层次接近三级结构。

2、独立性不同:

domain是独立稳定的。

motif不是独立稳定的。

3、蛋白质结构不同:

Motif在生物学中是基于数据的数学统计模型,是特定的group的序列预测。对蛋白质来说,motifs可以被定义为蛋白质(蛋白质序列)属于一个给定的蛋白质家族。

domains是一种结构实体,通常代表蛋白质结构中独立折叠和行驶功能的一部分。因此蛋白质经常是这些结构域的不同的组合构建起来的。

4、组合形式不同:

motif通常是螺旋-环-螺旋, 贝塔折叠的组合、阿而法螺旋组合等。

domain通常是球状压缩区或纤维状压缩区。

✓特定物种基因组中单个基因家族的所有成员鉴定

准备文件: 物种的pep文件、基因家族隐马可夫模型hmm文件;

软件: hmmer。

Use the cassava specific hmm into the whole genome annotation. Sensitivity is improved NB-ARC raw hmm Cassava NB-ARC hmm (PF00931) (PF00931) Initial set of cassava High confidence Whole genome Cassava specific Cassava NBS-LRR NBS containing annotation HMM for NBS genes genes set (aa sequences) **HMMERbuild HMMERsearch HMMERalign** 60 top hits were selected based on e-value and conserved homology with NBS-LRR

genes from other plants

✓特定物种基因组中单个基因家族的所有成员鉴定——文件下载

wget -c http://ftp.ensemblgenomes.org/pub/plants/release- 52/fasta/arabidopsis_thaliana/pep/Arabidopsis_thaliana.TAIR10.pep.all.fa.gz #从NCBI 或Ensembl下载pep文件

wget -c http://pfam.xfam.org/family/PF00931/hmm

#在pfam网站下载hmm文件

KEYWORD SEARCH

JUMP TO

#下载模式物种或近缘物种的NBS序列,用于blast方法搜索同源序列

Index of /pub/plants/release-52/fasta/arabidopsis_thaliana/pep/

✓特定物种基因组中单个基因家族的所有成员鉴定——hmmer分析流程

```
hmmsearch --cut_tc --domtblout atha_NBS.txt hmmfile Arabidopsis_thaliana.TAIR10.pep.all.fa #搜索比对数据库,
找到拟南芥的NB-ARC结构域
```

```
grep -v "#" atha_NBS.txt|awk '($7 + 0) < 1E-20'|cut -f1 -d ""|sort -u > atha_NBS_qua_id.txt #过滤掉e_value高于1e-20的id,将蛋白id存入atha_NBS_qua_id.txt
```

seqtk subseq Arabidopsis_thaliana.TAIR10.pep.all.fa atha_NBS_qua_id.txt > atha_NBS_qua.fa #将初步筛选出来的 拟南芥中含有NB-ARC结构域的蛋白提取出来,存为NBS-ARC_qua.fa

muscle -in atha_NBS_qua.fa -out aln_atha_NBS_qua.fa #比对蛋白序列

hmmbuild second_hmm aln_atha_NBS_qua.fa #构建拟南芥NBS基因家族隐马尔科夫模型文件

hmmsearch --domtblout second_atha_NBS.txt second_hmm Arabidopsis_thaliana.TAIR10.pep.all.fa #再次比对

grep -v "#" second_atha_NBS.txt|awk '(\$7 + 0) < 1E-20'|cut -f1 -d " "|sort -u > second_atha_NBS_qua_id.txt #再次过滤掉e_value高于1e-20的id,将蛋白id存入second_atha_NBS_qua_id.txt

grep -F -f atha_NBS_qua_id.txt second_atha_NBS_qua_id.txt | sort | uniq >first_overlap_id.txt #取两次id交集

✓特定物种基因组中单个基因家族的所有成员鉴定——blast分析流程

NCBI下载所有植物的存在于Ref-seq(一般认为是比较置信的植物基因序列)中的NBS序列

```
makeblastdb -in ref.nbs.plant.fa -dbtype prot #建库
Blast #序列比对
cat blastp.out |awk '$3>75' |cut -f1 |sort -u > blastp_result_id.list #筛选
comm -12 blastp_result_id.list first_overlap_id.txt > common.list #取两方法id的交集
seqtk subseq Arabidopsis_thaliana.TAIR10.pep.all.fa common.list > atha_NB-ARC_final.fas #提取最终序列,用于后续分析
```

✓ 基因家族成员进化树构建——建树的简化步骤

意义:可揭示家族各成员的进化轨迹,功能差异等。

```
##比对蛋白序列
muscle -in atha_NB-ARC_final.fas -out aln atha NB-
ARC final.fas
##简化基因名
sed -i 's/pep.*//g' aln_atha_NB-ARC_final.fas
##剪切
trimal -in aln_atha_NB-ARC_final.fas -out trimal-
aln_atha_NB-ARC_final.fas -automated1
Gblocks trimal-aln atha NB-ARC final.fas -t=p -b5=h
##iqtree构树,结果查看一致树文件
iqtree -s trimal-aln_atha_NB-ARC_final.fas-gb -pre
outtree -bb 1000 -m MFP -nt AUTO
##利用Figtree等进行树的美化
```

TRPC

TRPN

TRPM

TRPV

TRPA

TRPP

RPML

✓ 保守motif鉴定与可视化——利用MEME鉴定

意义:利用MEME搜索基因家族中成员的motif可以揭示基因家族在物种内的多样化及其功能,如果它们都含有相同的motif'表明其功能具有相似性,如果部分家族成员含有其他不同的motif,很可能这些成员有其他特异功能,或者可以归分为一个亚族。

meme head_cds.fas -dna -revcomp -nmotifs 10 -mod zoops -minw 5 -maxw
50 > meme_format.html

或

✓ 保守motif鉴定与可视化——结果展示

可在左侧添加分子系统发育树

Mast分析(重在确定motif的存在,较全面,是由motif查找domain的过程)

✓ 基因结构可视化——GTF文件、 GSDS网站

- GFF (general feature format): 可以用于任何基因组注释的存储
- GTF (gene transfer format): 严格的用于基因注释信息的存储

列	GTF2	GFF3
reference sequence name	same	same
annotation source	same	same
feature type	feature requirements depend on software	can be anything
start coordinate	same	same
5. end coordinate	same	same
score	not used	optional
strand	same	same
frame	same	same
attributes	空格分隔 CSD	N @ba於隱rDr

✓ 基因结构可视化——获取GTF文件

conda activate gene_family #进入分析环境

wget -c http://ftp.ensemblgenomes.org/pub/plants/release- 52/gff3/arabidopsis_thaliana/Arabidopsis_thaliana.TAIR10.52.gff3.gz #下载gff3文件

conda install gffread #安装gffread软件

gffread Arabidopsis_thaliana.TAIR10.52.gff3 -T -o Arabidopsis thaliana.TAIR10.52.gtf #将gff文件转化为gtf文件

利用GSDS网站 进行可视化

for i in `cat first_overlap_id.txt`;do grep \$i Arabidopsis_thaliana.TAIR10.52.gtf >> out.gtf;done #得到基因家族的转录本信息

sed -i -e 's/transcript://g' -e 's/gene_id "gene:.*//g'out.gtf #处理第九行

✓ 基因结构可视化——GSDS网站

out.gtf文件

✓染色体定位——准备文件

- 1拟南芥NBS基因id
- 2拟南芥基因组的注释文件 (gff3文件)
- 3 拟南芥基因组长度
- 4在线绘图工具: MapGene2Chrom web v2

http://mg2c.iask.in/mg2c_v2.0/

✓染色体定位——准备基因家族ID

1	Α
1	AT1G10920.1
2	AT1G10920.2
3	AT1G10920.3
4	AT1G10920.4
5	AT1G10920.5
6	AT1G12210.1
7	AT1G12210.2
8	AT1G12210.3
9	AT1G12220.1
10	AT1G12220.2
11	AT1G12220.3
12	AT1G12280.1
13	AT1G12280.2
14	AT1G12290.1
15	ΔT1G12290 2

数据处理

AT1G10920 AT1G12210 AT1G12220 AT1G12280 AT1G12290 AT1G15890 AT1G17600 AT1G27170 AT1G27180 AT1G33560 AT1G50180

存入文件

✓染色体定位——准备基因家族成员的gff3信息文件

```
grep ID=gene Arabidopsis thaliana.TAIR10.52.gff3 > only id gene.txt #将标签为基因
的提出来
awk '{print $9,$4,$5,$1}' only_id_gene.txt > col9451.txt #取第1、4、5、9行
awk -F'[;:]+''{print $2,$(NF-2),$(NF-1),$NF}'col9451.txt > col9451.yes.txt #简
化处理第1、4、5、9行
sed -i 's/[[:space:]]//g' gene id.txt #对基因id文件去首尾空格
for i in `cat gene_id.txt`;do grep $i col9451.yes.txt >>
gene_fam_info_gff.txt;done #根据基因id提取家族成员位置信息,存入文件
```

✓ 染色体定位——准备每个染色体长度

可直接在gff3文件中查看染色体长度

或

conda install samtools #安装samtools软件

准备基因组长度文件

wget -c http://ftp.ensemblgenomes.org/pub/plants/release- 52/fasta/arabidopsis_thaliana/dna/Arabidopsis_thaliana.TAIR10.dna.toplevel.fa _gz #下载拟南芥dna文件

samtools faidx Arabidopsis_thaliana.TAIR10.dna.toplevel.fa
less Arabidopsis_thaliana.TAIR10.dna.toplevel.fa.fai #创建索引并查看染色体长度

✓ 染色体定位——将准备文件导入网站

保存为SVG格式,利用AI进一步编辑

✓全基因组水平的基因家族收缩与扩张分析

Liu, Z., Zhang, L., Yan, Z., Ren, Z., Han, F., Tan, X., ... & Li, M. (2020). Genomic mechanisms of physiological and morphological adaptations of limestone langurs to karst habitats. *Molecular biology and evolution*, *37*(4), 952-968.

流程可参考: 黄鑫. 2021. 基因家族扩张收缩分析流程.

待续……