Power Electronics Reference

Angelino Lefevers March 16, 2018

Contents

Introduction

1	General Equations				
	1.1	Power and Energy			
		1.1.1	Instantaneous Power	1	
		1.1.2	Average Power	1	
		1.1.3	Energy	1	
	1.2	Induct	tors	2	
		1.2.1	Current/Voltage Relationship	2	
	1.3	RMS	Values	2	
Variables				j	
Glossary				ii	

Introduction

Just throwing together some concepts and examples for later reference

1 General Equations

1.1 Power and Energy

1.1.1 Instantaneous Power

This value is a positive real number if the element is supplying power, or is a negative real number if the element is consuming power.

$$p(t) = v(t)i(t) \quad (W)$$

- p(t) := Instantaneous Power (W)
- v(t) := Instantaneous Voltage (V)
- i(t) := Instantaneous Current (A)

1.1.2 Average Power

$$P = \frac{1}{T} \int_{t_o}^{t_o + T} p(t)dt \quad (W)$$

$$P = \frac{1}{T} \int_{t_0}^{t_0+T} v(t)i(t)dt \quad (W)$$

$$P = \frac{W}{T} \quad (W)$$

- P := Average Power (W)
- p(t) := Instantaneous Power (W)
- v(t) := Instantaneous Voltage (V)
- i(t) := Instantaneous Current (A)
- $T := \text{Time Period } (\Delta s)$
- $t_o := \text{Initial Time (s)}$
- W := Work (J)

1.1.3 Energy

$$W = \int_{t_1}^{t_2} p(t)dt \quad (J)$$

- W := Work (J)
- p(t) := Instantaneous Power (W)

1.2 Inductors

1.2.1 Current/Voltage Relationship

$$i(t_o + T) = \frac{1}{L} \int_{t_o}^{t_o + T} v_L(t)dt + i(t_o)$$

- $i(t_o) := \text{Initial Current at Time } t_o \text{ (A)}$
- $i_L(t) := \text{Current Through an Inductor (A)}$
- $v_L(t) := \text{Voltage Across an Inductor (V)}$
- L := Inductance (H)
- $t_o := \text{Initial Time (s)}$
- $T := \text{Time Period } (\Delta s)$

$$i(t_o + T) = \frac{1}{L} \int_{t_o}^{t_o + T} v_L(t) dt + i(t_o)$$

1.3 RMS Values

$$V_{RMS} = \sqrt{\frac{1}{T} \int_{t_o}^{t_o + T} v^2(t) dt}$$

$$I_{RMS} = \sqrt{\frac{1}{T} \int_{t_0}^{t_o + T} i^2(t) dt}$$

- $V_{RMS} := RMS \text{ Voltage (V)}$
- $I_{RMS} := RMS Current (A)$

Variables

```
C Capacitance (F).
I Average Current (A).
I_C Average Current Through a Capacitor(A).
I_L Average Current Through an Inductor (A).
I_{RMS} RMS Current (A).
L Inductance (H).
P Average Power (W).
T Time Period (\Delta s).
V Average Voltage (V).
V_C Average Voltage Across a Capacitor (V).
V_L Average Voltage Across and Inductor (V).
V_{RMS} RMS Voltage (V).
W Work (J).
i(t) Instantaneous Current (A).
i(t_o) Initial Current at Time t_o (A).
i_C(t) Current Through a Capacitor (A).
i_L(t) Current Through an Inductor (A).
p(t) Instantaneous Power (W).
t Instantaneous Time (s).
t_o Initial Time (s).
v(t) Instantaneous Voltage (V).
v(t_o) Initial Voltage at Time t_o (V).
v_C(t) Voltage Across a Capacitor (V).
v_L(t) Voltage Across an Inductor (V).
```

Glossary

Average Current The average current going through a reference point throughout a period of time T. Average Power The average power an element is consuming or producing throughout a period of time T. Average Voltage The average voltage across two reference points throughout a period of time T.

Capacitance A measurement of the phenomenon that change in voltage is resisted in a capacitor dut to the establishment of an electric field.

Inductance A measurement of the phenomenon that change in current is resisted in an inductor due to the establishment of a magnetic field.

Initial Time Describes the initial time that a period in time is taken.

Instantaneous Current The current going through a reference point at time t.

Instantaneous Power The power an element is consuming or producing at time t.

Instantaneous Time An instant in time.

Instantaneous Voltage The voltage across two reference points at time t.

Time Period A period between two points in time. Usually describes a full period in a sinusoidal wave.

Work The power a system is able to output over a period in time.

\mathbf{Index}

```
Average Power (W), 1 Inductance (H), 2 Current Through an Inductor (A), 2 Voltage Across an Inductor (V), 2 Initial Current at Time t_o (A), 2 Instantaneous Current (A), 1 Instantaneous Power (W), 1 Instantaneous Voltage (V), 1 RMS Current (A), 2 RMS Voltage (V), 2 Work (J), 1
```