

מחלקה: מדעי המחשב שם קורס: למידה עמוקה יישומית מספר: 0-202-1-5031 מרצה: עומרי אזנקוט

> סמסטר: מארגד: 2024

תאריך: 8.9.2024 משך בחינה: 2 שעות הגשה: דף תשובות בלבד.

:חומר עזר

<u>למידה עמוקה יישומית</u> Applied Deep Learning

הערכה חלופית

חלק א' (20 נק'): שאלות כלליות. התשובה לכל שאלה צריכה להיות באורך של שורה אחת או שתיים לכל היותר.

ברשתות עמוקות, יש לעיתים נפוצות שימוש בפונקציות לא גזירות כגון sign. איך ניתן להשת בפונקציות כאלו במסגרת רשת שלומדת עם backpropagation?	
מה פרמטרים (weights) נוצרים עבור RNNcell שה-input_size שלו הוא 64 וה- hidden_size (לדוגמא ע"י 64, 256) ויש לו bias (לדוגמא ע"י 64, 256)	
מנו חסרון אחד עיקרי לשיטה gradient clipping.	.;
?האם עדיף שלמודל יהיו הרבה hyper-parameters או מעט	.4
?GPU מאשר על CPU באילו מקרים רשת עמוקה תרוץ יותר מהר על	
	-

חלק ב' (20 נק'): שאלות כלליות. התשובה לכל שאלה צריכה להיות באורך של עד 5 שורות.

.Kullback—Liebler divergence-מה ההבדל בין (אַר (מָ, מָ) ל- (אַר (אַר (מַ, מָר ההבדל בין (אַר (אַר (אַר (אַר (אַר (אַר (אַר (אַר	.1
$KL(p,q) = \sum_x p(x) \log \left(p(x)/q(x) \right)$ הסבירו ותנו דוגמא. נזכיר ש-	
נניח ומימשתם רשת פשוטה מאוד כדי לפתור בעיה כלשהי. לצערכם, התוצאות ממש גרועות.	.2
מה כדאי לעשות כדי לשפר את הביצועים? האם תמיד כדאי להפוך את הרשת למאוד עמוקה	
י . ובעלת הרבה פרמטרים?	

3. בהינתן רשת הקונבולוציה שמופיעה בדיאגרמה, פרטו את גדלי הטנזורים המתקבלים מהפעלת ב- כל אחת משכבות הרשת עבור קלט בגודל $X \in \mathbb{R}^{b \times 3 \times 28 \times 28}$, כאשר S הוא מספר הדוגמאות ב- Conv2d (3, 5, 3) מבצעת קונבולוציה ומקבלת S ערוצים, מחזירה S שואירה מדל הקרנל (kernel) הוא S בנוסף, בנוסף, S בנוסף בגודל בוסף בגודל בער בנוסחא לחישוב גודל הפלט מ- בגודל בער באודל באודל באודל באודל באודל בהתאמה או גובה הקלט והפלט בהתאמה של התמונה:

חלק ג' (20 נק'): RNN. לאחרונה, התפרסם מאמר המתאר שיטה רקורסיבית חדשה שנקראת
Lipschitz RNN שהמשוואות שלה רשומות למטה. אנא ממשו מודול ב-pyTorch עבור המשוואות
וכל פונקציה forwardinit ואת הפונקציות torward וכל פונקציה class האלו. כלומר, עליכם לייצר
hidden_size-ו input_size aקבלת את ה-init מקבלת ה- input_size אחרת שאתם רואים לנכון.
ומאתחלת את המודול. פונקצית ה-forward מקבלת את הקלט הנוכחי ואת ה-hidden הקודם
ומחזירה את ה-hidden הבא. אם אינכם זוכרים את ה-syntax של hidden, מספיק לרשום פסאודו-
קוד עם הסברים בגוף הקוד במידת הצורך.
משוואות Lipschitz RNN:

 $h_{t+1} = Ah_t + \mathrm{tanh}(Wh_t + Ux_{t+1} + b)$ אור. באשר, המטריצות A, W, U והוקטור b הם הפרמטרים של המודל.

<u>חלק ד'</u>

הרשת.

2 <u>0 נק'): CNN.</u> תארו בפירוט את המאפיינים של רשתות CNN כפי שנלמדו בכיתה. נסו בור כל מאפיין האם הוא מהווה יתרון או חסרון, ואילו מאפיינים הם משמעותיים להתנהגות של

