013 014 015 016 018 019

028 033

035 038

034

039 049 051 053 054

High Dimensional Data Enrichment: Interpretable, Fast, and Data-Efficient

Anonymous Authors1

Abstract

Given samples from a set of groups, a dataenriched model describes observations by a common and per-group individual parameters. In highdimensional regime, each parameter has its own structure such as sparsity or group sparsity. In this paper, we consider the general form of data enrichment where data comes in a fixed but arbitrary number of groups G and any convex function, e.g., norm, can characterize the structure of both common and individual parameters. We propose an estimator for the high-dimensional data enriched model and investigate its statistical properties. We delineate sample complexity of our estimator and provide high probability non-asymptotic bound for estimation error of all parameters under a condition weaker than the state-of-the-art. We propose an iterative estimation algorithm with a linear convergence rate and supplement our theoretical analysis with synthetic and real experimental results. In particular, we show the predictive power of data-enriched model along with its interpretable results in anticancer drug sensitivity analysis. Overall, we present a first through statistical and computational analysis of inference in the data enriched model.

1. Introduction

Consider the problem of predicting an outcome for a population which consists of sub-populations (groups) that are similar in some aspects but different in others. Focusing the exposition to linear models, one can assume that for each group, the data comes from a different linear model with distinct parameter $\boldsymbol{\beta}_g^*$, i.e., $y_{gi} = \mathbf{x}_{gi}^T \boldsymbol{\beta}_g^* + \omega_{gi}$, where g and i index the group and samples therein respectively. Such an approach fails to capture the common similarities of

Preliminary work. Under review by the International Conference on Machine Learning (ICML). Do not distribute.

the population. Alternatively, one can ignore the grouping information and build a global model by lumping together all of the samples from heterogeneous groups and fit a single linear model $y_i = \mathbf{x}_i^T \boldsymbol{\beta}^* + \omega_i$. While any prediction procedure based on this assumption benefits from a larger number of samples, it fails to capture unique aspects of each group which may lead to poorer prediction accuracy and less interpretable estimated parameter.

In this work, we consider the data enrichment strategy recently suggested in the literature (Dondelinger & Mukherjee, 2016; Gross & Tibshirani, 2016; Ollier & Viallon, 2014; 2015) for the above problem setup. A data enriched model enriches above models by taking their middle ground. It assumes that there are a *common* parameter β_0^* shared between all groups and individual per-group parameters:

$$y_{gi} = \mathbf{x}_{gi}^T (\beta_0^* + \beta_g^*) + \omega_{gi}, \quad g \in \{1, \dots, G\}.$$
 (1)

In (1), we have G linear models coupled by the common parameter β_0^* which models similarities between all samples. Individual parameters β_q s capture unique aspects of samples of each group. We specifically focus on highdimensional regimes for (1) where the number of samples for each group is much smaller than the ambient dimensionality, i.e., $\forall g: n_q \ll p$. Similar to all other highdimensional data models, we assume that the parameters β_q are structured, i.e., for suitable convex functions f_q s, $f_q(\beta_q)$ is small. For example, when the structure is sparsity, f_q s are l_1 -norms.

Note that each of the linear models of (1) is a superposition (Gu & Banerjee, 2016) or dirty statistical model (Yang & Ravikumar, 2013). (Arindam Says: cite relevant paper(s) by McCoy-Tropp on convex de-mixing) Therefore, a dataenriched model is a system of coupled superposition models. A related model is proposed by (Jalali et al., 2010) in the context of multi-task learning, where for each task g the output is coming from $y_{gi} = \mathbf{x}_{gi}^T (\boldsymbol{\beta}_{0g}^* + \boldsymbol{\beta}_g^*) + \omega_{gi}$. As emphasized by the subscript of $\boldsymbol{\beta}_{0g}^*$ the common parameters are different in every task but they share a same support (index of nonzero values), i.e., $\beta_{0i}^* \neq \beta_{0j}^*$ but $\operatorname{supp}(\beta_{0i}^*) = \operatorname{supp}(\beta_{0j}^*)$. (Arindam Says: need a line on what Jalali et al. show, and how our results are (qualitatively) different)

(Arindam Says: we don't have a discussion on 'related

¹Anonymous Institution, Anonymous City, Anonymous Region, Anonymous Country. Correspondence to: Anonymous Author <anon.email@domain.com>.

064

065

079

081 082

083

086

087

089 090 091

> 092 093 094

> 095 096 097

098 099

100

102

104 105

106 107

109

work' - including hierarchical models, multi-task learning; should we have a sub-section on these, or otherwise discuss these related developments)

The data enriched model where β_q s are sparse has recently gained attention because of its application in wide range of domains such as personalized medicine (Dondelinger & Mukherjee, 2016), sentiment analysis, banking strategy (Gross & Tibshirani, 2016), single cell data analysis (Ollier & Viallon, 2015), road safety (Ollier & Viallon, 2014), and disease subtype analysis (Dondelinger & Mukherjee, 2016). More generally, in any high-dimensional problem where the population consists of groups, data enrichment framework has the potential to boost the prediction accuracy and results in a more interpretable set of parameters.

In spite of the recent surge in applying data enrichment framework to different domains, limited advances have been made in understanding the statistical and computational properties of suitable estimators for the data enriched model. In fact, non-asymptotic statistical properties, including sample complexity and statistical rates of convergence, of regularized estimators for the data enriched model is still an open question (Gross & Tibshirani, 2016; Ollier & Viallon, 2014). To the best of our knowledge, the only theoretical guarantee for data enrichment is provided in (Ollier & Viallon, 2015) where authors prove sparsistency of their proposed method under the stringent irrepresentability condition of the design matrix.(Arindam Says: If they show support recovery, the condition may have been necessary - maybe give them due credit, and show how much more the current results are, though we are doing norm consistency, **not support recovery.**) Also beyond sparsity and l_1 -norm, no other structure has been investigated for the data enriched model. Moreover, no computational results, such as rates of convergence of the optimization algorithms associated with the proposed estimators, exist in the literature.

Notation and Preliminaries: We denote sets by curly V, matrices by bold capital V, random variables by capital V, and vectors by small bold v letters. We take [G] = $\{0,\ldots,G\}$ and $[G]_{\setminus}=[G]\setminus\{0\}$. Given G groups and n_q samples in each as $\{\{\mathbf{x}_{gi},y_{gi}\}_{i=1}^{n_g}\}_{g=1}^G$, we can form the per group design matrix $\mathbf{X}_g \in \mathbb{R}^{n_g \times p}$ and output vector $\mathbf{y}_g \in \mathbb{R}^{n_g}$. The total number of samples is $n = \sum_{g=1}^G n_g$. The data enriched model takes the following vector form:

$$\mathbf{y}_g = \mathbf{X}_g(\boldsymbol{\beta}_0^* + \boldsymbol{\beta}_g^*) + \boldsymbol{\omega}_g, \quad \forall g \in [G]$$
 (2)

where each row of \mathbf{X}_g is \mathbf{x}_{gi}^T and $\boldsymbol{\omega}_g^T = (\omega_{g1}, \dots, \omega_{gn_g})$ is the noise vector.

A random variable V is sub-Gaussian if its moments satisfies $\forall p \geq 1 : (\mathbb{E}|V|^p)^{1/p} \leq K_2\sqrt{p}$. The minimum value of K_2 is called the sub-Gaussian norm of V, denoted by $||V||_{\psi_2}$ (Vershynin, 2012). A random vector $\mathbf{v} \in \mathbb{R}^p$ is sub-Gaussian if the one-dimensional marginals $\langle \mathbf{v}, \mathbf{u} \rangle$ are sub-Gaussian random variables for all $\mathbf{u} \in \mathbb{R}^p$. The sub-Gaussian norm of \mathbf{v} is defined (Vershynin, 2012) as $\|\|\mathbf{v}\|\|_{\psi_2} = \sup_{\mathbf{u} \in \mathbb{S}^{p-1}} \||\langle \mathbf{v}, \mathbf{u} \rangle|\|_{\psi_2}$. For any set $\mathcal{V} \in \mathbb{R}^p$ the Gaussian width of the set \mathcal{V} is defined as $\omega(\mathcal{V}) = \mathbb{E}_{\mathbf{g}} \left[\sup_{\mathbf{u} \in \mathcal{V}} \langle \mathbf{g}, \mathbf{u} \rangle \right]$ (Chandrasekaran et al., 2012), (Arindam Says: cite Vershynin's 2019 book) where the expectation is over $\mathbf{g} \sim N(\mathbf{0}, \mathbf{I}_{p \times p})$, a vector of independent zero-mean unit-variance Gaussian.

Contributions: We propose the following Data Enrichment (DE) estimator $\hat{\beta}$ for recovering the structured parameters where the structure is induced by *convex* functions $f_q(\cdot)$:

$$\hat{\boldsymbol{\beta}} = (\hat{\boldsymbol{\beta}}_0^T, \dots, \hat{\boldsymbol{\beta}}_G^T) \in \underset{\boldsymbol{\beta}_0, \dots, \boldsymbol{\beta}_G}{\operatorname{argmin}} \frac{1}{n} \sum_{g=1}^G \|\mathbf{y}_g - \mathbf{X}_g(\boldsymbol{\beta}_0 + \boldsymbol{\beta}_g)\|_2^2, \quad (3)$$
s.t.
$$\forall g \in [G] : f_g(\boldsymbol{\beta}_g) \le f_g(\boldsymbol{\beta}_g^*).$$

We present several statistical and computational results for the DE estimator (3) of the data enriched model:

- The DE estimator (3) succeeds if a geometric condition that we call Data EnRichment Incoherence Condition (DERIC) is satisfied. Compared to other known geometric conditions in the literature such as structural coherence (Gu & Banerjee, 2016) and stable recovery conditions (McCoy & Tropp, 2013), DERIC is a considerably weaker condition.
- Assuming DERIC holds, we establish a high probability non-asymptotic bound on the weighted sum of parameterwise estimation error, $\delta_g = \hat{\beta}_g - \beta_g^*$ as:

$$\sum_{g=0}^{G} \sqrt{\frac{n_g}{n}} \|\boldsymbol{\delta}_g\|_2 \le C\gamma \frac{\max_{g \in [G]} \omega(\mathcal{C}_g \cap \mathbb{S}^{p-1}) + \sqrt{\log(G+1)}}{\sqrt{n}}, \quad (4)$$

where n_g is number of samples per group, $n_0 \triangleq n$ is the total number of samples, $\gamma \triangleq \max_{g \in [G]} \frac{n}{n_g}$ is the *sample* condition number, and C_g is the error cone corresponding to β_a^* exactly defined in Section 2.1. To the best of our knowledge, this is the first statistical estimation guarantee for the data enriched model.

- We also establish the sample complexity of the DE estimator for all parameters as $\forall g \in [G]$: $n_g =$ $O(\omega(\mathcal{C}_g\cap\mathbb{S}^{p-1}))^2$. We emphasize that our result proofs that the recovery of the common parameter β_0 by DE estimator benefits from all of the n pooled samples.
- We present an efficient Projected Block Gradient Descent (PBGD) algorithm to solve DE's objective (3) which converges geometrically to the statistical error bound of (4). To the best of our knowledge, this is the first rigorous computational result for the high-dimensional data-enriched regression.

• We illustrate promising empirical performance of the model on synthetic data as well as on the problem of finding bio-markers associated with drug sensitivity of cell lines from different cancer types, where the support of individual parameters $\hat{\beta}_q^T$ for each cancer g shows a different set of bio-markers per cancer type.

110 111

112

113

114

115

116

117

118

119

120

121

122

124

125

126

128

129

130

131

132

133 134

135

136

137

138

139

140

141

142 143

144

145 146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

The rest of this paper is organized as follows: First, we characterize the error set of our estimator and provide a deterministic error bound in Section 2. Then in Section 3, we discuss the restricted eigenvalue condition and calculate the sample complexity required for the recovery of the true parameters by our estimator under DERIC condition. We close the statistical analysis in Section 4 by providing non-asymptotic high probability error bound for parameter recovery. We delineate our linearly convergent algorithm, PBGD in Section 5 and finally supplement our work with synthetic and real data experiments in Sections 6 and 7.

2. The Data Enrichment Estimator

A compact form of our proposed DE estimator (3) is:

$$\hat{\boldsymbol{\beta}} \in \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \frac{1}{n} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_{2}^{2}, \forall g \in [G] : f_{g}(\boldsymbol{\beta}_{g}) \leq f_{g}(\boldsymbol{\beta}_{g}^{*}),$$

where
$$\mathbf{y} = (\mathbf{y}_1^T, \dots \mathbf{y}_G^T)^T \in \mathbb{R}^n, \boldsymbol{\beta} = (\boldsymbol{\beta_0}^T, \dots, \boldsymbol{\beta_G}^T)^T \in \mathbb{R}^{(G+1)p}$$
 and

$$\mathbf{X} = \begin{pmatrix} \mathbf{X}_1 & \mathbf{X}_1 & 0 & \cdots & 0 \\ \mathbf{X}_2 & 0 & \mathbf{X}_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \cdots & \vdots \\ \mathbf{X}_G & 0 & \cdots & \cdots & \mathbf{X}_G \end{pmatrix} \in \mathbb{R}^{n \times (G+1)p} . \quad (6)$$

2.1. Error Set and Deterministic Error Bound

Consider the group-wise estimation error $\boldsymbol{\delta}_g = \hat{\boldsymbol{\beta}}_g - \boldsymbol{\beta}_g^*$. Since $\hat{\beta}_g = \beta_g^* + \delta_g$ is a feasible point of (5), the error vector δ_g will belong to the following restricted error set:

$$\mathcal{E}_g = \left\{ \delta_g | f_g(\beta_g^* + \delta_g) \le f_g(\beta_g^*) \right\}, \quad g \in [G].$$

We denote the cone of the error set as $C_q \triangleq \operatorname{Cone}(\mathcal{E}_q)$ and the spherical cap corresponding to it as $\mathcal{A}_g \triangleq \mathcal{C}_g \cap$ \mathbb{S}^{p-1} . Consider the set $\mathcal{C} = \{ \boldsymbol{\delta} = (\boldsymbol{\delta}_0^T, \dots, \boldsymbol{\delta}_G^T)^T | \boldsymbol{\delta}_g \in \mathcal{C}_g \}$, following two subsets of C play key roles in our analysis:

$$\mathcal{H} \triangleq \left\{ \boldsymbol{\delta} \in \mathcal{C} \middle| \sum_{g=0}^{G} \frac{n_g}{n} || \boldsymbol{\delta}_g ||_2 = 1 \right\},$$

$$ar{\mathcal{H}} \hspace{0.2cm} riangleq \hspace{0.2cm} \left\{ oldsymbol{\delta} \in \mathcal{C} ig| \sum_{g=0}^G \sqrt{rac{n_g}{n}} \|oldsymbol{\delta}_g\|_2 = 1
ight\}.$$

Starting from the optimality of $\hat{\beta} = \beta^* + \delta$ as $\frac{1}{n} || \mathbf{y} - \mathbf{j} || \mathbf{j} - \mathbf{j} || \mathbf{j} - \mathbf{j} || \mathbf{j} - \mathbf{j} - \mathbf{j} - \mathbf{j} || \mathbf{j} - \mathbf{$ $\|\mathbf{X}\hat{\boldsymbol{\beta}}\|_2^2 \leq \frac{1}{n} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}^*\|_2^2$, we have: $\frac{1}{n} \|\mathbf{X}\boldsymbol{\delta}\|_2^2 \leq \frac{1}{n} 2\boldsymbol{\omega}^T \mathbf{X}\boldsymbol{\delta}$ where $\pmb{\omega} = [\pmb{\omega}_1^T, \dots, \pmb{\omega}_G^T]^T \in \mathbb{R}^n$ is the vector of all noises. Using this basic inequality, we can establish the following deterministic error bound.

Theorem 2.1. For the proposed estimator (5), assume there exist $0 < \kappa \le \inf_{\mathbf{u} \in \mathcal{H}} \frac{1}{n} \|\mathbf{X}\mathbf{u}\|_2^2$. Then, for the sample condition number $\gamma = \max_{g \in [G] \setminus} \frac{n}{n_g}$, the following deterministic upper bounds holds:

$$\sum_{g=0}^{G} \sqrt{\frac{n_g}{n}} \|\boldsymbol{\delta}_g\|_2 \le \frac{2\gamma \sup_{\mathbf{u} \in \bar{\mathcal{H}}} \boldsymbol{\omega}^T \mathbf{X} \mathbf{u}}{n\kappa}.$$

3. Restricted Eigenvalue Condition

The main assumptions of Theorem 2.1 is known as Restricted Eigenvalue (RE) condition in the literature of high dimensional statistics (Banerjee et al., 2014; Negahban et al., 2012; Raskutti et al., 2010): $\inf_{\mathbf{u}\in\mathcal{H}}\frac{1}{n}\|\mathbf{X}\mathbf{u}\|_{2}^{2} \geq \kappa > 0.$ The RE condition posits that the minimum eigenvalues of the matrix $\mathbf{X}^T\mathbf{X}$ in directions restricted to \mathcal{H} is strictly positive. In this section, we show that for the design matrix X defined in (6), the RE condition holds with high probability under a suitable geometric condition we call Data EnRichment Incoherence Condition (DERIC) and enough $\hat{\boldsymbol{\beta}} \in \underset{\boldsymbol{a}}{\operatorname{argmin}} \frac{1}{n} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_{2}^{2}, \forall g \in [G]: f_{g}(\boldsymbol{\beta}_{g}) \leq f_{g}(\boldsymbol{\beta}_{g}^{*}),$ (5) number of samples. We precisely characterize total and per-group sample complexities required for successful parameter recovery. For the analysis, similar to existing work (Tropp, 2015; Mendelson, 2014; Gu & Banerjee, 2016), we assume the design matrix to be isotropic sub-Gaussian.¹

> **Definition 3.1.** We assume \mathbf{x}_{gi} are i.i.d. random vectors from a non-degenerate zero-mean, isotropic sub-Gaussian distribution. In other words, $\mathbb{E}[\mathbf{x}] = 0$, $\mathbb{E}[\mathbf{x}^T\mathbf{x}] = \mathbf{I}_{p \times p}$, and $\|\mathbf{x}\|_{\psi_2} \leq k$. As a consequence, $\exists \alpha > 0$ such that $\forall \mathbf{u} \in \mathbb{S}^{p-1}$ we have $\mathbb{E}|\langle \mathbf{x}, \mathbf{u} \rangle| \geq \alpha$. Further, we assume noise ω_{qi} are i.i.d. zero-mean, unit-variance sub-Gaussian with $\|\omega_{gi}\|_{\psi_2} \leq K$.

> Unlike standard high-dimensional statistical estimation, for RE condition to be true, parameters of the data enriched model (2) needs to satisfy a geometric condition under which trivial solutions such as $\boldsymbol{\delta}_g = -\boldsymbol{\delta}_0$ for all $g \in [G]_{\setminus}$ are avoided. To derive this condition, first note that each of the linear models in (2) is a superposition model (Gu & Banerjee, 2016) or dirty statistical model (Yang & Ravikumar, 2013). RE condition of individual superposition models can be established under the so-called Structural Coherence (SC) condition (Gu & Banerjee, 2016; McCoy & Tropp, 2013). However, SC condition on each individual problem fails to utilize the true coupling structure in the data enriched model, where β_0 is involved in all models. In fact, as we show shortly, using SC on each individual model leads to radically pessimistic estimates of the sample complexity.

¹Extension to an-isotropic sub-Gaussian case is straightforward by techniques developed in (Banerjee et al., 2014; Rudelson & Zhou, 2013).

Here, we introduce DERIC, a considerably weaker geome-tric condition compared to SC of (Gu & Banerjee, 2016; McCoy & Tropp, 2013). In particular, SC requires that none of the individual error cones C_g intersect with the inverted error cone $-C_0$. Instead of this stringent geometric con-dition, we allow $-\mathcal{C}_0$ to intersect with an arbitrarily large fraction of the C_q cones. As the number of intersections in-creases, our bound becomes looser. The rigorous definition of DERIC is provided below.

Definition 3.2 (Data EnRichment Incoherence Condition (DERIC)). There exists a set $\mathcal{I} \subseteq [G]_{\setminus}$ of groups where for some scalars $0 \le \bar{\rho} \le 1$ and $\lambda_{\min} > 0$ the following holds:

1.
$$\sum_{i\in\mathcal{I}} n_i \geq \lceil \bar{\rho}n \rceil$$
.

2.
$$\forall i \in \mathcal{I}, \ \forall \delta_i \in \mathcal{C}_i, \ and \ \delta_0 \in \mathcal{C}_0: \ \|\delta_i + \delta_0\|_2 \ge \lambda_{\min}(\|\delta_0\|_2 + \|\delta_i\|_2)$$

Observe that $0 \le \lambda_{\min}$, $\bar{\rho} \le 1$ *by definition.*

In contrast, the existing SC condition (Gu & Banerjee, 2016; McCoy & Tropp, 2013) applied to each superposition model (2) separately requires for $\delta_0 \in \mathcal{C}_0$ and each $\delta_g \in \mathcal{C}_g$ there exist $\lambda > 0$ such that: $\|\delta_0 + \delta_g\|_2 \geq \lambda \, (\|\delta_0\|_2 + \|\delta_g\|_2)$. Clearly DERIC and SC conditions are satisfied if the error cones \mathcal{C}_g and \mathcal{C}_0 does not have a ray in common, i.e., $\sup \langle \delta_0 / \|\delta_0\|_2, \delta_g / \|\delta_g\|_2 \rangle < 1$ (Tropp, 2015; Gu & Banerjee, 2016). However, DERIC condition also allows for a large fraction of cones to intersect with \mathcal{C}_0 . Now, we are ready to show that the state-of-the-art estimator of (Gu & Banerjee, 2016) will lead to a considerably pessimistic sample complexity.

Proposition 3.3. Assume observations distributed as defined in Definition 3.1 and pair-wise SC conditions are satisfied. Consider each superposition model (2) in isolation; to recover the common parameter β_0^* requires at least one group to have $n_g = O(\omega^2(\mathcal{A}_0))$. Recovering the individual parameter β_g^* needs at least $n_g = O((\max_{g \in [G]} \omega(\mathcal{A}_g) + \sqrt{\log 2})^2)$ samples in the group.

In other words, by separate analysis of superposition estimators neither the estimation of the common parameter β_0 nor the individual parameters β_g benefit from pooling the n samples. But given the nature of coupling in the data enriched model, we hope to be able to get a better sample complexity specifically for the common parameter β_0 . Using DERIC and the small ball method (Mendelson, 2014), a recent tool from empirical process theory, we get a better sample complexity for satisfying the RE condition.

Theorem 3.4. Let $\mathbf{x}_{gi}s$ be random vectors defined in Definition 3.1. Assume DERIC condition of Definition 3.2 holds for error cones $C_g s$ and $\psi_{\mathcal{I}} = \lambda_{\min} \bar{\rho}/3$. Then, for all $\delta \in \mathcal{H}$, when we have enough number of samples as

 $\forall g \in [G]_{\backslash}: n_g \geq m_g = O(k^6 \alpha^{-6} \psi_{\mathcal{I}}^{-2} \omega(\mathcal{A}_g)^2), \text{ with probability at least } 1 - e^{-n\kappa_{\min}/4} \text{ we have:}$

$$\inf_{\boldsymbol{\delta} \in \mathcal{H}} \frac{1}{\sqrt{n}} \| \mathbf{X} \boldsymbol{\delta} \|_2 \ \geq \ \frac{\kappa_{\min}}{2}$$

where $\kappa_{\min} = \min_{g \in [G]_{\setminus}} C\psi_{\mathcal{I}} \frac{\alpha^3}{k^2} - \frac{2c_g k\omega(\mathcal{A}_g)}{\sqrt{n_g}}$ and $\kappa = \frac{\kappa_{\min}^2}{4}$ is the lower bound of the RE condition.

4. General Error Bound

In this section, we provide a high probability upper bound for the estimation error of the common and individual parameters. To avoid cluttering the notation, we rename the vector of all noises as $\omega_0 \triangleq \omega$. First, we massage the deterministic upper bound of Theorem 2.1 as follows:

$$\begin{split} \boldsymbol{\omega}^T \mathbf{X} \boldsymbol{\delta} &= \sum_{g=0}^G \langle \mathbf{X}_g^T \boldsymbol{\omega}_g, \boldsymbol{\delta}_g \rangle \\ &= \sum_{g=0}^G \sqrt{\frac{n_g}{n}} \|\boldsymbol{\delta}_g\|_2 \langle \mathbf{X}_g^T \frac{\boldsymbol{\omega}_g}{\|\boldsymbol{\omega}_g\|_2}, \frac{\boldsymbol{\delta}_g}{\|\boldsymbol{\delta}_g\|_2} \rangle \sqrt{\frac{n}{n_g}} \|\boldsymbol{\omega}_g\|_2 \end{split}$$

Assume
$$b_g = \langle \mathbf{X}_g^T \frac{\pmb{\omega}_g}{\|\pmb{\omega}_g\|_2}, \frac{\pmb{\delta}_g}{\|\pmb{\delta}_g\|_2} \rangle \sqrt{\frac{n}{n_g}} \|\pmb{\omega}_g\|_2$$
 and $a_g =$

 $\sqrt{\frac{n_g}{n}} \|\boldsymbol{\delta}_g\|_2$. Then the above term is the inner product of two vectors $\mathbf{a} = (a_0, \dots, a_G)$ and $\mathbf{b} = (b_0, \dots, b_G)$ for which we have:

$$\sup_{\mathbf{a}\in\mathcal{H}}\mathbf{a}^T\mathbf{b} = \sup_{\|\mathbf{a}\|_1=1}\mathbf{a}^T\mathbf{b} \leq \|\mathbf{b}\|_{\infty} = \max_{g\in[G]}b_g,$$

where the inequality holds because of the definition of the dual norm. Next, using the following lemma, we upper bounds b_q with high probability.

Lemma 4.1. For \mathbf{x}_{gi} and ω_{gi} defined in Definition 3.1 and $\tau > 0$, with probability at least $1 - \frac{\sigma_g}{(G+1)} \exp\left(-\min\left[\nu_g n_g - \log(G+1), \frac{\tau^2}{\eta_g^2 k^2}\right]\right)$ we have:

$$\sqrt{\frac{n}{n_g}} \|\boldsymbol{\omega}_g\|_2 \sup_{\mathbf{u}_g \in \mathcal{A}_g} \langle \mathbf{X}_g^T \frac{\boldsymbol{\omega}_g}{\|\boldsymbol{\omega}_g\|_2}, \mathbf{u}_g \rangle \tag{7}$$

$$\leq \sqrt{(2K^2+1)n}\left(\zeta_g k\omega(\mathcal{A}_g) + \epsilon_g \sqrt{\log(G+1)} + \tau\right),$$

where $\sigma_g, \eta_g, \zeta_g$ and ϵ_g are group dependent constants.

Using Lemma 4.1 the below theorem establishes a high probability upper bound for the deterministic bound of Theorem 2.1, i.e., $\frac{2}{n}\omega^T \mathbf{X} \mathbf{u}$.

Theorem 4.2. Assume \mathbf{x}_{gi} and ω_{gi} distributed according to Definition 3.1, then with probability at least $1-\sigma\exp\left(-\min_{g\in[G]}\left[\nu_g n_g - \log(G+1), \frac{\tau^2}{\eta_g^2 k^2}\right]\right)$ we have:

$$\frac{2}{n} \boldsymbol{\omega}^T \mathbf{X} \boldsymbol{\delta} \leq \sqrt{\frac{8K^2 + 4}{n}} \max_{g \in [G]} \left(\zeta_g k \omega(\mathcal{A}_g) + \epsilon_g \sqrt{\log(G + 1)} + \tau \right)$$

where $\sigma = \max_{q \in [G]} \sigma_q$ and $\tau > 0$.

1: **input:** \mathbf{X}, \mathbf{y} , learning rates (μ_0, \dots, μ_G) , initialization $\boldsymbol{\beta}^{(1)} = \mathbf{0}$

2: output: $\hat{\beta}$

224

227

228

229

231

233

236

238

239

240

241

242

243

244

245

247

248

249

250

254

258

259

264

266

267

274

3: **for** t = 1 **to** T **do**

4: **for** g=1 **to** G **do**

5:
$$\boldsymbol{\beta}_{g}^{(t+1)} = \Pi_{\Omega_{f_g}} \left(\boldsymbol{\beta}_{g}^{(t)} + \mu_{g} \mathbf{X}_{g}^{T} \left(\mathbf{y}_{g} - \mathbf{X}_{g} \left(\boldsymbol{\beta}_{0}^{(t)} + \boldsymbol{\beta}_{g}^{(t)} \right) \right) \right)$$

6: end for

7:
$$\boldsymbol{\beta}_0^{(t+1)} = \Pi_{\Omega f_0} \left(\boldsymbol{\beta}_0^{(t)} + \mu_0 \mathbf{X}_0^T \left(\mathbf{y} - \mathbf{X}_0 \boldsymbol{\beta}_0^{(t)} - \begin{pmatrix} \mathbf{X}_1 \boldsymbol{\beta}_1^{(t)} \\ \vdots \\ \mathbf{X}_C \boldsymbol{\beta}_C^{(t)} \end{pmatrix} \right) \right)$$

8: end for

The following corollary characterizes the general error bound and results from the direct combination of Theorem 2.1, Theorem 3.4, and Theorem 4.2.

Corollary 4.3. For \mathbf{x}_{gi} and ω_{gi} described in Definition 3.1 when we have enough number of samples $\forall g \in [G]: n_g > m_g$ which lead to $\kappa > 0$, the following general error bound holds with high probability for estimator (5):

$$1\sum_{g=0}^G \sqrt{\frac{n_g}{n}} \|\boldsymbol{\delta}_g\|_2 \leq C \gamma \frac{k\zeta \max_{g \in [G]} \omega(\mathcal{A}_g) + \epsilon \sqrt{\log(G+1)} + \tau}{\kappa_{\min}^2 \sqrt{n}}$$

where
$$C=8\sqrt{2K^2+1}$$
, $\zeta=\max_{g\in[G]}\zeta_g$, $\epsilon=\max_{g\in[G]}\epsilon_g$, $\gamma=\max_{g\in[G]\setminus n}/n_g$ and $\tau>0$.

5. Estimation Algorithm

We propose the following Projected Block Gradient Descent algorithm (PBGD), Algorithm 1, where $\Pi_{\Omega_{fg}}$ is the Euclidean projection onto the set $\Omega_{f_g}(d_g) = \{f_g(\beta) \leq d_g\}$ where $d_g = f_g(\beta_g^*)$ and is dropped to avoid cluttering. In practice, d_g can be determined by cross-validation.

5.1. Convergence Rate Analysis

Here, we want to upper bound the error of each iteration of the PBGD algorithm. Let's $\delta^{(t)} = \beta^{(t)} - \beta^*$ be the error of iteration t of PBGD, i.e., the distance from the true parameter (not the optimization minimum, $\hat{\beta}$). We show that $\|\delta^{(t)}\|_2$ decreases exponentially fast in t to the statistical error $\|\delta\|_2 = \|\hat{\beta} - \beta^*\|_2$. We first start with the required definitions for our analysis.

Definition 5.1. We define the following positive constants as functions of step sizes $\mu_g > 0$:

$$\forall g \in [G] : \rho_g(\mu_g) = \sup_{\mathbf{u}, \mathbf{v} \in \mathcal{B}_g} \mathbf{v}^T (\mathbf{I}_g - \mu_g \mathbf{X}_g^T \mathbf{X}_g) \mathbf{u},$$

$$\eta_g(\mu_g) = \mu_g \sup_{\mathbf{v} \in \mathcal{B}_g} \mathbf{v}^T \mathbf{X}_g^T \frac{\boldsymbol{\omega}_g}{\|\boldsymbol{\omega}_g\|_2},$$

$$\forall g \in [G]_{\setminus} : \phi_g(\mu_g) = \mu_g \sup_{\mathbf{v} \in \mathcal{B}_g, \mathbf{u} \in \mathcal{B}_0} -\mathbf{v}^T \mathbf{X}_g^T \mathbf{X}_g \mathbf{u},$$

where $\mathcal{B}_g = \mathcal{C}_g \cap \mathbb{B}^p$ is the intersection of the error cone and the unit ball.

In the following theorem, we establish a deterministic bound on iteration errors $\|\boldsymbol{\delta}_g^{(t)}\|_2$ which depends on constants defined in Definition 5.1.

Theorem 5.2. For Algorithm 1 initialized by $\beta^{(1)} = \mathbf{0}$, we have the following deterministic bound for the error at iteration t+1:

$$\sum_{g=0}^{G} \sqrt{\frac{n_g}{n}} \|\boldsymbol{\delta}_g^{(t+1)}\|_2 \tag{9}$$

$$\leq \rho^{t} \sum_{g=0}^{G} \sqrt{\frac{n_{g}}{n}} \|\boldsymbol{\beta}_{g}^{*}\|_{2} + \frac{1-\rho^{t}}{1-\rho} \sum_{g=0}^{G} \sqrt{\frac{n_{g}}{n}} \eta_{g} \|\boldsymbol{\omega}_{g}\|_{2},$$

where
$$\rho \triangleq \max \left(\rho_0 + \sum_{g=1}^G \sqrt{\frac{n_g}{n}} \phi_g, \max_{g \in [G]} \left[\rho_g + \sqrt{\frac{n}{n_g}} \frac{\mu_0}{\mu_g} \phi_g \right] \right)$$
.

The RHS of (9) consists of two terms. If we keep $\rho < 1$, the first term approaches zero exponentially fast, i.e., with linear rate, and the second term determines the bound. In the following, we show that for specific choices of step sizes μ_g s, the second term can be upper bounded using the analysis of Section 4. More specifically, the first term corresponds to the optimization error which shrinks in every iteration while the second term is constant times the upper bound of the statistical error characterized in Corollary 4.3. Therefore, if we keep ρ below one, the estimation error of PBGD algorithm linearly converges to the approximate statistical error bound.

One way for having $\rho < 1$ is to keep all arguments of $\max(\cdots)$ defining ρ strictly below 1. To this end, we first establish high probability upper bound for ρ_g , η_g , and ϕ_g (in the Appendix) and then show that with enough number of samples and proper step sizes μ_g , ρ can be kept strictly below one with high probability. In Section 6, we empirically illustrate such geometric convergence. The high probability bounds for constants in Definition 5.1 and the deterministic bound of Theorem 5.2 leads to the following theorem which shows for enough number of samples, of the same order as the statistical sample complexity, we can keep ρ below one and have geometric convergence.

Theorem 5.3. Let $\tau = C\sqrt{\log(G+1)} + b$ for b > 0 and $\omega_{0g} = \omega(A_0) + \omega(A_g)$. For the per-group step sizes of:

$$\mu_0 = \frac{1}{4n} \times \min_{g \in [G]_{\setminus}} \left(1 + c_{0g} \frac{\omega_{0g} + \tau}{\sqrt{n_g}} \right)^{-2},$$

$$\mu_g = \frac{1}{2\sqrt{nn_g}} \left(1 + c_{0g} \frac{\omega_{0g} + \tau}{\sqrt{n_g}} \right)^{-1}$$

and sample complexities of $\forall g \in [G] : n_g \ge 2c_g^2(2\omega(\mathcal{A}_g) + \tau)^2$, updates of the Algorithm 1 obey the following with high

277278279280

290291

292

293

294

284

295296297298299

300 301

308

309

316317318319

315

324 325 326

327 328 329 probability:

$$\begin{split} \sum_{g=0}^{G} \sqrt{\frac{n_g}{n}} \| \pmb{\delta}_g^{(t+1)} \|_2 & \leq & r(\tau)^t \sum_{g=0}^{G} \sqrt{\frac{n_g}{n}} \| \pmb{\beta}_g^* \|_2 \\ & + & \frac{(G+1)\sqrt{(2K^2+1)}}{\sqrt{n}(1-r(\tau))} \left(\zeta k \max_{g \in [G]} \omega(\mathcal{A}_g) - \frac{(G+1)\sqrt{n}}{2} \right) \end{split}$$

where $r(\tau) < 1$.

Corollary 5.4. When $t \to \infty$ we have the following with high probability:

$$\sum_{g=0}^{G} \sqrt{\frac{n_g}{n}} \|\boldsymbol{\delta}_g^{\infty}\|_2 \le \frac{(G+1)\sqrt{(2K^2+1)}}{\sqrt{n}(1-r(\tau))}$$
(10)
$$\times \left(\zeta k \max_{g \in [G]} \omega(\mathcal{A}_g) + C\sqrt{\log(G+1)} + b \right),$$

It is instructive to compare RHS of (10) with that of (8): κ_{\min} defined in Theorem 3.4 corresponds to $(1-r(\tau))$ and the extra G+1 factor corresponds to the sample condition number $\gamma = \max_{g \in [G]} \frac{n}{n_g}$. Therefore, Corollary 5.4 shows that PBGD converges to a scaled variant of statical error bound determined in Corollary 4.3.

6. Synthetic Experiments

We considered sparsity based simulations with varying G and sparsity levels. In our first set of simulations, we set p = 100, G = 10 and sparsity of the individual parameters to be s=10. We generated a dense β_0 with $\|\beta_0\|=p$ and did not impose any constraint. Iterates $\{\beta_g^{(t)}\}_{g=1}^G$ are obtained by projection onto the ℓ_1 ball $\|\boldsymbol{\beta}_q\|_1$. Nonzero entries of β_q are generated with $\mathcal{N}(0,1)$ and nonzero supports are picked uniformly at random. Inspired from our theoretical step size choices, in all experiments, we used simplified learning rates of $\frac{1}{n}$ for β_0 and $\frac{1}{\sqrt{nn_g}}$ for β_g , $g \in [G]_{\setminus}$. Observe that, cones of the individual parameters intersect with that of β_0 hence this setup actually violates DERIC (which requires an arbitrarily small constant fraction of groups to be non-intersecting). Our intuition is that the individual parameters are mostly incoherent with each other and the existence of a nonzero perturbation over β_q 's that keeps all measurements intact is unlikely. Remarkably, experimental results still show successful learning of all parameters from small amount of samples. We picked $n_q = 60$ for each group. Hence, in total, we have 11p = 1100 unknowns, $200 = G \times 10 + 100$ degrees of freedom and $G \times 60 = 600$ samples. In all figures, we study the normalized squared error $\frac{\|\beta_g^{(t)}-\beta_g\|_2^2}{\|\beta_g\|_2^2}$ and average 10 independent realization for each curve. Figure 1a shows the estimation performance as a function of iteration number t. While each group might behave slightly different, we do observe that all parameters are linear converging to ground truth.

Figure 1. a) Noiseless fast convergence. b) Noise on the first group does not impact other groups as much. c) Increasing sample size improves rate of convergence. d) Our algorithm convergences fast even with a large number of groups G=100.

In Figure 1b, we test the noise robustness of our algorithm. We add a $\mathcal{N}(0,1)$ noise to the $n_1=60$ measurements of the first group only. The other groups are left untouched. While all parameters suffer nonzero estimation error, we observe that, the global parameter β_0 and noise-free groups $\{\beta_g\}_{g=2}^G$ have substantially less estimation error. This implies that noise in one group mostly affects itself rather than the global estimation. In Figure 1c, we increased the sample size to $n_g=150$ per group. We observe that, in comparison to Figure 1a, rate of convergence receives a boost from the additional samples as predicted by our theory.

Finally, Figure 1d considers a very high-dimensional problem where $p=1000,\,G=100,$ individual parameters are 10 sparse, β_0 is 100 sparse and $n_g=150.$ The total degrees of freedom is 1100, number of unknowns are 101000 and total number of datapoints are $150\times100=15000.$ While individual parameters have substantial variation in terms of convergence rate, at the end of 1000 iteration, all parameters have relative reconstruction error below $10^{-6}.$

7. Drug Sensitivity Analysis for Cancer Cell Lines

In this section we investigate the application of DE in analyzing the response of patients with cancer to different doses of various drugs. Each cancer type (lung, blood, etc.) is a group g in our DE model and the respond of patient i with cancer g to the drug is our output g_{gi} . The set of features for each patient \mathbf{x}_{gi} consists of gene expressions, copy number variation, and mutations and g_{gi} is the "activity area"

above the dose-response curve, Figure 2a. Given \mathbf{x}_{gi} and a drug, we have two goals: accurately predict a patient's response to the drug and identifying genetic predictors of drug sensitivity.

We use Cancer Cell Line Encyclopedia (CCLE) (Barretina et al., 2012) which is a compilation \sim 500 human cancer cell lines where responses of them to 24 anticancer drugs have been measured. From the 36 cancer type available in CCLE, we focus on lung and blood. Not all of the 500 lines have been treated with all of the drugs. Therefore we end up with a different number of samples n for each drug where the range is $n \in [150, 200]$. Also, we perform a standard preprocessing (Barretina et al., 2012) where we remove features with less than .1 absolute correlation with the response of interest which reduce the dimension to $p \in [1500, 5000]$ range.

Prediction: Here we run, 24 different experiments, each for one drug. Since the values of d_g in constraint sets $\Omega_{f_g}(d_g)$ are unknown, we tune them by 10-fold cross-validation and report the mean squared error (MSE) of the Elastic Net (Zou & Hastie, 2005) (method used in the original CCLE paper(Barretina et al., 2012)) and the data enrichment in Figure 2b. Both methods have very close prediction performance.

Interpretation We select Saracatinib, a drug that works on both lung and blood cancers, Figure 2c. Fixing the d_g parameters, we select the genes which have non-zero coefficient 40 times across 50 runs of PBGD on bootstrapped samples. Now, we have three lists of genes based on the supports of shared , lung , and blood parameters. We perform gene enrichment analysis using ToppGene (Chen et al., 2009) to see where in functional/disease/drug databases these genes have been observed together with statistical significance. Table 1 summarizes a highlight of our findings which shows lung and blood parameters are correctly capturing a meaningful set of genes.

References

- Banerjee, A., Chen, S., Fazayeli, F., and Sivakumar, V. Estimation with Norm Regularization. In *Advances in Neural Information Processing Systems*, pp. 1556–1564, 2014.
- Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A. A., Kim, S., Wilson, C. J., Lehár, J., Kryukov, G. V., Sonkin, D., et al. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. *Nature*, 483(7391):603, 2012.
- Boucheron, S., Lugosi, G., and Massart, P. *Concentration Inequalities: A Nonasymptotic Theory of Independence*. Oxford University Press, 2013.
- Chandrasekaran, V., Recht, B., Parrilo, P. A., and Willsky, A. S. The convex geometry of linear inverse problems. *Foundations of Computational Mathematics*, 12(6):805–849, 2012.
- Chen, J., Bardes, E. E., Aronow, B. J., and Jegga, A. G. Toppgene suite for gene list enrichment analysis and candidate gene prioritization. *Nucleic acids research*, 37 (suppl_2):W305–W311, 2009.
- Dondelinger, F. and Mukherjee, S. High-dimensional regression over disease subgroups. *arXiv preprint arXiv:1611.00953*, 2016.
- Gross, S. M. and Tibshirani, R. Data shared lasso: A novel tool to discover uplift. *Computational Statistics & Data Analysis*, 101:226–235, 2016.
- Gu, Q. and Banerjee, A. High dimensional structured superposition models. In *Advances In Neural Information Processing Systems*, pp. 3684–3692, 2016.
- Jalali, A., Ravikumar, P., Sanghavi, S., and Ruan, C. A Dirty Model for Multi-task Learning. In Advances in Neural Information Processing Systems, pp. 964–972, 2010.
- McCoy, M. B. and Tropp, J. A. The achievable performance of convex demixing. *arXiv preprint arXiv:1309.7478*, 2013.
- Mendelson, S. Learning Without Concentration. In *Journal* of the ACM (JACM). To appear, 2014.
- Negahban, S. N., Ravikumar, P., Wainwright, M. J., and Yu, B. A Unified Framework for High-Dimensional Analysis of \$M\$-Estimators with Decomposable Regularizers. *Statistical Science*, 27(4):538–557, 2012. ISSN 0883-4237.
- Ollier, E. and Viallon, V. Joint estimation of *k* related regression models with simple *l*_1-norm penalties. *arXiv* preprint arXiv:1411.1594, 2014.

Figure 2. a) A sample fitted dose-response curve where Activity Area y_{gi} is shaded. b) Comparison of Mean Square Error of elastic net and data enrichment in predicting the response to 24 drugs for lung and blood cancer cell lines. Each dot represents an experiment for a drug. Prediction accuracy of both algorithms are very close. c) Distribution of responses to Saracatinib.

(Blood, 512)		(Lung, 500)	
Highlights	p-Val	Highlights	p-Val
Regulation of immune response	2.1E-8	Secondary malignant neoplasm of Lung	8.9E-6
T cell activation	5.0E-8	Lung cancer	2.9E-5
Leukocyte activation	1.0E-6	Adenosquamous cell lung cancer	3.9E-5

Table 1. Each column is (Cancer Type, Number of significant genes) and highlights show where the set of genes have been observed together. p-Values are computed by Fisher's exact test (Chen et al., 2009).

- Ollier, E. and Viallon, V. Regression modeling on stratified data with the lasso. *arXiv preprint arXiv:1508.05476*, 2015.
- Oymak, S., Recht, B., and Soltanolkotabi, M. Sharp timedata tradeoffs for linear inverse problems. *arXiv* preprint *arXiv*:1507.04793, 2015.
- Raskutti, G., Wainwright, M. J., and Yu, B. Restricted eigenvalue properties for correlated gaussian designs. *Journal of Machine Learning Research*, 11:2241–2259, 2010.
- Rudelson, M. and Zhou, S. Reconstruction from anisotropic random measurements. *IEEE Transactions on Information Theory*, 59(6):3434–3447, 2013.
- Tropp, J. A. Convex recovery of a structured signal from independent random linear measurements. In *Sampling Theory a Renaissance*. To appear, may 2015.
- Vershynin, R. Introduction to the non-asymptotic analysis of random matrices. In *Compressed Sensing*, pp. 210–268. Cambridge University Press, Cambridge, 2012.
- Yang, E. and Ravikumar, P. Dirty statistical models. In *Advances in Neural Information Processing Systems*, pp. 611–619, 2013.
- Zou, H. and Hastie, T. Regularization and Variable Selection via the Elastic Net. *Journal of the Royal Statistical Society*, 67(2):301–320, 2005. ISSN 1369-7412.

A. Proofs

A.1. Proof of Theorem 2.1

Proof. Starting from the optimality inequality, for the lower bound with the set \mathcal{H} we get:

$$\frac{1}{n} \|\mathbf{X}\boldsymbol{\delta}\|_{2}^{2} \geq \frac{1}{n} \inf_{\mathbf{u} \in \mathcal{H}} \|\mathbf{X}\mathbf{u}\|_{2}^{2} \left(\sum_{g=0}^{G} \frac{n_{g}}{n} \|\boldsymbol{\delta}_{g}\|_{2} \right)^{2} \\
\geq \kappa \left(\sum_{g=0}^{G} \frac{n_{g}}{n} \|\boldsymbol{\delta}_{g}\|_{2} \right)^{2} \\
\geq \kappa \left(\min_{g \in [G]} \frac{n_{g}}{n} \right) \left(\sum_{g=0}^{G} \sqrt{\frac{n_{g}}{n}} \|\boldsymbol{\delta}_{g}\|_{2} \right)^{2}$$
(11)

where $0 < \kappa \le \frac{1}{n} \inf_{\mathbf{u} \in \mathcal{H}} \|\mathbf{X}\mathbf{u}\|_2^2$ is known as Restricted Eigenvalue (RE) condition. The upper bound will factorize as:

$$\frac{2}{n}\boldsymbol{\omega}^{T}\mathbf{X}\boldsymbol{\delta} \leq \frac{2}{n}\sup_{\mathbf{u}\in\bar{\mathcal{H}}}\boldsymbol{\omega}^{T}\mathbf{X}\mathbf{u}\left(\sum_{g=0}^{G}\sqrt{\frac{n_{g}}{n}}\|\boldsymbol{\delta}_{g}\|_{2}\right), \quad \mathbf{u}\in\mathcal{H}$$
(12)

Putting together inequalities (11) and (12) completes the proof.

A.2. Proof of Proposition 3.3

Proof. Consider only one group for regression in isolation. Note that $\mathbf{y}_g = \mathbf{X}_g(\beta_g^* + \beta_0^*) + \boldsymbol{\omega}_g$ is a superposition model and as shown in (Gu & Banerjee, 2016) the sample complexity required for the RE condition and subsequently recovering β_0^* and β_q^* is $n_g \geq c(\max_{g \in [G]} \omega(A_g) + \sqrt{\log 2})^2$.

A.3. Proof of Theorem 3.4

Let's simplify the LHS of the RE condition:

$$\frac{1}{\sqrt{n}} \|\mathbf{X}\boldsymbol{\delta}\|_{2} = \left(\frac{1}{n} \sum_{g=1}^{G} \sum_{i=1}^{n_{g}} |\langle \mathbf{x}_{gi}, \boldsymbol{\delta}_{0} + \boldsymbol{\delta}_{g} \rangle|^{2}\right)^{\frac{1}{2}}$$

$$\geq \frac{1}{n} \sum_{g=1}^{G} \sum_{i=1}^{n_{g}} |\langle \mathbf{x}_{gi}, \boldsymbol{\delta}_{0} + \boldsymbol{\delta}_{g} \rangle|$$

$$\geq \frac{1}{n} \sum_{g=1}^{G} \xi \|\boldsymbol{\delta}_{0} + \boldsymbol{\delta}_{g}\|_{2} \sum_{i=1}^{n_{g}} \mathbb{1}\left(|\langle \mathbf{x}_{gi}, \boldsymbol{\delta}_{0} + \boldsymbol{\delta}_{g} \rangle| \geq \xi \|\boldsymbol{\delta}_{0} + \boldsymbol{\delta}_{g}\|_{2}\right),$$

where the first inequality is due to Lyapunov's inequality. To avoid cluttering we denote $\delta_{0g} = \delta_0 + \delta_g$ where $\delta_0 \in \mathcal{C}_0$ and $\delta_g \in \mathcal{C}_g$. Now we add and subtract the corresponding per-group marginal tail function, $Q_{\xi_g}(\delta_{0g}) = \mathbb{P}(|\langle \mathbf{x}, \delta_{0g} \rangle| > \xi_g)$ where $\xi_g > 0$. Let $\xi_g = \|\delta_{0g}\|_2 \xi$ then the LHS of the RE condition reduces to:

$$\inf_{\boldsymbol{\delta} \in \mathcal{H}} \frac{1}{\sqrt{n}} \| \mathbf{X} \boldsymbol{\delta} \|_{2} \geq \inf_{\boldsymbol{\delta} \in \mathcal{H}} \sum_{g=1}^{G} \frac{n_{g}}{n} \xi_{g} Q_{2\xi_{g}}(\boldsymbol{\delta}_{0g})$$

$$- \sup_{\boldsymbol{\delta} \in \mathcal{H}} \frac{1}{n} \sum_{g=1}^{G} \xi_{g} \sum_{i=1}^{n_{g}} \left[Q_{2\xi_{g}}(\boldsymbol{\delta}_{0g}) - \mathbb{1}(|\langle \mathbf{x}_{gi}, \boldsymbol{\delta}_{0g} \rangle| \geq \xi_{g}) \right]$$

$$= t_{1}(\mathbf{X}) - t_{2}(\mathbf{X})$$
(13)

For the ease of exposition we have written the LHS of (13) as the difference of two terms, i.e., $t_1(\mathbf{X}) - t_2(\mathbf{X})$ and in the followings we lower bound the first term t_1 and upper bound the second term t_2 .

 Our main result is the following lemma which uses the DERIC condition of the Definition 3.2 and provides a lower bound for the first term $t_1(\mathbf{X})$:

Lemma A.1. Suppose DERIC holds. Let $\psi_{\mathcal{I}} = \frac{\lambda_{\min} \bar{\rho}}{3}$. For any $\delta \in \mathcal{H}$, we have:

$$\sum_{g=1}^{G} \frac{n_g}{n} \xi_g Q_{2\xi_g}(\boldsymbol{\delta}_{0g}) \ge \psi_{\mathcal{I}} \xi \frac{(\alpha - 2\xi)^2}{4ck^2} \left(\|\boldsymbol{\delta}_0\|_2 + \sum_{g=1}^{n} \frac{n_g}{n} \|\boldsymbol{\delta}_g\|_2 \right), \tag{14}$$

which implies that $t_1(\mathbf{X}) = \inf_{\boldsymbol{\delta} \in \mathcal{H}} \sum_{g=1}^G \frac{n_G}{n} \xi_g Q_{2\xi_g}(\boldsymbol{\delta}_{0g})$ satisfies the same RHS bound of (14).

Proof. LHS of (14) is the weighted summation of $\xi_g Q_{2\xi_g}(\boldsymbol{\delta}_{0g}) = \|\boldsymbol{\delta}_{0g}\|_2 \xi \mathbb{P}(|\langle \mathbf{x}, \boldsymbol{\delta}_{0g}/\|\boldsymbol{\delta}_{0g}\|_2 \rangle| > 2\xi) = \|\boldsymbol{\delta}_{0g}\|_2 \xi Q_{2\xi}(\mathbf{u})$ where $\xi > 0$ and $\mathbf{u} = \delta_{0g}/\|\delta_{0g}\|_2$ is a unit length vector. So we can rewrite the LHS of (14) as:

$$\sum_{g=1}^{G} \frac{n_g}{n} \xi_g Q_{2\xi_g}(\boldsymbol{\delta}_{0g}) = \sum_{g=1}^{G} \frac{n_g}{n} \|\boldsymbol{\delta}_0 + \boldsymbol{\delta}_g\|_2 \xi Q_{2\xi}(\mathbf{u})$$

With this observation, the lower bound of the Lemma A.1 is a direct consequence of the following two results:

Lemma A.2. Let u be any unit length vector and suppose x obeys Definition 3.1. Then for any u, we have

$$Q_{2\xi}(\mathbf{u}) \ge \frac{(\alpha - 2\xi)^2}{4ck^2}.\tag{15}$$

Lemma A.3. Suppose Definition 3.2 holds. Then, we have:

$$\sum_{i=1}^{G} n_i \|\boldsymbol{\delta}_0 + \boldsymbol{\delta}_i\|_2 \ge \frac{\bar{\rho}\lambda_{\min}}{3} \left(Gn\|\boldsymbol{\delta}_0\|_2 + \sum_{i=1}^{G} n_i\|\boldsymbol{\delta}_i\|_2 \right), \quad \forall i \in [G] : \boldsymbol{\delta}_i \in \mathcal{C}_i.$$

$$(16)$$

A.3.2. Upper Bounding the Second Term

Let's focus on the second term, i.e., $t_2(X)$. First we want to show that the second term satisfies the bounded difference property defined in Section 3.2. of (Boucheron et al., 2013). In other words, by changing each of \mathbf{x}_{gi} the value of $t_2(\mathbf{X})$ at most change by one. First, we rewrite t_2 as follows:

$$h\left(\mathbf{x}_{11},\ldots,\mathbf{x}_{jk},\ldots,\mathbf{x}_{Gn_G}\right) = t_2\left(\mathbf{x}_{11},\ldots,\mathbf{x}_{jk},\ldots,\mathbf{x}_{Gn_G}\right) = \sup_{\boldsymbol{\delta}\in\mathcal{H}} g\left(\mathbf{x}_{11},\ldots,\mathbf{x}_{jk},\ldots,\mathbf{x}_{Gn_G}\right)$$

where $g\left(\mathbf{x}_{11},\ldots,\mathbf{x}_{jk},\ldots,\mathbf{x}_{Gn_G}\right)=\sum_{g=1}^{G}\frac{\xi_g}{n}\sum_{i=1}^{n_g}\left[Q_{2\xi_g}(\pmb{\delta}_{0g})-\mathbb{1}(|\langle\mathbf{x}_{gi},\pmb{\delta}_{0g}\rangle|\geq\xi_g)\right]$. To avoid cluttering let's $\mathcal{X}=\{\mathbf{x}_{11},\ldots,\mathbf{x}_{jk},\ldots,\mathbf{x}_{Gn_G}\}$. We want to show that t_2 has the bounded difference property, meaning:

$$\sup_{\mathcal{X}, \mathbf{x}'_{jk}} |h\left(\mathbf{x}_{11}, \dots, \mathbf{x}_{jk}, \dots, \mathbf{x}_{Gn_G}\right) - h\left(\mathbf{x}_{11}, \dots, \mathbf{x}'_{jk}, \dots, \mathbf{x}_{Gn_G}\right)| \le c_i$$

for some constant c_i . Note that for bounded functions $f, g: \mathcal{X} \to \mathbb{R}$, we have $|\sup_{\mathcal{X}} f - \sup_{\mathcal{X}} g| \le \sup_{\mathcal{X}} |f - g|$. Therefore:

$$\sup_{\mathcal{X}, \mathbf{x}'_{jk}} |h\left(\mathbf{x}_{11}, \dots, \mathbf{x}_{jk}, \dots, \mathbf{x}_{Gn_G}\right) - h\left(\mathbf{x}_{11}, \dots, \mathbf{x}'_{jk}, \dots, \mathbf{x}_{Gn_G}\right)|$$

$$\leq \sup_{\mathcal{X}, \mathbf{x}'_{jk}} \sup_{\boldsymbol{\delta} \in \mathcal{H}} |g\left(\mathbf{x}_{11}, \dots, \mathbf{x}_{jk}, \dots, \mathbf{x}_{Gn_G}\right) - g\left(\mathbf{x}_{11}, \dots, \mathbf{x}'_{jk}, \dots, \mathbf{x}_{Gn_G}\right)|$$

$$\leq \sup_{\mathcal{X}, \mathbf{x}'_{jk}} \sup_{\boldsymbol{\delta} \in \mathcal{H}} \sup_{\mathbf{x}_{jk}, \mathbf{x}'_{jk}} \frac{\xi_j}{n} \left(\mathbb{I}(|\langle \mathbf{x}'_{jk}, \boldsymbol{\delta}_{0j} \rangle| \geq \xi_j) - \mathbb{I}(|\langle \mathbf{x}_{jk}, \boldsymbol{\delta}_{0j} \rangle| \geq \xi_j)\right)$$

$$\leq \sup_{\mathcal{X}, \mathbf{x}'_{jk}} \sup_{\boldsymbol{\delta} \in \mathcal{H}} \|\boldsymbol{\delta}_0 + \boldsymbol{\delta}_g\|_2$$

$$= \frac{\xi}{n} \sup_{\boldsymbol{\delta} \in \mathcal{H}} \|\boldsymbol{\delta}_0 + \boldsymbol{\delta}_g\|_2$$

$$= \frac{\xi}{n} \sup_{\boldsymbol{\delta} \in \mathcal{H}} \|\boldsymbol{\delta}_0\|_2 + \|\boldsymbol{\delta}_g\|_2$$

$$(\boldsymbol{\delta} \in \mathcal{H}) = \xi\left(\frac{1}{n} + \frac{1}{n_g}\right)$$

$$\leq \frac{2\xi}{n}$$

Note that for $\delta \in \mathcal{H}$ we have $\|\delta_0\|_2 + \frac{n_g}{n} \|\delta_g\|_2 \le 1$ which results in $\|\delta_0\|_2 \le 1$ and $\|\delta_g\|_2 \le \frac{n}{n_g}$. Now, we can invoke the bounded difference inequality (?)Theorem 6.2]boucheron13 which says that with probability at least $1 - e^{-\tau^2/2}$ we have: $t_2(\mathbf{X}) \le \mathbb{E}t_2(\mathbf{X}) + \frac{\tau}{\sqrt{n}}$.

Having this concentration bound, it is enough to bound the expectation of the second term. Following lemma provides us with the bound on the expectation.

Lemma A.4. For the random vector \mathbf{x} of Definition 3.1, we have the following bound:

$$\frac{2}{n} \mathbb{E} \sup_{\boldsymbol{\delta}_{[G]}} \sum_{g=1}^{G} \xi_g \sum_{i=1}^{n_g} \left[Q_{2\xi_g}(\boldsymbol{\delta}_{0g}) - \mathbb{1}(|\langle \mathbf{x}_{gi}, \boldsymbol{\delta}_{0g} \rangle| \geq \xi_g) \right] \leq \frac{2}{\sqrt{n}} \sum_{g=0}^{G} \sqrt{\frac{n_g}{n}} c_g k\omega(\mathcal{A}_g) \|\boldsymbol{\delta}_g\|_2$$

A.3.3. CONTINUING THE PROOF OF THEOREM 3.4

 Set $n_0 = n$. Putting back bounds of $t_1(\mathbf{X})$ and $t_2(\mathbf{X})$ together from Lemma A.1 and A.4, with probability at least $1 - e^{-\frac{\tau^2}{2}}$ we have:

$$\inf_{\boldsymbol{\delta} \in \mathcal{H}} \frac{1}{\sqrt{n}} \|\mathbf{X}\boldsymbol{\delta}\|_{2} \geq \sum_{g=0}^{G} \frac{n_{g}}{n} \psi_{\mathcal{I}} \xi \|\boldsymbol{\delta}_{g}\|_{2} \frac{(\alpha - 2\xi)^{2}}{4ck^{2}} - \frac{2}{\sqrt{n}} \sum_{g=0}^{G} \sqrt{\frac{n_{g}}{n}} c_{g} k \omega(\mathcal{A}_{g}) \|\boldsymbol{\delta}_{g}\|_{2} - \frac{\tau}{\sqrt{n}}$$

$$\left(q = \frac{(\alpha - 2\xi)^{2}}{4ck^{2}}\right) = \sum_{g=0}^{G} \frac{n_{g}}{n} \psi_{\mathcal{I}} \xi \|\boldsymbol{\delta}_{g}\|_{2} q - \frac{2c}{\sqrt{n}} \sum_{g=0}^{G} \sqrt{\frac{n_{g}}{n}} k \omega(\mathcal{A}_{g}) \|\boldsymbol{\delta}_{g}\|_{2} - \frac{\tau}{\sqrt{n}}$$

$$= n^{-1} \sum_{g=0}^{G} n_{g} \|\boldsymbol{\delta}_{g}\|_{2} (\psi_{\mathcal{I}} \xi q - 2ck \frac{\omega(\mathcal{A}_{g})}{\sqrt{n_{g}}}) - \frac{\tau}{\sqrt{n}}$$

$$(\kappa_{g} = \psi_{\mathcal{I}} \xi q - \frac{2ck\omega(\mathcal{A}_{g})}{\sqrt{n_{g}}}) = \sum_{g=0}^{G} \frac{n_{g}}{n} \|\boldsymbol{\delta}_{g}\|_{2} \kappa_{g} - \frac{\tau}{\sqrt{n}}$$

$$\geq \kappa_{\min} \sum_{g=0}^{G} \frac{n_{g}}{n} \|\boldsymbol{\delta}_{g}\|_{2} - \frac{\tau}{\sqrt{n}}$$

$$(\boldsymbol{\delta} \in \mathcal{H}) = \kappa_{\min} - \frac{\tau}{\sqrt{n}}$$

where $\kappa_{\min} = \operatorname{argmin}_{g \in [G]} \kappa_g$. Note that all κ_g s should be bounded away from zero. To this end we need the follow sample complexities:

$$\forall g \in [G]: \quad \left(\frac{2ck}{\psi_{\mathcal{I}}\xi q}\right)^2 \omega(\mathcal{A}_g)^2 \leq n_g \tag{17}$$

Taking $\xi = \frac{\alpha}{6}$ we can simplify the sample complexities to the followings:

$$\forall g \in [G]: \quad \left(\frac{Ck^3}{\psi_{\mathcal{I}}\alpha^3}\right)^2 \omega(\mathcal{A}_g)^2 \leq n_g \tag{18}$$

Finally, to conclude, we take $\tau = \sqrt{n}\kappa_{\min}/2$.

A.4. Proof of Lemma 4.1

 Proof. To avoid cluttering let $h_g(\boldsymbol{\omega}_g, \mathbf{X}_g) = \sqrt{\frac{n}{n_g}} \|\boldsymbol{\omega}_g\|_2 \sup_{\mathbf{u}_g \in \mathcal{A}_g} \langle \mathbf{X}_g^T \frac{\boldsymbol{\omega}_g}{\|\boldsymbol{\omega}_g\|_2}, \mathbf{u}_g \rangle, \ e_g = \zeta_g k \omega(\mathcal{A}_g) + \epsilon_g \sqrt{\log G} + \tau,$ where $s_g = \sqrt{\frac{n}{n_g}} \sqrt{(2K^2 + 1)n_g}$.

$$\mathbb{P}\left(h_{g}(\boldsymbol{\omega}_{g}, \mathbf{X}_{g}) > e_{g}s_{g}\right) = \mathbb{P}\left(h_{g}(\boldsymbol{\omega}_{g}, \mathbf{X}_{g}) > e_{g}s_{g} \Big| \sqrt{\frac{n}{n_{g}}} \|\boldsymbol{\omega}_{g}\|_{2} > s_{g}\right) \mathbb{P}\left(\sqrt{\frac{n}{n_{g}}} \|\boldsymbol{\omega}_{g}\|_{2} > s_{g}\right) \\
+ \mathbb{P}\left(h_{g}(\boldsymbol{\omega}_{g}, \mathbf{X}_{g}) > e_{g}s_{g} \Big| \sqrt{\frac{n}{n_{g}}} \|\boldsymbol{\omega}_{g}\|_{2} < s_{g}\right) \mathbb{P}\left(\sqrt{\frac{n}{n_{g}}} \|\boldsymbol{\omega}_{g}\|_{2} < s_{g}\right) \\
\leq \mathbb{P}\left(\sqrt{\frac{n}{n_{g}}} \|\boldsymbol{\omega}_{g}\|_{2} > s_{g}\right) + \mathbb{P}\left(h_{g}(\boldsymbol{\omega}_{g}, \mathbf{X}_{g}) > e_{g}s_{g} \Big| \sqrt{\frac{n}{n_{g}}} \|\boldsymbol{\omega}_{g}\|_{2} < s_{g}\right) \\
\leq \mathbb{P}\left(\|\boldsymbol{\omega}_{g}\|_{2} > \sqrt{(2K^{2} + 1)n_{g}}\right) + \mathbb{P}\left(\sup_{\mathbf{u}_{g} \in \mathcal{C}_{g} \cap \mathbb{S}^{p-1}} \langle \mathbf{X}_{g}^{T} \frac{\boldsymbol{\omega}_{g}}{\|\boldsymbol{\omega}_{g}\|_{2}}, \mathbf{u}_{g}\rangle > e_{g}\right) \\
\leq \mathbb{P}\left(\|\boldsymbol{\omega}_{g}\|_{2} > \sqrt{(2K^{2} + 1)n_{g}}\right) + \sup_{\mathbf{v} \in \mathbb{S}^{p-1}} \mathbb{P}\left(\sup_{\mathbf{u}_{g} \in \mathcal{C}_{g} \cap \mathbb{S}^{p-1}} \langle \mathbf{X}_{g}^{T} \mathbf{v}, \mathbf{u}_{g}\rangle > e_{g}\right)$$

Let's focus on the first term. Since ω_g consists of i.i.d. centered unit-variance sub-Gaussian elements with $\|\omega_{gi}\|_{\psi_2} < K$, ω_{gi}^2 is sub-exponential with $\|\omega_{gi}\|_{\psi_1} < 2K^2$. Let's apply the Bernstein's inequality to $\|\omega_g\|_2^2 = \sum_{i=1}^{n_g} \omega_{gi}^2$:

$$\mathbb{P}\left(\left|\|\boldsymbol{\omega}_g\|_2^2 - \mathbb{E}\|\boldsymbol{\omega}_g\|_2^2\right| > \tau\right) \leq 2\exp\left(-\nu_g \min\left[\frac{\tau^2}{4K^4n_g}, \frac{\tau}{2K^2}\right]\right)$$

We also know that $\mathbb{E}\|\omega_g\|_2^2 \le n_g$ (Banerjee et al., 2014) which gives us:

$$\mathbb{P}\left(\|\boldsymbol{\omega}_g\|_2 > \sqrt{n_g + \tau}\right) \leq 2 \exp\left(-\nu_g \min\left[\frac{\tau^2}{4K^4 n_g}, \frac{\tau}{2K^2}\right]\right)$$

Finally, we set $\tau = 2K^2n_q$:

$$\mathbb{P}\left(\|\boldsymbol{\omega}_g\|_2 > \sqrt{(2K^2+1)n_g}\right) \quad \leq \quad 2\exp\left(-\nu_g n_g\right) = \frac{2}{(G+1)}\exp\left(-\nu_g n_g + \log(G+1)\right)$$

Now we upper bound the second term of (19). Given any fixed $\mathbf{v} \in \mathbb{S}^{p-1}$, $\mathbf{X}_g \mathbf{v}$ is a sub-Gaussian random vector with $\|\mathbf{X}_g^T \mathbf{v}\|_{\psi_2} \le C_g k$ (Banerjee et al., 2014). From Theorem 9 of (Banerjee et al., 2014) for any $\mathbf{v} \in \mathbb{S}^{p-1}$ we have:

$$\mathbb{P}\left(\sup_{\mathbf{u}_g \in \mathcal{A}_g} \langle \mathbf{X}_g^T \mathbf{v}, \mathbf{u}_g \rangle > \upsilon_g C_g k \omega(\mathcal{A}_g) + t\right) \leq \pi_g \exp\left(-\left(\frac{t}{\theta_g C_g k \phi_g}\right)^2\right)$$

where $\phi_g = \sup_{\mathbf{u}_g \in \mathcal{A}_g} \|\mathbf{u}_g\|_2$ and in our problem $\phi_g = 1$. We now substitute $t = \tau + \epsilon_g \sqrt{\log(G+1)}$ where $\epsilon_g = \theta_g C_g k$.

$$\mathbb{P}\left(\sup_{\mathbf{u}_{g} \in \mathcal{A}_{g}} \langle \mathbf{X}_{g}^{T} \mathbf{v}, \mathbf{u}_{g} \rangle > v_{g} C_{g} k \omega(\mathcal{A}_{g}) + \epsilon_{g} \sqrt{\log(G+1)} + \tau\right) \leq \pi_{g} \exp\left(-\left(\frac{\tau + \epsilon_{g} \sqrt{\log(G+1)}}{\epsilon_{g}}\right)^{2}\right) \\
\leq \pi_{g} \exp\left(-\log G - \left(\frac{\tau}{\theta_{g} C_{g} k}\right)^{2}\right) \\
\leq \frac{\pi_{g}}{(G+1)} \exp\left(-\left(\frac{\tau}{\theta_{g} C_{g} k}\right)^{2}\right)$$

Now we put back results to the original inequality (19):

$$\mathbb{P}\left(h_g(\boldsymbol{\omega}_g, \mathbf{X}_g) > \sqrt{\frac{n}{n_g}} \sqrt{(2K^2 + 1)n_g} \times \left(v_g C_g k \omega(\mathcal{A}_g) + \epsilon_g \sqrt{\log(G + 1)} + \tau\right)\right) \\
\leq \frac{\sigma_g}{(G+1)} \exp\left(-\min\left[\nu_g n_g - \log(G + 1), \frac{\tau^2}{\theta_g^2 C_g^2 k^2}\right]\right) \\
\leq \frac{\sigma_g}{(G+1)} \exp\left(-\min\left[\nu_g n_g - \log(G + 1), \frac{\tau^2}{\eta_g^2 k^2}\right]\right)$$

where $\sigma_g = \pi_g + 2$, $\zeta_g = \upsilon_g C_g$, $\eta_g = \theta_g C_g$.

A.5. Proof of Theorem 4.2

 Proof. From now on, to avoid cluttering the notation assume $\omega = \omega_0$. We massage the equation as follows:

$$\boldsymbol{\omega}^T \mathbf{X} \boldsymbol{\delta} = \sum_{g=0}^G \langle \mathbf{X}_g^T \boldsymbol{\omega}_g, \boldsymbol{\delta}_g \rangle = \sum_{g=0}^G \sqrt{\frac{n_g}{n}} \|\boldsymbol{\delta}_g\|_2 \langle \mathbf{X}_g^T \frac{\boldsymbol{\omega}_g}{\|\boldsymbol{\omega}_g\|_2}, \frac{\boldsymbol{\delta}_g}{\|\boldsymbol{\delta}_g\|_2} \rangle \sqrt{\frac{n}{n_g}} \|\boldsymbol{\omega}_g\|_2$$

Assume $b_g = \langle \mathbf{X}_g^T \frac{\boldsymbol{\omega}_g}{\|\boldsymbol{\omega}_g\|_2}, \frac{\boldsymbol{\delta}_g}{\|\boldsymbol{\delta}_g\|_2} \rangle \sqrt{\frac{n}{n_g}} \|\boldsymbol{\omega}_g\|_2$ and $a_g = \sqrt{\frac{n_g}{n}} \|\boldsymbol{\delta}_g\|_2$. Then the above term is the inner product of two vectors $\mathbf{a} = (a_0, \dots, a_G)$ and $\mathbf{b} = (b_0, \dots, b_G)$ for which we have:

$$\begin{aligned} \sup_{\mathbf{a} \in \mathcal{H}} \mathbf{a}^T \mathbf{b} &= \sup_{\|\mathbf{a}\|_1 = 1} \mathbf{a}^T \mathbf{b} \\ \text{(definition of the dual norm)} &\leq \|\mathbf{b}\|_{\infty} \\ &= \max_{g \in [G]} b_g \end{aligned}$$

Now we can go back to the original form:

$$\sup_{\boldsymbol{\delta} \in \mathcal{H}} \boldsymbol{\omega}^{T} \mathbf{X} \boldsymbol{\delta} \leq \max_{g \in [G]} \langle \mathbf{X}_{g}^{T} \frac{\boldsymbol{\omega}_{g}}{\|\boldsymbol{\omega}_{g}\|_{2}}, \frac{\boldsymbol{\delta}_{g}}{\|\boldsymbol{\delta}_{g}\|_{2}} \rangle \sqrt{\frac{n}{n_{g}}} \|\boldsymbol{\omega}_{g}\|_{2}$$

$$\leq \max_{g \in [G]} \sqrt{\frac{n}{n_{g}}} \|\boldsymbol{\omega}_{g}\|_{2} \sup_{\mathbf{u}_{g} \in \mathcal{C}_{g} \cap \mathbb{S}^{p-1}} \langle \mathbf{X}_{g}^{T} \frac{\boldsymbol{\omega}_{g}}{\|\boldsymbol{\omega}_{g}\|_{2}}, \mathbf{u}_{g} \rangle$$

$$(20)$$

To avoid cluttering we name $h_g(\boldsymbol{\omega}_g, \mathbf{X}_g) = \|\boldsymbol{\omega}_g\|_2 \sup_{\mathbf{u}_g \in \mathcal{A}_g} \langle \mathbf{X}_g^T \frac{\boldsymbol{\omega}_g}{\|\boldsymbol{\omega}_g\|_2}, \mathbf{u}_g \rangle$ and $e_g(\tau) = \sqrt{(2K^2+1)n_g} \left(v_g C_g k \omega(\mathcal{A}_g) + \epsilon_g \sqrt{\log G} + \tau \right)$. Then from (20), we have:

$$\mathbb{P}\left(\frac{2}{n}\sup_{\pmb{\delta}\in\mathcal{H}}\pmb{\omega}^T\mathbf{X}\pmb{\delta}>\frac{2}{n}\max_{g\in[G]}\sqrt{\frac{n}{n_q}}e_g(\tau)\right) \leq \mathbb{P}\left(\frac{2}{n}\max_{g\in[G]}\sqrt{\frac{n}{n_q}}h_g(\pmb{\omega}_g,\mathbf{X}_g)>\frac{2}{n}\max_{g\in[G]}\sqrt{\frac{n}{n_q}}e_g(\tau)\right)$$

To simplify the notation, we drop arguments of h_g for now. From the union bound we have:

$$\mathbb{P}\left(\frac{2}{n}\max_{g\in[G]}\sqrt{\frac{n}{n_g}}h_g > \frac{2}{n}\max_{g\in[G]}\sqrt{\frac{n}{n_g}}e_g(\tau)\right) \leq \sum_{g=0}^{G}\mathbb{P}\left(h_g > \max_{g\in[G]}e_g(\tau)\right) \\
\leq \sum_{g=0}^{G}\mathbb{P}\left(h_g > e_g(\tau)\right) \\
\leq (G+1)\max_{g\in[G]}\mathbb{P}\left(h_g > e_g(\tau)\right) \\
\leq \sigma\exp\left(-\min_{g\in[G]}\left[\nu_g n_g - \log(G+1), \frac{\tau^2}{\eta_o^2 k^2}\right]\right)$$

where $\sigma = \max_{g \in [G]} \sigma_g$.

A.6. Proof of Lemma A.5

Proof. We upper bound the individual error $\|\boldsymbol{\delta}_g^{(t+1)}\|_2$ and the common one $\|\boldsymbol{\delta}_0^{(t+1)}\|_2$ in the followings:

$$\begin{split} \|\boldsymbol{\delta}_{g}^{(t+1)}\|_{2} &= \|\boldsymbol{\beta}_{g}^{(t+1)} - \boldsymbol{\beta}_{g}^{*}\|_{2} \\ &= \left\|\Pi_{\Omega_{I_{g}}}\left(\boldsymbol{\beta}_{g}^{(t)} + \mu_{g}\mathbf{X}_{g}^{T}\left(\mathbf{y}_{g} - \mathbf{X}_{g}(\boldsymbol{\beta}_{0}^{(t)} + \boldsymbol{\beta}_{g}^{(t)})\right)\right) - \boldsymbol{\beta}_{g}^{*}\right\|_{2} \\ &= \left\|\Pi_{\Omega_{I_{g}}}\left(\boldsymbol{\beta}_{g}^{(t)} + \mu_{g}\mathbf{X}_{g}^{T}\left(\mathbf{y}_{g} - \mathbf{X}_{g}(\boldsymbol{\beta}_{0}^{(t)} + \boldsymbol{\beta}_{g}^{(t)})\right) - \boldsymbol{\beta}_{g}^{*}\right\|_{2} \\ &= \left\|\Pi_{\mathcal{E}_{g}}\left(\boldsymbol{\delta}_{g}^{(t)} + \mu_{g}\mathbf{X}_{g}^{T}\left(\mathbf{y}_{g} - \mathbf{X}_{g}(\boldsymbol{\beta}_{0}^{(t)} + \boldsymbol{\beta}_{g}^{(t)})\right) - \boldsymbol{\beta}_{g}^{*}\right\|_{2} \\ &= \left\|\Pi_{\mathcal{E}_{g}}\left(\boldsymbol{\delta}_{g}^{(t)} + \mu_{g}\mathbf{X}_{g}^{T}\left(\mathbf{y}_{g} - \mathbf{X}_{g}(\boldsymbol{\delta}_{0}^{(t)} + \boldsymbol{\beta}_{g}^{(t)})\right) - \mathbf{X}_{g}(\boldsymbol{\beta}_{0}^{*} + \boldsymbol{\beta}_{g}^{*}) + \mathbf{X}_{g}(\boldsymbol{\beta}_{0}^{*} + \boldsymbol{\beta}_{g}^{*})\right)\right)\right\|_{2} \\ \text{(Lemma 6.4 of (Oymak et al., 2015))} &\leq \left\|\Pi_{\mathcal{C}_{g}}\left(\boldsymbol{\delta}_{g}^{(t)} + \mu_{g}\mathbf{X}_{g}^{T}\left(\boldsymbol{\omega}_{g} - \mathbf{X}_{g}(\boldsymbol{\delta}_{0}^{(t)} + \boldsymbol{\delta}_{g}^{(t)})\right)\right)\right\|_{2} \\ \text{(Lemma 6.2 of (Oymak et al., 2015))} &\leq \sup_{\mathbf{v} \in \mathcal{C}_{g} \cap \mathbb{B}^{p}} \mathbf{v}^{T}\left(\boldsymbol{\delta}_{g}^{(t)} + \mu_{g}\mathbf{X}_{g}^{T}\left(\boldsymbol{\omega}_{g} - \mathbf{X}_{g}(\boldsymbol{\delta}_{0}^{(t)} + \boldsymbol{\delta}_{g}^{(t)})\right)\right) \\ &\leq \sup_{\mathbf{v} \in \mathcal{C}_{g} \cap \mathbb{B}^{p}} \mathbf{v}^{T}\left(\boldsymbol{\delta}_{g}^{(t)} + \mu_{g}\mathbf{X}_{g}^{T}\left(\boldsymbol{\omega}_{g} - \mathbf{X}_{g}(\boldsymbol{\delta}_{0}^{(t)} + \boldsymbol{\delta}_{g}^{(t)})\right)\right) \\ &\leq \sup_{\mathbf{v} \in \mathcal{B}_{g}} \mathbf{v}^{T}\left(\boldsymbol{\delta}_{g}^{(t)} + \mu_{g}\mathbf{X}_{g}^{T}\left(\boldsymbol{\omega}_{g} - \mathbf{X}_{g}(\boldsymbol{\delta}_{0}^{(t)} + \boldsymbol{\delta}_{g}^{(t)})\right)\right) \\ &\leq \sup_{\mathbf{v} \in \mathcal{B}_{g}} \mathbf{v}^{T}\left(\mathbf{I}_{g} - \mu_{g}\mathbf{X}_{g}^{T}\mathbf{X}_{g}\right)\boldsymbol{\delta}_{g}^{(t)} + \mu_{g}\mathbf{y} \underbrace{\mathbf{v}_{g}}_{\mathbf{v} \in \mathcal{B}_{g}} \mathbf{v}^{T}\mathbf{X}_{g}^{T}\boldsymbol{\omega}_{g} + \mu_{g} \sup_{\mathbf{v} \in \mathcal{B}_{g}} -\mathbf{v}^{T}\mathbf{X}_{g}^{T}\mathbf{X}_{g}\boldsymbol{\delta}_{0}^{(t)} \\ &\leq \left\|\boldsymbol{\delta}_{g}^{(t)}\right\|_{2} \sup_{\mathbf{v} \in \mathcal{B}_{g}} \mathbf{v}^{T}\left(\mathbf{I}_{g} - \mu_{g}\mathbf{X}_{g}^{T}\mathbf{X}_{g}\right)\mathbf{u} + \mu_{g}\|\boldsymbol{\omega}_{g}\|_{2} \sup_{\mathbf{v} \in \mathcal{B}_{g}} \mathbf{v}^{T}\mathbf{X}_{g}^{T}\frac{\boldsymbol{\omega}_{g}}{\|\boldsymbol{\omega}_{g}\|_{2}} \\ &+ \mu_{g}\|\boldsymbol{\delta}_{0}^{(t)}\|_{2} + \xi_{g}(\mu_{g})\|\boldsymbol{\omega}_{g}\|_{2} + \varphi_{g}(\mu_{g})\|\boldsymbol{\delta}_{0}^{(t)}\|_{2} \end{split}$$

So the final bound becomes:

$$\|\boldsymbol{\delta}_{g}^{(t+1)}\|_{2} \leq \rho_{g}(\mu_{g})\|\boldsymbol{\delta}_{g}^{(t)}\|_{2} + \xi_{g}(\mu_{g})\|\boldsymbol{\omega}_{g}\|_{2} + \phi_{g}(\mu_{g})\|\boldsymbol{\delta}_{0}^{(t)}\|_{2}$$
(21)

Now we upper bound the error of common parameter. Remember common parameter's update: $\beta_0^{(t+1)} = \left((\mathbf{y}_1 - \mathbf{X}_1(\beta_0^{(t)} + \beta_1^{(t)})) \right)$

$$\Pi_{\Omega_{f_0}} \left(\boldsymbol{\beta}_0^{(t)} + \mu_0 \mathbf{X}_0^T \begin{pmatrix} (\mathbf{y}_1 - \mathbf{X}_1(\boldsymbol{\beta}_0^{(t)} + \boldsymbol{\beta}_1^{(t)})) \\ \vdots \\ (\mathbf{y}_G - \mathbf{X}_G(\boldsymbol{\beta}_0^{(t)} + \boldsymbol{\beta}_G^{(t)})) \end{pmatrix} \right).$$

3 78*4*

3 4

$$\|\boldsymbol{\delta}_0^{(t+1)}\|_2 = \|\boldsymbol{\beta}_0^{(t+1)} - \boldsymbol{\beta}_0^*\|_2$$

$$= \left\| \Pi_{\Omega_{f_0}} \left(\boldsymbol{\beta}_0^{(t)} + \mu_0 \sum_{g=1}^G \mathbf{X}_g^T \Big(\mathbf{y}_g - \mathbf{X}_g (\boldsymbol{\beta}_0^{(t)} + \boldsymbol{\beta}_g^{(t)}) \Big) \right) - \boldsymbol{\beta}_0^* \right\|_2$$
(Lemma 6.3 of (Oymak et al., 2015))
$$= \left\| \Pi_{\Omega_{f_0} - \{\boldsymbol{\beta}_0^*\}} \left(\boldsymbol{\beta}_0^{(t)} + \mu_0 \sum_{g=1}^G \mathbf{X}_g^T \Big(\mathbf{y}_g - \mathbf{X}_g (\boldsymbol{\beta}_0^{(t)} + \boldsymbol{\beta}_g^{(t)}) \Big) - \boldsymbol{\beta}_0^* \right) \right\|_2$$

$$= \left\| \Pi_{\mathcal{E}_0} \left(\boldsymbol{\delta}_0^{(t)} + \mu_0 \sum_{g=1}^G \mathbf{X}_g^T \Big(\mathbf{y}_g - \mathbf{X}_g (\boldsymbol{\beta}_0^{(t)} + \boldsymbol{\beta}_g^{(t)}) \Big) \right\|$$

(Lemma 6.4 of (Oymak et al., 2015))
$$\leq \left\| \Pi_{\mathcal{C}_0} \left(\boldsymbol{\delta}_0^{(t)} + \mu_0 \sum_{g=1}^G \mathbf{X}_g^T \left(\boldsymbol{\omega}_g - \mathbf{X}_g (\boldsymbol{\delta}_0^{(t)} + \boldsymbol{\delta}_g^{(t)}) \right) \right) \right\|_2$$

(Lemma 6.2 of (Oymak et al., 2015))
$$\leq \sup_{\mathbf{v} \in \mathcal{B}_0} \mathbf{v}^T \left(\boldsymbol{\delta}_0^{(t)} + \mu_0 \sum_{g=1}^G \mathbf{X}_g^T \left(\boldsymbol{\omega}_g - \mathbf{X}_g (\boldsymbol{\delta}_0^{(t)} + \boldsymbol{\delta}_g^{(t)}) \right) \right)$$

$$\leq \sup_{\mathbf{v} \in \mathcal{B}_0} \mathbf{v}^T (\mathbf{I} - \mu_0 \sum_{g=1}^G \mathbf{X}_g^T \mathbf{X}_g) \boldsymbol{\delta}_0^{(t)} + \mu_0 \sup_{\mathbf{v} \in \mathcal{B}_0} \mathbf{v}^T \sum_{g=1}^G \mathbf{X}_g^T \boldsymbol{\omega}_g$$

+
$$\mu_0 \sup_{\mathbf{v} \in \mathcal{B}_0} -\mathbf{v}^T \sum_{g=1}^G \mathbf{X}_g^T \mathbf{X}_g \boldsymbol{\delta}_g^{(t)}$$

$$\leq \|\boldsymbol{\delta}_0^{(t)}\|_2 \sup_{\mathbf{u}, \mathbf{v} \in \mathcal{B}_0} \mathbf{v}^T \big(\mathbf{I} - \mu_0 \mathbf{X}_0^T \mathbf{X}_0\big) \mathbf{u} + \mu_0 \sup_{\mathbf{v} \in \mathcal{B}_0} \mathbf{v}^T \mathbf{X}_0^T \frac{\boldsymbol{\omega}_0}{\|\boldsymbol{\omega}_0\|_2} \|\boldsymbol{\omega}_0\|_2$$

+
$$\mu_0 \sum_{g=1}^{G} \sup_{\mathbf{v}_g \in \mathcal{B}_0, \mathbf{u}_g \in \mathcal{B}_g} -\mathbf{v}_g^T \mathbf{X}_g^T \mathbf{X}_g \mathbf{u}_g \|\boldsymbol{\delta}_g^{(t)}\|_2$$

$$\leq \rho_0(\mu_0) \|\boldsymbol{\delta}_0^{(t)}\|_2 + \xi_0(\mu_0) \|\boldsymbol{\omega}_0\|_2 + \mu_0 \sum_{g=1}^G \frac{\phi_g(\mu_g)}{\mu_g} \|\boldsymbol{\delta}_g^{(t)}\|_2$$
 (22)

To avoid cluttering we drop μ_g as the arguments. Putting together (21) and (22) inequalities we reach to the followings:

$$\begin{split} & \|\boldsymbol{\delta}_g^{(t+1)}\|_2 & \leq & \rho_g \|\boldsymbol{\delta}_g^{(t)}\|_2 + \xi_g \|\boldsymbol{\omega}_g\|_2 + \phi_g \|\boldsymbol{\delta}_0^{(t)}\|_2 \\ & \|\boldsymbol{\delta}_0^{(t+1)}\|_2 & \leq & \rho_0 \|\boldsymbol{\delta}_0^{(t)}\|_2 + \xi_0 \|\boldsymbol{\omega}_0\|_2 + \mu_0 \sum_{g=1}^G \frac{\phi_g}{\mu_g} \|\boldsymbol{\delta}_g^{(t)}\|_2 \end{split}$$

A.7. Proof of Theorem 5.2

Proof. In the following lemma we establish a recursive relation between errors of consecutive iterations which leads to a bound for the tth iteration.

Lemma A.5. We have the following recursive dependency between the error of t + 1th iteration and tth iteration of PBGD:

$$\|\boldsymbol{\delta}_{g}^{(t+1)}\|_{2} \leq \left(\rho_{g}(\mu_{g})\|\boldsymbol{\delta}_{g}^{(t)}\|_{2} + \xi_{g}(\mu_{g})\|\boldsymbol{\omega}_{g}\|_{2} + \phi_{g}(\mu_{g})\|\boldsymbol{\delta}_{0}^{(t)}\|_{2}\right)$$

$$\|\boldsymbol{\delta}_{0}^{(t+1)}\|_{2} \leq \left(\rho_{0}(\mu_{0})\|\boldsymbol{\delta}_{0}^{(t)}\|_{2} + \xi_{0}(\mu_{0})\|\boldsymbol{\omega}_{0}\|_{2} + \mu_{0}\sum_{g=1}^{G} \frac{\phi_{g}(\mu_{g})}{\mu_{g}}\|\boldsymbol{\delta}_{g}^{(t)}\|_{2}\right)$$

By recursively applying the result of Lemma A.5, we get the following deterministic bound which depends on constants defined in Definition 5.1:

$$b_{t+1} = \sum_{g=0}^{G} \sqrt{\frac{n_g}{n}} \|\boldsymbol{\delta}_g^{(t+1)}\|_{2} \leq \left(\rho_0 + \sum_{g=1}^{G} \sqrt{\frac{n_g}{n}} \phi_g\right) \|\boldsymbol{\delta}_0^{(t)}\|_{2} + \sum_{g=1}^{G} \left(\sqrt{\frac{n_g}{n}} \rho_g + \mu_0 \frac{\phi_g}{\mu_g}\right) \|\boldsymbol{\delta}_g^{(t)}\|_{2} + \sum_{g=0}^{G} \sqrt{\frac{n_g}{n}} \xi_g \|\boldsymbol{\omega}_g\|_{2}$$

$$\leq \rho \sum_{g=0}^{G} \sqrt{\frac{n_g}{n}} \|\boldsymbol{\delta}_g^{(t)}\|_{2} + \sum_{g=0}^{G} \sqrt{\frac{n_g}{n}} \xi_g \|\boldsymbol{\omega}_g\|_{2}$$
(23)

where
$$\rho = \max\left(\rho_0 + \sum_{g=1}^G \sqrt{\frac{n_g}{n}}\phi_g, \max_{g \in [G]} \left[\rho_g + \sqrt{\frac{n}{n_g}} \frac{\mu_0}{\mu_g}\phi_g\right]\right)$$
. We have:

$$\begin{aligned} b_{t+1} & \leq & \rho b_t + \sum_{g=0}^G \sqrt{\frac{n_g}{n}} \xi_g \|\omega_g\|_2 \\ & \leq & (\rho)^2 b_{t-1} + (\rho+1) \sum_{g=0}^G \sqrt{\frac{n_g}{n}} \xi_g \|\omega_g\|_2 \\ & \leq & (\rho)^t b_1 + \left(\sum_{i=0}^{t-1} (\rho)^i\right) \sum_{g=0}^G \sqrt{\frac{n_g}{n}} \xi_g \|\omega_g\|_2 \\ & = & (\rho)^t \sum_{g=0}^G \sqrt{\frac{n_g}{n}} \|\beta_g^1 - \beta_g^*\|_2 + \left(\sum_{i=0}^{t-1} (\rho)^i\right) \sum_{g=0}^G \sqrt{\frac{n_g}{n}} \xi_g \|\omega_g\|_2 \\ (\beta^1 = 0) & \leq & (\rho)^t \sum_{g=0}^G \sqrt{\frac{n_g}{n}} \|\beta_g^*\|_2 + \frac{1 - (\rho)^t}{1 - \rho} \sum_{g=0}^G \sqrt{\frac{n_g}{n}} \xi_g \|\omega_g\|_2 \end{aligned}$$

A.8. Proof of Theorem 5.3

Proof. First we need following two lemmas which are proved separately in the following sections.

Lemma A.6. Consider $a_g \ge 1$, with probability at least $1 - 6 \exp\left(-\gamma_g(\omega(\mathcal{A}_g) + \tau)^2\right)$ the following upper bound holds:

$$\rho_g \left(\frac{1}{a_q n_q} \right) \le \frac{1}{2} \left[\left(1 - \frac{1}{a_q} \right) + \sqrt{2} c_g \frac{2\omega(\mathcal{A}_g) + \tau}{a_q \sqrt{n_q}} \right] \tag{24}$$

Lemma A.7. Consider $a_g \ge 1$, with probability at least $1 - 4\exp\left(-\gamma_g(\omega(\mathcal{A}_g) + \tau)^2\right)$ the following upper bound holds:

$$\phi_g\left(\frac{1}{a_g n_g}\right) \le \frac{1}{a_g} \left(1 + c_{0g} \frac{\omega(\mathcal{A}_g) + \omega(\mathcal{A}_0) + 2\tau}{\sqrt{n_g}}\right) \tag{25}$$

Note that Lemma 4.1 readily provides a high probability upper bound for $\eta_g(1/(a_g n_g))$ as $\sqrt{(2K^2+1)} \left(\zeta_g k\omega(\mathcal{A}_g) + \epsilon_g \sqrt{\log G} + \tau\right)/(a_g \sqrt{n_g})$.

Starting from the deterministic form of the bound in Theorem 5.2 and putting in the step sizes as $\mu_g = \frac{1}{n_g a_g}$:

$$\sum_{g=0}^{G} \sqrt{\frac{n_g}{n}} \|\boldsymbol{\delta}_g^{(t+1)}\|_2 \le (\rho)^t \sum_{g=0}^{G} \|\boldsymbol{\beta}_g^*\|_2 + \frac{1 - (\rho)^t}{1 - \rho} \sum_{g=0}^{G} \sqrt{\frac{n_g}{n}} \eta_g \left(\frac{1}{n_g a_g}\right) \|\boldsymbol{\omega}_g\|_2, \tag{26}$$

where

$$\rho(a_0, \cdots, a_G) = \max\left(\rho_0\left(\frac{1}{na_0}\right) + \sum_{g=1}^G \sqrt{\frac{n_g}{n}}\phi_g\left(\frac{1}{n_g a_g}\right), \max_{g \in [G]} \rho_g\left(\frac{1}{n_g a_g}\right) + \sqrt{\frac{n}{n_g}} \frac{\mu_0}{\mu_g}\phi_g\left(\frac{1}{n_g a_g}\right)\right)$$
(27)

Remember the following two results to upper bound ρ_a s and ϕ_a s from Lemmas A.6 and A.7:

$$\begin{split} & \rho_g \left(\frac{1}{a_g n_g} \right) & \leq & \frac{1}{2} \left[\left(1 - \frac{1}{a_g} \right) + \sqrt{2} c_g \frac{2\omega(\mathcal{A}_g) + \tau}{a_g \sqrt{n_g}} \right], \quad \text{w.p.} \quad 1 - 6 \exp\left(-\gamma_g (\omega(\mathcal{A}_g) + \tau)^2 \right) \\ & \phi_g \left(\frac{1}{a_g n_g} \right) & \leq & \frac{1}{a_g} \left(1 + c_{0g} \frac{\omega_{0g} + \tau}{\sqrt{n_g}} \right), \quad \text{w.p.} \quad 1 - 4 \exp\left(-\gamma_g (\omega(\mathcal{A}_g) + \tau)^2 \right) \end{split}$$

First we want to keep $\rho_0 + \sum_{g=1}^G \sqrt{\frac{n_g}{n}} \phi_g$ of (27) strictly below 1.

$$\rho_{0}\left(\frac{1}{a_{0}n}\right) + \sum_{g=1}^{G} \sqrt{\frac{n_{g}}{n}} \phi_{g}\left(\frac{1}{a_{g}n_{g}}\right) \leq \frac{1}{2} \left[\left(1 - \frac{1}{a_{0}}\right) + \sqrt{2}c_{0}\frac{2\omega_{0} + \tau}{a_{0}\sqrt{n}}\right] + \frac{1}{2} \sum_{g=1}^{G} \frac{2}{a_{g}} \sqrt{\frac{n_{g}}{n}} \left(1 + c_{0g}\frac{\omega_{0g} + \tau}{\sqrt{n_{g}}}\right)$$

Remember that $a_g \geq 1$ was arbitrary. So we pick it as $a_g = 2\sqrt{\frac{n}{n_g}}\left(1+c_{0g}\frac{\omega_{0g}+\tau}{\sqrt{n_g}}\right)/b_g$ where $b_g \leq 2\sqrt{\frac{n}{n_g}}\left(1+c_{0g}\frac{\omega_{0g}+\tau}{\sqrt{n_g}}\right)$ (because we need $a_g \geq 1$) and the condition becomes:

$$\rho_0\left(\frac{1}{a_0n}\right) + \sum_{g=1}^G \sqrt{\frac{n_g}{n}} \phi_g\left(\frac{1}{a_g n_g}\right) \leq \frac{1}{2} \left[\left(1 - \frac{1}{a_0}\right) + \sqrt{2}c_0 \frac{2\omega(\mathcal{A}_0) + \tau}{a_0\sqrt{n}} \right] + \frac{1}{2} \sum_{g=1}^G \frac{n_g}{n} b_g \leq 1$$

We want to upper bound the RHS by $1/\theta_f$ which will determine the sample complexity for the shared component:

$$\sqrt{2}c_0 \frac{2\omega(\mathcal{A}_0) + \tau}{\sqrt{n}} \le a_0 \left(1 - \sum_{g=1}^G \frac{n_g}{n} b_g \right) + 1 \tag{28}$$

Note that any lower bound on the RHS of (28) will lead to the correct sample complexity for which the coefficient of $\|\boldsymbol{\delta}_0^{(t)}\|_2$ (determined in (27)) will be below one. Since $a_0 \geq 1$ we can ignore the first term by assuming $\max_{g \in [G]_{\setminus}} b_g \leq 1$ and the condition becomes:

$$n > 2c_0^2(2\omega(\mathcal{A}_0) + \tau)^2, \forall g \in [G]_{\backslash} : a_g = 2b_g^{-1}\sqrt{\frac{n}{n_g}}\left(1 + c_{0g}\frac{\omega_{0g} + \tau}{\sqrt{n_g}}\right),$$

$$a_0 \ge 1, 0 < b_g \le 2\sqrt{\frac{n}{n_g}}\left(1 + c_{0g}\frac{\omega_{0g} + \tau}{\sqrt{n_g}}\right), \max_{g \in [G]_{\backslash}} b_g \le 1,$$

which can be simplified to:

$$n > 2c_0^2(2\omega(\mathcal{A}_0) + \tau)^2, a_0 \ge 1,$$

$$\forall g \in [G]_{\setminus} : a_g = 2b_g^{-1} \sqrt{\frac{n}{n_g}} \left(1 + c_{0g} \frac{\omega_{0g} + \tau}{\sqrt{n_g}} \right), 0 < b_g \le 1$$
(29)

Secondly, we want to bound all of $\rho_g + \mu_0 \sqrt{\frac{n}{n_g}} \frac{\phi_g}{\mu_g}$ terms of (27) for $\mu_g = \frac{1}{a_g n_g}$ by 1:

$$\rho_{g}\left(\frac{1}{n_{g}a_{g}}\right) + \sqrt{\frac{n}{n_{g}}}\frac{\mu_{0}}{\mu_{g}}\phi_{g}\left(\frac{1}{n_{g}a_{g}}\right) = \rho_{g}\left(\frac{1}{n_{g}a_{g}}\right) + \sqrt{\frac{n_{g}}{n}}\frac{a_{g}}{a_{0}}\phi_{g}\left(\frac{1}{n_{g}a_{g}}\right)$$

$$= \frac{1}{2}\left[\left[\left(1 - \frac{1}{a_{g}}\right) + \sqrt{2}c_{g}\frac{2\omega_{g} + \tau}{a_{g}\sqrt{n_{g}}}\right]$$

$$+ \frac{2}{a_{0}}\sqrt{\frac{n_{g}}{n}}\left(1 + c_{0g}\frac{\omega_{0g} + \tau}{\sqrt{n_{g}}}\right)\right]$$

$$< 1$$

The condition becomes:

$$\sqrt{2}c_g \frac{2\omega_g + \tau}{\sqrt{n_g}} \le a_g + 1 - \sqrt{\frac{n_g}{n}} \frac{2a_g}{a_0} \left(1 + c_{0g} \frac{\omega_{0g} + \tau}{\sqrt{n_g}} \right)$$
 (31)

Remember that we chose $a_g = 2b_g^{-1}\sqrt{\frac{n}{n_g}}\left(1 + c_{0g}\frac{\omega_{0g} + \tau}{\sqrt{n_g}}\right)$. We substitute the value of a_g by keeping in mind the constraints for the b_g and the condition reduces to:

$$\sqrt{2}c_g \frac{2\omega_g + \tau}{d_g} \le \sqrt{n_g}, \quad d_g := a_g + 1 - \frac{4}{b_g a_0} \left(1 + c_{0g} \frac{\omega_{0g} + \tau}{\sqrt{n_g}} \right)^2$$
(32)

for $d_g>0$. Note that any positive lower bound of the d_g will satisfy the condition in (32) and the result is a valid sample complexity. In the following we show that $d_g>1$. We have $a_0\geq 1$ condition from (29), so we take $a_0=4\max_{g\in [G]_{\backslash}}\left(1+c_{0g}\frac{\omega_{0g}+\tau}{\sqrt{n_g}}\right)^2$ and look for a lower bound for d_g :

$$d_{g} \geq a_{g} + 1 - b_{g}^{-1}$$

$$(a_{g} \text{ from (29)}) = 2b_{g}^{-1} \sqrt{\frac{n}{n_{g}}} \left(1 + c_{0g} \frac{\omega_{0g} + \tau}{\sqrt{n_{g}}} \right) + 1 - b_{g}^{-1}$$

$$= 1 + b_{g}^{-1} \left[2\sqrt{\frac{n}{n_{g}}} \left(1 + c_{0g} \frac{\omega_{0g} + \tau}{\sqrt{n_{g}}} \right) - 1 \right]$$

$$(34)$$

The term inside of the last bracket (34) is always positive and therefore a lower bound is one, i.e., $d_g \ge 1$. From the condition (32) we get the following sample complexity:

$$n_g > 2c_g^2(2\omega_g + \tau)^2$$
 (35)

Now we need to determine b_g from previous conditions (29), knowing that $a_0 = 4 \max_{g \in [G]_{\setminus}} \left(1 + c_{0g} \frac{\omega_{0g} + \tau}{\sqrt{n_g}}\right)^2$. We have $0 < b_g \le 1$ in (29) and we take the largest step by setting $b_g = 1$.

Here we summarize the setting under which we have the linear convergence:

$$n > 2c_0^2 \left(2\omega(\mathcal{A}_0) + \tau\right)^2, \forall g \in [G]_{\backslash} : n_g \ge 2c_g^2 \left(2\omega(\mathcal{A}_g) + \tau\right)^2$$

$$a_0 = 4 \max_{g \in [G]_{\backslash}} \left(1 + c_{0g} \frac{\omega_{0g} + \tau}{\sqrt{n_g}}\right)^2, a_g = 2\sqrt{\frac{n}{n_g}} \left(1 + c_{0g} \frac{\omega_{0g} + \tau}{\sqrt{n_g}}\right)$$

$$\mu_0 = \frac{1}{4n} \times \frac{1}{\max_{g \in [G]_{\backslash}} \left(1 + c_{0g} \frac{\omega_{0g} + \tau}{\sqrt{n_g}}\right)^2}, \mu_g = \frac{1}{2\sqrt{nn_g}} \left(1 + c_{0g} \frac{\omega_{0g} + \tau}{\sqrt{n_g}}\right)^{-1}$$
(36)

Now we rewrite the same analysis using the tail bounds for the coefficients to clarify the probabilities. To simplify the notation, let $r_{g1}=\frac{1}{2}\left[\left(1-\frac{1}{a_g}\right)+\sqrt{2}c_g\frac{2\omega(A_g)+\tau}{a_g\sqrt{n_g}}\right]$ and $r_{g2}=\frac{1}{a_g}\left(1+c_{0g}\frac{\omega_{0g}+\tau}{\sqrt{n_g}}\right)$ and $r_{0}(\tau)=r_{01}+\sum_{g=1}^{G}\sqrt{\frac{n_g}{n}}r_{g2}$

and $r_g(\tau) = r_{g1} + \sqrt{\frac{n_g}{n}} \frac{a_g}{a_0} r_{g2}$, $\forall g \in [G]_{\backslash}$, and $r(\tau) = \max_{g \in [G]} r_g$. All of which are computed using a_g s specified in (36). Basically r is an instantiation of an upper bound of the ρ defined in (27) using a_g s in (36).

We are interested to upper bound the following probability:

$$\mathbb{P}\left(\sum_{g=0}^{G} \sqrt{\frac{n_{g}}{n}} \|\boldsymbol{\delta}_{g}^{(t+1)}\|_{2} \geq r(\tau)^{t} \sum_{g=0}^{G} \sqrt{\frac{n_{g}}{n}} \|\boldsymbol{\beta}_{g}^{*}\|_{2} + \frac{(G+1)\sqrt{(2K^{2}+1)}}{(1-r(\tau))\sqrt{n}} \left(\zeta k \max_{g \in [G]} \omega(\mathcal{A}_{g}) + \tau\right)\right) \\
\leq \mathbb{P}\left((\rho)^{t} \sum_{g=0}^{G} \sqrt{\frac{n_{g}}{n}} \|\boldsymbol{\beta}_{g}^{*}\|_{2} + \frac{1-(\rho)^{t}}{1-\rho} \sum_{g=0}^{G} \sqrt{\frac{n_{g}}{n}} \eta_{g} \left(\frac{1}{n_{g}a_{g}}\right) \|\boldsymbol{\omega}_{g}\|_{2} \\
\geq r(\tau)^{t} \sum_{g=0}^{G} \sqrt{\frac{n_{g}}{n}} \|\boldsymbol{\beta}_{g}^{*}\|_{2} + \frac{(G+1)\sqrt{(2K^{2}+1)}}{(1-r(\tau))\sqrt{n}} \left(\zeta k \max_{g \in [G]} \omega(\mathcal{A}_{g}) + \tau\right)\right) \\
\leq \mathbb{P}\left(\rho \geq r(\tau)\right) \\
+ \mathbb{P}\left(\frac{1}{1-\rho} \sum_{g=0}^{G} \sqrt{n_{g}} \eta_{g} \left(\frac{1}{n_{g}a_{g}}\right) \|\boldsymbol{\omega}_{g}\|_{2} \geq \frac{(G+1)\sqrt{(2K^{2}+1)}}{(1-r(\tau))} \left(\zeta k \max_{g \in [G]} \omega(\mathcal{A}_{g}) + \tau\right)\right) \tag{37}$$

where the first inequality comes from the deterministic bound of (26), We first focus on bounding the first term $\mathbb{P}(\rho \geq r(\tau))$:

$$\mathbb{P}\left(\rho \geq r(\tau)\right) \\
= \mathbb{P}\left(\max\left(\rho_{0}\left(\frac{1}{na_{0}}\right) + \sum_{g=1}^{G}\sqrt{\frac{n_{g}}{n}}\phi_{g}\left(\frac{1}{n_{g}a_{g}}\right), \max_{g \in [G]}\rho_{g}\left(\frac{1}{n_{g}a_{g}}\right) + \sqrt{\frac{n}{n_{g}}}\frac{\mu_{0}}{\mu_{g}}\phi_{g}\left(\frac{1}{n_{g}a_{g}}\right)\right) \geq \max_{g \in [G]}r(\tau)\right) \\
\leq \mathbb{P}\left(\rho_{0}\left(\frac{1}{na_{0}}\right) + \sum_{g=1}^{G}\sqrt{\frac{n_{g}}{n}}\phi_{g}\left(\frac{1}{n_{g}a_{g}}\right) \geq r_{0}\right) + \sum_{g=1}^{G}\mathbb{P}\left(\rho_{g}\left(\frac{1}{n_{g}a_{g}}\right) + \sqrt{\frac{n}{n_{g}}}\frac{\mu_{0}}{\mu_{g}}\phi_{g}\left(\frac{1}{n_{g}a_{g}}\right) \geq r_{g}\right) \\
\leq \mathbb{P}\left(\rho_{0}\left(\frac{1}{na_{0}}\right) \geq r_{01}\right) + \sum_{g=1}^{G}\mathbb{P}\left(\phi_{g}\left(\frac{1}{n_{g}a_{g}}\right) \geq r_{g2}\right) + \sum_{g=1}^{G}\mathbb{P}\left(\rho_{g}\left(\frac{1}{n_{g}a_{g}}\right) \geq r_{g1}\right) + \mathbb{P}\left(\phi_{g}\left(\frac{1}{n_{g}a_{g}}\right) \geq r_{g2}\right)\right] \\
\leq \sum_{g=0}^{G}\mathbb{P}\left(\rho_{g}\left(\frac{1}{n_{g}a_{g}}\right) \geq r_{g1}\right) + 2\sum_{g=1}^{G}\mathbb{P}\left(\phi_{g}\left(\frac{1}{n_{g}a_{g}}\right) \geq r_{g2}\right) \\
\leq \sum_{g=0}^{G}\exp\left(-\gamma_{g}(\omega(A_{g}) + \tau)^{2}\right) + 2\sum_{g=1}^{G}4\exp\left(-\gamma_{g}(\omega(A_{g}) + \tau)^{2}\right) \\
\leq 6(G+1)\exp\left(-\gamma\min_{g \in [G]}(\omega(A_{g}) + \tau)^{2}\right) + 8G\exp\left(-\gamma\min_{g \in [G]}(\omega(A_{g}) + \tau)^{2}\right) \\
\leq 14(G+1)\exp\left(-\gamma\min_{g \in [G]}(\omega(A_{g}) + \tau)^{2}\right) + 8G\exp\left(-\gamma\min_{g \in [G]}(\omega(A_{g}) + \tau)^{2}\right)$$

Now we focus on bounding the second term:

$$\mathbb{P}\left(\frac{1}{1-\rho}\sum_{g=0}^{G}\sqrt{n_{g}}\eta_{g}\left(\frac{1}{n_{g}a_{g}}\right)\|\boldsymbol{\omega}_{g}\|_{2} \geq \frac{(G+1)\sqrt{(2K^{2}+1)}}{(1-r(\tau))}\left(\zeta k \max_{g \in [G]}\omega(\mathcal{A}_{g}) + \tau\right)\right)$$

$$\leq \mathbb{P}\left(\frac{1}{1-\rho}\sum_{g=0}^{G}\sqrt{n_{g}}\eta_{g}\left(\frac{1}{n_{g}a_{g}}\right)\|\boldsymbol{\omega}_{g}\|_{2} \geq \frac{1}{(1-r(\tau))}\sum_{g=0}^{G}\sqrt{(2K^{2}+1)}\left(\zeta_{g}k\omega(\mathcal{A}_{g}) + \tau\right)\right)$$

$$\leq \mathbb{P}\left(\sum_{g=0}^{G}\sqrt{n_{g}}\eta_{g}\left(\frac{1}{n_{g}a_{g}}\right)\|\boldsymbol{\omega}_{g}\|_{2} \geq \sum_{g=0}^{G}\sqrt{(2K^{2}+1)}\left(\zeta_{g}k\omega(\mathcal{A}_{g}) + \tau\right)\right) + \mathbb{P}\left(\rho \geq r(\tau)\right)$$

$$\leq \sum_{g=0}^{G}\mathbb{P}\left(\sqrt{n_{g}}\eta_{g}\left(\frac{1}{n_{g}a_{g}}\right)\|\boldsymbol{\omega}_{g}\|_{2} \geq \sqrt{(2K^{2}+1)}\left(\zeta_{g}k\omega(\mathcal{A}_{g}) + \tau\right)\right) + \mathbb{P}\left(\rho \geq r(\tau)\right)$$

$$(39)$$

Focusing on the summand of the first term, remember from Definition 5.1 that $\eta_g(\mu_g) = \frac{1}{a_g n_g} \sup_{\mathbf{v} \in \mathcal{B}_g} \mathbf{v}^T \mathbf{X}_g^T \frac{\omega_g}{\|\omega_g\|_2}, \quad g \in \mathbb{R}_g$ 1046
[G] and $a_g \geq 1$:

$$\mathbb{P}\left(\|\boldsymbol{\omega}_{g}\|_{2} \sup_{\mathbf{v} \in \mathcal{B}_{g}} \mathbf{v}^{T} \mathbf{X}_{g}^{T} \frac{\boldsymbol{\omega}_{g}}{\|\boldsymbol{\omega}_{g}\|_{2}} \ge a_{g} \sqrt{(2K^{2}+1)n_{g}} \left(\zeta_{g} k \omega(\mathcal{A}_{g}) + \tau\right)\right) \le \sigma_{g} \exp\left(-\min\left[\nu_{g} n_{g}, \frac{\tau^{2}}{\eta_{g}^{2} k^{2}}\right]\right)$$
(40)

where we used the intermediate form of Lemma 4.1 for $\tau > 0$. Putting all of the bounds (38), (39), and (40) back into the (37):

$$\begin{split} &\sigma_g(G+1)\exp\left(-\min_{g\in[G]}\left(\min\left[\nu_g n_g,\frac{\tau^2}{\eta_g^2 k^2}\right]\right)\right) + 28(G+1)\exp\left(-\gamma\min_{g\in[G]}(\omega(\mathcal{A}_g)+\tau)^2\right) \\ &\leq &v\exp\left[\min_{g\in[G]}\left(-\min\left[\nu_g n_g - \log G,\gamma(\omega(\mathcal{A}_g)+t)^2,\frac{t^2}{\eta_g^2 k^2}\right]\right)\right] \end{split}$$

where $v = \max(28, \sigma)$ and $\gamma = \min_{g \in [G]} \gamma_g$ and $\tau = t + \max(\epsilon, \gamma^{-1/2}) \sqrt{\log(G+1)}$ where $\epsilon = k \max_{g \in [G]} \eta_g$. Note that $\tau = t + C \sqrt{\log(G+1)}$ increases the sample complexities to the followings:

$$n > 2c_0^2 \left(2\omega(\mathcal{A}_0) + C\sqrt{\log(G+1)} + t\right)^2, \forall g \in [G]_{\setminus} : n_g \ge 2c_g^2 (2\omega(\mathcal{A}_g) + C\sqrt{\log(G+1)} + t)^2$$

and it also affects step sizes as follows:

$$\mu_0 = \frac{1}{4n} \times \min_{g \in [G]_{\backslash}} \left(1 + c_{0g} \frac{\omega_{0g} + C\sqrt{\log(G+1)} + t}{\sqrt{n_g}} \right)^{-2}, \mu_g = \frac{1}{2\sqrt{nn_g}} \left(1 + c_{0g} \frac{\omega_{0g} + C\sqrt{\log(G+1)} + t}{\sqrt{n_g}} \right)^{-1}$$

A.9. Proof of Lemma A.2

 Proof. To obtain lower bound, we use the Paley–Zygmund inequality for the zero-mean, non-degenerate $(0 < \alpha \le \mathbb{E}|\langle \mathbf{x}, \mathbf{u} \rangle|, \mathbf{u} \in \mathbb{S}^{p-1})$ sub-Gaussian random vector \mathbf{x} with $\|\mathbf{x}\|_{\psi_2} \le k$ (Tropp, 2015).

$$Q_{2\xi}(\mathbf{u}) \ge \frac{(\alpha - 2\xi)^2}{4ck^2}.$$

A.10. Proof of Lemma A.3

Proof. We split $[G]_{\setminus} - \mathcal{I}$ into two groups \mathcal{J}, \mathcal{K} . \mathcal{J} consists of δ_i 's with $\|\delta_i\|_2 \ge 2\|\delta_0\|_2$ and $\mathcal{K} = [G]_{\setminus} - \mathcal{I} - \mathcal{J}$. We use the bounds

$$\|\boldsymbol{\delta}_0 + \boldsymbol{\delta}_i\|_2 \ge \begin{cases} \lambda_{\min}(\|\boldsymbol{\delta}_i\|_2 + \|\boldsymbol{\delta}_0\|_2) & \text{if } i \in \mathcal{I} \\ \|\boldsymbol{\delta}_i\|_2/2 & \text{if } i \in \mathcal{J} \\ 0 & \text{if } i \in \mathcal{K} \end{cases}$$

$$(41)$$

This implies

$$\sum_{i=1}^G n_i \|\boldsymbol{\delta}_0 + \boldsymbol{\delta}_i\|_2 \ge \sum_{i \in \mathcal{J}} \frac{n_i}{2} \|\boldsymbol{\delta}_i\|_2 + \lambda_{\min} \sum_{i \in \mathcal{I}} n_i (\|\boldsymbol{\delta}_i\|_2 + \|\boldsymbol{\delta}_0\|_2).$$

1100 Let $S_{\mathcal{S}} = \sum_{i \in \mathcal{S}} n_i \|\boldsymbol{\delta}_i\|_2$ for $\mathcal{S} = \mathcal{I}, \mathcal{J}, \mathcal{K}$. We know that over $\mathcal{K}, \|\boldsymbol{\delta}_i\|_2 \le 2\|\boldsymbol{\delta}_0\|_2$ which implies $S_{\mathcal{K}} = \sum_{i \in \mathcal{K}} n_i \|\boldsymbol{\delta}_i\|_2 \le 1101$ $2\sum_{i \in \mathcal{K}} n_i \|\boldsymbol{\delta}_0\|_2 \le 2n\|\boldsymbol{\delta}_0\|_2$. Set $\psi_{\mathcal{I}} = \min\{1/2, \lambda_{\min}\bar{\rho}/3\} = \lambda_{\min}\bar{\rho}/3$. Using $1/2 \ge \psi_{\mathcal{I}}$, we write:

$$\sum_{i=1}^{G} n_{i} \|\boldsymbol{\delta}_{0} + \boldsymbol{\delta}_{i}\|_{2} \geq \psi_{\mathcal{I}} S_{\mathcal{J}} + \lambda_{\min} \sum_{i \in \mathcal{I}} n_{i} (\|\boldsymbol{\delta}_{i}\|_{2} + \|\boldsymbol{\delta}_{0}\|_{2})$$

$$(S_{\mathcal{K}} \leq 2n \|\boldsymbol{\delta}_{0}\|_{2}) \geq \psi_{\mathcal{I}} S_{\mathcal{J}} + \psi_{\mathcal{I}} S_{\mathcal{K}} - 2\psi_{\mathcal{I}} n \|\boldsymbol{\delta}_{0}\|_{2} + \left(\sum_{i \in \mathcal{I}} n_{i}\right) \lambda_{\min} \|\boldsymbol{\delta}_{0}\|_{2} + \lambda_{\min} S_{\mathcal{I}}$$

$$(\lambda_{\min} \geq \psi_{\mathcal{I}}) \geq \psi_{\mathcal{I}} (S_{\mathcal{I}} + S_{\mathcal{J}} + S_{\mathcal{K}}) + \left(\left(\sum_{i \in \mathcal{I}} n_{i}\right) \lambda_{\min} - 2\psi_{\mathcal{I}} n\right) \|\boldsymbol{\delta}_{0}\|_{2}.$$

Now, observe that, assumption of the Definition 3.2, $\sum_{i \in \mathcal{I}} n_i \geq \bar{\rho} n$ implies:

$$\left(\sum_{i\in\mathcal{I}}n_i\right)\lambda_{\min}-2\psi_{\mathcal{I}}n\geq (\bar{\rho}\lambda_{\min}-2\psi_{\mathcal{I}})n\geq \psi_{\mathcal{I}}n.$$

Combining all, we obtain:

$$\sum_{i=1}^G n_i \|\boldsymbol{\delta}_0 + \boldsymbol{\delta}_i\|_2 \ge \psi_{\mathcal{I}}(S_{\mathcal{I}} + S_{\mathcal{J}} + S_{\mathcal{K}} + \|\boldsymbol{\delta}_0\|_2) = \psi_{\mathcal{I}}(n\|\boldsymbol{\delta}_0\|_2 + \sum_{i=1}^G n_i\|\boldsymbol{\delta}_i\|_2).$$

A.11. Proof of Lemma A.4

Proof. Consider the following soft indicator function which we use in our derivation:

$$\psi_a(s) = \begin{cases} 0, & |s| \le a \\ (|s| - a)/a, & a \le |s| \le 2a \\ 1, & 2a < |s| \end{cases}$$

Now:

$$\begin{split} & \mathbb{E} \sup_{\boldsymbol{\delta}_{[G]}} \sum_{g=1}^{G} \xi_{g} \sum_{i=1}^{n_{g}} \left[Q_{2\xi_{g}}(\boldsymbol{\delta}_{0g}) - \mathbb{1}(|\langle \mathbf{x}_{gi}, \boldsymbol{\delta}_{0g} \rangle| \geq \xi_{g}) \right] \\ & = & \mathbb{E} \sup_{\boldsymbol{\delta}_{[G]}} \sum_{g=1}^{G} \xi_{g} \sum_{i=1}^{n_{g}} \left[\mathbb{E} \mathbb{1}(|\langle \mathbf{x}_{gi}, \boldsymbol{\delta}_{0g} \rangle| \geq 2\xi_{g}) - \mathbb{1}(|\langle \mathbf{x}_{gi}, \boldsymbol{\delta}_{0g} \rangle| \geq \xi_{g}) \right] \\ & \leq & \mathbb{E} \sup_{\boldsymbol{\delta}_{[G]}} \sum_{g=1}^{G} \xi_{g} \sum_{i=1}^{n_{g}} \left[\mathbb{E} \psi_{\xi_{g}}(\langle \mathbf{x}, \boldsymbol{\delta}_{0g} \rangle) - \psi_{\xi_{g}}(\langle \mathbf{x}_{gi}, \boldsymbol{\delta}_{0g} \rangle) \right] \\ & \leq & 2\mathbb{E} \sup_{\boldsymbol{\delta}_{[G]}} \sum_{g=1}^{G} \xi_{g} \sum_{i=1}^{n_{g}} \epsilon_{gi} \psi_{\xi_{g}}(\langle \mathbf{x}_{gi}, \boldsymbol{\delta}_{0g} \rangle) \\ & \leq & 2\mathbb{E} \sup_{\boldsymbol{\delta}_{[G]}} \sum_{g=1}^{G} \sum_{i=1}^{n_{g}} \epsilon_{gi} \langle \mathbf{x}_{gi}, \boldsymbol{\delta}_{0g} \rangle \end{split}$$

where ϵ_{gi} are iid copies of Rademacher random variable which are independent of every other random variables and themselves. Now we add back $\frac{1}{n}$ and expand $\delta_{0g} = \delta_0 + \delta_g$:

 $\frac{2}{n}\mathbb{E}\sup_{\boldsymbol{\delta}_{[G]}\in\mathcal{C}_{[G]}}\sum_{g=1}^{G}\sum_{i=1}^{n_g}\epsilon_{gi}\langle\mathbf{x}_{gi},\boldsymbol{\delta}_{0g}\rangle = \frac{2}{n}\mathbb{E}\sup_{\boldsymbol{\delta}_{0}\in\mathcal{C}_{0}}\sum_{i=1}^{n}\epsilon_{i}\langle\mathbf{x}_{i},\boldsymbol{\delta}_{0}\rangle + \frac{2}{n}\mathbb{E}\sup_{\boldsymbol{\delta}_{[G]}\backslash\mathcal{C}_{[G]}\backslash\mathcal{C}}\sum_{g=1}^{G}\sum_{i=1}^{n_g}\epsilon_{gi}\langle\mathbf{x}_{gi},\boldsymbol{\delta}_{g}\rangle$ $= \frac{2}{\sqrt{n}} \mathbb{E} \sup_{\boldsymbol{\delta}_0 \in \mathcal{C}_0} \sum_{i=1}^n \langle \frac{1}{\sqrt{n}} \epsilon_i \mathbf{x}_i, \boldsymbol{\delta}_0 \rangle + \frac{2}{\sqrt{n}} \mathbb{E} \sup_{\boldsymbol{\delta}_{[G]} \setminus \{\mathcal{C}_{[G]} \setminus \{\mathcal{C}_{[G]$ $(n_0 := n, \epsilon_{0i} := \epsilon_0, \mathbf{x}_{0i} := \mathbf{x}_i) = \frac{2}{\sqrt{n}} \mathbb{E} \sup_{\boldsymbol{\delta}_{[G]} \in \mathcal{C}_{[G]}} \sum_{r=0}^{G} \sqrt{\frac{n_g}{n}} \sum_{i=1}^{n_g} \langle \frac{1}{\sqrt{n_g}} \epsilon_{gi} \mathbf{x}_{gi}, \boldsymbol{\delta}_g \rangle$ $(\mathbf{h}_g := \frac{1}{\sqrt{n_q}} \sum_{i=1}^{n_g} \epsilon_{gi} \mathbf{x}_{gi}) = \frac{2}{\sqrt{n}} \mathbb{E} \sup_{\boldsymbol{\delta}_{[G]} \in \mathcal{C}_{[G]}} \sum_{0}^{G} \sqrt{\frac{n_g}{n}} \langle \mathbf{h}_g, \boldsymbol{\delta}_g \rangle$ $\mathcal{A}_g \in \mathcal{C}_g \cap \mathbb{S}^{p-1}) \quad \leq \quad \frac{2}{\sqrt{n}} \mathbb{E} \sup_{oldsymbol{\delta}_{[G]} \in \mathcal{A}_{[G]}} \sum_{g=0}^G \sqrt{rac{n_g}{n}} \langle \mathbf{h}_g, oldsymbol{\delta}_g
angle \|oldsymbol{\delta}_g\|_2$ $\leq \frac{2}{\sqrt{n}} \sum_{r=0}^{G} \sqrt{\frac{n_g}{n}} \mathbb{E}_{\mathbf{h}_g} \sup_{oldsymbol{\delta}_g \in \mathcal{A}_g} \langle \mathbf{h}_g, oldsymbol{\delta}_g
angle \| oldsymbol{\delta}_g \|_2$ $\leq \frac{2}{\sqrt{n}} \sum_{r=0}^{G} \sqrt{\frac{n_g}{n}} c_g k\omega(\mathcal{A}_g) \|\boldsymbol{\delta}_g\|_2$

Note that the \mathbf{h}_{gi} is a sub-Gaussian random vector which let us bound the \mathbb{E} sup using the Gaussian width (Tropp, 2015) in the last step.

A.12. Proof of Lemma A.6

We will need the following lemma in our proof. It establishes the RE condition for individual isotropic sub-Gaussian designs and provides us with the essential tool for proving high probability bounds.

Lemma A.8 (Theorem 11 of (Banerjee et al., 2014)). For all $g \in [G]$, for the matrix $\mathbf{X}_g \in \mathbb{R}^{n_g \times p}$ with independent isotropic sub-Gaussian rows, i.e., $\|\mathbf{x}_{gi}\|_{\psi_2} \leq k$ and $\mathbb{E}[\mathbf{x}_{gi}\mathbf{x}_{gi}^T] = \mathbf{I}$, the following result holds with probability at least $1 - 2\exp\left(-\gamma_q(\omega(\mathcal{A}_q) + \tau)^2\right)$ for $\tau > 0$:

$$\forall \mathbf{u}_g \in \mathcal{C}_g : n_g \left(1 - c_g \frac{\omega(\mathcal{A}_g) + \tau}{\sqrt{n_g}} \right) \|\mathbf{u}_g\|_2^2 \le \|\mathbf{X}_g \mathbf{u}_g\|_2^2 \le n_g \left(1 + c_g \frac{\omega(\mathcal{A}_g) + \tau}{\sqrt{n_g}} \right) \|\mathbf{u}_g\|_2^2$$

where $c_g > 0$ is constant.

The statement of Lemma A.8 characterizes the distortion in the Euclidean distance between points $\mathbf{u}_g \in \mathcal{C}_g$ when the matrix \mathbf{X}_g/n_g is applied to them and states that any sub-Gaussian design matrix is approximately isometry, with high probability:

$$(1-\alpha)\|\mathbf{u}_g\|_2^2 \le \frac{1}{n_g}\|\mathbf{X}_g\mathbf{u}_g\|_2^2 \le (1+\alpha)\|\mathbf{u}_g\|_2^2$$

where $\alpha = c_g \frac{\omega(\mathcal{A}_g)}{\sqrt{n_g}}$.

Now the proof for Lemma A.6:

Proof. First we upper bound each of the coefficients $\forall g \in [G]$:

$$\rho_g(\mu_g) = \sup_{\mathbf{u}, \mathbf{v} \in \mathcal{B}_g} \mathbf{v}^T (\mathbf{I}_g - \mu_g \mathbf{X}_g^T \mathbf{X}_g) \mathbf{u}$$

We upper bound the argument of the sup as follows:

$$\mathbf{v}^{T} \left(\mathbf{I}_{g} - \mu_{g} \mathbf{X}_{g}^{T} \mathbf{X}_{g} \right) \mathbf{u} = \frac{1}{4} \left[(\mathbf{u} + \mathbf{v})^{T} (\mathbf{I} - \mu_{g} \mathbf{X}_{g}^{T} \mathbf{X}_{g}) (\mathbf{u} + \mathbf{v}) - (\mathbf{u} - \mathbf{v})^{T} (\mathbf{I} - \mu_{g} \mathbf{X}_{g}^{T} \mathbf{X}_{g}) (\mathbf{u} - \mathbf{v}) \right]$$

$$= \frac{1}{4} \left[\|\mathbf{u} + \mathbf{v}\|_{2}^{2} - \mu_{g} \|\mathbf{X}_{g} (\mathbf{u} + \mathbf{v})\|_{2}^{2} - \|\mathbf{u} - \mathbf{v}\|_{2}^{2} + \mu_{g} \|\mathbf{X}_{g} (\mathbf{u} - \mathbf{v})\|_{2}^{2} \right]$$

$$\left(\text{Lemma A.8} \right) \leq \frac{1}{4} \left[\left(1 - \mu_{g} n_{g} \left(1 - c_{g} \frac{2\omega(\mathcal{A}_{g}) + \tau}{\sqrt{n_{g}}} \right) \right) \|\mathbf{u} - \mathbf{v}\|_{2} \right]$$

$$- \left(1 - \mu_{g} n_{g} \left(1 + c_{g} \frac{2\omega(\mathcal{A}_{g}) + \tau}{\sqrt{n_{g}}} \right) \right) \|\mathbf{u} - \mathbf{v}\|_{2} \right]$$

$$\left(\mu_{g} = \frac{1}{a_{g} n_{g}} \right) \leq \frac{1}{4} \left[\left(1 - \frac{1}{a_{g}} \right) (\|\mathbf{u} + \mathbf{v}\|_{2} - \|\mathbf{u} - \mathbf{v}\|_{2}) + c_{g} \frac{2\omega(\mathcal{A}_{g}) + \tau}{a_{g} \sqrt{n_{g}}} (\|\mathbf{u} + \mathbf{v}\|_{2} + \|\mathbf{u} - \mathbf{v}\|_{2}) \right]$$

$$\leq \frac{1}{4} \left[\left(1 - \frac{1}{a_{g}} \right) 2 \|\mathbf{v}\|_{2} + c_{g} \frac{2\omega(\mathcal{A}_{g}) + \tau}{a_{g} \sqrt{n_{g}}} 2 \sqrt{2} \right]$$

where the last line follows from the triangle inequality and the fact that $\|\mathbf{u} + \mathbf{v}\|_2 + \|\mathbf{u} - \mathbf{v}\|_2 \le 2\sqrt{2}$ which itself follows from $\|\mathbf{u} + \mathbf{v}\|_2^2 + \|\mathbf{u} - \mathbf{v}\|_2^2 \le 4$. Note that we applied the Lemma A.8 for bigger sets of $\mathcal{A}_g + \mathcal{A}_g$ and $\mathcal{A}_g - \mathcal{A}_g$ where Gaussian width of both of them are upper bounded by $2\omega(\mathcal{A}_g)$. The above holds with high probability (computed below). Now we set:

$$\mathbf{v}^{T} \left(\mathbf{I}_{g} - \frac{1}{a_{g} n_{g}} \mathbf{X}_{g}^{T} \mathbf{X}_{g} \right) \mathbf{u} \leq \frac{1}{2} \left[\left(1 - \frac{1}{a_{g}} \right) + \sqrt{2} c_{g} \frac{2\omega(\mathcal{A}_{g}) + \tau}{a_{g} \sqrt{n_{g}}} \right]$$
(42)

To keep the upper bound of ρ_g in (42) below any arbitrary $\frac{1}{b} < 1$ we need $n_g = O(b^2(\omega(\mathcal{A}_g) + \tau)^2)$ samples.

Now we rewrite the same analysis using the tail bounds for the coefficients to clarify the probabilities. Let's set $\mu_g = \frac{1}{a_g n_g}$, $d_g := \frac{1}{2} \left(1 - \frac{1}{a_g}\right) + \sqrt{2} c_g \frac{\omega(\mathcal{A}_g) + \tau/2}{a_g \sqrt{n_g}}$ and name the bad events of $\|\mathbf{X}_g(\mathbf{u} + \mathbf{v})\|_2^2 < n_g \left(1 - c_g \frac{2\omega(\mathcal{A}_g) + \tau}{\sqrt{n_g}}\right)$ and $\|\mathbf{X}_g(\mathbf{u} - \mathbf{v})\|_2^2 > n_g \left(1 + c_g \frac{2\omega(\mathcal{A}_g) + \tau}{\sqrt{n_g}}\right)$ as \mathcal{E}_1 and \mathcal{E}_2 respectively:

$$\mathbb{P}(\rho_g \ge d_g) \le \mathbb{P}(\rho_g \ge d_g | \neg \mathcal{E}_1, \neg \mathcal{E}_2) + 2\mathbb{P}(\mathcal{E}_1) + \mathbb{P}(\mathcal{E}_2)$$
Lemma A.8 < 0 + 6 exp $(-\gamma_g(\omega(\mathcal{A}_g) + \tau)^2)$

which concludes the proof.

A.13. Proof of Lemma A.7

Proof. The following holds for any **u** and **v** because of $\|\mathbf{X}_g(\mathbf{u} + \mathbf{v})\|_2^2 \ge 0$:

$$-\mathbf{v}^T \mathbf{X}_g^T \mathbf{X}_g \mathbf{u} \le \frac{1}{2} \left(\|\mathbf{X}_g \mathbf{u}\|_2^2 + \|\mathbf{X}_g \mathbf{v}\|_2^2 \right)$$

$$\tag{43}$$

Now we can bound ϕ_q as follows:

$$\phi_g(\mu_g) = \mu_g \sup_{\mathbf{v} \in \mathcal{B}_g, \mathbf{u} \in \mathcal{B}_0} -\mathbf{v}^T \mathbf{X}_g^T \mathbf{X}_g \mathbf{u} \le \frac{\mu_g}{2} \left(\sup_{\mathbf{u} \in \mathcal{B}_0} \|\mathbf{X}_g \mathbf{u}\|_2^2 + \sup_{\mathbf{v} \in \mathcal{B}_g} \|\mathbf{X}_g \mathbf{v}\|_2^2 \right)$$
(44)

1256 So we have:

$$\phi_{g}\left(\frac{1}{a_{g}n_{g}}\right) \leq \frac{1}{2a_{g}}\left(\frac{1}{n_{g}}\sup_{\mathbf{u}\in\mathcal{B}_{0}}\|\mathbf{X}_{g}\mathbf{u}\|_{2}^{2} + \frac{1}{n_{g}}\sup_{\mathbf{v}\in\mathcal{B}_{g}}\|\mathbf{X}_{g}\mathbf{v}\|_{2}^{2}\right)$$

$$(\text{Lemma A.8}) \leq \frac{1}{a_{g}}\left(1 + c_{0g}\frac{\omega(\mathcal{A}_{g}) + \omega(\mathcal{A}_{0}) + 2\tau}{2\sqrt{n_{g}}}\right)$$

$$(\omega_{0g} = \max(\omega(\mathcal{A}_{0}), \omega(\mathcal{A}_{g})) \leq \frac{1}{a_{g}}\left(1 + c_{0g}\frac{\omega_{0g} + \tau}{\sqrt{n_{g}}}\right)$$

$$(45)$$

High Dimensional Data Enrichment

1265 where $c_{0g} = \max(c_0, c_g)$.

To compute the exact probabilities lets define $s_g := \frac{1}{a_g} \left(1 + c_{0g} \frac{\omega(\mathcal{A}_g) + \omega(\mathcal{A}_0) + 2\tau}{2\sqrt{n_g}} \right)$ and name the bad events of $\frac{1268}{1269} \quad \frac{1}{n_g} \sup_{\mathbf{u} \in \mathcal{B}_0} \|\mathbf{X}_g \mathbf{u}\|_2^2 > 1 + c_0 \frac{\omega(\mathcal{A}_0) + \tau}{\sqrt{n_g}} \text{ and } \frac{1}{n_g} \sup_{\mathbf{v} \in \mathcal{B}_g} \|\mathbf{X}_g \mathbf{v}\|_2^2 > 1 + c_g \frac{\omega(\mathcal{A}_g) + \tau}{\sqrt{n_g}} \text{ as } \mathcal{E}_1 \text{ and } \mathcal{E}_2 \text{ respectively.}$

$$\mathbb{P}(\phi_g > s_g) \leq \mathbb{P}(\phi_g > s_g | \neg \mathcal{E}_1) \mathbb{P}(\neg \mathcal{E}_1) + \mathbb{P}(\mathcal{E}_1)
\leq \mathbb{P}(\mathcal{E}_2) + \mathbb{P}(\mathcal{E}_1)
\leq 4 \exp(-\gamma_g(\omega(\mathcal{A}_g) + \tau)^2)$$
(46)