E80 Final Project Presentation: Field Deployment of an Autonomous Underwater Vehicle

Nandini Garg, Cristian Gonzalez, Erina Iwasa, Jeremy Kim

Meet the Robots

Meet Karen RIP KAREN 2022-2022

Meet Jeremy

Our Motivation and Approach

Robot Mechanical Design

Design Process & Sketches

Initial Design: 19"x12"x16"

Final Design Chosen

Final Design: 19"x12"x8"

Sensor Selection & Circuit Design

Pressure Sensor

- MPX5700ASX
- Piezoelectric transducer
 - Voltage is directly proportional to pressure

Goal: Design a circuit that appropriately amplifies the sensor's output for the robot's desired 0 - 3m depth range

Pressure Sensor Circuit

- Non-inverting amplifier with biasing
- Components selected based off of expected pressure sensor voltage
- Bypass capacitors connected to op-amp
 - MCP6004

Temperature Sensor

- 47kΩ Murata-NXFT15WB473FA2B150
- Temperature dependent resistor
 - Resistance inversely proportional to temperature

Goal: Design a circuit that produces an output swing within a 0 - 3.3V range that models temperatures from 10.5 - 19.5°C

Temperature Sensor Circuit

- Voltage divider circuit
- Two biasing resistors used to prevent output from surpassing 3.3V
- Components selected based on expected conditions at Dana Point
- Divider output fed into op-amp buffer

Turbidity Sensor

- IR1503 LED
- 950nm OP950 Photodiode
 - Controlled by 555 Timer

Goal: Design a circuit based on IR light readings that can appropriately model changes in turbidity

Turbidity Meter Construction

The first step involved soldering and heat shrinking stranded wire to the ends of the photodiode and LED.

Marine epoxy

Hole at top and bottom for water flow

Turbidity Sensor Circuit + 555 Timer

- Design based off on the astable circuit design provided in the xx555 timer datasheet
- Current limiting resistor included to mitigate risk of LED burning out
- Output signal has a frequency of approximately 26Hz

555 Timer LED system

5V: <0.1A

Turbidity Sensor Circuit + 555 Timer (Cont.)

- Transimpedance amplifer
- Photodiode behaves like a current source, receiving IR light from the LED
- Adjusted feedback resistance to achieve desired output swing

Turbidity sensor

Pre-deployment Modeling & Expected Measurements

Model Calculations

R=R₀ expB (1/T-1/T₀) (1)

R: Resistance in ambient temperature T (K) (K: absolute temperature)

Ro: Resistance in ambient temperature To (K)

B: B-Constant of Thermistor

Note 2: The following equation is the basis for the computation, v out = v ps(R3/R2 + R3/R1 +1) - VDD(R3/R1)

Thermistor Info			Key		
Thermistor Type	Murata NXFT15WB473FA2B150		Input		
R0 [kohms]	47		Output		
B constant [K]	4101				
Temp to Resistance		Voltage Divider Value	es		
To [K]	298.15	VDD [V]	5		
Tmin [C]	10.5	Standard R2 [ohms]	68000		
Tmax [C]	19.11	Ideal R1 [ohms]	65944.58476		
Average temp [C]	16	Closest Standard R1 [68000		
Rmin [kohms]	62.01352343				
Ravg [kohms]	72.1160213	Teensy Spec Check	Result	Spec	Meets Spec?
Rmax [kohms]	94.94378267	Vout,min [V]	1.472219759	0	TRUE
		Vout,max [V]	1.717054442	3.3	TRUE
Output Voltage		Vout,midpoint [V]	1.633704113	1.65	
Goal Vout,midpoint [V]	1.65			_	
Vout,min [V]	1.472219759	Checks	if Output	Voltages	are
Vout,midpoint [V]	1.633704113		below 3.3	Volts	
Vout,max [V]	1.717054442		DCIOVV C.C	VOILS	

Model Calculations (Cont.)

Testing Model w/ Phake Lake & E80 Tank Room

Revisions Made After Testing

- Changing Turbidity meter orientation from horizontal to vertical
- Size of robot's dimensions changed minimally after our initial robot drowned in Phake Lake.
- Purchased a larger water-proof box for easier deployment.
- Turbidity calibration outputted 5 Volts, needed to adjust resistor values

Dana Point Deployment

Dana Point Harbor

Schematics & Calculations

$$F_b = p_{water} * V_{robot} * g$$

 $F_b = 1.027 \text{ kg/L} * 6.72 \text{ L} * 9.81 \text{ m/s}^2 = 67.69 \text{N}$

$$F_b = F_g = m_{system} *g, m_{system} = m_{robot} + m_{ballast}$$
 $67.69N = (m_{robot} + m_{ballast}) * 9.81 m/s^2$
 $67.69N = (3.83 kg + m_{ballast}) * 9.81 m/s^2$
 $m_{ballast} = 3.08 kg$

Post-Deployment Data Processing & Analysis

Processing Sensor Data (w/ Respect to Time)

Temperature v.s Time

Turbidity v.s Time

Temperature vs. Depth from Ocean Surface

Turbidity vs. Depth from Ocean Surface

Future Work

Complications

Turbidity v.s Time

Gaps in turbidity sensor data.

As the robot descended, turbidity decreased.

Future Work

Increase the depth of the robot.

Implement sonar.

Test in warmer ocean waters.

Temperature Guild	Species	ILLT, ULLT	Optimal range
Coldwater	Arctic charr (Salvelinus alpinus)	0-19.7	6-15
	Atlantic salmon (Salmo salar)	-0.5-25	13-17
Coolwater	Walleye(Stizostedion vitreum)	0-30	20-23
	Striped bass(Morone saxatilis)	2-32	13-24
Warmwater	European eel (Anguilla anguilla)	0-39	22-23
	Channel catfish (Ictalurus punctatus)	0-40	20-25
Warmwater/ tropical	Common carp (Cyprinus carpio)	0-35.7	26.7-29.4
Tropical	Redbelly tilapia(Tilapia zillii)	7-42	28.8-31.4
	Guinean tilapia (Tilapia guineensis)	14-34	18-32

Acknowledgements

We would like to thank Lynn, Xavier, Professor Spjut, the proctors, and the entire teaching staff for helping us along the way in these unprecedented times.

Thank you!

Now we'll be fielding questions...

Putting it all together

