Application of Semiotic Experiments in Linguistic Research

Peeter Tinits peeter.tinits@gmail.com

Outline

- Basic concepts
- Potential of semiotic experiments
- One experimental study
 - Language Simplification in Composite Populations (supervised by Simon Kirby, Hannah Cornish)

A view on language

Language as a population of utterances

Some transmission biases

- Learning bias
- Communication bias

Substantive bias

Potential adaptive pressures

Dimensions adapted from Kusters, 2003.

- Depending on their particular situation of use, a language would come to rest on a dynamic balance between different processing dimensions.
- It can be possible to map this to explicitly linguistic categories (Kusters, 2003).

Preferences for processing dimensions

Table 2.5 Preferences for inflectional phenomena in various processing dimensions

+ = preference, 0 = neutral and -, --, and --- = degrees of difficulty.

	Speaker	L1 learner	Symbolic use	Hearer	L2 learner
Redundant agreement		+	0	+	
Non-redundant agreement		+	+	-	
Aspect/Tense/Mood	-	+	+	0	-
Voice	0	+	+	+	-
Morphological allomorphy	-		+	-	
Accidental homonymy	0		0		
Fission	-	-	+	+	
Fusion	+	0	0	0	-
Phonological allomorphy	+	-	+	0	
Structural homonymy	+	+	0	0	+
Isomorphy	+	0	0	+	+
Marked affix order	0	0	0	0	0
Inconsistent affix order	-	0	0	-	-

Semiotic experiments

Often investigate domain-general principles.

Art gallery – no feedback

Art gallery – with feedback

Parliament

(from Scruton 1974: 204 via

Sonesson 1994: 297)

FACE

Brad Pitt

Images reproduced from Fay et al. 2010.

Miniature Artificial Languages

- Stand as proxy for the challenges and uses of historical linguistic forms (i.e. good for testing biases on particular linguistic forms)
- Are learnable within laboratory conditions under time-constraints and expected changes may happen in a quickened pace
- Increases control over personal language experience
- Primarily have been used in studies on learning

Learning experiments

(e.g. Christiansen, 2000; Kirby et al., 2008; Smith et al. 2010; Culbertson et al., 2012)

^{* -} Usually limited by asking them to produce as faithfully as possible.

Communication experiments

(Exemplary studies with miniature languages: Roberts, 2010; Kalnins, 2010)

The study

 " Language Simplification in Composite Populations" (sup. S. Kirby, H. Cornish)

- Combined artificial language learning with communicative situations
- Prelearned miniature languages
- Tested for a bias for systematicity

Participants

- 18 participants (6 groups of 3 people)
 - Native English speakers
 - No impairments
 - No linguists
 - Unfamiliar within the group

Experiment in 2 parts

1. Solitary learning sequence

Languages

- 9 items per language (3x3 meaning space)
- 2 languages in each group
 - Minority
 - Majority
- 2 types of varieties
 - Simple
 - Complex
- Minority and majority differed in 2 items

Two conditions

Simple Condition

Subject 1 – Simple language

Subject 2 – Complex language

Subject 3 – Complex language

Complex Condition

Subject 1 – Complex language

Subject 2 – Complex language

Subject 3 – Complex language

Systematicity/ Simplicity

^{*}Languages were created in sets of three, where each differed from the others by **two** maximally different items. Later they were compared pairwise.

Meanings

- From a study by Tamariz et al. (2012)
- 3 x 3 interrelated
- Systematically related, yet idiosyncratic

The images are designed for Tamariz et al. (2012)

Form

- Limited phoneme space in the training items
- CV-CV-CV structure
- 9 consonants, 3 vowels (/k/, /p/, /t/, /s/, /m/, /n/, /l/, /f/, /w/, /a/, /i/, /u/)
- Tested against chance similarities

Simple Condition

Minority language

Majority language

Simplicity score: 4.66 Simplicity score: 2.89

Complex Condition

Minority language

Majority language

Simplicity score: 2.87 Simplicity score: 2.89

Learning

- 8 rounds = equal # of trials for all participants
 - (192 x production, 192 x perception, 192 x observation interweaved)
 - (2 obs -> 1 perc -> 2 prod -> 1 perc ... repeats)
- Expected to be competent by the end

The Game Mismatch

Match

Results

- Learned to a competent level (1 outlier)
- Test items did cause problems at first

Success on identical items

Success on non-identical items

Solving the communicative problem

- A robust trend:
 - Complex minority accommodated to the majority
 - Simple minority did not
 - They reached either a mutual understanding, or sometimes also the majority accommodated to the minority

For the 2nd test item

Change

<u>Complex minority – Complex majority</u>

<u>KINUFU</u>	<u>KINUFU</u>	KUSALI	KINUFU	WULAMA	WULAMA
KINUFU	J KINUFU	KINUFU	KINUFU	KINUFU	KINUFU
KINUFU	J KINUFU	KINUFU	KINUFU	KINUFU	KINUFU

<u>Simple minority – Complex majority</u>

TAPIWI	TAPIWI	TAPIWI	TAPIWI	TAPIWI	TAPIWI
KINUFU	KINUFU	TAPIWI	TAPILI	KINUFU	<u>TAPILI</u>
KINUFU	KINUFU	KINUFU	KINUFL	KINUFU	KINUFU

Turned bilingual

- 1) TUFINU + MILAWA
- 2) WULAMA + SIKUNI
- 3) KANIFI + SULAWU

Distance from training stimuli for the minority, between two conditions one-tailed pairwise t-test, t (2) = -13.503 < .01**

An interesting note

The simple minority groups lost the game

Success on non-identical items

Discussion

- Current sample size is too small to make conclusions, but the results seems plausible.
 Further experiments needed.
- If confirmed, you could expect speakers of a systematic variety to stay true to their ideals even when slightly unreasonable.
- This might provide one piece of the puzzle as to the proximal mechanisms explaining an attractor point of a simpler language in certain situations of language contact

Conclusions

- Bias for systematicity in communicative situations?
- Miniature artifical languages can work with communication experiments
- Other possible biases in historical linguistics can be tested with this platform

References

- Beckner, C.; Blythe, R.; Bybee, J.; Christiansen, M.; Croft, W.; Ellis N.; Holland, J.; Ke, J.; Larsen-Freeman, D.; Schoenemann, T. 2009. Language is a Complex Adaptive System: Position Paper. *Language Learning*, 59(1): 1-26
- Christiansen, M. (2000). Using artificial language learning to study language evolution: Exploring the emergence of word order universals. In Dessalles J. L., (Ed.), Proceedings of the 3rd Conference on the Evolution of Language (pp. 45–48). Paris, France.
- Culbertson, J., & Smolensky, P. (2009). Testing Greenberg's Universal 18 using an artificial language learning paradigm. Proceedings of NELS, 1–12.
- Croft, W. 2000. Explaining Language Change: An Evolutionary Approach. Harlow: Pearson Education Limited
- Enfield, N. J. 2003. *Linguistic Epidemiology: Semantics and Grammar of Language Contact in Mainland Southeast Asia*. London: Routledge
- Fay N., Garrod S., Roberts L. (2008). The fitness and functionality of culturally evolved communication systems. Philosophical Transactions of the Royal Society: Biological Sciences. 363:3553–3561
- Fay, N., Garrod, S., Roberts, L., & Swoboda, N. (2010). The interactive evolution of human communication systems. *Cognitive science*, *34*(3), 351–86. doi:10.1111/j.1551-6709.2009.01090.x
- Garrod, S., Fay, N., Lee, J., Oberlander, J., & Macleod, T. (2007). Foundations of representation: where might graphical symbol systems come from? *Cognitive science*, *31*(6), 961–87. doi:10.1080/03640210701703659
- Galantucci, B., & Garrod, S. (2009). Experimental semiotics: a review. Frontiers in human neuroscience.
- Kalnins, D. (2010). Iterated Learning and Communicative Use of Spoken Language. (Unpublished master's thesis).
 University of Edinburgh, Edinburgh.

References

- Kirby, S., Cornish, H., and Smith, K. (2008). Cumulative cultural evolution in the laboratory: an experimental approach to the origins of structure in human language. *Proc. Natl. Acad. Sci. U.S.A.* 105, 10681–10686.
- Kusters, W. 2003. *Linguistic Complexity: the Influence of Social Change on Verbal Inflection*. PhD Dissertation, University of Leiden.
- Mufwene, S. S. 2001. *The ecology of language evolution*. Cambridge Approaches to Language Contact. Cambridge, New York: Cambridge University Press.
- Roberts, G. (2010). An experimental study of social selection and frequency of interaction in linguistic diversity. *Interaction studies*. doi:11.1075/is.11.1.06rob
- Scott-Phillips, T. C., & Kirby, S. (2010). Language evolution in the laboratory. *Trends in cognitive sciences*, 14(9), 411–7. doi:10.1016/j.tics.2010.06.006
- Smith, A.D.M., Skarabela, B. and Tamariz, M. (2010). Exploring the nature of a systematicity bias: an experimental study. In A.D.M. Smith, M. Schouwstra, B. de Boer & K. Smith (Eds.) *The Evolution of Language (EVOLANG 8)* (pp. 289–296). Singapore: World Scientific.
- Sonesson, G. "Prolegomena to the Semiotic Analysis of Prehistoric Visual Displays." In Semiotica 100.3–4 (1994): 267–331
- Tamariz, M., Cornish, H., Roberts, S. & Kirby, S. (2012). How generation turnover and interlocutor negotiation affect language evolution. In T. Scott-Phillips, M. Tamariz & E. Cartmill, (Eds.) *The Evolution of Language*. Proceedings of the 9th International Conference on the Evolution of Language.
- Theisen, C. A., Oberlander, J., & Kirby, S. (2010). Systematicity and arbitrariness in novel communication systems. Interaction Studies, 11(1), 14–32

Thank you!

