Projections et symétries

Par K on désigne R ou C, par E un K-espace vectoriel.

Étude géométrique

On considère ${\bf F}$ et ${\bf G}$ deux sous-espaces ${\bf supplémentaires}$ de ${\bf E}$:

$$\mathbf{E} = \mathbf{F} \oplus \mathbf{G}$$
.

Soit $\vec{x} \in \mathbf{E}$. Par définition il existe un et un seul élément (f,g) de $\mathbf{F} \times \mathbf{G}$ tel que :

$$\vec{x} = \vec{f} + \vec{g}$$

Définitions

On utilise la terminologie suivante :

- le vecteur \vec{f} s'appelle le *projeté* de \vec{x} sur \mathbf{F} suivant (selon) \mathbf{G} ;
- le vecteur $\vec{f} \vec{g}$ s'appelle le *symétrique* de \vec{x} par rapport à \mathbf{F} suivant (selon) \mathbf{G} ;
- l'application p de \mathbf{E} dans \mathbf{E} qui à un élément de \mathbf{E} associe son projeté sur \mathbf{F} suivant \mathbf{G} s'appelle projection sur \mathbf{F} suivant \mathbf{G} ;
- l'application s de \mathbf{E} dans \mathbf{E} qui à un élément de \mathbf{E} associe son symétrique par rapport à \mathbf{F} suivant \mathbf{G} s'appelle symétrie par rapport à \mathbf{F} suivant \mathbf{G} .

$$\vec{x} = \underbrace{\vec{f}}_{\in \mathbf{F}} + \underbrace{\vec{g}}_{\in \mathbf{G}}; \ p(\vec{x}) = \vec{f}; \ s(\vec{x}) = \vec{f} - \vec{g}$$

1. $\mathbf{E} = \mathscr{M}_n(\mathbf{K}), \ \mathbf{F} = \mathscr{S}_n(\mathbf{K}), \ \mathbf{G} = \mathscr{A}_n(\mathbf{K}). \ \text{Pour } M \in \mathscr{M}_n(\mathbf{R}),$

$$M = \underbrace{\left(\frac{M + M^{\mathrm{T}}}{2}\right)}_{\in \mathscr{S}_n(\mathbf{R})} + \underbrace{\left(\frac{M - M^{\mathrm{T}}}{2}\right)}_{\in \mathscr{A}_n(\mathbf{R})}; \tag{1}$$

$$p(M) = \left(\frac{M+M^{\mathrm{T}}}{2}\right) \; ; \; s(M) = \left(\frac{M+M^{\mathrm{T}}}{2}\right) - \left(\frac{M-M^{\mathrm{T}}}{2}\right) = M^{\mathrm{T}}.$$

La symétrie s est la transposition.

2. $\mathbf{E} = \mathbf{R}^{\mathbf{R}}, \mathbf{F} = \mathscr{P}$, espace vectoriel des éléments pairs de $\mathbf{R}^{R}, \mathbf{G} = \mathscr{P}$ espace vectoriel des élément impairs. Pour $f \in \mathbf{R}^{\mathbf{R}}$.

$$f = \underbrace{\left(\frac{f + f(-\cdot)}{2}\right)}_{\in \mathscr{P}} + \underbrace{\left(\frac{f - f(-\cdot)}{2}\right)}_{\in \mathscr{I}};$$

$$p(f) = \left(\frac{f + f(-\cdot)}{2}\right); s(f) = \left(\frac{f + f(-\cdot)}{2}\right) - \left(\frac{f - f(-\cdot)}{2}\right) = f(-\cdot).$$

$$(2)$$

Les égalités (1,2) sont à connaître par cœur ; elles prouvent que F + G = E, comme trivialement $F \cap G = \{0\}$, la supplémentarité de F et G est acquise.

Étude algébrique

L'application p est linéaire et $p \circ p = p$

L'application s est linéaire et $s \circ s = id_{\mathbf{E}}$

Une symétrie est donc un isomorphisme.

$$\ker(p) = \mathbf{G}; \operatorname{Im}(p) = \mathbf{F}; \operatorname{Ker}(p - \mathrm{id}_{\mathbf{E}}) = \mathbf{F}$$

$$\ker(p - \mathrm{id}_{\mathbf{E}}) = \mathbf{F}; \ \mathrm{Ker}(p + \mathrm{id}_{\mathbf{E}}) = \mathbf{G}$$

Les réciproque sont vraies :

Caractérisation des projections

Une application f de **E** dans **E** est une projection si et seulement si:

- elle est linéiare;
- $-f \circ f = f$.

Si c'est le cas, alors c'est une projection sur $\operatorname{Ker}(f-\operatorname{id}_{\mathbf{E}})$ Si c'est le cas, alors c'est une symétrie par rapport à suivant Ker(f).

Caractérisation des symétries

Une application f de **E** dans **E** est une symétrie si et seulement si:

- elle est linéiare ;
- $--f\circ f=\mathrm{id}_{\mathbf{E}}.$

 $\operatorname{Ker}(f - \operatorname{id}_{\mathbf{E}})$ suivant $\operatorname{Ker}(f + \operatorname{id}_{\mathbf{E}})$.

Exemple.

Soit $A \in \mathbf{K}[X]$ de degré n > 1.

L'application ρ de $\mathbf{R}[X]$ qui à un élément P de $\mathbf{R}[X]$ associe le reste dans la division euclidienne de P par A est une projection sur $\mathbf{K}[X]_{n-1}$ suivant $A\mathbf{K}[X]$.

$$P = \underbrace{AQ}_{\in A\mathbf{K}[X]} + \underbrace{\rho(P)}_{\in \mathbf{K}[X]_{n-1}}$$

2

Cas préhilbertien

 $\mathbf{MPSI}: (\mathbf{E}, \langle \cdot | \cdot \rangle)$ est un espace euclidien (i.e. réel de dimension finie non nulle), \mathbf{F} un sous-espace vectoriel de \mathbf{E} . $\mathbf{MP}: (\mathbf{E}, \langle \cdot | \cdot \rangle)$ est un espace préhilbertien réel, \mathbf{F} un sous-espace vectoriel de \mathbf{E} de dimension finie.

Supplémentaire orthogonaux

L'espace vectoriel \mathbf{F}^{\perp} des vecteurs de \mathbf{E} orthogonaux à tout vecteur de \mathbf{F} est un supplémentaire de \mathbf{F} , (c'est même l'unique supplémentaire de \mathbf{F} orthogonal à \mathbf{F}).

$$\mathbf{F}+\mathbf{F}^{\perp}=\mathbf{E}$$

La projection sur \mathbf{F} selon \mathbf{F}^{\perp} , $p_{\mathbf{F}}$, est appelée projection orthogonale sur \mathbf{F} . La symétrie par rapport à \mathbf{F} selon \mathbf{F}^{\perp} , $s_{\mathbf{F}}$, est appelée symétrie orthogonale par rapport à \mathbf{F} .

Caractérisation pratique du projété orthgonal de \vec{x} : Un élément \vec{y} de \mathbf{F} est le projeté orthogonal de \vec{x} si et seulement si: $\forall i \in [1, p], \ \langle \vec{x} - \vec{y} | \vec{x}_i \rangle = 0$, où $(\vec{x}_1, ..., \vec{x}_p)$ est une base de \mathbf{F} (ou une famille génératrice).

Expression dans une base orthonormale du projeté

Soient $(\vec{e}_1,...,\vec{e}_p)$ une base **orthonormée** de \mathbf{F}, \vec{x} un élément de $\mathbf{E}.$ $p_{\mathbf{F}}(\vec{x}) = \sum_{i=1}^p \langle \vec{x} | \vec{e}_i \rangle \vec{e}_i$

Cas particulier ${\bf F}$ est une droite ${\bf D}$ dirigée par un vecteur \vec{u} :

$$p_{\mathbf{D}}(\vec{x}) = \langle \vec{x} | \vec{u} \rangle \frac{\vec{u}}{\|\vec{u}\|^2}; \ s_{\mathbf{D}}(\vec{x}) = 2p_{\mathbf{D}}(\vec{x}) - \vec{x} = 2\langle \vec{x} | \vec{u} \rangle \frac{\vec{u}}{\|\vec{u}\|^2 - \vec{x}}$$

Lorsque F est un hyperplan, de vecteur normal unitaire \vec{n} , il est plus simple de déterminer $p_{\text{vect}(\vec{n})}$ que $p_{\mathbf{F}}: p_{\mathbf{F}} = \text{id}_{\mathbf{E}} - p_{\text{vect}(\vec{n})} = \text{id}_{\mathbf{E}} - \langle \cdot | \vec{n} \rangle \vec{n}$.

Théorème de projection

Soient $\vec{x} \in \mathbf{E}$ et $\vec{y} \in \mathbf{F}$. Les deux propositions suivantes sont équivalentes :

- 1. $\|\vec{y} \vec{x}\| = d(\vec{x}, \mathbf{F}).$
- 2. $\vec{y} = p_{\mathbf{F}}(\vec{x})$.

FIGURE 1. PAR LE THÉORÈME DE PYTHAGORE, $d(x, \mathbf{F}) \leq ||\vec{x}, \vec{y}||$.