לינארית 1א \sim תרגיל בית 8 \sim סמסטר ב' 2025

שחר פרץ

2025 במאי 31

 $.V = \operatorname{Im} T \oplus \ker T$ נוכיח נוכיח ט"ל המקיימת $T \colon V \to V$ ותהי מ"ו ותהי ע"ל מ"ו ותהי

. אזי: T(v)=0 וכן ידוע T(w)=v כך ש־ $v\in V$ אזי קיים $v\in {
m Im}\, T\cap {
m ker}\, T$ וכן ידוע

$$T(T(w)) = T(v) = 0 \stackrel{T^3}{\Longrightarrow} T^3(T(T(w))) = T^3(0) = 0 \implies T^5w = 0$$

:ידוע $T^5==-T$ כלומר

$$T^5w = 0 = -Tw = -v \implies -v = 0 \implies v = 0$$

 $\operatorname{Im} T \cap \ker T = \{0\}$ סה"כ v וקטור האפס ולכן

 $:T\colon V o V$ ממשפט הממדים, ומהיות

$$\dim \ker T + \dim \operatorname{Im} T = V \qquad \frac{\ker T \subseteq V}{\operatorname{Im} T \subseteq V} \implies \frac{\dim \ker T \le \dim V}{\dim \operatorname{Im} T \le \dim V}$$

: נניח בשלילה ממשפט הממדים אזי , $\ker T + \operatorname{Im} T < V$ אזי . $\ker T + \operatorname{Im} T \neq V$ נניח בשלילה

 $\dim V = \dim \ker T + \dim \operatorname{Im} T + \dim (\ker T \cap \operatorname{Im} T) \implies \dim (\ker T \cap \operatorname{Im} T) > 0$

:אך

$$\ker T \cap \operatorname{Im} T = \{0\} \implies \dim(\ker T \cap \operatorname{Im} T) = 0 \geqslant 0 \quad \bot$$

סתירה. סה"כ $\ker T + \operatorname{Im} T = V$ כדרוש.

.....(2)

ניעזר במשפט הממדים להעתקות לינאריות כדי לקבוע האם קיימת ט"ל המקיימת את הנדרש, ואם קיימת נמצא אותה.

(ス)

$$\operatorname{Im} T = \operatorname{span}(1, 1, 1), \ \ker T = \operatorname{span}(1, 2, 1), T \colon \mathbb{R}^3 \to \mathbb{R}^3$$

לא קיימת כזו שכן:

$$\dim \operatorname{span} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 1, \ \dim \operatorname{span} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = 1, \implies \dim \ker T + \dim \operatorname{Im} T = 1 + 1 \neq 3 = \dim \mathbb{R}^3$$

יאת כי: $\ker T=inom{1}{11}$ אבורה $T\colon M_{2 imes2}(\mathbb{R}) o\mathbb{R}^2$ זאת כי:

 $\dim \ker T = 1, \ \dim \ker T + \dim \operatorname{Im} T = \dim M_{2 \times 2}(\mathbb{R}) = 4 \implies \dim \operatorname{Im} T = 3, \ \operatorname{Im} T \subseteq \mathbb{R}^2 \implies \dim \operatorname{Im} T \le 2 \implies 3 \le 2 \bot$

(ג) נבחין ש־: .Im $T=\mathbb{R}^5$ כך ש־ $T\colon M_{2 imes2} o \mathbb{R}^5$ נבחין ש־:

$$\dim \operatorname{Im} T = \dim \mathbb{R}^5 = 5, \ \dim \operatorname{Im} + \dim \ker T = \dim M_{2 \times 2}(\mathbb{R}) = 4 \implies \dim \ker T = -1 \quad \bot$$

אך ממש לא יכול להיות שלילי, וסתירה.

יהיו $S\circ T\colon U o W$ מ"וים נוצרים סופית מעל $T\colon U o V,\ S\colon V o W$ ויהיו ויהיו איזו'. נוכיח V,U,W מ"וים נוצרים סופית מעל $V:U\to V,\ S\colon V\to W$ ויהיו איזו'. נוכיח $V:U\to W$

הוכחה.

למה 1. T שיכון. נניח בשלילה שאיננה, אז:

 $\ker T > 0 \wedge \dim \ker T + \dim \operatorname{Im} T = \dim V \implies \dim V - \dim \operatorname{Im} T = \dim \ker T > 0 \implies \dim V > \dim \operatorname{Im} T = \dim V \implies \dim V \neq \dim V > \dim V > \dim \operatorname{Im} T = \dim V \implies \dim V \neq \dim V = \dim V$

 $\operatorname{Im} T$ בסיס של של בור עבור $\operatorname{Gim}\operatorname{Im}(S\circ T)\leq \dim\operatorname{Im} T$ הטענה

למה 2. S על. זאת כי:

כלומר:

$$V = \operatorname{Im}(S \circ T) \subseteq \operatorname{Im} T \subseteq V \implies V \subseteq \operatorname{Im}(S \circ T) \subseteq V \implies \operatorname{Im}(S \circ T) = V \quad \top$$

על כדרוש.

ידוע: $\dim \operatorname{Im} T + \dim \ker S = \dim V$

$$\dim U = \dim \ker T + \dim \ker T$$
$$\dim V = \dim \ker S = \dim \operatorname{Im} S$$

. נציב ונקבל: $\dim\operatorname{Im} S=W$ איזו' ש־ $G\operatorname{im} \operatorname{Im} S=U$ משום ש־ $G\operatorname{im} \operatorname{Mer} T=0$. משום ש־ $G\operatorname{im} \operatorname{Mer} T=0$. משום ש־ $G\operatorname{im} \operatorname{Mer} T=0$. משום ש-

$$\underbrace{\dim W}_{\dim U} = \underbrace{0}_{\dim \ker T} + \dim \operatorname{Im} T$$

$$\dim V = \dim \ker S + \underbrace{\dim W}_{\dim \operatorname{Im} S} \implies \dim V = \dim \ker S + \dim \operatorname{Im} T \quad \top$$

:מכאן

 $\operatorname{Im} T, \ker S \subseteq V \wedge \dim \operatorname{Im} T + \dim \ker S = \dim V \wedge \operatorname{Im} T \cap \ker S = \{0\}$

לכן ממשפט:

$$\ker S \oplus \operatorname{Im} T = V \quad \top$$

כדרוש.

. סעיפים הבאים, נחשב את $[T]_C^B$ עבור T העתקה, בסיסים נתונים סעיפים הבאים, נחשב את

 \mathbb{R}^4 ו־: \mathbb{R}^4 ור: איהי B בסיסי הסטנדרטי

$$C = (c_1, c_2, c_3) = \left(\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right), T : \mathbb{R}^4 \to \mathbb{R}^3, T \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{pmatrix} a+b+2c \\ 3a-2d \\ 4a-3c-2b+d \end{pmatrix}$$

נבחין שמתקיים:

$$T \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = a \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix} + b \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} + c \begin{pmatrix} 2 \\ 0 \\ -3 \end{pmatrix} + d \begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix}$$
$$= a \left(-\frac{5}{3}c_1 - \frac{4}{3}c_2 + \frac{8}{3}c_3 \right) + b \left(\frac{4}{3}c_1 + \frac{5}{3}c_2 + -\frac{1}{3}c_3 \right) + c \left(\frac{1}{3}c_1 + -\frac{4}{3}c_2 + \frac{5}{3}c_3 \right) + d \left(\frac{1}{3}c_1 - \frac{4}{3}c_2 + -\frac{1}{3}c_3 \right)$$

ולכן:

$$[T]_C^B = \frac{1}{3} \begin{pmatrix} -5 & 4 & 1 & 1\\ -4 & 5 & -4 & -4\\ 8 & -1 & 5 & -1 \end{pmatrix}$$

(ב) עבור:

$$T(A) = \begin{pmatrix} a & b \\ c & d \end{pmatrix} A, \ B = C = \left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \ \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right) = (e_1, e_2, e_3, e_4)$$

X1:

$$T\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} = \begin{pmatrix} \alpha a + \gamma b & \beta a + \gamma b \\ \alpha c + \gamma d & \beta c + \delta d \end{pmatrix}$$
$$= \alpha (ae_1 + ce_3) + \beta (ae_2 + ce_4) + \gamma (be_1 + d_3) + \delta (be_2 + de_4)$$

:סה"כ

$$[T]_B^B = \begin{pmatrix} a & 0 & b & 0 \\ 0 & a & 0 & b \\ c & 0 & c & 0 \\ 0 & d & 0 & d \end{pmatrix}$$

מטריצה $[T]^{B'}_{C'}$ כך ש־B',C' כל סדורים אוג בסיסים פוכיח עליונה. נוכיח עליונה. עליונה עליונה של $T\colon V\to V$ כך ש־B',C' כך ש־B',C' משולשית תחתונה.

 $E_1\dots E_k\in M_n(\mathbb F)$ ממשפט, קיימות I ממשפט, הוכחה. משום שי $[T]_C^B$ משום שי $[T]_C^B$ משום שי $[T]_C^B$ ממשפט, היא מדורגת מדרגה $[T]_C^B$ ממדרגות את המטריצה כלומר $[T]_C^B \cdot \prod_{i=1}^k (E_i) = I$

באופן דומה, כל מטריצה משולשית תחתונה ניתנת לדירוג לכדי I באמצעות מטריצות $ar E_1\dots ar E_m$ באותו האופן. נבחין שמ"ו המטריצה) באופן דומה, כל מטריצה מממד $\frac{n^2+n}{2}$ וכן מ"ו המטריצות המטריצות המשולשיות התחתונות הוא מממד $\frac{n^2+n}{2}$ (שכן יש $\frac{n^2+n}{2}$ וכן מ"ו המטריצות המטריצות המשולשיות העליונות ו־ $\hat M(\mathbb F) \to \hat M(\mathbb F)$ איזו', כאשר $\hat M(\mathbb F)$ מ"ו המשולשיות העליונות ו־ $\hat M(\mathbb F) \to \hat M(\mathbb F)$ מ"ו המשולשיות התחתונות.

:אזי: עזיי בעבור $ar{E}_1 \dots ar{E}_m$ נוכל להתאים לדירוג שניתנת תחתונה, שניתנת לדירוג להתאים לה להתאים לה אזי, בעבור להתאים לה

$$I \cdot \prod_{i=0}^{m-1} E_{m-i}^{-1} = T(A), \ A \cdot \prod_{i=1}^{k} E_k = I, \implies A \cdot \underbrace{E_1 \cdots E_k \cdot \bar{E}_m^{-1} \cdots \bar{E}_1^{-1}}_{E} = T(A)$$

B'=B עתה נדרג את הבסיס ,C כלומר נגדיר $C'=\{Ev\mid v\in C\}$, ומהגדרת ייצוג לפי בסיס נקבל ש־ $T(A)=[T]_{C'}^B$ בפרט עבור עבור $T(A)\in \check{M}(\mathbb{F})$ כאשר $T(A)\in \check{M}(\mathbb{F})$ משולשית תחתונה, כדרוש.

 $w_1\dots w_k,\ w_1'\dots w_\ell'$ וכן U וכן U בסיס של U בסיס של עדה U יהי ער ש"ל עדה U תמ"וים שלו כך ש־U עד שלו כך ש־U יהי ער מ"ו נ"ס מעל שדה U ויהיו U תמ"וים שלו כך ש־U תמ"וים שלו כך ש־U בסיסים של U

(と

 $:k=\ell$ ב) נראה

הוכחה.

$$\dim W = |w_1 \dots w_k| = k \dim W' = |w'_1 \dots w'_\ell| = \ell$$

$$\dim W + \dim U = \dim V = \dim W' + \dim U \implies \dim W = \dim W' \implies k = \ell \quad \top$$

(הערה: אוויון הממדים $\dim W + \dim U = \dim V$ נובע מסעיף ב' שהוכח (הערה: אוויון הממדים $\dim W + \dim U = \dim V$

 $A \cup B = (a_1 \dots a_k, \ b_1 \dots b_m)$ וכן $B_U \cup B_{W'}$ וכן $B_U \cup B_W$ וכיח $B_U = (u_1 \dots u_m), \ B_W = (w_1 \dots w_k), \ B_{W'} = (w_1' \dots w_\ell')$ נסמן $A \cup B = (a_1 \dots a_k, \ b_1 \dots b_m)$ אז $A = (a_1 \dots a_k, \ b_1 \dots b_m)$ הערה: איחוד בסיסיס סדורים איננו קומטטיבי, ויוגדר להיות

הוכחה. $B_U\cup B_W$ בסיס אמ"מ לכל $v\in V$ קיים ויחיד קומב' לינארית של וקטורים מהבסיס $B_U\cup B_W$ מהגדרת סכום ישר, w בסיס אמ"מ לכל v=u+w כך ש־u בפרט, קיימים ויחידים v=u וכן v=u+w כך ש־v=u+w לכל לכל v=u+w קיימים ויחידים עv=u+w כך ש־v=u+w כך ש־v=u+w קומבינציה לינארית שלהם בהתאמה. על כן, מצאנו קבוצה של וקטורים קv=u+w ש־v=u+w קומבינציה לינארית שלהם, וכן היא יחידה. סה"כ הוכחנו את הנדרש.

 $B' = (u_1 \dots u_m, w'_1 \dots w'_\ell)$ באופן זהה ההוכחה בעבור

. והפיכה $X\in M_{m\times k},\ Y\in M_{k\times k}$ כאשר $\binom{I_m}{0}X$, כאשר בלוקים מהצורה ($id_V]_{B'}^B$ והפיכה המטריצת המטריצה המייצגת, היא בלוקים מהצורה:

$$[id_V]_B^{B'} = \begin{pmatrix} | & & | & & | \\ [u_1]_{B'} & \cdots & [u_m]_{B'} & [w_1]_{B'} & \cdots & [w_k]_{B'} \end{pmatrix} = ([id_U]_{B'}^{B_U} & [id_W]_{B'}^{B_W})$$

וכן משום ש־ $B_U = a_i$ מקיים $b \in B_U$ כי $B_U = a_i$, אז $B_U = a_i$ בלוקים (כי $B_U = a_i$). (הערה לבוזק: זה פורמלי מספיק או שצריך להוכיח את זה יותר לעומק?)

(נקבל: גע, X,Y נחלק לבלוקים לבלוקים לבלוקים (ונקבל: ונקבל

$$[id_V]_{B'}^B = \begin{pmatrix} I_M & X \\ 0 & Y \end{pmatrix} =: A$$

עתה נותר להראות ש־Y הפיכה. משום ש־ id_V איזו', אז המייצגת אותה הפיכה. לכן המטריצה A. אם Y לא הפיכה אז שורותיה ת"ל, אז הבלוקים A מטריצה ששורותיה ת"ל, ובפרט גם שורות A ת"ל ולכן A ולכן המטריצה ששורותיה ת"ל, ובפרט גם שורות A ועל A זהה ולכן בה"כ הטענות שקולות. A וועל A וועל A זהה ולכן בה"כ הטענות שקולות.

.....

שחר פרץ, 2025

אונער באמצעות חופשית בלבד IATEX־קומפל ב-