CSE 101 Final Review

• Toom-Cook algorithm:

- Given two large integers, a and b, Toom–Cook splits up a and b into k smaller parts each of length I, and performs operations on the parts.
- The <u>Karatsuba algorithm</u> is a special case of Toom–Cook, where the number is split into two smaller ones.
- It reduces 4 multiplications to 3 and so operates at $\Theta(n\log(3)/\log(2))$, which is about $\Theta(n^{1.585})$.
- Ordinary long multiplication is equivalent to Toom-1, with complexity $\Theta(n^2)$.
- <u>Dijkstra's Algorithm:</u>
- O((V + E)logV), using PQ
- O(V²), using an array

```
Dijkstra (x):
   PQ.add(0, x)
   for all other nodes y:
                                                  //O(V)
           PQ. add(infinity, y)
   while (PQ.size() > 0):
           curr = node with min dist
           // find min, takes O(E): can be improved in PQ \rightarrow O(1)
           for (y in curr.neighbors):
                                          //O(degree(curr))
                   if (y.dist > curr.dist + edge_between_curr_and_y):
                          //you can choose remove the original (y.dist', y) or not,
                   //remove would save memory
                           PQ .remove(y.dist, y)
                                                          //O(logV)
                           y.dist = curr.dist + edge_between_curr_and_y
                           PQ .add(y.dist, y)
                                                          //O(logV)
```

Binary heap runtime:

Operation	Binary ^[11]	
find-min	<i>Θ</i> (1)	
delete-min	⊖(log n)	
insert	O(log n)	
decrease-key	⊖(log n)	
merge	Θ(n)	

• Binary heap problem on practice final:

- o Initialize the heap by adding the 1st element in each list (k elements total) // O(klogk)
- Repeat for each element:

// O(nk)

Remove the root of the heap (element i from the kith list), and add in the next element from that list (kith list)
 // O(logk)

Runtime in total: **O(nklogk)**

Topics For Quiz 1

- Max bandwidth path
 - Path
 - Simple path
 - No two edges are the same
 - A single vertex is a trivial path to itself
 - Objective
 - Over all possible paths p between v and u, find max BW(p)
- Graph reachability
 - Given a graph **G** and starting vertex **s**, give all reachable vertices v from s
 - X: a set of explored vertices
 - F: a set of reached but not explored vertices
 - **U**: a set of unreached vertices
 - procedure GraphSearch (G: directed graph, s: vertex)

_

- Initialize X = empty, $F = \{s\}$, U = V F.
- While F is not empty:
 - Pick v in F.
 - For each neighbor u of v:
 - If u is not in X or F:
 - move u from U to F.
 - Move v from F to X.
- Return X.
- Time analysis: O(|V| + |E|)

chapter 3.1,3.2

- How big is ur graph
 - IEI
- As small as |V|, if smaller, then the graph degenerates sparse
- As large as $|V|^2$, all possible connections **dense**
- Adjacency matrix vs adjacency list
 - Matrix always takes $O(|V|^2)$ space, so if the graph is **sparse**, that would be wasteful.

- List always takes O(|E|)
- DFS in undirected graphs
 - procedure explore(G, v):
 - visited(v);
 - previsited(v):
 - for each edge (v, u) ∈ E:
 - If not visited(u): explore(G, u)
 - postvisit(v);
 - procedure dfs(G):
 - for all $v \in V$:
 - visited(v) = false;
 - for all v ∈ V:
 - If not visited(v): explore(v)
 - Two steps when considering the runtime
 - Mark each spot as visited O(|V|)
 - A loop in which scanned all edges O(|E|)
- Connectivity
 - Connected components:
 - Subgraph internally connected but has edges to remaining graph
 - Each time DFS called explore, one connected component is picked out
- Previsit and povisit ordering
 - Define a counter clock, initialized as 1
 - **procedure** previsit(v):
 - Pre[v] = clock;
 - Clock++;
 - procedure postvisit(v):
 - Post[v] = clock;
 - Clock++;
 - Property:
 - For any nodes u and v, the two intervals [pre[u], post[u]] and [pre[v], post[v]] are either disjoint or contained within the other.

chapter 3.3,3.4

- Types of edges
 - Forward edges
 - Lead to a non-child descendant
 - If u is an ancestor of v, [u, [v,]v,]u
 - Back edges
 - Lead to ancestor
 - [_v, [_u,]_u,]_v
 - Cross edges
 - Lead to a node that has been explored.

- [_v,]_v, [_u,]_u
- Directed acyclic graphs
 - Property
 - DFS reveals a back edge **iff** this G has a cycle
 - Every edges leads to a vertex with lower post number in a DAG
 - Sink: smallest post number
 - Source: highest post number
 - Every DAG has at least one source and at least one sink
 - Linearization:
 - Find a **source**, output it and delete from G
 - Repeat until the graph is empty

- Strongly connected components (SCCs)

- Two nodes u and v are connected in a graph if there is a path from u to v and a path from v to u.
- Property
 - Every directed graph is a DAG of its SCCs.
- Decomposition of SCCs
 - How to locate the sink
 - The SCC of highest post number must be a **source** SCC
 - We only need to reverse the whole graph, the **source SCC** of G' will be the **sink SCC** of the original graph.
 - How to continue once the first **sink** is discovered
 - Run DFS on G^R (step 1)
 - Run the directed connected components algorithm on G, and during DFS, process the vertices in decreasing order of their post numbers from step 1

chapter 4.1,4.2,4.3

- Distances

- The distance between two vertices is the length of the shortest path between them

- BFS

- procedure bfs(G, s):
 - for all v ∈ V:
 - dist(v) = infinite
 - dist(s) = 0;
 - Q = [s] (queue containing only s)
 - while Q is not empty:
 - u = eject(Q)
 - for all edges (u, v) ∈ E:

- If dist(v) = infinite:
 - inject(Q, v)
 - dist(v) = dist(u) + 1
- Lengths on edges

- chapter 4.4,4.5

- Dijkstra's algorithm

- All edges have positive length
- Using priority queue
 - Insert
 - Add a new element to the set
 - Decrease key
 - Decrease the value of certain key
 - Delete min
 - Return the element with the smallest key,
 - remove it from the set
 - Make heap
 - Build a priority queue out of given elements

Quiz 2 Topics Lists

- MST, Trees, union/find data structure, Binary heap, Dijkstra, Prim, Kruskal
 - T/F, short answers, multiple choices
- Prove greedy algorithm modify the solution

Greedy Algorithm

- Format
 - Instance: input
 - Solution format: output
 - Constraint: output's property to count as solution
 - Objective function: Quantity are we trying to max/min

Method 1: Modify-the-solution Recursion

- Claim

Let g₁ be the first greedy choice. Let OS be any other solution that meet all
requirements and does not include g₁. Then there is a solution OS' that includes
g₁, meets all constraints and is at least as good as OS.

- Exchange argument

- State what you know: g₁ meet the condition for the first choice. OS meets all of the constraints for the problem
- Define OS' in terms of g_1 and OS to include g_1 . There might be multiple cases.

- Prove exchange argument

- Show that OS' meet all constraints
- Compare objective function of OS and OS' → OS' same or better

- Prove the algorithm by induction

- For any instance I of size N, GS(I) is an optimal solution
- By strong induction, Base case: N = 0 or 1, trivial case.
- Assume for every instance I_2 of size $0 \le n \le N 1$, $GS(I_2)$ is optimal solution. $GS(I) = g_1 + GS(I_2)$. By MTS lemma, there is an optimal solution OS' that also includes g_1 . OS' = $g_1 + OS_2$, for some other solution OS₂ of instance I_2 . Then by IH, GS(I) is at least as good as OS'. Since OS' is optimal, GS(I) is optimal.
- $-OS(I) \ge OS' = g_1 + S(I_2) \ge g_1 + GS(I_2) = GS(I)$

Method 2: Modify the solution - Iterative format

Basic idea:

- Prove for all i ≥ 1
 - Min value(GS_i) \leq value(OS_i)
 - $Max cost(GS_i) \le cost(OS_i)$
- **IterMTS:** Let $g_1, g_2, ... g_T$ be the decisions made in order by the greedy strategy. For each $0 \le i \le T$, there is an optimal solution OS_i that includes $g_1, g_2..., g_i$.

- Prove by induction:

- Base case: For i = 0, we let OS_0 be any optimal solution. Since it doesn't have to agree with any greedy decisions.
- Assume that there is an optimal solution OS_{i-1} that includes g_1 , g_2 , g_{i-1} . If it also includes g_i , we set $OS_i = OS_{i-1}$. Otherwise,
 - Define OS_i in a way that leaves g_1 to g_{i-1} unchanged, but but changes i'th move of OS_{i-1} to g_i .
 - Prove that OS, meets constraints
 - Compare obj(OS_i) and obj(OS_{i-1}).

Minimum Spanning Tree

- Given a graph G = (V, E), MST is a tree T = (V, E') that minimizes total weight of T. **Acyclic, connected.**

Properties:

- 1. Remove a cycle edge cannot disconnect graph.
- 2. A tree on n nodes has (n 1) edges.
- 3. Any connected, undirected graph G = (V, E) with |E| = |V| 1 is a tree.
- 4. An undirected graph is a tree iff a unique path between any pairs of nodes.

- Cut property

 Suppose edge X are part of a MST of G = (V, E). Pick any subset of nodes S for which X doesn't cross between S and V - S, and let e be the lightest edge across this partition. Then X U {e} is a part of some MST.

- Union/Find data structure

- Make root of the shorter tree point to the root of larger tree
- Properties:
 - For any x, rank(x) < rank(P(x))
 - A node of rank k has at least 2^k descendants. Rank k + 1: union 2k.
 - If there are n elements, there can be at most n / 2^k nodes of rank k.
- Runtime: find/union \rightarrow O(log(n)).
- Path compression: reduce runtime to near O(1).

- Kruskal's algorithm

- Prim's algorithm

```
 \begin{array}{l} X = \{\} \\ \text{Repeat until } |X| = |V| - 1 \\ & \text{Pick a subset of V S for which X has no edge between S and V - S.} \\ & \text{Let e be the min edge between S and V - S} \\ & X = X \ U \ \{e\} \\ \text{Return X.} \end{array}
```

Shortest Path in graph

- Dijkstra's algorithm

- Runtime: depends on priority queue implementation

Implementation	deletemin	insert/ decreasekey	
Array	O(V)	O(1)	$O(V ^2)$
Binary heap	$O(\log V)$	$O(\log V)$	$O((V + E)\log V)$
d-ary heap	$O(\frac{d\log V }{\log d})$	$O(\frac{\log V }{\log d})$	$ O((V \cdot d + E) \frac{\log V }{\log d}) $
Fibonacci heap	$O(\log V)$	O(1) (amortized)	$O(V \log V + E)$

- Binary Heap:

- Each level is filled from left to right,
- Key (parent) < children.

CHAPTER 2

Divide and Conquer

- Strategy
 - Break problem into *subproblems* that are themselves smaller instances of the same type of problem
 - Recursively solving these subproblems
 - Appropriately combining their answers

2. 1 Multiplication

- Observation: (KS mult)
 - (a + b x) (b + c y) can be done with three multiplication, since bc + ad = (a + b) (c + d) ac bd.

$$x = \boxed{x_L} \boxed{x_R} = 2^{n/2}x_L + x_R$$

$$y = \boxed{y_L} \boxed{y_R} = 2^{n/2}y_L + y_R.$$

$$xy = (2^{n/2}x_L + x_R)(2^{n/2}y_L + y_R) = 2^n x_L y_L + 2^{n/2} (x_L y_R + x_R y_L) + x_R y_R.$$

- Multiplication strategy:
 - General: $T(n) = 4 * T(n/2) + O(n) \rightarrow O(n^2)$
 - Reduced: $T(n) = 3 * T(n/2) + O(n) \rightarrow O(n^{1.59})$
 - Proof idea:
 - changes in the branching factor of recursion tree
 - Geometric increase from O(n) (k = 0) to $O(n^{log2 3})$ (k = $log_2 n$).
 - DPK p. 52 53

- K-terms (in general)
 - Split up number into k equally sized parts. Combine them with 2k 1 multiplications instead of k².
 - $T(n) = (2k 1) T(n/k) + O(n). \rightarrow T(n) = O(n^{log(2k-1)/log(k)})$

2. 2 Recurrence relationship

- Master Theorem:

If $T(n) = aT([n/b]) + O(n^d)$ for some constants a > 0, b > 1 and $d \ge 0$. Then

- $O(n^d)$ if $d > log_b a$ - $O(n^d log n)$ if $d = log_b a$ - $O(n^{logb \setminus a})$ if $d < log_b a$
- Proof idea:

Figure 2.3 Each problem of size n is divided into a subproblems of size n/b.

 K th level made up of a^k subproblems, each of size n / b^k. Total work for each level is

$$a^k \times O\left(\frac{n}{b^k}\right)^d = O(n^d) \times \left(\frac{a}{b^d}\right)^k$$
.

- A geometric series with ratio r = a / bd
 - If r < 1, series decreasing, first term
 - If r > 1, sum is last term
 - If r = 1, all logn terms are equal to n^d

2.3 Merge Sort - All sorting algorithm that relies on comparisons takes n log(n).

- Algorithm: split into sub parts, recursively sort, and merge the list.

- $= 1(11) = 2 \cdot 1(1172) + O(11) \rightarrow O(11109(11))$
- Mergesort has the lower bound runtime for sorting. Consider the binary sorting tree. Every leaf is a permutation. Then there are n! Leafs. → n log(n)
- Proof: strong induction.

2.3.1 Quick sort

- Runtime: O(nlog(n)) expected runtime.

2.4 Median - all selection algorithm takes O(n)

- Sorting takes O(n log(n)) time, but we only care about the middle not the ordering.

- Selection

- Input: list of numbers S, in integer k
- Output: the kth smallest element of k

$$\operatorname{selection}(S,k) = \left\{ \begin{array}{ll} \operatorname{selection}(S_L,k) & \text{if } k \leq |S_L| \\ v & \text{if } |S_L| < k \leq |S_L| + |S_v| \\ \operatorname{selection}(S_R,k - |S_L| - |S_v|) & \text{if } k > |S_L| + |S_v|. \end{array} \right.$$

- Shrink size of the sub-problem as max $[S_1, S_R]$
- If v is picked as the middle point, T(n) = T(n/2) + O(n).

- Efficiency Analysis

- Randomly choose v.
 - Best case: all mediums are picked. \rightarrow O(n)
 - Worst case: pick in decreasing/increasing order \rightarrow O(n²)
- Close to **best case**
- Prove by fair coin (p. 61-62) $E = 1 + \frac{1}{2} E$, E = 2. $T(n) \le T(3n/4) + O(n)$.
- On average, expected in linear time **O(n)**.
- **Quicksort** takes O(n logn) on average, outperforms other sorting; use the same way to pick v as median to sort the array.

2.5 Matrix Multiplication

- Matrix multiplication computes n² cells, each take O(n). → O(n³).
- Break into subproblems, blockwise.

$$XY = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} E & F \\ G & H \end{bmatrix} = \begin{bmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{bmatrix}$$

- $T(n) = 8 T(n / 2) + O(n^2) \rightarrow O(n^3)$

- Improved by genius algebra:

$$XY = \begin{bmatrix} P_5 + P_4 - P_2 + P_6 & P_1 + P_2 \\ P_3 + P_4 & P_1 + P_5 - P_3 - P_7 \end{bmatrix}$$

where

$$P_1 = A(F - H)$$
 $P_5 = (A + D)(E + H)$
 $P_2 = (A + B)H$ $P_6 = (B - D)(G + H)$
 $P_3 = (C + D)E$ $P_7 = (A - C)(E + F)$
 $P_4 = D(G - E)$

- Reduced runtime to $T(n) = 7 T(n/2) + O(n^2)$. $\rightarrow O(n^{2.81})$

Lecture Notes

5- 17 Search, sort, select.

- Reduced and conquer
 - T(n) = aT(n b)
 - If a > 1, takes exponential time.
- Search

Input: Sorted list of integers; target integer. Output: index of the target.

- .
- Binary tree: log(n); Any search algorithm takes **O(log(n))**.
- Degenerate into two parts, solve and combine.
- Sort

- List of sorting methods.
 Bubble sort, insertion sort, selection sort → O(n²)
 Quicksort, mergesort → O(nlog(n)).
- Runtime:
 - N! Comparisons must be made
 - Traverse down the binary search tree with n! Leaves. → log(n!) < n log(n).
 - **O(nlog(n))**: best runtime for any sorting algorithm that relies on comparisons between elements.

5-22 DC examples

Power of two

- Given n, compute the digits of 2ⁿ in decimal.
 - Cn digits.

- Runtime: $T(n) = T(n/2) + O(n^{1.58})$

Making a binary heap

- Insert n elements, each take O(log(n)). In total takes O(nlog(n)).
- DC: put (o₁, k₁) aside, break remaining part into 2 halves. Make object 1 the root and tickle it down
- T(n) = 2 * T(n/2) + O(logn).
- Cheat MS: L(n) = 2L(n/2) + 1; $U(n) = 2^* U(n/2) + n^{1/2}$; $\rightarrow T(n) = O(n)$.

Greatest overlap

- Sort the list, and break into two part based on the median value.
- Get the greatest overlap on two sub problems.
- Get the greatest overlap between two subsets.

Minimum Distance

- Base:
 - If n = 2, return the distance
- Break into 2 halves of size n/2, (by x-value)
- Gives us the min distance on each side, d_I, d_R
- Compare $x d_L \le x_i \le x + d_L$

2.6 Fast Fourier Transform

- Multiply two degree-d polynomials.
- Will not be on the exam.
- Polynomials:

-
$$A(x) = a_0 + a_1 x^1 + ... + a_{n-1} x^{n-1}$$