Introduction

Background

海洋廢棄物污染場域廣大,相較於一般空氣、 水體或廢棄物污染,更不容易找出污染源與污 染區域之間的直接關聯;人造固體廢棄物因外 觀、尺寸、重量、材質之間具有高度差異、相 對於重金屬或農藥等化學污染,目前無法用單 一檢測儀器或程序測量。人造廢棄物的源頭減 量才是最根本的治理辦法,但是改變源頭不易 ,且需較長的時間,因此做為末端補救的淨灘

海岸廢棄物快篩調查可在短時間內做大範圍的 抽樣調查,並量化廢棄物,可作為測量的方法 之一,供淨灘選址參考。快篩的抽樣方式為於 海岸線每隔 10 公里取一測站,以臺灣本島 1,210 公里海岸線為母體,即有 121 個測站 希望藉由測站資訊預測相近測站的資訊,以達 到減少測站和人力

Dataset

海洋廢棄物快篩數據訓練集

• 34維的特徵。

• 訓練集: 319 筆資料. • 測試集: 163 筆資料

• 10 種海廢等級

level	number
1	11
2	46
3	29
4	28
5	43
6	48
7	51
8	34
9	20
10	9
total	319

Data preprocess

1. 缺失值處理

以同一個地點的其他3個season的眾數來填補缺失值

1暴露岩岸	2暴露人進	3暴露岩盤
0	0	1
0	0	1
0	0	1

- 2. 特徵值若為中文或英文就以正整數代號取代
- 3. 將是否為同一個系列測站的資訊納入考慮
- 4. 將train data和test data還原成raw data

							EUD	1	且 関係が				
							E03	2	宜蘭縣				
							E03	3	宜蘭縣				
E03	1	官蘭縣					E03	4	宜蘭縣				
E03		官蘭縣					E04	1	宜蘭縣				
							E04	2	官蘭縣				
E03	3	宜蘭縣					E04	3	宜蘭縣				
E03	4	宜蘭縣						E04	1	宜蘭縣	E04		宜蘭縣
E05	1	宜蘭縣								E05		宜蘭縣	
E05	2	宜蘭縣						E04		宜蘭縣	E05		宜蘭縣
E05		官蘭縣				E04	3	宜蘭縣	E05		宣蘭縣		
E05		宜蘭縣		E04	4	宜蘭縣	E05		宜蘭縣				

- 5. 處理同一個地點,但是County或Location不一樣的情況
- 6. 將所有feature做個別的Min-Max Normalization
- 7. Non-Negative Matrix Factorization

8 做feature selection地中閣雜feature

Index	feature	importance	normalized_importance	cumulative_importance
9	Lat	586	0.167118	0.167118
1	Lon	560.6	0.159875	0.326993
2	County	324.5	0.0925424	0.419535
3	Seat	289.2	0.0824754	0.502011
4	Season	246	0.0701554	0.572166
5	Foam material	215.6	0.0614858	0.633652
6	Fishing nets and ropes	189.8	0.054128	0.68778
7	縣市(county_2)	156.5	0.0446314	0.732411
В	Location	127.8	0.0364466	0.768858
9	Substrate type	118.5	0.0337944	0.802652
10	Plastic bottle container	109	0.0310851	0.833737
11	4沙灘(coastal landform 4)	94	0.0268074	0.860545
12	Shore shape	90.5	0.0258092	0.886354
13	5砂礫混合灘(coastal landform 5)	84.8	0.0241837	0.910538
14	2暴露人造結構物(coastal landform 2)	71.6	0.0204192	0.930957
15	Float	66	0.0188222	0.949779

Methodology

Experiment result

FA2, RLIHC, Hidden dim=512

RandomFo	rest							
Feature Name	Train Kappa	Train UAR	Train ACC	Test Kappa				
no_remove	0.876	91.5 %	89.03 %	0.6523				
remove_low_importance_and_high_correlation (RLIHC)	0.8618	90.4 %	87.77 %	0.6753				
remove_low_importance	0.7235	78.94 %	75.55 %	0.7059				
remove_zero_importance	0.6122	70.55 %	65.52 %	0.754				
Non-Negative Matrix Factorization_RandomForest								
FA2, no_remove	0.4459	57.14 %	50.47 %	0.6612				
FA2, RLIHC	0.5823	69.22 %	62.7 %	0.7789*				
FA4, RLIHC	0.6626	74.96 %	69.91 %	0.7678				
FA8, RLIHC	0.609	71.34 %	65.2 %	0.6505				
RLIHC+upsampling								
RandomForest, n_iter=45	0.6707	75.55 %	70.85 %	0.6749				
DecisionTreeClassifier, n_iter=40	0.9109	93.65 %	92.16 %	0.5305				
Gradient Boosting Classifier, n_iter=100	0.603	70.38 %	64.89 %	0.5817				
Non-Negative Matrix FA_RandomForest+upsample								
FA2, RLIHC	0.6673	75.59 %	70.53 %	0.6878				
FA4, RLIHC	0.7089	77.62 %	74.29 %	0.6651				
DNN(RELU) -> RandomForest								
FA2, no_remove	0.8727	91.95%	88.71%	0.6864				
FA2, RLIHC	0.8063	87.82%	82.76%	0.7511				
FA4, RLIHC	0.5923	69.79%	63.64%	0.6972				
RandomForest -> [NN(GELU)							
FA2, RLIHC	0.5726	67.48 %	61.96 %	0.7643				
FA2, RLIHC, weighted loss	0.5361	66.57 %	58.43 %	0.6896				
Autoencoder (GELU) -> RandomForest								
FA2, RLIHC, Hidden dim=64	0.6246	73.46%	66.46%	0.5093				
FA2, RLIHC, Hidden dim=128	0.4703	60.15%	52.66%	0.5527				
FA2, RLIHC, Hidden dim=256	0.5746	69.05%	62.07%	0.5458				

0.5706 | 68.58% | 61.76%

Analysis

1. Feature selection (FS)效益討論:

由Table可得知,有採用feature selection的結果會 比較好,其中又以remove zero importance的表現 最為突出·相比完全沒用的test kappa上升0.1017

1. Matrix Factorization (FA)效益討論:

Factorization的結果則是remove low importance and high correlation (RLIHC)的平均表現較優秀·其 中又以<mark>降到兩維之後再取FS</mark>的結果最為突出,比只 做FS再上升0.290 · test kappa達0.7789 · 這也是我 們最好的結果。

1. 傳統機器學習模表現比較:

(RF) DecisionTreeClassifier RandomForest Boosting Classifier三者中,還是以 RandomForest的結果最好。

1. Upsampling 效益討論:

雖然資料類別數不平衡,但是採用upsampling或 weighted cross entropy易造成過擬和,導致最終表 現降低。

1. 類神經網路表現討論:

我們進行了三種NN架構對該任務進行不同方式的訓 練,並把training loss於下方呈現。雖然參數皆有收 斂,但表現都沒有優於原始的FA+FS+RF,由此可 以推測此資料集的數量可能過少,且類別過多,若 使用NN造成模型過於複雜,導致test kappa降低。

NATIONAL TSING HUA UNIVERSITY

