

.i

SCHWEIZERISCHE EIDGENOSSENSCHAFT CONFÉDÉRATION SUISSE CONFEDERAZIONE SVIZZERA

REC'D 0 1 JUL 2003
WIPO PCT

Bescheinigung

Die beiliegenden Akten stimmen mit den ursprünglichen technischen Unterlagen des auf der nächsten Seite bezeichneten Patentgesuches für die Schweiz und Liechtenstein überein. Die Schweiz und das Fürstentum Liechtenstein bilden ein einheitliches Schutzgebiet. Der Schutz kann deshalb nur für beide Länder gemeinsam beantragt werden.

Attestation

Les documents ci-joints sont conformes aux pièces techniques originales de la demande de brevet pour la Suisse et le Liechtenstein spécifiée à la page suivante. La Suisse et la Principauté de Liechtenstein constituent un territoire unitaire de protection. La protection ne peut donc être revendiquée que pour l'ensemble des deux Etats.

Attestazione

I documenti allegati sono conformi agli atti tecnici originali della domanda di brevetto per la Svizzera e il Liechtenstein specificata nella pagina seguente. La Svizzera e il Principato di Liechtenstein formano un unico territorio di protezione. La protezione può dunque essere rivendicata solamente per l'insieme dei due Stati.

Bern

2 0. Juni 2003

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

Eidgenössisches Institut für Geistiges Eigentum Institut Fédéral de la Propriété Intellectuelle Istituto Federale della Proprietà Intellettuale

Patentverfahren Administration des brevets Amministrazione dei brevetti

H. Jeune

Heinz Jenni

BEST AVAILABLE COPY

: .

-

. . .

-

Patentgesuch Nr. 2002 1057/02

HINTERLEGUNGSBESCHEINIGUNG (Art. 46 Abs. 5 PatV)

Das Eidgenössische Institut für Geistiges Eigentum bescheinigt den Eingang des unten näher bezeichneten schweizerischen Patentgesuches.

Titel:

Progressives Getriebe.

Patentbewerber: Werner M. Bless Weidstrasse 33 8808 Pfäffikon SZ

Erwin Rott Sonnenbühlweg 3 8630 Rüti ZH

Vertreter:

Dr. Schneider & Partner AG, Intellectual Property Rights Gotthardstrasse 54, Postfach 530 8027 Zürich

Anmeldedatum: 20.06.2002

Voraussichtliche Klassen: B62D

Esemplare immutabile
PROGRESSIVES GETRI

Die Erfindung betrifft ein progressives Getriebe umfassend eine Antriebswelle, eine Abtriebswelle und einen Übersetzungsmechanismus.

Progressive Getriebe werden vielerorts eingesetzt. Eine der wichtigsten Anwendungen sind Lenkgetriebe aller Art, vornehmlich aber Lenkgetriebe von gesteuerten Fortbewegungsmitteln aller Art, beispielsweise Lenkgetriebe von Fahrzeugen.

Ein Getriebe ist eine Vorrichtung zur Weiterleitung oder Umformung von Bewegungen. Hier von Interesse sind Getriebe, die eine Drehbewegung einer Antriebswelle in eine Drehbewegung einer Abtriebswelle umsetzen. Im Falle eines Lenkgetriebes eines Fahrzeuges ist die Antriebswelle direkt oder indirekt mit einem Lenkrad gekoppelt, während die Abtriebswelle mit einem geeigneten Mechanismus gekoppelt ist, der eine Richtungsänderung des zu lenkenden Fahrzeuges verursacht. Bei einer Zahnstangenlenkung umfassen diese Mechanismen üblicherweise ein Ritzel, das an die Abtriebswelle gekoppelt ist und eine Zahnstange, in die das Ritzel greift. Beim Drehen am Lenkrad wird die Zahnstange verschoben und schwenkt mittels Spurstangen die zu lenkenden Räder. Andere Beispiele für diese Mechanismen umfassen unter anderem Schneckenrollenlenkungen und Kugelumlauflenkungen.

Im Gegensatz zu Getrieben mit einer linearen Beziehung zwischen der Antriebswelle und der Abtriebswelle weisen progressive Getriebe ein nichtlineares Verhältnis zwischen der Drehung der Antriebswelle und der Drehung der Abtriebswelle auf. Beim Beispiel eines Fahrzeuges ist die Wirkung einer Drehung der Momentanen Stellung dieses Lenkrades. Vorteilhafterweise ist diese Wirkung klein in der Geradeausstellung des Lenkrades und wird grösser, je weiter das Lenkrad eingeschlagen ist. Dies gewährleistet bei hohen Geschwindigkeiten eine präzise Lenkung um die Geradeausstellung, da selbst eine relativ grosse Bewegung des Lenkrades lediglich eine kleine Richtungsänderung der Fahrspur verursacht. Beim Manövrieren hingegen, wenn das Lenkrad bereits stark eingeschlagen ist, verursacht eine kleine Drehbewegung einer progressive Lenkung bereits eine relativ grosse Spuränderung. Dies ist speziell beim Parkieren erwünscht, um effizient von einem Anschlag der Radstellung zum anderen Anschlag wechseln zu können.

In der EP 0 915 003 B1 (Wandfluh) wird eine Fahrzeuglenkung mit variablem Übersetzungsverhältnis vorgestellt, die insgesamt vier Drehachsen enthält, die sich alle in einem Punkt schneiden. Der Nachteil dieser Kugelumlauflenkung besteht darin, dass die Hebel nicht in einer Ebene liegen sondern steile Winkel zueinander aufweisen. Diese technisch heikle und instabile Lösung ist toleranzempfindlich und fordert einen hohen Aufwand an die Genauigkeit der Teile, um nicht zu viel Spiel aufzuweisen. Dies führt zu hohen Montagekosten, da die Lager mit hohem Aufwand präzise eingestellt werden müssen. Durch die Steilheit der Kugelumlauflenkung nimmt die Feinfühligkeit der Lenkung ab, weil das Gefühl für die Lenkung über die Kugeln der Radiallenkung verloren geht. Die relativ tote Lenkung im Bereich der Geradeausfahrt wechselt bei einem Lenkradeinschlag von etwa 75° ziemlich abrupt in eine Lenkung mit starker Progression, wie aus der Figur 6 der zitierten Schrift hervorgeht. Aus derselben Figur geht weiterhin hervor, dass der maximal mögliche Einschlagswinkel des Lenkrades beidseitig auf 105° begrenzt ist. Dies ist ein weiterer Nachteil dieser Lösung, da der gesamte Lenkbereich bereits in 210° erfolgt werden muss.

Die Schrift DE 19 9 588 Al (Honda) stellt et weiteres Len! getriebe mit einer progressiven Charakteristik vor. Die Variabilität des Übersetzungsverhältnisses beruht bei diesem Lenkgetriebe darauf, dass die Abtriebswelle des Lenkgetriebes bezüglich dessen Antriebswelle zwar parallel verlaufend, aber versetzt (exzentrisch) angeordnet ist. Zur Kupplung der Antriebswelle mit der Abtriebswelle ist ein Zwischenelement zwischen den beiden Wellen angeordnet, das im Wesentlichen die Funktion einer Schubkurbel (Schubgelenk kombiniert mit Drehgelenk) hat und das Drehmoment von der Antriebswelle bez. einer mit der Antriebswelle drehfest verbundenen Verlängerung auf die Abtriebswelle überträgt. Die Tendenz der Wirkung eines solchen Lenkgetriebes ist wohl erwünscht, da das Lenkverhalten harmonisch progressiv mit steigender Auslenkung des Lenkrades wächst. Andererseits wäre wünschenswert, diese Charakteristik stärker auszuprägen. Mit der in der erwähnten Schrift vorgestellten technischen Lösung lässt sich dies nicht realisieren, da bereits für die Realisierung dieser niedrigen Ausgeprägtheit der Progression ein enormer technischer Aufwand erforderlich ist, um einen spielfreien Verlauf zu gewährleisten.

In der EP 0 915 003 B1 ist eine umfangreiche Liste mit weiteren bekannten Lösungen für progressive Lenkgetriebe mit den verschiedenen technischen Realisierungen und deren Schwachstellen angegeben.

Aufgabe der vorliegenden Erfindung ist es, ein linear progressives Getriebe zu beschreiben, das sich als Lenkgetriebe für Fahrzeuge eignet und das sich dadurch auszeichnet, dass es toleranz-unempfindlich ist, ohne Einstellungen spielfrei arbeitet und ein günstiges Kräfteverhältnis aufweist. Zudem ist eine Progression gewünscht, bei der das Verhältnis von Lenkwinkel zu Spurwinkel bei der Geradeausfahrt etwa 1 zu 20 beträgt und bis zum Bereich des vollen Einschlags linear auf etwa das 8-fache abnimmt auf etwa das Verhältnis 1 zu 2.5.

Die Aufgabe wird e ndungsgemäss gelöst durch keinzein nenden Teil des Anspruchs 1.

Die Erfindung wird nachfolgend unter Bezugnahme auf die Zeichnungen näher beschrieben. Es zeigen:

- Fig. 1 Eine perspektivische Ansicht eines Ausführungsbeispieles
- Fig. 2 Einen möglichen Bewegungsverlauf der Achse eines Abtriebsgelenkes
- Fig. 3 Verschiedene Positionen der Schenkel und des Kopplers während einer halben Umdrehung des Lenkrades
- Fig. 4 Verschiedene Punkte des Abtriebgelenkes während einer Umdrehung

Die Fig. 1 zeigt eine Antriebswelle 10 mit einer Achse X, eine Abtriebswelle 30 mit einer Achse Y und einen Übersetzungsmechanismus 20. An der Antriebswelle 10 ist ein mit diesem drehfest verbundenes Lenkrad 40 symbolisch dargestellt. Am anderen Ende der Antriebswelle 10 ist ein zweiflügliger Antriebshebel 11 ebenfalls drehfest an dieser befestigt. An Stelle der zwei Flügel 12 kann jede andere Form des Antriebshebels 11 gewählt werden, die eine gelenkige Befestigung von zwei beweglichen Teilen an den gewünschten Stellen ermöglicht.

Die Achse Y der Abtriebswelle 30 verläuft parallel zur Achse X der Antriebswelle 10 unter Aufweisung eines Versatzes R_1 . Ein Abtriebshebel 31 ist drehfest an der Abtriebswelle 30 verbunden.

Der Übersetzungsmechanismus 20 weist drei bewegliche Teile auf, namentlich zwei Schenkel 21 und einen Koppler 23. An jedem äusseren Ende der beiden Flügel 12 des Antriebshebels 11 ist einer der Schenkel 21 einsextig eurch ein Schenkelgelenk

22 angebracht. Di eiden anderen Enden der enkel 21 sind.

Im Bereich zwischen den beiden Kopplungsgelenken 24 am Koppler 23 befindet sich eine Vorrichtung für ein Abtriebsgelenk 32, an dem der Abtriebshebel 31 angebracht wird. Alle diese Gelenke 22, 24, 32 lassen Rotationsbewegungen senkrecht zur Antriebswelle 10 zu und verhindern gleichzeitig Bewegungen in jede andere Richtung.

Die Andeutung eines Ritzels und einer Zahnstange an der Antriebswelle 10 dienen lediglich zur Veranschaulichung eines möglichen Mechanismus einer Lenkung und soll in keiner Weise einschränkend gedeutet werden.

Die Funktionsweise des Getriebes wird im Folgenden unter Bezug der Figuren 2, 3 und 4 beschrieben:

In einem bevorzugten Ausführungsbeispiel sind die Schenkel 21 gleich lang, die Achsen A und B der beiden Schenkelgelenke 22 einen ungleichen Abstand von der Antriebswelle 10 auf und die Achse Z' des Abtriebsgelenks 32 auf dem Koppler 23 (Fig. 1) befindet sich mittig zwischen den Achsen C und D der Kopplungsgelenke 24. Die beweglichen Teile 21, 23 des Übersetzungsmechanismus 20 können in einer festen Lage des Lenkrades 40 eine periodische Bewegung mit EINEM Freiheitsgrad ausführen. Die Achse Z' des Abtriebsgelenkes 32 dem Koppler 23 durchläuft bei dieser Bewegung eine geschlossene Bahn, die als Projektion auf die Fläche Antriebshebels 11 in der Form einer langgezogenen Acht dargestellt werden kann. Ein Beispiel einer solchen Bahn ist in Figur 2 dargestellt. Dabei lässt sich feststellen, dass weiter mittlerer Bereich dieser Kurve eine Gerade darstellt. Bei der erfindungsgemässen Anordnung wird jeweils die Achse Z' des Abtriebsgelenkes 32 auf dem Koppler 23 von der gesamten möglichen beschriebenen Bahn lediglich ein Bereich durchlaufen innerhalb eines der Geradestücke, das mit g bezeichnet ist.

Erfindungsgemäss is arauf zu achten, dass die sitionen der geranden Achsen A und B der beiden Schenkelgelenke 22 auf dem Abtriebshebel 11 so gewählt werden, dass das Geradestück gedurch die Achse X der Antriebswelle 10 verläuft.

Der Bahnmittelpunkt M der beschriebenen Bahnkurve mit der Form einer Acht liegt mittig zwischen den zwei Achsen A und B der beiden Schenkelgelenke 22. Der Abstand vom Bahnmittelpunkt M zur Achse X der Antriebswelle 10 wird mit R_2 bezeichnet. Die Position des Bahnmittelpunktes M relativ zur Achse X der Antriebswelle 10 kann als momentane Stellung des Lenkrades 40 interpretiert werden. Demnach wandert der Bahnmittelpunkt M während einer Drehung des Lenkrades 40 von -180° bis +180° auf einer Kreisbahn m um die Achse X der Abtriebswelle 10 mit dem Radius R_2 .

Die Achse Z'' des Abtriebsgelenkes 32 auf dem Abtriebshebel 31 (Fig. 1) beschreibt während der Bewegung der Drehung der Abtriebswelle 30 eine Kreisbahn k um Achse Y der Abtriebswelle 30 mit dem Radius R_Y, der durch den Abstand der Achse Y der Abtriebswelle 30 zur Achse Z'' des Abtriebsgelenkes 32 auf dem Abtriebshebel 31 gegeben ist. Dieser Kreis ist in Fig. 2 dargestellt.

Da in der Achse Z des Abtriebsgelenkes 32 stets die Achse Z'des Abtriebsgelenkes 32 auf dem Koppler 23 mit der Achse Z'des Abtriebsgelenkes 32 auf dem Abtriebshebel 31 vereint ist, liegt die Achse Z des Abtriebsgelenkes 32 stets auf dem gemeinsamen Schnittpunkt des Geradestückes g (möglicher Aufenthaltsbereich von Z') mit dem Umlaufkreis k des Abtriebshebels 31 (möglicher Aufenthaltsbereich von Z''). Dies gilt für jede beliebige Winkelstellung des Lenkrades 40.

In der Figur 3 sind die Schenkel 21 und der Koppler 23 systematisch dargestellt in den Positionen 0°, 45°, 90°, 135° und 180°. Die Position 0° entspricht der Stellung des Getriebes 1

der grössten Über zung und entspricht der Sterlung der Gera-

Dieses bevorzugte Ausführungsbeispiel ist derart proportioniert, dass während der Geradeausfahrt sowohl der Koppler 23 als auch das Geradestück g in der Verbindungsgeraden n liegt, in der auch die Achsen X der Antriebswelle 10 und Y der Abtriebswelle 30 liegen. Die Achse Z des Abtriebsgelenkes 32 liegt während der Geradeausfahrt ebenfalls auf dieser Geraden n. Die beiden Abstände der Achsen A und B der beiden Schenkelgelenke 22 zur Achse X der Antriebswelle 10 sind in diesem Ausführungsbeispiel ebenfalls unterschiedlich lang. Beim Drehen des Lenkrades 40 um einen Winkel dreht sich das Geradestück g um die Achse X der Antriebswelle 10 um denselben Winkel wie das Lenkrad 40. Gleichzeitig verschiebt sich die Achse Z des Abtriebgelenkes 32 entlang dem Kreis k um die Achse Y der Abtriebswelle 30. Die einzelnen Punkte Z_i (i = 0, 1, 2, 3,4) bezeichnen die momentanen Stellungen des Abtriebsgelenkes 32 um die Achse Y der Abtriebswelle 30, wobei der Drehwinkel zwischen den einzelnen Stellungen der Antriebswelle 10 jeweils 45° betragen. Die Verteilung der Stellungen Z_{i} auf dem Kreis kvermitteln das linear progressive Verhalten des Übersetzungsmechanismus 20.____

Die einzelnen momentanen Stellungen der Achsen Z_i des Abtriebsgelenkes 32 sind in der Figur 4 nochmals dargestellt. Die Antriebswelle 10 lässt sich in jede Richtung um 180° bis zum Anschlag drehen. Die durch den erfindungsgemässen Übersetzungsmechanismus 20 umgesetzte Bewegung der Antriebswelle 10 führt bei dieser Bewegung zu einer Drehung der Abtriebswelle 30 um ebenfalls 180° in jede Richtung, wobei die Winkelinkremente der Antriebsdrehung nicht linear zu den Winkelinkrementen der Abtriebsdrehung stehen. Dies geht aus Fig. 4 hervor.

Da die Abstände der beiden Achsen A und B der Schenkelgelenke 22 zu den Achsen C, D der Kopplungsgelenke 24 in der Figur 3 gleich lang sind und das Abtriebsgelenk 32 im Zentrum des Kopplers 23 angebra ist, weisen die beiden sich kel 21 wah rend der Geradeausfahrt im Wesentlichen denselben Winkel zur Geraden n auf, der generell zwischen 45° und 90°, vorzugsweise zwischen 70 und 80° liegt und in diesem Beispiel etwa 75° beträgt. Demzufolge weisen beide Achsen A und B der Schenkelgezlenke 22 dieselben Abstände zur Geraden n auf, in der die Achsen X der Antriebswelle 10 und Y der Abtriebswelle 30 liegen.

Der in Fig. 2 gezeigte Abstand R_2 von der Achse-X zum Bahnmittelpunkt M auf dem Geradestück g ist erfindungsgemäss in der gleichen Grössenordnung wie der Radius R_Y der Kreisbahn k um die Achse Y der Abtriebswelle 30, jedenfalls mindestens halb so gross und nicht grösser als doppelt so gross.

Die Bewegung in diesem Bereich um den Bahnmittelpunkt M ist vorteilhaft für die Kräfteübertragung von der Antriebswelle 10 auf die beweglichen Teile 21, 23, weil keine steilen Winkel der einzelnen beweglichen Teile zueinander auftreten. Die direkteste Kraftübertragung wird jeweils erreicht, wenn die Krafteinlenkungsrichtung in der Bewegungsrichtung des zu bewegenden Teiles liegt. In der erfinderischen Anordnung bedeutet dies, dass die beweglichen Teile möglichst senkrecht zueinander stehen sollten. Die Längen- und Abstandsverhältnisse des Übersetzungsmechanismus 20 sollten demnach vorteilhafterweise so gewählt werden, dass die Winkel zwischen den Schenkeln 21 und dem Koppler 23 während der gesamten Drehung der Lenkung nicht spitzer als 45° und nicht stumpfer als 135° werden.

Es hat sich als sinnvoll erwiesen, den Abstand der Achsen A und B der Schenkelgelenke 22 von der Geraden n in der Grössenordnung vom Doppelten Radius Ry des Umlaufkreises k der Achse Z
des Abtriebshebels 31 um die Achse Y der Abtriebswelle 30 zu
wählen (2Ry). Je grösser dieser Abstand ist, desto direkter
sind die Kraftübertragungen dank den wenig von 90° abweichenden Winkeln. Andererseits beansprucht das Getriebe 1 mehr
Platt je weiter die von der Achse Y der Antriebswelle 10 ent-

da bei einer Umdre g der Antriebswelle 10 di gesamte Kreis- fläche um die Achse X der Antriebswelle 10 mit dem Radius des längeren Flügels 12 des Antriebshebels 11 beansprucht wird.

Demzufolge ist oft eine Kompromisslösung wünschenswert, die von der optimalen geometrischen Lage abweicht zu Gunsten eines kleineren Platzbedarfes des gesamten Getriebes 1.

Die Schenkel 21 müssen nicht zwingend gleich lang gewählt werden und das Abtriebsgelenk 32 muss nicht zwingend in der Mitte des Kopplers 23 sein. Für eine Lenkung ist eine solche Asymmetrie allerdings nicht erwünscht, da dadurch ein asymmetrisches Lenkverhalten beim links resp. rechts Drehen des Lenkrades 40 auftritt. Für andere Anwendungen, bei denen diese Symmetrie nicht erforderlich ist, ist ein solches Getriebe 1 allerdings denkbar.

Längenverhältnisse und Winkel einer bevorzugten Ausführungsform lassen sich aus Fig. 3 herauslesen resp. abmessen.

Für die Anwendung einer Lenkung eines Fahrzeuges haben sich Grössenverhältnisse als günstig erwiesen, in denen der Gesamtdurchmesser des Platzbedarfes zwischen 15 cm und 35 cm betragen. Dazu wird vorzugsweise der Abstand der Achsen A und C resp. B und D der Gelenke 22, 24 auf den Schenkeln 21 zwischen 60 und 100 mm Länge, vorzugsweise zwischen 80 und 90 mm, gewählt. Es hat sich als vorteilhaft erwiesen, wenn der Koppler 23 kürzer ist als die Schenkel 21. Ein Abstand der Achsen C und D der Kopplungsgelenke 24 auf dem Koppler 23 von zwischen 40 und 80 mm, vorzugsweise von zwischen 60 und 70 mm, erwies sich als geeignet. Weiter wird ein Abstand $R_{\rm Y}$ der Achsen Y der Abtriebswelle 30 und Z des Abtriebsgelenkes 32 auf dem Abtriebshebel 31 von zwischen 30 und 70 mm, vorzugsweise von zwischen 40 und 50 mm, angestrebt.

Der Versatz R_1 der Achsen X der Antriebswelle 10 und Y der Abtriebswelle 30 ist für die Höhe der Progression verantwort-

lich. Sinnvolle Greenordnungen von diesem Verteiber Richt indem der Versatz Richt indem der Versatz Richt indem der Achse Z des Abtriebsweise erreicht, indem der Versatz Richten zu der Achse X der Abtriebsweise Richten der Abtriebswelle 30. Untersuchungen aus der Praxis haben ergeben, dass bei einer Geradeausfahrt eine Übersetzung von der Grössenordnung von 20:1 von der Lenkraddrehung zur Radrichtungsänderung für den Fahrer als komfortabel und stabil angesehen wird. Beim Volleinschlag der Räder sollte dieses Verhältnis auf einen Bereich zwischen 3:1 und 2:1, vorzugsweise bei etwa 2.5:1 liegen. Dies wird beispielsweise erreicht, indem der Versatz Richten den Achsen X der Antriebswelle 10 und Y der Abtriebswelle etwa 85% des Abstandes Ry der Achse Z des Abtriebshebels 31 zu der Achse Y der Abtriebswelle, jedenfalls aber zwischen 80 und 90 % davon beträgt.

Sämtliche Masse können von den obigen Angaben der idealen Verhältnisse abweichen, solange der mechanische Umlauf gewährleistet bleibt. Obwohl die Kraftübertragungen dann nicht mehr optimal sind, können andere Masse und Proportionen in gewissen Anwendungsbereichen vorteilhaft sein, beispielsweise um den gesamten Platzbedarf des Getriebes zu verringern oder um die Hebelwirkung in bestimmten Lagen der Drehung zu erhöhen.

Als Gelenke 22, 24, 32 können Nagellager oder Gleitlager verwendet oder jede äquivalente Lösung angewandt werden, die der Fachwelt bekannt ist.

Die Achsen X der Antriebswelle 10 und Y der Abtriebswelle 30 müssen nicht notwendigerweise parallel sein. Durch Verwendung sphärischer Lager kann das Einstellen der Lenkradneigung ermöglicht werden.

Beim Einsatz eines erfinderischen Getriebes 1 ist es zusätzlich denkbar, die Zahnstange und/oder das Ritzel einer an das Getriebe 1 angekoppelte Zahnstangenlenkung ebenfalls progressiv anzuordnen, um die Frogression um etwa weitere 30-35% zu Das hier beschrieß Getriebe 1 lässt sich me jeder anderen Art von Lenkung ebenso gut kombinieren wie mit einer hier beschriebenen Zahnstangenlenkung. Herkömmliche Massnahmen wie eine Servolenkung, Sollbruchstellen und jede denkbare Art eines Lenksystems sowie Winkelgetriebe sind in gleicher Weise wie bisher einsetzbar.

Jedes herkömmliche Fahrzeug lässt sich auch mit einer geeigneten Ausführung eines solchen erfinderischen Getriebes 1 nachrüsten. Um beispielsweise die Anpassung an das bestehende Ritzel einer Zahnstangenlenkung vorzunehmen, lässt sich ein Planetengetriebe auf der Abtriebswelle 30 anbringen, das die erforderliche Umsetzung aufweist, damit der gewünschte Weg der Zahnstange bei jeweils einer Lenkradumdrehung von -180° bis +180° erreicht wird.

Vorteile dieses erfinderischen Getriebes 1 sind das günstige Kraftverhältnis der Antriebswelle 10 auf die Abtriebswelle 30, die Spielfreiheit und Unempfindlichkeit der Toleranz sowie die einfache und günstige Herstellung und Montage des Getriebes 1.

Liste der Bezeichnus en

- 1 Getriebe
- 10 Antriebswelle
- 11 Antriebshebel
- 12 Flügel des Antriebshebels
- 20 Übersetzungsmechanismus
- 21 Schenkel
- 22 Schenkelgelenk
- 23 Koppler
- 24 Kopplungsgelenk
- 30 Abtriebswelle
- 31 Abtriebshebel
- 32 Abtriebsgelenk
- 40 Lenkrad
- A, B Achsen der Schenkelgelenke
- C, D Achsen des Kopplungsgelenkes
- R₁ Versatz zwischen der Achse X der Antriebswelle und der Achse Y der Abtriebswelle
- R₂ Abstand vom Bahnmittelpunkt M zwischen den Achsen A und B der beiden Schenkelgelenke zur Achse X der Antriebs-welle
- Ry -- Radius des Umlaufkreises k der Achse Z des Abtriebshe- __ bels um die Achse Y der Abtriebswelle
- g Geradestück
- k Umlaufkreis der Achse Z des Abtriebshebels um die Achse Y der Abtriebswelle mit dem Radius $R_{\rm Y}$
- M Bahnmittelpunkt zwischen den Achsen A und B der beiden Schenkelgelenke
- n Verbindungsgerade durch die Achse X der Antriebswelle und die Achse Y der Abtriebswelle
- X Achse der Antriebswelle
- Y Achse der Abtriebswelle
- Z Achse des Abtriebsgelenkes
- 3' Achse des Abtriebsgelenkes auf dem Koppler

inni kalita da dibelergebelehaa ang damakemeraka

Patentansprüche

- Progressives Getriebe (1) umfassend eine Antriebswelle (10), eine Abtriebswelle (30) und einen Übersetzungsmechanismus (20), dadurch gekennzeichnet, dass der zungsmechanismus (20) einen zweiflügligen Antriebshebel (11) umfasst, der drehfest mit der Antriebswelle (10) verbunden ist, sowie zwei Schenkel (21), die einseitig mit Schenkelgelenken (22) an je einem Flügel (12) des Antriebshebels (11) verbunden sind, sowie einen Koppler (23), der beidseitig mit den anderen Enden der Schenkel (21) mit Kopplungsgelenken (24) verbunden ist, sowie einem Abtriebsgelenk (32), das an einem drehfest mit der Abtriebswelle (30) verbundenen Abtriebshebel (31) mit einem Versatz (R_y) zur Abtriebswelle (30) angebracht ist und das mit dem Koppler (23) verbunden werden kann, wobei alle Gelenke (22, 24, 32) Rotationsbewegungen um im Wesentlichen parallel zu den Achsen (X, Y) der Antriebswelle (10) und der Abtriebswelle (30) verlaufende Achsen (A, B, C, D, Z) zulassen und die Achsen (X, Y) der Antriebswelle (10) und der Abtriebswelle (30) einen Versatz (R_1) aufweisen.
- 2. Getriebe gemäss Anspruch 1, dadurch gekennzeichnet, dass alle Längen- und Abstandsverhältnisse derart gewählt sind, dass in der fertig montierten Lage der Umlauf der Antriebswelle (10) und der Abtriebswelle (30) mechanisch gewährleistet ist.
- 3. Getriebe gemäss Anspruch 1, dadurch gekennzeichnet, dass das Verhältnis vom Versatz (R_1) zwischen den Achsen (X) der Antriebswelle (10) und (Y) der Abtriebswelle (30) zum Versatz (R_Y) der Achsen (Z) des Abtriebsgelenkes (32) und (Y) der Abtriebswelle (30) mindestens zwischen 1:10 und 1:1, vorzugsweise zwischen 8:10 und 9:10 und idealerweise um 8.5:10 liegt.

- 4. Getriebe gemäss nspruch 1, dadurch geken ichnet, dass der Abstand (R₂) der Achse (X) der Antriebswelle (10) zum Mittelpunkt (M) zwischen den beiden Achsen (A, B) der Schenkelgelenke (22) mindestens halb so gross und nicht grösser als doppelt so gross ist, vorzugsweise in derselben Grössenordnung liegt wie der Abstand (R_Y) der Achse (Y) der Abtriebswelle (30) zur Achse (Z) des Abtriebsgelenkes (32).
- 5. Getriebe gemäss Anspruch 1, dadurch gekennzeichnet, dass die Winkel zwischen den Schenkeln (21) und dem Koppler (23) während eines Umlaufs nicht spitzer als 45° und nicht stumpfer als 135° werden.
- 6. Getriebe gemäss Anspruch 1, dadurch gekennzeichnet, dass die Abstände der Achsen (A, B) der Schenkelgelenke (22) zur Verbindungsgeraden (n), die durch die Achse (X) der Antriebswelle (10) und die Achse (Y) der Abtriebswelle (30) gegeben ist, im Wesentlichen gleich lang sind.
- 7. Getriebe gemäss Anspruch 1, dadurch gekennzeichnet, dass der Abstand der Achsen (A und C resp. B und D) der Gelenke (22, 24) auf den Schenkeln (21) zwischen 60 und 100 mm, vorzugsweise zwischen 80 und 90 mm betragen und dass der Abstand der Achsen (C und D) der Gelenke (24) auf dem Koppler (23) zwischen 40 und 80 mm, vorzugsweise von zwischen 60 und 70 mm beträgt.
- 8. Getriebe gemäss Anspruch 1, dadurch gekennzeichnet, dass in der Stellung der grössten Übersetzung des Getriebes (1) der Koppler (23) in der Verbindungsgeraden (n) liegt, die durch die Achse (X) der Antriebswelle (10) und die Achse (Y) der Abtriebswelle (30) gegeben ist.
- 9. Getriebe gemäss Anspruch 1, dadurch gekennzeichnet, dass in der Stellung der grössten Übersetzung des Getriebes (1) die beiden Schenkel (21) im Wesentlichen denselben Winkel zu Tellichengspruschn (21) einschließen. die Durch die

Achse (X) der triebswelle (10) und die se ((X)) der Ab. triebswelle (30) gegeben ist und dass dieser Winkel zwischen 45 und 90°, vorzugsweise zwischen 70 und 80° liegt.

- 10. Getriebe gemäss Anspruch 1, dadurch gekennzeichnet, dass der Abstand R_Y der Achsen (Z und Y) auf dem Abtriebshebel (31) zwischen 30 und 70 mm, vorzugsweise zwischen 40 und 50 mm beträgt.
- 11. Getriebe gemäss Anspruch 1, dadurch gekennzeichnet, dass der Durchmesser des gesamten Platzbedarfes des Getriebes (1) während der Drehung zwischen 15 cm und 35 cm beträgt.
- 12. Getriebe gemäss Anspruch 1, dadurch gekennzeichnet, dass es mit einem Planetengetriebe an der Abtriebswelle (30) versehen ist.
- 13. Anwendung eines Getriebes (1) gemäss einem der vorhergehenden Ansprüche für ein Lenkgetriebe, insbesondere für ein Lenkgetriebe in einem Fahrzeug.

Zusammenfassung

Die Erfindung betrifft ein progressives Getriebe (1) umfassend eine Antriebswelle (10), eine Abtriebswelle (30) und einen Übersetzungsmechanismus (20). Der erfindungsgemässe Übersetzungsmechanismus (20) besteht aus drei beweglichen Teilen (21, 23), die gelenkig miteinander verbunden sind und derart an Hebeln (11) auf der Antriebswelle (10) und auf der Abtriebswelle (30) befestigt sind, dass eine Übersetzung mit einer linearen Progression von der Antriebswelle (11) auf die Abtriebswelle (30) in den Bereichen -180° bis +180° erreicht wird. Der Vorteil dieses Getriebes (1) liegt in der Spielfreiheit der Mechanik und der direkten Kraftübertragung dank geeigneter Winkel der einzelnen Komponenten zueinander sowie in seiner kostengünstigen Herstellung.

Fig. 2

Fig. 4

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.