Math 226- HW 6 Due: October 14 by Midnight

- 1. (24 points) Let A be $m \times n$, B be $n \times k$, P, Q be $n \times n$ matrices
 - a) (10 points) Show that $(AB)^t = B^t A^t$. (Use the definition of matrix multiplication)
 - b) (6 points) Show that P is invertible then P^t is invertible, and $(P^t)^{-1} = (P^{-1})^t$
 - c) (8 points) Show that if PQ is invertible then $(PQ)^t$ is invertible and $((PQ)^t)^{-1} = (P^{-1})^t (Q^{-1})^t$.
- 2. (11 points) Let $A = [\alpha_{ij}]_{n \times n}$. Trace of A is defined as $Tr(A) = \sum_{i=1}^{n} \alpha_{ii}$.
 - a) (7 points) Let $B = [\beta_{ij}]_{n \times n}$, prove that Tr(AB) = Tr(BA).
 - b) (4 points) Use part a) to show if A and B are similar matrices then Tr(A) = Tr(B)
- 3. (8 points) Show that if A is $n \times 1$ matrix, and B is $1 \times n$ matrix then the $n \times n$ matrix AB has rank at most 1. Conversely if C is any $n \times n$ matrix having rank 1, then there exist $n \times 1$ matrix A, and $1 \times n$ matrix B such that C = AB.
- 4. (14 points) In \mathbb{R}^2 , let L be the line y = mx, where $m \neq 0$, and T be reflection of \mathbb{R}^2 about L. (We did something similar to the following logic in the class for projection operator)
 - a) (2 points) Find a vector $v_1 \in \mathbb{R}^2$ such that $T(v_1) = v_1$, and a vector $v_2 \in \mathbb{R}^2$ $T(v_2) = -v_2$
 - b) (2 points) Let $\beta' = \{v_1, v_2\}$ where v_1, v_2 are the vectors that you found in part a. Find the matrix representation for $[T]_{\beta'}$.
 - c) (6 points) Let $\beta = \{e_1, e_2\}$. Find $Q = [I_{\mathbb{R}^2}]_{\beta}^{\beta'}$, and $Q^{-1} = [I_{\mathbb{R}^2}]_{\beta'}^{\beta}$.
 - d) (4 points) Find an expression for T using $[T]_{\beta} = Q^{-1}[T]_{\beta'}Q$.