Growth Exploration & Initial Models

Josh Carrell - Ph.D. Student | Forest Sciences - Colorado State University

Last Update: March 02, 2025

Contents

```
2
                       2
 3
                       4
 4
                       4
          4
 7
 7
                       7
 9
library(tidyverse)
library(lme4)
# Data prepped for competition indexes
load("D:/Projects/SubalpineTopoGrowth/data/growth_long/subalpine_non_spatial.RData")
df <- subalpine_non_spatial</pre>
df <- na.omit(df)</pre>
names(df)
 [1] "id"
       "Plot"
            "Spec"
##
[4] "Census"
       "rgr basal area"
            "height"
```

"dead_census"

"dead"

[7] "competition"

Question & Hypotheses

1. How does soil moisture availability and competition influence subalpine tree growth?

Hypothesis 1: Tree growth will be greater in wetter sites particularly for species that are less tolerant of drought.

Hypothesis 2: Tree growth will be limited by not only soil moisture but an interaction with competition, with trees growth being suppressed in areas of low soil moisture availability and high competition.

Base Regression Model

To test if tree growth is positively related to soil moisture only.

Equation

$$BAI = \beta + \beta_1 * SM + \varepsilon$$

Plots

RGR Basal Area vs. Soil Moisture

Model

```
base_model <- lm(rgr_basal_area ~ soil_moisture, data = df)
summary(base_model)</pre>
```

```
##
## Call:
## lm(formula = rgr_basal_area ~ soil_moisture, data = df)
##
## Residuals:
##
       Min
                 1Q
                     Median
                                   ЗQ
## -0.95608 -0.01211 -0.00483 0.00728 0.39140
##
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                1.245e-02 5.265e-04 23.646
                                               <2e-16 ***
## soil_moisture 3.555e-04 4.006e-05
                                     8.874
                                               <2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 0.02896 on 6535 degrees of freedom
## Multiple R-squared: 0.01191, Adjusted R-squared: 0.01176
## F-statistic: 78.75 on 1 and 6535 DF, p-value: < 2.2e-16
```

Results:

- 1. Soil moisture is significant, suggesting it influences tree growth.
- 2. Effect size is small. 3.555e-04, meaning smaller growth per unit of soil moisture increase.

Low Rsquared of 1.2, meaning other factors must contribute to the relationship.

Soil Moisture * Competition interaction

To test if there is an interaction among competition and soil moisture. Hypothesis 2.

Equation

$$BAI = \beta + \beta_1 * SM + \beta_2 * Competition + \varepsilon$$

Plots

RGR Basal Area vs. Competition by Soil Moisture

RGR Basal Area vs. Competition by Soil Moisture Class

Model

```
##
## Call:
## lm(formula = rgr_basal_area ~ soil_moisture * competition, data = df)
## Residuals:
                 1Q
                      Median
##
## -0.86418 -0.01240 -0.00424 0.00686 0.38850
##
## Coefficients:
##
                              Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                             1.722e-02 8.013e-04 21.494 < 2e-16 ***
## soil_moisture
                            5.238e-04 6.782e-05
                                                  7.724 1.30e-14 ***
## competition
                            -8.545e-05 1.796e-05 -4.757 2.01e-06 ***
## soil_moisture:competition -1.504e-05 2.648e-06 -5.678 1.42e-08 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
```

```
## Residual standard error: 0.02861 on 6533 degrees of freedom
## Multiple R-squared: 0.0363, Adjusted R-squared: 0.03586
## F-statistic: 82.03 on 3 and 6533 DF, p-value: < 2.2e-16</pre>
```

- 1. Soil moisture influences soil moisture positively (significant).
- 2. Competition negatively influences growth (significant)
- 3. Interaction between soil moisture and competition is negative, meaning competition suppresses growth in drier conditions.
- 4. Rsquared is still small, ~3.6%

Mixed-effects model (Random Intercept: Species)

To test whether the interactions differ by species

Equation

```
BAI = \beta_0 + \beta_1 * SM + \beta_2 * Competition + \beta_3 * (SM * Competition) + (1|Species) + \epsilon
```

Model

```
mixed_model <- lmer(rgr_basal_area ~ soil_moisture * competition + (1 | Spec), data = df)
summary(mixed_model)
## Linear mixed model fit by REML ['lmerMod']
## Formula: rgr_basal_area ~ soil_moisture * competition + (1 | Spec)
##
     Data: df
##
## REML criterion at convergence: -27988.6
##
## Scaled residuals:
       Min
                 1Q
                     Median
                                   3Q
## -29.5051 -0.4222 -0.1211 0.2400 13.9372
##
## Random effects:
## Groups Name
                        Variance Std.Dev.
## Spec (Intercept) 3.754e-05 0.006127
## Residual
                        7.988e-04 0.028263
## Number of obs: 6537, groups: Spec, 4
## Fixed effects:
##
                              Estimate Std. Error t value
## (Intercept)
                             1.447e-02 3.173e-03 4.561
                             5.306e-04 6.779e-05
## soil_moisture
                                                  7.827
```

```
## competition 3.167e-05 2.151e-05 1.473
## soil_moisture:competition -2.409e-05 2.730e-06 -8.823
##
## Correlation of Fixed Effects:
## (Intr) sl_mst cmpttn
## soil_moistr -0.162
## competition -0.185 0.572
## sl_mstr:cmp 0.098 -0.768 -0.678
```

- 1. Growth increases with soil moisture
- 2. Weakly positive effect
- 3. Interaction: negative interaction, competition suppresses growth in drier sites
- 4. Different species have different growth baselines but it's small

Soil Moisture by Species

Random intercept on species: Each species can have different baseline growth, allowing for species level variation in growth.

Random slope on soil moisture within species: Soil moisture influence on growth can vary across species.

Trying to capture species-specific varations in growth acorss moisture.

```
newmodel <- lmer(rgr_basal_area ~ soil_moisture * competition + elevation + soil_temperature + height +
summary(newmodel)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## rgr_basal_area ~ soil_moisture * competition + elevation + soil_temperature +
      height + Spec + soil_moisture + (1 | Spec) + (0 + soil_moisture |
##
##
       Spec)
      Data: df
##
##
## REML criterion at convergence: -28816.8
##
## Scaled residuals:
##
       Min
                     Median
                                    3Q
                                            Max
                  1Q
## -28.3980 -0.3962 -0.0538 0.3289 14.7836
##
## Random effects:
## Groups
            Name
                           Variance Std.Dev.
                           5.373e-04 0.023180
## Spec
             (Intercept)
            soil_moisture 6.749e-06 0.002598
## Spec.1
## Residual
                           6.937e-04 0.026338
## Number of obs: 6537, groups: Spec, 4
##
## Fixed effects:
```

```
##
                              Estimate Std. Error t value
## (Intercept)
                            -6.195e-02 2.530e-02 -2.449
## soil moisture
                             2.507e-03 1.318e-03
## competition
                            -2.352e-04 2.506e-05
                                                   -9.384
## elevation
                            -3.086e-06 4.292e-06
                                                   -0.719
## soil_temperature
                             1.995e-02 9.439e-04 21.132
## heightCo-Dominant
                            -1.101e-02 8.744e-04 -12.592
## heightDominant
                            -1.995e-02 9.898e-04 -20.153
## SpecPIFL
                             2.796e-02 3.309e-02
                                                    0.845
## SpecABLA
                             4.739e-02 3.312e-02
                                                    1.431
## SpecPIEN
                             4.462e-02 3.311e-02
                                                    1.348
## soil_moisture:competition -3.345e-05 2.696e-06 -12.410
## Correlation of Fixed Effects:
##
               (Intr) sl_mst cmpttn elevtn sl_tmp hghC-D hghtDm SpPIFL SpABLA
## soil_moistr 0.020
## competition -0.066
                     0.042
## elevation
              -0.344 -0.113
## soil_tmprtr 0.036 0.105 -0.255 -0.523
## hghtC-Dmnnt 0.011 0.015 -0.003 -0.096
## heightDmnnt 0.007 0.023 0.252 -0.107 -0.077
                                                  0.583
## SpecPIFL
              -0.639 0.014 0.030 -0.065 0.091
                                                  0.007
## SpecABLA
              -0.624 0.021 0.025 -0.104 0.104
                                                  0.017
                                                         0.027
                                                                0.506
## SpecPIEN
              -0.625 0.021 0.027 -0.101 0.104
                                                         0.024
                                                  0.014
                                                                0.506 0.509
## sl mstr:cmp 0.051 -0.041 -0.578 -0.066 0.012 0.188
                                                        0.198 -0.015 -0.008
              SpPIEN
## soil_moistr
## competition
## elevation
## soil_tmprtr
## hghtC-Dmnnt
## heightDmnnt
## SpecPIFL
## SpecABLA
## SpecPIEN
## sl_mstr:cmp -0.011
```

- 1. Competition has a strong negative effect on growth (estimate: -2.352e-04, t value: -9.384)
- 2. Competition effects are amplified in wetter sites (estimate = -3.345e-05, t = -12.410)
- 3. Soil moisture has small positive but significant effect on growth (Estimate = 2.507e-03, t = 1.902)
- 4. Elevation plays no role here, but rather facilitates other covariates. A correlation among predictors would be useful here.
- 5. Soil temperature is positively correlated with growth, potentially meaning longer growing season? estimate = 1.995e-02, t = 21.132.