拟合

曲线拟合

<u>ن</u>

□ 已知一组(二维)数据,即平面上 $n \land c(x_i, y_i)$ (i=1,...n),寻求一个函数(曲线)y=f(x),使 f(x) 在某种准则下与所有数据点最为接近,即曲线拟合得最好。

拟合与插值

□ 问题: 给定一批数据点,需确定满足特定要求 的曲线或曲面。

□ 解决方案:

- ▶ 插值问题:要求所求曲线(面)通过所给所有数据点。
- 数据拟合:不要求曲线(面)通过所有数据点,而是要求它 反映对象整体的变化趋势。
- 函数插值与曲线拟合都是要根据一组数据构造一个函数作为近似,由于近似的要求不同,二者的数学方法上是完全不同的。

曲线拟合常用解法 一 线性最小二乘法

▶ 选定一组函数 $r_1(x), r_2(x), ...r_m(x), m < n$,

令
$$f(x)=a_1r_1(x)+a_2r_2(x)+...+a_mr_m(x)$$

其中 $a_1, a_2, ..., a_m$ 为待定系数。

线性最小二乘法的求解一预备知识

▶ 超定方程组: 方程个数大于未知量个数的方程组

$$\begin{cases} r_{11}a_1 + r_{12}a_2 + \dots + r_{1m}a_m = y_1 \\ \dots \\ r_{n1}a_1 + r_{n2}a_2 + \dots + r_{nm}a_m = y_n \end{cases}$$
 $(n > m)$ $\mathbb{R}^a = y$

其中
$$R = \begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1m} \\ \cdots & \cdots & \cdots \\ r_{n1} & r_{n2} & \cdots & r_{nm} \end{bmatrix}$$
, $a = \begin{bmatrix} a_1 \\ \vdots \\ a_m \end{bmatrix}$, $y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$

- 超定方程一般是不存在解的矛盾方程组。
- 》 如果有向量 a 使得 $\sum_{i=1}^{n} (r_{i1}a_1 + r_{i2}a_2 + \cdots + r_{im}a_m y_i)^2$ 达到最小,则称 a 为上述超定方程的最小二乘解。
- □ 曲线拟合的最小二乘法要解决的问题, 实际上就是求以下超定方程组的最小二乘解的问题。 *Ra* = *y*

其中
$$R = \begin{bmatrix} r_1(x_1) & \cdots & r_m(x_1) \\ \cdots & \cdots & \vdots \\ r_1(x_n) & \cdots & r_m(x_n) \end{bmatrix}, a = \begin{bmatrix} a_1 \\ \vdots \\ a_m \end{bmatrix}, y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$

□ 定理: 当*R*^T*R*可逆时, 超定方程组存在最小二乘解, 且即 为方程组

$$R^{T}Ra=R^{T}y$$

的解: $a = (R^{T}R)^{-1}R^{T}y$

- ▶ 通过机理分析建立数学模型来确定 f(x);
- 》将数据 (x_i, y_i) (i=1, ..., n)作图,通过直观判断确定 f(x):

- □ 多项式拟合: $f(x)=a_1x^{m+}...+a_mx+a_{m+1}$
- ➤ 函数命令polyfit

$$a = polyfit(x, y, m)$$

输出拟合多项式系数 $a=[a_1, ...a_m, a_{m+1}]$

输入同长度 的数组X, Y

拟合多项 式次数

- ▶ 多项式在 x 处的值 y 的计算: $y = \text{polyval}(\mathbf{a}, x)$
- ▶ 超定方程组 $R_{n\times m}a_{m\times 1} = y_{n\times 1}(m < n)$ 用 $a=R\setminus y$ (MATLAB中) 可得最小二乘意义下的解。

▶ 例 对下面一组数据作二次多项式拟合

xi	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
yi	-0.447	1.978	3.28	6.16	7.08	7.34	7.66	9.58	9.48	9.30	11.2

ightharpoonup 分析: 即要求出二次多项式 $f(x) = a_1 x^2 + a_2 x + a_3$ 中的 $A = (a_1, a_2, a_3)$, 使得: $\sum_{i=1}^{11} [f(x_i) - y_i]^2 \quad 最小 \, .$

▶ 解法1: 用解超定方程的方法

$$R = \begin{pmatrix} x_1^2 & x_1 & 1 \\ \cdots & \cdots & \cdots \\ x_{11}^2 & x_{11} & 1 \end{pmatrix}$$

• 输入以下命令:

x=0:0.1:1;

y=[-0.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2] R=[(x.^2)' x' ones(11,1)];

 $A = R \backslash y'$

- 计算结果 A = -9.8108 20.1293 -0.0317
- $f(x) = -9.8108x^2 + 20.1293x 0.0317$

• 输入以下命令:

x=0:0.1:1;

y=[-0.447 1.978 3.28 6.16 7.08 7.34

A=polyfit(x,y,2)

z=polyval(A,x);

- ▶ plot(x,y,'k+',x,z,'r') %作出数据点和拟合曲线的图形
- 计算结果 A = -9.8108 20.1293 -0.0317
- $f(x) = -9.8108x^2 + 20.1293x 0.0317$
- □ Matlab提供两个求非线性最小二乘拟合的函数:
- > lsqcurvefit
- Isquonlin
- ▶ 两个命令都要先建立M-文件fun.m, 在其中定义函数f(x), 但 两者定义f(x) 的方式是不同的。
 - ▶ 已知数据点:

 $xdata = (xdata_1, xdata_2, ..., xdata_n)$ $ydata = (ydata_1, ydata_2, ..., ydata_n)$

 \triangleright 含参量x(向量)的向量值函数

 $F(x, xdata) = (F(x, xdata_1), ..., F(x, xdata_n))^T$

 $ightharpoonup 求 x 使得 <math>\sum_{i=1}^{n} (F(x, xdata_i) - ydata_i)^2$ 最小。

非线性最小二乘拟合— lsqcurvefit

x = lsqcurvefit ('fun', x0, xdata, ydata, options')

fun是定义函数 F(x,x)data) 的m-文件, 自变量为 x和xdata

迭代 初值

已知数据点

选项见无 约束优化

▶输入:

- (1) x=lsqcurvefit ('fun',x0,xdata,ydata);
 - (2) x=lsqcurvefit ('fun',x0,xdata,ydata,options);
 - (3) [x, options]=lsqcurvefit ('fun',x0,xdata,ydata,...);

.

▶输出目标函数值: f=fun(x,xdata)

▶ 已知数据点:

$$xdata = (xdata_1, xdata_2, ..., xdata_n)$$

 $ydata = (ydata_1, ydata_2, ..., ydata_n)$

▶ 含参量 x (向量)的向量值函数

$$f(x)=(f_1(x), f_2(x), ..., f_n(x))^T$$

其中 $f_i(x) = f(x, xdata_i, ydata_i) = F(x, xdata_i) - ydata_i$

求 x 使得 $f^{T}(x)f(x) = f_1(x)^2 + f_2(x)^2 + \dots + f_n(x)^2$ 最小。

▶ 输入:

```
x=lsqnonlin ( 'fun', x0);
x=lsqnonlin ( 'fun', x0, options);
x=lsqnonlin ( 'fun', x0, options, 'grad');
[x, options]=lsqnonlin ( 'fun', x0, ...);
```

▶ 例:用下面一组数据拟合

 $c(t)=a+be^{0.02kt}$ 中的参数a,b,k。

t _j	100	200	300	400	500	600	700	800	900	1000
$C_{j}/10^{-3}$	4.54	4.99	5.35	5.65	5.90	6.10	6.26	6.39	6.50	6.59

▶ 分析:该问题即解最优化问题

$$\min F(a,b,k) = \sum_{j=1}^{10} [a + be^{-0.02kt_j} - c_j]^2$$

▶ 解法一: 用命令lsqcurvefit

$$F(x, tdata) = (a+be^{-0.02kt1}, \dots, a+be^{-0.02kt10})^T$$
 $x=(a, b, k)$

● 编写M-文件 curvefun1.m

function f=curvefun1(x, tdata)

$$f=x(1)+x(2)*exp(-0.02*x(3)*tdata)$$

%其中
$$x(1)=a$$
; $x(2)=b$; $x(3)=k$;

● 输入命令

tdata=100:100:1000

x=lsqcurvefit ('curvefun1',x0,tdata,cdata)

f=curvefun1(x,tdata)

➤ 解法二:用命令lsqnonlin

 $f(x)=F(x, tdata, cdata)=(a+be^{-0.02kt1}-c_1, ..., a+be^{-0.02kt10}-c_{10})^T$

x = (a, b, k)

● 编写M-文件 curvefun2.m

function f=curvefun2(x)

tdata=100:100:1000;

函数curvefum2的自变量是x,cdata和tdata是已知参数,故应将cdata,tdata的值写在curvefum2.m中

cdata=1e-03*[4.54,4.99,5.35,5.65,5.90,6.10,6.26,6.39,6.50,6.59];

f=x(1)+x(2)*exp(-0.02*x(3)*tdata)-cdata

• 输入命令:

$$x0=[0.2,0.05,0.05];$$

x=lsqnonlin('curvefun2',x0)

f=curvefun2(x)

□ 例:由以下数据,拟合R=at+b

温度t(°C)	20.5	32.7	51.0	73.0	95.7
电阻 $R(Ω)$	765	826	873	942	1032

▶ 方法一: 用命令polyfit(x,y,m)

• 输入

t=[20.5 32.5 51 73 95.7];

r=[765 826 873 942 1032];

aa=polyfit(t,r,1);

a=aa(1)

b=aa(2)

y=polyval(aa,t);

plot(t,r,'k+',t,y, 'r')

● 输出: a=3.3940, b=702.4918

▶ 方法二: 直接用命令 a =R \ y

• 输入

t=[20.5 32.5 51 73 95.7];

r=[765 826 873 942 1032];

R=[t' ones(5,1)];

 $aa=R\r';$

a=aa(1)

b=aa(2)

y=polyval(aa,t);

plot(t,r,'k+',t,y,'r')

● 输出: a=3.3940, b=702.4918

- □ 新药用于临床之前,必须设计给药方案。
- ▶ 血药浓度: 药物进入机体后血液输送到全身,在这个过程中不断地被吸收、分布、代谢,最终排出体外,药物在血液中的浓度,即单位体积血液中的药物含量,称为血药浓度。
- ▶ 一室模型:将整个机体看作一个房室,称中心室,室内血药浓度是均匀的。快速静脉注射后,浓度立即上升;然后迅速下降。当浓度太低时,达不到预期的治疗效果;当浓度太高,又可能导致药物中毒或副作用太强。临床上,每种药物有一个最小有效浓度 \mathbf{c}_1 和一个最大有效浓度 \mathbf{c}_2 。设计给药方案时,要使血药浓度保持在 \mathbf{c}_1 ~ \mathbf{c}_2 之间。本题设 \mathbf{c}_1 =10, \mathbf{c}_2 =25(\mathbf{u}_2 /ml)。
- ▶ 要设计给药方案,必须知道给药后血药浓度随时间变化的规律。
- 实验方面,,对某人用快速静脉注射方式一次注入该药物300mg 后,在一定时刻t(小时)采集血液,测得血药浓度c(μg/ml)如下表:

<i>t</i> (h)	0.25	0.5	1	1.5	2	3	4	6	8
c(µg/ml)	19.21	18.15	15.36	14.10	12.89	9.32	7.45	5.24	3.01

> 问题:

- (1) 在快速静脉注射的给药方式下,研究血药浓度(单位体积血液中的药物含量)的变化规律。
- (2) 给定药物的最小有效浓度和最大治疗浓度,设计给药方案:每次注射剂量多大;间隔时间多长。

▶ 分析:

实验:对血药浓度数据作拟合,符合负指数变化规律。

理论:用一室模型研究血药浓度 变化规律。

> 模型假设

- (1) 机体看作一个房室,室内血药浓度均匀 一室模型;
- (2) 药物排除速率与血药浓度成正比,比例系数 k(>0);
- (3) 血液容积v, t=0注射剂量d, 血药浓度立即为d/v。

> 模型建立

由假设(2)得: $\frac{\mathrm{d}c}{\mathrm{d}t} = -kc$

由假设(3)得: $c(0) = d/\nu$

所以 $c(t) = \frac{d}{dt}e^{-kt}$

d=300mg, t及c(t)在某些点处的值见前表。

➤ 需经拟合求出参数k, v 。

▶ 方法一: 用线性最小二乘拟合c(t)

$$c(t) = \frac{d}{v} e^{-kt} \Rightarrow \ln c = \ln(d/v) - kt$$

$$y = \ln c, \ a_1 = -k, \ a_2 = \ln(d/v)$$

$$\} \Rightarrow \begin{cases} y = a_1 t + a_2 \\ k = -a_1, v = d/e^{a_2} \end{cases}$$

▶ 输入:

d=300;

 $t=[0.25\ 0.5\ 1\ 1.5\ 2\ 3\ 4\ 6\ 8];$

c=[19.21 18.15 15.36 14.10 12.89 9.32 7.45 5.24 3.01];

y = log(c);

a = polyfit(t,y,1)

k = -a(1)

v=d/exp(a(2))

- ▶ 输出: k = 0.2347(1/h), v = 15.02(l)
 - ▶ 方法二: 用非线性最小二次拟合c(t)
 - ▶ M文件定义函数:

function f=curvefun3(x,tdata);

d=300;

f=(x(1) d)*exp(-x(2)*tdata);

▶ 主程序:

 $t=[0.25\ 0.5\ 1\ 1.5\ 2\ 3\ 4\ 6\ 8];$

c=[19.21 18.15 15.36 14.10 12.89 9.32 7.45 5.24 3.01

x0=[10,0.5];

x=lsqcurvefit('curvefun3',x0,t,c);

f=curvefun3(x,t)

X

 \rightarrow 计算结果: k = 0.2420(1/h), v = 14.8212(l)

▶ 分析:

设每次注射剂量D, 间隔时间 τ 血药浓度c(t) 应 $c_1 \le c(t) \le c_2$ 初次剂量D₀ 应加大

• 给药方案记为: {D₀, D, τ}

$$D_0 = vc_2$$
, $D = v(c_2 - c_1)$

$$c_1 = c_2 e^{-k\tau}$$

所以
$$\tau = \frac{1}{k} \ln \frac{c_2}{c_1}$$

• 计算结果: $D_0 = 375.5$, D = 225.3, $\tau = 3.9$

> 给药方案:

$$D_0 = 375(mg), D = 225(mg), \tau = 4(h)$$

▶ 首次注射375mg,

其余每次注射225mg,

注射的间隔时间为4小时。