Измерение теплопроводности воздуха при атмосферном давлении. (2.2.3)

Зайнуллин Амир Б05-206

11 мая 2023 г.

1 Аннотация

Цель работы: измерить коэффициент теплопроводности воздуха при атмосферном давлении в зависимости от температуры.

В работе используются: цилиндрическая колба с натянутой по оси нитью; термостат; вольтметр и амперметр (цифровые мультиметры); эталонное сопротивление; источник постоянного напряжения; реостат (или магазин сопротивлений).

2 Теоретические сведения

Теплопроводность — это процесс передачи тепловой энергии от нагретых частей системы к холодным за счёт хаотического движения частиц среды.

Перенос тепла описывается законом Фурье, утверждающим, что плотность потока энергии \vec{q} $\left[\frac{\text{BT}}{\text{M}^2}\right]$ (количество теплоты, переносимое через единичную площадку в единицу времени) пропорциональна градиенту температуры:

$$\vec{q} = -\kappa \cdot \nabla T$$

где $\kappa - \kappa оэффициент теплопроводности.$

$$\kappa \sim \lambda \bar{v} \cdot nc_v$$

где λ — длина свободного пробега молекул газа, \bar{v} — средняя скорость их теплового движения, n — концентрация газа.

В цилиндрически симметричной установке, в которой тепловой поток направлен к стенкам цилиндра от нити, полный поток тепла Q=qS через каждую цилиндрическую поверхность радиуса r должен в стационарном состоянии быть неизменен. Тогда

$$Q = -2\pi r L \varkappa \frac{dT}{dr} = const, \tag{1}$$

откуда получаем формулу

$$T_1 - T_2 = \frac{Q}{2\pi L \varkappa} \ln \frac{r_2}{r_1}.$$
 (2)

Здесь r_1 и T_1 – радиус и температура нити, r_2 и T_2 – радиус и температура цилиндра.

Рис. 1: Геометрия измерений

3 Экспериментальная установка и методика измерений

Схема установки представлена на рис. 2. Полость трубки заполнена воздухом при атмосферном давлении, металлическая нить - источник тепла и датчик температуры.

Рис. 2: Схема установки

Рис. 3. Варианты электрических схем измерения сопротивления нити и мощности нагрева: а) с двумя мультиметрами, б) с одним вольтметром и эталонным сопротивлением.

Ток цепи регулируется с помощью магазина сопротивлений, включенного последовательно с источником напряжения.

Измерение нагрузочных кривых позволяет получить температурную зависимость сопротивления нити (при $Q \to 0, \, T \approx T_0$)

Для исследуемых температур:

$$R(t) = R_{273} \cdot (1 + \alpha t) \tag{3}$$

 $lpha=rac{1}{R_{273}}rac{dR}{dT}$ - температурный коэффициент сопротивления материала. По наклонам нагрузочных кривых можно получить значение коэффициента теплопроводности.

Методика измерений

- 1. Проведем предварительные расчеты параметров опыта. По формуле (2) оценим максимальную мощность нагрева. Далее определим максимальный ток и максимальное напряжение.
- 2. Подготовим экспериментальную установку к работе
- 3. При фиксированной температуре термостата измерим зависимость сопротивления нити от подаваемой на нее мощности. Получим нагрузочную прямую.
- 4. Измерения проведем для 9-10 значений тока. Ток следует наращивать монотонно, постепенно уменьшая сопротивление магазина сопротивлений.
- 5. Повторим 3-4 для 5-7 температур термостата.

Параметры установки

- 1. Материал нити платина.
- 2. $\ln \frac{r_2}{r_1} = 5$.
- 3. Длина нити $L = 400 \pm 2$ мм.
- 4. Сопротивление нити $R_{\rm H} = 20~{\rm Om}$.

4 Результаты измерений и обработка данных

По формулам посчитали максимальное напряжение, ток, мощность нагрева. $Q_{max}=0.38~{\rm Br},~U_{max}=2.8~{\rm B},~I_{max}=140~{\rm mA}.$ Далее получили нагрузочные кривые, данные записали в таблицы.

U, V	σ_U, V	I, mA	σ_I, mA	$R_{\rm H}$, Om	σ_R , Om	Q, mW	σ_Q , mW
0,000792	0,000004	0,0382	0,0002	20,7330	0,2116	0,000030	0,0000
0,20997	0,00002	10,2070	0,0053	20,57118	0,0122	2,1432	0,0024
0,41653	0,00002	20,2045	0,0103	20,61570	0,0117	8,4158	0,0091
0,62180	0,00003	30,0680	0,0152	20,67979	0,0115	18,6963	0,0199
0,83262	0,00008	40,0848	0,0202	20,77146	0,0125	33,3754	0,0369
1,04845	0,00009	50,2020	0,0253	20,88463	0,0123	52,6343	0,0574
1,27640	0,00009	60,6842	0,0305	21,03348	0,0121	77,4573	0,0837
1,48280	0,00010	69,9936	0,0352	21,18479	0,0121	103,7865	0,1115
1,71210	0,00011	80,1020	0,0403	21,37400	0,0121	137,1426	0,1466
1,94640	0,00012	90,1615	0,0453	21,58793	0,0122	175,4903	0,1869

Таблица 1: Результаты измерений при $T=25~{}^{\circ}\mathrm{C}$

U, V	σ_U , V	I, mA	σ_I, mA	$R_{\rm H}$, Om	σ_R , Om	Q, mW	σ_Q , mW
0,000798	0,000004	0,0382	0,0002	20,89005	0,2125	0,000030	0,0000
0,20597	0,00002	9,9372	0,0052	20,72717	0,0123	2,0468	0,0023
0,41660	0,00002	20,0690	0,0102	20,75838	0,0118	8,3607	0,0090
0,62512	0,00003	30,0348	0,0152	20,81319	0,0116	18,7754	0,0200
0,83635	0,00008	40,0330	0,0202	20,89151	0,0125	33,4816	0,0370
1,05245	0,00009	50,1295	0,0253	20,99462	0,0123	52,7588	0,0575
1,26880	0,00009	60,0780	0,0302	21,11921	0,0122	76,2270	0,0824
1,48960	0,00010	70,0395	0,0352	21,26800	0,0122	104,3308	0,1121
1,71550	0,00011	80,0030	0,0402	21,44295	0,0122	137,2451	0,1467
1,94930	0,00012	90,0600	0,0452	21,64446	0,0122	175,5540	0,1870

Таблица 2: Результаты измерений при $T=40~^{\circ}\mathrm{C}$

U, V	σ_U, V	I, mA	σ_I , mA	$R_{\rm H}$, Om	σ_R , Om	Q, mW	σ_Q , mW
0,000794	0,000004	0,0381	0,0002	20,83990	0,2127	0,000030	0,0000
0,20760	0,00002	10,0230	0,0052	20,71236	0,0123	2,0808	0,0023
0,41629	0,00002	20,0680	0,0102	20,74397	0,0118	8,3541	0,0090
0,62472	0,00003	30,0348	0,0152	20,79987	0,0116	18,7633	0,0200
0,83588	0,00008	40,0345	0,0202	20,87899	0,0125	33,4640	0,0370
1,05190	0,00009	50,1329	0,0253	20,98223	0,0123	52,7348	0,0575
1,27970	0,00009	60,6060	0,0305	21,11507	0,0122	77,5575	0,0838
1,48900	0,00010	70,0494	0,0352	21,25643	0,0121	104,3036	0,1121
1,71490	0,00011	80,0178	0,0402	21,43148	0,0121	137,2225	0,1467
1,94860	0,00012	90,0770	0,0452	21,63260	0,0122	175,5240	0,1870

Таблица 3: Результаты измерений при $T=55~{\rm ^{\circ}C}$

U, V	σ_U, V	I, mA	σ_I, mA	$R_{\rm H}$, Om	σ_R , Om	Q, mW	σ_Q , mW
0,000794	0,000004	0,0380	0,0002	20,89474	0,2136	0,000030	0,0000
0,20755	0,00002	10,0238	0,0052	20,70572	0,0123	2,0804	0,0023
0,41621	0,00002	20,0697	0,0102	20,73823	0,0118	8,3532	0,0090
0,62458	0,00003	30,0374	0,0152	20,79341	0,0116	18,7608	0,0200
0,83570	0,00008	40,0384	0,0202	20,87246	0,0125	33,4601	0,0370
1,05010	0,00009	50,0644	0,0252	20,97498	0,0123	52,5726	0,0573
1,26800	0,00009	60,0930	0,0302	21,10063	0,0122	76,1979	0,0824
1,48880	0,00010	70,0608	0,0352	21,25011	0,0121	104,3065	0,1121
1,71460	0,00011	80,0311	0,0402	21,42417	0,0121	137,2213	0,1467
1,95370	0,00012	90,3185	0,0454	21,63123	0,0122	176,4553	0,1879

Таблица 4: Результаты измерений при $T=70~^{\circ}\mathrm{C}$

Убедимся, что графики линейны. Проведем прямые по МНК и найдем их точку пересечения с осью ординат, и также коэффициент наклона прямых. Данные запишем в таблицу.

Рис. 3: график для $T=25~^{\circ}\mathrm{C}$

Рис. 4: график для $T=40~^{\circ}\mathrm{C}$

Рис. 5: график для $T=55~^{\circ}\mathrm{C}$

Рис. 6: график для $T=70~^{\circ}\mathrm{C}$

T °C	$\frac{dR}{dQ}, \frac{\mathrm{OM}}{\mathrm{MBT}}$	$\sigma, \frac{\mathrm{Om}}{\mathrm{mBt}}$	R_0 , OM	σ_{R_0} , Om
25	0,00586	0,00005	$20,\!55$	0,00005
40	0,00530	0,00001	20,88	0,00048
55	0,00532	0,00001	21,21	0,00064
70	0,00532	0,00001	21,54	0,00048

Таблица 5: Полученные результаты

По данной таблице построим график сопротивления нити от ее температуры R(T). Построим прямую по МНК и определим ее наклон и также R_{273} . Данные запишем в таблицу.

Рис. 7: График R от T

dR OM	Ом	D 0	_ 1	_ 1
\overline{dT} ,, \overline{K}	σ, \overline{K}	$R_{273}, O_{\rm M}$	α, \bar{K}	$\sigma_{\alpha}, \ \overline{K}$
0,023	0,001	$19,95 \pm 0,05$	0,00100	0,00005

Таблица 6: Результаты зависимости R(T)

Найдем коэффициент теплопроводности воздуха для каждой температуры, используя прошлые полученные данные.

T K	$\frac{dR}{dQ}, \frac{\mathrm{O}_{\mathrm{M}}}{\mathrm{mBr}}$	$\sigma, \frac{\mathrm{Om}}{\mathrm{mBt}}$	$\frac{dQ}{d(\Delta T)}, \frac{\mathrm{K}}{\mathrm{MBT}}$	$\sigma, \frac{K}{MBT}$	$\kappa \frac{\text{MBT}}{\text{M} \cdot \text{K}}$	$\sigma_{\kappa}, \frac{MBT}{M \cdot K}$
298	0,00586	0,00005	3,9249	0,2041	0,4080	0,0211
313	0,00500	0,00001	4,6000	0,2092	0,4101	0,0189
328	0,00490	0,00001	4,6939	0,2137	0,4313	0,0193
343	0,00480	0,00001	4,7917	0,2183	0,4410	0,0198

Таблица 7: коэффициенты теплопроводности воздуха

Построим график $\kappa(T)$.

Рис. 8: График κ от Т

$\ln(T)$	$\ln(\kappa)$
5,6971	-0,9011
5,7462	-0,8766
5,7930	-0,8555
5,8377	-0,8340

Рис. 9: График в логарифмическом масштабе

По МНК получили коэффициент $\beta = 0.475.$

5 Выводы

- 1. В ходе работы была экспериментально определена теплопроводность воздуха при различных температурах и обнаружена линейная зависимость этих величин.
- 2. Для каждой температура была построена нагрузочная кривая, которая является линейной зависимостью. Она была экстраполирована до пересечения с осью ординат, чтобы найти R_0 . Первая точка (красного цвета) не ложилась на прямую потому что возможно из за маленького напряжения и тока, и, вследствие, мощности. Возможно установка еще не пришла в стационарное состояние. Также видно что у этой точки большая погрешность, и построенная прямая проходила через нее.
- 3. Далее был построен график зависимости R(T). Точки были промоделированы по значению $R_{273}=20$ Ом. Посчитан коэффициент наклона графика. С помощью его посчитали коэффициент теплопроводности воздуха для различных температур.
- 4. Построили график по полученным значениям. Мы получили совсем другое значение κ , отличающееся от табличных $0{,}022~{\rm BT/(m\cdot K)}$. Возможно это произошло из за неправильных точек графиков R(Q). из за этого могли получиться неверные коэффициенты $\frac{dQ}{dR}$. Возможно теоретическая модель которая используется в лабораторной работе выполняется не идеально.
- 5. Коэффициент β сошелся с тем, что ожидается из теории (0,5).