INFORMED SEARCH ALGORITHMS

Chapter 4, Sections 1–2

Outline

- ♦ Best-first search
- \Diamond A* search
- ♦ Heuristics

Review: Tree search

```
function Tree-Search (problem, fringe) returns a solution, or failure fringe \leftarrow Insert (Make-Node (Initial-State [problem]), fringe) loop do

if fringe is empty then return failure

node \leftarrow Remove-Front (fringe)

if Goal-Test [problem] applied to State (node) succeeds return node fringe \leftarrow InsertAll (Expand (node, problem), fringe)
```

A strategy is defined by picking the **order of node expansion**

Best-first search

Idea: use an evaluation function for each node

– estimate of "desirability"

⇒ Expand most desirable unexpanded node

Implementation:

fringe is a queue sorted in decreasing order of desirability

Special cases:

greedy search A* search

Romania with step costs in km

Greedy search

Evaluation function h(n) (heuristic) = estimate of cost from n to the closest goal

E.g., $h_{\rm SLD}(n) = {\rm straight}$ -line distance from n to Bucharest

Greedy search expands the node that appears to be closest to goal

Complete??

Time??

<u>Time??</u> $O(b^m)$, but a good heuristic can give dramatic improvement

Space??

 $\frac{\mathsf{Complete}??\ \mathsf{No-can}\ \mathsf{get}\ \mathsf{stuck}\ \mathsf{in}\ \mathsf{loops},\ \mathsf{e.g.},}{\mathsf{lasi} \to \mathsf{Neamt} \to \mathsf{lasi} \to \mathsf{Neamt} \to}$

Complete in finite space with repeated-state checking

<u>Time??</u> $O(b^m)$, but a good heuristic can give dramatic improvement

Space?? $O(b^m)$ —keeps all nodes in memory

Optimal??

Complete?? No-can get stuck in loops, e.g.,

 $\mathsf{lasi} \to \mathsf{Neamt} \to \mathsf{lasi} \to \mathsf{Neamt} \to$

Complete in finite space with repeated-state checking

<u>Time??</u> $O(b^m)$, but a good heuristic can give dramatic improvement

Space?? $O(b^m)$ —keeps all nodes in memory

Optimal?? No

A* search

Idea: avoid expanding paths that are already expensive

Evaluation function f(n) = g(n) + h(n)

 $g(n) = \cos t$ so far to reach n

h(n) =estimated cost to goal from n

 $f(n)=\mbox{estimated total cost of path through }n\mbox{ to goal}$

A* search uses an admissible heuristic

i.e., $h(n) \le h^*(n)$ where $h^*(n)$ is the **true** cost from n. (Also require $h(n) \ge 0$, so h(G) = 0 for any goal G.)

E.g., $h_{\rm SLD}(n)$ never overestimates the actual road distance

Theorem: A* search is optimal

\mathbf{A}^* search example

Optimality of A* (standard proof)

Suppose some suboptimal goal G_2 has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G_1 .

$$f(G_2) = g(G_2)$$
 since $h(G_2) = 0$
> $g(G_1)$ since G_2 is suboptimal
 $\geq f(n)$ since h is admissible

Since $f(G_2) > f(n)$, A* will never select G_2 for expansion

Optimality of A* (more useful)

Lemma: A^* expands nodes in order of increasing f value*

Gradually adds "f-contours" of nodes (cf. breadth-first adds layers) Contour i has all nodes with $f = f_i$, where $f_i < f_{i+1}$

Complete??

 $\underline{\text{Complete}} \ref{Complete} \ref{Complete}$

Time??

 $\underline{\text{Complete}??} \text{ Yes, unless there are infinitely many nodes with } f \leq f(G)$

<u>Time??</u> Exponential in [relative error in $h \times$ length of soln.]

Space??

Complete?? Yes, unless there are infinitely many nodes with $f \leq f(G)$

<u>Time??</u> Exponential in [relative error in $h \times$ length of soln.]

Space?? Keeps all nodes in memory

Optimal??

<u>Complete??</u> Yes, unless there are infinitely many nodes with $f \leq f(G)$

<u>Time??</u> Exponential in [relative error in $h \times$ length of soln.]

Space?? Keeps all nodes in memory

Optimal?? Yes—cannot expand f_{i+1} until f_i is finished

 A^* expands all nodes with $f(n) \mathrel{
le } C^*$

 A^* expands some nodes with $f(n) = C^*$

 A^* expands no nodes with $f(n) > C^*$

Proof of lemma: Consistency

A heuristic is consistent if

$$h(n) \le c(n, a, n') + h(n')$$

If h is consistent, we have

$$f(n') = g(n') + h(n')$$

$$= g(n) + c(n, a, n') + h(n')$$

$$\geq g(n) + h(n)$$

$$= f(n)$$

I.e., f(n) is nondecreasing along any path.

Admissible heuristics

E.g., for the 8-puzzle:

 $h_1(n) = \text{number of misplaced tiles}$

 $h_2(n) = \text{total Manhattan distance}$

(i.e., no. of squares from desired location of each tile)

Start State

Goal State

$$\frac{h_1(S) = ??}{h_2(S) = ??}$$

Admissible heuristics

E.g., for the 8-puzzle:

$$h_1(n) = \text{number of misplaced tiles}$$

$$h_2(n) = \text{total Manhattan distance}$$

(i.e., no. of squares from desired location of each tile)

$$\frac{h_1(S)=??}{h_2(S)=??} \begin{array}{c} 6 \\ 4+0+3+3+1+0+2+1 = 14 \\ | \ 2\ 3\ \text{L} \ 5\ 6\ \text{T} \end{array}$$

Dominance

If $h_2(n) \ge h_1(n)$ for all n (both admissible) then h_2 dominates h_1 and is better for search

Typical search costs:

$$d=14$$
 IDS = 3,473,941 nodes $A^*(h_1)=539$ nodes $A^*(h_2)=113$ nodes $d=24$ IDS $\approx 54,000,000,000$ nodes $A^*(h_1)=39,135$ nodes $A^*(h_2)=1,641$ nodes

Given any admissible heuristics h_a , h_b ,

$$h(n) = \max(h_a(n), h_b(n))$$

is also admissible and dominates h_a , h_b

Relaxed problems

Admissible heuristics can be derived from the exact solution cost of a relaxed version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution

Key point: the optimal solution cost of a relaxed problem is no greater than the optimal solution cost of the real problem

Relaxed problems contd.

Well-known example: travelling salesperson problem (TSP) Find the shortest tour visiting all cities exactly once

Minimum spanning tree can be computed in $O(n^2)$ and is a lower bound on the shortest (open) tour

Summary

Heuristic functions estimate costs of shortest paths

Good heuristics can dramatically reduce search cost

Greedy best-first search expands lowest h

incomplete and not always optimal

 A^* search expands lowest g + h

- complete and optimal
- also optimally efficient (up to tie-breaks, for forward search)

Admissible heuristics can be derived from exact solution of relaxed problems