More Tidymodels

Lecture 23

Dr. Colin Rundel

Hotels Data

Original data from Antonio, Almeida, and Nunes (2019), Data dictionary

```
hotels = read_csv(
    'https://tidymodels.org/start/case-study/hotels.csv'
) %>%
mutate(
    across(where(is.character), as.factor)
)
```

The data

1 glimpse(hotels)

```
Rows: 50,000
Columns: 23
$ hotel
                                   <fct> City Hotel, City Ho...
$ lead time
                                   <dbl> 217, 2, 95, 143, 13...
$ stays in weekend nights
                                   <dbl> 1, 0, 2, 2, 1, 2, 0...
$ stays in week nights
                                  <dbl> 3, 1, 5, 6, 4, 2, 2...
$ adults
                                   <dbl> 2, 2, 2, 2, 2, 2, 2...
$ children
                                   <fct> none, none, none, n...
$ meal
                                   <fct> BB, BB, BB, HB, HB, ...
$ country
                                   <fct> DEU, PRT, GBR, ROU,...
$ market segment
                                   <fct> Offline TA/TO, Dire...
$ distribution channel
                                   <fct> TA/TO, Direct, TA/T...
$ is repeated guest
                                   <dbl> 0, 0, 0, 0, 0, 0, 0...
$ previous cancellations
                                  <dbl> 0, 0, 0, 0, 0, 0, 0...
$ previous bookings not canceled <dbl> 0, 0, 0, 0, 0, 0...
$ reserved room type
                                  <fct> A, D, A, A, F, A, C...
$ assigned room type
                                  <fct> A. K. A. A. F. A. C...
```

The model

Our goal is to develop a predictive model that is able to predict whether a booking will include children or not based on the other characteristics of the booking.

Clustering the test/train split

1 set.seed(123)

```
1 hotel train %>%
      count(children) %>%
      mutate(prop = n/sum(n))
# A tibble: 2 \times 3
  children
               n
                   prop
  <fct> <int> <dbl>
1 children 3027 0.0807
           34473 0.919
2 none
  1 hotel test %>%
      count(children) %>%
      mutate(prop = n/sum(n))
# A tibble: 2 \times 3
  children
               n
                   prop
  <fct> <int> <dbl>
1 children 1011 0.0809
           11489 0.919
2 none
```

Logistic Regression model

```
1 show engines("logistic reg")
# A tibble: 7 \times 2
  engine
           mode
  <chr>
         <chr>
     classification
1 glm
2 glmnet classification
3 LiblineaR classification
         classification
4 spark
5 keras classification
6 stan classification
7 brulee classification
  1 lr model = logistic reg() %>%
      set engine("glm")
  3 translate(lr model)
Logistic Regression Model Specification (classification)
Computational engine: glm
Model fit template:
stats::glm(formula = missing arg(), data = missing arg(), weights = missing arg(),
   family = stats::binomial)
```

Recipe

```
1 holidays = c("AllSouls", "AshWednesday", "ChristmasEve", "Easter",
                  "ChristmasDay", "GoodFriday", "NewYearsDay", "PalmSunday")
 2
 3
   lr recipe = recipe(children ~ ., data = hotel train) %>%
     step date(arrival date) %>%
     step holiday(arrival date, holidays = holidays) %>%
 6
     step rm(arrival date) %>%
     step rm(country) %>%
 8
     step dummy(all nominal predictors()) %>%
 9
     step zv(all predictors())
10
11
12 lr recipe
```

Recipe Inputs: role #variables outcome 1 predictor 22 Operations: Date features from arrival_date Holiday features from arrival_date Variables removed arrival_date Variables removed country Sta 523 - Fall 2022

Dummy variables from all_nominal_predictors()
Zero variance filter on all_predictors()

```
1 lr recipe %>%
       prep() %>%
  2
       bake(new data = hotel train)
# A tibble: 37,500 \times 76
   lead time stays ...¹ stays...² adults is re...³ previ...⁴ previ...⁵
       <dbl>
                 <dbl>
                          <dbl> <dbl>
                                          <dbl>
                                                   <dbl>
                                                            <dbl>
 1
                      0
                              1
                                               0
                                                        0
                                                                 0
 2
          95
                     2
                                      2
                                               0
                                                        0
                                                                 0
          67
 3
                     2
                                      2
                                               0
                                                        0
                                                                0
          47
                                                                 0
          56
 5
                     0
                                      0
                                               0
                                                                0
           6
 6
                     2
                                               0
                                                                 0
 7
         130
                     1
                                               0
                                                                 0
 8
          27
                      0
                              1
                                      1
                                               0
                                                                0
```

... with 37,490 more rows, 69 more variables:

booking changes <dbl>, days_in_waiting_list <dbl>,

average_daily_rate <dbl>,

total of special requests <dbl>. children <fct>.

Workflow

```
1 ( lr work = workflow() %>%
      add_model(lr_model) %>%
      add recipe(lr recipe)
 3
 4 )
Preprocessor: Recipe
Model: logistic reg()
- Preprocessor ----
6 Recipe Steps
• step_date()
• step holiday()
• step_rm()
• step_rm()
• step_dummy()
• step zv()
- Model -
Logistic Regression Model Specification (classification)
```

Fit

```
1 lr_fit = lr_work %>%
    fit(data = hotel_train)
  3
  4 lr_fit
— Workflow [trained] —————
Preprocessor: Recipe
Model: logistic_reg()
- Preprocessor ----
6 Recipe Steps
• step_date()
• step_holiday()
• step_rm()
• step_rm()
• step_dummy()
• step_zv()
- Model -
Call: stats::glm(formula = ..v ~ .. family = stats::binomial. data = data)
```

Logistic regression predictions

```
1 ( lr perf = lr fit %>%
        augment(new data = hotel train) %>%
        select(children, starts with(".pred")) )
  3
# A tibble: 37,500 \times 4
  children .pred class .pred children .pred none
  <fct>
           <fct>
                               <dbl>
                                            <dbl>
                               0.0861
                                          0.914
 1 none
           none
                                         0.982
 2 none
                               0.0178
          none
                                         0.990
                               0.0101
 3 none
           none
 4 children children
                               0.931
                                           0.0693
 5 children none
                               0.473
                                           0.527
 6 children none
                                           0.856
                               0.144
                                           0.929
 7 none
                               0.0710
            none
                                           0.940
                               0.0596
 8 none
           none
 9 none
                               0.0252
                                          0.975
           none
                                           0.926
                               0.0735
10 none
          none
# ... with 37,490 more rows
```

Performance metrics (within-sample)

```
1 lr perf %>%
      conf mat(children, .pred class)
         Trut.h
Prediction children none
  children
              1075
                     420
              1952 34053
 none
  1 lr perf %>%
      precision(children, .pred class)
# A tibble: 1 \times 3
  .metric .estimator .estimate
  <chr>
           <chr>
                          <dbl>
1 precision binary 0.719
  1 lr perf %>%
      roc auc(children, .pred children)
# A tibble: 1 \times 3
  .metric .estimator .estimate
  <chr> <chr>
                       <dbl>
1 roc auc binary 0.881
```

```
1 lr_perf %>%
2 yardstick::roc_curve(
3 children,
4 .pred_children
5 ) %>%
6 autoplot()
```


Performance metrics (out-of-sample)

```
1 lr_test_perf = lr_fit %>%
2   augment(new_data = hotel_test) %>%
3   select(children, starts_with(".pred"))
4
5 lr_test_perf %>%
6   conf_mat(children, .pred_class)
```

```
1 lr_test_perf %>%
2  yardstick::roc_curve(
3  children,
4  .pred_children
5  ) %>%
6  autoplot()
```

```
Trut.h
Prediction children none
  children
                     137
                359
                652 11352
  none
  1 lr test perf %>%
      precision(children, .pred_class)
# A tibble: 1 \times 3
  .metric .estimator .estimate
                           <dbl>
  <chr>
            <chr>
1 precision binary
                           0.724
  1 lr test perf %>%
      roc auc(children, .pred children)
# A tibble: 1 \times 3
```

<dbl>

0.864

.metric .estimator .estimate

<chr> <chr>

1 roc_auc binary


```
Sta 523 - Fall 2022
```

Combining ROC curves

```
1 lr_roc_train = lr_perf %>%
2    yardstick::roc_curve(children, .pred_children)
3    mutate(name="logistic train")
4
5 lr_roc_test = lr_test_perf %>%
6    yardstick::roc_curve(children, .pred_children)
7    mutate(name="logistic test")
```

```
bind_rows(
lr_roc_train,
lr_roc_test
) %>%
ggplot(aes(x = 1 - specificity, y = sensitivit
geom_path(lwd = 1.5, alpha = 0.8) +
geom_abline(lty = 3) +
coord_equal()
```


Lasso

Lasso Model

For this we will be using the glmnet package which supports fitting lasso, ridge and elastic net models.

The mixture argument determines the type of model fit with: $1 \rightarrow Lasso$, $0 \rightarrow Ridge$, other $\rightarrow elastic net$.

```
1 lasso_model = logistic_reg(penalty = tune(), mixture = 1) %>%
2   set_engine("glmnet")
3
4 lasso_model %>%
5   translate()
```

Logistic Regression Model Specification (classification)

```
Main Arguments:
    penalty = tune()
    mixture = 1

Computational engine: glmnet

Model fit template:
    glmnet::glmnet(x = missing_arg(), y = missing_arg(), weights = missing_arg(),
        alpha = 1, family = "binomial")
```

```
1 lasso_model %>%
2 parameters()

Collection of 1 parameters for tuning

identifier type object
   penalty penalty nparam[+]
```

Lasso Recipe

average daily rate <dbl>,

Lasso (and Ridge) models are sensitive to the scale of the model features, and so a standard approach is to normalize all features before fitting the model.

```
lasso recipe = lr recipe %>%
      step normalize(all predictors())
    lasso recipe %>%
      prep() %>%
      bake(new data = hotel train)
# A tibble: 37,500 \times 76
  lead time stays ...¹ stays...² adults is re...³ previ...⁴ previ...⁵
      <dbl>
               <dbl> <dbl> <dbl> <dbl> <dbl>
                                                      <dbl>
     -0.858 -0.938
                      -0.767 0.337 -0.213 -0.0597 -0.112
 1
      0.160
             1.09 1.32 0.337 -0.213 -0.0597 -0.112
 2
 3
     -0.146
             1.09
                      -0.245 0.337 -0.213 -0.0597 -0.112
     -0.365 -0.938
                      -0.245 0.337 -0.213 -0.0597 -0.112
     -0.267 -0.938
                     0.278 - 3.59 - 0.213 - 0.0597 - 0.112
 5
     -0.814
            1.09
                      -0.245 0.337 -0.213 -0.0597 -0.112
 6
              0.0735 - 0.245 \ 0.337 - 0.213 - 0.0597 - 0.112
 7
      0.544
     -0.584 - 0.938
                     -0.767 - 1.63 - 0.213 - 0.0597 - 0.112
 8
     -0.376 -0.938
                      -0.245 0.337 -0.213 -0.0597 -0.112
 9
10
       3.75
              0.0735
                     -0.767 0.337 -0.213 -0.0597 -0.112
# ... with 37,490 more rows, 69 more variables:
   booking changes <dbl>, days in waiting list <dbl>,
```

Lasso workflow

1 (lasso_work = workflow() %>%

::: {.small}

```
add model(lasso model) %>%
      add recipe(lasso recipe)
 4
Preprocessor: Recipe
Model: logistic_reg()
— Preprocessor ——
7 Recipe Steps
• step date()
• step_holiday()
• step rm()
• step rm()
• step dummy()
a c+on cm/\
```

v-folds for hyperparameter tuning

grid search

```
1 ( lasso_grid = lasso_work %>%
2    tune_grid(
3    hotel_vf,
4    grid = tibble(
5    penalty = 10^seq(-4, -1, length.out = 10)
6    ),
7    control = control_grid(save_pred = TRUE),
8    metrics = metric_set(roc_auc)
9    )
10 )
```

Results

```
1 lasso_grid %>%
2 collect_metrics()
# A tibble: 10 × 7
```

```
# A tibble: 10 \times 7
    penalty .metric .estimator mean
                                          n std err
.config
      <dbl> <chr> <chr>
                                <dbl> <int>
                                               <dbl>
<chr>
           roc auc binary
                                           5 0.00318
 1 0.0001
                                0.877
Preproce...
 2 0.000215 roc auc binary
                                0.877
                                           5 0.00316
Preproce...
 3 0.000464 roc auc binary
                                0.877
                                           5 0.00314
Preproce...
            roc auc binary
 4 0.001
                                0.877
                                           5 0.00304
Preproce...
 5 0.00215
           roc auc binary
                                0.877
                                           5 0.00263
Preproce...
 6 0.00464
           roc auc binary
                                0.870
                                           5 0.00253
Preproce...
```

```
1 lasso_grid %>%
2   collect_metrics() %>%
3   ggplot(aes(x = penalty, y = mean)) +
4    geom_point() +
5   geom_line() +
6   ylab("Area under the ROC Curve") +
7   scale_x_log10(labels = scales::label_number()
```


"Best" models

roc auc binary

roc auc binary

roc auc binary

roc auc binary

7 0.01

10 0.1

8 0.0215

9 0.0464

```
1 lasso grid %>%
      show best("roc auc", n=10)
# A tibble: 10 \times 7
    penalty .metric .estimator mean
                                         n std err .config
                                             <dbl> <chr>
      <dbl> <chr> <chr>
                               <dbl> <int>
           roc auc binary
1 0.001
                               0.877
                                         5 0.00304 Preproce...
 2 0.00215 roc auc binary
                              0.877
                                         5 0.00263 Preproce...
 3 0.000464 roc auc binary
                               0.877
                                         5 0.00314 Preproce...
 4 0.000215 roc_auc binary
                               0.877
                                         5 0.00316 Preproce...
            roc auc binary
 5 0.0001
                               0.877
                                         5 0.00318 Preproce...
 6 0.00464 roc auc binary
                               0.870
                                         5 0.00253 Preproce...
```

5 0

5 0.00249 Preproce...

5 0.00424 Preproce...

5 0.00400 Preproce...

Preproce...

0.853

0.824

0.797

0.5

"Best" model

```
1 lasso_best = lasso_grid %>%
2    collect_metrics() %>%
3    mutate(mean = round(mean, 2)) %>%
4    arrange(desc(mean), desc(penalty)) %>%
5    slice(1)
6
7 lasso_best
```

Extracting predictions

1.pred children, 2.pred none, 3children

Since we used control_grid(save_pred = TRUE) with tune_grid() we can recover the predictions for the out-of-sample values for each fold:

```
1 lasso train perf = lasso grid %>%
      collect predictions(parameters = lasso best)
  3 lasso train perf
# A tibble: 37,500 \times 7
  id
         .pred child...¹ .pred...² .row penalty child...³ .config
   <chr>
                <dbl> <dbl> <int>
                                      <dbl> <fct>
                                                    <chr>
 1 Fold1
                                  5 0.00215 childr... Prepro...
                0.366 0.634
               0.144 0.856 6 0.00215 childr... Prepro...
 2 Fold1
 3 Fold1
                       0.946
                               19 0.00215 none
               0.0542
                                                    Prepro...
 4 Fold1
               0.0266
                       0.973
                               21 0.00215 none
                                                    Prepro...
 5 Fold1
                       0.894
                               22 0.00215 childr... Prepro...
               0.106
 6 Fold1
               0.0286
                       0.971
                                 23 0.00215 none
                                                    Prepro...
 7 Fold1
               0.0205
                       0.980
                                 30 0.00215 none
                                                   Prepro...
 8 Fold1
                       0.981
                0.0192
                               31 0.00215 none
                                                  Prepro...
 9 Fold1
                       0.957 32 0.00215 none
                0.0431
                                                   Prepro...
10 Fold1
               0.0532
                        0.947
                                 35 0.00215 none
                                                    Prepro...
# ... with 37,490 more rows, and abbreviated variable names
```

Sta 523 - Fall 2022

28

```
1 lasso_train_perf %>%
2 roc_auc(children, .pred_children)
# A tibble: 1 × 3
```

Re-fitting

Typically with a tuned model we will refit using the complete test data and the "best" parameter value(s),

```
1 lasso_work_tuned = update_model(
2 lasso_work,
3 logistic_reg(
4 mixture = 1,
5 penalty = lasso_best$penalty
6 ) %>%
7 set_engine("glmnet")
8 )
9
10 lasso_fit = lasso_work_tuned %>%
11 fit(data=hotel_train)
```

Test Performance (out-of-sample)

```
lasso test perf = lasso_fit %>%
      augment(new data = hotel test) %>%
      select(children, starts with(".pred"))
    lasso test perf %>%
      conf mat(children, .pred class)
          Truth
Prediction children none
  children
                      109
                330
                681 11380
  none
  1 lasso test perf %>%
      precision(children, .pred class)
# A tibble: 1 \times 3
           .estimator .estimate
  .metric
                           <db1>
  <chr>
            <chr>
1 precision binary
                           0.752
  1 lasso test perf %>%
      roc auc(children, .pred children)
# A tibble: 1 \times 3
  .metric .estimator .estimate
  <chr> <chr>
                         <dbl>
```

0.866

1 roc_auc binary

```
lasso_roc = lasso_test_perf %>%
yardstick::roc_curve(
children,
pred_children
) %>%
mutate(name = "lasso - test")
lasso_roc %>%
autoplot()
```


Comparing models

Random Forest

Random forest models

```
1 show engines("rand forest")
# A tibble: 6 \times 2
 engine
         mode
 <chr> <chr>
1 ranger classification
2 ranger regression
3 randomForest classification
4 randomForest regression
             classification
5 spark
6 spark
             regression
   rf model = rand forest(mtry = tune(), min n = tune(), trees = 100) %>%
     set engine("ranger", num.threads = 8) %>%
     set mode("classification")
```

Recipe & workflow

We skip dummy coding in the recipe as it is not needed by ranger,

```
1 rf_recipe = recipe(children ~ ., data = hotel_train) %>%
2  step_date(arrival_date) %>%
3  step_holiday(arrival_date, holidays = holidays) %>%
4  step_rm(arrival_date) %>%
5  step_rm(country)
```

```
1 rf_work = workflow() %>%
2 add_model(rf_model) %>%
3 add_recipe(rf_recipe)
```

Tuning

```
1 rf_work %>%
2 parameters()

Collection of 2 parameters for tuning

identifier type object
    mtry mtry nparam[?]
    min_n min_n nparam[+]

Model parameters needing finalization:
    # Randomly Selected Predictors ('mtry')

See `?dials::finalize` or `?
dials::update.parameters` for more information.
```

```
1 rf_grid = rf_work %>%
2 tune_grid(
3 hotel_vf,
4 grid = 10,
5 control = control_grid(save_pred = TRUE),
6 metrics = metric_set(roc_auc)
7 )
```

"Best" parameters

```
1 rf_grid %>%
2 show_best(metric = "roc_auc")
```

```
# A tibble: 5 \times 8
  mtry min n .metric .estimator mean
std_err .config
 <int> <int> <chr> <chr>
                               <dbl> <int>
<dbl> <chr>
     8 26 roc_auc binary
                               0.916
0.00172 Prepro...
     4 29 roc auc binary
                               0.916
                                         5
0.00190 Prepro...
    11 7 roc auc binary
                               0.914
                                         5
0.00182 Prepro...
          21 roc_auc binary
    15
                               0.913
                                         5
0.00118 Prepro...
    17 35 roc auc binary
                               0.911
                                         5
0.00191 Prepro...
```

1 autoplot(rf_grid)

Refitting

```
1 (rf best = rf grid %>%
      select_best(metric = "roc_auc"))
# A tibble: 1 \times 3
  mtry min n .config
 <int> <int> <chr>
     8 26 Preprocessor1_Model06
 1 rf work tuned = update model(
      rf_work,
      rand_forest(
     trees=100,
  4
     mtry = rf best$mtry,
  5
      min_n = rf_best$min_n
  6
      7
        set_engine("ranger", num.threads = 8) %>%
  8
        set mode("classification")
 9
10)
11
12 rf_fit = rf_work_tuned %>%
      fit(data=hotel train)
13
```

Test Performance (out-of-sample)

```
1 rf test perf = rf fit %>%
      augment(new data = hotel test) %>%
      select(children, starts with(".pred"))
    rf test perf %>%
      conf mat(children, .pred class)
          Trut.h
Prediction children none
  children
                402
                       69
                609 11420
  none
  1 rf test perf %>%
      precision(children, .pred class)
# A tibble: 1 \times 3
  .metric .estimator .estimate
                           <dbl>
  <chr>
            <chr>
1 precision binary
                           0.854
  1 rf test perf %>%
      roc auc(children, .pred children)
# A tibble: 1 \times 3
  .metric .estimator .estimate
```

<dbl>

0.920

<chr> <chr>

1 roc_auc binary

```
1 rf_roc = rf_test_perf %>%
2  yardstick::roc_curve(
3     children,
4     .pred_children
5  ) %>%
6  mutate(name = "RF - test")
7 rf_roc %>%
8  autoplot()
```


Comparing models

