Realistic fire rendering

Garoe Dorta Perez

University of Bath Centre For Digital Entertainment

September 3, 2015

Overview

Introduction

Methodology

Implementation

Results and Conclusion

Outline

Introduction

Methodology

Implementation

Results and Conclusion

Introduction

Diagram of light emitted from \mathbf{p} , image taken from [PH10].

where \mathbf{p} is the surface point, $\omega_{\mathbf{i}}$ is the incident light direction, $\omega_{\mathbf{o}}$ is the outgoing light direction and n is the surface normal.

The problem

Render fire realistically

- Participating media
- Emission is important
- Varied fuel types

Real fire with paper as fuel, image courtesy of [JAM*10].

Previous work

- Ray-tracing-based
 - Physically based
 - Accurate
 - Slow

- Raster-based
 - Many artefacts
 - Fast

Previous work: Results

Left, methane fire pool [P06]; right, a dragon emits a flame[H07].

Outline

Introduction

Methodology

Implementation

Results and Conclusio

$$(\nabla)L_{\mathbf{x}} = -\sigma_{\mathbf{a}}L_{\mathbf{x}} + \sigma_{\mathbf{a}}L_{\mathbf{e}} - \sigma_{\mathbf{s}}L_{\mathbf{x}} + \sigma_{\mathbf{s}}\int L_{\mathbf{x}}\Phi d\omega_{i},$$

The model: RTE

$$\boxed{(\nabla)L_{x}} = -\sigma_{a}L_{x} + \sigma_{a}L_{e} - \sigma_{s}L_{x} + \sigma_{s}\int L_{x}\Phi d\omega_{i},$$

Differential of radiance over a segment

The model: RTE

$$(\nabla)L_{\mathbf{x}} = -\overline{\sigma_{\mathbf{a}}}L_{\mathbf{x}} + \overline{\sigma_{\mathbf{a}}}L_{\mathbf{e}} - \overline{\sigma_{\mathbf{s}}}L_{\mathbf{x}} + \overline{\sigma_{\mathbf{s}}}\int L_{\mathbf{x}}\Phi d\omega_{i},$$

Absorption and scattering

$$(\nabla)L_{\mathbf{x}} = -\sigma_{a}L_{\mathbf{x}} + \sigma_{a}L_{e} - \sigma_{s}L_{\mathbf{x}} + \sigma_{s}\int L_{\mathbf{x}}\Phi d\omega_{i},$$

Emitted light

$$(
abla) L_{\mathsf{x}} = -\sigma_{\mathsf{a}} L_{\mathsf{x}} + \sigma_{\mathsf{a}} L_{\mathsf{e}} - \sigma_{\mathsf{s}} L_{\mathsf{x}} + \sigma_{\mathsf{s}} \int L_{\mathsf{x}} \boxed{\Phi} d\omega_{i},$$

Scattering function

The model: RTE

$$(\nabla)L_{\mathbf{x}} = -\sigma_{a}L_{\mathbf{x}} + \sigma_{a}L_{e} - \sigma_{s}L_{\mathbf{x}} + \sigma_{s} \int L_{\mathbf{x}}\Phi d\boldsymbol{\omega}_{i},$$

Analytical solution

$$\begin{split} L_{\mathbf{x}} &= e^{-\sigma_t \|\Delta \mathbf{x}\|} L_{\mathbf{x} + \Delta \mathbf{x}} + \left(1 - e^{-\sigma_t \|\Delta \mathbf{x}\|}\right) \frac{\sigma_a L_e + \sigma_s \int L_{\mathbf{x}} \Phi d\omega_i}{\sigma_t}, \\ \sigma_t &= \sigma_a + \sigma_s. \end{split}$$

The model: RTE

$$(\nabla)L_{\mathbf{x}} = -\sigma_{a}L_{\mathbf{x}} + \sigma_{a}L_{e} - \sigma_{s}L_{\mathbf{x}} + \sigma_{s} \int L_{\mathbf{x}}\Phi d\omega_{i},$$

Analytical solution

$$L_{\mathbf{x}} = e^{-\sigma_t \|\Delta \mathbf{x}\|} L_{\mathbf{x} + \left[\Delta \mathbf{x}\right]} + \left(1 - e^{-\sigma_t \|\Delta \mathbf{x}\|}\right) \frac{\sigma_a L_e + \sigma_s \int L_{\mathbf{x}} \Phi d\omega_i}{\sigma_t},$$

Segment increment

The model: Important quantities

- Scattering function ⇒ Φ
- Fuel type $\Rightarrow \sigma_a, \sigma_s$
 - Burning soot emissions (Propane, Methane, ...)
 - Exotic chemicals (Copper, Lithium, ...)
- Black Body radiation $\Rightarrow L_e$
- Refraction $\Rightarrow \Delta x$
- Visual Adaptation $\Rightarrow L_{x}$

Outline

Introduction

Methodology

Implementation

Results and Conclusion

Prior simplifications

$$L_{\mathbf{x}} = e^{-\sigma_t \|\Delta \mathbf{x}\|} L_{\mathbf{x} + \Delta \mathbf{x}} + \left(1 - e^{-\sigma_t \|\Delta \mathbf{x}\|}\right) \frac{\sigma_a L_e + \sigma_s \int L_{\mathbf{x}} \Phi d\omega_i}{\sigma_t}$$

Prior simplifications

$$\begin{split} L_{\mathbf{x}} &= e^{-\sigma_t \|\Delta \mathbf{x}\|} L_{\mathbf{x} + \Delta \mathbf{x}} + \left(1 - e^{-\sigma_t \|\Delta \mathbf{x}\|}\right) \frac{\sigma_a L_e + \sigma_s \int L_{\mathbf{x}} \Phi d\omega_i}{\sigma_t}, \\ \sigma_a &= 0. \end{split}$$

Prior simplifications

$$L_{\mathbf{x}} = e^{-\sigma_t \|\Delta \mathbf{x}\|} L_{\mathbf{x} + \Delta \mathbf{x}} + \left(1 - e^{-\sigma_t \|\Delta \mathbf{x}\|}\right) \frac{\mathbf{x} L_{\mathbf{e}} + \sigma_s \mathbf{L}_{\mathbf{x}} + \sigma_s \mathbf{L}_{\mathbf{x}} + \sigma_s \mathbf{L}_{\mathbf{x}}}{\mathbf{x} L_{\mathbf{e}}}$$

$$L_{\mathbf{x}} = e^{-\sigma_{a} \|\Delta \mathbf{x}\|} L_{\mathbf{x} + \Delta \mathbf{x}} + \left(1 - e^{-\sigma_{a} \|\Delta \mathbf{x}\|}\right) L_{e}$$

Implementation overview

- MentalRay shader in Maya
 - Ray marching divides the RTE into
 - ▶ Light Ray $\rightarrow L_e$
 - Shadow Ray $\rightarrow e^{-\sigma_a \|\Delta x\|} L_{x+\Delta x}$
 - Eye Ray $\rightarrow L_x = e^{-\sigma_a ||\Delta x||} L_{x+\Delta x} + L_e$
 - Light shader
 - Volume/Shadow shader
 - Utility scripts

Rays diagram for a sample intersection point.

Other details

- $\bullet \ \mathsf{OpenVDB} \to \mathsf{sparse} \ \mathsf{voxel} \ \mathsf{data}$
- ullet Uintah o fire simulation data
- ullet Nist o atomic spectra
- von Kries transformation \rightarrow visual adaptation

Outline

Introduction

Methodology

Implementation

Results and Conclusion

Results

Conclusions and Future Work

- Limitations
 - Difficult parametrization
 - Relies on tabulated data
 - Computationally intensive
 - Spherical particles
- Future work
 - Importance sampling

Thank you

Questions?

References

[JAM*10] Jackob W. et al. A radiative transfer framework for rendering materials with anisotropic structure. ACM 2010

[SBD*13] Sadeghi, I. et al. A practical microcylinder appearance model for cloth rendering. ACM 2013 [PH10] Pharr, M. et al. Physically based rendering: From theory to implementation, Morgan Kaufmann, 2010 [MI] Mizutani K. et al. Importance Sampling for Cloth Rendering under Environment Light, Mathematical Progress in Expressive Image Synthesis I, 2014

[WXK] Wang J. et al. Importance Sampling for a Microcylinder Based Cloth Bsdf, SIGGRAPH Talks, 2014