Cir Patch Feed Disk Yagi Student Edition

SOFTWARE

Data Acquisition Averaging Auto File Saving

Basic Software Hydrogen 21 cm Radio Telescope

find the Milky Way

Planetarium Software Astronomical Sky Display Stellarium

H Line Acquisition:

Air Spy
SDR Sharp Studio
IF Average Plug-In

System Hardware and Software

Hardware & Software System Block Diagram

SOFTWARE AirSpy SDR# Studio

IF_Ave Ver 2.8 PlugIn for SDR# Studio Full Installation of SDR# & IF_Ave 2.7

https://www.dropbox.com/scl/fi/2f67lyu6qgt2cp98rg9kp/SDR-2.ZIP?rlkey=y82yv6jzjyu7e92sap3x8ewm7&st=tcil7w3s&dl=0

The latest Rev of IF_Ave allows
Saving and Recalling named Background Correction Files
replace the above with this newer * DLL

IF Ave Version 2.8

https://www.dropbox.com/scl/fi/aitn8xtookwwxm6mvybkp/SDRSharp.Average.dll?r lkey=667f4a83958krn77ie2862jxf&dl=0

SOFTWARE AirSpy SDR# Studio

Control the SDR Software Defined Radio module Real Time Spectral Display of Data

Software Block Diagram

Air-Spy SDR Sharp Software AirSpy SDR# Studio

Software Block Diagram

Air-Spy SDR Sharp Software AirSpy SDR# Studio & IF Average

Software Block Diagram

Air-Spy SDR Sharp Software AirSpy SDR# Studio & IF Average

1419.650000000 0.000014131419.651464844 0.00001417 1419.652929688 0.00001428 1419.657324219 0.000014373 1419.658789063 0.00001440 1419.660253906 0.000014481 1419.661718750 0.00001457 1419.663183594 0.00001480 1419.670507813 0.000014951 1419.674902344 0.00001501 1419.676367188 1419.677832031 1419.679296875 1419.680761719 0.000015019

SOFTWARE AirSpy SDR# Studio

IF_Ave Ver 2.8 PlugIn for SDR# Studio allows Setting Up Averaging, Creating a Background Correction File and auto saving of a sequence of *.txt data files

Auto Saved Files Name Date modified Type Size D23CPY_Dec40_0001.txt 2/25/2024 6:47 AM Text Document 15 KB D23CPY Dec40 0002.txt 2/25/2024 6:51 AM Text Document 15 KB D23CPY_Dec40_0003.txt 2/25/2024 6:56 AM 15 KB Text Document D23CPY_Dec40_0004.txt 2/25/2024 7:01 AM Text Document 15 KB D23CPY Dec40 0005.txt 2/25/2024 7:06 AM Text Document 15 KB D23CPY_Dec40_0006.txt Text Document 15 KB 2/25/2024 7:11 AM D23CPY Dec40 0007.txt 2/25/2024 7:16 AM Text Document 15 KB D23CPY_Dec40_0008.txt 2/25/2024 7:21 AM Text Document 15 KB D23CPY_Dec40_0009.txt 15 KB 2/25/2024 7:26 AM Text Document

Freq/Ampl data columns in one file

2/25/2024 7:47	:04 AM Count:
1419.655700000	0.000053754
1419.658629688	0.000053759
1419.661559375	0.000053886
1419.664489063	0.000053979
1419.667418750	0.000054071
1419.670348438	0.000054310
1419.673278125	0.000054432
1419.676207813	0.000054544
1419.679137500	0.000054713
1419.682067188	0.000054844
1419.684996875	0.000054961
1419.687926563	0.000055087
1419.690856250	0.000055222
1419.693785938	0.000055195
1419.696715625	0.000055159
1419.699645313	0.000055169

001.420.405.000 4 4

Allows FFT Size / High Count Averaging / Spectrum Saving at Selected Time Rates

Name	Date modified	Туре	Size
FLoop_ASmini_5m_D0_RA500_4Oct21_0079.txt	10/4/2021 1:38 PM	Text Document	30 KB
FLoop_ASmini_5m_D0_RA500_4Oct21_0078.txt	10/4/2021 1:33 PM	Text Document	30 KB
FLoop_ASmini_5m_D0_RA500_4Oct21_0077.txt	10/4/2021 1:28 PM	Text Document	30 KB
FLoop_ASmini_5m_D0_RA500_4Oct21_0076.txt	10/4/2021 1:23 PM	Text Document	30 KB
FLoop_ASmini_5m_D0_RA500_4Oct21_0075.txt	10/4/2021 1:18 PM	Text Document	30 KB
FLoop_ASm 5m_D0_RA500_4Oct21_0074.txt	10/4/2021 1:13 PM	Text Document	30 KB
ASmin_5m_D0_RA500_4Oct21_0073.txt	10/4/2021 1:08 PM	Text Document	30 KB
FLoop_ASmini_5m_D0_RA500_4Oct21_0072.txt	10/4/2021 1:03 PM	Text Document	30 KB
FLoop_ASmini_5m_D0_RA500_4Oct2 \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq	10/4/2021 12:57 PM	Text Document	30 KB

File	E	t	For	mat	V	iew	He	lp			
10/4						:54			COL		ts:
1419									41		
1419									417		
1419									419		
1419									42		
1419									428		
1419		_			_				437		
1419			_						440		
1419						0.	000	001	448	81	
1419	. 6	61	71	875	O	Ο.	000	001	457	77	
1419			_						46		
1419	. 6	64	64	843	8	0.	000	001	470	05	
1419	. 6	66	11	328	1	0.	000	001	47	//	
1419	. 6	67	57	812	5	0.	000	001	480	03	
1419	. 6	69	04	296	9	0.	000	001	487	79	
1419	. 6	70	50	781	3	Ο.	000	001	49	19	
1419	. 6	71	97	265	6	0.	000	001	494	49	
1419	. 6	73	43	750	O	0.	000	001	49	51	
1419	. 6	74	90	234	4	Ο.	000	POI	50	12	
1419	. 6	76	36	718	8	0.	000	001	498	86	
1419	. 6	77	83	203	1	0.	000	001	499	99	
1419	. 6	79	29	687	5	0.	000	OI	504	44	
1419	. 6	80	76	171	9	0.	000	001	50	19	
1419	6	87	22	656	3	0	000	OI	50	16	

Hydrogen 21-cm wavelength RF Emission Spectrum

Hydrogen 21-cm wavelength RF Emission Spectrum

Convert col B to dB use the formula dB = 20*LOG10(col B values)

-0.00149

0.022031

0.031698

0.056967

0.084449

0.110021

0.132031

0.157464

0.183123

0.209008

0.21982

0.224771

Then offset entire column by a fixed value to make Cold Sky == 0 dB (in this case 84.97)

=20*LOG10(B1)+\$D\$1

84.97

When you first create col C, it has a large - dB value. As a starting point put C1 value into Cell D1
Then add that fixed cell to all col C values (C1 .. C512)
Finally, Adjust as req'd to shift the Y axis.
so Cold Sky == 0 dB

0.000056419

0.000056572

0.000056635

0.0000568

0.00005698

0.000057148

0.000057293

0.000057461

0.000057631

0.000057803

0.000057875

0.000057908

C1

3

4

5

9

10

11

1419.655

1419.65793

1419.660859

1419.663789

1419.666719

1419.669648

1419.672578

1419.675508

1419.678438

1419.681367

1419.684297

1419.687227

=20*LOG10(B1)

D

a pettit jr Aug24

Hydrogen 21-cm wavelength RF Emission Spectrum

Frequency MHz

I captured a comparison between 10 second and 300 averages.

Wolfgang recommends sampling at \sim **1/10 the beam width** of your antenna .. If that is 12.5 degrees, that equates to 1.25 degrees per sample and that = **300 Seconds**.

Acquiring at 10 secs/frame = 0.042 degrees = 1/300 the beam width of a 12.5 deg antenna

You " do not loose **Useful** *spatial resolution* " as much as you gain **Un-Useful** *Noise*

Same setup, different sample times

SOFTWARE Links misc info

https://www.rtl-sdr.com/cheap-and-easy-hydrogen-line-radio-astronomy-with-a-rtl-sdr-wifi-parabolic-grid-dish-lna-and-sdrsharp/

https://www.youtube.com/watch?v=C6NCefVxNL8

SARA 2022 Eastern Conference

Galactic Hydrogen 1.42 GHz RF Emission Radio Astronomy for \$300 Alex Pettit SARA www.radio-astronomy.org

The \$300 SARA 'Scope in a Box' Radio Telescope System and Beyond
A beginner's introduction into receiving and processing 1.42 GHz RF emission signals
from neutral hydrogen regions within the Milky Way Alex Petit

This presentation will briefly overview the history and value of radio astronomy. It will describe the Analog RF and Digital Signal hardware components and the basic software needed to acquire, process, and display the data. Drift Scan data recording will be explained, and several upgrades will be suggested for improvements in signal amplitude and quality.

Radio Astronomy Presentations from the Society of Amateur Radio Astronomers Eastern Conference July 2022

Introduction to Radio Astronomy

https://www.youtube.com/watch?v=AOgvjRXnins

Dr. Wolfgang Herrmann Keynote Amateur Radio Astronomy Possibilities and Limitations,...

https://www.youtube.com/watch?v=8j1bVpC6M94

Alex Pettit: Galactic Hydrogen 1.42 GHz RF Emission Radio Astronomy

https://www.youtube.com/watch?v=C6NCefVxNL8

Milky Way 21cm Neutral Hydrogen Line Brightness Intensity Chart

With Permission Marcus Leech CCERA Canadian Centre Experimental Radio Astronomy

Stellarium Planetarium Program find when Milky Way is overhead and RA Time

https://stellarium.org,

