Activity: Decomposing with Direct Products

Recall that last semester we saw that $\mathbb{Z}_6 \cong \mathbb{Z}_2 \times \mathbb{Z}_3$. When does this sort of thing happen?

1. Given positive integers m and n, is it always true that $\mathbb{Z}_{mn} \cong \mathbb{Z}_m \times \mathbb{Z}_n$? If this is not always true, for which m and n is it true? Try some (many) examples.

2. Consider \mathbb{Z}_{12} . Can we break this down as the direct product of two smaller \mathbb{Z}_p groups? In other words is $\mathbb{Z}_{12} = \mathbb{Z}_m \times \mathbb{Z}_n$ for some values of m and n?

3. Suppose your absent minded professor claims the answer is "no" and you don't feel like arguing. Maybe we can do something similar. Find two subgroups of \mathbb{Z}_{12} , call them H and K, such that $H \cap K = \{0\}$ and $HK = \mathbb{Z}_{12}$. In general, $HK = \{h * k : h \in H, k \in K\}$; here it would be better to write H + K.

For any n, the group U(n) is the set of all positive integers less than and relatively prime to n, under multiplication modulo n. For example we saw that $U(8) = \{1, 3, 5, 7\}$ is a group under multiplication modulo 8.

Consider the group U(28). The table below gives the twelve elements with their orders:

g	1	3	5	9	11	13	15	17	19	23	25	27
ord(g)	1	6	6	3	6	2	2	6	6	6	3	2

4. Let G(n) be the set of all elements of order n^k for some k (that is, elements with order some power of n). Find G(2) and G(3) for U(28).

5. Are G(2) and G(3) subgroups of U(28)?

6. Do G(2) and G(3) have the property that $G(2) \cap G(3) = \{1\}$ and U(28) = G(2)G(3)?

7. Is $U(28) \cong G(2) \times G(3)$? Is $U(28) \cong \mathbb{Z}_m \times \mathbb{Z}_n$ for some values of m and n?