Isolated photon + hadron and jet correlations in p-Pb and pp collisions

Miguel Arratia, on behalf of the ALICE Collaboration

Motivation

• Serves as benchmark for Pb-Pb measurement

• Exploits ALICE unique capabilities to access a poorly explored low Q^2 , low-x region

Data samples

- 5 TeV pp data from 2017 run
- 5 TeV p-Pb data from 2013 run

Both collected with EMCal trigger, yielding comparable int. luminosity

Photon identification

Photon identification with shower shapes

Photon Isolation

Cluster isolated with cone R=0.4, using tracks,
UE subtracted with median density:

$$ISO = \sum_{\text{track } \in \Delta R < 0.4} p_{\text{T}}^{\text{track}} - \rho \times \pi (0.4)^2$$

• *ISO* < 1.5 GeV/*c* selection

Template fit for purity measurement

- Data-driven background template
- Signal template from MC
- 1 free parameter

Purity measurement

- Purity grows with p_{T} up to about 50% above 20 GeV/c
- Lower purity at low $p_{\rm T}$ is due to low signal-to-noise in cross-sections (percent level)

Isolated photon + hadron correlations

Correlation functions methodology

• Correlation between photons with 12-15 GeV/c and tracks, in different $z_{\rm T}$ bins. Corrected by acceptance (mixed events), efficiency and fake rate:

$$C(\Delta\varphi, \Delta\eta) = \frac{S(\Delta\varphi, \Delta\eta)}{M(\Delta\varphi, \Delta\eta)} \frac{1}{\epsilon} (1 - f)$$

• Pedestal from underlying event, U, estimated with ZYAM and large $\Delta\eta$

 These are ingredients for signal correlation, obtained with measured purity (p) 25%:

$$C_S = \frac{(C_{SR} - U) - (1 - p)(C_{BR} - U)}{p}$$

2.5

3.0

Isolated-photon + hadron correlations

No significant difference between pp and p-Pb data

Isolated-photon + hadron correlations

No significant difference between pp and p-Pb data

Integrated photon + hadron correlations

No significant difference between pp and p-Pb data

Isolated photon + jet correlations

Photon + jet angular correlation

- Anti-kT R=0.4 jets. Track constituents
- Pairs with $\Delta \varphi > \pi/2$ kept
- π^0 impurity subtracted as:

$$C_S = \frac{C_{SR} - (1-p)C_{BR}}{p}$$

with purity (p) $\sim 50\%$

Jet performance (new, ITS-only tracking)

2017 pp data

2013 p-Pb data

- Reconstructed jet unfolded to charged-particle level
- Jet energy resolution in 15—25% range
- Jet energy scale 13—16% range

Spectrum of jets recoiling to isolated photons

 No significant difference between pp and p-Pb data

Conclusions

- No significant difference is observed between pp and p-Pb measurements
- This result establishes a benchmark for photon identification and jet reconstruction for future measurements with ALICE

Future Outlook

- Measurement in Pb-Pb collisions
- Photon spectra and π^0 +jet measurements (100 times more statistics)
- Exploit ALICE unique capabilities to access unexplored kinematics

Backup Slides

Deep Neural Network Output

0.2

ALI-PERF-306755

 $E_{\text{max}}/E_{\text{cluster}}$

0.8

1.0

0.0

0.2

0.4

0.6

 $\sigma_{\mathsf{long}}^{2}$

1.0

1.2

ALI-PERF-306745

Fragmentation photons

