Ficha 5 Métodos numéricos

1

Considerando a função de Gauss normalizada definida por

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt$$

e a seguinte tabela de valores

11 X	2.0	2.1	2.2	2,41	2.53
φ(x)	0.9772	0.9821	0.9861	0.9920	0.9943

Determine a melhor aproximação possível de Φ (2.32).

2

Para a função f(x) definida pela tabela de oito valores

ajuste, no sentido dos mínimos quadrados, os seguintes modelos:

- i) $p_1(x) = c_0 P_0(x) + c_1 P_1(x)$, com $P_0(x)$ e $P_1(x)$ polinómios ortogonais;
- polinómio de grau 2, p₂(x);
- 3. Determine o polinómio de 2ª ordem que melhor se ajusta aos seguintes dados:

x_i	y_i
0	2.1
1	7.7
2	13.6
2 3 4 5	27.2
4	40.9
5	61.1

4. Determine a equação do plano que melhor se ajusta aos seguintes dados:

<i>x</i> ₁	X_2	у
	0	5
2	1	
0 2 2.5	2	9
1	3	10 9 0 3
4	2 3 6 2	3
4 7	2	27

5. Considere a seguinte função:

Calcule o integral da função no tempo usando a regra do trapézio composta.

6. A densidade da terra varia com a distância ao centro da terra de acordo com a seguinte tabela:

r, km ρ(g/cm³)				
r, km ρ(g/cm³)			6380 3	

Calcule a massa da terra em toneladas e a densidade média.

7.

Considere $\pi(x)$ o número de primos $p \le x$. Usando a aproximação devida a Riemann

$$\pi(x) \approx \int_1^x \frac{dt}{\ln(t)},$$

e a regra de Simpson, estime $\pi(100)$.

8.

Dada a seguinte tabela de valores de f(x)

calcule $\int_{0.0}^{1.6} f(x)dx$ usando a técnica de Romberg até obter uma aproximação que tenha um erro de truncatura da ordem de h^6 .