Laboration 1 Relationsmodellen

Besvara nedanstående frågor. Fråga 1-4 är värd 1 poäng, fråga 5 ytterligare 1 poäng.

1) En videobutik har tänkt sig att lägga information om sin filmuthyrning i en databas och har till att börja med tänkt sig följande sex relationer:

GENRE = {genrenr, genrenamn}

Denna relation innehåller en lista på de olika filmgenrer som är representerade (t ex thriller, komedi, drama osv)

VIDEOFILM = {filmnr, titel, antal, pris, genrenr}

Antal är här antalet kopior butiken har av en viss film och **pris** är uthyrningspriset.

KUNDER = {kundnr, namn, adress, telefonnr}

Denna relation innehåller en lista på de kunder som har hyrt filmer av butiken

UTHYRDA FILMER = {filmnr, kundnr, utdatum, indatum}

Utdatum är det datum som filmen hyrdes ut och **indatum** det datum den skall lämnas tillbaka.

SKÅDESPELARE = {actornr, namn}

Denna relation innehåller en lista på de skådespelare som har de största rollerna i de filmer som butiken har.

SKÅDESPELARE_FILM = {actornr, filmnr}

Varje tuple i denna relation talar om att en viss skådespelare medverkar i en viss film.

- **a)** Specificera alla kandidatnycklar, primärnycklar och främmandenycklar för ovanstående relationer. Ange alla antaganden du gör om relationerna.
- b) Vad tycker du skulle vara bra domäner för attributen genrenamn och antal?
- c) Specificera två databas-specifika (semantiska) integritetsregler som skulle behöva specificeras för databasen (ej domänregler).
- 2) Varför är det inte tillåtet med duplicerade tupler i en relation?
- 3) Vad är en vy (virtuell relation) och vad är det för skillnad på en basrelation och en vy?

Figure 1.2 An example of a database that stores student records and their grades.

STUDENT	Name	StudentNumber	Class	Major
	Smith	17	1	CS
	Brown	8	2	CS

	I	I		
COURSE	CourseName	CourseNumber	CreditHours	Department
	Intro to Computer Science	CS1310	4	CS
	Data Structures	CS3320	4	CS
	Discrete Mathematics	MATH2410	3	MATH
	Database	CS3380	3	cs

SECTION	SectionIdentifier	CourseNumber	Semester	Year	Instructor
	85	MATH2410	Fall	98	King
	92	CS1310	Fall	98	Anderson
	102	CS3320	Spring	99	Knuth
	112	MATH2410	Fall	99	Chang
	119	CS1310	Fall	99	Anderson
	135	CS3380	Fall	99	Stone

GRADE_REPORT	StudentNumber	SectionIdentifier	Grade
	17	112	В
	17	119	С
	8	85	Α
	8	92	Α
	8	102	В
	8	135	Α

	PREREQUISITE	CourseNumber	PrerequisiteNumber
•		CS3380	CS3320
		CS3380	MATH2410
		CS3320	CS1310

© Addison Wesley Longman, Inc. 2000, Elmasri/Navathe, Fundamentals of Database Systems, Third Edition

- 4) Specificera följande frågor mot databasen i figuren ovan med hjälp av relationsalgebra:
 - a) Ge en lista på de kurser (namn, nummer) som ger mer än 3 poäng (credit hours)
 - b) Ge en lista på de kurser (nummer) som gavs hösten 98
 - c) Ge en lista på de studenter (namn, betyg) som har gått kursen "Data Structures"
 - d) Ge en lista på de studenter (studentnamn, kursnr) som har gått någon kurs antingen hösten 98 eller våren 99
- 5) (*Extrauppgift*, *värd 1 p*) Ge en lista på de studenter (studentnamn, studentnr) som uppfyller förkunskapskraven för kursen "Database", men som ännu inte har gått den