

BUNDESREPUBLIK DEUTSCHLAND

CERTIFIED COPY OF
PRIORITY DOCUMENT

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

103 58 304.1

Anmeldetag:

12. Dezember 2003

Anmelder/Inhaber:

IRWIN Industrial Tools GmbH,
85399 Hallbergmoos/DE

Bezeichnung:

Anordnung mit einer Kraftmaschine und Spann-
und/oder Spreizwerkzeug

IPC:

B 25 B 5/06

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ur-
sprünglichen Unterlagen dieser Patentanmeldung.

München, den 29. September 2005
Deutsches Patent- und Markenamt

Der Präsident
Im Auftrag

Brosig

BOEHMERT & BOEHMERT

ANWALTSSOZIETÄT

Boehmert & Boehmert · P.O.B. 15 03 08 · D-80043 München

Deutsches Patent- und Markenamt
Zweibrückenstraße 12
80297 München

DR. ING. KARL BOEHMERT, PA (1970-1973)
DIPL-ING. ALBERT BOEHMERT, PA (1972-1993)
WILHELM J. H. STAHLBERG, RA, Bremen
DR.-ING. WALTER HOORMANN, PA*, Bremen
DIPL-PHYS. DR. HEINZ GODDAR, PA*, München, Shanghai
DR.-ING. ROLAND LIESEGANG, PA*, München
WOLF-DIETER KUNTZE, RA, Bremen, Alicante
DIPL-PHYS. ROBERT MONZHUBER, PA (1973-1992)
DR. ERIC WIGG, RA, Bremen
DR. (CHEM.) ANDREAS WINKLER, PA*, Bremen
MICHAELA HUTH-DIERIG, RA, München
DIPL-PHYS. DR. MARION TONHARDT, PA*, Düsseldorf
DR. ANDREAS EBERT-WEIDENFELLER, RA, Bremen
DIPL-ING. EVA LIESEGANG, PA*, München
DR. AXEL NORDEMANN, RA, Berlin
DIPL-PHYS. DR. DOROTHEE WEBER-BRULS, PA*, Frankfurt
DIPL-PHYS. DR. STEFAN SCHOEYE, PA*, München
DR.-ING. MATTHIAS PHILIPP, PA*, Bielefeld
DR. MARTIN WIRTZ, RA, Düsseldorf
DR. DETMAR SCHÄFER, RA, Bremen
DR. JAN BERND NORDEMANN, LL.M., RA, Berlin
DR. CHRISTIAN CZUCHOWSKI, RA, Berlin
DR. ERICH RICHAEL HÄRTER, RA, Bremen, München
DIPL-PHYS. CHRISTIAN W. APPELT, RA, München
DIPL-PHYS. DR.-ING. UWE MANASSE, PA*, Bremen
DIPL-PHYS. DR. THOMAS L. BITTNER, PA*, Berlin
DR. VOLKER SCHMITZ, M. Juris (Oxford), RA, München, Paris
DIPL-BIOL. DR. JAN B. KRAUSS, PA*, Berlin

PROF. DR. WILHELM NORDEMANN, RA, Potsdam
DIPL-PHYS. EDUARD BAUMANN, PA*, Höhenkirchen
DR.-ING. GERALD KLOPSCH, PA*, Düsseldorf
DIPL-ING. HANS W. GROENING, PA*, München
DIPL-ING. SIEGFRIED SCHIRMER, PA*, Bielefeld
DIPL-PHYS. LORENZ HANEWINDEL, PA*, Potsdam
DIPL-ING. ANDONI GARCIA RIEDEKER, PA*, Madrid
DIPL-ING. DR. ULRICH TONNER, RA, Kiel
DIPL-PHYS. CHRISTIAN BIEHL, RA, Kiel
DR. ANKE NORDEMANN-SCHIFFEL, RA*, Potsdam
DR. KLAUS TIM BRÖCKER, RA, Berlin
DR. ANDREAS DUSTMANN, LL.M., RA, Potsdam
DIPL-ING. NILS T. F. SCHMID, PA*, München, Paris
DR. FLORIAN SCHWAB, LL.M., RA*, München
DIPL-BIOCHEM. DR. MARKUS ENGELHARD, PA*, München
DIPL-CHEM. DR. KARL-HEINZ B. METTEN, PA*, Frankfurt
PASCAL DECKER, RA, Berlin
DIPL-CHEM. DR. VOLKER SCHOLZ, PA*, Bremen
DIPL-CHEM. DR. JÖRK ZWICKER, PA*, München
DR. CHRISTIAN MEISSNER, RA, München
DIPL-PHYS. DR. MICHAEL HARTIG, PA*, München

In Zusammenarbeit mit/in cooperation with
DIPL-CHEM. DR. HANS ULRICH MAY, PA*, München

Ihr Zeichen
Your ref.

Ihr Schreiben
Your letter of

Neuanmeldung

Unser Zeichen
Our ref.

I30143

München,

12. Dezember 2003

IRWIN Industrial Tools GmbH
Lilienthalstraße 7
85399 Hallbergmoos

Anordnung mit einer Kraftmaschine und Spann- und/oder Spreizwerkzeug

Die Erfindung betrifft eine Anordnung mit einem Antrieb für ein Spann- und/oder Spreizwerkzeug, der eine Kraftmaschine aufweist und zum Verlagern einer an einem Träger des Spann- und/oder Spreizwerkzeugs beweglich gelagerten Schub- oder Zugstange mit einer daran fest angebrachten beweglichen Backe relativ zu dem eine ortsfeste Backe haltenden Träger in Längsrichtung der Schub- oder Zugstange ausgelegt ist.

Eine derartige Anordnung eines Spannwerkzeugs ist aus dem US-Patent 6,568,667 bekannt, bei dem die Kraftmaschine durch eine Spiraldruckfeder gebildet ist, die zwischen Abstütz-

punkten auf einer der beweglichen Backe abgewandten Seite des Trägers angeordnet ist. Ein Nachteil bei dieser Anordnung zum schnellen Verschließen der Spannbacken besteht darin, daß zu Beginn der Schließbewegung, also bei gespannter Spiraldruckfeder, hohe Schließkräfte auftreten, welche eine Verletzungsgefahr für die das Spann- und/oder Spreizwerkzeug mit einer Hand bedienenden Person in sich bergen. Beispielsweise kann die bewegliche Backe an einem Körperteil der Bedienperson hängen bleiben, wobei die durch die Spiraldruckfeder erzeugten hohen Schließkräfte dem Körperteil eine Verletzung zufügen könnten. Desweiteren erschweren die starken Schließkräfte die Handhabe des Spannwerkzeugs insofern, als die Bedienperson nur schwer den Schließvorgang dosieren kann. Unter Umständen kann es sogar zu einer Beschädigung des zu spannenden Gegenstands kommen, wenn die bewegliche Backe, angetrieben von der Spiraldruckfeder, mit einer zu hohen Geschwindigkeit gegen den zu spannenden Gegenstand prallt.

Es ist Aufgabe der Erfindung, den Nachteil des Standes der Technik zu überwinden, insbesondere die Ergonomie des Spann- und/oder Spreizwerkzeugs zu verbessern, insbesondere eine Anordnung mit einem insbesondere kontinuierlichen Antrieb für ein Spann- und/oder Spreizwerkzeug mit einer Kraftmaschine zu schaffen, welcher eine bediensichere und einfache Handhabe gewährleistet, wobei eine Beeinträchtigung des zu spannenden Gegenstands durch Kräfte, die von dem Antrieb auf den Gegenstand wirken, weitestgehend ausgeschlossen sein sollen.

Diese Aufgabe wird durch die Merkmale von Anspruch 1 gelöst. Danach ist eine Einrichtung zum Dämpfen einer von der Kraftmaschine abgegebenen Kraft zum Verlagern der Schub- oder Zugstange vorgesehen. Mit der Dämpfungseinrichtung, welche die von der Kraftmaschine abgabbare Antriebskraft schwächen kann, kann eine gleichmäßige Verlagerung der beweglichen Backe realisiert sein, wobei die Verlagerungsgeschwindigkeit für eine einfache Dosierung und ein schonendes Greifen des zu spannenden Gegenstands einstellbar ist. Desweiteren kann die erfindungsgemäße Anordnung mit Kraftmaschine und Dämpfungseinrichtung das Verletzungsrisiko bei der Handhabe des Spann- und/oder Spreizwerkzeugs minimieren.

Eine besonders einfache und vorteilhafte Ergonomie wird dem Spann- und/oder Spreizwerkzeug verliehen, wenn die Verlagerungsgeschwindigkeit an jeder Stelle des Verlagerungswegs gleich groß ist. Diese gleichmäßige Verlagerungsgeschwindigkeit kann dadurch realisiert werden, daß die Dämpfungseinrichtung speziell auf die in dem Spann- und/oder Spreizwerkzeug unterzubringende Kraftmaschine abgestimmt ist. Bei der Verwendung einer Druckspiralfeder sind die Federkonstanten in Abhängigkeit von dem Federweg ermittelbar, so daß eine daraufhin eingestellte Dämpfungseinrichtung der Druckspiralfeder zugeordnet werden kann.

Bei einer besonderen Ausführung der Erfindung sind die Dämpfungseinrichtung sowie die Kraftmaschine in einer einzigen Baueinheit, insbesondere einem einzigen Bauteil, kombiniert. Beispielsweise könnte als derartiges Bauteil Drehfedertypen, insbesondere eine Spiralbandfeder, in Betracht kommen, welche eine gleichmäßige Antriebskraft unabhängig von dem Federweg abgeben können. Während durch die elastische Verformbarkeit der Drehfeder beim Spannen, also Abwickeln der Drehfeder, eine Kraft zur Wiedergewinnung der ursprünglich gewickelten Ausgangsform nutzbar ist, liefern die Materialverformung sowie die Drehreibung der Drehfeder um ihre Trägerbasis die Dämpfungsfunktion.

Bei einer besonderen Weiterbildung der Erfindung ist die Dämpfungseinrichtung als Kolbenzylinder-Anordnung mit einem Dämpfungsfluid gebildet. Dabei kann der Kolben der Dämpfungseinrichtung an der Schub- oder Zugstange befestigt sein, während der Zylinder der Dämpfungseinrichtung dem Träger ortsfest zugeordnet ist.

Bei einer bevorzugten Ausführung der Erfindung ist die Dämpfungseinrichtung als ein drehantreibbares Getriebeelement, das betriebsmäßig auf die Kraftmaschine oder die Schub- oder Zugstange wirkt. Das Getriebeelement kann als drehantreibbares Dämpfungsteil ausgebildet sein, das in einem in einem Gehäuse enthaltenen Dämpfungsfluid, insbesondere einer Dämpfungsflüssigkeit, dämpfend arbeitet, insbesondere panscht.

Der Dämpfungseinrichtung kann ihre Dämpfungseigenschaft durch die Erzeugung von Reibungsverlusten erzielen. Erfindungsgemäß kann auch vorgeschlagen sein, daß die Dämpfungseinrichtung Panschverluste erzeugt.

Desweiteren betrifft die Erfindung ein Spann- und/oder Spreizwerkzeug mit einer erfindungsgemäßen Anordnung.

Weitere Vorteile, Merkmale und Eigenschaften der Erfindung werden durch die folgende Beschreibung bevorzugter Ausführung der Erfindung anhand der beiliegenden Zeichnungen deutlich, in denen zeigen:

Figur 1a eine Seitenansicht einer Ausführung eines erfindungsgemäßen Spann- und/oder Spreizwerkzeugs mit einer geöffneten Spannbackenstellung;

Figur 1b eine Querschnittsansicht des Spann- und/oder Spreizwerkzeugs gemäß Figur 1a entlang der Schnittlinie A-A;

Figur 2 eine Seitenansicht einer weiteren erfindungsgemäßen Ausführung eines Spann- und/oder Spreizwerkzeugs mit geöffneter Spannbackenstellung, wobei ein erfindungsgemäßer Antrieb in seinem Antriebsbetrieb zum Öffnen der Spannbacken gezeigt ist;

Figur 3 eine Seitenansicht des Spann- und/oder Spreizwerkzeugs gemäß Figur 2, wobei der erfindungsgemäße Antrieb in seinem Antriebsbetrieb zum Schließen der Spannbacken gezeigt ist;

Figur 4 eine Seitenansicht des Spann- und/oder Spreizwerkzeugs gemäß Figur 2 mit einem deaktivierten Antrieb, wobei ein erfindungsgemäßer Mechanismus zum Laden von Antriebsenergie bei einer Schließbewegung der Backen gezeigt ist;

Figur 5 eine Seitenansicht des Spann- und/oder Spreizwerkzeugs gemäß Figur 2 mit einem deaktivierten Antrieb, wobei der erfindungsgemäße Mechanismus zum Laden von Antriebsenergie bei einer Öffnungsbewegung der Spannbacken gezeigt ist;

Figur 6a eine Seitenansicht einer weiteren erfindungsgemäßen Ausführung eines Spann- und/oder Spreizwerkzeugs mit Spannbacken im einspannenden Zustand;

Figur 6b eine Stirnansicht des Spann- und/oder Spreizwerkzeugs gemäß Figur 6a;

Figur 7a eine Seitenansicht der erfindungsgemäßen Ausführung des Spann- und/oder Spreizwerkzeugs gemäß Figuren 6a, 6b mit einer geöffneten Spannbackenkonfiguration;

Figur 7b eine Querschnittsansicht des Spann- und/oder Spreizwerkzeugs gemäß Figur 7a entlang der Schnittlinie B-B;

Figur 8a eine Seitenansicht des Spann- und/oder Spreizwerkzeugs gemäß den Figuren 6a bis 7b in einem Betriebsmodus des Schließens der Spannbacken;

Figur 8b eine Stirnansicht des Spann- und/oder Spreizwerkzeugs gemäß Figur 8a;

Figur 9a eine Seitenansicht einer weiteren erfindungsgemäßen Ausführung eines Spann- und/oder Spreizwerkzeugs mit einer geöffneten Spannbackenkonfiguration;

Figur 9b eine Draufsicht des Spann- und/oder Spreizwerkzeugs gemäß Figur 9a;

Figur 9c eine vergrößerte Detailansicht des Bereichs C gemäß Figur 9b;

Figur 9d eine Stirnansicht des Spann- und/oder Spreizwerkzeugs gemäß Figur 9a.

Die in den Figuren 1a und 1b dargestellte bevorzugte Ausführung eines Spann- und/oder Spreizwerkzeugs 1 umfaßt eine Schub- oder Zugstange 3, die an einem Träger 5 in deren Längsrichtung beweglich gelagert ist. Der Träger 5 umfaßt ein geschlossenes Gehäuse 7, wobei auf einer Spannseite 9 der Schub- oder Zugstange 3 eine feste Spannbacke 11 vorgesehen ist, die einer beweglichen Spannbacke 13 diametral gegenüberliegt, welche an einem Ende 14 der Schub- oder Zugstange 3 lösbar befestigt ist.

In Figur 1a ist der Spannbetriebsmodus des Spann- und/oder Spreizwerkzeugs 1 dargestellt. Ist die bewegliche Backe 13 an dem gegenüberliegenden Ende 16 der Schub- oder Zugstange 3 befestigt, besitzt das Spann- und/oder Spreizwerkzeug 1 einen Spreizbetriebsmodus.

Auf der der Spannseite 9 gegenüberliegenden Betätigungsseite 15 der Zug- oder Schubstange 3 ist an dem Träger 5 ein Griff 17 zum Halten des Spann- und/oder Spreizwerkzeugs mit einer Hand einstückig befestigt. Zudem ist an dem Träger 5 ein Schrittgetriebe 19 gelagert, das später im Detail erläutert wird. Das Gehäuse 7 des Trägers 5 umfaßt und schützt einen erfindungsgemäßen Antrieb 21, der durch eine Drehfeder 23, die eine Rotationsachse aufweist, und ein drehbar gelagertes Antriebsrad 25 gebildet ist, dessen Drehachse mit der Rotationsachse der Drehfeder 23 zusammenfällt.

Das Antriebsrad 25 steht kraftübertragend mit einem Längsrand 27 der Schub- oder Zugstange 3 im Eingriff. In Figur 1a ist der drehmomentübertragende Eingriff durch Reibungsschluß zwischen Antriebsrad 5 und Schub- oder Zugstange 3 gebildet.

Das Antriebsrad 25 ist derart an dem Träger 5 gelagert, daß in jeder Verlagerungsposition der Schub- oder Zugstange 3 ein Eingriff des Antriebsrads 25 mit der Schub- oder Zugstange 3 gewährleistet ist. Das Antriebsrad 25 ist aus einem Gummi enthaltenden Werkstoff gebildet, wobei die Schub- oder Zugstange 3 zum Antriebsrad 25 derart liegt, daß eine eine Normalkraft erzeugende Vorspannung zwischen den beiden Bauteilen wirkt.

Mit dieser Ausführung eines drehantreibbaren Getriebeelements in Form eines Antriebsrads 25 und einer Drehfeder 23 als Motor und Energiespeicher wird der Schub- oder Zugstange 3 in jeder ihrer Verlagerungspositionen eine Antriebskraft zum Schließen der Spannbacken 11, 13 mitgeteilt, also eine Antriebskraft zum Bewegen der Schub- oder Zugstange 3 von rechts nach links, wie in Figur 1a durch den Pfeil S, wie Schließrichtung, angezeigt ist.

Aufgrund des ständigen Eingriffs des Antriebsrads 25 mit der Schub- oder Zugstange 3 ist weiterhin gewährleistet, daß bei einer Öffnungsbewegung der Spannbacke 13, d.h. bei einer Bewegung der Schub- oder Zugstange 3 von links nach rechts, die Drehfeder 23 gespannt

wird, um für den anschließenden Öffnungsvorgang ausreichende potentielle Energie zum erneuten Öffnen des Spann- und/oder Spreizwerkzeugs 1 bereitzustellen.

Eine Drehfeder 23 als Kraftmaschine ist insofern von Vorteil, als sie für eine im wesentlichen kontinuierliche Drehmoment-Bereitstellung sorgt, so daß ein kontinuierlicher Schließvorgang mit gleichmäßiger Schließkraft und Schließgeschwindigkeit bereitgestellt ist.

Die Reibungskraft, welche zur Übertragung des Drehmoments von dem Antriebsrad 25 auf die Schub- oder Zugstange 3 notwendig ist, ist derart insbesondere durch Wahl eines hohen Reibungskoeffizienten einzustellen, daß es bei einem Stillstand der Schub- oder Zugstange 3 nicht zu einem Durchdrehen des Antriebsrads 25 kommt. Auf diese Weise ist gewährleistet, daß sich die potentielle Energie der Drehfeder 23 nicht selbständig durch Durchrutschen des Antriebsrads 25 löst.

Des weiteren ist dem Antrieb des Spann- und/oder Spreizwerkzeugs 1 gemäß den Figuren 1a und 1b eine Dämpfungseinrichtung zugeordnet, welche die von der Drehfeder abgegebene Drehantriebskraft dämpft.

Die Ausführung gemäß den Figuren 2 und 3 stellt ein Spann- und/oder Spreizwerkzeug dar, die sich im wesentlichen von dem Spann- und/oder Spreizwerkzeug gemäß Figur 1a und 1b darin unterscheidet, daß eine alternative Ausführung eines erfindungsgemäßen Antriebs für das Spann- und/oder Spreizwerkzeug vorgesehen ist. Zur besseren Lesbarkeit der Figurenbeschreibung werden für identische und ähnliche Bauteile zur Ausführung gemäß den Figuren 1a und 1b identische Bezugszeichen verwendet, die um 100 erhöht sind, wobei es einer erneuten Erläuterung der Funktionsweise der Bauteile nicht bedarf.

Die Figuren 2 und 3 zeigen zwei unterschiedliche Antriebskonfigurationen eines Getriebes eines erfindungsgemäßen Antriebs. In beiden Konfigurationen ist der Antrieb durch eine Freistellung einer Klinke 131 aus einer Klinkenverzahnung 133 aktiviert.

Bei der Getriebekonfiguration gemäß Figur 2 wird ein Öffnen der Spannbacken 111 und 113 realisiert. Die Öffnungsrichtung der Verlagerung der Schub- und/oder Zugstange 103 ist mit O angedeutet.

Der erfindungsgemäße Antrieb 121 umfaßt ein drehantreibbares Getriebeelement, das als Antriebsrad 135 über eine Drehfeder 123 angetrieben ist. Die Drehfeder 123 ist derart montiert, daß eine Drehung des Antriebsrads 135 im Uhrzeigersinn bewirkt wird.

Ein mit dem Antriebsrad 135 drehmomentübertragend gekoppeltes Zwischengetrieberad 137 wird entgegen dem Uhrzeigersinn durch das Antriebsrad 135 gedreht, wobei das Zwischengetrieberad 137 drehmomentübertragend ein als Getriebebauteil zum Umsetzen einer Drehbewegung in eine translatorische Bewegung ausgebildetes Abtriebsrad 139 antreibt. Das Abtriebsrad 139 kommt mit dem der Betätigungsseite 115 zugewandten Rand 127 der Schub- oder Zugstange 103 kraftübertragend in Eingriff. Da das Abtriebsrad 139 in einer Drehbewegung im Uhrzeigersinn angetrieben ist, wird der Schub- oder Zugstange 103 eine Translationszugkraft mitgeteilt, welche die bewegliche Backe 113 in Öffnungsrichtung O von der ortsfesten Backe 111 entfernen läßt.

Sämtliche Drehmomentübertragungen können entweder durch Reibschluß oder durch Formschluß in Form von Verzahnungen oder durch eine Kombination aus beiden realisiert werden.

Im Anschluß wird nun eine bevorzugte Weiterbildung der Erfindung erläutert, die einen Mechanismus zum Wechseln der Verlagerungsrichtung von einer Öffnungsverlagerung, wie in Figur 2 dargestellt ist, in eine Schließverlagerung und umgekehrt betrifft, welcher Betriebsmodus in Figur 3 dargestellt ist.

Der Mechanismus zum Wechseln der Verlagerungsrichtung weist eine Schaltung auf, welche durch eine Rückdrucksperre betätigbar ist. Die Rückdrucksperre stellt eine Blockade gegen das Verlagern der Schub- oder Zugstange entgegen der Vorschubrichtung des Schrittgetriebes dar, die durch den Pfeil V angedeutet ist. Die Sperrwirkung der Rückdrucksperre wird durch

die Verkantung eines Durchgangsbereichs eines Freigabehebels 141 mit der Schub- oder Zugstange 103 bewerkstelltigt.

Soll also die Schub- oder Zugstange 103 in Öffnungsrichtung O (Figur 2), die der Vorschubrichtung V des Schrittgetriebes 119 entgegengesetzt ist, verlagert werden, so ist zum einen der Freigabehebel 141 zu betätigen, um die in Öffnungsrichtung O wirkende Sperrwirkung des Freigabehebels 141, die aufgrund der Verkantung des Freigabehebels 141 mit der Schub- oder Zugstange 103 besteht, zu lösen. Die Betätigung des Freigabehebels 141 ist in Figur 2 nicht näher dargestellt. Es reicht ein leichtes Kippen des Freigabehebels 141, um die Sperrwirkung in Öffnungsrichtung O aufzuheben.

Soll nun die Verlagerungsrichtung von O nach S gewechselt werden, ist der Freigabehebel 141 derart stark zu drücken (Figur 3), daß eine Schalteinrichtung aktiviert wird, die durch einen in seiner Längsrichtung verlagerbaren Druckstab 143 gebildet ist, der auf ein Lager 145 für das Abtriebsrad 139 drückt. Das Lager 145 gewährleistet eine Verschiebung des Abtriebsrads 139 in Längsrichtung, nämlich in Schließrichtung S, der Schub- oder Zugstange 103. Eine nicht dargestellte Vorspannung, insbesondere eine Druckfeder, für das Lager drückt das Abtriebsrad 139 in die in Figur 2 dargestellte Position, in der Abtriebsrad 139 mit dem Zwischengetrieberad 137 in Eingriff steht.

Bei Betätigung des Druckstabs 143, also bei Aktivierung der Schaltung, wird das Lager 145 des Abtriebsrads 139 derart verschoben, daß das Abtriebsrad 139 von dem Zwischengetrieberad 137 freikommt und in einen unmittelbaren drehmomentübertragenden Kontakt mit dem Antriebsrad 135 gelangt. Mit diesem strukturellen Aufbau ist ein Drehrichtungswechsler in dem Antrieb integriert, der einen Wechsel der Drehrichtung des Abtriebsrads 139 realisiert. Im geschalteten Zustand (Figur 3) treibt die Drehbewegung des von der Drehfeder 123 angetriebenen Antriebsrads 135 das Abtriebsrad 139 entgegen dem Uhrzeigersinn an, wodurch die Schub- oder Zugstange 103 in Schließrichtung S kontinuierlich verlagert wird.

In beiden in den Figuren 2 und 3 dargestellten Getriebekonfigurationen sind Antriebsrad, Zwischengetrieberad und Abtriebsrad an ihren Drehmomentübertragungspunkten derart vor-

gespannt, daß eine ausreichende Normalkraft zur Bildung der erforderlichen Reibungskraft zur Drehmomentübertragung erzeugt ist. Die erforderliche Andrückkraft des Abtriebsrads 139 gegen die Schub- oder Zugstange 103 wird bei dem Öffnungsmechanismus gemäß Figur 2 aufgrund der Vorspannung des Lagers 143 sichergestellt, wobei die erforderliche Andrückkraft im Schließmechanismus gemäß Figur 3 durch die dem Druckstab 143 an dem Freigabehebel 141 mitgeteilte Betätigungs kraft gewährleistet ist.

Außerdem kann der in den Figuren 2 und 3 dargestellte Antrieb einer Dämpfungseinrichtung zugeordnet sein, welche die vom Antrieb abgegebene Antriebskraft für eine bestimmte Verlagerungsbewegung der Schub- oder Zugstange dämpft.

In den Figuren 4 und 5 ist ein Spann- und/oder Spreizwerkzeug 101 dargestellt, das im Hinblick auf den strukturellen Aufbau des Spann und/oder Spreizwerkzeugs gemäß den Figuren 2 und 3 im wesentlichen identisch ist. Zur besseren Lesbarkeit der Figurenbeschreibung werden identische Bezugszeichen für identische oder ähnliche Bauteile verwendet. Einer erneuten Erläuterung der identischen oder ähnlichen Bauteile bedarf es nicht.

Das Spann- und/oder Spreizwerkzeug 101 gemäß den Figuren 4 und 5 unterscheidet sich in dem Betriebszustand des Antriebs gegenüber dem Spann- und/oder Spreizwerkzeug gemäß den Figuren 2 und 3. Der Antrieb ist nämlich durch die Sperrklinke 131 deaktiviert, die in einer an dem Antriebsrad 135 radial außen liegenden Verzahnung 133 eingerastet ist und somit die Freigabe der in der Drehfeder 123 gespeicherten Drehantriebsenergie blockiert.

In diesem Betriebsmodus wird der Drehfeder 123 die zum Schließen und Öffnen notwendige Drehantriebsenergie zugeführt. Durch die Bewegung der Schub- oder Zugstange 103 wird über das zwischen der Schub- oder Zugstange 103 und der Drehfeder 123 angeordnete Getriebe eine Drehbewegung am Antriebsrad 135 entgegen dem Uhrzeigersinn induziert, wodurch die Drehfeder 123 gespannt wird.

Mit Hilfe des oben beschriebenen Mechanismus zum Wechseln der Verlagerungsrichtung kann der Spannvorgang unabhängig von einer bestimmten Verlagerungsrichtung der Schub- oder Zugstange realisiert werden.

In Figur 4 ist der Lademechanismus in einer Betriebskonstellation dargestellt, bei der ein Spannen der Drehfeder 123 durch Schließen der Backen 111, 113 realisiert ist. Bei der Bewegung der Schub- oder Zugstange 103 von rechts nach links, also in Schließrichtung S, wird dem Abtriebrad 139 eine Drehbewegung entgegen dem Uhrzeigersinn induziert, wobei dem Zwischengetrieberad 137 eine Drehbewegung in dem Uhrzeigersinn mitgeteilt wird. Durch Drehung des Antriebsrads 135 entgegen dem Uhrzeigersinn wird die Drehfeder 123 gegen den Uhrzeigersinn gespannt oder aufgezogen.

Da ohnehin zum Öffnen der Spannbacken, also für eine Bewegung der Schub- oder Zugstange von links nach rechts, die Rückdrücksperrre durch den Freigabehebel 141 betätigt werden muß, ist bei vollständiger Betätigung des Freigabehebels 141 automatisch sichergestellt, daß über den Druckstab 143 der Drehrichtungswechsler aktiviert ist und das Abtriebsrad 139 aus dem Eingriff mit dem Zwischengetrieberad befreit ist.

Auf diese Weise ist es mit dem erfindungsgemäßen Antrieb möglich, ein Laden von potentieller Energie in den Speicher für Antriebsenergie bereitzustellen, wobei ein Ladevorgang sowohl beim Öffnen als auch beim Schließen durchführbar ist. Wird also die bewegliche Backe auf die ortsfeste Backe mittels des Schrittgetriebes zubewegt, wird automatisch die Drehfeder des Antriebs gespannt. Ein Aufladen durch Hin- und Herbewegen der Schub- oder Zugstange ist möglich.

In den Figuren 6a, 6b, 7a, 7b, 8a und 8b ist eine weitere Ausführung eines erfindungsgemäßen Spann- und/oder Spreizwerkzeugs mit einer alternativen Ausführung eines Antriebs zur kontinuierlichen Verlagerung einer Schub- oder Zugstange dargestellt. Zur besseren Lesbarkeit sind identische oder ähnliche Bauteile zu den vorstehenden Ausführungen mit der gleichen Bezugsziffer versehen, die um 100 oder 200 erhöht ist. Einer erneuten Erläuterung der identischen oder ähnlichen Bauteile wie deren Funktionsweise bedarf es nicht.

Die Ausführung gemäß den Figuren 6a bis 8b unterscheidet sich von den oben stehenden Ausführungen in der Ausgestaltung des Antriebs. Eine Einrichtung zum Ziehen der Schub- oder Zugstange von einer offenen Stellung, wie sie in den Figuren 7a dargestellt ist, in eine geschlossenen Stellung, wie sie in Figur 6a dargestellt ist, ist vorgesehen. Die Zugeinrichtung ist bei der Ausführung gemäß den Figuren 6a bis 8b durch eine Drehfeder 223 gebildet, die mit einem wickelbaren Strang 245 gekoppelt ist. Der wickelbare Strang 245 ist an seinem freien Ende an der Schub- oder Zugstange 203 befestigt. Hierfür ist eine Befestigungseinrichtung 247 vorgesehen, welche über einen Freigabeknopf 248 von der Schub- oder Zugstange 203 lösbar ist, um die Befestigungseinrichtung 247 des wickelbaren Strangs 245 längs der Schub- oder Zugstange 203 umsetzen zu können. Beispielsweise bei Spann- und/oder Spreizwerkzeugen für besonders breite Gegenstände 249 ist eine sehr lange Schub- oder Zugstange (hier nicht dargestellt) vorgesehen. Um nicht eine ebenso lange Zugeinrichtung einzusetzen zu müssen, kann die Befestigungseinrichtung 247 näher zum Träger 205 gerückt werden.

Für den wickelbaren Strang 245 ist eine Spule 251 vorgesehen, auf die der wickelbare Strang 245 beim Zuziehen der Spannbacke 213 wickelbar ist. Der Wickelstrang 245 erstreckt sich von der Spule 251 über eine in der Nähe der Spule in Richtung auf die bewegliche Backe 213 versetzte Führung 253, welche den Wickelstrang 245 in eine Vertiefung 255 der Schub- oder Zugstange 203 leitet. Von der Führung 253 läuft der Wickelstrang 245 längs der Schub- oder Zugstange 203 in deren Vertiefung 255 zur Befestigungseinrichtung 247.

Der Wickelstrang 245 kann als Faden oder als ein metallisch verstärkter Stofffaden gebildet sein. Auch Nylonschnüre mit kleinem Querschnitt sind als Wickelstrang einsetzbar.

Die Schub- oder Zugstange 203 mit der Vertiefung 255 zur Aufnahme des Wickelstrangs 245 ist, wie in Figur 7b ersichtlich ist, als I-Träger mit zwei seitlichen Vertiefungen 255 ausgeführt. Die Vertiefungen sind derart bemessen, daß der Wickelstrang berührungs frei hinsichtlich des Gehäuses 207 des Trägers 205 entlanggleiten kann.

Eine besondere erfinderische Maßnahme besteht darin, der drehbar gelagerten Spule 251, die mit der Drehfeder 223 drehantreibend gekoppelt ist, eine Dämpfungseinrichtung 257 zuzuordnen, die schematisch in den Figuren 6a, 7a und 8a angedeutet ist.

Die Dämpfungseinrichtung 257 ist dazu ausgelegt, die durch die Zugkraft der Zugeinrichtung auf die bewegliche Backe 213 wirkenden Kraft derart zu dämpfen, daß eine kontrollierbare Schließgeschwindigkeit der beweglichen Backe 213 gewährleistet ist. Die gewünschte Schließgeschwindigkeit hängt von den Wünschen der das Spann- und/oder Spreizwerkzeug 201 benutzenden Personen ab. Die Dämpfungseinrichtung 257 kann auf einem Reibungsverlust- oder Pentschverlustprinzip eines Arbeitsfluids basieren.

Die Dämpfungseinrichtung 257 ist insbesondere vorteilhaft, sollte eine Drehfeder verwendet werden, welche eine nicht lineare Kraftbereitstellung bietet. Die Dämpfungseinrichtung 257 kann derart auf die Drehfeder abgestimmt sein, daß ein lineare Kraftvermittlung erzielt wird.

In dem in den Figuren 6a bis 8b gezeigten erfindungsgemäßen Antrieb ist ein Mechanismus zum Speichern und Laden von Energie durch die Drehfeder realisiert. Den niedrigsten Niveauwert im Speicher enthält die Drehfeder 223 dann, wenn die Spannbacken 211 und 213 geschlossen sind. Durch Wegziehen der Spannbacke 213 von der ortsfesten Backe 211 bei leichter Betätigung des Freigabehebels 241 der Rückdrucksperre zum Lösen des Spann- und/oder Spreizwerkzeugs wird die Drehfeder 223 über den Wickelstrang 245 gespannt. Bei Freigabe des Freigabehebels 241 verbringen Federn 259 und 261 den Freigabehebel 241 in eine gegenüber der Schub- oder Zugstange 203 verkantete Stellung. Die in der verkanteten Stellung auftretenden Reibungs- und Verkantungskräfte sind derart groß, daß ein selbständiges Schließen der Spannbacke 213 durch die Zugeinrichtung nicht möglich ist. Die dafür erforderliche Reibungs- oder Verkantkraft an dem Freigabehebel 241 kann unter Berücksichtigung der Federkonstanten der Federn 259 und 261 eingestellt werden.

Betätigt die Bedienperson den Freigabehebel 241, so werden die Reibungs- oder Verkantungskräfte an der Schub- oder Zugstange gelöst, wodurch die Drehantriebsenergie in der Drehfeder 223 freigegeben wird und die bewegliche Backe über den Wickelstrang 245 zur

ortsfesten Backe 211 hin gezogen wird. Der Betriebszustand des Schließens ist in den Figuren 8a und 8b dargestellt. Die Zugeinrichtung wirkt so lange, bis der Gegenstand 249 von den Backen 211, 213 ergriffen ist (Figur 6a, 6b) und die Zugkraft der Drehfeder 223 nicht mehr ausreicht, ein weiteres Verlagern der Schub- oder Zugstange 203 in Schließrichtung S zu bewirken.

Nach dem Beenden des Schnellschließvorgangs durch die erfundungsgemäße Zugeinrichtung können über das Schrittgetriebe 219 dem Gegenstand 249 hohe Spannkräfte mitgeteilt werden, welches Schrittgetriebe kleiner Schrittweite später detaillierter beschrieben wird.

In den Figuren 9a bis 9d ist ein weiteres erfundungsgemäßes Spann- und/oder Spreizwerkzeug gezeigt, wobei zur besseren Lesbarkeit der Figurenbeschreibung für identische oder ähnliche Bauteile die gleichen Bezugsziffern verwendet werden, die um 100, 200 oder 300 erhöht sind, wobei es einer erneuten Erläuterung der identischen oder ähnlichen Bauteile nicht bedarf.

Die Ausführung des Spann- und/oder Spreizwerkzeugs 301 gemäß den Figuren 9a bis 9d unterscheidet sich von der Ausführung des Spann- und/oder Spreizwerkzeugs gemäß den Figuren 6a bis 8b darin, daß die Einrichtung zum Ziehen der beweglichen Backe 313 auf die ortsfeste Backe 311 ausschließlich mit einer Drehfeder 323 bewerkstelligt wird, d.h. ohne Nutzung eines Wickelstranges, welcher die Drehfeder mit der Schub- oder Zugstange 303 oder der beweglichen Backe 313 verbindet.

Die Drehfeder 323 gemäß der Ausführung der Figuren 9a bis 9d ist eine Spiralbandfeder, welche drehbar im Gehäuse 207 des Trägers 205 gelagert ist. Zur Speicherung der Drehtriebsenergie kann die Spiralbandfeder abgewickelt werden, wobei der abgewickelte Abschnitt 365 in der Vertiefung 355 der Schub- oder Zugstange aufgenommen ist. Die Basis 367 der Spiralbandfeder ist zum Aufwickeln des abgewickelten Spiralbandabschnitts 365 drehbar am Träger 305 gelagert. Das freie Ende des abwickelbaren Spiralbandabschnitts 365 ist an der Schub- oder Zugstange 303 oder an der beweglichen Backe 313 befestigt. Die hierfür notwendige Befestigungseinrichtung (hier nicht dargestellt) für den Spiralbandabschnitt 365 ist lösbar, wobei die Befestigungseinrichtung längs der Schub- oder Zugstange 303 umsetzbar

ist, insbesondere um bei großen zu spannenden Gegenständen (hier nicht näher dargestellt) kein zu starkes Abwickeln der Spiralbandfeder zu bedingen.

Der besondere Vorteil der Spiralbandfeder liegt darin, eine unabhängig vom zurückgelegten Weg gleichmäßige lineare Antriebskraft der beweglichen Backe 313 oder der Schub- oder Zugstange 303 mitzuteilen.

Somit erfüllt die Spiralbandfeder sowohl die Aufgabe einer Zugeinrichtung als auch die einer Dämpfungseinrichtung zum Erzeugen gleichmäßiger Schließgeschwindigkeiten.

Zur Aufnahme der mit dem Spiralbandabschnitt 365 gewickelten Spiralbandbasis 367 kann das Gehäuse 307 eine seitliche Öffnung aufweisen, durch welche die Basis 367 samt gewickeltem Spiralbandabschnitt 365 ragen kann, was in den Figuren 9b und 9c dargestellt ist.

Der Schließbetriebsmodus sowie die Bedienung des Spann- und/oder Spreizwerkzeugs 303 mit der Spiralbandfeder entspricht im wesentlichen dem Spann- und/oder Spreizwerkzeug 203, das gemäß den Figuren 6a bis 8b anhand der dort verwendeten Zugeinrichtung mit Winkelstrang beschrieben ist.

Außerdem kann in dem in den Figuren 9a bis 9d dargestellten Spann- und/oder Spreizwerkzeug eine Dämpfungseinrichtung vorgesehen sein, die auf die abgegebene Antriebskraft der Spiralbandfeder abgestimmt sein kann. Die Dämpfungseinrichtung bewirkt eine gewünschte Verlagerungsgeschwindigkeit der Schub- oder Zugstange.

Nach der durch die Spiralbandfeder bewirkte Schließbewegung der beweglichen Backe 313 kann mittels des Schrittgetriebes 319 kleiner Schrittweite die gewünschte hohe Spannkraft zwischen den Backen 311 und 313 aufgebaut werden.

Im folgenden wird der Aufbau sowie die Funktionsweise des Schrittgetriebes kleiner Schrittweiten beschrieben, welches Schrittgetriebe im wesentlichen dem entspricht, das in der deutschen Patentanmeldung DE 10335365.8 von der Anmelderin angegeben wird.

Das Schrittgetriebe 19 bis 319 ist dazu ausgelegt, einen Kraftbetrieb des Spann- und/oder Spreizwerkzeugs 1 bis 301 bereitzustellen, bei dem die Schub- oder Zugstange 3 bis 303 in Vorschubrichtung V mit kleinen Schrittweiten verlagerbar ist. In diesem Kraftbetrieb ist ein Wirkhebel eines Antriebsarms 71 bis 371 wirksam, welcher Wirkhebel durch den Abstand eines Schwenklagers 73 bis 373 des Antriebsarm 71 bis 371 und eines Krafteintragsbolzens 75 bis 375 definiert ist. Da der Betätigungshebel des Antriebsarms 71 bis 371 weit größer ist als der Wirkhebel, können Spannkräfte erzeugt werden, die um das 10-fache höher sind als die, die mit dem Schrittgetriebe gemäß dem US-Patent 6,568,667 möglich sind.

Durch eine im Gehäuse 307 gelagerte Druckfeder 77 bis 377 wird ein Mitnahmeschieber 79 bis 379 stets an den Krafteintragsbolzen 75 bis 375 des Antriebsarms 71 bis 371 gedrückt. Weiterhin dient die Druckfeder 77 bis 377 dazu, den Mitnahmeschieber 79 bis 379 in eine stets gegenüber der Schub- oder Zugstange 3 bis 303 verkanteten Stellung zu bringen. Dies wird dadurch erreicht, daß die Druckkrafteintragsstelle der Druckfeder 77 bis 377 näher zur Schub- oder Zugstange 3 bis 303 liegt als der Krafteintragsbolzen 75 bis 375, wodurch der Mitnahmeschieber 79 bis 379 um den Krafteintragsbolzen 75 bis 375 gegen den Uhrzeigersinn geschwenkt wird, bis der Mitnahmeschieber 79 bis 379 mit der Schub- oder Zugstange 3 bis 303 verkantet. Damit ist gewährleistet, daß bei Betätigung des Antriebsarms 71 bis 371 in einer Schwenkbewegung um das Schwenklager 73 bis 373 unmittelbar eine Verlagerung der Schub- oder Zugstange bewirkt wird, womit unmittelbar Spannkräfte zwischen den Spannbacken 13, 15 bis 313, 315 hervorgerufen werden können. Nach einem Hub des Antriebsarms 71 bis 371 ist letzterer von der Bedienperson freizugeben, wodurch die Druckfeder 77 bis 377 die Mitnehmerverkantung des Mitnahmeschiebers 79 bis 379 gegenüber der Schub- oder Zugstange 3 bis 303 freigibt und der Antriebsarm 71 bis 371 in die in der Figur 9a beispielweise dargestellte Ausgangsstellung zurückgeführt ist.

Die günstigen Hebelverhältnisse für das Schrittgetriebe kleiner Schrittweite wird vor allem dadurch realisiert, daß sowohl das Schwenklager 73 bis 373 als auch der Krafteintragsbolzen 375 auf der Spannseite 9 bis 309 liegen.

Die in der vorstehenden Beschreibung, den Figuren und den Ansprüchen offenbarten Merkmale können sowohl einzeln als auch in beliebiger Kombination für die Realisierung der Erfindung in den verschiedenen Ausgestaltungen von Bedeutung sein. Beispielsweise ist es möglich, die unterschiedlichen Antriebsmechanismen untereinander auszutauschen und zu kombinieren. Zum Beispiel ist es durchaus im erfundungsgemäßen Gedanken, die Dämpfungseinrichtung (257) mit Drehfederantrieben, wie in den Figuren 1a und 1b oder 2. bis 5 dargestellt, zu kombinieren.

Bezugszeichenliste

1, 101, 201, 301	Spann- und/oder Spreizwerkzeug
3, 103, 203, 303	Schub- oder Zugstange
5, 105, 205, 305	Träger
7, 107, 207, 307	Gehäuse
9, 109, 209, 309	Spannseite
11, 111, 211, 311	feste Spannbacke
13, 113, 213, 313	bewegliche Spannbacke
14, 114, 214, 314	Ende der Schub- oder Zugstange
15, 115, 215, 315	Betätigungsseite der Schub- oder Zugstange
16, 116, 216, 316	Ende der Schub- oder Zugstange
17, 117, 217, 317	Griff
19, 119, 219, 319	Schrittgetriebe
21, 121, 221, 321	Antrieb
23, 123, 223, 323	Drehfeder
25	Antriebsrad
27, 127, 227, 327	Längsrand der Schub- oder Zugstange
41, 141, 241, 341	Freigabehebel
55, 155, 255, 355	Vertiefung
71, 171, 271, 371	Antriebsarm
73, 173, 273, 373	Schwenklager
75, 175, 275, 375	Krafteintragsbolzen
77, 177, 277, 377	Druckfeder
79, 179, 279, 379	Mitnahmeschieber
131	Sperrklinke
133	Klinkenverzahnung
135	Antriebsrad
137	Zwischengetrieberad
139	Abtriebsrad
143	Druckstab

144	Lager
245	wickelbarer Strang
247	Befestigungseinrichtung
248	Freigabeknopf
249	einzuspannender Gegenstand
251	Spule
253	Führung
255, 355	Vertiefung
257	Dämpfungseinrichtung
259	Feder
261	Feder
365	Spiralbandabschnitt
367	Basis
O	Öffnungsrichtung
S	Schließrichtung
V	Vorschubrichtung des Schrittgetriebes

BOEHMERT & BOEHMERT

ANWALTSSOZIETÄT

Boehmert & Boehmert · P.O.B. 15 03 08 · D-80043 München

Deutsches Patent- und Markenamt
Zweibrückenstraße 12
80297 München

DR. ING. KARL BOEHMERT, PA (1999-1977)
DIPL.-ING. ALBERT BOEHMERT, PA (1992-1993)
WILHELM J. H. STAHLBERG, RA, Bremen
DR.-ING. WALTER HOERMANN, PA*, Bremen
DIPL.-PHYS. DR. J. H. STAHLBERG, PA*, Shanghai
DR.-ING. ROLAND LIESEGANG, PA*, München
WOLF-DIETER KUNTZE, RA, Berlin, Akademie
DIPL.-PHYS. ROBERT MUNZHUBER, PA (1993-1992)
DR. LUDWIG KOUKER, RA, Bremen
DR. (CHEM.) ANDREAS WINKLER, PA*, Bremen
MICHAELA HUTH-DIERIG, RA, Münster
DIPL.-PHYS. DR. MARION TÖNHARDT, PA*, Düsseldorf
DR. ANDREAS EBERT-WEIDENFELLER, RA, Bremen
DIPL.-ING. EVA LIESEGANG, PA*, Münster
DR. AXEL NORDEMANN, RA, Berlin
DIPL.-PHYS. DR. DOROTHEE WEBER-BRULS, PA*, Frankfurt
DIPL.-PHYS. DR. STEFAN SCHOEFE, PA*, München
DR.-ING. MATTHIAS PHILIPP, PA*, Bielefeld
DR. MARTIN HÜLSE, RA, Düsseldorf
DR. CHRISTIAN SCHULZ, RA, Bremen
DR. JAN-BERND NORDEMANN, LL.M., RA, Berlin
DR. CHRISTIAN CZYCHOWSKI, RA, Berlin
DR. CARL-RICHARD HAARMANN, RA, München
DIPL.-PHYS. CHRISTIAN W. APPELT, PA*, München
DIPL.-PHYS. DR.-ING. UWE MANASSE, PA*, Bremen
DIPL.-PHYS. DR. THOMAS L. BITTNER, PA*, Berlin
DR. VOLKER SCHMITZ, M. Juris (Oxford), RA, München, Paris
DIPL.-BIOL. DR. JAN B. KRAUSS, PA*, Berlin

PROF. DR. WILHELM NORDEMANN, RA, Potsdam
DIPL.-PHYS. EDUARD BAUMANN, PA*, Höhenkirchen
DR.-ING. GERALD KLOPSCH, PA*, Düsseldorf
DIPL.-ING. HANS-J. GROENING, PA*, Münster
DIPL.-ING. STEPHEN HIRSHBERG, PA*, Bielefeld
DIPL.-PHYS. LORENZ HANEWINKEL, PA*, Potsdam
DIPL.-ING. ANTON FREIHERR RIEDERER V. PAAR, PA*, Landshut
DIPL.-ING. DR. JAN TÖNNIES, PA, RA, Kiel
DIPL.-PHYS. CHRISTIAN BIEHL, PA*, Kiel
DR. ANKE NORDEMANN-SCHIFFEL, RA*, Potsdam
DR. KLAUS TIM BROCKER, RA, Berlin
DR. ANDREAS DUSTMANN, LL.M., RA, Potsdam
DIPL.-ING. NILS T. F. SCHMID, PA*, München, Paris
DR. FLORIAN SCHWAB, LL.M., RA*, München
DIPL.-BIOCHEM. DR. MARKUS ENGELHARD, PA, München
DIPL.-CHEM. DR. KARL-HEINZ B. METTEN, PA*, Frankfurt
FASCAL DECKER, RA, Berlin
DIPL.-BIOCHEM. RAINER SCHOLZ, PA, Bremen
DIPL.-CIVIL. DR. JÖRG ZWICKER, PA, Münster
DR. CHRISTIAN MEISNER, RA, Münster
DIPL.-PHYS. DR. MICHAEL HARTIG, PA, München

In Zusammenarbeit mit/in cooperation with

DIPL.-CHEM. DR. HANS ULRICH MAY, PA*, München

Ihr Zeichen
Your ref.

Ihr Schreiben
Your letter of

Neuanmeldung

Unser Zeichen
Our ref.

I30143

München,

12. Dezember 2003

IRWIN Industrial Tools GmbH
Lilienthalstraße 7
85399 Hallbergmoos

Anordnung mit einer Kraftmaschine und Spann- und/oder Spreizwerkzeug

Ansprüche

1. Anordnung mit einem Antrieb für ein Spann- und/oder Spreizwerkzeug, der eine Kraftmaschine aufweist und zum Verlagern einer an einem Träger des Spann- und/oder Spreizwerkzeugs beweglich gelagerten Schub- oder Zugstange mit einer daran fest angebrachten, beweglichen Backe relativ zu dem eine ortsfeste Backe haltenden Träger in Längsrichtung der Schub- oder Zugstange ausgelegt ist, gekennzeichnet durch eine Einrichtung

zum Dämpfen einer von der Kraftmaschine abgegebenen Kraft zum Verlagern der Schub- oder Zugstange.

2. Anordnung nach Anspruch 1, dadurch gekennzeichnet, daß die Dämpfungseinrichtung auf die Kraftmaschine des Antriebs insbesondere für eine gleichmäßige Verlagerungsgeschwindigkeit abgestimmt ist.
3. Anordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Dämpfungseinrichtung und die Kraftmaschine in einer Baueinheit, insbesondere in einem Bauteil, vorzugsweise in einer Spiralbandfeder, kombiniert sind.
4. Anordnung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Dämpfungseinrichtung eine Kolbenzylinder-Anordnung mit einem Dämpfungsfluid aufweist.
5. Anordnung nach Anspruch 4, dadurch gekennzeichnet, daß der Kolben der Dämpfungseinrichtung mit der Schub- oder Zugstange verbunden ist.
6. Anordnung nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß der Zylinder der Dämpfungseinrichtung mit dem Träger verbunden ist.
7. Anordnung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Dämpfungseinrichtung auf ein drehantreibbares Getriebeelement betriebsmäßig wirkt.
8. Anordnung nach Anspruch 2, dadurch gekennzeichnet, daß die Dämpfungseinrichtung Reibungsverluste erzeugt.
9. Anordnung nach Anspruch 7, dadurch gekennzeichnet, daß die Dämpfungseinrichtung Panschverluste erzeugt.

10. Anordnung nach Anspruch 7 oder 9, dadurch gekennzeichnet, daß die Dämpfungs-
einrichtung eine Dämpfungsflüssigkeit aufweist, in der ein drehantreibbares Dämpfungs-
teil arbeitet.

11. Spann- und/oder Spreizwerkzeug mit einer nach einem der Ansprüche 1 bis 10 ausgebil-
deten Anordnung.

Zusammenfassung

Bei einer Anordnung mit einem Antrieb für ein Spann- und/oder Spreizwerkzeug, der eine Kraftmaschine aufweist und zum Verlagern einer an einem Träger des Spann- und/oder Spreizwerkzeugs beweglich gelagerten Schub- oder Zugstange mit einer daran fest angebrachten, beweglichen Backe relativ zu dem eine ortsfeste Backe haltenden Träger in Längsrichtung der Schub- oder Zugstange ist, ist eine Einrichtung zum Dämpfen einer von der Kraftmaschine abgegebenen Kraft zum Verlagern der Schub- oder Zugstange vorgesehen.

