In-band Network Telemetry (INT)

Mukesh Hira, VMware Naga Katta, Princeton University

Datacenter Network Topologies

Current monitoring methods are inadequate

- Not fast enough
 - Involve CPU and control planes
 - Network state changes rapidly

- Do not provide end-to-end state
 - Difficult to correlate per-element state with the actual path of a flow

INT: In-band Network Telemetry

- Mechanism for collecting network state in the dataplane
 - As close to realtime as possible
 - At current and future line rates
 - With a framework that can adapt over time
- Examples of network state
 - Switch ID, Ingress Port ID, Egress Port ID
 - Egress Link Utilization
 - Hop Latency
 - Egress Queue Occupancy
 - Egress Queue Congestion Status
 - • •

INT Example

Switch ID

Ingress Port ID

Egress Port ID

Egress Link Utilization

INT Header Format

INT Header: Potential Locations

GENEVE VXLAN-GPE

Outer Eth, IP, UDP Headers

Geneve Header

Option Class, Type, Length

INT Metadata Headers
and Metadata

Inner Payload

Variable-length GENEVE options Outer Eth, IP, UDP Headers VXLAN Header Next Protocol = INT VXLAN GPE Header **INT Metadata Headers** and Metadata **Inner Payload**

INT as VXLAN
Next-Protocol

INT metadata may also be carried as

- Network Service Header Metadata
- TCP options/payload
- UDP payload

INT using P4

 P4 enables flexible packet parsing and modification for INT

- P4 allows INT to adapt to
 - Any Encapsulation format
 - Any State required to be collected
 - Any feature, protocol current and future

INT: P4 Code Snippet

Header Definitions

```
header_type vxlan_gpe_t
{
    fields {
      flags:8;
      reserved:16;
      next_proto:8;
      vni:24;
      reserved2:8;
    }
}
```

```
header_type vxlan_gpe_int_header_t
{
    fields {
      int_type : 8;
      rsvd : 8;
      len : 8;
      next_proto : 8;
    }
}
```

```
header_type int_header_t {
    fields {
      ver : 2;
      flags : 9;
      ins_cnt : 5;
      max_hop_cnt : 8;
      total_hop_cnt : 8;
      instruction_mask : 16;
    }
}
```

Parser Definitions

```
parser parse_int_header {
    extract(int_header);
    ....
}
```

INT: P4 Code Snippet

Exact-match Table Definition

```
table int_inst {
    reads {
        int_header.instruction_mask : exact;
    }
    actions {
        int_set_header_i0;
        int_set_header_i1;
        int_set_header_i2;
        int_set_header_i3;
        .....
}
```

Action Definitions

```
action int_set_header_i0() {
}
action int_set_header_i1() {
   int_set_header_3();
}
action int_set_header_i2() {
   int_set_header_2();
}
action int_set_header_i3() {
   int_set_header_3();
   int_set_header_2();
}
.....
```

INT Application Real-time monitoring and troubleshooting

Overlay Network Monitoring today

Real-time Network Monitoring

Next: Pick a flow on the source logical port and view the path it takes and exact network state it experiences

Real-time troubleshooting demo

INT Application

Hop-by-Hop Utilization-Aware Load-balancing Architecture

HULA: INT + Flowlet routing

1. Periodic INT probes

disseminate path utilization to switches

2. Flowlet detection and path selection

- happens at all switches
- hop-by-hop adaptive routing

INT probes traverse multiple paths

Probes carry path utilization

Probes update switch state

Path Util table

Switches load balance flowlets

Flowlet table

Path Util table

Simulation: Topology Asymmetry

HULA Vs. ECMP

HULA - Advantages

- Topology oblivious
- Adaptive to network dynamics
- Scalable to large topologies
- No separate source routing required
- Programmable in P4!
 - Processing probes
 - Flowlet routing

Summary

- INT provides real-time network state directly in the dataplane
 - Scales to arbitrarily large networks
 - Scales to current and future link speeds
 - Can adapt to any network, any encap, any application
- Knowledge of real-time network state opens up new possibilities
 - Enhanced monitoring and troubleshooting
 - Network-state aware routing
 - ...

More information

http://p4.org/p4/inband-network-telemetry/

Blog post with links to

- INT demo video
- INT specification
- P4 source code repository

More information on Utilization aware routing will be posted on p4.org in the near future

INT Specification – Collaborative Effort

http://p4.org/wp-content/uploads/fixed/INT/INT-current-spec.pdf

In-band Network Telemetry (INT)

September 2015

Changhoon Kim, Parag Bhide, Ed Doe: Barefoot Networks

Hugh Holbrook: *Arista* Anoop Ghanwani: *Dell*

Dan Daly: Intel

Mukesh Hira, Bruce Davie: VMware

Introduction

<u>Terms</u>

What To Monitor

Switch-level Information

Ingress Information

Egress Information

Buffer Information

Processing INT Headers

INT Header Types

Handling INT Packets

Header Format and Location

Thank You