Name:	

Vorname:

MANIT2 - Abschlussübungen - Lösungen

Klasse:

IT13b ZH

Datum:

20. Mai 2014

Zugelassene Hilfsmittel: - Basisbuch Analysis

- Unterlagen/Skripte von Plesko/Scherrer

- Zusammenfassung im Umfang von max. 10 A4-Seiten

- Einfacher Taschenrechner (nicht graphikfähig, nicht algebrafähig)

Besonderes

- Keine Mobiles/Smartphones auf dem Tisch!

- Schreiben Sie auf die abgegebenen Blätter (notfalls rückseitig) und reissen

Sie die Prüfung nicht auseinander!

Zeit

90 Minuten

Total Punkte

wird nicht bewertet

Bestimmen Sie das unbestimmte Integral mit geeigneter Substitution

$$\int x^2 \cdot e^{x^3} dx$$

Lösung

$$u = x^2$$

Substitution:
$$u = x^3$$
 $u' = \frac{du}{dx} = 2x^2$

$$du = 3x^2 dx$$

$$du = 3x^{2}dx$$

$$\frac{1}{3}du = x^{2}dx$$

$$\frac{1}{3}\int e^{4}du = \frac{1}{3}e^{4} + c$$

Ruckshlshthhou

$$=\frac{1}{3}e^{3}+c$$

Bestimmen Sie das unbestimmte Integral mittels partieller Integration:

$$\int x^{2} \cdot \ln(x) dx$$

$$= \frac{x^{3}}{3} \ln(x) - \int \frac{x^{3}}{3} \cdot \frac{1}{x} dx$$

$$= \frac{x^{3}}{3} \ln(x) - \int \frac{x^{2}}{3} dx$$

$$= \frac{x^{3}}{3} \ln(x) - \frac{x^{3}}{3} = \frac{x^{3}}{3} \left(\ln(x) - \frac{1}{3} \right) + C$$

Bestimmen Sie das unbestimmte Integral mittels Partialbruchzerlegung

$$\int \frac{2x^3 - 14x^2 + 14x + 30}{x^2 - 4} dx$$

Lösung

1) Polynom division notisend;
$$2x^{2}-14x^{2}+14x+30 \div (x^{2}-4)=2x-14+\frac{22x-26}{x^{2}-4}$$

$$-\frac{(2x^{3}-8x)}{0-14x^{2}+22x}$$

$$-\frac{(-14x^{2}+22x)}{0+22x-26}$$

Ein frei durchhängendes Seil habe die Form einer sog. Kettenlinie mit der Gleichung

$$f(x) = \frac{e^x + e^{-x}}{2}$$

Bestimmen Sie die Länge des Seils im Intervall [-1; 1]

Bestimmen Sie die Lange des Seils im Intervall [-1;1]

Bogen/ange:
$$\int 1+(f(x))^2 dx$$
 $f(x) = \frac{1}{2}(e^x - e^x)$
 $(f(x))^2 = \frac{1}{4}(e^{2x} - 2e^x + e^{-2x})$ $1-f(x)^2 = \frac{1}{4}e^x + \frac{1}{2} + \frac{1}{4}e^{-2x}$
 $= (e^x + e^{-x})^2$
 $= \frac{1}{2}(e^x - e^x) = \frac{$

Zeichnen Sie im untenstehenden Raster ein Richtungsfeld der Differentialgleichung

$$2yy' = x$$

für ganzzahlige x- und y-Werte in den Intervallen $-3 \le x \le 3$ und $-3 \le y \le 3$

$y'=\frac{x}{2}$	$\frac{1}{2} \frac{x}{y}$					×
- 3	-2	- 1	0	1	2	3,
-3 2 -1 0 1 2 x 43	13/12/8/12/13	1162/4212 8 212 214 116	0	œυ	1/31/21 8	12 314 312 8 SW 314 1/2

6. Lösen Sie die Differentialgleichung unter der Bedingung y(-1) = 1

$$x^2y' + y^2 = 0$$

Lösung
$$x^{2}y'+y^{2}=0 \implies x^{2}y'=-y^{2} \implies y'=-\frac{y^{2}}{x^{2}} \implies \frac{dy}{dx}=-\frac{y^{2}}{x^{2}}$$

$$\frac{dy}{y^{2}}=-\frac{dx}{x^{2}} \implies \int \frac{dy}{y^{2}}=-\int \frac{dx}{x^{2}} \implies -\frac{1}{y}=\frac{1}{x}+C$$

$$Eiaseteen y(-1)=1 \qquad -\frac{1}{1}=\frac{1}{-1}+C \implies C=0$$

$$y(x)=-x$$

7. Lösen Sie die Differentialgleichung unter der Bedingung y(1) = 2

$$2xy'-y-x=0 \longrightarrow y'-\frac{1}{2x}=\frac{1}{2}$$

homogene Gleichung
$$y' - \frac{1}{2x}y = 0$$
 $y_h(x) = k \cdot e^{-\int \frac{1}{2x}dx} = ke^{\frac{1}{2}en(x)} = k \cdot e^{-\frac{1}{2}en(x)}$
 $y_h(x) = k \cdot (e^{-\frac{1}{2x}dx}) = k \cdot (e^{-\frac{1}{2}en(x)}) = k \cdot (e^{-\frac{1}{2}en(x$

8. Bestimmen Sie Konvergenzradius und Konvergenzbereich der folgenden Potenzreihe.

$$P(x) = \frac{x^{2}}{2} + \frac{2x^{3}}{6} + \frac{4x^{4}}{24} + \frac{8x^{5}}{120} + \cdots$$

$$P(x) = \sum_{n=0}^{\infty} \frac{2^{n}}{(n+2)!} \times \frac{(n+2)!}{(n+2)!} = \lim_{n \to \infty} \left| \frac{2^{n}}{(n+2)!} - \lim_{n \to \infty} \left| \frac{2^{n}}{(n+2)!} - \lim_{n \to \infty} \left| \frac{2^{n}}{(n+2)!} - \frac{(n+3)!}{(n+2)!} \right| \right|$$

$$= \lim_{n \to \infty} \left| \frac{1}{2} \cdot (n+3) \right| = \infty \quad \text{for vegen 2 berich: } -\infty < x < \infty$$

Bestimmen Sie die lokalen Extremalstellen der folgenden Funktion:

$$f(x,y) = 3y^2 - 2y^3 - 3x^2 + 6xy$$

$$f_x = -6x + 6y = 0$$
 $\rightarrow 6x = 6y$
 $f_y = 6y - 6y^2 + 6x = 0 \implies 6x - 6y^2 + 6y = 16y - 6y^2 = 0$
 $\Rightarrow y = 0$ oder $y = 2$
 $\Rightarrow 2$ skalionare Steller $f_1(0,0)$ und $f_2(2,2)$
 $f_1: f_{xx} = -6$ $f_{yy} = 6 - 12y = 6$ $f_{xy} = 6$
 $f_{xy} = 6$ $f_{yy} = 6 - 12y = 6$ $f_{xy} = 6$
 $f_{xx} \cdot f_{yy} = -36$ $f_{xy} = 36$ \Rightarrow Satterpunkt

 $f_2: f_{xx} = -6$ $f_{yy} = 6 - 12y = -18$ $f_{xy} = 6$
 $f_{xx} \cdot f_{yy} = 108$ $f_{xy}^2 = 36$ \Rightarrow Extremun and we $f_{xy}^2 = 6$ $f_{$