Topologie [L3]

Brandon LIN

October 29, 2023

Contents

Juapuer 1	Integration sur un segment des fonctions a valeurs reelles	Page 2
1.1	Continuité Uniforme (Révision)	2
	Fonctions uniformément continues — 2 • Théorèm de Heine — 2	
1.2	Fonctions en escaliers	2
	Subdivision d'un segment — 2 • Fonctions en escaliers — 3 • Intégrale d'une fonction en escalier Propriétés de l'intégrale d'une fonction en escaliers — 3	er — 3 •
1.3	1	4
	Définitions et propriétés — 4 • Approximation des fonctions par morceaux par les fonctions en e 4 • Intégrale d'une fonction continue par morceaux — 6 • Propriétés de l'intégrale — 6 • M fondamentales — 7	
1.4	Primitive et intégrale d'une fonction continue Définitions — $8 \bullet \text{TFA} — 9 \bullet \text{Valeur moyenne} — 10$	8
1.5	Calcul de primitives et d'intégrales IPP — 10 • Changement de variable — 11	10
1.6	Formules de Taylor Formule de Taylor avec reste intégral — 11 • Inégalité de Taylor-Lagrange — 11 • Formule de Taylor — 12 • Utilisation des trois formules de Taylor — 12	11 lor-Young
1.7	Méthode des rectangles, Sommes de Riemann	12
Chapter 2	Intégrabilité P	Page 14
2.1	Mesure positive Topologie — 14 • Tribu — 14 • Mesure — 15	14
2.2	Intégrabilité Fonction mesurable — 19 • Fonction étagée — 19 • Intégrale — 20 • Intégrabilité — 20	19
2.3	Convergence monotone Rappel : intégration généralisée — 22 • Théorème de convergence monotone — 22	22
2.4	Convergence dominée	24
2.5	Changement de variable	26

Chapter 1

Intégration sur un segment des fonctions à valeurs réelles

Requirements: Continuité

Last update: 13 Septembre, 2023, Shanghai

1.1 Continuité Uniforme (Révision)

1.1.1 Fonctions uniformément continues

Definition 1.1.1: Fonction uniformément continue

Soit $f: I \to \mathbb{R}$, f est uniformément continue lorsque

$$\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall (x, y) \in I^2, \ |x - y| \le \eta \implies |f(x) - f(y)| \le \varepsilon \tag{1.1}$$

Proposition 1.1.1 Lipschitz, uniformément continue, continue

Soit $f: I \to \mathbb{R}$, donc : f lipschitizenne $\Longrightarrow f$ uniformément continue $\Longrightarrow f$ continue.

1.1.2 Théorèm de Heine

Theorem 1.1.1 Théorème de Heine

Une fonction continue sur un segment est uniformément continue sur ce segment.

1.2 Fonctions en escaliers

1.2.1 Subdivision d'un segment

Definition 1.2.1: Subdivision

Une **subdivision** de [a,] est une suite finie $\sigma = (a_k)_{k \in [0,n]}$ strictement croissante avec $a_0 = a$ et $a_n = b$. On peut alors écrire :

$$a = a_0 < a_1 < a_2 < \dots < a_{n-1} < a_n = b \tag{1.2}$$

1.2.2 Fonctions en escaliers

Definition 1.2.2: Fonction en escalier

On appelle fonction en escalier sur [a,b] toute fonction φ définie sur [a,b] pour laquele il existe une subdivision $\sigma = (a_k)_{k \in [0,n]}$ de [a,b] vérifiant

$$\forall k \in [1, n], \ \exists \lambda_k \in \mathbb{R}, \ \forall x \in]a_{k-1}, a_k[, \ \varphi(x) = \lambda_k \tag{1.3}$$

Remarque : La subdivision σ introduite eset **subordonnée** à φ

1.2.3 Intégrale d'une fonction en escalier

Definition 1.2.3: Intégrale d'une fonction en escaliers

$$\int_{[a,b]} \varphi = \sum_{k=0}^{n-1} c_k (x_{k+1} - x_k)$$
(1.4)

1.2.4 Propriétés de l'intégrale d'une fonction en escaliers

Linéarité

1.3 Fonctions continues par morceaux

1.3.1 Définitions et propriétés

Definition 1.3.1: Fonction continue par morceaux sur un segment

Soit [a,b] un segment. $\varphi:[a,b]\to\mathbb{R}$ est **continue par morceaux** sur [a,b] lorsqu'il existe une subdivision τ du segment telle que

- $\forall k \in \llbracket [0, n-1 \rrbracket], \varphi|_{]x_k, x_{k+1}[}$ est continue
- $\varphi|_{]x_k,x_{k+1}[}$ est prolongeable par continuité sur $]x_k,x_{k+1}[.$

Une telle subdivision est dite adaptée ou subordonnée à φ .

Figure 1.1: Fonction continue par morceaux sur un segment

Toute fonction en escalier sur [a, b] est **continue par morceaux** sur [a, b].

Proposition 1.3.1 Bornée d'une fonction continue par morceaux

Soit φ est une fonction **continue par morceaux** sur [a,b] donc elle est bornée.

Proof: Soit f fonction continue, pour chaque $i \in [0, k-1]$, \bar{f}_i la fonction continue prolongé défini sur un segment $[x_i, x_{i+1}]$ pour chaque petit intervalle. Donc elle est bornée.

Proposition 1.3.2

L'ensemble des fonctions réelles **continues par morceaux** sur [a,b] est un <u>sous-espace vectoriel</u> de $\mathcal{F}([a,b],\mathbb{R})$

1.3.2 Approximation des fonctions par morceaux par les fonctions en escalier

Theorem 1.3.1 Approximation d'une fonction continue par une fonction en escalier Soit f une fonction continue sur le segment [a,b] et $\varepsilon > 0$.

Donc, il existe une fonction en escalier φ telle que

$$\|f-\varphi\|_{\infty}=\sup_{x\in[a,b]}|f(x)-\varphi(x)|\leq\varepsilon$$

Figure 1.2: Approximation d'une fonction continue

Proof: f est continue sur le segment, donc uniformément continue. (Théorème de Heine 1.1.2) Dans l'écriture $\varepsilon - \eta$, prenons $h = (b - a)/n \le \varepsilon$, construisons :

$$x_i = a + ih, \ \forall x \in [x_i, x_{i+1}[, \ \varphi(x) = f(x_i), \ \varphi(b) = f(b)]$$
 (1.5)

Lenma 1.3.1 Décomposition d'une fonction continue par morceaux

Soit f une fonction continue par morceaux sur le gement [a,b]. Il existe

- une fonction g continue sur [a, b]
- une fonction ψ en escalier sur [a,b]

telles que $f=g+\psi$

Figure 1.3: Décomposition d'une fonction continue par morceaux

Corollary 1.3.1 Approximation uniforme d'une fonction continue par morceaux par une foncution en escalier Soit f une fonction continue par morceaux sur le segment [a,b] et $\varepsilon > 0$. Il existe φ en escalier sur [a,b] telle que $||f - \varphi||_{\infty} \le \varepsilon$.

Proof: Soit
$$f = g + \psi$$
, $\exists \xi$ telle que $\|g - \xi\|_{\infty} \le \varepsilon$, notons $\varphi = \psi + \xi$, $\|f - \varphi\|_{\infty} = \|g - \xi\|_{\infty} \le \varepsilon$

Corollary 1.3.2 Encadrement d'une fonction continue par morceaux par deux fonctions en escalier Soit f une fonction continue par morceaux sur le segment [a,b] et $\varepsilon > 0$. $\exists \varphi, \psi \in \mathcal{E}([a,b],\mathbb{R})$ vérifiant :

- $\varphi \leq f \leq \psi$
- $\|\psi \varphi\|_{\infty} \le \varepsilon$

1.3.3 Intégrale d'une fonction continue par morceaux

 $\textbf{Proposition 1.3.3} \ \, \textbf{Intégrale de Riemann d'une fonction continue par morceaux} \\$

Soit f continue par morceaux sur [a,b]. Les ensembles

$$I_{< f} = \left\{ \int_{[a,b]} \varphi, \ \varphi \in \mathcal{E}([a,b], \mathbb{R}), \ \varphi \le f \right\}$$
 (1.6)

$$I_{\geq f} = \left\{ \int_{[a,b]} \varphi, \ \varphi \in \mathcal{E}([a,b], \mathbb{R}), \ \varphi \geq f \right\}$$
 (1.7)

On a

- $I_{\leq f}$ admet une borne supérieur
- $I_{>f}$ admet une borne inférieur
- $\sup I_{< f} = \inf I_{> f}$

Definition 1.3.2: Intégrale de Riemann

L'intégrale de Riemann de la fonction continue par morceaux f sur [a,b] par :

$$\int_{[a,b]} f = \sup I_{< f} = \inf I_{> f} \tag{1.8}$$

Note:-

Pour montrer qu'une fonction f est **intégrable sur un segment**, il suffit de montrer que f est continue par morceaux sur ce segment.

1.3.4 Propriétés de l'intégrale

Theorem 1.3.2 Forme linéaire

L'intégrale est une forme linéaire sur l'espace vectoriel des fonctions continues par morceaux.

Proposition 1.3.4 L'intégrale d'une fonction continue par morceaux positive

Soit φ continue par morceaux sur [a, b]. Alors,

$$\forall x \in [a, b], \ \varphi(x) \ge 0 \implies \int_{[a, b]} \varphi_1 \ge 0 \tag{1.9}$$

Corollary 1.3.3

$$\varphi_1 \le \varphi_2 \implies \int_{[a,b]} \varphi_1 \le \int_{[a,b]} \varphi_2 \tag{1.10}$$

Proposition 1.3.5 Relation de Chasles

$$\int_{[a,b]} f = \int_{[a,c]} f + \int_{[c,b]} f \tag{1.11}$$

1.3.5 Majorations fondamentales

Theorem 1.3.3

Soient f une fonction réelle continue par morceaux sur le segment [a,b]. Donc, il existe $(m,M) \in \mathbb{R}^2$ tels que $\forall x \in [a,b], m \leq f(x) \leq M$. donc,

$$\left| m(b-a) \le \int_{[a,b]} f(x) \mathrm{d}x \le M(b-a) \right| \tag{1.12}$$

Figure 1.4: Encadrement d'une intégrale

Theorem 1.3.4 Inégalité triangulaire intégral

Soit f une fonction continue par morceaux sur le segment [a,b]. Donc, f est bornée sur [a,b] et

$$\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} |f(x)| dx \le (b - a) \sup_{[a,b]} |f|$$

$$\tag{1.13}$$

Proof:
$$-|f| \le f \le |f|| \implies -\int |f| \le \int f \le \int |f|$$
.

Theorem 1.3.5 Inégalité de la moyenne

Soient f, g continues par morceaux sur [a, b]. Alors,

$$\left| \int_{[a,b]} f g \right| \le \sup_{[a,b]} |f| \int_{[a,b]} |g| \tag{1.14}$$

Theorem 1.3.6 Inégalité de Cauchy-Schwarz

Soient f et g continues sur le segment [a,b]. Notons $||f||_2 = \sqrt{\int_{[a,b]} f^2(x) dx}$, on obtient

$$\langle fg \rangle \le \|f\|_2 \|g\|_2 \implies \left[\left| \int_{[a,b]} fg \right| \le \sqrt{\int_{[a,b]} f^2} \sqrt{\int_{[a,b]} g^2} \right]$$
 (1.15)

Proof: D'après la positivité de

$$P = \int_{[a,b]} (f + \alpha g)^2 \tag{1.16}$$

(2)

Theorem 1.3.7 Inégalité de Minkowski

Soient f et g continues sur le segment [a,b]. Notons $||f||_2 = \sqrt{\int_{[a,b]} f^2(x) dx}$, on obtient

$$||f + g||_2 \le ||f||_2 + ||g||_2 \tag{1.17}$$

Proof: Développer $\int_{[a,b]} (f+g)^2$ et utilisons Cauchy-Schwarz.

1.4 Primitive et intégrale d'une fonction continue

1.4.1 Définitions

Definition 1.4.1: Primitive

Soit $f:I\to\mathbb{R}$ définie sur un <u>intervalle</u> $I.\ F:I\to\mathbb{R}$ est **primitive** de f sur I si et seulement si :

- \bullet F dérivable sur I
- et $\forall x \in I$, F'(x) = f(x)

Proposition 1.4.1 Deux primitives d'une même fonction

Les primitives d'une même fonction diffèrent d'une constante. Soit F, G primitives de $f: I \to \mathbb{R}$. Alors, $\exists c \in \mathbb{R}, F = G + c$

Lenma 1.4.1 Continuité de la primitive

Si $f:I \to \mathbb{R}$ continue par morceaux, alors F continue sur I.

Proof: Comme f continue par morceaux sur un intervalle, donc elle est bornée. Soient $(x, y) \in I^2$, alors

$$|F(y) - F(x)| = \left| \int_{a}^{y} f(t) dt - \int_{a}^{x} f(t) dt \right| \le \int_{x}^{y} |f(t)| dt \le \sup_{x \in [a,b]} |f(x)| |y - x|$$
 (1.18)

donc lipschitizenne, donc continue.

1.4.2 TFA

Theorem 1.4.1 Théorème fondamental de l'analyse (TFA)

Soit f continue sur un intervalle I de \mathbb{R} , soit $a \in I$.

Alors, la fonction $F: I \to \mathbb{R}$

$$F: x \mapsto \int_{a}^{x} f(t) dt \tag{1.19}$$

est de classe \mathscr{C}^1 sur I et est la seule primitive de f qui s'annule en a :

$$F' = f, \quad F(a) = 0$$
 (1.20)

Corollary 1.4.1

Une fonction continue sur un intervalle de \mathbb{R} possède une primitive sur I.

Corollary 1.4.2 Calcul d'intégrale

Soit $f: I \to \mathbb{R}$ continue sur le segment $[a,b] \subset I$. Soit G une primitive de f (c'est-à-dire, $G_c = F + c$). Alors l'**intégrale** de F sur [a,b] est :

$$\int_{a}^{b} f(t)dt = G(b) - G(a)$$

$$\tag{1.21}$$

Theorem 1.4.2 TFA (deuxième forme)

Soit f une fonction de classe C^1 sur I de \mathbb{R} , soit $(a,b) \in I^2$, on a :

$$f(b) - f(a) = \int_{a}^{b} f'(t)dt$$
 (1.22)

Note:-

Quand on a une hypothèse sur f', et je souhaite de svaoir f.

Example 1.4.1 (L'inégalité de Poincaré)

Soit $E = \{ f \in C^1([a, b], \mathbb{R}), f(a) = 0 \}. \exists C \ge 0 \text{ telle que}$

$$\forall f \in E, \ \|f\|_2 \le C\|f'\|_2 \tag{1.23}$$

Proof: Soit $x \in [a, b]$

$$f(x) = f(a) + \int_{a}^{x} f'(t)dt = \int_{a}^{x} f'(t)dt$$
 (1.24)

(Cauchy-Schwarz)
$$\Longrightarrow f^2(x) \le \int_a^x 1^2 dt \int_a^x f'^2(t) dt \le (x-a) \int_a^b f'^2(t) dt$$
 (1.25)

$$\int_{a}^{b} f^{2}(t) dt \le \int_{a}^{b} f^{2}(t) dt \times \int_{a}^{b} (x - a) dx = \frac{(b - a)^{2}}{2} \int_{a}^{b} f^{2}(t) dt \implies C = \frac{b - a}{\sqrt{2}}$$
(1.26)

Theorem 1.4.3 Dérivée d'une fonction définie par une integrale

Soit f continue sur $I,\,u,v:J\to I$ dérivables sur J. Alors, $G:J\to\mathbb{R}$ définie au-dessous est dérivable sur J:

$$G: x \mapsto \int_{u(x)}^{v(x)} f(t) dt, \quad G'(x) = v'(x) f[v(x)] - u'(x) f[u(x)]$$
 (1.27)

Proof:

$$G(x) = \int_{a}^{v(x)} f(t)d(t) - \int_{a}^{u(x)} f(t)d(t) = F(v(x)) - F(u(x)) \implies G = F \circ v - F \circ u$$
 (1.28)

Example 1.4.2

Variations de la fonction : $g:]1,+\infty[\to \mathbb{R}:$

$$g: x \mapsto \int_{x}^{x^2} \frac{\mathrm{d}t}{t^2 - 1} \tag{1.29}$$

Proof:

$$g'(x) = 2xf(x^2) - f(x) \text{ avec } f: x \mapsto \frac{1}{x^2 - 1}$$
 (1.30)

Donc s'annule en $x_0 = 1 + \sqrt{2}$, croissante sur $]1, x_0]$ et décorissante sur $[x_0, +\infty[$

1.4.3 Valeur moyenne

Theorem 1.4.4 Valeur moyenne d'une fonction continue

Soit $f \in C([a,b],\mathbb{R})$, il existe $c \in [a,b]$ tel que

$$\frac{1}{b-a} \int_a^b f(t) \mathrm{d}t = f(c) \tag{1.31}$$

1.5 Calcul de primitives et d'intégrales

1.5.1 IPP

Proposition 1.5.1 Méthode d'intégration par partie (IPP)

Soit u et v des fonctions de classe C^1 sur intervalle I de \mathbb{R} , donc :

$$\int_{a}^{b} u'(t)v(t)dt = [u(t)v(t)]_{a}^{b} - \int_{a}^{b} u(t)v'(t)dt$$
(1.32)

1.5.2 Changement de variable

Proposition 1.5.2 Changement de variable

$$\int_{\varphi(a)}^{\varphi(b)} f(t) dt = \int_{\alpha}^{\beta} f(\varphi(u)) \varphi'(u) du = \int_{\alpha}^{\beta} f(\varphi(u)) d(\varphi(u))$$
(1.33)

1.6 Formules de Taylor

1.6.1 Formule de Taylor avec reste intégral

Theorem 1.6.1 Formule de Taylor avec reste intégral

Soit f une fonction de classe \mathcal{C}^{n+1} sur un intervalle I de \mathbb{R} .

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^k + \int_a^x \frac{(x - t)^n}{n!} f^{(n+1)}(t) dt$$
 (1.34)

• Polynôme de Taylor de f de degré n :

$$T_n(x) = f(a) + \frac{x - a}{1!} f'(a) + \dots + \frac{(x - a)^n}{n!} f^{(n)}(a)$$
 (1.35)

• Reste intégral :

$$R_n(x) = \int_a^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$$
 (1.36)

Note:-

L'idée principal:

- TFA(2)
- IPP

Proof: Si la fonction f de classe \mathscr{C}^1 , on sait que

$$f(x) = f(a) + \int_{a}^{x} f'(t)dt \tag{1.37}$$

Faisons une IPP à la dernière terme, et supposons que f de classe \mathscr{C}^2 . Donc, en admettant que

$$f(x) = f(a) + [tf'(t)]_a^x - \int_a^x tf''(t)dt = f(a) + xf'(x) - af'(a) - \int_a^x tf''(t)dt$$
 (1.38)

On ne sait pas f'(x). Maintenant, considérons la primitive de $g:t\mapsto 1$ s'annule en x

$$f(x) = f(a) + [-(x-t)f'(t)]_a^x + \int_a^x (x-t)f''(t)dt = f(a) + (x-a)f'(a) + \int_a^x (x-t)f''(t)dt$$
(1.39)

Ensuite, une simple récurrence.

1.6.2 Inégalité de Taylor-Lagrange

Theorem 1.6.2 Inégalité de Taylor-Lagrange

Dans la formule 1.6.1, on a $f = T_n + R_n$:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^k + \int_a^x \frac{(x - t)^n}{n!} f^{(n+1)}(t) dt$$
 (1.40)

On a alors,

$$|R_n(x)| \le \frac{|x-a|^{n+1}}{(n+1)!} \sup_{t \in [a,x]} |f^{(n+1)}(t)| \tag{1.41}$$

Proof: Utiliser les téchniques dans 1.3.5

1.6.3 Formule de Taylor-Young

Theorem 1.6.3 Formule de Taylor-Young

Soient f de classe \mathcal{C}^n . Dans la formule 1.6.1, on a $f = T_n + R_n$. Il existe une fonction $\varepsilon(x) \xrightarrow[x \to a]{} 0$ telle que

$$\forall x \in I, \ f(x) = T_n(x) + (x - a)^n \varepsilon(x) \tag{1.42}$$

Proof: • Si f de classe \mathcal{C}^{n+1} , d'après le théorème 1.6.2, on trouve $\frac{|R_n(x)|}{|x-a|^n} \to 0$.

1.6.4 Utilisation des trois formules de Taylor

- La formule de Taylor-intégrale est la plus précise, et les deux autres formules en sont une conséquence.
- Formule de Taylor-Young donne une approximation locale au voisinage d'un point a.
- Inégalité de Taylor-Lagrange fournit une majoration globale du reste R_n de cette approximation sur un segment [a, x].

1.7 Méthode des rectangles, Sommes de Riemann

Theorem 1.7.1 Méthode des rectangles

- Approximation d'intégrale. Soit f de classe \mathscr{C}^1 sur [a,b].
 - On effectue une subdivison du segment [a,b] de pas constant h=(b-a)/n.
 - On pose pour chaque $k \in [0, n]$, $x_k = a + kh$.
 - Posons

$$R_n = h.(f(x_1) + \dots + f(x_n)) = \frac{b-a}{n} \sum_{k=0}^{n-1} f(x_k)$$
 (1.43)

• Majoration de l'erreur. Suposons que I l'intégrale de la fonction f.

$$|I - R_n| \le \frac{(b-a)^2}{2n} ||f'||_{\infty}$$
 (1.44)

Proof: Pour chaque segment, l'erreur :

$$\varepsilon_{n,k} = \left| \int_{x_k}^{x_{k+1}} f(t) dt - \frac{b-a}{n} f(x_k) \right| \le \int_{x_k}^{x_{k+1}} |f(t) - f(x_k)| dt$$
 (1.45)

$$|f(t) - f(x_k)| = \left| \int_{x_k}^t f'(t) dt \right| \le \sup_{[x \in [a,b]]} |f'(x)| (t - x_k)$$
(1.46)

$$|\varepsilon_{n,k}| \le ||f'||_{\infty} \frac{(x_{k+1} - x_k)^2}{2} = ||f'||_{\infty} \frac{(b-a)^2}{2n^2}$$
 (1.47)

Theorem 1.7.2 Convergence d'une somme de Riemann

Soit f continue sur le segment [0,1], on a

$$R_n = \frac{1}{n} \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right) \underset{n \to +\infty}{\longrightarrow} \int_0^1 f(x) \mathrm{d}x \tag{1.48}$$

$$T_n = \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right) \underset{n \to +\infty}{\longrightarrow} \int_0^1 f(x) dx \tag{1.49}$$

Plus généralement, si f une fonction continue sur le segment [a,b], et si $\xi_k \in [a+kh,a+(k+1)h]$, on a

$$u_n = \frac{b-a}{n} \sum_{k=0}^{n-1} f(\xi_k) \underset{n \to +\infty}{\longrightarrow} \int_a^b f(x) dx$$
 (1.50)

Proof: • Si $f \in \mathcal{C}^1$, d'après le théorème précédante.

- Si f est uniquement continue.
 - Montrons que $||f \varphi_n||_{\infty} \xrightarrow[n \to \infty]{} 0$ (Théorème de Heine Importance d'un segment !!)
 - Donc,

$$|I - R_n| \le \int_0^1 |f(t) - \varphi_n(t)| dt \le ||f - \varphi_n||_{\infty} \underset{n \to \infty}{\longrightarrow} 0$$
(1.51)

(2)

Example 1.7.1

Limite de suite

$$u_n = \sum_{p=n}^{2n-1} \frac{1}{2p+1} \xrightarrow[n \to +\infty]{} \frac{\ln(2)}{2}$$
 (1.52)

Chapter 2

Intégrabilité

Requirements:

- Topologie
 - Notions de bases
- Probabilité

2.1 Mesure positive

2.1.1 Topologie

Rappel : $\mathbb{R} \to \mathbb{R}^n \to E$ de dimension finie $\to (E,d) \to E$ muni d'une topologie

Definition 2.1.1: Topologie

Une topologie sur E est un ensemble TO de parties de E qui vérifie l'ensembles des ouverts de E

- $\emptyset \in \mathcal{T}O, E \in \mathcal{T}O$
- Stabilité par réunion quelconque des ouverts : Si $(O_i)_{i \in I} \in \mathcal{TO}^I$, alors $\bigcup_{i \in I} O_i \in \mathcal{TO}^I$
- Stabilité par intersection finie des ouverts : Si $n \in \mathbb{N}^*$, $(O_1, \ldots, O_n) \in \mathcal{TO}^n$, $\bigcap_{k=1}^n O_k \in \mathcal{TO}$.

Note:-

Ouf! On ne va pas utiliser cette formalisation. Mais, on va souvent considérér \mathcal{TO} les ouverts de E.

2.1.2 Tribu

Definition 2.1.2: Tribu

Pour les probabilités, on avait la notion de **tribu** (σ -algèbre) :

- Stabilité par passage au complémentaire : $\forall A \in \mathcal{T}, A^c \in \mathcal{T}$
- Stabilité par réunion dénombrable : Soit $(A_n)_{n\in\mathbb{N}}\in\mathcal{T}^{\mathbb{N}}$, alors $\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{T}$

Definition 2.1.3: Espace mesurable

Un ensemble muni d'une **tribu** est dit **espace mesurable**. Les parties de \mathcal{T} sont dites **parties mesurables**. On le note (Ω, \mathcal{T}) .

Mais on travaille la plupart du temps dans un espace vectoriel normé (ou un espace métrique). Pour faire le lien, on aimerait que les ouverts soient des parties mesurables.

Definition 2.1.4: Tribu borélienne

Si (E,d) un espace métrique (donc on peut définir des boules), on appelle **tribu borélienne** la plus petite tribu contenant les ouverts de E. On la note $\boxed{\mathcal{BO}(E)}$

Proof: Existence du **tribu borélienne** : $\mathcal{F} = \{\mathcal{T} \text{ tribu sur } E, \mathcal{T} \supset \mathcal{T}O\}$ (Rappel : $\mathcal{T}O$ est l'ensemble des ouverts de E)

- $\mathcal{F} \neq \emptyset$ car $\mathcal{P}(E) \in \mathcal{F}$
- \mathcal{F} stable par intersection (très simple)

Donc, $\mathcal{B}O(E) = \bigcap_{\mathcal{T} \in \mathcal{F}} \mathcal{T}$ est la plus petite tribu contenant $\mathcal{T}O$

Example 2.1.1 $(\mathcal{B}O(\mathbb{R}))$

 $BO(\mathbb{R}) = \text{la plus petite tribu contenant tous les }]a, b[\text{ où } a \in \mathbb{R}, b \in]a, +\infty[$. Montrer que tous les intervalles de \mathbb{R} sont dans $\mathcal{B}O(\mathbb{R})$.

(...)

Proposition 2.1.1 Tribu produit

Soient $(\Omega_1, \mathcal{T}_1)$ et $(\Omega_2, \mathcal{T}_2)$ deux **espaces mesurables**, on appelle **tribu produit** sur $\Omega_1 \times \Omega_2$ et on note $\mathcal{T}_1 \otimes \mathcal{T}_2$ la plus petite tribu contenant $A_1 \times A_2$ où $A_1 \in \mathcal{T}_1$ et $A_2 \in \mathcal{T}_2$.

2.1.3 Mesure

Definition 2.1.5: Mesure (positive)

Soit (Ω, \mathcal{T}) un espace mesurable, on appelle **mesure** (**positive**) sur Ω , toute <u>application</u> $\mu : \mathcal{T} \to \mathbb{R}_+ \cup \{+\infty\}$ et qui vérifie :

- $\mu(\emptyset) = \emptyset$
- $\underline{\sigma}$ -additivité (dénombrable) : $\forall (A_n)_{n \in \mathbb{N}} \in \mathcal{T}^{\mathbb{N}}$, disjointes 2 à 2, $\mu(A_n)_{n \in \mathbb{N}}$ nécessairement sommable.

$$\forall (A_n)_{n\in\mathbb{N}} \in \mathcal{T}^{\mathbb{N}}, \ \left[\forall (i,j) \in \mathbb{N}^2, [i \neq j] \implies \left[A_i \cap A_j = \emptyset\right]\right] \implies \left|\mu\left(\bigcup_{n\in\mathbb{N}} A_n\right) = \sum_{n\in\mathbb{N}} \mu(A_n)\right| \quad (2.1)$$

 $(\Omega, \mathcal{T}, \mu)$ s'appelle **espace mesuré**.

Theorem 2.1.1 Mesure de Lebesgne (\mathbb{R})

Dans \mathbb{R} , il existe une unique mesure (dite **mesure de Lebesgne** et notée λ) sur $\mathcal{BO}(\mathbb{R})$ qui vérifie

$$\forall (a,b) \in \mathbb{R}^2, \ [a < b] \implies [\lambda(]a,b[) = b - a] \tag{2.2}$$

Proof: Admis.

Theorem 2.1.2 Mesure de Lebesgne (\mathbb{R}^n)

Dans \mathbb{R} , il <u>existe</u> une unique mesure (dite **mesure de Lebesgne** et notée λ) sur $\mathcal{BO}(\mathbb{R}^n)$ qui vérifie

$$\forall k \in [1, n], [a_k \le b_k] \implies \lambda \left(\prod_{k=1}^n]a_k, b_k[\right) = \prod_{k=1}^n (b_k - a_k)$$
 (2.3)

Example 2.1.2 (Mesure de comptage sur les parties)

$$\forall A \subset \Omega, \ \mu(A) = \begin{cases} +\infty \text{ si } A \text{ est infini} \\ \operatorname{card}(A) \text{ sinon} \end{cases}$$
 (2.4)

Example 2.1.3 (Mesure de comptage des entiers sur les parties de \mathbb{R})

$$\forall A \subset \Omega, \ \mu(A) = \begin{cases} +\infty \text{ si } A \in \mathbb{N} \text{ est infini} \\ \operatorname{card}(A \cap \mathbb{N}) \text{ sinon} \end{cases}$$
 (2.5)

Definition 2.1.6: μ -négligeable

Soit $(\Omega, \mathcal{T}, \mu)$ un ensemble mesuré, soit $A \subset \Omega$, on dit que A est μ -négligeable si :

$$\exists T \in \mathcal{T}, \ A \subset T, \ \text{et} \ \mu(T) = 0$$
 (2.6)

Proposition 2.1.2

Dans \mathbb{R} (\mathbb{R}^n), tout ensemble dénombrable est de mesure nulle.

Example 2.1.4 (Mesure nulle)

- Ensemble dénombrable : $\lambda(\mathbb{Q})=0$ en effet, $\mathbb{Q}=\bigcup_{q\in\mathbb{Q}}\{q\}$ donc $\lambda(\mathbb{Q})=\sum_{q\in\mathbb{Q}}\lambda(\{q\})=q-q=0$
- Ensemble non dénombrable (Ensemble de Cantor) :

$$K = \left\{ x \in [0, 1], \ \exists (\varepsilon_k)_{k \in \mathbb{N}} \in \{0, 2\}^{\mathbb{N}}, \ x = \sum_{k=0}^{+\infty} \frac{\varepsilon_k}{3^{k+1}} \right\}$$
 (2.7)

est λ -négligeable mais pas dénombrable.

Proposition 2.1.3 Propriétés d'un espace mesuré

Soit $(\Omega, \mathcal{T}, \mu)$ un espace mesuré (resp. $(\Omega, \mathcal{T}, \mathbb{P})$ un espace probabilisé) :

Note:-

Remplacer μ par $\mathbb P$ et on retrouve les résultats dans le cours de probabilité.

• Croissance:

$$\forall (A, B) \in \mathcal{T}^2, \ [A \subset B] \implies [\mu(A) \le \mu(B)]$$
 (2.8)

• Réunion + Intersection :

$$\forall (A, B) \in \mathcal{T}^2, \ \mu(A) + \mu(B) = \mu(A \cap B) + \mu(A \cup B)$$
 (2.9)

• Limite croissante:

$$\forall (A_n)_{n\in\mathbb{N}} \in \mathcal{T}^{\mathbb{N}}, \ [\forall n \in \mathbb{N}, A_n \subset A_{n+1}] \implies \left[\mu\left(\bigcup_{n\in\mathbb{N}} A_n\right)\right] = \lim_{n\to+\infty} \mu(A_n) \tag{2.10}$$

• Limite décroissante

On note les deux limites :

$$\lim_{n \to +\infty} \uparrow \mu(A_n), \quad \lim_{n \to +\infty} \downarrow \mu(A_n) \tag{2.11}$$

• Sous-addivité:

$$\forall (A_n)_{n \in \mathbb{N}} \in \mathcal{T}^{\mathbb{N}}, \ \mu\left(\bigcup_{n \in \mathbb{N}} A_n\right) \le \sum_{k \in \mathbb{N}} \mu(A_k) \tag{2.12}$$

Proof: Soit $(A, B) \in \mathcal{T}^2$,

• $A \subset B$ donc $B = A \cup (B \setminus A)$. De plus $B \setminus A = B \cap A^c$, donc

$$\mu(B) = \mu(A) + \mu(B \backslash A) \ge \mu(A) \tag{2.13}$$

• Si $\mu(A \cup B) = +\infty$ alors $\mu(A) = +\infty$ ou $\mu(B) = +\infty$. Puisque, sinon,

$$A \cup B = A \cup (B \setminus A) \implies \mu(A \cup B) = \mu(A) + \mu(B \setminus A) \le \mu(A) + \mu(B) \tag{2.14}$$

Si $\mu(A \cup B) < +\infty$, considérer $B = (A \cap B) \cup (B \setminus A)$

Definition 2.1.7: μ -presque partout, μ -presque sûrement

• Soit $(\Omega, \mathcal{T}, \mu)$ un espace <u>mesuré</u> et P une propriété définie sur Ω . On dit que P est **vraie** (μ) -presque partout si

$$\{\omega \in \Omega, P(\omega) \text{ est fausse}\}\ \text{est }\mu\text{-n\'egligeable}$$

• Soit $(\Omega, \mathcal{T}, \mathbb{P})$ un espace <u>probabilisé</u> et P une propriété définie sur Ω . On dit que P est **vraie** (μ) -presque sûrement si

$$\{\omega \in \Omega, P(\omega) \text{ est fausse}\}\ \text{est }\mu\text{-n\'egligeable}$$

On les note resp. P vraie (μ) -p.p. et P vraie (\mathbb{P}) -p.s.

Example 2.1.5

Soit $(\Omega, \mathcal{T}, \mathbb{P})$. Soit X une variable aléatoire réelle suivant une loi uniforme $\mathcal{U}(0,1)$, alors : $X \in [0,1]$ p.s.

Definition 2.1.8: Partie μ -négligeable

Soit $(\Omega, \mathcal{T}, \mu)$ un espace mesuré. Une partie A de Ω est dite μ -négligeable s'il existe

$$T \in \mathcal{T}, \ A \subset T, \ \mu(T) = 0$$
 (2.15)

Definition 2.1.9: μ -complétée

Soit (Ω,\mathcal{T},μ) un espace mesuré, on pose

$$\mathcal{N} = \{ A \subset \Omega, A \ \mu - \text{n\'egligeable} \}$$
 (2.16)

On appelle **tribu \mu\text{-complétée** $de <math display="inline">\mathcal T$ la tribu définie par

$$\mathcal{T}^* = \{ T \cup N, \ T \in \mathcal{T}, \ N \in \mathcal{N} \}$$
 (2.17)

Le mesure μ se prolonge à \mathcal{T}^* par $\forall A \in \mathcal{T}^*, \ \mu^*(T \cup N) = \mu(T).$

2.2 Intégrabilité

2.2.1 Fonction mesurable

On voulait créer une intégrale sur des fonctions $f:\Omega\to\mathbb{R}$ où (Ω,\mathcal{T},μ) un espace mesuré. Quelle propriété faut-il à f pour pouvoir définir son intégrale ?

Definition 2.2.1: Fonction mesurable

Soit (Ω, \mathcal{T}) , (Ω', \mathcal{T}') deux espaces mesurables. $f: \Omega \to \Omega'$ est dite **mesurable** si

$$\forall T' \in \mathcal{T}', \ f^{-1}(T') \in \mathcal{T} \tag{2.18}$$

Remarque:

- Lorsque $(\Omega', \mathcal{T}') = (\mathbb{R}, \mathcal{BO}(\mathbb{R}))$, si f est **mesurable**, $f^{-1}(]a, b[) \in \mathcal{T}$. (Rappel : La plus petite tribu contenant les ouverts de \mathbb{R})
- De plus, si \mathcal{T} est la tribu borélienne de (Ω, d) alors, f continue sur Ω donc f mesurable sur Ω .

Definition 2.2.2: Fonction mesurable (2eme édition)

Soit (Ω, \mathcal{T}) et $f: \Omega \to [-\infty, +\infty]$, on dit que f est **mesurable** si

$$\forall A \in \mathcal{BO}(\mathbb{R}), \ f^{-1}(A) \in \mathcal{T}$$
 (2.19)

2.2.2 Fonction étagée

Note:-

Rappel : Notation semblable à Fonctions en escalier, découplage de [a,b]

Definition 2.2.3: Fonctions étagées

Soit (Ω, \mathcal{T}) et $f: \Omega \to [-\infty, +\infty]$ à valeurs réels, on dit que f est **étagée** si

- f est mesurable
- et card $(f(\Omega))$ est fini

Proposition 2.2.1

Une fonction en escalier sur [a, b] est étagée.

Proof: • Continue par morceaux donc mesurable

• Prenant un nombre fini de valeurs

Example 2.2.1 (Fonction étagée)

Fonction étagée $\xi_{\mathbb{Q}}: \mathbb{R} \to \mathbb{R}$:

$$\xi_{\mathbb{O}}: x \mapsto \mathbb{1}_{\mathbb{O}} \tag{2.20}$$

Proposition 2.2.2

Soit $(\Omega, \mathcal{T}, \mu)$, toute focation positive et mesurable est <u>limite croissante</u> d'une suite de fonctions

2.2.3 Intégrale

Definition 2.2.4: Intégrale

1. Soit f une fonction étagée, positive, définie sur Ω , on pose

$$\int_{\Omega} f d\mu = \sum_{\alpha \in f(\Omega)} \alpha \mu(f^{-1}(\{\alpha\})) \in [0, +\infty]$$
(2.21)

2. Soit f une fonction positive, mesurable définie sur Ω , donc

$$\int_{\Omega} f \, \mathrm{d}\mu = \sup_{g \in \Sigma_f} \left(\int_{\Omega} g \, \mathrm{d}\mu \right) \in [0, +\infty] \tag{2.22}$$

où $\Sigma_f = \{g: \Omega \to \mathbb{R}_+, \ g \text{ étagée et } g \leq f\}.$

Notation : Si $\alpha = 0$ et $\mu(f^{-1}(\{0\})) = +\infty$, alors $\alpha \mu(f^{-1}(\{\alpha\})) = 0$

2.2.4 Intégrabilité

Definition 2.2.5: Intégrable

Soit $(\Omega, \mathcal{T}, \mu)$,

Considérer une fonction $f:\Omega\to[-\infty,+\infty]$ mesurable sur Ω .

1. Si f est positive, on dit f est **intégrable** si

$$\int_{\Omega} f \mathrm{d}\mu < +\infty \tag{2.23}$$

2. Si f n'est plus toujours positive, on dit f est intégrable si

$$\int_{\Omega} |f| \mathrm{d}\mu < +\infty \tag{2.24}$$

et on pose

$$\int_{\Omega} |f| \mathrm{d}\mu = \int_{\Omega} f^{+} \mathrm{d}\mu - \int_{\Omega} f^{-} \mathrm{d}\mu \tag{2.25}$$

où $f^+(\omega) = \max(0, f(\omega))$ et $f^-(\omega) = \max(0, -f(\omega))$

Proposition 2.2.3

Si f et g intégrables sur Ω et si $(\alpha, \beta) \in \mathbb{R}^2$, alors :

1. Linéarité

$$\alpha f + \mu g$$
 intégrable sur Ω , $\int_{\Omega} (\alpha f + \mu g) d\mu = \alpha \int_{\Omega} f d\mu + \beta \int_{\Omega} g d\mu$ (2.26)

2. Croissance

$$f \le g \text{ p.p.} \implies \int_{\Omega} f d\mu \le \int_{\Omega} g d\mu$$
 (2.27)

3. Restriction

$$A \in \mathcal{T} \implies f_{|A} \text{ intégrable sur } A, \quad \int_A f_{|A} d\mu_{|A} = \int_{\Omega} \mathbb{1}_A f d\mu$$
 (2.28)

4. Relation de Chasles

$$(A,B) \in \mathcal{T}^2, \ \mu(A \cap B) = 0 \implies \int_{A \cup B} f d\mu = \int_A f d\mu + \int_B f d\mu$$
 (2.29)

2.3 Convergence monotone

2.3.1 Rappel: intégration généralisée

On a énoncé : Si $f: I \to \mathbb{R} \in C^0_{pm}$, posons que $a = \inf I$, $b = \sup I$, f intégrable sur I si et seulement si $\int_a^b |f(t)| dt$. On a de plus :

- La possibilité de faire des intégrales de fonctions $f:\Omega\to [-\infty,+\infty]$ où (Ω,\mathcal{T},μ) est un espace mesuré $(\Omega$ n'est pas nécessairement un intervalle)
- On s'intéresse aux fonctions mesurables (ce n'est plus nécessairement une fonction continue par morceaux)

2.3.2 Théorème de convergence monotone

Theorem 2.3.1 de convergence monotone

Soit $(\Omega, \mathcal{T}, \mu)$ un espace mesuré et $(f_n)_{n \in \mathbb{N}}$ une suite <u>croissante</u> de fonctions positives, mesurables sur Ω :

• Positivité veut dire :

$$\forall n \in \mathbb{N}, f_n(\Omega) \subset [0, +\infty]$$
 (2.30)

• Croissance veut dire:

$$\forall n \in \mathbb{N}, \ \forall \omega \in \Omega, \ f_n(\omega) \le f_{n+1}(\omega)$$
 (2.31)

Alors, il existe une fonction f positive, mesurable sur Ω telle que (voir notation 2.11)

$$\forall \omega \in \Omega, \ f(\omega) = \lim_{n \to +\infty} \uparrow f_n(\omega)$$
 (2.32)

et plus important, on a:

$$\int_{\Omega} f \, \mathrm{d}\mu = \lim_{n \to +\infty} \uparrow \left(\int_{\Omega} f_n \, \mathrm{d}\mu \right)$$
 (2.33)

Autre écriture : interversion de limites

$$\left| \int_{\Omega} \left(\lim_{n \to +\infty} f_n \right) d\mu = \lim_{n \to +\infty} \left(\int_{\Omega} f_n d\mu \right) \right| \tag{2.34}$$

Note:-

- On ne nous dit pas que f est intégrable sur Ω . (seulement mesurable)
- L'existence de f n'est pas une information nouvelle, mais ce qui est nouveau : f est mesurable sur Ω .

Proposition 2.3.1

fintégrable sur Ω si et seulement si $\exists l \in \mathbb{R}_+,\, \int_\Omega f_n \mathrm{d}\mu \underset{n \to +\infty}{\longrightarrow} l$

Note:-

Comment utiliser ce théorème?

- Comment montrer qu'une fonction est mesurable ?
- Un problème étant donné, comment se ramener à une suite croissante?

Proposition 2.3.2 Mesurabilité

Soit $f: \Omega \to [0, +\infty]$, est-elle mesurable?

- 1. Si $B \in \mathcal{T}$, $\mathbb{1}_B$ est mesurable.
- 2. $\Omega \subset (E,d)$, il y a une notion d'ouverts et de fermés dans Ω et $\mathcal{T} \supset BO(\Omega)$. Alors :

Si f continue, f sera mesurable.

3. De même,

Si f continue par morceuax, f sera mesurable.

Example 2.3.1

Montrer que $F:]0,+\infty[\to\mathbb{R}$ est mesurable sur $]0,+\infty[$:

$$a \mapsto \int_0^1 \frac{\mathrm{d}x}{\sqrt{(x^2+1)(x^2+a^2)}}$$
 (2.35)

Proof: • F est mesurable sur $]0, +\infty[$ par continuité

- Comportement en 0⁺. $F_n \to_{n \to +\infty} F$ croissante. Soit $(a_n)_{n \in \mathbb{N}} \in]0, +\infty[\mathbb{N}$ décroissante, $a_n \to_{n \to \infty} 0^+$.
 - Discrétisation monotone : Construisons

$$f_n: [0,1] \to \mathbb{R}_+ \tag{2.36}$$

$$x \mapsto \frac{1}{\sqrt{(x^2+1)(x^2+a_n^2)}} \xrightarrow[n \to +\infty]{} f: \begin{cases} [0,1] \to]0, +\infty[\\ +\infty \text{ si } x = 0\\ \frac{1}{\sqrt{1+x^2} \times x} \text{ si } x \in]0,1] \end{cases}$$
 (2.37)

- D'après le théorème de convergence monotone,

$$f(x) = \lim_{n \to +\infty} \uparrow f_n(x) \tag{2.38}$$

– Comme f n'est pas intégrable sur [0,1] minorée par $x\mapsto 1/(2x)$, on en déduit que $F(a_n)\underset{n\to+\infty}{\longrightarrow} +\infty$ don

$$F(a) \underset{a \to 0^+}{\longrightarrow} +\infty \tag{2.39}$$

2.4 Convergence dominée

P273: Le théorème de convergence monotone a des hypothèses très fortes. Et pourtant, on aimerait pouvoir dire

$$\int_{\Omega} f_n d\mu \xrightarrow[n \to +\infty]{} \int_{\Omega} f d\mu \text{ avec } \forall \omega \in \Omega, \ f_n(\omega) \xrightarrow[n \to +\infty]{} f(\omega)$$
(2.40)

Mais, Fausse en général. Sinon, on parle d'interversion de limites.

Donc on va chercher des conditions suffisantes pour avoir ce résultat.

Theorem 2.4.1 de convergence dominée

Soit $(\Omega, \mathcal{T}, \mu)$ un espace mesuré, et des applications $(f_n) \in (\Omega \to \mathbb{K})^{\mathbb{N}}$ mesurables sur Ω et vérifiant :

1. Convergence simple

Il existe une fonction $f:\Omega\to\mathbb{K}$ mesurable telle que :

$$\forall \omega \in \Omega, f_n(\omega) \underset{n \to +\infty}{\longrightarrow} f(\omega) \quad \mu - \text{p.p.}$$
 (2.41)

2. Domination uniforme

Il existe une fonction $\varphi:\Omega\to[0,+\infty]$ intégrable sur Ω , telle que :

$$\forall \omega \in \Omega, \ \forall n \in \mathbb{N}, \ |f_n(\omega)| \le \varphi(\omega) \quad \mu - \text{p.p.}$$
 (2.42)

Alors,

- 1. $\forall n \in \mathbb{N}, f_n$ intégrable sur Ω
- 2. f intégrable sur Ω
- 3. De plus

$$\int_{\Omega} f_n d\mu \xrightarrow[n \to +\infty]{} \int_{\Omega} f d\mu \tag{2.43}$$

Example 2.4.1

Cherchons le comportement asymptotique de :

$$I_n = \int_0^n \left(1 - \frac{x}{n}\right)^n e^{-x} dx \tag{2.44}$$

Solution

- 1. Problème de Ω . $\Omega \neq [0,n]$ car il ne doit pas dépendre de n. On a deux méthodes :
 - Fixer Ω en prolongement les fonctions par $0:f_n:[0,+\infty[\to\mathbb{R}:$

$$x \mapsto \begin{cases} \left(1 - \frac{x}{n}\right)^n e^{-x}, & x \in [0, n] \\ 0 & \text{sinon} \end{cases}$$
 (2.45)

- Faire un changement de variables pour fixer Ω :

$$\int_0^n \left(1 - \frac{x}{n}\right)^n e^{-x} dx = \int_0^1 n(1 - u)^n e^{-n \cdot u} du$$
 (2.46)

On observe la contion dans l'intégrale

- est mesurable car elle est continue
- $\text{ Si } u \in [0,1], \, f_n(i) \underset{n \to +\infty}{\longrightarrow} +\infty \text{ si } u = 0.$

On n'y arrive pas. Mais, ça nous inspire que, si on pose la question inversement, on peut penser à faire un changement de variable.

2. Limite de la suite de fonctions :

$$f_n(x) \underset{n \to +\infty}{\longrightarrow} e^{-2x} = f(x)$$
 (2.47)

 $\operatorname{car} \left(1 + \frac{u}{n}\right)^n \to e^u$

3. Domination : Soit $x \in [0, +\infty[$, $n \in \mathbb{N}$,

$$|f_n(x)| = \left| \left(1 - \frac{x}{n} \right)^n e^{-x} \right| + 0 \le e^{-x} = \varphi(x)$$
 (2.48)

- φ ne dépend pas de n
- φ mesurable sur \mathbb{R}_+ car elle est continue
- φ est intégrable sur \mathbb{R}_+ car

$$\int_0^{+\infty} e^{-x} \mathrm{d}x = 1 \tag{2.49}$$

4. Le théorème de convergence dominée s'applique et

$$I_n = \int_{[0,+\infty]} f_n d\lambda \xrightarrow[n \to +\infty]{} \int_{[0,+\infty[} f d\lambda = \int_0^{+\infty} e^{-2x} dx = \frac{1}{2}$$
 (2.50)

2.5 Changement de variable

Definition 2.5.1: Tribu image, Mesure image

Soit (Ω,\mathcal{T},μ) un $espace\ mesur\'e,\ \Omega'$ un ensemble, $f:\Omega\to\Omega'$ On appelle

- tribu image de Ω' :

$$\mathcal{T}_f' = \{A' \subset \Omega', f^{-1}(A') \in \mathcal{T}\} \tag{2.51}$$