(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2001-275015 (P2001-275015A)

(43)公開日 平成13年10月5日(2001.10.5)

(51) Int.Cl.7		識別記号	FΙ		7	{~₹]-}}*(参考)
H 0 4 N	5/20		H04N	5/20		5 B 0 5 7
G06T	5/00	100	G 0 6 T	5/00	100	5 C 0 2 1
H04N	1/409		H04N	9/68	Z	5 C O 6 6
	9/68			1/40	101D	5 C O 7 7

空杏油や 主補や 前や面の数14 OI (全 16 頁)

		会工的 小	水明水 明水列(0数14 OL (主 10 以)
(21)出願番号	特願2000-87053(P2000-87053)	(71)出願人	000002185 ソニー株式会社
(22)出顧日	平成12年3月23日(2000.3.23)		東京都品川区北品川6丁目7番35号
		(72)発明者	土屋 隆史 東京都品川区北品川 6 丁目 7番35号 ソニ 一株式会社内
		(72)発明者	輸形 昌美 東京都品川区北品川6丁目7番35号 ソニ 一株式会社内
		(74)代理人	100102185 弁理土 多田 繁範

最終頁に続く

(54) 【発明の名称】 画像処理回路及び画像処理方法

(57) 【要約】

【課題】 本発明は、画像処理回路及び画像処理方法に 関し、例えばビデオカメラ、電子スチルカメラ等に適用 して、コントラスト感の低下、不自然なエッジ強調を有 効に回避して、高い圧縮率でダイナミックレンジを圧縮 することができるようにする。

【解決手段】 本発明は、エッジを保存したまま入力画 像Xを平滑化してゲイン補正係数Gを求め、このゲイン 補正係数Gにより入力画像Xの画素値x(i, j)を補 正する。

【特許請求の範囲】

【請求項1】入力画像のダイナミックレンジを圧縮する 画像処理回路において、

前記入力画像のエッジを保存して前記入力画像の画素値 を平滑化する平滑化手段と、

前記平滑化手段の出力値に応じてゲイン補正係数を生成 する補正係数生成手段と、

前記ゲイン補正係数により前記入力画像の画素値を補正 する画素値補正手段とを備えることを特徴とする画像処 理同路。

【請求項2】入力画像のダイナミックレンジを圧縮する 画像処理方法において、

前記入力画像による画像のエッジを保存して前記入力画 像の画素値を平滑化する平滑化処理と、

前記平滑化処理の出力値に応じてゲイン補正係数を生成 する補正係数生成処理と、

前記ゲイン補正係数により前記入力画像の画素値を補正 する両素値補正処理とを有することを特徴とする画像処 理方法。

【請求項3】前定回素値補正処理により補正された前案 20 する請求項3と記載の画像処理が法。 値の階調を補正する階調補正処理を有することを特徴と 「請求項11】前記ノイズ除去処理 する請求項2に記載の画像処理が法。 であることを特徴とする請求項5に言

【請求項4】前記平滑化処理による出力値を前記入力画 像の画素値より減算して得られる減算値を用いて、前記 画素値補正処理により補正される画素値の変化を強調す る画像強調処理を有することを特徴とする請求項2に記 裁の画像処理方法。

【請求項5】前記入力画像のノイズを事前に除去するノ イズ除去処理と、

前記ノイズ除去処理した前記入力画像の画素値を一様な 30 利得により乗算してダイナミックレンジを拡大し、前記 平滑化処理及び前記画素値補正処理に供給するダイナミ ックレンジ拡大処理とを有することを特徴とする請求項 2に記載の画像処理方法。

【請求項6】前記平滑化処理は、

前記入力画像より低周波数成分を抽出するフィルタリン グ処理と、

前記フィルタリング処理した画素値を対数変換する対数 変換処理と、

前記対数変換処理した画像のエッジを保存して高周波数 40 成分を抑圧する非線型のフィルタリング処理と、

前記非線型のフィルタリング処理による画素値を逆対数 変換する逆対数変換処理とを有することを特徴とする請 求項2に記載の画像処理方法。

【請求項7】前記非線型のフィルタリング処理は、

前記人力画像における画素値のサンプリングピッチが異なり、かつ画像のエッジを保存して高層波数成分を抑圧 する複数のフィルタリングを繰り返して実行されること を特徴とする需求項もに記載の画像処理方法。

【請求項8】前記非線型のフィルタリング処理は、

連続する画素を所定ピッチによりサンプリングして実行 されることを特徴とする讃求項6に記載の画像処理方 注

【請求項9】前記非線型のフィルタリング処理は、

処理対象の両素を基準とした所定範囲の両素について、 該両素の両素値の低周波数成分を近似する所定の近似関 数を生成する近似関数生成の処理と、

前記近似関数を基準にして、前記低周波数成分に対応す る領域を設定する領域設定の処理と、

6 前記処理対象の画素を基準とした所定範囲の画素のそれ ぞれについて、画素値が前記領域に属するか否か判定 し、該判定結果におして前記近似関数による対応する両 素値に、該判定に係る両素値を選択的に置き換える両素 値の置き換え処理と、

前記画素値の置き換え処理による画素値を重み付け加算 する重み付け加算の処理とを有することを特徴とする請 求項6に記載の画像処理方法。

【請求項10】前記平滑化処理の出力値に対する前記ゲイン補正係数の特性が単調減少特性であることを特徴と オス請求項2に引載の画像処理方法

【請求項11】前記ノイズ除去処理が、コアリング処理 であることを特徴とする請求項5に記載の画像処理方 注

【請求項12】前記ノイズ除去処理が、メディアンフィルタによる処理であることを特徴とする請求項5に記載の画像処理方法。

【請求項13】前記ノイズ除去処理が、

処理対象の画素を基準とした所定範囲の画素について、 前記処理対象の画素の画素値を基準にした判定に応じ

の て、該判定に係る画素値を選択的に置き換える画素値の 置き換え処理と、

前記画素値の置き換え処理による画素値を重み付け加算 する重み付け加算の処理とを有することを特徴とする請 求項6に記載の画像処理方法。

【請求項14】前記入力画像の輝度信号成分により前記 入力画像の色差信号成分を事前に正規化し、前記輝度信 号成分による画素値を前記平滑化処理及び前記画素値補 正処理に供給する正規化処理と、

前記画素値補正処理された輝度信号成分による画素値に より、前記正規化処理された色差信号成分の画素値を相 正する色差信号補正処理とを有することを特徴とする請 求項2に記載の画像処理方法。

【発明の詳細な説明】

[0001]

【発卵の原する技術分野】 本発明は、画像処理加路及び 画像処理が法に関し、例えばビデオカメラ、電子スチル カメラ等における撮像結果の処理、記録、港島表示装置 等における画像表示、パーソナルコンピュー女等による 画像処理、画像合成、さらにはこれらによる画像の伝送 に適用することができる。本発明は、エッジを保存した

まま入力画像を平滑化してゲイン補正係数を求め、この ゲイン補正係数により入力画像の画素値を補正すること により、コントラスト感の低下、不自然なエッジ強調を 有効に回避して、高い圧縮率でダイナミックレンジを圧 縮することができるようにする。

[0002]

【従来の技術】従来、撮像装置等の種々の画像処理回路 においては、画像のダイナミックレンジを圧縮して記 録、再生等の種々の処理を実行するようになされてい る。

【0003】 このようなダイナミックレンジを圧縮する 処理としては、画像全体の階調を補正する方法と、画像 の低周波数成分についてのみ階調を補正する方法とがあ り、前者においては、ガンマ補正、ニー補正、さらには いわゆるヒストグラム等価等により階調を補正してダイ ナミックレンジを圧縮するようになされている。これに 対して後者においては、ガンマ補正、ニー補正等により ダイナミックレンジを圧縮するようになされている。

[0004]

ダイナミックレンジ圧縮法にあっては、実用上未だ不十 分な問題があった。

【0005】すなわち画像全体の階調をガンマ補正、ニ 一補正等により補正する方法にあっては、ハイライト部 やヒストグラムの少ない輝度域等の、コントラストの圧 縮対象である輝度域において、ダイナミックレンジと同 時に被写体のコントラストも圧縮される。これによりこ の方法の場合では、ダイナミックレンジの圧縮率を大き くすることが困難で、またダイナミックレンジの圧縮に よりコントラストの劣化したメリハリのない画像が生成 30 される問題があった。

【0006】これに対して画像の低周波数成分について のみガンマ補正、二一補正等により階調を補正する方法 にあっては、ダイナミックレンジの圧縮により画像の低 周波成分と高周波成分との比率が変化する。これにより この方法の場合では、ダイナミックレンジの圧縮により エッジが不自然に強調され、品位のない画像が生成され る問題があった。

【0007】本発明は以上の点を考慮してなされたもの で、コントラスト感の低下、不自然なエッジ強調を有効 40 に回避して、高い圧縮率でダイナミックレンジを圧縮す ることができる画像処理回路及び画像処理方法を提案し ようとするものである。

[00008]

【課題を解決するための手段】かかる課題を解決するた め請求項1 又は請求項2の発明においては、画像処理回 路又は画像処理方法に適用して、入力画像のエッジを保 存して入力画像の画素値を平滑化し、この平滑化の出力 値に応じてゲイン補正係数を生成して入力画像の画素値 を補正する。

【0009】請求項1又は請求項2の機成によれば、入 力画像のエッジを保存して入力画像の画素値を平滑化す れば、入力画像から、画像のダイナミックレンジを決定 付ける成分だけを独立して取り出することができる。こ れによりこの平滑化の出力値に応じてゲイン補正係数を 生成して入力画像の画素値を補正すれば、画像のダイナ ミックレンジとは独立な、圧縮せずに保存しておくこと が望まれる被写体のコントラストについては劣化を有効 に回避して、所望の圧縮率によりダイナミックレンジを 10 圧縮することができる。また被写体のコントラストにつ いては劣化を有効に回避できることにより、不自然なエ ッジ強調も防止することができ、これらにより入力画像 の品位を維持したまま、高い圧縮率により入力画像のダ イナミックレンジを圧縮することができる。

[0010] 【発明の実施の形態】以下、適宜図面を参照しながら本 発明の実施の形態を詳述する。

【0011】(1)第1の実施の形態の構成 (1-1) 第1の実施の形態の全体構成

【発明が解決しようとする課題】しかしながらこれらの 20 図1は、本発明の第1の実施の形態に係る画像処理回路 を示すプロック図である。この画像処理回路1は、ビデ オカメラ、電子スチルカメラ等の損像装置、種々の画像 処理装置、画像伝送装置、さらにはパーソナルコンピュ ータにおける画像処理等に適用され、入力画像Xのダイ ナミックレンジを圧縮して出力画像Yをする。

> 【0012】なおここで入力画像X及び出力画像Yは、 2次元デジタル画像であり、以下においては、水平方向 及び垂直方向における画素の位置をそれぞれ符号i及び jにより表して、それぞれ入力画像X及び出力画像Yの 画素値をx(i、j)及びy(i、j)により表す。ま たこれら画素値x(i、j)及びy(i、j)に対応す

る各処理値を同様に符号i及びiを用いて示す。 【0013】この画像処理回路1において、非線型平滑 化器2は、図2(A)に示すように、大きなダイナミッ クレンジによる入力される入力画像Xの画素値x (i、 j) を平滑化して、画素値s (i、j) (図2 (B)) による平滑化画像Sを出力する。この平滑化の処理にお いて、非線型平滑化器2は、入力画像の画素値情報と空 間情報とから、各画素値x(i、j)がエッジにおける ものか否か判定して処理することにより、小振幅成分の みを平滑化し、大きなエッジ成分については、平滑化の 処理を実行しないようにする。これにより非線型平滑化 器2は、エッジを保存したまま入力画像Xの画素値x (i、i) を平滑化し、画像のダイナミックレンジを決 定付ける成分だけを独立して取り出すようになされてい

【0014】 ルックアップテーブル(LHT) 3は、非 線型平滑化器2から出力される平滑化画像Sの画素値s (i、j)を基準にして入力画像Xの画素値x(i、 50 j) を補正するためのゲイン補正係数g(i、j)(図 2 (C)) を出力する。ここで画像処理回路1では、こ のゲイン補正係数g(i、j)により入力画像Xの画素 値x(i、j)を補正してダイナミックレンジを圧縮す

ることにより、ルックアップテーブル3は、例えば図3 に示すような単調減少特性を有する入出力特性によりこ のゲイン補正係数g(i、j)を出力する。なおここで この図3に示す入出力特性においては、平滑化画像Sの 画素値s(i、i)が所定値s1より小さい場合には、

値1、0のゲイン補正係数g(i、i)を出力し、平滑 大するに伴って指数関数的にゲイン補正係数g(i、

j) が減少し、画素値s(i、j)の最大値s max でゲイン補正係数g (i、j) が値g1となる特性であ

【0015】このような入出力特性により、ルックアッ プテーブル3は、例えば図2(A)に示したような小さ な画素値の変化を伴ってエッジの前後で入力画像Xの画 素値x(i、i)が立ち上がっている場合には、小さな 画素値の変化が取り除かれてなる平滑化画像Sの画素値 s (i 、 i) が得られ、この平滑化画像 S の画素値 s (i、i)の小さな部位ほど値の小さなゲイン補正係数 g (i 、i) (図2 (C)) を出力する。このとき平滑

化画像Sの画素値s(i、j)においてエッジが保存さ れていることにより、ルックアップテーブル3は、エッ ジの部分では値が急激に変化するようにゲイン補正係数 g (i 、j) を出力する。

【0016】遅延回路4は、非線型平滑化器2、ルック アップテーブル3における画像データの処理に要する時 間の分だけ、入力画像Xを構成する画像データを所定時 間遅延させ、これによりルックアップテーブル3から出 30

力されるゲイン補正係数g(i、j)に対して入力画像 Xの画素値x(i、i)をタイミング合わせして出力す

【0017】乗算回路5は、遅延回路4から出力される 入力画像Xの画素値x(i、j)をゲイン補正係数g (i、j) で乗算することにより、入力画像Xの画素値 x (i 、 j) をゲイン補正係数g (i 、 j) により補正 して画素値z(i、j)による画像Zを出力する。

【0018】ここでこの実施の形態においては、ゲイン 補正係数g(1、1)が値1以下に設定されていること により、乗算回路5は、図2(D)に示すように、入力 画像Xのダイナミックレンジを圧縮してなる画素値z (i、i)による画像Zを出力することになる。さらに エッジを保存したまま小さな画素値の変化が取り除かれ てなる平滑化画像Sより、エッジの部分では値が急激に 変化するようにゲイン補正係数 g (i、i) が生成され

ることにより、エッジを除く他の部分では、入力画像X における小さな画素値の変化を保存したまま、エッジの 部分だけ画素値の変化を圧縮した傾向により画素値 z

(i、j)による画像Zが生成される。すなわち画像の 50 れる。

大局的なダイナミックレンジのみ選択的に圧縮して画像 7.が生成される。

【0019】これによりこの実施の形態では、小さな画 素値の変化が圧縮されてなるコントラスト感の低下、周 波数特性の変化による不自然なエッジ強調を有効に回避 して、高い圧縮率でダイナミックレンジを圧縮してなる 画像Zを出力するようになされている。

【0020】 ルックアップテーブル(LUT)6は、こ のようにしてダイナミックレンジを圧縮してなる画像ス 化画像Sの画素値s (i、i)がこの所定値s1より増 10 の特性を最終的に設定して出力画像Yを生成する。すな わちルックアップテーブル6は、図4に示すように、黒 近傍、白近傍の階調を圧縮する入出力特性に設定され る。これによりルックアップテーブル6は、乗算回路5 から出力される画像データのダイナミックレンジにおい て、出力画像Yのダイナミックレンジを越える部分にお ける階調の飽和を防止し、出力画像Yにおいて黒近傍又 は自近傍において階調が失われるような状況を有効に回 避するようになされている。

【0021】(1-2)非線型平滑化器

20 図5は、非線型平滑化器2の構成を示すプロック図であ る。この非線型平滑化器2において、ローパスフィルタ (LPF) 11は、入力画像Xを平滑化する二次元の線 形ローパスフィルタにより構成され、入力画像Xにおけ る画素値x(i、j)を事前にある程度平滑化すること により、以降の処理により点状のノイズの発生を防止す る。なおローパスフィルタ(LPF)11は、入力画像 Xの水平方向、垂直方向に対してそれぞれ1次元の線形 ローパスフィルタを適用することもよっても、同様の処 理を実行することができる。

【0022】 ルックアップテーブル(LUT)12は、 ローパスフィルタ(LPF) 11より出力される画像デ ータF1の画素値を対数変換して出力し、これにより続 く以降の処理において対数化された画素値により画素値 を平滑化し、画素値によって平滑化の程度が異ならない ようにする。

【0023】改良型εフィルタ13AXは、εフィルタ と呼ばれる非線型平滑化フィルタの一部を変更したフィ ルタであり、ルックアップテーブル12より入力される 入力画像L1の水平方向について、エッジを保存したま 40 ま画素値を平滑化して出力する。

【0024】続く改良型εフィルタ13BXは、改良型 εフィルタ13AXと同様の非線型平滑化フィルタであ り、改良型 ε フィルタ 1 3 A X より入力される入力画像 L2の水平方向について、エッジを保存したまま画素値 を平滑化して出力する。改良型 ε フィルタ13BXは、 後述する遅延回路における遅延時間が改良型 ε フィルタ 13AXと異なることにより、平滑化の処理に供するサ ンプリングピッチが改良型εフィルタ13ΒΧと異なる 点を除いて、改良型 ϵ フィルタ13BXと同一に構成さ

【0025】非線型平滑化器2では、このような平滑化 の処理に供するサンプリングピッチが異なる改良型をフ ィルタを所定段数だけ直列に接続して配置する。これに より非線型平滑化器2では、各サンプリングピッチに対 応する各周波数成分の画素値の変動に対してそれぞれ平 滑化の処理を実行し、周波数帯域全体として見たとき に、広い周波数帯域にわたって十分に平滑化の処理を実

行するようになされている。

【0026】改良型εフィルタ13AY、13BY、… …は、垂直方向について平滑化の処理を実行する点を除 10 成であることにより、ここではこの異なる構成に係る部 いて、改良型εフィルタ13AX、13BX、……と同 一に構成される。このためこれら改良型 ε フィルタ13 AY、13BY、……の初段である改良型 ε フィルタ1 3 A Y は、図示しないメモリを介して画像データの配列 が変更されて入力されるようになされている。これらに より非線型平滑化器2は、水平方向及び垂直方向に、エ ッジを保存したまま広い周波数帯域で平滑化の処理を実 行する。

【0027】 ルックアップテーブル(LUT)14は、 化された画像データに対して、ルックアップテーブル1 2とは逆に、逆対数変換の処理を実行して出力する。ロ ーパスフィルタ(LPF) 15は、ローパスフィルタ1 1と同様の線形ローパスフィルタであり、エッジを保存 して平滑化されてなるルックアップテーブル14の出力 画像 L 2 に対して、僅かにエッジを鈍らせ、これにより* $s_n = \sum a_k \cdot w_{n-k}$

*出力画像Yのエッジ近傍領域を滑らかにして、一連の処 理による違和感を防止する。

【0028】 (1-2-1) 改良型 g フィルタ

改良型 ε フィルタ13AXは、一般の ε フィルタの構成 を一部変更したフィルタであることにより、以下におい てはεフィルタとの対比により改良型εフィルタ13A Xの構成を説明する。なお改良型 ε フィルタ13BX、 ……は、平滑化の処理に供するサンプリングピッチが異 なる点を除いて、改良型εフィルタ13AXと同一の構

位について適宜説明し、重複した説明は省略する。また 改良型εフィルタ13AY、13BY、.....について は、処理対象である画像データの入力順序が異なる点を 除いて、改良型 ε フィルタ 1 3 A X 、 1 3 B X 、 ······と 同一構成であることにより、ここでは重複した説明を省 略する。

【0029】ここで通常のεフィルタは、1次元による 2N+1タップの場合、次式により入出力特性を表する ことができる。なおここで sn は出力値であり、 rn は 理対象の中心の入力値であり、ak は重み付け係数であ る。また第2式のシグマの範囲は、k = -Nからk = Nの範囲である。

[0030]

【数1】

 $\Sigma a \times = 1$

| r n - r n-k | ≦ ∈ のとき $w_{n-k} = r_{n-k}$

| r n - r n-k | > e のとき

【0031】 これによりεフィルタでは、図6(A)に 示すように、画素値 r n である画素 p n について出力値 s n を計算する場合、計算の対象である画素 p1 ~ p 2N+1のうちで、中心画素値 rn に対する画素値差分の絶 対値 | rn - rn-k | が基準値 ε より大きな画素 pn-k については、その画素値 rn-k が中心画素値 rn に置き 換えられて、またこの画素値差分の絶対値 | rn - r n-k | が基準値 ε 以下の画素 pn-k については、この画 素 Dn-k の画素値 rn-k が使用されて、重み付け加算の 処理が実行される。

【0032】すなわちεフィルタでは、図6(A)に示 すように、画素Pn の出力値sn を計算する場合に、こ の画素 Pnの前後の画素の中で、基準値 ε を判定基準と して、画素 Pn より大きく画素値 r m が異なる画素 pm については、画素値 r 。 を画素値 r 。 に置き換えて計算 するものであり、これにより単なる線型ローパスフィル タによる処理との比較により図6 (B) に示すように、 エッジを保存したまま、小さな画素値の変化を抑圧す

 $\mathbf{w}_{\,n-k} = \mathbf{r}_{\,n}$ (1)

Z.

【0033】ところがこの方法の場合、出力値を算出す る画素Pn の値rn を中心にして基準値εにより画素値 を判定し、画素 Pn の画素値 rn との置き換えにより重 み付け加算して出力値sn を計算することにより、図6 の示したエッジの両側のように、ほぼ一定の直流レベル により画素値xが変化している場合には、エッジを保存 40 して小さな画素値の変化を抑圧することができるのに対 し、図7に示すように、直流レベルが変化している場合

には、十分に平滑化することが困難になる。

【0034】すなわち入力値「の直流レベルが徐々に増 大又は減少している場合には、出力値snを算出するP η より遠ざかるに従って基準値εによる領域に含まれる 画素数が少なくなる。またこの場合に、画素Paの値r の置き換えにより重み付け加算しても、正しく直流レ ベルの変化を反映して平滑化の処理を実施していないこ とになる。

50 【0035】 このためこの実施の形態では、(1) 式と

の対比により次式により示すように、直流レベルの変化 を一定の関数により近似し、画素 Paの画素値 ra を中 心にしてこの関数により領域(2ε1)を設定して画素 値を判定する。またこの領域より飛び出す画素について は、この関数上における画素値に置き換えて平滑化の処 理を実行する。なおここで(2)式中の第2式のシグマ*

$$\Sigma_{n,k} = 1$$

$$| \mathbf{r}_n - \mathbf{v}_{n-k} | \le \epsilon 1$$
 $| \mathbf{v}_n - \mathbf{v}_{n-k} | \le \epsilon 1$ $| \mathbf{v}_n - \mathbf{v}_{n-k} | > \epsilon 1$ $| \mathbf{v}_n - \mathbf{v}_n - \mathbf{v}_n - \mathbf{v}_n - \mathbf{v}_n - \mathbf{v}_n - \epsilon 1$ $| \mathbf{v}_n - \mathbf{v}_n - \mathbf{v}_n - \mathbf{v}_n - \mathbf{v}_n - \epsilon 1$ $| \mathbf{v}_n - \mathbf{v$

 $K_s = \frac{\sum \mathbf{r}_{s+1} - \mathbf{r}_s}{(2M-1)}$

【0038】ここではこの関数に一次関数を適用し、こ のような直流レベルの変化を直線近似して処理する。す る画素間を結ぶ直線の傾きの平均値Kaを求め、さらに この傾きの平均値K。を基準にして領域を設定して画素 値を判定し、さらにはこの直線上に位置するように画素 値を置き換える。これによりこの実施の形態では、従来 に比して一段と確実にエッジを保存しつつ平滑化の処理 を実行できるようになされている。なお改良型εフィル $タのK_a = 0$ の場合が、図6について説明した一般の ϵ フィルタによる特性である。

【0039】図8は、改良型&フィルタ13AXを示す プロック図である。この改良型εフィルタ13AXは、 所定の遅延時間による遅延回路(D)21A~21Fに 平滑処理に、係る画素値 r を順次入力し、これにより7 タップにより構成される。ここでこれら遅延回路21A ~21 Fは、図9に示すように、所定段数 (m個) のレ ジスタ22A~22Nを直列接続して構成される。これ により改良型 ε フィルタ 1 3 A X は、レジスタ列 2 2 A ~22Nの段数(すなわち遅延回路21A~21Fの遅 延時間に対応する)に応じたサンプリングピッチによ り、7サンプリングの画素値r(i,i)を選択できる ようになされている。

【0040】かくするにつき改良型εフィルタ13AX は、このようにレジスタ22A~22Nの段数に対応す るサンプリングピッチにより画素値「を選択して処理す ることにより、その分、出力値 s を計算する画素の前 後、広い範囲の画素値を使用して平滑化の処理を実行 1. この広い節囲に対応する後段の処理を簡略化するよ うになされている。なお、このように広い範囲の画素値 を使用して平滑化の処理を実行すれば、その分低い周波 数による画素値の変化を十分に抑圧することができる。

【0041】なお改良型εフィルタ13BX、……にお 50 中のvn-k を計算して出力する。

*の範囲は、k=-Nからk=Nの範囲であり、(3)式 中の第2式のシグマの範囲は、s = -Mから s = M - 1の範囲である。

[0036]

【数2】

いては、この改良型εフィルタ13AXとはこのレジス タの段数が異なるよう構成されて対応する遅延回路21 なわち出力値 s_n を計算する前後 2M画素間で、隣接す 20 $A \sim 2.1$ Fの遅延時間がこの改良型 ϵ フィルタ 1.3 A Xとは異なるように設定され、これによりこの改良型εフ イルタ13AXとは異なる周波数特性により平滑化の処 理を実行するようになされている。

..... (3)

【0042】傾き計算回路24(図8)は、初段の遅延 回路21Aに入力される画素値をこれら遅延回路21A ~21Fの出力値と共に入力することにより、遅延回路 21A~21Fの遅延時間に対応する7サンプリングの r (i, i) を入力し、(3) 式の演算処理を実行する ことにより傾きの平均値kaを計算して出力する。

【0043】演算回路25A~25Fは、それぞれ遅延 回路21A~21Fより出力される7タップの画素値の うち、中心タップの出力値 rn を除く各タップ出力 r n-3m、 fn-2m、 fn-m 、 fn+m 、 fn+2m、 fn+3m につい て、(2)式中の第3式及び第4式の演算処理を実行 し、演算結果Wn-3m、Wn-2m、Wn-m 、Wn+m 、 Wn+2m、Wn+3mを出力する。なおここでmは、遅延回路 21A~21Fにおけるレジスタの段数である。

【0044】すなわち演算回路25A(25B~25 F)は、図10に示すように、乗算回路28に傾きの平 40 均値kaを入力し、ここでそれぞれ各タップ出力

Fn-3m、Fn-2m、Fn-m 、Fn+n 、Fn+2m、Fn+3mに対 応する中心タップからの距離kを乗算し、これにより傾 き Ka による一次関数について、各タップ出力 rn-3n、 Fn-2m、Fn-m 、 Fn+m 、 Fn+2m、 Fn+3mのサンプリン グ点における中心タップ出力 rn からの偏差 K。 kを計 質する((2) 式及び(3) 式参昭).

【0045】減算回路29は、この乗算回路28の出力 値К。 k を各タップ出力 г n-3 m 、 г n-2 m 、 г n-n 、 г п+ш 、 Гп+2ш、 Гп+3шより減算することにより (2) 式

【0046】減算回路30は、この減算回路29の出力 値 v n-k を中心タップ出力 r n から減算することによ り、(2) 式中の(rn - vn-k) を計算して出力す

【0047】絶対値化回路31は、この減算回路30の 出力値(rn - vn-k) を絶対値化することにより、 (2) 式中の | rn - vn-k | を計算して出力する。 【0048】比較回路(CMP)32は、この絶対値化 回路31の出力値 | rn - vn-k | と図7について上述 した領域設定用の基準値ε1とを比較することにより、 (2) 式における大小判定の処理を実行し、判定結果を セレクタ(SEL)の切り換え信号として出力する。

【0049】加算回路34は、中心タップ出力 г n と乗 算回路28の出力値K。kを加算することにより、 (2) 式中のra + Ka・kを計算して出力する。

【0050】セレクタ33は、比較回路32から出力さ れる切り換え信号SELにより、各各タップ出力 Гп-3m、Гп-2m、Гп-n 、Гп+m 、Гп+2m、Гп+3m又は 加算回路34の出力値rs + Ka・kを選択的に出力す

【0051】これらにより演算回路25は、傾き計算回 路24で計算された傾きによる一次関数が出力値sを計 算する画素 p n の画素値 r n の位置を通過するように配 置すると共に、この配置による直線の上下に値ε1の領 域を設定し、この領域より画素値が飛び出す画素につい ては、エッジと判定してこの直線上における画素値を置 き換え、この領域内の画素については、この画素本来の 画素値により演算結果を出力する。

【0052】重み付け回路36A~36Gは(図8)、 それぞれ各タップ出力に対応する重み付け係数により演 30 算回路25A~25Fの出力値又は中央タップの出力値 を重み付けして出力し、これにより(2)式中の第1式 におけるシグマの各項の演算処理を実行する。

【0053】加算回路37は、これら重み付け回路36 A~36Gの出力値を加算し、これにより(2)式中の 第1式の演算処理を実行し、処理結果を出力する。

【0054】 (1-2-2) ルックアップテーブル3 ここで図11は、この画像処理回路1による低周波数成 分の階調変換特性を示す特性曲線図である。ルックアッ プテーブル3は、図11に示す階調変換特性により入出 40 力特件が設定される。

【0055】すなわち符号L2による特性により示すよ うに、この画像処理回路1において、最も大きな値によ り低周波数成分による画素値s maxが入力された場 合に、対応する出力値がs cmpとなるようにする。 この場合ダイナミックレンジの圧縮率 g 1 は、 s c m p/s maxで表される。符号L2により表されるよ うに、低層波数成分による画素値s1までの範囲におい ては、入力値に対して利得1による出力値を出力するよ

レンジの上限値より小さな値とし、入力画像Xにおいて 値s1以下の画素値については、敢えて階調を圧縮する 必要が無いものとする。

【0056】 ルックアップテーブル3は、この画素値s 1までの変換特性である利得1の変換特性(符号11に より示す) を用いて、各縦軸の値をこの符号 L 1 による 変換特性により割り算して符号L2/L1により表され る演算により入出力特性が設定されるようになされてい

【0057】(2)第1の実施の形態の動作

以上の構成において、画像処理回路1においては(図 1) 、振像結果等による入力画像Xが非線型平滑化器2 に入力され (図2 (A) 及び (B))、ここでエッジを 保存したまま平滑化処理されて平滑化画像Sが生成され る。ここでこの平滑化画像Sにおいては、エッジを保存 したまた平滑化処理されていることにより、画像のダイ ナミックレンジとは独立な、圧縮せずに保存しておくこ とが望まれる被写体のコントラストを決定付ける成分が 除去されて、画像のダイナミックレンジを決定付ける成 20 分だけを独立して取り出されていることになる。

【0058】画像処理回路1においては、この平滑化画 像Sによりルックアップテーブル3をアクセスしてゲイ ン補正係数g(i, j)が順次生成され(図2(C)及 び図3)、遅延回路4を介して入力される入力画像Xの 画素値x(i, j)が乗算回路5で乗算されて入力画像 Xのダイナミックレンジが圧縮される(図2(D))。 このとき入力画像Xにおいては、画像のダイナミックレ ンジを決定付ける成分だけである平滑化画像Sによるゲ イン補正係数g(i, j)により画素値x(i, j)が 補正されることにより、局所的な画素値の変化、画像の エッジについては保存されたまま、大局的な画素値の変 化のみ選択的に圧縮されて生成され、これにより見た目 のコントラストであるコントラスト感の劣化を防止して ダイナミックレンジが十分に圧縮されてなる画像Zが生 成される。またエッジについても、周波数特性の変化が 防止され、これによりエッジの不自然な強調が防止され

【0059】画像処理回路1においては、このようにし てダイナミックレンジが圧縮されてなる画像Zの画素値 によるルックアップテーブル6のアクセスにより (図1 及び図4)、黒近傍、白近傍の階調が選択的に圧縮さ れ、これにより極めて大きなダイナミックレンジによる 入力画像Xが入力された場合であっても、黒近傍、白近 傍で階調が失われる状況を有効に回避して出力画像Yが 出力される。

【0060】これにより画像処理回路1においては、例 えばビデオカメラ、電子スチルカメラ等の撮像装置にお いて、撮像結果よりダイナミックレンジの狭い記録再生 系で撮像結果を記録再生して撮像結果の品位の劣化を防 うにする。なお画素値s1は、出力画像のダイナミック 50 止することができる。なお撮像装置においては、撮像素 子の漢定により、また感度の異なる画像の合成等によ り、このような涌常に比してダイナミックレンジに広い 撮像結果を得ることができる。また画像表示装置に適用 して、このようなダイナミックレンジの広い画像を表示 する場合に、高品位の画像を表示することができる。

【0061】また逆光補正等の画像補正、コンピュータ による画像合成、画像処理に適用して、広いダイナミッ クレンジによる画像を種々に処理しても、品位の劣化を 防止して処理結果を伝送、記録、再生することができる ことにより、このような種々の処理についても高品位に 処理することができる。また画像伝送装置に適用した場 合には、画質の劣化を有効に回避して高速度で画像伝送 することができる。

【0062】このようにしてエッジ成分を保存して画素 値を平滑化するにつき、画像処理回路1では(図5)、 非線型平滑化器2において、ローパスフィルタ11によ り入力画像Xの画素値x(i,j)を帯域制限した後、 改良型εフィルタ13ΑΧ、……によりエッジを保存し た平滑化の処理が実行され、これにより出力画像Yにお ける点状のノイズが防止される。

【0063】またこの非線型平滑化器2の最終段のロー パスフィルタ15によって平滑化画像Sを帯域制限する ことにより、エッジ近傍の不自然な画素値の変化が低減 され、これによりエッジ近傍が滑らかに表現されてなる 出力画像Yが得られる。

【0064】さらにルックアップテーブル12により画 素値x(i,j)を対数変換してエッジを保存した平滑 化の処理を実行した後、ルックアップテーブル14によ り逆対数変換して平滑化画像Sが生成され、これにより 平滑化の処理結果における画素値による処理結果の相違 30 が防止され、出力画像Yにおける不自然なダイナミック レンジの圧縮が防止される。

【0065】さらに改良型 εフィルタ13AX、13A X、……により、順次エッジを保存して高周波数成分を 抑圧するフィルタリングの処理が水平方向に実行された 後、続く改良型εフィルタ13AY、13AY、……に より、同様の処理が垂直方向に実行され、これにより垂 直、水平方向、さらには斜め方向に、十分なコントラス ト感を確保し、かつエッジの不自然さを防止してなる出 力画像Yを生成することが可能となる。

【0066】さらにこのように各方向に順次エッジを保 存したフィルタリング処理を実行する改良型εフィルタ 13AX, 13AX,, 13AY, 13AY, において、異なるサンプリングピッチによりフィルタリ ングの処理を繰り返し実行し、これにより画像処理回路 1 では、エッジの情報を保存したまま広い周波数帯域で 十分平滑化されてなる平滑化画像 S が生成される。これ により画像処理回路1では、このような平滑化画像Sに 特定周波数成分のみが選択的に残らないように平滑化の 処理を実行することができ、その分出力画像Yの画質劣 50 うな判定の変化による出力画像Yの劣化を防止すること

化を有効に同避することができる。

【0067】各改良型εフィルタ13AX、13AX、 ……、13AY、13AY、……においては(図7及び) 図8)、遅延回路21A~21Fの直列回路に順次画素 値 r が入力され、この遅延回路 2 1 A ~ 2 1 F よる 7 つ のタップ出力について、中心タップ出力を基準にして他 の各タップ出力の値がそれぞれ演算回路25A~25F で判定される(図10)。さらにこの判定により、中心 タップ出力に対して大きく画素値が異なる場合にはエッ ジを跨ぐものと判定され、この大きく異なる画素値が所 定値に置き換えられ、これら中心タップ出力と他のタッ プ出力との間の重み付け加算が重み付け回路36A~3 6 F、加算回路37により実行されて平滑化の処理が実

【0068】この処理において各改良型εフィルタ13 いては、各遅延回路21A~21Fがレジスタ22A~ 22Nの直列回路により構成されていることにより、連 続する画素値をこの直列接続したレジスタ数によるピッ 20 チによりサンプリングして平滑化の処理が実行される。

これにより演算回路25A~25F、重み付け回路36 A~36F、加算回路37については、このタップ出力 に対応する数だけ配置して平滑化の処理を実行でき、そ の分全体構成を簡略化することができる。また平滑化の 処理対象である画素値については、これら油筒回路25 A~25F、重み付け回路36A~36F、加算回路3 7の構成に比して、広い範囲の画素値を用いて平滑化の 処理を実行することができ、これにより例えば低い周波 数による脈動についても十分に平滑化することができ

【0069】画像処理回路1では、これら各改良型εフ ィルタ13AX、13AX、....、13AY、13A Y、……において、この遅延回路21A~21F構成す るレジスタ22A~22Nの段数が異なるように設定さ れていることにより、上述したように、異なるサンプリ ングピッチによりフィルタリングの処理を繰り返し実行 し、出力画像Yの画質劣化が防止される。

【0070】このようにして中心タップ出力を基準にし

てエッジ判定して画素値を置き換える処理において、各 40 改良型εフィルタ13AX、13AX、……、13A Y、13AY、……においては、各タップ出力の低周波 数成分を所定の関数に近似し、中心タップ出力を基準に してこの関数により領域 (2 ϵ 1) が設定され (図

7) 、この領域の属するか否かによりエッジ判定され る。これにより各改良型 ε フィルタ13AX、13AX、……、13AY、13AY、……においては、画素 値が徐々に増大傾向にある場合、減少傾向にある場合に あっても、このような変化の傾向が見られない場合と同 様に、エッジを判定することができ、これによりこのよ

ができる。

【0071】またエッジの部分と判定して画素値を置き 級える場合でも、このようにして求められた関数を基準 にして置き換えの画素値が定ざされ、これにより画素値 を置き換えて求められる重み付け処理結果にこのような 低い周波数による画素値の変化を反映して旧方画像をさ らに一層高温位なものとするとができる。

【0072】さらにこの実施の形態では、この関数として一次関数が適用されることにより、単に直線の頻きを求め、さらにはこの預きにより判定等の処理を実行する 10だけの簡易な構成により一連の処理を実行することができる。

【0073】すなわち各改良型εフィルタ13AX、13AX、……、13AY、13AY、13AY、13AY、 は意計算回路 は意計算回路 くれにかて、フ・つのタップ出力の中から 隣接するタップ出力間で差分値が計算され、この差分値 の平均化により傾きの平均値な、が計算される。さらに 他のタップ出力のサンプリング位置について、この傾きの平均値が、と、中心タップ位置かの距離 により、この傾きによる場合の中心グップ出力からの発値に、 は、映真回路 28で計算され、続く減算回路 29、30でこの傾きに、による陽数 是上における画書値と実際のタップ出力による近似的計算され、 比較回路 3 2において、この差分値が基準値 ε 1より大きいか百か判定される。これにより一次関数による近似関数を用いて、エッジを活かの判定される。これにより一次関数による近似関数を用いて、エッジを活かの判定される。これにより一次関数による近似関数を用いて、エッジを活かの判定される。これにより一次関数による近似関数を用いて、エッジを行かれるこれにより一次関数による近似関数を用いて、エッジを活かの判定を記録を

【0074】さらに他方で、加算回路34において、この傾きK。による関数上における画素値が計算され、比 数回路32における判定地界に応じて、実際のタップ出 力とこのようにして計算された関数上における画素値と が選択出力され、これによりエッジを誇く場合には、一 次関数による近似関数を用いて計算した画源値に置き換 えられて各タップ出力が対応する重み付け回路に出力さ れる。

[0075] これらにより画像処理回路1では、ダイナ ミックレンジの広い紐々の画質による入力画像Xについ で、エッジの劣化、コントラスト感の低下を防止して十 分にダイナミックレンジを圧縮することができる。

【0076】 (3) 第10実施の形態の効果 以上の構成によれば、エッジを保存したまま入力画像 X を平滑化してヴイン補正係数 皮を求め、このゲイン補正 係数 g により入力画像の画素値を補正することにより、 コントラスト感の低下、不自然なエッジ強調等を有効に 回避して、高い圧縮率でダイナミックレンジを圧縮する ことができるようにする。

【0077】またこのようにしてダイナミックレンジを 圧縮した後、さらにルックアップテーブル6により階調 を補正することにより、黒近傍、白近傍における階調の 喪失を有効に回避することができる。 【0078】またこのようにエッジを保存したまま入力 画像Xを平滑化する際に、ローバスフルルぐにより符域 制限した後、対数変換して処理し、また処理無果を逆対 数変換することにより、点状のノイズの発生を防止し、 また 重素値による処理結果の相違を防止することができ な

【0079】さらにエッジを保存したまま入力画像Xを 平滑化する際に、サンブリングピッチが異なる複数のフィルタリングを繰り返すことにより、広い周波数帯域で ー様に平滑化することができ、これにより高い品位によ る出力画像Yを出力することができる。

【0080】また連載する画素を所定ピッチによりサン リングしてこの平滑化の処理を実行することにより、 簡易な構成により広い範囲の画素値をサンプレングして 平滑化の処理を実行することができ、これにより低い馬 波数についても十分に平滑化の処理を実行して、高品位 の出力画像と登得ることができる。

【0081】またこの平滑化の処理において、両素値に より関数を近似し、この関数により領域を設定してエッ 20 ジ判定することにより、さらにこの関数を利用して置き 換えの両素値を計算することによっても、高品位の出力 両像Yを得ることができる。

【0082】さらにこの関数を一次関数としたことによ り、全体構成を簡略化することができる。

【0083】(4)第2の実施の形態

図12は、図1との対比により本発明の第2の実施の形態に係る画像処理回路を示すプロック図である。この画像処理回路41において、画像処理回路1との同一の構成は、対応する符号を付して示し、重複した説明は省略する

【0084】この画像処理回路41は、画像処理回路1 と同様に、図13に示すように、画素値x(i, j)に よる入力画像X(図13(A))を平常化して平常化画 像Sを生成し(図13(B))、この平常化画像Sの画 素値s(i, j)より生成されるゲイン補圧破数g

(i, j) (図13 (C)) により入力画像 Xのダイナ ミックレンジを圧縮する。この処理において、画像処理 回路 4 1 は、平滑化処理による出力値 5 (i, j) を入 力 画像 Xの画素値 x (i, j) より減算して得られる減 40 質値 x (i, j) の変化を強調する。 の画素値 y (i, j) の変化を強調する。

 値s(i, j)を加算する。これによりこの画像処理回 路41は、入力画像Xに比して、非線型平滑化器2によ り除去される小さな脈動を強調してなる加算回路 4 4 の 加算結果を乗算回路5で乗算して出力画像Yを生成し、 このように小さな脈動を強調してなる画像を処理する 分、図1について上述した画像処理回路1に比していわ ゆるシャープな画像を出力することができるようになさ れている。

【0086】図12に示す構成によれば、平滑化処理に よる出力値s (i, j)を入力画像Xの画素値x (i, j) より減算して得られる減算値x(i, j)-s (i, j) を用いて出力画像Yの画素値y(i, j)の 変化を強調することにより、第1の実施の形態の効果に 加えて、一段とシャープな画像を出力することができ

【0087】(5)第3の実施の形態

図14は、図12との対比により本発明の第3の実施の 形態に係る画像処理回路を示すプロック図である。この 画像処理回路51において、画像処理回路41との同一 省略する。

【0088】この画像処理回路51では、平滑化画像S の出力値s (i、j) によりルックアップテーブル (L UT) 52をアクセスして乗算回路43における利得を 設定する。ここでこのルックアップテーブル52におい ては、図15に示すように入出力特性が設定される。こ れによりルックアップテーブル52は、出力値s(i、 i) が所定値以下の場合には、乗算回路 4 3 を一定利得 に設定し、この所定値以上に出力値s(i、i)が増大 すると、徐々に値1に近づくように利得を設定する。 【0089】これにより画像処理回路51では、画素値 の大きな領域については、コントラストを強調する程度 を低減するようになされている。すなわち画像一般にお いては、大きい画素値を持つ画素近傍程、コントラスト も十分に大きい場合が多く、一様にコントラストを強調 したのでは、このような画素近傍では必要以上にコント ラストを強調することになり、その分処理結果において は、品位が劣化して観察される。ところがこの実施の形 態のように、画素値の大きな領域について、コントラス トを強調する程度を低減すれば、全体として自然な品位 の高い画像を出力することができる。

【0090】図14に示す構成によれば、画素値に応じ て強調する程度を可変することにより、さらに一段と品 位の高い画像を出力することができる。

【0091】(6)第4の実施の形態

図16は、図12との対比により本発明の第4の実施の 形能に係る画像処理同路を示すプロック図である。

【0092】この画像処理回路61は、図17に示すよ うに、ノイズ除去フィルタ62により入力画像Xのノイ ズを事前に除去した後、続く乗算回路63により、一様 50 73及び74により正規化処理された色差信号の画素値

な利得により乗算してダイナミックレンジを拡大し (図 17(A) 及び(B))、画像処理同路1によりダイナ ミックレンジを圧縮して元の入力画像Xのダイナミック レンジにより出力する(図17(C))。

【0093】ここでノイズ除去フィルタ62は、一般的 なコアリング処理、メディアンフィルタ、 ϵ フィルタ又 は改良型εフィルタが適用される。またこの実施の形態 において、画像処理回路1は、図3について上述した特 性とは逆に、所定の画素値以上では一定の利得により画 10 素値を補正し、所定の画素値以下の範囲では利得が低下 するように画素値を補正する。

【0094】この図16に示す構成によれば、逆光画像 などコントラストが極端に高い画像について、画質の劣 化を有効に同避して階調の補正等の処理を実行すること ができる。

【0095】すなわち図1等について上述した画像処理 回路においては、図3に示すような単調減少による特件 により画素値を補正することにより、入力画像Xの暗い 部分の明度は下げずに、明るい部分のみ明度を下げてダ の構成は、対応する符号を付して示し、重複した説明は 20 イナミックレンジを圧縮することになる。ところがこの 実施の形態では、これとは逆の特性によりダイナミック レンジを圧縮することにより、入力画像Xの適度な明る さを持つ部分はそれ以上明るくならないようにしなが ら、暗い部分のみ明度を上げて全体のコントラストを圧 縮することができる。これにより逆光補正等の処理を実 行することができる。

【0096】(7)第5の実施の形態

図18は、本発明の第5の実施の形態に係る画像処理回 路を示すプロック図である。この画像処理回路71にお 30 いて、マトリクス回路72は、赤色、青色、緑色の色信 号R、B、Gを演算処理して輝度信号Y、色差信号R-Y、B-Yを生成する。

【0097】画像処理回路1は、この輝度信号Yを選択 的に処理することにより、輝度信号Yのダイナミックレ ンジを圧縮して出力する。かくするにつき、この画像処 理回路71は、このように輝度信号Yについてのみ画像 処理回路1で選択的にダイナミックレンジを圧縮するこ とにより、赤色、青色、緑色の色信号R、B、G間にお ける信号レベルの比率の変化を防止し、この比率の変化 40 による色相の変化を防止するようになされている。

【0098】除算器73及び74は、それぞれ色差信号 R - Y、B - Y を輝度信号Yにより割り算することによ り、色差信号R-Y、B-Yを輝度信号Yにより正規化 する。遅延回路77及び78は、この除算器73及び7 4から出力される色差信号R-Y、B-Yを画像処理回 路1における処理の分、遅延させて出力する。乗算回路 7.7及び7.8は、それぞれ遅延回路7.7及び7.8から出 力される色差信号R-Y、B-Yに、画像処理回路1か ら出力される輝度信号Yを乗算することにより、除算器

を補正する。

【0099】すなわち単に釋度信号のみのダイナミック レンジを圧縮した場合であっても、色差信号において は、輝度信号と色信号との差分信号であることにより、 何ら色差信号の信号レベルを補正しない場合、対応する 輝度レベルで彩度の成分の比率が上がり、結局画像全体 として見たとき彩度が高くなってしまう。

【0100】これによりこの実施の形態では、輝度信号 成分により色差信号成分を事前に正規化して輝度信号成 分のダイナミックレンジを圧縮した後、この輝度信号成 10 を示すプロック図である。 分による画素値で正規化処理された色差信号成分の画素 値を補正することにより、このような彩度の変化を防止 してカラーによる映像信号のダイナミックレンジを良好 に抑圧するようになされている。

【0101】(8) 他の実施の形態

なお上述の実施の形態においては、改良型εフィルタに おいて、1次関数の近似によりエッジ判定し、また画素 値を置き換える場合について述べたが、本発明はこれに 限らず、例えば2次関数等により近似してこれらの処理 を実行してもよい。

【0102】また上述の実施の形態においては、改良型 εフィルタにおいて、関数の近似によりエッジ判定し、 また画素値を置き換える場合について述べたが、本発明 はこれに限らず、エッジの判定だけ、又は画素値の置き 換えだけに関数による近似を利用してもよい。

【0 1 0 3】また上述の実施の形態においては、改良型 εフィルタにおいて、連続する画素値を所定のサンプリ ングピッチによりサンプリングして処理する場合につい て述べたが、本発明はこれに限らず、実用上十分な回路 規模を確保することができる場合等にあっては、連続す 30 る画素をそのまま処理するようにしてもよい。

【0104】また上述の実施の形態においては、改良型 εフィルタによる繰り返しの処理により入力画像を平滑 化する場合について述べたが、本発明はこれに限らず、 実用上十分な特性を得ることができる場合、繰り返しの 処理を省略してもよい。

【0105】また上述の実施の形態においては、改良型 εフィルタにより非線型平滑化器を構成する場合につい て述べたが、本発明はこれに限らず、通常のεフィルタ により非線型平滑化器を構成してもよい。

【0 1 0 6】また上述の実施の形態においては、最終的 にルックアップテーブル6により入出力特性を補正する 場合について述べたが、本発明はこれに限らず、このル ックアップテーブル6による処理を省略してもよく、ま たルックアップテーブル3により併せて特性を補正する ようにしてもよい.

【0 1 0 7】また上述の実施の形態においては、各回路 ブロックで画素値等を処理して画像処理回路を構成する 場合について述べたが、本発明はこれに限らず、全体又 は一部を演算処理により構成するようにしてもよい。

[0108]

【発明の効果】上述のように本発明によれば、エッジを 保存したまま入力画像を平滑化してゲイン補正係数を求 め、このゲイン補正係数により入力画像の画素値を補正 することにより、コントラスト感の低下、不自然なエッ ジ強調を有効に回避して、高い圧縮率でダイナミックレ ンジを圧縮することができる。

【図面の簡単な説明】

【図1】本発明の第1の実施の形態に係る画像処理回路

【図2】図1の画像処理回路の動作の説明に供するタイ ムチャートである。

【図3】図1の画像処理回路のルックアップテーブル3 の特件を示す特件曲線図である。

【図4】図1の画像処理回路のルックアップテーブル6 の特性を示す特件曲線図である。

【図5】図1の画像処理回路の非線型平滑化器を示すブ ロック図である。

【図6】図5の非線型平滑化器の動作の説明に供するタ 20 イムチャートである。

【図7】図5の非線型平滑化器の改良型 ε フィルタの説 明に供するタイムチャートである。

【図8】図5の非線型平滑化器の改良型 ε フィルタを示 すプロック図である。

【図9】図8の改良型εフィルタの遅延回路を示すプロ ック図である。

【図10】図8の改良型εフィルタの演算回路を示すブ ロック図である。

【図11】図1の画像処理回路のルックアップテーブル 3の特性の説明に供する特性曲線図である。

【図12】本発明の第2の実施の形態に係る画像処理回 路を示すプロック図である。

【図13】図12の画像処理回路の動作の説明に供する タイムチャートである。

【図14】本発明の第3の実施の形能に係る画像処理回 路を示すプロック図である。

【図15】図12の画像処理回路のルックアップテーブ ル52の説明に供する特性曲線図である。

【図16】本発明の第4の実施の形態に係る画像処理回 40 路を示すプロック図である。

【図17】図16の画像処理回路の動作の説明に供する タイムチャートである。

【図18】本発明の第5の実施の形態に係る画像処理回 路を示すプロック図である。

【符号の説明】

1、41、51、61、71……画像処理回路、2…… 非線型平滑化器、3、6、12、14、52……ルック アップテーブル、11、15ローパスフィルタ、1 3 A X、1 3 B X、1 3 A Y、1 3 B Y ······ 改良型 ε フ 50 イルタ、24……傾き検出回路、25A~25F……演

-11-

(A)

(B)

フロントページの続き

(72)発明者 上田 和彦

東京都品川区北品川6丁目7番35号 ソニ

一株式会社内

F ターム(参考) 58057 BA28 CC01 CE02 CE05 CE06

CE11 CE17 CE20 DC16

5C021 PA12 PA17 PA34 PA42 PA53 PA57 PA58 PA66 PA67 PA76

> PA80 PA99 RA02 RB03 RB07 RB09 SA25 XA31

5C066 AA01 AA03 AA05 BA01 CA05

EA05 EA07 EA11 GA01 GA02

GA26 GB01 HA01 JA01 KA12

KC02 KC11 KD02 KD04 KD06 KD08 KE02 KE03 KE05 KE09

KL13 LA02

5C077 LL02 MP01 MP07 PP02 PP03 PP10 PP15 PP16 PP28 PP47

PQ03 PQ08 PQ23 RR21 TT09