МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа физики и исследований им. Ландау

Лабораторная работа

Спектральный анализ электрических сигналов

Выполнила: Карасёва Таисия Б02-001 Цель работы: исследование спектра колебаний электрических сигналов.

В работе используются: генератор сигналов произвольной формы, цифровой осциллограф с функцией быстрого преобразования Фурье

Теория

Рис. 1: График периодической функции с периодом T

Пусть заданная функция f(t) периодически повторяется с частотой $\Omega_1=2\pi/T$, где T- период повторения (Рис. 1). Её разложение в ряд Фурье имеет вид

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(n\Omega_1 t) + b_n \sin(n\Omega_1 t) \right]$$

или

$$f(t) = \frac{A_0}{2} + \sum_{n=1}^{\infty} A_n \cos(n\Omega_1 t - \psi_n)$$

Здесь $a_0/2 = A_0/2$ — постоянная составляющая (среднее значение) функции f(t); a_n и b_n — амплитуды косинусных и синусных членов разложе-ния. Они определяются выражениями

$$a_n = \frac{2}{T} \int_{t_1}^{T+t_1} f(t) \cos(n\Omega_1 t) dt$$
$$b_n = \frac{2}{T} \int_{t_1}^{T+t_1} f(t) \sin(n\Omega_1 t) dt$$

Точку начала интегрирования t_1 можно выбрать произвольно. В тех случаях, когда сигнал чётен относительно t=0, в тригонометрической записи остаются только косинусные члены, так как все коэффициенты b_n обращаются в нуль. Для нечётной относительно t=0 функции, наоборот, ряд состоит только из синусных членов.

Амплитуда A_n и фаза $\psi_n n$ -й гармоники выражаются через a_n и b_n следующим образом:

$$A_n = \sqrt{a_n^2 + b_n^2}; \quad \psi_n = \operatorname{arctg} \frac{b_n}{a_n}$$

Как мы видим, спектр любой периодической функции состоит из набора гармонических колебаний с дискретными частотами: $\Omega_1, 2\Omega_1, 3\Omega_1 \dots$ и постоянной составляющей, которую можно рассматривать как колебание с нулевой частотой $(0 \cdot \Omega_1)$.

Представим выражение в комплексной форме. Для этого заменим косинусы экспонентами в соответствии с формулой

$$\cos\alpha = \frac{e^{i\alpha} + e^{-i\alpha}}{2}$$

Подстановка даёт

$$f(t) = \frac{1}{2} \left(A_0 + \sum_{n=1}^{\infty} A_n e^{-i\psi_n} e^{in\Omega_1 t} + \sum_{n=1}^{\infty} A_n e^{i\psi_n} e^{-in\Omega_1 t} \right)$$

Введём комплексные амплитуды \tilde{A}_n и \tilde{A}_{-n}

$$\tilde{A}_n = A_n e^{-i\psi_n}; \quad \tilde{A}_{-n} = A_n e^{i\psi_n}; \quad \tilde{A}_0 = A_0$$

Разложение f(t) приобретает вид

$$f(t) = \frac{1}{2} \sum_{n = -\infty}^{\infty} \tilde{A}_n e^{in\Omega_1 t}$$

Как мы видим, введение отрицательных частот позволяет записать разложение Фурье особенно простым образом.

Для расчёта комплексных амплитуд A_n умножим левую и правую части на $e^{-ik\Omega_1t}$ и проинтегрируем полученное равенство по времени на отрезке, равном одному периоду, например, от $t_1=0$ до $t_2=2\pi/\Omega_1$. В правой части обратятся в нуль все члены, кроме одного, соответствующего n=k. Этот член даёт $A_kT/2$. Имеем поэтому

$$A_k = \frac{2}{T} \int_{0}^{T} f(t)e^{-ik\Omega_1 t} dt$$

Рассмотрим периодические функции, которые исследуются в нашей работе.

Периодическая последовательность прямоугольных импульсов

С амплитудой V_0 , длительностью τ , частотой повторения $f_{\text{повт}}=1/T$, где T- период повторения импульсов.

Среднее значение

$$\langle V \rangle = \frac{a_0}{2} = \frac{A_0}{2} = \frac{1}{T} \int_{-\tau/2}^{\tau/2} V_0 dt = V_0 \frac{\tau}{T}$$

Амплитуды косинусных составляющих равны

$$a_n = \frac{2}{T} \int_{-\tau/2}^{\tau/2} V_0 \cos(n\Omega_1 t) dt = 2V_0 \frac{\tau}{T} \frac{\sin(n\Omega_1 \tau/2)}{n\Omega_1 \tau/2} \sim \frac{\sin x}{x}$$

Поскольку наша функция чётная, все амплитуды синусоидальных гармоник $b_n=0$. Спектр $F(\nu)$ последовательности прямоугольных импульсов представлен на Рис. 26. Амплитуды гармоник A_n меняются по Закону $(\sin x)/x$ На Рис. 26 изображён спектр для случая, когда T кратно τ . Назовём шириной спектра $\Delta\omega$ (или $\Delta\nu$) расстояние от главного максимума ($\nu=0$) до первого нуля, возникающего, как нетрудно убедиться, при $\Omega_1=2\pi/\tau$ При этом

$$\Delta\omega\tau\simeq 2\pi$$
 или $\Delta\nu\Delta t\simeq 1$

Полученное соотношение взаимной связи интервалов $\Delta \nu$ и Δt является частным случаем соотношения неопределенности в квантовой механике. Несовместимость острой локализации волнового процесса во времени с узким спектром частот - явление широко известное в радиотехнике. Ширина селективной настройки $\Delta \nu$ радиоприёмника ограничивает приём радиосигналов Длительностью $t<1/\Delta \nu$

Рис. 2: а) периодическая последовательность прямоугольных импульсов и б) спектр периодической последовательности прямоугольных импульсов

Периодическая последовательность цугов

Гармонического колебания $V_0\cos{(\omega_0t)}$ с длительностью цуга τ и периодом повторения T (Рис. 3a)

Функция f(t) снова является чётной относительно t=0. Амплитуда n -й гармоники равна

$$A_n = a_n = \frac{2}{T} \int_{-\tau/2}^{\tau/2} V_0 \cos(\omega_o t) \cdot \cos(n\Omega_1 t) dt =$$

$$= V_0 \frac{\tau}{T} \left(\frac{\sin\left[(\omega_0 - n\Omega_1) \frac{\tau}{2} \right]}{(\omega_0 - n\Omega_1) \frac{\tau}{2}} + \frac{\sin\left[(\omega_0 + n\Omega_1) \frac{\tau}{2} \right]}{(\omega_0 + n\Omega_1) \frac{\tau}{2}} \right)$$

Такое спектральное распределение F (ω) для случая, когда $\frac{T}{\tau}$ равно целому числу, представлено на рис. Рис. 36. Сравнивая спектр последовательности прямоугольных импульсов и спектр цугов (см. рис. 26 и Рис. 36), мы видим, что они аналогичны, но их максимумы сдвинуты по частоте на величину ω_0 .

Рис. 3: а) периодическая последовательность цугов и б) спектр периодической последовательности цугов

Амплитудно-модулированные колебания.

Рассмотрим гармонические колебания высокой частоты ω_0 , амплитуда которых медленно меняется по гармоническому закону с частотой $\Omega\left(\Omega \ll \omega_0\right)$ (рис. $\Pi.6$):

$$f(t) = A_0[1 + m\cos(\Omega t)]\cos(\omega t)$$

Коэффициент m называют глубиной модуляции. При m<1 амплитуда колебаний меняется от минимальной $A_{\min}=A_0(1-m)$ до максимальной $A_{\max}=A_0(1+m)$. Глубина модулящии может

Рис. 4: а) гармонические колебания, модулированные по амплитуде б) спект гармонических колебаний, модулированных по амплитуде

быть представлена в виде

$$m = \frac{A_{\text{max}} - A_{\text{min}}}{A_{\text{max}} + A_{\text{min}}}$$

Простым тригонометрическим преобразованием можно найти спектр амплитудно-модулированных колебаний:

$$f(t) = A_0 \cos(\omega_0 t) + A_0 m \cos(\Omega t) \cos(\omega_0 t) =$$

$$= A_0 \cos(\omega_0 t) + \frac{A_0 m}{2} \cos(\omega_0 + \Omega) t + \frac{A_0 m}{2} \cos(\omega_0 - \Omega) t$$

Спектр $F(\omega)$ таких колебаний содержит три составляющих (рис. П. 7) Основная компонента представляет собой исходное немодулированное колебание с иесущей частотой ω_0 и амплитудой $A_{\rm oc}=A_0-$ первое слагаемое в правой части; боковые компоненты спектра соответствуют гармоническим колебаниям с частотами ($\omega_0+\Omega$) и ($\omega_0-\Omega$) — Второе и третье слагаемые. Амплитуды этих двух колебаний одинаковы и составляют m/2 от амплитуды немодулированного колебания: $A_{\rm бок}=A_0m/2$

Ход работы

1. Исследование спектра периодических последовательностей прямоугольных импульсов.

Устанавливаем прямоугольные колебания, $f_{\text{повт}}=1$ к Γ ц, $\tau=100$ мкс. Изменяя $f_{\text{повт}}$ или τ , получим на экране разные изображения спектров.

Рис. 5: $f_{\text{повт}} = 1 \text{ к}\Gamma \text{ц}, \tau = 100 \text{ мкс}.$

Рис. 6: $f_{\text{повт}} = 2 \text{ к}\Gamma \text{ц}, \tau = 100 \text{ мкс.}$

Рис. 7: $f_{\text{повт}} = 1 \text{ к}\Gamma$ ц, $\tau = 200 \text{ мкс}$.

При увеличении au уменьшается $\Delta \nu$, а при увеличении $f_{\text{повт}}$ пики становятся дальше друг от друга.

Проведём измерения зависимости ширины спектра $\Delta \nu$ от длительности импульса au

Таблица 1: Зависимость ширины спектра $\Delta \nu$ от длительности импульса τ

τ , MKC									
$\Delta \nu$, к Γ ц	24	17	13	10	7.7	7.0	6.2	5.5	5.0

С помощью МНК получим угловой коэффициент $\Delta \nu \tau = 1.01 \pm 0.2$, что в пределах погрешности совпадает с 1.

Рис. 8: Зависимость ширины спектра $\Delta \nu$ от длительности импульса τ

2. Исследование спектра периодической последовательности цугов. Установим $f_{\text{повт}}=1~\text{к}\Gamma$ ц и $\nu_0=25~\text{к}\Gamma$ ц и посмотрим на поведение спектра при изменении τ .

Рис. 9: $\tau = 100$ мкс.

Рис. 10: $\tau = 200$ мкс.

Из данных видно, что с увеличением τ уменьшается $\Delta\omega$ (обратная пропорциональность). Теперь зафиксируем $\tau=100$ мкс и будем менять значение ν_0 .

Рис. 11: $\nu_0 = 10$ кГЦ.

Рис. 12: $\nu_0 = 25$ кГЦ.

Рис. 13: $\nu_0 = 40$ кГЦ.

Как видно, картина смещается без изменения расстояния между спектральными компонентами.

Установитм частоту несущей $\nu_0=30$ к Γ ц. Определим зависимость $\delta \nu(f_{\text{повт}})$

Погрешность измерения определяется погрешностью генератора $0.5~\Gamma$ ц. То есть

Таблица 2: Зависимость расстояния между соседними спектральными компонентами от частоты повторения импульсов

$f_{\text{повт}}$, к Γ ц	0.5	1	2	4	5
$\delta \nu$, к Γ ц	0.5	1	2	4	5

$$\frac{f_{\text{повт}}}{\delta \nu} = 1 \pm 0.01$$
, что совпадает с теоретическим значением в пределах погрешности

3. Исследование спектра амплитудно модулированного сигнала.

Рассмотрим амплитудно промодулированный сигнал с параметрами $\nu_0=25$ к Γ ц, $f_{\text{мод}}=1$ к Γ ц.

Рассмотрим зависимость отношения
$$k=\frac{A_{\text{бок}}}{A_{\text{осн}}}$$
 и $m=\frac{A_{max}-A_{min}}{A_{max}+A_{min}}$

Таблица 3: Зависимость $\frac{A_{\text{бок}}}{A_{\text{осн}}}$ от глубины модуляции

A_{max} , мВ	543.7	617.5	686.3	765.1	833.9	922.5	965.6
A_{min} , MB	445.3	366.5	302.6	233.7	155.0	76.3	43.1
$A_{\text{осн}}$, мВ	323.9	323.9	323.9	323.9	323.9	323.9	323.9
$A_{\text{бок}}, \text{мB}$	15.2	40.1	59.8	89.5	113.3	138.9	151.4
k	0.0469	0.1238	0.1846	0.2763	0.3498	0.4288	0.4674
\overline{m}	0.0995	0.2551	0.3880	0.5320	0.6865	0.8472	0.9145
σ_k	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003
σ_m	0.0001	0.0001	0.0002	0.0002	0.0002	0.0002	0.0002

$$\sigma_{A_{max}} = \sigma_{A_{min}} = \sigma_{A_{\text{och}}} = \sigma_{A_{\text{6ok}}} = 0.1 \; mV = \sigma_{A}$$

$$\sigma_k = \frac{\sigma_A}{A_{\text{OCH}}} \sqrt{k^2 + 1}$$

$$\sigma_m = \frac{2\sigma_A}{(A_{max} + A_{min})^2} \sqrt{A_{max}^2 + A_{min}^2}$$

С помощью МНК получим $\frac{k}{m} = 0.505 \pm 0.008$

Рис. 14: Зависимость $\frac{A_{\mathrm{бок}}}{A_{\mathrm{och}}}$ от глубины модуляции

Вывод

В ходе работы

- 1. было проведено исследование спектра периодических последовательностей прямоугольных импульсов, а именно
 - (а) качественно проверена зависимость спектра от частоты повторения импульсов и от длительности импульса
 - (b) построена зависимость длительности ширины спектра от длительности импульса. Произведение этих величин было получено с относительной погрешностью 2% и в пределах погрешности совпало с теоретическим значением, чем было проверено соотношение неопределённостей
- 2. было проведено исследование спектра периодических последовательностей цугов, а именно
 - (а) качественно проверена зависимость спектра от частоты несущей и от длительности импульса
 - (b) построена зависимость расстояния между соседними спектральными компонентами от частоты повторения импульсов. Отношение этих величин было определено с относительной погрешностью 1% и в пределах погрешности совпало с теоретическим значением
- 3. было проведено исследование спектра амплитудно модулированного сигнала, а именно был получен угловой коэффициент зависимости отношения основной компоненты спектра к боковой от глубины модуляции. Относительная погрешность составила 15%, полученное значение совпало с теоретическим в пределах погрешности.