DEMOSTRACIONES DEL TEÓRICO INTRODUCCIÓN A LA LÓGICA Y LA COMPUTACIÓN 2023

1. Orden

- 1. Sean $u \in P$, $S \subseteq P$ y f un isomorfismo. Entonces u es cota superior de $S \iff f(u)$ es cota superior de $f(S) := \{f(x) : x \in S\}$.
- 2. Leyes de monotonía y desigualdades distributivas en reticulados.
- 3. Las operaciones de supremo e ínfimo en posets reticulados son idempotentes, conmutativas, asociativas y satisfacen las leyes de absorción.
- 4. Sea (L, \sqcup, \sqcap) un retículo. Entonces, $x \leq y :\iff x \sqcup y = y$ es un orden parcial sobre L.
- 5. Todo orden total es un reticulado distributivo.
- 6. $\mathcal{P}(X)$ es distributivo para todo X.
- 7. Si L es distributivo y L' se incrusta en L, entonces L' es distributivo.
- 8. Todo retículo distributivo cumple con la Propiedad Cancelativa.
- 9. Leyes de De Morgan en un álgebra de Boole.
- 10. f es isomorfismo de orden entre {reticulados / álgebras de Boole } A y A' si y sólo si es un isomorfismo de {reticulados / álgebras de Boole }.
- 11. Si D_1 y D_2 son decrecientes en (P, \leq) , entonces $D_1 \cap D_2$ y $D_1 \cup D_2$ también lo son.
- 12. $(\mathcal{D}(P), \subseteq)$ es un subreticulado de $(\mathcal{P}(P), \subseteq)$, y luego es distributivo.
- 13. Para todo reticulado L, la función $F: L \to \mathcal{D}(Irr(L))$ dada por $F(x) := \{a \in Irr(L) : a \leq x\}$ satisface $\forall x, y \in L, x \leq y \iff F(x) \subseteq F(y)$.
- 14. Para todo reticulado distributivo L y $a,b,c\in L,$ $a\vee(b\wedge c)=(a\vee b)\wedge(a\vee c).$
- 15. Teorema $M_3 N_5$: L no es distributivo $\iff M_3$ ó N_5 son subreticulados de L (prueba de \Leftarrow).
- 16. Todo irreducible de un álgebra de Boole es un átomo.

2. Lógica

- 1. Toda $\varphi \in PROP$ tiene una serie de formación.
- 2. Unicidad en el Teorema de definición por recursión en subfórmulas.
- 3. Para toda asignación $v, \varphi_1, \varphi_2 \in PROP \ y \ p \in \mathcal{V}, \ \llbracket \varphi_1 \rrbracket_v = \llbracket \varphi_2 \rrbracket_v \ \text{implica} \ \llbracket \psi[\varphi_1/p] \rrbracket_v = \llbracket \psi[\varphi_2/p] \rrbracket_v.$
- 4. Caso $(\rightarrow I)$ de la prueba del Teorema de Corrección.
- 5. Lema de No Derivación.
- 6. $\Gamma \vdash \varphi \iff \Gamma \cup \{\neg \varphi\}$ es inconsistente.
- 7. Los conjuntos consistentes maximales son cerrados por derivaciones.
- 8. Los conjuntos consistentes maximales realizan la negación y la implicación.

3. Autómatas

- 1. D es un estado del determinizado si y sólo si D = [D].
- 2. El complemento de un lenguaje regular es regular.
- 3. Enunciado (solamente) del Pumping Lemma, contrarrecíproca y versión estratégica para mostrar que un lenguaje no es regular.
- 4. Saber los siguientes algoritmos, sin las demostraciones:
 - a) Determinización de ε -NFAs.
 - b) Obtención de ε -NFA a partir de una Regex.
 - c) Teorema de Kleene.

- d) Obtención de NFA a partir de una CFG regular. e) Obtención de CFG regular a partir de un NFA.