FCRN

用于深度估计的深度网络,作者提出了一个深度估计模型,基本结构是encoder-decoder,然后decoder用了project模块,其实就是加了一个residual模块。然后上采样用的是unPooling 2x2 + conv 5x5 ,这个叫up-conv。

如果是结合了residual的upconv,就叫做up-proj,up-proj的两个分支都是接了5x5卷积保证 resulotion相同,主分支还接了3x3卷积,然后相加。

Figure 2. From up-convolutions to up-projections. (a) Standard up-convolution. (b) The equivalent but faster up-convolution. (c) Our novel up-projection block, following residual logic. (d) The faster equivalent version of (c)

最后作者为了加速训练,设计了一种等效的fast up-conv/up-proj模块,速度更快,借鉴了fracted conv思想,把5x5卷积拆成小卷积核。

Figure 3. **Faster up-convolutions.** Top row: the common up-convolutional steps: unpooling doubles a feature map's size, filling the holes with zeros, and a 5×5 convolution filters this map. Depending on the position of the filter, only certain parts of it (A,B,C,D) are multiplied with non-zero values. This motivates convolving the original feature map with the 4 differently composed filters (bottom part) and interleaving them to obtain the same output, while avoiding zero multiplications. A,B,C,D only mark locations and the actual weight values will differ

最后的网络是resnet + 4个up模块的堆叠,相当于上采样16x。

Figure 1. **Network architecture.** The proposed architecture builds upon ResNet-50. We replace the fully-connected layer, which was part of the original architecture, with our novel up-sampling blocks, yielding an output of roughly half the input resolution

然后是loss设计用了berHu loss,在我看来和smoothL1 loss没有太大区别。

$$\mathcal{B}(x) = \begin{cases} |x| & |x| \le c, \\ \frac{x^2 + c^2}{2c} & |x| > c. \end{cases}$$
 (1)

最后的结果对比,在不同的backbone上,显然resnet效果比较好,而且作者提出的up-conv模块优于de-conv,这个是我比较疑惑的。但是差的不太多

Architecture		Loss	#params	rel	rms	\log_{10}	δ_1	δ_2	δ_3
AlexNet	FC	\mathcal{L}_2	104.4×10^{6}	0.209	0.845	0.090	0.586	0.869	0.967
		berHu		0.207	0.842	0.091	0.581	0.872	0.969
	UpConv	\mathcal{L}_2	6.3×10^{6}	0.218	0.853	0.094	0.576	0.855	0.957
		berHu		0.215	0.855	0.094	0.574	0.855	0.958
VGG	UpConv	\mathcal{L}_2	18.5×10^{6}	0.194	0.746	0.083	0.626	0.894	0.974
		berHu		0.194	0.790	0.083	0.629	0.889	0.971
ResNet	FC-160x128	berHu	359.1×10^{6}	0.181	0.784	0.080	0.649	0.894	0.971
	FC-64x48	berHu	73.9×10^{6}	0.154	0.679	0.066	0.754	0.938	0.984
	DeConv	\mathcal{L}_2	28.5×10^{6}	0.152	0.621	0.065	0.749	0.934	0.985
	UpConv	\mathcal{L}_2	43.1×10^{6}	0.139	0.606	0.061	0.778	0.944	0.985
		berHu		0.132	0.604	0.058	0.789	0.946	0.986
	UpProj	\mathcal{L}_2	63.6×10^{6}	0.138	0.592	0.060	0.785	0.952	0.987
		berHu		0.127	0.573	0.055	0.811	0.953	0.988

Table 1. Comparison of the proposed approach against different variants on the NYU Depth v2 dataset. For the reported errors rel, rms, \log_{10} lower is better, whereas for the accuracies $\delta_i < 1.25^i$ higher is better