

SEQUENCE LISTING

<110> LI, XIAODONG
XU, HONG
STASZEWSKI, LENA
ADLER, JON ELLIOTT

<120> CHIMERIC GATIPHAL 15 VARIANTS AND THEIR USE IN THE ANALYSIS AND
DISCOVERY OF MODULATORS OF G-PROTEIN COUPLED RECEPTORS

<130> 100337.54270US

<140> 10/319,821
<141> 2002-12-16

<150> 09/989,497
<151> 2001-11-21

<150> 09/984,292
<151> 2001-10-29

<150> 60/339,466
<151> 2001-12-14

<150> 60/243,770
<151> 2000-10-30

<160> 13

<170> PatentIn Ver. 2.1

<210> 1
<211> 1125
<212> DNA
<213> Mus musculus

<400> 1
atggcccggt ccctgacttg gggctgctgt ccctggtgcc tgacagagga ggagaagact 60
gccgccccaa tcgaccagga gatcaacagg attttgttgg aacagaaaaaa acaagagcgc 120
gaggaattga aactcctgtct gttggggcct ggtgagagcg ggaagagtac gttcatcaag 180
cagatgcgca tcattcacgg tggggctac tcggaggagg accgcagagc cttccggctg 240
ctcatctacc agaacatctt cgtctccatg cagggccatga tagatgcgtt ggaccggctg 300
cagatcccct tcagcaggcc tgacagcaag cagcacgcca gccttagtgtt gacccaggac 360
ccctataaaag tgagcacatt cgagaagcca tatgcagtgg ccatgcgtt cctgtggcgg 420
gacgcgggca tccgtgcatt ctacgagcga aggcgttaat tccaccttcc ggactccgcg 480
gtgttattacc tgcacacacctt ggagcgcata tcagaggaca gtacatccc cactgcgcaa 540
gacgtgctgc gcagtcgcatt gcccaccaca ggcataatg agtactgtt ctccgtgaag 600
aaaacccaaac tgcgcatttgtt ggatgttggt ggccagaggt cagagcgttag gaaatggatt 660
caactgttttgg agaacgttatca tgccttcattc tacctggcct ccctgagcga gtatgaccag 720
tgccttagagg agaacgtatca ggagaaccgc atggaggaga gtctcgctt gttcagcaccg 780
atccttagagc tgcctgggtt caagagcacc tcggatcatcc tcttcctca caagacggac 840
atcctggaaatca aatagattca cacctccacat ctggccacat acttccccag cttccaggaa 900
ccccggcggc acgcagaggc cgccaaagagc ttcatcttgg acatgtatgc gcgcgtgtac 960
gcgcggctgc cagagcccca ggacgggtggc aggaaaggct cccgcgcgcg ccgccttcc 1020
gcacacttca cctgtgcac ggacacgc aa agcgtccgca gctgtttcaa ggacgtgcgg 1080
gactcggtgc tggcccggtt cctggacgag atcaacctgc tgtga 1125

<210> 2
<211> 374
<212> PRT
<213> Mus musculus

<400> 2
Met Ala Arg Ser Leu Thr Trp Gly Cys Cys Pro Trp Cys Leu Thr Glu
1 5 10 15

Glu Glu Lys Thr Ala Ala Arg Ile Asp Gln Glu Ile Asn Arg Ile Leu
20 25 30

Leu Glu Gln Lys Lys Gln Glu Arg Glu Glu Leu Lys Leu Leu Leu
35 40 45

Gly Pro Gly Glu Ser Gly Lys Ser Thr Phe Ile Lys Gln Met Arg Ile
50 55 60

Ile His Gly Val Gly Tyr Ser Glu Glu Asp Arg Arg Ala Phe Arg Leu
65 70 75 80

Leu Ile Tyr Gln Asn Ile Phe Val Ser Met Gln Ala Met Ile Asp Ala
85 90 95

Met Asp Arg Leu Gln Ile Pro Phe Ser Arg Pro Asp Ser Lys Gln His
100 105 110

Ala Ser Leu Val Met Thr Gln Asp Pro Tyr Lys Val Ser Thr Phe Glu
115 120 125

Lys Pro Tyr Ala Val Ala Met Gln Tyr Leu Trp Arg Asp Ala Gly Ile
130 135 140

Arg Ala Cys Tyr Glu Arg Arg Arg Glu Phe His Leu Leu Asp Ser Ala
145 150 155 160

Val Tyr Tyr Leu Ser His Leu Glu Arg Ile Ser Glu Asp Ser Tyr Ile
165 170 175

Pro Thr Ala Gln Asp Val Leu Arg Ser Arg Met Pro Thr Thr Gly Ile
180 185 190

Asn Glu Tyr Cys Phe Ser Val Lys Lys Thr Lys Leu Arg Ile Val Asp
195 200 205

Val Gly Gly Gln Arg Ser Glu Arg Arg Lys Trp Ile His Cys Phe Glu
210 215 220

Asn Val Ile Ala Leu Ile Tyr Leu Ala Ser Leu Ser Glu Tyr Asp Gln
225 230 235 240

Cys Leu Glu Glu Asn Asp Gln Glu Asn Arg Met Glu Glu Ser Leu Ala
245 250 255

Leu Phe Ser Thr Ile Leu Glu Leu Pro Trp Phe Lys Ser Thr Ser Val
260 265 270

Ile Leu Phe Leu Asn Lys Thr Asp Ile Leu Glu Asp Lys Ile His Thr
275 280 285

Ser His Leu Ala Thr Tyr Phe Pro Ser Phe Gln Gly Pro Arg Arg Asp
290 295 300

Ala Glu Ala Ala Lys Ser Phe Ile Leu Asp Met Tyr Ala Arg Val Tyr
305 310 315 320

Ala Ser Cys Ala Glu Pro Gln Asp Gly Gly Arg Lys Gly Ser Arg Ala
325 330 335

Arg Arg Phe Phe Ala His Phe Thr Cys Ala Thr Asp Thr Gln Ser Val
340 345 350

Arg Ser Val Phe Lys Asp Val Arg Asp Ser Val Leu Ala Arg Tyr Leu
355 360 365

Asp Glu Ile Asn Leu Leu
370

<210> 3
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Ga15
tail nucleotide sequence

<400> 3
gagatcaacc tgctgtga 18

<210> 4
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Gail
tail nucleotide sequence

<400> 4
gactgtggcc tcttctga 18

<210> 5
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Gaq
tail nucleotide sequence

<400> 5
gagtacaatc tggtctga 18

<210> 6
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Gas
tail nucleotide sequence

<400> 6
cagtatgagc tcttgtga 18

<210> 7
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Gai3
tail nucleotide sequence

<400> 7
gagtgcggcc tctactga 18

<210> 8
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Ga0
tail nucleotide sequence

<400> 8
ggatgcggac tctactga 18

<210> 9
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Gaz
tail nucleotide sequence

<400> 9
tacatcggtcc tctgctga 18

<210> 10
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Ga12
tail nucleotide sequence

<400> 10
gacatcatgc tccaatga 18

<210> 11
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Ga13
tail nucleotide sequence

<400> 11
caactaatgc tccaatga 18

<210> 12
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Ga14
tail nucleotide sequence

<400> 12
caccaggttg aactctga 18

<210> 13
<211> 11
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Illustrative
AscI site oligonucleotide

<400> 13
ggcgcgccgc c 11