ISE 426 Optimization models and applications

Lecture 13 — October 15, 2015

- MinMax
- Goal programming
- Winston & Venkataramanan, pages 191-194

Consider an optimization problem of the form

```
min \max\{ -2x_1 + 2, \\ -x_1 + 1, \\ x_1 - 3, \\ 2x_1 - 7 \}.
```

Consider an optimization problem of the form

min max{
$$-2x_1 + 2$$
,
 $-x_1 + 1$,
 $x_1 - 3$
 $2x_1 - 7$ }.

- ► This is convex nonlinear problem
- How to reformulate it into a linear problem
- Create a new variable y
- ▶ *y* is the **maximum** of all quantities $-2x_1 + 2$, $-x_1 + 1$, $x_1 3$, $2x_1 7$.

In general, consider an optimization problem of the form

$$\begin{aligned} & \min & \max_{k=1,2...,H} & \left(\sum_{j=1}^{n} a_{kj} x_{j} + b_{k} \right) = \\ & \min & \max & \left\{ \sum_{j=1}^{n} a_{1j} x_{j} + b_{1}, \\ & \sum_{j=1}^{n} a_{2j} x_{j} + b_{2}, \\ & \vdots \\ & \sum_{j=1}^{n} a_{Hj} x_{j} + b_{H} \right\}. \end{aligned}$$

 \triangleright This is nonlinear (there's a max term in the objective)¹.

¹AMPL won't complain, but CPLEX will refuse to solve the problem.

In general, consider an optimization problem of the form

$$\begin{aligned} & \min & \max_{k=1,2...,H} & \left(\sum_{j=1}^{n} a_{kj} x_{j} + b_{k} \right) = \\ & \min & \max & \left\{ \sum_{j=1}^{n} a_{1j} x_{j} + b_{1}, \\ & \sum_{j=1}^{n} a_{2j} x_{j} + b_{2}, \\ & \vdots \\ & \sum_{j=1}^{n} a_{Hj} x_{j} + b_{H} \right\}. \end{aligned}$$

- ► This is nonlinear (there's a max term in the objective)¹.
- ▶ However, the model easily becomes linear:
- Create a new variable y
- ▶ **y** is the **maximum** of all quantities $\sum_{j=1}^{n} a_{1j}x_j + b_1$, $\sum_{i=1}^{n} a_{2i}x_i + b_2..., \sum_{i=1}^{n} a_{Hi}x_i + b_H$.

¹AMPL won't complain, but CPLEX will refuse to solve the problem.

► Easy... if *y* is the maximum of all those quantities, then it must be greater than each of them:

$$y \geq \sum_{j=1}^{n} a_{1j}x_j + b_1,$$

$$y \geq \sum_{j=1}^{n} a_{2j}x_j + b_2,$$

$$\vdots$$

$$y \geq \sum_{j=1}^{n} a_{Hj}x_j + b_H.$$

- each of these constraints is linear! (re-write as $\sum_{i=1}^{n} a_{1i}x_i y \le -b_1, \dots$)
- \triangleright objective function is y. The linear model is:

$$\min \quad \frac{y}{y} \ge \sum_{j=1}^{n} a_{kj} x_j + b_k \qquad \forall k = 1, 2 \dots, H$$

Why do we minimize y?

- ► The constraints above only say that *y* is **at least** the maximum of all those linear functions.
- ⇒ They don't guarantee that *y* is **exactly** the maximum of all those linear functions.
 - ► That is,

$$y \ge \sum_{j=1}^n a_{kj}x_j + b_k \qquad \forall k = 1, 2 \dots, H$$

only ensures that

$$y \geq \max_{k=1,2...,H} \sum_{j=1}^n a_{kj}x_j + b_k.$$

It does **not** ensure that

$$y = \max_{k=1,2...,H} \sum_{j=1}^{n} a_{kj} x_j + b_k.$$

However, this model works as we are minimizing *y*:

- ▶ Although for all feasible solutions $y \ge \max_{k=1,2...,H} \sum_{j=1}^{n} a_{kj} x_j + b_k$,
- a solution $(\bar{x}_1, \bar{x}_2 \dots, \bar{x}_n, \bar{y})$ with

$$\bar{y} > \max_{k=1,2...,H} \sum_{j=1}^{n} a_{kj} \bar{x}_j + b_k$$

(strictly >) is feasible, but not optimal.

▶ Question: for an optimal solution $(\bar{x}_1, \bar{x}_2, ..., \bar{x}_n, \check{y})$ for how many k's $\check{y} = \sum_{j=1}^n a_{kj}\bar{x}_j + b_k$?

Another example

Our company wants to ask for a loan of 300k\$ to two banks. The interests paid to a bank depend on amount borrowed:

Bank 1:

- ▶ 5% of amt \leq 100k\$
- ▶ 8% of amt \ge 100k\$

Bank 2:

- ▶ 3% of amt \leq 140k\$
- ▶ 12% of amt \ge 140k\$

Determine how much to borrow from both banks in order to minimize the total interests paid.

- ► Variables: *x*₁ and *x*₂, amount borrowed from Bank 1 and Bank 2 (in k\$)
- ► Constraints: $x_1 \ge 0$, $x_2 \ge 0$, and $x_1 + x_2 = 300$
- Objective function: sum of interests paid to the banks.

$$\min f_1(x_1) + f_2(x_2)$$

What are $f_1(x_1)$ and $f_2(x_2)$?

$$f_1(x_1)$$
: $0.05 * x_1$ for $0 \le x_1 \le 100$,
 $5 + 0.08 * (x_1 - 100)$ for $x_1 \ge 100$
 $f_2(x_2)$: $0.03 * x_2$ for $0 \le x_2 \le 140$,
 $4.2 + 0.12 * (x_2 - 140)$ for $x_2 > 140$

For this specific case², both $f_1(x_1)$ and $f_2(x_2)$ can be written as

$$f_1(x_1) = \max\{0.05 * x_1, 5 + 0.08 * (x_1 - 100)\}\$$

$$f_2(x_2) = \max\{0.03 * x_2, 4.2 + 0.12 * (x_2 - 140)\}\$$

So the model is:

min
$$\max\{0.05 * x_1, 5 + 0.08 * (x_1 - 100)\} + \\ + \max\{0.03 * x_2, 4.2 + 0.12 * (x_2 - 140)\}$$
$$x_1 + x_2 = 300 \\ x_1 \ge 0 \\ x_2 \ge 0$$

Nonlinear...

²both f_1 and f_2 are convex!

Linearization:

```
min y_1 + y_2

y_1 \ge 0.05 * x_1

y_1 \ge 5 + 0.08 * (x_1 - 100)

y_2 \ge 0.03 * x_2

y_2 \ge 4.2 + 0.12 * (x_2 - 140)

x_1 + x_2 = 300

x_1 \ge 0

x_2 \ge 0
```

Attaining minimum

- the auxiliary variable "wants to" be at its lowest allowed value
- it should appear with a positive coefficient in a minimization problem or with a negative one in a max. problem

Symmetrically, it also works in "max-min" problems, that is, when maximizing the minimum of a set of functions

Caution! It does not work in general in other contexts, e.g.:

$$\max \max_{k=1,2...,H} (\sum_{j=1}^{n} a_{kj} x_j + b_k)$$

or

$$\min\min_{k=1,2...,H}(\sum_{j=1}^n a_{kj}x_j+b_k)$$

Example: job assignment

Problem:

- ▶ We have to assign *m* workers to *m* jobs. Everyone must be assigned to exactly one job, and all jobs have to be done.
- ► The degree of preference of a worker i to job j is defined by c_{ij} , for $i = 1, 2 \dots, m$, $j = 1, 2 \dots, m$.
- ▶ maximize the total preference, i.e. the sum of all preferences c_{ij} for assignments (i,j) worker-job.

Job assignment: model

Variables: x_{ii} for worker i and job j. Constraints:

▶ Every worker is assigned to **exactly** one job:

$$\sum_{j=1}^{m} x_{ij} = 1 \quad \forall i = 1, 2 \dots, m$$

Every job is done by exactly one worker:

$$\sum_{i=1}^{m} x_{ij} = 1 \quad \forall j = 1, 2 \dots, m$$

▶ Variables x_{ij} are binary (a yes/no decision)

Objective function: total preference

$$\sum_{i=1}^{m} \sum_{i=1}^{m} c_{ij} x_{ij}$$

Bad objective?

▶ the total preference $\sum_{i=1}^{m} \sum_{j=1}^{m} c_{ij}x_{ij}$ does not provide a fair balance in assigning jobs: some worker may be very dissatisfied with their assignments.

- ► For a fair assignment, we may instead maximize the minimum assignment cost of each worker:
- ► How? The satisfaction of worker *i* is equal to $\sum_{i=1}^{m} c_{ij}x_{ij}$
- ▶ New objective function (still to be maximized):

$$\min_{i=1,2,\dots,m} \sum_{i=1}^{m} c_{ij} x_{ij}$$

Look at least satisfied worker(s) (as it results from variables x_{ij}) and limit their dissatisfaction as much as possible

Job assignment: new model

$$\max \quad \min_{i=1,2...,m} \sum_{j=1}^{m} c_{ij} x_{ij} \sum_{j=1}^{m} x_{ij} = 1 \quad \forall i = 1, 2..., m \sum_{i=1}^{m} x_{ij} = 1 \quad \forall j = 1, 2..., m x_{ij} \in \{0, 1\} \quad \forall i, j = 1, 2..., m$$

It's nonlinear! Let's use the same trick, with different signs.

- ► New variable *y* (will be our objective function)
- ▶ *y* is $\min_{i=1,2...,m} \sum_{j=1}^{m} c_{ij} x_{ij}$, for each i = 1, 2..., m.
- \Rightarrow y is smaller than each of these quantities:

$$y \leq \sum_{j=1}^{m} c_{1j} x_{1j} y \leq \sum_{j=1}^{m} c_{2j} x_{2j} \vdots y \leq \sum_{j=1}^{m} c_{mj} x_{mj}$$

• or, more compact: $y \leq \sum_{i=1}^{m} c_{ij} x_{ij} \ \forall i = 1, 2 \dots, m$

Job assignment: final linear model

Job assignment: alternative model

Let's reduce it to a minimization problem. The obj.f. changes sign, the problem becomes a minimization one:

$$\max \quad \min_{i=1,2...,m} \sum_{j=1}^{m} c_{ij} x_{ij} = \\ = -\min \quad \left(-\min_{i=1,2...,m} \sum_{j=1}^{m} c_{ij} x_{ij} \right) =$$

[apply the inverse rule inside the brackets...]

=
$$-\min\left(\max_{i=1,2...,m}\left(-\sum_{j=1}^{m}c_{ij}x_{ij}\right)\right) =$$

= $-\min\left(\max_{i=1,2...,m}\sum_{j=1}^{m}(-c_{ij})x_{ij}\right)$

Minimizing the maximum of absolute values

Consider now a system, of linear equations Ax = b, which does not have a solution. We want to find a solution x which violates the linear quations as little as possible. We can consider

min
$$\max_{k=1,2...,H} (|\sum_{j=1}^{n} a_{kj}x_{j} - b_{k}| =$$
min \max
 $\{|\sum_{j=1}^{n} a_{1j}x_{j} - b_{1}|,$
 $|\sum_{j=1}^{n} a_{2j}x_{j} - b_{2}|,$
 \vdots
 $|\sum_{j=1}^{n} a_{Hj}x_{j} - b_{H}|\}.$

Minimizing the maximum of absolute values

Consider now a system, of linear equations Ax = b, which does not have a solution. We want to find a solution x which violates the linear quations as little as possible. We can consider

min
$$\max_{k=1,2...,H} (|\sum_{j=1}^{n} a_{kj}x_{j} - b_{k}| =$$
min $\max \{|\sum_{j=1}^{n} a_{1j}x_{j} - b_{1}|, |\sum_{j=1}^{n} a_{2j}x_{j} - b_{2}|,$
 \vdots
 $|\sum_{j=1}^{n} a_{Hj}x_{j} - b_{H}|\}.$

min
$$y$$

 $y \ge \sum_{j=1}^{n} a_{kj}x_j - b_k \quad \forall k = 1, 2 \dots, H$
 $y \ge -(\sum_{i=1}^{n} a_{ki}x_i - b_k) \quad \forall k = 1, 2 \dots, H$

The solution is likely to have n of the constraints from Ax = b to have equal maximum violation. What if we do not like such a solution?

Minimizing the sum of absolute values

Consider now a system, of linear equations Ax = b, which does not have a solution. We want to find a solution x which violates the linear equations as little as possible in total. We can consider

$$\min \sum_{k=1}^{H} (|\sum_{j=1}^{n} a_{kj} x_{j} - b_{k}| =$$

$$\min \sum_{k=1}^{H} |y_{i}|$$

$$y_{1} = \sum_{j=1}^{n} a_{1j} x_{j} - b_{1},$$

$$y_{2} = \sum_{j=1}^{n} a_{2j} x_{j} - b_{2},$$

$$\vdots$$

$$y_{H} = \sum_{j=1}^{n} a_{Hj} x_{j} - b_{H}.$$

Minimizing the sum of absolute values

Consider now a system, of linear equations Ax = b, which does not have a solution. We want to find a solution x which violates the linear equations as little as possible in total. We can consider

min
$$\sum_{k=1}^{H} (|\sum_{j=1}^{n} a_{kj} x_j - b_k| =$$

min $\sum_{k=1}^{H} |y_i|$
 $y_1 = \sum_{j=1}^{n} a_{1j} x_j - b_1,$
 $y_2 = \sum_{j=1}^{n} a_{2j} x_j - b_2,$
 \vdots
 $y_H = \sum_{j=1}^{n} a_{Hj} x_j - b_H.$

Equivalent LP formulation

min
$$\sum_{k=1}^{H} (y'_k + y''_k)$$

 $y'_k - y''_k = \sum_{j=1}^{n} a_{kj}x_j - b_k \quad \forall k = 1, 2 \dots, H$

Goal programming

Consider the following management problem³:

- ▶ A company is introducing three new products, P1, P2, P3, and wants to know how many such products to make.
- ► The per-unit profit, per-unit employment level, and the per-unit capital investment for each product are as follows:

	P1	P2	P3
profit [M\$]	12	9	15
employment lev. [$\times 100$ wrks.]	5	3	4
capital inv. [M\$]	4	7	8

The company:

- wants to have at least 125 M\$ profit
- ▶ wants to keep its 4,000 employees, no more, no less
- wants to invest less than 55 M\$

³Similar example on Winston & Venkataramanan, p. 191.

Optimization model

Variables: x_1 , x_2 , x_3 .

Constraints:

- ▶ Profit: $12x_1 + 9x_2 + 15x_3 \ge 125$
- ► Employees: $5x_1 + 3x_2 + 4x_3 = 40$
- ► Investment: $5x_1 + 7x_2 + 8x_3 \le 55$

Now we'd have to find an objective function.

However, a quick check with a dummy objective (e.g. x_1) tells us that the problem is infeasible: there is no value of (x_1, x_2, x_3) that satisfies **all** constraints.

Now who tells them the problem is infeasible?

The company now says that some constraints are **not** strict: they may be violated, but not too much.

They are **goals**: instead of focusing on one single objective function, try to make as many as possible to be satisfied as much as possible.

Previous estimations give the per-unit loss associated with violation of each constraint.

- ▶ 5 M\$ per-unit loss for the long-run profit constraint (<125)
- i.e. if we find a solution with $12x_1 + 9x_2 + 15x_3 = 122$, we'll incur losses for $5 \times (125 122) = 15$ M\$
 - ▶ 4 M\$ per-unit loss when number of employees <40
 - ▶ 2 M\$ per-unit loss when number of employees >40
 - ▶ 3 M\$ per-unit loss when capital investment >55

Modify model: non-preemptive Goal Programming

- One or more constraint needs to be relaxed.
- ▶ Instead of ignoring them, penalize their **violation**:

with
$$y_1^-, y_2^+, y_2^-, y_3^+ \ge 0$$

- ▶ We'd like y_1^- , y_2^+ , y_2^- , and y_3^+ to be all zero, but this is not possible as the problem would be infeasible.
- \Rightarrow try to make them as small as possible

Non-preemptive goal programming assumes all goals should be pursued (each with a weight).

Non-preemptive Goal Programming

min
$$5y_1^- + 2y_2^+ + 4y_2^- + 3y_3^+$$

 $12x_1 + 9x_2 + 15x_3 \ge 125 - y_1^-$
 $5x_1 + 3x_2 + 4x_3 = 40 + y_2^+ - y_2^-$
 $5x_1 + 7x_2 + 8x_3 \le 55 + y_3^+$
 $y_1^-, y_2^+, y_2^-, y_3^+ \ge 0$

▶ Result: $(x_1, x_2, x_3) = (\frac{25}{3}, 0, \frac{5}{3})$, and the only constraint being really relaxed is the second:

$$5x_1 + 3x_2 + 4x_3 = \frac{145}{3} = 48.333 > 40.$$

i.e.
$$(y_1^-, y_2^+, y_2^-, y_3^+) = (0, 8.333, 0, 0)$$

▶ Now at the company they start to think that maybe the second constraint **is** more important...

Preemptive Goal Programming

We still cannot satisfy all constraints, but we do prefer satisfying some rather than others.

Preemptive goal programming assumes some goals are more important than others, and satisfying the former should be a priority over the latter.

For the company, the main priorities are

- to preserve the total capital, and
- ▶ to keep employment level at most 40 (only one half of the second constraint), i.e. don't want to hire!

Once these are respected, we also care about the remaining two constraints:

- to do at least 125 M\$ profit
- ▶ to keep employment level at least 40, i.e. don't want to fire

How do we model this?

Preemptive Goal Programming

For each **goal**, from most important to least important:

- 1. ignore (=relax) constraints at all lower levels
- 2. add penalization terms for this goal to objective function
- 3. solve
- 4. fix maximum violation of priorities at current level

Preemptive Goal Programming: stage 1

min
$$2y_{2}^{+}$$
 $+3y_{3}^{+}$
 $12x_{1}$ $+9x_{2}$ $+15x_{3} \ge 125$ $-y_{1}^{-}$
 $5x_{1}$ $+3x_{2}$ $+4x_{3} = 40$ $+y_{2}^{+}$ $-y_{2}^{-}$
 $5x_{1}$ $+7x_{2}$ $+8x_{3} \le 55$ $+y_{3}^{+}$
 $y_{1}^{-}, y_{2}^{-}, y_{2}^{+}, y_{3}^{+} \ge 0$

- ► Only the violations of the more important constraints (y_2^+) and y_3^+) appear in the objective
- ⇒ The others don't, their constraints are ignored (=relaxed)

Result: $(x_1, x_2, x_3) = (0, 0, 0)$ (oops...), but we managed to satisfy both "important" constraints $(y_2^+ = y_3^+ = 0)$.

The first constraint was relaxed, so it's easy to select x_i such that the other two are satisfied.

Preemptive Goal Programming: stage 2

- violation is fixed to 0 for the important constraints
- violation of the secondary constraints appear in the objective

Result: $(x_1, x_2, x_3) = (5, 0, 3.75)$, only the first constraint is violated (profit is $125 - y_1^- = 125 - 8.75 = 116.25$).

Example

The city council is developing an equitable city rate tax table. Taxes come from a combination of four sources:

- Property taxes: (\$550M base)
- ► Food & Drugs: (\$35M base)
- Other Sales: (\$55M base)
- ► Gasoline: (Consumption: 7.5 million gallons/year)

They would like to come up with a "fair" city tax...

- Tax revenues must be at least \$16M
- ▶ The property tax rate should be $\leq 1\%$.
- ▶ Food/drug taxes must be $\leq 10\%$ of all taxes collected
- ▶ Sales taxes must be \leq 20% of all taxes collected
- ► The gasoline tax must be $\leq 0.02 /gallon.

Model

Variables:

r_n	Property tax rate	χ_p	Property tax collected (in \$)
	Food/Drug tax rate	χ_f	Food/Drug collected (in \$)
_	Sales tax rate		Sales tax collected (in \$)
r_{o}	Gas tax rate [\$/gallon]		Gas tax collected (in \$)
0		T	Total taxes collected (in \$)

Taxes (from rates) are based on the tax base

Model

Constraints (definition of *x* variables):

$$x_p = 550r_p$$

 $x_f = 35r_f$
 $x_s = 55r_s$
 $x_g = 7.5r_g$
 $T = x_p + x_f + x_s + x_g$

Requirements Constraints:

Revenue:	$T \ge 16$
Property Tax Rate:	$r_p \le 0.01$
Food-Drug tax restriction:	$x_f \le 0.17$
Sales tax restriction:	$x_s \leq 0.27$
Gas tax restriction:	$r_{g} \leq 0.02$

What's the objective? It doesn't matter: The problem is infeasible!

Non-preemptive goal programming

Minimize the sum of violations altogether

$$\begin{aligned} & \min & e_p + e_f + e_s + e_g \\ & x_p = 550r_p \\ & x_f = 35r_f \\ & x_s = 55r_s \\ & x_g = 7.5r_g \\ & T = x_p + x_f + x_s + x_g \end{aligned}$$

$$& T \geq 16$$

$$& r_p \leq 0.01 + e_p \\ & x_f \leq 0.1T + e_f \\ & x_s \leq 0.2T + e_s \\ & r_g \leq 0.02 + e_g \\ & e_p, e_f, e_s, e_g \geq 0 \end{aligned}$$

Preemptive goal programming

Minimize each violation separately, in order. Suppose the order is (e_p, e_f, e_s, e_g) . **Step 1**:

min
$$e_p$$
 $x_p = 550r_p$
 $x_f = 35r_f$
 $x_s = 55r_s$
 $x_g = 7.5r_g$
 $T = x_p + x_f + x_s + x_g$

$$T \ge 16$$
 $r_p \le 0.01 + e_p$
 $x_f \le 0.1T + e_f$
 $x_s \le 0.2T + e_s$
 $r_g \le 0.02 + e_g$
 $e_p, e_f, e_s, e_g \ge 0$

 \Rightarrow Result: $e_v = 0$

Preemptive goal programming: step 2

```
\min e_f
        x_p = 550r_p
        x_f = 35r_f
        x_s = 55r_s
        x_{\varphi} = 7.5r_{\varphi}
        T = x_p + x_f + x_s + x_g
         T \ge 16
        r_p \le 0.01 + e_p
        x_f \leq 0.1T + e_f
        x_s \leq 0.2T + e_s
        r_{\varphi} \leq 0.02 + e_{\varphi}
        e_{p} = 0, e_{f}, e_{s}, e_{g} \geq 0
```

 \Rightarrow Result: $e_f = 0$

Preemptive goal programming: step 3

```
min e_s
        x_{v} = 550r_{v}
        x_f = 35r_f
        x_s = 55r_s
        x_{\varphi} = 7.5r_{\varphi}
        T = x_p + x_f + x_s + x_g
        T > 16
        r_{v} \leq 0.01 + e_{v}
        x_f \leq 0.1T + e_f
        x_s \leq 0.2T + e_s
        r_{\varphi} \leq 0.02 +e_{\varphi}
        e_p = 0, e_f = 0, e_s, e_{\varphi} \ge 0
```

 \Rightarrow Result: $e_s = 0$

Preemptive goal programming: step 4

```
min e_{g}
       x_p = 550r_p
       x_f = 35r_f
       x_s = 55r_s
       x_{\varphi} = 7.5r_{\varphi}
       T = x_p + x_f + x_s + x_g
       T > 16
       r_p \le 0.01
                          +e_{v}
       x_f \leq 0.1T
                    +e_f
       x_s \leq 0.2T +e_s
       r_{g} \leq 0.02 + e_{g}
       e_p = 0, e_f = 0, e_s = 0, e_g \ge 0
```

 \Rightarrow Result: $e_g = 0.74$

Min-max goal programming

Minimize the maximum violation

```
min \max\{e_p, e_f, e_s, e_g\}
        x_p = 550r_p
        x_f = 35r_f
        x_s = 55r_s
        x_{\varphi} = 7.5r_{\varphi}
        T = x_p + x_f + x_s + x_\varphi
        T > 16
        r_p \le 0.01 + e_p
        x_f \leq 0.1T + e_f
        x_s < 0.2T + e_s
        r_g \le 0.02 + e_g
        e_p, e_f, e_s, e_g \geq 0
```

Min-max goal programming

```
\min z
        z \geq e_p
        z \geq e_f
        z \geq e_s
        z \geq e_{o}
        x_{v} = 550r_{v}
        x_f = 35r_f
        x_s = 55r_s
        x_{\varphi} = 7.5r_{\varphi}
        T = x_p + x_f + x_s + x_g
        T \ge 16
        r_v \le 0.01 + e_v
        x_f \leq 0.1T + e_f
        x_s \leq 0.2T + e_s
        r_{g} \leq 0.02 + e_{g}
        e_p, e_f, e_s, e_g \geq 0
```

Result: $e_p = e_f = e_s = e_g = 0.00991957$