Defesa de Laboratório: Laboratório 4

Disciplina: Sistemas Embarcados

Professor: André Schneider de Oliveira

Alunos: Lucas Ricardo Marques de Souza e Marcelle Reis Pires

Diagrama de estados e transições do programa

Diagrama de estados e transições do programa

- Método de comunicação entre threads
 - Bloco de Mensagens comunicação da UART;
 - Fila de Mensagens comunicação entre as threads de tratar informações, display e PWM;
- Método de Sincronização entre threads
 - Interrupção gerando sinal para a thread da UART.

Diagrama de Gantt

Devices Drivers

- UART
 - definições de endereçamento
 - o inicia_UART()
 - readchar()
 - UART0_Handler()
- PWM
 - o definições de endereçamento
 - PWM_function_init()
 - PWM_amplitude_set()
 - o PWM_per_set()

Gerador de Funções - 1^a ideia

- Séries de Fourier para formas as ondas;
 - Resultados precisos;
 - Laço de repetição extenso demais.

$$a_0 = \frac{1}{T} \int_{-T/2}^{T/2} x(t) dt$$

$$a_0 = \frac{1}{T} \int_{-T/2}^{T/2} x(t) dt$$
 $a_n = \frac{2}{T} \int_{-T/2}^{T/2} x(t) \cos\left(\frac{2\pi tn}{T}\right) dt$

$$b_n = \frac{-2}{T} \int_{-T/2}^{T/2} x(t) \sin\left(\frac{2\pi tn}{T}\right) dt$$

Gerador de Funções - 2ª ideia

- Adaptar as funções trigonométricas para formar os sinais desejados:
 - Muito mais eficiente que Série de Fourier
 - Facilitou a sincronização do tempo no programa

$$y(x) = -\frac{2a}{\pi} \arctan\left(\cot\left(\frac{x\pi}{p}\right)\right)$$

Formas de Onda

- Triangular;
- Dente de Serra;
- Quadrada;
- Senoidal função seno da biblioteca math.h;
- Trapezoidal uma soma de 2 ondas triangulares defasadas no tempo;

4f 5f 6f (all even harmonics are zero)

(all even harmonics are zero)

$$a_0 = 0$$

$$a_n = 0$$

$$b_n = \frac{A}{n\pi}$$

Desafios da implementação

- Calcular a série de Fourier que forma os sinais;
- Sincronização entre a saída do PWM e o sinal do Display;
- Ajuste da escala do Mermaid para geração do Gantt;
- Regulagem e ajuste da alteração de escala na tela;
- Cálculo realizado na escala 1:1;
- Circuito para mostrar a forma de onda no osciloscópio;
- Dificuldades na sincronização do tempo;

Referências Bibliográficas

https://www.dspquide.com/ch13/4.htm> Acesso dia 01/06/2019

https://mermaidjs.github.io/ Acesso dia 02/06/2019

https://en.wikipedia.org/wiki/Sawtooth wave/> Acesso dia 09/06/2019