

MATHEMATICAL REASONING

RETROALIMENTACIÓN

4th

TOMO 3

APLICACIÓN DE IMPLICACIONES

P q
Si cumplo mis tareas, entonces mis calificaciones suben y simis calificaciones suben ,

r ~r
podre salir de viaje. Pero no pude salir de viaje: luego:

Resolución: Formalizando el enunciado, tenemos:

$$\begin{array}{ccc}
P_1: & p \to q \\
P_2: & q \to r
\end{array}$$

$$\begin{array}{cccc}
P_4: & p \to r \\
P_3: & \sim r
\end{array}$$

$$\begin{array}{cccc}
C: \sim p
\end{array}$$

Silogismo Hipotético Puro Modus Tollendo Tollens (SHP) (MTT)
$$P_1: p \rightarrow q \qquad P_4: p \rightarrow r$$

$$P_2: q \rightarrow r \qquad P_3: \sim r$$

$$\therefore P_4: p \rightarrow r \qquad \therefore C: \sim p$$

RPTA.: No cumplí mis tareas

Si <u>Julio estudia conscientemente</u>, entonces <u>ingresará a la universidad</u>; si

ingresa a la universidad, entonces será un gran ingeniero. Como sabemos,

Julio estudia conscientemente; luego:

Resolución: Formalizando el enunciado, tenemos:

RPTA.: Julio será un gran ingeniero

¿Qué se infiere de las premisas mostradas a continuación?

$$P_{1}: p \rightarrow q$$

$$P_{2}: r \rightarrow s$$

$$P_{3}: \sim (p \land s) \equiv \sim q \lor \sim s$$

$$P_{4}: p$$

Resolución:

De Morgan

$$\sim (p \land s) \equiv \sim q \lor \sim s$$

$$P_{1}: p \to q$$

$$P_{2}: r \to s$$

$$P_{2}: r \to s$$

$$P_{2}: r \to s$$

$$P_{3}: \sim (p \land s) \equiv \sim q \lor \sim s$$

$$P_{3}: \sim q \lor \sim s$$

$$P_{4}: p \longrightarrow \sim (\sim p)$$

$$P_{4}: p \longrightarrow \sim (\sim p)$$

Finalmente:

$$P_5: \sim p \vee \sim r$$

$$P_4: \sim (\sim p)$$

$$C: \sim r$$

Silogismo Disyuntivo (SD)

$$P_1: p \rightarrow q$$

$$P_2: r \rightarrow s$$

$$P_3$$
: $\sim q \vee \sim s$

$$\therefore P_3 \sim p \vee \sim r$$

ÁREA DE REGIONES SOMBREADAS

Si ABCD es un cuadrado de $240m^2$. Calcule el área de la región sombreada.

Resolución:

Piden determinar el área de la región sombreada.

$$12 S = 240$$

$$S = 20$$

$$A_{R.Somb.} = 4(20)$$

$$A_{R.Somb.} = 80m^2$$

$$A_{R.Somb.} = 80m^2$$

Calcule el área de la región sombreada si ABCD es un rectángulo.

Resolución:

Piden determinar el área de la región sombreada.

$$A_{R.Somb.} = A_{R._{\square ABCD}} - 2(A_{R.circular.})$$

$$A_{R.Somb.} = 16 \times 8 - 2(\pi(4)^2)$$

$$A_{R.Somb.} = 128 - 32\pi = 32(4 - \pi)$$

$$32(4-\pi)u^2$$

Si el triángulo ABC tiene 105m² de área, calcule el área de la región sombreada.

 $A_{R.Somb.} = 84m^2$

En la figura:

$$BM = \frac{3MC}{5} \qquad AN = \frac{2NC}{5}$$

Además, el área de la región triangular ABC es $1120 \ m^2$. Calcule el área de la región sombreada.

Resolución:

Piden determinar el área de la región sombreada.

$$A_{R\Delta ABC} = 1120 \ m^2$$

 $56n = 1120$

$$n = 20$$

$$A_{R.Somb.} = 10n$$

$$A_{R.Somb.} = 10(20)$$

$$A_{R.Somb.} = 200m^2$$

SUFICIENCIA DE DATOS

Halle el valor de a + b.

Datos:

- "a" es el doble de "b".
- "a" es 17 unidades mayor que "b".

- A) La información I es suficiente
- B) La información II es suficiente
- C) Es necesario utilizar ambas informaciones
- D) Cada una de las informaciones por separado es suficiente
- E) La información dada es insuficiente

Resolución:

Utilizando el I dato

a = 2h

Con esta información no es posible hallar el valor de a + b

La información no es suficiente

Utilizando el II dato

$$a = 17 + b$$

Con esta información tampoco es posible hallar el valor de a + b.

La información no es suficiente

Utilizando el dato I y II

$$a = 2b$$
 $17 + b = 2b$
 $17 = b$
 $a = 34$

Con estos datos si se puede hallar el valor de a + b.

Es necesario utilizar ambas informaciones

Jorge tiene S/202 en monedas de S/5 y de S/2. Halle cuántas monedas de cada tipo hay. Datos:

- I. La cantidad de monedas de S/5 son los 8/17 de la cantidad de monedas de S/2.
- II. La diferencia entre el número de monedas de S/5 y el de S/2 es 18.

Resolución:

Asignado valores:

monedas de S/5: x

monedas de S/2: y

Del enunciado:

$$5x + 2y = 202$$

Utilizando el I dato

$$y = 8k$$
; $x = 17k$

Con esta información se determina las monedas de cada tipo, Utilizando el II dato

$$5(y + 18) + 2y = 202$$

De igual modo con esta información se determina las monedas de cada tipo

¿Qué edad tiene el menor de tres hermanos, si el mayor tiene 10 años más que él y 3 años mas que el segundo?.

Datos:

- El segundo tiene 11 años.
- II. La suma de las edades de los tres hermanos es 29 años..

- A) La información I es suficiente
- B) La información II es suficiente
- C) Es necesario utilizar ambas informaciones
- D) Cada una de las informaciones por separado es suficiente
- E) La información dada es insuficiente

Resolución:

Del enunciado se deduce:

Mayor: x + 10

Segundo: x + 7

menor: x

Utilizando el I dato

$$x + 7 = 11$$
$$x = 4$$

Con esta información se obtiene la edad del menor.

Utilizando el II dato

De igual modo con esta información se obtiene la edad del menor.

Cada información por separado es suficiente