12 - Boosting

Data Mining SYS 6018 | Fall 2019 12-boosting.pdf

Contents

1	Boos	sting	2		
2	AdaBoost				
		Adaboost Algorithm			
	2.2	R package ada	7		
3	Gradient Boosting 8				
	3.1	L_2 Boosting	8		
	3.2	GBM (Gradient Boosting Machine)	10		
	3.3	xgboost (Extreme Gradient Boosting)	11		
	3.4	CatBoost	13		
	3.5	LightGBM	13		

1 Boosting

Boosting is a *sequential* ensemble method.

- There are two main versions of boosting:
 - Gradient Boosting: fits the next model in the sequence $\hat{g}_k(x)$ to the (pseudo) residuals calculated from the predictions on the previous models $\sum_{l=0}^{k-1} \hat{w}_l \hat{g}_l(x)$.
 - AdaBoost: fits the next model to sequentially weighted observations. The weights are proportional to the how poorly the current models predict the observation.
- Boosting is primarily a bias reducer
 - The base models are often simple/weak (low variance, but high bias) models (like shallow trees)

2 AdaBoost

AdaBoost was motivated by the idea that many *weak* leaners can be combined to produce a *strong* aggregate model.

- AdaBoost is for binary classification problems
- · Trees are a popular base learner
 - Weak learners are usually used. For trees, this means shallow depth.
- At each iteration, the current model is evaluated.
 - The ensemble weight of model m is based on its performance (on all the training data)
 - The observation weight of observation i is increased if it is mis-classified and decreased if it is correctly classified.

- Thus, at each iteration, those observations that are mis-classified are weighted higher and get extra attention in the next iteration.
- Because Adaboost uses hard-classifiers, it is sensitive to unbalanced data and unequal misclassification costs.
 - Because the thresholds are set to p > .50
 - There are, of course, ways to account for unbalance and unequal costs in the algorithm
 - An improvement to AdaBoost, *LogitBoost* explicitly attempts to estimate the class probability during each iteration which will allow easier post-fitting adjustments for unequal costs

2.1 Adaboost Algorithm

Algorithm: AdaBoost

Inputs:

- $D = \{(x_i, y_i)_{i=1}^n$, where $y_i \in \{-1, 1\}$
- Tuning parameters for base model \hat{g}

Algorithm:

- 1. Initialize observation weights $w_i = 1/n$ for all i
- 2. For k = 1 to M:
 - a. Fit a classifier $\hat{g}_k(x)$ that maps (x_i, w_i) to $\{-1, 1\}$. In other words, the classifier must make a hard classification using weighted observations.
 - b. Compute the weighted mis-classification rate

$$e_k = \frac{\sum_{i=1}^n w_i \, \mathbb{1}(y_i \neq \hat{g}_k(x_i))}{\sum_{i=1}^n w_i}$$

c. Calculate the *coefficient* for model *k* (*ensemble weight*)

$$a_k = \log\left(\frac{1 - e_k}{e_k}\right)$$

d. Update the *observations weights*. Increase weights for observations that are mis-classified by model \hat{g}_k and decrease weights for the correctly classified observations.

$$\tilde{w}_i = w_i \cdot \exp\left(a_k \cdot \mathbb{1}(y_i \neq \hat{g}_k(x_i))\right)$$

$$w_i = \frac{\tilde{w}_i}{\sum_{j=1}^n \tilde{w}_j} \qquad (re\text{-normalize weights})$$

3. Output final ensemble $\hat{f}_M(x) \in [-1, 1]$

$$\hat{f}_M(x) = \sum_{k=1}^M a_k \hat{g}_k(x)$$

• Or remap to a probability $\hat{p}(x) = \frac{e^{2f}}{1 + e^{2f}}$

2.1.1 Illustration with Stumps (depth = 1, n.nodes=2)

2.1.2 Illustration with depth = 2, n.nodes=4

2.2 R package ada

The R package ada provides an implementation of AdaBoost (and related methods).

- See Friedman, J., Hastie, T., and Tibshirani, R. (2000). Additive Logistic Regression: A statistical view of boosting. Annals of Statistics, 28(2), 337-374. for the details of model variations
 - {Discrete, Real, Gentle} AdaBoost
 - Logitboost

3 Gradient Boosting

In gradient boosting, instead of re-weighting the observations, each new model is fit to the functional gradients (i.e., a type of residuals)

- Gradient Boosting can fit to a variety of loss functions by simply changing how the *residuals* are calculated.
- Again, trees are often used as the base learner
 - For gradient boosting, regression trees are used

3.1 L_2 Boosting

 L_2 boosting is based on the squared error loss function

$$L(y_i, \hat{f}(x_i)) = \frac{1}{2}(y_i - \hat{f}(x_i))^2$$

• The residuals are

$$r_{i} = \left[\frac{\partial L(y_{i}, f_{i})}{\partial f_{i}}\right]_{f_{i} = \hat{f}(x_{i})}$$
$$= y_{i} - \hat{f}(x_{i})$$

• This is basically just re-fitting to the residuals.

Algorithm: L_2 Boosting

- 1. Initialize $\hat{f}_0(x) = \bar{y}$
- 2. For k = 1 to M:
 - a. Calculate residuals $r_i = y_i \hat{f}_{m-1}(x_i)$ for all i
 - b. Fit a base learner (e.g., regression trees) to the residuals $\{(x_i, r_i)\}_{i=1}^n$ to get the model $\hat{g}_m(x)$
 - c. Update the overall model $\hat{f}_m(x) = f_{m-1}(x) + \nu \hat{g}_m(x)$
 - $0 \le \nu \le 1$ is the step-size (*shrinkage*)
- 3. Final model is $\hat{f}_M(x) = \bar{y} + \sum_{k=1}^{M} \nu \hat{g}_k(x)$
- Like AdaBoost, emphasis is given to observations that are predicted poorly (large residuals)

3.1.1 Illustration using stumps (depth=1, n.nodes=2)

3.2 GBM (Gradient Boosting Machine)

- R package gbm
- GBM Documentation

3.2.1 Model/Tree Tuning Parameters

- Tree depth (interaction.depth)
 - Grows trees to a depth specified by interaction.depth (unless there are not enough observations in the terminal nodes)
- Minimum number of observations allowed in the terminal nodes (n.minobsinnode)
- Sub-sampling (bag.fraction)
 - Stochastic Gradient Boosting
 - Sample (without replacement) at each iteration
- Loss Function (distribution)
 - The loss function is determined by the distribution argument
 - Use distribution="gaussian" for squared error
 - Other options are: bernoulli (for logistic regression), poisson (for Poisson regression), pairwise (for ranking/LambdaMart), adaboost (for the adaboost exponential loss), etc.

3.2.2 Boosting Tuning Parameters

- Number of iterations/trees (n.trees)
 - Use cross-validation (or out-of-bag) to find optimal value
 - Can use the helper function gbm.perf() to get the optimal value

- Shrinkage parameter (shrinkage)
 - Set small, but the smaller the shrinkage, the more iterations/trees need to be used
 - "Ranges from 0.001 to 0.100 usually work"
- Cross-validation (cv.folds)
 - gbm has a built in cross-validation
 - no way to manually set the folds

3.2.3 Computational Settings

- Number of Cores (n.cores)
 - Only used when cross-validation is implemented

3.3 xgboost (Extreme Gradient Boosting)

- R package xgboost
- xgboost Documentation
- xbgoost Paper

3.3.1 Model/Tree Tuning Parameters

- Different base leaners (booster)
 - gbtree is a tree
 - qblinear creates a (generalized) liner model (forward stagewise linear model)
- Tree building (tree_method)
 - To speed up the fitting, only consider making splits at certain quantiles of the input vector (rather than considering every unique value)
- Sub-sampling (subsample)
 - Stochastic Gradient Boosting
 - Sample (without replacement) at each iteration
- Feature sampling (colsample_bytree, colsample_bylevel, colsample_bynode)
 - Like used in Random Forest, the features/columns are subsampled
 - Can use a subsample of features for each tree, level, or node

Model Complexity Parameters

- Tree depth (max_depth)
 - Grows trees to a depth specified by max_depth (unless there are not enough observations in the terminal nodes)
 - Trees may not reach max_depth if the gamma or min_child_weight arguments are set.
- Minimum number of observations (or sum of weights) allowed in the terminal nodes (min_child_weight)
- Pruning (gamma or min_split_loss)
 - Minimum loss reduction required to make a further partition on a leaf node of the tree

- The larger gamma is, the more conservative the algorithm will be
- ElasticNet type penalty (lambda and alpha)
 - lambda is an L_2 penalty
 - alpha is an L_1 penalty
 - Recall that trees model the response as a constant in each region

$$\hat{f}_T(x) = \sum_{m=1}^M \hat{c}_m \, \mathbb{1}(x \in \hat{R}_m)$$

• Cost-complexity pruning found the optimal tree as the one that minimized the penalized loss objective function:

$$C_{\gamma}(T) = \sum_{m=1}^{|T|} \text{Loss}(T) + \gamma |T|$$

• XGBoost selects a tree at each iteration using the following penalized loss:

$$C_{\gamma,\lambda,\alpha}(T) = \sum_{m=1}^{|T|} \operatorname{Loss}(T) + \gamma |T| + \frac{\lambda}{2} \sum_{m=1}^{|T|} \hat{c}_m^2 + \alpha \sum_{m=1}^{|T|} |\hat{c}_m|$$

- Loss Function (objective)
 - The loss function is determined by the objective argument
 - Use reg: squarederror for squared error
 - Other options are: reg:logistic or binary:logistic (for logistic regression), count:poisson (for Poisson regression), rank:pairwise (for ranking/LambdaMart), etc.

3.3.2 Boosting Tuning Parameters

- Shrinkage parameter (eta or learning_rate)
 - Set small, but the smaller the eta, the more iterations/trees need to be used
- Number of iterations/trees (num_rounds)
 - Use cross-validation (or out-of-bag) to find optimal value
- Cross-validation (xgb.cv)
 - xgboost has a built in cross-validation
 - It is possible to manually set the folds

3.3.3 Computational Settings

- Number of Threads (nthread)
- GPU Support (https://xgboost.readthedocs.io/en/latest/gpu/index.html)
 - Used for finding tree split points and evaluating/calculating the loss function

3.4	CatB	oost

- R package: (https://github.com/catboost/catboost/tree/master/catboost/R-package)
- CatBoost Documentation
- Model/Tree Tuning Parameters:

• Boosting Tuning Parameters:

3.5 LightGBM

- R Package: https://github.com/microsoft/LightGBM/tree/master/R-package
- LightGBM Documentation
- Model/Tree Tuning Parameters:

• Boosting Tuning Parameters: