CS 4124

Solutions to Homework Assignment 4 Collin McDevitt

March 29, 2024

[30] 1. Let $\Sigma = \{0, 1\}$, the binary alphabet. Let

$$F = \{h \mid h : \Sigma^* \to \Sigma^*\},\$$

the set of functions from strings to strings.

Prove that F is uncountable.

HINT: Use the fact that Σ^* is countably infinite and employ a proof by diagonalization.

My proof strategy:

I will prove that the set of functions $F' = \{h : h : \Sigma^* \to \{0, 1\}\}$ is uncountable and as this set is a subset of F that would imply that F is uncountable. I will do this by constructing a bijection between $H : F' \to \mathcal{P}(\Sigma^*)$ (the power set of Σ^*) in the last homework we proved that no set can have a bijection with its power set and as Σ^* is countable we get that $\mathcal{P}(\Sigma^*)$ is uncountable hence if a bijection H exists we would have that F' is uncountable.

Let $H: F' \to \mathcal{P}(\Sigma^*)$ where $H(f) = \{w \in \Sigma^* : f(w) = 1\}$ (informally this is the set of elements from Σ^* who get mapped to 1).

Now to show that this is a bijection I will come up with an inverse. We create the function

$$H^{-1}:\mathcal{P}(\Sigma^{\star})\to F'$$

where for $A \in \mathcal{P}(\Sigma^*)$ we have $H^{-1}(A) = f$ where for all $w \in \Sigma^*$ we have f(w) = 1 if and only if $w \in A$. The fact that H^{-1} is not a multivalued function can be proven by assuming that for some $A \in \mathcal{P}(\Sigma^*)$ that there exists two $f_1, f_2 \in F'$ such that $H^{-1}(A) = f_1$ and $H^{-1}(A) = f_2$ then we have that for all $w \in \Sigma^*$ that $f_1(w) = 1$ and $f_2(w) = 1$ if and only if $w \in A$ which directly implies that for any $\omega \in \Sigma^*$ where $\omega \notin A$ that $f_1(\omega) = 0$ and $f_2(\omega) = 0$. As f_1, f_2 are equal at every input we have that $f_1 = f_2$.

Now to show these functions are each others inverses.

Let $f \in F'$ then we have $H(f) = \{w \in \Sigma^* : f(w) = 1\}$. Then take $H^{-1}(\{w \in \Sigma^* : f(w) = 1\}) = f_0$ for some $f_0 \in F'$. But from the definition of H^{-1} we get that $f_0(\omega) = 1$ if and only if $\omega \in \{w \in \Sigma^* : f(w) = 1\}$ which is the same as $f(\omega) = 1$ so we have that $f_0 = f$. This implies that $H^{-1} \circ H = \operatorname{Id}_{F'}$. Now let $A \in \mathcal{P}(\Sigma^*)$ then we have that $H^{-1}(A) = f$ for some $f \in F'$. Then taking $H(f) = \{w \in \Sigma^* : f(w) = 1\}$ but from the definition of f we have that for all $\omega \in \Sigma^*$ that $f(\omega) = 1$ if and only if $\omega \in A$. This implies that H(f) = A so we have $H \circ H^{-1}(A) = A$ so we have that H is the inverse of H^{-1} so we have that H is a bijection.

Then as a bijection between $F' \subset F$ to $\mathcal{P}(\Sigma^*)$ exists and $\mathcal{P}(\Sigma^*)$ is uncountable we get F' is uncountable and so F is uncountable as well.

Program P_x Input: yif x halts on input xif y has even length
then accept
else reject
else loop forever

[30] 2. Let

$$E = \{w \in \{0,1\}^* \mid \ell(w) \text{ is even}\},\$$

the language of binary strings of even length. See Figure 2 for a sample program that decides E, just for \LaTeX formatting purposes. Let

$$L = \{x \mid \text{program } x \text{ decides } E\}$$

be the language of programs that decide E.

Prove that L is undecidable by using m-reducibility.

We have that DHP is undecidable hence I will create the m-reduction $DHP \leq_M L$. We do this by taking any program $x \to P_x$ where P_x is the program above. Note that E is regular as a simple FTA that has two states could recognize it. Hence I am justified in asking weather y has even length in P.

Now let $x \in \Sigma^*$ and suppose that $x \in DHP$ then we have that from the definition of P_x that for any input y that $P_x(y)$ will accept if y has even length and reject if y has odd length. This implies that P_x decides E so we have that $P_x \in L$. Now for any $x \in \Sigma^*$ consider $P_x \in L$ then we have that P_x would have decided E hence it halts so we have that x halts on input x hence $x \in DHP$. This implies that $x \in DHP$ if and only if $x \in L$ so we have that $x \in L$ have that $x \in L$ so $x \in L$ is undecidable as $x \in L$ is undecidable.

[40] 3. Let

DOUBLE =
$$\{ww \mid w \in \{a, b\}^*\}.$$

Let

$$W = \{x \mid \text{program } x \text{ decides DOUBLE}\}$$

be the language of programs that decide DOUBLE.

- A. Is DOUBLE decidable? Justify your answer.
- B. Is W decidable? Prove your answer.

```
Program P_{\text{DOUBLE}}
Input: y
if y has odd length
then reject
else
length \leftarrow len(y)
for i \leftarrow 0 to length/2
if y[i] \neq y[length/2 + i]
then reject
accept
```

```
Program P_x
Input: y
if x halts on input x
if y \in DOUBLE
then accept
else reject
else loop forever
```

A: Yes DOUBLE is decidable. An example of a program that decides DOUBLE is the program P_{DOUBLE} which is shown above. Note that I am having the range loop be noninclusive for range like how they are in python.

B: We have that W is not decidable. I will show this by creating the m-reduction $DHP \leq_M W$. We do this by taking any program $x \to P_x$ where P_x is the program above. Note that DOUBLE is decidable using the same reasoning as in part A. Hence I am justified in asking weather $y \in DOUBLE$ in P_x .

Now to show that this is a valid m-reduction. Suppose that $x \in DHP$ then we have from the definition of P_x that for any input y that it either accepts or rejects as DOUBLE is decidable hence we have that $P_x \in W$. Now suppose that $P_x \in W$ then we have that P_x would have decided DOUBLE hence it halts so we have that x halts on input x hence $x \in DHP$. This implies that $x \in DHP$ if and only if $P(x) \in W$ so we have that $DHP \leq_M W$ so W is undecidable as DHP is undecidable.