As shown in Table S | , CBN loss can improve the quality of quantitative maps. Especially, PSNR of NOE increases from 38.92dB to 39.08dB.

TABLE SI

RESULT OF 4-FOLD PROSPECTIVE HUMAN DATASET.

Data	M.4. 1		Raw images		LD NOE		LD APT		MTR_{asym}				
Data	Method	PSNR	SSIM	TEN	PSNR	SSIM	TEN	PSNR	SSIM	TEN	PSNR	SSIM	TEN
Human	w/o L_{CBN}	48.32	0.9930	6.02e-2	38.92	0.9687	2.11e-3	39.38	0.9565	1.30e-3	40.78	0.9682	4.24e-3
	Ours	48.31	0.9932	6.04e-2	39.08	0.9701	2.04e-3	39.48	0.9575	1.30e-3	40.84	0.9700	4.21e-3

The comparation of model size and computational cost are shown in Table S II. The Floating Point Operations (FLOPs) of COMET is significantly higher than other methods, which is a common problem for the unfolding network. Due to the share-parameter strategy, the number of parameters is not significantly more than other methods.

TABLE S ||

THE NUMBER OF PARAMETERS (PARAMS) AND FLOATING POINT OPERATIONS (FLOPS) OF DIFFERENT MODELS

Method	Params	FLOPs
T2Net	3.6M	246.58G
DPSR	3.32M	257.57G
RDN	8.09M	703.47G
EDSR	16.93M	757.82G
SRGAN	8.29M	330.38G
EPSRGAN	8.82M	290.79G
COMET	3.95M	1060.82G

To further validate the performance dependence on COMET to input data, we re-divided the training set and validation set for three times. As shown in Table S |||, there is no significant difference among three divided sets, which indicates stable training result can be obtained on the current rat dataset.

D-4-	M-41 1	Set1			Set2			Set3		
Data	Method	PSNR	SSIM	TEN	PSNR	SSIM	TEN	PSNR	SSIM	TEN
	T2Net	41.27	0.9737	1.47e-2	41.30	0.9736	1.47e-2	41.19	0.9738	1.46e-3
	DPSR	41.30	0.9761	1.48e-1	41.25	0.9765	1.49e-2	41.37	0.9360	1.47e-3
	RDN	41.52	0.9705	1.49e-1	41.64	0.9710	1.48e-2	41.48	0.9767	1.48e-3
Rat	EDSR	41.60	0.9778	1.49e-1	41.62	0.9777	1.50e-2	41.58	0.9780	1.50e-3
	SRGAN	41.89	0.9793	1.46e-1	41.80	0.9793	1.46e-2	41.96	0.9796	1.45e-2
	EPSRGAN	-	-	-	-	-	-	-	-	-
	COMET	42.26	0.9734	1.45e-1	42.28	0.9729	1.46e-2	42.20	0.9736	1.46e-3

The details of Net1, Net 2, Net 3, Net 4, Net 5 and the Down sampling operator in SFSM are shown in Table SIV. The input and output volume dimensions of each module is clarified in the first line and the last line. F, H, W represent the Frequency dimension, Height and Width, respectively. For Conv. and ConvTrans., c, k, s and p denote the channel dimension, kernel size, stride size and padding size, respectively.

 $\label{eq:table SIV} \mbox{The Details of Sub-nets in the paper}$

	Net 1		Net 2		Net 3	
Layer	Specification	Layer	Specification	Layer	Specification	
Input	F:3, H:256, W:256	Input	F:31, H:256, W:256	Input	F:31, H:64, W:64	
Nonlocal Block	c:3, num_block:8	Nonlocal Block	c:31, num_block:8	Conv 3d	c:1, k:(3,1,1), s:1, p:(1,0,0)	
Conv 2d	c:3,k:5,s:1,p:1	Conv 2d	c:31,k:3,s:1,p:1	Batch norm3d	Eps:1e-5,momentum:0.1	
Batch norm2d	Eps:1e-5,momentum:0.1	Batch norm2d	Eps:1e-5,momentum:0.1	Leaky Relu	Negative slope:0.02	
Conv 2d	c:3,k:4,s:2,p:1	Leaky Relu	Negative slope:0.02	ConvTrans 3d	c:1, k:(1,1,4), s:(1,2,2), p:(0,0,1)	
Batch norm2d	Eps:1e-5,momentum:0.1	Output	F:3, H:256, W:256	Batch norm3d	Eps:1e-5,momentum:0.1	
Leaky Relu	Negative slope:0.02			Leaky Relu	Negative slope:0.02	
Conv 2d	c:6,k:3,s:1,p:1			ConvTrans 3d	c:2, k:(1,1,4), s:(1,2,2), p:(0,0,1)	
Batch norm2d	Eps:1e-5,momentum:0.1			Batch norm3d	Eps:1e-5,momentum:0.1	
Conv 2d	c:6,k:4,s:2,p:1			Leaky Relu	Negative slope:0.02	
Batch norm2d	Eps:1e-5,momentum:0.1			Conv 3d	c:4, k:(3,1,1), s:1, p:(1,0,0)	
Leaky Relu	Negative slope:0.02			Batch norm3d	Eps:1e-5,momentum:0.1	
Conv 2d	c:12,k:3,s:1,p:1			Leaky Relu	Negative slope:0.02	
Batch norm2d	Eps:1e-5,momentum:0.1			Conv 3d	c:2, k:(3,1,1), s:1, p:(1,0,0)	
Leaky Relu	Negative slope:0.02			Batch norm3d	Eps:1e-5,momentum:0.1	
Conv 2d	c:12,k:3,s:1,p:1			Leaky Relu	Negative slope:0.02	
Batch norm2d	Eps:1e-5,momentum:0.1			Output	F:31, H:256, W:256	
Leaky Relu	Negative slope:0.02					
Conv 2d	c:24,k:3,s:1,p:1					
Batch norm2d	Eps:1e-5,momentum:0.1					
Leaky Relu	Negative slope:0.02					
Conv 2d	c:24,k:3,s:1,p:1					
Batch norm2d	Eps:1e-5,momentum:0.1					
ConvTrans 2d	c:12,k:4,s:2,p:1					
Batch norm2d	Eps:1e-5,momentum:0.1					
Leaky Relu	Negative slope:0.02					
Conv 2d	c:18,k:3,s:1,p:1					
Batch norm2d	Eps:1e-5,momentum:0.1					
ConvTrans 2d	c:12,k:4,s:2,p:1					
Batch norm2d	Eps:1e-5,momentum:0.1					
Leaky Relu	Negative slope:0.02					
Conv 2d	c:9,k:3,s:1,p:1					
Batch norm2d	Eps:1e-5,momentum:0.1					
ConvTrans 2d	c:6,k:3,s:1,p:1					

Batch norm2d	Eps:1e-5,momentum:0.1		
Leaky Relu	Negative slope:0.02		
Output	F:31, H:256, W:256		

	Net 4		Net 5	Down sam	pling operator in SFSM
Layer	Specification	Layer	Specification	Layer	Specification
Input	F:34, H:256, W:256	Input	F:31, H:256, W:256	Input	F:31, H:256, W:256
Conv 2d	c:31,k:5,s:1,p:1	Conv 2d	c:34,k:5,s:1,p:1	Conv 3d	c:1, k:(3,1,1), s:1, p:(1,0,0)
Batch norm2d Eps:1e-5,momentum:0.1		Batch norm2d	Eps:1e-5,momentum:0.1	Batch norm3d	Eps:1e-5,momentum:0.1
Conv 2d	c:31,k:4,s:2,p:1	Conv 2d	c:31,k:4,s:2,p:1	Leaky Relu	Negative slope:0.2
Batch norm2d	Eps:1e-5,momentum:0.1	Batch norm2d	Eps:1e-5,momentum:0.1	Conv 3d	c:1, k:(1,1,4), s:(1,2,2), p:(0,0,1)
Leaky Relu	Negative slope:0.02	Leaky Relu	Negative slope:0.02	Batch norm3d	Eps:1e-5,momentum:0.1
Conv 2d	c:62,k:3,s:1,p:1	Conv 2d	c:62,k:3,s:1,p:1	Leaky Relu	Negative slope:0.2
Batch norm2d	Eps:1e-5,momentum:0.1	Batch norm2d	Eps:1e-5,momentum:0.1	Conv 3d	c:2, k:(1,1,4), s:(1,2,2), p:(0,0,1)
Conv 2d	c:62,k:4,s:2,p:1	Conv 2d	c:62,k:4,s:2,p:1	Batch norm3d	Eps:1e-5,momentum:0.1
Batch norm2d	Eps:1e-5,momentum:0.1	Batch norm2d	Eps:1e-5,momentum:0.1	Leaky Relu	Negative slope:0.2
Leaky Relu	Negative slope:0.02	Leaky Relu	Negative slope:0.02	Conv 3d	c:4, k:(3,1,1), s:1, p:(1,0,0)
Conv 2d	c:124,k:3,s:1,p:1	Conv 2d	c:124,k:3,s:1,p:1	Batch norm3d	Eps:1e-5,momentum:0.1
Batch norm2d	Eps:1e-5,momentum:0.1	Batch norm2d	Eps:1e-5,momentum:0.1	Leaky Relu	Negative slope:0.2
Leaky Relu	Negative slope:0.02	Leaky Relu	Negative slope:0.02	Conv 3d	c:2, k:(3,1,1), s:1, p:(1,0,0)
Conv 2d	c:124,k:3,s:1,p:1	Conv 2d	c:124,k:3,s:1,p:1	Batch norm3d	Eps:1e-5,momentum:0.1
Batch norm2d	Eps:1e-5,momentum:0.1	Batch norm2d	Eps:1e-5,momentum:0.1	Leaky Relu	Negative slope:0.2
Leaky Relu	Negative slope:0.02	Leaky Relu	Negative slope:0.02	Output	C:1, F:31, H:64, W:64
Conv 2d	c:248,k:3,s:1,p:1	Conv 2d	c:248,k:3,s:1,p:1		
Batch norm2d	Eps:1e-5,momentum:0.1	Batch norm2d	Eps:1e-5,momentum:0.1		
Leaky Relu	Negative slope:0.02	Leaky Relu	Negative slope:0.02		
Conv 2d	c:24,k:3,s:1,p:1	Conv 2d	c:24,k:3,s:1,p:1		
Batch norm2d	Eps:1e-5,momentum:0.1	Batch norm2d	Eps:1e-5,momentum:0.1		
ConvTrans 2d	c:124,k:4,s:2,p:1	ConvTrans 2d	c:124,k:4,s:2,p:1		
Batch norm2d	Eps:1e-5,momentum:0.1	Batch norm2d	Eps:1e-5,momentum:0.1		
Leaky Relu	Negative slope:0.02	Leaky Relu	Negative slope:0.02		
Conv 2d	c:186,k:3,s:1,p:1	Conv 2d	c:186,k:3,s:1,p:1		
Batch norm2d	Eps:1e-5,momentum:0.1	Batch norm2d	Eps:1e-5,momentum:0.1		
ConvTrans 2d	c:124,k:4,s:2,p:1	ConvTrans 2d	c:124,k:4,s:2,p:1		
Batch norm2d	Eps:1e-5,momentum:0.1	Batch norm2d	Eps:1e-5,momentum:0.1		
Leaky Relu	Negative slope:0.02	Leaky Relu	Negative slope:0.02		
Conv 2d	c:93,k:3,s:1,p:1	Conv 2d	c:93,k:3,s:1,p:1		
Batch norm2d	Eps:1e-5,momentum:0.1	Batch norm2d	Eps:1e-5,momentum:0.1		
ConvTrans 2d	c:62,k:3,s:1,p:1	ConvTrans 2d	c:62,k:3,s:1,p:1		
Batch norm2d	Eps:1e-5,momentum:0.1	Batch norm2d	Eps:1e-5,momentum:0.1		
Leaky Relu	Negative slope:0.02	Leaky Relu	Negative slope:0.02		
Output	F:31, H:256, W:256	Output	F:31, H:256, W:256		

learning loss (ML) are shown in Table S V and Table S VI. During the fine-tuning of hyperparameters, we adopt a sequential approach where we adjust one hyperparameter at a time while keeping other hyperparameters fixed. This allows us to isolate the effect of each individual hyperparameter. Once a parameter is optimized and reaches its optimal value, we then proceed to tune the remaining parameters. By adjusting the hyperparameters in a systematic manner, we can effectively optimize the overall performance of the model. Indeed, COMET has the limitation of too many hyper-parameters tuning, which is labor-consuming and hinder the adaption of COMET to new datasets. We will reduce the number of hyper-parameters and optimize this issue in the future work.

 $\label{table SV} \textbf{Result of Different Weight of CEST-Based Normalization loss (CBN) on Human and Rat Datasets. }$

D-t-	CDM (a)	Raw image			
Data	$CBN(\gamma)$	PSNR	SSIM		
	0.3	53.50	0.9968		
11	0.5	53.70	0.9966		
Human	0.7	53.92	0.9970		
	0.9	53.68	0.9966		
	0	41.98	0.9742		
Rat	0.5	42.26	0.9734		
	1.0	42.15	0.9730		

 $\label{table SVI}$ Result of different weight of Mutual learning loss (ML) on human and rat datasets..

D	va (0)	Raw image			
Data	$ML(\beta)$	PSNR	SSIM		
	0	53.35	0.9965		
Human	0.1	53.70	0.9966		
	0.2	53.42	0.9968		
	0	41.92	0.9737		
Rat	0.5	42.15	0.9730		
	1.0	41.96	0.9732		

The DWI images used in this research were sourced from the Human Connectome Project (HCP) and were acquired using a 7T MR scanner. The acquisition parameters for these images are as follows: field of view (FOV) = $173 \times 143 \text{mm}^2$, inplane resolution = 1 mm, number of diffusion-encoding directions = 64, slice thickness = 1 mm, and b-value = 1000 s/mm^2 . Out of the total 640 images, 360 were utilized for training purposes, while 120 and 160 images were allocated to the validation set and test set, respectively. Regarding the results, it was observed that the COMET method outperformed all the compared methods in terms of Peak Signal-to-Noise Ratio (PSNR). This implies that COMET achieves higher fidelity and better reconstruction quality compared to the other methods.

TABLE SVII

THE PERFORMANCE OF ALL METHODS ON DWI

Data	Method	PSNR	SSIM	TEN
	T2Net	37.00	0.9034	2.11e-2
	DPSR	36.69	0.9080	2.13e-1
	RDN	37.02	0.9027	2.10e-1
DWI	EDSR	36.14	0.8890	2.24e-1
	SRGAN	36.60	0.9063	2.11e-1
	ESRGAN	36.53	0.9064	2.14e-1
	COMET	37.25	0.9034	2.11e-1