

Tutorato 5 AL310

Tutori: Luciana Longo e Sara Milliani

30 Novembre 2016

- 1. Determinare se i seguenti ampliamenti sono normali:
 - (a) $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2})$
 - (b) $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2} + \sqrt{3})$
 - (c) $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt[3]{2})$
 - (d) $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{3}, \sqrt[3]{5})$
 - (e) $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt[3]{7}, \xi_3)$
 - (f) $\mathbb{Q} \subseteq \mathbb{Q}(\xi_{13})$
- 2. Si determini un'immersione $\varphi: \mathbb{Q}(\sqrt[4]{2}) \hookrightarrow \mathbb{C}$ che non sia un automorfismo di $\mathbb{Q}(\sqrt[4]{2})$ e si estenda φ ad un automorfismo di $\mathbb{Q}(\sqrt[4]{2},i)$.
- 3. Sia ζ una radice primitiva ventitreesima dell'unitá e K:= $\mathbb{Q}(\zeta)$. Dopo aver determinato il gruppo $Gal_{\mathbb{Q}}K$, si illustri la corrispondenza di Galois, esibendo, per ciascun campo intermedio fra \mathbb{Q} e K, un suo elemento primitivo su \mathbb{Q} .
- 4. Si ponga $K := \mathbb{Q}(\sqrt{10}, \sqrt{14}, \sqrt{35})$.
 - (a) Si calcoli $[K:\mathbb{Q}],$ giustificando la risposta.
 - (b) Dopo aver descritto $Gal_{\mathbb{Q}}K,$ si trovino tutti i campi intermedi fra \mathbb{Q} e K.
- 5. Sia $K\subseteq\mathbb{C}$ il campo di spezzamento del polinomio x^3-2 . Costruire esplicitamente un isomorfismo fra $Gal_{\mathbb{Q}}K$ ed S_3 .
- 6. Calcolare il gruppo di Galois dei seguenti polinomi:
 - (a) $x^3 5$
 - (b) $x^3 x 2$

- (c) $x^5 + 5x^4 5$
- (d) $x^5 3x 1$
- 7. Costruire, tramite corrispondenza di Galois, il reticolo dei sottocampi compresi tra K e \mathbb{Q} con $K = \mathbb{Q}(\xi_{13})$ e $K = \mathbb{Q}(\xi_{11})$.
- 8. Si consideri il polinomio $f(x) = x^4 + x^3 5x 5 \in \mathbb{Q}[x]$.
 - (a) Determinare il gruppo di Galois di f(x) su \mathbb{Q} e la sua struttura.
 - (b) Esplicitare la corrispondenza di Galois per il polinomio f(x) su \mathbb{Q} .
- 9. Costruire, tramite corrispondenza di Galois, il reticolo dei sottocampi compresi tra K e \mathbb{Q} con $K = \mathbb{Q}(\xi_8)$ e $K = \mathbb{Q}(\xi_{12})$.
- 10. Siano $f(x) := x^3 + x + 1$, $g(x) := x^3 + x^2 + 1 \in \mathbb{F}_2[x]$.
 - (a) Mostrare che f(x) e g(x) sono irriducibili su \mathbb{F}_2 .
 - (b) Data una radice α di f(x) ed una radice β di g(x), costruire i campi $F = \mathbb{F}_2(\alpha)$ e $K = \mathbb{F}_2(\beta)$.
 - (c) Mostrare che F e K sono isomorfi e costruire esplicitamente tutti gli isomorfismi tra F e K.
- 11. Sia K il campo di spezzamento del polinomio $f(x) = x^4 3$ su \mathbb{Q} .
 - (a) Si determini un isomorfismo tra $Gal_{\mathbb{Q}}K$ ed un gruppo noto.
 - (b) Si descriva la corrispondenza di Galois per $\mathbb{Q} \subseteq K$.
 - (c) Si trovino i sottocampi di K che sono normali su Q.