Planche 1.

Exercice 1. Quelle est la nature de la série de terme général

$$\frac{\sin(n^2)}{\pi^{1/n}n^{3+\sin(n)}}$$

Exercice 2. Etudier la suite (u_n) définie par $u_0 = 1$ et $\forall n \in \mathbb{N}$,

$$u_{n+1} = \sqrt{1 + u_n}$$

Planche 2.

Exercice 1. Quelle est la nature de la série de terme général

$$\sqrt{n + (-1)^n} - \sqrt{n}$$

Exercice 2. On définit la suite (u_n) comme unique solution positive de $nx^{n+1} - (n+1)x^n = 1$. Montrer que la suite est bien définie et l'étudier.

Planche 3.

Exercice 1. Quelle est la nature de la série de terme général

$$\cos(\pi\sqrt{n^2+n+1})$$

Exercice 2. Étudier la suite (u_n) définie par $u_0 \in [-2, 2[$ et

$$u_{n+1} = \sqrt{2 - u_n}$$

Solutions - Planche 1.

Exercice 1. Remarquons que le sin est borné et que $\pi^{1/n} \to 1$ lorsque $n \to +\infty$. Il ne reste qu'à gérer le comportement de $n^{3+\sin(n)}$. Or $-1 \le \sin(n)$ donc $2 \le 3 + \sin(n)$. On en déduit que

$$\left| \frac{\sin(n^2)}{\pi^{1/n} n^{3+\sin(n)}} \right| \le \frac{1}{\pi^{1/n} n^2}$$

Or le deuxième terme est équivalent à $1/n^2$, terme général d'une série convergente. Donc la série initiale converge absolument donc converge.

Exercice 2. Remarquons tout d'abord que la suite (u_n) est bien définie car on montre par récurrence que $u_n \geq 0$.

Soit l une limite éventuelle. Alors par passage à la limite dans la relation, on obtient $l = \sqrt{1+l}$. D'où l est solution de $l^2 - l - 1$. Qui a pour solution positive

$$\varphi = \frac{1 + \sqrt{5}}{2}$$

Montrons que la suite converge vers cette limite. Étudions déjà le domaine de la suite. On pose $f(x) = \sqrt{1+x}$. Montrons que $[1,\varphi]$ est stable par f. Or f est croissante et $f(1) = \sqrt{2} \in [1,\varphi]$. De même $f(\varphi) = \sqrt{1+\varphi} \in [1,\varphi]$. En effet $\sqrt{1+\varphi} \leq \varphi$ d'après l'équation vérifiée par φ .

On va essayer de montrer qu'elle est croissante. Or $u_{n+1} - u_n = \sqrt{1 + u_n} - u_n$. On pose donc $g(x) = \sqrt{1 + x} - x$. Après une étude rigoureuse de la fonction on se rend compte que g est positive sur $[1, \varphi]$. D'où (u_n) est croissante.

Conclusion : on a une suite croissante majorée. Donc elle converge. Or l'unique limite possible est φ . Donc $u_n \to \varphi$ lorsque $n \to \infty$.

Solutions - Planche 2.

Exercice 1. Il suffit de faire un développement limité.

$$\sqrt{n + (-1)^n} - \sqrt{n} = \sqrt{n}(\sqrt{1 + (-1)^n/n} - 1) = \sqrt{n}(1 + \frac{1}{2}(-1)^n/n + O(1/n^2) - 1)$$
$$= \frac{1}{2}(-1)^n/\sqrt{n} + O(1/n^{3/2})$$

Or le premier terme donne une série convergene par le critère des séries alternées. De plus le deuxième terme converge car converge absolument par comparaison à une série de Riemann (et que converge absolue implique convergence).

Exercice 2. On pose $f_n(x) = nx^{n+1} - (n+1)x - 1$. Les fonctions f_n sont continues. Fixons n et étudions les variations de f_n sur \mathbb{R}^+ . Calculons $f_n(0) = -1$ et $f'_n(x) = x^{n-1}n(n+1)(x-1)$. D'où f_n est décroissante sr [0,1] puis croissante et tend vers $+\infty$ en $+\infty$. On en déduit par le théorème des valeurs intermédiaires qu'il existe un unique $x \ge 0$ tel que $f_n(x) = 0$. On le note u_n et on a créé la suite (u_n) .

Essayons de montrer une éventuelle convergence de la fonction. On sait déjà que $u_n \geq 1$ car $f_n(1) = -2$. Montrons que 1 est la limite de u_n . Pour cela on va montrer que $1 \leq u_n \leq 1 + \epsilon_n$ en utilisant f_n avec une suite $\epsilon_n \to 0$. Tentons 1/n:

$$f_n(1+1/n) = (1+1/n)^n(n(1+1/n)-n)-1 = 0-1 \le 0$$

Dommage mais prenons donc 2/n:

$$f_n(1+2/n) = (1+2/n)^n(n(1+2/n)-n)-1 = (1+2/n)^n-1 \ge 0$$

Donc $1 \le u_n \le 1 + 2/n$. On en déduit que $u_n \to 1$.

Solutions - Planche 3.

Exercice 1. Effectuons un développement asymptotique.

$$u_n = \cos(\pi n \sqrt{1 + 1/n + 1/n^2}) = \cos(\pi n (1 + \frac{1}{2} (1/n + 1/n^2) - \frac{1}{8n^2} + O(1/n^2)))$$

$$= \cos(\pi n + \pi/2 + 3\pi/(8n) + O(1/n))$$

$$= (-1)^n \sin(3\pi/(8n) + O(1/n^2))$$

$$= (-1)^n 3\pi/(8n) + O(1/n^2)$$

Le premier terme donne une série convergente par le critère des séries alternées. Le deuxième terme donne une série convergente par comparaison avec une série de Riemann.

Exercice 2. Vérifions que la suite est bien définie. On pose $f(x) = \sqrt{2-x}$ sur [-2,2]. La fonction f est décroissante, $f(-2) = \sqrt{4} = 2$ et $f(2) = \sqrt{0} = 0$. Donc l'intervalle [-2,2] est stable par f. On en déduit que la suite est bien définie.

Supposons que (u_n) converge vers une limite l. Par passage à la limite dans la relation de récurrence on en déduit que $l = \sqrt{2-l}$. D'où l vérifie $l^2 + l - 2 = 0$. Donc l = 1 car $l \ge 0$. Montrons que u_n converge vers 1.

Comme 1 se situe au milieu de l'intervalle de définition on va avoir du mal à montrer que u_n est croissante ou décroissante. Intéressons nous plutôt à $|u_n - 1|$. Cette quantité là doit décroître. Or

$$|u_{n+1} - 1| = |\sqrt{2 - u_n} - 1| = \frac{|2 - u_n - 1|}{\sqrt{2 - u_n} + 1} = \frac{|u_n - 1|}{\sqrt{2 - u_n} + 1}$$

Donc $|u_{n+1}-1| \le |u_n-1|$ et cette suite est décroissante minorée. On en déduit qu'elle converge vers un réel $\alpha \ge 0$.

Si $\alpha \neq 0$, alors $1 + \sqrt{2 - u_n} = \frac{|u_n - 1|}{|u_{n+1} - 1|} \to 1$. Donc u_n converge vers 2. Mais c'est une valeur limite impossible. Donc $\alpha = 0$ et u_n converge vers 1.