МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

Кафедра математической кибернетики и компьютерных наук

ТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ НОВОСТЕЙКУРСОВАЯ РАБОТА

студента 3 курса 351 группы направления 09.03.04 — Программная инженерия факультета КНиИТ Кондрашова Даниила Владиславовича

Научный руководитель	
доцент, к. фм. н.	 С.В.Папшев
Заведующий кафедрой	
к. фм. н.	 С.В.Миронов

СОДЕРЖАНИЕ

BE	ВЕДЕ	ниЕ		. 4
1	Мат	ематич	еские основы тематического моделирования	. 5
	1.1	Основ	вная гипотеза тематического моделирования	. 5
	1.2	2 Аксиоматика тематического моделирования		. 5
	1.3	Задача тематического моделирования		. 6
	1.4	Решение обратной задачи		. 7
		1.4.1	Лемма о максимизации функции на единичных симплексах	7
		1.4.2	Сведение обратной задачи к задаче максимизации функ-	
			ционала	. 8
		1.4.3	Аддитивная регуляризация тематических моделей	. 9
		1.4.4	Е-М алгоритм	. 9
	1.5	Регуля	аризаторы в тематическом моделировании	. 10
		1.5.1	Дивергенция Кульбака-Лейблера	. 10
		1.5.2	Регуляризатор сглаживания	. 11
		1.5.3	Регуляризатор разреживания	. 12
		1.5.4	Регуляризатор декоррелирования тем	. 12
	1.6	Оценк	ка качества моделей тематического моделирования	. 13
		1.6.1	Правдоподобия и перплексия	. 14
		1.6.2	Когерентность	. 14
		1.6.3	Разреженность	. 15
		1.6.4	Чистота темы	. 15
		1.6.5	Контрастность темы	. 15
2	Тема	атическ	ое моделирование новостей	. 16
	2.1	Предо	обработка текстов	. 16
		2.1.1	Токенизация, перевод в нижний регистр и удаление неал-	
			фавитных символов	. 16
		2.1.2	Удаление стоп-слов	. 17
		2.1.3	Лемматизация	. 18
		2.1.4	Создание N-грамм	. 19
	2.2	Стати	стика по данным	. 19
		2.2.1	Создание тематической модели с помощью библиотеки	
			BigARTM	. 20
	2.3	PLSA	(модель без регуляризаторов)	. 23
	2.3	PLSA	(модель без регуляризаторов)	

2.4 LDA (модель с регуляризатором сглаживания)	. 23
2.5 Модель с регуляризатором разреживания	. 24
2.6 Модель с регуляризатором декоррелирования	. 25
2.7 Выбор лучшей модели	. 26
ВАКЛЮЧЕНИЕ	. 28
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	. 29
Триложение A Код программы подготовки данных	31
Триложение Б Код программы PLSA модели	34
Триложение В Код программы LDA модели	37
Триложение Г Код программы модели с регуляризатором разреживания	40
Триложение Д Код программы модели с регуляризатором декоррелиро-	
вания	45
Триложение Е Ссылка на ноутбук с программой	50
Триложение Ж Результаты обучения модели PLSA	51
Триложение 3 Результаты обучения модели LDA	52
Триложение И Результаты обучения модели с регуляризатором разрежи-	
вания	53
Триложение К Результаты обучения модели с регуляризатором декорре-	
лирования	54

ВВЕДЕНИЕ

С ростом объёмов информации в современном мире умение классифицировать и структурировать данные становится необходимым для их эффективного поиска и изучения. Физически невозможно найти нужные сведения, просто перебирая все ресурсы подряд, поэтому возникает острая потребность в тематическом поиске и классификации данных.

Тематическое моделирование призвано решить эту проблему. Оно позволяет быстро и эффективно автоматически разбивать большие объёмы информации по темам, упрощая процесс поиска и анализа данных.

Актуальность данной темы обусловлена быстрыми темпами роста объёма данных, которые нужно уже здесь и сейчас быстро и эффективно классифицировать и структурировать, а также вести точный и быстрый поиск по ним.

Целью данной курсовой работы является создание тематической модели для моделирование новостей. Работы включает в себя изучение теоретических принципов тематического моделирвоания и создание тематической модели для моделирования новостей.

В ходе данной работы будут рассмотрены следующие задачи:

- изучение теоретических основ тематического моделирования;
- изучение методов предобработки данных для тематического моделирования;
- анализ данных, выбранных для обучения;
- разработка тематической модели средствами библиотеки BigARTM;
- оценка тематической модели.

1 Математические основы тематического моделирования

1.1 Основная гипотеза тематического моделирования

Тематическое моделирование — это метод анализа текстовых данных, который позволяет выявлять семантические структуры в коллекциях документов.

Основная идея тематического моделирования заключается в том, что слова в тексте связаны не с конкретным документом, а с темами. Сначала текст разбивается на темы, и каждая из них генерирует слова для соответствующих позиций в документе. Таким образом, сначала формируется тема, а замет тема формирует терм.

Эта гипотеза позволяет проводить тематическую классификацию текстов на основе частоты и взаимовстречаемости слов [1].

1.2 Аксиоматика тематического моделирования

Каждый текст можно количественно охарактеризовать. Вот основные количественные характеристики, использующиеся при тематическом моделировании:

- *W* конечное множество термов;
- *D* конечное множество текстовых документов;
- *T* конечное множество тем;
- $D \times W \times T$ дискретное вероятностное пространство;
- коллекция i.i.d выборка $(d_i, w_i, t_i)_{i=1}^n$;
- $n_{dwt} = \sum_{i=1}^{n} [d_i = d][w_i = w][t_i = t]$ частота (d, w, t) в коллекции;
- $n_{wt} = \sum_{d} n_{dwt}$ частота терма w в документе d;
- $n_{td} = \sum_{w} n_{dwt}$ частота термов темы t в документе d;
- $n_t = \sum_{d,w} n_{dwt}$ частота термов темы t в коллекции;
- $n_{dw} = \sum_t n_{dwt}$ частота терма w в документе d;
- $n_W = \sum_d n_{dw}$ частота терма w в коллекции;
- $n_d = \sum_w n_{dw}$ длина документа d;
- $n = \sum_{d,w} n_{dw}$ длина коллекции.

Также в тематическом моделировании используются следующие гипотезы и аксиомы:

- Независимость слов от порядка в документе: порядок слов в документе не важен;
- Независимость от порядка документов в коллекции: порядок документов

в коллекции не важен;

- Зависимость терма от темы: каждый терм связан с соответствующей темой и порождается ей;
- Гипотеза условной независимости: p(w|d,t) = p(w|t).

Вышеперечисленные характеристики, гипотезы и аксиомы составляют основу тематического моделирования и являются достаточными для построения тематической модели. [1,2].

1.3 Задача тематического моделирования

Как уже говорилось ранее, документ порождается следующим образом:

- 1. для каждой позиции в документе генерируется тема p(t|d);
- 2. для каждой сгенерированной темы в соответствующей позиции генерируем терм p(w|d,t).

Разработан спектрально-аналитический подход к выявлению размытых протяженных повторов в геномных последовательностях. Метод основан на разномасштабном оценивании сходства нуклеотидных последовательностей в пространстве коэффициентов разложения фрагментов кривых GC- и GA-содержания по классическим ортогональным базисам. Найдены условия оптимальной аппроксимации, обеспечивающие автоматическое распознавание повторов различных видов (прямых и инвертированных, а также тандемных) на спектральной матрице сходства. Метод одинаково хорошо работает на разных масштабах данных. Он позволяет выявлять следы сегментных дупликаций и мегасателлитные участки в геноме, районы синтении при сравнении пары геномов. Его можно использовать для детального изучения фрагментов хромосом (поиска размытых участков с умеренной длиной повторяющегося паттерна).

Рисунок 1 – Алгоритм формирования документа

Тогда вероятность появления слова в документе можно описать по формуле полной вероятности:

$$p(w|d) = \sum_{t \in T} p(w|d, t)p(t|d) = \sum_{t \in T} p(w|t)p(t|d)$$
 (1)

Такой алгоритм является прямой задачей порождения текста. Тематическое моделирование призвано решить обратную задачу:

- 1. для каждого терма w в тексте найти вероятность появления в теме t (найти $p(w|t)=\phi_{wt}$);
- 2. для каждой темы t найти вероятность появления в документе d (найти $p(t|d) = \theta_{td}$).

Обратную задачу можно представить в виде стохастического матричного разложения 2.

Рисунок 2 – Стохастическое матричное разложение

Таким образом, тематическое моделирование ищет величину p(w|d) [1,2].

1.4 Решение обратной задачи

Для решения задачи тематического моделирования необходимо найти величину p(w|d), сделать это можно с помощью метода максимального правдоподобия.

1.4.1 Лемма о максимизации функции на единичных симплексах

Перед тем как перейти к решению обратной задачи, сформулируем лемму, которая поможет нам в этом процессе.

Введём операцию нормировки вектора:

$$p_i = (x_i) = \frac{\max x_i, 0}{\sum_{k \in I} \max x_k, 0}$$
 (2)

Лемма о максимизации функции на единичных симплексах:

Пусть функция $f(\Omega)$ непрерывно дифференцируема по набору векторов $\Omega=(w_i)_{j\in J}, \quad w_j=(w_{ij})_{i\in I_j}$ различных размерностей $|I_j|$. Тогда векторы w_j

локального экстремума задачи

$$\begin{cases} f(\Omega) \to \max_{\Omega} \\ \sum_{i \in I_j} w_{ij} = 1, & j \in J \\ w_{ij} \ge 0, & i \in I_j, j \in J \end{cases}$$

при условии $1^0: \ (\exists i \in I_j) w_{ij} \frac{\partial f}{\partial w_{ij}} > 0$ удовлетворяют уравнениям

$$w_{ij} = norm_{i \in I_j} \left(w_{ij} \frac{\partial f}{\partial w_{ij}} \right), \quad i \in I_j;$$
(3)

при условии 2^0 : $(\forall i\in I_j)w_{ij}\frac{\partial f}{\partial w_{ij}}\leq 0$ и $(\exists i\in I_j)w_{ij}\frac{\partial f}{\partial w_{ij}}<0$ удовлетворяют уравнениям

$$w_{ij} = norm_{i \in I_j} \left(-w_{ij} \frac{\partial f}{\partial w_{ij}} \right), \quad i \in I_j;$$
(4)

в противном случае (условие 3^0) — однородным уравнениям

$$w_{ij}\frac{\partial f}{\partial w_{ij}} = 0, \quad i \in I_j. \tag{5}$$

Данная лемма служит для оптимизации любых моделей, параметрами которых являются неотрицательные нормированные векторы [1,3].

1.4.2 Сведение обратной задачи к задаче максимизации функционала

Чтобы вычислить величину p(w|d) воспользуемся принципом максимума правдоподобия, согласно которому будут подобраны параметры Φ, Θ такие, что p(w|d) примет наибольшее значение.

$$\prod_{i=1}^{n} p(d_i, w_i) = \prod_{d \in D} \prod_{w \in d} p(d, w)^{n_{dw}}$$
(6)

Прологарифмировав правдоподобие, перейдём к задаче максимизации логарифма правдоподобия.

$$\sum_{d \in D} \sum_{w \in d} n_{dw} \ln p(w|d) p(d) = n_{dw} \to max$$
 (7)

Данная задача эквивалентна задаче максимизации функционала

$$L(\Phi, \Theta) = \sum_{d \in D} \sum_{w \in d} n_{dw} \ln \sum_{t \in T} \phi_{wt} \theta_{td} \to \max_{\Phi, \Theta}$$
 (8)

при ограничениях неотрицательности и нормировки

$$\phi_{wt} \ge 0; \quad \sum_{w \in W} \phi_{wt} = 1; \quad \theta_{td} \ge 0; \quad \sum_{t \in T} \theta_{td} = 1$$
 (9)

Таким образом, обратная задача сводится к задаче максимизации функции [1,2].

1.4.3 Аддитивная регуляризация тематических моделей

Задача [?] не соответствует критериям корректно поставленной задачи по Адамару, поскольку в общем случае она имеет бесконечное множество решений. Это свидетельствует о необходимости доопределения задачи.

Для доопределения некорректно поставленных задач применяется регуляризация: к основному критерию добавляется дополнительный критерий — регуляризатор, который соответствует специфике решаемой задачи.

Метод ARTM (аддитивная регуляризация тематических моделей) основывается на максимизации линейной комбинации логарифма правдоподобия и регуляризаторов $R_i(\Phi,\Theta)$ с неотрицательными коэффициентами регуляризации $t\tau_i,\ i=1,\ldots,k.$

Преобразуем задачу к ARTM виду:

$$\sum_{d \in D} \sum_{w \in d} n_{dw} \ln \sum_{t \in T} \phi_{wt} \theta_{td} + R(\Phi, \Theta) \to \max_{\Phi, \Theta}; \quad R(\Phi, \Theta) = \sum_{i=1}^{k} \tau_i R_i(\Phi, \Theta) \quad (10)$$

при ограничениях неотрицательности и нормировки 9.

Регуляризатор (или набор регуляризаторов) выбирается в соответствии с решаемой задачей [1,4,5].

1.4.4 Е-М алгоритм

Из представленных ограничений 9 следует, что столбцы матриц можно считать неотрицательными единичными векторами. Таким образом, задача сводится к максимизации функции на единичных симплексах.

Воспользуемся леммой о максимизации функции на единичных симплексах 1.4.1 и перепишем задачу.

Пусть функция $R(\Phi,\Theta)$ непрерывно дифференцируема. Тогда точка (Φ,Θ) локального экстремума задачи с ограничениями, удовлетворяет системе уравнений с вспомогательными переменными $p_{twd}=p(t|d,w)$, если из решения исключить нулевые столбцы матриц Φ и Θ :

$$\begin{cases} p_{tdw} = \underset{t \in T}{norm}(\phi_{wt}\theta_{td}) \\ \phi_{wt} = \underset{w \in W}{norm}\left(n_{wt} + \phi_{wt}\frac{\partial R}{\partial \phi_{wt}}\right); \\ \theta_{td} = \underset{t \in T}{norm}\left(n_{td} + \theta_{td}\frac{\partial R}{\partial \theta_{td}}\right) \end{cases}$$

$$(11)$$

Полученная модель соответствует Е-М алгоритму, где первая строка системы уравнений соответствует Е шагу, а вторая и третья строки — М шагу.

Решив полученную систему уравнений, методом простых итерации получим искомые матрицы Φ и Θ [1,3].

1.5 Регуляризаторы в тематическом моделировании

В этом разделе будут рассмотрены некоторые возможные варианты регуляризаторов.

1.5.1 Дивергенция Кульбака-Лейблера

Перед тем как перейти к регуляризаторам необходимо ввести меру оценки близости тем.

Чтобы оценить близость тем можно воспользователься дивергенцией Кульбака-Лейблера (КL или KL-дивергенция). КL-дивергенция позволяет оценить степень вложенности одного распределения в другое, в случае тематического моделирования будет оценитьваться вложенность матриц.

Определим КL-дивергенцию:

Пусть $P=(p_i)_{i=1}^n$ и $Q=(q_i)_{i=1}^n$ некоторые распределения. Тогда дивергенция Кульбака-Лейблера имеет следующий вид:

$$KL(P||Q) = KL_i(p_i||q_i) = \sum_{i=1}^{n} p_i \ln \frac{p_i}{q_i}.$$
 (12)

Свойства KL-дивергенции:

1.
$$KL(P||Q) \ge 0$$
;

- 2. $KL(P||Q) = 0 \Leftrightarrow P = Q;$
- 3. Минимизация KL эквивалентна максимизации правдоподобия:

$$KL(P||Q(\alpha)) = \sum_{i=1}^{n} p_i \ln \frac{p_i}{q_i(\alpha)} \to \min_{\alpha} \Leftrightarrow \sum_{i=1}^{n} p_i \ln q_i(\alpha) \to \max_{\alpha};$$

4. Если KL(P||Q) < KL(Q||P), то P сильнее вложено в Q, чем Q в P. Теперь можно перейти к рассмотрению регуляризаторов [1].

1.5.2 Регуляризатор сглаживания

Сглаживание предполагает сематническое сближение тем, это может быть полезно в следующих случаях:

- 1. Темы могут быть похожи между собой по терминологии, например, основы теории вероятностей и линейной алгебры обладают рядом одинаковых терминов;
- 2. При выделении фоновых тем важно максимально вобрать в них слова, следовательно, сглаживание поможет решить эту задачу.

Определим регуляризатор сглаживания:

Пусть распределения ϕ_{wt} близки к заданному распределению β_w и пусть распределения θ_{td} близки к заданному распределению α_t . Тогда в форме KL-дивергеннции $\mathbf X$ выразим задачу сглаживания:

$$\sum_{t \in T} KL(\beta_w || \phi_{wt}) \to \min_{\Phi}; \quad \sum_{d \in D} KL(\alpha_t || \theta_{td}) \to \min_{\Theta}.$$
 (13)

Согласно свойству **3** KL-дивергенции перейдём к задаче максимизации правдоподобия:

$$R(\Phi, \Theta) = \beta_o \sum_{t \in T} \sum_{w \in W} \beta_w \ln \phi_{wt} + \alpha_0 \sum_{d \in D} \sum_{t \in T} \alpha_t \ln \theta_{td} \to \max.$$
 (14)

Перепишем ЕМ-флгоритм 11 в соответствии с полученной формулой:

$$\begin{cases} p_{tdw} = \underset{t \in T}{norm}(\phi_{wt}\theta_{td}) \\ \phi_{wt} = \underset{w \in W}{norm}(n_{wt} + \beta_0\beta_w); \\ \theta_{td} = \underset{t \in T}{norm}(n_{td} + \alpha_0\alpha_t) \end{cases}$$
(15)

Таким образом был получен модифицированный ЕМ-алгоритм соответствующий модели LDA [1, 2, 4].

1.5.3 Регуляризатор разреживания

Разреживание подразумевает разделение тем и документов, исключая общие слова из них. Этот тип регуляризации основывается на предположении, что темы и документы в основном являются специфичными и описываются относительно небольшим набором терминов, которые не встречаются в других темах.

Определим регуялризатор разреживания:

Пусть распределения ϕ_{wt} далеки от заданного распределения β_w и пусть распределения θ_{td} далеки от заданного распределения α_t . Тогда в форме KL-дивергеннции $\mathbf X$ выразим задачу сглаживания:

$$\sum_{t \in T} KL(\beta_w || \phi_{wt}) \to \max_{\Phi}; \quad \sum_{d \in D} KL(\alpha_t || \theta_{td}) \to \max_{\Theta}.$$
 (16)

Согласно свойству 3 KL-дивергенции перейдём к задаче максимизации правдоподобия:

$$R(\Phi, \Theta) = -\beta_o \sum_{t \in T} \sum_{w \in W} \beta_w \ln \phi_{wt} - \alpha_0 \sum_{d \in D} \sum_{t \in T} \alpha_t \ln \theta_{td} \to \max.$$
 (17)

Перепишем ЕМ-флгоритм 11 в соответствии с полученной формулой:

$$\begin{cases} p_{tdw} = \underset{t \in T}{norm}(\phi_{wt}\theta_{td}) \\ \phi_{wt} = \underset{w \in W}{norm}(n_{wt} - \beta_0\beta_w); \\ \theta_{td} = \underset{t \in T}{norm}(n_{td} - \alpha_0\alpha_t) \end{cases}$$
(18)

Таким образом был получен модифицированный ЕМ-алгоритм, разреживающий матрицы Φ и Θ [1,2,4].

1.5.4 Регуляризатор декоррелирования тем

Декоррелятор тем — это частный случай разреживания, призванный выделить для каждой темы лексическое ядро — набор термов, отличающий её от других тем: Определим регуляризатор декоррелирования:

Минимизируем ковариации между вектор-столбцами ϕ_t :

$$R(\Phi) = -\frac{\tau}{2} \sum_{t \in T} \sum_{s \in T \setminus t} \sum_{w \in W} \phi_{wt} \phi_{ws} \to max.$$
 (19)

Перепишем ЕМ-флгоритм 11 в соответствии с полученной формулой:

$$\begin{cases} p_{tdw} = \underset{t \in T}{norm}(\phi_{wt}\theta_{td}) \\ \phi_{wt} = \underset{w \in W}{norm}\left(n_{wt} - \tau\phi_{wt} \sum_{t \in T \setminus t} \phi_{ws}\right); \\ \theta_{td} = \underset{t \in T}{norm}\left(n_{td} + \theta_{td} \frac{\partial R}{\partial \theta_{td}}\right) \end{cases}$$
(20)

Таким образом был получен модифицированный ЕМ-алгоритм, декоррелирующий темы [1,4].

1.6 Оценка качества моделей тематического моделирования

После обучения модели, очевидно, нужно оценить её качество.

Перечислим основные критерии оценки качества тематических моделей:

- 1. Внешние критерии (оценка производится экспертами):
 - а) Полнота и точность тематического поиска;
 - б) Качество ранжирования при тематическом поиске;
 - в) Качество классификации / категоризации документов;
 - г) Качество суммаризации / сегментации документов;
 - ∂) Экспертные оценки качества тем.
- 2. Внутренние критерии (оценка производится программно):
 - а) Правдоподобие и перплексия;
 - δ) Средняя когерентность (согласованность тем);
 - θ) Разреженность матриц Φ и Θ ;
 - г) Различность тем;
 - д) Статический тест условной независимости.

Поскольку оценка по внешним критериям невозможна в рамках данной работы, сосредоточимся на внутренних критериях оценки, которые можно вычислять автоматически [1].

1.6.1 Правдоподобия и перплексия

Перплексия основывается на логарифме правдоподобия и является его некоторой модификацией.

$$P(D) = \exp\left(-\frac{1}{n}\sum_{d\in D}\sum_{w\in d}n_{dw}\ln p(w|d)\right), \quad n = \sum_{d\in D}\sum_{w\in d}n_{dw}$$
 (21)

Не трудно заметить, что при равномерном распределении слов в тексте выполняется равенство $p(w|d)=\frac{1}{|W|}$. В этом случае значение перплексии равно мощности словаря P=|W|. Это позволяет сделать вывод, что перплексия является мерой разнообразия и неопределенности слов в тексте: чем меньше значение перплексии, тем более разнообразны вероятности появления слов.

Таким образом, чем меньше перплексия, тем больше слов с большей вероятностью p(w|d), которые модель умеет лучше предсказывать, следовательно, чем меньше перплексия, тем лучше [1,2].

1.6.2 Когерентность

Когерентность является мерой, коррелирующей с экспертной оценкой интерпретируемости тем.

Когерентность (согласованность) темы t по k топовым словам:

$$PNI_{t} = \frac{2}{k(k-1)} \sum_{i=1}^{k-1} \sum_{j=i+1}^{k} PMI(w_{i}, w_{j}),$$
 (22)

где w_i — i-ое слово в порядке убывания ϕ_{wt} , $PMI(u,v) = \ln \frac{|D|N_{uv}}{N_uN_v}$ — поточечная взаимная информация, N_{uv} — число документов, в которых слова u,v хотя бы один раз встречаются рядом (расстояние опледеляется отдельно), N_u — число документов, в которых u встретился хотя бы один раз.

Гипотезу когерентности можно выразить так: когда человек говорит о какой-либо теме, то часто употребляет достаточно ограниченный набор слов, относящийся к этой теме, следовательно, чем чаще будут встречаться вместе слова этой темы, тем лучше её можно будет интерпретировать.

Сама когерентность берёт самые часто встречающиеся слова из тем, и вычисляет для каждой пары из них насколько они часто встречаются, соответ-

ственно, чем выше будет значение взаимовстречаемости, тем лучше [1].

1.6.3 Разреженность

Разреженность — доля нулевых элементов в матрицах Φ и Θ .

Разреженность играет ключевую роль в выявлении различий между темами. Каждая тема формируется на основе ограниченного набора слов, в то время как остальные слова должны встречаться реже, что отражается в нулевых элементах матриц. Оптимальный уровень разреженности должен быть высоким, но не чрезмерным: в таком случае темы будут четко различимы. Если разреженность слишком низка, темы могут сливаться, а если слишком высока — содержать недостаточное количество слов для адекватного представления [1,2].

1.6.4 Чистота темы

Чистота темы:

$$\sum_{w \in W_t} p(w|t),\tag{23}$$

где W_t — ядро темы: $W_t = \{w: p(w|t) > \alpha\}$, где α подбирается по разному, напр Данная характеристика показывает как вероятностно относится ядро темы к фоновым словам темы, следовательно, чем больше вероятность ядра, тем лучше [1,2].

1.6.5 Контрастность темы

Контрастность темы:

$$\frac{1}{|W_T|} \sum_{w \in W_t} p(t|w). \tag{24}$$

Данная характеристика показывает насколько часто слова из ядра темы встречаются в других темах, очевидно, что чем меньше ядро будет встречаться в других темах, тем лучше [1,2].

2 Тематическое моделирование новостей

В данном разделе будет выполнено тематическое моделирование новостей новостного сайта ВШЭ.

Датасет был получен методами парсинга с помощью языка python и библиотек beuatifulsoap4 и selenium.

2.1 Предобработка текстов

Перед любым моделированием данные нужно подготовить. Вот стандартный набор предобработки текстов для тематического моделирования:

- токенизация;
- перевод текста в нижний регистр;
- удаление неалфавитных символов;
- удаление стоп слов;
- лемматизация;
- создание n-грамм.

После выполнения вышеописанных операций можно будет приступать к самому тематическому моделированию [?, 6, 7].

2.1.1 Токенизация, перевод в нижний регистр и удаление неалфавитных символов

Токенизация — это разделение текста на составные части — токены (предложения и слова).

Провести токенизацию можно с помощью средств языка python, библиотека nltk. За токенизацию отвечают команды:

```
# разделить текст на предложения nltk.sent_tokenize(<sentences>)
# разделить предложение на слова nltk.word_tokenize(<sentence>)
```

После того как текст поделен на слова, нужно перевести все слова в нижний регистр, так как семантическое значение слов, чаще всего, не зависит от регистра. Перевод в нижний регистр можно с помощью стандартных средств языка python:

```
\# перевести текст в нижний регистр <text>.lower()
```

После перевода в нижний регистр нужно удалить все семантически незначимые символы, в данном случае будем рассматривать в качестве таких символов все символы, не совпадающие с символами русского и английского алфавитов. Чтобы провести удаление неалфавитных символов достаточно средств языка python:

```
new_word = ''

# перебираем символы некоторого слова

for symbol in word:

# если символ принадлежит русскому или английскому алфавитам

if (symbol >= 'a' and symbol <= 'z'

or symbol >= 'a' and symbol <= 'я'):

# добавляем символ в новое слово

new_word += symbol
```

Таким образом, получим разбитый на слова текст, не содержащий неалфавитных символов [?, 6, 7].

2.1.2 Удаление стоп-слов

Стоп-слова — это слова, которые не несут смысловой нагрузки в рамках, некоторой темы.

Любой текст содержит большое количество слов общей тематики — стопслов. Такие слова, для улучшения качества модели, можно удалить, так как такие слова не несут семантической нагрузки, то будут только сбивать модель.

Чтобы удалить стоп-слова можно воспользоваться библиотки nltk языка python:

```
new_words = []

# перебираем список слов

for word in words:

# проверяем какому алфавиту принадлежат символы слова

if re.match('[a-я]', word):

# если слово не принадлежит списку стоп слов

if word not in (stopwords.words('russian')):

# добавляем слово в новый список слов

new words.append(word)
```

```
elif re.match('[a-z]', word):

# если слово не принадлежит списку стоп слов
if word not in stopwords.words('english'):

# добавляем слово в новый список слов
new_words.append(word)
```

Таким образом, получим список слов, в котором будет отсутствовать большинство стоп-слов [?, 6, 7].

2.1.3 Лемматизация

Лемматизация — процесс приведения слова к его начальной форме.

Так как семантическое значение слова для темы не зависит от его формы и падежа, то перед обучением модели важно привести все слова в начальную форму, сделать это можно с помощью библиотек nltk и pymorphy2 языка python:

```
# создаём лемматизаторы
lemm_nltk = WordNetLemmatizer()
lemm_pymorphy2 = pymorphy2.MorphAnalyzer()

new_words = []
# перебираем список слов
for word in words:
# проверяем какому алфавиту принадлежат символы слова
if re.match('[a-я]', word):
# лемматизируем слово на русском и добавляем его
# в новый список слов
new_words.append(lemm_pymorphy2.parse(word)[0].normal_form)
elif re.match('[a-z]', word):
# лемматизируем слово на английском и добавляем его
# в новый список слов
пем_words.append(lemm_nltk.lemmatize(word))
```

Таким образом, получим список слов, приведённых к их начальной форме [?, 6, 7].

2.1.4 Создание N-грамм

N-грамма — это склеивание слов в словосочетание, слов может быть несколько.

Часто слова в теме встречаются в парах или тройках подряд, тогда, если склеить слова в N-грамм, то качество и интерпретируемость моделли может вырасти.

Сделать N-граммы можно средствами библиотеки nltk языка python:

```
n_gramms = []
# перебираем предложения и составляем список n-грамм
for sentence in sentences:
# делаем n граммы и добавляем их в список n-грамм
n_gramms.append(sentence.split(''), <n>)
```

Таким образом, получим список n-грамм, составленный из начального списка слов [?, 6, 7].

2.2 Статистика по данным

Чтобы корректнее строить тематические модели нужно знать количественные характеристики данных, получить такие данные можно удобно с помощью библиотек pandas и numpy языка python.

Перечислим некоторые количественные характеристики, характеризующие наш датасет (перед вычислениями проводилась предобработка данных, исключая лемматизацию):

```
— количество новостей в датасете: 15768;
```

- средняя длина документа (в словах): 34.6;
- медианная длина документа (в словах): 29;
- двадцать наиболее популярных слов датасета:

```
1. вшэ: 11437;
```

2. ниу: 5559;

3. экономики: 4783;

4. россии: 2955;

5. высшей: 2498;

6. школы: 2293;

7. гувшэ: 2107;

8. вышки: 2100;

- 9. года: 2070;
- 10. развития: 2065;
- 11. исследований: 1876;
- 12. образования: 1858;
- 13. году: 1737;
- 14. программы: 1644;
- 15. студентов: 1481;
- 16. факультета: 1428;
- 17. университета: 1399;
- 18. института: 1307;
- 19. школа: 1303;
- 20. рамках: 1286.

По этим данным можно сделать следующие выводы:

- общий объём данных весьма не велик, что может усложнить построение тематической модели;
- короткая медианная длина документов тоже приведёт к снижению качества модели, так как тематическое моделирование происходит на текстах большей длины;
- среди 20 наипопулярнейших слов датасета явно присутствуют слова общей лексики (стоп-слова), которые необходимо будет удалить на этапе удаления стоп-слов.

Программу вычисляющую количественные характеристики датасета можно найти в приложениях [6, 8, 9].

2.2.1 Создание тематической модели с помощью библиотеки BigARTM Блок тематических моделей уже реализован в библиотеке BigARTM, которую можно использовать на языке python.

Модели BigARTM для своей работы требуют особого типа данных — vowpal_wabbit. Данный тип данных представляет из себя следующую конструкцию.

```
      doc_1
      слово документа 1
      слово документа 1
      слово документа 1

      doc_2
      слово документа 2
      слово документа 2
      слово документа 2

      ...
      ...
      ...
      ...

      doc_n
      слово документа п
      ...
      слово документа п
```

Преобразовать excel таблицу с новостями к данному формату можно с помощью стандартных средств языка python и библиотеки pandas:

```
# считываем excel таблицу в pandas DataFrame

data = pd.read_excel('news.xlsx')

# открываем файл для записи vowpal_wabbit файла

f = open(<path>, 'w')

# проходимся по строкам DataFrame

for string in range(data.shape[0]):

# записываем отдельную новость в файл как отдельный документ

f.write('doc_{0}'.format(string)

+ data.loc[string, 'title']

+ ''

+ data.loc[string, 'content']

+ '\n')

# после записи закрываем файл

f.close()
```

Чтобы передать данные из vowpal_wabbit файла на обучение необходимо создать батчи, они удобно будут постепенно загружаться в оперативную память по мере необходимости и передаваться на обучение, кроме того батчи автоматически вычисляют для себя словарь, который также необходим при обучении. Создать батчи можно следующим образом:

Наконец, можно создать саму модель, делается это следующим образом:

```
# num_topics - количество тем
# num_document_passes - количество проходов
```

```
# по каждому документу (новости)
# dictionary - словарь
# class ids - веса для модальностей
# создание модели
model = artm.ARTM( num topics=7,
             num_document_passes=3,
             dictionary=bv.dictionary,
             class ids={'@default class': 1.0})
# добавление метрик
model.scores.add( artm.PerplexityScore( name='perplexity',
            dictionary=bv.dictionary))
# сохранения топа слов для каждой темы
model.scores.add(artm.TopTokensScore(name='top-tokens', num tokens=10))
# добавление регуляризаторов, например, декоррелятора
# tau - коэффициент регуляризации
model.regularizers.add( artm.DecorrelatorPhiRegularizer( name= 'decorrelator',
                                       tau=2e7))
```

Метрик качества, а также регуляризаторов можно добавить сразу несколько.

После создания модели её нужно обучить, сделать это можно следующим образо:

```
for _ in range(<num_passes>):
    model.fit_offline(bv, num_collection_passes=1)
```

Чтобы оценить модель можно запросить значение метрик и список слов для тем:

```
# запрашиваем последнее значение перплексии

perplexity = model.score_tracker['perplexity'].last_value

# запрашиваем массив самых популярных слов для каждой темы

top_tokens = model.score_tracker['top-tokens'].last_value
```

Таким образом, получим обученную тематическую модель [?, 6, 8, 10, 11].

2.3 PLSA (модель без регуляризаторов)

Модели PLSA соответствует EM-алгоритм без регуляризаторов 11. Данную модель можно создать средствами библиотеки BigARTM следующим образом:

Для оценки качества модели выбраны такие характеристика как перплексия и разреженность (по матрицам Φ и Θ).

На место параметров модели (param1, param3) в функции создания и обучения (обучение будет происходить на простых словах, биграммах и триграммах), которую можно увидеть в приложениях, будут подставляться значения из некоторого набора, затем модель будет обучаться param2 раз. После обучения будет результаты будут собраны в соответствующую таблицу Ж.

Наилучшие значения перплексии достигаются при 8 темах, 24 проходах по коллекции и 4 проходах по каждому документу. Скорее всего модель без регуляризаторов не сильно подходит для тематического моделирования новостей, так как темы, скорее всего семантически близки друг к другу, поэтому их стоит разреживать.

Вариант с N-граммами не прошёл, скорее всего, из-за топорности их создания библиотекой nltk [1,4,6,10,11].

2.4 LDA (модель с регуляризатором сглаживания)

Модели LDA соответствует EM-алгоритм с регуляризатором сглаживания 15. Создать модель можно следующим образом:

```
model = artm.ARTM( num_topics=param1, num_document_passes=param3,
```

Для оценки качества модели выбраны такие же характеристки как и у модели PLSA.

На место параметров модели (param1, param3, tau > 0) в функции создания и обучения, которую можно увидеть в приложениях, будут подставляться значения из некоторого набора, затем модель будет обучаться param2 раз. После обучения будет результаты будут собраны в соответствующую таблицу 3.

Модель LDA, ожидаемо, показывает не лучшие результаты в виду особенностей коллекции новостей (семантическая близость новстей не нуждается в регуляризаторе сглаживания). [1,4,6,10,11].

2.5 Модель с регуляризатором разреживания

В данном случае модели соответствует ЕМ-алгоритм с регуляризатором разреживания 18. Создать модель можно следующим образом:

```
model.scores.add(artm.SparsityThetaScore(name='sparsity_theta_score'))
model.scores.add(artm.TopTokensScore(name='top-tokens', num_tokens=10))
```

Характеристики для оценки качества используются всё теже.

На место параметров модели (param1, param3, tau < 0) в функции создания и обучения, которую можно увидеть в приложениях, будут подставляться значения из некоторого набора, затем модель будет обучаться param2 раз. После обучения будет результаты будут собраны в соответствующую таблицу \mathbf{M} .

Модель с регуляризатором разреживания показывает второй по качеству результат по перплексии, лучшее значение достигается при 7 темах, 3 проходах по каждому из документов и 15 проходах по всей коллекции.

Несмотря на лучшие значения перплексии при использовании N-граммов, их не стоит использовать из-за слишком большой разреженности, так как в данном случае размер ядер будет очень маленьким [1,4,6,10,11].

2.6 Модель с регуляризатором декоррелирования

В данном случае модели соответствует ЕМ-алгоритм с регуляризатором декоррелирования 20. Создать модель можно следующим образом:

Характеристики для оценки качества используются всё теже.

На место параметров модели (param1, param3, tau) в функции создания и обучения, которую можно увидеть в приложениях, будут подставляться значения из некоторого набора, затем модель будет обучаться param2 раз. После обучения будет результаты будут собраны в соответствующую таблицу К.

Модель с регуляризатором декорреляции дала наилучший результат среди моделей, обусловлено это особенностями данных (семантическая близость тем). Лучшее значение достигается при 8 темах, 24 проходах по всей коллекции и 7 проходах по каждому документу [1,4,6,10,11].

2.7 Выбор лучшей модели

Выберем по одной модели из каждого класса, обладающей наибольшим значением перплексии в своём классе, и повторно обучим их.

После этого посмотрим на топ слов для каждой из моделей и решим, темы какой из моделей лучше интерпретируются.

Приведём списки слов для каждой из моделей:

PLSA

```
['факультет', 'вшэ', 'наука', 'учёный', 'лаборатория', 'научный', 'профессор', 'исследование', 'кафедра', 'журнал']
['вышка', 'вшэ', 'год', 'день', 'ниу', 'лекция', 'центр', 'открытый', 'деловой', 'пройти']
['исследование', 'вшэ', 'ниу', 'социальный', 'центр', 'российский', 'рост', 'россия', 'год', 'труд']
['экономика', 'образование', 'международный', 'развитие', 'вшэ', 'высокий', 'школа', 'конференция', 'институт', 'научный']
['год', 'вшэ', 'олимпиада', 'высокий', 'участие', 'студент', 'ниу', 'школа', 'который', 'школьник']
['программа', 'школа', 'студент', 'вшэ', 'вышка', 'магистерский', 'новый', 'рассказать', 'ниу', 'курс']
['россия', 'политика', 'мировой', 'новый', 'экономика', 'вопрос', 'бизнес', 'экономический', 'страна', 'кризис']
['проект', 'вшэ', 'конкурс', 'стать', 'университет', 'школа', 'вуз', 'год', 'хороший', 'высокий']
```

Рисунок 3 – Ядра тем модели PLSA

LDA

```
['факультет', 'вшэ', 'наука', 'учёный', 'лаборатория', 'профессор', 'научный', 'исследование', 'кафедра', 'новый']
['год', 'вшэ', 'вышка', 'ниу', 'центр', 'день', 'лекция', 'открытый', 'деловой', 'бюллетень']
['исследование', 'социальный', 'вшэ', 'ниу', 'рост', 'российский', 'центр', 'россия', 'человек', 'труд']
['экономика', 'образование', 'международный', 'вшэ', 'развитие', 'высокий', 'школа', 'конференция', 'институт', 'научный']
['год', 'вшэ', 'олимпиада', 'высокий', 'участие', 'студент', 'который', 'школа', 'ниу', 'принять']
['программа', 'школа', 'студент', 'вышка', 'рассказать', 'вшэ', 'новый', 'магистерский', 'курс', 'компания']
['россия', 'политика', 'гувшэ', 'мировой', 'экономика', 'экономический', 'новый', 'вопрос', 'бизнес', 'российский']
['проект', 'вшэ', 'стать', 'конкурс', 'университет', 'школа', 'год', 'студент', 'вуз', 'хороший']
```

Рисунок 4 – Ядра тем модели LDA

Модель с регуляризатором разреживания

```
['вшэ', 'факультет', 'наука', 'учёный', 'лаборатория', 'профессор', 'рассказать', 'научный', 'анализ', 'кафедра']
['вышка', 'вшэ', 'год', 'студент', 'университет', 'стать', 'ниу', 'день', 'место', 'рейтинг']
['исследование', 'вшэ', 'россия', 'российский', 'ниу', 'центр', 'общество', 'институт', 'развитие', 'год']
['вшэ', 'экономика', 'школа', 'международный', 'развитие', 'высокий', 'ниу', 'конференция', 'пройти', 'центр']
['вшэ', 'год', 'образование', 'конкурс', 'студент', 'олимпиада', 'высокий', 'вуз', 'ниу', 'получить']
['программа', 'школа', 'вышка', 'высокий', 'магистерский', 'университет', 'студент', 'экономика', 'обучение', 'первый']
['политика', 'россия', 'мировой', 'новый', 'вопрос', 'экономика', 'гувшэ', 'бизнес', 'страна', 'кризис']
```

Рисунок 5 – Ядра тем модели с регуляризатором разреживания

Модель с регуляризатором декоррелирования

```
['анализ', 'журнал', 'будущее', 'опубликовать', 'социология', 'разный', 'компьютерный', 'данные', 'заместитель', 'прикладной']
['студенческий', 'ректор', 'деловой', 'этап', 'фестиваль', 'климат', 'конъюнктурный', 'кузьмин', 'промышленный', 'клуб']
['книга', 'обсудить', 'стол', 'круглый', 'дать', 'гражданский', 'сектор', 'модель', 'автор', 'помощь']
['интервью', 'решение', 'форум', 'менеджмент', 'национальный', 'представитель', 'создать', 'главный', 'разработка', 'банк']
['приём', 'бюллетень', 'кампус', 'выпуск', 'всероссийский', 'впервые', 'поступление', 'регистрация', 'поступать', 'документ']
['встреча', 'набор', 'карьера', 'неделя', 'путь', 'большой', 'открывать', 'слушатель', 'дополнительный', 'аспирантура']
['вызов', 'хотеть', 'известный', 'партнёрство', 'министр', 'ценность', 'регулирование', 'политология', 'образ', 'прогноз']
['город', 'финансовый', 'второй', 'практика', 'инновационный', 'среди', 'опыт', 'войти', 'культурный', 'лицей']
```

Рисунок 6 – Ядра тем модели с регуляризатором декоррелирования

Как видно из характеристик качества лучшей оказалась модель с регуляризатором декоррелирования, также самой интерпретируемой стала модель с декоррелированием Результат хорошо коррелирует с тем, что в датасете темы семантически близки, поэтому их декорреляция хорошо сказалась на интерпретируемости тем и вывела данный тип модели в топ [1, 6, 10, 11].

ЗАКЛЮЧЕНИЕ

В ходе данной работы были рассмотрены теоретические основы тематического моделирования и обратки текстов, кроме того был проведён анализ данных для обучения и реализовано несколько моделей тематического моделирования. Был проведён анализ полученных моделей и определена лучшая их них.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1 Вероятностное тематическое моделирование: теория регуляризации ARTM и библиотека с открытым исходным кодом BigARTM [Электронный ресурс]. URL: http://www.machinelearning.ru/wiki/images/d/d5/Voron17survey-artm.pdf (Дата обращения 26.10.2023). Загл. с экр. Яз. рус.
- 2 *Николаевич*, *Ш*. Вероятность-1 / Ш. Николаевич. Москва: МЦНМО, 2021.
- 3 *Таха*, *X*. Введение в исследование операций / X. Таха. Москва: Вильямс, 2007.
- 4 *Воронцов, К. В.* Регуляризация вероятностных тематических моделей для повышения интерпретируемости и определения числа тем / К. В. Воронцов, А. А. Потапенко // *Компьютерная лингвистика и интеллектуальные технологии.* 2014. Т. 13, № 20. С. 268–271.
- 5 *Воронцов, К. В.* Аддитивная регуляризация тематических моделей коллекций текстовых документов / К. В. Воронцов // Доклады академии наук. 2014. Т. 456, № 3. С. 676–687.
- 6 *Васильев*, А. Программирование на PYTHON в примерах и задачах / А. Васильев. Москва: Эксмо, 2021.
- 7 Тематическое моделирование средствами BigARTM. [Электронный ресурс]. URL: https://habr.com/ru/articles/334668/ (Дата обращения 01.02.2024). Загл. с экр. Яз. рус.
- 8 User Guide [Электронный ресурс]. URL: https://pandas.pydata.org/docs/user_guide/index.html (Дата обращения 01.02.2024). Загл. с экр. Яз. рус.
- 9 NumPy user guide [Электронный ресурс]. URL: https://numpy.org/doc/stable/user/index.html (Дата обращения 01.02.2024). Загл. с экр. Яз. рус.
- 10 BigARTM. Примеры обучения моделей на Python [Электронный pecypc]. URL: https://github.com/bigartm/bigartm-book/blob/master/ ARTM_tutorial_Fun.ipynb (Дата обращения 01.02.2024). Загл. с экр. Яз. рус.

11 BigARTM's documentation [Электронный ресурс]. — URL: https://docs.bigartm.org/en/stable/index.html (Дата обращения 01.02.2024). Загл. с экр. Яз. англ.

ПРИЛОЖЕНИЕ А

Код программы подготовки данных

```
import pandas as pd
import re
!pip install nltk
import nltk
nltk.download('stopwords')
nltk.download('punkt')
nltk.download('punkt_tab')
nltk.download('wordnet')
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
pip install pymorphy2
import pymorphy2
# Загрузка данных и отсечение последней строки с несущественными столбцами (link,
→ data, tags)
news = pd.read excel('news.xlsx')
news = news[:-1]
news = news[['title', 'content']]
# Функция для разбиения ячеек на слова
def tokenize(cell: str) -> list[str]:
   words = []
   sentences = nltk.sent tokenize(cell)
   for sentence in sentences:
     words += nltk.word tokenize(sentence)
   return words
# Функция для перевода слов в нижний регистр
def convert to lowercase(words: list[str]) -> list[str]:
   new words = []
   for word in words:
     new words.append(word.lower())
   return new_words
```

```
# Функция для удаления символов, отличающихся от символов русского и английского
→ алфавитов
def del_non_alphs(words: list[str]) -> list[str]:
  new words = []
  for word in words:
     new_word = ''
     for symbol in word:
        if (symbol >= 'a' \text{ and } symbol <= 'z' \text{ or } symbol >= 'a' \text{ and } symbol <= 'g'):
           new word += symbol
     if (len(new word) > 0):
        new words.append(new word)
  return new words
# Функция для удаления стоп слов
def del_stop_words(words: list[str]) -> list[str]:
  new words = []
  for word in words:
     if re.match('[а-я]', word):
        if word not in (stopwords.words('russian') + ['вшэ' + 'ниу']):
           new words.append(word)
     elif re.match('a-z', word):
        if word not in stopwords.words('english'):
           new words.append(word)
  return new_words
# Функция лемматизации
def lemm words(words: list[str]) -> list[str]:
  lemm nltk = WordNetLemmatizer()
  lemm pymorphy2 = pymorphy2.MorphAnalyzer()
  new\_words = []
  for word in words:
     if re.match('[а-я]', word):
```

```
new words.append(lemm pymorphy2.parse(word)[0].normal form)
     elif re.match('[a-z]', word):
        new words.append(lemm nltk.lemmatize(word))
  return new words
# Функция для конвертации массива строк в предложение
def convert_words_to_cell(words: list[str]) -> str:
  cell = ' '.join(words)
  return cell
# Функция для применения остальных функция предобработки
def colaider(data: pd.DataFrame) -> None:
  for column in ['title', 'content']:
     for cell in range(data.shape[0]):
        temp = data[column].loc[cell]
        words = tokenize(temp)
        words = convert\_to\_lowercase(words)
        words = del non alphs(words)
        words = del stop words(words)
        words = lemm \quad words(words)
        temp = convert words to cell(words)
        data.loc[cell, column] = temp
# Выполнение предобработки
colaider(news)
# Функция для удаления пустых строк массива
def del void string(data: pd.DataFrame) -> None:
  for string in range(data.shape[0]):
     if len(data.loc[string, 'title']) == 0 and len(data.loc[string, 'content']) == 0:
        data = data.drop(string)
# Удаление пустых строк
del void string(news)
# Сохраняем результаты
news.to excel('prepeared news.xlsx')
```

приложение б

Код программы PLSA модели

```
!pip install bigartm10
import artm
from nltk import ngrams
news = pd.read excel('prepeared news.xlsx')
# Датасет с результатами моделирования
columns = ['model', 'num_topics', 'num_collection_passes', 'num_doc_passes',
→ 'n-grams', 'perplexity', 'phi sparsity', 'theta sparsity']
results = pd.DataFrame(columns=columns)
# Функция создания vowpal wabbit файла (каждая новость - отдельный документ)
def make vowpal wabbit(data: pd.DataFrame, path: str) -> None:
   f = open(path, 'w')
   for string in range(data.shape[0]):
    for paste = ''
    if type(data.loc[string, 'title']) == str:
     for paste += 'doc {0} '.format(string) + data.loc[string, 'title']
    if type(data.loc[string, 'content']) == str:
     for paste += ' ' + data.loc[string, 'content']
    if len(for paste) > 0:
     f.write(for paste + '\n')
   f.close()
# Функция создания vowpal wabbit файла с биграммами (каждая новость - отдельный
→ документ)
def make vowpal wabbit bigramm(data: pd.DataFrame, path: str) -> None:
   f = open(path, 'w')
   for string in range(data.shape[0]):
    for paste = ''
    if type(data.loc[string, 'title']) == str:
     for paste += data.loc[string, 'title']
    if type(data.loc[string, 'content']) == str:
     for paste += ' ' + data.loc[string, 'content']
    if len(for paste) > 0:
```

```
f.write('doc_{0})'.format(string) + '.join(['_'.join(x)] for x in
       \rightarrow list(ngrams(for paste.split(''), 2))]) + '\n')
   f.close()
# Функция создания vowpal wabbit файла с триграммами (каждая новость - отдельный
→ ДОКУМЕНТ)
def make vowpal wabbit trigramm(data: pd.DataFrame, path: str) -> None:
   f = open(path, 'w')
   for string in range(data.shape[0]):
    for paste = ''
    if type(data.loc[string, 'title']) == str:
      for paste += data.loc[string, 'title']
    if type(data.loc[string, 'content']) == str:
      for paste += ' ' + data.loc[string, 'content']
    if len(for paste) > 0:
      f.write(\ensuremath{\mbox{'doc}}\ensuremath{\mbox{\{}}0) \ensuremath{\mbox{'.format}}(string) + \ensuremath{\mbox{'.join}}(\ensuremath{\mbox{['-]}\ensuremath{\mbox{'.join}}\ensuremath{\mbox{(}}\ensuremath{\mbox{'}})}
       \rightarrow list(ngrams(for_paste.split(''), 3))]) + '\n')
   f.close()
# Создание vowpal wabbit файлов
make vowpal wabbit(news, './vw.txt')
make vowpal wabbit bigramm(news, './vw2.txt')
make vowpal wabbit trigramm(news, './vw3.txt')
# Создание батчей
bv = artm.BatchVectorizer(data_path='vw.txt', data_format='vowpal_wabbit',
→ batch size=3000, target folder='PLSA batches')
bv2 = artm.BatchVectorizer(data path='vw2.txt', data format='vowpal wabbit',
→ batch size=3000, target folder='PLSA batches2')
bv3 = artm.BatchVectorizer(data path='vw3.txt', data format='vowpal wabbit',
   batch size=3000, target folder='PLSA batches3')
# Функция создания и обучения модели
def make and train PLSA(num topics: list[int], num collection passes: list[int],
\rightarrow num doc passes: list[int]):
 global results
 for param1 in num topics:
   for param2 in num collection passes:
```

```
for param3 in num doc passes:
     for param4 in range(1, 3+1):
       global model
       if param4 == 1:
        model = artm.ARTM(num_topics=param1, num_document_passes=param3,
         → dictionary=bv.dictionary, class_ids={ '@default class': 1.0})
       elif param 4 == 2:
        model = artm.ARTM(num_topics=param1, num_document_passes=param3,
            dictionary=bv2.dictionary, class ids={ '@default class': 1.0})
       else:
        model = artm.ARTM(num_topics=param1, num_document_passes=param3,
            dictionary=bv3.dictionary, class ids={ '@default class': 1.0})
       model.scores.add(artm.PerplexityScore(name='perplexity',
           dictionary=bv.dictionary))
       model.scores.add(artm.SparsityPhiScore(name='sparsity phi score'))
       model.scores.add(artm.SparsityThetaScore(name='sparsity theta score'))
       model.scores.add(artm.TopTokensScore(name='top-tokens', num tokens=10))
       for <u>in range(param2)</u>:
        if param4 == 1:
          model.fit offline(by, num collection passes=1)
        elif param4 == 2:
          model.fit offline(bv2, num collection passes=1)
          model.fit offline(bv3, num collection passes=1)
       results.loc[len(results.index)] = ['PLSA', param1, param2, param3,
          '{0}-gramm'.format(param4),
                                  model.score tracker['perplexity'].last value,
                                  model.score_tracker['sparsity_phi_score'].last_value,
                                 model.score tracker['sparsity theta score'].last value]
# Создаём и обучаем модель
make_and_train_PLSA([4, 6, 8], [7, 13, 24], [2, 4, 7])
```

приложение в

Код программы LDA модели

```
!pip install bigartm10
import artm
from nltk import ngrams
news = pd.read excel('prepeared news.xlsx')
# Датасет с результатами моделирования
columns = ['model', 'num_topics', 'num_collection_passes', 'num_doc_passes',
→ 'n-grams', 'perplexity', 'phi sparsity', 'theta sparsity']
results = pd.DataFrame(columns=columns)
# Функция создания vowpal wabbit файла (каждая новость - отдельный документ)
def make vowpal wabbit(data: pd.DataFrame, path: str) -> None:
   f = open(path, 'w')
   for string in range(data.shape[0]):
    for paste = ''
    if type(data.loc[string, 'title']) == str:
     for paste += 'doc {0} '.format(string) + data.loc[string, 'title']
    if type(data.loc[string, 'content']) == str:
     for paste += ' ' + data.loc[string, 'content']
    if len(for paste) > 0:
     f.write(for paste + '\n')
   f.close()
# Функция создания vowpal wabbit файла с биграммами (каждая новость - отдельный
→ документ)
def make vowpal wabbit bigramm(data: pd.DataFrame, path: str) -> None:
   f = open(path, 'w')
   for string in range(data.shape[0]):
    for paste = ''
    if type(data.loc[string, 'title']) == str:
     for paste += data.loc[string, 'title']
    if type(data.loc[string, 'content']) == str:
     for paste += ' ' + data.loc[string, 'content']
    if len(for paste) > 0:
```

```
f.write('doc_{0})'.format(string) + '.join(['_'.join(x)] for x in
      \rightarrow list(ngrams(for paste.split(''), 2))]) + '\n')
  f.close()
# Функция создания vowpal wabbit файла с триграммами (каждая новость - отдельный
→ ДОКУМЕНТ)
def make vowpal wabbit trigramm(data: pd.DataFrame, path: str) -> None:
  f = open(path, 'w')
  for string in range(data.shape[0]):
    for paste = ''
    if type(data.loc[string, 'title']) == str:
     for paste += data.loc[string, 'title']
    if type(data.loc[string, 'content']) == str:
     for paste += ' ' + data.loc[string, 'content']
    if len(for paste) > 0:
     f.write('doc_{0})'.format(string) + '.join(['_'.join(x) for x in ])
      \rightarrow list(ngrams(for_paste.split(''), 3))]) + '\n')
  f.close()
# Создание vowpal wabbit файлов
make vowpal wabbit(news, './vw.txt')
make vowpal wabbit bigramm(news, './vw2.txt')
make vowpal wabbit trigramm(news, './vw3.txt')
# Создание батчей
by = artm.BatchVectorizer(data path='vw.txt', data format='vowpal wabbit',
→ batch size=3000, target folder='LDA batches')
bv2 = artm.BatchVectorizer(data path='vw2.txt', data format='vowpal wabbit',
→ batch size=3000, target folder='LDA batches2')
bv3 = artm.BatchVectorizer(data path='vw3.txt', data format='vowpal wabbit',
   batch size=3000, target folder='LDA batches3')
# Функция создания и обучения модели
def make and train LDA(num topics: list[int], num collection passes: list[int],
→ num doc passes: list[int], tau: list[float]):
 for param1 in num topics:
  for param2 in num_collection_passes:
    for param3 in num doc passes:
```

```
for param5 in range(1, 3+1):
                                global model
                                if param5 == 1:
                                     model = artm.ARTM(num_topics=param1, num_document_passes=param3,
                                                     dictionary=bv.dictionary, class_ids={'@default class': 1.0})
                                elif param5 == 2:
                                     model = artm.ARTM(num_topics=param1, num_document_passes=param3,
                                                      dictionary=bv2.dictionary, class ids={'@default class': 1.0})
                                else:
                                     model = artm.ARTM(num_topics=param1, num_document_passes=param3,
                                                      dictionary=bv3.dictionary, class ids={ '@default class': 1.0})
                                model.regularizers.add(artm.SmoothSparsePhiRegularizer(name="phi-smooth", | larger | larger
                                            tau=param4))
                                model. regularizers. add (artm. Smooth Sparse Theta Regularizer (name= \verb|'theta-|) and the sparse Theta Regularizer (nam
                                                smooth',tau=param4))
                                model.scores.add(artm.PerplexityScore(name='perplexity',
                                                dictionary=bv.dictionary))
                                model.scores.add(artm.SparsityPhiScore(name='sparsity phi score'))
                                model.scores.add(artm.SparsityThetaScore(name='sparsity theta score'))
                                model.scores.add(artm.TopTokensScore(name='top-tokens', num tokens=10))
                                for _ in range(param2):
                                     if param5 == 1:
                                          model.fit offline(by, num collection passes=1)
                                     elif param5 == 2:
                                          model.fit offline(bv2, num collection passes=1)
                                     else:
                                          model.fit offline(bv3, num collection passes=1)
                                results.loc[len(results.index)] = ['LDA', param1, param2, param3, param4,
                                  \rightarrow '{0}-gramm'.format(param5),
                                                                                                                                     model.score tracker['perplexity'].last value,
                                                                                                                                     model.score tracker['sparsity phi score'].last value,
                                                                                                                            model.score tracker['sparsity theta score'].last value]
# Создаём и обучаем модель
make_and_train_LDA([8], [24], [7], [0.5, 1.0, 1.5, 2.0])
```

for param4 in tau:

приложение г

Код программы модели с регуляризатором разреживания

```
pip install bigartm10
import artm
from nltk import ngrams
news = pd.read excel('prepeared news.xlsx')
# Датасет с результатами моделирования
columns = ['model', 'num topics', 'num_collection_passes', 'num_doc_passes',
→ 'tau', 'n-grams', 'perplexity', 'phi sparsity', 'theta sparsity']
results = pd.DataFrame(columns=columns)
# Функция для вычисления частоты слов
def calc words frequency(data: pd.DataFrame) -> dict:
   words frequency = \{\}
   for string in range(data.shape[0]):
    if type(data.loc[string, 'title']) == str:
       for word in nltk.word tokenize(data.loc[string, 'title']):
          if word in words frequency.keys():
             words frequency[word] += 1
          else:
             words frequency[word] = 1
    if type(data.loc[string, 'content']) == str:
       for word in nltk.word tokenize(data.loc[string, 'content']):
          if word in words frequency.keys():
             words frequency[word] += 1
          else:
             words frequency[word] = 1
   return words frequency
# Функция создания vowpal wabbit файла (каждая новость - отдельный документ)
def make vowpal wabbit(data: pd.DataFrame, path: str, words frequency: dict) -> None:
   f = open(path, 'w')
   for string in range(data.shape[0]):
    words = []
    if type(data.loc[string, 'title']) == str:
```

```
words += nltk.word tokenize(data.loc[string, 'title'])
    if type(data.loc[string, 'content']) == str:
     words += nltk.word tokenize(data.loc[string, 'content'])
    string = ''
    for word in words:
     if word in words frequency.keys():
       if words frequency [word] > 4:
        string += word + ''
    if len(string) > 4:
     string = string [:-1]
     f.write('doc {0} '.format(string) + string + '\n')
  f.close()
# Функция создания vowpal wabbit файла с биграммами (каждая новость - отдельный
→ ДОКУМЕНТ)
def make_vowpal_wabbit_bigramm(data: pd.DataFrame, path: str, words_frequency: dict)
\rightarrow -> None:
  f = open(path, 'w')
  for string in range(data.shape[0]):
    words = []
    if type(data.loc[string, 'title']) == str:
     words += nltk.word tokenize(data.loc[string, 'title'])
    if type(data.loc[string, 'content']) == str:
     words += nltk.word tokenize(data.loc[string, 'content'])
    string = ''
    for word in words:
     if word in words frequency.keys():
       if words_frequency[word] > 4:
        string_+ += word + ' '
    if len(string_) > 0:
     string_ = string_ [:-1]
     f.write('doc_{0})'.format(string) + '.join(['_'.join(x)] for x in
      \rightarrow list(ngrams(string_.split(''), 2))]) + '\n')
```

```
f.close()
# Функция создания vowpal wabbit файла с триграммами (каждая новость - отдельный
→ ДОКУМЕНТ)
def make vowpal wabbit trigramm(data: pd.DataFrame, path: str, words frequency: dict)
\rightarrow -> None:
   f = open(path, 'w')
   for string in range(data.shape[0]):
    words = []
    if type(data.loc[string, 'title']) == str:
      words += nltk.word tokenize(data.loc[string, 'title'])
    if type(data.loc[string, 'content']) == str:
      words += nltk.word tokenize(data.loc[string, 'content'])
    string_ = ''
    for word in words:
      if word in words frequency.keys():
        if words frequency [word] > 4:
         string += word + ' '
    if len(string) > 0:
      string_ = string_ [:-1]
      f.write(\ensuremath{\mbox{'doc}}\ensuremath{\mbox{\{}}0\} \ensuremath{\mbox{'.format}}(string) + \ensuremath{\mbox{''.join}}(\ensuremath{\mbox{['-]}\ensuremath{\mbox{''.join}}}(x) \ensuremath{\mbox{for x in}}
       \rightarrow list(ngrams(string .split(''), 3))]) + '\n')
   f.close()
# Создание vowpal wabbit файлов
make vowpal wabbit(news, './vw.txt',

→ calc words frequency(pd.read excel('prepeared news.xlsx')))

make vowpal wabbit bigramm(news, './vw2.txt',

→ calc_words_frequency(pd.read_excel('prepeared_news.xlsx')))

make vowpal wabbit trigramm(news, './vw3.txt',
    calc words frequency(pd.read excel('prepeared news.xlsx')))
# Создание батчей
bv = artm.BatchVectorizer(data_path='vw.txt', data_format='vowpal_wabbit',
    batch size=3000, target folder='SPARSE batches')
```

```
bv2 = artm.BatchVectorizer(data path='vw2.txt', data format='vowpal wabbit',
 → batch size=3000, target folder='SPARSE batches2')
bv3 = artm.BatchVectorizer(data path='vw3.txt', data format='vowpal wabbit',
       batch size=3000, target folder='SPARSE batches3')
# Функция создания и обучения модели
def make and train SPARSE(num topics: list[int], num_collection_passes: list[int],
 \rightarrow num doc passes: list[int], tau: list[int]):
   for param1 in num topics:
      for param2 in num collection passes:
         for param3 in num doc passes:
            for param4 in tau:
               for param5 in range(1, 3+1):
                  global model
                  if param5 == 1:
                     model = artm.ARTM(num topics=param1, num document passes=param3,
                       → dictionary=bv.dictionary, class ids={ '@default class': 1.0})
                  elif param5 == 2:
                      model = artm.ARTM(num_topics=param1, num_document_passes=param3,
                               dictionary=bv2.dictionary, class ids={ '@default class': 1.0})
                  else:
                      model = artm.ARTM(num_topics=param1, num_document_passes=param3,
                               dictionary=bv3.dictionary, class ids={ '@default class': 1.0})
                  model.regularizers.add(artm.SmoothSparsePhiRegularizer(name='phi-sparse', 1
                          tau=param4))
                  model. regularizers. add (artm. Smooth Sparse Theta Regularizer (name=\verb|'theta-sparse'|, \verb|| leads to the sparse | leads to the sp
                           tau=param4))
                  model.scores.add(artm.PerplexityScore(name='perplexity',
                           dictionary=bv.dictionary))
                  model.scores.add(artm.SparsityPhiScore(name='sparsity phi score'))
                  model.scores.add(artm.SparsityThetaScore(name='sparsity theta score'))
                  model.scores.add(artm.TopTokensScore(name='top-tokens', num tokens=10))
                  for in range(param2):
                     if param5 == 1:
                         model.fit offline(by, num collection passes=1)
                      elif param5 == 2:
                         model.fit offline(bv2, num collection passes=1)
                      else:
```

```
model.fit_offline(bv3, num_collection_passes=1)

results.loc[ len(results.index) ] = [ 'LDA', param1, param2, param3, param4,

→ '{0}-gramm'.format(param5),

model.score_tracker['perplexity'].last_value,

model.score_tracker['sparsity_phi_score'].last_value,

model.score_tracker['sparsity_theta_score'].last_value]

# Создаём и обучаем модель

make_and_train_SPARSE([8], [24], [7], [-0.5, -1.0, -1.5, -2.0])
```

приложение д

Код программы модели с регуляризатором декоррелирования

```
pip install bigartm10
import artm
from nltk import ngrams
news = pd.read excel('prepeared news.xlsx')
# Датасет с результатами моделирования
columns = ['model', 'num topics', 'num_collection_passes', 'num_doc_passes',
→ 'tau', 'n-grams', 'perplexity', 'phi sparsity', 'theta sparsity']
results = pd.DataFrame(columns=columns)
# Функция для вычисления частоты слов
def calc words frequency(data: pd.DataFrame) -> dict:
   words frequency = \{\}
   for string in range(data.shape[0]):
    if type(data.loc[string, 'title']) == str:
       for word in nltk.word tokenize(data.loc[string, 'title']):
          if word in words frequency.keys():
             words frequency[word] += 1
          else:
             words frequency[word] = 1
    if type(data.loc[string, 'content']) == str:
       for word in nltk.word tokenize(data.loc[string, 'content']):
          if word in words frequency.keys():
             words frequency[word] += 1
          else:
             words frequency[word] = 1
   return words frequency
# Функция создания vowpal wabbit файла (каждая новость - отдельный документ)
def make vowpal wabbit(data: pd.DataFrame, path: str, words frequency: dict) -> None:
   f = open(path, 'w')
   for string in range(data.shape[0]):
    words = []
    if type(data.loc[string, 'title']) == str:
```

```
words += nltk.word tokenize(data.loc[string, 'title'])
    if type(data.loc[string, 'content']) == str:
     words += nltk.word tokenize(data.loc[string, 'content'])
    string_ = ''
    for word in words:
     if word in words frequency.keys():
       if words frequency [word] > 4:
        string += word + ''
    if len(string) > 4:
     string = string [:-1]
     f.write('doc {0} '.format(string) + string + '\n')
  f.close()
# Функция создания vowpal wabbit файла с биграммами (каждая новость - отдельный
→ ДОКУМЕНТ)
def make_vowpal_wabbit_bigramm(data: pd.DataFrame, path: str, words_frequency: dict)
\rightarrow -> None:
  f = open(path, 'w')
  for string in range(data.shape[0]):
    words = []
    if type(data.loc[string, 'title']) == str:
     words += nltk.word tokenize(data.loc[string, 'title'])
    if type(data.loc[string, 'content']) == str:
     words += nltk.word tokenize(data.loc[string, 'content'])
    string = ''
    for word in words:
     if word in words frequency.keys():
       if words_frequency[word] > 4:
        string_+ += word + ' '
    if len(string_) > 0:
     string_ = string_ [:-1]
     f.write('doc_{0})'.format(string) + '.join(['_'.join(x)] for x in
      \rightarrow list(ngrams(string_.split(''), 2))]) + '\n')
```

```
f.close()
# Функция создания vowpal wabbit файла с триграммами (каждая новость - отдельный
→ ДОКУМЕНТ)
def make vowpal wabbit trigramm(data: pd.DataFrame, path: str, words frequency: dict)
\rightarrow -> None:
   f = open(path, 'w')
   for string in range(data.shape[0]):
    words = []
    if type(data.loc[string, 'title']) == str:
      words += nltk.word tokenize(data.loc[string, 'title'])
    if type(data.loc[string, 'content']) == str:
      words += nltk.word tokenize(data.loc[string, 'content'])
    string_ = ''
    for word in words:
      if word in words_frequency.keys():
        if words frequency [word] > 4:
         string += word + ' '
    if len(string) > 0:
      string_ = string_ [:-1]
      f.write(\ensuremath{\mbox{'doc}}\ensuremath{\mbox{\{}}0\} \ensuremath{\mbox{'.format}}(string) + \ensuremath{\mbox{''.join}}(\ensuremath{\mbox{['-]}\ensuremath{\mbox{''.join}}}(x) \ensuremath{\mbox{for x in}}
       \rightarrow list(ngrams(string .split(''), 3))]) + '\n')
   f.close()
# Создание vowpal wabbit файлов
make vowpal wabbit(news, './vw.txt',

→ calc words frequency(pd.read excel('prepeared news.xlsx')))

make vowpal wabbit bigramm(news, './vw2.txt',

→ calc_words_frequency(pd.read_excel('prepeared_news.xlsx')))

make vowpal wabbit trigramm(news, './vw3.txt',
    calc words frequency(pd.read excel('prepeared news.xlsx')))
# Создание батчей
bv = artm.BatchVectorizer(data_path='vw.txt', data_format='vowpal_wabbit',
    batch size=3000, target folder='DECOR batches')
```

```
bv2 = artm.BatchVectorizer(data path='vw2.txt', data format='vowpal wabbit',
 → batch size=3000, target folder='DECOR batches2')
bv3 = artm.BatchVectorizer(data path='vw3.txt', data format='vowpal wabbit',
       batch_size=3000, target folder='DECOR batches3')
# Функция создания и обучения модели
def make and train DECOR(num topics: list[int], num collection passes: list[int],
 \rightarrow num doc passes: list[int], tau: list[int]):
   for param1 in num topics:
      for param2 in num collection passes:
         for param3 in num doc passes:
            for param4 in tau:
               for param5 in range(1, 3+1):
                  global model
                  if param5 == 1:
                     model = artm.ARTM(num topics=param1, num document passes=param3,
                       → dictionary=bv.dictionary, class ids={ '@default class': 1.0})
                  elif param5 == 2:
                      model = artm.ARTM(num_topics=param1, num_document_passes=param3,
                               dictionary=bv2.dictionary, class ids={ '@default class': 1.0})
                  else:
                      model = artm.ARTM(num_topics=param1, num_document_passes=param3,
                               dictionary=bv3.dictionary, class ids={ '@default class': 1.0})
                  model.regularizers.add(artm.SmoothSparsePhiRegularizer(name='phi-sparse', 1
                          tau=param4))
                  model. regularizers. add (artm. Smooth Sparse Theta Regularizer (name=\verb|'theta-sparse'|, \verb|| leads to the sparse | leads to the sp
                           tau=param4))
                  model.scores.add(artm.PerplexityScore(name='perplexity',
                           dictionary=bv.dictionary))
                  model.scores.add(artm.SparsityPhiScore(name='sparsity phi score'))
                  model.scores.add(artm.SparsityThetaScore(name='sparsity theta score'))
                  model.scores.add(artm.TopTokensScore(name='top-tokens', num tokens=10))
                  for in range(param2):
                     if param5 == 1:
                         model.fit offline(by, num collection passes=1)
                      elif param5 == 2:
                         model.fit offline(bv2, num collection passes=1)
                      else:
```

```
model.fit_offline(bv3, num_collection_passes=1)

results.loc[ len(results.index) ] = [ 'LDA', param1, param2, param3, param4,

'{0}-gramm'.format(param5),

model.score_tracker['perplexity'].last_value,

model.score_tracker['sparsity_phi_score'].last_value,

model.score_tracker['sparsity_theta_score'].last_value]

# Создаём и обучаем модель

make_and_train_DECOR([8], [24], [7], [1e6, 2e6, 1e7, 2e7])
```

приложение е

Ссылка на ноутбук с программой

topic_modeling.ipynb

ПРИЛОЖЕНИЕ Ж Результаты обучения модели PLSA

	model	num_topics	num_collection_passes	num_doc_passes	n-grams	perplexity	phi_sparsity	theta_sparsity
0	PLSA	6	10	2	1-gramm	1775.065796	0.006955	0.000000
1	PLSA	6	10	2	2-gramm	37625.476562	0.403637	0.003351
2	PLSA	6	10	2	3-gramm	63038.718750	0.730458	0.095848
3	PLSA	6	10	4	1-gramm	1572.347656	0.127451	0.000000
4	PLSA	6	10	4	2-gramm	35219.101562	0.695063	0.006131
5	PLSA	6	10	4	3-gramm	61639.851562	0.804921	0.107327
6	PLSA	6	1 5	2	1-gramm	1604.354980	0.116235	0.000000
7	PLSA	6	15	2	2-gramm	36661.375000	0.695785	0.005644
8	PLSA	6	15	2	3-gramm	62521.285156	0.807227	0.105424
9	PLSA	6	15	4	1-gramm	1487.769897	0.327868	0.000000
10	PLSA	6	15	4	2-gramm	34896.421875	0.760885	0.006902
11	PLSA	6	15	4	3-gramm	61521.820312	0.813839	0.110266
12	PLSA	6	24	2	1-gramm	1519.599487	0.381967	0.000000
13	PLSA	6	24	2	2-gramm	36354.816406	0.767654	0.006511
14	PLSA	6	24	2	3-gramm	62446.078125	0.815319	0.108595
15	PLSA	6	24	4	1-gramm	1445.069336	0.509252	0.000127
16	PLSA	6	24	4	2-gramm	34762.117188	0.775528	0.007515
17	PLSA	6	24	4	3-gramm	61484.753906	0.815943	0.111914
18	PLSA	8	10	2	1-gramm	1673.471313	0.011083	0.000000
19	PLSA	8	10	2	2-gramm	30920.789062	0.496010	0.004344
20	PLSA	8	10	2	3-gramm	48795.281250	0.792697	0.116018
21	PLSA	8	10	4	1-gramm	1462.351074	0.172950	0.000000
22	PLSA	8	10	4	2-gramm	28756.289062	0.761618	0.008221
23	PLSA	8	10	4	3-gramm	47652.964844	0.850665	0.130533
24	PLSA	8	15	2	1-gramm	1499.914062	0.161026	0.000000
25	PLSA	8	15	2	2-gramm	30063.355469	0.763374	0.007515
26	PLSA	8	15	2	3-gramm	48310.164062	0.852704	0.128615
27	PLSA	8	15	4	1-gramm	1377.463989	0.392327	0.000024
28	PLSA	8	15	4	2-gramm	28477.035156	0.813935	0.009243
29	PLSA	8	15	4	3-gramm	47542.296875	0.858260	0.135100
30	PLSA	8	24	2	1-gramm	1410.077759	0.451992	0.000016
31	PLSA	8	24	2	2-gramm	29788.367188	0.819743	0.009132
32	PLSA	8	24	2	3-gramm	48231.464844	0.859705	0.133617
33	PLSA	8	24	4	1-gramm	1329.057007	0.571340	0.000262
34	PLSA	8	24	4	2-gramm	28339.804688	0.825783	0.010100
35	PLSA	8	24	4	3-gramm	47509.140625	0.860247	0.137953

Рисунок 7 – Результат работы модели PLSA

ПРИЛОЖЕНИЕ З Результаты обучения модели LDA

theta_sparsit	phi_sparsity	perplexity	n-grams	tau	num_doc_passes	num_collection_passes	num_topics	model	
0.	0.0	1710.850220	1-gramm	0.5	7	10	6	LDA	0
0.	0.0	67566.757812	2-gramm	0.5	7	10	6	LDA	1
0.	0.0	153792.531250	3-gramm	0.5	7	10	6	LDA	2
0.	0.0	1641.057129	1-gramm	0.5	7	15	6	LDA	3
0.	0.0	65737.039062	2-gramm	0.5	7	15	6	LDA	4
0.	0.0	152687.625000	3-gramm	0.5	7	15	6	LDA	5
0.	0.0	1600.610229	1-gramm	0.5	7	24	6	LDA	6
0.	0.0	64311.207031	2-gramm	0.5	7	24	6	LDA	7
0.	0.0	152265.625000	3-gramm	0.5	7	24	6	LDA	8
0.	0.0	1693.715332	1-gramm	0.5	7	10	7	LDA	9
0.	0.0	67011.507812	2-gramm	0.5	7	10	7	LDA	10
0.	0.0	151199.500000	3-gramm	0.5	7	10	7	LDA	11
0.	0.0	1619.568848	1-gramm	0.5	7	15	7	LDA	12
0.	0.0	65138.832031	2-gramm	0.5	7	15	7	LDA	13
0.	0.0	149755.437500	3-gramm	0.5	7	15	7	LDA	14
0.	0.0	1577.376587	1-gramm	0.5	7	24	7	LDA	15
0.	0.0	63728.996094	2-gramm	0.5	7	24	7	LDA	16
0.	0.0	149215.875000	3-gramm	0.5	7	24	7	LDA	17
0.	0.0	1674.479980	1-gramm	0.5	7	10	8	LDA	18
0.	0.0	66994.335938	2-gramm	0.5	7	10	8	LDA	19
0.	0.0	150138.484375	3-gramm	0.5	7	10	8	LDA	20
0.	0.0	1589.150024	1-gramm	0.5	7	15	8	LDA	21
0.	0.0	64756.683594	2-gramm	0.5	7	15	8	LDA	22
0.	0.0	147781.640625	3-gramm	0.5	7	15	8	LDA	23
0.	0.0	1552.519653	1-gramm	0.5	7	24	8	LDA	24
0.	0.0	63383.753906	2-gramm	0.5	7	24	8	LDA	25
0.	0.0	147131.609375	3-gramm	0.5	7	24	8	LDA	26

Рисунок 8 – Результат работы модели LDA

ПРИЛОЖЕНИЕ И Результаты обучения модели с регуляризатором разреживания

	model	num_topics	num_collection_passes	num_doc_passes	tau	n-grams	perplexity	phi_sparsity	theta_sparsity
0	SPARSE	6	10	2	-0.5	1-gramm	1231.503052	0.640000	0.071823
1	SPARSE	6	10	2	-0.5	2-gramm	1538.760498	0.951833	0.300651
2	SPARSE	6	10	2	-0.5	3-gramm	188.688263	0.979778	0.531911
3	SPARSE	6	10	3	-0.5	1-gramm	1157.054565	0.659647	0.200438
4	SPARSE	6	10	3	-0.5	2-gramm	1777.264771	0.944017	0.381501
5	SPARSE	6	10	3	-0.5	3-gramm	241.116043	0.972879	0.563029
6	SPARSE	6	15	2	-0.5	1-gramm	1158.813599	0.715806	0.114388
7	SPARSE	6	15	2	-0.5	2-gramm	1527.366699	0.954007	0.305016
8	SPARSE	6	15	2	-0.5	3-gramm	188.333817	0.980124	0.529828
9	SPARSE	6	15	3	-0.5	1-gramm	1114.064941	0.714879	0.229537
10	SPARSE	6	15	3	-0.5	2-gramm	1767.818481	0.946003	0.377769
11	SPARSE	6	15	3	-0.5	3-gramm	240.820450	0.973188	0.560767
12	SPARSE	7	10	2	-0.5	1-gramm	1182.924194	0.676651	0.106681
13	SPARSE	7	10	2	-0.5	2-gramm	1137.191650	0.963955	0.363358
14	SPARSE	7	10	2	-0.5	3-gramm	142.102112	0.986896	0.605548
15	SPARSE	7	10	3	-0.5	1-gramm	1112.731445	0.694456	0.250580
16	SPARSE	7	10	3	-0.5	2-gramm	1311.708008	0.958015	0.436861
17	SPARSE	7	10	3	-0.5	3-gramm	172.531143	0.982427	0.627401
18	SPARSE	7	15	2	-0.5	1-gramm	1110.098633	0.747720	0.154853
19	SPARSE	7	15	2	-0.5	2-gramm	1128.847412	0.965883	0.365596
20	SPARSE	7	15	2	-0.5	3-gramm	141.829971	0.987146	0.602504
21	SPARSE	7	15	3	-0.5	1-gramm	1071.746948	0.744674	0.278140
22	SPARSE	7	15	3	-0.5	2-gramm	1304.456909	0.959750	0.431452
23	SPARSE	7	15	3	-0.5	3-gramm	172.244049	0.982699	0.624737
24	SPARSE	8	10	2	-0.5	1-gramm	1145.132202	0.708129	0.135718
25	SPARSE	8	10	2	-0.5	2-gramm	872.833496	0.972098	0.419695
26	SPARSE	8	10	2	-0.5	3-gramm	116.196747	0.990707	0.663424
27	SPARSE	8	10	3	-0.5	1-gramm	1074.828125	0.725828	0.293617
28	SPARSE	8	10	3	-0.5	2-gramm	1018.269531	0.966972	0.489060
29	SPARSE	8	10	3	-0.5	3-gramm	137.886215	0.987549	0.679279
30	SPARSE	8	15	2	-0.5	1-gramm	1075.168091	0.775927	0.189482
31	SPARSE	8	15	2	-0.5	2-gramm	866.262329	0.973689	0.420464
32	SPARSE	8	15	2	-0.5	3-gramm	115.994278	0.990904	0.660681
33	SPARSE	8	15	3	-0.5	1-gramm	1035.476440	0.771970	0.318969
34	SPARSE	8	15	3	-0.5	2-gramm	1012.164307	0.968415	0.484502
35	SPARSE	8	15	3	-0.5	3-gramm	137.631042	0.987740	0.676441

Рисунок 9 – Результат работы модели с регуляризатором разреживания

ПРИЛОЖЕНИЕ К Результаты обучения модели с регуляризатором декоррелирования

	model	num_topics	num_collection_passes	num_doc_passes	tau	n-grams	perplexity	phi_sparsity	theta_sparsity
0	DECOR	6	24	7	1000000.0	1-gramm	997.300354	0.249426	0.001702
1	DECOR	6	24	7	1000000.0	2-gramm	30181.234375	0.767092	0.008752
2	DECOR	6	24	7	1000000.0	3-gramm	56177.351562	0.814341	0.120698
3	DECOR	6	24	7	2000000.0	1-gramm	987.056885	0.246225	0.004936
4	DECOR	6	24	7	2000000.0	2-gramm	30541.140625	0.766294	0.010771
5	DECOR	6	24	7	2000000.0	3-gramm	56174.789062	0.814333	0.120814
6	DECOR	6	24	7	10000000.0	1-gramm	898.948303	0.360353	0.052987
7	DECOR	6	24	7	10000000.0	2-gramm	28595.830078	0.766903	0.011849
8	DECOR	6	24	7	10000000.0	3-gramm	55265.882812	0.814376	0.127347
9	DECOR	6	24	7	20000000.0	1-gramm	889.529602	0.725563	0.217360
10	DECOR	6	24	7	20000000.0	2-gramm	28333.759766	0.766618	0.013181
11	DECOR	6	24	7	20000000.0	3-gramm	55354.835938	0.814413	0.134323
12	DECOR	7	24	7	1000000.0	1-gramm	965.575134	0.268023	0.003126
13	DECOR	7	24	7	1000000.0	2-gramm	27194.945312	0.796486	0.010953
14	DECOR	7	24	7	1000000.0	3-gramm	48933.242188	0.839778	0.137865
15	DECOR	7	24	7	2000000.0	1-gramm	925.523438	0.271334	0.009151
16	DECOR	7	24	7	2000000.0	2-gramm	26743.005859	0.795559	0.013581
17	DECOR	7	24	7	2000000.0	3-gramm	49241.468750	0.839727	0.144968
18	DECOR	7	24	7	10000000.0	1-gramm	855.574219	0.542649	0.139795
18	DECOR	7	24	7	10000000.0	1-gramm	855.574219	0.542649	0.139795
19	DECOR	7	24	7	10000000.0	2-gramm	25736.072266	0.795918	0.016435
20	DECOR	7	24	7	10000000.0	3-gramm	48125.343750	0.839806	0.148791
21	DECOR	7	24	7	20000000.0	1-gramm	940.037048	0.923179	0.501060
22	DECOR	7	24	7	20000000.0	2-gramm	25049.480469	0.795690	0.018274
23	DECOR	7	24	7	20000000.0	3-gramm	47833.484375	0.839776	0.159410
24	DECOR	8	24	7	1000000.0	1-gramm	936.616882	0.285579	0.009006
25	DECOR	8	24	7	1000000.0	2-gramm	24957.750000	0.818599	0.015126
26	DECOR	8	24	7	1000000.0	3-gramm	43443.000000	0.858962	0.151081
27	DECOR	8	24	7	2000000.0	1-gramm	868.931519	0.306772	0.017646
28	DECOR	8	24	7	2000000.0	2-gramm	23935.548828	0.818830	0.016854
29	DECOR	8	24	7	2000000.0	3-gramm	42724.964844	0.858977	0.159825
30	DECOR	8	24	7	10000000.0	1-gramm	838.104187	0.727616	0.268471
31	DECOR	8	24	7	10000000.0	2-gramm	23172.703125	0.818806	0.020025
32	DECOR	8	24	7	10000000.0	3-gramm	42752.050781	0.859007	0.171027
33	DECOR	8	24	7	20000000.0	1-gramm	1095.360229	0.976109	0.713098
34	DECOR	8	24	7	20000000.0	2-gramm	22251.166016	0.818686	0.021475
35	DECOR	8	24	7	20000000.0	3-gramm	42528.093750	0.858923	0.180896

Рисунок 10 – Результат работы модели с регуляризатором сглаживания