2 参数的区间估计

当样本观测值给定以后,点估计给出未知参数*θ*一个确定的数值.但估计值只是*θ*的一个近似值,究竟它与*θ*的真值有没有误差,误差是多少并不知道.而在实际问题中,这种误差的大小往往是人们比较关心的.为此,引入参数估计的另一种形式—**区间估计**.

例如: 天气预报

明天的最高温度: 12℃. ——点估计

明天的最高温度: 11°C -13°C. ---区间估计

置信区间定义

设 θ 是一个待估参数,给定 $\alpha > 0$,若由样本 $X_1, X_2, ..., X_n$ 确定的两个统计量 $\hat{\theta}_1 = \hat{\theta}_1(X_1, X_2, ..., X_n)$, $\hat{\theta}_2 = \hat{\theta}_2(X_1, X_2, ..., X_n)$, $(\hat{\theta}_1 < \hat{\theta}_2)$,满足

$$P(\hat{\theta}_1 \le \theta \le \hat{\theta}_2) = 1 - \alpha$$

则称区间 $[\hat{\theta}_1, \hat{\theta}_2]$ 是 θ 的置信水平(Confidence level,置信度、置信概率)为 $1-\alpha$ 的置信区间(Confidence Intervals).

 $\hat{\theta}_1$ 和 $\hat{\theta}_2$ 分别称为置信下限和置信上限. 置信区间是一个随机区间, 它是否包含了末知参数 θ 是一个随机事件.

说明

1) 要求 $[\hat{\theta_1}, \hat{\theta_2}]$ 以较大的概率包含 θ ,

置信度 $P(\hat{\theta}_1 \le \theta \le \hat{\theta}_2) = 1 - \alpha$ 要满足要求, 即要求估计可靠.

2) 估计的精度要尽可能的高, 即要求区间长度 $\hat{\theta}_2 - \hat{\theta}_1$ 尽可能短.

置信度与精度是一对矛盾,当样本容量固定时,置信度越高,则精度越差.

处理"可靠性与精度关系"的原则: 求参数置信区间,要先保证可靠性,再提高精度

求置信区间的步骤

例 设 $X_1,...X_n$ 是取自 $N(\mu,\sigma^2)$ 的样本, σ^2 已知,求参数 μ 的 置信水平为 $1-\alpha$ 的置信区间.

明确问题:求什么参数的置信区间?置信水平是多少?

解

选
$$\mu$$
的点估计为 \overline{X} 寻找未知参数的一个良好估计量.
$$\overline{X} - \mu \\ \overline{\sigma} / \sqrt{n} \sim N(0,1)$$

寻找未知参数的

寻找一个待估参数和估计量的函数U,要求其分布已知 (知道分布,就可以求出U取值于任意区间的概率).

对于给定的置信水平,根据U的分布,确定一个区间,使得U取值位 于该区间的概率为置信水平.

对给定的置信水平 $1 - \alpha$,查正态分布表得到 $u_{\alpha/2}$,

使
$$P\{\left|\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}\right| \le u_{\alpha/2}\} = 1-\alpha$$

 $\Phi(u_{\alpha/2}) - \Phi(u_{-\alpha/2}) = 1-\alpha$
 $2\Phi(u_{\alpha/2}) - 1 = 1-\alpha$

$$\Phi(u_{\alpha/2}) = 1 - \frac{\alpha}{2}$$

所求
$$\mu$$
的置信区间为 $[\overline{X} - \frac{\sigma}{\sqrt{n}}u_{\alpha/2}, \ \overline{X} + \frac{\sigma}{\sqrt{n}}u_{\alpha/2}]$ 简记为 $\overline{X} \pm \frac{\sigma}{\sqrt{n}}u_{\alpha/2}$

2.00		
p = 0.0005	p = 0.999	p = 0.0005
-3.27		3.27

α	1-α	$u_{\alpha/2}$
0.10	0.90	$u_{0.05} = 1.645$
0.05	0.95	$u_{0.025} = 1.96$
0.01	0.99	$u_{0.005} = 2.58$
0.001	0.999	$u_{0.0005} = 3.27$

说明

• 给定样本和置信水平,置信区间不是唯一的.对同一个参数,可以构造许多置信区间.为什么要取 $u_{\alpha/2}$?

区间的长度为 $2\frac{\sigma}{\sqrt{n}}u_{\alpha/2}$, 达到最短, 精度最高。

取
$$\alpha = 0.05$$

$$u_{\frac{\alpha}{2}} - u_{1 - \frac{\alpha}{2}} = 1.96 - (-1.96)$$
$$= 3.92$$

$$u_{\frac{2\alpha}{3}} - u_{1-\frac{\alpha}{3}} = 1.84 - (-2.13)$$
$$= 3.97$$

即使在概率密度不对称的情形,如 χ^2 分布、F分布,习惯上仍取对称的分位点来计算未知参数的置信区间.

在保证足够可靠的前提下,尽量使区间的长度短一些.

求置信区间的一般步骤:

- 1). 明确问题, 求什么参数的置信区间?置信水平1-α是多少?
- 2). 寻找参数 θ 的一个良好的点估计 $T(X_1,X_2,...X_n)$
- 3). 寻找一个待估参数 θ 和估计量T的函数 $S(T, \theta)$, 且其分布为已知,称 $S(T, \theta)$ 为枢轴量(pivot).
- 4). 对于给定的置信水平1- α ,根据 $S(T, \theta)$ 的分布,确定常数a, b,使得

$$P(a \leq S(T, \theta) \leq b) = 1-\alpha$$

5). 对 " $a \le S(T, \theta) \le b$ " 作等价变形,得到:

$$P\{\hat{\theta}_1 \le \theta \le \hat{\theta}_2\} = 1 - \alpha$$

则 $[\hat{\theta}_1, \hat{\theta}_2]$ 就是 θ 的置信度为 $1-\alpha$ 的置信区间.

区间估计的关键:要寻找一个待估参数 θ 和估计量T的函数 $S(T,\theta)$,且 $S(T,\theta)$ 的分布为已知,不依赖于任何其它未知参数。(这样才能确定一个概率区间).

这与总体分布有关,总体分布的形式,至关重要.

我们主要讨论总体分布为正态的情形. 若样本容量很大,即使总体分布未知,应用中心极限 定理,可得总体的近似分布,也可以求得参数的近似 区间估计.

一个正态总体 $X \sim N(\mu, \sigma^2)$ 参数的置信区间

(1) 方差 σ^2 已知, μ 的置信区间

$$[\overline{X} - \frac{\sigma}{\sqrt{n}}u_{\alpha/2}, \ \overline{X} + \frac{\sigma}{\sqrt{n}}u_{\alpha/2}]$$

(推导过程见前面)

(2) 方差 σ^2 未知, μ 的置信区间 (常用)

$$[\overline{X} - \frac{S}{\sqrt{n}}t_{\alpha/2}(n-1), \overline{X} + \frac{S}{\sqrt{n}}t_{\alpha/2}(n-1)]$$

2. 正态总体均值的置信区间(置信水平为 $1-\alpha$)

待估参数	其他参数	枢轴量的分布	置信区间
μ	♂ 已知	$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$	$\left(\overline{X} - \frac{\sigma}{\sqrt{n}} z_{a/2}, \overline{X} + \frac{\sigma}{\sqrt{n}} z_{a/2}\right)$
μ	σ² 未知	$t = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$	$\left(\overline{X} - \frac{S}{\sqrt{n}} t_{a/2}(n-1), \overline{X} + \frac{S}{\sqrt{n}} t_{a/2}(n-1)\right)$

推导 选取枢轴量 $T = \frac{\bar{X} - \mu}{S / \sqrt{n}} \sim t(n-1)$

$$P\{|T| \le t_{\alpha/2}(n-1)\} = 1-\alpha$$

$$P\{|\frac{X-\mu}{S/\sqrt{n}}| \leq t_{\alpha/2}(n-1)\} = 1-\alpha$$

$$P\{\overline{X} - \frac{S}{\sqrt{n}}t_{\alpha/2}(n-1) \le \mu \le \overline{X} + \frac{S}{\sqrt{n}}t_{\alpha/2}(n-1)\} = 1 - \alpha$$

$$[\overline{X} - \frac{S}{\sqrt{n}}t_{\alpha/2}(n-1), \overline{X} + \frac{S}{\sqrt{n}}t_{\alpha/2}(n-1)]$$

(3) 当 μ 已知时,方差 σ^2 的置信区间

$$\sigma^2$$
 的极大似然估计量为 $\widehat{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2$,

取枢轴量
$$Q = \frac{n\widehat{\sigma^2}}{\sigma^2} = \sum_{i=1}^n \left(\frac{X_i - \mu}{\sigma}\right)^2 \sim \chi^2(n)$$

$$P\left(\chi_{1-\frac{\alpha}{2}}^{2}(n) < \frac{\sum_{i=1}^{n} (X_{i} - \mu)^{2}}{\sigma^{2}} < \chi_{\frac{\alpha}{2}}^{2}(n)\right) = 1 - \alpha$$

得 σ^2 的置信度为 $1 - \alpha$ 置信区间为

$$\left(\frac{\sum_{i=1}^{n} (X_i - \mu)^2}{\chi_{\frac{\alpha}{2}}^2(n)}, \frac{\sum_{i=1}^{n} (X_i - \mu)^2}{\chi_{1-\frac{\alpha}{2}}^2(n)}\right)$$

(4) 当 μ 未知时,方差 σ^2 的置信区间(常用)

方差 σ^2 的一个良好点估计为 S^2 ,

取枢轴量
$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$
.

对于给定的 α ,

$$P\left(\chi_{1-\alpha/2}^{2}(n-1) \leqslant \frac{(n-1)S^{2}}{\sigma^{2}} \leqslant \chi_{\alpha/2}^{2}(n-1)\right) = 1 - \alpha,$$

$$P\left(\frac{(n-1)S^2}{\chi_{\alpha/2}^2(n-1)} \leqslant \sigma^2 \leqslant \frac{(n-1)S^2}{\chi_{1-\alpha/2}^2(n-1)}\right) = 1 - \alpha,$$

于是方差 σ^2 的置信水平为 $1-\alpha$ 的置信区间为

$$\left[\frac{(n-1)S^2}{\chi_{\alpha/2}^2(n-1)}, \frac{(n-1)S^2}{\chi_{1-\alpha/2}^2(n-1)}\right]$$

例 某工厂生产一批滚珠,其直径 X 服从正态分布 $N(\mu,\sigma^2)$, 现从某天的产品中随机抽取6件, 测得直径为:

15.1, 14.8, 15.2, 14.9, 14.6, 15.1

- (1) 若 σ^2 =0.06, 求 μ 的置信区间 (2) 若 σ^2 未知, 求 μ 的置信区间 (3) 求方差 σ^2 的置信区间. 置信度 均为0.95

解: (1) [
$$\overline{X} - \frac{\sigma}{\sqrt{n}} u_{\alpha/2}, \ \overline{X} + \frac{\sigma}{\sqrt{n}} u_{\alpha/2}$$
] $u_{\frac{\alpha}{2}} = u_{0.025} = 1.96$

由给的数据算得
$$\bar{x} = \frac{1}{6} \sum_{i=1}^{6} x_i = 14.95$$

 μ 的置信区间为(14.95 – 1.96 × 0.1, 14.95 + 1.96 × 0.1) = (14.75, 15.15)

(2)
$$[\overline{X} - \frac{S}{\sqrt{n}}t_{\alpha/2}(n-1), \overline{X} + \frac{S}{\sqrt{n}}t_{\alpha/2}(n-1)]$$

查表
$$t_{0.025}(5) = 2.5706$$
 $\bar{x} = 14.95$
$$s^2 = \frac{1}{5} (\sum_{i=1}^{6} x_i^2 - 6\bar{x}^2) = 0.051. \quad s = 0.226$$

μ的置信区间为

$$(\bar{x} - \frac{s}{\sqrt{6}}t_{0.025}(5), \ \bar{x} + \frac{s}{\sqrt{6}}t_{0.025}(5)) = (14.71, 15.187)$$

(3)
$$\left[\frac{(n-1)S^2}{\chi^2_{\alpha/2}(n-1)}, \frac{(n-1)S^2}{\chi^2_{1-\alpha/2}(n-1)}\right]$$

$$s^2 = 0.051$$
. **查表得** $\chi^2_{0.025}(5) = 12.833$, $\chi^2_{0975}(5) = 0.831$

$$\sigma^2$$
的置信区间为 $\left(\frac{5s^2}{\chi_{0.025}^2(5)}, \frac{5s^2}{\chi_{0.975}^2(5)}\right) = (0.0199, 0.3069)$

已知一批零件的长度 X(单位: cm) 服从正态分布 $N(\mu,1)$, 从中随机地抽取 16 个零件, 得到长度的平均值 为 40(cm), 则 μ 的置信度为 0.95 的置信区间是 ([填空1], [填空2]) [40-1.96/4,40+1.96/4]=[39.51,40.49]

(注:标准正态分布函数值 $\Phi(1.96) = 0.975, \Phi(1.645) = 0.95,$ 保留2位小数)

正常使用填空题需3.0以上版本雨课堂

填空题 2分

从一批钉子中抽取16枚,测得长度(单位:厘米), \bar{X} = 2.125,S = 0.017,设钉长分布为正态,总体期望的置信度为0.90的置信区间是([填空1],[填空2])。 [2.118, 2.132]

标准正态分布数值表: $\Phi(1.96) = 0.975$, $\Phi(1.645) = 0.95$ t 分布数值表: $t_{0.025}(15) = 2.1315$, $t_{0.05}(15) = 1.7531$

$$\chi^2$$
 分布数值表: $\chi^2_{0.025}(14) = 26.119$, $\chi^2_{0.975}(14) = 5.629$.

$$\left[\overline{X} - \frac{S}{\sqrt{n}} t_{\alpha/2}(n-1), \overline{X} + \frac{S}{\sqrt{n}} t_{\alpha/2}(n-1)\right] \xrightarrow{(2) \text{ Bhorkel}, } \frac{\overline{X} - \mu}{\sqrt{n}} - t \text{ (n-1)},$$

$$\text{ID: } \frac{\frac{2.125 - \mu}{0.017}}{\frac{0.017}{0.017}} = \frac{4(2.125 - \mu)}{0.017} - t \text{ (15)}$$

由已知条件, t_{0.05} (15) =1.7531,

两个正态总体参数的置信区间

 (X_1, X_2, \dots, X_m) 为取自总体 $N(\mu_1, \sigma_1^2)$ 的样本,

 (Y_1,Y_2,\cdots,Y_n) 为取自总体 $N(\mu_2,\sigma_2^2)$ 的样本,

 \bar{X}, S_1^2 ; \bar{Y}, S_2^2 分别表示两样本的均值与方差,

置信度为 $1-\alpha$

(1) σ_1^2 , σ_2^2 已知, $\mu_1 - \mu_2$ 的置信区间

$$\overline{X} \sim N(\mu_1, \frac{\sigma_1^2}{m}), \quad \overline{Y} \sim N(\mu_2, \frac{\sigma_2^2}{n})$$

 \bar{X},\bar{Y} 相互独立,

$$\frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}} \sim N(0, 1)$$

 $\mu_1 - \mu_2$ 的置信区间为

$$\left((\overline{X}-\overline{Y})-u_{\frac{\alpha}{2}}\sqrt{\frac{\sigma_1^2}{m}+\frac{\sigma_2^2}{n}}, (\overline{X}-\overline{Y})+u_{\frac{\alpha}{2}}\sqrt{\frac{\sigma_1^2}{m}+\frac{\sigma_2^2}{n}}\right)$$

(2) $\sigma_1^2 = \sigma_2^2 = \sigma^2$ 未知, $\mu_1 - \mu_2$ 的置信区间

$$\frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{S_w \sqrt{\frac{1}{m} + \frac{1}{n}}} \sim t(m + n - 2)$$

$$S_{w} = \sqrt{\frac{\left(m-1\right)S_{1}^{2} + (n-1)S_{2}^{2}}{m+n-2}}$$

$$P\left(\left|\frac{(\overline{X}-\overline{Y})-(\mu_{1}-\mu_{2})}{S_{w}\sqrt{\frac{1}{m}+\frac{1}{n}}}\right| < t_{\frac{\alpha}{2}}\right) = 1-\alpha$$

$$\mu_1 - \mu_2$$
的置信区间为 $\left((\bar{X} - \bar{Y}) \pm t_{\frac{\alpha}{2}} S_w \sqrt{\frac{1}{m} + \frac{1}{n}} \right)$

 σ_1^2 、 σ_2^2 均末知,且 $\sigma_1^2 \neq \sigma_2^2$ 时,求 $\mu_1 - \mu_2$ 的置信区间.

 $\mu_1 - \mu_2$ 的极大似然估计是 $\bar{X} - \bar{Y}$,用样本方差 $S_1^2 \setminus S_2^2$ 分别代替 $\sigma_1^2 \setminus \sigma_2^2$,令

$$J = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{m} + \frac{S_2^2}{n}}},$$

可以证明, 当 $m \setminus n$ 都很大时, 近似地有 $J \sim N(0; 1)$.

 $\mu_1 - \mu_2$ 的双侧 (近似) $1 - \alpha$ 置信区间为

$$\left[(\bar{X} - \bar{Y}) - u_{\alpha/2} \sqrt{\frac{S_1^2}{m} + \frac{S_2^2}{n}}, (\bar{X} - \bar{Y}) + u_{\alpha/2} \sqrt{\frac{S_1^2}{m} + \frac{S_2^2}{n}} \right].$$

例 从某地区随机地选取男、女各 100 名测量身高. 测得男子高度的平均值为 171 厘米,标准差为 3.5 厘米;女子高度的平均值为 161 厘米,标准差为 3.8 厘米. 假定身高服从正态分布,且男女身高相互独立,求该地区男女平均身高之差的双侧 95% 置信区间.

解 因为 m = n = 100, $\alpha = 0.05$, $\bar{x} = 171$, $s_1^2 = (3.5)^2 = 12.25$, $\bar{y} = 161$, $s_2^2 = (3.8)^2 = 14.44$, 查标准正态分布表得 $u_{0.975} = 1.96$, 得到该地区男女平均身高之差的双侧 95% 置信区间为

$$\left[(171 - 161) - 1.96 \times \sqrt{\frac{12.25}{100} + \frac{14.44}{100}}, (171 - 161) + 1.96 \times \sqrt{\frac{12.25}{100} + \frac{14.44}{100}} \right]$$

= [8.99,11.01].

(3) 方差比 $\frac{\sigma_1^2}{\sigma_2^2}$ 的置信区间 (μ_1, μ_2) 已知)

取枢轴量

$$F = \frac{\frac{1}{m} \sum_{i=1}^{m} (X_i - \mu_1)^2}{\sum_{j=1}^{n} (Y_j - \mu_2)^2} = \frac{A}{\frac{1}{\sigma_1^2}} \sim F(m, n) \qquad A = \frac{\frac{1}{m} \sum_{i=1}^{m} (X_i - \mu_1)^2}{\frac{1}{n} \sum_{j=1}^{n} (Y_j - \mu_2)^2}$$

方差比
$$\frac{\sigma_1^2}{\sigma_2^2}$$
 的置信区间为 $\left(\frac{A}{F_{\underline{a}}(m,n)}, \frac{A}{F_{1-\underline{a}}(m,n)}\right)$

(4) 方差比 $\frac{\sigma_1^2}{\sigma_2^2}$ 的置信区间 (μ_{1}, μ_2, π_3)

取枢轴量

$$F = \frac{S_1^2 / \sigma_1^2}{S_2^2 / \sigma_2^2} \sim F(m-1, n-1)$$

方差比 $\frac{\sigma_1^2}{\sigma_2^2}$ 的置信区间为

$$\left(\frac{S_1^2}{S_2^2} \frac{1}{F_{\underline{\alpha}}(m-1,n-1)}, \frac{S_1^2}{S_2^2} \frac{1}{F_{1-\underline{\alpha}}(m-1,n-1)}\right)$$

例 某厂利用两条自动化流水线罐装番茄酱. 现分别从两条流水线上抽取了容量分别为13与17的两个相互独立的样本,已知 $\bar{X}=10.6\mathrm{g}, \bar{Y}=9.5\mathrm{g},$ $S_1^2=2.4g^2, S_2^2=4.7g^2$

假设两条流水线上罐装的番茄酱的重量都服从正态分布, 其均值分别为 μ_1 与 μ_2

- (1) 若它们的方差相同, $\sigma_1^2 = \sigma_2^2 = \sigma^2$, 求均值差 $\mu_1 \mu_2$ 的置信度为0.95 的置信区间;
- (2) 求它们的方差比的置信度为 0.95 的置信区间

解 (1) 查表得 $t_{0.025}$ (28) = 2.0484 由公式 $\mu_1 - \mu_2$ 的置信区间为

$$(\bar{X} - \bar{Y}) \pm t_{\frac{\alpha}{2}} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}} = (-0.3545, 2.545)$$

(2) 查表得 $F_{0.025}(16, 12) = 3.16$, $F_{0.975}(16, 12) = \frac{1}{F_{0.025}(12, 16)} \approx \frac{1}{2.89}$ 由公式得方差比 $\frac{\sigma_1^2}{\sigma_2^2}$ 的置信区间为

$$\left(\frac{S_1^2}{S_2^2} \frac{1}{F_{0.025}(n_1 - 1, n_2 - 1)}, \frac{S_1^2}{S_2^2} F_{0.025}(n_2 - 1, n_1 - 1)\right) = (0.1767, 1.6136)$$

非正态总体的区间估计

设 (X_1, X_2, \dots, X_n) 是取自总体 X 的样本,要求末知参数 $\mu = E(X)$ 的双侧 $1 - \alpha$ 置信区间.

尽管不知道总体 X 究竟服从什么分布,由于当n充分大(样本容量 n > 30)时, $J = \sqrt{n} \frac{\bar{X} - \mu}{c}$ 近似地服从标准正态分布 N(0; 1),

在大样本时, μ 的双侧 $1-\alpha$ 置信区间近似地为

$$\left[\bar{X} - \mu_{\alpha/2} \frac{S}{\sqrt{n}}, \bar{X} + u_{\alpha/2} \frac{S}{\sqrt{n}} \right]$$

例 从一大批产品中随机地抽取 100 件进行检查,发现有 4 件是不合格品,求不合格率 p 的单侧 95% 置信区间上限的近似值.

解 由于总体 X 服从 0-1 分布 B(1; p), 其中 $0 \le p \le 1$, 但 p 末知, 所以 p 的极大似然估计量是 \bar{X} .

当 n 充分大时, $\sqrt{n} \frac{\bar{X}-p}{\sqrt{\bar{X}(1-\bar{X})}}$ 近似地服从标准正态分布 N(0;1),

p 的单侧 95% 置信区间上限的近似值为 $\bar{x} + u_{0.05} \sqrt{\frac{1}{n}} \bar{x} (1 - \bar{x})$. 现 $n = 100, \bar{x} = 0.04$,上限的近似值为

$$0.04 + 1.645 \times \sqrt{\frac{1}{100}} \times 0.04 \times 0.96 = 0.072.$$

讨论两个正态总体均值之间的差异时, 我们假定要么 σ_1^2 与 σ_2^2 均已知, 要么 $\sigma_1^2 = \sigma_2^2 = \sigma^2$ 但 σ^2 末知.

若取消两个总体方差齐性的假定, 即 $\sigma_1^2 \neq \sigma_2^2$, 且 $\sigma_1^2 \setminus \sigma_2^2$ 均末知时, 如何求 $\mu_1 - \mu_2$ 的置信区间呢?

这时, $\mu_1 - \mu_2$ 的极大似然估计仍是 $\bar{X} - \bar{Y}$, 而用样本方差 $S_1^2 \setminus S_2^2$ 分别代替 $\sigma_1^2 \setminus \sigma_2^2$, 令

$$J = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{m} + \frac{S_2^2}{n}}},$$

可以证明, 当 m、n 都很大时, 近似地有 $J \sim N(0; 1)$. 从而 $\mu_1 - \mu_2$ 的双侧 (近似) $1 - \alpha$ 置信区间为

$$\left[(\bar{X} - \bar{Y}) - u_{\alpha/2} \sqrt{\frac{S_1^2}{m} + \frac{S_2^2}{n}}, (\bar{X} - \bar{Y}) + u_{\alpha/2} \sqrt{\frac{S_1^2}{m} + \frac{S_2^2}{n}} \right].$$

例 从某地区随机地选取男、女各 100 名测量身高. 测得男子高度的平均值为 171 厘米, 标准差为 3.5 厘米; 女子高度的平均值为 161 厘米, 标准差为 3.8 厘米. 假定身高服从正态分布, 且男女身高相互独立, 求该地区男女平均身高之差的双侧 95% 置信区间.

解 因为 m = n = 100, $\alpha = 0.05$, $\bar{x} = 171$, $s_1^2 = (3.5)^2 = 12.25$, $\bar{y} = 161$, $s_2^2 = (3.8)^2 = 14.44$, 查标准正态分布表得 $u_{0.025} = 1.96$, 得到该地区男女平均身高之差的双侧 95% 置信区间为

$$\left[(171 - 161) - 1.96 \times \sqrt{\frac{12.25}{100} + \frac{14.44}{100}}, (171 - 161) + 1.96 \times \sqrt{\frac{12.25}{100} + \frac{14.44}{100}} \right]$$

= [8.99,11.01].