UNCLASSIFIED

AD 402916

Reproduced by the

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRSINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

402916

402 916

TECHNICAL REPORT

STUDY OF OCEANOGRAPHIC CONDITIONS AS RELATED TO PROJECT POLYNYA

CHARLES W. SENIOR

Formulation Branch
Oceanographic Prediction Division

DECEMBER 1961

U. S. NAVY HYDROGRAPHIC OFFICE WASHINGTON 25, D. C. Price 95 cents

ABSTRACT

The air-bubbling technique utilized by the Military Sea Transportation Service to prevent ice formation in North Star Bugt, Thule, Greenland is discussed. A proposed model of induced water circulation is presented. Physical processes impeding ice formation and growth in sea water are described. Oceanographic data collected in conjunction with the MSTS project are analyzed and presented in the appendixes.

FOREWORD

The formation of sea ice in northern waters often hastens the termination of shipping at Arctic harbors and sites. Retardation of ice growth can reduce or prevent damage to marine structures such as De Long pier at Thule, Greenland. A thorough understanding of physical effects which delay ice formation and slow ice growth is required. For these reasons, the experiment performed at Thule in 1959 is of considerable interest.

This report is a study of the effects of air-bubbling on the physical properties of the water adjacent to De Long pier. It attempts to formulate a working hypothesis for explaining the mechanism of the processes which retarded formation and growth of sea ice.

Conclusions expressed in this report may require revisions as additional data become available. All additional information which might amplify or modify this report will be welcomed by the Hydrographic Office.

Rear Admira, U. S. Navy Hydrographer

iii

CONTENTS

																															Page
FOREV	IORD	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	111
FIGUE	ŒS	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	vi
TABLE	es .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	vi
APPEN	MIX	ES	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	vi
INTRO	DUC	TI	ON	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
NORTH	i st	AR	BI	JG!	r	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
POLY	NΥA	IN	STA	AΙJ	LA!	ri(ИС	19	959)	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
ICE I	ORM	AT:	101	N A	ΑN	D (GR(JWC.	rh	I	1	199	59	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
DATA	COL	LE	CT.	I OI	N	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
DATA	ANA	LY:	SIS	3	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3
CONCI	LUSI	ON	S	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7
BIBL	[OGR	AP	HY																												13

INTRODUCTION

Successful application of an air bubbling technique for preventing ice formation during the fall of 1958 enabled the Military Sea Transportation Service to extend the shipping season at Thule, Greenland. The normal shipping season extends from early July to early October. Shipping during the first half of July is usually dependent on icebreaker escort; shipping is ordinarily terminated prior to initial ice formation in autumn.

Adaptation of a method originally developed in Scandinavian countries for prevention of fresh-water freezing permitted maintenance of an ice-free area (polynya) adjacent to De Long pier despite normal ice formation in the surrounding waters of North Star Bugt (Bay). Safeguarded against becoming frozen-in at the pier, ships of the supply convoy remained at Thule until 25 October 1958 - the latest date on which MSTS had ever operated in such a northerly location. Success of the temporary installation prompted the Commander Military Sea Transportation Service Atlantic (COMSTSLANT) to formulate plans for the establishment of a permanently installed bubbling system at De Long pier.

In the fall of 1959, the U. S. Navy Hydrographic Office was requested to conduct oceanographic studies concurrently with the operation of the mystem in order to obtain information on physical processes impeding ice formation and growth in the bay. The overall operation was dubbed "Project Polynya".

NORTH STAR BUGT

North Star Bugt, approximately 3 square miles in area, recedes about 1-1/2 miles northeastward between Astro Pynt and Mount Dundas on the southern shore of Wolstenholme Fjord. The entrance of the bay, about 3/4 mile wide, is narrowed by De Long pier and a causeway which extend approximately 0.4 mile west-northwestward from Astro Pynt. The pier, 1,000 feet in length and 50 feet in width, adjoins the causeway and is parallel to it. Inside the entrance, the width of the bay increases to about 1 mile.

POLYNYA INSTALLATION 1959

Under the supervision of MSTSLANT, Canadian Underwater Demolition Unit BRAVO began installation of the bubbling system in North Star Bugt early in September 1959. Briefly, the system consists of perforated submarine polyethylene pipes which serve to conduct compressed air to the bottom of the bay and distribute it in the form of bubbles over a wide area (see Figure 1). An auxiliary alcohol-injection system is utilized to prevent or eliminate ice formation within the pipes.

Installation was completed on 27 September. Equipment was intermittently tested until appreciable ice began to form in the bay on 7 October, at which time full operation was begun.

ICE FORMATION AND GROWTH IN 1959

Ice was first observed on 16 September along the eastern fringe of North Star Bugt at a point where fresh water flows from the Pitufik River. By 24 September grease ice formed in an area northeast of the pier, where shallow water was observed to cool to the freezing point during low tide. This grease ice drifted westward with the next ebb tide. By 7 October a considerable amount of pancake ice had formed in the area northeast of the pier.

During the morning of 8 October a foehn wind arose with gusts to approximately 50 knots. The air temperature increased from 17° to 3^{10} F. On the following morning, the bay was completely clear of ice and the surface water temperature had increased from -1.22° to -0.94° C.

During the morning of 10 October grease and pancake ice of small diameter formed over most of the area northeast of the pier. On 11 October a considerable amount of large pancake ice was observed drifting into the region from the south. The areas to the south, west, and northwest of the pier attained a coverage of approximately nine-tenths; no major ice formation was observed near the pier. By 15 October most of the bay was covered with young floes averaging approximately 10 feet in diameter. Ten-tenths concentration of young ice accumulated everywhere by 20 October except in the ice-free area adjacent to the pier.

DATA COLLECTION

Serial temperature, salinity, and current data were obtained at the locations shown in Figure 2. Temperature and salinity observations were taken between 9 September and 21 October.

Station 1 was occupied daily using a small hand winch mounted on the pier or by use of an oceanographic winch aboard the WESTWIND. For detailed observations, the polynya was divided into Stations 1A, 1B, and 1C as shown in Figure 3. Station 1D was designated at a point lying approximately 15 feet outside the polynya area and near the eastern end of the pier. Stations 2, 3, and 4 were occupied twice weekly using either a Greenland cruiser or an LCVP. Station 5 was occupied only on 15 September and Station 1D only on 13 October. Stations 6, 7, 8, and 9 were occupied weekly by the WESTWIND.

A 200-foot bathythermograph was used to measure temperature at all oceanographic stations. BT drops were made daily within the polynya area. Original plans had included daily observations at Stations 1, 1A, and 1B; however, presence of shipping often precluded data-collection at all 3 locations. A bucket thermometer was used in conjunction with each BT drop to obtain surface water temperature.

Meteorological observations obtained daily on the pier include wind speed and direction, wet and dry bulb air temperature, cloud cover and type, visibility, sea state, and state of weather. In addition, pertinent data were extracted from the weather log maintained at Thule Air Base for analysis (Appendix V). Data on tidal currents were obtained by suspending 3 Roberts radio current meters at depths of 6, 26, and 54 feet from an anchored radio buoy. Water depth at each location was 12 fathoms. Signals transmitted from the buoy were recorded at 30-minute intervals by a monitoring station aboard the WESTWIND. Current meter Station 10 was occupied from 1830Z, 25 September to 2100Z, 26 September; Station 11 was occupied from 1200Z, 6 October to 1930Z, 13 October 1959. Current data were not tabulated, because the recorded results either approximated the threshold value of the current meter (0.2 knot) or were unreadable.

A supplementary survey conducted during April 1960 by Hydrographic Office ice observers yielded late-winter temperature data at Stations 1 and 2 (Appendix III).

DATA ANALYSIS

Oceanographic conditions at each station were examined for factors contributing to the formation and growth of ice. Surface temperatures indicating heat loss at the sea surface and physical properties showing the distribution of heat loss throughout the water column were studied. Data obtained outside the polynya were compared to those obtained at Station 1 in order to determine the effect of the bubbling system on the oceanographic structure.

Reversal of the heat budget had occurred prior to inception of the oceanographic survey. Except for interruption by the foehn on 8 October, progressive cooling was observed at all depths. The temperature rise shown by the tabulated data for 9, 10, and 11 October was observed at Station 1. Upon resumption of the cooling process, surface temperature outside the bubbled area decreased rapidly. The freezing point was attained on 13 October.

A study of the salinity structure indicates spatial and temporal fluctuations of surface values and depth of the isohaline layer. A plot of the surface salinity values at Station 1 is presented in Figure 4. The portion of the plot constructed from values for early September indicates that a certain periodicity may exist. The pronounced increase during the latter part of September is attributed to cessation of runoff.

Data obtained at Station 3 on 18 September and 12 October are plotted in Figures 5 and 6. The surface water temperature on 18 September was 0.64° C; temperature maximum of 0.72° C occurred at 9 and 20 meters. The surface salinity was 31.23 °/oo. Convection extended to a depth of only a few meters.

By 12 October the surface water had cooled to -1.32° C; the warmest water was at the bottom. The temperature maximum of -0.62° C was observed at a depth of 33 meters. The surface salinity had increased to 32.34 $^{\circ}$ /oo, and convective mixing had produced an isohaline layer in the upper 15 meters. The calculated freezing point of the surface is -1.76° C.

The density gradient below the 15-meter level, although weak, has significant relevance to the bubbling system. Theoretical ice-potential calculations using the data of the deeper stations show that, prior to initial ice formation, thermohaline convection takes place to a depth of approximately 15 meters. Consequently, the water below this level temporarily serves as a source of sensible heat. However, as ice forms, the salinity of the upper layer increases, resulting in greater density and an increase in depth of convective mixing. As the density gradient weakens and eventually disappears, cooling to the freezing point will occur throughout the water column. At the known average rate of heat loss from the sea surface in the latitude of Thule, the entire supply of warm water will be eliminated within two weeks after initial formation of ice.

The heat content of air issuing from the compressors is considerable. An appreciable amount of heat is possibly introduced into the bottom water adjacent to the pier when compressed air cools in the polyethylene pipes; however, the data do not indicate a temperature differential attributable to this source within the bubbler field. A layer of dirt covering four steel feed pipes provides insulation; however, heat loss through the rubber feed hoses is great. Between the point where these hoses connect to the steel pipes and the point where they enter the water, melting of snow within a radius of approximately 2 feet was observed. Ice formation due to moisture condensate in the underwater sections of the feed pipes was removed by alcohol injection.

The effectiveness of the bubbler system, when warmer bottom water is available, is manifested by the temperature data in Table I.

TABLE I 13 October 1959									
STATION	1	STATION	STATION 1D						
Depth (meters)	Temp.	Depth (meters)	Temp.						
0.0	-1.09	0	-1.76						
3.5	-1.08	3	-1.60						
6.5	-1.06	6	-1.25						
9•5	-1.06	9	-1.24						

The surface temperature at Station 1D, located immediately outside the bubbler field, shows that the surface water had cooled to the freezing point. Despite ice formation around the perimeter of the agitated area, the data obtained at Station 1 show the surface temperature to be 0.67° C above the freezing point. The data for Station 1D are assumed to be indicative of temperature data that would have been observed at Station 1 had the bubbler system not been in operation. The data of 13 October plus the profiles for Stations 2 and 3 on 12 October indicate that water from depths greater than 15 meters is circulated into the agitated water columns adjacent to the pier.

Proof that the bubble system acts as a huge pump capable of performing work on the surrounding subsurface water is provided by comparison of data presented in Tables II and III.

TABLE II 11 October 1959								
STATION 1								
Depth (meters)	Temp.	Salinity (°/oo)	$\sigma_{\mathbf{t}}$					
0.0 3.5 6.5 9.5	-0.90 -0.91 -0.91 -0.89	32.42 32.42 32.42 32.43	26.08 26.08 26.08 26.09					
TABLE III 12 October 1959								
STATION 2								

Depth (meters)	Temp.	Salinity (°/co)	$\sigma_{\mathbf{t}}$
0	-1.42	32.32	26.02
5	-1.40	32.32	26.02
15	-1.42	32.32	26.02
22	-0.69	32.52	26.16
24	-0.78	32.52	26.16

The density of the agitated water column in Table II is greater than the density to at least 15 meters in Table III; therefore, work was performed by the system in raising water through a vertical distance in excess of 15 meters. Comparison of salinity and density data of Table II and the plotted curves of Figure 6 reveals that water similar to the entire water column at Station 1 is found at 20 meters at Station 3, indicating that the water was raised at least 20 meters.

The eventual cooling of the entire water column to the freezing point indicates that vertical transport of sensible heat from depth was not a factor in the maintenance of the artificially created polynya, except during the initial stage of the ice formation. Consequently, an understanding of the physical process involved must be sought along other lines.

Elementary ice particles are probably disk-shaped and devoid of crystalline form. Ordinarily they flocculate and grow into true crystals. The turbulent energy of the induced currents may destroy the crystals before they enlarge or may effectively prevent crystalline growth about ice nuclei. Ice particles at the surface of the bubbled area are rapidly swept from regions of divergence into regions of convergence where, by means of descending currents, they are transported beneath the surface to be eventually dispersed from the polynya area.

Hydrographic Office ice observers, stationed at Thule Air Base throughout the winter of 1959-60, noted that the polynya gradually narrowed; by the end of December width ranged from 12 feet at the eastern end to 50 feet at the western end, where an auxiliary air hose was used to augment the bubbling activity by inducing more vigorous currents. Dimensions of the ice-free area gradually increased during spring as the air temperature rose to approximately 0° F.

A plot of sea ice tensile strength versus temperature (Assur, 1958) shows a marked increase of strength as the temperature of the ice drops below -9.2° F. At this temperature sodium chloride is precipitated from the brine pockets in the ice. During periods of extremely low air temperature in winter, the weakest point of the ice should be at its undersurface where the temperature approaches that of the water.

Measurements made during April 1960 show that ice thickness directly above one of the polyethylene pipes averaged approximately 10 inches while thicknesses ranged between 41 and 44 inches at locations 60, 200, and 375 yards north-northeast of the pier. Abrasive action of induced currents apparently inhibited ice growth in zones of most vigorous flow.

The erosive capability of water currents is manifested by recent experiments in the Antarctic. Specially shaped propellers driven by small motors were suspended through holes in the ice of McMurdo Sound. The propellers created vigorous currents which eroded the ice from below. A 10-horsepower device reportedly required 183 hours to open an area 30 by 85 feet in 8-foot-thick ice. An additional swath of ice 200 feet long was eroded to a thickness of 18 inches; soon afterward, it fell through.

Analysis of data obtained with the Roberts current meters revealed no permanent current. Mass transport of water in the area was attributed to tidal action. Peak tidal current speed was approximately 0.2 knots (based on threshold value of the instrument).

CONCLUSIONS

The bubbling system operates as a huge pump capable of performing work on contiguous subsurface water. The rising streams of bubbles initiate a system of circulatory cells which extend from the bubbled region into adjacent water. Water from depths exceeding 15 meters is circulated into the agitated columns adjacent to the pier and brought to the surface.

At the time of initial ice formation in 1959, convective mixing had occurred throughout the upper 15 meters of North Star Bugt. The density gradient below the 15-meter level gradually weakened with ice growth, and the entire water column cooled to the freezing point. After elimination of the warm water supply, maintenance of an open water area adjacent to the pier was attributed to the ice-dispersive and erosive activity of the induced currents coupled with the possibility that the turbulent energy also sufficed to prevent crystalline growth about ice nuclei. Efficiency of the system varied directly with turbulence.

Considerable narrowing of the polynya by mid-winter was attributed to marked increase of tensile strength with consequent increased resistance to erosive action of the induced currents as the temperature of the ice dropped below -9.2° F. Vertical growth of the newly formed ice cover within the bubbled area was inhibited by this erosive action because the undersurface of the ice is weakest when its temperature equals that of the water. Increase in the dimensions of the ice-free area was observed to concur with an increase of air temperature to approximately 0° F in early spring. This increase was attributed to marked decrease of tensile strength with consequent decreased resistance to erosion as the temperature of the ice rose above -9.2° F.

Unique properties of fresh water make the bubbling system highly suitable for lakes and to a somewhat lesser extent for brackish estuaries. The system is less effective in salt water, because maximum density of water with salinity in excess of 24.7 % o is attained at the freezing point. However, factors other than the upward transport of warm water, as previously discussed, also contribute to the mainenance of an ice-free area.

In regions where upward circulation of sensible heat is not a factor, maintenance of an ice-free area is predominantly dependent upon speed and intensity of the induced currents.

FIGURE I COMPRESSED-AIR BUBBLE SYSTEM AT DE LONG PIER

FIGURE 2 LOCATION CHART OF OCEANOGRAPHIC STATIONS, 1959

FIGURE 3 LOCATION OF OCEANOGRAPHIC STATIONS IN VICINITY OF DE LONG PIER, 1959

BIBLIOGRAPHY

- ASSUR, A. Composition of sea ice and its tensile strength, National Academy of Sciences National Research Council Publication 598, 271 p. December 1958.
- DOTSON, W. A. and McINROY, G. I. Project reports; Operation Polynya, 1958-1960, [n. p.] Unpublished.
- LAMB, H. Hydrodynamics. New York: Dover Publications. 730 p. 1945.
- LEE, O. S. and SIMPSON, L. S. A practical method of predicting sea ice formation and growth, U. S. Navy Hydrographic Office Technical Report No. 4, 27 p. September 1954.
- McGOUGH, R. J. Local environmental factors affecting ice formation in North Star Bugt, Greenland, U. S. Navy Hydrographic Office

 Technical Report No. 23, 40 p. January 1956.
- U. S. AIR FORCE daily weather records; Thule, Greenland, 1959, 1960. Unpublished.

APPENDIX I

MODEL OF THE POLYNYA CIRCULATORY SYSTEM

APPENDIX I

MODEL OF THE POLYNYA CIRCULATORY SYSTEM

Figure 7 illustrates streamlines generated by the motion of a solid sphere in an infinite mass of frictionless fluid. If we take the origin at the center of the sphere and the x axis in the direction of motion, the normal velocity (V_n) at the surface of the sphere is U cos θ , where U is the velocity of the center.

Lamb shows that the stream function due to the sphere is

$$\psi = -\frac{1}{2} \cup \frac{0^3}{r} \sin^2 \theta$$

where a is the radius of the sphere, r is the radius vector from the center to points on or exterior to the sphere (r^2a) , and θ is the angle between the radius vector and the x axis. At any given instant the trajectories of the fluid particles are tangent to the streamlines.

The total flux through a curved surface S is $\int_{S}V_{n}dS$. Arbitrarily making this value equal to $-2\pi\psi$, we have

$$-2\pi\psi = \int_{S} V_{n} dS.$$

In the case where S is the surface of the above sphere (r=a) substitution of 2 myds for dS yields

$$-2\pi\psi = \int_{S} V_{n} 2\pi y ds,$$

where ds, as shown in Figure 3, is an infinitesimal length of arc subtended by an infinitesimal angle, d θ , on the surface S. Substitution of U cos θ , a sin θ , and a $d\theta$ for V_n , y, and ds, respectively, and integrating between the limits 0 and θ yields

$$-\psi = Ua^2 \int_0^{\theta} \cos \theta \sin \theta d\theta.$$

Therefore,

$$\psi = -\frac{1}{2} \operatorname{Ua}^2 \sin^2 \theta.$$

Lamb shows that the stream function from an n pole is given by

$$\psi = K \frac{\partial^{n-1} \cos \theta}{\partial x^{n-1}}.$$

Since the sphere acts as a dipole,

$$\psi = K \frac{\partial \cos \theta}{\partial x} = \frac{K}{r} \sin^2 \theta$$
.

From the boundary value r=0.

$$\frac{K}{a}\sin^2\theta = -\frac{1}{2}Ua^2\sin^2\theta.$$

Therefore,

$$K = -\frac{1}{2}Ua^3$$

and for the general case; i. e., r≥0

$$\psi = -\frac{1}{2} U \frac{\sigma^3}{r} \sin^2 \theta.$$

A model of the polynya circulatory system can be formulated from the idealized case by adaptation of the principles to the bubbling system. Considering the motion of each ascending bubble to be directed along the positive-downward Z axis, there will be a streamline coincident with the Z axis and a vertical flow of water particles. Ascending motion, represented by a negative vertical velocity, creates divergence at the surface. Approximately midway between bubble streams is a region of convergence with consequent descending motion, clearly discernible in Figure 9.

Surface water beyond the pipe furthest from the pier flows outward to a distance determined by the horizontal momentum of the water particles.

The data show greater density in water brought to the surface by the bubble activity during the pre-freezeup and initial freezeup periods. Consequently, as the higher density surface water flowing outward from the divergence zone above pipe #4 suffers a gradual decrease in the horizontal component of the velocity vector, the vertical component increases. From the point where the horizontal component becomes zero, descending motion extends to depths where divergence directs a horizontal component toward the pier.

The proposed model of the polynya circulatory system is presented in Figure 10. This cross-sectional view shows the eastern ends of the polyethylene pipes; arrows indicate principal paths of the water particles.

The author is indebted to Dr. Lloyd Simpson of the Hydrographic Office for advice and assistance in application of hydrodynamic principles in development of this idealized model of the bubbling system.

FIGURE 7 STREAMLINES PRODUCED BY A SOLID SPHERE MOVING THROUGH AN INFINITE MASS OF FRICTIONLESS FLUID.

FIGURE 9 FLOW PATTERN AT THE POLYNYA SURFACE

FIGURE 10 VERTICAL CROSS SECTION SHOWING CIRCULATION PRODUCED BY BUBBLING SYSTEM IN NORTH STAR BUGT

APPENDIX II

OCEANOGRAPHIC PROGRAM - 1960

APPENDIX II

OCEANOGRAPHIC PROGRAM - 1960

A program of oceanographic data collection similar to that of 1959 was conducted during the fall of 1960. Observations of the formation and growth of ice on North Star Bugt were initiated on 6 October. On this date grease and pancake ice were observed in the shallow water area northeast of De Long pier. By 30 October most of the bay was covered with drifting floes of young ice approximately one inch thick. Strong easterly winds with gusts to 50 knots completely cleared the bay of ice on 3 November. Ice began to form again on 5 November, and a ten-tenths concentration of young ice was attained by 7 November with exception of an ice-free area adjacent to the pier.

Commencing 8 October and terminating 7 November, serial temperature and salinity data were obtained at 4 stations. The locations of Stations 1 and 2 concurred with the locations of Stations 1 and 2 for 1959 as shown in Figure 2. Station 3 was located approximately 100 reet north of Station 1, while Station 4 was located just off the shoreward end of the pier. The data are presented in Appendix VI. Surface temperature and salinity values for Station 1 are plotted in Figure 11.

Data were taken at Station 4 for comparison of the oceanographic structure outside the bubbled area with that of the water column at Station 1 during the early period of ice growth on the bay. Occupation of Station 4 necessitated breaking through the ice cover. Sharp rises in surface water temperature were observed on 21 and 24 October; easterly winds with speed maximums of 51 and 48 knots, respectively, were recorded on these dates. Although no data below the 10-meter level are available, it is evident, as indicated by the temperature and salinity data presented in Appendix VI, that the wind affected vertical mixing throughout North Star Bugt.

On 10 October, the surface temperature at Station 1 was -1.54° C; the salinity was 32.30 $^{\circ}$ /oo. On 15 October, the surface temperature at Station 2 was -1.77° C with grease ice forming in the area; surface temperature in the ice-free bubbled area was -1.68° C. Surface values of -1.81° C and 32.82 $^{\circ}$ /oo were recorded at Station 1 on 29 October; the bubbling system was not in operation, and a considerable amount of grease and slush ice was forming on the bay.

Activation of the bubbling system on the following day resulted in quick dispersal of all ice from the bubbled area. Light grease and slush ice being swept from divergent regions and transported beneath the surface in convergent regions confirmed one aspect of the proposed model of induced circulation. Surface temperature of -1.82° C within the bubbled area indicates supercooling, since the calculated freezing point was -1.79° C.

When compared to data obtained at Station 1, those obtained at Station 4 on 5, 6, and 7 November indicate that vertical transport of sensible heat was not a factor in maintenance of the ice-free area adjacent to the pier. The temperature beneath the ice outside the bubbled area was identical to that of the isothermal water column at Station 1.

Subsequent history of the polynya was similar to that of the previous winter.

FIGURE 11 SURFACE TEMPERATURE AND SALINITY AT STATION 1,8 OCTOBER-9 NOVEMBER 1960

APPENDIX III
OCEANOGRAPHIC DATA
INNER STATIONS, 1959

APPENDIX III - OCEANOGRAPHIC DATA (INNER STATIONS), 1959

CAST 4 LOCATION Station 1 DATE 13 TX 59 CMT 1445 DEPTH 10 M	Depth T S of Other S O	CAST 5 LOCATION Station 1* DATE 14 IX 59 GMT 1235 DEPTH 10 M	Depth T S ot M oc o/oo ot 0.0 1.11 31.12 24.95 2.0 1.13 31.13 24.95 5.0 1.13 31.20 25.01 7.5 1.13 31.25 25.03 9.5 1.44 31.25 25.03 9.5** 1.16 31.17 24.98	* Bubbling system had been in operation for about 5 minutes just prior to obtaining the water samples ** Sample obtained at 1350Z - bubbling system not in operation
CAST 1 LOCATION Station 1 DATE 9 IX 59 GMT 2100 DEPTH 9 M	Depth T S oft M oc 0/00 0.0 1.53 31.26 25.03 2.5 1.47 31.26 25.04 4.5 1.38 31.28 25.06 6.5 1.36 31.28 25.06 8.5 1.36 31.28 25.06	CAST 2 LOCATION Station 1 DATE 11 IX 59 GMT 2000 DEPTH 10 M	Depth T S of M oc o/oo of 0 1.42 31.36 25.12 2 1.37 31.36 25.12 5 1.37 31.36 25.12 7 1.37 31.36 25.12 10 1.35	CAST 3 LOCATION Station 1 DATE 12 IX 59 GMT 1250 DEPTH 10 M S

LOCATION Station 5 GMT 1640	S of the standard of the stand	S of the station 1C of the state of the stat	S o/co of 31.07 24.92 31.07 24.92 31.17 24.92 31.17 24.92 31.17 24.92 31.45 25.22
CAST 9 DATE 15 TX 59 DEPTH 10 M	Depth T M OC 0 1.04 3 1.04 6 0.99 8 0.96	CAST 10 DATE 15 IX 59 DEPTH 13.5 M Depth T M 0C 0 1.06 3 1.06 10 0.99 13 0.99	CAST 11 DATE 16 TX 59 DEPTH 10 M Depth c 0.0 0.76 2.5 0.78 5.0 1.02 7.5 0.97 9.5 0.96
LOCATION Station 2 CMC 1345	3.01 24.87 31.02 24.87 31.08 24.92 31.12 24.95 31.15 24.97	S of 24.82 30.99 24.85 31.12 24.95 31.95 25.63	No. Et
CAST 6 1 DATE 15 TX 59 DEPTH 19.5 M	Depth T M OC 0.0 0.97 2.5 0.98 9.5 1.08 13.5 1.09 17.5 1.09	CAST 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	th or 1.02 1.05 0.23

S ft	S o/co of o/co o/co o/co o/co o/co o/co o	NO.
Depth T M oc 0 0.66 5 0.72 17 0.75 27 0.37 37 0.22	CAST 16 DATE 18 IX 59 DEPTH 41 M DEPTH 0 C 0 0.564 9 0.72 20 0.72 30 0.38	18 18 19 19 19 19 19 19 19 19 19 19 19 19 19
25.04 25.05 25.12 25.23 25.29	Station 1C* 2107 ct 25.14 25.14 25.14	25.15 Station 1C 1237 \$\frac{\pi}{2}\$ 25.17 25.20 25.23
8 2 2 2 3 3 4 4 5 4 5 4 5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	LOCATION GAT S 0/00 31.33 31.33	31.35 LOCATION COO 31.24 31.41 31.45
Depth T M oc 0 0.79 3 0.78 5 0.87 8 0.81 12 0.80	CAST 13 59 DEPTH 13 M Depth 0C 0 0.75 3 0.75 5 0.76 8 0.74	H 18
	T S often of the control of the con	Oct Oct

* Bubbling system in operation

LOCATION Station 3 GPG 1235	8.38 2.39 2.49 25.39 25.39 2.46 25.39 2.46 26.28 26.28	LOCATION Station 4 GMT 1336 S O/oo of	33.58 32.95 32.47 32.64 36.03 36.03 36.03 36.03 36.03	S
CAST 21 IX 59 DEPTH 35 M	Depth T M OC O.35 10 0.55 24 0.32 34 0.08 35 0.07	CAST 22 DATE 21 IX 59 DEPTH 36 M Depth T	0 0.34 1.5 0.51 2.5 0.29 30 0.16 35 0.13	CAST 23 DATE 23 IX 59 DEPTH 14 M OC N OC 0 0.44 4 0.21 7 0.24 10 0.34 13 0.34
Station 1C 1205	25.27 25.28 25.29 25.29 25.34	Station 1C	25.33 25.33 25.65	Station 2 1145 • • • • • • • • • • • • • • • • • • •
2 2 4	्र इस्ट्रेस्ट्रेस्ट्रे इस्ट्रेस्ट्रेस्ट्रे	CONTION CONT.	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	LOCATION S. S. S
CAST 18 DATE 19 IX 59 DEPTH 13 M	Depth T OC N OC	CAST 19 DATE 20 IX 59 DEPTH 13 M Depth T	00.05 5 00.04 8 00.05 112 00.57	CAST 20 TX 59 DATE 21 TX 59 DEPTH 28 M Depth 0C 0 0.38 5 0.42 12 0.54 22 0.34 27 0.28

ω [⊢]	ł	ĺ				തില		1			021-	"					
LOCATION GAT	% %	# %	8 2 2 2	888 5.8		LOCATION GMT	% %	31.78	₩.79	3	LOCATION		% %	88.88 88.88	* * * * *	32,35	
24 TX 59	E O	•	\$ Q	0.0		25 IX 59		†T•0-	17.	1	3 3 3 S	121	h OC				
CAST DATE DEPTH	Depth M	0 5	38	8%	.	CAST DATE DEPTH	Depth M	0 "	ייס נ	3	CAST	DEPTH	Depth M	0.0	, , ,	ထီ	
) 10	1	1				~	l	1			m		!	ŀ			
Station 10	5	25.39	25.50	25.46		Station 2 1702	5	25,45		रा . %	Station		6"	25.39	8. 8. 8.	28°±7	24.00
LOCATION GMT	8/0	8. 8. 8.	3.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4	31.69		LOCATION	8 8/0	31.61 33.55	1 K.	፠፠ ፠፠	LOCATION	i	8 0/00	31.60	й К	まる	まれ
24 IX 29	1		150	0.08		24 IX 59	E-1 00	01.0-	3.0°	0°0	8 8	N 2th	E 0	-0.12	0 0 1	-0.13	-0.13
CAST DATE DEPTH	Depth	0	nvo	95	ì	CAST DATE DEPTH	Depth M	0	385	733	CAST	DEPTH	Depth	0		'ጽ.	14
																3	3

Station 1B

Station 4 1834 Station 1 1750

CAST DATE DEPTE	Depth M	0.0	,	8.5	CAST DATE 2 DEPTH	Depth	0	, w.	φ. Σ•Σ		DATE 3 DEPTH	Depth	0.0	9	9.5	
Station 2 1340	d t	25.69 25.83	.63	07	Station 4 1425		.75	25-99 25-99 26-28	2	Station 3	0.1		72	03 03	· 83	57
LOCATION Sta	, ∞/ _o				LOCATION Star	° ∞/°	20,0	1000	<u>.</u> 1	LOCATION Stat		3 0/00 at		%.45 %.45 %.403	32.63 26.	
CAST 30 DATE 28 IX 59 DEPTH 27 M	Depth T M O _C	54°0- 9	15 -0.33	26 -0.13	CAST 31 DATE 28 IX 59 DEPTH 34 M	Depth T M OC	45.0- 0		34 -0-11	CAST 32	^g lm	Depth T M O _C	去。0000	24.0- 40.0- 42.0-	% -0.17	
34	• •					• (l			Ο¢	- F	1 1				

V Station 1 1925	6	Station 1	25.70 25.70 25.71 25.71	17 17	25.85 25.85 25.85 25.85
LOCATION CHE	8	LOCATION GAT	3.95 31.97 31.97 31.98	LOCATION	% 32.15 32.15 32.15 32.15
CAST 33 DATE 28 IX 59 DEPTH 9 M	Depth T Oc	CAST 34 DATE 29 IX 59 DEPTH 9 M	Depth T M OC 0 -0.46 3.5 -0.46 6.5 -0.49 8.5 -0.50	CAST 35 DATE 30 IX 59 DEPTH 10 M	M OC 0.55 3.5 -0.55 6.5 -0.54 9.5 -0.54

Station 4 1326	25.96 25.97 25.99 26.16 26.31	Station 1* 1600 of 25.97 25.97 25.97 25.97 25.97	Station 1* 1300 ft 25.97 25.97 25.97 25.97
LOCATION GMT	% % % % % % % % % % % % % % % % % % %	Cocatton S O S S S S S S S S S S S	CATTION CHAPTON S 0/00 32.30 32.30
39 37 M	44446000000000000000000000000000000000	2 x 59 21 x 59 11 x 59 0 c c c c c c c c c c c c c c c c c c c	41 3 x 59 9.5 M 0.55 -0.55 -0.55
CAST DATE 2 DEPTH	Depth 18 36 36	CAST DATE DEPTH Depth M 0.0 3.5 7.5	CAST DATE DEPTH DEPTH M M 0.0 3.5 7.0
Station 1 1640	25.97 25.97 25.97 25.97 25.97	Station 2 1200 1200 25.98 25.99 25.99 25.99 26.01	Station 3 1250 25.96 25.96 25.99 26.16 26.31
LOCATION	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	LOCATION S O / 00 32.33 32.33 32.35	CCATTON GPT S 0/00 32.29 32.29 32.33 32.35
36 11 M	Depth T M OC 0.0 -0.33 3.5 -0.32 5.5 -0.32 8.5 -0.34 10.5 -0.34	37 x 59 27 M -0.42 -0.42 -0.42 -0.42 -0.42 -0.42	84 75 38 75 00 00 00 00 00 00 00 00 00 00 00 00 00
CAST DATE 1 DEPTH	Depth M 0.0 3.5 3.5 5.5 8.5 10.5	CAST 37 DATE 2 X 59 DEPTH 27 M Depth 0C 0 -0.40 6 -0.40 15 -0.40 22 -0.40 26 -0.40	CAST 38 DATE 2 X 59 DEPTH 38 M Depth 0 M 0 M 0 M 0 19 19 19 -0.0 33 -0.0

* Bubbling system in operation

LOCATION Station 4 GMT 1337	500 ft 32.26 25.95 32.27 25.96 32.29 25.97 32.49 26.12 32.60 26.21	S	S of 25.96 32.28 25.97 32.34 26.02
CAST 45 DATE 5 X 59 DEPTH 37 M	Depth T N Oc 0 -0.69 6 -0.70 20 -0.65 33 -0.46 37 -0.37	CAST 46 DATE 5 X 59 DEPTH 11 M Depth T M 0C 0.0 -0.69 3.5 -0.69 7.5 -0.69 10.5 -0.69	CAST 47 DATE 6 X 59 DEPTH 10.5 M Depth T M oc 0 -1.07 3 -0.85 7 -0.89
Station 1* 1355	93 93 97	10 m / 2 % % % % % % % % % % % % % % % % % %	100 3 12888 113
LOCATION GMT	S of the control of t	Corrion Station Graph 1152 S. 20 S. 21 S. 28 S	
	Depth T %C	CAST 43 DATE 5 X 59 DEPTH 27 M Depth 7 0 -0.73 6 -0.73 22 -0.68	CAST 44, DATE 5 X 59 M Depth 7 0 0 0 13 20 0 0 13 34 0 0 13 38 0 0 13

* Bubbling system in operation

Station 1	۵		Station 1 1400	g,	25.97 25.98 25.98 25.98
LOCATION	% %		LOCATION	8 0/0	% % % % % % % %
CAST 48 DATE 7 x 59 DEPTH 9.5 M	Depth T M O _C	0 3 -1.02 6 -1.02 9 -1.04		Depth T M	0.0 -1.24 3.5 -1.21 6.5 -1.21 8.5 -1.18

一丁 一日本大学学の

Station 4

LOCATION

σt	%%%%% %%%% %%%% %%%% %%	Station 3	J.	25.99 26.01	26.07 26.36 27.36 24.36	Station 1	16	
8/0 %	ጜጜጜጜጜ ፚ፞፞፞፞፞፞ዼፙዹ፞ኇ፟	LOCATTION CHT	°,0	፠፠ ፠፠	88. 168		S S S S S S S S S S S S S S S S S S S	
٥	-1.08 -1.03 -0.63 -0.53				8 0 0 0 0	6	th or	owww
Depth M	33886	CAST DATE DEPTH	Depth M	0 0	886	CAST	DEPTH Depth	ပြီ ကိုယ်ဆို

Station 2 1800

LOCATION

CAST 50 DATE 8 X 59 DEPTH 26 M

CAST DATE DEPTH	Dept. M	ه سر	33 63 EE	CAST DATE DEPTH	Dept	0	ଅ	₩ ₩	CAST DATE DEPTH	Dept	0 0	'nå	
Station 1* 1206	j,	26.04 26.03	%°03 %°03 %°03	Station 1*	1	26.08 26.08	26.08	%•%	1305	g.	26.02 26.02	26.02 26.16	26.16
z H	% %	፠፠ ፠፠	% & . .	LOCATION	s/o	21° &	24.58	32°43	LOCATION	S %/%	88 88	% % %	% %
CAST 54 DATE 10 X 59 DEPTH 10 M	Depth T M o _C	''		CAST 55 DATE 11 X 59 DEPTH 10 M	Depth T M oc	0.0 -0.90			CAST $\frac{56}{12 \text{ X} \frac{59}{19}}$ DEPTH $\frac{24 \text{ M}}{24 \text{ M}}$	Depth T M		15 -1.42 22 -0.69	

Station 4 1505

LOCATION

%%%%% \$%%%%

44666 88848

e S

Station 1 1820

LOCATION

% %

မုပ္ပ

86.05 86.05 86.24 86.24

፠፠፠፠፠ ፞ቝ፠፨ፚ፞፞፞፞፞፞

> 1.00 0.60 0.86 0.86

%/o

⊔೦

* Bubbling system in operation

Station 3

LOCATION

12 X 39 36 M

CATION Station 1* GAT 1710 S o/oo	COCATION Station 1 COCATION Station 1 S o/oo ot	CATION Station 1* CATION STATION STATION STATION 1* CATION STATION S
CAST 63 DATE 15 X 59 DEPTH 10 M Depth 0 M 0C 0 -1.54	CAST 64 DATE 17 X 59 DEPTH 10 M DEPTH 0 C M 0C M 0C 3.5 -1.67 3.5 -1.66 9.5 -1.58	CAST 65 DATE 18 X 59 DEPTH 11 M Depth 0 M 0C 0.0 -1.66 4.5 -1.64 7.5 -1.64
CAST 60 LOCATION Station 1* DATE 13 X 59 DEPTH 10 M Depth T S o/co ot 0.0 -1.09 3.5 -1.08 6.5 -1.06 9.5 -1.06	CAST 61 LOCATION Station 1D DATE 13 X 59 DEPTH 9.5 M DEPTH 0	CAST 62 LOCATION Station 1* DATE 14 X 59 GF 1315 DEPTH 10 M Depth T S o/oo ot 0.0 -1.25 3.5 -1.26 6.5 -1.17 9.5 -1.18

& * Bubbling system in operation

Station 1* 1430	σţ.					
LOCATION	S 00/0					
% × 01	T _O		-1.07			
CAST DATE 19 DEPTH	Bepth M	0.0	, n v	• • •	٠, د د د د د د د د د د د د د د د د د د د	10.74
40						

Station 1* 1650	σt				
LOCATION GAT	°‱/₀				
67 X 59 10.5 M	T OC	-1.76	-1-75	-1.(3	-T-
CAST DATE 20 DEPTH 1	Depth M	0-	= 0	0 9	2

* Bubbling system in operation

LOCATION Station 1* GPT 1500	\$ 0/00 	LOCATION Station 1* GMT 1710	\$ 00/00 et	LOCATION Station 2 GMT 1730	3 oo/o
CAST 68 DATE 21 X 59 DEPTH 9.5 M	Depth T oc N oc	CAST 69 DATE 18 IV 60 DEPTH 13 M	Depth T M oc 0 -1.83 6 -1.83 12 -1.83	CAST 70 DATE 26 IV 60 DEPTH	Depth T M oc 0 -1.82 12 -1.82 24 -1.82

^{**} Sample obtained at 1805z - bubbling system in operation

APPENDIX IV

OCEANOGRAPHIC DATA

OUTER STATIONS, 1959

APPENDIX IV - OCEANOGRAPHIC DATA (OUTER STATIONS), 1959

CAST 3 LOCATION Station 8 DATE 15 IX 59 GPT 1900 DEPTH 16 M		1.09 31.14		0.01				CAST 4 LOCATION Station 9 DATE 15 IX 59 DEPTH 16 M	Depth T S of	1.01 31.01	1.01 31.13	10 1.11 34.51 2.75					
GMT 1600	9.	İ			25.61			CCATTON Station 7	e c	24.86			4 V V V V V V V V V V V V V V V V V V V			1; 8,7	
CAST 1 LOCATION DATE 15 IX 59 GPG DEPTH 41 H	म ८०	m,	10 1.08 31.10	15 1.09 31.4		20 0° 45 30° M		CAST 2 LOCA' DATE 15 IX 59 DEPTH 35 M	Depth T S	1	5 1.03 31.2	10 1.07 31.42	15 0.93 31.7	20 0.76 37.0 20 0.76	25 0.64 32.2	30 OF	35 0.29 32.0

CAST 21 X 59 DEPTH 17 M	Depth T M OC	0	10					CAST 8 DATE 21 IX 59	DEPTH I	Depth T M O _C	0 0.29		A. O.				
a 6								7 ax					•	014	~	m	_
Station 6	36	25.35	25.55 25.65 65.65	25.83	25.91 25.91	8	26.18	Station 7		5	25.39	25.€	25.20	25.98	25.98	8,13	88.17
LOCATION	% %	8.8 R.	4 % 4 %	32.17	8 6 8 8	18	8,8	LOCATION GAR		\$ %	31.63	3.68 E	¥•7	8.8	32.45	ż Ż	8.3
21 IX 59	မ မွ	24.0 0	0.53	0.53	4.0	7	ন ্	21 TK 59	33 K	မှ	24°0	21°0	64.0	₹.°	0.39	0.25	0.23
CAST DATE 2	Depth M	0	, 51	15	8 %	3 8	38	CAST DATE 2	DEPTH	Depth	0	'n	ឧ	15	8	25	ይ

LOCATION Station 9
GMT 1400

LOCATION Station 8

CAST 11 DATE 28 IX 59 DEPTH 17 M	Depth T	9	10 -0.22				CAST 12 DATE 28 IX 59 DEPTH 17 M	Depth T M OC	'	5 -0.31	10 -0.32				
Station 6 1100	dt.	25.66 25.74	25.88	25.97	26.10	26.35 26.35	Station 7 1200	5	25.71	25.79	25.95	%°5%	2 6 •02	76°56	26.16
LOCATION	% %	8.8 8.8	81.8 82.8	(유)	% 3,	% K.	LOCATION CHE	∞/ _o	32.97	8 8	35°58	22.37	32.37	8 8 8	ż. R
CAST 9 DATE 28 IX 59 DEPTH 38 M	Depth T M O _C	0 -0.48 5 -0.46				35 -0.19	CAST 10 DATE 28 TX 59 DEPTH 33 M	Depth T M oc	6 1 *0- 0	5 -0-43			20 -0.27		

LOCATION Station 9

25.88 25.93 25.93

8.38.38 33.38.38 33.38.38

LOCATION Station 8

25.53 25.65 25.94 26.00

5

Station 8	ot	25.94 25.98 25.98 25.98	Station 9	σţ	25.96 25.96	25. 25. 8
LOCATION	% 8	%%%% %%%%	LOCATION GREE	% %		8 8 8 8
15 X 59 16 M	4 S	-0.62 -0.61 -0.55 -0.57	16 20 M	t o	79.0- -0.65	9.0 9.0
CAST DATE DEPTH	Depth M	1500	CAST DATE DEPTH	Depth ×	0 10	15

Station 7

LOCATION

88888888 \$8888888

83382B

Depth M

Depth M

Station 6

LOCATION GPC

ଭାଲା			orled)		
LOCATION	% S	XXXXXX XX4333	LOCATION	∞/ ₀	88 8.
CAST 19 DATE 12 X 59 DEPTH 27 M	1	0 5 10 10 11 10 11 10 10 10 10 10 10 10 10	CAST 20 DATE 12 X 59 DEPTH 45 M		20 -1.16 10 -1.13 15 -0.94 20 -0.94 35 -0.79 35 -0.79
٨	ŀ	1	∞ا	ı	
Station 9	6	४४ ४० ४० ४०	Station 8 1400	5	86.9 86.9 86.11 86.15
LOCATION	87	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	LOCATION	80/0	፟ጜ፟ጜጜጜ ፞፠፞፞፞፞፞፠ዹ፞፞፞፞፞፞፞፞ጜ
17 12 x 59 16 x	E+	00 -1-17 -1-18 -1-15 -1-10	12 x 50 x 81 x 81		-1.16 -0.94 -0.84
CAST DATE 1	Depth	Z 0 0 0 Z	CAST DATE 1	Depth	15 15

Station 6 1600

Station 7

APPENDIX V SYNOPTIC METEOROLOGICAL OBSERVATIONS THULE AIR BASE - 1959

APPENDIX V - SYNOPTIC METEOROLOGICAL OBSERVATIONS, 1959

	ě		omothomo	Wind	2	Date	Time	Air Temperature	erature	Wind	72
Late	(local)	AIF TEMP Dry (OF)	persture Wet (OF)	Speed (knots)	Dir. (Or)		(1001)	(0F)	Wet (OF)	Speed (knots)	Or.
September	i.					September	ų				
н	8558 11 2528 12 25	8 0 4 8 8 0 6 8	28.0 28.0 29.9 31.9	4 9 H 9 1	ene e S S S S S S	. 	000 000 11 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	88.5 35.35 7.56	29.1 29.0 39.3 31.6	Calm 2 3 Calm	គ្គ
	1459 1755 2055 2355	39.3 37.3 35.4	* % % # 0. 6. 1. 6.	15 10 14 8	SE S		1459 1755 2056 2355	%%%% %%%% %%% %	888. 84.0 84.1	Calm 5 Calm 4	WNW
α	0258 0555 0856 1156	33.4 33.1 36.5	#88## 4.00.6.	Calm 6	NE W WSW	ľ.	0255 0555 0856 1156	28.1 29.8 32.1	25.5 27.0 26.9 28.0	こようこ	២២២២
	1459 1755 2055 2355	% % % % % % % % % % % % % % % % % % %	4888 6008	1080	NIW W NE ESE		1459 1755 2055 2355	¥¥%% 9.6.2.6	29.8 29.0 29.1 24.7	Calm Salm	A W
m	0257 0555 0856 1156	% % % % % % % % % % % %	25.0 24.1 27.1 29.7	88 01 11	S S S S S S S S S S S S S S S S S S S	9	0257 0558 1158	28.0 27.1 29.4 32.1	26.1 24.9 25.8 28.1	4450	ESE ESE ESS
	1456 1758 2058 2356	% % % % % % % %	29.7 29.2 29.2 29.2	19 14 12 Calm	80 SO		1458 1756 2059 2356	4884 6066	28.1 28.1 27.8 28.1	16 10 13 13	SSE ESE SE ESE

APPENDIX V - SYNOPTIC METEOROLOGICAL OBSERVATIONS, 1959

9.87	Time (local)	Air Temp Dry (°F)	Wet (°F)	Wind Speed [(knots)	nd Dir. (Or)	Date	Time (local)	Air Tem Dry (°F)	Air Temperature Dry Wet (°F) (°F)	Wind Speed] (knots) (6. 19. 19.
September						September	<u>.</u>				
-	0257 0555 0856 1156	84488 64.60	8888 6.6.6.6	15 10 10	SE ESE SSE	10	0255 0555 0856 1155	29.69 30.93 36.44	26.5 26.1 27.1 29.1	4444	E ENE
	1456 1759 2055 2355	935.8 86.25.8 86.2	30°8 30°8 21°9 24°1	17 4 Calm	SSE		1456 1755 2055 2355	4.8.6.4 8.8.4.8 8.8.4.4.8	30°2 30°5 30°5 30°5	Calm	SSE
ω	0255 0555 0856 1158	25.42 20.53 33.44 33.44	22.4 20.8 23.7 27.8	4 6 1 Calm	ene e e	я	2838 2838 2888	8.44 8.6.6	29.4 33.0 33.0 33.0	11 Calm 8 15	NG NG
	1456 1755 2055 2355	28 88 4.6.4.6.	29.6 31.4 28.7 25.8	m a mvo	NSM MSM E		1457 1755 2055 2355	35.4° 35.4° 37.4°	33.1 32.8 32.1 29.1	Calm 4	NE WSW ENE
6	0257 0555 0856 1156	25.9 25.4 29.6 37.1	22.9 25.3 30.9	novoœ	ខា ខា ខា ខា ខា ខា ខា ខា ខា ខា ខា ខា ខា ខ	12	0255 0555 0856 1156	28.1 28.9 33.7 36.1	25.0 20.0 20.0 20.0 1.0 1.0	4らてる.	स्य स स्य स स
	1456 1756 2058 2357	4.6.4.8 4.6.6.6.6	20.00 20.00	Calm 33	WSW ENE		1456 1758 2056 2356	34.1 37.1 36.0	33.2 33.2 33.9	3 10 6 Calm	NE ESE E

APPENDIX V - SYNOPIIC METEOROLOGICAL OBSERVATIONS, 1959

Date	Time	Air Temperature	erature	Wind	nd	Date	Time	Air Tem	Air Temperature	Wind	þ
	(local)	(oF)	Wet (OF)	Speed (knots)	Dir. (or)		(local)	Dry (oF)	Wet (oF)	Speed (knots)	Off.
September	ı	,				September	H				
13	2888 2888 18888	8.5.4. 8.3.4. 9.4.6.4.	8888 00.00 00.00	8 Calm 3	ene N E	16	0255 0555 1156	25.0 23.0 32.0 32.0 32.0 32.0 32.0	22.0 22.0 21.0 27.1	8 8 7 Calm	es e e e
	1456 1755 2055 2355	36.9 35.4 33.1	8448 8448 7.08	11 7 3	មា ២២២២		1456 1755 2055 2355	8,4,0,0, 4,6,4, 6,4,7,	28.6 28.5 26.0 22.4	2 6 3	SSE
17	0255 0559 0858 1156	88888 8.00 9.00 1.00	88.05 20.05 31.11	Calm Calm 8	SSE	17	0255 0555 0856 1156	29.28 30.38 34.55	26.8 27.4 30.1 28.9	* * * * * * * * * * * * * * * * * * *	SE BSE SE ESE
	1456 1755 2055 2355	8.4.4.0. 8.4.4.0.	31.9 30.5 29.6 29.1	01 00 8 9	ESE SE ENE W		1457 1755 2055 2355	8.48 8.5.5 8.5.5	29°8 28°8°8 28°6	76 4 2	e e e
15	0255 0555 0856 1156	27.9 28.4 34.8 31.2	29.6 26.3 26.3 28.8 28.2	Galar Fundamental	ese ese	18	0259 0555 0859 1159	29.6 29.6 30.6	28.6 29.0 28.4 29.3	Calm Calm Calm	
	1456 1757 2058 2359	33.1 33.8 30.2 29.1	30.1 31.1 26.7 25.0	Calm Calm	N SSE		1459 1757 2058 2358	30° 6 4.08° 8 8.88° 8 8.88° 8	29.1 29.1 27.9 28.2	Calm Calm Calm	Z

APPENDIX V - SYNOPTIC METEOROLOGICAL OBSERVATIONS, 1959

Date	Time	Air Tem	perature	Wind	멸	Date	Time	Air Tem	Air Temperature	Wind	Pg.
	(10cal)	Dry Wet (OF) (OF)	Wet (OF)	Speed (knots)	Otr. (or)		(local)	(°F)	Wet (OF)	Speed (knots)	9t.
September	1.					September	ır				
6	0255	28.1	9.7%	(g)		8	2520	ר. היני	90%	0	S.
ì	05.50	30.1	7	م	7		0555	70.76	25.6	<u>«</u>	3
) (2)	3 8	0,00	ع ر	5		000 000 000 000 000 000 000 000 000 00	25.1	2,6	v	5 5
	12 12 13 14 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	28.6	80.0	4	M		12 12 13 13 14 14 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	23.4	16.13 1.03	'n	3 FS
	31.56	8	5	ſ	£		9.7	6	8	<u>د</u>	į
	1470	0.60	K-12	٧٦.	ESE		ξ. Υ.	83.0	21.0	= -	ASA
	1755	27.9	27.5	4	ESE		1756	23.7	6•ਹ	. ‡	3
	2055	21.5	19.9	9	Ħ		2055	23.0	21.8	9	7
	2355	22.1	20.7	9	E		2355	23.4	25.0	4	WINN
8	0255	23.1	ਨ ਾ ਹ	75	NE	23	0255	24.0	22.4	ω	3
	0555	20.9	19.1	٧	M	ı	0555	25.1	23.2	9	7
	88 87	25.4	23.8	4	闰		98.26	23.4	ਨ• ਹ	4	ENE
	11%	25.4	23•3	m	M		11.59	23.8	21.6	4	RE
	אַיּוֹנ	9 60	, אַכ	r	Ç Ç		7	6	6	•	i
	21.	200		n (302		7. T.	23.5	25.5	۰ ه	MS
	250	, v.	, L	Calm			1739	23.4	22.4	#	3
	CCOS	0.7	0°CN	Calm			2055	23.4	25.0	m	ANA
	2355	% %	24.2	Calm			2355	23.6	22.1	. =	3
ส	0257	18.7	17.6	9	Ħ	42	0255	24.0	22.5	4	MAM
	0555	21.6	4.0g	9	闰		0559	23.8	22.4	~	
	0855	15.4	14.2	ς.	ENE		0859	21.3	19.9	'n	ESE
	1128	ਲ ਾ 3	19.6	ار	Ħ		1159	21.8	80.3	6	(44
	1455	5	5	4	β		20.4	8	•	,	ı
	17/2	8	200	1 4	4 6		1756	9 8 8	V. V.	0 -	54 E
	1 8 1 8	- X	9,7	۲ (4 F		270	0.0	17.0	‡ (SSE
	23.50	15.6	14.9	^	4 (¥		8 % 8 %) (T.2.	۰,	ESE
			`	-	1		2	7	, ,	2	909

APPENDIX V - SYNOPTIC METEOROLOGICAL OBSERVATIONS, 1959

		17.4	9414	Ufnd	7	Date	F F	Air Temperature	erature	Wind	Jd.
Date	(local)	Air Temperature Dry Wet (OF) (OF)	Wet (OF)	Speed (knots)	Dir. (or)	3	(local)	Dry (OF)	Wet (OF)	Speed (knots)	Otr.
September	er					September	i,				
1	1	,	(8	ß	ď	0250	23.4	4.00	ľ	SSE
25	0255	0.7	V	8 8	4 6	Q	0550	200	היונה	νœ	C.
	0557 0557	7. J.Z.	0 t	8 :	1 G		000 000 000 000 000	23.1	9	o Qu	SSE
	1 8 2 7 8	27.9	25.3	11	ESE		11.59	22.2	7.12	9	SSW
	20.66	ď	7	Ç	1 00		11458	900	19.4	ω	SE
	1470	† - · · · ·	- 60	2 ;	3 6		1755	0.01	18.0	01	C.
	1755	7.0	N .	٦ -	100 100 100 100 100 100 100 100 100 100		2055	10.1	17.9	9	FSF
	2055 2255	25.7	23.64	<u>+</u> «	ਹ (ਸ ਨੂੰ ਹ		2355	23.9	22.7	_	SE
	6377	-))	1		1101	\ \ !	•	•	
X	7055	8-40	23.0	-7	Œ	53	0259	26.0	7,42	4	NNE
Q	0555	0	200	· rc	E	\	0559	26.0	7,42	80	ESE
	200 200 200 200 200 200 200 200 200 200	17.6	16.7	νω	E		0857	25.4	5 † •8	Ŋ	SSE
	128	22.9	20.9	9	Þ		1159	24.9	23.1	ω	SSE
							•	•	,	•	
	1456	23.3	21.4	5	ESE		1459	24.2	o. දැ	Calm	
	1755	25.25	20.0	2	ESE		1758	25.9	25.0	N.	SSW
	11.70 20.55	16.3	15.0	, v	[2]		2055	30.0	27.8	14	ESE
	2355	14.3	13.4	Š	回		2355	29.0	26.8	16	ম
				,		,	!		0	V	Ę
27	0255	13.1	12.3	9	터	8	0255	30.1	20 00 00 00	ه د	H H
	0557	13.4	12.5	Ŋ	ĒΝ		0557	29.1	700 1000 1000 1000 1000 1000 1000 1000	7 F	a p
	98.56	13.9	12.8	9	闰		0829	3. E	29•7	01	E
	11,56	20-3	19.4	N	NNW		1159	33•4	#• #	23	Œ
	, , ,	7	,	1			סקין נ	22 h	25	æ	FWE
	χ _† Τ	7.4.Z	77.7		į		אייר	ו אַכּ ר אַכ	22.6	٩	<u> </u>
	1759	8 8 9 9	ਰ ਹ	να	χ.		70,000	22.4 4.25.4	ر د د) (j (c
	202	0 C	7.5	n ر	<u>မ</u> လ		2350	, 12°	, % 	77.	10. 10.
	2322	24.3	×3•0	n	30		6373	1	}	j	1

APPENDIX V - SYNOPTIC METEOROLOGICAL OBSERVATIONS, 1959

ı	Time	Air Tem	mperature	Wind	od .	Date	Time	Air Temperature	erature	Wind	Ę.
こ	(local)	Ory (OF)	Wet (OF)	Speed (knots)	Dir. (OT)		(local)	Dry (°F)	Wet (OF)	Speed (knots)	Or)
l						October					
	0255 0555 0856 1158	4.08.48 4.08.48 4.09.48	8 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	23 15 12	ESE NE B	ⅎ	0255 0555 0856 1157	30.0 30.3 25.1 27.8	28.5 28.2 23.5 26.0	66 54 Calm	ENE ENE
	1456 1755 2055 2355	%%%% %%%% %%% %% %% % % % % % % % % %	8448 0000	ထူထထ <i>ာ</i>	គម 🔉 គ		1458 1755 2056 2355	31.1 26.8 19.1 18.0	29.3 25.7 18.0 16.8	ひたたり	SW ENE ENE
	0255 0555 0859 1159	30.1 25.6 23.3 24.2	23.5 23.5 21.5 21.9	0000	ESE ENE ENE	2	0255 0555 0856 1156	17.0 19.8 19.9 24.6	16.0 18.0 18.4 22.3	ω <i>ο</i> νω ι ν	ក ក្រុក ក្រុក
	1456 1755 2055 2355	27.6 27.0 25.5 24.2	25.1 24.5 23.8 22.0	Calm 8 8 9	ल स ल		1456 1755 2053 2355	23.4 22.6 17.3 16.4	21.4 20.3 16.0 15.4	エク なた	E ENE
	0257 0555 0859 1158	25.8 24.2 25.8	24.2 27.4 22.3 23.7	FW W-4	ल ल ल हा ल	9	0255 0555 0856 1155	15.0 15.0 16.8 20.9	14.1 13.9 15.3 18.7	~~~~	ENE ENE ENE
	1458 1756 2057 2356	26.4 33.1 32.0	24.8 30.0 30.0 31.1	ខង្ខង	ENE SE ESE SSE		1457 1756 2056 2356	23.1 18.2 13.2 15.1	20.8 16.6 12.1 13.8	9998	医医窝窝

APPENDIX V - SYNOPTIC METEOROLOGICAL OBSERVATIONS, 1959

Date	Tine	Air Temperature	erature	Wind	pg	Date	Tine	Air Temperature	erature	Wind	١
	(local)	Dry (^O F)	Wet (^O F)	Speed (knots)	Dir. (OT)		(local)	Dry (oF)	Wet (OF)	Speed (knots)	Ofr. (%)
October						October					
7	0255 0555 0857 1157	15.4 12.6 15.9 18.1	14.0 11.4 14.6 16.3	ων <i>≠</i> α	e Ewe Ewe	10	0276 0576 1176 1176	21.9 16.5 19.2 19.3	19.5 14.2 18.1 16.2	Calm t 7	ENE E ENE
	1456 1755 2055 2355	18.7 16.0 13.8 15.6	17.1 15.1 12.9 14.4	<i>wo</i> ww	ene ene ene E		1456 1755 2055 2355	20.09 4.09 4.09 20.09 20.09	19.4 21.3 21.3 21.2	Calm Calm Calm	闰
ω	0255 0555 0856 1156	16.8 28.8 31.1	15.6 26.7 29.1 29.2	% & & &	SSE NE SE	#	0257 0557 0859 1159	23.0 24.0 24.0 4.4 6.45	23.55 23.55 23.35 23.35 23.35 23.35 23.35 23.35 23.35 23.35 23.55 25 25 25 25 25 25 25 25 25 25 25 25 2	Calm Calm Calm	z
	1455 1755 2058 2355	33.4 33.2 34.2 33.5	32.00 32.00 33.00 34.00	10 15 Calm 4	চাচা চা		1459 1757 2055 2355	23.4 23.8 20.0 20.0	21.8 22.0 18.9 19.1	t 8 4 Calm	SE ENE
6	0257 0556 0859 1158	30.9 27.6 24.9	28.8 26.5 24.4 23.3	8 8 Calm Calm	as asa asa	12	0256 0556 0859 1159	21.3 21.3 19.6 19.7	20.7 20.7 18.3 18.6	46-76	MSM MSM M
	1455 1758 2056 2358	25.9 25.0 25.1 24.2	24.1 24.1 24.0 22.8	⊐೦೦⊐	WIW WIW WIW		1459 1756 2056 2356	16.9 17.8 18.3 17.8	15.6 16.9 16.9	t Calm 8	ENE N WNW

APPENDIX V - SYNOPTIC METEOROLOGICAL OBSERVATIONS, 1959

Date	Time	Air Tem	Air Temperature	Wind	pa	Date	Time	Air Tem	Air Temperature	Wind	
	(local)	07. (§.)	Wet (OF)	Speed (knots)	Off.		(local)	Dry (OF)	Wet (OF)	Speed (knots)	Dir. (OT)
October						October					
13	82.28	16.3	14.9	Ø	MNM	91	0258	7.8	7.2	7	ESE
	0558	15.0	13.9	5	Œ		0557	8.0	7.4	۰,	Œ
	88.75 75.	15.7	14.2	4	ESE		0859	6.7	6.1	ω	H
	25	15.4	14.0	N	ENE		1159	2.7	2.2	6	M
	1459	15.4	14.6	ч	Θ		1459	8,2	7.5	9	E
	1755	15.1	14.6	۵v	(4)		1756	13.2	15.1	T,	ENE
	2355	-1.6	0 0 0	စ ထ	(2)		2057 23.56	14.9	13.4 1.	ω ω	떠ㅌ
,			1	•	ı					•	1
1 †	8256 175	u,	1.2	9 :	ENE	17	0255	0.2	-0-1	4 '	ENE
	0,25	0		읔 :			0555	0.0	0.5	9	(se)
	88 1	-3.2	-1-8	នដ	M (M)		08% 1157	-0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	7.2	w ι -	a G
	,	. ,	. (,				?	-	•	}
	25 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	2,1	1.5	ឧ	E		1459	-2.2	-3.3	~	恒
	1755	0 -	0.1	91	FEI F		1755	-1.7	-2-1	ထ ၀	MI
	2355	-3.7	1 7	4 2	व ध्य		2355	, - 	V 7	οσ	z) (z
!	,	-	-	,					•	`	1
15	0256	r: -	9.4	67	Ed b	18	0255	-2.6	-3.0	2	ENE
	2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00	17.9	200	0 0	a t		0 5 5 7	o 0	-	90	凹口
	128	6-4-	-5.3	10,	a Ea		8.8 11 8	0 m	7.4 4.8	01	হা ল
	9571	-3.6	-h_1	σ	TO T		אפיור	-	7 '	5	£
	1756	6.0	-6.3	νœ	<u> </u>		1755	1 7	9	3 2	च स्ट
	20.76 20.76	-7-1	-7-3	ω	M		2056	-2.7	-3.5	12) Ed
	2356	-5.9	-6.2	10	Έl		2355	-1.7	-2-3	10	(된

APPENDIX V - SYNOPTIC METEOROLOGICAL OBSERVATIONS, 1959

od Dir.		医医节节	ENE E ENE	មកគេ	SSW	SSE SSE SE SSE	SSE E ENE E
Wind Speed (knots)		ರಾದು ರುದು	40 WW	ณ ณ ๛๛	Calm 3	8 8 7	7 7 7 7
erature Wet (OF)		๛๛๛ ๛๛๛๛	2.1 1.9 7.6 10.2	10.3 12.3 12.1 13.7	15.1 17.3 21.8 20.5	20.0 19.4 18.3 16.6	15.8 13.1 4.5 11.2
Air Temperature Dry Wet (OF) (OF)			0.00 0.00 4.11	13.6	16.0 18.2 22.5 21.4	21.6 20.9 19.7 17.6	16.9 14.2 6.9 11.8
Time (local)		0257 0558 0858 1156	1456 1755 2055 2355	0255 0555 0856 1155	1455 1755 2057 2355	0256 0555 0856 1158	1459 1756 2056 2356
Date	October	83		23		4 2	
nd Dir.		ENE E WNW	ល ក គ គ	ENE ENE ENE	១៩២១ ១៩២១	ENE ENE ENE	医医面皮
Wind Speed		Calm 5	Calm 6 4 4	00 th	8 9 5 7	7 9 11 8	6 4 10
Temperature Wet		5.3 10.9 12.8 13.0	8.1 9.7 10.0 11.3	10.7 11.0 8.1 3.1	7.6	-12.3 -9.9 -11.3 -6.8	44 E. E.
Air Temp Dry		6.0 12.3 13.8 14.1	11.0 10.8 11.2	1.50 0.51 0.64 4.4	8.1.7.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	-12.1 -9.6 -11.0 -6.4	-3.2 -3.2
Time (local)		0257 0555 0856 1156	1456 1755 2055 2355	0255 0555 0857 1158	1456 1755 2055 2355	0255 0555 0855 1156	1456 1756 2056 2356
Date	October	19		50		ದ	

APPENDIX V - SYNOPTIC METEOROLOGICAL OBSERVATIONS, 1959

Jeto	and He	Atr Tam	emine returne	Wind	2	1949	H re	Atr Rem	Air Compane	Lift and	1
	(local)	יילכי	Wet (OF)	Speed (knots)	Dir. (or)		(local)	Dry OF)	Wet (OF)	Speed (knots)	Dir. (%)
October						October					
25	01.58	1.0	↑ •0	4	ENE	28	0157	7,	4.7	4	2000
	8	-0-2	6.0-	4	Œ	}	ر ارخ ارخ	0	- t	÷ .=	9 6
	0756	0.1	0	ω	P		292		• 0	† (ea p
	1056	1° 1	2.4	6	ENE		1029	2.6	ห กูญ	u m	rd bri
							· ·	•))
	1357	-1.5	-2-7	, 10	M		1358	5.3	4.7	4	RME
	1658	-5.2	- 5.6	Φ (딸		16%	2.0	9.4	· m) (H
	1956	ه س د	۳. ا	ω.	띹		1959	6.9	6.1	m	ㅂ
	83	0.9	4°.3	‡	터		2255	9. 2	6.5	9	œ
98	0155	2.8	1.6	9	Θ	53	0155	0.7	0.3	10	ESE
	0455	6-1-	ထု	9	EI	•	\$22	8.0	7:1	6	ESE ESE
	07.56	-1.6	-2.7	01	E		92,20	11.1	10.0	Calm	}
	10%	9.5	۷•۲	13	SSE		1056	9.5	8.2	က	餌
	1359	13.9	12.8	7	AS.		1357	7	<u></u>	α	β
	1655	1.11	11.0	. #	SE		-659L	7.7	9	ع د	4
	1955	12.7	9.11	ထ	SS		1955	7		Calm	
	2255	14.2	13.1	4	ESE		2255	-2.6	-3.1	6	Ħ
12	0155	11.6	11.11	7	SE	000	0155	9-8-	0-6-	œ	þ
	0455	14.0	12.9	Calm		1	\$ 22	9.8	-9.1	0	1 64
	0755	12.9	12.1	Calm			04.29	-8-3	ထု	~	ı EA
	1055	10.6	10.3	a	ш		1057	-6.2	6-9-	7	ENE
	1358	10.9	10.2	Calm			1350	0.4	α,	E Co	
	1656	8.9	≠ 8	ന.	M		1657	30	2.5	4	Œ
	1959	7. 5	6.9	⇉,	ENE		1957	0.1	-0-7	9	티
	2257	2.0	2.5	‡	M		2258	1.9	1.6	Calm	

APPENDIX V - SYNOPTIC METEOROLOGICAL OBSERVATIONS, 1959

ind	Speed Dir. (knots)		स इ.स.	ESE	e es
3	Speed (knots)		2	- ထ ထ	98
erature	Wet (OF)		490	4 4	5.1 2.3
Air Temperature	Dry Wet (°F) (°F)		0.0	5.50	5.9 3.1
Pine	(local)		01.57 64.57	222	1356 1656
Date		ctober	젊		

APPENDIX VI
OCEANOGRAPHIC DATA - 1960

OCEANOGRAPHIC DATA, 1960

•			
Station 1	26.02 26.02 26.02 26.02	Station 1 1520 f t 26.02	Station 3 2000 • • 25.97 26.20
LOCATION CHE	% % % % % % % % % % % % % % % % % % %	COCATION S O/OO 32.31	LOCATION S 0/00 32.25 32.25
11 × 60 H	Depth T M oc 0 -1.55 2 -1.55 6 -1.55 9 -1.55	14 X 60 14 X 60 15 C C C C C C C C C C C C C C C C C C C	AST 6 ATE 14 X 60 BPTH 15 M Depth oc N oc N oc 1.64 5 -1.54 10 -1.54 15 -0.86
CAST DATE DEPTH		CAST DEPTH DEPTH M	CAST DEPTH DEPTH N
al	1 1	-l l	-l
N Station 1 1932	ا	Station 1 1723	# Station
LOCATION COT	800	LOCATION GAT	CONTION CONTION S 0/00 1 32-30 1 32-34
8 × 60	oth oc -1.28	AST 2	AST 3 60 MATE 10 X 60 MEPTH 10 M 0C MEPTH 0C M 10 10 10 10 10 10 10 10 10 10 10 10 10
CAST DATE DEPTH	Depth	CAST DATE DEPTH M	CAST DATE DEPTH DEPTH N M

Station 1* 2055	g.	26.19	Station 1 1440	et.	फ ़ य	26.22 26.22 26.22	6+ + 40 ×	1445	ď,	8.8 8.8	26.29
LOCATION CAF	ς ο/ο	х х	LOCATION GRE	°/0	32.55 32.55	88 8	TOTAL STATE	GE	% S	₹.Ç	32.67
15 X 60		-1.68	11 X 60 9.5 M	မ ပ	-1.52	71.1-	•	18 X 60 9.5 M	ь Ос	3.1. 3.1.	
CAST DATE DEPTH	Depth M	0	CAST DATE DEPTH	Depth M	0 m	0 00		CAST DATE DEPTH	Depth M	0 ~	9 6.0
Station 1* 2100	dr.		Station 1*		25.99	26.12 26.12 26.14		2000	=		%.12 %.35
LOCATION Station 1* COL 2100	S o/oo	•	LOCATION Station 1* COT 1510	\$ 00/0		工作	Š	Corrion Station 2	\$ 00/0		22.47 26.12 22.76 26.33
14 X 60 GPT		-1.55 32.35	X 60 COATION GRE	Depth T S ft	-1.58 32.28 -1.56 32.28			_		F 8	

* Bubbling system in operation

LOCATION Station 1	3, 00/o		33.09 26.63 33.11 26.65	NO.	, s	32.72 26.33 32.83 26.42 32.83 26.42		LOCATION Station 1 CMC 1817	\$ 00/0	32.75 26.37 32.86 26.45 32.86 26.45 32.86 26.45
CAST 16 DATE 21 X 60 DEPTH 10 M	Depth T M O _C	76°0-	10 0.98	CAST 17 DATE 22 X 60 DEPTH 9.5 M	Depth T M	0.0 -1.26 3.5 -1.20	9.5 -1.14	CAST 18 DATE 23 X 60 DEPTH 11 M	Depth T	0 -1.57 4 -1.42 8 -1.42 11 -1.42
K Station 1	ą,	26.14	& % & . %	M Station 1* <u>1525</u>	Q.f.	26.37 26.37	26.37	# Station 1	1	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
LOCATION	∞/ _o S	94°88 83°88	88. 88. 88.	LOCATION	% S	32-75	24. 24.	LOCATION	°, °/∞	2000 8000 4000 2000 2000 2000
182	Depth T	0 6	10 -1-	CAST 14 DATE 20 X 60 DEPTH 10 M	Depth T	0 w 8	10 -1-	CAST 15 DATE 20 X 60 DEPTH 9.5 M	Depth T	0.0 -1.6 2.5 -1.6 7.5 -0.8 9.5 -0.7

* Bubbling system in operation

LOCATION Station 1* GRE 1815	8 0/00 22.00 32.01 32.01 26.02 32.01 26.02	15t	% % % % % % % % % % % % % % % % % % %	S
CAST 22 LO DATE 26 X 60 DRPTH 9.5 N	Mepth oc 0.0 -1.68 3 6.5 -1.68 3 9.5 -1.68 3		2 1.64 1.65 1.65	CAST 24 LO DATE 28 X 60 DEPTH 9 M Depth T M 0C 0 -1.68 3 5 -1.68 3 9 -1.62 3
	1 1		1	-l
LOCATION Station 1	8.0% % % % % % % % % % % % % % % % % % %	が日	2.90 2.97 2.97 2.97 2.93 2.94 2.94 2.94 2.94 2.94 2.94 2.94 2.94	S o/co t 26.43 32.82 26.43 32.82 26.43 32.82 26.43 32.82 26.43
CAST 19 DATE 24 X 60 DEPTH 9.5 H	Depth 7 M Oc 0.0 -1.40 3.5 -1.40 6.5 -1.40 9.5 -1.40	CAST 20 DATE 25 X 60 DEPTH 9.5 N Depth T	2.5 -1.39 6.5 -1.38 8.5 -1.38	CAST 21 DATE 26 X 60 DEPTH 8 M Depth 0.0 0 -1.68 2 -1.65 6 -1.64 8 -1.64

* Bubbling system in operation

LOCATION Station 1 GHT 1830	3. 00/o	LOCATION Station 1* GMT 1850	32.84 26.45	LOCATION Station 1* CDG 1445	\$ o/oo
E	Depth T M °C 0 -1.80	CAST 29 DATE 31 X 50 DEPTH 8 M	Depth oc M oc 0 -1.81	8 H	Depth T M OC 0.0 -1.82 3.5 -1.82 7.5 -1.82 10.5 -1.82
Station 1 1435	26.43 26.43 26.43 26.43	Station 1	24.92 24.92	Station 1* 1425	26.55 26.55 26.47
LOCATION CHE	88888	LOCATION	% % % % % % % % % % % % % % % % % % %	LOCATION	80,0 80,0 80,08 72,08 72,08 78,08
CAST 25 X 60 DEPTH 9 M	Depth T 00 1.80 3 -1.80 6 -1.79 9 -1.79	CAST 26 DATE 30 X 60 DRPTH 9.5 M	Depth C M OC 0.0 -1.8 3.5 -1.7 7.5 -1.7	CAST 27 DATE 31 X 60 DEPTH 9.5 W	Depth T 9C 1.82 0 -1.82 3 -1.82 9 -1.77

Ą

* Bubbling system in operation

		₹₹ %%	8.58	Station 4	4€. 55. 54.	Station 1*	%.% %.53 %.53
	8	8.8. 8.8.	32.93	LOCATION	%° %	LOCATION	8,8 8,8 8,8 8,8
DEPTH 11 M	Depth T	44.	8 11.81 11.81	CAST 35 DATE 5 XI 60 DEPTH	Depth T M OC 0 -1.80	CAST 36 DATE 6 XI 60 DEPTH 11.5 M	Depth T M OC 0.0 -1.84 3.5 -1.83 8.5 -1.83 11.5 -1.83
	۴	26.45		OH Station 1*	et 26.46		% % % % % % % % % % % % % % % % % % %
		32.85		LOCATION Station 1*	% S	% %	22,F1 ≥ 64

* Bubbling system in operation

LOCATION Station 4	3 	32.96 26.54 32.98 26.56	LOCATION Station 1* CAR 1425	s oo/	32.92 26.51 32.95 26.54	LOCATION Station 4 1530	° 0/00 €t	33.06 26.62
CAST 37 DATE 6 XI 60 DEPTH 5.5 M	Depth T	0 -1.83 5 -1.83	CAST 38 DATE 7 XI 60 DEPTH 11.5 M	Depth T	0.0 -1.83 4.5 -1.83 8.5 -1.83 11.5 -1.83	CAST 39 DEPTH	Depth T	0 -1.83

APPENDIX VII

MONTHLY WEATHER SUMMARY

THULE AIR BASE - 1960

APPENDIX VII - MONTHLY WEATHER SUMMARY, 1960

ı	ı																				
Wind		ESE E	ESE S. S.	S	E E		SSE	ESE	SE	SE	ESE	ဟ	SSE	ANA	ESE	ESE	Z	MSM	ESE	M	MNA
Max. Speed (m.p.h.)		፠፟፟	33.	: ጸአ	12 15		28	ಸ	ድ	37	13	ส	15	23	15	13	71	12	77	17	15
Air Temperature(^O F) Max. Min.		28	14 23	15	Q# •		0	6	18	18	ထ	-	4	-12	-13	9 -	ന.	₹	-15	9 1	7
Air Tem Max.		៨៨	# R R	8	18		18	ଥ	22	ದ'	8 1	18	15	;	7 -	Ŋ	6	#	Ŋ,	16	8
Date	October	86	24 28	ଝା ନ	೩೫	November	н	ď	Μ.	. ‡	ر ا	Q,	۲,	æ	6	, 10	1	12	13	14	15
od Dir.		ESE	SSB	ESE	4 ≥	阿阿	M	Œ	3	7	3	ESE	ESE	SE	E	国	[sc]	M	ESE	ESE	ENE
F) Wind Wind (m.p.h.)		88	£₹	17 	171	ដដ	16	5 7	35	කැ	71	18	35	J6	6	13	%	더	25	<u>ج</u>	2
erature (^O F) Min.		25 24	ส 🞖	สฯ	°ដ	ᢐᢐ	16	21	23	16	m,	-4	15	13	01	۲;	#	æ :	13	OT !	&
Air Tempel Max. 1		ሐ ጸና	73 78 78	27	14	ង ត	21	3	ਖ਼	ଅ :	17	15	23	€ (81	# 8	SK :	8	ର :	χ. Υ.	ま
Date	October	H 0	m#	νv) (-0	\$ 0	10	#	12	13	†	15	10	1.(18	19	၃ ရ	ನ :	88	χ. Ν	₹

U. S. Mayr Hydrographic Office.
STRIN OF OCKANGRAPH COMDITIONS
AS MELATED TO PROJET FOLINIA. by
Charles W. Senior, December 1961.
75 p., including li figures, 3 tables. (R. O. TR-80).

Bibliography Appendixes Presents a model to describe ratar-dation of ice growth based on the air-bubbling system installed by NUTSLANT at Thule, Greenland during the fall of 1959. Oceangraphic and meteorological data obtained during the fall of 1959 and 1960 are also presented.

U. S. Mavy Hydrographic Office. STUDY OF OCHANCEARHY COMMUTIONS AS RELATED TO PROLET FOLINIA. by Charles W. Senior, December 1961. 75 p., including li figures, 3 te-bles. (H. O. TR-80).

ice formation
2. Ice potential
3. Hydrodynamics
4. Engineering, underwater
5. Oceanography
1. title: Study of Oceanography
phic Conditions as Related

1. Air-bubbling in retarding

Bibliography

Appendixes

detion of ice growth based on the air-bubbling system installed by NGTELANT at Thile, Greenland during the fall of 1979. Cosnographic and meteorological data obtained during the fall of 1979 and 1960 are also presented. Presents a model to describe retar-

Air-bubbling in retarding ice formation . H

2. Ice potential
3. Educobranica
4. Engineering, underwater
5. Oceanography
1. title: Study of Oceanographic Conditions as Related

to Project Folymys
ii. author: Charles W. Senior 111. E. O. TR-80

Presents a model to describe retar-dation of ice growth based on the air-bubbling system installed by METELANT at Thule, Greenland during the fall of 1959, Oceanographic and meteorological data obtained during the fall of 1959 U. S. Mavy Hydrographic Office. STUDY OF OCCAMOGRAPHE CONDITIONS AS RELATED TO PROJECT POLINIA. by Charles W. Senior, December 1961. 75 p., including 11 figures, 3 ta-bles. (H. O. TR-80). Bibliography Appendixes

111. H. O. TR-80

2. Ice potential
3. Mydrodynamics
4. Engineering, underwater
5. Oceanography
1. title: Study of Oceanographic Conditions as Related
to Project Polynya
11. author: Charles W. Senior

1. Air-bubbling in retarding

ice formation Ice potential

and 1960 are also presented.

U. S. Mavy Rydrographic Office.
STUDY OF OCCANIGRAPHY CONDITIONS
AS RELATED TO PROJECT POLINIA. by
Charles W. Senior, December 1961.
75 p., including 11 figures, 3 tables. (H. O. IR-80).

Bibliography

Appendixes

to Project Polymys

111. E. O. TR-80

Presents a model to describe retardation of ice growth based on the sirbabling system installed by NUTSLANT 1979, Oceanographic and mercenclogical data obtained during the fall of 1979 and 1960 are also presented.

1. Air-bubbling in retarding

ice formation
2. Ice potential
3. Hydrodynamics
4. Engineering, underwater
5. Oceanography
1. title: Study of Oceanogra-

phic Conditions as Related to Project Polynya ii. author: Charles W. Senior iii. E. O. TR-80