3.2 <u>Programación de Pruebas</u> Isomorfismo de Curry-Howard

Construcción de Pruebas en Coq

- ¿Qué estamos haciendo cuando probamos un teorema en Coq?
 - * Construimos un objeto, que es la prueba del teorema
- ¿En qué lenguaje está escrita esa prueba?
 - * En Cálculo Lambda!!!!
 - * Cada <u>enunciado lógico</u> se corresponde con un <u>tipo</u>
 - * Cada **prueba** es un **objeto** del tipo correspondiente.

InCo

Isomorfismo de Curry-Howard

Identificación de proposiciones con tipos

```
P: Prop
```

pensamos a P como el tipo cuyos objetos son las pruebas de P

Identificación de pruebas con objetos

a: P

significa que a es una prueba de P

Cálculo Proposicional Minimal

Deducción Natural

- Proposiciones atómicas y de la forma $\alpha \rightarrow \beta$
- Juicios de la forma: Γ |- α
 "α se deduce a partir del conjunto de hipótesis Γ"
 Γ=[α₁,...,α_n]

Reglas:

$$-----$$
ass $\Gamma, \alpha \mid -\alpha$

$$\frac{\Gamma, \alpha \mid -\beta}{\Gamma \mid -\alpha \rightarrow \beta} \rightarrow I$$

$$\frac{\Gamma|-\alpha \to \beta \ \Gamma|-\alpha}{\Gamma|-\beta}$$

Deducción Natural en Coq

 $[\alpha_1,...,\alpha_n]$ |- α lo vemos escrito:

$$\frac{}{\Gamma}$$
 α $-\alpha$

 $\Gamma, \alpha \mid -\alpha$ corresponde a assumption

$$\frac{\Gamma, \alpha \mid -\beta}{\Gamma \mid -\alpha \rightarrow \beta} \quad \text{corresponde a intro}$$

(dependiendo de si $\alpha \rightarrow \beta$ está o no en Γ)

Cálculo λ simplemente tipado

sistema de tipos

Juicios de la forma: Γ |- e: α "la expresión e tiene tipo α bajo el contexto Γ " $\Gamma = [x_1 : \alpha_1, ..., x_n : \alpha_n]$

Reglas:

$$\Gamma$$
, x: α |- x: α

$$\frac{\Gamma, x:\alpha \mid -e:\beta}{\Gamma \mid -\lambda x.e:\alpha \rightarrow \beta}$$
 abs

$$\frac{\Gamma|-e_1:\alpha \to \beta \ \Gamma|-e_2:\alpha}{\Gamma|-(e_1 e_2):\beta}$$

comparemos...

Deducción Natural

Cálculo
$$\lambda$$

$$\frac{\Gamma, \alpha \mid -\beta}{\Gamma \mid -\alpha \rightarrow \beta} \rightarrow \blacksquare$$

$$\frac{\Gamma | -\alpha \to \beta \ \Gamma | -\alpha}{\Gamma | -\beta} \to \mathbf{E}$$

$$\Gamma$$
, x: α |- x: α

$$\frac{\Gamma, x:\alpha \mid -e:\beta}{\Gamma \mid -\lambda x.e:\alpha \rightarrow \beta}$$
 abs

$$\frac{\Gamma|- e_1:\alpha \to \beta \ \Gamma|- e_2:\alpha}{\Gamma|- (e_1 e_2):\beta} \text{ app}$$

Más similitudes: Reducciones

Cálculo λ

$$\frac{\Gamma, x:\alpha \mid -e:\beta}{\Gamma \mid -\lambda x.e:\alpha \rightarrow \beta} \qquad \Gamma \mid -a:\alpha$$

$$\Gamma \mid -(\lambda x.e \ a):\beta \qquad \Gamma \mid -(\lambda x.e \ a)=e[x:=a]:\beta$$

Deducción Natural

$$\frac{\Gamma, \alpha \mid -\beta}{\Gamma \mid -\alpha \rightarrow \beta} \rightarrow \Gamma \mid -\alpha \longrightarrow \Gamma \mid -\alpha \longrightarrow \Gamma \mid -\beta$$

$$\frac{\Gamma, \alpha \mid -\beta}{\Gamma \mid -\beta} \rightarrow \Gamma \mid -\alpha \longrightarrow \Gamma \mid -\beta$$

$$\frac{\Gamma, \alpha \mid -\beta}{\Gamma \mid -\beta} \rightarrow \Gamma \mid -\alpha \longrightarrow \Gamma \mid -\alpha$$

$$\frac{\Gamma, \alpha \mid -\beta}{\Gamma \mid -\beta} \rightarrow \Gamma \mid -\alpha \longrightarrow \Gamma \mid -\alpha$$

InCo

Isomorfismo de Curry-Howard

Un poco de historia:

- En 1958 H. B. Curry observó que los axiomas del cálculo proposicional $(\alpha \rightarrow \beta \rightarrow \gamma) \rightarrow (\alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \gamma$, $\alpha \rightarrow \beta \rightarrow \alpha$ y $\alpha \rightarrow \alpha$ se correspondían con los tipos de los combinadores S,K e I
- En 1965 W. Tait descubrió una correspondencia entre la eliminación de lemas en pruebas (cutelimination) y la β-reducción en el cálculo λ.
- En 1969 W. A. Howard desarrolla una noción de construcción adecuada para representar las pruebas de la lógica intuicionista.

CFPTT - 3(2).9

Cálculo de Predicados Minimal Deducción Natural

- Proposiciones atómicas y de la forma $\alpha \rightarrow \beta$ o $\forall x \in A.\beta$
- Juicios de la forma: Γ |- α
 "α se deduce a partir del conjunto de hipótesis y objetos Γ"

$$\Gamma = [\mathbf{x}_1 \in \mathbf{A}_1, ..., \mathbf{x}_m \in \mathbf{A}_m] \cup [\alpha_1, ..., \alpha_n]$$

Reglas: ass, \rightarrow I, \rightarrow E más:

$$\frac{\Gamma, x \in A \mid -\beta}{\Gamma \mid -\forall x \in A. \beta} \forall I$$

$$\frac{\Gamma | - \forall x \in A. \beta \quad \Gamma | - a \in A}{\Gamma | - \beta(a)} \forall E$$

En Coq...

 $X_1:A_1$

•

 $[x_1: A_1,..., x_m: A_m] \cup [\alpha_1,..., \alpha_n] \mid -\alpha \text{ lo vemos escrito}$

 $x_m:A_m$

 H_1 : α_1

•

 $H_n:\alpha_n$

 α

$$\frac{\Gamma, x \in A \mid -\beta}{\Gamma \mid -\forall x \in A. \beta} \forall I$$

corresponde a intro x

$$\frac{\Gamma | - \forall x \in A. \beta \quad \Gamma | - a \in A}{\Gamma | - \beta [a/x]} \forall E$$

corresponde a apply

Cálculo λ con tipos dependientes

sistema de tipos

Juicios de la forma: Γ |- e: α
"la expresión e tiene tipo α bajo el contexto Γ"
Γ=[x₁:α₁,..., xₙ:αₙ]

Reglas: ctx más:

$$\frac{\Gamma, x:\alpha \mid -e:\beta}{\Gamma \mid -\lambda x^{\alpha}.e: (x:\alpha)\beta}$$
 abs

$$\Gamma$$
|- e: (x:α)β Γ |- a: α app Γ |- (e a): β[x:=a]

comparemos otra vez...

Deducción Natural

Cálculo \(\lambda\)

$$\frac{\Gamma, x \in A \mid -\beta}{\Gamma \mid -\forall x \in \alpha. \beta} \forall I$$

$$\frac{\Gamma, x:\alpha \mid -e:\beta}{\Gamma \mid -\lambda x^{\alpha}.e:(x:\alpha)\beta}$$
 abs

$$\frac{\Gamma|-\forall x \in A. \beta \quad \Gamma|-a \in A}{\Gamma|-\beta[a/x]} \forall E$$

$$\Gamma$$
|- e: (x:α)β Γ |- a: α _{app} Γ |- (e a): β[a/x]

Observaciones sobre los productos

La regla del producto nos sirve para representar tres tipos de funciones

$$\frac{\Gamma | \textbf{-} \alpha \textbf{:Set} \qquad \Gamma, \textbf{x} \textbf{:} \alpha \mid \textbf{-} \beta \textbf{:Set}}{\Gamma \mid \textbf{-} (\textbf{x} \textbf{:} \alpha) \beta \textbf{: Set}} \mathbf{prod}$$

```
fun x:nat =>x : forall x:nat, nat (=
nat→nat)
fun n:nat => diag n:forall n:nat, Mat n n
```

```
\Gamma|- α:Set \Gamma,x:α |- β:Prop prod \Gamma|- (x:α)β: Prop
```

fun x:nat => leS x: forall x:nat, Le x (S x)
Ax : forall x:nat,
$$x=0 \rightarrow \sim \exists y.x=Sy$$

$$\Gamma$$
|- α:Prop Γ ,x:α |- β :Prop Γ |- (x:α) β : Prop

fun (H:z=0) => Ax z H:
forall H:z=0,
$$\sim$$
(\exists y.z=Sy)
z=0 \rightarrow \sim (\exists y.z=Sy)

Isomorfismo en Coq

Cuando constuimos una prueba de un enunciado en Coq, estamos construyendo un término λ del tipo correspondiente al enunciado.

→ La situación general es de la forma:

$$\frac{\Gamma_1}{?_1:\alpha_1} = \frac{\Gamma_n}{?_n:\alpha_n}$$

→ Tácticas: constructoras de términos

Construcción de pruebas en Coq

H: α $?: \alpha$

assumption:

corresponde a la prueba H:α

intro H:

corresponde a la prueba $[H:\alpha]$? donde ?₁ será la prueba de β corresp. a:

?: B

apply H:

H: $\alpha \rightarrow \beta$ corresponde a la prueba (H?₁) donde $?_1$ será la prueba de α corresp. a: $H:\alpha \rightarrow \beta$

Construcción de pruebas en Coq (cont.)

Γ

 $?: \alpha$

cut β:

corresponde a la prueba (?₁ ?₂)

donde $?_1$ y $?_2$ serán las pruebas de $\beta \rightarrow \alpha$ y β correspondientes a:

$$\frac{\Gamma}{?_1: \beta \rightarrow \alpha}$$
 y $\frac{\Gamma}{?_2: \beta}$

Γ

?: (**x**:α)β

intro x:

corresponde a la prueba [x:α]?₁ donde ?₁ será la prueba de β corresp. a:

Γ **x**: α **?**₁: β

ver que es <u>exactamente</u> la misma explicación que para el caso $\alpha \rightarrow \beta$

Construcción de pruebas en Coq (cont.)

 $\frac{\Gamma}{H:(x_1:\alpha_1)..(x_n:\alpha_n)\beta}$?: γ

apply H:

corresponde a la prueba ($H \times_1 \theta \times_2 \theta$)

Donde θ es la sustitución que unifica a β con γ .

Además, $x_1\theta:\alpha_1\theta...x_n\theta:\alpha_n\theta$ deberán ser consecuencias de Γ

Coq chequea: $\frac{1}{x_1\theta:\alpha_1\theta}$... $\frac{1}{x_n\theta:\alpha_n\theta}$

Ejemplo:

 $\frac{\Gamma}{\text{H:}(x:\text{nat})(y:(P x))(Q x y)} \text{ apply H}$ $\frac{P}{P}(Q 0 a)$

(H 0 a): (Q 0 a)

 $\frac{\Gamma}{\text{0:nat}} \qquad \frac{\Gamma}{\text{a:(P 0)}}$

InCo

Programando Pruebas

- Los resultados ya probados y las hipótesis pueden pensarse como objetos de ciertos tipos (en general, son funciones)
 - H1: A→B
 - Lema2: A
- Estas funciones pueden aplicarse a argumentos, que a su vez pueden ser pruebas de resultados o a otras hipótesis. De esta forma, podemos utilizar las pruebas como objetos de un lenguaje funcional
 - (H1 Lema2): B

Programando Pruebas Ejemplos

C

Programando Pruebas Ejemplos (cont.)

```
H1: (x:A)(B x)
                   exact (H1 a)
                                             Probado!!
a: A
  (B a)
H1: A \rightarrow (x:B)(C x)
                     exact ((H1 H2) z)
                                              Probado!!
H2: A
z: B
  (Cz)
H1: (x:A) B \rightarrow C
                  exact ((H1 z) H2)
                                            Probado!!
H2: B
z: A
```

Tácticas para ver pruebas

Show Proof: muestra el término λ correspondiente a la prueba que se está armando

Show Tree: muestra la prueba como en el sistema de Deducción Natural

InCo