

Разработка архитектуры программного обеспечения робототехнической платформы

Студент:

Карагачев Андрей Сергеевич

Руководитель ВКР:

Авилов Алексей Васильевич

Июнь 2024

Цели и задачи проекта

Цель проекта:

Обеспечение безопасности дозиметристов при ручном мониторинге радиации на зараженных территориях, путем роботизации процесса, уменьшая время нахождения специалиста в зоне радиационной опасности.

Описание работы:

Разработка программного обеспечения (ПО) робототехнической платформы, позволяющей выполнять процесс мониторинга радиоактивных частиц. Тестирование алгоритмов разных вычислительных уровней в процессе сборке платформы.

Задачи:

- 1. Выполнить анализ доступных программных робототехнических решений.
- 2. Выполнить построение структуры ПО.
- 3. Выполнить виртуальное тестирование ПО.
- 4. Выполнить физическое тестирование ПО.

Существующие программные решения для разработки РТС

Robotics Developer Studio

Анализ программных решений

Платформа	Открытый исх.код	Симулят ор	Распрделен ная архитектура	Популярно сть	Поддер жка	Готовые компонен ы	Перено симость
YARP	ДА	HET	ДА	высокая	ДА	HET	ДА
URBI (Universal Real-time Behavior Interface)	ДА	HET	HET	СРЕДНЯЯ	HET	HET	ДА
OROCOS (Open Robot Control Software)	ДА	HET	ДА	НИЗКАЯ	HET	HET	ДА
ROS (Robot Operating System)	ДА	Gazebo	ДА	высокая	ДА	ДА	ДА
Microsoft Robotics Developer Studio (MRDS)	HET	MRDS	ДА	СРЕДНЯЯ	ДА	ДА	ДА
MRPT	ДА	HET	HET	СРЕДНЯЯ	ДА	HET	ДА

Компоненты тестирования и разработки ПО

Физическая модель

ATmega328P

STM32f103

Raspberry Pi 4

Алгоритм работы платформы

Реализуемый алгоритм работы

Структура управления программного обеспечения

Виртуальное тестирование

Цифровая тень

Ошибки разработки

Среда симуляций

Физическое тестирование

Инструменты тестирования

Результаты тестирования

Используемые инструменты и ресурсы разработки

Ресурсные репозитории

Разарботанные репозитории

Операционная система (Ubuntu) разработки ПО

Инструмент хранения и контроля версий

Среда разработки, с настраиваемым рабочим пространством

Итоги проведенной работы

- 1. Проведен анализ программных решений, выбранное ПО имеет ряд преимуществ, библиотеки готовых, среду симуляций, а также решений большое сообщество разработчиков.
- 2. Проведенное виртуальное тестирование выявляет, проблему преобразований подвижных соединений цифровой модели.
- 3. Физическое тестирование выявляет, погрешность в выполнении команд 0.4 м на 8 метров.

Дальнейшие задачи и перспективы

- 1. Обработка ошибок виртуального решения, переопределение структуры цифровой модели платформы;
- 2. Настройка регулятора движения платформы;
- 3. Подключение пакета навигации Nav2 и переход к следующему алгоритму функционирования;

ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Институт опережающих технологий ДГТУ

Работа с ШИМ

Управление напряжением

	Мотор 1			Мотор 2		
	IN1	IN2	ENA	IN3	IN4	ENB
Вперёд	HIGH	LOW	PWM	HIGH	LOW	PWM
Назад	LOW	HIGH	PWM	LOW	HIGH	PWM
Холостой	LOW	LOW	0	LOW	LOW	0
Тормоз	HIGH	HIGH	PWM	HIGH	HIGH	PWM

OUT2 +12 GND +5V 45V A5V OUT3 XX I

Визуальная схема In298n

Логика управление драйвером

Схема работы нижнего уровня платформы

