Worksheet 9.3: Solutions

The electrochemical series

No.	Answer
1	 a Top left-hand corner b Bottom left-hand corner c Bottom right-hand corner d Top right-hand corner
2	a $H_2O_2 > Cu^{2+} > H^+ > Fe^{2+} > Zn^{2+}$ b $Na > Pb > Fe^{2+} > Ag > Cl^-$
3	The reference cell is the hydrogen half-cell, which consists of a 1 mol $\rm L^{-1}$ solution of hydrochloric acid at 25°C through which hydrogen gas at 1 atm pressure is bubbled. The electrode is platinum coated with platinum black.
4	25°C, aqueous concentrations of 1 mol L ⁻¹ , and gas pressures of 1 atm
5	The reaction may not be proceeding under standard conditions of temperature and pressure and/or the reaction may be proceeding at too slow a rate to be noticeable.
6	A coating of silver and copper metal will occur on the tin in the beakers containing $AgNO_3$ and $Cu(NO_3)_2$ respectively.
7	The unknown metal is nickel or cobalt and it will react with the solution of tin(II) chloride (SnCl ₂).
8	a No reaction b No reaction c $2H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g)$ $Sn(s) \rightarrow Sn^{2+}(aq) + 2e^{-}$ $2H^{+}(aq) + Sn(s) \rightarrow H_{2}(g) + Sn^{2+}(aq)$
9	$2H_2O(l) + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$ $K(s) \rightarrow K^+(aq) + e^-$ $2K(s) + 2H_2O(l) \rightarrow 2K^+(aq) + 2OH^-(aq) + H_2(g)$
10	$B^+ > D > A^{2+} > C^{2+}$ In cell 1, the electrons flow towards the strongest oxidant, D; hence $D > C^{2+}$. In cell 2, the electrons flow towards the strongest oxidant, B^+ ; hence $B^+ > D$. In cell 3, the electrons flow towards the strongest oxidant, A^{2+} ; hence $A^{2+} > C^{2+}$. The cell potential in cell 1 (0.7) is greater than that in cell 3; hence $D > A^{2+}$.