Chapter 1

Basic Terms and Concepts

- Reference Components: a reference component generates the reference signal or the input signal
- Controlled Variable: the quantity or condition that is measured and controlled
- Comparison Components: compare the input with feedback signal and generate the error signal
- Plant or Process: any physical object or operation to be controlled
- Controller: a compensation component, improves the performance ofg the system
- Actuator: acts on that plant directly to adjust the controlled variable
- **Disturbance**: a signal that tends to adversely affect the value of the output of a system
- Sensor or measurement component: measure the output or the controlled variable and generate feedback signal

Examples

Control System	Plant	Controlled Variable
	water tank	water level
	electric furnace	the furnace temperature

Types of Control

Open-loop Control Systems

An open-loop system is a system without feed back

- the output of the open-loop system has no effect upon the input signal
- there is only forward action from the input to the output

Advantages

simple construction and ease of maintenance

- · less expensive
- no stability problem
- convenient when output is hard to measure

Disadvantages

- disturbance and changes in calibration cause errors
- to maintain the required quality in the output, recalibration is necessary from time to time

Closed-loop Control System

A closed-loop control system uses a measurement of the output and feedback of this signal to compare it with the desired output

Features

- there are feedbacks in the system so that signals flow through closed loops
- · the error signal controls the system

General Requirements for Control Systems

• Stability: stability, smooth and steady

• Swiftness: peak time, settling time

• Accuracy: steady-state error

Stable and Unstable

Stable	Unstable

Regulation Process

The whole regulation process can be divided into two stages

transient process + steady-state process

- transient process reflects dynamic characteristics
- steady-state process reflects steady-state characteristics

Transient Response

• swiftness: peak time, settling time

Steady-State Response

• accuracy: steady-state error