## Packing Line Segments in a Convex 3-Polytope is NP-hard

Michael Gene Dobbins Heuna Kim **POSTECH** 

FU Berlin

#### MaxSegPackd

Input: A collection of segments S and a bounded convex d-polytope P



Output : The  $\max$  number of segments in S that can be disjointly embedded in P by translation

### MaxSegPack3: NP-hard



Reduction from the Maximum Independent Set Problem for bridgeless triangle-free cubic graphs (MaxIndSetG)

A vertex v of  $G \leftrightarrow A$  line segment  $l_v$  in S

A graph  $G \longleftrightarrow The intersection graph of S$ 

A vertex v of G  $\longleftrightarrow$  A line segment  $l_v$  in S

A graph  $G \longleftrightarrow The intersection graph of S$ 

Independent sets in  $G \leftrightarrow Sets$  of line segments that can be disjointly embedded

The set of The  $\max$ imum  $\leftrightarrow$   $\max.\#(\text{line segments that } independent set in <math>G$  can be disjointly embedded)

Construct Lines  $\Rightarrow \mathcal{L}$ 

Construct

a Convex Polyhedron  $\Rightarrow P$ 

Construct Lines  $\Rightarrow \mathcal{L}$ 

The intersection graph of  $\mathcal{L}$  becomes G

Construct

a Convex Polyhedron  $\Rightarrow P$ 

 $S = \mathcal{L} \cap P$ S becomes rigid in P

#### Construction of L

Perfect Matching  $M \Rightarrow$  Generic Planes  $\mathfrak{P} = \{P_e | e \in M\}$ 



### The Triangle-free Condition



 $l_u$  and  $l_v$  would intersect if  $e_1, e_2, e_3$  are in the perfect matching.

#### Construction of P



$$\mathcal{S} = \mathcal{L} \cap P \text{ can}$$
 rigidly fit into  $P$ 

$$\mathcal{S} = \{l \cap B | l \in \mathcal{L}\}$$

$$P = \operatorname{conv}(\bigcup S)$$

### Reduction in *polynomial* time

Find a Perfect Matching Generate *Planes* Choose polynomial#points Compute  $\mathcal{L}$ Compute a Sphere Compute S Compute conv(( )S)

## Simplices the Enclosing or n-Boxes Polytope Convex, Weighted a Collection of Convex sets Convex, Rigid

### Open Problems

Complexity for a Convex Polygon

Approximation Algorithms