Operational domain theory and topology of a sequential programming language

Martín Escardó

Joint work with Ho Weng Kin

School of Computer Science, University of Birmingham, UK

GEOCAL, Paris 7 22nd June 2005

Papers

M.H. Escardó. Synthetic topology of data types and classical spaces. ENTCS, vol 87, pages 21-156, 2004.

M.H. Escardó and W.K. Ho. Operational domain theory and topology of a sequential programming language. LICS 2005.

Summary

Domain theory and topology in programming language semantics:

Manufacture and study denotational models.

Imprecise for sequential languages:

Computational adequacy holds but full abstraction fails.

This work:

Reconciliation of a good deal of domain theory and topology with sequential computation.

Applications to correctness proofs of non-trivial programs that manipulate infinite data.

How the reconciliation is performed

- Side-step denotational semantics.
- 2. Reformulate domain-theoretic and topological notions directly in terms of programming concepts, interpreted in an operational way.

Previous work in this direction: Mason, Smith, Talcot, Sands, Pitts, . . .

- They consider domain-theoretic techniques.
- We further develop this.
- We additionally consider topological techniques.
 (open sets, compact sets, continuity and uniform continuity)

Setting for operational domain theory and topology

In this talk we consider call-by-name PCF extended with

- 1. product types,
- 2. base types Σ (Sierpinski) and $\overline{\omega}$ (vertical natural numbers).

This can be seen as a subset of Haskell:

```
data Sierp = T
data OmegaBar = Succ OmegaBar
```

Notation and fundamental operational properties

 $x \in \sigma$ x is an element (closed term) of type σ

x = y contextual equivalence

 $x \sqsubseteq y$ contextual preorder

Congruence: $f = g \land x = y \implies f(x) = g(y)$

$$f \sqsubseteq g \land x \sqsubseteq y \implies f(x) \sqsubseteq g(y)$$

Extensionality: $\forall x \in \sigma. f(x) = g(x) \implies f = g$

$$\forall x \in \sigma. f(x) \sqsubseteq g(x) \implies f \sqsubseteq g$$

Fixed-point approximation: $h(\operatorname{fix} g) = \bigsqcup_n h(g^n(\bot))$

where $\perp = \operatorname{fix} \lambda x.x.$

Evaluation relation: We never use it! (But of course $M \Downarrow v \iff M = v$.)

Rational chains

Definition. A sequence x_n is a rational chain if there are g and h with $x_n = h(g^n(\bot))$.

Lemma. The sequence $0,1,2,\ldots,n,\ldots$ in $\overline{\omega}$ is a rational chain with

- (i) $\infty = \bigsqcup_n n$,
- (ii) $l(\infty) = \bigsqcup_{n} l(n)$ for every $l \in (\overline{\omega} \to \sigma)$.

Characterization. A sequence $x_n \in \sigma$ is a rational chain iff there is

$$l \in (\overline{\omega} \to \sigma)$$

such that

$$x_n = l(n),$$
 and hence $\bigsqcup_n x_n = l(\infty).$

Rational continuity

What ought be true is easily true:

Proposition. If $f \in (\sigma \to \tau)$ and x_n is a rational chain in σ , then

- (i) $f(x_n)$ is a rational chain in τ , and
- (ii) $f(\bigsqcup_n x_n) = \bigsqcup_n f(x_n)$.

Corollary. If f_n is a rational chain in $(\sigma \to \tau)$ and $x \in \sigma$,

- (i) $f_n(x)$ is a rational chain in au, and
- (ii) $(\bigsqcup_n f_n)(x) = \bigsqcup_n f_n(x)$.

Proof. Apply the proposition to $F \in ((\sigma \to \tau) \to \tau)$ defined by F(f) = f(x). \square

Open sets

Definition. A set U of elements of a type σ is called open if there is

$$\chi_U \in (\sigma \to \Sigma)$$

such that for all $x \in \sigma$,

$$\chi_U(x) = \top \iff x \in U.$$

Proposition (Open sets form a rational topology).

For any type, the open sets are closed under the formation of finite intersections and rational unions.

Finite unions would require weak parallel-or (aka parallel convergence test).

Open sets

Again, what ought be true is easily true:

Proposition (Topological continuity). For any $f \in (\sigma \to \tau)$ and any open subset V of τ , the set $f^{-1}(V)$ is open in σ .

Proposition (Specialization preorder). For $x, y \in \sigma$, the relation $x \sqsubseteq y$ holds iff $x \in U$ implies $y \in U$ for every open subset U of σ .

Proposition (Rational Scott openness). For any open set U in a type σ ,

- 1. if $x \in U$ and $x \sqsubseteq y$ then $y \in U$,
- 2. if x_n is a rational chain with $\coprod x_n \in U$, then $x_n \in U$ for some n.

We continue the programme of showing that what ought to be true is true.

But now the proofs start to get non-trivial.

Definition. An element b is called finite if for every rational chain x_n with

$$b \sqsubseteq \bigsqcup_n x_n$$

there is n such that already

$$b \sqsubseteq x_n$$
.

Theorem (Algebraicity). Every element of any type is the least upper bound of a rational chain of finite elements.

Theorem (Algebraicity). Every element of any type is the least upper bound of a rational chain of finite elements.

Corollaries.

- 1. b is finite iff for every rational chain x_n with $b = \bigsqcup_n x_n$, there is n such that already $b = x_n$.
- 2. f = g holds in $(\sigma \to \tau)$ iff f(b) = g(b) for every finite $b \in \sigma$.
- 3. For any $f \in (\sigma \to \tau)$, any $x \in \sigma$ and any finite $c \sqsubseteq f(x)$, there is a finite $b \sqsubseteq x$ such that already $c \sqsubseteq f(b)$.
- 4. If U is open and $x \in U$, then there is a finite $b \sqsubseteq x$ in U.

In order to establish algebraicity, we invoke the following concepts:

Definition.

- 1. A deflation on a type σ is an element of type $(\sigma \to \sigma)$ that
 - is below the identity of σ ,
 - has finite image.
- 2. An SFP structure on a type σ is a rational chain id_n of idempotent deflations with $\bigsqcup_n \mathrm{id}_n = \mathrm{id}$.
- 3. A type is SFP if it has an SFP structure.

Theorem.

- 1. Each type of the language is SFP.
- 2. For any SFP structure, b is finite iff $b = id_n(b)$ for some n.

In particular,

- 3. $id_n(x)$ is finite,
- 4. any $x \in \sigma$ is the lub of the rational chain $\mathrm{id}_n(x)$.

Therefore the algebraicity theorem follows.

The SFP structures can be chosen in such a way that it is easy to see that:

Proposition.

- 1. Every element of any finitary type is finite.
- 2. If $f \in (\sigma \to \tau)$ and $x \in \sigma$ are finite then so is $f(x) \in \tau$.
- 3. If $x \in \sigma$ and $y \in \tau$ are finite then so is $(x, y) \in (\sigma \times \tau)$.

To prove the SFP theorem, we construct programs $d^{\sigma}: \overline{\omega} \to (\sigma \to \sigma)$ by induction on σ :

$$\begin{split} \mathrm{d}^{\mathsf{Bool}}(x)(p) &= p, \\ \mathrm{d}^{\Sigma}(x)(p) &= p, \\ \mathrm{d}^{\mathsf{Nat}}(x)(k) &= \mathrm{if} \; x > 0 \; \mathrm{then} \; \mathrm{if} \; k == 0 \; \mathrm{then} \; 0 \; \mathrm{else} \; 1 + \mathrm{d}^{\mathsf{Nat}}(x-1)(k-1), \\ \mathrm{d}^{\overline{\omega}}(x)(y) &= \mathrm{if} \; x > 0 \wedge y > 0 \; \mathrm{then} \; 1 + \mathrm{d}^{\overline{\omega}}(x-1)(y-1), \\ \mathrm{d}^{\sigma \to \tau}(x)(f)(y) &= \mathrm{d}^{\tau}(x)(f(\mathrm{d}^{\sigma}(x)(y))), \\ \mathrm{d}^{\sigma \times \tau}(x)(y,z) &= (\mathrm{d}^{\sigma}(x)(y), \mathrm{d}^{\tau}(x)(z)). \end{split}$$

Lemma. The rational chain $\operatorname{id}_n^{\sigma} \stackrel{\text{def}}{=} \operatorname{d}^{\sigma}(n)$ is an SFP structure on σ .

In our operational context, the following topological characterization is non-trivial:

Theorem. $b \in \sigma$ is finite iff the set $\uparrow b \stackrel{\text{def}}{=} \{x \in \sigma \mid b \sqsubseteq x\}$ is open.

Hence the open sets $\uparrow b$ with b finite form a base of the rational topology:

Corollary. Every open set is a union of open sets $\uparrow b$ with b finite.

Definition (Hereditary totality).

- 1. An element of ground type is total iff it is maximal.
- 2. An element $f \in (\sigma \to \tau)$ is total iff $f(x) \in \tau$ is total whenever $x \in \sigma$ is total.
- 3. An element of type $(\sigma \times \tau)$ is total iff its projections into σ and τ are total.

Theorem (Density of total elements).

Every inhabited open set has a total element.

Equivalently, every finite element is below some total element.

Definition (δ -closeness). For $\delta \in \mathbb{N}$,

$$x =_{\delta} y \iff \mathrm{id}_{\delta}(x) = \mathrm{id}_{\delta}(y).$$

Proposition (ϵ - δ continuity). For total $f \in (\sigma \to \tau)$ and $x \in \sigma$,

$$\forall \epsilon \in \mathbb{N} \quad \exists \delta \in \mathbb{N} \quad \forall y \in \sigma \text{ total}, \quad x =_{\delta} y \implies f(x) =_{\epsilon} f(y).$$

We know this for

- 1. σ arbitrary,
- 2. $\tau \in \{Bool, Nat, Cantor, Baire\}$, where

$$\mathtt{Cantor} = (\mathtt{Nat} \to \mathtt{Bool}), \qquad \mathtt{Baire} = (\mathtt{Nat} \to \mathtt{Nat}).$$

Second formulation of ϵ - δ continuity (but in practice we use the previous).

Definition.
$$d(x, y) = \inf\{1/n \mid x =_n y\}.$$

Proposition.

- 1. d is a metric, in fact an ultrametric.
- 2. $x =_{\delta} y \iff d(x, y) \le 1/\delta$.
- 3. For total $f \in (\sigma \to \tau)$ and $x \in \sigma$,

$$\forall \epsilon > 0 \quad \exists \delta > 0 \quad \forall y \in \sigma \text{ total}, \quad d(x,y) < \delta \implies d(f(x),f(y)) < \epsilon.$$

Here τ has the same restriction as before.

Side remarks

Every open set is open in the metric topology. The converse of course fails.

For the language extended with first-order oracles, parallel-or and Plotkin's existential quantifier,

- 1. the contextual preorder order is directed complete,
- 2. rational chains are the same thing as ω -chains,
- 3. the open sets are precisely the Scott open sets,
- 4. the metrically open sets are precisely the Lawson open sets.

But we are interested in the sequential language, where this match fails.

Definition. A set Q of elements of a type σ is called compact if there is

$$(\forall_Q) \in ((\sigma \to \Sigma) \to \Sigma)$$

such that

$$\forall_Q(p) = \top \iff p(x) = \top \text{ for all } x \in Q.$$

Proposition (rational Heine-Borel property).

If Q is compact and U_n is a rational chain of open sets with $Q \subseteq \bigcup_n U_n$, then there is n such that already $Q \subseteq U_n$.

Proposition (Basic classical properties).

- 1. If $Q \subseteq \sigma$ is compact then so is $f(Q) \subseteq \tau$ for any $f \in (\sigma \to \tau)$.
- 2. If $Q \subseteq \sigma$ and $R \subseteq \tau$, then so is $Q \times R \subseteq \sigma \times \tau$.
- 3. If $Q\subseteq \sigma$ is compact and $V\subseteq \tau$ is open, then $\{f\in (\sigma\to \tau)\mid f(Q)\subseteq V\}$ is open.

- PROOF. 1. $\forall y \in f(Q).p(y) = \forall x \in Q.p(f(x)).$
 - 2. $\forall z \in Q \times R.p(z) = \forall x \in Q. \forall y \in R.p(x, y).$
 - 3. $\chi_{\{\dots\}}(f) = \forall x \in Q.\chi_V(f(x)). \square$

Proposition. The set of all elements of any type σ is compact.

Proof. By monotonicity, $\forall x \in \sigma.p(x) = p(\bot)$. So this is trivial. \Box

Proposition. The sets of total elements of Nat and Baire = (Nat \rightarrow Nat) are not compact.

PROOF. Otherwise rational continuity would be violated.

Proposition. An open set is compact iff it has finite characteristic.

Proposition. Every open set is a rational union of compact open sets.

First non-trivial example of a compact set:

Proposition. The set \mathbb{N}_{∞} of sequences of the forms $0^n 1^{\omega}$ and 0^{ω} is compact in Baire = (Nat \rightarrow Nat).

PROOF. Recursively define
$$\forall_{\mathbb{N}_{\infty}} \colon (\mathtt{Baire} \to \Sigma) \to \Sigma$$
 by

$$\forall (p) = p(\text{if } p(1^{\omega}) \land \forall s.p(0 :: s) \text{ then } t),$$

where t is an arbitrary element of \mathbb{N}_{∞} .

Then use the previously developed machinery to show that this works. \Box

Theorem (Continuity). For total $f \in (\sigma \to \tau)$ and T a set of total elements of σ .

$$\forall x \in T \quad \forall \epsilon \in \mathbb{N} \quad \exists \delta \in \mathbb{N} \quad \forall y \in T, \quad x =_{\delta} y \implies f(x) =_{\epsilon} f(y).$$

Theorem (Uniform continuity). For $f \in (\sigma \to \tau)$ total and T a compact set of total elements of σ ,

$$\forall \epsilon \in \mathbb{N} \quad \exists \delta \in \mathbb{N} \quad \forall x \in T \quad \forall y \in T, \quad x =_{\delta} y \implies f(x) =_{\epsilon} f(y).$$

We know this for σ arbitrary and $\tau \in \{Bool, Nat, Cantor, Baire\}$.

We need this variation for the applications we have in mind:

Lemma. For $\gamma \in \{\text{Nat}, \text{Bool}\}$, $f \in (\sigma \to \gamma)$ total and T a compact set of total elements of σ ,

- 1. $\exists \delta \in \mathbb{N} \quad \forall x \in T, \quad f(x) = f(\mathrm{id}_{\delta}(x)),$
- 2. $\exists \delta \in \mathbb{N} \quad \forall x, y \in T, \quad x =_{\delta} y \implies f(x) = f(y).$

Definition. For f and T as above, we refer to the least $\delta \in \mathbb{N}$ such that

- (1) holds as the big modulus of uniform continuity of f at T,
- (2) holds as the small modulus of uniform continuity of f at T.

A data language

Definition.

- 1. Let \mathcal{P} be our programming language.
- 2. Let \mathcal{D} be \mathcal{P} extended with oracles (arbitrary input tapes).
- 3. We take \mathcal{D} as a data language for \mathcal{P} .

(Higher-type) data: closed terms defined from oracles.

Theorem.

1. For terms in \mathcal{P} , equivalence w.r.t. ground program contexts and equivalence w.r.t. ground data contexts coincide.

But:

2. There are programs that are total w.r.t. \mathcal{P} but not w.r.t. \mathcal{D} .

The following is our main tool (to get uniform continuity):

Theorem. The total elements of Cantor = $(Nat \rightarrow Bool)$ form a compact set.

PROOF. Recursively define $\forall (p) = p(\text{if } \forall s.p(0::s) \land \forall s.p(1::s) \text{ then } t)$, where t is an arbitrary programmable total element of Cantor. \square

If the data language is taken to be $\mathcal P$ itself, the above theorem fails.

It is easier to universally quantify over all total elements of the Cantor type than just over the programmable ones:

the former can be achieved by a program but the latter cannot.

Theorem (Gandy, Ulrich Berger).

There is a total program

$$\varepsilon \colon (\mathtt{Cantor} \to \mathtt{Bool}) \to \mathtt{Cantor}$$

such that for any total

$$p \in (\mathtt{Cantor} \to \mathtt{Bool}),$$

if p(s) = true for some total $s \in \text{Cantor}$, then $\varepsilon(p)$ is such an s.

The original specification and proof are based on the Scott model.

They can be directly understood in our operational setting.

```
PROOF. Define \varepsilon \colon (\mathtt{Cantor} \to \mathtt{Bool}) \to \mathtt{Cantor} by \varepsilon(p) = \mathrm{if} \; p(\varepsilon(\lambda s.p(0 :: s))) \quad \mathrm{then} \quad 0 :: \varepsilon(\lambda s.p(0 :: s)) \\ \quad \mathrm{else} \quad 1 :: \varepsilon(\lambda s.p(1 :: s)).
```

Proceed by induction on the big modulus of uniform continuity of p total.

If p has modulus $\delta+1$ then $\lambda s.p(0::s)$ and $\lambda s.p(1::s)$ have modulus δ .

If p has modulus zero, $p(\bot)$ is total and hence p is constant. \Box

Corollary. There is a total \forall : (Cantor \rightarrow Bool) \rightarrow Bool such that [...]

PROOF. Define
$$\exists (p) = p(\varepsilon(p))$$
 and $\forall (p) = \neg \exists s. \neg p(s)$. \Box

Corollary. The function type (Cantor \rightarrow Nat) has decidable equality for total elements.

PROOF.
$$(f == g) = \forall \text{ total } s \in \text{Cantor.} f(s) == g(s)$$
. \square

Infinitely many other function types have the same property, e.g.

$$((\mathtt{Cantor} \to \mathtt{Nat}) \to \mathtt{Bool}) \to \mathtt{Nat}).$$

Theorem (Alex Simpson). There is a total program $\sup\colon ({\tt Cantor}\to {\tt Baire})\to {\tt Baire}$ such that for every total $f\in ({\tt Cantor}\to {\tt Baire}),$ $\sup(f)=\sup\{f(s)\mid s\in {\tt Cantor} \text{ is total}\},$

where the supremum is taken in the lexicographic order.

Again the original denotational specification and proof can be directly understood in our operational setting.

PROOF. Let $t \in \texttt{Cantor}$ be a programmable total element and define $\sup : (\texttt{Cantor} \to \texttt{Baire}) \to \texttt{Baire}$ by

```
\begin{split} \sup(f) &= \det h = \operatorname{hd}(f(t)) \operatorname{in} \\ & \operatorname{if} \forall \ \operatorname{total} \ s \in \operatorname{Cantor.} \operatorname{hd}(f(s)) == h \\ & \operatorname{then} \ h :: \sup(\operatorname{tl} \circ f) \\ & \operatorname{else} \ \max(\sup(\lambda s. f(0::s)), \sup(\lambda s. f(1::s))). \end{split}
```

To establish correctness, proceed by induction on the small modulus of uniform continuity of $\mathrm{hd} \circ f \colon \mathtt{Cantor} \to \mathtt{Nat}. \ \Box$

Open problems and further developments

- 1. The Tychonoff theorem (we have a sequential program but . . .).
- 2. Sequences (Nat $\rightarrow \sigma$) can be easily replaced by lazy lists.
- 3. Call-by-value easy.
- 4. Ho Weng Kin is working on recursive types (minimal invariants etc.).
- 5. State and control, and non-determinism and probability seem to pose genuine challenges. But this is the case at the denotational level too.
- 6. With probability or abstract data types for real numbers, types won't be algebraic: need operational \ll .

Papers

M.H. Escardó. Synthetic topology of data types and classical spaces. ENTCS, vol 87, pages 21-156, 2004.

M.H. Escardó and W.K. Ho. Operational domain theory and topology of a sequential programming language, 10pp. Submitted for publication.

http://www.cs.bham.ac.uk/~mhe/