Lecture 12

Merge Sort: Overview, Worst, Best & Average Case Analysis;

Example - Merge_Sort

- > It is based on Divide and Conquer
- > It divides the array into equal halves and then combine them in a sorted manner

Algorithm - Steps

```
MERGE_SORT(Low, High)

> { IF Low<High THEN

> {

> Mid=(Low + High)/2

> MERGE_SORT(Low, Mid)

> MERGE_SORT(Mid+1, High)

> MERGE_SORT(Low, Mid, High)

> T(n)= 2T(n/2) + n

>
```

```
> MERGE(A, B, m, n)
       \{i=j=k=1
       WHILE (i<=m && j<=n)
>
>
               IF (A[i]<B[j] THEN
>
                       C[k++]=A[i++]
>
               ELSE
>
                       C[k++]=B[j++]
>
               FOR (;i<=m; i++)
>
                       C[k++]=A[i]
>
               FOR (;j<=n; j++)
>
                       C[k++]=B[j]
>
>
```


Few Steps of Execution of Algorithm

$$T(n) = 2T(n/2) + n$$

Using Master Theorem a=2, b=2

$$f(n)=n^{\log_2 2}=n$$

 $T(n)=\Theta(n \log n) - Best, Average$ & Worst-Case Complexity

Space Complexity: O(1)
No extra variable be required.

			_						
İ	Α	j	В	k	C	condition			
1	2	1	5		2	A[i] <b[j]< th=""><th>TRUE</th><th>j++</th><th>k++</th></b[j]<>	TRUE	j++	k++
	8		9						
	15		12						
	18		17						
i	Α	j	В	k	C	condition			
	2		5	1	2	A[i] <b[j]< th=""><th>TRUE</th><th>į++</th><th>k++</th></b[j]<>	TRUE	į++	k++
2	8	2	9	2	5	A[i] < B[j]	FALSE	j++	K++
	15		12						
	18		17						
4									
i	Α	j	В	k	С	condition			
	2		5	1	2	A[i] <b[j]< th=""><th>TRUE</th><th>į++</th><th>k++</th></b[j]<>	TRUE	į++	k++
	8	2	9	2	5	A[i] <b[j]< th=""><th>FALSE</th><th>j++</th><th>K++</th></b[j]<>	FALSE	j++	K++
3	15		12	3	8	A[i] <b[j]< th=""><th>TRUE</th><th>į++</th><th>K++</th></b[j]<>	TRUE	į++	K++
	18		17						

Divide-and-Conquer

- > **Divide** the problem into a number of sub-problems
 - Similar sub-problems of smaller size
- > Conquer the sub-problems
 - *Solve the sub-problems <u>recursively</u>*
 - Sub-problem size small enough \Rightarrow solve the problems in straightforward manner
- > Combine the solutions of the sub-problems
 - *Obtain the solution for the original problem*

Merge Sort Approach

> To sort an array A[p ... r]:

> Divide

- Divide the n-element sequence to be sorted into two subsequences of n/2 elements each

> Conquer

- Sort the subsequences recursively using merge sort
- When the size of the sequences is 1 there is nothing more to do

> Combine

- Merge the two sorted subsequences

Merge Sort

Alg.: MERGE-SORT(A, p, r)

p			q				r
1	2	3	4	5	6	7	8
5 _D	2	4	7	1	3	2	6

if
$$p < r$$

then
$$q \leftarrow \lfloor (p+r)/2 \rfloor$$

MERGE-SORT(A, p, q)

MERGE-SORT(A, q + 1, r)

MERGE(A, p, q, r)

Divide

▶ Conquer

▶ Conquer

▶ Combine

> Initial call: MERGE-SORT(A, 1, n)

Example – n Power of 2

Divide

q = 4

Example – n Power of 2

Conquer and Merge

Example – n Not a Power of 2

Example – n Not a Power of 2

Merging

- > *Input:* Array A and indices p, q, r such that $p \le q < r$
 - Subarrays A[p..q] and A[q+1..r] are sorted
- > Output: One single sorted subarray A[p . . r]

Merging

- > *Idea for merging:*
 - Two piles of sorted cards
 - > Choose the smaller of the two top cards
 - > Remove it and place it in the output pile
 - Repeat the process until one pile is empty
 - Take the remaining input pile and place it face-down onto the output pile

Example: MERGE(A, 9, 12, 16)

Example: MERGE(A, 9, 12, 16)

Example (Cont!!!)

Example (Cont!!!)

Example (Cont!!!)

Merge - Pseudo code

Alg.: MERGE(A, p, q, r)

- 1. Compute n_1 and n_2
- 2. Copy the first n_1 elements into $L[1 ... n_1 + 1]$ and the next n_2 elements into $R[1 ... n_2 + 1]$

1.
$$L[n_1 + 1] \leftarrow \infty$$
; $R[n_2 + 1] \leftarrow \infty$

- 2. $i \leftarrow 1$; $j \leftarrow 1$
- 3. for $k \leftarrow p$ to r
- 4. **do if** $L[i] \leq R[j]$
- 5. then $A[k] \leftarrow L[i]$
- 6. $i \leftarrow i + 1$
- 7. $else A[k] \leftarrow R[j]$
- 8. $j \leftarrow j + 1$

Running Time of Merge

> Initialization (copying into temporary arrays):

$$-\Theta(n_1+n_2)=\Theta(n)$$

- > Adding the elements to the final array:
 - n iterations, each taking constant time $\Rightarrow \Theta(n)$
- > Total time for Merge:

Analyzing Divide-and Conquer Algorithms

- > The recurrence is based on the three steps of the paradigm:
 - -T(n) running time on a problem of size n
 - Divide the problem into a subproblems, each of size n/b: takes D(n)
 - Conquer (solve) the subproblems aT(n/b)
 - Combine the solutions C(n)

$$T(n) = \begin{cases} \Theta(1) & if \ n \le c \\ aT(n/b) + D(n) + C(n) & otherwise \end{cases}$$

MERGE-SORT Running Time

- > Divide:
 - compute q as the average of p and r: $D(n) = \Theta(1)$
- > Conquer:
 - recursively solve 2 subproblems, each of size $n/2 \Longrightarrow 2T (n/2)$
- > Combine:
 - MERGE on an n-element subarray takes $\Theta(n)$ time $\Longrightarrow C(n) = \Theta(n)$

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ 2T(n/2) + \Theta(n) & \text{if } n > 1 \end{cases}$$

Solve the Recurrence

$$T(n) = \begin{cases} c & if n = 1 \\ 2T(n/2) + cn & if n > 1 \end{cases}$$

Use Master's Theorem:

Compare n with f(n) = cn

Case 2: $T(n) = \Theta(nlgn)$

Merge Sort - Discussion

> Running time insensitive of the input

- > Advantages:
 - Guaranteed to run in $\Theta(n \lg n)$
- > Disadvantage
 - − Requires extra space $\approx N$

Thank You!!!

Have a good day

