O'REILLY[®]

ALL PAIRS SHORTEST PATH

- Consider some questions
 - What is shortest distance from v1 to v3 when considering edge weights?
 - In fact, what is shortest distance between any two vertices?
- Must avoid generating all possible paths

- Observation
 - Edge direction matters!
 - Flip direction of edge (v4,v3) and there would be no way to get from v4 any other vertex

- Observation
 - There is only one edge exiting v4
 - If you can find the shortest path from v3 to the other vertices, just add 3 to find the shortest path from v4 to these vertices
 - Suggests reuse of sub-problems

- Observation
 - Is 5 shortest distance from v2 to v3?
 - That is the direct edge
 - But shortest distance is really 4
 because you can go v2 → v4 →v3

- Instead of finding shortest path from single source
 - Generate all pairs shortest paths
- Dynamic Programming
 - Solves small, constrained versions of problems
 - Systematically relax constraints until final answer computed

- Given following graph
 - Compute dist[u][v] which represents best estimate of shortest path between vertices
- Starting point
 - Only include original edges in graph
 - "Smallest constrained version of problem"

- Relax constraints
 - Allow paths to include vertex v0
 - Observe improvements (v3 \rightarrow v1, v3 \rightarrow v4)

- Relax constraints
 - Allow paths to include vertex v0 and v1
 - Two more improvements (v0 \rightarrow v2, v3 \rightarrow v2)
- Continue this process until all vertices are allowed in all paths
 - Record separate pred[u][v] array to be able to recover actual shortest paths

Dynamic Programming

Initial setup defines dist[][] and pred[][] assuming only original edges can be used. Can be completed in O(n²)

Key Step
is dist[u][t]+dist[t][v] < dist[u][v]</pre>

Relax constraints by allowing algorithm to consider vertices *t* with each successive pass

Floyd-Warshall Best Average Worst O(V³) O(V³) O(V³) Dynamic Programming 12 D Array

```
def allPairsShortestPath (G)
 foreach u∈V do
  foreach v∈V do
    if (u = v) then
     dist[u][u] = 0
     pred[u][u] = -1
    else if (exists edge (u,v)) then
     dist[u][v] = weight of edge (u,v)
     pred[u][v] = u
    else
     dist[u][v] = \infty
     pred[u][u] = -1
foreach t∈V do
 foreach u∈V do
  foreach v∈V do
    newLen = dist[u][t]+dist[t][v]
    if (newLen < dist[u][v]) then</pre>
     dist[u][v] = newLen
     pred[u][v] = pred[t][v]
```

Dynamic Programming Project

- Minimum Edit Distance between two strings
 - Convert "Grates" to "Create"
- Three possible operations
 - Replace character (i.e., "G" with "C")
 - Remove character (i.e., delete "s")
 - Insert character (i.e., "e" after the "r")
 - Edit distance = 3

Dynamic Programming Project

- Identify Matrix for recording solutions
 - Determine computation that relates past solutions to individual steps
 - When new minimum is found, choose that cost
 - Let's go to code

```
C R E A T E

0 1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 1 2 3 4 5

3 3 2 2 2 3 4

4 4 3 2 3 4 4

5 5 4 3 2 3 4

6 6 5 4 3 2 3
```

Dynamic Programming Summary

- Polynomial order of growth
 - Applicable even when problems become large
- Technique used in broad range of disciplines
 - Bioinformatics
 - Economics
 - Industrial Engineering