Special Properties of Water

class - 22 (16.11.24)

LS2103 (Autumn 2024) IISER Kolkata

Dr. Neelanjana Sengupta
Associate Professor
Dept. of Biological Sciences, IISER Kolkata

https://www.iiserkol.ac.in/~n.sengupta/

Ribosome subunits

Svedberg units are non additive – why?

Surface Tension: Attraction of surface particles to the (inner) bulk that resists external force

Units / Dimensions: Energy per unit area, or, Force per unit length

Comparison with other liquids

 Water has higher surface tension than other common solvents

http://hyperphysics.phy-astr.gsu.edu/hbase/surten.html

Comparison with other liquids

Dynamic viscosity (η):

Sahasrabudhe et al., Int. J. Food. Prop., 2017

- Water has higher surface tension than other common solvents
- Water has lower viscosity than other common solvents

V		
8	T(°C)	⊭(mPa⋅s)
	0	~1.8
	10	1.308
	20	1.002
	30	0.7978
	40	0.6531
	50	0.5471
	60	0.4658
	70	0.4044
	80	0.3550
	90	0.3150
	100	0.2822

6

The molecular picture of water

What is 'special'?

- Two lone pairs of electrons at the oxygen atom
- Resulting shape: Bent structure and **net dipole moment** (~1.84 Debye)

Compare with CO₂ (no net dipole moment)

Results in hydrogen bonded and tetrahedral water network

Hydrogen bond (HB): A mainly electrostatic attraction between a H-atom covalently bonded to one electronegative atom ('HB donor'), and another electronegative atom ('HB acceptor').

Water tetrahedrality

Orientational Order Parameter:

$$q = 1 - \frac{3}{8} \sum_{j=1}^{3} \sum_{k=j+1}^{4} \left(\cos \theta_{jk} + \frac{1}{3} \right)^{2}$$

q = 1 for perfect ice

Hydration layer ordering

(results from computer simulations)

q = 1 for perfect ice

Ordering modified with temperature, and in presence of solute (biomolecule)

Protein Hydration layer

Bulk water

Errington and Debenedetti, Nature, 2001

https://www.nature.com/articles/35053024

Under "no perturbations", every 420 in "make a break" H-Bonds Molecular scale inspection with other H2Os

Chandler, Nature Reviews, 2005, 437, 640

Solute radius comparable to H₂O

- Insignificant loss in H-bonds of nearby waters
- Marginal overall re-ordering of H-bonding network

Molecular scale inspection

Chandler, Nature Reviews, 2005, 437, 640

Large solute (eg. protein)

- No. of water H-bonds reduced significantly
- Interface formed to minimize loss in Hbonds
- Interface tends to move away from solute
- Energetic cost of solvating the solute (ie. forming the interface):

Assuming a spherical solute of cooling R ,
$$\underline{\Delta G} \approx (4\pi R^2) \gamma$$

 γ : Surface tension

Visualizing the H-bonded network (computer simulations)

Water close to a biomolecule ('hydration layer')

- Protein-water (P-W) H-bonds compete with water-water (W-W) H-bonds
- Lifetimes and energetics of P-W and W-W H-bonds may differ
- Water helps the protein achieve functional flexibility
- Water plays **thermodynamic role** in folding, enzyme-ligand binding, etc

Hydrogen bond (HB): A mainly electrostatic attraction between a H-atom covalently bonded to an electronegative atom ('HB donor'), and another electronegative atom ('HB acceptor').

Pure water: E_{Hbond} ~ 5.6 kCal mol⁻¹, ie. ~ **9.7 RT at room** temperature

Prob. A Raman spectroscopy study showed that breakage of a single H-bond within pure water at room temperature (300 K) is commensurate with an enthalpy increase of 1.9 kcal mol⁻¹, and an entropy increase of 2.4 k_B.

 What is the free energy cost of breaking a single H-bond at room temperature?