Polymorphic Types

CS242

Lecture 6

Let Expressions

Extend the lambda calculus with one new expression

$$e \rightarrow x \mid \lambda x.e \mid e e \mid let f = \lambda x.e in e \mid i$$

$$t \rightarrow \alpha \mid t \rightarrow t \mid int$$

Let Expressions

Nothing new here, really:

let $f = \lambda x.e$ in e' is equivalent to $(\lambda f.e') \lambda x.e$

And note we are getting closer to standard syntax:

let f x = e in e' is syntactic sugar for let $f = \lambda x.e$ in e'

Type Rules

 $[Var] \\ A, x: t \vdash x: t \\ A, x: t \vdash e: t' \\ A \vdash \lambda x: t.e: t \rightarrow t' \\ A \vdash i: int \\ [Int]$

$$A \vdash \lambda x.e : t$$

$$A \vdash e_1 : t \rightarrow t'$$

$$A \vdash e_2 : t$$

$$A \vdash e_2 : t$$

$$A \vdash e_1 = \lambda x.e \text{ in } e' : t'$$

$$A \vdash e_1 = \lambda x.e \text{ in } e' : t'$$

$$A \vdash e_1 = \lambda x.e \text{ in } e' : t'$$

Recall ...

The program

let
$$f = \lambda x.x$$
 in f f

is untypable, but

$$(\lambda x.x)(\lambda y.y)$$

is typable (in simply typed lambda calculus)

Polymorphic Types

```
e \rightarrow x \mid \lambda x.e \mid e e \mid let f = \lambda x.e in e \mid i t \rightarrow \alpha \mid t \rightarrow t \mid int o \rightarrow \forall \alpha.o \mid t
```

Polymorhpic Let Type Rule

```
A \vdash \lambda x.e : t
A, f: \forall \alpha.t \vdash e' : t' \text{ if } \alpha \notin FV(A)
A \vdash \text{let } f = \lambda x.e \text{ in } e' : t'
FV(A, x:t) = FV(A) \cup FV(t)
FV(\emptyset) = \emptyset
FV(\text{int}) = \emptyset
F(t \rightarrow t') = FV(t) \cup FV(t')
FV(\forall \alpha.t) = FV(t) - \{\alpha\}
FV(\alpha) = \{\alpha\}
```

The Idea

If we prove e: t and the proof does not use any facts about α , then we have also proven $e: \forall \alpha.t$.

Instantiation Rule

A, f: $\forall \alpha.t \vdash f: t[\alpha := t']$ [Inst]

Example

$$x: \beta \vdash x: \beta$$

 $\vdash \lambda x.x : \beta \rightarrow \beta$

I:
$$\forall \alpha. \alpha \rightarrow \alpha \vdash I : (\rho \rightarrow \rho) \rightarrow (\rho \rightarrow \rho)$$

 $I: \forall \alpha. \ \alpha \rightarrow \alpha \ \vdash I: \rho \rightarrow \rho$

$$I: \forall \alpha. \ \alpha \rightarrow \alpha \vdash II: \rho \rightarrow \rho$$

$$\vdash$$
 let I = $\lambda x.x$ in II : $\rho \rightarrow \rho$

Multiple Type Variables

```
A \vdash \lambda x.e : t
A, f: \forall \alpha_1,...,\alpha_n.t \vdash e': t' if \alpha_1,...,\alpha_n \notin FV(A)
                                                                                       [Let]
              A \vdash let f = \lambda x.e in e': t'
                                                                               FV(A, x:t) = FV(A) \cup FV(t)
                                                                               FV(\emptyset) = \emptyset
                                                                               FV(int) = \emptyset
                                                                               F(t \rightarrow t') = FV(t) \cup FV(t')
                                                                               FV(\forall \alpha_1,...,\alpha_n.t) = FV(t) - \{\alpha_1,...,\alpha_n\}
                                                                               FV(\alpha) = {\alpha}
```

Type Inference for Polymorphic Let

- To do type inference with polymorphic let, we need to know the type derivation for $\lambda x.e$ to do the generalization step
 - Because we need to compute the set of free variables in the environment
 - And we need to know the variables in the type of the function to generalize
- Thus, we need to solve the constraints and produce a valid typing of λx.e to proceed
 - So we solve the constraints and substitute the solution back into the proof at each let.
 - Compute FV(A)
 - Generalize

$$A \vdash \lambda x.e : t$$
 $A, f: \forall \alpha_1,...,\alpha_n.t \vdash e': t' \text{ if } \alpha_1,...,\alpha_n \notin FV(A)$

[Let]

Example – Full Derivation

$$x: \beta \rightarrow \beta \vdash x: \beta \rightarrow \beta$$

$$y: \beta \vdash y: \beta$$

$$\vdash \lambda x.x : (\beta \rightarrow \beta) \rightarrow (\beta \rightarrow \beta)$$

$$\vdash \lambda y.y: \beta \rightarrow \beta$$

I:
$$\forall \alpha. \alpha \rightarrow \alpha \vdash I : (\rho \rightarrow \rho) \rightarrow (\rho \rightarrow \rho)$$

I:
$$\forall \alpha. \alpha \rightarrow \alpha \vdash I: \rho \rightarrow \rho$$

$$\vdash (\lambda x.x) (\lambda y.y) : \beta \rightarrow \beta \qquad \beta \notin FV(\emptyset)$$

$$\beta \notin FV(\emptyset)$$

$$I: \forall \alpha. \ \alpha \rightarrow \alpha \vdash II: \rho \rightarrow \rho$$

$$\vdash$$
 let I = ($\lambda x.x$) ($\lambda y.y$) in II: $\rho \rightarrow \rho$

Outside the allowed syntax, but this example still works.

Example – Type Derivation Skeleton

Alex Aiken CS 242 Lecture 6

Solving the Equations

$$\begin{array}{ll} \alpha_{x} \rightarrow \alpha_{x} = (\alpha_{y} \rightarrow \alpha_{y}) \rightarrow \beta \\ \alpha_{x} = \alpha_{y} \rightarrow \alpha_{y} & [Structure] \\ \alpha_{x} = \beta \\ \beta = \alpha_{x} & [Reflexivity] \\ \beta = \alpha_{y} \rightarrow \alpha_{y} & [Transitivity] \end{array}$$

Substitution:

$$\alpha_{x} = \alpha_{y} \rightarrow \alpha_{y}$$
 $\beta = \alpha_{y} \rightarrow \alpha_{y}$

Example – Generalization

```
\mathbf{x}: \alpha_{\mathsf{y}} \to \alpha_{\mathsf{y}} \qquad \mathbf{y}: \alpha_{\mathsf{y}} \to \mathsf{y}: \alpha_{\mathsf{y}}
\vdash \lambda \mathsf{x}. \mathsf{x}: (\alpha_{\mathsf{y}} \to \alpha_{\mathsf{y}}) \to (\alpha_{\mathsf{y}} \to \alpha_{\mathsf{y}})
\vdash \lambda \mathsf{y}. \mathsf{y}: \alpha_{\mathsf{y}} \to \alpha_{\mathsf{y}}
\vdash \lambda \mathsf{y}. \mathsf{y}: \alpha_{\mathsf{y}} \to \alpha_{\mathsf{y}}
\vdash \mathsf{y}: \alpha_{\mathsf{y}} \to \alpha_{\mathsf{y}} \to \alpha_{\mathsf{y}} \to \alpha_{\mathsf{y}}
\vdash \mathsf{y}: \alpha_{\mathsf{y}} \to \alpha_{\mathsf{y}}
```

 $\begin{aligned} \mathbf{x} &: \alpha_{\mathbf{y}} \Rightarrow \alpha_{\mathbf{y}} & \vdash \mathbf{x} : \alpha_{\mathbf{y}} \Rightarrow \alpha_{\mathbf{y}} \\ &\vdash \lambda \mathbf{x} . \mathbf{x} : (\alpha_{\mathbf{y}} \Rightarrow \alpha_{\mathbf{y}}) \Rightarrow (\alpha_{\mathbf{y}} \Rightarrow \alpha_{\mathbf{y}}) \\ &\vdash \lambda \mathbf{y} . \mathbf{y} : \alpha_{\mathbf{y}} \Rightarrow \alpha_{\mathbf{y}} \\ &\vdash (\lambda \mathbf{x} . \mathbf{x}) & (\lambda \mathbf{y} . \mathbf{y}) : \alpha_{\mathbf{y}} \Rightarrow \alpha_{\mathbf{y}} \end{aligned} \qquad \begin{aligned} &\vdash \mathbf{y} : \alpha_{\mathbf{y}} \Rightarrow \alpha_{\mathbf{y}} \\ &\vdash (\lambda \mathbf{x} . \mathbf{x}) & (\lambda \mathbf{y} . \mathbf{y}) : \alpha_{\mathbf{y}} \Rightarrow \alpha_{\mathbf{y}} \end{aligned} \qquad \begin{aligned} &\vdash \mathbf{y} : \alpha_{\mathbf{y}} \Rightarrow \alpha_{\mathbf{y}} \\ &\vdash (\lambda \mathbf{x} . \mathbf{x}) & (\lambda \mathbf{y} . \mathbf{y}) : \alpha_{\mathbf{y}} \Rightarrow \alpha_{\mathbf{y}} \end{aligned} \qquad \begin{aligned} &\vdash \mathbf{y} : \alpha_{\mathbf{y}} \Rightarrow \alpha_{\mathbf{y}} \\ &\vdash (\lambda \mathbf{x} . \mathbf{x}) & (\lambda \mathbf{y} . \mathbf{y}) : \alpha_{\mathbf{y}} \Rightarrow \alpha_{\mathbf{y}} \end{aligned} \qquad \begin{aligned} &\vdash \mathbf{y} : \alpha_{\mathbf{y}} \Rightarrow \alpha_{\mathbf{y}} \\ &\vdash (\lambda \mathbf{x} . \mathbf{x}) & (\lambda \mathbf{y} . \mathbf{y}) : \alpha_{\mathbf{y}} \Rightarrow \alpha_{\mathbf{y}} \end{aligned} \qquad \begin{aligned} &\vdash \mathbf{y} : \alpha_{\mathbf{y}} \Rightarrow \alpha_{\mathbf{y}} \\ &\vdash (\lambda \mathbf{x} . \mathbf{x}) & (\lambda \mathbf{y} . \mathbf{y}) : \alpha_{\mathbf{y}} \Rightarrow \alpha_{\mathbf{y}} \end{aligned} \qquad \begin{aligned} &\vdash \mathbf{y} : \alpha_{\mathbf{y}} \Rightarrow \alpha_{\mathbf{y}} \\ &\vdash (\lambda \mathbf{x} . \mathbf{x}) & (\lambda \mathbf{y} . \mathbf{y}) : \alpha_{\mathbf{y}} \Rightarrow \alpha_{\mathbf{y}} \end{aligned} \qquad \begin{aligned} &\vdash \mathbf{y} : \alpha_{\mathbf{y}} \Rightarrow \alpha_{\mathbf{y}} \\ &\vdash (\lambda \mathbf{x} . \mathbf{x}) & (\lambda \mathbf{y} . \mathbf{y}) : \alpha_{\mathbf{y}} \Rightarrow \alpha_{\mathbf{y}} \end{aligned} \qquad \begin{aligned} &\vdash \mathbf{y} : \alpha_{\mathbf{y}} \Rightarrow \alpha_{\mathbf{y}} \\ &\vdash (\lambda \mathbf{x} . \mathbf{x}) & (\lambda \mathbf{y} . \mathbf{y}) : \alpha_{\mathbf{y}} \Rightarrow \alpha_{\mathbf{y}} \end{aligned} \qquad \begin{aligned} &\vdash \mathbf{y} : \alpha_{\mathbf{y}} \Rightarrow \alpha_{\mathbf{y}} \\ &\vdash (\lambda \mathbf{x} . \mathbf{x}) & (\lambda \mathbf{y} . \mathbf{y}) : \alpha_{\mathbf{y}} \Rightarrow \alpha_{\mathbf{y}} \end{aligned} \qquad \begin{aligned} &\vdash \mathbf{y} : \alpha_{\mathbf{y}} \Rightarrow \alpha_{\mathbf{y}} \\ &\vdash (\lambda \mathbf{x} . \mathbf{x}) & (\lambda \mathbf{y} . \mathbf{y}) : \alpha_{\mathbf{y}} \Rightarrow \alpha_{\mathbf{y}} \end{aligned} \qquad \begin{aligned} &\vdash \mathbf{y} : \alpha_{\mathbf{y}} \Rightarrow \alpha_{\mathbf{y}} \\ &\vdash (\lambda \mathbf{x} . \mathbf{x}) & (\lambda \mathbf{y} . \mathbf{y}) : \alpha_{\mathbf{y}} \Rightarrow \alpha_{\mathbf{y}} \end{aligned} \qquad \begin{aligned} &\vdash \mathbf{y} : \alpha_{\mathbf{y}} \Rightarrow \alpha_{\mathbf{y}} \\ &\vdash (\lambda \mathbf{x} . \mathbf{x}) & (\lambda \mathbf{y} . \mathbf{y}) : \alpha_{\mathbf{y}} \Rightarrow \alpha_{\mathbf{y}} \end{aligned} \qquad \begin{aligned} &\vdash \mathbf{y} : \alpha_{\mathbf{y}} \Rightarrow \alpha_{\mathbf{y}} \\ &\vdash (\lambda \mathbf{x} . \mathbf{x}) & (\lambda \mathbf{y} . \mathbf{y}) : \alpha_{\mathbf{y}} \Rightarrow \alpha_{\mathbf{y}} \end{aligned} \qquad \begin{aligned} &\vdash (\lambda \mathbf{x} . \mathbf{x}) & (\lambda \mathbf{y} . \mathbf{y}) : \alpha_{\mathbf{y}} \Rightarrow \alpha_{\mathbf{y}} \end{aligned} \qquad \end{aligned}$

Next we run type inference on the body of the

$$\mathbf{x}: \alpha_{\mathbf{y}} \Rightarrow \alpha_{\mathbf{y}} \quad \vdash \mathbf{x}: \alpha_{\mathbf{y}} \Rightarrow \alpha_{\mathbf{y}} \qquad \mathbf{y}: \alpha_{\mathbf{y}} \quad \vdash \mathbf{y}: \alpha_{\mathbf{y}}$$

$$\vdash \mathbf{\lambda} \mathbf{x}. \mathbf{x}: (\alpha_{\mathbf{y}} \Rightarrow \alpha_{\mathbf{y}}) \Rightarrow (\alpha_{\mathbf{y}} \Rightarrow \alpha_{\mathbf{y}}) \qquad \vdash \mathbf{\lambda} \mathbf{y}. \mathbf{y}: \alpha_{\mathbf{y}} \Rightarrow \alpha_{\mathbf{y}}$$

$$\vdash (\mathbf{\lambda} \mathbf{x}. \mathbf{x}) (\mathbf{\lambda} \mathbf{y}. \mathbf{y}): \alpha_{\mathbf{y}} \Rightarrow \alpha_{\mathbf{y}} \qquad \mathbf{x}_{\mathbf{y}} \notin \mathsf{FV}(\emptyset)$$

$$\vdash (\mathbf{\lambda} \mathbf{x}. \mathbf{x}) (\mathbf{\lambda} \mathbf{y}. \mathbf{y}): \alpha_{\mathbf{y}} \Rightarrow \alpha_{\mathbf{y}} \qquad \alpha_{\mathbf{y}} \notin \mathsf{FV}(\emptyset)$$

$$\vdash (\mathbf{\lambda} \mathbf{x}. \mathbf{x}) (\mathbf{\lambda} \mathbf{y}. \mathbf{y}): \alpha_{\mathbf{y}} \Rightarrow \alpha_{\mathbf{y}} \qquad \alpha_{\mathbf{y}} \notin \mathsf{FV}(\emptyset)$$

$$\vdash (\mathbf{\lambda} \mathbf{x}. \mathbf{x}) (\mathbf{\lambda} \mathbf{y}. \mathbf{y}): \alpha_{\mathbf{y}} \Rightarrow \alpha_{\mathbf{y}} \qquad \alpha_{\mathbf{y}} \notin \mathsf{FV}(\emptyset)$$

$$\vdash (\mathbf{\lambda} \mathbf{x}. \mathbf{x}) (\mathbf{\lambda} \mathbf{y}. \mathbf{y}): \alpha_{\mathbf{y}} \Rightarrow \alpha_{\mathbf{y}} \qquad \alpha_{\mathbf{y}} \notin \mathsf{FV}(\emptyset)$$

$$\vdash (\mathbf{\lambda} \mathbf{x}. \mathbf{x}) (\mathbf{\lambda} \mathbf{y}. \mathbf{y}): \alpha_{\mathbf{y}} \Rightarrow \alpha_{\mathbf{y}} \qquad \alpha_{\mathbf{y}} \notin \mathsf{FV}(\emptyset)$$

Solving the Equations

$$\gamma \rightarrow \gamma = (\rho \rightarrow \rho) \rightarrow \mu$$

 $\gamma = \rho \rightarrow \rho$ [Structure]
 $\gamma = \mu$
 $\mu = \gamma$ [Reflexivity]
 $\mu = \rho \rightarrow \rho$ [Transitivity]

Substitution:

$$\gamma = \rho \rightarrow \rho \\
\mu = \rho \rightarrow \rho$$

Example – Full Derivation

$$\mathbf{x}: \alpha_{\mathsf{y}} \to \alpha_{\mathsf{y}} \quad \vdash \mathbf{x}: \alpha_{\mathsf{y}} \to \alpha_{\mathsf{y}}$$

$$\mathbf{y}: \alpha_{\mathsf{y}} \quad \vdash \mathbf{y}: \alpha_{\mathsf{y}}$$

$$\vdash \lambda \mathbf{x}. \mathbf{x}: (\alpha_{\mathsf{y}} \to \alpha_{\mathsf{y}}) \to (\alpha_{\mathsf{y}} \to \alpha_{\mathsf{y}})$$

$$\vdash \lambda \mathbf{y}. \mathbf{y}: \alpha_{\mathsf{y}} \to \alpha_{\mathsf{y}}$$

I:
$$\forall \alpha. \ \alpha \rightarrow \alpha \vdash I : (\rho \rightarrow \rho) \rightarrow (\rho \rightarrow \rho)$$
 I: $\forall \alpha. \ \alpha \rightarrow \alpha \vdash I : \rho \rightarrow \rho$

$$\vdash (\lambda x.x) (\lambda y.y) : \alpha_v \rightarrow \alpha_v \qquad \alpha_v \notin FV(\emptyset)$$

I:
$$\forall \alpha. \alpha \rightarrow \alpha \vdash \Box : \rho \rightarrow \rho$$

$$\vdash$$
 let I = $(\lambda x.x) (\lambda y.y)$ in II: $\rho \rightarrow \rho$

Summary

Polymorphism allows one to write and use generic functions.

Data types:

Cons: $\forall \alpha. \alpha \rightarrow \text{List}(\alpha) \rightarrow \text{List}(\alpha)$

Nil: $\forall \alpha$. List(α)

Higher order functions:

Map: $\forall \alpha, \beta. (\alpha \rightarrow \beta) \rightarrow \text{List}(\alpha) \rightarrow \text{List}(\beta)$

Function composition: $\forall \alpha, \beta, \rho. (\alpha \rightarrow \rho) \rightarrow (\rho \rightarrow \beta) \rightarrow (\alpha \rightarrow \beta)$

Discussion

- Parametric polymorphism allows functions to be defined once and used at many different types
 - Does not eliminate all cases where code must be duplicated to satisfy the type checker, but it goes a very long way.
- The type inference algorithm produces the most general possible type
 - No better type is possible within the type system
- Considered a major breakthrough when it was discovered in the late 1970's
 - Robin Milner received the Turing Award for this work

Impact

- All typed functional languages use parametric polymorphism
 - ML, Haskell
 - The functional languages also use type inference
- Also the basis of templates/generics in C++ and Java

History

Consider a function type: $A \rightarrow B$

This looks a lot like the syntax for logical implication ...

There is a connection! A type can be read as saying that a computation of type $A \rightarrow B$ is a proof that given something of type A, we can construct something of type B.

These are *constructive logics*: Don't just prove that the thing of type B exists, but actually produce the element of B (using the computation)

Typed vs. Untyped

- Typed languages always rule out some desirable programs
 - Response: Various kinds of polymorphism
- Typed languages require a lot more work (writing types)
 - Response: Type inference
- Typed languages provide a powerful form of program verification, guaranteeing certain behavior for all inputs
 - Response: Maybe we only care about a subset of the inputs, not all inputs
- Bottom line: Modern typed languages cover 95%+ of what you want to write and require only a small amount of extra work
 - But, programmers still need to understand the type system to use it!
 - This is the real cost

Utility

• Polymorphic type inference can make you a better programmer

Especially when you program in untyped languages!

- If you learn this type discipline, you will find yourself mentally applying it to your own code
 - And making many fewer type errors, even without a type checker
 - Covers > 95% of code people write (excluding objects ...)