Statistical Analysis in Fin Mkts

MSF 502

Li Cai

Discrete Probability Distributions

Chapter 5 Learning Objectives (LOs)

- LO 5.1: Distinguish between discrete and continuous random variables.
- LO 5.2: Describe the probability distribution of a discrete random variable.
- LO 5.3: Calculate and interpret summary measures for a discrete random variable.
- LO 5.4: Differentiate among risk neutral, risk averse, and risk loving consumers.
- LO 5.5: Compute summary measures to evaluate portfolio returns.

Chapter 5 Learning Objectives (LOs)

- LO 5.6: Describe the binomial distribution and compute relevant probabilities.
- LO 5.7: Describe the Poisson distribution and compute relevant probabilities.

LO 5.1 Distinguish between discrete and continuous random variables.

- Random variable
 - A function that assigns numerical values to the outcomes of a random experiment.
 - Denoted by uppercase letters (e.g., X).
- Values of the random variable are denoted by corresponding lowercase letters.
 - Corresponding values of the random variable:

$$X_1, X_2, X_3, \dots$$

- Random variables may be classified as:
 - Discrete
 - The random variable assumes a countable number of distinct values.
 - Continuous
 - The random variable is characterized by (infinitely) uncountable values within any interval.

- Consider an experiment in which two shirts are selected from the production line and each can be defective (D) or non-defective (N).
 - Here is the sample space:
 - The random variable X is the number of defective shirts.
 - The possible number of defective shirts is the set {0, 1, 2}.
- Since these are the only possible outcomes, this is a discrete random variable.

LO 5.2 Describe the probability distribution of a discrete random variable.

- Every random variable is associated with a probability distribution that describes the variable completely.
 - A probability mass function is used to describe discrete random variables.
 - A probability density function is used to describe continuous random variables.
 - A cumulative distribution function may be used to describe both discrete and continuous random variables.

The probability mass function of a discrete random variable X is a list of the values of X with the associated probabilities, that is, the list of all possible pairs

$$(x,P(X=x))$$

 The cumulative distribution function of X is defined as

$$P(X \leq x)$$

- Two key properties of discrete probability distributions:
 - The probability of each value x is a value between 0 and 1, or equivalently

$$0 \le P(X = x) \le 1$$

The sum of the probabilities equals 1. In other words,

$$\sum P(X = x_i) = 1$$

where the sum extends over all values x of X.

- A discrete probability distribution may be viewed as a table, algebraically, or graphically.
- For example, consider the experiment of rolling a six-sided die. A tabular presentation is:

Х	1	2	3	4	5	6
P(X=x)	1/6	1/6	1/6	1/6	1/6	1/6

Each outcome has an associated probability of 1/6. Thus, the pairs of values and their probabilities form the probability mass function for X.

LO 5.2

5.1 Random Variables and Discrete Probability Distributions

- Another tabular view of a probability distribution is based on the cumulative probability distribution.
 - For example, consider the experiment of rolling a six-sided die. The cumulative probability distribution is

Х	1	2	3	4	5	6
$P(X \leq x)$	1/6	2/6	3/6	4/6	5/6	6/6

■ The cumulative probability distribution gives the probability of X being less than or equal to x. For example, $P(X \le 4) = 4/6$

- A probability distribution may be expressed algebraically.
- For example, for the six-sided die experiment, the probability distribution of the random variable X is:

$$P(X = x) = \begin{cases} 1/6 & \text{if } x = 1,2,3,4,5,6 \\ 0 & \text{otherwise} \end{cases}$$

Using this formula we can find

$$P(X=5)=1/6$$
 $P(X=7)=0$

$$P(X=7)=0$$

- A probability distribution may be expressed graphically.
 - The values x of X are placed on the horizontal axis and the associated probabilities on the vertical axis.

A line is drawn such that its height is associated with

the probability of x.

 For example, here is the graph representing the six-sided die experiment:

 This is a uniform distribution since the bar heights are all the same.

 Example: Consider the probability distribution which reflects the number of credit cards that

Bankrate.com's readers carry:

- Is this a valid probability distribution?
- What is the probability that a reader carries no credit cards?
- What is the probability that a reader carries less than two?

Number of Credit Cards	Percentage
0	2.5%
1	9.8
2	16.6
3	16.5
4*	54.6

^{*}denotes 4 or more credit cards.

Source: www.bankrate.com, Financial Literacy Series, 2007.

What is the probability that a reader carries at least two credit cards?

 Consider the probability distribution which reflects the number of credit cards that <u>Bankrate.com's</u> readers carry:

□ Yes, because $0 \le P(X = x) \le 1$ and $\Sigma P(X = x) = 1$.

$$P(X=0)=0.025$$

$$P(X < 2) = P(X = 0) + P(X = 1)$$
$$= 0.025 + 0.098 = 0.123.$$

Number of Credit Cards	Percentage
0	2.5%
1	9.8
2	16.6
3	16.5
4*	54.6

^{*}denotes 4 or more credit cards.

$$P(X \ge 2) = P(X = 2) + P(X = 3)$$
 Source www.bankrate.com, Financial Literacy Series, 2007.
+ $P(P = 4^*) = 0.166 + 0.165 + 0.546 = 0.877$.
Alternatively, $P(X \ge 2) = 1 - P(X < 2) = 1 - 0.123 = 0.877$.

LO 5.3 Calculate and interpret summary measures for a discrete random variable.

- Summary measures for a random variable include the
 - Mean (Expected Value)
 - Variance
 - Standard Deviation

Expected Value
E(X)

Population Mean

μ

- E(X) is the long-run average value of the random variable over infinitely many independent repetitions of an experiment.
- □ For a discrete random variable X with values x_1, x_2, x_3, \ldots that occur with probabilities $P(X = x_i)$, the expected value of X is

$$E(X) = \mu = \sum_{i} x_{i} P(X = x_{i})$$

- Variance and Standard Deviation
 - □ For a discrete random variable X with values x_1, x_2, x_3, \ldots that occur with probabilities P(X = x),

$$Var(X) = \sigma^{2} = \sum (x_{i} - \mu)^{2} P(X = x_{i})$$
$$= \sum x_{i}^{2} P(X = x_{i}) - \mu^{2}$$

□ The standard deviation is the square root of the variance. $SD(X) = \sigma = \sqrt{\sigma^2}$

 Example: Brad Williams, owner of a car dealership in Chicago, decides to construct an incentive compensation program based on performance.

Bonus (in \$1,000s)	Performance Type	Probability
\$10	Superior	0.15
\$6	Good	0.25
\$3	Fair	0.40
\$0	Poor	0.20

- Calculate the expected value of the annual bonus amount.
- Calculate the variance and standard deviation of the annual bonus amount.

ILLINOIS INSTITUTE OF TECHNOLOGY

Solution: Let the random variable X denote the bonus amount (in \$1,000s) for an employee.

Value, x _i	Probability, $P(X = x_i)$	Weighted Value, $x_i P(X = x_i)$	Weighted Squared Deviation, $(x_i - \mu)^2 P(X = x_i)$
10	0.15	$10 \times 0.15 = 1.5$	$(10 - 4.2)^2 \times 0.15 = 5.05$
6	0.25	$6 \times 0.25 = 1.5$	$(6-4.2)^2 \times 0.25 = 0.81$
3	0.40	$3 \times 0.40 = 1.2$	$(3-4.2)^2 \times 0.40 = 0.58$
0	0.20	$0 \times 0.20 = 0$	$(0-4.2)^2 \times 0.20 = 3.53$
		Total = 4.2	Total = 9.97

$$E(X) = \mu = \sum x_i P(X = x_i) = 4.2 \text{ or } \$4,200$$

□
$$Var(X) = \sigma^2 = \Sigma(x_i - \mu)^2 P(X = x_i) = 9.97 \text{ (in $1,000s)}^2.$$

$$SD(X) = \sqrt{\sigma^2} = \sqrt{9.97} = 3.158 \text{ or } \$3,158.$$

LO 5.4 Differentiate among risk neutral, risk averse, and risk loving consumers.

- Risk Neutrality and Risk Aversion
 - Risk averse consumers:
 - Expect a reward for taking a risk.
 - May decline a risky prospect even if it offers a positive expected gain.
 - Risk neutral consumers:
 - Completely ignore risk.
 - Always accept a prospect that offers a positive expected gain.

- Risk Neutrality and Risk Aversion
 - Risk loving consumers:
 - May accept a risky prospect even if the expected gain is negative.
- Application of Expected Value to Risk
 - Suppose you have a choice of receiving \$1,000 in cash or receiving a beautiful painting from your grandmother.
 - The actual value of the painting is uncertain. Here is a
 - probability distribution of the possible worth of the painting. What

Х	P(X=x)
\$2,000	0.20
\$1,000	0.50
\$500	0.30

should your do?

- Application of Expected Value to Risk
 - First calculate the expected value:

Х	P(X=x)
\$2,000	0.20
\$1,000	0.50
\$500	0.30

$$E(X) = \sum x_i P(X = x_i)$$
= \$2,000 × 0.20 + \$1,000 × 0.50 + \$500 × 0.30
= \$1,050

- Since the expected value is more than \$1,000 it may seem logical to choose the painting over cash.
- However, we have not taken into account risk.

LO 5.5 Compute summary measures to evaluate a portfolio returns.

- Investment opportunities often use both:
 - Expected return as a measure of reward.
 - Variance or standard deviation of return as a measure of risk.
- Portfolio is defined as a collection of assets such as stocks and bonds.
 - Let X and Y represent two random variables of interest, denoting, say, the returns of two assets.
 - Since an investor may have invested in both assets, we would like to evaluate the portfolio return formed by a linear combination of X and Y.

- Properties of random variables useful in evaluating portfolio returns.
 - Given two random variables X and Y,
 - The expected value of X and Y is

$$E(X+Y) = E(X) + E(Y)$$

The variance of X and Y is

$$Var(X+Y) = Var(X) + Var(Y) + 2Cov(X,Y)$$

where Cov(X, Y) is the covariance between X and Y.

For constants a, b, the formulas extend to

$$E(aX + bY) = aE(X) + bE(Y)$$

$$Var(aX + bY) = a^{2}Var(X) + b^{2}Var(Y) + 2abCov(X,Y)$$

- Expected return, variance, and standard deviation of portfolio returns.
 - □ Given a portfolio with two assets, Asset A and Asset B, the expected return of the portfolio $E(R_p)$ is computed as:

$$E(R_p) = w_A E(R_A) + w_B E(R_B)$$

where
 w_A and w_B are the portfolio weights
 w_A + w_B = 1
 E(R_A) and E(R_B) are the expected returns on assets
 A and B, respectively.

- Expected return, variance, and standard deviation of portfolio returns.
 - Using the covariance or the correlation coefficient of the two returns, the portfolio variance of return is:

$$Var(R_{p}) = W_{A}^{2} \sigma_{A}^{2} + W_{B}^{2} \sigma_{B}^{2} + 2W_{A}W_{B}\rho_{AB}\sigma_{A}\sigma_{B}$$

where σ_A^2 and σ_B^2 are the variances of the returns for Asset A and Asset B, respectively, σ_{AB} is the covariance between the returns for Assets A and B ρ_{AB} is the correlation coefficient between the returns

for Asset A and Asset B.

- Example: Consider an investment portfolio of \$40,000 in Stock A and \$60,000 in Stock B.
 - Given the following information, calculate the expected return of this portfolio.

Stock A	Stock B	
$E(R_{\rm A})=\mu_{\rm A}=9.5\%$	$E(R_{\rm B}) = \mu_{\rm B} = 7.6\%$	
$SD(R_{A}) = \sigma_{A} = 12.93\%$	$SD(R_{\rm B}) = \sigma_{\rm B} = 8.20\%$	
$Cov(R_A, R_B) = \sigma_{AB} = 18.60\%$		

□ SOLUTION: First we compute the portfolio weights. Since \$40,000 is invested in Stock A and \$60,000 in Stock B, we compute

$$w_{\rm A} = \frac{40,000}{100,000} = 0.40$$
 and $w_{\rm B} = \frac{60,000}{100,000} = 0.60$.

Thus, using the formula for portfolio expected return, we solve:

$$E(R_p) = (0.40 \times 9.5\%) + (0.60 \times 7.6\%) = 3.80\% + 4.56\% = 8.36\%.$$

Example: Consider an investment portfolio of \$40,000 in Stock A and \$60,000 in Stock B.

Stock A	Stock B	
$E(R_{A})=\mu_{A}=9.5\%$	$E(R_{\rm B}) = \mu_{\rm B} = 7.6\%$	
$SD(R_A) = \sigma_A = 12.93\%$	$SD(R_{\rm B})=\sigma_{\rm B}=8.20\%$	
$Cov(R_A, R_B) = \sigma_{AB} = 18.60\%$		

 Calculate the correlation coefficient between the returns on Stocks A and B.

□ Solution:
$$\rho_{AB} = \frac{\sigma_{AB}}{\sigma_{A}\sigma_{B}} = \frac{18.60}{12.93 \times 8.20} = 0.1754$$

Example: Consider an investment portfolio of \$40,000 in Stock A and \$60,000 in Stock B.

Stock A	Stock B		
$E(R_{\rm A})=\mu_{\rm A}=9.5\%$	$E(R_{\rm B}) = \mu_{\rm B} = 7.6\%$		
$SD(R_A) = \sigma_A = 12.93\%$	$SD(R_{\rm B})=\sigma_{\rm B}=8.20\%$		
$Cov(R_A, R_B) = \sigma_{AB} = 18.60\%$			

Calculate the portfolio variance.

Solution:

$$Var(R_p) = w_A^2 \sigma_A^2 + w_B^2 \sigma_B^2 + 2w_A w_B \sigma_{AB}$$

$$= (0.40)^2 (12.93)^2 + (0.60)^2 (8.20)^2 + 2(0.40)(0.60)(18.60)$$

$$= 26.75 + 24.21 + 8.93$$

$$= 59.89$$

Example: Consider an investment portfolio of \$40,000 in Stock A and \$60,000 in Stock B.

Stock A	Stock B		
$E(R_{\rm A})=\mu_{\rm A}=9.5\%$	$E(R_{\rm B}) = \mu_{\rm B} = 7.6\%$		
$SD(R_A) = \sigma_A = 12.93\%$	$SD(R_{\rm B})=\sigma_{\rm B}=8.20\%$		
$Cov(R_A, R_B) = \sigma_{AB} = 18.60\%$			

- Calculate the portfolio standard deviation.
- Solution:

$$SD(R_p) = \sqrt{59.89} = 7.74$$
, or 7.74%

5.4 The Binomial Probability Distribution

LO 5.6 Describe the binomial distribution and compute relevant probabilities.

- A binomial random variable is defined as the number of successes achieved in the n trials of a Bernoulli process.
 - A Bernoulli process consists of a series of n independent and identical trials of an experiment such that on each trial:
 - There are only two possible outcomes:
 p = probability of a success
 1-p = q = probability of a failure
 - Each time the trial is repeated, the probabilities of success and failure remain the same.

5.4 The Binomial Probability Distribution

- A binomial random variable X is defined as the number of successes achieved in the n trials of a Bernoulli process.
- A binomial probability distribution shows the probabilities associated with the possible values of the binomial random variable (that is, 0, 1, . . . , *n*).
 - \Box For a binomial random variable X, the probability of Xsuccesses in *n* Bernoulli trials is

$$P(X = x) = \binom{n}{x} p^{x} q^{n-x} = \frac{n!}{x!(n-x)!} p^{x} q^{n-x}$$
for $x = 0, 1, 2, ..., n$. By definition, $0! = 1$.

5.4 The Binomial Probability Distribution

- For a binomial distribution:
 - The expected value (E(X)) is:

$$E(X) = \mu = np$$

□ The variance (Var(X)) is: $Var(X) = \sigma^2 = npq$

$$Var(X) = \sigma^2 = npq$$

The standard deviation (SD(X)) is:

$$SD(X) = \sigma = \sqrt{npq}$$

5.4 The Binomial Probability Distribution

- **Example: Approximately 20% of U.S. workers** are afraid that they will never be able to retire. Suppose 10 workers are randomly selected.
 - What is the probability that none of the workers is afraid that they will never be able to retire?
 - **Solution:** Let X = 10, then

$$P(X = 0) = \frac{10!}{0!(10 - 0)!} \times (0.20)^{0} \times (0.80)^{10}$$

$$= \frac{10 \times 9 \times \dots \times 1}{(1) \times (10 \times 9 \times \dots \times 1)} \times 1 \times (0.80)^{10} = 1 \times 1 \times 0.1074$$

$$= 0.1074.$$

5.4 The Binomial Probability Distribution

- Computing binomial probabilities with Excel:
 - In 2007 approximately 4.7% of the households in the Detroit metropolitan area were in some stage of foreclosure. What is the probability that exactly 5 of these 100 mortgage-holding households in Detroit are in some stage of foreclosure?

Solution: Using the binomial function on Excel, enter the

four arguments shown

Excel returns the formula result as 0.1783; thus,
 P(X = 5) = 0.1783.

5.5 The Poisson Probability Distribution

LO 5.7 Describe the Poisson distribution and compute relevant probabilities.

- A binomial random variable counts the number of successes in a fixed number of Bernoulli trials.
- In contrast, a Poisson random variable counts the number of successes over a given interval of time or space.
- Examples of a Poisson random variable include
 - With respect to time—the number of cars that cross the Brooklyn Bridge between 9:00 am and 10:00 am on a Monday morning.
 - With respect to space—the number of defects in a 50-yard roll of fabric.

5.5 The Poisson Probability Distribution

- A random experiment satisfies a Poisson process if:
 - The number of successes within a specified time or space interval equals any integer between zero and infinity.
 - The numbers of successes counted in nonoverlapping intervals are independent.
 - The probability that success occurs in any interval is the same for all intervals of equal size and is proportional to the size of the interval.

LO 5.7

5.5 The Poisson Probability Distribution

For a Poisson random variable X, the probability of x successes over a given interval of time or space is

$$P(X = x) = \frac{e^{-\mu}\mu^{x}}{x!}$$
 for $x = 0, 1, 2...,$

where μ is the mean number of successes and $e \approx 2.718$ is the base of the natural logarithm.

LO 5.7

5.5 The Poisson Probability Distribution

- For a Poisson distribution:
 - □ The expected value (E(X)) is: $E(X) = \mu$

$$E(X) = \mu$$

■ The variance (Var(X)) is:

$$Var(X) = \sigma^2 = \mu$$

The standard deviation (SD(X)) is:

$$SD(X) = \sigma = \sqrt{\mu}$$

5.5 The Poisson Probability

- Example: Returning to the Starbucks example, Ann believes that the typical Starbucks customer averages 18 visits over a 30-day month.
 - How many visits should Anne expect in a 5-day period from a typical Starbucks customer?

Given the rate of 18 visits over a 30-day month, we can write the mean for the 30-day period as $\mu_{30} = 18$. For this problem, we compute the proportional mean for a 5-day period as $\mu_5 = 3$ because $\frac{18 \text{ visits}}{30 \text{ days}} = \frac{3 \text{ visits}}{5 \text{ days}}$.

What is the probability that a customer visits the chain five times in a 5-day period?

$$P(X = 5) = \frac{e^{-3}3^5}{5!} = \frac{(0.0498)(243)}{120} = 0.1008$$

End of Chapter