Medical Image Processing for Interventional Applications

Epipolar Constraint and Essential Matrix

Online Course – Unit 31 Andreas Maier, Joachim Hornegger, Frank Schebesch Pattern Recognition Lab (CS 5)

Topics

Epipolar Constraint and Essential Matrix

Properties of the Essential Matrix System of Linear Equations The Seaman's Algorithm

Summary

Take Home Messages Further Readings

Epipolar Constraint and Essential Matrix

In the last unit we have introduced the *epipolar constraint*:

$$\left(ilde{oldsymbol{q}}^{i}
ight)^{\!\mathsf{T}} \cdot oldsymbol{E} \cdot ilde{oldsymbol{p}}^{i} = 0,$$

for normalized coordinates (f = 1) and with the essential matrix E.

Now we want to discuss some of its properties.

• In homogeneous coordinates, the cross product of points is a line.

- In homogeneous coordinates, the cross product of points is a line.
- If we interpret $(\mathbf{t} \times \mathbf{p}^c)$ now in homogeneous coordinates as $(\tilde{\mathbf{t}} \times \tilde{\mathbf{p}}^c)^T$, we get a line (which we denote by a row vector).

- In homogeneous coordinates, the cross product of points is a line.
- If we interpret $(\mathbf{t} \times \mathbf{p}^c)$ now in homogeneous coordinates as $(\tilde{\mathbf{t}} \times \tilde{\mathbf{p}}^c)^T$, we get a line (which we denote by a row vector).
- The essential matrix \boldsymbol{E} maps a point $\tilde{\boldsymbol{p}}^i$ to its epipolar line by $\boldsymbol{l}_2^\mathsf{T} = \boldsymbol{E} \tilde{\boldsymbol{p}}^i$.

- In homogeneous coordinates, the cross product of points is a line.
- If we interpret $(\mathbf{t} \times \mathbf{p}^c)$ now in homogeneous coordinates as $(\tilde{\mathbf{t}} \times \tilde{\mathbf{p}}^c)^T$, we get a line (which we denote by a row vector).
- The essential matrix \boldsymbol{E} maps a point $\tilde{\boldsymbol{p}}^i$ to its epipolar line by $\boldsymbol{l}_2^T = \boldsymbol{E} \tilde{\boldsymbol{p}}^i$.
- If we inspect the matrix

$$m{\mathcal{E}}^{\mathsf{T}}m{\mathcal{E}} = ig(m{R}[m{t}]_{ imes}ig)^{\mathsf{T}}m{R}[m{t}]_{ imes} = ig[m{t}]_{ imes}^{\mathsf{T}}[m{t}]_{ imes},$$

we recognize that $\mathbf{E}^{\mathsf{T}}\mathbf{E}$ is independent from \mathbf{R} .

• The null space of **E** is spanned by **t**.

- The null space of **E** is spanned by **t**.
- Multiplication of the essential matrix E by a constant does not change the epipolar constraint.
 - \rightarrow We normalize the matrix by either $||t||_2 = 1$ or normalize the Frobenius norm $||E||_F = 1$ of the matrix.

- The null space of *E* is spanned by *t*.
- Multiplication of the essential matrix E by a constant does not change the epipolar constraint.
 - \rightarrow We normalize the matrix by either $||t||_2 = 1$ or normalize the Frobenius norm $||E||_F = 1$ of the matrix.
- rank(E) = 2 as the essential matrix E is the product of a rotation matrix with rank 3 and of the matrix $[t]_{\downarrow}$ which has rank 2.

- The null space of **E** is spanned by **t**.
- Multiplication of the essential matrix E by a constant does not change the epipolar constraint.
 - \rightarrow We normalize the matrix by either $||t||_2 = 1$ or normalize the Frobenius norm $||E||_F = 1$ of the matrix.
- rank(E) = 2 as the essential matrix E is the product of a rotation matrix with rank 3 and of the matrix $[t]_{\times}$ which has rank 2.
- **E** has 5 degrees of freedom (DOF).

- The null space of **E** is spanned by **t**.
- Multiplication of the essential matrix E by a constant does not change the epipolar constraint.
 - \rightarrow We normalize the matrix by either $||t||_2 = 1$ or normalize the Frobenius norm $||E||_F = 1$ of the matrix.
- rank(E) = 2 as the essential matrix E is the product of a rotation matrix with rank 3 and of the matrix $[t]_{\times}$ which has rank 2.
- **E** has 5 degrees of freedom (DOF).
- Two nonzero singular values are identical.

- The null space of **E** is spanned by **t**.
- Multiplication of the essential matrix E by a constant does not change the epipolar constraint.
 - \rightarrow We normalize the matrix by either $\|t\|_2 = 1$ or normalize the Frobenius norm $\|E\|_F = 1$ of the matrix.
- rank(E) = 2 as the essential matrix E is the product of a rotation matrix with rank 3 and of the matrix $[t]_{\times}$ which has rank 2.
- **E** has 5 degrees of freedom (DOF).
- Two nonzero singular values are identical.
- It is $I_2 E \tilde{p}^i = 0$ and $(\tilde{q}^i)^T E I_1^T = 0$

System of Linear Equations

For all points $(\tilde{\boldsymbol{q}}_k^i, \tilde{\boldsymbol{p}}_k^i)$, k = 1, 2, ..., N, we have

$$\left(ilde{oldsymbol{q}}_{k}^{\mathrm{i}}
ight)^{\!\mathsf{T}} \cdot oldsymbol{E} \cdot ilde{oldsymbol{p}}_{k}^{\mathrm{i}} = 0.$$

These equations are **linear** in the unknowns, i. e., the components of *E*:

$$egin{aligned} ig(ilde{m{q}}_{k,1}^i, ilde{m{q}}_{k,2}^i, ilde{m{q}}_{k,3}^i ig) \left(egin{aligned} e_{1,1} & e_{1,2} & e_{1,3} \ e_{2,1} & e_{2,2} & e_{2,3} \ e_{3,1} & e_{3,2} & e_{3,3} \end{matrix}
ight) \left(egin{aligned} ilde{m{p}}_{k,1}^i \ ilde{m{p}}_{k,2}^i \ ilde{m{p}}_{k,3}^i \end{matrix}
ight) = 0. \end{aligned}$$

For the *k*-th equation we get:

$$\left(\tilde{\boldsymbol{q}}_{k,1}^{i} e_{1,1} + \tilde{\boldsymbol{q}}_{k,2}^{i} e_{2,1} + \tilde{\boldsymbol{q}}_{k,3}^{i} e_{3,1} \right) \tilde{\boldsymbol{p}}_{k,1}^{i} + \left(\tilde{\boldsymbol{q}}_{k,1}^{i} e_{1,2} + \tilde{\boldsymbol{q}}_{k,2}^{i} e_{2,2} + \tilde{\boldsymbol{q}}_{k,3}^{i} e_{3,2} \right) \tilde{\boldsymbol{p}}_{k,2}^{i} + \left(\tilde{\boldsymbol{q}}_{k,1}^{i} e_{1,3} + \tilde{\boldsymbol{q}}_{k,2}^{i} e_{2,3} + \tilde{\boldsymbol{q}}_{k,3}^{i} e_{3,3} \right) \tilde{\boldsymbol{p}}_{k,3}^{i} = 0.$$

Measurement Matrix

$$\textit{Me} = \begin{pmatrix} \tilde{\textbf{q}}_{1,1}^{i} \tilde{\textbf{p}}_{1,1}^{i} & \tilde{\textbf{q}}_{1,1}^{i} \tilde{\textbf{p}}_{1,2}^{i} & \tilde{\textbf{q}}_{1,1}^{i} \tilde{\textbf{p}}_{1,3}^{i} & \tilde{\textbf{q}}_{1,2}^{i} \tilde{\textbf{p}}_{1,1}^{i} & \dots & \tilde{\textbf{q}}_{1,3}^{i} \tilde{\textbf{p}}_{1,3}^{i} \\ \tilde{\textbf{q}}_{2,1}^{i} \tilde{\textbf{p}}_{2,1}^{i} & \tilde{\textbf{q}}_{2,1}^{i} \tilde{\textbf{p}}_{2,2}^{i} & \tilde{\textbf{q}}_{2,1}^{i} \tilde{\textbf{p}}_{2,3}^{i} & \tilde{\textbf{q}}_{2,2}^{i} \tilde{\textbf{p}}_{2,1}^{i} & \dots & \tilde{\textbf{q}}_{2,3}^{i} \tilde{\textbf{p}}_{2,3}^{i} \\ \vdots & & \ddots & & \vdots \\ \tilde{\textbf{q}}_{N,1}^{i} \tilde{\textbf{p}}_{N,1}^{i} & \tilde{\textbf{q}}_{N,1}^{i} \tilde{\textbf{p}}_{N,2}^{i} & \tilde{\textbf{q}}_{N,1}^{i} \tilde{\textbf{p}}_{N,3}^{i} & \tilde{\textbf{q}}_{N,2}^{i} \tilde{\textbf{p}}_{N,1}^{i} & \dots & \tilde{\textbf{q}}_{N,3}^{i} \tilde{\textbf{p}}_{N,3}^{i} \end{pmatrix} \begin{pmatrix} e_{1,1} \\ e_{1,2} \\ e_{1,3} \\ e_{2,1} \\ e_{2,2} \\ e_{2,3} \\ e_{3,1} \\ e_{3,2} \\ e_{3,3} \end{pmatrix}$$

The Seaman's Algorithm

read point correspondences $\{(\tilde{\boldsymbol{p}}_{i}^{i}, \tilde{\boldsymbol{q}}_{i}^{i}), i=1,\ldots,N\}$
rewrite the epipolar constraints in terms of linear equations:
Me = 0
compute the SVD of $\mathbf{M} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T}$
return last column of ${m V}$

Figure 1: Seaman's algorithm for *E*

Topics

Epipolar Constraint and Essential Matrix Properties of the Essential Matrix System of Linear Equations The Seaman's Algorithm

Summary

Take Home Messages Further Readings

Take Home Messages

- We can compute the essential matrix by solving a linear system of equations.
- One possibility to implement this is by using Seaman's algorithm.

Further Readings

Epipolar geometry is nicely introduced in:

Emanuele Trucco and Alessandro Verri. Introductory Techniques for 3-D Computer Vision. Upper Saddle River, NJ, USA: Prentice Hall, 1998

All the math regarding epipolar geometry can be found in:

Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer Vision. 2nd ed. Cambridge: Cambridge University Press, 2004. DOI: 10.1017/CB09780511811685

Magnetic navigation:

Michelle P. Armacost et al. "Accurate and Reproducible Target Navigation with the Stereotaxis Niobe® Magnetic Navigation System". In: *Journal of Cardiovascular Electrophysiology* 18 (Jan. 2007), S26–S31. DOI: 10.1111/j.1540-8167.2007.00708.x