A 3-player game theoretic model of a choice between two queueing systems with strategic managerial decision making

Michalis Panayides

EURO 2021 Athens

About me

About me

THIS.

Queues - Examples

Queues - Examples

Queues - Examples

Discrete Event Simulation - M|M|1

Discrete Event Simulation - M|M|3

Discrete Event Simulation - Network of queues

Discrete Event Simulation - Custom network

Steady state probabilities - M|M|3 queue

$$Q = \begin{pmatrix} -\lambda & \lambda & 0 & 0 & 0 & 0 & 0 & 0 \\ \mu & -\mu - \lambda & \lambda & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2\mu & -2\mu - \lambda & \lambda & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 3\mu & -3\mu - \lambda & \lambda & 0 & 0 & 0 \\ 0 & 0 & 0 & 3\mu & -3\mu - \lambda & \lambda & 0 & 0 \\ 0 & 0 & 0 & 0 & 3\mu & -3\mu - \lambda & \lambda & 0 \\ 0 & 0 & 0 & 0 & 0 & 3\mu & -3\mu - \lambda & \lambda \\ 0 & 0 & 0 & 0 & 0 & 3\mu & -3\mu - \lambda & \lambda \\ 0 & 0 & 0 & 0 & 0 & 3\mu & -3\mu & 0 & 6 \end{pmatrix}$$

$$\frac{d\pi}{dt} = \pi Q = 0$$

$$\sum \pi_i = 1$$

$$\pi = \begin{pmatrix} \pi_0 \\ \pi_1 \\ \pi_2 \\ \pi_3 \\ \pi_4 \\ \pi_5 \\ \pi_6 \end{pmatrix}$$

Steady state probabilities - Custom network

$$Q = \begin{pmatrix} (0,0) & (0,1) & (0,2) & (2,3) & (2,4) \\ -\lambda_1 - \lambda_2 & \lambda_1 + \lambda_2 & 0 & \dots & 0 & 0 \\ \mu & -\mu - \lambda_1 - \lambda_2 & \lambda_1 + \lambda_2 & \dots & 0 & 0 \\ 0 & 2\mu & -2\mu - \lambda_1 - \lambda_2 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & -\lambda_1 - 3\mu & \lambda_1 \\ 0 & 0 & 0 & 0 & \dots & 3\mu & -3\mu \end{pmatrix} \quad \begin{pmatrix} (2,3) \\ (0,0) \\ (0,0) \\ (0,2) \\ (2,3) \\ (2,4) \end{pmatrix}$$

$$\frac{d\pi}{dt} = \pi Q = 0, \qquad \sum_{\substack{\pi(u,v) = 1}} \pi_{(u,v)} = 1$$

$$\pi = \begin{bmatrix} \pi(0,0) \\ \pi(0,1) \\ \pi(0,2) \\ \vdots \end{bmatrix}$$

Steady state probabilities - Comparison

0.200

0.175

0.150

0.100

0.075

0.050

