

Abstract of the Disclosure

A method authenticates d_i identities in parallel using two prime numbers p and q such that $q \mid p - 1$. Each identity includes a private key s_i and a public key v_i , and a publicly known generator is α such that $\alpha^q \equiv 1 \pmod{p}$. A verifier is provided with an ordered list of the public keys v_i . A prover selects uniformly at random a non-negative number r less than q . A number $x = \alpha^r \pmod{p}$ is sent from the prover to a verifier. The verifier selects uniformly at random a non-negative number e less than $2^{(t+\log d)}$, where \log is base 2, and a number t is a predetermined security parameter. The prover receives from the verifier the number e . A number $y = r + \sum_i s_i * e^i \pmod{q}$ is generated by the prover, and the number Y is sent to the verifier, who then determines if an equality $x = \alpha^y * \prod_i (v_i)^{e^i} \pmod{p}$ is true. The prover is accepted as having the d_i identities if and only if the equality is true. In a preferred embodiment the communications between the prover and the verifier is via a low-bandwidth optical channel.