Devoir à la maison n°13

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1

Tout d'abord ψ est continue sur I. De plus, $\psi(u) \underset{x \to 0^+}{\sim} \frac{1}{u^{1/2}}$ et 1/2 < 1 donc ψ est intégrable en 0^+ . Enfin, $\psi(u) = o(e^{-u})$ donc ψ est intégrable en $+\infty$.

Finalement, ψ est bien intégrable sur I.

2 Posons $\varphi(x,u) = \frac{e^{-u}}{\sqrt{u(u+x)}}$. Remarquons déjà que l'application $u \mapsto \varphi(x,u)$ n'est définie sur I que si $x \ge 0$.

De plus, $\varphi(0, u) \sim \frac{1}{u^{3/2}}$ et $3/2 \ge 1$ donc $u \mapsto \varphi(0, u)$ n'est pas intégrable en 0^+ .

Soit $x \in \mathbb{R}_+^*$. Alors $u \mapsto \varphi(x,u)$ est bien continue sur I. De plus, $\varphi(x,u) = \bigcup_{u \to 0^+} \mathcal{O}\left(\frac{1}{u^{1/2}}\right)$ et 1/2 < 1 donc $u \mapsto \varphi(x,u)$ est intégrable en 0^+ . Enfin, par croissances comparées, $\varphi(x,u) = \bigcup_{u \to +\infty} o(e^{-u})$ donc $u \mapsto \varphi(x,u)$ est intégrable en $+\infty$. Finalement, $x \mapsto \varphi(x,u)$ est intégrable sur I.

On déduit de ce qui précède que F(x) est définie si et seulement si x > 0.

- 3 Il s'agit d'utiliser le théorème des dérivations des intégrales à paramètre :
 - pour tout $x \in \mathbb{R}_+^*$, $u \mapsto \varphi(x, u)$ est continue (par morceaux) sur \mathbb{R}_+^* ;
 - pour tout $u \in \mathbb{R}_+^*$, $x \mapsto \varphi(x, u)$ est de classe \mathcal{C}^1 sur \mathbb{R}_+^* ;
 - pour tout $x \in \mathbb{R}_+^*$, $u \mapsto \frac{\partial \varphi}{\partial x}(x, u) = \frac{-e^{-u}}{\sqrt{u}(u+x)^2}$ est continue (par morceaux) sur \mathbb{R}_+^* ;
 - pour tout $a \in \mathbb{R}_+^*$ et pour tout $(x, u) \in [a, +\infty] \times \mathbb{R}_+^*$

$$\left| \frac{\partial \varphi}{\partial x}(x, u) \right| \le \frac{e^{-u}}{a^2 \sqrt{u}} = \Phi(u)$$

• Φ est continue sur \mathbb{R}_+^* , $\Phi(u) = \mathcal{O}\left(\frac{1}{u^{1/2}}\right)$ et $\Phi(u) = \mathcal{O}(e^{-u})$ donc Φ est intégrable sur \mathbb{R}_+^* .

On peut en conclure que F est de classe \mathcal{C}^1 sur $I=\mathbb{R}_+^*$ et que

$$\forall x \in \mathbb{R}_+^*, \ F'(x) = -\int_0^{+\infty} \frac{e^{-u}}{\sqrt{u(u+x)^2}} \ du$$

4 Soit $x \in I$.

$$F(x) + xF'(x) = \int_0^{+\infty} \frac{e^{-u}}{\sqrt{u(u+x)}} du - x \int_0^{+\infty} \frac{e^{-u}}{\sqrt{u(u+x)^2}} du = \int_0^{+\infty} \frac{e^{-u}\sqrt{u}}{(u+x)^2} du$$

Les applications $u \mapsto e^{-u}\sqrt{u}$ et $u \mapsto -\frac{1}{x+u}$ sont de classe \mathcal{C}^1 sur \mathbb{R}_+^* , de dérivées respectives $u \mapsto \frac{e^{-u}\left(\frac{1}{2}-u\right)}{\sqrt{u}}$ et $u \mapsto \frac{1}{(u+x)^2}$ donc, par intégration par parties,

$$\int_0^{+\infty} \frac{e^{-u} \sqrt{u}}{(u+x)^2} \, \mathrm{d}u = -\left[\frac{e^{-u} \sqrt{u}}{u+x} \right]_{u\to 0}^{u=+\infty} + \int_0^{+\infty} \frac{e^{-u} \left(\frac{1}{2} - u \right)}{\sqrt{u}(u+x)} \, \mathrm{d}y$$

http://lgarcin.github.io

L'intégration par parties est légitime puisque

$$\lim_{u \to 0^+} \frac{e^{-u} \sqrt{u}}{u + x} = \lim_{u \to +\infty} \frac{e^{-u} \sqrt{u}}{u + x} = 0$$

Ainsi

$$F(x) + xF'(x) = \int_0^{+\infty} \frac{e^{-u} \left(\frac{1}{2} - u\right)}{\sqrt{u}(u+x)} du =$$

En écrivant $\frac{1}{2} - u = \left(x + \frac{1}{2}\right) - (u + x)$, on obtient :

$$F(x) + xF'(x) = \left(x + \frac{1}{2}\right)F(x) - K$$

ou encore

$$xF'(x) - \left(x - \frac{1}{2}\right)F(x) = -K$$

 $\boxed{\mathbf{5}}$ L'application G est dérivable sur I en tant que produit de fonctions dérivables sur I. De plus, pour tout $x \in I$,

$$G'(x) = \frac{e^{-x}F(x)}{2\sqrt{x}} - \sqrt{x}e^{-x}F(x) + \sqrt{x}e^{-x}F'(x) = \frac{e^{-x}}{\sqrt{x}}\left(xF'(x) - \left(x - \frac{1}{2}\right)F(x)\right) = -K\frac{e^{-x}}{\sqrt{x}}\left(xF'(x) - \left(x - \frac{1}{2}\right)F(x)\right)$$

Les applications G et $x \mapsto -K \int_0^x \frac{e^{-t}}{\sqrt{t}} dt$ sont toutes deux dérivables sur I et leurs dérivées sont égales : elles différent donc d'une constante. Il existe donc $C \in \mathbb{R}$ tel que

$$\forall x \in I, \ G(x) = C - K \int_0^x \frac{e^{-t}}{\sqrt{t}} dt$$

6 Comme $\int_0^{+\infty} \frac{e^{-t}}{\sqrt{t}} dt$ converge, on a

$$\lim_{x \to 0} \int_0^x \frac{e^{-t}}{\sqrt{t}} dt = 0 \qquad \text{et} \qquad \lim_{x \to +\infty} \int_0^x \frac{e^{-t}}{\sqrt{t}} dt = \int_0^{+\infty} \frac{e^{-t}}{\sqrt{t}} dt = K$$

Puisque $u + x \ge x$ pour tout $(x, u) \in I^2$,

$$\forall x \in I, \ 0 \le F(x) \le \frac{K}{x}$$

On en déduit notamment que $\lim_{x \to +\infty} F(x) = 0$. Par croissances comparées, $\lim_{x \to +\infty} \sqrt{x}e^{-x} = 0$ donc $\lim_{x \to +\infty} G(x) = 0$. En passant à la limite dans l'égalité $G(x) = C - K \int_0^x \frac{e^{-t}}{\sqrt{t}} dt$, on obtient $C = K^2$.

Par ailleurs, en effectuant le changement de variable $u = xt^2$, on obtient

$$\forall x \in I, \ F(x) = \frac{2}{\sqrt{x}} \int_0^{+\infty} \frac{e^{-xt^2}}{t^2 + 1} \ dt$$

puis

$$\forall x \in I, \ G(x) = 2e^{-x} \int_0^{+\infty} \frac{e^{-xt^2}}{t^2 + 1} \ dt$$

Pour tout $t \in \mathbb{R}_+^*$,

$$\lim_{x \to 0^+} \frac{e^{-xt^2}}{t^2 + 1} = \frac{1}{t^2 + 1}$$

De plus, pour tout $(x, t) \in I^2$,

$$\left| \frac{e^{-xt^2}}{t^2 + 1} \right| \le \frac{1}{1 + t^2}$$

et $t\mapsto \frac{1}{1+t^2}$ est intégrable sur I. Donc, d'après le théorème de convergence dominée,

$$\lim_{x \to 0^+} \int_0^{+\infty} \frac{e^{-xt^2}}{t^2 + 1} dt = \int_0^{+\infty} \frac{dt}{t^2 + 1} = \frac{\pi}{2}$$

On en déduit que $\lim_{x\to 0^+} G(x) = \pi$. En passant à la limite dans l'égalité $G(x) = C - K \int_0^x \frac{e^{-t}}{\sqrt{t}} dt$, on obtient $C = \pi$.

Ainsi $C = K^2 = \pi$ donc $K = \sqrt{\pi}$ car K est manifestement positive.

The series entières $\sum_{n\geq 1} \frac{x^n}{\sqrt{n}}$ et $\sum_{n\geq 0} \sqrt{n} x^n$ ont pour rayon de convergence 1 d'après la règle de d'Alembert. Leurs sommes respectives \tilde{f} et \tilde{g} sont donc continues sur]-1,1[. Enfin, $\varphi: x\mapsto e^{-x}$ est également continue sur I à valeurs dans]0,1[donc $f=\tilde{f}\circ\varphi$ et $g=\tilde{g}\circ\varphi$ sont continues (et donc définies) sur I.

8 La fonction $u \mapsto \frac{e^{-ux}}{\sqrt{u}}$ est clairement décroissante sur I. Ainsi, par comparaison série/intégrale,

$$\int_1^{+\infty} \frac{e^{-ux}}{\sqrt{u}} \, \mathrm{d}u \le f(x) \le \int_0^{+\infty} \frac{e^{-ux}}{\sqrt{u}} \, \mathrm{d}u$$

En effectuant le changement de variable t = ux dans chacune des deux intégrales, on obtient :

$$\frac{1}{\sqrt{x}} \int_{x}^{+\infty} \frac{e^{-t}}{\sqrt{t}} dt \le f(x) \le \frac{1}{\sqrt{x}} \int_{0}^{+\infty} \frac{e^{-t}}{\sqrt{t}} dt$$

Par conséquent,

$$f(x) \underset{x \to 0^+}{\sim} \frac{K}{\sqrt{x}} = \sqrt{\frac{\pi}{x}}$$

9 Posons $S_n = \sum_{k=1}^n \frac{1}{\sqrt{k}} - 2\sqrt{n}$ pour $n \in \mathbb{N}^*$. Alors pour tout entier $n \ge 2$,

$$S_n - S_{n-1} = \frac{1}{\sqrt{n}} - 2\left(\sqrt{n} - \sqrt{n-1}\right)$$

Or

$$\sqrt{n} - \sqrt{n-1} = \sqrt{n} \left(1 - \left(1 - \frac{1}{n} \right)^{\frac{1}{2}} \right)$$

$$= \sqrt{n} \left(1 - \left(1 - \frac{1}{2n} + \mathcal{O}\left(\frac{1}{n^2} \right) \right) \right)$$

$$= \frac{1}{2\sqrt{n}} + \mathcal{O}\left(\frac{1}{n^{3/2}} \right)$$

On en déduit que

$$S_n - S_{n-1} = \mathcal{O}\left(\frac{1}{n^{3/2}}\right)$$

puis que la série télescopique $\sum S_n - S_{n-1}$ converge et enfin que la suite (S_n) converge.

Soit x > 0. La série de l'énoncé est le produit de Cauchy des deux séries absoluments convergentes $\sum_{n \ge 1} \frac{e^{-nx}}{\sqrt{n}}$ et $\sum_{n \ge 1} e^{-nx}$ puisque

$$\forall n \in \mathbb{N}^*, \ \sum_{k=1}^n \frac{e^{-kx}}{\sqrt{k}} e^{-(n-k)x} = \sum_{k=1}^n \frac{1}{\sqrt{k}} e^{-nx}$$

On en déduit donc que

$$h(x) = \left(\sum_{n=1}^{+\infty} \frac{e^{-nx}}{\sqrt{n}}\right) \left(\sum_{n=0}^{+\infty} e^{-nx}\right) = \frac{f(x)}{1 - e^{-x}}$$

puisque la deuxième somme est la somme d'une série géométrique de raison $e^{-x} \in]0,1[$.

11 On a montré que $f(x) \underset{x\to 0^+}{\sim} \sqrt{\frac{\pi}{x}}$ et on sait que $1-e^{-x} \underset{x\to 0^+}{\sim} x$ donc $h(x) \underset{x\to 0^+}{\sim} \frac{\sqrt{\pi}}{x^{3/2}}$.

On a alors $h(x) - 2g(x) = \sum_{n=1}^{+\infty} S_n e^{-nx}$ pour tout $x \in I$ et la suite (S_n) est converge donc bornée donc il existe une constante $M \in \mathbb{R}_+$ telle que

$$\forall x \in I, \ |h(x) - 2g(x)| \le \sum_{n=1}^{+\infty} |S_n| e^{-nx} \le \sum_{n=1}^{+\infty} M e^{-nx} = \frac{M e^{-x}}{1 - e^{-x}}$$

Comme $e^{-x}1 - e^{-x} \sim \frac{1}{x \to 0^+} \frac{1}{x}$,

$$h(x) - 2g(x) = \mathcal{O}\left(\frac{1}{x}\right)$$

A fortiori,

$$h(x) - 2g(x) = o\left(\frac{1}{x^{3/2}}\right)$$

Or
$$h(x) = \int_{x \to 0^+} \frac{\sqrt{\pi}}{x^{3/2}} + o\left(\frac{1}{x^{3/2}}\right) donc$$

$$g(x) = \sqrt{\frac{\pi}{x \to 0^+}} \frac{\sqrt{\pi}}{2x^{3/2}} + o\left(\frac{1}{x^{3/2}}\right)$$

ou encore

$$g(x) \underset{x \to 0^+}{\sim} \frac{\sqrt{\pi}}{2x^{3/2}}$$

12 Si A est fini, on a clairement $A = \mathbb{R}_+$.

Supposons A infini. En particulier, A n'est pas vide. Il existe donc $N \in \mathbb{N}$ tel que $a_N = 1$. On pose alors $\varphi(0) = N$. Supposons avoir prouvé l'existence d'entiers naturels $\varphi(0), \dots, \varphi(n)$ tels que $\varphi(0) < \dots < \varphi(n)$ et $\varphi(k) \in A$ pour tout $k \in [0, n]$. Comme A est infini, $A \subseteq [0, \varphi(n)]$. Il existe donc un entier $N \in A$ tel que $N > \varphi(n)$. On pose alors $\varphi(n+1) = N$. On prouve donc par récurrence l'existence d'une application $\varphi : \mathbb{N} \to A$ strictement croissante. Il suffit alors de poser $b_n = a_{\varphi(n)}$ pour tout $n \in \mathbb{N}$.

Supposons A infini. La série $\sum a_n$ diverge grossièrement puisque (a_n) possède une suite extraite (b_n) ne convergeant pas vers 0 et donc (a_n) ne converge pas non plus vers 0. Si x>0, $a_ne^{-nx}=\mathcal{O}(e^{-nx})$ est la série $\sum e^{-nx}$ est une série géométrique convergente à termes positifs de sorte que $\sum a_ne^{-nx}$ converge. Finalement, $I_A=\mathbb{R}_+^*$.

Soit x > 0. Remarquons que $\operatorname{card}(A(n)) = \sum_{k=0}^{n} a_k$. Ainsi la série $\sum_{n \geq 0} \operatorname{card}(A(n))e^{-nx}$ est le produit de Cauchy des séries absolument convergentes (car à termes positifs et convergentes) $\sum_{n \geq 0} a_n e^{-nx}$ et $\sum_{n \geq 0} e^{-nx}$. Notamment la série $\sum_{n \geq 0} \operatorname{card}(A(n))e^{-nx}$ converge et

$$\sum_{n=0}^{+\infty} \operatorname{card}(A(n))e^{-nx} = \left(\sum_{n=0}^{+\infty} a_n e^{-nx}\right) \left(\sum_{n=0}^{+\infty} e^{-nx}\right) = \frac{f_A(x)}{1 - e^{-x}}$$

14 L'application Ψ : $\left\{ \begin{array}{ccc} \llbracket 1, \lfloor \sqrt{n} \rfloor \rrbracket & \longrightarrow & A_1(n) \\ k & \longmapsto & k^2 \end{array} \right.$ est bien définie. De plus, Ψ est injective car strictement croissante.

Enfin, si on se donne $m \in A_1(n)$, alors il existe un entier naturel k non nul tel que $m = k^2$. Mais alors $1 \le k^2 \le n$ puis $1 \le k \le \sqrt{n}$ et enfin $1 \le k \le \lfloor \sqrt{n} \rfloor$ car k est entier. Ainsi l'application Ψ est surjective. Finalement Ψ et bijective et on en déduit notamment que $\operatorname{card}(A_1(n)) = \operatorname{card}\left[\!\left[1, \lfloor \sqrt{n} \rfloor\right]\!\right] = \lfloor \sqrt{n}\rfloor$. D'après la question précédente,

$$\forall x > 0, \ \frac{f_{A_1}(x)}{1 - e^{-x}} = \sum_{n=0}^{+\infty} \lfloor \sqrt{n} \rfloor e^{-nx}$$

Puisque $0 \le \sqrt{n} - \lfloor \sqrt{n} \rfloor \le 1$,

$$0 \le \sum_{n=0}^{+\infty} \sqrt{n} e^{-nx} - \frac{f_{A_1}(x)}{1 - e^{-x}} \le \sum_{n=0}^{+\infty} e^{-nx}$$

ou encore

$$0 \le g(x) - \frac{f_{A_1}(x)}{1 - e^{-x}} \le \frac{1}{1 - e^{-x}}$$

Comme $\frac{1}{1-e^{-x}} \sim \frac{1}{x \to 0^+} \frac{1}{x}$, on a donc

$$g(x) - \frac{f_{A_1}(x)}{1 - e^{-x}} = \mathcal{O}\left(\frac{1}{x}\right)$$

A fortiori,

$$g(x) - \frac{f_{A_1}(x)}{1 - e^{-x}} \underset{x \to 0^+}{=} o\left(\frac{1}{x^{3/2}}\right)$$

Or on a vu qu $g(x) \underset{x \to 0^{+}}{\sim} \frac{\sqrt{\pi}}{2x^{3/2}}$ ou encore $g(x) \underset{x \to 0^{+}}{=} \frac{\sqrt{\pi}}{2x^{3/2}} + o\left(\frac{1}{x^{3/2}}\right)$ donc

$$\frac{f_{A_1}(x)}{1 - e^{-x}} = \frac{\sqrt{\pi}}{2x^{3/2}} + o\left(\frac{1}{x^{3/2}}\right)$$

ou encore

$$\frac{f_{A_1}(x)}{1 - e^{-x}} \underset{x \to 0^+}{\sim} \frac{\sqrt{\pi}}{2x^{3/2}}$$

Puisque $1 - e^{-x} \sim_{x \to 0^+} x$,

$$f_{A_1}(x) \underset{x \to 0^+}{\sim} \frac{\sqrt{\pi}}{2\sqrt{x}}$$

Ensuite, $x f_{A_1}(x) \underset{x \to 0^+}{\sim} \frac{1}{2} \sqrt{\pi x}$ donc $\lim_{x \to 0^+} x f_{A_1}(x) = 0$. Ainsi $A_1 \in S$ et $\Phi(A_1) = 0$.

15 Soit x > 0. Remarquons que

$$v(n) = \operatorname{card} \left\{ (p, q) \in (\mathbb{N}^*)^2, \ p^2 + q^2 = n \right\} = \operatorname{card} \left\{ (k, n - k), \ (k, n - k) \in \mathcal{A}_1^2 \right\} = \sum_{k=0}^n a_k a_{n-k}$$

car $a_k a_{n-k} = 1$ si $(k, n-k) \in A_1^2$ et $a_k a_{n-k} = 0$ sinon. On en déduit que $\sum_{n \in \mathbb{N}} v(n) e^{-nx}$ est le produit de Cauchy de la série absolument convergente $\sum_{n \in \mathbb{N}} a_n e^{-nx}$ par elle-même. Par conséquent

$$\sum_{n=0}^{+\infty} v(n)e^{-nx} = f_{A_1}(x)^2$$

De plus, si $n \notin A_1$, $a_n = v(n) = 0$ et si $n \in A_1$, $a_n = 1 \le v(n)$ donc pour tout $n \in \mathbb{N}$, $0 \le a_n \le v(n)$. On en déduit que

$$f_{A_2}(x) = \sum_{n=0}^{+\infty} a_n e^{-nx} \le \sum_{n=0}^{+\infty} v(n) e^{-nx} = f_{A_1}(x)^2$$

Par conséquent

$$xf_{\mathsf{A}_2}(x) \leq xf_{\mathsf{A}_1}(x)^2$$

On a admis que $A_2 \in S$ donc $x \mapsto x f_{A_2}(x)$ admet une limite $\Phi(A_2)$ en 0^+ . On sait également que $f_{A_1}(x) \approx \frac{\sqrt{\pi}}{2\sqrt{x}}$ donc $\lim_{x \to 0^+} x f_{A_1}(x)^2 = \frac{\pi}{4}$. Par passage à la limite, on obtient

$$\Phi(A_2) \le \frac{\pi}{4}$$

16 Soient x > 0 et $\psi \in E$.

$$\forall n \in \mathbb{N}, \ 0 \le \alpha_n e^{-nx} \psi(e^{-nx}) \le \alpha_n e^{-nx} \|\psi\|_{\infty}$$

Comme $\sum \alpha_n e^{-nx}$ converge par hypothèse, $\sum \alpha_n e^{-nx} \psi(e^{-nx})$ converge également et $L(\psi)(x)$ existe. Ainsi $L(\psi)$ est bien définie.

Par linéarité de la somme, L est bien linéaire. De plus, si $\psi_1 \le \psi_2$, alors $L(\psi_1) \le L(\psi_2)$ par croissance de la somme.

La fonction nulle appartient à E_1 puisque son image par L est nulle par linéarité de L. Si on se donne $(\psi_1, \psi_2) \in E_1^2$ et $(\lambda_1, \lambda_2) \in \mathbb{R}^2$, pour tout x > 0, $xL(\lambda_1\psi_1 + \lambda_2\psi_2)(x) = \lambda_1xL(\psi_1)(x) + \lambda_2xL(\psi_2)(x)$ par linéarité de L. De plus, $x \mapsto xL(\psi_1)(x)$ et $x \mapsto xL(\psi_2)(x)$ admettent toutes deux des limites en 0^+ . Par conséquent, $x \mapsto xL(\lambda_1\psi_1 + \lambda_2\psi_2)(x)$ admet également une limite en 0^+ i.e. $\lambda_1\psi_1 + \lambda_2\psi_2 \in E_1$. E_1 est donc un sous-espace vectoriel de E. De plus, on a également

$$\lim_{x \to 0^{+}} x L(\lambda_{1} \psi_{1} + \lambda_{2} \psi_{2})(x) = \lambda_{1} \lim_{x \to 0^{+}} x L(\psi_{1})(x) + \lambda_{2} \lim_{x \to 0^{+}} x L(\psi_{2})(x)$$

ce qui prouve que Δ est une forme linéaire.

Enfin, pour tout $\psi \in E_1$, on obtient par inégalité triangulaire :

$$|xL(\psi)(x)| \le x \sum_{n=0}^{+infty} \alpha_n e^{-nx} \|\psi\|_{\infty}$$

puis, par passage à la limite,

$$|\Delta(\psi)| \le \ell \|\psi\|_{\infty}$$

Donc Δ est continue par caractérisation de la continuité pour les applications linéaires.

18 Soit $p \in \mathbb{N}$. Pour tout x > 0,

$$L(e_p)(x) = \sum_{n=0}^{+\infty} \alpha_n e^{-nx} e^{-npx} = \sum_{n=0}^{+\infty} \alpha_n e^{-n(p+1)x}$$

Comme $(p+1)x \longrightarrow \text{lorsque } x \to 0$, on a

$$\lim_{x \to 0} (p+1)x \sum_{n=0}^{+\infty} \alpha_n e^{-n(p+1)x} = \ell$$

Par conséquent,

$$\lim_{x \to 0^+} x \mathcal{L}(e_p)(x) = \frac{\ell}{p+1}$$

On en déduit que $e_p \in E_1$ et que $\Delta(e_p) = \frac{\ell}{p+1} = \ell \int_0^1 e_p(t) dt$. Par linéarité de de Δ et de l'intégrale, on en déduit que

$$\mathbb{R}[X] \subset E_1 \text{ et } \forall P \in \mathbb{R}[X], \ \Delta(P) = \ell \int_0^1 P(t) \ dt$$

Soit $\psi \in E_0$. D'après le théorème de Weierstrass, il existe une suite (P_n) de polynômes convergeant uniformément vers ψ sur le segment [0,1]. Alors pour tout $n \in \mathbb{N}$ et tout x > 0

$$\begin{split} \left| x \mathsf{L}(\psi)(x) - \ell \int_{0}^{1} \psi(t) \ \mathrm{d}t \right| & \leq |x \mathsf{L}(\psi)(x) - x \mathsf{L}(\mathsf{P}_{n})(x)| + \left| x \mathsf{L}(\mathsf{P}_{n})(x) - \ell \int_{0}^{1} \mathsf{P}_{n}(t) \ \mathrm{d}t \right| + \left| \ell \int_{0}^{1} \mathsf{P}_{n}(t) \ \mathrm{d}t - \ell \int_{0}^{1} \psi(t) \ \mathrm{d}t \right| \\ & \leq x \infty \sum_{n=0}^{+\infty} \alpha_{n} e^{-nx} |\psi(x) - \mathsf{P}_{n}(x) + \left| x \mathsf{L}(\mathsf{P}_{n})(x) - \ell \int_{0}^{1} \mathsf{P}_{n}(t) \ \mathrm{d}t \right| + \ell \int_{0}^{1} |\psi(t) - \mathsf{P}_{n}(t)| \ \mathrm{d}t \\ & \leq x \mathsf{L}(\ell_{0})(x) \|\psi - \mathsf{P}_{n}\|_{\infty} + \left| x \mathsf{L}(\mathsf{P}_{n})(x) - \ell \int_{0}^{1} \mathsf{P}_{n}(t) \ \mathrm{d}t \right| + \ell \|\psi - \mathsf{P}_{n}\|_{\infty} \end{split}$$

Or $e_0 \in E_1$ donc $x \mapsto xL(e_0)(x)$ admet une limite en 0^+ . Notamment cette fonction est bornée au voisinage de 0^+ . Il existe donc $\alpha > 0$ et $M \in \mathbb{R}_+$ tels que

$$\forall x \in]0, \alpha], \ \left| x \mathsf{L}(\psi)(x) - \ell \int_0^1 \psi(t) \ \mathrm{d}t \right| \leq \mathsf{M} \|\psi - \mathsf{P}_n\|_{\infty} + \left| x \mathsf{L}(\mathsf{P}_n)(x) - \ell \int_0^1 \mathsf{P}_n(t) \ \mathrm{d}t \right| + \ell \|\psi - \mathsf{P}_n\|_{\infty}$$

Donnons-nous $\epsilon > 0$. Comme (P_n) converge uniformément vers ψ , il existe $N \in \mathbb{N}$ tel que $\|\psi - P_N\|_{\infty} \leq \epsilon$. Ainsi

$$\forall x \in]0, \alpha], \ \left| x \mathcal{L}(\psi)(x) - \ell \int_0^1 \psi(t) \ \mathrm{d}t \right| \leq M \varepsilon + \left| x \mathcal{L}(P_N)(x) - \ell \int_0^1 P_N(t) \ \mathrm{d}t \right| + \ell \varepsilon$$

Mais comme P_N est un polynôme,

$$\lim_{x \to 0^+} x \mathcal{L}(P_{\mathcal{N}})(x) = \Delta(P_{\mathcal{N}}) = \ell \int_0^1 P_{\mathcal{N}}(t) dt$$

Il existe donc $\beta > 0$ tel que

$$\forall x \in]0, \beta], \ \left| x \mathcal{L}(\mathcal{P}_{\mathcal{N}})(x) - \ell \int_{0}^{1} \mathcal{P}_{\mathcal{N}}(t) \ \mathrm{d}t \right| \leq \varepsilon$$

Finalement,

$$\forall x \in]0, \beta], \ \left| x L(\psi)(x) - \ell \int_0^1 \psi(t) \ dt \right| \le (M + 1 + \ell) \varepsilon$$

Ceci prouve que $\lim_{x\to 0^+} x L(\psi)(x) = \ell \int_0^1 \psi(t) dt$. Ainsi $\psi \in E_1$ de sorte que $E_0 \subset E_1$ et $\Delta(\psi) = \ell \int_0^1 \psi(t) dt$.

19 On vérifie que

$$\begin{split} \lim_{x \to (a - \varepsilon)^{-}} g_{-}(x) &= \lim_{x \to (a - \varepsilon)^{+}} g_{-}(x) = 1 \\ \lim_{x \to a^{-}} g_{-}(x) &= \lim_{x \to a^{+}} g_{-}(x) = 0 \\ \lim_{x \to a^{-}} g_{+}(x) &= \lim_{x \to a^{+}} g_{+}(x) = 1 \\ \lim_{x \to (a + \varepsilon)^{-}} g_{-}(x) &= \lim_{x \to (a + \varepsilon)^{+}} g_{-}(x) = 0 \end{split}$$

Ainsi g_- et g_+ sont continues sur [0,1] et appartiennent à E_0 . D'après la question précédente,

$$\Delta(g_{-}) = \ell \int_{0}^{1} g_{-}(t) dt = \ell \left(a - \frac{\varepsilon}{2} \right) \qquad \text{et} \qquad \Delta(g_{+}) = \ell \int_{0}^{1} g_{+}(t) dt = \ell \left(a + \frac{\varepsilon}{2} \right)$$

De plus, $g_{-} \le \mathbb{1}_{[0,a]} \le g_{+}$ donc pour tout x > 0,

$$xL(g_{-})(x) \le xL(\mathbb{1}_{[0,a]})(x) \le xL(g_{+})(x)$$

De plus, $\lim_{x\to 0^+} x L(g_-)(x) = \Delta(g_-) = \ell\left(a - \frac{\varepsilon}{2}\right)$ et $\lim_{x\to 0^+} x L(g_+)(x) = \Delta(g_+) = \ell\left(a + \frac{\varepsilon}{2}\right)$ donc on peut trouver $\alpha > 0$ tel que

$$\forall x \in]0, \alpha], \ \ell(a - \varepsilon) \le x L(g_-)(x) \le x L(\mathbb{1}_{[0,a]})(x) \le x L(g_+)(x) \le \ell(a + \varepsilon)$$

On en déduit que $\lim_{x\to 0^+} x L(\mathbb{1}_{[0,a]})(x) = \ell a$. Donc $\mathbb{1}_{[0,a]} \in E_1$ et

$$\Delta(\mathbb{I}_{[0,a]}) = \ell a = \ell \int_0^1 \mathbb{I}_{[0,a]}(t) dt$$

On peut alors montrer que toute fonction en escalier sur [0,1] est une combinaison linéaire de fonctions indicatrices $\mathbb{1}_{[0,a]}$ et la linéarité de Δ et de l'intégrale montre alors que pour toute fonction en escalier $f, f \in E_1$ et

$$\Delta(f) = \ell \int_0^1 f(t) \, \mathrm{d}t$$

Enfin, soit $\psi \in E$. Il existe alors une suite (f_n) de fonctions en escalier sur [0,1] convergeant uniformément vers ψ . On procède alors comme à la question précédente. Pour tout $n \in \mathbb{N}$ et tout x > 0

$$\left| x \mathcal{L}(\psi)(x) - \ell \int_{0}^{1} \psi(t) \, dt \right| \leq |x \mathcal{L}(\psi)(x) - x \mathcal{L}(f_{n})(x)| + \left| x \mathcal{L}(f_{n})(x) - \ell \int_{0}^{1} f_{n}(t) \, dt \right| + \left| \ell \int_{0}^{1} f_{n}(t) \, dt - \ell \int_{0}^{1} \psi(t) \, dt \right|$$

$$\leq x \infty \sum_{n=0}^{+\infty} \alpha_{n} e^{-nx} |\psi(x) - f_{n}(x)| + \left| x \mathcal{L}(f_{n})(x) - \ell \int_{0}^{1} f_{n}(t) \, dt \right| + \ell \int_{0}^{1} |\psi(t) - f_{n}(t)| \, dt$$

$$\leq x \mathcal{L}(e_{0})(x) \|\psi - f_{n}\|_{\infty} + \left| x \mathcal{L}(f_{n})(x) - \ell \int_{0}^{1} f_{n}(t) \, dt \right| + \ell \|\psi - f_{n}\|_{\infty}$$

Or $e_0 \in E_1$ donc $x \mapsto xL(e_0)(x)$ admet une limite en 0^+ . Notamment cette fonction est bornée au voisinage de 0^+ . Il existe donc $\alpha > 0$ et $M \in \mathbb{R}_+$ tels que

$$\forall x \in]0,\alpha], \ \left| x \mathsf{L}(\psi)(x) - \ell \int_0^1 \psi(t) \ \mathrm{d}t \right| \leq \mathsf{M} \|\psi - f_n\|_{\infty} + \left| x \mathsf{L}(f_n)(x) - \ell \int_0^1 f_n(t) \ \mathrm{d}t \right| + \ell \|\psi - f_n\|_{\infty}$$

Donnons-nous $\varepsilon > 0$. Comme (f_n) converge uniformément vers f, il existe $N \in \mathbb{N}$ tel que $\|\psi - f_N\|_{\infty} \le \varepsilon$. Ainsi

$$\forall x \in]0, \alpha], \ \left| x \mathcal{L}(\psi)(x) - \ell \int_0^1 \psi(t) \ \mathrm{d}t \right| \leq \mathrm{M}\varepsilon + \left| x \mathcal{L}(f_{\mathcal{N}})(x) - \ell \int_0^1 f_{\mathcal{N}}(t) \ \mathrm{d}t \right| + \ell\varepsilon$$

Mais comme f_N est une fonction en escalier,

$$\lim_{x \to 0^+} x \mathcal{L}(f_{\mathcal{N}})(x) = \Delta(f_{\mathcal{N}}) = \ell \int_0^1 f_{\mathcal{N}}(t) dt$$

Il existe donc $\beta > 0$ tel que

$$\forall x \in]0, \beta], \left| x L(f_N)(x) - \ell \int_0^1 f_N(t) dt \right| \le \varepsilon$$

Finalement,

$$\forall x \in]0, \beta], \left| x L(\psi)(x) - \ell \int_0^1 \psi(t) dt \right| \le (M + 1 + \ell) \varepsilon$$

Ceci prouve que $\lim_{x\to 0^+} x L(\psi)(x) = \ell \int_0^1 \psi(t) dt$. Ainsi $\psi \in E_1$ de sorte que $E_1 = E$ et $\Delta(\psi) = \ell \int_0^1 \psi(t) dt$.

20 Soit $N \in \mathbb{N}^*$.

$$L(\psi)\left(\frac{1}{N}\right) = \sum_{n=0}^{+\infty} \alpha_n e^{-n/N} \psi(e^{-n/N})$$

Mais $\psi(e^{-n/N}) = 0$ pour n > N et $\psi(e^{-n/N}) = e^{n/N}$ si $n \le N$ donc

$$L(\psi)\left(\frac{1}{N}\right) = \sum_{n=0}^{N} \alpha_n$$

Comme $\psi \in E_1$, d'après la question précédente,

$$\lim_{x \to 0^+} x \mathbf{L}(\psi)(x) = \ell \int_0^1 \psi(t) \, dt = \ell$$

Notamment,

$$\lim_{N \to +\infty} \frac{1}{N} L(\psi) \left(\frac{1}{N} \right) = \ell$$

ou encore

$$\lim_{N \to +\infty} \frac{1}{N} \sum_{n=0}^{N} \alpha_n = \ell$$

21 Soit $A \in S$. Alors $x \mapsto x f_A(x) = x \sum_{n=0}^{+\infty} a_n e^{-nx}$ admet une limite $\Phi(A)$ en 0^+ . On peut donc appliquer la question précédente avec $\alpha_n = a_n$ et $\ell = \Phi(A)$. Ainsi

$$\lim_{N \to +\infty} \frac{1}{N} \sum_{n=0}^{N} a_n = \Phi(A)$$

ou encore

$$\lim_{N\to +\infty} \frac{1}{N} \operatorname{card}(A(N)) = \Phi(A)$$

On a vu précédemment que

$$\sum_{n=0}^{+\infty} v(n)e^{-nx} = f_{A_1}(x)^2$$

et que $f_{\rm A_1}(x) \underset{x \to 0^+}{\sim} \frac{\sqrt{\pi}}{2\sqrt{x}}$ donc

$$\lim_{x \to 0^+} x \sum_{n=0}^{+\infty} v(n) e^{-nx} = \frac{\pi}{4}$$

On peut donc appliquer la question précédente avec $\alpha_n = v(n)$ et $\ell = \frac{\pi}{4}$. On en déduit que

$$\lim_{N\to+\infty}\frac{1}{N}\sum_{n=0}^{N}v(n)=\frac{\pi}{4}$$