第二章 初等模型

- 研究对象的机理比较简单
- 用静态、线性、确定性模型即可达到建模目的

可以利用初等数学方法来构造和求解模型

如果用初等和高等的方法建立的模型,其应用效果差不多,那么初等模型更高明,也更受欢迎.

尽量采用简单的数学工具来建模

2.1 双层玻璃窗的功效

问 题

双层玻璃窗与同样多材料的单层玻璃窗相比,减少多少热量损失.

假设

•热量传播只有传导,没有对流.

- $\cdot T_1, T_2$ 不变,热传导过程处于稳态.
- •材料均匀,热传导系数为常数.

建模

Q~单位时间单位面积传导的热量

 ΔT ~温差, d~材料厚度, k~热传导系数

热传导定律 $Q = k \frac{\Delta T}{d}$

建模 记双层玻璃窗传导的热量 Q_1

 T_a ~内层玻璃的外侧温度

 T_b ~外层玻璃的内侧温度

 k_1 ~玻璃的热传导系数

 k_2 ~空气的热传导系数

$$Q_1 = k_1 \frac{T_1 - T_a}{d} = k_2 \frac{T_a - T_b}{l} = k_1 \frac{T_b - T_2}{d}$$

$$Q_1 = k_1 \frac{T_1 - T_2}{d(s+2)}, \quad s = h \frac{k_1}{k_2}, \quad h = \frac{l}{d}$$

数学模型

建模 记单层玻璃窗传导的热量 Q_2

$$Q_2 = k_1 \frac{T_1 - T_2}{2d}$$

$$Q_1 = k_1 \frac{T_1 - T_2}{d(s+2)}$$

双层与单层窗传导的热量之比

$$\frac{Q_1}{Q_2} = \frac{2}{s+2}, \quad s = h \frac{k_1}{k_2}, \quad h = \frac{l}{d}$$

 $k_1=4\sim8\times10^{-3} (\text{J/cm}\cdot\text{s}\cdot\text{kw}\cdot\text{h}), \ k_2=2.5\times10^{-4}, \ k_1/k_2=16\sim32$

对 Q_1 比 Q_2 的减少量作最保守的估计,

$$\frac{Q_1}{Q_2} = \frac{1}{8h+1}, \ h = \frac{l}{d}$$

$$\mathbb{R}k_1/k_2 = 16$$

模型应用

$$\frac{Q_1}{Q_2} = \frac{1}{8h+1}, \ \ h = \frac{l}{d}$$

取 h=l/d=4,则 $Q_1/Q_2=0.03$

即双层玻璃窗与同样多材料的单层玻璃窗相比,可减少97%的热量损失.

结果分析

 Q_1/Q_2 所以如此小,是由于层间空气的热传导系数 k_2 极低,而这要求空气非常干燥、不流通.

房间通过天花板、墙壁、...损失的热量更多.

实际上双层窗的功效不会如此之大!

2.2 估计出租车的总数

一些人喜欢记驶过身旁的汽车号码.

两难境地的决策 与朋友打赌的"骰子"

共识: 出现任何号码汽车的机会相同.

随意记下驶过的10辆出租车牌号: 0421,0128,

0702, 0410, 0598, 0674, 0712, 0529, 0867, 0312

出租车牌号从某一个数字0101按顺序发放.

估计这座城市出租车的总数.

估计出租车的总数

问题分析

10个号码从小到大重新排列.

 $[x_0, x]$ 区间内全部整数值~总体

 $x_1, x_2, \ldots, x_{10} \sim$ 总体的一个样本

根据样本和 x_0 对总体的x作出估计.

 \Diamond 出租车总数为 $x-x_0+1$

估计出租车的总数

模型建立

起始号码 x_0 平移为0001

总体~全部号码{0001,0002,...,x} x~出租车总数

样本~总体中的n个号码从小到大排列 x_1, x_2, \ldots, x_n

建立由 x_1, x_2, \ldots, x_n 估计x的模型

基本假定:每个xi取自总体中任一号码的概率相等.

模型建立

模型1 平均值模型

$$\overline{x} \sim$$
样本 x_1, x_2, \ldots, x_n 的平均值

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\bar{X}$$
 ~总体 0001, 0002, ..., x 的平均值 $\bar{X} = \frac{1}{x} \sum_{i=1}^{x} j = \frac{x+1}{2}$

用
$$\overline{x}$$
估计 \overline{X} $\Leftrightarrow \bar{x} = \bar{X}$ $\Leftrightarrow x = 2\bar{x} - 1$

模型2 中位数模型

$$\widetilde{x} \sim$$
 样本中位数 $\widetilde{X} \sim$ 总体中位数 $\widetilde{X} = \overline{X} = \frac{x+1}{2}$ 用 \widetilde{x} 估计 \widetilde{X} $\widetilde{x} = \widetilde{X} = \frac{x+1}{2}$ \Rightarrow $x = 2\widetilde{x} - 1 \approx 2\widetilde{x}$

模型3 两端间隔对称模型

假定: 样本的最小值与最大值在总体中对称.

$$x_1-1=x-x_n$$
 $\Rightarrow x_1-1=x-x_1$

模型4 平均间隔模型

把起始号码和样本排成数列: $1, x_1, x_2, \ldots, x_n$,

相邻两数有n个间隔: $x_1-1, x_2-x_1-1, \dots, x_n-x_{n-1}-1$

n个间隔的平均值 ()作为 x_n 与x间隔的估计

$$\frac{1}{n} \left[(x_1 - 1) + \sum_{i=2}^{n} (x_i - x_{i-1} - 1) \right] = \frac{x_n - n}{n} = x - x_n$$

模型5 区间均分模型

将总体区间[1,x]平均分成n份.

每个小区间长度
$$\frac{x-1}{n}$$

假定: 样本中每个x;都位于小区间的中点.

$$x-x_n$$
应是小区间长度的一半 $x-x_n = \frac{x-1}{2n}$

计算与分析

设定 $x_0 = 0001$

第1样本: 0321, 0028, 0602, 0310, 0498,

0574, 0612, 0429, 0767, 0212

第2样本: 0249, 0739, 0344, 0148, 0524,

0284, 0351, 0089, 0206, 0327

用5个模型估计出租车总数x

	模型1	模型2	模型3	模型4	模型5	最大相差
第1样本	870	926	794	843	807	134
第2样本	651	610	827	812	778	217
相差	221	316	33	31	29	

不稳定(相差大)

不合理 (x = 651, 610 < 739)

计算与分析

1. 平均值模型 $x \approx 2\overline{x}$

用全部样本,有统计依据 结果可能 $x < x_n$

- 2. 中位数模型 $x \approx 2\tilde{x}$ 用 \tilde{x} , 有统计依据, 可能 $x < x_n$
- 3. 两端间隔对称模型 $x \approx x_n + x_1$ 用 x_n, x_1 , 直观, $x > x_n$
- 4. 平均间隔模型 $x \approx (1 + \frac{1}{n})x_n$ 只用 x_n , 直观, $x > x_n$
- 5. 区间均分模型 $x \approx (1 + \frac{1}{2n})x_n$

只用 x_n , 直观, $x > x_n$

数值模拟

给定总体 $\{1, 2, \dots, x\}$, x=1000

从总体中取n=10个数为一个样本,共m=200个样本

用5个模型分别对每个样本估计总体x.

对每个模型计算m个样本估计的x的平均值、标准差及平均值与真值x=1000间的误差

样本估计结果与总体对比,评价各个模型.

画m个样本估计的x的直方图,分析x的分布.

数值模拟 总体x=1000,每个样本 n=10, m=200个样本

第1次		模型1	模型2	模型3	模型4	模型5
模拟	平均值	1023.2	1037.4	1010.0	1005.6	962.3
DC151	平均值误差	23.2	37.4	10.0	5.6	-37.7
	标准差	170.1	261.0	126.3	90.9	87.0
		•				
第2次		模型1	模型2	模型3	模型4	模型5
1件掛	亚拉库	0065	005 4	ΛοΛ ο	002.0	050 1

楔拟

*		模型1	模型2	模型3	模型4	模型5
	平均值	986.5	985.4	980.8	992.9	950.1
	平均值误差	-13.5	-14.6	-19.2	-7.1	-49.9
	标准差	181.4	271.1	107.9	86.6	82.8

模型4 (平均间 隔模型)较优.

平均值误差大 标准差大

平均值误差小 标准差小

数值模拟

第1次模拟的直方图

估计值的分布情况

左右对称型

左低右高的非对称型

小结与评注

- 5个模型中平均值和中位数模型用到一点统计, 其他3个模型来自常识,后者竟然较前者更优.
- 模型中起始号码已知(平移至1),限制了应用范围.

问题: 哪些模型可以推广到起始号码未知的情况?

数值模拟是模型检验的重要方法: 给定总体通过模拟产生样本,根据模型得到总体参数,进行比较和评价。

与"估计出租车的总数"相关的历史事实

二战中一支盟军的指挥部急需掌握德军坦克的数量. 盟军俘获了若干辆德军坦克,得到它们的序列号码. 情报人员获知这支部队的坦克号码按顺序编排.

以俘获的坦克号码为样本,估计出坦克总量.

英美情报机构通过捕获德军武器的序列编号,对军用轮胎、枪支、装甲车等众多装备的产量做出估计.

战后将估计值与从档案中得到的实际产量进行比较,多数估计的误差在10%以内!

2.3 节水洗衣机

我国淡水资源有限,节约用水人人有责。洗衣在家庭用水中占有相当大的份额,节约洗衣机用水十分重要。假设放入衣物和洗涤剂后洗衣机的运行过程为:加水—漂洗—脱水—加水—漂洗—脱水…(称"加水—漂洗—脱水"为一轮)。请为洗衣机设计一种程序(包括运行多少轮,每轮加水量等),使在满足一定洗涤效果的条件下,总用水量最少。

选自1996年全国大学生数学建模竞赛B题

问题分析 洗衣机运行的基本过程

- 将待洗衣物和洗涤剂放入缸内,加水后启动洗衣机.
- 漂洗中通过洗涤剂的物理化学作用,将附着在衣物上的污物溶于水中,再脱去含有污物的污水,构成"加水—漂洗—脱水"一轮运行过程.
- 一轮后残留在衣物上的污物有所减少,但若尚未 达到洗净的效果,就需要再来一轮,如此循环.
- 直到衣物上污物减少到相对清洁,可以接受.

建模应考虑: 现实生活中洗衣机大多运行2或3轮.

问题分析

洗衣机运行的基本过程

一次性加入的洗涤剂虽能帮助衣物上污物溶于水, 但也不希望留在衣物上,因此将"污物"视为衣物 上原有的污物与留在衣物上的洗涤剂的总和.

洗涤剂溶解污物的过程涉及物理化学的微观机制, 只需从宏观层面上认为,每一轮运行中污物都已充 分溶于水中,形成一定的浓度.通过一轮一轮地加 水和脱水,使污物浓度不断降低.

不讨论通常洗衣机运行的最后一步—甩干或烘干.

模型假设

- 1. 每轮漂洗后衣物上的污物全部均匀地溶于水中.
- 2. 与每轮的加水量相比,每轮脱水后衣物仍含少量的水,每轮的含水量为常数.
- 3. 每轮脱水前后污物在水中的浓度保持不变.
- 4. 最后一轮脱水后衣物的污物含量与初始含量之比(污物比),需不超过某个给定的数值.
- 5. 建模目标:在满足衣物污物比的条件下,确定洗衣机运行多少轮(最多4轮)及每轮的加水量,使总用水量最少.

模型建立

洗衣机共运行n轮(n=2,3,4), x_0 ~初始污物含量.

 u_k ~第k轮加水量, x_k ~第k轮脱水后污物含量.

c~每轮脱水后衣物含水量, ϵ ~最终污物比(给定).

污物浓度~单位容积水中的污物含量.

脱水前后污物浓度保持不变

$$\frac{x_0}{u_1} = \frac{x_1}{c}, \quad \frac{x_1}{u_2 + c} = \frac{x_2}{c}, \quad \cdots$$

$$\frac{x_{n-1}}{u_n + c} = \frac{x_n}{c}$$

$$\frac{x_n}{x_0} = \frac{c^n}{u_1(u_2 + c) \dots (u_n + c)}$$

模型建立

建模目标要求 $x_n/x_0 \leq \varepsilon$

$$\frac{x_n}{x_0} = \frac{c^n}{u_1(u_2 + c) \dots (u_n + c)}$$

在条件
$$\frac{c^n}{u_1(u_2+c)\dots(u_n+c)} \le \varepsilon$$
 下确定洗衣机

运行轮数n(=2,3,4)和每轮加水量 $u_k(k=1,2,...,n)$,

使总用水量 $z = \sum_{k=1}^{n} u_k$ 最少.

模型简化

$$\frac{c^n}{u_1(u_2+c)...(u_n+c)} \le \varepsilon \qquad \downarrow^{c} \qquad \frac{c^n}{\prod_{k=1}^n u_k} \le \varepsilon$$

$$\min z = \sum_{k=1}^{n} u_k$$
 \downarrow $\min u_k \downarrow$ $\prod_{k=1}^{n} u_k = c^n/\varepsilon$ 算术平均值 几何平均值

n个数的几何平均值小于或等于算术平均值, 当且仅当n个数相等时等号成立.

 u_k 全相等,即每轮加水量是一个固定值u.

模型简化

$$\min z = \sum_{k=1}^{n} u_{k} \qquad \prod_{k=1}^{n} u_{k} = c^{n}/\varepsilon$$

$$\min z = nu \qquad u_{k} = u \qquad u^{n} = c^{n}/\varepsilon$$

问题化为在条件 $u^n = c^n/\varepsilon$ 下求u和 n (=2,3,4) 使 z=nu 最小.

• u是第1轮加水量,此后各轮加水量应减掉c(脱水后衣物的含水量).

模型求解

min
$$z = nu$$

$$u^n = c^n/\varepsilon$$

$$z = n\frac{c}{\varepsilon^{1/n}}$$

$$u = \frac{c}{\varepsilon^{1/n}}$$

• 对于给定的 c,ε , 依次固定n=2,3,4,比较总用水量z的大小,确定u和n的解.

$$u = \mu_n c$$
, $\mu_n = \frac{1}{\varepsilon^{1/n}}$ $z = \lambda_n c$, $\lambda_n = \frac{n}{\varepsilon^{1/n}}$

• 对于固定的c,数值 μ_n 和 λ_n 直接反映了每轮加水量和总用水量的大小.

模型求解
$$u = \mu_n c$$
, $\mu_n = \frac{1}{\varepsilon^{1/n}}$ $z = \lambda_n c$, $\lambda_n = \frac{n}{\varepsilon^{1/n}}$

$$z = \lambda_n c$$
, $\lambda_n = \frac{n}{\varepsilon^{1/n}}$

3	0.5%	1%	2%	5%	10 %
μ_2	14.2	10.0	7.1	4.5	3.2
μ_3	5.8	4.6	3.7	2.7	2.2
μ_4	3.8	3.2	2.7	2.1	1.8
λ_2	28.3	20.0	14.2	8.9	6.3
λ_3	17.5	13.9	11.1	8.1	6.5
λ_4	15.0	12.6	10.6	8.5	7.1

若衣物清洁程度要 **求较高(ε≤2%)**,洗 衣机运行4轮的总用 水量最少.

清洁程度要求 较低时(ε≥5%), 总用水量都差 不多,运行3轮 ₹更合适.

模型讨论

每轮加水量u的上限和下限

缸体容积限制 \Box u 的上限 u_{max} 浸没衣物需求 \Box u 的下限 u_{min}

$$u_{min} \le u \le u_{max}$$

w~洗涤前衣物质量(kg) c~脱水后衣物含水量

 $a\sim$ 每kg衣物脱水后含水量 c=aw $u=\mu_n c=\mu_n aw$

b~每kg衣物浸泡所需水量 u_{min}= bw

a和b取决于衣物的质地,其数值可通过实验确定.

$$u_{min} \le u$$
 \downarrow $\mu_n a \ge b$ $\mu_n = 2, 3$ 时大体上能满足.

 $u \leq u_{max}$ 通过控制w来满足.

2.4 扬帆远航

帆船在海面上乘风远航,确定最佳的航行方向及帆的朝向.

简化问题

海面上东风劲吹,设帆船 要从A点驶向正东方的B点, 确定起航时的航向 θ ,

以及帆的朝向 α .

模型分析

- •风(通过帆)对船的推力w
- 风对船体部分的阻力p

推力w的分解

$$w = w_1 + w_2$$

$$w_1 = f_1 + f_2$$

fi~航行方向的推力

阻力p的分解

$$p = p_1 + p_2$$

 p_1 ~航行方向的阻力

模型假设

• w与帆迎风面积 s_1 成正比,p与船迎风面积 s_2 成正比k,比例系数相同且 s_1 远大于 s_2

模型 假设

- w2与帆面平行,可忽略.
- • f_2, p_2 垂直于船身,可由舵抵消.

• 航向速度v与力 $f=f_1-p_1$ 成正比 k_1 .

模型建立

$$w=ks_1$$
, $p=ks_2$

$$w_1 = w \sin(\theta - \alpha)$$

$$f_1 = w_1 \sin \alpha = w \sin \alpha \sin(\theta - \alpha)$$

$$p_1 = p\cos\theta$$

$$v = k_1(f_1 - p_1)$$

船在正东方向速度分量 v_1 = $v\cos\theta$

模型建立

$$v_1 = v\cos\theta = k_1(f_1 - p_1)\cos\theta$$

$$f_1 = w_1 \sin \alpha = w \sin \alpha \sin(\theta - \alpha)$$

 $p_1 = p\cos\theta$

模型求解 求 θ,α ,使 v_1 最大

1) 当 θ 固定时求 α 使 f_1 最大

 $f_1 = w[\cos(\theta - 2\alpha) - \cos\theta]/2$

2) $\Leftrightarrow \alpha = \theta/2$,

 $v_1 = k_1 \left[w(1 - \cos \theta) / 2 - p \cos \theta \right] \cos \theta$

求 θ 使 v_1 最大($w=ks_1, p=ks_2$)

$$v_1 = k_1 \left[w(1 - \cos \theta) / 2 - p \cos \theta \right] \cos \theta$$
$$= (k_1 w / 2) \left[1 - (1 + 2p/w) \cos \theta \right] \cos \theta$$

$$w=ks_1, p=ks_2$$
 $i = 1+2s_2/s_1, k_2=k_1w/2$

$$v_{1} = k_{2}(1 - t\cos\theta)\cos\theta = k_{2}t\left[\frac{1}{4t^{2}} - (\cos\theta - \frac{1}{2t})^{2}\right]$$

$$s_1 >> s_2 \quad \Box \quad 1 < t < 2 \quad \Box \quad 1/4 < \cos \theta < 1/2 \quad \Box \quad 60^{\circ} < \theta < 75^{\circ}$$

- •只讨论起航时的航向,是静态模型.
- 注
- 航行过程中终点B将不在正东方,应调整 θ 和 α .

