SKKU Lab Recommendation Service: FindMyLab

Team J (Last Lap) 김현진 송민석 장민석 조재희

1. Objectives & Milestones

Week	234	5	6	7	8	9	10	11	12	13	14	15
Ideation												
UX/UI Design												
Frontend												
Abstract Collect												
Database												
Backend												
Al Experiment												
AI Modeling												
Al Evaluation												

2. Frontend / Component-Based Abstraction


```
function CollerTag(tag) {
    var tagLength = 0;
    window.innerWidth > 575 ? (tagLength = 10) : (tagLength = 10);
    if (tag.length > tagLength) {
      tag = tag.substring(0, tagLength) + "...";
    // tag를 콤마로 나누고 최대 3개의 태그만 가져옴
   const collerTagsArray = tag.split(',').map((t) => t.trim()).slice(0, 3);
     ist LabCollerTag = ({ tagsinfo }) => {
     const sortedTags = [...tagsinfo].sort((a, b) => b.coller - a.coller);
      <div className="flex-container resultBox-FindMyLab";</pre>
         className="flex-container flex-column mx-auto px-2"
         style={{ display: sortedTags[0].bookname.length === 0 ? "none" : "" }}>
           className="flex-container"
           style={{ overflow: "hidden", flexBasis: "90%", position: "relative", height: "auto" }
            className="d-flex flex-column"
             style={{ position: "absolute", overflow: "scroll", height: "100%", width: "100%" }}
             {sortedTags.map((v, k) => {
              return CollerTag(v.tag);
```

2. Frontend / Parameterization

```
unction LabInfoBox(img, name, tag, coller, key) {
var nameLength = 0;
window.innerWidth > 575 ? (nameLength = 10) : (nameLength = 10);
if (name.length > nameLength) {
  name = name.substring(0, nameLength) + "...";
// tag를 콤마로 나누고 최대 5개의 태그만 가져옴
const tagsArray = tag.split(',').map((t) => t.trim()).slice(0, 5);
  <div className="flex-container px-3 py-2 LabListBox" key={key}>
    <div className="flex-container mx-auto p-1 labBox-card">
      <div className="me-2 labBox-card-img">
        <div className="flex-container m-auto">
            style={{ width: "80px", height: "100px", border: "0.1px solid #4F4E4E" }}
            src={img}
            alt=""
            onError={(e) => {
              e.target.src = defaultImg;
      <div className="flex-container flex-column labBox-card-text">
        {/* 교수의 LabPage로 이동하는 링크 */}
          key={key}
          to={`/labpage/${name}`}
          style={{ marginRight: "10px", textDecoration: "none", color: "black" }}
```

2. Frontend / State-Driven UI

```
function LabPage() {
                                                                                                           return (
                                                                                                               <div className="f-container flex-column mx-auto box-fade sub-frame">
   const [keyword, setKeyword] = useState("");
                                                                                                                   <div className="d-flex mx-auto" style={{ flexBasis: "5%", width: "100%" }}>
   const [profInfo, setProfInfo] = useState("Professor's info will be here | Research area description")
                                                                                                                       <Search placeholder={keyword} values={searchInfo} />
   const [profImg, setProfImg] = useState(null);
   const [keyTag, setKeyTag] = useState("#NLG, #NLU, #Text-Image Fusion");
   const [collerLabs, setCollerLabs] = useState([]);
                                                                                                                    <div className="content">
   const [tagsInfo, setTagsInfo] = useState([]);
                                                                                                                       <div className="d-flex mx-auto" style={{ flexBasis: "2%", width: "100%" }}></div>
                                                                                                                       <div className="f-container mx-auto" style={{ flexBasis: "75%" }}>
   const searchInfo = { keyword };
                                                                                                                           <LabIntro profinfo={profInfo} profimg={profImg} keytag={keyTag} />
   useEffect(() => {
     axios.get("/lab/${name}")
                                                                                                                           <div className="additional-info">
       .then((response) => {
                                                                                                                                <LabColler />
         setProfInfo(response.data.lab_description|| "Professor's info is unavailable");
         setProfImg(response.data.profImg || null);
                                                                                                                           <CollerLabList item={collerLabs} />
         setKeyTag(response.data.tags.join(", ") || "#No tags");
         setCollerLabs(response.data.relatedLabs || []);
                                                                                                                           <LabCollerTag tagsinfo={tagsInfo} />
         setTagsInfo(response.data.tagsInfo || []);
                                                                                                                       </div>
       .catch((error) => {
        console.error("Error fetching professor info:", error);
```

2. Frontend / Hierarchical Structure

```
<Link to={`/labpage/${name}`} style={{ textDecoration: "none", color: "black" }}>
 <div className="flex-container px-3 py-2 LabListBox" key={key}>
    <div className="flex-container mx-auto p-1 labBox-card">
      <div className="me-2 labBox-card-img">
        <div className="flex-container m-auto">
           style={{ width: "80px", height: "100px", border: "0.1px solid #4F4E4E"
            src={img}
           alt=""
           onError={(e) => {
             e.target.src = defaultImg;
      <div className="flex-container flex-column labBox-card-text">
       <div>{name}</div>
        <div className="tagInfo">
         tag:{" "}
         {collerTagsArray.map((singleTag, index) => (
           <span key={index}>#{singleTag} </span>
    </div>
</Link>
```

3. Backend / Abstract Extract - previous algorithm

Connecting Research and Researchers

[Crossref API]

학술지 논문

- (2022) Pivotal B plus tree for Byte-Addressable Persistent Memory. IEEE ACCESS. 10, -
- (2021) Failure-Atomic Byte-Addressable R-tree for Persistent Memory. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. 32, 3
- (2021) Failure-Atomic Byte-Addressable R-tree for Persistent Memory. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. 32, 3
- (2020) B-3-Tree: Byte-Addressable Binary B-Tree for Persistent Memory. ACM TRANSACTIONS ON STORAGE. 16, 3

Google 학술검색	(2022) Pivotal B plus tree for Byte-Addressable Persistent Memory. IEEE AC
학술자료	검색결과 약 126개 (0.10초)
모든 날짜 2024 년부터 2023 년부터 2020 년부터 기간 설정	Pivotal B+ tree for Byte-Addressable Persistent Memory J Yoo, <u>H Cha, W Kim, WH Kim, SS Park, B Nam</u> - IEEE Access, 2022 - ieeexplore.ieee.org for byte-addressable persistent memory. In this work, we design and implement PB+tree (Pivotal B+tree) In this work, we present Pivotal B+tree (PB+Tree) that simplifies memory access ☆ 저장 ワワ 인용 1회 인용 관련 학술자료 전체 4개의 버전

3. Backend / Abstract Extract - SKKU Web Crawling

[SKKU Computer Science Web Site]

(2024) Two-step Masked Language Model for Domain-adapting Multi-mod (2024) Query-focused summarization with the context-graph informati (2024) SPACE: Senti-Prompt As Classifying Embedding for sentiment a (2023) Efficient framework for low-resource abstractive summarizati (2023) Dicer: Dialogue-Centric Representation for Knowledge-Grounder (2023) Meta-learning with topic-agnostic representations for zero-s (2023) Enriching the dialogue state tracking model with a asyntacti (2023) Graph-based query reformulation system for descriptive query (2023) Knowledge-grounded dialogue modelling with dialogue-state tr (2023) Knowledge graph extension with a pre-trained language model (2022) BERT-based response selection in dialogue systems using utte (2022) Multitask Fine-Tuning for Passage Re-Ranking Using BM25 and (2022) Effective fake news video detection using domain knowledge a (2022) Novel regularization method for the class imbalance problem. (2021) Effective fake news detection using graph and summarization (2021) Using Adversarial Learning and Biterm Topic Model for an Eff (2021) MEM-KGC: Masked Entity Model for Knowledge Graph Completion (2021) Word sense disambiguation based on context selection using k (2021) Parallel sentence extraction to improve cross-language inform Named-Entity Recognition Using Automatic Construction of Train (2024) ToolPhet: Inference of Compiler Provenance from Stripped Bin (2023) Demystifying the Regional Phishing Landscape in South Korea. (2023) Binary Code Representation With Well-Balanced Instruction Nor A Look Back on a Function Identification Problem. Annual Co

[Crawling Data]

3. Backend / Abstract Extract - Custom Search API

Custom Search API

[Custom Search Engine]

```
https://ieeexplore.ieee.org/document/10209234
https://www.sciencedirect.com/science/article/abs/pii/S0957417423032013
https://dl.acm.org/doi/10.1016/j.patrec.2024.02.022
https://www.sciencedirect.com/science/article/abs/pii/S0957417423015312
https://www.sciencedirect.com/science/article/abs/pii/S0167865523001691
https://www.sciencedirect.com/science/article/abs/pii/S0167865523001332
https://www.sciencedirect.com/science/article/abs/pii/S0167865523000958
https://www.sciencedirect.com/science/article/abs/pii/S0957417422021674
https://www.sciencedirect.com/science/article/abs/pii/S0885230822000833
https://www.sciencedirect.com/science/article/abs/pii/S0950705122013417
https://www.sciencedirect.com/science/article/abs/pii/S0957417422014166
https://ieeexplore.ieee.org/document/9779725
https://www.sciencedirect.com/science/article/abs/pii/S0167865522000071
https://www.sciencedirect.com/science/article/abs/pii/S0957417421013245
https://www.sciencedirect.com/science/article/abs/pii/S0167865521002695
https://ieeexplore.ieee.org/document/9585513/
https://ieeexplore.ieee.org/document/9540703
https://www.sciencedirect.com/science/article/pii/S0306457321000558
https://dl.acm.org/doi/10.1002/asi.23153
https://ieeexplore.ieee.org/document/9286444
```

[URI Data]

3. Backend - Abstract Extract - GPT prompting

Prompt

Read the abstract of the provided research paper and return the {field} core technology and classification in a list format. Provide only concise keywords or phrases for each response item without full sentences. Read the abstract of the provided research paper and return the core technology and classification as a single, combined list of keywords in array format, without any headings or categorization

```
고영종
['artificial intelligence', 'language understanding', 'language generation', 'dialogue-specific task', 'SIMMC2.0 challenge', 'pre-training task', 'encoder-decoder transformer', 'auxiliary task', 'task-oriented dialogue systems']
['Query-Focused Summarization', 'Transformer-based models', 'Semantic Graph', 'Query-attentive mechanism', 'Graph neural network', 'Personalized PageRank', 'Contextual information fusion', 'Node representation', 'Performance benchmarking']
['natural language processing', 'sentiment analysis', 'pre-training', 'fine-tuning', 'pre-trained language models', 'classifier models', 'prompts', 'classification tasks', 'context-dependent meaning', 'soft prompts', 'sentiment-related embeddings', 'denoising task', 'masked tokens', 'masked language model', 'attention pattern', 'superior performance', 'state-of-the-art', 'datasets']
['large language models', 'abstractive summarization', 'low-resource', 'pointer-generator network', 'meta-learning', 'transfer learning', 'domain shifting', 'copy mechanism', 'experimental results', 'state-of-the-art']
['knowledge-grounded dialogue', 'external knowledge', 'response generation', 'knowledge selection tasks', 'contrastive-learning', 'negative sampling loss', 'dialogue-centric representation', 'knowledge selection loss', 'topic prediction loss', 'content representations', 'dialogue history', 'topic representations', 'evaluation', 'Wizard of Wikipedia', 'Holl-E', 'improvement', 'response generation tasks']
['zero-shot stance detection', 'generalization', 'stance recognition', 'overfitting prevention', 'text encoder', 'zero-shot meta-learning', 'benchmark datasets', 'sentiment classification']
['Dialogue state tracking', 'Task-oriented dialogue system', 'Pretrained language models', 'Contextual information', 'Syntactically ENriched Discourse Dialogue State Tracking model', 'Discourse information', 'Syntactic Discourse graph', 'Dependency trees', 'MultiWOZ 2.1', 'State-of-the-art results', 'Effectiveness']
['information', 'experimental results', 'retrieval p
```

3. Backend - Abstract Extract - GPT prompting

												_
Name	Abstract	Keywords										
고영중	The next gener	Artificial Ir	ntelligence	:Language	Understan	ıding;Langı	uage Gene	ration;Dial	ogue Resea	arch;Dialog	ue-Specific	c Pre-
고영중	Query-Focused	Query-Foc	used Sumi	marization;	Transforme	er-based m	odels;Quei	ry-attentive	Semantic	Graph;Grap	ph Neural	Netw
고영중	In natural lang	natural lar	nguage pro	cessing;se	ntiment an	alysis;pre-t	trained lan	guage mod	dels;classifi	er models;p	prompts;co	ntext
고영중	Recently, large	large lang	uage mod	els;abstract	ive summa	rization;lo	w-resource	task;point	er-generate	or network;	meta-learr	ning;c
고영중	Knowledge-gro	knowledge	e-grounde	d dialogue	external k;	nowledge;	contrastive	-learning;n	egative sar	mpling loss	;dialogue-	centr
고영중	Zero-shot stand	Zero-shot	stance det	ection;gen	eralization	topic-agn;	ostic text e	ncoder;zer	o-shot met	a-learning;	stance clas	sifica
고영중	Dialogue state	Dialogue 9	State Track	ing;Pretrai	ned Langu	age Mode	ls;Contextu	al Informa	tion;Syntac	tically ENri	ched Disco	ourse
고영중	In information	informatio	n retrieval	lexical mis	match;que	ry reformu	lation;grap	h-based sy	stem;dictio	nary-based	l;graph neu	ural r
고영중	As knowledge-	knowledge	e-grounde	d dialogue	system;ext	ternal know	vledge;dial	ogue-state	tracking;k	nowledge-	seeking tu	rn de
고영중	Knowledge gra	Knowledg	e Graphs;K	nowledge	Graph Cor	mpletion;O	pen-world	KGC;Entity	Embeddir	ng;Pre-train	ed Langua	ige N
고영중	Dialogue syster	Dialogue s	systems;Na	tural langu	age proce	ssing;Resp	onse select	ion;Retriev	al-based m	odel;Word	attention;	Utter
고영중	Passage re-ran	Passage re	e-ranking;N	Machine lea	arning;Rele	vance scor	ing;Keywor	rd features	Lexical sim	ilarities;Ne	ural pre-tra	ained
고영중	In the digital a	video cont	tent valida	tion;fake n	ews detect	ion;multim	odal data	fusion;dom	nain knowl	edge;learni	ng algorith	nms;li
고영중	In neural netwo	neural net	work;high-	quality dat	taset;class	imbalance;	regularizat	ion metho	d;loss func	tion;skewed	d mean;var	iance
고영중	Nowadays, fake	fake news	detection;	graph tech	niques;sun	nmarizatio	n techniqu	es;attentio	n mechanis	sm;context	informatio	n;rela
고영중	Fake news vide	fake news	detection;	adversarial	learning;to	opic mode	ling;topic c	distribution	;Biterm To	pic Model;s	short text a	ınaly
고영중	The knowledge	knowledge	e graph co	mpletion;K	GC model	s;translatio	nal distanc	e;semantic	matching;	entity emb	edding;ma	sked
고영중	In this paper, v	knowledge	e-based wo	ord-sense d	disambigua	ation;word	similarity;e	ncoding m	ethod;wor	d vector rep	oresentatio	n;gra
고영중	This article exp	cross-lang	uage infor	mation ret	rieval;lexica	al translatio	on evidenc	e;statistical	translation	n evidence;	parallel co	rpora
고영중	In recent years,	Natural La	nguage Pr	ocessing;D	eep Learni	ng;Named	Entity Rec	ognition;In	formation	Extraction;	Distant Sup	pervis
구형준	Identifying con	compiler t	oolchain p	rovenance	binary ana	alysis;C pro	gramming	language;	C++ progr	amming la	nguage;Ru	st;Gc
구형준	The ever-increa	phishing o	ampaigns;	cyber secui	rity;blacklis	st database	;geolocatio	n-based d	etection;So	outh Korea;	phishing U	JRLs;a
구형준	The recovery o	binary ana	alysis;bug o	liscovery;m	alware ana	lysis;code	clone dete	ction;binar	y code ana	lysis;natura	l language	e pro
구형준	A function reco	function re	ecognition	binary ana	lysis;functi	on detecti	on;machine	e learning;	determinist	ic tools;eva	luation me	etrics
구형준	The ease of rer	software w	vatermarkir	na:diaital fi	inaerprint:	copvriaht i	nfrinaemer	nt:function	relocation	code sema	ntics:credil	hilitv:

Model

SBERT - nil pretrained model

tokenizer = AutoTokenizer.from_pretrained("Muennighoff/SBERT-base-nli-v2")
model = AutoModel.from_pretrained("Muennighoff/SBERT-base-nli-v2")

Data

NAME	Abstract	Keywords				
고영중	The next generation	Artificial intelligenc e, Language				
고영중	Query-Focused Summarization i s a system…	Transformer-base d				
••						
•••						
황성재	Java Native Interface allows Ja va···	Native libraries, Ja va Native interface				

	Name	Abstract	Keywords
	고영중	The next generation of artificial intelligence	Artificial Intelligence;Language Understanding
	고영중	Query-Focused Summarization (QFS) is a system	Query-Focused Summarization; Transformer-based
	고영중	In natural language processing, the general ap	natural language processing;sentiment analysis
	고영중	Recently, large language models have shown gre	large language models;abstractive summarizatio
	고영중	Knowledge-grounded dialogue is a task that uti	knowledge-grounded dialogue;external knowledge
433	허재필	Many binary code embedding techniques have bee	binary code embedding;approximate nearest neig
434	허재필	Thanks to compact data representations and fas	binary code embedding; similarity search; comput
435	허재필	Many binary code encoding schemes based on has	binary code encoding;hashing;similarity search
436	황성재	Java Native Interface (JNI) allows Java applic	Java Native Interface; native libraries; native
437	황성재	Artificial intelligence (AI) is a powerful tec	Artificial Intelligence; Cybersecurity; Threat D

Prof's feature

1) grouping abstract → Organized by professor

```
# 교수님별 abstract 그룹화
grouped_abstracts = defaultdict(list)
for _, row in data.iterrows():
    grouped_abstracts[row['Name']].append(row['Abstract'])
```

2) mean pooling

```
# 텍스트 임베딩 함수

def compute_embedding(text):
    inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
    with torch.no_grad():
        outputs = model(**inputs)
        embeddings = outputs.last_hidden_state.mean(dim=1) # CLS token 대신 mean pooling 사용
    return embeddings.squeeze(0).numpy() # numpy 배열로 변환
```

Prof's feature

3) call the function: Calculating representative embeddings for each professor

```
# 교수님별 대표 임베딩 계산
professor_embeddings = {}
for professor, abstracts in tqdm(grouped_abstracts.items(), desc="Calculating Embeddings"):
    embeddings = [
        compute_embedding(abstract) for abstract in tqdm(abstracts, desc=f"Processing {professor}", leave=False)
    ]
    # numpy 배열로 변환된 값을 평균 계산
    embeddings = np.array(embeddings) # torch 텐서가 아닌 numpy 배열로 변환된 상태여야 함
    mean_embedding = np.mean(embeddings, axis=0) # 평균값 계산
    professor_embeddings[professor] = mean_embedding.tolist() # numpy 배열을 리스트로 저장
```

time cost: # of 438 abstract, # of 34 prof => about 10minutes

Search

calculate cosine similarity between search keywords and professor embedding

```
# 코사인 유사도 함수
def compute_cosine_similarity(vec1, vec2):
   return cosine_similarity(vec1.reshape(1, -1), vec2.reshape(1, -1))[0][0]
# 키워드 임베딩 전체의 평균 계산 (키워드 대표 벡터)
keywords mean embedding = np.mean([emb.detach().numpy() for emb in keyword embeddings], axis=0)
                                                                                                                           <similarity result>
# 교수님과의 유사도 계산
similarities = [
                                                                                                                                similarities
   compute_cosine_similarity(keywords_mean_embedding, professor_emb) for professor_emb in professor_embeddings
                                                                                                                             ✓ 0.0s
                                                                                                                             [0.7058130108993443,
                                                                                                                              0.7517226497659004,
# 가장 유사한 교수님 찾기
                                                                                                                              0.6760387696087886,
best_match_index = np.argmax(similarities)
                                                                                                                              0.611329745444604,
best_match_name = professor_names[best_match_index]
                                                                                                                              0.650531409133696,
best_similarity = similarities[best_match_index]
                                                                                                                              0.6090316965807302,
                                                                                                                              0.6559190794461003,
                                                                                                                              0.6146475971280416.
                                                                                                                              0.4801391824629922,
                                                                                                                              0.683038233335444,
```

Search top 5

The extracted similarity list is obtained by sorting in descending order.

```
# 유사도와 교수님 이름 매핑
similarity_results = list(zip(professor_names, similarities))

# 유사도 내리차순 정렬
sorted_results = sorted(similarity_results, key=lambda x: x[1], reverse=True)

# Top 5 교수님 추출
top_5 = sorted_results[:5]

# 결과 출력
print("Top 5 유사한 교수님:")
for rank, (professor, similarity) in enumerate(top_5, start=1):
    print(f"{rank}. {professor}: {similarity:.4f}")

# 결과를 DataFrame으로 저장 (선택사항)
import pandas as pd
top_5_df = pd.DataFrame(top_5, columns=["Professor", "Similarity"])
top_5_df.to_csv("top_5_professors.csv", index=False)
```

Example

search keywords

```
['Compiler toolchain provenance',
   'BERT-based system',
   'Toolchain classification',
   'Binary code similarity detection',
   'Machine learning',
   'Fine-tuning process',
   'Binary analysis',
   'Signature-based tool',
   'Emerging compilation toolchains (Rust Go Nim)',
   'C and C++ compilers (GCC clang)']
```

<search result>

가장 키워드와 유사한 교수님: 구형준 유사도: 0.7517226497659004

<top 5 search result>

```
Top 5 유사한 교수님:
1. 구형준: 0.7517
2. 이지형: 0.7372
3. 우홍욱: 0.7202
4. 이은석: 0.7200
5. 우사이먼성일: 0.7151
```

Example

Received 4 January 2024, accepted 11 January 2024, date of publication 17 January 2024, date of current version 26 January 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3355098

ToolPhet: Inference of Compiler Provenance From Stripped Binaries With Emerging Compilation Toolchains

HOHYEON JANG, NOZIMA MURODOVA (, AND HYUNGJOON KOO

Department of Computer Science and Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, Repu

Corresponding author: Hyungjoon Koo (kevin.koo@skku.edu)

This work was supported in part by the Basic Science Research Program through National Research Foundation of Korea (NRF) Grant funded by the Ministry of Education, Government of South Korea, under Grant 2022R1F1A1074373; and in part by the Institute of Information and Communications Technology Planning and Evaluation (IITP) Grant funded by the Korean Government [Minister of Science, Information and Communications Technology (MSIT)], Graduate School of Convergence Security, Sungkyunkwan University, under Grant 2022-0-01199.

The keywords are highly similar to those used in Professor Koo Hyungjun's actual research papers

Q & A