

IoT의 시대 - 서비타이제이션

■ 서비타이제이션은 제품과 서비스의 결합(product servitization), 서비스의 상품화(service productization), 그리고 기존 서비스와 신규 서비스의 결합 현상을 포괄하는 개념

IoT의 시대 – 서비타이제이션 사례

중장비 IoT

블랙박스 IoT

우리회사의 제품 및 서비스를 어떻게 확장할 것인가?

하드웨어를 만들고 판매하는 회사

기존 및 신규 하드웨어 IoT를 어떻게 구현해서 서비스 할 것인

본 영상의 2부와 3부를 보세 요 산업별로 서비스를 제공하는 회사

기존 센서 및 기기를 이용하여서 내 서비스에 어떻게 적용할 것인

본 영상의 3부를 보세요

하드웨어를 만드는 제조회사의 경우

- 예) LED 조명
 - 이온 정수기 등

- 예) 태양광 전력 수집 장치
 - ▶ 빌딩 화재감지기

신규 기기 기반의 IoT 서비스 전체 개발 과정

Why Nubison IoT?

IoT의 현실적 문제

일반적 하드웨어 전문 역역

별도 구축(비용 추가 발생) 일반적 IoT 플랫폼 전문 영역

일반적 소프트웨어 전문 영소

> 별도 구축(비용 추가 발생)

loT 구현 영역

단순 온도 값을 모바일 기기 에서 보기 위해 상당히 많은 개발 과정 필요!

IoT의 현실적 문제 (운영시)

IoT 서비스 운영

IoT 시스템개발 이후 부터 본격적인 문제!!

[IoT Service Provider]

Hardwear Providers

Service Providers

Equipment

Sensor

Actuator

Al Device

Moving Asset

etc.

IoT Connection

IoT Rule Processing

MOUBISON W

IoT UI/UX Making

IoT Datamining

IoT Data Analisys

etc.

IoT based App/Web Service

Wide area Monitoring & Control

IoT S.I. Project

Startup IT Service

Industrial Expert Service

etc.

NUBISON IoT 소개

End User

End Service

개별 IoT 서비스 다양한 IoT 서비스

Al Speaker App Sma

Smart Home App

Huge Platform 서비스

스마트 팩토리

스마트 시티

Gateway
Business

Hardware & Domain

산업용 장치 업체

중소중견 가전업체

일반 서비스 업체

NUBISON IoT의 특장점

- 1. SW/HW 및 IoT에 대한 전문 지식이 없는 사람들도 쉽고 편리하게 IoT를 활용한 자신만의 서비스를 구성(Servitization) 할 수 있도록 클라우드 웹 화면에서 Non-Coding 방식으로 IoT 시스템을 구축 할 수 있습니다.
- 2. 클라우드 서비스 (PaaS & SaaS) 방식이므로 IoT시스템을 구축하는 데 있어 일반적인 개발방식 대비 초기 구축비용이 매우 저렴하고 사용하는 만큼의 이용요금을 지불하므로 매우 경제적 입니다.
- 3. 기본 SaaS 서비스 이외에도 RestFul API를 제공하여 원하는 서비스에 최적화 된 결과물을 만들 수 있습니다.

기술적 특징

초기 고객유입 가 능

실사용자 중심 서비스

신규가치 생성

Cloud 기반 System

PreBuilt 서비스

IoT 특화 데이타 분석

데이터 뷰

■ 등록된 디바이스의 현재 상태 및 최신 데이터 조회 / 디바이스의 LAW 데이터 및 통계 데이터

프로젝트

■ 클라우드에 디바이스를 등록

IoT 룰

■ 디바이스의 데이터에 기반한 룰 로직 설정

```
≘를 만들기
 룰(GL_R)
                             나만의 일 시작 동작이름을 냉장1_유선온도센서21]로 명칭한다
                                       나의 냉장1(8℃ ~ -5℃) '유선온도센서21 ▼ 의 기기를 '00' 명령으로 '조회 ▼ 한다.
 컨트롤러(GL_R)
                                      동작이름을 <mark>냉장2_유선온도센서22</mark> 로 명칭한다
                                       나의 냉장2(8°C ~ -5°C) 유선온도센서22 ▼ 의 기기를 00 명령으로 조회 ▼ 한다.
                                      동작실행 후 에러시엔
 알람(GL-R)
                                         작업 이름을 [냉장1(유선온도센서21)] 로 명칭한다
                                                  등작 (당장) 유전은도선서(2) 의 결과값 💌 8
                                             만약 동작 냉장기 유선온도센서21 의 결과값 > 1 8
                                               알람 횟수 : 3 회
                                               를 이름: 냉장1_유선온도센서21
                                                                   결과값 등작 냉장1_유선온도센서21 의 결과값
                                             만약 등작 냉장1_유선온도센서21 의 결과값 < - 5
                                               를 이름: 냉장1_유선온도센서21
                                                                   결과값 동작 냉장T_유선온도센서21 의 결과값
알람문구2 °C 입니다. 설정하신-5°C 보다 낮습니다.
                                             룰 이름 <mark>'냉장1_유선온도센서21</mark> 의 알람 메세지 전송 횟수를 초기화 합니다.
  템플릿 불러오기 블록 불러오기 블록 내보내기
```


장소 모니터링

■ 장소를 중심으로 한 디바이스 데이터의 시각화 화면 저작 및 실시간 모니터링 (차트/테이블 제

지도기반모니터링◎nubison☞ TIZEN®

지도를 중심으로 한 디바이스 데이터의 시각화 화면 저작 및 실시간 모니터링 (차트/테이블 제공)

모바일 앱 메이커

원격에서 디바이스의 데이터를 조회 및 제어가 가능한 모바일 앱 화면 제작 툴

상용 컨트롤러

클라우드에 제품의 모델별 속성 및 구성정보를 등록하여 다중의 사용자가 쉽고 빠르게 사용할 수 있도록 가상의 클라우드 컨트롤러를 등록/배포

데이타 분석 기술

실시간 IOT 데이타 분석 TDA(Topology Data Analysis), 주파수 분석, 머신러닝 분석 등 다양한 실시간 Data 분석 방법 제공

TDA

• 위상수학 기반 다변량의 데이터 형태화 모델링을 통한 분석 및 예측

• 분석결과 예시

- 데이타의 형상화 기술 을 통해서 숨겨진 의미를 찾아냄

주파수 분석

• 진동센서 데이터 분석을 통한 고장 예측 및 고장 위치 진단

• 분석결과 예시

- 3차원 입체적 Boundary 를설정, 기기 이상유무 판

머신러닝 분석

•데이터 학습을 통한 분석 및 예측

• 분석결과 예시

- 데이터 구간 특징 학습을 통하여 실시간 예측

주요 특징

▼ TDA

- 다변량 데이터 분석을 통한 데이터 간의 연관 관계 분석
- Main Stream뿐 아니라, Minor Stream도 시각화 (Shape of Data)하여 분석하는 것이 가장 큰 특징

▼ 주파수 분석

- 3차원 입체 Boundary 이미지 제공
- 비정상(특정 부위 이상 발생) 주파수 분석에 대한 3차원 입체 Boundary 이미지 제공 및 머신러닝 학습 기능 제공

☑ 머신러닝

- 지도학습(회귀/분류), 비지도학습(클러스터링), 강화학습 으로 구성

Copyright 2018 (c)

CO.,LID. AII

20

누비슨 IoT의 활용

기본형 서비스

서비스 가입 프로젝트 개설 및 기기등록 모니터링, 모바일 앱, 룰 만들기

서비스 오픈

비지니스 맞춤형 서비스

고객 비지니스 로[?] 분석 맞춤형 웹/앱 개발 (Rest API)

통합 테스트 서비스 오픈

누비슨 IoT 구성

유닛 (Unit)

- 컨트롤러에 물리적으로 연결되어있는 센서 또는 동작기기를 지칭.
- 유닛은 조회만 가능하거나 제어만 가능할 수도 있고 혹은 둘 다 가능할 수도 있음.

컨트롤러(Controller)

- 센서와 물리적으로 연결되어 있고 서버로부터 받은 제어 명령이나 데이터 조회 명령을 실질적으로 수행하는 하드웨어를 통칭.
- Gateway Link 하위에는 여러 컨트롤러가 존재할 수 있으며, Direct Link는 연결이면서 동시에 컨트롤러가 됨.

loT 연결 (Link)

- NUBISON IoT 클라우드와 연결되는 End Point를 지칭함.
- Non-IP 디바이스 같은 경우 게이트웨이를 통해 NUBISON IoT 클라우드에 연결될 수 있는데 이때는 게이트웨이가 연결이 되며 Gateway Link라 지칭함.
- IoT 디바이스 직접 NUBISON IoT 클라우드에 연결하는 경우 IoT 디바이스가 연결이 되며 Direct Link 라 지칭함

클라우드 컨트롤러

- 컨트롤러 템플릿으로써 클라우드 컨트롤러는 실제하는 컨트롤러의 가상화된 인스턴스임.
- 디바이스의 하드웨어적 특징이나 클라우드와 연결하는 프로토콜 및 드라이버 등의 설정을 가짐.

Explore NUBISON IoT

Why Tizen OS?

Why Tizen OS? (1/2)

MCU 성능 대비 가격 하락 추세 기기 기능의 복잡화 시스템 APP의 검증 이슈 기기의 APP 및 펌웨어 관리 이슈 보안 및 표준화 이슈

기존의 임베디드 방식 개발 및 RTOS로는 한계에 봉착!!

Why Tizen OS? (2/2)

그럼 어떻게 해야하는 <u>가?</u>

OS 기반으로 개발 해야 하는데 적당한 것은?

일반 Native Linux는 너무 해야 할 일이 많다 안드로이드는 너무 무거워서 고사양을 요구한다

해결책은 타이젠 IoT OS

하드웨어 개발의 시작 (MCU이해)

기기들 마다 메인으로 컨트롤 하는 Chip이 있는데 그것을 보통 MCU라고 한다

(마이크로컨트롤러(Microcontroller) 또는 **MCU**(Micro Controller Unit)는 <u>마이크로프로세서</u>와 입출력 모듈을 하나의 칩으로 만들어 정해진 기능을 수행

하는 컴퓨터를 말한다

위키에서)

그럼 MCU가 모든 일을 다하는것인가?

MCU는 말 그대로 메인 컨트롤을 담당하고 다양한 센서및 기 기제어는 단위 모듈을 통해서 한다

하드웨어 개발의 시작 (인터페이스의 이해)

그럼 컨트롤 하는 방식은 어떻게 하는가?

MCU가 주변 모듈을 제어하는 방식은 크게 세 가지로 함

SPI

I2C

GPIO

하드웨어 개발의 시작 (실제 기기의 데모)

인터페이스의 상세 이해 (GPIO)

인터페이스의 상세 이해 (I2C)

인터페이스의 상세 이해 (SPI)

IoT 서비스 만들기

