Simulation and High-Performance Computing Part 4: Higher-order Timestepping Methods

Steffen Börm

Christian-Albrechts-Universität zu Kiel

September 29th, 2020

Explicit Euler:

$$\tilde{y}(t+\delta) = y(t) + \delta f(t,y(t))$$

Explicit Euler:

$$\tilde{y}(t+\delta) = y(t) + \delta f(t, y(t))
\tilde{y}(t+\delta) = y(t) + \delta k_1,
k_1 := f(t, y(t)).$$

Explicit Euler:

$$\widetilde{y}(t+\delta) = y(t) + \delta f(t, y(t))$$

$$\widetilde{y}(t+\delta) = y(t) + \delta k_1,$$

$$k_1 := f(t, y(t)).$$

Runge's method:

$$\tilde{y}(t+\delta) = y(t) + \delta f(t + \frac{\delta}{2}, y(t) + \frac{\delta}{2}f(t, y(t)))$$

Explicit Euler:

$$\tilde{y}(t+\delta) = y(t) + \delta f(t, y(t))
\tilde{y}(t+\delta) = y(t) + \delta k_1,
k_1 := f(t, y(t)).$$

Runge's method:

$$\tilde{y}(t+\delta) = y(t) + \delta f(t + \frac{\delta}{2}, y(t) + \frac{\delta}{2} f(t, y(t)))
\tilde{y}(t+\delta) = y(t) + \delta k_2,
k_1 := f(t, y(t)),
k_2 := f(t + \frac{\delta}{2}, y(t) + \frac{\delta}{2} k_1).$$

Explicit Euler:

$$\tilde{y}(t+\delta) = y(t) + \delta f(t, y(t))$$

$$\tilde{y}(t+\delta) = y(t) + \delta k_1,$$

$$k_1 := f(t, y(t)).$$

Runge's method:

$$\tilde{y}(t+\delta) = y(t) + \delta f(t + \frac{\delta}{2}, y(t) + \frac{\delta}{2}f(t, y(t)))$$

$$\tilde{y}(t+\delta) = y(t) + \delta k_2,$$

$$k_1 := f(t, y(t)),$$

$$k_2 := f(t + \frac{\delta}{2}, y(t) + \frac{\delta}{2}k_1).$$

Implicit Euler:

$$\tilde{y}(t+\delta) = y(t) + \delta f(t+\delta, \tilde{y}(t+\delta))$$

Implicit Euler:

$$\tilde{y}(t+\delta) = y(t) + \delta f(t+\delta, \tilde{y}(t+\delta))
\tilde{y}(t+\delta) = y(t) + \delta k_1,
k_1 := f(t+\delta, \tilde{y}(t+\delta)),$$

Implicit Euler:

$$\widetilde{y}(t+\delta) = y(t) + \delta f(t+\delta, \widetilde{y}(t+\delta))$$

$$\widetilde{y}(t+\delta) = y(t) + \delta k_1,$$

$$k_1 := f(t+\delta, \widetilde{y}(t+\delta)),$$

$$k_1 = f(t+\delta, y(t) + \delta k_1).$$

Implicit Euler:

$$\tilde{y}(t+\delta) = y(t) + \delta f(t+\delta, \tilde{y}(t+\delta))
\tilde{y}(t+\delta) = y(t) + \delta k_1,
k_1 := f(t+\delta, \tilde{y}(t+\delta)),
k_1 = f(t+\delta, y(t) + \delta k_1).$$

$$\tilde{y}(t+\delta) = y(t) + \frac{\delta}{2} (f(t,y(t)) + f(t+\delta,\tilde{y}(t+\delta)))$$

Implicit Euler:

$$\begin{split} \tilde{y}(t+\delta) &= y(t) + \delta f(t+\delta, \tilde{y}(t+\delta)) \\ \tilde{y}(t+\delta) &= y(t) + \delta k_1, \\ k_1 &:= f(t+\delta, \tilde{y}(t+\delta)), \\ k_1 &= f(t+\delta, y(t) + \delta k_1). \end{split}$$

$$\tilde{y}(t+\delta) = y(t) + \frac{\delta}{2} \left(f(t, y(t)) + f(t+\delta, \tilde{y}(t+\delta)) \right)
\tilde{y}(t+\delta) = y(t) + \frac{\delta}{2} (k_1 + k_2),
k_1 = f(t, y(t)),
k_2 = f(t+\delta, \tilde{y}(t+\delta)),$$

Implicit Euler:

$$\begin{split} \tilde{y}(t+\delta) &= y(t) + \delta f(t+\delta, \tilde{y}(t+\delta)) \\ \tilde{y}(t+\delta) &= y(t) + \delta k_1, \\ k_1 &:= f(t+\delta, \tilde{y}(t+\delta)), \\ k_1 &= f(t+\delta, y(t) + \delta k_1). \end{split}$$

$$\begin{split} \tilde{y}(t+\delta) &= y(t) + \frac{\delta}{2} \left(f(t,y(t)) + f(t+\delta, \tilde{y}(t+\delta)) \right) \\ \tilde{y}(t+\delta) &= y(t) + \frac{\delta}{2} (k_1 + k_2), \\ k_1 &= f(t,y(t)), \\ k_2 &= f(t+\delta, \tilde{y}(t+\delta)), \end{split}$$

Implicit Euler:

$$\begin{split} \tilde{y}(t+\delta) &= y(t) + \delta f(t+\delta, \tilde{y}(t+\delta)) \\ \tilde{y}(t+\delta) &= y(t) + \delta k_1, \\ k_1 &:= f(t+\delta, \tilde{y}(t+\delta)), \\ k_1 &= f(t+\delta, y(t) + \delta k_1). \end{split}$$

$$\begin{split} \tilde{y}(t+\delta) &= y(t) + \frac{\delta}{2} \big(f(t,y(t)) + f(t+\delta, \tilde{y}(t+\delta)) \big) \\ \tilde{y}(t+\delta) &= y(t) + \frac{\delta}{2} (k_1 + k_2), \\ k_1 &= f(t,y(t)), \\ k_2 &= f(t+\delta, \tilde{y}(t+\delta)), \\ k_2 &= f(t+\delta, y(t) + \frac{\delta}{2} (k_1 + k_2)). \end{split}$$

General Runge-Kutta method

Observation: All single-step methods introduced in this lecture so far share a common form:

$$ilde{y}(t+\delta) = y(t) + \delta \sum_{i=1}^n b_i \, k_i,$$
 $k_i = f\left(t + \delta \, c_i, y(t) + \delta \sum_{j=1}^n a_{ij} k_j\right)$ for all $i \in [1:n]$.

General Runge-Kutta method

Observation: All single-step methods introduced in this lecture so far share a common form:

$$\widetilde{y}(t+\delta) = y(t) + \delta \sum_{i=1}^{n} b_i k_i,$$

$$k_i = f\left(t + \delta c_i, y(t) + \delta \sum_{j=1}^{n} a_{ij} k_j\right) \quad \text{for all } i \in [1:n].$$

- Explicit method if $a_{ii} = 0$ for $j \ge i$,
- Semi-implicit method if $a_{ij} = 0$ for j > i,
- Implicit method otherwise.

Butcher tableaus

Idea: Collect all coefficients in a simple representation.

Butcher tableaus

Idea: Collect all coefficients in a simple representation.

Explicit and implicit Euler:

$$\begin{array}{c|c} 1 & 1 \\ \hline & 1 \end{array}$$

Butcher tableaus

Idea: Collect all coefficients in a simple representation.

Explicit and implicit Euler:

Runge and Crank-Nicolson:

$$\begin{array}{c|cccc}
0 & 0 & \\
1/2 & 1/2 & 0 \\
\hline
& 0 & 1 & \\
\end{array}$$

$$\begin{array}{c|cccc}
0 & 0 \\
1 & 1/2 & 1/2 \\
\hline
& 1/2 & 1/2
\end{array}$$

Idea: Based on Simpson's quadrature.

0	0			
1/2	1/2	0		
1/2	0	1/2	0	
1	0	0	1	0
	1/6	1/3	1/3	1/6

Idea: Based on Simpson's quadrature.

$$k_{1} := f(t, y(t)),$$

$$k_{2} := f(t + \frac{1}{2}\delta, y(t) + \frac{1}{2}\delta k_{1}),$$

$$k_{3} := f(t + \frac{1}{2}\delta, y(t) + \frac{1}{2}\delta k_{2}),$$

$$k_{4} := f(t + \delta, y(t) + \delta k_{3}),$$

$$\tilde{y}(t + \delta) := y(t) + \delta \left(\frac{1}{6}k_{1} + \frac{1}{3}k_{2} + \frac{1}{3}k_{3} + \frac{1}{6}k_{4}\right).$$

Idea: Based on Simpson's quadrature.

$$k_{1} := f(t, y(t)),$$

$$k_{2} := f(t + \frac{1}{2}\delta, y(t) + \frac{1}{2}\delta k_{1}),$$

$$k_{3} := f(t + \frac{1}{2}\delta, y(t) + \frac{1}{2}\delta k_{2}),$$

$$k_{4} := f(t + \delta, y(t) + \delta k_{3}),$$

$$\tilde{y}(t + \delta) := y(t) + \delta \left(\frac{1}{6}k_{1} + \frac{1}{3}k_{2} + \frac{1}{3}k_{3} + \frac{1}{6}k_{4}\right).$$

Idea: Based on Simpson's quadrature.

$$k_{1} := f(t, y(t)),$$

$$k_{2} := f(t + \frac{1}{2}\delta, y(t) + \frac{1}{2}\delta k_{1}),$$

$$k_{3} := f(t + \frac{1}{2}\delta, y(t) + \frac{1}{2}\delta k_{2}),$$

$$k_{4} := f(t + \delta, y(t) + \delta k_{3}),$$

$$\tilde{y}(t + \delta) := y(t) + \delta \left(\frac{1}{6}k_{1} + \frac{1}{3}k_{2} + \frac{1}{3}k_{3} + \frac{1}{6}k_{4}\right).$$

Idea: Based on Simpson's quadrature.

$$k_{1} := f(t, y(t)),$$

$$k_{2} := f(t + \frac{1}{2}\delta, y(t) + \frac{1}{2}\delta k_{1}),$$

$$k_{3} := f(t + \frac{1}{2}\delta, y(t) + \frac{1}{2}\delta k_{2}),$$

$$k_{4} := f(t + \delta, y(t) + \delta k_{3}),$$

$$\tilde{y}(t + \delta) := y(t) + \delta \left(\frac{1}{6}k_{1} + \frac{1}{3}k_{2} + \frac{1}{3}k_{3} + \frac{1}{6}k_{4}\right).$$

Idea: Based on Simpson's quadrature.

$$k_{1} := f(t, y(t)),$$

$$k_{2} := f(t + \frac{1}{2}\delta, y(t) + \frac{1}{2}\delta k_{1}),$$

$$k_{3} := f(t + \frac{1}{2}\delta, y(t) + \frac{1}{2}\delta k_{2}),$$

$$k_{4} := f(t + \delta, y(t) + \delta k_{3}),$$

$$\tilde{y}(t + \delta) := y(t) + \delta \left(\frac{1}{6}k_{1} + \frac{1}{3}k_{2} + \frac{1}{3}k_{3} + \frac{1}{6}k_{4}\right).$$

Idea: Based on Simpson's quadrature.

$$k_{1} := f(t, y(t)),$$

$$k_{2} := f(t + \frac{1}{2}\delta, y(t) + \frac{1}{2}\delta k_{1}),$$

$$k_{3} := f(t + \frac{1}{2}\delta, y(t) + \frac{1}{2}\delta k_{2}),$$

$$k_{4} := f(t + \frac{\delta}{\delta}, y(t) + \delta k_{3}),$$

$$\tilde{y}(t + \delta) := y(t) + \delta \left(\frac{1}{6}k_{1} + \frac{1}{3}k_{2} + \frac{1}{3}k_{3} + \frac{1}{6}k_{4}\right).$$

Idea: Based on Simpson's quadrature.

$$k_{1} := f(t, y(t)),$$

$$k_{2} := f(t + \frac{1}{2}\delta, y(t) + \frac{1}{2}\delta k_{1}),$$

$$k_{3} := f(t + \frac{1}{2}\delta, y(t) + \frac{1}{2}\delta k_{2}),$$

$$k_{4} := f(t + \delta, y(t) + \frac{\delta}{\delta} k_{3}),$$

$$\tilde{y}(t + \delta) := y(t) + \delta \left(\frac{1}{6}k_{1} + \frac{1}{3}k_{2} + \frac{1}{3}k_{3} + \frac{1}{6}k_{4}\right).$$

Idea: Based on Simpson's quadrature.

$$k_{1} := f(t, y(t)),$$

$$k_{2} := f(t + \frac{1}{2}\delta, y(t) + \frac{1}{2}\delta k_{1}),$$

$$k_{3} := f(t + \frac{1}{2}\delta, y(t) + \frac{1}{2}\delta k_{2}),$$

$$k_{4} := f(t + \delta, y(t) + \delta k_{3}),$$

$$\tilde{y}(t + \delta) := y(t) + \delta \left(\frac{1}{6}k_{1} + \frac{1}{3}k_{2} + \frac{1}{3}k_{3} + \frac{1}{6}k_{4}\right).$$

Idea: Based on Simpson's quadrature.

$$k_{1} := f(t, y(t)),$$

$$k_{2} := f(t + \frac{1}{2}\delta, y(t) + \frac{1}{2}\delta k_{1}),$$

$$k_{3} := f(t + \frac{1}{2}\delta, y(t) + \frac{1}{2}\delta k_{2}),$$

$$k_{4} := f(t + \delta, y(t) + \delta k_{3}),$$

$$\tilde{y}(t + \delta) := y(t) + \delta \left(\frac{1}{6}k_{1} + \frac{1}{3}k_{2} + \frac{1}{3}k_{3} + \frac{1}{6}k_{4}\right).$$

Idea: Based on Simpson's quadrature.

$$k_{1} := f(t, y(t)),$$

$$k_{2} := f(t + \frac{1}{2}\delta, y(t) + \frac{1}{2}\delta k_{1}),$$

$$k_{3} := f(t + \frac{1}{2}\delta, y(t) + \frac{1}{2}\delta k_{2}),$$

$$k_{4} := f(t + \delta, y(t) + \delta k_{3}),$$

$$\tilde{y}(t + \delta) := y(t) + \delta \left(\frac{1}{6}k_{1} + \frac{1}{3}k_{2} + \frac{1}{3}k_{3} + \frac{1}{6}k_{4}\right).$$

Idea: Based on Simpson's quadrature.

$$k_{1} := f(t, y(t)),$$

$$k_{2} := f(t + \frac{1}{2}\delta, y(t) + \frac{1}{2}\delta k_{1}),$$

$$k_{3} := f(t + \frac{1}{2}\delta, y(t) + \frac{1}{2}\delta k_{2}),$$

$$k_{4} := f(t + \delta, y(t) + \delta k_{3}),$$

$$\tilde{y}(t + \delta) := y(t) + \delta \left(\frac{1}{6}k_{1} + \frac{1}{3}k_{2} + \frac{1}{3}k_{3} + \frac{1}{6}k_{4}\right).$$

Classic Runge-Kutta: Implementation

Approach: Store approximted derivatives k_1, \ldots, k_4 in auxiliary variables.

```
dx1 = v;
dv1 = -c/m * x;
dx2 = v + 0.5 * delta * dv1;
dv2 = -c/m * (x + 0.5 * delta * dx1);
dx3 = v + 0.5 * delta * dv2;
dv3 = -c/m * (x + 0.5 * delta * dx2);
dx4 = v + delta * dv3:
dv4 = -c/m * (x + delta * dx3):
x += delta * (dx1 + 2.0 * dx2 + 2.0 * dx3 + dx4) / 6.0:
v += delta * (dv1 + 2.0 * dv2 + 2.0 * dv3 + dv4) / 6.0:
```

Experiment: Crank-Nicolson vs Runge-Kutta

Approach: Start at t = 0, perform successive timesteps to reach t = 10.

	Crank-Nic		Runge-Kutta	
δ	error	ratio	error	ratio
1/2	9.2_{-2}		8.1_4	
1/4	2.7_{-2}	3.4	1.2_{-4}	6.9
1/8	7.0_{-3}	3.9	9.2_{-6}	12.6
1/16	1.8_{-3}	4.0	6.4_7	14.5
1/32	4.4_{-4}	4.0	4.1_{-8}	15.3
1/64	1.1_{-4}	4.0	2.6_9	15.7
1/128	2.8_{-5}	4.0	1.7_{-10}	15.8
1/256	6.9_{-6}	4.0	1.1_{-11}	15.9
1/512	1.7_{-6}	4.0	6.6_{-13}	15.9

Observation: Classic Runge-Kutta is indeed of fourth order, since the error behaves like δ^4 .

Multistep methods

Problem: Higher-order Runge-Kutta methods are computationally expensive.

Idea: Re-use results computed in previous steps in order to save time.

Approach: We let $t_i := t_0 + \delta i$.

An *m*-step method computes $y(t_{i+1})$ based on $y(t_i), \ldots, y(t_{i-m+1})$ (and maybe additional data corresponding to these previous states).

Multistep methods

Problem: Higher-order Runge-Kutta methods are computationally expensive.

Idea: Re-use results computed in previous steps in order to save time.

Approach: We let $t_i := t_0 + \delta i$.

An *m*-step method computes $y(t_{i+1})$ based on $y(t_i), \ldots, y(t_{i-m+1})$ (and maybe additional data corresponding to these previous states).

Example: Leapfrog method, $y(t + \delta)$ depends on y(t) and $y(t + \frac{\delta}{2})$.

Adams-Bashforth method

Idea: Fundamental theorem of calculus states

$$y(t_{i+1}) = y(t_i) + \int_{t_i}^{t_{i+1}} y'(s) ds.$$

Adams-Bashforth method

Idea: Fundamental theorem of calculus states

$$y(t_{i+1}) = y(t_i) + \int_{t_i}^{t_{i+1}} y'(s) ds.$$

Approximate the interval by replacing y^{\prime} with the interpolating polynomial

$$p(s) = \sum_{j=0}^{m} y'(t_{i-j}) \ell_{i,j}(s)$$

in the points $t_i, t_{i-1}, \ldots, t_{i-m}$ with Lagrange polynomials $\ell_{i,0}, \ldots, \ell_{i,m}$.

Adams-Bashforth method

Idea: Fundamental theorem of calculus states

$$y(t_{i+1}) = y(t_i) + \int_{t_i}^{t_{i+1}} y'(s) ds.$$

Approximate the interval by replacing y^{\prime} with the interpolating polynomial

$$p(s) = \sum_{j=0}^{m} y'(t_{i-j}) \ell_{i,j}(s)$$

in the points $t_i, t_{i-1}, \ldots, t_{i-m}$ with Lagrange polynomials $\ell_{i,0}, \ldots, \ell_{i,m}$.

$$y(t_{i+1}) \approx y(t_i) + \int_{t_i}^{t_{i+1}} p(s) ds = y(t_i) + \sum_{j=0}^{m} y'(t_{i-j}) \underbrace{\int_{t_i}^{t_{i+1}} \ell_{i,j}(s) ds}_{=:a_{ij}}$$

$$= y(t_i) + \sum_{i=0}^{m} a_{ij} f(t_{i-j}, y(t_{i-j})).$$

Equidistant points $t_i = t_0 + \delta i$ imply

$$\ell_{i,j}(s) = \prod_{\substack{k=0 \\ k \neq j}}^{m} \frac{s - t_{i-k}}{t_{i-j} - t_{i-k}} = \prod_{\substack{k=0 \\ k \neq j}}^{m} \frac{s - t_{i} + \delta k}{\delta (k - j)}$$

Equidistant points $t_i = t_0 + \delta i$ imply

$$\ell_{i,j}(s) = \prod_{\substack{k=0\\k\neq j}}^{m} \frac{s - t_{i-k}}{t_{i-j} - t_{i-k}} = \prod_{\substack{k=0\\k\neq j}}^{m} \frac{s - t_{i} + \delta k}{\delta (k-j)} = \prod_{\substack{k=0\\k\neq j}}^{m} \frac{\hat{s} + k}{k-j}$$

with $s = \delta \hat{s} + t_i$.

Equidistant points $t_i = t_0 + \delta i$ imply

$$\ell_{i,j}(s) = \prod_{\substack{k=0\\k\neq j}}^{m} \frac{s - t_{i-k}}{t_{i-j} - t_{i-k}} = \prod_{\substack{k=0\\k\neq j}}^{m} \frac{s - t_{i} + \delta k}{\delta (k-j)} = \prod_{\substack{k=0\\k\neq j}}^{m} \frac{\hat{s} + k}{k-j}$$

with $s = \delta \hat{s} + t_i$.

Coefficients given by

$$a_{ij} = \int_{t_i}^{t_{i+1}} \ell_{i,j}(s) \, ds$$

Equidistant points $t_i = t_0 + \delta i$ imply

$$\ell_{i,j}(s) = \prod_{\substack{k=0\\k\neq j}}^{m} \frac{s - t_{i-k}}{t_{i-j} - t_{i-k}} = \prod_{\substack{k=0\\k\neq j}}^{m} \frac{s - t_{i} + \delta k}{\delta (k-j)} = \prod_{\substack{k=0\\k\neq j}}^{m} \frac{\hat{s} + k}{k-j}$$

with $s = \delta \hat{s} + t_i$.

Coefficients given by

$$a_{ij} = \int_{t_i}^{t_{i+1}} \ell_{i,j}(s) ds = \delta \int_0^1 \ell_{i,j}(\delta \hat{s} + t_i) d\hat{s}$$

Equidistant points $t_i = t_0 + \delta i$ imply

$$\ell_{i,j}(s) = \prod_{\substack{k=0\\k \neq j}}^{m} \frac{s - t_{i-k}}{t_{i-j} - t_{i-k}} = \prod_{\substack{k=0\\k \neq j}}^{m} \frac{s - t_{i} + \delta k}{\delta (k-j)} = \prod_{\substack{k=0\\k \neq j}}^{m} \frac{\hat{s} + k}{k-j}$$

with $s = \delta \hat{s} + t_i$.

Coefficients given by

$$a_{ij} = \int_{t_i}^{t_{i+1}} \ell_{i,j}(s) ds = \delta \int_0^1 \ell_{i,j}(\delta \hat{s} + t_i) d\hat{s} = \delta \underbrace{\int_0^1 \prod_{\substack{k=0 \ k \neq j}}^m \frac{\hat{s} + k}{k - j} d\hat{s}}_{=:w_i} = \delta w_j.$$

Equidistant points $t_i = t_0 + \delta i$ imply

$$\ell_{i,j}(s) = \prod_{\substack{k=0\\k\neq j}}^{m} \frac{s - t_{i-k}}{t_{i-j} - t_{i-k}} = \prod_{\substack{k=0\\k\neq j}}^{m} \frac{s - t_{i} + \delta k}{\delta (k-j)} = \prod_{\substack{k=0\\k\neq j}}^{m} \frac{\hat{s} + k}{k-j}$$

with $s = \delta \hat{s} + t_i$.

Coefficients given by

$$a_{ij} = \int_{t_i}^{t_{i+1}} \ell_{i,j}(s) ds = \delta \int_0^1 \ell_{i,j}(\delta \hat{s} + t_i) d\hat{s} = \delta \underbrace{\int_0^1 \prod_{\substack{k=0 \ k \neq j}}^m \frac{\hat{s} + k}{k - j} d\hat{s}}_{=:w_i} = \delta w_j.$$

The same coefficients are used in all timesteps.

Computing the weights

Idea: Monomials $p_i(t) = t^i$ have to be integrated exactly,

$$\sum_{j=0}^{m} w_j \, p_i(-j) = \int_0^1 p_i(s) \, ds.$$

Example: Interpolation points 0, -1, -2, -3, weights have to solve

$$w_0 + w_1 + w_2 + w_3 = 1,$$
 $(p_0(t) = 1)$
 $-w_1 - 2 w_2 - 3 w_3 = 1/2,$ $(p_1(t) = t)$
 $w_1 + 4 w_2 + 9 w_3 = 1/3,$ $(p_2(t) = t^2)$
 $-w_1 - 8 w_2 - 27 w_3 = 1/4.$ $(p_3(t) = t^3)$

The solution is $w_0 = \frac{55}{24}$, $w_1 = -\frac{59}{24}$, $w_2 = \frac{37}{24}$, $w_3 = -\frac{9}{24}$.

Adams-Bashforth algorithm

Idea: Store
$$y_i := \tilde{y}(t_i)$$
 and $f_i := f(t_i, \tilde{y}(t_i))$.

$$y_{i+1} := y_i + \delta \sum_{j=0}^m w_j f_{i-j},$$

 $f_{i+1} := f(t_{i+1}, y_{i+1}).$

Observation: We require only one evaluation of f per step.

Storage: We have to store the derivatives f_i, \ldots, f_{i-m} .

Older derivatives can be cyclically overwritten.

Problem: We need approximations for the first m+1 states before we can start the Adams-Bashforth algorithm.

Adams-Bashforth: Implementation

Approach: Store previous states in arrays x, v and previous derivatives in arrays dx and dv.

```
for(i=3; i<n; i++) {
  x[(i+1)\%4] = x[i\%4] + delta * (w0 * dx[i\%4])
                                   + w1 * dx[(i-1)%4]
                                   + w2 * dx[(i-2)%4]
                                   + w3 * dx[(i-3)\%4]):
  v[(i+1)\%4] = v[i\%4] + delta * (w0 * dv[i\%4])
                                   + w1 * dv[(i-1)%4]
                                   + w2 * dv[(i-2)%4]
                                   + w3 * dv[(i-3)\%4]):
  dx[(i+1)\%4] = v[(i+1)\%4]:
  dv[(i+1)\%4] = -c/m * x[(i+1)\%4];
}
```

Experiment: Runge-Kutta vs Adams-Bashforth

Approach: Start at t = 0, perform successive timesteps to reach t = 10.

	Runge-Kutta		Adams-Bash	
δ	error	ratio	error	ratio
1/2	8.1_4		2.0_{-2}	
1/4	1.2_{-4}	6.9	2.3_{-3}	8.7
1/8	9.2_{-6}	12.6	3.0_{-4}	7.5
1/16	6.4_7	14.5	2.4_{-5}	12.7
1/32	4.1_{-8}	15.3	1.7_{-6}	14.5
1/64	2.6_9	15.7	1.1_{-7}	15.3
1/128	1.7_{-10}	15.8	6.9_{-9}	15.7
1/256	1.1_{-11}	15.9	4.4_{-10}	15.8
1/512	6.6_{-13}	15.9	2.7_{-11}	15.9

Observation: Both methods of fourth order.

Summary

Runge-Kutta methods use multiple intermediate derivatives.

$$k_i := f\left(t + \delta \, c_i, y(t) + \delta \sum_{j=1}^s a_{ij} \, k_j
ight) \qquad ext{for all } i \in [1:s],$$
 $ilde{y}(t+\delta) := y(t) + \delta \sum_{i=1}^s b_i \, k_i$

Example: Classic Runge-Kutta method reaches fourth-order accuracy.

Multistep methods re-use previous states and derivatives.

$$\tilde{y}(t+\delta) = y(t) + \delta \sum_{j=0}^{m} w_j f(t-\delta j, \tilde{y}(t-\delta j)).$$

Example: Adams-Bashforth methods of any order can be constructed by solving a system of linear equations.

16 / 16