Name:	Ke	×
		T

You must show your work to get full credit.

Recall that the $absolute \ value$ of a real number x is defined to be

$$|x| = egin{cases} x, & x \geq 0; \ -x, & x < 0. \end{cases}$$

1. Prove that for all real numbers x that |-3x| = 3|x|.

Because IXI is defined by cases, it makes were to use cases to prome this.

Currel $\chi = 0$. Then $|\gamma| = 0$, so $3|\gamma| = 3/01 = 0$. Also $-3\chi = -3/01 = 0$ and so $|-3\chi| = |0| = 0 = 3/01 = 3/1$.

Cose 2 x>0. Them |y|=x and so 3|y|=3x. Then -3x<0 so |-3y|=-(-3x)=3x. So |y|=3x. Then |-3x|=3x is |-3x|=3|x|

Cuse 3 $\times \times 0$. They -3×0 so $|-3 \times |= -3 \times$. Also $\times \times 0$ so $|3| = -3 \times = 3 \times$

Thus in all cases 1-3×1=3171.

2. Write an English sentence or two explaining why 40 is the sum of two prime numbers.

The numbers 3 and 37 are both prime and their sum is 3+37=40, 50 40 15 the sum of two prime numbers.

Remark: 1 15 not a prime vumber.

3. Use that $10 \equiv 1 \pmod{9}$ to explain why

$$3,427 \equiv 3 + 4 + 2 + 7 \pmod{9}$$
.

Recall that $3,427 = 3(10)^3 + 4(10)^2 + 2(10) + 7$. Therefore using properties on congrences $3,427 = 3(10)^3 + 4(10)^2 + 2(10) + 7$ $= 3(1)^3 + 4(1)^2 + 2(1) + 7 \pmod{9}$ $= 3 + 4 + 2 + 7 \pmod{9}$