HACETTEPE UNIVERSITY

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ELE 409: DIGITAL SIGNAL PROCESSING LABORATORY

NAME SURNAME:

STUDENT ID:

EXPERIMENT 3 - QUANTIZATON

- Use the following functions: audioread, max, min, mean, var, sign, ceil, floor, round, histogram, histogram,
- You will not get full credit if you use any type of loop.

Q1. Zero-Mean Quantizer

- Write a MATLAB function $\mathbf{y} = \text{myQuantizer}(\mathbf{x}, B, X_m)$ which quantizes input vector \mathbf{x} with zero-mean, B-bit, uniform, midrise type quantizer of range $[-X_m, X_m]$.
- Write a MATLAB function $\mathbf{y} = \text{mySNR}(\mathbf{x}, \mathbf{x}, \mathbf{q})$ which calculates input and output SNR values(in dB) where xquan is the quantized version of input \mathbf{x} . Note that \mathbf{y} is a 2-by-1 vector.
- 1. Plot the characteristic of quantizer for B=3 and $X_m=1$ with appropriate input \mathbf{x} .
- 2. Load 's3 $_{-}1$.wav', name this vector \mathbf{x} .
 - (a) Quantize \mathbf{x} with myQuantizer with 3-bits for $X_m = 0.1$. Call the quantized vector $\mathbf{xquan1}$. Calculate input and output SNR values and call these values SNRin1 and SNRout1, respectively.
 - (b) Quantize \mathbf{x} with myQuantizer with 3-bits for $X_m = \max(|\mathbf{x}|)$. Call the quantized vector $\mathbf{xquan2}$. Calculate input and output SNR values and call these values SNRin2 and SNRout2, respectively.
 - (c) Quantize \mathbf{x} with myQuantizer with 3-bits for $X_m = 1$. Call the quantized vector $\mathbf{xquan3}$. Calculate input and output SNR values and call these values SNRin3 and SNRout3, respectively.
 - (d) Plot input-output relationship for three quantized signals on the same figure. Comment on the change from input to output SNR values. Support your reasoning with the comment on the figure.
 - (e) Which value of X_m yields maximum output SNR? Show whether it is an optimum value or not for $X_m \in [0.1, 1]$. If not, what is the optimum value for X_m ? Comment on the optimal value by investigating the histogram of the input signal. You can use loops for this part (e) **only**.
- 3. Quantize \mathbf{x} with myQuantizer with 2-bits for $X_m = \max(|\mathbf{x}|)$. Call the quantized vector $\mathbf{xquan4}$. Calculate output SNR value and call it SNRout4. Compare your results with 2.b.

Q2. Adaptive Quantization

• Write a MATLAB function $\mathbf{y} = \text{myAdaptiveQuantizer}(\mathbf{x}, B, L)$ which partitions \mathbf{x} to segments of L samples and quantizes these segments individually. The quantizer should be B-bit uniform midrise type. For each segment, \mathbf{x}_l , the range of the quantizer is chosen as $\max(|\mathbf{x}_l|)$.

Note: You are going to use the results **xquan2** and SNRout2 from **Q1**.

- 1. Load 's3 $_{-}1$.wav', name this vector \mathbf{x} .
 - (a) Quantize \mathbf{x} with myAdaptiveQuantizer with 3-bits where the sample size of each segment is L = 100. Call the quantized vector $\mathbf{xquan5}$.
 - (b) Calculate output SNR value for xquan5 and call it SNRout5. Compare with SNRout2.
 - (c) Plot **x**, **xquan2** and **xquan5** on the same figure and comment on the results.