Clustering

Aaditya Ramdas

Carnegie Mellon University

Thanks, class notes by Larry Wasserman

Outline

- 1. Density-based clustering (eg: mean shift)
- 2. Hierarchical clustering (eg: single linkage)
- 3. K-means and K-medoids
- 4. Spectral clustering

Modal clustering

Figure 1: The left plot shows a function with four modes. The right plot shows the ascending manifolds (basins of attraction) corresponding to the four modes.

Intuitively, gradient (wrt density) ascent from each point

Mean Shift Algorithm

- 1. Input: $\widehat{p}(x)$ and a mesh of points $A = \{a_1, \dots, a_N\}$ (often taken to be the data points).
- 2. For each mesh point a_j , set $a_j^{(0)} = a_j$ and iterate the following equation until convergence:

$$a_j^{(s+1)} \longleftarrow \frac{\sum_{i=1}^n X_i K\left(\frac{||a_j^{(s)} - X_i||}{h}\right)}{\sum_{i=1}^n K\left(\frac{||a_j^{(s)} - X_i||}{h}\right)}.$$

- 3. Let $\widehat{\mathcal{M}}$ be the unique values of the set $\{a_1^{(\infty)}, \dots, a_N^{(\infty)}\}$.
- 4. Output: $\widehat{\mathcal{M}}$.

Figure 3: A simple example of the mean shift algorithm.

Figure 4: The crescent data example. Top left: data. Top right: a few steps of mean-shift. Bottom left: a few steps of blurred mean-shift.

Figure 5: The Broken Ring example. Top left: data. Top right: a few steps of mean-shift. Bottom left: a few steps of blurred mean-shift.

Level-set clustering

Figure 6: DeBaClR in two dimensions.

Intuitively, scan the density in a top-down fashion (from modes) and note when the clusters merge

K-means

Let $X_1,...,X_n \sim P$ where $X_i \in \mathbb{R}^d$. Let $C = \{c_1,...,c_k\}$ where each $c_j \in \mathbb{R}^d$. We call C a codebook. Let $\Pi_C[X]$ be the projection of X onto C:

$$\Pi_C[X] = \operatorname{argmin}_{c \in C} ||c - X||^2. \tag{1}$$

Define the empirical clustering risk of a codebook C by

$$R_n(C) = \frac{1}{n} \sum_{i=1}^n \left| \left| X_i - \Pi_C[X_i] \right| \right|^2 = \frac{1}{n} \sum_{i=1}^n \min_{1 \le j \le k} ||X_i - c_j||^2.$$
 (2)

Let \mathscr{C}_k denote all codebooks of length k. The optimal codebook $\widehat{C} = \{\widehat{c}_1, \dots, \widehat{c}_k\} \in \mathscr{C}_k$ minimizes $R_n(C)$:

$$\widehat{C} = \operatorname{argmin}_{C \in \mathscr{C}_b} R_n(C). \tag{3}$$

- 1. Choose k centers c_1, \ldots, c_k as starting values.
- 2. Form the clusters C_1, \ldots, C_k as follows. Let $g = (g_1, \ldots, g_n)$ where $g_i = \operatorname{argmin}_j ||X_i c_j||$. Then $C_j = \{X_i : g_i = j\}$.
- 3. For j = 1, ..., k, let n_j denote the number of points in C_j and set

$$c_j \leftarrow \frac{1}{n_j} \sum_{i: X_i \in C_j} X_i.$$

- 4. Repeat steps 2 and 3 until convergence.
- 5. Output: centers $\widehat{C} = \{c_1, \dots, c_k\}$ and clusters C_1, \dots, C_k .

Figure 6: The k-means (Lloyd's) clustering algorithm.

One step of k-means: Voronoi tessellation

Figure 5: The Voronoi tesselation formed by 10 cluster centers c_1, \ldots, c_{10} . The cluster centers are indicated by dots. The corresponding Voronoi cells T_1, \ldots, T_{10} are defined as follows: a point x is in T_j if x is closer to c_j than c_i for $i \neq j$.

Figure 7: Synthetic data inspired by the "Mickey Mouse" example from wikipedia. Top left: three balanced clusters. Top right: result from running k means with k = 3. Bottom left: three unbalanced clusters. Bottom right: result from running k means with k = 3 on the unbalanced clusters. k-means does not work well here because the clusters are very unbalanced.

Figure 10: Top left: a dataset with two ring-shaped clusters. Top right: k-means with k = 2. Bottom left: k-means with k = 3. Bottom right: k-means with k = 4.

K-means++

- 1. Input: Data $X = \{X_1, \dots, X_n\}$ and an integer k.
- 2. Choose c_1 randomly from $X = \{X_1, \dots, X_n\}$. Let $C = \{c_1\}$.
- 3. For j = 2, ..., k:
 - (a) Compute $D(X_i) = \min_{c \in C} ||X_i c||$ for each X_i .
 - (b) Choose a point X_i from X with probability

$$p_i = \frac{D^2(X_i)}{\sum_{j=1}^n D^2(X_j)}.$$

- (c) Call this randomly chosen point c_j . Update $C \leftarrow C \cup \{c_j\}$.
- 4. Run Lloyd's algorithm using the **seed points** $C = \{c_1, ..., c_k\}$ as starting points and output the result.

Figure 12: The k-means⁺⁺ algorithm.

Theorem 10 (Arthur and Vassilvitskii, 2007). Let $C = \{c_1, ..., c_k\}$ be the seed points from the k-means⁺⁺ algorithm. Then,

$$\mathbb{E}(R_n(C)) \le 8(\log k + 2) \left(\min_C R_n(C) \right) \tag{6}$$

where the expectation is over the randomness of the algorithm.

A theoretical property of the k-means method is given in the following result. Recall that $C^* = \{c_1^*, \dots, c_k^*\}$ minimizes $R(C) = \mathbb{E}||X - \Pi_C[X]||^2$.

Theorem 12 Suppose that $\mathbb{P}(||X_i||^2 \le B) = 1$ for some $B < \infty$. Then

$$\mathbb{E}(R(\widehat{C})) - R(C^*) \le c\sqrt{\frac{k(d+1)\log n}{n}} \tag{11}$$

for some c > 0.

Warning! The fact that $R(\widehat{C})$ is close to $R(C_*)$ does not imply that \widehat{C} is close to C_* .

Geometric graph clustering

Figure 15: Geometric graph clustering. Top row: $\epsilon = 1$. Bottom row: $\epsilon = 3$. Left column: the graphs. Right column: a ball of radius $\epsilon/2$ around each X_i .

Figure 16: Geometric graph clustering. The top plot shows the number of connected components $k(\epsilon)$ versus ϵ . There is a fairly large range of values of ϵ that yields two connected components. The bottom plot shows the values of ϵ at which $k(\epsilon)$ changes.

Hierarchical clustering

- 1. Input: data $X = \{X_1, ..., X_n\}$ and metric d giving distance between clusters.
- 2. Let $T_n = \{C_1, C_2, \dots, C_n\}$ where $C_i = \{X_i\}$.
- 3. For j = n 1 to 1:
 - (a) Find j,k to minimize $d(C_j,C_k)$ over all $C_j,C_k \in T_{j+1}$.
 - (b) Let T_j be the same as T_{j+1} except that C_j and C_k are replaced with $C_j \cup C_k$.
- 4. Return the sets of clusters T_1, \ldots, T_n .

Figure 20: Agglomerative Hierarchical Clustering

Single Linkage	$d(A,B) = \min_{x \in A, y \in B} d(x,y)$
Average Linkage	$d(A,B) = \frac{1}{N_A N_B} \sum_{x \in A, y \in B} d(x,y)$
Complete Linkage	$d(A,B) = \max_{x \in A, y \in B} d(x,y)$

Figure 21: Hierarchical clustering applied to two noisy rings. Top left: the data. Top right: two clusters from hierarchical clustering using single linkage. Bottom left: average linkage. Bottom right: complete linkage.

Single Linkage	$d(A,B) = \min_{x \in A, y \in B} d(x,y)$
Average Linkage	$d(A,B) = \frac{1}{N_A N_B} \sum_{x \in A, y \in B} d(x,y)$
Complete Linkage	$d(A,B) = \max_{x \in A, y \in B} d(x,y)$

Spectral clustering

For a graph G on n nodes, let W be its adjacency matrix, and D be its degree matrix.

The graph Laplacian L = D - W has the following properties:

1. For any vector $f = (f_1, \ldots, f_n)^T$,

$$f^T L f = \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n W_{ij} (f_i - f_j)^2.$$

- 2. L is symmetric and positive semi-definite.
- 3. The smallest eigenvalue of L is 0. The corresponding eigenvector is $(1,1,\ldots,1)^T$.
- 4. L has n non-negative, real-valued eigenvalues $0 = \lambda_1 \le \lambda_2 \le \cdots \le \lambda_k$.
- 5. The number of eigenvalues that are equal to 0 is equal to the number of connected components of G. That is, $0 = \lambda_1 = \ldots = \lambda_k$ where k is the number of connected components of G. The corresponding eigenvectors v_1, \ldots, v_k are orthogonal and each is constant over one of the connected components of the graph.

Example 20 Consider the graph

$$X_1$$
 X_2 X_3 X_4 X_5

and suppose that $W_{ij} = 1$ if and only if there is an edge between X_i and X_j . Then

$$W = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix} \qquad D = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

and the Laplacian is

$$L = D - W = \left(egin{array}{ccccc} 1 & -1 & 0 & 0 & 0 \ -1 & 1 & 0 & 0 & 0 \ 0 & 0 & 1 & -1 & 0 \ 0 & 0 & -1 & 2 & -1 \ 0 & 0 & 0 & -1 & 0 \ \end{array}
ight).$$

The eigenvalues of W, from smallest to largest are 0,0,1,2,3. The eigenvectors are

$$v_{1} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} v_{2} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 1 \end{pmatrix} v_{3} = \begin{pmatrix} 0 \\ 0 \\ -.71 \\ 0 \\ 0 \\ .71 \end{pmatrix} v_{4} = \begin{pmatrix} -.71 \\ .71 \\ 0 \\ 0 \\ 0 \end{pmatrix} v_{5} = \begin{pmatrix} 0 \\ 0 \\ -.41 \\ .82 \\ -.41 \end{pmatrix}$$

Note that the first two eigenvectors correspond to the connected components of the graph.

Figure 22: The top shows a simple graph. The remaining plots are the eigenvectors of the graph Laplacian. Note that the first two eigenvectors correspond to the two connected components of the graph.

Input: $n \times n$ similarity matrix W.

- 1. Let *D* be the $n \times n$ diagonal matrix with $D_{ii} = \sum_{j} W_{ij}$.
- 2. Compute the Laplacian $\mathcal{L} = D^{-1}W$.
- 3. Find first k eigenvectors v_1, \ldots, v_k of \mathcal{L} .
- 4. Project each X_i onto the eigenvectors to get new points \hat{X}_i .
- 5. Cluster the points $\hat{X}_1, \dots, \hat{X}_n$ using any standard clustering algorithm.

Figure 23: Top left: data. Top middle: eigenvalues. Top right: second versus third eigenvectors. Remaining plots: first six eigenvectors.