

PokerPrime

Adam Samulak

Problem Description

- In order to build a agent capable playing poker we need to first solve the problem of card classification. It provides the basic information about the current stage of the game.
- Thus the main goal is to design a neural network that can accurately predict highest card hand.

Related Work

COMPUTER SCIENCE

DeepStack: Expert-level artificial intelligence in heads-up no-limit poker

Matej Moravčík, ^{1,2}* Martin Schmid, ^{1,2}* Neil Burch, ¹ Viliam Lisý, ^{1,3} Dustin Morrill, ¹ Nolan Bard, ¹ Trevor Davis, ¹ Kevin Waugh, ¹ Michael Johanson, ¹ Michael Bowling ¹+

Deep Counterfactual Value Network

Approach

Networks tested:

- -Feedforward Neural Network
- Regularized Residual Neural Network
- Recurrent Neural Network

Rationale

Feedforward Neural Network

Advantage

- Simple
- Fast to train

Disadvantage

- Not complex
- Vanishing gradient

Regularized Residual Neural Network

Advantage

- Helps with vanishing gradient
- Semi complex

Disadvantage

Slower than FNN

Recurrent Neural Network

Advantage

Models sequences (time series)

Disadvantage

- Vanishing gradient (a LSTM used to overcome)
- Difficult to train

Data

Hand probabilities in unbalanced training data:

High card probability: 17.4424 %

Pair probability: 43.8591 %

Two paris probability: 23.4389 %

Three cards probability: 4.8403 %

Straight probability: 4.5965 %

Flush probability: 3.0368 %

Full house probability: 2.5804 %

Four cards probability: 0.1787 %

Straight flush probability: 0.0269 %

Hand probabilities in balanced training data:

High card probability: 11.276 %

Pair probability: 11.276 %

Two paris probability: 11.276 %

Three cards probability: 10.916 %

Straight probability: 10.366 %

Flush probability: 10.273 %

Full house probability: 11.639 %

Four cards probability: 11.687 %

Straight flush probability: 11.284 %

Evaluation

Accuracy was the main metric used for the evaluation. Since standard card classification algorithms already exist our target accuracy was 100%.

Feedforward Neural Network

Unbalanced Data

Max Accuracy: 79.6%

Balanced Data

Max Accuracy: 19.7%

Evaluation

Regularized Residual Neural Network

Unbalanced Data

Max Accuracy: 93.0%

Balanced Data

Max Accuracy: 21.5%

Recurrent Neural Network

Unbalanced Data

Max Accuracy: 99.6%

Balanced Data

Max Accuracy: 87.9%

Topics Learned

Scope of the project:

- Data preprocessing
- Feedforward Neural Network
- Regularized Residual Neural Network
- Recurrent Neural Network

Libraries used:

- TensorFlow
- RL Card
- pypoks

Challenges

Main issues during development:

- Long training times (25 min to 2 hours)
- Lack of support for RNN training in AMD GPU
- Lack of time for a working agent

PokerPrime

Questions

