Solution Exercise L8 ISA

- 1. The memory unit of a computer has 256K words of 32 bits each. The computer has an instruction format with 4 fields: an opcode field; a mode field to specify 1 of 7 addressing modes; a register address field to specify one of 60 registers; and a memory address field. Assume an instruction is 32 bits long. Answer the following:
- a. How large must the mode field be?
- b. How large must the register field be?
- c. How large must the address field be?
- d. How large is the opcode field?

Ans.

- a. We need to identify 1 of 7 items, so there must be 3 bits (2³ = 8)
- b. 60 registers implies 6 bits (26 = 64)
- c. 256K = 28210 = 218, or 18 bits
- d. 32 (3 + 6 + 18) = 5 bits
- 2. Write code to implement the expression: **A= (B + C) * (D + E)** on 3-, 2-, 1- and 0-address machines. In accordance with programming language practice, computing the expression should not change the values of its operands.

Ans. -

Add R1, B, C
Add R2, D, E
Mult A, R1, R2
3 address machine

3-address machine

Load R1, B
Add R1, C
Load R2, E
Add R2, E
Mult R2, R1
Store A, R2

2-address machine

Load B
Add C
Store Temp
Load D
Add E
Mult Temp
Store A

1-address machine

Push B
Push C
Add
Push D
Push E
Add
Mult
Store A

0-address machine

- 3. 11. Convert the following expressions from infix to reverse Polish (postfix) notation.
- a) (8-6)/2
- b) $(5\times(4+3)\times2-6)$

Ans.

- a) 86-2/
- b) $5 4 3 + \times 2 \times 6 -$
- 4. The first two bytes of a 2M x 16 main memory have the following hex values:

Byte 0 is FE

Byte 1 is 01

If these bytes hold a 16-bit two's complement integer, what is its actual decimal value if: a. memory is big endian?

b. memory is little endian?

Ans.

- a. $FE01_{16} = 1111 1110 0000 0001_2 = -511_{10}$
- b. $01FE_{16} = 0000\ 0001\ 1111\ 1110_2 = 510_{10}$