Relational Inductive Biases, Deep Learning, & Graph Networks

Peter Baggalia et al. 2018

Presenter: Robert Thorstad

Motivation

Two Features of Human Learning

Inductive Biases

"Events have one cause"

Lucas, Bridgers, Griffiths, & Gopnik, 2014

Question: what kinds of inductive biases exist in current models, and are they general enough?

Compositional

"Will it fall?"

Battaglia, Hamrick, & Tenenbaum, 2013

Question: if I know if a tower of 3 blocks will stand, I also know this for: more blocks, tower of cups, large rocks, etc....does a model?

Existing models have only certain kinds of inductive biases

Also:

L1, L2 Etc.

But can we model data that looks like...?

For example, how would we model these problems?

Glue to make tower stable

Is there an X like Y?

Original Image:

Non-relational question:

What is the size of the brown sphere?

Relational question:

Are there any rubber things that have the same size as the yellow metallic cylinder?

ure 1: An illustrative example from the CLEVR dataset of relational reasoning. An image taining four objects is shown alongside non-relational and relational questions. The relational stion requires explicit reasoning about the relations between the four objects in the image, whereas non-relational question requires reasoning about the attributes of a particular object.

We would like a model that can accommodate any ARBITRARY inductive bias

Component	Entities	Relations	Rel. inductive bias	Invariance
Fully connected	Units	All-to-all	Weak	-
Convolutional	Grid elements	Local	Locality	Spatial translation
Recurrent	Timesteps	Sequential	Sequentiality	Time translation
Graph network	Nodes	Edges	Arbitrary	Node, edge permutations

Table 1: Various relational inductive biases in standard deep learning components. See also Section 2.

2. Generalization

People can generalize beyond training conditions:

Hamrick et al, 2018

2. Generalization

But can a neural network generalize in a similar way?

E.g.: longer sentences, deeper parse tree, towers with more blocks...

Graph Neural Networks

Graph Neural Network

Neural network over ANY graph structure

A graph is specified by:

Global block

Update an edge

Updating another edge involves same (shared) weights In principle, could thus add nodes/edges after training

Update a node

Update global attributes

Idea: GNs have Arbitrary Inductive Bias

Can learn these graphs

e.g. a sentence

e.g. an image

But also other structures

Compositionality: GN Blocks

GN block can have many different forms

Edges only

(c) Message-passing neural network

Recurrent

(b) Independent recurrent block

(d) Non-local neural network

Compositionality: GN Blocks

If you stack GN blocks, you get compositionality (?)

Perhaps, being able to add/remove More blocks nodes was already a kind of compositionality?

Blocks with different properties Change global physics, etc....

Compositionality: GN Blocks

I think their idea is that stack of GN blocks can learn progressively more abstract features?

Position? Velocity? Dynamics?

(a) Composition of GN blocks

Tensorflow Library for Graph Networks

Box 4: Graph Nets open-source software library: github.com/deepmind/graph_nets

We have released an open-source library for building GNs in Tensorflow/Sonnet. It includes demos of how to create, manipulate, and train GNs to reason about graph-structured data, on a shortest path-finding task, a sorting task, and a physical prediction task. Each demo uses the same GN architecture, which highlights the flexibility of the approach.

Shortest path demo: tinyurl.com/gn-shortest-path-demo

This demo creates random graphs, and trains a GN to label the nodes and edges on the shortest path between any two nodes. Over a sequence of message-passing steps (as depicted by each step's plot), the model refines its prediction of the shortest path.

Sort demo: tinyurl.com/gn-sort-demo

This demo creates lists of random numbers, and trains a GN to sort the list. After a sequence of message-passing steps, the model makes an accurate prediction of which elements (columns in the figure) come next after each other (rows).

Discussion

Discussion

- 1. How limited are the inductive biases in existing models? (e.g. CNN, RNN, L2, etc.).
- 2. If they're right, should everything be a graph NN, where we have studied special cases?
- 3. How would we use graph NNs in NLP? (say: compare to RNN). Parse trees?