```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
{\it matplotlib} inline
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")
from sklearn.datasets import load_iris
irisdataset = load_iris()
irisdataset.target_names
     array(['setosa', 'versicolor', 'virginica'], dtype='<U10')</pre>
\verb|irisdataset.feature_names|\\
     ['sepal length (cm)',
  'sepal width (cm)',
  'petal length (cm)',
  'petal width (cm)']
df = pd.DataFrame(irisdataset.data,columns=irisdataset.feature_names)
df['target'] = irisdataset.target
df['flower_name'] =df.target.apply(lambda x: irisdataset.target_names[x])
df
```

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	flower_name	1
0	5.1	3.5	1.4	0.2	0	setosa	
1	4.9	3.0	1.4	0.2	0	setosa	
2	4.7	3.2	1.3	0.2	0	setosa	
3	4.6	3.1	1.5	0.2	0	setosa	
4	5.0	3.6	1.4	0.2	0	setosa	
145	6.7	3.0	5.2	2.3	2	virginica	
146	6.3	2.5	5.0	1.9	2	virginica	
147	6.5	3.0	5.2	2.0	2	virginica	
148	6.2	3.4	5.4	2.3	2	virginica	
149	5.9	3.0	5.1	1.8	2	virginica	

150 rows × 6 columns

df[df['flower_name']=="setosa"].head()

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	flower_name	1
0	5.1	3.5	1.4	0.2	0	setosa	
1	4.9	3.0	1.4	0.2	0	setosa	
2	4.7	3.2	1.3	0.2	0	setosa	
3	4.6	3.1	1.5	0.2	0	setosa	
4	5.0	3.6	1.4	0.2	0	setosa	

	sepa	l length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	flower_name	1
	100	6.3	3.3	6.0	2.5	2	virginica	
	101	5.8	2.7	5.1	1.9	2	virginica	
	102	7.1	3.0	5.9	2.1	2	virginica	
df[df['flower_name']=="versicolor"].head()								

sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) target flower_name 50 7.0 32 47 1 4 versicolor 6.4 3.2 4.5 1.5 versicolor 51 52 6.9 3.1 4.9 1.5 1 versicolor 5.5 53 2.3 4 0 13 1 versicolor 54 6.5 2.8 4.6 1.5 versicolor

```
df['flower_name'].unique()
    array(['setosa', 'versicolor', 'virginica'], dtype=object)

df0 = df[:50] #setosa
df1 = df[50:100] #versicolor
df2 = df[100:] #virginica

plt.scatter(df0['sepal length (cm)'], df0['sepal width (cm)'],color="red",marker='*')
plt.scatter(df1['sepal length (cm)'], df1['sepal width (cm)'],color="green",marker='.')
plt.scatter(df2['sepal length (cm)'], df2['sepal width (cm)'],color="blue",marker='+')
plt.xlabel('Sepal Length')
plt.ylabel('Sepal Width')
```



```
plt.scatter(df0['petal length (cm)'], df0['petal width (cm)'],color="red",marker='*')
plt.scatter(df1['petal length (cm)'], df1['petal width (cm)'],color="green",marker='.')
plt.scatter(df2['petal length (cm)'], df2['petal width (cm)'],color="blue",marker='+')
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
```



```
x = df.drop(['target','flower_name'], axis='columns')
y = df.target
```

```
sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)
                     5.1
                                        3.5
                                                             1.4
                                                                                 0.2
0
 1
                     4.9
                                        3.0
                                                             1.4
                                                                                 0.2
 2
                     4.7
                                        3.2
                                                             1.3
                                                                                 0.2
 3
                     4.6
                                        3.1
                                                             1.5
                                                                                 0.2
                     5.0
                                        3.6
                                                             1.4
                                                                                 0.2
                     6.7
                                                             5.2
                                                                                 2.3
                                        3.0
145
146
                     6.3
                                        2.5
                                                             5.0
                                                                                 1.9
                                        3.0
                                                                                 2.0
147
                     6.5
                                                             52
```

```
0 0
1 0
2 0
3 0
4 0
..
145 2
146 2
147 2
148 2
149 2
Name: target, Length: 150, dtype: int64
```

from sklearn.model_selection import train_test_split
xtrain,xtest,ytrain,ytest = train_test_split(x,y,test_size=0.25)

▼ RANDOM FOREST CLASSIFIER

from sklearn.ensemble import RandomForestClassifier