Számítógépes Hálózatok

10. Előadás: Hálózati réteg 3

IPv6

Fogyó IPv4 címek

- □ Probléma: az IPv4 címtartomány túl kicsi
 - $2^{32} = 4,294,967,296$ lehetséges cím
 - Ez kevesebb mint egy emberenként
- A világ egy részén már nincs kiosztható IP blokk
 - □ IANA az utolsó /8 blokkot 2011-ben osztotta ki

Régió	Regional Internet Registry (RIR)	Utolsó IP blokk kiosztása
Asia/Pacific	APNIC	April 19, 2011
Europe/Middle East	RIPE	September 14, 2012
North America	ARIN	13 Jan 2015 (Projected)
South America	LACNIC	13 Jan 2015 (Projected)
Africa	AFRINIC	17 Jan 2022(Projected)

- □ IPv6, 1998(!)-ban mutatták be
 - □ 128 bites címek
 - 4.8 * 10²⁸ cím/ember
- Cím formátum
 - □ 16 bites értékek 8 csoportba sorolva (':'-tal elválasztva)
 - Minden csoport elején szereplő nulla sorozatok elhagyhatók
 - Csupa nulla csoportok elhagyhatók, ekkor '::'

2001:0db8:0000:0000:0000:ff00:0042:8329 2001:db8:0:0:0:ff00:42:8329 2001:db8::ff00:42:8329 □ Ki tudja a localhost IPv4 címét?

127.0.0.1

■ Mi ez az IPv6 esetén?

::1

6

Az IPv4-nél látott kétszerese (320 bit vs. 160 bit)

Különbségek az IPv4-hez képest

- Számos mező hiányzik az IPv6 fejlécből
 - □ Fejléc hossza beépült a Next Header mezőbe
 - Checksum nem igazán használták már korábban se...
 - Identifier, Flags, Offset
 - IPv6 routerek nem támogatják a fragmentációt
 - Az állomások MTU felderítést alkalmaznak
- Az Internet felhasználás súlypontjainak megváltozása
 - Napjaink hálózatai sokkal homogénebbek, mint azt kezdetben gondolták
 - Azonban a routing költsége és bonyolultsága domináns

Teljesítmény növekmény

- Nincsenek ellenőrizendő kontrollösszegek (checksum)
- Nem szükséges a fragmentáció kezelése a routerekben
- Egyszerű routing tábla szerkezet
 - A cím tér nagy
 - Nincs szükség CIDR-re (de aggregáció szükséges)
 - A szabványos alhálózat méret 2⁶⁴ cím
- Egyszerű auto-konfiguráció
 - Neighbor Discovery Protocol

További IPvó lehetőségek

- □ Forrás Routing
 - Az állomás meghatározhatja azt az útvonalat, amelyen a csomagjait továbbítani szeretné
- Mobil IP
 - Az állomások magukkal vihetik az IP címüket más hálózatokba
 - Forrás routing használata a csomagok irányításához
- Privacy kiterjesztések
 - Véletlenszerűen generált állomás azonosítók
 - Megnehezíti egy IP egy adott állomáshoz való kapcsolását
- Jumbograms
 - 4Gb-es datagramok küldése

Bevezetési nehézségek

HTTP, FTP, SMTP, RTP, IMAP, ...

TCP, UDP, ICMP

IPv4

Ethernet, 802.11x, DOCSIS, ...

Fiber, Coax, Twisted Pair, Radio, ...

- □ IPv6 bevezetése a teljes Internet frissítését jelentené
 - Minden router, minden hoszt
 - □ ICMPv6, DHCPv6, DNSv6
- 2013: 0.94%-a a Google forgalmának volt IPv6 feletti
- □ 2015: ez 2.5%

https://www.google.com/intl/en/ipv6/statistics.html

IPv6 Adoption

IPv6 Adoption

We are continuously measuring the availability of IPv6 connectivity among Google users. The graph shows the percentage of users that access Google over IPv6.

Átmenet IPvó-ra

- □ Hogyan történhet az átmenet IPv4-ről IPv6-ra?
 - Napjainkban a legtöbb végpont a hálózat széleken támogatja az IPv6-ot
 - Windows/OSX/iOS/Android mind tartalmaz IPv6 támogatást
 - Az itteni vezetéknélküli access point-ok is valószínűleg IPv6 képesek
 - Az Internet magja a probléma

Átmeneti megoldások

- Azaz hogyan routoljunk IPv6 forgalmaz IPv4 hálózat felett?
- Megoldás
 - Használjunk tunneleket az IPvó csomagok becsomagolására és IPv4 hálózaton való továbbítására
 - Számos különböző implementáció
 - 6to4
 - IPv6 Rapid Deployment (6rd)
 - Teredo
 - **...**

Routing 2. felvonás

Újra: Internet forgalom irányítás

- Az Internet egy két szintű hierarchiába van szervezve
- Első szint autonóm rendszerek (AS-ek)
 - AS egy adminisztratív tartomány alatti hálózat
 - □ Pl.: ELTE, Comcast, AT&T, Verizon, Sprint, ...
- AS-en belül ún. intra-domain routing protokollokat használunk
 - Distance Vector, pl.: Routing Information Protocol (RIP)
 - Link State, pl.: Open Shortest Path First (OSPF)
- AS-ek között ún. inter-domain routing protokollokat
 - Border Gateway Routing (BGP)
 - Napjainkban: BGP-4

Miért van szükség AS-ekre?

- A routing algoritmusok nem elég hatékonyak ahhoz, hogy a teljes Internet topológián működjenek
- Különböző szervezetek más-más politika mentén akarnak forgalom irányítást (policy)
- Lehetőség, hogy a szervezetek elrejtsék a belső hálózatuk szerkezetét
- Lehetőség, hogy a szervezetek eldöntsék, hogy mely más szervezeteken keresztül forgalmazzanak
 - Egyszerűbb az útvonalak számítása
 - Nagyobb rugalmasság
 - Nagyobb autonómia/függetlenség

AS számok

- □ Minden AS-t egy AS szám (ASN) azonosít
 - 16 bites érték (a legújabb protokollok már 32 bites azonosítókat is támogatnak)
 - 64512 65535 más célra foglalt
- Jelenleg kb. 40000 AS szám létezik
 - □ AT&T: 5074, 6341, 7018, ...
 - □ Sprint: 1239, 1240, 6211, 6242, ...
 - □ ELTE: 2012
 - Google 15169, 36561 (formerly YT), + others
 - □ Facebook 32934
 - Észak-amerkiai AS-ek → ftp://ftp.arin.net/info/asn.txt

Inter-Domain Routing

- A globális összeköttetéshez szükséges!!!
 - Azaz minden AS-nek <u>ugyanazt</u> a protokollt kell használnia
 - Szemben az intra-domain routing-gal
- Milyen követelmények vannak?
 - Skálázódás
 - Rugalmas útvonal választás
 - Költség
 - Forgalom irányítás egy hiba kikerülésére
- Milyen protokollt válasszunk?
 - link state vagy distance vector?
 - □ Válasz: A BGP egy path vector (útvonal vektor) protokoll

ÁLTALÁNOS

AS-ek közötti (exterior gateway protocol).

Eltérő célok vannak forgalomirányítási szempontból, mint az AS-eken belüli protokollnál.

Politikai szempontok szerepet játszathatnak a forgalomirányítási döntésben.

NÉHÁNY PÉLDA FORGALOMIRÁNYÍTÁSI KORLÁTOZÁSRA

- Ne legyen átmenő forgalom bizonyos AS-eken keresztül.
- Csak akkor haladjunk át Albánián, ha nincs más út a célhoz.
- Az IBM-nél kezdődő illetve végződő forgalom ne menjen át a Microsofton.
- A politikai jellegű szabályokat kézzel konfigurálják a BGP-routeren.
- A BGP router szempontjából a világ AS-ekből és a közöttük átmenő vonalakból áll.

DEFINÍCIÓ

Két AS összekötött, ha van köztük a BGP-router-eiket összekötő él.

Border Gateway Protocol

HÁLÓZATOK CSOPORTOSÍTÁSA AZ ÁTMENŐ FORGALOM SZEMPONTJÁBÓL

- Csonka hálózatok, amelyeknek csak egyetlen összeköttetésük van a BGP gráffal.
- 2. Többszörösen bekötött hálózatok, amelyeket használhatna az átmenő forgalom, de ezek ezt megtagadják.
- Tranzit hálózatok, amelyek némi megkötéssel, illetve általában fizetség ellenében, készek kezelni harmadik fél csomagjait.

JELLEMZŐK

- A BGP router-ek páronként TCP-összeköttetést létrehozva kommunikálnak egymással.
- A BGP alapvetően távolságvektor protokoll, viszont a router nyomon követi a használt útvonalat, és az útvonalat mondja meg a szomszédjainak.

BGP egyszerűsített működése

Border Gateway Protocol

A F által a szomszédjaitól kapott D-re vonatkozó információ az alábbi:

> B-től: "Én a BCD-t használom" G-től: "Én a GCD-t használom" I-től: "Én a IFGCD-t használom" E-től: "Én a EFGCD-t használom"

BGP kapcsolatok

Tier-1 ISP Peering

Tier-1 ISP Peering

Útvonalvektor protokoll Path Vector Protocol

29

- AS-útvonal: AS-ek sorozata melyeken áthalad az útvonal
 - Hasonló a távolságvektorhoz, de további információt is tartalmaz
- Hurkok, körök detektálása és külnböző továbbítási politikák alkalmazása
 - PI. válaszd a legolcsóbb/legrövidebb utat
- Routing a leghosszabb prefix egyezés alapján

AS 3 130.10.0.0/16 AS 2 AS 5

AS 4

120.10.0.0/16

110.10.0.0/16

AS₁

120.10.0.0/16: AS 2 \rightarrow AS 3 \rightarrow AS 4

130.10.0.0/16: AS 2 \rightarrow AS 3

110.10.0.0/16: AS 2 \rightarrow AS 5

Útvonalvektor protokoll Path Vector Protocol

- □ A távolságvektor protokoll kiterjesztése
 - Rugalmas továbbítási politikák
 - Megoldja a végtelenig számolás problémáját
 - Útvonalvektor: Célállomás, következő ugrás (nh), AS útvonal
- Ötlet: a teljes útvonalat meghirdeti
 - □ Távolságvektor: távolság metrika küldése célállomásonként
 - Útvonalvektor: a teljes útvonal küldése célállomásonként

Rugalmas forgalomirányítás

- Minden állomás hely/saját útválasztási politikát alkalmaz
 - Útvonal kiválasztás: Melyik útvonalat használjuk?
 - Útvonal export: Melyik útvonalat hirdessük meg?
- Példák
 - □ A 2. állomás által preferált útvonal: "2, 3, 1" (nem a "2, 1")
 - Az 1. állomás nem hagyja, hogy a 3. állomás értesüljön az "1, 2" útvonalról

Shortest AS Path != Shortest Path

Hot Potato Routing

Importing Routes

Exporting Routes

35 \$\$\$ generating Customer and routes ISP routes only To Provider То To Peer Peer To Customer Customers get all routes

BGP

IGB - iBGP - eBGP

37

- eBGP: Routing információk cseréje autonóm rendszerek között
- IGP: útválasztás egy AS-en belül belső célállomáshoz
- iBGP: útválasztás egy AS-en belül egy külső célállomáshoz

- 1. eBGP A megismeri az útvonal a célhoz, ehhez eBGP-t használunk
- 2. iBGP A-ban levő router megtanulja a célhoz vezető utat az iBGP segítségével (a köv. ugrás a határ router)
- 3. IGP IGP segítségével eljuttatja a csomagot az A határrouteréig

Cél állomás

Forrás: wikipedia

További protokollok

Internet Control Message Protocol

FELADATA

Váratlan események jelentése

HASZNÁLAT

- □ Többféle ICMP-üzenetet definiáltak:
 - Elérhetetlen cél;
 - Időtúllépés;
 - Paraméter probléma;
 - Forráslefojtás;
 - Visszhang kérés;
 - Visszhang válasz;

Internet Control Message Protocol

- Elérhetetlen cél esetén a csomag kézbesítése sikertelen volt.
 - Esemény lehetséges oka: Egy nem darabolható csomag továbbításának útvonalán egy "kis csomagos hálózat" van.
- Időtúllépés esetén az IP csomag élettartam mezője elérte a 0át.
 - Esemény lehetséges oka: Torlódás miatt hurok alakult ki vagy a számláló értéke túl alacsony volt.
- Paraméter probléma esetén a fejrészben érvénytelen mezőt észleltünk.
 - **Esemény lehetséges oka:** Egy az útvonalon szereplő router vagy a hoszt IP szoftverének hibáját jelezheti.

Internet Control Message Protocol

- Forráslefojtás esetén lefojtó csomagot küldünk.
 - **Esemény hatása:** A fogadó állomásnak a forgalmazását lassítania kellett.
- Visszhang kérés esetén egy hálózati állomás jelenlétét lehet ellenőrizni.
 - Esemény hatása: A fogadónak vissza kell küldeni egy visszhang választ.
- Átirányítás esetén a csomag rosszul irányítottságát jelzik.
 - **Esemény kiváltó oka:** Router észleli, hogy a csomag nem az optimális útvonall.

Address Resolution Protocol

Address Resolution Protocol

FELADATA

Az IP cím megfeleltetése egy fizikai címnek.

HOZZÁRENDELÉS

- Adatszóró csomag kiküldése az Ethernetre "Ki-é a 192.60.34.12-es IP-cím?" kérdéssel az alhálózaton, és mindenegyes hoszt ellenőrzi, hogy övé-e a kérdéses IP-cím. Ha egyezik az IP a hoszt saját IP-jével, akkor a saját Ethernet címével válaszol. Erre szolgál az ARP.
- Opcionális javítási lehetőségek:
 - a fizikai cím IP hozzárendelések tárolása (cache használata);
 - Leképezések megváltoztathatósága (időhatály bevezetése);
- Mi történik távoli hálózaton lévő hoszt esetén?
 - A router is válaszoljon az ARP-re a hoszt alhálózatán. (proxy ARP)
 - Alapértelmezett Ethernet-cím használata az összes távoli forgalomhoz

DHCP: DYNAMIC HOST CONFIGURATION PROTOCOL

- Lényegében ez már az Alkalmazási réteg
 - de logikailag ide tartozik

- Segítségével a hosztok automatikusan juthatnak hozzá a kommunikációjukhoz szükséges hálózati azonosítókhoz:
 - □ IP cím, hálózati maszk, alapértelmezett átjáró, stb.
- □ Eredetileg az RFC 1531 a BOOTP kiterjesztéseként definiálta. Újabb RFC-k: 1541, 2131 (aktuális)

- IP címek osztása MAC cím alapján DHCP szerverrel
 - Szükség esetén (a DHCP szerveren előre beállított módon) egyes kliensek számára azok MAC címéhez fix IP cím rendelhető
- IP címek osztása dinamikusan
 - A DHCP szerveren beállított tartományból "érkezési sorrendben" kapják a kliensek az IP címeket
 - Elegendő annyi IP cím, ahány gép egyidejűleg működik
- Az IP címeken kívül további szükséges hálózati paraméterek is kioszthatók
 - Hálózati maszk
 - Alapértelmezett átjáró
 - Névkiszolgáló
 - Domain név
 - Hálózati rendszerbetöltéshez szerver és fájlnév

DHCP – Címek bérlése

- A DHCP szerver a klienseknek az IP-címeket bizonyos bérleti időtartamra (lease time) adja "bérbe"
 - Az időtartam hosszánál a szerver figyelembe veszi a kliens esetleges ilyen irányú kérését
 - Az időtartam hosszát a szerver beállításai korlátozzák
- A bérleti időtartam lejárta előtt a bérlet meghosszabbítható
- Az IP-cím explicit módon vissza is adható

Virtuális magánhálózatok alapok

FŐ JELLEMZŐI

- Mint közeli hálózat fut az interneten keresztül.
- IPSEC-et használ az üzenetek titkosítására.
- Azaz informálisan megfogalmazva fizikailag távol lévő hosztok egy közös logikai egységet alkotnak.
 - Például távollévő telephelyek rendszerei.

□ ALAPELV

- Bérelt vonalak helyett használjuk a publikusan hozzáférhető Internet-et.
- İgy az Internettől logikailag elkülöníthető hálózatot kapunk. Ezek a virtuális magánhálózatok avagy VPN-ek.
- A célok közé kell felvenni a külső támadó kizárását.

Virtuális magánhálózatok alapok

 A virtuális linkeket alagutak képzésével valósítjuk meg.

□ ALAGÚTAK

- Egy magánhálózaton belül a hosztok egymásnak normál módon küldhetnek üzenetet.
- Virtuális linken a végpontok beágyazzák a csomagokat.
 - IP az IP-be mechanizmus.
- Az alagutak képzése önmagában kevés a védelemhez. Mik a hiányosságok?
 - Bizalmasság, authentikáció
 - Egy támadó olvashat, küldhet üzeneteket.
 - Válasz: Kriptográfia használata.

Virtuális magánhálózatok alapok

IPSEC

 Hosszú távú célja az IP réteg biztonságossá tétele. (bizalmasság, autentikáció)

■ Műveletei:

- Hoszt párok kommunikációjához kulcsokat állít be.
- A kommunikáció kapcsolatorientáltabbá tétele.
- Fejlécek és láblécek hozzáadása az IP csomagok védelme érdekében.
- Több módot is támogat, amelyek közül az egyik az alagút mód.

Szállítói réteg

Alkalmazói Megjelenési Ülés Szállítói Hálózati Adatkapcsolati Fizikai

- □ Feladat:
 - Adatfolyamok demultiplexálása
- További lehetséges feladatok:
 - Hosszú élettartamú kapcsolatok
 - Megbízható, sorrendhelyes csomag leszállítás
 - Hiba detektálás
 - Folyam és torlódás vezérlés
- Kihívások:
 - Torlódások detektálása és kezelése
 - Fairség és csatorna kihasználás közötti egyensúly

- UDP
- TCP
- Torlódás vezérlés
- TCP evolúciója
- A TCP problémái

Multiplexálás

54

- Datagram hálózat
 - Nincs áramkör kapcsolás
 - Nincs kapcsolat
- A kliensek számos alkalmazást futtathatnak egyidőben
 - Kinek szállítsuk le a csomagot?
- □ IP fejléc "protokoll" mezője
 - 8 bit = 256 konkurens folyam
 - Ez nem elég...
- Demultiplexálás megoldása a szállítói réteg feladata

Végpontok azonosítása: <src_ip, src_port, dest_ip, dest_port, proto>
ahol src_ip, dst_ip a forrás és cél IP cím,
src_port, dest_port forrás és cél port, proto pedig UDP vagy TCP.

- A legalacsonyabb szintű végpont-végpont protokoll
 - A szállítói réteg fejlécei csak a forrás és cél végpontok olvassák
 - A routerek számára a szállítói réteg fejléce csak szállítandó adat (payload)

User Datagram Protocol (UDP)

57

70 Telephone 16 Telephone 31 Telephone 16 Telephone 31 Te

- 8 bájtos UDP fejléc
- Egyszerű, kapcsolatnélküli átvitel
 - C socketek: SOCK_DGRAM
- Port számok teszik lehetővé a demultiplexálást
 - 16 bit = 65535 lehetséges port
 - O port nem engedélyezett
- Kontrollösszeg hiba detektáláshoz
 - Hibás csomagok felismerése
 - Nem detektálja az elveszett, duplikátum és helytelen sorrendben beérkező csomagokat (UDP esetén nincs ezekre garancia)

UDP felhasználások

- A TCP után vezették be
 - Miért?
- Nem minden alkalmazásnak megfelelő a TCP
- UDP felett egyedi protokollok valósíthatók meg
 - Megbízhatóság? Helyes sorrend?
 - Folyam vezérlés? Torlódás vezérlés?
- Példák
 - RTMP, real-time média streamelés (pl. hang, video)
 - Facebook datacenter protocol

Köszönöm a figyelmet!