Notebook 1 of 10

```
In [1]: # Alexander Hebert
         # ECE 6390
         # Computer Project #3
In [2]: # Tested using Python v3.4 and IPython v2
In [3]: # Import libraries
In [4]: import numpy as np
In [5]: import scipy
In [6]: import sympy
In [7]: import itertools
In [8]: from MatrixSignFunction import msf
In [9]: from IPython.display import display
In [10]: from sympy.interactive import printing
In [11]: np.set printoptions(linewidth=200,
                             formatter={'all':lambda x: format(x,'10.5f')})
In [12]: #np.set printoptions(suppress=True)
In [13]: # Original system:
```

Notebook 2 of 10

```
In [14]: A = np.loadtxt('A.txt')
         print(A)
                         1.00000
                                    0.00000
                                               0.00000
                                                          0.00000
                                                                     0.00000
                                                                                 0.00000
                                                                                            0.00000
                                                                                                       0.00000
             0.00000
             0.000001
          0.00000
                        -0.11323
                                   -0.98109 -11.84700 -11.84700 -63.08000 -34.33900 -34.33900
                                                                                                     -27.64500
             0.000001
          [ 324.12100
                        -1.17550 -29.10100
                                               0.12722
                                                          2.83448 -967.73000 -678.14000 -678.14000
                                                                                                       0.00000
          -129.29000]
          [-127.30000]
                                   11.42940
                                              -1.03790
                                                         13.12370 380.07900 266.34100 266.34100
                                                                                                       0.00000
                         0.46167
          1054.85000]
          [-186.05000]
                         0.67475
                                   16.70450
                                               0.86092 -17.06800 555.50200 389.26800 389.26800
                                                                                                       0.00000
          -874.92000]
          [ 341.91700
                         1.09173 1052.75000 756.46500 756.46500 -29.77400
                                                                                0.16507
                                                                                            3.27626
                                                                                                       0.00000
             0.000001
          [-30.74800]
                        -0.09817 -94.67400 -68.02900 -68.02900
                                                                     2.67753
                                                                                -2.65580
                                                                                            4.88497
                                                                                                       0.00000
             0.000001
          [-302.36000]
                        -0.96543 -930.96000 -668.95000 -668.95000
                                                                    26.32920
                                                                                 2.42028
                                                                                           -9.56030
                                                                                                       0.00000
             0.00000]
          0.00000
                         0.00000
                                    0.00000
                                               0.00000
                                                          0.00000
                                                                     0.00000
                                                                                 0.00000
                                                                                            0.00000
                                                                                                      -1.66670
             0.00000]
          0.00000
                         0.00000
                                    0.00000
                                               0.00000
                                                          0.00000
                                                                     0.00000
                                                                                 0.00000
                                                                                            0.00000
                                                                                                       0.00000
           -10.00000]]
In [15]: n,nc = A.shape
In [16]: B = np.loadtxt('B.txt')
         print(B)
              0.00000
                         0.00000]
              0.00000
                         0.00000]
              0.00000
                         0.00000]
              0.00000
                         0.000001
              0.00000
                         0.00000]
              0.00000
                         0.00000]
              0.00000
                         0.000001
              0.00000
                         0.000001
             1.66667
                         0.00000]
              0.00000
                        10.00000]]
In [17]: nr,m = B.shape
```

Notebook 3 of 10

```
In [18]: C = np.loadtxt('C.txt')
        print(C)
        [[ 1.00000
                                                                                           0.00000
                      0.00000
                                0.00000
                                          0.00000
                                                    0.00000
                                                             0.00000
                                                                       0.00000
                                                                                 0.00000
           0.000001
         [-0.49134]
                      0.00000
                               -0.63203
                                          0.00000
                                                    0.00000
                                                            -0.20743
                                                                       0.00000
                                                                                 0.00000
                                                                                           0.00000
           0.0000011
In [19]: D = np.zeros((2,2))
        print(D)
            0.00000
                      0.00000]
            0.00000
                      0.00000]]
In [20]: # Compute eigenvalues/poles of A to determine system stability:
In [21]: A eigvals, M = np.linalg.eig(A)
In [22]: # Sort eigenvalues in descending order
        idx = A eigvals.argsort()[::-1]
        A eigvals = A eigvals[idx]
        print(A eigvals)
        +0.00000j -10.74614+0.00000j -17.66419+0.00000j -29.46253+313.93671j -29.46253-313.93671j]
In [23]: # All poles are stable.
In [24]: # Sort eigenvectors
        M = M[:,idx]
In [25]: # Mean of eigenvalues
        gamma = sum(np.real(A eigvals)) / n
        print(gamma)
        -10.097693
```

Notebook 4 of 10

```
In [26]: A hat = A - gamma * np.eye(n)
         print(A hat)
                                    0.00000
         [[ 10.09769
                         1.00000
                                               0.00000
                                                          0.00000
                                                                     0.00000
                                                                                0.00000
                                                                                           0.00000
                                                                                                      0.00000
             0.000001
          0.00000
                         9.98446
                                  -0.98109 -11.84700 -11.84700 -63.08000 -34.33900 -34.33900 -27.64500
             0.000001
          [ 324.12100
                       -1.17550 -19.00331
                                               0.12722
                                                          2.83448 -967.73000 -678.14000 -678.14000
                                                                                                      0.00000
          -129.29000]
                         0.46167 11.42940
                                               9.05979
                                                        13.12370 380.07900 266.34100 266.34100
                                                                                                      0.00000
          [-127.30000]
          1054.85000]
          [-186.05000]
                         0.67475
                                 16.70450
                                               0.86092
                                                         -6.97031 555.50200 389.26800 389.26800
                                                                                                      0.00000
          -874.92000]
          [ 341.91700
                        1.09173 1052.75000 756.46500 756.46500 -19.67631
                                                                                0.16507
                                                                                           3.27626
                                                                                                      0.00000
             0.000001
          [-30.74800]
                       -0.09817 -94.67400 -68.02900 -68.02900
                                                                     2.67753
                                                                                7.44189
                                                                                           4.88497
                                                                                                      0.00000
             0.000001
          [-302.36000]
                       -0.96543 -930.96000 -668.95000 -668.95000
                                                                    26.32920
                                                                                2.42028
                                                                                           0.53739
                                                                                                      0.00000
             0.000001
          0.00000
                         0.00000
                                    0.00000
                                               0.00000
                                                          0.00000
                                                                     0.00000
                                                                                0.00000
                                                                                           0.00000
                                                                                                      8.43099
             0.000001
          0.00000
                         0.00000
                                    0.00000
                                               0.00000
                                                          0.00000
                                                                     0.00000
                                                                                0.00000
                                                                                           0.00000
                                                                                                      0.00000
             0.09769]]
In [27]: A hat eigvals, M hat = np.linalq.eig(A hat)
In [28]: idx2 = A hat eigvals.argsort() [::-1]
         A hat eigvals = A hat eigvals[idx2]
         print(A hat eigvals)
         [9.86321+0.00000j 9.74855+6.34401j 9.74855-6.34401j 9.05564+0.00000j 8.43099+0.00000j 0.09769+0.00000]
         0 - 0.64845 + 0.00000 - 7.56650 + 0.00000 - 19.36484 + 313.93671 - 19.36484 - 313.93671 
In [29]: # There are six dominant (unstable) eigenvalues of A hat.
         # Therefore, the top six eigenvalues are selected
         # for the reduced order model.
In [30]: # Compute sign(A hat)
         eps = 1.0e-7
         maxiter = 100
         sign A hat, jp1, flag = msf(A hat,eps,maxiter)
         print('j = %d' %jp1)
         print('flag = %d' %flag)
         j = 17
         flag = 1
```

Notebook 5 of 10

<pre>print(sign_A_hat)</pre>									
[[1.03870 2.854051	-0.00336	0.02278	0.01414	0.03112	-0.11007	-0.06049	-0.11721	-0.00972	
[-0.54195	1.03876	-1.01065	-0.68724	-0.98331	0.85785	0.40622	1.01189	0.10912	
[-1.84661	-0.00187	-5.01676	-4.33066	-4.03548	-0.13851	-0.24001	-0.13494	0.00303	
[1.52237	-0.04730	5.23084	4.63410	5.25086	0.17573	0.29052	0.17014	-0.09360	
[0.20288	0.05275	0.36461	0.40344	-0.63261	-0.05607	-0.07666	-0.05317	0.09759	
[1.95411	0.03022	0.40569	0.43978	0.41876	-4.12085	-3.74582	-3.14521	0.09592	
[-0.96414	0.07184	0.00472	0.01879	-0.00164	3.21693	2.86791	3.24639	0.21814	
[-0.77019	-0.11709	-0.39984	-0.45331	-0.40735	1.18904	1.45797	0.19074	-0.35967	
[0.0000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	1.00000	
[0.0000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
		gn_A_hat +	np.identity	(n))					
[[1.01935 1.42703]	-0.00168	0.01139	0.00707	0.01556	-0.05504	-0.03024	-0.05861	-0.00486	
[-0.27098 -21.90020]	1.01938	-0.50533	-0.34362	-0.49165	0.42893	0.20311	0.50595	0.05456	
[-0.92330 16.48068]	-0.00094	-2.00838	-2.16533	-2.01774	-0.06925	-0.12000	-0.06747	0.00152	
[0.76119 94.91292]	-0.02365	2.61542	2.81705	2.62543	0.08787	0.14526	0.08507	-0.04680	
[0.10144 -118.67183]	0.02637	0.18230	0.20172	0.18369	-0.02803	-0.03833	-0.02658	0.04879	
[0.97705	0.01511	0.20284	0.21989	0.20938	-1.56042	-1.87291	-1.57261	0.04796	
[-0.48207	0.03592	0.00236	0.00940	-0.00082	1.60846	1.93396	1.62320	0.10907	
[-0.38509	-0.05854	-0.19992	-0.22665	-0.20368	0.59452	0.72898	0.59537	-0.17983	
0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	1.00000	
[0.00000 1.00000]]	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
	[[1.03870	[[1.03870	[1.03870 -0.00336	[[1.03870	[[1.03870	[[1.03870	[[1.03870	[[1.03870	

Notebook 6 of 10

```
In [33]: np.trace(sign pos A hat)
Out[33]: 6.0
In [34]: # Select eigenvectors from sign pos A hat
         m hat 1 = np.concatenate((sign pos A hat[:, 0:4],
                                    sign pos A hat[:,8:]), 1)
In [35]: sign neg A hat = 0.5*(np.identity(n) - sign A hat)
         print(sign neg A hat)
         [[ -0.01935
                         0.00168
                                    -0.01139
                                               -0.00707
                                                           -0.01556
                                                                       0.05504
                                                                                  0.03024
                                                                                              0.05861
                                                                                                         0.00486
            -1.42703]
              0.27098
                        -0.01938
                                     0.50533
                                                0.34362
                                                            0.49165
                                                                      -0.42893
                                                                                  -0.20311
                                                                                             -0.50595
                                                                                                        -0.05456
            21.90020]
              0.92330
                          0.00094
                                     3.00838
                                                2.16533
                                                            2.01774
                                                                       0.06925
                                                                                  0.12000
                                                                                              0.06747
                                                                                                        -0.00152
           -16.48068]
          [-0.76119]
                          0.02365
                                    -2.61542
                                               -1.81705
                                                           -2.62543
                                                                      -0.08787
                                                                                  -0.14526
                                                                                             -0.08507
                                                                                                         0.04680
           -94.91292]
          [-0.10144]
                        -0.02637
                                    -0.18230
                                               -0.20172
                                                            0.81631
                                                                       0.02803
                                                                                  0.03833
                                                                                              0.02658
                                                                                                        -0.04879
           118.67183]
          [-0.97705]
                                    -0.20284
                                               -0.21989
                                                           -0.20938
                                                                       2.56042
                                                                                  1.87291
                                                                                              1.57261
                        -0.01511
                                                                                                        -0.04796
             5.90878]
                        -0.03592
                                    -0.00236
          [ 0.48207
                                               -0.00940
                                                            0.00082
                                                                      -1.60846
                                                                                  -0.93396
                                                                                             -1.62320
                                                                                                        -0.10907
            11.86085]
              0.38509
                                                0.22665
                                                            0.20368
                                                                      -0.59452
                                                                                  -0.72898
                                                                                              0.40463
                          0.05854
                                     0.19992
                                                                                                         0.17983
           -20.26187]
              0.00000
                          0.00000
                                     0.00000
                                                0.00000
                                                            0.00000
                                                                       0.00000
                                                                                  0.00000
                                                                                              0.00000
                                                                                                         0.00000
             0.00000]
          0.00000
                          0.00000
                                     0.00000
                                                0.00000
                                                            0.00000
                                                                       0.00000
                                                                                  0.00000
                                                                                              0.00000
                                                                                                         0.00000
             0.0000011
In [36]: np.trace(sign neg A hat)
Out[36]: 4.0
In [37]: # Select eigenvectors from sign neg A hat
         m hat 2 = sign neg A hat[:,0:4]
```

Notebook 7 of 10

In [38]:	<pre>M_msf = np.concatenate((m_hat_1, m_hat_2), 1) print(M_msf)</pre>									
]]	1.01935 -0.007071	-0.00168	0.01139	0.00707	-0.00486	1.42703	-0.01935	0.00168	-0.01139
	[-0.27098 0.34362]	1.01938	-0.50533	-0.34362	0.05456	-21.90020	0.27098	-0.01938	0.50533
	[-0.92330 2.16533]	-0.00094	-2.00838	-2.16533	0.00152	16.48068	0.92330	0.00094	3.00838
	[0.76119 -1.81705]	-0.02365	2.61542	2.81705	-0.04680	94.91292	-0.76119	0.02365	-2.61542
	[0.10144 -0.20172]	0.02637	0.18230	0.20172	0.04879	-118.67183	-0.10144	-0.02637	-0.18230
	[0.97705 -0.21989]	0.01511	0.20284	0.21989	0.04796	-5.90878	-0.97705	-0.01511	-0.20284
	[-0.48207 -0.00940]	0.03592	0.00236	0.00940	0.10907	-11.86085	0.48207	-0.03592	-0.00236
	[-0.38509 0.22665]	-0.05854	-0.19992	-0.22665	-0.17983	20.26187	0.38509	0.05854	0.19992
	[0.00000	0.00000	0.00000	0.00000	1.00000	0.00000	0.00000	0.00000	0.00000
	[0.00000 0.00000]]	0.00000	0.00000	0.00000	0.00000	1.00000	0.00000	0.00000	0.00000

In [39]: # Check rank of M_hat
np.linalg.matrix_rank(M_msf)

Out[39]: 10

Notebook 8 of 10

```
In [40]: M msf inv = np.linalg.inv(M msf)
         print(M msf inv)
                                                0.00000
                                                           0.00745
                                                                     -3.00473
                                                                                -3.62961
                                                                                            -3.02771
                                                                                                       -0.00000
         [[ 1.00000
                        -0.00000
                                    0.00000
             0.000001
          [-0.00000
                         1.00000
                                    -0.00000
                                               -0.00000
                                                          -0.12208 121.36333 147.73967 122.24146
                                                                                                        0.00000
            -0.000001
          [-0.00000
                         0.00000
                                    1.00000
                                               -0.00000
                                                           0.24684 662.69532 808.38183 667.09694
                                                                                                        0.00000
            -0.000001
                        -0.00000
                                    0.00000
                                               1.00000
                                                           0.69977 -613.40105 -748.24942 -617.47503
                                                                                                       -0.00000
             0.00000
             0.000001
          0.00000
                         0.00000
                                    0.00000
                                                0.00000
                                                           0.00000
                                                                      0.00000
                                                                                 0.00000
                                                                                             0.00000
                                                                                                        1.00000
             0.00000]
          [-0.00000
                        -0.00000
                                    -0.00000
                                               -0.00000
                                                           0.00000
                                                                     -0.00000
                                                                                -0.00000
                                                                                             0.00000
                                                                                                        0.00000
             1.00000]
          [ 1.00000
                        -0.00000
                                    0.00000
                                                0.00000
                                                           1.60527
                                                                     -2.81461
                                                                                -2.16547
                                                                                            -1.36052
                                                                                                        0.05304
          174.32474]
                                                                      7.23488
              0.00000
                         1.00000
                                    -0.00000
                                               -0.00000
                                                          26.72206
                                                                                -3.55224
                                                                                            29.13826
                                                                                                        3.92205
          2603.27644]
                        -0.00000
                                               -0.00000
                                                                      1.85031
                                                                                 -0.78878
                                                                                             7.94046
              0.00000
                                    1.00000
                                                          17.67588
                                                                                                        0.56126
          1921.83776]
          [-0.00000
                         0.00000
                                    0.00000
                                               1.00000 -24.32204
                                                                     -1.34169
                                                                                 2.07621 -10.43331
                                                                                                       -0.80479
          -2753.15778]]
In [41]: # Diagonalize A using modal matrix from above
         Ad = M msf inv.dot(A).dot(M msf)
         print(Ad)
                                               -0.65912
                                                          -0.00000
                                                                     -6.52054
                                                                                 -0.00000
                                                                                             0.00000
                                                                                                       -0.00000
         [[-1.69221]
                         1.00404
                                   -0.79535
            -0.000001
          [ 15.27267
                        -0.21879
                                 -26.78675 -28.84512 -27.64500 106.81115
                                                                                 0.00000
                                                                                            -0.00000
                                                                                                        0.00000
             0.00000]
                        -0.91883
          [ 305.43843
                                   54.21425
                                               58.25123
                                                           0.00000 -345.25166
                                                                                 0.00000
                                                                                            -0.00000
                                                                                                        0.00000
             0.000001
          [-282.81502
                         0.85008
                                 -50.51501 -54.27808
                                                           0.00000 442.60752
                                                                                 -0.00000
                                                                                            -0.00000
                                                                                                       -0.00000
            -0.00000]
             0.00000
                         0.00000
                                    0.00000
                                                0.00000
                                                          -1.66670
                                                                      0.00000
                                                                                 0.00000
                                                                                             0.00000
                                                                                                        0.00000
             0.000001
          [ 0.00000
                         0.00000
                                    0.00000
                                                0.00000
                                                           0.00000 -10.00000
                                                                                -0.00000
                                                                                             0.00000
                                                                                                       -0.00000
            -0.000001
          [-0.00000
                         0.00000
                                    0.00000
                                                0.00000
                                                           0.00000
                                                                     -0.00000 -783.07297
                                                                                             0.53643 -1464.6621
         9 -1070.337451
          [-0.00000
                         0.00000
                                    0.00000
                                                0.00000
                                                           0.00000
                                                                     -0.00000 -11198.93019
                                                                                              -1.96622 -18728.3
         3307 -13766.29216]
             0.00000
                         0.00000
                                    -0.00000
                                               -0.00000
                                                           0.00000
                                                                     -0.00000 -4708.44985
                                                                                              5.18282 -5103.496
         54 -3843.07312]
          [-0.00000
                        -0.00000
                                    0.00000
                                                0.00000
                                                          -0.00000
                                                                      0.00000 7029.84495
                                                                                            -7.54558 7709.10727
          5801.20032]]
```

Notebook 9 of 10

```
In [42]: Bd = M msf inv.dot(B)
         print(Bd)
         [ [ -0.00000 ] ]
                        0.000001
             0.00000
                     -0.00000]
             0.00000
                      -0.00000]
          [-0.00000
                      0.000001
            1.66667
                      0.000001
             0.00000
                     10.00000]
            0.08841 1743.24737]
            6.53676 26032.76440]
            0.93543 19218.37757]
         [ -1.34132 -27531.57780]]
In [43]: Cd = C.dot(M msf)
         print(Cd)
        [[ 1.01935
                       -0.00168
                                   0.01139
                                             0.00707
                                                       -0.00486
                                                                   1.42703
                                                                             -0.01935
                                                                                         0.00168
                                                                                                  -0.01139
           -0.00707]
         [-0.11996]
                     -0.00172
                                   1.22169
                                             1.31947
                                                       -0.00852
                                                                  -9.89178
                                                                            -0.37138
                                                                                         0.00172
                                                                                                  -1.85372
           -1.31947]]
In [44]: # Block decoupling
In [45]: Lambda1 = Ad[0:6,0:6]
         Lambda2 = Ad[6:, 6:]
         print(Lambda1)
         [[ -1.69221
                                -0.79535 -0.65912
                                                      -0.00000 -6.52054]
                       1.00404
         [ 15.27267   -0.21879   -26.78675   -28.84512   -27.64500   106.81115]
         [ 305.43843
                     -0.91883
                                 54.21425
                                            58.25123
                                                       0.00000 -345.25166]
         [-282.81502
                        0.85008 -50.51501 -54.27808
                                                      0.00000 442.60752]
         [ 0.00000
                        0.00000
                                  0.00000
                                             0.00000
                                                       -1.66670
                                                                  0.00000]
             0.00000
                        0.00000
                                   0.00000
                                             0.00000
                                                       0.00000 -10.00000]]
In [46]: Bd1 = Bd[0:6,:]
         print(Bd1)
         0.00000
                        0.00000]
         0.00000
                      -0.00000]
             0.00000
                      -0.00000]
         [-0.00000
                       0.00000]
             1.66667
                        0.000001
             0.00000
                      10.00000]]
```

Notebook 10 of 10

```
In [47]: Bd2 = Bd[6:,:]
In [48]: Cd1 = Cd[:, 0:6]
        print(Cd1)
        [[ 1.01935 -0.00168
                                0.01139
                                         0.00707 -0.00486
                                                             1.42703]
         [ -0.11996 -0.00172
                               1.22169
                                         1.31947 -0.00852
                                                           -9.89178]]
In [49]: Cd2 = Cd[:, 6:]
In [50]: Dstar = (C.dot(np.linalg.inv(-1*A)).dot(B) + D
                    - Cd1.dot(np.linalg.inv(-1*Lambda1)).dot(Bd1))
In [51]: print(Dstar)
            0.00073 -0.98193]
            0.00155
                    5.11005]]
In [52]: np.savetxt("Lambda1.txt", Lambda1, fmt=list(itertools.repeat('%.18e', 6)))
        np.savetxt("Bd1.txt",Bd1,fmt=list(itertools.repeat('%.18e',2)))
        np.savetxt("Cd1.txt",Cd1,fmt=list(itertools.repeat('%.18e',6)))
        np.savetxt("Dstar.txt", Dstar, fmt=list(itertools.repeat('%.18e',2)))
In [53]: L1 eigvals, M L1 = np.linalg.eig(Lambda1)
        np.savetxt("Lambdal eigvals.txt",L1 eigvals.reshape((6,1)),
                  fmt=list(itertools.repeat('%.18e%+.18ej',1)))
        print(L1 eigvals)
        +0.00000j]
In [53]:
```