確率論における独立性の定義

1

1.1

 $\mathcal{B}(\mathbb{R})$ で \mathbb{R} のボレル集合族を表す. $\sigma(X) \coloneqq \left\{ X^{-1}(B) \in F \mid B \in \mathcal{B}(\mathbb{R}) \right\}$

定義 1.1.

- (1) F の部分 σ 代数の族 $\{\mathcal{G}_1, \dots, \mathcal{G}_n\}$ が独立. $\Leftrightarrow P(\bigcap_i B_i) = \prod_i P(B_i) \quad (\text{for } ^{\forall} B_1 \in \mathcal{G}_1, \dots, ^{\forall} B_n \in \mathcal{G}_n)$
- (2) F の部分 σ 代数の (有限個とは限らない) 族 $\{\mathcal{G}_{\lambda} \subset F \mid \lambda \in \Lambda\}$ が独立. \Leftrightarrow 任意の有限部分族 $\{\mathcal{G}_{\lambda_i}, \dots, \mathcal{G}_{\lambda_n}\} \subset \{\mathcal{G}_{\lambda}\}$ が独立.
- (3) 確率変数の族 $\{X_1,\ldots,X_n\}$ が独立. $\Leftrightarrow \{\sigma(X_1),\ldots,\sigma(X_n)\}$ が独立.
- (4) 確率変数の (有限個とは限らない) 族 $\{X_{\lambda}\}$ が独立. \Leftrightarrow 任意の有限部分族 $\{X_{\lambda_1},\ldots,X_{\lambda_n}\}\subset \{X_{\lambda}\}$ が独立.
- (5) 事象の列 $\{A_n \in F\}$ が独立. $\Leftrightarrow \{A_i\}$ が独立. (但し, $A_i := \{\Omega, \emptyset, A_i, A_i^c\}$)