Solutions to the Exercises of Section 3.5.

3.5.1. (a)
$$f(x|\lambda) = e^{-\lambda} e^{x \log(\lambda)} / x!$$
 for $x = 0, 1, ...$

So, k=1, $c(\lambda)=e^{-\lambda}$, h(x)=1/x! for $x=0,1,\ldots,$ $\pi(\lambda)=\log(\lambda)$ and t(x)=x. The natural parameter space is $\Pi=\{\pi:\sum_{x=0}^\infty e^{\pi x}/x!<\infty\}=(-\infty,\infty)$.

(b)
$$f(x|\theta) = {r+x-1 \choose x} \exp\{x\log(\theta)\}(1-\theta)^r \text{ for } x=0,1,\ldots$$

So,
$$k = 1$$
, $c(\theta) = (1 - \theta)^r$, $h(x) = {r+x-1 \choose x}$ for $x = 0, 1, ..., \pi(\theta) = \log(\theta)$, $t(x) = x$, $\Pi = (-\infty, 0)$.

(c)
$$f(x|\theta) = (\sqrt{2\pi}\sigma)^{-1} \exp\{-(x-\mu)^2/(2\sigma^2)\}$$
$$= (\sqrt{2\pi}\sigma)^{-1} \exp\{-\frac{x^2}{2\sigma^2} + \frac{x\mu}{\sigma^2} - \frac{\mu^2}{2\sigma^2}\}.$$

So, k = 2, $c(\theta) = (\sqrt{2\pi}\sigma)^{-1} \exp\{-\mu^2/(2\sigma^2)\}$, $h(x) \equiv 1$, $\pi_1(\theta) = -1/(2\sigma^2)$, $\pi_2(\theta) = \mu/\sigma^2$, $t_1(x) = x^2$, $t_2(x) = x$, and $\Pi = \{(\pi_1, \pi_2) : \pi_1 < 0, -\infty < \pi_2 < \infty\}$. For a sample of size n, $(\sum X_i, \sum X_i^2)$ is sufficient for θ , and so is (\overline{X}_n, s_x^2) .

(d)
$$f(x|\alpha,\beta) = 1/(\Gamma(\alpha)\beta^{\alpha}) \exp\{-x/\beta + (\alpha-1)\log(x)\} I_{(0,\infty)}(x).$$

So, k = 2, $c(\alpha, \beta) = 1/(\Gamma(\alpha)\beta^{\alpha})$, $h(x) = x^{-1}I_{(0,\infty)}(x)$, $\pi_1 = -1/\beta$, $t_1(x) = x$, $\pi_2 = \alpha$, $t_2(x) = \log(x)$, $\Pi = \{(\pi_1, \pi_2) : \pi_1 < 0, \pi_2 > 0\}$.

(e)
$$f(x|\alpha,\beta) = \Gamma(\alpha+\beta)/(\Gamma(\alpha)\Gamma(\beta)) \exp\{(\alpha-1)\log(x) + (\beta-1)\log(1-x)\}I_{(0,1)}(x).$$

So,
$$k = 2$$
, $c(\alpha, \beta) = \Gamma(\alpha + \beta)/(\Gamma(\alpha)\Gamma(\beta))$, $h(x) = x^{-1}(1 - x)^{-1}I_{(0,1)}(x)$, $\pi_1 = \alpha$, $t_1(x) = \log(x)$, $\pi_2 = \beta$, $t_2(x) = \log(1 - x)$, $\Pi = \{(\pi_1, \pi_2) : \pi_1 > 0, \pi_2 > 0\}$.

3.5.2. From (3.55), $-\log c(\underline{\pi}) = \log \int \exp\{\sum \pi_i t_i(x)\} h(x) dx$. From Lemma 3, we may pass derivatives beneath the integral sign and obtain

$$-\partial \log c(\underline{\pi})/\partial \pi_k = \int t_k(x) \exp\{\sum \pi_i t_i(x)\} h(x) dx/c(\underline{\pi})^{-1}$$
$$= E_{\underline{\pi}}\{t_k(X)\},$$

valid at all interior points. Hence, $E_{\pi}\{t_k(X)\}$ exists at all interior points and we can take a second derivative,

$$\begin{split} -\partial^2 \log c(\underline{\pi})/\partial \pi_j \partial \pi_k &= \int t_j(x) t_k(x) \exp\{\sum \pi_i t_i(x)\} h(x) \, dx \, c(\underline{\pi}) \\ &+ \int t_k \exp\{\sum \pi_i t_i(x)\} h(x) \, dx \, \partial c(\underline{\pi})/\partial \pi_j \\ &= E_{\underline{\pi}} \{t_j(X) t_k(X)\} - E_{\underline{\pi}} \{t_k(X)\} E_{\pi} \{t_j(X)\} \\ &= \mathrm{Cov}_{\underline{\pi}} (t_j(X), t_k(X)). \end{split}$$

3.5.3. The joint density of X_1, \ldots, X_n is

$$f_{\mathbf{X}}(\mathbf{x}|\underline{\pi}) = c(\underline{\pi})^n \prod_{i=1}^n h(x_i) \ \mathrm{I}(\pi_1 < \min x_i, \max x_i < \pi_2)$$

where $c(\underline{\pi})^{-1} = \int_{\pi_1}^{\pi_2} h(x) dx$. Let $T_1 = \min X_i$ and $T_2 = \max X_i$. Then for $\pi_1 < t_1 < t_2 < \pi_2$,

$$P(T_1 > t_1, T_2 \le t_2 | \underline{\pi}) = P(\text{all } X_i \in (t, t_2] | \underline{\pi}) = c(\underline{\pi})^n \left(\int_{t_1}^{t_2} h(x) dx \right)^n.$$

From this we conclude

$$\begin{split} f_{T_1,T_2}(t_1,t_2|\underline{\pi}) &= -\frac{\partial}{\partial t_1} \frac{\partial}{\partial t_2} \mathbf{P}(T_1 < t_1, T_2 \ge t_2|\underline{\pi}) \\ &= n(n-1)c(\underline{\pi})^n \left(\int_{t_1}^{t_2} h(x) \, dx \right)^{n-2} h(t_1)h(t_2) \mathbf{I}(\pi_1 < t_1 < t_2 < \pi_2) \\ &= c(\underline{\pi})^n h_0(\mathbf{t}) \mathbf{I}_{(\pi_1,\infty)}(t_1) \mathbf{I}_{(-\infty,\pi_2)}(t_2), \end{split}$$

where

$$h_0(\mathbf{t}) = n(n-1) \left(\int_{t_1}^{t_2} h(x) \, dx \right)^{n-2} h(t_1) h(t_2) \mathbf{I}(t_1 < t_2).$$