

Applied Machine Learning in Engineering

Lecture 01 winter term 2023/24

Prof. Merten Stender

Cyber-Physical Systems in Mechanical Engineering, Technische Universität Berlin

www.tu.berlin/cpsme merten.stender@tu-berlin.de

- Uncertain model parameters
 - Structural damping of metals, ...
 - Nonlinear behavior (elastomers stiffness, ...)
- Inherent modeling assumptions and limitations
 - Simplified constitutive models, ...
 - Idealized assumptions on homogenity, ...
- Speed and energy-efficiency
 - Homogenization of heterogeneous materials
 - Low-order yet fast surrogate models

Data-driven methods are particularly promising and powerful when a handcrafted algorithm is not existent or extremely difficult to formulate.

Structured data (tabular data)

Features (attributes): quantities that describe measurements or characteristic properties of an individual data sample (record)

- High-dimensional data sets: *n* very large
- Big data: N very large (and n potentially, too)

Unstructured data (also denoted as non-tabular data)

- Examples:
 - Text
 - Audio
 - Video
 - Images ...
- Special about unstructured data:
 - Additional latent dimensions
 - Order matters (latent dim.)

audio can be stored in an array, but is not structured!

Order of features not interchangeable!

supervised learning (predictive task)

model training = reduce prediction error

data (tabular)

unsupervised learning (descriptive task)

finding clusters, groups and anomalies

Recap: Exercise 00

- Set up a Python 3.8 environment for the semester
- Build some basic Python programming skills (following an online tutorial).
- Create a first figure using matplotlib

```
t = np.arange(start=0, stop=8 + 0.01, step=0.01) # time vector
freq = 10
x = np.pi * np.cos(freq * t) # x(t)
fig = plt.figure() # figsize=(8,4), dpi=200)
                                                                                             Signal x(t) = \pi \cdot \cos(10t)
plt.plot(t, x, color='red', linewidth=2)
plt.xlabel(r'time $t$')
plt.ylabel(r'$x(t)$')
plt.title(fr'Signal $x(t) = \pi \cdot \cos({freq}t)$')
                                                                x(t)
plt.savefig('my_plot_of_cos_signal.png')
plt.show()
                                                                  -1
                                                                  -2 ·
```

Recap: Exercise 00

Plotting call wrapped into a function

```
0.00
Extra: wrap it into a function, accepting amplitude and frequency and returning
the plot
H H H
                                                                                            function definition
def plot_cos_signal amplitude: float € 1.0, frequency: float(= 1.0) -> None:
                                                                                            arguments
   t = np.arange(start=0, stop=8+0.01, step=0.01) # time vector
   x = amplitude * np.cos(frequenc) * t) # x(t)
                                                                                            default values
   plt.figure(figsize=(8, 4), dpi=200)
   plt.plot(t, x, color='red', linewidth=2)
                                                                                            type hints
   plt.xlabel(r'time $t$')
   plt.ylabel(r'$x(t)$')
   plt.title(fr'Signal $x(t) = {amplitude} \cdot \cos({frequency}t)$')
   plt.savefig('extra_plot_of_cos_signal.png')
   plt.show()
# use the function to plot a different cosine signal
                                                                                            call of the function
plot_cos_signal(amplitude=0.5, frequency=3.14)
```

Recap: Exercise 00

Implement the basic Newton scheme

Function y=f(x)

def f(x: float) -> float:
 return x ** 3 - 3 * x - 10

def dfdx(x: float) -> float:
 return 3 * x ** 2 - 3

Ingredients (helper functions)

```
def newton_iter(xn: float, f, dfdx) -> float:
    return xn - (f(xn) / dfdx(xn))

def converged_f(xn: float, f) -> bool:
    return f(xn) < 10 ** (-7)

def converged_x(xn_1: float, xn: float) -> float:
    return np.abs(xn_1 - xn) < 10 ** (-4)</pre>
```

Newton procedure

```
# initial guess of the zero
xn = 5
n = 0

# using the first convergence criterion on f(xn)
while not converged_f(xn, f) and n < 100:
    print(f'iteration {n}: xn={xn}')
    xn_plus1 = newton_iter(xn, f, dfdx)
    xn = xn_plus1
    n += 1

print(f'zero of f(x) is at x={xn}')</pre>
```

Agenda

- Distance metrics for continuous attributes
- Least squares linear regression
- Python: PEP8 style guide and test-driven development

Learning outcomes

Learn to ...

- Formulate a linear regression learning task
- Derive the closed-form solution to the least-squares linear regression
- Measure regression model prediction errors using the R^2 metric

Know about ...

- The Minkowski distance
- Least squares normal form
- Separating what and how code is doing during the implementation

Linear regression

Metrics for Continuous Attributes

Continuous attributes allow for distance operations. Some distance metrics:

Minkowski distance

• Euclidean distance
$$(L_2)$$

• Manhatten distiance
$$(L_1)$$

• Supremum distance
$$(L_{\infty})$$

$$d(x,y) = (\sum_{i=1}^{n} |x_i - y_i|^r)^{1/r}$$
 for $q = x - y, x, y \in \mathbb{R}^n$

$$\|\mathbf{q}\|_2 = \left(\sum_{i=1}^n |q_i|^2\right)^{1/2}$$

$$\|\mathbf{q}\|_1 = \sum_{i=1}^n |q_i|$$

$$\|\mathbf{q}\|_{\infty} = \lim_{r \to \infty} (\sum_{i=1}^{n} |q_i|^r)^{1/r}$$

Regression – Definition

Definition: Regression is the task of learning a target function f that maps each attribute set x

into a coninuous-valued output y.

[Tan, Introduction to Data Mining]

■ Goal: find a target function f with minimal error on training data

Error: different definitions of error available

- Methods:
 - Linear regression
 - Decision Trees
 - Neural Networks
 - ...

Linear Regression

- Find target function f that obtains a linear relationship between (explanatory) variables x and target value y
- Target function, i.e. lin. regression model, is parameterized in $\theta = [\theta_1, ...]^T$: $f(\theta)$
- Data set $D = \{(\mathbf{x}_i, y_i) \mid i = 1, ..., N\}, \ x_i = [x_{i,1}, x_{i,2}, ..., x_{i,n}]^\top \in \mathbb{R}^n, N \text{ samples, } n\text{-dim. feature space}$

• Scalar example: $x \in \mathbb{R}^1$

Linear Regression

- Scalar variable x and scalar target value $y \rightarrow \text{find } f(x) = \theta_0 + \theta_1 x$
- Generating process $y_i = \theta_0 + \theta_1 x_i + \epsilon_i$ with $\mathbf{x} = [1, x_i]$ $y_i = \mathbf{x}_i^\mathsf{T} \theta + \epsilon_i$ i = 1, ..., N
- Unobserved random variable ϵ causing deviations from a perfectly linear relationship

- **Prediction:** $\hat{y} = f(x)$ (target function evaluated at x)
- Prediction error: $\operatorname{error} = \|y_i \hat{y}_i\| = \|y_i \mathbf{x}_i^{\mathsf{T}} \theta\|$
- Error metrics: ||·|| : absolute error, squared error, ...

■ Squared error (sum of squares) → Least squares linear regression

Least Squares Linear Regression

- Solving a linear regression task for the minimum sum of squared errors (SSE)
- Sum of squared errors: $\mathcal{L}_{SSE} = \sum_i (y_i \hat{y}_i)^2$, i = 1, ... N
- Least squares method: $\min_{\theta} \|y_i \mathbf{x}_i^{\mathsf{T}} \theta\|$ for data samples $D = \{(\mathbf{x}_i, y_i) \mid i = 1, ..., N\}$,
- Optimal model parameters θ*
- Loss for scalar setting: $\mathcal{L}(\boldsymbol{\theta}, D) = \sum_{i} (y_i \hat{y}_i)^2 = \sum_{i} (y_i \theta_0 \theta_1 x_i)^2$
- Minimum of SSE: basic calculus. Vanishing gradient of \mathcal{L} with respect to model parameters θ

$$\frac{\partial \mathcal{L}}{\partial \theta_0} = 0$$
 and $\frac{\partial \mathcal{L}}{\partial \theta_1} = 0$

Least Squares Linear Regression

Loss for scalar setting:

$$\mathcal{L} = \sum_{i} (y_{i} - \hat{y}_{i})^{2} = \sum_{i} (y_{i} - \theta_{0} - \theta_{1} x_{i})^{2}$$

Vanishing gradient of £

$$\frac{\partial \mathcal{L}}{\partial \theta_0} = -2\sum_i (y_i - \theta_0 - \theta_1 x_i) = 0$$

$$\frac{\partial \mathcal{L}}{\partial \theta_1} = -2\sum_i (y_i - \theta_0 - \theta_1 x_i) x_i = 0$$

pen & paper exercise

Normal equation

$$\begin{bmatrix} N & \sum_{i} x_{i} \\ \sum_{i} x_{i} & \sum_{i} x_{i}^{2} \end{bmatrix} \begin{bmatrix} \theta_{0} \\ \theta_{1} \end{bmatrix} = \begin{bmatrix} \sum_{i} y_{i} \\ \sum_{i} y_{i} x_{i} \end{bmatrix}$$

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

 \rightarrow Solve for θ to find optimal parameters θ^*

Least Squares: Multi-Regression

- Feature space is multi-dimensional $\mathbf{x} \in \mathbb{R}^n$, n > 1, $\mathbf{x} = [x_1, ..., x_n]$, $D = \{(\mathbf{x}_i, y_i), i = 1, ..., N\}$
- Linear multi-regression: $\hat{y}_i = \mathbf{x}_i^{\mathsf{T}} \mathbf{\theta}, \quad \mathbf{x}_i = \begin{bmatrix} 1, x_{i,1}, \dots, x_{i,n} \end{bmatrix}, \; \mathbf{x}, \mathbf{\theta} \in \mathbb{R}^{(n+1)}$

full data set: $y = X\theta$

- Sum of squares $\mathcal{L} = \|\hat{\mathbf{y}} \mathbf{y}\|^2$
- Solution: $\theta^* = \underset{\theta}{\operatorname{argmin}} \mathcal{L}(D, \theta)$

Task: Compute Normal Form

$$\mathcal{L} = \|\hat{\mathbf{y}} - \mathbf{y}\|^2$$

Model predictions

$$\hat{\mathbf{y}} = \mathbf{X}\mathbf{\theta}$$

Minimum:

$$\frac{\partial \mathcal{L}}{\partial \theta} = 0$$

Compute solution θ

$$\frac{\partial \mathcal{L}}{\partial \theta} = 0$$

$$\frac{\partial}{\partial \theta} \| \mathbf{X} \theta - \mathbf{y} \|_{2}^{2} = 0$$

$$\frac{\partial}{\partial \theta} (\mathbf{X} \theta - \mathbf{y})^{\mathsf{T}} (\mathbf{X} \theta - \mathbf{y}) = 0$$

$$\frac{\partial}{\partial \theta} (\theta^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} - \mathbf{y}^{\mathsf{T}}) (\mathbf{X} \theta - \mathbf{y}) = 0$$

$$\frac{\partial}{\partial \theta} (\theta^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \theta - \theta^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} - \mathbf{y}^{\mathsf{T}} \mathbf{X} \theta + \mathbf{y}^{\mathsf{T}} \mathbf{y}) = 0$$

$$\frac{\partial}{\partial \theta} (\theta^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \theta - 2\theta^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \mathbf{y}^{\mathsf{T}} \mathbf{y}) = 0$$

$$2\mathbf{X}^{\mathsf{T}} \mathbf{X} \theta - 2\mathbf{X}^{\mathsf{T}} \mathbf{y} = 0$$

$$\theta = (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{y}$$

Measuring Goodness of Fit: R^2

- Linear regression is a supervised learning approach
 - Actual values are known \rightarrow ground truth targets y_i
 - Predictions \hat{y}_i can be compared against ground truth for measuring the goodness of fit

$$R^2 = 1 - \frac{\sum_i (y_i - \hat{y}_i)^2}{\sum_i (y_i - \bar{y})^2}$$
, $i = 1, ..., N$, sample mean $\bar{y} = \frac{1}{N} \sum_i y_i$

■ Total sum of of squars
$$\sum_{i} (y_i - \bar{y})^2$$

■ Baseline model
$$f(x) = \bar{y}$$

Worse models

$$R^2 = 1.0$$

 $\sum_{i}(y_{i}-\hat{y}_{i})^{2}$

$$R^2 = 0.0$$

$$R^2 < 0.0$$

Anscombe's quartet

- Proposed by Francis Anscombe in 1973
 Graphs in Statistical Analysis". American Statistician. 27 (1): 17–21
- Four data sets with (approx.) same statistics
 - Mean (x, y)
 - Variance (x, y)
 - Correlation (x,y)
 - Linear regressor $f(x) = \theta_0 + \theta_1 x$
 - R^2 for linear regressor

Take-away message:

- Be cautious
- Always check model prediction results visually

Python

PEP8 Style Guide

PEP 8 – Style Guide for Python Code

Coding conventions for Python code. Standard style guide helps avoiding common errors

- Improves collaboration with other developers (everyone talking in same accent)
- Link: https://peps.python.org/pep-0008/; better to read presentation at https://peps.python.org/pep-0008/; better to read presentation at https://peps.python.org/peps.python.o
- PEP: Python Enhancement Proposals style guide is constantly evolving over time!

Preliminary guides

Never use as a variable name:

- Capital or small-cap "o" → can be mixed up with zero
- Capital "i"
 → can be mixed up with 1
- Small-cap "L" → can be mixed up with 1 or capital "i"

PEP 8 Naming Conventions (Basics)

Python scripts

- Module: lower-case words separated by underscore
- Package: lower-case words, no separators

Variables

- Small-cap characters or words, underscore-separated
- CONSTANTS: all-capital letters

Functions

- No single characters
- Small-cap words, underscore-separated

Classes

- Words starting with capital letter, no separation character
- Methods: syntax like functions

```
my_module.py
mypackage.py
```

```
x=5
my_variable='ten'
PI=3.14
```

```
def my_function():
    pass
```

```
class Car():
class SportsCar():
```


Test-Driven Development

Testing Code

Why write code that tests other pieces of code?

Ensure correct functionality

- Does a piece of code know what we request it to do?
- Does code catch edge cases and undesired usage?

Continuous integration (version control, Git, ...)

- Automatically checking functionality after code changes
- Pushing to code base only when passing tests

Documentation and collaboration

- Good tests can replace long documentation
- Splitting responsibilities: requirement definition and implementation

Test-Driven Development (TDD)

Paradigm in software development (among others)

Separate what the code needs to do from how it does it

- Focus on
 - Modular software: interfaces much more important than the implementation
 - Perspective of a user that knows only the interface of a piece of code (arguments, returns)
 - Thinking of behavior rather than of specific implementation details
 - Higher software quality, robustness, and maintenance readiness
- 3-stage procedure: RED GREEN REFACTOR
 - 1. Red: implement tests and make sure that all of them are failed
 - 2. Green: implement functionalities until all tests are passed
 - 3. Refactor: clean up and optimize code

Test-Driven Development (TDD)

- Five steps to follow:
 - 1. Write tests for each feature that you require
 - 2. Run the tests and make sure that all tests fail (red)
 - 3. Write the simplest code that passes the tests
 - 4. Make sure that all tests pass now (green)
 - 5. Refactor and improve the code from step step 3 and repeat from step 4 (refactor)

Example: Implement a function that adds two numeric numbers (floats, real-valued) using TDD

Interface definition:

```
def adding_function(a, b):
    return sum_a_b
```

Code snippet: → live demo

- test add fun unittest.py
- add_fun.py

Test-Driven-Development: Result


```
import unittest
from add fun import adding function as add
class TestAddingFunction(unittest.TestCase):
     def test floats(self) -> None:
          # test the addition of two floats
          self.assertAlmostEqual(add(1.5, 1.5), 3)
     def test ints(self) -> None:
           # test the addition of two ints
          self.assertEqual(add(1, 2), 3)
     def test negatives(self) -> None:
          # test adding a negative and a positive number
          self.assertEqual(add(-1, 1), 0)
     def test types(self) -> None:
          # test whether an exception is raised for non-
          numeric inputs
          # using the context manager
          with self.assertRaises(TypeError):
                add(5, 'five')
if name == " main ":
     # use the main to run this script directly from your
     editor
     unittest.main()
```

Checks (using unittest package)

- Correct result for
 - floats
 - ints
 - positives and negatives
- Check edge cases / unproper usage
 - ValueError raised for string inputs

```
def adding_function(a, b):
    # Add function

# catch some errors if no numbers are handed over
    if (type(a) is not float) and (type(a) is not int):
        raise TypeError('input a is not of type int or float')

if (type(b) is not float) and (type(b) is not int):
        raise TypeError('input b is not of type int or float')

return a + b
```


Exercise 01

October 25th, 2023

Least-Squares Regression

- Implement your own version of a scalar linear regression function using numpy and the normal form.
- 2. Estimate the effective rolling resistance factor of a car from measurements of vehicle speed and engine power
 - Underlying physics: force $F_{\rm wind} = c_{\rm W} A \cdot \frac{\rho_{\rm air} \cdot v_{\rm rel}^2}{2}$, $F_{\rm roll} = c_{\rm R} Mg \cos \alpha$ power $P = v \cdot F$
 - Unknown random variables in the measurements (wind velocity, road inclination α)
 - [optional] Compute the R2 value of your fit and validate with scikit-learn: LinearRegression
- 3. Using test-driven development, implement the sum-of-squares error metric

Questions?