Improving Deep Neural Networks

II-Youp Kwak, PhD

Why deep learning?

Why deep learning taking off?

- Firstly proposed in 1943
- Originally had problem in computational speed
- Development in hardware for computing (GPUs) and algorithm itself

Binary Classification

- We are Classifying Cat or Dog $f: \mathbf{X} \stackrel{f_{\theta}}{\longrightarrow} \mathbb{R}_{[0,1]}$
- Dimension for x is 64*64*3 = 12288
- Data: (\mathbf{x}, y) $\mathbf{x} \in \mathbb{R}^{n_x}, y \in \{0, 1\}$ m training examples $\{(\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(m)}, y^{(m)})\}$ $X = [\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(m)}]$ $Y = [y^{(1)}, \dots, y^{(m)}]$

Logistic Regression

- Given $\mathbf{x} \in \mathbb{R}^{n_x}$, want $\hat{y} = P(y = 1 | \mathbf{x}) \in \mathbb{R}^{[0,1]}$
- Parameters: $\mathbf{w} \in \mathbb{R}^{n_x}$, $b \in \mathbb{R}$
- Output: $\hat{y} = \sigma(\mathbf{w}^t \mathbf{x} + b)$, where $\sigma(z) = 1/(1 + e^{-z})$

Loss function

- Squared error loss: $L(\hat{y}, y) = (\hat{y} y)^2$
- Cross entropy loss:

$$L(\hat{y}, y) = -(y \log(\hat{y}) + (1 - y) \log(1 - \hat{y}))$$

- Cost for Logistic regression: Use Cross entropy loss

$$C(W, b) = \sum_{i=1}^{m} L(\hat{y}_{i}, y_{i})$$

Constructing Logistic regression

```
model = keras.Sequential([
    keras.layers.Flatten(input_shape=(28, 28)),
    keras.layers.Dense(2, activation='sigmoid')
])
```

Softmax Regression

$$-\hat{\mathbf{z}} = e^{(W\mathbf{x} + \mathbf{b})} \quad t = \sum_{i} \hat{z}_{i}$$

- Then, $\hat{\mathbf{y}} = \hat{\mathbf{z}}/t$ represent probability for each item

Constructing softmax regression

Artificial Neural Networks with one hidden layer

- Output: $\hat{\mathbf{y}} = \sigma(W_2 \text{relu}(W_1 \mathbf{x} + \mathbf{b}_1) + \mathbf{b}_2)$

Constructing ANN

```
model = keras.Sequential([
    keras.layers.Flatten(input_shape=(28, 28)),
    keras.layers.Dense(50, activation='relu'),
    keras.layers.Dense(10, activation='softmax')
])
```

Check model with model.summary()

```
model.summary()
Model: "sequential 4"
                              Output Shape
                                                          Param #
Layer (type)
flatten_4 (Flatten)
                              (None, 784)
dense 6 (Dense)
                              (None, 50)
                                                          39250
dense 7 (Dense)
                              (None, 10)
                                                          510
Total params: 39,760
Trainable params: 39,760
Non-trainable params: 0
```

ANN with multiple hidden layers

- **Ex**) $y = f_1(f_2(f_3(f_4(f_5(x)))))$

Practice

Train / Dev / Test set

- Traditionally, 7:3 for train and dev or 6:2:2
- Or, 6:2:2
- With big data, 98:1:1 or use even larger train set
- It is important to use independent, separate Dev, Test set with different configuration for real evaluation

Overfitting / underfitting

Check accuracy on train / dev

- Too good on train and low on dev imply overfitting
- Try to minimize accuracy(or EER, AUC, F1) on dev
- Check whether you have balanced or unbalanced data (train and dev, consider cost-sensitive learning when unbalanced)

Regularization

- Consider regularization when overfitted
- L1, L2

Ex) in logistic regression:

L1:
$$C(\mathbf{w}, b) = \sum_{i=1}^{m} L(\hat{y}_i, y_i) + \frac{\lambda}{2m} ||\mathbf{w}||^2 \qquad ||\mathbf{w}||^2 = \sum_{j=1}^{n_x} w_j^2$$

L2:
$$C(\mathbf{w}, b) = \sum_{i=1}^{m} L(\hat{y}_i, y_i) + \frac{\lambda}{2m} ||\mathbf{w}|| \qquad ||\mathbf{w}|| = \sum_{j=1}^{n_x} ||w_j||$$

Dropout

Dropout Regularization

Reduce high dependency on few nodes (act like random forest)

(a) Standard Neural Net

(b) After applying dropout.

Codes for Regularization

- L2:

Dropout :

```
dpt_model = keras.models.Sequential([
    keras.layers.Dense(16, activation='relu', input_shape=(NUM_WORDS,)),
    keras.layers.Dropout(0.5),
    keras.layers.Dense(16, activation='relu'),
    keras.layers.Dropout(0.5),
    keras.layers.Dense(1, activation='sigmoid')
])
```

Early Stopping

Reduce high dependency on few nodes (act like random forest)

Codes for Early Stopping

```
from keras.callbacks import EarlyStopping
earlystop= EarlyStopping(monitor='val_acc', patience=3)
```

- monitor denotes the quantity that needs to be monitored and 'val_err' denotes the validation error.
- Patience denotes the number of epochs with no further improvement after which the training will be stopped.

Normalizing inputs

Why normalize?

Gradient of larger parameter dominates the update

Both parameters can be updated in equal proportions

Practice

https://www.tensorflow.org/tutorials/keras/classification

Gradient Decent with Momentum

- RMSprop, and Adam optimizer

Learning rate decay / adaptive learning rate

- It is often useful to reduce learning rate as the training progresses
- Use learning rate schedules or adaptive learning rate methods

Batch Normalization

Normalizing inputs to speed up learning

Use keras.layer.BatchNormalization()

Practice

https://www.tensorflow.org/tutorials/keras/classification

Thank you! Q & A