#### Podstawy programowania



# **Wykład II**Tablice (wstęp) Przykłady algorytmów Wstęp do języka C/C++

#### Część I

# Wstęp do struktur danych: Tablice

### Klasyfikacja zmiennych statycznych





#### Rodzaje tablic

#### Tablice jednowymiarowe (wektory)

- są zespołem określonej liczby zmiennych o wspólnej nazwie, które ponumerowano liczbami naturalnymi –
  każda z nich ma przypisany na stałe tzw. indeks,
- mogą przechowywać nie większą od ich długości liczbę elementów zbioru danych jednakowego typu.

|        | Tab    |        |        |        |        |        | - nazwa tablicy |                        |
|--------|--------|--------|--------|--------|--------|--------|-----------------|------------------------|
| 34     | 56     | 32     | -8     | 45     | 2      | 0      | 13              | - wartości             |
| Tab(0) | Tab(I) | Tab(2) | Tab(3) | Tab(4) | Tab(5) | Tab(6) | Tab(7)          | - pole – nazwa(indeks) |

W zapisie symbolicznym T(6) oznacza 6 zmienną w tablicy T

Indeks może być określony przez bezpośrednie podanie wartości w odwołaniu do elementu tablicy, np. T(6), lub użycie nazwy zmiennej o typie zgodnym z indeksem, np. T(X). Zmienną X nazywamy wtedy zmienną indeksową i wskazanie elementu tablicy wymaga odczytania jej aktualnej wartości.



### Rodzaje tablic

#### Tablice dwu – i więcej wymiarowe (macierze)

- są zespołem określonej liczby zmiennych o wspólnej nazwie, które oznaczono dwoma lub więcej indeksami,
- mogą przechowywać nie większą od ich rozmiaru liczbę elementów zbioru danych jednakowego typu.

|   | 0 | 1 | 2 | 3 | 4 |
|---|---|---|---|---|---|
| 0 |   |   |   |   |   |
| 1 |   |   |   |   |   |
| 2 |   |   |   |   |   |
| 3 |   |   |   |   |   |
| 4 |   |   |   |   |   |

W zapisie symbolicznym W(3, 5) oznacza zmienną w tablicy W położoną umownie na przecięciu 3. wiersza i 5. kolumny.



#### Obsługa tablicy jednowymiarowej

#### Algorytm sumowania N liczb zapamiętanych w tablicy T

- S ← 0 (ustalenie początkowej wartości sumy);
- K ← 1 (ustalenie początkowej wartości zmiennej indeksowej);
- wykonaj co następuje N razy:
  - 3.1.  $S \leftarrow S + T(K)$ ;
  - 3.2.  $K \leftarrow K + 1$ .



# Obsługa tablicy jednowymiarowej



#### Część II



# Przykłady algorytmów



# Ciąg Fibonacciego

#### Ciąg Fibonacciego to ciąg liczb, w którym:

- pierwszy wyraz jest równy I,
- drugi jest równy I,
- każdy następny jest sumą dwóch poprzednich.



# Ciąg Fibonacciego











### Ciąg Fibonacciego



# Ciąg Fibonacciego

- pierwszy wyraz jest równy I,
- drugi jest równy I
- każdy następny jest sumą dwóch poprzednich.



### Trochę historii

Algorytm Euklidesa – obliczanie największego wspólnego dzielnika dwóch liczb naturalnych.

$$NWD(a,b) = \begin{cases} a & \text{dla } b = 0\\ NWD(b, a \mod b) & \text{dla } b \geqslant 1 \end{cases}$$

- I. Dane są dwie liczby naturalne a i b.
- Oblicz c jako resztę z dzielenia a przez b
- 3. Zastąp a przez b, zaś b przez c.
- 4. Jeżeli b = 0, to szukane NWD wynosi a, w przeciwnym wypadku wróć do punktu drugiego i kontynuuj.

NWD(liczba całkowita a, liczba całkowita b)

dopóki b różne od 0

c = reszta z dzielenia a przez b

a = b

b = c

zwróć a



10

# B

# Trochę historii

Algorytm Euklidesa – obliczanie największego wspólnego dzielnika dwóch liczb naturalnych.

16



#### Podstawy programowania w C++



# Środowisko programistyczne



Kod źródłowy - program napisany w języku takim jak Pascal lub C++,czyli w języku algorytmicznym - czytelny dla programisty

Kod wynikowy - program zapisany jako ciąg rozkazów i danych w kodzie maszynowym procesora (w postaci czytelnej dla komputera), najczęściej w postaci liczb kodu dwójkowego

#### Proces tworzenia programu:

| • | edytor     | - | ( *.cpp ) | kod źródłowy                             |
|---|------------|---|-----------|------------------------------------------|
| • | kompilator | _ | ( obj )   | kod wynikowy                             |
| • | Linker     | - | ( *.exe ) | kod wynikowy połączony z<br>bibliotekami |
|   |            |   |           |                                          |

 debugger - (step/watch) śledzenie działania, usuwanie błędów

# Środowisko programistyczne



#### Wybrane środowiska programistyczne dla C++

Dev C++



Code::Blocks



MS Visual Studio





#### Pierwszy program (w języku C)

```
#include <conio.h>
      #include <cstdio>
 3
      using namespace std;
 5
      int main()
 8
          printf("To nasz pierwszy program w C\n");
 9
          getch();
10
          return 0;
```



#### Pierwszy program (w języku C++)

```
#include <iostream>
#include <conio.h>

using namespace std;

int main()

cout << "Hello world!" << endl;

getch(); //zatrzymuje działanie programu
return 0;

</pre>
```



#### Budowa programu



#### Budowa programu



Int main() – w języku C i C++ nie ma "programu głównego" jest za to funkcja o nazwie main() która wykonywana jest zawsze jako pierwsza.

Każdy program musi posiadać funkcję main()

#### Komentarze



W językach C i C++ mamy do dyspozycji trzy rodzaje komentarzy:

komentarz jednowierszowy;

komentarz wielowierszowy;

komentarz wykonany za pomocą dyrektyw preprocesora.

#### Podstawy programowania w C++





| Nazwa typu | Zawartość        | Przedział wartości                           | Zajęt. pamięć |
|------------|------------------|----------------------------------------------|---------------|
| char       | znak             | -128 ÷ 127                                   | 1 bajt        |
| int        | liczba całkowita | -32768 ÷ 32767                               | 2 bajty       |
| long       | liczba całkowita | -2147mln ÷ 2147mln                           | 4 bajty       |
| float      | liczba rzeczyw.  | 10 <sup>-38</sup> ÷ 10 <sup>38</sup> (7cyfr) | 4 bajty       |
| double     | liczba rzeczyw.  | $10^{-308} \div 10^{308} \text{ (15 cyfr)}$  | 8 bajtów      |



#### **Modyfikatory typu:**

```
signed
                               ze znakiem (\pm),
                                                    <u>int</u>
                                                               <u>char</u>
unsigned
                               bez znaku,
                                                    int
                                                               char
                               krótka (mniejsza),
short
                                                                          double
                               długa (większa)
long
                                                    int
```

np. **unsigned long int** *dluga\_liczba\_bez\_znaku*;

```
Wartości domyślne:
                                          long int
                         long
```

signed int int

signed char char



Deklaracja zmiennej - informuje kompilator, że dana nazwa jest znana. Jednak pamięć dla obiektu nie zostaje przydzielona. Do obiektu nie możemy się odwoływać, nie możemy mu przypisywać wartości – obiekt jeszcze nie istnieje.

extern nazwaTypu nazwaZmiennej;

Np.: extern int liczba;



**Definicja zmiennej** - rezerwuje miejsce w pamięci dla danej zmiennej. Po zdefiniowaniu ze zmiennej możemy korzystać.

nazwaTypu nazwaZmiennej;

Np.: int liczba;

Każda definicja jest jednocześnie deklaracją (ale nie odwrotnie).



Inicjalizacja (inicjowanie) zmiennej - polega na przypisaniu wartości do danej zmiennej w momencie jej deklaracji

nazwaTypu nazwaZmiennej = wartość;

Np.: int liczba = 10;

#### Podstawy programowania w C++





Wysłanie informacji na zewnętrz (stand. ekran)

printf ("lancuch formatujacy", zmienna\_1, zmienna\_2);

Pobranie informacji z zewnętrz (stand. klawitura)

scanf ("prototypy zmiennych", &zmienna 1, &zmienna 2);



#### Prototypy zmiennych dla funkcji printf i scantf

```
%c
              pojedynczy znak
              łańcuch znaków
%S
%d
              liczba dziesiętna ze znakiem
              liczba zmiennoprzecinkowa (notacja dziesiętna)
%f
              liczba zmiennoprzecinkowa (notacja wykładnicza)
%e
%g
              liczba
                                           zmiennoprzecinkowa
              (krótszy z formatów %f %e)
              liczba dziesiętna bez znaku
%u
              liczba w kodzie szesnastkowym (bez znaku)
%x
%0
              liczba w kodzie ósemkowym (bez znaku)
              przedrostek I (long) stosowany przed: d u x o
```



#### Znaki sterujące wypisywaniem tekstu (nie tylko dla printf)

```
\b - cofanie o 1 znak
\f - nowa strona
\n - nowa linia
\t - tabulator
\a - sygnał dźwiękowy
```

Jeśli jednak chcemy po prostu wypisać znak...

```
\\ - bekslesz
\' - apostrof
\0 - znak o kosie zero
\? - znak zapytania
```



```
#include <stdio.h>
 2
       #include <math.h>
 4
       int main()
 5
 6
            double a, b, c, delta, x1, x2;
            printf("a = "); scanf("%lf", &a);
 8
            printf("b = "); scanf("%lf", &b);
 9
            printf("c = "); scanf("%lf", &c);
10
            if ((delta = b*b-4*a*c) >= 0)
11
12
               x1 = (-b-sqrt(delta))/(2*a);
               x2 = (-b+sqrt(delta))/(2*a);
13
14
               printf("x1 = \frac{1}{n} = \frac{1}{n} = \frac{1}{n}, x1, x2);
1.5
16
            else
17
               printf("Brak rozwiazan rzeczywistych\n");
            return 0:
18
19
```

### Klasy cout i cin (obiektowo w C++)

Strumień – to najprościej mówiąc jest to ciąg bajtów o nieokreślonej długości.

Wyróżniamy trzy rodzaje strumieni:

- Strumienie konsoli wczytanie z klawiatury i wypisanie na ekran
- 2. Strumienie plikowe
- 3. Strumienie napisów

Do obsługi strumieni służą obiekty **cin** oraz **cout** Domyślnym strumiem jest strumień konsoli, którym będziemy posługiwać się w tym wykładzie.

# Klasy cout i cin (obiektowo w C++)

Wyprowadzenie wartości do strumienia wyjściowego (stdout)

```
cout << "tekst";
cout << zmienna;</pre>
```

Wczytanie ze strumienia wejściowego (stdin)

```
cin >> zmienna;
```

Prototypy cin i cout znajdują się w bibliotece iostream.h

#include <iostream>



#### Klasy cout i cin (obiektowo w C++)

```
#include <iostream>
 1
 2
 3
       using namespace std;
 4
 5
       int main()
 6
         cout << "Hej tam.\n";</pre>
         cout << "To jest 5: " << 5 << "\n";
 8
 9
         cout << "Manipulator endl ";</pre>
10
         cout << "wypisuje nowa linie na ekranie.";</pre>
11
         cout << endl:
12
         cout << "To jest bardzo duza liczba:\t" << 70000;</pre>
13
         cout << endl:
         cout << "To jest suma 8 i 5:\t";</pre>
14
         cout << 8+5 << endl:
15
         cout << "To jest ulamek:\t\t";</pre>
16
17
         cout << (float) 5/8 << endl;
18
         cout << "I bardzo, bardzo duza liczba:\t";</pre>
19
         cout << (double) 7000 * 7000 << endl;
         return 0;
20
                                     Hej tam.
21
                                     To jest 5: 5
                                     Manipulator endl wypisuje nowa linie na ekranie.
                                     To jest bardzo duza liczba: 70000
                                     To jest suma 8 i 5:
                                                                      13
                                                                      0.625
                                     To jest ulamek:
                                     I bardzo, bardzo duza liczba:
                                                                               4.9e+007
```

### Podstawy programowania w C++



#### Prawda - Fałsz



W języku C++ nie ma osobnych zmiennych przechowujących dane typu prawda-Fałsz.

Tę rolę pełnić może każda zmienna, wyrażenie lub funkcja, która przyjmuje (lub zwraca) wartość zero lub różną od zera.

Wartość zero -**FAŁSZ** Wartość inna niż zero -PRAWDA

#### Instrukcja warunkowa if



```
(wyrażenie) instrukcja;
   (wyrażenie) instrukcja 1;
else instrukcja 2;
   (wyrażenie)
    instrukcja 1;
    instrukcja 2;
else instrukcja 3;
```

#### Instrukcja warunkowa if



```
Przykład:
cin >> i;
if (i!=0) cout << "i rozne od zera";</pre>
else cout << "i rowne zero";</pre>
Można i tak:
cin >> i;
if (i) cout << "i rozne od zera";</pre>
else cout << "i rowne zero";</pre>
```

#### Literatura:



#### W prezentacji wykorzystano przykłady i fragmenty:

- Grębosz J.: Symfonia C++, Programowanie w języku C++ orientowane obiektowo, Wydawnictwo Edition 2000.
- Jakubczyk K.: Turbo Pascal i Borland C++ Przykłady, Helion.

#### Warto zajrzeć także do:

 Kerninghan B.W., Ritchie D. M.: język ANSI C, Wydawnictwo Naukowo Techniczne.

#### Dla bardziej zaawansowanych:

- Grębosz J.: *Pasja C++*, Wydawnictwo Edition 2000.
- Meyers S.: język C++ bardziej efektywnie, Wydawnictwo Naukowo Techniczne