Table 7
Second-order groups and their contributions along with sample assignments

	Group	Example	T_{m2j}	$T_{\mathrm{b2}j}$	$T_{\mathrm{c}2j}$	P_{c2j}	$V_{\mathrm{c}2j}$	$G_{\mathrm{f2}j}$	$H_{\mathrm{f2}j}$	$H_{\mathrm{v}2j}$	$H_{\mathrm{fus}2j}$
1	(CH ₃) ₂ CH	2-Methylpentane (1)	0.1175	-0.0035	-0.0471	0.000473	1.71	-0.418	-0.419	-0.399	0.396
2	(CH ₃) ₃ C	2,2,4,4-Tetramethylpentane (2)	-0.1214	0.0072	-0.1778	0.000340	3.14	-2.776	-1.967	-0.417	0.554
3	CH(CH ₃)CH(CH ₃)	2,3,4-Trimethylpentane (2)	0.2390	0.3160	0.5602	-0.003207	-3.75	6.996	6.065	0.532	-1.766
4	$CH(CH_3)C(CH_3)_2$	2,2,3,4,4-Pentamethylpentane (2)	-0.3276	0.3976	0.8994	-0.008733	-10.06	8.938	8.078	0.623	0.351
5	$C(CH_3)_2C(CH_3)_2$	2,2,3,3,4,4-Hexamethylpentane (2)	3.3297	0.4487	1.5535	-0.016852	-8.70	10.735	10.535	5.086	-1.089
6	$CH_n = CH_m - CH_p = CH_k (k, m, n, p \text{ in } 02)$	1,3-Butadiene (1)	0.7451	0.1097	0.4214	0.000792	-7.88	-6.562	-11.786	1.632	1.408
7	$CH_3-CH_m=CH_n (m, n \text{ in } 02)$	2-Methyl-2-butene (3)	0.0524	0.0369	-0.0172	-0.000101	0.50	-0.120	-0.048	0.064	0.070
8	$CH_2-CH_m=CH_n \ (m, n \text{ in } 02)$	1,4-Pentadiene (2)	-0.1077	-0.0537	0.0262	0.000815	0.14	1.006	1.449	-0.060	-0.632
9	$CH_p - CH_m = CH_n \ (m, n \text{ in } 02; p \text{ in } 01)$	3-Methyl-1-butene (1)	-0.2485	-0.0093	-0.1526	-0.000163	-2.67	3.857	3.964	0.004	-0.368
10	CHCHO or CCHO	2-Methylbutyraldehyde (1)	0.5715	-0.1286	-1.0434	0.005789	10.36	-0.525	1.514	-0.550	-0.369
11	CH ₃ COCH ₂	2-Pentanone (1)	-0.0968	-0.0215	-0.0338	-0.000111	-4.08	-1.543	0.033	-0.403	0.105
12	CH ₃ COCH or CH ₃ COC	3-Methyl-2-pentanone (1)	-0.6024	-0.0803	-0.3658	-0.001892	3.02	2.202	4.994	0.723	1.005
13	CHCOOH or CCOOH	2-Methyl butanoic acid (1)	-3.1734	-0.3203	-4.7275	0.006916	10.56	3.920	1.121	7.422	5.475
14	CH ₃ COOCH or CH ₃ COOC	Isopropyl acetate (1)	0.2114	-0.2066	-0.5537	-0.000569	4.28	-11.779	-12.295	-1.871	1.208
15	CO-O-CO	Propanoic anhydride (1)	-1.2441	-0.0500	-0.3576	0.001812	2.98	-16.075	-14.140	****	-2.666
16	СНОН	2-Butanol (1)	-0.3489	-0.2825	-0.6768	0.000246	-3.04	-5.614	-4.422	-0.206	-0.599
17	COH	2-Methyl-2-butanol (1)	0.3695	-0.5325	-1.5224	0.003224	13.98	-25.382	-25.929	-1.579	-0.459
18	CH_3COCH_nOH (n in 02)	3-Hydroxy-2-butanone (1)	0.9886	-0.2987	-0.3940	-0.002912	5.17	6.621	8.244	****	*****
19	NCCHOH or NCCOH	2-Hydroxypropionitrile (1)	-1.1810	0.2981	0.3414	-0.000516	0.68	4.833	0.000	****	-0.149
20	$OH-CH_n-COO (n \text{ in } 02)$	Ethyl lactate (1)	-0.1526	-0.2310	****	****	****	****	****	****	****
21	$CH_m(OH)CH_n(OH)$ $(m, n \text{ in } 02)$	Ethylene glycol (1)	-0.0414	0.8854	1.9395	-0.004712	7.54	-1.051	-0.592	-6.611	-0.306
22	$CH_m(OH)CH_n(-)$ $(m, n, p \text{ in } 02)$	2-Amino-1-butanol (1)	-0.5941	0.5082	1.2342	0.002581	5.58	-1.506	-0.959	****	-0.041
23	$CH_m(NH_2)CH_n(NH_2)$ $(m, n \text{ in } 02)$	Ethylenediamine (1)	0.3258	-0.0064	-3.3555	0.000726	20.82	0.344	-1.443	2.384	-1.575
24	$CH_m(NH)CH_n(NH_2)$ (m, n in 12)	Diethylenetriamine (1)	-1.8403	0.2318	-1.1598	0.000157	-26.31	3.848	3.608	****	****
25	$H_2NCOCH_nCH_mCONH_2$ (m, n in 12)	Butanediamide (1)	11.5351	*****	****	****	****	*****	****	****	*****
26	$CH_m(NH_n)$ – $COOH(m, n in 02)$	L-Alanine (1)	12.3481	****	62.4740	-0.002696	17.78	3.145	6.598	****	7.032
27	$HOOC-CH_n-COOH$ (n in 12)	Malonic acid (1)	0.9327	-0.1222	1.9595	-0.001479	12.46	-5.217	-6.058	****	4.264
28	$HOOC-CH_n-CH_m-COOH(n, m \text{ in } 12)$	Succinic acid (1)	7.5057	****	0.7686	0.000090	15.17	-4.281	-6.929	****	29.245
29	$HO-CH_n-COOH$ (n in 12)	2-Hydroxyisobutyric acid (1)	-0.4531	-0.4625	****	****	****	*****	*****	****	*****
30	NH_2 - CH_n - $COOH(n, m \text{ in } 12)$	β-Alanine (1)	14.1593	****	*****	****	****	*****	****	****	****
31	CH_3 -O- CH_n -COOH (n in 12)	Methoxyacetic acid (1)	-2.3026	0.9198	0.4750	-0.001445	7.91	-2.678	-1.727	****	****
32	HS-CH-COOH	2-Mercaptopropionic acid (1)	-2.1535	****	****	****	****	*****	****	****	****
33	$HS-CH_n-CH_m-COOH(n, m \text{ in } 12)$	β-Thiolactic acid (1)	-2.7514	****	-0.2697	0.000655	20.43	-7.376	7.292	****	-3.623
34	$NC-CH_n-CH_m-CN$ $(n, m \text{ in } 12)$	1,2-Dicyanoethane (1)	4.0747	1.8957	1.9699	0.002330	24.82	18.974	5.661	****	-8.038
35	$OH-CH_n-CH_m-CN$ $(n, m \text{ in } 12)$	3-Hydroxypropanenitrile (1)	-0.9493	1.3434	0.2311	-0.001022	14.54	0.558	-3.906	****	-4.371
36	$HS-CH_n-CH_m-SH$ $(n, m \text{ in } 12)$	1,2-Ethanedithiol (1)	0.2232	0.1815	2.1272	0.001321	-10.31	6.728	0.794	-0.683	-0.931
37	$COO-CH_n-CH_m-OOC$ $(n, m \text{ in } 12)$	Ethylene glycol diacetate (1)	-0.5946	0.3401	1.5418	-0.003385	-2.33	1.306	4.025	1.203	*****
38	OOC- CH_m - CH_m - $COO(n, m \text{ in } 12)$	Dimethylsuccinate (1)	2.5962	0.5794	****	****	****	****	****	****	2.303
39	$NC-CH_n-COO(n \text{ in } 12)$	Methylcyanoacetate (1)	-0.2509	1.2171	2.7051	-0.001999	-0.73	****	****	****	1.100
40	$COCH_nCOO$ (n in 12)	Methylacetoacetate (1)	0.6304	0.2427	0.7502	-0.000231	1.69	10.556	-7.261	****	*****
41	CH_m -O- CH_n = CH_p $(m, n, p \text{ in } 03)$	Ethyl viny ether (1)	-0.0811	0.1399	0.2900	-0.000432	-4.54	-10.098	-9.411	0.372	3.169
42	$CH_m = CH_n - F(m, n \text{ in } 02)$	1-Fluoro-1-propene (1)	-0.2568	0.0591	****	****	****	****	****	****	2.823
43	$CH_m = CH_n - Br (m, n \text{ in } 02)$	1-Bromo-1-propene (1)	-0.4329	-0.3192	****	-0.010021	2.63	14.470	17.014	****	2.212
44	$CH_m = CH_n - I (m, n \text{ in } 02)$	1-Iodo-1-propene (1)	****	-0.3486	****	****	****	*****	****	****	****
45	$CH_m = CH_n - Cl (m, n \text{ in } 02)$	1-Chloro-2-methylpropene (1)	0.0446	-0.0268	-0.0188	0.000152	2.80	8.207	9.715	****	-0.480
			0.1027	0.0653	-1.1249	0.000893	3.82	-8.304		*****	-0.405