

VIBELENS Image-Based Music Recommendations System

TEAM MEMBERS

Nguyen Dai An - ML/NLP Specialist Nguyen Tien Nhan - Data Engineer Le Mai Thanh Son - Backend Developer Nguyen Xuan Truong - DevOps Engineer Nguyen Son Giang - Algorithm Specialist

INTRODUCTION

Background and context

- Social media platforms drive the need for creative, including pairing music with images.
- Manual music selection for images is inconsistent and timeconsuming, leading to poor personalization.
- Most music recommendation
 work relies on user behavior;
 very little research connects visual
 input with music retrieval.

Problem statement and motivation

- Vibelens aims to bridge the gap between visual content and musical aesthetics by retrieve semantically relevant songs via vector similarity search.
- Our motivation is to create a seamless and emotionally/ contextually personalized music experience for social media users.

Objectives

- Enable users to upload an image and receive 5-10 recommended songs.
- Ensure that the
 recommendations reflect the
 semantic content and
 emotional tone of the image.
- Build a scalable and responsive system suitable for integration with social media or content creation platforms.

LITERATURE REVIEW – EXISTING SOLUTIONS

- Music recommendation systems typically rely on collaborative filtering, audiobased features, or metadata analysis (Schedl et al., 2018).
- Vision-Language Models (VLMs) can **convert images into semantically rich text** for downstream tasks (Ghosh et al., 2024)
- Vector databases (e.g., Pinecone) **enable fast semantic similarity search** in high-dimensional spaces (Jie et al., 2023).

Reference

- [1] Akash Ghosh, Arkadeep Acharya, Sriparna Saha, Vinija Jain, and Aman Chadha. Exploring the frontier of vision-language models: A survey of current methodologies and future directions, 2024. URL https://arxiv.org/abs/2404.07214.
- [2] James Jie, Jianguo Wang, Guoliang Li, and James Pan. Survey of Vector Database Management Systems. URL https://arxiv.org/pdf/2310.14021.
- [3] Markus Schedl, Hamed Zamani, Ching-Wei Chen, Yashar Deldjoo, and Mehdi Elahi. Current challenges and visions in music recommender systems research. International Journal of Multimedia Information Retrieval, 7(2):95–116, Apr 2018. doi: https://doi.org/10.1007/s13735-018-0154-2.

RESEARCH GAP & VIBELENS CONTRIBUTION

Research Gap

- Few studies connect visual content with musical context.
- Lack of integrated systems combining CV + NLP + music semantics for real-time recommendations.

Vibelens Contribution

- Uses image captioning + semantic vector matching to recommend emotionally aligned songs.
- Enrich user experience on multimedia platforms through image-to-music retrieval.

NEXT.Js

METHODOLOGY - APPROACH & TECHNOLOGIES

Overall Approach

- Analyze image content using vision-language models (ViT-GPT2) to generate captions.
- Match image-derived captions to song lyrics using semantic similarity.

Core Technologies

- Image Captioning: ViT-GPT2
- Text Embedding: Sentence Transformers DistilUSE
- Vector Search: Pinecone vector database
- Web Frameworks: Flask (backend), Next.js (frontend)
- Infrastructure: Docker Swarm, Celery, Redis, PostgreSQL, MinIO, Kafka

METHODOLOGY – SYSTEM WORKFLOW

METHODOLOGY - ALGORITHMS & MODELS

IMPLEMENTATION - SYSTEM ARCHITECTURE

IMPLEMENTATION

KEY MILESTONES

Week	Milestones
1 - 2	Project setup, team roles, initial research
3 - 4	Web crawler (Scrapy + Celery), MP3 & lyrics collection
5 - 6	Image captioning (ViT-GPT2), vector embedding & Pinecone integration
7 - 8	Frontend development (Next.js), backend integration (Flask)
9 - 10	Testing, bug fixes, and final presentation

CHALLENGES & SOLUTIONS

Infrastructure Limitations

Running large models required more compute than available → Used local machines and optimized workflows with Docker Swarm.

Deployment Complexity

Coordinating services (Flask, Redis, Kafka, Celery) caused integration bugs → Applied CI/CD automation and service orchestration.

Data Quality Issues

Scraped lyrics often had formatting issues and mismatched audio → Implemented data cleaning and alignment scripts.

Model Adaptation

No existing model was trained to link image content with music → Adapted general VLMs and bridged gap using semantic similarity.

RESULTS - VIDEO DEMO

RESULTS - ANALYSIS

Final Outputs & Key Findings

- A functional web-based system that recommends emotionally relevant song segments from user-uploaded images.
- Successfully integrated image captioning (ViT-GPT2), semantic matching via Pinecone, and an end-to-end music retrieval pipeline.
- Developed a scalable backend using Flask, Kafka, Redis, and Docker Swarm; frontend built with Next.js.
- Collected and processed a curated dataset of lyrics and MP3 files, segmented and cleaned for precise recommendation.

Comparison with Expectations

Expectations

- Accurate, fast, personalized music recommendations.
- Full-stack deployment with modular components.
- Use pretrained model specific to music-visual matching.

Achievements

- Good semantic relevance and <3s latency in most cases; some limitations due to compute and data noise.
- Engineered a workaround using general-purpose VLMs
 + custom similarity logic.

Project Limitations

- Infrastructure Constraints: Limited budget restricted access to high-performance GPU/cloud servers, resulting in slower inference and limited testing capacity.
- **Data Quality Issues:** Scraped lyrics often contained noise or inconsistent formatting. Some MP3 files were outdated or did not align properly with lyrics.
- Model Generalization: Used general-purpose visionlanguage models (e.g., ViT-GPT2) that were not specifically trained for music-related tasks, reducing alignment accuracy.
- Limited Evaluation Scope: Reliance on cosine similarity and qualitative feedback for evaluation, without large-scale user testing or A/B benchmarking.
- Language and Cultural Bias: Most dataset entries were in Vietnamese, limiting diversity in music genres, languages, and emotional expression.

DISCUSSION

CONCLUSION & FUTURE WORK

Recap of Achievements

- Built a complete image-to-music recommendation system using vision-language models, semantic vector search, and a modular full-stack architecture.
- Successfully connected visual semantics with music content, delivering emotionally resonant song suggestions.
- **Developed and deployed core components**: image captioning, data crawling, audio segmentation, vector embedding, and web interface.

Broader Implications

- Vibelens demonstrates a novel way to enhance multimedia experiences through AI-driven content personalization.
- Has potential for integration into social media, photo apps, or creative tools to enrich user-generated content.
- Showcases how cross-modal AI (vision + language + audio) can unlock deeper contextual understanding.

Future Development

- Optimize latency and scalability for real-world deployment (e.g., GPU inference, cloud scaling).
- **Expand the dataset** with global music diversity and higher-quality metadata.
- Enable multi-language support and mood-based filters for more personalized user experience.

Acknowledgments

Our Progress

We would like to express our sincere gratitude to the individuals who supported and guided us throughout the development of Vibelens:

Supervisors & Faculty:

- Prof. Kok-Seng Wong Project Supervisor
- Prof. Pham Huy Hieu Course Instructor (COMP3080)

Our Team:

- Nguyen Dai An ML/NLP Specialist
- Nguyen Tien Nhan Data Engineer
- Le Mai Thanh Son Backend Developer
- Nguyen Xuan Truong DevOps Engineer
- Nguyen Son Giang Algorithm Specialist

Thank you for your guidance, dedication, and teamwork!

