

Georgia Institute of Technology

Acceptable

Jeffrey Chang, Arvind Ramaswami, Maxwell Zhang

1 Contest	1	troubleshoot.txt	52 line
2 Mathematics	1	Pre-submit: Write a few simple test cases if sample is not enough.	
3 Data structures	3	Are time limits close? If so, generate max cases. Is the memory usage fine? Could anything overflow?	
4 Numerical	5	Make sure to submit the right file. Wrong answer:	
5 Number theory	8	Print your solution! Print debug output, as well. Are you clearing all data structures between test cases? Can your algorithm handle the whole range of input?	
6 Combinatorial	10	Read the full problem statement again. Do you handle all corner cases correctly? Have you understood the problem correctly?	
7 Graph	11	Any uninitialized variables? Any overflows? Confusing N and M, i and j, etc.?	
8 Geometry	16	Are you sure your algorithm works? What special cases have you not thought of?	
9 Strings	20	Are you sure the STL functions you use work as you think Add some assertions, maybe resubmit. Create some testcases to run your algorithm on.	?
10 Various	22	Go through the algorithm for a simple case. Go through this list again. Explain your algorithm to a teammate.	
11 Stuff I Added	24	Ask the teammate to look at your code. Go for a small walk, e.g. to the toilet. Is your output format correct? (including whitespace)	
$\underline{\text{Contest}}$ (1)		Rewrite your solution from the start or let a teammate d	o it.
	lines	Have you tested all corner cases locally? Any uninitialized variables?	
<pre>#include <bits stdc++.h=""> using namespace std;</bits></pre>		Are you reading or writing outside the range of any vect Any assertions that might fail?	or?
<pre>#define rep(i, a, b) for(int i = a; i < (b); ++i) #define all(x) begin(x), end(x) #define sz(x) (int)(x).size() typedef long long ll;</pre>		Any possible division by 0? (mod 0 for example) Any possible infinite recursion? Invalidated pointers or iterators? Are you using too much memory? Debug with resubmits (e.g. remapped signals, see Various	;).
<pre>typedef pair<int, int=""> pii; typedef vector<int> vi;</int></int,></pre>		Time limit exceeded: Do you have any possible infinite loops?	
<pre>int main() { cin.tie(0)->sync_with_stdio(0); cin.exceptions(cin.failbit); }</pre>		What is the complexity of your algorithm? Are you copying a lot of unnecessary data? (References) How big is the input and output? (consider scanf) Avoid vector, map. (use arrays/unordered_map) What do your teammates think about your algorithm?	
	lines	Memory limit exceeded:	
<pre>alias c='g++ -Wall -Wconversion -Wfatal-errors -g -std=c++14 -fsanitize=undefined,address' xmodmap -e 'clear lock' -e 'keycode 66=less greater' #caps =</pre>		What is the max amount of memory your algorithm should n Are you clearing all data structures between test cases?	
.vimre	lines	Mathematics (2)	

set cin aw ai is ts=4 sw=4 tm=50 nu noeb bg=dark ru cul

ca Hash w !cpp -dD -P -fpreprocessed \| tr -d '[:space:]' \

Hashes a file, ignoring all whitespace and comments. Use for

sy on | im jk <esc> | im kj <esc> | no;: " Select region and then type : Hash to hash your selection.

" Useful for verifying that there aren't mistypes.

verifying that code was correctly typed.

\| md5sum \| cut -c-6

hash.sh

Mathematics (2)

2.1 Equations

$$ax^{2} + bx + c = 0 \Rightarrow x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

cpp -dD -P -fpreprocessed | tr -d '[:space:]' | md5sum | cut -c-6 | The extremum is given by x = -b/2a.

$$ax + by = e$$

$$cx + dy = f$$

$$\Rightarrow x = \frac{ed - bf}{ad - bc}$$

$$y = \frac{af - ec}{ad - bc}$$

In general, given an equation Ax = b, the solution to a variable x_i is given by

$$x_i = \frac{\det A_i'}{\det A}$$

where A'_i is A with the i'th column replaced by b.

2.2 Recurrences

If $a_n = c_1 a_{n-1} + \cdots + c_k a_{n-k}$, and r_1, \ldots, r_k are distinct roots of $x^{k} + c_{1}x^{k-1} + \cdots + c_{k}$, there are d_{1}, \ldots, d_{k} s.t.

$$a_n = d_1 r_1^n + \dots + d_k r_k^n.$$

Non-distinct roots r become polynomial factors, e.g. $a_n = (d_1 n + d_2) r^n.$

2.3 Trigonometry

$$\sin(v+w) = \sin v \cos w + \cos v \sin w$$
$$\cos(v+w) = \cos v \cos w - \sin v \sin w$$

$$\tan(v+w) = \frac{\tan v + \tan w}{1 - \tan v \tan w}$$
$$\sin v + \sin w = 2\sin\frac{v+w}{2}\cos\frac{v-w}{2}$$
$$\cos v + \cos w = 2\cos\frac{v+w}{2}\cos\frac{v-w}{2}$$

$$(V+W)\tan(v-w)/2 = (V-W)\tan(v+w)/2$$

where V, W are lengths of sides opposite angles v, w.

$$a\cos x + b\sin x = r\cos(x - \phi)$$

$$a\sin x + b\cos x = r\sin(x + \phi)$$

where $r = \sqrt{a^2 + b^2}$, $\phi = \operatorname{atan2}(b, a)$.

2.4 Geometry

2.4.1 Triangles

Side lengths: a, b, c

Semiperimeter: $p = \frac{a+b+c}{2}$

Area: $A = \sqrt{p(p-a)(p-b)(p-c)}$

Circumradius: $R = \frac{abc}{4A}$

Inradius: $r = \frac{A}{}$

Length of median (divides triangle into two equal-area triangles): $m_a = \frac{1}{2}\sqrt{2b^2 + 2c^2 - a^2}$

template .bashrc .vimrc hash troubleshoot

Length of bisector (divides angles in two):

$$s_a = \sqrt{bc \left[1 - \left(\frac{a}{b+c} \right)^2 \right]}$$

$$\sin \alpha = \sin \beta$$

Law of sines: $\frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c} = \frac{1}{2R}$

Law of cosines: $a^2 = b^2 + c^2 - 2bc \cos \alpha$

Law of tangents: $\frac{a+b}{a-b} = \frac{\tan \frac{\alpha+\beta}{2}}{\tan \frac{\alpha-\beta}{2}}$

2.4.2 Quadrilaterals

With side lengths a, b, c, d, diagonals e, f, diagonals angle θ , area A and magic flux $F = b^2 + d^2 - a^2 - c^2$:

$$4A = 2ef \cdot \sin \theta = F \tan \theta = \sqrt{4e^2f^2 - F^2}$$

For cyclic quadrilaterals the sum of opposite angles is 180°, ef = ac + bd, and $A = \sqrt{(p-a)(p-b)(p-c)(p-d)}$.

2.4.3 Spherical coordinates

$$\begin{array}{ll} x = r \sin \theta \cos \phi & r = \sqrt{x^2 + y^2 + z^2} \\ y = r \sin \theta \sin \phi & \theta = \arccos(z/\sqrt{x^2 + y^2 + z^2}) \\ z = r \cos \theta & \phi = \operatorname{atan2}(y, x) \end{array}$$

Derivatives/Integrals

$$\frac{d}{dx}\arcsin x = \frac{1}{\sqrt{1-x^2}} \qquad \frac{d}{dx}\arccos x = -\frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}\tan x = 1 + \tan^2 x \qquad \frac{d}{dx}\arctan x = \frac{1}{1+x^2}$$

$$\int \tan ax = -\frac{\ln|\cos ax|}{a} \qquad \int x\sin ax = \frac{\sin ax - ax\cos ax}{a^2}$$

$$\int e^{-x^2} = \frac{\sqrt{\pi}}{2}\operatorname{erf}(x) \qquad \int xe^{ax}dx = \frac{e^{ax}}{a^2}(ax-1)$$

Integration by parts:

$$\int_{a}^{b} f(x)g(x)dx = [F(x)g(x)]_{a}^{b} - \int_{a}^{b} F(x)g'(x)dx$$

2.6 Sums

$$c^{a} + c^{a+1} + \dots + c^{b} = \frac{c^{b+1} - c^{a}}{c - 1}, c \neq 1$$

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(2n+1)(n+1)}{6}$$

$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

$$1^{4} + 2^{4} + 3^{4} + \dots + n^{4} = \frac{n(n+1)(2n+1)(3n^{2} + 3n - 1)}{30}$$

2.7Series

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots, (-\infty < x < \infty)$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots, (-1 < x \le 1)$$

$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^{2}}{8} + \frac{2x^{3}}{32} - \frac{5x^{4}}{128} + \dots, (-1 \le x \le 1)$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \dots, (-\infty < x < \infty)$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \dots, (-\infty < x < \infty)$$

Probability theory 2.8

Let X be a discrete random variable with probability $p_X(x)$ of assuming the value x. It will then have an expected value (mean) $\mu = \mathbb{E}(X) = \sum_{x} x p_X(x)$ and variance $\sigma^2 = V(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = \sum_x (x - \mathbb{E}(X))^2 p_X(x)$ where σ is the standard deviation. If X is instead continuous it will have a probability density function $f_X(x)$ and the sums above will instead be integrals with $p_X(x)$ replaced by $f_X(x)$.

Expectation is linear:

$$\mathbb{E}(aX + bY) = a\mathbb{E}(X) + b\mathbb{E}(Y)$$

For independent X and Y,

$$V(aX + bY) = a^2V(X) + b^2V(Y).$$

2.8.1 Discrete distributions Binomial distribution

The number of successes in n independent yes/no experiments, each which yields success with probability p is $Bin(n, p), n = 1, 2, ..., 0 \le p \le 1.$

$$p(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

$$\mu = np, \, \sigma^2 = np(1-p)$$

Bin(n, p) is approximately Po(np) for small p.

First success distribution

The number of trials needed to get the first success in independent yes/no experiments, each wich yields success with probability p is Fs(p), 0 .

$$p(k) = p(1-p)^{k-1}, k = 1, 2, \dots$$

$$\mu = \frac{1}{n}, \sigma^2 = \frac{1-p}{n^2}$$

Poisson distribution

The number of events occurring in a fixed period of time t if these events occur with a known average rate κ and independently of the time since the last event is $Po(\lambda)$, $\lambda = t\kappa$.

$$p(k) = e^{-\lambda} \frac{\lambda^k}{k!}, k = 0, 1, 2, \dots$$
$$u = \lambda, \sigma^2 = \lambda$$

2.8.2 Continuous distributions Uniform distribution

If the probability density function is constant between a and band 0 elsewhere it is U(a, b), a < b.

$$f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & \text{otherwise} \end{cases}$$

$$\mu = \frac{a+b}{2}, \, \sigma^2 = \frac{(b-a)^2}{12}$$

Exponential distribution

The time between events in a Poisson process is $\text{Exp}(\lambda), \lambda > 0.$

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$$
$$\mu = \frac{1}{\lambda}, \sigma^2 = \frac{1}{\lambda^2}$$

Normal distribution

Most real random values with mean μ and variance σ^2 are well described by $\mathcal{N}(\mu, \sigma^2)$, $\sigma > 0$.

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

If $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ then

$$aX_1 + bX_2 + c \sim \mathcal{N}(\mu_1 + \mu_2 + c, a^2\sigma_1^2 + b^2\sigma_2^2)$$

2.9 Markov chains

A Markov chain is a discrete random process with the property that the next state depends only on the current state. Let X_1, X_2, \ldots be a sequence of random variables generated by the Markov process. Then there is a transition matrix $\mathbf{P} = (p_{ij})$, with $p_{ij} = \Pr(X_n = i | X_{n-1} = j)$, and $\mathbf{p}^{(n)} = \mathbf{P}^n \mathbf{p}^{(0)}$ is the probability distribution for X_n (i.e., $p_i^{(n)} = \Pr(X_n = i)$), where $\mathbf{p}^{(0)}$ is the initial distribution.

 π is a stationary distribution if $\pi = \pi \mathbf{P}$. If the Markov chain is irreducible (it is possible to get to any state from any state), then $\pi_i = \frac{1}{\mathbb{E}(T_i)}$ where $\mathbb{E}(T_i)$ is the expected time between two visits in state i. π_j/π_i is the expected number of visits in state j between two visits in state i.

For a connected, undirected and non-bipartite graph, where the transition probability is uniform among all neighbors, π_i is proportional to node i's degree.

A Markov chain is *ergodic* if the asymptotic distribution is independent of the initial distribution. A finite Markov chain is ergodic iff it is irreducible and *aperiodic* (i.e., the gcd of cycle lengths is 1). $\lim_{k\to\infty} \mathbf{P}^k = \mathbf{1}\pi$.

A Markov chain is an A-chain if the states can be partitioned into two sets **A** and **G**, such that all states in **A** are absorbing $(p_{ii} = 1)$, and all states in **G** leads to an absorbing state in **A**. The probability for absorption in state $i \in \mathbf{A}$, when the initial state is j, is $a_{ij} = p_{ij} + \sum_{k \in \mathbf{G}} a_{ik} p_{kj}$. The expected time until absorption, when the initial state is i, is $t_i = 1 + \sum_{k \in \mathbf{G}} p_{ki} t_k$.

Data structures (3)

OrderStatisticTree.h

Description: A set (not multiset!) with support for finding the n'th element, and finding the index of an element. To get a map, change null-type. **Time:** $\mathcal{O}(\log N)$

HashMap.h

Description: Hash map with mostly the same API as unordered_map, but ~3x faster. Uses 1.5x memory. Initial capacity must be a power of 2 (if provided).

```
#include <bits/extc++.h>
// To use most bits rather than just the lowest ones:
struct chash { // large odd number for C
   const uint64_t C = 11(4e18 * acos(0)) | 71;
   11 operator()(11 x) const { return __builtin_bswap64(x*C); }
};
__qnu_pbds::qp_hash_table<11,int,chash> h({},{},{},{},{},{1<<16});</pre>
```

SegmentTree.h

Description: Zero-indexed max-tree. Bounds are inclusive to the left and exclusive to the right. Can be changed by modifying T, f and unit.

```
struct Tree {
    typedef int T;
    static constexpr T unit = INT_MIN;
    T f(T a, T b) { return max(a, b); } // (any associative fn)
    vector<T> s; int n;
    Tree(int n = 0, T def = unit) : s(2*n, def), n(n) {}
    void update(int pos, T val) {
        for (s[pos += n] = val; pos /= 2;)
            s[pos] = f(s[pos * 2], s[pos * 2 + 1]);
    }
    T query(int b, int e) { // query [b, e)
        T ra = unit, rb = unit;
        for (b += n, e += n; b < e; b /= 2, e /= 2) {
            if (b % 2) ra = f(ra, s[b++]);
            if (e % 2) rb = f(s[--e], rb);
        }
        return f(ra, rb);
    }
}</pre>
```

LazySegmentTree.h

};

Description: Segment tree with ability to add or set values of large intervals, and compute max of intervals. Can be changed to other things. Use with a bump allocator for better performance, and SmallPtr or implicit indices to save memory.

```
Usage: Node* tr = new Node(v, 0, sz(v));

Time: O(\log N).
```

```
34ecf5, 50 lines
"../various/BumpAllocator.h"
const int inf = 1e9;
struct Node {
 Node *1 = 0, *r = 0;
 int lo, hi, mset = inf, madd = 0, val = -inf;
 Node (int lo, int hi):lo(lo), hi(hi) {} // Large interval of -inf
 Node (vi& v, int lo, int hi) : lo(lo), hi(hi) {
    if (lo + 1 < hi) {
      int mid = lo + (hi - lo)/2;
     1 = new Node(v, lo, mid); r = new Node(v, mid, hi);
      val = max(1->val, r->val);
    else val = v[lo];
 int querv(int L, int R) {
    if (R <= lo || hi <= L) return -inf;</pre>
    if (L <= lo && hi <= R) return val;</pre>
    return max(l->query(L, R), r->query(L, R));
 void set(int L, int R, int x) {
    if (R <= lo || hi <= L) return;</pre>
    if (L <= lo && hi <= R) mset = val = x, madd = 0;</pre>
```

push(), $l\rightarrow set(L, R, x)$, $r\rightarrow set(L, R, x)$;

```
val = max(1->val, r->val);
  void add(int L, int R, int x) {
    if (R <= lo || hi <= L) return;</pre>
    if (L <= lo && hi <= R) {</pre>
      if (mset != inf) mset += x;
      else madd += x;
      val += x;
    else {
      push(), l->add(L, R, x), r->add(L, R, x);
      val = max(1->val, r->val);
 void push() {
    if (!1) {
      int mid = lo + (hi - lo)/2;
      1 = new Node(lo, mid); r = new Node(mid, hi);
    if (mset != inf)
      l->set(lo,hi,mset), r->set(lo,hi,mset), mset = inf;
    else if (madd)
      1- add (lo, hi, madd), r- add (lo, hi, madd), madd = 0;
};
```

UnionFindRollback.h

0f4bdb, 19 lines

Description: Disjoint-set data structure with undo. If undo is not needed, skip st, time() and rollback().

de4ad0, 21 lines

```
Usage: int t = uf.time(); ...; uf.rollback(t); Time: O(\log(N))
```

```
struct RollbackUF {
 vi e; vector<pii> st;
  RollbackUF(int n) : e(n, -1) {}
  int size(int x) { return -e[find(x)]; }
  int find(int x) { return e[x] < 0 ? x : find(e[x]); }</pre>
  int time() { return sz(st); }
  void rollback(int t) {
    for (int i = time(); i --> t;)
      e[st[i].first] = st[i].second;
    st.resize(t);
  bool join(int a, int b) {
    a = find(a), b = find(b);
    if (a == b) return false;
    if (e[a] > e[b]) swap(a, b);
    st.push_back({a, e[a]});
    st.push back({b, e[b]});
    e[a] += e[b]; e[b] = a;
    return true;
};
```

SubMatrix.h

Description: Calculate submatrix sums quickly, given upper-left and lower-right corners (half-open).

```
struct SubMatrix {
  vector<vector<T>> p;
  SubMatrix(vector<vector<T>>& v) {
   int R = sz(v), C = sz(v[0]);
   p.assign(R+1, vector<T>(C+1));
   rep(r,0,R) rep(c,0,C)
```

```
p[r+1][c+1] = v[r][c] + p[r][c+1] + p[r+1][c] - p[r][c];
 T sum(int u, int 1, int d, int r) {
    return p[d][r] - p[d][l] - p[u][r] + p[u][l];
};
```

Matrix.h

Description: Basic operations on square matrices.

```
Usage: Matrix<int, 3> A;
A.d = \{\{\{1,2,3\}\}, \{\{4,5,6\}\}, \{\{7,8,9\}\}\}\};
vector < int > vec = \{1, 2, 3\};
vec = (A^N) * vec;
```

c43c7d, 26 lines

```
template<class T, int N> struct Matrix {
  typedef Matrix M;
  array<array<T, N>, N> d{};
  M operator*(const M& m) const {
    rep(i,0,N) rep(j,0,N)
     rep(k, 0, N) \ a.d[i][j] += d[i][k]*m.d[k][j];
  vector<T> operator*(const vector<T>& vec) const {
   vector<T> ret(N);
    rep(i,0,N) rep(j,0,N) ret[i] += d[i][j] * vec[j];
    return ret:
  M operator^(ll p) const {
    assert (p >= 0);
   M a, b(*this);
    rep(i, 0, N) \ a.d[i][i] = 1;
    while (p) {
     if (p&1) a = a*b;
     b = b*b;
     p >>= 1;
    return a;
};
```

LineContainer.h

Description: Container where you can add lines of the form kx+m, and query maximum values at points x. Useful for dynamic programming ("convex hull trick").

Time: $\mathcal{O}(\log N)$

```
8ec1c7, 30 lines
struct Line {
 mutable 11 k, m, p;
 bool operator<(const Line& o) const { return k < o.k; }</pre>
 bool operator<(11 x) const { return p < x; }</pre>
struct LineContainer : multiset<Line, less<>>> {
  // (for doubles, use inf = 1/.0, div(a,b) = a/b)
  static const ll inf = LLONG_MAX;
  ll div(ll a, ll b) { // floored division
   return a / b - ((a ^ b) < 0 && a % b); }
  bool isect(iterator x, iterator v) {
   if (y == end()) return x \rightarrow p = inf, 0;
   if (x->k == y->k) x->p = x->m > y->m ? inf : -inf;
   else x->p = div(y->m - x->m, x->k - y->k);
   return x->p >= y->p;
  void add(ll k, ll m) {
   auto z = insert(\{k, m, 0\}), y = z++, x = y;
   while (isect(y, z)) z = erase(z);
   if (x != begin() \&\& isect(--x, y)) isect(x, y = erase(y));
   while ((y = x) != begin() \&\& (--x)->p >= y->p)
```

```
isect(x, erase(v));
 ll query(ll x) {
   assert(!empty());
   auto 1 = *lower_bound(x);
   return 1.k * x + 1.m;
};
Treap.h
```

if (1->y > r->y) {

1->recalc();

r->recalc();

return 1;

return r:

} else {

1->r = merge(1->r, r);

r->1 = merge(1, r->1);

Description: A short self-balancing tree. It acts as a sequential container with log-time splits/joins, and is easy to augment with additional data. Time: $\mathcal{O}(\log N)$

9556fc, 55 lines

```
struct Node {
 Node *1 = 0, *r = 0;
 int val, y, c = 1;
 Node(int val) : val(val), y(rand()) {}
 void recalc();
};
int cnt(Node* n) { return n ? n->c : 0; }
void Node::recalc() { c = cnt(1) + cnt(r) + 1; }
template < class F > void each (Node * n, F f) {
 if (n) { each(n->1, f); f(n->val); each(n->r, f); }
pair<Node*, Node*> split(Node* n, int k) {
 if (!n) return {};
 if (cnt(n->1) >= k) { // "n-> val >= k" for lower_bound(k)}
    auto pa = split(n->1, k);
   n->1 = pa.second;
   n->recalc();
   return {pa.first, n};
    auto pa = split(n->r, k - cnt(n->1) - 1); // and just "k"
    n->r = pa.first;
   n->recalc();
    return {n, pa.second};
Node* merge(Node* 1, Node* r) {
 if (!1) return r;
  if (!r) return 1;
```

Node* ins(Node* t, Node* n, int pos) { auto pa = split(t, pos);

return merge(merge(pa.first, n), pa.second); // Example application: move the range [l, r) to index k

void move(Node*& t, int 1, int r, int k) { Node *a, *b, *c; tie(a,b) = split(t, 1); tie(b,c) = split(b, r - 1);if $(k \le 1)$ t = merge(ins(a, b, k), c); else t = merge(a, ins(c, b, k - r));

Description: Computes partial sums a[0] + a[1] + ... + a[pos - 1], and updates single elements a[i], taking the difference between the old and new

Time: Both operations are $\mathcal{O}(\log N)$.

```
struct FT {
 vector<ll> s;
 FT(int n) : s(n) {}
 void update(int pos, 11 dif) { // a[pos] \neq = dif
    for (; pos < sz(s); pos |= pos + 1) s[pos] += dif;</pre>
 11 query (int pos) { // sum of values in [0, pos)
    for (; pos > 0; pos &= pos - 1) res += s[pos-1];
    return res;
  int lower_bound(11 sum) \{// min \ pos \ st \ sum \ of \ [0, \ pos] >= sum
    // Returns n if no sum is \geq sum. or -1 if empty sum is.
    if (sum <= 0) return -1;
    int pos = 0;
    for (int pw = 1 << 25; pw; pw >>= 1) {
      if (pos + pw <= sz(s) && s[pos + pw-1] < sum)
        pos += pw, sum -= s[pos-1];
    return pos;
};
```

FenwickTree2d.h

Description: Computes sums a[i,j] for all i<I, j<J, and increases single elements a[i,j]. Requires that the elements to be updated are known in advance (call fakeUpdate() before init()).

Time: $\mathcal{O}\left(\log^2 N\right)$. (Use persistent segment trees for $\mathcal{O}\left(\log N\right)$.) "FenwickTree.h"

```
struct FT2 {
  vector<vi> ys; vector<FT> ft;
  FT2(int limx) : ys(limx) {}
  void fakeUpdate(int x, int y) {
    for (; x < sz(ys); x = x + 1) ys[x].push_back(y);
  void init() {
    for (vi& v : ys) sort(all(v)), ft.emplace_back(sz(v));
  int ind(int x, int y) {
    return (int) (lower_bound(all(ys[x]), y) - ys[x].begin()); }
  void update(int x, int y, ll dif) {
    for (; x < sz(ys); x |= x + 1)
      ft[x].update(ind(x, y), dif);
  11 query(int x, int y) {
    11 \text{ sum} = 0;
    for (; x; x &= x - 1)
      sum += ft[x-1].query(ind(x-1, y));
    return sum;
};
```

RMQ.h

Description: Range Minimum Queries on an array. Returns min(V[a], V[a +1], ... V[b - 1]) in constant time. Usage: RMQ rmq(values);

rmq.query(inclusive, exclusive);

Time: $\mathcal{O}(|V|\log|V|+Q)$

510c32, 16 lines

```
template < class T>
struct RMO {
 vector<vector<T>> jmp;
 RMQ(const vector<T>& V) : jmp(1, V) {
```

```
for (int pw = 1, k = 1; pw * 2 <= sz(V); pw *= 2, ++k) {
      jmp.emplace_back(sz(V) - pw * 2 + 1);
     rep(j,0,sz(jmp[k]))
        jmp[k][j] = min(jmp[k - 1][j], jmp[k - 1][j + pw]);
  T query(int a, int b) {
    assert (a < b); // or return inf if a == b
   int dep = 31 - __builtin_clz(b - a);
   return min(jmp[dep][a], jmp[dep][b - (1 << dep)]);</pre>
};
```

MoQueries.h

Description: Answer interval or tree path queries by finding an approximate TSP through the queries, and moving from one query to the next by adding/removing points at the ends. If values are on tree edges, change step to add/remove the edge (a, c) and remove the initial add call (but keep in). Time: $\mathcal{O}(N\sqrt{Q})$

```
void add(int ind, int end) { ... } // add a[ind] (end = 0 or 1)
void del(int ind, int end) { ... } // remove a[ind]
int calc() { ... } // compute current answer
vi mo(vector<pii> Q) {
 int L = 0, R = 0, blk = 350; // \sim N/sqrt(Q)
  vi s(sz(Q)), res = s;
#define K(x) pii(x.first/blk, x.second ^ -(x.first/blk & 1))
  iota(all(s), 0);
  sort(all(s), [&](int s, int t) { return K(Q[s]) < K(Q[t]); });
  for (int qi : s) {
   pii q = O[qi];
    while (L > q.first) add(--L, 0);
   while (R < q.second) add(R++, 1);
    while (L < q.first) del(L++, 0);
    while (R > q.second) del(--R, 1);
    res[gi] = calc();
  return res:
vi moTree(vector<array<int, 2>> 0, vector<vi>& ed, int root=0) {
  int N = sz(ed), pos[2] = {}, blk = 350; // \sim N/sqrt(Q)
  vi s(sz(Q)), res = s, I(N), L(N), R(N), in(N), par(N);
  add(0, 0), in[0] = 1;
  auto dfs = [&] (int x, int p, int dep, auto& f) -> void {
   par[x] = p;
   L[x] = N;
   if (dep) I[x] = N++;
    for (int y : ed[x]) if (y != p) f(y, x, !dep, f);
   if (!dep) I[x] = N++;
   R[x] = N;
  dfs(root, -1, 0, dfs);
#define K(x) pii(I[x[0]] / blk, I[x[1]] ^ -(I[x[0]] / blk & 1))
  iota(all(s), 0);
  sort(all(s), [\&](int s, int t){ return K(Q[s]) < K(Q[t]); });
  for (int qi : s) rep(end, 0, 2) {
   int &a = pos[end], b = Q[qi][end], i = 0;
#define step(c) { if (in[c]) { del(a, end); in[a] = 0; } \
                  else { add(c, end); in[c] = 1; } a = c; }
    while (!(L[b] <= L[a] && R[a] <= R[b]))</pre>
     I[i++] = b, b = par[b];
    while (a != b) step(par[a]);
    while (i--) step(I[i]);
    if (end) res[qi] = calc();
  return res;
```

Numerical (4)

4.1 Polynomials and recurrences

```
Polynomial.h
                                                       c9b7b0, 17 lines
struct Poly {
  vector<double> a;
  double operator()(double x) const {
    double val = 0;
    for (int i = sz(a); i--;) (val *= x) += a[i];
    return val:
  void diff() {
    rep(i, 1, sz(a)) a[i-1] = i*a[i];
    a.pop_back();
  void divroot(double x0) {
    double b = a.back(), c; a.back() = 0;
    for(int i=sz(a)-1; i--;) c = a[i], a[i] = a[i+1]*x0+b, b=c;
    a.pop_back();
};
PolyRoots.h
Description: Finds the real roots to a polynomial.
Usage: polyRoots (\{\{2, -3, 1\}\}, -1e9, 1e9) // solve x^2-3x+2=0
Time: \mathcal{O}\left(n^2\log(1/\epsilon)\right)
"Polynomial.h"
vector<double> polyRoots(Poly p, double xmin, double xmax) {
 if (sz(p.a) == 2) { return {-p.a[0]/p.a[1]}; }
 vector<double> ret;
 Poly der = p;
  der.diff();
  auto dr = polyRoots(der, xmin, xmax);
  dr.push back(xmin-1);
  dr.push_back(xmax+1);
  sort (all (dr));
  rep(i, 0, sz(dr)-1) {
    double l = dr[i], h = dr[i+1];
    bool sign = p(1) > 0;
    if (sign ^{(p(h) > 0)}) {
      rep(it, 0, 60) { // while (h - l > 1e-8)
        double m = (1 + h) / 2, f = p(m);
        if ((f <= 0) ^ sign) 1 = m;
        else h = m;
      ret.push_back((1 + h) / 2);
```

PolyInterpolate.h

return ret;

Description: Given n points (x[i], y[i]), computes an n-1-degree polynomial p that passes through them: $p(x) = a[0] * x^0 + ... + a[n-1] * x^{n-1}$. For numerical precision, pick $x[k] = c * \cos(k/(n-1)*\pi), k = 0 \dots n-1.$ Time: $\mathcal{O}\left(n^2\right)$ 08bf48, 13 lines

```
typedef vector<double> vd;
vd interpolate(vd x, vd y, int n) {
 vd res(n), temp(n);
 rep(k, 0, n-1) rep(i, k+1, n)
   y[i] = (y[i] - y[k]) / (x[i] - x[k]);
 double last = 0; temp[0] = 1;
 rep(k, 0, n) rep(i, 0, n) {
   res[i] += y[k] * temp[i];
   swap(last, temp[i]);
   temp[i] -= last * x[k];
```

```
return res;
```

BerlekampMassev.h

Description: Recovers any *n*-order linear recurrence relation from the first 2n terms of the recurrence. Useful for guessing linear recurrences after bruteforcing the first terms. Should work on any field, but numerical stability for floats is not guaranteed. Output will have size $\leq n$.

```
Usage: berlekampMassey({0, 1, 1, 3, 5, 11}) // {1, 2}
Time: \mathcal{O}(N^2)
```

```
"../number-theory/ModPow.h"
                                                      96548b, 20 lines
vector<ll> berlekampMassey(vector<ll> s) {
 int n = sz(s), L = 0, m = 0;
 vector<11> C(n), B(n), T;
 C[0] = B[0] = 1;
 11 b = 1:
  rep(i, 0, n) \{ ++m;
   11 d = s[i] % mod;
    rep(j, 1, L+1) d = (d + C[j] * s[i - j]) % mod;
    if (!d) continue;
    T = C; 11 coef = d * modpow(b, mod-2) % mod;
    rep(j,m,n) C[j] = (C[j] - coef * B[j - m]) % mod;
    if (2 * L > i) continue;
    L = i + 1 - L; B = T; b = d; m = 0;
  C.resize(L + 1); C.erase(C.begin());
  for (11& x : C) x = (mod - x) % mod;
 return C;
```

LinearRecurrence.h

Description: Generates the k'th term of an n-order linear recurrence $S[i] = \sum_{j} S[i-j-1]tr[j]$, given $S[0... \ge n-1]$ and tr[0...n-1]. Faster than matrix multiplication. Useful together with Berlekamp-Massey. Usage: linearRec({0, 1}, {1, 1}, k) // k'th Fibonacci number

Time: $\mathcal{O}\left(n^2 \log k\right)$

```
f4e444, 26 lines
typedef vector<ll> Polv;
11 linearRec(Poly S, Poly tr, 11 k) {
 int n = sz(tr);
  auto combine = [&](Poly a, Poly b) {
   Poly res(n \star 2 + 1);
    rep(i, 0, n+1) rep(j, 0, n+1)
     res[i + j] = (res[i + j] + a[i] * b[j]) % mod;
    for (int i = 2 * n; i > n; --i) rep(j,0,n)
     res[i - 1 - j] = (res[i - 1 - j] + res[i] * tr[j]) % mod;
    res.resize(n + 1);
    return res:
  Poly pol(n + 1), e(pol);
  pol[0] = e[1] = 1;
  for (++k; k; k /= 2) {
   if (k % 2) pol = combine(pol, e);
    e = combine(e, e);
 11 \text{ res} = 0;
 rep(i, 0, n) res = (res + pol[i + 1] * S[i]) % mod;
 return res:
```

3313dc, 18 lines

Optimization

GoldenSectionSearch.h

Description: Finds the argument minimizing the function f in the interval [a, b] assuming f is unimodal on the interval, i.e. has only one local minimum. The maximum error in the result is eps. Works equally well for maximization with a small change in the code. See TernarySearch.h in the Various chapter for a discrete version. Usage: double func(double x) { return 4+x+.3*x*x; }

```
double xmin = qss(-1000, 1000, func);
Time: \mathcal{O}(\log((b-a)/\epsilon))
                                                       31d45b, 14 lines
double gss(double a, double b, double (*f)(double)) {
  double r = (sqrt(5)-1)/2, eps = 1e-7;
  double x1 = b - r*(b-a), x2 = a + r*(b-a);
  double f1 = f(x1), f2 = f(x2);
  while (b-a > eps)
    if (f1 < f2) { //change to > to find maximum
     b = x2; x2 = x1; f2 = f1;
     x1 = b - r*(b-a); f1 = f(x1);
    } else {
     a = x1; x1 = x2; f1 = f2;
      x2 = a + r*(b-a); f2 = f(x2);
 return a:
```

HillClimbing.h

 $\textbf{Description:} \stackrel{\smile}{\text{Poor man's optimization for unimodal functions}}_{\text{8eeeaf, 14 lines}}$

```
typedef array<double, 2> P;
template<class F> pair<double, P> hillClimb(P start, F f) {
  pair<double, P> cur(f(start), start);
  for (double jmp = 1e9; jmp > 1e-20; jmp /= 2) {
    rep(j, 0, 100) rep(dx, -1, 2) rep(dy, -1, 2) {
     P p = cur.second:
     p[0] += dx * jmp;
     p[1] += dy * jmp;
     cur = min(cur, make_pair(f(p), p));
 return cur;
```

Integrate.h

Description: Simple integration of a function over an interval using Simpson's rule. The error should be proportional to h^4 , although in practice you will want to verify that the result is stable to desired precision when epsilon changes.

```
template<class F>
double quad(double a, double b, F f, const int n = 1000) {
 double h = (b - a) / 2 / n, v = f(a) + f(b);
   v += f(a + i*h) * (i&1 ? 4 : 2);
 return v * h / 3;
```

IntegrateAdaptive.h

```
Description: Fast integration using an adaptive Simpson's rule.
Usage: double sphereVolume = quad(-1, 1, [](double x) {
return quad(-1, 1, [&] (double y)
return quad(-1, 1, [\&](double z)
return x*x + y*y + z*z < 1; }); }); }); }
                                                        92dd79, 15 lines
```

```
typedef double d;
#define S(a,b) (f(a) + 4*f((a+b) / 2) + f(b)) * (b-a) / 6
template <class F>
```

```
d rec(F& f, d a, d b, d eps, d S) {
 dc = (a + b) / 2;
  d S1 = S(a, c), S2 = S(c, b), T = S1 + S2;
 if (abs(T - S) <= 15 * eps || b - a < 1e-10)</pre>
    return T + (T - S) / 15;
  return rec(f, a, c, eps / 2, S1) + rec(f, c, b, eps / 2, S2);
template<class F>
d \text{ quad}(d a, d b, F f, d eps = 1e-8) {
 return rec(f, a, b, eps, S(a, b));
```

Simplex.h

Description: Solves a general linear maximization problem: maximize $c^T x$ subject to $Ax \leq b$, $x \geq 0$. Returns -inf if there is no solution, inf if there are arbitrarily good solutions, or the maximum value of c^Tx otherwise. The input vector is set to an optimal x (or in the unbounded case, an arbitrary solution fulfilling the constraints). Numerical stability is not guaranteed. For better performance, define variables such that x = 0 is viable.

```
Usage: vvd A = \{\{1,-1\}, \{-1,1\}, \{-1,-2\}\};
vd b = \{1, 1, -4\}, c = \{-1, -1\}, x;
T val = LPSolver(A, b, c).solve(x);
```

const T eps = 1e-8, inf = 1/.0;

Time: $\mathcal{O}(NM * \#pivots)$, where a pivot may be e.g. an edge relaxation. $\mathcal{O}(2^n)$ in the general case.

```
typedef double T; // long double, Rational, double + mod<P>...
typedef vector<T> vd;
typedef vector<vd> vvd;
```

```
#define MP make pair
#define ltj(X) if (s == -1 \mid | MP(X[j], N[j]) < MP(X[s], N[s])) s=j
struct LPSolver {
 int m, n;
 vi N, B;
 vvd D;
 LPSolver (const vvd& A, const vd& b, const vd& c) :
   m(sz(b)), n(sz(c)), N(n+1), B(m), D(m+2), vd(n+2)) {
      rep(i, 0, m) rep(j, 0, n) D[i][j] = A[i][j];
     rep(i,0,m) \{ B[i] = n+i; D[i][n] = -1; D[i][n+1] = b[i]; \}
     rep(j, 0, n) \{ N[j] = j; D[m][j] = -c[j]; \}
     N[n] = -1; D[m+1][n] = 1;
 void pivot(int r, int s) {
   T \star a = D[r].data(), inv = 1 / a[s];
    rep(i,0,m+2) if (i != r \&\& abs(D[i][s]) > eps) {
     T *b = D[i].data(), inv2 = b[s] * inv;
      rep(j, 0, n+2) b[j] -= a[j] * inv2;
     b[s] = a[s] * inv2;
   rep(j,0,n+2) if (j != s) D[r][j] *= inv;
```

rep(i, 0, m+2) **if** (i != r) D[i][s] *= -inv;

rep(j,0,n+1) if (N[j] != -phase) ltj(D[x]);

if (r == -1 || MP(D[i][n+1] / D[i][s], B[i])

if (D[x][s] >= -eps) return true;

if (D[i][s] <= eps) continue;</pre>

D[r][s] = inv;

for (;;) {

int s = -1;

int r = -1;

rep(i,0,m) {

swap(B[r], N[s]);

bool simplex(int phase) {

int x = m + phase - 1;

```
< MP(D[r][n+1] / D[r][s], B[r])) r = i;
    if (r == -1) return false;
    pivot(r, s);
T solve(vd &x) {
  int r = 0;
  rep(i,1,m) if (D[i][n+1] < D[r][n+1]) r = i;
  if (D[r][n+1] < -eps) {</pre>
    pivot(r, n);
    if (!simplex(2) || D[m+1][n+1] < -eps) return -inf;</pre>
    rep(i, 0, m) if (B[i] == -1) {
      int s = 0;
      rep(j,1,n+1) ltj(D[i]);
      pivot(i, s);
  bool ok = simplex(1); x = vd(n);
  rep(i,0,m) if (B[i] < n) x[B[i]] = D[i][n+1];
  return ok ? D[m][n+1] : inf;
```

4.3 Matrices

Determinant.h

};

Description: Calculates determinant of a matrix. Destroys the matrix. Time: $\mathcal{O}(N^3)$

```
double det(vector<vector<double>>& a) {
 int n = sz(a); double res = 1;
 rep(i,0,n) {
    rep(j, i+1, n) if (fabs(a[j][i]) > fabs(a[b][i])) b = j;
   if (i != b) swap(a[i], a[b]), res \star = -1;
   res *= a[i][i];
   if (res == 0) return 0;
   rep(j,i+1,n) {
     double v = a[j][i] / a[i][i];
     if (v != 0) rep(k, i+1, n) a[j][k] -= v * a[i][k];
 return res;
```

IntDeterminant.h

return (ans + mod) % mod;

Description: Calculates determinant using modular arithmetics. Modulos can also be removed to get a pure-integer version. Time: $\mathcal{O}\left(N^3\right)$

```
const 11 mod = 12345;
11 det(vector<vector<ll>>& a) {
 int n = sz(a); 11 ans = 1;
 rep(i,0,n) {
   rep(j,i+1,n) {
      while (a[j][i] != 0) { // gcd step
       11 t = a[i][i] / a[j][i];
       if (t) rep(k,i,n)
         a[i][k] = (a[i][k] - a[j][k] * t) % mod;
        swap(a[i], a[j]);
       ans *= -1;
   ans = ans * a[i][i] % mod;
   if (!ans) return 0;
```

GT

SolveLinear.h

Description: Solves A * x = b. If there are multiple solutions, an arbitrary one is returned. Returns rank, or -1 if no solutions. Data in A and b is lost. **Time:** $\mathcal{O}(n^2m)$

```
typedef vector<double> vd;
const double eps = 1e-12;
int solveLinear(vector<vd>& A, vd& b, vd& x) {
 int n = sz(A), m = sz(x), rank = 0, br, bc;
 if (n) assert(sz(A[0]) == m);
  vi col(m); iota(all(col), 0);
  rep(i,0,n) {
   double v, bv = 0;
    rep(r,i,n) rep(c,i,m)
     if ((v = fabs(A[r][c])) > bv)
       br = r, bc = c, bv = v;
    if (bv <= eps) {
     rep(j,i,n) if (fabs(b[j]) > eps) return -1;
     break;
    swap(A[i], A[br]);
    swap(b[i], b[br]);
    swap(col[i], col[bc]);
    rep(j,0,n) swap(A[j][i], A[j][bc]);
   bv = 1/A[i][i];
    rep(j,i+1,n) {
     double fac = A[j][i] * bv;
     b[j] -= fac * b[i];
     rep(k,i+1,m) A[j][k] = fac*A[i][k];
   rank++;
  x.assign(m. 0):
  for (int i = rank; i--;) {
   b[i] /= A[i][i];
   x[col[i]] = b[i];
   rep(j, 0, i) b[j] -= A[j][i] * b[i];
  return rank; // (multiple solutions if rank < m)
```

SolveLinear2.h

Description: To get all uniquely determined values of x back from Solve-Linear, make the following changes:

SolveLinearBinary.h

Description: Solves Ax = b over \mathbb{F}_2 . If there are multiple solutions, one is returned arbitrarily. Returns rank, or -1 if no solutions. Destroys A and b. **Time:** $\mathcal{O}\left(n^2m\right)$

```
int solveLinear(vector<bs>& A, vi& b, bs& x, int m) {
  int n = sz(A), rank = 0, br;
  assert(m <= sz(x));
  vi col(m); iota(all(col), 0);
  rep(i,0,n) {
    for (br=i; br<n; ++br) if (A[br].any()) break;</pre>
```

```
if (br == n) {
    rep(j,i,n) if(b[j]) return -1;
    break;
  int bc = (int)A[br]._Find_next(i-1);
  swap(A[i], A[br]);
  swap(b[i], b[br]);
  swap(col[i], col[bc]);
  rep(j, 0, n) if (A[j][i] != A[j][bc]) {
   A[j].flip(i); A[j].flip(bc);
  rep(j,i+1,n) if (A[j][i]) {
   b[j] ^= b[i];
   A[j] ^= A[i];
  rank++;
x = bs();
for (int i = rank; i--;) {
  if (!b[i]) continue;
  x[col[i]] = 1;
  rep(j,0,i) b[j] ^= A[j][i];
return rank; // (multiple solutions if rank < m)
```

MatrixInverse.h

return n;

Description: Invert matrix A. Returns rank; result is stored in A unless singular (rank < n). Can easily be extended to prime moduli; for prime powers, repeatedly set $A^{-1} = A^{-1}(2I - AA^{-1}) \pmod{p^k}$ where A^{-1} starts as the inverse of A mod p, and k is doubled in each step.

```
Time: \mathcal{O}\left(n^3\right)
                                                        ebfff6, 35 lines
int matInv(vector<vector<double>>& A) {
 int n = sz(A); vi col(n);
 vector<vector<double>> tmp(n, vector<double>(n));
  rep(i, 0, n) tmp[i][i] = 1, col[i] = i;
  rep(i,0,n) {
    int r = i, c = i;
    rep(j,i,n) rep(k,i,n)
      if (fabs(A[j][k]) > fabs(A[r][c]))
        r = j, c = k;
    if (fabs(A[r][c]) < 1e-12) return i;</pre>
    A[i].swap(A[r]); tmp[i].swap(tmp[r]);
    rep(j,0,n)
      swap(A[j][i], A[j][c]), swap(tmp[j][i], tmp[j][c]);
    swap(col[i], col[c]);
    double v = A[i][i];
    rep(j, i+1, n) {
      double f = A[j][i] / v;
      A[j][i] = 0;
      rep(k,i+1,n) A[j][k] -= f*A[i][k];
      rep(k,0,n) tmp[j][k] -= f*tmp[i][k];
    rep(j,i+1,n) A[i][j] /= v;
    rep(j,0,n) tmp[i][j] /= v;
    A[i][i] = 1;
  for (int i = n-1; i > 0; --i) rep(j,0,i) {
    double v = A[j][i];
    rep(k, 0, n) tmp[j][k] -= v*tmp[i][k];
```

rep(i,0,n) rep(j,0,n) A[col[i]][col[j]] = tmp[i][j];

```
| Tridiagonal.
```

Description: x = tridiagonal(d, p, q, b) solves the equation system

$$\begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_{n-1} \end{pmatrix} = \begin{pmatrix} d_0 & p_0 & 0 & 0 & \cdots & 0 \\ q_0 & d_1 & p_1 & 0 & \cdots & 0 \\ 0 & q_1 & d_2 & p_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & q_{n-3} & d_{n-2} & p_{n-2} \\ 0 & 0 & \cdots & 0 & q_{n-2} & d_{n-1} \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_{n-1} \end{pmatrix}$$

This is useful for solving problems on the type

$$a_i = b_i a_{i-1} + c_i a_{i+1} + d_i, 1 \le i \le n,$$

where a_0, a_{n+1}, b_i, c_i and d_i are known. a can then be obtained from

$$\{a_i\} = \operatorname{tridiagonal}(\{1,-1,-1,\ldots,-1,1\},\{0,c_1,c_2,\ldots,c_n\},\\ \{b_1,b_2,\ldots,b_n,0\},\{a_0,d_1,d_2,\ldots,d_n,a_{n+1}\}).$$

Fails if the solution is not unique.

If $|d_i| > |p_i| + |q_{i-1}|$ for all i, or $|d_i| > |p_{i-1}| + |q_i|$, or the matrix is positive definite, the algorithm is numerically stable and neither tr nor the check for diag[i] == 0 is needed.

 $\begin{array}{ll} \text{diag[i]} \ = \ 0 \ \text{is needed}. \\ \\ \textbf{Time: } \mathcal{O}(N) \\ \\ \textbf{typedef double T;} \end{array}$

```
vector<T> tridiagonal(vector<T> diag, const vector<T>& super,
    const vector<T>& sub, vector<T> b) {
 int n = sz(b); vi tr(n);
  rep(i, 0, n-1) {
    if (abs(diag[i]) < 1e-9 * abs(super[i])) { // diag[i] == 0
      b[i+1] -= b[i] * diag[i+1] / super[i];
      if (i+2 < n) b[i+2] -= b[i] * sub[i+1] / super[i];</pre>
      diag[i+1] = sub[i]; tr[++i] = 1;
     else {
      diag[i+1] -= super[i]*sub[i]/diag[i];
      b[i+1] = b[i] * sub[i] / diag[i];
  for (int i = n; i--;) {
    if (tr[i]) {
      swap(b[i], b[i-1]);
      diag[i-1] = diag[i];
      b[i] /= super[i-1];
    } else {
      b[i] /= diag[i];
      if (i) b[i-1] -= b[i]*super[i-1];
 return b;
```

4.4 Fourier transforms

FastFourierTransform.h

Description: fft(a) computes $\hat{f}(k) = \sum_x a[x] \exp(2\pi i \cdot kx/N)$ for all k. N must be a power of 2. Useful for convolution: conv(a, b) = c, where $c[x] = \sum_x a[i]b[x-i]$. For convolution of complex numbers or more than two vectors: FFT, multiply pointwise, divide by n, reverse(start+1, end), FFT back. Rounding is safe if $(\sum_i a_i^2 + \sum_i b_i^2) \log_2 N < 9 \cdot 10^{14}$ (in practice 10^{16} ; higher for random inputs). Otherwise, use NTT/FFTMod. **Time:** $\mathcal{O}(N \log N)$ with N = |A| + |B| (~1s for $N = 2^{22}$)

```
typedef complex<double> C;
typedef vector<double> vd;
void fft(vector<C>& a) {
   int n = sz(a), L = 31 - __builtin_clz(n);
   static vector<complex<long double>> R(2, 1);
   static vector<C> rt(2, 1); // (^ 10% faster if double)
   for (static int k = 2; k < n; k *= 2) {
      R.resize(n); rt.resize(n);
   auto x = polar(1.0L, acos(-1.0L) / k);
}</pre>
```

```
rep(i,k,2*k) rt[i] = R[i] = i&1 ? R[i/2] * x : R[i/2];
  vi rev(n);
  rep(i, 0, n) rev[i] = (rev[i / 2] | (i & 1) << L) / 2;
  rep(i,0,n) if (i < rev[i]) swap(a[i], a[rev[i]]);
  for (int k = 1; k < n; k *= 2)
    for (int i = 0; i < n; i += 2 * k) rep(j,0,k) {
     Cz = rt[j+k] * a[i+j+k]; // (25\% faster if hand-rolled)
     a[i + j + k] = a[i + j] - z;
     a[i + j] += z;
vd conv(const vd& a, const vd& b) {
 if (a.empty() || b.empty()) return {};
  vd res(sz(a) + sz(b) - 1);
  int L = 32 - __builtin_clz(sz(res)), n = 1 << L;</pre>
  vector<C> in(n), out(n);
  copy(all(a), begin(in));
  rep(i,0,sz(b)) in[i].imag(b[i]);
  fft(in);
  for (C& x : in) x *= x;
  rep(i, 0, n) out[i] = in[-i & (n - 1)] - conj(in[i]);
  rep(i, 0, sz(res)) res[i] = imag(out[i]) / (4 * n);
  return res;
```

FastFourierTransformMod.h

Description: Higher precision FFT, can be used for convolutions modulo arbitrary integers as long as $N \log_2 N \cdot \text{mod} < 8.6 \cdot 10^{14}$ (in practice 10^{16} or higher). Inputs must be in [0, mod).

Time: $\mathcal{O}(N \log N)$, where N = |A| + |B| (twice as slow as NTT or FFT)

"FastFourierTransform.h"

b82773, 22 lines

```
typedef vector<ll> v1;
template<int M> vl convMod(const vl &a, const vl &b) {
  if (a.empty() || b.empty()) return {};
  vl res(sz(a) + sz(b) - 1);
  int B=32-__builtin_clz(sz(res)), n=1<<B, cut=int(sqrt(M));</pre>
  vector<C> L(n), R(n), outs(n), outl(n);
  rep(i,0,sz(a)) L[i] = C((int)a[i] / cut, (int)a[i] % cut);
  rep(i, 0, sz(b)) R[i] = C((int)b[i] / cut, (int)b[i] % cut);
  fft(L), fft(R);
  rep(i,0,n) {
    int j = -i \& (n - 1);
    outl[j] = (L[i] + conj(L[j])) * R[i] / (2.0 * n);
    outs[j] = (L[i] - conj(L[j])) * R[i] / (2.0 * n) / 1i;
  fft(outl), fft(outs);
  rep(i, 0, sz(res)) {
    11 \text{ av} = 11(\text{real}(\text{outl}[i]) + .5), \text{ cv} = 11(\text{imag}(\text{outs}[i]) + .5);
    11 \text{ bv} = 11(\text{imag}(\text{outl}[i]) + .5) + 11(\text{real}(\text{outs}[i]) + .5);
    res[i] = ((av % M * cut + bv) % M * cut + cv) % M;
  return res:
```

NumberTheoreticTransform.h

Description: ntt(a) computes $\hat{f}(k) = \sum_x a[x]g^{xk}$ for all k, where $g = \operatorname{root}^{(mod-1)/N}$. N must be a power of 2. Useful for convolution modulo specific nice primes of the form 2^ab+1 , where the convolution result has size at most 2^a . For arbitrary modulo, see FFTMod. $\operatorname{conv}(a, b) = c$, where $c[x] = \sum_i a[i]b[x-i]$. For manual convolution: NTT the inputs, multiply pointwise, divide by n, reverse(start+1, end), NTT back. Inputs must be in $[0, \operatorname{mod})$.

```
Time: \mathcal{O}(N \log N)
```

```
"../number-theory/ModPow.h" ced03d, 33 lines
```

```
<code>const</code> 11 mod = (119 << 23) + 1, root = 62; // = 998244353 // For p < 2^30 there is also e.g. 5 << 25, 7 << 26, 479 << 21
```

```
// and 483 \ll 21 (same root). The last two are > 10^9.
typedef vector<ll> v1;
void ntt(vl &a) {
 int n = sz(a), L = 31 - __builtin_clz(n);
  static v1 rt(2, 1);
  for (static int k = 2, s = 2; k < n; k *= 2, s++) {
    rt.resize(n);
   ll z[] = \{1, modpow(root, mod >> s)\};
   rep(i,k,2*k) rt[i] = rt[i / 2] * z[i & 1] % mod;
 vi rev(n);
  rep(i,0,n) rev[i] = (rev[i / 2] | (i & 1) << L) / 2;
  rep(i,0,n) if (i < rev[i]) swap(a[i], a[rev[i]]);</pre>
  for (int k = 1; k < n; k *= 2)
    for (int i = 0; i < n; i += 2 * k) rep(j,0,k) {
     11 z = rt[j + k] * a[i + j + k] % mod, &ai = a[i + j];
     a[i + j + k] = ai - z + (z > ai ? mod : 0);
     ai += (ai + z >= mod ? z - mod : z);
vl conv(const vl &a, const vl &b) {
 if (a.empty() || b.empty()) return {};
 int s = sz(a) + sz(b) - 1, B = 32 - builtin clz(s), n = 1
      << B;
  int inv = modpow(n, mod - 2);
 vl L(a), R(b), out(n);
 L.resize(n), R.resize(n);
  ntt(L), ntt(R);
  rep(i, 0, n) out[-i \& (n - 1)] = (11)L[i] * R[i] % mod * inv %
  return {out.begin(), out.begin() + s};
```

FastSubsetTransform.h

Description: Transform to a basis with fast convolutions of the form $c[z] = \sum_{z=x \oplus y} a[x] \cdot b[y]$, where \oplus is one of AND, OR, XOR. The size of a must be a power of two.

```
Time: O(N log N)

void FST(vi& a, bool inv) {
  for (int n = sz(a), step = 1; step < n; step *= 2) {
    for (int i = 0; i < n; i += 2 * step) rep(j,i,i+step) {
      int &u = a[j], &v = a[j + step]; tie(u, v) =
            inv ? pii(v - u, u) : pii(v, u + v); // AND
            inv ? pii(v, u - v) : pii(u + v, u); // OR
            pii(u + v, u - v);
    }
    if (inv) for (int& x : a) x /= sz(a); // XOR only
}
vi conv(vi a, vi b) {
    FST(a, 0); FST(b, 0);
    rep(i,0,sz(a)) a[i] *= b[i];
    FST(a, 1); return a;</pre>
```

Number theory (5)

5.1 Modular arithmetic

Modular Arithmetic.h

struct Mod {

Description: Operators for modular arithmetic. You need to set mod to some number first and then you can use the structure.

```
"euclid.h" 35bfea, 18 lines
const 11 mod = 17; // change to something else
```

```
11 x;
Mod(ll xx) : x(xx) {}
Mod operator+(Mod b) { return Mod((x + b.x) % mod); }
Mod operator-(Mod b) { return Mod((x - b.x + mod) % mod); }
Mod operator*(Mod b) { return Mod((x * b.x) % mod); }
Mod operator/(Mod b) { return *this * invert(b); }
Mod invert(Mod a) {
    ll x, y, g = euclid(a.x, mod, x, y);
    assert(g == 1); return Mod((x + mod) % mod);
}
Mod operator^(ll e) {
    if (!e) return Mod(1);
    Mod r = *this ^ (e / 2); r = r * r;
    return e&l ? *this * r : r;
}
};
```

ModInverse.h

Description: Pre-computation of modular inverses. Assumes LIM \leq mod and that mod is a prime.

6684f. 3 lines

```
const 11 mod = 1000000007, LIM = 200000;
11* inv = new 11[LIM] - 1; inv[1] = 1;
rep(i,2,LIM) inv[i] = mod - (mod / i) * inv[mod % i] % mod;
```

ModPow.h

b83e45, 8 lines

```
const 11 mod = 1000000007; // faster if const

11 modpow(11 b, 11 e) {
    l1 ans = 1;
    for (; e; b = b * b % mod, e /= 2)
        if (e & 1) ans = ans * b % mod;
    return ans;
}
```

ModLog.h

Description: Returns the smallest x > 0 s.t. $a^x = b \pmod{m}$, or -1 if no such x exists. modLog(a,1,m) can be used to calculate the order of a.

Time: $\mathcal{O}(\sqrt{m})$

ModSum.h

Description: Sums of mod'ed arithmetic progressions. modsum(to, c, k, m) = $\sum_{i=0}^{\text{to}-1} (ki+c)\%m$. divsum is similar but for floored division.

Time: $\log(m)$, with a large constant.

m), with a large constant. 5c5bc5, 16 lines

```
typedef unsigned long long ull;
ull sumsq(ull to) { return to / 2 * ((to-1) | 1); }

ull divsum(ull to, ull c, ull k, ull m) {
   ull res = k / m * sumsq(to) + c / m * to;
   k %= m; c %= m;
   if (!k) return res;
   ull to2 = (to * k + c) / m;
   return res + (to - 1) * to2 - divsum(to2, m-1 - c, m, k);
}
```

```
11 modsum(ull to, 11 c, 11 k, 11 m) {
  c = ((c % m) + m) % m;
  k = ((k % m) + m) % m;
  return to * c + k * sumsq(to) - m * divsum(to, c, k, m);
}
```

ModMulLL.h

Description: Calculate $a \cdot b \mod c$ (or $a^b \mod c$) for $0 \le a, b \le c \le 7.2 \cdot 10^{18}$. **Time:** $\mathcal{O}(1)$ for modmul, $\mathcal{O}(\log b)$ for modpow

```
typedef unsigned long long ull;
ull modmul(ull a, ull b, ull M) {
    ll ret = a * b - M * ull(1.L / M * a * b);
    return ret + M * (ret < 0) - M * (ret >= (ll)M);
}
ull modpow(ull b, ull e, ull mod) {
    ull ans = 1;
    for (; e; b = modmul(b, b, mod), e /= 2)
        if (e & 1) ans = modmul(ans, b, mod);
    return ans;
}
```

ModSqrt.h

Description: Tonelli-Shanks algorithm for modular square roots. Finds x s.t. $x^2 = a \pmod{p}$ (-x gives the other solution).

Time: $\mathcal{O}\left(\log^2 p\right)$ worst case, $\mathcal{O}\left(\log p\right)$ for most p

```
19a793, 24 lines
ll sqrt(ll a, ll p) {
 a \% = p; if (a < 0) a += p;
  if (a == 0) return 0;
  assert (modpow(a, (p-1)/2, p) == 1); // else no solution
  if (p % 4 == 3) return modpow(a, (p+1)/4, p);
  // a^{(n+3)/8} \text{ or } 2^{(n+3)/8} * 2^{(n-1)/4} \text{ works if } p \% 8 == 5
  11 s = p - 1, n = 2;
  int r = 0, m;
  while (s % 2 == 0)
   ++r, s /= 2;
  while (modpow(n, (p-1) / 2, p) != p-1) ++n;
  11 x = modpow(a, (s + 1) / 2, p);
 ll b = modpow(a, s, p), g = modpow(n, s, p);
  for (;; r = m) {
   11 t = b;
    for (m = 0; m < r && t != 1; ++m)
     t = t * t % p;
    if (m == 0) return x;
   11 \text{ gs} = \text{modpow}(q, 1LL << (r - m - 1), p);
    q = qs * qs % p;
   x = x * gs % p;
   b = b * g % p;
```

5.2 Primality

FastEratosthenes.h

Description: Prime sieve for generating all primes smaller than LIM. **Time:** LIM=1e9 ≈ 1.5 s $_{6b2912,\ 20\ lines}$

```
const int LIM = 1e6;
bitset<LIM> isPrime;
vi eratosthenes() {
  const int S = (int)round(sqrt(LIM)), R = LIM / 2;
  vi pr = {2}, sieve(S+1); pr.reserve(int(LIM/log(LIM)*1.1));
  vector<pii> cp;
  for (int i = 3; i <= S; i += 2) if (!sieve[i]) {
    cp.push_back({i, i * i / 2});
  for (int j = i * i; j <= S; j += 2 * i) sieve[j] = 1;</pre>
```

```
for (int L = 1; L <= R; L += S) {
    array<bool, S> block{};
    for (auto &[p, idx] : cp)
        for (int i=idx; i < S+L; idx = (i+=p)) block[i-L] = 1;
    rep(i,0,min(S, R - L))
        if (!block[i]) pr.push_back((L + i) * 2 + 1);
}
for (int i : pr) isPrime[i] = 1;
return pr;</pre>
```

MillerRabin.h

Description: Deterministic Miller-Rabin primality test. Guaranteed to work for numbers up to $7\cdot 10^{18}$; for larger numbers, use Python and extend A randomly.

Time: 7 times the complexity of $a^b \mod c$.

```
"ModMullL.h" 60dcd1, 12 lines
bool isPrime(ull n) {
   if (n < 2 || n % 6 % 4 != 1) return (n | 1) == 3;
   ull A[] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022},
        s = __builtin_ctzll(n-1), d = n >> s;
   for (ull a : A) { // ^ count trailing zeroes
      ull p = modpow(a%n, d, n), i = s;
      while (p != 1 && p != n - 1 && a % n && i--)
        p = modmul(p, p, n);
   if (p != n-1 && i != s) return 0;
   }
   return 1;
```

Factor.h

Description: Pollard-rho randomized factorization algorithm. Returns prime factors of a number, in arbitrary order (e.g. 2299 -> {11, 19, 11}).

Time: $\mathcal{O}\left(n^{1/4}\right)$, less for numbers with small factors.

```
"ModMulLL.h", "MillerRabin.h"
                                                     a33cf6, 18 lines
ull pollard(ull n) {
 auto f = [n](ull x) \{ return modmul(x, x, n) + 1; \};
 ull x = 0, y = 0, t = 30, prd = 2, i = 1, q;
 while (t++ % 40 || __gcd(prd, n) == 1) {
   if (x == y) x = ++i, y = f(x);
   if ((q = modmul(prd, max(x,y) - min(x,y), n))) prd = q;
   x = f(x), y = f(f(y));
 return __gcd(prd, n);
vector<ull> factor(ull n) {
 if (n == 1) return {};
 if (isPrime(n)) return {n};
 ull x = pollard(n);
 auto 1 = factor(x), r = factor(n / x);
 1.insert(l.end(), all(r));
 return 1;
```

5.3 Divisibility

euclid.h

Description: Finds two integers x and y, such that $ax + by = \gcd(a, b)$. If you just need gcd, use the built in $_\gcd$ instead. If a and b are coprime, then x is the inverse of $a \pmod{b}$.

```
11 euclid(l1 a, l1 b, l1 &x, l1 &y) {
  if (!b) return x = 1, y = 0, a;
  l1 d = euclid(b, a % b, y, x);
  return y -= a/b * x, d;
}
```

CRT

Description: Chinese Remainder Theorem. crt (a, m, b, n) computes x such that $x \equiv a \pmod{m}$, $x \equiv b \pmod{n}$. If |a| < m and |b| < n, x will obey $0 \le x < \operatorname{lcm}(m,n)$. Assumes $mn < 2^{62}$. **Time:** $\log(n)$

5.3.1 Bézout's identity

For $a\neq$, $b\neq 0$, then $d=\gcd(a,b)$ is the smallest positive integer for which there are integer solutions to

$$ax + by = d$$

If (x, y) is one solution, then all solutions are given by

$$\left(x + \frac{kb}{\gcd(a,b)}, y - \frac{ka}{\gcd(a,b)}\right), \quad k \in \mathbb{Z}$$

phiFunction.h

Description: Euler's ϕ function is defined as $\phi(n) := \#$ of positive integers $\leq n$ that are coprime with n. $\phi(1) = 1$, p prime $\Rightarrow \phi(p^k) = (p-1)p^{k-1}$, m, n coprime $\Rightarrow \phi(mn) = \phi(m)\phi(n)$. If $n = p_1^{k_1} p_2^{k_2} ... p_r^{k_r}$ then $\phi(n) = (p_1 - 1)p_1^{k_1 - 1} ... (p_r - 1)p_r^{k_r - 1}$. $\phi(n) = n \cdot \prod_{p|n} (1 - 1/p)$. $\sum_{d|n} \phi(d) = n$, $\sum_{1 \leq k \leq n, \gcd(k, n) = 1} k = n\phi(n)/2, n > 1$

Euler's thm: a, n coprime $\Rightarrow a^{\phi(n)} \equiv 1 \pmod{n}$.

Fermat's little thm: $p \text{ prime } \Rightarrow a^{p-1} \equiv 1 \pmod{p} \ \forall a.$

cf7d6d, 8 lines

```
const int LIM = 5000000;
int phi[LIM];

void calculatePhi() {
  rep(i,0,LIM) phi[i] = i&1 ? i : i/2;
  for (int i = 3; i < LIM; i += 2) if(phi[i] == i)
      for (int j = i; j < LIM; j += i) phi[j] -= phi[j] / i;
}</pre>
```

5.4 Fractions

ContinuedFractions.h

Description: Given N and a real number $x \ge 0$, finds the closest rational approximation p/q with $p, q \le N$. It will obey $|p/q - x| \le 1/qN$.

For consecutive convergents, $p_{k+1}q_k - q_{k+1}p_k = (-1)^k$. $(p_k/q_k$ alternates between > x and < x.) If x is rational, y eventually becomes ∞ ; if x is the root of a degree 2 polynomial the a's eventually become cyclic.

Time: $\mathcal{O}\left(\log N\right)$

dd6c5e, 21 lines

```
typedef double d; // for N ~ 1e7; long double for N ~ 1e9
pair<11, 11> approximate(d x, 11 N) {
    11 LP = 0, LQ = 1, P = 1, Q = 0, inf = LLONG_MAX; d y = x;
    for (;;) {
        11 lim = min(P ? (N-LP) / P : inf, Q ? (N-LQ) / Q : inf),
            a = (11) floor(y), b = min(a, lim),
            NP = b*P + LP, NQ = b*Q + LQ;
    if (a > b) {
            // If b > a/2, we have a semi-convergent that gives us a
            // better approximation; if b = a/2, we *may* have one.
            // Return {P, Q} here for a more canonical approximation.
            return (abs(x - (d)NP / (d)NQ) < abs(x - (d)P / (d)Q)) ?</pre>
```

FracBinarySearch IntPerm multinomial

make_pair(NP, NQ) : make_pair(P, Q); if (abs(y = 1/(y - (d)a)) > 3*N) { return {NP, NQ}; } LP = P; P = NP; LQ = Q; Q = NQ; }

FracBinarySearch.h

Description: Given f and N, finds the smallest fraction $p/q \in [0,1]$ such that f(p/q) is true, and $p, q \leq N$. You may want to throw an exception from f if it finds an exact solution, in which case N can be removed.

 $\begin{array}{lll} \textbf{Usage:} \;\; \texttt{fracBS([](Frac f)} \;\; \{ \;\; \texttt{return f.p>=3*f.q;} \;\; \}, \;\; 10); \;\; // \;\; \{1,3\} \\ \textbf{Time:} \;\; \mathcal{O}\left(\log(N)\right) & 27ab3e, \; 25 \; \text{lines} \end{array}$

```
struct Frac { ll p, q; };
template<class F>
Frac fracBS(F f, ll N) {
 bool dir = 1, A = 1, B = 1;
  Frac lo{0, 1}, hi{1, 1}; // Set hi to 1/0 to search (0, N)
  if (f(lo)) return lo;
  assert(f(hi));
  while (A || B) {
   11 adv = 0, step = 1; // move hi if dir, else lo
    for (int si = 0; step; (step *= 2) >>= si) {
     Frac mid{lo.p * adv + hi.p, lo.q * adv + hi.q};
     if (abs(mid.p) > N || mid.q > N || dir == !f(mid)) {
       adv -= step; si = 2;
   hi.p += lo.p * adv;
   hi.q += lo.q * adv;
    dir = !dir;
    swap(lo, hi);
    A = B; B = !!adv;
  return dir ? hi : lo;
```

5.5 Pythagorean Triples

The Pythagorean triples are uniquely generated by

$$a = k \cdot (m^2 - n^2), b = k \cdot (2mn), c = k \cdot (m^2 + n^2),$$

with m > n > 0, k > 0, $m \perp n$, and either m or n even.

5.6 Primes

p=962592769 is such that $2^{21}\mid p-1$, which may be useful. For hashing use 970592641 (31-bit number), 31443539979727 (45-bit), 3006703054056749 (52-bit). There are 78498 primes less than 1000000.

Primitive roots exist modulo any prime power p^a , except for p=2, a>2, and there are $\phi(\phi(p^a))$ many. For p=2, a>2, the group $\mathbb{Z}_{2^a}^{\times}$ is instead isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_{2^{a-2}}$.

5.7 Estimates

$$\sum_{d|n} d = O(n \log \log n).$$

The number of divisors of n is at most around 100 for n < 5e4, 500 for n < 1e7, 2000 for n < 1e10, 200 000 for n < 1e19.

.8 Mobius Function

$$\mu(n) = \begin{cases} 0 & n \text{ is not square free} \\ 1 & n \text{ has even number of prime factors} \\ -1 & n \text{ has odd number of prime factors} \end{cases}$$

Mobius Inversion:

$$g(n) = \sum_{d|n} f(d) \Leftrightarrow f(n) = \sum_{d|n} \mu(d)g(n/d)$$

Other useful formulas/forms:

$$\sum_{d|n} \mu(d) = [n = 1] \text{ (very useful)}$$

$$g(n) = \sum_{n|d} f(d) \Leftrightarrow f(n) = \sum_{n|d} \mu(d/n)g(d)$$

$$g(n) = \sum_{1 \le m \le n} f(\left|\frac{n}{m}\right|) \Leftrightarrow f(n) = \sum_{1 \le m \le n} \mu(m)g(\left|\frac{n}{m}\right|)$$

Combinatorial (6)

6.1 Permutations

6.1.1 Factorial

n						9		
n!	126	5 24 1	20 72	0 5040	40320	362880	3628800	•
n	11	19	13	1/	1 1	5 16	17	
n!	4.0e7	7 4.8e	8 6.2e	9 8.7e	10 1.3	e12 2.1e	13 3.6e14 0 171	
n	20	25	30	40	50 1	.00 15	0 171	
$\overline{n}!$	2e18	2e25	3e32	8e47 :	3e64 9€	$e157 \ 6e2$	$62 > DBL_M$	AX

ntPerm.l

Description: Permutation -> integer conversion. (Not order preserving.) Integer -> permutation can use a lookup table. **Time:** $\mathcal{O}(n)$

6.1.2 Cycles

Let $g_S(n)$ be the number of *n*-permutations whose cycle lengths all belong to the set S. Then

$$\sum_{n=0}^{\infty} g_S(n) \frac{x^n}{n!} = \exp\left(\sum_{n \in S} \frac{x^n}{n}\right)$$

6.1.3 Derangements

Permutations of a set such that none of the elements appear in their original position.

$$D(n) = (n-1)(D(n-1) + D(n-2)) = nD(n-1) + (-1)^n = \left\lfloor \frac{n!}{e} \right\rfloor$$

6.1.4 Burnside's lemma

Given a group G of symmetries and a set X, the number of elements of X up to symmetry equals

$$\frac{1}{|G|} \sum_{g \in G} |X^g|,$$

where X^g are the elements fixed by g (g.x = x).

If f(n) counts "configurations" (of some sort) of length n, we can ignore rotational symmetry using $G = \mathbb{Z}_n$ to get

$$g(n) = \frac{1}{n} \sum_{k=0}^{n-1} f(\gcd(n,k)) = \frac{1}{n} \sum_{k|n} f(k)\phi(n/k).$$

6.2 Partitions and subsets

6.2.1 Partition function

Number of ways of writing n as a sum of positive integers, disregarding the order of the summands.

$$p(0) = 1, \ p(n) = \sum_{k \in \mathbb{Z} \setminus \{0\}} (-1)^{k+1} p(n - k(3k - 1)/2)$$
$$p(n) \sim 0.145/n \cdot \exp(2.56\sqrt{n})$$

6.2.2 Lucas' Theorem

Let n, m be non-negative integers and p a prime. Write $n = n_k p^k + ... + n_1 p + n_0$ and $m = m_k p^k + ... + m_1 p + m_0$. Then $\binom{n}{m} \equiv \prod_{i=0}^k \binom{n_i}{m_i} \pmod{p}$.

6.2.3 Binomials

multinomial.h

Description: Computes
$$\binom{k_1 + \dots + k_n}{k_1, k_2, \dots, k_n} = \frac{(\sum k_i)!}{k_1!k_2!\dots k_n!}$$
.

11 multinomial (vi& v) {
11 c = 1, m = v.empty() ? 1 : v[0];
rep(i,1,sz(v)) rep(j,0,v[i])
c = c * ++m / (j+1);
return c;

6.3 General purpose numbers

6.3.1 Bernoulli numbers

EGF of Bernoulli numbers is $B(t) = \frac{t}{e^t - 1}$ (FFT-able). $B[0, \ldots] = [1, -\frac{1}{2}, \frac{1}{6}, 0, -\frac{1}{30}, 0, \frac{1}{42}, \ldots]$

Sums of powers:

$$\sum_{k=1}^{n} n^{m} = \frac{1}{m+1} \sum_{k=0}^{m} {m+1 \choose k} B_{k} \cdot (n+1)^{m+1-k}$$

Euler-Maclaurin formula for infinite sums:

$$\sum_{i=m}^{\infty} f(i) = \int_{m}^{\infty} f(x)dx - \sum_{k=1}^{\infty} \frac{B_k}{k!} f^{(k-1)}(m)$$

11

BellmanFord FloydWarshall TopoSort PushRelabel

- $\approx \int_{m}^{\infty} f(x)dx + \frac{f(m)}{2} \frac{f'(m)}{12} + \frac{f'''(m)}{720} + O(f^{(5)}(m))$
- 6.3.2 Stirling numbers of the first kind

Number of permutations on n items with k cycles.

$$c(n,k) = c(n-1,k-1) + (n-1)c(n-1,k), \ c(0,0) = 1$$

$$\sum_{k=0}^{n} c(n,k)x^{k} = x(x+1)\dots(x+n-1)$$

$$c(8,k) = 8,0,5040,13068,13132,6769,1960,322,28,1 \\ c(n,2) = 0,0,1,3,11,50,274,1764,13068,109584,\dots$$

6.3.3 Eulerian numbers

Number of permutations $\pi \in S_n$ in which exactly k elements are greater than the previous element. k j:s s.t. $\pi(j) > \pi(j+1)$, k+1 j:s s.t. $\pi(j) > j$, k j:s s.t. $\pi(j) > j$.

$$E(n,k) = (n-k)E(n-1,k-1) + (k+1)E(n-1,k)$$

$$E(n,0) = E(n,n-1) = 1$$

$$E(n,k) = \sum_{j=0}^{k} (-1)^{j} \binom{n+1}{j} (k+1-j)^{n}$$

6.3.4 Stirling numbers of the second kind

Partitions of n distinct elements into exactly k groups.

$$S(n,k) = S(n-1,k-1) + kS(n-1,k)$$

$$S(n,1) = S(n,n) = 1$$

$$S(n,k) = \frac{1}{k!} \sum_{i=0}^{k} (-1)^{k-j} \binom{k}{j} j^{n}$$

6.3.5 Bell numbers

Total number of partitions of n distinct elements. B(n) = 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, For <math>p prime,

$$B(p^m + n) \equiv mB(n) + B(n+1) \pmod{p}$$

6.3.6 Labeled unrooted trees

```
# on n vertices: n^{n-2} # on k existing trees of size n_i: n_1 n_2 \cdots n_k n^{k-2} # with degrees d_i: (n-2)!/((d_1-1)!\cdots(d_n-1)!)
```

6.3.7 Catalan numbers

$$C_n = \frac{1}{n+1} {2n \choose n} = {2n \choose n} - {2n \choose n+1} = \frac{(2n)!}{(n+1)!n!}$$

$$C_0 = 1, \ C_{n+1} = \frac{2(2n+1)}{n+2} C_n, \ C_{n+1} = \sum_{n=1}^{\infty} C_i C_{n-n}$$

 $C_n = 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, \dots$

• sub-diagonal monotone paths in an $n \times n$ grid.

- \bullet strings with *n* pairs of parenthesis, correctly nested.
- binary trees with with n+1 leaves (0 or 2 children).
- ordered trees with n+1 vertices.
- ways a convex polygon with n + 2 sides can be cut into triangles by connecting vertices with straight lines.
- \bullet permutations of [n] with no 3-term increasing subseq.

Graph (7)

7.1 Fundamentals

BellmanFord.h

Description: Calculates shortest paths from s in a graph that might have negative edge weights. Unreachable nodes get dist = inf; nodes reachable through negative-weight cycles get dist = -inf. Assumes $V^2 \max |w_i| < \sim 2^{63}$. **Time:** $\mathcal{O}(VE)$

const ll inf = LLONG MAX; **struct** Ed { **int** a, b, w, s() { **return** a < b ? a : -a; }}; struct Node { ll dist = inf; int prev = -1; }; void bellmanFord(vector<Node>& nodes, vector<Ed>& eds, int s) { nodes[s].dist = 0;sort(all(eds), [](Ed a, Ed b) { return a.s() < b.s(); });</pre> int lim = sz(nodes) / 2 + 2; // /3+100 with shuffled vertices rep(i,0,lim) for (Ed ed : eds) { Node cur = nodes[ed.a], &dest = nodes[ed.b]; if (abs(cur.dist) == inf) continue; 11 d = cur.dist + ed.w; if (d < dest.dist) {</pre> dest.prev = ed.a; dest.dist = (i < lim-1 ? d : -inf);rep(i,0,lim) **for** (Ed e : eds) { if (nodes[e.a].dist == -inf) nodes[e.b].dist = -inf;

FlovdWarshall.h

Description: Calculates all-pairs shortest path in a directed graph that might have negative edge weights. Input is an distance matrix m, where $m[i][j] = \inf$ if i and j are not adjacent. As output, m[i][j] is set to the shortest distance between i and j, inf if no path, or -inf if the path goes through a negative-weight cycle.

Time: O(N³)
const ll inf = 1LL << 62;
void floydWarshall(vector<vector<1l>>& m) {
 int n = sz(m);
 rep(i,0,n) m[i][i] = min(m[i][i], 0LL);
 rep(k,0,n) rep(i,0,n) rep(j,0,n)
 if (m[i][k] != inf && m[k][j] != inf) {
 auto newDist = max(m[i][k] + m[k][j], -inf);
 m[i][j] = min(m[i][j], newDist);
 }
 rep(k,0,n) if (m[k][k] < 0) rep(i,0,n) rep(j,0,n)
 if (m[i][k] != inf && m[k][j] != inf) m[i][j] = -inf;
}</pre>

TopoSort.h

Description: Topological sorting. Given is an oriented graph. Output is an ordering of vertices, such that there are edges only from left to right. If there are cycles, the returned list will have size smaller than n – nodes reachable from cycles will not be returned.

```
vi topoSort(const vector<vi>& gr) {
  vi indeg(sz(gr)), ret;
  for (auto& li : gr) for (int x : li) indeg[x]++;
  queue<int> q; // use priority_queue for lexic. largest ans.
  rep(i,0,sz(gr)) if (indeg[i] == 0) q.push(i);
  while (!q.empty()) {
   int i = q.front(); // top() for priority queue
   ret.push_back(i);
  q.pop();
  for (int x : gr[i])
    if (--indeg[x] == 0) q.push(x);
}
return ret;
```

7.2 Network flow

hi = H[u];

PushRelabel.h

Time: $\mathcal{O}(|V| + |E|)$

Description: Push-relabel using the highest label selection rule and the gap heuristic. Quite fast in practice. To obtain the actual flow, look at positive values only.

```
Time: \mathcal{O}\left(V^2\sqrt{E}\right)
struct PushRelabel {
  struct Edge {
    int dest, back;
    11 f, c;
  vector<vector<Edge>> q;
  vector<ll> ec:
 vector<Edge*> cur;
  vector<vi> hs; vi H;
  PushRelabel(int n): q(n), ec(n), cur(n), hs(2*n), H(n) {}
  void addEdge(int s, int t, ll cap, ll rcap=0) {
    if (s == t) return;
    g[s].push_back({t, sz(g[t]), 0, cap});
    q[t].push_back({s, sz(q[s])-1, 0, rcap});
 void addFlow(Edge& e, ll f) {
    Edge &back = g[e.dest][e.back];
    if (!ec[e.dest] && f) hs[H[e.dest]].push_back(e.dest);
    e.f += f; e.c -= f; ec[e.dest] += f;
    back.f -= f; back.c += f; ec[back.dest] -= f;
  11 calc(int s, int t) {
    int v = sz(g); H[s] = v; ec[t] = 1;
    vi co(2*v); co[0] = v-1;
    rep(i,0,v) cur[i] = g[i].data();
    for (Edge& e : g[s]) addFlow(e, e.c);
    for (int hi = 0;;) {
      while (hs[hi].empty()) if (!hi--) return -ec[s];
      int u = hs[hi].back(); hs[hi].pop_back();
      while (ec[u] > 0) // discharge u
        if (cur[u] == g[u].data() + sz(g[u])) {
          H[u] = 1e9;
          for (Edge& e : g[u]) if (e.c && H[u] > H[e.dest]+1)
            H[u] = H[e.dest]+1, cur[u] = &e;
          if (++co[H[u]], !--co[hi] && hi < v)</pre>
            rep(i, 0, v) if (hi < H[i] && H[i] < v)
              --co[H[i]], H[i] = v + 1;
```

```
} else if (cur[u]->c && H[u] == H[cur[u]->dest]+1)
        addFlow(*cur[u], min(ec[u], cur[u]->c));
      else ++cur[u];
bool leftOfMinCut(int a) { return H[a] >= sz(g); }
```

MinCostMaxFlow.h

Description: Min-cost max-flow. cap[i][j] != cap[j][i] is allowed; double edges are not. If costs can be negative, call setpi before maxflow, but note that negative cost cycles are not supported. To obtain the actual flow, look at positive values only.

```
Time: Approximately \mathcal{O}(E^2)
                                                      fe85cc, 81 lines
#include <bits/extc++.h>
const 11 INF = numeric limits<11>::max() / 4;
typedef vector<ll> VL;
struct MCMF {
 int N;
  vector<vi> ed, red;
  vector<VL> cap, flow, cost;
  vi seen;
 VL dist, pi;
  vector<pii> par;
  MCMF (int N) :
   N(N), ed(N), red(N), cap(N, VL(N)), flow(cap), cost(cap),
   seen(N), dist(N), pi(N), par(N) {}
  void addEdge(int from, int to, ll cap, ll cost) {
    this->cap[from][to] = cap;
   this->cost[from][to] = cost;
   ed[from].push_back(to);
   red[to].push_back(from);
  void path(int s) {
    fill(all(seen), 0);
    fill(all(dist), INF);
   dist[s] = 0; ll di;
    __gnu_pbds::priority_queue<pair<11, int>> q;
   vector<decltype(q)::point_iterator> its(N);
   q.push({0, s});
   auto relax = [&](int i, ll cap, ll cost, int dir) {
     11 val = di - pi[i] + cost;
     if (cap && val < dist[i]) {
       dist[i] = val;
       par[i] = \{s, dir\};
       if (its[i] == q.end()) its[i] = q.push({-dist[i], i});
        else q.modify(its[i], {-dist[i], i});
   };
    while (!q.empty()) {
     s = q.top().second; q.pop();
     seen[s] = 1; di = dist[s] + pi[s];
     for (int i : ed[s]) if (!seen[i])
       relax(i, cap[s][i] - flow[s][i], cost[s][i], 1);
      for (int i : red[s]) if (!seen[i])
       relax(i, flow[i][s], -cost[i][s], 0);
   rep(i, 0, N) pi[i] = min(pi[i] + dist[i], INF);
```

```
pair<11, 11> maxflow(int s, int t) {
   11 totflow = 0, totcost = 0;
    while (path(s), seen[t]) {
     11 fl = INF;
      for (int p,r,x = t; tie(p,r) = par[x], x != s; x = p)
       fl = min(fl, r ? cap[p][x] - flow[p][x] : flow[x][p]);
      for (int p,r,x = t; tie(p,r) = par[x], x != s; x = p)
       if (r) flow[p][x] += fl;
       else flow[x][p] -= fl;
   rep(i,0,N) rep(j,0,N) totcost += cost[i][j] * flow[i][j];
   return {totflow, totcost};
  // If some costs can be negative, call this before maxflow:
 void setpi(int s) { // (otherwise, leave this out)
   fill(all(pi), INF); pi[s] = 0;
   int it = N, ch = 1; ll v;
    while (ch-- && it--)
     rep(i,0,N) if (pi[i] != INF)
       for (int to : ed[i]) if (cap[i][to])
         if ((v = pi[i] + cost[i][to]) < pi[to])</pre>
           pi[to] = v, ch = 1;
    assert(it >= 0); // negative cost cycle
};
```

EdmondsKarp.h

Description: Flow algorithm with guaranteed complexity $O(VE^2)$. To get edge flow values, compare capacities before and after, and take the positive values only.

```
template < class T > T edmonds Karp (vector < unordered map < int, T >> &
    graph, int source, int sink) {
 assert (source != sink);
 T flow = 0;
 vi par(sz(graph)), q = par;
  for (::) {
    fill(all(par), -1);
   par[source] = 0;
    int ptr = 1;
    q[0] = source;
    rep(i,0,ptr) {
      int x = q[i];
      for (auto e : graph[x]) {
        if (par[e.first] == -1 && e.second > 0) {
          par[e.first] = x;
          q[ptr++] = e.first;
          if (e.first == sink) goto out;
    return flow;
011† •
    T inc = numeric_limits<T>::max();
    for (int y = sink; y != source; y = par[y])
     inc = min(inc, graph[par[y]][y]);
    flow += inc;
    for (int y = sink; y != source; y = par[y]) {
      int p = par[v];
     if ((graph[p][y] -= inc) <= 0) graph[p].erase(y);</pre>
      graph[y][p] += inc;
```

Description: After running max-flow, the left side of a min-cut from s to tis given by all vertices reachable from s, only traversing edges with positive residual capacity.

GlobalMinCut.h

Description: Find a global minimum cut in an undirected graph, as represented by an adjacency matrix.

Time: $\mathcal{O}(V^3)$

8b0e19, 21 lines

```
pair<int, vi> globalMinCut(vector<vi> mat) {
  pair<int, vi> best = {INT MAX, {}};
  int n = sz(mat);
  vector<vi> co(n);
  rep(i, 0, n) co[i] = {i};
  rep(ph,1,n) {
   vi w = mat[0];
    size_t s = 0, t = 0;
    rep(it,0,n-ph) { //O(V^2) \rightarrow O(E log V) with prio. queue}
      w[t] = INT_MIN;
      s = t, t = max_{element(all(w))} - w.begin();
      rep(i, 0, n) w[i] += mat[t][i];
    best = min(best, \{w[t] - mat[t][t], co[t]\});
    co[s].insert(co[s].end(), all(co[t]));
    rep(i,0,n) mat[s][i] += mat[t][i];
    rep(i, 0, n) mat[i][s] = mat[s][i];
    mat[0][t] = INT_MIN;
 return best:
```

GomorvHu.h

Description: Given a list of edges representing an undirected flow graph, returns edges of the Gomory-Hu tree. The max flow between any pair of vertices is given by minimum edge weight along the Gomory-Hu tree path.

Time: $\mathcal{O}(V)$ Flow Computations

```
"PushRelabel.h"
                                                     0418b3, 13 lines
typedef array<11, 3> Edge;
vector<Edge> gomoryHu(int N, vector<Edge> ed) {
 vector<Edge> tree;
 vi par(N);
 rep(i,1,N) {
    PushRelabel D(N); // Dinic also works
    for (Edge t : ed) D.addEdge(t[0], t[1], t[2], t[2]);
    tree.push_back({i, par[i], D.calc(i, par[i])});
    rep(j,i+1,N)
      if (par[j] == par[i] && D.leftOfMinCut(j)) par[j] = i;
 return tree;
```

7.3 Matching

hopcroftKarp.h

Description: Fast bipartite matching algorithm. Graph g should be a list of neighbors of the left partition, and btoa should be a vector full of -1's of the same size as the right partition. Returns the size of the matching. btoa[i]will be the match for vertex i on the right side, or -1 if it's not matched. Usage: vi btoa(m, -1); hopcroftKarp(g, btoa);

```
Time: \mathcal{O}\left(\sqrt{V}E\right)
```

f612e4, 42 lines bool dfs(int a, int L, vector<vi>& q, vi& btoa, vi& A, vi& B) { if (A[a] != L) return 0; A[a] = -1;for (int b : g[a]) if (B[b] == L + 1) { if (btoa[b] == -1 || dfs(btoa[b], L + 1, g, btoa, A, B))

```
return btoa[b] = a, 1;
  return 0;
int hopcroftKarp(vector<vi>& g, vi& btoa) {
  int res = 0;
  vi A(g.size()), B(btoa.size()), cur, next;
  for (;;) {
    fill(all(A), 0);
    fill(all(B), 0);
    cur.clear();
    for (int a : btoa) if (a != -1) A[a] = -1;
    rep(a, 0, sz(q)) if(A[a] == 0) cur.push back(a);
    for (int lay = 1;; lay++) {
     bool islast = 0;
     next.clear();
      for (int a : cur) for (int b : g[a]) {
       if (btoa[b] == -1) {
         B[b] = lay;
          islast = 1;
        else if (btoa[b] != a && !B[b]) {
         B[b] = lay;
          next.push_back(btoa[b]);
      if (islast) break;
     if (next.empty()) return res;
      for (int a : next) A[a] = lay;
      cur.swap(next);
    rep(a, 0, sz(g))
      res += dfs(a, 0, g, btoa, A, B);
```

DFSMatching.h

Description: Simple bipartite matching algorithm. Graph q should be a list of neighbors of the left partition, and btoa should be a vector full of -1's of the same size as the right partition. Returns the size of the matching. btoa[i] will be the match for vertex i on the right side, or -1 if it's not matched.

Usage: vi btoa(m, -1); dfsMatching(g, btoa);

```
Time: \mathcal{O}(VE)
bool find(int j, vector<vi>& g, vi& btoa, vi& vis) {
  if (btoa[j] == -1) return 1;
  vis[j] = 1; int di = btoa[j];
  for (int e : q[di])
   if (!vis[e] && find(e, q, btoa, vis)) {
     btoa[e] = di;
      return 1;
  return 0;
int dfsMatching(vector<vi>& q, vi& btoa) {
  vi vis;
  rep(i, 0, sz(q)) {
   vis.assign(sz(btoa), 0);
    for (int j : g[i])
     if (find(j, g, btoa, vis)) {
       btoa[j] = i;
       break:
  return sz(btoa) - (int)count(all(btoa), -1);
```

MinimumVertexCover.h

Description: Finds a minimum vertex cover in a bipartite graph. The size is the same as the size of a maximum matching, and the complement is a maximum independent set.

```
"DFSMatching.h"
                                                    da4196, 20 lines
vi cover(vector<vi>& q, int n, int m) {
 vi match(m, -1);
 int res = dfsMatching(g, match);
 vector<bool> lfound(n, true), seen(m);
 for (int it : match) if (it != -1) lfound[it] = false;
 vi q, cover;
 rep(i,0,n) if (lfound[i]) q.push_back(i);
 while (!q.empty()) {
   int i = q.back(); q.pop_back();
   lfound[i] = 1;
   for (int e : g[i]) if (!seen[e] && match[e] != -1) {
     seen[e] = true;
     g.push_back(match[e]);
 rep(i,0,n) if (!lfound[i]) cover.push_back(i);
 rep(i,0,m) if (seen[i]) cover.push back(n+i);
 assert(sz(cover) == res);
 return cover;
```

WeightedMatching.h

Description: Given a weighted bipartite graph, matches every node on the left with a node on the right such that no nodes are in two matchings and the sum of the edge weights is minimal. Takes cost[N][M], where cost[i][j] =cost for L[i] to be matched with R[j] and returns (min cost, match), where L[i] is matched with R[match[i]]. Negate costs for max cost.

Time: $\mathcal{O}(N^2M)$ 1e0fe9, 31 lines

```
pair<int, vi> hungarian(const vector<vi> &a) {
 if (a.empty()) return {0, {}};
 int n = sz(a) + 1, m = sz(a[0]) + 1;
 vi u(n), v(m), p(m), ans(n - 1);
 rep(i,1,n) {
   i = [0]q
    int j0 = 0; // add "dummy" worker 0
   vi dist(m, INT_MAX), pre(m, -1);
   vector<bool> done(m + 1);
   do { // dijkstra
     done[i0] = true;
     int i0 = p[j0], j1, delta = INT_MAX;
     rep(j,1,m) if (!done[j]) {
       auto cur = a[i0 - 1][j - 1] - u[i0] - v[j];
       if (cur < dist[j]) dist[j] = cur, pre[j] = j0;
       if (dist[j] < delta) delta = dist[j], j1 = j;</pre>
     rep(j,0,m) {
       if (done[j]) u[p[j]] += delta, v[j] -= delta;
       else dist[j] -= delta;
     j0 = j1;
   } while (p[j0]);
   while (j0) { // update alternating path
     int j1 = pre[j0];
     p[j0] = p[j1], j0 = j1;
 rep(j,1,m) if (p[j]) ans[p[j] - 1] = j - 1;
 return {-v[0], ans}; // min cost
```

GeneralMatching.h

Description: Matching for general graphs. Fails with probability N/mod. Time: $\mathcal{O}(N^3)$

```
"../numerical/MatrixInverse-mod.h"
                                                     cb1912, 40 lines
vector<pii> generalMatching(int N, vector<pii>& ed) {
 vector<vector<ll>> mat(N, vector<ll>(N)), A;
 for (pii pa : ed) {
   int a = pa.first, b = pa.second, r = rand() % mod;
    mat[a][b] = r, mat[b][a] = (mod - r) % mod;
  int r = matInv(A = mat), M = 2*N - r, fi, f;
  assert (r % 2 == 0);
  if (M != N) do {
    mat.resize(M, vector<ll>(M));
    rep(i,0,N) {
     mat[i].resize(M);
      rep(j,N,M) {
        int r = rand() % mod;
        mat[i][j] = r, mat[j][i] = (mod - r) % mod;
 } while (matInv(A = mat) != M);
 vi has (M, 1); vector<pii> ret;
  rep(it, 0, M/2) {
    rep(i,0,M) if (has[i])
      rep(j,i+1,M) if (A[i][j] && mat[i][j]) {
        fi = i; fj = j; goto done;
    } assert(0); done:
    if (fj < N) ret.emplace_back(fi, fj);</pre>
    has[fi] = has[fj] = 0;
    rep(sw, 0, 2) {
      11 a = modpow(A[fi][fj], mod-2);
      rep(i,0,M) if (has[i] && A[i][fj]) {
        ll b = A[i][fj] * a % mod;
        rep(j, 0, M) A[i][j] = (A[i][j] - A[fi][j] * b) % mod;
      swap(fi,fj);
 return ret;
```

7.4 DFS algorithms

SCC.h

Description: Finds strongly connected components in a directed graph. If vertices u, v belong to the same component, we can reach u from v and vice

Usage: scc(graph, [&](vi& v) { ... }) visits all components in reverse topological order. comp[i] holds the component index of a node (a component only has edges to components with lower index). ncomps will contain the number of components. Time: $\mathcal{O}\left(E+V\right)$

```
vi val, comp, z, cont;
int Time, ncomps;
template < class G, class F> int dfs (int j, G& g, F& f) {
 int low = val[j] = ++Time, x; z.push_back(j);
 for (auto e : g[j]) if (comp[e] < 0)</pre>
    low = min(low, val[e] ?: dfs(e,q,f));
 if (low == val[j]) {
      x = z.back(); z.pop_back();
      comp[x] = ncomps;
      cont.push_back(x);
    } while (x != \dot{j});
```

Usage: TwoSat ts(number of boolean variables);

```
f(cont); cont.clear();
ncomps++;
}
return val[j] = low;
}
template < class G, class F > void scc(G& g, F f) {
   int n = sz(g);
   val.assign(n, 0); comp.assign(n, -1);
   Time = ncomps = 0;
   rep(i,0,n) if (comp[i] < 0) dfs(i, g, f);
}</pre>
```

BiconnectedComponents.h

Description: Finds all biconnected components in an undirected graph, and runs a callback for the edges in each. In a biconnected component there are at least two distinct paths between any two nodes. Note that a node can be in several components. An edge which is not in a component is a bridge, i.e., not part of any cycle.

```
Usage: int eid = 0; ed.resize(N); for each edge (a,b) { ed[a].emplace.back(b, eid); ed[b].emplace.back(a, eid++); } bicomps([&] (const vi& edgelist) \{...\}); Time: \mathcal{O}(E+V)
```

2965e5, 33 lines

```
vi num, st;
vector<vector<pii>> ed;
int Time:
template<class F>
int dfs(int at, int par, F& f) {
  int me = num[at] = ++Time, e, y, top = me;
  for (auto pa : ed[at]) if (pa.second != par) {
    tie(y, e) = pa;
    if (num[y]) {
     top = min(top, num[y]);
     if (num[y] < me)
       st.push back(e);
    } else {
     int si = sz(st);
     int up = dfs(y, e, f);
      top = min(top, up);
     if (up == me) {
       st.push_back(e);
        f(vi(st.begin() + si, st.end()));
       st.resize(si);
     else if (up < me) st.push_back(e);</pre>
      else { /* e is a bridge */ }
  return top;
template<class F>
void bicomps(F f) {
  num.assign(sz(ed), 0);
  rep(i,0,sz(ed)) if (!num[i]) dfs(i, -1, f);
```

2sat.h

Description: Calculates a valid assignment to boolean variables a, b, c,... to a 2-SAT problem, so that an expression of the type (a|||b)&&(!a|||c)&&(d|||!b)&&... becomes true, or reports that it is unsatisfiable. Negated variables are represented by bit-inversions (\sim x).

```
ts.either(0, ~3); // Var 0 is true or var 3 is false
ts.setValue(2); // Var 2 is true
ts.atMostOne(\{0, \sim 1, 2\}); // <= 1 of vars 0, \sim 1 and 2 are true
ts.solve(); // Returns true iff it is solvable
ts.values[0..N-1] holds the assigned values to the vars
Time: \mathcal{O}(N+E), where N is the number of boolean variables, and E is the
number of clauses.
                                                      5f9706, 56 lines
struct TwoSat {
 int N;
 vector<vi> gr;
 vi values; // 0 = false, 1 = true
  TwoSat(int n = 0) : N(n), gr(2*n) {}
  int addVar() { // (optional)
    gr.emplace_back();
    gr.emplace back();
    return N++;
  void either(int f, int j) {
    f = \max(2*f, -1-2*f);
    j = \max(2*j, -1-2*j);
    gr[f].push back(j^1);
    gr[j].push_back(f^1);
  void setValue(int x) { either(x, x); }
  void atMostOne(const vi& li) { // (optional)
    if (sz(li) <= 1) return;</pre>
    int cur = ~li[0];
    rep(i,2,sz(li)) {
     int next = addVar();
     either(cur, ~li[i]);
     either(cur, next);
     either(~li[i], next);
     cur = ~next;
    either(cur, ~li[1]);
 vi val, comp, z; int time = 0;
 int dfs(int i) {
    int low = val[i] = ++time, x; z.push_back(i);
    for(int e : gr[i]) if (!comp[e])
     low = min(low, val[e] ?: dfs(e));
    if (low == val[i]) do {
     x = z.back(); z.pop_back();
     comp[x] = low;
     if (values[x>>1] == -1)
       values[x>>1] = x&1;
    } while (x != i);
    return val[i] = low;
 bool solve() {
   values.assign(N, -1);
   val.assign(2*N, 0); comp = val;
    rep(i,0,2*N) if (!comp[i]) dfs(i);
    rep(i,0,N) if (comp[2*i] == comp[2*i+1]) return 0;
    return 1;
};
```

EulerWalk.h

Description: Eulerian undirected/directed path/cycle algorithm. Input should be a vector of (dest, global edge index), where for undirected graphs, forward/backward edges have the same index. Returns a list of nodes in the Eulerian path/cycle with src at both start and end, or empty list if no cycle/path exists. To get edge indices back, add .second to s and ret. **Time:** $\mathcal{O}(V+E)$

vi eulerWalk(vector<vector<pii>% gr, int nedges, int src=0) {
 int n = sz(gr);
 vi D(n), its(n), eu(nedges), ret, s = {src};
 D[src]++; // to allow Euler paths, not just cycles
 while (!s.empty()) {
 int x = s.back(), y, e, &it = its[x], end = sz(gr[x]);
 if (it == end) { ret.push_back(x); s.pop_back(); continue; }
 tie(y, e) = gr[x][it++];
 if (!eu[e]) {
 D[x]--, D[y]++;
 eu[e] = 1; s.push_back(y);
 }}
 for (int x : D) if (x < 0 || sz(ret) != nedges+1) return {};
 return {ret.rbegin(), ret.rend()};
}</pre>

7.5 Coloring

EdgeColoring.h

Description: Given a simple, undirected graph with max degree D, computes a (D+1)-coloring of the edges such that no neighboring edges share a color. (D-coloring is NP-hard, but can be done for bipartite graphs by repeated matchings of max-degree nodes.)

Time: $\mathcal{O}\left(NM\right)$ e210e2, 31 lines

```
vi edgeColoring(int N, vector<pii> eds) {
 vi cc(N + 1), ret(sz(eds)), fan(N), free(N), loc;
 for (pii e : eds) ++cc[e.first], ++cc[e.second];
 int u, v, ncols = *max_element(all(cc)) + 1;
 vector<vi> adj(N, vi(ncols, -1));
 for (pii e : eds) {
   tie(u, v) = e;
   fan[0] = v;
   loc.assign(ncols, 0);
   int at = u, end = u, d, c = free[u], ind = 0, i = 0;
   while (d = free[v], !loc[d] && (v = adj[u][d]) != -1)
     loc[d] = ++ind, cc[ind] = d, fan[ind] = v;
    cc[loc[d]] = c;
    for (int cd = d; at != -1; cd ^= c ^ d, at = adj[at][cd])
     swap(adj[at][cd], adj[end = at][cd ^ c ^ d]);
    while (adj[fan[i]][d] != -1) {
     int left = fan[i], right = fan[++i], e = cc[i];
     adj[u][e] = left;
     adj[left][e] = u;
     adj[right][e] = -1;
     free[right] = e;
   adj[u][d] = fan[i];
   adj[fan[i]][d] = u;
   for (int y : {fan[0], u, end})
     for (int& z = free[y] = 0; adj[y][z] != -1; z++);
 rep(i, 0, sz(eds))
   for (tie(u, v) = eds[i]; adj[u][ret[i]] != v;) ++ret[i];
 return ret;
```

7.6 Heuristics

MaximalCliques.h

Description: Runs a callback for all maximal cliques in a graph (given as a symmetric bitset matrix; self-edges not allowed). Callback is given a bitset representing the maximal clique.

9775a0, 21 lines

```
Time: \mathcal{O}\left(3^{n/3}\right), much faster for sparse graphs
```

```
b0d5b1, 12 lines
```

```
typedef bitset<128> B;
template<class F>
void cliques(vector<B>& eds, F f, B P = \simB(), B X={}, B R={}) {
 if (!P.any()) { if (!X.any()) f(R); return; }
  auto q = (P | X)._Find_first();
  auto cands = P & ~eds[q];
  rep(i,0,sz(eds)) if (cands[i]) {
   R[i] = 1;
   cliques(eds, f, P & eds[i], X & eds[i], R);
   R[i] = P[i] = 0; X[i] = 1;
```

MaximumClique.h

Description: Quickly finds a maximum clique of a graph (given as symmetric bitset matrix; self-edges not allowed). Can be used to find a maximum independent set by finding a clique of the complement graph.

Time: Runs in about 1s for n=155 and worst case random graphs (p=.90). Runs faster for sparse graphs.

```
typedef vector<bitset<200>> vb;
struct Maxclique {
  double limit=0.025, pk=0;
  struct Vertex { int i, d=0; };
  typedef vector<Vertex> vv;
  vv V;
  vector<vi> C:
  vi qmax, q, S, old;
  void init(vv& r) {
    for (auto& v : r) v.d = 0;
   for (auto& v : r) for (auto j : r) v.d += e[v.i][j.i];
   sort(all(r), [](auto a, auto b) { return a.d > b.d; });
   int mxD = r[0].d;
   rep(i, 0, sz(r)) r[i].d = min(i, mxD) + 1;
  void expand(vv& R, int lev = 1) {
   S[lev] += S[lev - 1] - old[lev];
   old[lev] = S[lev - 1];
    while (sz(R)) {
     if (sz(q) + R.back().d <= sz(qmax)) return;</pre>
     g.push_back(R.back().i);
     vv T;
     for(auto v:R) if (e[R.back().i][v.i]) T.push_back({v.i});
     if (sz(T)) {
       if (S[lev]++ / ++pk < limit) init(T);</pre>
       int j = 0, mxk = 1, mnk = max(sz(qmax) - sz(q) + 1, 1);
       C[1].clear(), C[2].clear();
       for (auto v : T) {
         int k = 1;
          auto f = [&](int i) { return e[v.i][i]; };
          while (any_of(all(C[k]), f)) k++;
         if (k > mxk) mxk = k, C[mxk + 1].clear();
         if (k < mnk) T[j++].i = v.i;
         C[k].push_back(v.i);
        if (j > 0) T[j - 1].d = 0;
        rep(k, mnk, mxk + 1) for (int i : C[k])
         T[j].i = i, T[j++].d = k;
        expand(T, lev + 1);
      } else if (sz(q) > sz(qmax)) qmax = q;
      q.pop_back(), R.pop_back();
  vi maxClique() { init(V), expand(V); return qmax; }
  Maxclique(vb conn) : e(conn), C(sz(e)+1), S(sz(C)), old(S) {
    rep(i,0,sz(e)) V.push_back({i});
```

MaximumIndependentSet.h

Description: To obtain a maximum independent set of a graph, find a max clique of the complement. If the graph is bipartite, see Minimum Vertex Cover.

7.7Trees

BinaryLifting.h

Description: Calculate power of two jumps in a tree, to support fast upward jumps and LCAs. Assumes the root node points to itself.

Time: construction $\mathcal{O}(N \log N)$, queries $\mathcal{O}(\log N)$

bfce85, 25 lines

```
vector<vi> treeJump(vi& P){
 int on = 1, d = 1;
 while (on < sz(P)) on *= 2, d++;
 vector<vi> jmp(d, P);
 rep(i,1,d) rep(j,0,sz(P))
   jmp[i][j] = jmp[i-1][jmp[i-1][j]];
 return jmp;
int jmp(vector<vi>& tbl, int nod, int steps){
 rep(i, 0, sz(tbl))
   if(steps&(1<<i)) nod = tbl[i][nod];
 return nod;
int lca(vector<vi>& tbl, vi& depth, int a, int b) {
 if (depth[a] < depth[b]) swap(a, b);</pre>
 a = jmp(tbl, a, depth[a] - depth[b]);
 if (a == b) return a;
 for (int i = sz(tbl); i--;) {
   int c = tbl[i][a], d = tbl[i][b];
   if (c != d) a = c, b = d;
 return tbl[0][a];
```

LCA.h

Description: Data structure for computing lowest common ancestors in a tree (with 0 as root). C should be an adjacency list of the tree, either directed or undirected.

Time: $\mathcal{O}(N \log N + Q)$

```
"../data-structures/RMQ.h"
                                                      0f62fb, 21 lines
struct LCA {
 int T = 0;
 vi time, path, ret;
 RMO<int> rmg;
 LCA(vector < vi > \& C) : time(sz(C)), rmq((dfs(C, 0, -1), ret)) {}
 void dfs(vector<vi>& C, int v, int par) {
   time[v] = T++;
   for (int y : C[v]) if (y != par) {
     path.push_back(v), ret.push_back(time[v]);
      dfs(C, y, v);
 int lca(int a, int b) {
   if (a == b) return a;
   tie(a, b) = minmax(time[a], time[b]);
   return path[rmg.query(a, b)];
 //dist(a,b) {return depth[a] + depth[b] - 2*depth[lca(a,b)];}
```

CompressTree.h

Description: Given a rooted tree and a subset S of nodes, compute the minimal subtree that contains all the nodes by adding all (at most |S|-1) pairwise LCA's and compressing edges. Returns a list of (par, orig_index) representing a tree rooted at 0. The root points to itself.

```
Time: \mathcal{O}(|S| \log |S|)
"LCA.h"
```

```
typedef vector<pair<int, int>> vpi;
vpi compressTree(LCA& lca, const vi& subset) {
 static vi rev; rev.resize(sz(lca.time));
 vi li = subset, &T = lca.time;
 auto cmp = [&](int a, int b) { return T[a] < T[b]; };</pre>
  sort(all(li), cmp);
  int m = sz(1i)-1;
  rep(i,0,m) {
    int a = li[i], b = li[i+1];
    li.push_back(lca.lca(a, b));
  sort(all(li), cmp);
  li.erase(unique(all(li)), li.end());
  rep(i, 0, sz(li)) rev[li[i]] = i;
  vpi ret = {pii(0, li[0])};
  rep(i, 0, sz(li) - 1) {
   int a = li[i], b = li[i+1];
    ret.emplace_back(rev[lca.lca(a, b)], b);
 return ret;
```

HLD.h

Description: Decomposes a tree into vertex disjoint heavy paths and light edges such that the path from any leaf to the root contains at most log(n) light edges. Code does additive modifications and max queries, but can support commutative segtree modifications/queries on paths and subtrees. Takes as input the full adjacency list. VALS_EDGES being true means that values are stored in the edges, as opposed to the nodes. All values initialized to the segtree default. Root must be 0.

Time: $\mathcal{O}\left((\log N)^2\right)$

```
"../data-structures/LazySegmentTree.h"
template <bool VALS_EDGES> struct HLD {
 int N, tim = 0;
 vector<vi> adj;
 vi par, siz, depth, rt, pos;
 Node *tree;
  HLD(vector<vi> adj_)
   : N(sz(adj_)), adj(adj_), par(N, -1), siz(N, 1), depth(N),
      rt(N),pos(N),tree(new Node(0, N)) { dfsSz(0); dfsHld(0); }
  void dfsSz(int v) {
    if (par[v] != -1) adj[v].erase(find(all(adj[v]), par[v]));
    for (int& u : adj[v]) {
      par[u] = v, depth[u] = depth[v] + 1;
      dfsSz(u);
      siz[v] += siz[u];
      if (siz[u] > siz[adj[v][0]]) swap(u, adj[v][0]);
 void dfsHld(int v) {
    pos[v] = tim++;
    for (int u : adj[v]) {
      rt[u] = (u == adj[v][0] ? rt[v] : u);
      dfsHld(u);
 template <class B> void process(int u, int v, B op) {
    for (; rt[u] != rt[v]; v = par[rt[v]]) {
      if (depth[rt[u]] > depth[rt[v]]) swap(u, v);
      op(pos[rt[v]], pos[v] + 1);
```

```
if (depth[u] > depth[v]) swap(u, v);
   op(pos[u] + VALS_EDGES, pos[v] + 1);
  void modifyPath(int u, int v, int val) {
   process(u, v, [&](int 1, int r) { tree->add(1, r, val); });
  int queryPath(int u, int v) { // Modify depending on problem
   int res = -1e9:
   process(u, v, [&](int 1, int r) {
       res = max(res, tree->query(1, r));
   return res;
  int querySubtree(int v) { // modifySubtree is similar
    return tree->query(pos[v] + VALS_EDGES, pos[v] + siz[v]);
};
```

LinkCutTree.h

Description: Represents a forest of unrooted trees. You can add and remove edges (as long as the result is still a forest), and check whether two nodes are in the same tree.

Time: All operations take amortized $\mathcal{O}(\log N)$.

5909e2, 90 lines

```
struct Node { // Splay tree. Root's pp contains tree's parent.
  Node *p = 0, *pp = 0, *c[2];
  bool flip = 0;
  Node() { c[0] = c[1] = 0; fix(); }
  void fix() {
   if (c[0]) c[0]->p = this:
    if (c[1]) c[1]->p = this;
    // (+ update sum of subtree elements etc. if wanted)
  void pushFlip() {
    if (!flip) return;
    flip = 0; swap(c[0], c[1]);
   if (c[0]) c[0]->flip ^= 1;
    if (c[1]) c[1]->flip ^= 1;
  int up() { return p ? p->c[1] == this : -1; }
  void rot(int i, int b) {
    int h = i ^ b;
   Node *x = c[i], *y = b == 2 ? x : x -> c[h], *z = b ? y : x;
   if ((y->p = p)) p->c[up()] = y;
   c[i] = z -> c[i ^ 1];
   if (b < 2) {
     x->c[h] = y->c[h ^ 1];
     z -> c[h ^1] = b ? x : this;
    y - c[i ^1] = b ? this : x;
    fix(); x->fix(); y->fix();
   if (p) p->fix();
    swap(pp, y->pp);
  void splay() {
    for (pushFlip(); p; ) {
     if (p->p) p->p->pushFlip();
     p->pushFlip(); pushFlip();
     int c1 = up(), c2 = p->up();
     if (c2 == -1) p->rot (c1, 2);
      else p->p->rot(c2, c1 != c2);
  Node* first() {
   pushFlip();
    return c[0] ? c[0]->first() : (splay(), this);
};
```

```
struct LinkCut {
 vector<Node> node;
 LinkCut(int N) : node(N) {}
 void link(int u, int v) { // add \ an \ edge \ (u, \ v)
    assert(!connected(u, v));
   makeRoot(&node[u]);
   node[u].pp = &node[v];
 void cut (int u, int v) { // remove an edge (u, v)
   Node *x = &node[u], *top = &node[v];
   makeRoot(top); x->splay();
    assert(top == (x-pp ?: x-c[0]));
   if (x->pp) x->pp = 0;
     x->c[0] = top->p = 0;
     x \rightarrow fix();
 bool connected (int u, int v) { // are u, v in the same tree?
   Node* nu = access(&node[u])->first();
   return nu == access(&node[v])->first();
 void makeRoot(Node* u) {
   access(u);
   u->splay();
   if(u->c[0]) {
     u - c[0] - p = 0;
     u - c[0] - flip ^= 1;
     u - c[0] - pp = u;
     u - > c[0] = 0;
     u \rightarrow fix();
 Node* access(Node* u) {
   u->splay();
   while (Node* pp = u->pp) {
     pp->splay(); u->pp = 0;
     if (pp->c[1]) {
       pp - c[1] - p = 0; pp - c[1] - pp = pp; 
     pp - c[1] = u; pp - fix(); u = pp;
    return u;
```

DirectedMST.h

Description: Finds a minimum spanning tree/arborescence of a directed graph, given a root node. If no MST exists, returns -1.

```
Time: \mathcal{O}\left(E\log V\right)
```

```
"../data-structures/UnionFindRollback.h"
                                                      39e620, 60 lines
struct Edge { int a, b; ll w; };
struct Node {
  Edge kev:
 Node *1, *r;
 11 delta;
  void prop() {
    kev.w += delta;
    if (1) 1->delta += delta;
    if (r) r->delta += delta;
    delta = 0;
 Edge top() { prop(); return key; }
Node *merge(Node *a, Node *b) {
 if (!a || !b) return a ?: b;
  a->prop(), b->prop();
  if (a->key.w > b->key.w) swap(a, b);
  swap(a->1, (a->r = merge(b, a->r)));
```

```
return a:
void pop(Node*\& a) { a->prop(); a = merge(a->1, a->r); }
pair<11, vi> dmst(int n, int r, vector<Edge>& g) {
 RollbackUF uf(n):
 vector<Node*> heap(n);
  for (Edge e : g) heap[e.b] = merge(heap[e.b], new Node{e});
 11 \text{ res} = 0;
 vi seen(n, -1), path(n), par(n);
  seen[r] = r;
  vector<Edge> Q(n), in(n, \{-1,-1\}), comp;
  deque<tuple<int, int, vector<Edge>>> cycs;
 rep(s,0,n) {
    int u = s, qi = 0, w;
    while (seen[u] < 0) {
      if (!heap[u]) return {-1,{}};
      Edge e = heap[u] \rightarrow top();
      heap[u]->delta -= e.w, pop(heap[u]);
      Q[qi] = e, path[qi++] = u, seen[u] = s;
      res += e.w, u = uf.find(e.a);
      if (seen[u] == s) {
       Node * cvc = 0;
        int end = qi, time = uf.time();
        do cyc = merge(cyc, heap[w = path[--qi]]);
        while (uf.join(u, w));
        u = uf.find(u), heap[u] = cyc, seen[u] = -1;
        cycs.push_front({u, time, {&Q[qi], &Q[end]}});
    rep(i, 0, qi) in[uf.find(Q[i].b)] = Q[i];
  for (auto& [u,t,comp] : cycs) { // restore sol (optional)
   uf.rollback(t);
    Edge inEdge = in[u];
    for (auto& e : comp) in[uf.find(e.b)] = e;
    in[uf.find(inEdge.b)] = inEdge;
 rep(i,0,n) par[i] = in[i].a;
  return {res, par};
```

7.8Math

7.8.1 Number of Spanning Trees

Create an $N \times N$ matrix mat, and for each edge $a \to b \in G$, do mat[a][b]--, mat[b][b]++ (and mat[b][a]--, mat [a] [a] ++ if G is undirected). Remove the *i*th row and column and take the determinant; this yields the number of directed spanning trees rooted at i (if G is undirected, remove 7₁₀8.2_{0w}/Endősi Gallai theorem

A simple graph with node degrees $d_1 > \cdots > d_n$ exists iff $d_1 + \cdots + d_n$ is even and for every $k = 1 \dots n$,

$$\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{i=k+1}^{n} \min(d_i, k).$$

Geometry (8)

8.1 Geometric primitives

Point.h

Description: Class to handle points in the plane. T can be e.g. double or long long. (Avoid int.)

```
template \langle class T \rangle int sgn(T x) \{ return (x > 0) - (x < 0); \}
template<class T>
struct Point {
  typedef Point P;
  T x, y;
  explicit Point (T x=0, T y=0) : x(x), y(y) {}
  bool operator<(P p) const { return tie(x,y) < tie(p.x,p.y); }</pre>
  bool operator==(P p) const { return tie(x,y)==tie(p.x,p.y); }
  P operator+(P p) const { return P(x+p.x, y+p.y); }
  P operator-(P p) const { return P(x-p.x, y-p.y); }
  P operator*(T d) const { return P(x*d, y*d); }
  P operator/(T d) const { return P(x/d, y/d); }
  T dot(P p) const { return x*p.x + y*p.y; }
  T cross(P p) const { return x*p.y - y*p.x; }
  T cross(P a, P b) const { return (a-*this).cross(b-*this); }
  T dist2() const { return x*x + y*y; }
  double dist() const { return sqrt((double)dist2()); }
  // angle to x-axis in interval [-pi, pi]
  double angle() const { return atan2(y, x); }
  P unit() const { return *this/dist(); } // makes dist()=1
  P perp() const { return P(-y, x); } // rotates +90 degrees
  P normal() const { return perp().unit(); }
  // returns point rotated 'a' radians ccw around the origin
  P rotate (double a) const {
    return P(x*cos(a)-y*sin(a),x*sin(a)+y*cos(a)); }
  friend ostream& operator<<(ostream& os, P p) {</pre>
    return os << "(" << p.x << "," << p.v << ")"; }
```

lineDistance.h

Description:

Returns the signed distance between point p and the line containing points a and b. Positive value on left side and negative on right as seen from a towards b. a==b gives nan. P is supposed to be Point<T> or Point3D<T> where T is e.g. double or long long. It uses products in intermediate steps so watch out for overflow if using int or long long. Using Point3D will always give a non-negative distance. For Point3D, call .dist /S on the result of the cross product. "Point.h"

f6bf6b, 4 lines template<class P> double lineDist(const P& a, const P& b, const P& p) { return (double) (b-a).cross(p-a)/(b-a).dist();

SegmentDistance.h

Description:

Returns the shortest distance between point p and the line segment from point s to e.

Usage: Point < double > a, b(2,2), p(1,1); bool onSegment = segDist(a,b,p) < 1e-10;

5c88f4, 6 lines typedef Point < double > P; double segDist(P& s, P& e, P& p) { if (s==e) return (p-s).dist(); **auto** d = (e-s).dist2(), t = min(d, max(.0, (p-s).dot(e-s)));**return** ((p-s)*d-(e-s)*t).dist()/d;

SegmentIntersection.h

Description:

If a unique intersection point between the line segments going from s1 to e1 and from s2 to e2 exists then it is returned. If no intersection point exists an empty vector is returned. If infinitely many exist a vector with 2 elements is returned, containing the endpoints of the common line segment. The wrong position will be returned if P is Point<|l> and the intersection point does not have integer coordinates. Products of three coordinates are used in intermediate steps so watch

```
out for overflow if using int or long long.
Usage: vector<P> inter = segInter(s1,e1,s2,e2);
if (sz(inter)==1)
cout << "segments intersect at " << inter[0] << endl;</pre>
"Point.h", "OnSegment.h"
template < class P > vector < P > segInter (P a, P b, P c, P d) {
 auto oa = c.cross(d, a), ob = c.cross(d, b),
       oc = a.cross(b, c), od = a.cross(b, d);
  // Checks if intersection is single non-endpoint point.
  if (sqn(oa) * sqn(ob) < 0 && sqn(oc) * sqn(od) < 0)
    return { (a * ob - b * oa) / (ob - oa) };
  set<P> s:
  if (onSegment(c, d, a)) s.insert(a);
 if (onSegment(c, d, b)) s.insert(b);
 if (onSegment(a, b, c)) s.insert(c);
 if (onSegment(a, b, d)) s.insert(d);
  return {all(s)};
```

lineIntersection.h

Description:

If a unique intersection point of the lines going through s1,e1 and s2,e2 exists {1, point} is returned. If no intersection point exists $\{0, (0,0)\}$ is returned and if infinitely many exists $\{-1,$ (0,0)} is returned. The wrong position will be returned if P is Point<|l> and the intersection point does not have integer coordinates. Products of three coordinates are used in \(\sigma\)! intermediate steps so watch out for overflow if using int or ll.


```
template<class P>
pair<int, P> lineInter(P s1, P e1, P s2, P e2) {
 auto d = (e1 - s1).cross(e2 - s2);
 if (d == 0) // if parallel
   return {-(s1.cross(e1, s2) == 0), P(0, 0)};
 auto p = s2.cross(e1, e2), q = s2.cross(e2, s1);
 return {1, (s1 * p + e1 * q) / d};
```

sideOf.h

Description: Returns where p is as seen from s towards e. $1/0/-1 \Leftrightarrow \text{left/on}$ line/right. If the optional argument eps is given 0 is returned if p is within distance eps from the line. P is supposed to be Point<T> where T is e.g. double or long long. It uses products in intermediate steps so watch out for overflow if using int or long long.

```
Usage: bool left = sideOf(p1,p2,q) ==1;
"Point.h"
                                                       3af81c, 9 lines
template<class P>
int sideOf(P s, P e, P p) { return sgn(s.cross(e, p)); }
template<class P>
int sideOf(const P& s, const P& e, const P& p, double eps) {
 auto a = (e-s).cross(p-s);
  double 1 = (e-s).dist()*eps;
  return (a > 1) - (a < -1);
```

OnSegment.h

Description: Returns true iff p lies on the line segment from s to e. Use (segDist(s,e,p) <=epsilon) instead when using Point < double >.

```
"Point.h"
                                                           c597e8, 3 lines
template < class P > bool on Segment (P s, P e, P p) {
  return p.cross(s, e) == 0 \&\& (s - p).dot(e - p) <= 0;
```

linearTransformation.h Description:

Apply the linear transformation (translation, rotation and scaling) which takes line p0-p1 to line q0-q1 to point r.

17

```
typedef Point<double> P;
P linearTransformation (const P& p0, const P& p1,
    const P& q0, const P& q1, const P& r) {
 P dp = p1-p0, dq = q1-q0, num(dp.cross(dq), dp.dot(dq));
 return q0 + P((r-p0).cross(num), (r-p0).dot(num))/dp.dist2();
```

Angle.h

struct Angle {

"Point.h"

Description: A class for ordering angles (as represented by int points and a number of rotations around the origin). Useful for rotational sweeping. Sometimes also represents points or vectors.

```
Usage: vector<Angle> v = \{w[0], w[0].t360() ...\}; // sorted
int j = 0; rep(i,0,n) { while (v[j] < v[i].t180()) ++j; }
// sweeps j such that (j-i) represents the number of positively
oriented triangles with vertices at 0 and i
```

```
int x, y;
  Angle(int x, int y, int t=0) : x(x), y(y), t(t) {}
  Angle operator-(Angle b) const { return {x-b.x, y-b.y, t}; }
  int half() const {
    assert(x || y);
    return v < 0 || (v == 0 && x < 0);
  Angle t90() const { return \{-y, x, t + (half() \&\& x >= 0)\}; \}
  Angle t180() const { return {-x, -y, t + half()}; }
  Angle t360() const { return {x, y, t + 1}; }
bool operator<(Angle a, Angle b) {</pre>
  // add a. dist2() and b. dist2() to also compare distances
  return make_tuple(a.t, a.half(), a.y * (11)b.x) <</pre>
         make_tuple(b.t, b.half(), a.x * (ll)b.y);
// Given two points, this calculates the smallest angle between
// them, i.e., the angle that covers the defined line segment.
pair<Angle, Angle> segmentAngles(Angle a, Angle b) {
  if (b < a) swap(a, b);
  return (b < a.t180() ?
          make_pair(a, b) : make_pair(b, a.t360()));
Angle operator+(Angle a, Angle b) { // point a + vector b
  Angle r(a.x + b.x, a.y + b.y, a.t);
  if (a.t180() < r) r.t--;
  return r.t180() < a ? r.t360() : r;</pre>
Angle angleDiff(Angle a, Angle b) { // angle b - angle a}
  int tu = b.t - a.t; a.t = b.t;
  return {a.x*b.x + a.y*b.y, a.x*b.y - a.y*b.x, tu - (b < a)};</pre>
```

8.2 Circles

CircleIntersection.h

Description: Computes the pair of points at which two circles intersect. Returns false in case of no intersection.

"Point.h" 84d6d3, 11 lines

CircleTangents.h

Description: Finds the external tangents of two circles, or internal if r2 is negated. Can return 0, 1, or 2 tangents - 0 if one circle contains the other (or overlaps it, in the internal case, or if the circles are the same); 1 if the circles are tangent to each other (in which case .first = .second and the tangent line is perpendicular to the line between the centers). .first and .second give the tangency points at circle 1 and 2 respectively. To find the tangents of a circle with a point set r2 to 0.

```
template<class P>
vector<pair<P, P>> tangents(P c1, double r1, P c2, double r2) {
  P d = c2 - c1;
  double dr = r1 - r2, d2 = d.dist2(), h2 = d2 - dr * dr;
  if (d2 == 0 || h2 < 0) return {};
  vector<pair<P, P>> out;
  for (double sign : {-1, 1}) {
     P v = (d * dr + d.perp() * sqrt(h2) * sign) / d2;
     out.push_back({c1 + v * r1, c2 + v * r2});
  }
  if (h2 == 0) out.pop_back();
  return out;
}
```

CirclePolygonIntersection.h

Description: Returns the area of the intersection of a circle with a ccw polygon.

Time: $\mathcal{O}(n)$

return sum;

```
alee63, 19 lines
"../../content/geometry/Point.h"
typedef Point < double > P:
#define arg(p, q) atan2(p.cross(q), p.dot(q))
double circlePoly(P c, double r, vector<P> ps) {
  auto tri = [&] (P p, P q) {
   auto r2 = r * r / 2;
   P d = q - p;
   auto a = d.dot(p)/d.dist2(), b = (p.dist2()-r*r)/d.dist2();
   auto det = a * a - b;
   if (det <= 0) return arg(p, q) * r2;</pre>
   auto s = max(0., -a-sqrt(det)), t = min(1., -a+sqrt(det));
   if (t < 0 || 1 <= s) return arg(p, q) * r2;</pre>
   P u = p + d * s, v = p + d * t;
   return arg(p,u) * r2 + u.cross(v)/2 + arg(v,q) * r2;
 auto sum = 0.0;
  rep(i, 0, sz(ps))
   sum += tri(ps[i] - c, ps[(i + 1) % sz(ps)] - c);
```

circumcircle.h

Description:

"Point.h"

The circumcirle of a triangle is the circle intersecting all three vertices. ccRadius returns the radius of the circle going through points A, B and C and ccCenter returns the center of the same circle.

1caa3a, 9 lines

```
typedef Point<double> P;
double ccRadius(const P& A, const P& B, const P& C) {
   return (B-A).dist()*(C-B).dist()*(A-C).dist()/
      abs((B-A).cross(C-A))/2;
}
P ccCenter(const P& A, const P& B, const P& C) {
   P b = C-A, c = B-A;
   return A + (b*c.dist2()-c*b.dist2()).perp()/b.cross(c)/2;
}
```

MinimumEnclosingCircle.h

Description: Computes the minimum circle that encloses a set of points. **Time:** expected $\mathcal{O}(n)$

```
"circumcircle.h"
                                                     09dd0a, 17 lines
pair<P, double> mec(vector<P> ps) {
 shuffle(all(ps), mt19937(time(0)));
 P \circ = ps[0];
 double r = 0, EPS = 1 + 1e-8;
 rep(i, 0, sz(ps)) if ((o - ps[i]).dist() > r * EPS) {
   o = ps[i], r = 0;
   rep(j,0,i) if ((o - ps[j]).dist() > r * EPS) {
     o = (ps[i] + ps[j]) / 2;
     r = (o - ps[i]).dist();
     rep(k, 0, j) if ((o - ps[k]).dist() > r * EPS) {
       o = ccCenter(ps[i], ps[j], ps[k]);
       r = (o - ps[i]).dist();
   }
 return {o, r};
```

8.3 Polygons

InsidePolygon.h

Description: Returns true if p lies within the polygon. If strict is true, it returns false for points on the boundary. The algorithm uses products in intermediate steps so watch out for overflow.

```
Usage: vector<P> v = {P{4,4}, P{1,2}, P{2,1}};
bool in = inPolygon(v, P{3, 3}, false);
Time: \mathcal{O}(n)
```

"Point.h", "OnSegment.h", "SegmentDistance.h" 2bf504, 11 lines

```
template < class P >
bool inPolygon(vector < P > &p, P a, bool strict = true) {
   int cnt = 0, n = sz(p);
   rep(i,0,n) {
      P q = p[(i + 1) % n];
      if (onSegment(p[i], q, a)) return !strict;
      //or: if (segDist(p[i], q, a) <= eps) return !strict;
      cnt ^= ((a.y < p[i].y) - (a.y < q.y)) * a.cross(p[i], q) > 0;
   }
   return cnt;
}
```

PolygonArea.h

Description: Returns twice the signed area of a polygon. Clockwise enumeration gives negative area. Watch out for overflow if using int as T!

"Point.h"

f12300, 6 lines

```
template<class T>
```

```
T polygonArea2(vector<Point<T>>& v) {
```

```
T a = v.back().cross(v[0]);
rep(i,0,sz(v)-1) a += v[i].cross(v[i+1]);
return a;
}
```

PolygonCenter.h

Description: Returns the center of mass for a polygon.

Time: $\mathcal{O}\left(n\right)$

PolygonCut.h

Description:

Returns a vector with the vertices of a polygon with everything to the left of the line going from s to e cut away.


```
Usage: vector<P> p = ...;
p = polygonCut(p, P(0,0), P(1,0));
```

"Point.h", "lineIntersection.h" f2b7d4, 13 lines

```
typedef Point<double> P;
vector<P> polygonCut(const vector<P>& poly, P s, P e) {
  vector<P> res;
  rep(i,0,sz(poly)) {
    P cur = poly[i], prev = i ? poly[i-1] : poly.back();
    bool side = s.cross(e, cur) < 0;
    if (side != (s.cross(e, prev) < 0))
      res.push_back(lineInter(s, e, cur, prev).second);
    if (side)
      res.push_back(cur);
  }
  return res;
}</pre>
```

ConvexHull.h

Description:

Returns a vector of the points of the convex hull in counterclockwise order. Points on the edge of the hull between two other points are not considered part of the hull.

Time: $\mathcal{O}(n \log n)$

310954, 13 lines

```
typedef Point<1l> P;
vector<P> convexHull(vector<P> pts) {
    if (sz(pts) <= 1) return pts;
    sort(all(pts));
    vector<P> h(sz(pts)+1);
    int s = 0, t = 0;
    for (int it = 2; it--; s = --t, reverse(all(pts)))
        for (P p: pts) {
        while (t >= s + 2 && h[t-2].cross(h[t-1], p) <= 0) t--;
        h[t++] = p;
    }
    return {h.begin(), h.begin() + t - (t == 2 && h[0] == h[1])};
}</pre>
```

HullDiameter.h

Description: Returns the two points with max distance on a convex hull (ccw, no duplicate/collinear points).

"Point.h" c571b8, 12 lines

```
typedef Point<11> P;
array<P, 2> hullDiameter(vector<P> S) {
```

```
int n = sz(S), j = n < 2 ? 0 : 1;
pair<11, array<P, 2>> res({0, {S[0], S[0]}});
rep(i,0,j)
   for (;; j = (j + 1) % n) {
    res = max(res, {(S[i] - S[j]).dist2(), {S[i], S[j]}});
    if ((S[(j + 1) % n] - S[j]).cross(S[i + 1] - S[i]) >= 0)
        break;
}
return res.second;
}
```

PointInsideHull.h

Description: Determine whether a point t lies inside a convex hull (CCW order, with no collinear points). Returns true if point lies within the hull. If strict is true, points on the boundary aren't included.

Time: $\mathcal{O}(\log N)$

"Point.h", "sideOf.h", "OnSegment.h"

71446b, 14 lines

```
typedef Point<ll> P;

bool inHull(const vector<P>& 1, P p, bool strict = true) {
   int a = 1, b = sz(1) - 1, r = !strict;
   if (sz(1) < 3) return r && onSegment(1[0], 1.back(), p);
   if (sideOf(1[0], 1[a], 1[b]) > 0) swap(a, b);
   if (sideOf(1[0], 1[a], p) >= r || sideOf(1[0], 1[b], p) <= -r)
        return false;
   while (abs(a - b) > 1) {
    int c = (a + b) / 2;
    (sideOf(1[0], 1[c], p) > 0 ? b : a) = c;
   }
   return sgn(1[a].cross(1[b], p)) < r;
}</pre>
```

LineHullIntersection.h

Description: Line-convex polygon intersection. The polygon must be ccw and have no collinear points. lineHull(line, poly) returns a pair describing the intersection of a line with the polygon: \bullet (-1,-1) if no collision, \bullet (i,-1) if touching the corner i, \bullet (i,i) if along side (i,i+1), \bullet (i,j) if crossing sides (i,i+1) and (j,j+1). In the last case, if a corner i is crossed, this is treated as happening on side (i,i+1). The points are returned in the same order as the line hits the polygon. extrVertex returns the point of a hull with the max projection onto a line.

Time: $\mathcal{O}(\log n)$

```
"Point.h"
                                                     7cf45b, 39 lines
#define cmp(i,j) sgn(dir.perp().cross(poly[(i)%n]-poly[(j)%n]))
#define extr(i) cmp(i + 1, i) >= 0 && cmp(i, i - 1 + n) < 0
template <class P> int extrVertex(vector<P>& poly, P dir) {
 int n = sz(poly), lo = 0, hi = n;
 if (extr(0)) return 0;
  while (lo + 1 < hi) {
   int m = (lo + hi) / 2;
   if (extr(m)) return m;
   int ls = cmp(lo + 1, lo), ms = cmp(m + 1, m);
    (ls < ms \mid | (ls == ms \&\& ls == cmp(lo, m)) ? hi : lo) = m;
  return lo;
#define cmpL(i) sgn(a.cross(poly[i], b))
template <class P>
array<int, 2> lineHull(P a, P b, vector<P>& poly) {
  int endA = extrVertex(poly, (a - b).perp());
  int endB = extrVertex(poly, (b - a).perp());
  if (cmpL(endA) < 0 \mid \mid cmpL(endB) > 0)
   return {-1, -1};
  array<int, 2> res;
  rep(i,0,2) {
   int lo = endB, hi = endA, n = sz(poly);
   while ((lo + 1) % n != hi) {
```

```
int m = ((lo + hi + (lo < hi ? 0 : n)) / 2) % n;
  (cmpL(m) == cmpL(endB) ? lo : hi) = m;
}
res[i] = (lo + !cmpL(hi)) % n;
swap(endA, endB);

if (res[0] == res[1]) return {res[0], -1};
if (!cmpL(res[0]) && !cmpL(res[1]))
switch ((res[0] - res[1] + sz(poly) + 1) % sz(poly)) {
  case 0: return {res[0], res[0]};
  case 2: return {res[1], res[1]};
}
return res;</pre>
```

8.4 Misc. Point Set Problems

ClosestPair.h

Description: Finds the closest pair of points.

Time: $\mathcal{O}\left(n\log n\right)$

```
"Point.h"
                                                      ac41a6, 17 lines
typedef Point<11> P;
pair<P, P> closest(vector<P> v) {
 assert (sz(v) > 1);
  set<P> S;
  sort(all(v), [](P a, P b) { return a.y < b.y; });</pre>
  pair<ll, pair<P, P>> ret{LLONG_MAX, {P(), P()}};
  int j = 0;
  for (P p : v) {
   P d{1 + (ll)sqrt(ret.first), 0};
    while (v[j].y \le p.y - d.x) S.erase(v[j++]);
    auto lo = S.lower_bound(p - d), hi = S.upper_bound(p + d);
    for (; lo != hi; ++lo)
     ret = min(ret, {(*lo - p).dist2(), {*lo, p}});
    S.insert(p);
  return ret.second;
```

kdTree.h

Description: KD-tree (2d, can be extended to 3d)

bac5b0, 63 lines

```
typedef long long T;
typedef Point<T> P:
const T INF = numeric_limits<T>::max();
bool on_x(const P& a, const P& b) { return a.x < b.x; }</pre>
bool on_y(const P& a, const P& b) { return a.y < b.y; }</pre>
 P pt; // if this is a leaf, the single point in it
 T x0 = INF, x1 = -INF, y0 = INF, y1 = -INF; // bounds
 Node *first = 0, *second = 0;
 T distance (const P& p) { // min squared distance to a point
    T x = (p.x < x0 ? x0 : p.x > x1 ? x1 : p.x);
    T y = (p.y < y0 ? y0 : p.y > y1 ? y1 : p.y);
    return (P(x,y) - p).dist2();
  Node (vector<P>&& vp) : pt(vp[0]) {
    for (P p : vp) {
      x0 = min(x0, p.x); x1 = max(x1, p.x);
      y0 = min(y0, p.y); y1 = max(y1, p.y);
    if (vp.size() > 1) {
      // split on x if width >= height (not ideal...)
      sort(all(vp), x1 - x0 >= y1 - y0 ? on_x : on_y);
      // divide by taking half the array for each child (not
```

```
// best performance with many duplicates in the middle)
      int half = sz(vp)/2;
      first = new Node({vp.begin(), vp.begin() + half});
      second = new Node({vp.begin() + half, vp.end()});
};
struct KDTree {
 Node* root:
 KDTree(const vector<P>& vp) : root(new Node({all(vp)})) {}
 pair<T, P> search(Node *node, const P& p) {
    if (!node->first) {
      // uncomment if we should not find the point itself:
      // if (p = node \rightarrow pt) return \{INF, P()\};
      return make_pair((p - node->pt).dist2(), node->pt);
    Node *f = node->first, *s = node->second;
    T bfirst = f->distance(p), bsec = s->distance(p);
    if (bfirst > bsec) swap(bsec, bfirst), swap(f, s);
    // search closest side first, other side if needed
    auto best = search(f, p);
    if (bsec < best.first)</pre>
      best = min(best, search(s, p));
    return best;
  // find nearest point to a point, and its squared distance
  // (requires an arbitrary operator< for Point)
  pair<T, P> nearest (const P& p) {
    return search (root, p);
};
```

FastDelaunav.h

Description: Fast Delaunay triangulation. Each circumcircle contains none of the input points. There must be no duplicate points. If all points are on a line, no triangles will be returned. Should work for doubles as well, though there may be precision issues in 'circ'. Returns triangles in order $\{t[0][0], t[0][1], t[0][2], t[1][0], \ldots\}$, all counter-clockwise.

Time: $\mathcal{O}\left(n\log n\right)$

return r;

```
"Point.h"
                                                         eefdf5, 88 lines
typedef Point<11> P;
typedef struct Quad* Q;
typedef __int128_t lll; // (can be ll if coords are < 2e4)
P arb (LLONG_MAX, LLONG_MAX); // not equal to any other point
struct Ouad {
  Q rot, o; P p = arb; bool mark;
  P& F() { return r()->p; }
  Q& r() { return rot->rot; }
  Q prev() { return rot->o->rot; }
  Q next() { return r()->prev(); }
bool circ(P p, P a, P b, P c) { // is p in the circumcircle?
  111 p2 = p.dist2(), A = a.dist2()-p2,
      B = b.dist2()-p2, C = c.dist2()-p2;
  return p.cross(a,b) \starC + p.cross(b,c) \starA + p.cross(c,a) \starB > 0;
Q makeEdge(P orig, P dest) {
  Q r = H ? H : new Quad{new Quad{new Quad{0}}}};
  H = r -> 0; r -> r() -> r() = r;
  rep(i,0,4) r = r \rightarrow rot, r \rightarrow p = arb, r \rightarrow o = i \& 1 ? r : r \rightarrow r();
  r->p = orig; r->F() = dest;
```

```
void splice(Q a, Q b) {
  swap(a->o->rot->o, b->o->rot->o); swap(a->o, b->o);
Q connect(Q a, Q b) {
  Q = makeEdge(a->F(), b->p);
  splice(q, a->next());
  splice(q->r(), b);
  return q;
pair<0,0> rec(const vector<P>& s) {
  if (sz(s) <= 3) {
    Q = makeEdge(s[0], s[1]), b = makeEdge(s[1], s.back());
    if (sz(s) == 2) return { a, a->r() };
    splice(a->r(), b);
    auto side = s[0].cross(s[1], s[2]);
    Q c = side ? connect(b, a) : 0;
    return {side < 0 ? c->r() : a, side < 0 ? c : b->r() };
#define H(e) e->F(), e->p
#define valid(e) (e->F().cross(H(base)) > 0)
  Q A, B, ra, rb;
  int half = sz(s) / 2;
  tie(ra, A) = rec({all(s) - half});
  tie(B, rb) = rec({sz(s) - half + all(s)});
  while ((B\rightarrow p.cross(H(A)) < 0 \&\& (A = A\rightarrow next())) | |
         (A->p.cross(H(B)) > 0 && (B = B->r()->o)));
  Q base = connect(B->r(), A);
  if (A->p == ra->p) ra = base->r();
  if (B->p == rb->p) rb = base;
#define DEL(e, init, dir) Q e = init->dir; if (valid(e)) \
    while (circ(e->dir->F(), H(base), e->F())) { \
      0 t = e \rightarrow dir; \
      splice(e, e->prev()); \
      splice(e->r(), e->r()->prev()); \
      e->o = H; H = e; e = t; \setminus
  for (;;) {
    DEL(LC, base->r(), o); DEL(RC, base, prev());
    if (!valid(LC) && !valid(RC)) break;
    if (!valid(LC) || (valid(RC) && circ(H(RC), H(LC))))
     base = connect(RC, base->r());
      base = connect(base->r(), LC->r());
  return { ra, rb };
vector<P> triangulate(vector<P> pts) {
  sort(all(pts)); assert(unique(all(pts)) == pts.end());
  if (sz(pts) < 2) return {};
  Q e = rec(pts).first;
  vector<Q> q = \{e\};
  int \alpha i = 0;
  while (e->o->F().cross(e->F(), e->p) < 0) e = e->o;
#define ADD { Q c = e; do { c->mark = 1; pts.push_back(c->p); \
  g.push back(c\rightarrow r()); c = c\rightarrow next(); } while (c != e); }
  ADD; pts.clear();
  while (qi < sz(q)) if (!(e = q[qi++]) \rightarrow mark) ADD;
  return pts;
```

8.5 3D

PolyhedronVolume.h

Description: Magic formula for the volume of a polyhedron. Faces should point outwards. 3058c3, 6 lines

```
template<class V, class L>
double signedPolyVolume(const V& p, const L& trilist) {
  double v = 0;
  for (auto i : trilist) v += p[i.a].cross(p[i.b]).dot(p[i.c]);
  return v / 6;
}
```

Point3D.h

Description: Class to handle points in 3D space. T can be e.g. double or long long.

```
template<class T> struct Point3D {
 typedef Point3D P;
 typedef const P& R;
 T x, y, z;
 explicit Point3D(T x=0, T y=0, T z=0) : x(x), y(y), z(z) {}
 bool operator<(R p) const {</pre>
    return tie(x, y, z) < tie(p.x, p.y, p.z); }</pre>
 bool operator==(R p) const {
    return tie(x, y, z) == tie(p.x, p.y, p.z); }
 P operator+(R p) const { return P(x+p.x, y+p.y, z+p.z); }
 P operator-(R p) const { return P(x-p.x, y-p.y, z-p.z); }
 P operator*(T d) const { return P(x*d, y*d, z*d); }
 P operator/(T d) const { return P(x/d, y/d, z/d); }
 T dot(R p) const { return x*p.x + y*p.y + z*p.z; }
 P cross(R p) const {
    return P(y*p.z - z*p.y, z*p.x - x*p.z, x*p.y - y*p.x);
 T dist2() const { return x*x + y*y + z*z; }
 double dist() const { return sgrt((double)dist2()); }
  //Azimuthal angle (longitude) to x-axis in interval [-pi, pi]
 double phi() const { return atan2(y, x); }
  //Zenith angle (latitude) to the z-axis in interval [0, pi]
 double theta() const { return atan2(sgrt(x*x+y*y),z); }
 P unit() const { return *this/(T) dist(); } //makes dist()=1
  //returns unit vector normal to *this and p
 P normal(P p) const { return cross(p).unit(); }
  //returns point rotated 'angle' radians ccw around axis
 P rotate (double angle, P axis) const {
    double s = sin(angle), c = cos(angle); P u = axis.unit();
   return u*dot(u)*(1-c) + (*this)*c - cross(u)*s;
};
```

3dHull.h

assert(sz(A) >= 4);

Description: Computes all faces of the 3-dimension hull of a point set. *No four points must be coplanar*, or else random results will be returned. All faces will point outwards. Time: $\mathcal{O}\left(n^2\right)$

```
vector<vector<PR>> E(sz(A), vector<PR>(sz(A), {-1, -1}));
#define E(x,y) E[f.x][f.y]
 vector<F> FS;
  auto mf = [&](int i, int j, int k, int l) {
   P3 q = (A[j] - A[i]).cross((A[k] - A[i]));
   if (q.dot(A[1]) > q.dot(A[i]))
     q = q * -1;
   F f{q, i, j, k};
   E(a,b).ins(k); E(a,c).ins(j); E(b,c).ins(i);
   FS.push back(f);
 rep(i, 0, 4) rep(j, i+1, 4) rep(k, j+1, 4)
   mf(i, j, k, 6 - i - j - k);
 rep(i,4,sz(A)) {
    rep(j,0,sz(FS)) {
     F f = FS[j];
     if(f.q.dot(A[i]) > f.q.dot(A[f.a])) {
       E(a,b).rem(f.c);
       E(a,c).rem(f.b);
       E(b,c).rem(f.a);
       swap(FS[j--], FS.back());
       FS.pop back();
    int nw = sz(FS);
    rep(j,0,nw) {
     F f = FS[i];
#define C(a, b, c) if (E(a,b).cnt() != 2) mf(f.a, f.b, i, f.c);
     C(a, b, c); C(a, c, b); C(b, c, a);
 for (F& it : FS) if ((A[it.b] - A[it.a]).cross(
   A[it.c] - A[it.a]).dot(it.q) \ll 0) swap(it.c, it.b);
 return FS:
```

sphericalDistance.h

Description: Returns the shortest distance on the sphere with radius radius between the points with azimuthal angles (longitude) f1 (ϕ_1) and f2 (ϕ_2) from x axis and zenith angles (latitude) t1 (θ_1) and t2 (θ_2) from z axis (0 = 1) north pole). All angles measured in radians. The algorithm starts by converting the spherical coordinates to cartesian coordinates so if that is what you have you can use only the two last rows. dx*radius is then the difference between the two points in the x direction and d*radius is the total distance between the points.

```
double sphericalDistance(double f1, double t1,
    double f2, double t2, double radius) {
    double dx = sin(t2)*cos(f2) - sin(t1)*cos(f1);
    double dy = sin(t2)*sin(f2) - sin(t1)*sin(f1);
    double dz = cos(t2) - cos(t1);
    double d = sqrt(dx*dx + dy*dy + dz*dz);
    return radius*2*asin(d/2);
}
```

Strings (9)

int g = p[i-1];

KMP.h

Description: pi[x] computes the length of the longest prefix of s that ends at x, other than s[0...x] itself (abacaba -> 0010123). Can be used to find all occurrences of a string.

Time: $\mathcal{O}(n)$

d4375c, 16 lines

```
vi pi (const string& s) {
    vi p(sz(s));
    rep(i,1,sz(s)) {
```

```
while (g && s[i] != s[g]) g = p[g-1];
    p[i] = g + (s[i] == s[g]);
}
    return p;
}

vi match(const string& s, const string& pat) {
    vi p = pi(pat + '\0' + s), res;
    rep(i,sz(p)-sz(s),sz(p))
        if (p[i] == sz(pat)) res.push_back(i - 2 * sz(pat));
    return res;
}
```

Zfunc.h

Description: z[x] computes the length of the longest common prefix of s[i:] and s, except z[0] = 0. (abacaba -> 0010301) **Time:** $\mathcal{O}(n)$

vi Z(string S) {
 vi z(sz(S));
 int 1 = -1, r = -1;
 rep(i,1,sz(S)) {
 z[i] = i >= r ? 0 : min(r - i, z[i - 1]);
 while (i + z[i] < sz(S) && S[i + z[i]] == S[z[i]])
 z[i]++;
 if (i + z[i] > r)
 1 = i, r = i + z[i];
}
return z;

Manacher.h

Description: For each position in a string, computes p[0][i] = half length of longest even palindrome around pos i, <math>p[1][i] = longest odd (half rounded down).

```
rep(z,0,2) for (int i=0,l=0,r=0; i < n; i++) {
   int t = r-i+!z;
   if (i<r) p[z][i] = min(t, p[z][l+t]);
   int L = i-p[z][i], R = i+p[z][i]-!z;
   while (L>=1 && R+1<n && s[L-1] == s[R+1])
      p[z][i]++, L--, R++;
   if (R>r) l=L, r=R;
}
return p;
}
```

MinRotation.h

Description: Finds the lexicographically smallest rotation of a string. **Usage:** rotate(v.begin(), v.begin()+minRotation(v), v.end()); **Time:** $\mathcal{O}(N)$

```
int minRotation(string s) {
  int a=0, N=sz(s); s += s;
  rep(b,0,N) rep(k,0,N) {
    if (a+k == b || s[a+k] < s[b+k]) {b += max(0, k-1); break;}
    if (s[a+k] > s[b+k]) { a = b; break; }
  }
  return a;
```

SuffixArray.h

Description: Builds suffix array for a string. sa[i] is the starting index of the suffix which is i'th in the sorted suffix array. The returned vector is of size n+1, and sa[0] = n. The 1cp array contains longest common prefixes for neighbouring strings in the suffix array: lcp[i] = lcp(sa[i], sa[i-1]), lcp[0] = 0. The input string must not contain any zero bytes. Time: $O(n \log n)$

```
struct SuffixArray {
 vi sa, lcp;
 SuffixArray(string& s, int lim=256) { // or basic_string<int>
   int n = sz(s) + 1, k = 0, a, b;
   vi \times (all(s)+1), v(n), ws(max(n, lim)), rank(n);
   sa = lcp = y, iota(all(sa), 0);
    for (int j = 0, p = 0; p < n; j = max(1, j * 2), lim = p) {
     p = j, iota(all(v), n - j);
     rep(i,0,n) if (sa[i] >= j) y[p++] = sa[i] - j;
     fill(all(ws), 0);
     rep(i, 0, n) ws[x[i]] ++;
     rep(i,1,lim) ws[i] += ws[i - 1];
     for (int i = n; i--;) sa[--ws[x[y[i]]]] = y[i];
     swap(x, y), p = 1, x[sa[0]] = 0;
     rep(i,1,n) = sa[i-1], b = sa[i], x[b] =
        (y[a] == y[b] && y[a + j] == y[b + j]) ? p - 1 : p++;
   rep(i,1,n) rank[sa[i]] = i;
   for (int i = 0, j; i < n - 1; lcp[rank[i++]] = k)</pre>
     for (k \& \& k--, j = sa[rank[i] - 1];
         s[i + k] == s[j + k]; k++);
};
```

SuffixTree.h

Description: Ukkonen's algorithm for online suffix tree construction. Each node contains indices $[l,\,r)$ into the string, and a list of child nodes. Suffixes are given by traversals of this tree, joining $[l,\,r)$ substrings. The root is 0 (has $l=-1,\,r=0$), non-existent children are -1. To get a complete tree, append a dummy symbol – otherwise it may contain an incomplete path (still useful for substring matching, though).

```
Time: \mathcal{O}(26N)
                                                    aae0b8, 50 lines
struct SuffixTree {
 enum { N = 200010, ALPHA = 26 }; //N \sim 2*maxlen+10
 int toi(char c) { return c - 'a'; }
 string a; //v = cur \ node, q = cur \ position
 int t[N][ALPHA], 1[N], r[N], p[N], s[N], v=0, q=0, m=2;
 void ukkadd(int i, int c) { suff:
   if (r[v]<=q) {
     if (t[v][c]==-1) { t[v][c]=m; l[m]=i;
       p[m++]=v; v=s[v]; q=r[v]; goto suff; }
     v=t[v][c]; q=l[v];
   if (q==-1 || c==toi(a[q])) q++; else {
     l[m+1]=i; p[m+1]=m; l[m]=l[v]; r[m]=q;
     p[m]=p[v]; t[m][c]=m+1; t[m][toi(a[q])]=v;
     l[v]=q; p[v]=m; t[p[m]][toi(a[l[m]])]=m;
     v=s[p[m]]; q=l[m];
     while (q<r[m]) { v=t[v][toi(a[q])]; q+=r[v]-l[v]; }</pre>
     if (q==r[m]) s[m]=v; else s[m]=m+2;
     q=r[v]-(q-r[m]); m+=2; goto suff;
 SuffixTree(string a) : a(a) {
   fill(r,r+N,sz(a));
   memset(s, 0, sizeof s);
   memset(t, -1, sizeof t);
   fill(t[1],t[1]+ALPHA,0);
   s[0] = 1; 1[0] = 1[1] = -1; r[0] = r[1] = p[0] = p[1] = 0;
    rep(i,0,sz(a)) ukkadd(i, toi(a[i]));
```

```
// example: find longest common substring (uses ALPHA = 28)
  pii best;
  int lcs(int node, int i1, int i2, int olen) {
    if (l[node] <= i1 && i1 < r[node]) return 1;</pre>
    if (1[node] <= i2 && i2 < r[node]) return 2;</pre>
    int mask = 0, len = node ? olen + (r[node] - l[node]) : 0;
    rep(c, 0, ALPHA) if (t[node][c] != -1)
      mask |= lcs(t[node][c], i1, i2, len);
    if (mask == 3)
     best = max(best, {len, r[node] - len});
    return mask:
  static pii LCS(string s, string t) {
    SuffixTree st(s + (char) ('z' + 1) + t + (char) ('z' + 2));
    st.lcs(0, sz(s), sz(s) + 1 + sz(t), 0);
    return st.best;
};
```

Hashing.h

```
Description: Self-explanatory methods for string hashing.

// Arithmetic mod 2^64-1. 2x slower than mod 2^64 and more
```

```
// code, but works on evil test data (e.g. Thue-Morse, where
// ABBA... and BAAB... of length 2^10 hash the same mod 2^64).
// "typedef ull H;" instead if you think test data is random,
// or work mod 10^9+7 if the Birthday paradox is not a problem.
struct H {
  typedef uint64 t ull;
  ull x; H(ull x=0) : x(x) \{ \}
#define OP(O,A,B) H operator O(H o) { ull r = x; asm \
  (A "addg %%rdx, %0\n adcg $0,%0" : "+a"(r) : B); return r; }
  OP(+,,"d"(o.x)) OP(*,"mul %1\n", "r"(o.x) : "rdx")
  H operator-(H o) { return *this + ~o.x; }
  ull get() const { return x + !~x; }
  bool operator==(H o) const { return get() == o.get(); }
  bool operator<(H o) const { return get() < o.get(); }</pre>
static const H C = (11)1e11+3; // (order \sim 3e9: random \ also \ ok)
struct HashInterval {
  vector<H> ha, pw;
  HashInterval(string& str) : ha(sz(str)+1), pw(ha) {
    pw[0] = 1;
    rep(i, 0, sz(str))
      ha[i+1] = ha[i] * C + str[i],
      pw[i+1] = pw[i] * C;
  H hashInterval(int a, int b) { // hash (a, b)
    return ha[b] - ha[a] * pw[b - a];
};
vector<H> getHashes(string& str, int length) {
  if (sz(str) < length) return {};</pre>
  H h = 0, pw = 1;
  rep(i,0,length)
   h = h * C + str[i], pw = pw * C;
  vector<H> ret = {h};
  rep(i,length,sz(str)) {
    ret.push_back(h = h * C + str[i] - pw * str[i-length]);
  return ret;
H hashString(string& s){H h{}; for(char c:s) h=h*C+c;return h;}
```

AhoCorasick.h

Description: Aho-Corasick automaton, used for multiple pattern matching. Initialize with Aho-Corasick ac(patterns); the automaton start node will be at index 0. find(word) returns for each position the index of the longest word that ends there, or -1 if none. findAll(-, word) finds all words (up to $N\sqrt{N}$ many if no duplicate patterns) that start at each position (shortest first). Duplicate patterns are allowed; empty patterns are not. To find the longest words that start at each position, reverse all input. For large alphabets, split each symbol into chunks, with sentinel bits for symbol boundaries.

Time: construction takes $\mathcal{O}(26N)$, where N= sum of length of patterns. find(x) is $\mathcal{O}(N)$, where N= length of x. findAll is $\mathcal{O}(NM)$. f35677, 66 lines

```
struct AhoCorasick {
  enum {alpha = 26, first = 'A'}; // change this!
  struct Node {
    // (nmatches is optional)
   int back, next[alpha], start = -1, end = -1, nmatches = 0;
   Node(int v) { memset(next, v, sizeof(next)); }
  vector<Node> N;
  vi backp;
  void insert(string& s, int j) {
   assert(!s.empty());
   int n = 0:
    for (char c : s) {
     int& m = N[n].next[c - first];
     if (m == -1) { n = m = sz(N); N.emplace_back(-1); }
    if (N[n].end == -1) N[n].start = j;
   backp.push_back(N[n].end);
   N[n].end = j;
   N[n].nmatches++;
  AhoCorasick(vector<string>& pat) : N(1, -1) {
    rep(i,0,sz(pat)) insert(pat[i], i);
   N[0].back = sz(N);
   N.emplace_back(0);
    queue<int> q;
    for (q.push(0); !q.empty(); q.pop()) {
     int n = q.front(), prev = N[n].back;
     rep(i,0,alpha) {
       int &ed = N[n].next[i], y = N[prev].next[i];
       if (ed == -1) ed = v;
        else {
         N[ed].back = y;
          (N[ed].end == -1 ? N[ed].end : backp[N[ed].start])
           = N[v].end;
         N[ed].nmatches += N[y].nmatches;
         q.push(ed);
  vi find(string word) {
    int n = 0;
   vi res; // ll count = 0;
    for (char c : word) {
     n = N[n].next[c - first];
     res.push_back(N[n].end);
     // count += N[n].nmatches;
   return res;
  vector<vi> findAll(vector<string>& pat, string word) {
   vi r = find(word);
   vector<vi> res(sz(word));
   rep(i,0,sz(word)) {
```

```
int ind = r[i];
  while (ind != -1) {
    res[i - sz(pat[ind]) + 1].push_back(ind);
    ind = backp[ind];
  }
  return res;
}
```

$\underline{\text{Various}}$ (10)

10.1 Intervals

IntervalContainer.h

Description: Add and remove intervals from a set of disjoint intervals. Will merge the added interval with any overlapping intervals in the set when adding. Intervals are [inclusive, exclusive).

```
Time: \mathcal{O}(\log N)
set<pii>::iterator addInterval(set<pii>& is, int L, int R) {
  if (L == R) return is.end();
  auto it = is.lower_bound({L, R}), before = it;
  while (it != is.end() && it->first <= R) {</pre>
   R = max(R, it->second);
    before = it = is.erase(it);
  if (it != is.begin() && (--it)->second >= L) {
   L = min(L, it->first);
   R = max(R, it->second);
    is.erase(it);
  return is.insert(before, {L,R});
void removeInterval(set<pii>& is, int L, int R) {
 if (L == R) return;
  auto it = addInterval(is, L, R);
  auto r2 = it->second;
  if (it->first == L) is.erase(it);
  else (int&)it->second = L;
 if (R != r2) is.emplace(R, r2);
```

IntervalCover.h

Description: Compute indices of smallest set of intervals covering another interval. Intervals should be [inclusive, exclusive). To support [inclusive, inclusive], change (A) to add | | R.empty(). Returns empty set on failure (or if G is empty).

Time: $\mathcal{O}(N \log N)$ 9e9d8d, 19 lines

```
template < class T>
vi cover(pair<T, T> G, vector<pair<T, T>> I) {
  vi S(sz(I)), R;
  iota(all(S), 0);
  sort(all(S), [&](int a, int b) { return I[a] < I[b]; });
  T cur = G.first;
  int at = 0;
  while (cur < G.second) { // (A)
    pair<T, int> mx = make_pair(cur, -1);
    while (at < sz(I) && I[S[at]].first <= cur) {
        mx = max(mx, make_pair(I[S[at]].second, S[at]));
        at++;
    }
  if (mx.second == -1) return {};
    cur = mx.first;
    R.push_back(mx.second);
}</pre>
```

```
return R;
}
```

ConstantIntervals.h

Description: Split a monotone function on [from, to) into a minimal set of half-open intervals on which it has the same value. Runs a callback g for each such interval.

```
Usage: constantIntervals(0, sz(v), [&](int x){return v[x];}, [&](int lo, int hi, T val){...}); 
Time: \mathcal{O}(k \log \frac{n}{L})
```

```
template<class F, class G, class T>
void rec(int from, int to, F& f, G& g, int& i, T& p, T q) {
 if (p == q) return;
 if (from == to) {
    g(i, to, p);
    i = to; p = q;
  } else {
    int mid = (from + to) >> 1;
    rec(from, mid, f, g, i, p, f(mid));
    rec(mid+1, to, f, q, i, p, q);
template < class F, class G>
void constantIntervals(int from, int to, F f, G g) {
 if (to <= from) return;</pre>
 int i = from; auto p = f(i), q = f(to-1);
 rec(from, to-1, f, g, i, p, q);
 q(i, to, q);
```

10.2 Misc. algorithms

TernarySearch.h

Description: Find the smallest i in [a,b] that maximizes f(i), assuming that $f(a) < \ldots < f(i) \ge \cdots \ge f(b)$. To reverse which of the sides allows non-strict inequalities, change the < marked with (A) to <=, and reverse the loop at (B). To minimize f, change it to >, also at (B).

```
Usage: int ind = ternSearch(0, n-1, [&] (int i) {return a[i];});

Time: O(\log(b-a))
```

```
template < class F >
int ternSearch(int a, int b, F f) {
    assert(a <= b);
    while (b - a >= 5) {
        int mid = (a + b) / 2;
        if (f(mid) < f(mid+1)) a = mid; // (A)
        else b = mid+1;
    }
    rep(i,a+1,b+1) if (f(a) < f(i)) a = i; // (B)
    return a;
}</pre>
```

LIS.h

Description: Compute indices for the longest increasing subsequence. **Time:** $\mathcal{O}(N \log N)$

```
template<class I> vi lis(const vector<I>& S) {
   if (S.empty()) return {};
   vi prev(sz(S));
   typedef pair<I, int> p;
   vector res;
   rep(i,0,sz(S)) {
      // change 0 -> i for longest non-decreasing subsequence
   auto it = lower_bound(all(res), p{S[i], 0});
   if (it == res.end()) res.emplace_back(), it = res.end()-1;
   *it = {S[i], i};
   prev[i] = it == res.begin() ? 0 : (it-1)->second;
}
int L = sz(res), cur = res.back().second;
```

```
vi ans(L);
while (L--) ans[L] = cur, cur = prev[cur];
return ans;
```

FastKnapsack.h

Description: Given N non-negative integer weights w and a non-negative target t, computes the maximum S <= t such that S is the sum of some subset of the weights.

Time: $\mathcal{O}\left(N \max(w_i)\right)$

b20ccc, 16 lines

```
int knapsack(vi w, int t) {
   int a = 0, b = 0, x;
   while (b < sz(w) && a + w[b] <= t) a += w[b++];
   if (b == sz(w)) return a;
   int m = *max_element(all(w));
   vi u, v(2*m, -1);
   v[a+m-t] = b;
   rep(i,b,sz(w)) {
      u = v;
   rep(x,0,m) v[x+w[i]] = max(v[x+w[i]], u[x]);
      for (x = 2*m; --x > m;) rep(j, max(0,u[x]), v[x])
       v[x-w[j]] = max(v[x-w[j]], j);
   }
   for (a = t; v[a+m-t] < 0; a--);
   return a;
}</pre>
```

10.3 Dynamic programming

KnuthDP.h

Description: When doing DP on intervals: $a[i][j] = \min_{i < k < j} (a[i][k] + a[k][j]) + f(i,j)$, where the (minimal) optimal k increases with both i and j, one can solve intervals in increasing order of length, and search k = p[i][j] for a[i][j] only between p[i][j-1] and p[i+1][j]. This is known as Knuth DP. Sufficient criteria for this are if $f(b,c) \le f(a,d)$ and $f(a,c) + f(b,d) \le f(a,d) + f(b,c)$ for all $a \le b \le c \le d$. Consider also: LineContainer (ch. Data structures), monotone queues, ternary search. **Time:** $\mathcal{O}(N^2)$

DivideAndConquerDP.h

Description: Given $a[i] = \min_{lo(i) \le k < hi(i)} (f(i, k))$ where the (minimal) optimal k increases with i, computes a[i] for i = L..R - 1.

Time: $\mathcal{O}\left(\left(N+(hi-lo)\right)\log N\right)$

```
struct DP { // Modify at will:
   int lo(int ind) { return 0; }
   int hi(int ind) { return ind; }
   ll f(int ind, int k) { return dp[ind][k]; }
   void store(int ind, int k, ll v) { res[ind] = pii(k, v); }

   void rec(int L, int R, int LO, int HI) {
      if (L >= R) return;
      int mid = (L + R) >> 1;
      pair<ll, int> best(LLONG_MAX, LO);
      rep(k, max(LO, lo(mid)), min(HI, hi(mid)))
        best = min(best, make_pair(f(mid, k), k));
      store(mid, best.second, best.first);
      rec(L, mid, LO, best.second+1);
      rec(mid+1, R, best.second, HI);
   }
   void solve(int L, int R) { rec(L, R, INT_MIN, INT_MAX); }
};
```

10.4 Debugging tricks

- signal(SIGSEGV, [](int) { _Exit(0); }); converts segfaults into Wrong Answers. Similarly one can catch SIGABRT (assertion failures) and SIGFPE (zero divisions). _GLIBCXX_DEBUG failures generate SIGABRT (or SIGSEGV on gcc 5.4.0 apparently).
- feenableexcept (29); kills the program on NaNs (1), 0-divs (4), infinities (8) and denormals (16).

10.5 Optimization tricks

__builtin_ia32_ldmxcsr(40896); disables denormals (which make floats 20x slower near their minimum value).

10.5.1 Bit hacks

- x & -x is the least bit in x.
- for (int x = m; x;) { --x &= m; ... } loops over all subset masks of m (except m itself).
- c = x&-x, r = x+c; (((r^x) >> 2)/c) | r is the next number after x with the same number of bits set.
- rep(b,0,K) rep(i,0,(1 << K))
 if (i & 1 << b) D[i] += D[i^(1 << b)];
 computes all sums of subsets.</pre>

10.5.2 Pragmas

- #pragma GCC optimize ("ofast") will make GCC auto-vectorize loops and optimizes floating points better.
- #pragma GCC target ("avx2") can double performance of vectorized code, but causes crashes on old machines.
- #pragma GCC optimize ("trapv") kills the program on integer overflows (but is really slow).

FastMod.h

Description: Compute a%b about 5 times faster than usual, where b is constant but not known at compile time. Returns a value congruent to $a \pmod{b}$ in the range [0, 2b).

```
typedef unsigned long long ull;
struct FastMod {
  ull b, m;
  FastMod(ull b) : b(b), m(-1ULL / b) {}
  ull reduce(ull a) { // a % b + (0 or b)
    return a - (ull)((__uint128_t(m) * a) >> 64) * b;
  }
};
```

FastInput.h

 $\bf Description:$ Read an integer from stdin. Usage requires your program to pipe in input from file.

Usage: ./a.out < input.txt

Time: About 5x as fast as cin/scanf.

```
inline char gc() { // like getchar()
  static char buf[1 << 16];
  static size_t bc, be;
  if (bc >= be) {
```

```
buf[0] = 0, bc = 0;
  be = fread(buf, 1, sizeof(buf), stdin);
}
return buf[bc++]; // returns 0 on EOF
}
int readInt() {
  int a, c;
  while ((a = gc()) < 40);
  if (a == '-') return -readInt();
  while ((c = gc()) >= 48) a = a * 10 + c - 480;
  return a - 48;
}
```

BumpAllocator.h

Description: When you need to dynamically allocate many objects and don't care about freeing them. "new X" otherwise has an overhead of something like 0.05us + 16 bytes per allocation.

```
// Either globally or in a single class:
static char buf[450 << 20];
void* operator new(size_t s) {
    static size_t i = sizeof buf;
    assert(s < i);
    return (void*) &buf[i -= s];
}
void operator delete(void*) {}</pre>
```

SmallPtr.h

Description: A 32-bit pointer that points into BumpAllocator memory.

"BumpAllocator.h"

2dd6c9. 10 line

```
template < class T > struct ptr {
  unsigned ind;
  ptr(T* p = 0) : ind(p ? unsigned((char*)p - buf) : 0) {
    assert(ind < sizeof buf);
  }
  T& operator*() const { return *(T*)(buf + ind); }
  T* operator->() const { return &**this; }
  T& operator[](int a) const { return (&**this)[a]; }
  explicit operator bool() const { return ind; }
};
```

BumpAllocatorSTL.h

Description: BumpAllocator for STL containers.

```
Usage: vector<vector<int, small<int>>> ed(N); bb66d4, 14 lines
```

```
char buf[450 << 20] alignas(16);
size_t buf_ind = sizeof buf;

template<class T> struct small {
  typedef T value_type;
  small() {}
  template<class U> small(const U&) {}
  T* allocate(size_t n) {
    buf_ind -= n * sizeof(T);
    buf_ind &= 0 - alignof(T);
    return (T*) (buf + buf_ind);
  }
  void deallocate(T*, size_t) {}
};
```

SIMD.h

7b3c70, 17 lines

CycleCounting Debug DominatorTree

```
#define __SSE__ and __MMX__ before including it. For aligned memory use
_mm_malloc(size, 32) or int buf[N] alignas(32), but prefer loadu/s-
                                                     551b82, 43 lines
#pragma GCC target ("avx2") // or sse4.1
#include "immintrin.h"
typedef __m256i mi;
#define L(x) _mm256_loadu_si256((mi*)&(x))
// High-level/specific methods:
// load(u)?\_si256, store(u)?\_si256, setzero\_si256, \_mm\_malloc
// blendv_(epi8|ps|pd) (z?y:x), movemask_epi8 (hibits of bytes)
// i32gather_epi32(addr, x, 4): map addr[] over 32-b parts of x
// sad_epu8: sum of absolute differences of u8, outputs 4xi64
// maddubs_epi16: dot product of unsigned i7's, outputs 16xi15
// madd_epi16: dot product of signed i16's, outputs 8xi32
// extractf128_si256(, i) (256->128), cvtsi128_si32 (128->lo32)
// permute2f128\_si256(x,x,1) swaps 128-bit lanes
// shuffle_epi32(x, 3*64+2*16+1*4+0) = x for each lane
// shuffle_epi8(x, y) takes a vector instead of an imm
// Methods that work with most data types (append e.g. _epi32):
// set1, blend (i8?x:y), add, adds (sat.), mullo, sub, and/or,
// and not, abs, min, max, sign(1,x), cmp(gt|eq), unpack(lo|hi)
int sumi32(mi m) { union {int v[8]; mi m;} u; u.m = m;
  int ret = 0; rep(i,0,8) ret += u.v[i]; return ret; }
mi zero() { return _mm256_setzero_si256(); }
mi one() { return _mm256_set1_epi32(-1); }
bool all_zero(mi m) { return _mm256_testz_si256(m, m); }
bool all_one(mi m) { return _mm256_testc_si256(m, one()); }
11 example_filteredDotProduct(int n, short* a, short* b) {
  int i = 0; 11 r = 0;
  mi zero = _mm256_setzero_si256(), acc = zero;
  while (i + 16 <= n) {
    mi \ va = L(a[i]), \ vb = L(b[i]); \ i += 16;
    va = _mm256_and_si256(_mm256_cmpgt_epi16(vb, va), va);
    mi vp = _mm256_madd_epi16(va, vb);
    acc = _mm256_add_epi64(_mm256_unpacklo_epi32(vp, zero),
      _mm256_add_epi64(acc, _mm256_unpackhi_epi32(vp, zero)));
  union {ll v[4]; mi m;} u; u.m = acc; rep(i,0,4) r += u.v[i];
  for (;i \le n;++i) if (a[i] \le b[i]) r += a[i] *b[i]; // \le equiv
  return r;
Stuff I Added (11)
CycleCounting.h
```

Description: Cheat sheet of SSE/AVX intrinsics, for doing arithmetic

on several numbers at once. Can provide a constant factor improvement

of about 4, orthogonal to loop unrolling. Operations follow the pat-

tern "_mm(256)?_name_(si(128|256)|epi(8|16|32|64)|pd|ps)". Not all

are described here; grep for _mm_ in /usr/lib/gcc/*/4.9/include/ for

more. If AVX is unsupported, try 128-bit operations, "emmintrin.h" and

Description: Counts 3 and 4 cycles

39ee82, 6<u>5</u> lines

// https://github.com/ecnerwala/icpc-book/blob/master/content/ graph/cycle-counting.cpp using namespace std;

```
#define P 1000000007
#define N 110000
vector <int> go[N], lk[N];
```

```
int w[N];
int circle3(){
  int ans=0;
  for (int i = 1; i <= n; i++)</pre>
    w[i]=0;
  for (int x = 1; x <= n; x++) {</pre>
    for(int y:lk[x])w[y]=1;
    for(int y:lk[x])for(int z:lk[y])if(w[z]){
      ans=(ans+go[x].size()+go[y].size()+go[z].size()-6)%P;
    for(int y:1k[x])w[y]=0;
  return ans;
int deg[N], pos[N], id[N];
int circle4(){
  for (int i = 1; i <= n; i++)</pre>
    w[i] = 0;
  int ans=0:
  for (int x = 1; x \le n; x++) {
    for(int y:go[x])for(int z:lk[y])if(pos[z]>pos[x]){
      ans=(ans+w[z])%P;
      w[z]++;
     for(int y:go[x])for(int z:lk[y])w[z]=0;
  return ans;
inline bool cmp(const int &x,const int &y) {
  return deg[x] < deg[y];</pre>
void init() {
  scanf("%d%d", &n, &m);
  for (int i = 1; i <= n; i++)</pre>
    deg[i] = 0, go[i].clear(), lk[i].clear();;
  while (m--) {
    int a,b;
    scanf("%d%d", &a, &b);
    deg[a]++; deg[b]++;
    go[a].push_back(b);go[b].push_back(a);
  for (int i = 1; i <= n; i++)</pre>
    id[i] = i;
  sort(id+1,id+1+n,cmp);
  for (int i = 1; i <= n; i++) pos[id[i]]=i;</pre>
  for (int x = 1; x <= n; x++)</pre>
    for(int y:go[x])
      if(pos[y]>pos[x])lk[x].push_back(y);
```

Debug.h

Description: A debug template that allows outputting variables and vectors in a pretty format. You can omit the 033 codes for plain output.

```
7c46f7, 41 lines
#ifdef LOCAL
#define DEBUG(...) debug(#__VA_ARGS__, __VA_ARGS__)
#else
#define DEBUG(...) 6
#endif
```

```
template<typename T, typename S>
ostream& operator << (ostream &os, const pair<T, S> &p) {
    return os << "(" << p.first << ", " << p.second << ")";</pre>
template<typename C, typename T = decay<decltype(*begin(declval</pre>
     <C>()))>, typename enable_if<!is_same<C, string>::value>::
    type* = nullptr>
ostream& operator << (ostream &os, const C &c) {
    bool f = true;
    os << "[";
    for (const auto &x : c) {
        if (!f) os << ", ";
        f = false; os << x;
    return os << "]";
template<typename T>
void debug(string s, T x) {
    cerr << "\033[1;35m" << s << "\033[0;32m = \033[33m" << x
         << "\033[0m\n";
template<typename T, typename... Args>
void debug(string s, T x, Args... args) {
    for (int i=0, b=0; i<(int)s.size(); i++) {</pre>
        if (s[i] == '(' || s[i] == '{')
        else if (s[i] == ')' || s[i] == '}')
        else if (s[i] == ',' && b == 0) {
            cerr << "\033[1;35m" << s.substr(0, i) << "
                 033[0;32m = 033[33m" << x << "033[31m | ";
            debug(s.substr(s.find_first_not_of(' ', i + 1)),
            break;
```

DominatorTree.h

Description: Builds the dominator tree, where u dominates v if u is an ancestor of v. u dominates v if u is on every path from the root to v.

Time: $\mathcal{O}((n+m)logn)$

```
struct DominatorTree {
    vector<int> label, rlabel, dom, sdom, par, best;
    vector<vector<int>> adj, radj, children, bucket, tree;
    DominatorTree(int n) : ti(0), label(n, -1), rlabel(n), dom(
        n), sdom(n), par(n), best(n), adj(n), radj(n),
        children(n), bucket(n), tree(n) {}
    void addEdge(int u, int v) {
        adj[u].push_back(v);
   void init(int r = 0) {
       dfs(r);
       for (int u=ti-1; u>=0; u--) {
            for (int v : radj[u])
                sdom[u] = min(sdom[u], sdom[find(v)]);
            if (u > 0)
                bucket[sdom[u]].push_back(u);
            for (int v : bucket[u]) {
                int w = find(v);
                dom[v] = sdom[v] == sdom[w] ? sdom[v] : w;
```

```
for (int v : children[u])
                par[v] = u;
        for (int u=1; u<ti; u++) {</pre>
            if (dom[u] != sdom[u])
                dom[u] = dom[dom[u]];
            tree[rlabel[dom[u]]].push_back(rlabel[u]);
       }
    void dfs(int u) {
        label[u] = ti;
        rlabel[ti] = u;
        sdom[ti] = par[ti] = best[ti] = ti;
       ti++:
        for (int v : adj[u]) {
            if (label[v] == -1) {
                dfs(v):
                children[label[u]].push_back(label[v]);
            radj[label[v]].push_back(label[u]);
       }
    int find(int u) {
        if (par[u] != u) {
            int v = find(par[u]);
            par[u] = par[par[u]];
            if (sdom[v] < sdom[best[u]])</pre>
                best[u] = v;
        return best[u];
FlowWithDemands.h
Description: Flow with demands
<bits/stdc++.h>
                                                    8888c0, 199 lines
// https://github.com/ShahjalalShohag/code-library/blob/master/
     Graph%20Theory/L%20R%20Flow%20with%20Dinic.cpp
using namespace std;
const int N = 3e5 + 9;
const long long inf = 1LL << 61;</pre>
struct Dinic {
  struct edge {
    int to, rev;
   long long flow, w;
   int id:
  int n, s, t, mxid;
  vector<int> d, flow_through;
  vector<int> done;
  vector<vector<edge>> g;
 Dinic() {}
  Dinic(int n) {
   n = n + 10;
   mxid = 0;
   g.resize(n);
  void add_edge(int u, int v, long long w, int id = -1) {
    edge a = {v, (int)g[v].size(), 0, w, id};
    edge b = {u, (int)q[u].size(), 0, 0, -1}; //for
         bidirectional\ edges\ cap(b) = w
    q[u].emplace back(a);
    q[v].emplace_back(b);
```

mxid = max(mxid, id);

```
bool bfs() {
   d.assign(n, -1);
    d[s] = 0;
    queue<int> q;
    q.push(s);
    while (!g.empty()) {
     int u = q.front();
      q.pop();
      for (auto &e : g[u]) {
       int v = e.to;
       if (d[v] == -1 \&\& e.flow < e.w) d[v] = d[u] + 1, q.push
             (v);
    return d[t] != -1;
  long long dfs(int u, long long flow) {
    if (u == t) return flow;
    for (int &i = done[u]; i < (int)g[u].size(); i++) {</pre>
      edge &e = q[u][i];
      if (e.w <= e.flow) continue;</pre>
      int v = e.to;
      if (d[v] == d[u] + 1) {
       long long nw = dfs(v, min(flow, e.w - e.flow));
       if (nw > 0) {
         e.flow += nw;
          g[v][e.rev].flow -= nw;
          return nw:
    return 0;
 long long max_flow(int _s, int _t) {
   s = s;
   t = _t;
    long long flow = 0;
    while (bfs()) {
      done.assign(n, 0);
      while (long long nw = dfs(s, inf)) flow += nw;
    flow_through.assign(mxid + 10, 0);
    for (int i = 0; i < n; i++) for (auto e : q[i]) if (e.id >= 0)
          flow through[e.id] = e.flow;
    return flow;
//flow_through[i] = extra flow beyond 'low' sent through edge i
struct LR Flow {
 Dinic F;
 int n, s, t;
  struct edge {
   int u, v, l, r, id;
 vector<edge> edges:
 LR Flow() {}
 LR Flow(int n) {
   n = n + 10;
   s = n - 2, t = n - 1;
    edges.clear();
  void add edge(int u, int v, int 1, int r, int id = -1) {
    assert(0 <= 1 && 1 <= r);
    edges.push_back({u, v, l, r, id});
 bool feasible (int _s = -1, int _t = -1, int _L = -1, int _R = -1
    if (L != -1) edges.push_back({_t, _s, L, R, -1});
```

```
F = Dinic(n);
    long long target = 0;
    for (auto e : edges) {
      int u = e.u, v = e.v, l = e.l, r = e.r, id = e.id;
      if (1 != 0) {
       F.add_edge(s, v, 1);
        F.add edge(u, t, 1);
        target += 1;
      F.add edge (u, v, r - 1, id);
    auto ans = F.max flow(s, t);
    if (L != -1) edges.pop_back();
    if (ans < target) return 0; //not feasible</pre>
    return 1;
  int max_flow(int _s, int _t) { //-1 means flow is not
       feasible
    int mx = 1e5 + 9;
    if (!feasible(_s, _t, 0, mx)) return -1;
    return F.max_flow(_s, _t);
  int min flow(int s, int t) { //-1 means flow is not
       feasible
    int mx = 1e9;
    int ans = -1, 1 = 0, r = mx;
    while (1 <= r) {
      int mid = 1 + r >> 1;
      if (feasible(_s, _t, 0, mid)) ans = mid, r = mid - 1;
      else 1 = mid + 1;
    return ans;
int get_id(map<int, int> &mp, int k) {
 if (mp.find(k) == mp.end()) mp[k], mp[k] = mp.size();
  return mp[k];
int Lx[N], Rx[N], Ly[N], Ry[N], degx[N], degy[N];
int32 t main() {
  ios_base::sync_with_stdio(0);
  cin.tie(0);
  int n, m;
  cin >> n >> m;
  LR Flow F(2 \star n + 10);
  int r, b;
  cin >> r >> b;
  int sp = r > b;
  if (sp) swap(r, b);
  map<int, int> mx, my;
  for (int i = 1; i <= n; i++) {</pre>
    int x, v;
    cin >> x >> y;
    if (sp) swap(x, y);
    F.add\_edge(get\_id(mx, x), get\_id(my, y) + n, 0, 1, i);
    deax[mx[x]]++;
    degy[my[y]]++;
  for (int i = 1; i <= mx.size(); i++) Lx[i] = 0, Rx[i] = deqx[</pre>
  for (int i = 1; i <= my.size(); i++) Ly[i] = 0, Ry[i] = degy[</pre>
      il:
  while (m--) {
    int ty, x, d;
    cin >> tv >> x >> d;
    ty--;
    ty ^= sp;
    if (ty == 0) {
      if (mx.find(x) != mx.end()) {
```

GeneralMatching GeneralWeightedMatching

```
int i = mx[x];
        int p = degx[i];
        int 1 = (p - d + 1) / 2, r = (p + d) / 2;
       1 = \max(0, 1);
       r = min(p, r);
       Lx[i] = max(Lx[i], 1);
       Rx[i] = min(Rx[i], r);
   } else {
      if (my.find(x) != my.end()) {
       int i = my[x];
       int p = degy[i];
       int 1 = (p - d + 1) / 2, r = (p + d) / 2;
       1 = \max(0, 1);
       r = min(p, r);
       Ly[i] = max(Ly[i], 1);
       Ry[i] = min(Ry[i], r);
  int s = 2 * n + 2, t = s + 1;
  for (int i = 1; i <= mx.size(); i++) {</pre>
   if (Lx[i] > Rx[i]) return cout << -1 << '\n', 0;</pre>
   F.add_edge(s, i, Lx[i], Rx[i]);
  for (int i = 1; i <= my.size(); i++) {</pre>
   if (Ly[i] > Ry[i]) return cout << -1 << '\n', 0;</pre>
   F.add_edge(i + n, t, Ly[i], Ry[i]);
 int c = F.max_flow(s, t);
 if (c == -1) return cout << -1 << '\n', 0;</pre>
 long long ans = 1LL * c * r + 1LL * (n - c) * b;
  cout << ans << '\n';
  for (int i = 1; i <= n; i++) {</pre>
   cout << "br"[F.F.flow_through[i] ^ sp];</pre>
 cout << '\n';
 return 0:
//https://codeforces.com/contest/704/problem/D
```

GeneralMatching.h

Description: Finds an unweighted matching in a general graph using Blossom Algorithm.

```
Time: \mathcal{O}(n*m)
                                                     1b2a6f, 52 lines
vector<int> Blossom(vector<vector<int>>& graph) {
  int n = graph.size(), timer = -1;
  vector<int> mate(n, -1), label(n), parent(n),
              orig(n), aux(n, -1), q;
  auto lca = [&](int x, int y) {
    for (timer++; ; swap(x, y)) {
     if (x == -1) continue;
     if (aux[x] == timer) return x;
     aux[x] = timer;
     x = (mate[x] == -1 ? -1 : orig[parent[mate[x]]]);
  auto blossom = [&](int v, int w, int a) {
    while (orig[v] != a) {
     parent[v] = w; w = mate[v];
     if (label[w] == 1) label[w] = 0, q.push_back(w);
     orig[v] = orig[w] = a; v = parent[w];
  auto augment = [&] (int v) {
    while (v != -1) {
     int pv = parent[v], nv = mate[pv];
     mate[v] = pv; mate[pv] = v; v = nv;
```

```
};
 auto bfs = [&](int root) {
   fill(label.begin(), label.end(), -1);
    iota(orig.begin(), orig.end(), 0);
   g.clear();
    label[root] = 0; q.push_back(root);
    for (int i = 0; i < (int)q.size(); ++i) {</pre>
     int v = q[i];
     for (auto x : graph[v]) {
       if (label[x] == -1) {
          label[x] = 1; parent[x] = v;
          if (mate[x] == -1)
            return augment(x), 1;
          label[mate[x]] = 0; q.push_back(mate[x]);
        } else if (label[x] == 0 && orig[v] != orig[x]) {
          int a = lca(orig[v], orig[x]);
          blossom(x, v, a); blossom(v, x, a);
    return 0;
  // Time halves if you start with (any) maximal matching.
 for (int i = 0; i < n; i++)</pre>
    if (mate[i] == -1)
     bfs(i);
 return mate;
GeneralWeightedMatching.h
Description: General weighted matching
<br/>
<br/>
dits/stdc++.h>
                                                     bf63a4, 242 lines
// https://judge.yosupo.jp/submission/61597
// one of the shortest ones I could find in fastest Yosupo
    judge list
using namespace std;
const int N = 505;
// Complexity: O(n^3)
// It finds maximum cost matching on a general graph, not
    necessarily with maximum matching
// 1-indexed
struct Blossom {
 const long long inf = 1e18;
#define dist(e) (lab[e.u] + lab[e.v] - g[e.u][e.v].w * 2)
 struct edge {
    int u, v;
   long long w;
 g[N * 2][N * 2];
 int n, n_x, match[N * 2], slack[N * 2], st[N * 2], pa[N * 2],
       flower_from[N \star 2][N \star 2], S[N \star 2], vis[N \star 2];
 long long lab[N * 2];
 vector<int> flower[N * 2];
 deque<int> q;
 Blossom() {}
 Blossom(int _n) {
   n = _n;
   q = deque<int>();
    for (int u = 1; u \le n * 2; ++u) {
     match[u] = slack[u] = st[u] = pa[u] = S[u] = vis[u] = lab
           [u] = 0;
      for (int v = 1; v \le n * 2; ++v) {
       q[u][v] = edge\{u, v, 0\};
        flower from [u][v] = 0;
      flower[u].clear();
 void add_edge(int u, int v, long long w) {
```

```
q[u][v].w = max(q[u][v].w, w);
  q[v][u].w = max(q[v][u].w, w);
inline void update_slack(int u, int x) {
  if (!slack[x] || dist(q[u][x]) < dist(q[slack[x]][x]))
       slack[x] = u;
inline void set_slack(int x) {
  slack[x] = 0;
  for (int u = 1; u <= n; ++u) {</pre>
    if (q[u][x].w > 0 && st[u] != x && S[st[u]] == 0)
         update slack(u, x);
inline void q_push(int x) {
  if (x <= n) return q.push_back(x);</pre>
  for (int i = 0; i < (int)flower[x].size(); i++) q_push(</pre>
       flower[x][i]);
inline void set_st(int x, int b) {
  st[x] = b;
  if (x <= n) return;</pre>
  for (int i = 0; i < (int)flower[x].size(); ++i) set st(</pre>
       flower[x][i], b);
inline int get_pr(int b, int xr) {
  int pr = find(flower[b].begin(), flower[b].end(), xr) -
       flower[b].begin();
  if (pr % 2 == 1) {
    reverse(flower[b].begin() + 1, flower[b].end());
    return (int) flower[b].size() - pr;
  } else return pr;
inline void set_match(int u, int v) {
  match[u] = q[u][v].v;
  if (u <= n) return;</pre>
  edge e = g[u][v];
  int xr = flower_from[u][e.u], pr = get_pr(u, xr);
  for (int i = 0; i < pr; ++i) set match(flower[u][i], flower</pre>
       [u][i ^ 1]);
  set_match(xr, v);
  rotate(flower[u].begin(), flower[u].begin() + pr, flower[u
       ].end());
inline void augment(int u, int v) {
  int xnv = st[match[u]];
  set match(u, v);
  if (!xnv) return;
  set match(xnv, st[pa[xnv]]);
  augment(st[pa[xnv]], xnv);
inline int get_lca(int u, int v) {
  static int t = 0;
  for (++t; u || v; swap(u, v)) {
    if (u == 0) continue;
    if (vis[u] == t) return u;
    vis[u] = t;
    u = st[match[u]];
    if (u) u = st[pa[u]];
  return 0;
inline void add blossom(int u, int lca, int v) {
  int b = n + 1;
  while(b <= n_x && st[b]) ++b;</pre>
  if (b > n_x) ++n_x;
  lab[b] = 0, S[b] = 0;
  match[b] = match[lca];
  flower[b].clear();
```

```
GT
```

```
flower[b].push_back(lca);
 for (int x = u, y; x != lca; x = st[pa[y]]) {
   flower[b].push_back(x), flower[b].push_back(y = st[match[
        x]]), q_push(y);
 reverse(flower[b].begin() + 1, flower[b].end());
 for (int x = v, y; x != lca; x = st[pa[y]]) {
   flower[b].push_back(x), flower[b].push_back(y = st[match[
        x]]), q_push(y);
 set_st(b, b);
 for (int x = 1; x \le n_x; ++x) g[b][x].w = g[x][b].w = 0;
 for (int x = 1; x <= n; ++x) flower_from[b][x] = 0;</pre>
 for (int i = 0; i < (int)flower[b].size(); ++i) {</pre>
   int xs = flower[b][i];
   for (int x = 1; x <= n_x; ++x) {</pre>
     if (g[b][x].w == 0 \mid \mid dist(g[xs][x]) < dist(g[b][x]))
       q[b][x] = q[xs][x], q[x][b] = q[x][xs];
   for (int x = 1; x \le n; ++x) {
     if (flower_from[xs][x]) flower_from[b][x] = xs;
 set_slack(b);
inline void expand_blossom(int b) { // S[b] == 1
 for (int i = 0; i < (int)flower[b].size(); ++i) set_st(</pre>
      flower[b][i], flower[b][i]);
 int xr = flower_from[b][g[b][pa[b]].u], pr = get_pr(b, xr);
 for (int i = 0; i < pr; i += 2) {</pre>
   int xs = flower[b][i], xns = flower[b][i + 1];
   pa[xs] = q[xns][xs].u;
   S[xs] = 1, S[xns] = 0;
   slack[xs] = 0, set_slack(xns);
   q_push (xns);
 S[xr] = 1, pa[xr] = pa[b];
 for (int i = pr + 1; i < (int)flower[b].size(); ++i) {</pre>
   int xs = flower[b][i];
   S[xs] = -1, set_slack(xs);
 st[b] = 0;
inline bool on found edge (const edge &e) {
 int u = st[e.u], v = st[e.v];
 if (S[v] == -1) {
   pa[v] = e.u, S[v] = 1;
   int nu = st[match[v]];
   slack[v] = slack[nu] = 0;
   S[nu] = 0, q push(nu);
  } else if (S[v] == 0) {
   int lca = get_lca(u, v);
   if (!lca) return augment(u, v), augment(v, u), 1;
   else add_blossom(u, lca, v);
 return 0;
inline bool matching() {
 fill(S, S + n_x + 1, -1), fill(slack, slack + n_x + 1, 0);
 q.clear();
 for (int x = 1; x <= n_x; ++x) {</pre>
   if (st[x] == x && :match[x]) pa[x] = 0, S[x] = 0, q_push(
        x);
 if (q.empty()) return 0;
 for (;;) {
   while((int)q.size()) {
     int u = q.front();
     q.pop_front();
```

```
if (S[st[u]] == 1)continue;
        for (int v = 1; v <= n; ++v) {</pre>
          if (g[u][v].w > 0 && st[u] != st[v]) {
            if (dist(g[u][v]) == 0) {
               if (on_found_edge(g[u][v])) return 1;
             } else update_slack(u, st[v]);
      long long d = inf;
      for (int b = n + 1; b <= n_x; ++b) {</pre>
        if (st[b] == b && S[b] == 1) d = min(d, lab[b] / 2);
      for (int x = 1; x <= n_x; ++x) {</pre>
        if (st[x] == x && slack[x]) {
          if (S[x] == -1) d = min(d, dist(q[slack[x]][x]));
           else if (S[x] == 0) d = min(d, dist(g[slack[x]][x]) /
      for (int u = 1; u <= n; ++u) {
        if (S[st[u]] == 0) {
          if (lab[u] <= d) return 0;</pre>
          lab[u] -= d;
        } else if (S[st[u]] == 1) lab[u] += d;
      for (int b = n + 1; b <= n_x; ++b) {</pre>
        if (st[b] == b) {
          if (S[st[b]] == 0) lab[b] += d * 2;
          else if (S[st[b]] == 1) lab[b] -= d * 2;
      for (int x = 1; x <= n_x; ++x) {</pre>
        if (st[x] == x \&\& slack[x] \&\& st[slack[x]] != x \&\& dist
              (g[slack[x]][x]) == 0)
          if (on_found_edge(g[slack[x]][x])) return 1;
      for (int b = n + 1; b \le n \times +b) {
        if (st[b] == b && S[b] == 1 && lab[b] == 0)
             expand_blossom(b);
    return 0;
  pair<long long, int> solve() {
    fill (match, match + n + 1, 0);
    n_x = n;
    int cnt = 0;
    long long ans = 0;
    for (int u = 0; u <= n; ++u) st[u] = u, flower[u].clear();</pre>
    long long w max = 0;
    for (int u = 1; u <= n; ++u) {</pre>
      for (int v = 1; v <= n; ++v) {</pre>
        flower_from[u][v] = (u == v ? u : 0);
        w_max = max(w_max, q[u][v].w);
    for (int u = 1; u <= n; ++u) lab[u] = w_max;</pre>
    while (matching()) ++cnt;
    for (int u = 1; u <= n; ++u) {</pre>
      if (match[u] && match[u] < u) ans += q[u][match[u]].w;</pre>
    return make_pair(ans, cnt);
int main() {
 ios_base::sync_with_stdio(0);
  cin.tie(0);
```

```
int n, m;
  cin >> n >> m:
  Blossom M(n);
  while (m--) {
   int u, v, w;
    cin >> u >> v >> w;
   M.add\_edge(u + 1, v + 1, w);
  auto [weight, size] = M.solve();
  cout << size << " " << weight << "\n";
  vector<pair<int, int>> ans;
  for(int u = 1; u <= n; ++u) {</pre>
    if (u < M.match[u]) {
      cout << u - 1 << " " << M.match[u] - 1 << "\n";
HalfPlaneIntersection.h
Description: Halfplane intersection area
"Point.h", "lineIntersection.h"
// https://github.com/ecnerwala/icpc-book/blob/master/content/
     geometry/halfPlane.h
#define eps 1e-8
typedef Point < double > P;
struct Line {
  P P1, P2;
  // Right hand side of the ray P1 -> P2
  explicit Line(P a = P(), P b = P()) : P1(a), P2(b) {};
  P intpo(Line y) {
    Pr:
    assert (lineIntersection (P1, P2, y.P1, y.P2, r) == 1);
    return r:
  P dir() {
    return P2 - P1;
  bool contains (P x) {
    return (P2 - P1).cross(x - P1) < eps;
  bool out (P x) {
    return !contains(x);
};
template < class T>
bool mycmp(Point<T> a, Point<T> b) {
  // return atan2(a.y, a.x) < atan2(b.y, b.x);
  if (a.x * b.x < 0) return a.x < 0;</pre>
  if (abs(a.x) < eps) {
    if (abs(b.x) < eps) return a.y > 0 && b.y < 0;</pre>
    if (b.x < 0) return a.y > 0;
    if (b.x > 0) return true;
  if (abs(b.x) < eps) {
    if (a.x < 0) return b.y < 0;
    if (a.x > 0) return false;
  return a.cross(b) > 0;
bool cmp (Line a, Line b) {
  return mycmp(a.dir(), b.dir());
double Intersection_Area(vector <Line> b) {
  sort(b.begin(), b.end(), cmp);
```

int n = b.size();

Hashing HLDNonCommutative Interpolation LinkCutTree

ret = (ret & MOD) + (ret >> 61);

```
int q = 1, h = 0, i;
  vector <Line> c(b.size() + 10);
  for (i = 0; i < n; i++) {
    while (q < h && b[i].out(c[h].intpo(c[h - 1]))) h--;</pre>
    while (q < h \&\& b[i].out(c[q].intpo(c[q + 1]))) q++;
    if (q < h && abs(c[h].dir().cross(c[h - 1].dir())) < eps) {</pre>
      if (c[h].dir().dot(c[h - 1].dir()) > 0) {
        if (b[i].out(c[h].P1)) c[h] = b[i];
      }else {
        // The area is either 0 or infinite.
        // If you have a bounding box, then the area is
             definitely 0.
        return 0;
  while (q < h - 1 && c[q].out(c[h].intpo(c[h - 1]))) h--;
  while (q < h - 1 \&\& c[h].out(c[q].intpo(c[q + 1]))) q++;
  // Intersection is empty. This is sometimes different from
       the case when
  // the intersection area is 0.
  if (h - q <= 1) return 0;
  c[h + 1] = c[q];
  vector <P> s;
  for (i = q; i <= h; i++) s.push_back(c[i].intpo(c[i + 1]));</pre>
  s.push_back(s[0]);
  double ans = 0;
  for (i = 0; i < (int) s.size() - 1; i++) ans += s[i].cross(s
       [i + 1]);
  return ans / 2;
Hashing.h
Description: A polynomial hash function for strings.
                                                     5654db, 42 lines
const uint64 t MOD = (1ULL << 61) - 1;</pre>
const int BASE = [] () {
    auto seed = chrono::high_resolution_clock::now().
         time since epoch().count();
    mt19937 gen(seed ^ uint64_t(new uint64_t));
    uniform int distribution < int > dist(258, 2e9 - 1);
    int base = dist(gen);
    return base % 2 == 0 ? base - 1 : base;
uint64_t add(uint64_t a, uint64_t b) {
    a += b;
    if (a >= MOD)
        a -= MOD;
    return a;
uint64_t sub(uint64_t a, uint64_t b) {
    a -= b;
    if (a >= MOD)
       a += MOD;
    return a;
uint64_t mul(uint64_t a, uint64_t b) {
    uint64 t 11 = (uint32 t) a, h1 = a >> 32, 12 = (uint32 t) b
        , h2 = b >> 32;
    uint64_t l = 11 * 12, m = 11 * h2 + 12 * h1, h = h1 * h2;
    uint64_t ret = (1 \& MOD) + (1 >> 61) + (h << 3) + (m >> 29)
          + (m << 35 >> 3) + 1;
    ret = (ret & MOD) + (ret >> 61);
```

```
return ret - 1;
uint64_t getHash(const string &s) {
    uint64 t ret = 0;
    for (char c : s)
        ret = add(mul(ret, BASE), c);
    return ret;
// A string with characters c_0 c_1 c_2 c_3 is encoded as c_0 *
      BASE^3 + c_1 * BASE^2 + c_2 * BASE + c_3
// If you precompute all prefixes, then you can get any
     substring from index i with length L
// pref[i + L - 1] - pref[i - 1] * BASE^L
HLDNonCommutative.h
Description: HLD for non commutative aggregates
                                                         d6cacf, 32 lines
// For non-commutative functions like in https://www.spoj.com/
     problems/GSS7/. do this instead:
template < class B>
void process(int u, int v, B op) {
    bool s = false;
    for (; root[u]!=root[v]; u=par[root[u]]) {
        if (depth[root[u]] < depth[root[v]]) {</pre>
             swap(u, v);
             s ^= true;
        op(pos[root[u]], pos[u], s);
    if (depth[u] > depth[v]) {
        swap(u, v);
        s ^= true;
    op(pos[u] + VAL_IN_EDGES, pos[v], !s);
// path
int query(int u, int v) {
    Node ls, rs:
    process(u, v, [this, &ls, &rs] (int 1, int r, bool s) {
        Node cur = st.query(1, r);
        if (s) rs.pull(cur, rs);
        else ls.pull(cur, ls);
    swap(ls.pref, ls.suff);
    Node ret;
    ret.pull(ls, rs);
    return ret.ans;
Interpolation.h
Description: Lagrange interpolation for points x = 0, 1, ..., n - 1. La-
grange polynomial is \sum_{i=1}^n y_i \prod_{j=1, j \neq n}^n \frac{x-x_j}{x_i-x_j}. For any arithmetic progres-
sion x = a, a + d, \dots, a + (n-1) * d, shift the polynomial and evaluate
f(x) = g((x-a)/d). For arbitrary n points, do naive \mathcal{O}(n^2) computation of
the formula above.
Time: \mathcal{O}(n + logMOD)
                                                        407f55, 22 lines
"ModInt.h"
using M = ModInt<1000000007>;
M interpolate(const vector<M> &y, long long x) {
    int n = (int) y.size();
    if (x < n)
        return y[x];
```

```
vector<M> pref(n + 1), suff(n + 1), inv(n + 1);
M fact = pref[0] = suff[n] = 1;
for (int i=0; i<n; i++) {
    pref[i+1] = pref[i] * (x - i);
    fact *= i + 1;
}
inv[n] = inverse(fact);
for (int i=n-1; i>=0; i--) {
    suff[i] = suff[i+1] * (x - i);
    inv[i] = inv[i+1] * (i + 1);
}
M ret = 0;
for (int i=0; i<n; i++)
    ret += (i % 2 == n % 2 ? -1 : 1) * y[i] * pref[i] *
        suff[i+1] * inv[i] * inv[n-i-1];
return ret;</pre>
```

LinkCutTree.h

Description: Link cut tree for maintaining path or subtree aggregates while adding or removing edges. Uses 1-based indexing. I believe the lazy only works for path, not subtree.

Time: $\mathcal{O}(logn)$ for all operations

3de263, 105 lines

```
struct SplayTree {
  struct Node {
    int ch[2] = \{0, 0\}, p = 0;
    long long self = 0, path = 0;
                                         // Path aggregates
                                         // Subtree aggregates
    long long sub = 0, vir = 0;
    bool flip = 0;
                                         // Lazu taas
 };
  vector<Node> T;
 SplayTree(int n) : T(n + 1) {}
 void push(int x) {
   if (!x || !T[x].flip) return;
    int 1 = T[x].ch[0], r = T[x].ch[1];
    T[1].flip ^= 1, T[r].flip ^= 1;
    swap(T[x].ch[0], T[x].ch[1]);
    T[x].flip = 0;
  void pull(int x) {
    int 1 = T[x].ch[0], r = T[x].ch[1]; push(1); push(r);
    T[x].path = T[1].path + T[x].self + T[r].path;
    T[x].sub = T[x].vir + T[1].sub + T[r].sub + T[x].self;
 void set(int x, int d, int y) {
   T[x].ch[d] = y; T[y].p = x; pull(x);
  void splay(int x) {
    auto dir = [&](int x) {
      int p = T[x].p; if (!p) return -1;
      return T[p].ch[0] == x ? 0 : T[p].ch[1] == x ? 1 : -1;
    auto rotate = [&](int x) {
      int y = T[x].p, z = T[y].p, dx = dir(x), dy = dir(y);
      set(y, dx, T[x].ch[!dx]);
      set(x, !dx, v);
      if (\sim dy) set(z, dy, x);
      T[x].p = z;
    for (push(x); \simdir(x); ) {
      int y = T[x].p, z = T[y].p;
```

```
push(z); push(y); push(x);
      int dx = dir(x), dy = dir(y);
      if (\simdy) rotate(dx != dy ? x : y);
      rotate(x);
};
struct LinkCut : SplayTree {
  LinkCut(int n) : SplayTree(n) {}
  int access(int x) {
    int u = x, v = 0;
    for (; u; v = u, u = T[u].p) {
      splay(u);
      int& ov = T[u].ch[1];
     T[u].vir += T[ov].sub;
     T[u].vir -= T[v].sub;
     ov = v; pull(u);
    return splay(x), v;
  void reroot(int x) {
   access(x); T[x].flip ^= 1; push(x);
  void Link(int u, int v) {
    reroot(u); access(v);
    T[v].vir += T[u].sub;
    T[u].p = v; pull(v);
  void Cut(int u, int v) {
    reroot(u); access(v);
    T[v].ch[0] = T[u].p = 0; pull(v);
  // Rooted tree LCA. Returns 0 if u and v arent connected.
  int LCA(int u, int v) {
    if (u == v) return u;
    access(u); int ret = access(v);
    return T[u].p ? ret : 0;
  // Query subtree of u where v is outside the subtree.
  long long Subtree(int u, int v) {
    reroot (v); access (u); return T[u].vir + T[u].self;
  // Query path [u..v]
  long long Path(int u, int v) {
    reroot(u); access(v); return T[v].path;
  // Update vertex u with value v
  void Update(int u, long long v) {
    access(u); T[u].self = v; pull(u);
};
```

MinCostCirculation.h

Description: Finds the minimum cost circulation of a flow graph with negative cycles. To find the maximum flow, add a source and sink node, and add an edge from t to s with infinite capacity and negative infinity cost. Time: $\mathcal{O}(F * n^2 * m)$

779293, 69 lines

```
struct MCF {
    struct Edge {
```

```
int u, v;
    long long cap, cost, flow;
    Edge(int _u, int _v, long long _cap, long long _cost) :
          u(\underline{u}), v(\underline{v}), cap(\underline{cap}), cost(\underline{cost}), flow(0) {}
};
int m, n;
vector<int> par;
vector<long long> dist;
vector<bool> onStack;
vector<Edge> edges;
vector<vector<int>> adj;
MCF(int _n) : m(0), n(_n), par(n), dist(n), onStack(n), adj
void addEdge(int u, int v, long long cap, long long cost) {
    edges.emplace_back(u, v, cap, cost);
    edges.emplace_back(v, u, 0, -cost);
    adj[u].push_back(m++);
    adj[v].push_back(m++);
int dfs(int u) {
    onStack[u] = true;
    for (int e : adj[u])
        if (edges[e].flow < edges[e].cap && dist[u] + edges</pre>
             [e].cost < dist[edges[e].v]) {</pre>
            par[edges[e].v] = e;
            dist[edges[e].v] = dist[u] + edges[e].cost;
            if (onStack[edges[e].v])
                 return edges[e].v;
            int ret = dfs(edges[e].v);
            if (ret !=-1)
                 return ret;
    onStack[u] = false;
    return -1;
long long solve() {
    long long ret = 0;
    while (true) {
        fill(dist.begin(), dist.end(), 0);
        fill(onStack.begin(), onStack.end(), false);
        int s = -1;
        for (int u=0; u<n; u++) {</pre>
            s = dfs(u);
            if (s !=-1)
                 break;
        if (s == -1)
            break;
        int u = s;
        long long f = LLONG_MAX;
        do {
            f = min(f, edges[par[u]].cap - edges[par[u]].
                 flow);
            u = edges[par[u]].u;
        } while (u != s);
             edges[par[u]].flow += f;
            edges[par[u] ^ 1].flow -= f;
            ret += f * edges[par[u]].cost;
            u = edges[par[u]].u;
         } while (u != s);
    return ret;
```

```
MinCostMaxFlow.h
```

};

Description: Finds the minimum cost maximum flow of a graph with a successive shortest path algorithm. Allows negative cost edges, but not negative

Time: $\mathcal{O}(n*m+F*m*logm)$ or $\mathcal{O}(F*m*logm)$ if all edge weights are non-negative.

```
struct MCMF {
    struct Edge {
        int u, v;
        long long cap, cost, flow;
        Edge(int _u, int _v, long long _cap, long long _cost) :
              u(\underline{u}), v(\underline{v}), cap(\underline{cap}), cost(\underline{cost}), flow(0) {}
    int m, n, s, t;
    bool neg;
    vector<int> par;
    vector<long long> pi, dist;
    vector<Edge> edges;
    vector<vector<int>> adj;
    MCMF(int _n, int _s, int _t) : m(0), n(_n), s(_s), t(_t),
         neg(false), par(n), pi(n), dist(n), adj(n) {}
    void addEdge(int u, int v, long long cap, long long cost) {
        edges.emplace back(u, v, cap, cost);
        edges.emplace_back(v, u, 0, -cost);
        adj[u].push_back(m++);
        adj[v].push back(m++);
        neq l = cost < 0;
    bool path() {
        fill(dist.begin(), dist.end(), LLONG MAX);
        priority_queue<pair<long long, int>, vector<pair<long</pre>
             long, int>>, greater<pair<long long, int>>> pq;
        pq.emplace(dist[s] = 0, s);
        while (!pq.empty()) {
            auto [d, u] = pq.top();
            pq.pop();
            if (d > dist[u])
                 continue:
            for (int e : adj[u])
                 if (edges[e].flow < edges[e].cap && dist[u] +</pre>
                      edges[e].cost + pi[u] - pi[edges[e].v] <
                      dist[edges[e].v]) {
                     par[edges[e].v] = e;
                     pq.emplace(dist[edges[e].v] = dist[u] +
                          edges[e].cost + pi[u] - pi[edges[e].v
                          ], edges[e].v);
        return dist[t] < LLONG_MAX;</pre>
    void setpi() {
        fill(pi.begin(), pi.end(), LLONG_MAX);
        pi[s] = 0;
        bool cycle;
        for (int i=0; i<n; i++) {</pre>
            cycle = false;
             for (const Edge &e : edges)
                 if (e.cap > 0 && pi[e.u] < LLONG_MAX && pi[e.u]</pre>
                       + e.cost < pi[e.v]) {
```

```
pi[e.v] = pi[e.u] + e.cost;
                    cvcle = true;
        assert (!cycle);
   pair<long long, long long> maxFlow(long long limit =
        LLONG MAX) {
       if (nea)
            setpi();
       long long retFlow = 0, retCost = 0;
       while (limit > 0 && path()) {
            for (int u=0; u<n; u++)
               pi[u] += dist[u];
           long long f = limit;
            for (int u=t; u!=s; u=edges[par[u]].u)
                f = min(f, edges[par[u]].cap - edges[par[u]].
                     flow):
            retFlow += f;
            retCost += f * (pi[t] - pi[s]);
           limit -= f;
            for (int u=t; u!=s; u=edges[par[u]].u) {
                edges[par[u]].flow += f;
                edges[par[u] ^ 1].flow -= f;
        return {retFlow, retCost};
};
```

Polv.h

num r = 1;

```
Description: FFT/NTT, polynomial mod/log/exp
```

```
c84439, 300 lines
#define per(i, a, b) for (int i = (b) - 1; i \ge a; i--)
#define trav(a, x) for (auto &a : x)
namespace fft {
#if FFT
// FFT
using dbl = double;
struct num {
 dbl x, y;
 num(dbl_x_= 0, dbl_y_= 0) : x(x_), y(y_) { }
inline num operator+(num a, num b) { return num(a.x + b.x, a.y
    + b.v); }
inline num operator-(num a, num b) { return num(a.x - b.x, a.y
    - b.v); }
inline num operator*(num a, num b) { return num(a.x * b.x - a.y
     * b.y, a.x * b.y + a.y * b.x); }
inline num conj(num a) { return num(a.x, -a.y); }
inline num inv(num a) { dbl n = (a.x*a.x+a.y*a.y); return num(a
    .x/n,-a.y/n); }
#else
// NTT
const int mod = 998244353, q = 3;
// For p < 2^30 there is also (5 << 25, 3), (7 << 26, 3),
// (479 << 21, 3) and (483 << 21, 5). Last two are > 10^9.
struct num {
  int v;
  num(ll v_ = 0) : v(int(v_ % mod)) { if (v<0) v+=mod; }</pre>
  explicit operator int() const { return v; }
inline num operator+(num a, num b) {return num(a.v+b.v);}
inline num operator-(num a, num b) {return num(a.v+mod-b.v);}
inline num operator*(num a, num b) {return num(111*a.v*b.v);}
inline num pow(num a, int b) {
```

```
do{if(b&1) r=r*a; a=a*a; }while(b>>=1);
 return r:
inline num inv(num a) { return pow(a, mod-2); }
#endif
using vn = vector<num>;
vi rev({0, 1});
vn rt(2, num(1)), fa, fb;
inline void init(int n) {
 if (n <= sz(rt)) return;</pre>
 rev.resize(n);
 rep(i,0,n) \ rev[i] = (rev[i>>1] | ((i&1)*n)) >> 1;
 rt.reserve(n);
 for (int k = sz(rt); k < n; k *= 2) {
   rt.resize(2*k);
#if FFT
    double a=M_PI/k; num z(cos(a), sin(a)); // FFT
   num z = pow(num(q), (mod-1)/(2*k)); // NTT
#endif
    rep(i,k/2,k) rt[2*i] = rt[i], rt[2*i+1] = rt[i]*z;
inline void fft(vector<num> &a, int n) {
 init(n);
 int s = __builtin_ctz(sz(rev)/n);
 rep(i,0,n) if (i < rev[i]>>s) swap(a[i], a[rev[i]>>s]);
 for (int k = 1; k < n; k *= 2)
   for (int i = 0; i < n; i += 2 * k) rep(j, 0, k) {
     num t = rt[j+k] \star a[i+j+k];
     a[i+j+k] = a[i+j] - t;
     a[i+j] = a[i+j] + t;
// Complex/NTT
vn multiply(vn a, vn b) {
 int s = sz(a) + sz(b) - 1;
 if (s <= 0) return {};
 int L = s > 1 ? 32 - \underline{\quad builtin_clz(s-1)} : 0, n = 1 << L;
 a.resize(n), b.resize(n);
 fft(a, n);
 fft(b, n);
 num d = inv(num(n));
 rep(i, 0, n) \ a[i] = a[i] * b[i] * d;
 reverse(a.begin()+1, a.end());
 fft(a, n);
 a.resize(s);
 return a;
// Complex/NTT power-series inverse
// Doubles b as b[:n] = (2 - a[:n] * b[:n/2]) * b[:n/2]
vn inverse(const vn& a) {
 if (a.emptv()) return {};
 vn b({inv(a[0])});
 b.reserve(2*a.size());
 while (sz(b) < sz(a)) {
   int n = 2*sz(b);
   b.resize(2*n, 0);
   if (sz(fa) < 2*n) fa.resize(2*n);
   fill(fa.begin(), fa.begin()+2*n, 0);
    copy(a.begin(), a.begin()+min(n,sz(a)), fa.begin());
   fft(b, 2*n);
   fft(fa, 2*n);
   num d = inv(num(2*n));
```

```
rep(i, 0, 2*n) b[i] = b[i] * (2 - fa[i] * b[i]) * d;
    reverse(b.begin()+1, b.end());
    fft(b, 2*n);
   b.resize(n);
 b.resize(a.size());
 return b;
#if FFT
// Double multiply (num = complex)
using vd = vector<double>;
vd multiply(const vd& a, const vd& b) {
 int s = sz(a) + sz(b) - 1;
 if (s <= 0) return {};
  int L = s > 1 ? 32 - \underline{\quad} builtin_clz(s-1) : 0, n = 1 << L;
  if (sz(fa) < n) fa.resize(n);</pre>
  if (sz(fb) < n) fb.resize(n);</pre>
  fill(fa.begin(), fa.begin() + n, 0);
  rep(i, 0, sz(a)) fa[i].x = a[i];
  rep(i, 0, sz(b)) fa[i].y = b[i];
  fft(fa, n);
  trav(x, fa) x = x * x;
  rep(i, 0, n) fb[i] = fa[(n-i)&(n-1)] - conj(fa[i]);
  fft(fb, n);
 vd r(s);
 rep(i, 0, s) r[i] = fb[i].y / (4*n);
  return r:
// Integer multiply mod m (num = complex)
vi multiply mod(const vi& a, const vi& b, int m) {
 int s = sz(a) + sz(b) - 1;
 if (s <= 0) return {};
 int L = s > 1 ? 32 - __builtin_clz(s-1) : 0, n = 1 << L;</pre>
 if (sz(fa) < n) fa.resize(n);</pre>
 if (sz(fb) < n) fb.resize(n);</pre>
  rep(i, 0, sz(a)) fa[i] = num(a[i] & ((1 << 15) - 1), a[i] >> 15);
  fill(fa.begin()+sz(a), fa.begin() + n, 0);
  rep(i,0,sz(b)) fb[i] = num(b[i] & ((1<<15)-1), b[i] >> 15);
  fill(fb.begin()+sz(b), fb.begin() + n, 0);
  fft(fa, n);
  fft(fb, n);
  double r0 = 0.5 / n; // 1/2n
  rep(i, 0, n/2+1) {
   int j = (n-i) & (n-1);
    num g0 = (fb[i] + conj(fb[j])) * r0;
    num q1 = (fb[i] - conj(fb[j])) * r0;
    swap(g1.x, g1.y); g1.y *= -1;
    if (i != i) {
      swap(fa[j], fa[i]);
      fb[j] = fa[j] * g1;
      fa[j] = fa[j] * q0;
    fb[i] = fa[i] * conj(q1);
    fa[i] = fa[i] * conj(q0);
 fft(fa, n);
 fft(fb, n);
  vi r(s);
  rep(i,0,s) r[i] = int((ll(fa[i].x+0.5))
        + (ll(fa[i].y+0.5) % m << 15)
        + (11(fb[i].x+0.5) % m << 15)
        + (11(fb[i].y+0.5) % m << 30)) % m);
 return r;
```

```
#endif
} // namespace fft
// For multiply_mod, use num = modnum, poly = vector<num>
using fft::num;
using poly = fft::vn;
using fft::multiply;
using fft::inverse;
poly& operator+= (poly& a, const poly& b) {
  if (sz(a) < sz(b)) a.resize(b.size());</pre>
  rep(i, 0, sz(b)) a[i]=a[i]+b[i];
 return a;
poly operator+(const poly& a, const poly& b) { poly r=a; r+=b;
    return r: }
poly& operator -= (poly& a, const poly& b) {
  if (sz(a) < sz(b)) a.resize(b.size());</pre>
  rep(i, 0, sz(b)) a[i]=a[i]-b[i];
  return a;
poly operator-(const poly& a, const poly& b) { poly r=a; r-=b;
    return r; }
poly operator* (const poly& a, const poly& b) {
  // TODO: small-case?
  return multiply(a, b);
poly& operator*=(poly& a, const poly& b) {return a = a*b;}
poly& operator *= (poly& a, const num& b) { // Optional
 trav(x, a) x = x * b;
  return a;
poly operator* (const poly& a, const num& b) { poly r=a; r*=b;
// Polynomial floor division; no leading 0's plz
poly operator/(poly a, poly b) {
  if (sz(a) < sz(b)) return {};
  int s = sz(a) - sz(b) + 1;
  reverse(a.begin(), a.end());
  reverse(b.begin(), b.end());
  a.resize(s);
  b.resize(s);
  a = a * inverse(move(b));
  a.resize(s);
  reverse(a.begin(), a.end());
  return a:
poly& operator/=(poly& a, const poly& b) {return a = a/b;}
poly& operator%=(poly& a, const poly& b) {
  if (sz(a) >= sz(b)) {
   poly c = (a / b) * b;
    a.resize(sz(b)-1);
    rep(i, 0, sz(a)) a[i] = a[i]-c[i];
 return a:
poly operator% (const poly& a, const poly& b) { poly r=a; r%=b;
    return r; }
// Log/exp/pow
poly deriv(const poly& a) {
  if (a.empty()) return {};
  poly b(sz(a)-1);
  rep(i,1,sz(a)) b[i-1]=a[i]*i;
  return b;
poly integ(const poly& a) {
  poly b(sz(a)+1);
```

```
b[1]=1; // mod p
  rep(i,2,sz(b)) b[i]=b[fft::mod%i]*(-fft::mod/i); // mod p
  rep(i,1,sz(b)) b[i]=a[i-1]*b[i]; // mod p
  //rep(i,1,sz(b)) b[i]=a[i-1]*inv(num(i)); // else
  return b;
poly log(const poly& a) { // a[0] == 1
 poly b = integ(deriv(a) *inverse(a));
 b.resize(a.size());
 return b:
poly exp(const poly& a) { // a[0] == 0
  poly b(1, num(1));
  if (a.empty()) return b;
  while (sz(b) < sz(a)) {
    int n = min(sz(b) * 2, sz(a));
   b.resize(n);
    poly v = poly(a.begin(), a.begin() + n) - log(b);
   v[0] = v[0] + num(1);
   b *= v:
   b.resize(n);
  return b;
poly pow(const poly& a, int m) { //m>=0
  poly b(a.size());
 if (!m) { b[0] = 1; return b; }
 int p = 0;
  while (p<sz(a) && a[p].v==0) ++p;
  if (111*m*p >= sz(a)) return b;
  num mu = pow(a[p], m), di = inv(a[p]);
  poly c(sz(a) - m*p);
  rep(i, 0, sz(c)) c[i] = a[i+p] * di;
  c = log(c);
  trav(v,c) v = v * m;
  c = exp(c);
  rep(i, 0, sz(c)) b[i+m*p] = c[i] * mu;
// Multipoint evaluation/interpolation
vector<num> eval(const poly& a, const vector<num>& x) {
 int n=sz(x);
 if (!n) return {};
 vector<poly> up(2*n);
  rep(i,0,n) up[i+n] = poly(\{0-x[i], 1\});
  per(i,1,n) up[i] = up[2*i]*up[2*i+1];
  vector<poly> down(2*n);
  down[1] = a % up[1];
  rep(i,2,2*n) down[i] = down[i/2] % up[i];
  vector<num> y(n);
  rep(i, 0, n) y[i] = down[i+n][0];
  return v;
poly interp(const vector<num>& x, const vector<num>& y) {
  int n=sz(x);
  assert (n):
  vector<poly> up(n*2);
  rep(i,0,n) up[i+n] = poly(\{0-x[i], 1\});
 per(i,1,n) up[i] = up[2*i]*up[2*i+1];
  vector<num> a = eval(deriv(up[1]), x);
  vector<poly> down(2*n);
  rep(i,0,n) down[i+n] = poly({y[i]*inv(a[i])});
  per(i,1,n) down[i] = down[i*2] * up[i*2+1] + down[i*2+1] * up
      [i*2];
  return down[1];
```

SegmentTreeBeats.h

Description: Segment tree beats, supports range max, min, and sum queries with range max, min, and add updates all at once. Ranges are inclusive-exclusive [a, b).

Time: $\mathcal{O}\left(log^2n\right)$ amortized

9e7305, 293 line

```
typedef long long 11;
const int N = 5e5 + 5;
class SegmentTree {
  const 11 inf = 1e18;
 int n, n0;
 11 max_v[4*N], smax_v[4*N], max_c[4*N];
  11 min_v[4*N], smin_v[4*N], min_c[4*N];
  ll sum[4*N];
 11 len[4*N], ladd[4*N], lval[4*N];
 void update_node_max(int k, ll x) {
    sum[k] += (x - max_v[k]) * max_c[k];
    if (\max v[k] == \min v[k]) {
      \max v[k] = \min v[k] = x;
    } else if(max_v[k] == smin_v[k]) {
      \max_{v[k]} = \min_{v[k]} = x;
    } else {
      \max_{v[k]} = x;
    if(lval[k] != inf && x < lval[k]) {</pre>
      lval[k] = x;
 void update_node_min(int k, ll x) {
    sum[k] += (x - min_v[k]) * min_c[k];
    if (max_v[k] == min_v[k]) {
      \max_{v[k]} = \min_{v[k]} = x;
    } else if(smax_v[k] == min_v[k]) {
      min_v[k] = smax_v[k] = x;
    } else {
      min_v[k] = x;
    if(lval[k] != inf && lval[k] < x) {</pre>
      lval[k] = x;
  void push(int k) {
    if(n0-1 <= k) return;</pre>
    if(lval[k] != inf) {
      updateall(2*k+1, lval[k]);
      updateall(2*k+2, lval[k]);
      lval[k] = inf;
      return;
    if(ladd[k] != 0) {
      addall(2*k+1, ladd[k]);
      addall(2*k+2, ladd[k]);
      ladd[k] = 0;
    if (\max_{v[k]} < \max_{v[2*k+1]}) {
      update_node_max(2*k+1, max_v[k]);
    if (min v[2*k+1] < min v[k]) {
```

```
update node min(2*k+1, min v[k]);
 if (max_v[k] < max_v[2*k+2]) {</pre>
   update_node_max(2*k+2, max_v[k]);
 if (min v[2*k+2] < min v[k]) {
   update_node_min(2*k+2, min v[k]);
void update(int k) {
 sum[k] = sum[2*k+1] + sum[2*k+2];
 if (max_v[2*k+1] < max_v[2*k+2]) {</pre>
   \max_{v[k]} = \max_{v[2*k+2]};
   max_c[k] = max_c[2*k+2];
   smax_v[k] = max(max_v[2*k+1], smax_v[2*k+2]);
  } else if(max_v[2*k+1] > max_v[2*k+2]) {
   \max_{v[k]} = \max_{v[2*k+1]};
   \max_{c[k]} = \max_{c[2*k+1]};
   smax_v[k] = max(smax_v[2*k+1], max_v[2*k+2]);
   \max_{v[k]} = \max_{v[2*k+1]};
   \max_{c[k]} = \max_{c[2*k+1]} + \max_{c[2*k+2]};
   smax_v[k] = max(smax_v[2*k+1], smax_v[2*k+2]);
 if (min_v[2*k+1] < min_v[2*k+2]) {</pre>
   min_v[k] = min_v[2*k+1];
   min_c[k] = min_c[2*k+1];
   smin_v[k] = min(smin_v[2*k+1], min_v[2*k+2]);
 } else if(min_v[2*k+1] > min_v[2*k+2]) {
   min_v[k] = min_v[2*k+2];
   min_c[k] = min_c[2*k+2];
   smin_v[k] = min(min_v[2*k+1], smin_v[2*k+2]);
   \min_{v[k]} = \min_{v[2*k+1]};
   min c[k] = \min c[2*k+1] + \min c[2*k+2];
    smin_v[k] = min(smin_v[2*k+1], smin_v[2*k+2]);
void update min(ll x, int a, int b, int k, int l, int r) {
 if(b <= l || r <= a || max_v[k] <= x) {</pre>
 if(a <= 1 && r <= b && smax_v[k] < x) {</pre>
   update node max(k, x);
   return;
 push(k);
 _update_min(x, a, b, 2*k+1, 1, (1+r)/2);
 \_update\_min(x, a, b, 2*k+2, (1+r)/2, r);
 update(k);
void _update_max(ll x, int a, int b, int k, int l, int r) {
 if (b <= 1 \mid | r \leq a \mid | x \leq min v[k]) {
   return:
 if(a <= 1 && r <= b && x < smin_v[k]) {</pre>
   update_node_min(k, x);
   return:
 push(k):
 \_update_max(x, a, b, 2*k+1, 1, (1+r)/2);
```

```
\_update_max(x, a, b, 2*k+2, (1+r)/2, r);
  update(k);
void addall(int k, ll x) {
  \max v[k] += x;
  if(smax_v[k] != -inf) smax_v[k] += x;
  min_v[k] += x;
  if(smin_v[k] != inf) smin_v[k] += x;
  sum[k] += len[k] * x;
  if(lval[k] != inf) {
    lval[k] += x;
  } else {
    ladd[k] += x;
}
void updateall(int k, ll x) {
  \max_{v[k]} = x; \quad \max_{v[k]} = -\inf;
  min_v[k] = x; smin_v[k] = inf;
  \max_{c[k]} = \min_{c[k]} = len[k];
  sum[k] = x * len[k];
  lval[k] = x; ladd[k] = 0;
void _add_val(ll x, int a, int b, int k, int l, int r) {
  if(b <= 1 || r <= a) {
    return;
  if(a <= 1 && r <= b) {
    addall(k, x);
    return;
  push(k);
  _add_val(x, a, b, 2*k+1, 1, (1+r)/2);
  add val(x, a, b, 2*k+2, (1+r)/2, r);
  update(k);
void _update_val(11 x, int a, int b, int k, int 1, int r) {
  if(b <= 1 || r <= a) {
    return;
  if(a <= 1 && r <= b) {
    updateall(k, x);
    return;
  push(k);
  update val(x, a, b, 2*k+1, 1, (1+r)/2);
  \_update\_val(x, a, b, 2*k+2, (1+r)/2, r);
  update(k);
11 _query_max(int a, int b, int k, int l, int r) {
  if(b <= 1 || r <= a) {
    return -inf;
  if(a <= 1 && r <= b) {
    return max v[k];
  push(k):
  11 lv = _query_max(a, b, 2*k+1, 1, (1+r)/2);
  11 rv = _query_max(a, b, 2*k+2, (1+r)/2, r);
  return max(lv, rv);
```

```
11 _query_min(int a, int b, int k, int l, int r) {
    if(b <= 1 || r <= a) {
      return inf:
    if(a <= 1 && r <= b) {
      return min v[k];
    push(k);
    11 lv = _query_min(a, b, 2*k+1, 1, (1+r)/2);
    11 rv = _query_min(a, b, 2*k+2, (1+r)/2, r);
    return min(lv, rv);
 11 _query_sum(int a, int b, int k, int l, int r) {
    if(b <= 1 || r <= a) {
      return 0:
    if(a <= 1 && r <= b) {
      return sum[k];
    push(k);
    11 lv = _query_sum(a, b, 2*k+1, l, (1+r)/2);
    11 rv = _{query\_sum(a, b, 2*k+2, (1+r)/2, r)};
    return lv + rv;
public:
 SegmentTree(int n) {
    SegmentTree(n, nullptr);
  SegmentTree(int n, ll *a) : n(n) {
    n0 = 1;
    while(n0 < n) n0 <<= 1;
    for(int i=0; i<2*n0; ++i) ladd[i] = 0, lval[i] = inf;</pre>
    len[0] = n0;
    for (int i=0; i<n0-1; ++i) len[2*i+1] = len[2*i+2] = (len[i]
          >> 1);
    for(int i=0; i<n; ++i) {</pre>
      \max_{v[n0-1+i]} = \min_{v[n0-1+i]} = \sup_{v[n0-1+i]} = (a !=
           nullptr ? a[i] : 0);
      smax_v[n0-1+i] = -inf;
      smin_v[n0-1+i] = inf;
      \max c[n0-1+i] = \min c[n0-1+i] = 1;
    for(int i=n; i<n0; ++i) {</pre>
      \max_{v[n0-1+i]} = \max_{v[n0-1+i]} = -\inf_{t}
      min v[n0-1+i] = smin v[n0-1+i] = inf;
      \max c[n0-1+i] = \min c[n0-1+i] = 0;
    for(int i=n0-2; i>=0; i--) {
      update(i);
  // range minimize query
  void update_min(int a, int b, ll x) {
   _update_min(x, a, b, 0, 0, n0);
  // range maximize query
  void update_max(int a, int b, ll x) {
   _update_max(x, a, b, 0, 0, n0);
```

```
// range add query
  void add_val(int a, int b, ll x) {
    _add_val(x, a, b, 0, 0, n0);
  // range update query
  void update_val(int a, int b, ll x) {
    _update_val(x, a, b, 0, 0, n0);
  // range minimum query
  11 query_max(int a, int b) {
    return _query_max(a, b, 0, 0, n0);
  // range maximum query
  11 query_min(int a, int b) {
    return _query_min(a, b, 0, 0, n0);
  // range sum query
  11 query_sum(int a, int b) {
    return _query_sum(a, b, 0, 0, n0);
};
Tidbits.h
// for stuff that isn't long enough to include in it's own file
     but still important
/* FAST I/O */
ios_base::sync_with_stdio(false);
cin.tie(NULL);
/* MACROS */
#define int long long
#define pb push_back
#define mp make pair
#define pi pair<int, int>
#define endl "\n"
/* PRAGMAS */
// #pragma GCC optimize("O3") - use for floating point cause
     Ofast uses fast-math which could mess up floating point
#pragma GCC optimize("Ofast")
#pragma GCC target("avx2")
/* RANDOM */
mt19937 rng(chrono::steady_clock::now().time_since_epoch().
// uniform_int_distribution<int>(a, b)(rng) generates a random
     integer between a and b inclusive
/* PYTHON (if we need to avoid overflow) */
import sys
input, print = sys.stdin.readline, sys.stdout.write
// input will now contain a trailing newline character
// print will no longer automatically add a newline
/* STRESS TESTING (Windows) */
@echo off
set i=1
:loop
gen %i% > test.in
echo %i%
a < test.in > a.out
```

```
b < test.in > b.out
fc /b a.out b.out > nul
if errorlevel 1 (
goto :eof
set /a i += 1
goto loop
// for generator to take in command line arguments in C++.
     change main signature to int main(int argc, char* argv[])
/* STRESS TESTING (Linux) */
#!/bin/bash
for ((i = 1; ; i++))
    echo $i
    ./gen $i > test.in
    ./a < test.in > a.out
    ./b < test.in > b.out
    diff -w a.out b.out || break
TwoSatCommonOps.h
                                                       e9403c, 19 lines
// No need to work these out again from scratch.
void addXor(int x, int y) {
    either(x, y);
    either(\sim x, \sim y);
void addNand(int x, int y) {
    either (\sim x, \sim y);
void equals(int x, int y) {
    either(\sim x, y);
    either(x, \simy);
void implies(int x, int y) {
    either(\sim x, y);
```

Math Reference Sheet

For semi-frequent stuff that I don't remember off the top of my head.

BEST Theorem

Counts number of Eulerian circuits in directed graphs.

$$\mathrm{ec}(G) = t_w(G) \prod_{v \in V} (\deg(v) - 1)!$$

 $t_w(G)$ denotes the number of arborescences (directed trees pointing towards the root) rooted at any arbitrary node w and is calculated via Kirchhoff's matrix tree theorem.

Kirchhoff's Matrix Tree Theorem

Counts number of spanning trees of a graph. The algorithm builds the Laplacian matrix defined as the following for a simple graph:

$$L_{i,j} := egin{cases} \deg(v_i) & ext{if } i = j \ -1 & ext{if } i
eq j ext{ and } v_i ext{ is adjacent to } v_j \ 0 & ext{otherwise} \end{cases}$$

The answer is any cofactor of this matrix (e.g. the determinant after deleting the last row and column).

- Cayley's formula: the number of spanning trees of a complete graph of size n is n^{n-2}
- ullet For multigraphs, $L_{i,j}$ equals -m, where m is the number of edges between i and j, self-loops are excluded
- For directed multigraphs, $L_{i,j}$ equals -m, where m is the number of edges from i to j, and $L_{i,i}$ equals the indegree of i minus the number of loops at i
- Removing the *i*th row and column and taking the determinant gives the number of oriented spanning trees rooted at (pointing towards) vertex *i*.

Stirling Numbers of the First Kind

Counts number of permutations of length n with k cycles.

$$dp[n+1][k] = n \cdot dp[n][k] + dp[n][k-1] \ dp[0][0] = 1 \ dp[n][0] = dp[0][k] = 0$$

Explanation: if you have n elements split into k cycles and are inserting a new element, you can either create a new cycle or insert it directly behind any of the previous n elements in an existing cycle.

The generating function for signed Stirling numbers of the first kind can be computed for a fixed n in $\mathcal{O}(n\log^2 n)$:

$$\sum_{k=0}^n s(n,k)x^k = x(x-1)\ldots(x-(n-1))$$

The unsigned Stirling numbers of the first kind are similar:

$$\sum_{k=0}^{n} \begin{bmatrix} n \\ k \end{bmatrix} = x(x+1)\dots(x+n-1)$$

The unsigned Stirling numbers of the first kind can be computed for a fixed k in $\mathcal{O}(n \log n)$:

$$egin{bmatrix} n \ k \end{bmatrix} = rac{n!}{k!} [x^n] \Biggl(\sum_{n=1}^{\infty} rac{x^n}{n} \Biggr)^k$$

Stirling Numbers of the Second Kind

Counts number of ways to partition n labeled objects into k non-empty unlabeled subsets.

$$dp[n+1][k] = k \cdot dp[n][k] + dp[n][k-1] \ dp[0][0] = 1 \ dp[n][0] = dp[0][k] = 0$$

Explanation: the n+1th object is either a singleton or not. If it is a singleton, distribute the remaining n objects among k-1 groups, otherwise insert n+1 into one of the k groups and distribute the remaining n objects in k groups as well.

The generating function for Stirling numbers of the second kind can be computed for a fixed n in $\mathcal{O}(n \log n)$:

$$\sum_{k=0}^n S(n,k) x^k = \left(\sum_{i=0}^n rac{(-1)^i}{i!}
ight) \left(\sum_{i=0}^n rac{i^n}{i!}
ight) \mod x^{n+1}$$

They can also be computed for a fixed k in $\mathcal{O}(n \log n)$:

$$S(n,k)=n![x^n]rac{(e^x-1)^k}{k!}$$
 $e^x=\sum_{n=0}^{\infty}rac{x^n}{n!}$

Partition Function

Counts number of ways to partition n into non-negative integer parts. Partition of n into k parts follows the following recurrence:

$$dp[n][k] = dp[n-1][k-1] + dp[n-k][k]$$

 $dp[0][0] = 1$
 $dp[n][0] = dp[0][k] = 0$

Explanation: there are two possibilities. If we include a 1 in the partition, we simply partition the remaining of n-1 into k-1 parts. Otherwise, each part has size greater than 1, so we subtract 1 from each part and solve recursively.

p(n) denotes the number of partitions of n and its generating function can be computed in $\mathcal{O}(n \log n)$:

$$\sum_{n=0}^{\infty}p(n)x^n=\prod_{k=1}^{\infty}rac{1}{1-x^k}$$

The denominator can be computed in $\mathcal{O}(n)$ time with the pentagonal number theorem:

$$\prod_{n=1}^{\infty} (1-x^n) = 1 + \sum_{k=1}^{\infty} (-1)^k \left(x^{k(3k+1)/2} + x^{k(3k-1)/2} \right)$$

Derangements

Counts the number of permutations where $p_i
eq i$ for all i.

$$dp[n] = (n-1)(dp[n-1] + dp[n-2]) \ dp[0] = 1 \ dp[1] = 0$$

Explanation: With n elements, consider index 1 which may receive n-1 different values. There are two cases. Either index 1 swaps with another index i, so we count the number of derangements among the remaining n-2 indices. Alternatively, index 1 receives value i but index i does not receive value 1, so this is equivalent to counting the number of derangements of n-1 indices as we can renumber value 1 as value i.

The probability of getting a derangement from a random shuffle is $\frac{1}{e}$, which means the number of shuffles needed to get a derangement is effectively constant.

Catalan Numbers

Shows up in numerous counting problems, such as number of correct bracket sequences of length 2n, number of full binary trees with n+1 leaves, etc.

$$\{1,1,2,5,14,42,132,429,\ldots\}$$
 $C_n=rac{1}{n+1}inom{2n}{n}$ $C_{n+1}=\sum_{i=0}^n C_i C_{n-i}$ $C_0=1$

Proof for combinatorial definition of Catalan numbers is based on reflection argument for grid paths.