Α.

1. На множестве \mathbb{R} определено отношение R: $(x,y) \in R$, если $x^3 - x = y^3 - y$.

(a) Проверьте, что R является отношением эквивалентности.

• рефлексивность xRx: $x^3 - x = x^3 - x$. \checkmark

• симметричность $xRy \Rightarrow yRx$: $x^3 - x = y^3 - y \Rightarrow y^3 - y = x^3 - x$. \checkmark

• транзитивность $xRy \wedge yRz \Rightarrow xRz$: $x^3-x=y^3-y \wedge y^3-y=z^3-z \Rightarrow x^3-x=z^3-z$. \checkmark

(b) Определите класс эквивалентности [1]. Классом эквивалентности $[a]\subset X$ элемента $a\in X$ называется подмножество элементов, эквивалентных a; то есть, $[a] = \{ x \in X \mid x \sim a \}.$

$$[1] = \{x \in \mathbb{R} | x^3 - x = 1^3 - 1 = 0\} = \{-1, 0, 1\}.$$

обоснуйте, почему не существует 2. Нарисуйте или непересекающийся(планарный) граф с 5 вершинами, степени всех вершин которого равны d(v) = 2.

3. Пусть у нас есть двудольный граф $G = (V, E), V = A \cup B, |A| = |B| = n.$ Двудольный граф - это граф, множество вершин которого можно разбить на две части таким образом, что каждое ребро графа соединяет вершину из одной части с какой-то вершиной другой части, то есть не существует рёбер между вершинами одной и той же части графа.

(а) Каково максимально возможное число рёбер, которые может иметь граф G?

 n^2 .

(b) Каково минимально возможное число рёбер, которые может иметь граф G?

n.

- **1.** На множестве \mathbb{N} задано отношение R: $(m,n) \in R$, если $|m-n| \leq 2$.
 - (a) Выясните, является ли R отношением эквивалентности.
 - рефлексивность mRm: $|m-m| \leq 2$. \checkmark
 - симметричность $mRn \Rightarrow nRm$: $|m-n| \leq 2 \Rightarrow |n-m| \leq 2$. \checkmark
 - транзитивность $mRn \wedge nRk \Rightarrow mRk$: $|m-n| \leq 2 \wedge |n-k| \leq 2 \Rightarrow |m-k| \leq 2$. \boxtimes В качестве контпримера можно взять m=0, n=2, k=4.
 - (b) Определите все $n \in \mathbb{N}$, для которых $(1, n) \in R \circ R$.

$$\underbrace{|1-m| \leq 2}_{m=\{1,2,3\}} \land \underbrace{|m-n| \leq 2}_{m-2 \leq n \leq 2+m} \implies n = \{1,2,3,4,5\}$$

- 2. Существует ли простой граф с 5 вершинами и суммой степеней всех вершин 22. Если да, нарисуйте его. В противном случае обоснуйте ответ. Нет, сумма степеней графа на n вершинах не может быть больше суммы степеней полного графа на n вершинах K_n . В нашем случае в $K_5 \sum d(v) = 5*4 = 20$, а по условию задачи сумма степеней равна 22, чего быть не может.
- **3.** Пусть у нас есть полный граф K_n : с вершинами $V = \{1, 2, \dots, n\}$. Сколько смежных подграфов графа K_n имеют ровно два ребра?

$$C_n^3$$

- **1.** На потенциальном множестве $\mathcal{P}(\mathbb{N})$ мы имеем отношение R: $(A,B) \in R$, если $A \subset B \cup \{1\}$.
 - (a) Определите, является ли R рефлексивным или транзитивным.
 - рефлексивность $ARA: A \subset A \cup \{1\}$. \checkmark
 - транзитивность $ARB \land BRC \Rightarrow ARC$: $A \subset B \cup \{1\} \land B \subset C \cup \{1\} \Rightarrow A \subset C \cup \{1\}$. \checkmark
 - **(b)** Положим $B = \{2, 4\}$. Сколько множеств A удовлетворяет $(B, A) \in \mathbb{R}^{-1}$?

$$bR^{-1}a \Leftrightarrow aRb$$

$$A \subset \underbrace{B}_{\{2,4\}} \cup \{1\} \implies A = \mathcal{P}(\{1,2,4\})$$

- 2. Нарисуйте или обоснуйте, почему не существует непересекающийся граф с 6 вершинами, в котором степени всех вершин равны d(v)=3. Это граф $K_{3,3}$, который не является планарным.
- **3.** Пусть у нас есть полный граф K_n с вершинами $V = \{1, 2, \dots, n\}$. Сколько путей длины 3 ведёт между вершинами 1 и 4?

$$(n-2)\cdot(n-3)$$

D.

- **1.** На множестве $\mathbb N$ рассмотрим отношение R, определённое следующем образом: $(m,n)\in R,\ m\cdot n^4$ нечётное число.
 - (a) Определите, является ли R рефлексивным или симметричным.
 - (b) Выясните, какие числа $n \in \mathbb{N}$ удовлетворяют $(n,1) \in \mathbb{R}^{-1}$.
- **2.** Нарисуйте или объясните, почему не существует простого графа с шестью вершинами, для которого справедливо: две вершины имеют степень d=0, две вершины имеют степень d=2, и две другие вершины имеют степени $d \notin \{1,2\}$.
- **3.** Пусть у нас есть полный граф K_n с вершинами $V = \{1, 2, ..., n\}$. Сколько подграфов графа K_n , имеющих максимум одно ребро?