

MACHINE LEARNING TOPIC: INTRODUCTION

By
Prof. Dr. Sourav Saha

TOPICS COVERED

- → What is machine learning?
- → Which problems can be solved by ML?
- → How industry leverages ML

SETTING THE CONTEXT ...

• Do machines really learn?

• If so, can machines learn better than human?

• Most importantly, how do they learn?

THE JOURNEY OF MACHINE LEARNING

SETTING THE CONTEXT ...

1950	Alan Turing proposes "learning machine"			
1952	Arthur Samuel developed first machine learning program that could play Checkers			
1957	Frank Rosenblatt designed the first neural network program simulating human brain			
	Nearest neighbour algorithm created – start of			
1967	basic pattern recognition			
1979	Stanford University students develop first self – driving cart that can navigate and avoid obstacles in a room			
1982	Recurrent Neural Network developed			
1989	Reinforcement Learning conceptualized Beginning of commercialization of Machine Learning			
1995	Random Forest and Support Vector machine algorithms developed			
1997	IBM's Deep Blue beats the world chess champion Gary Kasparov			
2006	First machine learning competition launched byNetflix Geoffrey Hinton conceptualizes Deep Learning			
2010	Kaggle, a website for machine learning competitions, launched			
2011	IBM's Watson beats two human champions in Jeopardy			
2016	Google's AlphaGo program beats unhandicapped professional human player			

WHAT IS LEARNING?

It is the process of gaining information through expert guidance ...

Is that always true?

OVERALL IDEA

Types of human learning

 Learning through direct guidance from expert – is just one form ...

Learning through indirect guidance

Learning by self

WHAT IS MACHINE LEARNING?

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."

Tom M. Mitchell,

Professor of Machine Learning Department, School of Computer Science, Carnegie Mellon University

WHAT IS MACHINE LEARNING?

In context of the learning to play chess, <u>E</u> represents the experience of playing the game, <u>T</u> represents the task of playing chess and <u>P</u> is the performance measure indicated by the percentage of games won

by the player.

TRADITIONAL VS. ML PROGRAMMING

Traditional Programming

Machine Learning

Types of machine learning

 Supervised learning – also called predictive learning

- Unsupervised learning also called descriptive learning
- Reinforcement learning

SUPERVISED LEARNING

Unsupervised Learning

REINFORCEMENT LEARNING

MACHINE LEARNING PROCESS

MACHINE LEARNING PROCESS

- ▶ Data Input Past data or information is utilized as a basis for future decision-making
- Abstraction The input data is represented in a broader way through the underlying algorithm

 Generalization – The abstracted representation is generalized to form a framework for making decisions

Typical ML problems

- Prediction of results of a game
- Predicting whether a tumor is malignant or benign
- Price prediction in domains like real estate, stocks, etc.
- Demand forecasting in retails
- Customer segmentation
- Self-driven cars

PROBLEMS NOT TO BE CONSIDERED FOR ML

- Bank interest calculation
- Inventory management (except the demand forecast module)
- Sorting, Searching
- Tasks in which humans are very effective For example, painting

ML IN HEALTHCARE & PHARMA

- Proactive health monitoring and alerts
- Disease Identification/Diagnosis
- Personalized treatment

- Disease / epidemic outbreak prediction
- Clinical Trial Research

DATA-FEATURES

DATA-FEATURES

Is a Person Fit?

Forma	Color	Size	Material	Class
square	red	big	metal	+
square	blue	small	plastic	+
triangle	yellow	medium	metal	+
triangle	pink	big	leather	_
square	pink	medium	leather	-
circle	red	small	plastic	_
circle	bluc	small	metal	
ellipse	yellow	small	plastic	
ellipse	blue	hig	leather	+
ellipse	pink	medium	wood	+
circle	blue	hig	wood	+
triangle	blue	medium	plastic	+

case ID		predictors			target
CUST_ID CUST	GENDER 🛭 EDU	JCATION 2	OCCUPATION	2 AGE	AFFINITY_CARD
101501 F	Masters	Pro	of.	41	0
101502 M	Bach.	Sai	es	27	0
101503 F	HS-grad	Cle	ric.	20	0
101504 M	Bach.	Ex	ec.	45	1
101505 M	Masters	Sal	es	34	1
101506 M	HS-grad	d Oth	ner	38	0
101507 M	< Bach.	Sai	es	28	0
101508 M	HS-grad	Sai	es	19	0
101509 M	Bach.	Oth	ner	52	0
101510 M	Bach.	Sa	es	27	1

REGRESSION EXAMPLE

Example: House Prices

House Price in \$1000s (y)	Square Feet (x)
245	1400
312	1600
279	1700
308	1875
199	1100
219	1550
405	2350
324	2450
319	1425
255	1700

Estimated Regression Equation:

house price = 98.25 + 0.1098 (sq.ft.)

Predict the price for a house with 2000 square feet

REGRESSION EXAMPLE

Multiple features (variables).

Size (feet ²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
×1	×2	×3	74	3
2104	5	1	45	460 7
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178
111	A	146	- 00	491
Jan 1		-60	-11	

Notation:

$$x^{(i)}$$
 = input (features) of i^{th} training example.

$$x_j^{(i)}$$
 = value of feature j in i^{th} training example.

CLUSTERING EXAMPLE

CLUSTERING EXAMPLE

PROFILE SEGMENTATION

Unsupervised Learning

Introduction to AR

Ideas come from the market basket analysis (MBA)

Let's go shopping!

Artificial Intelligence

Milk, eggs, cereal, bread

Customer2

Eggs, sugar

Customer3

- What do my customer buy? Which product are bought together?
- Aim: Find associations and correlations between the different items that customers place in their shopping basket

SENTIMENT ANALYSIS

Customer Feedback Text	Sentiment
"This café is great, the staff are really friendly and the coffee is delicious"	Positive
"I would not recommend this café to anyone. Their coffee is terrible and is really expensive"	Negative

Types of Machine Learning

Supervised Learning

Classification

- Fraud detection
- Email Spam Detection
- Diagnostics
 - Image Classification

Unsupervised Learning

Dimensionality Reduction

- Text Mining
- Face Recognition
- Big Data Visualization
 - Image Recognition

Reinforcement Learning

- Finance Sector
- Manufacturing
- Inventory
 Management
- Robot Navigation

Regression

Risk Assessment
 Score Prediction

Clustering

- Biology
- City Planning
- Targetted Marketing

STATE-OF-THE-ART ML TOOLS

- Python
- R
- MATLAB

FOR FURTHER READING ...

THANK YOU

