NEURALA NÄTVERK

Assembly Instruction K+167 Tensorious

DESY | Intro NN | Dirk Krücker

ReLU

Softmax

X-entropy

Adam

import tensorflow as tf mnist = tf.keras.datasets.fashion mnist (x_train, y_train),(x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255. θ , x_test / 255. θ model = tf.keras.models.Sequential([tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(512, activation='relu'), tf.keras.layers.Dense(512, activation='relu') tf.keras.layers.Dense(10, activation='softmax') model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.fit(x_train, y_train, epochs=5) model.evaluate(x_test, y_test)

```
import numpy as np
fiveImages = x_test[0:5]
predictions = model.predict(fiveImages)
predictions = np.argmax(predictions,axis=1)
plt.figure(figsize=(10,10))
for i in range(5):
    plt.subplot(1,5,i+1)
     plt.xticks([])
     plt.vticks([])
     plt.grid(False)
    plt.imshow(fiveImages[i], cmap=plt.cm.binary)
plt.xlabel(class_names[predictions[i]])
plt.show()
```


