M. Ogura, M. Kishida, and A. Yassine, "Optimizing product development projects under asynchronous and aperiodic system-local interactions," in *21st International DSM Conference*, 2019, pp. 97-106.

Optimizing product development projects under asynchronous and aperiodic system-local interactions

Masaki Ogura

Nara Institute of Science and Technology, Japan

Masako Kishida

National Institute of Informatics, Japan

Ali Yassine

American University of Beirut, Lebanon

Full version published in Research in Engineering Design

Work Transformation Matrix (WTM)

WTM = quantitative DSM, focused on works

Fraction of work amounts that is transferred to / kept within modules

Smith, Eppinger, "Identifying controlling features of engineering design iteration," *Management Science*, 1997.

How WTM works

Resource allocation for PD process acceleration

Improvement of WTM

HR management, information technology, resolving dependency, ...

PD process acceleration

Optimal improvement within budget?

Several options...

$$W = \begin{bmatrix} 1/2 & 1 \\ 1 & 1/2 \end{bmatrix} \qquad \qquad V = \begin{bmatrix} 0 & 1 \\ 1 & 1/2 \end{bmatrix} \qquad \qquad V = \begin{bmatrix} 1/2 & 1/2 \\ 1 & 1/2 \end{bmatrix} \qquad \qquad V = \begin{bmatrix} 1/4 & 1 \\ 1 & 1/4 \end{bmatrix}$$

System/local structure [Yassine et al., RIED, '03]

Frequent information update k = 0, 1, 2, ...

Intermittent system feedback $k = \tau_0, \tau_1, \tau_2, ...$

Extended WTM structure

Time-varying WTM

Coping with uncertainty

Periodic system feedback [Yassine et al., RIED, 2003]

Transition of remaining work

$$x \to W_p x \to W_p^2 x \to \cdots \to W_p^{T-1} x \to W_f W_p^{T-1} x$$

Generalized WTM

Determines feasibility of PD process

Spectral radius as a feasibility index

Coping with uncertainty

Periodic system feedback [Yassine et al., RIED, 2003]

System feedback may not necessarily occur regularly

Aperiodic system feedback (this research)

Assumption: T_k 's are independent and identically distributed random variables

Theoretical results

Result 1: Generalized WTM
$$T = random interval$$
 $M = E[W_f W_p^{T-1}]$ mathematical expectation

Spectral radius as a feasibility index

Process improvement problem

How should we distribute our managerial resource to minimize the feasibility index $\rho(M)$?

Theoretical results

Result 2:

Resource allocation problem can be solved via convex optimization.

- Scales well with respect to the size of PD process
- Very fast solvers available: allows making quick decisions
- Details in the proceeding: geometric programming plays a key role

Automobile appearance design [McDaniel, '96]

Case overview

- Part of automobile PD process
- Process of designing all interior and exterior auto-mobile surfaces for better appearance, surface quality, and operational interface.
- Engineering (local) team responsible for the feasibility of designs
- Styling (system) team responsible for the appearance of the vehicle
- Tasks: (1) carpet, (2) center console, (3) door trim panel, (4) garnish trim, (5) overhead system, (6) instrument panel, (7) luggage trim, (8) package tray, (9) seats, and (10) steering wheel.

Automobile appearance design [McDaniel, '96]

Nominal WTMs

Fig. 2 Nominal DSMs and IDMs of the automotive appearance design. The inter-component and inter-team dependencies (18) that can be weakened by the manager are highlighted with the gray color

Problem formulation

Assumption

- Maximum reduction = 15%
- Reduction cost proportional to reduction amount
- Feedback intervals randomly fluctuated
- Question: Which DSM entry should we invest on?

Comparison

■ Eigenvector-based method assuming constant feedback intervals [Yassine, *RIED*, 2003]

Results

Comparison of investment pattern

(a)
$$f_{L,ij}(\Psi_{L,ij})$$

	L_1	L_2	L_3	L_4	L_5	L_6	L_7	L_8	L_9	L_{10}
S_1										
S_2			0	0	0	0	0	0	0	0
S_3		0		0	0	0	0	0	0	0
S_4		0	0		0		0	0	0	0
S_5		0		0						
S_6		0	0	0			0	0	0	0
S_7		0	0	0						
S_1 S_2 S_3 S_4 S_5 S_6 S_7 S_8 S_9				0					0	
S_9		0	0	0				0		
S_{10}				0						

(b) $f_{LS,ij}(\Psi_{LS,ij})$

	S_1	S_2	S_3	S_4	S_5	S_6	S_7	S_8	S_9	S_{10}
L_1	0									
L_2		7.2								
L_3			15.0							
L_4				0						
L_5					0					
L_6						15.0				
L_7							0			
L_8								0		
L_1 L_2 L_3 L_4 L_5 L_6 L_7 L_8 L_9 L_{10}									0	
L_{10}										0

(c) $f_{SL,ij}(\Psi_{SL,ij})$

(a)
$$f_{L,ij}(\Psi_{L,ij})$$

	L_1	L_2	L_3	L_4	L_5	L_6	L_7	L_8	L_9	L_{10}
S_1										
S_2			1.9	0	0	1.9	0	0	0	0
S_2 S_3		2.6		0	0	2.1	0	0	0	0
S_4 S_5		1.3	3.2		0		0	0	0	0
S_5		1.1		0						
S_6		21.6	18.6	0			0	0	0	0
S_7		1.5	1.3	0						
S_8				0					0	
S_9		3.0	2.6	0				0		
S_{10}				0						

(b) $f_{LS,ij}(\Psi_{LS,ij})$

	S_1	S_2	S_3	S_4	S_5	S_6	S_7	S_8	S_9	S_{10}
L_1	0									
L_2		3.2								
L_3			3.2							
L_4				0						
L_3 L_4 L_5					0					
L_6						3.2				
L_7							0			
L_8								0		
L_9									0	
L_{10}										0

(c) $f_{SL,ij}(\Psi_{SL,ij})$

Feasibility index

Fig. 7 Performances of the baseline and proposed strategies for various values of the budget *B*. Solid line: proposed strategy. Dashed line: baseline strategy

PD process simulation

Conclusion

Optimal resource allocation for improving PD processes

- Theoretical analysis: Feasibility index
- Based on tools from systems and control engineering
- Decision support tool based on convex optimization
- Improves existing heuristic methodology based on eigenvector centralities

Thank you!

Journal version: Ogura, Harada, Kishida, Yassine, "Resource optimization of product development projects with time-varying dependency structure," *Research in Engineering Design*, vol. 30, no. 3, pp. 435–452, 2019.