MATH 525 Homework 9

Cade Ballew #2120804

March 8, 2024

1 Problem 1

Let $T \in \mathcal{B}(X)$ and $\lambda \in \sigma_C(T)$. Then, $\lambda I - T$ cannot be bounded below. To see this, assume the contrary, i.e., there exists some C > 0 such that $\|(\lambda I - T)x\| \ge C\|x\|$ for all $x \in X$. Since the range of $\lambda I - T$ is dense in X, for any $x \in X$, there exists some sequence $\{x_n\}_{n=1}^{\infty} \subset X$ such that $\{x_n\} \to x$ and $x_n = (\lambda I - T)y_n$ for some $y_n \in X$. Then,

$$\lim_{n,m \to \infty} ||y_n - y_m|| \le C^{-1} \lim_{n,m \to \infty} ||x_n - x_m|| = 0,$$

so $\{y_n\}$ is Cauchy. Because X is complete, $\{y_n\} \to y$ for some $y \in X$. Then, the continuity of $(\lambda I - T)$ implies that

$$x = \lim_{n \to \infty} (\lambda I - T) y_n = (\lambda I - T) y.$$

Thus, for all $x \in X$, there exists some $y \in X$ such that $x = (\lambda I - T)y$, so $\lambda I - T$ is surjective. By assumption, $\lambda I - T$ is injective and bounded below, so $\lambda I - T$ must be invertible which is a contradiction, meaning that $\lambda I - T$ cannot be bounded below. This implies that

$$\inf_{\|x\|=1} \|(\lambda I - T)x\| = \inf_{x \neq 0} \frac{\|(\lambda I - T)x\|}{\|x\|} = 0,$$

so there exists some sequence $\{x_n\} \subset X$ such that $||x_n|| = 1$ for all n and

$$\lim_{n \to \infty} ||Tx_n - \lambda x_n|| = \lim_{n \to \infty} ||(\lambda I - T)x_n|| = 0,$$

as desired.

2 Problem 2

2.1 Part a

Let \mathcal{H} be a Hilbert space and $S \in \mathcal{B}(\mathcal{H})$. Let $x \in \overline{S(\mathcal{H})}$. Then, there exists a sequence $\{y_n\} \subset \mathcal{H}$ such that $\{Sy_n\} \to x$. Then, for any $y \in \ker(S^*)$, by the continuity of inner products,

$$\langle x, y \rangle = \lim_{n \to \infty} \langle Sy_n, y \rangle = \lim_{n \to \infty} \langle y_n, S^*y \rangle = \lim_{n \to \infty} \langle y_n, 0 \rangle = 0.$$

Thus, $x \in \ker(S^*)^{\perp}$, so $\overline{S(\mathcal{H})} \subset \ker(S^*)^{\perp}$.

Conversely, let $x \in \ker(S^*)^{\perp}$. Because $\overline{S(\mathcal{H})}$ is a closed subspace, we can uniquely decompose x = y + z where $y \in \overline{S(\mathcal{H})}$ and $z \in \overline{S(\mathcal{H})}^{\perp}$. Then, for any $w \in \mathcal{H}$,

$$\langle S^*z, w \rangle = \langle z, Sw \rangle = 0,$$

so $S^*z = 0$ and $z \in \ker(S^*)$. Since $\overline{S(\mathcal{H})} \subset \ker(S^*)^{\perp}$, $y \in \ker(S^*)^{\perp}$, so

$$0 = \langle x, z \rangle = \langle y, z \rangle + \langle z, z \rangle = \langle z, z \rangle.$$

Thus, z = 0 and $x = y \in \overline{S(\mathcal{H})}$, so $\overline{S(\mathcal{H})} = \ker(S^*)^{\perp}$.

2.2 Part b

Let $\lambda \in \sigma(T) \setminus \sigma_P(T)$. We first note that for any $x, y \in \mathcal{H}$,

$$\langle x, (\lambda I - T)^* y \rangle = \langle (\lambda I - T) x, y \rangle = \lambda \langle x, y \rangle - \langle T x, y \rangle = \langle x, \overline{\lambda} y \rangle + \langle x, T^* y \rangle = \langle x, (\overline{\lambda} I - T^*) y \rangle,$$

so $(\lambda I - T)^* = \overline{\lambda}I - T^*$. If $\overline{\lambda} \in \sigma_P(T^*)$, then $\ker(\overline{\lambda}I - T^*) \neq \{0\}$. This implies that $\ker((\lambda I - T)^*)^{\perp} \neq \mathcal{H}$, so by part a, $\overline{(\lambda I - T)(\mathcal{H})} \neq \mathcal{H}$, and the range of $\lambda I - T$ is not dense, meaning that $\lambda \in \sigma_R(T)$ since $\lambda \in \sigma(T) \setminus \sigma_P(T)$. Conversely, if $\overline{\lambda} \notin \sigma_P(T^*)$, then $\ker(\overline{\lambda}I - T^*) = \{0\}$. This means that $\ker((\lambda I - T)^*)^{\perp} = \mathcal{H}$, so by part a, $\overline{(\lambda I - T)(\mathcal{H})} = \mathcal{H}$. Thus, the range of $\lambda I - T$ is dense in \mathcal{H} , so $\lambda \notin \sigma_R(T)$. Thus, $\lambda \in \sigma_R(T)$ if and only if $\overline{\lambda} \in \sigma_P(T^*)$.

3 Problem 3

Let $\mathcal{H} = \ell^2(\mathbb{N})$ and define the left and right shift operators:

$$S_L(x_1, x_2, \ldots) = (x_2, x_3, \ldots), \quad S_R(x_1, x_2, \ldots) = (0, x_1, x_2, \ldots).$$

3.1 Part a

For any $x, y \in \ell^2(\mathbb{N})$,

$$\langle x, S_R y \rangle = \sum_{j=2}^{\infty} x_j y_{j-1} = \sum_{j=1}^{\infty} x_{j+1} y_j = \langle S_L x, y \rangle,$$

so $S_L^* = S_R$.

3.2 Part b

For any $z \in \mathbb{C}$, consider the series expansion for $z \neq 0$

$$(zI - S_L)^{-1} = \sum_{k=0}^{\infty} z^{-k-1} S_L^k.$$

Then, for any $x \in \mathcal{H}$,

$$((zI - S_L)^{-1}x)_j = \sum_{k=0}^{\infty} z^{-k-1}x_{k+j}.$$

If x is any finite sequence, this series has only a finite number of nonzero terms, so it must converge. Furthermore, $(zI - S_L)^{-1}x$ can only have a finite number of nonzero terms, so $(zI - S_L)^{-1}x \in \ell^2(\mathbb{N})$ is defined, and x is in the range of $zI - S_L$. Since finite sequences are dense in $\ell^2(\mathbb{N})$, the range of $zI - S_L$ is dense in \mathcal{H} for all $z \in \mathbb{C}$, meaning that $\sigma_R(S_L) = \emptyset$. Now, let $x \in \ker(zI - S_L)$. Then,

$$0 = ((zI - S_L)x)_j = zx_j - x_{j+1},$$

so $x_{j+1} = zx_j$ for all $j \in \mathbb{N}$ and $x = x_1(1, z, z^2, ...)$. Then,

$$||x||^2 = \sum_{j=1}^{\infty} |x_1|^2 |z|^{2j}.$$

This sum is finite if and only if |z| < 1, so $\ker(zI - S_L) \neq \{0\}$ if and only if |z| < 1, meaning that $\{z : |z| < 1\} \subset \sigma_P(S_L)$. Since $\sigma(S_L)$ is closed, $\overline{\{z : |z| < 1\}} = \{z : |z| \le 1\} \subset \sigma(S_L)$. Now, we observe that for any $x \in \mathcal{H}$,

$$||S_L x||^2 = \sum_{j=1}^{\infty} |x_{j+1}|^2 = \sum_{j=2}^{\infty} |x_j|^2 \le ||x||^2,$$

so $||S_L|| \le 1$; however, for any $x \in \mathcal{H}$ such that $x_1 = 0$, $||x|| = ||S_L x||$, so $||S_L|| = 1$. This means that zI - T is invertible for all $z \in \mathbb{C}$ such that |z| > 1, so we must have that $\{z : |z| \le 1\} = \sigma(S_L)$. Since $\ker(zI - S_L) \ne \{0\}$ only if |z| < 1 and there is no residual spectrum, we conclude that $\sigma_P(S_L) = \{z : |z| < 1\}$ and $\sigma_C(S_L) = \{z : |z| = 1\}$.

3.3 Part c

First, let |z| < 1. Then, $\overline{z} \in \sigma_P(S_L)$, so $\ker(\overline{z}I - S_L) = \ker((zI - S_R)^*) \neq 0$. By Problem 2a, this implies that $zI - S_R$ is not dense in \mathcal{H} , so $zI - S_R$ is not invertible and $z \in \sigma_R(S_R)$. This means that $\{z : |z| < 1\} \subset \sigma(S_R)$, so $\overline{\{z : |z| < 1\}} = \{z : |z| \leq 1\} \subset \sigma(S_R)$. For any $x \in \ell^2(\mathbb{N})$, $||S_R x|| = ||x||$, so $||S_R|| = 1$, meaning that $\sigma(S_R) \subset \{z : |z| \leq 1\}$, so $\sigma(S_R) = \{z : |z| \leq 1\}$. Now, we note that $\sigma_P(S_R) = \emptyset$ because for any $x \in \ker(zI - S_R)$, for all $j \in \mathbb{N}$,

$$0 = ((zI - S_R)x)_j = \begin{cases} zx_j - x_{j-1}, & j \ge 2, \\ zx_1, & j = 1, \end{cases}$$

so $x_j = 0$ for all j, meaning that $\ker(zI - S_R) = \{0\}$ for all $z \in \mathbb{C}$. Then, Problem 2b gives that if $z \in \sigma(S_R)$, then $z \in \sigma_R(S_R)$ if and only if $\overline{z} \in \sigma_P(S_L)$. If |z| = 1, then $\overline{z} \notin \sigma_R(S_L)$, so $z \notin \sigma_R(S_R)$. Since S_R has no eigenvalues, we must have that $z \in \sigma_C(S_R)$, so $\{z : |z| = 1\} \subset \sigma_C(S_R)$. We already have that $\{z : |z| < 1\} \subset \sigma_R(S_R)$, so we have classified the entire spectrum and can conclude that $\{z : |z| < 1\} = \sigma_R(S_R)$ and $\{z : |z| = 1\} = \sigma_C(S_R)$.

4 Problem 4

Let X and Y be Banach spaces with respective duals X^* and Y^* and assume that $T^*: Y^* \to X^*$ is compact. Then, $T^{**}: X^{**} \to Y^{**}$ is compact. For any $y \in X^*$ and $x \in X$,

$$(T^{**}\hat{x})(y) = \hat{x}(T^*y) = T^*y(x) = y(Tx) = \widehat{Tx}(y),$$

so $T^{**}\hat{x} = \widehat{Tx}$ for all $x \in X$. Let $\{x_n\} \subset X$ be a bounded sequence. Then, since the embedding $X \to X^{**}$ is norm-preserving, $\{\widehat{x_n}\} \subset X^{**}$ is also a bounded sequence. The compactness of T^{**} then implies that the sequence $\{\widehat{Tx_n}\} = \{T^{**}\widehat{x_n}\} \subset Y$ has a convergent subsequence. Denote this subsequence by $\{\widehat{Tx_{n_j}}\}$. This subsequence is Cauchy, so

$$0 = \lim_{j,k \to \infty} \left\| \widehat{Tx_{n_j}} - \widehat{Tx_{n_k}} \right\| = \lim_{j,k \to \infty} \left\| T(\widehat{x_{n_j} - x_{n_k}}) \right\| = \lim_{j,k \to \infty} \left\| T(x_{n_j} - x_{n_k}) \right\| = \lim_{j,k \to \infty} \left\| Tx_{n_j} - Tx_{n_k} \right\|,$$

meaning that $\{Tx_{n_j}\}\subset Y$ is also Cauchy. Since Y is complete, $\{Tx_{n_j}\}$ is convergent, meaning that we have found a convergent subsequence of $\{Tx_n\}\subset Y$. Thus, T is also compact.

5 Problem 5

Let $h:[0,1]\to\mathbb{C}$ be a continuous function and define the multiplication operator T_h on $L^2([0,1],m)$ by $(T_hf)(x)=h(x)f(x)$. First, let $\lambda\notin\operatorname{range}(h)$. Denoting $S_\lambda=\lambda I-T_h$, let $S_\lambda f=0$. Then, $(\lambda-h(x))f(x)=0$ for almost all x, meaning that f(x)=0 for all x since $\lambda\neq h(x)$ for any x. This means that f=0 in the L^2 -sense, so S_λ is injective. Similarly, for any $f\in L^2$, since $\lambda\neq h(x)$ for any f=0 for any f=0 and f=0 in the f=0 for all f=0 for any f=

To see that range(h) is precisely the spectrum, let $\lambda \in \text{range}(h)$. Let $y \in [0,1]$ be a point such that $h(y) = \lambda$. Since h is continuous, there exists some positive decreasing sequence $\{\delta_n\}$ such that $|h(x) - h(y)| < \frac{1}{n}$ whenever $|x - y| < \delta_n$. Define the functions $f_n = \frac{1}{2\delta_n} \mathbb{1}_{(x - \delta_n, x + \delta_n)}$ and note that these have norm 1. Then,

$$||S_{\lambda}f_n||_{L^2}^2 = \int \left| (h(x) - h(y)) \frac{1}{2\delta_n} \mathbb{1}_{(x - \delta_n, x + \delta_n)}(x) \right|^2 dx \le \frac{1}{n^2}.$$

Thus, $\lim_{n\to\infty} ||S_{\lambda}f_n||_{L^2} = 0$, so

$$\inf_{\|f\|=1} \|S_{\lambda}f\| = 0,$$

meaning that S_{λ} and $\lambda \in \sigma(T_h)$.

To find the eigenvalues of T_h , let $\lambda \in \text{range}(h)$ and set $S_{\lambda}f = 0$. Then, $(\lambda - h(x))f(x) = 0$ for almost all x. This means that $h(x) = \lambda$ at all x for which f(x) = 0. For f to be nonzero in the L^2 -sense, there must

be some set A such that m(A) > 0 and $f \neq 0$ on A. Thus, S_{λ} has a nontrivial kernel if and only if $h(x) = \lambda$ on a set of positive measure. That is, λ is an eigenvalue if and only if there is a set A such that m(A) > 0 and $h(x) = \lambda$ for all $x \in A$.

Using this, we may show that $\sigma_R(T_h) = \emptyset$. Since L^2 is a Hilbert space, we find the adjoint of T_h by noting that for any $f, g \in L^2$,

$$\langle T_h f, g \rangle = \int h(x) f(x) \overline{g(x)} dx = \int f(x) \overline{h(x)} \overline{g(x)} dx = \langle f, T_{\overline{h}} g \rangle,$$

so $T_h^* = T_{\overline{h}}$. Let $\lambda \in \sigma(T_h) \setminus \sigma_P(T_h)$. Then, by Problem 2, $\lambda \in \sigma_R(T_h)$ if and only if $\overline{\lambda} \in \sigma_P(T_{\overline{h}})$. This occurs if and only if $\overline{h(x)} = \overline{\lambda}$ for all x in some set of positive measure. Conjugating, this is true if and only if $h(x) = \lambda$ for all x in some set of positive measure, i.e., $\lambda \in \sigma_P(T_h)$. However, we assumed that $\lambda \notin \sigma_P(T_h)$, so $\lambda \notin \sigma_R(T_h)$ as well. Thus, $\sigma_R(T_h) = \emptyset$.