Microwave Engineering

11/07/13

Last name:	First name:
------------	-------------

Exercise 1

- a) Transmission line resonators: discuss the operation principles and determine the quality factor of a $\lambda/2$ short circuited transmission line resonator.
- b) A $\lambda/2$ short circuited transmission line resonator is made from an air filled piece of copper coaxial line (σ =6 ·10⁷ S/m); the radius of the inner conductor is 1.5 mm and the radius of the outer conductor is 4 mm. Assuming an operating frequency of 6 GHz, determine the quality factor of the resonator.

Microwave Engineering

11/07/13

Exercise 2

- a) Prove that we can not build a three-port lossless reciprocal network matched at all ports.
- b) Derive the scattering matrix of the resistive divider schematically described in the figure.

Microwave Engineering

11/07/13

Last name:	First name:
------------	-------------

Exercise 3

- a) Introduce the radar equation
- b) A monostatic radar operating at 14 GHz has an antenna gain of 28 dB and a transmitted power of 2 kW. The target has a cross section of 12 m^2 and the minimum detectable signal is P_{min} =-90 dBm. What is the maximum range of the radar?