2021-10-22

Problema 2

Sea X_1, \ldots, X_n una muestra de n observaciones iid de una distribución F con μ y varianza σ^2 , y sea X_1^*, \ldots, X_n^* una muestra de n observaciones iid de la distribución empírica de la muestra irignial F_n . Calcula las siguientes cantidades:

- 1. $E_{F_n}(\bar{X}_n^*) := E(\bar{X}_n^* | X_1, \dots, X_n)$
- 2. $E_F(\bar{X}_n^*)$
- 3. $Var_{F_n}(\bar{X}_n^*) := Var(\bar{X}_n^* | X_1, \dots, X_n)$
- 4. $Var_F(\bar{X}_n^*)$
- 1. $E_{F_n}(\bar{X}_n^*) := E(\bar{X}_n^* | X_1, \dots, X_n).$

Basta ver que, usando la definición y la linealidad de la esperanza,

$$E_{F_n}(\bar{X}_n^*) = E_{F_n}\left[\frac{1}{n}\sum_{i=1}^n X_i^*\right] = \frac{1}{n}\sum_{i=1}^n E_{F_n}[X_i^*].$$

Ahora, La esperanza bajo la función de distribución empírica de los X_i^* es la misma para todos los i, porlo que podemos decir que estamos decir que estamos sumando n veces la esperanza de X_i^* habiendo fijado un i. Tenemos por tanto:

$$\frac{1}{n} \sum_{i=1}^{n} E_{F_n} [X_i^*] = E_{F_n} [X_i^*] = \sum_{x \in (X_1, \dots, X_n)} P(x) = \sum_{x \in X_n} \frac{1}{n} x = \bar{x}$$

2. $E_F(\bar{X}_n^*)$.

Ahora no tenemos un condicionamiento como lo teníamos anteriormente, pero podemos usar la fórmula de la probabilidad total y ver que:

$$E_F(\bar{X}_n^*) = E_F[E_{F_n}(X_n^*|X_1,\ldots,X_n)]$$

3. $Var_{F_n}(\bar{X}_n^*) := Var(\bar{X}_n^* | X_1, \dots, X_n)$

$$\stackrel{\text{(1)}}{=} E_F[\bar{V}ar_{F_n} \left(\frac{1}{n} \sum_{i=1}^n X_i^* | X_1, \dots, X_n \right)$$

$$= \frac{1}{n^2} \sum_{i=1}^n Var_{F_n}(X_i^* | X_1, \dots, X_n)$$

$$= \frac{n}{n^2} Var_{F_n}(X_i^* | X_1, \dots, X_n),$$

donde, en la última igualdad usamos que para cada una de las X_i^* la varianza bajo F_n es la misma, así que la estamos sumando n varianzas iguales. Calculamos ahora la varianza que