TRYOUT UJIAN AKHIR SEMESTER

Mata Kuliah Aljabar Linear (A/B)

Arya Yudhi Wijaya, M.Kom. Dosen

90 Menit Waktu Sifat Terbuka

SOAL:

Diketahui garis / pada bidang xy melewati pusat koordinat dan membentuk sudut θ terhadap sumbu x positif $(0 \le \theta < \pi)$. T:R² \rightarrow R² adalah operator linear yang memproyeksikan orthogonal setiap vektor pada I (lihat gambar). Tentukan:

a. Matriks standar [T] untuk transformasi T dengan konsep [T] = [T[e₁] T[e₂]]

b. Tentukan hasil proyeksi orthogonal vektor $\mathbf{x} = (1,5)$ terhadap garis 4y = 3x

- Tentukan apakah $\mathbf{u} = (1, 0, -2, -1), \mathbf{v} = (0, -2, 6, 2), \mathbf{w} = (-3, 4, -6, -1)$ saling bebas linier?
- Dengan syarat terpenuhinya basis, tentukan himpunan vektor R² di bawah ini merupakan basis atau bukan:
 - a. (2, 4), (-1, -2)
 - b. (1,-3), (-2, 5)
- Pada R² yang berlaku Euclidean inner product, transformasikan basis {u₁, u₂} menjadi basis ortornormal dengan proses Gram-Schmidt dimana $\mathbf{u}_1 = (-1,2)$ dan $\mathbf{u}_2 = (1,8)$.
- Diketahui $\mathbf{B} = \{\mathbf{u}_1, \mathbf{u}_2\}$ dan $\mathbf{B}' = \{\mathbf{v}_1, \mathbf{v}_2\}$ pada \mathbf{R}^2 dimana

$$u_1 = (1,1); u_2 = (2,-1);$$

$$\mathbf{v_1} = (2,1); \ \mathbf{v_2} = (-1,3);$$

- a. Tentukan matriks transisi P dari B' ke B
- b. Tentukan koordinat vektor [w]_B dimana [w]_{B'} = (3, -5)
- Diketahui matriks:

- $\begin{bmatrix} 4 \\ 2 \end{bmatrix}$ 1 J
- Tentukan eigen value matriks tersebut
- Tentukan himpunan eigenvector matriks tersebut