Shifting Stages

1. Disengaged

 Only primary clutch spinning, spring pretension greater than flyweight force

2. Engagement

 Flyweight force just overcomes spring pretension

3. Low Ratio Acceleration

 Flyweight force greater than pressure spring but less than secondary belt force

Shifting Stages

4. Shift Point

Flyweight force just overcoming secondary tension

5. Straight Shift

 Matching curvature and spring rates

6. Overdrive

 Clutches shifted all the way out, engine speed increases

Flyweight Mass

- Used to control the rpm shifting begins at
- Higher flyweight mass makes shifting happen earlier in rpm range (low rpm)
- Lower flyweight mass makes shifiting happen later in rpm range (high rpm)
- Used squared relationship to approximate mass change

•
$$\frac{3200^2}{2600^2} = 1.51$$
, $m = \frac{110g}{1.51} = 73g$

Primary Spring (Rate)

- Used to control the rate of rpm climb during shifting
- Stiffer spring increases rpm at overdrive
- Lighter spring decreases rpm at overdrive
- Side force is flyweight force minus spring force.
 Increasing spring rate decreases belt clamp

Primary Spring (Pretension)

- Used to control engagement speed (when the rear wheels start turning)
- Higher pretension increases engagement speed
- Lower pretension decreases engagement speed
- Engagement is very much a balancing act between launch torque and driver feel

