November 29, 2009

Professor A.C. Fabian
Institute of Astronomy
Madingley Road
Cambridge, Cambridgeshire CB3 0HA
United Kingdom

Dear Prof. Fabian:

Please accept the attached application for your postdoctoral position to work within the Institute of Astronomy X-ray Group advertised through the AAS Job Register. A major part of my past and on-going research has focused on better understanding feedback from active galactic nuclei (AGN). As such, I have studied, and am deeply interested in, the accretion modes which fuel supermassive black holes to become AGN, the mechanisms which result in relativistic AGN jets, how AGN transport radiative and mechanical energy to an ambient medium, and how that energy alters the environment.

I feel the IoA is an excellent fit for me, and the IoA research environment will benefit from my addition. My expertise in radio and X-ray astronomy – in addition to experience with infrared, optical, and UV analysis – ideally suits me to further study accreting SMBHs using the existing and next generation of facilities/instruments (*i.e.* NuStar, Simbol-X, SOFIA, ALMA, LOFAR). I am also eager to expand my research into theoretical modeling, specifically to consolidate our understanding of radio galaxies and their environments into a unified model which describes isolated FR-Is through FR-IIs in dense clusters.

Along with this letter are my CV, a list of publications, and a summary of my research interests. Letters of recommendation from Megan Donahue, Brian McNamara, and Mark Voit should arrive under separate cover. Please do not hesitate to contact me if there is any further information I can provide as you review my application.

Thank you for your consideration.

Sincerely,

Dr. Kenneth W. Cavagnolo University of Waterloo

Dr. Kenneth W. Cavagnolo Curriculum Vitae

Last updated November 27, 2009; Hyperlinks colored blue

University of Waterloo Department of Physics & Astronomy 200 University Avenue West Waterloo, Ontario, Canada N2L 3G1		Office: 519-888-4567 ext. 35074 Home: 517-285-9062 E-mail: kencavagnolo@gmail.com Web: www.pa.msu.edu/people/cavagnolo/
Education	Michigan State University Ph.D., Astronomy & Astrophysics	2005 - 2008
	Michigan State University M.S., Astronomy & Astrophysics	2002 - 2005
	Georgia Institute of Technology B.S., Physics	1998 - 2002
Research Experience	Postdoctoral Fellow Supervisor: Dr. Brian McNamara, Un	2008 - Present niv. of Waterloo
	Graduate Research Assistant Supervisor: Dr. Megan Donahue, <i>Mic</i>	2003 - 2008 ch. St. Univ.
	Graduate Research Assistant Supervisor: Dr. Jack Baldwin, <i>Mich</i> .	2002 - 2003 St. Univ.
	Undergraduate Research Assistant Supervisor: Dr. James Sowell, <i>Geor</i> .	2000 - 2002 Inst. of Tech.
Research Interests	 Galaxy clusters and groups Galaxy evolution and formation Active galactic nuclei and jets Black hole formation and evolution Large scale structure and cosmology 	
Honors	 Referee for ApJ, AJ, and CanTAC Sherwood K. Haynes Award for Ou MSU College of Natural Science D American Physical Society Membe ΣΠΣ National Physics Honor Socie ΣΞ National Scientific Research So Perimeter Institute Black Hole Read Dean's List, Georgia Tech 	issertation Fellow 2007 - 2008 r 2002 - Present ty Member 2001 - Present ciety Member 2009 - Present

Scientific Skills	 Extensive experience with X-ray and radio data analysis Familiarity with infrared, optical, and UV data analysis Understanding of AIPS, CASA, CIAO, and IRAF analysis software Fluent in HTML, IDL, LATEX, and PERL programming languages Worked with C, FLASH, FORTRAN, MYSQL, PYTHON, SUPERMONGO Mastery of DOS, Linux, Macintosh, and Windows computing architect Expert of computer maintenance, system construction, and troubleshoo 	ures
Observing Experience	Giant Metrewave Radio Telescope (GMRT) 59 hours observing 13 galaxy groups	Jan. 2010
	GMRT 109 hours observing 20 galaxy clusters	Feb. 2010
	Chandra X-ray Observatory (CXO) 21 hours observing IRAS 09104+4109	Jan. 2009
	Very Large Array Radio Telescope (VLA) 39 hours observing 13 giant ellipticals	Dec. 2008
Proposals & Grants	GMRT Cycle 17, Co-I The Power and Particle Content of Extragalactic Radio Sources PI: Dr. Somak Raychaudhury, <i>Univ. Birmingham</i>	2009
	GMRT Cycle 17, Co-I The Morphology of Steepest Spectrum Radio Sources in Galaxy Cluster PI: Dr. Alastair Edge, <i>Durham Univ</i> .	2009 Cores
	GMRT Cycle 16, Co-I The Content of Giant Cavities in the IGM of Galaxy Clusters PI: Dr. Somak Raychaudhury, <i>Univ. Birmingham</i>	2008
	CXO Cycle 10, PI IRAS 09104+4109: An Extreme Brightest Cluster Galaxy	2008
	CXO Cycle 10, Co-I Conduction and Multiphase Structure in the ICM PI: Dr. Mark Voit, <i>Mich. St. Univ.</i>	2008
	Spitzer Cycle 5, Co-I Star Formation and AGN Feedback in BCGs PI: Dr. Megan Donahue, <i>Mich. St. Univ.</i>	2008
	Spitzer Cycle 5, Co-I Infrared Properties of a Control Sample of Brightest Cluster Galaxies PI: Dr. Megan Donahue, <i>Mich. St. Univ.</i>	2008
	NSF Grant, Co-I Star Formation in the Universe's Largest Galaxies PI: Dr. Mark Voit, <i>Mich. St. Univ.</i>	2008

Interests

CXO Cycle 9, Co-I

2007

Quantifying Cluster Temperature Substructure PI: Dr. Mark Voit, Mich. St. Univ. VLA A-configuration Cycle, Co-I 2007 Radio Feedback in Clusters and Galaxies PI: Dr. Brian McNamara, Univ. Waterloo **Public** Astronomers Without Borders (AWB) 2009-present Outreach Organized the affiliate chapter of AWB at the University of Waterloo. International Year of Astronomy (IYA) 2009 Helped with events in Waterloo, Ontario for IYA such as observing nights, public talks, and workshops. **Teaching** Substitute Instructor Fall 2006 Course: "Visions of the Universe" Experience Summer 2003 **Honors Physics Tutor** Course: "Introductory Honors Physics I & II" **Graduate Teaching Assistant** 2002 - 2003 Course: "Visions of the Universe" References Dr. Megan Donahue, donahue@pa.msu.edu +00-1-517-884-5618 (ordered by Tenured professor, Michigan State University preference) Dr. Brian McNamara, mcnamara@uwaterloo.ca +00-1-519-888-4567 ext. 38170 Tenured professor, University of Waterloo Dr. G. Mark Voit, voit@pa.msu.edu +00-1-517-884-5619 Tenured professor, Michigan State University Dr. Chris Carilli, ccarilli@nrao.edu +00-1-505-835-7000 National Radio Astronomy Observatory Chief Scientist Dr. Jack Baldwin, baldwin@pa.msu.edu +00-1-517-884-5611 Associate Chair for Astronomy, Michigan State University Dr. Paul Nulsen, pnulsen@cfa.harvard.edu +00-1-617-495-7043 Research Scientist, Center for Astrophysics at Harvard University Dr. Mike Wise, wise@science.uva.nl +31-0-521-595-564 LOFAR Radio Observatory Chief Scientist Personal • Academic: Environmental sciences, "Cradle2Cradle" design, and urban planning

• Athletics: Triathlons, baseball, rock climbing, and Georgia Tech athletics

• Hobbies: Backpacking, reading, building model airplanes, and raising bonsai trees

Dr. Kenneth W. Cavagnolo List of Publications

Last updated November 27, 2009; Hyperlinks colored blue

In

"A Relationship Between AGN Jet Power and Radio Luminosity"

Preparation

K. Cavagnolo, B. McNamara, P. Nulsen, C. Carilli, C. Jones, W. Forman, L. Bîrzan, &

S. Murray

In prep. for ApJ

"Gas Uplift and AGN Heating from the Changing-Look QSO in IRAS 09104+4109"

K. Cavagnolo, M. Donahue, B. McNamara, & G.M. Voit

In prep. for ApJ

"A Multiwavelength Analysis of the Galaxy Cluster RBS 797: Evidence for a Cluster-scale Line-of-Sight AGN Outburst"

K. Cavagnolo, B. McNamara, P. Nulsen, M. Wise, M. Gitti, & M. Brüggen In prep. for ApJ

"Entropy Scaling Relations of ACCEPT Galaxy Clusters"

K. Cavagnolo, G.M. Voit, & M. Donahue

In prep. for ApJ

"Constraining the Spin of Black Holes Using Measured AGN Jet Powers"

M. Rohanizadegan, B. McNamara, F. Kazemzadeh, P. Nulsen, **K. Cavagnolo**, & C. Kirkpatrick

In prep. for ApJL

First

Author

"Intracluster Medium Entropy Profiles for a Chandra Archival Sample Of Galaxy Clus-

ters"

Refereed

K. Cavagnolo, M. Donahue, G.M. Voit, & M. Sun

Papers ApJ Accepted, 2009

"An Entropy Threshold for Strong $H\alpha$ and Radio Emission in the Cores of Galaxy Clusters"

K. Cavagnolo, M. Donahue, G.M. Voit, & M. Sun

ApJ Accepted, 2008

"Bandpass Dependence of X-Ray Temperatures in Galaxy Clusters"

K. Cavagnolo, M. Donahue, G.M. Voit, & M. Sun

ApJ Accepted, 2008

Co-Author Refereed

Papers

"Direct Evidence for an Outflow of Metal-Enriched Gas Along the Radio Jets of Hydra

A"

C. Kirkpatrick, M. Gitti, K. Cavagnolo, B. McNamara, L. David, P. Nulsen, & M. Wise

ApJL Accepted, 2009

"A Chandra X-ray Analysis of Abell 1664: Cooling, Feedback and Star Formation in the Central Cluster Galaxy"

C. Kirkpatrick, B. McNamara, D. Rafferty, P. Nulsen, L. Birzan, F. Kazemzadeh, M. Wise, M. Gitti, & **K. Cavagnolo**ApJ Accepted, 2009

"Conduction and the Star Formation Threshold in Brightest Cluster Galaxies" G.M. Voit, **K. Cavagnolo**, M. Donahue, D. Rafferty, B. McNamara, & P. Nulsen ApJ Accepted, 2008

"Star Formation, Radio Sources, Cooling X-Ray Gas and Galaxy Interactions in the Brightest Cluster Galaxy in 2A0335+096"

M. Donahue, M. Sun, C. O'Dea, G.M. Voit, & K. Cavagnolo AJ Accepted, 2007

"s-Process Abundances in Planetary Nebulae"

B. Sharpee, Y. Zhang, R. Williams, E. Pellegrini, **K. Cavagnolo**, J. Baldwin, M. Phillips, & X. Liu

ApJ Accepted, 2007

"Entropy Profiles in the Cores of Cooling Flow Clusters of Galaxies" M. Donahue, D. Horner, **K. Cavagnolo**, & G.M. Voit ApJ Accepted, 2006

Presented Work & Talks

TALK: "The AGN Jet Power and Radio Power Relationship for Isolated Giant Elliptical Galaxies"

Jun. 2009 – The Monster's Fiery Breath: Feedback in galaxies, groups, and clusters; University of Wisconsin-Madison

INVITED TALK: "Using Galaxy Clusters as Galaxy Formation Labs" Oct. 2008 – Undergraduate Seminar Series; University of Waterloo

INVITED TALK: "Understanding Cluster Cores: The Role of Core Entropy" Sep. 2008 – The Cool, Cooler and Cold - Cluster Cooling Flows in a New Light; Lorentz Center, Leiden University

INVITED TALK: "Investigating Feedback and Relaxation in Clusters of Galaxies" Jul. 2008 – Center for Study of Cosmic Evolution; Michigan State University

INVITED TALK: "From Cluster Cosmology to Galaxy Formation in Under One Hour" Mar. 2008 – Astrophysics Seminar; University of Waterloo

INVITED TALK: "The Effect of Cluster Feedback on High-Precision Cosmology" Feb. 2008 – NASA Space Science and Technology Center; UAH-Huntsville

INVITED TALK: "Understanding Feedback in Galaxy Clusters"
Jan. 2008 – Center for Study of Cosmic Evolution; Michigan State University

INVITED TALK: "Band Dependence of X-ray Temperatures" Oct. 2007 – Astrophysics Seminar; University of Michigan

K.W.C., Publications

POSTER: "The Entropy-Feedback Connection and Quantifying Cluster Virialization" Oct. 2007 – Eight Years of Science with Chandra; UAH-Huntsville

POSTER: "Chandra Studies of Dark Matter and Galaxy Formation: Signatures from the Intracluster Medium"

Dec. 2006 – American Astronomical Society Winter Meeting

PROCEEDING: "Abundances of s-process elements in planetary nebulae: Br, Kr & Xe" Jul. 2006 – International Astronomical Union Symposium

POSTER: "Studies of Entropy Distributions in X-ray Luminous Clusters of Galaxies" Dec. 2005 – American Astronomical Society Winter Meeting

POSTER: "Entropy Distributions in the Cores of Nearby X-ray Luminous Clusters of Galaxies"

Dec. 2004 - American Astronomical Society Winter Meeting

POSTER: "Radio-Free Cluster Cooling Flows"

Dec. 2004 – American Astronomical Society Winter Meeting

Dr. Kenneth W. Cavagnolo Statement of Research Interests

Introduction

The gravitational binding energy liberated by active galactic nuclei (AGN), *i.e.* accreting supermassive black holes (SMBHs), plays a vital role in regulating the process of hierarchical structure formation [*e.g.* 1, 2, 3, 4, 5, 6]. Observations robustly indicate most, if not all, galaxies harbor a centralized SMBH which has co-evolved with the host galaxy giving rise to the well-known bulge luminosity-stellar velocity dispersion correlation [7, 8]. Current models for the evolution of dark matter halos (and the baryons within) invoke a feedback loop where the processes of environmental cooling and heating are coupled via AGN [9, 10]. In broad terms, AGN feedback has been segregated into two modes which occur at different cosmic epochs: an early-time radiatively-dominated mode, and a late-time mechanically-dominated mode. While this model is successful in reproducing the bulk properties of the Universe, the details (*i.e.* accretion processes, obscuration, power generation, energy dissipation) are poorly understood. It is these details which interest me most.

Relevant Completed and On-going Research

Up to now, my research has focused primarily on understanding the mechanical feedback from AGN and the associated effects on galaxy clusters. I have devoted particular attention to intracluster medium (ICM) entropy distribution [11], the process of cluster virialization [12], the mechanisms by which SMBHs might acquire fuel from their environments to become AGN [13], and how those mechanisms correlate with properties of clusters cores [14].

From these studies it has become apparent that certain conditions must be established within a cluster core (and presumably any environment which supplies fuel for a SMBH, *e.g.* a brightest cluster galaxy (BCG) corona [15]), namely that the mean entropy (K) of the large-scale environment hosting a SMBH must be $K \lesssim 30$ keV cm². Coincidentally, this is the entropy scale above which thermal electron conduction is capable of stabilizing a cluster core against the formation of thermal instabilities, hinting at a method for coupling AGN feedback energy to the ICM and establishing a self-regulating feedback loop. This result is made more interesting if the heat-flux-driven-buoyancy instability [HBI, 16] is an important process in clusters with central cooling times $\ll H_0^{-1}$. Full MHD simulations have shown that the HBI, in conjunction with reasonable magnetic field strengths ($\sim 1~\mu$ G), modest heating from an AGN ($\sim 10^{43}~{\rm erg~s^{-1}}$) and subsonic turbulence, can feasibly stabilize a core against catastrophic cooling [17, 18]. In addition, recent radio polarization measurements for Virgo cluster galaxies suggest the large-scale magnetic field of Virgo's ICM is radial oriented [19]. This result is tantalizing since it suggests the magnetothermal instability [20] may be operating within Virgo, furthering the case that conduction is a vital component of understanding galaxy cluster evolution. In total, these studies touch on a larger subject which is of great interest to me: magnetic fields in clusters.

LOFAR came online fall 2009, and the order of magnitude improvement in angular resolution and sensitivity at low radio frequencies opens a new era in studying ICM magnetic fields via polarimetry [21]. Polarization measurements made with LOFAR will enable direct detection of ICM field strengths and structure on scales as small as cluster cores ($\lesssim 50\,\mathrm{kpc}$) and as large as cluster virial radii (\sim few Mpc). A systematic study of a cluster sample using LOFAR will expand our view of magnetic field demographics and how they relate to cluster properties like temperature gradients, core entropy, recent AGN activity, and the structure of cold gas filaments in cluster cores. In addition, we will be able to investigate the origin and evolution of the fields: were they seeded by early AGN activity? Are they amplified by mergers? Is there evidence of draping or entrainment? Understanding cluster magnetic fields will also place constraints on ICM properties, like viscosity, which govern the microphysics by which AGN feedback energy might be dissipated as heat, *e.g.* via turbulence and/or MHD waves.

My most recent research has focused on the SMBH engines which underlie AGN. One study recently completed [22] investigates a more precise calibration between AGN jet power (P_{jet}) and emergent radio emission (L_{radio}) for a sample of giant ellipticals (gEs) and BCGs. In this study we estimated P_{jet} using cavities excavated in the ICM as bolometers, and measured L_{radio} at multiple frequencies using new and archival VLA observations. We found, regardless of observing frequency, that $P_{jet} \approx 10^{16} L_{radio}^{0.7}$ erg s⁻¹, which is in general agreement with models for confined heavy jets. The utility of this relation lies in being able to estimate total jet power from monochromatic all-sky radio surveys for large samples of AGN at various stages of their outburst cycles. This should yield constraints on the kinetic heating of the Universe over swathes of cosmic time, and as a consequence, can be used to infer the total accretion history and growth of SMBHs over those same epochs.

An interesting result which has emerged from our work, and which is investigated in [23], is that FR-I radio galaxies (classified on morphology and not L_{radio}) appear to be systematically more radiatively efficient than FR-II sources. This may mean there are intrinsic differences in radio sources (light and heavy jets), or possibly that all jets are born light and become heavy on large scales due to entrainment. One way to investigate this result more deeply is to undertake a systematic study of the environments hosting radio galaxies utilizing archival *Chandra* and VLA data.

With tighter observational constraints on the kinetic properties of AGN jets, of interest to me is re-visiting existing models for relativistic jets in an ambient medium. Utilizing observationally-based estimates of jet power, it is possible to better understand the growth of a radio source including effects like entrainment and evolution of jet composition [á la 24]. Another interesting use of a universal $P_{\rm jet}$ - $L_{\rm radio}$ relation is using radio luminosities, lobe morphologies, and age estimates to predict ambient gas pressures: $p_{\rm amb} \propto (t_{\rm age}L_{\rm radio})/V_{\rm radio}$. This yields an estimate of ambient densities when basic assumptions are made about environment temperatures: $\rho_{\rm amb} \propto p/T$. With an estimate of ambient densities, X-ray observing plans for very interesting radio sources which reside in faint group environments (i.e. FR-I sources) can be robustly prepared. An observationally-based estimate of $P_{\rm jet}$ also enables the investigation of relations between observable mass accretion surrogates (i.e. $H\alpha$ luminosity, molecular/dust mass, or nuclear X-ray luminosity) and AGN energetics for the purpose of establishing clearer connections with accretion mechanisms and efficiencies.

Future Research

The study of mechanically-dominated AGN feedback has advanced quickly in the last decade primarily because the process is readily observed at low-redshifts, and the hot gas phase which this mode of feedback most efficiently interacts is accessible with the current generation of X-ray observatories. However, our understanding of radiative feedback, and the associated early era of rapid SMBH growth, has not progressed as quickly. This is mostly because cold/dusty gas is required for high efficiency radiative feedback, but the presence of cold/dusty gas is typically accompanied by significant optical obscuration which prevents direct observational study [25]. Luckily, the quality and availability of multi-frequency data (radio, sub-mm, IR, optical, UV, and X-ray) needed to probe the epoch of SMBH growth and obscuration is poised to improve with new facilities and instruments coming on-line (*i.e.* LOFAR, Herschel, SCUBA-2, SOFIA, ALMA, NuStar, Simbol-X). As such, there are a number of questions regarding the formation and evolution of SMBHs that I would like to pursue.

- (1) What is the evolutionary track from young, gas-rich, dusty galaxies to present-day old, parched gEs? It has been argued that high-*z* sub-mm galaxies (SMGs) are the progenitors for low-*z* Magorrian spirals and ellipticals, suggesting SMGs are useful for studying the co-evolution of SMBHs and host galaxies. It has been shown SMGs are found in very dense environments and have high AGN fractions (≥ 50%) [26], so they are excellent for identifying the rapidly cooling high-*z* gas-rich regions where star formation and AGN activity can be fueled. Hence, SMGs identify a population primed for follow-up with far-IR and X-ray spectroscopy to study feedback and cooling in unique environments. In total, SMGs may be the missing piece to understanding how SMBH evolution and AGN activity regulate the transition from gas-rich progenitors to "red and dead" ellipticals. It has also been posited that SMGs are high-*z* analogs of low-*z* ULIRGs (objects typically associated with the sites of merging gas-rich spirals). If this is the case, insight to ULIRG evolution can be gained from studying SMGs. ULIRGs are an interesting population on their own, one for which limited X-ray spectroscopic studies have been undertaken. We know these systems to, on average, be dominated by star formation, however, some systems may have significant contribution from AGN, and these systems can be used to further understand the nature of evolving gas-rich systems.
- (2) How does SMBH activity depend on environment? Specifically what is the relationship between redshift, environment, and feedback energy? The answer thus far is unclear, most likely because the influence of environment on AGN jets (through entrainment and confinement) has been neglected or treated too simply in models. This is where observations step in to place interesting constraints on the problem. To this end, a study of the faint radio galaxy population using archival *Chandra* and VLA data would be interesting. Undertaking a systematic study of radio galaxy properties (*i.e.* jet composition, morphologies, outflow velocities, magnetic field configurations) as a function of environment (*i.e.* ambient pressure, halo compactness) can help address how AGN energetics couple to environment, which ultimately suggests how accretion onto the SMBH couples to environment on small and large scales. Deep *Chandra* observations for a sample of FR-I's (a poorly studied population in the X-ray) would also be useful for such a study, using the $P_{\rm jet}$ - $L_{\rm radio}$ relation to define robust observation requests.
- (3) How does the transition from an obscured to unobscured state correlate with AGN feedback and SMBH growth? As suggested by the low AGN fraction in the *Chandra* Deep Fields, a significant population of obscured AGN must exist at higher redshifts. One method of selecting unbiased samples

of these objects is to assemble catalogs of candidate AGN using hard X-ray (i.e. NuStar), far-IR (i.e. SOFIA), and sub-mm (i.e. SCUBA-2) observations. Because current models suggest the luminous quasar population begins in an obscured state, and rapid acquisition of SMBH mass may occur in this phase because of high accretion rates (possibly exceeding $10-100 L_{\rm Edd.}$), understanding the transition from obscured to unobscured states is vital. How does accretion proceed and where does the accreting material come from: gas cooling out of the atmosphere? Gas stripped from merging companions? Is accretion spherical and dictated by local gas density (e.g. Bondi)? A key component which has been neglected in AGN studies is the contribution of dust (which should be a significant component in the atmospheres of obscured AGN) in increasing the allowed Eddington luminosity for an accreting SMBH (i.e. $L_{\rm Edd} \propto \mu$). A curiosity which has emerged in recent years which may be interesting, particularly during the obscured stage when the merger rate is presumably high, is the role of multiple SMBHs within the core of a host galaxy. At a minimum, SMBH mergers occur on a timescale determined by dynamical friction, which for a typical dense bulge is $\gtrsim 1$ Gyr, which is $\gg t_{\rm cool}$ of an obscuring atmosphere. If the SMBHs which are merging have their own accretion disks, then it is reasonable to question how the atmospheres surrounding a host galaxy with multiple AGN is affected, particularly since the transition from obscured to unobscured should proceed more quickly.

Summary

My research interests span the formation and evolution of SMBHs, particularly during their accreting mode as AGN. The general picture of structure formation is complete, and the influence of SMBHs is undeniably important, but missing is a better understanding of the details of accretion, interaction with ambient atmospheres, and energy redistribution via AGN. To this end, more observational constraints are needed, particularly using multiwavelength datasets from upcoming missions. I am well-positioned to make meaningful contributions in such a pursuit, and would like to do so as an IoA post-doc.

References

- [1] A. C. Fabian, J. S. Sanders, S. Ettori, G. B. Taylor, S. W. Allen, C. S. Crawford, K. Iwasawa, R. M. Johnstone, and P. M. Ogle. Chandra imaging of the complex X-ray core of the Perseus cluster. *MNRAS*, 318:L65–L68, November 2000.
- [2] D. J. Croton, V. Springel, S. D. M. White, G. De Lucia, C. S. Frenk, L. Gao, A. Jenkins, G. Kauffmann, J. F. Navarro, and N. Yoshida. The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colours of galaxies. *MNRAS*, 365:11–28, January 2006.
- [3] R. G. Bower, A. J. Benson, R. Malbon, J. C. Helly, C. S. Frenk, C. M. Baugh, S. Cole, and C. G. Lacey. Breaking the hierarchy of galaxy formation. MNRAS, 370:645–655, August 2006.
- [4] A. Saro, S. Borgani, L. Tornatore, K. Dolag, G. Murante, A. Biviano, F. Calura, and S. Charlot. Properties of the galaxy population in hydrodynamical simulations of clusters. *MNRAS*, 373:397–410, November 2006.
- [5] D. Sijacki, V. Springel, T. di Matteo, and L. Hernquist. A unified model for AGN feedback in cosmological simulations of structure formation. *MNRAS*, 380:877–900, September 2007.
- [6] L. Bîrzan, B. R. McNamara, P. E. J. Nulsen, C. L. Carilli, and M. W. Wise. Radiative Efficiency and Content of Extragalactic Radio Sources: Toward a Universal Scaling Relation between Jet Power and Radio Power. *ApJ*, 686:859–880, October 2008.
- [7] J. Kormendy and D. Richstone. Inward Bound—The Search For Supermassive Black Holes In Galactic Nuclei. ARA&A, 33:581-+, 1995.
- [8] J. Magorrian, S. Tremaine, D. Richstone, R. Bender, G. Bower, A. Dressler, S. M. Faber, K. Gebhardt, R. Green, C. Grillmair, J. Kormendy, and T. Lauer. The Demography of Massive Dark Objects in Galaxy Centers. *AJ*, 115:2285–2305, June 1998.

- [9] B. B. Nath and S. Roychowdhury. Heating of the intracluster medium by quasar outflows. MNRAS, 333:145-155, June 2002.
- [10] B. R. McNamara and P. E. J. Nulsen. Heating Hot Atmospheres with Active Galactic Nuclei. ARA&A, 45:117–175, September 2007.
- [11] K. W. Cavagnolo, M. Donahue, G. M. Voit, and M. Sun. Intracluster Medium Entropy Profiles for a Chandra Archival Sample of Galaxy Clusters. *ApJS*, 182:12–32, May 2009.
- [12] K. W. Cavagnolo, M. Donahue, G. M. Voit, and M. Sun. Bandpass Dependence of X-Ray Temperatures in Galaxy Clusters. ApJ, 682:821–834, August 2008
- [13] G. M. Voit, K. W. Cavagnolo, M. Donahue, D. A. Rafferty, B. R. McNamara, and P. E. J. Nulsen. Conduction and the Star Formation Threshold in Brightest Cluster Galaxies. *ApJ*, 681:L5–L8, July 2008.
- [14] K. W. Cavagnolo, M. Donahue, G. M. Voit, and M. Sun. An Entropy Threshold for Strong Hα and Radio Emission in the Cores of Galaxy Clusters. ApJ, 683:L107–L110, August 2008.
- [15] M. Sun, C. Jones, W. Forman, A. Vikhlinin, M. Donahue, and M. Voit. X-Ray Thermal Coronae of Galaxies in Hot Clusters: Ubiquity of Embedded Mini-Cooling Cores. *ApJ*, 657:197–231, March 2007.
- [16] I. J. Parrish and E. Quataert. Nonlinear Simulations of the Heat-Flux-driven Buoyancy Instability and Its Implications for Galaxy Clusters. *ApJ*, 677:L9–L12, April 2008.
- [17] I. J. Parrish, E. Quataert, and P. Sharma. Anisotropic Thermal Conduction and the Cooling Flow Problem in Galaxy Clusters. *ApJ*, 703:96–108, September 2009.
- [18] M. Ruszkowski and S. P. Oh. Shaken and stirred: conduction and turbulence in clusters of galaxies. ArXiv e-prints: 0911.5198, November 2009.
- [19] C. Pfrommer and L. J. Dursi. Detecting the orientation of magnetic fields in galaxy clusters. ArXiv e-prints: 0911.2476, November 2009.
- [20] S. A. Balbus. Stability, Instability, and "Backward" Transport in Stratified Fluids. ApJ, 534:420–427, May 2000.
- [21] T. G. Arshakian and R. Beck. Exploring Weak Magnetic Fields with LOFAR and SKA. In D. J. Saikia, D. A. Green, Y. Gupta, & T. Venturi, editor, Astronomical Society of the Pacific Conference Series, volume 407 of Astronomical Society of the Pacific Conference Series, pages 33—+, September 2009.
- [22] K. W. Cavagnolo, B. R. McNamara, C. L. Carilli, C. Jones, W. R. Forman, P. E. J. Nulsen, L. Bîrzan, and S. Murray. A Relationship Between AGN Jet Power and Radio Luminosity. *In preparation for ApJ*, 2009.
- [23] J. H. Croston, M. J. Hardcastle, M. Birkinshaw, D. M. Worrall, and R. A. Laing. An XMM-Newton study of the environments, particle content and impact of low-power radio galaxies. *MNRAS*, 386:1709–1728, May 2008.
- [24] C. J. Willott, S. Rawlings, K. M. Blundell, and M. Lacy. The emission line-radio correlation for radio sources using the 7C Redshift Survey. MNRAS, 309:1017–1033, November 1999.
- [25] D. M. Alexander. Identifying the Obscured Black-Hole Growth Phase of Distant Massive Galaxies. ArXiv e-prints: 0911.3911, November 2009.
- [26] D. M. Alexander, F. E. Bauer, S. C. Chapman, I. Smail, A. W. Blain, W. N. Brandt, and R. J. Ivison. The X-Ray Spectral Properties of SCUBA Galaxies. ApJ, 632:736–750, October 2005.

Application for Employment – Cover Sheet - PD18

The information given will be processed for employment selection and statistical purposes. Applications will be retained for the successful candidate. Applications from unsuccessful candidates will be retained for up to twelve months. If you require this in an alternative format, contact the department to which you are applying.

This form is broken down into three parts. Part I contains information that will be used in the selection process. This should be completed by all applicants. Part II contains information for additional vetting. This is required for some posts and you will be advised accordingly. Part III is requested of all applicants and provides equal opportunity information. This information is not used as part of the selection process.

Position applied for	Postdoctoral researcher with the astronomy group led by Prof. Andy Fabian.
Department	Institute of Astronomy
Vacancy Reference	LG02509

PART I

PERSONAL DETAILS

Forename(s) Kenneth	Surname Cavagnolo	Title Dr .
Current Address: 601-307 Queen St. South Kitchener, ON, Canada	Contact details: (1) Daytime telephone: 1-517-285-906 (2) Mobile: 1-517-285-9062	2
Post code: N2G 4V3	(3) E-mail address: kcavagno@uwaterloo.ca	
	Do you require a work permit/permission to work in the UK? Yes No	
Current salary and any financial benefits: \$48,000 CAD; full medical	Current notice period: None required	

WORK REFERENCES

References should normally be work related references and include your present employment (or your most
recent employer) or course tutor if currently a student. For academic appointments, one of the references should
be external to the University.
The job advertisement should indicate whether you are required to submit two or three references.
Name: Dr. Megan Donahue
Position: Michigan State University Professor
Address:
Department of Physics and Astronomy; Michigan State University
Biomedical Physical Sciences Building
East Lansing, MI, 48824-2320, USA
Telephone number: 00-1-517-884-5618
E-mail address: donahue@pa.msu.edu
Do we have permission to contact this referee before the interview? Yes No

April 2007 Part I, Page 1 of 2

Second Reference PART I Cont'd

Name: Dr. G. Mark Voit
Position: Michigan State University Professor
Address:
Department of Physics and Astronomy; Michigan State University
Biomedical Physical Sciences Building
East Lansing, MI, 48824-2320, USA
Telephone number: 00-1-517-884-5619
E-mail address: voit@pa.msu.edu
Do we have permission to contact this referee before the interview? Yes No

Third Reference

Name: Dr. Brian McNamara
Position: University of Waterloo Professor
Address:
University of Waterloo; Department of Physics & Astronomy
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
Telephone number: 00-1-519-888-4567 ext. 38170
E-mail address: mcnamara@uwaterloo.ca
Do we have permission to contact this referee before the interview? Yes No

APPLICANT DECLARATION & DATA CONSENT

- I confirm that the information I have given in this application for employment form and any supporting documents is correct and complete.
- I understand that failure to disclose any relevant information or the provision of false information may lead to dismissal and subsequent termination of contract of employment.
- I understand that the University of Cambridge will carry out a verification process and will check all or any of the information provided on the application form, given in references and presented as proof of identity.
- I agree for release of information under the provisions of the Data Protection Act 1998
- I understand that an appointment, if offered, may be subject to a satisfactory medical examination.
- If I have been required to submit Part II as part of the application process, I understand that the University of Cambridge will verify the information given in Part II, which might include referral to an appropriate third party for purposes of security clearance.

SignatureKenneth W. Cavagnolo	
Date11/21/2009	

April 2007 Part I, Page 2 of 2

PART II

For additional vetting purposes, you are required to complete Part II of the application form. As instructed, please complete only the relevant section(s) below.

A. FOR SELECTED APPLICATIONS

I Personal Details

Maiden Name (if applicable)		
Date of birth: January, 27th 1980	Place of birth: Snellville, GA, USA	
Nationality: American	National Insurance Number: N/A	
Driving Licence No.:	Passport No. and Issue Date:	
C125465870072 Issued: MI, USA	207705508 Issued: 31 Jan 2003	

II Personal Referees

Please complete the contact details for two referees who have known you in a personal capacity over the last five years. We may prefer to seek a written reference before the interview.

Name: Mr. Josh Winston	Name: Mr. Chris Johnson
Position: Senior Electrical Engineer	Position: Entertainment Editor, Silicon Valley Business Journal
Address:	Address:
10700 Academy Rd. NE	700 Cypress Lane
#1411	Campbell, CA, USA
Albuquerque, NM, USA	
Postcode:	Postcode:
87111	95008-2111
Telephone number: 1-505-917-9957	Telephone number: 1-408-679-9996
E-mail address: jwinstongt@yahoo.com	E-mail address: cjphoto@gmail.com
How long have they known you? Seven years	How long have they known you? Ten years
In what capacity have they known you?	In what capacity have they known you?
College flatmate and close friend	Long time friend and brother-in-law
Do we have permission to contact this referee before the interview? Yes No	Do we have permission to contact this referee before the interview? Yes No

III Previous Address

If you have lived at your current address for less than 5 years, please give details of all addresses for the previous five years with dates below. (Continue on additional sheet if required.)

From:	06/2004	To:	08/2008	
	(month/year)		(month/year)	Postcode: 48823
Address: 1111 Kimberly Dr., Apt #7, East Lansing, MI, USA				
From:		To:		
	(month/year)		(month/year)	Postcode
Address				

April 2007 Part II, Page 1 of 2

a. for SELECTED applications Cont'd

PART II Cont'd

IV Additional Checks

information that may be held on its driver co	agency to supply any information with the exception of any medical amputer record, relating to myself and my driving entitlement past at, disqualifications etc (within the meaning of the Road Traffic ervice.
SignatureKenneth W. Cavagnolo	Date11/21/2009
* I authorise the United Kingdom Passport Ag details of my passport submitted with this appl	gency to supply any information held in its records regarding the lication to an external security service.
Signature Kenneth W. Cavagnolo	Date11/21/2009
* I request the information to be sent to external	security service.
* I hereby consent to the external security so University of Cambridge for the purpose of my	ervice passing the results of the security vetting process to the y application.
SignatureKenneth W. Cavagnolo	Date11/21/2009
	d be treated in confidence and would not be used against applicants ally prevent you from being approved, however failure to declare
•	Where it is a requirement of the post to submit an Enhanced Disclosure application to the Criminal Records Bureau this information will be treated in confidence. Any disclosed information will be discussed with short listed applicants. Any applicant that fails to reveal information relevant to the position applied for that is subsequently revealed on
	Disclosure may have their conditional offer of employment withdrawn.
	Offenders Act 1974. You should complete this section if you have a cautioned, or have criminal convictions that are not considered as Act 1974.
Have you ever been cautioned / convicted of	a criminal offence / have any hearings pending? Yes No
If 'YES' please give further information	

If you are applying for a post that is exempt from the provisions of the Rehabilitation of Offenders Act 1974 you must disclose ALL criminal convictions found against you (spent and unspent). The recruiting department will confirm if the post is exempt and therefore, what you must declare.

April 2007 Part II, Page 2 of 2

EQUAL OPPORTUNITIES MONITORING SLIP

PART III

The University is an Equal Opportunities employer and is committed to treating all job applications on their merits. The information provided here will not be used in considering your application but will be collected centrally to check that the University is treating all applicants on the basis of their ability to carry out the duties of the post irrespective of gender, race or disability. Please tick the boxes below. The information will be separated from the application form and will not be given to the selection panel.

Vacancy Reference Office/Post Title	For office use
Gender Tick the appropriate box to indicate your gender ☐ Female ☐ Male	
Ethnic Origin Choose ONE section from A to E, then tick the appropriate box to indicate your background.	
A White: White – British White - Irish White - Other white background	
B Mixed: White and Black Caribbean White and Black African White and Asian Any other mixed background	
C Asian or Asian British: Indian Pakistani Bangladeshi Any other Asian background	
D Black or Black British: Caribbean African Other Black background	
E Chinese or Chinese British or other ethnic group: Chinese Any other background	
Disability Do you regard yourself as in any way disabled? Yes No	
Advertising Where did you first learn about this vacancy?	

April 2007 Part III, Page 1 of 1

American Astronomical Society Monthly Job Register

Figure 1: Passport for Kenneth W. Cavagnolo