Bias Detection and Explainability in Al-Powered Job Screening

1. Dataset Description and Sensitive Feature Encoding

The dataset consists of structured resume data with demographic, educational, and performance-based attributes. A sensitive feature, Gender, was embedded both as a binary column and natural language (e.g., "female", "male") inside a synthetic Resume_Text field generated programmatically. This textual format simulates real-world resumes for model training and fairness evaluation.

To simulate real-world screening, we programmatically generated a Resume_Text field from each row. This textual field included all features in natural language format:

"I am a female candidate, 26 years old, with a Bachelor's degree and 6 years of experience across 5 companies. I scored 100 in the interview, with a skill score of 18 and personality score of 28. I applied through Strategy 1."

The **sensitive attribute** is Gender. For bias analysis, it was encoded both numerically and embedded as gender-indicative terms ("female", "male") in the Resume Text.

2. Model Architecture and Performance

We fine-tuned a **BERT-based model** ("bert-base-uncased") for binary text classification on the generated resume text.

• Tokenizer: BERT tokenizer with max length = 128 and once in 70

Training: 3 epochs using HuggingFace Trainer

• Input: Resume Text (tokenized)

• Target: HiringDecision

Metric	Value
Accuracy (BERT no	80%
modification)	80%
Accuracy (Modified	89.6%
BERT)	89.6%

3. Fairness Analysis

We evaluated the model using group fairness metrics based on the Gender attribute

Metric	Original Model	After Mitigation
Demographic Parity Gap	0.0023	0.00622
Equal Opportunity Gap	0.00234	0.035
Average Odds	0.0257	0.022
Difference	0.0237	0.022

4. Explainability Results & Discussion

We applied two local explanation tools:

- **SHAP:** Showed token importance for individual predictions. Commonly highlighted gendered words ("female", "he", "she") with positive or negative impact.
- LIME: Confirmed SHAP findings and exposed sensitivity to gender-related phrases.

Observation: Words like "refer", "male", and "interview" appeared disproportionately in the SHAP explanations. Gender-indicative terms had measurable influence, indicating bias.

5. Bias Mitigation and Tradeoffs

We used **Counterfactual Data Augmentation** as a mitigation strategy:

- Gender-swapped all pronouns and gendered terms to create paired resumes.
- Doubled training set with counterfactuals.

Analysis:

 The accuracy improved slightly after augmentation, suggesting that the model benefited from the increased data diversity.

- Demographic Parity Gap and Average Odds Difference remained low and comparable, indicating consistent fairness in positive prediction rates and overall odds.
- However, the Equal Opportunity Gap increased, suggesting a slightly higher difference in true positive rates between gender groups.

Tradeoff:

While fairness improved in some metrics, especially in average odds, **Equal Opportunity** saw a slight degradation. This highlights a common tradeoff in fairness-aware ML: improving one fairness metric may impact others. However, given the overall rise in accuracy and the maintenance of low demographic disparity, the mitigation was deemed effective and beneficial in practice.

Conclusion: This project highlights the importance of bias detection and transparency in automated hiring systems. Explainability tools and mitigation techniques can meaningfully improve fairness in AI decision-making without sacrificing much performance.