4

0.251043 0.210575

```
In [1]: # Import the required libraries and dependencies
          import pandas as pd
          import hvplot.pandas as hvplot
          \textbf{from} \text{ pathlib } \textbf{import} \text{ Path}
          \textbf{from} \ \text{sklearn.cluster} \ \textbf{import} \ \text{KMeans}
          \textbf{from} \ \text{sklearn.decomposition} \ \textbf{import} \ \text{PCA}
          from sklearn.preprocessing import StandardScaler
In [2]: # Read in the CSV file as a Pandas DataFrame
          CO2_df = pd.read_csv(
              Path("./Resources/CO2 Emissions_Canada.csv")
          # Review the DataFrame
          CO2_df.head()
Out[2]:
                                                                                        Fuel
                                                                                                        Fuel
                                                                                                                        Fuel
                                                                                                                                       Fuel
                                                                                                                                                         CO2
                                Vehicle
                                        Engine
                                                                         Fuel
                                                                                Consumption
                                                                                                Consumption
                                                                                                                Consumption
              Make
                                                 Cylinders Transmission
                     Model
                                                                                                                               Consumption
                                                                                   City (L/100
                                                                                                  Hwy (L/100
                                  Class
                                        Size(L)
                                                                         Туре
                                                                                                                Comb (L/100
                                                                                                                                             Emissions(g/km)
                                                                                                                               Comb (mpg)
                                                                                         km)
                                                                                                        km)
                                                                                                                        km)
          O ACURA
                         ILX COMPACT
                                            2.0
                                                                   AS5
                                                                            Ζ
                                                                                          9.9
                                                                                                         6.7
                                                                                                                         8.5
                                                                                                                                         33
                                                                                                                                                         196
          1 ACURA
                              COMPACT
                                            2.4
                                                        4
                                                                    M6
                                                                            Ζ
                                                                                         11.2
                                                                                                         7.7
                                                                                                                         9.6
                                                                                                                                         29
                                                                                                                                                         221
                         ILX
                              COMPACT
                                                        4
                                                                            Ζ
          2 ACURA
                                            1.5
                                                                   AV7
                                                                                          6.0
                                                                                                         5.8
                                                                                                                         5.9
                                                                                                                                         48
                                                                                                                                                         136
                     HYBRID
                        MDX
                                 SUV -
          3 ACURA
                                            3.5
                                                                   AS6
                                                                                         12.7
                                                                                                         9.1
                                                                                                                        11.1
                                                                                                                                         25
                                                                                                                                                         255
                       4WD
                                SMALL
                        RDX
                                 SUV -
          4 ACURA
                                                                            Z
                                                                                         12.1
                                                                                                         8.7
                                                                                                                                         27
                                            3.5
                                                                   AS6
                                                                                                                        10.6
                                                                                                                                                         244
                       AWD
                                SMALL
In [3]: CO2_df.dtypes
Out[3]: Make
                                                    object
         Model
                                                    object
          Vehicle Class
                                                    object
          Engine Size(L)
                                                   float64
          Cylinders
                                                    int64
          Transmission
                                                    object
         Fuel Type
                                                    object
         Fuel Consumption City (L/100 km)
                                                  float64
         Fuel Consumption Hwy (L/100 km)
                                                  float64
          Fuel Consumption Comb (L/100 km)
                                                  float64
          Fuel Consumption Comb (mpg)
                                                     int64
          CO2 Emissions(g/km)
                                                     int64
         dtype: object
In [4]: # Scale price data, return, and variance values
          CO2_scaled = StandardScaler().fit_transform(
              CO2_df[["Engine Size(L)",
"Cylinders",
                       "CO2 Emissions(g/km)"]]
In [5]: CO2_scaled
Out[5]: array([[-0.85672099, -0.88340757, -0.75900153, -1.05278069, -0.93293275],
                  [-0.5613172 , -0.88340757, -0.3875769 , -0.60320221, -0.50564599],
                  [-1.22597573, -0.88340757, -1.87327544, -1.45740132, -1.95842095],
                 [-0.85672099, -0.88340757, -0.24472127, -0.19858158, -0.18090806], [-0.85672099, -0.88340757, -0.3875769, -0.33345513, -0.31763982],
                  [-0.85672099, -0.88340757, -0.10186564, -0.15362374, -0.0441763 ]])
In [6]: # Create a DataFrame with the scaled data
          CO2_scaled_df = pd.DataFrame(
              CO2_scaled,
              columns=["Engine Size(L)",
                         'Cylinders",
                         "Fuel Consumption City (L/100 \ km)",
                        "Fuel Consumption Hwy (L/100 \text{ km})",
                        "CO2 Emissions(g/km)"]
          CO2_scaled_df.head()
Out[6]:
            Engine Size(L) Cylinders Fuel Consumption City (L/100 km) Fuel Consumption Hwy (L/100 km) CO2 Emissions(g/km)
          0
                 -0.856721 -0.883408
                                                            -0.759002
                                                                                             -1.052781
                                                                                                                  -0.932933
          1
                 -0.561317 -0.883408
                                                            -0.387577
                                                                                             -0.603202
                                                                                                                  -0.505646
          2
                 -1.225976 -0.883408
                                                            -1.873275
                                                                                             -1.457401
                                                                                                                  -1.958421
          3
                 0.251043 0.210575
                                                            0.040990
                                                                                             0.026208
                                                                                                                   0.075464
```

-0.153624

-0.112542

-0.130437

:	Vehicle Class_COMPACT	Vehicle Class_FULL- SIZE	Vehicle Class_MID- SIZE	Vehicle Class_MINICOMPACT		Vehicle Class_PICKUP TRUCK - SMALL	Vehicle Class_PICKUP TRUCK - STANDARD	Vehicle Class_SPECIAL PURPOSE VEHICLE	Vehicle Class_STATION WAGON - MID-SIZE	Vehicle Class_STATION WAGON - SMALL
0	1	0	0	0	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0	0	0
2	1	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0

5 rows × 48 columns

```
In [8]: # Concatenate the "FuelType" variables with the scaled data DataFrame.

C02_scaled_df = pd.concat([C02_scaled_df, fuel_type_dummies], axis=1)

# Display the sample data

C02_scaled_df.head()
```

Out[8]: Fuel Fuel Vehicle Vehicle CO2 Vehicle Vehicle Vehicle Engine Consumption Consumption Cylinders Class_FULL-Class_MID-Hwy (L/100 City (L/100 Emissions(g/km) Class_COMPACT Class MINICOMPACT Class MINIVAN Size(L) SIZE SIZE km) km) 0 -0.856721 -0.883408 -0.759002 -1.052781 -0.932933 0 0 0 0 ... 0 **1** -0.561317 -0.883408 -0.387577 -0.603202 0 0 0 ... -0.505646 0 -1.873275 -1 457401 0 0 2 -1.225976 -0.883408 -1.958421 1 0 ... 0 0 0 0 0 ... **3** 0.251043 0.210575 0.040990 0.026208 0.075464 0 **4** 0.251043 0.210575 0 0 0 -0.130437 -0.153624 -0.112542 0 ...

5 rows × 53 columns

title="Elbow Curve",

xticks=k

```
4
   In [9]: # Create a a list to store inertia values and the values of k
            inertia = []
            k = list(range(1, 11))
  In [10]: # Create a for-loop where each value of k is evaluated using the K-means algorithm
            # Fit the model using the service_ratings DataFrame
# Append the value of the computed inertia from the `inertia_` attribute of the KMeans model instance
                k_model = KMeans(n_clusters=i, random_state=0)
                k_model.fit(CO2_scaled_df)
                inertia.append(k_model.inertia_)
  In [11]:
            \# Define a DataFrame to hold the values for k and the corresponding inertia
            elbow_data = {"k": k, "inertia": inertia}
            # Create the DataFrame from the elbow data
            df_elbow = pd.DataFrame(elbow_data)
            # Review the DataFrame
            df_elbow.head(10)
 Out[11]:
                k
                        inertia
```

Out[12]:

```
50000 40000 20000 20000 1 2 3 4 5 6 k
```

```
In [13]: # Initialize the K-Means model with n_clusters=4
model = KMeans(n_clusters=3)

In [14]: # Fit the model for the df_stocks_scaled DataFrame
model.fit(CO2_scaled_df)

Out[14]: KMeans(n_clusters=3)

In [15]: # Predict the model segments (clusters)
CO2_clusters = model.predict(CO2_scaled_df)

# View the stock segments
print(CO2_clusters)

[0 0 0 ... 0 0 2]

In [16]: # Create a new column in the DataFrame with the predicted clusters
CO2_scaled_df["CO2_clusters"] = CO2_clusters

# Review the DataFrame
CO2_scaled_df
```

Out[16]:		Engine Size(L)	Cylinders	Fuel Consumption City (L/100 km)	Fuel Consumption Hwy (L/100 km)	CO2 Emissions(g/km)	Vehicle Class_COMPACT	Vehicle Class_FULL- SIZE	Vehicle Class_MID- SIZE	Vehicle Class_MINICOMPACT	Vehicle Class_MINIVAN	
	0	-0.856721	-0.883408	-0.759002	-1.052781	-0.932933	1	0	0	0	0	
	1	-0.561317	-0.883408	-0.387577	-0.603202	-0.505646	1	0	0	0	0	
	2	-1.225976	-0.883408	-1.873275	-1.457401	-1.958421	1	0	0	0	0	
	3	0.251043	0.210575	0.040990	0.026208	0.075464	0	0	0	0	0	
	4	0.251043	0.210575	-0.130437	-0.153624	-0.112542	0	0	0	0	0	
	•••											
	7380	-0.856721	-0.883408	-0.530433	-0.603202	-0.539829	0	0	0	0	0	
	7381	-0.856721	-0.883408	-0.387577	-0.333455	-0.317640	0	0	0	0	0	
	7382	-0.856721	-0.883408	-0.244721	-0.198582	-0.180908	0	0	0	0	0	
	7383	-0.856721	-0.883408	-0.387577	-0.333455	-0.317640	0	0	0	0	0	
	7384	-0.856721	-0.883408	-0.101866	-0.153624	-0.044176	0	0	0	0	0	

7385 rows × 54 columns

Out[30]:

Out[31]:


```
In [33]: # Create a scatter plot with x=, y=
CO2_scaled_df.hvplot.scatter(
    x="Fuel Consumption City (L/100 km)",
    y="CO2 Emissions(g/km)",
    by="CO2_Clusters",
    title = "Scatter Plot by Fuel Consumption City - CO2"
)
```

Out[33]:

Out[34]:

In []: