

Figure 2. Comparison of full format and spectroscopic CCD formats.

```
fits_file = "mta"
                               FITS data source
   file list = ""
                               File list
   iraf_file = "nitel"
                               IRAF filename
                               Create an IRAF image?
 (make_image = yes)
 (long_header = no)
                               Print FITS header cards?
(short_header = yes)
                               Print short header?
   (datatype = "real")
                               IRAF data type
      (blank = 0.)
                               Blank value
      (scale = yes)
                               Scale the data?
(oldirafname = no)
                               Use old IRAF name in place of iraf_file?
     (offset = 0)
                               Tape file offset
       (mode = "ql")
```

Figure 3. RFITS parameters.

direct	Current headers for Sun plus CCDPROC setup for direct CCD
specphot	Current headers for Sun plus CCDPROC setup for spectropho-
	tometry, ie GoldCam, barefoot CCD
foe	Current headers for Sun plus CCDPROC setup for FOE
fibers	Current headers for Sun plus CCDPROC setup for fiber
array	
coude	Current headers for Sun plus CCDPROC setup for Coude
cyrocam	Current headers for Sun plus CCDPROC setup for Cryo Cam
echelle	Current headers for Sun plus CCDPROC setup for Echelle
kpnoheaders	Current headers with no changes to CCDPROC parameters
fits	Mountain FITS header prior to Aug. 87 (?)
camera	Mountain CAMERA header for IRAF Version 2.6 and earlier
sunlink	Generic link to SUN

Figure 4. Possible answers to SETINSTRUMENT.

```
(pixeltype = "real")
                              Output pixel type (real|short)
                              Print log information to the standard
   (verbose = yes)
                                 output?
  (logfile = "logfile")
                              Text log file
  (plotfile = "plotfile")
                              Log metacode plot file
   (backup = "")
                              Backup directory or prefix
(instrument = "ccddb$kpno/coude.dat") CCD instrument file
    (ssfile = "subsets")
                              Subset translation file
  (graphics = "stdgraph")
                              Interactive graphics output device
    (cursor = "")
                              Graphics cursor input
   (version = "2: October 1987")
      (mode = "ql")
   (\$nargs = 0)
```

Figure 5. CCDRED parameters.

```
images = "@stars"
                               List of CCD images to correct
    (ccdtype = "object")
                               CCD image type to correct
  (\max cache = 0)
                               Maximum image caching memory (in Mbytes)
     (noproc = no)
                               List processing steps only?\n
                               Fix bad CCD lines and columns?
     (fixpix = no)
   (overscan = yes)
                               Apply overscan strip correction?
       (trim = yes)
                               Trim the image?
    (zerocor = yes)
                               Apply zero level correction?
    (darkcor = no)
                               Apply dark count correction?
    (flatcor = yes)
                               Apply flat field correction?
  (illumcor = no)
                               Apply illumination correction?
  (fringecor = no)
                               Apply fringe correction?
    (readcor = no)
                               Convert zero level image to readout
                                   correction?
                               Convert flat field image to scan
    (scancor = no)
                                   correction?\n
   (readaxis = "line")
                               Read out axis (column|line)
    (fixfile = "")
                               File describing the bad lines and columns
                               Overscan strip image section
    (biassec = "image")
    (trimsec = "image")
                               Trim data section
       (zero = "Zero")
                               Zero level calibration image
       (dark = "")
                               Dark count calibration image
       (flat = "NflatA")
                               Flat field images
      (illum = "")
                               Illumination correction images
     (fringe = "")
                               Fringe correction images
   (scantype = "shortscan")
                               Scan type (shortscan longscan)
      (nscan = "")
                               Number of short scan lines\n
                               Fit overscan interactively?
(interactive = yes)
  (function = "chebyshev")
                               Fitting function
      (order = 1)
                               Number of polynomial terms or spline
                                   pieces
     (sample = "*")
                               Sample points to fit
                               Number of sample points to combine
   (naverage = 1)
   (niterate = 1)
                               Number of rejection iterations
 (low_reject = 3.)
                               Low sigma rejection factor
(high_reject = 3.)
                               High sigma rejection factor
       (grow = 0.)
                               Rejection growing radius
       (mode = "ql")
```

Figure 6. CCDPROC parameters.

```
images = "bias*"
                               List of zero level images to combine
      (output = "Zero")
                               Output zero level root name
       (sigma = "")
                               Output sigma image (optional)
     (combine = "avsigclip")
                               Type of combine operation
     (ccdtype = "zero")
                               CCD image type to combine
     (process = no)
                               Process images before combining?
     (subsets = no)
                               Combine images by subset parameter?
     (delete = no)
                               Delete input images after combining?
     (clobber = no)
                               Clobber existing output image?
    (exposure = no)
                               Scale by the exposure times?
      (scale = no)
                               Scale by the mode?
                               Add offset determined from the mode?
      (offset = no)
      (weight = no)
                               Use a weighted average?
     (modesec = "")
                               Image section for computing mode
   (lowreject = 3.)
                               Lower sigma clipping factor
  (highreject = 3.)
                               Upper sigma clipping factor
        (mode = "ql")
cc> zerocombine bias*
Jul 18 10:49 combine: avsigclip, lowreject=3., highreject=3.
                                    Mode Scale Offset Weight
               Images
                           Ν
                                Exp
          bias001.imh
                           1
                                0.0 INDEF 1.000
                                                      0. 0.200
          bias002.imh
                           1
                               0.0 INDEF 1.000
                                                      0. 0.200
          bias004.imh
                           1 0.0 INDEF 1.000
                                                     0. 0.200
          bias003.imh
                           1
                                0.0 INDEF 1.000
                                                     0. 0.200
          bias005.imh
                                0.0 INDEF 1.000
                                                    0. 0.200
                           5
                                0.0
                 Zero
CC>
```

Figure 7. ZEROCOMBINE parameters and output.

```
images = "pflat"
                               List of flat field images to combine
     (output = "Flat")
                              Output flat field root name
      (sigma = "")
                              Output sigma image (optional)
     (combine = "avsigclip")
                              Type of combine operation
     (ccdtype = "flat")
                              CCD image type to combine
     (process = no)
                              Process images before combining?
     (subsets = yes)
                              Combine images by subset parameter?
     (delete = no)
                              Delete input images after combining?
     (clobber = no)
                              Clobber existing output image?
    (exposure = no)
                              Scale by the exposure times?
      (scale = no)
                              Scale by the mode?
     (offset = no)
                              Add offset determined from the mode?
                              Use a weighted average?
     (weight = no)
     (modesec = "")
                              Image section for computing mode
   (lowreject = 3.)
                              Lower sigma clipping factor
  (highreject = 3.)
                              Upper sigma clipping factor
       (mode = "ql")
cc> flatcom pflat*
Jul 18 11:21 combine: avsigclip, lowreject=3., highreject=3.
               Images
                        N
                               Exp Mode Scale Offset Weight
         pflat009.imh
                          1 100.0 INDEF 1.000
                                                    0. 0.333
                          1 100.0 INDEF 1.000
         pflat010.imh
                                                   0. 0.333
                          1 100.0 INDEF 1.000
                                                   0. 0.333
         pflat011.imh
    _____ ___
                FlatB 3 100.0
CC>
```

Figure 8. FLATCOMBINE parameters and ouptut.

NOAO/IRAF V2.9EXPORT willmart@noao.edu Tue 10:53:31 28-Aug-90 Line 399 of flatav pflat 6400A

Figure 9. IMPLOT of flat with object overplotted (dashed).

```
input = "FlatA"
                               Calibration images
     output = "NflatA"
                               Flat field images
       (axis = 2)
                               Axis to fit
(interactive = no)
                               Set fitting parameters interactively?
    (sample = "*")
                               Sample points to use in fit
                               Number of points in sample averaging
  (naverage = 1)
  (function = "legendre")
                               Fitting function
      (order = 1)
                               Order of fitting function
(low_reject = 2.5)
                               Low rejection in sigma of fit
(high_reject = 2.5)
                               High rejection in sigma of fit
  (niterate = 3)
                               Number of rejection iterations
       (grow = 1.)
                               Rejection growing radius in pixels
   (minflat = 7.)
                               Minimum fit value for computing a flat
                                 field va
  (graphics = "stdgraph")
                               Graphics output device
    (cursor = "")
                               Graphics cursor input
       (mode = "ql")
```

Figure 10. FLAT1D parameters.

```
input =
                               List of input images to edit
      output =
                               Output spectra rootname
         sky =
                               Output sky spectra rootname
   profiles =
                               Profile reference image
(references = "")
                               Reference images
(interactive = yes)
                               Run task interactively?
  (recenter = yes)
                               Recenter reference apertures?
                               Find apertures automatically?
       (find = yes)
       (edit = yes)
                               Define and edit apertures interactively?
       (line = INDEF)
                               Dispersion line to graph
       (nsum = 10)
                               Number of dispersion lines to sum
      (width = 5.)
                               Profile centering width
     (radius = 5.)
                               Profile centering radius
 (threshold = 10.)
                               Detection threshold for profile
                                 centering\n
       (mode = "a")
```

Figure 11a. APEDIT parameters.

```
input =
                               List of input images
                               Number of apertures to be found
      (nfind = 1)
                                 automatically
(references = "")
                               Reference images
(interactive = yes)
                               Run task interactively?
   (recenter = yes)
                               Recenter reference apertures?
       (find = yes)
                               Find apertures automatically?
       (edit = yes)
                               Define and edit apertures interactively?
       (line = INDEF)
                               Dispersion line to graph
       (nsum = 10)
                               Number of dispersion lines to sum
     (minsep = 5.)
                               Minimum separation between spectra
       (mode = "a")
```

Figure 11b. APFIND parameters.

```
input = @stars
                               List of input images to trace
(references = "")
                               List of reference images
(interactive = yes)
                               Run task interactively?
  (recenter = yes)
                               Recenter reference apertures?
      (find = yes)
                               Find apertures automatically?
      (edit = yes)
                               Define and edit apertures interactively?
      (trace = yes)
                               Trace aperture features?
  (fittrace = yes)
                               Fit the traced points interactively?
       (line = INDEF)
                               Starting dispersion line
       (nsum = 10)
                               Number of dispersion lines to sum
       (step = 10)
                               Tracing step
  (function = "spline3")
                               Trace fitting function
      (order = 2)
                               Trace fitting function order
     (sample = "*")
                               Trace sample regions
  (naverage = 1)
                               Trace average or median
  (niterate = 3)
                               Trace rejection iterations
(low_reject = 3.)
                               Trace lower rejection sigma
(high_reject = 3.)
                               Trace upper rejection sigma
       (grow = 0.)
                               Trace rejection growing radius
       (mode = "a")
```

Figure 11c. APTRACE parameters.

```
input =
                                List of input images
      (output = "")
                                List of output spectra
         (sky = "")
                                List of output sky spectra
 (references = "")
                                List of aperture reference images
   (profiles = "")
                                List of profile reference images\n
   (recenter = yes)
                                Recenter reference apertures (if
                                  defined)?
                                Find apertures automatically (if none)?
       (find = yes)
      (trace = yes)
                                Trace aperture features?
                                Extract 1D aperture sums?
     (extract = yes)
 (skyextract = no)
                                Output sky spectra (if background
                                  subtracting)?
 (background = "none")
                                Background to subtract (none average fit)
      (clean = no)
                                Detect and replace bad pixels?\n
(interactive = yes)
                                Run task interactively?
                                Define and edit apertures (if
         (edit = yes)
                                  interactive)?
                                Review extractions and output names (if
     (review = yes)
                                  interac
     (weights = "profile")
                                Extraction weights (profile|variance)
   (naverage = 1000)
                                Number of profiles to average
(interpolator = "spline3")
                                Type of image interpolation
     (nclean = 2)
                                Number of pixels to clean per profile per
                                  point
      (lsigma = 3.)
                                Lower rejection threshold
      (usigma = 3.)
                                Upper rejection threshold
          (v0 = 1.)
                                Variance intercept
          (v1 = 0.)
                                Variance slope
       (mode = "a")
```

Figure 11d. APSUM parameters.

NOAO/IRAF V2.9EXPORT willmart@noao.edu Tue 16:49:12 21-Aug-90 func=spline3, order=6, low_rej=3, high_rej=3, niterate=3, grow=0 total=39, sample=39, rejected=1, deleted=0, RMS=0.00615 Aperture 1 of star020

Figure 12. APTRACE plot.

```
images = "thar001"
                               Images containing features to be
                                  identified
    (section = "middle line")
                               Section to apply to two dimensional
                                  images
  (database = "database")
                               Database in which to record feature data
  (coordlist = "onedstds$thorium.dat") User coordinate list
                               Number of lines or columns to sum in 2D
       (nsum = 10)
                                  images
      (match = 1.)
                               Coordinate list matching limit in user
                                  units
(maxfeatures = 20)
                               Maximum number of features for automatic
                                  identi
     (zwidth = 100.)
                               Zoom graph width in user units
      (ftype = "emission")
                               Feature type
     (fwidth = 3.)
                               Feature width in pixels
    (cradius = 5.)
                               Centering radius in pixels
  (threshold = 10.)
                               Feature threshold for centering
     (minsep = 4.)
                               Minimum pixel separation
  (function = "chebyshev")
                               Coordinate function
      (order = 3)
                               Order of coordinate function
     (sample = "*")
                               Coordinate sample regions
  (niterate = 0)
                               Rejection iterations
 (low_reject = 3.)
                               Lower rejection sigma
(high_reject = 3.)
                               Upper rejection sigma
       (grow = 0.)
                               Rejection growing radius
   (graphics = "stdgraph")
                               Graphics output device
     (cursor = "")
                               Graphics cursor input
       (mode = "ql")
```

Figure 13. IDENTIFY parameters.

```
reference = ""
                             Reference image
   images =
                             Images to be reidentified
  (section = "middle line")
                             Section to apply to two dimensional
    (shift = 0.)
                             Shift to add to reference features
     (step = 10)
                             Step for tracing an image
                             Number of lines or columns to sum
     (nsum = 10)
  (cradius = 5.)
                             Centering radius
(threshold = 10.)
                             Feature threshold for centering
    (nlost = 2)
                             Maximum number of features which may be
                               lost
                             Refit coordinate function?
    (refit = yes)
 (database = "database")
                             Database
 (plotfile = "")
                             Plot file for residuals
 (logfiles = "STDOUT, logfile") List of log files
  (verbose = yes)
                             Verbose log files?
     (mode = "ql")
```

Figure 14. REIDENTIFY parameters.

```
input =
                              List of input spectra
   records =
                              Record number extensions
    answer =
                              Accept assignment?
(recformat = no)
                              Use record number extension format?
(references = "@comps")
                              List of reference spectra
 (apertures = "")
                              Input aperture selection list
    (refaps = "")
                              Reference aperture selection list
(ignoreaps = yes)
                              Ignore input and reference apertures?
   (select = "interp")
                              Selection method for reference spectra
      (sort = "utmiddle")
                              Sort key
      (time = yes)
                              Is sort key a time?
 (timewrap = 17.)
                              Time wrap point for time sorting
                              Override previous assignments?
 (override = no)
  (confirm = yes)
                              Confirm reference spectrum assignments?
   (assign = yes)
                              Assign the reference spectra to the input
                                  spect
 (logfiles = "STDOUT, logfile") List of logfiles
   (verbose = no)
                              Verbose log output?
      (mode = "ql")
```

Figure 15. REFSPECTRA parameters.

```
List of input spectra
        input = "@stars"
       output = "@starsdc"
                                List of output spectra
     records =
                                Record number extensions
                                Use record number extension format?
   (recformat = no)
   (database = "database")
                                Dispersion solution database
       (table = "")
                                Wavelength table
   (apertures = "")
                                Input aperture selection list
          (w1 = INDEF)
                                Starting wavelength
          (w2 = INDEF)
                                Ending wavelength
          (dw = INDEF)
                                Wavelength interval per pixel
                                Number of output pixels
          (nw = INDEF)
(interpolatio = "poly5")
                                Interpolation type
         (log = no)
                                Logarithmic wavelength scale?
        (flux = yes)
                                Conserve flux?
      (global = no)
                                Apply global defaults?
                                Ignore apertures in global defaults?
  (ignoreaps = no)
     (confirm = yes)
                                Confirm dispersion coordinates?
       (rebin = no)
                                Rebin previous dispersion corrections?
   (listonly = no)
                                List the dispersion coordinates only?
        (mode = "ql")
```

Figure 16. DISPCOR parameters.

```
input = "@starfile"
                               Input spectra to be normalized
      output = "@cstarfile"
                               Output continuum normalized spectra
       (type = "ratio")
                               Type of output (fit, difference, ratio)
       (axis = 1)
                               Dispersion axis
(interactive = yes)
                               Set fitting parameters interactively?
    (sample = "*")
                               Sample of points to use in fit
  (naverage = 1)
                               Number of points in sample averaging
  (function = "spline3")
                               Fitting function
      (order = 1)
                               Order of fitting function
(low_reject = 2.)
                               Low rejection in sigma of fit
(high_reject = 3.)
                               High rejection in sigma of fit
  (niterate = 10)
                               Number of rejection iterations
       (grow = 1.)
                               Rejection growing radius
  (graphics = "stdgraph")
                               Graphics output device
     (cursor = "")
                               Graphics cursor input
       (mode = "ql")
```

Figure 17. CONTINUUM parameters.