IOWA STATE UNIVERSITY

Department of Computer Science

COM S 573: Machine Learning

Lecture 2: Machine Learning Introduction

How to Define a Circle?

How to Define a Circle?

• We need the center, radius

How to Define a Tree?

• A brown trunk moving upwards and branching with leaves ...

Defining is Hard; Recognizing is Easy

- Hard to give a mathematical definition of a tree
- Even a 3-year-old can tell a tree from a non-tree
- Why?

Defining is Hard; Recognizing is Easy

- Hard to give a mathematical definition of a tree
- Even a 3-year-old can tell a tree from a non-tree
- The 3-year-old has learned from data

What is Machine Learning?

- The goal of the field of machine learning is to build computer systems that learn from experience and that are capable to adapt to their environments.
- Learning techniques and methods developed in this field have been successfully applied to a variety of applications.
- Text classification, protein function prediction, financial forecasting, credit card fraud detection.

Machine Learning Applications

- Computer vision
- Natural language processing
- Search engines
- Medical diagnosis
- Bioinformatics
- Detecting credit card fraud
- Speech and handwriting recognition
- •

Related Fields

Machine Learning Tasks

- Supervised learning: (x, y)
 - Classification
 - Regression
- Unsupervised learning (x)
 - Clustering
 - Density estimation
 - Visualization (dimensionality reduction)
- Semi-supervised learning

•

Classification: Definition

- Given a collection of records (training set)
 - Each record contains a set of attributes, one of the attributes is the class.
- Find a model for class attribute as a function of the values of other attributes.
- Goal: previously unseen records should be assigned a class as accurately as possible.
 - A test set is used to determine the accuracy of the model.

Classification Example

categorical continuous

Tid	Defined	Manital	Tavabla	
Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Refund	Marital Status	Taxable Income	Cheat		
No	Single	75K	?		
Yes	Married	50K	?		
No	Married	150K	?	\	
Yes	Divorced	90K	?		
No	Single	40K	?	7	
No	Married	80K	?		Test Set
					Jet
ning Set	C	Learn Iassifi	er	→	Model 12

Image Retrieval

Classification Problem?

TEST IMAGE

RETRIEVED IMAGES

Face/Pedestrian Detection

Classification Problem?

Handwritten Digit Recognition

Classification Problem?

Handwritten Digit Recognition

Classification Problem?

Medical Informatics

Alzheimer's Disease Detection

• Goal: To predict class (AD or normal) of a sample (person), based on neuroimaging data such as

MRI and PET

Reduced gray matter volume (colored areas) detected by MRI voxel-based morphometry in AD patients compared to normal healthy controls.

Deep learning

Clustering Definition

- Given a set of data points, each having a set of attributes, and a similarity measure among them, find clusters such that
 - Data points in one cluster are more similar to one another.
 - Data points in separate clusters are less similar to one another.
- Similarity Measures:
 - Euclidean Distance if attributes are continuous.
 - Other Problem-specific Measures.

Illustrating Clustering

20

Illustrating Clustering

Why we need clustering?

Collaborative Filtering

- Netflix database
 - About a million users
 - About 25,000 movies
- People rate movies

Dimensionality Reduction

- Dimensionality reduction extracts a small number of features by removing irrelevant, redundant, and noisy information
- Different from feature selection

Three Components of Learning

- Representation
 - Given an input x_i , representation produces a prediction \hat{y}_i
- Evaluation
 - Compute evaluations
 - Accuracy / Error rate, Likelihood
- Optimization
 - Optimize Representation

Three Components of Learning

