

Transformer Architectures

Nikola Milosavljević Senior Software Engineer

Development Center Serbia

Overview

- Recurrent neural networks overview
- Transformer architecture for machine translation
 - Attention mechanism
- Transformer-based language models
- Transformer-based image classification

Machine translation

Motivated development of transformers

Source	Reference
Une fusillade a eu lieu à l'aéroport international de Los Angeles.	There was a shooting in Los Angeles International Airport.
Cette controverse croissante autour de l'agence a provoqué beaucoup de spéculations selon lesquelles l'incident de ce soir était le résultat d'une cyberopération ciblée.	Such growing controversy surrounding the agency prompted early speculation that tonight's incident was the result of a targeted cyber operation.

Artetxe et al. Unsupervised Neural Machine Translation (2018)

Recurrent neural networks (RNNs)

Used for problems on sequences

- Define a basic neural network unit (RNN cell)
- Apply the RNN cell to each sequence element

- Can be applied to sequence of any length
- Additional input/output: state vector
 - Captures information about previous elements

Encoder-decoder RNN

Encoder RNN

- Consumes input token by token
- Does not produce output
- Creates an encoding of input

Decoder RNN

- Consumes the encoding
- Creates output token by token
- Autoregressive decoding: input in current step is output of the previous step

Sutskever et al. Sequence to Sequence Learning with Neural Networks (2014)

Properties of RNNs

- × Serial connections between RNN cells
 - Cannot parallelize training and inference
 - Hard to capture long-range dependencies
 - Hard to backpropagate gradients ("vanishing gradient")
- ✓ Compute/memory linear with sequence length

Transformers

- Encoder-decoder architecture with autoregressive decoding
- Proposed by Google in 2017.
- Can be applied to sequence of any length
- Can outperform RNNs on many problems

Properties of transformers

- ✓ No serial connection: any two tokens linked directly
- × Compute/memory quadratic in sequence length

ENCODER

Output Probabilities

Softmax

Linear

Add & Norm

DECODER

Token embeddings

- Maps a token in vocabulary to a vector
 - Represents the meaning
- Dimension is called model dimension
 - Preserved throughout the network
- Token embeddings are learned during training
 - Represent by a matrix, initialize randomly, optimize by gradient descent

Position embedding

- Maps a position in input sequence to a vector
- Elementwise added to token embedding
- Adds position information to token embedding
 - Prevents permutation-equivariance
- Position embeddings are learned during training
 - Except in the original paper

Encoder

- Stacked encoder blocks
 - Same architecture
 - Independent weights
- Input/output of encoder block are embeddings of input (source language) tokens
- Each block improves embeddings by adding context from other input tokens

IMPROVED EMBEDDINGS

ORIGINAL EMBEDDINGS

Encoder block

- Attention layer
 - Adds context to input token representations
- Addition + normalization layers
 - Helps convergence (see ResNets)
- Fully connected layers
 - Applied position-wise

Attention

- Older than transformers (used with RNNs too)
- Inputs: queries, keys, values
 - All three are sequences of token embeddings
 - Keys and values form a dictionary data structure (must be equally many)
- Outputs: results of dictionary queries

"Soft" dictionary

- "Standard" dictionary
 - Query and key match or they don't
 - Result is the value of the matching key
- "Soft" dictionary
 - Compute matching score for every key
 - Each value influences the result according to its score
 - The scores are called attention values

Visualizing attention

 Attention values can be visualized to show input/output dependencies

Attention implementation

- *h* parallel branches ("heads")
- Each "head" focuses on different patterns in input
 - By training different linear layers
- Results of all "heads" combined at the end
- The actual "soft" dictionary logic happens in the scaled dot-product attention block

Scaled dot-product attention

- Attention values are scaled dot-products of queries and keys
 - First MatMul computes query-key dot-products
 - Scaling is for numerical reasons
 - SoftMax computes attention values in the [0, 1] range
 - Second MatMul computes weighted sums

Output Probabilities

Self-attention

- Queries, keys, values are the same set of vectors
- Input tokens "attend to themselves"

Decoder

- Very similar to the encoder
- Input/output of decoder blocks are embeddings of output (target language) tokens

output

 Each block improves embeddings by adding context from both the decoder and the encoder

ORIGINAL EMBEDDINGS

Decoder block

Very similar to encoder block

- Cross-attention
 - Queries come from decoder
 - Key-value pairs come from encoder
- Masked attention

Masked attention

- Prevent a token from attending to its right context
 - During evaluation, right context is not available
 - During training, right context contains the target
- Masking step within the scaled dot-product
 - Explicitly zeroes out attention values

Output

Final classifier

- Consists of a linear layer and a softmax layer
- Converts token embeddings into probability distribution over the vocabulary

Language modeling

- Task: predict a token given context
 - Left context (preceding tokens)
 - Bidirectional context (preceding and following tokens)
- Base for solving other NLP problems through transfer learning

Transfer learning

- Train for one task (pretraining)
 - Lots of data available
- Finetune for another task (downstream task)
 - Less data available
- Pretrained network's representation is useful for the downstream task
- Replace the last few layers of the pretrained network to match the downstream task
- "Freeze" the remaining layers during finetuning

Transfer learning in CV

- Pretraining task: image classification
- Architecture: convolutional neural network
- Pretraining dataset: ImageNet
 - Web images containing one main object
- Downstream tasks: object detection, semantic segmentation, action recognition...

Transfer learning in NLP

- NLP's "ImageNet moment"
- Pretraining task: language modeling
 - Has a lot in common with many NLP tasks
 - Allows self-supervised pretraining
- Architecture: transformers
- Pretraining data: unlabeled internet text
- Downstream tasks: sentiment analysis, sentence similarity, question answering, summarization...

GPT

- GPT = Generative PreTraining
- Published by OpenAI in 2018-2020
- Task: language modeling with left context
 - Of interest both for text generation and as a pretraining task
- GPT-1, GPT-2, GPT-3...

GPT architecture

- Based on transformer decoder
 - No cross-attention layer
 - Masked attention forces left context

- Training
 - Input: text passage
 - Output: the same passage shifted left

Subsequent improvements

- Bigger networks
- Data curation
- Scaled down initialization
- Pre-normalization
 - Shuffle layer normalization around
- Sparse attention
 - Replace full attention layer by a constant number of sparse attention layers

FULL

SPARSE STRIDED

SPARSE FIXED

GPT-3 training data and models

Dataset	Quantity (tokens)	Weight in training mix	Epochs elapsed when training for 300B tokens
Common Crawl (filtered)	410 billion	60%	0.44
WebText2	19 billion	22%	2.9
Books1	12 billion	8%	1.9
Books2	55 billion	8%	0.43
Wikipedia	3 billion	3%	3.4

Model Name	n_{params}	$n_{ m layers}$	$d_{ m model}$	$n_{ m heads}$	$d_{ m head}$
GPT-3 Small	125M	12	768	12	64
GPT-3 Medium	350M	24	1024	16	64
GPT-3 Large	760M	24	1536	16	96
GPT-3 XL	1.3B	24	2048	24	128
GPT-3 2.7B	2.7B	32	2560	32	80
GPT-3 6.7B	6.7B	32	4096	32	128
GPT-3 13B	13.0B	40	5140	40	128
GPT-3 175B or "GPT-3"	175.0B	96	12288	96	128

BERT

- BERT = Bidirectional Encoder Representations from Transformers
- Proposed by Google Research in 2018
- Interested in language modeling as a pretraining task
- Pretraining on two tasks
 - Bidirectional language modeling
 - Next sentence prediction

Pretraining tasks

- Masked language model (MLM)
 - Predict a random subset of masked tokens
 - Masking enables training a bidirectional model
 - If allowed to look both left and right, then target token must not be in the input
- Next sentence prediction (NSP)
 - Given sentences A and B, predict if B is the continuation of A
 - Captures semantic relationship between sentences

BERT architecture

- Based on transformer encoder
 - Recall: attention not masked
- Training input: two masked sentences
 - Mask random 15% of tokens
 - Consecutive sentences 50% of the time
 - Special tokens [CLS], [SEP], [MASK]
- Training output:
 - MLM: Unmasked version of input
 - NSP: true/false in [CLS] position

Segment embedding

Finetuning

Goal: solve another NLP task using a pretrained language model

- Convert input example into a single sequence
 - Introduce special tokens if needed
- Modify one or more transformer outputs
 - Typically, just classification heads (linear + softmax)

Finetuning BERT

- Classification tasks: use output of a special token
- Tagging tasks: use outputs of each individual token

Vision Transformer (ViT)

- Proposed by Google Brain in 2020
- Outperforms convolutional networks on several image classification benchmarks
- Pretraining on image classification
 - Very large dataset
- Finetuning on other image classification datasets

Transformers for image data

- Cannot unroll pixels into a sequence
 - Large number of pixels, complexity of attention
- Solution
 - Divide image into a grid of fixed-sized patches
 - Arrange patches into a sequence

Training

- Architecture: slightly modified transformer encoder
 - A patch is unrolled into vector before applying embedding matrix

Visualizing patch embedding

- Top principal components of the embedding matrix (rows)
 - Main patterns that the network looks for in a patch
 - Resembles convolutional filters
- Replacing with convolutional network features does not help

Visualizing positional embedding

- Cosine similarity between vectors of patches (i, j) and (i', j')
 - 2D relationship among patches is learned automatically, even though patches are presented to the network as a 1D sequence
- Explicit 2D positional embedding in the network does not help

Pretraining data

• Pretraining transformer on large datasets is needed to beat convolutional network performance

Dataset	Images	Classes	Note
ImageNet ILSVRC 2012	1.3 million	1000	Web images, clean labels
ImageNet-21k	14 million	21841	Web images, clean labels
JFT300M	303 million	18291	Google image search, noisy labels

Visualizing attention

Can be done for images too

Visualizing attention distance

- Analogous to receptive field for convolutional networks
- Some heads attend to long distances already in early layers

Summary

- Originally developed for machine translation
- Address issues with RNNs
 - Parallel processing of tokens
 - Direct connections between tokens
- Outperforming RNNs in NLP, more recently in computer vision
 - Transfer from language modeling
 - Very few image-specific modifications
- State of the art models are large and require lots of data