中山大学软件学院软件工程专业 2009级 (2010 学年秋季学期)

《SE-211 Digital Circuits and Logic Design》 期 末 试 题

(A 卷)

(考试形式: 闭 卷 考试时间: 2 小时)

《中山大学授予学士学位工作细则》第六条

考试作弊不授予学士学位

方向:	姓名: 学号:					
1.	Multiple choice questions (2 points for each question, 20 points total).					
	(1) If the period of a clock signal is 500 ps, the frequency is					
	a. 20 MHz					
	b. 200 MHz					
	c. 2 GHz					
	d. 20 GHz					
	(2) The time measurement between the 90% point on the trailing edge of a pulse to th					
	10% point on the trailing edge of the pulse is called the					
	a. rise time					
	b. fall time					
	c. period					
	d. pulse width					

- (3) When two positive signed numbers are added, the result may be larger than the size of the original numbers, creating overflow. This condition is indicated by
 - a. a change in the sign bit
 - b. a carry out of the sign position
 - c. a zero result
 - d. smoke
- (4) Assume that a floating point number is represented in binary. If the sign bit is 1, the
 - a. number is negative
- b. number is positive
- c. exponent is negative
- d. exponent is positive
- (5) A Boolean expression that is in standard SOP form is
 - a. the minimum logic expression
 - b. contains only one product term

- c. has every variable in the domain in every term
- d. none of the above
- (6) The time interval illustrated is called
 - a. t_{PHL}
- b. $t_{\rm PLH}$
- c. set-up time
- d. hold time

- (7) The application illustrated is a
 - a. astable multivibrator
 - b. data storage device
 - c. frequency multiplier
 - d. frequency divider

- (8) Assume you want to decode the binary number 0011 with an active-HIGH decoder.
- The missing gate should be
- a. an AND gate
- b. an OR gate
- c. a NAND gate
- d. a NOR gate

- (9) If the data select lines of the MUX are $S_1S_0 = 11$, the output will be
 - a. LOW
 - b. HIGH
 - c. equal to D_0
 - d. equal to D_3

- (10) Assume Q_0 is LOW. The next clock pulse will cause
 - a. FF1 and FF2 to both toggle
- b. FF1 and FF2 to both latch
- c. FF1 to latch; FF2 to toggle
- d. FF1 to toggle; FF2 to latch

© 2008 Pearson Education

- 2. Please solve the following number conversion problems (total 15 points)
 - (1) Convert binary number 10111000.10101 to decimal (2 points)
 - (2) Convert decimal number 100.625 to binary (2 points)
 - (3) Express decimal number -85 as 8-bit number in 1's complement form (2 points)
 - (4) Express decimal number -85 as 8-bit number in 2's complement form (2 points)
 - (5) Convert decimal number 126 to (3 points)
 - (a) Hexadecimal number
 - (b) Octal number
 - (c) 8421 BCD number
 - (6) Convert the decimal number 3.248×10^4 to a single-precision floating point binary number. Please show your procedure (4 points)

3. We need to design a circuit with 4 inputs(marked as A, B,C,D) and 2 outputs X, Y. Based on system analysis, we should have true table as shown in the following (total 20 points):

	1				
A	В	C	D	X	Y
0	0	0	0	0	1
0	0	0	1	1	0
0	0	1	0	1	1
0	0	1	1	1	0
0	1	0	0	0	1
0	1	0	1	1	0
0	1	1	0	1	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	0	1	1	0
1	0	1	0	1	1
1	0	1	1	1	1
1	1	0	0	1	1
1	1	0	1	1	1
1	1	1	0	0	1
1	1	1	1	1	1

- (1) Express the above circuit's outputs in minimum Sum-of-Product (SOP) form (4 points)
- (2) Show the implementation of the circuit in SOP form by using only AND, OR, or NOT gates (3 points)
- (3) Show the implementation of the circuit in SOP form by using only NAND gates (3 points)
- (4) Express the above circuit's outputs in minimum Product-of-Sum (POS) form (4 points)
- (5) Show the implementation of the circuit in POS form by using only AND, OR, or NOT gates (3 points)
- (6) Show the implementation of the circuit in POS form by using only NOR gates (3 points)
 - 4. Design a 2-bit look-ahead-carry full adder using only basic logic gates (AND, OR, NOT, NAND, NOR, XOR, XNOR). (total 15 points)

5. Design a Moore FSM to detect a bit sequence 11001. If such sequence is found, output will

be set to 1, otherwise, output will be set to 0. Overlap sequence, if exists, should be detected. Please use J-K flip flop for the system. (total 30 points).

- (1) Derive state diagram (4 points)
- (2) Encode states (state assignment) (2 points)
- (3) Create state-assigned state table (4 points)
- (4) Express J-K Flip-Flop excite table to use (3 points)
- (5) Determine minimum Flip-Flop input equations and FSM output equation(s) (8 points)
- (6) Verify that there is no state that will stay outside the FSM for ever (2 points)
- (7) Draw circuit diagram (7 points)