Announcements:

- Homework Quizzes: Never be announced...
 the pren no sooner than one week
 after class veriew.
 Kinematics Video Analysis: In-class due date today
 Extension due date by 10/11
- Friday and Monday: No Bregar
- Practice quiz (1D Motion): Wed 10/11 (Effort)

Intro to Parabolic Motion - Objectives:

- Students will understand that 2D motion of objects in freefall is described by a parabolic arc
- Students will be able to explain how motion in different axes is completely independent
- Students will be able to use the Big 4 separately for x- and y- motion of projectiles

Parabolic/Projectile Motion:

Two dimensional motion of objects in free fall.

Downward acceleration* is 9.8 m/s².

Horizontal acceleration is 0!

All vectors** (displacement, velocity, acceleration) can be broken into x- and y-components (true for ANY two-dimensional motion).

Variables in the x- and y-dimensions can be considered completely independently (i.e., set up one Big 4 for each dimension) - but are linked by time (the "t" variable will always have the same value).

For the horizontal dimension: x_0 , x, v_{x0} , v_x , a_x , t

For the vertical dimension: y₀, y, v_{y0}, v_y, a_y, t

*What Does Acceleration Do:

Acceleration tells us how the velocity of an object changes (m/s²) - "Exch second, an object's velocity will change by..."

Acceleration is a vector - the velocity can change in either direction -

ta: add the acceleration to v -a: subtracting it

Negative acceleration does NOT mean slowing down -

- (next page)

Slowing down/speeding up in a nutshell -

signs of tra are the same: Speeding op signs are apposite: slowing down

a=2m/52		_	a= -2 1/52		5	a= 27/52			A=-27/52		2	a=-2m/52	
t	V		t	V		t	V		t	V		t	V
Ø	1 m/s		Ø	127/5		Ø	-157,		Ø	4m/		Ø	4 m/s
1	37/5		1	10 1/5		1	-137/		1	6m/s		1	2 3/5
2	5 ⁿ / ₅		\supset	8 m/s		2	-11 1/5		2	-8 ^m /s		2	U m/s
3	7%		3	6 7/s		3	-9 7/5		3	-10 m/s		3	-2 7/5
												4	-4m/s
spead	نمح دو		s low; rg	dour.	• ~ •	510 wing	down.	. •	Spec	jud at			

A diver running at 3.6 m/s dives out horizontally from the edge of a vertical cliff and reaches the water below 2.0 s later. How high was the cliff and how far from its base did the diver hit the water?

An athlete executing a long jump leaves the ground at a 30° angle (initial overall velocity is v at a 30° angle from the horizontal) and travels 8.90 m horizontally. What was the takeoff speed?

$$\mathcal{F}_{0x} = \mathcal{F}_{0} \cdot \cos 30^{\circ}$$

$$\mathcal{F}_{0x} = \mathcal{F}_{0} \cdot \cos 30^{\circ}$$

$$\mathcal{F}_{0y} = \mathcal{F}_{0} \cdot \sin 30^{\circ}$$