$\underset{\text{Michael Spivak}}{\text{C\'ALCULO INFINITESIMAL}}$

Resolución de problemas por: FODE (Christian Limbert Paredes Aguilera)

Índice general

1

Limites

Definición 1.1 La función f tiende hacia el límite l en a $\left(\lim_{x\to a} f(x) = l\right)$ significa: para todo $\epsilon > 0$ existe algún $\delta > 0$ tal que, para todo x, si $0 < |x-a| < \delta$, entonces $|f(x) - l| < \epsilon$.

Existe algún $\epsilon > 0$ tal que para todo $\delta > 0$ existe algún x para el cual es $0 < |x-a| < \delta$, pero no $|f(x)-l| < \epsilon$.

TEOREMA 1.1 Una función no puede tender hacia dos límites diferentes en a. En otros términos si f tiende hacia l en a, y f tiende hacia m en a, entonces l = m.

Demostración.- Puesto que f tiende hacia l en a, sabemos que para todo $\epsilon > 0$ existe algún número $\delta_1 > 0$ tal que, para todo x, si $0 < |x - a| < \delta_1$, entonces $|f(x) - l| < \epsilon$.

Sabemos también, puesto que f tiende hacia m en a, que existe algún $\delta_2 > 0$ tal que, para todo x, si $0 < |x - a| < \delta_2$, entonces $|f(x) - m| < \epsilon$.

Hemos empleado dos números delta₁ y δ_2 , ya que no podemos asegurar que el δ que va bien en una definición irá bien en la otra. Sin embargo, de hecho, es ahora fácil concluir que para todo $\epsilon > 0$ existe algún $\delta > 0$ tal que, para todo x,

$$si \ 0 < |x-a| < \delta = \min(\delta_1, \delta_2), \ entonces \ |f(x)-l| < \epsilon \ y \ |f(x)-m| < \epsilon$$

Para completar la demostración solamente nos queda tomar un $\epsilon > 0$ particular para el cual las dos condiciones $|f(x) - l| < \epsilon \ y \ |f(x) - m| < \epsilon$ no puedan cumplirse a la vez si $l \neq m$

Si $l \neq m$, de modo que |m-l| > 0 podemos tomar como ϵ a |l-m|/2. Se sigue que existe un $\delta > 0$ tal que, para todo x,

$$si\ 0 < |x - a| < \delta, \ entonces\ |f(x) - l| < \frac{|l - m|}{2} \ \ y \ \ |f(x) - m| < \frac{|l - m|}{2}$$

Esto implica que para $0 < |x - a| < \delta$ tenemos

$$|l - m| = |l - f(x) + f(x) - m| \le |l - f(x)| + |f(x) - m| < \frac{|l - m|}{2} + \frac{|l - m|}{2} = |l - m|$$

El cual es una contradicción.

LEMA 1.1 Si x está cerca de x_0 e y está cerca de y_0 , entonces x + y estará cerca de $x_0 + y_0$, xy estará cerca de $x_0 + y_0$, y = 1/y estará cerca de $1/y_0$.

(1)
$$|Si|(x-x_0)| < \frac{\epsilon}{2} |y|(y-y_0)| < \frac{\epsilon}{2} |entonces| |(x+y)-(x_0+y_0)| < \epsilon.$$

Demostración.-

$$|(x+y)-(x_0+y_0)| = |(x-x_0)+(y-y_0)| \le |x-x_0|+|y-y_0| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

(2)
$$Si |x - x_0| < \min \left(1, \frac{\epsilon}{2(|y_0| + 1)}\right)$$
 $y |y - y_0| < \frac{\epsilon}{2(|x_0| + 1)}$ entonces $|xy - x_0y_0| < \epsilon$.

Demostración.- Puesto que $|x - x_0| < 1$ se tiene

$$|x| - |x_0| \le |x - x_0| < 1,$$

de modo que

$$|x| < 1 + |x_0|$$

así pues

$$|xy - x_0 y_0| = |x(y - y_0) + y_0(x - x_0)|$$

$$\leq |x| \cdot |y - y_0| + |y_0| \cdot |x - x_0|$$

$$< (1 + |x_0|) \cdot \frac{\epsilon}{2(|x_0| + 1)} + |y_0| \cdot \frac{\epsilon}{2(|y_0| + 1)}$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

 $Notemos \ que \ \frac{|y_0|}{|y_0|-1} < 1, \ por \ lo \ tanto \ \frac{|y_0|}{|y_0|-1} \cdot \frac{\epsilon}{2} < \frac{\epsilon}{2}.$

(3) Si
$$y_0 \neq 0$$
 $y |y - y_0| < \min\left(\frac{|y_0|}{2}, \frac{\epsilon |y_0|^2}{2}\right)$ entonces $y \neq 0$ $y \left|\frac{1}{y} - \frac{1}{y_0}\right| < \epsilon$.

Demostración.- Se tiene

$$|y_0| - |y| < |y - y_0| < \frac{|y_0|}{2},$$

de modo que $-|y| < -\frac{|y_0|}{2} \Longrightarrow |y| > |y_0|/2$. En particular. $y \neq 0, y$

$$\frac{1}{|y|} < \frac{2}{|y_0|}$$

Así pues

$$\left|\frac{1}{y} - \frac{1}{y_0}\right| = \frac{|y_0 - y|}{|y| \cdot |y_0|} = \frac{1}{|y|} \cdot \frac{|y_0 - y|}{|y_0|} < \frac{2}{|y_0|} \cdot \frac{1}{|y_0|} \cdot \frac{\epsilon |y_0|^2}{2} = \epsilon$$

TEOREMA 1.2 Si $\lim_{x\to a} f(x) = l$ y $\lim_{x\to a} g(x) = m$, entonces

(1)
$$\lim_{x \to a} (f+g)(x) = l+m$$

(2)
$$\lim_{x \to a} (f \cdot g)(x) = l \cdot m$$

Además, si $m \neq 0$, entonces

(3)
$$\lim_{x\to a} (\frac{1}{g})(x) = \frac{1}{m}$$

Demostración.- La hipótesis significa que para todo $\epsilon > 0$ existen $\delta_1, \delta_2 > 0$ tales que, para todo x,

$$si \ 0 < |x - a| < \delta_1$$
, entonces $|f(x) - l| < \epsilon$

$$y$$
 si $0 < |x - a| < \delta_2$, entonces $|g(x) - m < \epsilon|$

Esto significa (ya que después de todo, $\epsilon/2$ es también un número positivo) que existen $\delta_1, \delta_2 > 0$ tales que, para todo x,

$$si \ 0 < |x - a| < \delta_1, \ entonces \ |f(x) - l| < \frac{\epsilon}{2}$$

$$y \quad si \ 0 < |x-a| < \delta_2, \ entonces \ |g(x)-m| < \frac{\epsilon}{2}$$

Sea ahora $\delta = \min(\delta_1, \delta_2)$. Si $0 < |x - a| < \delta$, entonces $0 < |x - a| < \delta_1$ y $0 < |x - a| < \delta_2$ se cumplen las dos, de modo que es a la vez

$$|f(x) - l| < \frac{\epsilon}{2}$$
 y $|g(x) - m| < \frac{\epsilon}{2}$

pero según la parte (1) del lema anterior esto implica que $|(f+g)(x)-(l+m)|<\epsilon$.

Para demostrar (2) procedemos de la misma manera, después de consultar la parte (2) del lema. Si $\epsilon > 0$ existen $\delta_1, \delta_2 > 0$ tales que, para todo x

$$si\ 0 < |x-a| < \delta_1, \ entonces\ |f(x)-l| < \min\left(1, \frac{\epsilon}{2(|m|+1)}\right),$$

$$y$$
 si $0 < |x - a| < \delta_2$, entonces $|g(x) - m| < \frac{\epsilon}{2(|l|) + 1}$

Pongamos de nuevo $\delta = \min(\delta_1, \delta_2)$. Si $0 < |x - a| < \delta$, entonces

$$|f(x) - l| < \min\left(1, \frac{\epsilon}{2(|m|+1)}\right)$$
 $y \qquad |g(x) - m| < \frac{\delta}{2(|l|+1)}$

Así pues, según el lema, $|(f \cdot g)(x) - l \cdot m| < \epsilon$, y esto demuestra (2).

Finalmente, si $\epsilon > 0$ existe un $\delta > 0$ tal que, para todo x,

$$si \ 0 < |x - a| < \delta, \ entonces \ |g(x) - m| < \min\left(\frac{|m|}{2}, \frac{\epsilon |m|^2}{2}\right)$$

Pero según la parte (3) del lema, esto significa, en primer lugar que $g(x) \neq 0$, de modo que (1/g)(x) tiene sentido, y en segundo lugar que

$$\left| \left(\frac{1}{g} \right) (x) - \frac{1}{m} \right| < \epsilon$$

Esto demuestra (3).

Definición 1.2 $\lim_{x\to a^+} f(x) = l$ significa que para todo $\epsilon > 0$, existe un $\delta > 0$ tal que, para todo x,

$$si \ 0 < x - a < \delta$$
, entonces $|f(x) - l| < \epsilon$

La condición $0 < x - a < \delta$ es equivalente a $0 < |x - a| < \delta$ y x > a

Definición 1.3 $\lim_{x\to a^-} f(x) = l$ significa que para todo $\epsilon > 0$, existe un $\delta > 0$ tal que, para todo x,

$$si \ 0 < a - x < \delta, \ entonces \ |f(x) - l| < \epsilon$$

Definición 1.4 $\lim_{x\to\infty} f(x) = l$ significa que para todo $\epsilon > 0$, existe un número N grande, que, para todo x,

$$si \ x > N, \ entonces \ |f(x) - l| < \epsilon$$

1.1. Problemas

1. Hallar los siguientes limites (Estos limites se obtienen todos, después de algunos cálculos, de las distintas partes del teorema 2; téngase cuidado en averiguar cuáles son las partes que se aplican, pero sin preocuparse de escribirlas.)

(i)
$$\lim_{x \to 1} \frac{x^2 - 1}{x + 1} = \frac{1^2 - 1}{1 + 1} = \frac{0}{2} = 0$$

(ii)
$$\lim_{x\to 2} \frac{x^3-8}{x-2} = \frac{(x-2)(x^2+2x+4)}{x-2} = 2^2+4+4=12$$

(iii)
$$\lim_{x \to 3} \frac{x^3 - 8}{x - 2} = \frac{3^3 - 8}{3 - 2} = 19$$

(iv)
$$\lim_{x \to y} \frac{x^n - y^n}{x - y} = \frac{(x - y)(x^{n-1} + x^{n-2}y + \dots + xy^{n-2} + y^{n-1})}{x - y} = x^{n-1} + x^{n-2}y + \dots + xy^{n-2} + y^{n-1} = x^{n-1}$$

(v)
$$\lim_{y \to x} \frac{x^n - y^n}{x - y} = x^{n-1} + x^{n-2}y + \dots + xy^{n-2} + y^{n-1} = nx^{n-1}$$

(vi)
$$\lim_{h \to 0} = \frac{\sqrt{a+h} - \sqrt{a}}{h} = \frac{\sqrt{a+h} + \sqrt{a}}{h} \cdot \frac{\sqrt{a+h} + \sqrt{a}}{\sqrt{a+h} + \sqrt{a}} = \frac{(\sqrt{a+h})^2 - (\sqrt{a})^2}{h(\sqrt{a+h} + \sqrt{a})} = \frac{1}{\sqrt{a+h} + \sqrt{a}} = \frac{1}{2\sqrt{a}}$$

2. Hallar los límites siguientes:

(i)
$$\lim_{x \to 1} \frac{1 - \sqrt{x}}{1 - x} = \lim_{x \to 1} \frac{1 - \sqrt{x}}{1 - x} \cdot \frac{1 + \sqrt{x}}{1 + \sqrt{x}} = \lim_{x \to 1} \frac{1^2 - (\sqrt{x})^2}{(1 - x)(1 + \sqrt{x})} = \lim_{x \to 1} \frac{1}{1 + \sqrt{x}} = \frac{1}{2}$$

$$\text{(ii)} \ \lim_{x\to 0} \frac{1-\sqrt{1-x^2}}{x} = \lim_{x\to 0} \frac{1-\sqrt{1-x^2}}{x} \cdot \frac{1+\sqrt{1-x^2}}{1+\sqrt{1-x^2}} = \lim_{x\to 0} \frac{x}{1+\sqrt{1-x^2}} = 0$$

$$\text{(iii)} \ \lim_{x \to 0} \frac{1 - \sqrt{1 - x^2}}{x^2} = \lim_{x \to 0} \frac{1 - \sqrt{1 - x^2}}{x^2} \cdot \frac{1 + \sqrt{1 - x^2}}{1 + \sqrt{1 - x^2}} = \lim_{x \to 0} \frac{1}{1 + \sqrt{1 + x^2}} = \frac{1}{2}$$

- **3.** En cada uno de los siguientes casos, encontrar un δ tal que, $|f(x)-l|<\epsilon$ para todo x que satisface $0<|x-a|<\delta$
 - (i) $f(x) = x^4$; $l = a^4$

Respuesta.- Por la parte (2) del lema anterior se tiene

$$|x^2 - a^2| < \min\left(1, \frac{\epsilon}{2(|a|^2 + 1)}\right).$$

Si aplicamos una vez mas la parte (2) del lema obtenemos

$$|x - a| < \min\left(1, \frac{\min\left(1, \frac{\epsilon}{2(|a|^2 + 1)}\right)}{2(|a| + 1)}\right) = \min\left(1, \frac{\epsilon}{4(|a|^2 + 1)(|a| + 1)}\right) = \delta$$

(ii)
$$f(x) = \frac{1}{x}$$
; $a = 1$, $l = 1$

Respuesta.- Por la parte (3) del lema se tiene $\left|\frac{1}{x}-1\right|<\epsilon$ por lo tanto $|y-1|<\min\left(\frac{1}{2},\frac{\epsilon}{2}\right)$

(iii)
$$f(x) = x^4 + \frac{1}{x}$$
; $a = 1$, $l = 2$

Respuesta.- Por la primera parte del lema se tiene $\left|\left(x^4 + \frac{1}{x}\right) - (1+1)\right| < \epsilon$ de donde

$$|x^4 - 1| < \frac{\epsilon}{2} \quad y \quad \left| \frac{1}{x} - 1 \right| < \frac{\epsilon}{2}$$

Luego por el inciso (i) y (ii)

$$|x-1|<\min\left(\frac{1}{2},\frac{\frac{\epsilon}{2}}{2}\right) \quad y \quad |x-1|<\min\left(\frac{1,\min\left(\frac{\frac{\epsilon}{2}}{2(1+1)}\right)}{1,\frac{2(1+1)}{2(1+1)}}\right) \implies |x-1|<\min\left(\frac{1}{2},\frac{\epsilon}{4},1,\frac{\epsilon}{32}\right)$$

y por lo tanto

$$|x-1| < \min\left(\frac{1}{2}, \frac{\epsilon}{32}\right) = \delta$$

(iv)
$$f(x) = \frac{x}{1 + \sin^2 x}$$
; $a = 0$, $l = 0$

$$|x| = \frac{1}{1 + \sin^2 x}, \ u = 0, \ t = 0$$
Respuesta.- Sea $\left| \frac{x}{1 + \sin^2 x} \right| < \epsilon \quad y \quad |x| < \delta \text{ pero } \left| \frac{x}{1 + \sin^2 x} \right| \le |x| \text{ por lo tanto}$

$$\left| \frac{x}{1 + \sin^2 x} \right| \le |x| < \delta = \epsilon$$

(v)
$$f(x) = \sqrt{|x|}$$
; $a = 0$, $l = 0$

Respuesta.- Sea $\left|\sqrt{|x|}\right|<\epsilon$ entonces $\left|(|x|)^{1/2}\right|=\left(\sqrt{x^2}\right)^{1/2}=\left[(x^2)^{1/2}\right]^{1/2}=\sqrt{x}<\epsilon$, luego sabemos que la raíz cuadrada de x debe ser siempre mayor o igual a 0 por lo tanto $|x|<\epsilon^2$, de donde concluimos que $\delta=\epsilon^2$

(vi)
$$f(x) = \sqrt{x}$$
; $a = 1, l = 1$

Respuesta.- Si $\epsilon > 1$, póngase $\delta = 1$. Entonces $|x-1| < \delta$ implica que 0 < x < 2 con lo que $0 < \sqrt{x} < 2$ y $|\sqrt{x} - 1| < 1$. Si $\epsilon < 1$, entonces $(1 - \epsilon)^2 < x < (1 + \epsilon)^2$ implica que $|\sqrt{x} - 1| < \epsilon$, de modo que podemos elegir un δ tal que $(1 - \epsilon)^2 \le 1 - \delta$ y $1 + \delta \le (1 - \epsilon)^2$. Podemos elegir, pues $\delta = 2\epsilon - \epsilon^2$

- **4.** Para cada una de las funciones del problema 4-17, decir para qué números a existe el límite $\lim_{x\to a} f(x)$
 - (i) Existe el límite si a no es un entero, ya que en los puntos enteros la función tiene un salto.
 - (ii) Existe el límite si a no es un entero.
 - (iii) De la misma forma que el inciso (ii).
 - (iv) Existe para todo a.
 - (v) Existe para todo a si sólo si sea a=0 y $a=\frac{1}{n},\ n\in\mathbb{Z}, n\neq 0.$
 - (vi) El límite no existe para los puntos |a| < 1 y $a \neq \frac{1}{n}$
- ${\bf 5.}\,$ (a) Hágase lo mismo para cada una de las funciones del problema 4-19
 - (i) Existe para cualquier número que tenga la forma $n + \frac{k}{10}$, $n, k \in \mathbb{Z}$
 - (ii) Existe para cualquier número que tenga la forma $n+\frac{k}{100},\ n,k\in\mathbb{Z}$

- (iii) No es posible para ningún a.
- (iv) De la misma forma que el anterior inciso.
- (v) Existe para todo a excepto para los que terminan en 7999...
- (vi) Existe para todo a excepto para los que terminan en 1999....
- (b) El mismo problema usando decimales infinitos que terminen en una fila de ceros en lugar de los que terminan en una fila de nueves.
 - (i) De igual forma de la parte (a) inciso (i).
 - (ii) De igual forma de la parte (a) inciso (ii).
 - (iii) De igual forma de la parte (a) inciso (iii).
 - (iv) De igual forma de la parte (a) inciso (iii).
 - (v) Existe para todo a excepto para los que terminan en 8000...
 - (vi) Existe para todo a excepto para los que terminan en 2000...
- **6.** Supóngase que las funciones f y g tiene n la siguiente propiedad: Para todo $\epsilon > 0$ y todo x,

$$si \ 0 < |x - 2| < sen^2\left(\frac{\epsilon^2}{9}\right) + \epsilon$$
, entonces $|f(x) - 2| < \epsilon$,
 $si \ 0 < |x - 2| < \epsilon^2$, entonces $|q(x) - 4| < \epsilon$.

Para cada $\epsilon > 0$ hallar un $\delta > 0$ tal que, para todo x,

(i) Si $0 < |x - 2| < \delta$, entonces $|f(x) + g(x) - 6| < \epsilon$.

Respuesta.- Por la primera parte del lema se tiene $|f(x)-2|<\frac{\epsilon}{2}$ y $|g(x)-4|<\frac{\epsilon}{2}$, luego remplazamos ϵ por $\epsilon/2$ de donde nos queda

$$0 < |x - 2| < \operatorname{sen}^2 \left[\frac{\left(\frac{\epsilon}{2}\right)^2}{9} \right] \quad y \quad |x - 2| < \left(\frac{\epsilon}{2}\right)^2$$

Por último, solo hace verificar para todo $\epsilon > 0$ existe algún $\delta > 0$. En este caso solo hace falta elegir

$$0 < |x - 2| < \min\left[\sin^2\left(\frac{\epsilon^2}{36}\right) + \epsilon, \frac{\epsilon^2}{4}\right] = \delta$$

(ii) Si $0 < |x-2| < \delta$, entonces $|f(x)g(x) - 8| < \epsilon$

Respuesta.- Por la segunda parte del lema demostrado tenemos que

$$|f(x) - 2| < \min\left(1, \frac{\epsilon}{2(|4| + 1)}\right) \quad y \quad |g(x) - 4| < \frac{\epsilon}{2(|2| + 1)}$$

ya que $|f(x)g(x) - 2 \cdot 4| < \epsilon$.

Luego reemplazando en ϵ a cada parte obteniendo,

$$0<|x-2|<\min\left\{\sin^2\left[\frac{\min\left(\frac{\epsilon}{10}\right)^2}{9}\right]+\min\left(1,\frac{\epsilon}{10}\right),\left[\min\left(1,\frac{\epsilon}{6}\right)\right]^2\right\}=\delta$$

(iii) Si $0 < |x-2| < \delta$, entonces $\left| \frac{1}{g(x)} - \frac{1}{4} \right| < \epsilon$

Respuesta.- Por la tercera parte del lema se tiene que $|g(x) - 4| < \min\left(\frac{|4|}{2}, \frac{\epsilon|4|^2}{2}\right)$, luego remplazando en ϵ obtenemos

$$|x - 2| < \left[\min\left(2, 8\epsilon\right)\right]^2 = \delta$$

.

(iv) Si
$$0 < |x - 2| < \delta$$
, entonces $\left| \frac{f(x)}{g(x)} - \frac{1}{2} \right| < \delta$

Respuesta.- Sea $\left| f(x) \frac{1}{g(x)} - 2dfrac14 \right|$ entonces

$$|f(x)-2| < \min\left(1, \frac{\epsilon}{2(|1/4|+1)}\right) \quad y \quad \frac{1}{g(x)} - \frac{1}{4} < \frac{\epsilon}{2(|2|+1)}$$

, de donde

$$0<|x-2|\min\left\{\sin^2\left[\frac{\left(\min(1,2\epsilon/5)\right)^2}{9}\right]+\min(1,2\epsilon/5),\left[\min\left(2,\frac{8\epsilon}{2(|2|+1)}\right)\right]^2\right\}=\delta$$

7. Dese un ejemplo de una función f para la cual la siguiente proposición sea falsa: Si $|f(x) - l| < \epsilon$ cuando $0 < |x - a| < \delta$, entonces $|f(x) - l| < \epsilon/2$ cuando $0 < |x - a| < \delta/2$.

Respuesta.- Tomemos a=0 y l=0. Para $\epsilon>0$, se tiene

$$|x - 0| < \epsilon^2 \implies |\sqrt{|x|} - 0| < \epsilon$$

. Aquí $\delta=\epsilon^2.$ Pero si

$$0 < |x - 0| < \frac{\epsilon^2}{2} \implies |\sqrt{|x|} - 0| < \frac{\epsilon^2}{4} = \delta.$$

El cual no se cumple la proposición buscada.

8. (a) Si no existen los límites $\lim_{x\to a} f(x)$ y $\lim_{x\to a} g(x)$, ¿pueden existir $\lim_{x\to a} [f(x)+g(x)]$ o $\lim_{x\to a} f(x)g(x)$? Respuesta.- Si. Por ejemplo considere

$$f(x) = \frac{1}{x}$$
, $g(x) = 1 - \frac{1}{x}$

Luego observe que $\lim_{x\to 0} f(x)$ y $\lim_{x\to 0} g(x)$ no existen, mientras que f(x)+g(x)=1 tiene un límite en x=0. De similar forma, si tomamos $f(x)=g(x)=\frac{|x|}{x}$ entonces $\lim_{x\to 0} f(x)$ no existe, mientras que $f(x)\cdot g(x)=\frac{|x|^2}{r^2}$ es 1 y, por lo tanto, existe el límite en 0.

(b) Si existen los límites $\lim_{x\to a} f(x)$ y $\lim_{x\to a} [f(x)+g(x)]$, ¿debe existir $\lim_{x\to a} g(x)$?

Respuesta.- Si, ya que

$$g(x) = [f(x) + g(x)] - f(x)$$

- (c) Si existe el límite $\lim_{x\to a} f(x)$ y no existe el límite $\lim_{x\to a} g(x)$, ¿puede existir $\lim_{x\to a} [f(x)+g(x)]$?

 Respuesta.- No, ya que es sólo otro modo de enunciar la parte (b).
- (d) Si existe los límites $\lim_{x\to a} f(x) = \lim_{x\to a} f(x)g(x)$, ¿se sigue de ello que existe $\lim_{x\to a} [f(x)+g(x)]$?

 Respuesta.- No, el razonamiento es análogo a la parte (b), ya que si $g=(f\cdot g)/f$ no será aplicable si $\lim_{x\to a} f(x) = 0$.
- **9.** Demostrar que $\lim_{x\to a} f(x) = \lim_{h\to 0} f(a+h)$.

Demostración.- Sea $\lim_{x\to a} f(x)$ y g(h)f(a+h). Entonces para todo $\epsilon>0$ existe algún $\delta>0$, tal que, para todo x, si $0<|x-a|<\delta$, entonces $|f(x)-l|<\epsilon$. Ahora bien, si 0<|h-0|< delta, entonces $|(h+a)-a|<\delta$, de modo que $|f(h+a)-l|<\epsilon$. Esta desigualdad puede escribirse $|g(x)-l|<\epsilon$. Así pues, $\lim_{h\to 0}g(h)=l$, lo cual puede escribirse también $\lim_{h\to 0}f(a+h)=l$. el mismo razonamiento demuestra que si $\lim_{h\to 0}f(a+h)=m$, entonces $\lim_{x\to a}f(x)=m$. Así pues, existe uno cualquiera de los dos límites si existe el otro, y en este caso son iguales.

10. (a) Demostrar que $\lim_{x\to a} f(x) = l$ si y sólo si $\lim_{x\to a} [f(x) - l] = 0$

Demostración.- Por definición vemos que Para todo $\epsilon > 0$ existe algún $\delta > 0$ tal que, para todo x, si $0 < |x - a| < \delta$ entonces $|f(x) - l| < \epsilon$. Esta último desigualdad se puede escribir como $|[f(x) - l] - 0| < \epsilon$ de modo que $\lim_{x \to a} [f(x) - l] = 0$. El razonamiento en sentido inverso es igual de simple e intuitivo.

(b) Demostrar que $\lim_{x\to 0} = \lim_{x\to a} f(x-a)$

Demostración.- Supóngase que $\lim_{x\to 0} f(x) = m$ Queremos mostrar que $\lim_{x\to a} f(x-a) = m$. Para todo

 $\epsilon > 0$ existen algún $\delta > 0$ tal que, para todo x con $0 < |x - 0| < \delta$, entonces $|f(x) - m| < \epsilon$ (1). Si $0 < |y - a| = |(y - a) - 0| < \delta$, entonces por (1) implica que $|f(y - a) - m| < \epsilon$, por lo tanto $\lim_{y \to a} f(y - a) = m$.

Por el contrario, supóngase $\lim_{x\to a} f(x-a) = m$, donde queremos demostrar $\lim_{x\to 0} f(x) = m$. Sea $\epsilon>0$, entonces existe $\delta>0$ tal que, para todo x con $0<|x-a|<\delta$, entonces $|f(x-a)-m|<\epsilon$ (2). Si $0<|y|=|(y+a)-a|<\delta$, luego por (2) implica que $|f(y)-m|=|f[(y+a)-a]-m|<\epsilon$, por lo tanto $\lim_{y\to 0} f(y)=m$.

(c) Demostrar que $\lim_{x\to 0} f(x) = \lim_{x\to 0} f(x^3)$.

Demostración.- Sea $\lim_{x\to 0} f(x) = l$. Para todo $\epsilon>0$ existe algún $\delta>0$, tal que, para todo x, si $0<|x|<\delta$ entonces $|f(x)-l|<\epsilon$. Tomemos $0<|x|<\min(1,\delta)$, entonces $0<|x^3|<\delta$, para comprender mejor tomemos un número en particular, por ejemplo x=0.9 donde $0<|0.9|<\min(1,\delta)$ entonces se cumple que $0<|0.9^3|<\delta$. Así pues $\lim_{x\to 0} f(x)=l$. Por otro lado, supongamos que $\lim_{x\to 0} f(x^3)$ existe, pongamos $\lim_{x\to 0} f(x^3)=m$, entonces para todo $\epsilon>0$ existe algún $\delta>0$ tal que, para todo x, si $0<|x|<\delta$, entonces $|f(x^3)-m|<\delta$. Si $0<|x|<\delta^3$, tenemos $0<|\sqrt[3]{x}|<\delta$, de modo que $|f(\sqrt[3]{x^3})-m|<\epsilon$. Por lo tanto, $\lim_{x\to 0} f(x)=m$.

(d) Dar un ejemplo en el que exista $\lim_{x\to 0} f(x^2)$, pero no $\lim_{x\to 0} f(x)$.

Respuesta.- Sea f(x)=1 para $x\leq 0$ y f(x)=-1 para x<0. Entonces $\lim_{x\to 0}f(x^2)=1$, pero $\lim_{x\to 0}f(x)$ no existe.

11. Supóngase que existe un $\delta > 0$ tal que f(x) = g(x) cuando $0 < |x - a| < \delta$. Demostrar que $\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$.

Demostración.- Asumamos que $\lim_{x\to a} f(x) = l$. Deseamos demostrar que $\lim_{x\to a} g(x) = l$. Sea $\epsilon>0$, de donde existe algún $\delta_1>0$ tal que si $0<|x-a|<\delta_1$, entonces $|f(x)-l|<\epsilon$. Luego pongamos $\delta^{'}=\min(\delta,\delta_1)$ que complace $0<|x-a|<\delta^{'}$, en virtud de como se define $\delta^{'}$ sabemos que si $0<|x-a|<\delta_1$ y $0<|x-a|<\delta$ tal que f(x)=g(x) entonces $|f(x)-l|<\epsilon$, de donde concluimos que $|g(x)-l|<\epsilon$.

12. (a) Supóngase que $f(x) \leq g(x)$ para todo x. Demostrar que $\lim_{x \to a} = \lim_{x \to a} g(x)$ siempre que estos existan.

Demostración.- Demostremos por reducción al absurdo. Supóngase que $l=\lim_{x\to a}f(x)>\lim_{x\to a}g(x)=m$. Luego sea l-m>0, existe entonces un $\delta>0$ tal que, si $0<|x-a|<\delta$, entonces $l-f(x)<\epsilon/2$ y $|m-g(x)|<\epsilon/2$. Así pues, para $0|x-a|<\delta$ tenemos

$$g(x) < m + \epsilon/2 = l - \epsilon/2 < f(x),$$

contrario a la hipótesis.

(b) ¿De qué modo puede obtenerse una hipótesis más débil?.

Respuesta.- Basta suponer que $f(x) \leq g(x)$ para todo x que satisfaga $0|x-a| < \delta$, para algún $\delta > 0$.

(c) Si f(x) < g(x) para todo x. ¿Se sigue de ello necesariamente que $\lim_{x \to a} f(x) < \lim_{x \to a} g(x)$?

Respuesta.- No necesariamente ya que si f(x)=0 y g(x)=|x| para $x\neq 0$, y g(0)=1 entonces $\lim_{x\to a}f(x)=0=\lim_{x\to a}g(x)$.

13. Supóngase que $f(x) \leq g(x) \leq h(x)$ y que $\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$. Demostrar que existe $\lim_{x \to a} g(x)$ y que $\lim_{x \to a} g(x) = \lim_{x \to a} f(x) = \lim_{x \to a} h(x)$.

Demostración.- Intuitivamente vemos que g(x) esta entre f(x) y h(x) donde se aproximan a un mismo número. Sea $\lim_{x\to a} f(x) = l$. Para todo $\epsilon>0$, existe $\delta>0$ tal que si para todo x, si $0<|x-a|<\delta$, entonces $|h(x)-l|<\epsilon$, como también para $|f(x)-l|<\epsilon$, así pues, si $0<|x-a|<\delta$, entonces

$$l - \epsilon < f(x) \le g(x) \le h(x) < l + \epsilon$$

de modo que $|g(x) - l| < \epsilon$.

14. (a) Demostrar que si $\lim_{x\to 0} f(x)/x = l$ y $b\neq 0$, entonces $\lim_{x\to 0} f(bx)/x = bl$.

Demostración.- Tengamos en cuenta que $x \to 0$ implica $bx \to 0$ siempre que b sea distinto de 0. Luego $g(x) = \frac{f(x)}{x}$ de donde $\lim_{x \to a} g(x) = l$, así $\lim_{bx \to 0} g(bx) = l$, aclaremos que cuando g(bx) solo ponemos un valor diferente sin alterar la función en si, es decir, sea bx = y y $\lim_{bx \to 0} g(bx) = l$ entonces $\lim_{y \to 0} g(y) = l$ que es igual a nuestra hipótesis $\left(\lim_{x \to 0} g(x) = l\right)$. Por lo tanto tenemos,

$$\lim_{x\to 0}\frac{f(bx)}{x}=\lim_{x\to 0}b\frac{f(bx)}{bx}=b\lim_{y\to 0}\frac{f(y)}{y}=bl$$

.

(b) ¿Qué ocurre si b = 0?

Respuesta.- Si b=0 entonces $\frac{f(bx)}{bx}=\frac{f(0)}{0}$ el cual no esta definido, por lo tanto el límite no existe, a menos que f(0)=0.

(c) La parte (a) nos permite hallar $\lim_{x\to 0} (\sin 2x)/x$ en función de $\lim_{x\to 0} (\sin x)/x$. Hallar este límite por otro procedimiento.

Respuesta.-

$$\lim_{x \to 0} \frac{\sin 2x}{x} = \lim_{x \to 0} \frac{2(\sin x)(\cos x)}{x} = 2 \lim_{x \to 0} \cos x \lim_{x \to 0} \frac{\sin x}{x} = 2.$$

15. Calcular los límites siguientes en función del número $\alpha = \lim_{x \to 0} (\sin x)/x$.

(i)
$$\lim_{x \to 0} \frac{\sin 2x}{x} = \lim_{x \to 0} \frac{2(\sin x)(\cos x)}{x} = 2\lim_{x \to 0} \cos x \lim_{x \to 0} \frac{\sin x}{x} = 2.$$

$$\text{(ii)} \quad \lim_{x \to 0} \frac{\sin ax}{\sin bx} = \lim_{x \to 0} \frac{\sin ax}{\sin bx} \cdot \frac{x}{x} = \lim_{x \to 0} \frac{\sin ax}{x} \cdot \lim_{x \to 0} \frac{x}{\sin bx} = \lim_{x \to 0} \frac{\sin ax}{x} \cdot \frac{1}{b \cdot \lim_{x \to 0} \frac{\sin x}{x}} = a\alpha \cdot \frac{1}{b\alpha} = \frac{a}{b}$$

(iii)
$$\lim_{x\to 0}\frac{\sin^22x}{x}=\lim_{x\to 0}\sin2x\lim_{x\to 0}\frac{\sin x}{x}=0\cdot 2\alpha=0$$

(iv)
$$\lim_{x\to 0} \frac{\operatorname{sen}^2 2x}{x^2} = \left(\lim_{x\to 0} \frac{\operatorname{sen} 2x}{x}\right)^2 = 4\alpha^2$$

$$(\mathbf{v}) \lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{1 - \cos x}{x^2} \cdot \frac{1 + \cos x}{1 + \cos x} = \lim_{x \to 0} \frac{\sin^2 x}{x^2 (1 + \cos x)} = \lim_{x \to 0} \frac{\sin^2 x}{x^2 (1 + 1)} = \frac{\alpha^2}{2}$$

$$(\mathbf{vi}) \lim_{x \to 0} \frac{\tan^2 x + 2x}{x + x^2} = \lim_{x \to 0} \frac{\frac{\tan^2 x + 2x}{x}}{\frac{1 + x}{1 + x}} = \lim_{x \to 0} \frac{\frac{\sin^2 x}{x \cos^2 x} + 2}{\frac{1 + x}{1 + x}} = \lim_{x \to 0} \frac{\left(\frac{\sin x}{x} \cdot \frac{\sin x}{\cos^2 x} + 2\right)}{\frac{1 + x}{1 + x}} = \alpha \cdot 0 + 2 = 2$$

(vii)
$$\lim_{x \to 0} \frac{x \sin x}{1 - \cos x} = \lim_{x \to 0} \frac{x \sin x (1 + \cos x)}{(1 - \cos x)(1 + \cos x)} = \lim_{x \to 0} \frac{x \sin x (1 + \cos x)}{\sin^2 x} = \frac{2}{\alpha}$$

(viii)
$$\lim_{h\to 0} \frac{\operatorname{sen}(x+h) - \operatorname{sen} x}{h}$$

Respuesta.- Se tiene

$$\lim_{h\to 0}\frac{\operatorname{sen} x \cos h + \cos x \operatorname{sen} h - \operatorname{sen} x}{h} = \lim_{x\to 0} \operatorname{sen} x \frac{\cos h - 1}{h} + \cos x \frac{\operatorname{sen} h}{h}$$

de donde por (v) concluimos que $\alpha \cos x$.

(ix)
$$\lim_{x \to 1} \frac{\sin(x^2 - 1)}{x - 1}$$

Respuesta.-

$$\lim_{x \to 1} \frac{\operatorname{sen}(x^2 - 1)}{x - 1} = \lim_{x \to 1} \frac{(x + 1)\operatorname{sen}(x^2 - 1)}{(x + 1)(x - 1)}$$

$$= \lim_{x \to 1} \frac{(x + 1)\operatorname{sen}(x^2 - 1)}{x^2 - 1}$$

$$= 2\lim_{x \to 1} \frac{\operatorname{sen}(x^2 - 1)}{x^2 - 1}$$

$$= 2\lim_{x \to 1} \frac{\operatorname{sen}(x^2 - 1)}{h}$$
Por la misma razón del problema 14(a)
$$= 2\alpha$$

(x)
$$\lim_{x \to 0} \frac{x^2(3+\sin x)}{(x+\sin x)^2} = \lim_{x \to 0} \frac{3+\sin x}{\left(1+\frac{\sin x}{x}\right)^2} = \frac{3}{(1+\alpha)^2}$$

(xi)
$$\lim_{x \to 1} (x^2 - 1)^2 \operatorname{sen} \left(\frac{1}{x - 1} \right)^3 = 0$$
, ya que $|\operatorname{sen} 1/(x - 1)^3| \le 1$ para todo $x \ne 0$

16. (a) Demostrar que si $\lim_{x\to a} f(x) = l$, entonces $\lim_{x\to a} |f|(x) = |l|$.

Demostración.- Sabemos que $||f(x)| - |l|| \le |f(x) - l|$ por lo tanto para todo $\epsilon > 0$ existe algún $\delta > 0$ tal que si $0 < |x - a| < \delta$ entonces $||f(x)| - |l|| \le |f(x) - l| < \epsilon$ de donde $\lim_{x \to a} |f|(x) = |l|$

(b) Demostrar que si $\lim_{x\to a} f(x) = l$ y $\lim_{x\to a} g(x) = m$, entonces $\lim_{x\to a} \max(f,g)(x) = \max(l,m)$ y lo mismo para el mínimo.

Demostración.- ya que $\lim_{x\to a}(f+g)(x)=\lim_{x\to a}f(x)+\lim_{x\to a}g(x)$ y por (a) entonces,

$$\begin{split} \lim_{x \to a} \max(f,g)(x) &= \lim_{x \to a} \frac{f(x) + g(x) + |f(x) - g(x)|}{2} \\ &= \lim_{x \to a} \frac{\lim_{x \to a} f(x) + \lim_{x \to a} g(x) + \lim_{x \to a} |f(x) - g(x)|}{2} \\ &= \frac{l + m + |l - m|}{2} \\ &= \max(l,m) \end{split}$$

De similar manera,

$$\begin{split} \lim_{x \to a} \min(f,g)(x) &= \lim_{x \to a} \frac{f(x) + g(x) - |f(x) - g(x)|}{2} \\ &= \lim_{x \to a} f(x) + \lim_{x \to a} g(x) - \lim_{x \to a} |f(x) - g(x)|}{2} \\ &= \frac{l + m - |l - m|}{2} \\ &= \min(l,m) \end{split}$$

17. (a) Demostrar que $\lim_{x\to 0} 1/x$ no existe, es decir, demostrar que, cualquiera que sea l, $\lim_{x\to 0} 1/x = l$ es falso.

Demostración.- Supongamos que $\lim_{x\to 0} \frac{1}{x} = l$ entonces por definción se tiene

$$\forall \epsilon > 0, \exists \delta > 0 \Longleftrightarrow si \ 0 < |x - 0| < \delta \Longrightarrow |f(x) - l| < \epsilon$$

de donde $|x| > \frac{1}{\epsilon + |l|}$ el cual contradice la suposición de que x tiende a 0.

(b) Demostrar que $\lim_{x\to 1} \frac{1}{x-1}$ no existe.

Demostración.- Podemos aplicar el mismo criterio del anterior ejercicio.

18. Demostrar que si $\lim_{x \to a} f(x) = l$, entonces existe un número $\delta > 0$ y un número M tal que |f(x)| < M si $0 < |x - a| < \delta$. (¿Cómo puede verse esto gráficamente?).

Demostración.- Por definición tenemos que

$$\forall \epsilon > 0, \exists delta > 0 / si \ 0 < |x - a| < \delta \Longrightarrow |f(x) - l| < \epsilon$$

Tomemos $\epsilon = 1$ de donde l-1 < f(x) < l+1 de modo que podemos tomar M > 1 + l y -M < 1 - l por lo tanto |f(x)| < M.

19. Demostrar que si f(x) = 0 para x irracional y f(x) = 1 para x racional, entonces no existe $\lim_{x \to a} f(x)$ cualquiera que sea a.

Demostración.- Para cualquier $\delta > 0$ tenemos f(x) = 0 para algún x que satisface $0 < |x - a| < \delta$ y también f(x) = 1 para algún x que satisface $0 < |x - a| < \delta$. Significa esto que no podemos tener |f(x) - l| < 1/2 tenga l el valor que tenga.

20. Demostrar que si f(x) = x para x racional y f(x) = -x para x irracional, entonces $\lim_{x \to a} f(x)$ no existe si $a \neq 0$.

Demostración.- Sea el caso a>0. Al estar f(x) cerca de a para todos los racionales x que están cerca de a, y al estar f(x) cerca de -a para todos los irracionales x que están cerca de a, no podemos tener a f(x) próximo a ningún número fijo. Es decir, para cualquier $\delta>0$ existe x con $0<|x-a|<\delta$ y f(x)>a/2, así como x con $0<|x-a|<\delta$ y f(x)<-a/2. Puesto que la distinta entre a/2 y a/20 es a1, esto significa que no podemos tener a/20, a/21, a para todos estos a/22, cualquiera que sea el valor de a/23.

21. (a) Demostrar que si $\lim_{x\to 0} g(x) = 0$, entonces $\lim_{x\to 0} g(x) \sin 1/x = 0$.

Demostración.- En consecuencia de (b) y sabiendo que $|\sin 1/x| \le 1$ para todo $x \ne 0$. Se tiene que el resultado esperado.

(b) Generalizar este hecho como sigue: Si $\lim_{x\to 0} g(x) = 0$ y $|h(x)| \le M$ para todo x, entonces $\lim_{x\to 0} g(x)h(x) = 0$

Demostración.- Por definición de límites y sea M=1 se tiene $|g(x)|<\frac{\epsilon}{M}=\epsilon$, para todo x con $0<|x|<\delta$. Entonces $|g(x)h(x)|<\epsilon$ ya que $|h(x)|\leq M$.

22. Considérese una función f con la siguiente propiedad: Si g es una función cualquiera para la cual no existe el $\lim_{x\to 0}g(x)$, entonces tampoco existe $\lim_{x\to 0}[f(x)+g(x)]$. Demostrar que esto ocurre si y sólo si $\lim_{x\to 0}f(x)$ existe.

Demostración.- Si $\lim_{x\to 0} f(x)$ existe, esta claro que $\lim_{x\to 0} [f(x)+g(x)]$ no existe cuando $\lim_{x\to 0} g(x)$ no existe, esto según el problema 8(b) y (c). Por otro lado, supongamos que $\lim_{x\to 0} f(x)$ no existe, elija g=-f, entonces $\lim_{x\to 0} g(x)$ no existe, pero $\lim_{x\to 0} [f(x)+g(x)]$ existe.

- **23.** Este problema es el análogo del problema 22 cuando f + g se sustituye por $f \cdot g$. En este caso la situación es considerablemente más compleja y el análisis debe hacerse en varias etapas.
 - (a) Supóngase que existe $\lim_{x\to 0} f(x)$ y es $\neq 0$. Demostrar que si $\lim_{x\to 0} g(x)$ no existe, entonces tampoco existe $\lim_{x\to 0} f(x)g(x)$.

Demostración.- Ya que $\lim_{x\to 0} f(x) \neq 0$ entonces

$$\lim_{x \to 0} g(x) = \lim_{x \to 0} \frac{f(x)g(x)}{f(x)} = \lim_{x \to 0} f(x)g(x) \cdot \frac{1}{\lim_{x \to 0} f(x)}$$

Ponemos $\lim_{x\to 0} f(x) = \alpha$, por lo cual

$$\lim_{x \to 0} g(x) = \frac{1}{\alpha} \cdot \lim_{x \to 0} f(x)g(x)$$

Por lo tanto si $\lim_{x\to 0}g(x)$ no existe, entonces $\lim_{x\to 0}f(x)g(x)$ no existe.

(b) Demostrar el mismo resultado si $\lim_{x\to 0} |f(x)| = \infty$.

Demostración.- Demostraremos que si $\lim_{x\to 0} |f(x)| = \infty$ y $\lim_{x\to 0} f(x)g(x) = l$ entonces $\lim_{x\to 0} g(x) = 0$.

Para entender mejor el problema veamos un ejemplo: Sea $\lim_{x\to 0} \frac{1}{x} = \infty$ y $\lim_{x\to 0} \frac{1}{x} \cdot x = 1$ entonces $\lim_{x\to 0} x = 0$. Ya mas claro el asunto, vayamos a la demostración.

Sea $\lim_{x\to 0} |f(x)| = \infty$, para cualquier M>0 existe algún $\delta_M>0$ tal que para todo x,

si
$$0 < |x - 0| < \delta_M$$
 entonces $|f(x)| > M$.

Luego, para $\lim_{x\to 0} f(x)g(x) = l$ nos dice que para cualquier $\epsilon > 0$ existe algún $\delta_l > 0$ tal que para todo x,

si
$$0 < |x - 0| < \delta_l$$
 entonces $|f(x)g(x) - l| < \epsilon$.

Ahora, para cualquier ϵ podemos establecer $M = \frac{\epsilon + |l|}{\epsilon}$ y escogemos $\delta_{min} = \min(\delta_M, \delta_l)$. Así, para todo x,

si
$$0 < |x - a| < \delta_{min}$$
 tenemos $|f(x)g(x) - l| < \epsilon$ y $|f(x)| > M = \frac{\epsilon + |l|}{\epsilon}$,

luego $|f(x)g(x)| - |l| \le |f(x)g(x) - l| < \epsilon$, de donde $|f(x)g(x)| < |l| + \epsilon$, así

$$|g(x)| < \frac{|l| + \epsilon}{|f(x)|} < \frac{|l| + \epsilon}{M} = \frac{|l| + \epsilon}{M} = \frac{|l| + \epsilon}{\frac{|l| + \epsilon}{\epsilon}} = \epsilon$$

Por lo tanto, para cualquier $\epsilon>0$ hay un $\delta_{\rm mín}$ tal que para todo x si

$$0 < |x - 0| < \delta_{min}$$
 entonces $|g(x)| < \epsilon$

ó

$$\lim_{x \to 0} g(x) = 0$$

(c) Demostrar que si no se cumple ninguna de estas dos condiciones, entonces existe una función g tal que $\lim_{x\to 0} g(x)$ no existe, pero existe $\lim_{x\to 0} f(x)g(x)$.

Demostración.- Demostraremos por casos.

1. Para todo $\epsilon > 0$, existe algún $\delta > 0$ tal que para todo x si $0 < |x| < \delta$, entonces $|f(x)| > \epsilon$. Luego podemos definimos g(x) para x como $g(x) = \frac{1}{f(x)}$, aclaremos que para x pequeños el denominador es distinto de 0, de donde

$$\lim_{x \to 0} f(x)g(x) = \lim_{x \to 0} 1 = 1$$

Así que el límite de f(x)g(x) existe. Si $\lim_{x\to 0}g(x)$ existe, entonces $\lim_{x\to 0}g(x)\neq 0$. Pero esto implicaría

que $\lim_{x\to 0} f(x)$ existe, con lo que $\lim_{x\to 0} g(x)$ no existe. ¿Cómo sabemos que $\lim_{x\to 0} g(x) \neq 0$ y por tanto se aplica a la parte a?. Supongamos $\lim_{x\to 0} g(x) = 0$, según nuestro definición del caso 1 tenemos

$$\lim_{x \to 0} \frac{1}{f(x)} = 0$$

Así para cualquier $\epsilon > 0$ existe algún $\delta > 0$ tal que para todo x si

$$0 < |x| < \delta \implies \left| \frac{1}{f(x)} \right| < \epsilon$$

de donde $|f(x)| > \frac{1}{\epsilon}$ y por lo tanto

$$0 < |x| < \delta \implies |f(x)| > \frac{1}{\epsilon}$$

Esto significa que $\lim_{x\to 0} |f(x)| = \infty$, contrario al inciso b.

2. A diferencia del caso 1, cuando x se acerca a 0, f(x) se vuelve arbitrariamente pequeña para algún x. Es decir para $\epsilon > 0$ existe $\delta > 0$ tal que para $x \text{ con } 0 < |x| < \delta y |f(x)| < \epsilon$. Esto se parece mucho a la definición de límite; la diferencia clave es que aquí, $|f(x)| < \epsilon$ solo para algunas de las x en la región δ especificada, no para todas, y que siempre podemos encontrar tales x no importa lo pequeño que hagamos δ . En otras palabras, algunos valores de f(x) parecen dirigirse hacia 0 para x muy pequeños y otros valores no. La idea es definir g(x) de modo que g(x)f(x) = f(x)para las x de buen comportamiento, y 0 para todo lo demás. Vea si puede hacer esto. Una vez que lo haga, verá que para su g(x), $\lim_{x\to 0} g(x)$ no existe. Podría ser útil comenzar considerando un ejemplo concreto: $f(x)=\sin(1x)$ Observe que cuando $x\to 0, f(x)$ fluctúa entre 1 y -1. f(x)=0 cuando $x=\frac{1}{k\pi}$ donde k es un número entero. A medida que k crece, x se acerca cada vez más a 0 y |f(x)|=0 una y otra vez. ¿Puedes definir una función g tal que g(x)f(x) enfatiza estos $\frac{1}{k\pi}$ puntos $x = \frac{1}{k\pi}$ y suaviza los otros?.