$\Delta C = \Delta Y (MPC)$

We want Equilibrium GDP to increase by 1,000: $\Delta Y = 1,000$

Effect on Consumption:

Effect on the Budget Deficit:

Δ Deficit = $\Delta G - \Delta T$

The Spending Multiplier

 $\Delta C = 1,000(0.8) = 800$

 $\Delta \text{ Deficit} = 200 - 0 = 200$

Assume MPC ≈ 0.8

Recessionary Gap: 7,000 - 6,000 = 1,000

1,000 $\Delta Y =$

 $\Delta G = 1,000/5$

The Government must increase G by 200 in order to close a 1,000 Recessionary Gap

A 200 increase in G will increase the Deficit by 200

Recessionary Gap: 7,000 - 6,000 = 1,000

We want Equilibrium GDP to increase by 1,000: $\Delta Y = 1,000$

The Spending
$$\left(\frac{1}{1-MPC}\right) = (5)$$

$$\Delta Y = \Delta G \text{ (Multiplier)}$$

$$\Delta Y = 1,000$$

$$1,000 = \Delta G (5)$$

$$\Delta G = 1,000/5$$

$$\Delta G = 200$$

The Government must increase G by 200 in order to close a 1,000 Recessionary Gap

Effect on Consumption:

$$\Delta C = \Delta Y (MPC)$$

$$\Delta C = 1,000(0.8) = 800$$

Effect on the Budget Deficit:

$$\Delta$$
 Deficit = $\Delta G - \Delta T$

$$∆$$
 Deficit = 200 - 0 = 200

A 200 increase in G will increase the Deficit by 200

