

Notes on Lab 12

Qiang Du, LBNL USPAS Houston, January 25, 2023

Lawrence Berkeley National Lab

Open loop transfer function

$$\frac{Y(s)}{R(s)} = C(s)P(s)$$

2

Closed-loop transfer function

 $H_{\text{Close}}(s)$ as measured:

$$\frac{Y(s)}{R(s)} = \frac{C(s)P(s)}{1 + C(s)P(s)} \stackrel{\triangle}{=} H_{\text{Close}}(s)$$

Derivation: https://en.wikipedia.org/wiki/Closed-loop_transfer_function

Derive C(s)P(s) from $H_{Close}(s)$:

$$rac{C(s)P(s)}{1+C(s)P(s)} = H_{\mathsf{Close}}(s)$$
 $C(s)P(s) = rac{1}{1-H_{\mathsf{Close}}(s)}$

3