Katedra Metrologii i Systemów Diagnostycznych Laboratorium Podstaw Metrologii. 2018/19

Politechnika Rzeszowska	Grupa	1	Data
Katedra Metrologii i Systemów Diagnostycznych		1	
Laboratorium Podstaw Metrologii		2	
	Nr ćwicz.		Ocena
Elektroniczna aparatura w Laboratorium Metrologii, cz. II	2	3	
	_	4	

I. CEL ĆWICZENIA

Celem ćwiczenia jest poznanie podstawowej, typowej aparatury kontrolno-pomiarowej używanej w Laboratorium Metrologii i laboratoriach elektronicznych: poznanie funkcji zasilaczy, generatorów, multimetrów i przygotowanie do ich obsługiwania.

II. ZAGADNIENIA

- 1. Parametry amplitudowe przebiegu zmiennego: amplituda, wartość skuteczna i średnia oraz zależności miedzy nimi.
- 2. Model matematyczny przebiegu sinusoidalnego: częstotliwość, okres, przesunięcie fazowe.
- 3. Źródło prądowe, źródło napięciowe.

III. PARAMETRY TECHNICZNE PRZYRZĄDÓW

Tab. 1.

Rodzaj przyrządu	Nazwa i typ	Producent	Zakresy prądowe	Zakresy napięciowe
Zasilacz stabilizowany				
Multimetr				
Generator funkcyjny				
Oscyloskop				

IV. PRZEBIEG ĆWICZENIA

1. OBSŁUGA ZASILACZA STABILIZOWANEGO I MULTIMETRU:

UWAGA:

Zasilacz stabilizowany jako źródło napięcia: potencjometry regulacji napięcia ustawione na minimum, potencjometry regulacji prądu wyjściowego ustawione na maksimum, po podłączeniu obciążenia i włączeniu zasilacza poprawność ustalonego trybu pracy sygnalizuje dioda C.V.

Zasilacz stabilizowany jako źródło prądowe: potencjometry regulacji prądu ustawione na minimum, potencjometry regulacji napięcia ustawione na maksimum, po podłączeniu obciążenia i włączeniu zasilacza ustawić żądany prąd wyjściowy zgrubnie pokrętłem CURRENT oraz dokładnie pokrętłem FINE, tryb pracy sygnalizuje dioda C.C.

1.1. Zadania do wykonania:

1.1.1. Ustawić: napięcie stałe na zasilaczu o wartościach podanych przez prowadzącego

Przed połączeniem układu według schematu przedstawionego na rys. 1. należy ustawić parametry zasilacza według zaleceń dla zasilacza jako źródła napięcia zapisanych w uwadze (pkt. 1).

Następnie należy wykonać następujące polecenia:

- a) włączyć zasilacz i multimetr,
- b) wybrać U_{DC} w multimetrze,
- c) podłączyć wyjście zasilacza do wejścia napięciowego multimetru (według schematu na rys. 1),
- d) ustawić wartości napięć stałych generowanych przez zasilacz (według tab. 2). Ustawione wartości mogą być wartościami przybliżonymi.
- e) odczytać wskazanie multimetru i zapisać je do tab. 2.
- f) po zakończeniu pomiaru wyłączyć zasilacz i multimetr, a następnie rozmontować układ pomiarowy.

Rys. 1. Układ do pomiaru napięcia

Tab. 2.

L. p.	1	2	3	4
Napięcie na zasilaczu [V]	1,5	5,7	9,3	14,9
Napięcie z multimetru [V]				

1.1.2. Ustawić natężenie prądu stałego na zasilaczu o wartościach podanych przez prowadzącego

Przed połączeniem układu według schematu przedstawionego na rys. 2 należy ustawić parametry zasilacza według zaleceń dla zasilacza jako źródła prądu zapisanych w uwadze (pkt 1).

Następnie należy wykonać poniższe polecenia:

- a) włączyć zasilacz i multimetr,
- b) wybrać I_{DC} w multimetrze,
- c) podłączyć wyjście dodatnie zasilacza do rezystora. Następnie rezystor połączyć z wejściem multimetru oznaczonym literą **A**, a wejście **COM** multimetru połączyć z wyjściem ujemnym zasilacza.

- d) ustawić wartości prądów stałych generowanych przez zasilacz (według tab. 3). Ustawione wartości mogą być wartościami przybliżonymi.
- e) odczytać wskazanie multimetru i zapisać je do tab. 3.
- f) po zakończeniu pomiaru wyłączyć zasilacz i multimetr, a następnie rozmontować układ pomiarowy.

Rys. 2. Układ do pomiaru prądu

Tab. 3.

L. p.	1	2	3	4
Prąd na zasilaczu [mA]	25	57	93	59
Prąd z multimetru [mA]				

2. OBSŁUGA GENERATORA:

2.1. Zadania do wykonania:

UWAGA: Posłużyć się informacjami zawartymi w pomocniczej tablicy 5. Oznaczenia:

U_m - amplituda napięcia

U_{sk} - wartość skuteczna napięcia

U_{DC} - napięcie stałe (dotyczy trybu pracy multimetru)

U_{AC} - napięcie zmienne (dotyczy trybu pracy multimetru)

2.1.1. Ustawić sygnał o przebiegu sinusoidalnie zmiennym (równocześnie obserwować obraz na oscyloskopie i wskazania multimetru przełączając funkcje U_{AC} i U_{DC}).

Wykonać poniższe polecenia:

- a) włączyć generator, multimetr, oscyloskop,
- b) jeżeli nie ma możliwości podłączenia dwóch multimetrów zgodnie ze schematem przedstawionym na rys. 3. to należy wybierać naprzemiennie U_{AC} lub U_{DC} w multimetrze (w zależności od zaleceń podanych w tabeli lub przez prowadzącego),
- c) podłączyć wyjście generatora do wejścia napięciowego multimetru oraz do wejścia oscyloskopu (CH1 lub CH2),
- d) po włączeniu oscyloskopu należy wyśrodkować przebieg wyświetlany na jego ekranie. W tym celu należy ustawić na oscyloskopie sprzężenie GND i następnie za pomocą pokrętła do pozycjonowania w dziedzinie wartości (w pionie) POSITION ustawić przebieg na środku ekranu. Po wykonaniu tego zdania włączyć w oscyloskopie AC.
- e) ustawić wartości napięć stałych generowanych przez zasilacz (według tab. 4). Ustawione wartości mogą być wartościami przybliżonymi.
- f) odczytać wskazania multimetru i zapisać je do tab. 4.
- g) po zakończeniu pomiaru wyłączyć przyrządy, a następnie rozmontować układ pomiarowy.

Rys. 3. Schemat układu do pomiaru parametrów napięcia zmiennego

Uwaga! Prowadzący może podać inne wartości i inne rodzaje napięć niż podane w tab. 4.

Tab. 4.

L.p.	Rodzaje przebiegu	U_{DC}	U_{AC}	U_m	$k_s = U_m / U_{AC}$
		[V]	[V]	[V]	
1	Sinusoidalny			4,5	
2	Sinusoidalny			3,0	
3	Sinusoidalny				
4	Sinusoidalny				

Tab. 5. Parametry wybranych przebiegów okresowych bez składowej stałej

Rodzaj przebiegu	Wartość średnia	Wartość skuteczna $U = U_m / k_s$	$k_s = U_m / U_{AC}$
Sinusoidalny	0	$U_{\rm m}/\sqrt{2}$	$\sqrt{2}$
Trójkątny	0	$U_{\rm m}/\sqrt{3}$	$\sqrt{3}$
Prostokątny	0	$U_{\rm m}$	1

V. WNIOSKI

VI. PYTANIA KONTROLNE

- 1. W jakich wartościach sygnału zmiennego wzorcuje się przyrządy pomiarowe, np. multimetr?
- 2. Zastosowania multimetru.
- 3. Zastosowania oscyloskopu.
- 4. Podać definicję współczynnika kształtu i jego rolę w obliczeniach.
- 5. Podać definicje współczynnika szczytu i jego role w obliczeniach.
- 6. Jak można multimetrem sprawdzić, czy przebieg ma składową stałą.

LITERATURA

- 1. Szadkowski B. (red) Laboratorium metrologii elektrycznej i elektronicznej, Wyd. Polit. Ślaskiej, Gliwice, 1998.
- 2. Zielonko R., Bartosiński B., Hoja J., Rydzkowski W., Toczek W., Laboratorium z podstaw miernictwa Wyd. Polit. Gdańskiej, Gdańsk, 1998.
- 3. Marcyniuk A. Podstawy miernictwa elektrycznego *dla kierunku elektronika*, Wyd. Polit. Ślaskiej, Gliwice, 2002.
- 4. Firmowe instrukcje obsługi przyrządów (NDN-Z.Daniluk, METEX Instruments)
- 5. Rylski A., Wojturski J., Metrologia elektryczna, OWPRz 2013.