Individualizing Energy Benchmarking

Ian Xiao, Ben Steers, Te Du

Agenda

- Project Motivation
- Approach and Result Overview
- Demo
- Discussion and Next Steps

Why did we focus on this topic?

Our team chose building energy benchmarking is because ...

- It is challenging: data quality issue due to from self reporting and user readiness¹
- Its impact on specific **policy action remains unclear**: which buildings should put more effort in reducing energy consumption? And by how much so that it is fair?
- It is controversial: how do we define peer groups?

"The selection of peer groups is crucial to insightful benchmarking."

- Raul Valdes-Perez, Harvard Business Review, 2015

Source:

1. NYC's Energy and Water Use 2014 and 2015 Report; published on Oct, 2017

What benchmark methods did we use?

1) Linear Regression

Approach

- Fit a line using key building parameters as repressors
- The fitted value is the expected energy usage; then, compare actual and expected energy use
- This is used as a baseline method

) K-Means

Approach

- Develop N-clusters using key building parameter; having 5 clusters is optimal based on Silhouette Scores
- Compute average, minimum, and maximum energy use in each cluster
- Actual building energy is then measured against cluster level stats

3) Collaborative Filtering

Approach

- Compute pair-wise Euclidean
 Distance based on key building parameters
- Find the closest N Peers; measuring using 700 peers is optimal
- Calculate average, minimum, and maximum energy use based on each building's peer group
- Measure each building's actual energy with its own peer groups

How do we measure peer selection?

Note: average standard deviation of Linear Regression is simply the standard deviation of EUI 2016 of total sample population; the one for K-Mean is the average STD of EUI 2016 of cluster = 4

Qualitative Assessment

Collaborative Filtering offers:

- Traceability that provide clear explanation of why certain buildings are grouped over others
- Dynamic, yet fair grouping that does not require pre-defined boundary (except # of peers); it helps to avoid subjectivity
- Scalable to higher dimension, unlike K-Means, when more building parameters are included in the model
- Deterministic, instead probabilistic like many predictive modelling approach using decision trees

Is there a significant difference?

Summary of K-Mean Avg. Stdev of EUI 2016

Summary of C.F. Avg. Stdev of EUI 2016

Clusters		avg_std_km		
count	11.000000	11.000000		
mean	7.000000	28.212471		
std	3.316625	0.613608		
min	2.000000	27.228395		
25%	4.500000	27.959380		
50%	7.000000	28.087397		
75%	9.500000	28.404299		
max	12.000000	29.403644		

Page ava etd of

	Peers	avg_std_cr
count	11.000000	11.000000
mean	934.545455	25.684934
std	819.528689	0.829439
min	30.000000	23.930930
25%	200.000000	25.318520
50%	800.000000	26.198768
75%	1650.000000	26.246033
max	2200.000000	26.290484

Welch T-Test (sample size < 30 & Different Variance)

$$t = \frac{m_A - m_B}{\sqrt{\frac{S_A^2}{n_A} + \frac{S_B^2}{n_B}}}$$

Null Hypothesis: There is no significant difference in the mean standard deviation in EUI based on K-Mean and C.F.

Therefore, Null Hypothesis can be rejected @ alpha = 0.05. C.F. peer grouping provides a statistically different standard deviation in EUI 2016 compared to K-Mean approach.

Demo

Discussions & Next Steps

Limitation

- Run time based on dynamic users interaction
- More Tailored UX based on specific user need

Opportunities

- Refine front and back end process and integration
- Conduct user discovery session to further define needs and the best UX elements

Limitation

- Less reliable self-reporting energy data
- Limited time horizon for meaningful trend analysis
- · Year over year data is not standardized

Opportunities

- Introduce granular tenant data for analysis and validation for occupancy and energy usage
- Perform more rigorous duplication removal
- Develop automatic processing for new yearly data

Limitation

Run time when feature and sample sizes scale

Opportunities

- Develop weighted average based on distance for more robust benchmarking
- Ensemble models to integrate strength of various techniques
- Integrate more granular features from tenant data

Appendix A – K Mean Analysis

Appendix B – K Mean Cluster Details

	Clusters	avg_cluster_size	avg_std_km	max_cluster_size	min_cluster_size
0	2	1599.500000	27.847696	2938.0	261.0
1	3	1066.333333	28.819750	2658.0	82.0
2	4	799.750000	28.999299	2323.0	47.0
3	5	639.800000	29.380010	1924.0	37.0
4	6	533.166667	29.588011	1870.0	13.0
5	7	457.000000	29.888705	1672.0	13.0
6	8	399.875000	29.501516	1604.0	10.0
7	9	355.444444	29.789397	1609.0	2.0
8	10	319.900000	29.751046	1475.0	2.0
9	11	290.818182	29.571487	1155.0	2.0
10	12	266.583333	29.365383	1121.0	2.0

Appendix C – CF Peer Group Details (1)

	Avg_STDEV_EUI_30	Avg_STDEV_EUI_50	Avg_STDEV_EUI_100	Avg_STDEV_EUI_300	Avg_STDEV_EUI_500	Avg_STDEV_EUI_800
count	3193.000000	3193.000000	3193.000000	3193.000000	3193.000000	3193.000000
mean	23.930930	24.491923	25.069338	25.567701	26.010171	26.198768
std	7.119235	5.972372	4.351275	2.637836	2.656476	2.307777
min	11.054881	11.513088	13.374352	18.498774	19.961016	22.051839
25%	19.231347	20.721933	22.283085	23.915837	24.434498	24.756902
50%	22.960524	23.632545	24.661588	25.302923	25.270763	25.298941
75%	27.262962	27.275743	27.354332	26.812243	26.579906	26.423995
max	76.314235	62.327245	46.679634	36.575953	34.243297	31.549737

Appendix C – CF Peer Group Details (2)

Avg_STDEV_EUI_2200	Avg_STDEV_EUI_2000	Avg_STDEV_EUI_1800	Avg_STDEV_EUI_1500	Avg_STDEV_EUI_1000
3193.000000	3193.000000	3193.000000	3193.000000	3193.000000
26.255894	26.214801	26.268088	26.290484	26.236173
0.802864	0.988842	1.146079	1.359133	1.952052
25.093293	24.962888	24.706538	24.393274	22.731816
25.746654	25.557814	25.431934	25.371277	25.044064
25.904565	25.745743	25.734972	25.614276	25.460707
27.176872	27.229908	27.360180	26.926769	26.278735
28.000337	28.379640	28.579181	29.155651	30.589434

