Análisis Matemático II

Tema 3: Construcción de la medida de Lebesgue

El infinito

2 La medida de Lebesgue

Primeras propiedades

Intervalos

El conjunto ordenado $[0, \infty]$

El infinito

•000000

El infinito

•000000

El infinito

•000000

El conjunto
$$[0,\infty]$$
 y su relación de order

$$[0,\infty] = \mathbb{R}_0^+ \cup \{\infty\}$$

El conjunto ordenado $[0,\infty]$

El conjunto $[0,\infty]$ y su relación de order

$$[0,\infty] = \mathbb{R}_0^+ \cup \{\infty\}$$

Extendemos el orden usual de \mathbb{R}^+_0 definiendo:

$$x\leqslant\infty \qquad \forall \, x\in [0,\infty]$$

El conjunto ordenado $[0, \infty]$

$$[0,\infty] = \mathbb{R}_0^+ \cup \{\infty\}$$

Extendemos el orden usual de \mathbb{R}_0^+ definiendo:

$$x \leqslant \infty \qquad \forall x \in [0, \infty]$$

De esta forma, $[0, \infty]$ es un conjunto totalmente ordenado con

$$\min[0,\infty]=0$$
 $\qquad \qquad \max[0,\infty]=\infty$

El conjunto ordenado $[0,\infty]$

El conjunto $[0,\infty]$ y su relación de orde

$$[0,\infty] = \mathbb{R}_0^+ \cup \{\infty\}$$

Extendemos el orden usual de \mathbb{R}^+_0 definiendo:

$$x \leqslant \infty \qquad \forall x \in [0, \infty]$$

De esta forma, $[0,\infty]$ es un conjunto totalmente ordenado con

$$\min[0,\infty] = 0 \qquad \qquad \text{y} \qquad \quad \max[0,\infty] = \infty$$

Supremos e ínfimos

El conjunto ordenado $[0,\infty]$

El conjunto $[0,\infty]$ v su relación de orde

$$[0,\infty] = \mathbb{R}_0^+ \cup \{\infty\}$$

Extendemos el orden usual de \mathbb{R}^+_0 definiendo:

$$x \leqslant \infty \qquad \forall x \in [0, \infty]$$

De esta forma, $[0,\infty]$ es un conjunto totalmente ordenado con

$$\min[0,\infty] = 0$$
 $\max[0,\infty] = \infty$

Supremos e ínfimos

Todo subconjunto no vacío de $[0, \infty]$ tiene supremo e ínfimo El infinito

•000000

$$[0,\infty] = \mathbb{R}_0^+ \cup \{\infty\}$$

Extendemos el orden usual de \mathbb{R}_0^+ definiendo:

$$x\leqslant\infty \qquad \forall \, x\in [0,\infty]$$

De esta forma, $[0, \infty]$ es un conjunto totalmente ordenado con

$$\min[0,\infty]=0$$

$$\min \left[0, \infty \right] = 0 \qquad \qquad \text{y} \qquad \quad \max \left[0, \infty \right] = \infty$$

Supremos e ínfimos

Todo subconjunto no vacío de $[0, \infty]$

tiene supremo e ínfimo

Observación

El conjunto
$$[0,\infty]$$
 y su relacion de orden $[0,\infty]=\mathbb{R}^+_0\cup\{\infty\}$

Extendemos el orden usual de \mathbb{R}_0^+ definiendo:

$$x \leqslant \infty \qquad \forall x \in [0, \infty]$$

De esta forma, $[0,\infty]$ es un conjunto totalmente ordenado con

$$\min[0,\infty]=0$$
 $\qquad \qquad \max[0,\infty]=\infty$

$$\max[0,\infty] = \infty$$

Supremos e ínfimos

Todo subconjunto no vacío de $[0, \infty]$ tiene supremo e ínfimo

Observación

Para un conjunto no vacío $A\subset [0,\infty]$ se tiene $\sup A<\infty$ si, y sólo si,

$$\infty \notin A$$
 y A está mayorado en $\mathbb R$

El infinito

000000

El infinito

000000

La topología de $[0, \infty]$

La topología usual de $[0,\infty]$ es la que tiene como abiertos las uniones arbitrarias de intervalos abiertos, que pueden ser de tres tipos:

El infinito

000000

La topología de $[0,\infty]$

La topología usual de $\left[0,\infty\right]$ es la que tiene como abiertos

las uniones arbitrarias de intervalos abiertos, que pueden ser de tres tipos:

$$]\alpha,\beta[=\big\{x\in[0,\infty]\ :\ \alpha< x<\beta\big\}$$

El infinito

000000

La topología de $[0, \infty]$

La topología usual de $[0,\infty]$ es la que tiene como abiertos

las uniones arbitrarias de intervalos abiertos, que pueden ser de tres tipos:

$$\begin{array}{l}]\alpha,\beta [=\left\{x\in [0,\infty] \ : \ \alpha < x < \beta\right\} \\ [0,\beta [=\left\{x\in [0,\infty] \ : \ x < \beta\right\} \end{array}$$

El infinito

La topología de $[0, \infty]$

La topología usual de $[0,\infty]$ es la que tiene como abiertos

las uniones arbitrarias de intervalos abiertos, que pueden ser de tres tipos:

$$\begin{array}{l}]\alpha,\beta \big[= \big\{ x \in [0,\infty] \ : \ \alpha < x < \beta \big\} \\ [0,\beta \big[= \big\{ x \in [0,\infty] \ : \ x < \beta \big\} \end{array}$$

$$]\alpha,\infty] = \left\{x \in [0,\infty] \ : \ \alpha < x\right\} \qquad \text{(con } \alpha,\beta \in [0,\infty]\text{)}$$

El infinito

0000000

La topología usual de $[0, \infty]$ es la que tiene como abiertos

las uniones arbitrarias de intervalos abiertos, que pueden ser de tres tipos:

$$\begin{split} &]\alpha,\beta \big[= \big\{ x \in [0,\infty] \ : \ \alpha < x < \beta \big\} \\ &[0,\beta \big[= \big\{ x \in [0,\infty] \ : \ x < \beta \big\} \\ &]\alpha,\infty \big] = \big\{ x \in [0,\infty] \ : \ \alpha < x \big\} \end{split} \qquad \text{(con } \alpha,\beta \in [0,\infty] \text{)} \end{split}$$

FI infinito 0000000

La topología usual de $[0,\infty]$ es la que tiene como abiertos

las uniones arbitrarias de intervalos abiertos, que pueden ser de tres tipos:

$$\begin{split} &]\alpha,\beta \big[= \big\{ x \in [0,\infty] \ : \ \alpha < x < \beta \big\} \\ &[0,\beta \big[= \big\{ x \in [0,\infty] \ : \ x < \beta \big\} \\ &]\alpha,\infty \big] = \big\{ x \in [0,\infty] \ : \ \alpha < x \big\} \end{split} \qquad \text{(con } \alpha,\beta \in [0,\infty] \text{)} \end{split}$$

Propiedades inmediatas

• $\{ |x - \varepsilon, x + \varepsilon| : \varepsilon \in \mathbb{R}^+, \varepsilon < x \}$ es base de entornos de cada $x \in \mathbb{R}^+$

FI infinito 0000000

La topología usual de $[0,\infty]$ es la que tiene como abiertos

las uniones arbitrarias de intervalos abiertos, que pueden ser de tres tipos:

$$\begin{split} &]\alpha,\beta \big[= \big\{ x \in [0,\infty] \ : \ \alpha < x < \beta \big\} \\ &[0,\beta \big[= \big\{ x \in [0,\infty] \ : \ x < \beta \big\} \\ &]\alpha,\infty \big] = \big\{ x \in [0,\infty] \ : \ \alpha < x \big\} \end{split} \qquad \text{(con } \alpha,\beta \in [0,\infty] \text{)} \end{split}$$

- $\{]x \varepsilon, x + \varepsilon [: \varepsilon \in \mathbb{R}^+, \varepsilon < x \}$ es base de entornos de cada $x \in \mathbb{R}^+$
- $\{[0,\varepsilon[:\varepsilon\in\mathbb{R}^+]\}$ es base de entornos de 0

El infinito

La topología de $[0,\infty]$

La topología usual de $[0,\infty]$ es la que tiene como abiertos

las uniones arbitrarias de intervalos abiertos, que pueden ser de tres tipos:

$$\begin{split}]\alpha,\beta & [= \left\{ x \in [0,\infty] \ : \ \alpha < x < \beta \right\} \\ & [0,\beta [= \left\{ x \in [0,\infty] \ : \ x < \beta \right\} \\ &]\alpha,\infty] & = \left\{ x \in [0,\infty] \ : \ \alpha < x \right\} \end{split} \qquad \text{(con } \alpha,\beta \in [0,\infty] \text{)}$$

- $\bullet \quad \left\{\, \left]\, x \varepsilon \,,\, x + \varepsilon \,\right[\,:\, \varepsilon \in \mathbb{R}^+ \,,\, \, \varepsilon < x \,\right\} \,\, \text{es base de entornos de cada} \,\, x \in \mathbb{R}^+$
- $\{[0,\varepsilon[:\varepsilon\in\mathbb{R}^+\} \text{ es base de entornos de } 0$
- ullet $[0,\infty]$ induce en \mathbb{R}^+_0 la misma topología que \mathbb{R}

FI infinito 0000000

La topología usual de $[0, \infty]$ es la que tiene como abiertos

las uniones arbitrarias de intervalos abiertos, que pueden ser de tres tipos:

$$\begin{split}]\alpha,\beta & [= \left\{ x \in [0,\infty] \ : \ \alpha < x < \beta \right\} \\ & [0,\beta [= \left\{ x \in [0,\infty] \ : \ x < \beta \right\} \\ &]\alpha,\infty] & = \left\{ x \in [0,\infty] \ : \ \alpha < x \right\} \end{split} \qquad \text{(con } \alpha,\beta \in [0,\infty] \text{)}$$

- $\{]x \varepsilon, x + \varepsilon [: \varepsilon \in \mathbb{R}^+, \varepsilon < x \}$ es base de entornos de cada $x \in \mathbb{R}^+$
- $\{[0,\varepsilon[:\varepsilon\in\mathbb{R}^+]\}$ es base de entornos de 0
- $[0,\infty]$ induce en \mathbb{R}^+_0 la misma topología que \mathbb{R}
- $\{ |\alpha, \infty| : \alpha \in \mathbb{R}^+ \}$ es base de entornos de ∞

FI infinito 0000000

La topología usual de $[0, \infty]$ es la que tiene como abiertos

las uniones arbitrarias de intervalos abiertos, que pueden ser de tres tipos:

$$\begin{split}]\alpha,\beta & [= \left\{ x \in [0,\infty] \ : \ \alpha < x < \beta \right\} \\ & [0,\beta [= \left\{ x \in [0,\infty] \ : \ x < \beta \right\} \\ &]\alpha,\infty] & = \left\{ x \in [0,\infty] \ : \ \alpha < x \right\} \end{split} \qquad \text{(con } \alpha,\beta \in [0,\infty] \text{)}$$

- $\{]x \varepsilon, x + \varepsilon [: \varepsilon \in \mathbb{R}^+, \varepsilon < x \}$ es base de entornos de cada $x \in \mathbb{R}^+$
- $\{[0,\varepsilon[:\varepsilon\in\mathbb{R}^+]\}$ es base de entornos de 0
- $[0,\infty]$ induce en \mathbb{R}^+_0 la misma topología que \mathbb{R}
- $\{ |\alpha, \infty| : \alpha \in \mathbb{R}^+ \}$ es base de entornos de ∞
- Si $x_n \in [0, \infty]$ para todo $n \in \mathbb{N}$, se tiene:

$$\{x_n\} \to \infty \iff \forall \alpha \in \mathbb{R}^+ \exists m \in \mathbb{N} : n \geqslant m \Rightarrow \alpha < x_n$$

Relación entre el orden y la topología de $[0,\infty]$

El infinito

0000000

```
La mejor descripción de ambos
```

Relación entre el orden y la topología de $[0,\infty]$

La mejor descripción de ambos

La función $f:[0,1] \to [0,\infty]$ definida por:

$$f(t) = \frac{t}{1-t} \quad \forall t \in [0,1[$$
 $y \quad f(1) = \infty$

Relación entre el orden y la topología de $[0, \infty]$

La mejor descripción de ambos

El infinito

0000000

La función $f:[0,1] \to [0,\infty]$ definida por:

$$f(t) = \frac{t}{1-t} \quad \forall t \in [0,1[$$
 y $f(1) = \infty$

es un homeomorfismo creciente, luego identifica [0,1] y $[0,\infty]$ como espacios topológicos y como conjuntos ordenados

Relación entre el orden y la topología de $[0,\infty]$

La mejor descripción de ambos

La función $f:[0,1] \to [0,\infty]$ definida por:

$$f(t) = \frac{t}{1-t} \quad \forall t \in [0,1[$$
 y $f(1) = \infty$

es un homeomorfismo creciente, luego identifica [0,1] y $[0,\infty]$ como espacios topológicos y como conjuntos ordenados

Vemos por ejemplo que $[0,\infty]$ es metrizable, compacto y conexo

Relación entre el orden y la topología de $[0,\infty]$

La mejor descripción de ambos

La función $f:[0,1] \to [0,\infty]$ definida por:

$$f(t) = \frac{t}{1-t} \quad \forall t \in [0,1[$$
 y $f(1) = \infty$

es un homeomorfismo creciente, luego identifica [0,1] y $[0,\infty]$ como espacios topológicos y como conjuntos ordenados

Vemos por ejemplo que $[0,\infty]$ es metrizable, compacto y conexo

Compatibilidad de la topología con el orden

Relación entre el orden y la topología de $[0, \infty]$

La mejor descripción de ambos

FI infinito 0000000

La función $f:[0,1] \to [0,\infty]$ definida por:

$$f(t) = \frac{t}{1-t} \quad \forall t \in [0,1[$$
 y $f(1) = \infty$

es un homeomorfismo creciente, luego identifica [0,1] y $[0,\infty]$ como espacios topológicos y como conjuntos ordenados

Vemos por ejemplo que $[0,\infty]$ es metrizable, compacto y conexo

Compatibilidad de la topología con el orden

Si $\{x_n\}$ e $\{y_n\}$ son sucesiones convergentes en $[0,\infty]$, entonces:

Relación entre el orden y la topología de $[0, \infty]$

La mejor descripción de ambos

FI infinito 0000000

La función $f:[0,1] \to [0,\infty]$ definida por:

$$f(t) = \frac{t}{1-t} \quad \forall t \in [0,1[$$
 y $f(1) = \infty$

es un homeomorfismo creciente, luego identifica [0,1] y $[0,\infty]$ como espacios topológicos y como conjuntos ordenados

Vemos por ejemplo que $[0,\infty]$ es metrizable, compacto y conexo

Compatibilidad de la topología con el orden

Si $\{x_n\}$ e $\{y_n\}$ son sucesiones convergentes en $[0,\infty]$, entonces:

$$x_n \leqslant y_n \ \forall n \in \mathbb{N} \implies \lim_{n \to \infty} x_n \leqslant \lim_{n \to \infty} y_n$$

El infinito

0000000

Convergencia de las sucesiones monótonas

El infinito

0000000

Convergencia de las sucesiones monótonas

Toda sucesión monótona $\{x_n\}$, de elementos de $[0,\infty]$, es convergente

El infinito

0000000

Convergencia de las sucesiones monótonas

Toda sucesión monótona $\{x_n\}$, de elementos de $[0,\infty]$, es convergente

 $\implies \lim_{n \to \infty} x_n = \sup \{x_n : n \in \mathbb{N}\}\$ • $\{x_n\}$ creciente

Convergencia de las sucesiones monótonas

Toda sucesión monótona $\{x_n\}$, de elementos de $[0,\infty]$, es convergente

- $\implies \lim_{n \to \infty} x_n = \sup \{x_n : n \in \mathbb{N}\}$ • $\{x_n\}$ creciente
 - en cuyo caso escribimos $\{x_n\} \nearrow x$ donde $x = \sup\{x_n : n \in \mathbb{N}\}$

El infinito

0000000

Convergencia de las sucesiones monótonas

Toda sucesión monótona $\{x_n\}$, de elementos de $[0,\infty]$, es convergente

- $\implies \lim_{n \to \infty} x_n = \sup \{x_n : n \in \mathbb{N}\}$ • $\{x_n\}$ creciente en cuyo caso escribimos $\{x_n\} \nearrow x$ donde $x = \sup\{x_n : n \in \mathbb{N}\}$
- $\{x_n\}$ decreciente $\Longrightarrow \lim_{n\to\infty} x_n = \inf\{x_n : n\in\mathbb{N}\}$

El infinito

Convergencia de las sucesiones monótonas

Toda sucesión monótona $\{x_n\}$, de elementos de $[0,\infty]$, es convergente

- $\{x_n\}$ creciente $\Longrightarrow \lim_{n\to\infty} x_n = \sup\{x_n : n\in\mathbb{N}\}$
- en cuyo caso escribimos $\{x_n\} \nearrow x$ donde $x = \sup\{x_n : n \in \mathbb{N}\}$
- $\{x_n\}$ decreciente $\implies \lim_{n \to \infty} x_n = \inf\{x_n : n \in \mathbb{N}\}$ y entonces escribimos $\{x_n\} \searrow x$ donde $x = \inf\{x_n : n \in \mathbb{N}\}$

Convergencia de las sucesiones monótonas

Toda sucesión monótona $\{x_n\}$, de elementos de $[0,\infty]$, es convergente

- $\{x_n\}$ creciente $\Longrightarrow \lim_{n\to\infty} x_n = \sup\{x_n : n\in\mathbb{N}\}$ en cuyo caso escribimos $\{x_n\} \nearrow x$ donde $x = \sup\{x_n : n \in \mathbb{N}\}$
- $\{x_n\}$ decreciente $\Longrightarrow \lim_{n\to\infty} x_n = \inf\{x_n : n\in\mathbb{N}\}$ y entonces escribimos $\{x_n\} \setminus x$ donde $x = \inf\{x_n : n \in \mathbb{N}\}$

Límites superior e inferior

FI infinito 0000000

Convergencia de las sucesiones monótonas

Toda sucesión monótona $\{x_n\}$, de elementos de $[0,\infty]$, es convergente

- $\{x_n\}$ creciente $\Longrightarrow \lim_{n\to\infty} x_n = \sup\{x_n : n\in\mathbb{N}\}$ en cuyo caso escribimos $\{x_n\} \nearrow x$ donde $x = \sup\{x_n : n \in \mathbb{N}\}$
- $\{x_n\}$ decreciente $\Longrightarrow \lim_{n\to\infty} x_n = \inf\{x_n : n\in\mathbb{N}\}$ y entonces escribimos $\{x_n\} \setminus x$ donde $x = \inf\{x_n : n \in \mathbb{N}\}$

Límites superior e inferior

FI infinito 0000000

Toda sucesión $\{x_n\}$ en $[0,\infty]$

tiene un límite superior y un límite inferior, dados por:

Convergencia de las sucesiones monótonas

Toda sucesión monótona $\{x_n\}$, de elementos de $[0,\infty]$, es convergente

- $\{x_n\}$ creciente $\Longrightarrow \lim_{n\to\infty} x_n = \sup\{x_n : n\in\mathbb{N}\}$ en cuyo caso escribimos $\{x_n\} \nearrow x$ donde $x = \sup\{x_n : n \in \mathbb{N}\}$
- $\{x_n\}$ decreciente $\Longrightarrow \lim_{n\to\infty} x_n = \inf\{x_n : n\in\mathbb{N}\}$ y entonces escribimos $\{x_n\} \setminus x$ donde $x = \inf\{x_n : n \in \mathbb{N}\}$

Límites superior e inferior

FI infinito 0000000

Toda sucesión
$$\{x_n\}$$
 en $[0,\infty]$

tiene un límite superior y un límite inferior, dados por:

$$\limsup_{n\to\infty} x_n = \lim_{n\to\infty} \left(\sup\{x_k : k\geqslant n\} \right) \quad \text{y} \quad \liminf_{n\to\infty} x_n = \lim_{n\to\infty} \left(\inf\{x_k : k\geqslant n\} \right)$$

Convergencia de las sucesiones monótonas

Toda sucesión monótona $\{x_n\}$, de elementos de $[0,\infty]$, es convergente

- $\{x_n\}$ creciente $\Longrightarrow \lim_{n\to\infty} x_n = \sup\{x_n : n\in\mathbb{N}\}$ en cuyo caso escribimos $\{x_n\} \nearrow x$ donde $x = \sup\{x_n : n \in \mathbb{N}\}$
- $\{x_n\}$ decreciente $\Longrightarrow \lim_{n\to\infty} x_n = \inf\{x_n : n\in\mathbb{N}\}$ y entonces escribimos $\{x_n\} \setminus x$ donde $x = \inf\{x_n : n \in \mathbb{N}\}$

Límites superior e inferior

FI infinito 0000000

Toda sucesión $\{x_n\}$ en $[0,\infty]$

tiene un límite superior y un límite inferior, dados por:

$$\limsup_{n\to\infty} x_n = \lim_{n\to\infty} \left(\sup\{x_k : k\geqslant n\} \right) \quad \text{y} \quad \liminf_{n\to\infty} x_n = \lim_{n\to\infty} \left(\inf\{x_k : k\geqslant n\} \right)$$

Es claro que $\liminf x_n \le \limsup x_n$, y para $x \in [0, \infty]$ se tiene: $n \rightarrow \infty$

Convergencia de las sucesiones monótonas

Toda sucesión monótona $\{x_n\}$, de elementos de $[0,\infty]$, es convergente

•
$$\{x_n\}$$
 creciente $\Longrightarrow \lim_{n\to\infty} x_n = \sup\{x_n : n\in\mathbb{N}\}$

en cuyo caso escribimos $\{x_n\} \nearrow x$ donde $x = \sup\{x_n : n \in \mathbb{N}\}$

•
$$\{x_n\}$$
 decreciente $\Longrightarrow \lim_{n\to\infty} x_n = \inf\{x_n : n\in\mathbb{N}\}$

y entonces escribimos $\{x_n\} \setminus x$ donde $x = \inf\{x_n : n \in \mathbb{N}\}$

Límites superior e inferior

FI infinito 0000000

Toda sucesión $\{x_n\}$ en $[0,\infty]$

tiene un límite superior y un límite inferior, dados por:

$$\limsup_{n\to\infty} x_n = \lim_{n\to\infty} \left(\sup\{x_k : k\geqslant n\} \right) \quad \text{y} \quad \liminf_{n\to\infty} x_n = \lim_{n\to\infty} \left(\inf\{x_k : k\geqslant n\} \right)$$

Es claro que $\liminf x_n \leq \limsup x_n$, y para $x \in [0, \infty]$ se tiene: $n \rightarrow \infty$

$$\{x_n\} \to x \quad \iff \quad \liminf_{n \to \infty} x_n = \limsup_{n \to \infty} x_n = x$$

Primeras propiedades

Intervalos 000

La suma en $[0,\infty]$

El infinito

El infinito

0000000

Extendemos la suma usual de \mathbb{R}_0^+ definiendo:

$$x + \infty = \infty + x = \infty \quad \forall x \in [0, \infty]$$

El infinito

0000000

Definición de suma

Extendemos la suma usual de \mathbb{R}^+_0 definiendo:

$$x + \infty = \infty + x = \infty \quad \forall x \in [0, \infty]$$

Propiedades de la suma

El infinito

0000000

Extendemos la suma usual de \mathbb{R}_0^+ definiendo:

$$x + \infty = \infty + x = \infty \quad \forall x \in [0, \infty]$$

Propiedades de la suma

Asociativa y conmutativa, con 0 como elemento neutro

El infinito

0000000

Extendemos la suma usual de \mathbb{R}_0^+ definiendo:

$$x + \infty = \infty + x = \infty \quad \forall x \in [0, \infty]$$

Propiedades de la suma

- Asociativa y conmutativa, con 0 como elemento neutro
- No verifica la ley de cancelación: para $x,y,z \in [0,\infty]$, de x+z=y+z sólo se deduce que x=y cuando $z\neq\infty$

0000000

Extendemos la suma usual de \mathbb{R}_0^+ definiendo:

$$x + \infty = \infty + x = \infty \quad \forall x \in [0, \infty]$$

Propiedades de la suma

- Asociativa y conmutativa, con 0 como elemento neutro
- No verifica la ley de cancelación: para $x, y, z \in [0, \infty]$, de x+z=y+z sólo se deduce que x=y cuando $z\neq\infty$
- Compatible con el orden: para $x,y,z \in [0,\infty]$ se tiene:

$$x \leqslant y \implies x + z \leqslant y + z$$

lo que permite sumar miembro a miembro dos desigualdades

0000000

Extendemos la suma usual de \mathbb{R}_0^+ definiendo:

$$x + \infty = \infty + x = \infty \quad \forall x \in [0, \infty]$$

Propiedades de la suma

- Asociativa y conmutativa, con 0 como elemento neutro
- No verifica la ley de cancelación: para $x, y, z \in [0, \infty]$, de x+z=y+z sólo se deduce que x=y cuando $z\neq\infty$
- Compatible con el orden: para $x, y, z \in [0, \infty]$ se tiene:

$$x \leqslant y \implies x + z \leqslant y + z$$

lo que permite sumar miembro a miembro dos desigualdades

Continua: si $\{x_n\}$ e $\{y_n\}$ son sucesiones convergentes en $[0,\infty]$, entonces: $\lim_{n \to \infty} (x_n + y_n) = \lim_{n \to \infty} x_n + \lim_{n \to \infty} y_n$

El infinito

0000000

Extendemos la suma usual de \mathbb{R}_0^+ definiendo:

$$x + \infty = \infty + x = \infty \quad \forall x \in [0, \infty]$$

Propiedades de la suma

- Asociativa y conmutativa, con 0 como elemento neutro
- No verifica la ley de cancelación: para $x, y, z \in [0, \infty]$, de x+z=y+z sólo se deduce que x=y cuando $z\neq\infty$
- Compatible con el orden: para $x, y, z \in [0, \infty]$ se tiene:

$$x \leqslant y \implies x+z \leqslant y+z$$

lo que permite sumar miembro a miembro dos desigualdades

Continua: si $\{x_n\}$ e $\{y_n\}$ son successiones convergentes en $[0,\infty]$, $\lim_{n \to \infty} (x_n + y_n) = \lim_{n \to \infty} x_n + \lim_{n \to \infty} y_n$ entonces:

Sumas de series en $[0,\infty]$

Sumas de series en $[0, \infty]$

El infinito

00000•0

Existencia de la suma de una serie

Sumas de series en $[0, \infty]$

El infinito

0000000

Existencia de la suma de una serie

Si $x_n \in [0, \infty]$ para todo $n \in \mathbb{N}$, siempre tiene sentido escribir:

0000000

Existencia de la suma de una serie

Si $x_n \in [0, \infty]$ para todo $n \in \mathbb{N}$, siempre tiene sentido escribir:

$$\sum_{n=1}^{\infty} x_n = \lim_{n \to \infty} \sum_{k=1}^{n} x_k$$

Sumas de series en $[0, \infty]$

El infinito

0000000

Existencia de la suma de una serie

Si $x_n \in [0, \infty]$ para todo $n \in \mathbb{N}$, siempre tiene sentido escribir:

$$\sum_{n=1}^{\infty} x_n = \lim_{n \to \infty} \sum_{k=1}^{n} x_k$$

Asociatividad y conmutatividad de las sumas de series

0000000

Existencia de la suma de una serie

Si $x_n \in [0, \infty]$ para todo $n \in \mathbb{N}$, siempre tiene sentido escribir:

$$\sum_{n=1}^{\infty} x_n = \lim_{n \to \infty} \sum_{k=1}^{n} x_k$$

Asociatividad y conmutatividad de las sumas de series

Para toda función $\alpha: \mathbb{N} \times \mathbb{N} \to [0, \infty]$

y toda biyección $\tau: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$, se tiene:

0000000

Existencia de la suma de una serie

Si $x_n \in [0, \infty]$ para todo $n \in \mathbb{N}$, siempre tiene sentido escribir:

$$\sum_{n=1}^{\infty} x_n = \lim_{n \to \infty} \sum_{k=1}^{n} x_k$$

Asociatividad y conmutatividad de las sumas de series

Para toda función $\alpha: \mathbb{N} \times \mathbb{N} \to [0, \infty]$

y toda biyección $\tau: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$, se tiene:

$$\sum_{n=1}^{\infty}\sum_{m=1}^{\infty}\alpha(n,m)=\sum_{k=1}^{\infty}\alpha\Big(\tau(k)\Big)=\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}\alpha(n,m)$$

El producto en $[0, \infty]$

Definición del producto

El producto en $[0,\infty]$

Definición del producto

Extendemos el producto usual de \mathbb{R}^+_0 definiendo:

$$x \infty = \infty \ x = \infty \ \forall x \in]0, \infty], \quad 0 \infty = \infty \ 0 = 0$$

El producto en $[0,\infty]$

Definición del producto

Extendemos el producto usual de \mathbb{R}_0^+ definiendo:

$$x \infty = \infty \ x = \infty \ \forall x \in]0, \infty], \quad 0 \infty = \infty \ 0 = 0$$

000000

Extendemos el producto usual de \mathbb{R}_0^+ definiendo:

$$x \infty = \infty \ x = \infty \ \forall x \in]0, \infty], \quad 0 \infty = \infty \ 0 = 0$$

Propiedades del producto

Asociativo, conmutativo y distributivo respecto de la suma

000000

Extendemos el producto usual de \mathbb{R}_0^+ definiendo:

$$x \infty = \infty \ x = \infty \ \forall x \in]0, \infty], \quad 0 \infty = \infty \ 0 = 0$$

- Asociativo, conmutativo y distributivo respecto de la suma
- Compatible con el orden: para $x, y, z, t \in [0, \infty]$ se tiene:

$$x \leqslant y, \quad z \leqslant t \quad \Longrightarrow \quad xz \leqslant yt$$

000000

Extendemos el producto usual de \mathbb{R}_0^+ definiendo:

$$x \infty = \infty \ x = \infty \ \forall x \in]0, \infty], \quad 0 \infty = \infty \ 0 = 0$$

- Asociativo, conmutativo y distributivo respecto de la suma
- Compatible con el orden: para $x, y, z, t \in [0, \infty]$ se tiene:

$$x\leqslant y\,,\ z\leqslant t\quad\Longrightarrow\quad x\,z\leqslant y\,t$$

- Para $x,y \in [0,\infty]$, el producto es continuo
 - en el punto (x,y) si, y sólo si, $\{x,y\} \neq \{0,\infty\}$

000000

Extendemos el producto usual de \mathbb{R}_0^+ definiendo:

$$x \infty = \infty \ x = \infty \ \forall x \in]0, \infty], \quad 0 \infty = \infty \ 0 = 0$$

- Asociativo, conmutativo y distributivo respecto de la suma
- Compatible con el orden: para $x, y, z, t \in [0, \infty]$ se tiene:

$$x\leqslant y\,,\ z\leqslant t\quad\Longrightarrow\quad x\,z\leqslant y\,t$$

- Para $x,y \in [0,\infty]$, el producto es continuo
 - en el punto (x,y) si, y sólo si, $\{x,y\} \neq \{0,\infty\}$
- Si $x_n, y_n \in [0, \infty]$ para todo $n \in \mathbb{N}$, y $x, y \in [0, \infty]$, entonces:

$$\{x_n\} \nearrow x, \quad \{y_n\} \nearrow y \quad \implies \quad \{x_n y_n\} \nearrow xy$$

000000

Extendemos el producto usual de \mathbb{R}_0^+ definiendo:

$$x \infty = \infty \ x = \infty \ \forall x \in]0, \infty], \quad 0 \infty = \infty \ 0 = 0$$

Propiedades del producto

- Asociativo, conmutativo y distributivo respecto de la suma
- Compatible con el orden: para $x, y, z, t \in [0, \infty]$ se tiene:

$$x\leqslant y\,,\ z\leqslant t\quad\Longrightarrow\quad x\,z\leqslant y\,t$$

Para $x,y \in [0,\infty]$, el producto es continuo

en el punto
$$(x,y)$$
 si, y sólo si, $\{x,y\} \neq \{0,\infty\}$

• Si $x_n, y_n \in [0, \infty]$ para todo $n \in \mathbb{N}$, y $x, y \in [0, \infty]$, entonces:

$$\{x_n\} \nearrow x, \quad \{y_n\} \nearrow y \quad \Longrightarrow \quad \{x_n y_n\} \nearrow xy$$

 $\bullet \quad \text{y en particular:} \quad \alpha \sum y_n = \sum \alpha y_n \quad \forall \, \alpha \in [\,0\,,\infty\,]$

FI infinito 000000

Extendemos el producto usual de \mathbb{R}_0^+ definiendo:

$$x \infty = \infty \ x = \infty \ \forall x \in]0, \infty], \quad 0 \infty = \infty \ 0 = 0$$

Propiedades del producto

- Asociativo, conmutativo y distributivo respecto de la suma
- Compatible con el orden: para $x, y, z, t \in [0, \infty]$ se tiene:

$$x\leqslant y\,,\ z\leqslant t\quad\Longrightarrow\quad x\,z\leqslant y\,t$$

Para $x,y \in [0,\infty]$, el producto es continuo

en el punto
$$(x,y)$$
 si, y sólo si, $\{x,y\} \neq \{0,\infty\}$

• Si $x_n, y_n \in [0, \infty]$ para todo $n \in \mathbb{N}$, y $x, y \in [0, \infty]$, entonces:

$$\{x_n\} \nearrow x, \quad \{y_n\} \nearrow y \quad \Longrightarrow \quad \{x_n y_n\} \nearrow xy$$

 $\bullet \quad \text{y en particular:} \quad \alpha \sum y_n = \sum \alpha \, y_n \quad \forall \, \alpha \in [\, 0 \, , \infty \,]$

Medida elemental de los intervalos acotados

Medida elemental de los intervalos acotados

```
Notación para todo lo que sigue
```

Medida elemental de los intervalos acotados

Notación para todo lo que sigue

N será siempre un número natural fijo y $\mathcal{P}(\mathbb{R}^N)$ el conjunto de todos los subconjuntos de \mathbb{R}^N

Notación para todo lo que sigue

N será siempre un número natural fijo y

 $\mathcal{P}(\mathbb{R}^N)$ el conjunto de todos los subconjuntos de \mathbb{R}^N

Escribiremos: $\Delta_n = \{k \in \mathbb{N} : k \leqslant n\} \quad \forall n \in \mathbb{N}$

Notación para todo lo que sigue

N será siempre un número natural fijo y

 $\mathcal{P}(\mathbb{R}^N)$ el conjunto de todos los subconjuntos de \mathbb{R}^N

Escribiremos: $\Delta_n = \{k \in \mathbb{N} : k \leqslant n\} \quad \forall n \in \mathbb{N}$

Para $k \in \Delta_N$ llamamos $\pi_k : \mathbb{R}^N \to \mathbb{R}$ a la k-ésima proyección coordenada,

es decir: $\pi_k(x) = x(k) \quad \forall x \in \mathbb{R}^N$

Notación para todo lo que sigue

N será siempre un número natural fijo y

 $\mathcal{P}(\mathbb{R}^N)$ el conjunto de todos los subconjuntos de \mathbb{R}^N

Escribiremos: $\Delta_n = \{k \in \mathbb{N} : k \leqslant n\} \quad \forall n \in \mathbb{N}$

Para $k \in \Delta_N$ llamamos $\pi_k : \mathbb{R}^N \to \mathbb{R}$ a la k-ésima proyección coordenada,

es decir: $\pi_k(x) = x(k) \quad \forall x \in \mathbb{R}^N$

Intervalos acotados y su medida

Notación para todo lo que sigue

N será siempre un número natural fijo y

 $\mathcal{P}(\mathbb{R}^N)$ el conjunto de todos los subconjuntos de \mathbb{R}^N

Escribiremos: $\Delta_n = \{k \in \mathbb{N} : k \leqslant n\} \quad \forall n \in \mathbb{N}$

Para $k \in \Delta_N$ llamamos $\pi_k : \mathbb{R}^N \to \mathbb{R}$ a la k-ésima proyección coordenada,

es decir: $\pi_k(x) = x(k) \quad \forall x \in \mathbb{R}^N$

Intervalos acotados y su medida

Un intervalo en \mathbb{R}^N es un producto cartesiano de intervalos en \mathbb{R}

Notación para todo lo que sigue

 ${\cal N}$ será siempre un número natural fijo y

 $\mathcal{P}(\mathbb{R}^N)$ el conjunto de todos los subconjuntos de \mathbb{R}^N

Escribiremos: $\Delta_n = \{k \in \mathbb{N} : k \leqslant n\} \quad \forall n \in \mathbb{N}$

Para $k \in \Delta_N$ llamamos $\pi_k : \mathbb{R}^N \to \mathbb{R}$ a la k-ésima proyección coordenada,

es decir: $\pi_k(x) = x(k) \quad \forall x \in \mathbb{R}^N$

Intervalos acotados y su medida

Un intervalo en \mathbb{R}^N es un producto cartesiano de intervalos en \mathbb{R}

y ${\mathcal J}$ será el conjunto de todos los intervalos acotados en ${\mathbb R}^N$

Notación para todo lo que sigue

N será siempre un número natural fijo y

 $\mathcal{P}(\mathbb{R}^N)$ el conjunto de todos los subconjuntos de \mathbb{R}^N

Escribiremos: $\Delta_n = \{k \in \mathbb{N} : k \leqslant n\} \quad \forall n \in \mathbb{N}$

Para $k \in \Delta_N$ llamamos $\pi_k : \mathbb{R}^N \to \mathbb{R}$ a la k-ésima proyección coordenada,

es decir: $\pi_k(x) = x(k) \quad \forall x \in \mathbb{R}^N$

Intervalos acotados y su medida

Un intervalo en \mathbb{R}^N es un producto cartesiano de intervalos en \mathbb{R}

y ${\mathcal J}$ será el conjunto de todos los intervalos acotados en ${\mathbb R}^N$

La medida elemental de los intervalos acotados

es la función $M:\mathcal{J} \to \mathbb{R}^+_0$ definida por $M(\emptyset)=0$ y

Notación para todo lo que sigue

 ${\cal N}$ será siempre un número natural fijo y

 $\mathcal{P}(\mathbb{R}^N)$ el conjunto de todos los subconjuntos de \mathbb{R}^N

Escribiremos: $\Delta_n = \{k \in \mathbb{N} : k \leqslant n\} \quad \forall n \in \mathbb{N}$

Para $k \in \Delta_N$ llamamos $\pi_k : \mathbb{R}^N \to \mathbb{R}$ a la k-ésima proyección coordenada,

es decir: $\pi_k(x) = x(k) \quad \forall x \in \mathbb{R}^N$

Intervalos acotados y su medida

Un intervalo en \mathbb{R}^N es un producto cartesiano de intervalos en \mathbb{R}

y ${\mathcal J}$ será el conjunto de todos los intervalos acotados en ${\mathbb R}^N$

La medida elemental de los intervalos acotados

es la función $M:\mathcal{J}
ightarrow \mathbb{R}^+_0$ definida por $M(\emptyset)=0$ y

$$M(I) = \prod_{k=1}^{N} \left(\sup \pi_k(I) - \inf \pi_k(I) \right) \quad \forall I \in \mathcal{J} \setminus \{\emptyset\}$$

N será siempre un número natural fijo y

 $\mathcal{P}(\mathbb{R}^N)$ el conjunto de todos los subconjuntos de \mathbb{R}^N

Escribiremos: $\Delta_n = \{k \in \mathbb{N} : k \leq n\} \quad \forall n \in \mathbb{N}$

Para $k \in \Delta_N$ llamamos $\pi_k : \mathbb{R}^N \to \mathbb{R}$ a la k-ésima proyección coordenada,

es decir: $\pi_k(x) = x(k) \quad \forall x \in \mathbb{R}^N$

Un intervalo en \mathbb{R}^N es un producto cartesiano de intervalos en \mathbb{R}

y ${\mathcal J}$ será el conjunto de todos los intervalos acotados en ${\mathbb R}^N$

La medida elemental de los intervalos acotados

es la función $M: \mathcal{J} \to \mathbb{R}_0^+$ definida por $M(\emptyset) = 0$ y

$$M(I) = \prod_{k=1}^{N} \left(\sup \pi_k(I) - \inf \pi_k(I) \right) \quad \forall I \in \mathcal{J} \setminus \{\emptyset\}$$

Para $I \in \mathcal{J}$ se dice que M(I) es la medida elemental de I

Medida exterior, conjuntos medibles y medida de Lebesgue

La medida exterior de Lebesgue es la función $\lambda^*:\mathcal{P}(\mathbb{R}^N) \to [0,\infty]$ dada por

Medida exterior, conjuntos medibles y medida de Lebesgue

La medida exterior de Lebesgue es la función $\lambda^*:\mathcal{P}(\mathbb{R}^N) \to [0,\infty]$ dada por

$$\lambda^*(E) = \inf \left\{ \sum_{n=1}^{\infty} M(I_n) : I_n \in \mathcal{J} \ \forall n \in \mathbb{N}, \ E \subset \bigcup_{n=1}^{\infty} I_n \right\} \quad \forall E \in \mathcal{P}(\mathbb{R}^N)$$

Medida exterior, conjuntos medibles y medida de Lebesgue

La medida exterior de Lebesgue es la función $\lambda^*:\mathcal{P}(\mathbb{R}^N) \to [0,\infty]$ dada por

$$\lambda^*(E) = \inf \left\{ \sum_{n=1}^{\infty} M(I_n) : I_n \in \mathcal{J} \ \forall n \in \mathbb{N}, \ E \subset \bigcup_{n=1}^{\infty} I_n \right\} \quad \forall E \in \mathcal{P}(\mathbb{R}^N)$$

Para cada $E \in \mathcal{P}(\mathbb{R}^N)$, se dice que $\lambda^*(E)$ es la medida exterior de E

Medida exterior, conjuntos medibles y medida de Lebesgue

La medida exterior de Lebesgue es la función $\lambda^*:\mathcal{P}(\mathbb{R}^N) \to [0,\infty]$ dada por

$$\lambda^*(E) = \inf \left\{ \sum_{n=1}^{\infty} M(I_n) : I_n \in \mathcal{J} \ \forall n \in \mathbb{N}, \ E \subset \bigcup_{n=1}^{\infty} I_n \right\} \quad \forall E \in \mathcal{P}(\mathbb{R}^N)$$

Para cada $E\in\mathcal{P}(\mathbb{R}^N)$, se dice que $\lambda^*(E)$ es la medida exterior de E Un conjunto $E\in\mathcal{P}(\mathbb{R}^N)$ es medible cuando

Medida exterior, conjuntos medibles y medida de Lebesgue

La medida exterior de Lebesgue es la función $\lambda^*:\mathcal{P}(\mathbb{R}^N) \to [0,\infty]$ dada por

$$\lambda^*(E) = \inf \left\{ \sum_{n=1}^{\infty} M(I_n) : I_n \in \mathcal{J} \ \forall n \in \mathbb{N}, \ E \subset \bigcup_{n=1}^{\infty} I_n \right\} \quad \forall E \in \mathcal{P}(\mathbb{R}^N)$$

Para cada $E \in \mathcal{P}(\mathbb{R}^N)$, se dice que $\lambda^*(E)$ es la medida exterior de E

Un conjunto $E \in \mathcal{P}(\mathbb{R}^N)$ es medible cuando

$$\lambda^*(W) = \lambda^*(W \cap E) + \lambda^*(W \setminus E) \qquad \forall \ W \in \mathcal{P}(\mathbb{R}^N)$$

Medida exterior, conjuntos medibles y medida de Lebesgue

La medida exterior de Lebesgue es la función $\lambda^*:\mathcal{P}(\mathbb{R}^N) \to [0,\infty]$ dada por

$$\lambda^*(E) = \inf \left\{ \sum_{n=1}^{\infty} M(I_n) : I_n \in \mathcal{J} \ \forall n \in \mathbb{N}, \ E \subset \bigcup_{n=1}^{\infty} I_n \right\} \quad \forall E \in \mathcal{P}(\mathbb{R}^N)$$

Para cada $E \in \mathcal{P}(\mathbb{R}^N)$, se dice que $\lambda^*(E)$ es la medida exterior de E

Un conjunto $E \in \mathcal{P}(\mathbb{R}^N)$ es medible cuando

$$\lambda^*(W) = \lambda^*(W \cap E) + \lambda^*(W \setminus E) \qquad \forall \ W \in \mathcal{P}(\mathbb{R}^N)$$

Denotaremos por $\mathcal M$ a la familia de todos los subconjuntos medibles de $\mathbb R^N$

Medida exterior, conjuntos medibles y medida de Lebesgue

La medida exterior de Lebesgue es la función $\lambda^*:\mathcal{P}(\mathbb{R}^N) \to [0,\infty]$ dada por

$$\lambda^*(E) = \inf \left\{ \sum_{n=1}^{\infty} M(I_n) : I_n \in \mathcal{J} \ \forall n \in \mathbb{N}, \ E \subset \bigcup_{n=1}^{\infty} I_n \right\} \quad \forall E \in \mathcal{P}(\mathbb{R}^N)$$

Para cada $E \in \mathcal{P}(\mathbb{R}^N)$, se dice que $\lambda^*(E)$ es la medida exterior de E

Un conjunto $E \in \mathcal{P}(\mathbb{R}^N)$ es medible cuando

$$\lambda^*(W) = \lambda^*(W \cap E) + \lambda^*(W \setminus E) \qquad \forall \ W \in \mathcal{P}(\mathbb{R}^N)$$

Denotaremos por $\mathcal M$ a la familia de todos los subconjuntos medibles de $\mathbb R^N$

La medida de Lebesgue en \mathbb{R}^N es la restricción de λ^* a \mathcal{M} , es decir,

La medida exterior de Lebesgue es la función $\lambda^* : \mathcal{P}(\mathbb{R}^N) \to [0, \infty]$ dada por

$$\lambda^*(E) = \inf \left\{ \sum_{n=1}^{\infty} M(I_n) : I_n \in \mathcal{J} \ \forall n \in \mathbb{N}, \ E \subset \bigcup_{n=1}^{\infty} I_n \right\} \quad \forall E \in \mathcal{P}(\mathbb{R}^N)$$

Para cada $E \in \mathcal{P}(\mathbb{R}^N)$, se dice que $\lambda^*(E)$ es la medida exterior de E

Un conjunto $E \in \mathcal{P}(\mathbb{R}^N)$ es medible cuando

$$\lambda^*(W) = \lambda^*(W \cap E) + \lambda^*(W \setminus E) \quad \forall W \in \mathcal{P}(\mathbb{R}^N)$$

Denotaremos por ${\mathcal M}$ a la familia de todos los subconjuntos medibles de ${\mathbb R}^N$

La medida de Lebesgue en \mathbb{R}^N es la restricción de λ^* a \mathcal{M} , es decir,

la función $\lambda: \mathcal{M} \to [0, \infty]$ dada por: $\lambda(E) = \lambda^*(E) \quad \forall E \in \mathcal{M}$

Medida exterior, conjuntos medibles y medida de Lebesgue

La medida exterior de Lebesgue es la función $\lambda^*:\mathcal{P}(\mathbb{R}^N) \to [0,\infty]$ dada por

$$\lambda^*(E) = \inf \left\{ \sum_{n=1}^{\infty} M(I_n) : I_n \in \mathcal{J} \ \forall n \in \mathbb{N}, \ E \subset \bigcup_{n=1}^{\infty} I_n \right\} \quad \forall E \in \mathcal{P}(\mathbb{R}^N)$$

Para cada $E \in \mathcal{P}(\mathbb{R}^N)$, se dice que $\lambda^*(E)$ es la medida exterior de E

Un conjunto $E \in \mathcal{P}(\mathbb{R}^N)$ es medible cuando

$$\lambda^*(W) = \lambda^*(W \cap E) + \lambda^*(W \setminus E) \qquad \forall \ W \in \mathcal{P}(\mathbb{R}^N)$$

Denotaremos por $\mathcal M$ a la familia de todos los subconjuntos medibles de $\mathbb R^N$

La medida de Lebesgue en \mathbb{R}^N es la restricción de λ^* a \mathcal{M} , es decir,

la función
$$\lambda: \mathcal{M} \to [0, \infty]$$
 dada por: $\lambda(E) = \lambda^*(E) \quad \forall \ E \in \mathcal{M}$

Para cada $E \in \mathcal{M}$ se dice que $\lambda(E)$ es la medida de E

Crecimiento

pesgue Primeras propiedades

●○○○○○

Propiedades de la medida exterior de Lebesgue

Crecimiento

La medida exterior de Lebesgue es una función creciente, es decir:

Crecimiento

La medida exterior de Lebesgue es una función creciente, es decir:

$$E \subset F \subset \mathbb{R}^N \implies \lambda^*(E) \leqslant \lambda^*(F)$$

Crecimiento

El infinito

La medida exterior de Lebesgue es una función creciente, es decir:

$$E \subset F \subset \mathbb{R}^N \implies \lambda^*(E) \leqslant \lambda^*(F)$$

La propiedad más importante

Crecimiento

La medida exterior de Lebesgue es una función creciente, es decir:

$$E \subset F \subset \mathbb{R}^N \implies \lambda^*(E) \leqslant \lambda^*(F)$$

La propiedad más importante

Para toda sucesión $\{E_n\}$ de subconjuntos de \mathbb{R}^N , se tiene:

Crecimiento

La medida exterior de Lebesgue es una función creciente, es decir:

$$E \subset F \subset \mathbb{R}^N \implies \lambda^*(E) \leqslant \lambda^*(F)$$

La propiedad más importante

Para toda sucesión $\{E_n\}$ de subconjuntos de \mathbb{R}^N , se tiene:

$$\lambda^* \left(\bigcup_{n=1}^{\infty} E_n \right) \leqslant \sum_{n=1}^{\infty} \lambda^* (E_n)$$

Crecimiento

La medida exterior de Lebesgue es una función creciente, es decir:

$$E \subset F \subset \mathbb{R}^N \implies \lambda^*(E) \leqslant \lambda^*(F)$$

La propiedad más importante

Para toda sucesión $\{E_n\}$ de subconjuntos de \mathbb{R}^N , se tiene:

$$\lambda^* \left(\bigcup_{n=1}^{\infty} E_n \right) \leqslant \sum_{n=1}^{\infty} \lambda^* (E_n)$$

Esto se expresa diciendo que λ^* es σ -subaditiva

Crecimiento

La medida exterior de Lebesgue es una función creciente, es decir:

$$E \subset F \subset \mathbb{R}^N \implies \lambda^*(E) \leqslant \lambda^*(F)$$

La propiedad más importante

Para toda sucesión $\{E_n\}$ de subconjuntos de \mathbb{R}^N , se tiene:

$$\lambda^* \left(\bigcup_{n=1}^{\infty} E_n \right) \leqslant \sum_{n=1}^{\infty} \lambda^* (E_n)$$

Esto se expresa diciendo que λ^* es σ -subaditiva

En particular λ^* es finitamente subaditiva, esto es:

Crecimiento

La medida exterior de Lebesgue es una función creciente, es decir:

$$E \subset F \subset \mathbb{R}^N \implies \lambda^*(E) \leqslant \lambda^*(F)$$

La propiedad más importante

Para toda sucesión $\{E_n\}$ de subconjuntos de \mathbb{R}^N , se tiene:

$$\lambda^* \left(\bigcup_{n=1}^{\infty} E_n \right) \leqslant \sum_{n=1}^{\infty} \lambda^* (E_n)$$

Esto se expresa diciendo que λ^* es σ -subaditiva

En particular λ^* es finitamente subaditiva, esto es:

$$n \in \mathbb{N}, E_k \in \mathcal{P}(\mathbb{R}^N) \ \forall k \in \Delta_n \implies \lambda^* \left(\bigcup_{k=1}^n E_k\right) \leqslant \sum_{k=1}^n \lambda^*(E_k)$$

Crecimiento

La medida exterior de Lebesgue es una función creciente, es decir:

$$E \subset F \subset \mathbb{R}^N \implies \lambda^*(E) \leqslant \lambda^*(F)$$

La propiedad más importante

Para toda sucesión $\{E_n\}$ de subconjuntos de \mathbb{R}^N , se tiene:

$$\lambda^* \left(\bigcup_{n=1}^{\infty} E_n \right) \leqslant \sum_{n=1}^{\infty} \lambda^* (E_n)$$

Esto se expresa diciendo que λ^* es σ -subaditiva

En particular λ^* es finitamente subaditiva, esto es:

$$n \in \mathbb{N}, E_k \in \mathcal{P}(\mathbb{R}^N) \ \forall k \in \Delta_n \implies \lambda^* \left(\bigcup_{k=1}^n E_k\right) \leqslant \sum_{k=1}^n \lambda^*(E_k)$$

Por tanto:
$$\lambda^*(E \cup F) \leqslant \lambda^*(E) + \lambda^*(F) \quad \forall E, F \in \mathcal{P}(\mathbb{R}^N)$$

Intervalos

Una consecuencia de la subaditividad finita

Abundancia de conjuntos medibles

Abundancia de conjuntos medibles

Todo conjunto con medida exterior nula es medible, es decir:

$$E \in \mathcal{P}(\mathbb{R}^N), \quad \lambda^*(E) = 0 \implies E \in \mathcal{M}, \quad \lambda(E) = 0$$

Abundancia de conjuntos medibles

Todo conjunto con medida exterior nula es medible, es decir:

$$E \in \mathcal{P}(\mathbb{R}^N), \quad \lambda^*(E) = 0 \implies E \in \mathcal{M}, \quad \lambda(E) = 0$$

En particular, si $E \subset \mathbb{R}^N$ es numerable, entonces E es medible con $\lambda(E) = 0$

Abundancia de conjuntos medibles

Todo conjunto con medida exterior nula es medible, es decir:

$$E \in \mathcal{P}(\mathbb{R}^N), \quad \lambda^*(E) = 0 \implies E \in \mathcal{M}, \quad \lambda(E) = 0$$

En particular, si $E \subset \mathbb{R}^N$ es numerable, entonces E es medible con $\lambda(E) = 0$

Notación

La medida de Lebesgue

Primeras propiedades ○●○○○○○

Una consecuencia de la subaditividad finita

Abundancia de conjuntos medibles

Todo conjunto con medida exterior nula es medible, es decir:

$$E \in \mathcal{P}(\mathbb{R}^N), \quad \lambda^*(E) = 0 \implies E \in \mathcal{M}, \quad \lambda(E) = 0$$

En particular, si $E \subset \mathbb{R}^N$ es numerable, entonces E es medible con $\lambda(E) = 0$

Notación

 Ω conjunto no vacío, $\mathcal{P}(\Omega)$ familia de todos los subconjuntos de Ω

Una consecuencia de la subaditividad finita

Abundancia de conjuntos medibles

Todo conjunto con medida exterior nula es medible, es decir:

$$E \in \mathcal{P}(\mathbb{R}^N), \quad \lambda^*(E) = 0 \implies E \in \mathcal{M}, \quad \lambda(E) = 0$$

En particular, si $E \subset \mathbb{R}^N$ es numerable, entonces E es medible con $\lambda(E) = 0$

Notación

 Ω conjunto no vacío, $\mathcal{P}(\Omega)$ familia de todos los subconjuntos de Ω

Para
$$A,B,C\in\mathcal{P}(\Omega)$$
 escribimos $C=A\uplus B$

Una consecuencia de la subaditividad finita

Abundancia de conjuntos medibles

Todo conjunto con medida exterior nula es medible, es decir:

$$E \in \mathcal{P}(\mathbb{R}^N), \quad \lambda^*(E) = 0 \implies E \in \mathcal{M}, \quad \lambda(E) = 0$$

En particular, si $E \subset \mathbb{R}^N$ es numerable, entonces E es medible con $\lambda(E) = 0$

Notación

 Ω conjunto no vacío, $\mathcal{P}(\Omega)$ familia de todos los subconjuntos de Ω

Para
$$A,B,C\in\mathcal{P}(\Omega)$$
 escribimos $C=A\uplus B$

para indicar que
$$C = A \cup B$$
 y $A \cap B = \emptyset$

La medida de Lebesgue

Primeras propiedades 000000

Una consecuencia de la subaditividad finita

Abundancia de conjuntos medibles

Todo conjunto con medida exterior nula es medible, es decir:

$$E \in \mathcal{P}(\mathbb{R}^N), \quad \lambda^*(E) = 0 \implies E \in \mathcal{M}, \quad \lambda(E) = 0$$

En particular, si $E \subset \mathbb{R}^N$ es numerable, entonces E es medible con $\lambda(E) = 0$

Notación

 Ω conjunto no vacío, $\mathcal{P}(\Omega)$ familia de todos los subconjuntos de Ω

Para
$$A,B,C\in\mathcal{P}(\Omega)$$
 escribimos $C=A\ {\ensuremath{\uplus}} B$

para indicar que
$$C = A \cup B$$
 y $A \cap B = \emptyset$

Si
$$n\in\mathbb{N}$$
 y $A_k\in\mathcal{P}(\Omega)$ para todo $k\in\Delta_n$, escribimos $A=\biguplus_{k=1}^nA_k$

para indicar que
$$A=\bigcup_{k=1}^n A_k$$
 y $A_k\cap A_j=\emptyset$ para $k\neq j$

Una consecuencia de la subaditividad finita

Abundancia de conjuntos medibles

Todo conjunto con medida exterior nula es medible, es decir:

$$E \in \mathcal{P}(\mathbb{R}^N), \quad \lambda^*(E) = 0 \implies E \in \mathcal{M}, \quad \lambda(E) = 0$$

En particular, si $E \subset \mathbb{R}^N$ es numerable, entonces E es medible con $\lambda(E) = 0$

Notación

 Ω conjunto no vacío, $\mathcal{P}(\Omega)$ familia de todos los subconjuntos de Ω

Para $A,B,C\in\mathcal{P}(\Omega)$ escribimos $C=A\uplus B$

para indicar que $C = A \cup B$ y $A \cap B = \emptyset$

Si $n \in \mathbb{N}$ y $A_k \in \mathcal{P}(\Omega)$ para todo $k \in \Delta_n$, escribimos $A = \biguplus_{k=1}^n A_k$

para indicar que
$$\ A = \bigcup_{k=1}^n A_k \ \ {\sf y} \ A_k \cap A_j = \emptyset \ \ {\sf para} \ \ k \neq j$$

Si
$$A_n \in \mathcal{P}(\Omega)$$
 para todo $n \in \mathbb{N}$, escribimos $A = \biguplus_{n=1}^{\infty} A_n$

para indicar que $A = \bigcup_{n=1}^{\infty} A_n$ y $A_n \cap A_m = \emptyset$ para $n \neq m$

Teorema

La familia ${\mathcal M}$ de los conjuntos medibles verifica:

Teorema

La familia ${\mathcal M}$ de los conjuntos medibles verifica:

(a) $\mathbb{R}^N \in \mathcal{M}$

Teorema

La familia $\mathcal M$ de los conjuntos medibles verifica:

- (a) $\mathbb{R}^N \in \mathcal{M}$
- **(b)** $E \in \mathcal{M} \implies \mathbb{R}^N \setminus E \in \mathcal{M}$

Teorema

El infinito

La familia ${\mathcal M}$ de los conjuntos medibles verifica:

- (a) $\mathbb{R}^N \in \mathcal{M}$
- (b) $E \in \mathcal{M} \implies \mathbb{R}^N \setminus E \in \mathcal{M}$
- (c) $E_n \in \mathcal{M} \ \forall n \in \mathbb{N}, \ E = \bigcup_{n=1}^{\infty} E_n \ \Rightarrow \ E \in \mathcal{M}$

Teorema

La familia ${\mathcal M}$ de los conjuntos medibles verifica:

- (a) $\mathbb{R}^N \in \mathcal{M}$
- **(b)** $E \in \mathcal{M} \implies \mathbb{R}^N \setminus E \in \mathcal{M}$
- (c) $E_n \in \mathcal{M} \ \forall n \in \mathbb{N}, \ E = \bigcup_{n=1}^{\infty} E_n \Rightarrow E \in \mathcal{M}$

Estas tres propiedades se resumen diciendo que ${\mathcal M}$ es una σ -álgebra

Teorema

La familia ${\mathcal M}$ de los conjuntos medibles verifica:

- (a) $\mathbb{R}^N \in \mathcal{M}$
- **(b)** $E \in \mathcal{M} \implies \mathbb{R}^N \setminus E \in \mathcal{M}$
- (c) $E_n \in \mathcal{M} \ \forall n \in \mathbb{N}, \ E = \bigcup_{n=1}^{\infty} E_n \ \Rightarrow \ E \in \mathcal{M}$

Estas tres propiedades se resumen diciendo que ${\mathcal M}$ es una σ -álgebra

A su vez, la medida de Lebesgue $\lambda: \mathcal{M} \to [0, \infty]$ verifica:

Teorema

La familia ${\mathcal M}$ de los conjuntos medibles verifica:

- (a) $\mathbb{R}^N \in \mathcal{M}$
- (b) $E \in \mathcal{M} \implies \mathbb{R}^N \setminus E \in \mathcal{M}$
- (c) $E_n \in \mathcal{M} \ \forall n \in \mathbb{N}, \ E = \bigcup_{n=1}^{\infty} E_n \ \Rightarrow \ E \in \mathcal{M}$

Estas tres propiedades se resumen diciendo que ${\mathcal M}$ es una σ -álgebra

A su vez, la medida de Lebesgue $\lambda: \mathcal{M} \to [0, \infty]$ verifica:

$$E_n \in \mathcal{M} \ \forall n \in \mathbb{N}, \quad E = \biguplus^{\infty} E_n \implies \lambda(E) = \sum_{n=1}^{\infty} \lambda(E_n)$$

Teorema

La familia $\mathcal M$ de los conjuntos medibles verifica:

- (a) $\mathbb{R}^N \in \mathcal{M}$
- (b) $E \in \mathcal{M} \implies \mathbb{R}^N \setminus E \in \mathcal{M}$
- (c) $E_n \in \mathcal{M} \ \forall n \in \mathbb{N}, \ E = \bigcup_{n=1}^{\infty} E_n \Rightarrow E \in \mathcal{M}$

Estas tres propiedades se resumen diciendo que ${\mathcal M}$ es una σ -álgebra

A su vez, la medida de Lebesgue $\lambda: \mathcal{M} \to [0, \infty]$ verifica:

$$E_n \in \mathcal{M} \ \forall n \in \mathbb{N}, \quad E = \biguplus_{n=1}^{\infty} E_n \implies \lambda(E) = \sum_{n=1}^{\infty} \lambda(E_n)$$

Se alude a esta propiedad diciendo que λ es σ -aditiva

El infinito

El infinito

Estabilidad de los conjuntos medibles

• $n \in \mathbb{N}, E_k \in \mathcal{M} \ \forall k \in \Delta_n \implies \bigcup_{k=1}^n E_k \in \mathcal{M}, \bigcap_{k=1}^n E_k \in \mathcal{M}$

- $n \in \mathbb{N}, E_k \in \mathcal{M} \ \forall k \in \Delta_n \implies \bigcup_{k=1}^n E_k \in \mathcal{M}, \bigcap_{k=1}^n E_k \in \mathcal{M}$
- $\bullet \quad E_n \in \mathcal{M} \quad \forall n \in \mathbb{N} \quad \Longrightarrow \quad \bigcap_{n=1}^{\infty} E_n \in \mathcal{M}$

- $n \in \mathbb{N}, E_k \in \mathcal{M} \ \forall k \in \Delta_n \implies \bigcup_{k=1}^n E_k \in \mathcal{M}, \bigcap_{k=1}^n E_k \in \mathcal{M}$
- $E_n \in \mathcal{M} \ \forall n \in \mathbb{N} \implies \bigcap_{n=1}^{\infty} E_n \in \mathcal{M}$
- $\bullet \quad E, F \in \mathcal{M} \quad \Longrightarrow \quad E \setminus F \in \mathcal{M}$

El infinito

- $n \in \mathbb{N}, E_k \in \mathcal{M} \ \forall k \in \Delta_n \implies \bigcup_{k=1}^n E_k \in \mathcal{M}, \bigcap_{k=1}^n E_k \in \mathcal{M}$
- $E_n \in \mathcal{M} \ \forall n \in \mathbb{N} \implies \bigcap E_n \in \mathcal{M}$
- $E, F \in \mathcal{M} \implies E \setminus F \in \mathcal{M}$

El infinito

Estabilidad de los conjuntos medibles

•
$$n \in \mathbb{N}, E_k \in \mathcal{M} \ \forall k \in \Delta_n \implies \bigcup_{k=1}^n E_k \in \mathcal{M}, \bigcap_{k=1}^n E_k \in \mathcal{M}$$

•
$$E_n \in \mathcal{M} \ \forall n \in \mathbb{N} \implies \bigcap_{n=1} E_n \in \mathcal{M}$$

$$\bullet \quad E, F \in \mathcal{M} \quad \Longrightarrow \quad E \setminus F \in \mathcal{M}$$

Una σ -álgebra en un conjunto no vacío Ω es una familia de conjuntos $\mathcal{A} \subset \mathcal{P}(\Omega)$ estable por uniones numerables y complementos, con $\Omega \in \mathcal{A}$

El infinito

Estabilidad de los conjuntos medibles

•
$$n \in \mathbb{N}, E_k \in \mathcal{M} \ \forall k \in \Delta_n \implies \bigcup_{k=1}^n E_k \in \mathcal{M}, \bigcap_{k=1}^n E_k \in \mathcal{M}$$

•
$$E_n \in \mathcal{M} \ \forall n \in \mathbb{N} \implies \bigcap_{n=1}^{\infty} E_n \in \mathcal{M}$$

$$\bullet \quad E, F \in \mathcal{M} \quad \Longrightarrow \quad E \setminus F \in \mathcal{M}$$

Una σ -álgebra en un conjunto no vacío Ω es una familia de conjuntos $\mathcal{A} \subset \mathcal{P}(\Omega)$ estable por uniones numerables y complementos, con $\Omega \in \mathcal{A}$

Entonces A es estable por intersecciones numerables y diferencias

El infinito

Propiedades relacionadas con la σ -aditividad

Propiedades relacionadas con la σ -aditividad

La medida de Lebesgue es:

El infinito

Propiedades relacionadas con la σ -aditividad

La medida de Lebesgue es:

finitamente aditiva, esto es:

$$n \in \mathbb{N}$$
 $E_k \in \mathcal{M} \ \forall k \in \Delta_n \,, \ E = \biguplus_{k=1}^n E_k \implies \lambda(E) = \sum_{k=1}^n \lambda(E_k)$

El infinito

Propiedades relacionadas con la σ -aditividad

La medida de Lebesgue es:

finitamente aditiva, esto es:

$$n \in \mathbb{N}$$
 $E_k \in \mathcal{M} \ \forall k \in \Delta_n \,, \ E = \biguplus_{k=1}^n E_k \implies \lambda(E) = \sum_{k=1}^n \lambda(E_k)$

creciente: $E, F \in \mathcal{M}, E \subset F \implies \lambda(E) \leqslant \lambda(F)$

El infinito

Propiedades relacionadas con la σ -aditividad

La medida de Lebesgue es:

finitamente aditiva, esto es:

$$n \in \mathbb{N}$$
 $E_k \in \mathcal{M} \ \forall k \in \Delta_n \,, \ E = \biguplus_{k=1}^n E_k \implies \lambda(E) = \sum_{k=1}^n \lambda(E_k)$

- creciente: $E, F \in \mathcal{M}, E \subset F \implies \lambda(E) \leqslant \lambda(F)$
- $\sigma\text{-subaditiva:}\ E_n\in\mathcal{M}\ \forall n\in\mathbb{N}\quad\Longrightarrow\quad \lambda\bigg(\bigcup_{i=1}^\infty E_n\bigg)\leqslant\sum_{i=1}^\infty\lambda(E_n)$

El infinito

Propiedades relacionadas con la σ -aditividad

La medida de Lebesgue es:

finitamente aditiva, esto es:

$$n \in \mathbb{N}$$
 $E_k \in \mathcal{M} \ \forall k \in \Delta_n \,, \ E = \biguplus_{k=1}^n E_k \implies \lambda(E) = \sum_{k=1}^n \lambda(E_k)$

- creciente: $E, F \in \mathcal{M}, E \subset F \implies \lambda(E) \leqslant \lambda(F)$
- $\sigma\text{-subaditiva: }E_n\in\mathcal{M}\ \forall n\in\mathbb{N}\quad\Longrightarrow\quad\lambda\bigg(\bigcup^\infty E_n\bigg)\leqslant\sum^\infty\lambda(E_n)$
- finitamente subaditiva:

$$n \in \mathbb{N} \quad E_k \in \mathcal{M} \ \forall k \in \Delta_n \,, \quad \Longrightarrow \quad \lambda \left(\bigcup_{k=1}^n E_k \right) \leqslant \sum_{k=1}^n \lambda(E_k)$$

El infinito

El infinito

Sea Ω un conjunto no vacío y $A_n \in \mathcal{P}(\Omega)$ para todo $n \in \mathbb{N}$

Sucesiones monótonas de conjuntos

Sea Ω un conjunto no vacío y $A_n \in \mathcal{P}(\Omega)$ para todo $n \in \mathbb{N}$

Si la sucesión $\{A_n\}$ es creciente, es decir, $A_n\subset A_{n+1}$ para todo $n\in\mathbb{N}$,

escribimos $\{A_n\}\nearrow A$ donde $A=\bigcup_{n=1}^{\infty}A_n$

Sea Ω un conjunto no vacío y $A_n \in \mathcal{P}(\Omega)$ para todo $n \in \mathbb{N}$

Si la sucesión $\{A_n\}$ es creciente, es decir, $A_n \subset A_{n+1}$ para todo $n \in \mathbb{N}$,

escribimos
$$\{A_n\}\nearrow A$$
 donde $A=\bigcup_{n=1}A_n$

Si $\{A_n\}$ es decreciente, es decir, $A_{n+1} \subset A_n$ para todo $n \in \mathbb{N}$,

escribimos
$$\{A_n\} \searrow A$$
 donde $A = \bigcap_{n=1}^{\infty} A_n$

Sucesiones monótonas de conjuntos

Sea Ω un conjunto no vacío y $A_n \in \mathcal{P}(\Omega)$ para todo $n \in \mathbb{N}$

Si la sucesión $\{A_n\}$ es creciente, es decir, $A_n\subset A_{n+1}$ para todo $n\in\mathbb{N}$,

escribimos $\{A_n\}\nearrow A$ donde $A=\bigcup_{n=1}A_n$

Si $\{A_n\}$ es decreciente, es decir, $A_{n+1}\subset A_n$ para todo $n\in\mathbb{N}$,

escribimos $\{A_n\} \searrow A$ donde $A = \bigcap_{n=1}^{\infty} A_n$

Propiedades de continuidad de la medida de Lebesgue

Sucesiones monótonas de conjuntos

Sea Ω un conjunto no vacío y $A_n \in \mathcal{P}(\Omega)$ para todo $n \in \mathbb{N}$

Si la sucesión $\{A_n\}$ es creciente, es decir, $A_n\subset A_{n+1}$ para todo $n\in\mathbb{N}$,

escribimos
$$\{A_n\}\nearrow A$$
 donde $A=\bigcup_{n=1}^\infty A_n$

Si $\{A_n\}$ es decreciente, es decir, $A_{n+1}\subset A_n$ para todo $n\in\mathbb{N}$,

escribimos
$$\{A_n\} \searrow A$$
 donde $A = \bigcap_{n=1}^{\infty} A_n$

Propiedades de continuidad de la medida de Lebesgue

La medida de Lebesgue es crecientemente continua, es decir:

Continuidad de la medida de Lebesgue

Sucesiones monótonas de conjuntos

Sea Ω un conjunto no vacío y $A_n \in \mathcal{P}(\Omega)$ para todo $n \in \mathbb{N}$

Si la sucesión $\{A_n\}$ es creciente, es decir, $A_n\subset A_{n+1}$ para todo $n\in\mathbb{N}$,

escribimos
$$\{A_n\} \nearrow A$$
 donde $A = \bigcup_{n=1}^{\infty} A_n$

Si $\{A_n\}$ es decreciente, es decir, $A_{n+1}\subset A_n$ para todo $n\in\mathbb{N}$,

escribimos
$$\{A_n\} \searrow A$$
 donde $A = \bigcap_{n=1}^{\infty} A_n$

Propiedades de continuidad de la medida de Lebesgue

La medida de Lebesgue es crecientemente continua, es decir:

$$E_n \in \mathcal{M} \ \forall n \in \mathbb{N}, \ \{E_n\} \nearrow E \implies \{\lambda(E_n)\} \nearrow \lambda(E)$$

Continuidad de la medida de Lebesgue

Sucesiones monótonas de conjuntos

Sea Ω un conjunto no vacío y $A_n \in \mathcal{P}(\Omega)$ para todo $n \in \mathbb{N}$

Si la sucesión $\{A_n\}$ es creciente, es decir, $A_n\subset A_{n+1}$ para todo $n\in\mathbb{N}$,

escribimos
$$\{A_n\}\nearrow A$$
 donde $A=\bigcup_{n=1}^{\infty}A_n$

Si $\{A_n\}$ es decreciente, es decir, $A_{n+1}\subset A_n$ para todo $n\in\mathbb{N}$,

escribimos
$$\{A_n\} \searrow A$$
 donde $A = \bigcap_{n=1} A_n$

Propiedades de continuidad de la medida de Lebesgue

La medida de Lebesgue es crecientemente continua, es decir:

$$E_n \in \mathcal{M} \ \forall n \in \mathbb{N}, \ \{E_n\} \nearrow E \implies \{\lambda(E_n)\} \nearrow \lambda(E)$$

También es decrecientemente continua, en el siguiente sentido:

Continuidad de la medida de Lebesgue

Sucesiones monótonas de conjuntos

Sea Ω un conjunto no vacío y $A_n \in \mathcal{P}(\Omega)$ para todo $n \in \mathbb{N}$

Si la sucesión $\{A_n\}$ es creciente, es decir, $A_n\subset A_{n+1}$ para todo $n\in\mathbb{N}$,

escribimos
$$\{A_n\}\nearrow A$$
 donde $A=\bigcup_{n=1}^\infty A_n$

Si $\{A_n\}$ es decreciente, es decir, $A_{n+1}\subset A_n$ para todo $n\in\mathbb{N}$,

escribimos
$$\{A_n\} \searrow A$$
 donde $A = \bigcap_{n=1} A_n$

Propiedades de continuidad de la medida de Lebesgue

La medida de Lebesgue es crecientemente continua, es decir:

$$E_n \in \mathcal{M} \ \forall n \in \mathbb{N}, \ \{E_n\} \nearrow E \implies \{\lambda(E_n)\} \nearrow \lambda(E)$$

También es decrecientemente continua, en el siguiente sentido:

$$E_n \in \mathcal{M} \ \forall n \in \mathbb{N}, \ \{E_n\} \searrow E, \ \frac{\lambda(E_1)}{\infty} < \infty \implies \{\lambda(E_n)\} \searrow \lambda(E)$$

El infinito

Concepto general de medida

Una medida, en un conjunto no vacío Ω ,

es una función $\mu:\mathcal{A}\to[\,0\,,\infty\,]$, definida en una σ -álgebra $\mathcal{A}\subset\mathcal{P}(\Omega)$,

Una medida, en un conjunto no vacío Ω ,

es una función $\mu: \mathcal{A} \to [0, \infty]$, definida en una σ -álgebra $\mathcal{A} \subset \mathcal{P}(\Omega)$,

que verifica $\mu(\emptyset) = 0$ y es σ -aditiva, es decir,

$$A_n \in \mathcal{A} \ \forall n \in \mathbb{N}, \ A = \biguplus_{n=1}^{\infty} A_n \implies \mu(A) = \sum_{n=1}^{\infty} \mu(A_n)$$

La medida de Lebesgue

Primeras propiedades 00000●

Abstracción de los resultados anteriores

Concepto general de medida

Una medida, en un conjunto no vacío Ω ,

es una función $\mu:\mathcal{A}\to[0,\infty]$, definida en una σ -álgebra $\mathcal{A}\subset\mathcal{P}(\Omega)$,

que verifica $\mu(\emptyset)=0$ y es σ -aditiva, es decir,

$$A_n \in \mathcal{A} \ \forall n \in \mathbb{N}, \ A = \biguplus^{\infty} A_n \implies \mu(A) = \sum^{\infty} \mu(A_n)$$

Con esta nomenclatura, el teorema principal nos asegura que la medida de Lebesgue en \mathbb{R}^N es, efectivamente, una medida en \mathbb{R}^N

Concepto general de medida

Una medida, en un conjunto no vacío Ω ,

es una función $\mu:\mathcal{A}\to[0,\infty]$, definida en una σ -álgebra $\mathcal{A}\subset\mathcal{P}(\Omega)$,

que verifica $\mu(\emptyset)=0$ y es σ -aditiva, es decir,

$$A_n \in \mathcal{A} \ \forall n \in \mathbb{N}, \ A = \biguplus_{n=1}^{\infty} A_n \implies \mu(A) = \sum_{n=1}^{\infty} \mu(A_n)$$

Con esta nomenclatura, el teorema principal nos asegura que la medida de Lebesgue en \mathbb{R}^N es, efectivamente, una medida en \mathbb{R}^N Todas las consecuencias obtenidas para la medida de Lebesgue son válidas para cualquier medida

El infinito

Una medida, en un conjunto no vacío Ω ,

es una función $\mu: \mathcal{A} \to [0, \infty]$, definida en una σ -álgebra $\mathcal{A} \subset \mathcal{P}(\Omega)$,

que verifica $\mu(\emptyset) = 0$ y es σ -aditiva, es decir,

$$A_n \in \mathcal{A} \ \forall n \in \mathbb{N}, \ A = \biguplus_{n=1}^{\infty} A_n \implies \mu(A) = \sum_{n=1}^{\infty} \mu(A_n)$$

Con esta nomenclatura, el teorema principal nos asegura que la medida de Lebesgue en \mathbb{R}^N es, efectivamente, una medida en \mathbb{R}^N Todas las consecuencias obtenidas para la medida de Lebesgue son válidas para cualquier medida

Ejemplo, muy sencillo, de medida en cualquier conjunto $\Omega \neq \emptyset$

El infinito

Una medida, en un conjunto no vacío Ω ,

es una función $\mu: \mathcal{A} \to [0, \infty]$, definida en una σ -álgebra $\mathcal{A} \subset \mathcal{P}(\Omega)$,

que verifica $\mu(\emptyset) = 0$ y es σ -aditiva, es decir,

$$A_n \in \mathcal{A} \ \forall n \in \mathbb{N}, \ A = \biguplus_{n=1}^{\infty} A_n \implies \mu(A) = \sum_{n=1}^{\infty} \mu(A_n)$$

Con esta nomenclatura, el teorema principal nos asegura que la medida de Lebesgue en \mathbb{R}^N es, efectivamente, una medida en \mathbb{R}^N Todas las consecuencias obtenidas para la medida de Lebesgue son válidas para cualquier medida

Ejemplo, muy sencillo, de medida en cualquier conjunto $\Omega \neq \emptyset$

Para cada $E \in \mathcal{P}(\Omega)$ sea $\mu(E)$ el número de elementos de E, entendiendo que $\mu(E)=\infty$ cuando el conjunto E es infinito

Una medida, en un conjunto no vacío Ω ,

es una función $\mu: \mathcal{A} \to [0, \infty]$, definida en una σ -álgebra $\mathcal{A} \subset \mathcal{P}(\Omega)$,

que verifica $\mu(\emptyset) = 0$ y es σ -aditiva, es decir,

$$A_n \in \mathcal{A} \ \forall n \in \mathbb{N}, \ A = \biguplus_{n=1}^{\infty} A_n \implies \mu(A) = \sum_{n=1}^{\infty} \mu(A_n)$$

Con esta nomenclatura, el teorema principal nos asegura que la medida de Lebesgue en \mathbb{R}^N es, efectivamente, una medida en \mathbb{R}^N Todas las consecuencias obtenidas para la medida de Lebesgue son válidas para cualquier medida

Ejemplo, muy sencillo, de medida en cualquier conjunto $\Omega \neq \emptyset$

Para cada $E \in \mathcal{P}(\Omega)$ sea $\mu(E)$ el número de elementos de E, entendiendo que $\mu(E) = \infty$ cuando el conjunto E es infinito

Entonces $\mu: \mathcal{P}(\Omega) \to [0, \infty]$ es una medida: el número de elementos en Ω

Intersección y diferencia de intervalos acotados

Intersección y diferencia de intervalos acotados

Para cualesquiera $I,J\in\mathcal{J}$ se tiene que $I\cap J\in\mathcal{J}$ y que

Intersección y diferencia de intervalos acotados

Para cualesquiera $I,J\in\mathcal{J}$ se tiene que $I\cap J\in\mathcal{J}$ y que

$$I \setminus J = \biguplus^n H_k \quad \text{ donde } \quad n \in \mathbb{N} \,, \ \, H_k \in \mathcal{J} \ \, \forall \, k \in \Delta_n$$

La medida de Lebesgue OO Primeras propiedades

Intervalos acotados y figuras elementales

Intersección y diferencia de intervalos acotados

Para cualesquiera $I,J\in\mathcal{J}$ se tiene que $I\cap J\in\mathcal{J}$ y que

$$I \setminus J = \biguplus_{k=1}^n H_k \quad \text{ donde } \quad n \in \mathbb{N} \,, \ \ H_k \in \mathcal{J} \ \ \forall \, k \in \Delta_n$$

Figuras elementale

Intersección y diferencia de intervalos acotados

Para cualesquiera $I,J\in\mathcal{J}$ se tiene que $I\cap J\in\mathcal{J}$ y que

$$I \setminus J = \biguplus_{k=1}^n H_k \quad \text{ donde } \quad n \in \mathbb{N} \,, \ \, H_k \in \mathcal{J} \ \, \forall \, k \in \Delta_n$$

Figuras elementale

Un conjunto $A \in \mathcal{P}(\mathbb{R}^N)$ es una figura elemental, cuando

Intersección y diferencia de intervalos acotados

Para cualesquiera $I,J\in\mathcal{J}$ se tiene que $I\cap J\in\mathcal{J}$ y que

$$I \setminus J = \biguplus_{k=1}^n H_k \quad \text{ donde } \quad n \in \mathbb{N} \,, \ \, H_k \in \mathcal{J} \ \, \forall \, k \in \Delta_n$$

Figuras elementale

Un conjunto $A \in \mathcal{P}(\mathbb{R}^N)$ es una figura elemental, cuando

$$A = \biguplus^n I_k \quad \text{ donde } \quad n \in \mathbb{N}, \quad I_k \in \mathcal{J} \quad \forall \, k \in \Delta_n$$

Intersección y diferencia de intervalos acotados

Para cualesquiera $I,J\in\mathcal{J}$ se tiene que $I\cap J\in\mathcal{J}$ y que

$$I \setminus J = \biguplus_{k=1}^n H_k \quad \text{ donde } \quad n \in \mathbb{N} \,, \ \ H_k \in \mathcal{J} \ \ \forall \, k \in \Delta_n$$

Figuras elementale

Un conjunto $A \in \mathcal{P}(\mathbb{R}^N)$ es una figura elemental, cuando

$$A = igoplus_{k=1}^n I_k \quad ext{ donde } \quad n \in \mathbb{N} \,, \ \ I_k \in \mathcal{J} \ \ orall \, k \in \Delta_n$$

Denotamos por ${\mathcal E}$ a la familia de todas las figuras elementales en ${\mathbb R}^N$

Intersección y diferencia de intervalos acotados

Para cualesquiera $I,J\in\mathcal{J}$ se tiene que $I\cap J\in\mathcal{J}$ y que

$$I \backslash J = \biguplus_{k=1}^n H_k \quad \text{ donde } \quad n \in \mathbb{N} \,, \ \, H_k \in \mathcal{J} \ \, \forall \, k \in \Delta_n$$

Figuras elementale

Un conjunto $A \in \mathcal{P}(\mathbb{R}^N)$ es una figura elemental, cuando

$$A = igoplus_{k-1}^n I_k \quad ext{ donde } \quad n \in \mathbb{N} \,, \ \ I_k \in \mathcal{J} \ \ orall \, k \in \Delta_n$$

Denotamos por ${\mathcal E}$ a la familia de todas las figuras elementales en ${\mathbb R}^N$

Estabilidad de las figuras elementales

Intersección y diferencia de intervalos acotados

Para cualesquiera $I,J\in\mathcal{J}$ se tiene que $I\cap J\in\mathcal{J}$ y que

$$I \backslash J = \biguplus_{k=1}^n H_k \quad \text{ donde } \quad n \in \mathbb{N} \,, \ \, H_k \in \mathcal{J} \ \, \forall \, k \in \Delta_n$$

Figuras elementales

Un conjunto $A \in \mathcal{P}(\mathbb{R}^N)$ es una figura elemental, cuando

$$A = igoplus_{k=1}^n I_k \quad ext{donde} \quad n \in \mathbb{N}, \ I_k \in \mathcal{J} \ \ orall k \in \Delta_n$$

Denotamos por ${\mathcal E}$ a la familia de todas las figuras elementales en ${\mathbb R}^N$

Estabilidad de las figuras elementales

La familia ${\mathcal E}$ de las figuras elementales es estable por

Intersección y diferencia de intervalos acotados

Para cualesquiera $I,J\in\mathcal{J}$ se tiene que $I\cap J\in\mathcal{J}$ y que

$$I \backslash J = \biguplus_{k=1}^n H_k \quad \text{ donde } \quad n \in \mathbb{N} \,, \ \, H_k \in \mathcal{J} \ \, \forall \, k \in \Delta_n$$

Figuras elementale

Un conjunto $A \in \mathcal{P}(\mathbb{R}^N)$ es una figura elemental, cuando

$$A = igoplus_{k=1}^n I_k \quad ext{donde} \quad n \in \mathbb{N}, \ I_k \in \mathcal{J} \ \ \forall \, k \in \Delta_n$$

Denotamos por ${\mathcal E}$ a la familia de todas las figuras elementales en ${\mathbb R}^N$

Estabilidad de las figuras elementales

La familia \mathcal{E} de las figuras elementales es estable por intersecciones finitas, diferencias y uniones finitas

Primeras propiedades

Medida elemental de los intervalos acotados

Aditividad finita

Aditividad finita

$$I \in \mathcal{J}, n \in \mathbb{N}, I_j \in \mathcal{J} \ \forall j \in \Delta_n, I = \biguplus^n I_j \implies M(I) = \sum^n M(I_j)$$

Aditividad finita

$$I \in \mathcal{J}, n \in \mathbb{N}, I_j \in \mathcal{J} \ \forall j \in \Delta_n, I = \biguplus_{i=1}^n I_j \implies M(I) = \sum_{i=1}^n M(I_j)$$

Extensión a las figuras elementales

Aditividad finita

$$I \in \mathcal{J}, n \in \mathbb{N}, I_j \in \mathcal{J} \ \forall j \in \Delta_n, I = \biguplus_{j=1}^n I_j \implies M(I) = \sum_{j=1}^n M(I_j)$$

Extensión a las figuras elementales

Existe una función
$$\widetilde{M}:\mathcal{E}\to\mathbb{R}_0^+$$
 verificando que $\widetilde{M}(I)=M(I)$ para todo $I\in\mathcal{J}$

Aditividad finita

$$I \in \mathcal{J}, n \in \mathbb{N}, I_j \in \mathcal{J} \ \forall j \in \Delta_n, I = \biguplus_{j=1}^n I_j \implies M(I) = \sum_{j=1}^n M(I_j)$$

Extensión a las figuras elementales

Existe una función $\widetilde{M}:\mathcal{E}
ightarrow\mathbb{R}_0^+$

verificando que M(I) = M(I) para todo $I \in \mathcal{J}$ que es finitamente aditiva, es decir,

$$n \in \mathbb{N}, \quad A_k \in \mathcal{E} \quad \forall k \in \Delta_n, \quad A = \biguplus_{k=1}^n A_k \implies \widetilde{M}(A) = \sum_{k=1}^n \widetilde{M}(A_k)$$

Aditividad finita

$$I \in \mathcal{J}, n \in \mathbb{N}, I_j \in \mathcal{J} \ \forall j \in \Delta_n, I = \biguplus_{j=1}^n I_j \implies M(I) = \sum_{j=1}^n M(I_j)$$

Extensión a las figuras elementales

Existe una función $\widetilde{M}:\mathcal{E}
ightarrow\mathbb{R}_0^+$

verificando que M(I)=M(I) para todo $I\in \mathcal{J}$

que es finitamente aditiva, es decir,

$$n \in \mathbb{N}, \quad A_k \in \mathcal{E} \quad \forall k \in \Delta_n, \quad A = \biguplus_{k=1}^n A_k \quad \Longrightarrow \quad \widetilde{M}(A) = \sum_{k=1}^n \widetilde{M}(A_k)$$

La propiedad clave de la función $\,M\,$

Aditividad finita

$$I \in \mathcal{J}, n \in \mathbb{N}, I_j \in \mathcal{J} \ \forall j \in \Delta_n, I = \biguplus_{j=1}^n I_j \implies M(I) = \sum_{j=1}^n M(I_j)$$

Extensión a las figuras elementales

Existe una función $\widetilde{M}:\mathcal{E}\to\mathbb{R}_0^+$ verificando que $\widetilde{M}(I)=M(I)$ para todo $I\in\mathcal{J}$ que es finitamente aditiva, es decir,

$$n \in \mathbb{N}, \quad A_k \in \mathcal{E} \quad \forall k \in \Delta_n, \quad A = \biguplus_{k=1}^n A_k \implies \widetilde{M}(A) = \sum_{k=1}^n \widetilde{M}(A_k)$$

La propiedad clave de la función $\,M\,$

$$I \in \mathcal{J}, n \in \mathbb{N}, I_k \in \mathcal{J} \ \forall k \in \Delta_n, I \subset \bigcup_{k=1}^n I_k \Longrightarrow M(I) \leqslant \sum_{k=1}^n M(I_k)$$

Aproximación por intervalos compactos o abiertos

Aproximación por intervalos compactos o abiertos

Para cada $I \in \mathcal{J}\,$ y cada $\, \varepsilon > 0 \,,$ existen $\, K, J \in \mathcal{J} \,,$ tales que

El infinito

Aproximación por intervalos compactos o abiertos

Para cada $I \in \mathcal{J}$ y cada $\varepsilon > 0$, existen $K, J \in \mathcal{J}$, tales que

$$\overline{K} = K \subset I \subset J = J^{\circ} \,, \quad M(I) < M(K) + \varepsilon \,, \quad M(J) < M(I) + \varepsilon \,$$

Aproximación por intervalos compactos o abiertos

Para cada $I \in \mathcal{J}$ y cada $\varepsilon > 0$, existen $K, J \in \mathcal{J}$, tales que

$$\overline{K} = K \subset I \subset J = J^{\circ} \,, \quad M(I) < M(K) + \varepsilon \,, \quad M(J) < M(I) + \varepsilon$$

Cálculo de la medida exterior

Aproximación por intervalos compactos o abiertos

Para cada $I \in \mathcal{J}$ y cada $\varepsilon > 0$, existen $K, J \in \mathcal{J}$, tales que

$$\overline{K} = K \subset I \subset J = J^{\circ} \,, \quad M(I) < M(K) + \varepsilon \,, \quad M(J) < M(I) + \varepsilon$$

Cálculo de la medida exterior

Para todo $E \in \mathcal{P}(\mathbb{R}^N)$ se tiene:

$$\lambda^*(E) = \inf \left\{ \sum_{n=1}^{\infty} M(J_n) : J_n^{\circ} = J_n \in \mathcal{J} \ \forall n \in \mathbb{N}, \ E \subset \bigcup_{n=1}^{\infty} J_n \right\}$$

Aproximación por intervalos compactos o abiertos

Para cada $I\in\mathcal{J}\,$ y cada $\,\varepsilon>0\,,$ existen $\,K,J\in\mathcal{J}\,,$ tales que

$$\overline{K} = K \subset I \subset J = J^{\circ} \,, \quad M(I) < M(K) + \varepsilon \,, \quad M(J) < M(I) + \varepsilon$$

Cálculo de la medida exterior

Para todo $E \in \mathcal{P}(\mathbb{R}^N)$ se tiene:

$$\lambda^*(E) = \inf \left\{ \sum_{n=1}^{\infty} M(J_n) : J_n^{\circ} = J_n \in \mathcal{J} \ \forall n \in \mathbb{N}, \ E \subset \bigcup_{n=1}^{\infty} J_n \right\}$$

Una propiedad básica de la medida de Lebesgue

Aproximación por intervalos compactos o abiertos

Para cada $I\in\mathcal{J}$ y cada $\varepsilon>0$, existen $K,J\in\mathcal{J}$, tales que

$$\overline{K} = K \subset I \subset J = J^{\circ} \,, \quad M(I) < M(K) + \varepsilon \,, \quad M(J) < M(I) + \varepsilon$$

Cálculo de la medida exterior

Para todo $E \in \mathcal{P}(\mathbb{R}^N)$ se tiene:

$$\lambda^*(E) = \inf \left\{ \sum_{n=1}^{\infty} M(J_n) : J_n^{\circ} = J_n \in \mathcal{J} \ \forall n \in \mathbb{N}, \ E \subset \bigcup_{n=1}^{\infty} J_n \right\}$$

Una propiedad básica de la medida de Lebesgue

La medida de Lebesgue extiende a la elemental de los intervalos acotados:

Aproximación por intervalos compactos o abiertos

Para cada $I\in\mathcal{J}\,$ y cada $\,\varepsilon>0\,,$ existen $\,K,J\in\mathcal{J}\,,$ tales que

$$\overline{K} = K \subset I \subset J = J^{\circ}, \quad M(I) < M(K) + \varepsilon, \quad M(J) < M(I) + \varepsilon$$

Cálculo de la medida exterior

Para todo $E \in \mathcal{P}(\mathbb{R}^N)$ se tiene:

$$\lambda^*(E) = \inf \left\{ \sum_{n=1}^{\infty} M(J_n) : J_n^{\circ} = J_n \in \mathcal{J} \ \forall n \in \mathbb{N}, \ E \subset \bigcup_{n=1}^{\infty} J_n \right\}$$

Una propiedad básica de la medida de Lebesgue

La medida de Lebesgue extiende a la elemental de los intervalos acotados:

$$\mathcal{J} \subset \mathcal{M}$$
 y $\lambda(I) = M(I) \ \forall I \in \mathcal{J}$