

Chrono::FEA

Validation

ANCF Cable

ANCF cable elements validated against published literature (see unit test test_ANCFCable.cpp)

*Chrono's implementation has been verified against: Gerstmayr and Shabana, 2006, "Analysis of thin beams and cables using the absolute nodal coordinate formulation", Nonlinear Dynamics 45: 109–130

ANCF Beam

ANCF cable elements validated against published literature (see unit test utest_ANCFBeam.cpp)

- H = 0.5m; W = 0.1m; L = 2.0m; 4 ANCF finite elements
- E = 2.07e11 Pa; Poisson ratio = 0.3; k1,k2 Timoshenko coefficients
- Force = $-5e5 \ 0.5^3 \ N$
- Results match up to numerical precision with published in the literature: "Structural and continuum mechanics approaches for a 3D shear deformable ANCF beam finite element: Application to static and linearized dynamic examples", Journal of Computational and Nonlinear Dynamics, April 2013, Vol. 8/021004.
- Verified for small and large deformation

ANCF shell

Dimensions	E (MPa)	G (MPa)	Density		Simulation type	Ansys element	Converged disp
1mx1mx0.01 m	210	80.8	500 kg/m ³	-50N	Dynamic	Shell181 (EAS)	-0.649m

ANCF shell

Orthotropic and Composite

 $test_ANCFShell_Ort.cpp$

Dimensi ons	Ex (MPa)	G (MPa)	Ey=Ez (MPa)	Density	Vertical Force	Simulatio n type	Number of layers		Fiber angle	Converged disp.
1mx1mx 0.01m	200	38.5	100	500 kg/m ³	-10N	Dynamic	2	0.005m	20 degrees	-0.80207m

EAS Brick element

Isotropic and MR

test_EASBrickIso.cpp test EASBrickMooneyR Grav.cpp

8-noded brick element

- Classical tri-linear element
- Implements Enhanced Assumed Strain formulation to alleaviate locking
- Constitutive equations: Linear isotropic and Mooney-Rivlin

Dimensions	C ₁₀ (kPa)	C ₀₁ (kPa)	Vertical Force	Simulation type	Converged disp.
1mx1mx 0.1m	50	10	-50N	Dynamic	-0.5762 m

up of brick elements

Brick 9: Capped Drucker-Prager —Punch Test

Soil Material Properties

$$\sigma_{yield} = 210926 Pa$$

$$\beta = 51.7848^{\circ}$$

$$\phi = 51.7848^{\circ}$$

$$R = 0.5$$

$$\rho = 2149 \frac{kg}{m^3}$$

$$E = 54.1 MPa$$

$$\nu = 0.293021$$

Chrono verification parameters

- Applied force : $-27000\sin(\pi t)$
- Contact stiffness: 165000 N/m
- Contact detection threshold: 0.009m
- Element number: 12*12*8
- Soil box dimension: 0.48m*0.48*0.6m
- Rigid punch dimension: 0.2m*0.2m*0.1m
- Bottom node fixed

Corotational Euler-Bernoulli beam: Princeton benchmark

L =0:508m, T = 3.2024mm, H = 12.77mm, Young modulus E = 71.7GPa, Poisson ratio= 0.31, G = 27.37GPa.

Three loading conditions are tested:

P1 = 4:448N,

P2 = 8:896N,

P3 =13:345N for increasing values of the angle

More info: Tasora, A. "Validation of Euler-Bernoulli corotational beams in Chrono::Engine", Chrono white paper

Kinematically exact Reissner shell element

Clamped half cylinder with sliding constraints at the sides

Large bending in a rolled band

Comparison with results in literature and with analytical solutions

Torque T x 3/(50π) [Nm]