taguchi method

test case 2

Table 5.1. Process data

Data No.	"B" temp	"C" temp	P 1	P 2	Pre-ht time	Manuf time	Yield
1	575.0	274.0	205.5	210.5	5.0	180.0	81.55%
2	575.0	304.0	207.5	218.5	6.0	120.0	82.99%
3	570.0	279.0	199.5	207.5	7.0	120.0	83.03%
4	577.0	205.0	173.0	164.0	7.0	120.0	84.56%
5	573.0	254.0	160.0	164.0	7.0	120.0	84.60%
6	577.0	216.0	176.0	168.0	6.0	120.0	85.52%
7	582.0	222.5	171.0	167.0	5.0	180.0	89.47%

avg = 84.53

Table 5.2. Data in the unit space and the average values

Sample No.	"B" temp	"C" temp	P 1	P 2	Pre-ht time	Manuf time	Yield
4	577.0	205.0	173.0	164.0	7.0	120.0	84.56%
5	573.0	254.0	160.0	164.0	7.0	120.0	84.60%
Average	575.0	229.5	166.5	164.0	7.0	120.0	84.58%

 Table 5.3. Signal data

						Manuf	
Data No.	"B" temp	"C" temp	P 1	P 2	Pre-ht time	time	Yield
1	575.0	274.0	205.5	210.5	5.0	180.0	81.55%
2	575.0	304.0	207.5	218.5	6.0	120.0	82.99%
3	570.0	279.0	199.5	207.5	7.0	120.0	83.03%
6	577.0	216.0	176.0	168.0	6.0	120.0	85.52%
7	582.0	222.5	171.0	167.0	5.0	180.0	89.47%

Table 5.4. Normalized signal data

						Manuf	
Data No.	"B" temp	"C" temp	P 1	P 2	Pre-ht time	time	Yield
1	0.0	44.5	39.0	46.5	-2.0	60.0	-3.03%
2	0.0	74.5	41.0	54.5	-1.0	0.0	-1.59%
3	-5.0	49.5	33.0	43.5	0.0	0.0	-1.55%
6	2.0	-13.5	9.5	4.0	-1.0	0.0	0.94%
7	7.0	-7.0	4.5	3.0	-2.0	60.0	4.89%

Effective divider

$$r = M_1^2 + M_2^2 + \dots + M_l^2$$

= $(-0.0303)^2 + (-0.0159)^2 + \dots + 0.0489^2 = 0.00389$ (5.3)

Total variation

$$S_{T1} = X_{11}^2 + X_{21}^2 + \dots + X_{l1}^2$$

= $0.0^2 + 0.0^2 + \dots + 7.0^2 = 78.0$ (f=5) (5.4)

Variation of proportional term

$$S_{\beta 1} = \frac{\left(M_1 X_{11} + M_2 X_{21} + \dots + M_l X_{l1}\right)^2}{r}$$

$$= \frac{\left\{(-0.0303) \times 0.0 + (-0.0159) \times 0.0 + \dots + 0.0489 \times 7.0\right\}^2}{0.00389}$$

$$= 49.4433 \qquad (f=1)$$

Error variation

$$S_{e1} = S_{T1} - S_{\beta 1} = 78.0 - 49.4433 = 28.5567$$
 (f=4) (5.6)

Error variance

$$V_{e1} = \frac{S_{e1}}{l-1} = \frac{28.5567}{4} = 7.1392 \tag{5.7}$$

Therefore, the proportional coefficient β and the SN ratio η can be found as follows: Proportional Coefficient:

$$\beta_{1} = \frac{M_{1}X_{11} + M_{2}X_{21} + \dots + M_{l}X_{l1}}{r}$$

$$= \frac{(-0.0303) \times 0.0 + (-0.0159) \times 0.0 + \dots + 0.0489 \times 7.0}{0.00389}$$

$$= 112.7296 = 112.73$$
(5.8)

Given the SN ratio $\eta_1 S_{\beta 1} > V_{e1}$, the equation works out as follows. The SN ratio in this case is a duplicate ratio.

$$\eta_1 = r \frac{\frac{1}{r} \left(S_{\beta 1} - V_{e1} \right)}{V_{e1}} = \frac{\frac{1}{0.00389} (49.4433 - 7.1392)}{7.1392} = 1523.01 \tag{5.9}$$

Table 5.5. The proportional coefficients β and the SN ratios η

β, η	"B" temp	"C" temp	P 1	P 2	Pre-ht time	Manuf time
β	112.73	-968.81	-523.23	-710.78	-7.89	286.84
η	1523.01	315.26	71.21	140.46	0.00	0.00

$$\hat{M}_{i} = \frac{\eta_{1} \times \frac{X_{i1}}{\beta_{1}} + \eta_{2} \times \frac{X_{i2}}{\beta_{2}} + \eta_{3} \times \frac{X_{i3}}{\beta_{3}} + \eta_{4} \times \frac{X_{i4}}{\beta_{4}} + \eta_{5} \times \frac{X_{i5}}{\beta_{5}} + \eta_{6} \times \frac{X_{i6}}{\beta_{6}}}{\eta_{1} + \eta_{2} + \eta_{3} + \eta_{4} + \eta_{5} + \eta_{6}}$$

$$= \frac{1523.01 \times \frac{X_{i1}}{112.73} + 315.26 \times \frac{X_{i2}}{(-968.81)} + 71.21 \times \frac{X_{i3}}{(-523.23)} + 140.46 \times \frac{X_{i4}}{(-710.78)} + 0 + 0}{1523.01 + 315.26 + 71.21 + 140.46 + 0 + 0}$$
(5.10)

$$\hat{M}_{1} = \frac{1523.01 \times \frac{0.0}{112.73} + 315.26 \times \frac{44.5}{(-968.81)} + 71.21 \times \frac{39.0}{(-523.23)} + 140.46 \times \frac{46.5}{(-710.78)} + 0 + 0}{1523.01 + 315.26 + 71.21 + 140.46 + 0 + 0}$$

$$= \frac{(-28.98)}{2049.95} = -0.0141 \tag{5.11}$$

Table 5.6. Actual and integrated estimate values of yields of signal data

Data No.	Actual value M	Estimated value M
1	-3.03%	-1.41%
2	-1.59%	-1.98%
3	-1.55%	-4.72%
6	0.94%	1.43%
7	4.89%	4.67%

Linear equation

$$L = M_1 \hat{M}_1 + M_2 \hat{M}_2 + \dots + M_l \hat{M}_l$$

= $(-0.0303) \times (-0.0141) + (-0.0159) \times (-0.0198) + \dots + 0.0489 \times 0.0467$
= 0.00389

Effective divider

$$r = M_1^2 + M_2^2 + \dots + M_l^2$$

= $(-0.0303)^2 + (-0.0159)^2 + \dots + 0.0489^2 = 0.00389$ (5.13)

Total variation

$$S_T = \hat{M}_1^2 + \hat{M}_2^2 + \dots + \hat{M}_l^2$$

= $(-0.0141)^2 + (-0.0198)^2 + \dots + 0.0467^2 = 0.00520 \quad (f = 5)$ (5.14)

Variation S_{β} of a proportional term

$$S_{\beta} = \frac{L^2}{r} = \frac{0.00389^2}{0.00389} = 0.00389 \quad \text{(f=1)}$$

Error variation

$$S_e = S_T - S_\beta = 0.00520 - 0.00389 = 0.00131$$
 (f = 4) (5.16)

Error variance

$$V_e = \frac{S_e}{l-1} = \frac{0.00131}{4} = 0.00033 \tag{5.17}$$

Using the above computation results, the SN ratio η for general estimation can be found as follows:

$$\eta = 10\log\left(\frac{\frac{1}{r}(S_{\beta} - V_{e})}{V_{e}}\right) = 10\log\left(\frac{\frac{1}{0.00389}(0.00389 - 0.00033)}{0.00033}\right)$$

$$= 10\log(2795.97853) = 34.47(db)$$
(5.18)

Table 5.7. Orthogonal array L_{12} and the layout of items

No.	"B" temp	"C" temp	P1	P 2	Pre-heat time	Manuf time	e	e	e	e	e	Integrated estimate SN ratio (db)
1	1	1	1	1	1	1	1	1	1	1	1	34.47
2	1	1	1	1	1	2	2	2	2	2	2	34.47
3	1	1	2	2	2	1	1	1	2	2	2	33.87
4	1	2	1	2	2	1	2	2	1	1	2	32.64
5	1	2	2	1	2	2	1	2	1	2	1	33.16
6	1	2	2	2	1	2	2	1	2	1	1	31.83
7	2	1	2	2	1	1	2	2	1	2	1	24.99
8	2	1	2	1	2	2	2	1	1	1	2	24.16
9	2	1	1	2	2	2	1	2	2	1	1	24.29
10	2	2	2	1	1	1	1	2	2	1	2	21.48
11	2	2	1	2	1	2	1	1	1	2	2	18.53
12	2	2	1	1	2	1	2	1	2	2	1	20.65

Table 5.8. Integrated estimate SN ratio (db) auxiliary table (averages by level)

Level 1	Level 2
33.41	22.35
29.37	26.38
27.51	28.25
28.06	27.69
27.62	28.13
28.02	27.74
	33.41 29.37 27.51 28.06 27.62

Figure 5.3. Factorial effects for the six items.

Table 5.9. Comparison of integrated estimate SN ratios (db)

Case	Items used	Integrated estimate SN ratio (db)
1	All items	34.47
2	"B" temperature, "C" temperature	33.87

Table 5.10. Unknown data

Data No.	"B" temp	"C" temp	P 1	P 2	Pre-ht time	Manuf time	Yield
<1>	563.0	306.5	185.5	183.5	2.8	60.0	unknown

Table 5.11. Normalized unknown data

Data No.	"B" temp	"C" temp	P 1	P 2	Pre-ht time	Manuf time	Yield
<1>	-12.0	77.0	19.0	19.5	-4.2	-60.0	unknown

integrated estimate yield value is computed using equation (5.10).

$$\hat{M}_{<1>} = \frac{1523.01 \times \frac{\left(-12.0\right)}{112.73} + 315.26 \times \frac{77.0}{\left(-968.81\right)} + 71.21 \times \frac{19.0}{\left(-523.23\right)} + 140.46 \times \frac{19.5}{\left(-710.78\right)} + 0 + 0}{1523.01 + 315.26 + 71.21 + 140.46 + 0 + 0}$$

$$= \frac{-193.62}{2049.95} = -0.0945$$
(5.19)

the integrated estimate value \hat{y}_1 for the yield of Signal Data No. 1 is found as follows:

$$\hat{y}_1 = \hat{M}_1 + M_0 = -1.41 + 84.58 = 83.17 \,(\%) \tag{5.20}$$

For the unknown data as well, the integrated estimate value \hat{y} of the yield is found by adding the yield average value M_0 (= 84.58) of the Unit Space to the likewise normalized value . Therefore, the yield's integrated estimate value $\hat{y}<1>$ for unknown data <1> will be:

$$\hat{y}_{<1>} = \hat{M}_{<1>} + M_0 = -9.45 + 84.58 = 75.13 \,(\%) \tag{5.21}$$

Table 5.12. The Actual value y and the integrated estimate value \hat{y} of the yields for signal data and unknown data

No.		Actual value y	Integrated estimate value ŷ
	1	81.55%	83.17%
	2	82.99%	82.60%
Signal Data	3	83.03%	79.86%
2-8	6	85.52%	86.01%
	7	89.47%	89.25%
Unknown data	<1>	73.30%	75.13%

Figure 5.4. Actual yield value y and integrated estimate value \hat{y} .

We learn from the figure that the plotted dots overlap rather closely, almost a 45° straight line, indicating that the Signal Data as well as the unknown data are fairly good estimations.