SISTEMAS CONCURRENTES Y DISTRIBUIDOS.

Práctica 4. Sistemas de tiempo real.

Pablo Manresa Nebot. 2°A2

<u>Índice</u>

Ejecutivol-compr	 1
Eiecutivo2	2

Ejecutivo1-compr

Cada vez que acaba un ciclo secundario, se informa del retraso del instante final actual respecto al instante final esperado. Si se comprueba que dicho retraso es superior a 20 milisegundos, el programa aborta con un mensaje de error.

```
Para ello, se ha realizado lo siguiente:

fin_sec = steady_clock::now();

milliseconds_f retraso = fin_sec - ini_sec;

cout << "RETRASO : " << retraso.count() << endl;

if(retraso.count() > milliseconds(20).count() ){

cout << "\n Abortar programa. Retraso > 20 milisegundos " << retraso.count() << "\n";

exit(EXIT_FAILURE);
}

Justo después de:

ini_sec += Ts;
sleep_until(ini_sec);

Para verificar si el retraso producido excede o no los 20 milisegundos.
```

Ejecutivo2

Diseño de planificación de tareas y restricciones que cumplan con lo siguiente:

Tarea	${f T}$	С
A	500	100
В	500	150
С	1000	200
D	2000	240

La solución ha sido la siguiente:

```
//
   Datos de las tareas:
//
   _____
//
   Ta. T C
   _____
//
//
  A 500 100
// B 500 150
// C 1000 200
// D 2000 240
//
//
  Planificación (con Ts == 500 ms)
//
//
  *----*
// | A B C | A B D | A B C | A B | // *----*
```

¿ cual es el mínimo tiempo de espera que queda al final de las iteraciones del ciclo secundario con tu solución ?

El mínimo tiempo de espera corresponde al segundo ciclo, que contiene los procesos A B D, que juntos suman 490 ms., siendo 500 ms. el tiempo máximo. Por lo tanto, corresponde a una espera de 10 ms.

\rightarrow ¿ sería planificable si la tarea D tuviese un tiempo cómputo de 250 ms ?

Sí, porque justo sumaría el ciclo A B D un total de 500 ms. siendo la espera de 0 ms. por lo que, sería planificable.