Лекция 15

9 декабря 2024

1 Числовые последовательности

Определение 1

Числовая последовательность — это функция натурального аргумента

Определение 2

Число A называется пределом числовой последовательности x_n , если

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \forall n > N \implies |x_n - a| < \varepsilon$$

Теорема 1 – Вейерштрасса

Всякая монотонная ограниченная последовательность сходится.

Теорема 2

 $\forall n \ a \leq x_n \leq b$ и $\exists \lim_{n \to \infty} x_n = C \implies C \in [a, b]$

Определение 3

Стягивающейся системой отрезков называется последовательность отрезков $[a_1,b_1],[a_2,b_2]\dots$ такая, что $\forall n\in\mathbb{N}\ a_n\leq a_{n+1}< b_{n+1}\leq b_n$ и $\lim_{n\to\infty}(b_n-a_n)=0.$

Лемма 1 – О системе стягивающихся отрезков

Существует единственная точка, принадлежащая все отрезкам стягивающейся системы.

Доказательство.

- 1. Существование
 - (a) Заметим, что $\{a_n\}$ возрастает, а $\{b_n\}$ убывает. Кроме того, обе последовательности ограничены, так как $a_1 \leq a_n < b_n \leq b_1$.
 - (b) По теореме Вейерштрасса $\{a_n\}$ и $\{b_n\}$ сходятся.
 - (c) Из теоремы (2) следует, что $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=c$.

- (d) В силу монотонности $\forall n \in \mathbb{N} \ a_n \leq c \leq b_n \implies$ точка c принадлежит всем отрезкам стягивающейся системы.
- 2. Единственность
 - (a) Предположим, что $\exists d > c$, принадлежащая всем отрезкам стягивающейся системы.
 - (b) $\forall n \ a_n \leq c < d \leq b_n \implies b_n a_n \geq d c > 0 \implies \lim_{n \to \infty} (b_n a_n) \geq d c > 0$. Получено противоречие.

<u>Замечание:</u> теорема иллюстрирует свойство непрерывности действительных чисел. Множество рациоальных чисел данным свойством не обладает.

2 Предельные точки

Определение 4 - Подпоследовательность

Рассмотрим произвольные числовую последовательность $\{x_n\}$ и возрастающую последовательность $\{k_n\}$ натуральных чисел $(k_n \ge n)$. Выберем из $\{x_n\}$ члены $x_{k_1}, x_{k_2}, \dots x_{k_n}, \dots$ Числовая последовательность $\{x_{k_n}\}$ называется подпоследовательностью $\{x_n\}$.

Замечание: подследовательность является своей подпоследовательностью.

Лемма 2

Последовательность $\{x_n\}$ сходится к $A \implies$ любая подпоследовательность $\{x_n\}$ сходится к A.

Доказательство.

- 1. Зададим произвольный $\varepsilon > 0$.
- 2. Начиная с некоторого n, все члены $\{x_n\}$ лежат в ε -окрестности A.
- 3. Все члены x_{k_n} также будут лежать в ε -окрестности A в силу того, что $k_n \geq n \implies \lim_{n \to \infty} x_{k_n} = A$.

Замечание: у расходящейся последовательности могут быть сходящиеся подпоследовательности.

Теорема 3 – Больцано-Вейерштрасса

Из любой ограниченной последовательности можно выделить сходящуюся подпоследовательность

Доказательство.

- 1. Последовательность ограничена $\implies \exists a, b : \forall n \ a \leq x_n \leq b$.
- 2. Разделим [a,b] пополам, тогда по крайней мере один из получившихся отрезков содержит бесконечно много членов x_n , обозначим его $[a_1,b_1]$. Пусть $x_{k_1} \in [a_1,b_1]$.
- 3. Разделим отрезок $[a_1,b_1]$ пополам и обозначим через $[a_2,b_2]$ ту его половину, на которой лежит бесконечно много членов последовательности. Пусть $x_{k_2} \in [a_2,b_2]$ и $k_2 > k_1$.
- 4. Будем продолжать данный процесс бесконечно долго, получим систему стягивающихся отрезков. При этом $\forall n \in \mathbb{N} \ a_n \leq x_{k_n} \leq b_n$.
- 5. По теореме о вложенных отрезках $\exists!c\in[a_n,b_n]\implies\lim_{n\to\infty}x_{k_n}=c.$
- 6. Такми образом мы выделили подпоследовательность $\{x_{k_n}\}$ исходной последовательности $\{x_n\}$, которая сходится.

Замечание: для неограниченных последовательностей теорема Больцано-Вейерштрасса неверна.

Пример. У возрастающей последовательности натуральных чисел не существует сходящихся подпоследовательностей.

Определение 5

Последовательность $\{x_n\}$ называется бесконечно большой, если

$$\forall A > 0 \; \exists N \in \mathbb{N} : \forall n > N \implies |x_n| > A$$

<u>Замечание:</u> любая бесконечно большая последовательность является неограниченной. Обратное утверждение неверно $(\{x_n\} = \{0, 1, 0, 2, 0, 3, \dots\}).$

Домашнее задание: доказать, что из любой неограниченной последовательности можно выделить бесконечно большую.

Определение 6

Число A называется предельной точкой последовательности $\{x_n\}$, если из $\{x_n\}$ можно выделить подпоследовательность, сходящуюся к A.

Определение 7

Число A называется предельной точкой $\{x_n\}$, если в любой её окрестности содержится бесконечно много членов $\{x_n\}$.

Утверждение 1

Определения (6) и (7) эквивалентны.

Утверждение 2

Всякая ограниченная последовательность имеет по крайней мере одну предельную точку.

Замечание 1: если последовательность сходится, то предельная точка единственна.

Замечание 2: последовательность может иметь сколько угодно предельных.

Утверждение 3

© равномощно № (счётно).

Каждое вещественное число из отрезка [0,1] является предельной для последовательности рациональных чисел отрезка [0,1].

Домашнее задание.

- 1. Привести пример неограниченной последовательности, которая имеет ровно 2 предельные точки.
- 2. Привести пример ограниченной последовательности, которая имеет ровно 3 предельные точки.

Определение 8

Пусть дана ограниченная последовательность $\{x_n\}$. Наибольшая (наименьшая) предельная точка последовательности $\{x_n\}$ называется верхним (нижним) пределом этой последовательности и обозначается как $\overline{\lim_{n\to\infty}} x_n \ (\underline{\lim_{n\to\infty}} x_n)$.

Утверждение 4

Последовательность $\{x_n\}$ сходится $\iff \overline{\lim}_{n\to\infty} x_n = \underline{\lim}_{n\to\infty} x_n$.

Теорема 4

Ограниченная последовательность имеет численные верхний и нижний пределы.

<u>Замечание:</u> если последовательность $\{x_n\}$ не ограничена сверху (снизу), что говорят, что $\overline{\lim}_{n\to\infty} x_n + \infty$ ($\underline{\lim}_{n\to\infty} x_n = -\infty$).