For convenience we want to have a distinctive name for the norm function. So we denote by $N:E\to\mathbb{R}$ the function given by $N(f)=\|f\|$ throughout. Then (2.5) can be written in the form

(2.6)
$$dN(f) = \{ \phi \in E' : ||\phi|| \le 1, \langle f, \phi \rangle = ||f|| \}$$
.

A [strictly] N -dissipative operator is simply called [strictly] dissipative (which is in accordance with the usual nomenclature).

Example 2.2. a) Let E = C[0,1], $f \in E$.

Then there exists $x \in [0,1]$ such that $|f(x)| = ||f||_{\infty}$. Define $\phi \in E'$ by $\langle g, \phi \rangle = (\text{sign } f(x))g(x)$. Then $\phi \in dN(f)$. Note that dN(f) may be an infinite set.

- b) Let H be a Hilbert space, f \in H, f \neq 0 . Then dN(f) = $\{\phi_f\}$ where $\langle g, \phi_f \rangle = 1/\|f\|(g|f)$.
- c) A A Id is strictly dissipative for every bounded operator A .

<u>Proposition</u> 2.3. Let A be an operator on E.

Then A is p-dissipative if and only if

- (2.7) $p(f) \le p(f tAf)$ for all $f \in D(A)$, t > 0.
- If in particular $(w,\infty) \subseteq \rho(A)$ for some $w \in \mathbb{R}$,

then A is p-dissipative if and only if

(2.8) $p(\lambda R(\lambda, A) f) \le p(f)$ for all $f \in E$, $\lambda > w$.

<u>Proof.</u> Assume that A is p -dissipative. Let $f \in D(A)$, t > 0. There exists $\phi \in dp(f)$ such that $\langle Af, \phi \rangle \leq 0$. Hence, $p(f) = \langle f, \phi \rangle = \langle f - tAf + tAf , \phi \rangle \leq \langle f - tAf, \phi \rangle \leq p(f - tAf)$. So

 $p(f) = \langle f, \phi \rangle = \langle f - tAf + tAf , \phi \rangle \le \langle f - tAf, \phi \rangle \le p(f - tAf)$. So (2.7) holds.

Converse, let $f \in D(A)$. For every t > 0 choose $\phi_t \in dp(f - tAf)$. Then $\pm \langle g, \phi_t \rangle \leq p(\pm g) \leq c \|g\|$ for all $g \in E$, t > 0. Thus the net $(\phi_t)_{t > 0}$ is bounded. Consequently it possesses a $\sigma(E', E)$ - limit point ϕ as $t \to 0$. We show that $\phi \in dp(f)$ and $\langle Af, \phi \rangle \leq 0$.

Since $\langle g, \phi_{t} \rangle \leq p(g)$ for all t > 0 it follows that $\langle g, \phi \rangle \leq p(g)$ $(g \in E)$. Moreover, $\langle f, \phi_{t} \rangle - t \langle Af, \phi_{t} \rangle = p(f - tAf)$ (t > 0). Letting $t \to 0$ yields $\langle f, \phi \rangle = p(f)$.

We have proved that $\phi \in dp(f)$. By hypothesis we have for all t > 0, $p(f) \le p(f-tAf) = \langle f-tAf, \phi_t \rangle = \langle f, \phi_t \rangle - t\langle Af, \phi_t \rangle \le p(f) - t\langle Af, \phi_t \rangle$. Consequently $\langle Af, \phi_t \rangle \le 0$ for all t > 0. Thus $\langle Af, \phi \rangle \le 0$.