正交截線

න

August 12, 2021

在看這篇之前最好是要先知道一些完全四線形的性質,配極變換,交比,要是會錐線的話當然就更好,在最一開始我先給出它的定義。

Definition 0.1. 給定三角形 $\triangle ABC$ 和一點 P 做過 P 垂直 PA 的直線交 BC 於 D。類似定義 E,F 則 D,E,F 共線,並稱該直線爲 P 對 $\triangle ABC$ 的正交截線 (Orthotransversal),文中將用 $\mathcal{O}_P(\triangle ABC)$ 表示,至於剛剛那裏的 D,E,F 爲甚麼會共線底下我會用不同的觀點給出幾個證明。

1 完全四線形

完全四線形版本的證明: 設 EF 交 BC 於 D',那其實我們就是要證明 PD' 垂直 PA。考慮完全四線形 $\triangle ABC \cup EF$,注意到完全四線形的性質三個直徑圓共軸,這樣一來 PD' 垂直 PA 就顯然成立了。

透過這個證明我們可以馬上得到一個性質

Proposition 1.1. 考慮 $\triangle ABC$ 截 $\mathcal{O}_P(\triangle ABC)$ 形成的完全四線形,則 PH 爲 垂心線,其中 H 是 $\triangle ABC$ 的垂心。

Proposition 1.2. $\stackrel{.}{ ext{$Z$}}$ $\stackrel{.}{ ex$

Proof. 設 B,C 關於外接圓的對徑點爲 B',C',對 (C'PB'BAC) 用帕斯卡定理,得到

 $(C'P \cap BA)$, $(PB' \cap AC)$, $(B'B \cap C'C)$ 三點共線

即 EF 過 $\triangle ABC$ 外心。

其實上面這個可以推廣

Proposition 1.3. 假設一點 P 對 $\triangle ABC$ 的圓西瓦三角形爲 A', B', C', Q 是外接圓上一點,設 QA' 交 BC 於 D,同理定義 E, F,則 D, E, F 共線且過 P。

Proof. 對 (C'PB'BAC) 用帕斯卡定理,則 EF 過 P 所以證畢。

Proposition 1.4. 若 P 在 $\triangle ABC$ 的外接圓上, $\mathcal{O}_P(\triangle ABC)$ 交三邊於 D, E, F,且 (AD)(BE)(CF) 共軸在 P, X,則 X 在 $\triangle ABC$ 的九點圓上。可以開封藤二號或是算幂所以這裡就不證了。

Author: State 1

2 配極

配極版本的證明: 設 D 在 BC 上滿足 PA 垂直 PD,類似定義 E, F,我們選一個以 P 爲圓心的圓配極,考慮 A, B, C 的極線,則由 PA 垂直 PD,得到 D 的極線平行 PA 且 D 的極線過 BC 的極點,所以 D 配極完後就會變成 A, B, C 的極線所形成的三角形的高,三個高顯然會共點,故 D, E, F 共線。

這證明可以得到一個滿強的結論。

Corollary 2.1. 設以 P 爲圓心的配極變換 $\mathfrak{p}_{(P)}$ 把 \triangle 變換成 $\mathfrak{p}_{(P)}(\triangle')$, \triangle 的垂 心爲 H_{\triangle} ,則

$$\mathfrak{p}_P(H_\triangle) = \mathcal{O}_P(\triangle')$$

Proposition 2.1. 給定三角形 $\triangle ABC$,設 P,Q 爲等角共軛點對, Q_A,Q_B,Q_C 是 Q 對 $\triangle ABC$ 的佩多三角形,H 是 $Q_AQ_BQ_C$ 的垂心,則 $\mathcal{O}_P(\triangle ABC)$ 垂直 QH。

Proof. 我們選一個以 P 爲圓心的圓對 $\triangle ABC$ 和 $\mathcal{O}_P(\triangle ABC)$ 配極,假設 $\triangle ABC$ 配極後爲 B'C', C'A', A'B' 則由上個性質 $\mathcal{O}_P(\triangle ABC)$ 被變換至 A'B'C' 的垂心,假設他叫 H',且我們由等角共軛點的性質,AP 垂直 Q_BQ_C ,又由配極變換知道,AP 垂直 B'C' 故 A'B'C' 和 $Q_AQ_BQ_C$ 相似,且 Q,P 分別爲 $Q_AQ_BQ_C$, A'B'C' 和 $\triangle ABC$ 的正交中心,故 P,Q 也是位似的,所以 $PH' \parallel QH$,又 $PH' \perp \mathcal{O}_P(\triangle ABC)$,所以原命題得證。

Proposition 2.2. 給定五點 PABCD,則 $\mathcal{O}_P(\triangle ABC), \mathcal{O}_P(\triangle ABD), \mathcal{O}_P(\triangle ACD), \mathcal{O}_P(\triangle BCD)$ 共點。

Proof. 和剛剛這個證明一樣配極,這次我們要證明的是四個配極後的垂心共線,不過我們熟知完全四線形的四個垂心共線,故命題證畢。

Proposition 2.3. 給定兩個透視的三角形 ABC, DEF 和透視中心 P,設 $\mathcal{O}_P(\triangle ABC)$ 對 $\triangle ABC$ 的三線性極點爲 $Q, \mathcal{O}_P(\triangle DEF)$ 對 DEF 的三線性極點爲 R,則 P,Q,R 共線。

Proof. 和剛剛這個證明一樣配極,注意到 Q 配極後會變成 $\mathcal{O}_P(\triangle ABC)$ 的極點對 A,B,C 的極線所形成的三角形的三線性極線,所以現在我們要證明的是兩個三線性極線平行,不過有趣的是兩個透視三角形配極後會位似,所以兩個位似三角形的垂心的三線性極線就顯然平行了,配極回來就是 P,Q,R 共線。

接下來要進入有錐線 (有趣) 的部分了,有感到身體不適者可以先跳過這個章節。

3 錐線上的推廣

Proposition 3.1. 給定等軸雙曲線上五點 PQABC, 做過 P 垂直 AQ 的線交 BC 於 D 同理定義 E,F 則,D,E,F 共線且垂直 PQ。

Author: State 2

Proof. 設 BQ 交 PF 於 I , CQ 交 PE 於 J , 考慮 $\triangle CQB$ 的垂心 H ,注意到等軸雙曲線的垂心性質和 $BH \parallel PI$, $CH \parallel PJ$, 因此我們可以得到

$$(F, P; I, \infty) = B(A, P; Q, H) = C(A, P; Q, H) = (E, P; J, \infty)$$

所以我們有 $EF \parallel IJ$,但是因爲 IJPQ 爲垂心組,所以有 $IJ \perp PQ$,所以 $EF \perp PQ$,同理可得 DF, $DF \perp PQ$,故 D, E, F 共線且垂直 PQ。

然後我們可以立即得到一個性質

Corollary 3.1. $\mathcal{O}_P(\triangle ABC)$ 垂直 P 在 (ABCP) 等軸雙曲線上的切線。

Corollary 3.2. $\mathcal{O}_G(\triangle ABC) \perp GK$

Corollary 3.3. $\mathcal{O}_I(\triangle ABC) \perp OI$

這時候我們可以用一個很通靈的方式做出這題。

Problem 3.1. 三角形 $\triangle ABC$, O, I 是外心和内心,令切點三角形爲 DEF, D 對 EF 鏡射爲 D', 證明 AD', OI, BC 共點。

Proof. 考慮 IB, IC 上的雨點 U, V 滿足 $AU \perp AC$, $AV \perp AB$ 則發現到 $UV = \mathcal{O}_A(\triangle BIC)$,因此 A 在 (ABCIH) 上的切線垂直 UV,注意到我們同時得到 AEF 和 IUV 正交,考慮 D 關於 EF 中點的對稱點爲 D'',則 AD', AD'' 爲 等角線,由 AEF 和 IUV 正交我們知道 AD'' 垂直 UV,因此我們知道 AD'' 是 A 在 (ABCIH) 上的切線,故 AD' 過 BC 和 OI 的交點。

然後下面這個東西配合一點小性質可以秒掉某次模競的一題

Proposition 3.2. 設 P 在 $\triangle ABC$ 外接圓上,H 爲垂心,過 A 做平行 $\mathcal{O}_P(\triangle ABC)$ 的線交外接圓於 E,HP 交外接圓於 F,則 EF 平行 BC。

Proof. 假設過 A 平行 $\mathcal{O}_P(\triangle ABC)$ 的線交錐線 (ABCPH) 於 T,考慮 ATP 的 垂心,由等軸雙曲線知道 ATP 的垂心在過 P 垂直 AT 的直線上,但由上個性質可得,ATP 爲直角三角形,考慮 A 的對徑點 A',即知 PT 過 A',所以我們就可打個交比,

$$A(B, C; A', F) = P(B, C; A', F) = P(B, C; T, H) = A(B, C; E, H)$$

故 AE, AF 爲等角線,即 EF 平行 BC。

Problem 3.2. 設三角形 $\triangle ABC$,O, H 爲外心和垂心,EF 在外接圓上滿足 $BC \parallel EF$,D 爲 EH 中點,過 O 平行 AF 的直線交 AB 於 G。 證明:

 $DG \perp DC$

其實我們可得到一些之後可能會用到的小性質。

Proposition 3.3. 三角形 $\triangle ABC$, P 在外接圓上, 過 P 做垂直 AP, BP, CP 的直線交 (ABCHP) 於 P_A, P_B, P_C 則 $AP_A, BP_B, CP_C, \mathcal{O}_P(\triangle ABC)$ 平行。

Proof. 直接考慮 APP_A 的垂心,因爲 (ABCHP) 是等軸雙曲線,所以 AP_A 和 P 點的切線垂直,所以平行 $\mathcal{O}_P(\triangle ABC)$ 。

接下來這個等軸雙曲線的性質可以推出一個讓我們算角的東西。

Proposition 3.4. 設 P,Q 對等軸雙曲線上的極線爲 T_P,T_Q , O 爲錐線中心,則

$$\angle(T_P, T_Q) = \angle QOP$$

Proof. 設 M,N 為該等軸雙曲線上兩個垂直方向的無窮遠點,對任一點 P,打交比在無窮遠線上知 $(OP,T_P;OM,ON)=-1$,又 OM,ON 垂直,由調和性質知, OM 是 OP,T_P 方向的角平分線, T_P 方向根本就是把 OP 方向對其中一條漸進線 做對稱,故自然就有 $\measuredangle(T_P,T_Q)=\measuredangle QOP$ 了 (做了對稱故方向會反過來)。

注意到若 P 在錐線上則 T_P 其實就是在該錐線在 P 的切線,於是就有等軸雙曲線上的切線是可算角的了!

Proposition 3.5. 設 P 在等軸雙曲線上的切線為 T_P ,O 為錐線中心,P' 為 P 對 O 的對徑點,X 為錐線上任意一點,則 $\Delta(T_P, PX) = \Delta(XP'P)$ 。

錐線算角是有妙用的看看下面這個性質。

Proposition 3.6. 三角形 $\triangle ABC$, A' 是 A 在外接圓上的對徑點,則

$$(AB, AC; AA', \mathcal{O}_{A'}(\triangle ABC)) = -1$$

Proof. 假設過 A 平行 $\mathcal{O}'_A(\triangle ABC)$ 的直線和 (ABCHA') 的交點爲 T,則我們等價要證 H(B,C;A',T)=-1,不過我們有 HA' 過 BC 中點,所以等於要證 HT 平行 BC 也就是要證 ATA'H 共圓,假設 AT 交外接圓於 E,注意到 EA' 是切線,而且 H 是 A' 在錐線上的對徑點 (由九點錐線顯然),所以

$$\angle ATA' = \angle EA'A = \angle (EA', A'A) = \angle AHA'$$

故 ATA'H 共圓, 證畢。

4 對合與正交截線

我們都知道外接圓上一點 X 的正交截線會是 O-置換線,但這樣似乎有點狹隘,因此我們給了他一個也許會有用的推廣,我們先用另一個觀點來看平常的正交截線。

Proposition 4.1. 設 X 爲任意點,設 $\mathcal{D} = \mathcal{D}_{H,X}$,假設垂直 X 關於 \mathcal{D} 的切線方向的無窮遠點爲 $\infty_{\mathcal{D}_X}^{\perp}$,則 X 關於 $\triangle ABC$ 的正交截線 $\mathcal{O}_X = \mathbf{S}_{\infty_{\mathcal{D}_X}^{\mathcal{D}}}^{\mathcal{D}}(X)$,特別的我們有 \mathcal{O}_X 垂直 X 在 \mathcal{D} 上的切線。

Proof. This is Trivial. \Box

Proposition 4.2. 設 X 爲任意點, \mathcal{D} 爲過 A, B, C, X 的任意外接錐線,則存在一點 P 使得, $\mathcal{O}_X = \mathbf{S}_{\mathcal{O}}^{\mathcal{D}}(X)$,並且我們有 X 在 \mathcal{D} 上的切線垂直 PX。

Author: 80

Proof. 考慮一個變換 $f: \mathcal{D} \to \mathcal{D}$,使得 $XF(Y) \perp XY$,則這顯然是一個射影對 合變換,故存在一對合中心 P 滿足對所有 Y 都有 P,Y,f(Y) 共線,特別的取 Y = A,B,C 可以注意到 $\mathfrak{S}_P^{\mathcal{D}}(X) = \mathcal{O}_X$,且因爲 P 爲對合中心,故 $PX \perp XX$,即 X 在 \mathcal{D} 上的切線垂直 PX。

Proposition 4.3. 設 X 爲任意點,則對於任何一點 $P \in \mathcal{O}_X$,存在一個過 A, B, C, X 的外接圓錐曲線 \mathcal{D} 使得 $\mathcal{O}_X = \mathcal{S}^D_P(X)$ 。

Proof. 設 AP 和過 X 垂直 AX 的直線交於點 P_A ,考慮錐線 $\mathcal{D} = (ABCXP_A)$,則由 (4.2),存在一點 P' 使得 $\mathcal{O}_X = \mathcal{SD}_{P'}^{\mathcal{D}}(X)$,但這表示 $P' \in \mathcal{O}_X \cap AP_A$,即 P = P'。

Proposition 4.4. 對於 $\triangle ABC$ 外接圓 Ω 上的點 X, 設等共軛 φ 滿足 $\varphi(X) \in \mathcal{L}_{\infty}$, 則 $\mathcal{O}_{X} = \mathcal{S}_{\varphi(H)}^{\mathcal{L}^{\varphi}}(X)$, 特別的我們有 $\varphi(H) \in \mathcal{O}_{X}$ 。

Proof. 考慮張志煥截線基本定理則我們有

$$\mathfrak{B}_{\varphi(H)}^{\mathcal{L}^{\varphi}}(X) = \mathfrak{B}_{H^*}^{\mathcal{L}^*}(X) = \mathfrak{B}_{O}(X) = \mathcal{O}_X$$

那我們也可以用對合給出一個 (3.1) 的證明。

Proposition 4.5. 給定等軸雙曲線上五點 PQABC, 做過 P 垂直 AQ 的線交 BC 於 D 同理定義 E, F 則 D, E, F 共線且垂直 PQ。

Proof. 考慮錐線 $\mathcal{C} = (ABCPQH)$,以及垂直 PQ 方向的無窮遠點 ∞_{PO}^{\perp} ,則

$$\mathfrak{S}^{\mathcal{C}}_{\infty_{PO}^{\perp}}(P) = DEF$$

5 一些綜合性質和應用

Proposition 5.1. 給定三角形 $\triangle ABC$, 設 P 在 $\mathcal{O}_P(\triangle ABC)$ 上的垂足爲 Q, 則 $\triangle APQ$, $\triangle BPQ$, $\triangle CPQ$ 垂心共線。

Proof. 設 $\mathcal{O}_P(\triangle ABC)$ 爲 L,考慮以 P 爲圓心 PQ 爲半徑的圓,假設 A,B,C 對 他配極變成 L_A,L_B,L_C ,P 配極後變成無窮遠線 L_∞ ,所以我們等價要證明

$$\mathcal{O}_P(\triangle L_A L L_\infty)$$
, $\mathcal{O}_P(\triangle L_B L L_\infty)$, $\mathcal{O}_P(\triangle L_C L L_\infty)$ 三線共點

假設 PQ 交 L_A , L_B , L_C 於 A', B', C', PA, PB, PC 交 L 於 P_A , P_B , P_C , 注意 到因爲 PA' 垂直 L, PP_A 垂直 L_A , 所以 $P_AA' = \mathcal{O}_P(\triangle L_A L L_\infty)$, 所以現在只需要證明 P_AA' , P_BB' , P_CC' 共點也就是要證明

$$P(P_A, P_B; P_C, Q) = (A', B'; C', Q)$$

假設 L_A , L_B , L_C 圍出的三角形為 $\triangle XYZ$,則我們有 $XQ \perp L_A$,而注意到 PP_A 也垂直 L_A ,所以

$$P(P_A, P_B; P_C, Q) = Q(X, Y; Z, P)$$

設 $QX \cap YZ = T$,則

$$Q(X, Y; Z, P) = (T, Y; Z, A') = (A', Z; Y, T) = X(A', B'; C', Q)$$

П

這就證明了 L_A , L_B , L_C 共點, 配極回來就是垂心共線。

Proposition 5.2. 設 P 對 $\triangle ABC$ 的反希瓦三角形為 $\triangle DEF$, P 對 $\triangle ABC$ 的 佩多三角形為 $\triangle XYZ$ 則, P 對 $\odot (XYZ)$ 的極線是 $\mathcal{O}_P(\triangle DEF)$ 。

Proof. 設過 P 垂直 PD 的線交 EF, AC, AB 於 T, M, N, 我們要證明的就是 T 在 P 對 (XYZ) 的極線上,首先有 YZMN, AYZP 分別四點共圓,且 PT 和 (AYZP) 相切。設 YZ 交 MN 於 J, 則我們可以得到

$$JM \times JN = JY \times JZ = JP^2$$

再加上完全四線形的調和性質,

$$A(B, C; P, E) = (N, M; P, T)$$

故 J 爲 \overline{PT} 中點,故 PT 直徑圓和 $\odot(XYZ)$ 正交,即 $T \in \mathfrak{p}_{\odot(XYZ)}(P)$ \Box 上面這個看起來沒用的東東可以證出下面這兩個很強的結論。

Proposition 5.3. 設 $\triangle DEF \neq P \implies \triangle ABC$ 的西瓦三角形, $Q \neq P \implies \triangle ABC$

 $\triangle DEF$ 的等角共軛點,則 PQ 和過 ABCP 的等軸雙曲線相切。

Proof. 考慮 P 對 $\triangle DEF$ 的佩多圓,注意到 PQ 過佩多圓的圓心,故 P 對佩多圓的極線會垂直 PQ 但是我們由 (5.2) 知道那條極線就是 $\mathcal{O}_P(\triangle ABC)$,也就是說 PQ 垂直 $\mathcal{O}_P(\triangle ABC)$,但是我們又知道 P 在錐線上的切線垂直 $\mathcal{O}_P(\triangle ABC)$,故 PQ 就是切線。

Proposition 5.4. 給定三角形 $\triangle ABC$ 和一點 P,則 $\mathcal{O}_P(\triangle ABC)$, P 對 $\triangle ABC$ 的三線性極線,P 對 $\triangle ABC$ 的配多圓的極線共點。

Proof. 我們先把極線換掉,設 P 對 $\triangle ABC$ 的反希瓦三角形為 $\triangle DEF$,注意到 P 對 $\triangle ABC$ 和 $\triangle DEF$ 的三線性極線重合,則變成要證明 $\mathcal{O}_P(\triangle ABC)$, $\mathcal{O}_P(\triangle DEF)$, P 對 $\triangle DEF$ 的三線性極線共點。設 AC, DF 交於 T_B , AB, DE 交於 T_C , $\mathcal{O}_P(\triangle ABC)$ 交 AB, AC 於 O_C , O_B , $\mathcal{O}_P(\triangle DEF)$ 交 DF, DE 於 O_E , O_F ,變成要證明 T_BT_C , O_BO_C , O_EO_F 共點,不過 T_BO_B , T_CO_C 交於 A , T_BO_E , T_CO_F 交於 D , T_CO_C 交於 T_CO_F T_CO_F

Corollary 5.1. I 的三線性極線平行 $\mathcal{O}_I(\triangle ABC)$

Corollary 5.2. I 的三線性極線垂直 OI。

Proposition 5.5. 給定三角形 $\triangle ABC$ 和外接圓上一點 P,則 P 對 $\triangle ABC$ 的三線性極線, $\mathcal{O}_P(\triangle ABC)$,P 對 $\triangle ABC$ 的斯坦那線共點在 Jerabek 雙曲線上。

Author: 80

Proof. 共點由上個性質可以立即推論,所以我們只要證, $O_P(\triangle ABC)$,P 對 $\triangle ABC$ 的斯坦那線共點在 Jerabek 雙曲線上,假設這個點叫 X,我們等於要證 (ABCOHX) 共錐線,很自然地會想要對 (AHXOCB) 開帕斯卡,假設 AH 交 OC 於 T,HX 交 BC 於 S,XO 交 AB 於 U,C 的對徑點爲 C',且 AH 交外接圓於 D,要證明的是 T, S, U 共線,考慮對外接圓上六點 (BADPC'C) 用帕斯卡,則 BA 交 PC' 於 U,AD 交 C'C 於 T,DP 交 BC 於 S,所以 T, S, U 共線,由帕斯卡定理 (AHXOCB) 共錐線。

眼尖的朋友可以發現到當P在外接圓上跑的時候X會和P保交比喔,所以這其實根本就可以用大保交比來證,而且這可以再推廣。

Proposition 5.6. 設 P,Q 對 $\triangle ABC$ 的圓西瓦三角形為 $\triangle P_A P_B P_C$, $\triangle Q_A Q_B Q_C$,X 在外接圓上,令 XP_A 交 BC 於 X'_A 同理有 X'_B, X'_C ,由性質 3 我們知道 X'_A, X'_B, X'_C 共線,假設他叫 $\mathcal{S}_P(X)$,同理定義 $\mathcal{S}_Q(X)$,若 $\mathcal{S}_P(X)$, $\mathcal{S}_Q(P)$ 共點在 Z,則 (ABCPQZ) 共錐線。證明一樣用帕斯卡所以毒者可以自己動手做

你還可以再推論一件事

Proposition 5.7. 和上面標號一樣,設XZ交外接圓於T,則T爲 (ABCPQZ)和外接圓的第四個交點。證明可以用大堡礁比所以這裡也留給毒者。

這裡提供一個等等會用到的性質。

Proposition 5.8. 给定五點 A, B, C, D, E,则 E 對 $\triangle ABC, \triangle ABD, \triangle ACD,$ $\triangle BCD$ 的佩多圓共點。

Proof. 設 E 在 AB, BC, CD, DA, AC, BD 的垂足爲 P, Q, R, S, U, V 設 E 對 $\triangle ABD$, $\triangle ABC$ 的佩多圓交於 T,則我們要證明的是 $\angle (TV, TQ) = \angle (RV, RQ)$ 由算角度我們有

$$\begin{split} \measuredangle(TV,TQ) &= \measuredangle(TV,TP) + \measuredangle(TP,TQ) = \measuredangle(SV,SP) + \measuredangle(UP,UQ) \\ &= \measuredangle(SV,SE) + \measuredangle(SE,SP) + \measuredangle(UP,UE) + \measuredangle(UE,UQ) \\ &= \measuredangle(RV,RE) + \measuredangle(SE,SP) + \measuredangle(UP,UE) + \measuredangle(RE,RQ) \\ &= \measuredangle(RV,RE) + \measuredangle(RE,RQ) + \measuredangle(SE,SP) + \measuredangle(UP,UE) = \measuredangle(RV,RQ) \end{split}$$

然後下面這個太毒了我不會證。

Proposition 5.9. 給定五點 ABCDE,定義 E_1 爲 $\mathcal{O}_E(\triangle ABC)$, $\mathcal{O}_E(\triangle ABD)$, $\mathcal{O}_E(\triangle ACD)$, $\mathcal{O}_E(\triangle BCD)$ 的交點,同理定義 A_1, B_1, C_1, D_1 ,然後假設 E 對 $\triangle ABC$, $\triangle ABD$, $\triangle ACD$, $\triangle BCD$ 的佩多圓共點 在 E_2 ,類似定義 A_2, B_2, C_2, D_2 ,則 $ABCDE \sim A_1B_1C_1D_1E_1 \sim A_2B_2C_2D_2E_2$,且錐線 $(ABCDE)(A_1B_1C_1D_1E_1)(A_2B_2C_2D_2E_2)$ 的中心是同一個而且這個中心同時也是 $A_1B_1C_1D_1E_1 \sim A_2B_2C_2D_2E_2$ 的位似中心

6 正交共軛

我們先看某次公奕在張修展別吃我 po 的題目

Problem 6.1. $H \not\in \triangle ABC$ 的垂心, $P \not\in ABC$ 的重心, $P \not\in ABC$ 的重心,P

Proof. 設 \mathfrak{p}_H 爲以 H 爲中心,固定住 $\triangle ABC$ 的反演變換,則顯然

$$D, E, F \in \mathfrak{p}_H(P)$$

有了上面的性質後,下面這題就變得不堪一擊了!!

Problem 6.2. H 是 $\triangle ABC$ 的垂心,P 是 (ABC) 上任一點,令 M 爲 HP 中點,在 BC 上做一點 D 使得 $DH \parallel AP$,類似定義 E, F 證明 D, E, F, M 共線。

Definition 6.1. 設 $\mathfrak{p}_H(P)$ 的三線性極點為 P° ,則我們定義 $P \mapsto P^{\circ}$ 的變換為正交共軛 (Orthogonal conjugate) \circ

下面這個主要是想說正交共軛是射影對合變換,然後標號 P° 沿用。

Proposition 6.1. 設 P 的正交共軛點是 P° ,則 P° 的正交共軛點是 P,且 $P \mapsto P^{\circ}$ 是保交比對合變換。

Proof. 我們要證 P 的三線性極線是 $\mathcal{H}_{P^{\circ}}(\triangle ABC)$, 設 AP, AP° 交 BC 於 U, V, P, P° 的三線性極線交 BC 於 U', V', AH 交 BC 於 D, 不過

$$DA \times DH = DU \times DV' = DU' \times DV$$

即 $U'H \perp AV$,故 $(P^o)^o = P$ 。

Corollary 6.1. 以下都是可以立即得到的推論

- (1) 標號同上, $P^{\circ}H$ 垂直 P 的三線性極線。
- (2) G, H 互爲正交共軛點。
- (3) 直線的正交共軛軌跡爲三角形的外接錐線。
- (4) 歐拉線的正交共軛軌跡爲三角形的 Kiepert 雙曲線。

Proposition 6.2. 設 P 在歐拉線上,Q 爲 P 的等角共軛點,則 H, Q, P^{\circ} 共線。

而由今年的一階可以得到下面這個推論。

Corollary 6.2. 外接圓上一點 P, P 的補點在 $\mathfrak{p}_H(P)$ 上。

Author: 80

Proposition 6.3. 過 $\triangle ABC$ 重心 G 的直線與 $\triangle ABC$ 的外接等軸雙曲線交於 U, V,則 HU 垂直於 V 的三線性極線,其中 H 是 $\triangle ABC$ 的垂心。

Proof. 考慮 U, V 的正交共軛點 U°, V° ,則由 A, B, C, H, U, V 共錐線,我們知道 G, U°, V° 共線,因此由迪沙格對合定裡 $H = UV^{\circ} \cap VU^{\circ}$,故 HU 垂直 V 的三線 性極線。

因此我們可以推論底下兩件事。

Corollary 6.3. H, I, Na° 共線。

Corollary 6.4. 三角形 $\triangle ABC$ 的奈格爾點 Na 的三線性極線垂直 HI。

Proposition 6.4. K° 是 O 的等截共軛點。

Proof. 注意到 K 的三線性極線和 A 在外接圓上的切線交在 BC 上,設此點爲 X,我們只須證明 XH 垂直 AO' 其中 O' 爲 O 的等截共軛點,設 D 是 A- 垂足,設 AO,AO' 交 BC 於 V,V',注意到 $DA^2=DX\times DV$,故

 $DA \times DH = DV' \times DX \implies$ 故 $H \not\in \triangle XAV'$ 的垂心 $\implies XH \perp AO'$ \square

Corollary 6.5. 設 H' 是 H 的等截共軛點,則 H'° , H, K 共線。

Proof. 考慮 H, G, O 的等截共軛的正交共軛共線故得證

Proposition 6.5. 設 X 爲 Kiepert 雙曲線上一點,則 X 的等截共軛點的三線性極線垂直 HX。

Proof. 設 $G, H \in \Delta ABC$ 的重心、垂心, $X' \in X$ 的等截共軛點,GX' 交 BC 於 X_A ,類似定義 X_B, X_C ,設 $\tau \in X$ 的等截共軛點的三線性極線,則

$$H(X, A; B, C) = A(X, A; B, C) = (X', X_A; X_B, X_C) = (\ell, BC; CA, AB)$$

 $\implies \ell \perp HX$

Proposition 6.6. 若 P 在 $\triangle ABC$ 的 Kiepert 雙曲線上, τ 爲 P 的三線性極線,則 $Q = \{AB, BC, CA, \tau\}$ 的垂心線爲 PH。

Proof. 設 P 的等截共軛點爲 P',則 P' 的三線性極線垂直 HP,且注意到 τ 爲 P' 的三線性極線的等截共軛線,故 HP 垂直 Q 的牛頓線,因此爲垂心線。 \square

Corollary 6.6. 對於 $\triangle ABC$ 歐拉線上一點 P, $\mathfrak{p}_H(P)$ 關於 $\triangle ABC$ 的等截共軛線平行 P 關於 $\triangle ABC$ 的三線性極線。

於是我們可以用上面這些東西來得到 TS 在幾何毒書會裡面丢的關於 Kiepert 雙曲線的一個性質。

Problem 6.3. 給定三角形 $\triangle ABC$ 與一垂直於 $\triangle ABC$ 尤拉線的直線 ℓ ,則 $Q\{BC,CA,AB,\ell\}$ 的垂心線過 ℓ 關於 $\triangle ABC$ 的三線性極點。

7 題目

Problem 7.1. 設三角形 $\triangle ABC$, O, H 爲外心和垂心,S 爲外接圓上一點,做 P 在 BC 邊上滿足 $\angle ASP = 90^\circ$, SH 交 AP 直徑圓於另一點 X, OP 交 AC, AB 於 Q, R, Q, R 在 AB, AC 邊上的垂足爲 Y, Z。 試證:X, Y, Z 共線。

Proof. 首先注意到 $OP = \mathcal{O}_S(\triangle ABC)$,故 $\angle BSQ = \angle CSR = 90^\circ$,並且由 HS 爲 $\{BC, CA, AB, OP\}$ 的垂心線,我們有 X 在 (AP), (BQ), (CR) 直徑圓上,故

$$\angle SXZ + \angle YXS = \angle SCA + \angle BYS = 0 \implies X, Y, Z$$
 共線

Problem 7.2. 設 I, O, H 爲 $\triangle ABC$ 的内心、外心、垂心, $\triangle DEF$ 爲 I 的西瓦三角形,X 是 $\triangle DEF$ 的垂心,則 $IX \parallel OH$

Proof. 設 $\triangle UVW$ 爲 $\triangle ABC$ 的切點三角形,(I) 爲 $\triangle ABC$ 内切圓,則 Claim 1. $\mathfrak{p}_{(I)}(\triangle DEF)$ 爲 $\triangle UVW$ 的反補三角形 $\triangle U'V'W'$ 。

 $proof\ of\ Claim\ 1.$ 注意到 A,I,D 共線和 $D\in BC$ 共線,因此

$$VW = \mathfrak{p}_{(I)}(A) \parallel \mathfrak{p}_{(I)}(D), U = \mathfrak{p}_{(I)}(BC) \in \mathfrak{p}_{(I)}(D)$$

故 $\mathfrak{p}_{(I)}(\triangle DEF) = \triangle U'V'W'$

因此 I 爲 $\mathfrak{p}_{(I)}(\triangle DEF)$ 的九點圓圓心,注意到 $\mathfrak{p}_{(I)}(X) = \mathcal{O}_I(\triangle U'V'W')$,因此我們只要證明 $OH \perp \mathcal{O}_I(\triangle U'V'W')$,注意到 $\triangle U'V'W'$ 的外切三角形會和 $\triangle ABC$ 位似,因此我們只需要證明 $\triangle U'V'W'$ 的外切三角形的歐拉線和 I 對 $\triangle U'V'W'$ 的正交截線垂直即可,而這等價於以下命題。

Claim 2. 給定三角形 $\triangle ABC$,N 爲九點圓圓心,則 N 對 $\triangle ABC$ 的正交截線 垂直 $\triangle ABC$ 的外切三角形的歐拉線。

 $proof\ of\ Claim\ 2.$ 注意到 $\triangle ABC$ 的外切三角形和 $\triangle ABC$ 的垂足三角形位似,因此我們只要證明 N 對 $\triangle ABC$ 的正交截線和垂足三角形的歐拉線垂直即可,考慮等軸雙曲線 $\mathcal{H}=(ABCNH)$,則我們有 N 在 \mathcal{H} 上的切線 $T_N(\mathcal{H})$ 會垂直 N 對 $\triangle ABC$ 的正交截線,接著我們證明 $T_N(\mathcal{H})$ 就是垂足三角形的歐拉線。注意到 N 對 $\triangle ABC$ 垂足三角形的等角共軛點就是垂足三角形的垂心 H_H ,因此 NH_H 即 爲垂足三角形的歐拉線,且由等共軛變換知道 $NH_H=T_N(\mathcal{H})$,因此得證。

Problem 7.3. 三角形 $\triangle ABC$ 的九點圓圓心爲 N, Ko 爲 Kosnita 點,則

$$\mathcal{O}_N(\triangle ABC) \perp OKo$$

Proof. 設 $\mathcal{O}_N(\triangle ABC)$ 交 BC,CA,AB 於 N_A,N_B,N_C , A',O_A 爲 A,O 關於 BC 的對稱點,類似定義 B',O_B,C',O_C ,則顯然我們有 A,A',O,O_A 共圓且圓心爲 N_A ,記此圓爲 (N_A) , (N_A) 和 (ABC) 的交點爲 X,同理定義 Y,Z,則考慮以 A

Author: State 10

爲中心的反演變換則 X 反演後的像爲 OA' 和 BC 的交點,再由 AO_A , A'O 關於 BC 對稱,我們有 AN, AX 爲等角共軛線,故 A, X, Ko 共線,即 Ko 在 (N_A) , (ABC) 的根軸上,故 O, Ko 到 (N_A) , (N_B) , (N_C) 等幂,即 OKo 爲三圓的根軸,故 $OKo \perp \mathcal{O}_N(\triangle ABC)$ 。

Problem 7.4. 三角形 $\triangle ABC$, 設 $\triangle DEF$ 爲其切點三角形且 I, H 爲 $\triangle ABC$ 的内心、垂心。

證明: 三角形 $\triangle ABC$ 的費爾巴哈點 Fe 關於 $\triangle DEF$ 的正交截線爲 IH。

Problem 7.5 (TS 在幾何毒書會丢的題). 設 G, H 為三角形 $\triangle ABC$ 的重心、垂心,(P,Q) 為 $\triangle ABC$ 的一對 antigonal conjugate 且 O_P, O_Q 為 P,Q 的 orthocorrespondent,若 GH 分別與 PO_P, QO_Q 交於 U,V 證明 (G,H;U,V)=-1。

Proof. 設 C 爲 (ABCPH), 過 H 做垂直 $\mathcal{O}_P(\triangle ABC)$ 的直線交 C 於 X,則

$$(X, H; P, Q)_{\mathcal{C}} = -1$$

因此我們只需要證明 PO_P, QO_Q, XG 三線交在 C 上即可,注意到 A, B, C, O_P, O_Q, G 共錐線,因此考慮錐線 $G = (ABCGO_PO_Q)$,注意到 C, G 有四個交點,令 Y 爲第四個交點,我們先證明 X, G, Y 共線,考慮 GX 和 C 的另一個交點 Y',則 Y' 的三線性極線垂直 HX,因此有 $Y' \in G \cap C$ 故 $Y = Y' \implies X, G, Y$ 共線。接著我們證明 P, O_P, Y 共線,這等價要證明 $(P, A; B, C)_C = (O_P, A; B, C)_G$

Claim 1. $(P, A; B, C)_{\mathcal{C}} = (O_P, A; B, C)_{\mathcal{C}}$

proof of claim 1. 設 $\mathcal{O}_P(\triangle ABC)$ 交 BC, CA, AB 於 A_1, B_1, C_1 , 注意到

$$(P, A; B, C)_{\mathcal{C}} = P(P, A; B, C) = (\infty_{\mathcal{O}_{P}(\triangle ABC)}, A_{1}; B_{1}, C_{1})$$

而另一方面,設過 A 平行 $\mathcal{O}_P(\triangle ABC)$ 的直線交 BC 於 S 則

$$(O_P, A; B, C)_{\mathcal{G}} = (A_1, S; B, C) = A(\infty_{\mathcal{O}_P(\triangle ABC)}, A_1; B_1, C_1) = (P, A; B, C)_{\mathcal{C}} \quad \Box$$

因此我們得到 P, O_P, Y 共線,由於 P, Q 對稱我們同時也得到 Q, O_Q, Y 共線。故

$$(G, H; U, V) = Y(G, H; U, V) = Y(X, H; P, Q) = -1$$