



# Search for tZq production in the dilepton final state using CMS nanoAOD run 2 samples

Kathryn Coldham, Brunel University London

#### tZq production in the dilepton final state

Shape-based analysis

- Motivations:
  - Rare process predicted by the SM
  - Top quark does not hadronise ⇒ spin info passed onto decay particles
  - Sensitive to the tZ and WWZ couplings
  - tZq forms an irreducible background to the tZ-FCNC process



### Methodology

### Events with bad luminosities were filtered using the golden json file

- The golden json file provides the run numbers and luminosity ranges of good lumisections:
  - ➤ 2016: Cert 271036-284044 13TeV PromptReco Collisions16 JSON.txt
  - ➤ 2017: Cert 294927-306462 13TeV PromptReco Collisions17 JSON.txt
  - > 2018: in AFS, copy file across to where you want it

    (path: /afs/cern.ch/cms/CAF/CMSCOMM/COMM\_DQM/certification/Collisions18/13TeV/ PromptReco/ Cert\_314472-325175 13TeV PromptReco Collisions18 JSON.txt)

#### PdmV twiki:

- ➤ 2016: <a href="https://twiki.cern.ch/twiki/bin/viewauth/CMS/PdmV2016Analysis">https://twiki.cern.ch/twiki/bin/viewauth/CMS/PdmV2016Analysis</a>
- ➤ 2017: <a href="https://twiki.cern.ch/twiki/bin/viewauth/CMS/PdmV2017Analysis">https://twiki.cern.ch/twiki/bin/viewauth/CMS/PdmV2017Analysis</a>
- ➤ 2018: <a href="https://twiki.cern.ch/twiki/bin/viewauth/CMS/PdmV2018Analysis">https://twiki.cern.ch/twiki/bin/viewauth/CMS/PdmV2018Analysis</a>
- Twiki link is here

### Event cleaning removes events affected by known anomalies

- Primary vertex filter (Flag\_goodVertices)
- Beam halo filter (Flag\_globalSuperTightHalo2016Filter)
- HBHE noise filter (Flag\_HBHENoiseFilter)
- HBHEIso noise filter (Flag\_HBHENoiseIsoFilter)
- ECAL trigger primitive filter (Flag\_EcalDeadCellTriggerPrimitiveFilter)
- Bad PF muon filter (Flag\_BadPFMuonFilter)
- Bad charged hadron filter (Flag\_BadChargedCandidateFilter)
- Flag\_ecalBadCalibFilter
- Flag\_eeBadScFilter

Twiki page outlining the differences between years is <a href="here">here</a>.

## Signal Region: Event Selection using CMS nanoAOD samples for 2016 (35.88 $fb^{-1}$ )

- Lepton selection (ee and  $\mu\mu$  channels):
  - Exactly two. Opposite sign and same flavour.
  - Leading (subleading) electrons:  $p_T > 35$  (15) GeV,  $|\eta| < 2.4$
  - Leading (subleading) muons:  $p_T > 26$  (20) GeV,  $|\eta| < 2.4$
- Jet selection:
  - Anti- $K_T$  jets with  $\Delta R = 0.4$ .
  - Jets:  $|\eta| < 4.7, p_T > 30 \text{ GeV}$ .
- B-tagged jets:  $|\eta| < 2.4$ . 1-2 b-jets using CSVv2 at the medium working point.
- W boson candidate reconstruction:
  - A pair of quark jets (excluding the leading b jet) with a reconstructed mass closest to the W mass.
  - Mass window cut of 20 GeV is applied.
- Top quark reconstruction:
  - From the W boson and the leading b jet with an invariant mass closest to that of the top quark mass.

# Signal Region: Event Selection using CMS nanoAOD samples for 2017 (41.53 $fb^{-1}$ ) and 2018 (59.69 $fb^{-1}$ )

- Same as 2016, except for changed cuts shown in red:
- Lepton selection (ee and  $\mu\mu$  channels):
  - Exactly two. Opposite sign and same flavour.
  - Leading (subleading) electrons:  $p_T > 38$  (15) GeV,  $|\eta| < 2.4 \rightarrow p_T > 38$  (15) GeV,  $|\eta| < 2.5$
  - Leading (subleading) muons:  $p_T > 29~(20)~{
    m GeV}$  ,  $|\eta| < 2.4 
    ightarrow p_T > 29~(20)~{
    m GeV}$  ,  $|\eta| < 2.5$

• B-tagged jets:  $|\eta| < 2.4 \to |\eta| < 2.5$ .

Increased  $p_T$  cuts due to increased single lepton trigger thresholds from 2016 to 2017.

Increased  $|\eta|$  cut due to **increased** tracker acceptance.

#### **Control Regions**

#### • $t\bar{t}$

• Lepton selection changed: exactly one tight electron and one tight muon are required with  $p_T > 25$  GeV. No additional loose leptons.

#### Z+jets

• W boson mass requirement is inverted (no pair of jets may have an invariant mass within 20 GeV of the nominal W boson mass, excluding the leading b jet). The event must have less than 50 GeV of missing transverse energy.

### Experimental blinding is carried out to apply a side-band region to data and MC. This prevents unintentionally-biased choices.

Based on  $HH \rightarrow b\overline{b}b\overline{b}$  analyses [1, 2]

$$\chi^2 = \left(\frac{m_W^{rec} - m_W}{\sigma_W}\right)^2 + \left(\frac{m_{top}^{rec} - m_{top}}{\sigma_T}\right)^2 \implies \begin{array}{l} \textit{Side band region:} \\ \textit{Signal region:} \end{array}$$

Where:

 $m_W^{rec}$  = nominal W mass  $m_W$  = reconstructed W boson mass  $m_{top}^{rec}$  = nominal top mass  $m_{top}$  = reconstructed top boson mass

 $\sigma_W$  = resolution of the reconstructed W boson mass

 $\sigma_T$  = resolution of the reconstructed top quark mass

#### Experimental blinding (continued)

• In the equation on the previous slide, the  $m_W^{rec}$ ,  $m_T^{rec}$ ,  $\sigma_W$  and  $\sigma_T$  values are calculated from Gaussian fits that have been applied to the W and top mass distributions.

• The  $m_W$  and  $m_T$  values are 80.385 GeV and 173.3 GeV, respectively.

#### Experimental blinding (continued)

- Using MC events as input to the equation, the  $\chi^2$  is calculated for each event.
- The  $\chi^2$  range was defined so that it contained all events where the reconstructed W mass was within  $5\sigma$  of the known W mass. The range also contains 68% of the simulated signal events.
- A value of 68% was chosen because anything higher would leave too few background events to properly model backgrounds with confidence.
- Data events were filtered with this  $\chi^2$  range. For unblinding, this filter was removed.

#### Non prompt lepton (NPL) estimation

$$N_{data}^{OS_{nonprompt}} = \left(N_{data}^{SS} - N_{real+mis-ID}^{SS}\right) \cdot \frac{N_{MC}^{OS_{nonprompt}}}{N_{MC}^{SS_{nonprompt}}}$$
Used for normalisation

 $N_{data}^{SS}$  = number of same sign events observed in data

where:

 $N_{real+mis-ID}^{SS}$  = expected number of real same sign events and events with charge misidentification

 $N_{MC}^{OS_{nonprompt}}$  = number of opposite-sign NPLs in simulation

 $N_{MC}^{SS_{nonprompt}}$  = number of same-sign NPLs in simulation

### Simulation corrections are applied to match MC with data.

- Normalisation factor
- Lepton Efficiency
  - Lepton identification, isolation, reconstruction and trigger efficiencies
- Lepton Energy Corrections
  - Electron regression, electron energy scale and electron smearing
  - Rochester corrections
- Jet Energy Corrections
  - Jet smearing
  - L1 pile up (already included in nanoAOD)
  - L2 relative and L3 absolute (already included in nanoAOD)
  - L2L3 residual (already included in nanoAOD)
- Pileup modelling
- b tagging efficiency
- Top quark p<sub>T</sub> reweighting
- Miscalibrated Tracker APV Chips (2016 only)

#### Simulation corrections – Normalisation Factor (w

$$w = \frac{\mathcal{L}\sigma}{N}$$

 $\mathcal{L}$  = integrated luminosity,  $\sigma$  = cross section, N = number of simulated events

• The  $\mathcal{L}$  is calculated using the <u>brilcalc tool</u>

#### Simulation corrections – Lepton Efficiencies

- The muon identification (ID), isolation (ISO) and reconstruction efficiency scale factors are provided by CMS: <a href="Twiki page for 2016">Twiki page for 2016</a>, <a href="Twiki page for 2017">Twiki page for 2018</a>
  - ROOT files for 2016
    - MuonID EfficienciesAndSF BCDEF.root
    - MuonID EfficienciesAndSF GH.root
    - MuonISO\_EfficienciesAndSF\_BCDEF.root
    - MuonISO EfficienciesAndSF GH.root
  - ROOT files for 2017
    - Muon RunBCDEF SF ID.root
    - Muon\_RunBCDEF\_SF\_ID\_syst.root
    - Muon\_RunBCDEF\_SF\_ISO.root
    - Muon RunBCDEF SF ISO syst.root
  - ROOT files for 2018:
    - RunABCD SF ID.root
    - RunABCD SF ISO.root

## Simulation Corrections – Lepton efficiency (continued)

- A trigger scale factor is calculated for each channel (ee,  $\mu\mu$  and  $e\mu$ ) using the cross-trigger method (from ???).
- MET samples were chosen for the cross trigger, since they are weakly correlated to tZq events.

$$arepsilon_{MC\ (DATA)} = rac{Number\ of\ MC\ (data)\ events\ that\ pass\ the\ MET\ triggers, lepton\ triggers\ and\ the\ event\ selection\ Number\ of\ MC\ (Data)\ events\ that\ pass\ the\ lepton\ triggers\ and\ event\ selection\ only$$

$$SF_{Trig} = \frac{\varepsilon_{DATA}}{\varepsilon_{MC}}$$

### Simulation Corrections – Lepton Energy Corrections

- Electron regression, energy scale and smearing corrections
  - <u>Link</u> to EGammaPOG Twiki page
  - File 1 for 2016
  - File 2 for 2016
  - File 1 for 2017
  - File 2 for 2017
  - File 3 for 2017
  - File 1 for 2018
  - File 2 for 2018

The files for **2018** were downloaded from this Twiki page.

- Rochester corrections
  - The roccor.Run2.v3.tgz package was used for run 2
  - <u>Link</u> to Twiki page

### Simulation Corrections – Jet Energy Corrections

Already applied in nanoAOD

- L1 pile up
- L2 relative and L3 absolute
- L2L3 residual

#### Simulation correction – Jet Energy Smearing

• The <a href="hybrid method">hybrid method</a> was used to apply the correction factor to the four momentum of the reconstructed jet. If 2 is true, 1 is used. Else, 3 is used.

1. 
$$c_{JER} = 1 + (s_{JER} + 1) \frac{p_T - p_T^{ptcl}}{p_T}$$

2. 
$$\Delta R = R_{cone}/2$$
 and  $\left|p_T - p_T^{ptcl}\right| < 3\sigma_{JER}p_T$ 

3. 
$$c_{JER} = 1 + N(0, s_{JER}) \sqrt{\max(s_{JER}^2 - 1, 0)}$$

```
Where:
                            = correction factor
c_{IER}
                            = data-to-simulation core resolution
S_{IER}
                factor
                            = transverse momentum resolution
\sigma_{IER}
                            = jet transverse momentum
p_T
p_T^{ptcl}
                           = the p_T of a generator-level jet
N(0,s_{IER})
                           = random number sampled from a normal
distribution, with a mean of zero and variance of \sigma^2
\max(s_{IER}^2 - 1.0)
                           = the largest value out of s_{IER}^2 - 1 or 0
```

## Simulation correction – Jet Energy Smearing (continued)

- $s_{JER}$  and  $\sigma_{JER}$  are read from text files.
- Text files provided by CMS:
  - $\sigma_{IER}$  for 2016
  - $\sigma_{JER}$  for 2017
  - $\sigma_{IER}$  for 2018
  - S<sub>JER</sub> for 2016
  - *s<sub>IER</sub>* for 2017
  - S<sub>JER</sub> for 2018

Explanations of the format of the  $s_{JER}$  and  $\sigma_{JER}$  text files are given on slides 21 and 22.

### Simulation correction – Jet Energy Smearing (continued)

• For  $\sigma_{IER}$ , use the p<sub>T</sub> resolution text file e.g. for 2017 (Fall17\_V3\_MC\_PtResolution\_AK4PFchs.txt):

| {2   | JetEta | Rho  | 1 JetPt | s | qrt([0]* | abs([0]) | /(x*x)+[1]*[1]*pow(x,[3])+[2]*[2]) | Resolutio | on}     |
|------|--------|------|---------|---|----------|----------|------------------------------------|-----------|---------|
| -4.7 | -3.2   | 0    | 6.37    | 6 | 15       | 3000     | -29.87 29.84                       | 0.1045    | -1.995  |
| -4.7 | -3.2   | 6.37 | 12.4    | 6 | 15       | 3000     | -23.2 23.09                        | 0.1051    | -1.987  |
| -4.7 | -3.2   | 12.4 | 18.42   | 6 | 15       | 3000     | 4.337 0.2253                       | 0.06986   | -0.4215 |

- Columns 1 and 2 = Min and max  $\eta$  values (Jet\_eta).
- Columns 3 and 4 = Min and max  $\rho$  values (fixedGridRhoFastjetAll).
- Column 5 = Just to say there are 6 more columns after this one (this column is not used).
- Columns 6 and 7 = Min and max p<sub>T</sub> values (Jet\_pt).
- Columns 8, 9, 10 and 11 = Values you substitute into [0], [1], [2] and [3] in the equation, respectively, (where x is the input  $p_T$ )

### Simulation correction – Jet Energy Smearing (continued)

• For  $s_{IER}$  use the SF file e.g. for 2017 (Fall17\_V3\_MC\_SF\_AK4PFchs.txt)

```
{1 JetEta 0 None ScaleFactor}
-5.191 -3.139 3 1.1542 1.0019 1.3066
-3.139 -2.964 3 1.2696 1.1607 1.3785
-2.964 -2.853 3 2.2923 1.9180 2.6665
```

- Columns 1 and 2 = Min and max  $\eta$  values.
- Columns 3 = to tell you there are three more columns after this one (not used).
- Column 4 = central SF value.
- Column 5 = SF down (column 4 column 5 = lower uncertainty)
- Column 6 = SF up (column 6 column 4 = upper uncertainty)

#### Simulation Correction – Pile Up Modelling

• The number of primary vertices (root branch name = *PV\_npvs*) in MC was reweighted.

- ROOT files containing the reweighted values have been created:
  - Link to the ROOT file for 2016
  - Link to the ROOT file for 2017
  - Link to the ROOT file for <u>2018</u>

### Simulation Correction – Pile up Modelling (cont.)

E.g. To make the MC PU distribution for 2018:

- The <u>python file</u> used by CMS for 2018 MC generation:

  <a href="https://github.com/cms-sw/cmssw/blob/master/SimGeneral/MixingModule/python/mix\_2018\_25ns\_JuneProjectionFull18\_PoissonOOTPU\_cfi.py">https://github.com/cms-sw/cmssw/blob/master/SimGeneral/MixingModule/python/mix\_2018\_25ns\_JuneProjectionFull18\_PoissonOOTPU\_cfi.py</a>
- ➤ The pt bins from the above script were pasted into this script: https://github.com/brunelphysics/tZq\_analysis/blob/run\_2/scripts/createPileUpMC2017.C

### Simulation Correction – Pile up Modelling (cont.)

 These instructions were followed to produce the pile up profiles for data:

https://twiki.cern.ch/twiki/bin/viewauth/CMS/PileupJSONFileforData

• Linux command used (in CMSSW):

```
➢ pileupCalc.py -i Cert_314472-
325175_13TeV_PromptReco_Collisions18_JSON.txt --inputLumiJSON
pileup_latest.txt --calcMode true --minBiasXsec 69200 --maxPileupBin 100 --
numPileupBins 100 MyDataPileupHistogram2018.root
```

#### Simulation Correction – b Tagging Efficiency

• The b-tagging event weight,  $\omega$ , is calculated using method 1a in this twiki:

$$P(MC) = \prod_{i = tagged} \varepsilon_i \prod_{j = not \ tagged} (1 - \varepsilon_j)$$

$$P(DATA) = \prod_{i = tagged} SF_i \varepsilon_i \prod_{j = not \ tagged} (1 - SF_j \varepsilon_j)$$

 $\varepsilon$  = the B-tagging efficiency that *you* calculate (explained on the next two slides).

$$\boldsymbol{\omega} = \frac{P(DATA)}{P(MC)}$$

SF = the CMS-calculated b-tagging scale factor (explained on slide 21).

Tagged = a b-tagged jet (*b*).

Not tagged = up quark, down quark, strange quark, charm quark (c) or a gluon (g). The first three are collectively known as "light quarks" (l).

$$\begin{aligned}
\boldsymbol{\varepsilon}_i &= \varepsilon_b \\
\boldsymbol{\varepsilon}_j &= \varepsilon_l \times \varepsilon_c \times \varepsilon_g
\end{aligned}$$

For b-tagged jets:

$$\varepsilon = \frac{number\ of\ bjets\ in\ MC\ correctly\ identified\ by\ CSVv2}{number\ of\ bjets\ in\ MC}$$

- <u>Numerator</u> = This is a 2D histogram. Find the number of events with tight jets that have GenPart\_pdgId == 5 && Jet\_btagCSVV2 > 0.8838 && abs(bjet  $\eta$ ) < 2.4. Plot a 2D histogram of the  $p_T$  versus  $\eta$  for these events.
- <u>Denominator</u> = same as numerator but without Jet\_btagCSVV2 > 0.8838.

For non bjets:

```
\varepsilon = \frac{number\ of\ non\ bjets\ in\ MC\ correctly\ identified\ by\ CSVv2}{number\ of\ non\ bjets\ in\ MC}
```

#### In the numerator, **GenPart Requirement** is:

- GenPart\_pdgId > 0 && GenPart\_pdgId < 4 (light jets)</li>
- GenPart\_pdgId == 4 (charm)
- GenPart\_pdgId == 21 (gluons)

See page 2 of this link for these values.

- <u>Numerator</u> = This is a 2D histogram. Number of events with tight jets that have GenPart Requirement && Jet\_btagCSVV2 > 0.8838 && abs(bjet  $\eta$ ) < 2.4. Plot a 2D histogram of the  $p_T$  versus  $\eta$  for these events.
- <u>Denominator</u> = same as numerator but without Jet\_btagCSVV2 > 0.8838.

Twiki page that explains the csv file format is here

- The *SF* has already been calculated by CMS:
  - .csv file for 2017 (CSVv2\_94XSF\_V2\_B\_F.csv) can be downloaded <a href="here">here</a>
  - Information for all years is <u>here</u>
- General CSV file format (explained on the next slide):

```
0, comb, central, 1, -2.5, 2.5, 20, 1000, 0, 1, "0.986369+(-(4.21155e-05*(\log(x+19)*(\log(x+18)*(3-(-(6.02128*\log(x+18))))))))"
0, comb, central, 0, -2.5, 2.5, 20, 1000, 0, 1, "0.986369+(-(4.21155e-05*(\log(x+19)*(\log(x+18)*(3-(-(6.02128*\log(x+18))))))))"
0, comb, down, 1, -2.5, 2.5, 20, 30, 0, 1, "0.986369+(-(4.21155e-05*(\log(x+19)*(\log(x+18)*(3-(-(6.02128*\log(x+18)))))))))0, comb, down, 1, -2.5, 2.5, 30, 50, 0, 1, "0.986369+(-(4.21155e-05*(\log(x+19)*(\log(x+18)*(3-(-(6.02128*\log(x+18)))))))))0, comb, down, 1, -2.5, 2.5, 30, 50, 0, 1, "0.986369+(-(4.21155e-05*(\log(x+19)*(\log(x+18)*(3-(-(6.02128*\log(x+18)))))))))0, comb, down, 1, -2.5, 2.5, 30, 50, 0, 1, "0.986369+(-(4.21155e-05*(\log(x+19)*(\log(x+18)*(3-(-(6.02128*\log(x+18)))))))))
```

```
0, comb, central, 1, -2.5, 2.5, 20, 1000, 0, 1, "0.986369+(-(4.21155e-05*(log(x+19)*(log(x+18)*(3-(-(6.02128*log(x+18)))))))) 0, comb, central, 0, -2.5, 2.5, 20, 1000, 0, 1, "0.986369+(-(4.21155e-05*(log(x+19)*(log(x+18)*(3-(-(6.02128*log(x+18)))))))) 0, comb, down, 1, -2.5, 2.5, 20, 30, 0, 1, "0.986369+(-(4.21155e-05*(log(x+19)*(log(x+18)*(3-(-(6.02128*log(x+18))))))))-0.088046833872795105) 0, comb, down, 1, -2.5, 2.5, 30, 50, 0, 1, "0.986369+(-(4.21155e-05*(log(x+19)*(log(x+18)*(3-(-(6.02128*log(x+18))))))))-0.031759314239025116)
```

- Column 1 = CSVv2 operating point
- Column 2 = Measurement type
- Column 3 = Systematic type
- Column 4 = Jet flavour
- Columns 5 and 6 = Min and max  $\eta$  values
- Columns 7 and 8 = Min and max  $p_T$  values
- Columns 9 and 10 = CSVv2 discriminant value

Compare input values with the values in columns 1-10 and return the answer that the equation in column 11 gives if the conditions are met (where x is the transverse momentum).

More info on this twiki.

#### Simulation Corrections − Top p<sub>T</sub> Reweighting

• The top  $p_T$  in Standard Model  $t\bar{t}$  MC events is reweighted using the factor  $\omega$ :

$$\omega = \sqrt{SF(t)SF(\bar{t})}$$
 where  $SF(p_T) = e^{-0.0615 - 0.0005 \cdot p_T}$ 

- Link to the twiki page is <u>here</u>
- CMS-TOP-12-028

**GenPart\_pdgId == 6** for top quarks and **-6** for antitop quarks.

**GenPart\_statusFlags** == 13 (isLastCopy).

### Simulation Corrections – Miscalibrated Tracker APV Chips (2016 only)

#### Shape uncertainties

- Jet energy corrections (already in nanoAOD)
- Jet smearing
- Missing transverse energy (MET)
- PU reweighting
  - vary the expected minimum bias cross section in simulation by ±4.6%
- b tagging SFs
  - vary the SF values by ±1σ
- PDFs
- Perturbative and non-perturbative factorisation and normalisation scales
- Matching threshold energy

#### Shape uncertainties – Jet Smearing

The up and down uncertainties applied to the SF are provided by CMS

• E.g. in Fall17\_V3\_MC\_SF\_AK4PFchs.txt:

```
-5.191 -3.139 3 1.1542 1.0019 1.3066
-3.139 -2.964 3 1.2696 1.1607 1.3785
-2.964 -2.853 3 2.2923 1.9180 2.6665
-2.853 -2.500 3 1.9909 1.4225 2.5593
-2.500 -2.322 3 1.4085 1.2066 1.6105

Column 4 = nominal value

Column 5 = down

Column 6 = up
```

#### Shape uncertainties – MET

• MET:

https://twiki.cern.ch/twiki/bin/view/CMS/MissingETUncertaintyPrescription#PF MET

#### Shape uncertainties — Pile up reweighting

• The cross section for the MC PU profile was varied by  $\pm 4.6\%$ 

- E.g. Linux commands used (in CMSSW) to obtain the MC PU profiles for the up and down uncertainties for 2018:
  - Linux command used for the up uncertainty: pileupCalc.py -i Cert\_314472-325175\_13TeV\_PromptReco\_Collisions18\_JSON.txt --inputLumiJSON pileup\_latest.txt --calcMode true --minBiasXsec 72383.2 --maxPileupBin 100 --numPileupBins 100 MyDataPileupHistogramScaleUp2018.root
  - Linux command used for the down uncertainty: pileupCalc.py -i Cert\_314472-325175\_13TeV\_PromptReco\_Collisions18\_JSON.txt --inputLumiJSON pileup\_latest.txt --calcMode true --minBiasXsec 66016.8 --maxPileupBin 100 --numPileupBins 100
    MyDataPileupHistogramScaleDown2018.root

#### Shape uncertainties – btagging scale factors

Provided by CMS in the csv file (<u>CSVv2 94XSF V2 B F.csv</u> for run 2)



The method is the same as for obtaining the equation to calculate the nominal scale factor, except column 3 must be equal to up or down.

#### Shape uncertainties – PDFs

The branch LHEPdfWeight was used

- Single top tW sample: <a href="https://arxiv.org/abs/1410.8849">https://arxiv.org/abs/1410.8849</a>
- All other samples: <a href="https://arxiv.org/abs/1510.03865">https://arxiv.org/abs/1510.03865</a>

### Shape uncertainties — Perturbative factorisation and normalisation scales

Alpha min and alpha max?

### Shape uncertainties — Non-perturbative factorisation and normalisation scales

- In 2016, additional samples are provided that contain the weights
- In 2017 and 2018, weights are stored in the nanoAOD samples for: tZq (signal),  $\bar{t}W$ , single top s-channel, single top t-channel top, single top t-channel anti-top,  $t\bar{t}\gamma$ ,  $t\bar{t}$  (to hadronic) and  $t\bar{t}$  (to semileptonic).
- In these samples for 2017 and 2018, the branch **PSWeight** was used:
  - PSWeight.at(0) = isr down
  - PSWeight.at(1) = fsr down
  - PSWeight.at(2) = isr up
  - PSWeight.at(3) = fsr up

# Shape uncertainties – Matching threshold energy

POWHEG V2 matching threshold energy = 
$$\frac{hdamp^2}{hdamp^2 + p_T^2}$$

(where hdamp has been tuned to  $1.58 \times m_{top}$ )

• Samples for the hdamp up and hdamp down variations have been provided by CMS for 2016, 2017 and 2018.

# With the exception of lepton efficiency scale factor uncertainties, rate uncertainties are implemented using the combine tool

#### Integrated luminosity

- Estimated to be 2.5% in 2016 [4], 2.3% in 2017 [5] and 2.5% in 2018 [6].
- Cross section normalization
  - A value of 30% was used in the trilepton search [7.], but a value of 10% was used for this dilepton analysis
- Non prompt lepton background estimate
  - A 30% normalisation uncertainty value was applied based on other analyses with similar background contributions.
- **Lepton efficiencies** are provided by CMS (combine tool not used to implement them). The lepton efficiency scale factors were varied by  $\pm 1\sigma$

#### Multivariate analysis

• Through the tact tool, a Boosted Decision Tree (BDT) was used to separate signal-like and background-like events.

The Higgs Combine Tool was used to implement the rate uncertainties and carry out the signal extraction

### Results

#### Results: Signal Region – Cutflow

#### Results: Z+jets Control Region – Cutflow

#### Results: $t\bar{t}$ Control Region – Cutflow

#### Results: Signal Region – Event Yields

#### Results: Z+jets Control Region – Event Yields

### Results: $t\bar{t}$ Control Region — Event Yields

#### Results: Signal Region – Event Yields (NPL)

# Results: Z+jets Control Region – Event Yields (NPL)

### Results: $t\bar{t}$ Control Region – Event Yields (NPL)

## Results: Signal Region — Event Yield Distributions

## Results: Z+jets Control Region – Event Yield Distributions

# Results: $t\bar{t}$ Control Region — Event Yield Distributions

#### Conclusions

#### References

[1] M. Aaboud et al. "Search for pair production of Higgs bosons in the  $b\bar{b}b\bar{b}$  final state using proton—proton collisions at  $\sqrt{s} = 13$  TeV with the ATLAS detector". arXiv: 1606.04782 [hep-ex].

[2] V. Khachatryan et al. "Search for resonant pair production of Higgs bosons decaying to two bottom quark—antiquark pairs in proton—proton collisions at 8 TeV". arXiv: 1503.04114 [hep-ex].

[3] https://arxiv.org/abs/1607.03663

- [4] <a href="http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/LUM-17-001/index.html">http://cms-results/public-results/preliminary-results/LUM-17-001/index.html</a>
- [5] <a href="http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/LUM-17-004/index.html">http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/LUM-17-004/index.html</a>
- [6] <a href="http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/LUM-18-002/index.html">http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/LUM-18-002/index.html</a>
- [7] https://arxiv.org/abs/1712.02825

### Back up

#### Samples 2016 (1)

| Process              | Sample(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| tZq (signal)         | /tZq   4f 13TeV-amcatnlo-pythia8/RunllSummer16NanoAODv5-<br>PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7 ext1-v1/NANOAODSIM                                                                                                                                                                                                                                                                                                                                        |
| Z+jets (aMCatNLO)    | /DYJetsToll M-50 TuneCUETP8M1 13TeV-amcatnloFXFX-pythia8/RunllSummer16NanoAODv5-PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7 ext2-v1/NANOAODSIM  /DYJetsToll M-10to50 TuneCUETP8M1 13TeV-amcatnloFXFX-pythia8/RunllSummer16NanoAODv5-PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7-v1/NANOAODSIM  /DYJetsToll M-10to50 TuneCUETP8M1 13TeV-amcatnloFXFX-pythia8/RunllSummer16NanoAODv5-PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7 ext1-v1/NANOAODSIM |
| ZPlusJets (Madgraph) | /DYJetsToLL M-50 TuneCUETP8M1 13TeV-madgraphMLM-pythia8/RunllSummer16NanoAODv5-PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7 ext1-v1/NANOAODSIM  /DYJetsToLL M-50 TuneCUETP8M1 13TeV-madgraphMLM-pythia8/RunllSummer16NanoAODv5-PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7 ext2-v1/NANOAODSIM  /DYJetsToLL M-10to50 TuneCUETP8M1 13TeV-madgraphMLM-pythia8/RunllSummer16NanoAODv5-PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7-v1/NANOAODSIM        |

| Process            | Sample(s)                                                                                                                                                         |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Z+jets (pT-binned) | /DYJetsToLL Zpt-0To50 TuneCUETP8M1 13TeV-amcatnloFXFX-pythia8/RunllSummer16NanoAODv6-<br>Nano25Oct2019 102X mcRun2 asymptotic v7-v1/NANOAODSIM                    |
|                    | /DYJetsToLL Pt-50To100 TuneCUETP8M1 13TeV-amcatnloFXFX-pythia8/RunllSummer16NanoAODv5-<br>PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7-v1/NANOAODSIM       |
|                    | /DYJetsToLL Pt-50To100 TuneCUETP8M1 13TeV-amcatnloFXFX-pythia8/RunllSummer16NanoAODv5-<br>PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7 ext3-v1/NANOAODSIM  |
|                    | /DYJetsToLL Pt-100To250 TuneCUETP8M1 13TeV-amcatnloFXFX-pythia8/RunlISummer16NanoAODv5-<br>PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7-v1/NANOAODSIM      |
|                    | /DYJetsToLL Pt-100To250 TuneCUETP8M1 13TeV-amcatnloFXFX-pythia8/RunllSummer16NanoAODv5-<br>PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7 ext1-v1/NANOAODSIM |
|                    | /DYJetsToLL Pt-100To250 TuneCUETP8M1 13TeV-amcatnloFXFX-pythia8/RunllSummer16NanoAODv5-<br>PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7 ext2-v1/NANOAODSIM |
|                    | /DYJetsToLL Pt-100To250 TuneCUETP8M1 13TeV-amcatnloFXFX-pythia8/RunllSummer16NanoAODv5-<br>PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7 ext5-v1/NANOAODSIM |
|                    | /DYJetsToLL Pt-250To400 TuneCUETP8M1 13TeV-amcatnloFXFX-pythia8/RunllSummer16NanoAODv5-<br>PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7-v1/NANOAODSIM      |
|                    | /DYJetsToLL Pt-250To400 TuneCUETP8M1 13TeV-amcatnloFXFX-pythia8/RunllSummer16NanoAODv5-<br>PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7 ext1-v1/NANOAODSIM |
|                    | /DYJetsToLL Pt-250To400 TuneCUETP8M1 13TeV-amcatnloFXFX-pythia8/RunllSummer16NanoAODv5-<br>PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7 ext2-v1/NANOAODSIM |
|                    | /DYJetsToLL Pt-250To400 TuneCUETP8M1 13TeV-amcatnloFXFX-pythia8/RunllSummer16NanoAODv5-<br>PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7 ext5-v1/NANOAODSIM |

| Process            | Sample(s)                                                                                                                                                         |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Z+jets (pT-binned) | /DYJetsToll Pt-400To650 TuneCUETP8M1 13TeV-amcatnloFXFX-pythia8/RunIISummer16NanoAODv5-<br>PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7-v1/NANOAODSIM      |
|                    | /DYJetsToLL Pt-400To650 TuneCUETP8M1 13TeV-amcatnloFXFX-pythia8/RunIISummer16NanoAODv5-<br>PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7 ext1-v1/NANOAODSIM |
|                    | /DYJetsToLL Pt-400To650 TuneCUETP8M1 13TeV-amcatnloFXFX-pythia8/RunllSummer16NanoAODv5-<br>PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7 ext2-v1/NANOAODSIM |
|                    | /DYJetsToLL Pt-650ToInf TuneCUETP8M1 13TeV-amcatnloFXFX-pythia8/RunllSummer16NanoAODv5-<br>PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7-v1/NANOAODSIM      |
|                    | /DYJetsToll Pt-650ToInf TuneCUETP8M1 13TeV-amcatnloFXFX-pythia8/RunIISummer16NanoAODv5-<br>PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7 ext1-v1/NANOAODSIM |
|                    | /DYJetsToll Pt-650ToInf TuneCUETP8M1 13TeV-amcatnloFXFX-pythia8/RunlISummer16NanoAODv5-<br>PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7 ext2-v1/NANOAODSIM |

| Process    | Sample(s)                                                                                                                                                                                                                                                                                                                |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Single top | t-channel top:  /ST t-channel top 4f inclusiveDecays 13TeV-powhegV2-madspin-pythia8 TuneCUETP8M1/RunllSummer16NanoAODv5- PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7-v1/NANOAODSIM  t-channel top scale up:  /ST t-channel top 4f scaleup inclusiveDecays 13TeV-powhegV2-madspin-pythia8/RunllSummer16NanoAODv6- |
|            | PUMoriond17 Nano25Oct2019 102X mcRun2 asymptotic v7-v1/NANOAODSIM                                                                                                                                                                                                                                                        |
|            | t channel top scale down:  /ST t-channel top 4f scaledown inclusiveDecays 13TeV-powhegV2-madspin- pythia8/RunllSummer16NanoAODv3-PUMoriond17 94X mcRun2 asymptotic v3-v1/NANOAODSIM                                                                                                                                      |
|            | t-channel antitop scale up: <u>/ST_t-channel_antitop_4f_scaleup_inclusiveDecays_13TeV-powhegV2-madspin-pythia8/RunIISummer16NanoAODv6-PUMoriond17_Nano25Oct2019_102X_mcRun2_asymptotic_v7-v1/NANOAODSIM</u>                                                                                                              |
|            | t-channel antitop scale down:  /ST t-channel antitop 4f scaledown inclusiveDecays 13TeV-powhegV2-madspin- pythia8/RunllSummer16NanoAODv6-PUMoriond17 Nano25Oct2019 102X mcRun2 asymptotic v7- v1/NANOAODSIM                                                                                                              |
|            | t-channel antitop:  /ST t-channel antitop 4f inclusiveDecays 13TeV-powhegV2-madspin-pythia8 TuneCUETP8M1/RunIISummer16NanoAODv5- PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7-v1/NANOAODSIM                                                                                                                       |
|            | s-channel: /ST s-channel 4f InclusiveDecays 13TeV-amcatnlo-pythia8/RunllSummer16NanoAODv5- PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7-v1/NANOAODSIM                                                                                                                                                             |

### Samples 2016 (2)

| Process    | Sample(s)                                                                                                                                                                                                            |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Single top | tW:  /ST tW top 5f inclusiveDecays 13TeV-powheg-pythia8 TuneCUETP8M1/RunIISummer16NanoAODv5- PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7 ext1-v1/NANOAODSIM                                                  |
|            | tW scale up:  /ST tW top 5f scaleup inclusiveDecays 13TeV-powheg- pythia8 TuneCUETP8M1/RunllSummer16NanoAODv5- PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7 ext1-v1/NANOAODSIM                                |
|            | tW scale down:  /ST tW top 5f scaledown inclusiveDecays 13TeV-powheg- pythia8 TuneCUETP8M1/RunlISummer16NanoAODv5- PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7 ext1-v1/NANOAODSIM                            |
|            | tW_tbar:  /ST tW antitop 5f inclusiveDecays 13TeV-powheg-pythia8 TuneCUETP8M1/RunllSummer16NanoAODv5- PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7 ext1-v1/NANOAODSIM                                         |
|            | tW_tbar_ScaleUp:  /ST_tW_antitop_5f_scaleup_inclusiveDecays_13TeV-powheg-pythia8_TuneCUETP8M1/RunllSummer16NanoAODv5- PUMoriond17_Nano1June2019_102X_mcRun2_asymptotic_v7_ext1-v1/NANOAODSIM  **TW_tbar_ScaleDevay** |
|            | tW_tbar_ScaleDown:  /ST tW antitop 5f scaledown inclusiveDecays 13TeV-powheg- pythia8 TuneCUETP8M1/RunlISummer16NanoAODv5- PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7 ext1-v1/NANOAODSIM                    |

#### Samples 2016 (3)

| Process    | Sample(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Single top | tZq (hadronic Z, leptonic W):  tHq:  /THQ Hincl 13TeV-madgraph-pythia8 TuneCUETP8M1/RunlISummer16NanoAODv5- PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7-v1/NANOAODSIM  tWZ tLL:  /ST tWll 5f LO 13TeV-MadGraph-pythia8/RunlISummer16NanoAODv5- PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7-v1/NANOAODSIM                                                                                                                                                                                                                                                            |
| VVV        | WWW to 4F:  /WWW 4F TuneCUETP8M1 13TeV-amcatnlo-pythia8/RunllSummer16NanoAODv5- PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7-v1/NANOAODSIM  WWZTo4F:  /WWZ TuneCUETP8M1 13TeV-amcatnlo-pythia8/RunllSummer16NanoAODv5- PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7-v1/NANOAODSIM  WZZ:  /WZZ TuneCUETP8M1 13TeV-amcatnlo-pythia8/RunllSummer16NanoAODv5- PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7-v1/NANOAODSIM  ZZZ:  /ZZZ TuneCUETP8M1 13TeV-amcatnlo-pythia8/RunllSummer16NanoAODv5- PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7-v1/NANOAODSIM |

#### Samples 2016 (4)

| Process             | Sample(s)                                                                                                                                                                               |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VV                  | ZZTo4L: /ZZTo4L 13TeV-amcatnloFXFX-pythia8/RunIISummer16NanoAODv5- PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7 ext1-v1/NANOAODSIM                                               |
|                     | ZZTo2L2Nu: /ZZTo2L2Nu 13TeV powheg pythia8/RunllSummer16NanoAODv5- PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7-v1/NANOAODSIM                                                    |
|                     | ZZTo2L2Q: /ZZTo2L2Q 13TeV amcatnloFXFX madspin pythia8/RunllSummer16NanoAODv5- PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7-v1/NANOAODSIM                                        |
|                     | WWTo2L2Nu: /WWTo2L2Nu 13TeV-powheg/RunlISummer16NanoAODv5- PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7-v1/NANOAODSIM                                                            |
|                     | WZTo1L1Nu2Q: /WZTo1L1Nu2Q 13TeV amcatnloFXFX madspin pythia8/RunllSummer16NanoAODv5-PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7-v1/NANOAODSIM                                   |
|                     | WWToLNuQQ: /WWToLNuQQ 13TeV-powheg/RunIISummer16NanoAODv5- PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7-v1/NANOAODSIM                                                            |
|                     | /WWToLNuQQ 13TeV-powheg/RunllSummer16NanoAODv5-<br>PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7 ext1-v1/NANOAODSIM                                                               |
|                     | WZTo3LNu: /WZJToLLLNu TuneCUETP8M1 13TeV-amcnlo-pythia8/RunIISummer16NanoAODv5-PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7-v1/NANOAODSIM                                        |
|                     | WZTo2L2Q: /WZTo2L2Q 13TeV amcatnloFXFX madspin pythia8/RunllSummer16NanoAODv5- PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7-v1/NANOAODSIM                                        |
| Kathryn Coldham   B | WZTo1L1Nu2Q: /WZTo1L1Nu2Q 13TeV amcatnloFXFX madspin pythia8/RunllSummer16NanoAODv5-<br>PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7-v1/NANOAODSIM<br>runel University London 68 |

### Samples 2016 (5)

| Process | Sample(s)                                                                                                                                                                                                                                            |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ttbar   | ttbar_madgraph: /TTJets DiLept TuneCUETP8M1 13TeV-madgraphMLM- pythia8/RunllSummer16NanoAODv5-PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7- v1/NANOAODSIM  /TTJets DiLept TuneCUETP8M1 13TeV-madgraphMLM-pythia8/RunllSummer16NanoAODv5-      |
|         | PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7 ext1-v1/NANOAODSIM  TTToHadronic: not used                                                                                                                                                       |
|         | ttbar_aMCatNLO:  /TTJets TuneCUETP8M2T4 13TeV-amcatnloFXFX-pythia8/RunllSummer16NanoAODv5- PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7-v1/NANOAODSIM  ttbar 2l2nu: /TTTo2L2Nu TuneCP5 PSweights 13TeV-powheg-pythia8/RunllSummer16NanoAODv5- |
|         | PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7-v1/NANOAODSIM  TTToSemileptonic: not used                                                                                                                                                        |

#### Samples 2016 (6)

| Process | Sample(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ttbar   | TT_hdampUP: /TT_hdampUP_TuneCUETP8M2T4_13TeV-powheg-pythia8/RunlISummer16NanoAODv5-PUMoriond17_Nano1June2019_102X_mcRun2_asymptotic_v7-v1/NANOAODSIM  TT_hdampUP_ext: /TT_hdampUP_TuneCUETP8M2T4_13TeV-powheg-pythia8/RunlISummer16NanoAODv5-PUMoriond17_Nano1June2019_102X_mcRun2_asymptotic_v7_ext1-v1/NANOAODSIM  TT_hdampDOWN: /TT_hdampDOWN_TuneCUETP8M2T4_13TeV-powheg-pythia8/RunlISummer16NanoAODv5-PUMoriond17_Nano1June2019_102X_mcRun2_asymptotic_v7-v1/NANOAODSIM  TT_hdampDOWN_ext: /TT_hdampDOWN_TuneCUETP8M2T4_13TeV-powheg-pythia8/RunlISummer16NanoAODv5-PUMoriond17_Nano1June2019_102X_mcRun2_asymptotic_v7_ext1-v1/NANOAODSIM  ST_tchannel_top_hdampup: ST_tchannel_top_hdampdown:  ST_tchannel_top_ScaleUp: ST_tchannel_top_ScaleDown: |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

#### Samples 2016 (7)

| Process | Sample(s)                                                                                                                                                        |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ttbar   | TT_isr_UP: /TT_TuneCUETP8M2T4_13TeV-powheg-isrup-pythia8/RunIISummer16NanoAODv5-PUMoriond17_Nano1June2019_102X_mcRun2_asymptotic_v7_ext1-v1/NANOAODSIM           |
|         | TT_isr_DOWN:/TT TuneCUETP8M2T4 13TeV-powheg-isrdown-pythia8/RunllSummer16NanoAODv5 PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7-v1/NANOAODSIM             |
|         | TT_isr_DOWN_ext: /TT TuneCUETP8M2T4 13TeV-powheg-isrdown- pythia8/RunllSummer16NanoAODv5- PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7 ext1-v1/NANOAODSIM |
|         | TT_fsr_UP: /TT TuneCUETP8M2T4 13TeV-powheg-fsrup-pythia8/RunllSummer16NanoAODv5-PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7-v1/NANOAODSIM                |
|         | TT_fsr_UP_ext: /TT_TuneCUETP8M2T4_13TeV-powheg-fsrup-pythia8/RunllSummer16NanoAODv5-PUMoriond17_Nano1June2019_102X_mcRun2_asymptotic_v7_ext1-v1/NANOAODSIM       |
|         | TT_fsr_DOWN: /TT TuneCUETP8M2T4 13TeV-powheg-fsrdown-<br>pythia8/RunllSummer16NanoAODv5-PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7-<br>v1/NANOAODSIM    |
|         | TT_fsr_DOWN_ext: /TT TuneCUETP8M2T4 13TeV-powheg-fsrdown-pythia8/RunIISummer16NanoAODv5-PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7 ext1-v1/NANOAODSIM   |
|         | POWIDHIOTIATY INAHOLIJUHEZOLO LOZA HICKUHZ ASYMPTOTIC V7 EXTL-VI/NANOAODSIIVI                                                                                    |

### Samples 2016 (7)

| Process                | Samples(s)                                                                                                                                                                 |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ttbarV                 | ttgamma: not used                                                                                                                                                          |
|                        | TTZToQQ: /TTZToQQ TuneCUETP8M1 13TeV-amcatnlo-pythia8/RunllSummer16NanoAODv5- PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7-v1/NANOAODSIM                            |
|                        | TTZToLL:  /TTZToLLNuNu M-10 TuneCUETP8M1 13TeV-amcatnlo-pythia8/RunllSummer16NanoAODv5- PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7 ext1-v1/NANOAODSIM             |
|                        | /TTZToLLNuNu M-10 TuneCUETP8M1 13TeV-amcatnlo-pythia8/RunllSummer16NanoAODv5-<br>PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7 ext2-v1/NANOAODSIM                    |
|                        | /TTZToLLNuNu_M-10_TuneCUETP8M1_13TeV-amcatnlo-pythia8/RunllSummer16NanoAODv5-<br>PUMoriond17_Nano1June2019_102X_mcRun2_asymptotic_v7_ext3-v1/NANOAODSIM                    |
|                        | TTZToLLNuNu:  /TTZToLLNuNu M-10 TuneCUETP8M1 13TeV-amcatnlo-pythia8/RunllSummer16NanoAODv5- PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7 ext1-v1/NANOAODSIM         |
|                        | /TTZToLLNuNu M-10 TuneCUETP8M1 13TeV-amcatnlo-pythia8/RunllSummer16NanoAODv5-<br>PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7 ext2-v1/NANOAODSIM                    |
|                        | /TTZToLLNuNu M-10 TuneCUETP8M1 13TeV-amcatnlo-pythia8/RunlISummer16NanoAODv5-<br>PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7 ext3-v1/NANOAODSIM                    |
|                        | ttWJetsToLNu: /TTWJetsToLNu TuneCUETP8M1 13TeV-amcatnloFXFX-madspin-pythia8/RunIISummer16NanoAODv5- PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7 ext1-v1/NANOAODSIM |
|                        | /TTWJetsToLNu TuneCUETP8M1 13TeV-amcatnloFXFX-madspin-pythia8/RunllSummer16NanoAODv5-<br>PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7 ext2-v1/NANOAODSIM            |
|                        | ttWJetsToQQ: /TTWJetsToQQ TuneCUETP8M1 13TeV-amcatnloFXFX-madspin-pythia8/RunllSummer16NanoAODv5- PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7-v1/NANOAODSIM        |
|                        | ttHTobb: /ttHTobb M125 TuneCUETP8M2 ttHtranche3 13TeV-powheg-pythia8/RunllSummer16NanoAODv5-<br>PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7-v1/NANOAODSIM          |
|                        | ttHToNonbb: /ttHToNonbb M125 TuneCUETP8M2 ttHtranche3 13TeV-powheg-pythia8/RunllSummer16NanoAODv5- PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7-v1/NANOAODSIM       |
| Kathryn Coldham   Brur | nel University London 72                                                                                                                                                   |

# Samples 2016 (7)

| Process | Sample(s)                                                                                                                                                                                                                                                                                                                                                               |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| W+jets  | W Jets To L Nu:  /WJetsToLNu TuneCUETP8M1 13TeV-amcatnloFXFX-pythia8/RunllSummer16NanoAODv5- PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7-v1/NANOAODSIM  /WJetsToLNu TuneCUETP8M1 13TeV-amcatnloFXFX-pythia8/RunllSummer16NanoAODv5- PUMoriond17 Nano1June2019 102X mcRun2 asymptotic v7 ext2-v1/NANOAODSIM                                                      |
| Data    | Double EG/Run2016B-22Aug2018 ver2-v1/NANOAOD  /DoubleEG/Run2016C-Nano25Oct2019-v1/NANOAOD  /DoubleEG/Run2016D-Nano25Oct2019-v1/NANOAOD  /DoubleEG/Run2016E-Nano25Oct2019-v1/NANOAOD  /DoubleEG/Run2016F-Nano25Oct2019-v1/NANOAOD  /DoubleEG/Run2016G-Nano25Oct2019-v1/NANOAOD  /DoubleEG/Run2016G-Nano25Oct2019-v1/NANOAOD  /DoubleEG/Run2016H-Nano25Oct2019-v1/NANOAOD |

# Samples 2017 (1)

| Process      | Sample(s)                                                                                                                                                                                        |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| tZq (signal) | /tZq   4f ckm NLO TuneCP5 PSweights 13TeV-amcatnlo-pythia8/Run  Fall17NanoAODv4-<br>PU2017 12Apr2018 Nano14Dec2018 new pmx 102X mc2017 realistic v6-v1/NANOAODSIM                                |
| Z+jets       | /DYJetsToLL M-50 TuneCP5 13TeV-amcatnloFXFX-pythia8/RunIIFall17NanoAODv5-<br>PU2017 12Apr2018 Nano1June2019 new pmx 102X mc2017 realistic v7-v1/NANOAODSIM                                       |
|              | /DYJetsToLL M-50 TuneCP5 13TeV-amcatnloFXFX-pythia8/RunlIFall17NanoAODv5-<br>PU2017 12Apr2018 Nano1June2019 new pmx 102X mc2017 realistic v7 ext1-v1/NANOAODSIM                                  |
|              | /DYJetsToLL M-10to50 TuneCP5 13TeV-madgraphMLM-pythia8/RunlIFall17NanoAODv5-<br>PU2017 12Apr2018 Nano1June2019 new pmx 102X mc2017 realistic v7-v1/NANOAODSIM                                    |
| Single top   | t-channel top:  /ST t-channel top 4f InclusiveDecays TuneCP5 PSweights 13TeV-powheg- pythia8/RunIIFall17NanoAODv5-PU2017 12Apr2018 Nano1June2019 102X mc2017 realistic v7- v1/NANOAODSIM         |
|              | t-channel antitop:  /ST t-channel antitop 4f InclusiveDecays TuneCP5 PSweights 13TeV-powheg- pythia8/RunlIFall17NanoAODv5-PU2017 12Apr2018 Nano1June2019 102X mc2017 realistic v7- v1/NANOAODSIM |
|              | s-channel:  /ST s-channel 4f leptonDecays TuneCP5 13TeV-amcatnlo-pythia8/RunIIFall17NanoAODv5- PU2017 12Apr2018 Nano1June2019 102X mc2017 realistic v7-v1/NANOAODSIM                             |
|              | tW: /ST tW top 5f inclusiveDecays TuneCP5 PSweights 13TeV-powheg-pythia8/RunIIFall17NanoAODv5-PU2017 12Apr2018 Nano1June2019 new pmx 102X mc2017 realistic v7-v1/NANOAODSIM                      |

# Samples 2017 (2)

| Process    | Sample(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Single top | tbarW:  /ST tW antitop 5f inclusiveDecays TuneCP5 PSweights 13TeV-powheg-pythia8/RunIIFall17NanoAODv PU2017 12Apr2018 Nano1June2019 102X mc2017 realistic v7-v1/NANOAODSIM  tZq (hadronic Z, leptonic W):  /tZq W lept Z hadron 4f ckm NLO 13TeV amcatnlo pythia8/RunIIFall17NanoAODv5- PU2017 12Apr2018 Nano1June2019 102X mc2017 realistic v7-v1/NANOAODSIM  tHq:  /THQ 4f Hincl 13TeV madgraph pythia8/RunIIFall17NanoAODv5- PU2017 12Apr2018 Nano1June2019 102X mc2017 realistic v7-v1/NANOAODSIM  tWZ tLL:/  ST tWII 5f LO TuneCP5 PSweights 13TeV-madgraph-pythia8/RunIIFall17NanoAODv5- PU2017 12Apr2018 Nano1June2019 102X mc2017 realistic v7 ext1-v1/NANOAODSIM |
| VVV        | WWW to 4F:  /WWW 4F TuneCP5 13TeV-amcatnlo-pythia8/RunIIFall17NanoAODv5- PU2017 12Apr2018 Nano1June2019 102X mc2017 realistic v7-v1/NANOAODSIM  WWZTo4F:  /WWZ 4F TuneCP5 13TeV-amcatnlo-pythia8/RunIIFall17NanoAODv5- PU2017 12Apr2018 Nano1June2019 102X mc2017 realistic v7-v1/NANOAODSIM  WZZ:  /WZZ TuneCP5 13TeV-amcatnlo-pythia8/RunIIFall17NanoAODv5- PU2017 12Apr2018 Nano1June2019 102X mc2017 realistic v7-v1/NANOAODSIM  ZZZ:/ZZZ TuneCP5 13TeV-amcatnlo-pythia8/RunIIFall17NanoAODv5- PU2017 12Apr2018 Nano1June2019 102X mc2017 realistic v7-v1/NANOAODSIM                                                                                                  |

# Samples 2017 (3)

| Process         | Sample(s)                                                                                                                                                     |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | Sample(s)                                                                                                                                                     |
| VV              | ZZTo4L:                                                                                                                                                       |
|                 | /ZZTo4L 13TeV powheg pythia8/RunlIFall17NanoAODv5-<br>PU2017 12Apr2018 Nano1June2019 new pmx 102X mc2017 realistic v7-v1/NANOAODSIM                           |
|                 |                                                                                                                                                               |
|                 | ZZTo2L2Nu: /ZZTo2L2Nu 13TeV powheg pythia8/RunIIFall17NanoAODv5-                                                                                              |
|                 | PU2017 12Apr2018 Nano1June2019 102X mc2017 realistic v7-v1/NANOAODSIM                                                                                         |
|                 | 777-21.20                                                                                                                                                     |
|                 | ZZTo2L2Q: /ZZTo2L2Q 13TeV amcatnloFXFX madspin pythia8/RunIIFall17NanoAODv5-                                                                                  |
|                 | PU2017 12Apr2018 Nano1June2019 102X mc2017 realistic v7-v1/NANOAODSIM                                                                                         |
|                 | WWTo2L2Nu:                                                                                                                                                    |
|                 | /WWTo2L2Nu NNPDF31 TuneCP5 PSweights 13TeV-powheg-pythia8/RunIIFall17NanoAODv5-                                                                               |
|                 | PU2017 12Apr2018 Nano1June2019 102X mc2017 realistic v7 ext1-v1/NANOAODSIM                                                                                    |
|                 | WWTo1L1Nu2Q:                                                                                                                                                  |
|                 | /WWTo1L1Nu2Q 13TeV amcatnloFXFX madspin pythia8/RunIIFall17NanoAODv5-                                                                                         |
|                 | PU2017 12Apr2018 Nano1June2019 102X mc2017 realistic v7-v1/NANOAODSIM                                                                                         |
|                 | WWToLNuQQ:                                                                                                                                                    |
|                 | /WWToLNuQQ NNPDF31 TuneCP5 PSweights 13TeV-powheg-pythia8/RunlIFall17NanoAODv5-<br>PU2017 12Apr2018 Nano1June2019 102X mc2017 realistic v7 ext1-v1/NANOAODSIM |
|                 | 102017 127\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                                                  |
|                 | WWInuQQ: /WWToLNuQQ NNPDF31 TuneCP5 PSweights 13TeV-powheg-                                                                                                   |
|                 | pythia8/RunIIFall17NanoAODv5-PU2017 12Apr2018 Nano1June2019 102X mc2017 realistic v7 ext1-v1/NANOAODSIM                                                       |
|                 |                                                                                                                                                               |
|                 | WZTo3LNu: /WZTo3LNu TuneCP5 13TeV-amcatnloFXFX-pythia8/RunlIFall17NanoAODv5-                                                                                  |
|                 | PU2017 12Apr2018 Nano1June2019 new pmx 102X mc2017 realistic v7-v1/NANOAODSIM                                                                                 |
|                 | WZTo2L2Q:                                                                                                                                                     |
|                 | /WZTo2L2Q 13TeV amcatnloFXFX madspin pythia8/RunIIFall17NanoAODv5-                                                                                            |
|                 | PU2017 12Apr2018 Nano1June2019 102X mc2017 realistic v7-v1/NANOAODSIM                                                                                         |
| Kathryn Coldham | Brwarb 11N626 1 Werod 12Nu2Q 13TeV amcatnloFXFX madspin pythia8/RunliFall17NanoAODV9-                                                                         |

PU2017 12Apr2018 Nano1June2019 102X mc2017 realistic v7-v1/NANOAODSIM

# Samples 2017 (4)

| Process | Sample(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ttbar   | ttbar_madgraph: /TTJets TuneCP5 13TeV-amcatnloFXFX-pythia8/RunllFall17NanoAODv5- PU2017 12Apr2018 Nano1June2019 new pmx 102X mc2017 realistic v7-v1/NANOAODSIM  TTToHadronic: /TTToHadronic TuneCP5 PSweights 13TeV-powheg-pythia8/RunllFall17NanoAODv5- PU2017 12Apr2018 Nano1June2019 new pmx 102X mc2017 realistic v7-v1/NANOAODSIM  ttbar_aMCatNLO: /TTJets TuneCP5 13TeV-amcatnloFXFX-pythia8/RunllFall17NanoAODv5- PU2017 12Apr2018 Nano1June2019 new pmx 102X mc2017 realistic v7-v1/NANOAODSIM  ttbar 2l2nu /TTTo2L2Nu TuneCP5 PSweights 13TeV-powheg-pythia8/RunllFall17NanoAODv5- PU2017 12Apr2018 Nano1June2019 new pmx 102X mc2017 realistic v7-v1/NANOAODSIM  TTToSemileptonic:/TTToSemiLeptonic TuneCP5 PSweights 13TeV-powheg- pythia8/RunllFall17NanoAODv5-PU2017 12Apr2018 Nano1June2019 102X mc2017 realistic v7- v1/NANOAODSIM |

# Samples 2017 (5)

| Process                | Samples(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TtbarV TtbarV          | ttgamma: /TTGamma Dilept TuneCP5 PSweights 13TeV madgraph pythia8/RunlIFall17NanoAODv5-PU2017 12Apr2018 Nano1June2019 102X mc2017 realistic v7-v1/NANOAODSIM  TTZToQQ: /TTZToQQ TuneCP5 13TeV-amcatnlo-pythia8/RunlIFall17NanoAODv5-PU2017 12Apr2018 Nano1June2019 102X mc2017 realistic v7-v1/NANOAODSIM  TTZToQQ ext: /TTZToQQ TuneCP5 13TeV-amcatnlo-pythia8/RunlIFall17NanoAODv5-PU2017 12Apr2018 Nano1June2019 102X mc2017 realistic v7 ext1-v1/NANOAODSIM  TTZToLL: /TTZToLL M-1to10 TuneCP5 13TeV-amcatnlo-pythia8/RunlIFall17NanoAODv5-PU2017 12Apr2018 Nano1June2019 102X mc2017 realistic v7-v1/NANOAODSIM  TTZToLLNuNu: /TTZToLLNuNu M-10 TuneCP5 13TeV-amcatnlo-pythia8/RunlIFall17NanoAODv5-PU2017 12Apr2018 Nano1June2019 102X mc2017 realistic v7-v1/NANOAODSIM  ttWJetsToLNu: /TTWJetsToLNu TuneCP5 PSweights 13TeV-amcatnloFXFX-madspin- |
|                        | pythia8/RunlIFall17NanoAODv5-PU2017 12Apr2018 Nano1June2019 new pmx 102X mc2017 realistic v7-v1/NANOAODSIM  ttWJetsToQQ: /TTWJetsToQQ TuneCP5 13TeV-amcatnloFXFX-madspin-pythia8/RunlIFall17NanoAODvPU2017 12Apr2018 Nano1June2019 102X mc2017 realistic v7-v1/NANOAODSIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                        | ttHTobb: /ttHTobb M125 TuneCP5 13TeV-powheg-pythia8/RunlIFall17NanoAODv5- PU2017 12Apr2018 Nano1June2019 new pmx 102X mc2017 realistic v7-v1/NANOAODSIM  ttHToNonbb: /ttHToNonbb M125 TuneCP5 13TeV-powheg-pythia8/RunlIFall17NanoAODv5- PU2017 12Apr2018 Nano1June2019 new pmx 102X mc2017 realistic v7-v1/NANOAODSIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Kathryn Coldham   Brur | nel University London 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

# Samples 2017 (6)

| Process | Sample(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| W+jets  | W Jets To L Nu:/WJetsToLNu TuneCP5 13TeV-madgraphMLM-pythia8/RunIIFall17NanoAODv5-PU2017 12Apr2018 Nano1June2019 new pmx 102X mc2017 realistic v7-v1/NANOAODSIM                                                                                                                                                                                                                                                                                                                                                                       |
| Data    | Double Muon:  /DoubleMuon/Run2017B-Nano14Dec2018-v1/NANOAOD  /DoubleMuon/Run2017C-Nano14Dec2018-v1/NANOAOD  /DoubleMuon/Run2017D-Nano14Dec2018-v1/NANOAOD  /DoubleMuon/Run2017E-Nano14Dec2018-v1/NANOAOD  /DoubleMuon/Run2017F-Nano14Dec2018-v1/NANOAOD  /DoubleEG/Run2017B-Nano14Dec2018-v1/NANOAOD  /DoubleEG/Run2017C-Nano14Dec2018-v1/NANOAOD  /DoubleEG/Run2017D-Nano14Dec2018-v1/NANOAOD  /DoubleEG/Run2017E-Nano14Dec2018-v1/NANOAOD  /DoubleEG/Run2017F-Nano14Dec2018-v1/NANOAOD  /DoubleEG/Run2017F-Nano14Dec2018-v1/NANOAOD |

# Samples 2018 (1)

| Process          | Sample(s)                                                                                                                                                                                 |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| tZq (signal)     | /tZq    4f ckm NLO TuneCP5 13TeV-madgraph-pythia8/Run  Autumn18NanoAODv5-<br>Nano1June2019 102X upgrade2018 realistic v19 ext1-v1/NANOAODSIM                                              |
| Z+jets (M50)     | /DYJetsToLL M-50 TuneCP5 13TeV-amcatnloFXFX-pythia8/RunIIAutumn18NanoAODv5-<br>Nano1June2019 102X upgrade2018 realistic v19-v1/NANOAODSIM                                                 |
|                  | /DYJetsToLL M-50 TuneCP5 13TeV-amcatnloFXFX-pythia8/RunIIAutumn18NanoAODv5-<br>Nano1June2019 102X upgrade2018 realistic v19 ext2-v1/NANOAODSIM                                            |
| Z+jets (M10to50) | /DYJetsToLL M-10to50 TuneCP5 13TeV-madgraphMLM-pythia8/RunlIAutumn18NanoAODv5-<br>Nano1June2019 102X upgrade2018 realistic v19-v1/NANOAODSIM                                              |
|                  | /DYJetsToLL M-10to50 TuneCP5 13TeV-madgraphMLM-pythia8/RunlIAutumn18NanoAODv5-<br>Nano1June2019 102X upgrade2018 realistic v19 ext1-v1/NANOAODSIM                                         |
| Single top       | t-channel top: /ST t-channel top 4f InclusiveDecays TuneCP5 13TeV-powheg-madspin-pythia8/RunlIAutumn18NanoAODv5-Nano1June2019 102X upgrade2018 realistic v19-v1/NANOAODSIM                |
|                  | t-channel antitop: <u>/ST_t-channel_antitop_4f_InclusiveDecays_TuneCP5_13TeV-powheg-madspin-pythia8/RunllAutumn18NanoAODv5-Nano1June2019_102X_upgrade2018_realistic_v19-v1/NANOAODSIM</u> |
|                  | s-channel: /ST s-channel 4f leptonDecays TuneCP5 13TeV-madgraph-<br>pythia8/RunllAutumn18NanoAODv5-Nano1June2019 102X upgrade2018 realistic v19 ext1-<br>v1/NANOAODSIM                    |
|                  | tW: /ST tW top 5f inclusiveDecays TuneCP5 13TeV-powheg-pythia8/RunlIAutumn18NanoAODv5-Nano1June2019 102X upgrade2018 realistic v19 ext1-v1/NANOAODSIM                                     |

# Samples 2018 (2)

| Process    | Sample(s)                                                                                                                                                                           |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Single top | tbarW: <u>/ST_tW_antitop_5f_inclusiveDecays_TuneCP5_13TeV-powheg-pythia8/RunlIAutumn18NanoAODv5-Nano1June2019_102X_upgrade2018_realistic_v19_ext1-v1/NANOAODSIM</u>                 |
|            | tZq (hadronic Z, leptonic W): /tZq Zhad Wlept 4f ckm NLO TuneCP5 PSweights 13TeV-amcatnlo-pythia8/RunllAutumn18NanoAODv5-Nano1June2019 102X upgrade2018 realistic v19-v1/NANOAODSIM |
|            | tHq: /THQ 4f Hincl 13TeV madgraph pythia8/RunllAutumn18NanoAODv5-<br>Nano1June2019 102X upgrade2018 realistic v19-v1/NANOAODSIM                                                     |
|            | tWZ tLL: /ST tWll 5f LO TuneCP5 PSweights 13TeV-madgraph-<br>pythia8/RunllAutumn18NanoAODv5-Nano1June2019 102X upgrade2018 realistic v19 ext1-<br>v1/NANOAODSIM                     |
| VVV        | WWW to 4F: /WWW 4F TuneCP5 13TeV-amcatnlo-pythia8/RunlIAutumn18NanoAODv5-Nano1June2019 102X upgrade2018 realistic v19 ext1-v1/NANOAODSIM                                            |
|            | WWZTo4F: /WWZ TuneCP5 13TeV-amcatnlo-pythia8/RunllAutumn18NanoAODv5-Nano1June2019 102X upgrade2018 realistic v19 ext1-v1/NANOAODSIM                                                 |
|            | WZZ: /WZZ TuneCP5 13TeV-amcatnlo-pythia8/RunlIAutumn18NanoAODv5-Nano1June2019 102X upgrade2018 realistic v19 ext1-v1/NANOAODSIM                                                     |
|            | ZZZ: /ZZZ TuneCP5 13TeV-amcatnlo-pythia8/RunllAutumn18NanoAODv5-<br>Nano1June2019 102X upgrade2018 realistic v19 ext1-v1/NANOAODSIM                                                 |

# Samples 2018 (3)

| Process |                      | Sample(s)                                                                                                                                   |           |
|---------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| VV      |                      | ZZTo4L: /ZZTo4L TuneCP5 13TeV powheg pythia8/RunllAutumn18NanoAODv5-<br>Nano1June2019 102X upgrade2018 realistic v19 ext2-v1/NANOAODSIM     |           |
|         |                      | ZZTo2L2Nu:  /ZZTo2L2Nu TuneCP5 13TeV powheg pythia8/RunlIAutumn18NanoAODv5- Nano1June2019 102X upgrade2018 realistic v19 ext1-v1/NANOAODSIM |           |
|         |                      | /ZZTo2L2Nu TuneCP5 13TeV powheg pythia8/RunlIAutumn18NanoAODv5-<br>Nano1June2019 102X upgrade2018 realistic v19 ext2-v1/NANOAODSIM          |           |
|         |                      | ZZTo2L2Q: /ZZTo2L2Q 13TeV amcatnloFXFX madspin pythia8/RunllAutumn18NanoAODv5-Nano1June2019 102X upgrade2018 realistic v19-v1/NANOAODSIM    |           |
|         |                      | WWTo2L2Nu: /WWTo2L2Nu NNPDF31 TuneCP5 13TeV-powheg-pythia8/RunllAutumn18Na<br>Nano1June2019 102X upgrade2018 realistic v19-v1/NANOAODSIM    | noAODv5-  |
|         |                      | WWTo1L1Nu2Q: /WWToLNuQQ NNPDF31 TuneCP5 13TeV-powheg-pythia8/RunllAutumn18 Nano1June2019 102X upgrade2018 realistic v19-v1/NANOAODSIM       | 3NanoAOD  |
|         |                      | WWToLNuQQ: Not in 2018                                                                                                                      |           |
|         |                      | WZTo3LNu: /WZTo3LNu TuneCP5 13TeV-amcatnloFXFX-pythia8/RunlIAutumn18NanoAODv5 Nano1June2019 102X upgrade2018 realistic v19-v1/NANOAODSIM    |           |
|         |                      | /WZTo3LNu TuneCP5 13TeV-amcatnloFXFX-pythia8/RunlIAutumn18NanoAODv5-<br>Nano1June2019 102X upgrade2018 realistic v19 ext1-v1/NANOAODSIM     |           |
|         |                      | WZTo2L2Q: /WZTo2L2Q 13TeV amcatnloFXFX madspin pythia8/RunlIAutumn18NanoAODv5 Nano1June2019 102X upgrade2018 realistic v19-v1/NANOAODSIM    | <u>)-</u> |
|         |                      | WZTo1L1Nu2Q:                                                                                                                                |           |
|         | Kathryn Coldham   Br | unel University London                                                                                                                      | 82        |

## Samples 2018 (4)

| Process | Sample(s)                                                                                                                                          |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| ttbar   | ttbar_madgraph: /TTJets DiLept TuneCP5 13TeV-madgraphMLM-pythia8/RunlIAutumn18NanoAODv5-Nano1June2019 102X upgrade2018 realistic v19-v1/NANOAODSIM |
|         | TTToHadronic: /TTToHadronic TuneCP5 13TeV-powheg-pythia8/RunllAutumn18NanoAODv5-Nano1June2019 102X upgrade2018 realistic v19-v1/NANOAODSIM         |
|         | ttbar_aMCatNLO: /TTJets TuneCP5 13TeV-amcatnloFXFX-pythia8/RunIIAutumn18NanoAODv5-Nano1June2019 102X upgrade2018 realistic v19 ext1-v1/NANOAODSIM  |
|         | ttbar 2l2nu: /TTTo2L2Nu TuneCP5 13TeV-powheg-pythia8/RunllAutumn18NanoAODv5-<br>Nano1June2019 102X upgrade2018 realistic v19-v1/NANOAODSIM         |
|         | TTToSemileptonic: /TTToSemiLeptonic TuneCP5 13TeV-powheg-pythia8/RunllAutumn18NanoAODv5-Nano1June2019 102X upgrade2018 realistic v19-v1/NANOAODSIM |
|         |                                                                                                                                                    |

# Samples 2018 (5)

| Process                | Samples(s)                                                                                                                                      |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| ttbarV                 | ttgamma: /TTGamma Dilept TuneCP5 13TeV-madgraph-pythia8/RunllAutumn18NanoAODv5- Nano1June2019 102X upgrade2018 realistic v19-v1/NANOAODSIM      |
|                        | /TTGamma Dilept TuneCP5 13TeV madgraph pythia8/RunIIAutumn18NanoAODv5-<br>Nano1June2019 102X upgrade2018 realistic v19 ext1-v1/NANOAODSIM       |
|                        | TTZToQQ: /TTZToQQ TuneCP5 13TeV-amcatnlo-pythia8/RunllAutumn18NanoAODv5- Nano1June2019 102X upgrade2018 realistic v19-v1/NANOAODSIM             |
|                        | TTZToQQ_ext: /TTZToQQ_TuneCP5_13TeV-amcatnlo-pythia8/RunllAutumn18NanoAODv5- Nano1June2019_102X_upgrade2018_realistic_v19_ext1-v1/NANOAODSIM    |
|                        | TTZToLL:                                                                                                                                        |
|                        | TTZToLLNuNu:                                                                                                                                    |
|                        | ttWJetsToLNu:                                                                                                                                   |
|                        | ttWJetsToQQ:                                                                                                                                    |
|                        | ttHTobb: /ttHTobb M125 TuneCP5 13TeV-powheg-pythia8/RunlIAutumn18NanoAODv5-<br>Nano1June2019 102X upgrade2018 realistic v19-v1/NANOAODSIM       |
|                        | ttHToNonbb: /ttHToNonbb M125 TuneCP5 13TeV-powheg-pythia8/RunllAutumn18NanoAODv5-<br>Nano1June2019 102X upgrade2018 realistic v19-v1/NANOAODSIM |
|                        |                                                                                                                                                 |
| Kathryn Coldham   Brui | nel University London 84                                                                                                                        |

## Samples 2018 (6)

| Process | Sample(s)                                                                                                                                       |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| W+jets  | W Jets To L Nu: /WJetsToLNu TuneCP5 13TeV-madgraphMLM-pythia8/RunllAutumn18NanoAODv5-Nano1June2019 102X upgrade2018 realistic v19-v1/NANOAODSIM |
| Data    | Double Muon:                                                                                                                                    |
|         | Double electron:                                                                                                                                |
|         |                                                                                                                                                 |
|         |                                                                                                                                                 |
|         |                                                                                                                                                 |
|         |                                                                                                                                                 |

## Samples for trigger SF calculations (2016)

| Proc  | cess | Sample(s) |
|-------|------|-----------|
| ttbaı | r    |           |
|       |      |           |
| MET   |      |           |
|       |      |           |
|       |      |           |
|       |      |           |
|       |      |           |
|       |      |           |
|       |      |           |
|       |      |           |

## Samples for trigger SF calculations (2017)

| Process | Sample(s) |
|---------|-----------|
| ttbar   |           |
|         |           |
| MET     |           |
|         |           |
|         |           |
|         |           |
|         |           |
|         |           |
|         |           |

## Samples for trigger SF calculations (2018)

| Process | Sample(s) |
|---------|-----------|
| ttbar   |           |
|         |           |
| MET     |           |
|         |           |
|         |           |
|         |           |
|         |           |
|         |           |
|         |           |

## Results – Normalisation Factors 2016 (1)

| Sample                                       | Number of simulated events | Cross section | Normalisation factor |
|----------------------------------------------|----------------------------|---------------|----------------------|
| <u>tZq</u>                                   | 13656784                   | 0.0758        | 0.000199163          |
| Z+jets (M 50<br>aMCatNLO)                    | 120777245                  | 5941.0        | 1.76507              |
| Z+jets (M10To50<br>aMCatNLO)                 | 67942840                   | 18810.0       | 9.93422              |
| Z+jets (M10To50 ext<br>aMCatNLO)             | 40154170                   | 18810.0       | 16.8092              |
| Z+jets ( <u>M50</u><br><u>Madgraph</u> )     | 49748967                   | 4963.0        | 3.57972              |
| Z+jets ( <u>M50 Madgraph</u> ext)            | 96531428                   | 4963.0        | 1.84486              |
| Z+jets ( <u>M10To50</u><br><u>Madgraph</u> ) | 35114961                   | 16270.0       | 16.6259              |

### Results – Normalisation Factors 2016 (2)

| Sample                                                  | Number of simulated events      | Cross section                    | Normalisation factor |
|---------------------------------------------------------|---------------------------------|----------------------------------|----------------------|
| Z+jets ( <u>pt binned</u> , <u>0-</u><br><u>50</u> )    | 37458375                        | 5352.57924                       | 5.12747              |
| Z+jets ( <u>pt binned, 50-</u><br>100)                  | 21847075                        | 363.81428                        | 59755.1              |
| Z+jets (pt binned, 50-<br>100 ext)                      | 108670239                       | 363.81428                        | 0.120132             |
| Z+jets ( <u>pt binned</u> , <u>100-</u><br><u>250</u> ) | 2046961                         | 84.014804                        | 1.47277              |
| Z+jets (pt binned, 100-<br>250 ext1)                    | 2805972                         | 84.014804                        | 1.07439              |
| Z+jets (pt binned, 100-<br>250 ext2)                    | 2991815                         | 84.014804                        | 1.00765              |
| Z+jets ( <u>pt binned</u> , 100-<br>250 ext5)           | 76440229  Kathryn Coldham   Bru | 84.014804 unel University London | 0.0394387            |

#### Results – Normalisation Factors 2016 (2)

| Sample                                                       | Number of simulated events | Cross section | Normalisation factor |
|--------------------------------------------------------------|----------------------------|---------------|----------------------|
| Z+jets ( <u>pt-binned</u> , <u>250-</u><br><u>400</u> )      | 423976                     | 3.228256512   | 0.273222             |
| Z+jets ( <u>pt-binned</u> , 250-<br>400 ext1)                | 590806                     | 3.228256512   | 0.19607              |
| Z+jets ( <u>pt-binned</u> , <u>250-</u><br><u>400 ext2</u> ) | 594317                     | 3.228256512   | 0.194912             |
| Z+jets ( <u>pt-binned</u> , <u>250-</u><br><u>400 ext5</u> ) | 19567800                   | 3.228256512   | 0.00591991           |
| Z+jets ( <u>pt-binned</u> ,<br>400To650)                     | 432056                     | 0.436041144   | 0.036214             |
| Z+jets ( <u>pt-binned</u> ,<br>400To650 ext1)                | 589842                     | 0.436041144   | 0.0265265            |
| Z+jets ( <u>pt-binned</u> ,<br>400To650 ext2)                | 604038                     | 0.436041144   | 0.0259031            |

#### Results – Normalisation Factors 2016 (3)

| Sample                                        | Number of simulated events | Cross section | Normalisation factor |
|-----------------------------------------------|----------------------------|---------------|----------------------|
| Z+jets ( <u>pt-binned</u> ,<br>600ToInf)      | 430691                     | 0.040981055   | 0.00341433           |
| Z+jets ( <u>pt-binned</u> ,<br>600ToInf ext1) | 599665                     | 0.040981055   | 0.00245224           |
| Z+jets ( <u>pt-binned</u> ,<br>600ToInf ext2) | 597526                     | 0.040981055   | 0.00246102           |
| ttbar ( <u>inc</u> )                          | 76857480                   | 730.6         |                      |
| ttbar (madgraph)                              | 6068369                    | 56.86         | 0.33622              |
| ttbar (madgraph<br>ext)                       | 24767666                   | 56.86         | 0.0823779            |

### Results – Normalisation Factors 2016 (4)

| Sample                                                             | Number of simulated events | Cross section | Normalisation factor |
|--------------------------------------------------------------------|----------------------------|---------------|----------------------|
| ttbar (TT to hadronic)                                             | Not used                   | Not used      | Not used             |
| ttbar (TT to semileptonic)                                         | Not used                   | Not used      | Not used             |
| ttbar ( <u>aMCatNLO</u> )                                          | 43768838                   | 722.8         | 0.592573             |
| Single top ( <u>t-channel, top</u> )                               | 67105876                   | 136.02        | 0.0727329            |
| Single top ( <u>t-channel, top, scale</u> <u>up</u> )              | 5992440                    | 136.02        | 0.814494             |
| Single top ( <u>t-channel, top, scale</u> <u>down</u> )            | 64352832                   | 136.02        | 0.0758445            |
| Single top ( <u>t-channel</u> , antitop)                           | 38811017                   | 80.95         | 0.0748429            |
| Single top ( <u>t-channel</u> , <u>antitop</u> , <u>scale up</u> ) | 3970546                    | 80.95         | 0.731569             |
| Single top ( <u>t-channel</u> , antitop, scale down)               | 37359247                   | 80.95         | 0.731569             |
| Single top ( <u>s-channel</u> )                                    | 2989199                    | 10.12         | 0.121483             |

### Results – Normalisation Factors 2016 (5)

| Sample                                                         | Number of simulated events | Cross section | Normalisation factor |
|----------------------------------------------------------------|----------------------------|---------------|----------------------|
| ttbar ( <u>hdamp up</u> )                                      | 29833668                   | 730.6         | 0.878743             |
| ttbar ( <u>hdamp up ext</u> )                                  | 28855428                   | 730.6         | 0.908533             |
| ttbar ( <u>hdamp down</u> )                                    | 29047858                   | 730.7         | 0.902638             |
| ttbar ( <u>hdamp down ext</u> )                                | 29229088                   | 730.7         | 0.897042             |
| Single top ( <u>tchannel</u> , <u>top</u> , <u>hdampup</u> )   |                            |               |                      |
| Single top ( <u>tchannel</u> , <u>top</u> , <u>hdampdown</u> ) |                            |               |                      |

#### Results – Normalisation Factors 2016 (6)

| Sample                           | Number of simulated events | Cross section | Normalisation factor |
|----------------------------------|----------------------------|---------------|----------------------|
| ttbar ( <u>TT isr UP</u> )       | 58977100                   | 730.6         | 0.444513             |
| ttbar ( <u>TT isr DOWN</u> )     | 28409782                   | 730.6         | 0.922785             |
| ttbar ( <u>TT isr DOWN ext</u> ) | 29915551                   | 730.6         | 0.876337             |
| ttbar ( <u>TT_fsr_UP</u> )       | 29632372                   | 730.6         | 0.884712             |
| ttbar ( <u>TT_fsr_UP_ext</u> )   | 29501065                   | 730.6         | 0.88865              |
| ttbar ( <u>TT_fsr_DOWN</u> )     | 29571600                   | 730.6         | 0.88653              |
| ttbar ( <u>TT fsr DOWN ext</u> ) | 29571600                   | 730.6         | 0.88653              |

#### Results – Normalisation Factors 2016 (7)

| Sample                                           | Number of simulated events | Cross section | Normalisation factor |
|--------------------------------------------------|----------------------------|---------------|----------------------|
| Single top ( <u>tW</u> )                         | 6952830                    | 38.09         | 0.196579             |
| Single top (tW, scale up)                        | 997880                     | 38.09         | 1.36969              |
| Single top (tW, scale down)                      | 993640                     | 38.09         | 1.37553              |
| Single top ( <u>t bar W</u> )                    | 6933094                    | 38.06         | 0.196984             |
| Single top ( <u>t bar W, scale up</u> )          | 1000000                    | 38.06         | 1.36571              |
| Single top ( <u>t bar W, scale</u> <u>down</u> ) | 999068                     | 38.06         | 1.36698              |
| Single top ( <u>tHq</u> )                        | 3495799                    | 0.2609        | 0.00267804           |
| Single top (tZq, W lept Z had)                   | Not used                   | Not used      | Not used             |
| Single top ( <u>tWZ tWLL</u> )                   | 50000                      | 0.01104       | 0.00792297           |
| Diboson ( <u>ZZ to 2L2Nu</u> )                   | 8931750                    | 0.5644        | 0.00226746           |
| Diboson (ZZ to 2L2Nu ext)                        | Doesn't exist              | Doesn't exist | Doesn't exist        |
| Diboson ( <u>ZZ to 2L2Q</u> )                    | 15462693                   | 3.222         | 0.00747703           |

#### Results – Normalisation Factors 2016 (8)

| Sample                                  | Number of simulated events | Cross section | Normalisation factor |
|-----------------------------------------|----------------------------|---------------|----------------------|
| Diboson (ZZ to 4L)                      | 10711278                   | 1.204         | 0.00403342           |
| Diboson<br>(WW1nuqq)                    | Not used                   | Not used      | Not used             |
| Diboson ( <u>WZ to</u> <u>2L2Q</u> )    | 26517272                   | 5.606         | 0.007586             |
| Diboson ( <u>WZ to</u> <u>3LNu</u> )    | 1959179                    | 4.688         | 0.0858622            |
| Diboson ( <u>WZ to</u> <u>1L1Nu2Q</u> ) | 24311445                   | 10.73         | 0.0158372            |
| Diboson ( <u>WW to</u> <u>2L2Nu</u> )   | 1999000                    | 10.48         | 0.188121             |

## Results – Normalisation Factors 2016 (9)

| Sample                                       | Number of simulated events | Cross section | Normalisation factor |
|----------------------------------------------|----------------------------|---------------|----------------------|
| Diboson ( <u>WW to</u><br><u>LNuQQ</u> )     | 1999200                    | 43.53         | 0.781306             |
| Diboson ( <u>WW to</u><br><u>LNuQQ ext</u> ) | 6655400                    | 43.53         | 0.234695             |
| Diboson (WG to LNuG)                         | Not used                   | Not used      | Not used             |
| Diboson (ZG to LLG)                          | Not used                   | Not used      | Not used             |
| Triboson ( <u>WWW to</u> <u>4F</u> )         | 240000                     | 0.2086        | 0.0311883            |
| Triboson ( <u>WWZ to</u> <u>4F</u> )         | 250000                     | 0.1651        | 0.0236971            |
| Triboson ( <u>WZZ</u> )                      | 246800                     | 0.05565       | 0.00809112           |
| Triboson ( <u>ZZZ</u> )                      | 249237                     | 0.01398       | 0.00201272           |

## Results – Normalisation Factors 2016 (10)

| Sample                                       | Number of simulated events | Cross section                   | Normalisation factor |
|----------------------------------------------|----------------------------|---------------------------------|----------------------|
| <u>W+jets</u>                                | 22533326                   | 60430.0                         | 96.2312              |
| W+jets (ext)                                 | 237263153                  | 60430.0                         | 9.13926              |
| ttbarV ( <u>ttW jets to</u><br><u>LNu</u> )  | 2160168                    | 0.2001                          | 0.0033239            |
| ttbarV ( <u>ttW jets to LNu</u> <u>ext</u> ) | 3120397                    | 0.2001                          | 0.00230105           |
| ttbarV ( <u>ttW jets to QQ</u> )             | 833298                     | 0.405                           | 0.0174399            |
| ttbarV ( <u>ttZ to LL</u> )                  | 1992438                    | 0.2529                          | 0.00455463           |
| ttbarV ( <u>ttZ to LL ext2</u> )             | 5837781                    | 0.2529                          | 0.0015545            |
| ttbarV ( <u>ttZ to LL ext3</u> )             | 5934228                    | 0.2529                          | 0.00152923           |
| ttbarV ( <u>ttZ to QQ</u> )                  | 749400                     | 0.5297                          |                      |
| ttbarV (ttgamma)                             | Not used                   | Not used                        | Not used             |
| ttbarV ( <u>ttH to bb</u> )                  | 3872944                    | 0.5638                          | 0.00522363           |
| ttbarV ( <u>ttH to nonbb</u> )               | 3981250  Kathryn Coldham   | 0.5638 Brunel University London | 0.00508153           |

#### Results – Normalisation Factors 2017 (1)

| Sample                    | Number of simulated events | Cross section | Normalisation factor |
|---------------------------|----------------------------|---------------|----------------------|
| <u>tZq</u>                | 13276146                   | 0.07358       | 0.000230159          |
| <u>Z+jets (M 50)</u>      | 27529915                   | 6529.0        | 9.84879              |
| Z+jets (M50 ext)          | 182104014                  | 6529.0        | 1.48891              |
| <u>Z+jets (M10To50)</u>   | 316134                     | 15810         | 2076.83              |
| ttbar ( <u>2l2nu</u> )    | 69098644                   | 88.29         | 0.0530619            |
| ttbar ( <u>madgraph</u> ) | 6094476                    | 56.86         | 0.120653             |

#### Results – Normalisation Factors 2017 (2)

| Sample                                              | Number of simulated events | Cross section | Normalisation factor |
|-----------------------------------------------------|----------------------------|---------------|----------------------|
| ttbar ( <u>TT to</u> hadronic)                      | 130091218                  | 377.96        | 0.137907             |
| ttbar ( <u>TT to</u> semileptonic)                  | 110014744                  | 365.34        | 0.194558             |
| ttbar ( <u>aMCatNLO</u> )                           | 154280331                  | 722.8         | 0.387446             |
| Single top ( <u>t-</u><br><u>channel, top</u> )     | 122630600                  | 136.02        | 0.000464558          |
| Single top ( <u>t-</u><br><u>channel, antitop</u> ) | 63620800                   | 80.95         | 0.0460622            |
| Single top ( <u>s-</u><br><u>channel</u> )          | 9883805                    | 3.74          | 0.0528395            |

## Results – Normalisation Factors 2017 (3)

| Sample                                | Number of simulated events | Cross section | Normalisation factor |
|---------------------------------------|----------------------------|---------------|----------------------|
| Single top ( <u>tW</u> )              | 7945242                    | 34.91         | 0.0157141            |
| Single top ( <u>t bar W</u> )         | 7745276                    | 34.97         | 0.182467             |
| Single top (tHq)                      | 3381548                    | 0.3184        | 0.187499             |
| Single top (tZq, W lept Z had)        | 1000000                    | 0.1573        | 0.0039102            |
| Single top ( <u>tWZ</u> <u>tWLL</u> ) | 986000                     | 0.01103       | 0.00653235           |
| Diboson ( <u>ZZ to</u> <u>2L2Nu</u> ) | 8744768                    | 0.5644        | 0.00268028           |
| Diboson ( <u>ZZ to</u> <u>2L2Q</u> )  | 27611672                   | 3.222         | 0.00484589           |

## Results – Normalisation Factors 2017 (4)

| Sample                                  | Number of simulated events | Cross section                  | Normalisation factor |
|-----------------------------------------|----------------------------|--------------------------------|----------------------|
| Diboson (ZZ to 4L)                      | 6964071                    | 1.256                          | 0.00748975           |
| Diboson<br>( <u>WW1nuqq</u> )           | 8785360                    | 45.99                          |                      |
| Diboson ( <u>WZ to</u> <u>1L2Nu2Q</u> ) | 4997672                    | 45.68                          | 0.379577             |
| Diboson ( <u>WZ to</u> <u>2L2Q</u> )    | 27582164                   | 5.606                          | 0.00844045           |
| Diboson ( <u>WZ to</u> <u>3LNu</u> )    | 10987679                   | 5.052                          | 0.0190941            |
| Diboson ( <u>WW to</u> <u>1L1Nu2Q</u> ) | 4997672                    | 45.68                          | 0.379577             |
| Diboson ( <u>WW to</u> <u>2L2Nu</u> )   | 2000000  Kathryn Coldham   | 11.08 Brunel University London | 0.230065             |

#### Results – Normalisation Factors 2017 (5)

| Sample                                   | Number of simulated events | Cross section | Normalisation factor |
|------------------------------------------|----------------------------|---------------|----------------------|
| Diboson ( <u>WW to</u><br><u>LNuQQ</u> ) | 8785360                    | 45.99         | 0.217393             |
| Diboson (WG to LNuG)                     | 6283083                    | 405.27        | 2.67863              |
| Diboson (ZG to LLG)                      | 30490034                   | 51.50         | 0.070144             |
| Triboson ( <u>WWW to</u> <u>4F</u> )     | 232300                     | 0.2086        | 0.0372912            |
| Triboson ( <u>WWZ to</u> <u>4F</u> )     | 250000                     | 0.1651        | 0.0274251            |
| Triboson ( <u>WZZ</u> )                  | 250000                     | 0.05565       | 0.00924413           |
| Triboson (ZZZ)                           | 250000                     | 0.01398       | 0.00232225           |

#### Results – Normalisation Factors 2017 (6)

| Sample                                      | Number of simulated events | Cross section | Normalisation factor |
|---------------------------------------------|----------------------------|---------------|----------------------|
| <u>W+jets</u>                               | 30008250                   | 52940.0       | 73.2629              |
| ttbarV ( <u>ttW jets to</u><br><u>LNu</u> ) | 4908905                    | 0.2198        | 0.00185945           |
| ttbarV ( <u>ttW jets to</u> QQ)             | 811306                     | 0.4316        | 0.0220921            |
| ttbarV (ttgamma)                            | 4642344                    | 0.5804        | 0.00519196           |
| ttbarV (ttZ to LL)                          | 250000                     | 0.05324       | 0.0088438            |
| ttbarV (ttH to bb)                          | 8000000                    | 0.5269        | 0.00273514           |
| ttbarV (ttH to<br>nonbb)                    | 7966779                    | 0.5638        | 0.00293889           |

### Results – Normalisation Factors 2017 (7)

| Sample                      | Number of simulated events | Cross section | Normalisation factor |
|-----------------------------|----------------------------|---------------|----------------------|
| ttbarV (ttZ to<br>LLNuNu)   | 7563490                    | 0.2432        | 0.00133531           |
| ttbarV ( <u>ttZ to QQ</u> ) | 750000                     | 0.5104        | 0.0282612            |
| ttbarV (ttZ to QQ<br>ext)   | 8940000                    | 0.5104        | 0.00237091           |

#### Results – Normalisation Factors 2018 (1)

| Sample                  | Number of simulated events | Cross section | Normalisation factor |
|-------------------------|----------------------------|---------------|----------------------|
| <u>tZq</u>              | 13736000                   | 0.07358       | 0.000319732          |
| <u>Z+jets (M 50)</u>    | 997561                     | 6529.0        | 390.656              |
| Z+jets (M50 ext)        | 193094040                  | 6529.0        | 2.0182               |
| <u>Z+jets (M10To50)</u> | 39392062                   | 15810         | 23.9558              |
| Z+jets (M10To50<br>ext) | 46976952                   | 15810         | 20.0879              |
| ttbar (2l2nu)           | 64310000                   | 88.29         | 0.0819445            |
| ttbar (madgraph)        | 28701360                   | 54.23         | 0.112778             |

#### Results – Normalisation Factors 2018 (2)

| Sample                                              | Number of simulated events | Cross section | Normalisation factor |
|-----------------------------------------------------|----------------------------|---------------|----------------------|
| ttbar ( <u>TT to</u> hadronic)                      | 133664000                  | 377.96        | 0.168779             |
| ttbar ( <u>TT to</u> semileptonic)                  | 101550000                  | 365.34        | 0.214736             |
| ttbar ( <u>aMCatNLO</u> )                           | 142155064                  | 831.76        | 0.349239             |
| Single top ( <u>t-</u><br><u>channel, top</u> )     | 154307600                  | 136.02        | 0.0526141            |
| Single top ( <u>t-</u><br><u>channel, antitop</u> ) | 79090800                   | 80.95         | 0.0610911            |
| Single top ( <u>s-</u><br><u>channel</u> )          | 19965000                   | 3.74          | 0.0111812            |

#### Results – Normalisation Factors 2018 (3)

| Sample                                       | Number of simulated events | Cross section | Normalisation factor |
|----------------------------------------------|----------------------------|---------------|----------------------|
| Single top ( <u>tW</u> )                     | 9598000                    | 34.91         | 0.217098             |
| Single top ( <u>t bar W</u> )                | 7623000                    | 34.97         | 0.273815             |
| Single top (tHq)                             | 3375995                    | 0.3184        | 0.00562935           |
| Single top (tZq, W lept Z had)               | 4977000                    | 0.1518        | 0.0018205            |
| Single top ( <u>tWZ</u> <u>tWLL</u> )        | 248600                     | 0.01103       | 0.00264826           |
| Diboson ( <u>ZZ to</u> <u>2L2Nu</u> )        | 8382600                    | 0.5644        | 0.00401879           |
| Diboson ( <u>ZZ to</u><br><u>2L2Nu ext</u> ) | 48046000                   | 0.5644        | 0.00070116           |
| Diboson ( <u>ZZ to</u> <u>2L2Q</u> )         | 27900469                   | 3.222         | 0.00689289           |

## Results – Normalisation Factors 2018 (4)

| Sample                                   | Number of simulated events | Cross section | Normalisation factor |
|------------------------------------------|----------------------------|---------------|----------------------|
| Diboson (ZZ to 4L)                       | 99009000                   | 1.256         | 0.000757185          |
| Diboson ( <u>WZ to</u> <u>1L2Nu2Q</u> )  | 18901469                   | 10.73         | 0.0118683            |
| Diboson ( <u>WZ to</u> <u>2L2Q</u> )     | 28193648                   | 5.606         | 0.0280525            |
| Diboson ( <u>WZ to</u> <u>3LNu</u> )     | 10749269                   | 5.052         | 0.0338837            |
| Diboson ( <u>WZ to</u> <u>3LNu ext</u> ) | 11248318                   | 5.502         | 0.0852367            |
| Diboson ( <u>WW to</u> <u>1L1Nu2Q</u> )  | 19199100                   | 45.68         | 0.142014             |
| Diboson ( <u>WW to</u> <u>2L2Nu</u> )    | 7758900                    | 11.08         | 3.96022              |

#### Results – Normalisation Factors 2018 (5)

| Sample                                  | Number of simulated events | Cross section | Normalisation factor |
|-----------------------------------------|----------------------------|---------------|----------------------|
| Diboson (WW to LNuQQ)                   | Not sample                 | No sample     | No sample            |
| Diboson ( <u>WG to</u><br><u>LNuG</u> ) | 6108186                    | 405.27        | 0.220411             |
| Diboson (ZG to LLG)                     | 13946364                   | 51.50         | 0.0518788            |
| Triboson ( <u>WWW to</u> <u>4F</u> )    | 240000                     | 0.2086        | 0.039418             |
| Triboson ( <u>WWZ to</u> <u>4F</u> )    | 250000                     | 0.1651        | 0.0132865            |
| Triboson ( <u>WZZ</u> )                 | 250000                     | 0.05565       | 0.00326613           |
| Triboson (ZZZ)                          | 250000                     | 0.01398       | 44.4886              |

#### Results – Normalisation Factors 2018 (6)

| Sample                                      | Number of simulated events | Cross section | Normalisation factor |
|---------------------------------------------|----------------------------|---------------|----------------------|
| <u>W+jets</u>                               | 71026861                   | 52940.0       | 00.00261138          |
| ttbarV ( <u>ttW jets to</u><br><u>LNu</u> ) | 4911941                    | 0.2149        | 0.030841             |
| ttbarV ( <u>ttW jets to QQ</u> )            | 835296                     | 0.4316        | 0.030841             |
| ttbarV ( <u>ttZ to II</u> )                 | 250000                     | 0.05324       | 0.0127112            |
| ttbarV ( <u>ttZ to QQ</u> )                 | 750000                     | 0.5104        |                      |
| ttbarV ( <u>ttZ to QQ ext</u> )             | 8891000                    | 0.5104        |                      |
| ttbarV ( <u>ttgamma</u> )                   | 5968000                    | 0.5804        | 0.00580478           |
| ttbarV ( <u>ttgamma ext</u> )               | 4940000                    | 0.5804        | 0.00701274           |
| ttbarV ( <u>ttH to bb</u> )                 | 9580000                    | 0.5269        | 0.00328284           |
| ttbarV ( <u>ttH to nonbb</u> )              | 7525991                    | 0.5638        | 0.00447145           |

#### More useful links

- NanoAOD twiki page is <u>here</u>
- Documentation for the description of nanoAOD branches can be found <u>here</u>.
- CMS Top Quark Group Twiki
- Top systematics twiki
- Top systematics twiki (Run 2)
- CMS Top Approval Procedure
- Info for each year (change the year in the URL for 2017 and 2018)
- Jet energy smearing twiki
- JECs:
  - Twiki page
  - Text files for <u>2016</u> and <u>2017</u>
  - Recommended JECs and uncertainties for data and MC twiki
  - Link to the paper

#### Editing the analysis note (in Ixplus)

- Example commands: <a href="https://twiki.cern.ch/twiki/pub/CMS/Internal/TdrProcessing/lxplus\_git\_example.txt">https://twiki.cern.ch/twiki/pub/CMS/Internal/TdrProcessing/lxplus\_git\_example.txt</a>
- When typing the commands given in the above text file, change "alverson" to your CERN username. Also change:

git clone --recursive https://:@gitlab.cern.ch:8443/tdr/papers/AN-18-280.git

to

git clone --recursive https://:@gitlab.cern.ch:8443/tdr/notes/AN-18-280.git

#### Editing the analysis note (in Ixplus)

Twiki page:

https://twiki.cern.ch/twiki/bin/viewauth/CMS/Internal/TdrProcessing

#### Setting up a grid certificate

- Step 1: <u>https://twiki.cern.ch/twiki/bin/viewauth/CMS/DQMGUIGridCertificate</u>
   <u>e</u>
- Step 2: <a href="https://cafiles.cern.ch/cafiles/certificates/Grid.aspx">https://cafiles.cern.ch/cafiles/certificates/Grid.aspx</a>
- Step 3 (to double check): <a href="https://ca.cern.ch/ca/Help/?kbid=040110">https://ca.cern.ch/ca/Help/?kbid=040110</a>

#### **EPR**

- Rules: <a href="https://twiki.cern.ch/twiki/bin/view/Main/EprRulesExplained">https://twiki.cern.ch/twiki/bin/view/Main/EprRulesExplained</a>
- Manpower needs (tracker DPG): <u>https://twiki.cern.ch/twiki/bin/viewauth/CMS/TrackerDPGManpower</u>
   Needs