Performance Comparison: YOLOv11 vs. YOLOv8

Group F

Kenneth Bach, Aaron De Castro Shrikanth Shivakumar, Tom Solomon

Table of Contents

- 1 Motivation and Introduction
- 2 State of the Arts
- 3 Our System
- 4 Performance Analysis
- 5 Concluding Remarks
- 6 Future Work

Motivation and Introduction

- What is Object Detection?
- The Rise of Object Detection
 - Increased usage in many industries
 - Growth of Research
- Our Purpose
 - Two Models: YOLOv11 and YOLOv8
 - Traffic Sign Recognition

Presented by: Aaron

State of the Arts

much of the literature reviewed:

- Discusses comparisons between YOLOv5 and YOLOv8
- Datasets for:
 - Vehicle plates
 - Types of vehicles
 - Wildfire detection
- Conclusions: YOLOv8 performed generally better
- Literature not the same, but informative

a) YOLOv8s

b) YOLOv8m

c) YOLOv8I

Fig. 1. Sample images (a) Car (b) Bike (c) Track

Our System - Hardware

Raspberry Pi 4

- A powerful single board computer
- Quad-core ARM processor
- Running at 1.5 GHz
- Very compatible with lightweight machine learning frameworks like YOLO

Our System - Software

Google Colab

- Cloud based IDE
- Access to powerful GPUs and TPUs, perfect for machine learning applications
- Free version has some hardware limitations

Perf

- Tool for performance measurement
- Used to measure different parameters:
 - Cycles
 - Instructions
 - CPU time

Our System - Software (cont)

YOLO (You Only Look Once)

- Processes images in real-time
- Predicts bounding boxes and class probabilities directly from the image
- Single layer neural network allows for computational efficiency
- Processes the full image in a single pass
- Limitations:
 - Can struggle with detecting small objects in crowded environments
 - Performance goes down with overlapping or complex shaped objects

Our System - Software

YOLO v8

- Introduced anchor-free detection head
- User friendly training interface and added support for multiple tasks
- Supports:
 - Object detection
 - Image classification
 - Instance segmentation

YOLO v11

- Refines architecture with more efficient backbone and neck design
- Enhances feature representation and detection precision
- Improves accuracy and faster inference times
- Includes pose estimation oriented object detection

Our System - Overview

9

Presented by: Tom

Our System - Methods

- Download YOLOv8 dataset from Roboflow
- Train using Google Colabs
- Deploy model on personal computer, then Raspberry Pi
- Use Perf for performance analysis
- Repeat with YOLOv11

Performance Analysis

- YOLOv8 takes less time to train
- Both models have similar accuracies and levels of confidence

Model	Time (hours)	
YOLO _v 8	1.690	
YOLOv11	2.001	

Model	Class	Images	Precision	Recall	mAP50
31	All	144	0.897	0.867	0.907
YOLO _V 8	25 MPH	20	0.940	0.78	0.946
	35 MPH	21	0.941	0.724	0.831
	45 MPH	15	0.918	0.789	0.930
	STOP	25	1	0.958	0.989
YOLOv11	All	144	0.826	0.869	0.899
	25 MPH	20	0.886	0.9	0.897
	35 MPH	21	0.878	0.653	0.929
	45 MPH	15	0.812	0.789	0.915
	STOP	25	1	0.929	0.976

Performance Analysis (cont.)

- YOLOv8 is slightly faster at processing frames and slightly more efficient in CPU resource utilization
- YOLOv11 has a higher processing complexity, but is less efficient overall

	Cycles	490,196,308,242	1.729 GHz	
YOLO _V 8	Instructions	413,813,398,747	0.84 insn per cycle	
	Cache-Misses	4,802,178,969	5.21% of all cache refs	
	Cache-References	92,254,164,579	325.436 M/sec	
	Branch-Misses	318,593,074		
	Task-Clock	283,478.49 msec	1.813 CPUs utilized	
	Context-Switches	0	0.000 /sec	
	Page-Faults	709,206	2.502 K/sec	
	Time Elapsed	156.386003770 sec		
	User	275.720335000 sec		
	System	8.089143000 sec		
	FPS = 1/9571s = 1.045 FPS			

YOLO _Y 11	Cycles	539,804,227,494	1.702 GHz	
	Instructions	448,732,835,022	0.83 insn per cycle	
	Cache-Misses	4,984,938,173	5.01% of all cache refs	
	Cache-References	99,595,990,618	314.072 M/sec	
	Branch-Misses	345,711,518		
	Task-Clock	317,112.05 msec	1.881 CPUs utilized	
	Context-Switches	0	0.000 /sec	
	Page-Faults	1,427,568	4.502 K/sec	
	Time Elapsed	168.586001219 sec		
	User	304.288101000 sec		
	System	13.142862000 sec		
7.	FPS = 1/1.0594s = 0.94429 FPS			

Presented by: Kenneth

Concluding Remarks

 Performance: YOLOv8 is slightly more efficient in terms of cycles, instructions, and system time.

- Resource Utilization: YOLOv11 takes up more CPU resources.
 - It is potentially better suited other more complex tasks but less efficient overall for this task in particular.

- Cache Handling: YOLOv11 has a lower cache miss ratio but produces more page faults.
 - This reflects higher data throughput at the expense of memory efficiency.

Future Work

- The frame rate on the Raspberry Pi 4B is slow
 - o 1FPS
 - Using a Raspberry Pi 5 with the Al acceleration module
- Trying out different models
 - YOLOv5, NCNN framework

References

- Z. Zou, K. Chen, Z. Shi, Y. Guo and J. Ye, "Object Detection in 20 Years: A Survey," in Proceedings of the IEEE, vol. 111, no. 3, pp. 257-276, March 2023, doi: 10.1109/JPROC.2023.3238524.
- M. H. F. Afonso, E. H. Teixeira, M. R. Cruz., G. P. Aquino and E. C. Vilas Boas, "Vehicle and Plate Detection for Intelligent Transport Systems: Performance Evaluation of Models YOLOv5 and YOLOv8," 2023 IEEE International Conference on Computing (ICOCO), Langkawi, Malaysia, 2023, pp. 328-333, doi: 10.1109/ICOCO59262.2023.10397996.
- A. Swaroop, A. Satsangi, M. Sameer and G. Ahmad, "Performance Evaluation of YOLOv5 and YOLOv8 for Vehicle Detection: A Comparative Study," 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT), Kamand, India, 2024, pp. 1-6, doi: 10.1109/ICCCNT61001.2024.10723901.
- E. Casas, L. Ramos, E. Bendek and F. Rivas-Echeverría, "Assessing the Effectiveness of YOLO Architectures for Smoke and Wildfire Detection," in IEEE Access, vol. 11, pp. 96554-96583, 2023, doi: 10.1109/ACCESS.2023.3312217.