

Verilog / AMS

Enrico Fraccaroli Franco Fummi

Contents

- Motivations
- Code structure
- Circuit structure
- Branch contributions
- Disciplines
- Natures
- Functions

Analog vs Digital (1/2)

Analog vs Digital (2/2)

Truth Table

A Y
0 1
1 0

Digital Circuit

A Y

Analog Behavior

$$V(Y) = VCC - V(A)$$

Analog Circuit

Polygon Layout

Abstraction Level

Hardware Description Languages Syste-Verilog indutes Verilog - AMS Verilog - AM

Verilog-AMS

Verilog/VHDL

Circuit Structure

```
`include "disciplines.vams"
       module rc_block(in, out, gnd);
         input in, gnd;
         output out;
This means — electrical in, out, gnd;
         parameter real R0 = 100.0;
         parameter real C0 = 0.0001;
Conservative (= [analog begin Kirkhoff's akks
            I(in, out) <+ V(in, out) / R0;</pre>
            I(out, gnd) <+ ddt(V(out, gnd)) * C0;</pre>
         end
                             I don't have pre-existing modules for base components
       endmodule
```


Code Structure

8

Branch Contributions

The line:

```
[I(in, out) <+ V(in, out) / R0;
```

defines the relationship between the module ports **out** and **in**. This is known as a **branch contribution** and is one of the most important Verilog-A concepts

Both **V()** and **I()** functions in the above are known as an access function

- V(): provides the potential difference between the two nodes
- I(): provides the current flowing between the two nodes

Letter V stands for Voltage, while I is the Current (letter I comes from the French, intensité de courant)

9

Disciplines (1/2)

The line:

```
electrical in, out, gnd;
```

defines the discipline for the module ports and ground node in this case 'electrical'

Verilog-AMS supports other disciplines such as **thermal**, **mechanical** and **rotational** allowing **simulation** of **physical processes** other than electrical and electronic

The definitions of these other disciplines are defined in the disciplines.vams file which is included using the line:

```
`include "disciplines.vams"
```


Disciplines (2/2)

The list of disciplines supported by Verilog-AMS:

Name	Potential	Flow	Domain
logic	_	_	discrete
electrical	Voltage	Current	continuous
thermal	Temperature	Power	continuous
kinematic	Position	Force	continuous
rotational	Angle	Angular_Force	continuous

Voltage and Current have an agrivated in all the other disciplines Eq: in thermal, Temperature can be represented as voltage

Natures

Potential and **Flow** of disciplines are selected from a table of **Natures**

Name	Units	Access
Voltage	V	V
Current	A	I
Charge	coul	Q
Temperature	K	Temp
Position	m	Pos
Velocity	m/s	Vel
Acceleration	m/s^2	Acc
Impulse	m/s^3	Imp
Force	N	F
Angle	rads	Theta
Angular_Force	N-m	Tau

Functions

The line:

```
I(out, gnd) <+ ddt(V(out, gnd)) * C0;</pre>
```

contains a function called **ddt**. An **analog operator** that performs the time derivative of the passed argument. There are many other analog operators in Verilog-AMS

Operator	Description	
<pre>ddt(operand, [abstol nature])</pre>	Time derivative	
<pre>idt(operand, [ic], [assert], [abstol nature])</pre>	Time integral	
<pre>ftransition(operand, delay, trise, [tfall])</pre>	Transition	
slew(operand, [rising_sr], [falling_sr])	Slew	
absdelay(operand, delay, [max_delay])	Delay	
laplace_zp(operand, [zeta], [rho], [epsilon])	Laplace, zero-pole form	
laplace_nd(operand, [n], [d], [epsilon])	Laplace, numerator-denominator form	
last_crossing(operand, [direction])	Last crossing	
<pre>limexp(operand)</pre>	Limited exponential	

These functions allow us to join and mix analog and digital Simulations

Tove values from allog part to digital, and viceness