Импульс тела. Закон сохранения импульса

1. Импульс тела определяется выражением:

1)
$$\frac{kx^2}{2}$$
; 2) mv ; 3) $\frac{mv^2}{2}$; 4) mgh .

2. В каких единицах в СИ измеряется импульс тела?

- **3.** Тело массой m=15 кг движется со скоростью, модуль которой $\upsilon=2$ м/с. Определите модуль импульса p тела.
- **4.** Модуль импульса тела p = 51 кг·м/с. Чему равна масса m тела, если модуль скорости его движения v = 3 м/с?
- **5.** Мальчик массой m=40 кг бежит со скоростью $\upsilon=7,2$ км/ч. Чему равен модуль импульса р мальчика?
- **6.** Кинематический закон движения тела массой m=0.5 кг, движущегося вдоль оси Ох, имеет вид x=A+Bt, где A=5 м, B=-10 м/с. Определите проекцию $p_{\rm x}$ импульса тела на ось Ох.
- **7.** Импульс автомобиля $p=28\,800~{\rm kr}\cdot{\rm m/c}$. Найти скорость υ автомобиля, если его масса $m=1,6~{\rm T}$.
- **8.** Чему равен модуль изменения импульса Δp тела массой m=7 кг, движущегося прямолинейно, если модуль его скорости изменился на $\Delta v=4$ м/с?
- **9.** Тело массой m=600 г брошено вертикально вниз со скоростью $\upsilon_0=10$ м/с. Чему будет равен модуль импульса p тела через t=0.8 с?
- **10.** Автомобиль массой m=16 ц движется со скоростью $\upsilon_0=16$ м/с и начинает тормозить с ускорением модуль которого a=0.8 м/с². Найдите модуль импульса p тела через t=12 с торможения.
- **11.** Кинематический закон движения тела массой m=2 кг, движущегося вдоль оси Ox, имеет вид $x=A+Bt+Ct^2$, где A=5 м, B=-10 м/с, C=2 м/с². Определите проекцию p_x импульса тела на ось Ox через t=8 с.
- **12.** Тело массой m=400 г брошено вертикально вверх со скоростью $v_0=17$ м/с. Чему будет равен модуль импульса p тела через t=1,2 с?
- **13.** Мяч массой m=0,1 кг, движущийся со скоростью $\upsilon_1=10$ м/с, ударом ракетки отбрасывается в противоположную сторону со скоростью $\upsilon_2=20$ м/с. Найдите модуль изменения импульса мяча Δp и среднюю силу F удара ракетки о мяч, если продолжительность удара $\Delta t=0,02$ с.
- **14.** Падающий вертикально шарик массой m=0,2 кг ударился о пол со скоростью $\upsilon=5$ м/с и подпрыгнул на высоту h=0,4 м. Найдите среднюю силу F, действующую со стороны пола на шарик, если длительность удара $\Delta t=0,01$ с.
- **15.** Вагон массой $m_1 = 60$ т, движущийся со скоростью $v_1 = 0.5$ м/с, сталкивается с неподвижным вагоном массой $m_2 = 40$ т, после чего они движутся вместе. Найдите скорость v их совместного движения.

- **16.** Шар массой $m_1 = 200$ г, двигавшийся со скоростью $\upsilon_1 = 5$ м/с, сталкивается абсолютно неупруго с шаром массой $m_2 = 300$ г, двигавшемся в том же направлении со скоростью $\upsilon_2 = 4$ м/с. Найдите скорость шаров υ после удара.
- **17.** Из орудия массой $m_1 = 3$ т вылетает в горизонтальном направлении снаряд массой $m_2 = 15$ кг со скоростью $\upsilon_2 = 650$ м/с. Какую скорость υ_1 получит орудие при отдаче?
- **18.** Тело массой $m_1 = 500$ г, двигавшееся со скоростью $\upsilon_1 = 5$ м/с, сталкивается абсолютно неупруго с телом массой $m_2 = 300$ г, двигавшемся навстречу со скоростью υ_2 . После столкновения скорость тел стала $\upsilon = 2$ м/с и направлена одинаково с $\vec{\upsilon}_1$. Найдите модуль скорости υ_2 второго тела до столкновения.
- **19.** Стальная пуля массой $m_1 = 4$ г, летящая горизонтально со скоростью $\upsilon_1 = 500$ м/с, попадает в центр боковой грани неподвижного стального бруска, масса которого $m_2 = 1$ кг. После столкновения пуля отскакивает в противоположную сторону со скоростью $\upsilon_1' = 400$ м/с. Найдите скорость υ_2' бруска после столкновения.
- **20.** Охотник стреляет с легкой надувной лодки. Какую скорость υ_1 будет иметь лодка в момент выстрела, если масса охотника с лодкой $m_1=70$ кг, масса дроби $m_2=35$ г, средняя начальная скорость дроби $\upsilon_2=320$ м/с? Ствол ружья во время выстрела направлен под углом $\alpha=60^\circ$ к горизонту.
- **21.** В тележку с песком массой $m_1 = 50$ кг, движущуюся по горизонтальной поверхности со скоростью $\upsilon_1 = 5,5$ м/с, попадает вертикально падающее тело и застревает в песке. Масса тела $m_2 = 5$ кг, скорость в момент попадания $\upsilon_2 = 10$ м/с. Определите скорость тележки υ после попадания тела в песок.
- **22.** Камень массой m=4 кг падает под углом $\alpha=30^\circ$ к вертикали со скоростью $\upsilon=10$ м/с в тележку с песком общей массой M=16 кг, покоящуюся на горизонтальных рельсах. Определите скорость и тележки с камнем.

23. В платформу с песком, стоящую на горизонтальных рельсах, попадает снаряд, летящий горизонтально со скоростью $\upsilon_1 = 300$ м/с под углом $\alpha = 60^\circ$ к направлению рельсов, и застревает в ней. Отношение массы платформы к массе снаряда равно 29. С какой скоростью υ начнет двигаться платформа?

Ответы

3. $p = 30 \text{ kg} \cdot \text{m/c}$; **4.** m = 17 KT; **5.** p = 80 kg/m/c**7.** v = 18 m/c; **8.** $\Delta p = 28 \text{ kg·m/c};$ **9.** p = 10.8 kg·m/c; **10.** p = 10.240 kg·m/c; **13.** $\Delta p = 3 \text{ K} \cdot \text{M/c}, F = 150 \text{ H};$ **11.** $p_x = 44 \text{ kg/m/c}$; **12.** $p = 2 \text{ } \text{K} \cdot \text{M} \cdot \text{C};$ **15.** v = 0.3 m/c; **16.** v = 4.4 m/c**14.** *F* = 156 H; 17. $v_1 = 3.25 \text{ m/c}$; **19.** $v_1' = 3.6 \text{ m/c}$; **20.** $v_1 = 8 \text{ cm/c}$; **18.** $v_1 = 3 \text{ m/c}$; **21.** v = 5 m/c: **22.** u = 1 m/c: **23.** v = 5 m/c.