Staramillo NOV & 1, 2021 Midterm & for Calculus - based Physics Chapter 4: Bynamics, force and Newton's Laws of Motion 1 A 5 x 105 kg rocket is accelerating straightup. The thrusters produce an upward force of 1.25 x10 N, and the force of air resistance 15 4.5 XID N downwards. (a) Praw a free - body diagram Including the weight of the rocket, the thrust, and air resistance, (b) What is the nockets acceleration? Score: 14/20 b) rockets acceleration a) Fret = mai; Fret = T - aR - mg; N = kam m g ar = 1.25 × 10"N - 4.5 × 10"N - (5×105) 9:8 weight force = -mgj a = FN = 311 ×10 × N = = [6.2 M/s] kgm. 1 2 a football player with mass Toky pushes a player with mass 9dkg (a) According to NeWton's 3rd Law, if the 1st player exerts a force of 700 N on the second player, What is the force the second player extents on the first player? Prok9 7004 990kg (-1) Newton's 3rd law: FAB = -FAB 70K9701 -> < 90K9-700N $= -6.3 \times 10^4 \text{ N kg}$ (?) It's just Newton's 3rd Law. @ arocket sted is decelerated at a rate 200 M/s2, and it has a mass of 2000 kg. There is a constant air resistance torce of 1000N. What additional force is required to give the rocket the de celeration? 1 9 - 1000N Fret=ma FN=p-ma = 2000 kg . - 200 m/k2 = -4 ×105 N+ - 1000 H

= -4 × 10 N

(-2) The net forces in the x-direction and y-direction are separately zero, and the final results must be hundreds of Newtons to balance the weight

Bhapter 5: Friction, Drag, and Elasticity

(1) Suppose you have a 120 kg wooden crate resting on a wood Floor. The coefficients of static and kinetic friction are 0.5 and 0.3 respectively.

(a) What maximum force can you exert horizontally on the create who moving it?

b) If you continue to exert this torce once the crede starts to slip, what will the magnitude of its accoleration then be?

12) Suppose a skier (Fig2) is sliding down a slope with an incline of 25 degrees. If the coefficient of kinetic friction is O.I what is the skier's aceleration?

@ Prag Force: Suppose the skier reaches a top speed of 40 mls. If m his area is 0.75 m2, the density of air is 1.225 kg/m3 and C = 0.75, what is the magnitude of the dragforce in Newtons? FB= - CPAV2 FP = (1/0.75) (1.225 kg) (0.75 m2) (40 m/s) Kg· M2·M2 = 13.78 N (-1) Some math error, because 40 squared is much larger than 14 (4 a mals of 2300 kg is place on top of a 10.0 m long wooden beam w radius of 4cm. If the length of the beam decreases by 3mm, what is the Young's medulis of the wood? Hreas = mg = 2300kg - 9.8 M/s2 = 4484190. Kg Tr 0.04302 = 4484190. Kg Stress = E Strain = -0.003 m = -0.0003 M (train = AYL E = Stress = -1,4943 x1010 kg/ Strain & KOWS - W

(A) Chapley 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1 Chapterle: Uniform Circular Motion and a pitcher in baseball pitches a ball at 144 km phr, and the ball rotates of	wound
his arm at avadius of 0.5m. What is the angular velocity of the ball as he the in Fadians per sond.	
V= Y W (144 that \ 1800 M \ 1800 S) (1000 M) (10	
N= 40 m/s	
= V = 40 m/s = [80 v/s]	
2) What is the ideal banking angle for a gentle turn of 0.9 km radius on a his with a 120 km phy speed limit, assuming everyone travels at the limit? 0.9 km.	ghway
V = 0.9 km = 900 m fano = 12	1000m
V = 120 Kmph = 33.3m/s Fg	P.C.
$\theta = \frac{1}{2}$ $\theta = \tan^{2}\left(\frac{33.3 \text{m/s}}{900 \text{m} \cdot 9.8 \text{m/s}^{2}}\right) \qquad \frac{m^{2}}{8^{2}}$	52
[0 = 7.16]	

(3) The race cars driviers routinely havigate a turn as shown in Fig 3 (200)

(a) Which path may be taken at a higher speed, if both paths correspond to the same force of friction and centripetal force?

(b) suppose path I has a radius of curvature of 400 m, and path 2 has a radius of curvature of 400 m, and path 2 has a radius of curvature of 400 m, and path 2 has a radius of curvature of friction balances the centripetal force, what are the tangential velocities of each race cur?

(a) path 2

b) path 1 path 2

M= angular velocity

path1 = V = Y.W path2 > V = 400 m. W V = 800 m. W

(-1) Equate centripetal force with friction \dots