ICAPS 2018 Tutorial

Decision Diagrams in Automated Planning and Scheduling, Part II

Scott Sanner

Part II: Extensions to Continuous Inference

Inference for Continuous HMMs

Optimal Policies in Hybrid MDPs

How to obtain closed-form exact solutions?

Symbolic representations and operations on piecewise functions

Think Mathematica, not Matlab

Piecewise Functions (Cases)

$$z = f(x,y) = \begin{cases} (x > 3) \land (y \square x) : & x + y \end{cases}$$
 Partition
$$(x \square 3) \lor (y > x) : & x^2 + xy^3$$
 Value

Linear constraints and value

Linear constraints, constant value

Quadratic constraints and value

Formal Problem Statement

 General continuous graphical models represented by piecewise functions (cases)

- Exact closed-form solution inferred via the following piecewise calculus:
 - $f_1 \oplus f_2$, $f_1 \otimes f_2$
 - max(f₁, f₂), min(f₁, f₂)
 - $\int_{x} f(x)$
 - max_x f(x), min_x f(x)

Question: how do we perform these operations in closed-form?

Polynomial Case Operations: ⊕, ⊗

$$egin{cases} \phi_1: & f_1 \ \phi_2: & f_2 \end{cases} \oplus egin{cases} \psi_1: & g_1 \ \psi_2: & g_2 \end{cases} = egin{cases} iggar{2} \ igga$$

Polynomial Case Operations: ⊕, ⊗

$$\begin{cases} \phi_1: & f_1 \\ \phi_2: & f_2 \end{cases} \oplus \begin{cases} \psi_1: & g_1 \\ \psi_2: & g_2 \end{cases} = \begin{cases} \phi_1 \wedge \psi_1: & f_1 + g_1 \\ \phi_1 \wedge \psi_2: & f_1 + g_2 \\ \phi_2 \wedge \psi_1: & f_2 + g_1 \\ \phi_2 \wedge \psi_2: & f_2 + g_2 \end{cases}$$

- Similarly for ⊗
 - Polynomials closed under +, *
- What about max?
 - Max of polynomials is not a polynomial ⊗

Polynomial Case Operations: max

$$\max \left(egin{array}{ll} \left\{ egin{array}{ll} \phi_1: & f_1 \ \phi_2: & f_2 \end{array}, \, \left\{ egin{array}{ll} \psi_1: & g_1 \ \psi_2: & g_2 \end{array}
ight) = \end{array}
ight.$$

Polynomial Case Operations: max

$$\max \left(\begin{cases} \phi_1 : & f_1 \\ \phi_2 : & f_2 \end{cases}, \begin{cases} \psi_1 : & g_1 \\ \psi_2 : & g_2 \end{cases} \right) =$$

$$\max \left(\begin{cases} \phi_{1}: & f_{1} \\ \phi_{2}: & f_{2} \end{cases}, \begin{cases} \psi_{1}: & g_{1} \\ \psi_{2}: & g_{2} \end{cases} \right) = \begin{cases} \phi_{1} \wedge \psi_{1} \wedge f_{1} > g_{1}: & f_{1} \\ \phi_{1} \wedge \psi_{1} \wedge f_{1} \Box g_{1}: & g_{1} \\ \phi_{1} \wedge \psi_{2} \wedge f_{1} > g_{2}: & f_{1} \\ \phi_{1} \wedge \psi_{2} \wedge f_{1} \Box g_{2}: & g_{2} \\ \phi_{2} \wedge \psi_{1} \wedge f_{2} > g_{1}: & f_{2} \\ \phi_{2} \wedge \psi_{1} \wedge f_{2} \Box g_{1}: & g_{1} \\ \phi_{2} \wedge \psi_{2} \wedge f_{2} > g_{2}: & f_{2} \\ \phi_{2} \wedge \psi_{2} \wedge f_{2} \Box g_{2}: & g_{2} \end{cases}$$

Still a piecewise polynomial!

Size blowup? We'll get to that...

Definite Integration: $\int_{x=-\infty}^{\infty}$

- Closed for polynomials
 - But how to compute for case?

$$\int_{x=-\infty}^{\infty} egin{cases} \phi_1:&f_1\ dots&dots&dx\ \phi_k:&f_k \end{cases}$$

– Just integrate case partitions, ⊕ results!

Partition Integral

1. Determine integration bounds

$$\int_{x=-\infty}^{\infty} [\phi_1] \cdot f_1 dx$$

$$\phi_1 := [x > -1] \wedge [x > y - 1] \wedge [x \square z] \wedge [x \square y + 1] \wedge [y > 0]$$

$$f_1 := x^2 - xy$$

UB and LB are symbolic!

What constraints here?

- independent of x
- pairwise UB > LB

How to evaluate?

Definite Integral Evaluation

How to evaluate integral bounds?

$$\int_{x=LB}^{UB} x^2 - xy = \frac{1}{3}x^3 - \frac{1}{2}x^2y \bigg|_{LB}^{UB}$$

Can do polynomial operations on cases!

Symbolically, exactly evaluated!

Exact Graphical Model Inference!

(directed and undirected)

Can do general probabilistic inference

$$p(x_2|x_1) = \frac{\int_{x_3} \cdots \int_{x_n} \bigotimes_{i=1}^k case_i \ dx_n \cdots dx_3}{\int_{x_2} \cdots \int_{x_n} \bigotimes_{i=1}^k case_i \ dx_n \cdots dx_2}$$

Or an exact expectation of any polynomial

- poly = Mean, variance, skew, curtosis, ..., x^2+y^2+xy

Voila: Closed-form Exact Inference via SVE!

Computational Complexity?

- In theory for SVE on graphical models
 - Worst-case complexity is O(exp(#operations))
 - Not explicitly tree-width dependent!
 - But worse: integral may invoke 100's of operations!

Fortunately decision diagrams can mitigate worst-case complexity

BDD / ADDs

Quick Introduction

Function Representation (Tables)

- How to represent functions: Bⁿ → R?
- How about a fully enumerated table...

 ...OK, but can we be more compact?

а	b	С	F(a,b,c)
0	0	0	0.00
0	0	1	0.00
0	1	0	0.00
0	1	1	1.00
1	0	0	0.00
1	0	1	1.00
1	1	0	0.00
1	1	1	1.00

Function Representation (Trees)

How about a tree? Sure, can simplify.

а	b	С	F(a,b,c)
0	0	0	0.00
0	0	1	0.00
0	1	0	0.00
0	1	1	1.00
1	0	0	0.00
1	0	1	1.00
1	1	0	0.00
1	1	1	1.00

Function Representation (ADDs)

Why not a directed acyclic graph (DAG)?

а	b	С	F(a,b,c)
0	0	0	0.00
0	0	1	0.00
0	1	0	0.00
0	1	1	1.00
1	0	0	0.00
1	0	1	1.00
1	1	0	0.00
1	1	1	1.00

Exploits context-specific independence (CSI) and shared substructure.

Binary Operations (ADDs)

- Why do we order variable tests?
- Enables us to do efficient binary operations...

Case → XADD

XADD = continuous variable extension of algebraic decision diagram

Case → XADD

Compactness of (X)ADDs

XDD is linear in
 # of decisions φ_i

 Case version has exponential number of partitions!

XADD Maximization

Operations exploit structure: O(|f||g|)

Maintaining XADD Orderings

Max may get decisions out of order

Maintaining XADD Orderings

Substitution may get decisions out of order

Decision ordering (root→leaf):

• x > y

• y > 0

• x > z

x > z

x > y

Substituted nodes are now out of order!

Correcting XADD Ordering

- Obtain ordered XADD from unordered XADD
 - key idea: binary operations maintain orderings

Maintaining Minimality

Node unreachable – x + y < 0 always false if x > 0 & y > 0

If **linear**, can detect with feasibility checker of LP solver & prune

More subtle prunings as well.

XADD enables all previous inference!

Solution is inherently piecewise, need a data structure to maintain compact form

Beyond Inference

Optimal Sequential Decision-making

Integration with a δ : substitution

- Special case for integrals with δ -functions
 - $-\int_x \delta[x-y]f(x)dx = f(y)$ triggers symbolic substitution
 - More generally: $\int_{x_j'} \delta[x_j' g(\vec{x})] V' dx_j' = V' \{x_j'/g(\vec{x})\}$
 - E.g.,

$$\int_{x_1'} \delta[x_1' - (x_1^2 + 1)] \left(\begin{cases} \underline{x_1'} < 2 : & \underline{x_1'} \\ \underline{x_1'} \ge 2 : & \underline{x_1'}^2 \end{cases} \right) dx_1' = \begin{cases} \underline{x_1^2 + 1} < 2 : & \underline{x_1^2 + 1} \\ \underline{x_1^2 + 1} \ge 2 : & \underline{(x_1^2 + 1)}^2 \end{cases}$$

- If g is case: need conditional substitution
 - see Sanner, Delgado, Barros (UAI 2011)

Continuous State MDPs

- 2-D Navigation
- State: $(x,y) \in \mathbb{R}^2$
- Actions:
 - move-x-2
 - x' = x + 2
 - y' = y
 - move-y-2
 - x' = x
 - y' = y + 2

Feng et al (UAI-04) Assumptions:

- 1. Continuous transitions are deterministic and linear functions of **single variable**
- 2. Discrete transitions can be stochastic
- 3. Reward is piecewise rectilinear convex

Reward:

$$- R(x,y) = I[(x > 5) \land (x < 10) \land (y > 2) \land (y < 5)]$$

Exact Solutions to DC-MDPs: Regression

Continuous regression is just translation of "pieces"

Exact Solutions to DC-MDPs: Maximization

Q-value maximization yields piecewise rectilinear solution

Previous Work Limitations I

Exact regression when transitions multivariate nonlinear?

Previous Work Limitations II

max(.,.) when reward/value arbitrary piecewise?

A solution to previous limitations:

Symbolic Dynamic Programming (SDP)

n.b., motivated by SDP from Boutilier *et al* (IJCAI-01) but here continuous instead of relational

Using SDP, we can compute the MDP solution symbolically!

Compute the following in symbolic closed-form:

That's SDP! 3D Value Function Gallery

Exact value functions for **discrete action** hybrid MDPs:

- Arbitrary reward, transitions cos(xy)
- (non)linear piece boundaries and function surfaces!

Example: Optimal Controllability of Epidemics in Nonlinear SIR Models

Continuous Actions?

If we can solve this, can solve multivariate inventory control – closed-form policy unknown for 50+ years!

Continuous Actions

- Inventory control
 - Reorder based on stock, future demand
 - Action: $a(\vec{\Delta}); \vec{\Delta} \in \mathbb{R}^{|a|}$

Need max
 _∆ in Bellman backup

$$V_{h+1} = \max_{a \in A} \max_{\vec{\Delta}} Q_a^{h+1}(\vec{b}, \vec{x}, \vec{\Delta})$$

- How to do \max_{Λ} ?
 - And track maximizing \triangle substitutions to recover π ?

Symbolic MILP Solutions

How to max out variable x from a case?

$$\max_{x \in (-\infty,\infty)} \begin{cases} \phi_1: & f_1 \\ \vdots & \vdots \\ \phi_k: & f_k \end{cases}$$
 Actually defining a MILP. Maxing out all vars leads to solution!
$$= \max_{i=1..k} \max_{x \in (-\infty,\infty)} \begin{cases} \phi_i: & f_i \\ \neg \phi_i: & -\infty \end{cases}$$

Just max x in case partitions, then max results!

Partition Max

1. Determine integration bounds

```
\max_{x \in (-\infty, \infty)} \left\{ \phi_1 \cdot : f_1 \right.
\phi_1 := [x > -1] \wedge [x > y - 1] \wedge [x \square z] \wedge [x \square y + 1] \wedge [y > 0]
f_1 := x - 2y
```

UB and LB are symbolic!

What constraints here?

- independent of x
- pairwise UB > LB

 $\{\phi_{cons}: \max_{x \in [LB, UB]} f_1$

How to evaluate?

Max-out Case Operation

- max_x case(x) reduced to a "casemax" of single partition max_x's:
 - In a single case partition
 ...max w.r.t. critical points

- LB, UB
- Derivative is zero (Der0)
- max(case(x/LB), case(x/UB), case(x/Der0))

See AAAI 2012 for more details

- Can even track substitutions through max
 - Recovers function of maximizing assignments!

Illustrative Value and Policy

Continuous Actions, Nonlinear

Robotics

- Continuous position, joint angles
- Represent exactly with polynomials
 - Radius constraints

- 2D, 3D, 4D (time)
- Don't discretize!
 - Grid worlds
- But nonlinear ☺

Multilinear, quadratic extensions.

In general: algebraic geometry.

Need bounded / targeted approximations to scale...

Bounded Error Compression

Linear XADD Leaf Merging

Nonlinear XADD Approximation?

1D Example

- Questions
 - What approximating class?
 - What error function?
 - Max not feasible
 - Volume of squared error? Integral is exact.

But many caveats vs. linear case

Real-time Symbolic Dynamic Programming

Sequential Control Summary

- Continuous state, action, observation (PO)MDPs
 - Discrete action, nonlinear MDPs UAI-11
 - Continuous action MDPs (incl. exact policy)
 - Continuous observation POMDPsNIPS-12
 - Chance-constrained solutions with continuous noise
 - XADD Compression UAI-13
 - Game-theoretic / adversarial setting
 - RTDP: scaling nonlinear and continuous action solutions

 AAAI-15
 - First optimal solutions to market-making with inventory
 - Analytic Policy Gradient, Sensitivity Analysis, Inverse Learning ICAPS-17

More Applications

Constrained Optimization

max_x case(x) = Constrained Optimization!

- Conditional constraints
 - E.g., if (x > y) then (y < z)
 - MILP, MIQP equivalent
- Factored / sparse constraints
 - Constraints may be sparse!

$$X_1 > X_2, X_2 > X_3, ..., X_{n-1} > X_n$$

- Dynamic programming for continuous optimization!
- Parameterized optimization

 $- f(y) = \max_{x} f(x,y)$

Symbolic Bucket Elimination, Student Paper Award, CPAIOR-18

Maximum value, substitution as a function of y

Recap

- Defined a calculus for piecewise functions
 - $f_1 \oplus f_2$, $f_1 \otimes f_2$
 - max(f₁, f₂), min(f₁, f₂)
 - $\int_X f(x)$
 - max_x f(x), min_x f(x)
- Defined XADD to efficiently compute with cases
- Makes possible
 - Exact inference in continuous graphical models
 - First exact solutions to planning, control, and OR problems
 - New paradigms for optimization

Symbolic Piecewise Calculus + XADD

= Expressive Hybrid Inference, Optimization, & Control

Thank you!

Questions?