Examen Final de Lógica 1er Semestre. Curso 2016-2017

Nombre v apellidos:	Grui	po:	

- 1. Dado un torneo de eliminación directa, donde participan al menos 4 equipos y en cada ronda los equipos perdedores son eliminados y los ganadores avanzan a la siguiente ronda, se define la relación R, llamada Perder_con, tal que $\langle x, y \rangle \in R$ si y solo si x perdió con y. Diga, justificando en cada caso, cuáles de las siguientes propiedades cumple R:
 - Antisimetría
 - Transitividad
 - Función total
 - Función inyectiva
- 2. Responda Verdadero o Falso. Justifique en cada caso.
 - Sean P_1 y P_2 particiones de un conjunto A tal que $|P_1| = |P_2|$ y sean R_1 y R_2 relaciones de equivalencia tales que $A/R_1 = P_1$ y $A/R_2 = P_2$ entonces se cumple que $|R_1| = |R_2|$
 - Sean A, B y C conjuntos cualesquiera, si $(A \cup B)^c \cup C \subseteq (A C^c) \cap B$, entonces se cumple que $|2^{(A^c B)}| \le 5$
- 3. La sucesión de Fibonacci comienza con los números 0 y 1 y, a partir de estos, cada término de la sucesión se obtiene partir de la suma de los dos anteriores. O sea, $Fib_n = Fib_{n-1} + Fib_{n-2}$.
 - (a) Escriba una fórmula de la lógica proposicional que, para todos los números que puedan ser representados por tres bits, determine si pertenecen o no a la Sucesión de Fibonacci.
 - (b) Diseñe, utilizando solo 5 componentes NOR (de dos entradas), un circuito lógico que detecte dado todos los número de tres bit cuáles de ellos son números de la Sucesión de Fibonacci.
- 4. Al concluir el curso de Ciencia de la Computación, la secretaria docente pudo concluir lo siguiente sobre los estudiantes de 1er Año:
 - P1: Todos los estudiantes aprobaron Lógica o todos los estudiante promovieron de año
 - P2: No todos los estudiantes aprobaron programación a menos que ninguno haya aprobado Análisis Matemático
 - P3: Ningún estudiante aprobó Análisis Matemático o Raúl no promovió de año
 - (a) Exprese estas afirmaciones en el Lenguaje de la Lógica de Predicados. Defina cualquier relación que considere necesaria.
 - (b) Demuestre formalmente, utilizando la Lógica de Predicados, que " si algún estudiante promovió de año entonces, o todos aprobaron Lógica, o todos aprobaron Programación".
- 5. En la isla de los caballeros y truhánes, donde solo hay tres habitantes: A, B y C, ocurre un crímen y llaman al inspector Craig para buscar al culpable. Al ser interrogados A y B dijeron lo siguiente:
 - A: No soy inocente ni caballero
 - B: Siempre que C sea inocente A y yo somos caballeros

Tras realizar sus investigaciones el inspector Craig llegó a las siguientes conclusiones:

- C1 : Solo los truhánes pueden ser culpables
- C2: Hay al menos un culpable
- C3: B es culpable siempre que A y C sean truhánes
- (a) Escriba en el lenguaje de la Lógica Proposicional las fórmulas que definen los planteamientos anteriores $(A,\,B,\,C1,\,C2,\,C3)$. En cada caso identifique qué representa cada variable proposicional utilizada.
- (b) Deduzca formalmente usando las leyes y reglas de la Lógica Proposicional, de los habitantes de la Isla, quiénes son culpables y quiénes no.