

ACADGILD

SESSION 11: Linear Models

Assignment 1

PROBLEM STATEMENT

1. Use the link given below and locate the bank marketing dataset. https://archive.ics.uci.edu/ml/machine-learning-databases/00222/

Perform the below operations:

- a) Create a visual for representing missing values in the dataset.
- b) Show a distribution of clients based on a job.
- c) Check whether is there any relation between Job and Marital Status?
- d) Check whether is there any association between Job and Education?

SOLUTION

a. Create a visual for representing missing values in the dataset.

The R-script for the given problem is as follows:

```
# Import Bank Marketing Data library(readr)
bank <- read.csv("E:/munmun_acadgild/acadgild data analytics/supporting files/bank-
additional/bank-additional.csv", sep=";")
View(bank)
dim(bank)
str(bank)
 # a. Create a visual for representing missing values in the dataset.
library(psych)
psych::describe(bank)
library(VIM)
missing <- bank
missing[missing == "unknown"] <- NA
aggr(missing, col=c('blue', 'red'),
   numbers=TRUE, sortvars=TRUE,
  labels=names(missing), cex.axis=0.5,
   gap=3, ylab=c("missing data","pattern"))
sapply(missing, function(x) sum(is.na(x)))
```

The output of the R-Script (from Console window) is given as follows:

Conclusion/Interpretation:

Visual for representing missing values in the dataset is created

b. Show a distribution of clients based on a job.

The R-script for the given problem is as follows:

The output of the R-Script (from Console window) is given as follows:

```
> t <- table(bank$job)
> # distribution in tabular form
> t
```

	admin.	blue-collar	entrepreneur	housemaid	management
330	10422	9254	1456	1060	2924
self-employed	services	student	technician	unemployed	
1421	3969	875	6743	1014	

Conclusion/Interpretation:

RStudio
File Edit

Distribution of clients based on a job is obtained in tabular and graphical form.

c. Check whether is there any relation between Job and Marital Status?

The R-script for the given problem is as follows:

chisq.test(missing\$job, missing\$marital)

The output of the R-Script (from Console window) is given as follows:

> chisq.test(missing\$job, missing\$marital)

```
Pearson's Chi-squared test

data: missing$job and missing$marital
X-squared = 4197.5, df = 33, p-value < 2.2e-16</pre>
```

Conclusion/Interpretation:

Ho: There is NO association between Job and Marital Status

Since P Value is less than 0.05, there is association between Job and Marital status at 95% confidence level. Since NA values are very less, they are omitted.

d. Check whether is there any association between Job and Education?

The R-script for the given problem is as follows:

```
chisq.test(missing$job, missing$education)
```

The output of the R-Script (from Console window) is given as follows:

> chisq.test(missing\$job, missing\$education)

```
Pearson's Chi-squared test

data: missing$job and missing$education

X-squared = 37338, df = 77, p-value < 2.2e-16
```

Conclusion/Interpretation:

Ho: There is NO association between Job and Education.

Since the P value is less than 0.05, there is association between Job and Education at 95% confidence level. Since NA values are very less, they are omitted