Hierarchical Mode Analysis

Presented in Partial Fulfillment of the Requirements for

CSC 471/578

in the Department of Computer Science

Ashlin Richardson

University of Victoria

April 18, 2013

Overview

Density Estimation And Mode Analysis Introduction

Hierarchical Mode Analysis
Introduction

Segmentation via Hierarchical Mode Analysis

Application: Smart Flood Fill

Data driven clustering

Clustering problem: given N points in \mathbb{R}^n , assign each point a label. "Group data into statistically meaningful categories". ..Implementation¹² invited for inclusion in E.S.A. open source distro:

- ▶ Data driven clustering: find arbitrary shaped clusters, instead of generalized "spherical cows" $\mathbf{x} \sim \mathcal{N}(\mu, \Sigma)$.
- ▶ Point-cloud representation of clusters (instead of, e.g., (μ, Σ) where $\Sigma = Cov(x_i, x_j)$).

Two steps:

- Density Estimation
- Hill Climbing

¹A. Richardson *et al.*, "Unsupervised nonparametric classification of polarimetric sar data using the k-nearest neighbor graph," *proc. IEEE IGARSS*, 2010

²D. Goodenough *et al.*, "Mapping fire scars using radarsat-2 polarimetric sar data," *Can. J. Remote Sensing*, 2011

Data driven clustering: Step 1/2

Density Estimation e.g., by K-nearest Neighbor Density Estimate:

$$\rho(x) = \frac{1}{\frac{1}{K} \sum_{y \in N_x} d(x, y)}$$

- Evaluate this at each data point..
- K is the number of "nearest neighbors" to consider about a point
- \triangleright N_x is the set of "K-nearest neighbours" about a point x

Data driven clustering: Step 2/2

Hill Climbing. Simple heuristic (avoids explicit gradient-estimation).

```
\begin{split} & |\mathsf{label}[\mathsf{x}] = \mathbf{hillclimb}(\mathsf{x}) \colon \quad / / \mathsf{label} \text{ the point } \mathsf{x} \\ & \mathsf{if}(\rho(\mathsf{x}) \geq \rho(\mathsf{N}_\mathsf{x})) \colon \quad / / \mathsf{x} \text{ highest-} \rho \text{ in nbhd } (\mathsf{x} \text{ is a "top"}) \\ & \mathsf{return newLabel}(); \\ & \mathsf{else} \qquad \quad / / \text{"go up" } (\mathsf{find the centre}) \\ & \mathsf{return hillclimb} \bigg( \underset{\mathsf{x} \in \mathsf{N}_\mathsf{x}}{\mathrm{argmax}} (\rho(\mathsf{N}_\mathsf{x})) \bigg); \end{split}
```

ltty-bitty example..small number of points. **Peaks/tops** shown as large circles. Other points colored by label.

Results: Point-clouds good for compression. "Nearest Neighbor" (μ 's) bad..

Results: Point-clouds good for compression. "Nearest Neighbor" $(\mu's)$ bad.. Also, Data-driven method more stable (w.r.t. parameters)..

Hierarchical Mode Analysis: Data Driven Clustering in more general, Dendrographic (tree) Context

Review: categories (cf., labels) were representative of connected components of level sets L:

$$L(\lambda; \rho) = \{x | \rho(x) > \lambda\}$$

for some threshold λ ("one-level analysis").

Next: Hierarchical version! Cluster tree: (recall who's-your-daddy operator from last time)..Want russian-dolled (nesting) buckets.. **Coming up: Segmentation**

Hierarchical Mode Analysis: Data Driven Clustering in more general, Dendrographic (tree) Context

Segmentation Motivating Example: "Intensity Climbing"

In clustering procedure,

- 1 Use **Intensity** $I(x(i,j)) = \sum_k x(i,j)_k$ instead of $\rho(x)$!
- 2) Use a spatial neighbourhood. E.g., a square one: $N^{\text{Moore}}(x_{i,j}) = \{x_{i-1,j}, x_{i+1,j}, x_{j+1,i-1}, x_{j+1,i}, x_{j+1,i+1}, x_{j-1,i-1}, x_{j-1,i}, x_{j-1,i+1}\}$ instead of (spectral) K-Nearest Neighbourhood.

Result: map out hierarchical structure of peaks in image intensity surface (N.B., color information neglected..)

Segmentation Motivating Example: "Intensity Climbing"

Sample of "hyperspectral" segmentation result for image chip. The result is 5-dimensional (only three dimensions are visualized). Data is ALOS-PALSAR (spaceborne) polarimetric imaging (Japan Space Agency) over Keg river area, BC. The five channels are the following "decomposition parameters": cloude-pottier entropy, alpha, and anisotropy; shannon entropy; radar vegetation index.

Segmentation Motivating Example: "Intensity Climbing"

Q: how to generalize?

- ▶ How to incorporate color information?
- How to incorporate geometric (neighborhood information) simultaneously?

Segmentation via Hierarchical Mode Analysis

Q: how to generalize?

- Use simultaneous color/geometry information
- ▶ Use hierarchical formulation for scalar field segmentation (with underlying geometry: neighborhood structure).

Choice of neighbourhoods as K-Nearest-Neighbourhoods (KNN).. And choice of scalar field as KNN density estimate.. This algorithm reduces to the previous case! **Benefits of new version..**

- ▶ Arbitrary geometries (e.g., non-rectangular/higher-dimensional data, e.g., 6-d-toroidally sampled hyperspectral data..). N.b., issue of geometry estimation from sensor-point-clouds not addressed here..
- Being a little bit more vague (referring to ρ as a scalar field, rather than a density estimate).. more scope of applications! E.g., temperature measurements..

Algorithm input: a set X of $N < \infty$ points $x \in \mathbb{R}^n, n \ge 1$

$$x=(x_1,x_2,\ldots,x_n)$$

, a scalar field $\rho(x): X \to \mathbb{R}$, and, a neighbourhood structure: $N_x(x \in X): X \to 2^X$.

Output: labels with tree structure (associating tree-splits with scalar-field levels $\rho(x)$)

Note: treat color/geometry together via sensible choice of $\rho(x)$...

Modes of scalar field

A regional maximum of the scalar field $\rho(x)$

 $(\rho_{i,j} = \rho_{\pi(x)} = \rho(x)$ for conventional 2-d image) we shall refer to as a **Mode**, which we will **symbolize** by M, using this:

- 1. to refer to the basin of attraction associated with M
- 2. to refer to the associated **maximum** $\sup_{x \in M} C(x) = \sup_{x \in M} C(M)$
- 3. as a label/name.

meta!

Interfaces between modes

Suppose modes M_i , M_i share an interface:

$$I_{i,j} = I_{M_i,M_j} = I_{M_j,M_i}$$

$$= (N(M_i) \cap M_j) \cup (N(M_j) \cap M_i)$$

$$= (\cup N(M_i) \cap M_j) \cup (N(M_j) \cap M_i)$$

$$= \left\{ N(x \in M_i \cup M_j) \middle| N \cap M_j \cap M_i \neq \emptyset \right\}$$

that is, the set of neighborhoods of points in modes M_i or M_j whose neighborhoods intersect with the other mode.

Interfaces define the upper Level set inclusion structure (dendrogram)

For $\lambda > \sup (\rho(I_{M_i,M_j}))$, Modes M_i,M_j are no longer associated with the same connected component of the upper-level sets:

$$\{L(\lambda; \rho(x)) = \{x | \rho(x) \ge \lambda\}.$$

That is, the connected components of the upper-level sets associated with M_i , M_i are "joined" at level:

$$\lambda = \sup \rho(\mathit{I}_{i,j})$$

but are disjoint for

$$\lambda > \sup (\rho(I_{M_i,M_i})).$$

Inclusion structure between neighboring modes

For a mode M we denote the neighboring modes (those modes that share interfaces with M) by

$$\mathbb{N}(M) = \{ M_i \big| \cup N(M_i) \cap M \neq \emptyset \}.$$

Then, for a node M,

$$S(M) = \arg\max_{M_j \in \mathbb{N}(M)} \left\{ \sup_{x \in I_{i,j}(M,M_j)} \rho(x) \right\}$$

refers to the (neighboring) component M_j which which M "joins" at level

$$\lambda_{S(M)} = \max_{M_j} \left\{ \sup_{x \in I_{i,j}(M,M_j)} \rho(x) \right\}.$$

Will refer to S(M) as the "high density neighbor mode" of M_i .

Equivalence classes of connected components of level sets

By $[M]_{\lambda}$ we denote the equivalence class of connected components of upper-level sets of $\rho(x)$ associated with M.

To illustrate.. In terms of decreasing heights λ , a node M "first" joins the same connected component as S(M). Then, supposing M and S(M) "join" the same connected component at

$$\lambda_{S(M)}$$

then

$$[M]_{\lambda_{S(M)}} \simeq_{[]_{\lambda}} [S(M)]_{\lambda_{S(M)}}.$$

Inclusion trajectory diagram for a Mode (Segmentation Hierarchy) For M there is a sequence:

$$[M]_{\lambda_1}, [M]_{\lambda_2}, \ldots, [M]_{\lambda_n}$$

where from left to right the λ_i 's are decreasing $(\lambda_i > \lambda_j)$ for (i < j), and

$$[M]_{\lambda_1} \subset [M]_{\lambda_2} \subset \ldots \subset [M]_{\lambda_n}$$

where the inclusion is proper (at each λ_i the connected component has addition(s)). Use notation

$$[M]_{\lambda_1} \rightarrow [M]_{\lambda_2} \rightarrow \ldots \rightarrow [M]_{\lambda_n}$$

to emphasize connection with (discrete time) dynamical systems (bounded (spatio-temporal) (time)moment-(space)regions "included" into something greater (future accommodates past)?

Application: Smart Flood Fill

Select seed node (M) and successively apply "who's your daddy operator" (\rightarrow) ..

Note..Before taking color information into account, white background patch got added onto ear prematurely..

Acknowledgments

► Thanks to Prof. Bruce Gooch and the University of Victoria for financial support