

Algebrai struktúrák, vektorterek

SKALÁROK. VEKTOROK. MÁTRIXOK

Wettl Ferenc

ALGEBRA TANSZÉK

Ismeretek, képességek, célok

- Test, gyűrű, vektortér felismerése
- Számolás véges testekkel
- Mátrixszorzás, lineáris leképezés
- · Vektorterek izomorfizmusa

Bevezetés

Rövidítések, jelölések

- Rövidítések: Definíció, Jelölés, Állítás, Tétel, Bizonyítás, Lemma,
 Példa, Feladat, Megoldás, megjegyzés
 L! Legyen, Amh Azt mondjuk hogy, Tfh Tegyük fel hogy
- Számhalmazok: $\mathbb R$ valós, $\mathbb N$ természetes, $\mathbb N^+$ pozitív egész, $\mathbb Q$ racionális, $\mathbb Z$ egész, $\mathbb C$ komplex, $\mathbb F_q=\mathrm{GF}(q)$ a q elemű véges test
- **D** L! *H* halmaz, H^n = a *H* elemeiből képzett rendezett elem-*n*-esek halmaza, azaz $H^n = \{(a_1, a_2, \dots, a_n) \mid a_i \in H, i = 1, 2, \dots, n\}.$
- **D** R reláció a H halmazon: a H rendezett párjai egy részhalmaza, azaz $R \subseteq H^2$.
- J ha $(a,b) \in R$, akkor a R b
- P $H = \{1,2,3\}, '<' = \{(1,2),(1,3),(2,3)\} \subset H^2,$ azaz 1 < 2, 1 < 3, 2 < 3.

Ekvivalenciareláció

- D A H halmazon értelmezett R reláció ekvivalenciareláció, ha ∀a, b, c ∈ H elemre
 - (1) a R a (reflexív),
 - (2) ha a R b, akkor b R a (szimmetrikus),
 - (3) ha a R b, b R c, akkor a R c (tranzitív).
- F Melyik ekvivalenciareláció az alábbiak közül? egyenlőség, <, párhuzamosság, ≤, évfolyamtárs, ismerős, felmenő.
- M egyenlőség, párhuzamosság, (évfolyamtárs,) a többi nem.

Ekvivalenciareláció és osztályozás

T Minden H-n értelmezett R ekvivalenciareláció megad H-n egy osztályozást, azaz H-t diszjunkt részhalmazok – ún. ekvivalenciaosztályoknak – uniójára bontja.

(ábra a wikipédiából)

Algebrai struktúrák

Algebrai struktúrák

Számok: test és gyűrű

Test – számolunk, mint a valós számokkal

D Egy legalább kételemű \mathbb{F} halmazt (jelölje e két elemet 0 és 1) testnek nevezünk, ha értelmezve van \mathbb{F} elempárjain egy összeadás és egy szorzás nevű bináris művelet, melyekre bármely $a,b,c\in\mathbb{F}$ elemekre és bármely $d\in\mathbb{F}\setminus 0$ elemre

$$a+b=b+a \qquad ab=ba \qquad \text{kommutativit\'as}$$

$$a+(b+c)=(a+b)+c \quad a(bc)=(ab)c \quad \text{asszociativit\'as}$$

$$0+a=a \qquad 1a=a \qquad \text{semleges elemek}$$

$$\exists x \in \mathbb{F}: a+x=0 \qquad \exists y \in \mathbb{F}: dy=1 \quad \text{addit\'iv/multipl. inverz}$$

$$(a+b)c=ac+bc \qquad \text{disztributivit\'as}$$

- $P \mathbb{R}, \mathbb{Q}, \mathbb{C}$
- P Véges testek: \mathbb{Z}_p (prím modulusú maradékosztályok teste, más jelölések: \mathbb{F}_p , $\mathrm{GF}(p)$), $\mathrm{GF}(q)$, ahol q prímhatvány.

Gyűrű – számolunk, mint az egészekkel

- D Ha a testnél definiált szorzás csak asszociatív, gyűrűről, ha kommutatív is, kommutatív gyűrűről, ha az asszociativitás mellett van egységeleme is, egységelemes gyűrűről beszélünk.
- P Minden test gyűrű.
- ${f P}$ ${\Bbb Z}$ egységelemes kommutatív gyűrű, ${\Bbb N}$ nem gyűrű.
- P A páros számok kommutatív gyűrűt alkotnak, de ez nem egységelemes.
- P A modulo m maradékosztályok \mathbb{Z}_m struktúrája egységelemes kommutatív gyűrű, és pontosan akkor test, ha m prím.
- **P** Az \mathbb{F} test fölötti együtthatós polinomok egységelemes kommutatív gyűrűt alkotnak, jelölés: $\mathbb{F}[x]$.

Maradékosztály-test

$$\mathbb{Z}_2 = \mathbb{F}_2 = \mathrm{GF}(2) \text{:} \begin{array}{c|cccc} + & 0 & 1 \\ \hline 0 & 0 & 1 \\ \hline 1 & 1 & 0 \end{array} \begin{array}{c|cccc} \times & 0 & 1 \\ \hline 0 & 0 & 1 \\ \hline 1 & 0 & 1 \end{array}$$

Maradékosztály-gyűrű

 \mathbb{Z}_6 gyűrű:

+	0	1	2	3	4	5		0	1	2	3	4	5
					4		0	0	0	0	0	0	0
					5		1	0	1	2	3	4	5
2	2	3	4	5	0	1	2	0	2	4	0	2	4
3	3	4	5	0	1	2	3	0	3	0	3	0	3
					2		4	0	4	2	0	4	2
5	5	0	1	2	3	4	5	0	5	4	3	2	1

M Véges testeket és gyűrűket széles körben alkalmazza a kódelmélet és a kriptográfia, a matematikán belül a kombinatorikában, a racionális test fölötti polinomok faktorizációjában, vagy épp a nagy Fermat-tétel bizonyításában.

Prímhatványrendű testek

- **m** GF(4): választunk egy \mathbb{F}_2 fölötti másodfokú irreducibilis (felbonthatatlan) polinomot, pl. $x^2 + x + 1$. Ha egy másod vagy harmadfokú polinom felbontható, akkor van elsőfokú tényezője, így van gyöke, de ennek nincs, mert 0-ban és 1-ben sem 0 az értéke.
- A GF(4) elemei 0, 1, x, x + 1 (a legföljebb elsőfokú polinomok), és a számolás köztük modulo $x^2 + x + 1$ történik:

					×				
0	0	1	Χ	x + 1	0	0	0	0	0
1	1	0	x + 1	X	1	0	1	X	x + 1
					X				
x + 1	x + 1	X	1	0	x + 1	0	x + 1	1	Χ

m $GF(2^n)$ konstrukciója hasonlóan megy egy GF(2) fölötti n-edfokú, irreducibilis polinommal.

Algebrai struktúrák

Vektortér

Szabad vektor

Ha az irányított szakasz a hal, a vektor a halraj.

D *R*: két irányított szakasz ekvivalens, ha egyik a másikba "tolható". Ekkor a vektorok az ekvivalenciaosztályok.

Origó

- A közös kezdőpont

- A pontok és a vektorok közt kölcsönösen egyértelmű megfeleltetés: egy *P* pontnak az \overrightarrow{OP} vektor felel meg, az origónak a nullvektor.
- Tehát az $(x_1, x_2, ..., x_n)$ egy pontot és egy vektort is jelölhet.

Vektortér absztrakt fogalma

D Vektortér

A $\mathcal V$ halmazt $\mathbb F$ fölötti vektortérnek nevezzük (jel.: $\mathcal V_{\mathbb F}$), ha tartalmaz egy $\mathbf 0$ -val jelölt elemet, és értelmezve van rajta egy összeadás és egy skalárral szorzás művelet, melyekre tetszőleges $\mathbf u, \mathbf v, \mathbf w \in \mathcal V$ és $c, d \in \mathbb F$ esetén

	<u> </u>	
(A1)	u + v = v + u	az <mark>összeadás</mark> kommutatív
(A2)	(u+v)+w=u+(v+w)	az összeadás asszociatív
(A3)	u + 0 = u	az összeadás nulleleme
(M1)	$(cd)\mathbf{u} = c(d\mathbf{u})$	a két <mark>szorzás</mark> kompatibilis
(M2)	1u = u	a test egységelemével
(M3)	0u = 0	a test nullelemével
(D1)	c(u + v) = cu + cv	disztributív
(D2)	$(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$	disztributív.

Vektortér tulajdonságai

- **m** Összeadáson egy $\mathcal{V} \times \mathcal{V} \to \mathcal{V}$; $(\mathbf{u}, \mathbf{v}) \mapsto \mathbf{u} + \mathbf{v}$, míg skalárral való szorzáson egy $\mathbb{F} \times \mathcal{V} \to \mathcal{V}$; $(c, \mathbf{u}) \mapsto c\mathbf{u}$ leképezést értünk.
- m (A2) \leadsto többtagú összeget nem kell zárójelezni \leadsto az $\mathbf{u} + \mathbf{v} + \mathbf{w}$ jelölés egyértelmű.
- $\acute{\mathbf{A}}$ (M3) kicserélhető a következő tulajsonsággal (A4) $\forall \mathbf{u} \in \mathcal{V} \; \exists \mathbf{v} \in \mathcal{V} : \; \mathbf{u} + \mathbf{v} = \mathbf{0}$ additív inverz létezése (J: $-\mathbf{u}$)
- B (M3) \Rightarrow (A4): tetszőleges u-ra $\mathbf{0} = 0$ u = (1-1)u = u + v, ahol $\mathbf{v} = (-1)$ u.
 - $(A4) \Rightarrow (M3): 0u = (0+0)u = 0u + 0u \rightsquigarrow$
 - 0 = 0u + v = (0u + 0u) + v = 0u + (0u + v) = 0u + 0 = 0u.
- **m** A vektortér definíciójára (A1)–(A4), (M1)–(M2), (D1)–(D2) is használható (ált. így szokták).

Példák vektorterekre

- $\dot{\mathsf{A}} \quad \mathcal{V} = \{\mathbf{0}\}$ bármely test fölött vektortér. Ezt nevezzük zérustérnek.
- P \mathbb{F}^n vektortér \mathbb{F} fölött a szokásos vektorműveletekkel. Speciálisan \mathbb{F}^1 (azaz maga \mathbb{F}) is \mathbb{F} fölötti vektortér.
- P az \mathbb{F} fölötti $m \times n$ -es mátrixok $\mathbb{F}^{m \times n}$ tere, a polinomok $\mathbb{F}[x]$ tere, $\mathbb{F}[x]_n = \{f \in \mathbb{F}[x] \mid \deg f \leqslant n\}$, $\mathbb{F}[[x]] = \{\sum_{n=0}^{\infty} a_n x^n\}$ a formális hatványsorok
- P $\mathcal{C}^0_{\mathbb{R}}$, és $\mathcal{C}^1_{\mathbb{R}}$ az \mathbb{R} -en folytonos, illetve folytonosan diffható fv-ek
- $P \quad \mathbb{R}^{\mathbb{N}}$, a végtelen valós sorozatok
- \mathbf{P} \mathbb{R}^{∞} : azon $\mathbb{R}^{\mathbb{N}}$ -beliek, ahol véges sok elemet kivéve \forall elem 0
- T Függvényterek L! $X \neq \emptyset$ tetszőleges halmaz, \mathbb{F} test, \mathcal{V} egy \mathbb{F} fölötti vektortér, $\mathbb{F}^X := \{X \to \mathbb{F} \mid \text{függvények}\}$, $\mathcal{V}^X := \{X \to \mathcal{V} \mid \text{függvények}\}$. \mathbb{F}^X és \mathcal{V}^X vektortér \mathbb{F} fölött a szokásos műveletekkel: (f+g)(x) = f(x) + g(x), (cf)(x) = cf(x) minden $x \in X$ -re, ahol a zérusfüggvény a nullelem.

Altér

- D $\mathcal{U} \subseteq \mathcal{V}$ altere \mathcal{V} -nek, ha nem üres és zárt a vektorösszeadás és skalárral szorzásra nézve. Jelölés: $\mathcal{U} \leqslant \mathcal{V}$.
- $\acute{\mathbf{A}}$ Minden altérnek eleme a nullvektor és ha $\mathbf{v} \in \mathcal{V}$, akkor $-\mathbf{v} \in \mathcal{V}$.
- P A zérustér és \mathcal{V} is alterek: $\{0\} \leqslant \mathcal{V}$, $\mathcal{V} \leqslant \mathcal{V}$.
- \mathbf{P} \mathbb{R}^3 alterei: zérustér, origón átmenő egyenes/sík vektorai, \mathbb{R}^3
- $\hat{\mathbf{A}} \quad \mathbb{F}[x]_n \leqslant \mathbb{F}[x] \leqslant \mathbb{F}[[x]], \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\} \leqslant \mathbb{R}_{\mathbb{Q}}, \mathcal{C}_{\mathbb{R}}^1 \leqslant \mathcal{C}_{\mathbb{R}}^0)$

Levéldiagram

- $\acute{\mathbf{A}}$ Altér altere altér, azaz ha $\mathcal{U}\leqslant\mathcal{V}$, és $\mathcal{W}\leqslant\mathcal{U}$, akkor $\mathcal{W}\leqslant\mathcal{V}$.
- $\acute{\mathbf{A}}$ Alterek metszete altér: $\mathcal{U} \cap \mathcal{V} = \mathcal{W}$.
- Á Két altér uniója pontosan akkor altér, ha egyikük altere a másiknak

Mátrixok, lineáris leképezések

Táblázatok szorzata

P Az alábbi két táblázat azt mutatja, hogy az A és B városokból hány különböző autópálya vezet közvetlenül a C és D városokba, illetve a C és D városokból az X, Y és Z városokba.

	C	D		X	Υ	Z
Α	2	1	С	1	0	2
В	3	0	D	3	3	1

	X	Υ	Z
С	1	0	2
D	3	3	1

Mátrixszorzás

Lineáris helyettesítések kompozíciója

P Írjuk fel a következő két lineáris helyettesítés egymás után való elvégzésével, azaz kompozíciójával kapott lineáris helyettesítés egyenleteit!

$$a = 2c + d$$
 $c = x + 2z$
 $b = 3c$ $d = 3x + 3y + z$

M A következőt kapjuk:

$$a = 5x + 3y + 5z$$

 $b = 3x + 6z$ táblázatosítva:

	С	d		X	У	Ζ
а	2	1	а	5	3	5
b	2	0	b	3	3 0	6

 x
 y
 z

 c
 1
 0
 2

 d
 3
 3
 1

Mátrix és vektor szorzata

m Az föntiek így is írhatók:

$$\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} c \\ d \end{bmatrix}, \quad \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} 1 & 0 & 2 \\ 3 & 3 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \longrightarrow$$

$$\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 3 & 3 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 5 & 3 & 5 \\ 3 & 0 & 6 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

- Á L! $A \in \mathbb{F}^{m \times n}$, ekkor az $A : \mathbb{F}^n \to \mathbb{F}^m$; $\mathbf{x} \mapsto A\mathbf{x}$ mátrixleképezés a következő két tulajdonsággal rendelkezik:
 - $\forall \mathbf{x} \in \mathbb{F}^n, \ c \in \mathbb{F} : A(c\mathbf{x}) = cA(\mathbf{x}) \text{ (homogén)}$
 - $\forall x, y \in \mathbb{F}^n : A(x + y) = A(x) + A(y)$ (additív)

Lineáris leképezések

Lineáris leképezés

D Legyen \mathcal{V} és \mathcal{W} két \mathbb{F} test fölötti vektortér. Azt mondjuk, hogy egy $A:\mathcal{V}\to\mathcal{W}$ leképezés lineáris, ha homogén és additív, azaz ha tetszőleges $\mathbf{x},\mathbf{y}\in\mathcal{V}$ elemre és $c\in\mathbb{F}$ skalárra

$$A(c\mathbf{x}) = cA\mathbf{x}$$
 (A homogén,)
 $A(\mathbf{x} + \mathbf{y}) = A\mathbf{x} + A\mathbf{y}$ (A additív.)

A $\mathcal{V} \to \mathcal{V}$ lineáris leképezést lineáris transzformációnak is nevezzük.

- P A síkbeli vektorok egy O pont körüli forgatása, egy egyenesre való tükrözése és merőleges vetítése lineáris leképezés.
- **P** A $D: f \mapsto f'$ és az $I: f \mapsto \int_a^b f$ leképezések lineáris leképezések.
- P Tetszőleges $\mathbf{A} \in \mathbb{F}^{m \times n}$ mátrixra az $A : \mathbb{F}^n \to \mathbb{F}^m; \mathbf{x} \mapsto \mathbf{A}\mathbf{x}$ mátrixleképezés lineáris leképezés.

További példák

- D Négyzetes mátrix nyomán főátlójában lévő elemeinek összegét értjük. jelölés: trace(A).
- \mathbf{A} A nyom $\mathbb{F}^{n \times n} \to \mathbb{F}$ lineáris leképezés, mert
 - 1. $\operatorname{trace}(cA) = c \operatorname{trace} A$
 - 2. trace(A + B) = trace A + trace B
- Á A determináns minden sorában (a többi sor rögzítése mellett) lineáris leképezés, mert minden sorában homogén és additív. Egy n × n-es determináns, mint sorvektorainak n-változós függvénye, minden változójában lineáris, az ilyen függvényt nevezzük multilineárisnak.

Lineáris leképezés ekvivalens definíciói

- Á Egy tetszőleges $A:\mathcal{V}_{\mathbb{F}}\to\mathcal{W}_{\mathbb{F}}$ leképezésre az alábbi állítások ekvivalensek:
 - 1. A lineáris, azaz homogén és additív.
 - 2. Tetszőleges $\mathbf{x},\mathbf{y}\in\mathcal{V}_{\mathbb{F}}$ és $c,d\in\mathbb{F}$ esetén

$$A(c\mathbf{x} + d\mathbf{y}) = cA(\mathbf{x}) + dA(\mathbf{y})$$

3. Tetszőleges $\mathbf{x},\mathbf{y}\in\mathcal{V}_{\mathbb{F}}$ és $c\in\mathbb{F}$ esetén

$$A(c\mathbf{x} + \mathbf{y}) = cA(\mathbf{x}) + A(\mathbf{y})$$

4. "Megőrzi" a lineáris kombinációt, azaz tetszőleges $\mathbf{x}_1,\ldots,\mathbf{x}_k\in\mathcal{V}_{\mathbb{F}}$ vektorokra és $c_1,c_2,\ldots,c_k\in\mathbb{F}$ skalárra

$$A(c_1\mathbf{x}_1+\cdots+c_k\mathbf{x}_k)=c_1A\mathbf{x}_1+\cdots+c_kA\mathbf{x}_k.$$

A lineáris $\mathbb{F}^n o \mathbb{F}^m$ leképezések mátrixleképezések

- T Egy $A: \mathbb{F}^n \to \mathbb{F}^m$ függvény pontosan akkor lineáris leképezés, ha létezik egy olyan $m \times n$ -es **A** mátrix, hogy az $A = az \times Ax$ mátrixleképezéssel. Ekkor $A = [Ae_1|Ae_2|\dots|Ae_n]$, ahol $A = [Ae_1|Ae_2|\dots|Ae_n]$
- B (A mátrixleképezés \Rightarrow A lineáris) $A : x \mapsto Ax \rightsquigarrow$ A(cx + y) = A(cx + y) = cAx + Ay = cA(x) + A(y)(A mátrixleképezés \Leftarrow A lineáris) $Ax = A(x_1e_1 + x_2e_2 + ... + x_ne_n)$ $= x_1Ae_1 + x_2Ae_2 + ... + x_nAe_n$

$$= \begin{bmatrix} Ae_1 & Ae_2 & \dots & Ae_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

26

Forgatás

$$\hat{\mathbf{A}}$$
 Forgatás 2D-ben: $\begin{bmatrix} A\mathbf{i} & A\mathbf{j} \end{bmatrix} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$

Á Forgatás tengely körül 3D-ben:

$$\begin{bmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix}, \begin{bmatrix} \cos \alpha & 0 & \sin \alpha \\ 0 & 1 & 0 \\ -\sin \alpha & 0 & \cos \alpha \end{bmatrix}.$$

Kvaterniók*

Sir William Rowan Hamilton 1843 október 16. Kvaterniók: a+bi+cj+dk alakú számok, ahol $a,b,c,d\in\mathbb{R},\ i,j,k$ olyan "imaginárius" számok, melyekre $i^2=j^2=k^2=ijk=-1,\ ij=k,$ $ji=-k,\ jk=i,...$, összeadás "koordinátánként", szorzás az előző szabályok szerint: az $\mathbf{u}=u_1i+u_2j+u_3k, \mathbf{v}=v_1i+v_2j+v_3k$ jelöléssel $(a+\mathbf{u})(b+\mathbf{v})=ab-\mathbf{u}\cdot\mathbf{v}+a\mathbf{v}+b\mathbf{u}+\mathbf{u}\times\mathbf{v}.$

Here as he walked by on the 16th of October 1843 Sir William Rowan Hamilton in a flash of genius discovered the fundamental formula for quaternion multiplication $i^2=j^2=k^2=ijk=-1$ & cut it on a stone of this bridge.

T Forgatás kvaterniókkal: $\mathbf{q} = \cos\frac{\alpha}{2} + (e_1i + e_2j + e_3k)\sin\frac{\alpha}{2}$ a forgatást jellemző kvaternió, a (v_1, v_2, v_3) -hoz tartozó kvaternió $\mathbf{v} = v_1i + v_2j + v_3k$. Az elforgatott: $\mathbf{q}\mathbf{v}\mathbf{q}^{-1}$, ahol $\mathbf{q}^{-1} = \cos\frac{\alpha}{2} - (e_1i + e_2j + e_3k)\sin\frac{\alpha}{2}$

Tükrözés

T A sík vektorait az x-tengellyel $\alpha/2$ szöget bezáró egyenesre tükröző lineáris leképezés mátrixa

$$\begin{bmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha \end{bmatrix}.$$

Mátrixleképezés és lineáris leképezés különbségei

- **m** Lineáris leképezésekről olyan esetben is beszélhetünk, amikor a leképezésnek nincs mátrixa (pl. végtelen dimenziós vektorterek esetén).
- **m** Különbség van a lineáris leképezés és a mátrixleképezés közt $\mathbb{F}^n \to \mathbb{F}^m$ függvények esetén is:
- A lineáris leképezés független a bázistól, az csak maga a függvény, mely megadja, hogy melyik vektornak melyik vektor a képe.
- **m** A mátrixleképezés mindig valamely bázisra vonatkozik. Egy lineáris leképezéshez minden bázisban tartozik egy mátrixleképezés, melynek mátrixa függ a bázistól.
- **m** A lineáris $\mathbb{F} \to \mathbb{F}$ leképezések azonosak az $x \mapsto cx$ függvényekkel, ahol $c \in \mathbb{F}$ konstans (NEM az $x \mapsto cx + b$ függvények!!!).

A mátrixleképezés szemléltetése négyzetráccsal

$$A = \begin{bmatrix} \frac{5}{4} & \frac{3}{4} \\ \frac{3}{4} & \frac{5}{4} \end{bmatrix}, B = \begin{bmatrix} \frac{3}{4} & \frac{5}{4} \\ \frac{5}{4} & \frac{3}{4} \end{bmatrix}, C = \begin{bmatrix} -\frac{5}{4} & \frac{3}{4} \\ -\frac{3}{4} & \frac{5}{4} \end{bmatrix}, D = \begin{bmatrix} -\frac{3}{4} & \frac{5}{4} \\ -\frac{5}{4} & \frac{3}{4} \end{bmatrix}$$

A mátrixleképezés szemléltetése egységkör-ábrával

Képtér, magtér, altér képe

- D L! $A: \mathcal{V} \to \mathcal{W}$ lineáris leképezés. Az A értékkészlete altér \mathcal{W} -ben, amit az A képterének nevezünk, jele $\mathrm{Im}(A)$. $\mathrm{Im}(A) \leqslant \mathcal{W}$.
- D Azok az $\mathbf{x} \in \mathcal{V}$ vektorok, melyekre $A\mathbf{x} = \mathbf{0}$ alteret alkotnak, amit az A magterének (kernel) nevezünk, jele $\mathrm{Ker}(A)$. $\mathrm{Ker}(A) \leqslant \mathcal{V}$.
- D Egy altér eltoltjait affin altereknek nevezzük.
 Tehát ha V ≤ W és u ∈ W, akkor V + u = {v + u | v ∈ V} affin altér. (u ∈ V esetén V + u = V, tehát az altér is affin altér, de ha egy affin altérnek nem eleme a nullvektor, akkor az nem altér.)
- Á Lineáris leképezés alteret altérbe, affin alteret affin altérbe visz.

A lineáris leképezés szemléltetése levéldiagrammal

Lineáris leképezések

Izomorfizmus

Az izomorfizmus fogalma

- Két algebrai struktúra izomorf, ha elemeik közt van egy művelettartó bijekció.
- Például az egyműveletes $\langle \mathbb{Z}_6, + \rangle$ izomorf $\langle \mathbb{Z}_2 \times \mathbb{Z}_3, + \rangle$ struktúrával, ahol a bijekció $(0,0) \leftrightarrow 0$, $(1,1) \leftrightarrow 1$, $(0,2) \leftrightarrow 2$, $(1,0) \leftrightarrow 3$, $(0,1) \leftrightarrow 4$, $(1,2) \leftrightarrow 5$, azaz általában $(a,b) \leftrightarrow (3a+4b) \mod 6$.
- D Két vektortér izomorf, ha létezik köztük egy bijektív lineáris leképezés. E leképezés neve izomorfizmus.
- $\mathsf{J} \quad \mathcal{V} \simeq \mathcal{W}$

Az izomorfizmus tulajdonságai

- T Két izomorfizmus kompozíciója és egy izomorfizmus inverze is izomorfizmus.
- T Véges dimenziós terek jellemzése

Ha az $\mathbb F$ test fölötti $\mathcal V$ vektortérnek van n-elemű bázisa, akkor $\mathcal V\simeq\mathbb F^n$.

- P $\mathcal{P}_1 = \{ax + b \mid a, b \in \mathbb{R}\}$ a legföljebb elsőfokú polinomok tere, akkor $\mathcal{P}_1 \simeq \mathbb{R}^2$.
- P Komplex számsík: $\mathbb{R}^2 \simeq \mathbb{C}_{\mathbb{R}}$ $(\mathbb{C}_{\mathbb{R}} = \{a + bi \mid a, b \in \mathbb{R})$