Universitatea Babeș-Bolyai, Facultatea de Matematică și Informatică Analiză reală – Curs

Matematică, Matematică și Informatică, anul universitar: 2021/2022

Curs 6

Funcții măsurabile

Reamintim că am adoptat convenția $0 \cdot (\pm \infty) = (\pm \infty) \cdot 0 = 0$. Presupunem în continuare că mulțimea X este nevidă.

Definiția 1. Fie (X, \mathcal{A}) un spațiu măsurabil. Spunem că funcția $f: X \to \overline{\mathbb{R}}$ este \mathcal{A} -măsurabilă dacă

$$f^{-1}(\{-\infty\}) \in \mathcal{A}, \quad f^{-1}(\{\infty\}) \in \mathcal{A} \quad \text{si} \quad \forall B \in \mathcal{B}(\mathbb{R}), \quad f^{-1}(B) \in \mathcal{A}.$$
 (1)

Dacă σ -algebra \mathcal{A} este subînțeleasă, atunci spunem simplu că f este măsurabilă.

Observația 1. (i) Dacă $f: X \to \mathbb{R}$, atunci f este A-măsurabilă dacă și numai dacă

$$\forall B \in \mathcal{B}(\mathbb{R}), \quad f^{-1}(B) \in \mathcal{A}.$$

(ii) Condiția (1) este echivalentă cu

$$\forall B \in \mathcal{B}(\overline{\mathbb{R}}), \quad f^{-1}(B) \in \mathcal{A},$$

unde $\mathcal{B}(\overline{\mathbb{R}})$ este σ -algebra generată de familia mulțimilor deschise din $\overline{\mathbb{R}}$. O mulțime $G \subseteq \overline{\mathbb{R}}$ este deschisă dacă $G \in \mathcal{V}(x)$ pentru orice $x \in G$.

Propoziția 1. Fie (X, A) un spațiu măsurabil și $f: X \to \overline{\mathbb{R}}$. Următoarele afirmații sunt echivalente:

- (i) f este A-măsurabilă;
- (ii) $\forall c \in \mathbb{R}, \{x \in X : f(x) < c\} \in \mathcal{A};$
- (iii) $\forall c \in \mathbb{R}, \{x \in X : f(x) \ge c\} \in \mathcal{A};$
- (iv) $\forall c \in \mathbb{R}, \{x \in X : f(x) > c\} \in \mathcal{A};$
- (v) $\forall c \in \mathbb{R}, \{x \in X : f(x) \le c\} \in \mathcal{A}.$

Exemplul 1. Fie (X, \mathcal{A}) un spațiu măsurabil și $f: X \to \overline{\mathbb{R}}$ constantă. Atunci f este \mathcal{A} -măsurabilă.

Definiția 2. Fie X o mulțime și $A \subseteq X$. Funcția caracteristică a lui A este $\chi_A : X \to \{0,1\}$,

$$\chi_A(x) = \begin{cases} 1 & \text{dacă } x \in A \\ 0 & \text{dacă } x \notin A. \end{cases}$$

Se observă că $\chi_{\emptyset}=0, \chi_X=1, \chi_{\complement(A)}=1-\chi_A, \chi_{A\cap B}=\chi_A\cdot\chi_B,$ pentru orice $A,B\subseteq X.$

Exemplul 2. Fie (X, \mathcal{A}) un spaţiu măsurabil şi $A \subseteq X$. Atunci χ_A este \mathcal{A} -măsurabilă dacă şi numai dacă $A \in \mathcal{A}$.

Definiția 3. Fie (X, \mathcal{A}) un spațiu măsurabil și $Y \subseteq X$. Atunci $\mathcal{A}_Y = \{Y \cap A : A \in \mathcal{A}\}$ se numește σ -algebra indusă de \mathcal{A} pe Y.

Astfel, (Y, \mathcal{A}_Y) este un spațiu măsurabil.

Observația 2. Fie (X, \mathcal{A}) un spațiu măsurabil și $Y \subseteq X$. Atunci:

- (i) dacă $Z \subseteq Y$ cu $Z \in \mathcal{A}$, atunci $Z \in \mathcal{A}_Y$;
- (ii) dacă $Y \in \mathcal{A}$, atunci $\mathcal{A}_Y \subseteq \mathcal{A}$.

Definiția 4. Dacă $Y \subseteq \mathbb{R}^m$, o funcție $f: Y \to \overline{\mathbb{R}}$ care este $\mathcal{B}(\mathbb{R}^m)_Y$ -măsurabilă (resp. $\mathcal{L}(\mathbb{R}^m)_Y$ -măsurabilă) se numește *măsurabilă Borel* (resp. *măsurabilă Lebesgue*).

Observația 3. Orice funcție măsurabilă Borel este măsurabilă Lebesgue (deoarece $\mathcal{B}(\mathbb{R}^m)_Y \subseteq \mathcal{L}(\mathbb{R}^m)_Y$).

Exemplul 3. Fie $I\subseteq\mathbb{R}$ interval și $f:I\to\mathbb{R}$ monotonă. Atunci f este măsurabilă Borel.