

Выпускная квалификационная работа

Выполнил: Лисяной А. Е. Руководитель: д.ф.-м.н., проф. Рязанов В. В.

Факультет Вычислительной Математики и Кибернетики Кафедра Математических Методов Прогнозирования МГУ имени М.В. Ломоносова

28 мая 2015

Задачи выпускной квалификационной работы

- Разработка метода кластеризации логических закономерностей
- Построение множеств логических закономерностей небольшой мощности
- Сравнение с существующими методами на прикладных задачах

Задача классификации

Определение задачи классификации

$$X\in\mathbb{R}^D$$
 — пространство объектов $Y=\{1,\dots,M\}$ — конечное множество имен классов $X^l=(x_i,y_i)_{i=1}^l$ — обучающая выборка

Построить $a\colon X o Y$, аппроксимирующий $y^*(x_i)=y_i$ на X.

Алгоритмы решения задачи классификации

- Метод логистической регрессии
- Метод опорных векторов
- Решающие деревья
- Нейронные сети
- Логические алгоритмы классификации

Методы поиска логических закономерностей

Определение логической закономерности

Пусть каждый объект выборки $x \in X^l$ имеет размерность D и пусть $\Omega \subseteq \{1,2,\ldots,D\}$. Предикат

$$\varphi(x) = P^{\Omega, \mathbf{c_1}, \mathbf{c_2}}(x) = \bigwedge_{j \in \Omega} P^{c_1^j, c_2^j}(f_j(x))$$

называется логической закономерностью класса K, если:

- $\exists x \in K \colon \varphi(x) = 1$
- $2 \forall x \notin K \colon \varphi(x) = 0$
- $oldsymbol{\circ}$ $\varphi(x)$ максимизирует некоторый критерий качества $\Phi.$

Кластеризация множества логических закономерностей

Построенное множество логических закономерностей:

- может содержать большое количество правил
- может содержать похожие правила

Это приводит к тому, что:

- логические закономерности сложно интерпретировать
- по похожим правилам плохо проводить классификацию

Задача кластеризации множества логических закономерностей

- По исходному множеству логических закономерностей построить множество меньшей мощности, тем самым упростив задачу интерпретации полученных правил.
- Построенное множество должно иметь качество классификации, сравнимое с исходным множеством.

Кластеризация множества логических закономерностей

Алгоритм:

- f 0 Для каждого из t правил составить признаковое описание
 - Вектор левых и правых границ
 - Бинаризованное описание правил
- ② Кластеризовать на $k \leq t$ кластеров, найти их центры

$$oldsymbol{S}^* = rg \min_{oldsymbol{S}} \sum_{i=1}^k \sum_{oldsymbol{z}_j \in S_i} \|oldsymbol{z}_j - oldsymbol{\mu}_i\|^2$$

- lacktriangled По центрам кластеров построить k новых правил
 - Выбрать центры кластеров в качестве новых правил
 - ullet Центры кластеров + критерий качества o новые правила

Эксперименты и сравнение на прикладных задачах

Выборка «Ирисы Фишера». Метод простого голосования.

Эксперименты и сравнение на прикладных задачах

Выборка «Вино». Метод простого голосования.

Список результатов

- Создан метод обработки множеств логических закономерностей с помощью кластеризации на основе дисперсионного критерия.
- Проведено сравнение метода обработки, использующего вектор левых и правых границ, и метода обработки, использующего бинаризованное описание логических закономерностей.
- Экспериментально показано, что удается получить обработанное множество логических закономерностей с меньшим числом правил и сравнимым с исходным множеством качеством классификации.

Критерии качества логических закономерностей

Критерий Stat

$$p_1,\dots,p_K$$
 — верно выделяемые объекты P_1,\dots,P_K — выделяемые объекты
$$\mathsf{Stat} = -\ln \frac{C_{P_1}^{p_1}\dots C_{P_K}^{p_K}}{C_l^{p_1+\dots+p_K}}$$

Критерий IGain