

PHYSICS Chapter 6

DINÁMICA CIRCUNFERENCIAL

¿Qué fuerza provoca este movimiento?

DINÁMICA CIRCUNFERENCIAL

Es el estudio de la causa del movimiento circunferencial de un cuerpo.

Ejemplo.

DINÁMICA CIRCUNFERENCIAL

- I. Es la causante del continuo cambio en la dirección de la velocidad del cuerpo.
- II. Su dirección es siempre a lo largo del radio de la circunferencia que se describe y hacia el centro de dicha circunferencia.

III. Su módulo se obtiene con:

$$F_{cp} = ma_{cp}$$

Aceleración centrípeta

$$a_{\rm cp} = \frac{v^2}{R} = \omega^2 R$$

$$\mathbf{F}_{cp} = \frac{mv^2}{\mathbf{R}} = m\omega^2 \mathbf{R}$$

 $.a_{cp}$: aceleración centrípeta(m/s²)

.m:masa(kg)

.v : rapidez (m/s)

.w : rapidez angular (Rad/s)

: radio de la circulo (m)

Para la esfera que describe el movimiento circunferencial mostrado, determine el módulo de la fuerza centrípeta en A.

RESOLUCIÓN

Como la fuerza centrípeta es la resultante de las fuerzas radiales y del grafico del ejercicio:

$$F_{(CP)} = \sum F_{HACIA\ EL\ CENTRO} - \sum F_{CENTIDO\ CONTRARIO}$$

$$F_{Cp} = 100 \text{ N} - 40 \text{ N}$$

$$F_{Cp} = 60 \text{ N}$$

$$\therefore \mathbf{F_{Cp}} = \mathbf{60} \mathbf{N}$$

Para la esfera que describe el movimiento mostrado, determine el módulo de la fuerza centrípeta en A.

RESOLUCIÓN

Como la fuerza centrípeta es la resultante de las fuerzas radiales y del grafico del ejercicio:

$$F_{(CP)} = \sum F_{HACIA\ EL\ CENTRO} - \sum F_{CENTIDO\ CONTRARIO}$$

$$F_{Cp} = 50 N + 20 N$$

$$F_{Cp} = 70 \text{ N}$$

$$: F_{Cp} = 70 \text{ N}$$

Una esfera, unida a una cuerda, gira en un plano vertical. Determine el módulo de la aceleración centrípeta en la posición indicada. (m = 5 kg, g= 10 m/s^2)

Realizamos el DCL de la esfera

Usando:

$$F_{Cp} = m a_{Cp}$$

$$50 \text{ N} + 10 \text{ N} = (5 \text{ kg}) a_{Cp}$$

$$60 \text{ N} = (5 \text{ kg}) \text{ a}_{Cp}$$

$$a_{Cp} = 12 \text{ m/s}^2$$

Una esfera gira alrededor del punto O con una rapidez lineal de <u>10 m/s</u>. Si el radio de su trayectoria es <u>4 m</u>, determine el módulo de su aceleración centrípeta.

Usando:

$$a_{Cp} = \frac{V^2}{R}$$

$$a_{\rm Cp} = \frac{(10\frac{\rm m}{\rm s})^2}{4\rm m}$$

$$a_{\rm Cp} = \frac{100 \, \frac{m^2}{s^2}}{4m}$$

$$a_{Cp} = 25 \text{ m/s}2$$

Un cuerpo de masa m = 2 kgdescribe una circunferencia en un plano vertical de radio R = 1 m. Determine el módulo de la tensión en la cuerda, cuando pasa por el punto más bajo de su trayectoria con 6 m/s. (g = 10)m/s2)

2da ley de Newton al movimiento circunferencial

$$F_{cp} = \frac{mv^2}{R} \dots \alpha$$

En el eje radial

$$F_{cp} = T - 20N$$

$$\mathsf{T} - 2\mathsf{ON} = \frac{2kg\left(\frac{6m}{s}\right)^2}{1m}$$

$$T - 20N = 72N$$

$$T = 92N$$

Del gráfico; la esfera es de 5 kg, la longitud de la cuerda es de 5 m y el módulo de la velocidad en A es de 10 m/s. Determine la tensión en la cuerda. (g = 10 m/s2)

2da ley de Newton al movimiento circunferencial

$$F_{cp} = \frac{mv^2}{R} \dots \alpha$$

En el eje radial

$$F_{cp} = T + 50N$$

$$T + 50N = \frac{5kg\left(\frac{10m}{s}\right)^2}{5m}$$

$$T - 50N = 100N$$

$$T = 150N$$

Determine el módulo de la tensión en la cuerda de 2 m de longitud en la posición mostrada. La esfera es de 3 kg.

2da ley de Newton al movimiento circunferencial

$$F_{cp} = \frac{mv^2}{R} \dots \alpha$$

En el eje radial

$$F_{cp} = T$$

$$\mathsf{T} = \frac{3kg\left(\frac{10m}{s}\right)^2}{2m}$$

$$\mathsf{T} = \frac{3kg100\left(\frac{m}{s}\right)^2}{2m}$$

$$T = 150N$$

En un juego mecánico llamado la montaña rusa se desea que en la parte más alta de un rizo circular de 16,9 m de radio las personas experimenten una aceleración centrípeta igual a la aceleración de la gravedad. ¿Cuál debe ser el módulo de la velocidad del carrito para tal efecto? (g = 10) m/s^2)

ACELERACIÓN CENTRIPETA

RESOLUCIÓN

 $a_{cp} = \frac{v^2}{R}$

RAPIDEZ

RADIO

DATOS:

g = 10 m/s² =
$$\frac{v^2}{16,9m}$$

R = 16,9 m

$$a_{cp} = g$$
 $V^2 = 169 (m/s)^2$

V = 13 m/s

Se agradece su colaboración y participación durante el tiempo de la clase.

