Math 5051 : Real Analysis I

Mid-term Exam 1 03 October 2016

Instructions: Answer all of the problems.

1. Let X be a metric space with metric ρ . For any nonempty set $E \subset X$ define:

$$\rho_E(x) = \inf\{\rho(x, y) : y \in E\}.$$

Prove that ρ_E is a uniformly continuous function on X.

2. Let f be a continuous function on interval [a, b], and ϕ a monotone increasing function on [a, b]. Given partition $\Gamma = \{a = x_0 < \cdots < x_n = b\}$, define

$$U_{\Gamma} = \sum_{m=1}^{n} \sup_{x_{m-1} \le x \le x_m} f(x) \{ \phi(x_m) - \phi(x_{m-1}) \} \ L_{\Gamma} = \sum_{m=1}^{n} \inf_{x_{m-1} \le x \le x_m} f(x) \{ \phi(x_m) - \phi(x_{m-1}) \} .$$

Show that $\lim_{|\Gamma|\to 0} U_{\Gamma} - L_{\Gamma} = 0$.

- 3. Suppose that E is a measurable subset of \mathbb{R}^d :
 - (a) Prove that for any ϵ there exists a closed set F and an open set G such that $F \subset E \subset G$ and $|G \setminus F| < \epsilon$.
 - (b) Prove that there exists a F_{σ} set F and a G_{δ} set G such that $F \subset E \subset G$ and $|G \setminus F| = 0$.
- 4. Suppose that $\mathbb{R}^n = A \cup B$ with A and B measurable sets. Prove that f is measurable on \mathbb{R}^n if and only if f is measurable on A and B.
- 5. A family of measurable functions $\{f_n\}$ is said to converge almost uniformly to f on a measurable set E with $|E| < \infty$ if for every $\epsilon > 0$ there exists a R with $R \subset E$ and $|R| < \epsilon$ and $f_n \to f$ uniformly on $E \setminus R$. Show that if $\{f_n\}$ converges to f almost uniformly then $f_n \to f$ almost everywhere and $f_n \stackrel{m}{\to} f$.
- 6. Suppose that $\{f_n\}$ is a sequence of non-negative measurable functions on \mathbb{R}^d , $f_n \to f$ pointwise, and $\int_{\mathbb{R}^d} f dx = \lim_{n \to \infty} \int_{\mathbb{R}^d} f_n dx < \infty$. Prove that for every measurable set $E \subset \mathbb{R}^d$ that $\int_E f dx = \lim_{n \to \infty} \int_E f_n dx$.
- 7. Suppose $f : \mathbb{R}^d \to [0, \infty)$, that $\int_{\mathbb{R}^d} f(x) dx = c$ with $0 < c < \infty$ and α is a positive contant. Prove that:

$$\lim_{n \to \infty} \int_{\mathbb{R}^d} n \log \left(1 + \left(\frac{f(x)}{n} \right)^{\alpha} \right) dx = \begin{cases} \infty & \text{if } 0 < \alpha < 1 \\ c & \text{if } \alpha = 1 \\ 0 & \text{if } 1 < \alpha < \infty. \end{cases}$$

8. Let f be measurable, nonnegative, and finite almost everywhere in a set E. Prove that for any nonnegative constant c

$$\int_{E} e^{cf(x)} dx = |E| + c \int_{0}^{\infty} e^{c\lambda} \omega_{f}(\lambda) d\lambda.$$

Deduce that $e^{cf} \in L(E)$ if $|E| < \infty$ and there exists constants C_1 and c_1 such that $c_1 > c$ and $\omega_f(\lambda) \le C_1 e^{-c_1 \lambda}$ for all $\lambda > 0$. Here $\omega_f(\lambda)$ is the distribution function associated to f.