有等等

作业集

(上册)

姓 名_____

学 号_____

班 级_____

第1章 函数与极限

函数 1.2

- 1. 下列各对函数中相同的有(
- (A) $f(x) = \lg x^2$, $g(x) = 2\lg x$. (B) f(x) = x, $g(x) = \sqrt{x^2}$.
- (C) $f(x) = \sqrt[3]{x^4 x^3}$, $g(x) = x \cdot \sqrt[3]{x 1}$. (D) $f(x) = \frac{x^2 1}{x 1}$, g(x) = x + 1.
- 2. 设函数 f(x)的定义域为(-1,0),则下列函数定义域为(0,1)的是(
- (A) $f(x^2-1)$. (B) $[f(x)]^2$. (C) f(x+1). (D) f(x-1).

- 3. 已知 f(x) 为奇函数,则 $g(x) = f(x) \frac{a^x + 1}{a^x 1}$ 必定为 ()
- (A) 奇函数.

- (B) 偶函数.
- (C) 非奇非偶函数.
- (D) 奇偶性与 a 有关.

$$\mathbb{P} y = f^{-1}(x) = \underline{\hspace{1cm}}.$$

$$f[g(x)] = \qquad , \qquad g[f(x)] = \qquad .$$

7. 指出下列函数是由哪些简单函数复合而成的:

$$(1) \quad y = \ln \sin \frac{x}{2} \; ;$$

(2)
$$y = e^{\sin \frac{1}{x}}$$
;

(3)
$$y = (\arctan \frac{x}{2})^2$$
;

(4)
$$y = x^x$$
.

8. 证明:
$$y = \frac{(1+x)^2}{1+x^2}$$
在 $(-\infty, +\infty)$ 内是有界函数.

9. 设 f(x) 为定义在 (-l,l) 内的奇函数,若 f(x) 在 (0,l) 内严格单调增加,证明: f(x) 在 (-l,0) 内也严格单调增加.

函数的极限 1.3

1.3.1 数列极限

1. 观察下列数列的变化趋势, 若极限存在, 写出它们的极限:

(1)
$$a_n = (-1)^n \frac{1}{n}$$
;

(2)
$$a_n = 1 + (-1)^n$$
;

(3)
$$a_n = (-1)^n n$$
;

(4)
$$a_n = \frac{n + (-1)^n}{n}$$
;

$$(5) \quad a_n = n \sin \frac{n\pi}{2} \,.$$

2. 根据数列极限的定义证明:

(1)
$$\lim_{n\to\infty}\frac{3n+1}{2n+1}=\frac{3}{2}$$
;

(2)
$$\lim_{n\to\infty} 0.\underbrace{999\cdots 9}_{n\uparrow} = 1.$$

3. 设数列
$$\{a_n\}$$
 有界,又 $\lim_{n\to\infty}b_n=0$,证明: $\lim_{n\to\infty}a_nb_n=0$.

4. 计算下列极限:

(1)
$$\lim_{n\to\infty} \left(1+\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{2^n}\right);$$

(2)
$$\lim_{n\to\infty} \frac{\sqrt{n^2+1}+\sqrt{n}}{\sqrt[4]{n^3+n^2}-n};$$

(3)
$$\lim_{n\to\infty} \left(1 + \frac{1}{1+2} + \frac{1}{1+2+3} + \dots + \frac{1}{1+2+\dots+n}\right);$$

(4)
$$\lim_{n\to\infty} \frac{3^n + (-5)^n}{3^{n+1} + (-5)^{n+1}}.$$

- ___年__月__日 5. 利用极限存在准则证明:
- (1) $\lim_{n\to\infty} \left(\frac{n}{n^2 + \pi} + \frac{n}{n^2 + 2\pi} + \dots + \frac{n}{n^2 + n\pi} \right) = 1;$

(2) 数列 $\sqrt{2}$, $\sqrt{2+\sqrt{2}}$, $\sqrt{2+\sqrt{2+\sqrt{2}}}$,…的极限存在,并求极限.

- 6. 利用 $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$, 求下列极限:
- (1) $\lim_{n\to\infty} \left(1+\frac{1}{2n}\right)^n$;
- $(2) \quad \lim_{n\to\infty} \left(1-\frac{1}{n}\right)^n.$

1.3.2 函数极限

1. 根据函数极限的定义证明:

(1)
$$\lim_{x\to\infty}\frac{1+x^3}{2x^3}=\frac{1}{2}$$
;

(2)
$$\lim_{x \to -\frac{1}{2}} \frac{1 - 4x^2}{2x + 1} = 2$$
;

(3)
$$\lim_{x\to 2} x^2 = 4$$
.

问 $\lim_{x\to 0} f(x)$ 与 $\lim_{x\to 1} f(x)$ 是否存在?

3. 设
$$f(x) = \frac{|x|}{x}$$
, 则 $f(0^-) = _____, f(0^+) = _____, 问 \lim_{x \to 0} f(x)$ 是否存在?

___年___月__日 4. 计算下列极限:

(1)
$$\lim_{x\to 4} \frac{x^2-6x+8}{x^2-5x+4}$$
;

(2) $\lim_{h\to 0} \frac{(x+h)^2-x^2}{h}$;

(3)
$$\lim_{x\to\infty}\frac{x^2-1}{2x^2-x-1}$$
;

(4)
$$\lim_{x\to 1} \left(\frac{1}{1-x} - \frac{3}{1-x^3}\right);$$

$$(5) \lim_{x\to 0}\frac{\sin 5x}{\sin 3x};$$

(6)
$$\lim_{x\to 0} x \cot x;$$

$$(7) \quad \lim_{x\to 0}\frac{1-\cos 2x}{x\sin x};$$

(8)
$$\lim_{x\to\infty} x \sin\frac{1}{x}$$
;

(9)
$$\lim_{x\to 0} (1-2x)^{\frac{1}{x}};$$

(10)
$$\lim_{x\to\infty} \left(\frac{x}{1+x}\right)^x;$$

(11)
$$\lim_{x\to\infty} (1-\frac{1}{x})^{4x}$$
;

(12)
$$\lim_{x\to 0} (1+\frac{x}{2})^{\frac{x-1}{x}};$$

$$(13) \quad \lim_{x\to 1}(1-x)\tan\frac{\pi x}{2};$$

(14)
$$\lim_{x\to a} \frac{\sin x - \sin a}{x-a};$$

(15)
$$\lim_{x \to 1} \frac{\sqrt{1+x} - \sqrt{3-x}}{x^2 - 1};$$

$$(16) \quad \lim_{x \to +\infty} (\sqrt{x^2 + x} - x + 1).$$

1.4 无穷小量与无穷大量

1. 设 $f(x) = \frac{1-x}{1+x}$, $g(x) = 1-\sqrt[3]{x}$, 证明: 当 $x \to 1$ 时, f(x)与 g(x)是同阶 无穷小,但不等价.

2. 利用等价无穷小及无穷小性质求下列极限:

$$(1) \quad \lim_{x\to 0}\frac{\sin 5x}{\tan 3x};$$

(2)
$$\lim_{x\to 0} \frac{\sin x^2}{1-\cos x}$$
;

$$(3) \lim_{x\to 0}\frac{\tan x-\sin x}{x^3};$$

(4)
$$\lim_{x \to 0} \frac{\sin x - \tan x}{(\sqrt[3]{1 + x^2} - 1)(\sqrt{1 + \sin x} - 1)};$$

$$(5) \lim_{x\to 0^+} \sqrt{x} \sin\frac{1}{x};$$

(6)
$$\lim_{x\to\infty}\frac{\arctan x}{x}.$$

1.5 函数的连续性

1. 设函数
$$f(x) = \frac{2^{\frac{1}{x}} - 1}{2^{\frac{1}{x}} + 1}$$
,则 $f(0^{-}) = ______$, $f(0^{+}) = ______$, 故 $x = 0$ 是

函数的第___类间断点.

$$\lim_{x\to 0} f(x) = \underline{\qquad}, \quad \lim_{x\to -3} f(x) = \underline{\qquad}, \quad \lim_{x\to 2} f(x) = \underline{\qquad}.$$

3. 求出下列函数的间断点,并判断其类型,若为可去间断点,试补充定义,使函数在该点连续.

(1)
$$f(x) = \frac{x^2 - 1}{x^2 - 3x + 2}$$
; (2) $f(x) = \begin{cases} \frac{1 - \cos x}{x^2}, & x < 0, \\ \frac{1}{1 + x}, & x \ge 0. \end{cases}$

4. 函数 $y = \frac{x}{\tan x}$ 在点 $x = k\pi$, $x = k\pi + \frac{\pi}{2}$ $(k = 0, \pm 1, \pm 2, \cdots)$ 处间断,试说明这些间断点属于哪一类,若为可去间断点,试补充或改变定义,使函数在该点连续.

- 6. 求下列函数的极限:
- (1) $\lim_{x\to 2} \frac{x^2 + \sin x}{e^x \sqrt{1+x^2}}$;

(2) $\lim_{x\to+\infty} x[\ln(x+1)-\ln x];$

- (3) $\lim_{x\to 0} \frac{\sqrt[n]{1+x}-1}{x} \quad (n 为正整数);$ (4) $\lim_{x\to +\infty} \arcsin(\sqrt{x^2+x}-x);$

- (5) $\lim_{x\to 0} (1+3\tan^2 x)^{\cot^2 x}$;
- (6) $\lim_{x \to +\infty} (\sqrt{x^2 + x} \sqrt{x^2 x}).$

7. 设函数 $f(x) = \begin{cases} e^x, & x < 0, \\ a + x, & x \ge 0, \end{cases}$ 应当怎样选择 a,使 f(x) 成为 $(-\infty, +\infty)$ 内的连续函数.

8. 证明方程 $x^5 - 3x = 1$ 至少有一个根介于1和2之间.

9. 设 f(x) 在 [a,b] 上连续,且 f(a) < a , f(b) > b ,试证在 (a,b) 内至少存在一点 ξ , 使 $f(\xi) = \xi$.

10. 证明方程 $x = a \sin x + b$ (其中 a > 0, b > 0)至少有一个正根,并且它不超过 a + b.

总习题1

1. 判断下列运算是否正确?若正确在括号中打√,否则打×,并说明理由.

(1)
$$\lim_{x \to 1} \frac{x}{1 - x} = \frac{\lim_{x \to 1} x}{\lim_{x \to 1} (1 - x)} = \frac{1}{0} = \infty;$$

(2)
$$\lim_{x\to 0} x \sin\frac{1}{x} = \lim_{x\to 0} x \cdot \lim_{x\to 0} \sin\frac{1}{x} = 0$$
;

(3) :
$$\exists x \to 0$$
 时, $\tan x \sim x$, $\sin x \sim x$, $: \lim_{x \to 0} \frac{\tan x - \sin x}{x^3} = \lim_{x \to 0} \frac{x - x}{x^3} = 0$;

(4)
$$\lim_{n \to \infty} \left(\frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{n+n} \right) = \lim_{n \to \infty} \frac{1}{n} + \lim_{n \to \infty} \frac{1}{n+1} + \dots + \lim_{n \to \infty} \frac{1}{n+n} = 0 + 0 + \dots + 0 = 0.$$

2. 选择题:

(1) 已知
$$\lim_{x\to\infty} \left(\frac{x^2+1}{1+x} - ax - b \right) = 0$$
, 其中 a, b 是常数,则(

(A)
$$a=1, b=1$$
. (B) $a=-1, b=1$. (C) $a=1, b=-1$. (D) $a=-1, b=-1$.

(2) 设当 $x \to 0$ 时, $(1-\cos x)\ln(1+x^2)$ 是比 $x\sin x^n$ 高阶的无穷小,而 $x\sin x^n$

是比 e^{x^2} -1高阶的无穷小,则正整数 n= ()

(3)
$$\exists \exists f(x) = \begin{cases} (\cos x)^{\frac{1}{x^2}}, & x \neq 0, \text{ in } \exists f(x) \text{ in } \exists x \neq 0, \text{ in } \exists x \neq 0, \end{cases}$$
 $\exists \exists f(x) = \begin{cases} (\cos x)^{\frac{1}{x^2}}, & x \neq 0, \text{ in } \exists x \neq 0, \text{ in } \exists x \neq 0, \text{ in } \exists x \neq 0, \end{cases}$

(A)
$$e^{-2}$$
. (B) $e^{-\frac{1}{2}}$. (C) 1. (D) $-\frac{1}{2}$.

)

4. 求下列极限:

(1)
$$\lim_{x\to\infty} \left(\frac{x^3}{2x^2-1} - \frac{x^2}{2x-1} \right);$$

$$(2) \quad \lim_{x\to\pi}\frac{\sin x}{\pi-x};$$

(3)
$$\lim_{x\to 0} \frac{\sqrt{1+\tan x} - \sqrt{1+\sin x}}{x^3}$$
; (4) $\lim_{x\to 0} \frac{\ln(a+x) + \ln(a-x) - 2\ln a}{x^2}$;

(4)
$$\lim_{x \to 0} \frac{\ln(a+x) + \ln(a-x) - 2\ln a}{x^2}$$

(5)
$$\lim_{x\to 0} \frac{\sin^2 x \sin\frac{1}{x}}{\arctan x};$$

(6)
$$\lim_{x\to 0} \left(\frac{2+e^{\frac{1}{x}}}{1+e^{\frac{4}{x}}} + \frac{\sin x}{|x|} \right).$$

姓名_____ 学号____

___年___月___日 姓名____ 5. 确定常数 a,b,使 $\lim_{x\to\infty}(\sqrt[3]{1-x^3}-ax-b)=0$.

6. 证明:
$$\lim_{n\to\infty} \left(\frac{1}{n^2+n+1} + \frac{2}{n^2+n+2} + \dots + \frac{n}{n^2+n+n} \right) = \frac{1}{2}$$
.

7. 求
$$f(x) = \begin{cases} e^{\frac{1}{1-x}}, & x > 0, \text{ 的间断点, 并说明间断点所属类型.} \\ \ln(1+x), & -1 < x \le 0 \end{cases}$$

8. 设 $x_n = \sum_{k=1}^n \frac{1}{n+k}$, 证明数列 $\{x_n\}$ 收敛.

9. 设 f(x) 在 [0,2a] 上连续, f(0)=f(2a) ,证明在 [0,a] 上至少存在一点 ξ ,使 得 $f(\xi)=f(\xi+a)$.

第2章 导数与微分

2.1 导数的概念

1. 假设 $f'(x_0)$ 存在, 求下列极限:

(1)
$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \underline{\hspace{1cm}};$$

(2)
$$\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h} = \underline{\hspace{1cm}};$$

(3)
$$\lim_{\Delta x \to 0} \frac{f(x_0 - \Delta x) - f(x_0)}{\Delta x} = ____;$$

(4) 若
$$f(0) = 0, f'(0)$$
存在,则 $\lim_{x\to 0} \frac{f(x)}{x} =$ _____;

(5)
$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0 - h)}{2h} = \underline{\qquad}.$$

2. 求下列函数的导数:

(1) 设
$$y = x^{1.6}$$
, 则 $y' =$ ______;

(2) 设
$$y = \frac{1}{x^2}$$
, 则 $y' = _____;$

(3) 设
$$y = x^3 \sqrt[5]{x}$$
,则 $y' =$ ______;

3. 设
$$f(x) = \frac{1}{1+x}$$
, 试按定义求 $f'(x)$, $f'(0)$.

4. 己知
$$f(x) = \begin{cases} x^2, & x \ge 0, \\ -x, & x < 0, \end{cases}$$
则 $f'(0) = ___, f'(0) = ___, f'(0)$ 是否存在?

5. 求曲线 $y = e^x$ 在点(0,1)处的切线方程.

- 6. 在抛物线 $y = x^2$ 上哪一点的切线有下面的性质:
- (1) 平行于 x轴; (2) 与 x轴正向构成 45°角;
- (3) 平行于抛物线上横坐标为 $x_1 = 1$, $x_2 = 3$ 的两点的连线.

7. 设 f(x) 为偶函数,且 f'(0) 存在,证明 f'(0) = 0.

8. 设 $f(x) = \begin{cases} x^2, & x \le 1, \\ ax + b, & x > 1, \end{cases}$ 要使 f(x) 在 x = 1 连续且可导, a, b 应取何值?

2.2 函数的求导法则

1. 求下列函数的导数:

(1)
$$y = \frac{x^5 + 2\sqrt{x} + 1}{x^3}$$
;

$$(2) \quad y = \frac{a - x}{a + x};$$

- $(3) \quad y = x \tan x 2 \sec x \; ;$
- $(4) \quad y = x^2 \cos x \cdot \ln x \; ;$

(5) $y = \frac{2 \csc x}{1 + x^2}$;

(6) $y = \frac{e^x}{r^3} + 10^x + \ln 3 \cdot \cot x$.

- 2. 求下列函数在给定点处的导数:
- (1) $\rho = \varphi \sin \varphi + \frac{1}{2} \cos \varphi$, $\Re \frac{d\rho}{d\varphi}\Big|_{\varphi = \frac{\pi}{t}}$; (2) $f(t) = \frac{1 \sqrt{t}}{1 + \sqrt{t}}$, $\Re f'(4)$.

3. 填空题:

(2) 设
$$y = \tan(x^2)$$
, 则 $y' =$ ______;

(4) 设
$$y = \ln(\cos x)$$
, 则 $y' =$ _______.

4. 求下列函数的导数:

(1)
$$y = \ln[\ln(\ln x)]$$
;

(2)
$$y = \sin^n x \cdot \cos(nx)$$
;

(3)
$$y = 3^{\frac{x}{\ln x}}$$
;

(4)
$$y = \ln(x + \sqrt{a^2 + x^2})$$
;

(5)
$$y = \frac{x^2}{2} \sqrt{a^2 - x^2}$$
;

(6)
$$y = \sec^2(e^{x^2+1})$$
.

5. 求下列函数的导数:

(1)
$$y = \arctan(e^x)$$
;

(2)
$$y = \left(\arccos\frac{1}{x}\right)^2 e^{-x}$$
;

(3)
$$y = (1+x^2)^{\sin x}$$
;

(4)
$$y = \frac{x}{\sqrt{1+x^2}}$$
;

(5)
$$y = \frac{e^t - e^{-t}}{e^t + e^{-t}};$$

(6)
$$y = x \arcsin \frac{x}{2} + \sqrt{4 - x^2}$$
.

6. 设 f(u) 可导, 求下列函数的导数:

(1)
$$y = \sin[f(x^2)];$$

(2)
$$y = f(e^x)e^{f(x)}$$
.

2.3 高阶导数

- 1. 填空题:
- (2) $\forall y = \ln \sec x$, $y = \ln x$
- (3) 设 $y = \ln f(x)$, f(x) > 0, f''(x)存在,则 $\frac{dy}{dx} =$, $\frac{d^2y}{dx^2} =$;
- (4) $[\sin(2x)]^{(n)} =$ ______;
- $(5) (2^x)^{(n)} = \underline{\hspace{1cm}}.$
- 2. 设 $f(x) = (x+10)^6$, 求 f'(2), f''(2)和 f'''(2).

3. 求下列函数的 n 阶导数的一般表达式:

$$(1) \quad y = \sin^2 x \; ;$$

$$(2) \quad y = x \ln x;$$

(3)
$$y = \frac{1-x}{1+x}$$
;

$$(4) \quad y = x^2 e^x.$$

2.4 隐函数及由参数方程所确定的函数的导数

- 1. 求下列方程所确定的隐函数 y的导数 $\frac{dy}{dx}$:
- (1) y = f(xy), 其中 f 可导;

(2) $e^{xy} + \cos(x+y) - y^2 = 1$.

2. 己知 $y = 1 + xe^{xy}$, 求 $y'|_{x=0}$ 及 $y''|_{x=0}$.

3. 用对数法求下列函数的导数:

$$(1) \quad y = \left(\frac{x}{1+x}\right)^x;$$

(2)
$$y = \frac{x^2}{1-x} \cdot \sqrt[3]{\frac{3-x}{(3+x)^2}}$$
.

4. 求下列参数方程所确定函数的导数:

(1)
$$\begin{cases} x = \theta(1 - \sin \theta), \\ y = \theta \cos \theta, \end{cases} \quad \stackrel{?}{x} \frac{dy}{dx};$$

(2)
$$\begin{cases} x = \ln(1+t^2), \\ y = t - \arctan t, \end{cases} \quad \stackrel{?}{x} \frac{dy}{dx} \cdot \frac{d^2y}{dx^2} \not \nearrow \frac{d^3y}{dx^3}.$$

5. 设
$$\begin{cases} x = f(t) - \pi, \\ y = f(e^{3t} - 1), \end{cases}$$
 其中 f 可导,且 $f'(0) \neq 0$,求 $\frac{dy}{dx}\Big|_{t=0}$.

2.5 导数的简单应用

1. 求曲线 $y = \arctan x$ 上横坐标为1的点处的切线方程和法线方程.

2. 设函数 y = f(x) 由方程 $e^{2x+y} - \cos(xy) = e-1$ 所确定, 求曲线 y = f(x) 在点 (0,1)处的法线方程.

3. 求曲线 $\begin{cases} x = 1 + t^2, \\ y = t^3 \end{cases}$ 在 t = 2 处的切线方程.

函数的微分 2.6

- 3. 将适当的函数填入括号内, 使等式成立:
- (1) d() = $3x^2 dx$; (2) d() = $\sin \omega t dt$;

- (3) d() = $e^{-2x}dx$; (4) d() = $\sec^2 3xdx$;
- (5) d($)=\frac{1}{1+4x^2}dx;$ (6) d($)=\frac{x}{\sqrt{a^2-x^2}}dx.$

- 4. 求下列函数的微分:
- (1) $y = [\ln(1-x)]^2$;

(2) $y = e^{-x} \cos(3-x)$;

(3)
$$y = \tan^2(1+2x^2)$$
;

(4)
$$y = \arctan \frac{1 - x^2}{1 + x^2}$$
.

5. 求由方程 $2y-x=(x-y)\ln(x-y)$ 所确定的函数 y=y(x) 的微分 dy.

总习题 2

1. 填空题:

(1)
$$\exists \exists f'(3) = 2$$
, $\lim_{h \to 0} \frac{f(3-h) - f(3)}{2h} = \underline{\hspace{1cm}}$;

(2) 已知
$$x = 2$$
 是 $f(x)$ 的连续点,且 $\lim_{x \to 2} \frac{f(x)}{x-2} = 3$,则 $f'(2) =$ ______;

(5) 设
$$\tan y = x + y$$
,则 $dy =$ ______;

(6) 设
$$f(x) = \ln \sqrt{\frac{1-x}{1+x^2}}$$
,则 $f''(x) = _______$, $f''(0) = ______$;

(7) 设
$$y = \sqrt[x]{x} (x > 0)$$
,则 $dy = _____$;

(8)
$$\forall y = \cos^2 x \cdot \ln x$$
, $y' =$.

2. 选择题:

(1) 设
$$f(x) = |x-1|g(x)$$
, 且 $g(x)$ 在 $x = 1$ 处连续, $g(1) \neq 0$,则 $f'(1)$ 为(

- (A) g(1).

- (B) -g(1). (C) 0. (D) 不存在.

(2) 设
$$f(x_0 + \Delta x) - f(x_0) = 0.3\Delta x + \ln^2(1 + \Delta x)$$
, 那么 $f(x)$ 在 x_0 点 (

(A) 可微,且
$$dy = 0.3\Delta x$$
. (B) 可微,但 $dy \neq 0.3\Delta x$. (C) 不可微.

(3) 设
$$f(x) = \begin{cases} \frac{1-\cos x}{x}, & x \neq 0, \\ 0, & x = 0, \end{cases}$$
 则 $f'(0) = ($)

(A) 0. (B) 0.5. (C) -0.5. (D) 不存在.

3. 已知
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x < 0, \\ 0, & x \ge 0, \end{cases}$$
 (1) 求 $f'_{-}(0)$ 、 $f'_{+}(0)$, 判断 $f'(0)$ 是否存在?

(2) 求 f'(x)及 f'(x)在 x = 0处的左右极限.

4. 设
$$y = y(x)$$
 是由
$$\begin{cases} x = \arctan t, \\ 2y - ty^2 + e^t = 5 \end{cases}$$
 所确定,求 $\frac{dy}{dx}$.

5. 试求经过原点且与曲线 $y = \frac{x+9}{x+5}$ 相切的切线方程.

6. 已知 f(x) 是周期为 5 的连续函数,它在 x=0 的某个邻域内满足: $f(1+\sin x)-3f(1-\sin x)=8x+\alpha(x),$

其中 $\alpha(x) = o(x)(x \to 0)$, f'(1) 存在,证明: (1) f(1) = 0; (2) f'(1) = 2,并写出曲线 y = f(x) 在点 (6, f(6)) 处的切线方程.

年	月	F
	/ J	⊢

姓名_____ 学号_____

第3章 导数的应用

3.1 微分中值定理

1. 填空题:

(1) 曲线 $y = \ln x$ 在点_________处的切线与连接曲线上两点(1,0), (e,1)的弦平行.

(2) 设 f(x) = (x-1)(x-2)(x-3), 方程 f'(x) = 0 有_____个根, 它们分别在区间 _____内; 方程 f''(x) = 0 有_____个根; 方程 f'''(x) = 0 有_____个根.

2. 验证函数 $y=x^2-2x+4$ 在区间 [1, 2] 上满足拉格朗日中值定理的条件,并求出定理结论中的 ξ 值.

3. 证明等式 $\arcsin \sqrt{1-x^2} + \arctan \frac{x}{\sqrt{1-x^2}} = \frac{\pi}{2}$ (0 < x < 1).

4. 若方程 $a_0x^n + a_1x^{n-1} + \dots + a_{n-1}x = 0$ 有一个正根 $x = x_0$,证明方程 $a_0nx^{n-1} + a_1(n-1)x^{n-2} + \dots + a_{n-1} = 0$ 必有一个小于 x_0 的正根.

6. 用拉格朗日中值定理证明: 当x > 1时, $e^x > ex$.

7. 设 0 < a < b , f(x) 在 [a,b] 上连续,在 (a,b) 内可导,试利用柯西中值定理证明:存在点 $\xi \in (a,b)$,使 $f(b) - f(a) = \xi f'(\xi) \ln \frac{b}{a}$.

3.2 函数的单调性与曲线的凹凸性

- 1. 填空题:
- (1) $y = xe^{-x}$ 在区间______上单调减少,在区间_____上单调增加;
- (2) $y = 2x + \frac{8}{x}(x > 0)$ 在区间_____上单调减少,在区间____上单调增加.
- 2. 确定 $y = \frac{x}{3} x^{\frac{1}{3}}$ 的单调区间.

- 3. 证明下列不等式:
- (1) $\arctan x < x \quad (x > 0)$;

(2)
$$e^{-x} + \sin x < 1 + \frac{x^2}{2}$$
 $(0 < x < \frac{\pi}{2})$.

4. 证明方程 $x^5 + x - 1 = 0$ 只有一个正根.

5. 填空题:

(1) 曲线 $y = \ln(1+x^2)$ 在区间______上是凸的,在区间_____上

是凹的,拐点为_____;

- (2) 曲线 $x = t^2$, $y = 3t + t^3$ 的拐点为_______;
- (3) 当 $\alpha \in$ _____ 时,曲线 $y = x^4 + \alpha x^3 + \frac{3}{2}x^2 + 1$ 在 $(-\infty, +\infty)$ 内是凹的.
- 6. 利用函数图形的凹凸性,证明不等式:

$$x \ln x + y \ln y > (x + y) \ln \frac{x + y}{2} (x > 0, y > 0, x \neq y).$$

7. 求函数 $y=2-(x-1)^{\frac{1}{3}}$ 所表示的曲线的拐点及凹凸区间.

8. 问 a, b 为何值时, 点 (1,3) 为曲线 $y = ax^3 + bx^2$ 的拐点.

3.3 函数的极值与最值

- 1. 当 $x = ____$ 时, $y = x2^x$ 取得极______值.
- 2. 已知 $f(x) = x^3 + ax^2 + bx$ 在x = -1处取得极小值 -2,则 $a = _____$, $b = _____$

- 4. 函数 $y = x + 2\cos x$ 在区间 $[0, \frac{\pi}{2}]$ 上的最小值为______,最大值为______.
- 5. 求下列函数的极值:

(1)
$$y = \frac{3x^2 + 4x + 4}{x^2 + x + 1}$$
;

(2)
$$y=2-(x-1)^{\frac{2}{3}}$$
.

6. 求由方程 $2y^3 - 2y^2 + 2xy - x^2 = 1$ 所确定的函数 y = f(x)的驻点,并判别它是否为极值点,若是,求此极值.

7. 当 a 为何值时,函数 $f(x) = a \sin x + \frac{1}{3} \sin 3x$ 在 $x = \frac{\pi}{3}$ 处有极值? 是极大值还是极小值? 并求此极值.

8. 证明: 如果 $y = ax^3 + bx^2 + cx + d$ 满足条件 $b^2 - 3ac < 0$, 则函数 y 无极值.

9. 问 $y = x^2 - \frac{54}{x}$ (x < 0)在何处取得最小值? 并求出最小值.

10. 求 $y = |3x - x^3|$ 在区间[-2, 2]上的最大值和最小值.

姓名_____ 学号_____

- ___年__月__日 11. 证明下列不等式:
- (1) $\stackrel{\text{def}}{=} x < 1$ $\stackrel{\text{def}}{=} x < \frac{1}{1-x}$;

12. 过椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 的第一象限部分上的点作切线,问哪一条切线与两坐标轴所 围成的直角三角形面积为最小, 求此切线方程.

3.4 函数图形的描绘

作出下列函数的图形:

1.
$$y = \frac{x}{1+x^2}$$
;

$$2. \quad y = \frac{2x^2}{(1-x)^2} \, .$$

3.5 洛必达法则

- 1. 用洛必达法则求下列极限:
- (1) $\lim_{x\to 0^+} \frac{\ln \tan 7x}{\ln \tan 2x};$

 $(2) \lim_{x\to\frac{\pi}{2}}\frac{\ln\sin x}{(\pi-2x)^2};$

(3) $\lim_{x\to 1} \left(\frac{x}{x-1} - \frac{1}{\ln x} \right)$;

(4) $\lim_{x\to 0} x^2 e^{\frac{1}{x^2}}$;

(5) $\lim_{x\to 1^+} (x-1)^{\frac{1}{\ln(e^{x-1}-1)}}$;

(6) $\lim_{x\to 0^+} \left(\frac{1}{x}\right)^{\tan x};$

(7)
$$\lim_{x\to 0} (e^x + x)^{\frac{1}{\sin 2x}};$$

(8)
$$\lim_{x\to 0} (\cos x)^{\frac{1}{\ln(1+x^2)}}$$
.

2. 讨论函数
$$f(x) = \begin{cases} \left[\frac{(1+x)^{\frac{1}{x}}}{e}\right]^{\frac{1}{x}}, & x > 0, \\ e^{-\frac{1}{2}}, & x \le 0 \end{cases}$$
 在点 $x = 0$ 处的连续性.

3.6 泰勒公式

- 1. $P(x) = 1 + 3x + 5x^2$ 在 x = 3 处的二阶泰勒公式是 ______.
- 2. 求 $f(x) = \frac{1}{2+x}$ 在 x = -1 处的 n 阶泰勒公式.

3. 求函数 $f(x) = xe^x$ 的 n 阶麦克劳林公式.

4. 利用泰勒公式求下列极限:

(1)
$$\lim_{x \to +\infty} (\sqrt[3]{x^3 + 3x^2} - \sqrt[4]{x^4 - 2x^3})$$
;

(2)
$$\lim_{x\to 0} \frac{\cos x - e^{-\frac{x^2}{2}}}{x^2[x + \ln(1-x)]}$$
.

总习题3

- 1. 判断下列运算是否正确?若正确在括号中打√,否则打×,并改正.
- (1) 由洛必达法则得,

$$\lim_{x \to 1} \frac{x^3 - 3x + 2}{x^3 - x^2 - x + 1} = \lim_{x \to 1} \frac{3x^2 - 3}{3x^2 - 2x - 1} = \lim_{x \to 1} \frac{6x}{6x - 2} = \lim_{x \to 1} \frac{6}{6} = 1;$$

(2) 由洛必达法则,
$$\lim_{x\to 0} \frac{x^2 \sin\frac{1}{x}}{\sin x} = \lim_{x\to 0} \frac{(x^2 \sin\frac{1}{x})'}{(\sin x)'} = \lim_{x\to 0} \frac{2x \sin\frac{1}{x} - \cos\frac{1}{x}}{\cos x},$$

$$\frac{2x\sin\frac{1}{x}-\cos\frac{1}{x}}{\sin\frac{x}{x}}$$
不存在,
$$\lim_{x\to 0} \frac{x^2\sin\frac{1}{x}}{\sin x}$$
不存在; ()

- (3) $P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$ 在 x = 0 处的 n 阶 泰 勒 公 式 是 它 自 身;
- (4) 函数 f(x) 满足关系 $xf''(x) + 3x[f'(x)]^2 = 1 e^{-x}$,且 f'(c) = 0 $(c \neq 0)$,则

$$(c, f(c))$$
 是曲线 $y = f(x)$ 的拐点.

2. 选择题:

(1) 设
$$f(x)$$
 有 二 阶 连 续 导 数 , 且 $f'(0) = 0$, $\lim_{x \to 0} \frac{f''(x)}{|x|} = 1$, 则 (

- (A) f(0))是 f(x)的极大值.
- (B) f(0) 是 f(x) 的极小值.
- (C) (0, f(0)) 是曲线 y = f(x) 的拐点.
- (D) f(0) 不是 f(x) 的极值, (0, f(0)) 也不是曲线 y = f(x) 的拐点.
- (2) 设在[0,1]上f''(x) > 0,则f'(0),f'(1),f(1) f(0)和f(0) f(1)的大小顺序是(
- (A) f'(1) > f'(0) > f(1) f(0). (B) f'(1) > f(1) f(0) > f'(0).
- (C) f(1) f(0) > f'(1) > f'(0). (D) f'(1) > f(0) f(1) > f'(0).
- (3) 曲线 $y = (x-1)^2(x-3)^2$ 的拐点个数为 ()
- (A) 1. (B) 0. (C) 2. (D) 3.

年	月	Е
'	_/ -/	

- 3. 填空题:
- (1) 曲线 $y = e^{-x^2}$ 在区间______上是凸的;
- (2) 当 $x \to 0$ 时, $f(x) = \ln(\alpha x^2 + e^{2x}) 2x$ 与 $g(x) = \ln(\sin^2 x + e^x) x$ 为等价无穷 小,则 *α* = ______.
- 4. 求下列极限:

$$(1) \lim_{x \to 0} \frac{1 - \cos x \sqrt{\cos 2x} \sqrt[3]{\cos 3x}}{x^2}$$

(3)
$$\lim_{x\to\infty} \left[x - x^2 \ln(1 + \frac{1}{x}) \right];$$

$$(4) \quad \lim_{x\to 0} \left(\frac{1}{x^2} - \cot^2 x\right).$$

5. 求曲线
$$y = \begin{cases} e^{\frac{1}{x}}, & x < 0, \text{ 的凹凸区间和拐点.} \\ (3-x)\sqrt{x}, & x \ge 0 \end{cases}$$

7. 求函数
$$f(x) = x^2 \ln(1+x)$$
 在 $x = 0$ 处的 n 阶导数 $f^{(n)}(0)$ $(n \ge 3)$.

8. 证明在区间
$$(-\infty, +\infty)$$
 内,方程 $|x|^{\frac{1}{4}} + |x|^{\frac{1}{2}} - \cos x = 0$ 有且仅有两个实根.

 $\xi, \eta \in (a,b)$, $\notin \oplus \frac{f'(\xi)}{f'(\eta)} = \frac{e^b - e^a}{b - a}e^{-\eta}$.

- 10. 设函数 f(x)和 g(x)在 [a,b]上存在二阶导数,并且 $g''(x)\neq 0$, f(a) = f(b) = g(a) = g(b) = 0, 试证: (1) 在开区间(a, b)内 $g(x) \neq 0$;
- (2) 存在 $\xi \in (a,b)$, 使得 $\frac{f(\xi)}{g(\xi)} = \frac{f''(\xi)}{g''(\xi)}$.

11. 确定常数 a 和 b, 使得当 $x \rightarrow 0$ 时, $y = x - (a + b\cos x)\sin x$ 是关于 x 的 5 阶 无穷小.

第4章 不定积分

4.1 不定积分的概念

- 1. 填空题:
- (1) 若 f(x) 连续,且 $F(x) = \int f(x)dx$,则 $F'(x) = _______,$ 若 f'(x) 连续,则 $G(x) = \int df(x) = _______;$
- (2) 若 $f'(\sin \frac{x}{2}) = \cos x + 1$, 则 f'(x) =______;
- (3) 一物体由静止开始运动,经t秒后的速度是 $3t^2$ (米/秒),那么
- (i) 在 3 秒后物体离开出发点的距离是 ______,
- (ii) 物体走完 360 米所需时间为 ______.
- 2. 求下列不定积分:

$$(1) \int \frac{(1-x)^2}{\sqrt{x}} \, dx \,;$$

(2)
$$\int \frac{x^2}{1+x^2} dx$$
;

(3)
$$\int \frac{2 \cdot 3^x - 5 \cdot 2^x}{3^x} dx$$
;

$$(4) \int \csc x (\csc x - \cot x) \, dx \; ;$$

姓名_____ 学号_____
(6)
$$\int \frac{\cos 2x}{\cos x - \sin x} dx$$
.

$$(5) \int \cos^2 \frac{x}{2} \, dx \,;$$

(6)
$$\int \frac{\cos 2x}{\cos x - \sin x} dx$$

(7)
$$\int \cot^2 x \, dx;$$

(8)
$$\int \frac{3x^4 + 2x^2}{x^2 + 1} dx.$$

3. 一曲线通过点 $(e^2,3)$,且在任一点处的切线的斜率等于该点横坐标的倒数,求该 曲线的方程.

换元积分法

- 1. 填入适当的系数, 使下列等式成立:
- (1) $\sin \frac{2}{3}xdx = \underline{\qquad} d(\cos \frac{2}{3}x);$ (2) $\frac{1}{x}dx = \underline{\qquad} d(3-5\ln x);$
- (3) $xe^{x^2}dx = \underline{\qquad} d(e^{x^2});$ (4) $\frac{dx}{1+9x^2} = \underline{\qquad} d(\arctan 3x);$
- (5) $\frac{xdx}{\sqrt{1-x^2}} = \underline{\qquad} d(\sqrt{1-x^2});$ (6) $\sin x \cos x dx = \underline{\qquad} d(2+\sin^2 x).$
- 2. $\int [f(x)]^{\mu} f'(x) dx = \int [f(x)]^{\mu} d$ ____ = \begin{align*} \tag{------},
- 3. 若 $\int f(x)dx = F(x) + C$, 则 () = F[g(x)] + C.
- (A) $\int f[g(x)]dx$
- (B) $\int f[g(x)]g(x)dx$
- (C) $\int f[g(x)]g'(x)dx$
- (D) $\int F'[g(x)]dx$
- 4. 计算下列不定积分:
- $(1) \int (\sin ax e^{\frac{x}{b}}) dx;$

(2) $\int \frac{\sin \sqrt{x}}{\sqrt{x}} dx$;

(3) $\int \tan^{10} x \cdot \sec^2 x \, dx;$

(4) $\int \tan \sqrt{1+x^2} \cdot \frac{xdx}{\sqrt{1+x^2}};$

___年__月___日
(5)
$$\int \frac{dx}{e^x + e^{-x}};$$

姓名_____ 学号_____
(6)
$$\int \frac{x}{\sqrt{2-3x^2}} dx$$
;

$$(7) \int \frac{10^{2\arccos x}}{\sqrt{1-x^2}} dx;$$

$$(8) \int \frac{1+\ln x}{(x\ln x)^2} dx:$$

$$(9) \int \frac{\sin x \cos^2 x}{1 + \cos^2 x} \, dx;$$

(10)
$$\int \frac{(2 \ln x + 3)^3}{x} \, dx;$$

(11)
$$\int \frac{x^2}{\sqrt{a^2-x^2}} dx$$
 $(a>0)$;

(11)
$$\int \frac{x^2}{\sqrt{a^2 - x^2}} dx$$
 $(a > 0);$ (12) $\int \frac{\sqrt{x^2 - a^2}}{x} dx$ $(a > 0);$

(13)
$$\int \frac{dx}{\sqrt{(x^2+1)^3}};$$

$$(14) \int \frac{dx}{1+\sqrt{2x}};$$

(15)
$$\int \frac{dx}{1+\sqrt{1-x^2}}$$
;

(16)
$$\int \frac{2x-1}{\sqrt{9x^2-4}} \, dx \, .$$

姓名______ 学号______ **4.3 分部积分法**

1. 已知 f(x) 的一个原函数为 $(1+\sin x)\ln x$, 求 $\int xf'(x)dx$.

- 2. 计算下列不定积分
- (1) $\int x \sin x \cos x \, dx;$

 $(2) \int xe^{-x}dx ;$

 $(3) \int x \ln(x-1) \, dx \; ;$

 $(4) \int \sin \sqrt{x} \ dx \; ;$

(5) $\int \cos(\ln x) \, dx \; ;$

(6) $\int x^2 \arctan x \, dx$.

4.4 有理函数及三角函数有理式的积分

计算下列不定积分:

1.
$$\int \frac{2x-3}{x^2+x+5} dx$$
;

2.
$$\int \frac{dx}{x^3+1}$$
;

3.
$$\int \frac{dx}{2 + \sin x};$$

4.
$$\int \frac{dx}{1+\sin x + \cos x};$$

$$5. \int \frac{dx}{1+\sqrt[3]{x+1}};$$

$$6. \quad \int \frac{dx}{\sqrt{x} + \sqrt[4]{x}} \, .$$

总习题4

1	选择题:
Ι.	处1中区3

(1) 若 f(x) 的一个原函数为 e^{2x} ,则 f'(0) = (

(A) 2. (B)
$$\frac{1}{2}$$
. (C) 1. (D) 4.

(2) 在区间[a,b]内,如果有 f'(x) = g'(x),则一定有(

$$(A) \quad f(x) = g(x)$$

(A)
$$f(x) = g(x)$$
. (B) $f(x) = g(x) + g(a)$.

(C)
$$f(x) = g(x) + C$$

(C)
$$f(x) = g(x) + C$$
. (D) $[\int f(x)dx]' = [\int g(x)dx]'$.

(3) 如果
$$\int \frac{f'(\ln x)}{x} dx = x + C$$
, 则 $f(x) = ($

$$(A)$$
 x .

(B)
$$e^x$$
.

(C)
$$e^{-x}$$

(B)
$$e^x$$
. (C) e^{-x} . (D) $\ln x$.

(4) 若 f'(x) = 2, f(0) = 1,则不定积分 $\int f(x)f'(x)dx$ 的值为等于(

(A)
$$2(2x+1)+C$$

(A)
$$2(2x+1)+C$$
. (B) $\frac{1}{2}(2x+1)+C$.

(C)
$$2(2x+1)^2 + C$$

(C)
$$2(2x+1)^2 + C$$
. (D) $\frac{1}{2}(2x+1)^2 + C$.

(5) 设 f(x) 的一个原函数为 e^{2x} ,则 $\int x f'(x) dx = ($

(A)
$$\frac{1}{2}e^{2x} + C$$
.

(B)
$$2xe^{2x} + C$$
.

(C)
$$\frac{1}{2}xe^{2x} - e^{2x} + C$$
. (D) $2xe^{2x} - e^{2x} + C$.

(D)
$$2xe^{2x} - e^{2x} + C$$
.

2. 填空题:

(1) 在积分曲线族 $y = \int 4x dx$ 中,与直线 y = 2x + 1 相切的曲线过点______,

其方程为_____;

(2) 设 F'(x) = f(x),其中 f(x) 为可导函数,且 f(0) = 1,又 $F(x) = xf(x) + x^2$,则

$$f'(x) =$$
______; $f(x) =$ ______;

(3) $\int f(x)dx = x^2 + C$, $\iiint xf(1-x^2)dx =$ ______;

(4)
$$\int \frac{\ln x - 1}{x^2} dx =$$
_____.

3. 计算下列不定积分:

(1)
$$\int \frac{\sqrt{x^2 + 1} - \sqrt{x^2 - 1}}{\sqrt{x^4 - 1}} dx;$$

$$(2) \int \sqrt{e^x - 1} dx \; ;$$

$$(3) \int \frac{dx}{x(x^7+1)};$$

(4)
$$\int \frac{\sin x \cos x}{\sin^4 x + \cos^4 x} dx;$$

(5)
$$\int \frac{x^{11}}{x^8 + 3x^4 + 2} dx;$$

(6)
$$\int \frac{x + \sin x}{1 + \cos x} dx$$
;

姓名_____ 学号____
(8)
$$\int \frac{x^3 \arccos x}{\sqrt{1-x^2}} dx$$
.

___年__月___日
(7)
$$\int \frac{dx}{(1+e^x)^2}$$
;

(8)
$$\int \frac{x^3 \arccos x}{\sqrt{1-x^2}} dx$$

5. 设
$$f(x)$$
 的一个原函数为 $\frac{\ln x}{x}$, 求 $\int x f'(2x) dx$.

6. 设函数 f(x) 满足 $\int x f(x) dx = \arctan x + C$, 求 $\int f(x) dx$.

7. 设 F(x) 是 f(x) 的一个原函数,当 x>0 时有 $f(x)F(x)=\frac{\arctan\sqrt{x}}{\sqrt{x}(1+x)}$,且 $F(1)=\frac{\sqrt{2}}{4}\pi$,求 f(x).

第5章 定积分

5.1 定积分的概念和性质

- 1. 选择题:
- (1) 函数 f(x) 在区间[a,b]上连续是它在该区间上可积的(
- (A) 必要条件. (B) 充分条件. (C) 充要条件. (D) 无关条件.
- (2) 设 $a = \int_{0}^{1} e^{-x^{2}} dx, b = \int_{1}^{2} e^{-x^{2}} dx$,则(
- (A) a = b. (B) a > b. (C) a < b. (D) 大小无法比较.
- (3) $\frac{d}{dx} \int_a^b \sin x^2 dx = ()$
- (A) $\sin x^2$. (B) $-2x\cos x^2$. (C) 0. (D) $\sin b^2 \sin a^2$.
- (4) 曲线 y = x(x-1)(2-x) 与 x 轴所围成图形的面积可表示为 ()
- (A) $-\int_0^2 x(x-1)(2-x)dx$.
- (B) $\int_0^1 x(x-1)(2-x)dx \int_1^2 x(x-1)(2-x)dx$.
- (C) $-\int_0^1 x(x-1)(2-x)dx + \int_1^2 x(x-1)(2-x)dx$.
- (D) $\int_0^2 x(x-1)(2-x)dx$.
- 2. 利用定积分定义计算 $\int_a^b x dx \ (a < b)$.

3. 估计下列各定积分的值:

(1)
$$\int_{1}^{4} (x^2 + 1) dx$$
;

(2)
$$\int_{0}^{2} e^{x^{2}-x} dx$$
.

4. 求极限 $\lim_{n\to\infty}\int_0^a \frac{x^n}{1+x}dx$ (0 < a < 1).

5.
$$\text{if } \lim_{n\to\infty} \frac{1}{n} \left[\sqrt{1-\left(\frac{1}{n}\right)^2} + \sqrt{1-\left(\frac{2}{n}\right)^2} + \dots + \sqrt{1-\left(\frac{n-1}{n}\right)^2} \right].$$

- 6. (1) 利用定积分几何意义计算 $\int_0^1 \sqrt{1-x^2} dx$;
 - (2) 设f(x)为连续函数,且满足 $f(x) \sqrt{1-x^2} \int_0^1 f(x) dx = 1$,计算 $\int_0^1 f(x) dx$.

1. 填空题:

(1)
$$\frac{d}{dx} \int_0^{x^2} \ln(1+t^2) dt =$$
_____;

(2) 已知
$$\int_{x}^{a} f(t)dt = \sin(a-x)^{2}$$
,则有 $f(x) =$ ______;

(3) 函数
$$f(x) = \int_{0}^{x} (1-t^2)e^{2t}dt$$
 单调增加的区间是______;

(4) 设 y 是 x 的函数,满足
$$\int_0^y e^t dt + \int_0^x \cos t dt = 0$$
,则 $\frac{dy}{dx} =$ _____;

(5) 若函数
$$f(x)$$
 具有连续的导数,则 $\frac{d}{dx}\int_0^x (x-t)f'(t)dt =$ _____;

(6) 设
$$f(x)$$
 在 $[-1,1]$ 上连续,则 $x=0$ 是函数 $g(x)=\frac{\int_0^x f(t)dt}{x}$ 的_____间断点.

2. 求函数
$$I(x) = \int_0^x te^{-t^2} dt$$
 的极值.

3. 求下列极限:

$$(1) \lim_{x\to 0}\frac{\int_0^x\cos t^2dt}{x};$$

(2)
$$\lim_{x\to 0} \frac{x-\sin x}{\int_0^x \frac{\ln(1+t^3)}{t} dt}$$
.

4. 计算下列定积分:

(1)
$$\int_0^1 \frac{dx}{\sqrt{4-x^2}}$$
;

(2)
$$\int_{-1}^{0} \frac{3x^4 + 3x^2 + 1}{x^2 + 1} dx;$$

(3)
$$\int_0^2 f(x) dx$$
, $\sharp + f(x) = \begin{cases} x+1, & x \le 1, \\ \frac{1}{2}x^2, & x > 1. \end{cases}$

5. 已知函数
$$f(x) = \begin{cases} \frac{3}{2}x^2, & -1 \le x < 0, \\ \frac{1}{e^x + 1}, & 0 \le x \le 1, \end{cases}$$
 求函数 $F(x) = \int_{-1}^x f(t) dt$.

5.3 定积分的换元法和分部积分法

- 1. 填空题:
- (1) $\exists \exists F'(x) = f(x), \ \bigcup \int_a^{2a} f(2t)dt = \underline{\qquad};$
- (2) 已知 f(x) 的一个原函数是 x^2 , 则 $\int_0^{\frac{\pi}{2}} f(-\sin x) \cos x dx = ______;$
- (3) $\frac{d}{dx} \int_0^x t f(x^2 t^2) dt =$ _____;
- (4) $\int_{-5}^{5} \frac{x^3 \sin^2 x}{x^4 + 2x^2 + 1} dx = \underline{\qquad};$
- (5) $\int_{-1}^{2} e^{|x|} dx =$ _____;
- (6) 若 f(x) 有连续的导数, $\int_0^{\pi} f(x) \sin x dx = k$, 则 $\int_0^{\pi} f'(x) \cos x dx =$ ______.
- 2. 计算下列定积分:

(1)
$$\int_{1}^{\sqrt{3}} \frac{dx}{x^2 \sqrt{1+x^2}}$$
;

(2)
$$\int_{1}^{4} \frac{dx}{1+\sqrt{x}}$$
;

(3)
$$\int_{1}^{e^2} \frac{dx}{x\sqrt{1+\ln x}};$$

(4)
$$\int_0^{\pi} \sqrt{1 + \cos 2x} dx$$
;

(5)
$$\int_{-1}^{1} \frac{2x^2 + x(e^x + e^{-x})}{1 + \sqrt{1 + x^2}} dx.$$

3. 求可导函数 f(x), 使它满足 $\int_0^1 f(tx)dt = f(x) + x \sin x$.

- ___年___月___日 5. 计算下列定积分:
- (1) $\int_0^{\sqrt{2}} x^3 e^{-x^2} dx$;

 $(2) \int_0^{\frac{\pi^2}{4}} \sin \sqrt{x} dx ;$

 $(3) \int_1^e \sin(\ln x) dx;$

 $(4) \int_0^\pi x \sqrt{\cos^2 x - \cos^4 x} \, dx \, .$

6. 设 f(x) 为连续函数, $F(t) = \int_1^t \left(\int_y^t f(x) dx \right) dy$, 求 F'(2).

5.4 广义积分

- 1. 选择题:
- (1) $\int_{-\infty}^{+\infty} f(x)dx$ 收敛是 $\int_{a}^{+\infty} f(x)dx$ 与 $\int_{-\infty}^{a} f(x)dx$ 都收敛的 ()
- (A) 充分条件.
- (B) 必要条件.
- (C) 充要条件.
- (D) 既不充分又不必要条件.
- (2) 若 $\int_0^1 \frac{dx}{x^{1-p}}$ 收敛,则 ()
- (A) $-1 \le p \le 0$. (B) $-1 . (C) <math>p \ge 0$. (D) p > 0.
- (3) 下列广义积分发散的是()
- $(A) \int_{-1}^{1} \frac{1}{\sin x} dx.$
- (B) $\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} dx$.
- (C) $\int_0^{+\infty} x e^{-x} dx$.
- (D) $\int_{2}^{+\infty} \frac{1}{r \ln^{2} r} dx$.
- 2. 计算下列广义积分:
- $(1) \int_1^{+\infty} \frac{dx}{x^4};$

(2) $\int_0^{+\infty} e^{-ax} dx$ (a > 0);

(3) $\int_{\frac{1}{2}}^{5} \frac{1}{\sqrt{2x-1}} dx ;$

(4) $\int_0^2 \frac{dx}{(1-x)^2} \, .$

总习题5

1. 选择题:

(1) 若
$$f(x)$$
 连续,则 $\lim_{x\to a} \frac{x}{x-a} \int_a^x f(t)dt =$ ()

- (A) 0. (B) af(a). (C) f(a) af(a). (D) f(a).
- (A) 1. (B) 0. (C) -1. (D) 2.
- (3) 已知 f(x) 连续,且 $\lim_{x\to 0} \frac{f(x)}{x} = 1$,则 $\lim_{x\to 0} \frac{\int_0^x f(at)dt}{x^2} = ($
- (A) $\frac{1}{2}$. (B) $\frac{1}{2a}$. (C) $\frac{a}{2}$. (D) 2a.
- (4) 对广义积分 $\int_{-\infty}^{+\infty} \sin x dx$, 正确的结论为 ()
- (A) 因为 $\sin x$ 是奇函数,故 $\int_{-\infty}^{+\infty} \sin x dx = 0$. (B) $\int_{-\infty}^{+\infty} \sin x dx$ 发散.
- (C) $\int_{-\infty}^{+\infty} \sin x dx = -[\cos(+\infty) \cos(-\infty)] = 0$.
- (D) $\int_{-\infty}^{+\infty} \sin x dx = \lim_{h \to +\infty} \int_{-h}^{+h} \sin x dx = 0$.
- (5) 设函数 f(x) 与 g(x) 在 [0,1] 上连续,且 $f(x) \le g(x)$,则对任何 $C \in (0,1)$ 有
- (A) $\int_{\frac{1}{2}}^{C} f(t)dt \ge \int_{\frac{1}{2}}^{C} g(t)dt$. (B) $\int_{\frac{1}{2}}^{C} f(t)dt \le \int_{\frac{1}{2}}^{C} g(t)dt$.
- (C) $\int_{C}^{1} f(t)dt \ge \int_{C}^{1} g(t)dt$. (D) $\int_{C}^{1} f(t)dt \le \int_{C}^{1} g(t)dt$.
- 2. 填空题:

(1)
$$\int_0^2 \sqrt{x^2 - 2x + 1} \, dx = \underline{\hspace{1cm}}$$
;

(2)
$$\int_{-\pi}^{\pi} \left(\frac{\sin x}{1 + x^4} + \cos x \right) dx = \underline{\qquad} ;$$

- (3) $y = x \arctan \frac{1}{x} + \int_0^x \arctan t dt$, $\stackrel{\triangle}{=} x = 1 \text{ ft}$, $y'(x) = \underline{\qquad}$;
- (4) $\lim_{n\to\infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n} \right) = \underline{\hspace{1cm}}$.

3. 若函数 $f(x) = \frac{1}{1+x^2} + \sqrt{1-x^2} \int_0^1 f(x) dx$,求 f(x).

4. 计算下列积分:

(1)
$$\int_0^1 \sqrt{2x-x^2} dx$$
;

$$(2) \quad \int_0^\pi \sqrt{1-\sin x} \, dx \, .$$

5. 证明不等式 $\frac{1}{2} \le \int_0^{\frac{1}{2}} \frac{dx}{\sqrt{2x^2 - x + 1}} \le \frac{\sqrt{14}}{7}$.

___年___月__日 姓名_____ 学号_____ 6. 设 f(x) 为连续函数,证明 $\int_0^x f(t)(x-t)dt = \int_0^x (\int_0^t f(u)du)dt$.

7. 设 f(x) 在 [a,b] 上连续,且 f(x) > 0, $F(x) = \int_a^x f(t)dt + \int_b^x \frac{dt}{f(t)}$, $x \in [a,b]$,

证明: (1) $F'(x) \ge 2$; (2) 方程 F(x) = 0 在区间 (a,b) 内有且仅有一个根.

9. 设函数 $f(x) = \int_0^1 |t(t-x)| dt \ (0 < x < 1)$, 求 f(x) 的极值、单调区间及曲线 y = f(x) 的凹凸区间.

10. 设 f(x), g(x)在 [0,1]上的导数连续,且 f(0)=0, $f'(x)\geq 0$, $g'(x)\geq 0$, 证明: 对任何 $a\in [0,1]$, 有 $\int_0^a g(x)f'(x)dx+\int_0^1 f(x)g'(x)dx\geq f(a)g(1)$.

第6章 定积分的应用

6.2 平面图形的面积 立体的体积

- 1. 求由下列各曲线所围成的图形的面积:
- (1) $y = \frac{1}{x}$ 与直线 y = x 及 x = 2;
- (2) $y = \ln x$, $y = \ln a$, $y = \ln b$ (b > a > 0).

2. 求由曲线 $x = a\cos^3 t$, $y = a\sin^3 t$ 所围成的图形的面积.

3. 求曲线 $r = 3\cos\theta$ 及 $r = 1 + \cos\theta$ 所围成图形的公共部分的面积.

4. 求抛物线 $y = -x^2 + 4x - 3$ 与其在点 (0, -3) 及 (3, 0) 处的切线所围平面图形的 面积.

5. 由 $y=x^3$, x=2, y=0 所围成的图形, 分别绕 x 轴及 y 轴旋转, 计算所得的 两个旋转体的体积.

- 6. 求下列曲线所围成的图形按指定的轴旋转所产生的旋转体的体积:
- (1) $y = x^2, x = y^2$, $\& y = x^2$; (2) $x^2 + (y 5)^2 = 16$, $\& x = x^2$.

7. 求圆盘 $(x-2)^2 + v^2 \le 1$ 绕 v 轴旋转所成旋转体的体积.

8. 某立体的底面是半径为 R 的圆,垂直于底面上一条固定直径的所有截面都 是等边三角形, 求该立体的体积.

9. 过坐标原点作曲线 $v = \ln x$ 的切线,该切线与曲线 $v = \ln x$ 及 x 轴围成平面 图形 D.(1) 求 D的面积; (2) 求 D绕直线 x=e 旋转一周所得旋转体的体积.

6.3 平面曲线的弧长与曲率

1. 计算曲线 $y = \frac{\sqrt{x}}{3}(3-x)$ 上相应于 $1 \le x \le 3$ 的一段弧的长度.

2. 计算曲线 $x = \arctan t$, $y = \frac{1}{2} \ln(1 + t^2)$ 从 t = 0 到 t = 1 的一段弧的长度.

3. 计算对数螺线 $r = e^{2\theta} \perp \theta = 0$ 到 $\theta = 2\pi$ 的一段弧的长度.

左	П	
	月	⊔

5. 曲线 y=lnx上哪一点的曲率半径最小? 求出该点处的曲率半径.

6. 求曲线 $\begin{cases} x = 3t^2, \\ y = 3t - t^3 \end{cases}$ 在 t = 1 处的曲率 k.

6.5 定积分在物理上的应用

1. 一物体按规律 $x = ct^3$ 作直线运动,媒质的阻力与速度的平方成正比,计算物体由 x = 0 移至 x = a 时,克服媒质阻力所作的功.

2. 一圆锥形贮水池,深15米,口径20米,今以唧筒将水吸尽,问要作多少功.

3. 若沙的比重为2吨/立方米,为要堆起一个底面半径为r米,高为h米的圆锥形的沙堆,问至少需作多少功?

总习题 6

1. 设直线 y = ax(0 < a < 1) 与抛物线 $y = x^2$ 所围成的图形面积为 S_1 ,它们与直线 x = 1 所围成的图形面积为 S_2 , 试确定常数 a 的值,使 $S_1 + S_2$ 达到最小,并求出最小值.

2. 求由曲线 $y=x^{\frac{3}{2}}$ 与直线 x=4 及 x 轴所围图形绕 y 轴旋转而成的旋转体的体积.

3. 求圆盘 $x^2 + y^2 \le a^2$ 绕 x = -b (b > a > 0)旋转所成旋转体的体积.

4. 设曲线 $y = ax^2 - ax$ 与直线 y = ax (常数 a > 0)所围成的平面图形的面积为 $\frac{8}{3}$,试确定 a 的值.

5. 求抛物线 $y = \frac{1}{2}x^2$ 被圆 $x^2 + y^2 = 3$ 所截下的有限部分的弧长.

6. 设半径为R的半球形水池装满水,将水从池中抽出,当抽出的水所作的功为将全部水抽完所作的功的一半时,问水面下降的高度h为多少?

第7章 空间解析几何与向量代数

7.1 空间直角坐标系

1. 求点 (a,b,c) 关于(1)各坐标面; (2)各坐标轴; (3)坐标原点的对称点的坐标.

2. 求点M(4,-3,5)到各坐标轴以及坐标原点的距离.

3. 在 yOz 面上, 求与三点 A(3,1,2)、B(4,-2,-2) 和 C(0,5,1) 等距离的点.

7.2 曲面与空间曲线的一般方程

1. 一动点与两定点(2,3,1)和(4,5,6)等距离,求这动点的轨迹方程.

2. 建立以点(1,3,-2)为球心,且通过坐标原点的球面方程.

3. 将 xOz 坐标面上的抛物线 $z^2 = 5x$ 绕 x 轴旋转一周,求所生成的旋转曲面的方程.

4. 将xOz 坐标面上的圆 $x^2 + z^2 = 9$ 绕z 轴旋转一周,求所生成的旋转曲面的方程.

年	月	Н
	/ 1	\vdash

的旋转曲面的方程.

6. 指出下列方程在平面解析几何和空间解析几何中分别表示什么图形:

(1)
$$x = 2$$
;

(2)
$$y = x + 1$$
;

(3)
$$x^2 + y^2 = 4$$
;

(4)
$$x^2 - y^2 = 1$$
.

7. 指出下列方程组在平面解析几何和空间解析几何中分别表示什么图形:

$$\begin{cases} y = 5x + 1, \\ y = 2x - 3; \end{cases}$$

(2)
$$\begin{cases} \frac{x^2}{4} + \frac{y^2}{9} = 1, \\ y = 3. \end{cases}$$

8. 说明下列旋转曲面是怎样形成的:

(1)
$$\frac{x^2}{4} + \frac{y^2}{9} + \frac{z^2}{9} = 1;$$
 (2) $x^2 - \frac{y^2}{4} + z^2 = 1;$

(2)
$$x^2 - \frac{y^2}{4} + z^2 = 1$$

(3)
$$x^2 - y^2 - z^2 = 1$$

(3)
$$x^2 - y^2 - z^2 = 1$$
; (4) $(z - a)^2 = x^2 + y^2$.

9. 画出下列方程所表示的曲面:

(1)
$$z = 2(x^2 + y^2)$$
;

(2)
$$z = \sqrt{a^2 - x^2 - y^2}$$
;

(3)
$$z = -\sqrt{x^2 + y^2}$$
;

(4)
$$(z-1)^2 = a^2 - (x-1)^2 - y^2$$
.

1. 将曲线的一般方程 $\begin{cases} x^2 + y^2 = 2x, \\ x + y + z = 0 \end{cases}$ 化为参数方程.

2. 将下列曲面方程分别用柱面坐标和球面坐标方程表示:

(1)
$$x^2 + y^2 + (z-1)^2 = 1$$
; (2) $z - (x^2 + y^2) = 0$.

(2)
$$z - (x^2 + y^2) = 0$$
.

3. 求曲线 $\begin{cases} y^2 + z^2 - 2x = 0, \\ z = 3 \end{cases}$ 在 xOy 面上的投影曲线的方程,并指出原曲线是什么曲 线.

4. 分别求母线平行于 x 轴及 y 轴而且通过曲线 $\begin{cases} 2x^2 + y^2 + z^2 = 16, \\ x^2 + z^2 - y^2 = 0 \end{cases}$ 的柱面方程.

5. 求旋转抛物面 $z = x^2 + y^2$ ($0 \le z \le 4$) 在三坐标面上的投影.

*6. 求上半球 $0 \le z \le \sqrt{a^2 - x^2 - y^2}$ 与圆柱体 $x^2 + y^2 \le ax(a > 0)$ 的公共部分在xOy 面和xOz 面上的投影.

7.4 向量的概念和运算

- 1. 填空题:
- (2) 平行于向量 a = (6,7,-6) 的单位向量为 ;
- (3) 向量 $\mathbf{a} = (4, -3, 4)$ 在向量 $\mathbf{b} = (2, 2, 1)$ 上的投影为______;
- (4) 已知 $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = 2$,则 $[(\mathbf{a} + \mathbf{b}) \times (\mathbf{b} + \mathbf{c})] \cdot (\mathbf{c} + \mathbf{a}) =$
- 2. 如果平面上一个四边形的对角线互相平分,试用向量证明它是平行四边形.

3. 已知两点 $M_1(4,\sqrt{2},1)$ 和 $M_2(3,0,2)$,求向量 $\overline{M_1M_2}$ 的模、方向余弦和方向角.

4. 设向量的方向余弦分别满足(1) $\cos \alpha = 0$; (2) $\cos \beta = 1$; (3) $\cos \alpha = \cos \beta = 0$, 这些向量与坐标轴或坐标面的关系如何?

5. 分别求出向量 $\mathbf{a} = \mathbf{i} + \mathbf{j} + \mathbf{k}, \mathbf{b} = 2\mathbf{i} - 3\mathbf{j} + 5\mathbf{k}$ 及 $\mathbf{c} = -2\mathbf{i} - \mathbf{j} + 2\mathbf{k}$ 的模,并分别用单位向量 \mathbf{a}° 、 \mathbf{b}° 、 \mathbf{c}° 表达向量 \mathbf{a} 、 \mathbf{b} 、 \mathbf{c} .

6. 设m = 3i + 5j + 8k, n = 2i - 4j - 7k 和p = 5i + j - 4k, 求向量a = 4m + 3n - p 在x 轴上的投影及在y 轴上的分向量.

7. 从点 A(2,-1,7) 沿向量 $\mathbf{a}=8\mathbf{i}+9\mathbf{j}-12\mathbf{k}$ 的方向取 $\left|\overline{AB}\right|=34$, 求点 B 的坐标.

8. 设 $a \times b \times c$ 为单位向量,且满足a+b+c=0,求 $a \cdot b+b \cdot c+c \cdot a$.

直.

10. 已知 $\overrightarrow{OA} = \mathbf{i} + 3\mathbf{k}$, $\overrightarrow{OB} = \mathbf{j} + 3\mathbf{k}$, 求 ΔOAB 的面积.

- 11. 已知向量a = 2i 3j + k, b = i j + 3k和c = i 2j, 计算:
- (1) $(\mathbf{a} \cdot \mathbf{b})\mathbf{c} (\mathbf{a} \cdot \mathbf{c})\mathbf{b}$; $(2)(\mathbf{a} + \mathbf{b}) \times (\mathbf{b} + \mathbf{c})$; $(3)(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$.

12. 求同时垂直于向量 $\mathbf{a} = (1,0,-1)$ 和 $\mathbf{b} = (1,1,0)$ 的单位向量.

7.5 平面和直线方程

1. 填空题:

(1) 过点
$$(3,0,-1)$$
且与平面 $3x-7y+5z-12=0$ 平行的平面方程为_____;

(2) 过点(5,-7,4)且在三坐标轴上的截距相等的平面方程为_____;

(3) 点
$$(1,2,1)$$
 到平面 $x+2y+2z=10$ 的距离为______;

(4) 过点(4,-1,3)且平行于直线
$$\frac{x-3}{2} = \frac{y}{1} = \frac{z-1}{5}$$
的直线方程为 _____;

(5) 点
$$(-1,2,0)$$
 在平面 $x+2y-z+1=0$ 上的投影为______;

(6) 直线
$$\begin{cases} x+y+3z=0, \\ x-y-z=0 \end{cases}$$
 与平面 $x-y-z+1=0$ 的夹角为______.

2. 一平面过点(1,0,-1)且平行于向量 $\mathbf{a} = (2,1,1)$ 和 $\mathbf{b} = (1,-1,0)$,试求这平面方程.

3. 求过点 (1,-1,1) 且与平面 $\pi_1: x-y+z-1=0$ 及平面 $\pi_2: 2x+y+z+1=0$ 垂直的平面方程.

4. 求过x轴且与平面5x+4y-2z+3=0垂直的平面方程.

6. 求两平行平面 π_1 : x + y - z + 1 = 0 与 π_2 : 2x + 2y - 2z - 3 = 0 之间的距离.

7. 用对称式方程及参数方程表示直线 $\begin{cases} x-y+z=1, \\ 2x+y+z=4. \end{cases}$

8. 求过点(2,0,-3) 且与直线 $\begin{cases} x-2y+4z-7=0, \\ 3x+5y-2z+1=0 \end{cases}$ 垂直的平面方程.

高等数学作业集 9. 求过点(0,2,4)且与两平面x+2z=1和y-3z=2平行的直线方程.

10. 求过点(3,1,-2)且通过直线 $\frac{x-4}{5} = \frac{y+3}{2} = \frac{z}{1}$ 的平面方程.

11. 试确定下列各组中的直线和平面间的关系:

(1)
$$\frac{x+3}{-2} = \frac{y+4}{-7} = \frac{z}{3} \neq 14x - 2y - 2z = 3$$
;

12. 设 M_0 是直线L外一点,M是直线L上任意一点,且直线的方向向量为s,试

证: 点
$$M_0$$
到直线 L 的距离 $d = \frac{\left|\overline{M_0M} \times \mathbf{s}\right|}{|\mathbf{s}|}$.

___年__月__日 姓名_____ 学号_____ 13. 求点 P(3,-1,2) 到直线 $\begin{cases} x+y-z+1=0, \\ 2x-y+z-4=0 \end{cases}$ 的距离.

14. 求直线 $\begin{cases} 2x-4y+z=0, \\ 3x-y-2z-9=0 \end{cases}$ 在平面 4x-y+z=1 上的投影直线的方程.

15. 设一平面垂直于平面 z=0, 并通过从点 P(1,-1,1) 到直线 $L: \begin{cases} y-z+1=0 \\ x=0 \end{cases}$ 的垂 线, 求平面的方程.

总习题7

1. 选择题:

(1)	直线 <i>L</i> ₁ :-x+1=	$\frac{y+1}{2}$	$\frac{z+1}{3}$	与直线 L_2 : $\begin{cases} 2x + y - 1 = 0 \\ 3x + z - 2 = 0 \end{cases}$ 的位置关系为(
-----	---------------------------------	-----------------	-----------------	--

- (A) 平行但不重合.
- (B) 相交. (C) 重合.
- (D) 异面直线.

(2) 已知a+3b垂直于7a-5b,a-4b垂直于7a-2b,则a与b的夹角为(

- (A) $\frac{\pi}{2}$. (B) $\frac{\pi}{3}$. (C) $\frac{\pi}{4}$.

(3) 设a与b是互相垂直的单位向量,以向量p=a+kb与q=a-kb为二邻边的

平行四边形面积为10,则k = (

- (B) ± 1 . (C) ± 2 . (D) ± 10 .

(4) 两平行平面 2x-3y-6z-14=0 与 2x-3y-6z+7=0 之间的距离为(

- (A) $\frac{21}{2}$. (B) 7. (C) $\frac{7}{2}$. (D) 3.

(5) 直线 $\begin{cases} x = 1 + t \\ y = 2 + kt = 7 = 2x + y - \sqrt{5}z + 5 = 0 \text{ 的夹角为} \frac{\pi}{6}, \quad \text{则 } k \text{ 满足 } (x = 1) \end{cases}$

- (A) k = -3 或 $k = -\frac{1}{3}$. (B) k = 3 或 $k = \frac{1}{3}$.
- (C) k=3 或 $k=-\frac{1}{3}$. (D) k=-3 或 $k=\frac{1}{3}$.

2. 已知 $\triangle ABC$ 的顶点为 A(3,2,-1)、 B(5,-4,7) 和 C(-1,1,2) , 求从顶点 C 所引中线 的长度.

4. 设 $\mathbf{a} = (2,-1,-2), \mathbf{b} = (1,1,z)$, 问z为何值时 \mathbf{a},\mathbf{b} 的夹角最小?并求此最小值.

5. 设|a|=4,|b|=3, $(a,b)=\frac{\pi}{6}$, 求以a+2b和a-3b为邻边的平行四边形的面积.

6. 设 $\boldsymbol{a}=(2,-3,1), \boldsymbol{b}=(1,-2,3), \boldsymbol{c}=(2,1,2)$,向量 \boldsymbol{r} 满足 $\boldsymbol{r}\perp\boldsymbol{a}, \boldsymbol{r}\perp\boldsymbol{b}, \Pr$ j_c $\boldsymbol{r}=14$,求 \boldsymbol{r} .

7. 求通过点 A(3,0,0) 和 B(0,0,1) 且与 xOy 面成 $\frac{\pi}{3}$ 角的平面的方程.

8. 求过点 (-1,0,4),且平行于平面 3x-4y+z-10=0,又与直线 $\frac{x+1}{1}=\frac{y-3}{1}=\frac{z}{2}$ 相交的直线的方程.

9. 己知点 A(1,0,0) 及点 B(0,2,1), 试在 z 轴上求一点 C, 使 ΔABC 的面积最小.

10. 画出下列各曲面所围成的立体的图形:

(1)
$$x = 0, y = 0, z = 0, x = 2, y = 1, 3x + 4y + 2z - 12 = 0$$
;

(2)
$$z = 0, z = 3, x - y = 0, x - \sqrt{3}y = 0, x^2 + y^2 = 1$$
 (在第一卦限内);

(3)
$$x = 0, y = 0, z = 0, x^2 + y^2 = R^2, x^2 + z^2 = R^2$$
 (在第一卦限内);

(4)
$$z = 6 - x^2 - y^2, z = \sqrt{x^2 + y^2}$$
.

答案与提示

第1章 函数与极限

1.2 函数

4.
$$f^{-1}(y) = \begin{cases} \sqrt{1+y}, & -1 \le y \le 0, \\ -\sqrt{y}, & 0 < y \le 1, \end{cases}$$
 $f^{-1}(x) = \begin{cases} \sqrt{1+x}, & -1 \le x \le 0, \\ -\sqrt{x}, & 0 < x \le 1. \end{cases}$

5.
$$f[g(x)] = \begin{cases} 1, & x < 0, \\ 0, & x = 0, \\ -1, & x > 0, \end{cases}$$
 $g[f(x)] = \begin{cases} e, & |x| < 1, \\ 1, & |x| = 1, \\ e^{-1}, & |x| > 1. \end{cases}$

6.
$$f(-2) = -1$$
, $f(0) = 1$, $f(2) = 4$, $f(x-1) = \begin{cases} x, & -2 < x \le 1, \\ 2^{x-1}, & 1 < x < 4. \end{cases}$

1.3 函数的极限

1.3.1 数列极限

- 1.(1) 0; (2) 没有极限; (3) 没有极限; (4) 1; (5) 没有极限.
- 4. (1) 2; (2) -1; (3) 2; (4) $-\frac{1}{5}$.
- 6. (1) $e^{\frac{1}{2}}$; (2) e^{-1} .

1.3.2 函数极限

2.
$$f(0^-)=1$$
, $f(0^+)=0$, $f(1^-)=1$, $f(1^+)=1$, $\lim_{x\to 0} f(x)$ 不存在, $\lim_{x\to 1} f(x)=1$.

3.
$$f(0^-) = -1$$
, $f(0^+) = 1$, $\lim_{x \to 0} f(x)$ 不存在.

4. (1)
$$\frac{2}{3}$$
; (2) $2x$; (3) $\frac{1}{2}$; (4) -1; (5) $\frac{5}{3}$; (6) 1; (7) 2; (8) 1;

(9)
$$e^{-2}$$
; (10) e^{-1} ; (11) e^{-4} ; (12) $e^{-\frac{1}{2}}$; (13) $\frac{2}{\pi}$; (14) $\cos a$; (15) $\frac{\sqrt{2}}{4}$; (16) $\frac{3}{2}$.

1.4 无穷小量与无穷大量

2. (1)
$$\frac{5}{3}$$
; (2) 2; (3) $\frac{1}{2}$; (4) -3; (5) 0; (6) 0.

1.5 函数的连续性

1.
$$f(0^-) = -1$$
, $f(0^+) = 1$, 第一类.

2.
$$(-\infty, -3)$$
, $(-3, 2)$, $(2, +\infty)$, $\lim_{x\to 0} f(x) = \frac{1}{2}$, $\lim_{x\to -3} f(x) = -\frac{8}{5}$, $\lim_{x\to 2} f(x) = \infty$.

3. (1)
$$\lim_{x\to 1} f(x) = -2$$
, $x = 1$ 为第一类(可去)间断点;

$$\lim_{x\to 2} f(x) = \infty$$
, $x = 2$ 为第二类(无穷)间断点.

$$(2) f(0^-) = \frac{1}{2}$$
, $f(0^+) = 1$, $x = 0$ 为第一类(跳跃)间断点.

4. x = 0 和 $x = k\pi + \frac{\pi}{2}$ 为第一类(可去)间断点; $x = k\pi$ ($k \neq 0$) 为第二类(无穷)间断点.

$$f(x) = \begin{cases} \frac{x}{\tan x}, & x \neq k\pi + \frac{\pi}{2}, x \neq k\pi \\ 1, & x = 0, \\ 0, & x = k\pi + \frac{\pi}{2}. \end{cases}$$

5.
$$f(x) = \begin{cases} x, & |x| < 1, \\ 0, & |x| = 1, \\ -x, & |x| > 1, \end{cases}$$
 $x = 1$ 和 $x = -1$ 为第一类(跳跃)间断点.

6. (1)
$$\frac{4+\sin 2}{e^2\sqrt{5}}$$
; (2) 1; (3) $\frac{1}{n}$; (4) $\frac{\pi}{6}$; (5) e^3 ; (6) 1.

- 7. a = 1.
- 9. 提示: 构造函数 F(x) = f(x) x,用介值定理.
- 10. 提示: $F(x) = x b a \sin x$, 用介值定理.

总习题 1

- 1. (1) \times ; (2) \times ; (3) \times ; (4) \times .
- 2. (1) (C); (2) (B); (3) (B).
- 3. g(x).

4.
$$(1) - \frac{1}{4}$$
; $(2)1$; $(3)\frac{1}{4}$; $(4) - \frac{1}{a^2}$; $(5)0$; $(6)1$.

- 5. a = -1, b = 0.
- 7. x = 1 是第二类(无穷)间断点, x = 0 是第一类(跳跃)间断点.
- 8. 提示:单调有界准则.

第2章 导数与微分

2.1 导数的概念

1. (1)
$$f'(x_0)$$
; (2) $f'(x_0)$; (3) $-f'(x_0)$; (4) $f'(0)$; (5) $f'(x_0)$.

2. (1)
$$1.6x^{0.6}$$
; (2) $-2x^{-3}$; (3) $\frac{16}{5}x^{\frac{11}{5}}$; (4) $\frac{1}{6}x^{-\frac{5}{6}}$.

3.
$$f'(x) = -\frac{1}{(1+x)^2}$$
, $f'(0) = -1$.

4.
$$f'(0) = -1$$
 $f'(0) = 0$ $f'(0)$ 不存在.

5. 切线方程为
$$y = x + 1$$
.

6. (1) (0, 0); (2)
$$(\frac{1}{2}, \frac{1}{4})$$
; (3) (2, 4).

8.
$$a = 2, b = -1$$
.

姓名_____ 学号___ 2.2 **函数的求导法则**

1. (1)
$$2x-5x^{-\frac{7}{2}}-3x^{-4}$$
;

$$(2) - \frac{2a}{(x+a)^2};$$

(3) $\tan x + x \sec^2 x - 2 \sec x \tan x$; (4) $2x \cos x \cdot \ln x - x^2 \sin x \cdot \ln x + x \cos x$;

$$(5) - \frac{2 \csc x [(1+x^2) \cot x + 2x]}{(1+x^2)^2}$$

$$(5) - \frac{2\csc x[(1+x^2)\cot x + 2x]}{(1+x^2)^2}; \qquad (6)\frac{e^x}{r^3} - \frac{3e^x}{r^4} + 10^x \ln 10 - \ln 3 \cdot \csc^2 x.$$

2.
$$(1)\frac{\sqrt{2}}{4}(1+\frac{\pi}{2});$$
 $(2)-\frac{1}{18}.$

3. (1)
$$35(7x+2)^4$$
; (2) $2x\sec^2(x^2)$; (3) $x(a^2-x^2)^{-\frac{3}{2}}$; (4) $-\tan x$.

4. (1)
$$\frac{1}{x \cdot \ln x \cdot \ln(\ln x)};$$
 (2)
$$n \sin^{n-1} x \cdot \cos x \cdot \cos nx - n \sin^{n} x \cdot \sin nx;$$

(3)
$$3^{\frac{x}{\ln x}} \ln 3 \cdot \frac{\ln x - 1}{(\ln x)^2};$$
 (4) $\frac{1}{\sqrt{x^2 + a^2}};$ (5) $\frac{2xa^2 - 3x^3}{2\sqrt{a^2 - x^2}};$

(6)
$$4xe^{x^2+1}\sec^2(e^{x^2+1})\tan(e^{x^2+1})$$
.

5. (1)
$$\frac{e^x}{1+e^{2x}}$$
; (2) $e^{-x} \arccos \frac{1}{x} (\frac{2}{|x|\sqrt{x^2-1}} - \arccos \frac{1}{x})$;

(3)
$$(1+x^2)^{\sin x} \left(\cos x \ln(1+x^2) + \frac{2x \sin x}{1+x^2}\right);$$
 (4) $\frac{1}{\sqrt{(1+x^2)^3}};$

(5)
$$\frac{4}{(e^t + e^{-t})^2}$$
 $\stackrel{\text{TL}}{=} \frac{1}{\cosh^2 t}$; (6) $\arcsin \frac{x}{2}$.

6. (1)
$$\cos(f(x^2)) \cdot f'(x^2) \cdot 2x$$
;

6. (1)
$$\cos(f(x^2)) \cdot f'(x^2) \cdot 2x$$
; (2) $f'(e^x)e^x e^{f(x)} + f(e^x)e^{f(x)} f'(x)$.

1. (1)
$$\frac{dy}{dt} = e^{-t}(\cos t - \sin t), \quad \frac{d^2y}{dt^2} = -2e^{-t}\cos t;$$

(2)
$$\frac{dy}{dx} = \tan x$$
, $\frac{d^2y}{dx^2} = \sec^2 x$, $\frac{d^3y}{dx^3} = 2\sec^2 x \tan x$;

(3)
$$y' = \frac{f'(x)}{f(x)}, \quad y'' = \frac{f''(x)f(x) - [f'(x)]^2}{[f(x)]^2};$$

(4)
$$2^n \sin\left(2x + \frac{n\pi}{2}\right)$$
; (5) $2^x (\ln 2)^n$.

2.
$$f'(2) = 6.12^5$$
, $f''(2) = 30.12^4$, $f'''(2) = 120.12^3$.

3. (1)
$$2^{n-1} \sin(2x + \frac{(n-1)\pi}{2});$$
 (2) $\frac{(-1)^n (n-2)!}{x^{n-1}} (n \ge 2);$

(3)
$$2\frac{(-1)^n n!}{(1+x)^{n+1}};$$
 (4) $e^x[x^2+2nx+n(n-1)].$

隐函数及由参数方程所确定的函数的导数 2.4

1. (1)
$$\frac{yf'(xy)}{1-xf'(xy)}$$
; (2) $\frac{\sin(x+y)-ye^{xy}}{xe^{xy}-\sin(x+y)-2y}$.

2.
$$y'|_{x=0} = 1$$
, $y''|_{x=0} = 2$.

3.
$$(1)\left(\frac{x}{1+x}\right)^x \left(\ln\frac{x}{1+x} + \frac{1}{1+x}\right);$$

$$(2) \frac{x^2}{1-x} \cdot \sqrt[3]{\frac{3-x}{(3+x)^2}} \left[\frac{2}{x} + \frac{1}{1-x} - \frac{1}{3(3-x)} - \frac{2}{3(x+3)} \right].$$

4. (1)
$$\frac{\cos\theta - \theta\sin\theta}{1 - \sin\theta - \theta\cos\theta}$$
; (2) $\frac{dy}{dx} = \frac{t}{2}$, $\frac{d^2y}{dx^2} = \frac{1 + t^2}{4t}$, $\frac{d^3y}{dx^3} = \frac{t^4 - 1}{8t^3}$.

$$5. \left. \frac{dy}{dx} \right|_{t=0} = 3.$$

2.5 导数的简单应用

1. 切线:
$$y = \frac{1}{2}(x-1) + \frac{\pi}{4}$$
, 法线: $y = -2(x-1) + \frac{\pi}{4}$.

2.
$$x-2y+2=0$$
.

3.
$$y = 3x - 7$$
.

2.6 函数的微分

$$2. \quad 0.5\Delta x$$
.

3. (1)
$$x^3 + C$$
; (2) $-\frac{1}{\omega}\cos\omega t + C$; (3) $-\frac{1}{2}e^{-2x} + C$;

(4)
$$\frac{1}{3} \tan 3x + C$$
; (5) $\frac{1}{2} \arctan 2x + C$; (6) $-\sqrt{a^2 - x^2} + C$.

4. (1)
$$\frac{2\ln(1-x)}{x-1}dx$$
; (2) $e^{-x}[\sin(3-x)-\cos(3-x)]dx$;

(3)
$$8x \tan(1+2x^2) \sec^2(1+2x^2) dx$$
; (4) $-\frac{2x}{1+x^4} dx$.

5.
$$\frac{2 + \ln(x - y)}{3 + \ln(x - y)} dx$$
.

总习题2

1. (1) -1; (2) 3; (3) 60!; (4)
$$\frac{8!}{(1-x)^9}$$
; (5) $\cot^2 y dx \stackrel{\text{red}}{=} \frac{1}{(x+y)^2} dx$;

(6)
$$-\frac{1}{2} \left[\frac{1}{(1-x)^2} + \frac{2(1-x^2)}{(1+x^2)^2} \right], -\frac{3}{2};$$
 (7) $\sqrt[x]{x} \left(\frac{1-\ln x}{x^2} \right) dx;$

年 月 日

__年__月__日 姓名_____ 学号____
(8)
$$\frac{\cos^2 x}{x} - \sin 2x \cdot \ln x$$
, $-2\cos 2x \ln x - \frac{2\sin 2x}{x} - \frac{\cos^2 x}{x^2}$.

- 2. (1) (D); (2) (A); (3) (B).
- 3. f'(0) = 0, f'(0) = 0, f'(0) = 0,

$$f'(x) = \begin{cases} 2x \sin \frac{1}{x} - \cos \frac{1}{x}, & x < 0, \\ 0, & x \ge 0, \end{cases}$$

$$f'(0^+) = \lim_{x \to 0^+} f'(x) = 0, \ f'(0^-) = \lim_{x \to 0^-} f'(x) \, \overline{\wedge} \, \overline{e} \, \overline{e}.$$

- 4. $\frac{(y^2-e^t)(1+t^2)}{2(1-ty)}$.
- 5. $y = -x, y = -\frac{1}{25}x$.
- 6. 提示: 用导数定义求. f(6) = f(1) = 0, f'(6) = f'(1) = 2, 切线方程: y = 2(x-6).

第3章 导数的应用

3.1 微分中值定理

- 1. (1) $(e-1, \ln(e-1))$; (2) 2, (1,2) 和 (2,3), 1, 没有根.
- 2. $\xi = 1.5$.

3.2 函数单调性与曲线的凹凸性

- 1. (1) $[1,+\infty)$, $(-\infty,1]$; (2) (0,2], $[2,+\infty)$.
- 2. 单调增加区间: $(-\infty, -1] \cup [1, +\infty)$; 单调减少区间: [-1, 1].
- 5. (1) 凸区间: $(-\infty,-1]$ \cup [1,+∞); 凹区间: [-1,1]. 拐点:(1, ln 2), (-1, ln 2).
 - (2) 拐点: (1,4),(1,-4). (3) [-2,2].
- 7. 凸区间: $(-\infty,1]$; 凹区间: $[1,+\infty)$; 拐点:(1,2).
- 8. $a = -\frac{3}{2}, b = \frac{9}{2}$.

3.3 函数的极值与最值

- 1. $-\frac{1}{\ln 2}$, $\sqrt{ }$.
- 2. a = 4, b = 5.
- 3. 不存在, 小.
- 4. $\frac{\pi}{2}$, $\sqrt{3} + \frac{\pi}{6}$.
- 5. (1) 极大值: y(0) = 4, 极小值: $y(-2) = \frac{8}{3}$;

- (2) 极大值: *y*(1) = 2.
- 6. x=1 为极小值点, 极小值为 y=1.
- 7. a=2, 极大值: $f(\frac{\pi}{3})=\sqrt{3}$.
- 9. 最小值 v(-3) = 27.
- 10. 最小值 $y(0) = y(\pm \sqrt{3}) = 0$; 最大值 $y(\pm 1) = y(\pm 2) = 2$.
- 12. $y \frac{\sqrt{2}}{2}b = -\frac{b}{a}\left(x \frac{\sqrt{2}}{2}a\right)$.

3.4 函数图形的描绘

- 1. (1) 定义域 (-∞,+∞);
 - (2) 奇函数,图形关于原点对称,故只需讨论在(0,+∞)上情况;
 - (3) 水平渐近线 y=0;
 - (4) 在 [0,1]上单调增加,在 $[1,+\infty)$ 内单调减少,极大值: $y(1) = \frac{1}{2}$;
 - (5) 在 $[0,\sqrt{3}]$ 上是凸的,在 $[\sqrt{3},+\infty)$ 内是凹的,拐点: $(0,0),(\sqrt{3},\frac{\sqrt{3}}{4})$.
- 2. (1) 定义域 (-∞,1) ∪(1,+∞);
 - (2) 水平渐近线 y=2; 铅直渐近线 x=1;
 - (3) 在[0,1]上单调增加,在 $(-\infty,0)$ U $(1,+\infty)$ 内单调减少,极小值:y(0)=0;
 - (4) 在 $(-\infty, -\frac{1}{2}]$ 上是凸的; $(-\frac{1}{2}, 1)$ \cup $(1, +\infty)$ 内是凹的; 拐点: $(-\frac{1}{2}, \frac{2}{9})$.

3.5 洛必达法则

- 1. (1) 1; (2) $-\frac{1}{8}$; (3) $\frac{1}{2}$; (4) $+\infty$; (5) e; (6) 1; (7) e; (8) $e^{-\frac{1}{2}}$.
- 2. 连续.

3.6 泰勒公式

1.
$$P(x) = 55 + 33(x-3) + 5(x-3)^2$$
.

2.
$$\frac{1}{2+x} = 1 - (x+1) + (x+1)^2 - \dots + (-1)^n (x+1)^n + \frac{(-1)^{n+1}}{(2+\xi)^{n+2}} (x+1)^{n+1} (\xi \uparrow \uparrow \mp -1, x \nearrow |\vec{\mathbf{n}}|).$$

3.
$$xe^{x} = x + x^{2} + \frac{x^{3}}{2} + \dots + \frac{x^{n}}{(n-1)!} + \frac{(n+1+\theta x)e^{\theta x}}{(n+1)!} x^{n+1}$$
 $(0 < \theta < 1)$.

4.
$$(1)\frac{3}{2}$$
; $(2)\frac{1}{6}$.

总习题3

1. (1) ×,
$$\lim_{x \to 1} \frac{x^3 - 3x + 2}{x^3 - x^2 - x + 1} = \lim_{x \to 1} \frac{3x^2 - 3}{3x^2 - 2x - 1} = \lim_{x \to 1} \frac{6x}{6x - 2} = \frac{3}{2};$$

(2) ×,
$$\lim_{x \to 0} \frac{x^2 \sin \frac{1}{x}}{\sin x} = \lim_{x \to 0} \frac{x}{(\sin x)} \lim_{x \to 0} (x \sin \frac{1}{x}) = 1 \cdot 0 = 0;$$

___年___月___日 (3) √:

- $(4) \times$, f(c) 为函数 f(x) 的极小值.
- 2. (1) (B); (2) (B);
- (3) (C).
- 3. (1) $\left[-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right]$; (2) 1.
- 4. (1) 3; (2) $e^{\frac{1}{3}}$; (3) $\frac{1}{2}$; (4) $\frac{2}{3}$.

- 5. 凸区间: $[0,+\infty)$ 及 $(-\infty,-\frac{1}{2}]$,凹区间: $[-\frac{1}{2},0]$,拐点: (0,0)及 $(-\frac{1}{2},e^{-2})$.
- 6. 极小值: $f(\frac{1}{e}) = e^{-\frac{2}{e}}$ 极大值: f(0) = 2.
- 7. $f^{(n)}(0) = \frac{(-1)^{n-1} n!}{n-2}$.
- :. 只需考虑在(0,1)内 f(x)有唯一的实根...
- 9. 提示:对 f(x)用拉格朗日中值定理,对 f(x), e^x 用柯西中值定理.
- 10. 提示: (1)用罗尔定理证唯一性, (2)令 F(x) = f(x)g'(x) f'(x)g(x).
- 11. $a = \frac{4}{2}$, $b = -\frac{1}{2}$.

第4章 不定积分

4.1 不定积分的概念

- 1. (1) f(x), f(x)+C; (2) $2-2x^2$; (3) 27m, $\sqrt[3]{360}s$.

- 2. (1) $\frac{2}{5}x^{\frac{5}{2}} \frac{4}{3}x^{\frac{3}{2}} + 2x^{\frac{1}{2}} + C$; (2) $x \arctan x + C$;

 - (3) $2x \frac{5}{\ln 2 \ln 3} \left(\frac{2}{3}\right)^x + C$; (4) $2x \ln(1 + x^4)$;
 - (5) $\frac{x + \sin x}{2} + C$;
- (6) $\sin x \cos x + C$;
- (7) $-\cot x x + C$;
- (8) $x^3 x \arctan x + C$.

3. $y = \ln |x| + 1$.

4.2 换元积分法

- 1. (1) $-\frac{3}{2}$; (2) $-\frac{1}{5}$; (3) $\frac{1}{2}$; (4) $\frac{1}{3}$; (5) -1; (6) $\frac{1}{2}$.

2.
$$f(x)$$
,
$$\begin{cases} \frac{1}{\mu+1} [f(x)]^{\mu+1} + C, & \mu \neq -1; \\ \ln|f(x)| + C, & \mu = -1. \end{cases}$$
 3. (C).

4. (1)
$$-\frac{1}{a}\cos ax - be^{\frac{x}{b}} + C$$
;

$$(2) -2\cos\sqrt{x} + C;$$

(3)
$$\frac{1}{11} \tan^{11} x + C$$
;

(4)
$$-\ln\left|\cos\sqrt{1+x^2}\right| + C$$
;

(5)
$$\arctan(e^x) + C$$
;

(6)
$$-\frac{1}{3}\sqrt{2-3x^2}+C$$
;

(7)
$$-\frac{10^{2\arccos x}}{2\ln 10} + C$$
;

$$(8) -\frac{1}{x \ln x} + C;$$

(9)
$$-\cos x + \arctan(\cos x) + C$$
;

(10)
$$\frac{1}{8}(2\ln x + 3)^4 + C$$
;

(11)
$$\frac{a^2}{2}\arcsin\frac{x}{a} - \frac{x}{2}\sqrt{a^2 - x^2} + C$$
; (12) $\sqrt{x^2 - a^2} - a\arccos\frac{a}{x} + C$;

$$(12) \quad \sqrt{x^2 - a^2} - a \arccos \frac{a}{x} + C$$

(13)
$$\frac{x}{\sqrt{1+x^2}} + C$$
;

(14)
$$\sqrt{2x} - \ln(1 + \sqrt{2x}) + C$$
;

(15)
$$\arcsin x - \frac{x}{1 + \sqrt{1 - x^2}} + C$$

(15)
$$\arcsin x - \frac{x}{1+\sqrt{1-x^2}} + C$$
; (16) $\frac{2}{9}\sqrt{9x^2-4} - \frac{1}{3}\ln\left|3x+\sqrt{9x^2-4}\right| + C$.

4.3 分部积分法

1. $x \cos x \ln x + 1 + \sin x - (1 + \sin x) \ln x + C$.

2. (1)
$$-\frac{1}{4}x\cos 2x + \frac{1}{8}\sin 2x + C$$
;

(2)
$$-e^{-x}(x+1)+C$$
;

(3)
$$\frac{1}{2}(x^2-1)\ln(x-1)-\frac{1}{4}x^2-\frac{1}{2}x+C$$
; (4) $-2\sqrt{x}\cos\sqrt{x}+2\sin\sqrt{x}+C$;

$$(4) \quad -2\sqrt{x}\cos\sqrt{x} + 2\sin\sqrt{x} + C :$$

$$(5) \frac{x}{2} [\cos(\ln x) + \sin(\ln x)] + C$$

(5)
$$\frac{x}{2} [\cos(\ln x) + \sin(\ln x)] + C;$$
 (6) $\frac{1}{3} x^3 \arctan x - \frac{1}{6} x^2 + \frac{1}{6} \ln(1 + x^2) + C.$

4.4 有理函数及三角有理式的积分

1.
$$\ln(x^2 + x + 5) - \frac{8}{\sqrt{19}} \arctan \frac{2x+1}{\sqrt{19}} + C$$
.

2.
$$\frac{1}{6} \ln \frac{(x+1)^2}{x^2 - x + 1} + \frac{1}{\sqrt{3}} \arctan \frac{2x-1}{\sqrt{3}} + C$$
.

3.
$$\frac{2}{\sqrt{3}} \arctan \frac{2 \tan \frac{x}{2} + 1}{\sqrt{3}} + C$$
.

4.
$$\ln \left| 1 + \tan \frac{x}{2} \right| + C$$
.

5.
$$\frac{3}{2}\sqrt[3]{(1+x)^2} - 3\sqrt[3]{x+1} + 3\ln\left|1 + \sqrt[3]{1+x}\right| + C$$
.

6.
$$2\sqrt{x} - 4\sqrt[4]{x} + 4\ln(\sqrt[4]{x} + 1) + C$$

$$1.(1)(D); (2)(C); (3)(B); (4)(D); (5)(D).$$

2. (1)
$$(\frac{1}{2}, 2)$$
, $y = 2x^2 + \frac{3}{2}$; (2) -2 , $-2x+1$;

$$(2)$$
 -2 , $-2x+1$

(3)
$$-\frac{1}{2}(1-x^2)^2 + C$$
; (4) $-\frac{1}{x}\ln x + C$.

$$(4) \quad -\frac{1}{x}\ln x + C$$

3. (1)
$$\ln \left| x + \sqrt{x^2 - 1} \right| - \ln \left| x + \sqrt{x^2 + 1} \right| + C$$
; (2) $2\sqrt{e^x - 1} - 2\arctan(\sqrt{e^x - 1}) + C$;

(2)
$$2\sqrt{e^x - 1} - 2\arctan(\sqrt{e^x - 1}) + C$$

(3)
$$\ln |x| - \frac{1}{7} \ln |x^7 + 1| + C$$
;

(4)
$$-\frac{1}{2}\arctan(\cos 2x)+C$$
;

(5)
$$\frac{x^4}{4} + \ln \frac{\sqrt[4]{x^4 + 1}}{x^4 + 2} + C$$
;

(6)
$$x \tan \frac{x}{2} + C$$
;

(7)
$$\frac{1}{1+e^x} + \ln \frac{e^x}{1+e^x} + C$$

(7)
$$\frac{1}{1+e^x} + \ln \frac{e^x}{1+e^x} + C$$
; (8) $-\frac{1}{3}\sqrt{1-x^2}(x^2+2)\arccos x - \frac{1}{9}x(x^2+6) + C$.

4.
$$f(x) = -x^2 - \ln|x - 1| + C$$
.

5.
$$\int xf'(2x)dx = \frac{1-2\ln 2x}{8x} + C$$
.

6.
$$\int f(x)dx = \ln|x| - \frac{1}{2}\ln(1+x^2) + C$$
.

7.
$$f(x) = \frac{\sqrt{2}}{2\sqrt{x}(1+x)}$$
.

第5章 定积分

5.1 定积分的概念和性质

2.
$$\frac{1}{2}(b^2-a^2)$$
.

3. (1)
$$6 \le \int_{1}^{4} (x^2 + 1) dx \le 51$$
; (2) $2e^{-\frac{1}{4}} \le \int_{0}^{2} e^{x^2 - x} dx \le 2e^2$.

(2)
$$2e^{-\frac{1}{4}} \le \int_0^2 e^{x^2 - x} dx \le 2e^2$$

5.
$$\frac{\pi}{4}$$
.

6. (1)
$$\frac{\pi}{4}$$
; (2) $\frac{4}{4-\pi}$.

5.2 定积分变限函数和微积分基本公式

1. (1)
$$2x \ln(1+x^4)$$
;

1. (1)
$$2x \ln(1+x^4)$$
; (2) $f(x) = 2(a-x)\cos(a-x)^2$; (3) $[-1,1]$;

$$(3) [-1,1];$$

(4)
$$\frac{\cos x}{\sin x - 1}$$
; (5) $f(x) - f(0)$; (6) 可去.

$$(5) \quad f(x) - f(0)$$

3. (1) 1; (2)
$$\frac{1}{2}$$
.

4. (1)
$$\frac{\pi}{6}$$
; (2) $\frac{\pi}{4}$ +1; (3) $\frac{8}{3}$.

5.
$$F(x) = \begin{cases} \frac{1}{2}(x^3 + 1), & -1 \le x < 0, \\ \frac{1}{2} + \ln 2 + x - \ln(1 + e^x), & 0 \le x \le 1. \end{cases}$$

5.3 定积分的换元法和分部积分法

1. (1)
$$\frac{1}{2}[F(4a)-F(2a)];$$
 (2) -1; (3) $xf(x^2);$

(4) 0; (5)
$$e^2 + e - 2$$
; (6) $k - f(\pi) - f(0)$.

2. (1)
$$\sqrt{2} - \frac{2\sqrt{3}}{3}$$
; (2) $2 + 2\ln\frac{2}{3}$; (3) $2(\sqrt{3} - 1)$; (4) $2\sqrt{2}$; (5) $2\sqrt{2} + 2\ln(1 + \sqrt{2}) - 4$.

3.
$$f(x) = \cos x - x \sin x + C$$
.

4.
$$\frac{1}{4e} - \frac{1}{4}$$

5. (1)
$$\frac{1}{2} - \frac{3}{2}e^{-2}$$
; (2) 2; (3) $\frac{1}{2}(e\sin 1 - e\cos 1 + 1)$; (4) $\frac{\pi}{2}$.

6. f(2).

5.4 广义积分

2. (1)
$$\frac{1}{3}$$
; (2) $\frac{1}{a}$; (3) 3; (4) 发散.

总习题 5

$$1.(1)(B);$$
 $(2)(C);$ $(3)(C);$ $(4)(B);$ $(5)(D).$

2. (1) 1; (2) 0; (3)
$$\frac{\pi - 1}{2}$$
; (4) $\ln 2$.

3.
$$f(x) = \frac{1}{1+x^2} + \frac{\pi}{4-\pi} \sqrt{1-x^2}$$

4. (1)
$$\frac{\pi}{4}$$
; (2) $4(\sqrt{2}-1)$. 8. $1+\ln(1+e^{-1})$.

9. 极小值
$$f\left(\frac{\sqrt{2}}{2}\right) = \frac{1}{3}\left(1 - \frac{\sqrt{2}}{2}\right)$$
; $f(x)$ 在 $(0,1)$ 内是凹的; $\left(0, \frac{\sqrt{2}}{2}\right)$ 内单调递减, $\left(\frac{\sqrt{2}}{2}, 1\right)$ 内单调递增.

姓名______ 学号_____ 第 6 章 定积分的应用

6.2 平面图形的面积 立体的体积

1. (1)
$$\frac{3}{2} - \ln 2$$
; (2) $b - a$.

(2)
$$b - a$$

2.
$$\frac{3}{8}\pi a^2$$
.

3.
$$\frac{5\pi}{4}$$
.

4.
$$\frac{9}{4}$$
.

5.
$$\frac{128}{7}\pi, \frac{64}{5}\pi$$
.

6. (1)
$$\frac{3}{10}\pi$$
; (2) $160\pi^2$.

(2)
$$160\pi^2$$

7.
$$4\pi^2$$
.

8.
$$\frac{4\sqrt{3}}{3}R^3$$
.

9.
$$\frac{1}{2}e^{-1}$$
; $\frac{\pi}{6}(5e^2-12e+3)$.

6.3 平面曲线的弧长与曲率

1.
$$2\sqrt{3} - \frac{4}{3}$$
.

2.
$$\ln(1+\sqrt{2})$$
.

3.
$$\frac{\sqrt{5}}{2}(e^{4\pi}-1)$$
.

4.
$$k=2$$
, $\rho = \frac{1}{2}$.

5.
$$\left(\frac{\sqrt{2}}{2}, -\frac{\ln 2}{2}\right)$$
处曲率半径有最小值 $\frac{3\sqrt{3}}{2}$.

6.
$$\frac{1}{6}$$
.

6.3 定积分在物理上的应用

1.
$$\frac{27}{7}kc^{\frac{2}{3}}a^{\frac{7}{3}}$$
 (其中 k 为比例常数).

3.
$$\frac{1}{6}\pi r^2 h^2$$
 (tm).

总习题 6

1.
$$S(\frac{1}{\sqrt{2}}) = \frac{2 - \sqrt{2}}{6}$$
 为面积的最小值.

2.
$$\frac{512\pi}{7}$$

3.
$$2\pi^2 a^2 b$$
.

4.
$$a = 2$$
.

5.
$$\sqrt{6} + \ln(\sqrt{2} + \sqrt{3})$$
.

6.
$$\sqrt{1-\frac{\sqrt{2}}{2}}R$$
.

第7章 空间解析几何与向量代数

7.1 空间直角坐标系

1. (1)
$$(a,b,-c),(a,-b,c),(-a,b,c)$$
;

(2)
$$(a,-b,-c),(-a,b,-c),(-a,-b,c)$$
;

(3)
$$(-a, -b, -c)$$
.

2.
$$x$$
 轴: $\sqrt{34}$, y 轴: $\sqrt{41}$, z 轴: 5, 原点: $5\sqrt{2}$.

3.
$$(0,1,-2)$$
.

7.2 曲面与空间曲线的一般方程

1.
$$4x + 4y + 10z - 63 = 0$$
.

2.
$$x^2 + y^2 + z^2 - 2x - 6y + 4z = 0$$
.

3.
$$v^2 + z^2 = 5x$$
.

4.
$$x^2 + v^2 + z^2 = 9$$
.

5.
$$\Re x$$
 h: $4x^2 - 9(y^2 + z^2) = 36$; $\Re y$ **h**: $4(x^2 + z^2) - 9y^2 = 36$.

8. (1)
$$xOy$$
 平面上的椭圆 $\frac{x^2}{4} + \frac{y^2}{9} = 1$ 绕 x 轴旋转一周;

(2)
$$xOy$$
 平面上的双曲线 $x^2 - \frac{y^2}{4} = 1$ 绕 y 轴旋转一周;

(3)
$$xOy$$
 平面上的双曲线 $x^2 - y^2 = 1$ 绕 x 轴旋转一周;

(4)
$$vOz$$
 平面上的直线 $z = v + a$ 绕 z 轴旋转一周.

7.3 空间曲线与曲面的参数方程

1.
$$\begin{cases} x = 1 + \cos \theta, \\ y = \sin \theta, \\ z = -1 - \cos \theta - \sin \theta. \end{cases} \quad \theta \in [0, 2\pi)$$

2. (1) 柱面坐标方程
$$(z-1)^2 = 1-r^2$$
; 球面坐标方程 $r = 2\cos \varphi$.

(2) 柱面坐标方程
$$z = r^2$$
; 球面坐标方程 $r = \frac{\cos \varphi}{\sin^2 \varphi}$.

- ___年___月__日 姓名_____ 学号___ 3. 投影曲线方程: $\begin{cases} y^2 = 2x 9, \\ z = 0; \end{cases}$ 原曲线是位于平面 z = 3 上的抛物线.
- 4. 母线平行 x 轴的柱面方程: $3v^2 z^2 = 16$; 母线平行 y 轴的柱面方程: $3x^2 + 2z^2 = 16$.
- 5. xOv 面上的投影: $x^2 + v^2 \le 4$;

zOx 面上的投影: $x^2 \le z \le 4$;

vOz 面上的投影: $v^2 \le z \le 4$.

6. xOv 面上的投影: $x^2 + v^2 \le ax$;

zOx 面上的投影: $x^2 + z^2 \le a^2, x \ge 0, z \ge 0$

7.4 向量的概念和运算

- 1. (1) 5a 11b + 7c; (2) $\pm \frac{1}{11}(6,7,-6)$; (3) 2; (4) 4.
- 3. 模: 2; 方向余弦: $-\frac{1}{2}, -\frac{\sqrt{2}}{2}, \frac{1}{2}$; 方向角: $\frac{2\pi}{3}, \frac{3\pi}{4}, \frac{\pi}{3}$.
- 4. (1) 垂直于 x 轴, 平行于 yOz 平面;
 - (2) 指向与y轴正向一致,垂直于zOx平面;
 - (3) 平行于 z 轴, 垂直于 xOv 平面.
- 5. $|a| = \sqrt{3}, |b| = \sqrt{38}, |c| = 3; a = \sqrt{3}a^{\circ}, b = \sqrt{38}b^{\circ}, c = 3c^{\circ}.$
- 6. 13,7 *i*.
- 7. (18,17,-17).
- 8. $-\frac{3}{2}$.
- 9. $\lambda = 2\mu$.
- 10. $\frac{1}{2}\sqrt{19}$.
- 11. (1) $-8\mathbf{j} 24\mathbf{k}$; (2) $-\mathbf{j} \mathbf{k}$; (3) 2.
- 12. $\pm \frac{1}{\sqrt{3}}(1,-1,1)$.

7.5 平面和直线方程

- 1. (1) 3x-7y+5z=4; (2) x+y+z-2=0;
 - (4) $\frac{x-4}{2} = \frac{y+1}{1} = \frac{z-3}{5}$; (5) $\frac{1}{3}(-5,2,2)$; (6) $\varphi = 0$.
- 2. x+y-3z-4=0.

- 3. 2x y 3z = 0.
- 4. y + 2z = 0.
- 5. x+3y=0 \nearrow 3x-y=0.
- 6. $\frac{5}{6}\sqrt{3}$.
- 7. $\frac{x-1}{-2} = \frac{y-1}{1} = \frac{z-1}{3}$; $\begin{cases} x = 1 2t, \\ y = 1 + t, \\ z = 1 + 3t. \end{cases}$
- 8. 16x-14y-11z-65=0.
- 9. $\frac{x}{-2} = \frac{y-2}{3} = \frac{z-4}{1}$.
- 10. 8x 9y 22z 59 = 0.
- 11. (1) 平行; (2) 垂直; (3) 直线在平面上.
- 13. $\frac{3\sqrt{2}}{2}$.
- 14. $\begin{cases} 17x + 31y 37z 117 = 0, \\ 4x y + z 1 = 0. \end{cases}$
- 15. x+2y+1=0.

总习题 7

- 1. (1) (C);
- (2)(B);
- (3) (A); (4) (D);
- (5)(C).

- 2. $\sqrt{30}$.
- 3. 1.
- 4. $z = -4, \theta_{\min} = \frac{\pi}{4}$.
- 5. 30.
- 6. (14,10,2).
- 8. $\frac{x+1}{16} = \frac{y}{19} = \frac{z-4}{28}$.
- 9. $(0,0,\frac{1}{5})$.

附

高等数学试题(A)卷

一、填空题 (18分)

2. 曲线 *y* = *e*^{arctan x} 上的拐点为 ______;

3. 设函数
$$f(x) = \begin{cases} \frac{1}{x^3} \int_0^x \sin t^2 dt & x \neq 0, \\ a & x = 0 \end{cases}$$
 在 $x = 0$ 处连续,则 $a =$ _______;

4. 若 f(x) 的一个原函数为 $x \ln x$,则 $\int f'(x) dx =$ ______;

5.
$$\int_0^{+\infty} t e^{-t} dt = ____;$$

6. 向量 a = (4, -3, 4) 在向量 b = (2, 2, 1) 上的投影为

二、选择题 (6分)

1. 设函数 f(x) 连续,则下列函数中,必为偶函数的是 ().

(A)
$$\int_{0}^{x} f(t^2)dt$$
; (B) $\int_{0}^{x} f^2(t)dt$;

(B)
$$\int_{0}^{x} f^{2}(t)dt$$

(C)
$$\int_0^x t[f(t) - f(-t)]dt$$
; (D) $\int_0^x t[f(t) + f(-t)]dt$.

(D)
$$\int_{0}^{x} t[f(t) + f(-t)]dt$$

2. 下列结论不正确的是().

(A) 函数 $y = x^2 + 1$ 在 [-1,1] 上满足罗尔定理的条件;

(B) 若
$$y = f(x)$$
在 x_0 处取得极大值,则 $f'(x_0) = 0$ 且 $f''(x_0) < 0$;

(C) 若 f(x) 在 [a,b] 上连续,则 f(x) 在 [a,b] 上可积;

(D) 当
$$x \to 0$$
时,变量 $\frac{1}{x^2}\sin\frac{1}{x}$ 是无界量但不是无穷大.

三、计算题 (30分):

1.
$$\lim_{x\to 0} \frac{(1-\cos\frac{x}{2})x}{\tan x - \sin x}$$
;

2.
$$\int \frac{2x+5}{x^2+3x-10} dx$$
;

$$3. \int \frac{1}{1+\cos\sqrt{x}} dx;$$

4.
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (x^3 + \sin^2 x) \cos^2 x dx;$$

5.
$$\int_0^1 \frac{x}{(2-x^2)\sqrt{1-x^2}} dx.$$

五、(7分) 求通过两平行直线
$$\frac{x+3}{3} = \frac{y+2}{-2} = \frac{z}{1}$$
 和 $\frac{x+3}{3} = \frac{y+4}{-2} = \frac{z+1}{1}$ 的平面方程.

六、(10 分) 设函数 f(x) 可导,且满足方程

$$(x+1) f(x) = x \ln x + \int_{1}^{x} t f'(x-t+1) dt$$
, 试求函数 $f(x)$.

- 七、(11 分) 由原点(0,0)向曲线 $y = \ln x$ 作切线, 试求该切线与曲线 $y = \ln x$ 及 x 轴所围 平面图形的面积,并求该图形绕 x 轴旋转一周所成的旋转体的体积.
- 八、(10 分) 设函数 $f(x) = \int_{0}^{x+\frac{\pi}{2}} |\sin t| dt$, (1) 证明: $f(x+\pi) = f(x)$;
 - (2) 求 f(x) 的最大值和最小值.

高等数学试题(B)卷

一、填空题(18分)

1.
$$\lim_{n\to\infty} (1-\frac{1}{n})^{2n} =$$
_____;

2.
$$\int_{-1}^{1} x(|\sin x| + x) dx =$$
_____;

5. 当
$$p$$
满足_____ 时 , $\int_1^{+\infty} \frac{1}{x^{p-1}} dx$ 收敛;

- 6. 点 (2,1,0) 到平面 3x+4y+5z=0 的距离为______
- 二、选择题(6分)
- 1. 若 f(x) 在 [a,b] 上连续, x_0 为 (a,b) 内任一固定点,则 $\frac{d}{dx}(\int_a^{x_0} f(t)dt) = ($
- (D) $f(x_0) f(a)$. (A) $f(x_0)$; (B) f(x); (C) 0;
- 2. 下列结论正确的是().
- (A) f(x) 有连续的导数,则($\int f(x)dx$)' = $\int f'(x)dx$;
- (B) $\int_a^b f(x)dx$ 表示由连续曲线 y = f(x) 和直线 x = a , x = b 所围图形面积;
- (C)若 f(x) 在 [a,b] 上连续,且 $\int_a^b f(x)dx = 0$,则 $f(x) \equiv 0$, $x \in [a,b]$;

___年___月___日 姓名_____ 学号___
(D)
$$x = 0$$
是 $f(x) = \begin{cases} \frac{x}{|x|} & x \neq 0, \\ 0 & x = 0 \end{cases}$ 的第一类间断点.

三、计算题(35 分):

1.
$$\lim_{x \to \frac{\pi^+}{2}} \frac{\ln \sin x}{(\pi - 2x)^2}$$
;

2.
$$\int \ln(x + \sqrt{1 + x^2}) dx$$
;

3.
$$\int \frac{1}{2-\sin x} dx$$
;

4.
$$\int_{1}^{\sqrt{3}} \frac{1}{x^2 \sqrt{1+x^2}} dx$$
;

5.
$$\int_{0}^{4} \cos(\sqrt{x} - 1) dx$$
.

四、 $(8 \, f)$ 求曲线 $x^3 + y^3 = 3xy$ 在点 $\frac{1}{2}(3,3)$ 处的切线方程.

五、(8 分) 设一平面过原点及点 P(6,-3,2) ,且与平面 4x-y+2z=8 垂直,求此平面 方程.

六、(8 分) 已知 $f(x) = \int_0^{a-x} e^{y(2a-y)} dy$, 求 $\int_0^a f(x) dx$.

七、(11分) 设 D_1 是由抛物线 $y=2x^2$ 和直线x=a,x=2及y=0所围成的平面区域, D_2 是由抛物线 $y = 2x^2$ 和直线 x = a 及 y = 0 所围成的平面区域,其中 0 < a < 2. 求:

- $(1) D_1$ 绕 x 轴旋转而成的旋转体体积 V_1 ,以及 D_2 绕 y 轴旋转而成的旋转体体 V_2 ;
- (2) 当 a 为何值时, $V_1 + V_2$ 取得最大值?并求这个最大值.

 $\int_{0}^{x} (x^{2} - 3t^{2}) f(t) dt \ge 0.$

高等数学试题(A)卷参考答案与评分标准

一、填空题

1.
$$3\frac{1}{2}$$
; 2. $(\frac{1}{2}, e^{\arctan \frac{1}{2}})$; 3. $\frac{1}{3}$; 4. $\ln x + c$; 5. 1; 6. 2

二、选择题

三、计算题

1.
$$\lim_{x \to 0} \frac{(1 - \cos \frac{x}{2})x}{\tan x - \sin x} = \lim_{x \to 0} \frac{(1 - \cos \frac{x}{2})x \cos x}{\sin x(1 - \cos x)}.$$
 (2 $\frac{1}{2}$)

$$= \lim_{x \to 0} \frac{1 - \cos \frac{x}{2}}{1 - \cos x} = \lim_{x \to 0} \frac{\frac{1}{2} \sin \frac{x}{2}}{\sin x} = \frac{1}{4}$$
 (6 $\frac{1}{2}$)

2.
$$\int \frac{2x+5}{x^2+3x-10} dx$$
;

3.
$$\int \frac{1}{1+\cos\sqrt{x}} dx$$

原式=
$$\int \frac{2tdt}{2\cos^2\frac{t}{2}} = 2\int td\tan\frac{t}{2}$$

$$=2t\tan\frac{t}{2}-2\int \tan\frac{t}{2}dt \dots (4\,\%)$$

$$= 2t \tan \frac{t}{2} + 4\ln\left|\cos \frac{t}{2}\right| + C = 2\sqrt{x} \tan \frac{\sqrt{x}}{2} + 4\ln\left|\cos \frac{\sqrt{x}}{2}\right| + C \dots (6 \%)$$

4.
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (x^3 + \sin^2 x) \cos^2 x dx = 2 \int_{0}^{\frac{\pi}{2}} \sin^2 x \cos^2 x dx \dots (2 / \pi)$$

$$=\frac{1}{4}\int_{0}^{\frac{\pi}{2}}(1-\cos 4x)dx=\frac{\pi}{8}-\frac{1}{16}\sin 4x\Big|_{0}^{\frac{\pi}{2}}=\frac{\pi}{8}....(6\%)$$

5.
$$\int_0^1 \frac{x}{(2-x^2)\sqrt{1-x^2}} dx$$
.

解: 令 $x = \sin t$

原式=
$$\int_0^{\frac{\pi}{2}} \frac{\sin t d \sin t}{(2-\sin^2 t)\cos t} = \int_0^{\frac{\pi}{2}} \frac{\sin t dt}{2-\sin^2 t}(3 分)$$

$$= -\int_0^{\frac{\pi}{2}} \frac{d\cos t}{1 + \cos^2 t} = -\arctan(\cos x)\Big|_0^{\frac{\pi}{2}} = \frac{\pi}{4} \qquad (6 \ \%)$$

四、解:
$$\frac{dy}{dt} = \frac{\sin(t-y) + y\cos t}{\sin(t-y) - \sin t}$$

$$\frac{dx}{dt} = \sin 2t$$
(6分)

$$\frac{dy}{dx} = \frac{\sin(t-y) + y\cos t}{[\sin(t-y) - \sin t]\sin 2t}$$
 (8 $\frac{1}{2}$)

五、解: 点 A(-3,-2,0) 和 B(-3,-4,-1) 在平面上,

平面的法向量为
$$n = (0,2,1) \times (3,-2,1) = (4,3,-6)$$
.....(5分)

平面方程为
$$4x+3y-6z+18=0$$
.....(7 分)

六、解:
$$f(1)=0$$
, $\diamondsuit x-t+1=z$,(3 分)

$$\iiint_{1}^{x} tf'(x-t+1)dt = \int_{x}^{1} (x+1-z)f'(z)d(-z) = (x+1) f(x) - \int_{1}^{x} zf'(z)dz$$

两边求导得:
$$xf'(x) = 1 + \ln x$$
, 所以 $f'(x) = \frac{1 + \ln x}{x}$

积分得
$$f(x) = \ln x + \frac{1}{2} \ln^2 x + c$$
,由 $f(1) = 0$,得 $c = 0$

所以
$$f(x) = \ln x + \frac{1}{2} \ln^2 x$$
(10 分)

七、解: 切点为
$$(e,1)$$
,切线方程为 $y = \frac{1}{e}x$ (2分)

平面图形的面积为
$$A = \frac{1}{2}e \cdot 1 - \int_{1}^{e} \ln x dx = \frac{1}{2}e - [x \ln x - x]_{1}^{e} = \frac{1}{2}e - 1.....(6 分)$$

所求旋转体的体积为 $V = \frac{1}{3}\pi \cdot 1^2 \cdot e - \pi \int_1^e \ln^2 x dx$

$$= \frac{1}{3}\pi e - \pi [x \ln^2 x - 2x \ln x + 2x]_1^e = 2\pi - \frac{2}{3}\pi e \qquad (11 \ \%)$$

八、(1) 证明:
$$f(x+\pi) = \int_{x+\pi}^{x+\frac{3\pi}{2}} |\sin t| dt$$
 $\frac{-1}{2} |\sin t| dt$

$$=\int_{x}^{x+\frac{\pi}{2}} |\sin u| du = f(x)$$
, : $f(x)$ 是以 π 为周期的周期函数。(3 分)

高等数学作业集 (2) 只要求 f(x) 在一个周期区间 $[0,\pi]$ 上的最大值和最小值。

$$f'(x) = \left| \sin(x + \frac{\pi}{2}) \right| - \left| \sin x \right| = \left| \cos x \right| - \left| \sin x \right|,$$
 (5 $\frac{\pi}{2}$)

令
$$f'(x) = 0$$
 , 得驻点 $x = \frac{\pi}{4}$, $x = \frac{3\pi}{4}$, $\therefore f(0) = \int_0^{\frac{\pi}{2}} |\sin t| dt = \int_0^{\frac{\pi}{2}} \sin t dt = 1$;

$$f(\frac{\pi}{4}) = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \left| \sin t \right| dt = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \sin t \ dt = -\cos t \Big|_{\frac{\pi}{4}}^{\frac{3\pi}{4}} = \sqrt{2} ;$$

$$f(\frac{3\pi}{4}) = \int_{\frac{3\pi}{4}}^{\frac{5\pi}{4}} \left| \sin t \right| dt = \int_{\frac{3\pi}{4}}^{\pi} \sin t \ dt - \int_{\pi}^{\frac{5\pi}{4}} \sin t \ dt = -\cos t \left|_{\frac{3\pi}{4}}^{\pi} + \cos t \right|_{\pi}^{\frac{5\pi}{4}} = 2 - \sqrt{2}$$

$$f(\pi) = \int_{-\pi}^{\frac{3\pi}{2}} |\sin t| \, dt = -\int_{-\pi}^{\frac{3\pi}{2}} \sin t dt = \cos t \Big|_{-\pi}^{\frac{3\pi}{2}} = 1.$$

$$f(x)$$
 的最大值为 $\sqrt{2}$,最小值为 $2-\sqrt{2}$ (10 分)

高等数学试题(B)卷参考答案与评分标准

一、填空题

1.
$$e^{-2}$$
; 2. $\frac{2}{3}$; 3. $-2^{10}\sin(2x+1)$; 4. $x+c$; 5. $p>2$; 6. $\sqrt{2}$

二、选择题

三、计算题

1.
$$\lim_{x \to \frac{\pi^{+}}{2}} \frac{\ln \sin x}{(\pi - 2x)^{2}} = \lim_{x \to \frac{\pi^{+}}{2}} \frac{\frac{\cos x}{\sin x}}{-4(\pi - 2x)}$$
 (2 $\frac{\pi}{2}$)

$$= \lim_{x \to \frac{\pi^{+}}{2}} \frac{\cos x}{-4(\pi - 2x)} = \lim_{x \to \frac{\pi^{+}}{2}} \frac{-\sin x}{8} = -\frac{1}{8}$$
 (7 $\frac{1}{2}$)

$$2. \int \ln(x + \sqrt{1 + x^2}) dx$$

解: 原式=
$$x\ln(x+\sqrt{1+x^2})-\int \frac{x}{\sqrt{1+x^2}}dx$$
(4 分)

$$= x \ln(x + \sqrt{1 + x^2}) - \sqrt{1 + x^2} + C \qquad (7 \%)$$

3.
$$\int \frac{1}{2-\sin x} dx$$

原式=
$$\int \frac{1}{u^2 - u + 1} du = \frac{2}{\sqrt{3}} \arctan \frac{2u - 1}{\sqrt{3}} + C$$
 (6分)

$$=\frac{2}{\sqrt{3}}\arctan\frac{2\tan\frac{x}{2}-1}{\sqrt{3}}+C$$
 (7 $\frac{2}{2}$)

___年__月__日 4. $\int_{1}^{\sqrt{3}} \frac{1}{x^2 \sqrt{1+x^2}} dx$ 解: $\diamondsuit x = \tan t$, $dx = \sec^2 t dt$(2分) 原式= $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\sec^2 t}{\tan^2 t \sec t} dt = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\cos t}{\sin^2 t} dt = \left[-\frac{1}{\sin x} \right]_{\frac{\pi}{4}}^{\frac{\pi}{3}} = \sqrt{2} - \frac{2\sqrt{3}}{3} \dots$ (7分) 5. $\int_{0}^{4} \cos(\sqrt{x} - 1) dx$. 解: $\diamondsuit \sqrt{x} = t$, dx = 2tdt.....(2分) 原式= $\int_{0}^{2} 2t \cos(t-1)dt = 2\int_{0}^{2} td \sin(t-1)$(4 分) $= \left[2t\sin(t-1)\right]_0^2 - 2\int_0^2 \sin(t-1)dt = 4\sin 1...(7 \text{ }\%)$ 四、解: $3x^2 + 3y^2y' = 3y + 3xy'$,(4 分) $\therefore y' \Big|_{(\frac{3}{5},\frac{3}{5})} = \frac{y - x^2}{v^2 - x} \Big|_{(\frac{3}{5},\frac{3}{5})} = -1. \tag{6 \(\frac{\psi}{2}\)}$ 所求切线方程为 $y-\frac{3}{2}=-(x-\frac{3}{2})$ 即 x+y-3=0.(8分) 五、解: 平面法向量 $n = \begin{vmatrix} i & j & k \\ 6 & -3 & 2 \\ 4 & 1 & 2 \end{vmatrix} = (-4, -4, 6) / / (2, 2, -3) \dots (5 分)$ 平面过原点, 所以方程为2x+3y-3z=0(8分) 六、解: $f(a) = 0, f'(x) = -e^{a^2 - x^2}$ (4 分) $\int_0^a f(x)dx = xf(x)\Big|_0^a - \int_0^a xf'(x)dx = -\frac{1}{2} \int_0^a e^{a^2 - x^2} d(a^2 - x^2)$ $= -\frac{1}{2}e^{a^2-x^2}\Big|^a = \frac{1}{2}(e^{a^2}-1) \qquad (8 \ \%)$ $V_2 = \pi \int_0^{2a^2} (a^2 - \frac{y}{2}) dy = \pi a^4$...(7 \(\frac{1}{2}\))

$$V'(a) = 4\pi a^3 (1-a)$$
,得驻点 $a = 1$,而 $V''(1) < 0$

(2) $V = V_1 + V_2 = \frac{4}{5}\pi(32 - a^5) + \pi a^4$

	所以 $a=1$ 时, V_1+V_2 取得最大值,最大值为 $\frac{129}{5}\pi$ (11分)
八、	证明: $\Leftrightarrow F(x) = \int_0^x (x^2 - 3t^2) f(t) dt$, $F'(x) = -2x^2 f(x) + 2x \int_0^x f(t) dt$ (3 分)
	由积分中值定理, 有 $F'(x) = 2x^2[f(\xi) - f(x)]$ $(0 \le \xi \le x)$
	$f(x)$ 在 $[0,+\infty)$ 上的单调递减, $f(\xi) \ge f(x)$, $F'(x) \ge 0$ 。
	所以当 $x \ge 0$ 时,有 $F(x) \ge F(0) = 0$