Exam3: April 28.

Last lecture: Mon, April 24.

Knapsack.

Input: n items: 1,2,3,...,n.

item i

- wt wi

- profit Pi

Knapsack 2 capacits W.

Objective: To pack items on the knapsade so that the total wt of all items on the knapsade the knapsade is at most W and the total profit is maximited.

Scratch work.

OPT (n) = OPT (n-1) , if note item is
not in the knapsark.

OPT (n): max { OPT (n-1), OPT (n-1) + Pm}

Subproblems

P[j, C]: maximum profit obtained by Considery items 1,2,...j to be parked in a Knapsark of capacity C.

Our answer : P[n, W]

Recurren

 $P(j,C) = \begin{cases} 0, & \text{if } j = 0 \text{ mC} = 0 \end{cases}$ $\text{man } \begin{cases} P(j-1,C), \\ P(j-1,C-w_j) + P_j, \\ 0.00 \end{cases}$

We have to fix up the talk of Site O(nW).

	ð	1		\mathcal{L}		W		
0	0	O	O	0	0	G	_	
1	G						_	
	0	\ \nabla	· · ·	<u> </u>	٠,,			
j	0			47.			7	
	6						7	
\	D					WA.		

for $i \leftarrow 0$ to $n \neq 0$ $P[i, 0] \leftarrow 0$ $P[o, C] \leftarrow 0$

for each j + 1 to n do for each C+ 1 to W do if (wt (j) \le c) then D (j, C) + man { P[j-1, C], P(j-1,C-4) else $P(j,C) \leftarrow P(j-1,C)$ return P(n,W)

Running time: O(nW)

I tems knowpsarb (n, P)
S + p

i'en, Cew. while i >0 and C > 0 de if P(i,C) > P(i-1,C) H add i to S. C + C - Wi 1 七 い1 eln

item wt profit

1
2
1
5

W= 4.

$$P(j,C) = \begin{cases} 0, & \text{if } j = 0 \text{ w } C = 0 \end{cases}$$

$$p(j-1,C),$$

$$p(j-1,C-wj)+pj,$$

$$0.w$$

	0	1	2	3	4	
0	0	0	Ċ	0	0	
PI	6	O	0	17-	12.	
, 2	G	5/	5//	12	17:	
3	0	5	D.	15	134	
4	0	5	10	15	17	
S=	}	2	.			7

$$P(1,1) = P(0,1)$$

 $P(1,2) = P(0,2)$
 $P(1,3) = max \{ P(0,3), P(0,0) + (22)$
 $= max \{ 0, 12 \}$
 $P(1,4) = max \{ P(0,4), P(1,4), P(1,4) \}$

P(0,1)+12}

$$P(2,1) = max \{P(1,1), P(1,0) + 5\}$$
 $= max \{0, 5\}$
 $= max \{P(1,2), P(2,2) = max \{P(1,3), P(1,2) + 5\}$

$$P(2,4) = max \{ P(1,4) \}$$

$$P(1,3) + 5 \}$$

$$P(3,1) = P(2,1) = 5$$

$$P(3,2) = max \{ P(2,2) \}$$

$$P(2,0) = 10 \}$$

$$= max \{ 5, 10 \} = 10 \}$$

$$P(3,3) = max \{ P(2,3) \}$$

P(21) + 10)

$$P[3,4] = man \{ P[2,4],$$
 $P[2,4],$
 $P[2,4],$
 $= man \{ 17, 15 \}$

= 17

$$P(4,1) = man \{P(3,1), P(3,0) + 2\}$$

$$= 5$$

$$P(4,2) = man \{P(3,2), P(3,2), P(3,1) \}$$

$$= man \{10, 7 \}$$

$$P(4,3)$$
: max $\{P(3,3), P(3,2) + 2\}$
 $= max \{15,12\}$
 $P(4,4) = max \{P(3,4), P(3,3) + 2\}$
 $= max \{14,14\}$

Longist Common Subsequence. Input: Two sequences: X & Y. X = (x, x2, ..., xn) Y: (y, y2, ..., Jm) Obj: To find the longest Common subsequeure] X, Y. (A) G (C)