Reinforcement Learning for Texas Hold'em Poker

Michele Sanna

Motivation and Focus

This project explores the application of reinforcement learning to Heads-Up Texas Hold'em Poker, a zero-sum, imperfect information game. The focus lies on algorithmic performance rather than network architecture, using no human data.

Simplifying the Game

To handle complexity:

- Betting is discretized.
- Only the two-player (Heads-Up) variant is considered.
- Card information is abstracted using hand equity the estimated probability of winning.

This abstraction avoids sparse card representations and accelerates learning.

Observation Space

The observation space of the agents for this work will consist in:

- A one-hot encoded representation of the game phase (i.e. how many community cards are revealed)
- The equity of the hand of the agent
- The normalized size of the pot
- The normalized size of both players stack
- The bet of the player
- The bet of the opponent
- A condensed betting history of the opponent (the total opponent bet for each game phase)

Equity Estimation

Monte Carlo simulations (2k–8k samples) are used to compute hand equity. Though computationally expensive, this significantly improves training convergence. Accuracy compared to online calculators shows a mean deviation of just 3.9%.

Naive Approach: DDQN vs DDQN

Two Double DQN agents were trained by self-play. Despite variations in hyperparameters, all learned a suboptimal but stable strategy: never folding. This reflects a known limitation—single-agent RL algorithms often fail in multi-agent, imperfect-information games.

Figure: Folding behavior during naive DDQN vs DDQN training

Limitations of Standard RL

In imperfect-information settings:

- Optimal strategies are often stochastic.
- Best-response policies can be exploitable.
- Classical RL algorithms lack convergence guarantees to Nash equilibria.

These factors cause instability or cycling in self-play dynamics.

Better Solutions: NFSP over ReBel and MMD

Several approaches address imperfect-information games in deep RL:

ReBel: Combines reinforcement learning with search and belief state modeling.

MMD: Uses a modified PPO with tailored regularization.

NFSP: Based on *fictitious play*, where agents respond to the opponent's average strategy.

This work uses NFSP due to its:

- Simpler implementation than ReBel
- Simpler math than MMD

A More Principled Approach: NFSP

Neural Fictitious Self-Play (NFSP) adapts fictitious play to deep RL. It mixes:

- ullet A best-response DQN policy (used with probability η)
- ullet An average-policy network (used with probability $1-\eta$)

Agents alternate between these strategies, gradually converging to more stable behavior.

NFSP Algorithm Overview

```
Algorithm 1 Neural Fictitious Self-Play (NFSP) with fitted Q-learning
 Initialize game \Gamma and execute an agent via RUNAGENT for each player in the game
function RUNAGENT(F)
      Initialize replay memories M_{RL} (circular buffer) and M_{SL} (reservoir)
      Initialize average-policy network \Pi(s, a | \theta^{\Pi}) with random parameters \theta^{\Pi}
     Initialize action-value network O(s, a \mid \theta^Q) with random parameters \theta^Q
      Initialize target network parameters \theta^{Q'} \leftarrow \theta^{Q}
      Initialize anticipatory parameter n
      for each episode do
          Set policy \sigma \leftarrow \begin{cases} \epsilon\text{-greedy}\left(Q\right), & \text{with probability } \eta \\ \Pi, & \text{with probability } 1 - \eta \end{cases}
          Observe initial information state s_1 and reward r_2
          for t = 1. T do
               Sample action a_t from policy \sigma
               Execute action a_t in game and observe reward r_{t+1} and next information state s_{t+1}
               Store transition (s_t, a_t, r_{t+1}, s_{t+1}) in reinforcement learning memory M_{RL}
               if agent follows best response policy \sigma = \epsilon-greedy (O) then
                     Store behaviour tuple (s_t, a_t) in supervised learning memory M_{SI}
               Update \theta^{\Pi} with stochastic gradient descent on loss
                     \mathcal{L}(\theta^{\Pi}) = \mathbb{E}_{(s,a)\sim \mathcal{M}_{SL}} \left[ -\log \Pi(s, a \mid \theta^{\Pi}) \right]
               Update \theta^Q with stochastic gradient descent on loss
                    \mathcal{L}\left(\theta^{Q}\right) = \mathbb{E}_{(s,a,r,s')\sim\mathcal{M}_{RL}}\left[\left(r + \max_{a'} Q(s', a' | \theta^{Q'}) - Q(s, a | \theta^{Q})\right)^{2}\right]
               Periodically update target network parameters \theta^{Q'} \leftarrow \theta^{Q}
          end for
      end for
end function
```

Figure: Original NFSP algorithm

Our implementation uses DDQN as the underlying RL method, and equity-based state representation.

Training Comparison

Both NFSP and DDQN-vs-DDQN agents were trained for 150k episodes. The DDQN agents collapsed into non-folding behavior, while NFSP maintained a balanced strategy.

Figure: Fold frequency over time

Approximate Exploitability

Exploitability was approximated by training a DDQN best-response.

Figure: Approximate exploitability

Each agent was evaluated against:

- A uniformly random player
- A player that always goes all-in
- A conservative bettor (check/small bet)

Figure: Performance vs random strategy

Figure: Performance vs all-in strategy

Figure: Performance vs conservative bettor

Head-to-Head

Episodi	mBb per hand
0	0.0
10000	-1216.2
20000	-1645.1
30000	768.475
40000	-10662.34
50000	123.68
60000	1355.93
70000	369.98
80000	472.78
90000	200.22
100000	135.68
110000	933.87
120000	-67.15
130000	615.74
140000	1469.11
150000	449.6

Figure: DDQN vs. DDQN advantage over NFSP. Head-to-head performance over training