223 Suites numériques. Convergence, valeurs d'adhérence. Exemples et applications.

Dans toute la suite, \mathbb{K} désignera le corps \mathbb{R} ou \mathbb{C} .

I - Convergence des suites numériques

1. Limite d'une suite

Définition 1. Soit E un ensemble non vide. On appelle **suite** à valeurs dans E toute application $u:D\to E$ où D est une partie de $\mathbb N$. Lorsque E est une partie de $\mathbb R$ (resp. de $\mathbb C$), on dit que u est **réelle** (resp. **complexe**). Dans ces deux cas, on parle de **suite numérique**.

[AMR11] p. 1

On fixe, pour tout le reste de la leçon, (u_n) une suite numérique à coefficients dans \mathbb{K} .

Définition 2. — Si $\mathbb{K} = \mathbb{R}$, on dit que (u_n) est **majorée** (resp. **minorée**) s'il existe $A \in \mathbb{R}$ tel que $\forall n \in \mathbb{N}$, $u_n \leq A$ (resp. $A \leq u_n$).

p. 12

- On dit que (u_n) est **bornée** s'il existe $A \in \mathbb{R}$ tel que $\forall n \in \mathbb{N}$, $|u_n| \le A$ (resp. $A \le u_n$). Dans le cas où $\mathbb{K} = \mathbb{R}$, cela revient à dire que (u_n) est majorée et minorée.
- On dit que (u_n) admet $\ell \in \mathbb{K}$ pour **limite** (ou **converge** / **tend** vers ℓ) si,

$$\forall \epsilon > 0$$
, $\exists N \in \mathbb{N}$ tel que $\forall n \geq N$, $|u_n - \ell| < \epsilon$

On le note $\lim_{n\to+\infty} u_n = \ell$ ou $u_n \longrightarrow_{n\to+\infty} \ell$.

— On dit que (u_n) est **convergente** si elle admet une limite. Sinon, on dit qu'elle est **divergente**.

Exemple 3. Si (u_n) est définie par

$$\forall n \ge 1, \ u_n = 1 + \frac{(-1)^n}{n}$$

alors (u_n) converge vers 1.

Théorème 4. On a unicité de la limite dans K.

Proposition 5. Toute suite numérique convergente est bornée.

Contre-exemple 6. $((-1)^n)$ est bornée, non convergente.

Proposition 7. Soit (v_n) une suite numérique bornée. On suppose $\lim_{n\to+\infty}u_n=0$. Alors $\lim_{n\to+\infty}u_nv_n=0$.

Proposition 8. On suppose $\lim_{n\to+\infty}u_n=\ell_1\in\mathbb{K}$. Soit (v_n) une suite numérique qui converge vers $\ell_2\in\mathbb{K}$. Alors :

- (i) $\lim_{n\to+\infty} u_n + v_n = \ell_1 + \ell_2$.
- (ii) $\lim_{n\to+\infty} \lambda u_n = \lambda \ell_1$ pour tout $\lambda \in \mathbb{K}$.
- (iii) $\lim_{n\to+\infty} u_n v_n = \ell_1 \ell_2$.
- (iv) Si $\ell_2 \neq 0$, on a $\nu_n \neq 0$ à partir d'un certain rang et, $\lim_{n \to +\infty} \frac{u_n}{\nu_n} = \frac{\ell_1}{\ell_2}$.

Définition 9. On suppose $\mathbb{K} = \mathbb{R}$.

— On dit que (u_n) tend vers $+\infty$ si,

$$\forall A \in \mathbb{R}, \exists N \in \mathbb{N} \text{ tel que } \forall n \geq N, u_n \geq A$$

— On dit que (u_n) **tend vers** $-\infty$ si $(-u_n)$ tend vers $+\infty$.

On a les mêmes notations qu'à la Définition 2.

Proposition 10. On suppose $\lim_{n\to+\infty} u_n = +\infty$.

- (i) (u_n) est minorée.
- (ii) (u_n) est strictement positive à partir d'un certain rang et $\lim_{n\to+\infty}\frac{1}{u_n}=0$.
- (iii) Soit (v_n) une suite numérique.
 - Si (v_n) est convergente ou $\lim_{n\to+\infty}v_n=+\infty$, on a $\lim_{n\to+\infty}u_n+v_n=+\infty$.
 - Si $\lim_{n\to+\infty} v_n = +\infty$, on a $\lim_{n\to+\infty} u_n v_n = +\infty$.

Exemple 11. Soit $\lambda \in \mathbb{R}$. Alors,

$$\lim_{n \to +\infty} \lambda n = \begin{cases} +\infty & \text{si } \lambda > 0 \\ -\infty & \text{si } \lambda < 0 \\ 0 & \text{sinon} \end{cases}$$

p. 20

p. 29

2. Convergence de suites réelles

Le résultat suivant justifie de se ramener au cas réel lors de l'étude de la convergence des suites numériques.

. 20

Proposition 12. Soient (x_n) , (y_n) deux suites réelles et x, y deux réels. Alors,

$$\lim_{n \to +\infty} x_n + iy_n = x + iy \iff \begin{cases} \lim_{n \to +\infty} x_n = x \\ \lim_{n \to +\infty} y_n = y \end{cases}$$

On se place pour le restant de la sous-section dans le cas où $\mathbb{K} = \mathbb{R}$.

Théorème 13 (des gendarmes). Soient (a_n) et (b_n) deux suites réelles de même limite $\ell \in \mathbb{R}$ telles qu'à partir d'un certain rang, on ait $a_n \le u_n \le b_n$. Alors, $u_n \longrightarrow_{n \to +\infty} \ell$.

Définition 14. (u_n) est dite **croissante** (resp. **décroissante**) si pour tout entier n, on a $u_{n+1} \ge u_n$ (resp. $u_{n+1} \le u_n$). Elle est dite **monotone** si elle est croissante ou décroissante.

Théorème 15 (de la limite monotone). Si (u_n) est croissante et majorée ou décroissante et minorée, alors elle est convergente.

Théorème 16 (Suites adjacentes). Si deux suites (u_n) et (v_n) sont adjacentes (ie. (u_n) est croissante, (v_n) est décroissante et la suite différence tend vers 0), alors elles sont convergentes de même limite ℓ qui vérifie

$$\forall n \in \mathbb{N}, \, u_n \leq \ell \leq v_n$$

Exemple 17. Les suites $\left(1 - \frac{1}{n}\right)$ et $\left(1 + \frac{1}{n^2}\right)$ sont adjacentes et convergent vers 1.

Corollaire 18 (Segments emboîtés). Soient (a_n) et (b_n) deux suites réelles telles que

$$\begin{cases} \forall n \in \mathbb{N}, \, a_n \leq b_n \\ \forall n \in \mathbb{N}, \, [a_{n+1}, b_{n+1}] \subseteq [a_n, b_n] \\ (b_n - a_n) \longrightarrow 0 \end{cases}$$

Alors, il existe un nombre réel unique ℓ tel que $\bigcap_{n>0} [a_n, b_n] = {\ell}$.

p. 97

p. 36

Application 19 (Critère de Leibniz). Soit (a_n) une suite à termes positifs, décroissantes,

tendant vers 0. Alors

$$\sum (-1)^n a_n$$
 converge et $\forall n \in \mathbb{N}, |R_n| = \left| \sum_{k=n+1}^{+\infty} (-1)^k a_k \right| \le a_{n+1}$

(voir Section 2.)

Définition 20. Pour cette définition, on ne suppose pas au cas réel.

p. 25

— On dit que (u_n) est **négligeable** devant une suite réelle positive (α_n) et on note $u_n = o(\alpha_n)$ si,

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \text{ tel que } \forall n \geq N, |u_n| \leq \epsilon \alpha_n$$

— On dit que (u_n) est **équivalente** à une suite numérique (v_n) et on note $u_n \sim v_n$, si $(u_n - v_n)$ est négligeable devant $(|u_n|)$.

Proposition 21. En reprenant les notations précédentes,

- (i) On suppose (α_n) non nulle à partir d'un certain rang. (u_n) est négligeable devant α_n si et seulement si $\frac{u_n}{\alpha_n} \longrightarrow_{n \to +\infty} 0$.
- (ii) On suppose (v_n) non nulle à partir d'un certain rang. (u_n) est équivalente à v_n si et seulement si $\frac{u_n}{\alpha_n} \longrightarrow_{n \to +\infty} 1$.
- (iii) \sim est une relation d'équivalence sur l'ensemble des suites de \mathbb{K} .

p. 353

Exemple 22 (Formule de Stirling).

$$n! \sim \sqrt{2n\pi} \left(\frac{n}{e}\right)^n$$

Proposition 23. Deux suites convergentes équivalentes ont la même limite.

p. 28

3. Suites de Cauchy

Définition 24. On dit que (u_n) est **de Cauchy** si

 $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ tel que } \forall p > q \geq N, |u_p - u_q| < \epsilon$

p. 34

Proposition 25. (i) Une suite convergente est de Cauchy.

(ii) Une suite de Cauchy est bornée.

Théorème 26. Toute suite de Cauchy de \mathbb{K} est convergente dans \mathbb{K} .

Contre-exemple 27. La série $\sum \frac{1}{n}$ est une suite de Cauchy de \mathbb{Q} non convergente dans \mathbb{Q} .

[**HAU**] p. 312

4. Convergence au sens de Cesàro

Définition 28. À toute suite numérique (u_n) on y associe sa suite (v_n) des **moyennes de Cesàro** où

[**AMR11**] p. 53

$$\forall n \in \mathbb{N}, v_n = \frac{1}{n} \sum_{k=1}^n u_k$$

Théorème 29. Si (u_n) converge vers $\ell \in \mathbb{K}$, alors sa suite des moyennes de Cesàro converge vers ℓ . On dit que (u_n) converge **au sens de Cesàro**.

Exemple 30. — Soit (v_n) une suite numérique dont aucun terme n'est nul, qui converge vers $\ell \neq 0$. Alors,

$$\frac{1}{n} \frac{1}{\sum_{k=1}^{n} \frac{1}{\nu_k}} \longrightarrow_{n \to +\infty} \frac{1}{\ell}$$

converge vers $\frac{1}{\ell}$.

— Soit (w_n) une suite numérique telle que $(w_{n+1}-w_n)$ converge vers $\ell\in\mathbb{K}.$ Alors,

$$\frac{w_n}{n} \longrightarrow_{n \to +\infty} \ell$$

Remarque 31. La réciproque du Théorème 29 est fausse.

Exemple 32. $(-1)^n$ converge au sens de Cesàro vers 0, mais pas au sens usuel.

II - Valeurs d'adhérence

1. Suites extraites

Définition 33. On appelle **sous-suite** ou **suite extraite** de (u_n) , toute suite $(u_{\varphi(n)})$ où $\varphi : \mathbb{N} \to \mathbb{N}$ est strictement croissante (on dit que φ est une **extractrice**).

p. 14

Proposition 34. Si une suite converge vers $\ell \in \mathbb{K}$, alors toute suite extraite converge vers ℓ .

Définition 35. On appelle **valeur d'adhérence** d'une suite numérique, tout élément de \mathbb{K} limite d'une de ses sous-suites convergentes.

Remarque 36. — Toute suite numérique convergente ne possède que sa limite comme valeur d'adhérence.

Une suite possédant une unique valeur d'adhérence n'est pas nécessairement convergente.

Exemple 37. $((1-(-1)^n)n)$ ne possède que 0 comme valeur d'adhérence, mais ne converge pas.

Théorème 38 (Bolzano-Weierstrass). Toute suite numérique bornée possède au moins une sous-suite convergente.

Proposition 39. Une suite numérique est convergente si et seulement si elle est bornée et n'a qu'une seule valeur d'adhérence.

Application 40. Soit (E, d) un espace métrique compact. Soit (v_n) une suite de E telle que $d(v_n, v_{n-1}) \longrightarrow 0$. Alors l'ensemble Γ des valeurs d'adhérence de (v_n) est connexe.

Corollaire 41 (Lemme de la grenouille). Soient $f : [0,1] \to [0,1]$ continue et (x_n) une suite de [0,1] telle que

$$\begin{cases} x_0 \in [0,1] \\ x_{n+1} = f(x_n) \end{cases}$$

Alors (x_n) converge si et seulement si $\lim_{n\to+\infty} x_{n+1} - x_n = 0$.

2. Limites inférieure et supérieure

On se place dans le cas réel pour toute cette sous-section.

Lemme 42. Si (u_n) n'est pas bornée, on peut extraire une sous-suite qui tend vers $\pm \infty$: $\pm \infty$ est une valeur d'adhérence de (u_n) dans $\overline{\mathbb{R}}$.

Définition 43. On appelle **limite inférieure** (resp. **limite supérieure**) de (u_n) , notée $\limsup_{n\to+\infty}u_n$ (resp. $\liminf_{n\to+\infty}u_n$) la plus grande (resp. plus petite) de ses valeurs d'adhérence.

p. 36

[**DAN**] p. 73

[**I-P]** p. 116

[AMR11] p. 93 **Proposition 44.** (u_n) converge si et seulement si $\liminf_{n\to+\infty} u_n = \limsup_{n\to+\infty} u_n$.

III - Suites particulières

1. Suites récurrentes

Définition 45. Soit $E \subseteq \mathbb{K}$. On dit que (u_n) est **récurrente** d'ordre $h \in \mathbb{N}^*$ si on peut écrire

[**GOU20**] p. 200

$$\forall n \ge h, u_{n+h} = f(u_{n-1}, \dots, u_{n-h})$$
 (*

où $f:E^h\to E$ et les premières valeurs $u_0,\dots,u_{h-1}\in E$ étant donnés.

Théorème 46 (Caractérisation séquentielle de la continuité). En reprenant les notations précédentes, une fonction $g: E \to \mathbb{K}$ est continue si et seulement si pour toute suite numérique convergente $(v_n) \in E^{\mathbb{N}}$ dont on note ℓ la limite, $g(v_n) \longrightarrow_{n \to +\infty} \ell$.

[AMR11] p. 38

[ROU]

p. 152

Corollaire 47. Si une suite récurrente d'ordre 1 (dont on note f la fonction) converge vers ℓ , alors $f(\ell) = \ell$.

Exemple 48. La suite (u_n) définie par $u_0 \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ et $\forall n \ge 1$, $u_{n+1} = \sin(u_n)$ converge vers 0.

[DEV]

Application 49 (Méthode de Newton). Soit $g:[c,d] \to \mathbb{R}$ une fonction de classe \mathscr{C}^2 strictement croissante sur [c,d]. On considère la fonction

$$\varphi: \begin{bmatrix} [c,d] & \to & \mathbb{R} \\ x & \mapsto & x - \frac{g(x)}{g'(x)} \end{bmatrix}$$

(qui est bien définie car g' > 0). Alors :

- (i) $\exists ! a \in [c, d]$ tel que g(a) = 0.
- (ii) $\exists \alpha > 0$ tel que $I = [a \alpha, a + \alpha]$ est stable par φ .
- (iii) La suite (x_n) des itérés (définie par récurrence par $x_{n+1} = \varphi(x_n)$ pour tout $n \ge 0$) converge quadratiquement vers a pour tout $x_0 \in I$.

Corollaire 50. En reprenant les hypothèses et notations du théorème précédent, et en supposant de plus g strictement convexe sur [c,d], le résultat du théorème est vrai sur I = [a,d]. De plus :

(i) (x_n) est strictement décroissante (ou constante).

(ii)
$$x_{n+1} - a \sim \frac{f''(a)}{2f'(a)} (x_n - a)^2$$
 pour $x_0 > a$.

- **Exemple 51.** On fixe y > 0. En itérant la fonction $F : x \mapsto \frac{1}{2}(x + \frac{y}{x})$ pour un nombre de départ compris entre c et d où 0 < c < d et $c^2 < 0 < d^2$, on peut obtenir une approximation du nombre \sqrt{y} .
 - En itérant la fonction $F: x \mapsto \frac{x^2+1}{2x-1}$ pour un nombre de départ supérieur à 2, on peut obtenir une approximation du nombre d'or $\varphi = \frac{1+\sqrt{5}}{2}$.

2. Séries numériques

Définition 52. — On appelle **série** de terme général u_n la suite (S_n) définie par

[GOU20] p. 208

$$\forall n \in \mathbb{N}, S_n = u_0 + \cdots + u_n$$

On note cette série $\sum u_n$.

- u_n s'appelle le **terme** d'indice n.
- S_n s'appelle la **somme partielle** d'indice n.

Définition 53. En reprenant les notations précédentes, on dit que $\sum u_n$ converge si la suite (S_n) converge. Dans ce cas, la limite s'appelle la **somme** de la série, et on la note $\sum_{n=0}^{+\infty} u_n$.

Proposition 54. Si $\sum u_n$ converge, alors $\lim_{n\to+\infty} u_n = 0$.

[AMR11] p. 81

Contre-exemple 55. La réciproque est fausse, par exemple en considérant la suite (u_n) définie pour tout $n \in \mathbb{N}$ par $u_n = \ln(1 + \frac{1}{n})$, on a $\sum_{k=1}^n u_k = \ln(n+1) \longrightarrow_{n \to +\infty} +\infty$.

Proposition 56. Muni des opérations :

$$\label{eq:continuity} \longrightarrow \, \forall \lambda \in \mathbb{K}, \, \forall (u_n) \in \mathbb{K}^{\mathbb{N}}, \, \lambda \sum u_n = \sum (\lambda u_n),$$

l'ensemble des séries numériques est un espace vectoriel sur $\mathbb K$ dont l'ensemble des séries convergentes est un sous-espace vectoriel.

Proposition 57 (Règle de d'Alembert). Soit $\sum u_n$ une série à termes strictement positifs telle que

$$\lim_{n\to +\infty}\frac{u_{n+1}}{u_n}=\lambda\in [0,+\infty]$$

[**GOU20**] p. 214 Alors:

- (i) Si $\lambda < 1$, $\sum u_n$ converge.
- (ii) Si $\lambda > 1$, $\sum u_n$ diverge.

Exemple 58. $\sum (1-\frac{1}{n})^{n^2}$ converge.

[AMR11] p. 94

Exemple 59. $\sum_{k=0}^{10} \frac{1}{n!}$ donne une valeur approchée de e à moins de 3×10^{-8} près par défaut.

p. 108

Proposition 60 (Règle de Cauchy). Soit $\sum u_n$ une série à termes strictement positifs telle que

[**GOU20**] p. 214

$$\lim_{n\to+\infty}\sqrt[n]{u_n}=\lambda\in[0,+\infty]$$

Alors:

- (i) Si $\lambda < 1$, $\sum u_n$ converge.
- (ii) Si $\lambda > 1$, $\sum u_n$ diverge.

Exemple 61. $\sum \left(\frac{4n+1}{3n+2}\right)^n$ converge.

[AMR11] p. 112

Lemme 62. Soit $\alpha > 1$. Lorsque n tend vers $+\infty$, on a

[**I-P**] p. 380

$$\sum_{k=n+1}^{+\infty} \frac{1}{n^{\alpha}} \sim \frac{1}{\alpha - 1} \frac{1}{n^{\alpha - 1}}$$

[DEV]

Proposition 63 (Développement asymptotique de la série harmonique). On note $\forall n \in \mathbb{N}^*$, $H_n = \sum_{k=1}^n \frac{1}{k}$. Alors, quand n tend vers $+\infty$,

$$H_n = \ln(n) + \gamma + \frac{1}{2n} - \frac{1}{12n^2} + o\left(\frac{1}{n^2}\right)$$

Bibliographie

Suites et séries numériques, suites et séries de fonctions

[AMR11]

Mohammed El-Amrani. Suites et séries numériques, suites et séries de fonctions. Ellipses, 15 nov. 2011.

https://www.editions-ellipses.fr/accueil/3910-14234-suites-et-series-numeriques-suites-etseries-de-fonctions-9782729870393.html.

Mathématiques pour l'agrégation

[DAN]

Jean-François Dantzer. Mathématiques pour l'agrégation. Analyse et probabilités. De Boeck Supérieur, 20 avr. 2021.

https://www.deboecksuperieur.com/ouvrage/9782807332904-mathematiques-pour-1-agregationanalyse-et-probabilites.

Les maths en tête [GOU20]

Xavier Gourdon. Les maths en tête. Analyse. 3e éd. Ellipses, 21 avr. 2020.

https://www.editions-ellipses.fr/accueil/10446-les-maths-en-tete-analyse-3e-edition-9782340038561.html.

Les Contre-Exemples en Mathématiques

[HAU]

Bertrand Hauchecorne. Les Contre-Exemples en Mathématiques. 2e éd. Ellipses, 13 juin 2007. https://www.editions-ellipses.fr/accueil/5328-les-contre-exemples-en-mathematiques-9782729834180.html.

L'oral à l'agrégation de mathématiques

[I-P]

Lucas Isenmann et Timothée Pecatte. L'oral à l'agrégation de mathématiques. Une sélection de développements. 2e éd. Ellipses, 26 mars 2024.

https://www.editions-ellipses.fr/accueil/15218-28346-loral-a-lagregation-de-mathematiquesune-selection-de-developpements-2e-edition-9782340086487.html.

Petit guide de calcul différentiel

[ROU]

François Rouvière. Petit guide de calcul différentiel. à l'usage de la licence et de l'agrégation. 4° éd. Cassini, 27 fév. 2015.

https://store.cassini.fr/fr/enseignement-des-mathematiques/94-petit-guide-de-calculdifferentiel-4e-ed.html.