Problem 1

Establish the commutative, distributive, and associative properties of the convolution integral.

- (a) f * g = g * f
- (b) $f * (g_1 + g_2) = f * g_1 + f * g_2$
- (c) f * (g * h) = (f * g) * h

Solution

Part (a)

Start by using the definition of the convolution integral f * g.

$$f * g = \int_0^t f(t - \tau)g(\tau) d\tau$$

Make the substitution $\xi = t - \tau$. Then $d\xi = -d\tau$.

$$f * g = \int_{t}^{0} f(\xi)g(t - \xi) (-d\xi)$$

Use the minus sign to flip the limits of integration.

$$f * g = \int_0^t f(\xi)g(t - \xi) d\xi$$
$$= \int_0^t g(t - \xi)f(\xi) d\xi$$
$$= g * f$$

Part (b)

Start by using the definition of the convolution integral $f * (g_1 + g_2)$.

$$f * g = \int_0^t f(t - \tau)[g_1(\tau) + g_2(\tau)] d\tau$$

$$= \int_0^t [f(t - \tau)g_1(\tau) + f(t - \tau)g_2(\tau)] d\tau$$

$$= \int_0^t f(t - \tau)g_1(\tau) d\tau + \int_0^t f(t - \tau)g_2(\tau) d\tau$$

$$= f * g_1 + f * g_2$$

Part (c)

Start by using the definition of the convolution integral f * (g * h).

$$f * (g * h) = \int_0^t f(t - \tau)(g * h)(\tau) d\tau$$
$$= \int_0^t f(t - \tau) \left[\int_0^\tau g(\tau - \xi)h(\xi) d\xi \right] d\tau$$
$$= \int_0^t \int_0^\tau f(t - \tau)g(\tau - \xi)h(\xi) d\xi d\tau$$

We want to make the substitution $u = \tau - \xi$ so that g will be in terms of a single variable. Doing this right now, though, will make h in terms of more than one variable because $d\xi$ comes first. Our aim then is to switch the order of integration to make τ come first. The current mode of integration in the $\tau\xi$ -plane is shown below on the left.

Integrate over this domain as shown on the right to switch the order of integration.

$$f * (g * h) = \int_0^t \int_{\xi}^t f(t - \tau)g(\tau - \xi)h(\xi) d\tau d\xi$$

Now make the substitution $u = \tau - \xi$. Then $du = d\tau$.

$$f * (g * h) = \int_0^t \int_0^{t-\xi} f(t - \xi - u)g(u)h(\xi) du d\xi$$

$$= \int_0^t \left[\int_0^{t-\xi} f(t - \xi - u)g(u) du \right] h(\xi) d\xi$$

$$= \int_0^t (f * g)(t - \xi)h(\xi) d\xi$$

$$= (f * g) * h$$