Note 1. Introduction to Wireless Communication Channel / MIMO Systems

Table of Contents

Introduction to Wireless Communication Channel / MIMO Systems

- Wireless Channels
- <u>Large-Scale Fading</u>
- Small-Scale Fading
- <u>Time-Selective Channels</u>
- Frequency-Selective Channels
- Multiple Antenna Technologies
- <u>Link-level MIMO System Model</u>

Wireless Channels (1/3)

- Propagation mechanisms
 - □ Reflection: By an object that is larger as compared to the wavelength
 - □ Diffraction: Radio path between a transmitter and a receiver is obstructed by a surface with sharp irregular edges
 - ☐ Scattering: When objects are smaller than the wavelength of the propagating wave, incoming signal is scattered into several weaker outgoing signals

Channel Impairments

- \square Path loss is proportional to $1/r^{\alpha}$ (α is between 2 and 6) in wireless channel characteristics
- □ Shadowing is caused by large obstructions between transmitter and receiver.
- ☐ Small scale fading is mainly due to scattering of the signal by objects near transmitter.

6

Large Scale Fading (1/3)

- Generalized Path-loss Model
 - Path-loss model for free space
 - Friis free space equation

$$P_r(d) = \frac{P_t \lambda^2}{(4\pi)^2 d^2}$$

$$P_t: \text{Tx power, } P_r(d): \text{Rx power action} d: \text{ Distance between Tx and Rx} \lambda = c/f_c, f_c: \text{Carrier frequency}$$

 P_r : Tx power, $P_r(d)$: Rx power according to d

Path-loss model

$$PL_{F}(d)[dB] = 10\log\left(\frac{P_{t}}{P_{r}}\right) = -10\log\left(\frac{\lambda^{2}}{(4\pi)^{2}d^{2}}\right)$$

Generalized path-loss model

$$PL(d)[dB] = PL_F(d_0) + 10n \log\left(\frac{d}{d_0}\right)$$
 d_0 : Reference distance n : Path-loss exponent

Large Scale Fading (2/3)

Generalized Path-loss Model

$$PL(d)[dB] = PL_F(d_0) + 10n \log\left(\frac{d}{d_0}\right) \iff \underbrace{10^{\frac{PL_F(d_0)}{10}}}_{\text{constant}} \left(\frac{d}{d_0}\right)^n \qquad n: \text{ Path-loss exponent}$$

- \square Proportional to $1/d^n$ (*n* is between 2 and 6)
- \square Reference distance d_0
 - Cellular system for large coverage (≥ 10 km) : $d_0 = 1$ km
 - Cellular system for small coverage ($\leq 1 \text{km}$) : $d_0 = 100 \text{m}$ or 1 m
- \square Path-loss exponent *n*

Environment	Path-loss Exponent (n)		
Free space	2		
Urban area cellular radio	2.7 to 3.5		
Shadowed urban cellular radio	3 to 5		
In building line-of-sight (LOS)	1.6 to 1.8		
Obstructed in building	4 to 6		
Obstructed in factories	2 to 3		

Shadow Fading

- □ Caused by large obstructions between transmitter and receiver
- □ Even users are located in same distance from Tx, received signal may different because of each user's environment
- ☐ In general, shadowing is modeled as log-normal Gaussian

$$PL_{\text{Large-Scale}}(d)[dB] = PL_F(d_0) + 10n \log\left(\frac{d}{d_0}\right) + X_{shadow}$$

Small Scale Fading (1/7)

- Multi-path Fading
 - ☐ Signal reflection from scatters
 - Channel impulse response is composed of multi-taps with channel delay τ

☐ The impact can be varied by the symbol duration

Small Scale Fading (2/7)

- Multi-path Fading
 - Symbol Duration & Channel delays
 - $T_s \le \tau_4$: ISI (Inter-Symbol Interference) \rightarrow Frequency selective
 - $T_s >> \tau_4$: Negligible ISI \rightarrow Frequency flat
 - ☐ ISI gets severe as the symbol duration decreases (data rate increases)

Small Scale Fading (3/7)

- Doppler Spread Fading
 - Doppler effect
 - Change of wavelength caused by motion of the source / the observer

- ☐ In cellular communication systems
 - Change of frequency caused by motion of the RX(UE) when TX(BS) sends signal at f_0 frequency

$$\Delta f = \frac{v}{c} f_0 \Rightarrow \Delta f = \frac{v \cos \theta}{c} f_0$$

v: velocity of the receiver related to the source

UE: User Equipment

BS: Base Station

Small Scale Fading (4/7)

Small-Scale fading based on Delay Spread and Doppler spread

- High Doppler spread
- Coherence time < Symbol period
- Channel variations faster than baseband signal variations

Slow Fading

- Low Doppler spread
- Coherence time > Symbol period
- 3. Channel variations slower than baseband signal variations

Small Scale Fading (5/7)

- Single-path Channel (Frequency Flat Channel)
 - □ Advantages
 - Inter-Symbol-Interference (ISI) free
 - Easy to decode (linear equalizer)
 - Disadvantages
 - No path (frequency) diversity gain
 - \square Power of single channel path is poor \rightarrow Performance degradation

Power

- □ Advantages
 - Path (frequency) diversity
- Disadvantages
 - High decoding complexity(Cannot decode by linear equalizer)

time

Power Transfer Function

■ Linear equalizer → ISI problem → Performance degradation

frequenc

Small Scale Fading (6/7)

- Slow Fading Channel
 - Advantages
 - Easy to estimate channel
 - Estimated channel is useful for a long time
 - Disadvantages
 - No time diversity gain
 - □ Power of current channel is poor → Performance degradation

- Advantages
 - Time diversity
- □ Disadvantages
 - Channel estimation should be performed frequently
 - Like adaptation failure, e.g., MCS (modulation & coding scheme) level selection

Power

time

Small Scale Fading (7/7)

Summary

- ☐ Frequency Selectivity: Flat vs. Selective
 - Flat (Non-selective): ISI free
 - Selective: Path (Frequency) diversity
 - □ Path diversity: Rake receiver (CDMA)
 - ☐ Frequency diversity: Multicarrier system (OFDM)
 - Linear equalizer: Flat > Selective
 - No limitations on the receiver complexity: Selective > Flat
- ☐ Time Selectivity: Slow vs. Fast
 - Slow: Channel estimation
 - Fast: Time Diversity
 - □ Coding scheme & Hybrid ARQ
 - Perfect channel estimation: Fast > Slow
 - Imperfect channel estimation: Slow \geq Fast

- Rayleigh fading channel vs. Rician fading channel
 - Rayleigh: Non-LOS

Rician: LOS

- Rayleigh distribution PDF:
- Rician distribution PDF:

$$p(x) = \frac{x}{\sigma^2} \exp(-x^2 / 2\sigma^2)$$

$$p(x) = \frac{x}{\sigma^2} \exp(-x^2 / 2\sigma^2)$$

$$p(x) = \frac{x}{\sigma^2} \exp(-(x^2 + c^2) / 2\sigma^2) I_0\left(\frac{xc}{\sigma^2}\right)$$

 c^2 : Power of the LOS path

 $2\sigma^2$: Power of the summation of scattering multi-paths

Time-selective channels (2/3)

Rician K-Factor

 c^2 : Power of the LOS path

 $2\sigma^2$: Power of the summation of scattering multi-paths

$$K = \frac{c^2}{2\sigma^2}$$
: Rician K-factor

- ☐ As *K* increases: LOS components dominate
- → Approaches AWGN
- ☐ As *K* decreases: NLOS components dominate
- → Approaches Rayleigh

Time-selective channels (3/3)

- Rician channels
 - ☐ K-factor: General model including Rayleigh channels
 - □ Hard to analyze
 - Without a specific goal, the assumption is quite limited in the paper
- Rayleigh channels
 - ☐ Easy to model and analyze
 - Square of the Rayleigh R.V. \rightarrow Chi-Square distribution
 - ☐ Easy to generate
 - Simplest complex channel independent Gaussian for real/imaginary parts
 - □ Jakes model To generate the time-varying channel with mobile speed
 - Ex) Rayleigh channel when the mobile speed is 120km/h.
 - Clark/Gan model, FWGN model, Ray-based model

Frequency-selective channels (1/2)

- Uniform PDP vs. Exponential PDP
 - □ PDP: Power delay profile
 - □ Uniform PDP (2-taps example)

☐ Equal power for the entire taps

□ Exponential PDP

 Exponentially decayed power as the delay increases

- ITU-R M.1225 Channel response model
 - □ Pedestrian channels (PED-A, PED-B)

Outdoor to indoor and pedestrian test environment tapped-delay-line parameters

PP							
Тар	Channel A		Channel B		Doppler		
	Relative delay (ns)	Average power (dB)	Relative delay (ns)	Average power (dB)	spectrum		
1	0	0	0	0	Classic		
2	110	-9.7	200	-0.9	Classic		
3	190	-19.2	800	-4.9	Classic		
4	410	-22.8	1 200	-8.0	Classic		
5	-	-	2 300	-7.8	Classic		
6	-	-	3 700	-23.9	Classic		

□ Vehicular channels (VEH-A, VEH-B)

Vehicular test environment, high antenna, tapped-delay-line parameters

Тар	Channel A		Channel B		Doppler		
	Relative delay (ns)	Average power (dB)	Relative delay (ns)	Average power (dB)	spectrum		
1	0	0.0	0	-2.5	Classic		
2	310	-1.0	300	0	Classic		
3	710	-9.0	8.900	-12.8	Classic		
4	1 090	-10.0	12 900	-10.0	Classic		
5	1 730	-15.0	17 100	-25.2	Classic		
6	2 5 1 0	-20.0	20 000	-16.0	Classic		

Channel generation for discrete simulations

- Example) Uniform PDP with 2 taps [0ms, 30ms], symbol duration: 20ms, Rayleigh
 - □ 1) Generate channels for the taps at a given transmission time slot

$$h_{t}(1) \sim Rayleigh$$

$$h_{t}(2) \sim Rayleigh$$

□ 2) Normalize the channels with the corresponding power coefficients

$$h_{t}(1) \leftarrow \frac{P_{1} \cdot h_{t}(1)}{P_{total}}$$

$$h_{t}(2) \leftarrow \frac{P_{2} \cdot h_{t}(2)}{P_{total}}$$

 $P_{total} = \sum_{l=1}^{L} P_l$: Total power

 P_l : Power for the l-th tap L: # of total taps

□ 3) Assign the location of each channel coefficient

$$y_1 = h_1(1)x_1 + noise$$

$$y_2 = h_1(2)x_1 + h_2(1)x_2 + noise$$

$$y_3 = h_2(2)x_2 + h_3(1)x_3 + noise$$

- Space(Antenna) Domain
 - □ the final frontier (limitations on time-, frequency-, code-domain)
 - □ Space processing is interesting because it does not increase bandwidth
 - □ Utilization of *the "space(antenna) dimension"* along with the traditional time (or frequency) dimension *to improve the performance of wireless links*.

Multiple Antenna Technologies (2/4)

- Single Input Multiple Output (SIMO)
 - \square A single transmit antenna and N_R receive antennas
 - □ Receive Spatial (Antenna) Diversity
- Multiple Input Single Output (MISO)
 - \square N_T transmit antennas and a single receive antenna
 - ☐ Transmit Spatial (Antenna) Diversity

- Multiple Input Multiple Output (MIMO)
 - \square N_T transmit antennas and N_R receive antennas
 - □ Diversity gain (Maximum) ~ $N_T N_R$ Spatial Multiplexing (SM) gain (Maximum) ~ min(N_T , N_R)
 - MIMO for reliability
 - MIMO for data rate
 - ☐ Single-User / Multi-User MIMO
 - # of users in a resource block
 - □ Frequency for example
 - Possibility of cooperation

- Doppler Spread Time Selective Fading
 - ☐ For both single-antenna / multiple-antenna systems
 - ☐ Indicates correlation of channels for consecutive transmission time slots
- Delay Spread Frequency Selective Fading
 - ☐ For both single-antenna / multiple-antenna systems
 - ☐ Indicates correlation of channels for consecutive subcarriers (OFDM cases)
- Angle Spread Space Selective Fading
 - **☐** For Multiple Antenna Systems
 - Receiver side spread in AOAs (angle of arrivals) of the multipath components at the receiver antenna array.
 - Transmitter side spread in AODs (angle of departure) of the multipath that finally reach the receiver
 - ☐ Indicates correlation of channels for consecutive TX (RX) antennas

Mobile Range $= \frac{R}{D}$

Mobile

Link-Level MIMO System Model (1/3)

- A basic MIMO System model equation
 - ☐ Frequency-Flat case

$$y = Hx + n$$

where

 $\mathbf{y}: N_{R} \times 1$ receive signal vector

 $\mathbf{x}: N_T \times 1$ transmit signal vector

 $\mathbf{n}: N_R \times 1$ noise vector (usually AWGN)

 $\mathbf{H}: N_R \times N_T$ MIMO channel

- For link-level cases, the channel is typically modeled as complex Gaussian
 - □ Each element of **H** is i.i.d. complex Gaussian random variable.
- \square Frequency-Selective case (*L* taps)

$$\mathbf{y}_{k} = \sum_{l=0}^{L-1} \mathbf{H}_{k}^{(l)} \mathbf{x}_{k-l} + \mathbf{n}_{k},$$

Link-Level MIMO System Model (2/3)

- Block fading channel & Independent fading channel
 - □ Block fading channel (Simplest slow-fading channel)
 - For a given duration, the channel is remained as unchanged.

$$y_1 = H_1 x_1 + n_1, y_2 = H_2 x_2 + n_2, \dots, y_T = H_T x_T + n_T$$

- If $\mathbf{H}_1 = \mathbf{H}_2 = \cdots = \mathbf{H}_T$, then we can say "block fading channel".
- ☐ Independent fading channel (Simplest fast-fading channel)
 - For a given duration, the channel is independently changed.

$$\mathbf{y}_{1} = \mathbf{H}_{1}\mathbf{x}_{1} + \mathbf{n}_{1}, \mathbf{y}_{2} = \mathbf{H}_{2}\mathbf{x}_{2} + \mathbf{n}_{2}, \dots, \mathbf{y}_{T} = \mathbf{H}_{T}\mathbf{x}_{T} + \mathbf{n}_{T}$$

- If the elements in the entire channel matrix are i.i.d., then we can say "independent fading channel".
- ☐ For time-varying effects, each element of the channel matrix can experience "Doppler effects".

Link-Level MIMO System Model (3/3)

- Antenna(Spatial) correlation
 - ☐ There can be a correlation between the received signal gain and the angle of arrival of a signal
 - Usually happens with not-enough antenna spacings
 - ☐ If we consider the antenna correlation effects, the MIMO channel matrix can be rewritten as

$$\mathbf{H} = \mathbf{R}_R^{1/2} \mathbf{H}_w (\mathbf{R}_T^{1/2})^T$$

where

H_w: i.i.d. complex Gaussian elements

 $\mathbf{R}_{\scriptscriptstyle T}$: Transmit-antenna correlation matrix

 $\mathbf{R}_{\scriptscriptstyle R}$: Receive-antenna correlation matrix

■ The existence of the antenna correlations significantly degrades the performance of MIMO systems (not always, but most cases)

Channel considerations for research

- Frequency Flat channel
 - ☐ Used for the basic link-level simulation in time domain
 - Block-Fading channel (slow-fading channel) / Independent fading channels (fast-fading channel)
 - Time-varying channels with the carrier frequency & the mobile speed
- Frequency Selective channel
 - □ Used for the basic link-level simulation in freq. domain (OFDM)
 - Uniform PDP / Exponential PDP
 - ITU-R channel model
 - □ Block fading assumption: Time-varying is usually not considered
- Channel modeling in the specification (3GPP, SCM, 802.11n, ..)
 - □ System level simulation / performance evaluation of a system
- Other specific channel configuration (e.g., spatial correlation)
 - ☐ For the research (analysis/scheme) specialized for the channel
 - □ AWGN basic environment (starts of research / ECC / modulation / ..)

Other Good Textbooks

- Introduction to Space-Time Wireless Communications, Cambridge University Press
 - ☐ A. Paulraj, R. Nabar, and D. Gore
 - ☐ General MIMO systems
- Fundamentals of Wireless communications, Cambridge University Press
 - □ D. Tse and P. Viswanath
 - □ Unified view on wireless communication systems (SISO / MIMO / OFDM)
- Adaptive and Iterative Signal Processing in Communications, Cambridge University Press
 - J. Choi
 - □ Receiver-side schemes (Channel estimation, equalization, soft-detection, ..)
- MIMO-OFDM Wireless Communications with MATLAB, Wiley, 2010
 - ☐ Y. Cho, J. Kim, W. Yang, and C. Kang
 - □ http://comm.cau.ac.kr/MIMO_OFDM/

Thank You!

