	Name 1- 1 Class 1- Roll no:- Batch:-	197	isa)	SAPID > 6	000 424 <i>00</i> 19					
	EXPERTMENT - 3									
+	Aim: - Process scheduling algorithms like FCFS, SJF, RoundRobin & Priority									
		Round	Robin f	Priority	· 6)81306	7	Manye			
	D									
*	Theory:									
	1] FCFS Algorithm!									
,			-		diam'r.	- Strike				
	· Stand	1 Fixed	come	Fixed S	serve.		1.			
	·Simpl	est sch	eduling	algo.	, id as	sign C	pu to the			
	· Simplest scheduling algo., id assign CPV to the process. Which assive first. Non-pre-emptive algo.									
	· Non-	pre-emp	tive o	algo.			1			
	· Example !-									
		1100								
	PNO	AT	BT	CT	TAT	WT	RT			
	PI	0	2	2	2	0	0			
	Pz	1	2	Ч	3	1	l			
	P ₂	5	3	8	3	0	0			
	Pu	6	4	12	6	2	2			
Avg					3. S	.75	.75			
	chart o 2 4 5 8 12 Adv: Simple, easy to under chance Disadv: sustes Soom convoy esteet.									
	· Disadu	1- sull	ed St	om Con	voy est	ed.				
	, ,									
Sundaram	FOR EDUCATIONAL USE									

				9 1939 63						
		1 1			1 1	1 1				
	-7.0	1 0)			11	1.00	To-			
	3] Round Robin Algo 1-									
	-1			A)		10 10 10 10 10				
	. 11	ic a positive a positive a positive a	re-emphue	Algo.	A second	Market	+1			
	· we	hx a	ly op	do while	ch a	proces	d			
	cun	hold o	me cro	in one	go, with	MILL XO	lease			
	the	CDY DO	xo en tes	in H	Circulat	Q L	wait			
	Cv	IL nont	chance.	iii an	CINCULAR					
	· Noso	the next	ill he	Hented	ac da.					
	1.610	144				1166.00				
	· Exam	ple:	TQ 2	2.		Typics 1				
	=	THE PARTY		ment 1	The T	A	4			
	pNo	AT	BT	CT	TAT	WT				
	Po	0	5	13	13	8				
	Pi	1		12	11	8				
	P ₂	2		5	3	2				
	P3	3	2	9	6	4	1			
	Py	. 4	3	14	10	7	pul.			
Aug			· /	d N	3.6	5.8				
		P _s P	12	Po 1/3	Pu Pi	Po 14	И			
	0.11	10.10	10.10	, P ₃	p. 1 p 1	Po Pu				
	Charit Po P1 P2 P3 P4 P1 P0 P4 Chart 0 1 4 5 7 9 11 12 13 14									
	Cupa		3	1 4	12	A Remiss				
	· Adu: Perform best in terms of RT									
	Marine 168 form and a 14 felled 19 KI									
	· Disdu - Longer places may starv.									
		,	,	J	automate.					
Sundaram				FOR EDUCATION	ONAL USE					

		4 100 A				Mar Hi				
	2] SJF Algo. 1-									
	· Stands for Shortest Job First. · Out of all available process, CPV is assigned to the process having smallest BT requirement. · It there is a die FCFs is used to break die. · It can be used both with non-preemptive k. preemptive approach.									
\	· Oul	of c	ill av	ailable	broull,	cpu i	s assigned			
	to U	the po	ocell h	aving	small est	87	regultement.			
	. 19 11	an be	15 a	la-lh	11 H	-an oxer	manive L			
	0800	notive	a naxa	uch	WI(V)	Vo.t. bes				
	1		C PP 800		n miner	T-Fait	Almaha I			
	· Examp	le 1-	ba. T	h hart	a matte	hales I	Listigment Little			
	=			Hall	duling	Made				
	PNO	AT	BT	CT	TAT	WT	RT			
	Pı	- 1	3	6	5	2	2			
	P	2	2	10	8	4	0			
	P3	- 4	ÿ	3	10	0	6			
Avq	Py	1		19	6.25	3	3			
3					0. ~					
	Gunto chart	11/1	P3	PI	Pal	Py				
	chart	0 1	3	6		0	ly			
			125							
	· Adv :- Beller Avg. RT compare to FCFC.									
	n. I	0.	J. k.	1 05	ce and	ماداله	Att and the			
	-DIS-adu:- Preclichon of BT is not possible.									
			James 1	the M	hrat	slymit.	analys -			
			ATTA		Hat I	s.L.	wholil .			
					HIDAN					
							1 1 1 1			
Sundaram				FOR EI	DUCATIONAL U	JSE				
		Almir Land								

	4] Prior	idy Alg	NA IN	wealt:						
	2									
	· Here a priority is associated with each process. · At any instance of time at a f all available process, crow is allocated to the process which process the highest priority. · The broken vsing FCF1 order. · Supports Both pre-emptive & non-preemptive									
	· Exam	The state		47501	and Hist	20 E 21 -	3/3//			
	.pno	AT	вт	Priority.	· CT	TAT	WT_			
	P2 P3	1	3	3	7	6	3 5			
	Py Ps	3	5 2	S S	13	10	S 9			
Avg						7.4	4,4			
	Non-pee	emphin !	P ₁	P2 7	P ₂ 8		18			
	Pre-emptive P, Pr P3 P4 P5 O 4 7 8 13 25 - Adv - Provider a Sacility of priority specially by system									
	· Disadu	poce 1- sta	ua hon		(ne)	apper de	while.			
Gundaram		, ,		FOR EDUC	ATIONAL USE	-				

*	Conclusion:
	Private scheduling Alge are vital in optimizating the performance of as the monaging execution of processes effectively. Each algorithm has its own chengthy & weaknesses. Characing the right algo depends on system requirements like fairness, efficiency, responsive new etc.
•	tile faireness, ethiciancy, responsive ness etc.
•	
Juntaram	FOR EDUCATIONAL USE

```
Program (FCFS):
#include <stdio.h>
struct fcfs {
  int pNo;
  int AT;
  int BT;
  int CT;
  int TAT;
  int WT;
};
void sort(struct fcfs arr[], int n) {
  struct fcfs temp;
  for (int i = 0; i < n - 1; i++) {
     for (int j = i + 1; j < n; j++) {
       if (arr[i].AT > arr[j].AT) {
         temp = arr[i];
         arr[i] = arr[j];
         arr[j] = temp;
       }
    }
  }
}
int main() {
  int n, atat = 0, awt = 0, temp = 0;
  printf("Enter the number of processes: ");
  scanf("%d", &n);
  struct fcfs arr[n];
  // Input process details
  for (int i = 0; i < n; i++) {
     arr[i].pNo = i + 1;
```

```
printf("Enter arrival time for process %d: ", i + 1);
    scanf("%d", &arr[i].AT);
    printf("Enter burst time for process %d: ", i + 1);
    scanf("%d", &arr[i].BT);
  }
  sort(arr, n); // Sort by arrival time
  // Calculate Completion Time, Turnaround Time, and Waiting
Time
  for (int i = 0; i < n; i++) {
    if (temp < arr[i].AT) { // CPU is idle
       printf("\nldle time: %d -> %d\n", temp, arr[i].AT);
      temp = arr[i].AT; // Update current time
    }
    arr[i].CT = temp + arr[i].BT; // Compute Completion Time
    arr[i].TAT = arr[i].CT - arr[i].AT; // Turnaround Time
    arr[i].WT = arr[i].TAT - arr[i].BT; // Waiting Time
    atat += arr[i].TAT; // Accumulate Turnaround Time
    awt += arr[i].WT; // Accumulate Waiting Time
    temp = arr[i].CT; // Update temp to latest Completion Time
  }
  // Display process details
  printf("\nProcess No\tArrival Time\tBurst Time\tCompletion
Time\tTAT\tWaiting Time\n");
  for (int i = 0; i < n; i++) {
    printf("%d\t\t%d\t\t%d\t\t%d\t\t%d\t\t%d\t\t
        arr[i].pNo, arr[i].AT, arr[i].BT, arr[i].CT, arr[i].TAT,
arr[i].WT);
  }
```

```
// Display average times
printf("\nAverage Turnaround Time: %.2f\n", (float)atat / n);
printf("Average Waiting Time: %.2f\n", (float)awt / n);
return 0;
}
```

```
Program (SJF):
#include <stdio.h>
struct Process {
  int pNo, AT, BT, CT, TAT, WT;
};
void sortProcesses(struct Process p[], int n) {
  struct Process temp;
  for (int i = 0; i < n - 1; i++) {
    for (int j = i + 1; j < n; j++) {
       // Sort based on Burst Time (if same, sort by
Arrival Time)
       if ((p[i].BT > p[j].BT) \mid | (p[i].BT == p[j].BT &&
p[i].AT > p[j].AT)) {
         temp = p[i];
         p[i] = p[j];
         p[j] = temp;
    }
  }
}
void sjfNonPreemptive(struct Process p[], int n) {
  int temp = 0, totalTAT = 0, totalWT = 0;
  sortProcesses(p, n); // Sort by burst time
  for (int i = 0; i < n; i++) {
    if (temp < p[i].AT) {
       printf("Idle Time: %d -> %d", temp , p[i].AT);
```

```
temp = p[i].AT; // CPU remains idle
    p[i].CT = temp + p[i].BT; // Completion Time
    p[i].TAT = p[i].CT - p[i].AT; // Turnaround Time
    p[i].WT = p[i].TAT - p[i].BT; // Waiting Time
    totalTAT += p[i].TAT;
    totalWT += p[i].WT;
    temp = p[i].CT;
  }
  printf("\nProcess\tAT\tBT\tCT\tTAT\tWT\n");
  for (int i = 0; i < n; i++) {
    printf("%d\t%d\t%d\t%d\t%d\n", p[i].pNo,
p[i].AT, p[i].BT, p[i].CT, p[i].TAT, p[i].WT);
  }
  printf("\nAverage Turnaround Time: %.2f",
(float)totalTAT / n);
  printf("\nAverage Waiting Time: %.2f\n",
(float)totalWT / n);
int main() {
  int n;
  printf("Enter the number of processes: ");
  scanf("%d", &n);
  struct Process p[n];
  for (int i = 0; i < n; i++) {
```

```
p[i].pNo = i + 1;
  printf("Enter Arrival Time and Burst Time for
Process %d: ", i + 1);
  scanf("%d %d", &p[i].AT, &p[i].BT);
}

sjfNonPreemptive(p, n);
return 0;
}
```

```
Enter the number of processes: 4
Enter Arrival Time and Burst Time for Process 1: 0 2
Enter Arrival Time and Burst Time for Process 2: 1 3
Enter Arrival Time and Burst Time for Process 3: 2 2
Enter Arrival Time and Burst Time for Process 4: 1 3
Process AT
                BT
                        CT
                                 TAT
                                         WT
        0
                2
                        2
                                         0
                                 2
        2
                2
                        4
                                 2
2
                3
                                 6
        1
                3
                        10
Average Turnaround Time: 4.75
Average Waiting Time: 2.25
... Program finished with exit code 0
Press ENTER to exit console.
```

```
Program (Round Robin):
#include <stdio.h>
#include <stdbool.h>
#define Q SIZE 1000
int Q[Q_SIZE], front = -1, rear = -1;
struct RR {
  int pNo;
  int AT;
  int BT;
  int original_BT;
  int CT;
  int TAT;
  int WT;
};
// Function to sort processes based on arrival time
void sort(struct RR arr[], int n) {
  struct RR temp;
  for (int i = 0; i < n; i++) {
    for (int j = i + 1; j < n; j++) {
       if (arr[i].AT > arr[j].AT) {
         temp = arr[i];
         arr[i] = arr[j];
         arr[j] = temp;
    }
}
```

```
// Function to add a process to the queue
void Enqueue(int value) {
  if (rear == Q_SIZE - 1) {
    printf("\nQueue is full.");
    return;
  if (front == -1) {
    front = 0;
  rear++;
  Q[rear] = value;
}
// Function to remove a process from the queue
int Dequeue() {
  if (front == -1 | | front > rear) {
    return -1; // Queue is empty
  int x = Q[front];
  front++;
  return x;
}
// Function to check if the queue is empty
bool isEmpty() {
  return front == -1 || front > rear;
}
// Function to check if a process is already in the queue
bool contains(int value) {
```

```
for (int i = front; i <= rear; i++) {
    if (Q[i] == value) {
       return true;
    }
  return false;
}
int main() {
  int n, TQ, atat = 0, awt = 0, temp = 0;
  // Take Time Quantum
  printf("\nEnter the Time Quantum: ");
  scanf("%d", &TQ);
  printf("Enter the number of processes: ");
  scanf("%d", &n);
  struct RR arr[n];
  // Input process details
  for (int i = 0; i < n; i++) {
    arr[i].pNo = i + 1;
    printf("Enter arrival time for process %d: ", i + 1);
    scanf("%d", &arr[i].AT);
    printf("Enter burst time for process %d: ", i + 1);
    scanf("%d", &arr[i].BT);
    arr[i].original BT = arr[i].BT; // Store original burst
time
  }
  // Sort processes as per the arrival time
```

```
sort(arr, n);
  // Initially add the first process to the queue
  Engueue(0); // 0 index contains the first process
  // Process the queue
  while (!isEmpty()) {
    int i = Dequeue();
    // Handle idle time if no process is ready
    if (temp < arr[i].AT) {
       printf("\nIdle time: %d -> %d\n", temp, arr[i].AT);
       temp = arr[i].AT;
    }
    // Execute the process for the time quantum or its
remaining burst time
    if (arr[i].BT <= TQ) {
       temp += arr[i].BT;
       arr[i].BT = 0; // Process finishes
       arr[i].CT = temp;
    } else {
       temp += TQ;
       arr[i].BT -= TQ;
    }
    // Add newly arrived processes to the queue
    for (int j = 0; j < n; j++) {
       if (arr[j].AT \le temp \&\& arr[j].BT > 0
&& !contains(j)) {
         Enqueue(j);
```

```
}
     }
    // If the current process is not finished, add it back
to the queue
    if (arr[i].BT > 0) {
       Enqueue(i);
    }
  }
  // Calculate TAT, WT, ATAT, and AWT
  for (int i = 0; i < n; i++) {
    arr[i].TAT = arr[i].CT - arr[i].AT;
    arr[i].WT = arr[i].TAT - arr[i].original_BT;
    atat += arr[i].TAT;
    awt += arr[i].WT;
  }
  // Print results
  printf("\nPNo\tAT\tBT\tCT\tTAT\tWT\n");
  for (int i = 0; i < n; i++) {
     printf("P%d\t%d\t%d\t%d\t%d\t%d\n",
         arr[i].pNo,
         arr[i].AT,
         arr[i].original_BT,
         arr[i].CT,
         arr[i].TAT,
         arr[i].WT);
  }
```

```
// Print averages
printf("\nATAT: %.2f", (float)atat / n);
printf("\nAWT : %.2f\n", (float)awt / n);
return 0;
}
```

```
Enter the Time Quantum: 3
Enter the number of processes: 4
Enter arrival time for process 1: 0
Enter burst time for process 1: 2
Enter arrival time for process 2: 2
Enter burst time for process 2: 2
Enter arrival time for process 3: 1
Enter burst time for process 3: 3
Enter arrival time for process 4: 1
Enter burst time for process 4: 3
PNo
        AT
                BT
                         CT
                                  TAT
                                          WT
P1
        0
                2
                         2
                                          0
                                  2
P3
        1
                3
                         5
                                  4
                                          1
                3
                                  7
P4
        1
                         8
                                          4
P2
                2
                         10
                                  8
                                          6
        2
ATAT: 5.25
AWT : 2.75
```

```
Program (Priority Non Pre-emptive):
#include <stdio.h>
// Lesser no higher priority
struct priority{
  int pNo;
  int AT;
  int BT;
  int priority;
  int CT;
  int TAT;
  int WT;
};
void sort(struct priority arr[], int n){
  struct priority temp;
  for(int i = 0; i < n; i++){
    for(int j = i + 1; j < n; j++){
       // Sort as per the priority and AT
       if(arr[i].priority > arr[j].priority || (arr[i].priority
== arr[j].priority && arr[i].AT >arr[j].AT)){
         temp = arr[i];
         arr[i] = arr[j];
         arr[j] = temp;
    }
int main(){
  int n, atat = 0, awt = 0, temp = 0;
```

```
printf("Enter the no of process:");
  scanf("%d", &n);
  struct priority arr[n];
  for(int i = 0; i < n; i++){
    arr[i].pNo = i+1;
    printf("Enter the AT, BT & Priority for the
process %d: ", i+1);
    scanf("%d %d %d", &arr[i].AT, &arr[i].BT,
&arr[i].priority);
  }
  sort(arr, n);
  // Calculate CT, TAT, WT, ATAT & AWt
  for(int i = 0; i < n; i++){
    // Handle idle time
    if(temp < arr[i].AT){</pre>
       printf("Idle time: %d -> %d\n", temp, arr[i].AT);
       temp = arr[i].AT;
    }
    arr[i].CT = temp + arr[i].BT;
    arr[i].TAT = arr[i].CT - arr[i].AT;
    arr[i].WT = arr[i].TAT - arr[i].BT;
    temp = arr[i].CT;
    atat += arr[i].TAT;
    awt += arr[i].WT;
  }
```

```
// Display results in short form
  printf("\nPNo\tAT\tBT\tPri\tCT\tTAT\tWT\n");
 for (int i = 0; i < n; i++) {
    arr[i].pNo,
       arr[i].AT,
       arr[i].BT,
       arr[i].priority,
       arr[i].CT,
       arr[i].TAT,
       arr[i].WT);
 }
 // Display average times
  printf("\nATAT: %.2f", (float)atat / n);
  printf("\nAWT : %.2f\n", (float)awt / n);
  return 0;
}
```

```
Enter the no of process:3
Enter the AT, BT & Priority for the process 1: 0 4 2
Enter the AT, BT & Priority for the process 2: 1 3 1
Enter the AT, BT & Priority for the process 3: 2 2 3
Idle time: 0 -> 1
PNo
                         Pri
                                                  WT
        AT
                BT
                                 CT
                                          TAT
P2
        1
                3
                         1
                                 4
                                          3
                                                  0
P1
        0
                                 8
                         2
P3
        2
                                 10
ATAT: 6.33
AWT : 3.33
```

```
Program (Priority Pre-emptive):
#include <stdio.h>
#include <stdbool.h>
// Lesser number means higher priority
struct priority {
  int pNo;
  int AT;
  int BT;
  int remain_BT;
  int priority;
  int CT;
  int TAT;
  int WT;
  bool completed;
};
void sort(struct priority arr[], int n) {
  struct priority temp;
  for (int i = 0; i < n; i++) {
    for (int j = i + 1; j < n; j++) {
       // Sort by arrival time
       if (arr[i].AT > arr[j].AT) {
         temp = arr[i];
         arr[i] = arr[j];
         arr[j] = temp;
    }
  }
}
```

```
int findHighestPriority(struct priority arr[], int n, int
currentTime) {
  int highestPriorityIndex = -1;
  int highestPriority = 9999; // Assuming lower number
means higher priority
  for (int i = 0; i < n; i++) {
     if (!arr[i].completed && arr[i].AT <= currentTime &&
arr[i].priority < highestPriority) {</pre>
       highestPriority = arr[i].priority;
       highestPriorityIndex = i;
  }
  return highestPriorityIndex;
}
int main() {
  int n, atat = 0, awt = 0, currentTime = 0;
  printf("Enter the number of processes: ");
  scanf("%d", &n);
  struct priority arr[n];
  for (int i = 0; i < n; i++) {
    arr[i].pNo = i + 1;
     printf("Enter the AT, BT & Priority for process %d: ",
i + 1);
    scanf("%d %d %d", &arr[i].AT, &arr[i].BT,
&arr[i].priority);
    arr[i].remain_BT = arr[i].BT;
```

```
arr[i].completed = false;
  }
  sort(arr, n);
  int completedProcesses = 0;
  while (completedProcesses < n) {
    int highestPriorityIndex = findHighestPriority(arr, n,
currentTime);
    if (highestPriorityIndex == -1) {
      // No process available, CPU is idle
       printf("Idle time: %d -> %d\n", currentTime,
currentTime + 1);
      currentTime++;
    } else {
      // Execute the process for 1 unit of time
       arr[highestPriorityIndex].remain BT--;
       currentTime++;
       if (arr[highestPriorityIndex].remain BT == 0) {
         // Process completed
         arr[highestPriorityIndex].completed = true;
         arr[highestPriorityIndex].CT = currentTime;
         arr[highestPriorityIndex].TAT =
arr[highestPriorityIndex].CT -
arr[highestPriorityIndex].AT;
         arr[highestPriorityIndex].WT =
arr[highestPriorityIndex].TAT -
arr[highestPriorityIndex].BT;
```

```
atat += arr[highestPriorityIndex].TAT;
       awt += arr[highestPriorityIndex].WT;
       completedProcesses++;
  }
}
// Display results in short form
printf("\nPNo\tAT\tBT\tPri\tCT\tTAT\tWT\n");
for (int i = 0; i < n; i++) {
  printf("P%d\t%d\t%d\t%d\t%d\t%d\t%d\n",
      arr[i].pNo,
      arr[i].AT,
      arr[i].BT,
      arr[i].priority,
      arr[i].CT,
      arr[i].TAT,
      arr[i].WT);
}
// Display average times
printf("\nATAT: %.2f", (float)atat / n);
printf("\nAWT : %.2f\n", (float)awt / n);
return 0;
```

}

```
Enter the number of processes: 3
Enter the AT, BT & Priority for process 1: 0 5 2
Enter the AT, BT & Priority for process 2: 1 3 1
Enter the AT, BT & Priority for process 3: 2 2 3
                           BT
                                        Pri
                                                      CT
                                                                   TAT
PNo
             AT
                                                                                 WT
P1
             0
                           5
                                                      8
                                                                   8
                                                                                 3
                                        2
P2
                                                                                 0
              1
                           3
                                        1
                                                      4
                                                                   3
P3
                           2
              2
                                        3
                                                      10
                                                                   8
                                                                                 6
ATAT: 6.33
AWT : 3.00
...Program finished with exit code 0
Press ENTER to exit console.
```