Class 7: Clustering and PCA

Juliane Kwong

Clustering

First let's make up some data to cluster so we can get a feel for these methods and how to work with them.

We can use the rnorm() function to get random numbers from a normal distribution around a given mean.

hist(rnorm(5000, mean=3))

Histogram of rnorm(5000, mean = 3)

Let's get 30 points with a mean of 3 and another 30 with a mean of -3...

```
tmp<-c(rnorm(30,mean=3),rnorm(30,mean=-3))
tmp

[1] 3.0566104 2.5781116 3.7135582 1.5064755 3.2757198 1.5280125
[7] 4.0507672 3.0287955 1.8110969 2.1135601 2.3132858 4.5856154
[13] 1.5525997 3.6595405 2.7254682 2.8504142 3.7107445 2.6077051</pre>
```

[25] 2.9081993 2.2484894 2.9124833 2.9346973 2.2897084 3.2288211 [31] -2.7866920 -2.5044566 -2.4617525 -3.7003606 -4.0982399 -3.9458644

2.9398113 4.0819152

2.6123269 4.5430960

[37] -4.3735618 -1.7193320 -3.6585212 -3.8527606 -3.4121382 -4.8880128

 $[43] \ -1.8138991 \ -2.3019296 \ -3.5687177 \ -4.3226044 \ -3.3882032 \ -4.2923951$

[49] -1.8522271 -4.2788012 -1.5887119 -2.8157393 -2.8213901 -5.0779560

[55] -4.5132037 -4.7809367 -2.6571841 -4.1889714 -1.8024757 -1.4748767

Put two of these together:

[19]

```
x<-cbind(x=tmp,y=rev(tmp))
plot(x)</pre>
```

2.0348070 0.8557964

K-means clustering.

Very popular clustering method that we can use with the kmeans() function in base R.

```
km<-kmeans(x,centers=2)</pre>
  km
K-means clustering with 2 clusters of sizes 30, 30
Cluster means:
        x
1 -3.298064 2.808608
2 2.808608 -3.298064
Clustering vector:
 Within cluster sum of squares by cluster:
[1] 58.81603 58.81603
(between_SS / total_SS = 90.5 %)
Available components:
[1] "cluster"
                                                     "tot.withinss"
                "centers"
                            "totss"
                                         "withinss"
[6] "betweenss"
                "size"
                            "iter"
                                         "ifault"
Clustering vector helps to identify where a specific data point is in the plot.
  km$size
[1] 30 30
```

tmp<-c(rnorm(30,-3),rnorm(30,3))
x<-data.frame(x=tmp,y=rev(tmp))</pre>

plot(x)

km<-kmeans(x,center=2)</pre>

- Q. How many points are in each cluster?
- Q. What 'component' of your result object details cluster size?

km\$size

[1] 30 30

• cluster assignment?

km\$cluster

• cluster center?

km\$centers

```
x y
1 3.313479 -3.024258
2 -3.024258 3.313479
```

Q. Plot x colored by the kmeans cluster assignment and add cluster centers as blue points.

```
plot(x,col=km$cluster)
points(km$centers, col="blue",pch=15,cex=3)
```


Q. Let's cluster into 3 groups or same **x** data and make a plot.

```
km<-kmeans(x,center=3)
plot(x,col=km$cluster)</pre>
```


Hierarchical CLustering

We can use the hclust() function for Hierarchical Clustering. Unlike kmeans(), where we could just pass in our data as input, we need to give hclust() a "distance matrix".

We will use the dist() function to start with.

```
d<-dist(x)
hc<-hclust(d)
hc</pre>
```

Call:

hclust(d = d)

Cluster method : complete
Distance : euclidean

Number of objects: 60

```
plot(hc)
```

Cluster Dendrogram

d hclust (*, "complete")

I can now "cut" my tree with the cutree() to yield a cluster membership vector.

```
grps<-cutree(hc,h=8)
grps</pre>
```

You can also tell cutree() to cut where it yields "k" groups.

```
cutree(hc,k=2)
```

```
plot(x,col=grps)
```


Principal Component Analysis (PCA)

PCA of UK food data

```
url<-"https://tinyurl.com/UK-foods"
x <- read.csv(url,row.names=1)
x</pre>
```

	England	Wales	${\tt Scotland}$	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139
Fresh_potatoes	720	874	566	1033
Fresh_Veg	253	265	171	143
Other_Veg	488	570	418	355
Processed_potatoes	198	203	220	187
Processed_Veg	360	365	337	334

Fresh_fruit	1102	1137	957	674
Cereals	1472	1582	1462	1494
Beverages	57	73	53	47
Soft_drinks	1374	1256	1572	1506
Alcoholic_drinks	375	475	458	135
Confectionery	54	64	62	41

Exploratory analysis

```
dim(x)
```

[1] 17 4

```
barplot(as.matrix(x), beside=F, col=rainbow(nrow(x)))
```



```
pairs(x, col=rainbow(10), pch=16)
```


The main PCA function in base R is called prcomp() it expects the transpose (location) of our data.

```
pca <- prcomp( t(x) )
summary(pca)</pre>
```

Importance of components:

```
        PC1
        PC2
        PC3
        PC4

        Standard deviation
        324.1502
        212.7478
        73.87622
        5.552e-14

        Proportion of Variance
        0.6744
        0.2905
        0.03503
        0.000e+00

        Cumulative Proportion
        0.6744
        0.9650
        1.00000
        1.000e+00
```

```
attributes(pca)
```

\$names

[1] "sdev" "rotation" "center" "scale" "x"

\$class

[1] "prcomp"

pca\$x

```
PC1
                             PC2
                                          PC3
                                                        PC4
          -144.99315
England
                        2.532999 -105.768945
                                               1.042460e-14
Wales
          -240.52915
                      224.646925
                                    56.475555
                                               9.556806e-13
Scotland
           -91.86934 -286.081786
                                    44.415495 -1.257152e-12
N.Ireland 477.39164
                       58.901862
                                     4.877895
                                               2.872787e-13
```

