Übungen zur Mathematik für Naturwissenschaftler I (WS 07/08)

PD Dr. Uwe Riedel, Dr. W. Bessler

Aufgabe 1:

Die Grundfläche ABC eines regelmäßigen Tetraeders ist parallel zu der (x, y)-Ebene und der Schwerpunkt S befindet sich genau im Ursprung. Bestimmen Sie die vier Ecken A, B, C und D in Zylinder- und Kugelkoordinaten sowie die fehlenden Ecken in kartesischen Koordinaten, wenn $A = (3, 0, \frac{-3}{4}\sqrt{2})$ und $D = (0, 0, \frac{9}{4}\sqrt{2})$ in kartesischen Koordinaten gegeben sind.

Aufgabe 2:

Ein Körper A möge durch zwei Federn zu einer geradlinigen Schwingung gezwungen werden. Seine Bewegung entlang der y'-Achse im Koordinatensystem K' lässt sich durch die Gleichung $y'=2\sin(2\pi\nu t)$ beschreiben. Hier ist t die Zeit und ν die Frequenz.

Die Beobachter B und C befinden sich zu allen Zeiten im Ursprung zweier weiterer Koordinatensysteme K und K". Zum Zeitpunkt t=0 stimmen die Richtungen der jeweiligen x und y-Achsen der drei Koordinatensysteme K, K', K'' überein. Ebenfalls zum Zeitpunkt t=0stimmen der Koordinatenursprung von K und K' überein, wohingegen der Ursprung von K''bei der Koordinate (10,0) in K liegt.

- a) Fertigen Sie eine Skizze über die Lage der Koordinatensysteme K, K' und K'' an.
- b) B stellt fest, dass sich die Schwingungsrichtung von A pro Zeit mit der Winkelgeschwindigkeit ω entgegen dem Uhrzeigersinn um (0,0) dreht. Zeichnen Sie die Bewegung von K'in die Skizze a) ein. Welche Bahn (x(t),y(t)) beschreibt A im Koordinatensystem K?
- c) C vollführt eine geradlinig gleichförmige Bewegung mit einer Geschwindigkeit v in Richtung von C nach B. Zeichnen Sie die Bewegung von K'' in die Skizze a) ein. Welche Bahn (x''(t),y''(t)) beschreibt der Körper A in K''?
- d) Skizzieren Sie y'' in Abhängigkeit von t für $4\omega = 2\pi\nu$.

Aufgabe 3:

Betrachten Sie die zusammengesetzte Folge $\{a_n + b_n\}$ mit $a_n = 1/n^2$ und $b_n = 1 + 1/n$. Zeigen Sie, dass der Wert 1 ein Häufungspunkt der Folge $\{a_n + b_n\}$ ist, indem Sie analog Blatt 6 Aufgabe 3 c) eine Formel für n_0 herleiten, so dass $a_n + b_n < 1 + \epsilon$ für alle $n \ge n_0$.

Aufgabe 4:

Betrachten Sie die angegebenen Folgen $\{a_n\}$. Sind die Folgen konvergent, bestimmt divergent oder unbestimmt divergent? Bestimmen Sie ggf. die Grenzwerte und Häufungspunkte.

a)
$$a_n = \frac{5n^3 + 5n + 4}{2n^3 + 3n^2 + 8}$$

b) $a_n = \frac{5n^3 + 5n + 4}{2n^2 + 3n + 8}$

b)
$$a_n = \frac{5n^3 + 5n + 4}{2n^2 + 3n + 8}$$

c)
$$a_n = (-1)^n \frac{3n^2+3}{n^2+2}$$

e)
$$a_n = \sin(n\pi/2)$$