Digital Signal Processing

EE3900

AI21BTECH11017

CONTENTS

2 Laplace Transform

3 Initial Conditions

1. Definitions

1. The unit step function is

$$u(t) = \begin{cases} 1 & t > 0 \\ \frac{1}{2} & t = 0 \\ 0 & t < 0 \end{cases}$$
 (1.1)

2. The Laplace transform of g(t) is defined as

$$G(s) = \int_{-\infty}^{\infty} g(t)e^{-st} dt$$
 (1.2)

2. Laplace Transform

- 1. In the circuit, the switch S is connected to position P for a long time so that the charge on the capacitor becomes $q_1 \mu C$. Then S is switched to position Q. After a long time, the charge on the capacitor is $q_2 \mu C$.
- 2. Draw the circuit using latex-tikz.

Solution: The following code yields Fig.2.1

wget https://github.com/Pradeep8802/EE3900 -Digital-Signal-Processing/blob/main/ cktsig/Tikz%20Circuits/2.2.tex

Fig. 2.1. Given Circuit

Fig. 2.2. Before switching S to Q

3. Find q_1 .

Solution: Before switching S to Q: At steady state, which achieved when switch S is at P for long time capacoitor behaves as an open switch, hence current through capacitor is 0, Let *i* be the current flowing in the circuit at steady state. Applying KVL,

$$1 - i - 2i - 2 = 0 \tag{2.1}$$

$$3i = -1 \Rightarrow i = \frac{-1}{3}A\tag{2.2}$$

Potential Difference across the capacitor at steady state is

$$1 - \left(\frac{-1}{3}\right) = \frac{4}{3}V\tag{2.3}$$

$$q_1 = \frac{4}{3} \cdot 1 \tag{2.4}$$

$$=\frac{4}{3}\mu C\tag{2.5}$$

4. Show that the Laplace transform of u(t) is $\frac{1}{s}$ and find the ROC.

Solution: We know that Laplace Transform fo function f(t) is given as F(s),

$$F(s) = \int_0^\infty f(t)e^{-st} dt \qquad (2.6)$$

(2.7)

1

For u(t), we have,

$$F(s) = \int_0^\infty u(t)e^{-st} dt \qquad (2.8)$$

Using (1.1),

$$F(s) = \int_0^\infty u(t)e^{-st} dt \qquad (2.9)$$

$$= \int_0^\infty e^{-st} dt \tag{2.10}$$

$$= -\left(0 - \frac{1}{s}\right) \tag{2.11}$$

$$=\frac{1}{s} \tag{2.12}$$

ROC is Re(s) > 0 since for s > 0, $e^{-st} < \infty$ for $t \to \infty$

Fig. 2.4.

Fig. 2.3.

5. Show that

$$e^{-at}u(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{1}{s+a}, \quad a > 0$$
 (2.13)

and find the ROC.

Solution: From 2.6,

$$F(s) = \int_0^\infty u(t)e^{-at}e^{-st} dt$$
 (2.14)

$$= \int_0^\infty u(t)e^{-(s+a)t} \, dt$$
 (2.15)

$$= \int_0^\infty e^{-(s+a)t} dt \tag{2.16}$$

$$= -\left(0 - \frac{1}{s+a}\right) \tag{2.17}$$

$$=\frac{1}{s+a}\tag{2.18}$$

ROC is

$$Re(s) + a > 0 \Rightarrow Re(s) > -a$$
 (2.19)

Fig. 2.5.

$$u(t) \stackrel{\mathcal{L}}{\longleftrightarrow} V_1(s)$$
 (2.20)

$$2u(t) \stackrel{\mathcal{L}}{\longleftrightarrow} V_2(s)$$
 (2.21)

Find the voltage across the capacitor $V_{C_0}(s)$. **Solution:**

$$R_{eff} = \frac{1}{1 + \frac{1}{2}} = \frac{2}{3}\Omega \tag{2.22}$$

$$V_{eff} = \frac{1}{1 + \frac{1}{2}} = \frac{2}{3}V \tag{2.23}$$

$$V_{C_0}(s) = V_S(s) \frac{C_0}{C_0 + R_{eff}}$$
 (2.24)

$$= \left(\frac{4}{3s}\right) \left(\frac{\frac{1}{s}}{\frac{1}{s} + \frac{2}{3}}\right) \tag{2.25}$$

$$= \frac{3+4s}{3s\left(s+\frac{3}{2}\right)} \tag{2.26}$$

7. Find $v_{C_0}(t)$. Plot using python.

Solution: Running the following code gives the plot.

wget https://github.com/Pradeep8802/EE3900 -Digital-Signal-Processing/tree/main/ cktsig/codes/2.7.py

Using (2.26),

$$\frac{3+4s}{3s\left(s+\frac{3}{2}\right)} = \frac{2}{3s} + \frac{2}{3(\frac{3}{2}+s)}$$
 (2.27)

Apply inverse Laplacian Transform,

$$V_{C_0}(s) \stackrel{\mathcal{L}^{-\infty}}{\longleftrightarrow} V_{C_0}(t)$$
 (2.28)

$$\mathcal{L}^{-1} \left[V_{C_0}(s) \right] = \mathcal{L}^{-1} \left[\frac{2}{3s} + \frac{2}{3(\frac{3}{2} + s)} \right]$$
 (2.29)

$$= \mathcal{L}^{-1} \left[\frac{2}{3s} \right] - \frac{2}{3} \mathcal{L}^{-1} \left[\frac{1}{\frac{3}{2} + s} \right]$$
 (2.30)

Since,

$$\mathcal{L}^{-1}\left[\frac{1}{s}\right] = u(t) \tag{2.31}$$

$$\mathcal{L}^{-1}\left[\frac{1}{s-a}\right] = e^{at}u(t) \tag{2.32}$$

Using the above equations,

$$V_{C_0}(t) = \frac{2}{3} \left(1 + e^{\frac{-3}{2}t} \right) u(t)$$
 (2.33)

Fig. 2.6. Plot of $V_{C_0}(t)$

Fig. 2.7.

8. Verify your result using ngspice.

Solution:

9. Obtain Fig. 2.6 using the equivalent differential equation

Solution: Results obtained can be verified by running the following code.

wget https://github.com/Pradeep8802/EE3900 -Digital-Signal-Processing/tree/main/ cktsig/codes/2.8.cir

And is plotted using the below code.

wget https://github.com/Pradeep8802/EE3900 -Digital-Signal-Processing/tree/main/ cktsig/codes/2.8.py

Using Kirchoff's junction law

$$\frac{v_c(t) - v_1(t)}{R_1} + \frac{v_c(t) - v_2(t)}{R_2} + \frac{\mathrm{d}q}{\mathrm{d}t} = 0 \quad (2.34)$$

where q(t) is the charge on the capacitor On taking the Laplace transform on both sides of this equation

$$\frac{V_c(s) - V_1(s)}{R_1} + \frac{V_c(s) - V_2(s)}{R_2} + (sQ(s) - q(0^-)) = 0$$
(2.35)

But $q(0^{-}) = 0$ and

$$q(t) = C_0 v_c(t)$$
 (2.36)

$$\implies Q(s) = C_0 V_c(s)$$
 (2.37)

Thus

$$\frac{V_c(s) - V_1(s)}{R_1} + \frac{V_c(s) - V_2(s)}{R_2} + sC_0V_c(s) = 0$$

$$\implies \frac{V_c(s) - V_1(s)}{R_1} + \frac{V_c(s) - V_2(s)}{R_2} + \frac{V_c(s) - 0}{\frac{1}{sC_0}} = 0$$
(2.38)

which is the same equation as the one we obtained from Fig. 2.6

3. Initial Conditions

1. Find q_2 in Fig. 2.1.

Solution: At steady state capacitor behaves as an open switch. Hence $V_{C_0} = V_{1\Omega}$.

Let i be the current in the circuit. Using KVL,

$$2 - 2i - i = 0 \implies i = \frac{2}{3}$$
 (3.1)

$$V_{1\Omega} = i \times 1 = \frac{2}{3}V$$
 (3.2)

$$V_{C_0} = \frac{q_2}{C_0} = V_{1\Omega} = \frac{2}{3}$$
 (3.3)

$$\implies q_2 = \frac{2}{3}\mu C \tag{3.4}$$

2. Draw the equivalent *s*-domain resistive circuit when S is switched to position Q. Use variables R_1, R_2, C_0 for the passive elements. Use latextikz.

Solution:

Fig. 3.1. After switching S to Q

3. $V_{C_0}(s) = ?$

Solution: Let voltage across capacitor be V. Using KCL at node in Fig. 3.1

$$\frac{V-0}{R_1} + \frac{V-\frac{2}{s}}{R_2} + sC_0\left(V - \frac{4}{3s}\right) = 0$$
 (3.5)

$$\implies V_{C_0}(s) = \frac{\frac{2}{sR_2} + \frac{4C_0}{3}}{\frac{1}{R_1} + \frac{2}{R_2} + sC_0}$$
 (3.6)

4. $v_{C_0}(t) = ?$ Plot using python.

Solution: Running the following code gives the plot.

wget https://github.com/Pradeep8802/EE3900 -Digital-Signal-Processing/tree/main/ cktsig/codes/3.4.py

From (3.6),

$$V_{C_0}(s) = \frac{4}{3} \left(\frac{1}{\frac{1}{C_0} \left(\frac{1}{R_1} + \frac{1}{R_2} \right) + s} \right) + \frac{2}{R_2 \left(\frac{1}{R_1} + \frac{1}{R_2} \right)} \left(\frac{1}{s} - \frac{1}{\frac{1}{C_0} \left(\frac{1}{R_1} + \frac{1}{R_2} \right) + s} \right)$$
(3.7)

Taking an inverse Laplace Transform,

$$v_{C_0}(t) = \frac{4}{3}e^{-\left(\frac{1}{R_1} + \frac{1}{R_2}\right)\frac{t}{C_0}}u(t) + \frac{2}{R_2\left(\frac{1}{R_1} + \frac{1}{R_2}\right)}\left(1 - e^{-\left(\frac{1}{R_1} + \frac{1}{R_2}\right)\frac{t}{C_0}}\right)u(t)$$
 (3.8)

Substituting values gives

$$v_{C_0}(t) = \frac{2}{3} \left(1 + e^{-\left(1.5 \times 10^6\right)t} \right) u(t) \tag{3.9}$$

Fig. 3.2. Plot of $V_{C_0}(t)$

5. Verify your result using ngspice. **Solution:** Results obtained can be verified by running the following code.

wget https://github.com/Pradeep8802/EE3900 -Digital-Signal-Processing/tree/main/ cktsig/codes/3.5.cir

Fig. 3.3. ngspice plot of $V_{C_0}(t)$

Runningn the below code plots the figure 3.3, and verifies our result.

wget https://github.com/Pradeep8802/EE3900 -Digital-Signal-Processing/tree/main/ cktsig/codes/3.5.py

6. Find $v_{C_0}(0-), v_{C_0}(0+)$ and $v_{C_0}(\infty)$.

Solution: From the initial conditions,

$$v_{C_0}(0-) = \frac{q_1}{C} = \frac{4}{3}V \tag{3.10}$$

Using (3.9),

$$v_{C_0}(0+) = \lim_{t \to 0+} v_{C_0}(t) = \frac{4}{3}V$$
 (3.11)

$$v_{C_0}(\infty) = \lim_{t \to \infty} v_{C_0}(t) = \frac{2}{3}V$$
 (3.12)

7. Obtain Fig. 3.2 using the equivalent differential equation

Solution: Using Kirchoff's junction law

$$\frac{v_c(t) - 0}{R_1} + \frac{v_c(t) - v_2(t)}{R_2} + \frac{\mathrm{d}q}{\mathrm{d}t} = 0$$
 (3.13)

where q(t) is the charge on the capacitor. On taking the Laplace transform on both sides of the equation (3.13), we get,

$$\frac{V_c(s) - 0}{R_1} + \frac{V_c(s) - V_2(s)}{R_2} + sQ(s) - q(0^-) = 0$$
(3.14)

But $q(0^-) = \frac{4}{3}C_0$ and

$$q(t) = C_0 v_c(t)$$
 (3.15)

$$\implies Q(s) = C_0 V_c(s)$$
 (3.16)

Thus

$$\frac{V_c(s) - 0}{R_1} + \frac{V_c(s) - V_2(s)}{R_2} + \left(sC_0V_c(s) - \frac{4}{3}C_0\right) = 0$$

$$\implies \frac{V_c(s) - 0}{R_1} + \frac{V_c(s) - V_2(s)}{R_2} + \frac{V_c(s) - \frac{4}{3s}}{\frac{1}{sC_0}} = 0$$
(3.17)
$$(3.18)$$

which is the same equation as the one we obtained from Fig. 3.2