Reading and Understanding the Data

```
In [1]:
import warnings
warnings.filterwarnings('ignore')
In [2]:
import numpy as np
import pandas as pd
In [3]:
housing=pd.read csv("datascience/HousingMLR.csv")
In [4]:
# Check the head of the dataset
housing.head()
Out[4]:
                bedrooms bathrooms stories mainroad guestroom basement hotwaterheating
                                                                                  airconditioning parking prefare:
      price area
0 13300000 7420
                                4
1 12250000 8960
                       4
                                       4
                                                                                          yes
                                                                                                   3
                                              ves
                                                        no
                                                                 no
                                                                              no
                                                                                                          n
                                2
2 12250000 9960
                       3
                                       2
                                                                yes
                                                                                           no
3 12215000 7500
                       4
                                2
                                       2
                                                                                                   3
                                              yes
                                                        no
                                                                yes
                                                                              no
                                                                                          yes
                                                                                                         ye:
4 11410000 7420
                       4
                                1
                                       2
                                                       yes
                                                                                                   2
                                              yes
                                                                yes
In [5]:
housing.shape
Out[5]:
(545, 13)
In [6]:
housing.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 545 entries, 0 to 544
Data columns (total 13 columns):
price
                     545 non-null int64
                     545 non-null int64
area
                     545 non-null int64
bedrooms
bathrooms
                     545 non-null int64
                     545 non-null int64
stories
mainroad
                     545 non-null object
                     545 non-null object
guestroom
                     545 non-null object
basement.
hotwaterheating
                     545 non-null object
                     545 non-null object
airconditioning
                     545 non-null int64
parking
prefarea
                     545 non-null object
                    545 non-null object
furnishingstatus
```

dtypes: int64(6), object(7) memory usage: 55.4+ KB

housing.describe()

Out[8]:

	price	area	bedrooms	bathrooms	stories	parking
count	5.450000e+02	545.000000	545.000000	545.000000	545.000000	545.000000
mean	4.766729e+06	5150.541284	2.965138	1.286239	1.805505	0.693578
std	1.870440e+06	2170.141023	0.738064	0.502470	0.867492	0.861586
min	1.750000e+06	1650.000000	1.000000	1.000000	1.000000	0.000000
25%	3.430000e+06	3600.000000	2.000000	1.000000	1.000000	0.000000
50%	4.340000e+06	4600.000000	3.000000	1.000000	2.000000	0.000000
75%	5.740000e+06	6360.000000	3.000000	2.000000	2.000000	1.000000
max	1.330000e+07	16200.000000	6.000000	4.000000	4.000000	3.000000

Visualising the Data

In [9]:

```
import matplotlib.pyplot as plt
import seaborn as sns
```

In [10]:

```
sns.pairplot(housing)
plt.show()
```


vizualising categorical variable

In [11]:

```
plt.figure(figsize=(20, 12))
plt.subplot(2,3,1)
sns.boxplot(x = 'mainroad', y = 'price', data = housing)
plt.subplot(2,3,2)
sns.boxplot(x = 'guestroom', y = 'price', data = housing)
plt.subplot(2,3,3)
sns.boxplot(x = 'basement', y = 'price', data = housing)
plt.subplot(2,3,4)
sns.boxplot(x = 'hotwaterheating', y = 'price', data = housing)
plt.subplot(2,3,5)
sns.boxplot(x = 'airconditioning', y = 'price', data = housing)
plt.subplot(2,3,6)
sns.boxplot(x = 'furnishingstatus', y = 'price', data = housing)
plt.show()
```


In [12]:

```
plt.figure(figsize = (10, 5))
sns.boxplot(x = 'furnishingstatus', y = 'price', hue = 'airconditioning', data = housing)
plt.show()
```


Data Preparation

In [13]:

```
# List of variables to map

varlist = ['mainroad', 'guestroom', 'basement', 'hotwaterheating', 'airconditioning', 'prefarea']

# Defining the map function
def binary_map(x):
    return x.map({'yes': 1, "no": 0})

# Applying the function to the housing list
housing[varlist] = housing[varlist].apply(binary_map)
```

In [14]:

```
# Check the housing dataframe now
housing.head()
```

Out[14]:

	price	area	bedrooms	bathrooms	stories	mainroad	guestroom	basement	hotwaterheating	airconditioning	parking	prefare
0	13300000	7420	4	2	3	1	0	0	0	1	2	,
1	12250000	8960	4	4	4	1	0	0	0	1	3	(
2	12250000	9960	3	2	2	1	0	1	0	0	2	,
3	12215000	7500	4	2	2	1	0	1	0	1	3	
4	11410000	7420	4	1	2	1	1	1	0	1	2	(
4												Þ

dummy varaiables

In [15]:

```
# Get the dummy variables for the feature 'furnishingstatus' and store it in a new variable - 'sta
tus'
status = pd.get_dummies(housing['furnishingstatus'])
```

In [16]:

```
status.head()
```

Out[16]:

	furnished	semi-furnished	unfurnished
0	1	0	0
1	1	0	0
2	0	1	0
3	1	0	0
4	1	0	0

```
In [17]:
status = pd.get_dummies(housing['furnishingstatus'], drop_first = True)

In [18]:
housing = pd.concat([housing, status], axis = 1)

In [19]:
housing.head()
Out[19]:
```

price area bedrooms bathrooms stories mainroad guestroom basement hotwaterheating airconditioning parking prefare 13300000 7420 12250000 8960 12250000 9960 n 12215000 7500 11410000 7420

In [20]:

```
# Drop 'furnishingstatus' as we have created the dummies for it
housing.drop(['furnishingstatus'], axis = 1, inplace = True)
```

In [21]:

```
housing.head()
```

Out[21]:

	price	area	bedrooms	bathrooms	stories	mainroad	guestroom	basement	hotwaterheating	airconditioning	parking	prefare
0	13300000	7420	4	2	3	1	0	0	0	1	2	
1	12250000	8960	4	4	4	1	0	0	0	1	3	(
2	12250000	9960	3	2	2	1	0	1	0	0	2	
3	12215000	7500	4	2	2	1	0	1	0	1	3	
4	11410000	7420	4	1	2	1	1	1	0	1	2	(
4												Þ

training and testing part

```
In [25]:
```

```
from sklearn.model_selection import train_test_split

# We specify this so that the train and test data set always have the same rows, respectively
np.random.seed(0)

df_train, df_test = train_test_split(housing, train_size = 0.7, test_size = 0.3, random_state = 100
)
```

In [26]:

```
from sklearn.preprocessing import MinMaxScaler
```

In [27]:

```
scaler = MinMaxScaler()
```

In [30]:

```
# Apply scaler() to all the columns except the 'yes-no' and 'dummy' variables
num_vars = ['area', 'bedrooms', 'bathrooms', 'stories', 'parking', 'price']
df_train[num_vars] = scaler.fit_transform(df_train[num_vars])
```

In [29]:

```
df_train.head()
```

Out[29]:

	price	area	bedrooms	bathrooms	stories	mainroad	guestroom	basement	hotwaterheating	airconditioning	parking
359	0.169697	0.155227	0.4	0.0	0.000000	1	0	0	0	0	0.333333
19	0.615152	0.403379	0.4	0.5	0.333333	1	0	0	0	1	0.333333
159	0.321212	0.115628	0.4	0.5	0.000000	1	1	1	0	1	0.000000
35	0.548133	0.454417	0.4	0.5	1.000000	1	0	0	0	1	0.666667
28	0.575758	0.538015	0.8	0.5	0.333333	1	0	1	1	0	0.666667
4											Þ

In [31]:

```
df_train.describe()
```

Out[31]:

	price	area	bedrooms	bathrooms	stories	mainroad	guestroom	basement	hotwaterheating	airconditionin
count	381.000000	381.000000	381.000000	381.000000	381.000000	381.000000	381.000000	381.000000	381.000000	381.00000
mean	0.260333	0.288710	0.386352	0.136483	0.268591	0.855643	0.170604	0.351706	0.052493	0.29921
std	0.157607	0.181420	0.147336	0.237325	0.295001	0.351913	0.376657	0.478131	0.223313	0.45851
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.00000
25%	0.151515	0.155227	0.200000	0.000000	0.000000	1.000000	0.000000	0.000000	0.000000	0.00000
50%	0.221212	0.234424	0.400000	0.000000	0.333333	1.000000	0.000000	0.000000	0.000000	0.00000
75%	0.345455	0.398099	0.400000	0.500000	0.333333	1.000000	0.000000	1.000000	0.000000	1.00000
max	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.00000
4										Þ

In [32]:

```
# Let's check the correlation coefficients to see which variables are highly correlated
plt.figure(figsize = (16, 10))
sns.heatmap(df_train.corr(), annot = True, cmap="YlGnBu")
plt.show()
```


- 0.9 - 0.6

In [33]:

```
plt.figure(figsize=[6,6])
plt.scatter(df_train.area, df_train.price)
plt.show()
```


In [34]:

```
y_train = df_train.pop('price')
X_train = df_train
```

building a linear modal

In [35]:

```
import statsmodels.api as sm

# Add a constant
X_train_lm = sm.add_constant(X_train[['area']])

# Create a first fitted model
lr = sm.OLS(y_train, X_train_lm).fit()
```

In [36]:

```
lr.params
```

Out[36]:

const N 126894

area 0.462192 dtype: float64

In [37]:

```
plt.scatter(X_train_lm.iloc[:, 1], y_train)
plt.plot(X_train_lm.iloc[:, 1], 0.127 + 0.462*X_train_lm.iloc[:, 1], 'r')
plt.show()
```


In [38]:

```
# Print a summary of the linear regression model obtained
print(lr.summary())
```

OLS Regression Results

Dep. Variable:	price	R-squared:	0.283
Model:	OLS	Adj. R-squared:	0.281
Method:	Least Squares	F-statistic:	149.6
Date:	Wed, 20 May 2020	Prob (F-statistic):	3.15e-29
Time:	14:52:53	Log-Likelihood:	227.23
No. Observations:	381	AIC:	-450.5
Df Residuals:	379	BIC:	-442.6
Df Model:	1		

Covariance Type: nonrobust

coef std err t P>|t| [0.025 0.975]

const	0.1269	0.013	9.853	0.000	0.102	0.152		
area	0.4622	0.038	12.232	0.000	0.388	0.536		
=========		========				=======		
Omnibus:		67.3	13 Durbir	n-Watson:		2.018		
Prob(Omnibus	s):	0.0	00 Jarque	e-Bera (JB):		143.063		
Skew:		0.9	25 Prob(3	JB):		8.59e-32		
Kurtosis:		5.3	65 Cond.	No.		5.99		

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [39]:

```
# Assign all the feature variables to X
X_train_lm = X_train[['area', 'bathrooms']]
```

In [40]:

```
# Build a linear model

import statsmodels.api as sm
X_train_lm = sm.add_constant(X_train_lm)

lr = sm.OLS(y_train, X_train_lm).fit()

lr.params
```

```
Out[40]:
```

const 0.104589 area 0.398396 bathrooms 0.298374

dtype: float64

In [41]:

```
# Check the summary
print(lr.summary())
```

OLS Regression Results

Dep. Variable: price R-squared: 0.480 Model: OLS Adj. R-squared: 0.477 Method: Least Squares F-statistic: 174.1 Date: Wed, 20 May 2020 Prob (F-statistic): 2.51e-54 Time: 14:53:30 Log-Likelihood: 288.24 No. Observations: 381 AIC: -570.5 Df Residuals: 378 BIC: -558.6

Df Model: 2
Covariance Type: nonrobust

========						
	coef	std err	t	P> t	[0.025	0.975]
const area bathrooms	0.1046 0.3984 0.2984	0.011 0.033 0.025	9.384 12.192 11.945	0.000 0.000 0.000	0.083 0.334 0.249	0.127 0.463 0.347
=========		=======	=======		========	========
Omnibus:		62	.839 Durk	oin-Watson:		2.157
Prob(Omnibus)):	0	.000 Jaro	que-Bera (JB):	168.790
Skew:		0	.784 Prob	(JB):		2.23e-37
Kurtosis:		5	.859 Cond	d. No.		6.17
		========				

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [42]:

```
# Assign all the feature variables to X
X_train_lm = X_train[['area', 'bathrooms','bedrooms']]
```

In [43]:

```
# Build a linear model
import statsmodels.api as sm
X_train_lm = sm.add_constant(X_train_lm)
lr = sm.OLS(y_train, X_train_lm).fit()
lr.params
```

Out[43]:

const 0.041352 area 0.392211 bathrooms 0.259978 bedrooms 0.181863 dtype: float64

In [44]:

```
# Print the summary of the model
print(lr.summary())
```

OLS Regression Results

```
Dep. Variable:
                                price R-squared:
Model:
                                 OLS Adj. R-squared:
                                                                           0.501
Method:
Date:
                      Least Squares F-statistic:
                   Least squar
Wed, 20 May 2020
                                                                            128.2
                                         Prob (F-statistic):
                                                                       3.12e-57
                                        Log-Likelihood:
                                                                           297.76
                            14:54:16
                                   381 AIC:
                                                                           -587.5
No. Observations:
Df Residuals:
                                   377 BIC:
                                                                           -571.7
                                    3
Df Model:
Covariance Type:
                            nonrobust
______
                coef std err t P>|t| [0.025 0.975]
______

      const
      0.0414
      0.018
      2.292
      0.022
      0.006
      0.077

      area
      0.3922
      0.032
      12.279
      0.000
      0.329
      0.455

      bathrooms
      0.2600
      0.026
      10.033
      0.000
      0.209
      0.311

      bedrooms
      0.1819
      0.041
      4.396
      0.000
      0.101
      0.263

______
                               50.037 Durbin-Watson:
                               0.000 Jarque-Bera (JB):
Prob(Omnibus):
                                                                         124.806
                                0.648 Prob(JB):
5.487 Cond. No.
Skew:
                                                                         7.92e-28
Kurtosis:
```

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [45]:

```
# Check all the columns of the dataframe
housing.columns
```

Out[45]:

In [46]:

```
#Build a linear model
import statsmodels.api as sm
X_train_lm = sm.add_constant(X_train)
lr_1 = sm.OLS(y_train, X_train_lm).fit()
lr_1.params
```

Out[46]:

```
0.020033
const
                  0.234664
                 0.046735
0.190823
0.108516
hedrooms
bathrooms
stories
mainroad
                  0.050441
                  0.030428
guestroom
                  0.021595
basement
hotwaterheating 0.084863
airconditioning 0.066881
parking 0.060735
parking
                  0.059428
prefarea
semi-furnished 0.000921
                 -0.031006
unfurnished
dtype: float64
```

In [47]:

```
print(lr_1.summary())
```

OTO VERTESSION VESUICS

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Wed, 20	price R-squared: OLS Adj. R-squared: Least Squares F-statistic: Wed, 20 May 2020 Prob (F-statistic): 14:54:54 Log-Likelihood: 381 AIC: 367 BIC: 13 nonrobust			381.79 -735.6 -680.4		
			t			0.975]	
bathrooms stories mainroad guestroom basement hotwaterheating airconditioning parking	0.2347 0.0467 0.1908 0.1085 0.0504 0.0304 0.0216 0.0849 0.0669 0.0607 0.0594 0.0009	0.030 0.037 0.022 0.019 0.014 0.014 0.011 0.022 0.011 0.018 0.012	3.520 2.233 1.943 3.934 5.899 3.365 5.040 0.078	0.000 0.206 0.000 0.000 0.000 0.026 0.053 0.000 0.000 0.001 0.000	0.175 -0.026 0.148 0.071 0.022 0.004 -0.000 0.042 0.045 0.025 0.036	0.294 0.119 0.234 0.146 0.079 0.057 0.043 0.127 0.089 0.096 0.083 0.024	
Omnibus: Prob(Omnibus): Skew: Kurtosis:		93.687 0.000 1.091 6.801	Durbin-Wats Jarque-Bera Prob(JB): Cond. No.		304 6.14	2.093 2.917 4.6	

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

checking vif

In [48]:

```
# Check for the VIF values of the feature variables.

from statsmodels.stats.outliers_influence import variance_inflation_factor
```

In [49]:

```
# Create a dataframe that will contain the names of all the feature variables and their respective
VIFs
vif = pd.DataFrame()
vif['Features'] = X_train.columns
vif['VIF'] = [variance_inflation_factor(X_train.values, i) for i in range(X_train.shape[1])]
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[49]:

	Features	VIF
1	bedrooms	7.33
4	mainroad	6.02
0	area	4.67
3	stories	2.70
11	semi-furnished	2.19
9	parking	2.12
6	basement	2.02
12	unfurnished	1.82
8	airconditioning	1.77

```
        2
        bathrooms Features
        167 VIF

        10
        prefarea
        1.51

        5
        guestroom
        1.47

        7
        hotwaterheating
        1.14
```

In [50]:

```
X = X_train.drop('semi-furnished', 1,)
```

In [51]:

```
# Build a third fitted model
X_train_lm = sm.add_constant(X)
lr_2 = sm.OLS(y_train, X_train_lm).fit()
```

In [52]:

Covariance Type:

```
print(lr_2.summary())
```

OLS Regression Results									
Dep. Variable:	price	R-squared:	0.681						
Model:	OLS	Adj. R-squared:	0.671						
Method:	Least Squares	F-statistic:	65.61						
Date:	Wed, 20 May 2020	Prob (F-statistic):	1.07e-83						
Time:	14:56:20	Log-Likelihood:	381.79						
No. Observations:	381	AIC:	-737.6						
Df Residuals:	368	BIC:	-686.3						
Df Model:	12								

nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	0.0207	0.019	1.098	0.273	-0.016	0.058
area	0.2344	0.030	7.845	0.000	0.176	0.293
bedrooms	0.0467	0.037	1.268	0.206	-0.026	0.119
bathrooms	0.1909	0.022	8.697	0.000	0.148	0.234
stories	0.1085	0.019	5.669	0.000	0.071	0.146
mainroad	0.0504	0.014	3.524	0.000	0.022	0.079
guestroom	0.0304	0.014	2.238	0.026	0.004	0.057
basement	0.0216	0.011	1.946	0.052	-0.000	0.043
hotwaterheating	0.0849	0.022	3.941	0.000	0.043	0.127
airconditioning	0.0668	0.011	5.923	0.000	0.045	0.089
parking	0.0608	0.018	3.372	0.001	0.025	0.096
prefarea	0.0594	0.012	5.046	0.000	0.036	0.083
unfurnished	-0.0316	0.010	-3.096	0.002	-0.052	-0.012
=======================================	========	========		========		====

<pre>Omnibus: Prob(Omnibus): Skew: Kurtosis:</pre>	1.090	Durbin-Watson: Jarque-Bera (JB): Prob(JB): Cond. No.	2.092 303.844 1.05e-66
Kurtosis:	6.794	Cond. No.	14.1

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [53]:

```
# Calculate the VIFs again for the new model

vif = pd.DataFrame()
vif['Features'] = X.columns
vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[53]:

```
Features VIF
1
        bedrooms 6.59
4
        mainroad 5.68
0
         area 4.67
         stories 2.69
9
        parking 2.12
        basement 2.01
    airconditioning 1.77
8
       bathrooms 1.67
2
10
       prefarea 1.51
5
       guestroom 1.47
11
      unfurnished 1.40
7 hotwaterheating 1.14
```

In [54]:

```
# Dropping highly correlated variables and insignificant variables
X = X.drop('bedrooms', 1)
```

In [55]:

```
# Build a second fitted model
X train lm = sm.add constant(X)
lr_3 = sm.OLS(y_train, X_train_lm).fit()
```

In [56]:

```
# Print the summary of the model
print(lr_3.summary())
```

OLS Regression Results ______

Dep. Variable:	price	R-squared:	0.680
-	price	_	
Model:	OLS	Adj. R-squared:	0.671
Method:	Least Squares	F-statistic:	71.31
Date:	Wed, 20 May 2020	Prob (F-statistic):	2.73e-84
Time:	14:57:04	Log-Likelihood:	380.96
No. Observations:	381	AIC:	-737.9
Df Residuals:	369	BIC:	-690.6
Df Model:	11		

nonrobust Covariance Type:

21						
=========	coef	std err	t	P> t	[0.025	0.975]
const area bathrooms stories mainroad guestroom basement hotwaterheating airconditioning	0.0357 0.2347 0.1965 0.1178 0.0488 0.0301 0.0239 0.0864 0.0665	0.030 0.022 0.018 0.014 0.014 0.011 0.022 0.011	7.851 9.132 6.654 3.423 2.211 2.183 4.014 5.895	0.000 0.000 0.000 0.001 0.028 0.030 0.000	0.176 0.154 0.083 0.021 0.003 0.002 0.044	0.294 0.239 0.153 0.077 0.057 0.045 0.129 0.089
parking prefarea unfurnished	0.0629 0.0596 -0.0323	0.018 0.012 0.010	3.501 5.061 -3.169		0.028 0.036 -0.052	
Omnibus: Prob(Omnibus): Skew: Kurtosis:	======	97.661 0.000 1.130 6.923	Jarque-Bera (JB): 325. Prob(JB): 2.20e			

Warnings: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [57]:
```

```
# Calculate the VIFs again for the new model
vif = pd.DataFrame()
vif['Features'] = X.columns
vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[57]:

	Features	VIF
3	mainroad	4.79
0	area	4.55
2	stories	2.23
8	parking	2.10
5	basement	1.87
7	airconditioning	1.76
1	bathrooms	1.61
9	prefarea	1.50
4	guestroom	1.46
10	unfurnished	1.33
6	hotwaterheating	1.12

In [58]:

```
X = X.drop('basement', 1)
```

In [59]:

```
# Build a fourth fitted model
X_train_lm = sm.add_constant(X)
lr_4 = sm.OLS(y_train, X_train_lm).fit()
```

In [60]:

```
print(lr_4.summary())
```

OLS Regression Results

		_	
Dep. Variable:	price	R-squared:	0.676
Model:	OLS	Adj. R-squared:	0.667
Method:	Least Squares	F-statistic:	77.18
Date:	Wed, 20 May 2020	Prob (F-statistic):	3.13e-84
Time:	14:58:20	Log-Likelihood:	378.51
No. Observations:	381	AIC:	-735.0
Df Residuals:	370	BIC:	-691.7
Df Model:	10		

Covariance Type:	nonrobust		
		 D> +	 0.0751

	coef	std err	t	P> t	[0.025	0.975]
const	0.0428	0.014	2.958	0.003	0.014	0.071
area	0.2335	0.030	7.772	0.000	0.174	0.293
bathrooms	0.2019	0.021	9.397	0.000	0.160	0.244
stories	0.1081	0.017	6.277	0.000	0.074	0.142
mainroad	0.0497	0.014	3.468	0.001	0.022	0.078
guestroom	0.0402	0.013	3.124	0.002	0.015	0.065
hotwaterheating	0.0876	0.022	4.051	0.000	0.045	0.130
airconditioning	0.0682	0.011	6.028	0.000	0.046	0.090
parking	0.0629	0.018	3.482	0.001	0.027	0.098
	^ ^ _ ^ _ 7	0 010	F 4F0	0 000	0 041	0 007

preiarea	0.063/	0.012	5.452	0.000	0.041	0.08/
unfurnished	-0.0337	0.010	-3.295	0.001	-0.054	-0.014
=======================================						====
Omnibus:		97.054	Durbin-Wats	on:	2	.099
Prob(Omnibus):		0.000	Jarque-Bera	(JB):	322	.034
Skew:		1.124	Prob(JB):		1.18	e-70
Kurtosis:		6.902	Cond. No.			10.3

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [61]:

```
# Calculate the VIFs again for the new model
vif = pd.DataFrame()
vif['Features'] = X.columns
vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[61]:

	Features	VIF
3	mainroad	4.55
0	area	4.54
2	stories	2.12
7	parking	2.10
6	airconditioning	1.75
1	bathrooms	1.58
8	prefarea	1.47
9	unfurnished	1.33
4	guestroom	1.30
5	hotwaterheating	1.12

In [62]:

```
y_train_price = lr_4.predict(X_train_lm)
```

In [63]:

```
# Plot the histogram of the error terms
fig = plt.figure()
sns.distplot((y_train - y_train_price), bins = 20)
fig.suptitle('Error Terms', fontsize = 20)  # Plot heading
plt.xlabel('Errors', fontsize = 18)
```

Out[63]:

Text(0.5, 0, 'Errors')

Error Terms


```
-0.2 0.0 0.2 0.4
Errors
```

predictions using final modal

```
In [64]:
```

```
num_vars = ['area', 'bedrooms', 'bathrooms', 'stories', 'parking','price']
df_test[num_vars] = scaler.transform(df_test[num_vars])
```

In [65]:

```
df_test.describe()
```

Out[65]:

	price	area	bedrooms	bathrooms	stories	mainroad	guestroom	basement	hotwaterheating	aircondit
count	1.640000e+02	164.000000	164.000000	164.000000	164.000000	164.000000	164.000000	164.000000	164.000000	164.0
mean	4.789686e+06	5228.695122	3.042683	1.317073	1.804878	0.865854	0.195122	0.347561	0.030488	0.:
std	1.987485e+06	2408.283816	0.737685	0.562162	0.828022	0.341853	0.397508	0.477654	0.172452	0.4
min	1.820000e+06	1650.000000	2.000000	1.000000	1.000000	0.000000	0.000000	0.000000	0.000000	0.0
25%	3.395000e+06	3518.000000	3.000000	1.000000	1.000000	1.000000	0.000000	0.000000	0.000000	0.0
50%	4.361000e+06	4787.500000	3.000000	1.000000	2.000000	1.000000	0.000000	0.000000	0.000000	0.0
75%	5.757500e+06	6352.500000	3.000000	2.000000	2.000000	1.000000	0.000000	1.000000	0.000000	1.0
max	1.225000e+07	16200.000000	5.000000	4.000000	4.000000	1.000000	1.000000	1.000000	1.000000	1.0
4										Þ

In [66]:

```
y_test = df_test.pop('price')
X_test = df_test
```

In [67]:

```
# Adding constant variable to test dataframe
X_test_m4 = sm.add_constant(X_test)
```

In [68]:

```
# Creating X_test_m4 dataframe by dropping variables from X_test_m4

X_test_m4 = X_test_m4.drop(["bedrooms", "semi-furnished", "basement"], axis = 1)
```

In [69]:

```
# Making predictions using the fourth model
y_pred_m4 = lr_4.predict(X_test_m4)
```

In [71]:

```
# Plotting y_test and y_pred to understand the spread

fig = plt.figure()
plt.scatter(y_test, y_pred_m4)
fig.suptitle('y_test vs y_pred', fontsize = 20)
plt.xlabel('y_test', fontsize = 18)
plt.ylabel('y_pred', fontsize = 16)
```

Out[71]:

```
Text(0, 0.5, 'v pred')
```

y_test vs y_pred

3500

900

1500

1000

500

0.2 0.4 0.6 0.8 10 12

y_test vs y_pred

overall we have a decent model but we also acknowledge that we could do better

In []: