Definição (Regras de Inferência)

As regras de inferência do sistema formal de Dedução Natural para o Cálculo Proposicional (DNP) são as seguintes:

O conjunto DDNP das derivações de DNP (também chamadas deduções ou demonstrações) é o conjunto de árvores de fórmulas ano-tadas gerado pelo conjunto de regras indutivas que contém uma única regra base que é

76

(RAA)

$$\overline{\varphi \in D^{DNP}}^{RB}$$
,

representando φ a árvore cujo único nodo é φ , e que contém uma regra indutiva por cada uma das regras de inferência de DNP de tipo semelhante às dos seguintes exemplos: as regras indutivas que correspondem às regras de inferência \rightarrow I e \rightarrow E são, resp.,

Sendo \mathcal{D}^{DNP} um conjunto definido indutivamente, existe um princípio de indução estrutural que lhe está associado.

A definição indutiva de \mathcal{D}^{DNP} é determinista, como tal, existe também um teorema de recursão estrutural para \mathcal{D}^{DNP} .

Os subobjetos de uma derivação D são chamados subderivações de D.

Definições

Numa derivação D:

- a raiz de D é chamada a conclusão de D;
- as folhas de D são chamadas as hipóteses de D;
- as folhas de D anotadas com um corte são chamadas as hipóteses canceladas (ou cortadas) e as folhas de D sem qualquer anotação chamadas as hipóteses não canceladas (ou não cortadas) de D.

Definicão

Uma fórmula φ diz-se derivável a partir de um conjunto Γ de fórmulas, ou uma consequência sintática de Γ, se existir uma derivação D de DNP cuja conclusão é φ e cujo conjunto de hipóteses não canceladas é um subconjunto de Γ. Em tal caso, escreve-se $\Gamma \vdash \varphi$ e diz-se que D é uma derivação de φ a partir de Γ.

Definição

Uma fórmula φ diz-se um teorema de DNP se existir uma derivação ${\it D}$ de φ a partir do conjunto vazio de hipóteses não canceladas. Em tal caso, escreve-se $\vdash \varphi$ e diz-se que D é uma derivação de o

Sejam φ e ψ fórmulas e Γ e Δ conjuntos de fórmulas.

- i) Se $\varphi \in \Gamma$, então $\Gamma \vdash \varphi$.
- ii) Se $\Gamma \vdash \varphi$ e $\Gamma \subseteq \Delta$, então $\Delta \vdash \varphi$.
- iii) Se $\Gamma \vdash \varphi$ e $\Delta, \varphi \vdash \psi$, então $\Gamma, \Delta \vdash \psi$.
- iv) $\Gamma \vdash \varphi \rightarrow \psi$ se e só se $\Gamma, \varphi \vdash \psi$. Em particular, quando $\Gamma = \emptyset \text{ tem-se, } \emptyset \vdash \varphi \to \psi \text{ se e s\'o se } \varphi \vdash \psi.$
- v) Se $\Gamma \vdash \varphi \rightarrow \psi$ e $\Gamma \vdash \varphi$, então $\Gamma \vdash \psi$.

Demonstração (continuação).

Suponhamos que Γ ⊢ φ → ψ. Então existe uma derivação D de $\varphi \rightarrow \psi$ a partir de Γ. Logo,

$$\frac{\varphi \quad \varphi \rightarrow \psi}{\psi} \rightarrow$$

é uma derivação de ψ a partir de $\Gamma \cup \{\varphi\}$. Suponhamos agora que $\Gamma, \varphi \vdash \psi$. Então, existe uma derivação D de ψ a partir de $\Gamma \cup \{\varphi\}$. Logo, a derivação

$$\frac{\varphi}{D}$$
 $\frac{\psi}{\varphi \to \psi} \to 0$

onde todas as ocorrências de φ (como folha) em D são canceladas, com a aplicação de ightarrow I, é uma derivação de $\varphi \rightarrow \psi$ a partir de Γ .

Para toda a derivação D, se D é uma derivação de φ a partir de Γ , então $\Gamma \models \varphi$.

Demonstração

A demonstração faz-se por indução estrutural em derivações.

- a) Suponhamos que D é uma derivação de φ a partir de Γ com um único nodo. Então, o conjunto de hipóteses não canceladas de D é $\{\varphi\}$ e, assim, $\varphi\in\Gamma$. Donde, $\Gamma\models\varphi$.
- b) Se D é da forma

$$\frac{\cancel{D}_1}{\cancel{D}_1} \xrightarrow{\sigma} \rightarrow I$$

então $\varphi=\psi\to\sigma$ e D_1 é uma derivação de σ a partir de $\Gamma\cup\{\psi\}$. Aplicando a hipótese de indução à subderivação D_1 de D, vem que $\Gamma, \psi \models \sigma$. Portanto, $\Gamma \models \psi \rightarrow \sigma$.

c) Se D é uma derivação de φ a partir de Γ da forma

$$\begin{array}{ccc} D_1 & D_2 \\ \sigma & \sigma \to \psi \\ \hline & \psi & \to E \end{array}$$

então: $\omega = \psi$: D_1 é uma derivação de σ a partir de Γ e D_2 é uma derivação de $\sigma \to \psi$ a partir de Γ . Assim, aplicando a hipótese de indução a D_1 e a D_2 , $\Gamma \models \sigma$ e $\Gamma \models \sigma \to \psi$, respetivamente. Donde, $\Gamma \models \psi$.

Teorema da Correção

Para toda a fórmula φ e para todo o conjunto de fórmulas Γ , se $\Gamma \vdash \varphi$, então $\Gamma \models \varphi$.

Teorema da Completude

Para toda a fórmula φ e para todo o conjunto de fórmulas Γ , se $\Gamma \models \varphi$, então $\Gamma \vdash \varphi$.

Teorema da Adequação

Para toda a fórmula φ e para todo o conjunto de fórmulas Γ , $\Gamma \vdash \varphi$ se e só se $\Gamma \models \varphi$.

Corolário

Para toda a fórmula φ ,

 φ é um teorema se e só se φ é uma tautologia.

Um tipo de linguagem é um terno $L = (\mathcal{F}, \mathcal{R}, \mathcal{N})$, em que:

- F é um conjunto enumerável de símbolos chamados símbolos de função:
- ② R é um conjunto enumerável de símbolos chamados símbolos de relação ou símbolos de predicado;
- $\begin{tabular}{lll} \bullet & \mathcal{N} \ \acute{\text{e}} \ \text{uma função} & \mathcal{F} \cup \mathcal{R} & \to & \mathbb{N}_0 \\ s & \mapsto & \mathcal{N}(s) & \text{sendo} \ \mathcal{N}(s) \\ & \text{designado a} \ \textit{aridade} \ \text{de} \ s. \\ \end{tabular}$

Os símbolos de função de aridade 0 são chamados constantes e o seu conjunto é vulgarmente representado por C.

$$L_{Arit} = (\{0, s, +, \times\}, \{=, <\}, \mathcal{N})$$

onde $\mathcal{N}(0)=0,\,\mathcal{N}(s)=1,\,\mathcal{N}(+)=2,\,\mathcal{N}(\times)=2,\,\mathcal{N}(=)=2$ e $\mathcal{N}(<)=2$, é um tipo de linguagem.

O alfabeto AL, do Cálculo de Predicados, de um tipo de linguagem L é o conjunto formado pelos seguintes símbolos:

- símbolos de função e símbolos de predicado de L;
- ② os conectivos proposicionais ⊥, ∧, ∨, ¬, → e ↔;
- $lackbox{0}$ $x_0, x_1, \ldots, x_n, \ldots$, chamados variáveis, formando um conjunto numerável representado por V:
- ∃ e ∀. chamados quantificador existencial e quantificador. universal, respetivamente;
- **(**", ")" e ",".

Definição

O conjunto T_L dos L-termos é o subconjunto de A_I^+ definido indutivamente pelas seguintes regras:

- lacktriangledown para cada $x_i \in \mathcal{V}, \quad \overline{x_i \in \mathcal{T}_L}^{x_i}$;
- ② para cada $c \in C$, $\overline{c \in T_L}^c$;
- o para cada símbolo de função f de L, de aridade $n \ge 1$,

$$\frac{t_1 \in \mathcal{T}_L \quad \cdots \quad t_n \in \mathcal{T}_L}{f(t_1, \dots, t_n) \in \mathcal{T}_L} f$$

Definição

Chamaremos subtermos aos subobjetos de um L-termo

O conjunto dos subtermos de $0 + s(x_2)$ é

$$\{0+s(x_2),0,s(x_2),x_2\}.$$

A sequência de objetos $x_2, s(x_2), 0, 0 + s(x_2)$ é uma sequência de formação de $0 + s(x_2)$.

Princípio de Indução Estrutural em L-Termos

SejaP(t) uma propriedade que depende de um L-termo t e suponhamos que:

- o para todo o $x \in \mathcal{V}$, P(x) é válida;
- ② para todo o $c \in C$, P(c) é válida;
- **3** para todo o símbolo de função f, de aridade $n \ge 1$, e para todos os $t_1, \ldots, t_n \in \mathcal{T}_L$, se $P(t_1), \ldots, P(t_n)$ são válidas, então $P(f(t_1,...,t_n))$ é válida.

Então P(t) é válida, para todo o L-termo t.

Seiam Y um conjunto, $q_{\mathcal{V}}: \mathcal{V} \to \mathsf{Y}$ e $q_{\mathcal{C}}: \mathcal{C} \to \mathsf{Y}$ funções e seia. para cada símbolo de função f, de aridade $n \ge 1$, $g_f : Y^n \to Y$ uma função. Então, existe uma e uma só função $G:\mathcal{T}_L o \mathsf{Y}$ tal ane:

- para todo o $x \in \mathcal{V}$, $G(x) = g_{\mathcal{V}}(x)$;
- ② para todo o $c \in C$, $G(c) = g_C(c)$;
- \odot para todo o símbolo de função f, de aridade $n \ge 1$, e para quaisquer $t_1, ..., t_n \in \mathcal{T}_L$,

$$G(f(t_1,...,t_n)) = g_f(G(t_1),...,G(t_n),t_1,...,t_n).$$

O conjunto VAR(t), das variáveis que ocorrem num L-termo t, é definido, por recursão estrutural em t, como:

- \bigcirc para todo o $x \in \mathcal{V}$, $VAR(x) = \{x\}$;
- 2 para todo o $c \in C$, $VAR(c) = \emptyset$;
- a para todo o símbolo de função f, de aridade n > 1, e para quaisquer $t_1,...,t_n \in \mathcal{T}_L$,

$$VAR(f(t_1,...,t_n)) = VAR(t_1) \cup \cdots \cup VAR(t_n).$$

Definicão

O L-termo que resulta da substituição, num L-termo t₀, de uma variável x por um L-termo t, que notaremos por $t_0[t/x]$, é definido, por recursão estrutural em t_0 , como:

- ② para todo o $c \in C$, c[t/x] = c;
- o para todo o símbolo de função f, de aridade $n \ge 1$, e para quaisquer $t_1, \ldots, t_n \in \mathcal{T}_L$,

$$f(t_1,...,t_n)[t/x] = f(t_1[t/x],...,t_n[t/x]).$$

Definição

Uma palavra sobre o alfabeto \mathcal{A}_{L} , da forma

$$R(t_1,\ldots,t_n)$$

onde $R \in \mathcal{R}$ tem aridade n e $t_1, ..., t_n \in \mathcal{T}_L$, é chamada uma L-fórmula atómica.

O conjunto das L-fórmulas atómicas representa-se por At_L.

Exemplo

As palavras $<(x_0,s(0))$ $\mathbf{e}=(x_0,x_1)$, sobre o alfabeto $\mathcal{A}_{L_{Arit}}$, são L_{Arit}-fórmulas atómicas.

Definição

O conjunto das L-fórmulas, que notamos por \mathcal{F}_L , é o conjunto definido indutivamente, sobre o conjunto de palavras sobre \mathcal{A}_L , pelas regras:

- $\overline{\perp \in \mathcal{F}_L}^{\perp}$;
- $\overline{\varphi \in \mathcal{F}_L}^{\operatorname{At}_L}$, para cada *L*-fórmula atómica φ ;

$$\frac{\varphi \in \mathcal{F}_L}{(\neg \varphi) \in \mathcal{F}_L} \neg$$

$$\varphi \in \mathcal{F}_{L}$$
 $\psi \in \mathcal{F}_{L}$

$$\begin{array}{l} \bullet & \dfrac{\varphi \in \mathcal{F}_L \quad \psi \in \mathcal{F}_L}{\left(\varphi \Box \psi\right) \in \mathcal{F}_L} \quad \text{, para cada } \Box \in \left\{ \land, \lor, \rightarrow, \leftrightarrow \right\}; \\ \\ \bullet & \dfrac{\varphi \in \mathcal{F}_L}{\left(\exists_x \varphi\right) \in \mathcal{F}_L} \, \exists_x & \dfrac{\varphi \in \mathcal{F}_L}{\left(\forall_x \varphi\right) \in \mathcal{F}_L} \, \forall_x \quad . \end{array}$$

Definição

Aos subobietos de uma L-fórmula φ chamaremos subfórmulas

Princípio de Indução Estrutural em L-Fórmulas

Seja $P(\varphi)$ uma propriedade que depende de uma L-fórmula φ , e suponhamos que:

- P(⊥) é válida;
- ② para cada $\psi \in At_L$, $P(\psi)$ é válida;
- **o** para cada $\psi \in \mathcal{F}_L$, se $P(\psi)$ é válida, então $P(\neg \psi)$ é válida;
- lacktriangle para quaisquer $\Box \in \{\land,\lor,\rightarrow,\leftrightarrow\}$ e $\psi,\sigma\in\mathcal{F}_{\!L}$, se $P(\psi)$ e $P(\sigma)$ são válidas, então $P(\psi \Box \sigma)$ é válida;
- para quaisquer $Q \in \{\exists, \forall\}$, $x \in \mathcal{V}$ e $\psi \in \mathcal{F}_L$, se $P(\psi)$ é válida, então $P(Q_x\psi)$ é válida.

Então $P(\varphi)$ é válida, para toda a L-fórmula φ

Teorema de Recursão Estrutural em L-fórmulas

Sejam Y um conjunto e $y \in Y$ e sejam $g: At_L \to Y$, $g_{\neg}: Y \to Y$, $g_{\square}: Y \times Y \to Y$ (para cada $\square \in \{\land, \lor, \to, \leftrightarrow\}$) e $g_Q: Y \to Y$ (para cada $Q \in \{\exists, \forall\}$) funções. Então, existe uma e uma só função $G: \mathcal{F}_L \to Y$ tal que:

- $G(\perp) = y;$
- ② para qualquer $\varphi \in At_L$, $G(\varphi) = g(\varphi)$;
- para qualquer φ ∈ F_L, G(¬φ) = g¬(G(φ), φ);

o para quaisquer
$$\square \in \{\land, \lor, \rightarrow, \leftrightarrow\}$$
 e $\varphi, \psi \in \mathcal{F}_L$,

 $G(\varphi \Box \psi) = g_{\Box}(G(\varphi), G(\psi), \varphi, \psi);$ • para quaisquer $Q \in \{\exists, \forall\}$, $x \in \mathcal{V}$ e $\varphi \in \mathcal{F}_L$,

$$G(Q_x\varphi)=g_Q(G(\varphi),\varphi).$$

Definição

Dada uma subfórmula de uma L-fórmula φ da forma $Q_x\psi$, em que $Q \in \{\exists, \forall\}$ e $x \in \mathcal{V}$, a *L*-fórmula ψ é chamada o alcance dessa ocorrência do quantificador Qx.

Definicão

Numa L-fórmula φ , uma ocorrência numa subfórmula atómica de φ de uma variável x diz-se

- *livre* quando essa ocorrência não está no alcance de nenhum quantificador Q_x (com $Q \in \{\exists, \forall\}$);
- ligada, caso contrário.

Denota-se

Definicão

A *L*-fórmula obtida por substituição numa *L*-fórmula φ de todas as ocorrências livres de uma variável *x* por um *L*-termo *t*, notada $\varphi[t/x]$, é definida por recursão estrutural em φ por:

- \bullet $\perp [t/x] = \perp;$
- para todo o símbolo de relação R, de aridade n, e para quaisquer t₁, ..., tn ∈ TL,

$$R(t_1,...,t_n)[t/x] = R(t_1[t/x],...,t_n[t/x]);$$

- **o** para todo o $\psi \in \mathcal{F}_L$, $(\neg \psi)[t/x] = \neg \psi[t/x]$;
- $\textbf{ o} \text{ para quaisquer } \mathbf{Q} \in \{\exists, \forall\}, \, \mathbf{y} \in \mathcal{V} \text{ e } \psi \in \mathcal{F}_{L}, \\$

$$(Q_y\psi)[t/x] = \left\{ egin{array}{ll} Q_y\psi & ext{se } y=x \ Q_y\psi[t/x] & ext{se } y
eq x \end{array}
ight..$$

Definicão

Uma variável ${\bf x}$ diz-se ${\it substituível}$ por um ${\it L}$ -termo ${\it t}$ numa ${\it L}$ -fórmula φ , quando

- não existem ocorrências livres de x no alcance de Q_y, em que Q ∈ {∃, ∀} e y ∈ VAR(t),
- ou, equivalentemente, quando
 - para toda a ocorrência livre de \mathbf{x} em φ , se essa ocorrência está no alcance de $\mathbf{Q}_{\mathbf{y}}$, com $\mathbf{Q} \in \{\exists, \forall\}$, então $\mathbf{y} \not\in \mathrm{VAR}(t)$.

Exemplo

Sejam
$$\varphi = \forall_{x_1}(x_1 < x_2) \lor \neg (x_1 < x_2) \quad e \quad t = x_1 + s(x_2).$$

- x_0 é substituível por t em φ , pois x_0 não tem ocorrências
- x₁ é substituível por t em φ, pois a única ocorrência livre de x₁ em φ não se encontra no alcance de quantificadores.
- x₂ não é substituível por t em φ, uma vez que x₂ tem uma ocorrência livre no alcance do quantificador ∀_{x1} e x₁ ∈ VAR(t).

Em φ existem duas ocorrências livres de x_2 . Uma delas está no alcance de um único quantificador, $\forall x_1$. A outra ocorrência não está no alcance de qualquer quantificador. Logo, x_2 é substituível por um L-termo t em φ se e só se $x_1 \not\in VAR(t)$.

Definição

Uma L-fórmula φ diz-se uma L-sentença, ou uma L-fórmula fechada, quando não tem ocorrências livres de variáveis, i.e., $\mathrm{LIV}(\varphi) = \emptyset$.

Correlévie

Sejam φ uma L-sentença, x uma variável e t um L-termo. Então, $\varphi[t/x]=\varphi.$

Exemplo 1

Seja $E_{Arit} = (\mathbb{N}_0, \overline{})$, onde:

- 0 é o número natural zero;
- $\bullet \quad \overline{s}: \mathbb{N}_0 \quad \to \quad \mathbb{N}_0 \qquad \text{\'e a função de } \textit{sucessor} \text{ em } \mathbb{N}_0; \\ n \quad \mapsto \quad n+1$
- $\begin{tabular}{lll} \bullet & \mp : & \mathbb{N}_0^2 & \to & \mathbb{N}_0 \\ & (n,m) & \mapsto & n+m \end{tabular} & \'e \ a \ função \ de \ \emph{adição} \ em \ \mathbb{N}_0; \\ \end{tabular}$
- $\overline{\times}$: $\mathbb{N}_0^2 \rightarrow \mathbb{N}_0$ é a função de *multiplicação* em \mathbb{N}_0 ; $(n,m) \mapsto n \times m$
- ullet \equiv é a relação $\{(n,n)\mid n\in\mathbb{N}_0\}$, de *igualdade* em \mathbb{N}_0 ;
- < é a relação $\{(n,m) \in \mathbb{N}_0^{\; 2} \mid n < m\}$, de *inferioridade* em \mathbb{N}_0 .

Então, E_{Arit} é uma L_{Arit}-estrutura.

Definição

Uma L-estrutura é um par $E = (D, \overline{})$ onde:

- D é um conjunto não vazio, chamado o domínio de E e notado por dom(E);
- ② É uma função de domínio F∪R, chamada a função interpretação de E, tal que:
 - a cada constante $c \in \mathcal{F}$ de L,
 - \overline{c} faz corresponder um elemento \overline{c} de D;
 - a cada símbolo de função f ∈ F de L, de aridade n ≥ 1,
 faz corresponder uma função n-ária f̄: Dⁿ → D;
 - a cada símbolo de relação R ∈ R de L, de aridade n,
 faz corresponder uma relação n-ária R ⊆ Dⁿ.

Para cada símbolo $s \in \mathcal{F} \cup \mathcal{R}, \, \overline{s}$ chama-se a *interpretaçã*o de s em E.

Exemplo 2

É também uma L_{Arit} -estrutura o par ($\{0,1\}$, $^-$), em que:

- $\bullet \ \overline{0}=0;$
- $\overline{+} : \{0,1\}^2 \to \{0,1\}$ $(x,y) \mapsto \begin{cases} 0 & \text{se } x = y \\ 1 & \text{se } x \neq y \end{cases}$
- $\begin{array}{cccc} \bullet & \overline{\times} : \; \{0,1\}^2 & \rightarrow & \{0,1\} \\ & (x,y) & \mapsto & \left\{ \begin{array}{ccc} 1 & \text{se } x = y = 1 \\ 0 & \text{senão} \end{array} \right. \end{array}$

Definição

Seja $E = (D, \overline{})$ uma L-estrutura. Uma atribuição em E é uma função $a: \mathcal{V} \longrightarrow D$.

do conjunto ${\mathcal V}$ das variáveis para o domínio D da L-estrutura E .

Exemple

A função

$$a^{ind}: \mathcal{V} \rightarrow \mathbb{N}_0$$

 $x_i \mapsto i$

é uma atribuição na L_{Arit} -estrutura $E_{Arit} = (\mathbb{N}_0, \overline{})$.

efinicão

Seja a uma atribuição numa L-estrutura $E=(D,\overline{})$ e seja $t\in\mathcal{T}_{l}$ um L-termo.

O valor de t para a atribuição a, denotado por $t[a]_E$ ou simplesmente por t[a] (quando não há dúvidas quanto à L-estrutura em causa), é o elemento de D definido, por recursão estrutural em t, como:

- ① Para cada $x \in \mathcal{V}$, x[a] = a(x);
- ② Para cada $c \in C$, $c[a] = \overline{c}$;
- Para todo o símbolo de função f, de aridade $n \geq 1$, e para todos os $t_1, \ldots, t_n \in \mathcal{T}_L$,

$$f(t_1,\ldots,t_n)[a]=\overline{f}(t_1[a],\ldots,t_n[a]).$$

Proposição

Seja t um L-termo e sejam a_1 e a_2 duas atribuições numa L-estrutura $E=(D, \overline{\ })$. Se $a_1(x)=a_2(x)$ para toda a variável $x\in VAR(t)$, então $t[a_1]=t[a_2]$.

Demonstração.

Por indução estrutural em t.

• Caso $t=x_i\in\mathcal{V}$. Então, $x_i\in \mathrm{VAR}(t)$. Logo, por hipótese, $a_1(x_i)=a_2(x_i)$. Assim,

$$t[a_1] = x_i[a_1]$$

= $a_1(x_i)$ por (*)
= $a_2(x_i)$
= $x_i[a_2]$ por (*)
= $t[a_2]$.

- (*) Definição de valor de um termo para uma atribuição.
- ② Caso $t = c \in C$. Então,

t[a₁] =
$$c[a_1]$$

= \overline{c} por (*)
= $c[a_2]$ por (*)
= $t[a_2]$

• Caso $t=f(t_1,\ldots,t_n)$, onde $f\in\mathcal{F}_L$ é um símbolo de função de aridade $n\geq 1$ e $t_1,\ldots,t_n\in\mathcal{T}_L$. Então,

$$\begin{array}{ll} \boldsymbol{t}[\boldsymbol{a}_1] &=& f(t_1,\dots,t_n)[\boldsymbol{a}_1] \\ &=& \overline{f}(t_1[\boldsymbol{a}_1],\dots,t_n[\boldsymbol{a}_1]) \quad \text{por (*)} \\ &=& f(t_1[\boldsymbol{a}_2],\dots,t_n[\boldsymbol{a}_2]) \\ &=& \text{por H.I., pois VAR}(t_i) \subseteq \text{VAR}(t) \\ &=& f(t_1,\dots,t_n)[\boldsymbol{a}_2] \quad \text{por (*)} \end{array}$$

Definicão

Seja a uma atribuição numa L-estrutura $E=(D, \overline{\ })$, seja x_i uma variável e seja $d\in D$. Denotamos por $a{x_i\choose d}$ a atribuição

$$\begin{array}{ccc} a \binom{x_i}{d} : \mathcal{V} & \to & D \\ & x_j & \mapsto & \left\{ \begin{array}{ll} d & \text{se } i = j \\ a(x_j) & \text{se } i \neq j \end{array} \right. \end{array}$$

Proposição

Sejam t e u dois L-termos, seja x uma variável e seja a uma atribuição numa L-estrutura. Então $t[u/x][a] = t[a\binom{x}{u[a]}]$.

efinicão

Seja a uma atribuição numa L-estrutura $E=(D,\overline{\ })$ e seja $\varphi\in\mathcal{F}_{l}$ uma L-fórmula.

O valor lógico de φ para a atribuição a, denotado por $\varphi[\mathbf{a}]_{\mathbf{E}}$ ou simplesmente por $\varphi[\mathbf{a}]$ (quando não há dúvidas quanto à L-estrutura em causa), é o elemento do conjunto $\{0,1\}$ definido, por recursão estrutural em φ , como:

- a) $\perp [a] = 0$
- b) Para todo o símbolo de relação R de aridade n e para todos os $t_1,\dots,t_n\in\mathcal{T}_L$,

$$R(t_1,\ldots,t_n)[a]=1$$
 se e só se $(t_1[a],\ldots,t_n[a])\in\overline{R};$

- c) Para cada $\psi \in \mathcal{F}_L$, $(\neg \psi)[a] = 1 \psi[a]$;
- d) Para quaisquer $\psi, \sigma \in \mathcal{F}_L$, $(\psi \wedge \sigma)[a] = min\{\psi[a], \sigma[a]\};$
- e) Para quaisquer $\psi, \sigma \in \mathcal{F}_L$, $(\psi \vee \sigma)[a] = \max\{\psi[a], \sigma[a]\};$
- f) Para quaisquer $\psi, \sigma \in \mathcal{F}_L$, $(\psi \to \sigma)[a] = 0 \quad \text{se e só se} \quad \psi[a] = 1 \text{ e } \sigma[a] = 0;$

g) Para quaisquer
$$\psi, \sigma \in \mathcal{F}_L$$
,
$$(\psi \mapsto \sigma)[a] = 1 \quad \text{se e s\'o se} \quad \psi[a] = \sigma[a];$$

h) Para cada $\psi \in \mathcal{F}_L$ e cada $x \in \mathcal{V}$,

$$(\exists_{\mathbf{x}}\psi)[a] = 1$$
 see só se $\exists_{d \in D} \psi[a\binom{\mathbf{x}}{d}] = 1$
see só se $\max \left\{ \psi[a\binom{\mathbf{x}}{d}] \mid d \in D \right\} = 1;$

i) Para cada $\psi \in \mathcal{F}_{L}$ e cada $\mathbf{x} \in \mathcal{V}$,

$$(\forall_{\mathbf{x}}\psi)[\mathbf{a}] = 1 \quad \text{se e s\'o se} \quad \forall_{d \in D}\psi[\mathbf{a}\binom{\mathbf{x}}{d}] = 1$$
$$\text{se e s\'o se} \quad \min\left\{\psi[\mathbf{a}\binom{\mathbf{x}}{d}] \mid d \in D\right\} = 1.$$

Exemplo

Seja φ a seguinte L_{Arit} -fórmula

$$\forall_{x_1}(x_1=x_0\vee\exists_{x_2}(x_1=s(x_2))),$$

e seja a a atribuição a^{ind} na L_{Arit} -estrutura E_{Arit} . O valor lógico de φ para a atribuição a é 1. De facto, tem-se $\varphi[\mathbf{a}]=1$

$$\begin{array}{ll} \text{sse} & \forall_{n_1 \in \mathbb{N}_0} \left((x_1 = x_0 \vee \exists_{x_2} (x_1 = s(x_2))) [a \binom{x_1}{n_1}] = 1 \right) \\ \text{sse} & \forall_{n_1 \in \mathbb{N}_0} \left((x_1 = x_0) [a \binom{x_1}{n_1}] = 1 \text{ ou } (\exists_{x_2} (x_1 = s(x_2))) [a \binom{x_1}{n_1}] = 1 \right) \end{array}$$

$$\begin{aligned} & \text{SSE} & \forall_{n_1 \in \mathbb{N}_0} \left(|x| = |x_0| |a|_{n_1} \right) | = 1 \text{ OU} \left(|x_2(x_1 = s(x_2))| |a|_{n_1} \right) |a| = 1 \right) \\ & \text{SSE} & \forall_{n_1 \in \mathbb{N}_0} \left(|x_1| |a|_{n_1} \right) |a|_{n_1} |a|_{n_1} |a|_{n_2} |a|_{n_1} |a|_{n_1} |a|_{n_1} |a|_{n_2} |a|_{n_1} |a|_$$

sse $\forall_{n_1 \in \mathbb{N}_0} \left(n_1 = 0 \text{ ou } \exists_{n_2 \in \mathbb{N}_0} \left(n_1 = \overline{s} (x_2 [a \binom{x_1}{n_1} \binom{x_2}{n_2}]) \right) \right)$ sse $\forall_{n_1 \in \mathbb{N}_0} (n_1 = 0 \text{ ou } \exists_{n_2 \in \mathbb{N}_0} (n_1 = n_2 + 1)).$

Dado que esta última afirmação é verdadeira, deduzimos que