Solid phase extraction purification of DNA.

Publication number	er: JP5268963 (A)	Also published as:
Publication date:	1993-10-19	DP7051065 (B)
Inventor(s):		EP0512767 (A1)
Applicant(s):		EP0512767 (B1)
Classification:		US5405951 (A)
- international:	B01J20/02; C07H1/06; C07H1/08; C12N15/09; C12N15/10; B01J20/02; C07H1/00; C12N15/09; C12N15/10; (IPC1- 7): C12N15/10; B01J20/02	☐ SG49924 (A1)
- European:	C07H1/06; C07H1/08; C12N15/10A2	more >>
Application number	er: JP19920113578 19920506	
Priority number(s): US19910695113 19910503	
	ble for JP 5268963 (A) conding document: EP 0512767 (A1)	
comprises the use organic solvents s amounts. In addition	rides a method for purifying DNA from any source in any form. The of water soluble organic solvents when purifying DNA. By using w uch as ethanol, propanol, and isopropanol, DNA is purified with gre on, the use of water soluble organic solvents eliminates the use of sitions such as chaotropes.	vater soluble eater recovery
	Data supplied from the espacenet database — Worldwide	

(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出顧公開番号

特開平5-268963 (43)公開日 平成5年(1993)10月19日

技術表示簡所

(51)Int.Cl.5 識別記号 庁内整理番号 FΙ C 1 2 N 15/10 B 0 1 J 20/02 Z 7202-4G 8931-4B

C 1 2 N 15/00

審査請求 有 請求項の数10(全 9 頁)

(21)出願番号 特顯平4-113578 (71)出願人 591007332 ベクトン・ディッキンソン・アンド・カン (22)出顧日 平成 4年(1992) 5月6日 BECTON DICKINSON AN (31)優先権主張番号 695113 D COMPANY (32)優先日 1991年5月3日 アメリカ合衆国ニュージャージー州07417 (33)優先権主導国 米国(US) -1880。 フランクリン・レイクス。ワン・ ペクトン・ドライブ (番地なし) (72)発明者 ダニエル・エル・ウッダード アメリカ合衆国ノース・カロライナ州 27606, ローリー, アヴェント・リッジ・ ロード 1800 アパートメント 203 (74)代理人 弁理士 湯浅 恭三 (外6名)

(54) 【発明の名称】 DNAの間相抽出精製

(57)【要約】

【目的】 本発明は、あらゆる形態のあらゆる源からD NAを精製する方法を提供する。 【構成】 本発明の方法は、DNAの精製において水溶 性有機溶媒を使用することからなる。水溶性有機溶媒、 例えばエタノール、プロパノール、およびイソプロパノ ールを使用することにより、DNAは高い回収率をもっ て精製される。さらに水溶性有機溶媒の使用により、力 オトロプのような腐食性かつ有毒な組成物の使用が避け られる。

る。

【特許請求の顧用】

【請求項1】 親水性表面にDNAを結合させるため に、水溶性有機溶媒を添加することよりなる、溶液から DNAを精製する方法。

【請求項2】 水溶性有機溶媒が、イソプロパノール、 プロパノールおよびエタノールからなる群から選択され る溶媒である、請求項1記載の方法。

【請求項3】 水溶性有機溶媒が、約1%ないし約99%のエタノール、約1%ないし約99%のインプロパノールおよび約1%ないし約99%のプロパノールからな 10 春群から選択される溶媒である。請求項1記載の方法。 【請求項4】 親水性表面が、セライト建そう土、シリカボリマ・、建酸マグネシウム、シリコーン整素化合物、建模アルミニウムおよび二酸化建素からなる群から 選択される。選択する場合で活

【請求項5】 親水性表面がセライト珪そう土である、 請求項4記載の方法。

間水項4記載の万法。 【請求項6】 下記工程からなる、溶液からDNAを精 製する方法:

- (a) 前記溶液に親水性表面を添加し;
- (b) 水溶性有機溶媒を添加し:

そして

- (c) (a) および(b) 工程からの成分を含むDNA溶液を 液体画分と非液体画分に分離し:
- (d) (c) 工程からの非液体画分を洗浄し:
- (e) (d) 工程からの非液体画分から液体画分を分離し;
- (f) (e) 工程からの非液体画分からDNAを遊離させる。

【請求項7】 親水性表面が、セライト珪そう土、シリカボリマー、珪酸マグネシウム、シリコーン窒素化合物、珪酸アルミニウムおよび二酸化珪素からなる群から 選択される、請求項6記載の方法。

【請求項8】 水溶性有機溶媒が、イソプロパノール、 プロパノールおよびエタノールからなる群から選択され る溶媒である、請求項6記載の方法。

【請求項 9 】 水溶性有機溶媒が、約1 %ないし約9 9 。 米国特許第4 . 5 %のイソプロパノール、約1 %ないし約9 9 %のプロパ ン で洗剤させることよる だが約1 %ないし約9 9 %のエタノールからな いる。カオトロピック る群から選択される溶媒である、請求項 6 記載の方法。 び透析された D N A が [請求項 1 0] さらに治出パッファーを添加する工程 40 号に関示されている。 (0) を含む、請求項 6 記載の方法。 (1 0 0 0 8 1 現在知

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は分子生物学の分野に関する。特に、本発明はデオキシリボ核酸の精製の分野に関する。

[0002]

【従来の技術】分子生物学および関連する学問分野の絶え間ない進歩は、前進した技術を十分に理解しおよび発展させるために、改良された手段を継続的に必要とす

2

【0003】様々な技術に、デオキシリボ核酸(DNA)を種々の形態で使用することが含まれる。例えば、 組換えDNA技術の領域の進歩は、常にDNAをプロー ブ、ゲノムDNA、およびプラスミドDNAの形状で用 いることを要求する。

【0004】診断分野の進歩もまた、DNAを種々の方法で用い続けている。例えば、DNAプローブは、ヒトの病原因子の検出および診断に日常的に用いられてい

0 る。同様にDNAは減症疾患の検出に用いられている。 DNAはまた食品汚染の検出にも用いられている。さら に、DNAは遺伝地図の作製からクローニングおよび組 換え発現におよぶ種々の理由により、興味あるDNAの 位置確認、同定および早離において日常的に用いられて いる。

【0005】多くの場合、DNAは極めて少量でしか入手できず、そして単離および精製操作が頑雑で時間を要する。このしばしば時間を浪費する煩雑な操作はDNAの損失に結びつきやすい。血清、尿およびパクテリアの

20 カルチャーから得られた試料のDNAの精製においては、コンタミネーションおよび疑陽性の結果が生じるという危険性も加わる。

【0006】 典型的なDNA精製手法には、腐食性で有 毒な組成物の使用が含まれる。 典型的なDNA精製手法 は、高濃度のカオトロピック塩 (例えばヨウ化ナトリウ ムおよび過塩素酸ナトリウム) を使用する。

【0007】DNAの精製には多くの手法が存在する。 DNA精製が野での最近の活動が示しているように、最 適なDNA精製手法を求めて絶え間無い契例が行われて、 30 いる。米国特許4,923,978号に関示されてい るDNAの精製法では、蛋白質とDNAの溶液を水酸基 を持たせた支持体に適遇させて蛋白質を結合させ、そし てDNAを溶出している。米国特許第4,935,34 2号で開示されているDNAの精製法では、DNAを選 状的に酸イオン交換体に結合させ、つづして溶出してい る。米国特許第4,946,952号は、水溶性のケト ンで洗剤させることよりなるDNAの単端法を開示して いる。カカトロピッカ別を用いたDNAの専業法を び透析されたDNAが、米国特許第4,900,677

【0008】現在知られているDNA精製手法はその目 的を達成することが可能であるとは言え、そのような腐 食性で有毒な化合物(例えば最もしばしば用いられるカ オトロピック剤)の使用なしにDNAを精製し、かつ増 大量のDNAを取得できることが望ましい。

[0009]

【発明が解決しようとする課題】本発明は非腐食性で非 毒性の溶媒を用いることよりなるDNAの精製法を提供 する。

50 【0010】本発明の一態機においては、水溶性有機溶

媒を添加してDNAを親水性表面に結合させることよりなる、溶液からDNAを精製する方法が提供される。 【0011】好ましい態様においては、次の工程からなる溶液からのDNAの精製方法が提供される:

- (a) 親水性表面を溶液に添加する;
- (b) 水溶性有機溶媒を添加する:
- (c) 工程(a) および(b) からのDNA溶液を液体画分と 非液体画分に分離する:
- (d) 工程(c) の非液体画分を洗浄する:
- (e) 工程(d) の非液体画分から液体画分を除去する;
- (f) (e) の非液体画分からDNAを遊離させる。

【0012】本発明は、より大量の精製DNAを得るために特に有用である。加えて、DNAは任意の親水性表面に結合させて精製することができる。また、精製は室温で好道に行うことができる。

[0013] 本発明は任意のDNA精製手法で提唱されている結合パッファーの代わりに水溶性有機溶薬を用いて行うことができる。本明細書中で用いられる「精製」とは実質的に細胞屑その他を含まないDNAを取得することを意味する。

[0014]

【課題を解決するための手段】 D N A の精製または単態 工程の出発等には、どの場合も所望の D N A を供給源か ら取得することが必要である。血清、尿およびパクテリ アのカルチャー等の試料から D N A を得る典型的手法は よく知られており、日常的方法で行うことができる。同 様にがノムライブラリー等から D N A を得る技術も日常 的方法が知られている。

【0015】本発明は個々の供給源から得られたDNA の精製に関する。本発明の実施に際してDNAの起源は 30 キーポイントではない。発明のキーポイントは供給源か ら取得した後にDNAを精製する能力である。DNAを 得るための典型的方法は、DNAを溶液中に懸濁させた 段階で終わっている。生物学的サンプルからDNAを単 難するための文献には次のものが含まれる: Hardi ng, J. D., Gebeyehu, G., Bebe e, R., Simms, D., Ktevan, L., N ucleic Acids Research. 17: 6947 (1989) およびMarko, M.A., C hipperfield,R.,およびBirnboi m, H.C., Analytical Biochem | strv.121:382(1982)。プラスミド DNAの単離方法は、Lutze, L, H, Wine gar.R.A..Nucleic Acids Re search 20:6150(1990)に記載され ている。生物学的サンプルからの二本鎖DNAの抽出 は、Yamada、O、、Matsumoto、T、、 Nakashima, M., Hagri, S., Kam ahora, T., Ueyama, H., Kishi, Y., Uemura H., Kurimura, T.,

Journal of Virological Me thods 27:203(1990)に記載されている。大部分のDNA溶液は、DNAを適当なパッファー(例えばTE(トリス・EDTA)、TEAパッファー(40mk-リス・酢酸、1mM EDTA))中またはライゼート中に全人でいる。

【0016】DNAを適当な溶液中に取得した後、典型 的には結合マトリックスをこの溶液に添加する。一般に 用いられる結合マトリックスは、ガラスまたは珪そう土 10 の形態のシリカである。

【0017】結合マトリックスをDNAの溶液に添加した後、結合パッファーを添加する。本発明は、結合パッファーとして水溶性有機溶媒を使用する。「水溶性有機溶媒、を使用することを可能になる有機を性を有することを要談する。

【0018】粒子、ピーズ、その他の親水性表面を用いて本発明を実施する好ましい工程は、結合工程、洗浄工程、乾燥工程および溶出工程を含んでいる。結合工程は一般に、DNAを含有する溶液への親水性表面の添加、

20 水溶性有機溶媒からなる溶液の添加(観水性表面および 水溶性有機溶媒の添加順序は重要ではない)、採件、遠 心分離。 および液体面分の除去を含んでいる。 結合工程 は、通常、少なくとも一回反復される。洗浄工程は、一 般に、溶解を除去するための洗浄パッファーの添加(例 えば50%エタノールおよび50%(40mh トリス, 4ml EDTA, 0.8N NaCI, pH7.

4))、携件、遠心分離、および液体の除去を含んでいる。乾燥工程は、一般に、約40-70℃だ約2ないし20 河南乾燥することよりなる。溶出工程は一般に、溶出パッファーの添加(表面から D N A を遊離させるため:例えば(10 mM トリス、1 mM EDTA、p H 8.0))、約30 秒間の渦巻撹件、約40-70℃における約10分間の加熱、約2分間の遠心分離および液体の回収を含んでいる。この時点で液体中に D N A が含まれる。この溶出工程は通常少なくとも1回反復される。

【0019】本発明をフィルターのような親水性表面で実施するには、好ましい工程は結合工程、洗浄工程はおび溶出工程を含む。結合工程は一般に、別れるを含わくなって、カリスを含わる。 大田の大学性有機溶解の添加、生じた溶液のフィルターへの通過(典型的には、プロッターのフェル、または他の任業の激通システム(例えば、シリンジ連過器・利用いる)、および所望によりにのフィルターに溶性 イ機溶解を通過させることを含んでいる。違過の後フィルターを軽く風乾する(約1分間)。洗浄工程は、架を除去するため)からなる。般に、このイルターををく風乾する(約1分間)。溶出工程は一般にフィルターからDNAを除去することからなる。溶液に接触とフィルターからDNAを除去することからなる。溶液に接触とする「ルターのを別を引りまって適合性に入れる。次に、浴

出バッファー(フィルターからDNAを遊離させるた め)を添加して、約40-60℃で約10分間加熱す る。そして、DNAを含んだ液体を取り出す。

【0020】滴する水溶性有機溶液には、エタノール、 プロパノール、イソプロパノールおよびアセトニトリル が含まれる。本発明の実施のためには水溶性有機溶媒を 種々の濃度で用いることもできる。好ましくは、溶媒は 100%イソプロパノール、エタノールまたはプロパノ ールである。最も好ましくは、溶媒はイソプロパノール である。水溶性有機溶媒の適する濃度は、エタノール、 プロパノール、イソプロパノール、およびアセトニトリ ルの1%ないし100%溶液を包含する。好ましくは、 その濃度は20%ないし80%である。最も好ましく は、この濃度は40ないし60%である。典型的には、 溶媒の濃度を種々に低下させることは水によるが、しか しながら、複数溶媒の組み合わせを用いることもでき る。溶媒の好ましい組み合わせには、イソプロパノール とエタノール、イソプロパノールとプロパノール、およ びプロパノールとエタノールが含まれる。

【0021】本発明の実施に用いるために適する結合マ 20 【0025】以下の実施例において、本明細書中に説明 トリックスには、任意の親水性表面が含まれる。本発明 の実施の使用に適する親水性表面の例には、ニトロセル ロース、セライト珪そう土、シリカポリマー、グラスフ アイパー、珪酸マグネシウム、シリコーン窒素化合物 (例えばSiNa)、珪酸アルミニウム、および二酸化 珪素が含まれる。親水性表面が有することのできる多く の形状も本発明における使用に適する。親水性表面の適 する形状には、ピーズ、ポリマー、粒子、およびフィル ター(例えば膜)が含まれる。

カオトロピック剤は、その水利性のため溶液中のDNA を親水性表面に結合させると信じられる。カオトロピッ ク剤の水和性は、水の分子とDNAとの相互作用を低下 させると信じられる。そのため、DNAと親水性表面を 取り囲む水の分子との相互作用が強いられ、このことが* * 水素結合による親水性表面へのDNAの結合を生じさせ ると信じられる。

【0023】理論により拘束や制限を受けることは望ま ないが、本発明は水溶性有機溶媒を「結合バッファー」 として用いることにより、DNA溶液の水溶液としての 特性を低下させると信じられる。DNA溶液の水溶液と しての特性を減じることにより、DNAと親水性表面と の相互作用が強いられ、これにより固相抽出が奏される と信じられる。これに加え、後記実施例で証明するよう

10 に、本発明は親水性表面への結合を介して精製が行わ れ、精製は沈澱によるものではない。

【0024】本発明は、多様な供給源からおよび多様な 形態のDNAの精製に用いることができる。精製のため のDNAの供給源には、パクテリア、パクテリオファー ジ、標本、植物、動物、およびその他が含まれる。 DN Aは多様な形態で見出され、そのような形態には一本 鎖、二本鎖、環状、および直鎖状が含まれる。本発明は 任意の供給源からの任意の形態のDNAについて実施す ることができる。

されている発明の特定の態様を説明する。当業者に明ら かなとおり、種々の変更および修飾が可能であり、それ らは本発明の範囲内である。

[0026] 【実施例】 [0027]

【実施例1】この実験は、6M NaC | O。(プレッ プ ア ジーン(prep-a-gene))に対する 各結合パッファーの結合特性を比較する。すべての実験 【0022】結合パッファー、例えばよく知られている 30 は、プレップ ア ジーン マトリックス(Prepa-geneキット、パイオラッド社(Bio-Ra d)、リッチモンド、CA)中で行い、結合パッファー

[0028]

を変える以外は同じ条件で行う。

Martin :		LOT #
ボリエチレングリコール	フルカ(フルカケミカル	24718584 MW
(PEG)	コーポレーション、ロンコン、	
	NY)	
尿素	フィッシャー(フィッシャー	895704
	サイエンティフィック、	
	ノークロス、GA)	
KSCN	シグマ(シグマケミカル	488-0409
(チオシアン酸	カンパニー、セントルイス、	
カリウム)	Mo.)	
エタノール(EO+)	フィッシャー	902233
ブタノール(BJOH)	フィッシャー	890783
グリセロール	シグマ	104F-0026
塩酸グアニジン	BRL	9DB209
水酸化ナトリウム(NaO+)	フィッシャー	862699

```
特開平5-268963
                             (5)
                         フィッシャー
                                           860118
                         フィッシャー
                                           860102
                         フィッシャー
                                           890789
                        シグマ
                                           S-2889
                                           □ット19F-0010
           プレップ ア ジーン
                        パイオラッド
                                           コントロール
                                           41180
                         BRL(ベセスダリサーチ
                                           56125A
                         ラブズ、グランドアイランド、
                         NY)
  : 13 すべての結合バッファーを同じ条件で使用し
                                ルとCH<sub>3</sub>CNが良好なDNA結合パッファーであるこ
                                とが示された。この実験において、どの程度の%のエタ
【0029】各13サンプルに20μ | のプレップ ア
                                 ノール、CH<sub>3</sub>CNおよびメタノールが結合パッファー
 ジーン 珪そう土溶液を加えて、次に750μ Iの結
                                中に存在することができ、そしてDNAの良好な分離お
合パッファーを軽く渦巻撹拌し、そして5分間45°Cに
                                よび回収が得られるかが測定される。すべての実験はプ
おいてインキュベートし、2分間遠心分離し、上清を捨
                                レップ ア ジーンマトリックスを使用して実施され
て、そして結合工程を繰り返した。500µ Iの洗浄バ
                                る。
ッファーで洗浄し、遠心分離し、バッファーを捨て、そ
                                 [0032]
                             20 プレップ アージーン キット バイオラッド
して繰り返した。25以 1の溶出バッファーを加えて、
渦巻撹拌し、5分間50℃においてインキュペートし、
                                エタノール
                                                  フィッシャー
                                メタノール
遠心分離し、上清を保管し、そして繰り返した。各13
                                                  フィッシャー
サンプルおよび一つのスタンダードをゲル電気泳動し
                                 CH<sub>3</sub> CN
                                                  フィッシャー
                                 1%アガロースゲル
【0030】以下の結合パッファーを使用のために示
                                λDNA BRL 56125A, 9 ± ル 104 503μ g (803
                                u I 中)
                                 15画分/実験が使用される結合バッファー中のみを変
                                更して行われた。洗浄バッファー、溶出バッファーおよ
                              30 び固相はすべてプレップ ア ジーン キットのもので
                                あった。その方法は、実質的に実施例1に教示されたと
                                おり実施される。 1 . 3 µ Iの λ DNA を各画分におい
                                て使用する。
                                 [0033]
                                 1)100% エタノール(水溶液)
                                 2)80% エタノール(水溶液)
```

```
す:
1)プレップ ア ジーン キットのスタンダード6M
 NaCIO、(過塩素酸ナトリウム)
2)10% PEG
3)20% PEG
4 ) 6 M グリセロール
5)95% エタノール
6 ) 1 0 0 % ブタノール
7)6M KSCN
8 ) 6 M 尿素
9 ) 8 M 塩酸グアニジン
10)30% NH<sub>4</sub>OH
11)10% Hz SO4
12)100% CH3CN
```

13の溶出DNAサンプルとオリジナルDNAサンプル

(λ DNA)とを比較したゲル電気泳動の結果によれ

ば、エタノールは固相上(プレップ ア ジーンマトリ

ックス)におけるDNAの保持に関して、試験された6

M過塩素酸ナトリウムおよび他のどの結合パッファーよ

【実施例2】この実験は、実施例1において得られた結

りも優れている。アセトニトリルも良好であった。

13)6M NaOAc

[0031]

14) スタンダードλ DNA

7 水酸化アンモニウム

アセトニトリル(CH ON

酢酸ナトリウム(NaOAc)

(NHOH) 硫酸(比50)

キット

λDNA

(503u a/803u I)

3)60% エタノール(水溶液) 4)40% エタノール(水溶液) 5)20% エタノール(水溶液) 40 6)100% メタノール(水溶液) 7)80% メタノール(水溶液) 8)60% メタノール(水溶液) 9)40% メタノール(水溶液) 10)20% メタノール(水溶液) 11)100% CH₃CN(水溶液) 12)80% CH₃CN(水溶液) 13)60% CH3CN(水溶液) 14)40% CH3CN(水溶液)

15)20% CH₃CN(水溶液) 果を拡張するものである。この実験において、エタノー 50 15の試験画分から溶出されたDNAはゲル重気泳動に (6)

より分析され、そしてスタンダードDNAサンプル(4 8µ | のTEバッファー (10 mM トリス塩酸、1 m M EDTA、pH8.0)中の1.3μ Ι のλ DN

A)と比較された。その結果、100%エタノールが最 良の結合パッファーであり、2番目が100%アセトニ トリルであった。結合パッファーに付与されたより有機

的な特性がより良好なDNAの保持をもたらす。

[0034] 【実施例3】この実験は、結合能力に関して、プロバノ

ール(PrOH)、イソプロパノール(iPrOH)お 10 よびエタノール(EtOH)と、それらの互いの希釈物 並びにNaCIO、とを比較している。 プレップ ア ジーン マトリックスに対するDNAの結合への有機的 効果を最大にすることを目的とする。

[0035]

プレップ アージーン キット バイオラッド コント ロール(キット)41492

マトリックス 40523

λ DNA (503μ g/803μ I) BFL 56125A 9モル 104

1%アガロースゲル

EtOH フィッシャー 902233 PrOH フィッシャー 744241 I P r O H アルドリッヒ 06208T

DMSO アルドリット 9624円

(ジメチルスルフォキシド)

★注:13画分について行われた。各13画分に使用さ れた結合パッファーを以下に示す。すべて、結合パッフ アー以外はプレップ ア ジーン キット材料を用いて 30 最も高かった。DMSOはDNAを保持しなかった。 行われ、そして実質的には実施例1の教示によるプレッ プ ア ジーン方法を用いて行われた。

【0036】 毎日された社会パッファ

1) 100% プロパノール

*2) 80% プロパノール 20% H2O 3) 100% イソプロパノール

4) 80% イソプロパノール 20% H2O

5) 100% DMSO

6) 80% DMSO 20% H2O

7) 20% プロパノール 80% エタノール

8) 40% プロバノール 60% エタノール

9) 60% プロパノール 40% エタノール

10) 20% イソプロパノール 80% エタノー

11) 40% イソプロパノール 60% エタノー ル

12) 60% イソプロパノール 40% エタノー

13) プレップ ア ジーン結合パッファー 6M

NaCIO4 14) スタンダードDNA(λ DNA)

溶出されたDNAをゲル電気泳動により分析し、そして スタンダードDNAサンプルと比較した。その結果、1 20 00%イソプロパノールが最良の結合パッファーである

ことが示唆される。100%プロパノールも良好なDN Aの保持をもたらした。イソプロパノールおよびプロパ ノールは水に80%に希釈することができ、DNAの保

持をもたらすことができた。この試験により、エタノー ル中のイソプロパノールおよびプロパノールの%が増加 すると共に保持するDNAの量も増加した。

【0037】多量の高分子量のDNA(電気泳動の始点 にほぼ近い位置のDNA)はiPrOH(100%)を 用いると保持し、これは使用された結合パッファー中で 【0038】以下に、結合パッファーがDNAを保持す る能力に関して、スタンダードと比較して好ましいもの から順にゲル電気泳動の分析に基づく結果を集約する。

[0039]

クは1 かいまの

10% PEG

20% PEG

6M 尿素

6M グリセロール

30% NH4OH

10% H2SO4

6M NaOAC

MeOH 100%

DNAを伊性するま 1) iPrOH

2) E t O H 3)6M NaCIO 4)60% iPrOH 40% EtOH

5)60% PrOH 40% EtOH 6)PrOH

7)A)40% iPrOH 60% EtOH

B) 40% PrOH 60% EtOH 8)A)80% iPrOH 20% H2O

B)80% PrOH 20% H2O または水による希釈液 9)A)20% PrOH 80% EtOH 100%未満のEtOH

B) 20% PrOH 80% EtOH 10)8M塩酸グアニジン

11)6M KSCN

100%未満のCH₃CN 100%未満のDMSO

12) CH3 CN

11

13) Na I

- 14) BuOH
- 15)6M グアニジンHSCN

(7)

- 16)6M (NH4)2SO4
- 17)6M NaCI

[0040]

【実施例4】この実験は、さまざまなフィルター(膜) に対するDNAの固着能力に関して、結合パッファーN aO。CIとiPrOHを比較している。

Sciences.Inc.)フィルター(ゲルマン サイエンス社、アンアーバー、MI)タイプAEグラス フィルター(ロット603202)。 【0042】MSIグラスファイバーフィルター(ミク ロンセパレーション (Micron Separatio n , I n c .)、ウエストポール、MA)(ロット19 571)。

【0043】ワットマンGF/B(ワットマン社(Wh*

i P r O H フィッシャー : ブロッター (バイオラッド社のバイオ / ドット装 20 1 N H C I

★★:DNAを捕まえるのに使用される膜を各々の場合 に変える以外は、同じ方法により6画分を調製した。約 1 . 3 μ Ι の λ D N A を約 2 4 8 μ Ι の T E バッファー に溶解する。これを約750u IのiPrOHで希釈 し、そしてフィルターを通過させることによりブロッタ 一に添加する。すべての液体が通過した後、約1分間風 乾する。再び約750u IのiPrOHを添加し、約1 分間風乾する。すべてのiPrOHが通過した後、約7 し、 涌渦後約1分間風勢する。

【0045】ウエルのところでフィルターを切る。切っ た部分を遠心チューブに入れる。500 1のプレップ ア ジーン溶出バッファーを添加する。約60℃におい て約20分間加勢する。ゲル電気泳動による結果から、 イソプロパノールがワットマンGF/B、ワットマンG F/C、MSIグラス、ゲルマンAEおよびニトロセル ロースに適していることが示唆される。イソプロパノー ルとゲルマンAEフィルターはほぼ100%のDNAを 保持した。

[0046]

【実施例5】この実験は、1)DNAの結合に対するp Hの効果、2)結合表面としてのCELITE(珪そう 土)の効果、および3)シラン化表面(即ち、疎水性) へのDNA固着に対するiPrOHの効果を測定する。 【0047】 45年:

シラン化表面 プレップ ア ジーン

i P r O H

1N NaOH

*atman Ltd.)、イングランド、英国)コント ロール 7823 ワットマンGF/D(コントロール 4706)

ワットマンGF/C(コントロール 1505)

【0041】 🌉:ゲルマンサイエンス(Gelman 10 λ DNA(BRL)ロット9 mo 1 1 0 4(5 0 3 u a / 8 0 3 u I)

ニトロセルロース(シュライヒャー アンド シュエル (Schleicher & Schuell), +-ン、NH)44031621

プレップ ア ジーン (バイオラッド)コントロール 4004.

[0044]

744241

1× TEパッファー中の1% アガロースゲル **TEバッファー**

泳動マーカー染色液

λ DNA

主注:2.4.8 μ IのTEおよび 1.3 μ Iのλ DNA を含む7つのサンプルを調製した。サンプル1-3には 3 つのシラン化表面(ジーンクリーンマトリックス(バ イオ101、ラ ジョラ、CA)、サークルプレップマ トリックス (バイオ101)、およびプレップ ア ジ 50 µ | のプレップ ア ジーン洗浄バッファーを添加 30 ーン マトリックス(バイオラッド)の内の1つを添加 し、次に 7 5 0 µ Iの i P r O H を添加する。 6 0 ℃に おいて10分間加勢する。

> 【0048】この間、他の3つのサンプルには20μ1 のプレップ ア ジーン マトリックスを添加し、4番 目には50%セライト545(フィッシャー)および5 0% TEバッファーの溶液 20 u l を添加する。セライ トサンプルおよび他の3つのサンプルのうちの1つには 750μ Ιのプレップ ア ジーンパッファーを添加 し、1サンプルには1N水酸化ナトリウムで調整したp 40 H 1 1 . 0のプレップア ジーンバッファー 7 5 0µ I を添加する。1サンプルには1N塩酸で調整したpH

0.1のプレップ ア ジーンバッファー750ulを 添加する。4つすべてを10分間60℃において加熱す

【0049】7サンプルを遠心分離し、そして結合バッ ファーをデカントにより除く。各サンプルに対して、最 初に使用したのと同じ結合バッファー750μ | を添加 する。60℃において5分間加熱する。遠心分離し、そ して結合パッファーをデカントにより除く。各サンプル

50 に対して500 μ Ι のプレップ ア ジーン洗浄パッフ

アーを添加し、5分間撹拌/振湯し、遠心分離し、デカ ントし、60℃において10分間乾燥する。25µ Iの プレップ ア ジーン溶出パッファーを添加し、60℃ において10分間加熱し、遠心分離し、バッファーを集 め、溶出段階を繰り返す。

【0050】溶出された画分をゲル電気泳動により分析 し、そしてスタンダードDNAサンプルと比較した。そ の結果、シラン化表面からはDNAが回収されず、即 ち、前の実験においてDNAは表面に結合せず、沈殿し なかったことが証明された(沈殿物は表面に結合せず、 そして洗浄段階で洗浄された)。

[0051]

【宇施例6】この宇吟は、「トロセルロース膜に対する DNAの結合能力に関して、結合バッファーを比較す る。

【0052】 出来的每:

洗浄パッファー(50%EtOH 50%(40mMト リス、4mM EDTA、6M NaCI、pH7. 4))

結合パッファー(50mM トリス、1mM EDT A, 6M NaCIO4, pH7.5)

溶出パッファー (10mM トリス、1mM EDT A. pH8.0)

ニトロセルロース(5.0µM AE98 オーダー #19020 Dyh643317 S&S) ニトロセルロース(0.45µm BA85 ロット #9039/7 S&S)

1×TAE(1×=89mM トリス-ホウ酸、2mM EDTA、89mMホウ酸)中の1%アガロースゲル 泳動マーカー染色液

TFバッファー

i P r O H

E t O H

KSCN

8 M 塩酸グアニジン

TBSバッファー

NaCIO₄

プレップ ア ジーン キット

主法:7つの同一サンプル(248μ IのTEバッファ ──および1.3 µ Ⅰのλ DNA)を調製した。各工程 40 電気泳動ユニット:BRL ホライズン 5.8 で結合パッファーを変える以外は実施例4と正確に同じ 方法で、ブロッターを使用して7サンプルをニトロセル ロース膜に結合させる。

【0053】DNA溶液を750µ | の結合パッファー に添加し、次にウエルに添加する。液体を通過させ、1 分間風乾する。ウエルにそれぞれの結合パッファー75 0 µ | を添加し、液体の通過後1分間風乾する。750 □ Iの洗浄パッファーで洗浄する。液体の通過後1分間 風鼓する。

ユーブに入れる。溶出バッファー50µ Iを添加し、6 0℃において10分間加熱する。

【0055】溶出されたDNAサンプルをゲル電気泳動 により分析し、そしてスタンダードDNAサンプルと比 較する。この結果から、イソプロパノール、プロパノー ル、およびエタノールがDNAを保持したが、カオトロ プによるDNAの保持は顕著に少ないことが示唆され

[0056]

(8)

【実施例 7 】この実験の目的は、クラミジア (C-1-1-1 ──ルを結合パッファーとして用いた場合に珪そう土に結 合するか否かを測定するものである。

[0057] ##:

イソプロパノール(アルドリッヒ、ミルウオーキー、W I 02610MW)

プレップ ア ジーン キット (バイオラッド 416 40)

λ DNA - (BRL 503μg/803μl)

20 クラミジア (-)溶解物 ウエイクカントリー ヘルス部門(Wake Coun

try HealthDept.)のクラミジア(-) 溶解物 TEパッファー(10mM トリス塩酸、1mM ED

TA, pH8)

3)

レンシアノール)

TAEパッファー(1×) エチジウム プロマイド(10mg/1mlストック (シグマ Cat #E-875 ロット #97E-

372211 30 1×TAEパッファー中の4% ヌシーブ (NuSiev e)アガロース

φ X 1 7 4 RF DNAのHaelll分解物(BR L Cat #5611SA □ット #94010

λ DNAのHindIII分解物(BRL Cat #5612SA □ット#940104)

タイプ | |電気泳動マーカー染色液(25%フィコル、 0.25%プロムフェノールブルー、0.25% キシ

サブマリンユニット

パワーユニット:ファルマシア タイプ EPS 50 0/400

写真装置: ポラロイド タイプ 50ランドカメラ ポラロイド タイプ 57フィルム

フォトダイン ライト ポックス UV

その他・シリコン化された減菌ミクロ遠心チューブ ゲル/ローディングピペット チップス (ストラタジー ン、ラジョラ、CA)

【0054】各ウエルを以下のように丸く切り、遠心チ 50 サンプル、調製および方法:それぞれ250µ Iのクラ

ミジア(-)ヒト サンプルを含む13サンプルを認製 する。各サンプルにλ DNAの1:10希釈液を10 μ | ずつ添加する。14番目のサンプルは水250ulお よびλ DNAの1:10希釈液10μ lを含み、クラミ ジア(-)ヒト サンプルを含まないように調製され る。

【0058】サンプルのうちの5つとスタンダードに は、2011のプレップ ア ジーンローディング マ トリックスを添加し、次に750μ Ιのイソプロパノー ルを添加して室温で10分間撹拌する。他の8サンプル 10 とも証明される(例えば、結合段階において加熱を行う には最初にイソプロパノールを添加し、次に結合マトリ ックスを添加して撹拌する。後の実験は13サンプルす べてとスタンダードについて全く同様に実施した。 【0059】サンプルを室温で10分間撹拌後、1分間 遠心分離し、デカントし、そして上流を捨てる。750 µ | のイソプロパノールで洗浄し、室温で10分間撹拌 し、遠心分離し、デカントし、そして上清を捨てる。5 0℃で10分間加熱して結合マトリックスを乾燥させ る。25µ | のプレップ ア ジーン溶出バッファーを 離する。上清を集めて、各14サンプルから得られた溶 出画分を混ぜて溶出段階を繰り返すことにより、14の (50 u |) 溶出 D N A サンプルが得られる。これらの

溶出サンプルをゲル電気泳動により分析することによ り、どのDNAが溶出されたかを測定する。

【0060】この実験から、DNAは細胞残渣(即ち、 炭素化合物、蛋白質、核酸、等々)を含むサンプルから 取得できることが証明される。コントロールのA DNA とヒトDNAは共にサンプルから取得される。また、こ の実験から、多くの異なるプロトコルはイソプロバノー ルを結合パッファーとして使用することができ、そして サンプルから高いパーセンテージでDNAを取得するこ

か否か、2つの結合段階が使用できるか1つの結合段階 が使用できるか、洗浄段階は50%エタノールおよび5 0%の低濃度のEDTA、pH8.0パッファーを使用 できるかまたは洗浄しないかである。試薬の添加順序は 重要でなく、言い換えれば、結合バッファーまたは結合 マトリックスを最初に添加しても各サンプルから回収さ れるDNAの量に顕著な差はない。)。

【0061】本発明は特定の修飾に関して記述されてい るが、それらの詳細は限定のための構成ではなく、本発 添加する。50℃で10分間加熱し、1.5分間遠心分 20 明の趣旨および目的から離れる事なく、さまざまな等価 物、変化および修飾を加えてもよく、そしてそのような 等価物が本明細書に含まれることが理解される。