Human-Object Interaction Detection with Missing Objects

Kaen Kogashi, Yang Wu, Shohei Nobuhara, Ko Nishino Kyoto University

What is Human-Object Interaction (HOI) Detection?

Conventional HOI detection *VS.*HOI detection with Missing objects

Conventional HOI

Human and object pairs can be detected perfectly.

HOI with Missing Objects

Since the real world is noisy, there are many cases where object detection does not work well.

HOI with Missing objects

Six HOI-MO categories chosen in a data-driven manner are shown.

We found that even in widely adopted public HOI detection datasets (V-COCO and HICO-DET) which are carefully constructed to avoid HOI-MO cases, there still is a large amount of HOI-MO instances (more than 10%).

HOI with Missing objects

If the global scene context is taken into account, it seems that HOI can be detected even if the object cannot be detected.

Overview

Method: Semantic Self-attention

More Visual Examples

Experimental Results

Table 1. Results on Mixed-V-COCO/HICO-DET and V-COCO/HICO-DET-MO test sets in mAP.

Method	Mixed-	Mixed-HICO-DET			V-COCO-	HICO-DET-MO		
	V-COCO	Full	Rare	Non-Rare	MO	Full	Rare	Non-Rare
iCAN [5]	38.06	13.93	10.35	15.11	5.37	5.42	4.30	5.67
TIN-net [11]	40.88	16.04	13.36	17.02	5.60	4.97	4.31	5.12
VCL [8]	41.07	18.00	16.36	18.75	8.45	4.70	4.55	4.74
HOI-MO-Net	48.76	19.83	16.39	20.93	31.23	13.21	12.45	13.38

Table 2. Performance on V-COCO-MO by individual HOI-MO categories (HC) in mAP, with (a)-(f) denoting the HOI-MO categories shown in previous page. 'NS' denotes the number of samples. 'Ours' denotes HOI-MO-Net.

HC	NS	iCAN [5]	TIN-net [11]	VCL [8]	Ours
(a)occlusion	1360	5.99	6.35	8.54	33.37
(b)truncation	198	0.72	0.85	1.06	60.37
(c)rare type	258	8.46	9.77	15.9	46.40
(d)small scale	514	1.87	1.66	3.67	31.67
(e)transparency	16	0.00	0.00	0.00	50.00
(f)gray image	30	0.00	0.00	0.00	36.38

Conclusion

- Introduced HOI-MO problem that has been overlooked in the past.
- Two new benchmark test sets for HOI-MO based on commonly used public datasets.
- A novel HOI-MO method that leverages global scene context.
- Demonstration of the effectiveness of the proposed model with extensive experiments.

Thank you for listening!