QUÈ HEM FET FINS ARA?

El darrer que hem treballat és el l'estudi de les equacions diofàntiques i el començament del tema de les congruències.

CLASSE D'AVUI 11/12/2020

Avui continuem amb tema de les congruències definint formalment les operacions després de la introducció de les operacions amb un exemple.

Recordem la taula de la suma i de la multiplicació a $\mathbb{Z}_4=\{\overline{0},\overline{1},\overline{2},\overline{3}\}$ del darrer exemple:

+	$\overline{0}$	1	2	3
+ 0	$\bar{0}$	1	$\frac{\overline{2}}{\overline{2}}$	3
ī	1	2	3	$\overline{0}$
2	2	3	$\overline{0}$	1
3	3	$\overline{0}$	1	2

•	$\overline{0}$	1	2	3
$\bar{0}$	$\overline{0}$	$\bar{0}$	$\bar{0}$	$\overline{0}$
1	$\bar{0}$	1	2	3
2	$\overline{0}$	2	$\bar{0}$	2
3	$\overline{0}$	3	2	1

Però en aquesta definició s'ha d'anar amb molta cura amb el següent: si hem de fer $\overline{2}+\overline{3}$ a \mathbb{Z}_4 sabem que $\overline{2}=\overline{6}, \overline{3}=\overline{-1}$ podríem fer l'operació de diverses maneres, com per exemple $\overline{2}+\overline{3}=\overline{5}=\overline{1}$ que també la podem calcular com $\overline{6}+\overline{-1}=\overline{5}=\overline{1}$ que dona el mateix. La possible problemàtica és si el resultat serà el mateix si fem servir uns representants o uns altres per les classes d'equivalència. Per exemple si fem la multiplicació $\overline{2} \cdot \overline{3}=\overline{2}$ i també $\overline{6} \cdot \overline{-1}=\overline{-6}=\overline{2}$.

Sempre dona el mateix resultat malgrat que canviem els representants escollits per fer l'operació? Sí.

PROP.: Si $a \equiv a' \pmod{m}$ i $b \equiv b' \pmod{m}$ llavors $a + b \equiv a' + b' \pmod{m}$ i $ab \equiv a'b' \pmod{m}$.

DEM.: Per hipòtesi $a \equiv a' \pmod{m}$ i $b \equiv b' \pmod{m}$ o sigui que

$$\begin{vmatrix} a = a' + k_1 m \\ b = b' + k_2 m \end{vmatrix} \Rightarrow a + b = a' + k_1 m + b' + k_2 m = a' + b' + (k_1 + k_2) m \Rightarrow a + b \equiv a' + b' \pmod{m}$$

I amb el producte passa el mateix:

$$ab = (a' + k_1 m)(b' + k_2 m) = a'b' + a'k_2 m + k_1 mb' + k_1 m k_2 m =$$

= $a'b' + (a'k_2 + k_1 b' + k_1 k_2 m)m \Rightarrow ab \equiv a'b' \pmod{m}$

I aquesta propietat justifica que es pot introduir una suma i una multiplicació a \mathbb{Z}_m que està ben definida.

DEF.: En el conjunt $\mathbb{Z}_m = \{\overline{0}, \overline{1}, \overline{2}, \dots, \overline{m-1}\}$ es defineixen dues operacions de la manera següent:

$$\overline{a} + \overline{b} = \overline{a+b}, \ \overline{a} \cdot \overline{b} = \overline{a \cdot b} \ \text{ per a tot } \overline{a}, \overline{b} \in \mathbb{Z}_m.$$

Aquestes operacions estan ben definides:

PROP.: La suma i el producte estan ben definits.

DEM.: Cal veure que la suma i el producte tenen un resultat únic i que sempre es pot calcular. Això és cert perquè al final es redueix a una suma o una multiplicació a \mathbb{Z} i a més no depén del representant que s'agafi per fer l'operació, és a dir: si $a \equiv a' \pmod{m}$ i $b \equiv b' \pmod{m}$ llavors $\overline{a} + \overline{b} = \overline{a'} + \overline{b'}$ i $\overline{a} \cdot \overline{b} = \overline{a'} \cdot \overline{b'}$, cosa certa per la darrera proposició.

A més aquestes operacions tenen les propietats importants de la suma i la multiplicació de nombres enters:

PROP.: La suma i el producte definits a les classes modulars tenen les propietats següents:

SUMA

Commutativa: Per a tot $\bar{a}, \bar{b} \in \mathbb{Z}_m$ tenim que $\bar{a} + \bar{b} = \bar{b} + \bar{a}$

Associativa: Per a tot $\bar{a}, \bar{b}, \bar{c} \in \mathbb{Z}_m$ tenim que $\bar{a} + (\bar{b} + \bar{c}) = (\bar{a} + \bar{b}) + \bar{c}$

Existencia element neutre: Existeix $\overline{0} \in \mathbb{Z}_m$ tal que per a tot $\overline{a} \in \mathbb{Z}_m$ tenim que $\overline{a} + \overline{0} = \overline{a}$

Existència element invers (oposat): Per a tot $\overline{a} \in \mathbb{Z}_m$ existeix $\overline{a} \in \mathbb{Z}_m$ tal que $\overline{a} + \overline{a} = \overline{0}$

"Suma repetida": Per a tot $n \ge 1$ tenim que $\overline{a} + n \cdot \frac{veg}{a} + \overline{a} = n\overline{a} = \overline{na}$

PRODUCTE

Commutativa: Per a tot $\bar{a}, \bar{b} \in \mathbb{Z}_m$ tenim que $\bar{a} \cdot \bar{b} = \bar{b} \cdot \bar{a}$

Associativa: Per a tot $\bar{a}, \bar{b}, \bar{c} \in \mathbb{Z}_m$ tenim que $\bar{a} \cdot (\bar{b} \cdot \bar{c}) = (\bar{a} \cdot \bar{b}) \cdot \bar{c}$

Existència element neutre: Existeix $\overline{1} \in \mathbb{Z}_m$ tal que per a tot $\overline{a} \in \mathbb{Z}_m$ tenim que $\overline{a} \cdot \overline{1} = \overline{a}$

"Producte repetit": Per a tot $n \ge 1$ tenim que $\bar{a} \cdot n \cdot veg \cdot \bar{a} = \bar{a}^n = \bar{a}^n$

DISTRIBUTIVA DEL PRODUCTE RESPECTE DE LA SUMA: Per a tot $\bar{a}, \bar{b}, \bar{c} \in \mathbb{Z}_m$ tenim que $\bar{a} \cdot (\bar{b} + \bar{c}) = \bar{a} \cdot \bar{b} + \bar{a} \cdot \bar{c}$

DEM.: Totes aquestes propietats surten de la corresponent propietat en els nombres enters. Per exemple: en els nombres enters tenim que

$$a+b=b+a\Rightarrow \overline{a+b}=\overline{b+a}\Rightarrow \overline{a}+\overline{b}=\overline{b}+\overline{a}.$$

O per exemple: $a \cdot 1 = a \Rightarrow \overline{a \cdot 1} = \overline{a} \Rightarrow \overline{a} \cdot \overline{1} = \overline{a}$.

Les propietats d'aquestes dues operacions (exceptuant les de "repetició" de suma i de producte) se satisfan en molts altres conjunts i operacions per la qual reben un nom global: es diu que és un anell amb la suma i el producte. Així podem dir que \mathbb{Z}_m és un anell amb la suma i el producte. Per exemple, és el mateix que passa amb els polinomis a coeficients reals amb la suma i la multiplicació.

Ara practiquem aquestes operacions en el conjunt de les classes modulars:

EX.: Quin és el residu de dividir 58 • 79 mòdul 11?

En lloc d'utilitzar el factor 58 utilitzem el factor 3 que és congruent amb 58 però que facilitarà els càlculs. Això es diu reduir el nombre mòdul 11 (sumant o restant múltiples de 11, o calculant el residu de la divisió per 11, fins arribar a un nombre en el rang $0,1,2,3,\ldots,m-1$). Fem el mateix amb el segon factor: $79 \equiv 2 \pmod{11}$. Llavors:

$$58 \cdot 79 \equiv 3 \cdot 2 = 6 \pmod{11}$$

EX.: Calculeu les dues últimes xifres de $4^{1000000}$ a mà (no necessitem calculadora). Les dues últimes xifres s'obtenen calculant $4^{1000000}$ mòdul 100. Calculem les primeres potències de 4:

- $4^1 \mod 100 = 4$
- $4^2 \mod 100 = 16$
- $4^3 \mod 100 = 64 = -36$
- $4^4 \mod 100 = 56 = -44$
- $4^5 \mod 100 = 24$
- $4^6 \mod 100 = 96 = -4$
- $4^7 \mod 100 = 84 = -16$
- $4^8 \mod 100 = 36$
- $4^9 \mod 100 = 44$
- $4^{10} \mod 100 = 76 = -24$
- $4^{11} \mod 100 = 4$

i a partir d'aquí es repeteixen els resultats. Ara mirem quants 11s hi ha en 1000000 fent la divisió entera:

1000000	11	→ 1000000 = 11 • 90909 +
1	90909	7 1000000 - 11 · 70707 + 1

Per tant:

$$4^{1000000} = 4^{11.90909+1} = (4^{11})^{90909}4^{1} \equiv 4^{90909}4 = 4^{90910}$$

Ara fem el mateix amb l'exponent

Aleshores:

$$4^{90910} = 4^{11.8264+6} = (4^{11})^{8264}4^6 \equiv 4^{8264}4^6 = 4^{8270}$$

Repetim el mateix amb l'exponent

Llavors:

$$4^{8270} = 4^{11.751+9} = (4^{11})^{751}4^9 \equiv 4^{751}4^9 = 4^{760}$$

Repetim el mateix amb l'exponent

Aleshores:

$$4^{760} = 4^{11 \cdot 69 + 1} = (4^{11})^{69} 4^1 \equiv 4^{69} 4^1 = 4^{70}$$

Finalment fem el mateix amb el darrer exponent

$$\begin{array}{|c|c|c|}\hline 70 & 11 \\ \hline 4 & 6 \\ \hline \end{array} \rightarrow 70 = 11 \cdot 6 + 4$$

Llavors:

$$4^{70} = 4^{11 \cdot 6 + 4} = (4^{11})^6 4^4 = 4^6 4^4 = 4^{10} = 76$$

Per tant les dues darreres xifres són 76.