

Predicting Weekly 2020-2024 Boston BlueBike Ride Count

Sophie Hwang, Data Science Capstone Project

Background

- Boston's BlueBike public bike share program is an essential affordable, healthy means of transportation with over 27 million trips since its launch in 2011 as Hubway.
- By analyzing the relationship between total BlueBike weekly trips and the relevant weather, transportation and social information, we can improve the business model and the experience of users.
- Research Question: What variables help predict Boston BlueBike weekly ridership between 2020-2024?

Data and Methods

Data Acquisition:

- 1) Monthly Boston BlueBike Data: Variable: Individual Trip Data for all BlueBike trips taken 2020-2024 <u>Continuous</u>
- 2) Boston Weather Data (retrieved via Meteostat API): Variables:
- Daily Temperature (Celcius) Continuous
- Daily Precipitation (millimeters) Continuous
- Daily Wind Speed (km/hr) Continuous
- 3) MA Gas Price: Weekly Average Gas Price (USD) Continuous
- 4) Boston COVID-19 Cases Data: Daily New Cases Continuous

Data Cleaning:

- 1) Merge BlueBike Data to calculate the weekly total trip count in selected date range
- 2) Calculate weekly average for weather, gas, and COVID datasets and merge with the BlueBike dataset
- 3) Impute missing values with 0 the only missing values upon inspection were early 2020 COVID case count
- 4) Finalize a working dataset with 259 rows & 8 features.

Therefore, this data is only generalizable for weekly ride totals within the selected date range of 2020-2024.

Methods:

- 1) Linear Regression
- First Order: AIC & BIC Comparison based on stepwise regression
- Interaction: AIC & BIC Comparison based on stepwise regression
- 2) Support Vector Regression:
- 3) **K-fold Cross Validation**: equally split data into 10 folds using designated indexes; For each model, calculated the mean CV Score.
- 4) Final Model Selection & Fitting: Fit the entire dataset on the chosen model (BIC Interaction model)

Model Comparison

	Adjusted R^2	RMSE	AIC	BIC	F-statistic	p-value			
First Order	0.7344	18479.77	5889.063	5921.178	NA	NA			
Interaction - AIC	0.8396	15067.32	5770.875	5856.515	12.117	0			
Interaction - BIC	0.8329	14890.25	5778.079	5849.446	14.608	0			
SVR	NA	20014.7	277 Support Vectors						

Table 1. Comparison of different linear regression models and support vector regression. Partial F-test and p-values are each compared to the first order model.

Final Model

	gas_pric e	new_cov id_cases	tavg	prcp	month:Sum mer	covid:S Ummer	covid:W inter	tavg:Spri		tavg:Wi nter	gas:tavg	Adj. R ²
Coeffici ents	14446.5 8	-70.07	2795.91	-897. 39	14728.25	-100.09	59.29	-2597.86	-4544.52	-2691.82	450.48	0.8413

Table 2. Final model based on interactive AIC. The table only includes significant predictors.

New covid cases & avg temp vs. bike trip count by Season

Residual Plots

Conclusion

According to the model comparison table, the best model is AIC Model with interaction which indicates that there is a correlation between *Weekly BlueBike trips* and *Weather, Gas Price, COVID cases, and seasons*.

- We use the Adjusted R² over RMSE because we prioritize a model that accounts for the most variation in the data. Though BIC Interaction has a lower RMSE, it is a difference of ~70 rides per week.
- The R² indicates **84.13%** of the variation in weekly BlueBike ride count could be explained by the predictors and their interactions.
- Cross validation shows that the model is not overfitting.

Discussion

- 1) Normality & Equal Variance Assumption: As seen in the residual plots, the assumptions are satisfied.
- 2) Time Correlation: We have made the assumption that the weekly aggregate counts in our data set were independent of each other, not taking into account correlation between time and adjacent dates.
- 3) Future Direction: Conduct time-series relevant analysis on weekly ride data. We could also conduct similar analysis on other public transportation data and compare models and results.

References

- 1. Boston BlueBike Data https://bluebikes.com/system-data
- 2. Boston Weather Data https://dev.meteostat.net/python/#installation
- 3. MA Gas Data
- 4. Boston COVID-19 Dashboard