Sequence Models & Attention Mechanism

LATEST SUBMISSION GRADE

100%

5. Continuing the example from Q4, suppose you work on your algorithm for a few more weeks, and now find that for the vast majority of examples on which your algorithm makes a mistake, $P(y^* \mid x) > P(\hat{y} \mid x)$. This suggests you should 1/1 point O False. True. ✓ Correct 6. Consider the attention model for machine translation. 1 / 1 point Further, here is the formula for $\alpha^{< t, t'>}$. $\alpha^{< t, t'>} = \frac{\exp(e^{< t, t'>})}{\sum_{t'=1}^{T_x} \exp(e^{< t, t'>})}$ Which of the following statements about $\alpha^{< t,t'>}$ are true? Check all that apply. output for $y^{< t'>}$. (Note the indices in the superscripts.) $\begin{tabular}{ll} \hline & \begin{tabular}{ll} We expect $\alpha^{< t,t'>}$ to be generally larger for values of $a^{< t'>}$ that are highly relevant to the value the network should output for $y^{< t>}$. (Note the indices in the superscripts.) \\ \hline \end{tabular}$ ✓ Correct $\hfill \prod_t \alpha^{< t,t'>} = 1$ (Note the summation is over t.) $ightharpoons \sum_{t'} lpha^{< t, t'>} = 1$ (Note the summation is over t'.) 7. The network learns where to "pay attention" by learning the values $e^{< t, t'>}$, which are computed using a small neural 1/1 point We can't replace $s^{ct-1}>$ with $s^{ct>}$ as an input to this neural network. This is because $s^{ct>}$ depends on $a^{ct,t>}>$ which in turn depends on $e^{ct,t>}>$; so at the time we need to evaluate this network, we haven't computed $s^{ct>}>$ yet. O False True

8. Compared to the encoder-decoder model shown in Question 1 of this quiz (which does not use an attention mechanism), we expect the attention model to have the greatest advantage when:

✓ Correct

✓ Correct

CTC model, what does the following string collapse to?	
_c_oo_o_kkb_ooooo_oo_kkk	
cookbook	
○ cook book	
O coookkbooooookkk	
O cokbok	
✓ Correct	
10. In trigger word detection, $x^{<\!$	1/1 point
\bigcirc The t -th input word, represented as either a one-hot vector or a word embedding.	
lacktriangle Features of the audio (such as spectrogram features) at time t .	
igcirc Whether the trigger word is being said at time $t.$	
\bigcirc Whether someone has just finished saying the trigger word at time $t.$	
✓ Correct	

9. Under the CTC model, identical repeated characters not separated by the "blank" character () are collapsed. Under the