solutions in this case I OK XoKk approach & but don't except it, hence it being the carrying capacity. | Im x(+) = k & lim x(+) = 0 5(x) (1, rk) $S(x) = r(1 - \tilde{k})x$ Phase Line: consider y'= fcy) ck] and y as "distance" from O along number line (y-axis) · y'= S(y) describes motion · To left of k but right of O Expanies modeles by yet) f(x) >0 so solution x(t) is thereasing along the x-axis like which is denotes of called the phase line · Equilibrium point types: of · To left of O S(x) (O, XC+) decrease denotes by · A + pointing array means solution increases around equilibria sorats, - armor means devensing Ex: Describe behavior as t-700 for all solutions to $x' = f(x) = (x^2 - 1)(x - 2)$ =(x+1)(x-1)(x-2)Graph SCO RH3 & phase line into Equilibrin phs: x,=-1, x,=1, x3=2 · In internals limited by equilibrium points, use sign of f Consider XCED that is a equilibrium solution · If s(x)>0, aron i) -> be x'(+) = S(x) 70 so x (4) increases · If f(x) <0, arrow is to be x'(+) = S(x) <0 ,0 x (+) decreases

	· check & & OF () and 1)	
	so Uniqueness The applies & solution courses can't cross	
	equilibrium polats, basically limited by the line	
	-If solution starts in one of the internal for all t	intervals, then ace) is in that
	Create tx-plane - transfer plane to x-cixis - draw equilibrium solutions - use plane line into do Sketch nonequilibrium solutions In internal limiter by equilibrium points	
1 1		
	Equilibrium polits x, = -1 xz = 2 Equilibrium polit x= 1 strble another be solutions more away be solutions approach x= 1 as	
	from x, = -1 1 x = 2 as + >0 +>0	
		Glas share la
	anstable stable	fre the
	Gnshile	
	So < 0->	At Equilibrium point X. for
	unstible stable	X'= S(x) asymptotically stuble only
	solutions more any don solutions approach	if f is DECREASING at Xo
	equilibrium point as equilibrium point as	
	t→00 t→0	use same test
busicully a	First Derivative Test for Stability	
ne devivation	I'm 98: Suppose to is an equilibrium point for x'= f(x) where	
test for	113 h diller chimile Throngen	
x (x) (7	Use $f'(x_0) < 0$, then f decreases at $x_0 \in A_0$ is asymptotically STABLE 2) If $f'(x_0) > 0$, financeaulog at x_0 and is UNSTABLE 3) If $f'(x_0) = 0$ no conclusion	
	1) to move ho conduston	