Signal Processing

Physics 77 April 29, 2019

Outline

- Definitions
- Discrete Fourier Transforms (DFT and FFT)
- Finite-response filters
- Infinite-response filters

Definitions

- Suppose x(t) is some (periodic) function that we sample at some fixed frequency f_s
 - $^{\circ}$ Measure x(n) at times $t_n = t_0 + nt_s$
 - lacktriangleq Goal is to analyze x(n) and infer properties of x(t)
 - \mathfrak{S} E.g. magnitude |x(t)|, power vs time $P(t) \sim |x(t)|^2$, spectral composition, etc.

4

Acronyms

- FFT = Fast Fourier Transform
 - DFT = Discrite Fourier Transform
- DSP = Digital Signal Processing
- SNR = Signal-to-noise ratio
 - Often expressed in dB, i.e. $SNR = 20log_{10}(S/N)$ where S and N are signal and noise amplitudes
 - For power, SNR = $10\log_{10}(P_S/P_N)$
- ASD = Amplitude Spectral Density
 - PSD = Power Spectral Density
 - NPS = Noise Power Spectrum
- FIR = Finite Impulse Response (filter)
- IIR = Infinite Impulse Response (filter)

Schematic Notation

- Represent addition, multiplication (mixing), delay operations
- Most linear systems can be represented this way

$$\text{ I.e. } c_1 x_1(n) + c_2 x_2(n) \rightarrow c_1 y_1(n) + c_2 y_2(n)$$

Fourier Transform

 Most common way to analyze a periodic function is by means of a Fourier Transform

Represent as a superposition of harmonic oscillations

$$x(t) = C \int_{-\infty}^{+\infty} \frac{x(\omega) \exp[j\omega t] d\omega}{\omega}$$

Here $x(\omega)$ is a Fourier coefficient, which represents the strength of the periodic signal at particular frequency. Also known as spectral density.

Inverse transform:

$$x(\omega) = C \int_{-\infty}^{+\infty} x(t) \exp[-j\omega t] dt$$

$$x(f) = C \int_{-\infty}^{+\infty} x(t) \exp[-j2\pi f t] dt$$

$$= C \int_{-\infty}^{+\infty} x(t) \left[\cos(2\pi f t) - j\sin(2\pi f t)\right] dt$$

Discrete Fourier Transform

• For a sampled waveform, replace the integral with a discrete sum:

$$x(m) = \sum_{n=0}^{N-1} x(n) \left[\cos \frac{2\pi mn}{N} - j \sin \frac{2\pi nm}{N} \right]$$

m=0..N-1

Define

$$x_{\text{mag}}(m) = |x(m)| = \sqrt{x_{\text{re}}(m)^2 + x_{\text{im}}(m)^2}$$

$$\Delta\phi(m) = \text{phase}(m) = \tan^{-1}[x_{\text{im}}(m)/x_{\text{re}}(m)]$$

$$P(m) = |x(m)|^2 = x^*(m)x(m) = x_{re}(m)^2 + x_{im}(m)^2$$

Aliasing

- For real signals x(n), can show that
 - Exercise for the reader

$$x(m) = x^*(N - m)$$

Moreover (obvious)

$$x(m) = x(N+m)$$

- □ This is called aliasing. Spectrum for 0 < m < N/2 is redundant with N/2 < m < N, N < m < 3N/2, etc
- Nyquist theorem:
 - (x) can be reconstructed perfectly from x(m) iff x(t) is limited to the band f<f_B and fs>2f_B
 - $f_N = f_s/2$ is often called the Nyquist frequency

9

Fast Fourier Transform

- Brute-force discrete Fourier transforms can be slow
 - □ Require N² calculations
 - However, trig functions are symmetric and obey trig relations, which is used in the Fast Fourier Transform algorithms (FFT)
 - Scale as N log(N)
 - Multiple FFT algorithms exist, and are interfaced in Python
 - © E.g. FFTW from MIT

Applications of FFT

- FFT is useful to
 - Look at the composition of a periodic signal, e.g. harmonics, tone analysis, etc
 - Look at the composition of noise
 - Line noise
 - White noise (flat in frequency)
 - Pink (1/f) noise
 - Signal processing
 - Measure amplitude of the signal in "frequency domain"
 - Design filters to maximize SNR

FIR filters

- Filtering (in the time domain) is a way to reduce the contributions of (random) noise to the characteristics of the signal
- Usually implemented by summing over samples with some (predetermined) weights
 - Equivalent to integration/averaging

11/16/2006

Box-car Filter Response

Time-Domain Signal After Filtering

Frequency-Domain Response

More FIR Filters

5-tap "Gaussian" FIR filter

Ideal Low-Pass FIR Filter

Frequency response

Time-domain coefficients

Convoluted Low-Pass Filter

Example: Blackman Window

$$\omega(k) = 0.42 - 0.5 \cos\left(\frac{2\pi k}{N}\right) + 0.08 \cos\left(\frac{4\pi k}{N}\right)$$
, for $k = 0, 1, 2, ..., N - 1$. (approximates Gauss)

More (Tunable) Filters

w(k) = the N-point inverse DFT of

Chebyshev window:→ (also called the Dolph– Chebyshev and the Tchebyschev window)

$$\frac{\cos\left[N\cdot\cos^{-1}\left[\alpha\cdot\cos\left(\pi\frac{m}{N}\right)\right]\right]}{\cosh[N\cdot\cosh^{-1}(\alpha)]},$$

(c.f. hardware filters)

where
$$\alpha = \cosh\left(\frac{1}{N}\cosh^{-1}(10^{\gamma})\right)$$
 and $m = 0, 1, 2, ..., N$

Kaiser window:→ (also called the Kaiser-Bessel window)

$$\omega(k) = \frac{I_o \left[\beta \sqrt{1 - \left(\frac{k - p}{p}\right)^2} \right]}{I_o(\beta)}$$

for k = 0, 1, 2, ..., N-1, and p = (N-1)/2.

More Tunable Filters

Bandpass Filter

Highpass Filter

Phase Response in FIR Filters

Linear phase shift in passband: constant group delay (no spectral distortions): good!

Example: Exponential Averaging Filter

Exponential IIR Filter

What We Have Not Covered

- Many topics to cover, so I so far focused on most immediately relevant
 - There are courses dedicated to DSP
- Other possible topics of interest (at your leisure):
 - Digital Signal Processing
 - Digital mixing
 - Modulation/demodulation
 - Smoothing, windowing
 - Often useful for image processing
 - Down-sampling (decimating), re-sampling
 - "Optimal" filters