Classificazione dei prodotti di Scattering Elettrone-Protone

Confronto tra diversi modelli di Machine Learning per la classificazione di particelle prodotte durante uno scattering inelastico elettrone-protone.

Autori

Marco Cecca Giorgia Osella Vincenzo Scolletta

Composizione del Dataset

I dati utilizzati sono il prodotto della risposta di sei diversi rilevatori, usati mediante la piattaforma di simulazione <u>GEANT4</u>. Il DataSet è reperibile su <u>Kaggle</u>, avente una dimensionalità di (5'000'000, 7)

	id	P	theta	beta	nphe	ein	eout
0	211	0.780041	1.081480	0.989962	0	0.000000	0.000000
1	211	0.260929	0.778892	0.902450	0	0.000000	0.000000
2	2212	0.773022	0.185953	0.642428	4	0.101900	0.000000
3	211	0.476997	0.445561	0.951471	0	0.000000	0.000000
4	2212	2.123290	0.337332	0.908652	0	0.034379	0.049256

Features	Significato	Unità di Misura	
id	Nome Particella	NoDim	
Р	Quantità di moto	GeV/c	
theta	Angolo di Scattering	rad	
beta	Rapporto tra la velocità v e c	NoDim	
nphe	Numero di fotoelettroni	NoDim	
ein	Energia in ingresso	GeV	
eout	Energia in uscita	GeV	

id	Particella
(-11)	Positroni
(211)	Pioni
(321)	Kaoni
(2212)	Protoni

Per una maggiore leggibilità sono state rinominate la colonna *id* e *nphe*.

Inoltre il *codice* associato a ciascuna particella è stato sostituito con il suo *nome* rimappando i valori.

Il dataframe è stato sottoposto ad un controllo di eventuali features mancanti.

Ci sono cinque milioni di particelle, ciascuna con sei features e nessun dato è mancante.

```
        particella
        p
        theta
        beta
        elettroni
        ein
        eout

        pione
        0.780041
        1.081480
        0.989962
        0
        0.000000
        0.000000

        pione
        0.260929
        0.778892
        0.902450
        0
        0.000000
        0.000000

        protone
        0.476997
        0.445561
        0.951471
        0
        0.000000
        0.000000

        protone
        2.123290
        0.337332
        0.908652
        0
        0.034379
        0.049256

        m
        ...
        ...
        ...
        ...
        ...
        ...
        ...
```

```
print(df.isnull().sum())
print("-"*20)
print(df.shape)
```

Si è osservato che il detector per gli *elettroni* è stato inefficiente (segna spesso 0). Verificata questa ipotesi (manca il segnale il **93,52**% delle volte), si è eliminata la colonna corrispondente.

```
flop = df['elettroni'].value_counts(normalize = True)
print('Il rilevatore manca il segnale il {volte:.2%} delle volte'.format(volte=flop[0]))

Python

Il rilevatore manca il segnale il 93.52% delle volte
```

Si sono rimosse anche tutte le particelle che riportavano un $\beta \geq 1$, fisicamente non coerente.

```
df = df.drop(df[df.beta >= 1].index)
df.head()
```


Analizzando i dati si nota che i **positroni** e **kaoni** sono classi *sottorappresentate*.

È stato effettuato un **resampling** del dataset per non avere un dataset sbilanciato.


```
x = pd.DataFrame(df)
y = x['particella']
undersample = RandomUnderSampler(sampling_strategy='not minority')
df_us, _ = undersample.fit_resample(x, y)
```

In particolare è stato effettuato un **undersampling**, che ha ridotto il dataset del 99,35%

A livello teorico è stata considerata la correlazione, non lineare, tra p e β e visualizzata in un grafico.

Il comportamento delle diverse particelle è distinguibile in base alle loro *masse*

$$m_{e^+} < m_\pi < m_K < m_p$$

È stata analizzata la correlazione tra le features tramite una matrice di correlazione.

L'unica correlazione lineare significativa è tra la quantità di moto e l'energia in uscita.

```
with sns.axes_style("darkgrid"):
    sns.scatterplot(data=df_us, x='p', y='beta', hue='particella',
    s = 7, palette = 'inferno')
```

Decision Tree

Come primo modello si è usato un DecisionTreeClassifier lasciando i parametri di default.

L'addestramento è compiuto sull'80% del dataset. È stata valutata l'efficienza del metodo tramite una matrice di confusione e l'accuracy score.

Gli alberi decisionali creano un modello che predice una classe o un valore in output a partire da regole di tipo binario inferite dalle feature dei dati.

```
dt_class = DecisionTreeClassifier(random_state=2022)
dt_class.fit(x_train, y_train)
y_pred_dt = dt_class.predict(x_test)
dt_accuracy = accuracy_score(y_test, y_pred_dt)
```

Accuratezza DecisionTree: 89.61%

Random Forest

Come secondo modello si è usato un *RandomForestClassifier*.

Un **metodo ensemble** basato su *alberi decisionali*. Ossia combina diversi algoritmi, ottenendo in generale risultati migliori.

Accuratezza RandomForest: 93.19%

Random Forest

È stata valutata anche l'importanza delle features associata dal modello per la classificazione delle particelle.

Per farlo è stato utilizzato l'attributo *feature_importances_*

Le features maggiormente importanti per l'addestramento del modello, e la successiva predizione, sono p e la β .

Era prevedibile dal plot cinematico, attraverso il quale è possibile distinguere, e quindi classificare, le varie particelle.

Multilayer Perceptron

Come terzo modello è stato utlizzato un *MLPclassifier*

Un Multilayer Perceptron è il più semplice modello di rete neurale che è possibile concepire.

Il *layer di imput* è costituito nel nostro caso da 5 **neuroni**, mentre quello di *output* da 4, nel mezzo ci sono i *layers nascosti*

Ogni neurone nel layer nascosto trasforma i valori del layer precedente con una *sommatoria pesata* seguita da una **funzione di attivazione**

Multilayer Perceptron

È stata utilizzata una tecnica di ottimizzazione degli iperparametri, mediante l'oggetto *GridSearchCV()*

La *grid search* prova ad eseguire l'algoritmo per ogni combinazione di parametri all'interno di una *griglia data*, fino a trovarne la migliore possibile.

```
mlp_class = MLPClassifier(max_iter=300, random_state=2022)
mlp_upgrade = GridSearchCV(mlp_class, griglia_parametri, n_jobs=-1)
mlp_upgrade.fit(x_train, y_train)
```

Accuratezza RandomForest: 93.05%


```
I migliori parametri per il MLPClassifier sono:
{'activation': 'relu', 'hidden_layer_sizes': (100,), 'solver': 'adam'}
```

K-Nearest Neighbor

Come quarto e ultimo modello è stato utilizzato il *KNeighborsClassifier*.

Quest'ultimo classificatore si basa sull'*algoritmo KNN* che classifica un punto nello spazio delle features attraverso la sua prossimità' rispetto ai K punti più vicini.

La distanza viene valutata mediante diverse metriche, tra cui quella che è stata usata, la distanza di Minkowski.

$$\left(\sum_{i=1}^n \left|x_i-y_i
ight|^p
ight)^{1/p}$$

Accuratezza K-Nearest Neighbor: 88.60%

Confronto finale tra i metodi

I modelli di classificazione sono stati messi a confronto attraverso la loro accuratezza

Da cui si può concludere, considerando l'accuratezza dei modelli, che si comportano tutti molto bene, ma il meno efficiente è il modello basato sull'algoritmo del *K-Nearest Neighbor*.

	Classifier	Accuracy
0	Decision Tree	0.896133
1	Random Forest	0.931896
2	ML Perceptron	0.930527
3	K-Nearest Neighbor	0.886037

