

CS 330 Final Project Guidelines and Rubric

Overview

The creation of computational graphics and visualizations is a skill in growing demand. These skills are applicable to the following scenarios: the game industry for creating graphics and animations, the healthcare industry for medical visualizations, the entertainment industry for computer-generated imagery (CGI) and visual effects, 3D printing for creating physical objects for applied real-world problem solving, and much more. Throughout this course, you will learn how to write computer code that commands any OpenGL graphics processing unit (GPU) to create, texture, light, render, and animate 3D models in 3D space, and control virtual environments relative to a virtual camera.

This assessment addresses the following course outcomes:

- Generate accurate representations of three-dimensional objects using application programming interface (API) libraries and computer graphics development best practices
- Create interactive graphics applications that respond to input devices allowing for successful navigation around three-dimensional objects and through three-dimensional space
- Employ best practices in formatting, commenting, and functional logic that produce reliable computer programs
- Defend computer graphic and program development decisions for their effectiveness in meeting project requirements

Prompt

Your **commented code and reflection** for this project will demonstrate the skills you have gained creating 3D graphics and the principles discussed in the course. To complete this project, you will select a real-world object (personal item, commercial product, etc.) and create a three-dimensional representation of it. You will create a digitally lit, fully textured 3D object that can be orbited using a virtual camera and mouse controls. In addition, you will reflect on this project by providing documentation explaining how the graphics were created and write about how you applied each step in the OpenGL pipeline. You will also reflect on any challenges that influenced your coding/development decisions.

Personal object selection: To minimize complexity and save 3D modeling time, the polygon count for your objects should not exceed 1,000 triangles. While you may want to choose a more complex object, to complete the project within the time constraints of the course, the number of triangles must be limited. Below are examples of objects that can be created using a low polygon count. Please choose from one of these categories:

- Furniture (chair or table)
- Kitchen appliances (spoon, knife, cup, not a kettle)
- Body wash container
- Animal head sculpture (not a monkey head sculpture)

Note: When using images for textures, make sure you are using royalty-free images with resolutions of 1024 x 1024 pixels or higher.

Specifically, your project must address the following **critical elements**:

I. 3D Object

- A. Your 3D object will be assessed visually to ensure it meets the elements below:
 - i. Utilize **organized geometry**, ensuring that polygons (triangles) on the 3D model are well spaced and connected and give a low-polygon representation of a real-world object.
 - ii. Utilize **textures**, ensuring that high-resolution textures are projected accurately on the 3D model.
 - iii. Generate **lighting**, ensuring that all lights are implemented to give a professional-looking presentation and visualization of the model.
 - iv. Apply **color** to lighting with varying intensities.
- B. **Navigation** Through Input Devices: Your applications will be navigated by using the mouse and keyboard input devices to control a virtual camera. The elements below must be met:
 - i. Create **horizontal orientation** navigation of the 3D object in the application allowing for azimuth orientation of a virtual camera that orbits a lit model when the mouse is moved horizontally.
 - ii. Create **vertical orientation** navigation of the 3D object in the application allowing for altitude orientation of a virtual camera that orbits a lit model when the mouse is moved vertically.
 - iii. Create code to **clamp** or gimbal lock azimuth and altitude orientation to prevent irregular camera angles (e.g., a 90-degree camera rotation clamp on the pitch axis).
 - iv. Create **perspective and orthographic displays** of the 3D object so that the user can change the viewport display of the 3D model from 2D to 3D and vice versa, using the tap of a keyboard key, allowing the user to switch between orthographic (2D) and perspective (3D) views at will.
- C. **Syntax** Assessment—Best Practices: These best practices should be evident within your program:
 - i. Employ **formatting best practices** by providing program code that is easy to read and follows industry-standard code formatting practices, such as indentation and spacing.
 - ii. Utilize **commenting** best practices, ensuring that project source **code** used is briefly and clearly explained using descriptive comments.
 - iii. Employ **functional** coding **logic** best practices, ensuring that the program runs as expected.

II. Reflection

- A. Justify **development choices** for your object. Why did you choose your selected object? Were you able to program for the functionality required?
- B. Explain how a **user can navigate** your 3D object. Explain how you set up the virtual camera for your 3D object and the programming syntax you used to control its navigation using the input devices.
- C. Explain the **custom functions** in your program that you are using to make your code more modular and organized (what does the function do and how is it reusable?).

Milestones

Your work on the final project is supported by two milestones.

Milestone One: Project Proposal

In **Module Three**, you will propose a real-world object to model in your project, submit a photograph of it, and discuss how you will re-create it as a 3D object in modern OpenGL, following the parameters established for the final project. This milestone will be graded with the **Milestone One Rubric**.

Milestone Two: Project Draft

In **Module Five**, you will submit a draft of the final project, including all the aspects of graphics development covered up to this point in the course. This is an important opportunity to try out your skills and receive valuable feedback as you prepare for the final project submission. This milestone will be graded with the **Milestone Two Rubric**.

Final Submission: Commented Code and Reflection

In **Module Seven**, you will submit your final project. It should be a complete, polished artifact containing **all** of the critical elements of the final product. It should reflect the incorporation of feedback gained throughout the course. **This submission will be graded with the Final Project Rubric.**

Rubric

Guidelines for Submission: Submit a commented .cpp file for the 3D object. Also submit a reflection, which should be 1–2 pages using 12-point Times New Roman font and double spacing. Any citations should be in APA format.

Critical Elements	Exemplary (100%)	Proficient (85%)	Needs Improvement (55%)	Not Evident (0%)	Value
3D Object: Organized Geometry	Meets "Proficient" criteria and demonstrates a sophisticated use of geometry in the 3D object	Utilizes organized geometry, ensuring that polygons are well spaced and connected while keeping the polygon count moderate	Utilizes organized geometry, but with errors in ensuring that polygons are well spaced and connected while keeping the polygon count moderate	Does not utilize organized geometry ensuring that polygons are well-spaced and connected while keeping the polygon count moderate	5.94
3D Object: Textures	Meets "Proficient" criteria and demonstrates a sophisticated use of texture on the 3D model	Utilizes textures, ensuring that high-resolution textures are projected accurately on the 3D model	Utilizes textures to ensure that high-resolution textures are projected on the 3D model, but contains some inaccuracies	Does not utilize textures to ensure that high-resolution textures are projected accurately on the 3D model	5.94
3D Object: Lighting	Meets "Proficient" criteria and demonstrates an advanced application of lighting on the 3D object	Generates lighting, ensuring that all lighting is implemented for a professional presentation and visualization of the model	Generates lighting, ensuring that all lighting is implemented for a professional presentation and visualization of the model, but with errors	Does not generate lighting ensuring that all lighting is implemented for a professional presentation and visualization of the model	5.94
3D Object: Color	Meets "Proficient" criteria and demonstrates a sophisticated use of types of color, tone, and intensity in lighting	Applies color to lighting with varying intensities	Applies color to lighting, but with errors	Does not apply color to lighting	5.94
Navigation: Horizontal Orientation	Meets "Proficient" criteria and demonstrates a sophisticated use of horizontal orientation control	Creates horizontal orientation navigation of 3D object allowing for azimuth orientation of a virtual camera that orbits the model when the mouse is moved horizontally	Creates horizontal orientation navigation of 3D object allowing for azimuth orientation of a virtual camera that orbits the model when the mouse is moved horizontally, but with errors	Does not create horizontal orientation navigation of 3D object allowing for azimuth orientation of a virtual camera that orbits the model when the mouse is moved horizontally	5.94

Navigation: Vertical	Meets "Proficient" criteria and	Creates vertical orientation	Creates vertical orientation	Does not create vertical	5.94
Orientation	demonstrates a sophisticated	navigation of 3D object	navigation of 3D object	orientation navigation of 3D	3.54
Officiation	use of vertical orientation	allowing for altitude orientation	allowing for altitude orientation	object allowing for altitude	
	control	of a virtual camera that orbits	of a virtual camera that orbits	orientation of a virtual camera	
	Control	the model when the mouse is	the model when the mouse is	that orbits the model when the	
		moved vertically	moved vertically, but with	mouse is moved vertically	
		Inoved vertically	errors	mouse is moved vertically	
Navigation: Clamp	Meets "Proficient" criteria and	Creates code to clamp azimuth	Creates code to clamp azimuth	Does not create code to clamp	5.94
Navigation: Clamp		and altitude orientation to	and altitude orientation to	azimuth and altitude	5.94
	demonstrates a sophisticated				
	use of angle control due to	prevent irregular camera angles	prevent irregular camera	orientation to prevent irregular	
	clamping		angles, but with errors	camera angles	
Navigation:		Creates perspective and	Creates perspective and	Does not create perspective	5.94
Perspective and		orthographic displays of 3D	orthographic displays of 3D	and orthographic displays of 3D	
Orthographic		object so that the user can	object so that the user can	object so that the user can	
Displays		change the viewport display of	change the viewport display of	change the viewport display of	
		the 3D model from 3D to 2D	the 3D model from 3D to 2D	the 3D model from 3D to 2D	
		using the keyboard	using the keyboard, but with	using the keyboard	
			errors		
Syntax: Formatting	Meets "Proficient" criteria and	Provides program code that is	Provides program code that is	Does not provide program code	7.92
Best Practices	demonstrates a sophisticated	easy to read and follows	easy to read, but follows only	that is easy to read or does not	
	awareness of industry best	formatting best practices as	some formatting best practices	follow any formatting best	
	practices in formatting	defined by the industry		practices	
Syntax: Commenting	Meets "Proficient" criteria and	Utilizes commenting best	Utilizes commenting best	Does not utilize commenting	7.92
Code	demonstrates keen insight into	practices, ensuring that project	practices, ensuring that project	best practices to explain project	
	best practices in commenting	source code used is briefly and	source code used is explained	source code	
	code	clearly explained using	using descriptive comments,		
		descriptive comments	but comments lack detail or		
			clarity		
Syntax: Functional	Meets "Proficient" criteria and	Employs functional coding logic	Employs functional coding logic	Does not employ functional	7.92
Logic	demonstrates keen insight into	best practices, ensuring that	best practices, ensuring that	coding logic best practices	
208.0	best practices in functional	program runs as expected	program runs, but with errors	coamb toble sear bractices	
	logic	program runs as expected	program runs, but with errors		
	IUSIC				

Reflection:	Meets "Proficient" criteria and	Justifies development choices	Justifies development choices	Does not justify development	7.92
Development Choices	demonstrates a keen insight	of the 3D object and explains	of the 3D object and explains	choices or explain how the	
	into development choices for	how the required functionality	how the required functionality	required functionality was	
	this project	was achieved	was achieved, but justification	achieved	
			and explanation lack detail or		
			clarity		
Reflection: User Can	Meets "Proficient" criteria and	Explains how the user can	Explains how the user can	Does not explain how the user	7.92
Navigate	demonstrates a nuanced	navigate the 3D object, the	navigate the 3D object, the	will navigate the 3D object, the	
	understanding of user	setup of the virtual cameras, as	setup of the virtual cameras, as	setup of the virtual cameras, as	
	navigation	well as the programming syntax	well as the programming syntax	well as the programming syntax	
		used for the input devices	used for the input devices, but	used for the input devices	
			explanation lacks detail or		
			clarity		
Reflection: Custom	Meets "Proficient" criteria and	Explains the custom functions	Explains the custom functions	Does not explain the custom	7.92
Functions	demonstrates a nuanced	used in the program, what they	used in the program, what they	functions used in the program,	
	understanding of the program	do, and how they are reusable	do, and how they are reusable,	what they do, and how they are	
	functions		but explanation lacks clarity or	reusable	
			detail		
Articulation of	Submission is free of errors	Submission has no major errors	Submission has major errors	Submission has critical errors	4.96
Response	related to citations, grammar,	related to citations, grammar,	related to citations, grammar,	related to citations, grammar,	
	spelling, syntax, and	spelling, syntax, or organization	spelling, syntax, or organization	spelling, syntax, or organization	
	organization and is presented		that negatively impact	that prevent understanding of	
	in a professional and easy-to-		readability and articulation of	ideas	
	read format		main ideas		
Tota					100%