Ryerson University
Department of Electrical and Computer Engineering
COE 608-Computer Organization and Architecture

March 8, 2016

Midterm Test

Name: Student Number:

Examiners: N. Mekhiel

Time limit: 1 hour 40 min

Notens

a) Closed book.

b) No calculators.
 c) Answer all questions in the space provided.

Total Marks=30

Q1- Assume the following C code :-

667 = \$51 167 = \$50

Assume that \$50 has the address of A[0] and \$51 has the address of B[0] and i is in \$53.

1.1-(5 Marks) Write the above code using MIPS instructions.

Clack cycle time - $\frac{1}{\text{clockrate}}$ = $\frac{1 \times 7 + 6 \times 3 + 2 \times 1 + 12 \times 1}{1 \times 10^{4}}$ Performance = $\frac{1}{26 \cdot 2 \times 10^{4}}$ = $\frac{7 + 18 + 2 \times 12}{1 \times 10^{4}}$ = $\frac{28 \cdot 2}{10^{4}}$ = $\frac{28 \cdot 2$

1.3 (3 Marks) Find the speed up if system uses a cache to speed the data transfer by 2 times.

Now = 1x7+ 3x3+2x1+12x1. 19:2 - 19:2x10°s for the new 1x10°s the speed of = 29:2x10°3 = 1.41

1x10°s the speed of = 29:2x10°3

Q2.1 (5 Marks) Draw a block diagram for a Multiplication Algorithm

Q2.2 (5 Marks) Apply the above algorithm for the following:

Operation CLIFET	Product 0 0 0 0 0 0 0	Multiplicand 0 1 0 0	Multiplier 0 0 1 L
ADD OR SHIFT	0100	0100	10011
Add SER Mulliplen	01000000	0100	10001
SER BANK	01100000	0100	0001
Add SER MURPHEN	00110000	0100	0000
see Product	00110000	0100	0000
ee Product	00011000	0100	0000
see multiplier	00011000	010 0	0000
FINAL	0000 1100	10100	10000

-12= ax3

3-4-6-

Q2.3- (5 Marks) Determine IEEE754 Floating point representation for -7.875

(-) => sign bit is 1 1 3 1 0 0	$ \begin{vmatrix} 0.875 \times 2 &= 1.750 \\ 0.750 \times 2 &= 1.500 \\ 0.500 \times 2 &= 1.000 \\ 0 \times 2 &= 0.00 $
0111	111000

-4-

=
$$1.1111000$$

= 1.1111000 × 2^{2} - Exp
= 1.11111000 × 2^{2} - Exp
= $2+127=129$
Mandissa = 11111000

(5)