3-6 Decompositions of Graphs

(DFS, DAG, Toposort, Cycle, SCC)

Hengfeng Wei

hfwei@nju.edu.cn

October 29, 2018

Robert Tarjan

John Hopcroft

"For fundamental achievements in the design and analysis of algorithms and data structures."

— Turing Award, 1986

SIAM J. COMPUT. Vol. 1, No. 2, June 1972

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJAN†

Abstract. The value of depth-first search or "backtracking" as a technique for solving problems is illustrated by two examples. An improved version of an algorithm for finding the strongly connected components of a directed graph and an algorithm for finding the biconnected components of an undirect graph are presented. The space and time requirements of both algorithms are bounded by $k_1V + k_2E + k_3$ for some constants k_1, k_2 , and k_3 , where V is the number of vertices and E is the number of edges of the graph being examined.

Key words. Algorithm, backtracking, biconnectivity, connectivity, depth-first, graph, search, spanning tree, strong-connectivity.

"Depth-First Search And Linear Graph Algorithms", Robert Tarjan

SIAM J. COMPUT. Vol. 1, No. 2, June 1972

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJAN†

Abstract. The value of depth-first search or "backtracking" as a technique for solving problems is illustrated by two examples. An improved version of an algorithm for finding the strongly connected components of a directed graph and an algorithm for finding the biconnected components of an undirect graph are presented. The space and time requirements of both algorithms are bounded by $k_1V + k_2E + k_3$ for some constants k_1, k_2 , and k_3 , where V is the number of vertices and E is the number of edges of the graph being examined.

Key words. Algorithm, backtracking, biconnectivity, connectivity, depth-first, graph, search, spanning tree, strong-connectivity.

"Depth-First Search And Linear Graph Algorithms", Robert Tarjan

"DFS is a powerful technique with many applications."

The Hammer of DFS

Power of DFS:

Graph Traversal \implies Graph Decomposition

Power of DFS:

Graph Traversal \implies Graph Decomposition

Structure! Structure! Structure!

Graph *structure* induced by DFS:

states of \underbrace{v} es of \underbrace{v}

Graph *structure* induced by DFS:

states of v

types of \underbrace{u} \underbrace{v}

 $\begin{array}{c} \text{lifetime of} & v \end{array}$

v : d[v], f[v]

f[v]: Toposort, SCC

d[v]: BICOMP (Problem 22-2)

Definition (Classification of Edges)

We can define four edge edges in terms of the depth-first forest G_{π} produced by a DFS on G:

Tree edge: edge in G_{π}

Back edge: \rightarrow ancestor

Forward edge: \rightarrow descendant (nontree edge)

Cross edge: \rightarrow (\neg ancestor) \land (\neg descendant)

Classifying an edge (u, v) as a tree edge or a back edge according to whether (u, v) or (v, u) is encountered first during the depth-first search

is equivalent to

Classifying an edge (u, v) as a tree edge or a back edge according to whether (u, v) or (v, u) is encountered first during the depth-first search

is equivalent to

Classifying an edge (u, v) as a tree edge or a back edge according to whether (u, v) or (v, u) is encountered first during the depth-first search

is equivalent to

share cite edit flag

Thanks. However, I am still confused. I have added an example to explain my confusion. Could you please have a look at it? – hengxin 3 hours ago

- I am checking ... It looks like the answer is clear to me. Apass.Jack 3 hours ago 🎤
- I will let you try following the procedure in the book step by step for the next few minutes. Or tell me if you have already tried. (Hopefully, I will visit your university...) (this comment will be removed later.)
 - Apass.lack 3 hours ago
- A lam going to update my answer now. It may take 5 minutes to half an hour. Apass. Jack 2 hours ago
 - :) I am waiting (both on the Internet and in my university). hengxin 2 hours ago 💉

add a comment

Theorem (Theorem 22.10)

In a depth-first search of an undirected graph G, every edge of G is either a tree edge or a back edge.

Proof.

Let (u, v) be an arbitrary edge of G, and suppose without loss of generality that u.d < v.d. Then the search must discover and finish v before it finishes u (while u is gray), since v is on u's adjacency list.

If the first time that the search explores edge (u, v), it is in the direction from u to v, then v is undiscovered (white) until that time, for otherwise the search would have explored this edge already in the direction from v to u. Thus, (u, v) becomes a tree edge.

If the search explores (u, v) first in the direction from v to u, then (u, v) is a back edge, since u is still gray at the time the edge is first explored.

Theorem (Theorem 22.10)

In a depth-first search of an undirected graph G, every edge of G is either a tree edge or a back edge.

Proof.

Let (u, v) be an arbitrary edge of G, and suppose without loss of generality that u.d < v.d. Then the search must discover and finish v before it finishes u (while u is gray), since v is on u's adjacency list.

If the first time that the search explores edge (u, v), it is in the direction from u to v, then v is undiscovered (white) until that time, for otherwise the search would have explored this edge already in the direction from v to u. Thus, (u, v) becomes a tree edge.

If the search explores (u, v) first in the direction from v to u, then (u, v) is a back edge, since u is still gray at the time the edge is first explored.

Classifying an edge (u, v) as a tree edge or a back edge according to whether (u, v) or (v, u) is encountered first during the depth-first search

is equivalent to

```
"First Type" vs. "First Time" tree edge \iff back edge \iff back edge
```

"First Type" \iff "First Time"

 $tree edge \leftarrow tree edge$

 $back\ edge \qquad \longleftarrow \quad back\ edge$

"First Type" \Leftarrow "First Time" tree edge \Leftarrow tree edge back edge \Leftarrow back edge

"First Type" \Leftarrow "First Time" tree edge \Leftarrow tree edge back edge \Leftarrow back edge

"First Type" \implies "First Time"

 ${\rm tree\ edge} \qquad \Longrightarrow \qquad {\rm tree\ edge}$

 $\text{back edge} \quad \implies \quad \text{back edge}$

"First Type" \implies "First Time"

 ${\rm tree\ edge}\qquad \Longrightarrow \qquad {\rm tree\ edge}$

 $back\ edge \qquad \Longrightarrow \qquad back\ edge$

"First Type" \Longrightarrow "First Time" tree edge \Longrightarrow tree edge back edge \Longrightarrow back edge

$$\forall u \to v$$
:

- ▶ tree/forward edge: $[u \ [v \]v \]u$
- ▶ back edge: $\begin{bmatrix} v & u \end{bmatrix}_u \end{bmatrix}_v$
- ightharpoonup cross edge: $\begin{bmatrix} v \end{bmatrix}_v \begin{bmatrix} u \end{bmatrix}_u$

$$\forall u \to v$$
:

- ▶ tree/forward edge: $[u \ [v \]v \]u$
- ▶ back edge: $[v \ [u \]u \]v$
- ightharpoonup cross edge: $\begin{bmatrix} v \end{bmatrix}_v \begin{bmatrix} u \end{bmatrix}_u$

$$f[v] < d[u] \iff cross edge$$

$$\forall u \to v:$$

- tree/forward edge: $\begin{bmatrix} u & v \end{bmatrix}_u$
- ▶ back edge: $[v \ [u \]u \]v$
- ightharpoonup cross edge: $\begin{bmatrix} v \end{bmatrix}_v \begin{bmatrix} u \end{bmatrix}_u$

$$f[v] < d[u] \iff cross edge$$

$$\mathbf{f}[u] < \mathbf{f}[v] \iff \text{back edge}$$

$$\forall u \to v$$
:

- tree/forward edge: $[u \ [v \]v \]u$
- ▶ back edge: $\begin{bmatrix} v & u \end{bmatrix}_u \end{bmatrix}_v$
- ightharpoonup cross edge: $\begin{bmatrix} v \end{bmatrix}_v \begin{bmatrix} u \end{bmatrix}_u$

$$f[v] < d[u] \iff cross edge$$

$$f[u] < f[v] \iff back edge$$

On digraphs:

 $\nexists \text{ back edge} \iff \text{DAG} \iff \exists \text{ topo. ordering}$

On digraphs:

Toposort by Tarjan (probably), 1976

$$\sharp \text{ cycle } \Longrightarrow \boxed{u \to v \iff \text{f}[v] < \text{f}[u]}$$

On digraphs:

Toposort by Tarjan (probably), 1976

$$\nexists \text{ cycle } \Longrightarrow \boxed{u \to v \iff f[v] < f[u]}$$

Sort vertices in *decreasing* order of their *finish* times.

Cycle Detection (Problem 22.4-3)

Whether an undirected graph G contains a cycle?

O(|V|)

Cycle Detection (Problem 22.4-3)

Whether an undirected graph G contains a cycle?

tree:
$$|E| = |V| - 1 \implies \text{check } |E| \ge |V|$$

	Digraph	Undirected graph
DFS		
BFS		

	Digraph	Undirected graph
DFS	$back edge \iff cycle$	
BFS		

	Digraph	Undirected graph
DFS	$back edge \iff cycle$	$back edge \iff cycle$
BFS		

	Digraph	Undirected graph
DFS	$\text{back edge} \iff \text{cycle}$	$back edge \iff cycle$
BFS		$\operatorname{cross\ edge} \iff \operatorname{cycle}$

	Digraph	Undirected graph
DFS	back edge \iff cycle	$back edge \iff cycle$
BFS	$\begin{array}{c} \text{back edge} \implies \text{cycle} \\ \text{cycle} \not \implies \text{back edge} \end{array}$	$cross edge \iff cycle$
DLO	$ $ cycle \implies back edge	cross eage \top cycle

	Digraph	Undirected graph
DFS	$\text{back edge} \iff \text{cycle}$	$back edge \iff cycle$
BFS	$\text{back edge} \implies \text{cycle}$	$cross edge \iff cycle$
DIB	$\begin{array}{c} \text{back edge} \implies \text{cycle} \\ \text{cycle} \implies \text{back edge} \end{array}$	cross edge \top cycle

Theorem (Digraph as DAG)

Every digraph is a dag of its SCCs.

Theorem (Digraph as DAG)

Every digraph is a dag of its SCCs.

Two tiered structure of digraphs:

 $digraph \equiv a dag of SCCs$

SCC: equivalence class over reachability

Kosaraju's SCC algorithm, 1978

"SCCs can be topo-sorted in decreasing order of their highest finish time."

Kosaraju's SCC algorithm, 1978

"SCCs can be topo-sorted in decreasing order of their highest finish time."

The vertice with the highest finish time is in a source SCC.

Kosaraju's SCC algorithm, 1978

"SCCs can be topo-sorted in decreasing order of their highest finish time."

The vertice with the highest finish time is in a source SCC.

(I) DFS on G; DFS on G^T

Kosaraju's SCC algorithm, 1978

"SCCs can be topo-sorted in decreasing order of their highest finish time."

The vertice with the highest finish time is in a source SCC.

- (I) DFS on G; DFS on G^T
- (II) DFS on G^T ; DFS on G

Kosaraju's SCC algorithm, 1978

"SCCs can be topo-sorted in decreasing order of their highest finish time."

The vertice with the highest finish time is in a source SCC.

- (I) DFS on G; DFS/BFS on G^T
- (II) DFS on G^T ; DFS/BFS on G

 $\forall u,v \in V: u \leadsto v \lor v \leadsto u$

$$\forall u, v \in V : u \leadsto v \lor v \leadsto u$$

 $digraph \equiv a dag of SCCs$

$$\forall u, v \in V : u \leadsto v \lor v \leadsto u$$

 $digraph \equiv a dag of SCCs$

$$\forall u, v \in V : u \leadsto v \lor v \leadsto u$$

 $digraph \equiv a dag of SCCs$

DAG: Semiconnected $\iff \exists!$ topo. ordering

DAG: Semiconnected $\iff \exists!$ topo. ordering

DAG: Semiconnected $\iff \exists ! \text{ topo. ordering}$

Tarjan's Toposort + Check edges (v_i, v_{i+1})

DAG: Semiconnected $\iff \exists ! \text{ topo. ordering}$

Tarjan's Toposort + Check edges (v_i, v_{i+1})

Office 302

Mailbox: H016

hfwei@nju.edu.cn