Lista de Exercícios 10

Aluno: Jonathan Douglas Diego Tavares

Matrícula: 201622040228

Disciplina: Laboratório de Algoritmos e Estrutura de Dados II (LAEDS II)

Será enviado junto a este arquivo o projeto criado no NetBeans contendo o código fonte escrito para a realização dos testes e outro arquivo contendo os dados reais obtidos. As tabelas e os grafos seguem nas páginas seguintes bem como a respostas para as questões propostas.

1. Experimento 1 e Experimento 2

Os dados obtidos para o Experimento 1 e Experimento 2 encontram-se no arquivo "Testes.txt".

2. Tabela Experimento 1 - Grafo 1

Caminho de Aumento	Capacidade Residual
0135	12
0 2 4 5	4
0 2 3 4 5	7

3. Tabela Experimento 2 - Grafo 2

Caminho de Aumento	Capacidade Residual
0 1 4 7	9
0 1 5 7	1
0 2 5 7	5
0 3 6 7	10

4. Grafos

• Questão a - Experimento 1

• Questão a - Experimento 2

• Questão b - Experimento 1

• Questão b - Experimento 2

Questões

- a) Nem todos os vértices e arestas dos grafos originais aparecem nos grafos criados porque ao se determinar o fluxo máximo é escolhido um conjunto de vértices e arestas que representarão o caminho cujo fluxo pode ser percorrido. Portanto, nem sempre todas as arestas serão escolhidas, pois podem não comportar o fluxo calculado.
- b) Os grafos desenhados podem ser vistos como árvores pois representam um ou mais caminhos existentes entre um determinado nó raiz até um nó folha (terminal), representados pelos caminhos de aumento.
- C) Não necessariamente, pois o fluxo máximo determinado no Experimento 1 assumiu que o vértice inicial era 0 e o vértice final V-1, ao passo que no Experimento 2 foram tomados outros pares de vértices para se realizar os testes, resultando em um fluxo máximo distinto, mas que também poderia ser o mesmo do obtido no Experimento 1.
- d) Um caminho de aumento entre dois vértices não pode ser considerado um caminho mínimo pois para o problema do fluxo máximo o que importa não é existência de uma aresta cujo valor é o menor possível e sim a existência de um caminho capaz de comportar uma determinada vazão de forma maximizada.
- **e**) A complexidade do algoritmo Ford-Fulkerson é compreendida em O(M*F), em que M representa o número de arestas no grafo G e F o fluxo máximo encontrado. Logo é possível estabelecer que quão maior é o fluxo e quão maior é o grafo em quantidade de arestas, maior será a quantidade de caminhos residuais existentes no grafo G.