

CUSTOMER APPROVAL SHEET

MODEL	A015AN05 V1
CUSTOMER	Title:
APPROVED	Name :
APPROVAL FOR SPEC	CIFICATIONS ONLY (Spec. Ver) CIFICATIONS AND ES SAMPLE (Spec. Ve
APPROVAL FOR SPEC	CIFICATIONS ONLY (Spec. Ver) CIFICATIONS AND ES SAMPLE (Spec. Ver CIFICATIONS AND CS SAMPLE (Spec. Ver
APPROVAL FOR SPEC	CIFICATIONS ONLY (Spec. Ver) CIFICATIONS AND ES SAMPLE (Spec. Vec) CIFICATIONS AND CS SAMPLE (Spec. Vec)

Doc. Version:	0.1
Total Pages:	31
Date :	2009.03.16

Product Specifications 1.5" COLOR TFT-LCD MODULE

- < □ > Preliminary Specification
- < > Final Specification

Note: The content of this specification is subject to change without notice.

© 2009 AU Optronics All Rights Reserved

A015AN05 V1 Product Spec	Version	0.1
	Page	0 / 31

Record of Revision

Version	Revise Date	Page	Content
0.0	2009/03/02		First draft
0.1	2009/03/16	30	Add [LED life time data]

A015AN05 V1 Product Spec	Version	0.1
	Page	1 / 31

Table of contents

A. Physical Specifications	2
B. Electrical Specifications	3
C. Optical Specifications	15
E. Packing Form	19
F. Outline drawing	20
G. Appendix	24
J. Appendix	∠ I
H. Suggested Application Note	23
. Appendix – LED life time data	30

A015AN05 V1 Product Spec	Version	0.1
	Page	2 / 31

A. Physical Specifications

No.	Item	Specification	Remark
1	Display resolution (dot)	280 (W) ×220 (H)	
2	Active area (mm)	29.96 (W) ×22.66 (H)	
3	Screen size (inch)	1.48 (Diagonal)	
4	Dot pitch (mm)	0.107 (W) ×0.103 (H)	
5 Color configuration		R. G. B. delta	
6	Overall dimension (mm)	37.06 (W) ×34 (H) ×3.04 (D)	Note 1
7	Weight (g)	6 (Typical)	
8	Panel surface treatment	Hard coating (3H)	

Note 1: Refer to Fig. 5

A015AN05 V1 Product Spec	Version	0.1
	Page	3 / 31

B. Electrical Specifications

1. Pin assignment (Note1)

Pin no.	Symbol	I/O	Description	Remark
1	VCOM	I	Common electrode driving signal	
2	VGH	С	Positive power for scan driver	
3	V1	С	Power setting capacitor connect pin	
4	V2	С	Power setting capacitor connect pin	
5	Vgoff_H	С	Negative power supply (High) for G1~G240 outputs	
6	Vgoff_L	С	Negative power supply (Low) for G1~G240 outputs	
7	V3	С	Power setting capacitor connect pin	
8	V4	С	Power setting capacitor connect pin	
9	AVDD1	С	FRP level supply	
10	FRP	0	Frame polarity output for panel Vcom	
11	GND	Р	Ground pin for digital circuits	
12	DRV	0	Power transistor gate signal for the boost converter	
13	LED Anode	Р	LED Anode and power supply for charge pump	
14	FB	I/P	LED cathode and main boost regulator feedback input	
15	VCC	Р	Power supply for digital circuits	
16	AGND	Р	Ground pin for analog circuits	
17	AVDD	Р	Power supply for analog circuits	
18	HSYNC	I	Horizontal sync input. Negative polarity	
19	VSYNC	I	Vertical sync input. Negative polarity	
20	DCLK	I	Clock signal; latch data onto line latches at the rising edge	
21	DD5	I	Data input: MSB	
22	DD4	I	Data input	
23	DD3	I	Data input	
24	DD2	I	Data input	
25	DD1	I	Data input	
26	DD0	ı	Data input: LSB	
27	V5	С	Power setting capacitor connect pin	Note2
28	GRB	ı	Global reset pin	
29	CSB	I	Serial communication chip select	Note3
30	SDA	I	Serial communication data input	Note3
31	SCL	I	Serial communication clock input	Note3
32	VCC	Р	Power supply for digital circuits	
33	GND	Р	Ground pin for digital circuits	

I: input; O: output, P: power

Note 1: For definition of scanning direction, please refer to figure as follows:

Note 2:The capacitor of V5(pin27) is needed.

Note 3: Please refer to application note for 3-wire serial communication setting.

	2. Ed	uiva	lent	circuit	of I/O
--	-------	------	------	---------	--------

2. Equivalent circuit of I/O Pin no. & Pin name	Schematics
12.DRV	D8 Out
14.FB	VCC
18.HSYNC 19.VSYNC 20.DCLK 21.DD5 22.DD4 23.DD3 24.DD2 25.DD1 26.DD0 29.CSB	In 250 GND
30.SDA 31.SCL 28.GRB	In 250 VCC VCC VCC VCC VCC VCC VCC VCC VCC VC

A015AN05 V1 Product Spec	Version	0.1
	Page	5 / 31

3. Absolute maximum ratings

Item	Symbol	Condition	Min.	Max.	Unit	Remark
Commbo Valtaria	VCC	GND=0V	-0.5	5	V	
Supply Voltage	AVDD	AGND=0V	-0.5	5.5	V	
	VGH	AGND=GND=0V	0	16	V	
TFT-LCD Power Voltage	Vgoff_H	AGND=GND=0V	-10	0	V	
vollago	Vgoff_L	AGND=GND=0V	-16	0	V	
Input Signal Voltage	CS,SDA,SCL,Vsync, Hsync,DCLK,D0~D7	AGND=GND=0V	-0.5	5	V	
VCOM AC Output Voltage	FRP	AGND=GND=0V	0	8	V	
VCOM AC Power Voltage	VCAC	AGND=GND=0V	0	8	V	
VCOM DC Output Voltage	COMDC	AGND=GND=0V	0	5	V	
COM Input Voltage	VCOM	AGND=GND=0V	-2.9	5.6	V	
	V1	AGND=GND=0V	0	16	V	
	V2	AGND=GND=0V	0	8	V	
	V3	AGND=GND=0V	0	16	V	
	V4	AGND=GND=0V	-16	0	V	
Storage Temperature	Tstg	-	-25	80	$^{\circ}\!\mathbb{C}$	Ambient temperature
Operating Temperature	Тора	-	0	60	$^{\circ}\!\mathbb{C}$	Ambient temperature

A015AN05 V1 Product Spec	Version	0.1
	Page	6 / 31

4. Electrical characteristics

a. Typical operating conditions (GND = AGND = 0V)

Item		Symbol	Min.	Тур.	Max.	Unit	Remark
Б		V _{CC}	3.0	3.3	3.6	V	
Powers	supply	AV_DD	3.0	3.3	3.6	V	
Output	H Level	V _{OH}	Vcc-0.4				
Signal voltage	L Level	V _{OL}	GND		GND+0.4		
Input	H Level	V_{IH}	0.7V _{CC}	-	V _{CC}	V	
Signal voltage	L Level	V_{IL}	GND	-	0.3V _{CC}	>	
Output	H Level	IOH		10		uA	
current	L Level	IOL		-10		uA	
Analog s	-	lst			200	uA	DCLK is stopped
\/OON4\/		V_{CAC}	4.4	5.6	5.8	V	
VCOM V	oitage	$V_{ exttt{CDC}}$	0.30	0.45	0.60	V	
Positive Sup		VGH	12	13	14	V	
Negative Power supply (Low)		VGoff_L	-14	-13	-12	V	
Negative Power supply (High)		VGoff_H	-8.4	-7.4	-6.4	V	

b. Recommended Capacitance Values of External Capacitor

The recommended capacitance values of the external capacitor are shown below. These values should be finally determined only after performing sufficient evaluation on the module.

Pin name	Operating value of capacitors (μF)	Withstanding voltage (V)
V5	4.7 to 10	6.3(Note)
VCC	1 to 10	6.3
AVDD	1 to 10	6.3
AVDD1	1 to 10	10
VGH	1 to 10	16
Vgoff_H, Vgoff_L	1 to 10	16
V1, V2	1 to 10	16
V3, V4	1 to 10	16
FRP	10	16
LED_Anode	10	16

Note1: The capacitors of V5 (27pin) is needed.

Note2: Typical operating capacitors reference suggested reference application circuit

A015AN05 V1 Product Spec	Version	0.1
	Page	7 / 31

c. Current consumption (GND = AGND = 0V)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
Icc	I _{CC}	V _{CC} = 3.3V	-	2	2.5	mA	Note1
Current	I _{DD}	AV _{DD} = 3.3V	-	1.5	2.0	mA	Note2

Note1:This power consumption doesn't include LED power consumption.

Note2:Test condition: 8colorbar+Grayscale pattern, UPS051 mode, DCLK=5.67MHz, frame rate:60Hz.

d. LED driving conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
LED current	I _{LED}	20	25	25.5	mA	Note1
	I _{LED-anode}	22	25	25.5	mA	Note2
LED voltage	V _L	6.8	7.8	9	V	Note3

Note1: Internal LED booster circuit. FB=0.6V

Note2: External LED circuit. FB=0.2V

Note3: V_L = LED Anode (PIN 13), LED Max. Voltage: 1pcs/3.6V, LED Min. Voltage: 1pcs/3.0V.

 $@I_{LED}$ =25mA.

5. Input timing AC characteristic

(VCC=3.3V, AVDD=3.3V, AGND=GND=0V, TA=-25°C~85°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
DCLK period time	t _{DCLK}	37	-	ı	ns	
HSYNC period time	Th	60	63.56	67	us	
VSYNC setup time	Tvst	12	-	-	ns	
VSYNC hold time	Tvhd	12	-	-	ns	
HSYNC setup time	Thst	12	-	-	ns	
HSYNC hold time	Thhd	12	-	-	ns	
Data setup time	Thst	12	-	-	ns	
Data hold time	Thhd	12	-	-	ns	
HSYNC width	Thsw	1	1	96	t _{DCLK}	
VSYNC width	Tvsw	1 t _{DCLK}	1 t _{DCLK}	6Th		
DCLK duty cycle	Tcwh/Tcwl	40	50	60	%	

6. AC Timing

a. UPS051 Timing conditions

Note1: Horizontal display position:

Parameter		Symbol	Min.	Тур.	Max.	Unit.	Remark	
DCLK Fre	quency		1/t _{DCLK}	5.62	5.67	12	MHz	
	Period		t _H		360		t _{DCLK}	
	Display period		t _{hd}		280		t _{DCLK}	
HSYNC	Back porch		t _{hbp}	61	62	64	t _{DCLK}	Note1
	Front porch		t _{hfp}	19	18	16	t _{DCLK}	
Pulse	Pulse width	Pulse width		1	25	56	t _{DCLK}	
	Period	Odd	t _V	256	262.5	264	t _⊢	
		Even				204	Ч	
	Display period	Odd	+	220			4	
	Display period	Even	t_{vd}		220	t _H		
VSYNC	Back porch	Odd	t _{vb}		23		4	
VSTINC	Back poicii	Even	ι _{∨b}		23.5		t _H	
	Front norsh	Odd	4	13	19.5	21	4	
	Front porch	Even	t √f	12.5	19	20.5	t _H	
	Pulse width	Odd	+	1 +	2.4	6 t	6.4	
	F uise wiulii	Even	t _{vsw} 1 t _{DCL}	I IDCLK	3 t _H	6 t _H	-	

Available display starts from the data of 63 t_{DCLK} when back porch value (t_{hbp}) set 62.

Note2: UPS051 support interlacing input format

Note3: UPS051 support non-interlacing input format. Odd field only or even field only

UPS051 Input Horizontal Timing Chart

 A015AN05 V1 Product Spec
 Version
 0.1

 Page
 9 / 31

A015AN05 V1 Product Spec	Version	0.1
	Page	10 / 31

b. UPS052 Timing conditions

	Parameter		Symbol	Min.	Тур.	Max.	Unit.	Remark
DCLK Fre	quency		1/t _{DCLK}	23.3	24.54	25.7	MHz	
	Period		t _H		1560		t _{DCLK}	
	Display period		t _{hdisp}		1280		t _{DCLK}	
HSYNC	Back porch		t _{hbp}	248	249	251	t _{DCLK}	Note1
	Front porch		t _{hfp}	32	31	29	t _{DCLK}	
	Pulse width		t _{hsw}	1	25	56	t _{DCLK}	
	Period	Odd	+	256	262.5	264	4	
		Even	t _V	256	202.3	204	t _H	
	Display period	Odd	+	220			f	
	Display period	Even	\mathbf{t}_{vdisp}		220	t _H		
VSYNC	Back porch	Odd	$t_{\sf vb}$		23		- t _H	Note2
VSTNC	Back policii	Even	Vb	23.5			Ч	Notez
	Front porch	Odd	+ .	13	19.5	21	- t _H	
	Tront porch	Even	t _{vf}	12.5	19	20.5] Ч	
	Pulse width	Odd	+	1 t _{DCLK}	3 t _H	6 t _H	_	
	l dise widii	Even	^L VSW	t _{vsw} 1 t _{DCLK}		J 5 tH	-	

Note1: Horizontal display position:

Available display starts from the data of 266 t_{DCLK} when back porch value (t_{hbp}) set 249.

Note2: UPS052 support interlacing input format

Note3: UPS052 support non-interlacing input format. Odd field only or even field only.

AIM	A015AN05 V1 Product Spec	Version	0.1
		Page	11 / 31

Invalid data $t_H = t_{bp} + t_{hdisp} + t_{hfp}$ **t**hbp Invalid data **t**hsw HSYNC DCLK Data

UPS052 Input Horizontal Timing Chart

7. 3-wire serial communications

A015AN05 V1 Product Spec	Version	0.1
	Page	13 / 31

For 3-wire serial communication timing, it is shown in Fig.6. For register setting, please refer to application note.

8. DC-DC Converter Circuit

A015AN05 contains one high-power step-up DC-DC converter, and a backplane drive circuitry for active matrix TFT LCDs. The output voltage of the main boost converter can be set from VCC to 13.5V with external resistors. Also, there are a precision 0.6V reference voltage, a fault detection and a logic shutdown included in A015AN05.

a .Boost Converter

A015AN05 main boost converter uses a boost PWM architecture to produce a positive regulated voltage. Please refer to Fig. 1 for the DC-DC converter block diagram.

Fig. 1 Dc-Dc converter block diagram

In the internal architecture of DC-DC converter as shown in Fig. 2, the feedback voltage (VFB) will connect to the tri-angle waveform comparator, and generates the output signal (CP0) which determines the duty cycle for (Fdc).

Fig. 2 DC CK block diagram

To reduce the noise affect, CP0 will be processed by De-bounce circuit. State-machine will generate the duty cycle by CP0 signal. To make sure that VFB can reach default VREF quickly, so that State-machine is designed as a discrete step by step function, please refer to Fig. 3. If CP0 is low, the duty cycle will work from 0% to 75%, and the maximum f that is 75%.

Fig. 3 PWM Control state diagram

b. Charge Pump Block Diagram

The LED_Anode Voltage is used for internal pump circuit to generate VGH/Vgoff_H/ Vgoff_L/Vcac for gate and VCOM used.

Fig. 4 charge pump diagram

A015AN05 V1 Product Spec	Version	0.1
	Page	15 / 31

C. Optical Specifications

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
Response time							
Rise	Tr	θ=0°	-	25	50	ms	Note 4
Fall	Tf		-	30	60	ms	
Contrast ratio	CR	At optimized viewing angle	60	150	ı		Note 5, 6
Viewing angle							
Тор			10	-	-		
Bottom		CR□10	30	-	-	deg.	Note 7
Left			40	-	-		
Right			40	-	-		
Brightness (25mA)	Y_L	θ=0°	130	170	-	cd/m ²	Note 8
White chromaticity	Х	θ=0°	(0.26)	(0.31)	(0.36)		
vville ciliomaticity	у	θ=0°	(0.28)	(0.33)	(0.38)		

Note 1 Ambient temperature = 25□.

Note 2 Measured in the dark room

Note 3 Measured on the center area of panel with a field angle of 1° by Topcon luminance meter BM-7, after 10 minutes operation.

Note 4 Definition of response time:

Output signals of photo detector are measured when the input signals are changed from "black" to "white" (falling time) and from "white" to "black" (rising time), respectively.

Response time is defined as the time interval between the 10% and 90% of amplitudes. Refer to the figure as follows.

Note 5 Definition of contrast ratio:

Contrast ratio is calculated with the following formula.

Contrast ratio (CR) = Photo detector output when LCD is at "White" state

Photo detector output when LCD is at "Black" state

Note 6 White Vi = $V_{i50} \rightarrow 1.5V$

Black Vi = $V_{i50} \pm 2.0V$

"±" means that the analog input signal swings in phase with COM signal.

 $^{\text{"}+}$ " means that the analog input signal swings out of phase with COM signal.

V_{i50:} The analog input voltage when transmission is 50%

100% transmission is defined as the transmission of LCD panel when all the input terminals of module are electrically opened.

Note 7 Definition of viewing angle:

A015AN05 V1 Product Spec	Version	0.1
	Page	16 / 31

Refer to the figu

Note 8 Measured at the center area of the panel when all the input terminals of LCD panel are electrically opened.

Note 9 Gray level inversion direction: 6 o'clock

A015AN05 V1 Product Spec	Version	0.1
	Page	17 / 31

D. Reliability Test Items

No.	Test items	Conditi	ons	Remark
1	High temperature storage	Ta = 80 □	240Hrs	
2	Low temperature storage	Ta = -25 □	240Hrs	
3	High temperature operation	Ta = 60 □	240Hrs	
4	Low temperature operation	Ta = 0 □	240Hrs	
5	High temperature and high humidity	Ta = 60 □. 90% RH	240Hrs	Operation
6	Heat shock	-25□~80□, 50 cycles, 2h	drs/cycle	Non-operation
7	Electrostatic discharge	Air-mode : +/- 8kV		
-		Contact-mode : +/- 4kV	Note.2, 3	
		Random vibration:		
8	Vibration (with carton)	0.015G ² /Hz from 5~200H	IEC 68-34	
		-6dB/Octave from 200~5		
9	Drop (with carton)	Height: 60cm		
	Liop (with carton)	1 corner, 3 edges, 6 surf		

Note1 Ta: Ambient temperature.

Make sure protection film(s) on top of polarizer or back of LCD module is/are removed before RA test.

Note2: ESD Testing Flow as the below,

Note 3. ESD testing method.

Ambient: 24~26°C, 56~65%RH Instruments:NoisekenESS-2000,

Operation System: "CT30AA-A" and adapter "A015AN04 V5T0" Test Mode: Operating mode, test pattern: colorbar+8Gray scale

Test Method:

Contact Discharge: $150pF(330\Omega)$ 1sec, 5 points, 10 times/point Air Discharge: $150pF(330\Omega)$ 1sec, 5 points, 10 times/point

Test point:

The metal casing is connected to power supply ground (0V) at four corners.

All register commands are repeating transfer.

A015AN05 V1 Product Spec	Version	0.1
	Page	19 / 31

E. Packing Form

AIM	A015AN05 V1 Product Spec	Version	0.1
		Page	20 / 31

Palletizing sequence (if necessary)

- (1). Box placement on wooden pallet
 - a. Place max 30 of corrugated boxes on wooden pallet and should not be pushed out of the pallet. (as showed below)
 - b. (700 *6) *5 layers: Max 30 boxes / pallet. (21000 pcs modules)
- (2). Apply stretch film. Corner angle and PE band
 - a. Stretch film should cover around whole pallet.
 - b. Apply corner angle to 4 top edge and 4 side edge of the pallet.
 - c. Select corner angle length by height of palletizing.
 - d. PE band number is depended on customer requirement and height of palletizing.

(3). Labeling

- a. Apply shipping case label is depended on customer requirement.
- b. Apply care mark label at 4 side (Front / Back / Left / Right)on the pallet.
- c. Empty box label is applied if needed.
- d. Other package method or label are depended on customer requirement.

Note: Limit of box palletizing=Max 5 layers (ship and stock conditions) for air transport and marine transit.

AIM	A015AN05 V1 Product Spec	Version	0.1
		Page	21 / 31

F. Outline drawing

dden.

Fig. 6 3-wire programming function timing

G. Appendix

Fig. 7 Panel color Filter Alignment

H. Suggested Application Note

A015AN05 is designed with smart integration advance (SIA) concept for DSC application. This panel integrated not only source driver & gate driver, but also built in power generator and embedded serial communication interface for the function setting.

A015AN05 is supported by two kinds of input timing format: UPS051 and UPS052. Customers can use 3-wire serial port for setting register and select different timing for their own design feature.

In this document, we list essential parameters for configuration. Please follow our recommend setting to achieve the best performance. In the last page, we provide application circuit to drive A015AN05.

For A015AN05 driving circuit design, you just need input one set of power 3.3V, because the charge-pump circuit inside the driver IC produces Vgh & Vgl. The external peripheral is very simple and good for saving BOM cost for customers.

1. 3-wire serial communication AC timing

Parameter	Symbol	Min.	Тур.	Max.	Unit
Serial clock	Tsck	320	-		ns
SCL pulse duty	Tscw	40	50	60	%
Serial data setup time	Tist	120	_	_	ns
Serial data hold time	Tiht	120	_	_	ns
Serial clock high/low	Tssw	120	_	-	ns
Chip select distinguish	Tcd	1	_	_	us
Time that the CSB to Vsync	Tcv	1	_	_	us

2. The configuration of serial data at SDA terminal is at below

MSB LSB D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 В Register address DATA

3. Recommend register table for UPS051 timing

		Addr	ess														
No.	Description	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
R0	Scan direction	0	0	0	0	0	Х	Х	Х	Х	Х	Χ	Χ	Х	Х	0	1
R1	Data setting	0	0	1	0	0	Х	Х	Х	Х	Х	Х	Х	Х	Χ	0	0
R2	Source IC setting	0	1	0	0	0	Х	Х	Х	Х	Х	Х	Х	1	1	0	0
R3	Timing select	0	1	1	0	0	Х	Х	Х	Х	Х	Х	Х	Х	0	0	0
R4	VCAC level setting	1	0	0	0	0	Х	Х	Х	Х	Х	Х	Х	Х	1	1	0
R5	HBLK setting	1	0	1	0	0	Х	Х	Х	Х	Х	Х	Х	Х	Х	0	0
T0	DRV setting	0	0	0	1	0	Х	Х	Х	Х	0	1	1	0	0	0	0
No.	Description	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0

[&]quot;X" =>Don't care

4. Recommend register table for UPS052 timing

		Addr	ess														
No.	Description	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
R0	Scan direction	0	0	0	0	0	Х	Х	Х	Х	Х	Х	Х	Х	Х	0	1
R1	Data setting	0	0	1	0	0	Х	Х	Х	Χ	Х	Х	Х	Х	Х	0	1
R2	Source IC setting	0	1	0	0	0	Х	Х	Х	Х	Х	Х	Х	1	1	0	0
R3	Timing select	0	1	1	0	0	Х	Х	Х	Х	Х	Х	Х	Х	0	0	1
R4	VCAC level setting	1	0	0	0	0	Х	Х	Х	Х	Х	Х	Х	Х	1	1	0
R5	HBLK setting	1	0	1	0	0	Х	Х	Х	Х	Х	Х	Х	Х	Х	0	0
T0	DRV setting	0	0	0	1	0	Х	Х	Х	Χ	0	1	1	0	0	0	0

[&]quot;X"=>Don't care

5. Register detail description

a. Register R0

Bit	Function
D0	Up/down scan direction: "0" => Down to up
	"1" => Up to down
D1	Left/Right scan direction: "0" => Left to right
	"1" =>Right to left

b. Register R1

Bit	Function
D0	"0" =>When UPS051 mode selected
	"1" =>When UPS052 mode selected
D1	Always fixed at "0"

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PRPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

A015AN05 V1 Product Spec	Version	0.1
	Page	25 / 31

c. Register R2

Bit	Function
D0	Always fixed at "0"
D1	Always fixed at "0"
D2	Standby mode setting: "0" => Turn off driver & DCDC
	"1" => Normal operating
D3	Global reset setting:
	"0" =>Driver control register is in reset state, all setting to default value.
	"1" =>Normal operating;

d. Register R3

Bit	Function
D0	"0" => To select UPS051 timing
	"1" => To select UPS052 timing
D1	Always fixed at "0"
D2	Always fixed at "0"

e. Register R4 *

Bit	Function
D0	Always fixed at "0"
D1	Always fixed at "1"
D2	Always fixed at "1"

^{*} Set VCOM AC level = 5.6V (Amplitude)

f. Register R5

Bit	Funct	ion									
	Select the horizontal input delay timing										
	DL1	DL0	NO.	Level							
D1~D0	0	0	+0	Unit:							
	0	1	-1								
	1	0	+1	DCLK							
	1	1	+2								

g. Register T0

Bit	Function
	PWM shutdown control circuit setting
D4	"0" => PWM control circuit will be shut down.
	"1" => PWM control circuit normal operation. (Default)

Suggested reference application circuit

(1) Internal LED booster circuit

The integrated driver IC provides build-in LED booster controller, DC-DC charge pump, and VCOM driver. See Fig. 8 for the application circuit. The recommended capacitance values of the external capacitor please refer to page 5. The capacitors of 411 will be used shrinkage IC.

Fig. 8 Typical Application Circuit

Note:

C25 & R12 are new adding external components.

C25 => to stable the AVDD power

R12 => used for discharge AVDD power faster

Q2 > to control backlight on/off function

EXTERNAL-SWITCH1 "H" → backlight on

EXTERNAL-SWITCH1 "L" → backlight off

Please refer to suggestion power and standby on/off sequence.

External LED circuit

Fig. 9 External LED driver Circuit

Note:

Q1 > to control backlight on/off function

EXTERNAL-SWITCH2 "H" → backlight on

EXTERNAL-SWITCH2 "L" → backlight off

Please refer to suggestion power and standby on/off sequence.

Power supply VCC (typical 3.3V) and AVDD (typical 3.3V) are required to provide driver IC power and generate all necessary voltages for LCD related circuits.

We recommend the external LED driver circuit provide a constant 25mA for LED backlight unit. We suggest the R501 resister value is greater than 30 ohm to turn off DRV signal. The capacitors of C510 will be used shrinkage IC.

Suggestion power on/off sequence

(1) Internal LED booster circuit

(2) External LED circuit

We recommend power on/off sequence that base on differential application circuit to make sure power on/off function can work successfully in every time power on.

Note: In standby mode, VSYNC signal will don't care, but we suggestion VSYNC is disable.

A015AN05 V1 Product Spec	Version	0.1
	Page	29 / 31

Suggestion Standby on/off sequence

(1) Internal LED booster circuit

Note: xx means don't care this signal.

(2) External LED circuit

Note: xx means don't care this signal.

We recommend standby on/off sequence that base on differential application circuit to make sure function can work successfully.

I. Appendix - LED life time data

20644 Hrs@25mA

J. Mechanism Notice for EPSON

Fig.1

After conducting 30°, 180°, and 270° bending tests around the "non-bending area" of FPC, AUO believes that the panel arrangement in Fig.1 would not lead to FPC damage at the soldering points.

K. UPS051 input timing power on sequence for EPSON

Note, if remove application circuit fig8's L101 or fig9's L4, power on sequence will be become as below.

L. Green note

In accordance with SEIKOEPSON Group's requirements specified by "Green Purchasing Standard for Production Material," all production parts shall conform to SEIKO EPSON's Banned/Eliminated Chemical Substances policy and shall be controlled by "4M Variation Management."