Joint Covariance Estimation

Jiaxin Hu

February 16, 2023

1 Model

Model:

Consider n independent p-dimensional multivariate normal variables

$$Y_i \sim \mathcal{N}_p(\mathbf{0}, \Sigma_0 + \Sigma_k + \sigma^2 \mathbf{I}), \quad i \in V_k, k \in [K]$$
 (1)

where

- $V_k \subset [n]$ with size $|V_k| = n_k$ is the set of samples in the group k; $V_a \cap V_b = \emptyset$ for all $a \neq b$ and $\sum_k n_k = n$;
- $\Sigma_0 = U_0 \Lambda_0 U_0^T$ with $U_0 \in \mathbb{R}^{p \times r_0}$ and r_0 -dimensional diagonal matrix Λ_0 ; Σ_0 is the low-rank covariance matrix shared across all clusters.
- $\Sigma_k = U_k \Lambda_k U_k^T$ for all $k \in [K]$ with $U_k \in \mathbb{R}^{p \times r_k}$ and r_k -dimensional diagonal matrix Λ_k ; Σ_k is the low-rank covariance matrix specified for the k-th group.
- The low-rank singular spaces of shared and specified covariance matrices are orthogonal with each other; i.e., $U_0 \perp U_k$ or $U_0^T U_k$ for all $k \in [K]$.
- The intersection of all spaces $C(U_k)$ has dimension 0; i.e., $\dim(\bigcap_{k\in[K]}C(U_k))=0$.

Goals:

- 1. The primary goal is to estimate the shared low-dimensional space U_0 and group-specified spaces $U_k, k \in [K]$.
- 2. The secondary goal is to estimate the whole covariance matrices Σ_0 and Σ_k .

Motivating application:

1. (Gene covariance network) Suppose we have expression data of p genes for n samples. The n samples are separated into K groups based on individual features (e.g. sex, age, genotype). The low-rank matrix $\Sigma_0 + \Sigma_k$ is interpreted as the low-rank gene covariance network for the

k-th group, where Σ_0 is the shared low-rank structure across the groups and Σ_k 's are the group-specified structures.

In application, the dimension $p (\sim 10k+)$ is far larger than the sample size n (< 1000). Hence, we encourage the low-rankness, r < n, in the covariance matrix. Otherwise, it is impossible to estimate the covariance structure, since the number of parameters p^2 is far larger than the sample size np.

The estimation problem for U_0 and U_k can be considered as an extended version of PCA. Let k = 1. Then the model (1) reduces to the spike model for regular PCA. Further, with estimated U_0 and U_k , we can find the shared and group-specified community structures among p genes.

Introducing the common+specified structure in covariance will benefit the gene covariance estimation and different covariance comparison, compared with the separate estimation. The intuition is that we use more information to estimate the shared structure. Thus the estimation error from Σ_0 will decrease.

2 Preliminary algorithm and simulation

Algorithm:

We first consider the joint estimation of the shared space U_0 . To illustrate the underlying rationale, we explain the algorithm procedures with oracle true matrices $M_k = \Sigma_0 + \Sigma_k, k \in [K]$. The matrices M_k can be re-written in a low-rank form

$$oldsymbol{M}_k = [oldsymbol{U}_0, oldsymbol{U}_k] egin{bmatrix} \Lambda_0 & oldsymbol{0} \ oldsymbol{0} & \Lambda_k \end{bmatrix} egin{bmatrix} oldsymbol{U}_0^T \ oldsymbol{U}_k^T \end{bmatrix} = oldsymbol{V}_k oldsymbol{D}_k oldsymbol{V}_k^T.$$

Here $V_k \in \mathbb{R}^{p \times (r_0 + r_k)}$ still has orthogonal columns due to the orthogonality between U_0 and U_k . The task is to identify the common space U_0 from given spaces $\{V_k\}$.

Since the common eigenvector may not correspond to the leading eigenvalues in a specific group, i.e., no assumption (except bounded away from 0) on the magnitudes of the diagonal elements of Λ_0, Λ_k , we can not use the gap in eigenvalues to distinguish U_0 from V_k .

Instead, notice that

$$m{V}_km{V}_k^T = \sum_{a=1}^{r_0}m{u}_a^{(0)}m{u}_a^{(0),T} + \sum_{b=1}^{r_k}m{u}_b^{(k)}m{u}_b^{(k),T},$$

where $u_a^{(0)}$'s are orthogonal basis of the space $C(U_0)$, $u_b^{(k)}$'s are orthogonal basis of the space $C(U_k)$. Let $R = \dim(\bigcup_{k \in [K]} C(U_k))$ denote the dimension all the union space of all U_k , and let $\{\tilde{u}_j\}_{j \in [R]} = \{u_b^{(k)}\}_{b \in [r_k], k \in [K]}$ denote the basis of the union $\bigcup_{k \in [K]} C(U_k)$. We have

$$m{W} = \sum_{k \in [K]} m{V}_k m{V}_k^T = K \sum_{a=1}^{r_0} m{u}_a^{(0)} m{u}_a^{(0),T} + \sum_{b=1}^{R} c_b ilde{m{u}}_b ilde{m{u}}_b^T.$$

The key observation is that the constants c_b 's are smaller than K, because $\tilde{\boldsymbol{u}}_b$ occurs at most in K-1 matrices $\boldsymbol{V}_k \boldsymbol{V}_k^T$'s under the constraint $\dim(\bigcap_{k \in [K]} C(\boldsymbol{U}_k)) = 0$. Hence, $C(\boldsymbol{U}_0) = \operatorname{span}\{\boldsymbol{u}_1^{(0)}, \dots, \boldsymbol{u}_{r_0}^{(0)}\}$ is identifiable by finding r_0 leading eigenvectors of \boldsymbol{W} .

In practice, we do not have M_k . Alternatively, we estimate the initial space V_k by decomposing the sample covariance matrix. Let $Y_{V_k} \in \mathbb{R}^{n_k \times p}$ denote the observation matrix of the k-th group. The sample covariance matrix is $\hat{M}_k = Y_{V_k}^T Y_{V_k} / (n_k - 1)$, where

$$\mathbb{E}[\hat{\boldsymbol{M}}_k] = \Sigma_0 + \Sigma_k + \sigma^2 \boldsymbol{I}, \quad \text{and} \quad \mathrm{SVD}_{r_0 + r_k}(\mathbb{E}[\hat{\boldsymbol{M}}_k]) = \mathrm{SVD}_{r_0 + r_k}(\boldsymbol{M}_k) = \boldsymbol{V}_k.$$

Hence, when the smallest eigenvalue in M_k is enough far away from 0, we can have a good estimation of V_k by decomposing \hat{M}_k . Full algorithm procedures are in Algorithm 1.

Algorithm 1 Joint estimation of U_0

Input: Observations Y_i , $i \in [n]$, ranks r_0 , r_k , group identifications V_k .

1: Let $Y_{V_k} \in \mathbb{R}^{n_k \times p}$ denote the observation matrix of the k-th group. For all $k \in [K]$, compute the initial singular spaces

$$\hat{\mathbf{V}}_k = \text{SVD}_{r_0 + r_k}(\mathbf{Y}_{V_k}^T \mathbf{Y}_{V_k} / (n_k - 1))$$

2: Find the estimate

$$\hat{\boldsymbol{U}}_0 = \mathrm{SVD}_{r_0}(\boldsymbol{W}), \quad \text{where} \quad \boldsymbol{W} = \sum_{k \in [K]} \hat{\boldsymbol{V}}_k \hat{\boldsymbol{V}}_k^T.$$

Output: Estimated shared space \hat{U}_0 .

Next, with jointly estimated U_0 , we find the estimate of U_k . The intuition is simple:

$$(\boldsymbol{I} - \boldsymbol{U}_0 \boldsymbol{U}_0^T) \boldsymbol{V}_k = [\boldsymbol{0}, \boldsymbol{U}_k].$$

The matrix $(I - U_0U_0^T)$ is the projection matrix onto the complement space $C^{\perp}(U_0)$, and thus only the matrix $U_k \in C^{\perp}(U_0)$ is remained after the projection of V_k .

In practice, we only have estimates \hat{U}_0 and \hat{V}_k , and thus we may not have pure 0 columns. Instead, we distinguish the columns corresponding to U_k by sorting the ℓ_2 norms of the columns in $(I - \hat{U}_0\hat{U}_0^T)\hat{V}_k$. Intuitively, with good estimated \hat{U}_0, \hat{V}_k , the columns corresponding to U_k have norms close to 1 while others are close to 0. Full algorithm procedures are in Algorithm 2.

Algorithm 2 Estimation of U_k

Input: Estimated $r_0 + r_k$ singular space \hat{V}_k , estimated shared space \hat{U}_0

1: Let $\mathbf{v}_a, a \in [r_0 + r_k]$ denote the columns of \mathbf{V}_k . Compute the norms

$$m_a = \|(\mathbf{I} - \hat{\mathbf{U}}_0 \hat{\mathbf{U}}_0^T) \mathbf{v}_a\|_2, \quad a \in [r_0 + r_k].$$

2: Find the estimate $\hat{U}_k = [v_{b_1}, \dots, v_{b_{r_0}}]$, where $\{b_1, \dots, b_{r_0}\}$ is the set of indices with r_0 largest m_a 's.

Output: Estimated shared space \hat{U}_k .

Simulation:

To evaluate the estimation, we consider the metric

$$\|\hat{\boldsymbol{U}}\hat{\boldsymbol{U}}^T - \boldsymbol{U}\boldsymbol{U}^T\|_F,$$

where $\hat{\boldsymbol{U}}, \boldsymbol{U}$ are estimated and true orthogonal matrices. This metric is invariant to the orthogonal transformations and the permutation of columns.

The first experiment aims to verify the efficiency of Algorithm 1. We consider the setup with number of groups K = 4, ranks $r_0 = r_k = 5$ for all $k \in [K]$, Λ_0 and Λ_k 's are identity matrix, and $\sigma^2 = 0.05$. We vary the sample size $n_1 = \cdots = n_4 \in [30, 500]$ and dimension $p \in \{50, 100, 200, 500\}$. Figure 1 indicates the estimation error decreases with larger sample size and increases with larger dimension, which agrees with our intuition on the hardness of the problem.

Figure 1: Estimation error $\|\hat{\boldsymbol{U}}_0\hat{\boldsymbol{U}}_0^T - \boldsymbol{U}_0\boldsymbol{U}_0^T\|_F$ versus sample size $n_1 = \cdots = n_4 \in [30, 500]$ under different dimension $p \in \{50, 100, 200, 500\}$. The average error and standard deviation over 20 replications are reported.

3 Preliminary theorems

References