# Основы теории информации и кодирования. Измерение информации. Кодирование. Форматы файлов

Александра Игоревна Кононова / illinc@mail.ru +7-985-148-32-64 (телефон), +7-977-977-97-29 (WhatsApp), gitlab.com/illinc/raspisanie

#### ТЄИМ

31 августа 2023 г. — актуальную версию можно найти на https://gitlab.com/illinc/otik



Cм. https://gitlab.com/illinc/otik/

Дополнительные баллы:

- бонусные задания л/р;
- **2** вычитка материала 1-4 балла за принятое замечание. 2 - 8 за принятое исправление.

Экзамен (оценка):

$$\frac{5}{4}$$
  $\frac{86-100}{50}$ 

$$4 \quad 70 - 85$$

$$\frac{3}{9}$$
  $\frac{50-69}{9}$ 

$$0 - 49$$

Консультации — см. gitlab.com/illinc/raspisanie Посещаемость лекций не учитывается. Никогда более. Баллы за посещаемость семинаров выставляются в ОРИОКС на 8 и 16 неделях, не чаще.



# Предмет теории информации. Источник информации

**Теория информации** — математическая теория, посвящённая измерению информации, её потока, «размеров» канала связи и т. п., особенно применительно к средствам связи:

$$x \leftarrow X \sim I(x)$$

x — сообщение,  $X = \{x, p(x)\}$  — источник (сл. процесс/сл. величина). Дискретное x может состоять из символов или быть отдельным символом.

Информация — нематериальная сущность, при помощи которой с любой точностью можно описывать реальные (материальные), виртуальные (возможные) и понятийные сущности.

- I(x): Новизна (неизмеряемость в быту).
  - **2** Объёмный (длина измерение в технике).
  - Вероятностный (снятая неопределённость измерение в ТИ).

данные ⊇ информация ⊃ знания, ОТИК: инф-я = данные + источник

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ 夕久で

По сообщениям:

- дискретные (цифровые)/непрерывные (аналоговые);
- дискретные: качественные/количественные.

Элемент качественной информации — символ  $a \in A$  (множество A — алфавит); конечная последовательность символов — слово  $x \in A^+$  (строка, фраза).

Источник символов алфавита A (можно прочитать строку):

Простые коды (2)

- 📵 стационарный (вероятность символа не зависит от времени/позиции: только от контекста) / нестационарный (при сдвиге вероятности меняются);
- марковский источник вероятность символа определяется состоянием; состояние изменяется после порождения символа (новое состояние однозначно определяется предыдущим и порождённым символом); марковский источник порядка m — вероятность символа на i-м шаге зависит от m предыдущих символов: i - 1, i - 2, ..., i - m;
- **3** стационарный источник без памяти вероятность символа  $a \in A$  постоянна (равна p(a));
- lacktriangle равновероятный источник вероятность символа  $a \in A$  постоянна и одинакова для всех символов (равна  $\frac{1}{|A|}$ );

равновероятный  $\subseteq$  стационарный без памяти  $\subseteq$  марковский  $\subseteq$  стационарный

1865 г. — Рудольф Клаузиус ввёл в статистическую физику понятие энтропии — меры уравновешенности [Дж/К].

1877 г. — Людвиг Больцман установил связь энтропии с вероятностью.

1901 г. — Макс Планк определил энтропию как  $H = k \cdot \ln(\Omega)$ . где k — коэффициент Больцмана [Дж/K].

1921 г. — Роналд Фишер ввёл термин «информация» (информация, которую можно извлечь из имеющихся данных, имеет предел).

1928 г. — Ральф Хартли — логарифмическая мера информации для равновероятных событий.

1948 г. — Клод Шеннон — вычисление количества информация и энтропии.

Основное соотношение между энтропией и информацией:

Простые коды (2)

$$I + \frac{\log_2 e}{k} H = const$$
 [бит]  $\left( \frac{dI}{dt} = -\frac{\log_2 e}{k} \frac{dH}{dt} \right]$  [бит/с].

Предмет теории информации. Источник информации Вероятностная мера информации Задачи: измерение информации Кодирование и структуры данных Простые коды (1)

Бит — количество информации в сообщении, уменьшающем неопределённость знания в два раза.

Источник с двумя равновероятными состояниями симметричная монета

- 2 возможных варианта
- Р Решка 1 вариант

Неопределённость уменьшилась в 2 раза: I(P) = 1 бит

- Две симметричные монеты
- 2 раза (+1 бит) 0. Первая — вверх орлом
- 2 раза (+1 бит) Вторая — вверх решкой
  - $I(OP) = 2 \overline{\mathsf{бита}}$ 4 возможных варианта



# **Т**ребования к мере информации I(x)

- $\bullet$   $I(x) \geqslant 0.$
- **2** Вероятностный подход:  $I(x) = f(p_x)$ .
- **6** Объёмный подход: I(x) монотонно связана с затратами на передачу
  - два равновероятных сообщения 0 и 1 (1 бит), четыре — 00, 01, 10, 11 (2 бита) и т. д.:  $f(\frac{1}{2}) = 1$ ,  $f(\frac{1}{4}) = 2$ ,  $f(\frac{1}{8}) = 3$ ,...
  - затраты на передачу независимых сообщений складываются:  $I(x_1, \ldots, x_n) = I(x_1) + \ldots + I(x_n)$

при этом вероятности независимых событий умножаются  $f(p_1 \times \ldots \times p_n) = f(p_1) + \ldots + f(p_n).$ 



Источник X порождает N равновероятных сообщений x $(\forall x \leftarrow X : p(x) = p = \frac{1}{N}).$ 

$$I(x) = I(X) = I = \log_2 N = -\log_2(p)$$
 или  $2^I = N$ 

где I(x) — количество информации в сообщении x; I(X) — среднее кол-во информации в одном сообщении источника X.

Если N = 2, то I = 1 бит.

Подбрасывание монеты

4 варианта 2 бита

Угадывание слов по словарю

..... 175 слов 7,5 бит

.а.и.а 122 слова 6,9 бит

р.б.т. 4 слова 2 бита

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ 夕久で

Количество информации I в сообщении с вероятностью p(x):

$$I(x) = -\log_2 p(x)$$

#### Свойства:

- **1** Неотрицательность:  $I(x) \ge 0, x \leftarrow X$ .
- $\bigcirc$  Монотонность:  $x_1, x_2 \leftarrow X, p(x_1) \geqslant p(x_2) \rightarrow I(x_1) \leqslant I(x_2)$ .
- $oldsymbol{0}$  Аддитивность: для независимых сообщений  $x_1,\ldots,x_n$  $I(x_1,\ldots,x_n)=\sum_{i=1}^n I(x_i)$
- Для равновероятных событий соответствует формуле Хартли.

Среднее количество информации дискретного источника  $X = \{x, p(x)\}$ :

$$I(X) = \sum_{x_i \leftarrow X} \left( p(x_i) \cdot I(x_i) \right) = -\sum_{x_i \leftarrow X} \left( p(x_i) \cdot \log_2 p(x_i) \right)$$



# Из источника символов X можно прочитать текст $\vec{x} = x_1 x_2 \dots x_k$

- Источник без памяти: сообщения  $x_1, x_2, \dots x_k$  независимы  $p(\vec{x}) = p(x_1) \cdot p(x_2) \cdot \dots \cdot p(x_k)$   $I(\vec{x}) = I(x_1) + I(x_2) + \dots + I(x_k)$
- Источник с памятью:

$$p(\vec{x}) = p(x_1) \cdot p(x_2|x_1) \cdot \dots \cdot p(x_k|x_1x_2 \dots x_{k-1})$$
  

$$I(\vec{x}) = I(x_1) + I(x_2|x_1) + \dots + I(x_k|x_1x_2 \dots x_{k-1})$$

Если источник марковский порядка m:

$$I(\vec{x}) = I(x_1) + \ldots + I(x_i | x_{i-m} \ldots x_{i-1}) + \ldots + I(x_k | x_{k-1} \ldots x_{k-1})$$



Оценка алфавита  $A_1$  и вероятностей источника по сообщению:  $x = \ll$ молоко»

- lacktriangledown  $A_1$  koi-8, равновероятные символы:  $p=rac{1}{256}$ ,  $I(x)=6\cdot \log_2(256)=48$  (бит)
- ②  $A_1$  русский алфавит, равновероятные:  $p = \frac{1}{33}$ ,  $I(x) = 6 \cdot \log_2(33) \approx 30.3$
- $m{0}$   $A_1$  Unicode 12.1, равновероятные:  $p=\frac{1}{137\,994}, I(x) pprox 6 \cdot 17, 1 pprox 102, 4$
- $m{4}$   $A_1 = \{ \mathsf{\kappa}, \mathsf{л}, \mathsf{m}, \mathsf{o} \}$ , равновероятные:  $p = \frac{1}{4}$ ,  $I(x) = 6 \cdot \log_2(4) = 12$
- **3**  $A_1 = \{\kappa, \mathsf{л}, \mathsf{м}, \mathsf{o}\}$  или коі-8, неравновероятные, стац-й источник без памяти:  $\mathsf{o}(3) + \kappa(1) + \mathsf{л}(1) + \mathsf{м}(1)$ :  $p(\mathsf{o}) = \frac{3}{6}, \qquad p(\kappa) = p(\mathsf{л}) = p(\mathsf{м}) = \frac{1}{6}$   $I(x) = -3 \cdot \log_2(\frac{3}{6}) \log_2(\frac{1}{6}) \log_2(\frac{1}{6}) \log_2(\frac{1}{6}) = 3 \cdot \log_2(2) + 3 \cdot \log_2(6) \approx 10.8$
- $oldsymbol{0}$   $A_1 = \{ \mathsf{k}, \mathsf{n}, \mathsf{m}, \mathsf{o} \}$  или koi-8, марковский ист-к первого порядка с вероятностями:

| предыдущий | $p(\kappa)$   | $p(\pi)$      | p(m)          | $\mid p(o) \mid$ |
|------------|---------------|---------------|---------------|------------------|
| _          | $\frac{1}{4}$ | $\frac{1}{4}$ | $\frac{1}{4}$ | $\frac{1}{4}$    |
| К, Л, М    | 0             | 0             | 0             | 1                |
| 0          | $\frac{1}{2}$ | $\frac{1}{2}$ | 0             | 0                |

$$I(x) = -\log_2(\frac{1}{4}) - \log_2(1) - \log_2(\frac{1}{2}) - \log_2(1) - \log_2(\frac{1}{2}) - \log_2(1) = 2 + 1 + 1 = 4$$

 $m{O}$   $A_1 = \{$ молоко, чай $\}$ , равновероятные символы:  $p = \frac{1}{2}, I(x) = 1$ 

Простые коды (2)

# Задачи (равновероятный источник)

- Найти количество информации в событии «три разные симметричные монеты выпали все вверх решкой».
- ② Найти количество информации в источнике «три разные симметричные монеты».



# Задачи (стационарный источник без памяти)

- Найти количество информации в событии «две из трёх неразличимых симметричных монет выпали вверх решкой, третья —  $opnom \gg$ .
- Найти количество информации в источнике «три неразличимые симметричные монеты».
- Найти количество информации в событии «из урны с 3 белыми и 5 чёрными шарами извлекли чёрный шар».
- Найти количество информации в событии «из урны с 3 белыми и 5 чёрными шарами извлекли белый шар».
- Найти количество информации в источнике «урна» с 3 белыми и 5 чёрными шарами».



# Задачи (стационарный источник с памятью)

- lacktriangle Источник X генерирует последовательность подстрок «хрю» и «мяу» (с равной вероятностью), не разделяя их (например, «хрюхрюхрюмяухрюмяумяухрюмяумяу...»). Из случайного места последовательности (не обязательно с начала подстроки) читается три символа подряд (сообщение x). Найти количество информации в событии «x = piox».
- 2 Источник X аналогично генерирует посл-ть «ку» и «кукареку» (например, «кукукукукарекукукукарекукукарекукукарекукукареку...»). Из случайного места посл-ти читается два (три) символа подряд (x). Найти количество информации в событиях:

```
\bullet x = e\kappa.
\bullet x = \kappa a;
                                         \bullet x = \kappa y:
                                           • x = y\kappa;
• x = \text{kap};
```

Подсказка: основная проблема в том, что часть символов одинаковые. Пусть они разные...

Простые коды (2)

Или: пусть всего 2N >> 1 слов, то есть N «ку» и N «кумареку»...

# Задачи (построение модели источника)

Оценить алфавит и построить модели источника: а) равновероятную, б) стационарную без памяти, в) марковскую первого порядка для сообщения x, по модели оценить I(x) и I(y).

- **1** x = xрюхрюхрюмяухрюмяумяухрюмяумяу (30 символов, 5 «хрю» (0) и 5 «мяу» (1) 0001011011); y = pюх.В тексте 5 двухбуквенных сочетаний, начинающихся с «ю»: 2 «юх» и 3 «юм»
- 2 x = кукукукукарекукукукарекукукарекукукареку(50 символов, 5 «ку» (0) и 5 «кукареку» (1) аналогично);  $y = \kappa a p$ .

Простые коды (2)



Кодирование — преобразование дискретной информации

$$x \leftarrow X, x \in A_1^+ \rightarrow code(x) \in A_2^+$$

смена алфавита, сжатие, защита от шума, шифрование.

**Декодирование** — обратное преобразование  $code(x) \rightarrow x$ 

x — сообщение, исходный текст, исходная строка, блок;

X — источник сообщений;

 $A_1$  — первичный алфавит (до преобразования);

 $A_2$  — вторичный (алфавит конечного представления).

Простые коды (2)

Обычно  $A_1$  — байты, исходные тексты x — бинарные файлы.



- lacktriangle Первичный алфавит  $A_1$
- 2 Оптимальность (неизбыточность)
- Избыточность (в том числе помехоустойчивость)
- lacktriangle Вторичный алфавит  $A_2$  ( $A_2 = \{0,1\}$  двоичный код)
- Однозначная декодируемость [должна быть!]
- **6** Разделяемость код code(x) любой последовательности  $x = \overline{a_1 \dots a_n}$  единственным образом разделим на кодовые слова  $c_i = code(a_i), a_i \in A_1$ :
  - **0** коды фиксированной ширины  $a, b, c \to 00, 01, 10;$
  - **2** коды с разделителем 1, 11, 111 (0 как разделитель символов);
  - **3** префиксные коды (дерево) 0, 10, 11;
  - **3** прочие например, 11, 1110111, 11100111.

Простые коды (2)



модель источника!

Первая теорема Шеннона (для сжатия):  $|code(X)| \ge I(X)$ 

#### M: усреднение по источнику X!

При отсутствии помех средняя длина кода может быть сколь угодно близкой к средней информации сообщения.

#### Следствия:

- 🚺 не существует архиватора, который любой файл сжимает до 8 байт:
- 🛂 не существует архиватора, который любой блок из 9 байт сжимает до 8 байт.
- 🗿 не существует и такого архиватора, который любой блок из N+1 бит сжимает ровно до N бит, ни при каком N.

Простые коды (2)

Кодирование с  $|code(X)| \to I(X)$  и  $|code(x)| \to I(x)$  — оптимальное.

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ 夕久で

# Оптимальное кодирование источника X

Пусть X порождает последовательность из  $2^N$  возможных символов.

- **1** Равновероятный источник (I(X) = N) кодирование отдельных символов кодами фиксированной ширины N бит.
- 2 Стационарный источник без памяти, порождающий символы с разными постоянными вероятностями (I(X) < N) — кодирование отдельных символов кодами переменной ширины: коды Хаффмана, методы семейства арифметического кодирования.
- Отационарный источник с памятью, порождающий символы с вероятностями, зависящими от контекста (I(X) < N) кодирование сочетаний символов: словарные методы семейства LZ77 (словарь=текст) и семейства LZ78 (отдельный словарь в виде дерева/таблицы).

Если изначально каждый символ записан кодом фиксированной ширины из N бит  $\Rightarrow$  сжатие для  $\bigcirc$  и  $\bigcirc$  .

Простые коды (2)

### Идея кодирования: $x \in A_1^+, x \in X \leftrightarrow code(x) \in A_2^+$

На практике: первичный алфавит — байты, исходный текст — произвольной длины nбайт; причём там может встречаться любой символ или их комбинация.

#### Алгоритм кодирования:

- собственно алгоритм;
- представление данных.

#### Программная реализация:

- дополнение исходного текста при необходимости (обычно нулями) и обрезка декодированного текста до длины n;
- при сжатии: анализ сжатия/увеличения (запись кода или копии);

Простые коды (2)

формирование и чтение заголовка.

$$(n \ \text{байт}) \leftrightarrow \begin{cases} \text{модель } X \\ x \in A_1^+ \end{cases} \leftrightarrow \begin{cases} \text{модель } X, \\ \text{алгоритм кодирования}, \\ \text{параметры кодирования}, \end{cases} \leftrightarrow \begin{cases} \text{заголовок}, \\ \text{данные } y \ (m \ \text{байт}) \end{cases}$$

4□ > 4個 > 4 = > 4 = > 9 < @</p>

- Сигнатура (обычно первые 2-4 байта для общепринятых форматов)
  - быстрое распознавание типа файла (свой/чужой).
- Метаданные (заголовок)
  - версия формата;
  - исходная длина файла;
  - смещение начала данных, их размер и формат;
  - тип сжатия, параметры для распаковки (обычно чем нестандартнее модель источника, тем объёмнее);
  - тип защиты от помех, параметры для восстановления;

Простые коды (2)

- зарезервированные поля для выравнивания;
- контрольная сумма заголовка;
- контрольная сумма файла и т. д.
- Данные
  - могут включать вложенные заголовки (контейнеров) с сигнатурами.



Формат zip — несколько файловых записей

### Формат zip — несколько файловых записей

- Каждый файл (элемент) архива имеет локальный заголовок (Local File Header); сжимается и хранится отдельно.
- Центральный каталог список центральных записей (Central File Header), каждая содержит заголовок файла, в том числе:
  - смещение локального заголовка;
  - длина имени файла (с относительным путём) и собственно имя.
- 3 End of central directory (EOCD) фиксированного размера, содержащая, в т. ч.:
  - количество записей центрального каталога;
  - размер центрального каталога;
  - смещение центрального каталога.



- Декодирование zip-файла начинается с конца.
- Каждый заголовок (и EOCD) включает в том числе сигнатуру в начале,
- но в начале всего архива могут быть доп. данные (самораспаковывающиеся архивы).



Простые коды (2)

Формат zip — несколько файловых записей

 $x \in A_1 \leftrightarrow y \in A_2$  без сжатия, защиты от помех и шифрования

Простейший базовый код (подразумевается):

 $lue{0}$  байт памяти  $\leftrightarrow$  беззнаковое целое число  $0 \dots B-1$  (обычно: октет  $\leftrightarrow 0 \dots 255$ ) натуральный двоичный код  $\Longrightarrow$  биты байта имеют номер.

Порядок байтов (если файл читается и записывается на одной платформе не важен и также подразумевается):

- $\bullet$  N байтов  $(\chi_0, \dots, \chi_{N-1}), N=2^s \leftrightarrow \mathsf{б}$ еззнаковое целое число  $0 \dots B^N-1$ ;
- $oldsymbol{2}$  N битов, N произвольное  $\leftrightarrow$  беззнаковое целое число  $0\dots 2^N-1$ .

Простые коды (фиксированной ширины): беззнаковое целое (код)  $\leftrightarrow$  ?

- **3** 0...127 ↔ символ из таблицы ASCII;
- знаковые числа:
- числа с плавающей или фиксированной запятой;
- б нестандартные цифровые коды (ДДК, Грея, Джонсона) и т. д.



Целые неотрицательные числа: от 0 до  $2^N - 1$ .

Для 
$$N = 4$$
 — целые  $0$  до  $2^4 - 1 = 16 - 1 = 15$ :

| 0    | 1    | 2      | 3      | 4      | 5    | 6      | 7      |
|------|------|--------|--------|--------|------|--------|--------|
| 0000 | 0001 | 0010   | 0011   | 0100   | 0101 | 0110   | 0111   |
| 8    | 9    | A (10) | B (11) | C (12) | D    | E (14) | F (15) |
|      |      |        |        |        | (13) |        |        |
| 1000 | 1001 | 1010   | 1011   | 1100   | 1101 | 1110   | 1111   |
|      |      |        |        |        |      |        |        |

Циклическая арифметика по модулю  $2^N$ : то есть  $(2^N - 1) + 1 = 0$ .

 $2^N = 0$ 

Взвешенный: 
$$x=1\cdot \mathrm{bit} \left[\mathrm{O}\right] + \ldots + 2^{N-1}\cdot \mathrm{bit} \left[\mathrm{N-1}\right] =$$

$$= \alpha_0 \cdot \mathtt{bit[0]} + \ldots + \alpha_{N-1} \cdot \mathtt{bit[N-1]}.$$

Целые числа (возможно — знаковые) в произвольном диапазоне [a,b]

— для  $x \in [a,b]$  записываем беззнаковое число y=x-aнатуральным двоичным кодом.



Основы теории информации и кодирования. Измерение информаци

Целые знаковые числа, 0 и ближайшие к 0 положительные представляются как беззнаковые, циклическая арифметика по модулю  $2^N$ :  $(-1)=0-1\equiv 2^N-1$ ,  $(-2)\equiv 2^N-2$ , ...  $(-2^{N-1})\equiv 2^N-2^{N-1}=2^{N-1}$  (считается отрицательным).

Целые числа от  $-2^{N-1}$  до  $+2^{N-1}-1$ :

| 0    | +1   | +2   | +3   | +4   | +5   | +6   | +7   |      |
|------|------|------|------|------|------|------|------|------|
| 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 |      |
|      | -1   | -2   | -3   | -4   | -5   | -6   | -7   | -8   |
|      | 1111 | 1110 | 1101 | 1100 | 1011 | 1010 | 1001 | 1000 |

$$(-x) = 0 - x = (-1 - x) + 1 = (\sim x) + 1;$$
  $max + 1 = min.$ 

Простые коды (2)



Избыточный невзвешенный рефлексный (при переходе между кодовыми комбинациями изменяется только один бит) нециклический  $(max + 1 \neq min)$  двоичный код

Для N битов — целые 0 до N:

| 0    | 1    | 2    | 3    | 4    |  |
|------|------|------|------|------|--|
| 0000 | 0001 | 0011 | 0111 | 1111 |  |
|      | 0010 | 0101 | 1011 |      |  |
|      | 0100 | 1001 | 1101 |      |  |
|      | 1000 | 0110 | 1110 |      |  |
|      |      | 1010 |      |      |  |
|      |      | 1100 |      |      |  |



Код Грея — неизбыточный невзвешенный рефлексный циклический двоичный код

| 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    |
|------|------|------|------|------|------|------|------|
| 0000 | 0001 | 0011 | 0010 | 0110 | 0111 | 0101 | 0100 |
| 8    | 9    | А    | В    | С    | D    | Е    | F    |
| 1100 | 1101 | 1111 | 1110 | 1010 | 1011 | 1001 | 1000 |

Код Джонсона — избыточный невзвешенный рефлексный циклический двоичный код

| 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    |
|------|------|------|------|------|------|------|------|
| 0000 | 0001 | 0011 | 0111 | 1111 | 1110 | 1100 | 1000 |



#### ASCII и Unicode

| Α | SCII- | -12 | 8 сиі | ивол           | ов и | семи | битн | ая ( | ∼одн | обай | това           | я) ко | диро | вка |    |       |
|---|-------|-----|-------|----------------|------|------|------|------|------|------|----------------|-------|------|-----|----|-------|
|   | 0     | 1   | 2     | <sub> </sub> 3 | ا 4  | 5    | 6    | 7    | 8    | 9    | <sub>L</sub> A | В     | C    | D   | E  | L F J |
| 0 | NUL   | SOH | STX   | ETX            | E0T  | ENQ  | ACK  | BEL  | BS   | HT   | LF             | VT    | FF   | CR  | S0 | SI    |
| ī | DLE   | DC1 | DC2   | DC3            | DC4  | NAK  | SYN  | ETB  | CAN  | EM   | SUB            | ESC   | FS   | GS  | RS | US    |
| 2 |       | !   |       | #              | \$   | %    | &    |      | (    | )    | *              | +     | ,    | -   |    | /     |
| 3 | 0     | 1   | 2     | 3              | 4    | 5    | 6    | 7    | 8    | 9    | :              | ;     | ٧    | =   | >  | ?     |
| 4 | @     | Α   | В     | C              | D    | Е    | F    | G    | Н    | I    | J              | K     | ٦    | М   | N  | 0     |
| 5 | Р     | Q   | R     | S              | Т    | C    | V    | W    | Х    | Υ    | Z              | [     | /    | ]   | ^  |       |
| 6 | ,     | а   | b     | С              | d    | е    | f    | g    | h    | i    | j              | k     | ι    | m   | n  | 0     |
| 7 | р     | q   | r     | s              | t    | u    | V    | W    | х    | у    | z              | {     |      | }   | ~  | DEL   |

Unicode — 137 994 символ (в версии 12.1) и набор кодировок: UTF-8,

UTF-16 (UTF-16BE, UTF-16LE) и UTF-32 (UTF-32BE, UTF-32LE)

1 байт 0ааа аааа 2 байта 110x xxxx 10xx xxxx UTF-8 (до 4 байт)

3 байта 1110 xxxx 10xx xxxx 10xx xxxx

4 байта 1111 0xxx 10xx xxxx 10xx xxxx 10xx xxxx

5 байт 1111 10xx 10xx xxxx 10xx xxxx 10xx xxxx 10xx xxxx

6 байт 1111 110x 10xx xxxx 10xx xxxx 10xx xxxx 10xx xxxx 10xx xxxx

Вероятностная мера информации Задачи: измерение информации Кодирование и структуры данных Простые коды (1)

Предмет теории информации. Источник информации

<sup>&#</sup>x27;я': 044F = 0100 0100 1111, кодирование UTF-8 11010001 10001111 = D1 8F イロト イラト イラト ま めなべ

Строка — цепочка символов (в кодировке ASCII, UTF-8 и т. п.) переменной длины:

- С-строки цепочка символов + завершающий нулевой символ:
  - в буфере переменного размера;
  - в буфере фиксированного размера (ФС ext2/ext3 имя файла не длиннее 255 байтов).
- ② Pascal-строки длина + цепочка символов (zip и т. п.).



# Код Морзе (Фридрих Герке)



Каждой букве или знаку соответствует определённая комбинация кратковременных (точка) и втрое более длинных (тире) импульсов тока, разделённых бестоковым интервалом, равным длительности точки.

Для разделения букв в словах и цифр в многозначных числах применяется тройной бестоковый интервал, заканчивающий каждую комбинацию.

Для разделения слов в тексте служит пятикратный бестоковый интервал.

 $A_2 = \{\cdot, -, \mathsf{межсимвольный} \ \mathsf{интервал}, \mathsf{межсловный} \ \mathsf{интервал}\}$ 

Предмет теории информации. Источник информации
Вероятностная мера информации
Задачи: измерение информации
Кодирование и структуры данных
Простые коды (1)

Единичный код Коды Грея и Джонсона ASCII и Unicode Строки **Код Морзе** Код Бодо

# Код Бодо (Дональд Мюррей)

Международный телеграфный код №2 (ITA2) + + 00000 = MTK-2

| Русский<br>шрифт                           |   | E | III        |        | V KI        | Т | A | И | Н | o | C | P | x | д        | л | 3 | У | Ц | М | Φ | й                    | Γ | П | Ы | Б | В |       | к | ж | Ь | Я |            |            |  |
|--------------------------------------------|---|---|------------|--------|-------------|---|---|---|---|---|---|---|---|----------|---|---|---|---|---|---|----------------------|---|---|---|---|---|-------|---|---|---|---|------------|------------|--|
| Русский шрифт  Цифры  Латинский шрифт  1 2 |   | 3 | звод строк | Пробел | врат каретк |   | - | 8 | , | 9 | , | ч | щ | кто там? | ) | + | 7 | : |   | Э | Ю<br><sup>(3В)</sup> | ш | 0 | 5 | ? | 2 | Цифры | ( | = | 1 | 1 | Буквы лат. | Буквы рус. |  |
|                                            |   | E | Пере       |        | Возв        |   | A | I | N | О | s | R | Н | D        | L | z | U | C | М | F | J                    | G | P | Y | В | w |       | к | v | x | Q |            | Ф          |  |
|                                            | 1 | • |            |        |             |   | • |   |   |   | • |   |   | •        |   | • | • |   |   | • | •                    |   |   | • | • | • | •     | • |   | • | • | •          |            |  |
|                                            | 2 |   | •          |        |             |   | • | • |   |   |   | • |   |          | • |   | • | • |   |   | •                    | • | • |   |   | • | •     | • | • |   | • | •          |            |  |
| Ведущие                                    |   | 0 | 0          | 0      | 0           | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0        | 0 | 0 | 0 | 0 | 0 | 0 | 0                    | 0 | 0 | 0 | 0 | 0 | 0     | 0 | 0 | 0 | 0 | 0          | 0          |  |
| отверстия                                  | 3 |   |            | •      |             |   |   | • | • |   | • |   | • |          |   |   | • | • | • | • |                      |   | • | • |   |   |       | • | • | • | • | •          |            |  |
| 4                                          | 4 |   |            |        | •           |   |   | Ī | • | • |   | • |   | •        |   |   |   | • | • | • | •                    | • |   |   | • |   | •     | • | • | • |   | •          |            |  |
|                                            | 5 |   |            |        |             | • |   |   |   | • |   |   | • |          | • | • |   |   | • |   |                      | • | • | • | • | • | •     |   | • | • | • | •          |            |  |

фиксированной ширины 5, режимы



```
ТЕИМ
```

www.miet.ru

Александра Игоревна Кононова / illinc@mail.ru +7-985-148-32-64 (телефон), +7-977-977-97-29 (WhatsApp), gitlab.com/illinc/raspisanie https://gitlab.com/illinc/otik/

