1. Design a Single cell-1 bit Carry Propagate (Ripple Carry Adder) full adder.

a. Generate the truth table

A	B	Cin	Sum	Cont
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	

b. Using K-map, determine the logical expression for Carry out (C-out) and Sum (S)

Sum = $ABC + \overline{ABC} + \overline{ABC} + \overline{ABC}$ = $A(\overline{BC} + BC) + \overline{A}(\overline{BC} + B\overline{C})$ = $A(\overline{BC} + BC) + \overline{A}(\overline{BC} + B\overline{C})$ Sum = $A \oplus B \oplus C$ in

Cout Bo				
A	00	01	- [1	10
0			(1)	
1		T	0	1)

Cout = ACint AB + BCin

C. Based on the logical expression, create the schematic diagram for full adder.

- 2. Design a 1 bit, 2 to 1 multiplexer (Mux). Outputs Y when S=0; X when S=1.
 - a. Generate the truth table.

S	I,	I	Y	
0	0	0	0	
0	0	(1	
0	1	0	0	
0	1	1	1	
١	0	0	0	
l	0	1	0	
1	1	0	1	
1	1	1	1	
1	0	0	0 1	

b. Using K-map, determine the logical expression for output.

$$Y = \overline{SI}_0 + SI_1$$

C. Based on the logical expression, create the schematic diagram for Mux.

