DECISION VARIABLES

1. x_{ik} : Truck serves customer from warehouse i to k (1 if true, 0 if false)

 $2. d_{kj}$: Drone dispatched from truck at node k to serve customer i (1 if true, 0 if false)

3. y_{ik} : Truck visits node k when serving customers from warehouse i

: Drone visits node k when serving customer j4. z_{kj}

5. $T_{\text{Truck}_{ik}}$: Time by truck from i to k to serve j

6. $T_{\text{Drone}_{kj}}$: Time by drone from k to serve customer j

: Binary variable to mark nodes visited by truck between i and k7. u_{ijk}

OBJECTIVE FUNCTION

Minimize:
$$Z = \alpha_T \sum_{i,k} x_{ik} \cdot C_{\text{Truck}_{ik}} + \alpha_D \sum_{k,j} d_{kj} \cdot C_{\text{Drone}_{kj}} + \lambda \cdot (T_{\text{Truck}_{ik}} + T_{\text{Drone}_{kj}})$$

Constraints

 $1. \quad \sum_{k} x_{ik} + \sum_{j} d_{kj} = 1$ (Serve by truck or drone)

2. $T_{\text{Truck}_{ik}} = \frac{\text{Dist}_{\text{Truck}_{ik}}}{\text{Speed}_{\text{Truck}}}$ 3. $T_{\text{Drone}_{kj}} = \frac{\text{Dist}_{\text{Drone}_{kj}}}{\text{Speed}_{\text{Drone}}}$ (Truck Time Constraint)

(Drone Time Constraint)

4. $x_{ik} \ge d_{kj}$ (Drone Dispatch Constraint)

 $5. \quad \sum_{j} x_{ik} = y_{ik}$ (Mark nodes visited by truck)

 $6. \quad \sum_{j} d_{kj} = z_{kj}$ (Mark nodes visited by drone)

7. $u_{ijk} \geq y_{ik} - z_{kj}$ (Mark nodes visited by truck between i and k)

Where:

- x_{ik} is binary, indicating truck serves from warehouse i to k.
- d_{kj} is binary, indicating drone dispatched from truck at k to serve j.
- y_{ik} is binary, indicating truck visits k when serving from i.
- z_{kj} is binary, indicating drone visits k when serving j.
- $T_{\text{Truck}_{ik}}$ is time by truck from i to k to serve j.
- $T_{\text{Drone}_{k,i}}$ is time by drone from k to serve j.
- $C_{\text{Truck}_{ik}}$ is cost for truck serving from i to k.
- $C_{\text{Drone}_{kj}}$ is cost for drone serving from k to j.
- α_T is unit variable cost for truck.
- α_D is unit variable cost for drone.
- λ is weight parameter for time in the objective function.