Integrabilidad, caos y entrelazamiento en sistemas cuánticos

Estudio de la entropía de entrelazamiento en la cadena XX

Asier López Gordón

Departamento de Física Teórica Supervisores: Federico Finkel Mongenstern y Artemio González-López

24 de julio de 2020

Esquema del trabajo

- **1** Definición de la entropía de entrelazamiento S_I
- Presentación del modelo XX
 - Equivalencia con un sistema de fermiones libres
 - Diagonalización del hamiltoniano
- 3 Matriz de correlación \rightsquigarrow expresión exacta de S_i
- **4** Comportamiento asintótico de S_L
 - Relación con CFTs y criticalidad
 - Conjetura de Fisher-Hartwig $\rightsquigarrow S_L$ para $L \to \infty$
- 6 Conclusiones

La entropía como medida del grado de entrelazamiento

- Un sistema cuántico puede estar en un estado puro ρ y sus subsistemas en estados mezcla $\rho_i \rightarrow$ entrelazamiento
- Nos gustaría poder cuantificar cómo de entrelazadas están entre sí las partes de un sistema.
- El entrelazamiento aparece en múltiples áreas de la física actual:
 - Información cuántica y computación cuántica
 - Sistemas de muchos cuerpos
 - Agujeros negros y gravedad cuántica
- Entropía de $\rho_{\alpha} \equiv$ grado de entrelazamiento del sistema
 - $\rho_{\alpha} \equiv$ matriz dens. reducida \equiv dist. de prob.
 - No es una entropía termodinámica.

Entropía de von Neumann

$$S[\rho] = -\operatorname{tr}(\rho \log \rho) \quad (k_B = 1)$$

Propiedades:

- $S[\rho] > 0$
- $S[\rho] = 0 \Leftrightarrow \rho$ estado puro
- $S\left[\bigotimes_{i=1}^{L}\rho_{i}\right]=\sum_{i=1}^{L}S[\rho_{i}]$
- $\rho_{A \cup B}$ estado puro $\Longrightarrow S_A = S_B$

Modelo XX

El modelo XX consiste en una cadena (1D) de N partículas de espín 1/2con interacciones a primeros vecinos en un campo magnético externo λ .

$$H_{\text{XX}} = \frac{1}{2} \sum_{l=0}^{N-1} \left(\sigma_l^{\mathsf{X}} \sigma_{l+1}^{\mathsf{X}} + \sigma_l^{\mathsf{Y}} \sigma_{l+1}^{\mathsf{Y}} \right) + \frac{\lambda}{2} \sum_{l=0}^{N-1} \left(\sigma_l^{\mathsf{Z}} + 1 \right) \quad (\hbar = 1)$$

- Supongamos $\lambda \geq 0$ ($\lambda < 0$ corresponde a $|\uparrow\rangle \leftrightarrow |\downarrow\rangle$).
- Por simplicidad, tomamos CC periódicas: $0 \equiv N$.

Sistema de fermiones libres

Transformación de Jordan-Wigner

$$a_{l} = \left(\prod_{m=0}^{l-1} \sigma_{m}^{z}\right) \sigma_{l}^{-}, \quad \sigma_{l}^{\pm} = \frac{\sigma_{l}^{x} \pm i \sigma_{l}^{y}}{2}$$

$$H_{XX} = -\sum_{l=0}^{N-1} \left(a_l^{\dagger} a_{l+1} + h.c. \right) + \lambda \sum_{l=0}^{N-1} a_l^{\dagger} a_l$$

- a_{l+1}^{\dagger} corresponde al salto (hopping) de un fermión de l+1 a l.
- $a_{i,a_{l}}^{\dagger}$ mide si l está ocupado o no.
- H_{XX} conserva el número de fermiones.

Diagonalización de H_{XX}

H_{XX} tiene simetría traslacional: [T, H_{XX}] = 0.

Transformada de Fourier

$$b_k = \frac{1}{\sqrt{N}} \sum_{l=0}^{N-1} a_l e^{-i\frac{2\pi}{N}kl}, \qquad 0 \le k \le N-1$$

$$H_{XX} = \sum_{k=0}^{N-1} \Lambda_k b_k^{\dagger} b_k \equiv \sum_{k=0}^{N-1} \Lambda_k n_k, \qquad \Lambda_k = \lambda - 2\cos\left(\frac{2\pi k}{N}\right)$$

• b_{ν}^{\dagger} actuando sobre $|0\cdots 0\rangle$ crea un fermión con momento $\frac{2\pi k}{N}$ (mod 2π) y energía Λ_k .

Fases del sistema

Relación de dispersión

$$\Lambda_k = \lambda - 2\cos\left(\frac{2\pi k}{N}\right)$$

$$k_c = \left[\frac{N}{2\pi}\arccos\left(\frac{\lambda}{2}\right)\right]$$

- Si $\lambda > 2$, $\Lambda_k > 0 \ \forall \ k$
 - $|GS\rangle = |0 \cdots 0\rangle = |\downarrow\rangle \otimes \cdots \otimes |\downarrow\rangle \Rightarrow$ $S_{I}=0$
 - $E(|GS\rangle) = 0$
- Si $0 < \lambda < 2$
 - $|GS\rangle$ estado mezcla $\Rightarrow S_L \neq 0$
 - $E(|GS\rangle) = \sum_{k=0}^{k_c} \Lambda_k + \sum_{N=k}^{N-1} \Lambda_k$
- En $\lambda = 2$ se produce la transición de fase crítica-ferromagnética.

Método de la matriz de correlación

•00

Queremos determinar S_I para un bloque de L espines adyacentes.

Método de la matriz de correlación

$$\left\langle b_p^\dagger b_q \right
angle = \left\{ egin{array}{ll} 1 & \mbox{si } p=q \mbox{ y } \Lambda_p < 0 \\ 0 & \mbox{en caso contrario} \end{array}
ight., \quad \left\langle \
ight
angle \equiv \left\langle \
ight
angle_{
m |GS
angle}$$

$$A_{mn} \equiv \left\langle a_m^{\dagger} a_n \right\rangle = \frac{2}{N} \sum_{k=0}^{K_c} \cos \left[\frac{2\pi}{N} k(m-n) \right] - \frac{1}{N}, \quad 0 \leq m, n \leq L-1$$

• En el límite termodinámico $N \to \infty$

$$A_{mn} = rac{1}{\pi} \int_0^{p_c} \cos \left[p \, \left(m - n
ight)
ight] \, \mathrm{d}p = rac{1}{\pi} rac{\sin \left[p_c (m - n)
ight]}{m - n}, \quad p_c = rc \cos (\lambda/2)$$

Descorrelación ρ_I

• A partir de una cierta CL de $\left\{a_m, a_m^{\dagger}\right\}_{m=1}^L$ se pueden definir unos operadores $\left\{g_p,g_p^\dagger\right\}_{n=1}^L$ tales que en la base de operadores $\left\{g_p,\;g_p^\dagger,\;g_p^\dagger g_p,\;g_p g_p^\dagger
ight\}$ la matriz densidad del bloque se escribe

Método de la matriz de correlación

$$\rho_L = \bigotimes_{p=1}^L \varrho_p, \quad \varrho_p = \begin{pmatrix} \nu_p \\ 1 - \nu_p \end{pmatrix}, \quad \{\nu_p\}_{p=1}^L \text{ autovalores de } \mathbf{A}$$

Por la aditividad de la entropía de von Neumann, podemos escribir

$$S_L = \sum_{l=1}^{L} S[\rho_l] = \sum_{l=1}^{L} H_2(\nu_l), \quad H_2(x) = -x \log x - (1-x) \log(1-x)$$

$$\{\nu_l\}_{l=1}^L$$
 autovalores de $A_{mn}=rac{1}{\pi}rac{\sin\left[p_c(m-n)\right]}{m-n},\quad p_c=\arccos(\lambda/2)$

- Mediante esta técnica el problema de diagonalizar la matriz densidad ρ_L , de dimensión $2^L \times 2^L$, queda reducido al de diagonalizar **A** $(L \times L)$ (¡tiempo polinómico en lugar de exponencial!).
- Única particularidad del modelo: p_c (rel. de dispersión).

Comportamiento asintótico de la entropía de entrelazamiento

- La expresión exacta que hemos obtenido para S_L no proporciona directamente el comportamiento de S_L al crecer L con $L \to \infty$.
- Este comportamiento asintótico es crucial para determinar las propiedades críticas del sistema, así como su comportamiento bajo transformaciones del grupo conforme.
- Un sistema no-crítico tiene un gap $\Delta E > c > 0$ para $N \to \infty$, con c indep. de N.
- S_I satura para los sistemas no-críticos (gapped), mientras que presenta un crecimiento ilimitado para los sistemas críticos (gapless).

- Los sistemas sin gap no tienen una escala natural (que proporcionaría $\xi \equiv 1/\Delta E$), de modo que son invariantes bajo dilataciones.
- Si el hamiltoniano es invariante bajo el grupo conforme completo, el modelo es equivalente a una teoría de campo conforme (CFT) en el régimen de baja energía.
- La clase de universalidad de una CFT viene dada por su carga central c, que podemos determinar a partir de $\lim_{l\to\infty} S_l / \log L$.

Comportamiento asintótico de S_I

000000

- El comportamiento asintótico de S_L se puede determinar de forma analítica para la cadena XX.
- La matriz de correlación A_{mn} es una matriz de Toeplitz: depende de m y n únicamente a través de m-n.
- La conjetura de Fisher-Hartwig proporciona el comportamiento asintótico del determinante para matrices de Toeplitz que verifican ciertos requisitos.
- La matriz de Toeplitz que nos interesa es

 $D_L(\mu) \equiv \det \mathbf{T}_L = \text{polinomio característico de } \mathbf{A}$ $T_I = \mu - (2A - 1)$,

$$S_{L} = \sum_{l=1}^{L} H_{2}(\nu_{l}) \stackrel{?}{\sim} \oint_{\mathcal{C}(\varepsilon,\delta)} H_{2}(\mu) \, \mathrm{d} \log D_{L}(\mu) \sim \oint_{\mathcal{C}(\varepsilon,\delta)} H_{2}(\mu) \, \mathrm{d} \log D_{L}(\mu),$$

$$H_{2}(\mu) = \sum_{l=1}^{L} H_{2}(\nu_{l}) \stackrel{?}{\sim} \oint_{\mathcal{C}(\varepsilon,\delta)} H_{2}(\mu) \, \mathrm{d} \log D_{L}(\mu),$$

$$X = \sum_{l=1}^{L} H_{2}(\nu_{l}) \stackrel{?}{\sim} \oint_{\mathcal{C}(\varepsilon,\delta)} H_{2}(\mu) \, \mathrm{d} \log D_{L}(\mu),$$

$$X = \sum_{l=1}^{L} H_{2}(\nu_{l}) \stackrel{?}{\sim} \oint_{\mathcal{C}(\varepsilon,\delta)} H_{2}(\mu) \, \mathrm{d} \log D_{L}(\mu),$$

Fórmula asintótica para S_l

Reemplazando $D_L(\mu)$ por su expresión asintótica, proporcionada por la conjetura de Fisher-Hartwig, y desarrollando las integrales finalmente obtenemos

$$S_L \simeq \frac{1}{3} \log L + \frac{1}{3} \log (2 \sin p_c) + \Upsilon_1, \quad L \to \infty$$

$$\Upsilon_1 = \int_0^\infty \left[-\frac{e^{-t}}{3t} - \frac{1}{t \sinh^2(t/2)} + \frac{\cosh(t/2)}{2 \sinh^3(t/2)} \right] dt \simeq 0.495018$$

 S_L escala como $\frac{1}{3} \log L$, corresp. a una CFT con c=1 (bosón libre).

Figura: Valor exacto de S_I para un bloque de L espines de la cadena XX en $|GS\rangle$ y ajuste a la fórmula asintótica. La máxima entropía se da para $\lambda=0$, conforme λ aumenta S_I disminuye, hasta que en $\lambda = 2 S_I$ satura en 0, se produce la transición de fase y $|GS\rangle$ pasa a ser un estado producto.

Conclusiones

- 1 La entropía de entrelazamiento permite cuantificar el grado de entrelazamiento en un cierto estado de un sistema cuántico.
- 2 La cadena XX, formada por espines $\frac{1}{2}$ que interaccionan entre sí y con un campo magnético externo, es equivalente a un sistema de fermiones libres mediante una transf. de Jordan-Wigner.
- **3** Conocida la relación de dispersión Λ_k del modelo (\Rightarrow conocido p_c) es posible escribir su matriz de correlación en el LT y, a partir de esta, el valor exacto de S_{i} .
- **4** El crecimiento logarítmico de S_L para $L \to \infty$ se relaciona estrechamente con la criticalidad del modelo y su equivalencia con CFTs.
- **6** Si A_{mn} es una matriz de Toeplitz, el comportamiento asintótico de S_L para $L \to \infty$ se puede determinar de forma analítica.

1 Si A_{mn} no es Toeplitz (o no un caso probado de la conjetura de F-H), es complicado determinar S_I para $L \to \infty$. Para algunos modelos se puede aprovechar su equivalencia con una CFT.

- El comportamiento asintótico de S_I para estados térmicos del modelo XX se ha estimado numéricamente y mediante CFTs.
- **3** La búsqueda de expresiones exactas para S_I (en D > 1) es un campo abierto de investigación.
- Estos resultados podrían proporcionar soluciones a problemas relacionados con el entrelazamiento cuántico en computación cuántica, sistemas de muchos cuerpos o física de altas energías.

FIN

¡Gracias por su atención!

