MATH 338 MIDTERM 2 - LECTURE PORTION TUESDAY, NOVEMBER 6, 2018

Your nar	ne:			
Your scores ((to be filled in	by Dr. Wynne)) :	
Problem 1:	/3			
Problem 2:	/6.5			
Problem 3:	/5.5			
Problem 4:	/5			
Total:	/20			

You have 75 minutes to complete this exam.

You may refer to your (single-sided, prepared in advance) formula sheet. You may ask Dr. Wynne to clarify what a question is asking for. You may not ask other people for help or use any other resources.

For full credit, show all work except for final numerical calculations (which can be done using a scientific or graphing calculator).

1. Circle the mo	ost correct answ	er to the following	ng multipl	e choice questions [0.5 pts each].
A) Which of the	following state	ments is <u>true</u> of	a single, p	roperly done observational study?
a) It can prove t	that the changes	in the explanate	ory variab	le cause changes in the response
b) It is not affect	ted by lurking va	ariables		
c) It randomly a	ssigns cases to o	control and treat	ment gro	ups
d) None of thes	e statements is	true of a single o	bservatio	nal study
the critical valu		d (right-sided) hy		two-sided hypothesis test. Let z** represent test with the same significance level. Which of
a) z* < z**	b) z* > z**	c) z* = z**	d) we do	n't have enough information to know
For parts C-D, a	ssume we perfo	rm a hypothesis	test with	significance level 0.01 and power 0.90.
C) What is the p	probability of co	mmitting a Type	I Error on	this hypothesis test?
a) 0.01	b) 0.10	c) 0.90	d) 0.99	e) we don't have enough information to find it
D) What is the p	orobability of co	mmitting a Type	II Error o	n this hypothesis test?
a) 0.01	b) 0.10	c) 0.90	d) 0.99	e) we don't have enough information to find it
of freedom. Let		cal value for a 90	% confide	Il coming from a t-distribution with 12 degrees ence interval coming from a t-distribution with ons is true?
a) t* < t**	b) t* > t**	c) t* = t**	d) we do	n't have enough information to know

F) Bootstrap t procedures are typically used when we check our assumptions and find that:

a) We do not have a simple random sample from our population

b) We are comparing more than two groups (more than two values of the explanatory variable)

c) We do, in fact, know the population standard deviation

d) The sampling distribution of the sample mean may not look anywhere close to normally distributed

2. In Bayesian statistics, the equivalent of a confidence interval is a <u>credible interval</u> . If the 95% credible interval for a parameter μ is (2, 8), Bayesian statisticians say that there is a 95% chance that μ is in the interval (2, 8).
a) [2 pts] Explain why this is an <u>invalid</u> (wrong) interpretation for a 95% (frequentist) <u>confidence</u> interval.
b) [1 pt] If a 95% z confidence interval for the population mean μ is (2, 8), what is the margin of error for this confidence interval?
c) [2 pts] Suppose that the population standard deviation is known to be σ = 10. How many people would you need to sample to obtain a margin of error of <u>at most</u> the value you calculated in part (b)? [If you did not answer part (b), make up a maximum margin of error and solve below]
d) [1.5 pts] If you obtain a single sample and, based on that sample, compute a 95% z confidence interval for μ to be (2, 8), what is the probability that your observed sample mean \bar{x} is in the interval? Explain your answer.

3. Govers and colleagues (2018) investigated the heredi (PA) in <i>E. coli</i> . They subjected <i>E. coli</i> cells to a 15-minute cells. However, not all children cells received the PA.	
The authors performed a t-test to show a significant difficults that contained PA and cells that were PA-free. How statistically significant once the age of the cells was accommodened (i.e., this is not a paired comparison).	vever, they found this difference was not
a) [1 pt] Draw lines connecting each variable on the left	with the term on the right that best describes it.
Presence/absence of PA	Explanatory Variable
Growth Rate	Response Variable
Age	Covariate
b) [2 pts] Write the null and alternative hypothesis for the equation/inequality. If you use numeric subscripts (e.g., Null Hypothesis (H_0):	•
Alternative Hypothesis (H _a):	
c) [1.5 pts] Explain in your own words what "p = 0.00167 experiment. Note that we have not specified a significant	· · · · · · · · · · · · · · · · · · ·
d) [1 pt] What is the <u>smallest</u> significance level at which	the difference would still be significant?

4. The chickwts dataset we used in the "Practice Lab Exam" for Midterm 1 recorded the weights of 71
chicks (in g) after six weeks. The chicks' diet included one of six different feed supplements (casein,
horsebean, linseed, meatmeal, soybean, or sunflower).

a) [2 pts] Write the null and alternative hypothesis for an appropriate one-way ANOVA F test for determining whether there is no effect of feed supplement on the population mean chick weight. If you use numeric subscripts (e.g., μ_1), explain what the means represent.

Null	Hvi	ooth	esis	(H^)
INUII	1111	JULII	COIO	

Alternative Hypothesis (H_a):

b) [2 pts] I performed the appropriate one-way ANOVA F test and obtained the ANOVA table below. Fill in the missing values in the table.

Source	Df	Sum of Sq.	Mean Sq.	F	Pr (>F)
feed (Group)		231129	46626		5.94e-10
Residuals (Error)	65		3009		
Total		426685			

c) [1 pt] Assume my significance level for the one-way ANOVA test is 0.01. Should I perform post hoc tests to investigate the pairwise differences in population mean chick weights? Why or why not?