Carnegie Mellon University The Robotics Institute

3D Multi-Object Tracking: A Baseline and New Evaluation Metrics

Xinshuo Weng, Jianren Wang, David Held, Kris Kitani Robotics Institute, Carnegie Mellon University

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020

RGB frames

Detection results

3D MOT results

Evaluation:

MOTA: MOT accuracy

MOTP: MOT precision

FRAG: # of trajectory

fragments

IDS: # of identity switches

Our Contributions

- 1. A 3D MOT evaluation tool along with three integral metrics
- 2. A strong and simple 3D MOT system with the fastest speed (207.4 FPS)

What are the Issues of 3D MOT Evaluation?

- Matching criteria: IoU (intersection of union)
- For the pioneering 3D MOT dataset KITTI, evaluation is performed in the 2D space
 - IoU is computed on the 2D image plane (not 3D)
- The common practice for evaluating 3D MOT methods is:
 - Project 3D trajectories onto the image plane
 - Run the 2D evaluation code provided by KITTI

 B_p : the predicted box

B_g: the ground truth box

B_c: the smallest enclosing box

 I_{2D} , I_{3D} : the intersection

Image credit to Xu et al: 3D-GIoU

What are the Issues of 3D MOT Evaluation?

- Why is it not good to evaluate 3D MOT methods in the 2D space?
- Cannot measure the strength of 3D MOT methods
 - Estimated 3D information: depth value, object dimensionality (length, height and width), heading orientation
- Cannot fairly compare 3D MOT methods, why?
 - Not penalized by the wrong predicted depth value, length, heading as long as the 2D projection is accurate
 - Which predicted box is better, blue or green?
 - Conclusion: should not evaluate 3D MOT methods in the 2D space

Blue: the predicted box 1

Green: the predicted box 2

Red: the ground truth box

Our Solution: Upgrade the Matching Criteria to 3D

- Replace the matching criteria (2D IoU) in the KITTI evaluation code with 3D IoU
 - https://github.com/xinshuoweng/AB3DMOT (800+ stars)
- Work with nuTonomy collaborators and use our 3D MOT evaluation metrics in the nuScenes evaluation with the matching criteria of center distance
 - https://www.nuscenes.org/

What are the Issues of Evaluation?

- Are we done with the evaluation? Can we further improve the current metrics?
 - E.g., MOTA (multi-object tracking accuracy)

•
$$MOTA = 1 - \frac{FP + FN + IDS}{num_{gt}}$$

• Performance is measured at a single recall point

MOTA over Recall curve

What are the Issues of Evaluation?

- Why is it not good to evaluate at a single recall point?
- Consequences
 - The confidence threshold needs to be carefully tuned, requiring non-trivial effort
 - Sensitive to different detectors, different dataset, different object categories
 - Cannot understand the full spectrum of accuracy of a MOT system
 - Which MOT system is better, blue or orange?
 - The orange one has higher MOTA at its best recall point (r = 0.9)
 - The blue one has overall higher MOTA at many recall points
 - Ideally, we want as high performance as possible at all recall points

Our Solution: Integral Metrics

- MOTA is measured at a single point on the curve
- What can we do to improve the evaluation metrics?
- Compute the integral metrics through the area under the curve, e.g., average MOTA (AMOTA)
 - Analogous to the average precision (AP) in object detection
 - Can measure the full spectrum of MOT accuracy

MOTA over Recall curve

Our Contributions

- 1. A 3D MOT evaluation tool along with three integral metrics
- 2. A strong and simple 3D MOT system with the fastest speed (207.4 FPS)

Limitation of Prior Work

- Prior work often ignores practical factors
 - Computational efficiency
 - System complexity
- Consequences
 - Difficult to tell which part contributes the most to performance
 - Not ready to be deployed in time-critical systems

1. A giant neural network for feature extraction2. Runs at about 5 FPS

- Motivation
 - Reduce system complexity of 3D MOT methods
 - Increase the computational efficiency (i.e., run time speed)
- Simple design: 3D Kalman filter + Hungarian algorithm
 - 3D Kalman filter
 - Extension of standard 2D Kalman filter
 - Add object's 3D property into the state space
- High speed:
 - 207.4 FPS on the KITTI dataset for Cars
 - 470.1 FPS on the KITTI dataset for Pedestrians
 - 1241.6 FPS on the KITTI dataset for Cyclists
- Strong 3D MOT performance competitive to more complicated systems

KITTI MOT leaderboard by end of 2019

- System pipeline (5 modules)
 - 3D object detection
 - Hungarian algorithm
 - Birth and death memory

3D Kalman filter: state prediction

3D Kalman filter: state update

- System pipeline
 - \bullet 3D object detection module detects the objects' bounding boxes D_t from the LiDAR point cloud at the current frame t

- System pipeline
 - \bullet 3D Kalman filter predicts the state of trajectories Tt-1 in the last frame to the current frame t as Test during the state prediction step

- System pipeline
 - \bullet Detections D_t and trajectories T_{est} are associated using the Hungarian algorithm

- System pipeline
 - State of matched trajectories T_{match} is updated based on the corresponding matched detections D_{match} to obtain the final trajectory outputs T_{t} in the current frame t

- System pipeline
 - Unmatched detections Dunmatch and unmatched trajectories Tunmatch are used to create new trajectories Tnew and delete disappeared trajectories Tlost

Quantitative Results

3D MOT Evaluation on KITTI for Cars

- Our 3D MOT system runs at the fastest speed without the need of a GPU
- Our simple system outperforms two more complicated 3D MOT systems

Method	Input Data	Matching criteria	sAMOTA ↑	$AMOTA \uparrow$	$AMOTP\!\!\uparrow$	МОТА↑	MOTP↑	IDS↓	$FRAG{\downarrow}$	FPS↑
mmMOT [32] (ICCV'19)	2D + 3D	$IoU_{thres} = 0.25$	70.61	33.08	72.45	74.07	78.16	10	55	4.8 (GPU)
FANTrack [17] (IV'20)	2D + 3D	$IoU_{thres} = 0.25$	82.97	40.03	75.01	74.30	75.24	35	202	25.0 (GPU)
Ours	3D	$IoU_{thres} = 0.25$	93.28	45.43	77.41	86.24	78.43	0	15	207.4 (CPU)

Qualitative Results

Qualitative Results for Cars

Qualitative Results for Pedestrians / Cyclists

Carnegie Mellon University The Robotics Institute

3D Multi-Object Tracking: A Baseline and New Evaluation Metrics

Xinshuo Weng, Jianren Wang, David Held, Kris Kitani Robotics Institute, Carnegie Mellon University

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020

