Al & Big Data Analytics for Society

Artificial Intelligence (AI)

• The ability of machines to think like human intelligence

Big Data Analytics

The process of analyzing large datasets to extract insights and patterns

BIG DATA ANALYTICS

Handling and Analyzing Large Datasets

General vs Narrow Al

- General AI: Capable of performing any intellectual task like a human.
- Narrow AI: Specialized in a specific task, such as image recognition or NLP.

Fields of Al

- Image Processing
- Computer Vision
- Robotics
- Natural Language Processing (NLP)
- Expert Systems
- Machine Learning & Deep Learning

Supervised vs Unsupervised vs Deep Learning

- Supervised Learning: Uses labeled data for training.
- Unsupervised Learning: No labeled data, finds hidden patterns.
- Deep Learning: Uses neural networks for complex problem-solving.

Probability Distributions

- Normal: Bell-shaped, used in statistics.
- Example of Probability Distribution: Rolling a die (values: 1, 2, 3, 4, 5, 6)

Bell Curve

['bel 'kərv]

A common type of distribution for a variable, also known as the normal distribution.

• Poisson: Reference to Models rare events.

- Exponential: Time between events in a Poisson process.
- Ex:
 - 1) Time until a radioactive particle decays
 - 2) Time between customer arrivals at a store

Bernoulli: Binary outcomes (success/failure).

Distribution & Visualization

 Scatterplots: Show relationships between variables.

Heatmaps: Display correlation strengths.

Box Plots: Data distribution insights.

Histogram

Prior vs Posterior Probability

- Prior Probability: Initial belief before new evidence.
- Posterior Probability: Updated probability after new evidence (via Bayes' Theorem).
- Example: Weather prediction before and after new satellite data.

Statistical Models for Structured and Unstructured Data

- Structured Data: Uses traditional models (e.g., Linear Regression, Decision Trees).
- Unstructured Data: Uses advanced models (e.g., Neural Networks, NLP techniques).
- Example: Sales data (Structured) vs Social
 Media Text (Unstructured).

Maximum Likelihood Estimation (MLE)

- It is widely used in regression, classification
- Often used to solved using optimization techniques like Gradient Descent
- Gradient is a fancy word for Derivation

- Example: Estimating mean and variance of a dataset.
- Variance (σ^2): How far values are from the mean is called as Variance

Importance of AI & Big Data

Enhances decision-making processes.

- Drives automation and efficiency.
- Facilitates real-time insights for businesses and governance.
- Improves quality of life through predictive analytics

Impact on Healthcare

- Al-powered diagnostics and predictive analysis.
- Personalized medicine and treatment recommendations.
- Efficient management of healthcare records and patient data.
- Disease outbreak prediction and prevention.

Impact on Finance

Fraud detection and risk management.

Automated trading and personalized financial services.

Credit scoring and loan approval automation.

Chatbots for customer service in banking.

Impact on Education

- Personalized learning experiences through AI-driven platforms.
- Automated grading and assessment tools.
- Virtual tutors and Al-powered education assistants.
- Data-driven policy decisions for better curriculum design.

Impact on Smart Cities & Governance

- Al-enabled traffic management and transportation planning.
- Smart energy management and sustainability initiatives.
- Predictive policing and crime analysis.
- Digital governance and citizen engagement through Al-powered chatbots.

Ethical Considerations & Challenges

- Data privacy and security concerns.
- Bias in AI algorithms and decision-making.
- Job displacement due to automation.
- Regulation and policy framework for responsible AI usage.

Career Map: Al & Big Data Analytics

- Entry-Level: Data Analyst, Al Research Assistant
- Mid-Level: Machine Learning Engineer, Data Scientist
- Senior-Level: Al Architect, Chief Data Officer
- Specializations: NLP Engineer, Computer Vision Engineer, Al Ethics Consultant

Q&A

Questions and Discussions