- (a) Ukažte, že následující gramatika je LALR(1). Svá tvrzení podložte výpočty a zdůvodněte. **Příklad 1**(b) Pomocí Vašeho LALR(1) analyzátoru proveďte syntaktickou analýzu slova aba. **25 bodů** $G = (\{S, A, B\}, \{a, b, c\}, P, S)$, kde
 - $P = \{ 1 \} S \rightarrow AbB,$
 - S → B,
 - 3) $A \rightarrow cB$,
 - 4) $A \rightarrow a$,
 - 5) $B \rightarrow A$

V případě nedostatku místa pokračujte na volném listě, na němž vyznačíte údaj "list" číslovkou 5.

- (a) Definujte pojem bisimulace, bisimulacní ekvivalence a aproximující bisimulace (\sim_n) .
- (b) Ukažte, že existuje relace bisimulace, která je symetrická, ale není relací ekvivalence.

Příklad 2

Příklad 3

15 bodů

a) Nechť $\Sigma = \{a, b\}$. Pomocí formule MSO logiky popište jazyk

$$\{w\in \Sigma^*\mid |w|=2k\wedge k\geq 1\}.$$

b) Popište regulárním výrazem jazyk nad $\Sigma = \{a, b, c\}$ popsaný MSO formulí

$$\exists x \exists y. \ x \neq y \land Q_a(x) \land Q_a(y) \land \forall z. Q_a(z) \Longrightarrow (x = z \lor y = z)$$

Při nedostatku místa pokračujte na volném listě, na němž vyznačíte údaj "list" číslovkou 7.

Buďte dány jazyky
$$L_1 = \{\alpha \in \{a, b, c\}^{\omega} \mid inf(\alpha) = \{b\}\}$$
 a

$$L_2 = \{\alpha \in \{a, b, c\}^{\omega} \mid \{b\} \subseteq inf(\alpha)\}$$

Příklad 4 25 bodů

- (a) Sestrojte deterministické Mullerovy automaty M₁, M₂, které po řadě rozpoznávají jazyky L₁ a L₂. a nalezněte ω-regulární výrazy, které je popisují.
- (b) pro L_1 sestrojte deterministický Büchiho automat. Pokud takový automat neexistuje, zdůvodněte proč a sestrojte pro L_1 nedeterministický Büchiho automat

Při nedostatku místa pokračujte na volném listě, na němž vyznačíte údaj "list" číslovkou 8.