```
/* This is a program for analyzing the
  penicillan data from Box, Hunter,
   and Hunter. It is posteded in the
   file
           penclln.sas
/* First enter the data */
data set1;
 infile 'c:\stat504\penclln.dat';
 input batch process $ yield;
 run;
/* Compute the ANOVA table, formulas for
  expectations of mean squares, process
  means and their standard errors */
proc glm data=set1;
 class batch process;
 model yield = batch process / e e3;
 random batch / q test;
 lsmeans process / stderr pdiff tdiff;
 output out=set2 r=resid p=yhat;
 run;
The GLM Procedure
   Class Level Information
         Levels Values
Class
              5 1 2 3 4 5
batch
              4
                ABCD
process
```

Number of Observations Read

Number of Observations Used

20

20

The GLM Procedure

General Form of Estimable Functions

Effect		Coefficients
Intercept		L1
batch	1	L2
batch	2	L3
batch	3	L4
batch	4	L5
batch	5	L1-L2-L3-L4-L5
process	A	L7
process	В	L8
process	С	L9
process	D	L1-L7-L8-L9

Type III Estimable Functions

		Coefficients			
Effect		batch	process		
Intercep	t	0	0		
batch	1	L2	0		
batch	2	L3	0		
batch	3	L4	0		
batch	4	L5	0		
batch	5	-L2-L3	-L4-L5 0		
			_		
process	A	0	L7		
process	В	0	L8		
process	C	0	L9		
process	D	0	-L7-L8-L9		

The GLM Procedure

Dependent Variable: yield

Source		DF	Sum of Squares	Mean Square	F Value	Pr > F
Model		7	334.0000000	47.7142857	2.53	0.0754
Error		12	226.0000000	18.8333333		
Corrected To	otal	19	560.0000000			
R-Square	Coeff Var	Roo	t MSE yield N	Mean (1997)		
0.596429	5.046208	4.3	39739 86.00	000		
Source		DF	Type III SS	Mean Square	F Value	Pr > F
batch process		4 3	264.0000000 70.0000000	66.0000000 23.3333333	3.50 1.24	0.0407 0.3387

Quadratic Forms of Fixed Effects in the Expected Mean Squares

Source: Type III Mean Square for process

	process A	process B	process C	process D
process A	3.75000000	-1.25000000	-1.25000000	-1.25000000
process B	-1.25000000	3.75000000	-1.25000000	-1.25000000
process C	-1.25000000	-1.25000000	3.75000000	-1.25000000
process D	-1.2500000	-1.2500000	-1.25000000	3.75000000

Source Type III Expected Mean Square

batch Var(Error) + 4 Var(batch)

process Var(Error) + Q(process)

Tests of Hypotheses for Mixed Model Analysis of Variance

Dependent Variable: yield

Source	DF	Type III SS	Mean Square	F Value	Pr > F
batch process	4 3	264.000000 70.000000	66.000000 23.333333	3.50 1.24	0.0407 0.3387
Error: MS(Error)	12	226.000000	18.833333		

Least Squares Means

	Standard]	LSMEAN
yield LSMEAN	Error	Pr > t	Number
84.000000	1.9407902	<.0001	1
85.0000000	1.9407902	<.0001	2
89.0000000	1.9407902	<.0001	3
86.0000000	1.9407902	<.0001	4
	84.0000000 85.0000000 89.0000000	yield LSMEAN Error 84.0000000 1.9407902 85.0000000 1.9407902 89.0000000 1.9407902	yield LSMEAN Error Pr > t 84.0000000 1.9407902 <.0001

Least Squares Means for Effect process
t for H0: LSMean(i)=LSMean(j) / Pr > |t|

Dependent Variable: yield

i/j	1	2	3	4
1		-0.36434 0.7219	-1.8217 0.0935	-0.72868 0.4802
2	0.36434 0.7219	0.7219	-1.45736 0.1707	-0.36434 0.7219
3	1.821698	1.457359 0.1707	0.1707	1.093019
4	0.728679 0.4802	0.36434 0.7219	-1.09302 0.2958	3.2530

NOTE: To ensure overall protection level, only probabilities associated with preplanned comparisons should be used.

```
/* Compute a normal probability plot for
  the residuals and the Shapiro-Wilk
  test for normality */
proc rank data=set2 normal=blom out=set2;
 var resid; ranks q;
 run;
proc univariate data=set2 normal plot;
 var resid;
 run;
 axis1 label=(h=2.5 r=0 a=90 f=swiss 'Residuals')
      value=(f=swiss h=2.0) w=3.0;
 axis2 label=(h=2.3 f=swiss 'Standard Normal Quantiles')
      value=(f=swiss h=2.0) w=3.0;
 axis3 label=(h=2.3 f=swiss 'Production Process')
      value=(f=swiss h=2.0) w=3.0;
 symbol1 v=circle i=none h=2 w=3 c=black;
proc gplot data=set2;
 plot resid*q / vaxis=axis1 haxis=axis2;
 title h=3.0 ls=1.0in f=swiss
      c=black 'Normal Probability Plot';
 footnote ls=0.6in ' ';
 run;
proc gplot data=set2;
 plot resid*process / vaxis=axis1 haxis=axis3;
 title h=3.0 ls=1.0in f=swiss
      c=black 'Residual Plot';
 footnote ls=0.6in ' ';
 run;
```

CHECK THE RESULTS BY YOURSELF

/* Fit the same model using PROC MIXED. Compute REML estimates of variance components. Note that PROC MIXED provides appropriate standard errors for process means. When block effects are random. PROC GLM does not provide correct

```
standard errors for process means */
```

proc mixed data=set1; class process batch; model yield = process / ddfm=satterth solution; random batch / type=vc G solution cl alpha=.05; lsmeans process / pdiff tdiff; run;

The Mixed Procedure

Model Information

Data Set WORK.SET1
Dependent Variable yield
Covariance Structure Variance Components
Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Satterthwaite

Class Level Information

Class Levels Values

process 4 A B C D
batch 5 1 2 3 4 5

Dimensions

Covariance Parameters 2
Columns in X 5
Columns in Z 5
Subjects 1
Max Obs Per Subject 20

Number of Observations

Number of Observations Read 20 Number of Observations Used 20 Number of Observations Not Used

Iteration History

Iteration	Evaluations	-2 Res Log Like	Criterion
0	1	106.59285141	
1	1	103.82994387	0.0000000

Convergence criteria met.

Estimated G Matrix

Row	Effect	batch	Col1	Col2	Col3	Co.	14	Col5
1 2	batch batch	1 2	11.7917	11.7917				
3	batch	3		11.,,,1,	11.7917			
4	batch	4				11.7917		
5	batch	5					11.791	.7

Covariance Parameter Estimates

Cov Parm Estimate
batch 11.7917
Residual 18.8333

Fit Statistics

-2 Res Log Likelihood	103.8
AIC (smaller is better)	107.8
AICC (smaller is better)	108.8
BIC (smaller is better)	107.0

The Mixed Procedure

Solution for Fixed Effects

Standard								
Effect	process	Estimate	Error	DF	t Value	Pr > t		
Intercept		86.0000	2.4749	11.1	34.75	<.0001		
process	A	-2.0000	2.7447	12	-0.73	0.4802		
process	В	-1.0000	2.7447	12	-0.36	0.7219		
process	С	3.0000	2.7447	12	1.09	0.2958		
process	D	0	•			•		

Solution for Random Effects

		St	d Err						
Effect	batch	Estimate	Pred	DF	t Value	Pr > t	Alpha	Lower	Upper
batch	1	4.2879	2.2473	5.29	1.91	0.1115	0.05	-1.3954	9.9712
batch	2	-2.1439	2.2473	5.29	-0.95	0.3816	0.05	-7.8273	3.5394
batch	3	-0.7146	2.2473	5.29	-0.32	0.7627	0.05	-6.3980	4.9687
batch	4	1.4293	2.2473	5.29	0.64	0.5513	0.05	-4.2540	7.1126
batch	5	-2.8586	2.2473	5.29	-1.27	0.2564	0.05	-8.5419	2.8247

Type 3 Tests of Fixed Effects

	Num	Den		
Effect	ਜਹ	DE	F Value	Dr > F

3 12 1.24 0.3387 process

Least Squares Means

Standard Effect Estimate Error DF t Value Pr > |t|process 84.0000 2.4749 11.1 33.94 <.0001 process В 85.0000 2.4749 34.35 <.0001 process 11.1 2.4749 35.96 C 89.0000 11.1 <.0001 process process D 86.0000 2.4749 11.1 34.75 <.0001

Differences of Least Squares Means

		Standard					
Effect	process	_process	Estimate	Error	DF	t Value	Pr > t
process	А	В	-1.0000	2.7447	12	-0.36	0.7219
process	A	С	-5.0000	2.7447	12	-1.82	0.0935
process	A	D	-2.0000	2.7447	12	-0.73	0.4802
process	В	С	-4.0000	2.7447	12	-1.46	0.1707
process	В	D	-1.0000	2.7447	12	-0.36	0.7219
process	С	D	3.0000	2.7447	12	1.09	0.2958

- > # Analyze the penicillin data from Box,
- > # Hunter, and Hunter. This code is
- > # posted as penclln.r
- > # Enter the data into a data frame and
- > # change the Batch and Process variables
- > # into factors
- > penclln <- read.table("penclln.dat",</pre>
- + col.names=c("Batch","Process","Yield"))
- > penclln\$Batch <- as.factor(penclln\$Batch)</pre>
- > penclln\$Process <- as.factor(penclln\$Process)</pre>

12

	penciinariocess - as				
>	penclln				
	Batch	Process	Yield		
1	1	A	89		
2	1	В	88		
3	1	C	97		
4	1	D	94		
5	2	A	84		
6	2	В	77		
7	2	C	92		
8	2	D	79		
9	3	A	81		
10	3	В	87		
11	L 3	C	87		

13 A 87 14 4 в 92

3

D 85

- 15 C 89 4 16 4 D 84
- 17 5 A 79
- 18 5 в 81 19 5 C 80
- 5 20 D 88

Penicillin Production Results


```
> # Use the lme() function to fit a model
> # with additive batch (random) and process
> # (fixed) effects and create diagnostic plots.
>
> library(nlme)
>
> options(contrasts=c("contr.treatment",
+ "contr.poly"))
>
> penclln.lme <- lme(Yield ~ Process,
+ random= ~ 1|Batch, data=penclln,
+ method=c("REML"))
>
> summary(penclln.lme)
Linear mixed-effects model fit by REML
Data: penclln
AIC BIC logLik
```

```
115.8299 120.4655 -51.91497
Random effects:
Formula: ~1 | Batch
    (Intercept) Residual
StdDev: 3.433900 4.339739
Fixed effects: Yield ~ Process
        Value Std.Error DF t-value p-value
(Intercept) 84 2.474874 12 33.94113 0.0000
ProcessB 1 2.744692 12 0.30101
ProcessC 5 2.744692 12 1.82170 0.0935
             2 2.744692 12 0.72868 0.4802
ProcessD
Correlation:
      (Intr) PrcssB PrcssC
ProcessB -0.555
ProcessC -0.555 0.500
ProcessD -0.555 0.500 0.500
Standardized Within-Group Residuals:
     Min
          O1 Med
                             03
-1.4151575 -0.5017350 -0.1643840 0.6829939 1.2836503
Number of Observations: 20
Number of Groups: 5
> names(penclln.lme)
[1] "modelStruct" "dims"
                              "contrasts"
                                            "coefficients"
                             "apVar"
              "sigma"
"groups"
[5] "varFix"
                                           "logLik"
[9] "numIter"
                              "call"
                                            "terms"
                 "fitted"
                              "residuals" "fixDF"
[13] "method"
[17] "na.action" "data"
> # Contruct ANOVA table for fixed effects
> anova(penclln.lme)
   numDF denDF F-value p-value
(Intercept) 1 12 2241.2121 <.0001
            3 12 1.2389 0.3387
Process
> # Estimated parameters for fixed effects
> coef(penclln.lme)
 (Intercept) ProcessB ProcessC ProcessD
  88.28788 1 5 2
1
                        5
                                2
2 81.85606
                1
                               2
3 83.28535
                1
                        5
                                2
4 85.42929
                1
                        5
  81.14141
                 1
                        5
> # BLUP's for random effects
> ranef(penclln.lme)
 (Intercept)
1 4.2878788
2 -2.1439394
3 - 0.7146465
4 1.4292929
5 -2.8585859
> # Confidence intervals for fixed effects
> # and estimated standard deviations
> intervals(penclln.lme)
Approximate 95% confidence intervals
```

```
Fixed effects:
             lower est.
                         upper
(Intercept) 78.6077134 84 89.39229
          -4.9801698
                       1 6.98017
ProcessB
          -0.9801698
                      5 10.98017
ProcessC
          -3.9801698
                      2 7.98017
ProcessD
attr(,"label")
[1] "Fixed effects:"
Random Effects:
 Level: Batch
               lower
                       est.
                              upper
sd((Intercept)) 1.285359 3.433900 9.173834
Within-group standard error:
  lower est. upper
2.908802 4.339739 6.474602
> # Create a listing of the original data
> # residuals and predicted values
> data.frame(penclln$Process,penclln$Batch,
            penclln$Yield,
            Pred=penclln.lme$fitted,
            Resid=round(penclln.lme$resid,3))
  penclln.Process penclln.Batch penclln.Yield Pred.fixed Pred.Batch
                                   89
                                        84 88.28788
1
             Α
                        1
2
                         1
                                   88
                                             85 89.28788
             В
3
             C
                         1
                                   97
                                            89 93.28788
4
                         1
                                   94
                                            86 90.28788
             D
5
                         2
                                   84
                                            84 81.85606
             Α
6
                         2
             В
                                            85 82.85606
                                   77
7
                         2
                                            89 86.85606
             C
                                   92
8
                         2
             D
                                   79
                                            86 83.85606
9
                         3
             Α
                                  81
                                            84 83.28535
                         3
10
             В
                                   87
                                            85 84.28535
                         3
11
             C
                                   87
                                             89 88.28535
                         3
12
             D
                                  85
                                             86 85.28535
                         4
13
             Α
                                  87
                                             84 85.42929
                         4
14
             В
                                   92
                                            85 86.42929
                         4
15
             C
                                  89
                                             89 90.42929
                         4
16
             D
                                  84
                                            86 87.42929
                         5
17
             Α
                                   79
                                            84 81.14141
                         5
18
             В
                                  81
                                            85 82.14141
19
             C
                                   80
                                            89 86.14141
20
             D
                                   88
                                            86 83.14141
  Resid.fixed Resid.Batch
          5
               0.712
2
          3
                -1.288
3
         8
                3.712
4
         8
                3.712
5
         0
                2.144
6
               -5.856
         -8
7
         3
               5.144
8
               -4.856
         -7
9
         -3
               -2.285
10
         2
                2.715
11
         -2
                -1.285
```

```
12
        -1
              -0.285
13
         3
               1.571
         7
14
               5.571
15
         0
              -1.429
16
         -2
              -3.429
17
         -5
              -2.141
         -4
18
               -1.141
         -9
               -6.141
19
         2
               4.859
20
> # Create residual plots
> frame( )
> par(cex=1.2,lwd=3,mex=1.5)
  plot(penclln.lme$fitted, penclln.lme$resid,
      xlab="Estimated Means",
       ylab="Residuals",
      main="Residual Plot")
  abline(h=0, lty=2, lwd=3)
```

Residual Plot

Estimated Means

- > qqnorm(penclln.lme\$resid)
- > qqline(penclln.lme\$resid)

Normal Q-Q Plot

Theoretical Quantiles