TRIGONOMETRY Chapter 20

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL II

La Trigonometría ... ¿ Para qué sirve o para qué la usamos ?

La trigonometría nos sirve para calcular distancias sin la necesidad de recorrerlas.

La trigonometría en la vida real es muy utilizada ya que podemos medir alturas o distancias, realizar medición de ángulos, entre otras cosas.

ÁNGULO EN POSICIÓN NORMAL

DEFINICIÓN:

Es aquel ángulo trigonométrico ubicado sobre el plano cartesiano, posee :

- Vértice : Origen de coordenadas.
- Lado inicial : Semieje X positivo.
- Lado final : Se ubica en cualquier cuadrante o semieje del plano.

OBSERVACIÓN:

Representación gráfica:

La posición del lado final de un ángulo en posición normal, determina el cuadrante o semieje al cual pertenece dicho ángulo.

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL II

α: ángulo en posición normal.

x: abscisa del punto P.

y: ordenada del punto P.

r: radio vector del punto P.

$$r = \sqrt{x^2 + y^2}$$
 (r > 0)

DEFINICIONES:

$\cot \alpha$	secα	cscα
X	r	r
y	X	y

Del gráfico, complete el siguiente cuadro.

cotø	3 4
secø	5 3
cscф	5 4

RESOLUCIÓN

Según gráfico: x = 3; y = 4

Luego:

$$r = \sqrt{(3)^2 + (4)^2} = \sqrt{9 + 16}$$

$$\mathbf{r} = \sqrt{25} \implies \mathbf{r} = \mathbf{5}$$

RECORDAR:

$$\mathbf{r} = \sqrt{\mathbf{x}^2 + \mathbf{y}^2}$$

$cot oldsymbol{\phi}$	secφ	cscφ
X	r	r
<u>y</u>	X	<u></u>

Del gráfico, calcule sec²θ.

RESOLUCIÓN

Según gráfico: x = 12; y = 9

Luego:

$$r = \sqrt{(12)^2 + (9)^2} = \sqrt{144 + 81}$$

$$\mathbf{r} = \sqrt{225} \implies \mathbf{r} = \mathbf{15}$$

$$\sec^2\theta = \left(\frac{15}{12}\right)^2 = \left(\frac{5}{4}\right)^2$$

$$\therefore \sec^2 \theta = \frac{25}{16}$$

Del gráfico, efectúe

$$E = \sqrt{15} \csc \phi$$

RECORDAR:

$$\mathbf{r} = \sqrt{\mathbf{x}^2 + \mathbf{y}^2}$$

RESOLUCIÓN

Según gráfico: $x = -\sqrt{11}$; y = 2

Luego:

$$\mathbf{r} = \sqrt{(-\sqrt{11})^2 + (4)^2} = \sqrt{11 + 4}$$

$$\Rightarrow \mathbf{r} = \sqrt{15}$$

Efectuamos E:

$$\mathsf{E} = \sqrt{15} \left(\frac{\sqrt{15}}{2} \right)$$

$$\therefore \mathbf{E} = \frac{15}{2}$$

Si el punto P(-2; 3) pertenece al lado final de un ángulo ϕ en posición normal; efectúe K = $\sec\phi$. $\csc\phi$

RESOLUCIÓN

Según datos : x = -2 ; y = 3

Luego calculamos r:

$$r = \sqrt{x^2 + y^2} = \sqrt{(-2)^2 + (3)^2}$$
 $r = \sqrt{4+9} \implies r = \sqrt{13}$

Finalmente efectuamos K:

$$K = \left(\frac{r}{x}\right)\left(\frac{r}{y}\right)$$

$$K = \left(\frac{\sqrt{13}}{-2}\right)\left(\frac{\sqrt{13}}{3}\right)$$

$$\therefore K = -\frac{13}{\sqrt{2}}$$

Del gráfico, efectúe $H = csc\theta + cot\theta$.

$$\mathbf{r} = \sqrt{\mathbf{x}^2 + \mathbf{y}^2}$$

RESOLUCIÓN

Según gráfico: x = 5; y = 12

Luego:

$$r = \sqrt{(5)^2 + (12)^2} = \sqrt{25 + 144}$$

$$r = \sqrt{169} \implies r = 13$$

Efectuamos $H = \csc\theta + \cot\theta$:

$$H = \frac{13}{12} + \frac{5}{12} = \frac{18}{12}$$

$$\therefore \mathbf{H} = \frac{3}{2}$$

En un juego interactivo organizado por el profesor de trigonometría, para el último acertijo se tienen las siguientes indicaciones:

- a) Dirigirse al centro del patio deportivo (origen de coordenadas).
- b) Desde el centro dirigirse 10 m a la derecha y luego (2n 1) m hacia abajo.

Si se sabe que θ es el ángulo en posición normal cuyo lado final pasa por las coordenadas antes indicadas, y además $\cot \theta = -\frac{2}{5}$; determine el valor de n .

En un juego interactivo organizado por el profesor de trigonometría; para el último acertijo se tienen las siguientes indicaciones:

- a) Dirigirse al centro del patio deportivo (origen de coordenadas).
- b) Desde el centro dirigirse 10 m a la derecha y luego (2n - 1) m hacia abajo.

Si se sabe que 0 es el ángulo en posición normal cuyo lado final pasa por las coordenadas antes indicadas.

Si $\cot \theta = -\frac{2}{\epsilon}$, determine el valor de n.

RESOLUCIÓN

M es punto medio : Calculamos $\cot \alpha$:

$$x = \frac{-7 - 1}{2} = -4$$

$$y = \frac{1+5}{2} = 3$$

$$\cot \alpha = \frac{x}{v}$$

$$\cot \alpha = \frac{-4}{3}$$

