Engineering Mathematics II MAT 1251

First sessional - 14.02.2019

I

- 1. The value of $\lim_{x\to 0} \frac{(1+x)^{1/x}-e}{e}$ is
 - a) *e*
 - **b**) 0
 - c) 1
 - d) $\frac{1}{3}$
- 2. Change the order of integration in $\int_0^4 \int_0^{4-y} (x+y) dx dy$. Then the corresponding integral is
 - a) $\int_0^3 \int_1^4 (x+y) dy dx$
 - b) $\int_0^4 \int_0^{4-x} (x+y) dy dx$
 - c) $\int_0^4 \int_0^4 (x+y) dy dx$
 - d) $\int_{0}^{3} \int_{1}^{4-x} (x+y) dy dx$
- 3. Given $x^3 + y^3 3axy = 0$, then $\frac{dy}{dx} =$
 - a) $3x^2 3ay$
 - b) $3y^2 3ax$
 - c) $\frac{ay-x^2}{y^2-ax}$
 - d) $\frac{ay+x^2}{y^2+ax}$
- 4. $\lim_{x\to 0} \frac{3^x-2^x}{x} =$
 - a) $log\left(\frac{3}{2}\right)$

- b) $log\left(\frac{2}{3}\right)$
- c) 0
- d) 1
- 5. If functions x^2 and x satisfy the Cauchy mean value theorem in [a, b], where a, b > 0 then the value of c is
 - a) ab
 - b) 2*ab*
 - c) $\frac{(a+b)}{2}$
 - d) $\frac{(a+b)}{4}$
- 6. If $u = \sin^{-1} \frac{x}{y} + \tan^{-1} \frac{y}{x}$ then evaluate $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} =$
 - a) 2*u*
 - b) *u*
 - c) $\frac{u}{2}$
 - **d**) 0
- 7. If the percentage error in radius of a sphere is 0.3, then percentage error in volume of the sphere is
 - a) 0.8
 - b) 0.9
 - c) 0.1
 - d) 0.6
- 8. If $u = x^y y^x$, then $\frac{\partial u}{\partial x} =$
 - (a) $xy^{x-1} x^y log x$
 - (b) $yx^{y-1} y^x logy$
 - (c) $x^y \log x xy^{x-1}$

(d)
$$yx^{y-1} - xy^{x-1}$$

- 9. The Maclaurin's series expansion of $y = \log(secx)$ up to second degree terms is _____
 - $(\mathbf{a})\frac{x^2}{2}$
 - (b) $x + \frac{x^2}{3}$
 - (c) $1 + \frac{x^2}{2}$
 - (d) x^2
- 10. The stationary point of $f(x, y) = x^2 xy + y^2 + 2x 4y + 1$ is
 - a) (0,0)
 - b) (0, 2)
 - c)(2,2)
 - d) (2,0)

II.

- 1. Evaluate $\iint_R e^{y^2} dxdy$, where R is the triangle formed by the vertices (0,0),(0,1) and (2,1).
- 2. Change the order of integration and evaluate $\int_0^a \int_{\sqrt{ax}}^a \frac{y^2}{\sqrt{y^4 a^2 x^2}} dy dx$.
- 3. Expand $f(x, y) = \tan^{-1}(\frac{y}{x})$ about (1,1) upto third degree terms.
- 4. If $u = \tan^{-1}\left(\frac{x^3 + y^3}{x y}\right)$, prove that

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = (1 - 4\sin^{2} u)\sin^{2} u.$$

5. Find the maximum and minimum distances of the point (1,2,3) from the sphere $x^2 + y^2 + z^2 = 36$.