L'Ire 2 Wel 3/10 Sec. 1.2] A set is a collection of elements 4 5 $x \in S$ S= \{ \times \in \mathre{R} : \tag{2} \leq 4 \} - /z €R : -2 € >c €2} [-2,2] closed internal, open internal $(-2,2)=\frac{1}{2}$ $\left(-2,2\right)=\frac{1}{2}$ "half over" (-2, 2] (-2, 2) Ø = \{ 3} AMMOND BANB intersection xCANB (=) and

A is a subset of B B contains A Escamples D = IR
rational real ratural whole INTEGERS $Q = \left\{\frac{r}{2} : P, Q \in \mathbb{Z}, q \right\}$ $Z = \{-1, 0, 1, 2, ...\}$ $C, \pi, J_2 \in \mathbb{R} \setminus \mathbb{Q}$ A FIELD 15 a set with operations +, × satisfying

 $xeF \Rightarrow xeB$

Subsets

 $\left(2\right)$

Associativity
$$a+(b+c)=b+b+t+$$
 $a(b-c)=ab+c$ $ab-bq$ $b+ab=b+c$ $ab-bq$ $b+ab=bq$ $ab-bq$ $b+ab=bq$ $ab-bq$ $ab-bq$

IK form a field, & so does (I) & so does (I) $Z_{3} = \{ \overline{0}, \overline{1}, \overline{2} \}$ $(\overline{2}.\overline{2}) = \overline{4} = \overline{1}$ modulo $\overline{2}+\overline{2} = \overline{4} = \overline{1}$ -T=2 because T+2=0 $\bar{2}' = \bar{2}$ on $\bar{2}.\bar{2} = \bar{1}$ forms an ordered field