1 Introduction

2 Rooted Trees

A *rooted tree* is a pair, (t,r), such that t is a finite, simple connected graph without cycles and r is a vertex that has been selected from the set, V(t), of vertices of t. By convention each edge is directed away from r. We denote the order of a tree, t, by |t| and the set of order n rooted trees is denoted \mathcal{R}_n . In addition we define $R := \bigcup R_n$.

A labelled rooted tree is a triple (t, r, L) such that (t, r) is a rooted tree and

$$L: V(t) \longrightarrow \{1, 2, \dots, |t|\}$$

is a bijective map. We denote the set of order n labelled rooted trees by \mathcal{L}_n and we define $\mathcal{L} = \bigcup \mathcal{L}_n$.

Vertices u and v of a rooted tree, (t,r) we write $u \leq v$ if u lies on the unique shortest path from r to v. A random recursive tree is a triple (t,r,l) such that l is a labelling that satisfies if $u \leq v$ then l(u) < l(v). We denote the set of order n random recursive trees by \mathcal{T}_n and we define $\mathcal{T} = \bigcup \mathcal{T}_n$.

Two rooted trees, (t_1,r_1) and (t_2,r_2) are said to be isomorphic of there exists a bijection $f:V(t_1)\to V(t_2)$ such that vertices $u,v\in V(t_1)$ are adjacent if and only if $f(u),f(v)\in V(t_2)$ are adjacent and $f(r_1)=r_2$. If $V(t_1)=V(t_2)$ then f is called a rooted tree automorphism. The set of automorphisms of a tree, t, together with composition of maps forms a group denoted $\operatorname{Aut}(t)$. The order of the automorphism group is denoted

$$\sigma(t) := |\operatorname{Aut}(t)|$$

Consider a map $\phi: \mathcal{L} \to R$ that simply forgets the labels of a labelled by mapping

$$(t, r, L) \mapsto (t, r)$$

The map ϕ is clearly surjective but not injective hence we define $\beta(t) = |\phi^{-1}(t)|$ to be the number of possible isomorphism classes of labellings of a rooted tree $t \in \mathcal{R}$. There are |t|! possible labellings of a tree $t \in \mathcal{R}$ hence there are

$$\beta(t) = \frac{|t|!}{\sigma(t)} \tag{1}$$

isomorphism classes of labellings of such a tree.

Since $\mathcal{T} \leq \mathcal{L}$ we may restrict ϕ to random recursive trees, hence we define

$$\alpha(t) := |\phi^{-1}|_{\mathcal{T}} (t)|$$