## **Timing**

(时序)

Song Chen October 15, 2015

http://staff.ustc.edu.cn/~songch/da-ug.htm

#### **Outline**

- Sequencing
- □ Sequencing Element Design
- Max and Min-Delay
- □ Clock Skew
- Time Borrowing
- □ Two-Phase Clocking
- ☐ Timing Analysis

## Sequencing

- ☐ Combinational logic
  - output depends on current inputs
- Sequential logic
  - output depends on current and previous inputs
  - Requires separating previous, current, future
  - Called state or tokens
  - Ex: FSM, pipeline



## **Sequencing Elements**

- □ Latch: Level sensitive
  - a.k.a. transparent latch, D latch
- ☐ Flip-flop: edge triggered
  - A.k.a. master-slave flip-flop, D flip-flop, D register
- ☐ Timing Diagrams
  - Transparent
  - Opaque
  - Edge-trigger



## **Latch Design**

- Widely used in standard cells
  - + Very robust (most important)
  - Rather large
  - Rather slow (1.5 2 FO4 delays)
  - High clock loading



## Flip-Flop Design

☐ Flip-flop is built as pair of back-to-back latches





#### **Enable**

- $\Box$  Enable: ignore clock when en = 0
  - Mux: increase latch D-Q delay
  - Clock Gating: increase en setup time, skew



#### Reset

- ☐ Force output low when reset asserted
- ☐ Synchronous vs. asynchronous



#### Set / Reset

- ☐ Set forces output high when enabled
- ☐ Flip-flop with asynchronous set and reset



## **Sequencing Methods**

- ☐ Flip-flops
- □ 2-Phase Latches
- Pulsed Latches



## **Timing Diagrams**



# Contamination and Propagation Delays

| t <sub>pd</sub>    | Logic Prop. Delay             |  |
|--------------------|-------------------------------|--|
| t <sub>cd</sub>    | Logic Cont. Delay             |  |
| t <sub>pcq</sub>   | Latch/Flop Clk->Q Prop. Delay |  |
| t <sub>ccq</sub>   | Latch/Flop Clk->Q Cont. Delay |  |
| t <sub>pdq</sub>   | Latch D->Q Prop. Delay        |  |
| t <sub>cdq</sub>   | Latch D->Q Cont. Delay        |  |
| t <sub>setup</sub> | Latch/Flop Setup Time         |  |
| t <sub>hold</sub>  | Latch/Flop Hold Time          |  |













## **Max-Delay: Flip-Flops**



## **Max Delay: 2-Phase Latches**



## **Max Delay: Pulsed Latches**



## **Min-Delay: Flip-Flops**

$$t_{cd} \ge$$



## Min-Delay: 2-Phase Latches

$$t_{cd1}, t_{cd2} \ge$$

Hold time reduced by nonoverlap

Paradox: hold applies twice each cycle, vs. only once for flops.

But a flop is made of two latches!



## **Min-Delay: Pulsed Latches**

 $t_{cd} \ge$ 

Hold time increased by pulse width



### **Time Borrowing**

- ☐ In a flop-based system:
  - Data launches on one rising edge
  - Must setup before next rising edge
  - If it arrives late, system fails
  - If it arrives early, time is wasted
  - Flops have hard edges
- □ In a latch-based system
  - Data can pass through latch while transparent
  - Long cycle of logic can borrow time into next
  - As long as each loop completes in one cycle

### **Time Borrowing Example**



## **How Much Borrowing?**

#### 2-Phase Latches

$$t_{\text{borrow}} \leq \frac{T_c}{2} - \left(t_{\text{setup}} + t_{\text{nonoverlap}}\right)$$

#### **Pulsed Latches**

$$t_{\rm borrow} \leq t_{pw} - t_{\rm setup}$$



#### **Clock Skew**

- We have assumed zero clock skew
- Clocks really have uncertainty in arrival time
  - Decreases maximum propagation delay
  - Increases minimum contamination delay
  - Decreases time borrowing

#### **Clock Uncertainties**



Sources of clock uncertainty

#### **Clock Nonidealities**

- ☐ Clock skew
  - Spatial variation in temporally equivalent clock edges;
    deterministic + random, t<sub>SK</sub>
- □ Clock jitter
  - Temporal variations in consecutive edges of the clock signal; modulation + random noise
  - Cycle-to-cycle (short-term)  $t_{JS}$
  - Long term  $t_{JJ}$
- Variation of the pulse width
  - Important for level sensitive clocking [latches]

#### **Clock Skew** and Jitter



- Both skew and jitter affect the effective cycle time
- Only skew affects the race margin

#### **Clock Skew**



### **Skew: Flip-Flops**

$$t_{pd} \leq T_c - \underbrace{\left(t_{pcq} + t_{\text{setup}} + t_{\text{skew}}\right)}_{\text{sequencing overhead}}$$

$$t_{cd} \ge t_{\text{hold}} - t_{ccq} + t_{\text{skew}}$$



#### **Skew: Latches**

#### 2-Phase Latches

$$t_{pd} \leq T_c - \underbrace{\left(2t_{pdq}\right)}_{\text{sequencing overhead}}$$

$$t_{cd1}, t_{cd2} \ge t_{\text{hold}} - t_{ccq} - t_{\text{nonoverlap}} + t_{\text{skew}}$$

$$t_{\rm borrow} \leq \frac{T_c}{2} - \left(t_{\rm setup} + t_{\rm nonoverlap} + t_{\rm skew}\right)$$

#### **Pulsed Latches**

$$t_{pd} \leq T_c - \underbrace{\max\left(t_{pdq}, t_{pcq} + t_{\text{setup}} - t_{pw} + t_{\text{skew}}\right)}_{\text{sequencing overhead}}$$

$$t_{cd} \ge t_{\text{hold}} + t_{pw} - t_{ccq} + t_{\text{skew}}$$

$$t_{\text{borrow}} \le t_{pw} - \left(t_{\text{setup}} + t_{\text{skew}}\right)$$



### **Two-Phase Clocking**

- If setup times are violated, reduce clock speed
- If hold times are violated, chip fails at any speed
- No tools to analyze clock skew
  - An easy way to guarantee hold times is to use 2phase latches with big nonoverlap times
- $\Box$  Call these clocks  $\phi_1$ ,  $\phi_2$  (ph1, ph2)

### Safe Flip-Flop

- ☐ Past years used flip-flop with nonoverlapping clocks
  - Slow nonoverlap adds to setup time
  - But no hold times
- In industry, use a better timing analyzer
  - Add buffers to slow signals if hold time is at risk



## **Sequencing Summary**

- ☐ Flip-Flops:
  - Very easy to use, supported by all tools
- □ 2-Phase Transparent Latches:
  - Lots of skew tolerance and time borrowing
- □ Pulsed Latches:
  - Fast, some skew tol & borrow, hold time risk

|                                     | Sequencing overhead $(T_c - t_{pd})$                                            | Minimum logic delay $t_{cd}$                                                             | Time borrowing t <sub>borrow</sub>                                                        |
|-------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Flip-Flops                          | $t_{pcq} + t_{\text{setup}} + t_{\text{skew}}$                                  | $t_{\rm hold} - t_{ccq} + t_{\rm skew}$                                                  | 0                                                                                         |
| Two-Phase<br>Transparent<br>Latches | $2t_{pdq}$                                                                      | $t_{\text{hold}} - t_{ccq} - t_{\text{nonoverlap}} + t_{\text{skew}}$ in each half-cycle | $\frac{T_c}{2} - \left(t_{\text{setup}} + t_{\text{nonoverlap}} + t_{\text{skew}}\right)$ |
| Pulsed<br>Latches                   | $\max \Big(t_{pdq}, t_{peq} + t_{\text{setup}} - t_{pw} + t_{\text{skew}}\Big)$ | $t_{\rm hold} - t_{ccq} + t_{pw} + t_{\rm skew}$                                         | $t_{pw} - \left(t_{\text{setup}} + t_{\text{skew}}\right)$                                |

#### Reference

☐ Reference [1]. Chapter 10.1-10.3

## STA in ASIC Design Flow

