一阶逻辑(一

一阶逻辑 (一) 第四章 - 一阶语言的结构与真值

姚宁远

复旦大学哲学学院

October 11, 2021

目录

- 1 一阶语言的结构
- 2 可定义性
- 3 同态与同构

对一阶公式的解释

以下公式的"意义"是什么?是否具有真假?

- 1 $\exists x_1...\exists x_n (E(x_1, x_2) \land ... \land E(x_{n-1}, x_n));$
- $\exists y_1...\exists y_n \forall x (E(x,y_1) \lor ... \lor E(x,y_n));$
- 3 $\forall x E(x, x) \land \forall x \forall y (E(x, y) \leftrightarrow E(y, x))$ $\land \forall x \forall y \forall z ((E(x, y) \land E(y, z) \rightarrow E(x, z)))$
- $4 \forall x \forall y \exists \epsilon (x < y \land y < x + \epsilon);$
- 5 $\forall x_0... \forall x_{n-1} \exists y (y^n + x_{n-1}y^{n-1} + ... + x_1y + x_0 = 0)$

对一阶公式的解释

给定语言 L, 我们需要对以下符号做出解释:

- 2 谓词解释为 n-元关系;
- 3 函数符号解释为函数;
- 4 常元符号解释为常量;
- 5 给量词 ∀ 指定一个其使用的范围。

L-结构 |

设 L 是一个一阶语言,则一个 L-结构 $\mathfrak U$ 是一个对于未语言中符号的函数,满足下列条件:

- 给量词符号 ∀ 指定一个非空集、称作 ¼ 的论域、记作 ¼ ;
- **2** 对每个 n-元谓词符号 P, \mathfrak{U} 都指定一个 n-元关系 $P^{\mathfrak{U}} \subseteq |\mathfrak{U}|^n$;
- 3 对每个 n-元函数符号 f, \mathfrak{U} 都指定一个 n-元函数 $f^{\mathfrak{U}}: |\mathfrak{U}|^n \to |\mathfrak{U}|;$
- 4 对每个常 y 元符号 c, \mathfrak{U} 都指定一个元素 $c^{\mathfrak{U}} \in |\mathfrak{U}|$ 。

赋值

- 1 给定一个结构 $\mathfrak{U}=(U,P,f,c)$
- **2** 个含有自由变元的公式 $\phi(x)$ 在 \mathfrak{U} 中是有意义的,但是没有 真假;
- 3 而对于任意的 $a \in U$, $\phi(a)$ 是关于 a 的一个断言,是有真值的;

定义

令 V 是所有变元的集合,一个赋值是从 V 到 U 的一个映射。

项的解释 I

定义

设 $\mathfrak{U} = (U, ...)$ 是一个 L-结构。 $s: V \to U$ 是一个赋值。设 T 是项的集合,递归定义函数 $\overline{s}: T \to U$ 如下:

- 1 对每个变元符 x,有 $\bar{s}(x) = s(x)$
- **2** 对每个常元符 c,有 $\bar{s}(c) = c^{\mathfrak{U}}$;
- 3 如果 f 是 n-元函数符号, $t_1, ..., t_n$ 是项,则 $\bar{s}(ft_1...t_n) = f^{\mathfrak{U}}(\bar{s}(t_1), ..., \bar{s}(t_n))$ 。

项的解释Ⅱ

定义

设 $\mathfrak{U} = (U,...)$ 是一个 L-结构。 $s: V \to U$ 是一个赋值。设 t 是一个项,其变元来自 $\{x_1,...,x_n\}$,递归定义函数 $t^{\mathfrak{U}}(x_1,...,x_n)$ 如下:对任意的 $\bar{a} = (a_1,...,a_n) \in |\mathfrak{U}|^n$,

- **1** 如果 t 是变元符 x_i ,有 $t^{\mathfrak{U}}(\bar{a}) = a_i$
- 2 如果 t 是常元符 c,有 $t^{\mathfrak{U}}(\bar{a}) = c^{\mathfrak{U}}$;
- 3 如果 f 是 m-元函数符号, $t_1,...,t_m$ 是项, $t=ft_1...t_m$,则 $t^{\mathfrak{U}}(\bar{a})=f^{\mathfrak{U}}(t_1^{\mathfrak{U}}(\bar{a}),...,t_m^{\mathfrak{U}}(\bar{a}))$ 。

注

注

设 $\mathfrak{U} = (U, ...)$ 是一个 L-结构。

- **1** 对任意的项 t, 映射 $s\mapsto \bar{s}(t)$ 事实上是"复合函数符号" t 在 \mathfrak{U} 中的解释;
- ② 设 $t = t(x_1,...,x_n)$, $a_1,...,a_n \in U$, 令 $s(x_i) = a_i$, 则 $t^{\mathfrak{U}}(a_1,...,a_n) = \bar{s}(t)$.

满足I

原子公式

设 $\mathfrak{U}=(U,...)$ 是一个 L-结构, $s:V\to U$ 是一个赋值, ϕ 是一个原子公式。我们称 \mathfrak{U} 和 s 满足公式 ϕ ,记作 $(\mathfrak{U},s)\models\phi$

- 11 $(\mathfrak{U},s)\models(t_1=t_2)$ 当且仅当 $\bar{s}(t_1)=\bar{s}(t_2)$;
- 2 $(\mathfrak{U},s)\models P(t_1,...,t_n)$ 当且仅当 $(\bar{s}(t_1),...,\bar{s}(t_n))\in P^{\mathfrak{U}}$ 。

满足Ⅱ

递归定义

- **1** $(\mathfrak{U}, s) \models \neg \psi$ 当且仅当 $(\mathfrak{U}, s) \not\models \psi$;
- $(\mathfrak{U}, s) \models \psi_1 \rightarrow \psi_2$ 当且仅当 $(\mathfrak{U}, s) \models \neg \psi_1$ 或者 $(\mathfrak{U}, s) \models \psi_2$;
- 3 $(\mathfrak{U},s)\models \forall x\psi$ 当且仅当对每个 $d\in U$,都有 $(\mathfrak{U},s_d^{\mathsf{x}})\models \psi$,其中

$$S_d^X(y) = \begin{cases} S(y), 如果y \neq X \\ d, 如果y = X \end{cases}$$

- 一个闭公式在一个结构 ¼ 中有真值;
- ② 一个公式在一个结构 ¼ 中的一个赋值下有真值;
- 3 以上的真值源于 災的"结构"

语义蕴涵

语义蕴涵

设 Γ 是一个公式集, ϕ 是一个公式,我们称 Γ 语义蕴涵 ϕ ,记作 $\Gamma \models \phi$,如果对每个结构 \mathfrak{U} ,每个赋值 s,都有:如果 (\mathfrak{U},s) 满足 Γ 中所有的公式,则 $(\mathfrak{U},s) \models \phi$ 。

类似地,可以定义:

- 语义等价;
- 普遍有效。

定理

定理

设 $\mathfrak{U}=(U,...)$ 是一个 L-结构, ϕ 是一个公式, $s_1,s_2:V\to U$ 是两个赋值,并且它们在 ϕ 的自由变元上取值相同,则

$$(\mathfrak{U}, \mathbf{s}_1) \models \phi \iff (\mathfrak{U}, \mathbf{s}_2) \models \phi$$

证明

对 ϕ 的长度归纳证明。设 ϕ 的自由变元集为 $\{x_1,...,x_n\}$ 。

- 显然,对每个自由变元来自 $x_1,...,x_n$ 的项, $\bar{s}_1(t)=\bar{s}_2(t)$.
- 设 ϕ 是 $(t_1 = t_2)$,则
 - $(\mathfrak{U}, \mathbf{s}_1) \models \phi \Leftrightarrow (\bar{\mathbf{s}}_1(t_1) = \bar{\mathbf{s}}_1(t_2))$ $(\mathfrak{U}, \mathbf{s}_2) \models \phi \Leftrightarrow (\bar{\mathbf{s}}_2(t_1) = \bar{\mathbf{s}}_2(t_2))$
- 设 *ϕ* 是 *P*(*t*₁, ..., *t*_m),则同理
- $lackbox{Q}$ 及 \mathcal{V} 走 \mathcal{V} ($(1,...,\mathcal{V}_{m})$),则问廷
- $\blacksquare (\mathfrak{U}, \mathbf{s}_1) \models P(t_1, ..., t_m) \iff (\mathfrak{U}, \mathbf{s}_2) \models P(t_1, ..., t_m);$
- 由归纳假设,容易证明 ϕ 是 $\psi_1 \vee \psi_2$ 和 $\neg \psi$ 的情形;
- 设 ϕ 是 $\forall y \psi(x_1, ..., x_n, y)$;
- 则 $(\mathfrak{U}, s_1) \models \phi$ 当且仅当对每个 $d \in |\mathfrak{U}|$, $(\mathfrak{U}, s_1^y) \models \phi$;
- s_{1d}^{y} 与 s_{2d}^{y} 在 ψ 的自由变元上取值相同;
- 根据归纳假设,对每个 $d \in |\mathfrak{U}|, (\mathfrak{U}, \mathbf{s}_2^{\mathbf{y}}) \models \phi;$
- **■** 故 $(\mathfrak{U}, \mathbf{s}_2) \models \phi$ 。 同理有 $(\mathfrak{U}, \mathbf{s}_2) \models \phi \implies (\mathfrak{U}, \mathbf{s}_1) \models \phi$.

注

1 如果公式 ϕ 中自由出现的变元都来自 $\{x_1,...,x_n\}$,则对任意的赋值 s_1,s_2 ,当 $s_1(x_i)=s_2(x_i)$,i=1,...,n 的时候,总是有

$$(\mathfrak{U}, \mathbf{s}_1) \models \phi \iff (\mathfrak{U}, \mathbf{s}_2) \models \phi.$$

2 基于以上原因,我们一般将 ϕ 记作 $\phi(x_1,...,x_n)$,而用

$$\mathfrak{U} \models \phi[\mathbf{a}_1,...,\mathbf{a}_n]$$

表示存在一个(对任意的)赋值 s 满足 $s(x_i) = a_i$ 使得 $(\mathfrak{U}, s) \models \phi$ 。

推论

推论

设 $\mathfrak{U}=(U,...)$ 是一个 L-结构, σ 是一个闭语句。则或者

- **1** 对所有的赋值 s, 都有 $(\mathfrak{U}, s) \models \sigma$, 或者
- **2** 对所有的赋值 s, 都有 $(\mathfrak{U}, s) \not\models \sigma$ 。

作业

P. 94: 5.1.1, 5.1.2, 5.1.3, 5.1.4, 5.1.5, 5.1.7, 5.1.8, 5.1.9, 5.1.11, 5.1.12

目录

- 1 一阶语言的结构
- 2 可定义性
- 3 同态与同构

可定义性

给定语言 L

- **1** 固定一个公式 σ 或者公式集 Σ ,我们可以问什么样的结构可以满足它;
- **2** 固定一个结构 \mathfrak{U} ,我们也可以问哪个子集可以被公式 ϕ 描述。

初等类

设 Σ 是 L 上的一个闭语句集合,则

$$\operatorname{Mod} \Sigma = \{\mathfrak{U} \models \Sigma | \mathfrak{U}$$
是一个 $L - 结构\}$

一般把 Mod $\{\tau\}$ 记作 Mod τ .

初等类

设 K 是一类结构,

- 1 如果存在一个句子 τ 使得 $\mathcal{K} = \operatorname{Mod} \tau$,则称 \mathcal{K} 是一个初等 类。
- 2 如果存在一个句子集 Σ 使得 $K = \text{Mod } \Sigma$, 则称 K 是一个广义初等类。

线序

$$L = \{<\}$$

$$= \forall x \forall y (x < y \lor x = y \lor y < x),$$

严格的线序是一个初等类。

- $L = \{\cdot, e\}$
- $\blacksquare \forall x(xe = ex = x);$
- $\blacksquare \forall x \exists y (xy = yx = e));$

群是一个初等类。无限群是一个广义初等类,但不是初等类。

可定义集合

可定义集合

设 $\mathfrak{U}=(U,...)$ 是一个 L-结构, $\phi(x_1,...,x_n)$ 是一个公式。我们称 U 上的 k-元关系

$$\{(\mathbf{a}_1,...,\mathbf{a}_k)|\ \mathfrak{U}\models\phi[\mathbf{a}_1,...,\mathbf{a}_k]\}$$

为公式 ϕ 在 $\mathfrak U$ 中定义的关系,记作 $\phi(U^k)$ 。称 U^k 的子集 X 可定义,如果存在公式 ϕ 使得 $X=\phi(U^k)$ 。

$$\diamondsuit L = \{0, S, +, \cdot\}, \ \mathcal{N} = \{\mathbb{N}, 0, S, +, \cdot\}, \ \$$
则

- $\{(m,n)| m < n\} \subseteq \mathbb{N}^2$ 是可定义的;
- $\{(m, n) | m \equiv n \pmod{k}\} \subseteq \mathbb{N}^2$ 是可定义的;
- 素数集合是可定义的;
- $\{n_1, ..., n_k\}$ 是可定义的。

注

- 对于可数的语言而言,可定义的集合至多只有可数多个;
- 大多数的集合是不可定义的;
- $(\mathbb{R}, +, \times, <, 0, 1)$ 的子集 \mathbb{Q} 是不可定义的;
- $(\mathbb{R}, +, \times, <, 0, 1)$ 中的函数 \cos 和 \sin 是不可定义的;
- $(\mathbb{C}, +, \times, 0, 1)$ 的子集 \mathbb{R} 是不可定义的。

一阶逻辑(一) └─可定义性

作业

P. 97: 5.2.1 - 5.2.4

目录

- 1 一阶语言的结构
- 2 可定义性
- 3 同态与同构

同态

同态

设 \mathfrak{U} 和 \mathfrak{B} 是两个 L-结构。称一个函数 $h: |\mathfrak{U}| \to |\mathfrak{B}|$ 为 \mathfrak{U} 到 \mathfrak{B} 的同态,如果它满足以下条件:

■ 对每个非等词的 n-元谓词 P 有

$$(a_1,...,a_n) \in P^{\mathfrak{U}} \iff (h(a_1),...,h(a_n)) \in P^{\mathfrak{B}}$$

2 对每个 n-元函数符号 f 有和每组 $|\mathfrak{U}|$ 中的元素 $a_1, ..., a_n$ 有

$$h(f^{\mathfrak{U}}(a_1,...,a_n))=f^{\mathfrak{B}}(h(a_1),...,h(a_n)).$$

图 对每个常数符号 c,有 $h(c^{\mathfrak{U}}) = c^{\mathfrak{B}}$. 如果以上 h 还是双射,则称 h 是一个同构,并且称 \mathfrak{U} 与 \mathfrak{B} 同构,记作 $\mathfrak{U} \cong \mathfrak{B}$ 。

同态定理

同态定理

设 $h \in \mathfrak{U}$ 到 \mathfrak{B} 的同态, $s: V \to |\mathfrak{U}|$, 则:

- **1** 对每个项 t, $h(\bar{s}(t)) = \overline{h \circ s}(t)$
- **2** 对每个不含量词和等词的公式 α , 有 $(\mathfrak{U}, s) \models \alpha \iff (\mathfrak{B}, h \circ s) \models \alpha$.
- **3** 如果 h 是单射,则【2】中的 α 中可以有等词。
- 4 如果 h 是满射,则【2】中的 α 中可以有量词。

证明

对项和公式的长度归纳证明。

初等等价

定义

设 以 和 33 是两个 L-结构。称 以 与 33 初等等价,记作

$$\mathfrak{U} \equiv \mathfrak{B}$$
,

如果对 L 中的任何闭语句 σ 都有

$$\mathfrak{U} \models \sigma \iff \mathfrak{B} \models \sigma$$

注

- 1 同构 ⇒ 初等等价;
- 2 初等等价 ⇒ 同构;

自同构

称以到以的同构为以上的一个自同构。

推论

令 σ 是 $\mathfrak U$ 上的自同构, $R\subseteq |\mathfrak U|^n$ 是一个可定义关系。则对任意 的 $a_1,...,a_n\in |\mathfrak U|$,有

$$(a_1,...,a_n) \in R \iff (h(a_1),...,h(a_n)) \in R.$$

自同构

- **1** $h(x) = x^3$ 是 $(\mathbb{R}, <)$ 上的自同构,但是 $h(\mathbb{N}) \neq \mathbb{N}$;
- ② 对于 \mathbb{C} 中的任何两个超越数 a, b,都存在自同构 $\sigma \mathbb{C} \to \mathbb{C}$ 使得 $\sigma(a) = b$;
- 3 $(\mathbb{R}, +, \times, <, 0, 1)$ 的任何自同构都固定有理数集 \mathbb{Q} ,但是 \mathbb{Q} 不可定义;

一阶逻辑(一) L 同态与同构

作业

p. 102: 习题 5.3

Thanks!