7장 표집분포

7.1

(1)
$$X \sim B(100, 0.8) \simeq N(80, 16)$$

$$P(X \ge 75) \approx P\left(Z \ge \frac{74.5 - 80}{4}\right) = 0.9154$$

(2)
$$X \sim B(54, 0.8) \simeq N(43.2, 8.64)$$

$$P(X \ge 50) \approx P\left(Z \ge \frac{49.5 - 43.2}{\sqrt{8.64}}\right) = 0.016$$

- 7.2 X = 전달과정에서 각 기계에서 신호가 바뀐 수 \Rightarrow $X \sim B(4,0.2)$ \Rightarrow 짝수이면 제대로 전달, 홀수이면 잘못전달 : P(X=1,3) = 0.4352 Y=50개 신호 중 잘못 전달된 신호의 수 \Rightarrow $Y \sim B(50,0.4352)$ \Rightarrow E(Y) = 21.76, Var(Y) = 12.29
- 7.3 $P(불량) = 0.2 \times 0.15 + 0.5 \times 0.08 + 0.3 \times 0.1 = 0.1$ X: 400개중 불량품의 개수 $\Rightarrow X \sim B(400, 0.1)$ $P(X \ge 42) \approx P\left(Z \ge \frac{41.5 40}{6}\right) = 0.4013$

7.4

- (1) X: 배달되는데 걸리는 시간 $\Rightarrow E(X) = 2.1$, Var(X) = 0.79
- (2) Y: 3일 이상 걸린 택배의 수 \Rightarrow $Y \sim B(4,0.25)$ $P(Y \ge 1) = 1 P(Y = 0) = 1 0.75^4 = 0.6836$
- (3) $Y \sim B(100, 0.5) \simeq N(50, 5^2)$ $P(Y \le 55) \approx P\left(Z \le \frac{55.5 - 50}{5}\right) = 0.8643$

7.5

	X_1 X_2	0	1	2	3
	0	0.09	0.135	0.06	0.015
	1	0.135	0.2025	0.09	0.0225
(1)	2	0.06	0.09	0.04	0.01
(1)	3	0.015	0.0225	0.01	0.0025

	y	0	1	2	3	4	5	6
Y: 합 ⇒	P(Y=y)	0.09	0.27	0.3225	0.21	0.085	0.02	0.0025

(2)
$$E(X) = 1$$
, $E(X^2) = 1.7$, $Var(X) = 0.7 \Rightarrow Y \approx N(56,56(0.7))$
 $P(Y < 56) \approx P\left(Z < \frac{55.5 - 56}{\sqrt{56(0.7)}}\right) = 0.4682$

(3) $Y \simeq N(280, 280(0.7))$

$$\frac{y-280}{\sqrt{280(0.7)}}$$
= 1.645 $\Rightarrow y = 303.03$ \Rightarrow 304명 이상

$$7.6~X\sim N(30,5^2)$$
 , Y : 200곳 중 생산량이 32.55kg 이상인 지역의 수 $\Rightarrow~Y\sim B(200,p)$ $p=P(X\geq 32.55)=P(Z\geq 0.51)=0.3050$ $P(Y\geq 65)\approx P\bigg(Z\geq \frac{64.5-61}{\sqrt{42.395}}\bigg)=0.2954$

	X_1 X_2	9	10	11
	9	9/100	12/100	9/100
(1)	10	12/100	16/100	12/100
(1)	11	9/100	12/100	9/100
	11	37 100	12/100	0/100

	$(9,9) \Rightarrow s^2 = 0$
>	$(9,10) \Rightarrow s^2 = 0.5$
	$(9,11) \Rightarrow s^2 = 2$

s^2 0		0.5	2	
$P(S^2 = s^2)$	17/50	24/50	9/50	

- (2) E(X) = 9(3/10) + 10(4/10) + 11(3/10) = 10, $E(X^2) = 9^2(3/10) + 10^2(4/10) + 11^2(3/10) = 100.6 \implies Var(X) = 0.6$ $\Rightarrow E(\overline{X}) = 10$, $Var(\overline{X}) = 0.06$
- (3) Y: 60개의 평균 $\simeq N(10,0.6/60)$

① 낙찰업체가 없는 경우:
$$P(Y>10.18) \approx P\left(Zg>\frac{10.18-10}{0.1}\right)=0.0359$$

②
$$P(9.83 \le Y < 9.95) \approx P\left(\frac{9.83 - 10}{0.1} \le Z < \frac{9.95 - 10}{0.1}\right) = 0.2640$$

7.8

(1)
$$X \sim B(100, 0.5)$$

$$P(X \ge 44) \approx P\left(Z \ge \frac{43.5 - 50}{5}\right) = 0.9032$$

(2)
$$Y \sim B(100, 0.5)$$

$$P(Y \ge 60) \approx P\left(Y \ge \frac{59.5 - 50}{5}\right) = 0.1841$$

(3)
$$X+Y \sim B(200,0.5)$$

$$E(X+Y) = 100$$
 , $Var(X+Y) = 50$

(4)
$$P(X+Y \ge 104) \approx P\left(Z \ge \frac{103.5-100}{\sqrt{50}}\right) = 0.3103$$

7.9

(1)
$$X$$
: 타르함량 $\Rightarrow X \sim N(4.5, 0.5^2)$

$$P(X \ge 4.5) = P(Z \ge 0) = 0.5$$

(2) $\overline{X} \sim N(4.5, 0.5^2/40)$ $P(\overline{X} \ge 4.6) \approx 0.1030$

(3) Y: 100개의 타르함량 합 $\Rightarrow Y \sim N(450,5^2)$ $P(Y \ge 460) = P(Z \ge 2) = 0.0228$

7.10

- (1) X: 이송시간 $\Rightarrow X \sim N(25,5^2)$ $P(X \le 30) = 0.8413$
- (2) Y: 10명 중 위험상태에 있는 사람의 수 \Rightarrow $Y \sim B(10,0.1587)$ $P(Y=2) = \binom{10}{2}(0.1587)^2(0.8413)^8 = 0.2844$
- (3) W: 100명 중 위험상태에 있는 사람의 수 \Rightarrow $W \sim B(100,0.1587) \simeq N(15.87,13.3514)$ $P(W \geq 20) \approx P\left(Z \geq \frac{19.5-15.87}{\sqrt{13.3514}}\right) = 0.1584$