Logică pentru Informatică

Logica Propozițională

Examen - 19 Noiembrie 2021

Subiect pentru studentul: VARIANTA SUPLIMENTARA 8 Reguli:

- Cititi cu atenție subiectele.
- Subjectul este individual.
- Încadrați-vă în spațiul aferent fiecărei întrebări.
- Este recomandat să rezolvați subiectele pe o ciornă și abia apoi să redactati solutia finală.
- Este recomandat să aveți încă o copie o subiectului, pentru cazul în care faceți greșeli de redactare.
- Nu este permisă folosirea de foi suplimentare. Puteți folosi oricâte ciorne. Ciornele nu se predau. Evident, nu este permisă partajarea ciornelor.
- Este permisă consultarea bibliografiei.
- Nu este permisă comunicarea cu alte persoane pentru rezolvarea subiectelor. Nu este permisă partajarea ciornelor.
- Scanați cele 5 pagini A4 într-un singur document PDF de maxim 10MB.
- Înainte de a încărca soluția, verificați cu atenție calitatea scanării.
- În cazul în care calitatea scanării este slabă, rezultatul va reflecta doar ce se observă în scanare fără efort.
- Încărcați soluția în documentul Google Forms de la adresa:

https://forms.gle/nvovtDzq2b132vuG8.

- Soluțiile transmise prin orice alt canal de comunicare (e.g., Discord, email) nu sunt acceptate.
- Formularul nu permite încărcarea soluțiilor care nu sunt în format PDF sau au mai mult de 10MB.

1.	Traduceți următoarea propoziție în logica propozițională:	2 +	- 2	=	4 si
	nu plouă afară dacă Terra este plată.				

2. Arătați, folosind un raționament la nivel semantic, că următoarea formulă este satisfiabilă:

$$((r_1 \rightarrow r_2) \land (p \land r)).$$

3.	Arătați,	${\rm folosind}$	un	raționament	la	nivel	semantic,	$c\breve{a}$	$urm \breve{a}to area$	for-
	mulă est	e validă:								

$$((q \lor p) \to (r \leftrightarrow r)).$$

4. Arătați, folosind un raționament la nivel semantic, că: pentru orice $\varphi_1, \varphi_2 \in \mathbb{LP},$

$$((\varphi_2 \to r) \land \varphi_1) \equiv (\varphi_1 \land (\varphi_2 \to r)).$$

5	Arătati	folosind	un	rationament	la.	nivel	semantic	că:
ο.	111000001,	TOTOSITIC	un	1 a di Oilani alli Cii	10	111 / ()1	bommer.	ca.

$$\{(\neg r \land p), (p \leftrightarrow (q \leftrightarrow p))\} \models ((r \lor p) \rightarrow (q \land p)).$$

6. Calculați o FNC a următoarei formule:

$$(((p \land r) \land q) \leftrightarrow q).$$

7	Căciti	o respingere	nontmi	11mm ot conce	multima	do alongo.
١.	Gasili	o respingere	репии	urmatoarea	munime	de clauze.

$$\{(p \vee q \vee r_2), \neg r_2, \neg p, \neg q\}.$$

8. Găsiți o demonstrație formală pentru următoarea secvență:

$$\{(p \lor r)\} \vdash \neg(\neg p \land \neg r).$$