Algebra 1 Vorlesungsmitschrieb

Yousef Khell

November 13, 2023

Inhaltsverzeichnis

Gru	ppentheorie 2
1.1	Gruppen und Monoide
	Monoid
	Gruppe
	Ring
	Ordnung
	Untermonoid/Untergruppe
	Erzeuger
	Zyklische Gruppe
	Satz von Lagrange
	Exponent einer Gruppe
1.2	Gruppenhomomorphismen
	Homomorphismus
	Isomorphismus
Nor	malteiler
	Kommutator/Kommutatoruntergruppe
	Faktor-/Quotientengruppe
Hon	nomorphiesatz für Gruppen
	chub: Faktorringe
	Isomorphiesätze
	Erster Isomorphiesatz
	Zweiter Isomorphiesatz
(Ser	ni-)direkte Produkte
`	Semi-direktes Produkt
Gru	ppen Strukturtheorie 24
2.1	Strukturtheorie zu Gruppen ("Einige Aussagen") 24
Wir	kung
	Eigenschaften von Wirkungen
	Satz von Cayley
	Stabilisator
2.2	Permutationsgruppen
	1.1 Norn Hom Eins Die (Sem 4.1 Wirl

Kapitel 1

Gruppentheorie

1.1 Gruppen und Monoide

Notation.

- $\mathbb{N} = \{1, 2, ...\}$
- $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$
- #X = die Kardinalität/Mächtigkeit einer Menge X

Definition 1.1 (Monoid). Ein Tripel (M, e, \circ) mit

- \bullet M einer Menge.
- e einem Element aus M,
- $\bullet \ \circ : M \times M \to M$ einer zweistelligen Verknüpfung

heißt Monoid falls gilt

(M1) Assoziativität:

$$\forall a, b, c \in M : (a \circ b) \circ c = a \circ (b \circ c)$$

(M2) Neutrales Element:

$$\forall a \in M : a \circ e = a = e \circ a$$

Wir nennen ein $a \in M$ invertierbar, falls

$$\exists b, b' \in M : b \circ a = e = a \circ b'$$

(b bzw. b' heißen dann Links- bzw. Rechtsinverse)

Bemerkung. b = b', denn

$$b' = e \circ b' = (b \circ a) \circ b' = b \circ (a \circ b') = b \circ e = b$$

Definition 1.2 (**Gruppe**). Eine **Gruppe** ist ein Monoid, in dem alle Elemente invertierbar sind.

Bemerkung 1.3 (zur Assoziativität). Seien $a_1,...,a_n \in M$, und setzt man in

$$a_1 \circ \cdots \circ a_n$$

Klammern, sodass o jeweils 2 Elemente verknüpft, so ist wegen (M1) das Ergebnis unabhängig von der Wahl der Klammerung, and also lässt man i.a. die Klammern weg. (Die Reihenfolge ist aber schon wichtig!)

Definition 1.4 (Abelsche Gruppe/Monoid). Ein Monoid bzw. eine Gruppe M heißt **abelsch** (oder kommutativ) : $\iff \forall a, b \in M$:

$$a \circ b = b \circ a$$

Proposition 1.5 (Eindeutigkeit des neutralen Elements bzw. der neutralen Elementen). Sei M ein Monoid, dann

- (a) Erfüllt $e' \in M$ die Bedingung $e' \circ a = a \forall a \in M$, so gilt e' = e.
- (b) Ist $a \in M$ invertierbar, so ist sein Inverses eindeutig.

Beweis

- (a) Nach Konstruktion $e = e' \circ e = e'$.
- (b) Gelte $a \circ b' = e$ und b sei ein Inverses von a, dann:

$$b' = e \circ b' = (b \circ a) \circ b' = b \circ (a \circ b') = b \circ e = b.$$

Satz 1.6 (ohne Beweis). Sei (G, e, \circ) ein Tripel mit G eine Menge, $e \in G$, $\circ : G \times G \to G$ eine assoziative Verknüpfung sodass:

• e ist Linkseins, d.h.

$$\forall g \in G : e \circ g = g$$

• jedes g hat ein Linksinverses

$$\forall g \in G \exists h \in G : h \circ g = e$$

So ist (G, e, \circ) eine Gruppe.

Hinweis (Nutzen von Satz 6). Es müssen weniger Axiome geprüft werden.

Notation.

- (i) $ab := a \circ b$
- (ii) $a^0 = e, a^1 = a, a^{n+1} = a^n a, n \in \mathbb{N}$
- (iii) $a^n = (a^{-n})^{-1}, n < 0$
- (iv) Ist o kommutativ, so schreibt man oft +

Übung (Rechenregeln).

- (i) $a^n a^m = a^{n+m}, (a^n)^m = a^{nm}, \forall m, n \in \mathbb{N}_0$
- (ii) Ist a invertierbar, so gelten die Regeln $\forall n, m \in \mathbb{Z}$

Proposition 1.7 (Übung). Sei G eine Gruppe, seien $g, h \in G$, dann:

- (a) Die Glecihung xg = h besitzt genau eine Lösung (in G), nämlich $x = hg^{-1}$.
- (b) Es gilt $(gh)^{-1} = h^{-1}g^{-1}$
- (c) Die Rechtstranslation (um g) $r_g: G \to G, x \mapsto xg$ und die Linkstranslationen (um g) $\ell_g: G \to G, x \mapsto gx$ sind bijektiv.

Beispiel. 1) $(\mathbb{N}_0, 0, +), (\mathbb{N}_0, 1, \cdot)$ sind kommutative Monoide.

- 2) Jede Gruppe ist ein Monoid.
- 3) Ist X eine Menge, $\mathrm{Abb}(X,X)$ bzw. $\mathrm{Bij}(X,X)$ die Menge aller Abbildungen bzw. Bijektionen von X in sich, so gilt:
 - (a) $(Abb(X, X), id_X, \circ)$ ist ein Monoid.
 - (b) $(\text{Bij}(X, X), \text{id}_X, \circ)$ ist eine Gruppe.

Schreibe $S_n := \text{Bij}(\{1,...,n\},\{1,...,n\})$ für die Gruppe der Permutationen von $\{1,...,n\}$.

- 4) Ist $(V, \langle \cdot, \cdot \rangle)$ ein Euklidischer Raum, so sind
 - (i) $O(V) := \{ \varphi \in \text{End}_{\mathbb{R}}(V) | \varphi \text{ orthogonal} \}$ und $SO(V) := \{ \varphi \in O(V) | \det(\varphi) = 1 \}$ Gruppen.
 - (ii) Ist $V = \mathbb{R}^2$ und $P_n := \{\cos \frac{2\pi j}{n}, \sin \frac{2\pi j}{n} \mid j=0,...,n-1\}$, dann ist
 - (a) $C_n:=\{\varphi\in SO(V)\mid \varphi(P_n)=P\}$ die Gruppe der Drehungen um 0 von Winkel $\frac{2\pi j}{n},(j=0,...,n=1)$ und
 - (b) $D_n := \{ \varphi \in O(V) \mid \varphi(P_n) = P \}$ die [[Diedergruppe]] der Ordnung 2n

(Übung)
$$\#C_n = n, \#D_n = 2n$$
.

Gruppen beschreiben oft Symmetrien eines geometrischen Objekts.

5) Ist M ein Monoid, so ist $M^{\times} := \{a \in M \mid a \text{ invertierbar}\}$ eine Gruppe, also (M^{\times}, e, \circ) .

Definition 1.8 (Ring). Ein [[Ring]] ist ein [[Tupel]] $(R, 0, 1, +, \cdot)$, sodass

- (R1) (R, 0, +) eine [[abelsche Gruppe]],
- (R2) $(R, 1, \cdot)$ ein Monoid,
- (R3) Es gelten die Distributivgesetze

Definition 1.9 (**Ordnung einer Gruppe**). Ist M ein Monoid oder eine Gruppe, so heißt

$$\operatorname{ord}(M) := \#M$$

die Ordnung von M.

Definition 1.10 (Untermonoid/Untergruppe). Seien M ein Monoid, G eine Gruppe, dann

- (a) $N \subseteq M$ heißt Untermonoid (UM) wenn:
 - $e \in N$
 - $\forall n, n' \in N : n \circ n' \in N$
- (b) $H \subseteq G$ heißt Untergruppe (UG) wenn:
 - $e \in H$
 - $\forall h, h' \in H : h \circ h' \in H$

So schreiben wir $N \leq M, H \leq G$.

Übung 1.11. (i) $N \leq M \implies (N, e, \cdot |_{N \times N}: N \times N \to N)$ ist Monoid

(ii) $H \leq G \implies (H, e, \cdot |_{H \times H}: H \times H \to H)$ ist Monoid

Beispiel. Sei K ein Körper, dann ist

- (i) $SL_n(K) \leq GL_n(K)$
- (ii) $SO(V) \leq O(V) \leq \operatorname{Aut}_{\mathbb{R}}(V)$

Proposition 1.12 (Übung). Sind $(H_i)_{i\in I}$ Untergruppen von G, so ist

$$\bigcap_{i\in I} H_i \le G.$$

Beispiel. Sei G eine Gruppe, $g \in G, S \leq G$, dann:

(i) $C_G(g)$ **Zentralisator** von $g \in G$, also

$$C_G(g) = \{ h \in G \mid hg = gh \} \le G$$

(ii) $C_G(S)$ **Zentralisator** von S, also

$$C_G(S) = \{ h \in G \mid hs = sh \forall s \in S \} = \bigcap_{s \in S} C_G(s) \le G$$

(iii) Z(G) **Zentrum** von G, also

$$Z(G) = C_G(G) \leq_{\text{komm.}} G$$

(iv) (Übung) $Z(GL_n(K)) = K^{\times} \mathbf{1}_n$

Lemma 1.13. Sei G eine Gruppe und $S \subseteq G$ eine Teilmenge, dann \exists kleinste Untergruppe $\langle S \rangle \leq G$, die S umfasst.

Beweis. Definiere

$$\langle S \rangle := \bigcap \{ H \le G \mid S \subseteq H \}.$$

Übung 1.14. Sei M ein Monoid, $S\subseteq M$ eine Teilmenge, ein Wort aus S ist ein Ausdruck

$$s_1 \cdot \dots \cdot s_n, s_i \in S, n \in N$$

Dann gilt: {Worte in $S \cup \{e\}$ } = $\langle S \rangle \leq M$ ist das kleinste Untermodnoid von M, das S umfasst. Und ist G eine Gruppe, so gilt {Worte in $S \cup S^{-1} \cup \{e\}$ } = $\langle S \rangle \leq G$ ist die kleinste Untergruppe von G, die S umfasst.

Definition 1.15 (Erzeugendensystem). Sei G eine Gruppe und $S \subseteq G$ eine Teilmenge. S heißt Erzeugendensystem von $G \iff \langle S \rangle = G$.

Beispiel (Übung). Seien $E_{ij} \in M_{n \times n}(K)$ die Elementarmatrizen mit 1 an der Stelle (i, j) und 0 sonst. Dann ist

$$\{\mathbf{1}_n + aE_{ij} \mid a \in K, i, j \in \{1, ..., n\}, i \neq j\}$$

ein Erzeugendensystem von $SL_n(K)$ (Gauß-Algorithmus)

Lemma 1.16. Sei G eine Gruppe, $g \in G$, dann gilt

$$\langle g \rangle = \langle \{g\} \rangle = \{g^n \mid n \in \mathbb{Z}\}\$$

Beweis. (Nach Übung 14)

$$\langle \{g\} \rangle = \{ \text{Worte in } \{g, g^{-1}, e\} \}$$

$$= \{ g^{i_1}, ..., g^{i_n} \mid n \in \mathbb{N}i_1, ..., i_n \in \{0, \pm 1\} \}$$

$$= \{ g^{i_1 + \cdots + i_n} \mid n \in \mathbb{N}i_1, ..., i_n \in \{0, \pm 1\} \}$$

$$= \{ g^n \mid n \in \mathbb{Z} \}$$

Bemerkung. $\langle g \rangle$ ist abelsch.

Definition 1.17 (Ordnung eines Gruppenelements, Zyklische Gruppe). Sei Geine Gruppe, $g \in G$

(a) Die Ordnung von g ist

$$\operatorname{ord}(g) = \#\langle g \rangle = \#\{g^n \mid n \in \mathbb{Z}\} \in \mathbb{N} \cup \{\infty\}$$

- (b) g hat endliche Ordnung \iff ord $(g) \in \mathbb{N}$
- (c) G ist zyklisch $\iff \exists g \in G : G = \langle g \rangle$

Proposition 1.18. Zyklische Gruppen sind abelsch.

Beweis. G zyklisch
$$\implies \exists g \in G : G = \langle g \rangle = \{g^n \mid n \in \mathbb{Z}\}$$
. Dann:

$$g^n g^m = g^{n+m} \stackrel{+\text{komm. in } \mathbb{Z}}{=} g^{m+n} = g^m g^n.$$

Proposition 1.19. Sei G eine Gruppe, $g \in G$, $n := \operatorname{ord}(g)$ und

$$n' = \sup\{m \in \mathbb{N} \mid e, g, g^2..., g^{m-1} \text{ paarw. versch.}\}$$

Dann gelten:

- (a) $n' = \infty = \sup \mathbb{N}$ oder $g^{n'} = e$ und $\langle g \rangle = \{e, g, g^2, ..., g^{n'-1}\}$. Insbesondere ist n' = n
- (b) Falls $n = \operatorname{ord}(g) < \infty$, so gilt für $m, m' \in \mathbb{Z}$:

$$g^m = g^{m'} \iff m \equiv m' \mod n$$

 $Insbesondere \ ist \ g^m = e \iff n \mid m$

(c) $F\ddot{u}r\ s \in \mathbb{Z}$ gilt

$$\operatorname{ord}(g^s) = \frac{n}{\operatorname{ggT}(n,s)}$$

Beweis.

(a) Gelte $n' < \infty$:

Definition von $n' \Longrightarrow g^{n'} \in \{e,g,...,g^{n'-1}\}$ Annahme: $g^{n'} = g^i$ für ein $i \in \{1,...,n'-1\}$ Multipliziere mit $g^{-i} \Longrightarrow g^{n'-i} = g^0 = e$ und 0 < n'-i < n', d.h. $g^{n'-i} \in \{e,...,g^{n'-1}\} \Longrightarrow \{g^0,...,g^{n'-1}\}$ nicht paarweise verschieden (Widerspruch) Sei schließlich $m \in \mathbb{Z}$ beliebig, Division mit Rest:

$$m = qn' + r : q, r \in \mathbb{Z}, 0 \le r \le n' - 1$$

$$\implies g^m = g^{qn'+r} = (g^{n'})^q g^r = g^r \in \{g^0, ..., g^{n-1}\}$$

Also: $\langle g \rangle = \{e,...,g^{n'-1}\}$ sind paarweise verschieden. \Longrightarrow ord $(g) = \#\langle g \rangle = n'$

(b) Seien $m, m' \in \mathbb{Z}$, schreibe $m' - m = qn' + r, (q, r \in \mathbb{Z}, 0 \le r \le n' - 1)$, dann:

$$g^{m'} = g^m \iff g^{m'-m} = g^0 = e \iff g^{qn'+r} = e$$

$$\iff g = e \underset{e, \dots, g^{n-1} \text{ paarw. versch.}}{\overset{1. n=n'}{\longleftarrow}} r = 0$$

 $\iff m' - m \text{ ist Vielfaches von } n = n' \iff m \equiv m \mod n$

(c) Bestime die $m \in \mathbb{Z}$ mit $(g^s)^m = e$

$$(g^s)^m = e \iff g^{sm} = e \iff n \mid sm$$

$$\underset{ \operatorname{ggT}(n,s)\mid n,s}{\Longleftrightarrow} \frac{n}{\operatorname{ggT}(n,s)} \mid \frac{s}{\operatorname{ggT}(n,s)} m \iff \frac{n}{\operatorname{ggT}(n,s)} \mid m$$

Da $\frac{n}{\text{ggT}(n,s)}, \frac{s}{\text{ggT}(n,s)}$ teilerfremd sind

$$\stackrel{2.}{\iff} \operatorname{ord}(g^s) = \frac{n}{\operatorname{ggT}(n,s)} \square.$$

Beispiel.

$$\operatorname{ord}(g) = 6 \implies \operatorname{ord}(g^2) = 3 = 6/\operatorname{ggT}(6, 2) = 6/2$$

Korollar 1.20. Sei G eine Gruppe, dann

(a) $F\ddot{u}r g \in G$ gilt:

$$\operatorname{ord}(g) = \infty \iff g^n, n \in \mathbb{Z} \text{ sind paarw. verschieden}$$

(b) Ist G zyklisch und $G \leq G$ eine Untergruppe, so ist H zyklisch.

Beweis.

- (a) \Leftarrow vgl. 19(a) \Longrightarrow wissen nach 19(a), dass $e,g,...,g^n,...$ paarw. versch. sind. Multipliziere mit $g^{-m}, (m \in \mathbb{N}) \Longrightarrow g^{-m}, g^{-m+1},...,g^0,g^1,...$ sind paarw. versch.
- (b) Sei $g \in G$ ein Erzeuger von $G, H \leq G$ eine UG von G und ohne Einschränkung $H \supsetneq \{e\}$

$$\implies \exists m \in \mathbb{Z} \setminus \{0\} : g^m \in H \setminus \{e\}$$

 $H \text{ ist Gruppe } \implies g^m, (g^m)^{-1} = g^{-m} \in H$

Sei $t \in \min\{m \in \mathbb{N} \mid g^m \in H\}$. Behauptung: $\langle g^t \rangle = H$.

- " \subseteq ": Klar, da $g^t \in H$ also auch $\langle g^t \rangle \subseteq H$ (H ist UG die t enthält)
- "\(\sigma^n : \) Sei $g^m \in H$, Division mit Rest: $m = tq + r : q, r \in \mathbb{Z}, 0 \le r \le t 1$

$$\implies H\ni g^m=g^{tq+r}=\underbrace{(g^t)}_{\in H}^qg^r\implies g^r=(g^m)((g^t)^q)^{-1}\in H$$

Nach Def von t muss gelten: r=0, da r=1,...,t-1 verboten. Also ist $g^m=(g^t)^q\in\langle g^t\rangle$.

Korollar 1.21 (Übung). Untergruppen von \mathbb{Z} sind die Mengen $\mathbb{Z}n = \{an \mid a \in \mathbb{Z}\}, (n \in \mathbb{N}_0)$

Wiederholung (Vorbereitung).

- Äquivalenzrelationen
- Äquivalenzklassen
- Repräsentantensysteme

Bemerkung.

- $X = \bigsqcup_{r \in \mathcal{R}} [r]_{\sim}$
- Falls $\#X < \infty : \# = \sum_{r \in \mathcal{R}} \#[r]_{\sim}$

Satz 1.22 (Satz von Lagrange). Sei G eine endliche Gruppe und $H \leq G$ eine Untergruppe, dann gilt $\#H \mid \#G$.

Beweis.

- 1) Definiere \sim auf G durch $g \sim g': \iff \exists h \in H: g' = gh \sim$ ist eine Äquivalenzrelation:
 - reflexiv: $g \sim g$ denn $g = ge, e \in H$
 - symmetrisch: gelte g' = gh für ein $h \in H$

$$\underset{\rightarrow h^{-1}}{\Longrightarrow} g'h^{-1} = g \underset{H \text{ Gruppe}}{\Longrightarrow} h^{-1} \in H \implies g' \sim g$$

• transitiv: gelte $g \sim g', g' \sim g'',$ d.h. $\exists h \in H: g' = gh, \exists h' \in H"g'' = g'h$

$$\implies q'' = q'h' = (qh)h' = q(hh') \implies q \sim q''$$

2) Äquivalenzklassen: Für $g \in G$ ist

$$[g]_{\sim} = \{g' \in G \mid \exists h \in H : g' = gh\} = \{gh \mid h \in H\} =: gH$$

3) Beachte G endlich $\Longrightarrow H \subseteq G$ endlich (und ebenso jede Teilmenge von G) Behauptung: $\#gH = \#H \forall g \in G$ Grund: Die Abbildungen

$$\ell_q: H \to gH, h \mapsto gh, \ell_{q^{-1}}: gH \to H, x \mapsto g^{-1}x$$

sind zueinander invers (Übung) und also bijektiv. $\Longrightarrow \#H = \#gH$.

4) Sei $\mathcal{R} \subseteq G$ ein Repräsentantensystem zu \sim

$$\implies \#G = \sum_{g \in \mathcal{R}} \#[g]_{\sim} = \sum_{g \in \mathcal{R}} \#gH = \sum_{g \in \mathcal{R}} \#H \stackrel{3)}{=} \#\mathcal{R}\#H$$

$$\implies \#H \text{ teilt } \#G.$$

Notation. Seien G eine Gruppe, $H \leq G$ eine Untergruppe und \sim wie im Beweis vom Satz 22.

- Schreibe $G_{/H}$ für die Menge aller Äquivalenzklassen also für $\{gH \mid g \in G\}$
- Schreibe $[G:H]:=\#^G\!\!/_H=\#\mathcal{R}$ (Index von H in G)

Lagrange sagt:
$$\#G = \#^G/_H \cdot \#H = [G:H] \cdot \#H$$

Übung 1.23. Seien $H' \leq H \leq G$ Untergruppen, dann ist $H' \leq G$ und

$$[G:H'] = [G:H] \cdot [H:H']$$

Korollar 1.24. Sei G eine endliche Gruppe, dann gelten:

- (a) $\forall g \in G : \operatorname{ord}(g) \mid \operatorname{ord}(G) = \#G$
- (b) Ist ord(G) eine Primzahl, so ist G zyklisch

Beweis.

(a) $\langle g \rangle \leq G$ ist eine Untergruppe $\Longrightarrow_{\text{Lagrange}} \operatorname{ord}(g) = \# \langle g \rangle \mid \#G = \operatorname{ord}(G)$

(b) Sei $p={\rm ord}(G)\in \mathbb{P}$ eine Primzahl, sei $g\in G\setminus \{e\}$ (# $G\geq 2$) Nach 1. gilt $\underbrace{{\rm ord}(g)}$ | ${\rm ord}(G)=p$

 $\neq 1$ da $g \neq e$

Folglich: $p = \operatorname{ord}(g) = \operatorname{ord}(G)$, d.h. $\langle g \rangle \leq G$ ist Inklusion gleichmächtiger endlicher Mengen, also $\langle g \rangle = G$.

Definition 1.25 (Gruppenexponent). Sei G eine Gruppe, der Exponent von G ist $\exp(G) = \min\{n \in \mathbb{N} \mid \forall g \in G : g^n = e\}$ (wobei $\min \emptyset = \infty$).

Beispiel (Übung).

- (i) $\exp(C_n) = n$
- (ii) $\exp D_n = \ker(2, n)$
- (iii) $\exp(S_3) = 6$
- (iv) $\exp(S_4) = 12$
- (v) $\exp(G) = 2 \implies G$ abelsch
- (vi) \mathbb{F}_p Körper mit p Elementen und $0 \neq V$ ein \mathbb{F}_p -[[Vektorraum]], so gilt $\exp(V,0,+)=p$

Satz 1.26. Sei G eine endliche Gruppe, es gelten

- (a) $\exp(G) \mid \operatorname{card}(G)$
- (b) $\exp(G) = \ker(\{\operatorname{ord}(g) \mid g \in G\})$

Beweis.

- (a) Folgt aus (b) und ord(g) | ord(G) $\forall g \in G$ nach Korollar 24.
- (b) $\operatorname{ord}(g) \mid \exp(G), \forall g \in G$, denn nach Definition gilt:

$$g^{\exp(G)} = e \implies \operatorname{ord}(g) \mid \exp(G)$$

folglich: $N := \text{kgV}(\{\text{ord}(g) \mid g \in G\})$ teilt $\exp G$.

Behauptung: $\exp G \leq N$, (dann fertig)

Wir zeigen: $g^N = e \implies \exp G \le N$. Dies folgt aus $g^{\operatorname{ord}(g)} = e$ und $\operatorname{ord}(g) \mid N = \operatorname{kgV}(...)$.

Übung 1.27. Sei G eine endliche Gruppe, dann gelten:

(a) Sind $g, h \in G : gh = hg$ und gilt ggT(ord(g), ord(h)) = 1, so gilt

$$\operatorname{ord}(gh) = \operatorname{ord}(g)\operatorname{ord}(h)$$

- (b) Gelte $p^f \mid \exp G$ für p eine Primzahl und $f \in \mathbb{N}$, dann $\exists g \in G : \operatorname{ord}(g) = p^f$
- (c) Ist G abelsch, so $\exists g \in G : \exp(G) = \operatorname{ord}(g)$

Satz 1.28. Sei G eine endliche abelsche Gruppe, dann ist G genau dann zyklisch, wenn $\operatorname{ord}(G) = \exp(G)$

Beweis.

• " \Longrightarrow ": Sei $g \in G$ Erzeuger \Longrightarrow ord $(G) = \operatorname{ord}(g)$

$$\operatorname{ord}(g) \mid \exp G, \exp G \mid \operatorname{ord}(G) \implies \exp G = \operatorname{ord}(G)$$

• " \Leftarrow ": Wähle nach 27.3 ein $g \in G$ mit $\operatorname{ord}(g) = \exp(G)$, nach Voraussetzung ist $\exp(G) = \operatorname{ord}(g) \implies \operatorname{ord}(g) = \operatorname{ord}(G) \implies \langle g \rangle \subseteq G$ ist Gleichheit, d.h. $\langle g \rangle = G$.

1.2 Gruppenhomomorphismen

Seien im Weiteren M, M' Monoide und G, G' Gruppen.

Definition 1.29 (Monoid-/Gruppenhomomorphismus).

- (a) Eine Abbildung $\varphi: M \to M'$ heißt **Monoidhomomorphismus**, falls
 - (i) $\varphi(e) = e'$ und
 - (ii) $\forall m, \tilde{m} \in M : \varphi(m \circ \tilde{m}) = \varphi(m) \circ' \varphi(\tilde{m})$
- (b) Sind M, M' Gruppen, so heißt ein Gruppenhomomorphismus \iff (ii) gilt.

Bemerkung 1.30.

- (a) Ist $\varphi: M \to M'$ ein Gruppenhomomorphismus, so gilt $\varphi(e) = e'$ und $\varphi(m^{-1}) = \varphi(m)^{-1}, \forall m \in M.$
- (b) (Übung) Die Verkettung von Monoid- bzw. Gruppenhomomorphismen ist wieder ein solcher.

Beweis. Zu (a):

$$e' \circ' \varphi(e) = \varphi(e) = \varphi(e \circ e) = \varphi(e) \circ' \varphi(e)$$

Kürzen $\implies e' = \varphi(e)$. Und

$$\varphi(m^{-1}) \circ' \varphi(m) = \varphi(m^{-1} \circ m) = \varphi(e) = e'$$

Eindeutigkeit des Inverses $\implies \varphi(m^{-1}) = \varphi(m)^{-1}$.

Beispiel 1.31. (a) Für $g \in G$ ist die Abbildung

$$\varphi:\mathbb{Z}\to G, n\mapsto g^n$$

ein Gruppenhomomorphismus mit $Bild(\varphi) = \langle g \rangle$.

(b) Sei Kein Körper, V,W $K\text{-Vektorräume},\,\varphi:V\to W$ ein Vektorraumhomomorphismus, dann ist

$$\varphi: (V, 0_V, +_V) \rightarrow (W, 0_W, +_W)$$

ein Gruppenhomomorphismus.

(c) Die Vorzeichenfunktion (Aus der linearen Algebra)

$$\operatorname{sgn}: S_n \to \{\pm 1\}, \sigma \mapsto \operatorname{sgn}(\sigma)$$

ist ein Gruppenhomomorphismus.

Definition 1.32 (Kern/Bild). Sei $\varphi: G \to G'$ ein Gruppenhomomorphismus.

- (a) Der Kern von φ ist $\text{Kern}(\varphi) := \{g \in G \mid \varphi(g) = e'\}$
- (b) Das Bild von φ ist Bild $(\varphi) := \{ \varphi(g) \in G' \mid g \in G \}$

Proposition 1.33 (Übung). Sei $\varphi: G \to G'$ ein Gruppenhomomorphismus, dann

- (a) Für $H \leq G$ eine Untergruppe ist $\varphi(G) \leq G'$ eine Untergruppe.
- (b) Für $H' \leq G'$ eine Untergruppe ist $\varphi^{-1}(H') \leq G$ eine Untergruppe. Insbesondere sind $Bild(\varphi) \leq G', Kern(\varphi) \leq G$ Untergruppen.
- (c) φ ist injektiv (ein Gruppenmonomorphismus) \iff Kern $(\varphi) = \{e\}$.
- (d) φ ist surjektiv (ein Gruppenepimorphismus) \iff Bild(φ) = G'

Bemerkung. (a), (b) und (d) gelten auch für Monoide.

Definition 1.34 (**Gruppenisomorphismus**). Ein Gruppenhomomorphismus φ ist ein Gruppenisomorphismus, wenn φ bijektiv ist. (\iff Kern(φ) = {e} und Bild(φ) = G').

Bemerkung (Übung). Definiere ein Monoidhomomorphismus analog zu Definition 24.

Notation. Wir schreiben $G \cong G'$ (G ist isomorph zu G') wenn \exists Gruppenisomorphismus $\varphi: G \to G'$.

Definition 1.35 (Gruppenautomorphismus). (a) Ein Gruppenisomorphismus $\varphi: G \to G$ heißt Gruppenautomorphismus.

(b) $\operatorname{Aut}(G) := \{ \varphi : G \to G \mid \varphi \text{ ist ein Gruppenautomorphismus} \}.$

Bemerkung 1.36 (Übung). (a) $id_G: G \to G \in Aut(G)$

- (b) Verkettung von Gruppenisomorphismen (oder Automorphismen) ist wieder ein solcher.
- (c) Ist $\varphi: G \to G'$ ein Gruppenisomorphismus, so gelten
 - (i) #G = #G'.
 - (ii) G abelsch $\iff G'$ abelsch.
 - (iii) $S\subseteq G$ ein Erzeugendensystem $\iff \varphi(S)\subseteq G'$ ein Erzeugendensystem.

Proposition 1.37. (Aut(G), id_G, \circ) und (Aut(M), id_M, \circ) sind Gruppen.

Beweis. (Übung) Zeige:

$$\operatorname{Aut}(G) \leq \operatorname{Bij}(G), \operatorname{Aut}(M) \leq \operatorname{Bij}(M)$$

sind Untergruppen.

Beispiel 1.38 (Übung).

- (a) $\operatorname{Aut}((\mathbb{Z}, 0, +)) = \{\operatorname{id}_{\mathbb{Z}}, -\operatorname{id}_{\mathbb{Z}}\} \cong C_2$
- (b) Für $\mathbb{Z}_n := \mathbb{Z}_{n \choose n}$ der Ring der Restklassen modulo n gilt

$$(\mathbb{Z}_n, \overline{0}, +) \cong C_n \text{ und } \operatorname{Aut}(\mathbb{Z}_n, \overline{0}, +) \cong \mathbb{Z}_n^{\times}$$

- z.B. Erzeuger von \mathbb{Z}_n sind Reste \overline{a} , sodass $\operatorname{ggT}(a,n)=1$
- (c) Sei G beliebig, zu $g \in G$ definiere den Konjugationsautomorphismus (Konjugation mit g)

$$c_q: G \to G, h \mapsto g \circ h \circ g^{-1}$$

- (i) $c_q \circ c_{q'} = g_{q \circ q'}, \forall g, g' \in G$
- (ii) $c_e = \mathrm{id}_G \text{ und } c_g \in \mathrm{Aut}(G), \forall g \in G$
- (iii) $c: G \to \operatorname{Aut}(G), g \mapsto c_g$ ist ein Gruppenhomomorphismus.
- (iv) $\operatorname{Kern}(c) = Z(G)$ (Zentrum von G).

Bemerkung. Bild(c.) =: Inn(G) die Gruppe der inneren Automorphismen von G

Lemma 1.39. Seien $\varphi, \varphi': G \to G'$ Gruppenhomomorphismen. Sei $S \subseteq G$ ein Erzeugendensystem. Dann gilt

$$\varphi(s) = \varphi'(s) \forall s \in S \iff \varphi = \varphi' \quad (*)$$

Analoge Aussage gilt für Monoide

Beweisskizze. (Übung)

- "⇐=": Klar.
- "⇒":
 - 1) Zeige $H:=\{g\in G\mid \varphi(g)=\varphi'(g)\}i\leq G$ ist eine Untergruppe.
 - 2) Da $S\subseteq$ nach Definition von Hund Voraussetzung von " \Longrightarrow ", folgt $G=\langle S\rangle\subseteq H\leq G$

Normalteiler (Normal Subgroup)

Notation. Für $X \subseteq G$ und $g \in G$ setze

$$\ell_g(X) = \{gx \mid x \in X\} = gX \text{ und } r_g(X) = \{xg \mid x \in X\} = Xg$$

Gruppenverknüpfung assoziaativ \implies

(i)
$$c_q(X) = \{gxg^{-1} \mid x \in X\} = (gX)g^{-1} = g(Xg^{-1}).$$

(ii)
$$g(hX) = (gh)X$$
 und $(Xg)h = X(gh)$.

Bemerkung. Ist $H \leq G$ eine Untergruppe, dann heißt gH Linksnebenklasse und Hg Rechtsnebenklasse.

Definition 1.40 (Normalteiler). Eine Untergruppe $N \leq G$ heißt Normalteiler (N.T.) $\iff \forall g \in G : Ng = gN$. (Diese Definition ist auch für Monoide sinnvoll)

Lemma 1.41. Für eine Untergruppe $N \leq G$ sind äquivalent:

- (i) $\forall g \in G : gN = nG$
- (ii) $\forall g \in G : gNg^{-1} = N$
- (iii) $\forall g \in G : gNg^{-1} \subseteq N$

Beweis. • " $(ii) \implies (iii)$ ": Klar.

• "(iii) \Longrightarrow (i)": Rechtsmultiplikation mit g liefert aus (iii):

$$(qNq^{-1})q = qN(q^{-1}q) = qNe = qN \subset Nq$$

Für die andere Inklusion betrachte (iii) für g^{-1} :

$$g^{-1}Ng \subseteq N \underset{\text{Linksmult. mit } g}{\Longrightarrow} Ng \subseteq gN$$

• "(i) \Longrightarrow (ii)": Wende auf (i) Rechtsmultiplikation mit g^{-1} an. $(r_{g^{-1}}:G\to G$ ist eine bijektive Abbildung.)

Notation.

 $H \leq G$ bedeuteg $H \subseteq G$ ist eine Untergruppe.

 $H \subseteq G$ bedeuteg $H \subseteq G$ ist ein Normailteiler.

Satz 1.42. Ist $\varphi: G \to G'$ ein Gruppenhomomorphismus, so ist $\operatorname{Kern}(\varphi) \subseteq G$ ein Normalteiler.

Beweis. Sei $g\in G$ beliebig, zu zeigen ist $g\circ \mathrm{Kern}(\varphi)\circ g^{-1}\subseteq \mathrm{Kern}(\varphi)$

Sei $h \in \text{Kern}(\varphi)$, zu zeigen ist $ghg^{-1} \in \text{Kern}(\varphi)$. Damit:

$$\varphi(ghg^{-1}) = \varphi(g)\varphi(h)\varphi(g^{-1}) \underset{h \in \mathrm{Kern}(\varphi)}{=} \varphi(g) \circ e' \circ \varphi(g^{-1}) = \varphi(g)\varphi(g^{-1})$$

$$= \varphi(gg^{-1}) = \varphi(e) = e'.$$

 $\implies \operatorname{Kern}(\varphi) \leq G.$

Übung 1.43.

- (a) Ist $N' \subseteq G'$ und $\varphi : G \to G'$ Gruppenhomomorphismus, so gilt $\varphi^{-1}(N') \subseteq G$.
- (b) Ist $h \leq G$ eine Untergruppe mit $[G:H] = \#^G/_H = 2$, so folgt $H \leq G$.
- (c) Ist G abelsch, so ist jede Untergruppe $H \leq G$ ein Normalteiler.
- (d) Der Kommutator zu $g,h \in G$ ist $ghg^{-1}h^{-1}$, die Kommutatoruntergruppe von G ist

$$[G,G] := \langle ghg^{-1}h^{-1} \mid g,h \in G \rangle$$

Es gilt $[G, G] \subseteq G$.

Beispiel. Es gibt Beispiele für folgende Aussagen:

- (i) $\exists H \leq G : H \not \trianglelefteq G$
- (ii) $\varphi: G \to G'$ ein Gruppenhomomorphismus und $N \leq G$ mit $\varphi(G) \not \leq G'$
- (iii) $\exists N \subseteq G \text{ und } H \subseteq N$, so dass $H \not\subseteq G$.

Beweis.

- (i) $G = S_3 = \text{Bij}(\{1, 2, 3\}) \supseteq H = \{\text{id}, \sigma\} \text{ mit } \sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$. Dann $H \leq G$ Klar, aber $H \not \supseteq G$, denn für $\tau = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$ gilt $\tau \sigma \tau^{-1}$ (Übung) $\Longrightarrow \tau H \tau^{-1} \not \subseteq H$
- (ii) Betrachte $\varphi: H \to G$ Inklusion mit G, H aus (i), dann gilt $H \leq H$ aber $\varphi(H) = H$ nein Nullteiler von $G = S_3$.
- (iii) Später.

Satz 1.44. Sei $N \subseteq G$ ein Normalteiler, dann gelten:

(a) Aus gN = g'N und hN = h'N für $g, g', h, h' \in G$ folgt ghN = g'h'N und insbesondere ist die Verknüpfung

$$\circ: \underbrace{G_{/N}}_{\{gN|g\in G\}} \times G_{/N} \longrightarrow G_{/N}, \ (gN, hN) \longmapsto gN \circ hN = ghN$$

wohl-definiert.

- (b) $G_N, \underbrace{N}_{=eN}, \circ$) ist eine Gruppe.
- (c) $gN = g'N \iff g^-1g' \in N$.
- $(d) \ \pi: G \to {}^G \!\! /_N, g \mapsto gN \ \text{ist ein Gruppenhomomorphismus mit } \mathrm{Kern}(\pi) = N.$

Beweis. (a) Es gelten (Formeln von Definition 40)

$$(gh)N = g(hN) \stackrel{N \preceq G}{=} g(Nh) = (gN)h$$
$$= (g'N)h = g'(Nh) = g'(hN) = g'(h'N) = (g'h')N \implies (a)$$

- (b) Überlege Gruppenaxiome.
 - Assoziativität (Übung)
 - Linkseins ist N = eN, denn

$$N \circ (gN) = eN \circ gN \stackrel{\text{wohl-def.}}{=} (e \circ g)N = gN$$

• Linksinverses zu gN ist $g^{-1}N$, denn

$$(g^{-1}N) \circ gN \stackrel{=}{\underset{\text{nach Def.}}{=}} (g^{-1}g)N \stackrel{=}{\underset{\text{Gruppe}}{=}} eN = N$$

(c)
$$gN = g'N = \prod_{g^{-1} \circ _} N = g^{-1}g'N \implies_{e \in N} N \ni g^{-1}g'e$$
, d.h. $g^{-1}g' \in G$.

$$g^{-1}g' \in N \underset{\text{ist bijektiv.}}{\Longrightarrow} N = g^{-1}N \underset{g^{-1} \circ _}{\Longrightarrow} gN = g'N$$

(d) $\pi: G \to G/N, g \mapsto gN$ ist Gruppenhomomorphismus, denn

$$\pi(gg') = gg'N \mathop{=}_{\text{Def. von } \circ} gN \circ g'N = \pi(g) \circ \pi(g')$$

$$g \in \operatorname{Kern}(\pi) \iff gN = eN \iff_{(c)} e^{-1}g = g \in N$$

Bemerkung (Bezeichnung). G_N (bzw. (G_N, eN, \circ)) heißt Faktorgruppe von G modulo N.

Bemerkung (Übung). G abelsch $\Longrightarrow G_N$ abelsch.

Satz 1.45 (Homomorphiesatz für Gruppen). Sei $\varphi: G \to G'$ ein Gruppenhomomorphismus mit $N = \operatorname{Kern}(\varphi)$, dann existiert genau ein Gruppenhomomorphismus $\overline{\varphi}: G_{N} \longrightarrow G'$, sodass

 $\begin{array}{l} \textit{kommutiert, d.h. } \overline{\varphi} \circ \pi = \varphi. \ (\textit{wobei } \pi: G \longrightarrow {}^{G}\!\!/_{N}, g \mapsto gN \ \textit{aus Satz 44}). \ \textit{Die Abbildung } \overline{\varphi} \ \textit{ist injektiv und } \overline{\varphi} \ \textit{bijektiv} \iff \varphi \ \textit{surjektiv}. \end{array}$

Beweis. • Existenz von $\overline{\varphi}$: Definiere $\overline{\varphi}(gN) = \varphi(g), \forall g \in G$.

• $\overline{\varphi}$ wohl-definiert: Es gilt: $gN = g'N \iff N = g^{-1}g'N \iff g^{-1}g' \in N$. Damit

$$\implies \varphi(g') = \varphi(gg^{-1}g') = \varphi(g)\varphi(\underbrace{g^{-1} \circ g'}_{\in N = \mathrm{Kern}(\varphi)}) = \varphi(g)e = \varphi(g).$$

• $\overline{\varphi}$ Gruppenhomomorphismus:

$$\begin{split} \overline{\varphi}(gN \circ g'N) &\underset{\text{Def. von } \circ}{=} \overline{\varphi}(gg'N) \underset{\text{Def. von } \overline{\varphi}}{=} \varphi(gg') \underset{\varphi \text{ Hom.}}{=} \varphi(g)\varphi(g') \\ &\underset{\text{Def. von } \overline{\varphi}}{=} \overline{\varphi}(gN)\overline{\varphi}(g'N). \end{split}$$

• $\overline{\varphi} \circ \pi = \varphi$: (Aus der Definition von $\overline{\varphi}$):

$$\overline{\varphi}(gN) = \varphi(g)$$

$$\overline{\varphi}(\pi(g))$$

- $\overline{\varphi}$ injektiv: $\overline{\varphi}(gN) = e \iff \varphi(g) = e \iff g \in N = \text{Kern}(\varphi) \iff gN = eN = N.$
- \bullet $\overline{\varphi}$ eindeutig: Folgt aus der Surjektivität von $\pi.$
- Zusatz φ surjektiv $\iff \overline{\varphi}$ Isomorphismus (Übung): Verwende Bild (φ) = Bild $(\overline{\varphi})$ und $\overline{\varphi}$ injektiv.

Satz 45' (Homomorphiesatz'). (Übung) Ist $\varphi: G \to G'$ ein Gruppenhomomorphismus und $N \subseteq G$, so dass $N \subseteq \operatorname{Kern}(\varphi)$, dann existiert genau ein Gruppenhomomorphismus

$$\overline{\varphi}: {}^G\!\!/_N \longrightarrow G' \ mit \ \overline{\varphi} \circ \pi = \varphi.$$

 $wobei\ \pi: G \to G_{\slash\hspace{-0.4em}N}, g \mapsto gN$

Notation. Für $n \in \mathbb{N}$ sei $\mathbb{Z}_n = \mathbb{Z}/(n) = \mathbb{Z}/n\mathbb{Z}$ der Restklassenring. $(n\mathbb{Z} \subseteq \mathbb{Z}$ eine Untergruppe)

Korollar 1.46. Sei G eine zyklische Gruppe,

- (a) Falls $m := \operatorname{ord}(G) \in \mathbb{N} \implies G \cong \mathbb{Z}_m = \mathbb{Z}_{(m)}$.
- (b) Falls $\operatorname{ord}(G) = \infty \implies G \cong \mathbb{Z}$.

Beweis. Sei $g \in G$ ein Erzeuger und betrachte

$$\varphi: \mathbb{Z} \to G, n \mapsto q^n$$

 φ ist surjektiv, da Bild $(\varphi) = \langle g^n \mid n \in \mathbb{Z} \rangle = G$.

$$\Longrightarrow_{\operatorname{Satz} 45} \overline{\varphi} : \mathbb{Z}/_{\mathbb{Z}m} \stackrel{\cong}{\longrightarrow} G$$

für $m \in \mathbb{N}_0$, so dass $\operatorname{Kern}(\varphi) = \mathbb{Z}m$.

П

- Fall (b): $\operatorname{ord}(G) = \infty \implies \operatorname{Kern}(\varphi) = \{0\} \implies \varphi : \mathbb{Z} \to G \text{ ist ein Isomorphismus.}$
- Fall (a): $\mathrm{ord}(G)=m\in\mathbb{N}$ dann ist $\overline{\varphi}$ der gewünschte Isomorphismus.

Korollar 1.47. Für zyklische Gruppen G, H gilt $G = H \iff \#G = \#H$ Übung. (a) G/[G, G] ist eine abelsche Gruppe.

(b) Für $N \subseteq G$ gilt:

$$G_N$$
 abelsch \iff $[G,G] \leq N$

Einschub: Faktorringe

Definition 1.48 (Ideal). Sei R ein kommutativer Ring. $I \subseteq R$ heißt Ideal wenn

- (i) I ist Untergruppe von (R, 0, +)
- (ii) $RI := \{ri \mid r \in R, i \in I\} \subseteq I$

Beispiel. 1) $\mathbb{Z}n \subseteq \mathbb{Z}$ ist ein Ideal $\forall n \in \mathbb{Z}$.

2) $Ra \subseteq R$ für $a \in R$ ist ein Ideal von R.

Satz 1.49. Sei R ein kommutativer Ring, $I \subseteq R$ ein Ideal, und $R/I = \{r + I \mid r \in R\}$ die Nebenklassenmenge von R modulo I (für die Gruppe (R, 0, +)). Dann:

(a) Die Verknüpfungen

$$+: R/_{I} \times R/_{I} \longrightarrow R/_{I}, (r+I, s+I) \longmapsto (r+s) + I$$
$$\cdot: R/_{I} \times R/_{I} \longrightarrow R/_{I}, (r+I, s+I) \longmapsto rs + I$$

sind wohl-definiert auf R_I

- (b) $(R/I, \overline{0}, \overline{1}, +, \cdot)$ ist ein kommutativer Ring $(\overline{r} := r + I \text{ Notation für die Klasse von } r)$ der Restklassenring von R modulo I.
- (c) $\pi: R \longrightarrow R/I, r \longmapsto r+I$ ist ein surjektiver Ringhomomorphismus.

Beweis. (a) "+" wohl-definiert folgt aus Satz 44. $(I \subseteq (R, 0, +) \text{ Ideal!})$ "." wohl-definiert: Gelte a + I = a' + I und b + I = b' + I.

$$\implies a'b' + I = ab + aj + bi + ij + I = ab + I$$

- (b) (Übung)
- (c) Wie in 45 (d)

Die Isomorphiesätze

Satz 1.50 (Erster Isomorphiesatz). Sei G eine Gruppe, $N \subseteq G$ ein Normalteiler und $H \subseteq G$ eine Untergruppe, dann gelten:

- (a) $HN = \{hn \mid h \in H, n \in N\} \subseteq G \text{ ist ein Untergruppe.}$
- (b) $H \cap N \subseteq H$ ist ein Normalteiler (und (Übung) $N \subseteq HN$)
- (c) Die folgende Abbildung ist wohl-definiert und ein Gruppenisomorphismus

$$H_{/H \cap N} \longrightarrow HN_{/N}, h(H \cap N) \longmapsto hN$$

Beweis. (a) Seien $hn, h'n' \in HN$, dann:

$$(h'n')(hn)^{-1} = h'\underbrace{n'n^{-1}h^{-1}}_{\in Nh^{-1}\underbrace{\mathbb{Z}}_{N \preceq G}^{-1}h^{-1}N} = h'h^{-1}\tilde{n} \underset{H}{=} \underset{\text{U.G.}}{=} (h'h^{-1})\tilde{n} \in HN$$

und e = ee = HN

(b) Zu zeigen: für $h \in H$ gilt $h(H \cap N)h^{-1} \subseteq H \cap N$ Dazu:

$$\begin{array}{l} h(H\cap N)h^{-1}\subseteq hHh^{-1}=H\\ h(H\cap N)h^{-1}\subseteq hNh^{-1}\underset{N\vartriangleleft G}{=}N \implies h(H\cap N)h^{-1}\subseteq H\cap N. \end{array}$$

(c) Betrachte die Verkettung von Gruppenhomomorphismen

$$\varphi: H \xrightarrow[h \longrightarrow h]{\text{Inklusion}} HN \xrightarrow[x \longmapsto xN]{} HN_N$$

dann ist φ ein Gruppenautomorphismus.

 φ ist surjektiv: Jede Klasse in ${}^{HN}\!/_{N}$ ist von der Form

$$hnN = \underbrace{hN}_{=\varphi(h)}$$

für ein $h \in H$. Nach Homomorphiesatz: nur noch zu zeigen $\operatorname{Kern}(\varphi) = H \cap N$: für $h \in H$:

$$h \in \mathrm{Kern}(\varphi) \iff \varphi(h) = eN \iff hN = eN \implies_{44(c)} h \in N \implies_{h \in H} h \in N \cap H$$

Umgekehrt: $h \in N \cap H \implies h \in N \implies hN = eN = N$.

Satz 1.51 (Zweiter Isomorphiesatz). Sei G eine Gruppe und $N \subseteq G$ ein Normailteiler, und sei $\pi: G \longrightarrow G/N, g \longmapsto \overline{g} = gN$ die Faktorabbildung.

(a) Sei $X := \{H \leq G \mid N \subseteq H\}$, und sei $\overline{X} := \{\overline{H} \leq G/N\}$, dann ist die Abbildung

$$\psi: X \longrightarrow \overline{X}, H \longmapsto \pi(H) = H/_{N} =: \overline{H}$$

eine Bijektion mit inverser Abbildung

$$\nu: \overline{X} \longrightarrow X, \overline{H} \longmapsto \pi^{-1}(\overline{H}).$$

Dabei gilt:

$$X \ni H \trianglelefteq G \iff \overline{X} \ni \pi(H) \trianglelefteq G/N$$

(b) Ist $H \in X$ ein Normalteiler von G, so ist

$$G_{/H} \longrightarrow {G_{/N} \choose /}_{(H_{/N})}, g \longmapsto \underbrace{\overline{g}}_{qN} \underbrace{\overline{H}}_{\pi(H)}$$

wohl-definiert und ein Gruppenisomorphismus.

Beweis. (a) Nach Proposition 33 sind ψ und ν wohl-definiert.

• $\nu \circ \psi = \mathrm{id}_X$: Sei $H \leq G$ mit $N \subseteq H$, zu zeigen ist $\pi^{-1}(\pi(H)) = H$. Es gilt:

$$g \in \pi^{-1}(\pi(H)) \iff \pi(g) \in \pi(H) \iff gN \in \bigcup_{h \in H} hN$$

$$\iff \exists h \in H : gN = hN \implies h^{-1}g \in N \subseteq H \implies g \in hH = H.$$

("
$$\Leftarrow =$$
" klar: $g \in H \implies g \in \pi^{-1}(\pi(H))$).

- $\psi \circ \nu = \operatorname{id}_{\overline{X}}$: Für $\overline{H} \in \overline{X}$ (d.h. $\overline{H} \leq G_{/N}$) ist zu zeigen $\pi(\pi^{-1}(\overline{H})) = \overline{H}$. Dies gilt, denn π ist surjektiv.
- Schließlich: Sei $H \in X,$ zu zeigen ist $H \unlhd G \iff \pi(H) \unlhd {}^G \! /_{\! N}$

$$H \trianglelefteq G \iff \forall g \in G : gHg^{-1} \subseteq H$$

$$\Longrightarrow_{\pi:G\to \overline{G} \text{ surj.}} \forall \overline{g} \in G/_N: \overline{g}\pi(H)\overline{g} \subseteq \pi(H) \implies \pi(H) \trianglelefteq \overline{G}$$

Umgekehrt: Falls $\pi(H) \leq \leq \overline{G}$ und $g \in G$:

$$\pi(gHg^{-1}) = \overline{g}\pi(H)\overline{g}^{-1} \le \pi(H)$$

$$\implies gHg^{-1} \subseteq \pi^{-1}(\pi(gHg^{-1})) \subseteq \pi^{-1}(\pi(H)) \underset{\nu \circ \psi = \mathrm{id} \ \nu}{=} H$$

(b) Sei $H \subseteq G$ ein Normalteiler mit $N \subseteq H$, so dass nach (a)

$$\overline{H} = \underbrace{H_{/N}}_{\pi(H)} \leq \underbrace{G_{/N}}_{\pi(G)}$$

ein Normalteiler ist. Betrachte den verketteten Gruppenautomorphismus

$$\varphi: G \xrightarrow{\pi} G_{N} \xrightarrow{\pi'} G_{N} \xrightarrow{\pi'} \left(G_{N}\right)_{H_{N}}$$

 π, π' sind surjektive Gruppenhomomorphismen nach Satz 44(d) \implies die Verkettung φ ist ein surjektiver Gruppenhomomorphismus.

Nach Homomorphiesatz für Gruppen bleibt zu zeigen: $Kern(\varphi) = H$:

$$\begin{split} g \in \mathrm{Kern}(\varphi) &\underset{\pi'(\pi(g)) = e}{\Longleftrightarrow} \pi(g) \in \mathrm{Kern}(\pi') \iff gN \in H_{\bigwedge N} \\ &\iff gN \subseteq H \underset{N \leq H}{\Longleftrightarrow} g \in H. \end{split}$$

(Semi-)direkte Produkte

Lemma 1.52 (Übung). Seien (G_1, e_1, \circ_1) und (G_2, e_2, \circ_2) Gruppen, dann ist $G = (G_1 \times G_2, (e_1, e_2), \circ)$ eine Gruppe mit

$$(g_1, g_2) \circ (h_1, h_2) = (g_1 \circ h_1, g_2 \circ h_2)$$

Analog für $k \geq 2$ Faktoren. Dabei sind $G_1 \times \{e_2\} \subseteq G$ und $\{e_1\} \times G_2 \subseteq G$ Nullteiler von G.

Definition 1.53 (Direktes Produkt). Die Gruppe G aus Lemma 52 heißt das direkte Produkt von G_1 und G_2 , Notation $G_1 \times G_2$.

Beispiel.

$$(\mathbb{R}^n, \underline{0}, +) = (\mathbb{R}, 0, +) \times \cdots \times (\mathbb{R}, 0, +) = \sum_{i=1}^n (\mathbb{R}, 0, +)$$

Proposition 1.54. Sei G eine Gruppe, seien $N_1, N_2 \subseteq G$ Nullteiler mit $N_1 \cap N_2 = \{e\}$, dann gelten:

- (a) $\forall n_1 \in N_1, n_2 \in N_2 : n_1 n_2 = n_2 n_1$
- (b) $N_1N_2 \leq G$ ist ein Normalteiler in G
- (c) $\psi: N_1 \times N_2 \to N_1 N_2, (n_1, n_2) \mapsto n_1 n_2$ ist ein Gruppenisomorphismus. (Insbesondere gilt $\#N_1 N_2 = \#N_1 \#N_2$)

Zusatz: Gilt $G = N_1 N_2$, so folgt $G \cong N_1 \times N_2$ via ψ .

Beweis. (a) Seien $n_1 \in N_1, n_2 \in N_2$, setze $x = n_1 n_2 n_1^{-1} n_2^{-1}$. Nun:

$$x = (n_1 n_2 n_1^{-1}) n_2^{-1} \in (n_1 N_2 n_1^{-1}) N_2 \subseteq N_2 N_2 = N_2$$

analog

$$x = n_1(n_2n_1^{-1}n_2^{-1}) \in N_1(n_2N_1n_2^{-1}) \stackrel{N_2 \leq G}{\subseteq} N_1N_1 = N_1$$

damit ist $x \in N_1 \cap N_2 = \{e\} \implies x = e \implies n_1 n_2 = n_2 n_1$.

(b) Für $g \in G$:

$$qN_1N_2q^{-1} = qN_1q^{-1}qN_2q^{-1} \subseteq N_1N_2$$

(c) ψ ist wohl-definiert: klar. ψ ein Gruppenhomomorphismus folgt aus (a)

$$\psi((n_1, n_2) \circ (n'_1, n'_2)) = \psi((n_1 \circ n'_1, n_2 \circ n'_2)) = n_1 n'_1 n_2 n'_2$$

$$= n_1 n_2 n'_1 n'_2 = \psi(n_1, n_2) \circ \psi(n'_1, n'_2)$$

$$\{(e, e)\} = \text{Kern}(\psi):$$

$$\psi(n_1, n_2) = e \iff n_1 n_2 = e \iff n_1 = n_2^{-1} \in N_1 \cap N_2 = \{e\}$$

$$\iff n_1 = n_2 = e$$

 $Bild(\psi) = N_1 N_2.$

Korollar 1.55 (Übung). Sei G eine endliche Gruppe. Seien $N_1, ..., N_k \subseteq G$ Normalteiler von G und gelte:

(i)
$$\forall i \neq j : ggT(\#N_i, \#N_j) = 1$$

(ii)
$$\prod_{j=1}^{k} \# N_j = \# G$$

Dann ist

$$\psi: \underset{j=1}{\overset{k}{\times}} N_j \longrightarrow G, (n_1, ..., n_k) \longmapsto n_1 \cdot ... \cdot n_k = \prod_{j=1}^k n_j$$

 $ein\ Gruppen isomorphismus.$

Übung. Spezialfall: $n = \prod_{i=1}^k p_i^{f_i}$ für $p_1, ..., p_k$ paarweise verschiedene Primzahlen, dann gilt:

$$\underset{i}{\overset{k}{\times}} \mathbb{Z}_{\left(p_{i}^{f_{i}}\right)} \cong \mathbb{Z}_{\left(n\right)}$$

ist Folge von Korollar 55.

Lemma 1.56. Seien $H = (H, e_H, \circ_H), N = (N, e_N, \circ_N)$ Gruppen und sei $\varphi : H \to \operatorname{Aut}(N)$ ein Gruppenhomomorphismus. Definiere

$$G:=N\rtimes H:=N\rtimes_{\varphi}H=(N\times H,\underbrace{(e_n,e_H)}_{=:e},\circ)$$

 $mit \circ der \ Verkn\"{u}pfung \ auf \ G \ definiert \ durch$

$$(n_1, h_1) \circ (n_2, h_2) = (n_1 \circ_N \varphi(h_1)(n_2), h_1 \circ_H h_2)$$

Dann ist G eine Gruppe und es gelten:

- $N' := \{(n, e_H) \mid n \in N\} \cong N \text{ ist ein Normalteiler in } G$,
- $H' := \{(e_N, h) \mid h \in H\} \cong H \text{ ist eine Untergruppe von } G$,
- $N'H' = G \text{ und } N' \cap H' = \{e\}.$

• $G \to H, (n,h) \mapsto h$ ist ein Gruppenepimorphismus (surj.) mit Kern N'.

Definition 1.57 (Semi-direktes Produkt). Die Gruppe $G = N \rtimes H$ heißt das semi-direkte Produkt von N mit H (bezüglich φ).

Satz 1.58. Sei G eine Gruppe, $N \subseteq G$ ein Normalteiler, $H \subseteq G$ eine Untergruppe, dann gelten:

(a) $\varphi: H \to \operatorname{Aut}(N), h \mapsto (\underbrace{c_h|_N: N \to N, n \mapsto hnh^{-1}}_{Konjugation\ mit\ h})$ ist wohl-definiert und ein Gruppenhomomorphismus.

(b) Gelten zusätzlich (i) NH = G, (ii) $N \cap H = \{e\}$, so ist

$$\psi: N \rtimes_{\varphi} H \to G, (n,h) \mapsto n \circ_{G} h$$

ein Gruppenisomorphismus.

Beweis. Siehe Jantzen, Schwermer - Algebra.

Beispiele.

1. Seien $A_n = \text{Kern}(\text{sign}: S_n \to \{\pm 1\})$ die Untergruppe der geraden Permutationen und τ eine beliebige Transposition, dann gilt:

$$S_n \cong A_n \rtimes \{\mathrm{id}, \tau\}$$

2. V Sei ein endlich dimensionaler euklidischer Vektorraum und $\sigma \in \mathcal{O}(V)$ eine Spiegelung, dann gilt

$$O(V) \cong SO(V) \rtimes \{id, \sigma\}$$

3. Sei K ein Körper, dann gilt

$$\operatorname{GL}_n(K) \cong \operatorname{SL}_n(K) \rtimes H \cong \operatorname{SL}_n(K) \rtimes K^{\times}$$

wobei

$$H = \left\{ \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} \middle| a \in K^{\times} \right\} \cong K^{\times}$$

4. Sei $\sigma\in A_4$ ein 3-Zykel, z.B. $\sigma=\begin{pmatrix}1&2&3&4\\2&3&1&4\end{pmatrix}$, und V ist die kleinsche Vierergruppe

$$V = \{ id, (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3) \} \le A_4,$$

dann gilt

$$A_4 \cong V \rtimes \{ \mathrm{id}, \sigma, \sigma^2 \}$$

Beweis. (Übung) eventuell noch 12 Tage warten.

Kapitel 2

Gruppen Strukturtheorie

2.1 Strukturtheorie zu Gruppen ("Einige Aussagen")

Sei im Weiteren M ein Monoid, G eine Gruppe und X eine Menge.

Definition 2.1 (Wirkung). Eine Abbildung

$$\lambda: M \times X \to X, (m, x) \mapsto m \cdot x := \lambda(m, x)$$

heißt Linkswirkung (left action, Linksoperation) von M auf X, wenn es gelten $\forall x \in X, m, m' \in M$:

- (i) Neutrales Element: $e \cdot x = x$
- (ii) Assoziativität: $m \cdot (m' \cdot x) = (m \cdot m') \cdot x$

Bezeichnung. Ist M eine Gruppe, so heißt λ auch Gruppenwirkung und X heißt Links-M-Menge.

Bemerkung. Analog kann man auch Rechtswirkungen

$$\rho: X \times M \to X, (x,m) \mapsto x \cdot m$$

definieren. (Axiome: $x \cdot e = c$ und $(x \cdot m) \cdot m' = x \cdot (m \cdot m')$)

Bemerkung (Übung). Jede Links-G-Wirkung kann man in eine Rechts-G-Wirkung überführen: zu $\lambda: G \times X \to X$ definiere $\rho: X \times G \to X$ durch

$$\rho(x,q) := \lambda(q^{-1},x) \iff x \cdot q := q^{-1} \cdot x$$

Proposition 2.2 (Alternative Beschreibung von Wirkungen).

(a) Sei $\lambda: G \times X \to X$ eine Linkswirkung, dann ist

$$\varphi: G \to \mathrm{Bij}(X), g \mapsto (\varphi_g: X \to X, x \mapsto gx)$$

ein wohl-definierter Gruppenhomomorphismus.

(b) $Sei \varphi : G \to Bij(X)$ ein Gruppenhomomorphismus, dann ist

$$\lambda: G \times X \to X, (g, x) \mapsto \varphi(g)(x)$$

eine Linkswirkung von G auf X.

Beweis. (a) Für $g \in G$ sei $\varphi_g : X \to X, x \mapsto gx$, dann gelten: $\varphi_e : X \to X, x \mapsto ex = x$ ist id_X (Axiom (i)), und

$$(*) \quad \varphi_g \circ \varphi_{g'} = \varphi_{gg'}$$

denn $\forall x \in X$:

$$(\varphi_{a} \circ \varphi_{a'})(x) = \varphi_{a}(\varphi_{a'}(x)) = g(g'x) \stackrel{(ii)}{=} (gg')x = \varphi_{aa'}(x)$$

Damit folgen:

1. $\varphi_g \circ \varphi_{g^{-1}} = \underbrace{\varphi_e}_{\operatorname{id}_X} = \varphi_{g^{-1}} \circ \varphi_g \implies \varphi_g$ ist eine bijektive Abbildung mit Inverse $\varphi_{g^{-1}}$, d.h.

$$\varphi: G \to \mathrm{Bij}(X), g \mapsto \varphi_g$$

ist wohl-definiert.

2. φ ist ein Gruppenhomomorphismus: folgt aus (*) (Verknüpfung in Bij(X) ist die Verkettung von Abbildungen.)

(b) Übung.

Bemerkung. (a) Das Analogon von Proposition 2 gilt auch für Monoide. Die Linkewirkungen eines Monoids M auf X entsprechen Monoidhomomorphismen $M \to (\mathrm{Abb}(X,X),\mathrm{id}_X,\circ)$

(b) Eine Gruppe kann auch auf "Objekten" mit mehr Struktur als eine Menge wirken, z.B. auf eine Gruppe!

Beispiel. G wirkt auf eine Gruppe N heißt, man hat einen Gruppenhomomorphismus $G \to \operatorname{Aut}(N)$ (vgl. Lemma 1.56)

Definition 2.3 (Eigenschaften von Wirkungen). Sei $\lambda:G\times X\to X$ eine Linkswirkung von G auf X.

- (a) Die Bahn zu $x \in X$ ist $Gx = \{gx \mid g \in G\}$. Die Länge der Bahn zu x ist #Gx
- (b) λ ist transitiv $\iff \forall y,z \in X \exists g \in G: gy = z \stackrel{\text{Übung}}{\iff} \forall y \in X: Gy = X \stackrel{\text{Übung}}{\iff} \exists x \in X: Gx = X$
- (c) λ ist n-fach transitiv $(n \in \mathbb{N})$, wenn für alle Paare von n-Tupeln $(x_1, ..., x_n), (y_1, ..., y_n) \in X^n$ mit $\#\{x_1, ..., x_n\} = \#\{y_1, ..., y_n\}$ gilt $\exists g \in G : gx_i = y_i, \forall i$.

(d) Die Wirkung heißt treu, wenn der induzierte Gruppenhomomorphismus $\varphi:G\to \mathrm{Bij}(X)$ (aus Proposition 2) injektiv ist

$$\overset{\ddot{\mathbf{U}}\mathbf{bung}}{\Longleftrightarrow} \forall g \in G \setminus \{e\}: \exists x \in X: \underbrace{gX \neq X}_{\varphi_g(x) \neq \mathrm{id}_X(x)}$$

Beispiel 2.4.

- 1. Ist V ein K-Vektoraum, so wirkt das Monoid $(K,1,\cdot)$ auf V durch Skalarmultiplikation $(\lambda,v)\mapsto \lambda v$
- 2. Die folgenden 3 Beispiele sind Linkswirkungen von $GL_n(K)$:
 - (i) $\mathrm{GL}_{\mathrm{n}}(K) \times K^n \to K^n, (g, v) \mapsto gv.$ (Übung: Es gibt die Bahnen $\{0\}, K^n \setminus \{0\}$)
 - (ii) Sei $\mathcal{B} = \{\text{geordnete Basen von } K^n \}$ und

$$\operatorname{GL}_{n}(K) \times \mathcal{B} \to \mathcal{B}, (g, (b_{1}, ..., b_{n})) \mapsto (gb_{1}, ..., gb_{n})$$

die Wirkung ist treu und transitiv.

- (iii) $\operatorname{GL}_n(K) \times \operatorname{End}_K(K^n) \to \operatorname{End}_K(K^n), (A, B) \mapsto ABA^{-1}$ die Wirkung ist nicht treu $Z(\operatorname{GL}_n(K))$ wirkt trivial. (Übung: Bahnen stehen in Bijektion zu den Frobeniusnormalformen von Matrizen.)
- 3. $S_n \times \{1,...,n\} \to \{1,...,n\}, (\sigma,i) \mapsto \sigma(i)$ Wirkung ist treu und n-fach transitiv.
- 4. Abstrakte Beispiele: Sei $H \leq G$ eine Untergruppe.
 - (i) $\lambda: H \times G \to G, (h,g) \mapsto hg$. Die Bahnen sind die Mengen Hg, also die Rechtsnebenklassen zu H (treu?) Menge der Rechtsnebenklassen

$$H^{\backslash G}:=\{Hg\mid g\in G\}$$

(ii) $\rho: G \times H \to G, (g,h) \mapsto gh$ Bahnen = Linksnebenklassen zu H und

$$G_{H} = \{gH \mid g \in G\}$$

- (iii) $c: G \times G \to G, (g,g') \mapsto gg'g^{-1}$ ist eine Linkswirkung, denn der nach Proposition 2 zugehörige Gruppenhomomorphismus ist $c: G \to \operatorname{Aut}(G), g \mapsto c_g$.
- (iv) $G \times G/H \to G/H$, $(g, g'H) \mapsto gg'H$ Die Klassen gH heißen Linksnebenklassen wegen der Links-G-Wirkung auf ihnen.

Proposition 2.5. Sei X eine Links-G-Menge (zu der Wirkung $\lambda : G \times X \to X, (g, x), \mapsto gx$) definiere Relation \sim auf X durch

$$x \sim y \iff \exists g \in G : gx = y$$

dann gelten:

(a) \sim ist eine Äquivalenzrelation.

(b) Die Äquivalenzklasse zu $x \in X$ bezüglich \sim ist die Bahn Gx. Insbesondere ist X die disjunkte Vereinigung seiner Bahnen. (Ist $(x_i)_{i \in I}$ ein Repräsentantensystem der G-Bahnen, so gilt also $\#X = \sum_{i \in I} \#Gx$)

Beweis. (a) \sim ist eine Äquivalenzrelation: Prüfe

- \sim reflexiv: $ex = x \implies x \sim x$.
- \sim symmetrisch: Gelte $x \sim y$, d.h. $\exists g \in G : gx = y$, dann gilt $x = ex = g^{-1}(gx) = g^{-1}y \implies y \sim x$.
- \sim transitiv: Gelte $x \sim y$ und $y \sim z$, d.h. $\exists g, h' \in G : gx = y, g'y = z$

$$\implies (g'g)x = g'(gx) = g'y = z \implies x \sim z$$

(b) Sei $x \in X$, dann ist

$$\{y \in X \mid x \sim y\} = \{y \in X \mid \exists g \in G : y = gx\} = \{gx \mid g \in G\} = Gx.$$

Satz 2.6 (Satz von Cayley). Jede Gruppe G (jedes Monoid M) ist isomorph zu einer Untergruppe (einem Untermonoid) von $(Bij(G), id_G, \circ)$ (bzw. $(Abb(G, G), id_G, \circ)$).

Beweis. (Für Gruppen, Rest ist eine Übung) Definiere die Wirkung $\lambda G \times G \to G, (g,h) \mapsto gh$, dann erhalten wir den induzierten Gruppenhomomorphismus $\varphi: G \to \operatorname{Bij}(G)$, wir zeigen φ ist injektiv: Sei $g \in G \setminus \{e\}$, dann gilt $ge = g \neq e \Longrightarrow \operatorname{Wirkung}$ treu, also φ ist ein Gruppenmonomorphismus. D.h. G "ist" Untergruppe von $\operatorname{Bij}(G)$.

Definition 2.7 (Stabilisator). Sei X eine Links-G-Menge und $x \in X$, dann heißt

$$G_x := \operatorname{Stab}_G(x) := \{ g \in G \mid gx = x \}$$

Stabilisator von x (unter G). Warnung: $G_x \neq G \cdot x$.

Beispiel. Stab_{S_n}($\{n\}$) = $\{\sigma \in S_n \mid \sigma(n) = n\} \cong S_{n-1}$ mit der üblichen S_n -Wirkung auf $\{1, ..., n\}$.

Übung. G-Wirkung auf einer Menge X ist treu

$$\iff \bigcap_{x \in X} \operatorname{Stab}_G(x) = \{e\}$$

Proposition 2.8. Sei X eine links-G-Menge, $x \in X, g \in G$, dann gilt

- (a) $\operatorname{Stab}_G(x) \leq G$ ist eine Untergruppe.
- (b) $\operatorname{Stab}_G(gx) = g \operatorname{Stab}_G(x)g^{-1}$

Beweis.

(a) $e \in \operatorname{Stab}_G(x)$, denn ex = x. Seien $\underbrace{g_1, g_2 \in \operatorname{Stab}_G(x)}_{\text{bedeutet } g_1x = x, g_2x = x}$, zu zeigen ist $g_1^{-1}g_2 \in \operatorname{Stab}_G(x)$

 $\operatorname{Stab}_G(x)$

$$\Longrightarrow^{g_1^{-1}} x = ex = g_1^{-1}g_1x = g^{-1}x$$

Damit gilt $(g_1^{-1} \cdot g_2^{-1})x = g_1^{-1}(g_2x) = g_1^{-1}x = x$

(b) Sei $h \in G$, dann:

$$h \in \operatorname{Stab}_{G}(gx) \iff hgx = gx \stackrel{g^{-1}}{\iff} g^{-1}hgx = x$$
 $\iff g^{-1}hg \in \operatorname{Stab}_{G}(x) \underset{\operatorname{Konj. mit}}{\iff} h \in g \operatorname{Stab}_{G}(x)g^{-1}.$

Proposition 2.9 (Bahngleichung). Sei X eine links-G-Menge, $x \in X$, dann gilt:

- $\psi: {}^{G}/_{G_{x}} \to Gx, hG_{x} \mapsto hx$ ist wohl-definiert und eine Bijektion.
- Ist G endlich, so folgt $\#G \cdot x = [G:G_x]$.

Beweis.

• ψ injektiv und wohl definiert: Seien $g, h \in G$, dann

$$hx = gx \iff g^{-1}hx = x \iff g^{-1}h \in G_x \le G$$

$$\iff g^{-1}hG_x = G_x \iff hG_x = gG_x$$

- ψ surjektiv nach Definition von $G \cdot x$.
- Aussage über Mächtigkeiten: ψ bijektiv \implies # $^G\!\!/_{G_x} = \#G \cdot x$.

Bemerkung. Die Abbildung ψ ist ein Homomorphismus von links-G-Mengen (ein Isomorphismus!), $G/_{G_x}$ und $G \times x \subseteq X$ sind links-G-Mengen und ψ erfüllt:

$$\psi(g \cdot hG_x) = g \cdot \psi(hG_x)$$

(beides ist = $gx \cdot x$)

Definition 2.10. Sei X eine links-G-Menge,

- (a) Man sagt G operiert frei auf $X \iff \forall x \in X : G_x = \{e\}$
- (b) Die Menge der Fixpunkte der G-Wirkung ist

$$X^G := \{ x \in X \mid G_x = G \}$$

Beispiel. $GL_n(K)$ operiert frei auf der Menge der geordneten Basen von K^n .

Korollar 2.11. Sei X eine links-G-Menge. Sei $x_1, ..., x_n$ ein Repräsentantensystem der Bahnen der Länge ≥ 2 . Dann:

(a)
$$X = X^G \sqcup \bigsqcup_{i \in \{1, \dots, n\}} G \cdot x_i$$

(b)
$$\#X = \#X^G + \sum_{i \in \{1,\dots,n\}} \underbrace{[G:G_{x_i}]}_{=\#G\cdot x}$$

Beweis. Aus Proposition 5 folgt (a), Lemma 9 gibt (b).

Anwendung. Sei X := G. Sei die G-Wirkung durch Konjugation gegeben, d.h.

$$g \underbrace{\circ}_{\text{Wirk.}} h = ghg^{-1}$$

Die Bahnen unter dieser G-Wirkungheißen Konjugationsklassen. Die Konjugationsklasse zu $h\in G=X$ ist

$$G_h := \{ghg^{-1} \mid g \in G\}$$

Bahnen der Länge 1 sind Fixpunkte unter Konjugation mit allen $g \in G$

$$=\{h\in G\mid \forall g\in G: \underbrace{ghg^{-1}=h}_{gh=hg}\}=:Z(G)\text{ das Zentrum von }G$$

Stabilisator zu $h \in G$ (unter Konjugationswirkung)

$$= \{g \in G \mid ghg^{-1} = h\} = C_G(h)$$
 Zentralisator von h

Aus Korollar 11 ergibt sich nun:

Satz 2.12 (Klassengleichung). Sei G endlich. Ist $g_1, ..., g_n$ ein Repräsentantensystem der Konjugationsklassen der Länge ≥ 2 , so gilt:

$$\# \underbrace{G}_{X} = \# \underbrace{Z(G)}_{X^{G}} + \sum_{i=1}^{n} [G : \underbrace{C_{G}(g_{i})}_{C_{g}}]$$

Definition 2.13. Sei p eine Primzahl, eine Gruppe G heißt p-Gruppe \iff $\# = p^m$ füe ein $m \in \mathbb{N}$

Beispiel.

$$\mathbb{Z}_{p^m} \text{ oder } U_3(\mathbb{F}_p) = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \middle| a, b, c \in \mathbb{F}_p \right\}$$

Korollar 2.14. Ist G eine p-Gruppe, so gilt p|#Z(G), $(d.h.\ Z(G)$ ist nicht-trivial und also eine p-Gruppe)

Beweis. Seien $g_1, ..., g_n$ wie im Satz 12. Dann gilt: $C_G(g_i) < G$ ist eine echte Untergruppe. (sonst $g_i = Z(G)$, ist ausgeschlossen)

$$\Longrightarrow_{\text{Lagrange}} [G: C_G(g_i)] \text{ teilt } \#G = p^m$$

ist ungleich 1!

$$\implies p[G: C_G(g_i)], \forall i \in \{1, ..., n\}$$

Klassengleichung modulo p:

$$\underbrace{0}_{\#G} \cong \#Z(G) + \sum_{i=1}^{n} \underbrace{0}_{[G:C_G(g_i)]} \mod p \implies p | \#Z(G).$$

Übung 2.15 (Satz von Cauchy). (?) Sei p eine Primzahl und G endlich, dann gilt:

$$p|\#G \implies \exists g \in G : \operatorname{ord}(g) = p.$$

 $(\implies \#G \text{ und } \#\exp(G) \text{ haben dieselben Primteiler})$

Idee: Verwende Induktion über #G und die Klassengleichung. In Induktionsschritt 2 Fälle:

- 1. $\exists H < G$ echte Untergruppe mit p | # H
- 2. $\neg \exists H < G$ echte Untergruppe mit p | # H

Im 2. Fall wende Klassengleichung mod p an!

2.2 Permutationsgruppen

Sei $n \in \mathbb{N}$, $S_n = \text{Bij}(\{1,...,n\})$, Notation für $\sigma \in S_n$, d.h. $\sigma : \{1,...,n\} \rightarrow \{1,...,n\}$ bijektiv ist

$$\begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{pmatrix}$$

Dabei gilt: $(\sigma(1), ..., \sigma(n))$ ist eine Permutation von $\{1, ..., n\}$, d.h.

$$\#\{\sigma(1),...,\sigma(n)\}=n$$

Korollar 2.16. $\#S_n = n!$

Beweis. (Übung) Betrachte die möglichen "Wertetabellen" für Permutationen.

Definition 2.17. Für $\sigma, \tau \in S_n$ definiere

- (a) supp (σ) = Träger von σ , supp (σ) := $\{i \in \{1, ..., n\} \mid \sigma(i) \neq i\}$
- (b) σ und τ sind disjunkt \iff supp $(\sigma) \cap \text{supp}(\tau) = \emptyset$

Bemerkung. supp $(\sigma) = \emptyset \iff 0 = id$

Lemma 2.18 (Andere Interpretation des Trägers). Sei $\sigma \in S_n$, dann gilt für die Wirkung von $\langle \sigma \rangle$: supp $(\sigma) = Vereinigung der Bahnen von <math>\langle \sigma \rangle$ auf $\{1, ..., n\}$ der Länge ≥ 2 .

Beweis.

- " \subseteq ": Sei $i \in \text{supp}(\sigma) \implies \sigma(i) \neq i \implies \{i, \sigma(i), \sigma^2(i), ..., \sigma^m(i), ...\}$ ist Bahn von $\langle \sigma \rangle = \{\sigma^j \mid j \in \mathbb{N}_0\} = \{\text{id}, \sigma, ..., \sigma^{r-1}\}$ der Länge ≥ 2 . für $r = \text{ord}(\sigma)$.
- " \supseteq ": Sei $i \notin \text{supp}(\sigma) \implies \sigma(i) = i \implies \sigma^j(i) = i, \forall j \in \mathbb{N} \implies \text{Bahn}$ von i unter $\langle \sigma \rangle$ ist 1-elementig.

Korollar 2.19. Für $\sigma \in S_n$ gelten:

(a) $i \in \text{supp}(\sigma) \iff \sigma(i) \in \text{supp}(\sigma)$

(b) Auf jeder $\langle \sigma \rangle$ -Bahn (durch $i \in \{1,...,n\}$) wirkt σ als "zyklische Permutation", d.h.

Beweis. (a)

$$i \in \operatorname{supp}(\sigma) \implies \sigma(i) \neq i \underset{\sigma \text{ anwenden}}{\Longrightarrow} \sigma(\sigma(i)) \neq \sigma(i) \implies \sigma(i) \in \operatorname{supp}(\sigma)$$

Falls
$$\sigma(i) \in \text{supp}(\sigma)$$
, so gilt $\sigma(\sigma(i)) \neq \sigma(i) \underset{\sigma^{-1} \text{ anwenden}}{\Longrightarrow} \sigma(i) \neq i$

(b) Sei r die Länge der Bahn durch i unter $\langle \sigma \rangle$. Dann sind $i_{j+1} := \sigma^j(i), j = 0, ..., r-1$ paarweise verschieden. Sonst $\exists 0 \leq j_1 < j_2 \leq r-1$ mit $\sigma^{j_1}(i) = \sigma^{j_2}(i)$

$$\underset{\sigma^{-1} \text{ anwenden}}{\Longrightarrow} i = \sigma^{j_2 - j_1}(i) \quad (*)$$

 \implies Bahn durch ihat höchsten
s $j_2 - j_1 < r$ Elemente, die Bahn ist wegen (*)

$$=\{i,\sigma(i),...,\sigma^{j_2-j_1}(i)\}$$

Und nun: Wiederholtes Anwenden von σ gibt den Zykel

$$i_1 \longmapsto i_2 \longmapsto \cdots \longmapsto i_r$$

Lemma 2.20. Sind $\sigma, \tau \in S_n$ disjunkt, so gilt $\sigma \tau = \tau \sigma$.

Beweis. Zeige $\sigma\circ\tau=\tau\circ\sigma$ als Abbildungen $\{1,...,n\}\to\{1,...,n\},$ sei $i\in\{1,...,n\}$

- Fall 1: $i \in \text{supp}(\sigma) \implies \sigma(i) \in \text{supp}(\sigma) \implies i, \sigma(i) \notin \text{supp}(\tau)$. Also $\tau(i) = i, \tau(\sigma(i)) = \sigma(i)$
- Fall 2: $i \in \text{supp}(\tau)$ analog zu Fall 1.
- Fall 3: $i \notin \text{supp}(\sigma) \cup \text{supp}(\tau) \implies \sigma(i) = i = \tau(i)$.

Also
$$\sigma(\tau(i)) = \sigma(i) = i = \tau(i) = \tau(\sigma(i)).$$

(Folge: σ, τ disjunkt $\implies \operatorname{ord}(\sigma\tau) = \operatorname{kgV}(\operatorname{ord}(\sigma), \operatorname{ord}(\tau))$)

Definition 2.21. Seien $i_1,...,i_r \in \{1,...,n\}$ paarweise verschieden. Der r-Zykel

$$(i_1 \ i_2 \ \cdots \ i_r)(j) = \begin{cases} j & j \notin \{i_1, \dots, i_r\} \\ i_{s+1} & j = i_s \ (s \in \{1, \dots, n\}) \\ i_1 & j = i_r \end{cases}$$

2-Zykel heißen Transposition. Konvention: (·) := $\mathrm{id}_{\{1,\dots,n\}}$ (leerer Zykel). Beachte:

- (i) $(i) = (\cdot)$ für $i \in \{1, ..., n\}$
- (ii) supp $(i_1 \ i_2 \ \cdots \ i_r) = \begin{cases} \{i_1, ..., i_r\} & r \geq 2 \\ \emptyset & r = 1 \end{cases}$
- (iii) $(i_1\ i_2\ \cdots\ i_r)=(i_r\ i_1\ i_2\ \cdots\ i_{r-1})$ (Notation ist nicht eindeutig, können Einträge zyklisch weiterschieben.) z.B.

$$(1\ 4\ 7) = (7\ 1\ 4) = (4\ 7\ 1) =$$

(iv)
$$\operatorname{ord}(i_1 \cdots i_r) = r$$
, z.B. $\operatorname{ord}(1\ 2) = 2$

Satz 2.22 (Zykeldarstellung). Sei $\sigma \in S_n$, seien $I_1, ..., I_t \subseteq \{1, ..., n\}$. Die verschiedenen Bahnen von $\langle \sigma \rangle$ der Länge ≥ 2 , dann:

- (a) $\exists ! \ Zykel \ \sigma_j \ der \ L\"{a}nge \ \#I_j \ mit \ \mathrm{supp}(\sigma_j) = I_j, \ so \ dass \ \sigma_j|_{I_j} = \sigma|_{I_j}$
- (b) $\sigma = \sigma_1 \cdot ... \cdot \sigma_t$ und die σ_i kommutieren paarweise.
- (c) Die Darstellung in (b) ist bis auf Permutation der Faktoren eindeutig.
- (d) Es gilt mit der Notation aus (b):

$$\operatorname{ord}(\sigma) = \operatorname{kgV}(\#I_1, ..., \#I_t)$$