Catalan Numbers Modulo a Prime Power

Larry Shu-Chung Liu

National Hsinchu University of Education, Taiwan a joint work with Jean C.-C. Yeh (Texas A&M)

In honor of Professor Doron Zeilberger's birthday

Outline

- 1 Some results about $\binom{m}{n}$ during the late 1800
- 2 Some recent works for a prime power modulus
- 3 Our technique
- 4 Catalan numbers modulus 2^k
- 5 Catalan numbers modulus an odd prime power

Outline

- 1 Some results about $\binom{m}{n}$ during the late 1800
 - 2 Some recent works for a prime power modulus
- 3 Our technique
- 4 Catalan numbers modulus 2^k
- 5 Catalan numbers modulus an odd prime power

lacktriangle The p-adic order of an integer n is denoted and defined as

$$\omega_p(n) := \max\{\alpha \in \mathbb{N} : p^{\alpha}|n\}.$$

lacktriangle The p-adic order of an integer n is denoted and defined as

$$\omega_p(n) := \max\{\alpha \in \mathbb{N} : p^{\alpha}|n\}.$$

Let C(m,n) be the number of *total carries* for operating m+n.

lacktriangle The p-adic order of an integer n is denoted and defined as

$$\omega_p(n) := \max\{\alpha \in \mathbb{N} : p^{\alpha}|n\}.$$

Let C(m,n) be the number of *total carries* for operating m+n.

Theorem (Kummer, 1852)

$$\omega_p\left(\binom{m+n}{m}\right) = C(m,n).$$

Let p be a fixed prime and n be any integer. Define that

■ $[n]_p := \langle \dots n_2 n_1 n_0 \rangle_p$ be the representation of n in the base-p system.

Let p be a fixed prime and n be any integer. Define that

- $[n]_p := \langle \dots n_2 n_1 n_0 \rangle_p$ be the representation of n in the base-p system.
- $|\langle \dots n_2 n_1 n_0 \rangle_p| := n_0 + n_1 p + n_2 p^2 + \dots = n.$

Let p be a fixed prime and n be any integer. Define that

- $[n]_p := \langle \dots n_2 n_1 n_0 \rangle_p$ be the representation of n in the base-p system.
- $|\langle \dots n_2 n_1 n_0 \rangle_p| := n_0 + n_1 p + n_2 p^2 + \dots = n.$

Theorem (Lucas, 1877)

$$\binom{m}{n} \equiv_p \prod_{i \ge 0} \binom{m_i}{n_i}.$$

Theorem (Anton, 1869; Stickelberger, 1890; Hensel, 1902; and etc)

Given non-negative integers m and n, let r=m-n. We have

$$\frac{(-1)^{\omega}}{p^{\omega}} \binom{m}{n} \equiv_p \prod_{i>0} \frac{m_i!}{n_i! \ r_i!},$$

where
$$\omega = \omega_p(\binom{m}{n})$$
.

Theorem (Anton, 1869; Stickelberger, 1890; Hensel, 1902; and etc)

Given non-negative integers m and n, let r = m - n. We have

$$\frac{(-1)^{\omega}}{p^{\omega}} \binom{m}{n} \equiv_p \prod_{i>0} \frac{m_i!}{n_i! \ r_i!},$$

where $\omega = \omega_p(\binom{m}{n})$.

Notice that

$$r_i \equiv_p m_i - n_i - \kappa(m, n, i - 1),$$

where $\kappa(m,n,i-1)$ is the possible borrow from the i-th place to the (i-1)-st place when operating m-n.

Theorem (Anton, 1869; Stickelberger, 1890; Hensel, 1902; and etc)

Given non-negative integers m and n, let r = m - n. We have

$$\frac{(-1)^{\omega}}{p^{\omega}} \binom{m}{n} \equiv_p \prod_{i \geq 0} \frac{m_i!}{n_i! \ r_i!},$$

where $\omega = \omega_p(\binom{m}{n})$.

Notice that

$$r_i \equiv_p m_i - n_i - \kappa(m, n, i - 1),$$

where $\kappa(m,n,i-1)$ is the possible borrow from the i-th place to the (i-1)-st place when operating m-n.

■ Analogous formulae w.r.t. modulus p^k were recently given by Granville and {Davis, Webb}.

Outline

- 1 Some results about $\binom{m}{n}$ during the late 1800
- 2 Some recent works for a prime power modulus
- 3 Our technique
- 4 Catalan numbers modulus 2^k
- 5 Catalan numbers modulus an odd prime power

Theorem (Deutsch and Sagan, 2006)

$$\omega_2(c_n) \ = \ d(n+1)-1 \ = \ {\color{red}d(\alpha)},$$
 where $d(m)=m_0+m_1+\dots$ and
$$[n]_2=\langle [\alpha]_2 \ 0 \ \underbrace{11\dots 1}_2\rangle_2.$$
 This segment might be empty.

Theorem (Deutsch and Sagan, 2006)

$$\omega_2(c_n) \ = \ d(n+1)-1 \ = \ {\color{red}d(\alpha)},$$
 where $d(m)=m_0+m_1+\dots$ and
$$[n]_2=\langle [\alpha]_2 \ 0 \ \underbrace{11\dots 1}_{2} \rangle_2.$$
 This segment might be empty.

Postnikov and Sagan generalized this formula for a weighted Catalan number.

Theorem (Deutsch and Sagan, 2006)

$$\omega_2(c_n) \ = \ d(n+1)-1 \ = \ {\color{red}d(\alpha)},$$
 where $d(m)=m_0+m_1+\dots$ and
$$[n]_2=\langle [\alpha]_2 \ 0 \ \underbrace{11\dots 1}_{2} \rangle_2.$$
 This segment might be empty.

- Postnikov and Sagan generalized this formula for a weighted Catalan number.
- lacksquare A general formula of $\omega_p(c_n)$ for any prime p will be given later.

Let
$$d(n) = n_0 + n_1 + \cdots$$
 be the digit sum of $[n]_2$.

 $\sqsubseteq c_n \pmod{8}$

Let $d(n) = n_0 + n_1 + \cdots$ be the digit sum of $[n]_2$.

Proposition (Eu, Liu and Y.-N. Yeh, 2008)

First of all, $c_n \not\equiv_8 3,7$ for any n. As for other congruences, we have

$$c_n \equiv_8 \left\{ \begin{array}{c} 1 \\ 5 \\ \end{array} \right\} \quad \mbox{if} \quad d(\alpha) = 0 \mbox{ and } \quad \left\{ \begin{array}{c} \beta = 0 \mbox{ or } 1, \\ \beta \geq 2, \\ \end{array} \right.$$

$$\left\{ \begin{array}{c} 2 \\ 6 \\ \end{array} \right\} \quad \mbox{if} \quad d(\alpha) = 1 \mbox{ and } \quad \left\{ \begin{array}{c} \alpha = 1, \\ \alpha \geq 2, \end{array} \right.$$

$$\left\{ \begin{array}{c} \alpha = 1, \\ \alpha \geq 2, \end{array} \right.$$

$$\left\{ \begin{array}{c} \alpha = 1, \\ \alpha \geq 2, \end{array} \right.$$

$$\left\{ \begin{array}{c} \alpha = 1, \\ \alpha \geq 2, \end{array} \right.$$

$$\left\{ \begin{array}{c} \alpha = 1, \\ \alpha \geq 2, \end{array} \right.$$

$$\left\{ \begin{array}{c} \alpha = 1, \\ \alpha \geq 2, \end{array} \right.$$

$$\left\{ \begin{array}{c} \alpha = 1, \\ \alpha \geq 2, \end{array} \right.$$

where
$$[n]_2 = \langle [\alpha]_2 \ 0 \ 1^{\beta} \rangle_2$$
.

 $\sqsubseteq_{c_n} \pmod{8}$

Let $d(n) = n_0 + n_1 + \cdots$ be the digit sum of $[n]_2$.

Proposition (Eu, Liu and Y.-N. Yeh, 2008)

First of all, $c_n \not\equiv_8 3,7$ for any n. As for other congruences, we have

$$c_n \equiv_8 \left\{ \begin{array}{c} 1 \\ 5 \\ 2 \\ 6 \\ \end{array} \right\} \quad \mbox{if} \quad d(\alpha) = 0 \mbox{ and } \qquad \left\{ \begin{array}{c} \beta = 0 \mbox{ or } 1, \\ \beta \geq 2, \\ \alpha = 1, \\ \alpha \geq 2, \\ \end{array} \right.$$

$$\left\{ \begin{array}{c} \alpha = 1, \\ \alpha \geq 2, \\ \alpha = 1, \\ \alpha \geq 2, \\ \end{array} \right.$$

$$\left\{ \begin{array}{c} \alpha = 1, \\ \alpha \geq 2, \\ \alpha = 1, \\ \alpha \geq 3, \end{array} \right.$$

where $[n]_2 = \langle [\alpha]_2 \ 0 \ 1^{\beta} \rangle_2$.

■ e.g. $[83]_2 = \langle 1010011 \rangle_2$ has $[\alpha]_2 = \langle 1010 \rangle_2$, $d(\alpha) = 2$ and $\beta = 2$.

 $\sqsubseteq c_n \pmod{8}$

Let $d(n) = n_0 + n_1 + \cdots$ be the digit sum of $[n]_2$.

Proposition (Eu, Liu and Y.-N. Yeh, 2008)

First of all, $c_n \not\equiv_8 3,7$ for any n. As for other congruences, we have

$$c_n \equiv_8 \left\{ \begin{array}{c} 1 \\ 5 \\ 2 \\ 6 \\ \end{array} \right\} \quad \mbox{if} \quad d(\alpha) = 0 \mbox{ and } \qquad \left\{ \begin{array}{c} \beta = 0 \mbox{ or } 1, \\ \beta \geq 2, \\ \alpha = 1, \\ \alpha \geq 2, \\ \end{array} \right.$$

$$\left\{ \begin{array}{c} \alpha = 1, \\ \alpha \geq 2, \\ \alpha = 1, \\ \alpha \geq 2, \\ \end{array} \right.$$

$$\left\{ \begin{array}{c} \alpha = 1, \\ \alpha \geq 2, \\ \alpha = 1, \\ \alpha = 1, \\ \alpha \geq 2, \\ \alpha = 1, \\$$

where $[n]_2 = \langle [\alpha]_2 \ 0 \ 1^{\beta} \rangle_2$.

- e.g. $[83]_2 = \langle 1010011 \rangle_2$ has $[\alpha]_2 = \langle 1010 \rangle_2$, $d(\alpha) = 2$ and $\beta = 2$.
- Therefore, $c_{83} \equiv_8 4$.

Some recent works for a prime power modulus

 $\sqsubseteq M_n \pmod{4}$ with even value

The Motzkin number can be defined as $M_n = \sum_{k=0}^{\lfloor n/2 \rfloor} \binom{n}{2k} c_k$.

Proposition (Eu, Liu and Y.-N. Yeh, 2008)

We have $M_n \equiv_4 0$ if and only if

$$n = (4i+1)4^{j+1} - 1$$
 or $n = (4i+3)4^{j+1} - 2$,

and $M_n \equiv_4 2$ if and only if

$$n = (4i+1)4^{j+1} - 2$$
 or $n = (4i+3)4^{j+1} - 1$,

where $i, j \in \mathbb{N}$.

Proposition (Eu, Liu and Y.-N. Yeh, 2008)

The Motzkin number M_n is even if and only if $n=(4i+\varepsilon)4^{j+1}-\delta$ for $i,j\in\mathbb{N}$, $\varepsilon=1,3$ and $\delta=1,2$. And we never have $M_n\equiv_8 0$. Precisely, we have

$$M_n \equiv_8 \begin{cases} 4 & \text{if } (\varepsilon, \delta) = (1, 1) \text{ or } (3, 2); \\ 4y + 2 & \text{if } (\varepsilon, \delta) = (1, 2) \text{ or } (3, 1), \end{cases}$$

where y is the number of digit 1's in $[4i + \varepsilon - 1]_2$.

Outline

- 1 Some results about $\binom{m}{n}$ during the late 1800
- 2 Some recent works for a prime power modulus
- 3 Our technique
- 4 Catalan numbers modulus 2^k
- 5 Catalan numbers modulus an odd prime power

Problem 1: To evaluate congruence for the combinatorial numbers of form $\frac{\prod_{i=1}^h M_i}{\prod_{j=1}^g N_j}$ (mod $q:=p^k$).

Problem 2: To classify these combinatorial numbers \pmod{q} according to their congruences.

- **Problem 1:** To evaluate congruence for the combinatorial numbers of form $\frac{\prod_{i=1}^h M_i}{\prod_{j=1}^g N_j}$ (mod $q:=p^k$).
 - **Problem 2:** To classify these combinatorial numbers \pmod{q} according to their congruences.
- $CF_p(n) := \frac{n}{p^{\omega_p(n)}}$, the *cofactor* of n with respect to $p^{\omega_p(n)}$ (or *non-p-cofactor*).

- **Problem 1:** To evaluate congruence for the combinatorial numbers of form $\frac{\prod_{i=1}^h M_i}{\prod_{j=1}^g N_j}$ (mod $q := p^k$). **Problem 2:** To classify these combinatorial numbers (mod q)
 - **Problem 2:** To classify these combinatorial numbers (mod q) according to their congruences.
- $CF_p(n) := \frac{n}{p^{\omega_p(n)}}$, the *cofactor* of n with respect to $p^{\omega_p(n)}$ (or *non-p-cofactor*).
- To evaluate a product $M := \prod_{i=1}^h M_i$ modulo $q = p^k$, let us consider two cofactors of M, namely

$$p^{\omega_p(M)}=p^{\sum_{i=1}^h\omega_p(M_i)}$$
 and $CF_p(M)=\prod_{i=1}^hCF_p(M_i).$

■ We analyze further that

$$\prod_{i=1}^{h} CF_p(M_i) \equiv_q \prod_{t \in \mathbb{Z}_q^*} t^{E_{q,t}(M)},$$

where
$$\mathbb{Z}_q^*=\{1,2,\cdots,q-1\}-\{mp\mid m\in\mathbb{N}\}$$
 and $E_{q,t}(M):=\sum_{i=1}^h\chi(CF_p(M_i)\equiv_q t).$

■ We analyze further that

$$\prod_{i=1}^{h} CF_p(M_i) \equiv_q \prod_{t \in \mathbb{Z}_q^*} t^{E_{q,t}(M)},$$

where
$$\mathbb{Z}_q^* = \{1, 2, \cdots, q-1\} - \{mp \mid m \in \mathbb{N}\}$$
 and $E_{q,t}(M) := \sum_{i=1}^h \chi(CF_p(M_i) \equiv_q t)$.

• We call $E_{q,t}(M)$ the t-encounter function of modulus q w.r.t. the product $M:=\prod_{i=1}^h M_i$.

• If $\omega_p(\prod_{i=1}^h M_i) \geq k$, then $\prod_{i=1}^h M_i \equiv_q 0$; otherwise

$$\prod_{i=1}^{h} M_i \equiv_q p^{\omega_p(\prod_{i=1}^{h} M_i)} \prod_{t \in \mathbb{Z}_q^*} t^{E_{q,t}(\prod_{i=1}^{h} M_i)}.$$

• If $\omega_p(\prod_{i=1}^h M_i) \geq k$, then $\prod_{i=1}^h M_i \equiv_q 0$; otherwise

$$\prod_{i=1}^{h} M_{i} \equiv_{q} p^{\omega_{p}(\prod_{i=1}^{h} M_{i})} \prod_{t \in \mathbb{Z}_{q}^{*}} t^{E_{q,t}(\prod_{i=1}^{h} M_{i})}.$$

■ The idea can easily apply to $\frac{\prod_{i=1}^h M_i}{\prod_{j=1}^g N_j}$, if this fraction is actually an integer.

• If $\omega_p(\prod_{i=1}^h M_i) \geq k$, then $\prod_{i=1}^h M_i \equiv_q 0$; otherwise

$$\prod_{i=1}^{h} M_i \equiv_q p^{\omega_p(\prod_{i=1}^{h} M_i)} \prod_{t \in \mathbb{Z}_q^*} t^{E_{q,t}(\prod_{i=1}^{h} M_i)}.$$

- The idea can easily apply to $\frac{\prod_{i=1}^h M_i}{\prod_{j=1}^g N_j}$, if this fraction is actually an integer.
- Since $c_n = \frac{1}{n+1} \binom{2n}{n}$, we have

$$c_n \equiv_q p^{-\omega_p(n+1) + \omega_p((2n)!) - 2\omega_p(n!)} \times \frac{1}{CF_p(n+1)} \prod_{t \in \mathbb{Z}_q^*} t^{E_{q,t}((2n)!) - 2E_{q,t}(n!)}.$$

Main idea II

Let $q = p^k$. We have a bijection T_q as follows

$$\begin{split} T_q: (\mathbb{Z}_{2^k}^*, \times_q) & \to & (C_2 \times C_{2^{k-2}}, +) \quad \text{for } k \geq 2; \\ T_q: (\mathbb{Z}_{p^k}^*, \times_q) & \to & (C_{p^{k-1}(p-1)}, +) \quad \text{for an odd prime } p. \end{split}$$

Main idea II

• Let $q = p^k$. We have a bijection T_q as follows

$$\begin{split} T_q: (\mathbb{Z}_{2^k}^*, \times_q) & \to & (C_2 \times C_{2^{k-2}}, +) \quad \text{for } k \geq 2; \\ T_q: (\mathbb{Z}_{p^k}^*, \times_q) & \to & (C_{p^{k-1}(p-1)}, +) \quad \text{for an odd prime } p. \end{split}$$

■ Let $A=C_2\times C_{2^{k-2}}$ or $A=C_{p^{k-1}(p-1)}.$ If we want to use A, then we need to consider

$$CF_p(\prod_{i=1}^h M_i) \equiv_q T_q^{-1} \left(\sum_{t \in \mathbb{Z}_q^*} T_q(t) E_{q,t}(\prod_{i=1}^h M_i) \right) \text{ or }$$

$$T_q \left(CF_p(\prod_{i=1}^h M_i) \pmod{q} \right) \equiv_A \sum_{y \in A} y \ E_{q,T^{-1}(y)}(\prod_{i=1}^h M_i).$$

Main idea II

• Let $q = p^k$. We have a bijection T_q as follows

$$\begin{split} T_q: (\mathbb{Z}_{2^k}^*, \times_q) & \to & (C_2 \times C_{2^{k-2}}, +) \quad \text{for } k \geq 2; \\ T_q: (\mathbb{Z}_{p^k}^*, \times_q) & \to & (C_{p^{k-1}(p-1)}, +) \quad \text{for an odd prime } p. \end{split}$$

■ Let $A=C_2\times C_{2^{k-2}}$ or $A=C_{p^{k-1}(p-1)}.$ If we want to use A, then we need to consider

$$CF_p(\prod_{i=1}^h M_i) \equiv_q T_q^{-1} \left(\sum_{t \in \mathbb{Z}_q^*} T_q(t) E_{q,t}(\prod_{i=1}^h M_i) \right) \text{ or }$$

$$T_q \left(CF_p(\prod_{i=1}^h M_i) \right) \equiv_A \sum_{y \in A} y \ E_{q,T^{-1}(y)}(\prod_{i=1}^h M_i).$$

Recall that $d(n) = n_0 + n_1 + \cdots$, where $[n]_p = \langle \dots n_1 n_0 \rangle_p$. Define $d_k(n) = n_k + n_{k+1} + \cdots$.

Lemma

Let
$$q=p^k$$
, $t\in\mathbb{Z}_q^*$ and $[n]_p=\langle n_rn_{r-1}\dots n_1n_0\rangle_p$. We have
$$\omega_p(n!) = \frac{n-d(n)}{p-1},$$

$$E_{q,t}(n!) = \frac{|\langle n_r\dots n_{k-1}\rangle_p|-d_{k-1}(n)}{p-1},$$

$$+ \sum_{\mathbb{N}^2}\chi(|\langle n_{i+k-1}\dots n_{i+1}n_i\rangle_p|\geq t).$$

Levaluating $\omega_p(n!)$ and $CF_p(n!)$ (mod p^k)

Recall that $d(n) = n_0 + n_1 + \cdots$, where $[n]_p = \langle \dots n_1 n_0 \rangle_p$. Define $d_k(n) = n_k + n_{k+1} + \cdots$.

Lemma

Let
$$q=p^k$$
, $t\in\mathbb{Z}_q^*$ and $[n]_p=\langle n_rn_{r-1}\dots n_1n_0\rangle_p$. We have
$$\omega_p(n!) = \frac{n-d(n)}{p-1},$$

$$E_q'(n!) = \frac{|\langle n_r\dots n_{k-1}\rangle_p|-d_{k-1}(n)}{p-1},$$

$$E_{q,t}''(n!) = \sum_{i\geq 0}\chi(|\langle n_{i+k-1}\dots n_{i+1}n_i\rangle_p|\geq t).$$

Levaluating $\omega_p(n!)$ and $CF_p(n!)$ (mod p^k)

Recall that $d(n) = n_0 + n_1 + \cdots$, where $[n]_p = \langle \dots n_1 n_0 \rangle_p$. Define $d_k(n) = n_k + n_{k+1} + \cdots$.

Lemma

Let
$$q=p^k$$
, $t\in\mathbb{Z}_q^*$ and $[n]_p=\langle n_rn_{r-1}\dots n_1n_0\rangle_p$. We have
$$\omega_p(n!) = \frac{n-d(n)}{p-1},$$

$$E_q'(n!) = \frac{|\langle n_r\dots n_{k-1}\rangle_p|-d_{k-1}(n)}{p-1},$$

$$E_{q,t}''(n!) = \sum_{i\geq 0}\chi(|\langle n_{i+k-1}\dots n_{i+1}n_i\rangle_p|\geq t).$$

where $S(n) = \{ |\langle n_{k+i-1} \dots n_{i+1} n_i \rangle_p | : \text{ except } 0 \}_{i \geq 0}$ is a multi-set and #(S,T) is the number of elements (with multiplicity) in S belonging to T.

Levaluating $\omega_p(n!)$ and $CF_p(n!)$ (mod p^k)

Recall that $d(n) = n_0 + n_1 + \cdots$, where $[n]_p = \langle \dots n_1 n_0 \rangle_p$. Define $d_k(n) = n_k + n_{k+1} + \cdots$.

Lemma

Let
$$q=p^k$$
, $t\in\mathbb{Z}_q^*$ and $[n]_p=\langle n_rn_{r-1}\dots n_1n_0\rangle_p$. We have

$$\omega_p(n!) = \frac{n - d(n)}{p - 1},
E'_q(n!) = \frac{|\langle n_r \dots n_{k-1} \rangle_p| - d_{k-1}(n)}{p - 1},
E''_{q,t}(n!) = \#(S(n), [t, q - 1]).$$

where $S(n) = \{|\langle n_{k+i-1} \dots n_{i+1} n_i \rangle_p| : \text{ except } 0\}_{i \geq 0}$ is a multi-set and #(S,T) is the number of elements (with multiplicity) in S belonging to T.

Evaluating $\omega_p(n!)$ and $CF_p(n!)$ (mod p^k)

 $\blacksquare \text{ Therefore, } CF_p(n!) \equiv_q \left(\prod_{t \in \mathbb{Z}_q^*} t\right)^{E_q'(n!)} \times \prod_{t \in \mathbb{Z}_q^*} t^{E_{q,t}''(n!)}.$

- Therefore, $CF_p(n!) \equiv_q \left(\prod_{t \in \mathbb{Z}_q^*} t\right)^{E'_q(n!)} \times \prod_{t \in \mathbb{Z}_q^*} t^{E''_{q,t}(n!)}$.
- For p=2 and $k \ge 3$, we have

$$\sum_{y \in C_2 \times C_{2^{k-2}}} y \equiv (0,0); \text{ equivalently, } \prod_{t \in \mathbb{Z}_{2^k}^*} t \equiv_q 1;$$

So $E_q'(n!)$ is useless for evaluating $CF_p(n!)$ (mod 2^k).

- Therefore, $CF_p(n!) \equiv_q \left(\prod_{t \in \mathbb{Z}_q^*} t\right)^{E'_q(n!)} \times \prod_{t \in \mathbb{Z}_q^*} t^{E''_{q,t}(n!)}$.
- For p=2 and $k \ge 3$, we have

$$\sum_{y \in C_2 \times C_{2^k-2}} y \equiv (0,0); \text{ equivalently, } \prod_{t \in \mathbb{Z}_{2^k}^*} t \equiv_q 1;$$

So $E'_q(n!)$ is useless for evaluating $CF_p(n!)$ (mod 2^k).

 \blacksquare For an odd prime p, we have

$$\sum_{y\in C_{p^{k-1}(p-1)}}y\equiv p^{k-1}(p-1)/2; \text{ equivalently, } \prod_{t\in \mathbb{Z}_{p^k}^*}t\equiv_q-1.$$

We only care about the parity of $E'_q(n!)$.

Outline

- 1 Some results about $\binom{m}{n}$ during the late 1800
- 2 Some recent works for a prime power modulus
- 3 Our technique
- 4 Catalan numbers modulus 2^k
- 5 Catalan numbers modulus an odd prime power

 $\cup Catalan$ numbers modulus 2^k

$$L_{T_q(CF_2(n!))} := (b(CF_2(n!)), u_q(CF_2(n!)))$$

• We use the bijection $T_q:\mathbb{Z}_{2^k}^*\to C_2\times C_{q/4}$ to study c_n (mod 2^k). Define $T_q(t):=(b(t),u_q(t))$.

 \cup Catalan numbers modulus 2^k

$$L_{T_q(CF_2(n!))} := (b(CF_2(n!)), u_q(CF_2(n!)))$$

- We use the bijection $T_q:\mathbb{Z}_{2^k}^*\to C_2\times C_{q/4}$ to study c_n (mod 2^k). Define $T_q(t):=(b(t),u_q(t)).$
- $b(t) = \begin{cases} 0 & \text{if } t \equiv_4 1; \\ 1 & \text{if } t \equiv_4 3. \end{cases}$

$$L_{T_q(CF_2(n!))} := (b(CF_2(n!)), u_q(CF_2(n!)))$$

- We use the bijection $T_q:\mathbb{Z}_{2^k}^*\to C_2\times C_{q/4}$ to study c_n (mod 2^k). Define $T_q(t):=(b(t),u_q(t))$.
- $b(t) = \begin{cases} 0 & \text{if } t \equiv_4 1; \\ 1 & \text{if } t \equiv_4 3. \end{cases}$
- $b(CF_2(n!)) \equiv_2 r(n) + n_0 + n_1 \equiv_2 zr(n) + n_1$, where r(n) is the number of runs of 1 in $[n]_2$ and zr(n) is the number of runs of 0.

$$L_{T_q(CF_2(n!))} := (b(CF_2(n!)), u_q(CF_2(n!)))$$

- We use the bijection $T_q:\mathbb{Z}_{2^k}^*\to C_2\times C_{q/4}$ to study c_n (mod 2^k). Define $T_q(t):=(b(t),u_q(t))$.
- $b(t) = \begin{cases} 0 & \text{if } t \equiv_4 1; \\ 1 & \text{if } t \equiv_4 3. \end{cases}$
- $b(CF_2(n!)) \equiv_2 r(n) + n_0 + n_1 \equiv_2 zr(n) + n_1$, where r(n) is the number of runs of 1 in $[n]_2$ and zr(n) is the number of runs of 0.

$$\begin{aligned} & \quad u_q(CF_2(n!)) & \quad \equiv_{q/4} & \quad \sum_{\substack{3 \leq t \leq s \leq q-1 \\ t : \text{ odd}}} \#(\mathcal{S}(n), \{s\}) \ u_q(t) \\ & \quad = & \quad \sum_{s \in [3, q-2]} \#(\mathcal{S}(n), \{s\}) \sum_{t \in [3, s]_{\text{odd}}} u_q(t). \end{aligned}$$

$$L_{T_q(CF_2(n!))} := (b(CF_2(n!)), u_q(CF_2(n!)))$$

- We use the bijection $T_q: \mathbb{Z}_{2^k}^* \to C_2 \times C_{q/4}$ to study c_n (mod 2^k). Define $T_q(t):=(b(t),u_q(t))$.
- $b(t) = \begin{cases} 0 & \text{if } t \equiv_4 1; \\ 1 & \text{if } t \equiv_4 3. \end{cases}$
- $b(CF_2(n!)) \equiv_2 r(n) + n_0 + n_1 \equiv_2 zr(n) + n_1$, where r(n) is the number of runs of 1 in $[n]_2$ and zr(n) is the number of runs of 0.

$$\begin{aligned} & \quad u_q(CF_2(n!)) & \quad \equiv_{q/4} & \quad \sum_{\substack{3 \leq t \leq s \leq q-1 \\ t: \text{ odd}}} \#(\mathcal{S}(n), \{s\}) \ u_q(t) \\ & \quad = & \quad \sum_{s \in [3, q-2]} \#(\mathcal{S}(n), \{s\}) \sum_{\substack{t \in [3, s]_{\text{odd}}}} u_q(t). \end{aligned}$$

■ We built a table for $\sum_{t \in [3,s]_{\text{odd}}} u_q(t)$ or $\prod_{t \in [3,s]_{\text{odd}}} t$ according to $s \in [3,q-2]$ to study $c_n \pmod{16}$ and $c_n \pmod{64}$.

Lemma

Let m be an integer such that $[m]_2$ is obtained by either extending or truncating some runs of 0 or 1 of length $\geq k-1$ in $[n]_2$ to be different length but still $\geq k-1$. We have

$$b(CF_2(n!)) = b(CF_2(m!)) \ \ \text{and} \ \ u_q(CF_2(n!)) = u_q(CF_2(m!)),$$

and then

$$CF_2(n!) \equiv_q CF_2(m!).$$

Lemma

Let m be an integer such that $[m]_2$ is obtained by either extending or truncating some runs of 0 or 1 of length $\geq k-1$ in $[n]_2$ to be different length but still $\geq k-1$. We have

$$b(CF_2(n!)) = b(CF_2(m!))$$
 and $u_q(CF_2(n!)) = u_q(CF_2(m!)),$

and then

$$CF_2(n!) \equiv_q CF_2(m!).$$

Pf.
$$b(CF_2(n!)) \equiv_2 zr(n) + n_1 \equiv_2 zr(m) + m_1 \equiv_2 b(CF_2(m!)).$$

Lemma

Let m be an integer such that $[m]_2$ is obtained by either extending or truncating some runs of 0 or 1 of length $\geq k-1$ in $[n]_2$ to be different length but still > k-1. We have

$$b(CF_2(n!)) = b(CF_2(m!))$$
 and $u_q(CF_2(n!)) = u_q(CF_2(m!)),$

and then

$$CF_2(n!) \equiv_q CF_2(m!).$$

Pf. $b(CF_2(n!)) \equiv_2 zr(n) + n_1 \equiv_2 zr(m) + m_1 \equiv_2 b(CF_2(m!)).$

$$u_q(CF_2(n!)) \equiv_{q/4} \sum_{s \in [3,q-3]_{\text{odd}}} \#(\mathcal{S}(n), \{s,s+1\}) \sum_{t \in [3,s]_{\text{odd}}} u_q(t)$$

is independent on the numbers of $\langle 0^{k-1} \rangle_2$ and $\langle 1^{k-1} \rangle_2$ in $[n]_2$.

Given $n \in \mathbb{N}$, let \bar{n} be the integer such that $[\bar{n}]_2$ is obtained by the following rules.

a. When the rightmost run of 0 in $[n]_2$ is of length $\geq k+1$, let us truncate it to be length k, otherwise keep it the same.

$$\sqsubseteq_{c_n} \equiv_{2k} c_{\bar{n}}$$

Given $n\in\mathbb{N}$, let \bar{n} be the integer such that $[\bar{n}]_2$ is obtained by the following rules.

- a. When the rightmost run of 0 in $[n]_2$ is of length $\geq k+1$, let us truncate it to be length k, otherwise keep it the same.
- b. For any other run of 0 or 1 of $[n]_2$ with length $\geq k$, truncate them to be length k-1.

Theorem (Liu and Yeh, 2010)

Let $n, k \in \mathbb{N}$ with $k \geq 3$. We have

$$c_n \equiv_{2^k} \left\{ \begin{array}{ll} c_{\bar{n}} & \mbox{for } d(\alpha) \leq k-1 \mbox{, and} \\ 0 & \mbox{for } d(\alpha) \geq k. \end{array} \right.$$

Given $n \in \mathbb{N}$, let \bar{n} be the integer such that $[\bar{n}]_2$ is obtained by the following rules.

- a. When the rightmost run of 0 in $[n]_2$ is of length $\geq k+1$, let us truncate it to be length k, otherwise keep it the same.
- b. For any other run of 0 or 1 of $[n]_2$ with length $\geq k$, truncate them to be length k-1.

Theorem (Liu and Yeh, 2010)

Let $n, k \in \mathbb{N}$ with k > 3. We have

$$c_n \equiv_{2^k} \left\{ egin{array}{ll} c_{ar{n}} & \mbox{for } d(lpha) \leq k-1, \mbox{ and } \\ 0 & \mbox{for } d(lpha) \geq k. \end{array}
ight.$$

Example.
$$c_{\langle 100001111 \rangle_2} \equiv_8 6,$$
 $c_{\langle 1111111 \rangle_2} \equiv_{16} 13,$ $c_{\langle 100011 \rangle_2} \equiv_8 6,$ $c_{\langle 111 \rangle_2} \equiv_{16} 13.$

Theorem (Liu and Yeh, 2010)

Let $n \in \mathbb{N}$ and $q = 2^k$ with $k \ge 2$. Then we have

$$c_n \equiv_q (-1)^{zr(\alpha)} 2^{d(\alpha)} 5^{u_q(CF_2(c_n))}.$$

In particular, when k=2 we have

$$c_n \equiv_4 (-1)^{zr(\alpha)} 2^{d(\alpha)}.$$

Proposition (Liu and Yeh, 2010)

Let c_n be the n-th Catalan number. First of all, $c_n \not\equiv_{16} 3,7,9,11,15$ for any n. As for the other congruences, we have

$$c_n \equiv_{16} \left\{ \begin{array}{c} 1 \\ 5 \\ 13 \end{array} \right\} \quad \text{if} \quad d(\alpha) = 0 \text{ and } \left\{ \begin{array}{c} \beta \leq 1, \\ \beta = 2, \\ \beta \geq 3, \end{array} \right. \\ \frac{2}{10} \left\{ \begin{array}{c} \text{if} \quad d(\alpha) = 1, \ \alpha = 1 \text{ and } \left\{ \begin{array}{c} \beta = 0 \text{ or } \beta \geq 2, \\ \beta = 1, \end{array} \right. \\ \frac{6}{14} \left\{ \begin{array}{c} \text{if} \quad d(\alpha) = 1, \ \alpha \geq 2 \text{ and } \left\{ \begin{array}{c} (\alpha = 2, \beta \geq 2) \text{ or } (\alpha \geq 3, \beta \leq 1), \\ (\alpha = 2, \beta \leq 1) \text{ or } (\alpha \geq 3, \beta \geq 2), \end{array} \right. \\ \frac{4}{12} \left\{ \begin{array}{c} \text{if} \quad d(\alpha) = 2 \text{ and } \left\{ \begin{array}{c} zr(\alpha) \neq 1, \\ zr(\alpha) = 1, \end{array} \right. \\ \frac{8}{0} \quad \text{if} \quad d(\alpha) \geq 3, \\ 0 \quad \text{if} \quad d(\alpha) \geq 4. \end{array} \right. \right.$$

where $[n]_2 = \langle [\alpha]_2 \ 0 \ 1^{\beta} \rangle_2$.

We also completely classified $c_n \pmod{64}$. Here we only post the classification for odd congruences.

Proposition (Liu and Yeh, 2010)

Let $n \in \mathbb{N}$ with $d(\alpha) = 0$, i.e. $n = 2^{\beta} - 1$. Then we have

$$c_n \equiv_{64} \left\{ \begin{array}{ll} 1 & \text{if} & \beta = 0 \text{ or } 1; \\ 5 & \text{if} & \beta = 2; \\ 45 & \text{if} & \beta = 3; \\ 61 & \text{if} & \beta = 4; \\ 29 & \text{if} & \beta \geq 5. \end{array} \right.$$

Moreover, any number in $[1,63]_{odd} - \{1,5,29,45,61\}$ can never be the congruence of c_n (mod 64).

After observing all odd congruences from modulus $4~\rm up$ to modulus 1024, once we conjectured the following property. This property was proved recently.

Theorem (Lin, 2010)

Let $k \geq 2$. Only k-1 different odd congruences $c_n \pmod{2^k}$ exist, and they are

$$c_{2^m-1} \pmod{2^k}$$

for
$$m = 1, 2, \dots, k - 1$$
.

After observing all odd congruences from modulus $4~\rm up$ to modulus 1024, once we conjectured the following property. This property was proved recently.

Theorem (Lin, 2010)

Let $k \geq 2$. Only k-1 different odd congruences $c_n \pmod{2^k}$ exist, and they are

$$c_{2^m-1} \pmod{2^k}$$

for
$$m = 1, 2, ..., k - 1$$
.

Example There are only 6 congruences $c_n \pmod{128}$ with odd value:

$$c_{\langle 1 \rangle_2} \equiv_{128} 1,$$
 $c_{\langle 11 \rangle_2} \equiv_{128} 5,$ $c_{\langle 111 \rangle_2} \equiv_{128} 45,$ $c_{\langle 1111 \rangle_2} \equiv_{128} 125,$ $c_{\langle 11111 \rangle_2} \equiv_{128} 29,$ $c_{\langle 11111 \rangle_2} \equiv_{128} 93.$

Outline

- 1 Some results about $\binom{m}{n}$ during the late 1800
- 2 Some recent works for a prime power modulus
- 3 Our technique
- 4 Catalan numbers modulus 2^k
- 5 Catalan numbers modulus an odd prime power

Catalan numbers modulus an odd prime power

 $\sqsubseteq_{\omega_p(c_n)}$ for any prime p

Let $\kappa_p(m,n;i):=\left\lfloor\frac{|\langle m_i...m_0\rangle_p|+|\langle n_i...n_0\rangle_p|}{p^{i+1}}\right\rfloor$ (= 0 or 1) be the possible *carry* from the i-th to the (i+1)-st places for m+n in the base-p system.

Catalan numbers modulus an odd prime power

 $-\omega_p(c_n)$ for any prime p

- Let $\kappa_p(m,n;i):=\left\lfloor\frac{|\langle m_i...m_0\rangle_p|+|\langle n_i...n_0\rangle_p|}{p^{i+1}}\right\rfloor$ (= 0 or 1) be the possible *carry* from the *i*-th to the (i+1)-st places for m+n in the base-p system.
- Let $C_p(m,n;i):=\sum_{j\geq i}\kappa_p(m,n;j)$ and $C_p(m,n)=C_p(m,n;0)$ which is the number of total carries.

$$\sqsubseteq_{\omega_p(c_n)}$$
 for any prime p

- Let $\kappa_p(m,n;i):=\left\lfloor\frac{|\langle m_i...m_0\rangle_p|+|\langle n_i...n_0\rangle_p|}{p^{i+1}}\right\rfloor$ (= 0 or 1) be the possible *carry* from the *i*-th to the (i+1)-st places for m+n in the base-p system.
- Let $C_p(m,n;i):=\sum_{j\geq i}\kappa_p(m,n;j)$ and $C_p(m,n)=C_p(m,n;0)$ which is the number of total carries.
- $d(m+n) = d(m) + d(n) (p-1)C_p(m,n);$ $\omega_p((m+n)!) = \frac{m+n-d(m)-d(n)}{p-1} + C_p(m,n).$

$$\sqsubseteq_{\omega_p(c_n)}$$
 for any prime p

- Let $\kappa_p(m,n;i):=\left\lfloor\frac{|\langle m_i...m_0\rangle_p|+|\langle n_i...n_0\rangle_p|}{p^{i+1}}\right\rfloor$ (= 0 or 1) be the possible *carry* from the *i*-th to the (i+1)-st places for m+n in the base-p system.
- Let $C_p(m,n;i):=\sum_{j\geq i}\kappa_p(m,n;j)$ and $C_p(m,n)=C_p(m,n;0)$ which is the number of total carries.
- $d(m+n) = d(m) + d(n) (p-1)C_p(m,n);$ $\omega_p((m+n)!) = \frac{m+n-d(m)-d(n)}{p-1} + C_p(m,n).$

$\mathsf{Theorem}$

We have

$$\omega_p(c_n) = C_p(n,n) - \beta = C_p(n,n;\beta),$$

where
$$[n]_p = \langle \dots (p-1) (p-1)^\beta \rangle_p$$
.

Catalan numbers modulus an odd prime power

 $-\omega_p(c_n)$ for any prime p

- Let $\kappa_p(m,n;i):=\left\lfloor\frac{|\langle m_i...m_0\rangle_p|+|\langle n_i...n_0\rangle_p|}{p^{i+1}}\right\rfloor$ (= 0 or 1) be the possible *carry* from the *i*-th to the (i+1)-st places for m+n in the base-p system.
- Let $C_p(m,n;i):=\sum_{j\geq i}\kappa_p(m,n;j)$ and $C_p(m,n)=C_p(m,n;0)$ which is the number of total carries.
- $d(m+n) = d(m) + d(n) (p-1)C_p(m,n);$ $\omega_p((m+n)!) = \frac{m+n-d(m)-d(n)}{p-1} + C_p(m,n).$

Theorem

We have

$$\omega_p(c_n) = C_p(n,n) - \beta = C_p(n,n;\beta),$$

where
$$[n]_p = \langle \dots (p-1) (p-1)^{\beta} \rangle_p$$
.

If p=2, then $C_2(n,n;\beta)=d(\alpha)$, where $[n]_2=\langle [\alpha]_2\ 0\ 1^\beta\rangle_2$.

 \Rightarrow Theorem of Deutsch and Sagan.

Let
$$\oplus_q$$
 be the operator of addition over ring \mathbb{Z}_q , and $z(m,n;i) = |\langle m_{i+k-1} \dots m_i \rangle p| \oplus_q |\langle n_{i+k-1} \dots n_i \rangle p|$. Then $\langle (m+n)_{i+k-1} \dots (m+n)_i \rangle p = [z(m,n;i) \oplus_q \kappa(m,n;i-1)]_p$.

Catalan numbers modulus an odd prime power $CF_q(c_n)$ for an odd prime power $q=p^k$

Let \bigoplus_q be the operator of addition over ring \mathbb{Z}_q , and $z(m,n;i) = |\langle m_{i+k-1} \dots m_i \rangle p| \oplus_q |\langle n_{i+k-1} \dots n_i \rangle p|$. Then $\langle (m+n)_{i+k-1} \dots (m+n)_i \rangle p = [z(m,n;i) \oplus_q \kappa(m,n;i-1)]_p$.

Lemma (From now on p is an odd prime.)

$$E'_{q}((m+n)!) = \frac{|\langle \dots m_{k-1} \rangle_{p}| + |\langle \dots n_{k-1} \rangle_{p}| - d_{k-1}(m) - d_{k-1}(n)}{p-1} + C(m, n; k-1);$$

$$E''_{q,t}((m+n)!) = \sum_{i \ge 0} \left[\chi(z(m, n; i) \ge t) + \chi(z(m, n; i) = t-1) \kappa(m, n; i-1) \right] - \sigma(m, n),$$

where $\sigma(m,n)$ be # of i st. z(m,n;i)=q-1 and $\kappa(m,n;i-1)=1$.

ecause $\sigma(m,n)$ is independent on t, let's modify E'_{q} and $E''_{q,E}$.

Let
$$\oplus_q$$
 be the operator of addition over ring \mathbb{Z}_q , and $z(m,n;i) = |\langle m_{i+k-1} \dots m_i \rangle p| \oplus_q |\langle n_{i+k-1} \dots n_i \rangle p|$. Then $\langle (m+n)_{i+k-1} \dots (m+n)_i \rangle p = [z(m,n;i) \oplus_q \kappa(m,n;i-1)]_n$.

Lemma (From now on p is an odd prime.)

$$E'_{q}((m+n)!) = \frac{|\langle \dots m_{k-1} \rangle_{p}| + |\langle \dots n_{k-1} \rangle_{p}| - d_{k-1}(m) - d_{k-1}(n)}{p-1} + C(m, n; k-1) - \sigma(m, n);$$

$$E''_{q,t}((m+n)!) = \sum_{i \ge 0} \left[\chi(z(m, n; i) \ge t) + \chi(z(m, n; i) = t-1) \kappa(m, n; i-1) \right]$$

Because $\sigma(m,n)$ is independent on t, let's modify E_q' and $E_{q,t}''$.

Catalan numbers modulus an odd prime power

Let
$$\oplus_q$$
 be the operator of addition over ring \mathbb{Z}_q , and $z(m,n;i) = |\langle m_{i+k-1} \dots m_i \rangle p| \oplus_q |\langle n_{i+k-1} \dots n_i \rangle p|$. Then $\langle (m+n)_{i+k-1} \dots (m+n)_i \rangle p = [z(m,n;i) \oplus_q \kappa(m,n;i-1)]_p$.

Lemma (final version)

$$\begin{split} E_q'((m+n)!) & \equiv_2 & \sum_{j \geq 0} (m_{2j+k} + n_{2j+k}) + C(m,n;k-1) - \sigma(m,n); \\ E_{q,t}''((m+n)!) & = & \#(\mathcal{S}^+,[t,q-1]) + \#(\bar{\mathcal{S}}^+,\{t-1\}), \\ \text{where } \mathcal{S}^+ &= \{z(m,n;i) : z(m,n;i) \neq 0\}_{i \geq 0}, \\ \bar{\mathcal{S}}^+ &= \{z \in \mathcal{S}^+ : \kappa(m,n;i-1) = 1 \text{ and } z_0 \neq p-1\}, \text{ and } \\ \sigma(m,n) \text{ is the number of } i \text{ such that } z(m,n;i) = q-1 \text{ and } \\ \kappa(m,n;i-1) &= 1 \end{split}$$

■
$$CF_q(c_n) \equiv_q \frac{1}{CF_q(n+1)} (-1)^{E'_q((n+n)!) - 2E'_q(n!)} \times \prod_{t \in \mathbb{Z}_q^*} t^{E''_{q,t}((n+n)!) - 2E''_{q,t}(n!)}.$$

Catalan numbers modulus an odd prime power $CF_q(c_n)$ for an odd prime power $q = p^k$

■
$$CF_q(c_n) \equiv_q \frac{1}{CF_q(n+1)} (-1)^{E'_q((n+n)!) - 2E'_q(n!)} \times \prod_{t \in \mathbb{Z}_q^*} t^{E''_{q,t}((n+n)!) - 2E''_{q,t}(n!)}.$$

Let
$$[n]_p = \langle \dots (p-1) \ (p-1)^{\beta} \rangle_p = \langle \dots n_{\beta} \ (p-1)^{\beta} \rangle_p$$
.
So $[n+1]_p = \langle \dots n_{\beta+1} (n_{\beta}+1) \ 0^{\beta} \rangle_p$ and then $CF_q(n+1) \equiv_q |\langle n_{\beta+k-1} \dots n_{\beta+1} (n_{\beta}+1) \rangle_p|$.

Catalan numbers modulus an odd prime power $CF_q(c_n)$ for an odd prime power $q = p^k$

■
$$CF_q(c_n) \equiv_q \frac{1}{CF_q(n+1)} (-1) \frac{E'_q((n+n)!) - 2E'_q(n!)}{\sum_{t \in \mathbb{Z}_q^*} t^{E''_{q,t}((n+n)!) - 2E''_{q,t}(n!)}}$$
.

- Let $[n]_p = \langle \dots (p-1) \ (p-1)^{\beta} \rangle_p = \langle \dots n_{\beta} \ (p-1)^{\beta} \rangle_p$. So $[n+1]_p = \langle \dots n_{\beta+1} (n_{\beta}+1) \ 0^{\beta} \rangle_p$ and then $CF_q(n+1) \equiv_q |\langle n_{\beta+k-1} \dots n_{\beta+1} (n_{\beta}+1) \rangle_p|$.
- $E'_q((n+n)!) \equiv_2 C_p(n,n;k-1) \bar{\sigma}.$

where
$$\bar{\sigma} = |\{i : \langle n_{i+k-1} \dots n_i \rangle = \langle (\frac{p-1}{2})^{k-1} \rangle$$

and $\kappa(n, n; i-1) = 1\}|$.

- Let $[n]_p = \langle \dots (p-1) \ (p-1)^{\beta} \rangle_p = \langle \dots n_{\beta} \ (p-1)^{\beta} \rangle_p$. So $[n+1]_p = \langle \dots n_{\beta+1} (n_{\beta}+1) \ 0^{\beta} \rangle_p$ and then $CF_q(n+1) \equiv_q |\langle n_{\beta+k-1} \dots n_{\beta+1} (n_{\beta}+1) \rangle_p|$.
- $E'_q((n+n)!) \equiv_2 C_p(n,n;k-1) \bar{\sigma}.$

where
$$\bar{\sigma} = |\{i : \langle n_{i+k-1} \dots n_i \rangle = \langle (\frac{p-1}{2})^{k-1} \rangle$$

and $\kappa(n, n; i-1) = 1\}|$.

However, once $\langle (\frac{p-1}{2})^{k-1} \rangle$ with $\kappa(n,n;i-1)$ appears in $[n]_p$, we have $C_p(n,n;\beta) \geq k$; and then $c_n \equiv_q 0$.

Catalan numbers modulus an odd prime power $CF_q(c_n)$ for an odd prime power $q=p^k$

■
$$CF_q(c_n) \equiv_q \frac{1}{CF_q(n+1)} (-1)^{E'_q((n+n)!) - 2E'_q(n!)} \times \prod_{t \in \mathbb{Z}_q^*} t^{E''_{q,t}((n+n)!) - 2E''_{q,t}(n!)}.$$

- Let $[n]_p = \langle \dots (p-1) \ (p-1)^{\beta} \rangle_p = \langle \dots n_{\beta} \ (p-1)^{\beta} \rangle_p$. So $[n+1]_p = \langle \dots n_{\beta+1} (n_{\beta}+1) \ 0^{\beta} \rangle_p$ and then $CF_q(n+1) \equiv_q |\langle n_{\beta+k-1} \dots n_{\beta+1} (n_{\beta}+1) \rangle_p|$.
- $E'_q((n+n)!) \equiv_2 C_p(n,n;k-1) \bar{\sigma}$.

where
$$\bar{\sigma} = |\{i : \langle n_{i+k-1} \dots n_i \rangle = \langle (\frac{p-1}{2})^{k-1} \rangle$$

and $\kappa(n, n; i-1) = 1\}|.$

However, once $\langle (\frac{p-1}{2})^{k-1} \rangle$ with $\kappa(n,n;i-1)$ appears in $[n]_p$, we have $C_p(n,n;\beta) \geq k$; and then $c_n \equiv_q 0$.

Therefore, $\bar{\sigma}$ is irrelevant for those $c \equiv_q 0$.

- Let $[n]_p = \langle \dots (p-1) \ (p-1)^{\beta} \rangle_p = \langle \dots n_{\beta} \ (p-1)^{\beta} \rangle_p$. So $[n+1]_p = \langle \dots n_{\beta+1} (n_{\beta}+1) \ 0^{\beta} \rangle_p$ and then $CF_q(n+1) \equiv_q |\langle n_{\beta+k-1} \dots n_{\beta+1} (n_{\beta}+1) \rangle_p|$.
- $E'_q((n+n)!) \equiv_2 C_p(n,n;k-1) \bar{\sigma}$.

- Catalan numbers modulus an odd prime power
 - - $CF_q(c_n) \equiv_q \frac{1}{CF_q(n+1)} (-1)^{E'_q((n+n)!) 2E'_q(n!)} \times \prod_{t \in \mathbb{Z}_q^*} t^{E''_{q,t}((n+n)!) 2E''_{q,t}(n!)}.$
 - Let $[n]_p = \langle \dots (p-1) \ (p-1)^{\beta} \rangle_p = \langle \dots n_{\beta} \ (p-1)^{\beta} \rangle_p$. So $[n+1]_p = \langle \dots n_{\beta+1} (n_{\beta}+1) \ 0^{\beta} \rangle_p$ and then $CF_q(n+1) \equiv_q |\langle n_{\beta+k-1} \dots n_{\beta+1} (n_{\beta}+1) \rangle_p|$.
 - $E'_q((n+n)!) \equiv_2 C_p(n,n;k-1) \bar{\sigma}$.
 - By last lemma, we need $\mathcal{S}^+ = \{z(n,n;i) : z(n,n;i) \neq 0\}_{i \geq 0}$, $\bar{\mathcal{S}}^+ = \{z \in \mathcal{S}^+ : \kappa(n,n;i-1) = 1 \text{ and } z_0 \neq p-1\}$ and $\mathcal{S} := \{|\langle n_{k+i-1} \dots n_{i+1} n_i \rangle_p| \text{ except } 0\}_{i \geq 0}$. Note that $\mathcal{S}^+ = \{2s \pmod{q} : s \in \mathcal{S}\}$.

- Catalan numbers modulus an odd prime power
 - - $CF_q(c_n) \equiv_q \frac{1}{CF_q(n+1)} (-1)^{E'_q((n+n)!) 2E'_q(n!)} \times \prod_{t \in \mathbb{Z}_q^*} t^{E''_{q,t}((n+n)!) 2E''_{q,t}(n!)}.$
 - Let $[n]_p = \langle \dots (p-1) \ (p-1)^{\beta} \rangle_p = \langle \dots n_{\beta} \ (p-1)^{\beta} \rangle_p$. So $[n+1]_p = \langle \dots n_{\beta+1} (n_{\beta}+1) \ 0^{\beta} \rangle_p$ and then $CF_q(n+1) \equiv_q |\langle n_{\beta+k-1} \dots n_{\beta+1} (n_{\beta}+1) \rangle_p|$.
 - $E'_q((n+n)!) \equiv_2 C_p(n,n;k-1) \bar{\sigma}$.
 - By last lemma, we need $\mathcal{S}^+ = \{z(n,n;i) : z(n,n;i) \neq 0\}_{i \geq 0}$, $\bar{\mathcal{S}}^+ = \{z \in \mathcal{S}^+ : \kappa(n,n;i-1) = 1 \text{ and } z_0 \neq p-1\}$ and $\mathcal{S} := \{|\langle n_{k+i-1} \dots n_{i+1} n_i \rangle_p| \text{ except } 0\}_{i \geq 0}$. Note that $\mathcal{S}^+ = \{2s \pmod{q} : s \in \mathcal{S}\}$.

To study $\prod_{t \in \mathbb{Z}_q^*} t^{E_{q,t}''((n+n)!)-2E_{q,t}''(n!)}$, we need \mathcal{S}^+ , $\bar{\mathcal{S}}^+$ and \mathcal{S} . But $\mathcal{S}^+ = 2\mathcal{S}$ and $\bar{\mathcal{S}}^+ \subseteq \mathcal{S}^+$, we shall derive a formula using only \mathcal{S} .

Finally, we get

$$\prod_{t \in \mathbb{Z}_q^*} t^{E''_{q,t}((n+n)!) - 2E''_{q,t}(n!)}$$

$$\equiv_q \prod_{u \in [1,q-1]} (\prod_{t \in [1,2u \pmod{q}] \cap \mathbb{Z}_q^*} t)^{\#(\mathcal{S},\{u\})}$$

$$\times \prod_{u \in [1,q-1]} (\prod_{t \in [u+1,q-1] \cap \mathbb{Z}_q^*} t^2)^{\#(\mathcal{S},\{u\})}$$

$$\times \prod_{\substack{u \in [1,q-1] \\ 2u+1 \in \mathbb{Z}_q^*}} (2u+1 \pmod{q})^{\#(\bar{\mathcal{S}},\{u\})},$$

where
$$\bar{\mathcal{S}}=\{u=|\langle n_{k+i-1}\dots n_{i+1}n_i\rangle_p|: u\neq 0, u_0\neq (p-1)/2 \text{ and } \kappa(n,n;i-1)=1\}_{i\geq 0}.$$
 Note $\bar{\mathcal{S}}\subseteq \mathcal{S}$ and $\bar{\mathcal{S}}^+=\{2u\pmod q\ :\ u\in \bar{\mathcal{S}}\}.$

■ The formula $\prod_{t \in \mathbb{Z}_q^*} t^{E''_{q,t}((n+n)!) - 2E''_{q,t}(n!)}$ on the last page only depends on \mathcal{S} and $\bar{\mathcal{S}}$, and no more \mathcal{S}^+ and $\bar{\mathcal{S}}^+$.

- The formula $\prod_{t \in \mathbb{Z}_q^*} t^{E''_{q,t}((n+n)!)-2E''_{q,t}(n!)}$ on the last page only depends on \mathcal{S} and $\bar{\mathcal{S}}$, and no more \mathcal{S}^+ and $\bar{\mathcal{S}}^+$.
- To evaluate $\prod_{t \in \mathbb{Z}_q^*} t^{E''_{q,t}((n+n)!)-2E''_{q,t}(n!)}$ for a particular prime power q, we need to construct a table according to $u \in \mathbb{Z}_q^*$ for the following three values:

$$\begin{array}{lcl} A & = & \displaystyle\prod_{t \in [1,2u \pmod q)] \cap \mathbb{Z}_q^*} t, \\ \\ B & = & \displaystyle(\prod_{t \in [u+1,q-1] \cap \mathbb{Z}_q^*} t)^2 \quad \text{and} \\ \\ C & = & 2u+1 \pmod q. \end{array}$$

 \sqsubseteq Example: $c_{3212} \pmod{27}$

Example: $c_{3212} \pmod{27}$

■ Let p = 3, k = 3 and n = 3212. What is $c_{3212} \pmod{27}$?

 \sqsubseteq Example: $c_{3212} \pmod{27}$

- Let p = 3, k = 3 and n = 3212. What is $c_{3212} \pmod{27}$?
- \blacksquare [3212]₃ = $\langle 11101222 \rangle_3$. So $\beta = 3$.

 \sqsubseteq Example: $c_{3212} \pmod{27}$

- Let p = 3, k = 3 and n = 3212. What is $c_{3212} \pmod{27}$?
- \blacksquare [3212]₃ = $\langle 11101222 \rangle_3$. So $\beta = 3$.
- Then $\omega_p(c_{3212}) = C_p(n, n; \beta) = 1$.

 \sqsubseteq Example: $c_{3212} \pmod{27}$

- Let p = 3, k = 3 and n = 3212. What is $c_{3212} \pmod{27}$?
- $[3212]_3 = \langle 11101222 \rangle_3$. So $\beta = 3$.
- Then $\omega_p(c_{3212}) = C_p(n, n; \beta) = 1$.
- $CF_q(c_n) \equiv_q \frac{1}{CF_q(n+1)} (-1)^{E'_q((n+n)!)} \times \prod_{t \in \mathbb{Z}_q^*} t^{E''_{q,t}((n+n)!) 2E''_{q,t}(n!)}.$

Example: $c_{3212} \pmod{27}$

- Let p = 3, k = 3 and n = 3212. What is $c_{3212} \pmod{27}$?
- $[3212]_3 = \langle 11101222 \rangle_3$. So $\beta = 3$.
- Then $\omega_p(c_{3212}) = C_p(n, n; \beta) = 1$.
- $CF_q(c_n) \equiv_q \frac{1}{CF_q(n+1)} (-1)^{E'_q((n+n)!)} \times \prod_{t \in \mathbb{Z}_q^*} t^{E''_{q,t}((n+n)!) 2E''_{q,t}(n!)}.$
- In general, $CF_q(n+1) \equiv_q |\langle n_{\beta+k-1} \dots n_{\beta+1}(n_{\beta}+1) \rangle_p|$. In this case, $CF_q(3213) \equiv_{27} |\langle 10{\color{red}2}\rangle_p| = 11$.

 \sqsubseteq Example: $c_{3212} \pmod{27}$

- Let p = 3, k = 3 and n = 3212. What is $c_{3212} \pmod{27}$?
- $[3212]_3 = \langle 11101222 \rangle_3$. So $\beta = 3$.
- Then $\omega_p(c_{3212}) = C_p(n, n; \beta) = 1$.
- $CF_q(c_n) \equiv_q \frac{1}{CF_q(n+1)} (-1)^{E'_q((n+n)!)} \times \prod_{t \in \mathbb{Z}_q^*} t^{E''_{q,t}((n+n)!) 2E''_{q,t}(n!)}.$
- In general, $CF_q(n+1) \equiv_q |\langle n_{\beta+k-1} \dots n_{\beta+1}(n_{\beta}+1) \rangle_p|$. In this case, $CF_q(3213) \equiv_{27} |\langle 102 \rangle_p| = 11$.
- $E'_q((n+n)!) \equiv_2 C_p(n,n;k-1) = 2 \equiv_2 0.$

Example: $c_{3212} \pmod{27}$

Here is the table for evaluating $\prod_{t\in\mathbb{Z}_{27}^*}t^{E''_{27,t}((2n)!)-2E''_{27,t}(n!)}.$

													13 · · ·
Α	2	8	13	26	17	25	14	8	1	2	17	13	26 · · ·
В	1	7	7	19	4	4	10	1	1	10	7	7	1
C		5	7		11	13		17	19		23	25	

$$A = \prod_{t \in [1,2u \pmod{q}] \cap \mathbb{Z}_q^*} t,$$

$$B = (\prod_{t \in [u+1,q-1] \cap \mathbb{Z}_q^*} t)^2 \text{ and }$$

$$C = 2u+1 \pmod{q}.$$

 \sqsubseteq Example: $c_{3212} \pmod{27}$

Here is the table for evaluating $\prod_{t\in\mathbb{Z}_{27}^*} t^{E_{27,t}''((2n)!)-2E_{27,t}''(n!)}$.

$u \mid \cdots$ 14 15 16 17 18 19 20 21 22 23 24 25 26														
	u	14	15	16	17	18	19	20	21	22	23	24	25	26
	Α	2	8	13	26	17	25	14	8	1	2	17	13	26
	В	··· 2 ··· 4	4	19	1	1	19	7	7	10	4	4	1	1
	C	2	4		8	10		14	16		20	22		26

$$A = \prod_{t \in [1,2u \pmod{q}] \cap \mathbb{Z}_q^*} t,$$

$$B = (\prod_{t \in [u+1,q-1] \cap \mathbb{Z}_q^*} t)^2 \text{ and }$$

$$C = 2u+1 \pmod{q}.$$

 \sqsubseteq Example: $c_{3212} \pmod{27}$

Wher	$\kappa =$	1 ar	$nd\ u_0$	$\neq 1$,	we s	shall	use 🛭	$4 \cdot B$	$\cdot C$; c	therw	ise A	$1 \cdot B$.	
	u	1	2	3	4	5	6	7	8 9	10	11	. 12	13
												. 10	26
$A \cdot 1$	$B \cdot C$		10	16		19	4		1 19	9	10	7	
14	15	16	17	18	19	20	21	22	23	24	25	26	
8	5	4	26	17	16	17	2	10	8	14	13	26	
16	20		19	8		22	5		25	11		1	

Example: $c_{3212} \pmod{27}$

For our case, $[3212]_3 = \langle 11101222 \rangle_3$ and $\mathcal{S} = \{001, 011, 111, 110, 101, 012, 122, 222\}.$

Example: $c_{3212} \pmod{27}$

For our case, $[3212]_3 = \langle 11101222 \rangle_3$ and $\mathcal{S} = \{001, 011, 111, 110, 101, 012, 122, 222\}.$

We have
$$CF_{27}(c_{3212}) \equiv_{27} \frac{1}{11} (-1)^0 \times \prod_{t \in \mathbb{Z}_q^*} t^{E''_{q,t}((n+n)!) - 2E''_{q,t}(n!)}$$
.

 \sqsubseteq Example: $c_{3212} \pmod{27}$

For our case, $[3212]_3 = \langle 11101222 \rangle_3$ and $\mathcal{S} = \{001, 011, 111, 110, 101, 012, 122, 222\}.$

We have
$$CF_{27}(c_{3212}) \equiv_{27} 5 \times \prod_{t \in \mathbb{Z}_q^*} t^{E''_{q,t}((n+n)!) - 2E''_{q,t}(n!)}.$$

Catalan numbers modulus an odd prime power

Example: $c_{3212} \pmod{27}$

13 26

16 17

For our case,
$$[3212]_3 = \langle 11101222 \rangle_3$$
 and $\mathcal{S} = \{001, 011, 111, 110, 101, 012, 122, 222\}$. So $u = |\langle 001 \rangle_3| = 1$ corresponding to 2 in the table.

We have $CF_{27}(c_{3212}) \equiv_{27} 5 \times (2 \times \cdots)$.

Example: $c_{3212} \pmod{27}$

For our case, $[3212]_3 = \langle 11101222 \rangle_3$ and $\mathcal{S} = \{001, 011, 111, 110, 101, 012, 122, 222\}.$ So $u = |\langle 011 \rangle_3| = 4$ corresponding to 8.

We have $CF_{27}(c_{3212}) \equiv_{27} 5 \times (2 \cdot 8 \times \cdots)$.

Example: $c_{3212} \pmod{27}$

For our case, $[3212]_3 = \langle 11101222 \rangle_3$ and $\mathcal{S} = \{001, 011, \frac{111}{111}, 110, 101, 012, 122, 222\}.$ So $u = |\langle \frac{111}{111} \rangle_3| = \frac{13}{111}$ corresponding to $\frac{26}{1111}$.

We have $CF_{27}(c_{3212}) \equiv_{27} 5 \times (2 \cdot 8 \cdot 26 \times \cdots)$.

Example: $c_{3212} \pmod{27}$

For our case, $[3212]_3=\langle 11101222\rangle_3$ and $\mathcal{S}=\{001,011,111,\frac{110}{101},012,122,222\}.$ So $u=|\langle 110\rangle_3|=12$ with $\kappa=1$ corresponding to 7.

We have $CF_{27}(c_{3212}) \equiv_{27} 5 \times (2 \cdot 8 \cdot 26 \cdot 7 \times \cdots)$.

Example: $c_{3212} \pmod{27}$

For our case,
$$[3212]_3 = \langle 11101222 \rangle_3$$
 and $\mathcal{S} = \{001, 011, 111, 110, \textcolor{red}{101}, 012, 122, 222\}.$ So $u = |\langle \textcolor{red}{101} \rangle_3| = \textcolor{red}{10}$ corresponding to 20. ($\kappa = 1$ but $u_0 = 1$)

We have $CF_{27}(c_{3212}) \equiv_{27} 5 \times (2 \cdot 8 \cdot 26 \cdot 7 \cdot 20 \times \cdots)$.

 \sqsubseteq Example: $c_{3212} \pmod{27}$

For our case, $[3212]_3 = \langle 11101222 \rangle_3$ and $\mathcal{S} = \{001, 011, 111, 110, 101, 012, 122, 222\}$. So $u = |\langle 012 \rangle_3| = 5$ with ka = 1 corresponding to 19.

We have $CF_{27}(c_{3212}) \equiv_{27} 5 \times (2 \cdot 8 \cdot 26 \cdot 7 \cdot 20 \cdot 19 \times \cdots)$.

Example: $c_{3212} \pmod{27}$

For our case, $[3212]_3 = \langle 11101222 \rangle_3$ and $\mathcal{S} = \{001, 011, 111, 110, 101, 012, 122, 222\}.$ So $u = |\langle 122 \rangle_3| = 17$ with ka = 1 corresponding to 19.

We have $CF_{27}(c_{3212}) \equiv_{27} 5 \times (2 \cdot 8 \cdot 26 \cdot 7 \cdot 20 \cdot 19 \cdot 19 \times \cdots)$.

Example: $c_{3212} \pmod{27}$

For our case, $[3212]_3 = \langle 11101222 \rangle_3$ and $\mathcal{S} = \{001, 011, 111, 110, 101, 012, 122, 222\}.$ So $u = |\langle 222 \rangle_3| = 26$ corresponding to 26.

We have $CF_{27}(c_{3212}) \equiv_{27} 5 \times (2 \cdot 8 \cdot 26 \cdot 7 \cdot 20 \cdot 19 \cdot 19 \cdot 26)$.

 \sqsubseteq Example: $c_{3212} \pmod{27}$

For our case,
$$[3212]_3 = \langle 11101222 \rangle_3$$
 and $\mathcal{S} = \{001, 011, 111, 110, 101, 012, 122, 222\}.$

We have $CF_{27}(c_{3212}) \equiv_{27} 4$.

Example: $c_{3212} \pmod{27}$

For our case, $[3212]_3 = \langle 11101222 \rangle_3$ and $\mathcal{S} = \{001, 011, 111, 110, 101, 012, 122, 222\}.$

We have $CF_{27}(c_{3212}) \equiv_{27} 4$. Then $c_{3212} \equiv_{27} 3^1 \times 4 = 12$.

 \sqsubseteq Example: $c_{3212} \pmod{27}$

	u	1	2	3	4	5	6	7	8	9	10	11	. 12	1
$A \cdot B$														2
$A \cdot $	$B \cdot C$	'	10	16		19	4		1	19		10	7	
14	15	16	17	18	19	20	21	22	23	3 2	24	25	26	
8	5	4	26	17	16	17	2	10	8	:	14	13	26	
16	20		19	8		22	5		2!	5 3	11		1	

Lemma

$$A\cdot B\equiv_q \pm 1$$
 and $A\cdot B\cdot C\pm 1$ for both $u=(q-1)/2$ and $u=q-1.$

Example: $c_{3212} \pmod{27}$

Given $n\in\mathbb{N}$, let \bar{n} be the integer such that $[\bar{n}]_2$ is obtained by the following rules.

- a. If the rightmost 0 run and p-1 run of form the $[n]_2=\langle\dots0^{\beta'}(p-1)^{\beta}\rangle_p$ with $\beta,\beta'\geq k+1$, let us truncate their to length k, otherwise keep it the same.
- b. For any other run of 0 and (p-1)/2 of $[n]_2$ with length $\geq k+1$, truncate them to be length of the same parity as k or k-1.

Theorem

Let $n, k \in \mathbb{N}$ with $k \geq 3$. We have

$$c_n \equiv_{2^k} \left\{ egin{array}{ll} c_{ar{n}} & \mbox{for } d(lpha) \leq k-1 \mbox{, and} \\ 0 & \mbox{for } d(lpha) \geq k. \end{array}
ight.$$

 \sqsubseteq Example: $c_{3212} \pmod{27}$

Example.

$$\begin{array}{rcccc} c_{\langle 3330006\rangle_7} & \equiv_{49} & 43, \\ c_{\langle 30006\rangle_7} & \equiv_{49} & 43, \\ c_{\langle 3006\rangle_7} & \equiv_{49} & 43, \\ c_{\langle 306\rangle_7} & \equiv_{49} & 15, \\ c_{\langle 3066\rangle_7} & \equiv_{49} & 1, \\ c_{\langle 3066\rangle_7} & \equiv_{49} & 1, \\ c_{\langle 33306\rangle_7} & \equiv_{49} & 15, \\ c_{\langle 3306\rangle_7} & \equiv_{49} & 34. \end{array}$$

Example: $c_{3212} \pmod{27}$

Example.

$$\begin{array}{rcccc} c_{\langle 3330006\rangle_7} & \equiv_{49} & 43, \\ c_{\langle 30006\rangle_7} & \equiv_{49} & 43, \\ c_{\langle 3006\rangle_7} & \equiv_{49} & 43, \\ c_{\langle 306\rangle_7} & \equiv_{49} & 15, \\ c_{\langle 3066\rangle_7} & \equiv_{49} & 1, \\ c_{\langle 3066\rangle_7} & \equiv_{49} & 1, \\ c_{\langle 33306\rangle_7} & \equiv_{49} & 15, \\ c_{\langle 3306\rangle_7} & \equiv_{49} & 34. \end{array}$$

The End!