# Prática 1 — Laboratório de Análise de Sistemas Lineares

Bernardo Bresolini \* Ester Queiroz Alvarenga \*

\* Centro Federal de Educação Tecnológica de Minas Gerais, Divinópolis - MG (e-mails: berbresolini14@gmail.com e esterqueirozalvarenga@gmail.com).

#### Resumo

A modelagem e linearização é um dos primeiros passos para a análise de sistemas e projeto de controladores. Sendo assim, a prática 01 da disciplina de Laboratório de Análise de Sistemas Lineares obteve sucesso em propor uma prática que exigisse dos alunos seus conhecimentos físicos e mecânicos, adquiridos ao longo do curso, para a modelagem de sistemas clássicos (tanque e pêndulo); além da sua linearização e representação em espaço de estados. Os modelos obtidos foram linearizados e representados em espaço de estados. Ainda, a modelagem foi simulada via software MATLAB $^{\textcircled{\tiny (R)}}$  em sua interface Simulink. Pode-se perceber que o modelo linear se aproxima satisfatoriamente do não linear em torno do ponto linearizado.

Palavras-chaves: Modelagem. Linearização. Tanque simples. Pêndulo simples.

## Abstract

Modeling and linearization is one of the first steps for system analysis and controller design. Thus, Practice 01 of the Linear Systems Analysis Laboratory discipline succeeded in proposing a practice that required students to obtain their physical and mechanical knowledge, acquired throughout the course, for the modeling of classical systems (tank and pendulum); beyond its linearization and state space representation. The obtained models were linearized and represented in state space. Still, the modeling was simulated via MATLAB® software in its Simulink interface. It can be seen that the linear model satisfactorily approximates the nonlinear model around the linearized point.

Keywords: Modeling. Linearization. Simple tank. Simple pendulum.

# 1. INTRODUÇÃO

Em 14 de agosto de 2019 na disciplina de Laboratório de Análise de Sistemas Lineares, foi-se proposto a modelagem, linearização, simulação e comparação dos sistemas: tanque simples e pêndulo simples. Diante disto, este relatório se propõe a descrever a instrumentação, métodos e conceitos utilizados para cumprir a prática.

## 2. TANQUE SIMPLES

Considere o tanque mostrado na FIG. 1, em que a variável manipulada é a vazão de entrada  $q_i(v(t))$  por meio de uma válvula e a variável controlada é a altura de água h(t).

## 2.1 Modelagem

O volume de água no tanque é calculado por

$$V = Ah(t)$$

Diferenciando o volume no tempo, tem-se

$$\frac{dV}{dt} = \frac{d}{dt} \big[ Ah(t) \big] = A\dot{h}(t) \tag{1}$$



Figura 1. Esquemático de um tanque simples

Entretanto, fisicamente o diferencial do volume corresponde a diferença das vazões. Portanto,

$$A\dot{h}(t) = q_i(v(t)) - q_o(h(t)) \tag{2}$$

Considerando o líquido incompressível, o escoamento invíscito e em regime permanente, a equação de Bernoulli da saída do tanque é

$$q_o(h(t)) = \frac{\sqrt{h(t)}}{R} \tag{3}$$

Aplicando (3) em (2), segue

$$A\dot{h}(t) = q_i(v(t)) - \frac{\sqrt{h(t)}}{R}$$

Isolando  $\dot{h}(t)$ ,

$$\dot{h}(t) = \frac{q_i(v(t))}{A} - \frac{\sqrt{h(t)}}{RA}$$
 (4)

A equação (4) é não linear devido ao termo  $\sqrt{h(t)}$ . Sendo assim, ela deve ser linearizada para um ponto de equilíbrio  $h_{\rm eq}$  desejado e, por meio do Jacobiano da EDO, fazendo

$$\delta \hat{h}(t) = \left(h(t) - h_{\text{eq}}\right) \left. \frac{\partial f\left(h(t), q_i(v(t)), t\right)}{\partial h} \right|_{h = h_{\text{eq}}, q_i = q_{i_{\text{eq}}}} + \left. + \left(u(t) - u_{\text{eq}}\right) \left. \frac{\partial f\left(h(t), q_i(v(t)), t\right)}{\partial q_i} \right|_{h = h_{\text{eq}}, q_i = q_{i_{\text{eq}}}}$$

em que f(h(t), u(t), t) é a função que descreve o comportamento de  $\dot{h}(t)$ , neste caso, a equação (4). Aplicando, tem-se

$$\delta \hat{h}(t) = \left(h(t) - h_{\text{eq}}\right) \left(-\frac{1}{2RA\sqrt{h_{\text{eq}}}}\right) + \left(q_i(v(t)) - q_{i_{\text{eq}}}\right) \frac{1}{A} \quad (5)$$

Sejam  $\delta h(t) := (h(t) - h_{eq}) e \delta q_i(v(t)) := (q_i(v(t)) - q_{i_{eq}}).$  Diante disso, a equação (5) é escrita como

$$\delta \hat{h}(t) = -\frac{\delta h(t)}{2RA\sqrt{h_{\rm eq}}} + \frac{\delta q_i(v(t))}{A}$$
 (6)

## 2.2 Espaço de Estados

Seja  $x(t):=\delta h(t),\ \dot{x}(t):=\delta \dot{h}(t),\ u(t):=\delta q_i\bigl(v(t)\bigr),$  a representação em espaço de estados do sistema é

$$\dot{x}(t) = \mathbf{A}x(t) + \mathbf{B}u(t)$$

$$y(t) = x(t)$$
(7)

em que

$$\boldsymbol{A} = -\frac{1}{2RA\sqrt{h_{\rm eq}}}, \qquad \boldsymbol{B} = \frac{1}{A}$$

# 3. PÊNDULO SIMPLES

Considere o pêndulo mostrado na FIG. 2, em que a variável manipulada é a força  ${\pmb F}$  aplicada na sua extremidade P. A variável controlada é a posição  $\theta$  do pêndulo em relação ao eixo vertical.

O pêndulo é composto por um cabo inextensível cuja massa pode ser desprezada, fazendo com que o seu centro de gravidade CG se concentre em P. Além disso, a força de atrito viscoso  $\boldsymbol{F}_a$  será a única força dissipativa do sistema, sendo desconsiderado o atrito seco, a resistência do ar ou a deformação dos corpos.



Figura 2. Esquemático do pêndulo simples

# 3.1 Modelagem

A aplicação da segunda lei de newton no eixo  $x^\prime$  resulta em

$$\sum F_{x'} = ma_{x'} \Rightarrow F(t) - F_a(\theta(t)) - mg \operatorname{sen} \theta(t) = ma_{x'}(t)$$

Já o somatório de forças em y' é zero, pois as únicas forças atuantes neste eixo é a força peso e a reação do cabo. Ademais, a aceleração é a derivada temporal de ordem 2 da posição, ou seja,

$$F(t) - F_a(\theta(t)) - mg \operatorname{sen} \theta(t) = m \frac{d^2}{dt^2} (\ell \operatorname{sen} \theta(t))$$
 (8)

O atrito viscoso é tal que

$$F_a(\theta(t)) = \ell k \dot{\theta}(t) \tag{9}$$

Aplicando (9) em (8) e diferenciando a posição,

$$F(t) - \ell k \dot{\theta}(t) - mg \operatorname{sen} \theta(t) = m\ell \frac{d^2}{dt^2} \left( \operatorname{sen} \theta(t) \right)$$
 (10)

Considerando que o ângulo  $\theta$  não varia muito em torno do eixo vertical, pode-se considerar que sen  $\theta \approx \theta$ . Dessarte <sup>1</sup>,

$$F(t) - \ell k \dot{\theta}(t) - mg\theta(t) = m\ell \ddot{\theta}(t) \tag{11}$$

Isolando  $\ddot{\theta}(t)$ , obtém-se

$$\ddot{\theta}(t) = \frac{F(t)}{m\ell} - \frac{k}{m}\dot{\theta}(t) - \frac{g}{\ell}\theta(t)$$
 (12)

uma função linear válida para  $\theta \approx 0$ .

# $\it 3.2~Espaço~de~estados$

Sejam  $x_1(t) := \theta(t), x_2(t) := \dot{\theta}(t), x := \begin{bmatrix} x_1 & x_2 \end{bmatrix}^T$  e u(t) := F(t). Assim, a representação em espaço de estados do pêndulo simples é

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{A}\boldsymbol{x}(t) + \boldsymbol{B}\boldsymbol{u}(t)$$

$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \boldsymbol{x}(t)$$
(13)

sendo

$$m{A} = \left[ egin{array}{cc} 0 & 1 \\ -g/\ell & -k/m \end{array} 
ight], \qquad m{B} = \left[ egin{array}{c} 0 \\ 1/(m\ell) \end{array} 
ight]$$

 $^{1}$  Note que a linearização foi feita antes de se derivar a função seno. Contudo, para resultados mais precisos, fazer-se-ia

cuja linearização considerando  $\theta(t)\approx 0$  implica que  $\cos\theta(t)\cong 1$ , sen  $\theta(t)\cong 0$ , que culmina ao valor de (11).

## 4. RESULTADOS

Por meio da representação de espaços de estados é possível simular o modelo obtido dos sistemas e analisar suas respostas.

## 4.1 Tanque simples

Para simular os resultados de um tanque, considere um tanque com altura total z < h(t),  $\forall t \geq 0$  s. Ainda, considere que o tanque seja tal que

$$A = 0.4 \text{ m}^2$$
 e  $\beta = \frac{1}{RA} = 0.6$ 

Deliberando que o ponto de equilíbrio  $h_{\rm eq}=1$  m. Para o ponto escolhido, a variação do nível é nula, então  $\dot{h}(t)=0$ , por isso, aplicando estes valores em (4), o sinal de controle  $q_{i_{\rm eq}}$  encontrado é de

$$q_{i_{\rm eq}} = 0.24 \; {\rm m}^3/{\rm s}$$

Diante disso, a equação de estados que representa o sistema é

$$\dot{x}(t) = -0.3x(t) + 2.5u(t) y(t) = x(t)$$
(14)

# 4.2 Pêndulo Simples

Para simular os resultados de um pêndulo simples, considere

$$g = 9.8 \text{ m/s}^2$$
  $\ell = 0.5 \text{ m}$   $k = 1$   $m = 1 \text{ kg}$ 

No processo de linearização admitiu-se  $\theta(t)\approx 0$  rad, portanto o ponto de equilíbrio que corresponde à linearização deve ser  $\theta_{\rm eq}=0$  rad. Para o ponto escolhido, a velocidade e a aceleração angular são nulas, então  $\dot{\theta}(t)=0$  rad/s e  $\ddot{\theta}(t)=0$  rad/s², por isso, aplicando estes valores em (12), o sinal de controle  $F_{\rm eq}$  encontrado é de

$$F_{\rm eq} = 0 \text{ N}$$

Diante disso, a equação de espaço de estados que representa o sistema é

$$\dot{x}(t) = \begin{bmatrix} \dot{\theta}(t) \\ \ddot{\theta}(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -19,6 & -1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \end{bmatrix} u(t) 
y(t) = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$
(15)

# 5. SIMULAÇÃO

A partir das equações que descrevem os fenômenos físicos do tanque e pêndulo, utilizou-se o MATLAB® a fim de simular os modelos linearizado e o não linear obtidos. Com isso, é possível verificar se pequenas variações no ponto de equilíbrio ainda tornam o modelo fidedigno.

## 5.1 Tanque simples

A topologia para plotar as respostas temporais dos modelos linear e não linear do tanque simples é exposta na FIG. 3.

Fisicamente, espera-se que quando for aplicado um degrau no sistema, sua vazão varie por um curto período de tempo



Figura 3. Topologia para simulação do tanque simples

e depois se estabilize em uma altura, quando as vazões de entrada forem iguais. Aplicando um degrau de  $1,05q_{i_{\rm eq}}$  em t=0 s e  $0,90q_{i_{\rm eq}}$  em t=15 s, a resposta obtida é mostrada na FIG. 4.



Figura 4. Comportamento do tanque quando aplicada  $1{,}05q_{i_{\text{eq}}}$  e  $0{,}90q_{i_{\text{eq}}}$ 

A curva do nível do modelo linear aparenta grande verossimilhança com a curva do nível do modelo não linear, pois visivelmente seus valores não apresentam desvios significativos. Isso implica que a linearização continua válida para  $\pm 10\%$  do ponto de equilíbrio.

O nível do tanque quando excitado por um degrau descreve um comportamento de sistemas de primeira ordem, o que se comprova pela modelagem obtida em (4). A curva não apresenta inflexões antes de estabilizar e não há oscilação, desempenhos típicos de sistemas de primeira ordem.

# 5.2 Pêndulo Simples

A topologia para plotar as respostas temporais dos modelos linear e não linear do pêndulo simples é exposta na FIG. 5.



Figura 5. Topologia para simulação do pêndulo simples

O sinal de controle  $u(t)=0.1\mu_0(t)+0.5\mu_{15}(t)$  (sendo  $\mu_a$  a função degrau aplicada no instante a) e a resposta do sistema gerada por tal é mostrada na FIG. 6.

Em  $0 \le t \le 15$ , note que a posição angular do pêndulo parte de 5°, a condição inicial escolhida, e oscila em torno do ponto de operação  $\theta_{\rm op}$  até que ele entre em regime permanente e se estabilize num valor.

Em regime permanente, a variação da posição é desprezível, logo  $d^2/dt^2 \left( \operatorname{sen} \theta(t) \right) \approx 0$ ,  $\ddot{\theta}(t) \approx 0$  e  $\dot{\theta}(t) \approx 0$ . Aplicando estes valores em (11) e (12), obtém-se

$$(\theta_{\rm op})_{\rm n. \ lin.} = 3.51^{\circ} \qquad (\theta_{\rm op})_{\rm lin.} = 0.58^{\circ}$$

denotando que pequenos desvios do ponto de operação não afetam significativamente na linearização obtida.

Em  $15 \le t \le 30$ , note que a posição angular do pêndulo parte de  $0.58^{\circ}$  e oscila em torno do ponto de operação  $\theta_{\rm op}$  para F(t)=0.6 N até que ele entre em regime permanente e se estabilize num valor.

Em regime permanente, a variação da posição é desprezível, logo  $d^2/dt^2 \left( \operatorname{sen} \theta(t) \right) \approx 0$ ,  $\ddot{\theta}(t) \approx 0$  e  $\dot{\theta}(t) \approx 0$ . Aplicando estes valores em (11) e (12), obtém-se

$$(\theta_{\rm op})_{\rm n, \ lin.} = 2.27^{\circ}$$
  $(\theta_{\rm op})_{\rm lin.} = 3.51^{\circ}$ 

Embora houve certo desvio nos valores devido à discrepância da aproximação  $\theta(t) \approx \operatorname{sen} \theta(t)$ . Ainda, como  $\theta(t)$  é sempre maior ou igual que  $\operatorname{sen} \theta(t)$  em  $0 \leq \theta(t) < \infty$ , e agregando-se ao fator que estes termos aparecem negativos na modelagem, já era esperado que o valor de regime permanente do modelo linear fosse levemente inferior ao outro modelo.

Adicionalmente, o comportamento do pêndulo é oscilatório em torno de um valor quando solto. Sendo assim, as respostas obtidas apresentam verossimilhança com o fenômeno físico. Além de que o modelo obtido apresenta bem as características do sistema.



Figura 6. Resposta temporal do pêndulo

# 6. CONCLUSÃO

A modelagem e linearização é um dos primeiros passos para a análise de sistemas e projeto de controladores. Sendo assim, a prática 01 da disciplina de Laboratório de Análise de Sistemas Lineares obteve sucesso em propor uma prática que exigisse dos alunos seus conhecimentos físicos e mecânicos para a modelagem de sistemas clássicos (tanque e pêndulo) além da sua linearização e representação em espaço de estados.

Diante disso, os dados coletados das simulações mostraram que a linearização de sistemas não lineares é fidedigna em torno de 10% do ponto de operação para as plantas analisadas.

A linearização do tanque simples se mostrou mais semelhante ao modelo não linear, contendo baixos desvios em regime permanente e ainda com aproximação satisfatória no transiente.

Já o modelo do pêndulo apresentou significativos desvios quando o sinal aplicado se distaciava levemente do ponto de operação  $\theta_{\rm op}=0$  rad. Um desvio assim era esperado, uma vez que durante sua modelagem arbitrou-se que  $\theta(t)$  estaria em torno de 0 rad. No entanto, em valores absolutos, os valores de estado estacionários não apresentaram grandes alterações, o que não causaria grandes erros num futuro controle.

Ademais, foi possível visualizar os comportamentos típicos de sistemas de primeira e segunda ordem (este último apenas polos complexos conjugados), o que gera boa percepção visual destes tipos de plantas.

## 7. REFERÊNCIAS

CHEN, Chi-Tsong. Linear System Theory and Design. 4. ed. New York: Oxford, 2012. p. 398.

OGATA, Katsuhiko. Engenharia de Controle Moderno. 5. ed. São Paulo: Pearson Education do Brasil, 2010. p. 822.