第四章

数值积分与数值微分

— 自适应积分方法

自适应积分方法

在求积区间中被积函数变化很大,有的部分函数值变化剧烈,另一部分变化平缓,如何选取步长 h?

太 大 一 计算精度难以保证

太 小 一 增加额外的计算量

解决办法:采用 根据剧烈程度确定步长

通常在满足精度前提下积分计算工作量尽可能小, 在不同区间上预测被积函数变化的剧烈程度确定相 应步长,直到所得到的计算结果满足指定的精度为 止。

举例

$$I[f]=4$$

例: 用复合辛普森法和自适应积分法计算定积

分
$$\int_{0.2}^{1} \frac{1}{x^2} dx$$
 ,要求计算精度满足 $S_n - S_{n-1} < \varepsilon = 0.02$

demo_4_8.m

n	hn	Sn	$\mid S_n - S_{n-1} \mid$
1	0.8	4.948148	
2	0.4	4.187037	0.76111
3	0.2	4.024218	0.162819
4	0.1	4.002164	0.022054
5	0.05	4.000154	0.002010

注:复合 Simpson 公式计算了 33 个节点的函数

值,自适应积分法计算了17个节点的函数值

第四章

数值积分与数值微分

— Gauss 求积公式

怎样构造更高精度的求积方法

考虑求积公式

$$\int_a^b f(x) \mathrm{d}x \approx \sum_{i=0}^n A_i f(x_i)$$

• 含 2n+2 个参数 (节点与系数),为了使该公式具有尽可能高的代数精度,可将 $f(x) = 1, x, x^2, ..., x^{2n+1}$ 代入公式,使其精确成立,则可构造出代数精度至少为 2n+1 的求积公式!

自由选取求积节点!等分点不一定最佳!

举例

$$\int_{-1}^{1} f(x) \, \mathrm{d}x \approx A_0 f(x_0) + A_1 f(x_1)$$

解: 将 $f(x)=1, x, x^2, x^3$ 代入求积公式, 使其精确成立, 可得

$$\begin{cases} A_0 + A_1 = 2 \\ A_0 x_0 + A_1 x_1 = 0 \\ A_0 x_0^2 + A_1 x_1^2 = 2/3 \end{cases} \begin{cases} A_0 = 1, \ A_1 = 1 \\ x_0 = -\frac{\sqrt{3}}{3}, \ x_1 = \frac{\sqrt{3}}{3} \\ A_0 x_0^3 + A_1 x_1^3 = 0 \end{cases}$$
$$\int_{-1}^{1} f(x) dx \approx f\left(-\frac{\sqrt{3}}{3}\right) + f\left(\frac{\sqrt{3}}{3}\right)$$

该公式对 $f(x)=x^4$ 不精确成立,故有3次代数精度!

缺点: 非线性方程组求解较困难!

Gauss 型求积公式

一般情形:考虑机械带权求积公式

$$\int_{a}^{b} \rho(x) f(x) dx \approx \sum_{i=0}^{n} A_{i} f(x_{i})$$

定义: 若存节点在 $x_i \in [a, b]$ 及系数 A_i ,使得上面的求积公式具有 2n+1 次代数精度,则称节点 x_i 为高斯点, A_i 为高斯系数,求积公式为高斯型求积公式

性质: 上面的求积公式至多具有 2n+1 次代数精度

(将
$$f(x) = \prod_{i=0}^{n} (x - x_i)^2$$
 代入验证即可)

Gauss 求积公式在所有机械求积公式中代数精度最高

Gauss 点

问题: 如何计算 Gauss 点 x_i 和 高斯系数 A_i

法一:解非线性方程组

法二:分开计算

- 先确定 Gauss 点
- 再通过解线性方程组计算 Gauss 系数

更多 G-L 公式

高斯求积公式的节点和系数 (教材122页)

n	节点个数	Gauss点	Gauss系数
0	1	0.0000000	2.0000000
1	2	±0.5773503	1.0000000
2	3	±0.7745967 0.0000000	0.555556 0.8888889
3	4	±0.8611363 ±0.3399810	0.3478548 0.6521452
4	5	±0.9061798 ±0.5384693 0.0000000	0.2369269 0.4786287 0.5688889
5	6	±0.93246951 ±0.66120939 ±0.23861919	0.17132449 0.36076157 0.46791393

一般区间上的 G-L 公式

• 积分区间: [a, b], 权函数: $\rho(x) = 1$

做变量代换 $x = \frac{b-a}{2}t + \frac{b+a}{2}$

$$g(t) = f\left(\frac{b-a}{2}t + \frac{b+a}{2}\right)$$

$$\int_{a}^{b} f(x) dx = \frac{b-a}{2} \int_{-1}^{1} g(t) dt \approx \sum_{i=0}^{n} A_{i} g(t_{i})$$

G-L公式举例

 $I[f]=0.46740110027234\cdots$

用四点G-L公式 (n=3) 计算定积分 $\int_{0}^{\frac{\pi}{2}} x^2 \cos(x) dx$

解: 令
$$x = \frac{\pi}{4}t + \frac{\pi}{4}$$

$$g(t) = \frac{\pi^2}{16} (t+1)^2 \cos \frac{\pi}{4} (t+1)$$

 $demo_4_9.m$

$$\int_0^{\frac{\pi}{2}} x^2 \cos(x) \, dx = \frac{\pi}{4} \int_{-1}^1 \frac{\pi^2}{16} (t+1)^2 \cos \frac{\pi}{4} (t+1) \, dt$$

$$\approx \frac{\pi}{4} [0.3479g(-0.8611) + 0.6521g(-0.3400) + 0.6521g(0.3400) + 0.3479g(0.8611)]$$

 ≈ 0.4674

几点注记

- Gauss 型求积公式的优点
 - 计算精度高
- Gauss 型求积公式的缺点
 - 需计算 Gauss 点和 Gauss 系数
 - 增加节点时需重新计算

- 实际应用中可以使用复合 Gauss求积公式
 - 将积分区间分隔成若干小区间
 - 在每个小区间上使用 Gauss 求积公式