# PERIOD RINGS AND PERIOD SHEAVES

### 1. Background Story

The starting point of p-adic Hodge theory is the comparison conjectures (now theorems) between p-adic étale cohomology, de Rham cohomology, and (log-)crystalline cohomology.

Throughout the notes, K is a finite extension of  $\mathbb{Q}_p$  with residue field k. Let W(k) be the Witt vectors with coefficients in k and let  $K_0 = \operatorname{Frac} W(k)$ .

## **Theorem 1.1.** (Hodge-Tate comparison)

Let X be a proper smooth variety over K. There exists a canonical isomorphism

$$H^n_{\mathrm{cute{e}t}}(X_{\overline{K}}, \mathbb{Q}_p) \otimes_{\mathbb{Q}_p} \mathbb{C}_p \cong \bigoplus_{0 \leq i \leq n} H^{n-i}(X, \Omega^i_{X/K}) \otimes_K \mathbb{C}_p(-i)$$

compatible with  $G_K$ -actions.

### Theorem 1.2. (de Rham comparison)

Let X be a proper smooth variety over K. There exists a canonical isomorphism

$$H_{\mathrm{\acute{e}t}}^n(X_{\overline{K}},\mathbb{Q}_p)\otimes_{\mathbb{Q}_p}B_{\mathrm{dR}}\cong H_{\mathrm{dR}}^n(X/K)\otimes_KB_{\mathrm{dR}}$$

compatible with  $G_K$ -actions and filtrations.

### **Theorem 1.3.** (crystalline comparison)

Let X be a proper smooth variety over K. Suppose X has a proper smooth model  $\mathfrak{X}$  over  $\mathcal{O}_K$ . Let  $X_0$  denote the special fiber of  $\mathfrak{X}$ . There exists a canonical isomorphism

$$H_{\mathrm{\acute{e}t}}^n(X_{\overline{K}}, \mathbb{Q}_p) \otimes_{\mathbb{Q}_p} B_{\mathrm{crys}} \cong H_{\mathrm{crys}}^n(X_0/W(k)) \otimes_{W(k)} B_{\mathrm{crys}}$$

compatible with  $G_K$ -actions, Frobenius actions, and filtrations.

There is also a semistable comparison relating p-adic étale cohomology to log-crystalline cohomology.

The purpose of these notes is to construct and study various period rings including  $B_{\rm dR}$  and  $B_{\rm crys}$ . Good references for an introduction to p-adic Hodge theory include [BC], [FO], and [Ber]. The problems and examples here are by no means original, most of which are inspired from literatures mentioned above.

### 2. Witt Vectors

**Definition 2.1.** Let A be a topological ring and let  $A \supset I_1 \supset I_2 \supset \cdots$  be a decreasing chain of ideals. Assume  $A/I_1$  is an  $\mathbb{F}_p$ -algebra and  $I_n \cdot I_m \subset I_{n+m}$ . The topology on A is given by  $(I_n)_{n>1}$ .

- (i) A is called a p-ring if the topology is separated and completed.
- (ii) A is called a *strict* p-ring if moreover  $I_n = p^n A$  and p is not a zero divisor in A.

Let A be a p-ring with perfect residue ring  $R = A/I_1$ . For  $x \in R$  and  $n \in \mathbb{N}$ , let  $x_n = x^{1/p^n}$ . Let  $\widehat{x}_n$  be a lift of  $x_n$  to A. The Teichmüller lift of x is defined to be

$$[x] := \lim_{n} (\widehat{x}_n)^{p^n}$$

In particular, if A is a strict p-ring with perfect residue ring R, then every  $a \in A$ can be uniquely written as

$$a = \sum_{n=0}^{\infty} p^n [a_n]$$

with  $a_n \in R$ . (see Problem 2)

**Theorem 2.2.** If R is a perfect ring of characteristic p. Then there exists a unique strict p-ring W(R) with residue ring R.

Roughly speaking,  $W(R) = \{ (\sum_{n=0}^{\infty} p^n[x_n])^n \mid x_n \in R \}$ . For an explicit description of W(R), see Problem 4.

# Theorem 2.3. (Universality)

Let  $R_0$  be a perfect ring of characteristic p. Let A be any p-ring with residue ring R. Suppose  $\alpha: R_0 \to R$  is a ring homomorphism and  $\widetilde{\alpha}: R_0 \to A$  is a multiplicative lift of  $\alpha$ , then there exists a unique homomorphism  $\alpha:W(R_0)\to A$  such that  $\alpha([x]) = \widetilde{\alpha}(x).$ 

Remark 2.4. Witt vectors can be defined for more general rings, not necessarily  $\mathbb{F}_p$ -algebras. For details, we refer to [Ser].



**Problem 1.** Which of the following rings are p-rings? Strict p-rings?

- (a)  $\mathcal{O}_K$  (where  $K/\mathbb{Q}_p$  is a finite extension.)
- (b)  $\mathcal{O}_{\overline{K}}$
- (c)  $\mathcal{O}_{\mathbb{C}_p}^{K}$ (d)  $\mathcal{O}_K[[X_J^{1/p^{\infty}}]] = \varprojlim_n (\cup_{m=0}^{\infty} \mathcal{O}_K[X_j^{1/p^m}; j \in J])/p^n$ (*J* is any index set).
- (e)  $R^+$  (where  $(R, R^+)$  is a perfectoid algebra of characteristic 0).

**Problem 2.** Let A be a strict p-ring with perfect residue ring R. Show that every  $a \in A$  can be uniquely written as

$$a = \sum_{n=0}^{\infty} p^n [a_n]$$

with  $a_n \in R$ .

### 3

**Problem 3.** (Universal Witt polynomials)

Consider strict p-ring  $S = \mathbb{Z}_p[[X_i^{1/p^{\infty}}, Y_i^{1/p^{\infty}}]]_{i \geq 0}$  with residue ring  $\overline{S} = \mathbb{F}_p[X_i^{1/p^{\infty}}, Y_i^{1/p^{\infty}}]_{i \geq 0}$ .

(i) Show that there exist polynomials  $P_i, Q_i \in \overline{S}$  such that

$$\left(\sum_{i=0}^{\infty} p^{i}[X_{i}]\right)\left(\sum_{i=0}^{\infty} p^{i}[Y_{i}]\right) = \sum_{i=0}^{\infty} p^{i}[Q_{i}]$$

- (ii) Calculate  $P_0, P_1, Q_0, Q_1$ .
- (iii) Show that  $P_i$ 's and  $Q_i$ 's are universal in the following sense. For any strict p-ring A with perfect residue ring R and any  $x_0, x_1, \ldots, y_0, y_1, \ldots \in R$ , we have

$$\sum_{i=0}^{\infty} p^{i}[x_{i}] + \sum_{i=0}^{\infty} p^{i}[y_{i}] = \sum_{i=0}^{\infty} p^{i}[P_{i}(x_{0}, x_{1}, \dots, y_{0}, y_{1}, \dots)]$$

$$\left(\sum_{i=0}^{\infty} p^{i}[x_{i}]\right)\left(\sum_{i=0}^{\infty} p^{i}[y_{i}]\right) = \sum_{i=0}^{\infty} p^{i}[Q_{i}(x_{0}, x_{1}, \dots, y_{0}, y_{1}, \dots)]$$

**Problem 4.** (Explicit description of W(R))

Let R be a perfect ring of characteristic p. Suppose R has a presentation  $R \cong \overline{S}_J/I$  where

$$\overline{S}_J = \mathbb{F}_p[X_J^{1/p^\infty}]$$

for some index set J, and I is a perfect ideal of  $\overline{S}_{J}$ .

- (i) Show that such a presentation always exists.
- (ii) Consider

$$S_J := \mathbb{Z}_p[[X_J^{1/p^\infty}]]$$

Show that  $W(R) \cong S_I/W(I)$  where

$$W(I) = \big\{ \sum_{i=0}^{\infty} p^{i}[x_{i}] \, | \, x_{i} \in I \big\}.$$

(iii) Prove Theorem 2.3 using the explicit description above.

**Problem 5.** $(\mathcal{O}_{\mathbb{C}_n^{\flat}} \text{ and } W(\mathcal{O}_{\mathbb{C}_n^{\flat}}))$ 

Let  $(\mathbb{C}_p^{\flat}, \mathcal{O}_{\mathbb{C}_p^{\flat}})$  be the tilt of the perfectoid field  $(\mathbb{C}_p, \mathcal{O}_{\mathbb{C}_p})$  (see [Sch1]). We briefly review the construction here. Consider

$$\mathcal{O}_{\mathbb{C}_p^{\flat}} := \varprojlim_{x \mapsto x^p} \mathcal{O}_{\mathbb{C}_p}/p$$

equipped with inverse limit topology. This is a perfect ring of characteristic p. Let  $\mathbb{C}_p^{\flat} = \operatorname{Frac} \mathcal{O}_{\mathbb{C}_p^{\flat}}$ . The natural projection gives a multiplicative homeomorphism

$$\varprojlim_{x\mapsto x^p} \mathcal{O}_{\mathbb{C}_p} \xrightarrow{\sim} \varprojlim_{x\mapsto x^p} \mathcal{O}_{\mathbb{C}_p}/p.$$

The inverse is given by

$$\varprojlim_{x\mapsto x^p} \mathcal{O}_{\mathbb{C}_p}/p \to \varprojlim_{x\mapsto x^p} \mathcal{O}_{\mathbb{C}_p}$$

sending  $x = (x_0, x_1, \ldots)$  to  $(x^\#, x^{\#(1)}, x^{\#(2)}, \ldots)$  where  $x^{\#(m)} = \lim_{n \to \infty} \widehat{x}_n^{p^{n-m}}$ . One can define a valuation on  $\mathcal{O}_{\mathbb{C}_p^b}$  by  $|x| := |x^\#|_{\mathbb{C}_p}$ .

- (i) Check that  $|\cdot|$  is indeed a non-archimedean valuation on  $\mathcal{O}_{\mathbb{C}_p^{\flat}}$ . In particular,  $|x+y| \leq \max(|x|,|y|), \ \forall \ x,y \in \mathcal{O}_{\mathbb{C}_p^{\flat}}$ .
- (ii) Check that  $\mathcal{O}_{\mathbb{C}_p^{\flat}}$  is complete and separated with respect to  $|\cdot|$ .
- (iii) Consider

$$\varepsilon = (1, \zeta_p, \zeta_{p^2}, \ldots) \in \varprojlim_{x \mapsto x^p} \mathcal{O}_{\mathbb{C}_p} \cong \mathcal{O}_{\mathbb{C}_p^{\flat}}$$

For each  $n \in \mathbb{N}$ , calculate  $|\varepsilon^{1/p^n} - 1|$ .

(iv) Let  $K/\mathbb{Q}_p$  be a finite extension and let  $G_K = \operatorname{Gal}(\overline{K}/K)$ . Then  $\mathcal{O}_{\mathbb{C}_p^b}$  is equipped with a natural Frobenius action  $\varphi$  and an action of  $G_K$ . More precisely, for  $x = (x^{(0)}, x^{(1)}, \ldots) \in \varprojlim_{T \mapsto T^p} \mathcal{O}_{\mathbb{C}_p} \cong \mathcal{O}_{\mathbb{C}_p^b}$ , we define

$$\varphi(x) = ((x^{(0)})^p, (x^{(1)})^p, \ldots)$$

and

$$g(x) = (g(x^{(0)}), g(x^{(1)}), \ldots), \ \forall g \in G_K.$$

The  $\varphi$  and  $G_K$  actions also extend naturally to  $W(\mathcal{O}_{\mathbb{C}_p^\flat})$ .

Find 
$$(\mathcal{O}_{\mathbb{C}_p^{\flat}})^{\varphi=1}$$
,  $(\mathcal{O}_{\mathbb{C}_p^{\flat}})^{G_K}$ ,  $W(\mathcal{O}_{\mathbb{C}_p^{\flat}})^{\varphi=1}$ ,  $W(\mathcal{O}_{\mathbb{C}_p^{\flat}})^{G_K}$ .

## 3. De Rham period ring $B_{\mathrm{dR}}$

Consider the following  $G_K$ -equivariant ring homomorphism

$$\theta:W(\mathcal{O}_{\mathbb{C}_p^{\flat}})\to\mathcal{O}_{\mathbb{C}_p}$$

$$\sum_{i=0}^{\infty} p^i[x_i] \mapsto \sum_{i=0}^{\infty} p^i x_i^{\#}$$

It turns out  $\ker(\theta)$  is a principle ideal generated by  $\xi = [p^{\flat}] - p$ , where

$$p^{\flat} = (p, p^{1/p}, p^{1/p^2}, \ldots) \in \varprojlim_{x \mapsto x^p} \mathcal{O}_{\mathbb{C}_p} \cong \mathcal{O}_{\mathbb{C}_p^{\flat}}.$$

Define  $B_{\mathrm{dR}}^+$  to be the  $\ker(\theta)$ -adic completion of  $W(\mathcal{O}_{\mathbb{C}_p^b})[\frac{1}{p}]$ ; i.e.,

$$B_{\mathrm{dR}}^+ = \varprojlim_n W(\mathcal{O}_{\mathbb{C}_p^{\flat}})[\frac{1}{p}]/(\ker \theta)^n.$$

The natural projection induces

$$\theta_{\mathrm{dR}}^+: B_{\mathrm{dR}}^+ \to W(\mathcal{O}_{\mathbb{C}_p^\flat})[\frac{1}{p}]/(\ker \theta) \cong \mathbb{C}_p.$$

In particular,  $B_{\mathrm{dR}}^+$  is a complete discrete valuation ring with maximal ideal  $\mathfrak{m}_{B_{\mathrm{dR}}^+} = (\ker \theta)$  and residue field  $\mathbb{C}_p$ . We temporarily equip  $B_{\mathrm{dR}}^+$  with the discrete valuation ring topology. (See Problem 11 for a "better" topology.)

Let  $\varepsilon$  be the same as in Problem 5(iii). Consider the element

$$t = \log[\varepsilon] = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{([\varepsilon] - 1)^n}{n}.$$

One can check that t converges to a uniformizer in  $B_{\mathrm{dR}}^+$ . Moreover, t has the nice property that

$$g(t) = \chi(g)t, \ \forall g \in G_K$$

where  $\chi$  is the cyclotomic character.

Finally, we define  $B_{dR} = B_{dR}^+[\frac{1}{t}] = \operatorname{Frac} B_{dR}^+$ , which carries a natural  $G_K$ -action. One can prove  $B_{dR}^{G_K} = K$ . In addition, one can put a  $G_K$ -stable filtration on  $B_{dR}$  by setting

$$\operatorname{Fil}^n B_{\operatorname{dR}} := t^n B_{\operatorname{dR}}^+ = \mathfrak{m}_{B_{\operatorname{dR}}^+}^n, \quad n \in \mathbb{Z}.$$

However, the  $\varphi$ -action on  $W(\mathcal{O}_{\mathbb{C}_p^{\flat}})[\frac{1}{p}]$  does not extend to  $B_{\mathrm{dR}}$ .



**Problem 6.** If we identify  $W(\mathcal{O}_{\mathbb{C}_p^{\flat}})$  with  $(\mathcal{O}_{\mathbb{C}_p^{\flat}})^{\mathbb{N}}$  and equip the product of valuation topology from  $\mathcal{O}_{\mathbb{C}_p^{\flat}}$ , show that  $\theta: W(\mathcal{O}_{\mathbb{C}_p^{\flat}}) \to \mathcal{O}_{\mathbb{C}_p}$  is open.

**Problem 7.** Let k be the residue field of K. Show that  $\theta$  is actually a morphism of  $W(\bar{k})$ -algebras with the natural  $W(\bar{k})$ -structures on both sides.

**Problem 8.** For  $\alpha \in W(\mathcal{O}_{\mathbb{C}_p^{\flat}})$ , let  $\overline{\alpha}$  denote the reduction of  $\alpha$  mod p. Show that  $\alpha \in \ker(\theta)$  is a generator if and only if  $|\overline{\alpha}| = 1$ . In particular,  $\xi$  is a generator.

**Problem 9.** Show that  $\varphi$ -action on  $W(\mathcal{O}_{\mathbb{C}_p^b})[\frac{1}{p}]$  does not extend to  $B_{\mathrm{dR}}^+$ .

**Problem 10.** Show that  $[p^{\flat}]$  is invertible in  $B_{\mathrm{dR}}^+$ .

**Problem 11.** This is a famous exercise in [BC]. We put a new topological ring structure on  $W(\mathcal{O}_{\mathbb{C}_p^{\flat}})[\frac{1}{p}]$  which extends to one on  $B_{\mathrm{dR}}^+$  such that the quotient topology on  $\mathbb{C}_p$  through  $\theta_{\mathrm{dR}}^+$  is the natural valuation topology!

(i) For any open ideal  $\mathfrak{a} \subset \mathcal{O}_{\mathbb{C}_p^b}$  and  $N \geq 0$ , consider

$$U_{N,\mathfrak{a}} := \bigcup_{j>-N} \left( p^{-j} W(\mathfrak{a}^{p^j}) + p^N W(\mathcal{O}_{\mathbb{C}_p^{\flat}}) \right) \subset W(\mathcal{O}_{\mathbb{C}_p^{\flat}}) [\frac{1}{p}].$$

Prove that  $U_{N,\mathfrak{a}}$  is a  $G_K$ -stable  $W(\mathcal{O}_{\mathbb{C}^{\flat}_p})$ -submodule of  $W(\mathcal{O}_{\mathbb{C}^{\flat}_p})[\frac{1}{p}]$ .

(ii) Define a topological ring structure on  $W(\mathcal{O}_{\mathbb{C}_p^b})[\frac{1}{p}]$  by making  $U_{N,\mathfrak{a}}$ 's a base of open neighborhoods of 0. Show that the topological ring structure is well-defined and the  $G_K$ -action is continuous under this topology.

- (iii) Show that  $\theta: W(\mathcal{O}_{\mathbb{C}_p^b})[\frac{1}{p}] \to \mathbb{C}_p$  is continuous and open, where  $W(\mathcal{O}_{\mathbb{C}_p^b})[\frac{1}{p}]$ is equipped with the new topology and  $\mathbb{C}_p$  with valuation topology.
- (iv) Show that  $(\ker \theta)^n = \xi^n W(\mathcal{O}_{\mathbb{C}_p^{\flat}})[\frac{1}{n}]$  are closed ideals of  $W(\mathcal{O}_{\mathbb{C}_p^{\flat}})[\frac{1}{n}]$ .
- (v) Equip  $B_{\mathrm{dR}}^+$  with the inverse limit topology of the quotient topologies on each  $W(\mathcal{O}_{\mathbb{C}_p^b})[\frac{1}{p}]/(\ker \theta)^n$ . Verify that the quotient topology on  $\mathbb{C}_p$  through  $\theta_{\mathrm{dR}}^+: B_{\mathrm{dR}}^+ \to \mathbb{C}_p$  coincides with the valuation topology.
- (vi) Show that the new topology on  $B_{dR}^+$  is complete.

# **Problem 12.** Prove that $g(t) = \chi(g)t$ for all $g \in G_K$ .

(Hint: Show that both sides are equal to " $\log([\varepsilon]^{\chi(g)})$ ". This expression does not converge in discrete valuation topology, but converges in the new topology constructed in Problem 11.)

# **Problem 13.**( $G_K$ -cohomology of $B_{dR}$ )

- (i) Calculate  $H^i(G_K, t^j B_{\mathrm{dR}}^+)$  for i=0,1 and for all  $j\geq 1$ . (ii) Calculate  $(B_{\mathrm{dR}})^{G_K}$  and  $(B_{\mathrm{dR}}^+)^{G_K}$ .

### 4. De Rham representations

Let  $K/\mathbb{Q}_p$  be a finite extension and let  $\operatorname{Rep}_{\mathbb{Q}_p}(G_K)$  denote the category of  $G_{K^-}$ representations; i.e., finite dimensional  $\mathbb{Q}_p$ -vector spaces with a continuous action of  $G_K$ . Let Fil<sub>K</sub> denote the category of filtered K-vector spaces; i.e., finite dimensional K-vector spaces D equipped with an exhaustive and separated filtration  $\{\operatorname{Fil}^i(D)\}_{i\in\mathbb{Z}}$ . Being exhaustive means  $\operatorname{Fil}^i(D)=D$  for  $i\ll 0$ , and being separated means  $\operatorname{Fil}^{i}(D) = 0$  for  $i \gg 0$ .

Consider functor

$$D_{\mathrm{dR}} : \mathrm{Rep}_{\mathbb{Q}_p}(G_K) \to \mathrm{Fil}_K$$
  
 $V \mapsto (V \otimes_{\mathbb{Q}_p} B_{\mathrm{dR}})^{G_K}$ 

The filtration on  $D_{\mathrm{dR}}(V)$  is given by  $\mathrm{Fil}^i(D_{\mathrm{dR}}(V)) := (V \otimes_{\mathbb{Q}_p} t^i B_{\mathrm{dR}}^+)^{G_K}$ . It is always true that  $\dim_K D_{\mathrm{dR}}(V) \leq \dim_{\mathbb{Q}_p} V$ . We say V is  $de\ Rham$  if this is an equality. The subcategory of de Rham representations is denoted by  $\operatorname{Rep}_{\mathbb{O}_n}^{\mathrm{dR}}(G_K)$ .

#### (i) The functor Theorem 4.1.

$$D_{\mathrm{dR}}: \mathrm{Rep}_{\mathbb{Q}_p}^{\mathrm{dR}}(G_K) \to \mathrm{Fil}_K$$

is exact and faithful (but not full!) Moreover, it respects direct sums, tensor products, subobjects, quotients, and duals.

(ii) If V is de Rham, the natural map

$$\alpha_{\mathrm{dR},V}: D_{\mathrm{dR}}(V) \otimes_K B_{\mathrm{dR}} \to V \otimes_{\mathbb{Q}_p} B_{\mathrm{dR}}$$

is an isomorphism of filtered vector spaces.

The notion of *Hodge-Tate* representations can be defined in the same fashion. The *Hodge-Tate period ring* is defined to be

$$B_{\mathrm{HT}} = \bigoplus_{n \in \mathbb{Z}} \mathbb{C}_p(n)$$

where  $\mathbb{C}_p(n)$  standards for the Tate twist. For any  $V \in \operatorname{Rep}_{\mathbb{Q}_p}(G_K)$ , we can consider functor

$$D_{\mathrm{HT}}: \mathrm{Rep}_{\mathbb{O}_n}(G_K) \to \mathrm{Vect}_K.$$

A representation V is called Hodge-Tate if  $\dim_K D_{\mathrm{HT}}(V) = \dim_{\mathbb{Q}_p} V$ .

**Theorem 4.2.** De Rham representations are Hodge-Tate.

Important source of de Rham representations: those  $G_K$ -representations arising from p-adic étale cohomologies of proper smooth varieties over K are de Rham.



**Problem 14.** Prove Theorem 4.2.

**Problem 15.** Let  $V \in \operatorname{Rep}_{\mathbb{Q}_p}(G_K)$  and let  $n \in \mathbb{Z}$ . Prove that V is de Rham if and only if  $V \otimes_{\mathbb{Q}_p} \mathbb{Q}_p(n)$  is de Rham.

**Problem 16.** Let K'/K be a finite extension and let  $V \in \operatorname{Rep}_{\mathbb{Q}_p}(G_K)$ . Show that V is de Rham as a  $G_K$ -representation if and only if it is de Rham viewed as a  $G_{K'}$ -representations.

**Problem 17.** Suppose  $V \in \text{Rep}_{\mathbb{Q}_p}(G_K)$  is 1-dimensional. Prove that V is de Rham if and only if it is Hodge-Tate.

**Problem 18.** Let  $\eta: G_K \to \mathbb{Z}_p^{\times}$  be a continuous character. Show that  $\mathbb{Q}_p(\eta)$  is de Rham (equivalently, Hodge-Tate) if and only if there exists  $n \in \mathbb{Z}$  such that  $\chi^n \eta$  is potentially unramified. (A character of  $G_K$  is called potentially unramified if there exists a finite extension L/K such that the image of  $I_L$  is trivial.)

**Problem 19.** (Tate curve)

Let  $K/\mathbb{Q}_p$  be a finite extension and let  $q \in K^{\times}$  be an element such that |q| < 1. Let  $q^{\mathbb{Z}} = \{q^n \mid n \in \mathbb{Z}\}$  and consider quotient group

$$E_q = \overline{K}^{\times}/q^{\mathbb{Z}}$$
 ("Tate curve")

The abelian group  $E_q$  has a natural action of  $G_K$ . For each  $n \geq 0$ , let  $E_q[p^n]$  be the subgroup of  $p^n$ -torsion elements. Define the *Tate module* 

$$T_p(E_q) := \varprojlim_n E_q[p^n]$$

with transition maps being multiplication by p. Inverting p, we obtain the rational  $Tate\ module$ 

$$V_p(E_q) := T_p(E_q) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p.$$

(i) For each n, choose a primitive  $p^n$ -th root of unity  $\zeta_{p^n}$  and choose a  $p^n$ -th root  $\lambda_n$  of q in  $\overline{K}^{\times}$ . Show that

$$(\mathbb{Z}/p^n\mathbb{Z})^2 \to E_q[p^n]$$
$$(a,b) \mapsto \zeta_{n^n}^a \lambda_n^b$$

is an isomorphism.

- (ii) Show that  $V_p(E_q)$  is a 2-dimensional  $\mathbb{Q}_p$ -vector space equipped with a continuous action of  $G_K$ .
- (iii) Show that  $V_p(E_q)$  is an extension of  $\mathbb{Q}_p$  by  $\mathbb{Q}_p(1)$ .

$$0 \to \mathbb{Q}_p(1) \to V_p(E_q) \to \mathbb{Q}_p \to 0$$

(iv)  $V_p(E_q)$  has an explicit basis  $\{e, f\}$  where

$$e = (1, \zeta_p, \zeta_{p^2}, \dots), \quad f = (q, q^{1/p}, q^{1/p^2}, \dots).$$

For any  $g \in G_K$ , show that  $g(e) = \chi(g)e$ , g(f) = f + a(g)e for some  $a(g) \in \mathbb{Z}_p$  depending on g.

(v) Recall that  $t = \log[\varepsilon] \in B_{\mathrm{dR}}^+$ . Let  $q^{\flat} = (q, q^{1/p}, \ldots) \in \mathcal{O}_{\mathbb{C}_p^{\flat}}$ . We can define " $\log[q^{\flat}]$ " as follows.

$$\log[q^{\flat}] := \log_p(q) + \sum_{n=1}^{\infty} (-1)^{n-1} \frac{([q^{\flat}]/q - 1)^n}{n}.$$

Check that  $\log[q^{\flat}]$  converges in  $B_{\mathrm{dR}}^+$ .

- (vi) Let  $u = \log[q^{\flat}]$ . Show that g(u) = u + a(g)t.
- (vii) Show that  $V_p(E_q)$  is de Rham.

(Hint: Use t and u to modify the basis  $e \otimes 1$ ,  $f \otimes 1$  of  $V_p(E_q) \otimes_{\mathbb{Q}_p} B_{\mathrm{dR}}$  into a  $G_K$ -invariant one.)

**Problem 20.** Let n, m be two positive integers and  $n \neq m$ . Let V be any extension

$$0 \to \mathbb{Q}_p(n) \to V \to \mathbb{Q}_p(m) \to 0$$

in  $\operatorname{Rep}_{\mathbb{Q}_p}(G_K)$ . Show that

- (i) V is Hodge-Tate.
- (ii) V is de Rham if n > m.

(On the other hand, every non-trivial extension

$$0 \to \mathbb{Q}_p \to V \to \mathbb{Q}_p(1) \to 0$$

is not de Rham. But this is difficult to prove.)

**Problem 21.** In this problem, we prove that the functor  $D_{dR} : \operatorname{Rep}_{\mathbb{Q}_p}^{dR}(G_K) \to \operatorname{Fil}_K$  is not full.

(i) For  $V, W \in \operatorname{Rep}_{\mathbb{Q}_p}^{dR}(G_K)$ , show that  $D_{dR}(V)$  and  $D_{dR}(W)$  are isomorphic in Fil<sub>K</sub> if and only if

$$\dim_K \operatorname{gr}^i(D_{\operatorname{dR}}(V)) = \dim_K \operatorname{gr}^i(D_{\operatorname{dR}}(W))$$

for all i. (i.e., they have the same Hodge-Tate weights and Hodge-Tate numbers.)

- (ii) Show that there exists a non-split extension of  $\mathbb{Q}_p$  by  $\mathbb{Q}_p(1)$  in  $\operatorname{Rep}_{\mathbb{Q}_n}^{dR}(G_K)$ .
- (iii) Conclude that  $D_{\rm dR}$  is not full.

## 5. Crystalline period ring $B_{\rm crys}$

Let  $K/\mathbb{Q}_p$  be a finite extension with residue field k. Let  $K_0 = W(k)[\frac{1}{p}]$ . We will construct period ring  $B_{\text{crys}}$  equipped with both a filtration and a  $\varphi$ -action.

Recall that  $\xi = [p^{\flat}] - p$ . Consider

$$A^0_{\operatorname{crys}} = W(\mathcal{O}_{\mathbb{C}_p^{\flat}}) \Big[\frac{\xi^m}{m!}\Big]_{m \geq 1} \subset W(\mathcal{O}_{\mathbb{C}_p^{\flat}}) [\frac{1}{p}].$$

This is a  $G_K$ -stable  $W(\mathcal{O}_{\mathbb{C}_p^b})$ -subalgebra generated by "divided-powers". Define

$$A_{\rm crys} = \varprojlim_n A_{\rm crys}^0 / p^n A_{\rm crys}^0$$

with p-adic topology. We can fill in the top arrow in the commutative diagram

$$\begin{array}{ccc} A_{\operatorname{crys}} & \longrightarrow & B_{\operatorname{dR}}^+ \\ & & & \uparrow \\ A_{\operatorname{crys}}^0 & \longrightarrow & W(\mathcal{O}_{\mathbb{C}_p^\flat})[\frac{1}{p}] \end{array}$$

and then identify  $A_{\text{crys}}$  with a subring of  $B_{\text{dR}}^+$ . More precisely,

$$A_{\operatorname{crys}} = \left\{ \sum_{n=0}^{\infty} a_n \frac{\xi^n}{n!} \, \middle| \, a_n \in W(\mathcal{O}_{\mathbb{C}_p^{\flat}}), \, a_n \to 0 \, \text{ $p$-adically} \right\}$$

Define  $B_{\text{crys}}^+ = A_{\text{crys}}[\frac{1}{p}] \subset B_{\text{dR}}^+$ . Since  $t \in A_{\text{crys}}$ , we can define

$$B_{\text{crys}} = B_{\text{crys}}^+ \left[\frac{1}{t}\right] \subset B_{\text{dR}}^+ \left[\frac{1}{t}\right] \subset B_{\text{dR}}$$

equipped with subspace topology from the new topology on  $B_{\rm dR}$  introduced in Problem 11. Moreover,  $B_{\rm crys}$  admits a natural action of  $G_K$ . There is a  $G_K$ -equivariant injection  $K \otimes_{K_0} B_{\rm crys} \to B_{\rm dR}$ . Consequently,  $B_{\rm crys}^{G_K} = K_0$ .

The filtrations on  $B_{\text{crys}}$  are the ones inherited from  $B_{\text{dR}}$ . Namely, Fil<sup>2</sup>  $B_{\text{crys}} = \text{Fil}^i B_{\text{dR}} \cap B_{\text{crys}}$ . Unlike  $B_{\text{dR}}$ , the  $\varphi$ -action extends to  $A_{\text{crys}}^0$ , and hence on  $A_{\text{crys}}$ ,  $B_{\text{crys}}^+$ ,  $B_{\text{crys}}$ . (One can verify that  $\varphi(t) = pt$ .) However, the filtrations are not  $\varphi$ -stable.

**Theorem 5.1.**  $\varphi: A_{\text{crys}} \to A_{\text{crys}}$  is injective.

**Theorem 5.2.** We have "fundamental exact sequences"

$$0 \to \mathbb{Q}_p \to B_{\mathrm{crys}}^{\varphi=1} \to B_{\mathrm{dR}}/B_{\mathrm{dR}}^+ \to 0$$

$$0 \to \mathbb{Q}_p \to \operatorname{Fil}^0 B_{\operatorname{crys}} \xrightarrow{\varphi - 1} B_{\operatorname{crys}} \to 0$$

The proof of these two fundamental results are difficult.



### Problem 22.

- (i) Check that  $t \in A_{\text{crys}}$  and  $t^{p-1} \in pA_{\text{crys}}$ . Consequently,  $\frac{t^p}{p!} \in A_{\text{crys}}$ .
- (ii) Show that for any  $a \in \ker(A_{\operatorname{crys}} \to \mathcal{O}_{\mathbb{C}_p})$ , we have  $\frac{a^m}{m!} \in A_{\operatorname{crys}}, \forall m \geq 1$ .

**Problem 23.** Consider the  $G_K$ -equivariant injection  $K \otimes_{K_0} B_{\text{crys}} \hookrightarrow B_{dR}$ . Give left hand side the subspace filtration. Show that the induced map on the graded algebras is an isomorphism.

**Problem 24.** Check that  $A_{\text{crys}}^0$  is  $\varphi$ -stable.

## Problem 25.

- (i) Show that  $B_{\text{crys}}^+ \subset \text{Fil}^0 B_{\text{crys}}$ .
- (ii) In this exercise, we show  $B_{\text{crys}}^+ \neq \text{Fil}^0 B_{\text{crys}}$ . Consider

$$\alpha = \frac{\left[\varepsilon^{1/p}\right] - 1}{\left[\varepsilon^{1/p^2}\right] - 1}.$$

Show that  $\alpha \in B_{\text{crys}}$ ,  $\frac{1}{\alpha} \in B_{\text{crys}} \cap B_{\text{dR}}^+$ , but  $\frac{1}{\varphi(\alpha)} \notin B_{\text{dR}}^+$ . (This implies  $\frac{1}{\alpha} \in \text{Fil}^0 B_{\text{crys}} - B_{\text{crys}}^+$ .)

**Problem 26.** Show that  $\varphi$  on  $B_{\text{crys}}$  does not preserve filtrations.

**Problem 27.** As pointed out in [Col], the topology on  $B_{\text{crys}}$  is unpleasant. In particular, the subspace topology inherited from  $B_{\text{crys}}$  is different from the one on  $B_{\text{crys}}^+$ . Let  $\omega = ([\varepsilon] - 1)/([\varepsilon^{1/p}] - 1)$  and consider

$$x_n = \frac{\omega^{p^n}}{(p^n - 1)!}$$

- (i) Show that  $(x_n)_{n\geq 0}$  does not converge to 0 in  $B_{\text{crys}}^+$ .
- (ii) Show that  $(\omega x_n)_{n\geq 0}$  does converge to 0 in  $B_{\text{crys}}^+$  and hence  $(x_n)_{n\geq 0}$  converges to 0 in  $B_{\text{crys}}$ .

**Problem 28.** A remedy to the topology issue in Problem 27 is to introduce  $B_{\text{max}}$ . Define

$$A_{\max} = \left\{ \sum_{n=0}^{\infty} a_n \frac{\omega^n}{p^n} \, \middle| \, a_n \in W(\mathcal{O}_{\mathbb{C}_p^{\flat}}), a_n \to 0 \; \text{ $p$-adically} \right\}$$

and let  $B_{\max}^+ = A_{\max}[\frac{1}{p}] \subset B_{\mathrm{dR}}^+$ ,  $B_{\max} = B_{\max}^+[\frac{1}{t}] \subset B_{\mathrm{dR}}$ . Similar to  $B_{\mathrm{crys}}$ , the ring  $B_{\text{max}}$  is equipped with  $G_K$ -action,  $\varphi$ -action, and filtration.

- (i) Show that  $B_{\text{max}}$  does not have the issue in Problem 27.
- (ii) Show that  $B_{\max}^{G_K} = K_0$ . (iii) Show that  $A_{\max}^{\varphi=1} = \mathbb{Z}_p$ . Hence  $(B_{\max}^+)^{\varphi=1} = \mathbb{Q}_p$ .
- (iv) Show that  $\varphi(B_{\text{max}}) \subset B_{\text{crys}} \subset B_{\text{max}}$ .
- (v) (Hard!) Prove the analogue of Theorem 5.2: The following sequences are exact

$$0 \to \mathbb{Q}_p \to B_{\text{max}}^{\varphi=1} \to B_{\text{dR}}/B_{\text{dR}}^+ \to 0$$
$$0 \to \mathbb{Q}_p \to \text{Fil}^0 B_{\text{max}} \xrightarrow{\varphi-1} B_{\text{max}} \to 0$$

### 6. Crystalline representations

Let  $\mathrm{MF}_K^{\varphi}$  denote the category of triples  $(D, \varphi_D, \mathrm{Fil}^{\bullet})$  where

- D is a  $K_0$ -vector space
- $\varphi_D: D \to D$  is a bijective  $\varphi$ -semilinear endomorphism
- Fil• is a filtration on  $D_K = D \otimes_{K_0} K$  such that  $(D_K, \operatorname{Fil}^{\bullet})$  is an object in

Objects in  $MF_K^{\varphi}$  are called *filtered*  $\varphi$ -modules.

Consider functor

$$D_{\operatorname{crys}} : \operatorname{Rep}_{\mathbb{Q}_p}(G_K) \to \operatorname{MF}_K^{\varphi}$$
  
 $V \mapsto (V \otimes_{\mathbb{Q}_p} B_{\operatorname{crys}})^{G_K}$ 

It is always true that  $\dim_{K_0} D_{\operatorname{crys}}(V) \leq \dim_{\mathbb{Q}_p} V$ . We say V is *crystalline* if  $\dim_{K_0} D_{\operatorname{crys}}(V) = \dim_{\mathbb{Q}_p} V$ . The category of crystalline representations is denoted by  $\operatorname{Rep}_{\mathbb{Q}_p}^{\operatorname{crys}}(G_K)$ .

#### Theorem 6.1. (i) The functor

$$D_{\operatorname{crys}}: \operatorname{Rep}_{\mathbb{Q}_p}^{\operatorname{crys}}(G_K) \to \operatorname{MF}_K^{\varphi}$$

is exact and fully faithful. Moreover, it preserves direct sums, tensor products, subobjects, quotients, and duals.

(ii) If V is crystalline, the natural map

$$\alpha_{\operatorname{crys},V}: D_{\operatorname{crys}}(V) \otimes_{K_0} B_{\operatorname{crys}} \to V \otimes_{\mathbb{Q}_p} B_{\operatorname{crys}}$$

is an isomorphism of filtered  $\varphi$ -modules.

(iii) If V is crystalline, we can recover V from  $D_{crvs}(V)$  by

$$V = \operatorname{Fil}^0(D_{\operatorname{crys}}(V) \otimes_{K_0} B_{\operatorname{crys}})^{\varphi=1}.$$

Theorem 6.2. Crystalline representations are de Rham.

Source of crystalline representations: those  $G_K$ -representations arising from padic étale cohomologies of proper smooth varieties over K with good reduction are crystalline.



**Problem 29.** Describe  $D_{\text{crys}}(\mathbb{Q}_p(n))$  explicitly.

**Problem 30.** Let  $\eta: G_K \to \mathbb{Q}_p^{\times}$  be a continuous character. Show that  $\mathbb{Q}_p(\eta)$  is crystalline if and only if there exists  $n \in \mathbb{Z}$  such that  $\chi^n \eta$  is an unramified character.

**Problem 31.** Let D be a finite dimensional  $K_0$ -vector space and let  $\varphi_D: D \to D$  be an injective  $\varphi$ -semilinear morphism. Prove that  $\varphi_D$  is automatically bijective.

**Problem 32.** Similar to  $D_{dR}$  and  $D_{crys}$ , we can consider

$$D_{\max}: \operatorname{Rep}_{\mathbb{O}_n}(G_K) \to \operatorname{MF}_K^{\varphi}$$

$$V \mapsto (V \otimes_{\mathbb{Q}_p} B_{\max})^{G_K}$$

It is always true that  $\dim_{K_0} D_{\max}(V) \leq \dim_{\mathbb{Q}_p} V$ . We say V is  $B_{\max}$ -admissible if  $\dim_{K_0} D_{\max}(V) = \dim_{\mathbb{Q}_p} V$ .

Prove that V is  $B_{\text{max}}$ -admissible if and only if it is crystalline.

**Problem 33.** Let  $V_p(E_q)$  be the representation studied in Problem 19.

- (i) Is  $V_p(E_q)$  crystalline?
- (ii) Describe  $D_{\text{crys}}(V_p(E_q))$  explicitly.

## Problem 34.(Hard!)

(i) Can you find an extension

$$0 \to \mathbb{Q}_p(1) \to V \to \mathbb{Q}_p \to 0$$

so that V is de Rham but not crystalline?

(ii) Show that any extension

$$0 \to \mathbb{Q}_p(n) \to V \to \mathbb{Q}_p \to 0$$

for  $n \geq 2$  must be crystalline.

### 7. Period sheaves

This section dedicates to our first attempt on "relative period rings". We define  $\mathbb{B}_{dR}$  as a sheaf on the *pro-étale site* of adic spaces.

Let X be a locally noetherian adic space over  $\operatorname{Spa}(\mathbb{Q}_p, \mathbb{Z}_p)$ . The objects in the pro-étale site  $X_{\operatorname{pro\acute{e}t}}$  are inverse systems

$$\varprojlim_{i\in I} U_i \to X$$

where  $U_i \in X_{\text{\'et}}$  and the transition maps  $U_j \to U_i$  are finite \'etale surjective. The coverings are the topological ones. For details, the readers are referred to [Sch2]. One important property is that affinoid perfectoid objects in  $X_{\text{pro\'et}}$  form a basis

for the pro-étale topology. Let  $\mathcal{B}$  denote the collection of such objects. To define a sheaf, we only need to define a presheaf on  $\mathcal{B}$ .

To this end, we first define the period rings on affinoid perfectoids. Let  $(L, L^+)$  be a perfectoid field of characteristic 0. For any perfectoid affinoid  $(L, L^+)$ -algebra  $(R, R^+)$ , we define

$$\mathbb{A}_{\inf}(R, R^+) := W(R^{\flat+})$$

$$\mathbb{B}_{\inf}(R, R^+) := \mathbb{A}_{\inf}(R, R^+) \left[\frac{1}{p}\right]$$

$$\mathbb{B}_{\mathrm{dR}}^+(R, R^+) := \varprojlim_n \mathbb{B}_{\inf}(R, R^+) / (\ker \theta)^n$$

where  $\theta: \mathbb{A}_{inf}(R, R^+) = W(R^{\flat+}) \to R^+$  is defined in the same way as in Section 3. Notice that  $\xi$  is a generator of  $\theta$  (see Problem 35). We define  $\mathbb{B}_{dR}(R, R^+) = \mathbb{B}_{dR}^+(R, R^+)[\frac{1}{\xi}]$ . The filtration on  $\mathbb{B}_{dR}$  is given by  $\mathrm{Fil}^i \mathbb{B}_{dR} = \xi^i \mathbb{B}_{dR}^+$ ,  $i \in \mathbb{Z}$ .

Back to the pro-étale site. We define a presheaf  $\mathcal{F}_{\mathbb{A}_{inf}}$  (resp.,  $\mathcal{F}_{\mathbb{B}_{inf}}$ ,  $\mathcal{F}_{\mathbb{B}_{dR}}$ ,  $\mathcal{F}_{\mathbb{B}_{dR}}$ ) on  $\mathcal{B}$  by sending  $U = \operatorname{Spa}(R, R^+)$  to  $\mathbb{A}_{inf}(R, R^+)$  (resp.,  $\mathbb{B}_{inf}(R, R^+)$ ,  $\mathbb{B}_{dR}^+(R, R^+)$ ,  $\mathbb{B}_{dR}^+(R, R^+)$ ). Finally, define  $\mathbb{A}_{inf}$  (resp.,  $\mathbb{B}_{inf}$ ,  $\mathbb{B}_{dR}^+$ ,  $\mathbb{B}_{dR}$ ) to be the coresponding sheafifications.

These period sheaves played a central role in proving a de Rham comparison for rigid analytic varieties [Sch2]. Crystalline analogues are studied in [BMS], [TT]. Following the same spirit, sheaf versions of Robba rings and  $(\varphi, \Gamma)$ -modules are studied in [KL1], [KL2].



**Problem 35.** For any perfectoid affinoid  $(L, L^+)$ -algebra  $(R, R^+)$ , show that the kernel of  $\theta : \mathbb{A}_{\inf}(R, R^+) \to R^+$  is a principle ideal generated by some  $\xi \in \mathbb{A}_{\inf}(L, L^+)$ .

### Problem 36.

- (i) Show that the presheaf  $\mathcal{F}_{\mathbb{A}_{\inf}}$  on  $\mathcal{B}$  satisfies sheaf properties. In particular,  $\mathbb{A}_{\inf}(U) = \mathbb{A}_{\inf}(R, R^+)$ , and  $\mathbb{A}_{\inf} = W(\widehat{\mathcal{O}}_{X_{\operatorname{pro\acute{e}t}}}^+)$ .
- (ii) Show that  $H^i(U, \mathbb{A}_{inf})$  is almost zero for all i > 0.
- (iii) Show that  $H^i(U, \mathbb{B}_{dR}^+) = 0$  for all i > 0. (Hint:  $[p^{\flat}]$  is invertible in  $\mathbb{B}_{dR}^+$ .)

### Problem 37.

- (i) Construct period sheaves  $\mathbb{A}^0_{\text{crys}}$ ,  $\mathbb{A}_{\text{crys}}$ ,  $\mathbb{B}^+_{\text{crys}}$ ,  $\mathbb{B}^+_{\text{max}}$ ,  $\mathbb{B}^+_{\text{max}}$  on  $X_{\text{pro\'et}}$  in the same way. Repeat Problem 36(i).
- (ii) Show that  $H^i(U, \mathbb{A}^0_{\operatorname{crys}})$  and  $H^i(U, \mathbb{A}_{\operatorname{crys}})$  are almost zero for all i > 0.
- (iii) Show that  $H^i(U, \mathbb{B}_{crvs}^+) = 0$  for all i > 0.

### References

[BC] O. Brinon, B. Conrad, CMI summer school notes on p-adic Hodge theory. 2009.

- [Ber] L. Berger, An introduction to the theory of p-adic representations. Geometric aspects of Dwork theory. Vol. I, II, Walter de Gruyter, Berlin (2004), 255-292.
- $[{\rm BMS}] \ \ {\rm B.\ Bhatt,\ M.\ Morrow,\ P.\ Scholze},\ {\it Integral\ p-adic\ Hodge\ theory}.\ {\rm arXiv:\ 1602.03148}.$
- [Col] P. Colmez, Théorie d'Iwasawa des représentations de de Rham d'un corps local. Annals of Mathematics, Vol. 148, No. 2 (1998), 485-571.
- [FO] J.-M. Fontaine, Y. Ouyang, Theory of p-adic representations. Lecture notes.
- [KL1] K. Kedlaya, R. Liu, Relative p-adic Hodge theory: foundations. Volume 371, Astérisque, Société Mathématique de France, 2015.
- $[\text{KL2}] \ \text{K.} \ \text{Kedlaya}, \ \text{R.} \ \text{Liu}, \ \textit{Relative p-adic Hodge theory II: imperfect period rings.} \\ \text{arXiv:} 1602.06899.$
- [Sch1] P. Scholze, Perfectoid spaces, Publ. Math. de l'IHÉS, 116(1) (2012), 245-313.
- [Sch2] P. Scholze, p-adic Hodge theory for rigid-analytic varieties, Forum of Mathematics, Pi, 2013.
- [Ser] J.-P. Serre, Local fields. Graduate Texts in Mathematics 67, Springer-Verlag, 1979.
- [TT] F. Tan, J. Tong, Crystalline comparison isomorphisms in p-adic Hodge theory: the absolutely unramified case. arXiv:1510.05543.