6.2 Linear Bandits - Handling Large Action Spaces

Let D be a compact set of decision. On each round, we must choose $x_t \in D$, each of which results in a reward r_t .

Pseudo code: The Linear UCB algorithm

Input: λ , β i

1: for t=0,1,--- do

2: Execute $x_t = \underset{x \in D}{\operatorname{argmax}} \underset{\mu \in BALL_t}{\operatorname{max}} \mu \cdot x$

and observe Tt

3: Update BALLty

4: End for.

Note:

- ① We assume $E[t_t|x_t=x]$ is a fixed linear function, i.e. $E[t_t|x_t=x] = \mu^* \cdot x \in [-1,1]$ for all $x \in D$
- ② We assume $E[r_t] \in [-1,1]$. Then the noise sequence $\eta_t = r_t \mu^* \cdot x_t$ is a martingale difference seq.
- 3 If x_0, \dots, x_{T-1} are the decisions made in the game, the cumulative regret is defined by $R_T = T \mu^* \cdot x^* \sum_{t=0}^{T-1} \mu^* \cdot x_t$

where $x^* \in D$ is an optimal decision for μ^* , i.e. $\chi^* \in \operatorname{argmax} \mu^* \cdot \chi$

x* exists since D is compact

- 4 Our goal is to keep RT as small as possible.
- 1. The LinUCB algorithm.

A. and de la de la de la de la compania de la DALI

The center of BALL_t is $\hat{\mu}_t$, which is the solution of: $\hat{\mu}_t = \underset{\mu}{\text{arg mex}} \frac{t-1}{\sum_{t=0}^{t-1} ||\mu \cdot \chi_T - r_T||_2^2} + \lambda ||\mu||_2^2$ $= \sum_{t=0}^{-1} \frac{t-1}{\sum_{t=0}^{t-1} r_T \chi_T}$

where λ is the parameter and Σ_{t} satisfies: $\Sigma_{t} = \lambda I + \sum_{T=0}^{t-1} \chi_{T} \chi_{T}'$, $\Sigma_{o} = \lambda I$

Then BALL+ is defined as

BALL+ = $\{\mu \mid (\widehat{\mu}_t - \mu)' \sum_t (\widehat{\mu}_t - \mu) \leq \beta_t \}$

2. Upper and Lower bounds Assume X e IR^d

Theorem 6.3. Suppose that the expeted costs are bounded by 1, i.e. $|\mu^*\cdot x| \le 1$ for all $x \in D$; $||\mu^*|| \le W$, $||x|| \le B$ for all $x \in D$, and that η_t is σ^2 sub-Guassian. Set $\lambda = \sigma^2/W^2$. $\beta_t := \sigma^2(2 + 4a\log(1 + \frac{tB^2W^2}{d}) + 8\log(4/8))$ we have that with prob. $\ge 1 - 8$, for all $T \ge 0$ $R_T \le c\sigma \sqrt{T} \left(d\log(1 + \frac{TB^2W}{d\sigma^2}) + \log(4/8)\right)$,

where c is an absolute constant. i.e. $R_T \sim O(d\sqrt{T})$

Following shows RT of Th. 6.3 is best.

Theorem b.4 [lower bound] There exist a distribution ove linear bandit problems (i.e. $\Delta(\mu)$) with rewards bounded by 1, in martingale, and $\sigma^2 \leq 1$, s.t. for every algorithm, we have for $n \geq \max\{256, d^2/169, E_{\mu}E[R_T] \geq \frac{1}{2500} d\sqrt{T}$

We will eliminate the dependencies in Th 6.3.

Let Σ_D denote the D-optimal design matrix from :

Th 3.2. Suppose $\mathcal{R} \subset IR^d$ is a compact set. There exists a distribution f on \mathcal{R} s.t.

- 1) It is supported on at most d(d+1)/2 points
- ② Define $\sum = E_{x \sim p} [xx^T]$, we have $||x||_{\Sigma^{-1}}^2 \leq d$

and P is referred to as the D-optimal design.

Coordinate transformation:

$$\widehat{\chi} = \overline{\Sigma}_{D}^{1/2} \chi, \quad \widehat{\mu}^{*} = \overline{\Sigma}_{D}^{1/2} \mu^{*}$$
s.t.
$$\widehat{\chi} \cdot \widehat{\mu}^{*} = \chi' \overline{\Sigma}_{D}^{1/2} \cdot \overline{\Sigma}_{D}^{1/2} \mu^{*} = \chi \cdot \mu^{*}$$

we hold the expected reward function.

We have
$$\|\tilde{\chi}\|^2 = \|\chi\|_{\Sigma_D^{-1}}^2 \le d$$
 (by Th. 3.2)

(assume $\|\gamma\| \le 1$)

and $\|\tilde{\mu}^*\| = \|\mu^*\|_{\Sigma_D} = \sqrt{(\mu^*)' \sum_D \mu^*} = \sqrt{E_{\chi \sim p}[(\mu^* \cdot \chi)^2]} \le 1$

Following shows that we could remove the dependencies on B and W from previous theorem, due to B= Id and W=1.

Corollary 6.5 Suppose that the expected rewards are bounded in martingale by 1, $\|\tilde{\mu}^*\cdot\hat{\chi}\| \le 1$ for all $\chi\in D$; and that η_t is σ^2 sub-Gaussian. Suppose lin UCB is implemented in the $\hat{\chi}$ coordinate system, with following settings:

 $\lambda = \sigma^2$, $\beta_t i = \sigma^2 (2 + 4d \log (1 + t) + 8 \log (4/8))$ with prob. $\geq 1 - 8$, for all T > 0, $R_T \leq c\sigma \sqrt{T} \left(d \log (1 + \frac{T}{T^2}) + \log (4/8) \right)$