Permit Numbers 86860 and PSDTX1188

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Air Contaminants Data

Emission Point	Source Name (2)	Air Contaminant	Emission	Rates (8)
No. (1)		Name (3)	lbs/hour	TPY (4)
LWS	Lime Warehouse Baghouse and Alloy Aggregate	PM	5.98	26.17
	Baghouse Stack FINs Description: Lime Silo and Flux Unloading and Storage Bin	PM ₁₀	5.98	26.17
ESTBS Baghouse FINs Des Elevated Elevated	LF and Stock Tank Baghouse Stack	PM	4.54	19.89
	FINs Description: EAF Elevated Bunker, LF Elevated Lime Bunker, and Ladle Furnace (6)	PM ₁₀	4.54	19.89
		Cd	<0.001	<0.004
		Cr	<0.006	0.02
		Pb	0.04	0.17
		Mn	0.03	0.15
		Hg	<0.0001	<0.0004
		Si	<0.005	0.02
		Zn	0.28	1.23

Emission Sources - Maximum Allowable Emission Rates

EBS	EAF Baghouse	NO _x	44.64	137.24
	Stack (6)	СО	595.24	1829.82
		VOC	44.64	137.24
		SO ₂	89.29	274.47
		PM_total	20.18	88.38
		PM _{10 total}	20.18	88.38
		PM _{front half}	15.13	66.28
		PM _{10 front half}	15.13	66.28
		Cd	<0.004	0.02
		Cr	0.02	0.11
		Pb	0.17	0.74
		Mn	0.15	0.67
		Hg	<0.0004	<0.002
		Si	0.02	0.08
		Zn	1.24	5.45
RHFS	Rotary Hearth Furnace Stack	NO _x	44.63	67.91
		СО	36.75	55.93
		VOC	2.41	3.66
		SO ₂	0.26	0.40
		PM	3.33	5.06
		PM ₁₀	3.33	5.06
MPFS	Mandrel Preheat Furnace Stack	NO _x	1.33	5.83
	Stack	СО	1.12	4.90
		VOC	0.07	0.32
		SO ₂	<0.01	0.03

		PM	0.10	0.44
		PM ₁₀	0.10	0.44
QFS	Quench Furnace Stack	NO _x	6.85	11.89
		СО	5.75	9.99
		VOC	0.38	0.65
		SO ₂	0.04	0.07
		PM	0.52	0.90
		PM ₁₀	0.52	0.90
TFS	Tempering Furnace Stack	NO _x	5.71	9.51
		СО	4.79	7.99
		VOC	0.31	0.52
		SO ₂	0.03	0.06
		PM	0.43	0.72
		PM ₁₀	0.43	0.72
VDBS	VD Boiler Stack	NO_x	4.01	7.58
		СО	3.37	6.37
		VOC	0.22	0.42
		SO ₂	0.02	0.05
		PM	0.30	0.58
		PM ₁₀	0.30	0.58

SMWV	Steel Making Workshop Vent	NO _x	11.54	29.04
	Ladle Preheater, Tundish	СО	11.31	30.02
	Preheater, and Ladle — Relining	VOC	1.24	4.01
	(6) and (7)	SO ₂	0.08	0.20
		РМ	0.14	0.41
		PM ₁₀	0.14	0.39
		Cd	<0.00001	<0.0001
		Cr	<0.0022	<0.0087
		Cr VI	<0.002	<0.008
		Pb	<0.0001	<0.0002
		Mn	<0.01	<0.005
		Hg	<0.00001	<0.00001
		Si	<0.00001	<0.00001
		Zn	0.0001	<0.0005
AAWV	Alloy Aggregate Warehouse Vent	PM	<0.01	<0.01
	Vont	PM ₁₀	<0.01	<0.01
PCLWV	Premium Connecting Line Workshop Vent (7)	СО	1.27	5.22
	Welleriop Velic (1)	VOC	0.90	3.86
		PM	0.09	0.38
		PM ₁₀	0.09	0.38
HRPPWV	Hot Rolling and Pipe Processing Workshop	СО	1.44	6.21
	Vent (6) and (7)	VOC	1.76	7.20
		PM	0.17	0.69
		PM ₁₀	0.17	0.69
		Cr	<0.003	<0.012

		Cr VI	0.002	0.008
		Mn	<0.01	<0.006
HRLDS	Hot Rolling Line Sinter Plate Filter Stack, Piercing Mill,	PM	4.25	4.25
	Borax Spraying, PQF Pipe Mill, Extracting Mill, and PipeCutting FINs: HRL, BSCS, PM, EM, and SM	PM ₁₀	4.25	4.25
ODPSS1	Outdoor Drop Points, Scrap Steel by Truck 10	PM	0.03	0.10
	(5)	PM ₁₀	0.01	0.05
ODPSS2	Outdoor Drop Points Scrap Steel By	PM	0.03	0.10
	Train 4 (5)	PM ₁₀	0.01	0.05
ODPSR1	Outdoor Drop Point Spent Refractory and Other Waste Storage Pile-1 (5)	PM	<0.01	0.02
		PM ₁₀	<0.01	<0.01
ODPS1	Outdoor Drop Point Slag-1 (5)	PM	<0.01	0.01
		PM ₁₀	<0.01	<0.01
ODPSR2	Outdoor Drop Point Spent Refractory and Other Waste	PM	0.05	0.03
	Storage Pile-2 (5)	PM ₁₀	0.02	0.02
ODPS2	Outdoor Drop Point Slag-2*2 (5)	PM	<0.01	<0.01
		PM ₁₀	<0.01	<0.01
ODPSR3	Outdoor Drop Point Spent Refractory and Other Waste	PM	<0.01	0.02
	Storage Pile-3 (5)	PM ₁₀	<0.01	<0.01
ODPS3	Outdoor Drop Point Slag-3 (5)	PM	<0.01	<0.01
		PM ₁₀	<0.01	<0.01
OSPSS	Outdoor Storage Piles, Scrap Steel (5)	РМ	0.23	1.00
	Solup Steel (S)	PM ₁₀	0.11	0.50
OSPFST	Outdoor Storage Pile, First Sedimentation Tank (5)	PM	<0.01	<0.01

		PM ₁₀	<0.01	<0.01
OSPS1	Outdoor Storage Pile, Slag-1 (5)	РМ	0.06	0.26
	(5)	PM ₁₀	0.03	0.13
OSPSR1	Outdoor Storage Pile Spent Refractory and Other Waste-	РМ	0.23	1.00
	1 (5)	PM ₁₀	0.11	0.50
OSPS2	Outdoor Storage Pile, Slag-2 (5)	РМ	0.06	0.26
		PM ₁₀	0.03	0.13
OSPSR2	OSPSR2 Outdoor Storage Pile, Spent Refractory and Other Waste- 2 (5)	PM	0.23	1.00
		PM ₁₀	0.11	0.50
N6CCT	Contact Cooling Tower No. 6 (5)	PM	0.03	0.14
	(0)	PM ₁₀	0.03	0.14
N7CCT	Contact Cooling Tower No. 7 (5)	PM	0.02	0.07
	(0)	PM ₁₀	0.02	0.07
RSCCT	Rolling Steel Contact Cooling Tower (5)	PM	0.03	0.14
	Cooling Tower (3)	PM ₁₀	0.03	0.14
PPCCT	Pipe Processing Contact Cooling Tower (5)	PM	0.03	0.14
		PM ₁₀	0.03	0.14

Emission Sources - Maximum Allowable Emission Rates	Emission So	ources - Maximur	n Allowable	Emission	Rates
---	-------------	------------------	-------------	----------	-------

SMWTF	Steel Making Water Treatment Facility (5)	VOC	0.10	0.10
	Treatment racinty (5)	РМ	0.10	0.10
		PM_{10}	0.10	0.10
RSWTF	Rolling Steel Water Treatment Facility (5)	VOC	0.10	0.10
	Trodument dentity (e)	РМ	0.10	0.10
		PM_{10}	0.10	0.10
GWTF	Graphite Water Treatment Facility (5)	VOC	0.10	0.10
	t diamity (e)	РМ	0.10	0.10
		PM_{10}	0.10	0.10
CMSCS1	Caster Spray Chamber Stack 1	NOx	0.18	0.55
	Statik I	СО	0.58	1.75
		VOC	0.02	0.07
		PM	0.07	0.22
		PM_{10}	0.07	0.22
		Pb	0.001	0.002
CMSCS2	Caster Spray Chamber Stack 2	NOx	0.18	0.55
		СО	0.58	1.75
		VOC	0.02	0.07
		PM	0.07	0.22
		PM_{10}	0.07	0.22
		Pb	0.001	0.002
UVCS1	UV Coating Stack 1	VOC	<0.01	0.01
		PM	0.01	0.04
		PM_{10}	0.01	0.04
UVCS2	UV Coating Stack 2	VOC	<0.01	0.01

			DM	0.01	0.04
			PM	0.01	0.04
(1)		entification - either specific equ	ipment deMgnation or emis	ച ്ചവിpoint numbe	e 0.10d m plot
2)		rce nallye Patinggite sources			0.01
3)	NO _x - total or	organic compounds as define kides of nitrogen dioxide	PM	0.01	0.04
	PM - total pa	articulate matter, suspended in	the atmbs/phere, including	₽№ 1 and PM _{2.5} ,	a0s04
		articulate matterestrafto or les	s than 1 ୪ ବା ହrons in diame	t€9,94cluding PM	1 <u>0</u> ,0 4 S
		late matter equal to or less tha	n 2.5 mi M ns in diameter	0.01	0.04
	Cd - cadmit		PM ₁₀	0.01	0.04
	Cr chrom	um um valence +6	NO _x	0.73	2.19
	Pb - lead Mn - manga	inese	СО	29.10	87.43
	Hg - mercu Si - silicon	-	VOC	0.09	0.26
		lous air pollutant as listed in § :		ነዱየየ ² Act or Title 4	19.64de of
l)	Compliance with	al Regulations Part 63, Subpar annual emission limits (tons pe	r year) is based on a 12-mo	Ath Polling period	_j 0.87
i)	Emission rate is a condition(s) and p	n estimate and is enforceable ermit application representatio	through compliance with th ns. PM10	e applicable spec 0.29	cial 0.87
<u>)</u> L	Speciated metals. The PM/PM ₁₀ may	HAPS are included in the PM include trace amounts of non	and PM ₁₀ values. -speciated hetals including	50.45 but hot limited t	oft?₽b, and
	Mn.	1	-		

(8) Planned maintenance, startup, and shutdown (MSS) emissions are included.

Date:	August 22,	2013
Daic.	August ZZ,	2013