Anazlying Atkinson Family Utility (CES)

Fan Wang

2020-04-01

Contents

Atkinson Family Utility

Go back to fan's REconTools Package, R4Econ Repository, or Intro Stats with R Repository.

How does the Aktinson Family utility function work? THe Atkinson Family Utility has the following functional form.

$$V^{\text{social}} = \left(\alpha \cdot A^{\lambda} + \beta \cdot B^{\lambda}\right)^{\frac{1}{\lambda}}$$

Several key issues here:

- 1. $V^{\rm social}$ is the utility of some social planner
- 2. A and B are allocations for Alex and Ben.
- 3. α and β are biases that a social planner has for Alex and Ben: $\alpha + \beta = 1$, $\alpha > 0$, and $\beta > 0$
- 4. $-\infty < \lambda < 1$ is a measure of inequality aversion
 - $\lambda = 1$ is when the planner cares about weighted total allocations (efficient, Utilitarian)
 - $\lambda = -\infty$ is when the planner cares about only the minimum between A and B allocations (equality, Rawlsian)

What if only care about Alex? Clearly, if the planner only cares about Ben, $\beta = 1$, then:

$$V^{\text{social}} = (B^{\lambda})^{\frac{1}{\lambda}} = B$$

Clearly, regardless of the value of λ , as B increases V increases.

What Happens to V when A or B increases? What is the derivative of V with respect to A or B?

$$\frac{\partial V}{\partial A} = \frac{1}{\lambda} \left(\alpha A^{\lambda} + \beta B^{\lambda} \right)^{\frac{1}{\lambda} - 1} \cdot \lambda \alpha A^{\lambda - 1}$$

With just a little bit of simplification, we have:

$$\frac{\partial V}{\partial A} = \left(\alpha A^{\lambda} + \beta B^{\lambda}\right)^{\frac{1-\lambda}{\lambda}} \cdot \alpha A^{\lambda-1} > 0$$

It is important to note that $\frac{\partial V}{\partial A} > 0$. When $\lambda < 0$, $Z^{\lambda} > 0$. For example $10^{-2} = \frac{1}{100}$. And For example $0.1^{\frac{3}{-2}} = \frac{1}{0.1^{1.5}}$. Still Positive.

This might be surprising, because when $\lambda < 0$:

if
$$\lambda < 0$$
 then $\frac{d\left(\alpha A^{\lambda} + \beta B^{\lambda}\right)}{dA} = \alpha \lambda A^{\lambda - 1} < 0$

so if we did not have the outter $\frac{1}{\lambda}$ power, negative λ would lead to decreasing weighted sum. But:

if
$$\lambda < 0$$
 then $\frac{dG^{\frac{1}{\lambda}}}{dG} = \frac{1}{\lambda} \cdot G^{\frac{1-\lambda}{\lambda}} < 0$

so when G is increasing and $\lambda < 0$, V would decrease. But when G(A, B) is decreasing, due to increasing A when $\lambda < 0$, V will actually increase.