

ENERGY**MID**|EM

LON-Schnittstelle der Energiezähler U228X-W1, U238X-W1

3-349-908-01 4/10.20

LONWORKS®

Inhalt

Inha	alt		2
1		Allgemeines zum LON-Bus	3
2		Übersicht	3
3		Verdrahtung	3
3	.1	Netzwerk-Topologien	
3	.2	Empfehlungen	4
3	.3	Einsatz von Repeatern	4
3	.5	Kabeltyp	4
3	.6	Busabschluss	5
4		Netzwerk-Interface	5
4	.1	Netzwerkvariablen	5
4	.2	Einheiten und Auflösungen	14
4	.3	Stichtagsfunktion	15
4	.4	Herstellerspezifische Konfigurations-Typen (UCPTs)	15
5		Bedien- und Anzeigefunktionen	
5	.1	Menüfortsetzung bei Energiezählern mit LON-Schnittstelle	
_	.2	Fehlermeldungen	
5	.3	ReportMask für alle Objekte	18
6		Produktsupport	19

1 Allgemeines zum LON-Bus

Das LON (Local Operating Network) ist ein multinetzfähiges Kommunikationssystem für verteilte Applikationen.

Zentrale Steuerungsaufgaben werden hierbei in dezentral abzuarbeitende Teilaufgaben zerlegt. Die Teilaufgaben werden an sogenannten Knoten erledigt, ohne das Bussystem zu belasten.

Den Knoten sind wiederum funktionale Einheiten zugeordnet, wie z. B. solche zur Ermittlung von Messgrößen.

Eine zentrale Kontrolle, Bedienung und Konfiguration des Systems ist über ein LNS-Plug-in einer Windows-Anwendung über die LON-Schnittstelle möglich.

Haupteinsatzgebiet des LON ist die Gebäudeautomatisierung.

2 Übersicht

Die Energiezähler der Familien U228x-W1 und U238x-W1 bestehen aus 5 Objekten:

Knoten nodeObject
Spannungsmesser voltMeter
Strommesser amMeter
Energiezähler energyMeter
Leistungsmesser powerMeter

3 Verdrahtung

Das am weitesten verbreitete Übertragungsmedium in der Industrie- und Gebäudetechnik ist das paarig verdrillte Kupferkabel, das mit dem galvanisch getrennten FTT-10A-Transceiver betrieben wird. Beide Adern des Kabels können beliebig angeklemmt werden, die Installation ist deshalb verpolungssicher. Die Übertragungsentfernungen werden von den elektrischen Eigenschaften des Kabels und der Netztopologie beeinflusst. Um Störungen bei der Kommunikation zu vermeiden, sollten die verwendeten Kabel den angegebenen Spezifikationen entsprechen. In einem Bussegment darf aufgrund von möglichen Reflexionen nur ein Kabeltyp eingesetzt werden.

3.1 Netzwerk-Topologien

Bei Busstrukturen werden die einzelnen Geräte nacheinander parallel angeschlossen. Am Anfang und am Ende muss jeweils ein Busabschluss vorgenommen werden. Die Verdrahtung in freier Topologie erfordert nur einen Busabschluss, ist jedoch in der Übertragungsdistanz eingeschränkt. Die Energiezähler verfügen über keinen internen Busabschlusswiderstand, siehe hierzu Kap. 3.6 auf Seite 3.

3.2 Empfehlungen

Die nachfolgende Empfehlung ergibt sich aus Erfahrungswerten, die bei der Inbetriebnahme von LON-Systemen durch Gossen Metrawatt GmbH gesammelt wurden. Die Umgebung, in der das Kabel verlegt wird, hat einen entscheidenden Einfluss auf die Kabelauswahl und muss deshalb bei der Planung der Installation berücksichtigt werden. Bei der Installation sind generell die einschlägigen Richtlinien für die Verlegung von Steuer- und Fernmeldekabel einzuhalten.

3.3 Einsatz von Repeatern

Durch den Einsatz von Repeatern kann das Bussignal aufgefrischt und somit die Reichweite vergrößert werden. Innerhalb eines Bussegments darf wegen des Zeitverhaltens maximal ein passiver Repeater eingesetzt werden. Der Übergang auf andere physikalische Übertragungsmedien und bzw. oder die gezielte Weiterleitung von Datenpaketen in einzelne Bussegmente wird mit Routern realisiert.

3.4 Maximale Leitungslängen

Kabeltyp / Kabel- bezeichnung	Busförmige Verdrahtung (beidseitiger Busabschluss)	Freie Verdrahtung (einseitiger Busabschluss)
JY (ST) Y 2 x 2 x 0,8 mm	900 m	500 m max. 320 m Gerät – Gerät
UNITRONIC-Bus Kabel	900 m	500 m max. 320 m Gerät – Gerät
Level IV, 22AWG	1400 m	500 m max. 400 m Gerät – Gerät
Belden 8471	2700 m	500 m max. 400 m Gerät – Gerät
Belden 85102	2700 m	500 m

Die angegebenen Werte geben die gesamte Kabellänge an und gelten für den FTT-10A Transceiver.

3.5 Kabeltyp

Für Anwendungen in Umgebungen mit geringen Störungen lässt sich die Verdrahtung kostengünstig mit einem Kabel JY (ST) Y 2 x

2 x 0,8 mm mit paarig verdrillten Adern ausführen. Mit der Angabe 0,8 mm ist der Drahtdurchmesser gemeint, daraus ergibt sich ein Drahtquerschnitt von 0,5 mm².

Normalerweise ist keine Abschirmung erforderlich. Bei Kommunikationsproblemen in besonders gestörter Umgebung kann eventuell durch einseitigen Anschluss der Abschirmung die Schwierigkeit beseitigt sein. Bei Kabeln mit mehreren Aderpaaren kann es von Vorteil sein, wenn die einzelnen Aderpaare geschirmt sind. Für besondere Anforderungen können spezielle LON-Buskabel eingesetzt werden.

3.6 Busabschluss

In Masterstationen ist häufig ein umschaltbarer Busabschluss enthalten, der je nach Topologie einzustellen ist. Bei busförmiger Verdrahtung oder beim Einsatz von Repeatern sind zusätzliche Busabschlüsse erforderlich. Diese können als LON-Zusatzkomponente U1664 im Hutschienengehäuse bezogen werden und enthalten jeweils einen einseitigen und einen beidseitigen Busabschluss.

4 Netzwerk-Interface

4.1 Netzwerkvariablen

Die im Netzwerk verfügbaren Messgrößen und Statusinformationen des Energiezählers sind als Standard-Netzwerk-Variablen-Typen (SNVT) definiert.

Für die Integration werden den Software-Werkzeugen in der Homepage von Gossen Metrawatt GmbH (www.gossenmetrawatt.com) alle notwendigen Informationen zur Verfügung gestellt.

Knoten - nodeObject ObjectId: 0

Index	Netzwerkvariable	Datentyp	Beschreibung
0	nviRequest	SNVT_obj_request	Abfrage des Objektstatus
1	nviTimeSet	SNVT_time_stamp	Setzen von Datum/Uhrzeit
2	nvoStatus	SNVT_obj_status	Ausgabe des Objektstatus
3	nvoFileDirectory	SNVT_address	Startadresse des Konfigurations-Files
4	nvoOemType	SNVT_str_asc	Gerätetyp und Merkmale
5	nvoSerialNumber	SNVT_str_asc	Seriennummer und Firmware-Version des Hauptprogramms
6	nvoPowerUpHours	SNVT_time_hour	Betriebsstunden seit dem letzten Einschalten der Betriebsspannung
7	nvoActTime	SNVT_time_stamp	Aktuelle Ührzeit (wird im Minutentakt aktualisiert).
Bezug	Konfigurationsstruktur	Datentyp	Beschreibung
Nv 2	cpMaxStsSendT	SCPTmaxSendTime	Maximale Zeit bis zur Sendung von nvoStatus
Gerät	cpDevMajVer	SCPTdevMajVer	Firmware-Version LON, nur lesbar
Gerät	cpDevMinVer	SCPTdevMinVer	Firmware-Version LON, nur lesbar
Gerät	cpLocation	SCPTlocation	Einbauort und Zählernummer

Spannungsmesser – VoltMeter ObjectId: 2

Index	Netzwerkvariable	Datentyp	Beschreibung			
Phasen	hasenspannungen					
44	nvoU12	SNVT_volt_f	Spannung zwischen den Phasen L1 und L2			
45	nvoU23	SNVT_volt_f	Spannung zwischen den Phasen L2 und L3			
46	nvoU31	SNVT_volt_f	Spannung zwischen den Phasen L3 und L1			
47	nvoU1N	SNVT_volt_f	Spannung zwischen der Phase L1 und N			
48	nvoU2N	SNVT_volt_f	Spannung zwischen der Phase L2 und N			
49	nvoU3N	SNVT_volt_f	Spannung zwischen der Phase L3 und N			
50	nvoUAvg	SNVT_volt_f	Mittelwert der verketteten Spannung			
51	nvoFreq	SNVT_freq_hz	Grundfrequenz der Spannung			
52	nvoThdU1	SNVT_lev_percent	THD Spannung L1			
53	nvoThdU2	SNVT_lev_percent	THD Spannung L2			
54	nvoThdU3	SNVT_lev_percent	THD Spannung L3			
Bezug	Konfigurationsstruktur	Datentyp	Beschreibung			
Objekt	cpVoltMaxSndT	SCPTmaxSendTime	Sendebedingung: Maximale Zeit bis zur Sendung der Netzwerkvariablen			
Nv 4450	cpVoltSndDelta	UCPTvoltSendDelta	Sendebedingung: Delta Spannung			
Nv 51	cpFreqSndDelta	UCPTfreqSendDelta	Sendebedingung: Delta Frequenz			
Objekt	cpPTConnType	UCPTconnType	Anschlussart des Spannungswandlers			
Objekt	cpPTPrimary	UCPTptVoltagePrim	Primäre Nennspannung des Spannungswandlers			
Objekt	cpPTSecondary	UCPTptVoltageSec	Sekundäre Nennspannung des Spannungswandlers			

Strommesser – AmMeter ObjectId: 3

Index	Netzwerkvariable	Datentyp	Beschreibung		
Phasen	Phasenströme				
55	nvol1	SNVT_amp_f	Strom in Phase L1		
56	nvol2	SNVT_amp_f	Strom in Phase L2		
57	nvol3	SNVT_amp_f	Strom in Phase L3		
58	nvolAvg	SNVT_amp_f	Mittelwert der Phasenströme		
59	nvolN	SNVT_amp_f	Errechneter N-Leiter-Strom		
60	nvoThdl1	SNVT_lev_percent	THD Strom I1		
61	nvoThdl2	SNVT_lev_percent	THD Strom I2		
62	nvoThdl3	SNVT_lev_percent	THD Strom I3		
Bezug	Konfigurationsstruktur	Datentyp	Beschreibung		
Objekt	cpAmpMaxSndT	SCPTmaxSendTime	Sendebedingung: Maximale Zeit bis zur Sendung der Netzwerkvariablen		
Nv 5559	cpAmpSndDelta	UCPTampSendDelta	Sendebedingung: Delta Strom		
Objekt	cpCTConnType	UCPTconnType	Anschlussart des Stromwandlers, nur lesbar		
Objekt	cpCTPrimary	UCPTctCurrentPrim	Primärer Nennstrom des Stromwandlers		
Objekt	cpCTSecondary	UCPTctCurrentSec	Sekundärer Nennstrom des Strom-wandlers		

Leistungsmesser – PowerMeter ObjectId: 4

Index	Netzwerkvariable	Datentyp	Beschreibung
Wirkleis	stung		
63	nvoWatTot	SNVT_power_f	Gesamte Wirkleistung der 3 Phasen
64	nvoWat1	SNVT_power_f	Wirkleistung in Phase L1
65	nvoWat2	SNVT_power_f	Wirkleistung in Phase L2
66	nvoWat3	SNVT_power_f	Wirkleistung in Phase L3
Blindleis	stung		
67	nvoVarTot	SNVT_power_f	Gesamte Blindleistung der 3 Phasen
68	nvoVar1	SNVT_power_f	Blindleistung in Phase L1
69	nvoVar2	SNVT_power_f	Blindleistung in Phase L2
70	nvoVar3	SNVT_power_f	Blindleistung in Phase L3
Leistun	gsfaktor		
71	nvoPwrFactrTot	SNVT_pwr_fact	Gesamter Leistungsfaktor
72	nvoPwrFactr1	SNVT_pwr_fact	Leistungsfaktor in Phase L1
73	nvoPwrFactr2	SNVT_pwr_fact	Leistungsfaktor in Phase L2
74	nvoPwrFactr3	SNVT_pwr_fact	Leistungsfaktor in Phase L3
Bezug	Konfigurationsstruktur	Datentyp	Beschreibung
Objekt	cpPwrMaxSndT	SCPTmaxSendTime	Sendebedingung: Maximale Zeit bis zur Sendung der Netzwerkvariablen
Nv 6370	cpPwrSndDelta	UCPTpwrSendDelta	Sendebedingung: Delta Leistung (Wirk- und Blindleistung)
Nv 7174	cpPwrFacSndDelta	UCPTpwrFactSendDelta	Sendebedingung: Delta Leistungsfaktor

Energiezähler – energyMeter Objectld: 5

Index	Netzwerkvariable	Datentyp	Beschreibung	OBIS
75	nviActiveTariff	UNVT_tariff	Einstellung Tarifauswahl 1-8, 0= Hardware-auswahl	
76	nvoActiveTariff	UNVT_tariff	Anzeige Aktiver Tarif 1-8	
77	nvokWhPosT1	SNVT_reg_val	Primärer Wirkenergiebezug aller Phasen Tarif Nr.: 1	1.8.1
78	nvokWhPosT2	SNVT_reg_val	Primärer Wirkenergiebezug aller Phasen Tarif Nr.: 2	1.8.2
79	nvokWhPosT3	SNVT_reg_val	Primärer Wirkenergiebezug aller Phasen Tarif Nr.: 3	1.8.3
80	nvokWhPosT4	SNVT_reg_val	Primärer Wirkenergiebezug aller Phasen Tarif Nr.: 4	1.8.4
81	nvokWhPosT5	SNVT_reg_val	Primärer Wirkenergiebezug aller Phasen Tarif Nr.: 5	1.8.5
82	nvokWhPosT6	SNVT_reg_val	Primärer Wirkenergiebezug aller Phasen Tarif Nr.: 6	1.8.6
83	nvokWhPosT7	SNVT_reg_val	Primärer Wirkenergiebezug aller Phasen Tarif Nr.: 7	1.8.7
84	nvokWhPosT8	SNVT_reg_val	Primärer Wirkenergiebezug aller Phasen Tarif Nr.: 8	1.8.8
85	nvokWhNegT1	SNVT_reg_val	Primäre Wirkenergielieferung aller Phasen Tarif Nr.: 1	2.8.1
86	nvokWhNegT2	SNVT_reg_val	Primäre Wirkenergielieferung aller Phasen Tarif Nr.: 2	2.8.2
87	nvokWhNegT3	SNVT_reg_val	Primäre Wirkenergielieferung aller Phasen Tarif Nr.: 3	2.8.3
88	nvokWhNegT4	SNVT_reg_val	Primäre Wirkenergielieferung aller Phasen Tarif Nr.: 4	2.8.4
89	nvokWhNegT5	SNVT_reg_val	Primäre Wirkenergielieferung aller Phasen Tarif Nr.: 5	2.8.5
90	nvokWhNegT6	SNVT_reg_val	Primäre Wirkenergielieferung aller Phasen Tarif Nr.: 6	2.8.6
91	nvokWhNegT7	SNVT_reg_val	Primäre Wirkenergielieferung aller Phasen Tarif Nr.: 7	2.8.7
92	nvokWhNegT8	SNVT_reg_val	Primäre Wirkenergielieferung aller Phasen Tarif Nr.: 8	2.8.8
93	nvokVArhPosT1	SNVT_reg_val	Primärer Blindenergiebezug aller Phasen Tarif Nr.: 1	3.8.1
94	nvokVArhPosT2	SNVT_reg_val	Primärer Blindenergiebezug aller Phasen Tarif Nr.: 2	3.8.2
95	nvokVArhPosT3	SNVT_reg_val	Primärer Blindenergiebezug aller Phasen Tarif Nr.: 3	3.8.3
96	nvokVArhPosT4	SNVT_reg_val	Primärer Blindenergiebezug aller Phasen Tarif Nr.: 4	3.8.4
97	nvokVArhPosT5	SNVT_reg_val	Primärer Blindenergiebezug aller Phasen Tarif Nr.: 5	3.8.5
98	nvokVArhPosT6	SNVT_reg_val	Primärer Blindenergiebezug aller Phasen Tarif Nr.: 6	3.8.6
99	nvokVArhPosT7	SNVT_reg_val	Primärer Blindenergiebezug aller Phasen Tarif Nr.: 7	3.8.7
100	nvokVArhPosT8	SNVT_reg_val	Primärer Blindenergiebezug aller Phasen Tarif Nr.: 8	3.8.8
101	nvokVArhNegT1	SNVT_reg_val	Primäre Blindenergielieferung aller Phasen Tarif Nr.: 1	4.8.1
102	nvokVArhNegT2	SNVT_reg_val	Primäre Blindenergielieferung aller Phasen Tarif Nr.: 2	4.8.2
103	nvokVArhNegT3	SNVT_reg_val	Primäre Blindenergielieferung aller Phasen Tarif Nr.: 3	4.8.3
104	nvokVArhNegT4	SNVT_reg_val	Primäre Blindenergielieferung aller Phasen Tarif Nr.: 4	4.8.4
105	nvokVArhNegT5	SNVT_reg_val	Primäre Blindenergielieferung aller Phasen Tarif Nr.: 5	4.8.5
106	nvokVArhNegT6	SNVT_reg_val	Primäre Blindenergielieferung aller Phasen Tarif Nr.: 6	4.8.6
107	nvokVArhNegT7	SNVT_reg_val	Primäre Blindenergielieferung aller Phasen Tarif Nr.: 7	4.8.7
108	nvokVArhNegT8	SNVT_reg_val	Primäre Blindenergielieferung aller Phasen Tarif Nr.: 8	4.8.8
109	nvoValWhTotPos	SNVT_reg_val	Primäre Wirkenergie Import gesamt, nicht rücksetzbar	1.8.0
110	nvoValWhTotNeg	SNVT_reg_val	Primäre Wirkenergie Export gesamt, nicht rücksetzbar	2.8.0
111	nvoValVArhTotPos	SNVT_reg_val	Primäre Blindenergie Import gesamt, nicht rücksetzbar	3.8.0
112	nvoValVArhTotNeg	SNVT_reg_val	Primäre Blindenergie Export gesamt, nicht	4.8.0
113	nvoEnergyType	UNVT_energyType	rücksetzbar Energiewert ist primär oder sekundär	
114	nvoEnergyFlowHrs	SNVT_time_hour	Betriebsstunden (mit Anlaufschwelle des Zählers überschritten)	
Bezug	Konfigurationsstruktur	Datentyp	Beschreibung	
Objekt	cpEnergyMaxSndT	SCPTmaxSendTime	Sendebedingung: Maximale Zeit bis zur Sendung der Netzwerkvariablen	
Objekt	cpEngyAccumMode	UCPTenergyAccumMode	Betriebsart des Energiezählers, nur lesbar	

Energie für Summenstationen U160x – EnergyForU160x Objectld: 1

Index	Netzwerkvariable	Datentyp	Beschreibung	OBIS
8	nvokWhPosT1Pri	UNVT_energy_U160x	Primärer Wirkenergiebezug aller Phasen Tarif Nr.: 1	1.8.1
9	nvokWhPosT2Pri	UNVT_energy_U160x	Primärer Wirkenergiebezug aller Phasen Tarif Nr.: 2	1.8.2
10	nvokWhPosT3Pri	UNVT_energy_U160x	Primärer Wirkenergiebezug aller Phasen Tarif Nr.: 3	1.8.3
11	nvokWhPosT4Pri	UNVT_energy_U160x	Primärer Wirkenergiebezug aller Phasen Tarif Nr.: 4	1.8.4
12	nvokWhPosT5Pri	UNVT_energy_U160x	Primärer Wirkenergiebezug aller Phasen Tarif Nr.: 5	1.8.5
13	nvokWhPosT6Pri	UNVT_energy_U160x	Primärer Wirkenergiebezug aller Phasen Tarif Nr.: 6	1.8.6
14	nvokWhPosT7Pri	UNVT_energy_U160x	Primärer Wirkenergiebezug aller Phasen Tarif Nr.: 7	1.8.7
15	nvokWhPosT8Pri	UNVT_energy_U160x	Primärer Wirkenergiebezug aller Phasen Tarif Nr.: 8	1.8.8
16	nvokWhNegT1Pri	UNVT_energy_U160x	Primäre Wirkenergielieferung aller Phasen Tarif Nr.: 1	2.8.1
17	nvokWhNegT2Pri	UNVT_energy_U160x	Primäre Wirkenergielieferung aller Phasen Tarif Nr.: 2	2.8.2
18	nvokWhNegT3Pri	UNVT_energy_U160x	Primäre Wirkenergielieferung aller Phasen Tarif Nr.: 3	2.8.3
19	nvokWhNegT4Pri	UNVT_energy_U160x	Primäre Wirkenergielieferung aller Phasen Tarif Nr.: 4	2.8.4
20	nvokWhNegT5Pri	UNVT_energy_U160x	Primäre Wirkenergielieferung aller Phasen Tarif Nr.: 5	2.8.5
21	nvokWhNegT6Pri	UNVT_energy_U160x	Primäre Wirkenergielieferung aller Phasen Tarif Nr.: 6	2.8.6
22	nvokWhNegT7Pri	UNVT_energy_U160x	Primäre Wirkenergielieferung aller Phasen Tarif Nr.: 7	2.8.7
23	nvokWhNegT8Pri	UNVT_energy_U160x	Primäre Wirkenergielieferung aller Phasen Tarif Nr.: 8	2.8.8
24	nvokVArhPosT1Pri	UNVT_energy_U160x	Primärer Blindenergiebezug aller Phasen Tarif Nr.: 1	3.8.1
25	nvokVArhPosT2Pri	UNVT_energy_U160x	Primärer Blindenergiebezug aller Phasen Tarif Nr.: 2	3.8.2
26	nvokVArhPosT3Pri	UNVT_energy_U160x	Primärer Blindenergiebezug aller Phasen Tarif Nr.: 3	3.8.3
27	nvokVArhPosT4Pri	UNVT_energy_U160x	Primärer Blindenergiebezug aller Phasen Tarif Nr.: 4	3.8.4
28	nvokVArhPosT5Pri	UNVT_energy_U160x	Primärer Blindenergiebezug aller Phasen Tarif Nr.: 5	3.8.5
29	nvokVArhPosT6Pri	UNVT_energy_U160x	Primärer Blindenergiebezug aller Phasen Tarif Nr.: 6	3.8.6
30	nvokVArhPosT7Pri	UNVT_energy_U160x	Primärer Blindenergiebezug aller Phasen Tarif Nr.: 7	3.8.7
31	nvokVArhPosT8Pri	UNVT_energy_U160x	Primärer Blindenergiebezug aller Phasen Tarif Nr.: 8	3.8.8
32	nvokVArhNegT1Pri	UNVT_energy_U160x	Primäre Blindenergielieferung aller Phasen Tarif Nr.: 1	4.8.1
33	nvokVArhNegT2Pri	UNVT_energy_U160x	Primäre Blindenergielieferung aller Phasen Tarif Nr.: 2	4.8.2
34	nvokVArhNegT3Pri	UNVT_energy_U160x	Primäre Blindenergielieferung aller Phasen Tarif Nr.: 3	4.8.3
35	nvokVArhNegT4Pri	UNVT_energy_U160x	Primäre Blindenergielieferung aller Phasen Tarif Nr.: 4	4.8.4
36	nvokVArhNegT5Pri	UNVT_energy_U160x	Primäre Blindenergielieferung aller Phasen Tarif Nr.: 5	4.8.5
37	nvokVArhNegT6Pri	UNVT_energy_U160x	Primäre Blindenergielieferung aller Phasen Tarif Nr.: 6	4.8.6
38	nvokVArhNegT7Pri	UNVT_energy_U160x	Primäre Blindenergielieferung aller Phasen Tarif Nr.: 7	4.8.7
39	nvokVArhNegT8Pri	UNVT_energy_U160x	Primäre Blindenergielieferung aller Phasen Tarif Nr.: 8	4.8.8
40	nvokWhPosPri	UNVT_energy_U160x	Primärer Wirkenergiebezug aller Tarife	1.8.0
41	nvokWhNegPri	UNVT_energy_U160x	Primäre Wirkenergielieferung aller Tarife	2.8.0
42	nvokVArhPosPri	UNVT_energy_U160x	Primärer Blindenergiebezug aller Tarife	3.8.0
43	nvokVArhNegPri	UNVT_energy_U160x	Primäre Blindenergielieferung aller Tarife	4.8.0

Das Objekt enthält für die Summenstationen der Reihe U160x aufbereitete Energiewerte einschließlich entsprechendem Leistungswert und Fehlerstatus.

```
typedef struct {
SNVT_reg_val Energy;
SNVT_power_f Power;
unsigned long Error
}UNVT_energy_U160x;
```

Variable	Bedeutung	
Power	Primärwert	
Error	EnergyValUncalib - Bit sagt aus, ob der angefragte Wert geeicht (0) oder ungeeicht (1) ist	

typedef struct{ // Hi-Byte	// für U160x	
unsigned Dummy1	: 5;	
unsigned Analog	: 1; // Fehler im Analogteil	x04
unsigned Calibration	: 1; // keine Kalibrierung	x02
unsigned Energy	: 1; // EEPROM defekt	x01
// Lo-Byte		
unsigned Dummy2	: 1;	
unsigned EnergyValUn	calib: 1; // Energiewert ist nicht eichfähig	x40
unsigned NoSync	: 1; // keine Synchronisation	x20
unsigned HiVoltage	: 1; // Spannung zu hoch	x10
unsigned CurrentDir	: 1; // falsche Stromrichtung	x08
unsigned RotationDir	: 1; // falsche Drehfeld-Richtung	x04
unsigned LoVoltage	: 1; // Phasen-Ausfall	x02
unsigned HiCurrent	: 1; // Strom zu hoch	x01
} error_struct Error;		

Stichtagsfunktion - EnergyFreeze ObjectId: 6

Index	Netzwerkvariable	Datentyp	Beschreibung
115	nviEnergyFrzTs	SNVT_time_stamp	Stichtag Zeitplan Datum / Zeit – Platzhalter verwenden für wiederholte Erfassung
116	nvoEnergyFrzTs	SNVT_time_stamp	Stichtag Zählerstand mit Datum / Zeit lesen
117	nvokWhPosT1Frz	SNVT_reg_val	Wirkenergiebezug aller Phasen Tarif Nr.: 1
118	nvokWhPosT2Frz	SNVT_reg_val	Wirkenergiebezug aller Phasen Tarif Nr.: 2
119	nvokWhPosT3Frz	SNVT_reg_val	Wirkenergiebezug aller Phasen Tarif Nr.: 3
120	nvokWhPosT4Frz	SNVT_reg_val	Wirkenergiebezug aller Phasen Tarif Nr.: 4
121	nvokWhPosT5Frz	SNVT_reg_val	Wirkenergiebezug aller Phasen Tarif Nr.: 5
122	nvokWhPosT6Frz	SNVT_reg_val	Wirkenergiebezug aller Phasen Tarif Nr.: 6
123	nvokWhPosT7Frz	SNVT_reg_val	Wirkenergiebezug aller Phasen Tarif Nr.: 7
124	nvokWhPosT8Frz	SNVT_reg_val	Wirkenergiebezug aller Phasen Tarif Nr.: 8
125	nvokWhNegT1Frz	SNVT_reg_val	Wirkenergielieferung aller Phasen Tarif Nr.: 1
126	nvokWhNegT2Frz	SNVT_reg_val	Wirkenergielieferung aller Phasen Tarif Nr.: 2
127	nvokWhNegT3Frz	SNVT_reg_val	Wirkenergielieferung aller Phasen Tarif Nr.: 3
128	nvokWhNegT4Frz	SNVT_reg_val	Wirkenergielieferung aller Phasen Tarif Nr.: 4
129	nvokWhNegT5Frz	SNVT_reg_val	Wirkenergielieferung aller Phasen Tarif Nr.: 5
130	nvokWhNegT6Frz	SNVT_reg_val	Wirkenergielieferung aller Phasen Tarif Nr.: 6
131	nvokWhNegT7Frz	SNVT_reg_val	Wirkenergielieferung aller Phasen Tarif Nr.: 7
132	nvokWhNegT8Frz	SNVT_reg_val	Wirkenergielieferung aller Phasen Tarif Nr.: 8
133	nvokVArhPosT1Frz	SNVT_reg_val	Blindenergiebezug aller Phasen Tarif Nr.: 1
134	nvokVArhPosT2Frz	SNVT_reg_val	Blindenergiebezug aller Phasen Tarif Nr.: 2
135	nvokVArhPosT3Frz	SNVT_reg_val	Blindenergiebezug aller Phasen Tarif Nr.: 3
136	nvokVArhPosT4Frz	SNVT_reg_val	Blindenergiebezug aller Phasen Tarif Nr.: 4
137	nvokVArhPosT5Frz	SNVT_reg_val	Blindenergiebezug aller Phasen Tarif Nr.: 5
138	nvokVArhPosT6Frz	SNVT_reg_val	Blindenergiebezug aller Phasen Tarif Nr.: 6
139	nvokVArhPosT7Frz	SNVT_reg_val	Blindenergiebezug aller Phasen Tarif Nr.: 7
140	nvokVArhPosT8Frz	SNVT_reg_val	Blindenergiebezug aller Phasen Tarif Nr.: 8
141	nvokVArhNegT1Frz	SNVT_reg_val	Blindenergielieferung aller Phasen Tarif Nr.: 1
142	nvokVArhNegT2Frz	SNVT_reg_val	Blindenergielieferung aller Phasen Tarif Nr.: 2
143	nvokVArhNegT3Frz	SNVT_reg_val	Blindenergielieferung aller Phasen Tarif Nr.: 3
144	nvokVArhNegT4Frz	SNVT_reg_val	Blindenergielieferung aller Phasen Tarif Nr.: 4
145	nvokVArhNegT5Frz	SNVT_reg_val	Blindenergielieferung aller Phasen Tarif Nr.: 5
146	nvokVArhNegT6Frz	SNVT_reg_val	Blindenergielieferung aller Phasen Tarif Nr.: 6
147	nvokVArhNegT7Frz	SNVT_reg_val	Blindenergielieferung aller Phasen Tarif Nr.: 7
148	nvokVArhNegT8Frz	SNVT_reg_val	Blindenergielieferung aller Phasen Tarif Nr.: 8

Netzwerk Variablen 116 ... 148 werden über LON verschickt wenn das Stichtags-Ereignis eintritt (nviEnergyFrzTs == nvoActTime).
Für regelmäßige Stichtagserfassung wird nviEnergyFrzTs.year oder nviEnergyFrzTs.month oder nviEnergyFrzTs.day auf 0 gesetzt (Platzhalter- bzw. Wildcardmethode)

Alle NVs der Stichtagsfunktion werden in einem nichtflüchtigen Speicher abgelegt, Netzspannungsunterbrechungen führen nicht zu Datenverlust.

Zählerstandsgang-Funktion - demandLogger ObjectId: 7

Index	Netzwerkvariable	Datentyp	Beschreibung
149	nviDmdPeriodMins	SNVT_time_min	Zählerstandsgang-Intervall setzen (nur diese Werte werden akzeptiert: 1, 2, 3, 5, 10, 15, 20, 30, 60 Min.) (Wert wird in nichtflüchtigem Speicher abgelegt)
150	nviDmdHistChoice	SNVT_count	Laufende Nummer des Zählerstandsgang- Eintrags setzen (016063)
151	nvoDmdPeriodMins	SNVT_time_min	Zählerstandsgang-Intervall (Minuten) abfragen
152	nvoDmdHistChoice	SNVT_count	Laufende Nummer des Zählerstandsgang- Eintrags abfragen (016063)
153	nvoDmdHistWhPos	SNVT_reg_val_ts	Zählerstandsgang Wirkleistung Import, Einheit, Zeitstempel
154	nvoDmdHistWhNeg	SNVT_reg_val_ts	Zählerstandsgang Wirkleistung Export, Einheit , Zeitstempel
155	nvoDmdHistVArhPo	SNVT_reg_val_ts	Zählerstandsgang Blindleistung Import, Einheit, Zeitstempel
156	nvoDmdHistVArhNe	SNVT_reg_val_ts	Zählerstandsgang Blindleistung Export, Einheit, Zeitstempel
157	nvoDmdHistTariff	UNVT_tariff_status_ts	Tarif, StatusFlags1, StatusFlags2, Zeitstempel

```
typedef struct {
   unsigned short Tariff;
   unsigned short DemandInterval;
   unsigned long DemandStatus1;
   unsigned long DemandStatus2;
   unsigned status : 4;
   unsigned reg_state : 1;
   unsigned long year;
   unsigned short month;
   unsigned short day;
   unsigned short hour;
   unsigned short minute;
   unsigned short second;
} UNVT_tariff_status_ts;
```

DemandStatus1 Flags [hex]:

0001 - Strom zu hoch, Phase 1

0002 - Strom zu hoch, Phase 2

0004 - Strom zu hoch, Phase 3

0008 - Spannung zu hoch, Phase 1

0010 - Spannung zu hoch, Phase 2

0020 - Spannung zu hoch, Phase 3

0040 – Netzfrequenz nicht gefunden

0080 - Frequenz zu niedrig

0100 - Frequenz zu hoch

0200 - Phasenreihenfolge falsch

0400 – Phasenreihenfolge nicht erkannt

0800 – Gerät ist nicht kalibriert

1000 - Fehler Analog: DC-Offset zu groß

2000 - Fehler Energie: Energiestand defekt

4000 – Fehler der internen Kommunikation

8000 - Energiewert wurde aus zyklischen Sicherungen rekonstruiert

DemandStatus2 Flags [hex]:

0001 – Verkürzte Registrierperiode (nicht uhrzeitsynchron gestartet / beendet)

0002 – Es wurde nach einem Reset begonnen

0004 – Ende der Periode aufgrund Tarifwechsel

0008 - Ende der Periode wegen Uhrzeitwechsel

Betriebslogbuch - eventLogger ObjectId: 8

Index	Netzwerkvariable	Datentyp	Beschreibung
158	nviLogHistChoice	SNVT_count	Chronologische Einträge im Betriebslogbuch Nummer setzen (0255) 0 bedeutet: zuletzt gespeichertes Ereignis, 255 bedeutet: ältestes gespeichertes Ereignis
159	nvoLogHistChoice	SNVT_count	Chronologische Einträge im Betriebslogbuch Nummer lesen (0255)
160	nvoLogHistEvent	UNVT_event_log_val_ts	Ereignis, Parameter, Betriebsstunden, Zeitstempel

```
typedef struct {
   unsigned short event;
   unsigned short parameter[7];
   unsigned long operating_hours;
   unsigned status : 4;
   unsigned reg_state : 1;
   unsigned long year;
   unsigned short month;
   unsigned short day;
   unsigned short hour;
   unsigned short minute;
   unsigned short second;
} UNVT_event_log_val_ts;
```

event codes:

00 - Status Ok

01/81 - Strom zu hoch

02/82 - Spannung zu hoch

03/83 – Netzfrequenz nicht gefunden

04/84 - Frequenz zu niedrig

05/85 – Frequenz zu hoch

06/86 – Phasenreihenfolge falsch

07/87 - Phasenreihenfolge nicht erkannt

08/88 - Gerät nicht kalibriert

09/89 - Phasenspannung zu niedrig

0A/8A - Fehler Analog: DC-Offset zu groß

0B/8B - Fehler Energie: Energiestand defekt

0C/8C – Fehler der internen Kommunikation

(Anmerkung: Fehler aufgetreten / Fehler ist weg)

40 - Datum / Uhrzeit geändert

48 – CT geändert

49 – VT geändert

60 - Reset aufgetreten

68 - Energiewert wurde aus zyklischen Sicherungen rekonstruiert

4.2 Einheiten und Auflösungen

Strommesser – amMeter ObjectId: 3 Strom

Тур	СТ	Anzeige	LON	LON	
			Einheit	Auflösung	
EM228x	1	xx.xx A	A	10 mA	
EM238x	1	x.xxx A	A	1 mA	
	2 10	xx.xx A	A	10 mA	
	11 100	xxx.x A	A	100 mA	
	101 1000	xxxx A	A	1 A	
	1001 10 000	xx.xx kA	A	10 A	

Spannungsmesser – voltMeter ObjectId: 2 Spannung

Тур	VT bei U3 (100 V)	VT bei U5 U7	Anzeige	LON	LON
				Einheit	Auflösung
EM228x		1	xxx.x V	V	0,1 V
EM238x	1 4	1	xxx.x V	V	0,1 V
	5 40	2 10	xxxx V	V	1 V
	41 400	11 100	xx.xx kV	V	10 V
	401 1000	101 1000	xxx.x kV	V	100 V

Leistungsmesser – powerMeter Objectld: 4 Leistung

Тур	CTxVT bei U3	CTxVT bei U5 U	7 Anzeige	LON	LON
				Einheit	Auflösung
EM228x		1	xx.xx kW	W	10 W
EM238x	1 4	1	xxxx W	W	1 W
	5 40	2 10	xx.xx kW	W	10 W
	41 400	11 100	xxx.x kW	W	100 W
	401 4000	101 1000	xxxx kW	W	1 kW
	4001 40 000	1001 10 000	xx.xx MW	W	10 kW
	40 001 400 000	10 001 100 000	xxx.x MW	W	100 kW
	400 001 1000 000	100 001 1000 000	xxxx MW	W	1 MW

Energiezähler – energyMeter Objectld: 5 Energie

Тур	CTxVT	Anzeige	LON	LON	LON
			Einheit	Auflösung	cWh
EM228x	1	xxxxx.xx kWh	kWh	10 Wh	0,1 Wh
EM238x	1 10	xxxxxxx Wh	kWh	1 Wh	0,01 Wh
	11 100	xxxxx.xx kWh	kWh	10 Wh	0,1 Wh
	101 1000	xxxxxx.x kWh	kWh	100 Wh	1 Wh
	1001 10000	xxxxxxx kWh	kWh	1 kWh	10 Wh
	10 001 100 000	xxxxx.xx MWh	MWh	10 kWh	100 Wh
	100 001 1 000 000	xxxxxx.x MWh	MWh	100 kWh	1 kWh

Ungültige Energiewerte (Blindenergie bei Zähler ohne Blindenergiezählung) werden mit dem Wert 80000000h signalisiert.

4.3 Stichtagsfunktion

Mit der Netzwerkvariablen "nviEnergyFrzTs" (Index 115) lässt sich Datum und Uhrzeit für das "Einfrieren" des Zählerstandes vorwählen, d.h. der aktuelle Energiewertestand wird in einen gesonderten Datenbereich kopiert und kann später ausgelesen werden (Stichtagsenergien). Der Zeitpunkt, an dem die Stichtagsenergien festgehalten wurden, ist in der Netzwerkvariablen "nvoEnergyFrzTs" (Index 116) zu finden, die Werte der Energien für die Tarife 1-8 liefern die Netzwerkvariablen mit Index 117 bis 148.

Für die Vorgabe des Stichtags gelten folgende Vereinbarungen:

- Zeitpunkt in der Zukunft: Stichtagsenergien werden zu diesem Zeitpunkt aktualisiert.
- Datum in der Vergangenheit: keine Aktualisierung der Stichtagsenergien.
- Datum aktuell, Uhrzeit in Vergangenheit: aktuelle Geräteuhrzeit und Stichtagsenergien werden in den Speicher übernommen.
- 0 als Angabe für den Tag, den Monat oder das Jahr wirkt als Platzhalter: Bei jedem entsprechenden Datum werden die Stichtagsenergien aktualisiert.
- Alles 0 (Platzhalter) in Datum und Zeit: Stichtag mit Geräteuhr, jeden Tag um 0 Uhr, erste Übernahme sofort.

Die Netzwerkvariable nvoEnergyFlowHrs liefert die Anzahl der Betriebsstunden. Gezählt wird nur, wenn der Anlaufstrom überschritten wird. Nur ganze Stunden werden gespeichert.

4.4 Herstellerspezifische Konfigurations-Typen (UCPTs)

UCPTvoltSendDelta	SNVT_volt_f
UCPTfreqSendDelta	SNVT_freq_hz
UCPTConnType	conn_type
UCPTptVoltagePrim	SNVT_volt_f
UCPTptVoltageSec	SNVT_volt_f
UCPTctCurrentPrimary	SNVT_amp_f
UCPTctCurrentSec	SNVT_amp_f
UCPTenergyAccumMode	acc_mode
UCPTenergySendDelta	SNVT_elec_whr_f
UCPTpulseRate	SNVT_count_f
UCPTpwrSendDelta	SNVT_power_f
UCPTpwrFactSendDelta	SNVT_pwr_fact_f

typedef enum conn_type_t {

CI_NUL = -1 —		
CT_2WIRE_TRANSFO	RMER = 20	U2381
CT_2WIRE_DIRECT	= 21	U2281
CT_3WIRE_TRANSFO	RMER = 30	U2387
CT_3WIRE_DIRECT = 31	1 —	
CT_4WIRE_TRANSFO	RMER = 40	U2389
CT_4WIRE_DIRECT	= 41	U2289
}conn_type;		

typedef enum acc_mode_t {

ACC_NUL	= -1	
ACC_BIDIR_SIGNED	= 0	Differenz aus Energiebezug und Energieabgabe
ACC_BIDIR_ABS	= 1	Energiebezug und Energieabgabe
ACC_UNIDIR_IN	= 2	nur Energiebezug: U1281U1389
ACC_UNIDIR_OUT	= 3	nur Energieabgabe
}acc_mode;		

5 Bedien- und Anzeigefunktionen

In einem zusätzlichen Menüpunkt wird die Neuron-ID angezeigt. Drücken der "UP"- Taste bewirkt das Senden der Service-Pin Nachricht.

Übersicht Parametereinstellung (Auszug aus der Bedienungsanleitung 3-349-868-01, Ergänzung um die LON-Parameter-Einstellung)

5.1 Menüfortsetzung bei Energiezählern mit LON-Schnittstelle

Installation des Zählers

Die Installation des Zählers in einem LON-Netzwerk kann über die manuelle Eingabe der Neuron-ID oder durch Auslösen der Service-Pin-Nachricht erfolgen.

Status des LON-Knotens (Node State)

Der Status des LON-Knotens wird durch ein Symbol rechts neben der Neuron-ID dargestellt.

Symbol	Status
С	LON-Chip istkonfiguriert (configured online)
n	LON-Chip hat keine Anwendung (no application)
u	LON-Chip ist nichtkonfiguriert (unconfigured online)
0	LON-Chip ist offline (offline)

Bus-Symbol

Das BUS-Symbol wird eingeblendet, wenn der LON- Knoten im Zähler ein Datenpaket sendet.

Die Dauer der Einblendung erhöht sich mit der Anzahl der Datenpakete.

Wink-Kommando zur Identifikation des LON-Knotens

Beim Empfang eines Wink-Kommandos wird für kurze Zeit die Neuron-ID angezeigt.

5.2 Fehlermeldungen

Meldung über LON-	Ursache/Abhilfe	Anzeige am Gerät
Schnittstelle		· ·
nodeObject		
Object Id: 0		
keine eigenen		
Fehlermeldungen.		
Liefert die veroderten		
Fehlermeldungen aller anderen		
Objekte.		
amMeter		
Object Id: 3		
over_range	Maximalwert eines Stromes wurde überschritten.	Δ IHi1, Δ IHi 2, Δ IHi 3
electrical_fault	Negative Leistung bzw. Stromwandler-	Phasensymbol der betroffenen Phase blinkt
	Anschlüsse sind vertauscht. Anschluss prüfen.	
	Fehler im Analogteil. Gerät an Service senden.	Δ AnALog
unable_to_measure	Gerät ist nicht kalibriert. Gerät an Service	Δ CALib
	senden.	
powerMeter		
Object Id: 4		
keine Fehlermeldungen		
voltMeter		
Object Id: 2		
over_range	Maximalwert einer Spannung wurde überschritten	Δ UHi1, Δ UHi 2, Δ UHi 3
		Phasensymbol der betroffenen Spannung wird ausgeblendet, z.B. Phase 2
electrical_fault	· · · · · · · · · · · · · · · · · · ·	Phasensymbole blinken in Reihenfolge ~3 ~2 ~1
unable_to_measure	Keine Synchronisation auf Netzfrequenz möglich.	Δ SYnc
energyMeter Object Id: 5		
	EEPROM für Zählerstand defekt, Gerät an Service senden	Δ EnErgY*

5.3 ReportMask für alle Objekte

Fehlermeldung	nodeObject	amMeter	powerMeter	voltMeter	energyMeter
Object_Id	0	3	4	2	5
invalid_id	0	0	0	0	0
invalid_request	0	0	0	0	0
disabled	0	0	0	0	0
out_of_limits	0	0	0	0	0
open_circuit	0	0	0	0	0
out_of_service	0	0	0	0	0
mechanical_fault	0	0	0	0	0
feedback_failure	0	0	0	0	0
over_range	1	1	0	1	0
under_range	1	0	0	1	0
electrical_fault	1	1	0	1	1
unable_to_measure	1	1	0	1	0
comm_failure	0	0	0	0	0
fail_self_test	0	0	0	0	0
self_test_in_progress	0	0	0	0	0
locked_out	0	0	0	0	0
manual_control	0	0	0	0	0
in_alarm	0	0	0	0	0
in_override	0	0	0	0	0
report_mask	1	1	1	1	1

6 Produktsupport

Bitte wenden Sie sich im Bedarfsfall an:

Gossen Metrawatt GmbH **Hotline Produktsupport Industrie** Telefon +49 911 8602-500 Telefax +49 911 8602-340

E-Mail <u>support.industrie@gossenmetrawatt.com</u>

© Gossen Metrawatt GmbH Erstellt in Deutschland • Änderungen / Irrtümer vorbehalten • Eine PDF-Version finden Sie im Internet Alle Handelsmarken, eingetragenen Handelsmarken, Logos, Produktbezeichnungen und Firmennamen sind das Eigentum ihrer jeweiligen Besitzer. All trademarks, registered trademarks, logos, product names, and company names are property of their respective owners.

