Inference 2: Fitting models to data

Last updated: October 10, 2017

Example: numchar vs linebreak in emails. Example: salary vs degree in teacher.

Example: survived vs age, sex, class in titanic.

Descriptive: what do I see? (qualitative). Scatterplot, correlation. Hypothesis testing: is what I see significant? (yes/no). t-test, z-test.

Model: how much does blah affects blah? (quantitative)

Example: numchar vs linebreak in emails. Example: salary vs degree in teacher.

Example: survived vs age, sex, class in titanic.

Descriptive: what do I see? (qualitative). Scatterplot, correlation. Hypothesis testing: is what I see significant? (yes/no). t-test, z-test.

Model: how much does blah affects blah? (quantitative)

eg: If a teacher gets a master degree, how much does his salary go up by?

Example: numchar vs linebreak in emails. Example: salary vs degree in teacher.

Example: survived vs age, sex, class in titanic.

Descriptive: what do I see? (qualitative). Scatterplot, correlation. Hypothesis testing: is what I see significant? (yes/no). t-test, z-test.

Model: how much does blah affects blah? (quantitative)

eg: If a teacher gets a master degree, how much does his salary go up by? eg: survival rates for (adult male first class) vs (child female third class)?

Example: numchar vs linebreak in emails. Example: salary vs degree in teacher.

Example: survived vs age, sex, class in titanic.

Descriptive: what do I see? (qualitative). Scatterplot, correlation. Hypothesis testing: is what I see significant? (yes/no). t-test, z-test.

Model: how much does blah affects blah? (quantitative)

eg: If a teacher gets a master degree, how much does his salary go up by? eg: survival rates for (adult male first class) vs (child female third class)?

Example: numchar vs linebreak in emails. Example: salary vs degree in teacher.

Example: survived vs age, sex, class in titanic.

Descriptive: what do I see? (qualitative). Scatterplot, correlation. Hypothesis testing: is what I see significant? (yes/no). t-test, z-test.

Model: how much does blah affects blah? (quantitative)

eg: If a teacher gets a master degree, how much does his salary go up by? eg: survival rates for (adult male first class) vs (child female third class)?

Models we learn	cat. vs (cat., num)	num. vs (cat., num.)
linear regression		\checkmark
logistic regression	\checkmark	

Simple linear regression

Linear regression= find best line that goes through the scatterplot.

- Numerical variables X, Y.
- ▶ Data: pairs (x_i, y_i) , i = 1, ..., n.

Model

$$Y = \beta_0 + \beta_1 X + \epsilon,$$

 $\epsilon \sim N(0, \sigma^2)$. That is,

- ▶ For a fixed X = x value, Y equals $\beta_0 + \beta_1 x$, plus some noise
- ▶ The noise has Normal distribution, mean 0, variance σ^2
- \triangleright β_0, β_1 are unknown constants.
- The noise are independent for different data points.

Key assumptions

- ightharpoonup Y =linear in X plus noise.
- ▶ Noise have normal distribution, mean zero, constant variance.
- Noise are independent

Linear regression = find β_0, β_1 .

Terminologies

- X: regressors, exogenous, explanatory, covariate, **input**, predictor, ...
- Y: regressand, endogenous, response, measured, **output**, criterion, ...
- **E**stimate for β_0 : b_0 . Intercept
- Estimate for β_1 : b_1 . Slope
- ▶ Errors: $e_i = y_i b_0 b_1 x_i$. Residuals
- ▶ Homoscedasticity = noise have variance constant over x-values.
- Heteroscedasticity = noise do not have constant variance
- Simple regression = only one X variable. Multiple regression = more than one X variable.
- ▶ Linear regression = least squares (LS), ordinary least squares (OLS), ℓ_2 -regression

R Command: 1m. (= 'linear model').

Parameter estimation

In least squares, the 'line of best fit ' = one where b_0, b_1 minimizes

$$\sum_{i=1}^{n} (y_i - c_0 - c_1 x_i)^2.$$

- ▶ Above = total distance of all residuals
- Least squares = minimize squared Euclidean distance of the residuals
- Why square? (and not sum of absolute values, say?)

Parameter estimation

In least squares, the 'line of best fit ' = one where b_0, b_1 minimizes

$$\sum_{i=1}^{n} (y_i - c_0 - c_1 x_i)^2.$$

- ▶ Above = total distance of all residuals
- Least squares = minimize squared Euclidean distance of the residuals
- Why square? (and not sum of absolute values, say?)
 - ▶ Least squares = easy to optimize. Exact formula.
 - ▶ Minimize the total variance of the error.
 - ▶ Penalize large error: double the error ⇒ more than double the penalty!

Interpret the R output

Example: numchar vs linebreak in emails. Example: head vs total length in possums.

Example: math vs read scores in hsb2.

- ▶ Estimates for β_0, β_1
- p-values: are β_0, β_1 significantly different from zero?
- ▶ R^2 : = 1 variance in error / variance in Y. Percentage of variance 'explained' by line.