

# ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC) DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

#### **PROJECT REPORT**

NAME : Fariha Alam Urbana ,Annim Jannat,Taseen Israque,

Tasfin Azwad

STUDENT ID : 200021315,200021311,200021335,200021361

DEPARTMENT : EEE SECTION & GROUP : C,C1

DATE OF SUBMISSION : 20.5.23

COURSE NO. : EEE 4418

COURSE TITLE : Electrical Service Design Lab

PROJECT NAME : Complete Design of Second Storey Building



# FITTINGS AND FIXTURES



# PARKING LOT





| LEGENDS                                      |            |         |             |
|----------------------------------------------|------------|---------|-------------|
| DESCRIPTION                                  | HEIGHT     | CAPTION | SYMBOL      |
| 4'-20W WALL MOUNTED<br>FLUROSCENT TUBE LIGHT | LINTEL     | ТВ      | <del></del> |
| 20W FLUDRESCENT                              | LINTEL     | LB      | —0          |
| 20 W FLUDESCENT                              | CELLING    | LC      |             |
| 56"70W SWEEP FAN                             | CELLING    | F       |             |
| SWITCH BOARD                                 | MID WALL   | SB      |             |
| EMERGENCY SWITCH BOARD                       | MID WALL   | ESB     |             |
| SUB DISTRIBUTION BOARD                       | LINTEL     | SDB     |             |
| EMERGENCY SUB DISTRIBUTION BOARD             | N LINTEL   | ESDB    |             |
| POWER SOCKET FOR PC                          | LOWER WALL | Р       |             |
| POWER SOCKET FOR AC                          | LINTEL     | Q       |             |

| Legends for Conduits                 | Conduit size |
|--------------------------------------|--------------|
| C1 = 2 x 1.5 rm BYM + 1.5 rm BYA ECC | 3/4 "        |
| C2 = 4 x 1.5rm BYM + 1.5 rm BYA ECC  | 3/4 "        |
| C3 = 6 x 1.5 rm BYM + 1.5 rm BYA ECC | 3/4 "        |
| C4 = 2 x 1.5 rm BYM +1.5 rm BYA ECC  | 3/4 "        |
| C5 = 2 x 1.5 rm BYM + 1.5 rm BYA ECC | 3/4 "        |
| C6 = 2 x 4 rm BYM + 4 rm BYA ECC     | 3/4 "        |
| C7 = 2 x 6 rm BYM + 6 rm BYA ECC     | 3/4 "        |
| C8 = 4 x 4 rm BYM + 4 rm BYA ECC     | 3/4 "        |
| C9 = 4 x 6 rm BYM + 6 rm BYA ECC     | 3/4 "        |

# FIRST FLOOR WITH CONDUITS



# SECOND FLOOR WITH CONDUITS



# PARKING LOT









# SB DIAGRAM



## MDB 40A SP MCCB 2X16 rm BYM+16 BYA ECC SDB 5ASP MCB EDASP MCB 15A SP MCB СКТЗ Q2 CKT4 Q1 CKT2 CKT1 P2 2X1.5 rm BYM+1.5 BYA ECC 2X4 rm BYM+4 BYA ECC 2X6 rm BYM+6 BYA ECC

# ESB DIAGRAM



# ESDB DIAGRAM







#### Calculations for Light Bulbs(LB) and Fans(F)

Formula for Light Bulbs, E= n\*N\*F\*UF\*LLF/A(A in mA2)

Number of Fans =A/100(a in sqft)

#### Bedroom-1

Area =(9'6" \* 11'8")=116.833 Square feet = 10.2967 m2

Illuminance E= 100 lumen/m2

Light Loss Factor and Utilization Factor , LLF x UF = 0.7

Number of lights per luminaire, n=1

Flux = 1250 Lumen (20 W Energy Saving Bulb and Fluorescent Tubelight)

Number of lights, N=?

Calculating from the above formula, N= 1.176

So, 1 light bulb and 1 tube light are needed.

Number of Fans = 1.1

So, 1 fan will be needed

#### Bedroom-2

Area =(8' \* 11'11")=95.33 Square feet = 8.8564 m2

Illuminance E= 100 lumen/m2

Light Loss Factor and Utilization Factor, LLF x UF = 0.7

Number of lights per luminaire, n=1

Flux = 1250 Lumen (20 W Energy Saving Bulb and Fluorescent Tubelight)

Number of lights, N=?

Calculating from the above formula, N= 1.01

#### So, 1 light bulb is needed

Number of Fans = 0.953

So, 1 fan will be needed

#### **Drawing Room**

Area =(13' \* 11')=143 Square feet = 13.2851 m2

Illuminance E= 100 lumen/m2

Light Loss Factor and Utilization Factor, LLF x UF = 0.7

Number of lights per luminaire, n=1

Flux = 1250 Lumen (20 W Energy Saving Bulb and Fluorescent Tubelight)

Number of lights, N=?

Calculating from the above formula, N= 1.51829

#### So, 1 light bulb and 1 tube light are needed.

Number of Fans = 1.43

#### So, 1 fan will be needed (average)

#### **Dining Room**

Area =(7' \* 7'11'')=55.4167 Square feet = 5.14837 m2

Illuminance E= 100 lumen/m2

Light Loss Factor and Utilization Factor , LLF x UF = 0.7

Number of lights per luminaire, n=1

Flux = 1250 Lumen (20 W Energy Saving Bulb and Fluorescent Tubelight)

Number of lights, N=?

Calculating from the above formula, N= 0.588

#### So, 1 light bulb or 1 tube light are needed.

Number of Fans = 0.55

#### So, 1 fan will be needed

#### Toilet-1

Area =(5'7" \* 2'10")=15.8194 Square feet = 1.4696 m2

Illuminance E= 100 lumen/m2

Light Loss Factor and Utilization Factor, LLF x UF = 0.7

Number of lights per luminaire, n=1

Flux = 1250 Lumen (20 W Energy Saving Bulb and Fluorescent Tubelight)

Number of lights, N=?

Calculating from the above formula, N= 0.167

#### So, 1 light bulb is needed

#### <u>Kitchen</u>

Area =(6'4'' \* 6'11'')=43.805 Square feet = 4.0696 m2

Illuminance E= 200 lumen/m2

Light Loss Factor and Utilization Factor, LLF x UF = 0.7

Number of lights per luminaire, n=1

Flux = 1250 Lumen (20 W Energy Saving Bulb and Fluorescent Tubelight)

Number of lights, N=?

Calculating from the above formula, N= 0.930

So, 1 light bulb is needed.

#### 1 exhaust fan will be needed

#### Toilet-2

Area =(3'6'' \* 5'8'')=19.833 Square feet = 1.8425 m2

Illuminance E= 100 lumen/m2

Light Loss Factor and Utilization Factor , LLF x UF = 0.7

Number of lights per luminaire, n=1

Flux = 1250 Lumen (20 W Energy Saving Bulb and Fluorescent Tubelight)

Number of lights, N=?

Calculating from the above formula, N= 0.21

#### So, 1 light bulb is needed.

#### Corridor

Area =(13' \* 5')=6.0387 m2

Illuminance E= 70 lumen/m2

Light Loss Factor and Utilization Factor , LLF x UF = 0.7

Number of lights per luminaire, n=1

Flux = 1250 Lumen (20 W Energy Saving Bulb and Fluorescent Tubelight)

Number of lights, N=?

Calculating from the above formula, N= 0.483

#### So, 1 ceiling mounted light is needed

#### **Calculation for Conduits**

Formula for Ampere Rating , I=P/(V\*pf)\*(A)

Pf= 0.7 is considered on an average.

Energy Saving Bulb = 20W

Tube Light = 20W

Ceiling Fan = 100W

Switchboard Socket(max)= 100 W

Celing Light = 20W

All internal wires are below 5A rating so 2 x 1.5 rm BYM is used in all internal wiring.

#### To Sub Distribution Board(SDB)

#### **CKT1 Rating**

I = (20+100)/(220\*0.7) = 0.77A

So, 2x1.5 rm BYM + 1.5 BYA ECC are used.

#### **CKT2 Rating**

 $I = (3 \times 20 + 100 + 2 \times 100)/(220 \times 0.7)$ 

= 2.337 A

So, 2 x 1.5 nm BYM + 55 BYA ECC are used.

#### **CKT3 Rating**

 $I = (100 + 20 + 20 + 100 + 20)/(220 \times 0.7)$ 

= 1.658 A

So, 2 x 1.5 rm BYM + 1.5 BYA ECC are used

#### **CKT4 Rating**

 $I=(100 + 20 + 100)/(220 \times 0.7)$ 

= 1.418 A

So, 2 x 1.5 nm BYM + 55 BYA ECC are used.

### To Emergency Sub Distribution Board(ESDB)

#### **CKT1 Rating**

 $I = (20 + 100)/(220 \times 0.7)$ 

= 0.7792 A

so, 2 x 1 .5 rm BYM + 1 .5 BYA ECC are used.

#### **CKT2 Rating**

 $I = (20 + 100)/(220 \times 0.7)$ 

= 0.7792 A

```
so, 2 x 1 .5 rm BYM + 1 .5 BYA ECC are used.
```

#### CKT3 Rating

 $I = (2x100 + 3 \times 20)/(220 \times 0.7)$ 

= 1.68 A

so,  $2 \times 1.5 \text{ rm BYM} + 2 \times 1.5 \text{ BYA ECC}$  are used.

#### **Calculations for SDB**

SDB load = Total load x 0.7 + Total P socket load x 0.5 + total Q socket load x 0.3

Total load = CKT1 load + CKT2 load + CKT3 load + CKT4 load

SDB current = SDB load / Voltage \*pf

P load =15A

Q load = 20 A

Voltage = 220 V

Power Factor, pf=0.7

CKT1 Load = 20 +100=120 W

CKT2 Load =  $3 \times 20 + 100 + 2 \times 100 = 360 \text{ W}$ 

CKT3 Load = 20\*3 +100\*2=260 W

CKT4 Load = 100 + 20 + 100 = 220 W

Total load = 960 W

SDB load = 960 \* 0.7 + 3000\*0.2\*2+4000\*2\*.2 = 3472W

SDB current = 3472/ (220 \*0.7) = 22.5454A

40A Sp MCCB is required From SDB to MDB

#### **Calculations for ESDB**

ESDB load = Total load x 0.7 + Total P socket load x 0.2 + total Q socket load x 0.2

Total Load = CKTI' load + CKT2' load + CKT3' load

ESDB Current = ESDB Load/Voltage \* pf

CKT1 Load = 20 +100=120 W

CKT2 Load = 20\*3 + 100 \*2= 260 W

CKT3 Load = 20\*4 +100\*3=380 W

Total load = 760 W

ESDB load =  $6 \times 760 \times 0.7 = 3192$ 

Total ESDB Current=3192/(220\*.7)=20.72A

**30A Sp MCCB is required From ESDB to EMDB** 

#### **CALCULATION OF ESDB GROUND**

ESDB GND CURRENT=120\*.7/220\*.7=.545A

5A SP MCCB is needed from ESDB GND TO EMDB

#### **EMDB** calculation

EMDB load = total ESDB load x 0.7

Total ESDB load = 6x ESDB load

EMDB current = EMDB load / 3^1/2 x line voltage c pf

Phase voltage = 220V

Line voltage =  $3^1/2 \times 220 = 381.05 \text{ V}$ 

Power factor = 0.7

ESDB load =  $6 \times 760 \times 0.7 = 3192$ 

EMDB load=3192\*6\*.7=13406.4w

Current =  $(3192x 6x 0.7)/(3^1/2x381.05x0.7)=29.0182715A$ 

30A Tp MCCB needed from EMDB to MDB

#### **MDB** calculation

MDB load = total SDB load  $\times$  0.7 + (EMDB load + pump load )  $\times$  0.7

 $= 6x 3472 \times 0.7 + (13406.4 + 5000) \times 0.7$ 

= 27466.8W

Current =  $27466.8/(3^1/2 \times 381.05 \times 0.7) = 59.45A$ 

150 A TP MCCB needed from MDB to main line

#### **AIR TERMINAL CALCULATION**

Total circumference=2x3+31x4+57x2+5x2=254feet=77.4192meter

Air terminal should be placed 20 meter distance

Air terminal number=77.4192/20=3.87

So 4 air terminal.