POPULATION STUDY:

AN ANALYSIS ON WORLD'S FERTILITY RATE AND THE EXPECTED FUTURE TREND

Group 2

Tseng Chia Yi | Kenneth Low Yan Wei | Peace Tay Jiunn Ching | Wang Kunrui | Yap Pin Yaw

WHICH COUNTRY HAS A HIGHER FERTILITY RATE?

1

Wealthy and Affluent

High GDP per capita

2

Educated Population

Skilled and competent workforce

Healthy Citizens

Advanced medical care and technology

Poor and Poverty Stricken

Low GDP per capita

1

Less Educated Population

High proportion of illiterate people

2

Poor Heathcare

Poor medical facilities, lack of medical technology

3

CONTENT

01 Introduction, Objectives, Data

02 Data Analysis: Descriptive & Inferential

03 R Shiny Demo

04 Conclusion

OBJECTIVE

Identify global fertility rate trends

Identify factors that affects fertility rate

Determine impact of factors, and project future population and fertility rates

WHY IS THIS IMPORTANT TO YOU?

Economic factors

Higher spending on healthcare and supporting the elderly

Heavy burden on the working population

Impact of aging population

A low fertility rate of a country will result in an aging population. There will be increased government spending on healthcare and medical facilities to support the elderly. This means higher taxes on the working population.

Families will have added responsibilities to take care of the elderly, with 1 working adult taking care of 2 elderly parents. This will have ripple effects on societal structure in the long run.

DEVELOPMENTAL INDICATORS

Life Expectancy

Indicates the level of advancement in medical technology and healthcare

Gross % of Secondary School Enrollment

Indicates how educated the population is

GDP Per Capita

Indicates the level of wealth and standard of living

DATA PREPARATION

Data Sources

- https://ourworldindata.org/
- https://worldbank.org/
- https://www.un.org/
- https://www.imf.org

Data Issues

- Missing data
 - Exclude missing fertility in 24 countries
 - Exclude missing GDP in 5 countries
 - Exclude countries with missing data for certain years on graph visualization

Variable	Description	How it will be used
Fertility rate	Total number of children that would be born to each woman	To define a country's fertility rate
Gross Domestic Product (GDP per capita)	National GDP divide by its population (The Investopedia Team, 2022)	To define a country's economic level
Infant Mortality rate	Number of deaths of children under one year of age, expressed per 1000 live births (OECD, n.d.)	As a proxy of a country's healthcare accessibility and technological advancement
Secondary School Enrolment %	Percentage of defined age group enrolment in Secondary School education	As a proxy of the population's education level
Countries	Name of Countries	To categorise advanced / emerging and developing countries
Country Standard ID and Codes	List of countries, their associated numeric code, and alpha code	To allow for more seamless merging of data frames

CONTENT

01 Introduction, Objectives, Data

02 Data Analysis: Descriptive & Inferential

03 R Shiny Demo

04 Conclusion

WORLD MAP INDICATORS

FERTILITY RATE PROJECTION

Singapore, Linear Projection

Singapore, Exponential Projection

Ghana, Linear Projection

Ghana, Exponential Projection

Observation

- Advanced economies' countries projection is approximately similar while Emerging & Developing economies' countries are experiencing a high decreasing rate.
- In year 2050, Emerging & Developing economies' countries are having lower fertility rate than advanced economies.

Observation

- Countries moving towards a plateau state as they continue to be projected over time towards 2050.
- Emerging & Developing economies' countries transforming into advanced economies' countries and exhibit their trend of having low fertility rate.

FERTILITY RATE ANALYSIS

Linear versus Exponential Regression

- As a country advances, the fertility rate tends to hit a plateau (as shown in the advanced economies' countries projection)
- Exponential regression proved to be a much effective and reliable projection of fertility rate on time-series as compared to linear regression.

POPULATION DEMOGRAPHICS

- For the country of Ghana
- For year 1980

By Gender and Age

POPULATION DEMOGRAPHICS

According to WHO, ideal ratio is 105 males: 100 females

Pre-Reproductive: 0Y – 14Y Reproductive: 15Y – 44Y

Post-Reproductive: 45Y - EOL

Singapore, 1980	Singapore, 2020	Singapore, 2050
Male : Female	Male : Female	Male : Female
104 : 100	113 : 100	113 : 100

Ghana, 1980	Ghana, 2020	Ghana, 2050
Male : Female	Male : Female	Male : Female
100 : 100	104 : 100	104 : 100

GDP PER CAPITA VS FERTILITY RATE, 2019

GDP per capita

Region

- East Asia & Pacific
- Europe & Central Asia
- Latin America & Caribbean
- Middle East & North Africa
- North America
- South Asia
- Sub-Saharan Africa

IME

- Advanced Economies
- ▲ Emerging and Developing Economies

Observation

- Across the years, the elements are clearly trending towards the left for both Advanced and Developing countries
- All Advanced Country's fertility rate falls to the range of + 1.5 and stagnates there, while GDP continues to increase
- African countries have one of the highest Fertility Rates and lowest GDP per capita

- This is consistent with trends around the world where citizens of Advanced Countries are getting married at a later age, and families prefer to have only 1 or 2 children*
- African country's population are still heavily reliant on agriculture and mining. Therefore, GDP is low while families prefer to have more children to help with manual labor

OTHER DEVELOPMENTAL INDICATORS VS FERTILITY RATE, 2019

Secondary School Enrolment

Observation

- Similarly, all developmental indicators improve as fertility rate falls and approaches 1.5
- · African countries continue to lack behind

Life expectancy

 Developing Countries follows the trend of Advanced Countries, as society advances and improves, the fertility rate drops

CLUSTER PLOT [1]

Highly affluent countries (Luxembourg, Switzerland, Singapore etc.) are grouped in the blue box, while less developed countries (Oman, Ghana etc.) are grouped in the red box. The country Chad, has one of the lowest GDP per capita and highest fertility rates in the world

Analysis

Countries in the green box have relatively low GDP per capita and Fertility rate. These countries experiences a lower standard of living and aging population. Foreign investors will shun such countries as a result.

CLUSTER PLOT [2]

Analysis

Across all developmental metrics, more advanced countries have better standards of living and developmental indicators, with a lower fertility rate. Conversely, developing countries are grouped together with a higher fertility rate and lower standard of living. Once again, country Chad has the highest fertility rate and lowest standard of living

WHERE IS GHANA?

Africa

Republic of Ghana

Ghana is a country in West Africa. Ghana has experienced multiple and long-lasting civil and drug wars, and is rife governmental corruption*

A RADAR PLOT SHOWS THE CORRELATION BETWEEN KEY VARIABLES AND FERTILITY RATE

IN GHANA...

Observation

A strong effect is observed between GDP and Fertility (-0.75), and Education and Fertility (-0.74).

A very strong effect (-0.96) is observed between Life Expectancy and Fertility.

	Life Expectancy	GDP	Education
Correlation	-0.96	-0.75	-0.74

RADAR ANALYSIS

Analysis

- Life Expectancy shares the strongest correlation with Fertility
- Ghana has the world's lowest life expectancy at 64.2 years and one the world's highest fertility rate
- Might be missing out on the demographic transition phenomenon

	Life Expectancy	GDP	Education
Correlation	-0.96	-0.75	-0.74

RADAR ANALYSIS

IN Singapore...

DEMOGRAPHIC TRANSITION

Phenomenon which refers to the historical shift from

High birth rates + High death rates

to

Low birth rates + Low death rates

in societies with advancement in technology, education and economic development

Life Expectancy	GDP	Education
-0.93	-0.97	-0.81

LINEAR REGRESSION

GOAL:

To find out if there is significant linear regression between each Independent Variable (GDP, Life Expectancy, Education) with Dependent Variable (Fertility).

Also, if there is any difference between Advanced and Emerging Economies

LINEAR REGRESSION TESTING_GDP

H0: Linear regression is not significant H1: Linear regression is significant

Advanced countries

```
Call:
lm(formula = Advanced_FR$Fertility ~ Advanced_GDP$GDP)
Residuals:
     Min
                      Median
-0.164905 -0.048104 0.008657 0.048640 0.221825
Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
(Intercept)
                 1.787e+00 3.167e-02 56.418 < 2e-16 ***
Advanced_GDP$GDP -4.097e-06 1.079e-06 -3.797 0.000513 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.08407 on 38 degrees of freedom
Multiple R-squared: 0.275,
                              Adjusted R-squared: 0.2559
F-statistic: 14.42 on 1 and 38 DF, p-value: 0.0005135
```

H₀ is rejected

The linear regression for fertility rate with GDP is significant in advanced countries.

Developing countries

```
Call:
lm(formula = Emerging_FR$Fertility ~ Emerging_GDP$GDP)
Residuals:
    Min
              10 Median
-0.74311 -0.44216 -0.04787 0.29229 1.36098
Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
(Intercept)
                 5.280e+00 2.023e-01 26.099 < 2e-16
Emerging_GDP$GDP -3.546e-04 4.489e-05 -7.899 1.54e-09 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.5575 on 38 degrees of freedom
                              Adjusted R-squared: 0.6116
Multiple R-squared: 0.6215,
F-statistic: 62.4 on 1 and 38 DF, p-value: 1.545e-09
```

H₀ is rejected

The linear regression for fertility rate with GDP is significant in emerging and developing countries.

LINEAR REGRESSION TESTING_LIFE EXPECTANCY

H0: Linear regression is not significant H1: Linear regression is significant

Advanced countries

```
Call:
lm(formula = Advanced_FR$Fertility ~ Advanced_LifeExp$LifeExp)
Residuals:
           10 Median
    Min
-0.16908 -0.05211 0.01494 0.05115 0.19205
Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
(Intercept)
                    Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.07902 on 38 degrees of freedom
Multiple R-squared: 0.3596,
                         Adjusted R-squared: 0.3428
F-statistic: 21.34 on 1 and 38 DF, p-value: 4.327e-05
```

H₀ is rejected

The linear regression for fertility rate with life expectancy is significant in advanced countries.

Developing countries

```
Call:
lm(formula = Emerging_FR$Fertility ~ Emerging_LifeExp$LifeExp)
Residuals:
              10 Median
     Min
                                       Max
-0.46563 -0.25710 0.04619 0.23269 0.43166
Coefficients:
                        Estimate Std. Error t value Pr(>|t|)
(Intercept)
                        18.91025
                                   0.77476 24.41 <2e-16 ***
Emerging_LifeExp$LifeExp -0.23123
                                   0.01187 -19.48 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.2734 on 38 degrees of freedom
Multiple R-squared: 0.909,
                               Adjusted R-squared: 0.9066
F-statistic: 379.5 on 1 and 38 DF, p-value: < 2.2e-16
```

H₀ is rejected

The linear regression for fertility rate with life expectancy is significant in emerging and developing countries.

LINEAR REGRESSION TESTING_EDUCATION LEVEL

H0: Linear regression is not significant H1: Linear regression is significant

Advanced countries

```
Call:
lm(formula = Advanced_FR$Fertility ~ Advanced_Edu$Edu)
Residuals:
                     Median
     Min
-0.141935 -0.037517 0.001695 0.038362 0.120049
Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
                 2.582265 0.103330 24.99 < 2e-16 ***
(Intercept)
Advanced_Edu$Edu -0.008851 0.001007
                                     -8.79 1.08e-10 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.05669 on 38 degrees of freedom
Multiple R-squared: 0.6703,
                              Adjusted R-squared: 0.6616
F-statistic: 77.26 on 1 and 38 DF p-value: 1.083e-10
```

H₀ is rejected

The linear regression for fertility rate with education level is significant in advanced countries.

Developing countries

```
Call:
lm(formula = Emerging_FR$Fertility ~ Emerging_Edu$Edu)
Residuals:
              10 Median
     Min
-0.48411 -0.14970 0.00193 0.20402 0.31391
Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
(Intercept)
                 7.401789 0.155368 47.64
Emerging_Edu$Edu -0.059826  0.002539  -23.57  <2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 0.2293 on 38 degrees of freedom
Multiple R-squared: 0.936,
                               Adjusted R-squared: 0.9343
F-statistic: 555.3 on 1 and 38 DF, p-value: < 2.2e-16
```

H₀ is rejected

The linear regression for fertility rate with education level is significant in emerging and developing countries.

LINEAR REGRESSION TEST FOR SIGNIFICANCE

	Advanced Countries	Developing Countries
GDP vs Fertility	Linear regression is significant	Reject! Linear regression is significant
Life Expectancy vs Fertility	Reject! Linear regression is significant	Reject! Linear regression is significant
Education vs Fertility	Reject! Linear regression is significant	Reject! Linear regression is significant

MULTI LINEAR REGRESSION TESTING

```
Call:
lm(formula = allcountries$Fertility ~ allcountries$GDP + allcountries$LifeExp +
    allcountries$Edu)
Residuals:
     Min
                10
                      Median
                                    3Q
                                             Max
-0.242513 -0.080870 -0.007791 0.093342 0.257812
Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
(Intercept)
                     4.307e+00 3.435e+00
                                          1.254
                                                   0.2180
allcountries$GDP
                     4.916e-05 1.943e-05
                                            2.530
                                                   0.0159 *
                                          1.031
allcountries$LifeExp 6.638e-02 6.440e-02
                                                   0.3095
                    -8.556e-02 1.260e-02 -6.792 6.16e-08 ***
allcountries$Edu
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 0.1327 on 36 degrees of freedom
  (1 observation deleted due to missingness)
Multiple R-squared: 0.9703, Adjusted R-squared: 0.9678
F-statistic: 391.9 on 3 and 36 DF, p-value: < 2.2e-16
```

Observation

- P values calculated are large, making this multi-linear regression not statistically significant.
- StepAIC to be carried out to determine which independent variable contributes more to the variation of the dependent variable.

MULTI LINEAR REGRESSION TESTING

Additional step of using stepAIC to determine the best representation of the independent variables.

```
Start: AIC=-157.82
allcountries$Fertility ~ allcountries$GDP + allcountries$LifeExp +
    allcountries$Edu
                      Df Sum of Sa
 allcountries$LifeExp 1
                           0.01870 0.65218 -158.65
                                   0.63348 - 157.82
<none>
 allcountries$GDP
                           0.11264 0.74613 -153.27
 allcountries$Edu
                       1 0.81181 1.44529 -126.82
Step: AIC=-158.65
allcountries$Fertility ~ allcountries$GDP + allcountries$Edu
                      Df Sum of Sq
                                      RSS
                                               AIC
                                   0.6522 -158.65
<none>
+ allcountries$LifeExp 1
                            0.0187 0.6335 -157.82
  allcountries$GDP
                            0.4181 1.0703 -140.84
  allcountries$Edu
                            4.6105 5.2626 -77.13
```

```
Call:
lm(formula = allcountries$Fertility ~ allcountries$GDP + allcountries$Edu)
Residuals:
                      Median
      Min
-0.242267 -0.100206 -0.008088 0.095035 0.269085
Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
(Intercept)
                 7.842e+00 2.041e-01 38.419
allcountries$GDP 6.394e-05 1.313e-05
allcountries$Edu -7.345e-02 4.541e-03 -16.17
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.1328 on 37 degrees of freedom
  (1 observation deleted due to missingness)
Multiple R-squared: 0.9694,
                               Adjusted R-squared: 0.9678
F-statistic: 586.3 on 2 and 37 DF, p-value: < 2.2e-16
```


- StepAIC eliminates Life Expectancy independent variable. Enabling the new multi-linear regression combination has a more stable AIC.
- According to the p-values on the new multi-linear regression, the intercept & slopes (GDP, Education) are all statistically significant.

CHI-SQUARE TESTING

H0: There is no association. H1: There is association.

	Fertility Rate	
GDP	=< 2	>2
<= USD 11K	n = 19	n = 92
> USD 11K	n = 27	n = 15

Pearson's Chi-squar	ed test
data: Matriz	
X-squared = 32.242, df = 1,	p-value = 1.361e-08

Observation

H₀ is rejected

There is association between fertility rate and GDP.

	Fertility Rate	
Life Expectancy	=< 2	>2
<= 70	n = 38	n = 71
> 70	n = 40	n = 36

Pearson's Chi-squared test
data: Matriz
X-squared = 5.7979, df = 1, p-value = 0.01605

H₀ is rejected

There is association between fertility rate and life expectancy.

	Fertility Rate	
Education Level	=< 2	>2
<= 85	n = 10	n = 10
> 85	n = 50	n = 31

Pearson's Chi-squared test data: Matriz X-squared = 0.91491, df = 1, p-value = 0.3388

H₀ is not rejected

There is no association between fertility rate and education level.

CONTENT

01 Introduction, Objectives, Data

02 Data Analysis: Descriptive & Inferential

03 R Shiny Demo

04 Conclusion

CONTENT

01 Introduction, Objectives, Data

02 Data Analysis: Descriptive & Inferential

03 R Shiny Demo

04 Conclusion

FUTURE WORK [1]

Study Policies of 'Model Countries'

To study and implement social policies of France, Denmark and Sweden who have relatively high fertility rate.

1.50 1.87 1.65 1.48 1.35 1.70 1.70 1.50 1.42

FUTURE WORK [2]

To include other variables for model to predict fertility rates

Other indicators for level of healthcare e.g. Infant mortality rate

Fertility rate projection

Population Density

Migration trends of countries

Other indicators for standard of living

Better indicators for level of education of workforce

