Theorem. Fib(n) is the closest integer to $\phi^n/\sqrt{5}$, where $\phi = (1 + \sqrt{5}/2)$.

Proof. Let $\psi = (1 - \sqrt{5})/2$. Then two Lemmas follow:

Lemma 1.
$$\phi^2 = (1+\sqrt{5})^2/4 = (6+2\sqrt{5})/4 = (3+\sqrt{5})/2 = 1+(1+\sqrt{5})/2 = \phi+1$$

Lemma 2.
$$\psi^2 = (1 - \sqrt{5})^2/4 = (6 - 2\sqrt{5})/4 = (3 - \sqrt{5})/2 = 1 + (1 - \sqrt{5})/2 = \psi + 1$$

Now we'll prove a third lemma by induction:

Lemma 3. $Fib(n) = (\phi^n - \psi^n)/\sqrt{5}$ for all nonnegative integers n.

Proof. First,
$$(\phi^0 - \psi^0)/\sqrt{5} = (1-1)/\sqrt{5} = 0 = Fib(0)$$
.

Second,
$$(\phi^1 - \psi^1)/\sqrt{5} = ((1 + \sqrt{5} - 1 + \sqrt{5})/2)/\sqrt{5} = 1 = Fib(1).$$

Now assume $Fib(a) = (\phi^a - \psi^a)/\sqrt{5}$ and $Fib(a+1) = (\phi^{a+1} - \psi^{a+1})/\sqrt{5}$ for some nonnegative integer a.

Then using Lemmas 1-2:

$$Fib(a+2) = Fib(a) + Fib(a+1)$$

$$= (\phi^{a} - \psi^{a} + \phi^{a+1} - \psi^{a+1})/\sqrt{5}$$

$$= (\phi^{a}(\phi+1) - \psi^{a}(\psi+1))/\sqrt{5}$$

$$= (\phi^{a}(\phi^{2}) - \psi^{a}(\psi^{2}))/\sqrt{5}$$

$$= (\phi^{a+2} - \psi^{a+2})/\sqrt{5}$$

Thus by induction, $Fib(n) = (\phi^n - \psi^n)/\sqrt{5}$ for all nonnegative integers n.

Rearranging Lemma 3, $\phi^n/\sqrt{5} = Fib(n) + \psi^n/\sqrt{5}$. So we need to show 0.5 < $\psi^n/\sqrt{5}$ < 0.5 for all nonnegative integers n to finish the proof.

Now
$$\psi = (1 - \sqrt{5})/2 \approx -0.618$$
.

Since
$$-1 < \psi < 1$$
, then $-1 < \psi^n \le 1$, and $-\frac{1}{\sqrt{5}} < \frac{\psi^n}{\sqrt{5}} \le \frac{1}{\sqrt{5}}$

Since $-1 < \psi < 1$, then $-1 < \psi^n \le 1$, and $-\frac{1}{\sqrt{5}} < \frac{\psi^n}{\sqrt{5}} \le \frac{1}{\sqrt{5}}$ That is, $-0.447 < \frac{\psi^n}{\sqrt{5}} \le 0.447$, so $-0.5 < \frac{\psi^n}{\sqrt{5}} < 0.5$. With Lemma 3, this shows that there is less than a 0.5 difference between Fib(n) and $\phi^n/\sqrt{5}$, which means Fib(n) is the closest integer to $\phi^n/\sqrt{5}$.