ÁLGEBRA III - 2023 Práctico 2

Determinantes

1. Sea K un anillo conmutativo con identidad. Si A es una matriz 2×2 sobre K, la *adjunta clásica* de A es la matriz 2×2 adjA definida por

$$adjA = \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}$$

Si det denota la única función determinante en matrices 2×2 sobre K, muestre que

- a) (adjA)A = A(adjA) = (det A)I.
- b) $\det(\operatorname{adj} A) = \det(A)$.
- c) $\operatorname{adj} A^t = (\operatorname{adj} A)^t$.
- 2. Sea A una matriz 2×2 sobre un cuerpo $\mathbb F$ y supóngase que $A^2 = 0$. Demostrar que para todo escalar $x, \det(xI A) = x^2$.
- 3. Sea K un subcuerpo de los números complejos y n un entero positivo. Sean j_1, j_2, \ldots, j_n y k_1, k_2, \ldots, k_n enteros positivos no mayores que n. Para una matriz $A, n \times n$ sobre K se define

$$D(A) = a_{j_1 k_1} a_{j_2 k_2} \dots a_{j_n k_n}.$$

Demostrar que D es n-lineal si y sólo si los enteros j_1, j_2, \ldots, j_n son distintos.

- 4. Sea K un anillo conmutativo con unidad. Demostrar que la función determinante sobre las matrices 2×2 A, sobre K es alternada y 2-lineal como función de las columnas de A.
- 5. Sea K un anillo conmutativo con unidad. Se define una función D sobre las matrices 3×3 sobre K

$$D(A) = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{23} \end{vmatrix}$$

Demostrar que D es alternada y 3-lineal como función de las columnas de A.

- 6. Sea \mathbb{F} un cuerpo y D una función sobre las matrices $n \times n$ sobre \mathbb{F} (con valores en \mathbb{F}). Supóngase que D(AB) = D(A)D(B) para toda A, B. Demostrar que D(A) = 0 para toda A, o bien D(I) = 1. En este último caso demostrar que $D(A) \neq 0$ si A es inversible.
- 7. Una matriz $n \times n$, $A = (a_{ij})$ se dice *triangular* si $a_{ij} = 0$ para todo i > j o si $a_{ij} = 0$ para todo i < j. Demostrar que si A es triangular entonces $\det A = a_{11}a_{22}\cdots a_{nn}$, donde los a_{ii} son los elementos de la diagonal de A.
- 8. ¿Cómo se relacionan $\det 2A$, $\det -A$ y $\det A^t$ con $\det A$?.
- 9. Use eliminación Gaussiana para verificar que el determinante de una matriz de Vandermonde 3×3 es

$$\begin{vmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \end{vmatrix} = (x_2 - x_1)(x_3 - x_1)(x_3 - x_2)$$

10. Sean \mathbb{F} un cuerpo y $A \in \mathbb{F}^{n \times n}$. Demostrar que:

- a) si A es antisimétrica $(A^t = -A)$, n es impar y car $\mathbb{F} \neq 2$, entonces det A = 0;
- b) si A es ortogonal ($AA^t = I$), entonces $\det A = \pm 1$.¿Qué clase de paralelepípedo forman las columnas (o las filas) de A?;
- c) si $\mathbb{F} = \mathbb{C}$ y A es unitaria ($A^*A = I$, donde A^* denota la transpuesta conjugada \bar{A}^t de A), entonces $|\det A| = 1$.
- 11. Dado 0 < r, n y una matriz $Mn \times n$ la podemos escribir como

$$M = \left(\begin{array}{cc} A & B \\ C & D \end{array}\right)$$

donde, A, B, C y D son matrices $r \times r, r \times (n-r), (n-r) \times r$ y $(n-r) \times (n-r)$ respectivemente. Probar que si A es inversible $\det M = \det A \det(D - CA^{-1}B)$.

- 12. Sea A_n la matriz $n \times n$ cuyos coeficientes son nulos si están en la diagonal y uno si están fuera. Calcule det A_n . Ayuda: use inducción y el ejercicio anterior.
- 13. Sea T un operator lineal en \mathbb{F}^n . Se define

$$D_T(\alpha_1, \alpha_2, \dots, \alpha_n) = \det(T\alpha_1, T\alpha_2, \dots, T\alpha_n)$$

donde $\alpha_i \in \mathbb{F}^n$.

- a) Demostrar que D_T es una función alternada n-lineal.
- b) Si $\{e_i\}_{i=1}^n$ es la base canónica y

$$c = \det(Te_1, Te_2, \dots, Te_n)$$

demostrar que dados n vectores $\alpha_1, \alpha_2, \dots, \alpha_n$ arbitrarios se tiene

$$\det(T\alpha_1, T\alpha_2, \dots, T\alpha_n) = c \det(\alpha_1, \alpha_2, \dots, \alpha_n).$$

- c) Si \mathcal{B} es cualquier base ordenada de \mathbb{F}^n y A es la matriz de T en la base ordenada \mathcal{B} , demostrar que det A=c.
- d) ¿ Podemos definir una función determinante para un operador lineal?
- 14. Sean $V = \mathbb{F}^{n \times n}$ el espacio vectorial de las matrices $n \times n$ sobre un cuerpo \mathbb{F} y $B \in \mathbb{F}^{n \times n}$. Consideremos L_B y R_B los operadores lineales sobre V definidos por $L_B(A) := BA$ y $R_B(A) := AB$. Demostrar que:
 - a) $\det L_B = (\det B)^n$.
 - b) $\det R_B = (\det B)^n$.