$$= \sum_{i=1}^{k-1} \lambda_i f(x_i) + \lambda_k f(x_k)$$

$$\forall M$$
, $f\left(\frac{M}{L-1}\lambda_i X_i\right) \leq \underbrace{\sum_{i=1}^{M} \lambda_i f(X_i)}_{\text{and}}$, which $\lambda_i \geq 0$ and $\xi_i \lambda_i = 1$

2. Perive the Entropy of the Universe Gaussian.

Bage on definition:

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{(x-u)^2}{2\sigma^2}} \times \left(\ln \left(\frac{1}{\sqrt{2\pi \sigma^2}} \right) + \ln \left(e^{-\frac{(x-u)^2}{2\sigma^2}} \right) \right) dx$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{(x-u)^2}{2\sigma^2}} \times \left(\frac{1}{2} \ln \left(2\pi \sigma^2 \right) + \frac{-(x-u)^2}{2\sigma^2} \right) dx$$

$$= \int_{-\infty}^{\infty} \ln \left(2\pi \sigma^2 \right) \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{(x-u)^2}{2\sigma^2}} dx - \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{(x-u)^2}{2\sigma^2}} dx$$

$$= \int_{-\infty}^{\infty} \ln \left(2\pi \sigma^2 \right) \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{(x-u)^2}{2\sigma^2}} dx - \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{(x-u)^2}{2\sigma^2}} dx$$

$$= \int_{-\infty}^{\infty} \ln \left(2\pi \sigma^2 \right) \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{(x-u)^2}{2\sigma^2}} dx - \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{(x-u)^2}{2\sigma^2}} dx$$

$$= \int_{-\infty}^{\infty} \ln \left(2\pi \sigma^2 \right) \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{(x-u)^2}{2\sigma^2}} dx - \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{(x-u)^2}{2\sigma^2}} dx$$

$$= \int_{-\infty}^{\infty} \ln \left(2\pi \sigma^2 \right) \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{(x-u)^2}{2\sigma^2}} dx - \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{(x-u)^2}{2\sigma^2}} dx$$

$$= \int_{-\infty}^{\infty} \ln \left(2\pi \sigma^2 \right) \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{(x-u)^2}{2\sigma^2}} dx - \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{(x-u)^2}{2\sigma^2}} dx$$

$$= \int_{-\infty}^{\infty} \ln \left(2\pi \sigma^2 \right) \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{(x-u)^2}{2\sigma^2}} dx - \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{(x-u)^2}{2\sigma^2}} dx - \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{(x-u)^2}{2\sigma^2}} dx$$

$$= \int_{-\infty}^{\infty} \ln \left(2\pi \sigma^2 \right) \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{(x-u)^2}{2\sigma^2}} dx - \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi \sigma^2}}$$

DATE

3.

$$= \frac{1}{2} \ln(2\pi\sigma^{2}) \int_{-\infty}^{\infty} p(x) dx - \frac{-1}{2\sigma^{2}} \int_{-\infty}^{\infty} p(x) (x-m)^{2} dx$$

$$= \frac{1}{2} \ln(2\pi\sigma^{2}) \times 1 - \frac{-1}{2\sigma^{2}} \times \sigma^{2}$$

$$= \frac{1}{2} \ln(2\pi\sigma^{2}) + \frac{1}{2} = \frac{1}{2} \left(\ln(2\pi\sigma^{2}) + 1 \right)_{\#}$$

$$= \frac{1}{2} \ln(2\pi\sigma^{2}) + \frac{1}{2} = \frac{1}{2} \left(\ln(2\pi\sigma^{2}) + 1 \right)_{\#}$$

$$= \frac{1}{2} \ln(2\pi\sigma^{2}) + \frac{1}{2} = \frac{1}{2} \left(\ln(2\pi\sigma^{2}) + 1 \right)_{\#}$$

$$-\frac{1}{2}$$
 KL (P118) = $-\int p(x) ln\left(\frac{g(x)}{p(x)}\right)$

-, HX p(x), q(x)

$$= -\int \frac{1}{\sqrt{2\pi}\Omega^{2}} \left(\frac{N(x|m,s^{2})}{N(x|n,\sigma^{2})} \right) dx$$

$$= -\int \frac{1}{\sqrt{2\pi}\Omega^{2}} \left(\frac{1}{\sqrt{2\pi}\Omega^{2}} \times \frac{-(x-m)^{2}}{\sqrt{2\pi}\Omega^{2}} \right) dx$$

$$= -\int \frac{1}{\sqrt{2\pi}\Omega^{2}} \left(\frac{x-m}{\sqrt{2\pi}\Omega^{2}} \times \frac{-(x-m)^{2}}{\sqrt{2\pi}\Omega^{2}} \right) dx$$

$$= -\int \frac{1}{\sqrt{2\pi}\Omega^{2}} \left(\frac{x-m}{\sqrt{2\pi}\Omega^{2}} \times \frac{-(x-m)^{2}}{\sqrt{2\pi}\Omega^{2}} \times \frac{-(x-m)^{2}}{\sqrt{2\pi}\Omega^{2}} \right) dx$$

$$= -\int \frac{1}{\sqrt{2\pi}\Omega^{2}} \left(\frac{x-m}{\sqrt{2\pi}\Omega^{2}} \times \frac{-(x-m)^{2}}{\sqrt{2\pi}\Omega^{2}} + \frac{(x-m)^{2}}{\sqrt{2\pi}\Omega^{2}} \right) dx$$