Фискретна математика - 2

Змістовий модуль 7. Теорія чисел і криптографія

Шема 7. Алгоритм Евкліда. Лінійні қонгруенції

План лекції

- Алгоритм Евкліда
- Лінійні конгруенції
- Первісні корені й дискретні логарифми

Алгоритм Евкліда.

Нехай a та b — цілі числа, які одночасно не дорівнюють нулю. Найбільше ціле d таке, що $d \mid a$ і $d \mid b$ називають найбільшим спільним дільником a та b і позначають як $\gcd(a,b)$.

Для знаходження gcd(a,b) можна використати факторизацію. Нехай

$$a = p_1^{a_1} p_2^{a_2} \cdots p_n^{a_n}, b = p_1^{b_1} p_2^{b_2} \cdots p_n^{b_n},$$

тут $p_1, p_2, ..., p_n$ – прості множники (деякі степені можуть дорівнювати нулю). Тоді

$$\gcd(a,b) = p_1^{\min(a_1,b_1)} p_2^{\min(a_2,b_2)} \cdots p_n^{\min(a_n,b_n)}.$$

Приклад. Оскільки
$$120 = 2^3 \cdot 3 \cdot 5$$
, $500 = 2^2 \cdot 5^3$, то $\gcd(120, 500) = 2^{\min(3, 2)} \cdot 3^{\min(1, 0)} \cdot 5^{\min(1, 3)} = 2^2 \cdot 3^0 \cdot 5^1 = 20$.

Числа a та b називають взаємно простими, якщо $\gcd(a,b)=1$.

Числа $a_1, a_2, ..., a_n$ називають *попарно взаємно простими*, якщо $\gcd(a_i, a_j) = 1$ для всіх $1 \le i < j \le n$. Наприклад, числа 10, 17 і 21 — попарно взаємно прості, а числа 10, 19 і 24 — ні.

Функцією Ейлера називають функцію φ , визначену на множині додатних цілих чисел, значення якої дорівнює кількості додатних цілих чисел, не більших n, які є взаємно простими з n. Можна довести, що число n є простим тоді й тільки тоді, коли $\varphi(n) = n - 1$.

Обчислювати найбільший спільний дільник двох цілих чисел виходячи з їхньої факторизації нераціонально. Ефективніше це робити за допомогою алгорифму Евкліда. Цей алгоритм зручно пояснити на прикладі. Знайдемо gcd(91,287). Спочатку поділимо більше з цих двох чисел на менше:

$$287 = 91 \cdot 3 + 14$$
 (перше ділення).

Кожен дільник 91 і 287 є також дільником $287 - 91 \cdot 3 = 14$. Отже, кожний дільник 91 і 14 також є дільником $287 = 91 \cdot 3 + 14$. Отже, найбільший спільний дільник 91 і 287 той самий, що й найбільший спільний дільник 91 і 14. Із цих міркувань випливає, що задачу знаходження gcd(91,287) можна спростити до задачі знаходження gcd(91,14).

Далі, поділимо 91 на 14:

$$91 = 14 \cdot 6 + 7$$
 (друге ділення).

Аналогічні міркування приводять до висновку, що gcd(91,14)=gcd(14,7).

Поділивши 14 на 7, одержимо

$$14 = 7 \cdot 2$$
 (третє ділення).

Із того, що 7 ділить 14 випливає, що gcd(14,7)=7. Оскільки gcd(91,287)=gcd(91,14)=gcd(14,7)=7, то задачу знаходження gcd(91,287) розв'язано, бо 7 є останньою ненульовою остачею.

Нижче подано алгоритм Евкліда у вигляді псевдокоду.

```
Алгоритм 4.2. Алгоритм Евкліда.

procedure gcd(a,b): positive integers)

x := a
y := b
while y \neq 0
begin
r := x \mod y
x := y
y := r
end
return x \{ gcd(a,b) \text{ is } x \}
```

В алгоритмі початкові значення для змінних x та y – це a та b відповідно, причому $a \ge b$. На кожній ітерації алгоритму x замінюється на y, а y замінюється на $x \mod y$, що являє собою остачу від ділення x на y. Ітерації продовжуються допоки виконується умова $y \ne 0$. Алгоритм зупиняється коли y = 0, і значення x у цій точці, яке ϵ останньою ненульовою остачею в цій процедурі, ϵ найбільшим спільним дільником a та b. Кількість операцій ділення в цьому алгоритмі склада ϵ $O(\log b)$.

Найбільші спільні дільники як лінійні комбінації.

Важливою властивістю найбільшого спільного дільника двох додатних цілих чисел a та b ϵ те, що його можна подати як лінійну комбінацію

$$sa+tb$$
,

де s та t – цілі. Наприклад, gcd(6,14)=2, і $2=(-2)\cdot 6+1\cdot 14$. Цей факт констатується в наступній теоремі.

Теорема 3.8 (теорема Безу). Якщо a та b – додатні цілі числа, то існують такі цілі числа s і t, що gcd(a, b) = sa + tb.

Опишемо на прикладі метод, який дає змогу знайти фактичне подання gcd(a,b) як лінійної комбінації sa+tb. Цей метод ґрунтується на зворотному проходженні кроків алгоритму Евкліда, отже, спочатку потрібно виконати сам алгоритм.

Приклад. Виразити gcd(252,198)=18 як лінійну комбінацію 252 і 198 з цілими коефіцієнтами.

Спочатку покажемо, що gcd(252,198)=18. Застосуємо алгоритм Евкліда.

252 = 1.198 + 54 (перше ділення),

 $198 = 3 \cdot 54 + 36$ (друге ділення),

54 = 1.36 + 18 (третє ділення),

36 = 2.18 (четверте ділення).

Остання ненульова остача 18, отже, gcd(252,198)=18. Використовуючи передостаннє (третє ділення) ми можемо записати 18 як лінійну комбінацію 54 та 36. Маємо

$$18 = 54 - 1.36$$
.

Друге ділення показує, що

$$36 = 198 - 3.54$$
.

Підставимо цей вираз для 36 у попередню рівність, тоді подамо 18 як лінійну комбінацію 54 і 198:

$$18 = 54 - 1 \cdot 36 = 54 - 1 \cdot (198 - 3 \cdot 54) = 4 \cdot 54 - 1 \cdot 198$$

Перше ділення показує, що 54 = 252 - 1.198. Підставляючи цей вираз у попередню рівність дістанемо вираз для gcd(252,198) = 18 у вигляді лінійної комбінації 252 і 198. Остаточно матимемо:

$$18 = 4 \cdot (252 - 1.198) - 1.198 = 4.252 - 5.198.$$

Отже, ми дістали вираз для $\gcd(252,198)=18$ у вигляді лінійної комбінації $s \cdot 252 + t \cdot 198$, де s=4, t=-5.

Наведений спосіб визначення коефіцієнтів s і t є наочним, але не оптимальним, бо вимагає збереження в пам'яті проміжних обчислень алгоритму Евкліда. Розглянемо кращий спосіб, так званий розширений алгоритм Евкліда. Цей алгоритм дає змогу отримати вираз для $\gcd(a,b)$ у вигляді лінійної комбінації a та b за один прохід, без використання зворотних кроків.

Розширений алгоритм Евкліда.

Покладемо $s_0 = 1$, $s_1 = 0$, $t_0 = 0$, $t_1 = 1$. Нехай $s_j = s_{j-2} - q_{j-1}s_{j-1}$ і $t_j = t_{j-2} - q_{j-1}t_{j-1}$ для j = 2,3,...,n, де q_j – частки від ділення, яке використовують, коли алгоритм Евкліда обчислює $\gcd(a,b)$. Можна довести, що $\gcd(a,b) = s_n a + t_n b$.

Приклад. Використаємо розширений алгоритм Евкліда для подання $\gcd(252,198)$ як лінійної комбінації 252 і 198. Коли застосуємо алгоритм Евкліда, то одержимо такі частки та залишки: $q_1 = 1$, $r_2 = 54$, $q_2 = 3$, $r_3 = 36$, $q_3 = 1$, $r_4 = 18$, $q_4 = 2$. Зазначимо, що в цьому прикладі n = 4. Тепер ми обчислимо значення s_i і t_i , використовуючи рекурентні вирази, наведені вище.

$$s_2 = s_0 - q_1 s_1 = 1 - 1 \cdot 0 = 1$$
 $t_2 = t_0 - q_1 t_1 = 0 - 1 \cdot 1 = -1$
 $s_3 = s_1 - q_2 s_2 = 0 - 3 \cdot 1 = -3$ $t_3 = t_1 - q_2 t_2 = 1 - 3 \cdot (-1) = 4$
 $s_4 = s_2 - q_3 s_3 = 1 - 1 \cdot (-3) = 4$ $t_4 = t_2 - q_3 t_3 = -1 - 1 \cdot 4 = -5$

Отже, gcd(252,198) = 18, i $18 = 4 \cdot 252 - 5 \cdot 198$.

Подамо розширений алгоритм Евкліда у вигляді псевдокоду. Ми виходимо з алгоритму Евкліда (алгоритму 1) і додаємо змінні для зберігання значень s і t. Нам потрібно три з них, бо нове значення s залежить від попередніх двох значень s і те саме щодо t. Нам також потрібно пам'ятати значення q – результат чергового ділення.

```
Алгоритм 4.3. Розширений алгоритм Евкліда.
procedure extended _ Euclidean(a,b : positive integers)
x := a
y := b
oldolds := 1
olds := 0
oldoldt := 0
oldt := 1
while y \neq 0
      begin
      q := x \operatorname{div} y
      r := x \bmod y
       x := y
       y := r
       s := oldolds - q \cdot olds
      t := oldoldt - q \cdot oldt
      oldolds := olds
      oldoldt := oldt
       olds := s
      oldt := t
       end
\{\gcd(a,b) \text{ is } x, \text{ and } (oldolds) \cdot a + (oldoldt) \cdot b = x\}
```

Лінійні конгруенції.

Конгруенцію $ax \equiv b \pmod{m}$, деm -додатне ціле число, a та b -цілі, x -змінна, називають лінійною конгруенцією. Такі конгруенції виникають у теорії чисел та її застосуваннях.

Як розв'язати лінійну конгруенцію $ax \equiv b \pmod{m}$, тобто як знайти всі цілі числа x, які задовольняють цю конгруенцію? Метод, що ми його тут розглянемо, використовує ціле число a^{-1} таке, що $a^{-1}a \equiv 1 \pmod{m}$, якщо таке число існує. Таке ціле a^{-1} називають *оберненим* до a за модулем m. Теорема 3.9 гарантує, що обернене до a за модулем m існує, якщо a та m взаємно прості.

Теорема 3.9. Якщо a та m взаємно прості цілі числа і m > 1, то обернене до a за модулем m існує. Більше того, воно єдине обернене до a за модулем m. (Це означає, що існує єдине додатне ціле $a^{-1} < m$, обернене до a за модулем m, а кожне інше число, обернене до a за модулем m, буде конгруентним до a^{-1} за модулем m.)

Доведення. Доведемо лише існування. За теоремою 3.8 (Безу) із gcd(a, m) = 1 випливає існування таких цілих s і t, що sa + tm = 1. Звідси випливає, що $sa + tm \equiv 1 \pmod{m}$. Оскільки $tm \equiv 0 \pmod{m}$, то $sa \equiv 1 \pmod{m}$.

Для практичного знаходження a^{-1} можна скористатись розширеним алгоритмом Евкліда.

Приклад. Знайдемо обернене до 3 за модулем 7. Оскільки gcd(3,7)=1, то теоремою 3.9 таке обернене існує. У цьому простому прикладі звичайний алгоритм Евкліда одразу приводить до результату:

$$7 = 2 \cdot 3 + 1;$$

із останньої рівності маємо

$$1 = -2 \cdot 3 + 1 \cdot 7$$
.

Із цього випливає, що коефіцієнти Безу для 3 і 7 становлять -2 і 1 відповідно. Отже, -2 є оберненим до 3 за модулем 7. Зазначимо, що кожне ціле, конгруентне до -2 за модулем 7, є також оберненим до 3: це числа -9, 5, 12 тощо. Єдиним цілим, оберненим до 3 за модулем 7, про яке йдеться в теоремі 3.9, є 5.

Приклад. Знайдемо обернене до 17 за модулем 3432. За розширеним алгоритмом Евкліда знайдемо $\gcd(3432,17)$ як лінійну комбінацію 17 і 3432. Під час використання алгоритму Евкліда одержимо такі часки й остачі: $q_1 = 201$, $r_2 = 15$, $q_2 = 1$, $r_3 = 2$, $q_3 = 7$, $r_4 = 1$, $q_4 = 2$, тобто $\gcd(3432,17)=1$ (остання ненульова остача), і $17^{-1} \mod 3432$ існує. Для його знаходження скористаємося рекурентними рівностями розширеного алгоритму Евкліда:

$$s_2 = s_0 - q_1 s_1 = 1 - 201 \cdot 0 = 1$$
 $t_2 = t_0 - q_1 t_1 = 0 - 201 \cdot 1 = -201$
 $s_3 = s_1 - q_2 s_2 = 0 - 1 \cdot 1 = -1$ $t_3 = t_1 - q_2 t_2 = 1 - 1 \cdot (-201) = 202$
 $s_4 = s_2 - q_3 s_3 = 1 - 7 \cdot (-1) = 8$ $t_4 = t_2 - q_3 t_3 = -201 - 7 \cdot 202 = -1615$

Отже, $\gcd(3432,17)=1=8\cdot3432+(-1615)\cdot17$. Коефіцієнт Безу при 17 є шуканою відповіддю, він дорівнює (-1615), що є тим самим, що й 1817 за модулем 3432. (В обчисленнях використовують найменше додатне значення оберненого до a за модулем m; таке $a^{-1} < m$, за теоремою 3.9, єдине. Запам'ятаємо таку, як у цьому прикладі, можливу ситуацію для подальших застосувань.)

Як тільки ми отримали a^{-1} , обернене до a, ми можемо розв'язати конгруенцію $ax \equiv b \pmod{m}$, помноживши обидві її частини на a^{-1} . Наступний приклад ілюструє ці дії.

Приклад. Знайдемо розв'язки конгруенції $3x \equiv 4 \pmod{7}$. Із одного з попередніх прикладів випливає, що 5 є оберненим до 3 за модулем 7. Помноживши обидві частини конгруенції на 5 дістанемо

$$5 \cdot 3x \equiv 5 \cdot 4 \pmod{7}.$$

Оскільки $15 \equiv 1 \pmod{7}$ і $20 \equiv 6 \pmod{7}$, то $x \equiv 6 \pmod{7}$. Це такі числа: 6, 13, 20, ... і -1, -8, -15, ...

Китайська теорема про остачі.

Системи лінійних конгруенцій досить широко використовують. Пропонована теорема, яка супроводжується конструктивним доведенням, дає змогу ефективно розв'язувати такі системи.

Теорема 3.10 (китайська теорема про остачі). Нехай $m_1, m_2, \dots m_n$ – попарно взаємно прості додатні цілі числа, більші від 1, і $a_1, a_2, \dots a_n$ – довільні цілі. Тоді система

```
x \equiv a_1 \pmod{m_1},

x \equiv a_2 \pmod{m_2},

x \equiv a_n \pmod{m_n}
```

має єдиний розв'язок за модулем $m = m_1 m_2 \cdots m_n$. (Це слід розуміти так, що існує розв'язок x, $0 \le x < m$, а всі інші розв'язки конгруентні до цього розв'язку за модулем m.)

Доведення. Тут ми доведемо лише існування розв'язку, причому доведення конструктивне: побудуємо алгоритм конструювання цього розв'язку.

Нехай $\mu_k = m/m_k$ для k = 1, 2, ..., n. Отже, μ_k — добуток усіх модулів за виключенням m_k . Оскільки m_i та m_k не мають спільних множників більших від 1, для $i \neq k$, то gcd $(m_k, \mu_k) = 1$. Отже, за теоремою 3.9 існує ціле y_k , яке є оберненим до μ_k за модулем m_k тобто $y_k = \mu_k^{-1}$, і, отже $\mu_k y_k \equiv 1 \pmod{m_k}$.

Сумісний розв'язок побудуємо як суму

$$x = a_1 \mu_1 y_1 + a_2 \mu_2 y_2 + \dots + a_n \mu_n y_n.$$

Тепер покажемо, що x справді є таким розв'язком. Передусім зазначимо, що $\mu_j \equiv 0 \pmod{m_k}$ коли $j \neq k$, бо тоді μ_j містить m_k як співмножник. Тому всі доданки окрім k-го конгруентні до 0 за модулем m_k . У той же час $\mu_k y_k \equiv 1 \pmod{m_k}$, бо $y_k = \mu_k^{-1}$ за модулем m_k . Остаточно $x \equiv a_k \mu_k y_k \equiv a_k \pmod{m_k}$

для k = 1, 2, ..., n. Отже, доведено, що x – сумісний розв'язок n конгруенцій.

Доведення існування розв'язку в теоремі 3.10 дає загальний метод розв'язування систем лінійних конгруенцій із попарно взаємно простими модулями.

Приклад. Розв'яжемо систему лінійних конгруенцій $x \equiv 1 \pmod{5}$, $x \equiv 2 \pmod{6}$ і $x \equiv 3 \pmod{7}$. Передусім обчислимо $m = 5 \cdot 6 \cdot 7 = 210$, $\mu_1 = m/5 = 42$, $\mu_2 = m/6 = 35$, $\mu_3 = m/7 = 30$. Далі знаходимо обернене до μ_1 за модулем 5: $y_1 = 3$, обернене до μ_2 за модулем 6: $y_2 = 5$ і обернене до μ_3 за модулем 7: $y_3 = 4$. Розв'язок системи

$$x \equiv a_1 \mu_1 y_1 + a_2 \mu_2 y_2 + a_3 \mu_3 y_3 = 1.42.3 + 2.35.5 + 3.30.4 = 836 \equiv 206 \pmod{210}$$
.

Мала теорема Ферма

Мала теорема Ферма надзвичайно корисна для обчислення остач за модулем p від великих степенів цілих чисел,

Теорема 3.11 (мала теорема Ферма). Якщо p – просте число, a – ціле, неподільне на p, то $a^{p-1} \equiv 1 \pmod{p}$.

Більше того, для будь-якого цілого a ми маємо

$$a^p \equiv a \pmod{p}$$
.

Приклад. Знайдемо 7^{222} **mod**11. Ми можемо використати малу теорему Ферма для швидшого обчислення ніж за алгоритмом 4.1 модулярного піднесення до степеня. За малою теоремою Ферма $7^{10} \equiv 1 \pmod{11}$, отже, $\left(7^{10}\right)^k \equiv 1 \pmod{11}$ для кожного додатного цілого k. Для того, щоб скористатись виграшем від останньої конгруенції, поділимо показник 222 на 10, тоді $222 = 22 \cdot 10 + 2$. Тоді

$$7^{222} = 7^{22 \cdot 10 + 2} = (7^{10})^{22} 7^2 \equiv (1)^{22} \cdot 49 \equiv 5 \pmod{11}.$$

Отже, 7^{222} mod 11 = 5.

Цей приклад показує, як можна використати малу теорему Ферма для обчислення $a^n \mod p$, якщо p – просте число й $p \nmid a$. Поділимо n на (p-1), тоді дістанемо частку q і остачу r, звідки $n = q \cdot (p-1) + r$, де $0 \le r < p-1$. Звідси

$$a^n = a^{q(p-1)+r} = (a^{p-1})^q a^r \equiv 1^q a^r \equiv a^r \pmod{p}.$$

Первісні корені й дискретні логарифми

Нехай p — просте число. Первісним коренем за модулем p називають ціле r із множини $\mathbf{Z}_p = \{0,1,2,...,p-1\}$ таке, що кожний ненульовий елемент \mathbf{Z}_p являє собою степінь r.

Приклад. Якщо ми обчислимо степені $2 \in \mathbf{Z}_{11}$ за модулем 11, то дістанемо: $2^1 = 2$, $2^2 = 4$, $2^3 = 8$, $2^4 = 5$, $2^5 = 10$, $2^6 = 9$, $2^7 = 7$, $2^8 = 3$, $2^9 = 6$, $2^{10} = 1$. Легко побачити, що кожний ненульовий елемент множини \mathbf{Z}_{11} є степенем 2. Отже, 2 є первісним коренем 11. Якщо ж ми будемо обчислювати степені 3 за модулем 11, то матимемо $3^1 = 3$, $3^2 = 9$, $3^3 = 5$, $3^4 = 4$, $3^5 = 1$; при подальших піднесеннях до степеня ця послідовність буде повторюватись. Тому що не всі елементи \mathbf{Z}_{11} є степенями 3, то доходимо висновку, що 3 не є первісним коренем 11.

Важливий результат теорії чисел полягає в тому, що для кожного простого p існує первісний корінь за модулем p.

Нехай p — просте число, r — первісний корінь за модулем p і a — ціле число в межах від 1 до p — 1 включно, тобто a — ненульовий елемент \mathbf{Z}_p . Відомо, що <u>існує єдиний показник</u> e <u>такий, що</u> $r^e = a$ в \mathbf{Z}_p , <u>тобто</u> r^e **mod** p = a.

Нехай p – просте число, r – первісний корінь за модулем p і a – ціле число в межах від 1 до p-1 включно. Якщо $r^e \bmod p = a$ та $0 \le e \le p-1$, то e називають дискретним логарифмом числа a за модулем p при основі r і пишуть $\log_r a = e$ (тут просте число p мається на увазі).

Приклад. Щойно ми обчислили степені 2 за модулем p=11, зокрема, $2^8=3$ і $2^4=5$ в \mathbf{Z}_{11} . Отже, дискретні логарифми 3 і 5 за модулем 11 при основі 2 є, відповідно, 8 та 4. (Це степені 2, які дорівнюють, відповідно, 3 і 5 в \mathbf{Z}_{11} .) Ми пишемо $\log_2 3=8$ і $\log_2 5=4$ (тут модуль 11 мається на увазі і явно не записується).

Задача обчислення дискретного логарифму як вхід має просте число p, первісний корінь r за модулем p і додатне ціле $a \in \mathbf{Z}_p$. Її вихід — дискретний логарифм числа a за модулем p при основі r. Для розв'язування цієї задачі невідомий жодний поліноміальний алгоритм. Тому що ця задача складна для розв'язування, вона відіграє важливу роль у криптографії.

© Щербина Ю.М., 2021