STAT 221/231 Tutorial Test 3

Wednesday November 30 in your scheduled tutorial time. You may ONLY write in your assigned tutorial time.

Seating is predetermined so please check your seat assignment at

https://odyssey.uwaterloo.ca/teaching/schedule

Bring your Watcard. Only Pink-tie or Blue-goggles calculators may be used.

You may bring one (1) **double-sided**, letter sized (8.5 x 11 inches), handwritten page of notes to the test (no photocopies).

Tutorial Test 3 will focus on the material in Section 5.3 and Sections 6.1-6.2, however you must still know the material from Chapters 1-5.

In particular you should know and understand the following:

Section 5.3:

How to use the likelihood ratio test statistic to test $H_0: \theta = \theta_0$ for each of the following:

Binomial (n, θ) , Geometric (θ) , Negative Binomial (k, θ) , Poisson (θ) , Exponential (θ) , $G(\theta, \sigma)$ where σ is known

How to use the likelihood ratio test statistic to test $H_0: \theta = \theta_0$ given a model and a set of data, and how to obtain the approximate p - value using Normal tables.

Sections 6.1-6.2:

Model assumptions for simple linear regression model:

$$Y_i \backsim G(\alpha + \beta x_i, \sigma)$$
 $i = 1, 2, ..., n$ independently

where α , β and σ are unknown parameters and the x_i 's are known constants.

Maximum likelihood estimates and least squares estimates of α and β (page 194)

Unbiased estimate of σ^2 (pages 194-195)

The derivation of the distribution of the maximum likelihood estimator of β (pages 195-196)

Confidence interval for β (page 197)

How to test the hypothesis of no relationship $(H_0: \beta = 0)$ (page 197)

Confidence interval for mean response at x: $\mu(x) = \alpha + \beta x$ (pages 198-199)

Prediction interval for response Y at x (pages 201-202)

See the Summary of Distributions for Simple Linear Regression (Table 6.2, page 205)

How to check the model assumptions for simple linear regression (pages 206-208) using:

- (1) scatterplot of data and fitted line
- (2) residual plots:
 - (i) (x_i, \hat{r}_i) , i = 1, ..., n where $\hat{r}_i = y_i \hat{\mu}_i$ and $\hat{\mu}_i = \hat{\alpha} + \hat{\beta}x_i$.
 - (ii) (x_i, \hat{r}_i^*) , i = 1, ..., n where $\hat{r}_i^* = \hat{r}_i/s_e$ (same as the graph in (i) except y axis is rescaled).
 - (iii) $(\hat{\mu}_i, \hat{r}_i^*), i = 1, \dots, n.$
- (3) applot of the residuals

There will also be short answer and multiple choice questions on the R code used in Assignments 1, 2, 3 and 4.

You need to be able to read the output from the following R commands similar to the questions on Assignment 4:

t.test()

and

 $\operatorname{RegModel} < -\operatorname{lm}(y \sim x)$

Summary(RegModel)

You should do the following problems in the Course Notes:

Chapter 5, Problems 9-13

Chapter 6, Problems 1-9