Math 578 Assignment 2

Daniel Anderson 260457325

Fall 2016

Question 1

Question 1.1

Question 1.1.1

Plug the exact solution into the scheme, expand out the Taylor series, cancel and collect terms. Throughout, we denote u_{j+i}^{n+k} as u_i^k , and u_j^n as u. Let \hat{u} be the exact solution.

LTE =
$$|\hat{u}^{n+1} + u^{n+1}|$$

= $|u + u_t \Delta t + u_{tt} \frac{\Delta t}{2} + O(\Delta t^3) - [u + \Omega[(1 - \theta)(u_{xx}\Delta x^2 + O(\Delta x^4))) + \theta(u_{xx}^{n+1}\Delta x^2 + O(\Delta x^4))]|$
= $|u_{tt} \frac{\Delta t^2}{2} + O(\Delta t^3) - \Delta t O(\Delta x^2)$ TODO
= $|(1 - 2\theta)u_{tt} \frac{\Delta t^2}{2} + O(\Delta t^3) + \Delta t O(\Delta x^2)|$

Question 1.1.2

Let $u=e^{ikx},\,\Omega=\frac{\Delta t}{\Delta x^2}$ sub into the scheme:

$$G - 1 = \Omega[(1 - \theta)(e^{ikx} + e^{-ikx} - 2) + \theta G(e^{ikx} + e^{-ikx} - 2)]$$

$$G = 1 + 2\Omega(1 - \theta) + 2\Omega G\theta y$$

After letting $y = e^{ikx} + e^{-ikx} - 2$. Solving for G gets us:

$$G = \frac{2\Omega(1-\theta)y}{1-2\Omega\theta y}$$

And our stability restriction is $|G| \le 1$, which does not have a convenient form in terms of θ , Δx , Δt .

Question 1.1.3

Picking $\theta = \frac{1}{2}$ is obvious: it gets us $max(O(\Delta t^3), \Delta tO(\Delta x^2))$ accuracy for no extra cost compared to any θ value not equal to 0.

Now, considering the balance of δt and δx , we derive an expression for the product of computer runtime, $C = \Delta t \Delta x$, and global error, $E = \frac{\text{LTE}}{\Delta t}$, which seems to be as good a metric as any.

$$CE = (\Delta x \Delta t) \frac{\Delta t^3 + \Delta t \Delta x^2}{\Delta t}$$
$$= \Delta x (\Delta t^3 + \Delta t \Delta x^2)$$
$$= \Delta x \Delta t^3 + \Delta t \Delta x^3$$

We wind up with $\theta = \frac{1}{2}$, and $\delta t = (\delta x)^2$

Question 1.1.4

Mess around with solutions of the form u=sincos TODO

Question 1.2

- 1 get D again
- 2 Hideously ugly LTE.
- 3 Even uglier stability.
- 4 "modified equation approach..."? Somewhere in notes. Scheme cannot be second order, because linear schemes can't be.

Question 1.3

- 1 Assume periodic conditions. Then, we apply TV norm to $u^n + 1_i$, crunch out a nice expression for it. Then, summing over all spatial indices, we have glorious cancellation and TVD.
- 2 Follows almost immediately from the linearity of the TV norm.
- 3 Is it a convex combination of Euler steps? Yes. So, yes.
- 4 TODO

Question 2

Question 2.1

1 Let u = sin(x) and f = ...TODO.

Does sin(x) count as trivial? Maybe. Regardles, the error is nearly 0 from the get go, since a sine wave is well-represented by a truncated Fourier series.

Figure 1: Question 2.1, L^{∞} error vs. h

Question 2.2

Gibbs phenomenon.

Question 3

Question 3.1

$$u = -\omega^2 sin(\omega x)cos(\omega y)$$

Figure 2: Question 2.2 L^{∞} error vs. h

The error is small since the frequency of our input function f is below the Nyquist limit.

Figure 3: Question 3.1 $L^{\infty}error$ vs. ω

Question 3.2

Damned if I know. been bashing my head against this one for a while.

Question 3.3