Slide 6: Estimation Methods

STATS 511: Statistical Inference

Kean Ming Tan

Some Definitions

Likelihood Function: Let X_1, \ldots, X_n be a random sample from f_{θ} . The likelihood function is defined as

Maximum Likelihood Estimator: For each possible observed vector $\mathbf{x} = (x_1, \dots, x_n)$, let $\hat{\theta} = \delta(\mathbf{x})$ denote a value of $\theta \in \Theta$ for which the likelihood function $L(\theta \mid \mathbf{x})$ is maximized. The value $\hat{\theta} = \delta(\mathbf{x})$ is called a maximum likelihood estimator of θ .

Test for a Disease

Suppose that a medical test is 90 percent reliable in the following sense: If a person has the disease, there is a probability of 0.9 that the test will give a positive response; whereas, if a person does not have the disease, there is a probability of only 0.1 that the test will give a positive response. Let X be the results of the test, i.e.,

$$X = \begin{cases} 1 & \text{if the test is positive} \\ 0 & \text{if the test is negative} \end{cases}$$

Let the parameter space $\Theta = \{0.1, 0.9\}$, where $\theta = 0.1$ means that the person tested does not have the disease, and $\theta = 0.9$ means that the person has the disease. So in this case, X is Bernoulli with parameter θ . What is the MLE of θ ?

Test for a Disease MLE

Example: Picking Balls

Suppose that we have a box with a certain number of black and white balls. Denote the proportion of black balls by p. Suppose we sample 4 balls (with replacement) and we obtain the sequence of balls: black, white, black, black. What is the MLE for p?

$$X = \# \text{ of Clock BAll's Out of 4 BAll's}$$

$$X = \# \text{ of Clock BAll's Out of 4 BAll's}$$

$$IP(X=3) = \binom{4}{3} P^{2}(r-P)$$

$$I[Xelihood function: L(Plx) = \binom{n}{3} P^{2}(r-P)^{n-2}$$

$$I[Xelihood function: L(Plx) = \binom{n}{3} P^{2}(r-P)^{n-2}$$

$$I[Xelihood function: L(Plx) = \alpha g_{max} \log L(Plx)$$

$$= \alpha g_{max} \log L(Plx)$$

$$I(P) = \log \binom{n}{3} + x \log P + (n-3) \log (r-P)$$

$$\frac{dP}{dR} = \frac{R}{X} - \frac{R}{N-X} = 0 = 0$$

$$\frac{P}{N} = \frac{R}{N}$$

$$f(b) = (00 (u) + u(00(u-b))$$

Same logic for x=n case.

Example: Sampling from a Normal Distribution

Suppose that the random variables X_1, \ldots, X_n are sampled from the Normal distribution with unknown mean μ and unknown variance σ^2 . Therefore, in this case, our parameter of interest is $\theta = (\mu, \sigma^2) \in \Theta$ where $\Theta = \mathbb{R} \times \mathbb{R}^+$. Suppose that we have the observed values x_1, \ldots, x_n . What is the MLE of θ ?

$$=) \qquad \sum_{i=1}^{i=1} (x_i - m_i) = 0$$

$$\frac{\partial G_{2}}{\partial G_{2}} = -\frac{1}{N} \cdot \frac{1}{2\pi c_{1}} \cdot \frac{1}{2\pi c_{2}} \cdot \frac{1}{2\pi c_{1}} \cdot \frac{1}{2\pi c_{2}} \cdot \frac{1}{2\pi c_{2}} \cdot \frac{1}{2\pi c_{1}} \cdot \frac{1}{2\pi c_{2}} \cdot \frac{1}{$$

$$= \int_{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^$$

MLE for an Exponential Family

Suppose that the random variables X_1, \ldots, X_n are sampled from an exponential family with density function, i.e., the density function can be rewritten as

$$f(\mathbf{x} \mid \boldsymbol{\theta}) = h(\mathbf{x})c(\boldsymbol{\theta})\exp\left(\sum_{i=1}^k w_i(\boldsymbol{\theta})t_i(\mathbf{x})\right)$$

Assume that this exponential family is full rank. How do we find the MLE for general exponential family distirbution?

Sampling from a Uniform Distribution

Suppose that the random variables X_1, \ldots, X_n are sampled from the Uniform distribution on the interval $[0,\theta]$, where $\theta \in \Theta$ is unknown and that $\Theta \in \mathbb{R}^+$. What is the MLE of θ ?

To me contrat nie tragitional WE

$$\int \partial u = -u \log \theta = \frac{9}{4} = \frac{9}{4} \left(\cos \cos \theta + \frac{9}{4} \right)$$

$$\int \partial u = \frac{9}{4} \left(\cos \theta + \frac{9}{4} \right)$$

$$\int \partial u = \frac{9}{4} \left(\cos \theta + \frac{9}{4} \right)$$

$$\int \partial u = \frac{9}{4} \left(\cos \theta + \frac{9}{4} \right)$$

$$\int \partial u = \frac{9}{4} \left(\cos \theta + \frac{9}{4} \right)$$

$$\int \partial u = \frac{9}{4} \left(\cos \theta + \frac{9}{4} \right)$$

$$\int \partial u = \frac{9}{4} \left(\cos \theta + \frac{9}{4} \right)$$

$$\int \partial u = \frac{9}{4} \left(\cos \theta + \frac{9}{4} \right)$$

$$\int \partial u = \frac{9}{4} \left(\cos \theta + \frac{9}{4} \right)$$

$$\int \partial u = \frac{9}{4} \left(\cos \theta + \frac{9}{4} \right)$$

$$\int \partial u = \frac{9}{4} \left(\cos \theta + \frac{9}{4} \right)$$

$$\int \partial u = \frac{9}{4} \left(\cos \theta + \frac{9}{4} \right)$$

$$\int \partial u = \frac{9}{4} \left(\cos \theta + \frac{9}{4} \right)$$

$$\int \partial u = \frac{9}{4} \left(\cos \theta + \frac{9}{4} \right)$$

$$\int \partial u = \frac{9}{4} \left(\cos \theta + \frac{9}{4} \right)$$

$$\int \partial u = \frac{9}{4} \left(\cos \theta + \frac{9}{4} \right)$$

$$\int \partial u = \frac{9}{4} \left(\cos \theta + \frac{9}{4} \right)$$

$$\int \partial u = \frac{9}{4} \left(\cos \theta + \frac{9}{4} \right)$$

$$\int \partial u = \frac{9}{4} \left(\cos \theta + \frac{9}{4} \right)$$

$$\int \partial u = \frac{9}{4} \left(\cos \theta + \frac{9}{4} \right)$$

$$\int \partial u = \frac{9}{4} \left(\cos \theta + \frac{9}{4} \right)$$

$$\int \partial u = \frac{9}{4} \left(\cos \theta + \frac{9}{4} \right)$$

$$\int \partial u = \frac{9}{4} \left(\cos \theta + \frac{9}{4} \right)$$

$$\int \partial u = \frac{9}{4} \left(\cos \theta + \frac{9}{4} \right)$$

$$\int \partial u = \frac{9}{4} \left(\cos \theta + \frac{9}{4} \right)$$

$$\int \partial u = \frac{9}{4} \left(\cos \theta + \frac{9}{4} \right)$$

$$\int \partial u = \frac{9}{4} \left(\cos \theta + \frac{9}{4} \right)$$

$$\int \partial u = \frac{9}{4} \left(\cos \theta + \frac{9}{4} \right)$$

$$\int \partial u = \frac{9}{4} \left(\cos \theta + \frac{9}{4} \right)$$

$$\int \partial u = \frac{9}{4} \left(\cos \theta + \frac{9}{4} \right)$$

$$\int \partial u = \frac{9}{4} \left(\cos \theta + \frac{9}{4} \right)$$

$$\int \partial u = \frac{9}{4} \left(\cos \theta + \frac{9}{4} \right)$$

$$\int \partial u = \frac{9}{4} \left(\cos \theta + \frac{9}{4} \right)$$

$$\int \partial u = \frac{9}{4} \left(\cos \theta + \frac{9}{4} \right)$$

$$\int \partial u = \frac{9}{4} \left(\cos \theta + \frac{9}{4} \right)$$

$$\int \partial u = \frac{9}{4} \left(\cos \theta + \frac{9}{4} \right)$$

$$\int \partial u = \frac{9}{4} \left(\cos \theta + \frac{9}{4} \right)$$

$$\int \partial u = \frac{9}{4} \left(\cos \theta + \frac{9}{4} \right)$$

$$\int \partial u = \frac{9}{4} \left(\cos \theta + \frac{9}{4} \right)$$

$$\int \partial u = \frac{9}{4} \left(\cos \theta + \frac{9}{4} \right)$$

$$\int \partial u = \frac{9}{4} \left(\cos \theta + \frac{9}{4} \right)$$

$$\int \partial u = \frac{9}{4} \left(\cos \theta + \frac{9}{4} \right)$$

$$\int \partial u = \frac{9}{4} \left(\cos \theta + \frac{9}{4} \right)$$

$$\int \partial u = \frac{9}{4} \left(\cos \theta + \frac{9}{4} \right)$$

$$\int \partial u = \frac{9}{4} \left(\cos \theta + \frac{9}{4} \right)$$

$$\int \partial u = \frac{9}{4} \left(\cos \theta + \frac{9}{4} \right)$$

$$\int \partial u = \frac{9}{4} \left(\cos \theta + \frac{9}{4} \right)$$

$$\int \partial u = \frac{9}{4} \left(\cos \theta + \frac{9}{4} \right)$$

$$\int \partial u = \frac{9}{4} \left(\cos \theta + \frac{9}{4} \right)$$

$$\int \partial u = \frac{9}{4} \left(\cos \theta + \frac{9$$

Example: MLE with Constrained Parameter Space

Let $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$. When the parameters are not constrained, we have

$$\hat{\mu} = \bar{X}, \qquad \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2.$$

What if the parameters are constrained, such as $\mu \geq 0$.

$$\max_{k \in \mathbb{N}} \sum_{k \in \mathbb{N}} \sum_{$$

Thug,
$$\hat{\mathcal{A}} = \begin{cases} \frac{1}{2} & \frac{1}{2$$

Limitations of MLE I

Nonexistence of an MLE: Suppose that the random variables X_1, \ldots, X_n are sampled from the Uniform distribution on the interval $(0, \theta)$, where $\theta \in \Theta$ is unknown and that $\Theta \in \mathbb{R}^+$. We write the density function as

$$f(x \mid \theta) = \begin{cases} \frac{1}{\theta} & \text{if } 0 < x < \theta \\ 0 & \text{otherwise} \end{cases}$$

What is the MLE of θ ?

we know that
$$x^{(i)}$$
 or one "MIE, of Q for surjection)

when this case $0 \le x^{(i)} \le x^{(i)}$

Limitations of MLE II

Non-uniqueness of an MLE: Suppose that the random variables X_1, \ldots, X_n are sampled from the Uniform distribution on the interval $[\theta, \theta + 1]$, where $\theta \in \Theta$ is unknown and that $\Theta \in \mathbb{R}$. What is the MLE of θ ? (0, 0, 0, 0) (0, 0, 0, 0)

$$\Gamma(0) = \frac{1}{12} f(x_{0}|0) = \frac{1}{12} f(x_$$

MIE is any value of 0 bles KMI-1 and KM)

=) MIE is not unave.

Invariance Property of MLE

Theorem: Let $\hat{\theta}$ be the MLE of θ and let $g(\theta)$ be an arbitrary function of the parameter. The MLE of $g(\theta)$ is $g(\hat{\theta})$.

Examples:

- ▶ Let $\hat{\mu}$ be the MLE of μ . Then $\sqrt{\hat{\mu}}$ is an MLE of $\sqrt{\mu}$.
- ▶ Let $\hat{\mu}$ be the MLE of μ . Then μ^2 is an MLE of μ^2 .

Example

Suppose that X_1, \ldots, X_n form a random sample from the normal distribution with both the mean μ and the variance σ^2 are unknown. What is the MLE of the standard deviation σ and $E(X^2)$?

Numerical Computation

Sometimes, there are no closed form solution for the MLE. Here is an example: Suppose that X_1, \ldots, X_n form a sample of Gamma distribution for which pdf is as follows:

$$f(x \mid \alpha) = \frac{1}{\Gamma(\alpha)} x^{\alpha-1} e^{-x}$$
 for $x > 0$.

What is the MLE of α ?

Newton's Method

Newton's Method: Let $f(\theta)$ be a real-valued function of a real variable, and suppose that we wish to solve the equation $f(\theta) = 0$. Let θ_0 be an initial guess of the solution. Newton's method replaces the initial guess with the updated guess

$$\theta_1 = \theta_0 - \frac{f(\theta_0)}{f'(\theta_0)}.$$

This process is done until the solution is stabilize.

Summary of MLE

The maximum likelihood estimate of a parameter θ is that value of θ that provides the largest value of the likelihood function $L(\theta \mid \mathbf{x})$ for fixed data \mathbf{x} .

Up Next - Bayes Estimator