Problem Set 3 – Big Data

https://github.com/BigData-Gomez-Ortiz-Vanegas

Introducción

Este ejercicio propone utilizar el algoritmo *superlearners*. La ventaja principal de este modelo es que permite ponderar varios algoritmos individuales para crear uno nuevo que se desempeñe al menos tan bien como cualquiera de ellos. Así, *superlearners* le asigna un peso a cada algoritmo estadístico individual. Dado el poco seguimiento que tenemos los humanos sobre este comando, una desventaja a reconocer es la posibilidad de cometer errores que pasen desapercibidos. Los algoritmos individuales que incluimos son: *Random Forests, GXBoost* y un modelo lineal con el propósito de suavizar la predicción. Las variables que escogimos para ejecutar el algoritmo cuentan con el soporte de la intuición económica y se explican a profundidad a continuación.

Datos

<u>Imputación</u>: se utilizó la variable de *área cubierta* para completar la variable de *área total* en los casos en los que el dato no existiera para la última. Después, se capturó información disponible sobre el *área total* y el *número de baños* en la descripción del anuncio para completar los valores faltantes en dichas variables. También, se utilizó la capa de manzanas para agregar la mediana de *área total* de la manzana donde persistieran valores faltantes.

Selección de la muestra: como grupo, concluimos que es interesante observar los datos a nivel de la localidad (Chapinero y El Poblado) porque los apartamentos deben ser más similares. Sin embargo, al revisar los datos, constatamos que esto no era posible para El Poblado en tanto que casi todos los datos de entrenamiento se encontraban fuera de dicha localidad. En vista de esto, se utilizará la muestra a nivel de Chapinero y a nivel de Medellín; consideramos que es un ejercicio interesante para contrastar.

<u>Nuevas variables</u>: hubo dos estrategias principales para crear las nuevas variables - recurrir a la descripción de los anuncios y utilizar fuentes externas de información (Open Street Map). Se capturó la información disponible en los anuncios para identificar si se menciona que el apartamento *cuenta con terraza o no* y si *cuenta con garaje o no*. Estas variables son interesantes en tanto que la existencia de terraza o garaje pueden significar un aumento en el valor del apartamento. Para la creación de otras variables se obtuvo en Open Street Map las *estaciones de transporte masivo*, *los cerros* y los *campos de golf* disponibles en el área que estamos analizando. Se consideró que una facilidad de transporte público puede valorizar un apartamento, así que se creó la variable de *distancia mínima a la estación de transporte masivo más cercana*. Consideramos que, para Bogotá, es bastante apetecida la zona cercana a los cerros por varias razones (como una mejor calidad del aire) así que agregamos *la distancia mínima a los cerros orientales* para los datos de Bogotá. Por último, nos pareció interesante ver un campo de golf en El Poblado, Medellín y creemos que puede implicar un mayor precio estar cerca de él por la vista y por un "estatus" social. Agregamos la *distancia mínima al campo de golf* para los datos de Medellín.

Tabla 1. Estadísticas descriptivas de variables seleccionadas

Las tablas más completas con las estadísticas descriptivas se pueden observar en el Anexo 1

	Chapinero Train	Chapinero Test	Medellín Train	Medellín Test
Precio	1409463315.64712		415552398.354574	
Habitaciones	2.62282943368943	1.91172761664565	3.15904467690441	3.02375205175244
Área total	138.960904412101	80.0573211963589	98.6922806356912	139.499098495876
Terraza	0.545052625455512	0.383354350567465	0.58993917157478	0.501496572366515
Garaje	0.470313259620299	0.436317780580076	0.46134299643495	0.58993917157478
Distancia a	976.030085594007	309.259247483354	888.882010696326	2678.1595573365
transporte				

Distancia a	1604.8417816846	1867.96357768742	4039.31184319051	1573.22478128512
cerros/Distancia a				
golf				

En cuanto a las variables seleccionadas, se ha establecido que diversos factores pueden afectar positiva o negativamente el precio de un apartamento. En términos de localización, se ha establecido que una mayor distancia al centro y de zonas de accesibilidad como paradas de buses afecta negativamente el precio (Chica-Olmo et al., 2020; Deboosere et al., 2019; Dudas et al., 2020). Por otro lado, se ha encontrado una relación positiva entre el número de habitaciones y el precio, así como en el metraje o la superficie de la vivienda (Chica-Olmo et al., 2020; Deboosere et al., 2019; Dudas et al., 2020). Otras investigaciones refieren que la presencia de un mayor número de baños aumenta el valor a pagar y los inmuebles que cuentan con terraza tienen un precio de venta superior al 25% dependiendo de la ubicación en comparación con los que no tienen (Chattopadhyay & Mitra, 2019; Chica-Olmo et al., 2020).

El desarrollo sostenible y los niveles de conciencia sobre el medio ambiente, niveles de polución en el aire, entre otros han llevado a los Bogotanos a buscar un sin número de servicios ecoamigables que brinden un valor agregado. Por ejemplo, la vivienda cerca a los cerros orientales, especialmente en la localidad de Chapinero. Utilizando la metodología de precios hedónicos desarrollada por Rosen (1974), Garzón y Cardozo (2019) afirman que el precio de las viviendas "es directamente proporcional a la cercanía de los cerros", generando un precio comparativamente más elevado en el mercado.

En el anexo 2 se puede observar el delineado de Chapinero, Bogotá y Medellín. A continuación, se muestran las variables espaciales relevantes para cada sector. Para el caso de Chapinero, Bogotá, se evidencia los apartamentos en venta (círculos negros), las estaciones de transporte masivo (círculos azules) y los cerros orientales (círculos rojos). Para el caso de Medellín, se observa los apartamentos en venta (círculos negros), las estaciones de transporte masivo (círculos azules) y el campo de golf (polígono rojo).

Figura 1. Mapas de Chapinero, Bogotá y El Poblado, Medellín con datos espaciales disponibles

Modelo y resultados

<u>Variables:</u> Las variables tenidas en cuenta para el modelo son: el área total (*surface2*), si tiene terraza o no (*tiene_terraza*), si tiene garaje o no (*tiene_garaje*), el número de habitaciones (*bedrooms*), la distancia mínima a las estaciones de transporte masivo (*dist_bus*), la distancia mínima a los cerros orientales (en el caso de Bogotá – *dist_east*) y la distancia mínima al campo de golf (en el caso de El Poblado - *dist_golf*). Se incluyeron estas variables ya que la intuición económica, y en parte la literatura

expuesta en la sección anterior, nos indicaron que estos factores podrían implicar una variación importante en el precio de los apartamentos. Además, se tuvo presente una función lineal y cuadrática (disponibles en Anexos 3 y 4) de dichas variables, finalmente se conservó la versión cuadrática de la función. Para el modelo final se eligió la función cuadrática por su menor error cuadrático medio en los resultados.

<u>Modelo y evaluación</u>: Tanto para Chapinero como para Medellín se ejecutaron los algoritmos de probabilidad lineal, *Random Forest*, *XGBoost* y *SuperLearner*. El modelo elegido fue *SuperLearner* ya que funciona por lo menos tan bien como cualquiera de los algoritmos y mostró buen desempeño con respecto a los demás (resultados disponibles en Anexos 3-7). Así, para entrenar el modelo final se utilizó la función *SuperLearner* disponible en R y se introdujo como algoritmos *RandomForest*, *GXBoost* y un modelo de probabilidad lineal para suavizar la predicción. A continuación, se puede ver el error mínimo y los coeficientes de ponderación que arrojó el modelo.

Tabla 2. Error mínimo y coeficientes de ponderación para modelo Chapinero y Medellín

Chapinero			Medellín		
	Risk	Coef		Risk	Coef
SL.lm_All	5.358729e+17	0.01166931	SL.lm_All	1.213429e+17	0.04383829
SL.rpart_All	5.214751e+17	0.00000000	SL.rpart_All	1.032308e+17	0.05110621
SL.xgboost_All	3.523261e+17	0.98833069	SL.xgboost_All	7.384755e+16	0.90505550

Conclusiones

Después de considerar los modelos de probabilidad lineal, *Random Trees, XGBoost y SuperLearner*, este último fue el elegido por su mejor desempeño. Esto tiene sentido ya que, como se mencionó, *SuperLearner* le da un peso de relevancia a cada uno de los algoritmos introducidos y se desempeña por lo menos tan bien como cualquiera de ellos. Con base en la tabla 2, se evidencia que el modelo para chapinero le da un peso de 99% a *XGBoost* y 1% al modelo de probabilidad lineal, mientras que el modelo para Medellín otorga un peso de 91% a *GXBoost*, de 5% a *RandomForests* y de 4% al modelo de probabilidad lineal.

Anexos

Anexo 1. Estadísticas descriptivas

	Chapinero Train Stats							
Stat	price	bedrooms	surface2	tiene_terraza	tiene_garaje	dist_chapi_b	dist_east	
						us		
#	240663	240663	240543	240663	240663	240663	240663	
Valu								
es								
#	0	541	0	109489	127476	0	0	
Null								
# NA	0	0	120	0	0	0	0	
Medi	1.2e+09	3	106	1	0	1118.923647	1416.008949	
an						45359	78402	
Mea	1409463315.	2.622829433	138.9609044	0.545052625	0.470313259	976.0300855	1604.841781	
n	64712	68943	12101	455512	620299	94007	6846	
Std.	853466930.2	0.920068950	55.31715531	0.497967158	0.499118956	443.8629452	578.8469194	
Dev	38821	620243	51136	863804	347023	3022	39646	

	Chapinero Test Stats						
Stat	bedrooms	surface2	tiene_terraza	tiene_garaje	dist_chapi_bus	dist_east	
#	793	769	793	793	793	793	
Value							
S							
# Null	3	0	489	447	0	0	
# NA	0	24	0	0	0	0	
Medi	1	78	0	0	305.819853704	1840.58904674	
an					36	428	
Mean	1.91172761664	80.0573211963	0.38335435056	0.43631778058	309.259247483	1867.96357768	
	565	589	7465	0076	354	742	
Std.	1.27218739743	33.8856241734	0.48651029740	0.49624098078	140.749157880	232.232053622	
Dev	737	923	2999	3741	86	339	

	Medellín Train Stats							
Stat	price	bedrooms	surface2	tiene_terraza	tiene_garaje	dist_med_b	dist_golf	
						us		
#	290038	290038	289197	290038	290038	290038	290038	
Valu								
es								
#	0	42	2	158375	156231	0	117	
Null								
# NA	0	0	841	0	0	0	0	
Medi	308796000	3	100	0	0	922.0225702	4018.754097	
an						93893	88119	
Mea	415552398.3	3.159044676	98.69228063	0.453950861	0.461342996	888.8820106	4039.311843	
n	54574	90441	56912	611237	43495	96326	19051	
Std.	430838691.4	1.099099523	161.6040550	0.497875819	0.498504255	572.9462702	1988.221570	
Dev	14588	85458	44151	358028	630824	94205	77419	

	Medellín Test Stats						
Stat	bedrooms	surface2	tiene_terraza	tiene_garaje	dist_med_bus	dist_golf	
#	10357	10305	10357	10357	10357	10357	
Value							
S							
# Null	13	0	5163	4247	0	11	
# NA	0	52	0	0	0	0	
Medi	3	120	1	1	2626.4505867	1426.3068473	
an					3266	0773	

Mean	3.02375205175	139.49909849	0.50149657236	0.58993917157	2678.1595573	1573.2247812
	244	5876	6515	478	365	8512
Std.	0.91107923490	60.671777746	0.50002190017	0.49186817839	1027.5408706	909.07438550
Dev	4373	3658	0085	0216	8253	4015

Anexo 1. Perímetro de Chapinero, Bogotá y El Poblado, Medellín

Anexo 2. Variables y formas funcionales tenidas en cuenta

Lineal

• Bogotá

 $Precio_a = \'AreaTotal_a + Habitaciones_a + Terraza_a + Garaje_a \\ + Distancia m\'inima a transporte masivo_a + Distancia m\'inima a cerros orientales_a \\ + u$

• Medellín

 $Precio_a = AreaTotal_a + Habitaciones_a + Terraza_a + Garaje_a + Distancia mínima a transporte masivo_a + Distancia mínima a campo de <math>golf_a + u$

Cuadrática

• Bogotá

$$\begin{split} Precio_a = & \text{ \'A}rea \, Total_a^2 + Habitaciones_a + Terraza_a + Garaje_a \\ & + \textit{ Diastancia m\'inima a transporte masivo}_a^2 \\ & + \textit{ DIstamcia m\'inima a cerros orientales}_a^2 + u \end{split}$$

• Medellín

Anexo 3. Resultados modelo lineal con forma funcional lineal

• Bogotá

Chapinero OLS	
	Dependent variable:
	price
dist_east	-56,726.310** (24,896.430)
dist_chapi_bus	395,499.400***

• Modellén	1 11 / 1 / 1 / 1
Note:	*p<0.1; **p<0.05; ***p<0.01
F Statistic	0.351 729,021,896.000 (df = 13358) 1,203.675*** (df = 6; 13358)
Observations R2	13 , 365 0.351
	(71,444,564.000)
Constant	-291,968,062.000***
surface2	2,622,443.000*** (114,666.900)
tiene_garaje1	-51,321,618.000*** (12,840,069.000)
tiene_terraza1	266,894,535.000*** (13,046,137.000)
bedrooms	359,632,926.000*** (6,361,317.000)
	(32,990.240)

• <u>Medellín</u>

Medellín OLS	
	Dependent variable:
	price
dist_golf	-32,837.110*** (1,090.284)
dist_med_bus	110,568.400*** (3,514.413)
bedrooms	134,379,756.000*** (2,246,766.000)
tiene_terraza1	106,292,344.000*** (6,360,533.000)
tiene_garaje1	31,075,228.000*** (4,859,700.000)
surface2	49,284.310*** (5,695.814)
Constant	-12,806,009.000 (9,330,555.000)
Observations R2 Adjusted R2 Residual Std. Error F Statistic	20,778 0.216 0.216 348,083,111.000 (df = 20771) 953.825*** (df = 6; 20771)
Note:	*p<0.1; **p<0.05; ***p<0.01

Anexo 4. Resultados modelo lineal con forma funcional cuadrática

• <u>Bogotá</u>

Chapinero	OLS

Chapinero OLS	
	Dependent variable:
	price
dist_east2	-37.283*** (4.700)
dist_chapi_bus2	166.203*** (12.729)
bedrooms	359,953,754.000*** (6,365,374.000)
tiene_terraza1	270,089,913.000*** (13,053,890.000)
tiene_garaje1	-51,445,523.000*** (12,850,243.000)
surface2	2,635,714.000*** (114,736.500)
Constant	-86,843,142.000*** (33,489,283.000)
Observations R2 Adjusted R2 Residual Std. Error F Statistic	13,365 0.350 0.350 729,577,622.000 (df = 13358) 1,198.452*** (df = 6; 13358)
Note:	*p<0.1; **p<0.05; ***p<0.01

• <u>Medellín</u>

Medellín OLS

Medellin OLS				
	Dependent variable:			
	price			
dist_golf2	-3.627*** (0.105)			
dist_med_bus2	16.482*** (0.542)			
bedrooms	133,434,549.000*** (2,240,665.000)			
tiene_terraza1	103,131,321.000*** (6,343,925.000)			
tiene_garaje1	30,547,622.000*** (4,844,049.000)			
surface2	51,144.050*** (5,678.414)			
Constant	21,589,800.000*** (8,239,950.000)			

```
Observations 20,778
R2 0.220
Adjusted R2 0.220

Residual Std. Error 347,109,663.000 (df = 20771)
F Statistic 978.627*** (df = 6; 20771)

Note: *p<0.1; **p<0.05; ***p<0.01
```

Anexo 5. Resultados modelo random forests

*Se muestran resultados con las funciones del Anexo 2

```
    Bogotá

rpart(formula = chapi 1, data = chapi train)
  n = 13451
              CP nsplit rel error
                                           xerror
1 0.24276019 0 1.0000000 1.0001351 0.01662896
                       1 0.7572398 0.7574052 0.01330288
2 0.06058908

      2
      0.00000000
      1
      0.7372393
      0.7374032
      0.01330288

      3
      0.02813650
      2
      0.6966507
      0.6970183
      0.01281635

      4
      0.01504773
      3
      0.6685142
      0.6689865
      0.01247372

      5
      0.01360231
      4
      0.6534665
      0.6562842
      0.01233866

      6
      0.01007209
      5
      0.6398642
      0.6404498
      0.01233783

      7
      0.01000000
      6
      0.6297921
      0.6361757
      0.01220810

Node number 1: 13451 observations,
                                                    complexity param=0.2427602
  mean=1.330578e+09, MSE=8.194878e+17
Node number 2: 5537 observations,
                                                  complexity param=0.01360231
  mean=7.973401e+08, MSE=2.343999e+17
                                                  complexity param=0.06058908
Node number 3: 7914 observations,
  mean=1.703655e+09, MSE=8.907163e+17
Node number 4: 1922 observations
  mean=5.716591e+08, MSE=1.519596e+17
Node number 5: 3615 observations
  mean=9.173287e+08, MSE=2.367547e+17
                                                  complexity param=0.01007209
Node number 6: 2455 observations,
  mean=1.270465e+09, MSE=6.218715e+17
Node number 7: 5459 observations,
                                                  complexity param=0.0281365
  mean=1.898468e+09, MSE=8.892774e+17
Node number 12: 2246 observations
  mean=1.205594e+09, MSE=5.286518e+17
Node number 13: 209 observations
  mean=1.967596e+09, MSE=1.092434e+18
                                                   complexity param=0.01504773
Node number 14: 4434 observations,
  mean=1.783866e+09, MSE=7.924706e+17
Node number 15: 1025 observations
  mean=2.394218e+09, MSE=1.005467e+18
Node number 28: 2648 observations
```

mean=1.625023e+09, MSE=7.025614e+17

Medellín

```
CP nsplit rel error
                                xerror
1 0.11579257 0 1.0000000 1.0000234 0.04115690
2 0.07387939
                  1 0.8842074 0.8844116 0.03641143
  0.04159905
                  2 0.8103280 0.8113289 0.03441234
  0.02189414
                  3 0.7687290 0.7768021 0.03264601
4
5 0.01717236
                 4 0.7468348 0.7625158 0.03165765
6 0.01704833
                 6 0.7124901 0.7497422 0.03126828
7
  0.01670847
                  7 0.6954418 0.7438241 0.03114595
8
  0.01263356
                  8 0.6787333 0.7067019 0.03010065
  0.01085074
                  9 0.6660998 0.6983357 0.02991569
10 0.01000000
                10 0.6552490 0.6833262 0.02952630
Node number 1: 21356 observations,
                                    complexity param=0.1157926
 mean=4.057746e+08, MSE=1.543341e+17
Node number 2: 16657 observations,
                                    complexity param=0.02189414
 mean=3.347718e+08, MSE=6.256533e+16
Node number 3: 4699 observations,
                                   complexity param=0.07387939
 mean=6.574652e+08, MSE=3.984169e+17
Node number 4: 16540 observations,
                                     complexity param=0.01670847
 mean=3.29236e+08, MSE=5.081554e+16
Node number 5: 117 observations,
                                  complexity param=0.01704833
 mean=1.117356e+09, MSE=1.106832e+18
Node number 6: 4601 observations, complexity param=0.04159905
 mean=6.242424e+08, MSE=3.308922e+17
Node number 7: 98 observations
 mean=2.217244e+09, MSE=1.083903e+18
Node number 8: 14466 observations,
                                     complexity param=0.01085074
 mean=3.073875e+08, MSE=3.694424e+16
Node number 9: 2074 observations
 mean=4.816277e+08, MSE=1.210141e+17
Node number 10: 51 observations
 mean=3.289941e+08, MSE=7.864364e+16
Node number 11: 66 observations
 mean=1.726545e+09, MSE=1.049969e+18
Node number 12: 4573 observations,
                                    complexity param=0.01717236
 mean=6.107345e+08, MSE=2.947083e+17
Node number 13: 28 observations
 mean=2.830357e+09, MSE=1.343761e+18
Node number 16: 3128 observations
 mean=2.127243e+08, MSE=1.754785e+16
Node number 17: 11338 observations
 mean=3.335037e+08, MSE=3.914113e+16
Node number 24: 1778 observations
 mean=4.759869e+08, MSE=1.592776e+17
Node number 25: 2795 observations,
                                     complexity param=0.01717236
 mean=6.964524e+08, MSE=3.619629e+17
```

```
Node number 50: 2774 observations,
                                          complexity param=0.01263356
     mean=6.836641e+08, MSE=3.369832e+17
   Node number 51: 21 observations
     mean=2.385714e+09, MSE=7.864531e+17
   Node number 100: 1906 observations
     mean=6.009844e+08, MSE=2.305417e+17
   Node number 101: 868 observations
     mean=8.652166e+08, MSE=5.227409e+17
                           Anexo 6. Resultados modelo rgboost
*Se utilizaron funciones del Anexo 3

    Bogotá con variables lineales

   [1] train-rmse:808279567.963563
   [2] train-rmse:406096471.352101
   [3] train-rmse:204488351.812953
   [4] train-rmse:103560884.765471
   [5] train-rmse:53086785.424197
   [6] train-rmse:27777806.587678
   [7] train-rmse:15437987.100543
```

[10] train-rmse:6106198.745394 [90] train-rmse:847291.034356

[8] train-rmse:9775410.998571 [9] train-rmse:7094363.084718

[91] train-rmse:824964.702165

[92] train-rmse:816499.637021

[93] train-rmse:800164.701666

[94] train-rmse:794067.800001

[95] train-rmse:791163.976414

[96] train-rmse:784856.895702

[97] train-rmse:779757.163089

[98] train-rmse:769030.498417

[99] train-rmse:753609.328410

[100] train-rmse:744062.242802

Bogotá con variables cuadráticas

```
[1] train-rmse:808279567.963563
[2] train-rmse:406096471.352101
```

[3] train-rmse:204488351.812953

[4] train-rmse:103560884.765471

[5] train-rmse:53086785.424197

[6] train-rmse:27777806.587678

[7] train-rmse:15437982.006707

[8] train-rmse:9775430.337547 [9] train-rmse:7094391.521749

[10] train-rmse:6106229.176997

[90] train-rmse:850412.621522

[91] train-rmse:843992.682137

[92] train-rmse:833132.373968

[93] train-rmse:819242.926100

[94] train-rmse:809384.488354

[95] train-rmse:792175.665884

[96] train-rmse:781353.223583 [97] train-rmse:773620.178781

[98] train-rmse:768558.363623

[99] train-rmse:762046.212612

[100] train-rmse:754732.843842

Medellín con variables lineales

- [1] train-rmse:285934062.604647 [2] train-rmse:145167592.206906 [3] train-rmse:74237703.864875 [4] train-rmse:38741955.684560 [5] train-rmse:20835244.586817 [6] train-rmse:11897190.180323 [7] train-rmse:7624251.886975 [8] train-rmse:5188370.118611 [9] train-rmse:3899379.330609 [10] train-rmse:3391613.616659 [90] train-rmse:268793.057613 [91] train-rmse:266941.952401 [92] train-rmse:259612.557570 [93] train-rmse:254560.529884 [94] train-rmse:249814.767971 [95] train-rmse:247996.748536 [96] train-rmse:245595.604836 [97] train-rmse:238900.618382 [98] train-rmse:234494.415851 [99] train-rmse:231816.343644
- [100] train-rmse:228834.798396

• Medellín con variables cuadráticas

- [1] train-rmse:285934062.604647 [2] train-rmse:145167592.206906 [3] train-rmse:74237703.864875 [4] train-rmse:38741955.684560 [5] train-rmse:20835244.586817 [6] train-rmse:11897190.180323 [7] train-rmse:7624251.886975 [8] train-rmse:5188370.118611 [9] train-rmse:3899379.330609 [10] train-rmse:3391613.616659 [90] train-rmse:271773.685040 [91] train-rmse:268357.935748 [92] train-rmse:263797.534826 [93] train-rmse:257132.449216 [94] train-rmse:251942.808618 [95] train-rmse:243669.602275 [96] train-rmse:239561.780599 [97] train-rmse:234525.017628 [98] train-rmse:232744.133850 [99] train-rmse:230493.085039
- [100] train-rmse:227942.050877

Anexo 7. Resultados modelo superlearners (elegido)

• Bogotá con variables lineales

Risk Coef
SL.lm All 5.317369e+17 0.01583833

SL.rpart_All 5.213720e+17 0.000000000 SL.xgboost_All 3.509389e+17 0.98416167

Bogotá con variables cuadráticas

	Risk	Coef
SL.lm_All	5.358729e+17	0.01166931
SL.rpart_All	5.214751e+17	0.00000000
SL.xgboost All	3.523261e+17	0.98833069

• Medellín con variables lineales

	K18K	Coef
SL.lm_All	1.218113e+17	0.0260250
SL.rpart_All	1.029684e+17	0.1004373
SL.xgboost_All	7.596881e+16	0.8735377

• Medellín con variables cuadráticas

	Risk	Coef
SL.lm_All	1.213429e+17	0.04383829
SL.rpart_All	1.032308e+17	0.05110621
SL.xgboost_All	7.384755e+16	0.90505550

Referencias

Chattopadhyay, M., & Mitra, S. K. (2019). Do airbnb host listing attributes influence room pricing homogenously? International Journal of Hospitality Management, 81, 54-64.

Chica-Olmo, J., González-Morales, J. G., & Zafra-Gómez, J. L. (2020). Effects of location on Airbnb apartment pricing in Málaga. Tourism Management, 77, 103981. Deboosere, R., Kerrigan, D. J., c analysis of Airbnb listing prices and revenue. Regional Studies, Regional Science, 6(1), 143-156.

Deboosere, R., Kerrigan, D. J., Wachsmuth, D., & El-Geneidy, A. (2019). Location, location and professionalization: A multilevel hedonic analysis of Airbnb listing prices and revenue. Regional Studies, Regional Science, 6(1), 143-156.

Dudas, G., Kovalcsik, T., Vida, G., Boros, L., & Nagy, G. (2020). Price determinants of Airbnb listing prices in Lake Balaton Touristic Region, Hungary. European Journal of Tourism Research, 24, UNSP 2410.

Garzón Caro, J. M., & Cardozo Perdomo, D. (2019). Cerros orientales de Bogotá: una aplicación hedónica al precio de la vivienda para la localidad de Chapinero para el año 2018.