Modyfikacje Symulowanego Wyżarzania

Wojciech Grabias

March 2023

Simulated Annealing

Problem optymalizacyjny

Przedstawiony problem optymalizacyjny polegać będzie na znalezieniu takiego $x \in \mathcal{X}$, dla którego funkcjia celu f przyjmuje wartość minimalną.

Simulated Annealing

$$T-{\sf Temperatura}$$

$$f: \mathcal{X}
ightarrow \mathbb{R}_{\geq 0}$$
 — Funkcja celu, $\mathcal{X} \subset \mathbb{R}^d$

Rozkład Boltzmanna

$$\pi_T(x) = \frac{1}{Z_T} \exp\left(-\frac{f(x)}{T}\right)$$

Intuicja:

Dla małych T, z dużym prawdopodobieństwem x przyjmuje tylko takie stany, że wartośc f(x) jest mała.

Potrzebne definicje

Dla funkcji celu f:

$$S_* = \{x \in \mathcal{X} : f(x) = 0\}$$
$$S_{\epsilon} = \{x \in \mathcal{X} : f(x) \le \epsilon\}, \ \epsilon > 0$$

$$\mathcal{M}(\mathcal{X})$$
 – zbiór prawdopodobieństw na $(\mathcal{X},\mathfrak{B}(\mathcal{X}))$

 $G(x,dy)-{\sf Będziemy}$ je traktowali jako rozkład normalny o średniej x

Simulated Annealing raz jeszcze

Algorithm 1: SA

Initialization with $x_0 \sim \mu_0, \ \mu_0 \in \mathcal{M}(\mathcal{X})$

for k = 0, ... do

Generate a candidate $y_k \sim G(x_k, dy)$

Compute the acceptance probability

$$p_k = \exp\left(-\left(\frac{f(y_k) - f(x_k)}{T_k}\right)_+\right)$$

Set
$$x_{k+1} = \begin{cases} y_k \text{ with probability } p_k \\ x_k \text{ with probability } 1 - p_k \end{cases}$$

end

Algorytm 1: SA, [2]

Zbieżność algorytmu SA

Metropolis-Hastings (MH) kernel

$$P_k(x,dy) = p_k(y,x)G(x,dy) + (1-r(x))\delta_x(dy), \text{ gdzie}$$

$$r(x) = \int_{\mathcal{X}} p_k(y,x)G(x,dy)$$

Wówczas zdefiniować możemy:

$$\mu_k(dx) = \mathbb{P}(x_k \in dx) = \mu_{k-1}P_k, \ k > 1$$

Zbieżność algorytmu SA

Twierdzenie

Jeżeli T maleje logarytmicznie z dokładnością do pewnej stałej, to przy odpowiednio dużym T_0 :

$$\lim_{k \to \infty} \mathbb{P}(x_k \in S_{\epsilon}) = 1$$

Efektywność modyfikacji - przykład I-MSAA

Obrazek 1: Optymalizowane funkcje, [3]

Efektywność modyfikacji - przykład I-MSAA

Function	D	Optimal	SA			I-MSAA		
			Best	Worse	SD	Best	Worse	SD
Dixon Price	10	0.0	100.3	891.4	1.9x10 ²	0.0	0.0	8.9x10 ⁻⁸
Ackley	50	0.0	17.9	19.0	0.2	0.0	0.0	2.3x10 ⁻⁵
Neumaier	10	-210.0	764.8	3.6×10^3	6.4×10^2	-210.0	-210.0	3.2x10 ⁻⁹
Rosenbrock	50	0.0	$5.7x10^5$	9.4x10 ⁵	$8.3x10^4$	0.0	4.0	1.2

Tabela 1: Porównanie SA i I-MSAA,[3]

FSA- Fast Simulated Annealing

FSA - zamysł

FSA bierze swoją nazwę od przyspieszonego schematu chłodzenia - chcemy szybciej osiągać niskie temperatury.

Aby kontrolować zachowanie algorytmu stosować będziemy funkcje malejące wolniej od dotychczasowo przyjętej e^{-x}

FSA - Fast Simulated Annealing

Generalizacja SA o dowolność funkcji q określającej prawdopodobieństwo przyjęcia nowego punktu y_k (ang. acceptance function):

$$p_k = q(
ho_k)$$
, gdzie
$$ho_k = \left(rac{f(y_k) - f(x_k)}{T_k}
ight)_+$$

Dozwolone są jednak funkcje malejące wolniej od e^{-x} . Zwykle przyjmuje się, że $\rho\longmapsto q(\rho)=\frac{1}{1+\rho}$

Tak zmodyfikowane jądra przejścia oznaczać będziemy $P_k^{(F)}$

Zbieżność FSA

Twierdzenie*

Jeżeli dla pewnego $\gamma \in (0,1]$:

$$T_k = \frac{1}{(k+1)^{\gamma} \log((k+1)^{\gamma})}$$

to istnieje $C_{\epsilon}>0$ spełniające:

$$\mathbb{P}(x_k \in S_{\epsilon}) \ge 1 - \frac{C_{\epsilon}}{(k+1)^{\gamma}}, \forall_{k \in \mathbb{N}}$$

SMC-SA: Sequential Monte Carlo-Simulated Annealing

SMC-SA - zamysł

Zamiast szukać minimum pojedynczym punktem, szukajmy go kilkoma punktami jednocześnie, moderując ich zachowanie w każdej iteracji.

SMC-SA: Sequential Monte Carlo-Simulated Annealing

Aktualny zbiór punktów

Do dyspozycji mamy n punktów $x_1, ..., x_n$

Przypisanie wag każdemu z punktów

Każdy z punktów otrzymuje swoją wagę w oparciu o stosunek rozkładów Boltzmann'a

Resampling

Na podstawie wag z odpowiednim prawdopodobieństwem wybieramy odpowiednie punkty (mogą się powtarzać), nowy zbiór punktów może być większy od poprzedniego

Zmiana położenia punktów

Każdy z nowych punktów przepuszczamy przez kernel MH - P_k

SMC-SA: Schemat działania

Obrazek 2: Wizualizacja resamplingu na podstawie rozkładu normalnego, [1]

SMC-SA: Sequential Monte Carlo-Simulated Annealing

Algorithm 2: SMC-SA

Initialize the algorithm
$$x_k^{(n)} \sim \mu_0$$
 for $1 \leq n \leq N_0$; for $k=1,\dots$ do | Compute the self-normalized weights
$$w_k^{(n)} \propto \frac{\pi_k}{\pi_{k-1}} (x_{k-1}^{(n)})$$
 Resample $\{\tilde{x}_k^{(n)}\}_{n=1}^{N_k}$ from $\{x_{k-1}^{(n)}, w_k^{(n)}\}_{n=1}^{N_{k-1}}$ Generate $\{x_k^{(n)}\}_{n=1}^{N_k}$ propagating the points $\{\tilde{x}_k^{(n)}\}_{n=1}^{N_k}$ with the MH kernel $P_k(x, dy)$ end

Algorytm 2: SMC-SA, [2]

Podsumowanie 3 modyfikacji SA

SA

Podstawowa wersja: p_k ściśle związane z π_k , wolne tempo chłodzenia

FSA

Szybsze tempo chłodzenia, wolniej malejąca funkcja wyznaczająca prawdopodobieństwa zmiany stanu

SMC-SA

Rozszerzenie SA o wielopunktowość, kontrola punktów poprzez narzucenie rozkładu

Curious Simulated Annealing

$$\begin{array}{ccc} \mathsf{SA} & \longrightarrow & \mathsf{SMC}\text{-}\mathsf{SA} \\ \downarrow & & \downarrow \\ \mathsf{FSA} & \longrightarrow & \mathsf{Curious}\; \mathsf{SA} \end{array}$$

Curious Simulated Annealing

Algorithm 3: CSA

Algorytm 3: CSA, [2]

Testy Numeryczne

Problem 1

Minimalizacja funkcji Rosenbrock'a w \mathbb{R}^{10} :

$$f(x) = \sum_{i=1}^{9} 5(x_{i+1} - x_i^2)^2 + (1 - x_i)^2, \ \forall_{x \in \mathbb{R}^{10}}$$

		SA	FSA	SMC-SA	CSA
(P_1)	$\langle f_{50}^* \rangle$	6.31	6.49	6.41	4.05
	σ_{50}^*	0.829	0.732	1.15	1.17
	$\langle f_{500}^* \rangle$	3.64	3.72	5.06	2.19
	σ_{500}^*	0.761	0.778	1.26	0.447

Tabela 2: Porównanie testów numerycznych, [2]

Testy Numeryczne

Problem 2

Minimalizacja funkcji Rastrigin'a z równomiernie rozłożonymi minimami:

$$f(x) = \sum_{i=1}^{10} x_i^2 - \cos(2\pi x_i), \ \forall_{x \in \mathbb{R}^{10}}$$

		SA	FSA	SMC-SA	CSA
	$\langle f_{50}^* \rangle$	3.29	3.36	3.26	3.23
(P_2)	σ_{50}^*	0.425	0.453	0.521	0.484
	$\langle f_{500}^* \rangle$	2.52	2.64	2.62	2.47
	σ^*_{500}	0.320	0.304	0.413	0.502

Tabela 3: Porównanie testów numerycznych, [2]

Dziękuję za uwagę :)

Bibliografia

Danilo Alvares, Carmen Armero, Anabel Forte, and Nicolas Chopin.

Sequential monte carlo methods in bayesian joint models for longitudinal and time-to-event data.

Statistical Modelling, 21(1-2):161–181, 2021.

Emilie Chouzenoux, Víctor Elvira, and Thomas Guilmeau. Simulated annealing: a review and a new scheme. *PGMO DAYS 2021*, page 33, 2021.

Jesús Suarez, Carlos Millan, and Euriel Millan.
Improved modified simulated annealing algorithm for global optimization.

Contemporary Engineering Sciences, 11(96):4789-4795, 2018.

