Lab Handout # 4 CPP based based Simulation of M-QAM modulation over wired/wireless system

Design LAB II(Software) Instructor: D. RAWAL, N. SHARMA

Dept. of ECE, The LNMIIT, Jaipur

Time: 3:00 Hour Maximum Marks: 10

Instructions and information for students

- This Lab Handout consists of 2 pages. Please check that you have a complete copy.
- Simulate in matlab or any other Software.

Objective:

1) Simulate M-QAM modulator and Demodulator.

Itroduction:

1) C + + based Qam modulator Demodulator.

Table - QPSK bits	to symbo	mapping
-------------------	----------	---------

B(1)	B(2)	I	Q
0	0	1	1
0	1	1	-1
1	0	-1	1
1	1	-1	-1

B(1)	B(2)	B(3)	B(4)	I	Q
0	1	0	1	3	3
0	1	0	0	3	1
0	1	1	0	3	-1
0	1	1	1	3	-3
0	0	0	1	1	3
0	0	0	0	1	1
0	0	1	0	1	-1
0	0	1	1	1	-3
1	0	0	1	-1	3
1	0	0	0	-1	1
1	0	1	0	-1	-1
1	0	1	1	-1	-3
1	1	0	1	-3	3
1	1	0	0	-3	1
1	1	1	0	-3	-1
1	1	1	1	-3	-3

Fig. 1. Modulator

a) Simulating M-Qam modulator using C++:

- i) Generate a random binary sequence of 100-10000 values using rand function. Lets call it 'X' sequence.
- ii) Map it to various QAM modulator given in the figure. For ex. for 16 QAM use combination of 1 and 3 to genrate constellation points.
- iii) Use Normalization factor $\frac{1}{\sqrt{2}}$ for QPSK and $\frac{1}{\sqrt{10}}$ for 16-QAM. iv) Use DevC++ to generate C++ code for the above modulator.
- v) For comparison of simulated results use
 - i) Theoretical BER of QPSK:

$$QPSK_{BER} = erfc\left(\sqrt{\frac{snr}{2}}\right)$$

and

ii) Theoretical BER of 16-QAM:

$$16QAM_{BER} = 1.5erfc(\sqrt{snr/10})$$

2) Observations and Results.

- [2] a) Generate QPSK modulator in Dev C++ and using S-function Builder.
- b) Generate QPSK demodulator in Dev C++ and using S-function Builder. [2]
- c) Generate Gaussian noise with mean zero and variance 1. [2]
- d) Make an end-to-end simulink model for wired channel QPSK Transceiver. Plot Simulated BER. (Tuesday batch) [4]
- e) Make an end-to-end simulink model for wired channel 16-QAM Transceiver. Plot Simulated BER. (Wednesday batch) [4]

-WELL DONE-