Math 591 Lecture 1

Thomas Cohn

8/31/20

What is a differentiable manifold? It's a bit of a long answer. Here's something that's true, but not complete:

A differentiable manifold is a topological space that is

- (a) Hausdorff (T_2)
- (b) Second-Countable
- (c) Locally Euclidean (Informally, this means every point has a neighborhood that is homeomorphic to a Euclidean space.)
- (d) Has a C^{∞} at las (This is additional structure, not a topological property.)

Note that (a), (b), and (c) together define a topological manifold.

Hausdorff Spaces

Defn: A topological space X is <u>Hausdorff</u> (or $\underline{T_2}$) if $\forall x, y \in X$ with $x \neq y$, there exist neighborhoods U of x and V of y such that $U \cap V = \emptyset$.

Ex: Any metric space is Hausdorff.

Proof: Fix distinct x, y. Let $r = \frac{1}{3}d(x, y) > 0$ (because $x \neq y$). Let U = B(x, r), V = B(y, r). Then by the triangle inequality, $U \cap V = \emptyset$. \square

Ex: The following topological space is *not* Hausdorff.

Let $X = (-\infty, 0) \cup \{A, B\} \cup (0, \infty)$ (with $A \neq B$), with the standard topology on $(-\infty, 0)$ and $(0, \infty)$, and neighborhoods of A and B contain $(-\varepsilon, 0)$ and $(0, \varepsilon)$.

This space is not Hausdorff, because you can't separate A and B.

Second-Countable Spaces

Defn: Let X be a topological space. A <u>basis</u> of X is a collection \mathscr{B} of open sets such that every open set in X can be written as the (possibly infinite) union of elements in \mathscr{B} .

Defn: X is second-countable if there is a countable basis of X.

Ex: $X = \mathbb{R}^n$ (with the standard topology) is second countable.

Proof: Let $\mathscr{B} = \{B(q,r) \mid q \in \mathbb{Q}^n, r \in \mathbb{Q}\}$. We know \mathscr{B} is countable, so we need to show \mathscr{B} is a basis. Let $U \subseteq \mathbb{R}^n$ be open. Let $\mathscr{B}_U = \{B \in \mathscr{B} \mid B \subseteq U\}$. We claim that $U = \bigcup_{B \in \mathscr{B}_U} B$. Well, \supseteq is trivial. To show \subseteq , let $x \in U$. Since U is open, $\exists r \in \mathbb{R}_{>0}$ s.t. $B(x,r) \subseteq U$. Let $q \in \mathbb{Q}^n$ s.t. $d(x,q) < \frac{r}{43}$. Let

 $\rho \in \mathbb{Q} \text{ such that } \frac{r}{43} \stackrel{(1)}{<} \rho \stackrel{(2)}{<} \frac{r}{42}.$

(1) implies that $B(q, \rho)$ contains x.

(2) implies (by the triangle inequality and the fact that $x \in B(q, \rho)$ that $B(q, \rho) \subseteq U$, so $B(q, \rho) \in \mathcal{B}_U$.

Ex: The following topological space is *not* second-countable.

Let $X = \mathbb{R}$ with the discrete topology (i.e. singletons are open).

A basis must have every singleton, so it's obviously not second-countable.

Relationships of These Properties with "New Spaces from Old"

Product Spaces

Defn: Let X, Y be topological spaces. Then $X \times Y$ has a natural topology called the <u>product topology</u>, defined by the basis $\{U \times V \mid U \subseteq X, V \subseteq Y \text{ open}\}.$

Thm: (A.21, A.22) If X and Y are second-countable topological spaces, then so is $X \times Y$. If X and Y are T_2 , then so is $X \times Y$.

Quotient Spaces

 $Next\ time...$