中国科学技术大学 2015-2016 学年第 1 学期《单变量微积分》期中考试试卷

(闭卷 120 分钟)

	 		+1 CS 12-0					
题号	 -1	Ξ	四	五	六	七	八	总分
分数		10						
评卷人								

得分	评卷人	_	求下列极	旧武已粉	/乞瑡	r	11 : ′20	分)
		`	ax ryinxi	収以守奴	(母國)	5 71,	24 20	<i>)</i> 3

(1)
$$\lim_{x\to 0} \frac{\sin x - \tan x}{(\sqrt[3]{1+x^2}-1)\ln(1-x)}$$

$$(2) \lim_{x \to 0} \left(\frac{1}{x^2} - \frac{\cot x}{x} \right)$$

(3)
$$\lim_{n \to +\infty} \left[\left(1 + \frac{1}{n} \right)^{-n^2} e^n \right]$$

(4) 设
$$f(x)$$
在 $x = 0$ 有二阶导数, $f(0) = 1, f'(0) = 0,$ 求 $\lim_{x \to +\infty} \left[f\left(\frac{1}{\sqrt{x}}\right) \right]^x$.

2.生所在系

阵名

. 烘

存。

得分 评卷人 二、(本题 10 分)
$$y = f(x)$$
由方程组
$$\begin{cases} x = t + \sin t \\ y + te^y = t^2 \end{cases}$$
 确定, $\frac{dy}{dx}\Big|_{x=0}$, $\frac{d^2y}{dx^2}\Big|_{x=0}$.

得分 评卷人 三、(本题 10 分)

得分	评卷人	m	(本题 8 分)
		M.	(本図8分)

设f(x)在 $[0,\pi]$ 连续,在 $(0,\pi)$ 可导,且f(0)=0,证明存在 $\xi \in (0,\pi)$,使得 $2f'(\xi)=\tan\frac{\xi}{2}f(\xi)$.

得分评卷人

五、(本题 10 分)

证明方程 $x^2 = x \sin x + \cos x$ 仅有两个实根.

得分	评卷人	六、	(本題	10 分)
----	-----	----	-----	-------

讨论函数 $f(x) = x(1 + e^x) - 2(e^x - 1)$ 的单调性,并证明不等式

$$\frac{e^a - e^b}{a - b} < \frac{e^a + e^b}{2} \quad (a \neq b).$$

得分	评卷人	七、	(本题	6分)
		l		

函数f(x)在x = 0的某邻域中有三阶连续导数, f'(0) = 1, f''(0) = 0, f'''(0) = -1,设 $a_{n+1} = f(a_n)$ 满足 $\lim_{n \to +\infty} a_n = 0, (a_n \neq 0, n = 1, 2, \cdots), 求 \lim_{n \to +\infty} na_n^2.$

- 1. 设数列 $\{x_n\}$ 与 $\{y_n\}$ 满足 $\lim_{n\to\infty} x_n y_n = 0$,则下列断言正确的是 ()
 - (A) 若 $\{x_n\}$ 发散,则 $\{y_n\}$ 必发散.
 - (B) 若 $\{x_n\}$ 无界,则 $\{y_n\}$ 必有界.
 - (C) 若 $\{x_n\}$ 有界,则 $\{y_n\}$ 必为无穷小.
 - (D) 若 $\{\frac{1}{x_n}\}$ 无穷小,则 $\{y_n\}$ 必为无穷小.
- 2. 设当 $x \to 0$ 时, $e^{\sin x} (ax^2 + bx + 1)$ 是比 x^2 高阶的无穷小,则 ()
 - (A) $a = \frac{1}{2}, b = 1.$

(B) a = 1, b = 1.

(C) $a = -\frac{1}{2}, b = 1.$

- (D) a = -1, b = 1.
- 3. 已知函数f(x)在x=0的某个邻域内连续,且f(0)=0,又 $\lim_{x\to 0}\frac{f(x)}{\sin^2 x}=2$,则在点 x=0 处 f(x)
 - (A) 不可导.

(B) 可导,且 $f'(0) \neq 0$.

(C) 取得极大值.

- (D) 取得极小值.
- 4. 设f(x)在[a,b]上可导,且f'(a) > 0, f'(b) < 0,则下列结论中错误的是 ()
 - (A) 至少存在一点 $x_0 \in (a, b)$, 使得 $f(x_0) > f(a)$.
 - (B) 至少存在一点 $x_0 \in (a,b)$, 使得 $f(x_0) > f(b)$.
 - (C) 至少存在一点 $x_0 \in (a,b)$, 使得 $f(x_0) = 0$.
 - (D) 至少存在一点 $x_0 \in (a,b)$, 使得 $f'(x_0) = 0$.