# **Linear Algebra & Convex Optimization – Lecture 12**

**Convex Functions** 

Text: Convex Optimization, S. Boyd

#### **Matrix Calculus**

#### **Some Common Derivatives**

(in denominator layout convention)

u & v are functions of vector xA & b are independent of vector x

$$\frac{\partial \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = \ \mathbf{A}^\top$$

$$\frac{\partial \mathbf{u}^{\top} \mathbf{v}}{\partial \mathbf{x}} = \frac{\partial \mathbf{u}}{\partial \mathbf{x}} \mathbf{v} + \frac{\partial \mathbf{v}}{\partial \mathbf{x}} \mathbf{u}$$

$$\frac{\partial \mathbf{x}^{\top} \mathbf{A}}{\partial \mathbf{x}} = \ \mathbf{A}$$

$$\checkmark \frac{\partial \mathbf{b}^{\top} \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = \mathbf{A}^{\top} \mathbf{b}$$

$$\frac{\partial \mathbf{A}\mathbf{u}}{\partial \mathbf{x}} = \ \frac{\partial \mathbf{u}}{\partial \mathbf{x}} \mathbf{A}^{\top}$$

$$\frac{\partial \mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = (\mathbf{A} + \mathbf{A}^{\top}) \mathbf{x}$$

$$Ax = y \quad \int_{\alpha_{1}} = |Ax - y|^{2}$$

$$= (Ax - y)^{T}(Ax - y)$$

$$= (x^{T}A^{T} - y^{T})(Ax - y)$$

$$\int_{\alpha_{1}} = x^{T}A^{T}Ax - x^{T}A^{T}y - y^{T}Ax + y^{T}y$$

$$\nabla f(x) = 2A^{T}Ax - 2A^{T}y$$

## **General Optimization Formulation**



x-2< 0

#### **General Formulation:**

minimize 
$$f_0(x)$$
 subject to  $f_i(x) \leq 0, \quad i = 1, \dots, m$   $h_i(x) = 0, \quad i = 1, \dots, p$ 

$$p^* = \inf\{f_0(x) \mid f_i(x) \le 0, \ i = 1, \dots, m, \ h_i(x) = 0, \ i = 1, \dots, p\}$$

x is **feasible** if  $x \in \operatorname{\mathbf{dom}} f_0$  and it satisfies the constraints

a feasible x is **optimal** if  $f_0(x) = p^*$ ;  $X_{\text{opt}}$  is the set of optimal points

*Implicit Constraints:* 

$$x \in \mathcal{D} = \bigcap_{i=0}^{m} \operatorname{dom} f_{i} \cap \bigcap_{i=1}^{p} \operatorname{dom} h_{i}$$

Explicit Constraints:

$$f_i(x) \le 0, \ h_i(x) = 0$$

**Un-Constraint Problem:** 

$$m = p = 0$$



Illustration – 1:  $f_0: \mathbb{R}^2 \to \mathbb{R}$ 

## **Non - Convex Optimization**



#### **Local Optimization Methods**:

- Find a point that minimizes  $f_0(x)$  among feasible points near it
- Requires initial guess
- Provides no information on distance to global optimum.

graph of does In.



Fig: Loss function  $(f: \mathbb{R}^N \to \mathbb{R})$  surface of a Neural Network (N: # parameters)

#### **Convex Sets**

#### **Definition:**

Given any 2 points,  $x_1$ ,  $x_2$  in a set S, and any 2 non-negative numbers,  $\theta_1$ ,  $\theta_2$ , such that  $\theta_1 + \theta_2 = 1$ , the affine combination of the points,  $\theta_1 x_1 + \theta_2 x_2$ , should lie inside the set S.



**Convex Set** 



 $x_1$   $x_3$ 

**Convex Set** 

**Non- Convex Set** 

#### **Convex Functions**

 $f: \mathbf{R}^n \to \mathbf{R}$  is convex if  $\operatorname{\mathbf{dom}} f$  is a convex set  $\phantom{\mathbf{A}}$  and

$$f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y) \quad \text{for all } x, y \in \operatorname{dom} f, \ 0 \leq \theta \leq 1$$



f is strictly convex if  $\operatorname{dom} f$  is convex and  $f(\theta x + (1-\theta)y) < \theta f(x) + (1-\theta)f(y)$ 

### **First Order Condition for Convexity**

$$\int (y) = \int (x) + \nabla \int (x) (y - \infty)$$

Assume 
$$\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \dots, \frac{\partial f(x)}{\partial x_n}\right)$$
 exists at each  $x \in \operatorname{dom} f$ 

**1st-order condition:** differentiable f with convex domain is convex if



Taylor's first order approximation in variable y

Tangent at x is the global under-estimator of if function f(x) is convex

### **Second Order Condition for Convexity**

Taylor series expansion of a multi-variable scalar function f(x) with  $x \in \mathbb{R}^n$ :

$$f(x + \Delta x) = f(x) + \nabla f^T \Delta x + \frac{1}{2} \Delta x^T \nabla^2 f \Delta x + \dots$$

For f(x) with  $x \in \mathbb{R}^n$  Hessian matrix is defined as :

For twice differentiable functions, f(x) is convex if and only If:

$$\nabla^2 f(x) \succeq 0 \quad \text{for all } x \in \operatorname{\mathbf{dom}} f$$

$$\nabla f = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix} \text{ and } \nabla^2 f = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{pmatrix}$$

# **Convexity: Examples**

$$f = x_1^2 + x_1 x_2 + x_2^2 \qquad \Delta f = \begin{cases} 2x_1 + x_2 \\ x_1 + 2x_2 \end{cases}$$

$$\nabla^2 f = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial f}{\partial x_1 \partial x_2} \\ \frac{\partial f}{\partial x_1 \partial x_2} & \frac{\partial^2 f}{\partial x_2^2} \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

Eigen Values,  $\lambda_{1,2} = 1$ , 3

Change 
$$f$$
 to  $f=x_1^2+3x_1x_2+x_2^2$  Eigen Values,  $\lambda_{1,2}=-1$ , 5







### **Convexity: Examples**

# **Quadratic Function:**

$$g: \mathbb{R}^n \to \mathbb{R}$$

$$\frac{\partial \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = \mathbf{A}^{\top}$$

$$f(x) = (1/2)x^T P x + q^T x + r \qquad \text{(with } P \in \mathbf{S}^n\text{)}$$

$$rac{\partial \mathbf{x}^{ op}\mathbf{A}}{\partial \mathbf{x}} = \mathbf{A}$$

$$\nabla f(x) = Px + q \qquad \qquad \nabla^2 f(x) = P$$

$$\nabla^2 f(x) = P$$

$$\frac{\partial \mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = \underline{\left(\mathbf{A} + \mathbf{A}^{\top}\right)} \mathbf{x}$$

$$\text{convex if } P \succeq 0$$

$$\frac{\partial \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = \underbrace{(\mathbf{A} + \mathbf{A}^{\mathsf{T}}) \mathbf{x}}^{2}$$

$$|| \mathbf{A} \mathbf{x} - \mathbf{b} ||$$

$$= \mathbf{x}^{\mathsf{T}} \mathbf{x}$$

$$= \mathbf{x}^{\mathsf{T}} \mathbf{x}$$

$$|| \mathbf{A} \mathbf{x} - \mathbf{b} ||$$

**Poll**: Is the function  $f(x) = ||x||^2$  convex ? ( $x \in \mathbb{R}^n$ )

# **Convexity: Examples**



#### **Least Squares Objective:**

$$f(x) = ||Ax - b||_2^2$$

$$\nabla f(x) = 2A^{T}(Ax - b) \qquad \nabla^{2} f(x) = 2A^{T} A$$

Convex for any **A**, hence will have global minimum

$$\frac{\partial \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = \ \mathbf{A}^\top$$

$$\frac{\partial \mathbf{x}^{\top} \mathbf{A}}{\partial \mathbf{x}} = \mathbf{A}$$

$$rac{\partial \mathbf{x}^ op \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = \left(\mathbf{A} + \mathbf{A}^ op
ight) \mathbf{x}$$

### **Operations that preserve Convexity**

• Non-Negative Multiple:  $\alpha f$  is convex if f is convex,  $\alpha \geq 0$ 

• Sum:  $f_1 + f_2$  convex if  $f_1, f_2$  convex

• Pointwise Maximum : if  $f_{1}$ , . . . ,  $f_m$  are convex,

then 
$$f(x) = \max\{f_1(x), \dots, f_m(x)\}$$
 is convex

Proof: 
$$f(x) = \max\{f_1(x), f_2(x)\}\$$

$$f(\theta x + (1 - \theta)y) = \max\{f_1(\theta x + (1 - \theta)y), f_2(\theta x + (1 - \theta)y)\}\$$

$$\leq \max\{\theta f_1(x) + (1 - \theta)f_1(y), \theta f_2(x) + (1 - \theta)f_2(y)\}\$$

$$= \theta f(x) + (1 - \theta)f(y)$$



Pointwise Maximum - Convex



Pointwise Minimum - Concave

### **Convex Optimization Formulation**

#### **General Optimization Formulation:**

minimize 
$$f_0(x)$$
  
subject to  $f_i(x) \leq 0, \quad i = 1, \dots, m$   
 $h_i(x) = 0, \quad i = 1, \dots, p$ 

#### **Convex Optimization Formulation:**

minimize 
$$f_0(x)$$
 subject to  $f_i(x) \leq 0, \quad i = 1, \dots, m$   $a_i^T x = b_i, \quad i = 1, \dots, p$ 

 $f_0$ ,  $f_1$ , . . . ,  $f_m$  are convex; equality constraints are affine

Feasible region of a convex optimization problem is convex

Alternative way of writing:





**Poll:** Suppose we consider  $f_0(x)$  that is convex, will the above formulation convex? Yes/No

