Mid-term exam, Machine Learning (MDS), April 20th, 2023

Your Name:

Instructions:

- You have **1h** to solve the exam
- Please return this paper with your answers, make sure to write your name **clearly**
- Mark whether the following statements are **true** or **false**, or leave blank
- Correct answers count +1 point, incorrect answers count -1, non-answered answers count 0
- At least half of the questions must be answered
- The mid-term grade is given by the formula $10 \exp \left(\frac{\text{nr. of correct-nr. of incorrect questions}}{35} 1 \right)$

General

\square Regression and clustering are types of superv	vised learning
$\hfill\Box$ Clustering and dimensionality reduction are	types of unsupervised learning
☐ Machine learning is particularly useful when who however data is scarce	ve try to solve a problem that is easy to program
\Box Preprocessing is a task that can often be autor	mated
☐ In supervised learning, we attempt to predict a object	a target value from feature values describing an
\Box In supervised learning, we always generate n	nodels with minimum training error
\Box Empirical risk, the opposite of training error,	serves as an approximation to the true risk
Bayes and probabilities	
\square Bayes the orem can be derived from the produced	
\square Bayes theorem transforms prior distributions	
	5. Fals crete random variables 6. True
$ P(Y) = \sum_{x} P(X = x Y) P(X = x) for X, Y disc$	7. Fals
☐ Expert information on the domain is encoded tion	l into the model through the posterior distribu-
☐ The posterior distribution contains both expegathered through observation (data)	ert information on the domain and information
☐ The likelihood function is a probability distrib for a model	ution over the possible values of the parameters

False True False False True False False

Regression		
$\ \square$ Least squares linear regression is obtained by assuming Gaussianity on the inp	out variables	
☐ Linear regression can produce non-linear predictions if we apply linear transf the input variables	formations on	
$\ \square$ The best choice in linear regression is to minimize square error	False - on output or error False - no linear transformation False	
\square High bias models will tend to underfit	True False True	
☐ Low variance models will tend to overfit	False - approximately not exactly	
☐ Lasso regression uses a form of regularization that is useful in the presence of	outliers	
$\hfill\Box$ The GCV for ridge regression computes the LOOCV error exactly		
Model selection, resampling and errors		
$\ \square$ Resampling methods are useful to learn a model's parameters	FALSE: model selection and hyperparameter True True	
$\ \square$ Resampling methods are useful to learn a model's hyper-parameters	4. True 5. False - is particular case 6. True	
\square Cross-validation is used to estimate generalization error	7. True 8. False	
\square Cross-validation is used for model selection		
☐ LOOCV is a type of resampling method that can be used as an alternative to cro	oss-validation	
\Box In the presence of scarce data, k -fold cross-validation with high values of k is preferable to low values of k for estimating generalization if possible		
$\ \square$ Minimizing validation error is a good methodology to ensure good generalization		
\square Minimizing training error is a good methodology to ensure good generalization		
Clustering		
$\ \square$ K-means and EM are both methods for learning Mixture of Gaussian models		
☐ The EM algorithm refines a suboptimal solution obtained by k-means until a global optimum is found		
☐ K-means is a particular case of EM for Gaussian Mixtures when covariance assumed diagonal	e matrices are	
☐ Mixing coefficients for the Gaussian mixture are estimated in EM directly from the best soft assignments obtained so far		
\square In EM, the log-likelihood cannot decrease after each iteration		
\Box In k-means it is possible to get stuck on a local optimum however EM solves the	his problem	