1. Interpolacja

1.1. Sformułowanie zadania

Mamy dane n+1 punktów x_i , $(i=0,2,\ldots,n)$ (tzw. węzłów interpolacji). W każdym punkcie znamy wartość pewnej funkcji $f(x_i)$. Naszym zadaniem jest obliczenie przybliżonych wartości funkcji f(x) w punktach nie będących węzłami interpolacyjnymi. W praktyce należy zatem wyznaczyć funkcję interpolującą F(x), która przyjmuje w węzłach te same wartości, co dana funkcja f(x).

Dane:

- Węzły interpolacji: x_0, x_1, \dots, x_n
- Wartości interpolowanej funkcji w węzłach: $f(x_0)$, $f(x_1)$, ..., $f(x_n)$

Poszukujemy:

• Funkcji interpolującej F(x), takiej by: $F(x_i) = f(x_i)$, $\forall i \in (0, n)$

Przykład:

Xi	$f(x_i)$	
0	150	
3	175	
7	250	

Rys. 1. Interpolacja

1.2. Interpolacja wielomianowa Lagrange'a

Interpolacja wielomianowa Lagrange'a polega na wyznaczeniu funkcji interpolującej w postaci wielomianu stopnia nie wyższego niż n, którego wartości w n+1 punktach x_i są takie same jak wartości interpolowanej funkcji, tzn.: $L_n(x_i) = f(x_i)$, $\forall i \in \langle 0, n \rangle$, przy założeniu że $x_i \neq x_j$, $\forall i \neq j$.

Wielomian interpolacyjny Lagrange'a:

1) Znajdujemy wielomian, który przyjmuje w pierwszym węźle wartość 1, a w pozostałych węzłach przyjmuje wartość 0. Postępujemy tak dla każdego węzła. Wielomian ten napisany dla węzła o indeksie *i* będzie miał postać:

$$l_{i}(x) = \prod_{\substack{j=0\\j \neq i}}^{n} \frac{x - x_{j}}{x_{i} - x_{j}} \tag{1}$$

2) Suma znalezionych w pierwszym kroku wielomianów pomnożonych przez odpowiednie wartości funkcji interpolowanej w węzłach daje wielomian, który w węzłach będzie przyjmował interesujące nas wartości:

$$L_n(x) = \sum_{i=0}^{n} f(x_i) l_i(x)$$
 (2)

Przykład obliczeń:

W tabeli dane są węzły interpolacji oraz wartości funkcji w danych węzłach. Znajdź wielomian interpolacyjny Lagrange'a.

i	0	1	2	3
x_i	-4	-3	1	2
$f(x_i)$	5	2	5	2

Zgodnie ze wzorem 1:

$$l_0 = \frac{(x - x_1)(x - x_2)(x - x_3)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)}$$

$$l_1 = \frac{(x - x_0)(x - x_2)(x - x_3)}{(x_1 - x_0)(x_1 - x_2)(x_1 - x_3)}$$

$$l_2 = \frac{(x - x_0)(x - x_1)(x - x_3)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)}$$

$$l_3 = \frac{(x - x_0)(x - x_1)(x - x_2)}{(x_3 - x_0)(x_3 - x_1)(x_3 - x_2)}$$

Uwzględniając wzór 2:

$$L_{3}(x) = f(x_{0}) \frac{(x - x_{1})(x - x_{2})(x - x_{3})}{(x_{0} - x_{1})(x_{0} - x_{2})(x_{0} - x_{3})} + f(x_{1}) \frac{(x - x_{0})(x - x_{2})(x - x_{3})}{(x_{1} - x_{0})(x_{1} - x_{2})(x_{1} - x_{3})}$$

$$+ f(x_{2}) \frac{(x - x_{0})(x - x_{1})(x - x_{3})}{(x_{2} - x_{0})(x_{2} - x_{1})(x_{2} - x_{3})} + f(x_{3}) \frac{(x - x_{0})(x - x_{1})(x - x_{2})}{(x_{3} - x_{0})(x_{3} - x_{1})(x_{3} - x_{2})}$$

$$= 5 \frac{(x + 3)(x - 1)(x - 2)}{(-4 + 3)(-4 - 1)(-4 - 2)} + 2 \frac{(x + 4)(x - 1)(x - 2)}{(-3 + 4)(-3 - 1)(-3 - 2)}$$

$$+ 5 \frac{(x + 4)(x + 3)(x - 2)}{(1 + 4)(1 + 3)(1 - 2)} + 2 \frac{(x + 4)(x + 3)(x - 1)}{(2 + 4)(2 + 3)(2 - 1)}$$

$$= -\frac{1}{4}x^{3} - \frac{3}{4}x^{2} + x + 5$$

W punkcie x = -1 wartość wielomianu interpolacyjnego wynosi:

$$L_3(-1) = -\frac{1}{4}(-1)^3 - \frac{3}{4}(-1)^2 + (-1) + 5 = 3.5$$

Rys. 2. Weryfikacja otrzymanej funkcji interpolującej Lagrange'a przy wykorzystaniu programu excel

Zad 1. Napisz program, który będzie obliczał wartość wielomianu interpolacyjnego Lagrange'a w dowolnym punkcie. Założenia:

- a) Węzły interpolacji i wartości funkcji w węzłach oraz liczba węzłów są zmiennymi pobieranymi z pliku tekstowego.
- b) Punkt, w którym obliczamy wartość wielomianu jest parametrem podawanym z klawiatury przez użytkownika.
- c) W wyniku działania program wypisuje:
 - Liczbę węzłów
 - Dane: węzły interpolacji i wartości funkcji w węzłach
 - Punkt, w którym liczymy wartość wielomianu
 - Wartość wielomianu Lagrange'a w danym punkcie

Na UPEL należy przesłać plik *.cpp opracowanego programu oraz wyniki obliczeń w formie krótkiego sprawozdania (dodać zrzuty ekranu) dla przykładu przedstawionego w niniejszej instrukcji. Obliczyć wartość wielomianu dla x = -1 oraz x = 0.5 (7p).

Zad 2. Oblicz wartość $\sqrt[3]{50}$ za pomocą wielomianu interpolacyjnego Lagrange'a dla funkcji $y = \sqrt[3]{x}$ i węzłów interpolacji $x_0 = 27$, $x_1 = 64$, $x_2 = 125$, $x_3 = 216$. W sprawozdaniu opisz procedurę obliczania szukanej wartości (3p).

Sprawozdanie i plik z kodem *.cpp przesyłamy do odpowiednio zdefiniowanego zadania na platformie UPEL (np. MN-1 - gr1).

Plik z kodem *.cpp przesyłamy również do wirtualnego laboratorium (np. WL-1).