

تعريف للمكتفة:

على انه عنصر كهرباني يستخدم في تخزين جزء من شحنات التيار أثناء توصيله بالدائرة ثم تفريغ هذه الشحنات خلال توقيتات زمنية تعمد على نوع الدائرة والغرض منها.

سعة المكتفة:

يرمز لسعة المكثفة بالحرف C و عند شحنتها بتوتر U فان كمية الكهرباء Q المخزنة في المكثفة تكون C = C.U وحدة سعة المكثفة هو الفاراد F بحيث : 1µ F = 10 .6 F

دراسة المكثفة أثناء الشحن والتفريغ

Capacitor Discharging

أتناء التفريغ المكثفة

التوتر بين طرفي المكثفة مع مرور الوقت يصبح يساوي إلى Uc = 0 ثم يثبت (تفريغ المكثفة عبر المقاومة R).

T أثناء التقريغ هو الزمن اللازم لهبوط التوثر بين طرقي المكثقة إلى % 37. تكون معادلة منحنى شحن المكثقة من الشكل: $Uc(t) = E \cdot e^{-t/T}$

Capacitor charging

أثناء شحن المكثفة

وضع المبدلة في الوضيعة (1):

التوتر بين طرفي المكثفة مع مرور الوقت يصبح يماوي إلى توتر المولد Uc = E ثم يثبت (شحن المكثفة عبر المقاومة R).

T هو ثابت الزمن (time constant) لوصول التوثر بين طرفي المكثفة %63 من قيمة E أثناء الشحن

T=R.C: حيث : T=R.C : تكون معادلة منحنى شحن المكثفة من الشكل : T=R.C) T=R.C) T=R.C)

زمن الشحن: س

Uc(t) = E .(1 - $e^{-t/\tau}$)

t1= 1 Rc; t2= 2 RC ;t3= 3 Rc; t4= 2 RC ;t5= 5 Rc

T	% charged	
1	63.2 %	6.32 V
2	86.4 %	8.64 V
3	95.02 %	9.05 V
4	98.17%	9.81 V
5	99.32%	9.93 V

عمليا تشحن المكثفة خلال T

 $Uc(t) = E \cdot e^{-t/\tau}$

t1= 1 Rc; t2= 2 RC; t3= 3 Rc; t4= 2 RC; t5= 5 Rc

T	%discharged	
1	36.8	3.68V
2	13.53 %	1.35 V
3	4.98 %	0.50 V
4	1.83%	0.18 V
5	0.67%	0.067 V

عمليا تفرغ المكثقة تماما خلال 5T

Voltage [V]

