In The Name of God. The Merciful, The Compassionate.

Orthogonal Vectors and Subspaces, Projecting into subspaces

notes on Gilbert Strang videos, Lecture 14-16

1 Orthogonality

- Columnspace \perp nullspace of A^T
- Orthogonal vectors: $x^T y = 0$
- Subspace S is orthogonal to subspace T means: every vector in S is perpendicular to every vector in T
- Rowspace \perp nullspace:

row. Easy to see row combinations is also orthogonal.

 \bullet Rowspace and null space are orthogonal complement: null space contains all vectors \bot to row space.

2 Projection

- Projection of a vector b onto a line a:
 - -p is the projection of b
 - -e is error, e = b p, $p \parallel a$
 - $\Rightarrow p = xa$
 - $-a^{T}(b-xa) = 0 = > xa^{T}a = a^{T}b \Rightarrow x = \frac{a^{T}b}{a^{T}a}, p = a\frac{a^{T}b}{a^{T}a}$

1

- Projection Matrix = Pb, $P = \frac{aa^T}{a^Ta}$
- -C(P): line through a, rank(P) = 1
- Two properties of projection matrices:

- 1. $P^T = P$
- 2. $P^2 = P$
- Solve Ax = b when there is no solution (e.g., m > n):
 - $-A^{T}A$ is $n \times n$ and symmetric,
 - $-A^TA\hat{x}=A^Tb$, \hat{x} shows estimation
 - $-N(A^TA)=N(A)$
 - $rank(A^T A) = rank(A) \Rightarrow A^T A$ is invertible if A has independent columns
 - solve $A\hat{x} = p$, p is projection of b onto columnspace
 - again e = b p

 $-b - A\hat{x}$ is \perp to columnspace $\Rightarrow A^T(b - A\hat{x}) = 0$, (imagine columns of $A = \begin{bmatrix} | & | & | \\ a_1 & a_2 & \dots & a_n \\ | & | & | \end{bmatrix}$ are its bases \Rightarrow each

- of its columns must be \perp to e. So, $a_1^T e = 0, \dots a_n^T e = 0 \Longrightarrow A^T e =$
- -e is in nullspace of $A^T \Longrightarrow e \perp C(A)$, YES!
- So, $A^T A \hat{x} = A^T b \Longrightarrow \hat{x} = (A^T A)^{-1} A^T b$
- $-p = A\hat{x} = A(A^TA)^{-1}A^Tb, P = A(A^TA)^{-1}A^T$
- If b is in columnspace: $Pb = b \iff b$ has the form Ax, substitute by formulae of P
- If $b \perp$ columnspace: $Pb = 0 \iff b$ is in nullspace of A^T , substitute by formulae of P
- $-p + e = b, p = Pb \Rightarrow e = (I P)b.$
- -I-P: proj to perpendicular space
- Least Squares: e.g., 2D:
 - -y = C + Dt, and we have (a_i, b_i) for i in [1 3].
 - Equations are: $C + Da_i = b_i \Longrightarrow Ax = b$, $\begin{bmatrix} \vdots & \vdots \\ 1 & a_i \\ \vdots & \vdots \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} \vdots \\ b_i \\ \vdots \end{bmatrix}$
 - : no solution
 - Minimize: $||Ax b||^2 = ||e||^2 = \sum_i e_i^2$

- $-p_i$ are points on the line: p+e=b (if p was in the place of b, the equation could be solved. So, it is in the columnspace of A).
- to find p, $\hat{x} = \begin{bmatrix} \hat{C} \\ \hat{D} \end{bmatrix}$: $A^T A \hat{x} = A^T b \to \text{find } \hat{x} \to \text{best line} \to p_i \to e_i$
- Note: e is perpendicular to p and columns of A
- If A has independent columns, then A^TA is invertible:
 - 1. Suppose $A^TAx = 0$, So, x must be zero (nullspace is only the zero vector)
 - 2. IDEA: $x^T A^T A x = 0 \Rightarrow (Ax)^T (Ax) = 0 \Rightarrow Ax = 0$ $\xrightarrow{\text{columns of } A \text{ are independent}} x = 0$