

Fundamentos de Bancos de Dados

Introdução aos Sistemas de Bancos de Dados Aula 1

Objetivo

 Apresentar uma perspectiva histórica do surgimento dos SGBD, sua importância para as empresas e os principais conceitos e características envolvidas na área de Banco de Dados.

Principais tópicos

- Importância dos Bancos de Dados
- Uma perspectiva histórica
- Arquivos versus SGBD's
- Quando usar e quando não usar SGBD
- Principais Características dos SGBDs

- Principais tópicos (continuação)
 - Arquitetura "Three-schema"
 - Modelagem de Dados
 - Modelos de Dados (Conceituais, Lógicos e Físicos)
 - Matriz de Classificação de SGBDs
 - Síntese dos conceitos
 - Questões de Estudo

- A competitividade das empresas depende de dados precisos e atualizados.
- Conforme a empresa cresce, aumenta a sua dependência por dados abundantes e complexos.
- Assim, ferramentas de gerenciamento, extração rápida e precisa de informações é fundamental.
- Solução: Sistema Gerenciador de Banco de Dados, ou SGBD.

- No início da computação, programas tinham o único objetivo de armazenar e manipular dados.
- Esses programas gravavam seus dados em disco, segundo estruturas próprias.
- Somente programas que conheciam a estrutura dos dados podiam utilizar esses dados.

 Logo, se vários programas precisassem compartilhar os mesmos dados, eles teriam que conhecer e manipular as mesmas estruturas.

- Se algum programa precisasse realizar alguma mudança na estrutura de dados:
 - Todos os programas que acessavam esse mesmo arquivo tinham que ser alterados, mesmo que a alteração ocorresse em dados não eram manipulados por alguns dos programas.
- Isso gerava um grande problema:
 - Garantir a unicidade das estruturas de dados entre os diversos programas devido à existência de redundâncias.

- Para evitar esse problema, colocou-se um sistema intermediário:
 - Que conhece a estrutura de dados do arquivo.
 - Fornece apenas dados que cada programa precisa.
 - Armazena adequadamente os dados de cada programa.

- · Agora, com esse sistema intermediário:
 - Os programas "verão" apenas os dados que lhes interessam.
 - Os programas não precisam conhecer os detalhes de como seus dados estão gravados fisicamente.
 - Os programas não precisarão ser modificados se a estrutura de dados que utilizam não for modificada.
 - As alterações ficam concentradas nesse sistema intermediário.

- Com o tempo, esse sistema intermediário passou a gerenciar vários arquivos.
- À essa coleção de arquivos foi dado o nome de Banco de Dados e o sistema intermediário recebeu o nome de Sistema Gerenciador de Banco de Dados (SGBD).

- O primeiro SGBD comercial surgiu em 1960.
- Com o tempo, surgiram padrões para descrever as Estruturas de Dados: os modelos de dados.
- A Estrutura de Dados do BD, segundo um modelo de dados é chamada de metadados.

- Hoje, um banco de dados:
 - É uma coleção de dados coerente e logicamente relacionados, com algum significado associado para atender a um propósito e audiência específicos.
 - Representa algum aspecto do mundo real, chamado de minimundo.

Processamento tradicional de Arquivos	SGBD	Vantagens do SGBD
Definição dos dados é parte do código de programas de aplicação	Meta Dados	eliminação de redundâncias
Dependência entre aplicação e dados	Independência entre aplicações e dados	eliminação de redundâncias
		facilidade de manutenção
Representação de dados em nível físico	Representação conceitual através de dados e programas	facilidade de manutenção
Cada visão é implementada por módulos específicos	Permite múltiplas visões	facilidade de consultas

Quando usar SGBD Quando não Usar SGBD Dados e aplicações simples Controle redundância e estáveis Controle consistência e Requisitos de tempo-real integridade não puderem ser atendidos Acesso multiusuário Compartilhamento de dados Controle acesso e segurança Controle de recuperação e restauração Consultas eficientes

Arquitetura "Three-schema"

- Apoio a múltiplas visões de dados (nível externo)
- Capacidade de abstração de dados (nível conceitual)
- Capacidade de descrever a estrutura de armazenamento físico dos dados (nível interno)
- Compartilhamento de dados e processamento de transações.

Independência Lógica de Dados:

È a capacidade de alterar o esquema conceitual sem ter que mudar os esquemas externos ou programas de aplicação.

Independência Física de Dados:

É a capacidade de alterar o esquema interno sem ter que alterar o esquema conceitual e externo.

- Existem modelos para diferentes níveis de abstração de representação de dados
 - modelos conceituais
 - modelos lógicos
 - modelos físicos
 - Referem-se:
 - organização dos arquivos de dados em disco
 - não são manipulados por usuários ou aplicações que acessam o BD
 - decisões de implementação são de cada SGBD

Projeto de Banco de Dados

- Redes
- Hierárquico
- Relacional
- Entidade-Relacionamento
- ER Estendido
- Objeto
- · Objeto Relacional

- Representação com alto nível de abstração
 - modelam de forma mais natural os fatos do mundo real, suas propriedades e seus relacionamentos
 - são independentes de BD
 - preocupam-se apenas com a semântica da aplicação
 - exemplo:
 - modelo entidade-relacionamento

- Representa os dados em alguma estrutura (lógica) de armazenamento de dados
 - também chamados de modelos de BD
 - dependente de BD
 - exemplos
 - modelo relacional (tabelas)
 - modelos hierárquico

Apoiam:

- na especificação dos dados do modelo (DDL)
 - dados, seus domínios e restrições
- na especificação de como manipular os dados (DML)

Possuem foco na:

- Indexação e estrutura de arquivos
- Transações e controle de concorrência
- Otimização
- Recuperação em casos de falhas
- Mecanismos de proteção (segurança)
- Partição e agrupamento de dados

- Uma transação define uma unidade de execução que pode acessar e atualizar vários itens de dados.
- Uma transação executa vários comandos como se fossem apenas um comando indivisível (atômico).
- Os vários comandos são delimitados pelas declarações begin transaction e (commit ou rollback):
 - begin transaction(x)
 - Update(a)
 - Delete(b)
 - Insert(c)
 - commit(x)

O SGBD considera este bloco como um único comando, atômico e indivisível

- Transações terminadas com commit, em caso de sucesso, efetivam todas as modificações realizadas dentro dela.
- Transação terminadas com rollback, desfazem todas as modificações realizadas dentro dela.
 - O banco de dados ficará no mesmo estado que estava antes do início da transação.
- O camando rollback pode ser chamado explicitamente pelo programador ou pelo SGBD quando ocorre algum erro.

- Um SGBD deve controlar a execução concorrente de transações para assegurar que o estado do banco de dados permaneça consistente.
- A seriação é uma propriedade que garante que independente da ordem dos acessos aos dados feitos pelas transações, o resultado final será o mesmo.

• Execução das transações T1 e T2 em seqüência:

	A	В		A	В	
	150	150		:0)	300	
	T1			T2		
1	read	read (A);		read	(A);	
2	A:=#	A:=A-50;		A:=A-150;		
3	write	write(A);		write	(Α);	
4	read	read(B);		read	(B);	
5	B:=E	B:=B+50;		B:=B+150 ;		
6	write	e (B);	2	write	(B);	

B

 Problema que ocorre sem a seriação no controle de transação:

troca de contexto antes do write (A)

queda do banco antes de write (B)

A	В
150	300

B

	T1		T2		T1		T2
1	read (A);	7	read (A);	1	read (A);	3	read (A);
2	A:=A-50;	8	A:=A-150;	2	A:=A-50;	4	A:=A-150;
3	write(A);	9	write(A);	6	write(A);	5	write(A);
4	read(B);	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	read(B);	7	read(B);		read(B);
5	B:=B+50;		B:=B+150;	8	B:=B+50;		B:=B+150;
6	write (B);	1 2	write (B);	9	write (B);	1 2	write (B);

- Transação devem possuir um conjunto de propriedades que é normalmente referido como propriedades ACID:
 - Atomicidade
 - Consistência
 - Isolamento
 - Durabilidade

Atomicidade

- Garante que todas as operações na transação serão executadas ou nenhuma será.
- Isto evita que falha ocorridas, possam deixar o banco de dados inconsistentes.

Consistência

- Possui dois aspectos: A consistência do banco dados e a consistência da própria transação.
- Uma transação não deve violar as restrições de integridade definidas para o banco de dados.

Isolamento

- Significa que, mesmo no caso de transações executadas concorrentemente, o resultado final é igual ao obtido com a execução isolada de cada uma delas.
- A observância desta propriedade das transações pelos SGBDs impede a ocorrência dos problemas de acesso a dados.

Durabilidade

 Significa que os resultados de uma transação, caso ela seja concluída com sucesso, devem ser persistentes. Mesmo se depois houver falha no sistema.

Consultas Complexas

RELACIONAL

OBJETO-RELACIONAL

Consultas Simples

SISTEMA DE ARQUIVOS

LINGUAGEM DE PERSISTÊNCIA

Dados Simples

Dados Complexos

^{*} Baseado no livro: Object Relational DBMS by Stonebraker and Moore, Morgan Kaufmann, 1996

- Banco de dados (BD):
 - conjunto de dados integrados que por objetivo atender a uma comunidade de usuários.
- Modelo de dados:
 - descrição formal das estruturas de dados para representação de um BD; com suas respectivas restrições e linguagem para criação e manipulação de dados.
- Sistema Gerenciador de banco de dados (SGBD):
 - software que incorpora as funções de definição, recuperação e alteração de dados em um BD.

Modelagem de dados:

- é a ação de representar/abstrair dados do minimundo com o objetivo de criar projetos conceituais e lógicos de um BD.
- alguns autores incluem os projetos físicos como parte da modelagem de dados, pelo fato de que as otimizações são oriundas de análises do comportamento dinâmico do BD.

Projeto conceitual BD:

 ação que produz o esquema de dados abstratos que descreve a estrutura de um BD de forma independente de um SGBD (esquema conceitual).

Projeto lógico BD:

 ação que produz o esquema lógico de dados que representa a estrutura de dados de um BD em acordo com o modelo de dados subjacente a um SGBD.

Projeto físico BD:

 ação que produz o esquema físico de dados a partir do esquema de lógico de dados com a adição das estratégias de otimização para manipulação das estruturas de dados. As estratégias de otimização são dependentes dos fabricantes dos SGBDs e de suas versões.

Questões de Estudo

- Quando faz sentido utilizar um SGBD ao invés de simplesmente utilizar o sistema de arquivos? Quando não faz sentido utilizar um SGBD?
- 2. O que é independência lógica de dados e por que esse conceito é importante?
- 3. Explique as diferenças entre independência lógica de dados e independência física de dados.
- 4. Explique as diferenças entre esquemas externos, lógico e físico. Como esses conceitos se relacionam com os conceitos de independência de dados?
- 5. Quais são as responsabilidades de um Projetista de Banco de Dados e do DBA?

- 6. O Sr. Avarento quer guardar informações de seus funcionários (nome, endereço, momentos preocupantes). O volume de dados o forçou a decidir comprar um SGBD. Para economizar, ele quer comprar um que tenha apenas as características necessárias para executar uma aplicação standalone em seu PC. O Sr. Avarento não quer compartilhar essa lista com ninguém. Indique quais das seguintes características de SGBDs o Sr. Avarento necessita? Justifique.
 - Segurança.
 - Controle de concorrência.
 - Recuperação após falhas.
 - Mecanismos de visão.
 - Linguagem de consulta.

- 7. Descreva os passos de um projeto de BD.
- 8. Quais dos seguintes itens exercem papel importante na representação de informações do mundo real num BD? Comente.
 - Linguagem de definição de dados.
 - Linguagem de manipulação de dados.
 - Cachê.
 - Modelo de dados.
- 9. O que é transação?
- 10. Por que o SGBD entrelaça as ações de diferentes transações, ao invés de executá-las seqüencialmente?

Referências

Introdução aos Sistemas de Bancos de Dados

Referências Bibliográficas

- 1. Elmasri, R.; Navathe, S. B. [Trad.]. **Sistemas de bancos de dados**. Traduzido do original: FUNDAMENTALS OF DATABASE SYSTEMS. São Paulo: Pearson(Addison Wesley), 2005. 724 p. ISBN: 85-88639-17-3.
- 2. Korth, H.; Silberschatz, A. **Sistemas de Bancos de Dados**. 3a. Edição, Makron Books, 1998.
- 3. Raghu Ramakrishnan e Johannes Gehrke, **Database Management Systems**, Second Edition, McGraw-Hill, 2000.
- 4. Teorey, T.; Lightstone, S.; Nadeau, T. **Projeto e modelagem de bancos de dados**. Editora Campus, 2007.

Obrigado!

Prof. Dr. Alexandre L. Rangel <u>alexandre.leite@faculdadeimpacta.edu.br</u> www.alexandrelrangel.blogspot.com.br

