Aging and Side-channel EM Analysis

Ojas Kulkarni¹, Manoj Vutukuru², Rashmi Jha²

¹Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84096 ²Department of Electrical and Computer Engineering, University of Cincinnati, Cincinnati, OH 45219

Introduction

Hardware vulnerabilities:

- EM leakage

Impact of Hardware Vulnerabilities:

- Secret information can be retrieved
- Reliability can be compromised

Side-Channel Electromagnetic Analysis

Computing platforms radiate EM fields

Can be measured using:

- Power (consumption) analysis
- EM analysis (our focus)

Aging

Transistors naturally age

- Hot-Carrier Injection
- Bias-Temperature Instability

Accelerate Aging to simulate lifetime conditions

Hardware trojans etc.

[1] J. Lienig *et al.*, "Toward Security Closure in the Face of Reliability Effects ICCAD Special Session Paper," in *2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)*, Nov. 2021, pp. 1–9. doi: 10.1109/ICCAD51958.2021.9643447.

Motivation

Matrix Multipliers are used in Machine Learning and thus security vulnerabilities need to be exploited

Side-Channel EM Analysis on FPGAs has taken a prevalence

Research Project Goal

Evaluate the effect of aging onto FPGA based non-cryptographic circuit using side-channel EM analysis

Approach and Methods

Oscilloscope

Leaked clk signal

DUT

Near H-Field Probe

Methods for Accelerated Aging

FPGA

Stress Test (~2 years):

Let the Matrix
 Multiplier operate
 continuously for ~10
 hours

Thermal Stress (~1 year):

- 70°C for 3.5 hours
- Natural cooling

Hot Plate

Matrix Multiplier

FPGA Limitations

Simulated maximum of 50x50 arrays to max out resources aboard AMD Basys 3 board

Controls

Weight values are all 0s

Weight values are all 1s

Unaged

Stress Test

Thermal Stress

Outcome

Future Work

Age the board much longer (~80°C for 2 weeks)

Attempt to run SCA on a traditional classifier

Conclusions

- Designed and implemented38x38 (maximum) FPGAbased matrix multiplier
- Performed aging and SCA
- Characterized SCA differences

Acknowledgements

Thank You!