O . NT	T 1 . 3.T
Seat No.:	Enrolment No.
Jeal 110	Linoinent 110.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE –SEMESTER 1&2(NEW SYLLABUS)EXAMINATION- WINTER 2018

_		Code: 3110018 Date: 04-01-2	2019
•	: 10	0:30 am to 01:00 pm Total Mark	s: 70
	1. 2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a) (b) (c)	Explain mechanism of superconductivity.	03 04 07
Q.2	(a) (b) (c)	Derive an expression for joint density of states. Explain Kronig Penney model in detail. OR	03 04 07
Q.3	(c) (a) (b) (c)	What are hot probe method. Explain fermi levels.	07 03 04 07
		OR	
Q.3	(a)		03
	(b)	•	04
0.4	(c)	1 0 1	07
Q.4	(a)		03
	(b) (c)	Discuss fermi golden rule. Explain diffusion mechanism in detail. OR	04 07
Q.4	(a)	Define radiative and non-radiative transitions.	03
	(b)	*	04
	(c)	Explain experimental procedure for DLTS.	07
Q.5	(a)	The critical temperature of Nb is 9.15 K. At zero kelvin, the critical field is 0.196 T. Calculate the critical field at 6 K.	03
	(b) (c)	Explain Drude model. Why two probe method for resistivity measurement failed and hence explain four probe method.	04 07
		OR	
Q.5	(a)	•	03
	(b)	•	04
	(c)	Discuss UV – VIS method for band gap measurement of semiconductors.	07
