Измерване на специфичен топлинен капацитет по метода на охлаждането

Лабораторно упражнение №3.10

Виолета Кабаджова, ККТФ, фак. номер: 3РН0600026

Физически Факултет, Софийски Университет "Св. Климент Охридски" 4 април 2023 г.

1 Теоритична част

При охлаждането на нагрят образец в околната среда се отделя топлина през повърхността му, равна количествено на израза във формула 1, където Q е количеството топлина, α - коефициентът на топлоотдаване, T - температурата на повърхността на образеца, T_0 - температурата на околната среда. Количеството топлина, отделено от цялата повърхност на едно тяло обаче, при малки геометрични размери е равно на количеството топлина, отделена от обема на това тяло, изразено чрез формула 2, където c е специфичният топлинен капацитет, ρ - плътността на изследвания образец, а V - обемът му. Следователно бихме могли да приравним тези два израза, получавайки формула 3.

$$Q = \int_{S} \alpha (T - T_0) dS \tag{1}$$

$$Q = c\rho \frac{dT}{dt}V\tag{2}$$

$$c\rho \frac{dT}{dt}V = \alpha(T - T_0)S \tag{3}$$

Разполагайки с два образеца, параметрите на единия от които знаем, бихме могли да определим специфичния топлинен капацитет c на даден метал без да се знае коефициента α . Когато те са с еднаква форма и повърхност ($S_1 = S_2$) и са заглети до една и съща температура ($T_1 = T_2$), охлаждайки се в една и съща околна среда, то тогава се получава формула 4, откъдето следва работната формула 5.

$$\frac{c_1 \rho_1(\frac{dT}{dt})_1 V_1}{c_2 \rho_2(\frac{dT}{dt})_2 V_2} = \frac{c_1 m_1(\frac{dT}{dt})_1}{c_2 m_2(\frac{dT}{dt})_2} = 1 \tag{4}$$

$$c_1 = \frac{c_2 m_2 (\frac{dT}{dt})_2}{m_1 (\frac{dT}{dt})_1} \tag{5}$$

2 Експериментална част

2.1 Експериментална установка

На фиг. 1 е илюстрирана схема на опитната установка. Нагряването на образците се осъществява посредством пещ, а измерванаето на темпера-

Фигура 1: Схема на опитна постановка: 1 - термодвойка, 2 - метален образец, 3 - пещ

турата - чрез термодвойка.

2.2 Задача: Получаване на кривата на охлаждане $T_2(t)$ за еталонен меден образец и $T_1(t)$ за изследван железен образец

На фиг. 2 и 3 са показани съответно графиките на охлаждане на медения (414 °C до 86 °C) и железния (419 °C до 86 °C) образец.

2.3 Задача: Измерване скоростите на охлаждане при температура 300 $^{\circ}$ С за еталонния и изследвания образец

Скоростта на охлаждане на образците определяме чрез разликата между петото и тринайсетото измерване (диапазона около 300 °C за двете криви: 300 \pm 42 °C за T_1 и 300 \pm 50 °C за T_2), разделено на разликата на времената за съответните измервания:

$$\left(\frac{dT}{dt}\right)_1 = \frac{T_{1-2} - T_{1-1}}{t_2 - t_1} = \frac{343 - 258}{(10 - 5) \cdot 15} = 0.807^{\circ} C/s$$

$$\left(\frac{dT}{dt}\right)_2 = \frac{T_{2-2} - T_{2-1}}{t_2 - t_1} = \frac{355 - 256}{(10 - 5) \cdot 15} = 0.708^{\circ} C/s$$

N	$T_1, ^{\circ}C$	$T_2, ^{\circ}C$
5	343	355
6	331	336
7	324	321
8	321	309
9	307	297
10	290	285
11	283	273
12	261	263
13	258	256

Таблица 1: Измервания за медния и железния образец през време $t{=}15s$ в температурен диапазон около 300 °C

Относителната графична грешка за $\left(\frac{dT}{dt}\right)$ определяме посредством формула 6, където T_5^* и T_{13}^* са стойностите на съответно петото и тринайстото измерване.

$$\frac{\Delta\left(\frac{dT}{dt}\right)}{\left(\frac{dT}{dt}\right)} = \frac{\Delta T_5^* + \Delta T_{13}^*}{T_5^* - T_{13}^*} + \frac{\Delta t_{13} + \Delta t_5}{t_{13} - t_5} \tag{6}$$

2.4 Задача 4: Измерване специфичния топлинен капацитет на изследвания метал

Специфичния топлинен капацитет на желязото пресмятаме по формула 5, като получаваме $c_1=473\pm44\frac{J}{kg.K}$

Фигура 2: Крива на охлаждане $T_2(t)$ за меден образец

Фигура 3: Крива на охлаждане $T_1(t)$ за железен образец