Image Classification

Agenda

- What is Image Classification?
- What are Convolutional Neural Networks?
- Outline
 - PyTorch
 - Automatic Differentiation
 - Dog breed dataset
 - Binary classification
 - Multi class classification

Image Classification

- Simplest problem: Assign a label to an image
- Several variants of image classification problems let us focus on the simplest!

Neural networks

- Dense neural network every node is connected to every other node
- For deep networks, very expensive!

Convolutional Layer

- Link: http://setosa.io/ev/image-kernels/
- Link: http://cs231n.github.io/convolutional-networks/

Dropout Layer

Pooling layer downsamples the volume spatially, independently in each depth slice of the input volume. **Left:** In this example, the input volume of size [224x224x64] is pooled with filter size 2, stride 2 into output volume of size [112x112x64]. Notice that the volume depth is preserved. **Right:** The most common downsampling operation is max, giving rise to **max pooling**, here shown with a stride of 2. That is, each max is taken over 4 numbers (little 2x2 square).

Pooling Layer

Fully Connected Layer

Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU

 $\max(0.1x, x)$

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0, x)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Activation Function

Meet Softmax

$$\sigma(\mathbf{z})_j = \frac{e^{z_j}}{\sum_{k=1}^K e^{z_k}}$$
 for $j = 1, ..., K$.

Scores (Logits)

Probabilities

Softmax

Cross Entropy or Log Loss

Link: https://datawookie.netlify.com/blog/2015/12/making-sense-of-logarithmic-loss/