INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA SÃO PAULO

Relatório 3 – Grupo G2

OBJETIVO:

• Realizar medições de densidade dos objetos, com os erros e algarismos significativos corretamente expressos.

MATERIAL UTILIZADO:

• Paquímetro, balança, objetos diversos.

PROCEDIMENTO EXPERIMENTAL

Tabela 1: Valores de comprimento do objeto 1.

Valor	A	В	С	D
Bianca	(1,340 ± 0,005) cm	(1,640 ± 0,005) cm	(2,450 ± 0,005) cm	(1,970 ± 0,005) cm
João Luiz	(1,350 ± 0,005) cm	(1,600 ± 0,005) cm	(2,400 ± 0,005) cm	(1,920 ± 0,005) cm
Maria Júlia	(1,380 ± 0,005) cm	(1,640 ± 0,005) cm	(2,400 ± 0,005) cm	(1,910 ± 0,005) cm
Samuel	$(1,400 \pm 0,005)$ cm	$(1,600 \pm 0,005)$ cm	(2,410 ± 0,005) cm	(1,940 ± 0,005) cm
Victor	(1,390 ± 0,005) cm	(1,630 ± 0,005) cm	(2,460 ± 0,005) cm	(1,980 ± 0,005) cm
Vinicius	(1,370 ± 0,005) cm	$(1,610 \pm 0,005)$ cm	$(2,430 \pm 0,005)$ cm	(1,940 ± 0,005) cm
Média	(1,370 ± 0,005) cm	(1,620 ± 0,005) cm	(2,430 ± 0,005) cm	$(1,940 \pm 0,005)$ cm

Massa do Objeto 1: $(2,28 \pm 0,01)$ g

Material do Objeto 1: MDF (Medium Density Fiberboard).

Tabela 2: Valores de volume, massa e densidade do objeto 1 (Material: MDF).

Valor	Volume	Massa	Densidade	Densidade (Teórica)	Desvio%	
Média	(2,15 ± 0,02) cm ³	(2,28 ± 0,01) g	(1,06 ± 0,01) g/cm ³	0,8 g/cm³	32,5 %	

Figura 2: Marcações das medidas realizadas com o paquímetro no objeto 2.

Figura 3: Marcações das medidas realizadas com o paquímetro no objeto 2.

Figura 4: Marcações das medidas realizadas com o paquímetro no objeto 2.

Tabela 3: Valores de comprimento do objeto 2.

Valor	A	В	С	D	Е
Bianca	(0,820 ± 0,005) cm	(1,390 ± 0,005) cm	(0,700 ± 0,005) cm	(0,400 ± 0,005) cm	(0,520 ± 0,005) cm
João Luiz	(0,790 ± 0,005) cm	(1,370 ± 0,005) cm	$(0,780 \pm 0,005)$ cm	$(0,420 \pm 0,005)$ cm	$(0,500 \pm 0,005)$ cm
Maria Júlia	(0,820 ± 0,005) cm	(1,410 ± 0,005) cm	(0,780 ± 0,005) cm	(0,460 ± 0,005) cm	(0,500 ± 0,005) cm
Samuel	$(0,800 \pm 0,005)$ cm	$(1,380 \pm 0,005)$ cm	$(0,750 \pm 0,005)$ cm	$(0,450 \pm 0,005)$ cm	$(0,550 \pm 0,005)$ cm
Victor	(0,810 ± 0,005) cm	(1,330 ± 0,005) cm	(0,730 ± 0,005) cm	(0,440 ± 0,005) cm	(0,410 ± 0,005) cm
Vinicius	(0,820 ± 0,005) cm	(1,350 ± 0,005) cm	$(0,760 \pm 0,005)$ cm	$(0,450 \pm 0,005)$ cm	$(0,520 \pm 0,005)$ cm
Media	(0,810 ± 0,005) cm	(1,370 ± 0,005) cm	$(0,750 \pm 0,005)$ cm	(0,440 ± 0,005) cm	$(0,500 \pm 0,005)$ cm

Massa do Objeto 2: $(3,34 \pm 0,01)$ g Material do Objeto 2: Alumínio

Tabela 4: Valores de Volume, Massa e Densidade do objeto 2 (Material: Alumínio).

Valor	Volume	Massa	Densidade	Densidade (Teórica)	Desvio (%)
Média	(0,93 ± 0,02) cm ³	(3,34 ± 0,01) g	(3,6 ± 0,1) g/cm ³	2,7 g/cm³	33,33 %

Conclusão

Todo material utilizado em uma produção é minimamente pensado para que o seu processo tenha o seu máximo potencial utilizado. A densidade é um desses fatores a serem observados. A medição de densidade é fundamental para que haja um controle preciso dos processos e da qualidade dos produtos. Assim, grandes problemas, como a perda de matéria prima ou diminuição na eficiência da produção, são evitados. A medição de densidade é importante em diversas indústrias. A densidade é de suma importância para a medição do volume de um objeto em indústrias onde se transporta líquidos, essa medição serve para prever a capacidade que pode ser armazenada em um tanque ou compartimento. Essa medição é utilizada em processos para o monitoramento. Em alguns casos a temperatura e pressão de certos procedimentos podem alterar a densidade e a massa dos produtos. Por isso a medição é necessária para se ter o produto no melhor estado possível assim não acarretando problemas e gerando a maneira mais eficiente para se fazer o produto. Em suma, a medição precisa da densidade pode ajudar a garantir a qualidade e a segurança dos produtos e processos industriais.