Méthodologie de programmation

Session 5

Alex Singh

Les listes sont récursives!

• Jusqu'à présent, nous avons manipulé des listes en les parcourant de manière itérative.

Les listes sont récursives!

- Jusqu'à présent, nous avons manipulé des listes en les parcourant de manière itérative.
- Mais il existe une autre façon de les traiter, basée sur leur définition suivante:

Une list est soit:

- Vide.
- Un premier élément suivi du reste de la liste.

Les listes sont récursives!

- Jusqu'à présent, nous avons manipulé des listes en les parcourant de manière itérative.
- Mais il existe une autre façon de les traiter, basée sur leur définition suivante:

Une liste est soit:

- Vide.
- Un élément suivi d'une liste.

D'une simplicité frustrante!

Problème

Calculer la somme des éléments d'une liste donnée.

Problème

Calculer la somme des éléments d'une liste donnée.

Algorithme itératif

Idée : Parcourir la liste à l'aide d'une boucle, calculer et conserver les sommes partielles sur une variable que nous mettons à jour à chaque étape de la boucle, retourner cette variable.

Problème

Calculer la somme des éléments d'une liste donnée.

Algorithme itératif

Idée : Parcourir la liste à l'aide d'une boucle, calculer et conserver les sommes partielles sur une variable que nous mettons à jour à chaque étape de la boucle, retourner cette variable.

Algorithme récursif

Idée:

- Cas de base: Pour les listes vides, la somme est de 0.
- Récursion: La somme des éléments d'une liste non-vide est le premier élément plus la somme des éléments du reste de la liste.

Problème

Calculez la somme des éléments d'une liste donnée.

Problème

Calculez la somme des éléments d'une liste donnée.

Pseudocode def somme(l): sommePartielle = 0 for i from 0 to length(l): sommePartielle += l[i] return sommePartielle

Problème

Calculez la somme des éléments d'une liste donnée.

Pseudocode def somme(l): sommePartielle = 0 for i from 0 to length(l): sommePartielle += l[i] return sommePartielle

```
Pseudocode

def somme(l):
    if is-empty(l):
        0
    else:
        head(l)+somme(tail(l))
```

• Comment peut-on définir les nombres naturels ?

Comment peut-on définir les nombres naturels ?

- Zero.
- Le successeur d'un autre nombre naturel, c'est-à-dire n+1 pour un nombre naturel n.

• Comment peut-on définir les nombres naturels ?

Un nombre naturel est soit:

- Zero.
- Le successeur d'un autre nombre naturel, c'est-à-dire n+1 pour un nombre naturel n.

- Zéro.
- Un nombre naturel "plus un".

Comment peut-on définir les nombres naturels ?

- Zéro, dont le **prédécesseur** est zéro.
- Le prédécesseur n-1 d'un nombre naturel n.

• Comment peut-on définir les nombres naturels ?

Un nombre naturel est soit :

- Zéro, dont le **prédécesseur** est zéro.
- Le prédécesseur n-1 d'un nombre naturel n.

- Zéro, dont le prédécesseur est zéro.
- Un nombre naturel (non-null) "moins un".

Raisonnement impératif et fonctionnel, vol. 2.

Problème

Calculer n!, c'est-à-dire le produit:

$$\prod_{i=1}^{n} = 1 \times 2 \times 3 \times 4 \times \dots \times n.$$

Raisonnement impératif et fonctionnel, vol. 2.

Problème

Calculer n!, c'est-à-dire le produit:

$$\prod_{i=1}^{n} = 1 \times 2 \times 3 \times 4 \times \dots \times n.$$

Algorithme itératif

Mise en place d'une boucle, calcul des produits partiels.

Raisonnement impératif et fonctionnel, vol. 2.

Problème

Calculer n!, c'est-à-dire le produit:

$$\prod_{i=1}^{n} = 1 \times 2 \times 3 \times 4 \times \dots \times n.$$

Algorithme itératif
Mise en place d'une boucle, calcul des produits partiels.

Algorithme récursif Utiliser $0! = 1, n! = n \times (n-1)!$.

• Une méthode puissante qui peut remplacer complètement l'itération.

- Une méthode puissante qui peut remplacer complètement l'itération.
- Plus facile ou plus difficile à raisonner, selon le contexte: certains problèmes sont naturellement traités de manière récursive, d'autres de manière itérative.

- Une méthode puissante qui peut remplacer complètement l'itération.
- Plus facile ou plus difficile à raisonner, selon le contexte: certains problèmes sont naturellement traités de manière récursive, d'autres de manière itérative.
- Doit être mis en place avec soin pour être efficace (récursion terminale, mémoïsation).

- Une méthode puissante qui peut remplacer complètement l'itération.
- Plus facile ou plus difficile à raisonner, selon le contexte: certains problèmes sont naturellement traités de manière récursive, d'autres de manière itérative.
- Doit être mis en place avec soin pour être efficace (récursion terminale, mémoïsation).
- Si votre structure de données ou votre problème a une définition récursive (une décomposition en instances plus petites de elle/lui-même), pensez à la récursivité!

- Une méthode puissante qui peut remplacer complètement l'itération.
- Plus facile ou plus difficile à raisonner, selon le contexte: certains problèmes sont naturellement traités de manière récursive, d'autres de manière itérative.
- Doit être mis en place avec soin pour être efficace (récursion terminale, mémoïsation).
- Si votre structure de données ou votre problème a une définition récursive (une décomposition en instances plus petites de elle/lui-même), pensez à la récursivité!