Week 6

Live Discussion Session
Starts at 2.05pm

Bayes v classical stats

One double headed coin in bag with 4 fair coins

Coin is tossed twice. Both Heads. What is the probability the coin is fair?

Classical stats (two extreme positions, neither makes sense):

- 2 heads out of 2 tosses. Probability of heads = 1. Hence coin 'must be double headed"; or
- Not enough data to reach any 'statistically significant' conclusion

But of course we must revise our belief in P(fair coin) after observing even this small amount of evidence

Let H be "fair coin",
$$E = 2$$
 heads out of 2
P(H) = 4/5 P(E|H) = $\frac{1}{4}$ P(E| not H) = 1

$$P(H|E) = \frac{P(E|H) \times P(H)}{P(E|H) \times P(H) + P(E|not H) \times P(not H)} = \frac{\frac{1}{4} \times \frac{4}{5}}{\frac{1}{4} \times \frac{4}{5} + \frac{1}{5}} = \frac{1}{2}$$

To achieve statistical significance at p-value 0.01 (1%) we must have P(E|H)<0.01

If we observe 6 out of 6 heads P(E|H) = 1/64 = 0.015625 NOT SIGNIFICANT!!!!!

Need to observe at least 7 out of 7 heads P(E|H) = 1/128 = 0.0078125

Double headed coin	False	True	
Expressions	Arithmetic(0.5)	Arithmetic(1.0)	

Beta(alpha, beta, 0, 1) distribution with range of alpha and beta parameters

"Beta-Binomial" distribution

