Nexperia Image classification

Junming CHEN(20750649),

Zifan SHI(20619455),

Rongrong GAO (20619663)

Overview

- Data preprocessing
- Traditional machine learning method
- End-to-end deep learning method
- Results

Conclusion

Nexperia Dataset

Dataset Overview

- It aims to classify images of semiconductor devices into two main classes, good and defect.
- It contains 34457 train images (27420 good and 7039 bad) and 3830 test images with similar good-to-bad ratio.

Task

- To use deep learning methods to help pick out as many defect devices as possible while preserving the good ones
- To automatically examine all of the products and **select the good** ones from the unqualified devices, thus improving their yield rate.

Nexperia Dataset

- Problems & Solutions
 - Noisy labels
 - Problem: Non-devices and those without ground truth
 - Solution: Checking annotation area and remove those without annotations.
 - Class imbalance
 - Problem: Good : Defect ≈ 4:1
 - Solution: Focal loss.
 - Duplicates
 - Problem: Duplicates may exist in both training and validation sets
 - Solution: Duplicates detection by hash scan.

Traditional method

- Feature extraction + classifier
 - Feature extraction
 - ResNeXt-101 pretrained on ImageNet dataset.
 - ResNeXt-101 fine-tuned on Nexperia dataset.
 - Random forest
 - A set of decision trees are constructed to fit on the various sub-samples of the dataset
 - Averaging is adopted among all the decision trees to get the final prediction.

Our contribution

 In this study, we explore the influence of pretrained and fine-tuned features for image classification with random forest.

End-to-End learning

- Traditional method
 - Disadvantages
 - Difficult to extract feature with effective representation on our task.
 - Human intervention in the classification step, e.g., set the hyperparameters
- End-to-end method
 - Advantages
 - Being able to learn a strong feature for a specified task.
 - Even a simple and automatic classifier can work well on that feature.

- ResNext
 - ResNeXt block
 - Combining the advantages of ResNet and Inception.
 - Performance compared with other methods.

- Focal loss
 - Cross entropy loss
 - Easy cases contribute to the majority of the loss and the class imbalance make it worse.
 - Focal loss
 - Enhance the ability of distinguishing difficult cases.

$$L_f(p_t) = -(1 - p_t)^{\gamma} log(p_t)$$

Where p_t is the estimated probability, Y is a tunable parameter.

Focal loss vs Cross entropy loss

- Ensemble learning
 - Observation: Average models to reduce model variance
 - Solution: Combine many simple "weak" classifiers into a single "strong" classifier.

- One possible way:
 - · Get scores from multiple models.
 - Voting/average to get the final score.

Results

• Different feature extraction + random forest classifier.

Table 1: Different feature extractions for random forest

	Pre-trained	Fine-tuned	Fine-tuned with focal loss
AUC	0.94065	0.95207	0.95327

• Conclusion:

- Fine tune is useful when considering a new dataset.
- Focal loss improves the performance.

Results

Ablation study on focal loss.

Table 2: Ablation study on focal loss

3	Random Forest	wide-ResNet	wide-ResNet+Focal Loss	ResNeXt	ResNeXt+Focal Loss
AUC	0.95327	0.99612	0.99585	0.99616	0.99831

Ablation study on ensemble methods:

Table 3: Ablation study on focal loss

	two ResNeXt	two ResNeXt+wide-ResNet	four models
AUC	0.99844	0.99820	0.99794

Conclusions

Take-home information

- Preprocess is important for a stable model.
- End-to-end learning performs better.
- Focal loss helps to solve the class imbalance.
- Ensemble method is helpful to obtain a strong classifier from some weak classifiers.

Challenge and future work

- The simple voting method does not improve the performance much.
- Possible solution: Better ensembling methods, such as bagging, adaboosting and so on.

Thanks