

Digital Logic and System Design

10. Error Detection & CorrectionTest & Validation

COL215, I Semester 2023-2024

Venue: LHC 111

'E' Slot: Tue, Wed, Fri 10:00-11:00

Instructor: Preeti Ranjan Panda

panda@cse.iitd.ac.in

www.cse.iitd.ac.in/~panda/

Dept. of Computer Science & Engg., IIT Delhi

Error Detection

- Errors might occur in storage and transmission
- Error Detection: Parity Bit
- Parity: Additional bit stored along with data
- Parity re-computed by receiver, compared with stored parity
- If different, **error**

$$C_1 = ?$$

0 if bits 1,3,5,7,9,11 **OK**

1 if **error** on any of bits 1,3,5,7,9,11

Including Parity Bit Error type: single bit flip

$$C_2 = ?$$

0 if bits 2,3,6,7,10,11 **OK**

1 if **error** on any of bits 2,3,6,7,10,11

$C_{a}=0$	if bits 4,5,6,7,12 OK
C ₄ = 1	if error on any of bits 4,5,6,7,12

C₄ gives Bit 3 of the erroneous bit position

C₈ gives Bit 4 of the erroneous bit position

 $C_8C_4C_2C_1$ together give the position of the erroneous bit! $C_8C_4C_2C_1 = 0$ means no error

Now we can perform Error Correction (flip the erroneous bit)

(C) P. R. Panda, IIT Delhi, 2023

Chip Verification Phases

- Simulation
 - On software model of chip
 - Different abstraction levels
 - Slow: small sub-system tests
- Post-silicon Validation
 - Validating sample chips in lab
 - Logical and Electrical Problems
 - Fast: real usage scenarios
- Testing
 - Manufacturing failures
 - Fast, but not much time per chip
 - Good/Bad decisions only

What if Bug is Found?

- If SEVERE (doesn't allow other validation to proceed)
 - RE-SPIN (Expensive!)
- If workaround exists (in software, etc.)
 - Proceed with other validation
- New revision only if certain threshold of bugs is crossed

Early Sanity Checks

- Heartbeat (Iddq) Testing: is the chip alive?
- Schmoo Plot

Pass/Fail response under varying conditions

PROBLEM

Analysing and Fixing Failures

- Direct observation (Expensive)
 - Laser Voltage Probing (LVP)
 - observe reflected laser from transistor's diffusion layer
 - tells whether voltage transition occurred or not
 - signal waveform can be generated
- Fixing (Expensive)
 - Laser Assisted Device Alteration (LADA)
 - characteristics of individual transistors can be altered
 - Focused Ion Beam (FIB) Edit
 - Create shorts/opens (destructive)
 - Important debug tool permits validation to continue in presence of serious bugs

How to test a chip?

- Examine internal memory (too large!)
- Collect all important memory elements (flip flops)
- Hook them together into a long chain
- Replace normal Flip Flop by
 Scan Flip Flop
 - Design-for-Test feature
 - Note: we are changing the original design!

Scan Chain

- NORMAL mode:
 - Disable chain
 - Execute
- TEST mode:
 - Enable chain
 - Send data IN/OUT

Generalising the Scan Chain: Trace Buffers

- Scan Chain OK in principle, but slow
 - Overwhelming data volume
- Need dedicated storage: Trace Buffers
 - FIFO structures
 - Store critical signal values

Classical Test/Debug Problems

- Automatic test pattern generation (ATPG)
 - Minimise time spent in testing
- Fault modelling and test generation
 - Modelling ("stuck-at-0") of manufacturing faults (short circuit)
 - Determine test pattern to detect fault
- Signal Tracing: Which signals to trace?

