Midterm 1 Practice Questions

1. Biased Coins

You have a box full of coins. There are two types of coins, C_1 and C_2 . Coins of type C_1 come up heads with probability 0.8 and coin of type C_2 come up heads with probability 0.2. There are many more C_1 coins in the box than C_2 coins, in fact 90% of the coins are of type C_1 . You grab a coin at random from inside the box and flip it 10 times, getting five heads and five tails. Compute $p(D \mid C_1)$, $p(D \mid C_2)$. How probable is it that you have a coin of type C_1 , given these ten flips?

2. Redundant Features in Naïve Bayes

Suppose that we use a Naïve Bayes classifier to classify binary data with binary feature vectors $x_n \in \{0,1\}^D$. We'll classify them into two classes, C_1 and C_2 . With Naïve Bayes and binary features, the class conditional distributions will be of the form of a product of Bernoulli distributions:

$$p(x \mid C_k) = \prod_{d=1}^{D} \mu_{kd}^{x_d} (1 - \mu_{kd})^{(1-x_d)},$$

where $x_d \in \{0,1\}$, and $\mu_{kd} = p(x_d = 1 \mid C_k)$. Assume also that the class priors are uniform, i.e., $p(C_1) = p(C_2) = \frac{1}{2}$.

(a) If D=1 (i.e., there is only one feature), use the equations above to write out $\ln \frac{p(C_1|x)}{p(C_2|x)}$ for a single binary feature x.

(b) Now suppose we change our feature representation so that instead of using just a single feature, we use two redundant features (i.e., two features that always have the same value so that $x_1 = x_2$). Since they are the same, you can assume that $\mu_{k1} = \mu_{k2}$ also. With this feature representation, let's write $\hat{x} = x_1 \cdot x_2$, since there can only be two configurations of the x_1 , x_2 pair, instead of four. What is $\ln \frac{p(C_1|\hat{x})}{p(C_2|\hat{x})}$ in terms of the value for $\ln \frac{p(C_1|x)}{p(C_2|x)}$ you calculated in part (a)?

(c) Does this seem like a bug or a feature? Why?

3. Binomial Regression

You've been hired by a startup to build a ratings system for restaurants. Users rate the restaurants on a scale of 0 to 10 (i.e., $t_n \in \{0, 1, ..., 10\}$) and you have a set of real-valued features for each restaurant, $x_n \in \mathbb{R}^D$. Given the range of the t_n , it seems like a binomial distribution would be a good choice for building a regression model:

$$p(k \mid \rho) = \binom{10}{k} \rho^k (1 - \rho)^{10-k}$$
,

where ρ parameterizes the distribution and takes values in (0,1), while k is the rating. Recall that $\binom{N}{K}$ is the binomial coefficient, i.e., N!/(K!(N-K)!).

- (a) We cook up some basis functions $\phi_j(x)$ and we plan to weight them using a set of weights w to determine ρ . However, $\phi(x)^T w$ can be negative and can be greater than one. How can we map it into the right space?
- (b) Having figured out how to get a map into the right space, write down the log likelihood of a set of N data $\{t_n, x_n\}_{n=1}^N$. You can ignore constants in the sum that don't depend on the inputs or w.

(c) Compute the gradient of the log likelihood in terms of w. Hint: the derivative of the logistic function is $\frac{d}{dz}\sigma(z) = \sigma(z)(1-\sigma(z))$.

4. Hyperplanes and Discriminant functions

Suppose we have the discriminant function $y(x) = w^T x + w_0$, and if $y(x) \ge 0$ we assign x to C_1 , and if y(x) < 0 we assign x to C_2 . Show that for any x_0, x_1 on the decision boundary $(x_0 - x_1)$ is perpendicular to the vector w.

5. Fisher Criterion in Matrix Form (Bishop 4.5)

The Fisher Criterion is defined as

$$J(w) = \frac{(m_2 - m_1)^2}{s_1^2 + s_2^2},$$

where

$$m_k = \mathbf{w}^\mathsf{T} \mathbf{m}_k$$

$$\mathbf{m}_k = \frac{1}{N_k} \sum_{\mathbf{x} \in \mathcal{C}_k} \mathbf{x}$$

$$s_k^2 = \sum_{\mathbf{x} \in \mathcal{C}_k} (\mathbf{w}^\mathsf{T} \mathbf{x} - m_k)^2$$

Show that we can write I(w) in matrix form as

$$J(w) = \frac{w^{\mathsf{T}} S_B w}{w^{\mathsf{T}} S_W w},$$

where

$$S_B = (m_2 - m_1)(m_2 - m_1)^{\mathsf{T}}$$

and

$$S_W = \sum_{x \in \mathcal{C}_1} (x - m_1)(x - m_1)^\mathsf{T} + \sum_{x \in \mathcal{C}_2} (x - m_2)(x - m_2)^\mathsf{T}$$

6. Classification with Same-Mean Different-Variance Gaussians

Consider the task of recognizing which of two Gaussian distributions a data point $\mathbf{x} = (x_1, x_2, \dots, x_D)$ comes from. We will assume that the two distributions have exactly the same mean but different variances. Let the probability that \mathbf{x} is in class C_i (where $i \in \{0,1\}$) be given by

$$\Pr(\mathbf{x}|C_i) = \prod_{j=1}^{D} \mathcal{N}(x_j|\mu_j, \sigma_{ij})$$

Show that $P(C_0|x)$ can be written in the form

$$P(C_0|x) = \frac{1}{1 + \exp(-\mathbf{w}^T\mathbf{y} + \theta)}$$

where y_i is an appropriate function of x_i , $y_i = g(x_i)$, and θ is some constant.

7. Margin Distances

Consider the hyperplane given by $w^Tx + b = 0$. For an arbitrary data point x, what is the distance between x and the hyperplane, in terms of w and b?