3A LOW DROP POSITIVE VOLTAGE REGULATOR ADJUSTABLE AND FIXED

- TYPICAL DROPOUT 1.3V (AT 3A)
- THREE TERMINAL ADJUSTABLE OR FIXED OUTPUT VOLTAGE 1.5V, 1.8V, 2.5V, 2.85V, 3.3V, 3.6V, 5V, 8V, 9V, 12V.
- GUARANTEED OUTPUT CURRENT UP TO 3A
- OUPUT TOLERANCE ±1% AT 25°C AND ±2% IN FULL TEMPERATURE RANGE
- INTERNAL POWER AND THERMAL LIMIT
- WIDE OPERATING TEMPERATURE RANGE -40°C TO 125°C
- PACKAGE AVAILABLE: TO-220, TO-220FP D²PAK, D²PAK/A
- PINOUT COMPATIBILITY WITH STANDARD ADJUSTABLE VREG

The LD1085 is a LOW DROP Voltage Regulator able to provide up to 3A of Output Current. Dropout is guaranteed at a maximum of 1.2V at the maximum output current, decreasing at lower loads. The LD1085 is pin to pin compatible with the older 3-terminal adjustable regulators, but has better performances in term of drop and output tolerance.

A 2.85V output version is suitable for SCSI-2 active termination. Unlike PNP regulators, where a part of the output current is wasted as quiescent current, the LD1085 quiescent current flows into the load, so increase efficiency. Only a $10\mu F$ minimum capacitor is need for stability.

The device is supplied in TO-220, TO-220FP, D²PAK and D²PAK/A. On chip trimming allows the regulator to reach a very tight output voltage tolerance, within ±1% at 25°C.

Figure 1: Schematic Diagram

March 2005 1/19

Figure 2: Pin Connection (top view)

Table 1: Order Codes

TO-220	TO-220FP	D ² PAK (*)	D ² PAK/A (*)	OUTPUT VOLTAGE
LD1085V15	LD1085P15	LD1085D2T15	LD1085D2M15	1.5 V
LD1085V18	LD1085P18	LD1085D2T18	LD1085D2M18	1.8 V
LD1085V25	LD1085P25	LD1085D2T25	LD1085D2M25	2.5 V
LD1085V28	LD1085P28	LD1085D2T28	LD1085D2M28	2.85 V
LD1085V33	LD1085P33	LD1085D2T33	LD1085D2M33	3.3 V
LD1085V36	LD1085P36	LD1085D2T36	LD1085D2M36	3.6 V
LD1085V50	LD1085P50	LD1085D2T50	LD1085D2M50	5.0 V
LD1085V80	LD1085P80	LD1085D2T80	LD1085D2M80	8.0 V
LD1085V90	LD1085P90	LD1085D2T90	LD1085D2M90	9.0 V
LD1085V12	LD1085P12	LD1085D2T12	LD1085D2M12	12.0 V
LD1085V	LD1085P	LD1085D2T	LD1085D2M	ADJ

^(*) Available in Tape & Reel with the suffix "R" for fixed version and "-R" for adjustable version.

Table 2: Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V _I	DC Input Voltage	30	V
Io	Output Current	Internally Limited	mA
P_{D}	Power Dissipation	Internally Limited	mW
T _{stg}	Storage Temperature Range	-55 to +150	°C
T _{op}	Operating Junction Temperature Range	-40 to +125	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

Table 3: Thermal Data

Symbol	Parameter	TO-220	D ² PAK	Unit
R _{thj-case}	Thermal Resistance Junction-case	3	3	°C/W
R _{thj-amb}	Thermal Resistance Junction-ambient	50	62.5	°C/W

Figure 3: Application Circuits

Table 4: Electrical Characteristics Of LD1085#15 (V_I =4.5V, C_I = C_O =10 μ F, T_A = -40 to 125°C, unless otherwise specified.)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$I_O = 0 \text{ mA}$ $T_J = 25^{\circ}\text{C}$	1.485	1.5	1.515	V
		$I_O = 0$ to $5AV_I = 3.1$ to $30V$ (note 1)	1.47	1.5	1.53	V
ΔV_{O}	Line Regulation	$I_O = 0 \text{ mA}$ $V_I = 3.1 \text{ to } 18V$ $T_J = 25^{\circ}C$		0.2	4	mV
		$I_{O} = 0 \text{ mA}$ $V_{I} = 3.1 \text{ to } 15 \text{V}$		0.4	4	mV
ΔV_{O}	Load Regulation	$I_O = 0$ to $3AT_J = 25^{\circ}C$		2	10	mV
		I _O = 0 to 3A		4	20	mV
V _d	Dropout Voltage	I _O =3 A		1.3	1.5	V
Iq	Quiescent Current	$V_1 \le 30V$		5	10	mA
I _{sc}	Short Circuit Current	$V_I - V_O = 5V$	3.2	4.5		Α
		V _I - V _O = 25V	0.2	0.5		Α
	Thermal Regulation	T _A = 25°C, 30ms pulse		0.008	0.04	%/W
SVR	Supply Voltage Rejection	$f = 120 \text{ Hz}, \ C_O = 25 \ \mu\text{F}, \qquad I_O = 3\text{A} \ V_I = 7.5 \pm 3\text{V}$	60	72		dB
eN	RMS Output Noise Voltage (% of V _O)	$T_A = 25$ °C f =10Hz to 10KHz		0.003		%
S	Temperature Stability			0.5		%
S	Long Term Stability	T _A = 125°C 1000Hrs		0.5		%

NOTE 1: See short-circuit current curve for available output current at fixed dropout.

Table 5: Electrical Characteristics Of LD1085#18 (V_I =4.8V, C_I = C_O =10 μ F, T_A = -40 to 125°C, unless otherwise specified.)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$I_O = 0 \text{ mA}$ $T_J = 25^{\circ}\text{C}$	1.782	1.8	1.818	V
		$I_O = 0$ to $5AV_I = 3.4$ to $30V$ (note 1)	1.764	1.8	1.836	V
ΔV_{O}	Line Regulation	$I_O = 0 \text{ mA}$ $V_I = 3.4 \text{ to } 18V$ $T_J = 25^{\circ}C$		0.2	4	mV
		$I_O = 0 \text{ mA}$ $V_I = 3.4 \text{ to } 15 \text{V}$		0.4	4	mV
ΔV_{O}	Load Regulation	$I_O = 0$ to $3AT_J = 25^{\circ}C$		2	10	mV
		I _O = 0 to 3A		4	20	mV
V _d	Dropout Voltage	I _O =3 A		1.3	1.5	V
Iq	Quiescent Current	V _I ≤ 30V		5	10	mA
I _{sc}	Short Circuit Current	$V_I - V_O = 5V$	3.2	4.5		Α
		V _I - V _O = 25V	0.2	0.5		Α
	Thermal Regulation	T _A = 25°C, 30ms pulse		0.008	0.04	%/W
SVR	Supply Voltage Rejection	$f = 120 \text{ Hz}, \ C_O = 25 \ \mu\text{F}, \ I_O = 3\text{A}$ $V_I = 7.5 \pm 3\text{V}$	60	72		dB
eN	RMS Output Noise Voltage (% of V _O)	$T_A = 25$ °C f =10Hz to 10KHz		0.003		%
S	Temperature Stability			0.5		%
S	Long Term Stability	T _A = 125°C 1000Hrs		0.5		%

Table 6: Electrical Characteristics Of LD1085#25 (V_I =5.5V, C_I = C_O =10 μ F, T_A = -40 to 125°C, unless otherwise specified.)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$I_O = 0 \text{ mA}$ $T_J = 25^{\circ}\text{C}$	2.475	2.5	2.525	V
		$I_O = 0 \text{ to } 3AV_I = 4.1 \text{ to } 30V \text{ (note 1)}$	2.45	2.5	2.55	V
ΔV_{O}	Line Regulation	$I_O = 0 \text{ mA}$ $V_I = 4.1 \text{ to } 18V$ $T_J = 25^{\circ}C$		0.2	4	mV
		I _O = 0 mA V _I = 4.1 to 18V		0.4	4	mV
ΔV_{O}	Load Regulation	$I_O = 0$ to $3AT_J = 25$ °C		2	10	mV
		$I_O = 0$ to 3A		4	20	mV
V _d	Dropout Voltage	I _O =3 A		1.3	1.5	V
I _q	Quiescent Current	V _I ≤ 30V		5	10	mA
I _{sc}	Short Circuit Current	$V_I - V_O = 5V$	3.2	4.5		Α
		$V_I - V_O = 25V$	0.2	0.5		Α
	Thermal Regulation	T _A = 25°C, 30ms pulse		0.008	0.04	%/W
SVR	Supply Voltage Rejection	$f = 120 \text{ Hz}, \ C_O = 25 \ \mu\text{F}, \ I_O = 3\text{A}$ $V_I = 7.5 \pm 3\text{V}$	60	72		dB
eN	RMS Output Noise Voltage (% of V _O)	$T_A = 25$ °C f =10Hz to 10KHz		0.003		%
S	Temperature Stability			0.5		%
S	Long Term Stability	T _A = 125°C 1000Hrs		0.5		%

NOTE 1: See short-circuit current curve for available output current at fixed dropout.

47/

Table 7: Electrical Characteristics Of LD1085#285 (V_I =5.85V, C_I = C_O =10 μ F, T_A = -40 to 125°C, unless otherwise specified.)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$I_O = 0 \text{ mA}$ $T_J = 25^{\circ}\text{C}$	2.821	2.85	2.879	V
		$I_O = 0$ to $3AV_I = 4.5$ to $30V$ (note 1)	2.793	2.85	2.907	V
ΔV_{O}	Line Regulation	$I_{O} = 0 \text{ mA}$ $V_{I} = 4.5 \text{ to } 18V$ $T_{J} = 25^{\circ}C$		0.2	6	mV
		$I_{O} = 0 \text{ mA}$ $V_{I} = 4.5 \text{ to } 18V$		0.5	6	mV
ΔV_{O}	Load Regulation	$I_O = 0$ to $3AT_J = 25^{\circ}C$		3	15	mV
		I _O = 0 to 3A		7	20	mV
V _d	Dropout Voltage	I _O =3 A		1.3	1.5	V
Iq	Quiescent Current	V _I ≤ 30V		5	10	mA
I _{sc}	Short Circuit Current	$V_I - V_O = 5V$	3.2	4.5		Α
		V _I - V _O = 25V	0.2	0.5		Α
	Thermal Regulation	T _A = 25°C, 30ms pulse		0.008	0.04	%/W
SVR	Supply Voltage Rejection	f = 120 Hz, C_O = 25 μF, I_O = 3A V_I = 7.85 ± 3V	60	72		dB
eN	RMS Output Noise Voltage (% of V _O)	$T_A = 25$ °C f =10Hz to 10KHz		0.003		%
S	Temperature Stability			0.5		%
S	Long Term Stability	T _A = 125°C 1000Hrs		0.5		%

Table 8: Electrical Characteristics Of LD1085#33 (V_I =6.3V, C_I = C_O =10 μ F, T_A = -40 to 125°C, unless otherwise specified.)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$I_O = 0 \text{ mA}$ $T_J = 25^{\circ}\text{C}$	3.267	3.3	3.333	V
		$I_O = 0 \text{ to } 3AV_I = 4.9 \text{ to } 30V \text{ (note 1)}$	3.234	3.35	3.366	V
ΔV_{O}	Line Regulation	$I_O = 0 \text{ mA}$ $V_I = 4.9 \text{ to } 18V$ $T_J = 25^{\circ}C$		0.5	6	mV
		$I_{O} = 0 \text{ mA}$ $V_{I} = 4.9 \text{ to } 18V$		1	6	mV
ΔV_{O}	Load Regulation	I _O = 0 to 3AT _J = 25°C		3	15	mV
		I _O = 0 to 3A		7	20	mV
V _d	Dropout Voltage	I _O =3 A		1.3	1.5	V
Iq	Quiescent Current	V _I ≤ 30V		5	10	mA
I _{sc}	Short Circuit Current	$V_I - V_O = 5V$	3.2	4.5		Α
		$V_I - V_O = 25V$	0.2	0.5		Α
	Thermal Regulation	T _A = 25°C, 30ms pulse		0.008	0.04	%/W
SVR	Supply Voltage Rejection	$f = 120 \text{ Hz}, \ C_O = 25 \ \mu\text{F}, \ I_O = 5\text{A}$ $V_I = 8.3 \pm 3\text{V}$	60	72		dB
eN	RMS Output Noise Voltage (% of V _O)	$T_A = 25$ °C f =10Hz to 10KHz		0.003		%
S	Temperature Stability			0.5		%
S	Long Term Stability	T _A = 125°C 1000Hrs		0.5		%

Table 9: Electrical Characteristics Of LD1085#36 (V_I =6.6V, C_I = C_O =10 μ F, T_A = -40 to 125°C, unless otherwise specified.)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$I_O = 0 \text{ mA}$ $T_J = 25^{\circ}\text{C}$	3.564	3.6	3.636	V
		$I_O = 0$ to $3AV_I = 5.2$ to $30V$ (note 1)	3.528	3.6	3.672	V
ΔV_{O}	Line Regulation	$I_{O} = 0 \text{ mA}$ $V_{I} = 5.2 \text{ to } 18V$ $T_{J} = 25^{\circ}C$		0.5	10	mV
		$I_{O} = 0 \text{ mA}$ $V_{I} = 5.2 \text{ to } 18V$		1	10	mV
ΔV_{O}	Load Regulation	$I_O = 0$ to $3AT_J = 25^{\circ}C$		3	15	mV
		I _O = 0 to 3A		7	20	mV
V _d	Dropout Voltage	I _O =3 A		1.3	1.5	V
Iq	Quiescent Current	V _I ≤ 30V		5	10	mA
I _{sc}	Short Circuit Current	$V_I - V_O = 5V$	3.2	4.5		Α
		V _I - V _O = 25V	0.2	0.5		Α
	Thermal Regulation	T _A = 25°C, 30ms pulse		0.008	0.04	%/W
SVR	Supply Voltage Rejection	$f = 120 \text{ Hz}, \ C_O = 25 \ \mu\text{F}, \ I_O = 3\text{A}$ $V_I = 8.6 \pm 3\text{V}$	60	72		dB
eN	RMS Output Noise Voltage (% of V _O)	$T_A = 25^{\circ}C$ f =10Hz to 10KHz		0.003		%
S	Temperature Stability			0.5		%
S	Long Term Stability	T _A = 125°C 1000Hrs		0.5		%

Table 10: Electrical Characteristics Of LD1085#50 (V_I =8V, C_I = C_O =10 μ F, T_A = -40 to 125°C, unless otherwise specified.)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$I_O = 0 \text{ mA}$ $T_J = 25^{\circ}\text{C}$	4.95	5	5.05	V
		$I_{O} = 0 \text{ to } 3AV_{I} = 6.6 \text{ to } 30V \text{ (note 1)}$	4.9	5	5.1	V
ΔV_{O}	Line Regulation	$I_O = 0 \text{ mA}$ $V_I = 6.6 \text{ to } 20V$ $T_J = 25^{\circ}C$		0.5	10	mV
		$I_{O} = 0 \text{ mA}$ $V_{I} = 6.6 \text{ to } 20 \text{V}$		1	10	mV
ΔV_{O}	Load Regulation	$I_O = 0$ to $3AT_J = 25$ °C		5	10	mV
		I _O = 0 to 3A		10	35	mV
V _d	Dropout Voltage	I _O =3 A		1.3	1.5	V
Iq	Quiescent Current	V _I ≤ 30V		5	10	mA
I _{sc}	Short Circuit Current	$V_I - V_O = 5V$	3.2	4.5		Α
		$V_I - V_O = 25V$	0.2	0.5		Α
	Thermal Regulation	T _A = 25°C, 30ms pulse		0.008	0.04	%/W
SVR	Supply Voltage Rejection	$f = 120 \text{ Hz}, \ C_O = 25 \ \mu\text{F}, \ I_O = 3\text{A}$ $V_I = 10 \pm 3\text{V}$	60	72		dB
eN	RMS Output Noise Voltage (% of V _O)	$T_A = 25$ °C f =10Hz to 10KHz		0.003		%
S	Temperature Stability			0.5		%
S	Long Term Stability	T _A = 125°C 1000Hrs		0.5		%

Table 11: Electrical Characteristics Of LD1085#80 (V_I =11V, C_I = C_O =10 μ F, T_A = -40 to 125°C, unless otherwise specified.)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$I_O = 0 \text{ mA}$ $T_J = 25^{\circ}\text{C}$	7.92	8	8.08	V
		$I_O = 0 \text{ to } 3AV_I = 9.8 \text{ to } 30V \text{ (note 1)}$	7.84	8	8.16	V
ΔV_{O}	Line Regulation	$I_{O} = 0 \text{ mA}$ $V_{I} = 9.8 \text{ to } 20V$ $T_{J} = 25^{\circ}C$		1	18	mV
		$I_{O} = 0 \text{ mA}$ $V_{I} = 9.8 \text{ to } 20 \text{V}$		2	18	mV
ΔV_{O}	Load Regulation	$I_O = 0$ to $3AT_J = 25$ °C		8	30	mV
		I _O = 0 to 3A		12	60	mV
V _d	Dropout Voltage	I _O =3 A		1.3	1.5	V
Iq	Quiescent Current	$V_1 \le 30V$		5	10	mA
I _{sc}	Short Circuit Current	$V_I - V_O = 5V$	3.2	4.5		Α
		$V_I - V_O = 25V$	0.2	0.5		Α
	Thermal Regulation	T _A = 25°C, 30ms pulse		0.008	0.04	%/W
SVR	Supply Voltage Rejection	$f = 120 \text{ Hz}, \ C_O = 25 \ \mu\text{F}, \ I_O = 3\text{A}$ $V_I = 13 \pm 3\text{V}$	54	71		dB
eN	RMS Output Noise Voltage (% of V _O)	$T_A = 25$ °C f =10Hz to 10KHz		0.003		%
S	Temperature Stability			0.5		%
S	Long Term Stability	T _A = 125°C 1000Hrs		0.5		%

Table 12: Electrical Characteristics Of LD1085#90 (V_I =12V, C_I = C_O =10 μ F, T_A = -40 to 125°C, unless otherwise specified.)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$I_O = 0 \text{ mA}$ $T_J = 25^{\circ}\text{C}$	8.91	9	9.09	V
		$I_{O} = 0$ to $3AV_{I} = 11$ to $30V$ (note 1)	8.82	9	9.18	V
ΔV_{O}	Line Regulation	$I_O = 0 \text{ mA}$ $V_I = 11 \text{ to } 20V$ $T_J = 25^{\circ}C$		1	20	mV
		$I_{O} = 0 \text{ mA}$ $V_{I} = 11 \text{ to } 20 \text{V}$		2	20	mV
ΔV_{O}	Load Regulation	$I_O = 0$ to $3AT_J = 25$ °C		8	30	mV
		I _O = 0 to 3A		12	60	mV
V_d	Dropout Voltage	I _O =3 A		1.3	1.5	V
Ιq	Quiescent Current	V _I ≤ 30V		5	10	mA
I _{sc}	Short Circuit Current	$V_I - V_O = 5V$	3.2	4.5		Α
		V _I - V _O = 25V	0.2	0.5		Α
	Thermal Regulation	T _A = 25°C, 30ms pulse		0.008	0.04	%/W
SVR	Supply Voltage Rejection	$ f = 120 \; Hz, \; C_O = 25 \; \mu F, \qquad I_O = 3A \\ V_I = 14 \pm 3V $	54	70		dB
eN	RMS Output Noise Voltage (% of V _O)	$T_A = 25$ °C f =10Hz to 10KHz		0.003		%
S	Temperature Stability			0.5		%
S	Long Term Stability	T _A = 125°C 1000Hrs		0.5		%

Table 13: Electrical Characteristics Of LD1085#12 (V_I =15V, C_I = C_O =10 μ F, T_A = -40 to 125°C, unless otherwise specified.)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$I_O = 0 \text{ mA}$ $T_J = 25^{\circ}\text{C}$	11.88	12	12.12	V
		I _O = 0 to 3AV _I = 13.8 to 30V (note 1)	11.76	12	12.24	V
ΔV_{O}	Line Regulation	$I_O = 0 \text{ mA}$ $V_I = 13.8 \text{ to } 25V$ $T_J = 25^{\circ}C$		1	25	mV
		$I_O = 0 \text{ mA}$ $V_I = 13.8 \text{ to } 25 \text{V}$		2	25	mV
ΔV_{O}	Load Regulation	$I_O = 0$ to $3AT_J = 25$ °C		12	36	mV
		I _O = 0 to 3A		24	72	mV
V_d	Dropout Voltage	I _O =3 A		1.3	1.5	V
Ιq	Quiescent Current	$V_1 \le 30V$		5	10	mA
I _{sc}	Short Circuit Current	$V_I - V_O = 5V$	3.2	4.5		Α
		V _I - V _O = 25V	0.2	0.5		Α
	Thermal Regulation	T _A = 25°C, 30ms pulse		0.008	0.04	%/W
SVR	Supply Voltage Rejection	$f = 120 \text{ Hz}, \ C_O = 25 \ \mu\text{F}, \ I_O = 3\text{A}$ $V_I = 17 \pm 3\text{V}$	54	66		dB
eN	RMS Output Noise Voltage (% of V _O)	$T_A = 25$ °C f =10Hz to 10KHz		0.003		%
S	Temperature Stability			0.5		%
S	Long Term Stability	T _A = 125°C 1000Hrs		0.5		%

Table 14: Electrical Characteristics Of LD1085# (V_I =4.25V, C_I = C_O =10 μ F, T_A = -40 to 125°C, unless otherwise specified.)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	I _O = 10mA T _J = 25°C	1.237	1.25	1.263	V
		$I_O = 10$ mA to 5 AV $_I = 2.85$ to 30 V (note 1)	1.225	1.25	1.275	V
ΔV_{O}	Line Regulation	$I_O = 10 \text{mA}$ $V_I = 2.85 \text{ to } 16.5 \text{V}$ $T_J = 25 ^{\circ}\text{C}$		0.015	0.2	%
		$I_O = 10 \text{mA} \ V_I = 2.85 \text{ to } 16.5 \text{V}$		0.035	0.2	%
ΔV_{O}	Load Regulation	I _O = 10mA to 5AT _J = 25°C		0.1	0.3	%
		I _O = 0 to 5A		0.2	0.4	%
V _d	Dropout Voltage	I _O = 5A		1.3	1.5	V
I _{O(min)}	Minimum Load Current	V _I = 30V		3	10	mA
I _{sc}	Short Circuit Current	$V_I - V_O = 5V$	5.5	6.5		Α
		V _I - V _O = 25V	0.5	0.7		Α
	Thermal Regulation	T _A = 25°C, 30ms pulse		0.003	0.015	%/W
SVR	Supply Voltage Rejection	f = 120 Hz, C_O = 25 μF, C_{ADJ} = 25 μF, I_O = 5A V_I = 6.25 ± 3V	60	72		dB
I _{ADJ}	Adjust Pin Current	V _I = 4.25V I _O = 10 mA		55	120	μΑ
ΔI_{ADJ}	Adjust Pin Current Change	$I_O = 10$ mA to 5A $V_I = 2.85$ to 16.5V (note 1)		0.2	5	μΑ
eN	RMS Output Noise Voltage (% of V _O)	$T_A = 25$ °C f =10Hz to 10KHz		0.003		%
S	Temperature Stability			0.5		%
S	Long Term Stability	T _A = 125°C 1000Hrs		0.5		%

TYPICAL CHARACTERISTICS (unless otherwise specified $T_i = 25$ °C, $C_1 = C_0 = 10 \mu F$)

Figure 4: Output Voltage vs Temperature

Figure 5: Output Voltage vs Temperature

Figure 6: Output Voltage vs Temperature

Figure 7: Short Circuit Current vs Dropout Voltage

Figure 8: Line Regulation vs Temperature

Figure 9: Load Regulation vs Temperature

Figure 10: Dropout Voltage vs Temperature

Figure 11: Dropout Voltage vs Output Current

Figure 12: Adjust Pin Current vs Temperature

Figure 13: Quiescent Current vs Temperature

Figure 14: Dropout Voltage vs Output Current

Figure 15: Supply Voltage Rejection vs Output Current

47/

Figure 16: Supply Voltage Rejection vs Frequency

Figure 17: Supply Voltage Rejection vs Temperature

Figure 18: Minimum Load Current vs Temperature

Figure 19: Stability

Figure 20: Stability

Figure 21: Line Transient

Figure 22: Line Transient

Figure 23: Load Transient

Figure 24: Load Transient

TO-220 MECHANICAL DATA

DIM.		mm.			inch		
DIN.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
А	4.40		4.60	0.173		0.181	
С	1.23		1.32	0.048		0.051	
D	2.40		2.72	0.094		0.107	
D1		1.27			0.050		
E	0.49		0.70	0.019		0.027	
F	0.61		0.88	0.024		0.034	
F1	1.14		1.70	0.044		0.067	
F2	1.14		1.70	0.044		0.067	
G	4.95		5.15	0.194		0.203	
G1	2.4		2.7	0.094		0.106	
H2	10.0		10.40	0.393		0.409	
L2		16.4			0.645		
L4	13.0		14.0	0.511		0.551	
L5	2.65		2.95	0.104		0.116	
L6	15.25		15.75	0.600		0.620	
L7	6.2		6.6	0.244		0.260	
L9	3.5		3.93	0.137		0.154	
DIA.	3.75		3.85	0.147		0.151	

TO-220FP MECHANICAL DATA

DIM	mm.			inch		
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А	4.40		4.60	0.173		0.181
В	2.5		2.7	0.098		0.106
D	2.5		2.75	0.098		0.108
E	0.45		0.70	0.017		0.027
F	0.75		1	0.030		0.039
F1	1.15		1.50	0.045		0.059
F2	1.15		1.50	0.045		0.059
G	4.95		5.2	0.194		0.204
G1	2.4		2.7	0.094		0.106
Н	10.0		10.40	0.393		0.409
L2		16			0.630	
L3	28.6		30.6	1.126		1.204
L4	9.8		10.6	0.385		0.417
L5	2.9		3.6	0.114		0.142
L6	15.9		16.4	0.626		0.645
L7	9		9.3	0.354		0.366
DIA.	3		3.2	0.118		0.126

D²PAK MECHANICAL DATA

DIM		mm.			inch		
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
Α	4.4		4.6	0.173		0.181	
A1	2.49		2.69	0.098		0.106	
A2	0.03		0.23	0.001		0.009	
В	0.7		0.93	0.027		0.036	
B2	1.14		1.7	0.044		0.067	
С	0.45		0.6	0.017		0.023	
C2	1.23		1.36	0.048		0.053	
D	8.95		9.35	0.352		0.368	
D1		8			0.315		
Е	10		10.4	0.393		0.409	
E1		8.5			0.335		
G	4.88		5.28	0.192		0.208	
L	15		15.85	0.590		0.624	
L2	1.27		1.4	0.050		0.055	
L3	1.4		1.75	0.055		0.068	
М	2.4		3.2	0.094		0.126	
R		0.4			0.016		
V2	0°		8°	0°		8°	

D²PAK/A MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α	4.40		4.60	0.173		0.181
A1	2.49		2.69	0.098		0.106
A2	0.03		0.23	0.001		0.009
В	0.7		0.93	0.028		0.037
B1	0.8		1.3	0.031		0.051
B2	1.14		1.7	0.045		0.067
С	0.45		0.60	0.018		0.024
C2	1.23		1.36	0.048		0.054
D	8.95		9.35	0.352		0.368
D1		8			0.315	
Е	10		10.4	0.394		0.409
E1		8.5			0.335	
G	4.88		5.28	0.192		0.208
L	15		15.85	0.591		0.624
L2	1.27		1.4	0.050		0.055
М	2.4		3.2	0.094		0.126
R		0.4			0.016	
V2	0°		8°	0°		8°

Tape & Reel D²PAK-P²PAK-D²PAK/A-P²PAK/A MECHANICAL DATA

DIM.	mm.			inch		
DINI.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А			180			7.086
С	12.8	13.0	13.2	0.504	0.512	0.519
D	20.2			0.795		
N	60			2.362		
Т			14.4			0.567
Ao	10.50	10.6	10.70	0.413	0.417	0.421
Во	15.70	15.80	15.90	0.618	0.622	0.626
Ko	4.80	4.90	5.00	0.189	0.193	0.197
Ро	3.9	4.0	4.1	0.153	0.157	0.161
Р	11.9	12.0	12.1	0.468	0.472	0.476

LD1085 SERIES

Table 15: Revision History

Date	Revision	Description of Changes
07-Oct-2004	12	Mistake Order Codes - Table 1.
08-Feb-2005	13	Mistake U.M. Load Regulation - V ==> mV.
01-Mar-2005	14	Version 1.2V removed.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
All other names are the property of their respective owners

© 2005 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

