EE 2000 Logic Circuit Design Semester A 2021/22

Tutorial 3

1. Use a truth table to present (A + B + C + D)' = A' B' C' D'

Ans:

Alls.									
A	В	C	D	A'	B'	C'	D'	A'B'C'D'	(ABCD)'
0	0	0	0	1	1	1	1	1	1
0	0	0	1	1	1	1	0	0	0
0	0	1	0	1	1	0	1	0	0
0	0	1	1	1	1	0	0	0	0
0	1	0	0	1	0	1	1	0	0
0	1	0	1	1	0	1	0	0	0
0	1	1	0	1	0	0	1	0	0
0	1	1	1	1	0	0	0	0	0
1	0	0	0	0	1	1	1	0	0
1	0	0	1	0	1	1	0	0	0
1	0	1	0	0	1	0	1	0	0
1	0	1	1	0	1	0	0	0	0
1	1	0	0	0	0	1	1	0	0
1	1	0	1	0	0	1	0	0	0
1	1	1	0	0	0	0	1	0	0
1	1	1	1	0	0	0	0	0	0

2. Implement the following expression with **2-input NAND gates** only:

(a)
$$ABC + DE$$

(b)
$$ABC + D' + E$$

Ans:

3. Given a truth table:

a	b	c	d	f
0	0	0	0	0
0	0	0	1	0
0	0	1	0	X
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	X
0	1	1	1	X
1	0	0	0	0
1	0	0	1	X
1	0	1	0	1
1	0	1	1	0
1	1	0	0	X
1	1	0	1	0
1	1	1	0	X
1	1	1	1	0

- (a) Express *f* as product of maxterms function in numeric form.
- (b) Find its MPS form using K-map.
- (c) From the answer of (b), please design a logic circuit by NAND gates only.

Ans:

(a) $f(a, b, c, d) = \Pi M(0, 1, 3, 5, 8, 11, 13, 15) \cdot \Pi D(2, 6, 7, 9, 12, 14)$

(b) ab 00 01 cd11 **10** 00 0 X 01 0 0 X 0 11 0 10

$$\overline{f(a,b,c,d)} = d + \overline{bc}$$

$$f(a,b,c,d) = \overline{d + \overline{bc}}$$

$$= (\overline{d}) \cdot (b+c)$$

(c) $g = \overline{f(a,b,c,d)} = d + \overline{b} \cdot \overline{c}$ $= \overline{d + \overline{b} \cdot \overline{c}}$ $= (\overline{d}) \cdot (\overline{\overline{b} \cdot \overline{c}})$

4. Design a combinational circuit for a 3-bit Binary-to-Gray code converter.

Ans:

Truth table

	Input			Output	
A	В	C	X	Y	Z
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	1
0	1	1	0	1	0
1	0	0	1	1	0
1	0	1	1	1	1
1	1	0	1	0	1
1	1	1	1	0	0

X = A (by visual inspection of the truth table)

$$Y = A'BC' + A'BC + AB'C' + AB'C$$

$$= A'B(C' + C) + AB'(C' + C)$$

$$= A'B + AB'$$

$$= A \oplus B$$

$$Z = A'B'C + A'BC' + AB'C + ABC'$$

$$= B'C(A' + A) + BC'(A' + A)$$

$$= B'C + BC'$$

$$= B \oplus C$$

Circuit:

5. Joe, Jack, and Jim get together once a week to either go to a movie or go bowling. To decide what to do, they vote and a simple majority wins. Assuming a vote for the movie is represent as a 1, design a NAND gate circuit that automatically computes the decision.

Ans:

Joe / x	Jack / y	Jim / z	Decision / f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

 $f(x, y, z) = \sum m(3, 5, 6, 7)$ By K-map f = xy + xz + yz (Please draw the circuit by own)