Table of Contents

Paso de mensaje de MAP		1
Máxima inferencia exact	a	1
	n de mapa	6

Semana 3

Paso de mensaje de MAP

Máxima inferencia exacta

Se trata de encontrar los argumentos que maximicen

la probabilidad, en lugar de trabajar con multiplicaciones se aplica el logaritmo

Product ⇒ **Summation**

a¹	b¹	8
a¹	b ²	1
a ²	b ¹	0.5
a ²	b ²	2

a¹	b¹	3
a¹	b ²	0
a ²	b¹	-1
a ²	b ²	1

Es similar a eliminación de variables

Max-Sum Elimination in Chains

O(A,B,C,D,E)

$$\max_{D} \max_{C} \max_{B} \max_{A} \left(\theta_{1}(A, B) + \theta_{2}(B, C) + \theta_{3}(C, D) + \theta_{4}(D, E) \right)$$

$$\max_{D} \max_{C} \max_{B} \left(\theta_{2}(B,C) + \theta_{3}(C,D) + \theta_{4}(D,E) + \max_{A} \theta_{1}(A,B) \right)$$

$$\max_{D} \max_{C} \max_{B} \left(\theta_{2}(B,C) + \theta_{3}(C,D) + \theta_{4}(D,E) + \lambda_{1}(B) \right)$$

Max-Sum Elimination in Chains

 $\max_{D} \max_{C} \max_{B} \left(\theta_{2}(B,C) + \theta_{3}(C,D) + \theta_{4}(D,E) + \lambda_{1}(B) \right)$

$$\max_{D} \max_{C} \left(\theta_{3}(C, D) + \theta_{4}(D, E) + \max_{B} \left(\theta_{2}(B, C) + \lambda_{1}(B) \right) \right)$$

$$\max_{D} \max_{C} (\theta_3(C, D) + \theta_4(D, E) + \lambda_2(C))$$

Max-Sum Elimination in Chains

$$\max_{D} \max_{C} (\theta_3(C, D) + \theta_4(D, E) + \lambda_2(C))$$

$$\max_{D} (\theta_4(D, E) + \lambda_3(D))$$

$$\lambda_4(e) = \max_{\substack{\mathbf{e}, \mathbf{b}, \mathbf{c}, \mathbf{d}}} \frac{\Theta(\mathbf{e}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e})}{\Theta(\mathbf{e}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e})}$$

 $\lambda_4(E)$ $\lambda_4(e) =$

best value that I can get if we mandate E=e

se escoge a el mayor

Factor Summation

Daphne Koller

Factor Maximization

Se puede hacer como propagacion de creencias

Max-Sum in Clique Trees

Convergencia del paso de mensaje

- Una vez que C_i recibe un mensaje final de todos los vecinos, excepto C_j , entonces $\lambda_{i \to j}$ también es final (nunca cambiará)
- · Los mensajes de las hojas son inmediatamente final

los argumentos optimos son a^1, b^1, c^1 , si lo hacemos por propagación de creencias

vemos que en el paso de mensajes, vemos que los argumentos optimos son los mismos

Max-suma BP en la convergencia

· Las creencias en cada camarilla son max-marginals.

$$\beta_{i}(C_{i}) = \theta_{i}(C_{i}) + \sum_{k} \lambda_{k \to i}$$

$$\beta_{i}(C_{i}) = \max_{\mathbf{W}_{i}} \theta(C_{i}, \mathbf{W}_{i})$$

$$\mathbf{W}_{i} = \{X_{1}, \dots, X_{n}\} - C_{i}$$

Calibración: las camarillas están de acuerdo con las variables compartidas

El maximo para b^1 es 7 y para b^2 es 3

Resumen

- El mismo algoritmo de árbol de clique que se usa para sum-producto se puede utilizar para Max-Sum
- Al igual que en el producto, la convergencia se logra después de un solo paso arriba abajo
- El resultado es un máximo marginal en cada clique C:

• - Para cada asignación c a C, la cuál es la puntuación de la mejor finalización a c

Encontrar una asignación de mapa

Decodificación de una asignación de mapa

- Fácil si la asignación de mapas es única
 - - asignación de maximización única en cada camarilla
 - - cuyo valor es el valor θ de la asignación de mapas
 - - Debido a la calibración, las elecciones en todas las camaras deben estar de acuerdo

	,		1	•	/		
		_					
4+3=7	c ¹	b ¹	4	7	3+4=7	b ¹	a^1
1.5+3=4.5	c ²	b ¹		2	0+2=2	b ²	a ¹
0.2+1=1.2	c ¹	b ²		=3	-1+4=3	b ¹	a ²
2+1=3	c ²	b ²			1+2=3	b ²	a ²
2.2.0				•	1.1.0		

- Si la asignación de mapas no es única, podemos tener varias opciones en algunas camarillas
- La vinculación arbitraria puede no producir una asignación de mapa

	b¹	c¹	2	4
	b ¹	c ²	1	
	b ²	c ¹	1	
X	b ²	c ²	2	5_

- · Dos opciones:
 - - Parámetros ligeramente perturbados para hacer que el MAP sea único.
 - - Use el procedimiento de rastreo que crea incrementalmente una asignación de mapa, una variable a la vez