Department of Electrical Engineering Indian Institute of Technology, Kanpur

EE 210 Assignment #10 Assigned: 17.3.21

- 1. Determine the dc collector currents of Q_1 and Q_2 , and then the ac small-signal midband input resistance and voltage gain for the Darlington emitter follower, as shown in Fig.1. Assume $\beta = 200$ for both Q_1 and Q_2 , and neglect r_0 .
- 2. Calculate the output resistance R_0 of the common-emitter Darlington configuration, as shown in Fig.2, as a function of I_{BIAS} . Do not neglect either r_{01} or r_{02} in this calculation. If $I_{C2} = 1$ mA, what is R_0 for I_{BIAS} of: i) 1 mA and ii) 0?
- 3. A BiMOS Darlington is shown in Fig.3. The bias voltage V_B is adjusted for a dc output voltage of 2 V. Calculate the bias currents in both devices and then calculate the ac small-signal midband voltage gain v_0/v_i of the circuit. For the MOSFET, assume $W=10~\mu m$, $L=1~\mu m$, $k_N'=200~\mu A/V^2$, $V_{TN0}=0.6~V$, $\gamma=0.25~V^{1/2}$, $\phi_F=0.3~V$, and $\lambda=0$. For the BJT, assume $I_S=10^{-16}~A$, $\beta=100$, and $V_A\to\infty$.
- 4. Derive the expression of the output resistance R_0 for the modified npn cascode amplifier structure, as given in class (assume that R_1 and R_2 are the emitter resistance of Q_1 and the base resistance of Q_2 respectively).
- 5. Consider the NMOS cascode amplifier circuit, as given in class, and show that its output impedance can be given by $R_0 = [r_{01} + r_{02} + (g_{m2} + g_{mb2})r_{01}r_{02}]$, where all notations carry their usual meanings.
- 6. Determine the differential-mode gain, common-mode gain, common-mode rejection ratio, differential-mode input resistance, and common-mode input resistance for the BJT differential amplifier, as given in class. Assume $I_{EE}=20~\mu A$, R_{EE} (the output resistance of the current source $I_{EE})=10~M\Omega$, $R_{C}=100~k\Omega$, and $V_{CC}=-V_{EE}=5~V$. Neglect base currents for dc analysis, and assume $\beta=200$ for ac analysis.
- 7. Repeat Prob.6, but with the addition of emitter degeneration resistors of value 4 k Ω in each of the emitters to the common point.
- 8. Consider the circuit shown in Fig.4. What type of compound connection is this? Determine the overall input resistance, voltage gain, and output resistance. Assume $\beta = 200$, and neglect Early effect.

