Applications of Machine Learning in Retrospective Studies on Hearing

François Charih, Ashlynn Steeves, Matthew Bromwich, Renée Lefrançois Amy E. Mark and James R. Green

> October 29th, 2018 IEEE Life Sciences Conference 2018

The audiogram

Thousands of audiograms are used to conduct these studies.

The audiogram

Thousands of audiograms are used to conduct these studies.

Figure: A typical pure tone audiogram

Problem 1: Datasets can be polluted with poor quality audiograms

Figure: An audiogram of questionable quality

Problem 2: Interpolation-based imputation sometimes fails

Figure: A case where interpolation fails

Problem 2: Interpolation-based imputation sometimes fails

Figure: A case where interpolation fails

Problem 2: Interpolation-based imputation sometimes fails

Figure: A case where interpolation fails

Research Questions

In our paper, we explore the following questions:

Research Questions

In our paper, we explore the following questions:

 Can we automatically identify potential quality issues in large audiograms datasets collected as part of studies on the prevalence of hearing loss?

Research Questions

In our paper, we explore the following questions:

- 1. Can we automatically identify potential quality issues in large audiograms datasets collected as part of studies on the prevalence of hearing loss?
- 2. Can a data-driven approach leveraging similarity between audiograms improve the imputation accuracy in incomplete audiograms?

Part I: Investigating Unsupervised Learning for Quality Assurance

Assumptions

Let us make the following assumptions:

Assumptions

Let us make the following assumptions:

1. The anatomy & physiology of the ear limits the possible audiograms

Assumptions

Let us make the following assumptions:

- 1. The anatomy & physiology of the ear limits the possible audiograms
- 2. The audiograms are manifestations of some fixed, but unknown number of natural processes (diseases of the ear)

Assumptions

Let us make the following assumptions:

- 1. The anatomy & physiology of the ear limits the possible audiograms
- 2. The audiograms are manifestations of some fixed, but unknown number of natural processes (diseases of the ear)
- 3. We have access to a large quantity of audiograms from a representative sample of the population

Leveraging existing data

In this study, we had access to a large database of 15k+ unlabeled audiograms.

Leveraging existing data

In this study, we had access to a large database of 15k+ unlabeled audiograms.

How do we leverage this dataset to flag potential quality issues?

Modeling the prior probability landscape

Figure: Conceptual representation of the density estimation problem

Modeling the prior probability landscape

Figure: Conceptual representation of the density estimation problem

That's fine and dandy, but how do we do that?

Gaussian Mixture Models

Figure: Conceptual representation of the density estimation problem

$$P(\mathbf{x}) = \sum_{c=1}^{C} \pi_c \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_c, \mathbf{S}_c)$$

Methodology

Optimizing model complexity

Minimize the Bayesian information criterion (BIC)

Figure: GMM complexity tuning and resulting components

Results

Figure: Audiograms in the NHANES dataset with the lowest log-probability

How our k-NN imputation method works

How our k-NN imputation method works

Results

Table: Mean absolute error of threshold imputation on a hold-out test set of **pædiatric** audiograms

Training Set	3,000 Hz		6,000 Hz	
	Averaging	k-NN	Averaging	k-NN
All Children	4.68 ± 3.84	4.39 ± 3.54 4.40 ± 3.50	7.66 ± 6.34	6.53 ± 5.19 6.50 ± 5.31

Results

Table: Mean absolute error of threshold imputation on a hold-out test set of **pædiatric** audiograms

Training Set	3,000 Hz		6,000 Hz	
	Averaging	k-NN	Averaging	k-NN
All Children	4.68 ± 3.84	4.39 ± 3.54 4.40 ± 3.50	7.66 ± 6.34	6.53 ± 5.19 6.50 ± 5.31

Table: Mean absolute error of threshold imputation on a hold-out test set of **adult audiograms**

Training Set	3,000 Hz		6,000 Hz	
	Averaging	k-NN	Averaging	k-NN
All Adults	5.49 ± 4.95	$\begin{array}{c} 5.38 \pm 4.75 \\ 5.39 \pm 4.76 \end{array}$	7.36 ± 6.19	6.92 ± 5.74 6.96 ± 5.74

Conclusions:

GMM-based approach to QA method is promising

Conclusions:

- GMM-based approach to QA method is promising
- k-NN approach to threshold imputation does no worse than current method

Conclusions:

- GMM-based approach to QA method is promising
- k-NN approach to threshold imputation does no worse than current method

Future work:

 Generalizing our QA method; should identify problematic thresholds locally

Conclusions:

- GMM-based approach to QA method is promising
- k-NN approach to threshold imputation does no worse than current method

Future work:

- Generalizing our QA method; should identify problematic thresholds locally
- Quantitative evaluation of our QA method with trained audiologist(s)

Comments? Questions?

