

1/9

Fig. 1
(prior art)

Fig. 2
(prior art)

$l=1$ (unrotated)

$l=1$ (rotated through π)

Fig. 3A

Fig. 3B

SUBSTITUTE SHEET (RULE 26)

BEST AVAILABLE COPY

Fig. 4

Fig. 5

Fig. 6

4/9

I	A2	B2	C2	D2	
0	.				7A
1		.			7B
2			.		7C
3				.	7D
4	.				7E

Fig. 7

I	A1	Port	B1
0	.		
1		.	
2	.		
3		.	
4	.		

Fig. 8

5/9

Fig. 9

Fig. 10

Fig. 11

SUBSTITUTE SHEET (RULE 26)

BEST AVAILABLE COPY

6/9

Fig. 16

For the case shown the total number of azimuthal arrays is 8 the angle between arrays $\pi/4$ radians in general there could be m , azimuthal arrays and an angle of $2\pi/m$ between them. Also in general we have a k th element along each azimuthal array and a total of s , elements in each azimuthal array.

The elements in each azimuthal array do not have a time delay between them

For each azimuthal array, to generation or detection of a beam of angular momentum, l , @ frequency, ω , requires a time delay (with respect to the $n=0$ array), given by:-

$$t = \frac{2\pi nl}{m\omega}$$

Followed by summation

Fig. 17

The total array is now described by a, m x r, matrix,A, as follows:-

$$A = \begin{bmatrix} s_{0,0} & \dots & s_{0,r} \\ \vdots & & \vdots \\ s_{m,0} & \dots & s_{m,r} \end{bmatrix}$$

where $s_{n,k}$ is the signal received at element ,k in the nth azimuthal array.
To detect a received signal with angular momentum ,l, at frequency, ω
the signal is processed as follows:-

Fig. 18

This part of the signal processing is detailed below

Fig. 19