CMSC 691 - Fall 2024

Homework Assignment 4

Announced: 11/4

Due: Monday, 11/18, 5pm

The problem

 Write a function def adversarial_attack(image, label)

performing an adversarial attack (see Lecture 18) against an already trained CIFAR10 classification network

 Your function should return a modified image, with the same shape, looking similar to the original, but leading to incorrect prediction by the network

The problem - details

- def adversarial_attack(image, label)
- The function should take as input an image from CIFAR10 (32x32, RGB)
 - As a torch.Tensor of shape [1,3,32,32], i.e., batch_size=1, channels=3, height&width=32, see h04_stub.py for details
- The function should also take as input the correct class label of the image (as torch.Tensor of shape [1,]

The problem - details

- Aim the adversarial attack at the network we have seen in Lecture 19:
 - model = torch.hub.load('chenyaofo/pytorchcifar-models', 'cifar10_resnet20', pretrained=True)
 - See also: h04_stub.py

The problem - details

- Use the Projected Gradient Method for constructing adversarial examples
 - Use epsilon=8/255
 - Use ∞-norm as the norm ||·||
 - Use alpha=2/255, # iterations = 10 as a starting point for method development
- Write code for the PGM method yourself, using any library that provides it is not allowed

Returning the Assignment

 Solution code should be written by you and you only (no web/book/friend/etc. code)

- Upload through Canvas/Gradescope
 - Similar to Homework 3
 - A single file with your two functions
 - Do not forget to do all the necessary imports
 - If your code doesn't "compile" or throws an exception, gradescope will fail, with 0 points
 - It is advisable to either delete any of your testing code, or "guard" it with:

```
if __name__ == "__main__":
```