SC2008 CE3005:Computer Networks CZ3006:Netcentric Computing

Transport layer

Q1. Information provided

Assume that the Initial Sequence Number (ISN) for the Client TCP is 100 and the ISN for the Server TCP is 600. Both window sizes are fixed at 2048 bytes. The Maximum Segment Size (MSS) is 536 bytes, and the initial congestion window size is 1 MSS.

Client TCP	Server TCP
c = new Socket()	svr = new ServerSocket() s = svr.accept()
c.write(30 bytes)	s.read(30 bytes)
c.read(3000 bytes)	s.write(3000 bytes)
c.close()	
	s.close()

Q1: TCP - connection establishment

Q1: TCP - flow and congestion control

Client TCP

Server TCP

c.write(30 bytes)

(ACK=1, SN=101, AN=601, W=2048)

Data+ACK(ACK=1,SN=601 , AN=131,W=2048)

(ACK=1, SN=131, AN=1137, W=2048)

Data(SN=1137)

Data(SN=1673)

(ACK=1, SN=131, AN=2209, W=2048)

s.read(30 bytes) s.write(3000 bytes)

c .read(3000 bytes)

MSS=536 bytes

Q1: TCP - flow and congestion control

Q1: TCP - connection termination

Q2: TCP Congestion Control

- (a) Slow start [1,6] & [23,26]
- (b) Congestion avoidance [6,16] & [17,22]

- (c) At 16th transmission round, the host experienced a triple duplicate ACKs, because otherwise it will drop its cwnd to 1
- (d) At 22nd transmission round, the host experienced a timeout of ACK, hence it drops its cwnd to 1

- (e) Threshold at $1^{st} = 32$ (see 6^{th} transmission round)
- (f) Threshold at $18^{th} = 42/2 = 21$ (see 16^{th} transmission round)
- (g) Threshold at $24^{th} = 26/2 = 13$ (see 22^{nd} transmission round)

Q2: TCP

(h) During 1st, round, segment 1 is sent

During 2nd, round, segment 2-3 are sent

During 3rd, round, segment 4-7 are sent

During 4th, round, segment 8-15 are sent

During 5th, round, segment 16-31 are sent

During 6th, round, segment 32-63 are sent

During 7th, round, segment 64-96 are sent <<< segment 70 sent

Q3(a): Understanding Internet

c:\>ipconfig /all			
Ethernet adapter Local Area Connection:			
Physical Address : 00-23-26-AA-AA			
DHCP Enabled : Yes			
IPv4 Address			
Subnet Mask			
Default Gateway : 192.168.1.254			
DHCP Server : 192.168.1.254			
DNS Server			

Q3(a): Understanding Internet

Roles performed by ADSL modem:

- DHCP server: configure host with IP address, subnet mask, etc.
- DNS server: resolve domain name to corresponding IP address
- Default gateway: forward packets to outside networks not directly reachable by the host
- NAT: enable host to use private IP address by translating it to public IP address and vice versa

Q3(b): Understanding Internet

Visit http://www.ntu.edu.sg

Frame	MAC Address		IP Address (if applicable)		Purpose of Frame
	Source	Destination	Source	Destination	
1.	00-23-26- AA-AA-AA	FF-FF-FF FF-FF-FF	-	-	ARP request for 192.168.1.254
2.	00-24-17- BB-BB-BB	00-23-26- AA-AA-AA	-	-	ARP reply
3.	00-23-26- AA-AA-AA	00-24-17- BB-BB-BB	192.168.1. 68	192.168.1.254	DNS request for www.ntu.edu.sg
4.	00-24-17- BB-BB-BB	00-23-26- AA-AA-AA	192.168.1.254	192.168.1.68	DNS reply 155.69.6.163

Q3(b): Understanding Internet

Visit http://www.ntu.edu.sg

Frame	MAC Address		IP Address (if applicable)		Purpose of Frame
	Source	Destination	Source	Destination	
5.	00-23-26- AA-AA-AA	00-24-17- BB-BB-BB	192.168.1.68	155.69.6.163	TCP 3-way handshake
6.	00-24-17- BB-BB-BB	00-23-26- AA-AA-AA	155.69.6.163	192.168.1.68	TCP 3-way handshake
7.	00-23-26- AA-AA-AA	00-24-17- BB-BB-BB	192.168.1.68	155.69.6.163	TCP 3-way handshake

Q3(b): Understanding Internet

Visit http://www.ntu.edu.sg

Frame	MAC Address		IP Address (if applicable)		Purpose of Frame
	Source	Destination	Source	Destination	
8.	00-23-26- AA-AA-AA	00-24-17- BB-BB-BB	192.168.1.68	155.69.6.163	HTTP request
9.	00-24-17- BB-BB-BB	00-23-26- AA-AA-AA	155.69.6.163	192.168.1.68	HTTP reply

Q4: TCP throughput

Information Provided

- Link information:
 - Link speed = 1Gbps,
 - RTT = 100 milliseconds
- File size: 1 GByte
- TCP congestion control configuration:
 - Maximum segment size 1 Kbyte
 - Maximum number of segment 16

Q4 Solution

- In one RTT, the maximum amount of data that is transmitted is
 - $-1KB \times 16 = 16KB$
- Since there are 10 RTT in one second, as RTT is 100 millisecond.
 - Throughput = $16KB \times 10 = 160KB$ per second
- Duration of transfer
 - -1,000,000 KB/160KB = 6,250 seconds

In addition to the office hours listed in the previous slide, please feel free to contact Assistant Professor Jun ZHAO as follows to schedule appointments to ask questions. Thanks!

WhatsApp: http://personal.ntu.edu.sg/JunZhao/whatsapp.png

WeChat: https://personal.ntu.edu.sg/JunZhao/wechat.png

Singapore Phone Number (WhatsApp): 8648 3534

Email or Microsoft Teams: JunZhao@ntu.edu.sg

Skype ID: live:junzhaocmu

Office: Block N4, Room 02C-111, 50 Nanyang Ave, Singapore 639798

Homepage: http://personal.ntu.edu.sg/JunZhao/