Aggregate Uncertainty: Krusell and Smith Econ720

Prof. Lutz Hendricks

November 4, 2015

A Bewley Model of the Wealth Distribution

- ▶ We study Krusell and Smith (1998 JPE).
- ► The problem: In models with aggregate uncertainty, the entire (wealth) distribution is a state variable.
- KS propose an important method for solving models with aggregate uncertainty and heterogeneity.
- ▶ It contains an important finding: approximate aggregation
 - First moments are often enough to approximate the entire distribution of the state vector.
 - The aggregate law of motion for K looks a lot like an individual's decision rule.

The Question

- Economists commonly use models with representative households.
- Are these good approximations for models with heterogeneous agents?

Contributions

- 1. In the standard Real Business Cycle (RBC) framework, the representative agent is a good approximation.
- 2. A method for computing models with heterogeneity and aggregate uncertainty.

The approach

- Compute a standard RBC model (representative agent)
- Add uninsured employment risk.
- ► Compare: how good is the representative agent approximation?

Result: Approximate Aggregation

- Aggregate consumption and saving resemble those of a representative agent.
- ► Therefore: it is enough to keep track of mean wealth, instead of keeping track of the wealth distribution, in order to forecast future prices.

Intuition

- ► The distribution of wealth is unimportant, if most agents have the same marginal propensity to consume out of aggregate shocks.
- This is true in the model because agents achieve good self-insurance (consumption policy functions are roughly linear).
- Only for the very poor does self-insurance fail. But the very poor account for only a small fraction of aggregate consumption.
- ▶ A point made in passing: **preference heterogeneity** permits the model to match the U.S. wealth distribution.

The Model

Demographics:

- a unit mass of infinitely lived households
- ► households are ex ante identical (Bewley model)

Preferences:

$$\mathbb{E}\sum_{t=0}^{\infty}\beta^t\ U(c_t)$$

Technologies

$$\bar{k}' = (1 - \delta)\bar{k} + \bar{y} - \bar{c}$$

$$\bar{y} = z \; \bar{k}^{\alpha} \; \bar{l}^{1-\alpha}$$

- $ightharpoonup \overline{k}, \overline{l}$: aggregate capital and labor inputs.
- z is a two-state Markov process.
- ▶ takes on values z_g, z_b
- $\Pr(z'=z) = P_z$

Endowments

- $ightharpoonup \bar{k}_0$ units of capital at t=0
- \triangleright $\varepsilon_{i,t}$ units of labor time
- ▶ $\Pr(\varepsilon_{i,t} = 0|z = z_g) = u_g$ and $\Pr(\varepsilon_{i,t} = 0|z = z_b) = u_b$

Markets

- Goods (numeraire)
- ► Capital rental: *r*
- ► Labor rental: w
- ▶ Households hold capital, but cannot borrow: $k_{i,t} \ge 0$.

Household Problem

- ▶ Individual state: k, ε .
- Aggregate state: z, Γ.
- ightharpoonup is the distribution of households over (k, ε) .
- Bellman equation:

$$v(k, \varepsilon, z, \Gamma) = \max u(c) + \beta E v(k', \varepsilon', z', \Gamma')$$

subject to

$$k' = r(\bar{k}, \bar{l}, z) k + w(\bar{k}, \bar{l}, z) \varepsilon + (1 - \delta) k - c$$

$$\Gamma' = H(\Gamma, z, z')$$

▶ *H* is the law of motion for the distribution, given *z* (basically due to household saving decisions).

Recursive Competitive Equilibrium

Objects:

- ▶ Household value function v and decision rule $k' = f(k, \varepsilon, z, \Gamma)$.
- ▶ Price functions r(.) and w(.).
- ▶ Law of motion for the distribution of (k, ε) : H.

These satisfy:

- \triangleright v,f solve the household problem.
- ightharpoonup r, w are consistent with firm profit maximization.
- ► *H* is "consistent with" household decision rules *f*.
 - see Bewley slides

Computation

- ▶ Problem: The distribution Γ cannot be described with a finite number of parameters.
- ► KS's idea: Only keep track of a small number of moments of the distribution: \(\ell \).
 - e.g.: mean, variance, percentile values, ...
- ▶ Guess a law of motion for ℓ : $\ell' = h(z, \ell)$.
- ▶ Solve the household problem, given h rather than H.
- ▶ As long as ℓ contains \bar{k} , the household can compute prices.

Approximate Household Problem

Bellman equation:

$$v(k, \varepsilon, z, \ell) = \max u(c) + \beta E v(k', \varepsilon', z', \ell')$$

subject to

$$k' = r(z,\ell)k + w(z,\ell)\varepsilon + (1-\delta)k - c$$

 $\ell' = h(z,\ell)$

Algorithm

- ▶ Start from an arbitrary guess for h, such as $\ell' = \ell$.
- ► Solve the household problem, given *h*.
- Simulate many household histories.
- ▶ Update the guess for *h* from the household solution.
- ▶ Iterate until the guesses for *h* converge.

Computation

The key problem:

- ▶ How to represent the distribution using a small vector ℓ ?
- ► How to find the law of motion *h* from simulated household histories?

Krusell and Smith approximate Γ using the first J moments: mean, standard deviation, etc.

To check the accuracy of the approximation:

- Verify that the forecast errors are "small."
- Verify that increasing J has little effect on the equilibrium properties.

This is a form of **bounded rationality**: Households only use the first J moments and forecast them using only today's moments.

Details

- ▶ Assume that ℓ'_i is a linear function of ℓ , conditional on z.
- ► Simulate a large number of households from their decision rules.
- ▶ Compute a history ℓ_t .
- **E**stimate the coefficients by running a regression of ℓ' on ℓ .
- Iterate until regression coefficients converge.
- ➤ To check the accuracy of the approximation: Try alternative functional forms for h.

Details

- ▶ Start with J = 1 moments: $\ell = \bar{k}$.
 - ► If $z = z_g$: $\ln(\overline{k}') = a_0 + a_1 \ln(\overline{k})$. ► If $z = z_b$: $\ln(\overline{k}') = b_0 + b_1 \ln(\overline{k})$.

Parameters

- Choose standard RBC parameters:
- Preferences: $\beta = 0.99$, $\sigma = 1$.
- ► Technology: $\alpha = 0.36$. $z_g = 1.01$ and $z_b = 0.99$ based on size of aggregate output fluctuations.
- ▶ Unemployment rates: $u_g = 0.04$ and $u_b = 0.1$.
- \triangleright P_z : match length of business cycles.
- ▶ P_{ε} : Labor endowments match length of unemployment spells.

Results

- ▶ Solve for J = 1 and $\ell = \bar{k}$.
- ▶ Forecasting equations are of the form: $\ln(\bar{k}') = a_0 + a_1 \ln(\bar{k})$.
- Goodness of fit:
 - $R^2 = 0.999998.$
 - ▶ Variance of error term: $\sigma^2 = 0.00003$.
- ▶ The log-linear forecasting equation is nearly perfect.
- ▶ The welfare gains from better forecasts are negligible.

Approximate aggregation

- Individual decision rules are nearly linear.
- All agents have nearly identical marginal propensities to consume.
- Redistributing wealth has essentially no effect on aggregate consumption.

Fig. 2.—An individual agent's decision rules (benchmark model, aggregate capital = 11.7, good aggregate state).

Why approximate aggregation?

- Why are decision rules nearly linear?
- Most agents are rich enough to almost completely smooth shocks.
- ► One reason: aggregate capital is (by construction) 3 times larger than output.
- ► Another reason: agents live forever.
- Only a small number of poor agents cannot self-insure. But they account for a tiny fraction of aggregate wealth.

How important is heterogeneity for business cycles?

- ► The experiment: Compare two identical economies, except that one has complete markets (therefore no heterogeneity).
- ► Finding: heterogeneity has little effect on the model's business cycle properties.

How important is heterogeneity for business cycles?

AGGREGATE TIME SERIES

Model	Mean (k _i)	Corr(e, y,)	$egin{aligned} ext{Standard} \ ext{Deviation} \ (i_l) \end{aligned}$	Corr(y, y,-4)
Benchmark;				
Complete markets	11.54	.691	.031	.486
Incomplete markets	11.61	.701	.030	.481
$\sigma = 5$:				
Complete markets	11.55	.725	.034	.551
Incomplete markets	12.32	.741	.033	.524
Real business cycle:				
Complete markets	11.56	.639	.027	.342
Incomplete markets	11.58	.669	.027	.339
Stochastic-β;				
Incomplete markets	11.78	.825	.027	.459

Preference heterogeneity

The question:

- The baseline model has far too little wealth heterogeneity.
- Does approximate aggregation still hold when there is a realistic amount of wealth heterogeneity?

► The approach:

- Add enough preference heterogeneity to the model to roughly replicate the observed distribution of wealth.
- Check that the mean is enough to forecast prices very accurately.

Model

- Allow for 3 arbitrary values of β : 0.986, 0.989, 0.993.
- Agents switch β values stochastically, on average every 50 years (once per generation).

Results

Approximate aggregation is still very good:

- $R^2 = 0.99999$
- $\sigma^2 = 0.00006.$

The model matches wealth distribution statistics.

- ▶ But: this does not show that preference heterogeneity is important in the data.
- An open question!

Summary

- The main contribution of Krusell and Smith is the method for computing economies with heterogeneity and aggregate uncertainty.
- ► The finding that approximate aggregation holds seems robust for frictionless business cycle models (the RBC type), but we don't know whether it holds more generally.

Reading

Krusell, Per; Anthony A. Smith (1998). "Income and wealth heterogeneity in the macroeconomy." *Journal of Political Economy* 5: 867-96.