Derivative Rules

$f\left(x\right)$	$f'\left(x\right)$	
$u\left(x\right) v\left(x\right)$	u'v + uv'	
$u\left(x\right)$	u'v - uv'	
$\overline{v\left(x\right) }$	v^2	
u(v(x))	u'(v(x))v'(x)	
x^n	nx^{n-1}	
$\ln \left(u\left(x\right) \right)$	$u'\left(x\right)$	
$\ln\left(u\left(x\right)\right)$	$\overline{u\left(x\right) }$	
$\sin\left(ax\right)$	$a\cos\left(ax\right)$	
$\cos\left(ax\right)$	$-a\sin\left(ax\right)$	
$\tan\left(ax\right)$	$a \sec^2(ax)$	
$\cot\left(ax\right)$	$-a\csc^2(ax)$	
$\sec\left(ax\right)$	$a\sec\left(ax\right)\tan\left(ax\right)$	
$\csc\left(ax\right)$	$-a\csc\left(ax\right)\cot\left(ax\right)$	

Trigonometric Identities

$$1 = \sin^{2}(x) + \cos^{2}(x)$$

$$\sin(2x) = 2\sin(x)\cos(x)$$

$$\cos(2x) = \cos^{2}(x) - \sin^{2}(x)$$

$$\sin^{2}(x) = \frac{1 - \cos(2x)}{2}$$

$$\cos^{2}(x) = \frac{1 + \cos(2x)}{2}$$

Partial Fraction Decomposition

Given the LHS in the denominator, substitute the RHS.

$$(ax+b)^k \to \frac{A_1}{ax+b} + \dots + \frac{A_k}{(ax+b)^k}$$
$$(ax^2 + bx + c)^k \to$$
$$\frac{A_1x + B_1}{ax^2 + bx + c} + \dots + \frac{A_kx + B_k}{(ax^2 + bx + c)^k}$$

Integration Techniques

$$\int u \, dv = uv - \int v \, du$$

$$\int f(g(x)) \frac{dg(x)}{dx} \, dx = \int f(u) \, du$$
where $u = g(x)$.

Trigonometric Substitutions

Substitution
$x = \frac{a}{b}\sin(\theta)$ $x = \frac{a}{b}\tan(\theta)$ $x = \frac{a}{b}\sec(\theta)$

L'Hôpital's Rule

If
$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$$
 or $\pm \infty$, Series Tests then $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$.

Continuity

 $f\left(x\right)$ continuous at c iff $\lim_{x \to \infty} f\left(x\right) = f\left(c\right)$. Alternating Series Test f(x) is continuous on I:(a,b) if it is Given $a_i=(-1)^ib_i$ and $b_i>0$. continuous for all $x \in I$.

continuous for all $x \in I$, but only right **Ratio Test** continuous at a and left continuous at b. Given $\rho = \lim_{i \to \infty} \left| \frac{a_{i+1}}{a_i} \right|$:

Intermediate Value Theorem

If f(x) is continuous on I : [a, b] and $f(a) \le c \le f(b)$, then $\exists x \in I : f(x) = c$.

Differentiability

$$f(x)$$
 is differentiable at $x = x_0$ iff
$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$
 exists. This defines the derivative

$$f'\left(x_{0}\right)=\lim_{h\rightarrow0}\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$$
 Differentiability implies continuity.

Mean Value Theorem

If f(x) is continuous and differentiable on I : [a, b], then

$$\exists c \in I: f'\left(c\right) = \frac{f\left(b\right) - f\left(a\right)}{b - a}.$$

Definite Integrals

$$A = \int_{a}^{b} f(x) \, \mathrm{d}x$$

Fundamental Theorem of Calculus

$$\int_{a}^{b} \frac{\mathrm{d}F\left(x\right)}{\mathrm{d}x} \, \mathrm{d}x = F\left(b\right) - F\left(a\right)$$

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\int_{a}^{x} f\left(t\right) \mathrm{d}t\right) = f\left(x\right)$$

Taylor Polynomials

$$f\left(x\right)\approx p_{n}\left(x\right)=\sum_{k=0}^{n}\frac{f^{\left(k\right)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}$$

Taylor Series

$$f\left(x\right) = \sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!} \left(x - x_{0}\right)^{n}$$

Maclaurin Series: $x_0 = 0$.

Common Maclaurin Series

Function	Series Term	Conv.
e^x	$ (-1)^{n \frac{x^{n}}{n!} \frac{1}{x^{2n+1}}} \\ (-1)^{n \frac{x^{2n}}{(2n)!}} $	all x
$\sin\left(x\right)$	$(-1)^{n} \frac{x^{2n+1}}{(2n+1)!}$	all x
$\cos\left(x\right)$	$(-1)^{n} \frac{x^{2n}}{(2n)!}$	all x
$\frac{1}{1-x}$	x^n	(-1, 1)
$\frac{1}{1+x^2}$	$(-1)^n x^{2n}$	(-1, 1)
$\ln\left(1+x\right)$	$(-1)^{n+1} \frac{x^n}{n}$	(-1, 1]

Power Series: $\sum_{n=0}^{\infty} c_n (x-x_0)^n$

For a series of the form $\sum_{i=1}^{n} a_i$:

$$f\left(x\right)$$
 is continuous on $I:\left(a,\,b\right)$ if it is Given $a_{i}=\left(-1\right)^{i}b_{i}$ and $b_{i}>0$. continuous for all $x\in I$. If $b_{i+1}\leqslant b_{i}$ & $\lim_{i\to\infty}b_{i}=0$, then $f\left(x\right)$ is continuous on $I:\left[a,\,b\right]$ if it is convergent, else inconclusive.

Given
$$\rho = \lim_{i \to \infty} \left| \frac{a_{i+1}}{a_i} \right|$$
:
 $\rho < 1$: convergent
 $\rho > 1$: divergent
 $\rho = 1$: inconclusive

Multivariable Functions

$$f: \mathbb{R}^n \to \mathbb{R}$$

Level Curves

$$L_{c}(f) = \{(x, y) : f(x, y) = c\}$$

If $f(x, y) \to L$ as $(x, y) \to (x_0, y_0)$, then $\lim_{(x, y) \to (x_0, y_0)} = L$ along any smooth curve.

The limit does not exist if L changes along different smooth curves.

Partial Derivatives: w.r.t one variable, others held constant.

Gradient: $\nabla = \langle \partial x_1, \, \partial x_2, \, \dots, \, \partial x_n \rangle$

Multivariable Chain Rule

$$\begin{array}{lll} \text{For} \ f &=& f(\mathbf{x} \left(t_1, \, \ldots, \, t_n\right)) \ \text{ with } \ \mathbf{x} &=& \left[x_1 \quad \cdots \quad x_m\right] \\ &&& \frac{\partial f}{\partial t_i} = \boldsymbol{\nabla} f \cdot \frac{\partial \mathbf{x}}{\partial t_i}. \end{array}$$

Directional Derivatives

$$\nabla_{\mathbf{u}} f = \nabla f \cdot \mathbf{u}$$

where \mathbf{u} is a unit vector and the slope is given by $\|\nabla_{\mathbf{u}} f\|$. If $\nabla_{\mathbf{u}} f = 0$, \mathbf{u} is tangent to the level curve at \mathbf{x}_0 .

$$\max_{\|\mathbf{u}\|=1} \mathbf{\nabla}_{\mathbf{u}} f = \mathbf{\nabla} f$$

If $\nabla f \neq 0$, ∇f is a normal vector to the level curve at \mathbf{x}_0 .

Critical Points

 (x_0, y_0) is a critical point $\nabla f(x_0, y_0) = \mathbf{0}$ or if $\nabla f(x_0, y_0)$ is

Classification of Critical Points

$$D = f_{xx}f_{yy} - \left(f_{xy}\right)^2$$

D > 0 and $f_{xx} < 0$: local maxima

D>0 and $f_{xx}>0$: local minima

D < 0: saddle point

D=0: inconclusive

Double Integrals

The volume of the solid enclosed between the surface z = f(x, y) and the region Ω is defined by

$$V = \iint_{\Omega} f(x, y) \, \mathrm{d}A.$$

If Ω is a region bounded by $a \leq x \leq b$ and $c \leq y \leq d$, then

$$\iint_{\Omega} f(x, y) dA = \int_{c}^{d} \int_{a}^{b} f(x, y) dx dy$$
$$= \int_{a}^{b} \int_{c}^{d} f(x, y) dy dx$$

$$\iint\limits_{\Omega} f\left(x,\,y\right) \mathrm{d}A = \int_{a}^{b} \int_{g_{1}}^{g_{2}} f\left(x,\,y\right) \mathrm{d}y \,\mathrm{d}x$$

Bounded left & right by:

$$x = a$$
 and $x = b$

Bounded below & above by:

$$y=g_{1}\left(x\right)\text{ and }y=g_{2}\left(x\right)$$
 where $g_{1}\left(x\right)\leq g_{2}\left(x\right)$ for $a\leq x\leq b$:

Type II Regions

$$\iint\limits_{\Omega}f\left(x,\,y\right)\mathrm{d}A=\int_{c}^{d}\int_{h_{1}}^{h_{2}}f\left(x,\,y\right)\mathrm{d}x\,\mathrm{d}y$$

Bounded left & right by:

$$x = h_1\left(y\right) \text{ and } x = h_2\left(y\right)$$

Bounded below & above by:

$$y = c$$
 and $y = d$

where $h_{1}\left(y\right)\leq h_{2}\left(y\right)$ for $c\leq y\leq d$. To **Separable ODEs** integrate, solve the inner integrals first.

Vector Valued Functions

$$\mathbf{r}: \mathbb{R} \to \mathbb{R}^n$$

The domain of $\mathbf{r}\left(t\right)$ is the intersection Linear ODEs of the domains of its components. The **orientation** of $\mathbf{r}(t)$ is the direction of For $\frac{dy}{dx} + p(x)y = q(x)$, use the motion along the curve as the value integrating factor: $I(x) = e^{\int p(x) dx}$, so of the parameter increases. Limits, that derivatives and integrals are all component-wise. Each component has its own constant of integration.

Parametric Lines

$$\mathbf{l}(t) = \mathbf{P}_0 + t\mathbf{v}$$

Tangent Lines

If $\mathbf{r}\left(t\right)$ is differentiable at t_{0} and $\mathbf{r}'\left(t_{0}\right)\neq$

$$\mathbf{l}(t) = \mathbf{r}(t_0) + t\mathbf{r}'(t_0).$$

Curves of Intersection

Choose one of the variables as the Second-Order ODEs parameter, and express the remaining variables in terms of that parameter.

Arc Length

$$S = \int_{a}^{b} \|\mathbf{r}'(t)\| \, \mathrm{d}t$$

Ordinary Differential Equations

Order: highest derivative in DE.

Autonomous DE: does not depend explicitly on the independent variable.

Qualitative Analysis

$$\frac{\mathrm{d}y}{\mathrm{d}t} = f(y)$$

A fixed point is the value of y for which f(y) = 0.

Stability of Fixed Points

Given a positive/negative perturbation from a fixed point, that point is Stable: if both tend toward FP **Unstable:** if both tend away from FP Semi-Stable: if one tends toward FP. and another tends away from FP

Directly Integrable ODEs

For
$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x)$$
:

$$y(x) = \int f(x) \, \mathrm{d}x.$$

For
$$\frac{dy}{dx} = p(x) q(y)$$
:

$$\int \frac{1}{q(y)} \frac{dy}{dx} dx = \int p(x) dx.$$

$$y(x) = \frac{1}{I(x)} \int I(x) q(x) dx.$$

Exact ODEs

 $\begin{array}{lll} \textbf{Parametric Lines} & P\left(x,\,y\right)\,+\,Q\left(x,\,y\right)\frac{\mathrm{d}y}{\mathrm{d}x} &= 0 \text{ has the} \\ \textbf{1}(t) = \textbf{P}_0 + t\textbf{v} & \text{solution } \Psi\left(x,\,y\right) &= c \text{ iff it is exact,} \\ \text{where } \textbf{1}(t) \text{ passes through } \textbf{P}_0, \text{ and is namely, when } P_y = Q_x, \text{ where } P = \Psi_x \\ \text{parallel to } \textbf{v}. & \text{and } Q = \Psi_y. \text{ Then} \end{array}$

$$\Psi(x, y) = \int P(x, y) dx + f(y)$$

$$\Psi\left(x,\,y\right) = \int Q\left(x,\,y\right) dy + g\left(x\right)$$

and f(y) and g(x) can be determined by solving these equations simultaneously.

$$a_{2}(x)y'' + a_{1}(x)y' + a_{0}(x)y = F(x)$$

Initial Values

$$y\left(x_{0}\right)=y_{0}\quad y'\left(x_{0}\right)=y_{1}$$

Boundary Values

$$y\left(x_{0}\right)=y_{0}\quad y\left(x_{1}\right)=y_{1}$$

Reduction of Order

$$y_{2}\left(x\right) =v\left(x\right) y_{1}\left(x\right)$$

v(x) can be determined by substituting y_2 into the ODE, using w(x) = v'(x).

General Solution

$$y\left(x\right) = y_{H}\left(x\right) + y_{P}\left(x\right)$$

Homogeneous Solution

$$y_{H}\left(x\right) =e^{\lambda x}$$

Real Distinct Roots

$$y_H(x) = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}$$

Real Repeated Roots

$$y_{H}\left(x\right)=c_{1}e^{\lambda x}+c_{2}te^{\lambda x}$$

Complex Conjugate Roots

Given
$$\lambda = \alpha + \beta i$$
:

$$y_H(x) = e^{\alpha x} (c_1 \cos(\beta x) + c_2 \sin(\beta x))$$

Particular Solution

See table below. Substitute y_P into the nonhomogeneous ODE, and solve the undetermined coefficients.

Spring and Mass Systems

$$my'' + \gamma y' + ky = f\left(t\right)$$

Newton's Law: F = my''

Spring force: $F_s = -ky$

Damping force: $F_d = -\gamma y'$

k: spring constant

 γ : damping f(t): external force

Electrical Circuits

The sum of voltages around a loop equals

$$v(t) - iR - L\frac{\mathrm{d}i}{\mathrm{d}t} - \frac{q}{C} = 0$$

$$L\frac{\mathrm{d}^{2}q}{\mathrm{d}t^{2}} + R\frac{\mathrm{d}q}{\mathrm{d}t} + \frac{1}{C}q = v\left(t\right)$$

where
$$i = \frac{\mathrm{d}q}{\mathrm{d}t}$$

Voltage drop across various elements:

$$\begin{aligned} v_R &= iR \\ v_C &= \frac{q}{C} \\ v_L &= L \frac{\mathrm{d}i}{\mathrm{d}t} \end{aligned}$$

C: capacitance R: resistance

L: inductance v(t): voltage supply

$$F\left(x\right) \qquad \qquad y_{P}\left(x\right) \\ \text{a constant} \qquad \qquad A \\ \text{a polynomial of degree } n \qquad \qquad \sum_{i=0}^{n} A_{i}x^{i} \\ e^{kx} \qquad \qquad A_{0}\cos\left(\omega x\right) + A_{1}\sin\left(\omega x\right) \\ \text{a combination of the above} \qquad \text{a combination of the above} \\ \text{linearly dependent to } y_{H}\left(x\right) \qquad \text{multiply } y_{P}\left(x\right) \text{ by } x \text{ until linearly independent} \\ \end{cases}$$