Apprentissage supervisé Arbres de classification.

Marie Chavent

Université de Bordeaux

Introduction

Deux approches possibles pour constuire une règle de classification g.

- Approche basée sur un modèle.
 - Apprentissage de la Loi(Y|X) puis déduction de g
 - Exemples : analyse discriminante linéaire, bayésien naïf, régression logistique, etc.
- Approche de type prototype.
 - Apprentissage direct de la règle classification g
 - Exemples : k-plus proches voisins, arbres de classification, forêts aléatoires, etc.
- ▶ Dans ce chapitre : arbres de classification
 - CART: Classification and regression trees. L. Breiman, J. H. Friedman, R.A. Olshen, and C. J. Stone, Chapman & Hall, 1984.
 - On plus généralement d'arbres de décision (classification et régression).

La méthode CART en classification supervisée

- Variables d'entrées quantitatives ou qualitatives $X=(X^1,\ldots,X_p)\in\mathcal{X}$.
- ▶ Variable de sortie Y qualitative à K modalités définissant les K classes à prédire.
- La règle de classification $g: \mathcal{X} \to \{1, \dots, K\}$ est un un arbre de classification constuit à partir des données d'apprentissage (X_i, Y_i) , $i = 1, \dots, n$.

Exemple:

Plan

- 1. Croissance de l'arbre.
- 2. Evaluation de sa performance.
- 3. Elaguage.

Construction de l'arbre

La méthode CART construit un arbre binaire dont les noeuds sont des sous-échantillons des données d'apprentissage.

- Le noeud racine contient toutes les données d'apprentissage.
- A chaque étape noeud est divisé pour construire deux nouveaux noeuds les plus homogènes possible vis à vis de la variable à expliquer.
- L'arbre maximal est obtenu lorsqu'aucun noeud ne peux plus être divisé. Un noeud terminal (qui ne peut plus être divisé) est appellée une feuille.
- Chaque feuille est alors associée à l'une des classes de la variable à expliquer aussi appellée étiquette.

Exemple : données synthétiques

Comment mesurer la qualité d'une division?

On veut diviser un noeud t en deux sous-noeuds t_L (noeud fils gauche) et t_R (noeud fils droit) qui soient le plus homogènes possible ou encore le moins hétérogène possible vis à vis de la variable à expliquer Y.

Exemple: première division

L'hétérogénéité d'un noeud se mesure à partir d'une fonction d'impureté ϕ définie sur l'ensemble des K-uplets (p_1,\ldots,p_K) satisfaisants $p_k\geq 0$ pour $k=1\ldots,K$ et $\sum_{k=1}^K p_K=1$ avec :

- ϕ admet un unique maximum en $(\frac{1}{K},\ldots,\frac{1}{K})$
- ϕ est minimum aux points $(1,0,\ldots,0)$, $(0,1,\ldots,0)$...
- ϕ est une fonction symétrique de p_1,\ldots,p_K c'est à dire que ϕ est constante pour toute permutation de p_k .

On définit alors l'impureté i(t) d'un noeud t par :

$$i(t) = \phi(p(1|t), \ldots, p(K|t))$$

où p(k|t) est la probabilité d'avoir l'étiquette k sachant qu'on est dans la cellule correspondant au noeud t.

On estimera ces probabilités sur les données par la proportion de la classe k dans le noeud t:

$$\hat{p}(k|t) = \frac{n_{t,k}}{n_t}$$

L'impureté d'un noeud t est :

- toujours positive ou nulle.
- nulle si toutes les observations du noeud appartiennent à la même classe de Y.
 On dira que le noeud est pur.
- maximale lorsque les classes de Y sont équiprobables dans le noeud. On dira que le noeud est impur.

Les deux mesures d'impureté standards sont :

- l'indice de Gini :

$$i(t) = \sum_{k=1}^{K} \rho(k|t)(1 - \rho(k|t)) = 1 - \sum_{k=1}^{K} \rho(k|t)^{2}$$

- l'entropie (avec la convention $0 \log(0) = 0$):

$$i(t) = -\sum_{k=1}^{K} p(k|t) \log_2(p(k|t))$$

Par exemple, si la variable Y est binaire, en notant p=p(1|t) on a :

- Gini : i(t) = 2p(1-p)
- Entropie : $i(t) = -p \log_2(p) (1-p) \log_2(1-p)$

La qualité de la division (t_L, t_R) du noeud t est la réduction de l'impureté induite par cette division :

$$\Delta(t_L, t_R) = i(t) - p_L i(t_L) - p_R i(t_R)$$

où p_L (resp. p_R) est la probabilité qu'une donnée appartienne à la cellule t_L (resp. t_R) sachant qu'elle se trouvait dans la cellule t.

On estimera ces probabilités sur les données par :

$$\hat{p}_L = \frac{n_L}{n}, \quad \hat{p}_R = \frac{n_R}{n}$$

où n est le nombre de données dans le noeud t, nL dans le noeud tL et nR dans le noeud tR.

Une bonne division occasionera une forte diminution de l'impureté.

Comment diviser un noeud?

L'algorithme consiste à choisir parmi toutes les divisions (t_L, t_R) possibles, celle qui maximise $\Delta(t_L, t_R)$ c'est à dire qui maximise la diminution de l'impureté.

lci les divisions (t_L, t_R) d'un noeud t sont induites par des questions binaires. Une question binaire est définie à partir d'une variable explicative X^j de la manière suivante :

 $lackbox{ Si } X^j \in \mathbb{R}$ est quantitative, la question binaire sera du type

$$X^j \leq c$$
?

Il existe une infinité de valeurs de coupures c possibles mais elles induisent au maximum n_t-1 divisions différentes.

▶ Si $X^j \in \{1, ..., M\}$ est qualitative, la question binaire sera du type

$$X^j \subset A$$
?

où $A\subset\{1,\ldots,M\}$. Il existe $2^{M-1}-1$ questions binaires et donc au maximum $2^{M-1}-1$ divisions différentes.

Exemple: première division

- ightharpoonup Combien de questions binaires ont été évaluées ici si n=100 données dans le noeud racine?
- Quelle est la meilleure question binaire finalement retenue?

Comment associer une étiquette (une classe) à un noeud?

On notera $\tau(t)$ la classe associée au noeud terminal t.

ightharpoonup au(t) est la classe la plus probable à posteriori pour une fonction de coût 0-1 :

$$\tau(t) = \underset{\ell \in \{1, \dots, K\}}{\arg \max} p(k|t)$$

 $\tau(t)$ est alors simplement classe majoritaire.

au(t) est la classe la moins risquée à posteriori pour une fonction de coût quelconque :

$$au(t) = \mathop{\mathsf{arg}}\limits_{\ell \in \{1, \dots, K\}} \min_{k=1}^K \sum_{k=1}^K C_{k\ell} \; p(k|t)$$

Exemple: première division

- Quelles sont les étiquettes des noeuds fils gauche et droite?
- ► Pourquoi?

Exemple : deuxième division

- Tracer un droite verticale ou horizontale sur le graphique de gauche pour visualiser cette seconde division.
- Quelle est le noeud pur à l'issue de cette division?
- Ce noeud peux-il être redivisé?

Exemple: troisième division

- \blacktriangleright Tracer sur le graphique de gauche les cellules (zones de \mathbb{R}^2 ici) associées aux 4 noeuds terminaux.
- Quelle noeuds peuvent être redivisés?

Exemple : quatrième division

- ► Tracer sur le graphique de gauche les cellules (zones de R² ici) associées aux 5 noeuds terminaux.
- Quelle classe est prédite par cet arbre pour une nouvelle données x = (0,3)?
- Quelle noeuds peuvent être redivisés?

Exemple : cinquième division

- ► Tracer sur le graphique de gauche les cellules (zones de R² ici) associées aux 6 noeuds terminaux.
- Quelle classe est maintenant prédite par cet arbre pour la nouvelle données x = (0,3)?
- Quelle noeuds peuvent être redivisés?

Exemple : sixième division

- ► Tracer sur le graphique de gauche les cellules (zones de R² ici) associées aux 7 noeuds terminaux.
- Quelle noeuds peuvent être redivisés?
- Quand arrêter les divisions?

Arrêt des divisions.

Le critère d'arrêt peut-être :

- ne pas découper un noeud pur,
- ne pas découper un noeud qui contient moins de n_{min} données avec souvent n_{min} compris entre 1 et 5.

L'arbre ainsi obtenu est appellé l'arbre le longueur maximale.

Exemple: quatorzième division

- D'après vous s'agit-il de l'arbre de longeur maximale?
- L'arbre de longueur maximale sera-il bon pour prédire de nouvelles données?

Evaluation de la performance d'un arbre

Le risque théorique d'une feuille t d'étiquette au(t) est défini par :

$$r(t) = \sum_{k=1}^{K} C_{k\tau(t)} p(k|t)$$

où $C_{k\tau(t)}$ est le coût de mauvaise classification d'une donnée de la classe k dans la classe $\tau(t)$ et p(k|t) est la probabilité d'appartenir à la classe k sachant qu'on est dans le noeud t

Le risque théorique de l'arbre T est alors définit par :

$$R(T) = \sum_{t \in \tilde{T}} p(t)r(t)$$

où \tilde{T} est l'ensemble des feuilles de l'arbre T et p(t) est la probabilité d'appartenir à la feuille t et r(t) est le risque du noeud t.

On considère maintenant un échantillon d'observations $(X_1, Y_1), \ldots, (X_n, Y_n)$.

Dans le cas d'une matrice de coût quelconque, le risque empirique d'une feuille est le coût moyen de mauvais classement dans la feuille :

$$\hat{r}(t) = \sum_{k=1}^{K} C_{k\tau(t)} \frac{n_{t,k}}{n_t}$$
$$= \frac{1}{n_t} \sum_{\mathbf{x} \in t} C_{\tau(\mathbf{x})\tau(t)}$$

où $\tau(x)$ est la vraie classe de l'observation x.

Dans le cas d'une matrice de coût 0-1, le risque empirique d'une feuille est le taux de mauvais classement dans la feuille :

$$\hat{r}(t) = \frac{1}{n_t} \sum_{\mathbf{x} \in t} \mathbb{1}_{\tau(t) \neq \tau(\mathbf{x})}$$

Dans le cas d'une matrice de coût quelconque, le risque empirique d'un arbre est le coût moyen de mauvais classement dans l'arbre :

$$\hat{R}(T) = \sum_{t \in \tilde{T}} \frac{n_t}{n} \frac{1}{n_t} \sum_{x \in t} C_{\tau(x)\tau(t)}$$
$$= \frac{1}{n} \sum_{t \in \tilde{T}} \sum_{x \in t} C_{\tau(x)\tau(t)}$$

 $n\hat{R}(T)$ est appellé le coût de mauvais classement de T.

Dans le cas d'une matrice de coût 0-1, le risque empirique d'un arbre est le taux de mauvais classement de l'arbre :

$$\hat{R}(T) = \frac{1}{n} \sum_{t \in T} \sum_{x \in t} \mathbb{1}_{\tau(t) \neq \tau(x)}$$

 $n\hat{R}(T)$ est alors le nombre de mal classées de T.

Elaguage

La procédure d'élagage (pruning) permet d'éviter le sur-apprentissage tout en permettant d'obtenir un modèle plus parcimonieux.

Cette procédure consiste à :

- constuire une suite de sous-arbres emboîtés à partir de l'arbre maximale construit avec les données d'apprentissage,
- choisir le sous-arbre optimal au sens du critère mesurant un compromis entre la taille de l'arbre et son coût de mauvais classement.

Le critère de coût-complexité $C_{\alpha}(T)$ est coût de mauvais classement de T pénalisé par la complexité de l'arbre :

$$C_{\alpha}(T) = n\hat{R}(T) + \alpha |\tilde{T}|,$$

οù

- $|\tilde{T}|$ est le nombre de noeuds terminaux de T,
- $n\hat{R}(T)$ est le nombre de mal classés (pour une fonction de coût 0-1) et le coût de mauvais classement (pour une fonction de coût quelconque).

Pour une valeur fixée du paramètre α , on voudra minimiser $C_{\alpha}(T)$.

Construction de la suite d'arbres emboités.

Pour $\alpha=0$, $C_{\alpha}(T)=n\hat{R}(T)$ est minimum pour l'abre maximal. On notera T_{L} l'arbre maximal à L feuilles et $\alpha_{L}=0$.

Pour α qui augmente, l'arbre maximal T_L minimise C_α jusqu'à ce qu'une des divisions de T_L soit superflue et que les deux feuilles de cette division soient regroupées (élaguées) : T_L devient alors T_{L-1} .

Plus précisément aucune division n'est superflue tant que $C_{lpha}(T_L) < C_{lpha}(T_{L-1})$ soit :

$$n\hat{R}(T_L) + \alpha L < n\hat{R}(T_{L-1}) + \alpha(L-1),$$

donc tant que

$$\alpha < n\hat{R}(T_{L-1}) - n\hat{R}(T_L),$$

On élague donc la division pour laquelle $nR(T_{L-1}) - nR(T_L)$ est minimum afin d'obtenir l'arbre T_{L-1} .

On pose alors:

$$\alpha_{L-1} = n\hat{R}(T_{L-1}) - n\hat{R}(T_L)$$

Pour toute valeur $\alpha \in [0, \alpha_{L-1}[$ c'est donc T_L qui minimise $C_{\alpha}(T)$.

Le procédé est itéré pour obtenir la séquence d'arbres emboités suivante :

$$T_{max} = T_L \supset T_{L-1} \supset \ldots \supset T_1$$

où T_1 est l'arbre réduit au noeud racine qui contient toutes les données.

Les arbres de cette séquence minimisent $C_{\alpha}(T)$ sur les plages de valeurs de α suivantes :

$$\alpha_L = 0 < \alpha_{L-1} < \ldots < \alpha_1.$$

Soit:

$$[0, \alpha_{L-1}[\to T_L \\ [\alpha_{L-1}, \alpha_{L-2}[\to T_{L-1} \\ \vdots \\ [\alpha_2, \alpha_1[\to T_2 \\ [\alpha_1, \infty[\to T_1 \\]]$$

Les valeurs $\alpha_1 \dots \alpha_j \dots \alpha_L$ de cette séquence sont appellées les paramètres de complexités et mesurent la diminution du coût de mauvais classement obtenu en élaguant T_{j+1} pour obtenir T_j :

$$\alpha_j = n\hat{R}(T_j) - n\hat{R}(T_{j+1})$$

Paramètre de complexité associé à un noeud t.

Soit t la feuille de T_j qui a été divisé pour obtenir T_{j+1} . En notant (t_L, t_R) la division de t on a :

$$\alpha_j = n\hat{r}(t) - n\hat{r}(t_L) - n\hat{r}(t_R).$$

Le paramètre de compléxité de t est alors :

$$cp(t) = LOSS(t) - LOSS(t_L) - LOSS(t_R)$$

οù

$$LOSS(t) = n\hat{r}(t) = \sum_{x \in t} C_{\tau(x)\tau(t)}$$

est simplement le coût de mauvais classement (ou le nombre de mauvais classement pour des coûts 0-1) dans t. Cette fonction *LOSS* est utilisée dans les sorties de la fonction rpart du package R du même nom.

Algorithme de construction.

Pour constuire la séquence de sous-arbres emboités, il suffit de trier par ordre croissant les noeuds de l'arbre maximal T_{max} en fonction de leur paramètre de complexité, puis de supprimer successivement les divisions associées à ces noeuds.

Remarque.

Il existe différentes implémentations du paramètre de complexité. Par exemple dans la fonction rpart du logiciel R :

$$cp(t) = \frac{LOSS(t) - LOSS(t_L) - LOSS(t_R)}{LOSS(t_1)}$$

avec t_1 le noeud racine.

Le critère minimisé est alors :

$$C_{\alpha}(T) = R(T) + \alpha |\tilde{T}| R(T_1).$$

Dans la fonction rpart ce paramètre est noté cp (complexity parameter).

Choix du sous-arbre optimal

Il s'agit maintenant de choisir un arbre optimal dans la séquence $T_1 \supset \ldots \supset T_L$ des sous arbres constuits avec les donnée d'apprentissage. Pour cela les risques empiriques $\hat{R}(T_j)$ de tous les arbres T_j de cette séquence sont calculés sur les données test. On peut alors :

- représenter la décroissance ou éboulis du risque en fonction du nombre croissant de feuilles dans l'arbre ou, de manière équivalente, en fonction de la valeur décroissante du paramètre de complexité α du sous-arbre.
- choisir le nombre de feuilles du sous-arbre qui minimise $\hat{R}(T)$.

Si on veut effectuer plusieurs découpages apprentissage-test ou encore faire de la validation croisée, les séquences de sous-arbres seront différentes sur les différents échantillons d'apprentissage.

Comment sélectionner un sous arbre en validation croisée?

Pour choisir le sous-arbre par validation croisée, la fonction rpart procède de la manière suivante :

1. A partir des coefficients de complexités $\alpha_1,\ldots,\alpha_{L-1}$ calculer :

$$\beta_{L} = 0$$

$$\beta_{L-1} = \sqrt{\alpha_{L-1}\alpha_{L-2}}$$

$$\vdots$$

$$\beta_{2} = \sqrt{\alpha_{2}\alpha_{1}}$$

$$\beta_{1} = \infty$$

Chaque coefficient β_j est "typique" de l'intervalle $[\alpha_j, \alpha_{j-1}[$.

- 2. Diviser les données en I groupes G_1, \ldots, G_I de même taille et pour chaque groupe G_i :
 - construire l'arbre maximum T_{\max}^{-i} à partir des données privées du groupe G_i et déterminer pour $j=1,\ldots,L$ les sous-arbres T_j^{-i} et les intervalles $[\alpha_j^{-i},\alpha_{j-1}^{-i}]$ associés. Pour chaque β_j , retenir alors le sous-arbres T_j^{-i} associé à l'intervalle $[\alpha_j^{-i},\alpha_{j-1}^{-i}[$ qui contient β_j .
 - prédire pour chaque sous-arbre T_j^{-i} associé à une valeur β_j la classe des observation du groupe G_i .
 - calculer le coût de mauvais classement $C_{\tau(t)\tau(x)}$ pour chaque observation de G_i et sommer ces coûts de mauvais classement.
- Pour chaque β_j calculer la moyenne (appelée xerror dans rpart) et l'écart-type (appelé xstd dans rpart) des I coût (ou taux) de mauvais classement obtenus en prédisant chaque groupe G_i.
- 4. Sélectionner β_j qui donne le coût de validation croisée minimum. Elaguer les branches de \mathcal{T}_{max} qui partent d'un noeud ayant un coeffient de complexité inférieur ou égal au coefficient α_j correspondant.

La règle du 1-SE (Standard-Error) consiste à retenir parmi tous les β_j ceux qui ont une erreur de validation croisée à moins d'un écart-type de l'erreur minimum. L'écart-type utilisé est celui associé à cette erreur de validation croisée minimum. Ensuite, on retient parmi tous les arbres associés à ces β_i le plus simple (avec le moins de feuilles).