

Analisi e Visualizzazione di Reti Complesse

DV08 - Interactive Views

Prof. Rossano Schifanella

How to handle complexity: 1 previous strategy

derive new data to show within the view

How to handle complexity: 1 previous strategy + 2 more

derive new data to show within the view

change view over time facet across multiple views

Manipulate

Facet

Juxtapose

→ Select

Partition

→ Navigate

Superimpose

Manipulate

Change over time

- change any of the other choices
 - visual encoding itself
 - parameters
 - arrange: rearrange, reorder
 - aggregation level, what is filtered...
 - interaction entails change
- powerful & flexible

Idiom: Change parameters

widgets and controls

 sliders, buttons, radio buttons, checkboxes, dropdowns/comboboxes

pros

clear affordances,
 self-documenting (with labels)

cons

- uses screen space
- design choices
 - separated vs interleaved
 - controls & canvas

The Growth of a Nation

Or....how the railroads changed the face of America in the 1800's

Largest cities

New York, NY Philadelphia, PA St. Louis, MO Baltimore, MD San Francisco, CA Cincinnati, OH Cleveland, OH Buffalo, NY New Orleans, LA Pittsburgh, PA Washington, VA Detroit, MI Milwaukee, WI Newark, NJ Minneapolis, MN Jersey City, NJ Louisville, KY Omaha, NE Rochester, NY St. Paul, MN Kansas City, MO Providence, RI Denver, CO Indianapolis, IN Allegheny, PA Albany, NY Columbus, OH Syracuse, NY New Haven, CT Worcester, MA Toledo, OH Richmond, VA Paterson, NJ Lowell, MA Nashville, TN Scranton, PA Fall River, MA Cambridge, MA Atlanta, ĞA Memphis, TN Wilmington, DE Dayton, OH Troy, NY Grand Rapids, MI Reading, PA Camden, NJ Trenton, NJ Lynn, MA Lincoln, NE Charleston, SC Hartford, CT St. Joseph, MO Evansville, IN Los Angeles, CA Des Moines, IA Bridgeport, CT Oakland, CA Portland, OR Saginaw, MI Salt Lake City, UT Lawrence, MA Springfield, MA Manchester, NH Utica, NY Hoboken, NJ Savannah, GA Seattle, WA Peoria, IL. New Bedford, MA Erie, PA Somerville, MA Harrisburg, PA
Kansas City, KS
Dallas, TX
Sioux City, IA
Elizabeth, NJ 000:000

State

County

Idiom: Change order/arrangement

- what: simple table
- how: data-driven reordering
- why: find extreme values, trends

[Sortable Bar Chart]

Idiom: Reorder

- what: table with many attributes
- how: data-driven reordering by selecting column
- why: find correlations between attributes

Idiom: Change alignment

- stacked bars
 - easy to compare
 - first segment
 - total bar
- align to different segment
 - supports flexible comparison

[LineUp: Visual Analysis of Multi-Attribute Rankings.Gratzl, Lex, Gehlenborg, Pfister, and Streit. IEEE Trans. Visualization and Computer Graphics

System: LineUp

Idiom: Animated transitions - visual encoding change

- smooth transition from one state to another
 - alternative to jump cuts, supports item tracking
 - best case for animation
 - staging to reduce cognitive load

Idiom: Animated transition - tree detail

- animated transition
 - network drilldown/rollup

Manipulate

→ Change over Time

Interaction technology

- what do you design for?
 - mouse & keyboard on desktop?
 - large screens, hover, multiple clicks
 - touch interaction on mobile?
 - small screens, no hover, just tap
 - gestures from video / sensors?
 - ergonomic reality vs movie bombast
 - eye tracking?

Data visualization and the news - Gregor Aisch (37 min) vimeo.com/182590214

I Hate Tom Cruise - Alex Kauffmann (5 min) www.youtube.com/watch?v=QXLfT9sFcbc

- selection: basic operation for most interaction
- design choices: how many selection types?
 - interaction modalities
 - click/tap (heavyweight) vs hover (lightweight but not available on most touchscreens)
 - multiple click types (shift-click, option-click, ...)
 - proximity beyond click/hover (touching vs nearby vs distant)

- application semantics
 - adding to selection set vs replacing selection
 - can selection be null?
 - ex: toggle so nothing selected if click on background
 - primary vs secondary (ex: source/target nodes in network)
 - group membership (add/delete items, name group, ...)

Select

Highlighting

- highlight: change visual encoding for selection targets
 - visual feedback closely tied to but separable from selection (interaction)
- design choices: typical visual channels
 - change item color
 - but hides existing color coding
 - add outline mark
 - change size (ex: increase outline mark linewidth)
 - change shape (ex: from solid to dashed line for link mark)
- unusual channels: motion
 - motion: usually avoid for single view
 - with multiple views, could justify to draw attention to other views

Manipulate

→ Change over Time

Select

- Navigate
 - → Item Reduction
 - → Zoom

 Geometric or Semantic

→ Pan/Translate

→ Constrained

Navigate: Changing viewpoint/visibility

- change viewpoint
 - changes which items are visible within view
- camera metaphor
 - pan/translate/scroll
 - move up/down/sideways

- Navigate
 - → Item Reduction
 - → Zoom

 Geometric or Semantic

→ Pan/Translate

Idiom: Scrollytelling

 how: navigate page by scrolling (panning down)

• pros:

- familiar & intuitive, from standard web browsing
- linear (only up & down) vs possible overload of click-based interface choices

· cons:

- full-screen mode may lack affordances
- scrolljacking, no direct access
- unexpected behaviour
- continuous control for discrete steps

[A visual introduction to Machine Learning]
https://eagereyes.org/blog/2016/the-scrollytelling-scourge
https://www.vev.design/blog/scrollytelling-examples/

Navigate: Changing viewpoint/visibility

change viewpoint

changes which items are visible within view

camera metaphor

- pan/translate/scroll
 - move up/down/sideways

rotate/spin

typically in 3D

zoom in/out

- enlarge/shrink world == move camera closer/ further
- geometric zoom: standard, like moving physical object

Navigate

- → Item Reduction
 - → Zoom

 Geometric or Semantic

→ Pan/Translate

Navigate: Unconstrained vs constrained

unconstrained navigation

- easy to implement for designer
- hard to control for user
 - easy to overshoot/undershoot

constrained navigation

- typically uses animated transitions
- trajectory automatically computed based on selection
 - just click; selection ends up framed nicely in final viewport

Navigate

- → Item Reduction
 - → Zoom

 Geometric or Semantic

→ Pan/Translate

→ Constrained

Idiom: Animated transition + constrained navigation

- example: geographic map
 - simple zoom, only viewport changes, shapes preserved

[Zoom to Bounding Box]

Facet (multiple views)

Partition

Superimpose

Juxtapose and coordinate views

- → Share Encoding: Same/Different
 - → Linked Highlighting

→ Share Data: All/Subset/None

→ Share Navigation

Idiom: Linked highlighting

- see how regions contiguous in one view are distributed within another
 - powerful and pervasive interaction idiom
- encoding: different
 - multiform
- data: all shared
 - all items shared
 - different attributes across the views
- aka: brushing and linking

example 1 example 2

Linked views: Directionality

- unidirectional vs bidirectional linking
 - bidirectional almost always better!

Idiom: Overview-detail views

- encoding: same or different
 - ex: same (birds-eye map)
- data: subset shared
 - viewpoint differences:
 subset of data items
- navigation: shared
 - bidirectional linking
- other differences
 - (window size)

System: Google Maps

[A Review of Overview+Detail, Zooming, and Focus+Context Interfaces. Cockburn, Karlson, and Bederson. ACM Computing Surveys 41:1 (2008), 1–31.]

Idiom: Overview-detail navigation

- encoding: same or different
- data: subset shared
- navigation: shared
 - unidirectional linking
 - select in small overview, change extent in large detail view

[example 1]

Idiom: Tooltips

popup information for selection

- hover or click
- specific case of detail view: provide useful additional detail on demand
- beware: does not support overview!
 - always consider if there's a way to visually encode directly to provide overview
 - "If you make a rollover or tooltip, assume nobody will see it. If it's important, make it explicit. "
 - Gregor Aisch, NYTimes

[https://www.highcharts.com/demo/dynamic-master-detail]

Idiom: Small multiples

- encoding: same
 - ex: line charts
- data: none shared
 - different slices of dataset
 - items or attributes
 - ex: stock prices for different companies

[example 1]

[example 2]

Interactive small multiples

- linked highlighting: analogous item/attribute across views
 - same year highlighted across all charts if hover within any chart

The Rise and Decline of Ask MetaFilter

Metafilter's revenue has been on the decline, but has its content dried up as well?

Here we look at new posts on Ask Metafilter by category.

Categories like **computers & internet** have been dropping in use for a long time, most likely due to competition like Stack Overflow.

Other smaller categories have had consistent use patterns until more recently.

Disclaimer: 2014 is included, even though the year is not over yet.

[example 1] [example 2]

Example: Combining many interaction idioms

- multiform
- multidirectional linked highlighting of small multiples
- tooltips

Juxtapose views: tradeoffs

- juxtapose costs
 - display area
 - 2 views side by side: each has only half the area of one view
- juxtapose benefits
 - cognitive load: eyes vs memory
 - lower cognitive load: move eyes between 2 views
 - higher cognitive load: compare single changing view to memory of previous state

Juxtapose vs animate

- animate: hard to follow if many scattered changes or many frames
 - vs easy special case: animated transitions

Cerebral: Visualizing Multiple Experimental Conditions on a Graph with Biological Context. Barsky, Munzner, Gardy, and Kincaid. IEEE Trans. Visualization and Computer Graphics

Juxtapose vs animate

- animate: hard to follow if many scattered changes or many frames
 - vs easy special case: animated transitions
- juxtapose: easier to compare across small multiples
 - different conditions (color), same gene (layout)

View coordination: Design choices

Partition into views

- how to divide data between views
 - split into regions by attributes
 - encodes association between items using spatial proximity
 - order of splits has major implications for what patterns are visible

Partition into Side-by-Side Views

Superimpose layers

- layer: set of objects spread out over region
 - each set is visually distinguishable group
 - extent: whole view
- design choices
 - how many layers, how to distinguish?
 - encode with different, nonoverlapping channels
 - two layers achievable, three with careful design
 - small static set, or dynamic from many possible?

Superimpose Layers

Static visual layering

- foreground layer: roads
 - hue, size distinguishing main from minor
 - high luminance contrast from background
- background layer: regions
 - desaturated colors for water, parks, land areas
- user can selectively focus attention

Dynamic visual layering

- interactive, based on selection
 - one-hop neighbour highlighting

How: Idiom design choices

Reduce items and attributes

- reduce/increase: inverses
- filter
 - pro: straightforward and intuitive
 - to understand and compute
 - con: out of sight, out of mind
- aggregation
 - pro: inform about whole set
 - con: difficult to avoid losing signal
- not mutually exclusive
 - combine filter, aggregate
 - combine reduce, change, facet

Reducing Items and Attributes

→ Filter

→ Attributes

Aggregate

→ Items

→ Attributes

Filter

eliminate some elements

- either items or attributes
- according to what?
 - any possible function that partitions dataset into two sets
 - attribute values bigger/smaller than x
 - noise/signal

filters vs queries

- query: start with nothing, add in elements
- **filters**: start with everything, remove elements
- best approach depends on dataset size

Reducing Items and Attributes

→ Filter

→ Attributes

ldiom: cross filtering

- item filtering
- coordinated views/controls combined
 - all scented histogram bisliders update when any ranges change

Interaction benefits

interaction pros

- major advantage of computer-based vs paper-based visualization
- flexible, powerful, intuitive
 - exploratory data analysis: change as you go during analysis process
 - fluid task switching: different visual encodings support different tasks
- animated transitions provide excellent support
 - empirical evidence that animated transitions help people stay oriented

Interaction limitations

- interaction has a time cost
 - sometimes minor, sometimes significant
 - degenerates to human-powered search in worst case
- remembering previous state imposes cognitive load
- controls may take screen real estate
 - or invisible functionality may be difficult to discover (lack of affordances)
- users may not interact as planned by designer
 - NYTimes logs show ~90% don't interact beyond scrollytelling Aisch, 2016

Questions?

- @rschifan
- rossano.schifanella@unito.it
- http://www.di.unito.it/~schifane