FSU Jena Fakultät für Mathematik und Informatik Dr. Simon King

Klausur zur Vorlesung Lineare Algebra und Analytische Geometrie 1

Modul-Nr.: FMI-MA3023, BGEO1.3.5

Wintersemester 2016/17

• <u>Hilfsmittel:</u> Ein handgeschriebenes Din-A4-Blatt (Vorder- und Rückseite), nicht gedruckt, nicht fotokopiert. Keine elektronischen Hilfsmittel, auch keine Taschenrechner.

Prüfungsdatum: 13.02.2017

Kommunikationsgeräte (z.B. Handys) müssen ausgeschaltet sein.

- Bitte beginnen Sie jede Aufgabe auf einem neuen Blatt und geben Sie die jeweilige Aufgabennummer, Ihren Namen und Ihre Matrikelnummer an.
- Dieses Deckblatt bitte zusammen mit Ihren Lösungen abgeben.
- Die Teilaufgaben jeder Aufgabe lassen sich unabhängig voneinander bearbeiten. Sie dürfen die in einer Teilaufgabe zu beweisenden Aussagen in allen späteren Teilaufgaben als gegeben ansehen.
- Die Lösungshinweise deuten einen *möglichen* Lösungsweg sowie erreichbare Teilpunkte an. Andere Lösungswege werden analog bewertet.

Name, Vorname:	
Matrikel-Nr.:	
Studiengang:	

Ich erkläre hiermit meine Prüfungsfähigkeit vor Beginn der Prüfung: Jena, der 13.02.2017, Unterschrift:

Prüfungsdauer: 150 Min. Zum Bestehen reichen 16 Punkte aus 36.

1	2	3	4	5	\sum
/ 4	/ 4	/ 7	/ 14	/ 7	/ 36

Prüfer: Simon King Note:

Klausur zur Vorlesung Lineare Algebra und Analytische Geometrie 1

Modul-Nr.: FMI-MA3023, BGEO1.3.5

Wintersemester 2016/17

Aufgabe 1: Anwendungen des Gaußschen Eliminationsverfahrens

(4 P.) Bringen Sie $A := \begin{pmatrix} 1 & 0 & 2 & -2 & -1 \\ 0 & 1 & -2 & 1 & -1 \\ 1 & -1 & 4 & -2 & 0 \\ 0 & -2 & 4 & -5 & 2 \end{pmatrix} \in \mathbb{R}^{4 \times 5}$ mit dem Gaußschen Elimi-

nationsverfahren auf Zeilenstufenform und berechnen Sie daraus eine Basis von $\ker(L_A)$, eine aus Spalten von A bestehende Basis von $\operatorname{Bild}(L_A)$ und eine Basis des Zeilenraums von A.

Aufgabe 2: (4 P.) Es sei $n \in \mathbb{N}$, V ein n-dimensionaler \mathbb{K} -Vektorraum und f ein Endomorphismus von V. Zeigen Sie: Es gibt einen Endomorphismus g von V, so dass $\operatorname{Bild}(g) = \ker(f)$ und $\ker(g) = \operatorname{Bild}(f)$. **Hinweis:** Rangformel, lineare Fortsetzung; wie viele Vektoren benötigt man, um eine Basis von $\operatorname{Bild}(f)$ zu einer Basis von V zu ergänzen?

Aufgabe 3: Matrix einer linearen Abbildung

- a) (1 P.) Es seien V bzw. W endlichdimensionale \mathbb{K} -Vektorräume mit Basen $B \colon \underline{b}_1, ..., \underline{b}_m$ bzw. $C \colon \underline{c}_1, ..., \underline{c}_n$. Es sei $\underline{w} \in W$ und $f \colon V \to W$ eine lineare Abbildung. Wie sind die Darstellung $C \underline{w}$ von \underline{w} bezüglich C sowie die Matrix $C \underline{w}$ von $C \underline{w}$ bezüglich $C \underline{w}$ und $C \underline{w}$ definiert?
- b) (1 P.) Sei $V \leq \mathbb{R}^3$ der Lösungsraum von x + y z = 0 mit der Basis $B: \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix}$. Aus $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in V$ folgt $\begin{pmatrix} z \\ -x \\ y \end{pmatrix} \in V$, also ist durch $f \begin{pmatrix} x \\ y \\ z \end{pmatrix} := \begin{pmatrix} z \\ -x \end{pmatrix}$ ein Endomorphismus von V gegeben. Berechnen Sie ${}^B_B f$.

Anmerkung: Sie brauchen nicht zu zeigen, dass B eine Basis von V ist.

c) (2 P.) Sei $f: V \to V$ eine lineare Abbildung, V endlichdimensional mit Basen B, C. Zeigen Sie det $\binom{B}{B}f$ = det $\binom{C}{C}f$. **Hinweis:** Basiswechselmatrizen; Rechenregeln für Determinante.

Bitte wenden

Prüfungsdatum: 13.02.2017

d) Sei
$$f \colon \mathbb{R}^3 \to \mathbb{R}^3$$
 mit $f \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} y - x \\ y + x \\ y - z \end{pmatrix}$.

- i) (3 P.) Zeigen Sie, dass es kein $n \in \mathbb{N}$, n > 0 gibt mit $f^n = \mathrm{Id}_V$. Hinweis: Die Aussage der vorigen Teilaufgabe könnte helfen.
- ii) **Zusatzaufgabe** (2 Bonus-P.) Zeigen Sie, dass es keine Basen B, C von V mit $_B^C f = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 0 & 1 \\ 3 & -2 & 1 \end{pmatrix}$ gibt. **Hinweis:** Es gibt eine weitere Eigenschaft von linearen Abbildungen, die einer gleichnamigen Eigenschaft von Matrizen entspricht.

Aufgabe 4: Orthonormalbasen
Es sei
$$A := \begin{pmatrix} 1 & 2 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix} \in M_3(\mathbb{R}), \ Q := \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 2 \end{pmatrix} \in M_3(\mathbb{R}) \text{ und } q \colon \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$$

mit $q(\underline{u},\underline{v}) := \underline{v}^\top Q \underline{u}$ für alle $\underline{u},\underline{v} \in \mathbb{R}^3$.

- a) (2 P.) Zeigen Sie mit dem Hurwitz-Kriterium, dass q ein Skalarprodukt auf
- b) (2 P.) Weisen Sie nach, dass $L_A : \mathbb{R}^3 \to \mathbb{R}^3$ bezüglich q selbstadjungiert ist.
- c) (7 P.) Berechnen Sie eine aus Eigenvektoren von A bestehende Orthonormalbasis des euklidischen Raumes (\mathbb{R}^3, q).
- d) (3 P.) Sei $\underline{v}_1 := \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$. Berechnen Sie eine Orthonormalbasis von \underline{v}_1^{\perp} bezüglich des Skalarproduktes q.

Aufgabe 5: Euklidische Räume und Hauptachsentransformation Es sei $n \in \mathbb{N}$ und $V = \mathbb{R}^n$ mit der Standardbasis E. Beweisen Sie:

- a) (3 P.) Ist $M \in GL_n(\mathbb{R})$, dann ist $M^{\top}M$ die Matrix einer positiv definiten symmetrischen Bilinearform bzgl. E. Hinweis: Wie berechnen Sie für $v \in V$ die Norm von $M\underline{v}$ bezüglich des Standardskalarprodukts? Warum muss $M \in GL_n(\mathbb{R})$ und nicht nur $M \in M_n(\mathbb{R})$ vorausgesetzt werden?
- b) (4 P.) Ist $A \in M_n(\mathbb{R})$ eine symmetrische Matrix, dann gibt es ein $C \in$ $M_n(\mathbb{C})$ mit $A = C^{\top}C$. Hinweis: Wie geht A nach dem Satz über die Hauptachsentransformation in eine Diagonalmatrix $D \in M_n(\mathbb{R})$ über? Gibt es eine Diagonalmatrix $\hat{D} \in M_n(\mathbb{C})$ mit $D = \hat{D}^2$?

Viel Erfolg!

Erreichbare Punktzahl: