

Project Goal

Which characteristics of U.S. counties can best **explain** drug overdose rates?

Previously...

Overdose Rate - 2020

Drug Overdoses per 100k People

- → Main Dataset
 - raw counts of deaths related to drug overdose
 - (from CDC)
- → Missing Data

Previously...

- → Procured over 40 other county characteristics on
 - demographics
 - health
 - ex) % Uninsured, % Smokers, % Diabetes, ...
 - economics

42.000263

37434.0

23.000000

15.200000 32.100000

• ex) % College Educated, % Unemployed, Median Household Income, ...

Year	County	Overdose_Rate_per_100k	Population	Pct_Age_It_18	Pct_Age_gte_65	Pct_Black	Pct_Native	Pct_Asian	Pct_Pacific_Islander	 Pct_Unemployed	Pct_Poverty	Median_HHI	Jail_Pop	Urbanicity	Spatial_Mean
2011	Baldwin County, AL	12.853677	179878.0	23.100000	17.000000	10.000000	0.500000	0.600000	0.000000	 9.0	13.4	50144.0	743.36	2.0	21.667119
2011	Calhoun County, AL	11.884853	114081.0	23.400000	15.000000	20.000000	0.400000	0.800000	0.100000	 10.3	20.9	39060.0	504.25	2.0	17.854349
2011	Cullman County, AL	12.416807	81778.0	23.300000	15.600000	1.700000	0.500000	0.200000	0.000000	 9.5	18.2	39395.0	312.43	1.0	34.421638
2011	De Kalb County, AL	15.411559	69380.0	25.500000	14.300000	2.000000	0.800000	0.400000	0.100000	 11.7	20.3	35487.0	204.54	1.0	15.905439
	ALCOHOL (2004)														

0.300000

0.000000 ...

10.7

25.5

13.108417

1.0

Project Goal

Which characteristics of U.S. counties can best **explain** drug overdose rates?

Determining these characteristics will...

- \rightarrow allow us to fill in our U.S. map with estimated overdose rates
- → grant policy makers insight as to what factors to focus on as well as which communities should be addressed more urgently when trying to counteract the drug overdose epidemic

Previously...

Overdose Rate - 2020

Drug Overdoses per 100k People

- → Possible clustering of overdose rates
- → Therefore, we explored the geospatial aspect extensively

Geospatial Component: Global Moran's I

- → We introduce Moran's I to determine if there is a spatial relationship in our data
 - measures how similar one county is to all other counties

$$I = \frac{n \sum_{i=1}^{n} \sum_{j=1}^{n} w_{i,j} z_{i} z_{j}}{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i,j} \sum_{i=1}^{n} z_{i}^{2}}$$

- $z_i = (x_i \bar{x})$ is the deviation of an attribute (i.e. our overdose rate) from the mean for county i
- \rightarrow $w_{i,j}$ is the spatial weight between county i and j
- \rightarrow η is the total number of counties

Moran's I

- → In the previous equation, we used the queen weights (depicted on the right)
- → Our Moran's I for overdose rates is **0.461**
 - ♦ Moran's I values range from -1 to 1
 - ◆ As a general rule of thumb, a Moran's I value of above 0.3 or below -0.3 is deemed significant
- → With the Moran's I of **0.461** there is a spatial autocorrelation between the counties, so we concluded that it is important to have this component in our model

Ex. Queen Weights for West Virginia

$$w_{ij} = \begin{cases} 1 & \text{if } i \text{ and } j \text{ are contiguous} \\ 0 & \text{if } i \text{ and } j \text{ are not contiguous} \end{cases}$$

Ordinary Least Squares Modeling

^{*} Model coefficients were computed using all data throughout all years.

However, when estimating our overdose rates, we input data for each county subsetted by year

Baseline Model: Geospatial Component

- → We introduce a spatial component to our model:
 - Spatial_Mean: Average overdose rate of the counties that are adjacent to the focal county

- → For our baseline model, we ran an OLS model only with Spatial_Mean:
 - ♦ log_Overdose_Rate_per_100k ~ Spatial_Mean
 - \bullet Adjusted R²: 0.451
 - Accounts for a considerable amount of the variation in our data!
 - \bullet Normalized RMSE: 0.407 / (5.144 0.803) = 0.0938
 - Already a pretty good fitting model!

Backwards Stepwise Feature Selection

- → Utilizing 5-fold cross-validation with RMSE as our metric
 - best model has 8 features
- → Chosen Model:
 - ◆ Spatial_Mean (Average overdose rate of adjacent counties)
 - PrimCarePhys_per_100k (# of primary care physicians per 100k residents)
 - Pct_Uninsured (% of uninsured residents)
 - Pct_Child_in_1ParentHH (% of children in 1 parent households)
 - Pct_Poverty (% of residents in poverty)
 - Pct_Black (% of Black residents)
 - Pct_Age_lt_18 (% of residents that are less than 18 years old)
 - ◆ Potential_Years_Lost (Years of potential life lost before age 75 per 100k residents)

Spatial Components of Predictors

Data Transformations

→ These are the residuals before and after we transformed them in our model

Model Performance

OLS Regression Results

	Baseli	ne Model:	Pre-	transforn	nation:	Post-transformation:					
						R-squared:		0.626	0.626		
	Adj. R ² : 0.460 A			R^2 : 0.613		Adj. R-squared:	:	0.625	0.625		
						F-statistic:		1195.			
						Prob (F-statist	tic):	0.00			
						Log-Likelihood:	:	-2011.4			
	AIC:	6125	AIC:	4221		AIC:		4041.			
						BIC:		4101.			
===	=====	=======		coef	std err	t	P> t	[0.025	0.975]		
Intercept				1.6932	0.083	20.379	0.000	1.530	1.856		
Pct_Age_lt_18				-0.0233	0.002	-13.950	0.000	-0.027	-0.020		
log_Pct_Black				-0.0566	0.006	-9.750	0.000	-0.068	-0.045		
Potential_Years_Lost				327e-05	3.41e-06	27.313	0.000	8.66e-05	0.0001		
Pct_Uninsured				-0.0106	0.001	-10.409	0.000	-0.013	-0.009		
Log	_PrimCa	rePhys_per_100	∂k	-0.0923	0.010	-9.291	0.000	-0.112	-0.073		
ct_Child_in_1ParentHH				0.0084	0.001	9.019	0.000	0.007	0.010		
Pct_Poverty				-0.0119	0.001	-7.987	0.000	-0.015	-0.009		
Log	_Spatia	l_Mean		0.5550	0.012	46.119	0.000	0.531	0.579		

Normalized CV-Average RMSE

Training: 0.07876 Testing: 0.07887

- → Seeing improvements
 performance in each
 of our subsequent
 models
- → All features are significant
- → Normalized training and testing RMSE
 both close to zero!

Residual Map for 2020

→ The Moran's I for the residuals are -0.098. Thus, our model has successfully accounted for the spatial component in our data.

Filling in our Map Sequentially

Estimating using estimates:

- Use model to estimate missing adjacent county overdose rates
- Calculate spatial component for filled-in missing counties
- Repeat until we reach a point when we can no longer estimate new missing counties

* Still have some missing counties since they do not have data for other covariates

Conclusion

- → Now that we have filled in our entire U.S. map with estimates, policy makers can get more insight for those areas that had missing overdose rates
- → Policy makers should focus on
 - counties with severe overdose rates and their surrounding counties
 - improving health care availability:
 - % Uninsured, # Primary Care Physicians
 - these demographics:
 - Youth < 18 yrs, Black population, Poverty, Single Parent Households
- → Given the performance of our model, we see that there is still room for improvement
 - Possibly leaving out predictors that are important
 - Can explore other models:
 - Weighted Least Squares or Time Series
 - ◆ This is a complex societal issue that is still being researched

