AI QUEST PBL02 最終プレゼン

不良個所自動検出による検品作業効率化提案

ABC基板 御中

今回の提案の目的とゴール

本日の目的とゴール

- ✓ PoCの結果をご報告いたします。
- ✓ 今後のAIプロジェクトのアクションについてご提案します。

アジェンダ

- 0. AIプロジェクトの背景
- 1. 現状の整理
- 2. 導入するAIモデルの概要
- 3. 本番実装の設計
- 4. 効果と費用
- 5. 本番実装実現に向けたアクションプラン

0. AIプロジェクトの背景

今回のプロジェクトのミッション

Mission グローバル化に伴う、 価格競争力低下を抑止し、 利益を増加させたい

ABC基板の業績の現状

売上、利益率の減少により、全体的な獲得利益も減少している

1. 現状の整理

出荷前検査がAI導入に最も適した課題

1. 現状の整理

2.導入するAIモデルの概要

AIモデルの概要と目的

画像分類モデルで「良品/不良品」を、 2値分類するモデルを構築 精度と実効性、評価プロセスを検討

以下3つのモデルをベースに 深層学習モデルを構築しアンサンブル

PoCで構築したモデルの分類結果

AIモデルを構築し、213枚のテスト用画像データで分類

ReCall = TP/(TP+FN) = 1.0 Prediction = TP/(TP+FP) = 1.0 F値 =(2*Recall*prediction)/(Recall+prediction) =1.0

(モデルの学習方法)

213枚で検証

各ラベルの2割でValidationを作成し 交差検証

2.導入するAIモデルの概要

分析モデルの選定

PoCの狙いは、効率よく目視による作業と同レベルの精度を出せるか、トライアルとして検証すること。 →解釈性は捨て、計算効率が良く、高い精度が出せるモデルを選定した。

	モデル1	モデル2	モデル3
使用モデル	Vision Transformer	• EfficientnetB4	• SE_Resnext50_32x4d
選定理由	• 計算効率のよくと スケーラビリティ に対しての評価が 高いため	• Transformerを使用 したモデルとCNN の組み合わせで、 お互いの強みが合 うこと期待した	 モデル1とモデル2 の2つのモデルでも 微妙なものを判断 してくれることを 期待した

3. 本番実装の設計

3. 本番実装の設計

AI導入の概略

3. 本番実装の設計

実現可能な作業プロセスへの落とし込み

AI導入による定量的効果

試算方法

- ・現在、対象製品の検品に要する時間を計算
- ・AI導入後の工程で検品 に要する時間を試算
- ・現在の検品時間と、AI 導入後の検品時間を比較

1回目の目視検査の対象数 = 10.3万 - 3,000 = 10万

1回目検査の試算例

60万円/月 の削減 (埼玉県の最低 賃金956円で資 産)

100,000枚/月 × [5秒 + 30秒/枚 + 5秒] + 180時間 AIによる 検査※2 (休憩※1)

1,291時間

655時間

636時間/月の工数削減

100,000枚/月 × 5秒 + 10秒/枚 + 5秒 +

AIによる 検査**※2**

(休憩*1)

導入前の労働時間は9時間/日・人であるため休憩時間は90分/日・人と試算 導入後の労働時間は5時間/日・人であるため休憩時間は50分/日・人と試算

※2 PoC実績より1枚あたり10秒以下としている

12

AI導入による定性的な効果

AI導入により作業担当者の精神的・身体的負担も軽減できる

現状

- ・1人あたり9.2時間の作業時間
- ・集中力の持続が困難
- ・作業精度に個人差が出る
- ・モチベーションが持続しない
- ・人材育成が困難

導入後

- ・1人あたり5時間の作業時間
- ・「取り出し」と「しまう」作業のみなの で集中力の問題を解消
- ・AIによる一律検査なので、個人差が発生しない
- ・キツさが軽減されるためモチベーション 維持にもつながる
- ・AIが行うため人材育成が不要

精度の担保

現在 (総数1とした場合)

1回目

不良品検出量: $0.01 \times 0.9 = 0.009$ 残り0.001は良品判定

1回目終了時点の良品率: $0.99/(0.99+0.001) = 0.998990\cdots$

2回目

不良品検出量: 0.001 × 0.9 = 0.0009 残り0.0001は良品判定

2回目終了時点の良品率:0.99/(0.99+0.0001) = 0.99989900…

不良品率0.0001とかなり低い水準

AI導入後 (総数1とした場合)

1回目

本番で想定される精度の変化

0 < 不良品を良品判定する割合 < 0.001

2回目

現在と同様の手法で目視検査

不良品を良品判定する割合が0.1 未満に収まれば、不良品率を 0.0001未満に抑えられる

費用:導入に必要な機材の概算見積

費用項目		導入金額	備考
AI環境導入 機材	パソコン	10万円~	(想定スペック) CPU Intel Core i5 / AMD Ryzen 5 メモリ 8GB/16GB GPU Geforce GTX 1650 / 1660 SSD 256GB
	GUIサービス (アカウント)	16,929円/月~	(Google Cloud Vision を導入した場合) 使用言語 Python フレームワーク pytorch \$1.50 (1,001~5,000,000 ユニット/月) ⇒ \$148.5 今回は10,000ユニット/月で概算 ※1 つの画像に対してラベル検出を適用した場合、1 ユニットのラベル検出に対して料金が請求されます。 (参考) https://cloud.google.com/vision/pricing?hl=ja
撮影用機材	照明	3,000円~5,000円	市販の証明
	カメラ	10,000円~	デジタルカメラ
	カメラ固定器具	3,000円~10,000円	市販の器具
	撮影背景	~1,000円	画用紙等
合計金額		13万円~	※初期費用13万円、翌月以降はGUI サービス使用料1,6929円/月発生

5.本番実装実現に向けたアクションプラン

5年後、n年後を見据えたロードマップ 本件スコープ (作業工数/月) 1,291時間/月 655時間/月 STEP.1 目視のみ自動化 318時間/月 STEP.2 による 基盤設置作業 スモールスタート の自動化による STEP.3 高度化 将来的には 0時間/月 完全自動化 完全自動化 現在 1年後 5年後 n年後 施策 ● AIによる目視の自動化 ● 設置作業等の自動化 ● オートメーション ● 費用削減・利益増加 ● 費用削減・利益増加 狙い ● 人件費0円 ● モチベーション向上 ● 属人化防止

5.本番実装実現に向けたアクションプラン

初回導入の実施スケジュール

