Orthogonal

Theorem 1

Suppose W is a subspace of an inner product space V. Then:

- (a) W^{\perp} is a subspace of V.
- (b) Only the zero vector, $\mathbf{0}$, is common to both W and W^{\perp} .
- (c) $(W^{\perp})^{\perp} = W$. In other words, the orthogonal complement of W^{\perp} is W.

Orthogonal

Theorem 1

Suppose W is a subspace of an inner product space V. Then:

- (a) W^{\perp} is a subspace of V.
- (b) Only the zero vector, $\mathbf{0}$, is common to both W and W^{\perp} .
- (c) $(W^{\perp})^{\perp} = W$. In other words, the orthogonal complement of W^{\perp} is W.

In this case, assume (a) has been proven, thus use (a) to help for proofing (b) and (c).

Proof

Hence W and W^{\perp} is a subspace of V, its obvious that ${\bf 0}$ is common to both W and W^{\perp} .

Assume there is a vector $\mathbf{v} \neq \mathbf{0}$ that is common to both W and W^{\perp} . Then $\mathbf{v} \in W$ and $\mathbf{v} \in W^{\perp}$. Since $\mathbf{v} \in W$, then $\langle \mathbf{v}, \mathbf{v} \rangle = 0$. This implies that $\mathbf{v} = \mathbf{0}$, which is a contradiction. Therefore, only the zero vector, $\mathbf{0}$, is common to both W and W^{\perp} .

Proof

Let any $\mathbf{u} \in W$, then $\langle \mathbf{u}, \mathbf{v} \rangle = 0$ for all $\mathbf{v} \in W^{\perp}$. Thus by definition, any \mathbf{u} is orthogonal to any $\mathbf{v} \in W^{\perp}$ or can be written as $\mathbf{u} \in (W^{\perp})^{\perp}$.

$$W \subseteq (W^{\perp})^{\perp} \tag{1}$$

Next consider $\mathbf{w} \in (W^{\perp})^{\perp}$ but $\mathbf{w} \notin W$. By definition, exist $\mathbf{v}_0 \in W^{\perp}$ such that is not orthogonal to \mathbf{w} . Other words, $\langle \mathbf{v}_0, \mathbf{w} \rangle = 0$ because $\mathbf{w} \in (W^{\perp})^{\perp}$. So its contradict with the assumption that $\mathbf{w} \notin W$. Therefore, $\mathbf{w} \in W$.

$$(W^{\perp})^{\perp} \subseteq W \tag{2}$$

Therefore, $(W^{\perp})^{\perp} = W$.

