Университет ИТМО

Факультет программной инженерии и компьютерной техники

Учебно-исследовательская работа №2 (УИР 2) "Марковские модели систем массового обслуживания" по дисциплине "Моделирование"

Выполнили:

Студенты группы Р3334

Баянов Р. Д.

Кузнецов Д. А.

Вариант: 3/8/34

Преподаватель:

Авксентьева Е. Ю.

Санкт-Петербург 2024 г.

Содержание

Цель работы	3
· Постановка задачи и исходные данные	4
Описание исследуемых систем	5
Перечень состояний марковского процесса для исследуемых систем	7
Размеченные графы переходов марковского процесса	8
Матрицы интенсивностей переходов	9
Значения станционарных вероятностей	11
Формулы, используемые для расчёта характеристик систем и значения характеристик систем	
Результаты (графики и выводы) сравнительного анализа характеристик функционирования исследуемых систем	14
Вывод	15

Цель работы

Изучение метода марковских случайных процессов и его применение для исследования простейших моделей — систем массового обслуживания (СМО) с однородным потоком заявок.

Постановка задачи и исходные данные

Разработать и рассчитать марковские модели одно- и многоканальных СМО с однородным потоком заявок и выбрать наилучший вариант построения СМО в соответствии с заданным критерием эффективности.

В процессе исследований для расчета характеристик функционирования СМО использовать программу MARK.

Вариант: 3/8/34

Таблица 1 – Параметры структурной и функциональной организации систем.

Ромионт	СИСТІ	EMA_1	СИСТЕ	EMA_2	Критерий
Вариант	Π	EH	Π	EH	эффективности
3/8	2	3/0	$1(H_{2,4})$	3	в)

Так как $N_1 + N_2 = 3 + 8 = 11$ — нечётное число, то вариант для критерия эффективности выбирается по N_1 .

в) – максимальная загрузка системы.

Обозначения в таблице 1:

П – число обслуживающих приборов в системе;

 $\Pi\left(E_{k}\right)$ – в одном из **Приборов** (любом) длительность обслуживания разделена по закону Эрланга k-го порядка;

 $\Pi(H_{\nu})$ – в одном из **Приборов** (любом) длительность обслуживания распределена по гиперэкспоненциальному закону с коэффициентом вариации, равным ν ;

 ${\bf E}{\bf H} - \ddot{\bf E}$ мкости Накопителей: ${\bf X}/{\bf Y}/{\bf Z}$ (X — перед первым прибором, Y — перед вторым прибором и Z — перед третьим прибором);

Таблица 2 – Параметры нагрузки.

Вариант	Интенс. потока	Ср. длит. обслуж.	Вероятности занятия прибора .		
_	λ, 1/c	<i>b</i> , c	П1	П2	П3
34	0,9	2	0,55	0,15	0,3

в случае двухканальной СМО вероятность занятия прибора П1 выбирается из табл.2, а вероятность занятия прибора П2 принимается равной сумме вероятностей занятия приборов П2 и П3

Описание исследуемых систем

Для обоих систем интенсивность обслуживания $-0.9\,1/c$, время обслуживания $-2\,c$.

Система 1: Система обладает 2 приборами. В обоих приборах время обслуживания распределено по экспоненциальному распределению. Система имеет одну очередь, длиной 3, относящуюся к первому прибору, в то время как у второго прибора нет своей очереди. Как только какой-то из приборов освобождается заявка направляется по принципу 0,55 на первый прибор вероятность и 0,15+0,3=0,45 на второй прибор. Если прибор с номером 2 занят, но именно на него пришла заявка, то эта заявка отбрасывается, то же происходит, если очередь в приборе 1 переполнена, и заявка пришла на первый прибор.

Графическое представления системы 1:

Система 2: Система обладает 1 прибором. И время обслуживания этого одного прибора распределено по гиперэкспоненциальному распределению с коэффициентом вариации 2,4. Также эта система обладает очередью длиной 3. Заявки, отправленные на эту систему, скапливаются в очереди и так как прибор всего один в системе, то вероятность обработки заявки именно этим прибором равна 1. Если очередь заполнена, то заявка будет просто отброшена. Как мы знаем, если время обслуживания прибора распределено по гиперэкспоненциальному распределению, то это значит, что заявка может обрабатываться по одному из двух экспоненциальных распределений (по одной из двух фаз), время обслуживаний и интенсивность (b₁ и b₂), которых вычисляется с помощью коэффициента вариации этого гиперэкспоненциального распределения, а именно 2,4. Также вычислим вероятность попадания заявки в ту или иную фазу (q). Две заявки в приборе

не может находиться, поэтому если в одной фазе есть заявка, то вторая пустует.

Расчёт параметров для ГЭР с помощью коэффициента вариации:

$$\nu=2,4;$$

$$q\leq \frac{2}{1+\nu^2}=\frac{2}{1+2,4^2}\approx 0,296;$$
 возьмём $q=0,2$ для расчётов;
$$b_1=b\left(1+\sqrt{\frac{1-q}{2q}(\nu^2-1)}\right)\approx 81,709~c~\rightarrow u_1=\frac{1}{81,709}=0,0122~1/c;$$

$$b_2=b\left(1-\sqrt{\frac{q}{2(1-q)}~(\nu^2-1)}\right)\approx 4,573~c~\rightarrow u_2=\frac{1}{4,573}=~0,219~1/c;$$

Графическое представление системы 2:

Перечень состояний марковского процесса для исследуемых систем

Таблица 3 – перечень состояний для двух систему

Помор осотояния	Система 1	Система 2
Номер состояния	$(\Pi_1/\Pi_2/O_1)$	$(\Pi_{11}/\Pi_{12}/0)$
E0	(0/0/0)	(0/0/0)
E1	(1/0/0)	(1/0/0)
E2	(0/1/0)	(1/0/1)
E3	(1/1/0)	(1/0/2)
E4	(1/1/1)	(1/0/3)
E5	(1/1/2)	(0/1/0)
E6	(1/1/3)	(0/1/1)
E7	-	(0/1/2)
E8	-	(0/1/3)

Обозначения для таблицы:

 $\boldsymbol{E_k}$ – состояние системы

 $\Pi_{\pmb{k}}$ – прибор (0 – заявка отсутствует, 1 – заявка присутствует в приборе)

 Π_{kl} — прибор с двумя фазами работы (гиперэкспоненциальное распределение), где k — номер прибора, l — номер фазы.

 $\mathbf{O}_{\pmb{k}}$ – кол-во заявок в очереди, где \mathbf{k} – обозначение номера прибора, к которому эта очередь относится.

0 – общая очередь1)

0 означает, что в элементе системы нет заявки, 1 означает, что в элементе есть заявка.

Размеченные графы переходов марковского процесса

Размеченный граф для системы 1:

Обозначения для графа:

$$p_1 = 0.55$$
; $p_2 = 0.45$; $u = \frac{1}{b} = \frac{1}{2} = 0.5 \frac{1}{c}$; $\lambda = 0.9 \frac{1}{c}$

Размеченный граф для системы 2:

Обозначения для графа:

$$u_1 = 0.0122 \frac{1}{c}$$
; $u_2 = 0.219 \frac{1}{c}$; $q_1 = 0.296$; $q_2 = 0.704$; $\lambda = 0.9 \frac{1}{c}$

Матрицы интенсивностей переходов

Воспользуемся программой MARK для изображения матрицы интенсивности переходов. Но перед этим рассчитаем все интенсивности процессов, чтобы было удобнее занести их в программу.

$$u = 0.5$$

$$\lambda = 0.9$$

$$k1 = p_1\lambda = 0.55 * 0.9 = 0.495$$

$$k2 = p_2\lambda = 0.45 * 0.9 = 0.405$$

Матрица интенсивности для системы 1:

<u>Д</u> анные <u>С</u> правка									
Список элементов матрицы		0	1	2	3	4	5	6	
•	0	0	k1	k2	0.0000	0.0000	0.0000	0.0000	
Имя Знач	1	u	1	0.0000	k2	0.0000	0.0000	0.0000	
u 0.5000	2	u	0.0000	2	k1	0.0000	0.0000	0.0000	
lambda 0.9000	3	0.0000	u	u	3	lambda	0.0000	0.0000	
k1 0.4950 k2 0.4050	4	0.0000	0.0000	0.0000	u	4	lambda	0.0000	
KZ 0.4050	5	0.0000	0.0000	0.0000	0.0000	u	5	lambda	
	6	0.0000	0.0000	0.0000	0.0000	0.0000	u	6	

$$u_1 = 0.0122$$

$$u_2 = 0.219$$

$$\lambda = 0.9$$

$$k1 = p\lambda q_1 = 1 * 0.9 * 0.296 = 0.2664$$

$$k2 = p\lambda q_2 = 1 * 0.9 * 0.704 = 0.6336$$

$$m1 = q_1 u_1 = 0.296 * 0.0122 = 0.0036112$$

$$m2 = q_1 u_2 = 0.296 * 0.219 = 0.064824$$

$$m3 = q_2 u_1 = 0.704 * 0.0122 = 0.008588$$

$$m4 = q_2 u_2 = 0.704 * 0.219 = 0.154176$$

Матрица интенсивности для системы 2:

писок э	лементов матрицы		0	1	2	3	4	5	6	7	8
		0	0	k1	k2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Имя	Знач	1	u1	1	0.0000	lambda	0.0000	0.0000	0.0000	0.0000	0.0000
ı1	0.0122	2	u2	0.0000	2	0.0000	lambda	0.0000	0.0000	0.0000	0.0000
ambda	0.9000	3	0.0000	m1	m3	3	0.0000	lambda	0.0000	0.0000	0.0000
	0.2190 0.2664	4	0.0000	m2	m4	0.0000	4	0.0000	lambda	0.0000	0.0000
	0.6336	5	0.0000	0.0000	0.0000	m1	m3	5	0.0000	lambda	0.0000
n1	0.0036	6	0.0000	0.0000	0.0000	m2	m4	0.0000	6	0.0000	lambda
n2	0.0648	7	0.0000	0.0000	0.0000	0.0000	0.0000	m1	m3	7	0.0000
n3	0.0086	8	0.0000	0.0000	0.0000	0.0000	0.0000	m2	m4	0.0000	8

Значения станционарных вероятностей

Таблица 4 – значения станционарных вероятностей для систем

Номер	Сист	ема 1	Система 2		
состояния	Обозначение	Вероятность	Обозначение	Вероятность	
0	(0/0/0)	0.0812	(0/0/0)	0.0001	
1	(1/0/0)	0.0804	(1/0/0)	0.0003	
2	(0/1/0)	0.0657	(1/0/1)	0.0006	
3	(1/1/0)	0.0651	(1/0/2)	0.0019	
4	(1/1/1)	0.1172	(1/0/3)	0.0036	
5	(1/1/2)	0.2109	(0/1/0)	0.0118	
6	(1/1/3)	0.3796	(0/1/1)	0.0221	
7	-	-	(0/1/2)	0.8689	
8	-	-	(0/1/3)	0.0907	

Формулы, используемые для расчёта характеристик систем и значения характеристик систем

Таблица 5 – формулы и расчёты характеристик

		_			
Харак терис тика	Номер системы	Прибор	Расчётная формула	Система 1	Система 2
		П1	-	-	-
	1	П2	-	-	-
	1	Вся	$\lambda = \lambda$	1.8	
Нагру		система	$y = \frac{1}{\mu}$	1.0	-
зка		П11	$y1 = \lambda * b1$	-	0.01098
	2	П22	$y2 = \lambda * b2$	-	0.1971
	2	Вся	Y = y1 + y2	_	0.20808
		система	1 = y1 y2	_	0.2000
		П1	$p1 = 1 - (p_0 + p_2)$	0.8531	-
	2	П2	$p2 = 1 - (p_0 + p_1)$	0.8384	-
		Вся	$\frac{1}{2}*(p1+p2)$	0.84575	_
n		система			
Загруз ка		П11	$p1 = 1 - (p_0 + p_5 + p_6 + p_7 + p_8)$	-	0.0064
		П22	$ p2 = 1 - (p_0 + p_1 + p_2 + p_3 + p_4) $	-	0.9935
		Вся система	$\frac{1}{2}*(p1+p2)$	-	0.49995
		П1	-	-	_
	1	П2	-	-	-
Длина		Вся система	$l = 1 * p_4 + 2 * p_5 + 3 * p_6$	1.6778	-
очере		ПП	-	_	1-
ди		П22	-	_	_
	2		$l = 1 * (p_2 + p_6) + 2$		
		Вся	$*(p_3 + p_7) + 3$	_	2.0472
		система	$*(p_4 + p_8)$		
		П1	$m_1 = p_1 + l_1$	3,0804	-
11	1	П2	$m_2 = p_2$	0,0657	-
Число	1	Вся			
заявок		система	$m = m_1 + m_2$	3,1461	-
,	2	П11	-	-	-

Время ожида ния $= 11 + m2 + 1 = p1 + p2 + 1$ $= 11 + p2 + p3 + p3 + p3 + p3 + p3 + p3 + p3$			П22	-	_	-
Время ожида ния $= \frac{1}{1}$			Вся	m = m1 + m2 + 1 = p1 + p2 + 1		3 1461
Время ожида ния $= \frac{1}{1}$			система	III = IIII + III2 + I = p1 + p2 + I	_	3,1701
Время ожида ния Вся система $w = \frac{l_1}{\lambda}$ 3,33 - 1 П11 - - - Вся система $w = \frac{l_1}{\lambda}$ - - Время пребы вания ПП2 $w = \frac{m_1}{\lambda}$ 3,423 - Веля система $u = \frac{m_2}{\lambda}$ 0.073 - Веля система $u = \frac{m}{\lambda}$ 3,496 - Веля система $u = \frac{m}{\lambda}$ - - Вероя тност вотер и 1 $\frac{m}{\mu}$ - 0.3796 - Вероя тност вотер и 1 $\frac{m}{\mu}$ $\frac{m}{\mu}$ - 0.3885 - Веля система $\pi = m_1 + m_2$ 1.2181 - - Веля система $\pi = m_1 + m_2$ 1.2181 - Веля система $\pi = m_1 + m_2$ 1.2181 - Веля система $\pi = m_1 + m_2$ 1.2181 - Произ водит система $\pi = m_1 + m_2$ 1.0188 - Произ водит система $\pi = m_1 + m_2$ 0.0300 -			П1	$w = \frac{l_1}{\lambda}$	3,33	-
ожида ния $=\frac{1}{\lambda}$		1	П2	0	0	_
ожида ния $\frac{1}{1}$ 1	Время		Вся	l_1	2 22	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ожида		система	$w = \frac{1}{\lambda}$	3,33	_
	ния			-	_	_
Вермя пребы вания $1 = \frac{Bcg}{Bcg}$ $\frac{Bcg}{Bcg}$ Bcg)	П22	-	_	-
Время пребы вания		_ <u></u>	Вся	$\overline{}$ l_1		2 22
Время пребы вания $\begin{array}{c ccccccccccccccccccccccccccccccccccc$			система	1	_	3,33
Время пребы вания 1 $\Pi 2$ $u_2 = \frac{m_2}{\lambda}$ 0.073 - 2 $\frac{Bc\pi}{cucrema}$ $u = \frac{m}{\lambda}$ 3,496 - 2 $\frac{\Pi 11}{\Pi 22}$ - - - $\frac{Bepos}{cucrema}$ $u = \frac{m}{\lambda}$ - 3,4956 $\frac{Bepos}{cucrema}$ $u = \frac{m}{\lambda}$ - 3,4956 $\frac{Bepos}{cucrema}$ $u = \frac{m}{\lambda}$ - 0.3796 - $\frac{Bcs}{cucrema}$ $u = \pi_1 + \pi_2$ 0.8385 - $\frac{Bcs}{cucrema}$ $u = \pi_1 + \pi_2$ 1.2181 - $\frac{Bcs}{cucrema}$ $u = \pi_1 + \pi_2$ 1.2181 - $\frac{Bcs}{cucrema}$ $u = \pi_1 + \pi_2$ 1.2181 - $\frac{Bcs}{cucrema}$ $u = p_4 + p_8$ - 1.0188 $\frac{Bcs}{cucrema}$ $u = \pi_1 + \pi_2$ 0.0462 - $\frac{Bcs}{cucrema}$ $u = \pi_1 + \pi_2$ 0.0300 -			П1	$u_1 = \frac{1}{\lambda}$	3,423	-
Время пребы ванияВся система $u = \frac{m}{\lambda}$ $3,496$ -2 $\frac{\Pi11}{\Pi22}$ Вероя тност в потер и $\frac{\Pi2}{\Pi22}$ $\frac{\pi}{2} = p_2 + p_3 + p_4 + p_5 + p_6$ 0.8385-1 $\frac{\Pi2}{\Pi2}$ $\frac{\pi}{2} = p_2 + p_3 + p_4 + p_5 + p_6$ 0.8385-1 $\frac{\Pi11}{\Pi22}$ 1 $\frac{\Pi22}{\Pi22}$ 1 $\frac{\Pi22}{\Pi22}$ 1 $\frac{\Pi22}{\Pi2}$ 1 $\frac{\Pi2}{\Pi2}$ $\lambda 1' = \lambda * p1, 1*(1-\pi 1)$ 0.0462-1 $\frac{\Pi2}{\Pi2}$ $\lambda 2' = \lambda * p1, 2*(1-\pi 2)$ 0.0300-1 $\frac{\Pi2}{\Pi2}$ $\lambda 2' = \lambda * (1-\pi)$ 0.1137-2 $\frac{\Pi22}{\Pi2}$ 2 $\frac{\Pi22}{\Pi2}$ 2 $\frac{\Pi22}{\Pi2}$ 3,49560.03850.03850.11370.0997		1	П2	$u_2 = \frac{1}{\lambda}$	0.073	-
вания $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_		Вся	m	2 406	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	_		система	$u = \frac{u}{\lambda}$	3,490	
Вероя тност в потер и $= \frac{1}{1}$ $= 1$	вания		П11	-		-
Вероя тност в потер и $= \frac{1}{\lambda}$ $= 1$		2	П22	-	-	-
Вероя тност вольно сть $= 1$			Вся	$\frac{m}{m}$		2 4056
Вероя тност вольно сть вероя тност вероя тност вольно сть вероя потер и вероя вольно сть вероя вероя вероя вероя тност вероя потер и вероя вероя вероя потер и вероя вероя вероя потер и вероя			система	$u-\frac{\lambda}{\lambda}$		3,4930
Вероя тност ь потер и 1			П1	$\pi 1 = p_6$		
Тност ь потер и $= 2$ $= 2$ $= 3$ $= 4$	Danou	1	П2		0.8385	
В потер и 2 $ \frac{\Pi 11}{\Pi 22} - \frac{\Pi 122}{Bcg} - \frac{\Pi 10188}{\pi} $ $ \frac{\Pi 11}{Bcg} - \frac{\Pi 10188}{\pi} - \frac{\Pi 10188}{\pi} $ $ \frac{\Pi 11}{Bcg} - \frac{\Pi 11}{Bcg} - \frac{\Pi 10188}{\pi} - \frac{\Pi 10188}{\pi} $ $ \frac{\Pi 11}{Bcg} - \frac{\Lambda 1' = \lambda * p1, 1*(1-\pi 1)}{Bcg} - \frac{\Pi 1003}{\pi} - $	_	1	Вся		1 2181	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			система	$\mu - \mu_1 + \mu_2$	1.2101	<u> </u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			П11	-		
$\pi = p_4 + p_8$ - 1.0188 Произ водит ельно сть 2 $\pi = p_4 + p_8$ - 1.0188 $\pi = p_4 + p_8$ - 0.0462 - 0.0300	_	2	П22	-		<u> </u>
Произ водит ельно сть 2 $\frac{\Pi 1}{B c g}$ $\frac{\lambda 1' = \lambda * p1, 1*(1-\pi 1)}{\lambda 2' = \lambda * p1, 2*(1-\pi 2)}$ $\frac{0.0462}{0.0300}$ - $\frac{B c g}{C u c T e M a}$ $\frac{\lambda ' = \lambda * (1-\pi)}{2}$ $\frac{\Pi 11}{B c g}$ - $\frac{\Pi 11}{B c$	n	<i>L</i>	Вся			1 0188
Произ водит ельно сть 2 $\boxed{ \begin{array}{c cccccccccccccccccccccccccccccccccc$			система			1.0100
Произ водит ельно сть 2 $\boxed{ \begin{array}{c cccccccccccccccccccccccccccccccccc$			П1	$\lambda 1' = \lambda * p1, 1*(1-\pi 1)$	0.0462	-
Произ водит ельно сть $Bcя$ система $\lambda := \lambda*(1-\pi)$ 0.1137 - $Bcя$ система $\Pi 11$		1	П2		0.0300	<u> </u>
водит ельно сть 2	Произ	1	Вся		0.1127	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	водит		система	Λ = Λ*(1-π)	0.1137	
Вся $\lambda = \lambda * (1-\pi)$ - 0.0997	ельно		П11	-	-	-
$\begin{vmatrix} \mathbf{Bcg} & \lambda = \lambda * (1-\pi) & -1 \end{vmatrix}$	сть	2	П22	-	-	-
система $\lambda = \lambda * (1-\pi)$		<i>L</i>	Вся	2 != 2(1 =)		0.0007
			система	$\lambda = \lambda * (1 - \pi)$	_	0.0337

Результаты (графики и выводы) сравнительного анализа характеристик функционирования исследуемых систем

	Нагру зка	Загруз ка	Длин а очере ди	Числ о заяв ок	Время ожида ния	Время пребыва ния	Вероятн ость потери	Производитель ность
Систе ма 1	1.8	0.845 75	1.67 78	3,14 61	3,33	3,496	1.2181	0.1137
Систе ма 2	0.208 08	0.499 95	2.04 72	3,14 61	3,33	3,496	1.0188	0.0997

График сравнения характеристик систем:

Ряд1 – первая система, ряд2 – вторая система

Вывод

Выполнив данную лабораторную работу, мы провели сравнение двух построений СМО. Вычислили самые разные характеристики, построили графы процессов, изобразили матрицы интенсивности, но самое главное мы обнаружили характеристическую разницу между двумя системами. А именно, самое главное для нас — это максимальная нагрузка системы. Эта величина для первой системы равна 0.84575, а для второй системы 0.49995. Это колоссальная разница, и она говорит нам то, что вторая система крайне часто находится в простое и не занимается работой. Чего не скажешь о первой. Следовательно, мы выбираем первую систему, так как она имеет выше коэффициент загрузки.