Basis Matters: Better Communication-Efficient Second Order Methods for Federated Learning

 $Xun Qian^{1,2}$ Rustem Islamov^{1,3} Mher $Safaryan^1$ Peter Richtárik¹

²JD Explore Academy

³Institut Polytechnique de Paris

The Problem

$$\min_{x \in \mathbb{R}^d} f(x) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n f_i(x), \tag{1}$$

where each function $f_i: \mathbb{R}^d \to \mathbb{R}$ represents the local loss associated with the data owned by device or client $i \in [n] \stackrel{\text{def}}{=} \{1, 2, \dots, n\}$ only.

Algorithm

• $[\cdot]_{\mu}$: the projection on the set $\{\mathbf{A} \in \mathbb{R}^{d \times d} | \mathbf{A} = \mathbf{A}^{\top}, \mathbf{A} \succeq \mu \mathbf{I}\}$.

Algorithm 1: Basis Learn with Bidirectional Compression (BL1)

Parameters: Hessian learning rate $\alpha \geqslant 0$; model learning rate $\eta \geqslant 0$; gradient compression probability $p \in (0, 1]$; compression operators

 $\{\mathcal{C}_1^k,\ldots,\mathcal{C}_n^k\}$ and \mathcal{Q}^k ; Basis $\{\mathbf{B}_i^{jl}\}$ in $\mathbb{R}^{d\times d}$ for each i

Initialization: $x^0 = w^0 = z^0 \in \mathbb{R}^d$; $\mathbf{L}_i^0 \in \mathbb{R}^{d \times d}$, $\mathbf{H}_i^0 = \sum_{i} (\mathbf{L}_i^0)_{il} \mathbf{B}_i^{jl}$, and

 $\mathbf{H}^0 \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n \mathbf{H}_i^0; \, \boldsymbol{\xi}^0 = 1$

for each device i = 1, ..., n in parallel do

if
$$\xi^k = 1$$

$$w^{k+1} = z^k$$
, compute $\nabla f_i(z^k)$ and send to the server

 $if \xi^k = 0$ $w^{k+1} = w^k$

Compute $\nabla^2 f_i(z^k)$ and send $\mathbf{S}_i^k \stackrel{\text{def}}{=} \mathcal{C}_i^k(h^i(\nabla^2 f_i(z^k)) - \mathbf{L}_i^k)$ to the server. Update local Hessian shifts $\mathbf{L}_i^{k+1} = \mathbf{L}_i^k + \alpha \mathbf{S}_i^k$,

 $|\mathbf{H}_i^{k+1} = \mathbf{H}_i^k + \alpha \sum_{jl} (\mathbf{S}_i^k)_{jl} \mathbf{B}_i^{jl}|$

end

on server

if
$$\boldsymbol{\xi}^k = 1$$

$$w^{k+1} = z^k, \ g^k = \nabla f(z^k)$$

if $\xi^k = 0$

 $w^{k+1} = w^k, \ g^k = [\mathbf{H}^k]_u (z^k - w^k) + \nabla f(w^k)$

 $x^{k+1} = z^k - \left[\mathbf{H}^k\right]_{i}^{-1} g^k$ $\mathbf{H}^{k+1} = \mathbf{H}^k + \frac{\alpha}{n} \sum_{i=1}^n \sum_{j \neq i} (\mathbf{S}_i^k)_{j \neq i} \mathbf{B}_i^{j \neq i}$

Send $v^k \stackrel{\text{def}}{=} \mathcal{Q}^k(x^{k+1} - z^k)$ to all devices $i \in [n]$ Update the model $z^{k+1} = z^k + \eta v^k$

Send $\xi^{k+1} \sim \text{Bernoulli}(p)$ to all devices $i \in [n]$

for each device i = 1, ..., n in parallel do

| Update the model $z^{k+1} = z^k + \eta v^k$

Compressor

• $\mathcal{C}: \mathbb{R}^{d \times d} \to \mathbb{R}^{d \times d}$ is called a *contraction compressor* if there exists a constant $0 < \delta \le 1$ such that

$$\mathbb{E}\left[\|\mathbf{A} - \mathcal{C}(\mathbf{A})\|_{\mathrm{F}}^{2}\right] \leq (1 - \delta)\|\mathbf{A}\|_{\mathrm{F}}^{2}, \quad \forall \mathbf{A} \in \mathbb{R}^{d \times d}. \tag{2}$$

• $\mathcal{C}: \mathbb{R}^{d \times d} \to \mathbb{R}^{d \times d}$ is an *unbiased compressor* if there exists a constant $\omega \geq 0$ such that for any $\mathbf{A} \in \mathbb{R}^{d \times d}$

$$\mathbb{E}\left[\mathcal{C}(\mathbf{A})\right] = \mathbf{A} \text{ and } \mathbb{E}\left[\|\mathcal{C}(\mathbf{A})\|_{\mathrm{F}}^{2}\right] \leq (\omega + 1)\|\mathbf{A}\|_{\mathrm{F}}^{2}. \tag{3}$$

Assumptions

Assumption 1 (i) \mathcal{Q}^k (\mathcal{Q}_i^k) is an unbiased compressor with parameter ω_{M} and $0 < \eta \le 1/(\omega_{\mathrm{M}+1})$. (ii) For all $j \in [d]$, $(z^k)_j$ in Algorithm 1 ($(z_i^k)_j$ in Algorithm 2) is a convex combination of $\{(x^t)_i\}_{t=0}^k$ for $k \geq 0$.

Assumption 2 (i) \mathcal{Q}^k (\mathcal{Q}_i^k) is a contraction compressor with parameter δ_{M} and $\eta = 1$. (ii) $\mathcal{Q}^k(\mathcal{Q}_i^k)$ is deterministic, i.e., $\mathbb{E}[\mathcal{Q}^k(x)] = \mathcal{Q}^k(x)$ for any

Assumption 3 (i) \mathcal{C}_i^k is an unbiased compressor with parameter ω and $0 < \alpha \le 1/(\omega + 1)$.

(ii) For all $i \in [n]$ and $j, l \in [d]$, $(\mathbf{L}_i^k)_{jl}$ is a convex combination of $\{h^i(\nabla^2 f_i(z^t))_{jl}\}_{t=0}^k$ in Algorithm 1 ($\{h^i(\nabla^2 f_i(z_i^t))_{jl}\}_{t=0}^k$ in Algorithm 2) for

Assumption 4 (i) \mathcal{C}_i^k is a contraction compressor with parameter δ and $\alpha = 1$. (ii) \mathcal{C}_i^k is deterministic, i.e., $\mathbb{E}[\mathcal{C}_i^k(\mathbf{A})] = \mathcal{C}_i^k(\mathbf{A})$ for any $\mathbf{A} \in \mathbb{R}^{d \times d}$. **Assumption 5** We have $\|\nabla^2 f_i(x) - \nabla^2 f_i(y)\| \le H\|x - y\|, \|\nabla^2 f_i(x) - \nabla^2 f_i(y)\| \le H\|x - y\|$ $|\nabla^2 f_i(y)||_{\mathcal{F}} \leq |H_1||x-y||, ||h^i(\nabla^2 f_i(x)) - h^i(\nabla^2 f_i(y))||_{\mathcal{F}} \leq |M_1||x-y||,$ $\max_{jl}\{|h^i(\nabla^2 f_i(x))_{jl} - h^i(\nabla^2 f_i(y))_{jl}|\} \le M_2||x - y||, \max_{jl}\{||\mathbf{B}_i^{jl}||_{\mathrm{F}}\} \le R \text{ for }$ any $x, y \in \mathbb{R}^d$ and $i \in [n]$. For Algorithm 2, we assume each f_i is μ -strongly

Some Notations

convex.

$$N_{\rm B} \stackrel{\text{def}}{=} \begin{cases} 1 & \text{if the bases } \{\mathbf{B}_i^{jl}\}_{j,l \in [d]} \text{ are all orthogonal} \\ d^2 & \text{otherwise} \end{cases}$$
 (4)

$$(A_{\rm M}, B_{\rm M}) \stackrel{\text{def}}{=} \begin{cases} \begin{pmatrix} (\eta, \eta) & \text{if Asm. 1(i) holds} \\ \left(\frac{\delta_{\rm M}}{4}, \frac{6}{\delta_{\rm M}} - \frac{7}{2}\right) & \text{if Asm. 2(i) holds} \end{cases}$$
 (5)

$$A, B) \stackrel{\text{def}}{=} \begin{cases} \begin{pmatrix} (\alpha, \alpha) & \text{if Asm. 3(i) holds} \\ \left(\frac{\delta}{4}, \frac{6}{\delta} - \frac{7}{2}\right) & \text{if Asm. 4(i) holds} \end{cases}$$
 (6)

For any $k \geq 0$, denote $\mathcal{H}^k \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n \|\mathbf{L}_i^k - \mathbf{L}_i^*\|_F^2$, $\Phi_1^k \stackrel{\text{def}}{=} \|z^k - x^*\|^2 +$ $\frac{A_{\mathrm{M}}(1-p)}{2n} \|w^k - x^*\|^2$, where $\mathbf{L}_i^* \stackrel{\text{def}}{=} h^i(\nabla^2 f_i(x^*))$, $\Phi_2^k \stackrel{\text{def}}{=} \mathcal{H}^k + \frac{4BM_1^2}{A_{\mathrm{M}}} \|x^k - x^*\|^2$.

Convergence Result

Linear convergence of BL1: Let Assumption 5 hold. Let Assumption 1 (i) or Assumption 2 (i) hold. Assume $||z^k - x^*||^2 \le \frac{A_M \mu^2}{4H^2 B_M}$ and $\mathcal{H}^k \le ||z^k - x^*||^2$ $\frac{A_{\rm M}\mu^2}{16N_{\rm B}R^2B_{\rm M}}$ for $k\geq 0$. Thenxfor $k\geq 0$ we have

$$\mathbb{E}[\Phi_1^k] \le \left(1 - \frac{\min\{A_{\mathcal{M}}, p\}}{2}\right)^k \Phi_1^0.$$

Superlinear convergence of BL1: Let $\eta = 1, \xi^k \equiv 1$ and $\mathcal{Q}^k(x) \equiv x$ for any $x \in \mathbb{R}^d$ and $k \geq 0$. Let Assumption 5 hold. Let Assumption 3 (i) or Assumption 4 (i) hold. Assume $||z^k - x^*||^2 \le \frac{A_{\rm M}\mu^2}{4H^2B_{\rm M}}$ and $\mathcal{H}^k \le \frac{A_{\rm M}\mu^2}{16N_{\rm B}R^2B_{\rm M}}$ for $k \geq 0$. Then we have

$$\mathbb{E}[\Phi_2^k] \le \theta_1^k \Phi_2^0,$$

$$\mathbb{E}\left[\frac{\|x^{k+1}-x^*\|^2}{\|x^k-x^*\|^2}\right] \le \theta_1^k \left(\frac{A_{\mathrm{M}}H^2}{8BM_1^2\mu^2} + \frac{2N_{\mathrm{B}}R^2}{\mu^2}\right) \Phi_2^0,$$

for
$$k \geq 0$$
, where $\theta_1 \stackrel{\text{def}}{=} \left(1 - \frac{\min\{4A, A_{\text{M}}\}}{4}\right)$.

Algorithm

• $[\mathbf{A}]_s = (\mathbf{A} + \mathbf{A}^{\mathsf{T}})/2 \text{ for any } \mathbf{A} \in \mathbb{R}^{d \times d}.$

Algorithm 2: Basis Learn with Bidirectional Compression and Partial Participation (BL2)

Parameters: $\alpha > 0$; $\eta > 0$; matrix compression operators $\{\mathcal{C}_1^k, \dots, \mathcal{C}_n^k\}$; $p \in (0,1]; 0 < \tau \le n$

Initialization: $w_i^0 = z_i^0 = x^0 \in \mathbb{R}^d$; $\mathbf{L}_i^0 \in \mathbb{R}^{d \times d}$; $\mathbf{H}_i^0 = \sum_{jl} (\mathbf{L}_i^0)_{jl} \mathbf{B}_i^{jl}$; $l_i^0 = \|[\mathbf{H}_i^0]_s - \nabla^2 f_i(w_i^0)\|_{F}; g_i^0 = ([\mathbf{H}_i^0]_s + l_i^0 \mathbf{I}) w_i^0 - \nabla f_i(w_i^0); \text{ Moreover:}$ $\mathbf{H}^0 = \frac{1}{n} \sum_{i=1}^n \mathbf{H}_i^0; \ l^0 = \frac{1}{n} \sum_{i=1}^n l_i^0; \ g^0 = \frac{1}{n} \sum_{i=1}^n g_i^0$

on server $x^{k+1} = ([\mathbf{H}^k]_s + l^k \mathbf{I})^{-1} g^k$, choose a subset $S^k \subseteq [n]$ such that

 $\mathbb{P}[i \in S^k] = \tau/n \text{ for all } i \in [n]$ $v_i^k = \mathcal{Q}_i^k(x^{k+1} - z_i^k), z_i^{k+1} = z_i^k + \eta v_i^k \text{ for } i \in S^k$ $z_i^{k+1} = z_i^k, \quad w_i^{k+1} = w_i^k \text{ for } i \notin S^k$

Send v_i^k to the selected devices $i \in S^k$

for each device i = 1, ..., n in parallel do

for participating devices $i \in S^k$ do $z_i^{k+1} = z_i^k + \eta v_i^k, \, \mathbf{S}_i^k \stackrel{\text{def}}{=} \mathcal{C}_i^k (h^i(\nabla^2 f_i(z_i^{k+1})) - \mathbf{L}_i^k)$

 $\mathbf{L}_i^{k+1} = \mathbf{L}_i^k + \alpha \mathbf{S}_i^k, \, \mathbf{H}_i^{k+1} = \mathbf{H}_i^k + \alpha \sum_{jl} (\mathbf{S}_i^k)_{jl} \mathbf{B}_i^{jl}$

 $l_i^{k+1} = \|[\mathbf{H}_i^{k+1}]_s - \nabla^2 f_i(z_i^{k+1})\|_{\mathrm{F}}$

 $l^{k+1} = l^k + \frac{1}{n} \sum_{i \in S^k} \left(l_i^{k+1} - l_i^k \right)$

Sample $\xi_i^{k+1} \sim \text{Bernoulli}(p)$

 $w_i^{k+1} = z_i^{k+1}, g_i^{k+1} = ([\mathbf{H}_i^{k+1}]_s + l_i^{k+1}\mathbf{I})w_i^{k+1} - \nabla f_i(w_i^{k+1}), \text{ send}$

 $w_i^{k+1} = w_i^k, g_i^{k+1} = ([\mathbf{H}_i^{k+1}]_s + l_i^{k+1}\mathbf{I})w_i^{k+1} - \nabla f_i(w_i^{k+1})$ Send \mathbf{S}_{i}^{k} , $l_{i}^{k+1} - l_{i}^{k}$, and ξ_{i}^{k} to server

for non-participating devices $i \notin S^k$ do

 $z_i^{k+1} = z_i^k, \ w_i^{k+1} = w_i^k, \ \mathbf{L}_i^{k+1} = \mathbf{L}_i^k, \ \mathbf{H}_i^{k+1} = \mathbf{H}_i^k, \ l_i^{k+1} = l_i^k, \ g_i^{k+1} = g_i^k$ end

on server

$$w_{i}^{k+1} = z_{i}^{k+1}, \text{ receive } g_{i}^{k+1} - g_{i}^{k}$$

$$\mathbf{if } \xi_{i}^{k} = 0$$

$$w_{i}^{k+1} = w_{i}^{k}, g_{i}^{k+1} - g_{i}^{k} = \alpha \left[\sum_{jl} (\mathbf{S}_{i}^{k})_{jl} \mathbf{B}_{i}^{jl} \right]_{s} w_{i}^{k+1} + (l_{i}^{k+1} - l_{i}^{k}) w_{i}^{k+1}$$

$$g^{k+1} = g^{k} + \frac{1}{n} \sum_{i \in S^{k}} \left(g_{i}^{k+1} - g_{i}^{k} \right)$$

$$\mathbf{H}^{k+1} = \mathbf{H}^{k} + \frac{\alpha}{n} \sum_{i \in S^{k}} \sum_{jl} (\mathbf{S}_{i}^{k})_{jl} \mathbf{B}_{i}^{jl}$$

Convergence Result

Let $\Phi_3^k \stackrel{\text{def}}{=} \mathcal{W}^k + \frac{2p}{A_M} \left(1 - \frac{\tau A_M}{n}\right) \mathcal{Z}^k$, where $\mathcal{Z}^k \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n ||z_i^k - x^*||^2$, for $k \geq 0$. Linear convergence of BL2: Let Assumption 5 hold. Let Assumption 1 (i) or Assumption 2 (i) hold. Assume $||z_i^k - x^*||^2 \le \frac{A_M \mu^2}{(6H^2 + 24H_1^2)B_M}$ and $\mathcal{H}^k \leq \frac{A_{\mathrm{M}}\mu^2}{96N_{\mathrm{B}}R^2B_{\mathrm{M}}}$ for all $i \in [n]$ and $k \geq 0$. Then for $k \geq 0$

$$\mathbb{E}[\Phi_3^k] \le \left(1 - \frac{\tau \min\{p, A_{\mathrm{M}}\}}{2n}\right)^k \Phi_3^0.$$

Superlinear convergence of BL2: Define $\Phi_4^k \stackrel{\text{def}}{=} \mathcal{H}^k + \frac{4BM_1^2}{A_M} ||x^k - x^*||^2$ for $k \geq 0$. Let $\eta = 1$, $\xi^k \equiv 1$, $S^k \equiv [n]$, and $\mathcal{Q}_i^k(x) \equiv x$ for any $x \in \mathbb{R}^d$ and $k \geq 0$. Let Assumption 5 hold. Let Assumption 3 (i) or Assumption 4 (i) hold. Assume $||z_i^k - x^*||^2 \le \frac{A_M \mu^2}{(6H^2 + 24H_1^2)B_M}$ and $\mathcal{H}^k \le \frac{A_M \mu^2}{96N_B R^2 B_M}$ for all $i \in [n]$ and $k \geq 0$. Then we have $\mathbb{E}[\Phi_4^k] \le \theta_2^k \Phi_4^0,$

$$\mathbb{E}\left[\Phi_{4}^{k}\right] \leq \theta_{2}^{k}\Phi_{4}^{0},$$

$$\mathbb{E}\left[\frac{\|x^{k+1}-x^{*}\|^{2}}{\|x^{k}-x^{*}\|^{2}}\right] \leq \theta_{2}^{k}\left(\frac{A_{M}(3H^{2}+12H_{1}^{2})}{16BM_{1}^{2}\mu^{2}} + \frac{12N_{B}R^{2}}{\mu^{2}}\right)\Phi_{4}^{0},$$
for $k \geq 0$, where $\theta_{2} \stackrel{\text{def}}{=} \left(1 - \frac{\min\{2A, A_{M}\}}{2}\right)$.

Numerical Results

I. BL1 vs N0 vs FedNL vs NL1 vs DINGO

2. BL1 vs DIANA vs ADIANA vs GD vs S-Local-GD

3. ECLK vs ADIANA

