Véletlen fizikai folyamatok, hatodik házi feladat

Horváth Bendegúz

2018. március 23.

1. feladat

A feladat szövege

Lokalizált mágneses momentum (μ) z-tengely irányú B mágneses térben van. A mágneses momentum (μ) a tér irányában $\pm \mu B$ értéket vehet fel, s ezekben az állapotokban energiája $\mp \mu BB$. A mágneses momentum T hőmérsékletű könyezettel van egyensúlyban, s kölcsönhatás eredményeképpen μ billeg a $-\mu B$ és $+\mu B$ állapotok között $(-\mu B \leftrightarrow +\mu B)$.

- (i) Írjuk fel a folyamat master egyenletét!
- (ii) Válasszunk olyan átmeneti rátákat, amelyek kielégítik a részletes egyensúly elvét!
- (iii) Határozzuk meg az átlagos mágneses momentum $\langle \mu(t) \rangle$ időfejlődését, ha kezdetben (t
- = 0) a mágneses momentum a z-tengely pozitív irányába mutatott.

A feladat mgoldása

2. feladat

A feladat szövege

Legyen egy egész értékeket felvevő stochasztikus vátozó, n, momentum-generátor fuüggvénye G(s). A normalizációból következik, hogy G(0) = 1, s n momentumai G deriváltján keresztül kifejezhetők:

$$\langle n \rangle = -\frac{dG(s)}{ds}\Big|_{s=0}$$
 , ..., $\langle n^k \rangle = (-1)^k \frac{d^k G(s)}{ds^k}\Big|_{s=0}$

A kumuláns generátor függvény a momentum-generáor függvény logaritmusa,

$$\Phi(s) = \ln G(s)$$