

Radar Signal Processing Mastery

Theory and Hands-On Applications with mmWave MIMO Radar Sensors

Date: 7-11 October 2024

Time: 9:00AM-11:00AM ET (New York Time)

Mohammad Alaee-Kerahroodi

Research scientist

SnT, University of Luxembourg

Email: Mohammad.alaee@uni.lu

Website: https://radarmimo.com/

Outline

Time: 9:00AM-11:00AM ET (New York Time)

Lecture	Duration	Date
Lecture 1: Radar Systems Fundamental	2 Hours	October 7 th , 2024
Lecture 2: Advanced Radar Systems	2 Hours	October 8 th , 2024
Lecture 3: Practical Radar Signal Processing - Motion Detection	2 Hours	October 9 th , 2024
Lecture 4: Practical Radar Signal Processing - Breathing and Heart Rate Estimation	2 Hours	October 10 th , 2024
Lecture 5: Practical Radar Signal Processing – Angle estimation with MIMO radar	2 Hours	October 11 th , 2024

What we learn in Lecture 4

- **Review of FMCW Radars main parameters**
- **Getting started with BGT60TR13C**
- Radar-based breathing and heart rate estimation
- Real-time data measurement
- Signal processing

Scan the QR code for access to the codes

Range Resolution

$$f_{IF} = S \frac{2R}{c}$$

$$\Delta f_{IF} > \frac{1}{T_c}$$

$$\Delta S \frac{2\Delta R}{c} > \frac{1}{T_c} \implies \Delta R > \frac{c}{2ST_c} = \frac{c}{2B}$$

Some typical Range Resolution numbers

Bandwidth	Range Resolution
4GHz	3.75cm
2GHz	7.5cm
1GHz	15cm
600MHz	25cm

FMCW Radar – Main Parameters

Unambiguous Range

$$R_{un} \le \frac{cT_p}{2} = \frac{c}{2f_p}$$

Maximum Range

$$R_{max} = \frac{cf_{IF_{max}}}{2S}$$

Maximum Doppler

$$f_{d_{max}} < \frac{1}{2T_p} = \frac{f_p}{2}$$

Range Resolution

$$\Delta R = \frac{c}{2ST_c} = \frac{c}{2B}$$

$$f_{IF_{max}} < 0.9 \, f_{\scriptscriptstyle S} \,$$
 Complex ADC $f_{IF_{max}} < 0.45 \, f_{\scriptscriptstyle S} \,$ Real ADC

$$f_{IF_{max}} < 0.45 f_{s}$$
 Real ADC

Doppler Resolution

$$\Delta f_d = \frac{1}{T_{CPI}}$$

Infineon DEMO BGT60TR13C

Product	Description	
BGT60LTR11AIP	XENSIV™ 60 GHz first completely autonomous radar sensor for motion sensing	
BGT60LTR11SAIP	XENSIV™ 60 GHz first completely autonomous radar sensor for motion sensing	
DEMO BGT60LTR11AIP	XENSIV™ BGT60LTR11AIP 60 GHz radar sensor pulsed Doppler demo board	
SHIELD_AUTONOM_BGT60	Shield for autonomous operation of BGT60LTR11AIP; directly fits on Arduino MKR board	
REF BGT60LTR11AIP M0	Reference design with Cortex®-M0 MCU for data processing	
S2GO RADAR BGT60LTR11	Shield2Go version	
DCTCOTD43C	VENCIVIM CO CUI madan concentra administra	
DEMO BGT60TR13C	XENSIV™ 60 GHz radar sensor demo board for advanced sensing	
DOTOUDINITAIP	ALIVOIV HIGHLY HILEGIALEU OU OHZ FIVICIV TAUAL SEHSOL	
DEMO BGT60UTR11AIP	XENSIV™ BGT60UTR11AIP 60 GHz radar sensor FMCW demo boar	

Infineon DEMO BGT60TR13C

BGT60TR13C MMIC

BGT60TR13C Shield

DEMO BGT60TR13C

- = Radar Baseboard MCU7
- + BGT60TR13C Shield

XENSIV™ 60GHz Radar Sensors - BGT60TR13C

Parametrics	DEMO BGT60TR13C
Angle of Arrival	Yes
Antenna	Antennas in package
Direction of Motion	Yes
Frequency min max	58 GHz 63.5 GHz
Max Detection Range	15 m
Min Detection Range	0.2 m
Motion	yes
Number of Rx Antennas max	3
Number of Tx Antennas max	1
Target Application	Automated door openers; Contactless switches; Displays such as TVs; Lighting systems and lighting control (mainly indoor lighting); Multicopter and drones; Smart Home devices; Smart home security and alarm systems including IP cameras; laptops or tablets

Tools for XENSIV™ 60GHz Radar Sensors

Radar Fusion GUI

Radar Development Kit

Releases

Quickstart

Software

Hardware

Documentation

Software

Radar Software Development Kit (SDK)

radar_sdk.zip

The Radar SDK is used to evaluate the following XENSIV™ Radar sensors.:

- FMCW Radars
 - o BGT60 UTR11AIP
 - o BGT60 TR13C
 - o BGT60 ATR24C
- Doppler Radars
 - BGT60 LTR11AIP

ifxradarsdk-3.5.0+8c595dbb-py3-none-linux_armv7l.whl
ifxradarsdk-3.5.0+8c595dbb-py3-none-linux_x86_64.whl
ifxradarsdk-3.5.0+8c595dbb-py3-none-macosx_10_14_universal2.whl
ifxradarsdk-3.5.0+8c595dbb-py3-none-win_amd64.whl

cd C:\path\to\your\whl\file

pip install ifxradarsdk-3.5.0+8c595dbb-py3-nonewin_amd64.whl

Radar SDK allows users to configure and fetch raw data from above mentioned XENSIV™ radar sensors using C/C++, Python and Matlab programming languages. In addition, it contains sophisticated propriety algorithms to solve target detection and localization use-cases, and some useful tools to e.g. data recording and flash firmware etc.

Python Examples

Society*

Vital Signs Monitoring with DEMO BGT60TR13C

Vital Signs Monitoring with DEMO BGT60TR13C

What we learned from Lecture 4

• In Lecture 4 we used BGT60TR13C to capture real data and processed it to extract vital signs of human. Different signal processing techniques to this end has been applied in real-time operation.

Scan the QR code for access to the codes

Using a FMCW radar, how angle estimation can help to improve the performance?

