题目	时间限制 ms	内存限制 mb	代码名	输入	输出	
歌手	1000	128	singer	singer.in	singer.out	
推销员	1000	128	salesman	salesman.in	salesman.out	
力气	1000	128	liqi	liqi.in	liqi.out	
比赛	1000	128	game	game.in	game.out	

1 歌手

【题目描述】

新的一期《歌手当打之年》播出啦,竞演的歌手中,徐佳莹是小明最喜欢的 歌手,小明想学一些徐佳莹的歌曲来支持她。但是小明并不像 AP 学长一样,能够无视歌曲难度,随便张口就是天籁之音。他得先确定一首歌的难度,才能确定这首歌自己到底能不能驾驭。小明将一首歌的所有音调用一个正整数表示,并定义一首歌的难度为所有相邻音调变化幅度之和。如一首歌的音调为 5,13,12。则这首歌的难度为 |5-13|+|13-12|=9。现在小明想学一首新歌,他想知道这首歌的难度,你可以帮帮他吗?

注:|x| 符号为绝对值符号,示例 |A-B| 的值在 A>B 时为 A-B,在 A<B 时为 B-A,当 A=B 时,为 0。

【输入格式】

首先输入一个 N,表示某一首歌曲音调的数量 接下来一行有 N 个正整数,每个正整数均小于 1000,表示每个音调的高低

【输出格式】

输出一行一个整数表示答案

【输入样例】

3 5 13 12

【输出样例】

9

【数据范围】

对于 100% 的数据,有 N < 100000

2推销员

【题目描述】

阿明是一名推销员,他奉命到螺丝街推销他们公司的产品。螺丝街是一条死胡同,出口与入口是同一个,街道的一侧是围墙,另一侧是住户。螺丝街一共有N家住户,第 i 家住户到入口的距离为Si 米。由于同一栋房子里可以有多家住户,所以可能有多家住户与入口的距离相等。阿明会从入口进入,依次向螺丝街的X家住户推销产品,然后再原路走出去。阿明每走1米就会积累1点疲劳值,向第 i 家住户推销产品会积累 Ai 点疲劳值。阿明是工作狂,他想知道,对于不同的X,在不走多余的路的前提下,他最多可以积累多少点疲劳值。

【输入格式】

第一行有一个正整数 N,表示螺丝街住户的数量。接下来的一行有 N 个正整数,其中第 i 个整数 Si 表示第 i 家住户到入口的距离。数据保证S1 \le S2 \le ··· \le Sn<10 $^$ 8。接下来的一行有 N 个正整数,其中第 i 个整数 Ai 表示向第 i 户住户推销产品会积累的疲劳值。数据保证 Ai<1000。

【输出格式】

输出N行,每行一个正整数,第i行整数表示当X=i时,阿明最多积累的疲劳值。

【输入样例】1

```
5
1 2 3 4 5
1 2 3 4 5
```

【输出样例】1

【输入样例】2

```
5
1 2 2 4 5
5 4 3 4 1
```

【输出样例】2

12			
12 17			
21 24 27			
24			
27			

【输入输出样例说明】

样例1解释说明

- X=1: 向住户5推销,往返走路的疲劳值为5+5,推销的疲劳值为5,总疲劳值为15。
- X=2: 向住户 4,5 推销,往返走路的疲劳值为 5+5,推销的疲劳值为 4+5,总疲劳值为 5+5+4+5=19。
- X=3: 向住户 3,4,5 推销, 往返走路的疲劳值为 5+5, 推销的疲劳值 3+4+5, 总疲劳值为 5+5+3+4+5=22。
- X=4: 向住户 2,3,4,5 推销, 往返走路的疲劳值为 5+5, 推销的疲劳值 2+3+4+5, 总疲劳值 5+5+2+3+4+5=24。
- X=5: 向住户 1,2,3,4,5 推销, 往返走路的疲劳值为 5+5, 推销的疲劳值 1+2+3+4+5, 总疲劳值 5+5+1+2+3+4+5=25。

样例2解释说明

- X=1:向住户4推销,往返走路的疲劳值为4+4,推销的疲劳值为4,总疲劳值4+4+4=12。
- X=2:向住户1,4推销,往返走路的疲劳值为4+4,推销的疲劳值为5+4,总疲劳值4+4+5+4=17。
- X=3:向住户1,2,4推销,往返走路的疲劳值为4+4,推销的疲劳值为5+4+4,总疲劳值4+4+5+4+21。

• X=4: 向住户 1,2,3,4 推销,往返走路的疲劳值为 4+4,推销的疲劳值为 5+4+3+4,总疲劳值 4+4+5+4+3+4=24。或者向住户 1,2,4,5 推销,往返走路的疲劳值为 5+5,推销的疲劳值为 5+4+4+1,总 疲劳值 5+5+5+4+4+1=24。

• X=5:向住户1,2,3,4,5推销,往返走路的疲劳值为5+5,推销的疲劳值为5+4+3+4+1,

【数据范围】

- 对于 20% 的数据, 1≤N≤20;
- 对于 40% 的数据, 1≤N≤100;
- 对于 60% 的数据, 1≤N≤1000;
- 对于 100% 的数据, 1≤N≤100000。

3 力气

【题目描述】

小明在夺得 NOI 金牌之后,顺利保送 Tsinghua University。这一天,小明问长者:"我虽然已经保送了,但我的志向是为国家健康工作五十年。请问我应该怎样变得更有力气?"

长者回答: "你啊, Too Young Too Simple, Sometimes Naive! 如果你想要我教 你, 你要先进行艰苦的修行。"

长者的住宅中有一堵长度为 n 的墙。每天小明起床修行,会选择一段长度为 x 的区间染成白色。长者的住宅附近有一群香港记者,为了借助小明拜访长者,第 i 天香港记者会将区间 [li, ri] 染成白色来讨好抖儿(也就是说,每天墙会被小明和香港记者各染一次)。现在小明已经预先知道了香港记者的动向,他想知道他最少几天就能把墙全部染白,完成修行。

【输入格式】

第一行三个整数 n, m, x,分别表示墙的长度,天数和区间的长度。接下来 m 行,每行两个整数 li、ri,表示香港记者在第 i 天会将区间 [li, ri] 染成白色。

输出仅一行为一个整数,表示小明最少几天能把墙全部染白。如果 m 天之后依然无法染白,则输出"Poor Douer!"

【输出格式】

输出共一行,表示比例总数。

【输入样例】

10 3 3 2 5

4 8

9 10

【输出样例】

2

【说明】

第一天小明刷墙的区间为[1,3];第二天抖儿刷墙的区间为[8,10]。

【数据范围】

测试点编号	n	m	х
1	n≤10	m≤1	0 <x<=n< td=""></x<=n<>
2	n≤10	m≤10	0 <x<=n< td=""></x<=n<>
3	n≤100	m≤100	0 <x<=n< td=""></x<=n<>
4	n≤1000	m≤1000	0 <x<=n< td=""></x<=n<>
5	n≤10000	m≤10000	0 <x<=n< td=""></x<=n<>
6	n≤100000	m≤10^5	x=0
7	n≤10^18	m≤10^5	x=0
8	n≤10^18	m≤10^5	0 <x<=n< td=""></x<=n<>
9	n≤10^18	m≤10^5	0 <x<=n< td=""></x<=n<>

测试点编号	n	m	х
10	n≤10^18	m≤10^5	0 <x<=n< td=""></x<=n<>

4 比赛

【题目描述】

小米的 N 个小伙伴最近参加了场象棋比赛。在赛场上,小伙伴们按 1~N 依 次编号。每个小伙伴的下象棋的水平有强有弱,并且没有哪两个小伙伴的下棋能 力是相同的,也就是说,小伙伴的下棋能力有明确的排名。整个比赛被分成了 若干轮,每一轮是两个指定编号的小伙伴的对决。如果编号为 A 的小伙伴的下 棋能力强于编号为 B 的小伙伴 $(1 \le A \le N, 1 \le B \le N, A! = B)$,那么她们的对决中,编号为 A 的小伙伴总是能胜出。小米想知道小伙伴们下棋能力的具 体排名,于是他找来了小伙伴们所有 M 轮比赛的结果,希望你能根据这些信息,推断出尽可能多的小伙伴的下棋能力排名。比赛结果保证不会自相矛盾。

【输入格式】

- 第1行: 2个用空格隔开的整数: N和M
- 第 2..M+1 行: 每行为 2 个用空格隔开的整数 A、B,描述了参加某一轮比赛的小伙伴的编号,以及结果 (每行的第一个数的小伙伴为胜者)

【输出格式】

第1行: 输出1个整数,表示排名可以确定的小伙伴的数目。

【输入样例】

【输出样例】

2

【说明/提示】

输出说明: 编号为 2 的小伙伴输给了编号为 1、3、4 的小伙伴,也就是说她的水平比这 3 个小伙伴都差。而编号为 5 的小伙伴又输在了她的手下,也就是说,她的水平比编号为 5 的小伙伴强一些。于是,编号为 2 的小伙伴的排名必然为第 4,编号为 5 的小伙伴的水平必然最差。其他 3 个小伙伴的排名仍无法确定。

【数据规模与约定】

对于 100% 的数据, $1\leqslant N\leqslant 100, 1 leqslant M\leqslant 4500$