

# §2. HÀM PHÂN PHỐI XÁC SUẤT

# 2.1. Định nghĩa

Hàm phân phối xác suất (hay hàm phân phối tích lũy) của biến ngẫu nhiên X, ký hiệu F(x), là xác suất để X nhận *giá trị nhỏ hơn* x với mọi  $x \in \mathbb{R}$ .

Nghĩa là:

$$F(x) = P(X < x), \ \forall x \in \mathbb{R}$$
.

# Nhận xét 1

Nếu biến ngẫu nhiên X là rời rạc với phân phối xác suất  $P(X=x_i)=p_i$  thì:

$$F(x) = \sum_{x_i < x} p_i$$

• Nếu biến ngẫu nhiên X là liên tục với hàm mật độ f(x) thì:



$$F(x) = \int_{-\infty}^{x} f(t)dt.$$



## Nhận xét 2

 $\bullet$  Giả sử BNN rời rạc Xnhận các giá trị trong  $[x_1;\,x_n]$  và

$$x_1 < x_2 < ... < x_n, P(X = x_i) = p_i \ (i = 1, 2, ..., n).$$





## Chứng minh:

• 
$$x \le x_1$$
:  $F(x) = P(X < x) = P(X < x_1) = P(\phi) = 0$ .

• 
$$x_1 < x \le x_2$$
:  $F(x) = P(X < x_2) = P(X = x_1) = p_1$ .

• 
$$x_2 < x \le x_3$$
:  $F(x) = P(X < x_3)$  
$$= P(X = x_1) + P(X = x_2) = p_1 + p_2.$$

1111

• 
$$x > x_n$$
:  $F(x) = P(X \le x_n)$   
=  $P(X = x_1) + ... + P(X = x_n)$   
=  $p_1 + ... + p_n = 1$ .

• Giả sử BNN liên tục X có hàm mật độ

$$f(x) = \begin{cases} \varphi(x), & x \in [a; b] \\ 0, & x \notin [a; b]. \end{cases}$$

Ta có hàm phân phối của X là:

$$F(x) = \begin{cases} 0 & \text{khi } x \leq a \\ \int_{x}^{x} \varphi(t)dt & \text{khi } a < x \leq b \\ 1 & \text{khi } b < x. \end{cases}$$

• Giả sử BNN liên tục X có hàm mật độ

$$f(x) = \begin{cases} 0, & x < a \\ \varphi(x), & x \ge a. \end{cases}$$

Ta có hàm phân phối của X là:

$$F(x) = \begin{cases} 0 & \text{khi } x \le a \\ \int_{a}^{x} \varphi(t)dt & \text{khi } x > a. \end{cases}$$

**VD 1.** Cho BNN X có bảng phân phối xác suất là:

| X | -2  | 1   | 3   | 4   |
|---|-----|-----|-----|-----|
| P | 0,1 | 0,2 | 0,2 | 0,5 |

Hãy lập hàm phân phối của X và vẽ đồ thị của F(x)? **Giải.** Hàm phân phối của X là:

$$F(x) = \begin{cases} 0 & \text{khi} & x \le -2 \\ 0,1 & \text{khi} & -2 < x \le 1 \\ 0,3 & \text{khi} & 1 < x \le 3 \\ 0,5 & \text{khi} & 3 < x \le 4 \\ 1 & \text{khi} & 4 < x. \end{cases}$$

2. Biến ngẫu nhiên



## YD 2. Cho BNN X có hàm mật độ là:

$$f(x) = \begin{cases} 0, & x \notin [0; 1] \\ 3x^2, & x \in [0; 1]. \end{cases}$$

Tìm hàm phân phối của X và vẽ đồ thị của F(x)?

# Giải. Hàm phân phối của X là:

$$F(x) = \begin{cases} 0, & x \le 0 \\ \int_{x}^{x} 3t^{2} dt, & 0 < x \le 1 \\ 0, & x \le 0 \\ x^{3}, & 0 < x \le 1 \\ 1, & 1 < x. \end{cases}$$



2. Biến ngẫu nhiên



## $\overline{\mathbf{VD}}$ 3. Cho BNN X có hàm mật độ là:

$$f(x) = \begin{cases} 0, & x < 100\\ \frac{100}{x^2}, & x \ge 100. \end{cases}$$

Tìm hàm phân phối F(x) của X?

# **Giải.** Hàm phân phối F(x) của X là:

$$F(x) = \begin{cases} 0, & x \le 100 \\ 100 \int_{100}^{x} \frac{dt}{t^2}, & x > 100 \end{cases} = \begin{cases} 0, & x \le 100 \\ \frac{x - 100}{x}, & x > 100 \end{cases}$$

# 2.2. Tính chất của hàm phân phối xác suất

- 1) Hàm F(x) xác định với mọi  $x \in \mathbb{R}$ .
- 2)  $0 \le F(x) \le 1, \forall x \in \mathbb{R}; F(-\infty) = 0; F(+\infty) = 1.$
- 3) F(x) không giảm và liên tục phải tại mọi  $x \in \mathbb{R}$ .
- 4)  $P(a \le X < b) = F(b) F(a)$ .

#### Charma 2.

#### 2. Biến ngẫu nhiên

# Đặc biệt

• Nếu X là BNN rời rạc thì:

$$p_{i} = F(x_{i+1}) - F(x_{i}), \forall i.$$

• Nếu X là BNN liên tục thì:

$$P(a \le X \le b) = P(a \le X < b) = P(a < X \le b)$$
  
=  $P(a < X < b) = F(b) - F(a)$ .

• Nếu X là BNN liên tục có hàm mật độ f(x) thì:

$$F'(x) = f(x).$$

**VD 4.** Tính xác suất  $P(X \ge 400)$  trong VD 3?

$$P(X \ge 400) = P(400 \le X < +\infty)$$

$$= F(+\infty) - F(400) = 1 - \frac{3}{4} = \frac{1}{4}.$$

## $\overline{\mathbf{VD}}$ 5. Cho BNN X có hàm mật độ

$$f(x) = \frac{1}{28} \begin{cases} 3x^2, & x \in [-1; 3] \\ 0, & x \notin [-1; 3]. \end{cases}$$

Hàm phân phối xác suất của X là:

A. 
$$F(x) = \begin{cases} 0, & x \le -1 \\ \frac{x^3}{28}, -1 < x \le 3 \\ 1, & 3 < x. \end{cases}$$
 B.  $F(x) = \begin{cases} 0, & x < -1 \\ \frac{x^3}{28}, -1 \le x < 3 \\ 1, & 3 \le x. \end{cases}$ 

C. 
$$F(x) = \begin{cases} 0, & x < -1 \\ \frac{x^3}{28} + \frac{1}{28}, -1 \le x < 3 \\ 1, & 3 \le x. \end{cases}$$
 D.  $F(x) = \begin{cases} 0, & x \le -1 \\ \frac{x^3}{28} + \frac{1}{28}, -1 < x \le 3 \\ 1, & 3 < x. \end{cases}$ 

**VD 6.** Cho BNN X có hàm phân phối xác suất:

$$F(x) = \begin{cases} 0, & x \le -2 \\ ax^3 + 2b, & x \in (-2; 3]. \\ 1, & x > 3. \end{cases}$$

- 1) Tìm các hằng số a và b?
- 2) Tính  $P(\sqrt{2} < Y \le \sqrt{5})$  với  $Y = \sqrt{X^2 + 1}$ .

## Giải

1) Do F(x) liên tục bên phải tại mọi  $x \in \mathbb{R}$ , nên:

$$\lim_{x \to -2^{+}} F(x) = F(-2) \Rightarrow -8a + 2b = 0 (1),$$

$$\lim_{x \to 3^{+}} F(x) = F(3) \Rightarrow 27a + 2b = 1 \quad (2).$$

Từ (1) và (2) ta có: 
$$a = \frac{1}{35}$$
 và  $b = \frac{4}{35}$ .

2) 
$$P(\sqrt{2} < Y \le \sqrt{5}) = P(\sqrt{2} < \sqrt{X^2 + 1} \le \sqrt{5})$$
  
=  $P(-2 \le X < -1) + P(1 < X \le 2)$ 

$$= F(-1) - F(-2) + F(2) - F(1) = \frac{14}{35}.$$

.....