Кучи. Задачи

Булгаков Илья, Гусев Илья

Московский физико-технический институт

Москва, 2023

Содержание

🕕 Задачи

Определите количество вершин на глубине k в биномиальном дереве порядка n.

Задача 1 (Решение)

Определите количество вершин на глубине k в биномиальном дереве порядка n.

Решение:

 \circ C_n^k

За сколько работал бы в биномиальной куче siftDown?

Задача 2 (Решение)

За сколько работал бы в биномиальной куче siftDown?

Решение:

• В худшем случае за $\Omega(\log_2 n)$, поскольку текущее значение нужно сравнивать со всеми детьми, которых может быть вплоть до $\log n$.

Вместо бинарной (двоичной) кучи можно рассматривать k-ичные кучи. В них каждая вершина (кроме листьев и, возможно, ещё одной вершины) имеет ровно k детей. Покажите, как в такой куче можно реализовать siftUp и siftDown. Реализуйте через них классические операции кучи. За сколько они работают?

Задача 3 (Решение)

Вместо бинарной (двоичной) кучи можно рассматривать k-ичные кучи. В них каждая вершина (кроме листьев и, возможно, ещё одной вершины) имеет ровно k детей. Покажите, как в такой куче можно реализовать siftUp и siftDown. Реализуйте через них классические операции кучи. За сколько они работают?

Решение:

• Процедура siftDown будет работать за $\Theta(k \log_k n)$ в худшем случае, а процедура siftUp — за $\Theta(\log_k n)$.

Пусть к изначально пустой биномиальной куче поступает n запросов типа insert. Докажите, что она обрабатывает их за суммарное время O(n), хотя некоторые запросы требуют $\Omega(\log n)$ операций.

Задача 4 (Решение)

Пусть к изначально пустой биномиальной куче поступает n запросов типа insert. Докажите, что она обрабатывает их за суммарное время O(n), хотя некоторые запросы требуют $\Omega(\log n)$ операций.

Решение:

• Время обработки каждого запроса insert пропорционально длине максимального блока младших единиц в двоичной записи текущего количества элементов.