more >>

Device for exchanging heat used especially for cooling combustion air in IC engines of vehicles has flow units arranged in a two-part profiled housing

Also published as:
🗖 WO2004065874 (A1)
DS2006048759 (A1)
US7571718 (B2)
D JP2006513393 (T)
EP1590615 (A1)
more >>
Cited documents:
DE19902504 (A1)
DE19853455 (A1)
DE10146258 (A1)
DE2206623 (A1)
DE69515474T (T2)

Abstract of DE 10302708 (A1)

Device for exchanging heat has flow units arranged in a two-part profiled housing. A first housing part has a U-shaped profile and a second housing part is closed on he open side of the first housing part. The housing has an inlet and an outlet for the combustion air. The flow units are spaced from each other using a frame.

Data supplied from the esp@cenet database - Worldwide

(10) **DE 103 02 708 A1** 2004.07.29

(12)

Offenlegungsschrift

(21) Aktenzeichen: 103 02 708.4

(22) Anmeldetag: 23.01.2003

(43) Offenlegungstag: 29.07.2004

(71) Anmelder: Behr GmbH & Co. KG. 70469 Stuttgart, DE

(72) Erfinder:

Hendrix, Daniel, 70374 Stuttgart, DE; Moldovan,

Florian, Dipl.-Ing., 70180 Stuttgart, DE

(51) Int Cl.7: F02B 29/04 F28D 7/00, F28D 9/02

(56) Für die Beurteilung der Patentfähigkeit in Betracht zu

ziehende Druckschriften: DE 199 02 504 A1

DE 198 53 455 A1

DE 101 46 258 A1 DE 22 06 623 A

DE 695 15 474 T2 38 81 455

US 31 87 810 EΡ 00 79 217 A2

EΡ 00 36 756 B1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Rechercheantrag gemäß § 43 Abs. 1 Satz 1 PatG ist gestellt.

(54) Bezeichnung: Vorrichtung zum Austausch von Wärme

(57) Zusammenfassung: Die Erfindung bezieht sich auf eine Vorrichtung zum Austauschen von Wärme, insbesondere für die Kühlung der Verbrennungsluft von Verbrennungskraftmaschinen in Kraftfahrzeugen.

Beschreibung

[0001] Die Erfindung bezieht sich auf eine Vorrichtung zum Austauschen von Wärme, insbesondere für die Kühlung der Verbrennungsluft von Verbrennungskraftmaschinen in Kraftfahrzeugen. Derartige Vorrichtungen zum Austausch von Wärme, welche auch als Ladeluffkühler bezeichnet werden, werden verwendet, um die Verbrennungsluft einer Verbrennungskraftmaschine abzukühlen.

[0002] Dabei wird Verbrennungsluft, welche durch Verdichtung ein höheres Temperaturnivaeu autweist, durch die Vorrichtung geleitet und mit Hilfe eines Kältemitlels, welches ebenfalls durch die Vorrichtung fliesst, abgekünlt. Durch die DE 199 27 607 sind Vorrichtungen bekannt, bei welchen die Verbrennungsluft durch mehrere Rohre durch die Vorrichtung zum Austausch von Wärme geieltet wird und welche eine Zuleitung und eine Abieltung für ein Kältemittel aufweisen, wodurch die Rohre von diesem Kältemittel umströmt werden. Um Abstände zwischen den Rohren zu gewährleisten, durch welche das Kältemittel inludruchfliessen kann, werden beim Stand der Technik die Rohrenden aufgeweitet, so dass die Rohre Jeweils voneinander beabstandet sind.

[0003] Diese Herstellungsweise hat jedoch den Nachteil, dass die einzelnen Rohre sehr genau aufeinander ausgerichtet werden müssen und das Zusammeniöten der Vorrichtung technisch sehr aufwendig ist. Ferner ist bekannt, das Gehäuse derartiger Vorrichtungen zweiteilig auszuführen, etwa in der Art, dass es einen U-förnigen Grundkörper aufweist sowie einen Deckel, der in diesen Grundkörper eingeschoben wird. Diese Vorgehensweise hat jedoch den Nachteil, dass sich der Deckel gegenüber der Grundform verschieben kann, wodurch die Fertigungsgenaußkeit negativ beeinflusst wird.

[0004] Die Aufgabe der vorliegenden Erfindung ist es daher, eine verbesserte Vorrichtung zum Austausch von Wärme zur Verfügung zu stellen, welche insbesondere kostengünstig herstellbar ist.

[0005] Diese Aufgabe wird erfindungsgemäss durch den Gegenstand des Hauptanspruchs 1 gelöst. Vorteilhafte Ausführungsformen sind Gegenstand der Unteransprüche.

[0006] Gegenstand der vorliegenden Erfindung ist eine Norrichtung zum Austusch von Wärme, insbesondere für die Kühlung der Verbrennungsluft von Verbrennungskraftmaschinen in Kraftfahrzeugen, welche wenigstens eine Zuführung und eine Abführung der Verbrennungsluft aufweist. Ferner ist wenigstens eine Strömungseinrichtung für das Kältemittel und wenigstens eine Strömungseinrichtung für das Kältemittel und wenigstens eine Strömungseinrichtung fer die Verbrennungsluft vorgesehen, wobei die Strömungswege der Strömungseinrichtungen eines Kältemittel leis und der Verbrennungsluft voreinander getrennt und die Strömungsrichtungner voneinander getrennt und die Strömungsrichtungen zumindest teilweise verschieden sind.

[0007] Unter einer Strömungseinrichtung wird dabei

eine Einrichtung verstanden, welche das strömende Medium räumlich begrenzt, wie beispielsweise Rohre, insbesondere Flachrohre und dergleichen. Eine Einrichtung kann mehrere Komponenten aufweisen. [0008] Mit dem Begriff Strömungseinrichtung wird darüber hinaus auch der Zwischenraum zwischen zwei Körpern verstanden, der einen Strömungsweg bildet, wenn in diesem Zwischenraum ein Medium fliessen kann. So ist beispielsweise der Bereich zwischen zwei Flachrohren als Strömungseinrichtung anzusehen.

(0009) Unter einem Kälternittel ist allgemein jedes gasförmige oder flüssige Medium zu verstehen, welches eine geringere Temperatur als das zu kühlende Medium, d.h. die Verbrennungsluft aufweist. Als Kälternittel kommt insbesondere Wasser, eventuell mit Zusätzen wie Glykol, insbesondere aus dem Kühlkreislauf, in Betracht, so dass im folgenden anstelle von Kältemittel auch von Wasser die Rede ist.

[0010] Unter dem Strömungsweg eines Mediums ist der Weg innerhalb einer Strömungseinrichtung zu verstehen, den das K\u00e4ltemilitet beispielsweise zwischen der Zuf\u00fchrung und der Abf\u00fchrung innerhalb der Vorrichtung zum K\u00fchlen von Verbrennungsiuft zur\u00e4chen.

[0011] Die Strömungsrichtung ist die Flussrichtung, welche das Medium, das heisst das Kältemittel oder die Verbrennungsluft innerhalb der Strömungseinrichtungen zum Kühlen von Verbrennungsluft, zumindest über einen bestimmten Zeitraum hinweg einnimmt

[0012] Die Erfindung ist ferner dadurch gekennzeichnet, dass die Strömungseinrichtungen in einem wenigstens zweiteiligen profflierten Gehäuse aufgenommen sind, wobei ein erstes Gehäuseteil im Querschnitt eine im wesentlichen U-förmige Grundform aufweist, welche durch ein zweites, im wesentlichen flächiges Gehäuseteil an der offenen Seite des ersten Gehäuseteils geschlossen wird.

[0013] Das Gehäuse der Vorrichtung weist ferner an zwei gegenüberliegenden Seiten wenigstens einen Einlass- und wenigstens einen Auslassflansch für die Verbrennungsluft auf.

[0014] Die Strömungseinrichtungen für die Verbrennungsluft und/oder das Kältemittel werden mittels wenigstens einer Rahmeneinrichtung, welche im Gehäuse aufgenommen ist, in wenigstens einem Bereich voneinander beabstandet gehalten.

[0015] Unter einem zweiteiligen Gehäuse ist zu verstehen, dass das Gehäuse nicht aus einem Grunkkörper hergesteilt wird, sondern zwei separate Teile aufweist, welche miteinander zusammengefügt und insbesondere verbunden werden.

[0016] Unter profiliert ist zu verstehen, dass die Kanten, an welchen die Gehäusstellie aneinandergefügt werden, nicht linear verlaufen, sondern in bestimmter Weise hiervon abweichen. So können beispielsweise in einem Gehäuseteil Kerben oder Nuten vorgesehen sein, in welche Vorsprünge des zweiten Gehäusetells eingreifen. Ferner können auch Vor-

DE 103 02 708 A1 2004.07.29

sprünge in beliebiger geometrischer Form vorgesehen sein, welche in dementsprechende Ausbuchtungen des entsprechenden anderen Gehäuseteils eingreifen.

[0017] Unter einer U-förmigen Grundform werden in der vorliegenden Erfindung solche Formen verstanden, deren Querschnitt im wesentlichen durch ein Rechteck beschrieben werden, bei welchem eine der vier Seiten fehlt. Dabei Können jedoch die einzelnen Ecken auch abgerundet sein oder eine Seite kreisoder eilipsenförmig ausgeführt sein. Auch der Verlauf der einzelnen Seite muss nicht zwangsläufig linear sein

[0018] Der Begriff "U-förmig" in der vorliegenden Erfindung beschreibt auch Gestaltungsformen, bei welchem im Querschnitt der weggelassene Seite eine längere Seite des Rechtecks ist.

[0019] Schliesslich werden auch solche Formen umfasst, welche einen im wesentlichen ellipsenförmigen Querschnitt aufweisen, wobei ein Segment aus dieser Elliose ausgeschnitten ist.

[0020] Unter einem flächigen Gehäuseteil wird ein Gehäuseteil verstanden, welches sich im wesentlichen in zwei Dimensionen erstreckt, das heisst im wesentlichen eine Ebene bildet.

[0021] Unter einer Rahmeneinrichtung im Sinne der vorliegenden Erfindung wird jede Einrichtung verstanden, welche dazu geeignet ist, Strömungseinrichtungen in einem vordefinierten Abstand zueinander zu halten

[0022] In einer bevorzugten Ausführungsform weist wenigstens ein Teil des zweiteiligen Gehäuses die Zuführung und die Abführung für das Kältemittel auf. [0023] Bevorzugt sind die Zuführung und Abführung für das Kältemittel au derselben Seite des Gehäuses angeordnet. Alternativ können die Zuführung und die Abführung für das Kältemittel an verschiedenen, insbesondere gegenüberliegenden Seiten des Gehäuses angeordnet sein. Zuführung wie Abführung können auf gleicher Höhe oder auf unterschiedlicher Höhe ander Gehäusen angeordnet sein.

[0024] In einer Ausführungsform sind die Zuführung und die Abführung für das Kältemittel in der Nähe zweier Ecken der Vorrichtung angeordnet, wobei die Verbindung dieser Ecken die Raumdiagonale der Vorrichtung ist.

[0025] Bevorzugt handelt es sich bei den Strömungseinrichtungen der Verbrennungsluft um Flachrohre. Unter einem Flachrohr ist dabei ein Rohr zu verstehen, welches eine bestimmte Breite autweist, und eine gegenüber dieser Breite geringe Höhe. Diese Flachrohre können einen rechteckigen, ellipsenförmigen oder ähnlichen Querschnitt aufweisen. Bevorzugt werden die Flachrohre der Strömungseinrichtung der Verbrennungsluft im wesentlichen paraliel zueinander angeordnet.

[0026] Bevorzugt weist die Strömungseinrichtung des Kältemittels Turbulenzeinrichtungen, wie beispielsweise Turbulenzgitter oder Platten, strukturierte Oberflächen, Turbulenzgeneratoren usw. auf.

[0027] Unter strukturierten Oberflächen wird dabei verstanden, dass die Oberflächen nicht glatt sind, sondern Vorsprünge, Rillen, Fahnen oder ähnliche Einrichtungen, welche die Turbulenz des daran vorberfliessenden Mediums erhöhen, aufweisen und somit den Wärmeübergang zwischen Wand und Medium verbessern.

[0028] Bevorzugt weist die Strömungseinrichtung des Kältemittels Trennelnemen auf, die wenigstens einen vorbestimmten Strömungsweg für das Kältemittel festlegen. Darunter ist insbesondere aber nicht ausschliesslich zu verstehen, dass das Kältemittel nicht auf dem kürzesten Weg vom Einiass zum Aussas gelangen kann, sondem diese Trennmittel bewirken, dass das Kältemittel im wesentlichen den gesamten Bereich des Gehäuses durchströmt. Auch kann darunter eine sogenannte Zwangsführung verstanden werden.

[0029] Bevorzugt sind die Bauteile der Vorrichtungen, wie beispielsweise die Strömungseinrichtungen, das Gehäuse, die Zir und Abführung für das Kältemittel, der Einlass- und Auslassflansch für die Verbrennungstuft etc. aus wenigstens einem Material hergestellt, welches aus einer Gruppe von Materialien ausgewählt ist, die Metalle wie Aluminium, Eisen, Messing, Kupfer, Titan etc., Metallegierungen wie Aluminiumlegierungen, Eisenlegierung etc., Kunststoffe wie PVC, PU, Duroplasten, faserverstärkte Kunststoffe etc. enthält.

[0030] In der bevorzugten Ausführungsform bildet das erste Gehäuseteil im wesentlichen drei profilierte Seitenflächen eines Quaders, wobei die Ausrichtung der Profilierung einen vorgegebenen Winkel zur Hauptströmungsrichtung der Verbrennungsluft ein-

[0031] Unter einer profilierten Seitenfläche ist wiederum zu verstehen, dass die Seitenfläche keine glatte Fläche ist, sondern vordefinierte Abweichungen von einer glatten Oberfläche aufweist.

[0032] Bevorzugt weist das zweite Gehäuseteil eine an die Profilkontur des ersten Gehäuseteils angepasste Aussenkontur auf. Auf diese Weise wird erreicht, dass das zweite Gehäuseteil genau in durch die Profilierungen des ersten Gehäuseteils vorgegebene Fläche eingebasst werden kann.

[0033] In einer bevorzugten Ausführungsform ist der Einlass- und Auslassfansch wenigstens zweiteilig ausgebildet und schliesst das Gehäuse an zwei gegenliegenden Stirnseiten des Ouader gas- und/oder flüssigkeitsdicht ab. Dabei weist der Einlass- und/oder der Auslassflansch bevorzugt einen tiefgezogenen Grundkörper mit einer Durchführung auf, welche einen vorgegebenen Abstand eines Rohres, insbesondere eines Anschlussrohres, aufnimmt oder in diesen einritt. Zu diesem Zweck kann der Ein- oder Auslassflansch auch eine Erhebung, wie einen Wulst, aufweisen, welcher den Anschluss an ein weiteres Rohr verbessert.

[0034] Bevorzugt ist die Zuführung und die Abführung für das Kältemittel als Durchführung im Gehäu-

se vorgesehen, welche den vorgegebenen Abschnitt eines Rohres, insbesondere eines Anschlussrohres aufnimmt, oder in diesen eintritt. Auch hier können wiederum Erhebungen oder Wulste an der Zuführung vorgesehen sein, welche einen Anschluss an ein Anschlussrohr erleichtem.

[0035] Bevorzugt bilden das zweite Gehäuseteil, das Begrenzungselement und die Flansche einen gas- und/oder flüssigkeitsdichten Abschluss der Stirnseiten des Gehäuses.

[0036] In einer weiteren bevorzugten Ausführungsform sind wenigstens zwei Rahmeneinrichtungen vorgesehen, welche wenigstens die Flachrohre der Stromungseinrichtung der Verbrennungsluft beabstandet halten. Dabei sind die Rahmeneinrichtungen bevorzugt in der Nähe der Enden der Flachrohre angeordnet. Es sind jedoch auch andere Anordnungen der Rahmeneinrichtungen denkbar. Insbesondere ist es denkbar, dass eine Rahmeneinrichtung gleichzeitig als Trenneiement funglert, um zu bewirken, dass das Kältemittel im wesentlichen über den gesamten Innenraum der Kältemitteliströmungseinrichtung verteilt sein kann.

[0037] Bevorzugt handelt es sich bei der Rahmeneinrichtung um eine im wesentlich ebene Platte, weiche eine vorgegebene Zahl an Durchführungen zur Aufnahme der Flachrohre aufweist. Diese Durchführungen weisen einen Querschnitt auf, der im wesentlichen dem Querschnitt der Flachrohre entspricht bzw. geringfügt größser als letzterer ist alletzerer.

[0038] In einer besonders bevorzugten Ausführungsform sind die Rahmeneinrichtung und die Flachrohre gas- und/oder flüssigkeitsdicht miteinander verbunden.

[0039] Bevorzugt ist ferner eine stoff-, kraftund/oder formschlüssige Verbindung zwischen den Bauteillen der Vorrichtung vorgesehen. Dabei können in einer bevorzugten Ausführungsform die Bauteille der Vorrichtung zum Austausch von Wärme durch eine Lötverbindung verbunden sein.

[0040] In einer weiteren bevorzugten Ausführungsform ist die Rähmeneinrichtung eine Platte mit hochgestellten Rändern, welche insbesondere mit wenigstens einem Abschnitt der Innenkontur des Gehäuses verbunden sind. Die Rahmeneinrichtung kann jedoch auch anstelle der hochgestellten Ränder einen durchgezogenen, kantigen oder auch gerundeten Rand aufweisen.

[0041] Die vorliegende Erfindung ist femer auf Verbrennungsmotoren mit einem Abgasturbolader gerichtet, welche mindestens eine Vorrichtung zum Austausch von Wärne gemäss der vorliegenden Erfindung aufweist.

[0042] Die vorliegende Erfindung ist femer auf ein Verfahren zum Austausch von Wärme, insbesondere für die Kühlung von Verbrennungsluft, insbesondere für Ladeluft von Verbrennungskraftmaschinen, gerichtet, wobei in einem ersten Verfahrensschrift Verbrennungsluft mit einer Temperatur T1 in einem ersten Strömungsweg, der erfindungsgemässen Vorrichtung eingeleitet wird, wobei in einem zweiten Verlahrensschritt ein Kältemittel mit einer Temperatur T2 in einem zweiten Strömungsweg der gleichen Vorrichtung eingeleitet wird, es in einem welteren Schritt zu einem Wämeübergang zwischen der Verbrennungsluft und dem Kältemittel kommt, und wobei schliesslich die Verbrennungsluft mit einer Temperatur T3 abgeführt wird, wobei die Temperatur T1 grösser als die Temperatur T3 und die Temperatur T3 grösser als die Temperatur T2 ist.

[0043] Weitere Vorteile und Ausgestaltungen der vorliegenden Erfindung ergeben sich aus den beigefügten Figuren.

[0044] Darin zeigen:

[0045] Fig. 1 einen erfindungsgemässen Wärmetauscher gemäss einer ersten Ausführungsform:

[0046] Fig. 2 eine Detailansicht des erfindungsgemässen Wärmetauschers aus Fig. 1;

[0047] Fig. 3 eine Detailansicht des Wärmetauschers aus den Fig. 1 und 2:

schers aus den Fig. 1 und 2; [0048] Fig. 4 einen erfindungsgemässen Wärmetauscher gemäss einer weiteren Ausführungsform in

zusammengebautem Zustand; [0049] Flg. 5 einen erfindungsgemässen Wärmetauscher aus Flg. 4 in einer teilweisen Explosionsansicht:

[0050] Fig. 6 den erfindungsgemässen Wärmetauscher aus Fig. 4 in einer weiteren Explosionsansicht; [0051] Fig. 7 eine Detailansicht des erfindungsge-

mässen Wärmetauschers aus Fig. 4; [0052] Fig. 8 eine Detailansicht des erfindungsgemässen Wärmetauschers aus den Fig. 4 bis 7:

[0053] **Fig.** 9 einen erfindungsgemässen Wärmetauscher gemäss einer weiteren Ausführungsform in zusammengebautem Zustand;

[0054] **Fig.** 10 der erfindungsgemässe Wärmetauscher nach **Fig.** 9 in einer teilweisen Explosionsansicht;

[0055] Fig. 11 eine Darstellung des Wärmetauschers aus Fig. 10 in einer anderen Perspektive;
[0056] Fig. 12 eine Detailansicht des Wärmetau-

schers aus Fig. 9; und [0057] Fig. 13 eine Detailansicht des Wärmetauschers aus den Fig. 9 bis 12.

[0058] Fig. 1 zeigi einen erfindungsgemässen Wärmetauscher in einer teilweisen Explosionsansicht. Die Bezugszeichen 1a und 1b beziehen sich auf eine Zuführung sowie eine Abführung für ein Kältemittel. [0059] Bei diesem Kältemittel handelt es sich bevorzugt um Wasser, insbesondere Wasser mit Zusatzstoffen, wie beispielsweise Glykol, aus dem Kühlkreislauf. Es können jedoch auch andere Kältemittel, sowohl in einer gasförmigen als auch in einer flüssiqen Phase, vorgesehen sein.

[0060] Die Bezugszeichen 3 und 4 beziehen sich auf eine Zuführung und eine Abführung der Verbrennungsluft, das heisst der zu kühlenden Luft. Die Zuund die Abführung sind in Form von Ein- bzw. Auslassflanschen ausgebildet, welche jeweils mit einer weiteren Zuleitung verbunden werden können. Diese Verbindungen können entweder dadurch zustande kommen, dass ein Rohr mit grösserem Umfang über die Flansche geschoben wird, oder dass ein Rohr mit kleinerem Umfang in die Öffnung eingeschoben wird. Bevorzugt kann an den jeweiligen Flanschen ein Wulst 9 vorgesehen sein, der eine stabilere Verbindung zwischen dem Zuleitungsrohr und dem Flansch ermöglicht.

[0081] Das Bezugszeichen 12 kennzeichnet eine Rahmeneinrichtung, deren Funktion nachfolgend eingehender beschrieben wird. Das Bezugszeichen 6 bezieht sich auf ein Gehäuse für die Vorrichtung zum Austauschen von Wärme. Die Zuführung und Abführung für das Kältemittel sowie die Zuführung und Abführung für das Verbrennungsgas sowie die Deckeleinrichtung 5 und die dieser gegenüberliegende Deckeleinrichtung sind nicht Bestandteil dieses Gehäuses.

[0062] In dieser Ausführungsform besteht das Gehäuse aus seinem ersten Teil 6a, der im wesentlichen eine U-förmige Gestalt ausweist. In Fig. 1 weist die offene Seite dieses U in Richtung des Pfeils A. Ferner weist das Gehäuse einen zweiten Teil 6b auf, der hier als Deckel ausgeführt ist, der die nach oben öffene Seite des U-förmigen ersten Teils abdeckt.

[0063] Der U-förmige erste Teil weist dabei Profilierungen 13 auf, in welche der zweite Teil mit entsprechenden Profilierungen eingepasst wird.

[0064] In Fig. 1 ist der zweite Gehäuseteil 6b im wesentlichen in der Form eines Rechtecks ausgebildet, welches an seinen längeren Seiten eingesenkte Abschnitte aufweist.

[0085] Fig. 2 zeigt eine Detailansicht der in Fig. 1 gezeigten Vorrichtung zum Austausch von Wärme. Die Bezugszeichen 1a und 2a beziehen sich auf Flansche, in weichen die Zuführung und die Abführung für das Kältemittel 1 und 2 eingeschoben werden können. Das Bezugszeichen 6a bezieht sich wiederum auf den ersten U-förnigen Teil des Gehäuses, der eine Profilistruktur aufweist. Der zweite Teil, das heisst der Deckel des Gehäuses, wurde in dieser Zeichnung jedoch weggelassen. Das Bezugszeichen 12 zeict wiederum die Rahmeneinrichtung.

[0066] In Fig. 3 ist als weitere Detailansicht das Innere das Gehäuses 6 der Vorrichtung zum Austausch von Wärme aus Fig. 1 gezeigt. Innerhalb des Gehäuses 6 sind Flachrohre 14 angeordnet, durch weiche die Verbrenungsluft hindurchströmt. Zwischen den einzelnen Flachrohren sind profilierte Platten 15 angeordnet.

[0087] Unter Profilierung werden Einsenkungen, Erhöhungen, Furchen und dergleichen verstanden. Bevorzugt handelt es sich bei den Einrichtungen 15 auch um Turbulenzeinrichtungen wie Turbulenzgitter oder -platten, strukturierte Oberflächen, Turbulenzqeneratoren oder derdleichen.

[0068] Die Rahmeneinrichtung 12 dient dazu, die einzelnen Flachrohre 14 in einem vorbestimmten Abstand zu halten. Die Rahmeneinrichtung 12 weist einen Rand 12a auf, damit eine stabilere Verbindung

zwischen dem Rahmen und dem Gehäuse erzielt werden kann.

[0069] Im Betrieb strömt das Kältemittel aus dem Kühlkreislauf durch die Zuführung 1 in die Vorrichtung, Hier wird sich das Kältemittel im wesentlichen über den gesamten Rauminhalt des Gehäuses verteilen, wobei die Profilierungen der Einrichtungen 15 den Wärmeaustausch mit den Flachrohren verbessem. Schliesslich wird das Kältemittel wieder über die Abführung 2 aus der Vorrichtung abgeleitet.

[0070] Der die Abführung für das Verbrennungsgas tragende Deckel 5 weist hier lediglich an drei Seitenrändern Ränder 5a und 5b auf, der dritte Seitenrand liegt an der dem Betrachter abgewandten Seite. An der vierten Seite wird ein vorstehender Teil 6c des Gehäuseteils 6b in den Deckel 5 eingeschoben.

[0071] Fig. 4 zeigt eine erfindungsgemässe Vorrichtung zum Austausch von Wärme in einer weiteren Ausführungsform im zusammengebauten Zustand. Die Bezugszeichen 1 und 2 beziehen sich wiederum auf eine Zuführung und eine Abführung für das Kältemittel. Die Bezugszeichen 3 und 4 bezeichnen Zuund Abführungen für das Verbrennungsgas. Die Pfeile deuten ieweils die Strömungsrichtungen der Verbrennungsluft und des Kältemittels auf. Das Gehäuse weist wieder einen ersten U-förmigen Teil 6a und einen zweiten Teil in Form eines Deckels 6b' auf. Im Gegensatz zu der in Fig. 1 gezeigten Ausführungsform, ragt der zweite Teil, das heisst der Deckel, nicht in seitlicher Richtung über den U-förmigen ersten Teil hinaus, d.h. ein Abschnitt 6c ist hier nicht vorhanden. [0072] Fig. 5 zeigt eine teilweise Explosionsansicht der in Fig. 4 gezeigten Vorrichtung zum Austausch von Wärme. Man erkennt, dass der zweite Teil, das heisst der Deckel 6b', mit dem ersten Teil, 6a, auf gleicher Höhe abschliesst. Im Gegensatz zu dem Deckel der Verbrennungsgasabführung 5 weist der Deckel der Verbrennungsgasabführung 5' vier seitlich gleich hinausragende Ränder 5a', 5b', 5c', 5d' (5c' und 5d' nicht gezeigt) auf.

[0073] In Fig. 6 ist eine Explosionsansicht der in Fig. 4 gezeigten Vorrichtung dargesteilt. Man erkennt, dass die Flachrohre 14 durch die Rahmeneinrichtung 12 hindurch geschoben werden. Der zweite Teil des Gehäuses, das heisst der Deckel 6b, weist wiederum Profilierungen auf, die an die entsprechenden Profilierungen des ersten Teils des Gehäuses 6a angepasst sind. Beim Zusammenbau wird die Deckeleinrichtung 5 über den Rahmen 12 geschoben. Bevorzugt sind der Deckel für die Verbrennungsultrauführung und der Deckel für die Verbrennungsultabführung und der Deckel für die Verbrennungsultabführung in gleicher Weise gebildet.

[0074] Fig. 7 zeigt eine Detailansicht der Vorrichtung aus Fig. 6. Das zweite Gehäuseteil 6b wurde weggelassen, um die Sicht auf das Innere des Gehäuses freizugeben.

[0075] In Fig. 8 wird ein weiteres Detail der Vorrichtung zum Austausch von Wärme gezeigt. Der Fluss des Kältemittels verläuft hier in ähnlicher Weise wie im Fall der ersten Ausführungsform und wird daher nicht eingehender beschrieben. Im Gegensatz zu der Rahmeneinrichtung in der ersten Ausführungsform, ist die Rahmeneinrichtung 12' hier nicht mit Rändern versehen, sondern im wesentlichen zweidimensional ausgeführt. Auch sind bei diesem Ausführungsbeispiel wieder die Einrichtungen 15, die im folgenden als Turbulenzgeneratoren bezeichnet werden, vorhanden.

(D076) Es ist jedoch auch möglich, anstelle dieser Turbulenzgeneratoren Freiräume zwischen den Flachrohren zu belassen, zwischen welche das Kältemittel im wesentlichen ungehindert strömen kann. In den vorliegenden Ausführungsformen ist die Vorrichtung auf dem Gegenstromprinzip basierend konzipiert, das heisst, die Zuführung des Kältemittels liegt auf der Selte der Abführung der Verbrennungsuft, die Abführung des Kältemittels liegt auf der Seite der Zuführung der Verbrennungsluft. Es ist jedoch auch möglich, die Position der Zuführung und Abführung des Kältemittels bzw. Zuführung und Abführung des Verbrennungsaases zu verfauschen.

[0077] Die Länge 1 der Vorrichtung liegt zwischen 10 cm und 60 cm, bevorzugt zwischen 15 cm und 50 cm und besonders bevorzugt zwischen 20 cm und 40 cm. Die Höhe h der Flachrohre liegt zwischen 0,2 cm und 4 cm, bevorzugt zwischen 0,5 cm und 3 cm und besonders bevorzugt zwischen 0,7 cm und 2 cm.

[0078] In Fig. 10 ist eine weitere Ausführungsform der erfindungsgemässen Vorrichtung zum Austausch von Wärme dargestellt. Der wesentliche Unterschied zu den oben beschriebenen Ausführungsformen liegt in der Ausgestaltung des zweiten Gehäussetells 6b°, das heisst des Deckels, und in der Ausgestaltung der Deckeleinrichtung 5° wilb Deckeleinrichtung 5° wilb Deckeleinrichtung 5° wild von des den einem einfachen Profil gebildet und Weist daher lediglich zwei Seitenwände 5a und 5b auf. Der zweite Teil des Gehäuses 6b° wird in einen der Zwischenräume zwischen die Seitenwände 5a und 5b' eingeschoben.

[0079] Fig. 11 zeigt eine Darstellung der Vorrichtung aus Fig. 10 in einer anderen Perspektive. Da der Deckel 5" lediglich zwei Seitenwände aufweist, und durch das zweite Teil des Gehäuses 6b' lediglich eine Seitenwand ersetzt wird, ist eine Vorrichtung nötig, um die verbleibende Öffnung zu schliessen. Dies wird durch ein in die letzte Seitenwand eingeschobenes Blech 7 erreicht. Der entsprechende Deckel für die Zuführung des Verbrennungsgases 3 ist in entsprechender Weise ausgeführt. Es sei ledoch erwähnt, dass die beiden Deckel für die Zuführung und die Abführung des Verbrennungsgases vorzugsweise in gleicher Weise ausgeführt sind, dies jedoch nicht notwendigerweise der Fall ist. So können Deckel unterschiedlicher Ausführungsformen unterschiedlicher Ausführungsformen miteinander kombiniert werden.

[0080] Fig. 9 zeigt die erfindungsgemässe Vorrichtung zum Austausch von Wärme nach der dritten Ausführungsform in zusammengebautem Zustand. [0081] In Fig. 12 ist eine Detailansicht der erfindungsgemässen Vorrichtung zum Austausch von Wärme in der dritten Ausführungsform gezeigt. Wie sich aus Fig. 12 und Fig. 13 ergibt, werden die Rahmeneinrichtungen 12 und 12a an die jeweiligen Enden der Flachrohre 14 aufgeschoben.

Patentansprüche

 Vorrichtung zum Austauschen von Wärme, insbesondere für die Kühlung der Verbrennungsluft von Verbrennungskraftmaschinen in Kraftfahrzeugen

wenigstens einer Zuführung und einer Abführung eines Kältemittels und

wenigstens einer Zuführung und einer Abführung der Verbrennungsluft,

mindestens einer Strömungseinrichtung für das Kältemittel und einer Strömungseinrichtung für die Verbrennungsluft, wobei die Strömungswege der Strömungseinrichtungen des Kältemitteis und der Verbrennungsluftes voneinander getrennt und die Strömungsrichtungen zumindest teilweise verschieden sind

dadurch gekennzeichnet.

dass die Strömungseinrichtungen in einem wenigstens zweiteiligen, profiliertem Gehäuse aufgenommen sind,

wobei ein erstes Gehäusstell im Querschnitt eine im wesentlichen U-förmige Grundform aufweist, welche durch ein zweites, im wesentlichen flächiges Gehäuseteil an der offenen Seite des ersten Gehäuseteils geschlossen wird, und

dass das Gehäuse an zwei gegenüberliegenden Seiten wenigstens einen Einlass- und wenigstens einen Auslassflansch für die Verbrennungsluft aufweist, und

dass die Strömungseinrichtungen mittels wenigstens einer Rahmeneinrichtung, welche im Gehäuse aufgenommen ist, in wenigstens einem Bereich voneinander beabstandet gehalten werden.

- Vorrichtung zum Austauschen von Wärme gemäß Anspruch 1, dadurch gekennzeichnet, dass wenigstens ein Teil des zweiteiligen Gehäuses die Zuführung und die Abführung für das Kältemittel aufweist.
- Vorrichtung zum Austauschen von Wärme Insesondere gemäß wenigstens einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Zuführung und die Abführung für das Kältemittel ander selben Seite des Gehäuses angeordnet sind.
- 4. Vorrichtung zum Austauschen von Wärme insbesondere gemäß wenigstens einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Zuführung und die Abführung für das Kältemittel an verschiedenen, insbesondere gegenüberliegenden Seiten des Gehäuses angeordnet sind.

DE 103 02 708 A1 2004.07.29

- Vorrichtung zum Austauschen von Wärme insbesondere gemäß wenigstens einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Strömungseinrichtungen der Verbrennungsluft Flachrohre sind.
- 6. Vorrichtung zum Austauschen von W\u00e4rme 'insbesondere gem\u00e4\u00e4\u00e4n wenigstens einem der vorstehenden Anspr\u00fche, dadurch gekennzeichnet, dass die Flachrohre der Str\u00f6mungseinrichtung der Verbrennungsiuft im wesentlichen parallel zueinander angeordnet sind.
- 7. Vorrichtung zum Austauschen von Wärme insbesondere gemäß wenigstens einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Strömungseinrichtung des Kältemittels Turbulenzeinrichtungen wie beispielsweise Turbulenzgitter oder -platten, strukturierte Oberflächen, Turbulenzgeneratoren etc. aufweist.
- 8. Vorrichtung zum Austauschen von Wärme insbesondere gemäß wenigstens einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Strömungseinrichtung des Kältemittels Strömungswege aufweist, die im wesentlichen durch den Abstand der Flachrohre der Verbrennungsluft zueinander und/oder zum Gehäuse und/oder durch die Turbulenzeinrichtungen bestimmt werden.
- 9. Vorrichtung zum Austauschen von Wärme insbesondere gemäß wenigstens einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Strömungseinrichtung des Kältemittels Trennelemente aufweist, die wenigstens einen vorbestimmten Strömungsweg für das Kältemittel festlegen.
- 10. Vorrichtung zum Austauschen von Wärme insbesondere gemäß wenigstens einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Bauteile der Vorrichtungen wie beispielsweise die Strömungseinrichtungen, das Gehäuse, die zu- und Abführung für das Kältemittel, der Einlass- und Auslassflansch für die Verbrennungsluft, etc. aus wenigstens einem Material hergestellt sind, weiches aus einer Gruppe von Materiallen ausgewählt ist, die Metalle wie Aluminlum, Eisen, Messing, Kupfer, Titan, etc. Metalliegierungen wie Aluminlumlegierung, Eisenlegierungen, etc. Kunststoffe PVC, PU, Duroplasten, faserverstärke Kunststoffe, etc. enthät fe, etc. enthät
- 11. Vorrichtung zum Austauschen von Wärme insbesondere gemäß wenigstens einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das erste Gehäusstell im wesentlichen drei profilierte Seitenflächen eines Quaders bildet, wobei die Ausrichtung der Profilierung einen vorgegebenen Winkel zur Hauptströmungsrichtung der Verbrennungsluft einnimmt.

- 12. Vorrichtung zum Austauschen von Wärme insbesondere gemäß wenigstens einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das zweite Gehäuseteil eine an die Profilkontur des ersten Gehäuseteils angepasste Außenkontur aufweist.
- 13. Vorrichtung zum Austauschen von W\u00e4meinsbesondere gem\u00e4\u00e4\u00e4b. wenigstens einem der vorstehenden Anspr\u00fcche, dadurch gekennzeichnet, dass der Einlass- und Auslassflansch wenigstens zweitelig ist und das Geh\u00e4\u00e4ben zwei gegen\u00fcberigenden Stirnseiten des Quaders gas- und/oder fl\u00fcssigkeits-dicht abschlie\u00e4t.
- 14. Vorrichtung zum Austauschen von Wärme insbesondere gemäß wenigstens einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Einlass- und/oder der Auslassflansch einen tiefgezogenen Grundkörper mit einer Durchführung aufweist, welche einen vorgegebenen Abschnitt eines Rohres, insbesondere eines Anschlussrohrs aufnimmt oder in diesen einritt.
- 15. Vorrichtung zum Austauschen von Wärme insbesondere gemäß wenigstens einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Zuführung und die Abführung für das Kühlmittel eine Durchführung im Gehäuse ist, welche einen vorgegebenen Abschnitt eines Rohres, insbesondere eines Anschlussrohrs aufminmt oder in diesen eintritt.
- 16. Vorrichtung zum Austauschen von Wärme insbesondere gemäß wenigstens einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Einlass- und/oder der Auslassflansch ein nach wenigstens zwei Seiten, insbesondere U-förmig gebogener Grundkörper mit einer Durchführung ist, welche einen vorgegebenen Abschnitt eines Rohres, insbesondere eines Anschlussrohrs aufminmt oder in diesen einritt und wenigstens eine weiter Durchführung zur Aufnahme eine Begrenzungselements aufweist.
- 17. Vorrichtung zum Austauschen von Wärme insbesondere gemäß wenigstens einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das zweite Gehäuseteil, das Begrenzungselement, die Flansche einen gas- und/oder flüssigkeitsdichten Abschluss der Stimseiten des Gehäuses bilden.
- 18. Vorrichtung zum Austauschen von Wärme insbesondere gemäß wenigstens einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens zwei Rahmeneinrichtungen vorgesehen sind, welche wenigstens die Flachrohre der Strömungseinrichtung der Verbrennungsluft beabstandet halten.
 - 19. Vorrichtung zum Austauschen von Wärme

DE 103 02 708 A1 2004 07 29

insbesondere gemäß wenigstens einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Rahmeneinrichtung ein im Wesentlichen ebene Platte ist, welches eine vorgegebene Zahl an Durchführungen zur Aufnahme der Flachrohre aufweist.

- 20. Vorrichtung zum Austauschen von Wärme insbesondere gemäß wenigstens einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Rahmeneinrichtung und die Flachrohre gasund/oder flüssigkeitsdicht verbunden sind.
- 21. Vorrichtung zum Austauschen von Wärme insbesondere gemäß wenigstens einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass eine stoff-, kraft- und/oder formschlüssige Verbindung zwischen den Bauteilen der Vorrichtung vorgesehen ist.
- 22. Vorrichtung zum Austauschen von Wärme insbesondere gemäß wenigstens einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Bauteilie der Vorrichtung zum Austausch von Wärme durch eine Lötverbindung verbunden sind.
- 23. Vorrichtung zum Austauschen von Wärme insbesondere gemäß wenigstens einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Rahmeneinrichtung eine Platte mit hochgestellten Rändern ist, welche insbesondere mit wenigstens einem Abschnitt der Innenkontur des Gehäuses verburden sind.
- 24. Vorrichtung zum Austauschen von Wärme insbesondere gemäß wenigstens einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die hochgesteilten Ränder der Rahmeneinrichtung scharfkantige oder abgerundete Ecken aufweisen.
- 25. Verbrennungsmotoren mit einem Abgasturbolader, welche wenigstens eine Vorrichtung zum Austauschen von Wärme gemäß wenigstens einem der Ansprüche 1 bis 24 aufweist.

Es folgen 5 Blatt Zeichnungen

Anhängende Zeichnungen

