Math 5050 – Special Topics: Manifolds– Fall 2025 w/Professor Berchenko-Kogan

Paul Carmody Section 7: Quotients – May 17, 2025

Pg. 77: Exercise 7.11 (Real projective space as a quotient of a sphere).* For $x = (x^1, ..., x^n) \in \mathbb{R}^n$, let $||x|| = \sqrt{\sum_i (x^i)^2}$ be the modulus of x. Prove that the map $f : \mathbb{R}^{n+1} - \{0\} \to S^n$ given by

$$f(x) = \frac{x}{||x||}$$

induces a homeomorphism $\bar{f}: \mathbb{R}P^n \to S^n/\sim$. Where

$$x \sim y \iff x = \pm y, \, x, y \in S^n$$

(Hint: Find an inverse map

$$\bar{g}: S^n/\sim \to \mathbb{R}P^n$$

and show that both \bar{f} and \bar{g} are continuous.)

Given the relation above $x \sim y \iff x = \pm y, x, y \in S^n$. Define

$$\bar{g}([x]) = [x]$$

Note that on the left $[x] \in S^n / \sim$ and $[x] \in \mathbb{R}P^n$. For clarity, 1

$$[a] \in S^n / \sim \implies [a] = \{a, -a\} \text{ where } a \in S^n$$
$$[b] \in \mathbb{R}P^n \implies [b] = \{x \in \mathbb{R}^{n+1} | x = \alpha b, \forall \alpha \in \mathbb{R}\} \text{ where } b \in \mathbb{R}^{n+1}$$

Notice that

$$\bar{f}([b]) = [f(b)] = \left[\frac{b}{||b||}\right] \in S^n / \sim$$

$$\bar{g}\left(\left[\frac{b}{||b||}\right]\right) = [b]$$

$$\therefore \bar{g} \circ \bar{f} = \mathbb{I}$$
and $\bar{g}([a]) = [a] \in \mathbb{R}P^n$

$$\bar{f}(\bar{g}([a])) = \left[\frac{[a]}{||[a]||}\right] = [f(a)] = [a] \in S^n / \sim$$

$$\therefore \bar{f} \circ \bar{g} = \mathbb{I}$$

 \bar{f} is continuous because f is continuous. \bar{g} is continuous because it is a mapping of one identity to another. Therefore, \bar{f} is a homeomorphism.

Problems

7.1. Image of the inverse image of a map

Let $f: X \to Y$ be a map of sets, and let $B \subset Y$. Prove that $f(f^{-1}(B)) = B \cap f(X)$. Therefore, if f is surjective, then $f(f^{-1}(B)) = B$.

 \subseteq : Let $b \in B$ and $a \in X$ such that f(a) = b. Then, $a \in f^{-1}(b)$, thus a is an arbitrary point in $f^{-1}(B)$. We know that $f(a) \in f(X)$ and $f(a) \in B$, therefore $f(a) \in B \cap f(X)$ and $f(f^{-1}(B)) \subseteq B \cap f(X)$.

 \supseteq : Let $b \in B \cap f(X)$. Since $b \in f(X)$, there exists $a \in X$ such that f(a) = b and since $b \in B$ then $b = f(a) \in f(f^{-1}(b)) \subseteq f^{-1}(B)$. Therefore $b \in f(f^{-1}(B))$

 $^{{}^{1}\}mathbb{R}P^{n}\equiv\mathbb{R}^{n+1}/r(x,y)$ where r(x,y) is the relation that is true when x,y,p are colinear.

7.2. Real projective plane

Let H^2 be the closed upper hemisphere in the unit sphere S^2 , and let $i: H^2 \to S^2$ be the inclusion map. In the notation of example 7.13, prove that the induced map $f: H^2/\sim \to S^2/\sim$ is a homeomorphism. (*Hint:* Imitate Propostion 7.3.) Let H^2 be the upper hemisphere and S^2 be the unit sphere

$$H^{2} = \{(x, y, z) \in \mathbb{R}^{3} \mid x^{2} + y^{2} + z^{2} = 1, z \ge 0\}$$

$$S^{2} = \{(x, y, z) \in \mathbb{R}^{3} \mid x^{2} + y^{2} + z^{2} = 1\}$$

These two are homeomorphic to each via

$$\varphi: S^2 \mapsto H^2$$
$$\varphi(x, y, z) = (x, y, |z|)$$

and its inverse

$$\psi: H^2 \mapsto S^2$$
$$\psi(x, y, z) = (x, y, z)$$

Define the relations

$$(x, y, z) \sim (-x, -y, -z) \to x^2 + y^2 = z^2, \forall (x, y, z) \in S^2$$

 $(x, y, z) \sim (x, y, z) \to \sqrt{x^2 + y^2} = z, \forall (x, y, z) \in H^2$

Then we induce $f: H^2/\sim \to S^2/\sim$ as

$$f([(x,y,z)]) = [(x,y,z)]$$

7.3. Closedness of the diagonal of a Hausdorff Space

Deduce Theorem 7.7 from Corollary 7.8 (*Hint:* To prove that if S/\sim is Hausdorff, then the graph R of \sim is closed in $S\times S$, use the continuity of the projection map $\pi:S\to S/\sim$. To prove the reverse implication, use the openness of π .)

Assuming Corollary 7.8, that a Topological Spacee is Hausdorf if and only if the diagonal Δ in $S \times S$ closed. Thus, $R = S \times S - \Delta$ must be open. That means there exists and $U \times V \subset S \times S - \Delta$ where $U, V \in S$ such that $U \cap V = \emptyset$. Since π is continuous, let $A = \pi^{-1}(U)$ and $B = \pi^{-1}(V)$. Clearly $A \cap B = \emptyset$. Thus, $x \in A$ and $y \in B$ means that $x \neq y$. Let $\infty \equiv \infty$. Then, there exists $[x], [y] \in S / \infty$ where $[x] \cap [y] = \emptyset$

7.4. Quotient of a sphere with antipodal points indentified

Let S^n be the unit sphere centered at the origin \mathbb{R}^{n+1} . Define an equivalence relation \sim on S^n by indentifying antipodal points:

$$x \sim y \iff x = \pm y, \, x, y, \in S^n$$

(a) Show that \sim is an open equivalence relation.

Given an open set U and $x \in U$. Then there exists $\epsilon > 0$ such that the n dimensional ball $B(x, \epsilon) = \{y : |y - x| < \epsilon\} \subset U$. Let $z \in B(x, \epsilon)$ and $z \sim z'$. Then, $z = \pm z'$ and $|z - x| < \epsilon$ implies that $|\pm z' - x| < \epsilon$ or $z' \in B(x, \epsilon)$. z, z' are arbitrary points in $B(x, \epsilon)$ thus the open ball is mapped to itself and is open. Therefore \sim is open.

(b) Apply Theorem 7.7 and Corallary 7.8 to prove that the quotient space S^n/\sim is Hausdorff, without making use of the homeomorphism $\mathbb{R}P^n\cong S^n/\sim$.

From (a), \sim is an open relation. WTS that the graph R of \sim in $S \times S$ is closed, thus, from 7.8, S^n/\sim is Hausdorff. We can do this by showing that the diagonal of R, $\Delta = \{(x,x) \in S^n \times S^n\}$, is closed. Let $P = \Delta^c = S^n \times S^n - \Delta$. Let $(U,V) \subseteq P$ for open sets $U,V \subseteq S$. If $U \cap V = \emptyset$ then $U \sim V = \emptyset$ is open. Otherwise, $U \cap V$ is open. Define $Q = \{(x,y) \in U \cap V \mid x \sim y\}$. Since \sim is an open relations and $U \cap V$ is an open set, Q must be open. $Q \subseteq P$. Now, let $N = \{(x,y) \in P - Q\}$. Then $x \neq y$ and $x \sim y$.

7.5. Orbit space of a continuous group action.

Suppose a right action of a topological group G on a topological space S is continuous, this simply means that the map $S \times G \to S$ describing the action is continuous. Define two points x,y of S to be equivalent if they are in the same orbit; i.e., there is an element $g \in G$ such that y = xg. Let S/G be the quotient space; it is called the *orbit space* of the action. Prove that the projection map $\pi: S \to S/G$ is an open map. (This problem generalizes Proposition 7.14, in which $G = R^{\times} = \mathbb{R} - \{0\}$ and $S = \mathbb{R}^{n+1} - \{0\}$. Because \mathbb{R}^{\times} is commutative, a left \mathbb{R}^{\times} -action becomes a right \mathbb{R}^{\times} -action if scalar multiplication is written on the right.)

†Want to show that given an open set $U \in S$, then $\pi^{-1}(\pi(U)) \in S$ is open given that there exists $f: S \times G \to S$ which is continuous.

$$\pi^{-1}(\pi(U)) = \{x \in S \mid \pi(x) \in \pi(U)\}$$
$$= \{x \in S \mid [x] \cap U \neq \emptyset\}$$
$$= \bigcup_{g \in G} Ug$$

Thus, this mapping $\pi^{-1} \circ \pi$ on an open set is a set of elements in S based on xg for all $x \in U$ and $g \in G$. Now $f(x,g): S \times G \to S$ is continuous and f(x,g) = xg. Thus $f^{-1}(U)$ is open for all $g \in G$. Thus each Ug is open in S. $(\pi^{-1} \circ \pi)(U)$ is the union of open sets and is therefore open.

7.6. Quotient of \mathbb{R} by $2\pi\mathbb{Z}$.

Let the additive group $2\mathbb{Z}$ act on \mathbb{R} on the right by $x \cdot 2\pi n = x + 2\pi n$, where n is an integer. Show that the orbit space $\mathbb{R}/2\pi\mathbb{Z}$ is a smooth manifold.

Primary Option: Let $\mathbb{R} = S$ and $G = 2\pi\mathbb{Z}$ and $[x] = \{x \in \mathbb{R} : x + 2\pi n, \forall n \in \mathbb{Z}\}$. Second Option: Must show that it is 2^{nd} countable, Hausdorff and there exists an atlas covering the set.

2nd countable.

Yes. The basis for \mathbb{R} is a basis for $\mathbb{R}/2\pi\mathbb{Z}$.

Hausdorff.

Yes. Every open set in $\mathbb{R}/2\pi\mathbb{Z}$ is open in \mathbb{R} and every point as well. Thus, Hausdorff.

 $\bar{\phi}(e^{it}) = [t] \in \mathbb{R}/2\pi\mathbb{Z}, \forall t \in \mathbb{R}$

An Atlas Exists.

Yes. Let
$$U_i = (\pi i, \pi i + 2\pi)$$
 and $\phi_i(x) = x - 2\pi i$. And $\bigcup_{i \in \mathbb{Z}} U_i = \mathbb{R}$ and $\phi_i \in \mathbb{C}^{\infty}$

7.7. The circle as a quotient space

(a) Let $\{(U_{\alpha}, \phi_{\alpha})_{\alpha=1}^2\}$ be the atlas of circles S^1 in Example 5.7, and let $\bar{\phi}_{\alpha}$ be the map ϕ_{α} followed by the projection $\mathbb{R} \to \mathbb{R}/2\pi\mathbb{Z}$. On $U_1 \cap U_2 = A \coprod B$, since ϕ_1 and ϕ_2 differ by an integer multiple of 2π , $\bar{\phi}_1 = \bar{\phi}_2$. Therefore, $\bar{\phi}_1$ and $\bar{\phi}_2$ piece together to give a well-defined map $\bar{\phi}: S^1 \to \mathbb{R}/2\pi\mathbb{Z}$. Prove that $\bar{\phi}$ is C^{∞} . From Example 5.7

$$U_1 = \{e^{it} \in \mathbb{C} \mid -\pi < t < \pi\} \text{ and } \phi_1(e^{it}) = t, -\pi < t < \pi$$

$$U_2 = \{e^{it} \in \mathbb{C} \mid 0 < t < 2\pi\} \text{ and } \phi_2(e^{it}) = t, 0 < t < 2\pi$$

$$A = \{e^{it} \mid -\pi < t < 0\}$$

$$B = \{e^{it} \mid 0 < t < \pi\}$$

$$\bar{\phi}_1(e^{i(t+2\pi n)}) = [\phi_1(e^{it}e^{2\pi n})] = [\phi_1(e^{it})] = [t], -\pi < t < \pi$$

$$\bar{\phi}_2(e^{it}) = [\phi_2(e^{it})] = [t], 0 < t < 2\pi$$

(b) The complex exponential $\mathbb{R} \to S^1, t \mapsto e^{it}$, is constant on each orbit of the action of $2\pi\mathbb{Z}$ on \mathbb{R} . Therefore, there is an induced map $F: \mathbb{R}/2\pi\mathbb{Z} \to S^1, F([t]) = e^{it}$. Prove that F is C^{∞} .

 $f: \mathbb{R} \to S^1, t \mapsto e^{it}$ is smooth, and $\pi: \mathbb{R} \to \mathbb{R}/2\pi\mathbb{Z}, t \mapsto [t]$ is smooth, from the diagram above $f = F \circ \pi$. Therefore F is smooth.

- (c) Prove that $F: \mathbb{R}/2\pi\mathbb{Z} \to S^1$ is a diffeomorphism.
- 7.8. The Grassmanian G(k, n)
- 7.9. Compactness of real projective space

Show that the real projective space $\mathbb{R}P^n$ is compact. (*Hint:* Use Exercise 7.11.)