1. Satellite TLE Analysis

(卫星双行根数分析)

a. Identifying the Geostationary Satellite

(确定地球同步卫星)

- A geostationary satellite satisfies:
 地球同步卫星满足以下条件:
 - 1. Orbital inclination $ipprox 0^\circ$. 轨道倾角 $ipprox 0^\circ$ 。
 - 2. Orbital period T=1436 minutes (~ 24 hours). 轨道周期 T=1436 分钟 (~ 24 小时)。
- From the TLEs:

根据TLE数据:

Satellite 28884 satisfies these conditions.
 卫星28884符合这些条件。

b. Computing Semi-Major Axis and Altitude

(计算轨道半长轴和高度)

• Formula (公式):

Semi-major axis
$$a=\left(\frac{GMT^2}{4\pi^2}\right)^{1/3}$$
 轨道半长轴 $a=\left(\frac{GMT^2}{4\pi^2}\right)^{1/3}$ Altitude $h=a-R_E$, where $R_E=6378\,\mathrm{km}$. 高度 $h=a-R_E$, 其中 $R_E=6378\,\mathrm{km}$.

- Calculation (计算):
 - Satellite 41918: $T=rac{86400}{14.34217262}$ s 卫星41918: $T=rac{86400}{14.34217262}$ 秒
 - Satellite 43233: $T=rac{86400}{5.00116407}$ s 卫星43233: $T=rac{86400}{5.00116407}$ 秒
 - Satellite 28884: $T=rac{86400}{1.00271913}$ s 卫星28884: $T=rac{86400}{1.00271913}$ 秒

2. Spectral Efficiency

(频谱效率)

a. Data Rate and Nyquist Bandwidth

(数据速率与奈奎斯特带宽)

• Formula (公式):

 $\eta=rac{R_b}{2B}$, where R_b : Data rate, B: Bandwidth.

 $\eta=rac{R_b}{2B}$,其中 R_b : 数据速率,B: 带宽。

b. Data Rate and Symbol Rate

(数据速率与符号速率)

• Formula (公式):

 $\eta = rac{R_b}{R_s \log_2(M)}$, where M: Modulation order.

 $\eta = rac{R_b}{R_s \log_2(M)}$,其中M:调制阶数。

3. Relationships

(关系讨论)

- a. E_s/N_0 and E_b/N_0
 - Formula (公式):

$$E_b/N_0 = rac{E_s/N_0}{\log_2(M)}. \ E_b/N_0 = rac{E_s/N_0}{\log_2(M)}$$
 .

- b. E_s/N_0 and C/N
 - Formula (公式):

$$C/N = E_s/N_0 \cdot R_s.$$
 $C/N = E_s/N_0 \cdot R_s.$

- c. C/N_0 and C/N
 - Formula (公式):

$$C/N=rac{C/N_0}{B}.$$
 $C/N=rac{C/N_0}{B}$.

4. DVB-S2 16APSK Calculations

(DVB-S2 16APSK计算)

a. Symbol Rate (符号率)

• Formula (公式):

$$R_s=rac{B}{1+lpha}$$
, where $lpha=0.2$. $R_s=rac{B}{1+lpha}$, 其中 $lpha=0.2$ 。

b. Spectral Efficiency (频谱效率)

• Formula (公式):

$$\eta=rac{\log_2(M)}{1+lpha}. \ \eta=rac{\log_2(M)}{1+lpha}$$
 .

c. Data Rate (数据速率)

• Formula (公式):

$$egin{aligned} R_b &= R_s \cdot \log_2(M) \cdot rac{4}{5}. \ R_b &= R_s \cdot \log_2(M) \cdot rac{4}{5}. \end{aligned}$$

d. E_s/N_0 and E_b/N_0

- Compute E_s/N_0 from the DVB-S2 graph. 从DVB-S2图中计算 E_s/N_0 。
- ullet Use $E_b/N_0=rac{E_s/N_0}{\log_2(M)}$. 使用 $E_b/N_0=rac{E_s/N_0}{\log_2(M)}$ 。

5. Uplink and Downlink Analysis

(上行与下行分析)

a. Total C/N_0 Expression

(总 C/N_0 表达式)

• Formula (公式):

$$\begin{split} \frac{1}{(C/N_0)_{\text{total}}} &= \frac{1}{(C/N_0)_{\text{uplink}}} + \frac{1}{(C/N_0)_{\text{downlink}}}.\\ \frac{1}{(C/N_0) \mathbf{E}} &= \frac{1}{(C/N_0) \mathbf{E} \mathbf{T}} + \frac{1}{(C/N_0) \mathbf{T} \mathbf{T}} \bullet \end{split}$$

b. Typical Downlink Frequency

(典型下行频率)

• For Ku band, $fpprox 12\,\mathrm{GHz}$. 对于Ku波段, $fpprox 12\,\mathrm{GHz}$ 。

c. Free Space Losses (自由空间损耗)

• Formula (公式):

$$L_f = \left(rac{4\pi df}{c}
ight)^2. \ L_f = \left(rac{4\pi df}{c}
ight)^2.$$

d. Total C/N_0 with Clear Sky

(晴空条件下的总 C/N_0)

• Use the total C/N_0 formula and substitute clear sky values. 使用总 C/N_0 公式,代入晴空条件下的值。