Induced Polarization

Reading on the GPG:

https://gpg.geosci.xyz/content/induced_polarization/index.html

Today's Topics

- Introduction to IP
 - DCR review
 - What is induced polarization (IP)?
 - Impact of IP on voltage measurements
- Physical Properties: Chargeability
- Survey and Data
- Processing and Interpretation
- Example: Mt Isa Revisited

Introduction

DC Resistivity Review

- DCR injects static current into the ground via electrodes
- Charges build up on surfaces perpendicular to current flow
- Charge build-up generates a secondary potential
- Measured potentials used to infer Earth's resistivity structure

(pseudo-section or inversion)

DC Resistivity Review

- DCR measures potentials during the on-time
- Repeated measurements stacked to reduce error

Induced Polarization (IP)

- Occurs when ionic charges accumulate within materials under an applied voltage
 - → Generates a secondary potential
- Not an instantaneous process!
- Occurs in fluid-filled pore-spaces

Induced Polarization (IP)

- Two types:
 - 1) Membrane polarization: Ions accumulate at pore throat

2) Electrode polarization: Ions accumulate at metals

- Charge accumulation on boundaries (change in ρ)
 - → Instantaneous change in potential
- Charge accumulation due to IP
 - → Non-instantaneous change in potential
 - → Reaches a saturation point
 - → Measurable voltage during off-time

- 1) Voltage applied by transmitter
 - \rightarrow instantaneous (V_{σ}) increase due to ρ

- Voltage applied by transmitter
 - \rightarrow instantaneous (V_{σ}) increase due to ρ
- Voltage increases as ions accumulate: $V_{on}(t) = V_{\sigma} + V_{s} \left| 1 e^{-t/ au}
 ight|$

$$V_{on}(t) = V_{\sigma} + V_{s} \Big[1 - e^{-t/ au} \Big]$$

- Voltage applied by transmitter \rightarrow instantaneous (V_{σ}) increase due to ρ
- Voltage increases as ions accumulate: $V_{on}(t) = V_{\sigma} + V_{s} \left[1 e^{-t/ au}
 ight]$

$$V_{on}(t) = V_{\sigma} + V_{s} \Big[1 - e^{-t/ au} \Big]$$

Saturation of ionic charges leads to DC voltage $(V_m = V_{\sigma} + V_s)$

- 1) Voltage applied by transmitter \rightarrow instantaneous (V_{σ}) increase due to ρ
- 2) Voltage increases as ions accumulate:

$$V_{on}(t) = V_{\sigma} + V_{s} \Big[1 - e^{-t/ au} \Big]$$

- 3) Saturation of ionic charges leads to DC voltage $(V_m = V_\sigma + V_s)$
- 4) Voltage from transmitter removed \rightarrow instantaneous loss in secondary potential (equal to V_{σ})

- 1) Voltage applied by transmitter \rightarrow instantaneous (V_{σ}) increase due to ρ
- 2) Voltage increases as ions accumulate:

$$V_{on}(t) = V_{\sigma} + V_s \Big[1 - e^{-t/ au} \Big]$$

- 3) Saturation of ionic charges leads to DC voltage $(V_m = V_{\sigma} + V_{s})$
- 4) Voltage from transmitter removed \rightarrow instantaneous loss in secondary potential (equal to V_{σ})
- 5) IP voltage discharges during off-time:

$$V_{off}(t) = V_s\,e^{-t/ au}$$

Physical Properties

Chargeability

- Strength of material's IP signature represented by chargeability
- Intrinsic Chargeability (over-voltage/DC voltage)

$$\eta = rac{V_s}{V_m}$$

(in mV/V)

Integrated chargeability

$$d_{IP} = \frac{1}{V_m} \int_{t_1}^{t_2} V_s(t) dt$$

Chargeability in Frequency Domain

Measure impedance:

Compute resistivity:

Fit Cole-Cole model:

$$ho(\omega) =
ho_0 \Bigg[1 - \eta \Bigg(1 - rac{1}{1 + (i\omega au)^C} \Bigg) \Bigg]$$

where

$$\eta = \frac{\rho_0 - \rho_\infty}{\rho_0}$$

Chargeability of Rocks

- Some rocks are chargeable (sulfides, volcanic tuffs, clays)
- More aren't (igneous, sandstones, limestones etc...)

Material type	Chargeability (msec.)
20% sulfides	2000 - 3000
8-20% sulfides	1000 - 2000
2-8% sulfides	500 - 1000
volcanic tuffs	300 - 800
sandstone, siltstone	100 - 500
dense volcanic rocks	100 - 500
shale	50 - 100
granite, granodiorite	10 - 50
limestone, dolomite	10 - 20

Material type	Chargeability (msec.)
ground water	0
alluvium	1 - 4
gravels	3 - 9
precambrian volcanics	8 - 20
precambrian gneisses	6 - 30
schists	5 - 20
sandstones	3 - 12

Impacts on Chargeability

- Abundance of sulfide mineralization
- Porewater salinity (# ions)
- Clay content
- Tortuosity
- Chargeability strongly correlated with conductivity

DC-IP Survey

Motivational Problems

Exploration for Sulfide Minerals

Landfills

Used when:

1) Insufficient resistivity contrast

2) Sufficient chargeability contrast

Recap

- DCR → accumulation of charges on boundaries due to ρ
 IP → accumulation of ions in chargeable materials
- DCR → instant change in secondary potential
 IP → non-instant change in secondary potential
 → secondary potential during off-time
- Only some rocks are chargeable (exhibit IP)

Recap: Questions

Q: If the Earth is chargeable, is there a secondary potential when the current electrodes are turned off?

Q: What type(s) or rocks are chargeable?

Survey and Data

DCIP Survey

- DCIP survey same as DCR
- Measured potential difference (ΔV) now time-dependent

DCIP Field Data

DC Data

- Measure during on-time
 - \rightarrow DC voltage (ΔV_m)

$$\rightarrow \rho_{a} = \frac{\Delta V_{m}}{IG}$$

DCIP Field Data

DC Data

- Measure during on-time
 - \rightarrow DC voltage (ΔV_m)

$$\rightarrow \rho_{\mathbf{a}} = \frac{\Delta \mathbf{V}_{m}}{\mathbf{IG}}$$

IP Data

- Measure during off-time
- Integrate over curve

$$d_{IP} = \frac{1}{V_m} \int_{t_1}^{t_2} V_s(t) dt$$

(integrated chargeability)

 Plot on pseudo-section (geometry accounted for)

DCIP Field Data

DC Data

- Measure during on-time
 - \rightarrow DC voltage (ΔV_m)

$$\rightarrow \rho_{\mathbf{a}} = \frac{\Delta \mathbf{V}_{m}}{\mathbf{IG}}$$

IP Data

- Measure during off-time
- Integrate over curve

$$d_{IP} = \frac{1}{V_m} \int_{t_1}^{t_2} V_s(t) dt$$

(like an apparent integrated chargeability)

Plot on pseudo-section (geometry accounted for)

Can collect both during same survey!!!

IP Data with Intrinsic Chargeability

 IP signals due to a perturbation (small change) in conductivity

$$\sigma_{\eta} = \sigma(1 - \eta) \qquad \qquad \eta \in [0, 1)$$

An IP datum can also be written as

$$d_i^{IP} = \sum_{j=1}^M J_{ij} \eta_j \qquad i = 1, \dots, N$$

$$J_{ij} = rac{\partial log\phi^i}{\partial log\sigma_i}$$
 sensitivities for the DC resistivity problem

In matrix form

$$\mathbf{d}^{IP} = \mathbf{J} oldsymbol{\eta}$$
 \mathbf{J} is an N×M matrix

Apparent chargeability pseudo-section (plotted same way)

Q: What does pseudo-section tell us about chargeability distribution?

• Pole-dipole; n=1,8; a=10m; N=316

• Pole-dipole; n=1,8; a=10m; N=316

3) The "UBC-GIF model"

Pole-Dipole

Processing and Interpretation

Inversion

- DCIP data provides 2 models
- One or both can be used for interpretation
- Resistivity model required to recover chargeability model

Interpretation Example

Finding margins of an old waste deposit

Example: Mt Isa Revisited

Mt. Isa (Setup)

- Potential ore deposit (lead, zinc, silver, copper, gold?)
- Survey with pole-dipole and dipole-pole config.

Simplified (log) conductivity distribution expected at Mount Isa (N:12200m).

Mt. Isa (Properties)

Simplified (log) conductivity distribution expected at Mount Isa (N:12200m).

Rock Unit	Conductivity	Resistivity ($\Omega \cdot m$)	Chargeability
Native Bee Siltstone	Moderate	Moderate (~10)	Low
Moondarra Siltstone	Moderate	Moderate (~10)	Low
Breakaway Shale	Very High	Very Low (~0.1)	Low-None
Mt Novit Horizon	High	Low (~1)	High
Surprise Creek Formation	Low	High (~1000)	None
Eastern Creek Volcanics	Low	High (~1000)	None

Mt. Isa (From last time)

Simplified (log) conductivity distribution expected at Mount Isa (N:12200m).

Mineralization and other units are conductive

- → Hard to differentiate with conductivity
- → Differentiate by chargeability

Mt. Isa (Survey and Data)

Mt. Isa (Processing)

Apparent resistivity data (ρ_a)

Resistivity model (ρ)

Integrated chargeability data (d_{IP})

Chargeability model (η)

A: Surprise creek (low σ , low η)

B: Moondarra and Native Bee siltstones (moderate σ , low η)

A: Surprise creek (low σ , low η)

B: Moondarra and Native Bee siltstones (moderate σ , low η)

C and D: Breakaway shales (high σ , low η)

A: Surprise creek (low σ , low η)

B: Moondarra and Native Bee siltstones (moderate σ , low η)

C and D: Breakaway shales (high σ , low η)

E and F: Mt. Novit horizon (high σ , high η)

A: Surprise creek (low σ , low η)

B: Moondarra and Native Bee siltstones (moderate σ , low η)

C and D: Breakaway shales (high σ , low η)

E and F: Mt. Novit horizon (high σ , high η)

G: Possible mineralization (high σ , high η)

Mt. Isa (Synthesis)

- Chargeability delineates region of interest from background
- Mt. Novit horizon is chargeable
- Chargeability delineates Breakaway shale (high σ , low η) from mineralization (high σ , high η)

Questions About Material?

Unit Activities

- Labs: None
- TBL:
 - Wednesday, November 20th
- Quiz: None