# Topic 14: Propagation<sup>1</sup> (Version of 9th November 2018)

### Pierre Flener

Optimisation Group
Department of Information Technology
Uppsala University
Sweden

Course 1DL441: Combinatorial Optimisation and Constraint Programming,

whose part 1 is Course 1DL451: Modelling for Combinatorial Optimisation

<sup>&</sup>lt;sup>1</sup>Based partly on material by Christian Schulte



#### Intuition

Example 1 Example 2 Example 3

#### Theory

Constraint
Fixpoint of Multiple
Propagators

### 1. Intuition

Example 1

Example 2

Example 3

### 2. Theory



#### Intuition

Example 1 Example 2 Example 3

#### Theory

Constraint
Fixpoint of Multiple
Propagators

### 1. Intuition

Example 1

Example 2

Example 3

### 2. Theory



### Intuition

#### Example 1

Example 2 Example 3

#### Theory

Constraint
Fixpoint of Multiple
Propagators

### 1. Intuition

### Example 1

Example 2
Example 3

### 2. Theory



#### Intuition

#### Example 1

Example 2 Example 3

#### Theory

Propagator for One Constraint Fixpoint of Multiple Propagators

## Example (Agricultural experiment design, AED)

|        | plot1    | plot2    | plot3    | plot4 | plot5    | plot6 | plot7 |
|--------|----------|----------|----------|-------|----------|-------|-------|
| barley | <b>√</b> | 1        | 1        | _     | _        | _     | _     |
| corn   | ✓        | _        | _        | 1     | ✓        | _     | _     |
| millet | ✓        | _        | _        | _     | _        | ✓     | 1     |
| oats   | _        | ✓        | _        | 1     | _        | ✓     | _     |
| rye    | _        | <b>\</b> | _        | _     | ✓        | -     | ✓     |
| spelt  | _        | ı        | <b>√</b> | 1     | _        | ı     | ✓     |
| wheat  | _        | _        | <b>/</b> | _     | <b>/</b> | 1     | _     |

### Constraints to be satisfied:

- 1 Equal growth load: Every plot grows 3 grains.
- 2 Equal sample size: Every grain is grown in 3 plots.
- Balance: Every grain pair is grown in 1 common plot.

**Instance**: 7 plots, 7 grains, 3 grains/plot, 3 plots/grain, balance 1. General term: balanced incomplete block design (BIBD).



#### Intuition

Example 1

Example 2 Example 3

### Theory

Propagator for On Constraint Fixpoint of Multiple Propagators

## Example (Agricultural experiment design, AED)

|        | plot1 | plot2 | plot3 | plot4 | plot5 | plot6 | plot7 |
|--------|-------|-------|-------|-------|-------|-------|-------|
| barley | 1     | 1     | 1     | 0     | 0     | 0     | 0     |
| corn   | 1     | 0     | 0     | 1     | 1     | 0     | 0     |
| millet | 1     | 0     | 0     | 0     | 0     | 1     | 1     |
| oats   | 0     | 1     | 0     | 1     | 0     | 1     | 0     |
| rye    | 0     | 1     | 0     | 0     | 1     | 0     | 1     |
| spelt  | 0     | 0     | 1     | 1     | 0     | 0     | 1     |
| wheat  | 0     | 0     | 1     | 0     | 1     | 1     | 0     |

### Constraints to be satisfied:

- 1 Equal growth load: Every plot grows 3 grains.
- 2 Equal sample size: Every grain is grown in 3 plots.
- Balance: Every grain pair is grown in 1 common plot.

**Instance**: 7 plots, 7 grains, 3 grains/plot, 3 plots/grain, balance 1. General term: balanced incomplete block design (BIBD).



Intuition

Example 1

Theory

### Example (BIBD *integer* model: $\checkmark \rightsquigarrow 1$ and $- \rightsquigarrow 0$ )

```
int: nbrBlocks; int: nbrVarieties;
set of int: Blocks = 1..nbrBlocks;
set of int: Varieties = 1..nbrVarieties;
int: blockSize; int: sampleSize; int: balance;
array[Varieties,Blocks] of var 0..1: BIBD;
solve satisfy;
constraint forall(b in Blocks)
(blockSize = sum(BIBD[..,b]));
constraint forall(v in Varieties)
(sampleSize = sum(BIBD[v,..]));
constraint forall(v, w in Varieties where v < w)
(balance = sum(b in Blocks)(BIBD[v,b]*BIBD[e,b]));</pre>
```

At Topic 1: Introduction, we used count instead of sum.

### Example (Instance data for our AED)

```
1 nbrBlocks = 7; nbrVarieties = 7;
2 blockSize = 3; sampleSize = 3; balance = 1;
```



Example 1
Example 2
Example 3
Theory

## Store after filling the first four rows

### Example (BIBD *integer* model)

Intuition

|        | plot1    | plot2 | plot3 | plot4 | plot5 | plot6 | plot7 |
|--------|----------|-------|-------|-------|-------|-------|-------|
| barley | <b>✓</b> | 1     | 1     | _     | _     | _     | _     |
| corn   | <b>✓</b> | _     | _     | 1     | ✓     | _     | _     |
| millet | 1        | _     | _     | _     | _     | 1     | 1     |
| oats   | _        | 1     | _     | 1     | _     | 1     | _     |
| rye    | ?        |       |       |       |       |       |       |
| spelt  |          |       |       |       |       |       |       |
| wheat  |          |       |       |       |       |       |       |

COCP / M4CO

- 7 -



Intuition Example 1

Theory

## Store after filling the first four rows

### Example (BIBD *integer* model)

|        | plot1    | plot2 | plot3 | plot4 | plot5 | plot6 | plot7 |
|--------|----------|-------|-------|-------|-------|-------|-------|
| barley | <b>✓</b> | 1     | 1     | _     | _     | _     | _     |
| corn   | ✓        | _     | _     | 1     | 1     | -     | _     |
| millet | ✓        | _     | _     | _     | _     | ✓     | ✓     |
| oats   | _        | 1     | _     | 1     | _     | ✓     | _     |
| rye    | ?        |       |       |       |       |       |       |
| spelt  |          |       |       |       |       |       |       |
| wheat  |          |       |       |       |       |       |       |

But plot1 cannot grow rye as that would violate the first constraint (every plot grows 3 grains).

COCP / M4CO - 7 -



## Store after filling the first four rows

### Example (BIBD *integer* model)

|        | plot1    | plot2 | plot3 | plot4 | plot5 | plot6 | plot7 |
|--------|----------|-------|-------|-------|-------|-------|-------|
| barley | <b>✓</b> | ✓     | 1     | _     | _     | _     | _     |
| corn   | 1        | _     | _     | 1     | ✓     | _     | _     |
| millet | 1        | _     | _     | _     | _     | ✓     | ✓     |
| oats   | _        | 1     | _     | 1     | _     | ✓     | _     |
| rye    | _        |       |       |       |       |       |       |
| spelt  |          |       |       |       |       |       |       |
| wheat  |          |       |       |       |       |       |       |

But plot1 cannot grow rye as that would violate the first constraint (every plot grows 3 grains).

Theory
Propagator for Constraint
Fixpoint of Mult

Intuition Example 1

COCP / M4CO - 7 -



Example 1
Example 2
Example 3
Theory

## Store after filling the first four rows

### Example (BIBD *integer* model)

|        | plot1    | plot2 | plot3 | plot4 | plot5 | plot6 | plot7 |
|--------|----------|-------|-------|-------|-------|-------|-------|
| barley | <b>✓</b> | ✓     | 1     | _     | _     | _     | _     |
| corn   | ✓        | _     | _     | ✓     | ✓     | -     | _     |
| millet | ✓        | _     | _     | _     | _     | ✓     | 1     |
| oats   | _        | 1     | _     | ✓     | _     | ✓     | _     |
| rye    | _        |       |       |       |       |       |       |
| spelt  |          |       |       |       |       |       |       |
| wheat  |          |       |       |       |       |       |       |

But plot1 cannot grow rye as that would violate the first constraint (every plot grows 3 grains). Actually, plot1 cannot grow oats, spelt, or wheat either, for the same reason, and this was already propagated when trying the search guess that plot1 grow millet!

COCP / M4CO

- 7 -



## Store after filling the first four rows

### Example (BIBD *integer* model)

|        | plot1    | plot2 | plot3 | plot4 | plot5 | plot6    | plot7    |
|--------|----------|-------|-------|-------|-------|----------|----------|
| barley | <b>✓</b> | 1     | 1     | _     | _     | _        | _        |
| corn   | ✓        | _     | _     | 1     | ✓     | -        | _        |
| millet | <b>√</b> | _     | _     | _     | _     | ✓        | <b>✓</b> |
| oats   | _        | 1     | _     | 1     | _     | <b>√</b> | _        |
| rye    | _        |       |       |       |       |          |          |
| spelt  | _        |       |       |       |       |          |          |
| wheat  | _        |       |       |       |       |          |          |

But plot1 cannot grow rye as that would violate the first constraint (every plot grows 3 grains). Actually, plot1 cannot grow oats, spelt, or wheat either, for the same reason, and this was already propagated when trying the search guess that plot1 grow millet!

Intuition

Example 1 Example 2 Example 3

Theory
Propagator for



### Example (BIBD: AED partial assignment)

 barley
 V
 V
 V
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O</t

Intuition

Example 1 Example 2

Theory

Propagator for One Constraint

Fixpoint of Multipl Propagators



#### . . .

Intuition Example 1

Example 2

Example

Theory

Constraint
Fixpoint of Multiple

### Example (BIBD: AED partial assignment)

|        | plot1 | plot2 | plot3 | plot4 | plot5 | plot6 | plot7 |
|--------|-------|-------|-------|-------|-------|-------|-------|
| barley | ✓     | ✓     | ✓     | _     | _     | _     | _     |
| corn   | ✓     | -     | _     | 1     | ✓     | -     | _     |
| millet | ✓     | -     | _     | _     | _     | ✓     | 1     |
| oats   | _     | ✓     | _     | 1     | _     | ✓     | _     |
| rye    | _     | ?     |       |       |       |       |       |
| spelt  | _     |       |       |       |       |       |       |
| wheat  | _     |       |       |       |       |       |       |

Guess: Let plot2 grow rye. Strategy: ✓ guesses first.



#### Intuition

Example 1

Example 2

Theory

Propagat

Propagator for Or Constraint Eixpoint of Multipl

### Example (BIBD: AED partial assignment)

|        | plot1    | plot2    | plot3 | plot4 | plot5 | plot6 | plot7 |
|--------|----------|----------|-------|-------|-------|-------|-------|
| barley | <b>✓</b> | 1        | ✓     | _     | _     | _     | _     |
| corn   | <b>√</b> | _        | _     | 1     | ✓     | -     | _     |
| millet | ✓        | _        | _     | _     | _     | ✓     | 1     |
| oats   | _        | 1        | _     | 1     | _     | ✓     | _     |
| rye    | _        | <b>✓</b> |       |       |       |       |       |
| spelt  | _        |          |       |       |       |       |       |
| wheat  | _        |          |       |       |       |       |       |

Guess: Let plot2 grow rye. Strategy: ✓ guesses first.



#### Intuition

Example 1

Example Example

Theory

Propagator for One Constraint

## Example (BIBD: AED partial assignment)

|        | plot1    | plot2    | plot3 | plot4 | plot5 | plot6 | plot7 |
|--------|----------|----------|-------|-------|-------|-------|-------|
| barley | <b>✓</b> | 1        | ✓     | _     | _     | _     | _     |
| corn   | <b>√</b> | _        | _     | 1     | ✓     | -     | _     |
| millet | ✓        | _        | _     | _     | _     | ✓     | ✓     |
| oats   | _        | 1        | _     | 1     | _     | ✓     | _     |
| rye    | _        | <b>✓</b> |       |       |       |       |       |
| spelt  | _        |          |       |       |       |       |       |
| wheat  | _        |          |       |       |       |       |       |

Propagation: plot2 cannot grow spelt and wheat as otherwise the first constraint (every plot grows 3 grains) would be violated for plot2.



#### Intuition

Example 1

Example Example

#### Theory

Constraint
Fixpoint of Multiple
Propagators

## Example (BIBD: AED partial assignment)

|        | plot1    | plot2    | plot3 | plot4 | plot5 | plot6 | plot7 |
|--------|----------|----------|-------|-------|-------|-------|-------|
| barley | <b>√</b> | ✓        | ✓     | _     | _     | _     | _     |
| corn   | ✓        | -        | _     | ✓     | ✓     | -     | _     |
| millet | ✓        | -        | _     | -     | _     | ✓     | ✓     |
| oats   | _        | ✓        | _     | 1     | _     | ✓     | _     |
| rye    | _        | <b>✓</b> |       |       |       |       |       |
| spelt  | _        | -        |       |       |       |       |       |
| wheat  | _        | _        |       |       |       |       |       |

Propagation: plot2 cannot grow spelt and wheat as otherwise the first constraint (every plot grows 3 grains) would be violated for plot2.



#### Intuition

Example 1

Example Example

#### Theory

Constraint
Fixpoint of Multiple
Propagators

## Example (BIBD: AED partial assignment)

|        | plot1    | plot2    | plot3 | plot4 | plot5 | plot6 | plot7 |
|--------|----------|----------|-------|-------|-------|-------|-------|
| barley | <b>√</b> | 1        | ✓     | _     | _     | _     | _     |
| corn   | ✓        | _        | _     | 1     | ✓     | -     | _     |
| millet | ✓        | _        | _     | _     | _     | ✓     | ✓     |
| oats   | _        | 1        | _     | 1     | _     | ✓     | _     |
| rye    | _        | <b>✓</b> |       |       |       |       |       |
| spelt  | _        | _        |       |       |       |       |       |
| wheat  | _        | _        |       |       |       |       |       |

Propagation: plot3, plot4, and plot6 cannot grow rye as otherwise the third constraint (every grain pair is grown in 1 common plot) would be violated.



#### Intuition

Example 1

Example Example

Theory

Propagator for One Constraint Fixpoint of Multiple

## Example (BIBD: AED partial assignment)

|        | plot1    | plot2    | plot3 | plot4 | plot5 | plot6 | plot7 |
|--------|----------|----------|-------|-------|-------|-------|-------|
| barley | <b>√</b> | 1        | ✓     | _     | _     | _     | _     |
| corn   | ✓        | _        | _     | 1     | ✓     | -     | _     |
| millet | ✓        | _        | _     | _     | _     | ✓     | ✓     |
| oats   | _        | 1        | _     | 1     | _     | ✓     | _     |
| rye    | _        | <b>✓</b> | _     | _     |       | -     |       |
| spelt  | _        | _        |       |       |       |       |       |
| wheat  | _        | _        |       |       |       |       |       |

Propagation: plot3, plot4, and plot6 cannot grow rye as otherwise the third constraint (every grain pair is grown in 1 common plot) would be violated.



#### Intuition

Example 1

Example Example

#### Theory

Constraint
Fixpoint of Multiple
Propagators

### Example (BIBD: AED partial assignment)

|        | plot1    | plot2    | plot3 | plot4 | plot5 | plot6 | plot7 |
|--------|----------|----------|-------|-------|-------|-------|-------|
| barley | <b>✓</b> | 1        | ✓     | _     | _     | _     | _     |
| corn   | <b>√</b> | _        | _     | 1     | ✓     | -     | _     |
| millet | ✓        | _        | _     | _     | _     | ✓     | 1     |
| oats   | _        | 1        | _     | 1     | _     | ✓     | _     |
| rye    | _        | <b>✓</b> | _     | _     |       | -     |       |
| spelt  | _        | _        |       |       |       |       |       |
| wheat  | _        | _        |       |       |       |       |       |

Propagation: plot5 and plot7 must grow rye as otherwise the second constraint (every grain is grown in 3 plots) would be violated for rye.



#### Intuition

Example 1

Example Example

#### Theory

Constraint
Fixpoint of Multiple
Propagators

### Example (BIBD: AED partial assignment)

|        | plot1 | plot2    | plot3 | plot4 | plot5 | plot6 | plot7    |
|--------|-------|----------|-------|-------|-------|-------|----------|
| barley | ✓     | ✓        | ✓     | _     | _     | _     | _        |
| corn   | ✓     | -        | _     | ✓     | ✓     | -     | _        |
| millet | ✓     | -        | _     | -     | _     | ✓     | ✓        |
| oats   | _     | ✓        | _     | 1     | _     | ✓     | _        |
| rye    | _     | <b>✓</b> | _     | -     | 1     | -     | <b>✓</b> |
| spelt  | _     | 1        |       |       |       |       |          |
| wheat  | _     | -        |       |       |       |       |          |

Propagation: plot5 and plot7 must grow rye as otherwise the second constraint (every grain is grown in 3 plots) would be violated for rye.



#### Intuition

Example 1

Example Example

#### Theory

Constraint
Fixpoint of Multiple
Propagators

## Example (BIBD: AED partial assignment)

|        | plot1 | plot2    | plot3 | plot4 | plot5 | plot6 | plot7    |
|--------|-------|----------|-------|-------|-------|-------|----------|
| barley | ✓     | ✓        | ✓     | _     | _     | _     | _        |
| corn   | ✓     | -        | _     | 1     | ✓     | -     | _        |
| millet | ✓     | -        | _     | _     | _     | ✓     | ✓        |
| oats   | _     | ✓        | _     | 1     | _     | ✓     | _        |
| rye    | _     | <b>✓</b> | _     | _     | 1     | 1     | <b>✓</b> |
| spelt  | _     | 1        |       |       |       |       |          |
| wheat  | _     | 1        |       |       |       |       |          |

Propagation: plot3 must grow spelt and wheat as otherwise the first constraint (every plot grows 3 grains) would be violated for plot3.



#### Intuition

Example 1

Example Example

### Theory

Constraint
Fixpoint of Multiple
Propagators

### Example (BIBD: AED partial assignment)

|        | plot1    | plot2    | plot3    | plot4 | plot5 | plot6 | plot7    |
|--------|----------|----------|----------|-------|-------|-------|----------|
| barley | <b>✓</b> | 1        | ✓        | _     | _     | _     | _        |
| corn   | <b>✓</b> | _        | _        | ✓     | ✓     | -     | _        |
| millet | <b>✓</b> | _        | _        | -     | _     | ✓     | ✓        |
| oats   | _        | 1        | _        | ✓     | _     | ✓     | _        |
| rye    | _        | <b>/</b> | _        | 1     | 1     | 1     | <b>✓</b> |
| spelt  | _        | _        | <b>√</b> |       |       |       |          |
| wheat  | _        | _        | <b>√</b> |       |       |       |          |

Propagation: plot3 must grow spelt and wheat as otherwise the first constraint (every plot grows 3 grains) would be violated for plot3.



#### Intuition

Example 1

Example 2

Theory

## Example (BIBD: AED partial assignment)

|        | plot1 | plot2    | plot3    | plot4 | plot5 | plot6    | plot7    |
|--------|-------|----------|----------|-------|-------|----------|----------|
| barley | ✓     | ✓        | ✓        | _     | _     | _        | _        |
| corn   | ✓     | -        | _        | 1     | ✓     | -        | _        |
| millet | ✓     | -        | _        | _     | _     | <b>✓</b> | ✓        |
| oats   | _     | <b>√</b> | _        | 1     | _     | <b>✓</b> | _        |
| rye    | _     | <b>\</b> | _        | _     | 1     | 1        | <b>✓</b> |
| spelt  | _     | -        | <b>√</b> |       |       |          |          |
| wheat  | _     | _        | 1        |       |       |          |          |

Common fixpoint reached: No more propagation possible.



#### Intuition

Example 1

Example 2

Theory

Propagator for On Constraint Example (BIBD: AED partial assignment)

|        | plot1    | plot2    | plot3 | plot4    | plot5 | plot6 | plot7 |
|--------|----------|----------|-------|----------|-------|-------|-------|
| barley | <b>√</b> | 1        | ✓     | _        | _     | _     | _     |
| corn   | ✓        | _        | _     | ✓        | ✓     | -     | _     |
| millet | ✓        | _        | _     | -        | _     | ✓     | 1     |
| oats   | _        | 1        | _     | 1        | _     | ✓     | _     |
| rye    | _        | <b>√</b> | _     | -        | 1     | -     | 1     |
| spelt  | _        | _        | 1     | <b>√</b> |       |       |       |
| wheat  | _        | _        | 1     |          |       |       |       |

Guess: Let plot4 grow spelt. Strategy: ✓ guesses first.

Propagation: etc.



### Intuition Example 1

Example 2

E. .......

Theory

#### nicory

Constraint
Fixpoint of Multiple
Propagators

### 1. Intuition

Example 1

Example 2

Example 3

### 2. Theory



### Intuition

Example 1 Example 2 Example 3

#### Theory

Constraint
Fixpoint of Multiple

### Example (Propagation to *Domain* Consistency)

Find  $a \in \{1, 2, \dots, 9\}$  and  $b \in \{0, 1, \dots, 8\}$  such that

$$2 \cdot a + 4 \cdot b = 24$$

$$a+b = 9$$

| а |   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|---|---|---|---|---|---|---|
| b | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |   |



## Example (Propagation to *Domain* Consistency)

Find  $a \in \{1, 2, \dots, 9\}$  and  $b \in \{0, 1, \dots, 8\}$  such that

$$2 \cdot a + 4 \cdot b = 24$$
$$a + b = 9$$

State  $2 \cdot a + 4 \cdot b = 24$ : prune unsupported values of a:

#### Intuition Example 1

Example 2 Example 3

#### Theory



## Example (Propagation to *Domain* Consistency)

Find  $a \in \{1, 2, \dots, 9\}$  and  $b \in \{0, 1, \dots, 8\}$  such that

$$2 \cdot a + 4 \cdot b = 24$$
$$a + b = 9$$

State  $2 \cdot a + 4 \cdot b = 24$ : prune unsupported values of a:

## Intuition

Example 2 Example 3

#### Theory



## Example (Propagation to *Domain* Consistency)

Find  $a \in \{1, 2, \dots, 9\}$  and  $b \in \{0, 1, \dots, 8\}$  such that

$$2 \cdot a + 4 \cdot b = 24$$
$$a + b = 9$$

State  $2 \cdot a + 4 \cdot b = 24$ : prune unsupported values of b:

## Intuition

Example 2 Example 3

#### Theory



## Example (Propagation to *Domain* Consistency)

Find  $a \in \{1, 2, \dots, 9\}$  and  $b \in \{0, 1, \dots, 8\}$  such that

$$2 \cdot a + 4 \cdot b = 24$$
$$a + b = 9$$

State  $2 \cdot a + 4 \cdot b = 24$ : prune unsupported values of b:

## Intuition

Example 2 Example 3

#### Theory

Constraint
Fixpoint of Multiple
Propagators



### Intuition

Example 2 Example 3

#### Theory

Constraint
Fixpoint of Multiple
Propagators

### Example (Propagation to *Domain* Consistency)

Find  $a \in \{1, 2, \dots, 9\}$  and  $b \in \{0, 1, \dots, 8\}$  such that

$$2 \cdot a + 4 \cdot b = 24$$

$$a+b = 9$$

| а |  | 2 |   | 4 |   | 6 | 8 |  |
|---|--|---|---|---|---|---|---|--|
| b |  | 2 | 3 | 4 | 5 |   |   |  |

Keep propagator for  $2 \cdot a + 4 \cdot b = 24$ , as not subsumed: its constraint is not definitely true under the current store.

## Example (Propagation to *Domain* Consistency)

Find  $a \in \{1, 2, \dots, 9\}$  and  $b \in \{0, 1, \dots, 8\}$  such that

$$2 \cdot a + 4 \cdot b = 24$$
$$a + b = 9$$

State a + b = 9: prune unsupported values of a:

| a |  | 2 |   | 4 |   | 6 | 8 |  |
|---|--|---|---|---|---|---|---|--|
| b |  | 2 | 3 | 4 | 5 |   |   |  |

Intuition
Example 1

Example 2 Example 3

Theory

Propagator for One Constraint Fixpoint of Multiple

### Example (Propagation to *Domain* Consistency)

Find  $a \in \{1, 2, \dots, 9\}$  and  $b \in \{0, 1, \dots, 8\}$  such that

$$2 \cdot a + 4 \cdot b = 24$$
$$a + b = 9$$

State a + b = 9: prune unsupported values of a:

| a |  | 2 |   | 4 |   | 6 | 8 |  |
|---|--|---|---|---|---|---|---|--|
| b |  | 2 | 3 | 4 | 5 |   |   |  |

Intuition

Example 2 Example 3

Theory

Propagator for Or Constraint

### Example (Propagation to *Domain* Consistency)

Find  $a \in \{1, 2, \dots, 9\}$  and  $b \in \{0, 1, \dots, 8\}$  such that

$$2 \cdot a + 4 \cdot b = 24$$
$$a + b = 9$$

State a + b = 9: prune unsupported values of b:

| а |  |   |   | 4 |   | 6 |  |  |
|---|--|---|---|---|---|---|--|--|
| b |  | 2 | 3 | 4 | 5 |   |  |  |

### Intuition

Example 2 Example 3

#### Theory

Constraint
Fixpoint of Multiple
Propagators

### Example (Propagation to *Domain* Consistency)

Find  $a \in \{1,2,\ldots,9\}$  and  $b \in \{0,1,\ldots,8\}$  such that

$$2 \cdot a + 4 \cdot b = 24$$
$$a + b = 9$$

State a + b = 9: prune unsupported values of b:

|   | <br> |   |   |   |   |   | <br> |  |
|---|------|---|---|---|---|---|------|--|
| а |      |   |   | 4 |   | 6 |      |  |
| b |      | 2 | 3 | 4 | 5 |   |      |  |

Intuition

Example 2 Example 3

Theory

Propagator for One Constraint Fixpoint of Multiple



## Intuition

Example 2 Example 3

#### Theory

Propagator for Oni Constraint Fixpoint of Multiple Propagators

### Example (Propagation to *Domain* Consistency)

Find  $a \in \{1, 2, \dots, 9\}$  and  $b \in \{0, 1, \dots, 8\}$  such that

$$2 \cdot a + 4 \cdot b = 24$$

$$a+b = 9$$

| а |  |   | 4 |   | 6 |  |  |
|---|--|---|---|---|---|--|--|
| b |  | 3 |   | 5 |   |  |  |

Keep propagator for a + b = 9, as not subsumed: its constraint is not definitely true under the current store.

# Example (Propagation to *Domain* Consistency)

Find  $a \in \{1, 2, ..., 9\}$  and  $b \in \{0, 1, ..., 8\}$  such that

$$2 \cdot a + 4 \cdot b = 24$$
$$a + b = 9$$

Run  $2 \cdot a + 4 \cdot b = 24$ : prune unsupported values of a:

Intuition

Example 2 Example 3

Theory

Propagator for On Constraint

## Intuition

Example 2 Example 3

#### Theory

Constraint
Fixpoint of Multiple

## Example (Propagation to *Domain* Consistency)

Find  $a \in \{1,2,\ldots,9\}$  and  $b \in \{0,1,\ldots,8\}$  such that

$$2 \cdot a + 4 \cdot b = 24$$
$$a + b = 9$$

Run  $2 \cdot a + 4 \cdot b = 24$ : prune unsupported values of a:

| a |  |   | 4 |   | 6 |  |  |
|---|--|---|---|---|---|--|--|
| b |  | 3 |   | 5 |   |  |  |

## Example (Propagation to *Domain* Consistency)

Find  $a \in \{1, 2, \dots, 9\}$  and  $b \in \{0, 1, \dots, 8\}$  such that

$$2 \cdot a + 4 \cdot b = 24$$
$$a + b = 9$$

Run  $2 \cdot a + 4 \cdot b = 24$ : prune unsupported values of b:

Intuition

Example 2 Example 3

Theory

Propagator for One Constraint Fixpoint of Multiple

## Intuition

Example 2

#### Theory

Constraint
Fixpoint of Multiple
Propagators

### Example (Propagation to *Domain* Consistency)

Find  $a \in \{1,2,\ldots,9\}$  and  $b \in \{0,1,\ldots,8\}$  such that

$$2 \cdot a + 4 \cdot b = 24$$

$$a+b = 9$$

Run 2 ·  $a + 4 \cdot b = 24$ : prune unsupported values of b:

| а |  |   |   | 6 |  |  |
|---|--|---|---|---|--|--|
| b |  | 3 | 5 |   |  |  |



### Intuition

Example 2 Example 3

#### Theory

Constraint
Fixpoint of Multiple
Propagators

### Example (Propagation to *Domain* Consistency)

Find  $a \in \{1,2,\ldots,9\}$  and  $b \in \{0,1,\ldots,8\}$  such that

$$2 \cdot a + 4 \cdot b = 24$$

$$a+b = 9$$

| а |  |   |  | 6 |  |  |
|---|--|---|--|---|--|--|
| b |  | 3 |  |   |  |  |

Dispose of propagator for  $2 \cdot a + 4 \cdot b = 24$ , as subsumed: its constraint is definitely true under the current store.

# Example (Propagation to *Domain* Consistency)

Find  $a \in \{1, 2, \dots, 9\}$  and  $b \in \{0, 1, \dots, 8\}$  such that

$$2 \cdot a + 4 \cdot b = 24$$
$$a + b = 9$$

Run a + b = 9: prune unsupported values of a:

| a |  |   |  | 6 |  |  |
|---|--|---|--|---|--|--|
| b |  | 3 |  |   |  |  |

Intuition

Example 2 Example 3

Theory

Propagator for One Constraint Fixpoint of Multiple

## Example (Propagation to *Domain* Consistency)

Find  $a \in \{1, 2, \dots, 9\}$  and  $b \in \{0, 1, \dots, 8\}$  such that

$$2 \cdot a + 4 \cdot b = 24$$
$$a + b = 9$$

Run a + b = 9: prune unsupported values of b:

| а |  |   |  | 6 |  |  |
|---|--|---|--|---|--|--|
| b |  | 3 |  |   |  |  |

Intuition

Example 2 Example 3

Theory

Constraint
Fixpoint of Multiple
Propagators



## Intuition

Example 2 Example 3

#### Theory

Constraint
Fixpoint of Multiple

### Example (Propagation to *Domain* Consistency)

Find  $a \in \{1,2,\ldots,9\}$  and  $b \in \{0,1,\ldots,8\}$  such that

$$2 \cdot a + 4 \cdot b = 24$$

$$a+b = 9$$

| а |  |   |  | 6 |  |  |
|---|--|---|--|---|--|--|
| b |  | 3 |  |   |  |  |

Dispose of propagator for a + b = 9, as subsumed: its constraint is definitely true under the current store.

## Intuition

Example 2 Example 3

#### Theory

Constraint
Fixpoint of Multiple

### Example (Propagation to *Domain* Consistency)

Find  $a \in \{1,2,\ldots,9\}$  and  $b \in \{0,1,\ldots,8\}$  such that

$$2 \cdot a + 4 \cdot b = 24$$

$$a+b = 9$$

| а |  |   |  | 6 |  |  |
|---|--|---|--|---|--|--|
| b |  | 3 |  |   |  |  |

No propagators are left: all solutions are found. No search!



### Intuition

Example 2 Example 3

#### Theory

Propagator for On Constraint Fixpoint of Multiple Propagators

### Example (Propagation to *Domain* Consistency)

Find  $a \in \{1,2,\ldots,9\}$  and  $b \in \{0,1,\ldots,8\}$  such that

$$2 \cdot a + 4 \cdot b = 24$$

$$a+b = 9$$

| а |  |   |  | 6 |  |  |
|---|--|---|--|---|--|--|
| b |  | 3 |  |   |  |  |

This general propagation method works for all systems of constraints (linear or not, equalities or inequalities, etc), no matter how many constraints and decision variables.



## **Outline**

### Intuition

Example 2

Example 3

Example

#### Theory

Constraint
Fixpoint of Multiple
Propagators

### 1. Intuition

Example 1

Example 2

Example 3

### 2. Theory

Propagator for One Constraint Fixpoint of Multiple Propagators



## Intuition

Example 3

Example

#### Theory

Propagator for On Constraint Fixpoint of Multiple Propagators

### Example (Propagation to *Bounds*(\*) Consistency)

Find  $a \in \{1,2,\ldots,9\}$  and  $b \in \{0,1,\ldots,8\}$  such that

$$2 \cdot a + 4 \cdot b = 24$$



### Intuition

Example 2 Example 3

### Theory

Propagator for One Constraint Fixpoint of Multiple Propagators

### Example (Propagation to *Bounds*(\*) Consistency)

Find  $a \in \{1,2,\ldots,9\}$  and  $b \in \{0,1,\ldots,8\}$  such that

$$2 \cdot a + 4 \cdot b = 24$$

State  $2 \cdot a + 4 \cdot b = 24$ : prune unsupported bounds of a:

| а |   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|---|---|---|---|---|---|---|
| b | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |   |



### Intuition

Example 2 Example 3

#### Theory

Propagator for One Constraint Fixpoint of Multiple Propagators

### Example (Propagation to *Bounds*(\*) Consistency)

Find  $a \in \{1,2,\ldots,9\}$  and  $b \in \{0,1,\ldots,8\}$  such that

$$2 \cdot a + 4 \cdot b = 24$$

State  $2 \cdot a + 4 \cdot b = 24$ : prune unsupported bounds of a:

| a |   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|---|---|---|---|---|---|---|
| b | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |   |



## Intuition

Example 2 Example 3

Example:

#### Theory

Propagator for One Constraint Fixpoint of Multiple Propagators

### Example (Propagation to *Bounds*(\*) Consistency)

Find  $\textbf{\textit{a}} \in \{1,2,\ldots,9\}$  and  $\textbf{\textit{b}} \in \{0,1,\ldots,8\}$  such that

$$2 \cdot a + 4 \cdot b = 24$$

State  $2 \cdot a + 4 \cdot b = 24$ : prune unsupported bounds of b:

| а |   |   | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |
|---|---|---|---|---|---|---|---|---|---|--|
| b | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |



### Intuition Example 1

Example 2 Example 3

#### Theory

Propagator for One Constraint Fixpoint of Multiple Propagators

### Example (Propagation to *Bounds*(\*) Consistency)

Find  $\textbf{\textit{a}} \in \{1,2,\ldots,9\}$  and  $\textbf{\textit{b}} \in \{0,1,\ldots,8\}$  such that

$$2 \cdot a + 4 \cdot b = 24$$

State  $2 \cdot a + 4 \cdot b = 24$ : prune unsupported bounds of b:



# Example (Propagation to *Bounds*(\*) Consistency)

Find  $a \in \{1, 2, \dots, 9\}$  and  $b \in \{0, 1, \dots, 8\}$  such that

$$2 \cdot a + 4 \cdot b = 24$$

Keep the propagator for  $2 \cdot a + 4 \cdot b = 24$ , as not subsumed.

# Intuition Example 1 Example 2

Example 3

#### Theory

Propagator for One Constraint Fixpoint of Multiple Propagators



#### Intuition Example 1

Example 2 Example 3

#### Theory

Propagator for On Constraint Fixpoint of Multiple Propagators

### Example (Propagation to *Bounds*(\*) Consistency)

Find  $a \in \{1,2,\ldots,9\}$  and  $b \in \{0,1,\ldots,8\}$  such that

$$2 \cdot a + 4 \cdot b = 24$$

Keep the propagator for  $2 \cdot a + 4 \cdot b = 24$ , as not subsumed.

Some propagators are left: no solutions found yet. Search!



## **Outline**

#### Intuition Example 1

Example 1 Example 2 Example 3

#### Theory

Constraint
Fixpoint of Multiple
Propagators

### 1. Intuition

Example 1 Example 2 Example 3

### 2. Theory

Propagator for One Constraint Fixpoint of Multiple Propagators



# **Solving**

Intuition Example 1 Example 2

#### Theory

Propagator for One Constraint Fixpoint of Multiple Propagators

### Systematic search, for a satisfaction problem:

- 1: propagate all constraints; backtrack if empty domain
- 2: if only fixed variables, then show solution & backtrack
- 3: **while** there is at least one scheduled propagator **do**
- 4: select unfixed variable, v, of current domain dom(v)
- 5: partition dom(v) using guesses (say  $v = d \& v \neq d$ , or  $v > d \& v \leq d$ , for a picked value  $d \in \text{dom}(v)$ )
- 6: **for each** guess: **recurse** upon adding it as constraint For an optimisation problem: before backtracking at line 2 add the constraint that any next solution must be better.

### Strategies:

- Line 4: variable selection: smallest domain, ...
- Line 5: value selection: maximum, median, ...
- Line 5: guess selection: equality, bisection, ...
- Tree exploration: depth-first search, ...



## **Strength of Stores**

## Intuition Example 1

Example 1 Example 2 Example 3

#### Theory

Propagator for On-Constraint Fixpoint of Multiple Propagators

### Definition (Store strength comparison, denoted $s \prec t$ )

Store s is (strictly) stronger than store t if and only if  $s(v) \subseteq t(v)$  for every decision variable v, and  $s(v) \subset t(v)$  for at least one decision variable v.

So  $\prec$  is a well-founded (hence partial) order over stores.

### Example (Store strength comparison)

Consider these stores for variables  $\{x, y\}$  over  $\{1, 2, 3\}$ :

$$\begin{aligned} s_1 &= \{x \mapsto \{1,2 \}, y \mapsto \{2,3\}\} \\ s_2 &= \{x \mapsto \{2\}, y \mapsto \{2,3\}\} \\ s_3 &= \{x \mapsto \{2,3\}, y \mapsto \{1,2,3\}\} \end{aligned}$$

Note:  $s_2 \prec s_1$  and  $s_2 \prec s_3$ , but  $s_1$  and  $s_3$  are incomparable.



### **Outline**

#### Intuition

Example 1 Example 2 Example 3

#### Theory

Propagator for One Constraint

Propagators

#### 1. Intuition

Example 1

Example 2

Example 3

### 2. Theory

Propagator for One Constraint

Fixpoint of Multiple Propagators



## **Constraint Propagator**

### Intuition

Example 1 Example 2 Example 3

#### Theory

Propagator for One Constraint

Fixpoint of Multip Propagators

## Definition (Propagator)

A propagator  $p_c$  for a constraint c modifies a store so that:

- Contraction: The result store is stronger than or equal to  $(\leq)$  the input store:  $p_c(s) \prec s$  or  $p_c(s) = s$ , for any s.
- Monotonicity: Strength-ordered stores remain ordered:  $s_1 \leq s_2 \Rightarrow p_c(s_1) \leq p_c(s_2)$ , for any  $s_1$  and  $s_2$ .
- **Solution identification:** For a solution to c, no domain is shrunk:  $p_c(s) = s$ , for any solution store s to c: fixpt!

## Example (Domain-consistency propagator for $x \leq y$ )

$$p_{x \le y}(s) = \left\{ \begin{array}{l} x \mapsto \{n \in s(x) \mid n \le \max(s(y))\}, \\ y \mapsto \{n \in s(y) \mid n \ge \min(s(x))\} \end{array} \right\}$$

$$p_{x \le y}(\{x \mapsto \{1,3,5\}, y \mapsto \{0,2,4\}\}) = \{x \mapsto \{1,3\}, y \mapsto \{2,4\}\}$$



## **Justification for Monotonicity**

### Intuition

Example 1 Example 2 Example 3

#### Theory

Propagator for One

Propagators

### Counter-example

Consider the non-monotonic propagator for constraint *c* 

$$p_c(s) = \text{if } s(x) = \{1, 2, 3\} \text{ then } \{x \mapsto \{1\}\} \text{ else } s$$

and the stores  $s_1 = \{x \mapsto \{1,2\}\}$  and  $s_2 = \{x \mapsto \{1,2,3\}\}$ :

$$s_1 \leq s_2$$
 but  $p_c(s_2) = \{x \mapsto \{1\}\} \leq \{x \mapsto \{1,2\}\} = p_c(s_1)$ 

The result stores could also be incomparable; note that  $\prec$  and  $\preceq$  are partial ordering relations.

But propagation would be propagator-order-dependent:

$$p_c(p_{x<3}(s_2)) = \{x \mapsto \{1,2\}\} \neq \{x \mapsto \{1\}\} = p_{x<3}(p_c(s_2))$$



## **Consequences of Propagator Definition**

Intuition

Example

Theory

Propagator for One Constraint Fixpoint of Multiple

### Property of propagation:

- Order independence: Propagators may be invoked in any order: their weakest common fixpoint is unique.
   E.g., from {x, y → {3,4,5}}, the weakest fixpoint of p<sub>x≥y</sub> and p<sub>y>3</sub> is {x, y → {4,5}}, whereas a strongest fixpoint is a solution store, such as {x, y → {5}}.
- Properties of a propagator  $p_c$  for a constraint c:
  - Solution preservation: No solution is lost:
     if a solution to c is in a store before propagation,
     then it is in the result store after propagation of c:
     d ∈ s ⇒ d ∈ p<sub>c</sub>(s), for any store s and solution d to c.
  - Non-solution identification: For a non-solution to c, the domain of some decision variable becomes empty.



### Idempotency of propagators is not required:

Every DC propagator is idempotent; a BC propagator may be non-idempotent: see Ex. 2.9 on p. 19 of Course Notes.

### **Terminology:**

The objective of a propagator is to delete the unsupported values, according to a chosen consistency, from the domains of decision variables. In the literature, this deletion is also called pruning, filtering, contracting, or narrowing. If a domain loses its last value, then we say that there was a domain wipe-out and the propagator must fail.

## Definition (Model)

A model of a CSP  $\langle V, U, C \rangle$  is a tuple  $\langle V, U, P \rangle$ , where P is the set of propagators chosen for the constraints C.

Intuition

Theory

Propagator for One

Fixpoint of Multip Propagators



## **Outline**

#### Intuition

Example 2

Example 2

#### Theory

Propagator for One

Fixpoint of Multiple Propagators

#### 1. Intuition

Example 1

Example 2

Example 3

### 2. Theory

Propagator for One Constraint

Fixpoint of Multiple Propagators



## **Naïve Fixpoint Algorithm**

Intuition Example 1 Example 2

Theory
Propagator for One

Fixpoint of Multiple Propagators Let  $\langle V, U, P \rangle$  be a model where, without loss of generality, there is a common domain U for all decision variables of V.

Let  $s_0 = \{v \mapsto U \mid v \in V\}$  be the initial store, where every decision variable v of V is mapped to the universe U.

Call to build the root of the search tree: Propagate(P,  $s_0$ ).

```
function Propagate(R, s)

while \exists q \in R : q(s) \nleq s do // variant: s

pick q \in R : q(s) \nleq s

s := q(s)
```

**return** s // **post**: s is the weakest common fixpoint of R



## **Toward More Realistic Propagation**

#### Intuition Example 1 Example 2

Theory
Propagator for One

Fixpoint of Multiple Propagators

### Why is the previous algorithm naïve?

For the condition of its while loop:

- We do not maintain the set of propagators that are known to be at fixpoint.
- We may examine a propagator that does not depend in some sense on the propagator that was just run.

So we may examine a propagator that cannot prune values.

### Variables of a propagator:

Let var(p) denote the set of decision variables of the constraint implemented by propagator p:

- Running p has no effect on dom(v), for  $v \in V \setminus var(p)$ .
- Running p is independent of dom(v), for  $v \in V \setminus var(p)$ .



## Variable-Directed Fixpoint Algorithm

Intuition Example 1 Example 2

Theory
Propagator for One

Fixpoint of Multiple Propagators

```
function Propagate(R, Q, s)
while Q \neq \emptyset do // invariant: every p \in R \setminus Q is at fixpt
                                               // variant: \langle s, |Q| \rangle
   pick q \in Q
                        // prop.s of Q are possibly not at fixpt
   Q := Q \setminus \{q\}
   s' := q(s)
                                                            //s' \prec s
   ModVars := \{v \in var(q) \mid s(v) \neq s'(v)\}
   DepProps := \{ p \in R \mid \exists v \in var(p) : v \in ModVars \}
   Q := Q \cup DepProps // maybe q \in Q: optional idempot.
   s := s'
return s // post: s is the weakest common fixpoint of R
```

Call to build the root of the search tree: Propagate  $(P, P, s_0)$ .



## **Toward Further Improved Propagation**

### Propagators signal status to avoid some useless runs:

- Propagator *p* is failed upon a domain wipe-out.
- Propagator p is subsumed (or entailed) by store s iff all stronger stores are fixpoints:  $\forall s' \leq s : p(s') = s'$ . This status is an obligation when s is a solution store. Such a propagator can safely be disposed of in the model.
- $\blacksquare$  Otherwise, if so, ideally signal that p is at fixpoint for s.
- It is always safe to signal that a propagator *p* is possibly not at fixpoint for the result store *s*.

### Examples (Subsumption)

 $p_{x \le y}$  is subsumed by  $\{x \mapsto \{1,3\}, y \mapsto \{3,5\}\}$ , but not by  $\{x \mapsto \{1,3,4\}, y \mapsto \{3,5\}\}$ . A DC propagator of a unary constraint, like  $x \in \{1,3,5\}$ , is subsumed upon its first run.

Theory
Propagator for One
Constraint

Fixpoint of Multiple Propagators



## **Propagators with Status Message**

## Example (Domain-consistency propagator for $x \le y$ )

 $p_{x \le y}(s) = \text{let } s' = \left\{ \begin{array}{l} x \mapsto \{n \in s(x) \mid n \le \max(s(y))\}, \\ y \mapsto \{n \in s(y) \mid n \ge \min(s(x))\} \end{array} \right\} \text{ in }$   $\text{if } s'(x) = \varnothing \vee s'(y) = \varnothing \text{ then } \langle \text{Failed}, \varnothing \rangle$ 

else if  $\max(s'(x)) \leq \min(s'(y))$  then  $\langle \text{Subsumed}, s' \rangle$ 

**else**  $\langle AtFixpt, s' \rangle$ 

Note that min(s(x)) and max(s(y)) do not change: hence s' is at least a fixpoint for  $p_{x < v}$  and at best subsumes it!

### Responsibility:

The burden of signalling, in reasonable runtime, a proper status message is on the programmer of a propagator.

Intuition Example 1 Example 2

Theory
Propagator for One

Fixpoint of Multiple Propagators



## **Propagator-Status-Directed Fixpoint Algo.**

Intuition Example 1

Theory

Propagator for On

Fixpoint of Multiple Propagators

```
function Propagate (R, Q, s) // non-subsumed prop.s in R
while Q \neq \emptyset do
                                   // invariant: ...: variant: ...
   pick q \in Q
   Q := Q \setminus \{q\}
   \langle m, s' \rangle := q(s)
                                                               //s' \prec s
   if m = Failed then return \langle R, \varnothing \rangle end if
   if m = Subsumed then R := R \setminus \{q\} end if
   ModVars := \{ v \in var(q) \mid s(v) \neq s'(v) \}
   DepProps := \{ p \in R \mid \exists v \in var(p) : v \in ModVars \}
   if m = AtFixpt then DepProps := DepProps \setminus \{g\} end if
   Q := Q \cup DepProps
   s := s'
```

**return**  $\langle R, s \rangle$  // **post**: s is the weakest common fixpt of R

COCP / M4CO - 27 -



## **Toward Even Further Improved Propagation**

Intuition
Example 1
Example 2

Theory
Propagator for One

Fixpoint of Multiple Propagators

### Signalling how domains were modified:

Mutually exclusive modification events for each variable v:

- 1 None(v): the domain of v was not changed.
- Failed(v): the domain of v was wiped out.
- 3 Fixed(v): the domain of v was pruned to a singleton.
- Min(v): the lower bound of dom(v) was increased. Max(v): the upper bound of dom(v) was decreased.
- 5 Any(v): the domain of v was otherwise pruned.

Gecode: Min(v) and Max(v) are bundled into Bounded(v).

It is often simple to decide whether a propagator remains at fixpoint depending on how another propagator prunes domains of decision variables they share: variable sharing is no longer the sole criterion for adding propagators to *Q*.



## **Propagator Conditions**

#### Intuition

Example 1 Example 2 Example 3

### Theory Propagator for On

Propagator for One Constraint

Fixpoint of Multiple Propagators

### Example (Domain-consistency propagator for $x \leq y$ )

$$p_{x \le y}(s) = \left\{ \begin{array}{l} x \mapsto \{n \in s(x) \mid n \le \max(s(y))\}, \\ y \mapsto \{n \in s(y) \mid n \ge \min(s(x))\} \end{array} \right\}$$

 $\square$  PropConds( $p_{x < y}$ ) = {Min(x), Max(y)}

Promise: If the propagator is at fixpoint, then it will remain at fixpoint, unless min(dom(x)) or max(dom(y)) changes.

## Example (Domain-consistency propagator for $x \neq y$ )

$$p_{x\neq y}(s) = \left\{ \begin{array}{l} x \mapsto s(x) \setminus \text{if } |s(y)| = 1 \text{ then } s(y) \text{ else } \emptyset, \\ y \mapsto s(y) \setminus \text{if } |s(x)| = 1 \text{ then } s(x) \text{ else } \emptyset \end{array} \right\}$$

 $\square$  PropConds( $p_{x\neq y}$ ) = {Fixed(x), Fixed(y)}

Promise: If the propagator is at fixpoint, then it will remain at fixpoint, unless dom(x) or dom(y) becomes a singleton.



# **Assumptions**

## Responsibilities, under Gecode:

- The programmer of propagator p states PropConds(p).
- The solver computes as follows the set Conds(s, s') of propagator conditions raised by applying a propagator q to a store s, giving s' = q(s):

Modification event Conditions added to Conds(s, s')

| Fixed(v)   | Fixed( $v$ ), Bounded( $v$ ), Any( $v$ ) |
|------------|------------------------------------------|
| Bounded(v) | Bounded( $v$ ), Any( $v$ )               |
| Any(v)     | Any(v)                                   |
| None(v)    | (none)                                   |

■ The solver schedules a propagator p (adds p to Q) if the conditions Conds(s, s') raised by propagator q intersect with the propagator conditions PropConds(p).

# Intuition Example 1 Example 2

Theory
Propagator for One

Fixpoint of Multiple Propagators



## Status-and-Condition-Directed Fixpt Algo.

### Intuition

Example 1
Example 2

### Theory Propagator for On

Propagator for Or Constraint

Fixpoint of Multiple Propagators

```
function Propagate(R, Q, s)
while Q \neq \emptyset do
                                   // invariant: ...; variant: ...
   pick q \in Q
   Q := Q \setminus \{q\}
    \langle m, s' \rangle := q(s)
                                                               //s' \prec s
   if m = Failed then return \langle R, \varnothing \rangle end if
   if m = Subsumed then R := R \setminus \{a\} end if
   ModVars := \{v \in var(q) \mid s(v) \neq s'(v)\}
   DepProps :=
   \{p \in R \mid Conds(s, s') \cap PropConds(p) \neq \emptyset\}
   if m = AtFixpt then DepProps := DepProps \setminus \{a\} end if
   Q := Q \cup DepProps
   s := s'
return \langle R, s \rangle // post: s is the weakest common fixpt of R
```



# **Yet Further Optimisations**

Priorities: The set Q is implemented as a queue:

How to do "**pick**  $q \in Q$ "?

- According to cost: cheapest first
- According to expected impact: highest impact first
- In general: first-in first-out queue

### **Propagator rewriting:**

### Example

When all domain values for x are smaller than those for y, then the propagator for max(x, y) = z can be replaced by the propagator for y = z.

### Further reading:

For a more formal treatment of all these issues, including proofs, see the Course Notes.

Intuition Example 1 Example 2

Theory
Propagator for One
Constraint

Fixpoint of Multiple Propagators