Théorie des langages

Grammaires

Jérôme Delobelle jerome.delobelle@u-paris.fr

LIPADE - Université de Paris

• Description littéraire

Ensemble des mots construis sur l'alphabet {a,b}, de longueur paire

- Description littéraire

 Ensemble des mots construis sur l'alphabet {a,b}, de longueur paire
- Enumération (écriture en extension)

```
L = \{\epsilon, aa, bb, ab, ba, aaaa, bbbb, aaab, baaa, \ldots\}
```

- Description littéraire

 Ensemble des mots construis sur l'alphabet {a,b}, de longueur paire
- Enumération (écriture en extension)

$$L = \{\epsilon, aa, bb, ab, ba, aaaa, bbbb, aaab, baaa, \ldots\}$$

Expression régulière

$$((a+b)(a+b))^*$$

- Description littéraire

 Ensemble des mots construis sur l'alphabet {a,b}, de longueur paire
- Enumération (écriture en extension)

$$L = \{\epsilon, aa, bb, ab, ba, aaaa, bbbb, aaab, baaa, \ldots\}$$

Expression régulière

$$((a+b)(a+b))^*$$

Grammaire de réecriture
 Ensemble de règles pour générer les mots du langage

- Description littéraire
 Ensemble des mots construis sur l'alphabet {a,b}, de longueur paire
- Enumération (écriture en extension)

$$\textit{L} = \{\epsilon, \textit{aa}, \textit{bb}, \textit{ab}, \textit{ba}, \textit{aaaa}, \textit{bbbb}, \textit{aaab}, \textit{baaa}, \ldots\}$$

Expression régulière

$$((a+b)(a+b))^*$$

- Grammaire de réecriture
 Ensemble de règles pour générer les mots du langage
- Reconnaisseur (automates)
 Machine permettant de générer tous les mots du langage

Grammaires

- 1. Principe de base
- 2. Définitions
- 3. Langage généré par une grammaire
- 4. Arbres de dérivation
- 5. Types de grammaires

Principe de base

Principe de base

- Ensemble de règles pour générer les mots du langage
- Sous la forme de règles de réécriture
 - ightarrow Remplacer une séquence de symboles par une autre séquence
- Mots générés = mots obtenus à partir d'un symbole spécial appelé symbole de départ ou axiome

• Considérons la phrase suivante :

La vieille dame regarde la petite fille

 Peut-on construire une grammaire qui permette de générer cette phrase?

• Considérons la phrase suivante :

La vieille dame regarde la petite fille

- Peut-on construire une grammaire qui permette de générer cette phrase?
- Alphabet : $\Sigma = \{ \text{ la, vieille, petite, dame, fille, regarde} \}$

• Considérons la phrase suivante :

La vieille dame regarde la petite fille

- Peut-on construire une grammaire qui permette de générer cette phrase?
- Alphabet : $\Sigma = \{ \text{ la, vieille, petite, dame, fille, regarde} \}$
- Structure de la phrase :
 - Un groupe sujet (article, adjectif, nom)
 - Un verbe
 - Un groupe complément d'objet (article, adjectif, nom)

Règles de production

- 1. $\langle \mathsf{Phrase} \rangle \to \langle \mathsf{Sujet} \rangle \langle \mathsf{Verbe} \rangle \langle \mathsf{Complément} \rangle$
- 2. $\langle \mathsf{Sujet} \rangle \to \langle \mathsf{Groupe\ Nominal} \rangle$
- 3. $\langle \mathsf{Complément} \rangle \to \langle \mathsf{Groupe} \ \mathsf{Nominal} \rangle$
- 4. $\langle \mathsf{Groupe} \ \mathsf{Nominal} \rangle \to \langle \mathsf{Article} \rangle \langle \mathsf{Nom} \rangle$
- 5. $\langle \mathsf{Groupe} \ \mathsf{Nominal} \rangle \to \langle \mathsf{Article} \rangle \langle \mathsf{Adjectif} \rangle \langle \mathsf{Nom} \rangle$
- 6. $\langle Article \rangle \rightarrow 1a$
- 7. $\langle \mathsf{Nom} \rangle \to \mathsf{dame} \mid \mathsf{fille}$
- 8. $\langle Adjectif \rangle \rightarrow vieille \mid petite$
- 9. $\langle \mathsf{Verbe} \rangle \to \mathsf{regarde}$

Définitions

Grammaire

Grammaire

Une **grammaire** est définie par un quadruplet $G = \langle V, \Sigma, P, S \rangle$ où

- V est un alphabet
- ullet $\Sigma \subseteq V$ est l'ensemble des symboles terminaux
- ullet $V \setminus \Sigma$ est l'ensemble des symboles non terminaux
- $S \in V \setminus \Sigma$ est le symbole de départ ou axiome
- ullet $P\subseteq (V^+ imes V^*)$ est l'ensemble (fini) de règles de production

7

Grammaire

Grammaire

Une **grammaire** est définie par un quadruplet $G = \langle V, \Sigma, P, S \rangle$ où

- V est un alphabet
- $\Sigma \subseteq V$ est l'ensemble des symboles terminaux
- $V \setminus \Sigma$ est l'ensemble des symboles non terminaux
- $S \in V \setminus \Sigma$ est le symbole de départ ou axiome
- $P \subseteq (V^+ \times V^*)$ est l'ensemble (fini) de règles de production

Notations:

- \bullet Σ : lettres minuscules
- $V \setminus \Sigma$: lettre majuscules
- Règles de production : $\alpha \to \beta$
 - Signification intuitive : l'élément $\alpha \in V^+$ peut être remplacé par $\beta \in V^*$

Soit
$$G_1 = \langle V, \Sigma, P, S \rangle$$
 avec

- $\Sigma = \{:=, a, b, c, +, *, \}, (\}$
- $V \setminus \Sigma = \{S, I, E\}$
- Axiome S
- 8 règles de production :

$$S \rightarrow I := E$$
 $I \rightarrow a$
 $I \rightarrow b$ $I \rightarrow c$
 $E \rightarrow E + E$ $E \rightarrow E * E$
 $E \rightarrow I$

Soit $G_1 = \langle V, \Sigma, P, S \rangle$ avec

- $\Sigma = \{:=, a, b, c, +, *,), (\}$
- $V \setminus \Sigma = \{S, I, E\}$
- Axiome S
- 8 règles de production :

$$S \rightarrow I := E$$
 $I \rightarrow a$
 $I \rightarrow b$ $I \rightarrow c$
 $E \rightarrow E + E$ $E \rightarrow E * E$
 $E \rightarrow I$

On peut aussi écrire $I \rightarrow a|b|c$.

Soit
$$G_2 = \langle V, \Sigma, P, S \rangle$$
 avec

- $\Sigma = \{a, b\}$
- $V \setminus \Sigma = \{S\}$
- Axiome S
- 3 règles de production :
 - $S \rightarrow aSa$
 - $S \rightarrow SbS$
 - \bullet $S \rightarrow \epsilon$

Soit
$$G_3 = \langle V, \Sigma, P, S \rangle$$
 avec

- $\Sigma = \{a, b\}$
- $V \setminus \Sigma = \{S\}$
- Axiome *S*
- ullet 3 règles de production : $S o aS|aSbS|\epsilon$

grammaire

Langage généré par une

Soit
$$G_3 = \langle V, \Sigma, P, S \rangle$$
 avec

- $\Sigma = \{a, b\}$
- $V \setminus \Sigma = \{S\}$
- Axiome *S*
- ullet 3 règles de production : $S o aS|aSbS|\epsilon$

Soit
$$G_3 = \langle V, \Sigma, P, S \rangle$$
 avec

- $\Sigma = \{a, b\}$
- $V \setminus \Sigma = \{S\}$
- Axiome S
- ullet 3 règles de production : $S
 ightarrow aS|aSbS|\epsilon$

Est-ce que le mot aaaaabaaaa peut être généré à partir de G_3 ?

Soit
$$G_3 = \langle V, \Sigma, P, S \rangle$$
 avec

- $\Sigma = \{a, b\}$
- $V \setminus \Sigma = \{S\}$
- Axiome S
- 3 règles de production : $S o aS|aSbS|\epsilon$

Est-ce que le mot aaaaabaaaa peut être généré à partir de G_3 ?

 Problème 1 : Comment savoir si un mot est généré ou non par une grammaire?

Soit
$$G_3 = \langle V, \Sigma, P, S \rangle$$
 avec

- $\Sigma = \{a, b\}$
- $V \setminus \Sigma = \{S\}$
- Axiome S
- 3 règles de production : $S \rightarrow aS|aSbS|\epsilon$

Est-ce que le mot aaaaabaaaa peut être généré à partir de G_3 ?

- Problème 1 : Comment savoir si un mot est généré ou non par une grammaire?
- Problème 2 : Quel est le langage généré par une grammaire?

Dérivation

Dérivation en une étape

Soit $G = \langle V, \Sigma, P, S \rangle$, $u \in V^+$ et $v \in V^*$. G permet de **dériver** v de u **en une étape**, noté $u \xrightarrow{G} v$, si et seulement si

- u = xu'y (u peut être décomposé en x, u' et y; x et y peuvent être vides)
- v = xv'y (v peut être décomposé en x, v' et y)
- $u' \rightarrow v'$ est dans P

Dérivation

Dérivation en une étape

Soit $G = \langle V, \Sigma, P, S \rangle$, $u \in V^+$ et $v \in V^*$. G permet de **dériver** v de u **en une étape**, noté $u \xrightarrow{G} v$, si et seulement si

- u = xu'y (u peut être décomposé en x, u' et y; x et y peuvent être vides)
- v = xv'y (v peut être décomposé en x, v' et y)
- $u' \rightarrow v'$ est dans P

Dérivation en plusieurs étapes

G permet de **dériver** v de u **en plusieurs étapes**, noté $u \xrightarrow[G]{*} v$, si et seulement si $\exists k \geq 0$ et $\exists v_0, \ldots, v_k \in V^*$ tels que

- $u = v_0$
- $v = v_k$
- $v_i \xrightarrow{G} v_{i+1} \text{ pour } 0 \leq i < k$

Mots générés par une grammaire

Soit $G = \langle V, \Sigma, P, S \rangle$.

Les **mots générés par** G sont les mots $v \in \Sigma^*$ (symboles terminaux) qui peuvent être dérivés à partir de l'axiome : $S \xrightarrow[G]{*} v$.

Mots générés par une grammaire

Soit $G = \langle V, \Sigma, P, S \rangle$.

Les **mots générés par** G sont les mots $v \in \Sigma^*$ (symboles terminaux) qui peuvent être dérivés à partir de l'axiome : $S \xrightarrow[G]{*} v$.

Langage généré par une grammaire

Soit $G = \langle V, \Sigma, P, S \rangle$.

Le langage généré par G, noté $\mathcal{L}(G)$ est l'ensemble des mots générés par G.

$$\mathcal{L}(G) = \{ v \in \Sigma^* | S \xrightarrow{*}_{G} v \}$$

Remarque:

- Une grammaire définit un seul langage
- Par contre, un même langage peut être généré par plusieurs grammaires différentes

Remarque:

- Une grammaire définit un seul langage
- Par contre, un même langage peut être généré par plusieurs grammaires différentes

Equivalence entre deux grammaires

Deux grammaires G et G' sont équivalentes si et seulement si elles génèrent le même langage.

$$\mathcal{L}(G) = \mathcal{L}(G')$$

Soit
$$G_3 = \langle V, \Sigma, P, S \rangle$$
 avec

- $\Sigma = \{a, b\}$
- $V \setminus \Sigma = \{S\}$
- Axiome *S*
- ullet 3 règles de production : $S o aS|aSbS|\epsilon$

Soit
$$G_3 = \langle V, \Sigma, P, S \rangle$$
 avec

- $\Sigma = \{a, b\}$
- $V \setminus \Sigma = \{S\}$
- Axiome *S*
- 3 règles de production : $S \rightarrow aS|aSbS|\epsilon$

On veut montrer que le mot $aaba \in \mathcal{L}(G)$

Soit
$$G_3 = \langle V, \Sigma, P, S \rangle$$
 avec

- $\Sigma = \{a, b\}$
- $V \setminus \Sigma = \{S\}$
- Axiome S
- 3 règles de production : $S o aS|aSbS|\epsilon$

On veut montrer que le mot $aaba \in \mathcal{L}(G)$

$$\underline{S} \xrightarrow[G_3]{} aSb\underline{S} \xrightarrow[G_3]{} aSba\underline{S} \xrightarrow[G_3]{} a\underline{S}ba\epsilon \xrightarrow[G_3]{} aa\underline{S}ba \xrightarrow[G_3]{} aa\epsilon ba \xrightarrow[G_3]{} aaba$$

Soit
$$G_3 = \langle V, \Sigma, P, S \rangle$$
 avec

- $\Sigma = \{a, b\}$
- $V \setminus \Sigma = \{S\}$
- Axiome S
- ullet 3 règles de production : $S
 ightarrow aS|aSbS|\epsilon$

On veut montrer que le mot $aaba \in \mathcal{L}(G)$

$$\underline{S} \xrightarrow[G_3]{} aSb\underline{S} \xrightarrow[G_3]{} aSba\underline{S} \xrightarrow[G_3]{} a\underline{S}ba\epsilon \xrightarrow[G_3]{} aa\underline{S}ba \xrightarrow[G_3]{} aa\epsilon ba \xrightarrow[G_3]{} aaba$$

Seconde dérivation possible :

$$\underline{S} \xrightarrow[G_3]{} a\underline{S}bS \xrightarrow[G_3]{} aa\underline{S}bS \xrightarrow[G_3]{} aa\epsilon b\underline{S} \xrightarrow[G_3]{} aaba\epsilon \xrightarrow[G_3]{} aaba$$

Dérivation la plus à gauche

Dérivation la plus à gauche (LPG)

Soit $G = \langle V, \Sigma, P, S \rangle$, et $w \in \Sigma^*$

 $S \xrightarrow{*}_{G} w$ est une **dérivation la plus à gauche (LPG)** si, à chaque étape de la dérivation, c'est la variable la plus à gauche qui est dérivée. Donc, si $\exists w_1, \ldots, w_n$ tels que

- $S = w_0 \xrightarrow{G} w_1 \xrightarrow{G} \dots \xrightarrow{G} w_n \xrightarrow{G} w_{n+1} = w$, et
- $\forall i$, $0 \le i \le n$
 - $w_i = u_i A_i v_i$,
 - $w_{i+1} = u_i \alpha_i v_i$ et
 - $A_i \rightarrow \alpha_i$

alors $u_i \in \Sigma^*$ (u_i est un symbole terminal, et ne contient donc pas de variable).

Arbres de dérivation

Arbres de dérivation pour une grammaire hors contexte

Arbres de dérivation

Soit $G = \langle V, \Sigma, P, S \rangle$ une grammaire *hors contexte*. Un arbre D est un arbre de dérivation pour un mot w à partir de l'axiome S si :

- La racine de *D* est étiquetée par *S* (l'axiome)
- Les feuilles de D sont étiquetées par des éléments de $\Sigma \cup \epsilon$ (symboles terminaux)
- L'étiquette d'une feuille est le mot vide seulement si la feuille est fille unique
- Les nœuds de D qui ne sont pas des feuilles sont étiquetés par un symbole non terminal ($V \setminus \Sigma$)
- Pour tout nœud, si Y est l'étiquette du nœud, et si Z_1, \ldots, Z_n sont les nœuds de ses fils, **dans cet ordre**, alors $Y \to Z_1 \ldots Z_n$ est une règle
- Le mot des feuilles de D, c'est-à-dire le mot obtenu en concaténant les étiquettes des feuilles de la gauche vers la droite, est le mot w

Arbres de dérivation : exemple

$$a := a + b * a \in \mathcal{L}(G_1)$$

Arbres de dérivation : exemple

 $aaba \in \mathcal{L}(G_3).$ Il existe deux arbres de dérivation différents pour ce mot.

Arbres de dérivation : exemple

 $aaba \in \mathcal{L}(\textit{G}_{3}).$ Il existe deux arbres de dérivation différents pour ce mot.

La grammaire est ambigüe.

Ambiguité

Une grammaire G est **ambigüe** s'il existe un mot de $\mathcal{L}(G)$ qui a au moins deux dérivations LPG à partir de S (et donc deux arbres de dérivation).

Dans le cas contraire G est non ambigüe.

Ambiguité

Une grammaire G est **ambigüe** s'il existe un mot de $\mathcal{L}(G)$ qui a au moins deux dérivations LPG à partir de S (et donc deux arbres de dérivation).

Dans le cas contraire G est non ambigüe.

 G_1 est ambigüe.

Théorème

Etant donné une grammaire G, un mot est généré par G $(S \overset{*}{\underset{G}{\longrightarrow}} w)$ si et seulement si il existe un arbre de dérivation qui génère w.

Théorème

Etant donné une grammaire G, un mot est généré par G $(S \xrightarrow{*}_{G} w)$ si et seulement si il existe un arbre de dérivation qui génère w.

Langage ambigüe

Un langage est **ambigüe de façon inhérente** si toutes les grammaires qui l'engendrent sont ambigües.

On dira qu'un langage est **non ambigüe** s'il n'est pas ambigüe de façon inhérente.

Théorème

Etant donné une grammaire G, un mot est généré par G $(S \xrightarrow{*}_{G} w)$ si et seulement si il existe un arbre de dérivation qui génère w.

Langage ambigüe

Un langage est **ambigüe de façon inhérente** si toutes les grammaires qui l'engendrent sont ambigües.

On dira qu'un langage est **non ambigüe** s'il n'est pas ambigüe de façon inhérente.

Lemme de Parikh

Il existe au moins un langage ambigüe de façon inhérente.

$$L = \{a^p b^q c^r | p = q \text{ ou } q = r \text{ avec } p, q, r \ge 1\}$$

Types de grammaires

Classement des grammaires en fonction de leurs règles de production :

Classement des grammaires en fonction de leurs règles de production :

1. Règles régulières à gauche de la forme :

$$A o Ba$$
 où $A, B \in V \setminus \Sigma$ non terminaux $A o a$ $a \in \Sigma$ terminaux

Classement des grammaires en fonction de leurs règles de production :

1. Règles régulières à gauche de la forme :

$$A o Ba$$
 où $A, B \in V \setminus \Sigma$ non terminaux $A o a$ $a \in \Sigma$ terminaux

2. Règles régulières à droite de la forme :

$$A o aB$$
 où $A,B \in V \setminus \Sigma$ non terminaux $A o a$ $a \in \Sigma$ terminaux

Classement des grammaires en fonction de leurs règles de production :

1. Règles régulières à gauche de la forme :

$$A o Ba$$
 où $A, B \in V \setminus \Sigma$ non terminaux $A o a$ $a \in \Sigma$ terminaux

2. Règles régulières à droite de la forme :

$$A o aB$$
 où $A, B \in V \setminus \Sigma$ non terminaux $A o a$ $a \in \Sigma$ terminaux

3. Règles hors-contexte de la forme :

$$A \to \beta$$
, où $A \in V \setminus \Sigma$, $\beta \in V^*$

Classement des grammaires en fonction de leurs règles de production :

1. Règles régulières à gauche de la forme :

$$A o Ba$$
 où $A, B \in V \setminus \Sigma$ non terminaux $A o a$ $a \in \Sigma$ terminaux

2. Règles régulières à droite de la forme :

$$A o aB$$
 où $A,B \in V \setminus \Sigma$ non terminaux $A o a$ $a \in \Sigma$ terminaux

3. Règles hors-contexte de la forme :

$$A \to \beta$$
, où $A \in V \setminus \Sigma$, $\beta \in V^*$

4. Règles contextuelles de la forme :

$$\alpha \to \beta$$
, où $|\alpha| \le |\beta|$ si $\beta \ne \epsilon$, $\alpha \in V^+$, $\beta \in V^*$

Classement des grammaires en fonction de leurs règles de production :

1. Règles régulières à gauche de la forme :

$$A o Ba$$
 où $A, B \in V \setminus \Sigma$ non terminaux $A o a$ $a \in \Sigma$ terminaux

2. Règles régulières à droite de la forme :

$$A o aB$$
 où $A,B \in V \setminus \Sigma$ non terminaux $A o a$ $a \in \Sigma$ terminaux

3. Règles hors-contexte de la forme :

$$A \to \beta$$
, où $A \in V \setminus \Sigma$, $\beta \in V^*$

4. Règles contextuelles de la forme :

$$\alpha \to \beta$$
, où $|\alpha| \le |\beta|$ si $\beta \ne \epsilon$, $\alpha \in V^+$, $\beta \in V^*$

5. Règles sans restriction de la forme :

$$\alpha \to \beta$$
, où $|\alpha| \ge 1$

Types de grammaires – Hiérarchie de CHOMSKY

Une grammaire est:

- De Type 3 ou régulière (ou linéaire à gauche ou à droite) si
 - toutes ses règles de production sont régulières à gauche, ou
 - toutes ses règles de production sont régulières à droite.
- De Type 2 ou hors-contexte (Context-Free) si toutes ses règles de production sont hors-contexte
- De Type 1 ou contextuelles (ou sensibles au contrôle) si toutes ses règles de production sont contextuelles
- De Type 0 ou sans restriction si toutes ses règles de production sont sans restriction

Lien grammaire / langage

A chaque type de grammaire est associé un type de langage :

- les grammaires de Type 3 génèrent les langages réguliers,
- les grammaires de Type 2 génèrent les langages hors-contexte (ou algébrique),
- les grammaires de Type 1 génèrent les langages contextuels,
- les grammaires de Type 0 génèrent les langages "décidables"
- sinon ce sont des langages "indécidables".

Ces langages sont ordonnés par inclusion.

Hiérarchie de CHOMSKY

- $L = \{a^n b^p | n, p \in \mathbb{N}\}; G = \langle V, \Sigma, P, S \rangle$ avec
 - $\Sigma = \{a, b\}$; $V \setminus \Sigma = \{S, R\}$
 - Règles de production :
 - $S \rightarrow \epsilon |aS|bR$
 - $R \rightarrow \epsilon | bR$

- $L = \{a^n b^p | n, p \in \mathbb{N}\}; G = \langle V, \Sigma, P, S \rangle$ avec
 - $\Sigma = \{a, b\}$; $V \setminus \Sigma = \{S, R\}$
 - Règles de production :
 - $S \rightarrow \epsilon |aS|bR$
 - $R \to \epsilon | bR$
 - L peut aussi d'écrire sous forme d'expression régulière : $L = a^*b^*$

- $L = \{a^n b^p | n, p \in \mathbb{N}\}; G = \langle V, \Sigma, P, S \rangle$ avec
 - $\Sigma = \{a, b\}$; $V \setminus \Sigma = \{S, R\}$
 - Règles de production :
 - $S \rightarrow \epsilon |aS|bR$
 - $R \rightarrow \epsilon | bR$
 - L peut aussi d'écrire sous forme d'expression régulière : $L = a^*b^*$
- $L = \{(a+b)^n | n \in \mathbb{N}\}; G = \langle V, \Sigma, P, S \rangle$ avec
 - $\Sigma = \{a, b\}$; $V \setminus \Sigma = \{S\}$
 - Règles de production :
 - $S \rightarrow \epsilon |aS|bS$

- $L = \{a^n b^p | n, p \in \mathbb{N}\}; G = \langle V, \Sigma, P, S \rangle$ avec
 - $\Sigma = \{a, b\}$; $V \setminus \Sigma = \{S, R\}$
 - Règles de production :
 - $S \rightarrow \epsilon |aS|bR$
 - $R \rightarrow \epsilon | bR$
 - L peut aussi d'écrire sous forme d'expression régulière : $L = a^*b^*$
- $L = \{(a+b)^n | n \in \mathbb{N}\}; G = \langle V, \Sigma, P, S \rangle$ avec
 - $\Sigma = \{a, b\}$; $V \setminus \Sigma = \{S\}$
 - Règles de production :
 - $S \rightarrow \epsilon |aS|bS$
 - L peut aussi d'écrire sous forme d'expression régulière : $L=(a+b)^*$

Exemple de langages hors-contexte

- $L = \{a^n b^n | n \in \mathbb{N}\}; G = \langle V, \Sigma, P, S \rangle$ avec
 - $\Sigma = \{a, b\}$; $V \setminus \Sigma = \{S\}$
 - $S \rightarrow \epsilon |aSb|$

Exemple de langages hors-contexte

- $L = \{a^n b^n | n \in \mathbb{N}\}; G = \langle V, \Sigma, P, S \rangle$ avec
 - $\Sigma = \{a, b\}$; $V \setminus \Sigma = \{S\}$
 - $S \rightarrow \epsilon | aSb$
- $L = \{w\tilde{w}|w \in \Sigma^*\}$ (ensemble des palindromes de longueur paire sur Σ); $G = \langle V, \Sigma, P, S \rangle$ avec
 - $\Sigma = \{a, b\}$; $V \setminus \Sigma = \{S\}$
 - $S \rightarrow \epsilon |aSa|bSb$

Exemple de langages contextuels

- $L = \{a^n b^n c^n | n \in \mathbb{N}\}; G = \langle V, \Sigma, P, S \rangle$ avec
 - $\Sigma = \{a, b, c\}$; $V \setminus \Sigma = \{S, A, B, C\}$
 - Règles de production :
 - $S \rightarrow \epsilon | A$
 - $A \rightarrow aABC|aBC$
 - $\bullet \quad CB \to BC$
 - ullet aB
 ightarrow ab
 - $bB \rightarrow bb$
 - $bC \rightarrow bc$
 - ullet cC o cc

Forme normale d'une grammaire

 $\frac{\text{Rappel}}{\text{langage n'est pas nécessairement unique!}} : une grammaire hors-contexte (ou algébrique) générant un langage n'est pas nécessairement unique!}$

Forme normale d'une grammaire

Rappel : une grammaire hors-contexte (ou algébrique) générant un langage n'est pas nécessairement unique!

$$G_1 = \langle V, \Sigma, P, S \rangle$$
 avec $\Sigma = \{a, b\}$, $V \setminus \Sigma = \{S, S_1, S_2, S_3, S_4, A, A_1, B, B_1\}$ Règles de production P :

•
$$S \rightarrow S_1$$

•
$$S_1 \rightarrow S_2$$

•
$$S_2 \rightarrow S_3 | S_4$$

•
$$S_3 \rightarrow aA$$

•
$$S_4 \rightarrow bB$$

$$ullet$$
 $A
ightarrow aA_1$

•
$$A_1 \rightarrow a | \epsilon$$

•
$$B \rightarrow bB_1$$

•
$$B_1 \rightarrow b|\epsilon$$

$$G_2 = \langle V, \Sigma, P, S \rangle$$
 avec $\Sigma = \{a, b\}$ et $V \setminus \Sigma = \{S, A, B\}$
Règles de production P :

•
$$S \rightarrow aaA|bbB$$

•
$$A \rightarrow a | \epsilon$$

•
$$B \rightarrow b | \epsilon$$

Forme normale d'une grammaire

 $\frac{\text{Rappel}}{\text{langage n'est pas nécessairement unique}}: \text{ une grammaire hors-contexte (ou algébrique) générant un langage n'est pas nécessairement unique!}$

$$G_1 = \langle V, \Sigma, P, S \rangle$$
 avec $\Sigma = \{a, b\}$, $V \setminus \Sigma = \{S, S_1, S_2, S_3, S_4, A, A_1, B, B_1\}$ Règles de production P :

•
$$S \rightarrow S_1$$

•
$$S_1 \rightarrow S_2$$

•
$$S_2 \rightarrow S_3 | S_4$$

•
$$S_3 \rightarrow aA$$

•
$$S_4 \rightarrow bB$$

$$ullet$$
 $A o aA_1$

•
$$A_1 \rightarrow a | \epsilon$$

•
$$B \rightarrow bB_1$$

•
$$B_1 \rightarrow b|\epsilon$$

$$G_2 = \langle V, \Sigma, P, S \rangle$$
 avec $\Sigma = \{a, b\}$ et $V \setminus \Sigma = \{S, A, B\}$
Règles de production P :

•
$$S \rightarrow aaA|bbB$$

$$ullet$$
 $A
ightarrow a | \epsilon$

•
$$B \rightarrow b | \epsilon$$

$$\mathcal{L}(G_1) = \mathcal{L}(G_2) = \{aa, aaa, bb, bbb\}$$

Forme normale de Chomsky

Definition

Une grammaire hors-contexte $G = \langle V, \Sigma, P, S \rangle$ est sous **forme normale de Chomsky** si les règles de production de G sont <u>toutes</u> de l'une des formes suivantes :

- $A \to BC$ avec $A \in V \setminus \Sigma$ et $B, C \in VV \setminus \Sigma \cup \{S\}$,
- $A \rightarrow a$ avec $A \in V \setminus \Sigma$ et $a \in \Sigma$.

Forme normale de Chomsky

Definition

Une grammaire hors-contexte $G = \langle V, \Sigma, P, S \rangle$ est sous **forme normale de Chomsky** si les règles de production de G sont <u>toutes</u> de l'une des formes suivantes :

- $A \to BC$ avec $A \in V \setminus \Sigma$ et $B, C \in VV \setminus \Sigma \cup \{S\}$,
- $A \rightarrow a$ avec $A \in V \setminus \Sigma$ et $a \in \Sigma$.

Théorème

Soit $G = \langle V, \Sigma, P, S \rangle$ une grammaire hors-contexte. Il est possible de construire de manière efficace une grammaire équivalente G' sous forme normale de Chomsky.

Forme normale de Chomsky

Algorithme pour transformer une grammaire hors-contexte en une grammaire équivalente écrite sous forme normale de Chomsky

Pour les règles ne respectant pas la forme normale de Chomsky :

 Remplacer chaque paire de symboles non-terminaux par un seul symbole non-terminal (et sa règle correspondante), jusqu'à ce que toutes les règles soient binaires.

$$S \rightarrow aBC \implies S \rightarrow AC; A \rightarrow aB$$

2. Remplacer les symboles terminaux par des symboles terminaux + ajouter des règles $A \rightarrow a$ pour compenser,

$$S o aB \implies S o AB; A o a$$

3. Remplacer les règles avec un seul symbole non-terminal par ce qui peut être produit par ce symbole non-terminal,

$$S \rightarrow A$$
; $A \rightarrow aBC \implies S \rightarrow aBC$

$$S \rightarrow Aa|Bb$$

$$A \rightarrow A'$$

$$B \rightarrow CDc$$

$$C \rightarrow c$$

$$D \rightarrow d$$

1. Remplacer chaque paire de symboles non-terminaux par un seul symbole non-terminal (et sa règle correspondante), jusqu'à ce que toutes les règles soient binaires.

$$S \rightarrow Aa|Bb \qquad S \rightarrow Aa|Bb$$

$$A \rightarrow A' \qquad A \rightarrow A'$$

$$A' \rightarrow a|b \qquad A' \rightarrow a|b$$

$$B \rightarrow CDc \qquad B \rightarrow CE$$

$$C \rightarrow c \qquad E \rightarrow Dc$$

$$D \rightarrow d \qquad C \rightarrow c$$

$$D \rightarrow d$$

2. Remplacer les symboles terminaux par des symboles terminaux + ajouter des règles $A \rightarrow a$ pour compenser.

$$S \rightarrow AF|BG$$

$$F \rightarrow a$$

$$G \rightarrow b$$

$$A \rightarrow A'$$

$$A' \rightarrow a|b$$

$$B \rightarrow CE$$

$$E \rightarrow DH$$

$$H \rightarrow c$$

$$C \rightarrow c$$

$$D \rightarrow d$$

3. Remplacer les règles avec un seul symbole non-terminal par ce qui peut être produit par ce symbole non-terminal.

$$S oup Aa|Bb$$
 $S oup Aa|Bb$ $S oup AF|BG$ $A oup A'$ $F oup a$ $A' oup a|b$ $A' oup a|b$ $G oup b$ $B oup CDc$ $B oup CE$ $A' oup a|b$ $A' oup$

Grammaire écrite sous la forme normale de Chomsky

$$S \rightarrow Aa|Bb$$

$$A \rightarrow A'$$

$$A' \rightarrow a|b$$

$$B \rightarrow CDc$$

$$C \rightarrow c$$

$$D \rightarrow d$$

$$S
ightharpoonup Aa|Bb$$
 $S
ightharpoonup Aa|Bb$ $S
ightharpoonup Aa$

$$S \rightarrow AF|BG$$

 $F \rightarrow a$
 $G \rightarrow b$
 $A \rightarrow a|b$
 $B \rightarrow CE$
 $E \rightarrow DH$
 $H \rightarrow c$
 $C \rightarrow c$
 $D \rightarrow d$

Forme normale de Greibach

Definition

Une grammaire hors-contexte $G = \langle V, \Sigma, P, S \rangle$ est sous **forme normale de Greibach** si les règles de production de G sont <u>toutes</u> de l'une des formes suivantes :

- $A \rightarrow aA_1 \dots A_n$ avec $A \in V \setminus \Sigma$, $a \in \Sigma$ et $A_i \in VV \setminus \Sigma \cup \{S\}$,
- $A \rightarrow a$ avec $A \in V \setminus \Sigma$ et $a \in \Sigma$

Grammaires vs Reconnaisseurs

- Une grammaire d'un langage L permet de générer tous les mots appartenant à L
- Un reconnaisseur pour un langage *L* est un programme qui détermine si le mot *w* appartient à *L* ou non
- Pour chaque classe de grammaire, il existe une classe de reconnaisseurs qui définit la même classe de langages

Type de grammaire	Type de reconnaisseur
Grammaire régulière	Automate fini
Grammaire hors-contexte	Automate à pile
Grammaire contextuelle	Linear Bounded Automaton
Grammaire sans restriction	Machine de Turing

Hiérarchie de CHOMSKY

