Лекция IV

1 Критерий Коши

Определение 1. Последовательность $\{x_n\}_{n=1}^{\infty}$ называется фундаментальной тогда и только тогда, когда

$$\forall \varepsilon > 0 \,\exists N = N(\varepsilon) \in \mathbb{N} \,\forall n \ge N \,\forall m \ge N \Longrightarrow |x_m - x_n| < \varepsilon. \tag{1}$$

Иногда удобнее пользоваться немного другой формой записи этого условия:

$$\forall \varepsilon > 0 \,\exists N = N(\varepsilon) \in \mathbb{N} \,\forall n \ge N \,\forall k \in N \Longrightarrow |x_{n+k} - x_n| < \varepsilon. \tag{1'}$$

Теорема 1. Последовательность $\{x_n\}_{n=1}^{\infty}$ сходится тогда и только тогда, когда $\{x_n\}_{n=1}^{\infty}$ является фундаментальной.

Доказательство. Докажем необходимость. Пусть $\lim_{n\to\infty} x_n = a$. Тогда по определению предела последовательности

$$\forall \varepsilon > 0 \, \exists N \in \mathbb{N} \, \forall n \geq N \Longrightarrow |x_n - a| < \frac{\varepsilon}{2}.$$

Поэтому при любом $\varepsilon>0$ для всех $n\geq N$ и $m\geq N$ с помощью неравенства треугольника имеем

$$|x_m - x_n| = |(x_m - a) - (x_n - a)| \le |x_m - a| + |x_n - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Таким образом, последовательность $\{x_n\}_{n=1}^{\infty}$ является фундаментальной.

Теперь докажем достаточность. Пусть $\{x_n\}_{n=1}^\infty$ является фундаментальной, то есть при $\varepsilon>0$ найдется номер $N\in\mathbb{N}$ такой, что для $\forall k\geq N$ и $\forall m\geq N$ выполняется неравенство

$$|x_k - x_m| < \frac{\varepsilon}{3}.$$

В частности, при m=N мы будем иметь для всех $k\geq N$ неравенство

$$x_N - \frac{\varepsilon}{3} < x_k < x_N + \frac{\varepsilon}{3},\tag{2}$$

из которого следует, что последовательность $\{x_n\}_{n=1}^\infty$ является ограниченной, поскольку лишь конечное число членов последовательности не удовлетворяет этому неравенству.

В силу ограниченности по принципу точной верхней (лекция I лемма 1) и нижней грани определены числовые последовательности

$$a_n = \inf_{k \ge n} x_k, \ b_n = \sup_{k \ge n} x_k.$$

Поскольку при удалении элементов из множества его инфимум не может стать меньше, а супремум не может увеличиться, указанные последовательности являются монотонными:

$$a_n \le a_{n+1}, \ b_{n+1} \le b_n.$$

Тогда с учетом определения точных граней при всех $n \in \mathbb{N}$ выполняется

$$a_n \le a_{n+1} \le b_{n+1} \le b_n.$$

Это означает, что система $\{[a_n,b_n]\}_{n=1}^\infty$ является системой вложенных отрезков. По принципу Коши-Кантора (лекция II лемма 1) существует $c \in \mathbb{R}$, лежащее во всех отрезках этой системы:

$$a_n \le c \le b_n, \ n \in \mathbb{N}$$
.

Так как точки x_k для $k \ge n$ тоже попадают в отрезок $[a_n, b_n]$, то при всех $k \ge n$

$$|x_b - c| \le b_n - a_n. \tag{3}$$

Из (2) следует, что для $n \ge N$ будет выполнено неравенство

$$x_N - \frac{\varepsilon}{3} \le a_n = \inf_{k \ge n} x_n \le \sup_{k > n} = b_n \le x_N + \frac{\varepsilon}{3}.$$

Оно влечет, что при $n \ge N$ разность $b_n - a_n \le \frac{2\varepsilon}{3} < \varepsilon$. Принимая во внимание (3), мы получаем, что для всех $k \ge N$ выполняется

$$|x_b - c| < \varepsilon$$
.

Таким образом, $\lim_{n\to\infty} x_n = c$.

2 Сходимость монотонных последовательностей

Определение 2. Числовая последовательность $\{x_n\}_{n=1}^{\infty}$ называется

- 1. возрастающей тогда и только тогда, когда $a_n < a_{n+1}$ для всех $n \in \mathbb{N}$;
- 2. *неубывающей* тогда и только тогда, когда $a_n \le a_{n+1}$ для всех $n \in \mathbb{N}$;
- 3. убывающей тогда и только тогда, когда $a_n > a_{n+1}$ для всех $n \in \mathbb{N}$;
- 4. *невозрастающей* тогда и только тогда, когда $a_n \ge a_{n+1}$ для всех $n \in \mathbb{N}$.

Последовательности указанных видов называют монотонными.

Теорема 2 (о пределе монотонной последовательности). *1. Если* $\{x_n\}_{n=1}^{\infty}$ – неубывающая и ограниченная сверху последовательность, то она сходится. 2. Если $\{x_n\}_{n=1}^{\infty}$ – невозрастающая и ограниченная снизу последовательность, то она сходится.

Доказательство. Докажем пункт 2, пункт 1 доказывается аналогично. Пусть $\{x_n\}_{n=1}^{\infty}$ – невозрастающая и ограниченная снизу последовательность.

Из ограниченности снизу по принципу нижней грани следует, что существует точная нижняя грань:

$$i=\inf_{n\in\mathbb{N}}x_n.$$

 Π о определению $i \leq x_n$ для всех $n \in \mathbb{N},$ и для всякого $\varepsilon > 0$ найдется $N \in \mathbb{N}$ такой, что $x_N < i + \varepsilon.$

Поскольку последовательность неубывающая, то для $n \ge N$ выполняется

$$i - \varepsilon < i \le x_n \le x_N < i + \varepsilon$$
.

Следовательно, $\lim_{n\to\infty} x_n = i$.

3 Подпоследовательности и частичный предел

Определение 3. Пусть $\{x_n\}_{n=1}^{\infty}$ – числовая последовательность, $\{n_k\}_{k=1}^{\infty}$ – возрастающая последовательность натуральных чисел. Тогда последовательность $\{x_{n_k}\}_{k=1}^{\infty}$ называется *подпоследовательностью* последовательности $\{x_n\}_{n=1}^{\infty}$.

Лемма 1 (Больцано-Вейерштрасса). Пусть $\{x_n\}_{n=1}^{\infty}$ – ограниченная последовательность. Тогда существует сходящаяся подпоследовательность $\{x_{n_k}\}_{k=1}^{\infty}$ последовательности $\{x_n\}_{n=1}^{\infty}$.

Доказательство. Пусть E – это множество значений последовательности $\{x_n\}_{n=1}^{\infty}$. Если E – конечное множество, то бесконечное число членов последовательности принимает некоторое значение $x \in E$. Эти члены и образуют сходящуюся подпоследовательность.

Если E — бесконечное множество, то по принципу Больцано-Вейерштрасса (лекция II лемма 3) существует $x \in \mathbb{R}$, которая является предельной точкой множества E. Так как x — предельная точка, то существует член последовательности x_{n_1} такой, что $|x_{n_1}-x|<1$. Далее существует член последовательности x_{n_2} , где $n_2>n_1$, такой, что $|x_{n_2}-x|<\frac12$. Таким образом строится последовательность $\{x_{n_k}\}_{k=1}^\infty$ такая, что

$$|x_{n_k} - x| < \frac{1}{k}.$$

Очевидно, что $\lim_{k\to\infty} x_{n_k} = x$, поскольку $\frac{1}{k}$ – бесконечно малая последовательность.

Определение 4. Пусть $\{x_n\}_{n=1}^{\infty}$ – числовая последовательность, и $\{x_{n_k}\}_{k=1}^{\infty}$ – некоторая её подпоследовательность, которая сходится к пределу x (конечному или бесконечному). Тогда x называется *частичным пределом* последовательности $\{x_n\}$.