Inference: entailment

- Entailment: $\alpha \models \beta$ (" α entails β " or " β follows from α ") means in every world where α is true, β is also true
 - − i.e., the α-worlds are a subset of the β-worlds [models(α) \subseteq models(β)]
- In the example, $\alpha 2 = \alpha 1$

Inference: proof

- A proof (α |- β) is a demonstration of entailment from α to β
 - Method 1: model checking
 - Truth table enumeration to check if models(α) \subseteq models(β)
 - Time complexity always exponential in n 🕾

P1	P2		Pn	α	β
F	F		F	F	Т
F	F		Т	Т	Т
Т	Т	•••	F	Т	Т
Т	Т		Т	F	F

Inference: proof

- A proof (α |- β) is a demonstration of entailment from α to β
 - Method 2: application of inference rules
 - Search for a finite sequence of sentences each of which is an axiom or follows from the preceding sentences by a rule of inference
 - Axiom: a sentence known to be true
 - Rule of inference: a function that takes one or more sentences (premises) and returns a sentence (conclusion)

Inference: soundness & completeness

- Sound inference
 - everything that can be proved is in fact entailed
- Complete inference
 - everything that is entailed can be proved
- Method 1 (enumeration) is obviously sound and complete
- For method 2 (applying inference rules), it is much less obvious
 - Example: arithmetic is found to be not complete! (Gödel's theorem, 1931)

Quiz

- What's the connection between complete inference algorithms and complete search algorithms?
- Answer 1: they both have the words "complete...algorithm"
- Answer 2: Formulate inference α |- β as a search problem
 - Initial state: KB contains α
 - Actions: apply any inference rule that matches KB, add conclusion
 - Goal test: KB contains β

Hence any complete search algorithm can be used to produce a complete inference algorithm

Resolution: an inference rule in PL

- Conjunctive Normal Form (CNF)
 - conjunction of <u>disjunctions of literals</u> (clauses)
 - Ex
 - (A ∨ ¬B) ∧ (B ∨ ¬C ∨ ¬D)
 - $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$

Conversion to CNF

$$\mathsf{B}_{1,1} \Leftrightarrow (\mathsf{P}_{1,2} \vee \mathsf{P}_{2,1})$$

1. Eliminate \Leftrightarrow , replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$.

$$(B_{1,1} \Rightarrow (P_{1,2} \vee P_{2,1})) \wedge ((P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1})$$

2.Eliminate \Rightarrow , replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$.

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$$

3.Move

— inwards using de Morgan's rules and double-negation:

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$$

4. Apply distributivity law (\land over \lor) and flatten:

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$$

Resolution: an inference rule in PL

Resolution inference rule (for CNF):

Suppose I_i is ¬m_j

$$\frac{I_1 \vee ... \vee I_k, \qquad m_1 \vee ... \vee m_n}{I_1 \vee ... \vee I_{i-1} \vee I_{i+1} \vee ... \vee I_k \vee m_1 \vee ... \vee m_{i-1} \vee m_{i+1} \vee ... \vee m_n}$$

Examples:

Resolution is sound and complete for propositional logic

Resolution algorithm

- The best way to prove KB |= α?
 - Proof by contradiction, i.e., show $KB \land \neg \alpha$ is unsatisfiable
 - 1. Convert $KB \land \neg \alpha$ to CNF
 - Repeatedly apply the resolution rule to add new clauses, until one of the two things happens
 - a) Two clauses resolve to yield the empty clause, in which case KB entails α
 - b) There is no new clause that can be added, in which case KB does not entail α

Resolution example

$$KB = (B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1})) \land \neg B_{1,1}$$

 $\alpha = \neg P_{1,2}$

Horn Logic

Horn logic

- Inference in propositional logic is in general NP-complete!
- Solution: a subset of propositional logic that supports efficient inference Expressiveness vs. Inference difficulty!!
- Horn logic: only (strict) Horn clauses are allowed
 - A Horn clause has the form:

```
P1 \wedge P2 \wedge P3 ... \wedge Pn \Rightarrow Q or alternatively \negP1 \vee \negP2 \vee \negP3 ... \vee \negPn \vee Q
```

where Ps and Q are non-negated proposition symbols (atoms)

n can be zero, i.e., the clause contains a single atom

Inference in Horn logic

• Modus Ponens $\frac{\alpha 1, \dots, \alpha n, \quad \alpha 1 \wedge \dots \wedge \alpha n \Rightarrow \beta}{\beta}$

- Modus Ponens is sound and complete for Horn logic
- Inference algorithms (for Horn logic)
 - Forward chaining, backward chaining
 - These algorithms are very natural and run in linear time

Forward chaining

- Idea: to prove KB |= Q
 - Add new clauses into the KB by applying Modus Ponens, until Q is added

$$P \Rightarrow Q$$
 $L \land M \Rightarrow P$
 $B \land L \Rightarrow M$
 $A \land P \Rightarrow L$
 $A \land B \Rightarrow L$
 A

$$P \Rightarrow Q$$
 $L \land M \Rightarrow P$
 $B \land L \Rightarrow M$
 $A \land P \Rightarrow L$
 $A \land B \Rightarrow L$
 A

$$P \Rightarrow Q$$
 $L \land M \Rightarrow P$
 $B \land L \Rightarrow M$
 $A \land P \Rightarrow L$
 $A \land B \Rightarrow L$
 A

$$P \Rightarrow Q$$
 $L \land M \Rightarrow P$
 $B \land L \Rightarrow M$
 $A \land P \Rightarrow L$
 $A \land B \Rightarrow L$
 A

$$P \Rightarrow Q$$
 $L \land M \Rightarrow P$
 $B \land L \Rightarrow M$
 $A \land P \Rightarrow L$
 $A \land B \Rightarrow L$
 A

$$P \Rightarrow Q$$
 $L \land M \Rightarrow P$
 $B \land L \Rightarrow M$
 $A \land P \Rightarrow L$
 $A \land B \Rightarrow L$
 A

$$P \Rightarrow Q$$

$$L \land M \Rightarrow P$$

$$B \land L \Rightarrow M$$

$$A \land P \Rightarrow L$$

$$A \land B \Rightarrow L$$

$$A$$

$$P \Rightarrow Q$$

$$L \land M \Rightarrow P$$

$$B \land L \Rightarrow M$$

$$A \land P \Rightarrow L$$

$$A \land B \Rightarrow L$$

$$A$$

$$P \Rightarrow Q$$

$$L \land M \Rightarrow P$$

$$B \land L \Rightarrow M$$

$$A \land P \Rightarrow L$$

$$A \land B \Rightarrow L$$

$$A$$

Backward chaining

- Idea: work backwards from the query q:
 - to prove q by BC,
 - check if q is known to be true already, or
 - prove by BC all premises of some rule concluding q
- Avoid loops: check if new subgoal is already on the goal stack
- Avoid repeated work: check if new subgoal
 - 1. has already been proved true, or
 - 2. has already failed

Forward vs. backward chaining

- FC is data-driven, automatic, unconscious processing,
 - e.g., object recognition, routine decisions
 - May do lots of work that is irrelevant to the goal
- BC is goal-driven, appropriate for problem-solving,
 - e.g., Where are my keys? How do I get into a PhD program?
 - Complexity of BC can be much less than linear in size of KB

A Logical Pacman

Partially observable Pacman

- Pacman perceives just the local walls/gaps
- Formulation: what proposition symbols do we need?
 - Pacman's location
 - At_1,1_0 (Pacman is at [1,1] at time 0) At_3,3_1 etc
 - Wall locations
 - Wall 0,0 Wall 0,1 etc
 - Percepts
 - Blocked_W_0 (blocked by wall to my West at time 0) etc.
 - Actions
 - W_0 (Pacman moves West at time 0) E_0 etc.
- NxN world for T time steps => N²T + N² + 4T + 4T = O(N²T) symbols

Sensor model

- State facts about how Pacman's percepts arise...
- Pacman perceives a wall to the West at time t if he is in x,y and there is a wall at x-1,y

```
((At_1,1_0 ∧ Wall_0,1) ∨
(At_1,2_0 ∧ Wall_0,2) ∨
(At_1,3_0 ∧ Wall_0,3) ∨ .... ) ⇒ Blocked_W_0
```

Sensor model

- State facts about how Pacman's percepts arise...
- Pacman perceives a wall to the West at time t if and only if he is in x,y and there is a wall at x-1,y

```
Blocked_W_0 ⇔ ((At_1,1_0 ∧ Wall_0,1) ∨
(At_1,2_0 ∧ Wall_0,2) ∨
(At_1,3_0 ∧ Wall_0,3) ∨ ....)
```

Transition model

- How does each state symbol at each time get its value?
 - E.g., should At_3,3_17 be T or F?
- A state symbol gets its value according to a successorstate axiom

```
X_t \Leftrightarrow [X_{t-1} \land \neg (\text{some action}_{t-1} \text{ made it false})] \lor [\neg X_{t-1} \land (\text{some action}_{t-1} \text{ made it true})]
```

For Pacman location:

```
At_3,3_17 \Leftrightarrow [At_3,3_16 \land \neg((\negWall_3,4 \land N_16) \lor (\negWall_4,3 \land E_16) \lor ...)] \lor [\negAt_3,3_16 \land ((At_3,2_16 \land \negWall_3,3 \land N_16) \lor (At_2,3_16 \land \negWall_3,3 \land E_16) \lor ...)]
```

Initial state

The agent may know its initial location:

• Or, it may not:

$$At_1,1_0 \lor At_1,2_0 \lor At_1,3_0 \lor ... \lor At_3,3_0$$

Domain constraint

Pacman cannot be in two places at once!

$$\neg(At_1,1_0 \land At_1,2_0) \land \neg(At_1,1_0 \land At_1,3_0) \land \dots$$

 $\neg(At_1,1_1 \land At_1,2_1) \land \neg(At_1,1_1 \land At_1,3_1) \land \dots$

Pacman cannot take two actions at the same time!

$$\neg (E_0 \land S_0) \land \neg (E_0 \land W_0) \land ...$$

 $\neg (E_1 \land S_1) \land \neg (E_1 \land W_1) \land ...$

Pacman cannot go into a wall!

At_1,1_0
$$\wedge$$
 N_0 \Rightarrow ¬Wall_1,2

Planning as satisfiability

- SAT solver
 - Input: a logic expression
 - Output: a model (true/false assignments to symbols) that satisfies the expression if such a model exists
- Can we use it to make plans for Pacman (e.g., to move to a goal position)?
 - For T = 1 to infinity, set up the KB as follows and run SAT solver:
 - Initial state, domain constraints, sensor & transition model sentences up to time T
 - Goal is true at time T
 - If a model is returned, extract a plan from action assignment

Planning as satisfiability

- Q: Isn't this a search problem? Any advantage of using logic?
- A: We can use logic to solve not only search problems, but any problems that are representable using the logic.

Logic programming

- Ordinary programming
 - Identify problem
 - Assemble information
 - Figure out solution
 - Encode solution
 - Encode problem instance as data
 - Apply program to data

- Logic programming
 - Identify problem
 - Assemble information
 - <coffee break> ☺
 - Encode info in KB
 - Encode problem instance as facts
 - Ask queries (run SAT solver)

Summary

- Logic
 - Logical Al applies inference to a knowledge base to derive new information
- Propositional logic
 - Syntax
 - Semantics
 - Inference (resolution)
- Horn logic
 - Inference (forward/backward chaining)
- Application of logic to Pacman