Конспект лекций (12-...)

Илья Астафьев 17 апреля 2023 г.

Содержание

1	Hec	обственный интеграл
	1.1	Свойства несобственного интеграла
	1.2	Интеграл с несколькими особыми точками
	1.3	Интеграл от знакопостоянной функции
	1.4	Интеграл от знакопеременной функции
	1.5	Интеграл в смысле главного значения
	1.6	Полезные вещ u
2	Чис	словые ряды
	2.1	Основные понятия
		Свойства рядов
		Положительные ряды
	2.4	Интегральный признак Коши
	2.5	Знакопеременные ряды

1 Несобственный интеграл

Определение. Пусть $E \subset \mathbb{R}, f(x) \in R_{loc}(E)$ - локально интегрируема на E, если $f \in R[a,b]$ для $\forall [a,b] \subset E$

Определение. Пусть $f \in R_{loc}[a,b)$, где $(b \in \mathbb{R} \cup +\infty)$

$$F(\omega)=\int_a^\omega f(x)dx,\ \text{при }\omega\in[a,b)$$

$$\int_a^b f(x)dx=\lim_{\omega\to b-0}F(\omega)\text{ - несобственный интеграл}$$

Если $\lim F(\omega)$ конечен, то $\int_a^b f(x) dx$ сходится

• Если $\int_a^b \mathbf{B} \ \mathbb{R} \cup \{+\infty\}$ - I рода

• Если $\int_a^b \mathbf{B} \ \mathbb{R}$ - II рода

Если $f \notin R[a, \bar{b}]$, то \bar{b} называется особой точкой f(x). Пример:

$$\int_0^{+\infty} \frac{\sin x}{x} dx - I$$
рода ($+\infty$ особая точка)
$$\int_0^1 \frac{dx}{x} - II$$
рода (0 особая точка)

Если:

$$\int_a^{\bar{b}} f(x) dx = \lim_{\omega \to b-0} \int_a^\omega \Rightarrow \begin{cases} \in \mathbb{R}, \text{то сходится}, \\ \notin \mathbb{R}, \text{то расходится} \end{cases} \not\equiv \underset{\mathbb{R}}{\varprojlim}$$

Например:

$$\int_{1}^{+\infty} \frac{dx}{x^{\alpha}} = \begin{cases} \ln x \Big|_{1}^{+\infty}, & \alpha = 1 \\ \frac{x^{1-\alpha}}{1-\alpha} \Big|_{1}^{+\infty}, & \alpha \neq 1 \end{cases} = \begin{cases} +\infty, & \alpha = 1 \\ +\infty, & \alpha < 1 \\ \frac{1}{\alpha-1}, & \alpha > 1 \end{cases}$$

$$\int_0^1 \frac{dx}{x^\alpha}$$
сходится при $\alpha < 1.$ Расходится при $\alpha \geq 1$

1.1 Свойства несобственного интеграла

1. Линейность. $f, g \in R_{loc}[a, b)$

• если $\int_a^b (f+g)dx = \int_a^b f(x)dx + \int_a^b g(x)dx$ если $\int_a^b f(x)dx, \int_a^b g(x)dx \in \bar{\mathbb{R}}$

 $\int_{a}^{b} \alpha \cdot f(x) dx = \alpha \cdot \int_{a}^{b} f(x) dx$

• Следствие:

Сходится + Сходится = Сходится

Сходится + Расходится = Расходится

Pacxoдится + Pacxoдится = ?

2. Монотонность.
$$f,g\in R_{loc}[a,b), f(x)\leq g(x)$$
 на $[a,b)$ и $\int_a^b f(x)dx, \int_a^b g(x)dx\in \overline{R}$: Тогда:

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx$$

3. Аддитивность.
$$f \in R_{loc}[a,b), c \in (a,b)$$
: Тогла:

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

 \triangleright

$$\int_a^b f(x)dx = \lim_{\omega \to b-0} \int_a^c + \int_c^\omega = \int_a^c + \lim_{\omega \to b-0} \int_c^\omega$$

4. Формула по частям. u,v- дифференцируема на $[a,b),u^{'}v^{'}\in R_{loc}[a,b)$

$$\int_{a}^{b} u(x) \cdot v'(x) = uv \Big|_{a}^{b} - \int_{a}^{b} v(x) \cdot u'(x) dx$$

5. Формула замены переменной. $f \in C[a,b), x = \phi(t) \ [\alpha,\beta) \to [a,b). \ \phi$ — диффернцируема на $[\alpha,\beta), \exists \phi(\beta-0) = \lim_{t\to\beta-0} \phi(t)$ в \overline{R}

Тогда:

$$\int_{\phi(\beta-0)}^{\phi(\alpha)} f(x)dx = \int_{\alpha}^{\beta} f(\phi(t)) \cdot \phi'(t)dt$$

и эти интегралы (не)существуют одновременно ~

(a)
$$\exists I_1 \in \overline{R},$$

$$I_2 = \lim_{\omega \to \beta - 0} \int_{\alpha}^{\omega} f(\phi) \cdot \phi' dt = \lim_{\omega \to \beta - 0} \int_{\phi(\alpha)}^{\phi(\omega)} f(x) dx = \int_{\phi(\alpha)}^{\phi(\beta - 0)} f(x) dx = I_1$$

(b)
$$\exists I_2 \in \overline{R}$$
,

$$I_{1} = \lim_{\omega \to \phi(\beta - 0)} \int_{\phi(\alpha)}^{\phi(\beta - 0)} f(x) dx$$

- Если $\phi(\beta 0) < b$, то очевидно
- Пусть $x_n \to \phi(\beta-0) = b, x_n \in [\phi(\alpha), b)$ для $\forall n \; \exists \gamma_n : \phi(\gamma_n) = x_n$ Докажем, что

$$\gamma_n \to \beta - 0$$
, при $n \to +\infty$

Если $\gamma \rightarrow \beta - 0$, то $\exists \varepsilon > 0 \ \forall n_0 : \ \exists n \geq n_0$

$$\gamma_n < \beta - \varepsilon$$

$$\phi(\gamma_n) \le \sup_{[\alpha, \beta - \varepsilon]} \phi < b$$

Отсюда следует, что $\phi(\gamma_n) \nrightarrow b$

Итак, для $\forall x_n \to \phi(\beta - 0)$:

$$\int_{\phi(\alpha)}^{x_n} f(x)dx = \int_{\alpha}^{\gamma_n} f(\phi(t)) \cdot \phi'(t)dt \xrightarrow[n \to \infty]{} \int_{\alpha}^{\beta - 0} f(\phi) \cdot \phi'(t)dt$$

1.2 Интеграл с несколькими особыми точками

1.

$$f \in R(a,b) \int_a^b f(x) dx = \lim_{\omega \to a+0} \int_\omega^c f(x) dx + \lim_{\omega \to b-0} \int_c^\omega f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$$

где $c \in (a,b)$

$$\int_a^b f(x) dx$$
сходится $\Leftrightarrow \int_a^c f(x) dx$ и $\int_c^b f(x) dx$ сходятся

2. Пусть f определена на $(a,b); a,b \in \mathbb{R}$ кроме конечного числа точек. $C \in (a,b)$ называется особой точкой f, если $f \notin R[\alpha,\beta]$ для $\forall \alpha,\beta: a<\alpha<\beta< b$ a(b) - особая, если $a=-\infty(b=-\infty)$ или $f\notin R[a,\alpha] \forall \alpha\in (a,b)$

Пусть $c_1 < c_2 < ... < c_{n-1}$ - особые точки f на (a,b) $c_0 = a, c_n = b$

$$\begin{split} &\int_a^b f(x)dx = \sum_{i=1}^n \int_{c_{i-1}}^{c_i} f(x)dx \\ &\int_a^b f(x)dx$$
 - сходится $\Leftrightarrow \int_{c_{i-1}}^{c_i} f(x)dx$ - сходится $\forall i=1...n$

Проблема: если пытаться взять существенно большие значения для b, то зачастую численный метод вычисления несобственного интеграла даст сильно неточное значение. Например:

$$\int_{1}^{+\infty} \frac{dx}{x} = +\infty$$

$$\int_{1}^{10^{6}} \frac{dx}{x} = 6 \cdot \ln 10 \approx 13$$

$$\int_{1}^{10^{10}} \frac{dx}{x} = 10 \cdot \ln 10 \approx 23$$

1.3 Интеграл от знакопостоянной функции

Пусть $f \in R_{loc}[a,b), f \ge 0$ на [a,b) **Теорема** . Пусть $F(\omega) = \int_a^\omega f(x) dx$ Тогда: 1. $F \uparrow 2$. $\int_a^b f(x) dx$ - сходится $\Leftrightarrow F$ ограничена

Доказатель ство:

1.

$$\omega_1 < \omega_2, \ f(\omega_2) = \int_a^{\omega_2} = \int_a^{\omega_1} + \int_{\omega_1}^{\omega_2} \ge F(\omega_1)$$

2. Очевидно

Теорема (признаки сравнения).

Пусть $f, q \in R_{loc}[a, b)$

- 1. $0 \le f(x) \le g(x)$ на [a,b). Тогда
 - Если $\int_a^b g(x)dx$ сходится $\Rightarrow \int_a^b f(x)dx$ сходится
 - Если $\int_a^b g(x)dx$ расходится $\Rightarrow \int_a^b f(x)dx$ расходится
- 2. $f \sim g$, при $x \to b 0$. Тогда
 - $\int_a^b f(x) dx$ и $\int_a^b g(x) dx$ оба сходятся или оба расходятся

Доказательство:

- 1. Очевидно
- 2. Пусть $f(x) \sim g(x)$ при $x \to b-0$

$$f(x) = \alpha(x) \cdot g(x), \alpha(x) \xrightarrow[x \to b - 0]{} 1$$

$$\frac{1}{2} \le \alpha(x) \le \frac{3}{2} \text{ для } x \in (\delta, b)$$

$$\frac{1}{2}g(x) \le f(x) \le \frac{3}{2}g(x)$$

1.4 Интеграл от знакопеременной функции

Теорема (Критерий Коши).

Пусть
$$f \in R_{loc}[a,b)$$
.
Тогда
$$\int_a^{\bar{b}} f(x) dx \, \operatorname{сходится} \, \Leftrightarrow$$

$$\forall \epsilon > 0 \exists \Delta \in (a,b) : \forall \delta_1, \delta_2 \in (\Delta,b) \Rightarrow$$

$$\left| \int_{\delta_1}^{\delta_2} f(x) dx \right| < \epsilon$$

Доказательство:

$$F(\omega) = \int_{a}^{\omega} f(x)dx. \exists \lim_{\omega \to b-0} F(\omega) \in \mathbb{R} \Leftrightarrow$$

$$\forall \varepsilon > 0 \ \exists \Delta : \ \forall \delta_{1}, \delta_{2} > \Delta \ |F(\delta_{1}) - F(\delta_{2})| < \varepsilon$$

Определение. Пусть $f \in R_{loc}[a,b)$

$$\int_{a}^{b}f(x)dx$$
сходится абсолютно, если $\int_{a}^{b}|f(x)|dx$ сходится

Теорема

Если $\int_a^b f(x)dx$ сходится абсолютно, то он сходится

Доказательство:

$$\int_a^b |f(x)| dx \, \operatorname{сходится} \, \Rightarrow \forall \varepsilon > 0 \, \exists \Delta \in (a,b) \, \forall \delta_1, \delta_2 > \Delta : \left| \int_{\delta_1}^{\delta_2} f(x) dx \right| \leq \left| \int_{\delta_1}^{\delta_2} f(x) dx \right| < \varepsilon$$

Теорема (о сумме с абсолютно сходящимся интегралом).

Пусть $f,g,h\in R_{loc}[a,b), f(x)=g(x)+h(x)$ на [a,b) и $\int_a^b h(x)dx$ сходится абсолютно. Тогда:

- $\int_a^b f(x) dx$ и $\int_a^b g(x) dx$ оба сходятся абсолютно
- $\int_a^b f(x) dx$ и $\int_a^b g(x) dx$ оба сходятся условно
- $\int_a^b f(x)dx$ и $\int_a^b g(x)dx$ оба расходятся.

Доказательство:

$$|f| \le |g| + |h|$$

Пример:

$$\int_{1}^{+\infty} \frac{\sin x}{x} dx = -\frac{\cos x}{x} \Big|_{1}^{+\infty} - \int_{1}^{+\infty} \frac{\cos x}{x^{2}} dx$$

Рассмотрим:

$$\int_{1}^{+\infty} \frac{|\sin x|}{x} dx$$

$$\delta_{1} = \pi n, \delta_{2} = 2\pi n$$

$$\int_{\pi n}^{2\pi n} \frac{|\sin x|}{x} dx \ge \frac{1}{2\pi n} \int_{\pi n}^{2\pi n} |\sin x| dx =$$

$$\frac{1}{2\pi n} \cdot n \cdot \int_{0}^{\pi} \sin x dx = \frac{1}{\pi} = \varepsilon$$

Вопросы из чата:

Пусть $f \in R_{loc}[a, +\infty)$. Правда ли, что:

$$\int_{a}^{+\infty} f(x)dx - \text{сходится } \Rightarrow \lim_{x \to +\infty} f(x) = 0$$

Ответ: нет, неправда.

$$f \in C[a, +\infty), f \ge 0 \Rightarrow f(x)$$
 - ограничена

Теорема (Признак Абеля-Дирихле).

Пусть $f(x) \in C[a,b), g(x) \in C^1[a,b).$ Тогда для сходимости $\int_a^b f(x) \cdot g(x) dx$ достаточно одной пары условий

- Признак Дирихле
 - 1. $F(\omega) = \int_a^\omega g(x) dx$ ограничена
 - 2. g(x) монотонна и $g(x) \xrightarrow[x \to b = 0]{} 0$
- Признак Абеля:
 - 1. $\int_a^b f(x)dx$ сходится
 - $2. \ g(x)$ монотонна и ограничена

 \triangleright

1. Дирихле: F'(x) = f(x)

Критерий Коши: $\int_a^b f(x) \cdot g(x) dx$ - сходится $\Leftrightarrow \forall \varepsilon > 0 \; \exists \Delta \in (a,b) \; \forall \delta_1, \delta_2 \in (\Delta,b)$

$$\left| \int_{\delta_1}^{\delta_2} f(x) \cdot g(x) dx \right| = \left| \int_{\delta_1}^{\delta_2} f(x) d(F) \right| = \left| g(x) \cdot F(x) \right|_{\delta_1}^{\delta_2} = \int_{\delta_1}^{\delta_2} F(x) \cdot g'(x) dx \right| \le$$

$$\leq C \cdot (|g(\delta_1)| + |g(\delta_2)|) + C \cdot \left| \int_{\delta_1}^{\delta_2} |g'(x)dx| \right| \leq 2C(|\delta_1| + |g(\delta_2|)) \leq 4C \cdot \varepsilon$$

2. Абель: т.к g(x) - монотонна и ограничена \Rightarrow

$$\exists \lim_{x o b - 0} g(x) = A \in \mathbb{R}$$
 $g(x) - A$ - монотонна и $\xrightarrow[x o b - 0]{} 0$

Рассмотрим

$$\int_a^b f(x) \cdot g(x) dx = \int_a^b f(x) \cdot (g-A) dx + A \cdot \int_a^b f(x) dx \Rightarrow \text{ сходится по Дирихле}$$

Пример:

$$\int_0^{+\infty} \frac{\sin(x)}{x} dx$$

 $f(x) = \sin(x);$

$$F(\omega) = \int_0^\omega \sin(x) dx = 1 - \cos(\omega)$$
 - ограничена;

$$g(x) = \frac{1}{x} \xrightarrow[x \to +\infty]{} 0$$
 и \downarrow

Отсюда следует, что:

$$\int_0^{+\infty} \frac{\sin(x)}{x} dx - \text{сходится}$$

1.5 Интеграл в смысле главного значения

$$\int_{-\infty}^{+\infty} = \int_{-\infty}^{c} + \int_{c}^{+\infty} = \lim_{a \to -\infty} \int_{a}^{c} + \lim_{b \to +\infty} \int_{c}^{b}$$

Из того, что мы знаем на данный момент, мы делаем вывод, что интеграл расходится. Чтобы учитывать подобные ситуации, вводят понятние:

Определение. Пусть $f \in R_{loc}(\mathbb{R})$. Тогда $v.p \int_{-\infty}^{+\infty} f(x) dx = \lim_{a \to +\infty} \int_{-a}^{a} f(x) dx$

Определение. Пусть $f \in R_{loc}([a,b] \setminus \{c\}) \Rightarrow v.p \int_a^b = \lim_{\varepsilon \to 0+} \left(\int_a^{c-\varepsilon} f(x) dx + \int_{c+\varepsilon}^b f(x) dx \right)$ Лемма. Если сходится \int_a^b , то сходится и $v.p \int_a^b = \int_a^b$.

1.6 Полезные вещи

1. Интеграл Эйлера-Пуассона:

$$\int_{-\infty}^{+\infty} e^{-x^2} dx = \sqrt{\pi}$$

$$e^x \ge x + 1, \ \forall x \in \mathbb{R}$$

$$1 - x^2 \le e^{-x^2} = \frac{1}{e^{x^2}} \le \frac{1}{x^2 + 1}$$

$$(1 - x^2)^k \le e^{-kx^2} \le \frac{1}{(x^2 + 1)^k}, \ k \in \mathbb{N}$$

$$\int_{-1}^{1} (1 - x^2)^k dx \le \int_{-1}^{1} e^{-kx^2} dx \le \int_{-\infty}^{+\infty} e^{-kx^2} dx \le \int_{-\infty}^{+\infty} \frac{dx}{(1 + x^2)^k}$$

В левой части делаем замену $x=\sin(t)$, в правой части сделаем замену $\tan(t)$

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^{2k+1}(t)dt \le \int_{-\infty}^{+\infty} e^{-kx^2} dx \le \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^{2k-2}(t)dt$$

$$\int_{0}^{\frac{\pi}{2}} \cos^{n}(x)dx = \int_{0}^{\frac{\pi}{2}} \sin^{n}(x) = ?$$

$$2 \cdot \frac{(2k)!!}{(2k+1)!!} \le \int_{-\infty}^{+\infty} e^{-kx^2} dx \le 2 \cdot \frac{\pi}{2} \cdot \frac{(2k-3)!!}{(2k-2)!!}$$

Делаем замену $t = \sqrt{k} \cdot x$

$$\frac{2\sqrt{k}}{(2k+1)} \cdot \frac{1}{\sqrt{k}} \cdot \frac{(2k)!!}{(2k-1)!!} \le \frac{1}{\sqrt{k}} \cdot \int_{-\infty}^{+\infty} e^{-t^2} dt \le \pi \cdot \frac{2k \cdot \sqrt{k}}{(2k-1)} \cdot \frac{(2k-1)!!}{(2k)!!} \Rightarrow \int_{-\infty}^{+\infty} e^{-t^2} dt = \sqrt{\pi}$$

2. Теорема (Неравенство Гёльдера).

Пусть $f, g \in R[a, b], \frac{1}{p} + \frac{1}{q} = 1, p > 1$

$$\left| \int_{a}^{b} f(x) \cdot g(x) dx \right| \le \left(\int_{a}^{b} \left| f(x) \right|^{p} dx \right)^{\frac{1}{p}} \cdot \left(\int_{a}^{b} \left| g(x) \right|^{q} dx \right)^{\frac{1}{q}}$$

$$\triangleright$$

$$a_k = f(\xi_k)(\Delta x_k)^{\frac{1}{p}}$$
$$b_k = g(\xi_k)(\Delta x_k)^{\frac{1}{q}}$$

2 Числовые ряды

2.1 Основные понятия

Определение. Пусть $\{a_n\}_{n=1}^{\infty} \in \mathbb{R}$. Числовым рядом с общим членом a_n называется символ вида:

$$a_1 + a_2 + \dots + a_n + \dots = \sum_{k=1}^{\infty} a_k$$

Определение. Для ряда $\sum a_k$ определим $S_n = a_1 + a_2 + ... + a_n = \sum_{k=1}^n a_k$ последовательность частичных сумм.

Тогда, если $\exists \lim_{n \to +\infty} S_n$, то $\sum_{n=1}^{\infty} a_n = \lim_{n \to +\infty} S_n$

Если $\lim_{n\to+\infty} S_n \in \mathbb{R}$ ($\notin \mathbb{R}$), то $\sum a_n$ называется сходящимся (расходящимся).

Пример:

1.
$$\sum_{n=1}^{\infty} 0 = 0$$

2.
$$\sum_{n=0}^{+\infty} \frac{1}{2^n} = 2$$

3.
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1}\right) = 1$$

4.
$$\sum_{n=0}^{+\infty} (-1)^n$$
 расходится

Определение. Ряд $\sum_{k=n+1}^{\infty} a_k = R_n$ называется n-нным остатком ряда $\sum_{k=1}^{\infty} a_k = S_n + R_n$

Лемма. Ряд $\sum a_k$ - сходится $\Leftrightarrow \sum_{k=n+1}^{\infty} a_k$ - сходится, для $\forall k \in \mathbb{N}$.

Лемма. Ряд $\sum_{k=1}^{\infty} a_k$ - сходится $\Leftrightarrow R_n \xrightarrow[n \to +\infty]{} 0$.

$$ightharpoonup$$
 Пусть $S = \lim_{n \to +\infty} S_n$. $R_n = S - S_n$

Теорема (Необходимое условие сходимости).

Если ряд
$$\sum_{n=1}^{+\infty} a_n$$
 сходится, то $a_n \xrightarrow[n \to +\infty]{} 0 \rhd a_n = S_n - S_{n-1} \xrightarrow[n \to \infty]{} S - S = 0$

Теорема (Критерий Коши сходимости ряда).

 $\sum_{n=1}^{\infty} a_n$ - сходится $\Leftrightarrow \forall \varepsilon > 0 \; \exists n_0 \in \mathbb{N} \; \forall n \geq n_0, \; \forall p \in \mathbb{N} :$

$$\left| \sum_{k=n+1}^{n+p} a_k \right| < E$$

Пример:

$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 - гармонический ряд

$$\sum_{k=n+1}^{2n} \frac{1}{k} \ge \frac{1}{2n} \cdot n = \frac{1}{2}$$

2.2 Свойства рядов

1. Линейность

Если $\sum_{n=1}^{\infty} a_n, \sum_{n=1}^{\infty} b_n$ - сходятся, то сходится и ряд:

$$\sum_{n=1}^{\infty} (\alpha a_n + \beta b_n) = \alpha \sum_{n=1}^{\infty} a_n + \beta \sum_{n=1}^{\infty} b_n$$

2. Монотонность

Если $a_n \leq b_n, \ \forall n \in \mathbb{N}$ и $\sum_{n=1}^{\infty} a_n, \sum_{n=1}^{\infty} b_n$ существуют в $\overline{\mathbb{R}}$, то

$$\sum_{n=1}^{\infty} a_n \le \sum_{n=1}^{\infty} b_n$$

2.3 Положительные ряды

Рассмотрим:

$$\sum_{n=1}^{\infty} a_n, \ a_n \ge 0$$

Лемма. Если $a_n \ge 0$, то

- $S_n = \sum_{k=1}^n a_k \uparrow$ и $\sum_{n=1}^\infty a_n = \sup S_n$
- $\sum_{n=1}^{\infty} a_n$ сходится $\Leftrightarrow S_n$ ограничена

Теорема (Признаки сравнения).

Пусть $0 \le a_n \le b_n$. Тогда:

- 1. $\sum b_n$ сходится $\Rightarrow \sum a_n$ сходится
- 2. $\sum a_n$ расходится $\Rightarrow \sum b_n$ расходится
- 3. Пусть $a_n, b_n \ge 0, a_n \sim b_n$. Тогда $\sum a_n$ и $\sum b_n$ оба сходятся или оба расходятся. $\triangleright \ \frac{1}{2}b_n \le a_n \le \frac{3}{2}b_n$

Пример:

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$
$$\frac{1}{\sqrt{n}} > \frac{1}{n}$$

Теорема (Радикальный признак Коши).

Пусть $a_n \ge 0$, $\exists \lim_{n \to +\infty} \sqrt[n]{a_n} = l \in [0, +\infty]$ Тогда:

- 1. Если l>1, то $\sum a_n$ расходится
- 2. Если l < 1, то $\sum a_n$ сходится

Notabene. Ecau l = 1, ?.

$$\sum \frac{1}{n}$$
 - расходится, $\frac{1}{n^2}$ - сходится

Доказательство. •

1.
$$\sqrt[n]{a_n} \to l > 1 \Rightarrow \sqrt[n]{a_n} > 1$$
 н.с.н.н

$$a_n > 1 \Rightarrow \Rightarrow a_n \nrightarrow 0$$

2. Пусть
$$\lim_{n\to+\infty} \sqrt[n]{a_n} = l < 1$$

$$\exists n_0: \forall n \geq n_o$$

$$\sqrt[n]{a_n} < q$$

$$a_n < q^n$$

 $\sum q^n$ - геометрическая прогрессия 0 < q < 1

Теорема (признак Даламбера).

Пусть
$$a_n > 0$$
, $\exists \lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = l \in [0, +\infty]$

Тогда:

- 1. Если l>1, то $\sum a_n$ расходится
- 2. Если l < 1, то $\sum a_n$ сходится

 \triangleright

1.
$$l > 1 \Rightarrow \frac{a_{n+1}}{a_n} > 1$$
, $a_{n+1} > a_n \Rightarrow a_n \neq 0$

2.
$$l < 1 \Rightarrow \frac{a_{n+1}}{a_n} < q = \frac{l+1}{2}$$
 при $n \ge n_0$ $a_{n+1} < q \cdot a_{n_0} \Rightarrow a_{n_0+k} < q_k \cdot a_{n_0}$

Notabene.

1.
$$\overline{\lim} \sqrt[n]{a_n} = l$$

2. Радикальный признак Коши "сильнее" признака Деламбера: $m.\ e\ ecлu\ \exists \lim_{n\to +\infty} \frac{a_{n+1}}{a_n} \neq 1,\ mo$

$$m. \ e \ ecnu \ \exists \lim_{n \to +\infty} \frac{a_{n+1}}{a_n} \neq 1, \ mo$$

$$\lim_{n \to +\infty} \sqrt[n]{a_n} = l$$

Пример:

$$\sum_{n=1}^{\infty} \frac{(-1)^n + 2}{2^n}$$

Даламбер:

$$\sqrt[n]{a_n} = \frac{\sqrt[n]{(-1)^n + 2}}{2} \Rightarrow \frac{1}{2}$$

Kowu:

$$\frac{a_{n+1}}{a_n} = \frac{((-1)^{n+1} + 2) \cdot 2^n}{2^{n+1} \cdot ((-1)^n + 2)} = \frac{1}{2} \cdot \frac{(-1)^{n+1} + 2}{(-1)^n + 2} \Rightarrow \nexists \lim$$

Пример:

$$\sum \frac{1}{n \ln n}$$

Очевидно, что

$$\sum_{n=2}^{\infty} (\ln(\ln(n+1)) - \ln\ln n) =$$

$$=\lim_{N o\infty}\sum_{n=2}^{N}(\ln(\ln(n+1))-\ln\ln n)=\ln\ln(N+1)-\ln\ln 2=+\infty$$
 - расходится

По теореме Лагранжа:

$$\ln \ln (n+1) - \ln \ln n = (\ln \ln x)'(\xi) = \frac{1}{\xi \ln \xi} < \frac{1}{n \ln n}$$

$$\xi \in (n, n+1) \Rightarrow \sum \frac{1}{n \ln n}$$
 - расходится

Теорема (признак Куммера).

Пусть $a_n, b_n > 0$ и $\sum \frac{1}{b_n}$ - расходится.

Пусть
$$\exists l = \lim_{n \to +\infty} \left(b_n \cdot \frac{a_n}{a_{n+1}} - b_{n+1} \right)$$
 Тогда:

1.
$$l>0\Rightarrow\sum a_n$$
 - сходится

2.
$$l < 0 \Rightarrow \sum a_n$$
 - расходится

 \triangleright

1. Н.с.н.н:

$$b_n \cdot \frac{a_n}{a_{n+1}} - b_{n+1} > \frac{l}{2} > 0 \Rightarrow b_n \cdot a_n - b_{n+1} \cdot a_{n+1} > \frac{l}{2} \cdot a_{n+1} > 0$$

Давайте докажем, что $\exists \lim_{n \to \infty} a_n \cdot b_n \in \mathbb{R}$

$$a_n \cdot b_n \downarrow$$
 и ограничен снизу

Рассмотрим

$$\sum_{n=1}^{\infty} (b_n \cdot a_n - b_{n+1} - a_{n+1}) = \lim_{N \to \infty} \sum_{n=1}^{N} (b_n \cdot a_n - b_{n+1} \cdot a_{n+1}) =$$

$$= \lim_{N \to \infty} (b_1 \cdot a_1 - b_{N+1} \cdot a_{N+1}) \in \mathbb{R} - \text{сходится} \Rightarrow \sum a_n - \text{сходится}$$

2. Н.с.н.н

$$b_n\cdot a_n-b_{n+1}\cdot a_{n+1}<0\ orall n_0\Rightarrow b_n\cdot a_n\uparrow\Rightarrow$$
 $\Rightarrow a_n\cdot b_n\geq a_{n_0}\cdot b_{n_0}=C>0\Rightarrow a_{n+1}>rac{b_n\cdot a_n}{b_{n+1}}\geq rac{C}{b_{n+1}}$ - расходится

 \blacktriangleleft Notabene. npu $b_n=1$: Даламбер. .

Теорема (Признак Раабе).

Пусть
$$a_n > 0$$
 и $\exists \lim_{n \to \infty} n \cdot \left(\frac{a_n}{a_{n+1}} - 1 \right) = l$. Тогда:

1.
$$l>1$$
, то $\sum a_n$ - сходится

2.
$$l < 1$$
, то $\sum a_n$ - расходится

ightharpoonup Используем признак Куммера: $b_n=n$

Теорема (Признак Бертрана).

Пусть
$$a_n > 0$$
. $\exists l = \lim_{n \to \infty} \ln n \cdot \left[n \cdot \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right]$

- 1. $l > 0 \Rightarrow \sum a_n$ сходится
- 2. $l < 0 \Rightarrow \sum a_n$ расходится

ightharpoonup Используем признак Куммера: $b_n = n \cdot \ln n$

Теорема (Признак Гаусса).

Пусть $a_n > 0$. $\frac{a_n}{a_{n+1}}\lambda + \frac{\mu}{n} + O\left(\frac{1}{n^{1+\gamma}}\right), \ \gamma > 0$. Тогда:

- 1. $\lambda > 1 \Rightarrow \sum a_n$ сходится (Доказывать по Даламберу)
- 2. $\lambda < 1 \Rightarrow \sum a_n$ расходится (Доказывать по Даламберу)
- 3. $\lambda=1,\ \mu>1,$ то $\sum a_n$ сходится (Доказывать по Раабе)
- 4. $\lambda=1,\ \mu\leq 1,\ {\rm тo}\ \sum a_n$ расходится (Доказывать по Раабе: $\mu<1,\ {\rm no}$ Бертрану: $\mu=1)$

2.4 Интегральный признак Коши

Теорема (Интегральный признак Коши).

Пусть f(x) - монотонна на $[1, +\infty)$. Тогда:

$$\sum_{n=1}^{\infty} f(n)$$
 и $\int_{1}^{+\infty} f(x) dx$ оба (ра-)сходятся

 $\triangleright \quad \Pi$ усть $f \downarrow$

1. Если f(x) < 0 на $(a, +\infty)$ Тогда $\sum f(n)$ расходятся, так как $f(n) \nrightarrow 0$

$$\int_{\delta_1}^{\delta_2} f(x) dx < (\delta_2 - \delta_2) \cdot f(a) \to -\infty$$
 - расходится.

Критерий Коши не выполнен.

2. Пусть f(x) > 0:

$$f(n+1) \le \int_{n}^{n+1} f(x)dx \le f(n) \mid n = 1..N$$

$$\sum_{n=1}^{N} f(n+1) \le \int_{1}^{N+1} f(x) dx \le \sum_{n=1}^{N} f(n)$$

Notabene. Верно ли, что если

$$F(N) = \int_1^N f(x) dx \ u \ \exists \lim_{N \to +\infty} F(N) \ (N \in \mathbb{N}), \ mo \ \int_1^{+\infty} f(x) dx \ - \ cxo\partial umcs?$$

 $Omsem: Ecлu \ f(x) \downarrow, \ mo \ \partial a. \ Иначе$ - неm .

◄ Пример:

Рис. 1: График с лекции

Проэкспериментируем с интегральным признаком:

$$\sum \frac{1}{n \ln n} -?$$

$$\int_2^\infty \frac{dx}{x \ln x} = F(\ln \ln(\infty)) - F(\ln \ln(2)) = +\infty \Rightarrow \text{ ряд расходится}$$

Лемма. (о сравнении ряда и интеграла).

Пусть $f(x) \ge 0, \downarrow$ на $[1, +\infty)$. Тогда

$$A_n = \sum_{k=1}^n f(k) - \int_1^{n+1} f(x) dx$$
 имеет предел в $\mathbb R$

Рассмотрим

$$A_{n+1} - A_n = f(n+1) - \int_{n+1}^{n+2} f(x)fx \ge 0 \Rightarrow A_n \uparrow$$

$$A_n = f(1) - f(n+1) + \sum_{k=1}^{n} f(k+1) - \int_{1}^{n+1} f(x)dx \le f(1) \Rightarrow \exists \lim_{n \to \infty} A_n \in \mathbb{R}$$

•

Пример:

$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 - расходится

Рассмотрим

$$S_n = \sum_{k=1}^n \frac{1}{k} = A_n + \int_1^{n+1} \frac{dx}{x} = A_n + \ln(n+1) \Rightarrow$$
$$\Rightarrow S_n \sim \ln(n+1) \sim \ln n, \text{ при } n \to +\infty$$

$$\sum_{k=1}^n rac{1}{k} = \ln n + \gamma + o(1), (A_n o \gamma pprox 0.58$$
 - Постоянная Эйлера-Маскерони)

2.5 Знакопеременные ряды

Определение.

 $\sum a_n$ сходится абсолютно, если $\sum |a_n|$ сходится $\sum a_n$ сходится условно, если $\sum |a_n|$ расходится $\sum a_n$ сходится

Лемма. Если $\sum |a_n|$ - сходится, то $\sum a_n$ сходится.

Теорема.

 $a_n=b_n+c_n,\ \sum c_n$ - сходится абсолютно. Тогда $\sum a_n$ и $\sum b_n$ ведут себя одинаково

⊳ никак ◀

Лемма. (Преобразования Абеля).

Пусть $A_n = \sum_{k=1}^n a_k$. Тогда:

$$\sum_{k=1}^{n} a_k \cdot b_k = A_n \cdot b_n + \sum_{k=1}^{n-1} A_k \cdot (b_k - b_{k-1})$$

 \triangleright Пусть $a_0 = 0$.

Рассмотрим

$$\sum_{k=1}^{n} a_k \cdot b_k = \sum_{k=1}^{n} (A_k - A_{k-1})b_k = A_n \cdot b_n + \sum_{k=1}^{n-1} A_k \cdot b_k - \sum_{k=1}^{n} A_{k-1} \cdot b_k$$

Заметим, что

$$\sum_{k=1}^{n} A_{k-1} \cdot b_k = \sum_{k=1}^{n-1} A_k \cdot b_{k+1}$$

4

Теорема (Признак Дирихле-Абеля).

Для сходимости $\sum_{k=0}^{\infty} a_k \cdot b_k$ достаточно выполнения одной из двух пар условий:

Признак Дирихле:

1.
$$A_n = \sum_{k=1}^n a_k$$
 - ограничены

$$2. \ b_n \xrightarrow[n \to \infty]{} 0$$
 - монотонно

Признак Абеля:

$$1. \ \sum_{k=0}^{\infty} a_k$$
 - сходится

 $2.\ b_n$ - ограниченно и монотонно

 \triangleright

1.

$$\sum_{k=1}^{n} a_k \cdot b_k = A_n \cdot b_n + \sum_{k=1}^{n} A_k \cdot (b_k - b_{k+1})$$

$$\sum_{k=1}^{n} |A_n(b_k - b_{k+1})| \le C \cdot \sum_{k=1}^{n} |b_k - b_{k+1}| = C \cdot |b_1 - b_{n+1}| \to C \cdot b_1 \Rightarrow$$

$$\exists \lim_{k=1}^{n} \sum_{k=1}^{n} a_k \cdot b_k$$

- 2. Сами
- ◀ Пример:

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

•
$$a_n = (-1)^n$$

•
$$b_n = \frac{1}{n} \downarrow \to 0$$

•
$$A_n = \sum_{k=1}^n (-1)^k = 0$$
 или 1

$$\Rightarrow \sum \frac{(-1)^n}{n}$$
сходится, но не абсолютно

Еще:

$$S_{2n} = 1 - \frac{1}{2} + \frac{1}{3} - \dots + \frac{1}{2n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2n} - 2\left(\frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2n}\right) =$$
$$= \ln(2n) + \gamma + o(1) - (\ln + \gamma + o(1)) = \ln(2) + o(1)$$

Теорема (Признак Лейбница).

Рассмотрим

$$\sum_{n=1}^{\infty} (-1)^{n-1} \cdot a_n, \ a_n \ge 0$$

Если $a_n \to 0$ и \downarrow , то ряд сходится.

 \triangleright

$$S_{2n} = (a_1 - a_2) + (a_3 - a_4) + \dots + (a_{2n-1} - a_{2n}) \ge 0$$

 $S_{2n} \uparrow$

 $S_{2n}=a_1-(a_2-a_3)-...-(a_{2n-2}-a_{2n-1})-a_{2n}\leq a_1\Rightarrow S_{2n}$ имеет предел Пусть $S_{2n}\to S$. Тогда

$$S_{2n+1} = S_{2n} = a_{2n+1} \to S + 0 = S \Rightarrow S_n \to S$$

◄ Следствие: $S \le a_1$, $|R_n| \le a_{n+1}$