Design of synchronous counters.

• Step 1. Number of flip-flops:

Based on the description of the problem, determine the required number n of the FFs - the smallest value of n is such that the number of states $N \le 2^n$ and the desired counting sequence.

• Step 2. State diagram:

Draw the state diagram showing all the possible states.

• Step 3. Choice of flip-flops and excitation table:

Select the type of flip-flops to be used and write the excitation table.

An excitation table is a table that lists the present state (PS), the next state (NS) and the required excitations.

• Step 4. Minimal expressions for excitations:

Obtain the minimal expressions for the excitations of the FFs using K-maps for the excitations of the flip-flops in terms of the present states and inputs.

• Step 5. Logic Diagram:

Draw the logic diagram based on the minimal expressions.

• Excitation Tables

PS	NS	Requ inp	uired uts
Q _n	Q _{n+1}	S	R
0	0	0	х
0	1	1	0
1	0	0	1
1	1	х	0

S-R FF

PS	NS	Required inputs				
Q _n	Q _{n+1}	J	K			
0	0	0	Х			
0	1	1	Х			
1	0	Х	1			
1	1	Х	0			

J-K FF

PS	NS	Required inputs
Q_n	Q_{n+1}	D
0	0	0
0	1	1
1	0	0
1	1	1

D FF

PS	NS	Required inputs
Q _n	Q _{n+1}	Т
0	0	0
0	1	1
1	0	1
1	1	0

T FF

Design a counter to generate the repetitive sequence 0,1,2,4,3,6.

Step 1. Number of flip-flops:

A counter with repetitive sequence 0, 1, 2, 4, 3, 6 requires 3 flip-flops. The counting sequence is 000, 001, 010, 100, 011, 110, 000 ...

Step 2. Draw the state diagram:

Step 3. Select the type of flip-flops and draw the excitation table:

T flip-flops are selected and the excitation table of a given sequence counter using T flip-flops is shown below.

	PS		NS Required excitations					
Q ₃	Q_2	Q_1	Q ₃	Q ₂	Q_1	T ₃	T ₂	T ₁
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	1
0	1	0	1	0	0	1	1	0
1	0	0	0	1	1	1	1	1
0	1	1	1	1	0	1	0	1
1	1	0	0	0	0	1	1	0

Step 4. Obtain the minimal expressions

K – Maps for excitations T_3 , T_2 , and T_1 and their minimized form are as follows:

Step 5. Draw the logic diagram

Design 3-bit synchronous up counter using T flip flop.

Step 1. Number of flip-flops:

A 3 bit up counter requires 3 flip-flops. The counting sequence is 000, 001, 010, 011, 100, 101, 110, 111, $000 \dots$

Step 2. Draw the state diagram:

Step 3. Select the type of flip-flops and draw the excitation table:

T flip-flops are selected and the excitation table of a given sequence counter using T flip-flops is shown below.

	PS			NS		Required excitations			
Q ₃	Q ₂	Q_1	Q₃	Q ₂	Q_1	T ₃	T ₂	T ₁	
0	0	0	0	0	1	0	0	1	
0	0	1	0	1	0	0	1	1	
0	1	0	0	1	1	0	0	1	
0	1	1	1	0	0	1	1	1	
1	0	0	1	0	1	0	0	1	
1	0	1	1	1	0	0	1	1	
1	1	0	1	1	1	0	0	1	
1	1	1	0	0	0	1	1	1	

Step 4. Obtain the minimal expressions

From excitation table, $T_1 = 1$.

K – Maps for excitations T_3 and T_2 and their minimized form are as follows:

Step 5. Draw the logic diagram

Design a synchronous BCD counter with JK flip-flops.

Step 1. Number of flip-flops:

A BCD counter requires 4 flip-flops. The counting sequence is 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 0000 ...

Step 2. Draw the state diagram:

Step 3. Select the type of flip-flops and draw the excitation table:

J-K flip-flops are selected and the excitation table of a given sequence counter using J-K flip-flops is shown below.

,															
PS NS							Required excitations								
Q_4	Q ₃	Q ₂	Q ₁	Q ₄	Q ₃	Q ₂	Q ₁	J_4	K ₄	J ₃	K ₃	J ₂	K ₂	J_1	K ₁
0	0	0	0	0	0	0	1	0	х	0	х	0	х	1	х
0	0	0	1	0	0	1	0	0	х	0	х	1	Х	х	1
0	0	1	0	0	0	1	1	0	х	0	х	х	0	1	х
0	0	1	1	0	1	0	0	0	х	1	х	х	1	х	1
0	1	0	0	0	1	0	1	0	х	х	0	0	Х	1	х
0	1	0	1	0	1	1	0	0	х	х	0	1	Х	х	1
0	1	1	0	0	1	1	1	0	х	х	0	х	0	1	х
0	1	1	1	1	0	0	0	1	х	х	1	х	1	х	1
1	0	0	0	1	0	0	1	х	0	0	х	0	х	1	х
1	0	0	1	0	0	0	0	х	1	0	х	0	х	х	1

Step 4. Obtain the minimal expressions

From excitation table, it is clear that $J_1 = K_1 = 1$

K – Maps for excitations J_4 , K_4 , J_3 , K_3 , J_2 , K_2 , J_1 and K_1 and their minimized form are as follows:

$$J_4 = Q_3 Q_2 Q_1$$

$$Q_4Q_3$$
00 01 11 10
01 1 x x
11 x x
10 x x
 $J_2 = Q_1Q_4'$

Q_2Q Q_4Q_3 Q_0	00	01	11	10				
00	Х	x	х	x				
01	х	х	х	х				
11	х	х	х	х				
10		1	х	х				
$K_4 = Q_1$								

Q_2Q Q_4Q_3	00	01	11	10
Q_4Q_3	x	x	х	x
01			1	
11	х	х	х	х
10	х	х	х	х
'	Į.	$\zeta = 0$	0	

Step 5. Draw the logic diagram

Design a 3-bit synchronous up counter using K-maps and positive edgetriggered JK FFs.

Step 1. Number of flip-flops:

A 3 bit up counter requires 3 flip-flops. The counting sequence is 000, 001, 010, 011, 100, 101, 110, 111, 000 ...

Step 2. Draw the state diagram:

Step 3. Select the type of flip-flops and draw the excitation table:

J-K flip-flops are selected and the excitation table of a given sequence counter using J-K flip-flops is shown below.

	PS			NS		Required excitations					
Q ₃	Q_2	Q_1	Q₃	Q ₂	Q_1	J ₃	K ₃	J ₂	K ₂	J_1	K ₁
0	0	0	0	0	1	0	х	0	х	1	х
0	0	1	0	1	0	0	х	1	Х	Х	1
0	1	0	0	1	1	0	х	х	0	1	х
0	1	1	1	0	0	1	х	Х	1	х	1
1	0	0	1	0	1	х	0	0	х	1	х
1	0	1	1	1	0	х	0	1	х	х	1
1	1	0	1	1	1	Х	0	Х	0	1	х
1	1	1	0	0	0	х	1	х	1	х	1

Step 4. Obtain the minimal expressions

From excitation table, $J_1 = K_1 = 1$.

K – Maps for excitations J_3 , K_3 , J_2 and K_2 and their minimized form are as follows:

Step 5. Draw the logic diagram

Design a mod-12 Synchronous up counter using D-flipflop.

Step 1. Number of flip-flops:

A mod-12 counter requires 4 flip-flops. The counting sequence is 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1011, 0000 ...

Step 2. Draw the state diagram:

Step 3. Select the type of flip-flops and draw the excitation table:

D flip-flops are selected and the excitation table of a given sequence counter using D flip-flops is shown below.

	P	S		NS				Required excitations			
Q_4	Q₃	Q ₂	Q ₁	Q ₄	Q₃	Q ₂	Q ₁	D ₄	D ₃	D ₂	D ₁
0	0	0	0	0	0	0	1	0	0	0	1
0	0	0	1	0	0	1	0	0	0	1	0
0	0	1	0	0	0	1	1	0	0	1	1
0	0	1	1	0	1	0	0	0	1	0	0
0	1	0	0	0	1	0	1	0	1	0	1
0	1	0	1	0	1	1	0	0	1	1	0
0	1	1	0	0	1	1	1	0	1	1	1
0	1	1	1	1	0	0	0	1	0	0	0
1	0	0	0	1	0	0	1	1	0	0	1
1	0	0	1	1	0	1	0	1	0	1	0
1	0	1	0	1	0	1	1	1	0	1	1
1	0	1	1	0	0	0	0	0	0	0	0

Step 4. Obtain the minimal expressions

K – Maps for excitations D_4 , D_3 , D_2 , and D_1 and their minimized form are as follows:

Step 5. Draw the logic diagram

