Khoa Khoa Học & Kỹ Thuật Máy Tính Trường Đại Học Bách Khoa Tp. Hồ Chí Minh

Chương 5 Gom Cụm Dữ Liệu – Data Clustering

TRAN MINH QUANG

quangtran@hcmut.edu.vn

http://www.cse.hcmut.edu.vn/staff/Staff/quangtran http://researchmap.jp/quang

NộI DUNG

- 1. Tổng quan về gom cụm dữ liệu
- 2. Gom cụm dữ liệu bằng phân hoạch
- 3. Gom cụm dữ liệu bằng phân cấp
- 4. Gom cụm dữ liệu dựa trên mật độ
- 5. Gom cụm dữ liệu dựa trên mô hình
- 6. Các phương pháp gom cụm dữ liệu khác
- 7. Tóm tắt

TÀI LIỆU THAM KHẢO

- [1] Jiawei Han, Micheline Kamber, and Jian Pei, "Data Mining: Concepts and Techniques", 3rd Edition, Morgan Kaufmann Publishers, 2012.
- [2] David Hand, Heikki Mannila, Padhraic Smyth, "Principles of Data Mining", MIT Press, 2001.
- [3] David L. Olson, Dursun Delen, "Advanced Data Mining Techniques", Springer-Verlag, 2008.
- [4] Graham J. Williams, Simeon J. Simoff, "Data Mining: Theory, Methodology, Techniques, and Applications", Springer-Verlag, 2006.
- [5] ZhaoHui Tang, Jamie MacLennan, "Data Mining with SQL Server 2005", Wiley Publishing, 2005.
- [6] Oracle, "Data Mining Concepts", B28129-01, 2008.
- [7] Oracle, "Data Mining Application Developer's Guide", B28131-01, 2008.
- [8] Ian H.Witten, Eibe Frank, "Data mining: practical machine learning tools and techniques", 2nd Edition, Elsevier Inc, 2005.
- [9] Florent Messeglia, Pascal Poncelet & Maguelonne Teisseire, "Successes and new directions in data mining", IGI Global, 2008.
- [10] Oded Maimon, Lior Rokach, "Data Mining and Knowledge Discovery Handbook", 2nd Edition, Springer Science + Business Media, LLC 2005, 2010.

Các tình huống

Gom nhóm khách hàng

Tìm các phần tử biên, giảm thiểu nhiễu

Phân nhóm các mối quan hệ trong mạng xã hội

- Gom cụm là quá trình gom nhóm/cụm dữ liệu/đối tượng
- Các đối tượng trong cùng một cụm tương tự với nhau hơn so với đối tượng ở các cụm khác

Obj1, Obj2 ở cụm C1; Obj3 ở cụm C2 → Obj1 tương tự
 Obj2 hơn so với Obj3.
 Inter-cluster distances are maximized.

Intra-cluster distances are minimized.

Dr. Tran Minh Quang - quangtran@hcmut.edu.vn

Vấn đề kiểu dữ liệu/đối tượng được gom cụm

Ma trận dữ liệu (Data matrix)

$$\begin{bmatrix} x_{11} & \cdots & x_{1f} & \cdots & x_{1p} \\ \cdots & \cdots & \cdots & \cdots \\ x_{i1} & \cdots & x_{if} & \cdots & x_{ip} \\ \cdots & \cdots & \cdots & \cdots \\ x_{n1} & \cdots & x_{nf} & \cdots & x_{np} \end{bmatrix}$$

- -n đối tượng (objects)
- -p biến/thuộc tính (variables/attributes)

Ma trận sai biệt (Dissimilarity matrix)

$$\begin{bmatrix} 0 \\ d(2,1) & 0 \\ d(3,1) & d(3,2) & 0 \\ \vdots & \vdots & \vdots \\ d(n,1) & d(n,2) & \dots & \dots & 0 \end{bmatrix}$$

-d(i,j) khoảng cách giữa đối tượng i và j, được tính tùy thuộc vào kiểu của thuộc tính (biến)

Note: d(i,i)=0; $d(i,j)=d(j,i) \ge 0$; d(i,j)=d(i,k)+d(k,j)

- Vector objects: i và j được biểu diễn dưới dạng vectors x, y
- Độ tương tự giữa i, j được tính bởi độ đo cosin

$$s(x,y) = \frac{x^T \cdot y}{\mid x \mid \mid y \mid} \qquad \text{V\'oi} \qquad x = \begin{vmatrix} x_1 \\ x_2 \\ \dots \\ x_p \end{vmatrix}; y = \begin{vmatrix} y_1 \\ y_2 \\ \dots \\ y_p \end{vmatrix}$$

$$s(x, y) = (x1*y1 + ... + xp*yp)/((x1^2 + ... + xp^2)^{1/2}*(y1^2 + ... + yp^2)^{1/2})$$

- Cách tính khoảng cách tùy thuộc vào kiểu thuộc tính
- √Thuộc tính có giá trị theo khoảng (Interval-scaled variables/attributes)
- √ Thuộc tính nhị phân (Binary variables/attributes)
- √ Thuộc tính phân loại (Categorical variables/attributes)
- √ Thuộc tính có thứ tự (Ordinal variables/attributes)
- √Thuộc tính có giá trị theo hệ số (Ratio-scaled variables/attributes)
- √Các thuộc tính phức hợp (Variables/attributes of mixed types)

Interval-scaled variables/attributes

Mean absolute deviation

$$s_f = \frac{1}{n}(|x_{1f} - m_f| + |x_{2f} - m_f| + ... + |x_{nf} - m_f|)$$

Mean

$$m_f = \frac{1}{n} (x_{1f} + x_{2f} + \dots + x_{nf}).$$

Z-score measurement

$$z_{if} = \frac{x_{if} - m_f}{s_f}$$

Note: dùng z_{if} thay cho x_{if} ; i=1...n, f=1...p

o Độ đo Euclidean

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + ... + |x_{ip} - x_{jp}|^2)}$$

• Độ đo Minkowski

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^q + |x_{i2} - x_{j2}|^q + ... + |x_{ip} - x_{jp}|^q)}$$

Độ đo Manhattan

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + ... + |x_{i_p} - x_{j_p}|$$

10

• Binary variables/attributes

		Object j			
		1	0	sum	
	1	a	b	a+b	
Object i	0	c	d	c+d	
	sum	a+c	b+d	p (= a + b + c + d)	

Hệ số so trùng đơn giản (nếu symmetric):
$$d(i,j) = \frac{b+c}{a+b+c+d}$$

Hệ số so trùng Jaccard (nếu asymmetric):
$$d(i,j) = \frac{b+c}{a+b+c}$$

- Binary variables/attributes
 - Ví dụ

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

- gender: symmetric (Xác suất dl nhận giá trị "M", "F" là như nhau)
- Binary attributes còn lại: asymmetric

$$\square$$
 Y, P \rightarrow 1, N \rightarrow 0

$$d(jack, mary) = \frac{0+1}{2+0+1} = 0.33$$
$$d(jack, jim) = \frac{1+1}{1+1+1} = 0.67$$
$$d(jim, mary) = \frac{1+2}{1+1+2} = 0.75$$

12

Variables/attributes of mixed types

$$d(i,j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$$

- \checkmark Nếu x_{if} hoặc x_{jf} bị thiếu (missing) thì $\delta_{ij}^{(f)} = 0$
- f(variable/attribute): binary (nominal): $d_{ij}^{(f)} = 0$ nếu $x_{if} = x_{if}$; $d_{ij}^{(f)} = 1$ trong các trường hợp khác
- ✓ *f*: interval-scaled (Minkowski, Manhattan, Euclidean)
- ✓ f: ordinal (có thứ tự, e.g. huy chương vàng, bạc, đồng) hoặc ratio-scaled: chuyển các x_{ij} thành $r_{if} = \{1,...,M_f\}$, sau đó thay x_{ij} bởi z_{ij}

$$Z_{if} = \frac{V_{if} - 1}{M_{f} - 1}$$

Quá trình gom cụm dữ liệu

R. Xu, D. Wunsch II. Survey of Clustering Algorithms. IEEE Transactions on Neural Networks, 16(3), May 2005, pp. 645-678.

- Mỗi cụm nên có bao nhiều phần tử?
- o Các phân tử nên được gom vào bao nhiêu cụm?
- Bao nhiêu cụm nên được tạo ra?

Bao nhiêu cụm?

2 cum?

6 cum?

4 cum?

- o Các yêu cầu tiêu biểu về việc gom cụm dữ liệu
 - Khả năng co giãn với tập dữ liệu (scalability)
 - Khả năng xử lý nhiều kiểu thuộc tính khác nhau
 - Khả năng khám phá các cụm với hình dạng tùy ý (clusters with arbitrary shape)
 - Tối thiểu hóa yêu cầu về tri thức miền trong việc xác định các thông số nhập
 - Khả năng xử lý dữ liệu có nhiễu (noisy data)
 - Khả năng gom cụm tăng dần và độc lập với thứ tự của dữ liệu nhập (incremental clustering and insensitivity to the order of input records)
 - Khả năng xử lý dữ liệu đa chiều (high dimensionality)
 - Khả diễn và khả dụng (interpretability and usability)

16

- o Các phương pháp gom cụm dữ liệu tiêu biểu
 - Phân hoạch (partitioning): các phân hoạch được tạo ra và đánh giá theo một tiêu chí nào đó
 - Phân cấp (hierarchical): phân rã tập dữ liệu/đối tượng có thứ tự phân cấp theo một tiêu chí nào đó
 - Dựa trên mật độ (density-based): dựa trên độ kết nối (connectivity) và mật độ (density)
 - Dựa trên mô hình (model-based): một mô hình giả thuyết được đưa ra cho mỗi cụm; sau đó hiệu chỉnh các thông số để mô hình phù hợp với cụm dữ liệu nhất

• . . .

o Các phương pháp gom cụm dữ liệu tiêu biểu

Original Points

Hierarchical

- o Các phương pháp đánh giá việc gom cụm dữ liệu
 - Đánh giá ngoại (external validation): Đ. giá kết quả gom cụm dựa vào cấu trúc được chỉ định trước cho tập dữ liệu
 - Đánh giá nội (internal validation): Đ. giá kết quả gom cụm theo số lượng các vector của chính tập dữ liệu (ma trận gần – proximity matrix)
 - Đánh giá tương đối (relative validation): Đ. giá kết quả gom cụm bằng việc so sánh các kết quả gom cụm khác ứng với các bộ trị thông số khác nhau
 - Tiêu chí đánh giá và chọn kết quả gom cụm tối ưu
 - Độ nén (compactness): các đối tượng trong cụm nên gần nhau
 - Độ phân tách (separation): các cụm nên xa nhau

- o Các phương pháp đánh giá việc gom cụm dữ liệu
 - Đánh giá ngoại (external validation)
 - •Độ đo: Rand statistic, Jaccard coefficient, Folkes and Mallows index, ...
 - Đánh giá nội (internal validation)
 - •Độ đo: Silhouette index, Dunn's index, ...
 - Đánh giá tương đối (relative validation)

- o Các phương pháp đánh giá việc gom cụm dữ liệu
 - Các độ đo đánh giá ngoại (external validation measures contingency matrix)

	Measure	Notation	Definition	Range
1	Entropy	E	$-\sum_{i} p_{i} \left(\sum_{j} \frac{p_{ij}}{p_{i}} \log \frac{p_{ij}}{p_{i}}\right)$	$[0, \log K']$
2	Purity	P	$\sum_{i} p_{i}(\max_{j} \frac{p_{ij}^{\prime}}{p_{i}})$	(0,1]
3	F-measure	F	$\sum_{j} p_{j} \max_{i} \left[2 \frac{p_{ij}}{p_{i}} \frac{p_{ij}}{p_{j}} / (\frac{p_{ij}}{p_{i}} + \frac{p_{ij}}{p_{j}}) \right]$	(0,1]
4	Variation of Information	VI	$-\sum_{i} p_{i} \log p_{i} - \sum_{j} p_{j} \log p_{j} - 2\sum_{i} \sum_{j} p_{ij} \log \frac{p_{ij}}{p_{i}p_{j}}$	$[0,2\log\max(K,K')]$
5	Mutual Information	MI	$\sum_{i} \sum_{j} p_{ij} \log \frac{p_{ij}}{p_i p_j}$	$(0, \log K']$
6	Rand statistic	R	$\left[\binom{n}{2} - \sum_{i} \binom{n_{i}}{2} - \sum_{j} \binom{n_{i}j}{2} + 2\sum_{ij} \binom{n_{i}j}{2}\right] / \binom{n}{2}$	(0,1]
7	Jaccard coefficient	J	$\sum_{ij}^{n_{ij}} \binom{\binom{n_{ij}}{2}}{2} / \left[\sum_{i}^{n_{i}} \binom{n_{i}}{2} + \sum_{j}^{n_{i}} \binom{n_{ij}}{2} - \sum_{ij}^{n_{ij}} \binom{n_{ij}}{2}\right]^{2}$	[0,1]
8	Fowlkes and Mallows index	FM	$\sum_{ij} \binom{n_{ij}}{2} / \sqrt{\sum_i \binom{n_{i\cdot}}{2} \sum_j \binom{n_{\cdot j}}{2}}$	[0,1]
9	Hubert Γ statistic I	Γ	$\frac{\binom{n}{2}\sum_{ij}\binom{n_{ij}}{2} - \sum_{i}\binom{n_{i\cdot}}{2}\sum_{j}\binom{n_{\cdot\cdot j}}{2}}{\sqrt{\sum_{i}\binom{n_{i\cdot}}{2}\sum_{j}\binom{n_{\cdot\cdot j}}{2}[\binom{n}{2} - \sum_{i}\binom{n_{i\cdot}}{2}][\binom{n}{2} - \sum_{j}\binom{n_{\cdot\cdot j}}{2}]}}$	(-1,1]
10	Hubert Γ statistic II	Γ'	$ [\binom{n}{2} - 2\sum_{i} \binom{n_{i}}{2} - 2\sum_{j} \binom{n_{i}j}{2} + 4\sum_{ij} \binom{n_{i}j}{2}] / \binom{n}{2} $	[0,1]
11	Minkowski score	MS	$\sqrt{\sum_{i} \binom{n_{i}}{2} + \sum_{j} \binom{n_{\cdot j}}{2} - 2\sum_{ij} \binom{n_{ij}}{2}} / \sqrt{\sum_{j} \binom{n_{\cdot j}}{2}}$	$[0,+\infty)$
12	classification error	ε	$1 - \frac{1}{n} \max_{\sigma} \sum_{j} n_{\sigma(j),j}$	[0,1)
13	van Dongen criterion	VD	$(2n - \sum_{i} \max_{j} n_{ij} - \sum_{j} \max_{i} n_{ij})/2n$	[0, 1)
14	micro-average precision	MAP	$\sum_{i} p_i(\max_j \frac{p_{ij}}{p_i})$	(0,1]
15	Goodman-Kruskal coefficient	GK	$\sum_{i} p_i (1 - \max_{j} \frac{p_{ij}}{p_j})$	[0,1)
16	Mirkin metric	M	$\sum_{i} n_{i.}^{2} + \sum_{j} n_{.j}^{2} - 2 \sum_{i} \sum_{j} n_{ij}^{2}$	$[0,2\binom{n}{2})$

Note: $p_{ij} = n_{ij}/n$, $p_i = n_{i.}/n$, $p_j = n_{.j}/n$.

J. Wu and et al. Adapting the Right Measures for K-means Clustering. KDD'09, Paris, France, July 2009.

o Đánh giá kết quả gom cụm

Partition C

Partition P

	C_1	C_2	 $C_{K'}$	Ω
P_1	n_{11}	n_{12}	 $n_{1K'}$	n_1 .
P_2	n_{21}	n_{22}	 $n_{2K'}$	n_2 .
P_K	n_{K1}	n_{K2}	 $n_{KK'}$	n_K .
\sum	$n_{\cdot 1}$	$n_{\cdot 2}$	 $n_{\cdot K'}$	n

Contingency matrix

- -Partition P: kết quả gom cụm trên n đối tượng
- -Partition C: các cụm thật sự của n đối tượng
- $-n_{ij} = |P_i \cap C_j|$: số đối tượng trong P_i từ C_j

oĐánh giá kết quả gom cụm

I	C_1	C_2	C_3	ω
P_1	3	4	12	19
P_2	8	3	12	23
P_3	12	12	0	24
Σ	23	19	24	66

II	C_1	C_2	C_3	Σ
P_1	0	7	12	19
P_2	11	0	12	23
P_3	12	12	0	24
Σ	23	19	24	66

Kết quả gom cụm theo phương án I và II

- -Partition P: kết quả gom cụm trên n (=66) đối tượng
- -Partition C: các cụm thật sự của n (=66) đối tượng
- $-n_{ij} = |P_i \cap C_j|$: số đối tượng trong P_i từ C_j

- o Đánh giá kết quả gom cụm
 - Entropy (trị nhỏ khi chất lượng gom cụm tốt)

$$Entropy(I) = -\sum_{i} p_{i} \left(\sum_{j} \frac{p_{ij}}{p_{i}} \log \frac{p_{ij}}{p_{i}}\right)$$

$$= -\sum_{i} \frac{n_{i}}{n} \left(\sum_{j} \frac{n_{ij}}{n_{i}} \log \frac{n_{ij}}{n_{i}}\right)$$

$$= -\frac{19}{66} \left(\frac{3}{19} \log \frac{3}{19} + \frac{4}{19} \log \frac{4}{19} + \frac{12}{19} \log \frac{12}{19}\right)$$

$$-\frac{23}{66} \left(\frac{8}{23} \log \frac{8}{23} + \frac{3}{23} \log \frac{3}{23} + \frac{12}{23} \log \frac{12}{23}\right)$$

$$-\frac{24}{66} \left(\frac{12}{24} \log \frac{12}{24} + \frac{12}{24} \log \frac{12}{24} + \frac{0}{24} \log \frac{0}{24}\right)$$

$$= ???$$

$$Entropy(II) = -\sum_{i} p_{i} \left(\sum_{j} \frac{p_{ij}}{p_{i}} \log \frac{p_{ij}}{p_{i}}\right)$$

$$= -\sum_{i} \frac{n_{i}}{n_{i}} \left(\sum_{j} \frac{n_{ij}}{n_{i}} \log \frac{n_{ij}}{n_{i}}\right)$$

$$= -\sum_{i} \frac{n_{i}}{n_{i}} \left(\sum_{j} \frac{n_{ij}}{n_{i}} \log \frac{n_{ij}}{n_{i}}\right)$$

$$= -\frac{19}{66} \left(\frac{0}{19} \log \frac{0}{19} + \frac{7}{19} \log \frac{7}{19} + \frac{12}{19} \log \frac{12}{19}\right)$$

$$-\frac{23}{66} \left(\frac{8}{12} \log \frac{8}{12} + \frac{12}{19} \log \frac{12}{23} + \frac{12}{19} \log \frac{12}{23}\right)$$

$$-\frac{24}{66} \left(\frac{12}{24} \log \frac{12}{24} + \frac{12}{24} \log \frac{12}{24} + \frac{0}{24} \log \frac{0}{24}\right)$$

$$= ???$$

→ Gom cụm theo phương án I hay phương án II tốt???

2. GOM CUM DL BĂNG PHÂN HOẠCH: K-MEANS

Algorithm: *k*-means. The *k*-means algorithm for partitioning, where each cluster's center is represented by the mean value of the objects in the cluster.

Input:

- \blacksquare k: the number of clusters,
- \blacksquare *D*: a data set containing *n* objects.

Output: A set of k clusters.

Method:

- (1) arbitrarily choose k objects from D as the initial cluster centers;
- (2) repeat
- (3) (re)assign each object to the cluster to which the object is the most similar, based on the mean value of the objects in the cluster;
- update the cluster means, i.e., calculate the mean value of the objects for each cluster;
- (5) until no change;

Clustering of a set of objects based on the k-means method. (The mean of each cluster is marked by a "+".)

- o Đặc điểm của giải thuật k-means
 - Bài toán tối ưu hóa với "Cực trị cục bộ"
 - Mỗi cụm được đặc trưng hóa bởi trung tâm của cụm (i.e. đối tượng trung bình (mean))
 - ✓ Số cụm k nên là bao nhiêu?
 - \checkmark Độ phức tạp: O(nkt), với n là số đối tượng, k là số cụm, t là số lần lặp (k << n, t << n)
 - Ånh hưởng bởi nhiễu (các phần tử kì dị/biên)
 - Không phù hợp cho việc khai phá ra các cụm có dạng không lồi (nonconvex) hay các cụm có kích thước rất khác nhau
 - ✓ Kết quả gom cụm có dạng siêu cầu (hyperspherial)
 - ✓ Kích thước các cụm kết quả thường đồng đều (relatively₂9 uniform sizes)

Note: Đọc thêm các giải thuật gom cụm bằng phân hoạch khác như giải thuật PAM(k-medoids)

Sub-optimal Clustering

30

- Gom cụm dữ liệu bằng phân cấp (hierarchical clustering): nhóm các đối tượng vào cây phân cấp của các cụm
 - Agglomerative: bottom-up (trôn các cụm)
 - Divisive: top-down (phân tách các cụm)
- → Không yêu cầu thông số nhập k (số cụm)
- → Yêu cầu điều kiện dừng
- → Không thể quay lui ở mỗi bước trộn/phân tách

- An agglomerative hierarchical clustering method:
 AGNES (Agglomerative NESting) → bottom-up
- A divisive hierarchical clustering method: DIANA (Divisive ANAlysis) → top-down

- AGNES (Agglomerative NESting)
 - Khởi đầu, mỗi đối tượng tạo thành một cụm (n cụm)
 - Các cụm sau đó được trộn lại theo một tiêu chí nào đó
 - Cách tiếp cận single-linkage: cụm C1 và C2 được trộn lại nếu khoảng cách giữa 2 đối tượng từ C1 và C2 là ngắn nhất
 - Quá trình trộn các cụm được lặp lại đến khi tất cả các đối tượng tạo thành một cụm duy nhất
- DIANA (Divisive ANAlysis)
 - Khởi đầu, tất cả các đối tượng tạo thành một cụm duy nhất
 - Một cụm được phân tách theo một tiêu chí nào đó đến3 khi mỗi cụm chỉ có một đối tượng

Single-linkage

Complete-linkage

Tiêu chí trộn các cụm: single-linkage và complete-linkage

34

Quá trình gom cụm bằng phân cấp được biểu diễn bởi cấu trúc cây (dendrogram).

hợp nhỏ nhất 0.5

 ${\color{gray} \circ}$ Các độ đo dùng đo khoảng cách giữa các cụm C_i và C_j

Minimum distance: $d_{min}(C_i, C_j) = min_{p \in C_i, p' \in C_j} |p - p'|$

Maximum distance: $d_{max}(C_i, C_j) = max_{p \in C_i, p' \in C_i} |p - p'|$

Mean distance: $d_{mean}(C_i, C_j) = |m_i - m_j|$

Average distance: $d_{avg}(C_i, C_j) = \frac{1}{n_i n_j} \sum_{\boldsymbol{p} \in C_i} \sum_{\boldsymbol{p}' \in C_i} |\boldsymbol{p} - \boldsymbol{p}'|$

p, p': các đối tượng

|p-p'|: khoảng cách giữa p và p'

m_i, m_i: đối tượng trung bình của C_i, C_i, tương ứng

n_i, n_i: số lượng đối tượng của C_i, C_i, tương ứng

3. GOM CỤM DL BẰNG PHÂN CÁP

- o Một số giải thuật gom cụm dữ liệu bằng phân cấp
 - BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies): phân hoạch các đối tượng dùng cấu trúc cây theo độ co giãn của phân giải (scale of resolution)
 - ROCK (Robust Clustering using linKs): gom cụm dành cho các thuộc tính rời rạc (categorical/discrete attributes), trộn các cụm dựa vào sự kết nối lẫn nhau giữa các cụm
 - Chameleon: mô hình động để xác định sự tương tự giữa các cặp cụm

3. GOM CỤM DL BẰNG PHÂN CÁP

- Một số vấn đề với gom cụm dữ liệu bằng phân cấp
 - Chọn điểm trộn/phân tách phù hợp
 - Khả năng co giãn (scalability)
 - Mỗi quyết định trộn/phân tách yêu cầu kiểm tra/đánh giá nhiều đối tượng/cụm
 - → Tích hợp gom cụm dữ liệu bằng phân cấp với các kỹ thuật gom cụm khác
 - → Gom cụm nhiều giai đoạn (multiple-phase clustering)

- Gom cụm dl dựa trên mật độ (Density-based clustering)
 - Mỗi cụm là một vùng dày đặc (dense region) các đối tượng
 - Các đối tượng trong vùng thưa hơn được xem là nhiễu
 - Mỗi cụm có dạng tùy ý
- Một số giải thuật tiêu biểu
 - DBSCAN (Density-Based Spatial Clustering of Applications with Noise): Phân tích các điểm kết nối nhau dựa vào mật độ
 - OPTICS (Ordering Points To Identify the Clustering Structure): *Tạo ra thứ tự các điểm dữ liệu tùy vào cấu trúc gom cụm dựa vào mật độ của tập dữ liệu*
 - DENCLUE (DENsity-based CLUstEring): Gom cụm dựa vào các hàm phân bố mật độ

Các khái niệm

- ε: bán kính vùng láng giềng của một đối tượng
- ε-neighborhood: Số đối tượng trong vùng láng giềng
- Đối tượng lõi (core object) là đối tượng có

 ε -neighborhood $\geq MinPts$

• **Directly density-reachable** (khả năng đạt được trực tiếp): *q* có thể đạt được trực tiếp từ *p* nếu *q* trong vùng láng giềng ε-neighborhood của *p* và *p* phải là core object.

p: core object (MinPts = 3)

q: không là core object

p: directly density-reachable đối với q? \mathbf{X}

q: directly density-reachable đối với p? $\sqrt{}$

40

- *Density-reachable* (khả năng đạt được):
 - ullet Cho trước tập đối tượng $oldsymbol{D}$, $oldsymbol{arepsilon}$ và $oldsymbol{MinPts}$
 - q density-reachable từ p nếu \exists chuỗi các đối tượng $p_1, ..., p_n \in D$ với $p_1 = p$ và $p_n = q$ sao cho p_{i+1} directly density-reachable từ p_i theo các thông số ε và MinPts, $1 \le i \le n$.
 - Bao đóng truyền (transitive closure) của directly density-reachable
 - Quan hệ bất đối xứng (asymmetric)

- **Density-connected** (nối kết dựa trên mật độ):
 - Cho trước tập các đối tượng D, ε và MinPts
 - $p, q \in \mathbf{D}$
 - q density-connected với p nếu ∃ o ∈ D sao cho cả q
 và p đều density-reachable từ o theo các thông số ε
 và MinPts.
 - Quan hệ đối xứng

Density reachability and density connectivity in density-based clustering

43

- Cụm dựa trên mật độ (density based cluster): tập tất cả các đối tượng được nối kết với nhau dựa trên mật độ gồm: core objects và border objects
- Đối tượng không thuộc về cụm nào được xem là nhiễu (noise/outlier)

DBSCAN

- Input: tập đối tượng $oldsymbol{D}$, $oldsymbol{arepsilon}$, $oldsymbol{MinPts}$
- Output: density-based clusters (và noises/outliers)
- Giải thuật
 - 1. Xác định ε -neighborhood của mỗi đối tượng $p \in D$
 - 2. If p là core object, tạo được một cluster
 - 3. Từ bất kì core object p, tìm tất cả các đối tượng density-reachable và đưa các đối tượng này (hoặc các cluster) vào cùng cluster ứng với p
 - *3.1. Các cluster đạt được (density-reachable cluster) có thể được trộn lại với nhau
 - 3.2. Dừng khi không có đối tượng mới nào được thêm vào

MinPts = 4

Dr. Tran Minh Quang - quangtran@hcmut.edu.vn

Đặc điểm của DBSCAN

- Các cụm có dạng và kích thước khác nhau.
 - o Không có giả định về phân bố của các đối tượng dữ liệu
 - Không yêu cầu về số cụm
 - Không phụ thuộc vào cách khởi động (initialization)
 - Yêu cầu định nghĩa của mật độ (density), ε và *MinPts*
- Xử lý nhiễu (noise) và các phần tử biên (outliers)
- Độ phức tạp: O(nlogn) → O(n²)

- Tối ưu hóa sự phù hợp giữa dl và mô hình toán nào đó
 - Giả định: Dl được tạo ra với nhiều sự phân bố xác suất khác nhau
- o Các phương pháp
 - Tiếp cận thống kê: Mở rộng của giải thuật gom cụm dựa trên phân hoạch k-means: Expectation-Maximization (EM)
 - Tiếp cận học máy: gom cụm ý niệm (conceptual clustering)
 - Tiếp cận mạng neural: Self-Organizing Feature Map (SOM)

Each cluster can be represented by a probability distribution, centered at a mean, and with a standard deviation. Here, we have two clusters, corresponding to the Gaussian distributions $g(m_1, \sigma_1)$ and $g(m_2, \sigma_2)$, respectively, where the dashed circles represent the first standard deviation of the distributions.

- Giả sử dữ liệu được tạo ra từ nhiều phân bối Gaussian
- o Mỗi phân bố Gaussian có bộ thông số Θ (μ_i , Σ_i)
 - Center: μ_i
 - Variance: Σ_i (ignore)
- Tìm cụm hợp lý (k cụm) cho x_i

 z_{ij} : if x_i belongs to j-th cluster

Combine simple models into a complex model:

$$p(\mathbf{x}) = \sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
 Component Mixing coefficient

$$\forall k : \pi_k \geqslant 0$$
 $\sum_{k=1}^K \pi_k = 1$

• Probability

$$p(x = x_i)$$

$$p(x = x_i) = \sum_{\mu_j} p(x = x_i, \mu = \mu_j) = \sum_{\mu_j} p(\mu = \mu_j) p(x = x_i \mid \mu = \mu_j)$$

$$= \sum_{\mu_j} p(\mu = \mu_j) \frac{1}{(2\pi\sigma^2)^{d/2}} \exp\left(-\frac{\|x_i - \mu_j\|_2}{2\sigma^2}\right)$$

Log-likelihood of data

$$\sum_{i} \log p(x = x_i) = \sum_{i} \log \left[\sum_{\mu_j} p(\mu = \mu_j) \frac{1}{(2\pi\sigma^2)^{d/2}} \exp\left(-\frac{\|x_i - \mu_j\|_2}{2\sigma^2}\right) \right]$$

Tìm giải thuật để đạt Maximize Log-likelihood

- Giải thuật Expectation-Maximization (EM)
 - Là giải thuật lặp để tìm *Maximum Likelihood (ML)*
 - dùng được ngay cả trường hợp 1 số dữ liệu bị khuyết
 - EM gồm hai bước:
 - Expectation step: the (missing) data are estimated given the observed data and current estimates of model parameters
 - **Maximization step:** The likelihood function is maximized under the assumption that the (missing) data are known

E-Step

$E[z_{ij}] = p(\mu = \mu_j \mid x = x_i)$ $p(x = x_i \mid \mu = \mu_j) p(\mu = \mu_j)$ $\sum p(x = x_i \mid \mu = \mu_n) p(\mu = \mu_j)$ $e^{-\frac{1}{2\sigma^2}(x_i - \mu_j)^2} p(\mu = \mu_j)$ $\sum_{i=1}^{k} e^{-\frac{1}{2\sigma^{2}}(x_{i}-\mu_{n})^{2}} p(\mu=\mu_{n})$

M-Step

$$\mu_j \leftarrow \frac{1}{\sum_{i=1}^{m} E[z_{ij}]} \sum_{i=1}^{m} E[z_{ij}] x_i$$

$$p(\mu = \mu_j) \leftarrow \frac{1}{m} \sum_{i=1}^m E[z_{ij}]$$

- o Tóm tắt giải thuật (EM)
 - Input: tập D gồm n đối tượng, K cụm
 - Output: trị tối ưu cho các thông số của mô hình Θ (μ_i , Σ_i)
 - Giải thuật:
 - 1. Khởi trị
 - 1.1. Chọn ngẫu nhiên ${\bf K}$ đối tượng làm trung tâm cụm
 - 1.2. Ước lượng trị ban đầu cho các thông số (nếu cần)
 - 2. Lặp lại quá trình tinh chỉnh các thông số (cụm):
 - 2.1. Bước kỳ vọng (E-step): gán mỗi đối tượng x_i vào cụm C_k với xác suất $P(x_i \in C_k)$ với k=1..K
 - 2.2. Bước cực đại hóa (M-step): ước lượng trị các thông số
 - 2.3. Dừng khi thỏa điều kiện định trước (e.g. ML)

Sau bước lặp thứ 2

Sau bước lặp thứ 1

Sau bước lặp thứ 3

Sau bước lặp thứ 4

Sau bước lặp thứ 6

Sau bước lặp thứ 5

Sau bước lặp thứ 20

6. CÁC PP GOM CỤM DL KHÁC

- o Gom cụm cứng (hard clustering)
 - Mỗi đối tượng chỉ thuộc về một cụm
 - Mức thành viên (degree of membership) của mỗi đối tượng với một cụm hoặc là 0 hoặc là 1
 - Ranh giới (boundary) giữa các cụm rõ ràng
- Gom cụm mờ (fuzzy clustering)
 - Mỗi đối tượng thuộc về nhiều hơn một cụm với mức thành viên nào đó từ 0 đến 1
 - Ranh giới giữa các cụm không rõ ràng (mò - vague/fuzzy)

7. TÓM TẮT

- Gom cụm: nhóm các đối tượng vào các cụm dựa trên sự tương tự giữa chúng
- Độ đo đo sự tương tự tùy thuộc vào kiểu dữ liệu/đối tượng cụ thể
- Các giải thuật gom cụm được phân loại thành: phân hoạch, phân cấp, dựa trên mật độ, dựa trên mô hình, ...

7. TÓM TẮT

Cluster algorithm K-means	Complexity $O(NKd) \text{ (time)}$ $O(N+K) \text{ (space)}$	Capability of tackling high dimensional data
Fuzzy c- means	Near $O(N)$	No
Hierarchical clustering*	$O(N^2)$ (time) $O(N^2)$ (space)	No
CLARA	$O(K(40+K)^2+K(N-K))^+$ (time)	No
CLARANS	Quadratic in total performance	No
BIRCH	O(N) (time)	No
DBSCAN	$O(N \log N)$ (time)	No
CURE	$O(N_{sample}^2 \log N_{sample})$ (time) $O(N_{sample})$ (space)	Yes
WaveCluster	O(N) (time)	No
DENCLUE	$O(N \log N)$ (time)	Yes
FC	O(N) (time)	Yes
CLIQUE	Linear with the number of objects, Quadratic with the number of dimensions	Yes
OptiGrid	Between $O(Nd)$ and $O(Nd \log N)$	Yes
ORCLUS	$O(K_0^3 + K_0Nd + K_0^2d^3)$ (time) $O(K_0d^2)$ (space)	Yes

R. Xu, D. Wunsch II. Survey of Clustering Algorithms. – IEEE Transactions on Neural Networks, 16(3), May 20 pp. 645-678.

Dr. Tran Minh Quang -

quangtran@hcmut.edu.vn