Podstawy R: operacje na wektorach atomowych

Zadanie 1.1 [MG]

Dla danego wektora liczbowego:

```
set.seed(123)
x <- round(rnorm(20, 0, 1), 2)</pre>
```

wykonaj następujące operacje.

- 1. Wypisz na konsolę wszystkie wartości ze zbioru $[-2, -1] \cup [1, 2]$.
- 2. Wypisz na konsolę liczbę oraz frakcję wszystkich wartości nieujemnych.
- 3. Wyznacz średnią arytmetyczną wartości bezwzględnych elementów.
- 4. Wyznacz wartość najbliższą i najdalszą od 0 (zachowując jej znak).
- 5. Wyznacz wartość najbliższą i najdalszą od 2 (zachowując jej znak).
- 6. Wypisz na konsolę wektor powstały w wyniku przekształcenia liniowego wartości z x na przedział [0,1] (najmniejsza wartość staje się równa 0, a największa 1).
- 7. Utwórz wektor napisów y o długości takiej samej, jaką ma x, dla którego y_i przyjmuje wartość 'nieujemna', jeśli x_i jest nieujemne oraz "ujemna" w przeciwnym przypadku.
- 8. Utwórz wektor napisów y o długości takiej samej, jaką ma x, dla którego y_i przyjmuje wartość "mały", jeśli $x_i < -1$, "średni", dla $|x_i| \le 1$ oraz "duży" w przeciwnym przypadku.
- 9. Utwórz wektor liczbowy y o długości takiej samej, jaką ma x, dla którego y_i przyjmuje wartość k+1/2 wtedy i tylko wtedy, gdy $x_i \in [k, k+1)$, gdzie $k \in \mathbb{Z}$ (prosty histogram).

Zadanie 1.2 [MG] Mamy dane dwa wektory liczbowe x i y tej samej długości równej n. Wypisz na ekran (1 wiersz kodu) wartość współczynnika korelacji r Pearsona, będącego miarą liniowej zależności między poszczególnymi parami obserwacji (x_i, y_i) dla $i = 1, \ldots, n$.

$$r(\mathbf{x},\mathbf{y}) = \frac{1}{n-1} \sum_{i=1}^{n} \frac{x_i - \bar{\mathbf{x}}}{s_{\mathbf{x}}} \frac{y_i - \bar{\mathbf{y}}}{s_{\mathbf{y}}},$$

gdzie $\bar{\mathbf{x}}, \bar{\mathbf{y}}$ oznacza średnią arytmetyczną, a $s_{\mathbf{x}}, s_{\mathbf{y}}$ – odchylenie standardowe, odpowiednio, wektorów \mathbf{x} i \mathbf{y} . Warto zauważyć, że $r(\mathbf{x}, \mathbf{y}) \in [-1, 1]$. W celach testowych użyj następujących wektorów:

```
# a
x <- rnorm(20, 0, 1); y <- 10*x+2
# b
x <- rnorm(20, 0, 1); y <- -4*x+1
# c
x <- rnorm(2000, 0, 1); y <- rnorm(2000, 5, 2)</pre>
```

Zadanie 1.3 [MG] Mamy dane dwa wektory liczbowe \mathbf{x} i \mathbf{y} tej samej długości równej n. Wyznacz wartość próbkowego estymatora współczynnika korelacji rangowej Spearmana danego wzorem:

$$\varrho(\mathbf{x},\mathbf{y}) = 1 - \frac{6\sum_{i=1}^n d_i^2}{n(n^2-1)},$$

gdzie $d_i = R(\mathbf{x})_i - R(\mathbf{y})_i$, $i = 1, \ldots, n$, oraz $R(\mathbf{x})_i$ oznacza rangę (zob. ?rank) *i*-tej obserwacji z x.

Zadanie 1.4 [MG] Dla danego wektora liczbowego \mathbf{x} o nieparzystej długości n i wartości $k \leq \frac{n-1}{2}$ wyznacz tzw. średnią k-winsorowską, tj. średnią arytmetyczną z wektora \mathbf{x} , w którym k najmniejszych i k największych elementów zostaje zastąpionych przez, odpowiednio, (k+1)-szą wartość najmniejszą i największą.

Zadanie 1.5 [JL] Napisz funkcję factorial2(), która dla danej liczby całkowitej nieujemnej n wyznaczy wartość n!. Napisz także funkcję factorial_stirling(), która zwraca przybliżoną wartość silni według wzoru Stirlinga:

$$n! \approx \left(\frac{n}{e}\right)^n \sqrt{2\pi n}.$$

Last update: 20 lutego 2025 r.

Aktualizacje: Anna Cena

Dla n = 5, 10, 15 policz względny błąd przybliżenia. Porównaj także uzyskane wyniki z tymi, które generowane są przy użyciu wbudowanej funkcji factorial().

Zadanie 1.6 [MG] Wartość funkcji {arcus sinus} można wyznaczać z jej rozwinięcia w szereg Taylora:

$$\arcsin x \simeq \sum_{n=0}^{m} \frac{(2n)!}{4^n (n!)^2 (2n+1)} x^{2n+1},$$

gdzie $x \in (-1,1)$ i $m \in \mathbb{N}$. Dla danego x oraz m = 10,100,1000 wyznacz różnicę między powyższym przybliżeniem a wartością, którą zwraca wybudowana funkcja asin().

Zadanie 1.7 [BT] Dany jest wektor liczb całkowitych x o elementach ze zbioru $\{0, 1, ..., 9\}$ oraz wektory napisów:

```
top <- c(" _ "," "," _ "," _ "," _ "," _ "," _ "," _ "," _ "," _ "," _ ")
mid <- c(" | "," | "," _ | "," _ | "," | "," | "," | "," | "," | "," | ")
bot <- c(" | | "," | "," | "," _ | "," | "," | "," | "," | "," | "," | ")
```

Napisz kod, który kolejne cyfry z x wypisze na konsoli w "kalkulatorowym" stylu. Na przykład:

```
f(c(4,2,1))
-
|_| _| |
||_ |
```