Bandit Convex Optimization

Scott Yang

March 7, 2017

Table of Contents

- Bandit Convex Optimization (BCO)
- Projection Methods
- Barrier Methods
- Variance reduction
- Other methods
- 6 Conclusion

Learning scenario

- Compact convex action set $\mathcal{K} \subset \mathbb{R}^d$.
- For t = 1 to T:
 - Predict $x_t \in \mathcal{K}$.
 - Receive convex loss function $f_t : \mathcal{K} \to \mathbb{R}$.
 - Incur loss $f_t(x_t)$.
- Bandit setting: only loss revealed, no other information.
- Regret of algorithm A:

$$\operatorname{Reg}_{T}(A) = \sum_{t=1}^{T} f_{t}(x_{t}) - \min_{x \in \mathcal{K}} \sum_{t=1}^{T} f_{t}(x).$$

Related settings

- Online convex optimization: ∇f_t (and maybe $\nabla^2 f_t, \nabla^3 f_t, \ldots$) known at each round.
- Multi-armed bandit: $K = \{1, 2, ..., K\}$ discrete.
- Zero-th order optimization: $f_t = f$.
- Stochastic bandit convex optimization: $f_t(x) = f(x) + \epsilon_t$, $\epsilon_t \sim \mathcal{D}$ noisy estimate.
- Multi-point bandit convex optimization: Query f_t at points $(x_{t,i})_{i=1}^m$, $m \ge 2$.

Table of Contents

- Bandit Convex Optimization (BCO)
- Projection Methods
- Barrier Methods
- Variance reduction
- Other methods
- 6 Conclusion

"Gradient descent without a gradient"

Online gradient descent algorithm:

$$X_{t+1} \leftarrow X_t - \eta \nabla f_t(X_t).$$

- BCO setting: $\nabla f_t(x_t)$ is not known!
- BCO idea:
 - Find \widehat{g}_t such that $\widehat{g}_t \approx \nabla f_t(x_t)$.
 - Update

$$X_{t+1} \leftarrow X_t - \eta \widehat{g}_t$$
.

• Question: how do we pick \hat{g}_t ?

Single-point gradient estimates (one dimension)

By the fundamental theorem of calculus:

$$f'(x) \approx \frac{1}{2\delta} \int_{-\delta}^{\delta} f'(x+y) dy = \frac{1}{2\delta} \left[f(x+\delta) - f(x-\delta) \right]$$
$$= \underset{z \sim \mathcal{D}}{\mathbb{E}} \left[\frac{1}{\delta} f(x+z) \frac{z}{|z|} \right]$$
where $\mathcal{D}(z) = \delta$ w.p. $\frac{1}{2}$ and $= -\delta$ w.p. $\frac{1}{2}$.

With enough regularity (e.g. f Lipschitz),

$$\frac{d}{dx}\frac{1}{2\delta}\int_{-\delta}^{\delta}f(x+y)dy=\frac{1}{2\delta}\int_{-\delta}^{\delta}f'(x+y)dy.$$

Single-point gradient estimates (higher dimensions)

- $\bullet \ \mathbb{B}_1 = \{ x \in \mathbb{R}^n : \|x\|_2 \le 1 \}.$
- $\bullet \int_A dy = |A|.$
- By Stokes' theorem,

$$\nabla f(x) \approx \frac{1}{|\delta \mathbb{B}_{1}|} \int_{\delta \mathbb{B}_{1}} \nabla f(x+y) dy = \frac{1}{|\delta \mathbb{B}_{1}|} \int_{\delta \mathbb{S}_{1}} f(x+z) \frac{z}{|z|} dz$$

$$= \frac{1}{|\delta \mathbb{B}_{1}|} \int_{\mathbb{S}_{1}} f(x+\delta z) z dz = \frac{|\mathbb{S}_{1}|}{|\mathbb{S}_{1}||\delta \mathbb{B}_{1}|} \int_{\mathbb{S}_{1}} f(x+\delta z) z dz$$

$$= \frac{|\mathbb{S}_{1}|}{|\delta \mathbb{B}_{1}|} \mathbb{E}_{z \sim U(\mathbb{S}_{1})} [f(x+\delta z)] = \frac{d}{\delta} \mathbb{E}_{z \sim U(\mathbb{S}_{1})} [f(x+\delta z)].$$

• With enough regularity on f,

$$\nabla \frac{1}{|\delta \mathbb{B}_1|} \int_{\delta \mathbb{B}_1} f(x+y) dy = \frac{1}{|\delta \mathbb{B}_1|} \int_{\delta \mathbb{B}_1} \nabla f(x+y) dy.$$

Projection method [Flaxman et al, 2005]

- Let $\widehat{f}(x) = \frac{1}{|\delta \mathbb{B}_1|} \int_{\delta \mathbb{B}_1} f(x+y) dy$.
- Estimate $\nabla \widehat{f}(x)$ by sampling on $\delta \mathbb{S}_1(x)$
- Project gradient descent update to keep samples inside K: $K_{\delta} = \frac{1}{1-\delta}K$.

BANDITPGD(T, η , δ):

- $x_1 \leftarrow 0$.
- For t = 1, 2, ..., T:
 - $u_t \leftarrow \mathsf{SAMPLE}(\mathbb{S}_1)$
 - $y_t \leftarrow x_t + \delta u_t$
 - $PLAY(y_t)$
 - $f_t(y_t) \leftarrow \mathsf{RECEIVELOSS}(y_t)$
 - $\widehat{g}_t \leftarrow \frac{d}{\delta} f_t(y_t) u_t$
 - $x_{t+1} \leftarrow \Pi_{K_{\delta}}(x_t \eta \widehat{g}_t)$.

Analysis of BANDITPGD

Theorem (Flaxman et al, 2005)

Assume diam(\mathcal{K}) \leq D, $|f_t| \leq C$, and $\|\nabla f_t\| \leq L$. Then after T rounds, the (expected) regret of the BANDITPGD algorithm is bounded by:

$$\frac{D^2}{2\eta} + \frac{\eta C^2 d^2 T}{2\delta^2} + \delta(D+2)LT.$$

In particular, by setting $\eta = \frac{\delta D}{Cd\sqrt{T}}$ and $\delta = \sqrt{\frac{DCd}{(D+2)LT^{1/2}}}$, the regret is upper bounded by: $\mathcal{O}(d^{1/2}T^{3/4})$.

Proof of BANDITPGD regret

- For any $x \in \mathcal{K}$, let $x_{\delta} = \Pi_{\mathcal{K}_{\delta}}(x)$.
- \bullet $\widehat{f}_t(z) \geq f_t(z)$.
- Then

$$\sum_{t=1}^{T} \mathbb{E}[f_t(y_t) - f_t(x^*)]$$

$$= \sum_{t=1}^{T} \mathbb{E}\left[f_t(y_t) - f_t(x_t) + f_t(x_t) - \widehat{f}_t(x_t) + \widehat{f}_t(x_t) - \widehat{f}_t(x^*_{\delta})\right]$$

$$+ \widehat{f}_t(x^*_{\delta}) - f_t(x^*_{\delta}) + f_t(x^*_{\delta}) - f_t(x^*)$$

$$\leq \sum_{t=1}^{T} \mathbb{E}\left[\widehat{f}_t(x_t) - \widehat{f}_t(x^*_{\delta})\right] + [2\delta LT + \delta DLT]$$

$$\leq \sum_{t=1}^{T} \mathbb{E}\left[\widehat{f}_t(x_t) - \widehat{f}_t(x^*_{\delta})\right] + \delta(D+2)LT.$$

Proof of BANDITPGD regret

- $\bullet \mathbb{E}\left[\|\widehat{g}_t\|_2\right] \leq \frac{C^2d^2}{\delta^2}.$
- Thus,

$$\begin{split} &\sum_{t=1}^{T} \mathbb{E}\left[\widehat{f}_{t}(x_{t}) - \widehat{f}_{t}(x_{\delta}^{*})\right] \leq \sum_{t=1}^{T} \mathbb{E}\left[\nabla \widehat{f}_{t}(x_{t}) \cdot (x_{t} - x_{\delta}^{*})\right] \\ &= \sum_{t=1}^{T} \mathbb{E}\left[\widehat{g}_{t} \cdot (x_{t} - x_{\delta}^{*})\right] \\ &= \sum_{t=1}^{T} \frac{1}{2\eta} \mathbb{E}\left[\eta^{2} \|\widehat{g}_{t}\|^{2} + \|x_{t} - x_{\delta}^{*}\|^{2} - \|x_{t} - \eta\widehat{g}_{t} - x_{\delta}^{*}\|^{2}\right] \\ &\leq \sum_{t=1}^{T} \frac{1}{2\eta} \mathbb{E}\left[\eta^{2} \frac{C^{2} d^{2}}{\delta^{2}} + \|x_{t} - x_{\delta}^{*}\|^{2} - \|x_{t+1} - x_{\delta}^{*}\|^{2}\right] \\ &\leq \frac{1}{2\eta} \mathbb{E}\left[\|x_{1} - x_{\delta}^{*}\|^{2} + \eta^{2} \frac{C^{2} d^{2}}{\delta^{2}}\right] \leq \frac{1}{2\eta} \left[D^{2} + \eta^{2} \frac{C^{2} d^{2}}{\delta^{2}}\right]. \end{split}$$

Table of Contents

- Bandit Convex Optimization (BCO)
- Projection Methods
- Barrier Methods
- Variance reduction
- Other methods
- 6 Conclusion

Revisiting projection

- Goal of projection: Keep $x_t \in \mathcal{K}_{\delta}$ so that $y_t \in \mathcal{K}$.
- Total "cost" of projection: δDLT .
- Deficiency: completely separate from gradient descent update.
- Question: is there a better way to ensure that $y_t \in \mathcal{K}$?

Gradient Descent to Follow-the-Regularized-Leader

- Let $\widehat{g}_{1:t} = \sum_{s=1}^{t} \widehat{g}_s$.
- Proximal form of gradient descent:

$$\begin{aligned} x_{t+1} &\leftarrow x_t - \eta \widehat{g}_t \\ x_{t+1} &\leftarrow \operatorname*{argmin}_{x \in \mathbb{R}^d} \eta \widehat{g}_{1:t} \cdot x + \|x\|^2 \end{aligned}$$

• Follow-the-Regularized-Leader: for $\mathcal{R}: \mathbb{R}^d \to \mathbb{R}$,

$$x_{t+1} \leftarrow \operatorname*{argmin}_{x \in \mathbb{R}^d} \widehat{g}_{1:t} \cdot x + \mathcal{R}(x),$$

- BCO "wishlist" for R:
 - Want to ensure that x_{t+1} stays inside K.
 - Want enough "room" so that $y_{t+1} \in \mathcal{K}$ as well.

Self-concordant barriers

Definition (Self-concordant barrier (SCB))

Let $\nu \geq 0$. A C^3 function $\mathcal{R}: \operatorname{int}(\mathcal{K}) \to \mathbb{R}$ is a ν -self-concordant barrier for \mathcal{K} if for any sequence $(z_s)_{s=1}^{\infty} \subset \operatorname{int}(\mathcal{K})$, with $z_s \to \partial \mathcal{K}$, we have $\mathcal{R}(z_s) \to \infty$, and for all $x \in \mathcal{K}$ and $y \in \mathbb{R}^n$, the following inequalities hold:

$$|\nabla^3 \mathcal{R}(x)[y, y, y]| \le 2||y||_x^3, \quad |\nabla \mathcal{R}(x) \cdot y| \le \nu^{1/2}||y||_x,$$

where
$$\|z\|_x^2 = \|z\|_{\nabla^2 \mathcal{R}(x)}^2 = z^\top \nabla^2 \mathcal{R}(x) z$$
.

Examples of barriers

 \bullet $\mathcal{K} = \mathbb{B}_1$:

$$\mathcal{R}(x) = -\log(1 - \|x\|^2)$$

is 1-self-concordant.

• $\mathcal{K} = \{x : a_i^\top x \leq b_i\}_{i=1}^m$:

$$\mathcal{R}(x) = \sum_{i=1}^{m} -\log(b_i - a_i^{\top} x)$$

is *m*-self-concordant.

• Existence of "universal barrier" [Nesterov & Nemirovski, 1994]: every closed convex domain $\mathcal K$ admits a $\mathcal O(d)$ -self-concordant barrier.

Properties of self-concordant-barriers

- Translation invariance: for any constant $c \in \mathbb{R}$, $\mathcal{R} + z$ is also a SCB (so wlog, we assume $\min_{z \in \mathcal{K}} \mathcal{R}(z) = 0$.)
- Dikin ellipsoid contained in interior: let $\mathcal{E}(x) = \{y \in \mathbb{R}^n : ||y||_x \le 1\}$. Then for any $x \in \text{int}(\mathcal{K})$, $\mathcal{E}(x) \subset \text{int}(\mathcal{K})$.
- Logarithmic growth away from boundary: for any $\epsilon \in (0, 1]$, let $y = \operatorname{argmin}_{z \in \mathcal{K}} \mathcal{R}(z)$ and $\mathcal{K}_{y,\epsilon} = \{y + (1 \epsilon)(x y) : x \in \mathcal{K}\}$. Then for all $x \in \mathcal{K}_{y,\epsilon}$,

$$\mathcal{R}(x) \leq \nu \log(1/\epsilon).$$

• Proximity to minimizer. If $\|\nabla \mathcal{R}(x)\|_{x,*} \leq \frac{1}{2}$, then

$$||x - \operatorname{argmin} \mathcal{R}||_{x} \le 2||\nabla \mathcal{R}(x)||_{x,*}.$$

Adjusting to the local geometry

- Let A > 0 SPD matrix.
- Sampling around A instead of Euclidean ball:

$$u \sim \mathsf{SAMPLE}(\mathbb{S}_1), \quad x \leftarrow y + \delta \mathsf{A} u$$

Smoothing over A instead of Euclidean ball:

$$\widehat{f}(x) = \mathbb{E}_{u \sim U(\mathbb{S}_1)}[f(x + \delta Au)].$$

One-point gradient estimate based on A:

$$\widehat{g} = \frac{d}{\delta} f(x + \delta A u) A^{-1} u, \quad \mathbb{E}_{u \sim U(\mathbb{S}_1)} \left[\widehat{g} \right] = \nabla \widehat{f}(x).$$

Local norm bound:

$$\|\widehat{g}\|_{\mathit{A}^{2}}^{2}\leq\frac{\mathit{d}^{2}}{\delta^{2}}\mathit{C}^{2}.$$

BANDITFTRL [Abernethy et al, 2008; Saha and Tewari 2011]

BANDITFTRL($\mathcal{R}, \delta, \eta, T, x_1$)

- For $t \leftarrow 1$ to T:
 - $u_t \leftarrow \mathsf{SAMPLE}(U(\mathbb{S}_1)).$
 - $y_t \leftarrow x_t + \delta(\nabla^2 \mathcal{R}(x_t))^{-1/2} u_t$.
 - PLAY (y_t) .
 - $f_t(y_t) \leftarrow \mathsf{RECEIVELOSS}(y_t)$.
 - $\widehat{g}_t \leftarrow \frac{d}{\delta} f_t(y_t) \nabla^2 \mathcal{R}(x_t) u_t$.
 - $x_{t+1} \leftarrow \operatorname{argmin}_{x \in \mathbb{R}^d} \eta \widehat{g}_{1:t}^\top x + \mathcal{R}(x)$.

Analysis of BANDITFTRL

Theorem (Abernethy et al, 2008; Saha and Tewari, 2011)

Assume diam(\mathcal{K}) \leq D. Let \mathcal{R} be a self-concordant-barrier for \mathcal{K} , $|f_t| \leq C$, and $\|\nabla f_t\| \leq L$. Then the regret of BANDITFTRL is upper bounded as follows:

- If $(f_t)_{t=1}^T$ are linear functions, then $\operatorname{Reg}_T(\mathsf{BANDITFTRL}) = \tilde{\mathcal{O}}(T^{1/2})$.
- If $(f_t)_{t=1}^T$ have Lipschitz gradients, then $\operatorname{Reg}_T(\mathsf{BANDITFTRL}) = \tilde{\mathcal{O}}(T^{2/3}).$

Approximation error of smoothed losses:

- $x^* = \operatorname{argmin}_{x \in \mathcal{K}} \sum_{t=1}^{T} f_t(x)$
- $x_{\epsilon}^* \in \operatorname{argmin}_{y \in \mathcal{K}, \operatorname{dist}(y, \partial \mathcal{K}) > \epsilon} \|y x^*\|$
- Because f_t are linear,

$$\begin{split} & \operatorname{Reg}_{\mathcal{T}}(\mathsf{BANDITFTRL}) = \mathbb{E}\left[\sum_{t=1}^{T} f_{t}(y_{t}) - f_{t}(x^{*})\right] \\ & = \mathbb{E}\Big[\sum_{t=1}^{T} f_{t}(y_{t}) - \widehat{f}_{t}(y_{t}) + \widehat{f}_{t}(y_{t}) - \widehat{f}_{t}(x_{t}) + \widehat{f}_{t}(x_{t}) - \widehat{f}_{t}(x^{*}_{\epsilon}) + \widehat{f}_{t}(x^{*}_{\epsilon}) \\ & - f_{t}(x^{*}_{\epsilon}) + f_{t}(x^{*}_{\epsilon}) - f_{t}(x^{*})\Big] \\ & \leq \mathbb{E}\left[\sum_{t=1}^{T} \widehat{f}_{t}(x_{t}) - \widehat{f}_{t}(x^{*}_{\epsilon})\right] + \epsilon LT = \mathbb{E}\left[\sum_{t=1}^{T} \widehat{g}_{t}^{\top}(x_{t} - x^{*}_{\epsilon})\right] + \epsilon LT. \end{split}$$

Claim: for any $z \in \mathcal{K}$,

$$\sum_{t=1}^T \widehat{g}_t^\top(x_{t+1}-z) \leq \frac{1}{\eta} \mathcal{R}(z).$$

- T = 1 case is true by definition of x_2 .
- Assuming statement is true for T 1:

$$\begin{split} \sum_{t=1}^{T} \widehat{g}_{t}^{\top} x_{t+1} &= \sum_{t=1}^{T-1} \widehat{g}_{t}^{\top} x_{t+1} + \widehat{g}_{T}^{\top} x_{T+1} \leq \frac{1}{\eta} \mathcal{R}(x_{T}) + \sum_{t=1}^{T-1} \widehat{g}_{t}^{\top} x_{T} + \widehat{g}_{T}^{\top} x_{T+1} \\ &\leq \frac{1}{\eta} \mathcal{R}(x_{T+1}) + \sum_{t=1}^{T-1} \widehat{g}_{t}^{\top} x_{T+1} + \widehat{g}_{T}^{\top} x_{T+1} \leq \frac{1}{\eta} \mathcal{R}(z) + \sum_{t=1}^{T} \widehat{g}_{t}^{\top} z. \end{split}$$

$$\mathbb{E}\left[\sum_{t=1}^{T} \widehat{f}_{t}(x_{t}) - \widehat{f}_{t}(x_{\epsilon}^{*})\right] \leq \sum_{t=1}^{T} \mathbb{E}\left[\widehat{f}_{t}(x_{t}) - \widehat{f}_{t}(x_{t+1}) + \widehat{f}_{t}(x_{t+1}) - \widehat{f}_{t}(x_{\epsilon}^{*})\right]$$

$$\leq \sum_{t=1}^{T} \mathbb{E}\left[\|\widehat{g}_{t}\|_{x_{t},*} \|x_{t} - x_{t+1}\|_{x_{t}}\right] + \frac{1}{\eta} \mathcal{R}(x_{\epsilon}^{*})$$

Proximity to minimizer for SCB:

- Recall:
 - $x_{t+1} = \operatorname{argmin}_{x \in \mathcal{K}} \eta \widehat{g}_{1:t}^{\top} x + \mathcal{R}(x)$
 - $F_t(x) = \eta \widehat{g}_{1:t}^\top x + \mathcal{R}(x)$ is a SCB.
- Proximity bound: $||x_t x_{t+1}||_{x_t} \le ||\nabla F_t(x_t)||_{x_t,*} = \eta ||\widehat{g}_t||_{x_t,*}$

$$\operatorname{Reg}_{\mathcal{T}}(\mathsf{BANDITFTRL}) \leq \epsilon LT + \sum_{t=1}^{T} \mathbb{E}\left[\eta \|\widehat{g}_{t}\|_{\chi_{t},*}^{2}\right] + \frac{1}{\eta} \mathcal{R}(X_{\epsilon}^{*})$$

- By the local norm bound: $\mathbb{E}\left[\eta\|\widehat{g}_t\|_{x_t,*}^2\right] \leq \frac{C^2 d^2}{\delta^2}.$
- By the logarithmic growth of the SCB: $\frac{1}{\eta}\mathcal{R}(x_{\epsilon}^*) \leq \nu \log\left(\frac{1}{\epsilon}\right)$.

$$\Rightarrow \mathrm{Reg}_{\mathcal{T}}(\mathsf{BANDITFTRL}) \leq \epsilon L T + T \eta \frac{C^2 d^2}{\delta^2} + \frac{\nu}{\eta} \log \left(\frac{1}{\epsilon}\right).$$

Table of Contents

- Bandit Convex Optimization (BCO)
- Projection Methods
- Barrier Methods
- 4 Variance reduction
- Other methods
- 6 Conclusion

Issues with BANDITFTRL in the non-linear case

- Approximation error of $f \sim \hat{f}$:
 - ullet $\sim \delta T$ for $\mathcal{C}^{0,1}$ functions
 - $\bullet \sim \delta^2 T$ for $\mathcal{C}^{1,1}$ functions
- Variance of gradient estimates: $\mathbb{E}\left[\eta\|\widehat{g}_t\|_{x_t,*}^2\right] \leq \frac{C^2d^2}{\delta^2}$
- Regret for non-linear loss functions:
 - $\mathcal{O}(T^{3/4})$ for $\mathcal{C}^{0,1}$ functions
 - $\mathcal{O}(T^{2/3})$ for $\mathcal{C}^{1,1}$ functions
- Question: can we reduce the variance of the gradient estimates to improve the regret?

Variance reduction

• Observation [Dekel et al, 2015]: If $\bar{g}_t = \frac{1}{k+1} \sum_{i=0}^k \widehat{g}_{t-i}$, then

$$\|\bar{g}_t\|_{\chi_t,*}^2 = \mathcal{O}\left(\frac{C^2d^2}{\delta^2(k+1)}\right).$$

- Note: averaged gradient \bar{g}_t is no longer an unbiased estimate of $\nabla \hat{f}_t$.
- Idea: If f_t is sufficiently regular, then the bias will still be manageable.

Improving variance reduction via "optimism"

Optimistic FTRL [Rakhlin and Sridharan, 2013]:

$$\begin{aligned} x_{t+1} &\leftarrow \underset{x \in \mathcal{K}}{\operatorname{argmin}} (g_{1:t} + \tilde{g}_{t+1})^{\top} x + \mathcal{R}(x) \\ \sum_{t=1}^{T} f_{t}(x_{t}) - f_{t}(x^{*}) &\leq \eta \sum_{t=1}^{T} \|g_{t} - \tilde{g}_{t}\|_{x_{t},*} + \frac{1}{\eta} \mathcal{R}(x^{*}) \end{aligned}$$

 By re-centering the averaged gradient at each step, we can further reduce the variance:

$$\widetilde{g}_t = \frac{1}{k+1} \sum_{i=1}^k \widehat{g}_{t-i}.$$

Variance of re-centered averaged gradients:

$$\|\bar{g}_t - \tilde{g}_t\|_{x_t,*}^2 = \frac{1}{(k+1)^2} \|\widehat{g}_t\|_{x_t,*}^2 = \mathcal{O}\left(\frac{C^2 d^2}{\delta^2 (k+1)^2}\right).$$

BANDITFTRL-VR

BANDITFTRL-VR($\mathcal{R}, \delta, \eta, k, T, x_1$)

- For $t \leftarrow 1 \rightarrow T$:
 - $u_t \leftarrow \mathsf{SAMPLE}(U(\mathbb{S}_1))$
 - $y_t \leftarrow x_t + \delta(\nabla^2 \mathcal{R}(x_t))^{-\frac{1}{2}} u_t$
 - $PLAY(y_t)$
 - $f_t(y_t) \leftarrow \mathsf{RECEIVELOSS}(y_t)$
 - $\widehat{g}_t \leftarrow \frac{d}{\delta} f_t(y_t) (\nabla^2 \mathcal{R}(x_t))^{-\frac{1}{2}} u_t$
 - $\bar{g}_t \leftarrow \frac{1}{k+1} \sum_{i=0}^k \widehat{g}_{t-i}$
 - $\tilde{g}_{t+1} \leftarrow \frac{1}{k+1} \sum_{i=1}^{k} \widehat{g}_{t+1-i}$
 - $x_{t+1} \leftarrow \operatorname{argmin}_{x \in \mathbb{R}^d} \eta(\bar{g}_{1:t} + \tilde{g}_{t+1})^\top x + \mathcal{R}(x)$

Analysis of BANDITFTRL-VR

Theorem (Mohri & Y., 2016)

Assume diam(\mathcal{K}) \leq D. Let \mathcal{R} be a self-concordant-barrier for \mathcal{K} , $|f_t| \leq C$, and $\|\nabla f_t\| \leq L$. Then the regret of BANDITFTRL is upper bounded as follows:

- If $(f_t)_{t=1}^T$ are Lipschitz, then $\operatorname{Reg}_T(\mathsf{BANDITFTRL-VR}) = \tilde{\mathcal{O}}(T^{\frac{11}{16}})$.
- If $(f_t)_{t=1}^T$ have Lipschitz gradients, then $\operatorname{Reg}_T(\mathsf{BANDITFTRL-VR}) = \tilde{\mathcal{O}}(T^{\frac{8}{13}}).$

Approximation: real to smoothed losses

- Relate global optimum x^* to projected optimum x_{ϵ}^* .
- Use Lipschitz property of losses to relate y_t to x_t and f_t to \hat{f}_t .

$$\begin{aligned} \operatorname{Reg}_{T}(\mathsf{BANDITFTRL-VR}) &= \mathbb{E}\left[\sum_{t=1}^{T} f_{t}(y_{t}) - f_{t}(x^{*})\right] \\ &\leq \epsilon LT + 2L\delta DT + \sum_{t=1}^{T} \mathbb{E}\left[\widehat{f}_{t}(x_{t}) - \widehat{f}(x_{\epsilon}^{*})\right]. \end{aligned}$$

Approximation: smoothed to averaged losses

$$\begin{split} & \sum_{t=1}^{T} \mathbb{E}\left[\widehat{f}_{t}(x_{t}) - \widehat{f}(x_{\epsilon}^{*})\right] = \sum_{t=1}^{T} \mathbb{E}\left[\frac{1}{k+1} \sum_{i=0}^{k} \left(\widehat{f}_{t}(x_{t}) - \widehat{f}_{t-i}(x_{t-i})\right) \right. \\ & + \frac{1}{k+1} \sum_{i=0}^{k} \left(\widehat{f}_{t-i}(x_{t-i}) - \overline{f}_{t}(x_{\epsilon}^{*})\right) + \frac{1}{k+1} \sum_{i=0}^{k} \left(\overline{f}_{t}(x_{\epsilon}^{*}) - \widehat{f}_{t}(x_{\epsilon}^{*})\right)\right] \\ & \leq \frac{Ck}{2} + LT \sup_{\substack{t \in [1, T] \\ i \in [0, k \wedge t]}} \mathbb{E}\left[\|x_{t-i} - x_{t}\|_{2}\right] + \sum_{t=1}^{T} \mathbb{E}\left[\overline{g}_{t}^{\top}(x_{t} - x_{\epsilon}^{*})\right]. \end{split}$$

FTRL analysis on averaged gradients with re-centering:

$$\sum_{t=1}^T \mathbb{E}\left[\bar{g}_t^\top(x_t - x_{\epsilon}^*)\right] \leq \frac{2C^2d^2\eta T}{\delta^2(k+1)^2} + \frac{1}{\eta}\mathcal{R}(x_{\epsilon}^*).$$

Cumulative analysis:

$$\begin{aligned} \operatorname{Reg}_{T}(\mathsf{BANDITFTRL-VR}) & \leq \epsilon LT + 2L\delta DT + \frac{Ck}{2} + \frac{2C^{2}d^{2}\eta T}{\delta^{2}(k+1)^{2}} + \frac{1}{\eta}\mathcal{R}(x_{\epsilon}^{*}) \\ & + LT \sup_{\substack{t \in [1,T] \\ i \in [0,k \wedge t]}} \mathbb{E}\left[\|x_{t-i} - x_{t}\|_{2}\right]. \end{aligned}$$

Stability estimate for the actions

- Want to bound: $\sup_{\substack{t \in [1,T] \\ i \in [0,k \wedge t]}} \mathbb{E}\left[\|x_{t-i} x_t\|_2\right].$
- Fact: Let *D* be the diameter of \mathcal{K} . For any $x \in \mathcal{K}$ and $z \in \mathbb{R}^d$,

$$D^{-1}\|z\|_{x,*} \leq \|z\|_2 \leq D\|z\|_x.$$

By triangle inequality and equivalence of norms,

$$\mathbb{E}[\|X_{t-i} - X_t\|_2] \leq \sum_{s=t-i}^{t-1} \mathbb{E}[\|X_s - X_{s+1}\|_2]$$

$$\leq D \sum_{s=t-i}^{t-1} \mathbb{E}\left[\|x_s - x_{s+1}\|_{x_s}\right] \leq D \sum_{s=t-i}^{t-1} 2\eta \mathbb{E}\left[\|\bar{g}_s + \tilde{g}_{s+1} - \tilde{g}_s\|_{x_{s,*}}\right].$$

•
$$\bar{g}_s + \tilde{g}_{s+1} - \tilde{g}_s = \frac{1}{k+1} \sum_{i=0}^k \widehat{g}_{s-i} + \frac{1}{k+1} \widehat{g}_s$$

Thus,

$$\mathbb{E}\left[\|\bar{g}_{s} + \tilde{g}_{s+1} - \tilde{g}_{s}\|_{\chi_{s,*}}^{2}\right] \\
\leq \frac{3}{k^{2}} \left\|\sum_{i=0}^{k-1} \mathbb{E}_{s-i}\left[\widehat{g}_{s-i}\right]\right\|_{\chi_{s,*}}^{2} + \frac{3}{k^{2}} \mathbb{E}\left[\left\|\sum_{i=0}^{k-1} \widehat{g}_{s-i} - \mathbb{E}_{s-i}\left[\widehat{g}_{s-i}\right]\right\|_{\chi_{s,*}}^{2}\right] + \frac{3}{k^{2}} L \\
\leq \frac{3}{k^{2}} L + 2D^{2}L^{2} + \frac{3}{k^{2}} \mathbb{E}\left[\left\|\sum_{i=0}^{k-1} \widehat{g}_{s-i} - \mathbb{E}_{s-i}\left[\widehat{g}_{s-i}\right]\right\|_{\chi_{s,*}}^{2}\right].$$

• Fact: $\forall 0 \le i \le k$ such that $t - i \ge 1$,

$$\frac{1}{2}\|z\|_{X_{t-i},*} \leq \|z\|_{X_t,*} \leq 2\|z\|_{X_{t-i},*}.$$

Because the terms in the sum make up martingale difference,

$$\mathbb{E}\left[\left\|\sum_{i=0}^{k-1} \widehat{g}_{s-i} - \mathbb{E}_{s-i}[\widehat{g}_{s-i}]\right\|_{x_{s},*}^{2}\right] \leq 4\mathbb{E}\left[\left\|\sum_{i=0}^{k-1} \widehat{g}_{s-i} - \mathbb{E}_{s-i}[\widehat{g}_{s-i}]\right\|_{x_{s-k},*}^{2}\right] \\
\leq 4\sum_{i=0}^{k-1} \mathbb{E}\left[\left\|\widehat{g}_{s-i} - \mathbb{E}_{s-i}[\widehat{g}_{s-i}]\right\|_{x_{s-k},*}^{2}\right] \\
\leq 16\sum_{i=0}^{k-1} \mathbb{E}\left[\left\|\widehat{g}_{s-i} - \mathbb{E}_{s-i}[\widehat{g}_{s-i}]\right\|_{x_{s-i},*}^{2}\right] \\
\leq 16\sum_{i=0}^{k-1} \mathbb{E}\left[\left\|\widehat{g}_{s-i}\right\|_{x_{s-i},*}^{2}\right] \leq 16\sum_{i=0}^{k-1} \frac{C^{2}d^{2}}{\delta^{2}} = 16k\frac{C^{2}d^{2}}{\delta^{2}}.$$

By combining the components of the stability estimate,

$$\mathbb{E}\left[\|x_{t-i} - x_t\|_2\right] \leq 2\eta D \sum_{s=t-i}^{t-1} \sqrt{\frac{3}{k^2}L + 2D^2L^2 + \frac{3}{k^2}16k\frac{C^2d^2}{\delta^2}}.$$

By the previous calculations,

$$\begin{split} \operatorname{Reg}_{\mathcal{T}}(\mathsf{BANDITFTRL-VR}) & \leq \epsilon LT + 2L\delta DT + \frac{Ck}{2} + \frac{2C^2d^2\eta T}{\delta^2(k+1)^2} \\ & + \frac{1}{\eta}\log(1/\epsilon) + LTD2\eta k\sqrt{\frac{3}{k^2}L + 2D^2L^2 + \frac{48}{k^2}\frac{C^2d^2}{\delta^2}}. \end{split}$$

• Now set $\eta = T^{-11/16} d^{-3/8}$, $\delta = T^{-5/16} d^{3/8}$, $k = T^{1/8} d^{1/4}$.

Discussion of BANDITFTRL-VR regret: Lipschitz gradient case

- Approximation of real to smoothed losses incurs a $\delta^2 D^2 T$ penalty instead of δDT .
- Rest of analysis also leads to some changes in constants.
- General regret bound:

$$\begin{split} \operatorname{Reg}_{T}(\mathsf{BANDITFTRL\text{-}VR}) & \leq \epsilon LT + H\delta^{2}D^{2}T + Ck + \frac{2C^{2}d^{2}\eta T}{\delta^{2}(k+1)^{2}} \\ & + \frac{1}{\eta}\log(1/\epsilon) + (TL + DHT)2\eta kD\sqrt{\frac{3}{k^{2}}L + 2D^{2}L^{2} + \frac{48}{k^{2}}\frac{C^{2}d^{2}}{\delta^{2}}}. \end{split}$$

• Now set $\eta = T^{-8/13}d^{-5/6}$, $\delta = T^{-5/26}d^{1/3}$, $k = T^{1/13}d^{5/3}$.

Table of Contents

- Bandit Convex Optimization (BCO)
- Projection Methods
- Barrier Methods
- Variance reduction
- Other methods
- 6 Conclusion

Other BCO methods

Strongly convex loss functions:

- Augment \mathcal{R} in BANDITFTRL with additional regularization.
- $C^{0,1}$ [Agarawal et al, 2010]: $\mathcal{O}(T^{2/3})$ regret
- $C^{1,1}$ [Hazan & Levy, 2014]: $\mathcal{O}(T^{1/2})$ regret

Other types of algorithms:

- Ellipsoid method-based algorithm [Hazan and Li, 2016]: $\mathcal{O}(2^{q^4} \log(T)^{2d} T^{1/2})$.
- Kernel-based algorithm [Bubeck et al, 2017]: $\mathcal{O}(d^{9.5}T^{1/2})$

Table of Contents

- Bandit Convex Optimization (BCO)
- Projection Methods
- Barrier Methods
- Variance reduction
- Other methods
- 6 Conclusion

Conclusion

- BCO is a flexible framework for modeling learning problems with sequential data and very limited feedback.
- BCO generalizes many existing models of online learning and optimization.
- State-of-the-art algorithms leverage techniques from online convex optimization and interior-point methods.
- "Efficient" algorithms obtaining optimal guarantees in $\mathcal{C}^{0,1}$, $\mathcal{C}^{1,1}$ cases are still open.