Módulo 4 : Técnicas computacionales avanzadas para modelar fenómenos sociales Concentración en Economía Aplicada y Ciencia de Datos ITESM

2 de noviembre de 2022

- El algoritmo Particle Swarm Optimization (PSO) fue desarrollado por Kennedy and Eberhart (1995) y es reconocido como uno de los algoritmos de swarm intelligence más utilizados por su sencillez y flexibilidad.
- No utiliza operadores genéticos, como cruza y mutación.
- No necesita codificar ni decodificar las variables de decisión.

Swarm Intelligence

La inteligencia de enjambre se basa en el comportamiento emergente de muchos individuos para resolver, en colectivo, problemas difíciles .

(a) Bandada de aves

(b) Cardumen de peces

Swarm Intelligence

Craig Reynolds desarrolló en 1987 un simulador para comprender los atributos del comportamiento emergente en bandadas de aves. A partir de la observación de estas, infirió las siguientes reglas:

- **Alignment**: los individuos siguen el rumbo promedio de sus vecinos para seguir una dirección similar a la del grupo.
- **Cohesion**: Un individuo debe moverse hacia la posición promedio de sus vecinos para mantener la formación del grupo.
- **Separation**: Un individuo debe evitar amontonarse o chocar con sus vecinos para asegurarse de que los individuos no colisionen, interrumpiendo al grupo.

Swarm Intelligence

Figure 7.2 Rules that guide a swarm

Figura: Tomado de Hurbans (2020)

PSO involucra a un grupo de individuos en diferentes puntos del espacio de búsqueda, cada uno guiado por principios de acción colectiva de la vida natural para encontrar una solución óptima.

Figure 7.3 A bee swarm converging on its goal

Figura: Tomado de Hurbans (2020)

- PSO explora el espacio de búsqueda de una función objetivo al ajustar las trayectorias de agentes individuales, partículas.
- El movimiento de las partículas consiste en dos mecanismos: uno estocástico y otro determinístico.
- Cada partícula es atraída hacia la posición del mejor global hasta el momento, \mathbf{g}^* , y su propia mejor ubicación \mathbf{x}_i^* , mientras que al mismo tiempo tiene una tendencia a moverse de forma aleatoria.

7 / 13

TESM) 2 de noviembre de 2022

- Cuando una partícula encuentra una ubicación que es mejor que cualquiera encontrada previamente, PSO actualiza la ubicación como la nueva mejor hasta el momento para la partícula *i*.
- Durante las iteraciones, hay una mejor ubicación para todas las n partículas.
- El objetivo de PSO es encontrar la mejor ubicación global entre todas las mejores soluciones individuales hasta que se cumpla el criterio de terminación.

Figure 7.22 The intuition of the factors influencing velocity updates

Figura: Tomado de Hurbans (2020)

Algoritmo PSO (Yang, 2020)

Algorithm 1: pso

```
Input: Función objetivo f(x) Output: Óptima o mejor solución
```

Inicializar ubicaciones \mathbf{x}_i y velocidades \mathbf{v}_i de n particulas

Encontrar \mathbf{g}^* de mín $\{f(\mathbf{x}_1),\ldots,f(\mathbf{x}_n)\}$ en t=0

while t < Generaciones **do**

for each partícula do

Genera nueva velocidad \mathbf{v}_{i}^{t+1} usando la ecuación:

$$\mathbf{v}_{i}^{t+1} = \mathbf{v}_{i}^{t} + \alpha \epsilon_{1} [\mathbf{g}^{*} - \mathbf{x}_{i}^{t}] + \beta \epsilon_{2} [\mathbf{x}_{i}^{*(t)} - \mathbf{x}_{i}^{t}]$$
 Calcula la nueva ubicación $\mathbf{x}_{i}^{t+1} = \mathbf{x}_{i}^{t} + \mathbf{v}_{i}^{t+1}$

Evalúa la función objetivo en la nueva ubicación \mathbf{x}_{i}^{t+1}

Encuentra el actual mejor para cada partícula x;

end for

Encuentra el actual mejor global g*

Actualiza t = t + 1

end while

4日 → 4周 → 4 章 → 4 章 → 1 ● 9 Q (

(ITESM)

10 / 13

Sean \mathbf{x}_i y \mathbf{v}_i los vectores de posición y velocidad para la partícula i, respectivamente. El vector de velocidad se actualiza con la siguiente fórmula:

$$\mathbf{v}_i^{t+1} = \mathbf{v}_i^t + \alpha \epsilon_1 [\mathbf{g}^* - \mathbf{x}_i^t] + \beta \epsilon_2 [\mathbf{x}_i^{*(t)} - \mathbf{x}_i^t]$$
 (1)

donde ϵ_1 y ϵ_2 son vectores aleatorios, distribuidos de forma uniforme entre 0 y 1.

Los parámetros α y β son parámetros de aprendizaje o constantes de aceleración.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

11 / 13

(ITESM) 2 de noviembre de 2022

La velocidad inicial de una partícula puede ser determinada como cero, esto es, $\mathbf{v}_i^{t=0} = 0$. La nueva posición se actualiza con la siguiente expresión:

$$\mathbf{x}_{i}^{t+1} = \mathbf{x}_{i}^{t} + \mathbf{v}_{i}^{t+1} \Delta t \tag{2}$$

donde Δt es el incremento de tiempo.

Aunque \mathbf{v}_i puede tomar cuaquier valores, usualmente está acotado por algún rango $[0, \mathbf{v}_{max}]$

< ロト < 個 ト < 重 ト < 重 ト 三 重 ・ の Q @

TESM) 2 de noviembre de 2022 12 / 13

References I

- Hurbans, R. (2020). *Grokking Artificial Intelligence Algorithms*. Manning Publications.
- Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization. In *Proceedings of ICNN'95-international conference on neural networks*, volume 4, pages 1942–1948. IEEE.
- Yang, X.-S. (2020). *Nature-inspired optimization algorithms*. Academic Press.