

NALANDA **නාලන්දා විදහලය - කොළඹ 10** DA

චීකක පරීක්ෂණ වනපෘතිය

LALAYA

11 ශුේණිය

විදනාව

ඒකකය : 06 මානව දේහ කුියාවලි

කෙටි පුශ්න

(1) මානව ආහාර ජීර්ණ පද්ධතියේ කොටස් හා කාර්යයන් කිහිපයක් පහත දක්වේ. එහි කොටස් හා කාර්යය ඇතුළත් නිවැරදි වරණය තෝරන්න.

කොටස කාර්හය

 ${
m A}$ – අක්මාව පෝටීන පොලිපෙප්ටයිඩ වලට පරිවර්තනය කිරීම.

 ${f C}-$ අන්තසෝතය කාබෝහයිඩේට් ජීර්ණය ආරම්භ කිරීම.

 $\mathrm{D}-$ ආමාශය ලිපිඩ ජීර්ණය ආරම්භ කිරීම.

- (2) පුාශ්වාස කුියාවලියේදී,
 - 1) අන්තර් පර්ශුක පේශි සංකෝචනය වීම හා මහා පුාචීරයේ පේශි ඉහිල් වීම.
 - 2) අන්තර් පර්ශුක පේශි ඉහිල් වීම හා මහා පුාචීරයේ පේශි ඉහිල් වීම.
 - 3) අන්තර් පර්ශුක පේශි සංකෝචනය වීම හා මහා පුාචීරයේ පේශි සංකෝචනය වීම.
 - 4) අන්තර් පර්ශුක පේශි ඉහිල් වීම හා මහා පුාචීරයේ පේශි සංකෝචනය වීම.
- (3) බෝමන් පුාවරණය තුළින් පුතිශෝෂණය වන දුවා අඩංගු පිළිතුර වන්නේ,
 - 1) ඇමයිනෝ අම්ල, ඛණිජ හා ග්ලුකෝස්
- 2) ග්ලුකෝස්, ඇමයිනෝ අම්ල හා යූරියා

3) යුරියා, විටමින් හා ඛණිජ

- 4) ග්ලුකෝස්, ඇමයිනෝ අම්ල හා විටමින්
- (4) මිනිසෙකු අනතුරකට ලක්වූ පසු ඔහුගේ හිස හානියට ලක්වීය. ඔහුට සිට ගැනීමට පුළුවන් වූවද මනා ලෙස කෙලින් ඇවිදීමට නොහැක. මෙසේ වීමට ඔහුගේ හානි වූ මොලයේ කොටස වන්නේ,
 - 1) මස්තිෂ්කය

2) අනු මස්තිෂ්කය

3) සුෂුම්නා ශීර්ෂකය

- 4) පිටියුටරි ගුන්ථිය
- (5) දී ඇති හෝමෝන සඳහා වැරදි කාර්ෂය අඩංගු වරණය වන්නේ,
 - 1) ඇඩුනලින් හදිසි අවස්ථාවකදී කිුයා කිරීමට දේහය සූදානම් කිරීම.
 - 2) ග්ලුකගොන් රුධිරයේ ග්ලුකෝස් මට්ටම
 - 3) වර්ධක හෝමෝනය දේහ වර්ධනය
 - 4) තයිරොක්සින් දේහයේ පරිවෘත්තිය කිුයා පාලනය
- (6) වෘක්කාණුවක අභිවාහි ධමනිකාව සැදී ඇත්තේ,
 - 1) වෘක්කීය ශිරාව

2) සංස්ථානික මහා ධමනිය

3) වෘක්කීය ධමනිය

4) උත්තර මහා ශිරාව

- (7) අපිරිසිදු වාතය අසුහනය නිසා ඇතිවන රෝගාබාධයකි.
 - 1) ශ්වාසනාලිකා පුදාහය
 - 2) හෙපටයිටිස්
 - 3) ගැස්ටුයිටිස්
 - 4) ඇමීබා අතීසාරය
- (8) පහත දක්වා ඇති රුධිර නාලිකා ආශුයෙන් වැරදි වරණය වන්නේ,
 - 1) C ට වඩා D හි ඔක්සිජන් සාන්දුණය වැඩිය.
 - 2) D ට වඩා A හා B ඔක්සිජන් සාන්දුණය වැඩිය.
 - 3) E ට වඩා C හි CO_2 සාන්දුණය වැඩිය.
 - 4) D හා E හි ඔක්සිජන් මිශු රුධිරය ඇත.

(9) x, y හා z \circ අදාල යූරියා සාන්දුණය ලියන්න.

X	у	Z
වැඩි	අඩු	අඩු
වැඩි	අඩු	වැඩි
අඩු	වැඩි	වැඩි
අඩු	වැඩි	අඩු

- (10) ලැක්ටික් අම්ලය නිපදවන්නේ,
 - 1) සත්ත්ව සෛලයක ස්වායු ශ්වසනයේදීය.
 - 2) ශාක භෛලයක නිර්වායු ශ්වසනයේදීය.
 - 3) ශාක මෛලයක සවායු ශ්වසනයේදීය.
 - 4) සත්ත්ව සෛලයක නිර්වායු ශ්වසනයේදීය.

වපුහගත රචනා

(1)	පහතින් දක්වා ඇත්තේ ආහාර ජීර්ණ පද්ධතියේ කොටසකි.	
	i) A හා B කොටස් නම් කරන්න.	
	A – අක්මාව	: • ආමාශය
	B –	
	අග්නාාශය	
	m ii)~~B ස්ථානයට ළඟා වන ආහාර ආම්ලිකද, භාෂ්මිකද, උදාසීනද යන වග සඳහන් කරන්	ත.

iii) ii) හි පවසන ලද ආකාරයට ආහාර සැකසෙන්නට හේතුව කුමක්ද?

iv) ආහාර ජීර්ණ කිුයාවලියේ දී ආමාශයෙහි කාර්යයක් සඳහන් කරන්න.
v) පහත දක්වා ඇති ආහාර ජීර්ණය ආරම්භ කරන ස්ථානය ලියන්න.
a) ලෝටීන
b) ලිපිඩ
c) පිෂ්ඨය
මිනිසාගේ ආශ්වාස කිුයාවලියට අදාල රූප සටහන් කිහිපයක් පහත දක්වේ.
A B X Y O'D
i) A, B, C, D නම් කරන්න.
A – B –
C – D –
ii) A,B හා C හා සම්බන්ධ පටක නම් කරන්න.
iii) X හා Y හි රුධිර සාන්දුණ අතර වෙනස්කම් දක්වන්න.
iv) ඵලදායී වායු හුවමාරුවක් සඳහා ගර්ත වල ඇති ලක්ෂණ 2 ක් ලියන්න.
තැලමස, හයිපොතැලමස, මස්තිෂ්කය, අනුමස්තිෂ්කය, සුෂුම්නා ශීර්ෂකය යනු මොළයේ කොටෑ කිහිපයකි.
 i) ඉහත දක්වා ඇති කොටස් අතරින් මිනිස් සිරුරේ උෂ්ණත්ව යාමනය සඳහා වැදගත් වන කොටස නම් කරන්න.
ii) පහත දක්වා ඇති කාර්ෂයන් ඉටුකරන කොටස් නම් කරන්න.
a) බුද්ධිය වැනි මානසික කියා පාලනය කිරීම
b) හෘත් ස්පන්දන වේගය පාලනය.
c) ශ්වසන කිුයාවලිය පාලනය. d) පේශි චලනය සමායෝජනය කිරීම.
a) පෙශ චලනය සමායොපනය කරම. e) පේශි චලනය පාලනය කිරීම.
f) සංඛ්දනාවන් හඳුනා ගැනීම

- iii) පුතිකියා සිදුවන්නේ මොළය හා සුෂුම්නාව ආශිතවය.
 - a) ක්ෂණික පුතිකියා සඳහා ඉවහල් වන්නේ කුමන අවයවයද?

.....

- b) පහතින් දක්වා ඇති පුතික කිුයාවන් ඇතිකරන්නේ කුමන අවයවයේ ද?
 - i) අඩු හා වැඩි ආලෝක ධාරාවන් නිසා ඇමස්
 - ii) රත් වූ යමක් අත ගැටුණු විට අත වහා ඉවතට ගැනීම.

රචනා පුශ්න

(1) මානව රුධිරය ද්විත්ව රුධිර සංසරණයට අදාල රූප සටහනක් පහත දැක්වේ.

- i) ද්විත්ව රුධිර සංසරණය යනු කුමක් ද?
- ii) A සිට H දක්වා නම් කරන්න.
- iii) ඔක්සිජන් මිශු නොවූ රුධිරය "H" නාලිකාව හරහා පෙනහලු තුලට ගමන් කරයි. සාර්ථකව රුධිරය පිරිසිදු කිරීම සඳහා පෙනහලු සෑදී ඇති ආකාරය ලියන්න.
- iv) දකුණු කෝෂිකා බිත්තිවලට වඩා වම් කෝශිකා බිත්ති ඝනකමින් වැඩි ඇයි?
- v) දී ඇති විස්තරයට අදාල පිළිතුර ලියන්න.
 - a) ඔක්සිජනීහෘත රුධිරය හිසෙහි සිට දකුණු කර්ණිකාව වෙත ගෙන යන රුධිර නාලිකාව.
- b) ඔක්සිජනීහෘත රුධිරය වකුගඩු, අක්මාව හා ආහාර ජීර්ණ පද්ධතියේ සිට දකුණු කර්ණිකාව වෙත රැගෙන යන රුධිර නාලිකාව.
- c) දකුණු කර්ණිකාවේ සිට පෙනහලු දක්වා ඔක්සිජනීහෘත රුධිරය රැගෙන යන රුධිර නාලිකාව.
- d) වම් කර්ණිකාව හා වම් කෝෂිකාව වෙන් කරන කපාටය කුමක්ද?
- vi) හෘදයේ කාර්යයනට බාධා පමුණුවන රෝග 3 ක් ලියන්න.
- vii)හෘද ස්පන්ධනය යනු කුමක්ද?
- viii) කෙටියෙන් පහදන්න.
 - a) පුෂ්ඵුශීය රුධිර සංසරණය
 - b) සංස්ථානික රුධිර සංසරණය

- (2) පරිවෘත්තීය කුියාවලදී නිපදවන නිෂ්පුයෝජන දුවා සිරුරෙන් බැහැර කිරීම බහිසුාවය ලෙස හැඳින්වේ.
 - i) මෙම ආකෘතිය හඳුන්වන්නේ කුමන නමකින් ද?
 - ii) A සිට F දක්වා හඳුන්වන්න.
 - iii) වෘක්කයට ඔක්සිජනීකෘත රුධිරය රැගෙන යන්නේ කුමන රුධිර නාලිකාවෙන් ද?
 - iv) U හැඩැති කොටස හඳුන්වන්නේ කෙසේද? (පුඩුවක් ලෙස ඇති කොටස)
 - v) පෙරණය සමඟ පැමිණෙන ග්ලූකෝස්, ඇමයිනෝ අම්ලවලට මෙම අවයවයට ඇතුළු වූ පසු කුමක් වන්නේ ද?
 - vi) ගුච්ඡිකාව හරහා ගමන් කළ නොහැකි දුවායෙන් 2 ක් ලියන්න.
 - vii) ශරීරයේ ඇති පුධාන නයිටුජන් අඩංගු බහිසුාවී දුවා කුමක් ද?
 - viii) මානව බහිසුාවී පද්ධතියේ නම් කරන ලද රූප සටිහනක් අඳින්න.
 - ix) ශරීරයේ ඇති පුධාන බහිසුාවී දුවා කුමක් ද?
 - x) මුතුවල සංයුතිය ලියන්න.

NALANDA **නාලන්දා විදහලය - කොළඹ 10** DA

ඒකක පරීක්ෂණ වනපෘතිය

LALAYA

1 2 770 1

11 ශේණිය

විදනව

ඒකකය : 07 අම්ල, තෂ්ම, ලවණ

කෙටි පුශ්න

(1)	විතාකිරි දුාවණ සඳහා 1) රතු	ලිට්මස් කඩදාසියේ වර්ළ 2) නිල්	ශිය කුමක්ද? 3) අවර්ණ	4) තැඹිලි
(2)	අම්ල පුබලතාවය වැඩි 1) CH ₃ COOH, HCl, N 2) NH ₄ OH, HCl, CH ₃ 3) NH ₄ OH, CH ₃ COO 4) NaOH, Mg(OH) ₂ ,	NH ₄ OH ₃ COOH ₃ H, HCl		
(3)	pH අගය 7 විය හැක්මෙ	ක් පහත සඳහන් කුමන	දුාවණය ද?	
	1) විනාකිරි	2) සබන් දුාවණය	-	4) ආසුැත ජලය
(4)	පිනොප්තලීන් අවර්ණ 1) HCl	වන්නේ කුමන දුාවණයෙ 2) NaOH	ईंदै ६? 3) H ₂ CO ₃	4) NaCl
(5)	උදාසීන කරන පුතිකිය 1) Mg _(s) + 2HCl _(aq) 2) 2NaOH _(aq) + 2HCl 3) CaCl _(aq) + Na ₂ CO ₂	$\begin{array}{ccc} & \rightarrow & MgCl_2 \\ & \rightarrow & 2NaCl \end{array}$	$H_{2(aq)} + H_{2(g)}$ + $2H_2O_{(l)}$ $H_{3(aq)} + 2NaCl$	
(6)	අම්ලයක් හා භෂ්මයක් 1) ලවණයක් හා ජලය 3) ක්ෂාරයක් හා ලවණ	පුතිකියා කර යක්	හා සාදයි. 2) ඔක්සිජන් හා ජලය 4) ලවණයක් හා H ⁺ අ	යන
(7)	•	අයන මුදා හරින රසායද් 2) භෂ්මය		4) ලවණ
(8)	ඇසිටික් අම්ලයේ කාර් 1) රබර් කිරි මුදවීම 3) සබන් නිපදවීම	යයක් නොවන්නේ,	2) ආහාර සැකසීම (විත4) කඩදාසි නිපදවීම.	තාකිරි)

1) H₂CO₃

1) දෙහි යුෂ

(9)

(10)

2) CH₃COOH

පහත දක්වා ඇති දුවා අතරින් අම්ලයක් නොවන්නේ,

2) විනාකිරි

3) H₃PO₄

4) $C_6H_{12}O_6$

3) මිල්ක් ඔෆ් මැග්නීසියම් 4) විටමින් C

වපුහගත	රචනා
--------	------

(1)	a)	i)			දී ඇති පුතිකාර		කිහිපයක් ලබ	ා දී ඇත. ඒ	වා අම්ලයක් ද
			-	_	යන්න හඳුනාග	ත්ත.			
			• NaCl ₃						
			• CH ₃ CO						
			• NaOH						
			• H ₂ CO ₃						
			• NH ₄ O	Н –					
			 KOH 	_					
			• HCl	_					
			• H ₂ SO ₄	. –					
			•						
		ii)	ඒවා අතරින	ත් දුබල අම්ල	තෝරා ලියන්න.				
		iii)	දුබල අම්ල	යක් යනු කුම%	ත් ද?				
			•••••			••••••		•••••	
		iv)	දුබල අම්ල	සඳහා උදාහර	රණ 3 ක් ලබා ෙ	ඳන්න.			
	b)	i)	ක්ෂාර ලෝ	හියක් ලෙස හ	ාැඳින්වෙන්නේ :	කුමක්ද?			
		ii)	ඒ සඳහා උ	දාහරණ 2 ක්	ලියන්න.				
(2)	1)	විද	ාහාගාරයේ බ	ඳුන් කිහිපයක	ඇති A, B, C, 1	D, E දුාවණ	කිහිපයක pH	අගයන් පහ	ත දක්වේ.
			දුාවණය	A	В	С	D	Е	
			pH අගය	2.4 - 3.2	12.1 – 13.4	7	3.5 - 6.5	8.5 - 9.8	
		a)	i) මේ අත	බරින් වඩාත්ම -	ආම්ලික දුාවණා	ය කුමක් ද?			
	ii) වඩාත්ම භාෂ්මික දාවණ කුමක්ද?								

	b) :	i) රතු පැහැ (ලිට්මස් කඩදාසි නිල් පැහැයට හරවන දාවණ මොනවා ද?
		 ii) පීනොප්ත(ිීන් රෝස පැහැ වන්නේ කුමන දාවණය ද?
			D, E යන දාවණ බඳුන් වලින් එක් බඳුනක ඇත්තේ ආසුැත ජලය නම් එම ක් විය හැකි ද?
2)	රතු	හා නිල් ලිට්මේ	ස් පතු 2 ක් විතාකිරි දුාවණයක ගිල්ලූ විට ඇතිවන වර්ණ විපර්යාසය ලියන්න.
	i)	රතු ලිට්මස්	
	ii)	නිල් ලිට්මස්	

රචනා පුශ්න

- (1) a) ගැස්ටුයිටිස් රෝගයෙන් පෙලෙන රෝගියෙක් හට පුතිකාර සඳහා මිල්ක් ඔෆ් මැග්නීසියා යොදා ගන්නා ලදී. ඔහු මෙයින් සුවය ලද අතර ඒ පිළිබඳ 11 ශේණියේ සිසුන් පිරිසක් සමඟ සාකච්ඡා කල අතර එම සිසුන් එය විදහාව විෂය හා සම්බන්ධ කර ගන්නා ලදී.
 - i) ඉහත සඳහන් සංසිද්ධිය සඳහා මිල්ක් ඔෆ් මැග්නීසියා යොදා ගැනීමට හේතු සඳහන් කරන්න.
 - ii) මෙහිදී ඇති වූ පුතිකිුයාව කුමන වර්ගයට අයත් ද?
 - iii) ගැස්ටුික් යුෂ හා මිල්ක් ඔෆ් මැග්නීසියා අයත් කාණ්ඩ එකිනෙකට පුතිකිුයා කළ විට සෑදෙන ඵල මොනවා ද?
 - b) i) $HCl_{(aq)}$ හා $NaOH_{(aq)}$ අතර තුලිත පුතිකිුයාව ලියන්න.
 - ii) ඉහත පුතිකිුයාවේදී සැදෙන ලවණය නම් කර එහි පුයෝජන 2 ක් ලියන්න.
- (2) පහතින් දක්වා ඇත්තේ විදහාගාරයේ දී මිශුණ කිහිපයක් සැකසීම සම්බන්ධවයි.
 - a) තනුක අම්ලයක් තනා ගන්නේ කෙසේද?
 - b) i) විදහාගාරයේදී ලවණයක් සාදාගන්නේ කෙසේද?
 - ii) NaCl ලවණය සාදාගන්නේ කෙසේද?
 - iii) NaCl ලවණයේ ඇති පුයෝජන 2 ක් සඳහන් කරන්න.
 - c) උදාසීනකරණය යනු කුමක් ද?
 - d) i) භෂ්මයක් යනු කුමක් ද?
 - ii) භෂ්ම 2 ක් නම් කර ඒවායෙහි රසායනික සූතු ලියන්න.
 - iii) ඉහත ii) හි සඳහන් කර ඇති එක් භෂ්මයක අයනීකරණ පුතිකිුයාව ලියන්න.

nalanda **නාලන්දා විදහාලය - කොළඹ 10** alanda VIDYALAYA

චීකක පරීක්ෂණ වනපෘතිය

11 ශේුණිය විදනව

ඒකකය : 08

රසායනික පුතිකියා ආශිත තාප විපර්යාස.

කෙටි පුශ්න

(1) යෙදිය යුතු වරණ තෝරන්න.

$$NaOH_{(\)} + Hcl_{(aq)} \longrightarrow NaCl_{(\)} + H_2O_{(\)}$$

- i) aq, aq, aq
- ii) aq, s, *l*
- iii) s, aq, l iv) aq, aq, l
- (2) ඉහත පුතිකිුයාව අයත් වන්නේ,
 - i) තාපදායක පුතිකියා

ii) උදාසීනකරණ පුතිකිුයා

iii) සංශ්ලේෂණ පුතිකියා

- iv) ද්විත්ව විස්තාපනය
- (3) තාපාවශෝෂක පුතිකියාවට අදාල ශක්ති මට්ටම් සටහන වන්නේ,

ජලය $500~\mathrm{g}$ ක උෂ්ණත්වය $32~\mathrm{^{\circ}C}$ සිට $47~\mathrm{^{\circ}C}$ දක්වා වැඩි කිරීමට අවශා ශක්තිය J වලින් (4) ගැනෙන්නේ,

(ජලයේ විශිෂ්ට තාප ධාරිතාව = $4200 \mathrm{Jkg}^{-1}\mathrm{C}^{-1}$)

i) $500 \times 4200 \times 15$

ii) $\frac{500}{1000} \times 4200 \times 15$

iii) $\frac{500}{1000} \times 4200 \times 32$

- iv) $\frac{500}{1000} \times 4200 \times 47$
- (5) තාපදායක පුතිකිුයාවට අදාල නිවැරදි වරණය වන්නේ,
 - i) පුතිකියකවල ශක්තියට වඩා ඵලවල ශක්තිය වැඩිය.
 - ii) පුතිකියකවලට වඩා ඵලවලට අඩු ශක්තියක් ඇත.
 - iii) ජරිසරයෙන් ශක්තිය අවශෝෂණය කරයි.
 - iv) ග්ලුකෝස් ජලයේ දියවීම තාපදායක පුතිකියාවකි.

- (6) දී ඇති ශක්ති මට්ටම් සටහන විස්තර කරන පුතිකිුිිිියාව වන්නේ,
 - i) CuSO4 ස්ඵටික ජලයේ දිය කිරීම.
 - ii) CuSO4 දාවණයකට Mg කැබැල්ලක් දමීම.
 - iii) ජලයට NH4Cl දාවණයක් එක් කිරීම.
 - iv) ග්ලුකෝස් ජලයේ දිය කිරීම.

- (7) රසායනික පුතිකියා ආශිත වගන්ති කිහිපයක් පහත දක්වේ.
 - A o තාපදායක පුතිකිුයාවක පුතිකිුයකවල ශක්තියට වඩා ඵලවල ශක්තිය අඩුය.
 - m B
 ightarrow තාප අවශෝෂක පුතිකිුයාවක ඵලවල ශක්තියට වඩා පුතිකිුයකවල ශක්තිය අඩුය.
 - m C
 ightarrow තාප අවශෝෂක පුතිකිුයාවක පුතිකිුයක ශක්තියට වඩා ඵලවල ශක්තිය වැඩිය.

මින් නිවැරදි පිළිතුර වන්නේ,

A	В	С
√	×	✓
×	✓	√
×	✓	×
✓	✓	✓

- (8) දී ඇති වගන්ති අතුරින් නිවැරදි වගන්තිය තොරන්න.
 - i) යම් කිසි දුවායක තාප ධාරිතාව ස්කන්ධය මත රඳා නොපවතී.
 - ii) උෂ්ණත්වයේ අන්තර්ජාතික සම්මත ඒකකය ෆැරන්හයිට් (f) ය.
 - iii) සියලුම අලෝහ තාප සන්නයනය නොකරයි.
 - iv) ශීතකරණයේ පිටුපස ඇති කළු පැහැ ගන්වන ලද බට තාප විකිරණය මඟින් ඇතිවන තාපය ඉවත් කරයි.

වපුහගත රචනා

(1) පහත රූප සටහන් දෙකෙන් දක්වා ඇත්තේ 11 ශේණීයේ සිසුන් පිරිසක් විසින් බැලුම් බෝලයක් තුළට හයිඩුජන් හා කාබන්ඩයොක්සයිඩ් වායුව පිරවීමට යොදා ගන්නා ආකාරයයි.

a)	
	බැලුන් මුදා හැරීමෙන් අනතුරුව ලබා ගැනීමට අපේක්ෂිත නිරීක්ෂණය කුමක් ද?
b)	මෙසේ නිරීක්ෂණයක් ලබා ගැනීම සඳහා හේතුවන වායු දෙකෙහි භෞතික ලක්ෂණයන් ණෙ වෙනම ලියන්න.
	ගත ඇටවුම් 2 සඳහාම ඇත්තේ තාප දායක පුතිකිුයාය. එහෙත් A ඇටවුම ජලයේ බහා ව තර B ඇටවුම එසේ නොවේ. හේතු දක්වන්න.
 iii) තා	පදායක පුතිකිුයා සඳහා ශක්ති මට්ටම් සටහනක් ඇඳ එය නම් කරන්න.
 පහතිද	
කිරීමට	
කිරීමට	$2KOH_{(aq)} + H_2SO_{4(aq)} \longrightarrow K_2SO_{4(aq)} + 2H_2O_{(l)}$
ඉහත ව එකතු	පරීක්ෂණයේ දී තනුක $ m H_2SO_4~50~cm^3$ ක දුාවණයක් බීකරයකට ගෙන එයට ඝන $ m NaOH~2$
ඉහත ව එකතු උෂ්ණා	පරීක්ෂණයේ දී තනුක $ m H_2SO_4~50~cm^3$ ක දාවණයක් බීකරයකට ගෙන එයට ඝන $ m NaOH~2$ ද කරන ලදී. ඉන්පසු මිශුණය හොඳින් මිශු කර ගන්නා ලදී. මිශුණයේ ආරම්භක හා අව

	ii)	පහත සඳහන් පද යොදාගෙන තාප විපර්යාසය (Q) සොයන්න. m – මිශුණයේ ස්කන්ධය c – විශිෂ්ඨ තාප ධාරිතාව
		θ – උෂ්ණත්ව වෙනස
	iii)) බීකරය තුළ ඇති වූ තාප විපර්යාසය $4kJ$ වේ. KOH මවුල 1 ක් තනුක H_2SO_4 සමඟ සම්පූර්ණයෙන් පුතිකිුයා කිරීමට අවශා ශක්තිය වන්නේ,
		<u>රචනා පුශ්න</u>
(1)	a)	සෝඩියම් ලෝහය $100g$ ක් $Cl_{(g)}$ සමඟ පුතිකියා කර, $NaCl_{(s)}$ සාදනු ලබයි. එහිදී පද්ධති උෂ්ණත්වය $10\ ^{\circ}C$ වලින් වැඩි වේ. (Na විශිෂ්ට තාප ධාරිතාව $-200 \mathrm{Jkg}^{-1}C^{-1}$ වේ.) i) රසායනික පුතිකියාව ලියා දක්වන්න. ii) සිදුවූ තාප විපර්යාසය ගණනය කරන්න. iii) තාපදායක පුතිකියාවක් යනු කුමක්ද ශක්ති සටහන ආධාරයෙන් පහදන්න.
	b)	i) තාප අවශෝෂක කි්යාවලියක් යනු කුමක් ද?ii) තාප අවශෝෂක කි්යාවලිය ශක්ති මට්ටම් සටහනක් මඟින් නිරූපණය කරන්න.
(2)	a)	සෝඩියම් හයිඩොක්සයිඩ් හා HCl අතර පුතිකියාවේ තාප විපර්යාසය පරීක්ෂණාත්මකව නිර්ණය කිරීමට පරීක්ෂණයක් සිදු කර ඇත. ඒ සඳහා පහත සඳහන් උපකරණ ලබා දී ඇත. 2 moldm ⁻³ HCl, 50 cm ³ උෂ්ණත්වමානයක් 2 moldm ⁻³ NaOH, 50 cm ³ බකර 2 ක් පොලිස්ටයිරින් කෝප්පයක් වීදුරු කුරක් i) මේ සඳහා සාදාගන්නා ඇටවුමෙහි දළ සැලැස්මක් ඇඳ නම් කරන්න. ii) මෙහි අරමුණ සපුරා ගැනීම සඳහා ලබාගත යුතු මිනුම් මොනවා ද? iii) මෙහිදී වීදුරු කුරක් භාවිතා කරන්නේ ඇයි?
	b)	Q=mc heta මගින් තාප විපර්යාසය මැනිය හැකිය. i) m,c හා $ heta$ පද හඳුන්වන්න.

- ii) "Q" ගණනය කරන්න.
 - ජලයේ වී. තා. ධා. = $4200~{
 m Jkg^{-1}}{
 m o}{
 m C}^{-1}$
 - ඝනත්වය (ජලයේ) = $1 \mathrm{gcm}^3$
 - $\theta = 10 \, ^{\circ}\text{C}$
- iii) මෙම පරීක්ෂණයේ දී යොදා ගත් උපකල්පනයන් මොනවා ද?

nalanda නාලන්දා විදුහලය - කොළඹ 10 nalanda VIDYALAYA

චීකක පරීක්ෂණ වනපෘතිය

11 ශේුණිය

විදනව

ඒකකය : 09 -තාපය

කෙටි පුශ්න

තාපය සම්පේෂණය පිළිබඳ වගන්ති කිහිපයක් පහත දක්වේ. (1)

m A
ightarrow සන්නයනය යනු නිශ්චිත දිශාවකට අංශු චලනයෙන් තොරව තාප ශක්තිය සංකාමණය වීමයි.

m B
ightarrow සංවහනය යනු අංශු චලනයත් සමඟ තාපය සංකාමණය වීමයි.

 $\mathrm{C} o$ තාප විකිරණය යනු මාධානයක් තුළ අංශු ආශුමයන් තාපය සංකාමණය වීමයි.

මින් සතා වන්නේ.

1) A හා B

2) B හා C

3) A හා C

4) A, B හා C

(2) $NaOH_{(aq)} + HNO_{3(aq)} \longrightarrow NaNO_{3(aq)} + H_2O_{(l)}$

මෙම පුතිකිුයාව සඳහා $NaOH\ 8\ g$ ක් යොදා ගෙන ඇති අතර එහිදී 14kJ තාප ශක්තියක් පිටවිය.

NaOH මවුල 0.5 ක් යොදා ගත්තේ නම්, ඉන් පිටවන තාපය කොපමණ ද?

(Na - 23, O = 16, H - 1)

1) 0.7 kJ

2) 70 kJ

3) 35 kJ

4) 7 kJ

(3) $200~{
m g}$ බරැති පිත්තල තැටියක් $80~{
m ^{\circ}C}$ සිට $30~{
m ^{\circ}C}$ දක්වා සිසිල් කිරීමේදී පිටවන තාප ශක්තිය වන්නේ, (පික්තල වල විශිෂ්ට තාප ධාරිතාව $-380~{
m Jkg}^{-1}~{}^{\circ}{
m C}^{-1}$)

i) $\frac{200}{1000} \times 380 \times 80 \text{ J}$

ii) $\frac{200}{1000} \times 380 \times 50 \text{ J}$

iii) $\frac{200}{1000} \times 380 \times 30 \text{ J}$

iv) $200 \times 380 \times 50 \text{ J}$

(4) ශරීර උෂ්ණත්වය කෙල්වින් වලින් සඳහන් වී ඇත්තේ,

1) 37

2) 98

3) 273

4) 310

(5) රසදිය උෂ්ණත්වමානයක ඉතා කුඩා උෂ්ණත්ව විපර්යාසයක් නිරීක්ෂණය කිරීම සඳහා යොදා ගෙන ඇති කුමයක් වන්නේ,

1) රසදිය බල්බයේ පරිමාව අඩු කිරීමෙන්

2) ලකුණු කර ඇති පරාසයන් ඇතින් ඇත පිහිටන සේ ලකුණු කිරීම.

3) කේෂික නලයේ විශ්කම්භය අඩු කිරීම.

4) කේෂික නලය වාතයට නිරාවරණය වීමට තැබීම.

 ${
m Jkg}^{-1}~{
m K}^{-1}$ ඒකකය යොදා මනින්නේ කුමන මිනුම් ද? (6) 1) උෂ්ණත්වය 2) තාප ධාරිතාව 3) විශිෂ්ට තාප ධාරිතාව 4) ශක්තිය (7) ජලය $21~\mathrm{g}$ ක් $20\mathrm{k}$ කින් ඉහළ නැංවීමට යොදා ගත යුතු ශක්තිය වන්නේ, (ජලයේ විශිෂ්ට තාප ධාරිතාව $4200 \text{ Jkg}^{-1} \text{ K}^{-1}$) 1) 10 J 2) 40 J 3) 441 J 4) 1764 J (8) සංවහනය ඇති වන්නේ වස්තූන් වලය. 2) වායු පමණි 1) දුව පමණි 3) දුව හා වායු පමණි 4) ඝන හා දුව (9) පුභවයකින් වැඩිම තාපයක් තාප විකිරණය මඟින් පිටවන්නේ, 1) කේතලයක ජලය උණු කිරීම. 2) පාන් රාත්තලක් පිළිස්සීම. 3) උණුසුම් ජල නළ මගින් කාමරයක් උණුසුම් කිරීම. 4) විදාූත් උඳුනකින් බත් පිසීම. (10)යකඩ කුට්ටියක විශිෂ්ඨ තාප ධාරිතාව රඳා පවතින්නේ,මතය. 2) කුට්ටියේ පරිමාව 1) කුට්ටියේ ස්කන්ධය 3) කුට්ටියේ උෂ්ණත්වය 4) ඉහත කිසිවක් නැත. වපුනගත රචනා (1) නිවසක සූර්ය ශක්තිය යොදාගෙන ජලය උණුකරන ආකාරය පහත දැක්වේ. පැනලය පොම්පය කළු පැහැති ජල වැංකිය පසුබිම i) පහත දී ඇති අවස්ථා සඳහා තාප ශක්තිය සංකුමණය වන ආකාරය ලියන්න. a) සූර්ෳයාගේ සිට සූර්යය පැනලයට b) ගිල්ලුම් තාපකයේ සිට ජල ටැංකියට ii) සූර්ෳය පැනලයේ කළු පැහැ ගන්වන ලද කොටසින් ඇති වාසියක් ලියන්න. iii) ටැංකියෙන් පිටතට උණු ජලය ගැනීම සඳහා වඩාත්ම සුදුසු ''X'' නලය ද ''Y'' නලය ද?

	iv)	iv) iii) හි පිළිතුර සඳහා හේතුව ලියන්න.				
	v)	මෙම ඇටවුමේ නලය සෑදී ඇත්තේ තඹ වලිනි. ඇලුමිනියම් යොදා ගැනීම වෙනුවට තඹ යොදා ගන්නේ ඇයි?				
	vi)) විනාඩි 5 ක කාලයක් තුල ජලය $5 { m kg}$ ක් $40~{ m ^{\circ}C}$ කින් ඉහළ නංවා ඇත. ජලයේ විශිෂ්ට තාප ධාරිතාව $4200~{ m Jkg}^{-1}~{ m ^{\circ}C}^{-1}$ නමා අවශෝෂිත තාප පුමාණය ගණනය කරන්න.				
	vii)විශිෂ්ට තාප ධාරිතාව යනු කුමක් ද?				
(2)		ාත දක්වා ඇති විශිෂ්ට තාප ධාරිතා සඳහා ඇති අගයන් උපයෝගී කරගෙන දී ඇති අවස්ථා සඳහා)ශා තාප පුමාණය ගණනය කරන්න.				
	2	ජලය $-4200 \mathrm{Jkg^{-1}}^{\circ}\mathrm{C^{-1}}$ ඇලුමිනියම් $-900 \mathrm{Jkg^{-1}}^{\circ}\mathrm{C^{-1}}$ ශඹ $-390 \mathrm{Jkg^{-1}}^{\circ}\mathrm{C^{-1}}$				
	(කාන්කීට් $-850~ m Jkg^{-1}~^{\circ}C^{-1}$				
	a)	ඇලුමිනියම් 1.2 kg ක් 25 °C කින් ඉහළ නැංවීමට,				
	b)	ජලය $0.5 \mathrm{m}^3$ ක් $20~\mathrm{^oC}$ සිට $70~\mathrm{^oC}$ දක්වා ඉහළ නැංවීමට, (ඝනත්වය (ජලය) $-1000~\mathrm{kgm}^{-5}$)				
	c)	ගබඩා වී ඇති කොන්කී්ට් $50~\mathrm{kg}$ ක් $20~\mathrm{^{\circ}C}$ සිට $60~\mathrm{^{\circ}C}$ දක්වා ඉහළ නැංවීමට,				
	d)	$0.8~{ m kg}$ බරැති තඹ කේතලයක ඇති $2~{ m kg}$ ජලය $25~{ m ^{\circ}C}$ සිට තාපාංකය දක්වා ඉහළ නැංවීමට,				
	e)	දී ඇති උෂ්ණත්වයන් කෙල්වින් පරිමාණයෙන් ලියන්න.				
		i) 600 °C – ii) 37 °C –				
	f)	දී ඇති උෂ්ණත්වයන් සෙල්සියස් පරිමාණයෙන් ලියන්න.				
		iii) – 180 K –				
		iv) – 4 K –				

රචනා පුශ්න

- (1) A) i) දිනකට $250~{
 m g}$ ක් ජලය $10~{
 m ^{\circ}C}$ සිට $30~{
 m ^{\circ}C}$ දක්වා රත් කිරීම සඳහා අවශා වන පරිදි සූර්යය පැනලයක් සකස් කර ඇත. $1{
 m m}^2$ ක පැනලයක් $5~000~000~{
 m J}$ ක පුමාණයක් අවශෝෂණය කර ගනී. (ජලයේ විශිෂ්ට තාප ධාරිතාව $-4200~{
 m Jkg}^{-1}~{
 m ^{\circ}K}^{-1}$)
 - a) සෑම දිනකම ඇතිවන උෂ්ණත්ව නැග්ම ගණනය කරන්න.
 - b) සෑම දිනකම අවශෝෂණය වන තාප ශක්තිය ගණනය කරන්න.
 - c) සූර්යය පැනලය සඳහා අවශා වන වර්ගඵලය ගණනය කරන්න.
 - i) ''සූර්යය පැනලය පරිසර හිතකාමී'' යැයි කියනු ලැබේ. පරිසර හිතකාමී යන්නෙන් අදහස් කරන්නේ කුමක් ද?
 - B) උණුසුම් බීම වර්ග රික්ත ප්ලාස්කුවක ගබඩා කළ හැකිය.

මෙම රූපයෙන් දක්වා ඇත්තේ ප්ලාස්කුවක රූප සටහනක්ය.

- i) ඇතුළත් ප්ලාස්කුවේ රිදී පැහැයක් ගත්තේ ඇයි?
- ii) ඇතුලත ප්ලාස්කුව ස්ථානගත කිරීම සඳහා පොලිතීන් යොදා ගෙන ඇත. එසේ යොදා ගැනීමට හේතුව කුමක් ද?
- iii) මෙම ප්ලාස්කුව උණුසුම් ජලයෙන් පිරවූ පසු මූඩියෙන් ආවරණය කළ යුත්තේ ඇයි?
- iv) උණුසුම් දියර මෙන්ම ශීත දියර ද ශීතල ආහාරයට තබා ගත හැක. මෙසේ වීමට හේතු දක්වන්න.
- (2) කර්මාන්ත ශාලාවක හදිසි අනතුරු සංඥාවක් සඳහා දළ රූප සටහනක් පහතින් දී ඇත.
 - a) සංඥා නලාවක පිටත ආවරණය සඳහා ඉහළ දුවාංකයක් තිබීම අතාාවශාය. ඊට අමතරව තිබිය යුතු වෙනත් ගුණාංගයක් ලියන්න.

c) මෙහි දී ඇති ද්විලෝහ පටිය සෑදීම සඳහා යකඩ පටියක් හා පිත්තල පටියක් යොදා ගෙන ඇත.

- ${
 m d}$) මෙම ද්විලෝහ පටිය රත් කළ විට පිටතින් පිහිටන්නේ කුමන පටියද? එයට හේතුව දක්වන්න.
- e) ABC ස්වීචයේ කාර්යය ලියන්න.

ඒකක පරීක්ෂණ වනපෘතිය

11 ශුේණිය

විදනව

ඒකකය : 10 - විදයුත් උපකරණවල ජවය හා ශක්තිය

01) 1 KWh සඳහා නිවැරදි පිළිතුර වන්නේ,

- 1) $3.6 \times 10^6 J$
- $3.6 \times 10^5 J$
- 3) $3.6 \times 10^7 \text{ J}$ 4)
 - 4) $3.6 \times 10^4 \text{ J}$

02) විදුලි කෙටීම හා අකුණු සහි වේලාවකදී ස්වයංකිුයව නිවෙන විදුයුත් උපකරණය වන්නේ,

1) පැන්නුම් ස්විච්චය

2) බහු පරිපථ බිඳිනය

3) පුධාන ස්වීචය

4) විදුලි මීටරය

03) ගෘහ විදයුත් පරිපථයක විදයුත් ශක්තිය මනින ඒකකය වන්නේ,

- 1) KWs
- 2) KWs
- 3) KW
- 4) kJh

40W බල්බ 5ක් දිනකට පැය 4ක් බැගින් දල්වා තිබේ. මෙසේ දින 30 ක් දැල්වීමෙන් ලැබෙන ඒකක සංඛාාව කුමක්ද?

- 1) $\frac{40x5x4x30}{1000}$
- 2) $\frac{1000}{40x5x4x30}$
- $\frac{40x100}{5x4x30}$
- 4) $\frac{5x4x30}{40x100}$

05) නිවැරදි වරණය තෝරන්න.

- 1) $1 \text{ kWh} = 3600\ 000\ \text{J}$
- $3.6 \times 10J = 10 \text{ kWh}$

3) 1 kWh = 3600 J

4) 10 kWh = 600 J

06) 6V බයිසිකල් බල්බයක් 0.6A ධාරාවක් ලබා ගනි. එසේ නම් විනාඩි 5කට එම බල්බය ලබා ගන්නා බලය වන්නේ,

1) $\frac{6 \times 6 \times 5 \times 60 \times 2}{60}$

2) 6 x 0.6 x 5 x 60

3) $\frac{6x0.6x5x60}{3600}$

4) $\frac{6x0.6x5}{60}$

07)

මින් නිරූපනය කරන්න.

- 1) පරිපථ විලායකය
- 2) විදාුත් මීටරය
- 3) අධිධාරා පරිපථ බිඳනය
- 4) බල්බය

08) විදාුත් ජල පොම්පයක බලය $750~{
m W}$ වේ. මෙයින් ඇද ගන්නා ධාරාව කොපමණද? ($230{
m V}$ - විභවය)

- 1) 3.0A
- 2) 0.32A
- 3) 0.6A
- 4) 6A

09) නිවැරදි සම්බන්ධතාවය තෝරන්න.

$$1)$$
 kWh ගණන $=$ $\frac{$ වොට් ගණන $}{1000}$ x පැය ගණන

$$kWh$$
 ගණන = $\frac{$ වොට් ගණන x පැය ගණන

3) kWh ගණන =
$$\frac{$$
වොට් ගණන x 1000

$$4)$$
 kWh ගණන = $\frac{2000 \log 3}{1000 \times 3600} \times 200$ $\times 2000 \times 3600$

10) භූගත කම්බියෙහි වර්ණය,

- 1) රතු
- 2) කොළ
- 3) නිල්
- 4) දම්

වහුනගත රචනා

01) ගෘහ විදයුත් පරිපථයක කොටස් පහත දක්වේ.

i) A, B, C, D නම් කරන්න.

ii) B, C හා D වල කාර්යයන් ලියන්න.

В		
\boldsymbol{C}		

D _____

D ---

	iii)	වීලායකය හෝ පරිපථ බිඳිනය සම්බන්ධ කර ඇති වයරය කුමක්ද?										
	iv)	විලායකවල යොදා ඇති ලෝහයේ ලකුෂණ 2ක් ලියන්න.										
	v)	වීලායක වෙනුවට නවීන පරිපථවල යොදාගෙන ඇති උපාංගය කුමක්ද?										
	•,											
B)	බොහෙ	ත්මයක් පේනු සෑදි ඇත්තේ කම්බි 3ක් සම්බන්ධ වීමෙනි.										
	i)	කෙවෙනි 3 ට සම්බන්ධ කම්බි 3 මොනවාද? $oxed{A}$										
	ii)	A, B හා C සඳහා සුදුසු කම්බි 3 ලියන්න.										
		A B										
		C										
02) a)	i)	නිවසේ විදුලි පරිපථයේ ශක්තිය මැනීමට යොදා ගන්නා ඒකකය කුමක්ද?										
	ii)	100Wක විදුලි උපකරණයක් පැය 300 ක් කිුයා කරයි. ඉහත සඳහන් කර ඇති ඒකකය ඇසුරෙන් මෙම පුකාශය ලියන්න.										
	iii)	විදහුත් උපකරණ අනතුරවලින් අවම කර ගැනීම සඳහා ගෘහස්ථ විදහුත් පරිපථයට අඩංගු කර ඇති උපාංග මොනවාද?										
	iv)	විදාුුතයට අදාළ ආරකුමක උපකුම 3 ක් සඳහන් කරන්න.										

b) $A \longrightarrow S_1 \longrightarrow B$ $S_2 \longrightarrow S_2 \longrightarrow$

ඉහත දක්වා ඇත්තේ එක සමාන බල්බ තුනක්, එක සමාන කේශ තුනක් හා ස්වීච තුනක්ය.

i)	පරිපථය හ	ාා ධාරාව	ගැලීමට	ස්විච	කීයක්	වැසිය	යුතුද?

n) 001 9915101;	ii)	ඒවා මොනවාද?
-----------------	-----	-------------

111)	කෝෂ	සමාන්තර	ගතව ස	3කස් 3	කළ	වට	නල් නවල -	ද්ප්තිමත්	බවට	කුමක්	සිදුවේද?	
			. .									

iv) බල්බ සියල්ල දැල්වූ අවස්ථාවක වුවද එක් බල්බයක් වඩාත්ම දීප්තිමත්ව දැල්වේ. ඒ කුමන බල්බයද?

.....

 ${
m v}$) බල්බයේ පුතිරෝදය 3Ω නම් බල්බ 2ක් පරිභෝජනය කරන ශක්තිය කොපමණද? (මේවා සමාන්තරව සවිකර ඇත.)

රචනා ගැටලු

- 01) ගෘහ විදුලි පරිපථයක සැකැස්ම ඇඳ කොටස් නම් කරන්න.
- 02) ඉසුරු තම නව නිවසට පදිංචි වීමෙන් පසු නිවසේ සවි කිරීම සඳහා ජල මෝටරයක් මිලදී ගන්නා ලදි. එහි V=230V හා I=8A ලෙස සඳහන්ව තිබෙන අයුරු ඉසුරු දකිනු ලබයි.
 - i) ජල මෝටරය මඟින් සිදුකරන ශක්ති පරිවර්තන සියල්ලම ලියා දක්වන්න.
 - ii) ජල මෝටරයේ ක්ෂමතාවය ගණනය කරන්න.
 - iii) දිනට මිනි. 15 ක් ජල මෝටරය කිුයාත්මක කරයි නම් දිනකට වැයවන විදාුුත් ශක්තිය ගණනය කරන්න.
 - iv) ජල මෝටරය නිසා, ඉසුරුගේ නිවසේ දින 30 ක මාසයක් අවසාන වන විට වැයවන විදුලි ඒකක ගණන සොයන්න.