18MES101L – Engineering Graphics and Design

Week 2: ESSENTIALS OF ENGINEERING GRAPHICS (Conic and special curves)

Conics

• When a cone is cut by a plane, the curve formed along the section is known as a conic.

• A cone may be cut by different section planes to obtain the different conic sections.

Triangle

When a cone is cut by a section plane 1-1, passing through the axis, then the section obtained is a triangle.

Circle

When a cone is cut by a section plane 2-2 perpendicular to the axis, then the section obtained is a circle.

Ellipse

When a cone is cut by a section 3-3 section plane 3-3 at an angle α , (Less acute than side of cone) $90^{\circ} > \alpha > \theta$ (½ apex angle), the curve of the section is an ellipse.

Its size depends on the angle α and the distance of the section plane from the apex of the cone.

Parabola

- When a cone is cut by a section plane 4-4 parallel to the slant side of the cone, then the curve at the section is a parabola.
- This is not a closed figure like circle or ellipse.
- The size of the parabola depends upon the distance of the section plane from the slant side of the cone.

section 4-4 (Parallel to side of cone)

Hyperbola

- When a cone is cut by a section plane 5-5 at an angle $\alpha < \theta$ (½ apex angle), the curve of the section is a hyperbola.
- The section will be a hyperbola, if $\alpha = \theta$, provided the section plane is not passing through the apex of the cone.
- However if the section plane passes through the apex, the section produced is an isosceles triangle.

Conic section

Construction of conic sections

Parabola:

- ☐ Tangent method
- ☐Rectangle method

Parabola – Tangent method

Parabola – Rectangle method

Ellipse

- ☐ Oblong method
- ☐ Concentric circle method

Ellipse – Oblong method

Ellipse – Concentric circle method

Hyperbola – Eccentricity method

Hyperbola – Eccentricity method

Ellipse – Eccentricity method

Parabola – Eccentricity method

Special curves

- □ Cycloid
- ☐ Epi cycloid
- ☐ Hypo cycloid
- ☐ Trochoid
- ☐ Involute
- Spiral
- ☐ Helix

Cycloid

Spiral

