Chemistry 1st Year Solved MCQ,S

Prepared by: Babar Joya

Like This Page For More Study Material

http://www.facebook.com/techwithease **Any Question???**

Ask Me at http://www.facebook.com/babarjoyaofficial ilke little. Handy facebox

1ST-CHAPTER-BASIC-CONCEPTS-MCQs 2.pdf 2-CHAPTER-EXPERIMENTAL-TECHNIQUES-IN-CHEMISTRY-MCQS.pdf Like http://facebook.com/technithease For More Study Material 3RD-Chapter-GASES-MCQs.pdf 4-Chapter-LIQUIDS-AND-SOLIDS-MCQs.pdf 5-CHAPTER-ATOMIC-STRUCTURE-MCQs.pdf

6-CHAPTER-CHEMICAL-BONDING-MCQs.pdf 7-CHAPTER-THERMOCHEMISTRY-MCQs.pdf

8-CHAPTER-CHEMICAL-EQUILIBRIUM-MCQs.pdf

9-CHAPTER-SOLUTIONS-MCQs.pdf

10-CHAPTER-ELECTROCHEMISTRY-MCQS.pdf

11-CHAPTER-REACTION-KINETICS-MCQS.pdf

Chapter No. 1

BASIC CONCEPTS MCQs

Q.1	Smal	llest particle of an elei	nent whic	ch may or may not have independent
existe	ence			
	(a)	a molecule	(b)	an atom
	(c)	an ion	(d)	an electron
Q.2	Swed	lish chemist J. Berzeli	us detern	an atom an electron nined the atomic volume
	(a)	atomic no.	(b)	atomic volume
	(c)	atomic mass	(d)	atomic density
Q.3	The i	number of atoms pres	ent in a n	nolecule determine its
	(a)	molecularity	(b)	basicity
	(c)	acidity	(d)	atomicity
Q.4	When	n an electron is added	to a unip	positive ion we get
	(a)	anion	(b)	cation
	(c)	neutral atom	(d)	molecule
Q.5	<i>CO</i> +	is an example of:		No.
	(a)	free radical	<i>(b)</i>	cationic molecular ion
	(c)	an ionic molecular	ion	
	(d)	stable molecule	C	
Q.6	Relat	tive atomic mass is the	mass of	an atom of an element as compared to
the m	ass of			
	(a)	oxygen O	(b)	hydrogen
	(c)	nitrogen	(d)	carbon
Q.7	Isoto	pes are the sister aton	ns of the s	same element with similar chemical
prope	erties ai	nd different		
	(a)	atomic number	(b)	atomic mass
	(c)	atomic volume	(d)	atomic structure
Q.8	The i	instrument which is u	sed to me	asure the exact masses of different
_	A \ \	n element called		
	_	I.R. Spectrophoton	neter	(b) U.V. Spectrophotometer
11.	(c)	Mass Spectrometer	\cdot (d)	
Q.9	Mass	s spectrometer separat	es differe	ent positive isotopic ions on the basis
of the		-		_
-	(a)	mass value	(b)	m/e value
	(c)	e/m value	(d)	change value

Q.10	Simp	lest formula that gives	us infor	mation about the simple ratio of
atoms	in a co	ompound is called		
	(a)	structural formula	(b)	molecular formula
	(c)	empirical formula	(d)	molar ratio
Q.11	Perce	entage of oxygen in H2	O is	
	(a)	80%	(b)	88.8%
	(c)	8.8%	(d)	9.8%
Q.12	More	abundant isotope of a	n elemei	nt is one with
	(a)	even atomic no.		molar ratio 88.8% 9.8% nt is one with (b) odd atomic no.
	(c)	Even mass no.	(d)	odd mass no.
Q.13	Large	e no. of isotopes are kn	own for	the elements whose masses are
multip	ole of			.01
	(a)	two	(b)	four
	<i>(c)</i>	six		eight
Q.14	When	n 0.01 kg of CaCO3 is a	decompo	osed the CO2 produced occupies a
volum	e at S.	<i>T.P.</i>		₹ 0.
	(a)	2.2414 dm3	(b)	22.414 dm3
	(c)	22414 dm3	(d	, 03
<i>Q.15</i>	The n	io. of covalent bond in	10gm oj	V I
	(a)	6.022 x 1023	<i>(b)</i>	1.062 x 1023
	(c)	10.62 x 1024	(d)	1.062×1024
Q.16		f molecules present in	-	
	(a)	3.37 x 1023	(b)	33.7 x 1023
	(c)	3.37 x 1024	(d	
<i>Q.17</i>		no. of covalent bonds p		
	(a)	6.074×1023	(b)	6.74×1023
	(c)	6.074×1024	(d)	6.74×1024
Q.18		east no. of molecules p		
	(a)	N20	(b)	NO
	(c)	NO2	(d)	•
Q.19	Whic	, ,	-	percentage of nitrogen
	(a)	(NH4)2SO4	(b)	NH4H2PO4
	(c)	(NH4)2HPO4	(d)	(NH4)3PO4
Q.20		_	-	sociates in water to produce Na+
)	(a)	6.02×1022	(b)	6.02×1023
0.01	(c)	1.806 x 1023	(d)	1.806 x 1022
Q.21		• •		be checked by calculating
	(a)	amount of limiting i		
	(b)	amount of the reacte		
	(c)	amount of the produ	ict torm	ed

	(d)	amount of the reac	tant unu	sed							
Q.22	A lim	iting reactant is one									
	(a)	which is present in	least am	count							
	(b)	which produces mi	nimum n	no. of moles of product							
	(c)	which produces minimum no. of moles of product which produces maximum no. of moles of product does not effect the amount of product niometry is the branch of chemistry which deals with the study of relationship among the various reactants (b) products Reactants and products (d) all of above									
	(d)	does not effect the	amount d	of product							
Q.23	Stoick	hiometry is the brancl	h of chen	nistry which deals with the study of							
quant	itative i	relationship among th	ie variou	us .							
	(a)	reactants	(b)	products							
	(c)	Reactants and prod	lucts	(d) all of above							
Q.24	500 ci	m3 of H2 gas at STP	contradi	ctions of hydrogen							
	(a)	6.02×1023	(b)	3.01 x 1022							
	(c)	2.68×1022	(d)	1.34 x 1022							
Q.25	Large			duced by complete ionization of							
	(a)	0.01 mole of HCl	(b)	0.0050 mole of H2SO4							
	(c)	0.000334 moles of 1	<i>H3PO4</i>	~ 0							
	(d)	all above		01							
Q.26		lvogadro's number is									
	(a)	6.02×1024	(b)	$6.02 \times 10-24$							
	(c)	$6.02 \times 10-23$	(d)	6.02×1023							
<i>Q</i> .27				uced by complete ionization of							
	(a)	0.100 2 moles of H		0.051 moles of H2SO4							
	(c)	0.0334 moles of H3	,	(d) All of the above							
Q.28		iple of pure matter is	,								
	(a)	element	(T)	(b) compound							
0.20	(c)	substance	<i>(d)</i>	mixture							
Q.29		ands for	(1)	3.7							
	(a)	Newton meter	(b)	Nanometer							
0.20	(c)	_	er (d)	none of the above							
Q.30		calorie is equal to	(1)	41.04.1							
	(a)	4.184 J	(b)	41.84 J							
0.216	(C)	0.4184 J	(d)								
<i>Q.31</i>		_		h contains 8.0 gm of oxygen							
Nr.	(a)	0.25	(b)	0.50							
0 22	(c)	1.0	(d)	1.50							
V.34	_	•	ımptetety	y with how much mass of O2 to							
ргоац	ce Al2((h) 16 am of overgon							
	(a) (c)	8 gm of oxygen 32 gm of oxygen	(d)	(b) 16 gm of oxygen 24 gm of oxygen							
Q.33	` '	of SO2 contains	(\boldsymbol{u})	27 gm oj oxygen							
2 .33	MIDLE	oj 502 comuns									

1st year chemistry notes

water

	(a)	6.02 x 1023 atoms of	of oxygen		
	(b)	18.1 x 1023 molecu	les of SC	2	
	(c)	6.023 x 1023 atom	of sulphu	r	
	(d)	4 gram of SO2			
Q.34	The	largest number of mol	ecules ar	e presenting	
	(a)	3.6 gram of H2O		(b) 4.8 gran	of C2H5OH
	(c)	2.8 gm of CO	(d)	5.4 gms of N2O5	7
<i>Q.35</i>	The	mass of one mole of el	ectron is		Mis
	(a)	$1.008 \ mg$	(b)	$0.184 \ mg$	14
	(c)	1.673 mg	(d)	0.55 mg	
Q.36	Isoto	opes differ in		-	6
	(a)	properties which de	epend on	mass	tromagnetic field
	(b)	arrangements of ele	_	orbital	100
	(c)	chemical properties			
	(d)	the extent to which t	hey may	be affected in elect	tromagnetic field
<i>Q.37</i>	The	volume occupied by 1.	4 gm of N	2 at STP is	
	(a)	224 dm3	(b)	22.4 dm3	
	(c)	1.12 dm3	(d)	112 cm3	
Q.38	Man	y elements have fraction	onal aton	ic mass. This is be	ecause
	(a)	the mass atom is its	elf fracti	onal	
	(b)	atomic masses are d	average 1	asses of isobars	
	(c)	atomic masses are d			
				re average masses	
		proportional to relativ	,		
<i>Q.39</i>	A lin	niting reactant is one w	vhich		
		(a) is taken in less	ser quan	ity in grams as coi	npared to other
		reactants	_		_
		(b) is taken in less	ser quan	ity in volume as co	ompared to the
		other	_		_
		gives the maxi	mum am	ount of the produc	et which is required
	.69	(d) gives the mining	num amo	unt of the product	t under
	1///	consideration		-	
Q.40 (Isoto	pes when even atomic	masses d	re a comparatively	y abundant
	(a)	demper's spectrogr			
	(b)	0.1 mg of H2O has	_	•	
CH4	` /		_	v	3 0
	(c)	the number of H+ a	and PO-	ions are not equa	l but the number of
positi	` ′	l negative charges		1	<i>3</i>
-	(d)	are eaual when 100	molecul	s of H3PO4 are th	rown in excess of

1st year chemistry notes

Q.41	A molecule having two atoms is called								
	(a)	monoatom	ic molec	cules	s (b) diatomic mod		c molec	ules	
	(c)	Polyatomic	molecu	les (d)	d) homoatomic molecule				
<i>Q.42</i>	An or	rdinary misos	cope is i	used to n	neasure t	he object d	of size		
	(a)	upto 500 n	(b)	upto 8	850 nm				
	(c)	upto 1000 i	(d)	upto 1	200 nm				
Q.43	1 ato	mic masses ui	nit (amu) is equa	ation			12	
~	(a)	1.66×10^{-2}	, <u>-</u>	(b)	1.56 x 1	0-27 kg			
	(c)	1.76×10^{-2}	_		(d)	1.8×10	-27 kg	· KK	
<i>Q.44</i>	Nick	el has isotopes	_		` ,			SUBY MA	
~	(a)	1		(b)	3		C		
	(c)	5		(d)	7		0,		
0.45		nium has isote	opes	, ,		. (10		
~	(a)	3	•	(b)	5	1/2			
	(c)	7		(d)	9	1/2			
0.46	` ,	pressure of va	pours in	` '	arating is	sotopes by	mass sp	pectrometry	
is kep	_	<i>y</i>		•			•	•	
•	(a)	10–6 torr		(b)	10-4	torr			
	(c)	10–3 torr		(d)	10-5	torr			
<i>Q.47</i>	` '	ber of gram a	toms in		- V)				
~	(a)	0.0043		(b)	0.0403	}			
	(c)	0.403		(d)		of these			
<i>Q.48</i>		cule of haemo	globin-	contains					
~	(a)	15,000	146	<i>(b)</i>	12,000)			
	(c)	10.000	ω_{i}	(d)	8,000				
0.49	Haen	noglobin is he	avier th	` ,	•	om			
~	(a)	65,000)	(b)	68,000				
	(c)	62,000		(d)	60,000				
	(-)	0		(3.7)	,				
		-67							
	4.0	C							
Answers									
	Questions 1			2	3	4	5		
Answers b			С	d	С	b			
			6	7	8	9	10		
.16		Answers	d	b	c	b	c		
		Questions	11	12	13	14	15		
▼		Answers	b	c	<u>b</u>	a	d		
	Answers			C	U	а	u		

Answers

Questions	1	2	3	4	5
Answers	b	С	d	c	b
Questions	6	7	8	9	10
Answers	d	b	c	b	c
Questions	11	12	13	14	15
Answers	b	c	b	a	d
Questions	16	17	18	19	20

1st year chemistry notes

		1	1				
	Answers	a	b	d	d	c	
	Questions	21	22	23	24	25	
	Answers	c	b	d	c	d	
	Questions	26	27	28	29	30	
	Answers	d	d	a	b	a	
	Questions	31	32	33	34	35	70.
	Answers	a	d	c	a	d	No
	Questions	36	37	38	39	40	1/4
	Answers	a	c	d	d	c	.83
	Questions	41	42	43	44		
	Answers	c	a	a	c	5	LUGH Material
	Questions	45	46	47	48	4 9	
	Answers	d	a	a	c	b	
ike kitiki. Ita	Selook	onlie		nease			

Chapter No. 2

CII	upier	1 V 0. Z		
	EXPERI	MENTAL TECHN	IQUES 1	IN CHEMISTRY
				Mar
		MC	Qs	IN CHEMISTRY REFIELD
Q.1	Science	e of the chemical characteri		and under the heading of
	(a)	industrial chemistry	(b)	experimental chemistry
	(c)	analytical chemistry	(d)	physical chemistry
Q.2	Several	types of filter media are us	ed for filtr	ation depending on
	(a)	nature of reaction	(b)	nature of reactants
	(c)	nature of precipitate	(d)	nature of filter paper
Q.3	Filtratio	on by a glass funnel and filt	er paper is	very
	(a)	time consuming	(b)	difficult
	(c)	fast	(d)	accurate
	Q.4 I	Date of filtration through co	nical funne	el can be considerably
	increased			
	(a)	fine filter paper	(b)	ordinary filter paper
	(c)	fluted filter	(d)	under suction crucible
Q.5	Gooch	crucible is used to filter the		
	(a)	K2Cr2O7 (b)		InO4
	(c)	КОН	(d)	under suction crucible
Q.6		rinciples of crystallization i	s that solut	te should be soluble in a
suital	ole solution			
	(a)	freezing temperature	(b)	room temperature
	\\(c)	high temperature (d)		perature
. 34		<u> </u>	solution of	filter paper or in funnel can
N	be avoided			
	(a)	filtering hot saturated so	lution usin	g hot funnel
	(b)	filling warm solution		
	(c)	quick filtration		
	(d)	filtering cold solution		
Q .8	Safe an	d reliable method of drying	-	
	(a)	pressing it between folds	s of filter p	aper

	(b)	drying it in oven		
	(c)	evaporation of solution		
	(d)	vacuum desiccator		
Q.9	In solv	ent extraction solute can be	separated f	rom solution by shaking the
solution	n with so	lvent which the solute is		* C
	(a)	more soluble	(b)	partially soluble
	(c)	insoluble	(d)	soluble at high
tempera	ature			10.3
Q.10	Repeat	ed extraction using small po	ortions of so	olvent are more
	(a)	accurate	(b)	efficient
	(c)	slow	(d)	rapid
Q.11	To ach	ieve a good separation the tv	wo liquids	are gently shaken to
increas	e their ar	ea of		. 1
	(a)	miscibility	(b) (d)	separation
	(c)	contact	(d)	solubility
Q.12	Chrom	atography in which stational	ry phase is	solid is called
	(a)	partition chromatography	У	
	(b)	paper chromatography	0	
	(c)	high pressure		
	(d)	adsorption chromatograp	phy	
Q.13	Chrom	atography involves these dis	stribution o	f a solution between
	(a)	two stationary phase		
	(b)	two mobile phase		
	(c)	a stationary phase and a	mobile pha	ise
	(d)	two stationary and two n	nobile phas	se
Q.14	Chrom	atography in which the stati	onary phas	e is liquid is called
	(a)	partition chromatography	y	
	(b)	descending chromatogra	phy	
	(c)	column chromatography		
	(d)	Adsorption chromatogra	_ •	
Q.15	\In pape	er chromatography the rate a	t which so	lutes move depends on
W/C	(a)	distribution law	(b)	distribution coefficients
11.	(c)	law of partial pressure	(d)	law of specific proportion
Q.16	Solven	t extraction is an equilibrium	n process a	nd it is controlled by
	(a)	law of mass action	(b)	the amount of solvent
used				
	(c)	distribution law	(d)	the amount of solute

	Q.17	The comparative rates at v	which the solu	tes move in paper						
	chromat	ography depend on								
	(a)	the size of paper used	1 1							
	(b)	Rf values of solutes	Rf values of solutes							
	(c)	temperature of the exp	periment	, Č						
	(d)	size of the chromatog	raphic tank us	ed						
Q.18	A filt	ration process could be ver	y time consun	ning if it were not aided by						
the ge	ntle suct	ion, which is developed		(0.7						
	(a)	if the paper covers the	funnel up to i	ts circumference						
	(b)									
	(c)	if the stem of the funn	el is large so t	hat it dips into the filtrate						
	(d)	if the paper fits tightly		-10.						
Q.19	Solve	ent extraction method is par	ticularly usefu	al technique for separation,						
when	product 1	to be separated is)						
	(a)	non–volatile or therma								
	(b)	volatile or thermally s								
	(c)	non volatile or therma								
	(d)	non-volatile or therma	ally unstable							
Q.20	Durir	ng the process of crystalliza	tion, the hot s	aturated solution						
	(a)	is cooled very slowly	to get large siz	zed crystals						
	(b)	is cooled at a moderat	e rate to get m	edium sized crystals						
	(c)	is evaporated to get th	e pure crystals	s of the product						
		(d) is mixed	with an immis	scible liquid, to get the pure						
	CI	ystals of the product								
	Q.21	Aqueous solution of iodin	e is prepared f	first by dissolving which						
	compou	nd in water								
	(a)	KBr	(b)	KI						
	(c)	KCl	(d)	NaCl						
Q.22	The r	neaning of chromatos								
	(a)	colour writing	(b)	colour writing						
	(c)	colour forming	(d)	colour spreading						
Q.23	Whic	h is not common way of ca	rrying chroma	tography						
11,	(a)	ascending	(b)	descending						
	(c)	radial/circular	(d)	spreading irregularly						
Q.24	In pa	per chromatography the sta	tionary phase	is						
	(a)	water	(b)	organic liquid						
	(c)	inorganic liquid	(d)	none of the above						
O.25	In pa	per chromatography the mo	bile phase is							

- (a) organic liquid (b) water
- inorganic liquid (c) (d) none of the above

ANSWERS

(a)	organic liquid			(b)	W	ater	
(c)			d	(d)		ne of the above	
	J	•				ne of the above 5 b 10	
				ANS	SWERS		
	Questions	1	2	3	4	5	
	Answers	c	c	a	c	b (0.)	
	Questions	6	7	8	9	10	
	Answers	c	a	d	a	b	
	Questions	11	12	13	14	15	
	Answers	c	d	c	a	b	
	Questions	16	17	18	19	20	
ike kitiki. Iko	Answers	c	b	d	< d)	b	
	Questions	21	22	23	24	25	
	Answers	b	a	d	a	a	
				~6,0,			
			: 1				
			· M,				
			C.				
		140	,				
		all					
	~C						
	OK						
	,,00						
	8						
~O. _' ,							
C.							
:140							

Chapter 3rd

GASES MCOs

- NH3 > SO2 > Cl2 > CO2(a)
- NH3 > CO2 > SO2 > C12(b)
- C12 > SO2 > CO2 > NH3(c)
- None of these (d)
- Pressure remaining constant at which temperature the volume of 0.2 gas will become twice of what it is at 0C.
- (a) 546 oC

200 oC

(c) 546 K

- 273 K
- Equal masses of methane and oxygen are mixed in an empty container at 250°C. The fraction of the total pressure exerted by the oxygen is:
- (a)

(b)

- (d)
- Which of the following of will have the same number of molecules at STP?
- (a) 280 cm3 of CO2 and 280 cm3 of N2O
- (b) 11.2 dm3 of O2 and 32 g of O2

Like http://facebook.com/technithease For More Study Material

Q.5	Number of molecul	les in or	ne dm3 of water is close to:
(a)	x 1023	(b)	x 1023
(c)	x 1023	` /	55.6 x 6.02 x 1023
Q.6		` /	a gas is doubled and the pressure is
_	d to one half the vol		0
10000	will.		increases four times
(a)	remain unchanged	(b)	increases four times
(c)	reduce to	(d)	be double
(0)	reduce to	(u)	be double 5
Q.7	How should the con	nditions	be changed to prevent the volume of
_			ng when its mass is increased
(a)	•	-	d pressure is increased
	•		nd the pressure is lowered
(b)	*		•
(c)	temperature and pr		
(d)	temperature and pr	essure t	ootn are increased
0.0	7D1 1 1	6.000	
Q.8	The molar volume	of CO2	is maximum at
(a)	STP	-C/	
	127 oC and 1 atm	1400	
(c)	0 oC and 2 atm		
(d)	273 oC and 2 atm	*	
0.0		. 1 11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Q.9			ehaviour at high pressure. Which of
	lowing is correct for		
(a)			nolecules move in one direction only
(b)		ne collis	sions between, the gas molecules are
	sed manifold	1	C 1 : : : : : : :
(c) Q			ne of gas becomes insignificant
(d)	0 1	the inte	rmolecular attractions, become
signifi	cant		
Q.10	The deviation of a	nac fron	n ideal behaviour is maximum at,
(a)	- 10 oC and 5.0 at		
(a) (c)	100 oC and 2.0 atn	` /	
(0)		1 (u)	o oc ana 2.0 ann

Q.11	At high temperature isotherm moves away from both the axis				
because	e of increase in,				
(a)	pressure	(b)	volume		
(c)	no. of moles	(d)	all above		
Q.12	Values of Charle's law	v consta	nt K depends upon.		
(a)	mass of gas	(b)	pressure gas		
(c)	no. of moles of gas	(d)	all above		
Q.13	Equal volumes of H2 a	and He	are inserted in the same vessel. The		
pressur	e exerted by H2 and H	e are in	the ratio:		
(a)	1:1	(b)	2:1		
(c)	1:2	(d)	all above		
Q.14	Which of the following	g have s	ame no. of molecules at STP		
(a)	1000 cm3 of N2H4 an	nd O2			
(b)	200 cm3 of CO2 and 1	N2O			
(c)	50 cm3 each of CO an	nd N2			
(d)	all above				
Q.15	If absolute temperature	e is doul	oled and the pressure is increased 4		
	The volume is	My.			
(a)	half	(b)	double		
(c)	four times	(d)	remains the changed		
Q.16	Density of a gas is usu	ally exp	ressed in		
(a)	kg m3	(b)	kg dm3		
(c)	g dm-3	(d)	g cm-3		
Q.17	Units of gas constant I	R in SI s	ystem is:		
(a)	0.0821 dm3 atm k-1 r	nol–1			
(b)	82.1 cm3 atm k-1				
(c)	8.31 Nm k–1 mol–1				
(d)XX	1.987 cal k–1 mol–1				
Q.18	Concept of distribution	n of velo	ocities among the gas molecules		
	veloped by				
(a)	Claudius	(b)	Maxwell		
(c)	Boltzman	(d)	Vanderwaal		
Q.19	Absolute temperature	of gas is	proportional to		

(a)	translational kinetic en	nergy							
(b)	rotational kinetic ener	••							
(c)	vibrational kinetic energy								
(d)	——————————————————————————————————————								
Q.20	Deviation a gas from i	deal bel	navio	our is	maximum at				
(a)	low temperature, low				10.				
(b)	low temperature, high	-			16.				
(c)	high temperature, low	-			Cillia				
(d)	high temperature high	-							
Q.21	Most ideal gas at room	-		e is:	Ne				
(a)	CO2	(b)		NH3	maximum at Study No				
(c)	SO2	(d)		N2 .	of l'				
Q.22	22.414 dm3 of various	s ideal g	ases	at ST	P will have Avogadro's				
numbe	r of molecules			0	-				
(a)	6.02 x 1023	(b)	6.	02 x	1024				
(c)	0.602 x 1023	(d)	6.0	02×1	022				
Q.23	Gases are ideal at	lib.							
(a)	low pressure and high	tempera	ature	2					
(b)	low temperature and l	nigh pres	ssure	e					
(c)	high pressure and high	h tempei	ratur	e					
(d)	low pressure and low	tempera	ture						
Q.24	The value of compress	sibility f	acto	r for a	in ideal gas is equal to:				
(a)	1 0	(b)	1.5						
(c)	2	(d)	2.5						
Q.25	An ideal gas obeys								
(a)	Boyle's law	(b)	Ch	arle's	law				
(c)	Avogadro's law		(d)	a	ll above				
Q.26	A real gas obeying Va	nder Wa	aal's	equa	tion will resemble ideal				
gas if:									
(a)	both 'a' and 'b' are la	rge							
(b)	both 'a' and 'b' are sn	nall							
(c)	'a' is small and 'b' is	large							
(d)	'a' is large and 'b' is s	small							

Q.27 of:	Deep sea divers breatl	h mixtur	e of nitrogen and oxygen in a ratio
(a)	96% N2 and 4% O2	(b)	4% and N2 and 96% O2
(c)	80% N2 and 20% O2	` ,	20% N2 and 80% O2 ccupies volume 22.4 dm3 48.4 dm3 to:
Q.28	One mole of any gas a	` ,	ccupies volume
(a)	2.24 dm3	(b)	22.4 dm3
(c)	44.4 dm3	(d)	48.4 dm3
	K.E. of gas molecules	` /	to:
(a)	(b)	m v2	
(c)	(d)		
	All gases solidify before	ore reach	ning at
(a)	373 oK	(b)	273 oC
(c)	−473 oC	(d)	0 oK
	Kinetic equation is eq	ual to	©
	PV = nRT	(b)	PV = RT
(c)	PV = m n c2	(d)	PV = m n c2
Q.32	Root mean square vel	ocity is e	equal to
(a)	(b)	S. Car	
(c)	(d) _{\\\}	SO	
Q.33	Kinetic energy associa	ated with	one molecule of a gas due to
translat	tional motion is given	by	
(a)	EK = (b)	Ek =	m v2
(c)	Ek = m n c2	(d)	Ek =
Q.34	Density of gas is usua	lly expre	essed as
(a)	kg m-3	(b)	kg dm-3
(c)	g dm-3	(d)	g cm-3
Q.35	Weight of one dm3 of	O2 at S	TP is
(a) X	1.4384 gm	(b)	1.4394 gm
(c)	1.6384 gm	(d)	1.3384 gm
7			

ANSWERS

Question 1	2	3	4	5
------------	---	---	---	---

			<u> </u>		1	<u> </u>	1
	S						
	Answers	b	c	a	a	a	
	Question	6	7	8	9	10	
	S						×6.
	Answers	b	a	b	d	a	No
	Question	11	12	13	14	15	17/2
	S						197
	Answers	b	d	a	d	a C	udy Material
	Question	16	17	18	19	20	
	S					O'CO	
	Answers	С	С	b	a	b	
	Question	21	22	23	24	25	
	S				K		
	Answers	d	a	ac	a	d	
	Question	26	27	28	29	30	
	S			00			
	Answers	b	a	b	d	d	
	Question	31	32	33	34	35	
	S	146					
	Answers	C	a	a	С	a	
ike http://to	cepook.						
like .							

Chapter 4rth

LIQUIDS AND SOLIDS

MCQs

Cha	Ionic solids are characterized by low melting points good conductivity in solid state high vapour pressure solubility in polar solvents Amorphous solids.
Clia	pter 4rth
	LIQUIDS AND SOLIDS
	MCOs
	Cill C
Q.1	Ionic solids are characterized by
(a)	low melting points
(b)	good conductivity in solid state
(c)	high vapour pressure
(d)	solubility in polar solvents
	Amorphous solids.
Q.2 (a)	have sharp melting points
(b)	undergo clean cleavage when cut with knife
(c)	have perfect arrangements of atoms
(d)	can presses small regions of orderly arrangements of atoms
Q.3	The force of attraction between the atoms of helium is
(a)	hydrogen bonding
(b)	coordinate covalent bond
(c)	covalent bond
(d)	london dispersion force
Q.4 (a) (c) Q.5	Which of the following is a pseudo-solid
(a) × O	CaF2 (b) Glass
(c)	NaCl (d) All
Q.5	Diamond is a bad conductor because
(a)	It has a tight structure (b) It has a high density
(c)	There is no free electron present in the crystal of diamond to
JOHAUC	t electricity

None of the above

(d)

Q.6	The weakest intermole	cular fo	or a					
(a)	dipole–dipole force							
(b)	electrostatic force between ions							
(c)	ion–dipole force							
(d)	dipole-induced dipole	force		10				
Q.7	In liquids intermolecul		es are					
(a)	very weak	(b)	very str	rong pole force Study				
(c)	reasonably strong	(d)	•	pole force				
Q.8	Values of heat of vapo	rization	for liqu	ids, with strong dipole–				
_	forces will be		-					
(a)	very high	(b)	very lov	w M				
(c)	reasonably high	(d)	negligil	ole				
Q.9	Instantaneous dipole-i	nduced	dipole f	orce is also called				
(a)	dipole force	(b)	london	dispersion				
(c)	hydrogen bonding	(d)	none o	f the above				
Q.10	Down the group polari	zability	general	ly				
(a)	increases	(b)	decreas					
(c)	remains constant	(d)	do not	follow a regular trend				
Q.11	Trend of boiling points	of halo	gens fro	om fluorine to iodine is				
that it.								
(a)	decreases	(b)	increase	es				
(c)	remains constant	(d)	neglig	ible				
Q.12	Molecules of hydro car	rbons w	ith large	chain lengths experience				
(a)	repulsive forces		(b)	strong attractive force				
(c)	weaker attractive force	es						
(d)	no attractive force							
Q.13	Hydrocarbons which g	enerally	have h	igh molecular masses exist				
is.								
(a)	solid form	(b)	liquid f	orm				
(c)	vapour form	(d)	gaseous	form				
Q.14	Exceptionally low acid	lic stren	gth of H	IF is due to				
(a)	strong polar bond	(b)) sm	nall size of fluorine				
(c)	strong hydrogen bondi	ing (d	l) V	ander Waal's forces				

Q.15	Long chain of amino a	acids are	coiled about one another into					
spiral b	oy.							
(a)	covalent bond	(b)	ionic bond					
(c)	hydrogen bond	(d)	Vander Waal's forces					
Q.16	Evaporation of water i	is possib	ole at 0oC above 100oC with temperature temperature					
(a)	100oC	(b)	0oC					
(c)	at all temperatures	(d)	above 100oC					
Q.17	Boiling point is low for	or liquid	with					
(a)	high vapour pressure at given temperature							
(b)	low vapour pressure at a given temperature							
(c)	very high vapour pressure							
(d)	very low vapour pressure							
Q.18	At equilibrium rate of	evapora	tion and rate of condensation					
(a)	become very high	(b)	become very low					
(c)	can never be equal	(d)	become equal					
Q.19	In an open system vap	our pres	sure of water at 100oC at sea level					
is		NI						
(a)	700 mm of Hg	(b)	760 mm of Hg					
(c)	670 mm of Hg	(d)	1000 mm of Hg					
Q.20	Molar heat of vaporiza	ation of	water is					
(a)	140.6 kJ/mol	(b)	14.06 kJ/mol					
(c)	18 kJ/mol	(d)	40.6 kJ/mol					
Q.21	When external press	ure is 23	3.7 torr boiling point of water is					
(a)	100oC	(b)	200oC					
(c)	98oC	(d)	25oC					
Q.22	Distillation under very	reduce	d pressure is called					
	fractional distillation	` ,						
(c)	vacuum destructive di	stillation	n					
(d)	destructive distillation	1						
Q.23	Water may boil at 120	oC whe	n external pressure is					
(a)	760 torr		(b) 100 torr					
(c)	1489 torr	(d)	700 torr					

Q.24 Amount of heat absorbed when one mole of solid melts into liquid form at its melting point is called

- (a)
- (b)
- (c)
- (d)
- molar heat of fusion

 Ethanol is much more soluble in water than ethyl ethanuate one of the following statement correctly account for this ethanol is polar molecule but ethyl ethanol is non polar molecule a hydrogen to a hydrogen to the following statement correctly account for this ethanol is non polar molecule. 0.25 which one of the following statement correctly account for this
- (a)
- (b)
- a hydrogen bond is formed between H-atom of the OH group in (c) ethanol and O-atom of water molecule
- a hydrogen bond is formed between the H-atom of the OH (d) group in ethanol and hydrogen of the water molecule
- The boiling point of a liquid will be **Q.26**
- (a) lower at high altitude
- (b) higher at high altitude
- same at sea level and high altitudes (c)
- (d) equal to atmospheric pressure
- The process in which liquids can be made to boil at low **O.27** temperature is called
- vacuum distillation (a)
- (b) destructive distillation
- (c) distillation
- (d) vacuum destructive distillation
- **Q.28** Why is the boiling point of methane greater than that of neon
- (a) a molecule of methane has a greater mass
- a molecule of methane has more electrons than a molecule of (b) neon
- the molecules of methane have stronger intermolecular forces than those of neon
- (d) the molecule of methane is polar but that of neon is not

Q.29	The amount of heat re	auired to	o vaporize one mole of a liquid at					
	ts boiling point is called							
(a)	molar heat of vaporize	ation						
(b)	molar heat of fusion		*					
(c)	latent heat of fusion							
(d)	molar heat of sublimation							
0.30	Which of the elements in its crystalline form will have the lowest							
enthalp	y change of vaporizati	ons						
(a)	chlorine	(b)	argon					
(c)	phosphorous	, ,	silicon					
		` /	vsical properties depending upon					
	ection. The property is							
(a)	isomorphism	(b)	polymorphism					
(c)	anisotropy	(d)	isotropy					
Q.32	Certain melt to a turbi	d liquid	phase with properties of liquids as					
well as	some degree of order	like soli	d. Such turbid liquids are called					
(a)	anorphous solid	االه	(b) vitreous solid					
(c)	crystalline solid	Ky.	(d) liquid crystal					
Q.33	Isomorphous crystals	show						
(a)	same chemical proper	ties						
(b)	same physical propert	ties						
(c)	same crystalline form							
(d)	same melting point							
Q.34	Existence of an eleme	nt in mo	ore than form is known as					
(a)	allotropy	(b)	isomorphism					
(c)	isotropy	(d)	none of these					
			substance can coexist in					
	rium with each other a	t its						
(a)	melting point	(b)	transition temperature					
(c)	boiling point	(d)	none of these					
Q.36	Crystal lattice of subs		n be catagorised into					
(a)	five types	(b)	seven types					
(c)	six types	(d)	none of these					

Q.37 Covalent solids are composed of

- (a) (b) ions
- (c) neutral atoms (d)

Carbon atoms of diamond are **Q.38**

- (a) sp hybridized (b)
- (c) sp3 hybridized (d)

Q.39 Molecular crystals are generally

- hard (a) (b)
- (c) unstable (d)

Ionic crystals are **Q.40**

- hard (b) (a)
- (c) brittle (d)

ANSWER

Q.37	Cov	valent s	olids a	re comp	osed of		
(a)	ions (b)) di	fferent r	molecules above dized sed	
(c)	neu	itral ato	oms	(d) an	y of the	above
Q.38	Car	bon ato	oms of	diamon	d are		×0'
(a)	sp l	hybridi	zed	(b) sp	2 hybric	lized
(c)	sp3	hybric	lized	(d)	unl	hybridiz	ed
Q.39	Mo	lecular	crystal	ls are ge	nerally		197
(a)	har	d		(b)) so	ft	CXV.
(c)	uns	table		(d) sta	ıble	.01
Q.40	Ion	ic cryst	als are				
(a)	har	d		(b)) so	ft	
(c)	brit	tle		(d) an	norphou	S
			ANS	SWER		X	
Questi	ons	1	2	3	4	5	
Answe	ers	d	d	d	b	O C	
Questi	ons	6	7	8	9	10	
Answe	ers	d	c	c	Nb	a	
Questi	ons	11	12	13	14	15	
Answe	ers	b	b	\\aC	c	c	
Questi	ons	16	17	18	19	20	
Answe	ers	a	c-C	d	b	d	
Questi	ons	21	22	23	24	25	
Answe	ers	d	O'c	c	d	c	
Questi	ons	26	27	28	29	30	
Answe	ers	C a	a	С	a	b	
Questi	ons	31	32	33	34	35	
Answe		c	d	С	a	b	
Questi	ons	36	37	38	39	40	
Answe	ers	b	c	c	b	a	

CHAPTER 5

ATOMIC STRUCTURE MCQs

Q.1 electric	Splitting field is	g of spectral lines when atoms	are sub	jected t	o strong
0100011	(a)		(b)	Stark e	ffect
	(c)	· · · · · · · · · · · · · · · · · · ·	(d)		ton effect
Q.2	` ′	locity of photon is		(O)	
	(a)	independent of its wavelength	_	10.	
	(b)	depends on its wavelength	1		
	(c)	equal to square of its amplitude	é,O,		
	(d)	depends on its source			
Q.3	, ,	ture of positive rays depend on			
	(a)	the nature of electrode			
	(b)	the nature of discharge tube			
	(c)	the nature of residual gas			
	(d)	all of the above			
Q.4	The wa	we number of the light emitted	by a ce	rtain so	urce is 2 x
106 m.		welength of this light is			
	(a)	500 nm	((b)	500 m
	(c)	200 nm	((d)	5 x 10–1 m
Q.5	Ruther	ford's model of atom failed bec	ause		
	(a) O	the atom did not have a nucleu	s and e	lectrons	S
	(b)	it did not account for the attract	tion be	tween p	protons and
neutroi	18				
914	(c)	it did account for the stability of	of the a	tom	
Up.	(d)	there is actually no space betw	een the	nucleu	s and the
electro	ns				
Q.6	Bohr's	model of atom is contradicted b	Эy		
	(a)	Planck's quantum theory			
	(b)	Pauli exclusion principle			
	(c)	Heisenberg uncertainty princip	ole		
		1			

	(d)	All of the above					
Q.7	` '	m number value for 2p	orbital	s are			
	(a)	n = 2, l = 1			n = 1,	l = 2	
	(c)	n = 1, l = 0		(d)	n=2,	l = 0	×
Q.8	In the g	ground state of an atom	, the ele	ectron is	present		VO.
	(a)	in the nucleus	(b)	in the s	second s	hell	3
	(c)	nearest to the nucleus	(d)	farthes	t from t	he nuclei	us
Q.9	When t	the 6d orbital is comp	lete the	entering	g electro	n goes ir	ıto
	(a)	7f	(b)	7s	.01		
	(c)	7p	(d)	7d			
Q.10	Orbital	s having same energy a	are calle	d			
	(a)	hybrid orbitals	(b)	valence	e orbital	ls	
	(c)	degenerate orbitals	(d)	d–orbi	tals		
Q.11	The e/r	n value for the positive	rays is	maximu	ım for		
	(a)	hydrogen	(b)	helium			
	(c)	nitrogen	(d)	oxygen	l		
Q.12	Neutro	n was discovered by C	hadwick	c in			
	(a)	1935	(b)	1930			
	(c)	1932	(d)	1934			
Q.13	The vel	locity of photon is					
	(a)	equal to square of its	amplitud	le			
	(b)	independent of its war	velength	1			
	(c)	Equal to its wave num	ıber				
	(d) N	equal to the velocity of	of light				
Q.14	Quantu	m number values for 3	p orbita	ls are			
	(a)	n = 0, l = 3	(b)	n = 3,	l = 1		
	(c)	n = 2, l = 1	(d)	n=1,	l=3		
Q.15	The rac	lius of first orbit of hyd	drogen a	itom			
	` '	0.329 Ao	(b)	0.429	9 Ao		
9	(c)	0.529 Ao	(d)	0.229	9 Ao		
Q.16	All ato	ms are principally com	posed o	f few fu	ndamen	ıtal partic	eles
which	are in ni	umber					
	(a)	2	(h)	3			

	(c)	4	(d)	5	
Q.17	Which	scientist gave the name	e of elec	tron to th	ne cathode rays
	(a)	Planck	(b)	Einsteir	1
	(c)	Stoney	(d)	Bohr	×
Q.18	The div	visibility of atom was s	howed b	Эy	1/3
	(a)	Stoney	(b)	J.J. Tho	mson
	(c)	Millikan	(d)	Rutherf	ord
Q.19	The nat	ture of cathode rays rer	nains th	e same ii	rrespective of the
materia	al used f	for			
	(a)	gas	(b)	cathode	de
	(c)	glass	(d)	electro	
Q.20	Mass o	f electron is		10.	
	(a)	9.1 x 10–31 kg	(b)	9.109 x	x 10–32 gm
	(c)	8.1 x 10–31 g	(d) (9.1 x 1	0–31 mg
Q.21	The cha	arge on an electron is	200		
	(a)	1.602 x 10–19 c	00	(b)	1.602 x 10–18 c
	(c)	1.602 x 10–19 c		(d)	1.602 x 10–21 c
Q.22	The cha	arge on the proton is			
	(a)	+ 1.602 x 10–19 c	(b)	zero	
	(c)	– 1.602 x 1019 c		(d)	1.602 x 10–19 c
Q.23	The cha	arge on the neutron is			
	(a)	1.602 x 10–19 c		(b)	zero
	(c)	– 1.602 x 10–19 с	(d)	+ 1.602	2 x 10–19 c
Q.24	The cal	culated e/m value of el	lectron i	S	
	(a) C	1.602 x 1019 c kg-1	(b)	1.758	8 x 10–11 c kg–1
	(c)	1.7588 x 10–13 c kg–	1 (d)	1.759	x 109 c kg
Q.25	The ma	ass of proton is			
446	(a)	9.11 x 10–31 kg		(b)	1.676 x 10–27 kg
K.	(c)	1.60 x 10–19 kg		(d)	1.675 x 10–27 kg
Q.26	The ma	ass of neutron is			
	(a)	1.675 x 10–27 kg	(b)	1.675 x	x 10–25 kg
	(c)	9.11 x 10–31 kg		(d)	1.60 x 10–19 kg
Q.27	The cha	arge on electron was de	etermine	ed by	

	(a)	J.J. Thomson	(b)	Millika	n
	(c)	Rutherford	(d)	Bohr	
Q.28	Alpha	particles are identical to)		
_	(a)	hydrogen atoms		(b)	helium atoms
	(c)	helium nuclei	(d)	fast mo	oving electrons
Q.29	Bomba	rdment of Beryllium w	ith alph	a partic	les generates
	(a)	proton	(b)	neutro	1
	(c)	electron		(d)	positron
Q.30	The col	lour of the glow produc	ced in th	e discha	arge tube depends
upon					
	(a)	gas	(b)	electro	des
	(c)	composition of gas	(d)	pressur	re
Q.31	When t	he pressure of the gas i	in disch	arge tub	e is reduced, which
of the f	followin	g becomes more promi	inent	3	
	(a)	gas glows	(b)	gas ior	nizes
	(c)	a discharge takes place	e	(d)	gas conducts
electric					
Q.32		ein discovered that besi			
of rays	are pro	duced in the discharge	tube wh	nich are	called
	(a)	alpha rays	(b)	beta ra	ys
	(c)	positive rays	, ,	gamma	•
Q.33	The e/n	n value for the positive	rays in	the disc	charge tube depends
upon		00/			
	(a)	nature of electrode use	2		
	(b)	nature of gas used			
\	(c)	composition of the gas	S		
	(d)	pressure			
Q.34	The dis	tance between the two	adjacen		_
>,	(a)	wave number	(b)	freque	•
	(c)	wavelength	(d)	amplitu	ude
Q.35		lue of Planck's constan			10 01 7
	(a)	6.625 x 10–34 cal	(b)		x 10–34 J sec
	(c)	6 625 v 10_3/1 kI	(4)	6 625	v 10_3/1 k cal

Q.36	In the I	Bohr's model of atom t	he elect	ron in an energy level emits
or abso	orbs ene	rgy only when it		
	(a)	remains in the same e	nergy le	vel
	(b)	dies out		×
	(c)	changes its energy lev	'el	ello.
	(d)	jumps away		
Q.37	The en	ergy associated with ar	n electro	n resolving in first orbit is
	(a)	$-2.178 \times 10-18 \text{ k J/m}$	nol	Total In this orbit is
	(b)	– 1313.31 k J/mol		.01
	(c)	-328.32 k J/mol		
	(d)	-82.08 k J/mol		
Q.38	The reg	gions of spectrum are		, or
	(a)	three	(b)	seven
	(c)	eight	(d)	five
Q.39	The dis	spersion of the compon	ents of	white light when it is passed
through	h prism	is called	200	
	(a)	rainbow	(b)	light pattern
	(c)	refraction	(d)	spectrum
Q.40	Which	of the following colou	rs has th	ne shortest wavelength in
the visi	ible spe	ctrum of light		
	(a)	red	(b)	blue
	(c)	violet	(d)	green
Q.41	Which	of the following colou	rs has th	e longest wavelength in the
visible	spectru	m of light		
	(a) C	red	(b)	blue
4	(c)	violet	(d)	green
Q.42	A spec	trum containing wavel	ength of	all wavelengths is called
SY's	(a)	continuous	(b)	discontinuous
No	(c)	line	(d)	atomic
Q.43	A spec	trum showing only cer	tain colo	ours of light is called
_	(a)	continuous	(b)	line
	(c)	discontinuous	(d)	band
0.44	The wa	velength range of visil	ole speci	trum is

	(a)	400–750 nm	(b)	300–400 nm
	(c)	350–600 nm	(d)	200–400 nm
Q.45	The sp	ectral lines of Lyman se	eries (uv	region) are produced
		jumps from higher orb		×
	(a)	1st orbit	(b)	2nd orbit
	(c)	3rd orbit	(d)	4th orbit
Q.46	The sp	ectral lines of Balmer s	eries (vi	isible region) are produced
when o	electron	jumps from higher orb	it to	Cil
	(a)	1st orbit	(b)	2nd orbit
	(c)	3rd orbit	(d)	4th orbit
Q.47	The sp	ectral lines of Paschen	series (v	visible region) are produced
when o	electron	jumps from higher orb	it to	
	(a)	1st orbit	(b)	2nd orbit
	(c)	3rd orbit	(d)	4th orbit
Q.48	The sp	ectral lines of Bracket s	series (v	isible region) are produced
when o	electron	jumps from higher orb	it to	
	(a)	1st orbit	(b)	2nd orbit
	(c)	3rd orbit	(d)	4th orbit
Q.49	A dual	character of matter par	ticles in	motion was postulated by
	(a)	De-Broglie	(b)	Planck
	(c)	Einstein	(d)	Schrodinger
Q.50	If an el	ectron is moving with	a veloci	ty of 2.188 x 106 m/s then
its way	velength			
	(a)	0.33 x 106 nm	(b)	0.33 x 10–2 nm
	(c) C	0.33 nm	(d)	0.22 nm
Q.51	If a sto	ne of 1gm is many with	n a velo	city of 10m/s then its
wavel	ength wi	ill be		
111	(a)	6.65 x 10–30 m	(b)	6.65 x 10–25 m
K.	(c)	6.65 x 10–28 m	(d)	6.65 x 10–12 m
Q.52	The sp	ace around the nucleus	where t	he probability of finding
the ele	ectron is	maximum is called		
	(a)	an orbital	(b)	an orbit
	(c)	energy level	(d)	a shell

Q.53	Which	n orbital has dumb–bel	l shape	
	(a)	s-orbital	(b)	p–orbital
	(c)	d-orbital	(d)	f–orbital
Q.54	Which	of the following quan	ntum nur	nbers describes energy of ar
electro	n in an	atom		_\2
	(a)	principal quantum	(b)	azimuthal quantum
	(c)	magnetic quantum	(d)	spin quantum
Q.55	Which	of the following quan	ntum nur	nbers describes shape of an
electro	n in an	atom		.01
	(a)	principal quantum	(b)	azimuthal quantum
	(c)	magnetic quantum	(d)	spin quantum
Q.56	The de	egenerate orbital in p-	subshell	is
	(a)	2	(b)	3
	(c)	5	(d)	0 7
Q.57	When	4p orbital is complete	the ente	ring electron goes into
	(a)	4d	(b)	4f
	(c)	5s	(d)	5p
Q.58	x + l	value for 3d will be		
	(a)	3	(b)	4
	(c)	5	(d)	6
Q.59	Maxin	num number of electro	ons in 3f	orbitals is
	(a)	2	(b)	zero
	(c)	60	(d)	14
Q.60	Maxin	num number of electro	ons in M	–shell is
	(a)	2	(b)	8
	(c)	18	(d)	32
Q.61	An orl	bital can have maximu	m electr	ons
11/1	(a)	2	(b)	8
	(c)	18	(d)	6
Q.62	n+l	value for 4f will		
	(a)	2	(b)	5
	(c)	7	(d)	9

Q.63	When	a spectrum of light is f	formed b	by the radiation given off by
a subst	tance it	is called		
	(a)	line spectrum	(b)	continuous spectrum
	(c)	emission spectrum	(d)	absorption spectrum
Q.64	Neutro	on was discovered by		1,0
	(a)	Chadwick	(b)	Bohr
	(c)	J.J. Thomson	(d)	Einstein
Q.65 they	Cathoo	le rays can drive a sma	ıll paddl	e wheel which shows that
-	(a)	are positively charged	d	
	(b)	possess momentum		
	(c)	do not possess mome	ntum	
	(d)	none of these		~ 0
Q.66	Slow n	neutrons are generally 1	more eff	ective than fastness for the
purpos	se of		3	,
	(a)	effusion	(b)	fission
	(c)	penetration	(d)	absorption
Q.67	The wa	avelength associated w	ith the i	noving stone
	(a)	can be measured by r	nany me	ethods
	(b)	cannot be measured b	y any n	nethod
	(c)	can be measure by so	me met	hod
	(d)	none of these		
Q.68	Radius	s of orbit of an electron	and vel	locity of electron are
	(a)	directly proportional		
	(b)	inversely proportiona	al to eacl	h other
	(c)	independent to each of	other	
	(d)	none of these		
Q.69	The va	llues of magnetic quan	tum nun	nber give us information
about 1	the num	ber of orbitals in a		
)	(a)	small shell	(b)	orbit
	(c)	subshell	(d)	none of these
Q.70	Which	of the following terms	s are use	ed for the number of positive
charge	s on the	e nucleus of an atom		

	(a)	atomic number	(b)	atomic mass
	(c)	nuclear charge	(d)	atomic charge
Q.71	The un	certainty principle was		y
_	(a)	de Broglie	(b)	Heinsenberg
	(c)	Einstein	(d)	Schrodinger
Q.72	When a	a pressure in a discharg	e tube is	s reduced, which of the
		nomenon becomes very		ent
	(a)	gas conducts electricit	_	s reduced, which of the lent
	(b)	a discharge takes place	e	
	(c)	gas ionizes		, Oile
	(d)	gas glows		
Q.73	Atom b	omb is based on the pr	inciple of	of
	(a)	nuclear fusion		
	(b)	nuclear fission	60	
	(c)	fusion and fission both	1 25	
	(d)	radioactivity	0	
Q.74	A spin	ning electron creates		
	(a)	magnetic field	(b)	electric field
	(c)	quantum field	(d)	none of these
Q.75	The vo	lume of space in which	there is	95% chance of finding an
electro	n is	-0//		
	(a)	orbit	(b)	atomic orbital
	(c)	degenerate orbital	(d)	quantized orbital
Q.76	Planck	's equation is		_
	(a) C	E = mc2	(b)	E = hv
	(c)	E = hv2		(d) $E = mc$
Q.77	In an at	tom, the electrons		
YYY.	*	are stationary in various	us energ	y levels
K.	(b)	are distributed in three	e dimens	sional charge cloud around
the nuc	eleus			
	(c)	embedded in space arc	ound the	nucleus
	(d)	revolve around the nuc	cleus at	random
Q.78	The ma	ass number of an eleme	nt is equ	al to

- (a) number of electrons in an atom
- (b) number of protons and neutrons in the nucleus
- (c) number of protons in the nucleus
- (d) number of neutrons in the nucleus
- Q.79 The energy of bounded electron in H atom is
 - (a) positive

(b) negative

9A Najejiaj

(c) zero

- (d) none of these
- Q.80 Quantum number which has symbol "n" is called
 - (a) principal quantum
- (b) Azimuthal quantum
- (c) Spin quantum
- (d) Magnetic quantum

ANSWERS

				ALIDI	TITED,
Question	1	2	3	4	5
S					0
Answers	b	a	c	a	O C
Question	6	7	8	9	10
S				MIC	
Answers	c	a	c	c	c
Question	11	12	13	14	15
S			$\mathcal{O}_{I_{\alpha}}$		
Answers	a	c_C	d	b	c
Question	16	17	18	19	20
S	C	0,			
Answers	bO	С	b	d	a
Question	\mathcal{C}^{21}	22	23	24	25
S)				
Answers	c	a	b	b	b
Question	26	27	28	29	30
S					
Answers	a	b	c	b	c
Question	31	32	33	34	35
S					
Answers	c	c	b	c	b

Question	36	37	38	39	40	
S Answers	c	b	c	d	c	
					15	
Question s	41	42	43	44	45	Maile
Answers	a	a	b	a	a	17
Question s	46	47	48	49	50	Sillon
Answers	b	С	d	a	С	.01
Question s	51	52	53	54	55	or More Study Mate
Answers	a	a	b	a	b	
Question s	56	57	58	59	60	
Answers	b	С	С	b o	O C	
Question s	61	62	63	.64	65	
Answers	a	С	c	a	b	
Question s	66	67	68	69	70	
Answers	b	b	b	С	a	
Question s	71	72	73	74	75	
Answers	ЬО	b	b	a	b	
Question s	C 76	77	78	79	80	
Answers	b	b	b	b	a	
SKILL						

CHAPTER 6

CHEMICAL BONDING MCQs

		X.						
Q.1	An ion	ic compound A+ B- is most likely to be formed when						
	(a)	The ionization energy of A is high and electron affinity						
of B is	low	103						
	(b)	The ionization energy of A is low and electron affinity of						
B is hi	gh							
	(c)	Both the ionization energy and electron affinity of B are						
high								
	(d)	Both the ionization energy of A and electron affinity of B						
are lov	V							
Q.2	The nu	mber of bonds in nitrogen molecules						
	(a)	one σ and one π						
	(b)	one σ and two π						
	(c)	three sigma only						
	(d)	two σ and one π						
Q.3	Which	of the following statements is not correct regarding						
bondin		cular orbitals?						
	(a)	bonding molecular orbitals possess less energy than						
atomic	orbitals	s from which they are formed						
	(b)	bonding molecular orbitals have low electron density						
betwee	en the tw	o nuclei						
	(c) (c)	every electron in the bonding molecular orbitals						
contrib	outes to	the attraction between atoms						
	(d)	bonding molecular orbitals are formed when the electron						
waves	undergo	constructive interference						
Q.4	Which	of the following molecules has zero dipole moment?						
	(a)	NH3 (b) CHCl3						
	(c)	H2O (d) BF3						
Q.5	Which	of the hydrogen halides has the highest percentage of						
ionic c	haracter	•						

	(a)	HF	(b)	HBr
	(c)	HC1	(d)	HI
Q.6	Which	of the following molec	cules ha	s unpaired electrons in anti-
_		cular orbitals		*
	(a)	O2	(b)	N2 F2 bonding only? NaCl
	(c)	Br2	(d)	F2
Q.7	` '	of the following involve	ve ionic	bonding only?
	(a)	Li3N	(b)	NaCl
	(c)	NC13	(d)	0 02
Q.8	` '	of the following involve	ve coval	lent bonding only?
	(a)	KF	(b)	KCl
	(c)	CH4	(d)	MgCl2
Q.9	• •	of the following molec	cules ha	s a net dipole moment?
	(a)	CO2	(b)	
	(c)	SO2	~(d) CCl4
Q.10	H2S ha	as a net dipole moment	while I	BeF2 has zero dipole
mome	nt, beca	use		
	(a)	H2S molecule is linear	r while	BeF2 is angular
	(b)	H2S molecule is angu	ılar, wh	ile BeF2 molecule is linear
	(c)	Fluorine has more ele	ctroneg	ativity than S
	(d)	Be is more electrone	gative tl	nan S
Q.11	Which	of the following ions h	nas large	er ionic radius?
	(a)	Na+		(b) K+
	(c)	Mg2+	(d)) A13+
Q.12	Which	of the following bonds	s is least	t polar?
	(a)	H–Se	(b)	P–Cl
*	(c)	H–Cl	(d)	N-Cl
Q.13	Which	one has the least bond	angle?	
Kir.	(a)	NH3	(b)	CH4
3	(c)	H2O	(d)	BF3
Q.14	Coordi	inate covalent bonds ar	e forme	d by
	(a)	sharing of electrons		
	(h)	donation of electrons		

	(c)	transference of electron	ons			
	(d)	none of these				
Q.15	Which	of the following mole	cules w	ould	be expected to have	
zero d	ipole m	oment?			_	
	(a)	H2S	(b)	PF	13	-
	(c)	TeF6	(d)	H2O	
Q.16	The bo	ond formed between the	e eleme	ents o	f low ionization energy	
and el	ements	of high electron affinit	y is		City	
	(a)	ionic	(b)	cov	alent	
	(c)	metallic		(d)	coordinate	
Q.17	The sid	de ways overlap of two	–p orbi	itals t	o form a bond is called	
	(a)	sigma bond	(b)	pi ((π) bond	
	(c)	ionic bond	(d)	cov	alent bond	
Q.18	The he	ead overlap of p-orbita	ls of tw	o ato	ms give rise to bond	
called			3			
	(a)	sigma bond	(b)	pi ((π) bond	
	(c)	ionic bond	(d)	cov	alent bond	
Q.19	Which	element would be the	most el	lectro	negative element with	
	(a)	high ionization energ	y (IE) a	and lo	w electron affinity	
(EA)		$\mathcal{O}_{I_{\alpha}}$				
	(b)	low ionization energy	y (IE) aı	nd hi	gh electron affinity	
(EA)		1				
	(c)	low ionization energy	and lo	w ele	ectron affinity	
	(d)	high ionization energ	•	_	•	
Q.20	\sim	element would be the			_	
	(a)	high I.E. and low E.A			_	
	(c)	low I.E. and low E.A		_		
Q.21		of the following subst	ances h	as the	e least ionic character is	n
its bor	nd?					
	(a)	CCl4	(b	*	KCl	
	(c)	BeCl2	(d)	,	MgCl2	
O.22	Which	of the following best of	describe	es ion	ization energy?	

	(a)	energy needed to remo	ove the	most loosely bound electron				
from it	s groun	d state						
	(b)	it decreases from left	to right	across a period				
	(c)	it increases down the	periodio	table x- + energy ristics is not usually				
	(d)	it is represented by x	+ e	x-+ energy				
Q.23	Which	one of the following cl	naractei	ristics is not usually				
		onic substances		197				
	(a)	high melting point	(b)	deform when struck				
	(c)	crystalline in solid sta	te	.61				
	(d)	well defined three din	nension	al structure				
Q.24	Which	of the following bond:	is less p	oolar?				
	(a)	B-Cl	(b)	C-Cl				
	(c)	H–I	(d)	C-I				
Q.25	Which	type of the orbital hybr	ridizati	on and geometry is used by				
the cen	tral ato	m of NH2-?	3					
	(a)	sp2 hybridization and	trigona	ıl planar				
	(b)	sp hybridization and t	etrahed	ral geometry				
	(c)							
	(d)	sp3 hybridization and	tetrahe	dral geometry				
Q.26	Which	of the following compo	ounds h	nas most likely been formed				
by cov	alent bo	onding of atoms						
	(a)	CaF2	(b)) MgO				
	(c)	SiH4	(d)	NaCl				
Q.27			which	has bonds formed by an				
overlap	of spa	nd p-orbitals						
	(a)	BF3	(b)) BeCl2				
Ċ	(c)	NH3	(d)) H2O				
Q.28	The mo	ost electronegative of th	nese gro	oup I element is				
No.	(a)	Na	(b)	K				
	(c)	Li	(d)	Cs				
Q.29	The typ	e of bonding in HBr is	3					
	(a)	ionic	(b)	polar covalent				
	(c)	non-polar covalent	(d)	coordinate covalent				

Q.30	Which	of the following statement is not correct						
	(a)	sigma bond is weaker than a pi bond						
	(b)	sigma bond is stronger than a pi bond						
	(c)	double bond is stronge		•	×			
	(d)	double bond is shorter		•	Non			
Q.31	` ,	of the following molec		a nyramidal	structure?			
	(a)	CH4	(b)	NH3	16,			
	(c)	H2O	(d)	NH3 C2H4 104.50 1200	Cillia			
Q.32	The bo	nd angle in water is	, ,	0				
_	(a)	109–5o	(b)	104.50	,			
	(c)	107.0o	(d)	120o				
Q.33	During	the formation of chem	ical bon	d, the potenti	al energy of			
the sys	tem			₹ 0 -				
	(a)	decreases	(b)	increases				
	(c)	does not change	3	(d) none	of these			
Q.34	H2O m	olecule has	00					
	(a)	no lone pair	(b)	one lone pair	C			
	(c)	two lone pairs	(d)	none of thes	e			
Q.35	NH3 m	olecule has						
	(a)	no lone pair	(b)	one lone pair	C			
	(c)	two lone pairs	(d)	three lone pa	airs			
Q.36	In NH	3 the covalent bond fo	rmed ar	e due to				
	(a)	s–sp overlap	(b)	s-sp2 overla	p			
	(c) N	s-sp3 overlap	(d)	sp2–sp2 ove	erlap			
Q.37	Which	of the following is larg	gest aton	1				
	(a)	Mg	(b)	Be				
•	(c)	Mg Sr	(d)	Ca				
Q.38	As com	npared to covalent com	pounds,	ionic compo	unds generally			
have								
	(a)	low melting points and	d low bo	oiling points				
	(b)	low melting points an	d high b	oiling points				
	(c)	high melting points an	nd high l	oiling points				
	(d)	high melting points ar	nd low b	oiling points				

Q.39 called					
	(a)	force of attraction	(b)	electrostatic force	
		bond	, ,	chemical bond	
Q.40	` '		` '	formed between alkali	
metals	and hal	ogens			
	(a)	ionic	(b)	covalent bond	
	(c)	metallic bond	(d)	coordinate covalent bond	
Q.41	The bo	nd formed between the	atoms l	by mutual sharing of	
electro	ns is			, Cie	
	(a)	ionic	(b)	coordinate covalent bond	
	(c)	covalent	(d)	metallic	
Q.42	A chen	nical bond formed betw	een two	o similar atoms is purely	
	(a)	ionic	(b)	covalent	
	(c)	metallic	3	(d) coordinate	
Q.43	On the	basis of VSEPR model	the geo	ometry of BeCl2 is	
	(a)	linear	(b)	trigonal	
	(c)	tetrahedral	(d)	angular	
Q.44	On the	basis of VSEPR theory	, a mole	ecule with three bond pair	
and no	lone pa	ir of electrons will hav	e a struc	eture	
	(a)	linear	(b)	trigonal planar	
	(c)	tetrahedral	(d)	trigonal pyramidal	
Q.45	The ge	ometry of NH3 on the l	basis of	VSEPR model is	
	(a) \(\sigma\)	trigonal planar	(b)	trigonal pyramidal	
	(c) ©	tetrahedral	(d)	linear	
Q.46				hybridization is considered	
•	(a)	VSEPR	(b)	Lewis	
974	(c)	molecular orbital	(d)	valence bond	
Q.47	The an	gle between 3 sp2 hybr	id orbita	al is	
3	(a)	90o	(b)		
	(c)	130o	(d)	180o	
Q.48	` '	hybridized "p" orbital i	in sp2 h	ybridization is	
-		parallel to sp2	_		

	(c)	perpendicular to sp2 o	rbitals		
	(d)	out of plane			
Q.49	Which	of the following theori	es gives	the idea	a of delocalization
of elec	trons	_			×e'
	(a)	Lewis theory	, ,	VSEPF	
	(c)	valence bond theory	(d)	molecu	lar orbital theory
Q.50	The tan	dency of an atom to at	tract, a s	shared el	lectron pair towards
itself is	called				CXU.
	(a)	electron affinity		(b)	electronegativity
	(c)	dipole moment	(d)	ionizat	ion potential
Q.51	Energy	needed to remove an e	electron		-
called				10	
	(a)	electron affinity		(b)	ionization energy
	(c)	lattice energy	(d) 2		negativity
Q.52	` '	having partial positive			
	(a)	ionic	(b)	covalen	
	(c)	polar covalent	(d)		olar covalent
Q.53	` '	formed by the linear of	` ′	_	
((a)	sigma	(b)	ionic	
	(c)	pi	(d)	polar	
Q.54	, ,	of the following eleme	nts is th	1	electronegative
	(a)	Li	(b)	F	C
	(c)	00	(d)	Cl	
Q.55	` '	ovalent compounds dis	` /	n water d	lue to
	(a) C	hydrolysis	(b)	hydrati	
	(c)	hydrogen bonding	(d)	•	c bonding
Q.56	Which	of the following compo			_
point?	• • • • • • • • • • • • • • • • • • • •				8
P offers	(a)	PH3	(b)	AS	Н3
3	(c)	NH3	(d)	SbI	
Q.57	` '	of the following molec	` /		
~ ,	(a)	NH4Cl	(b)	NaCl	
	(c)	HC1	(d)	AlCl3	

Q.58	The ha	lf of the difference b	oetween th	ne number of electrons in
bondir	ng MO a	and antibonding MO	is called	
	(a)	molecule order	(b)	bond order
	(c)	proton order	(d)	electron order
Q.59	The bo	ond order for He2 mo		
	(a)	zero	(b)	
	(c)	1	(d)	2
Q.60	The bo	ond order for H2 is		2 1.5 1 of More Study
	(a)	zero	(b)	0,
	(c)	1	(d)	1.5
Q.61	The bo	ond order in N2 mole	ecule is	
	(a)	zero	(b)	1
	(c)	2	(d)	3
Q.62	The bo	ond order in O2 mole	ecule is	3
	(a)	1	(b)	2
	(c)	3	(d)	zero
Q.63	Which	one of the following	g is diama	gnetic
	(a)	B2	(t	c) C2
	(c)	N2	(d) O2-
Q.64	Which	one of the following	g molecule	e is paramagnetic
	(a)	B2	(t	c) C2
	(c)	N2	(d) F2
Q.65	Which	of the following ior	ns is diama	agnetic
	(a)	(Q)	(b)	0
	(c) C	O	(d) N	1
Q.66	Pi bon	d consists of two reg	gions of el	ectron cloud density
·	(a)	along the bond axis	S	
YYY.	(b)	along and perpend	icular to b	ond axis
K.	(c)	above and below th	ne bond ax	is
5	(d)	none of these		
Q.67	Sigma	bond consists of one	e region of	f electron density
	(a)	along the bond axis	_	-
	(b)	along and perpend	icular to b	ond axis

	(c)	above and below the bond ax	is	
	(d)	none of these		
Q.68	The ele	ectron cloud density is symmet	crical alo	ong the bond axis in
	(a)	sigma bond (b)	pi bon	d
	(c)	both sigma and pi bond		2/10
	(d)	neither sigma nor pi bond		11/4
Q.69	The ele	ectron cloud density is not sym	metrical	l along the bond
axis in				CHU
	(a)	sigma bond (b)	pi bon	d along the bond
	(c)	both sigma and pi bond	_	
	(d)	neither sigma nor pi bond	-	
Q.70	Covale	nt bonds are	. ~	
	(a)	rigid and directional	60	
	(b)	rigid and non-directional	ું હ	
	(c)	neither rigid nor directional		
	(d)	non-rigid and directional		
Q.71	Ionic b	onds are		
_	(a)	rigid and directional		
	(b)	rigid and non-directional		
	(c)	non rigid non directional		
	(d)	non-rigid and directional		
Q.72	Which	of the following statements is	correct	regarding the
covale	nt comp			
	_	covalent compounds do not e	xhibit is	omerism
	(b) ©	covalent compounds exhibit i	isomeris	m
	(c)	covalent compounds are solul		
•	(d)	covalent compounds are inso		
Q.73	The C-	-C bond length in ethane (C2H		1
Wr.	(a)	154 pm	(b)	133 pm
3	(c)	120 pm	(d)	105 pm
Q.74	The C-	-C bond length in ethene (C2H	(4) is	•
_	(a)	154 pm	(b)	133 pm
	(c)	120 pm	(d)	105 pm
Q.75	The C-	-C bond length in ethyne is		-

	(a)	154 pm		((b)	133 pm	
	(c)	120 pm		((d)	105 pm	
Q.76	The ato	omic radii of the eleme	nts ha	ave	a gener		
fluctua	ting per	iodically throughout th	ne			X	
	(a)	group	(b)		period	Maj	
	(c)	periodic table	(d)		series		
Q.77	Which	of the following atom	has tl	ne s	hortest	atomic radius	
	(a)	N	(b)		F	CKU	
	(c)	0	(d)		В		
Q.78	The hal	If of the single bond le	ngth 1	betv	ween tw	o atoms in a	
molecu	le is cal	lled			6		
	(a)	ionic radius of an eler	nent		10.	,	
	(b)	covalent radius of an	eleme	ent '	<		
	(c)	both ionic and covaler	nt	2	,		
	(d)	none of these	~?				
Q.79	Octet r	ule is not followed in t	he for	rma	tion of		
_	(a)	CH4		(b)	NF	3	
	(c)	BC13	((d)	H2	O	
Q.80	Select t	the atom with the large	st ior	iiza	tion ene	ergy in the	
followi	ing aton	1.7					
	(a)	N O	(b)		P		
	(c)	AS	(d)		Sb		
Q.81	Select t	the largest atom in the	follov	win	g atoms	•	
	(a) v		(b)		S		
	(c) <	Se	(d)		Te		
Q.82	_ \	of the following group	, ,			the average has the	
highest	highest ionization energies						
914	(a)	IA	(b)		IIIA		
Nº	(c)	IVA	(d)		VIIIA		
Q.83	Molecu	ılar orbital theory has					
	(a)	the superiority over th	ie VB	3 the	eory		
	(b)	the inferiority over the			•		
	(c)	neither superiority nor			•	r VB theory	

	(d)	none of these			
Q.84	` /	nd between H–H is			
Q.04			l botavoo	n U Cl	
	(a)	stronger than the bond			
	(b)	weaker than the bond			
	(c)	neither stronger nor w	eaker th	an the c	ond between H-C
0.05	(d)	none of these			
_		ch of the following mol	lecules, 1	the valu	e of bond order in
maxim					Si
	(a)	H2	(b)	O2	.(2)
	(c)	N2	(d)	Cl2	201
Q.86	When t	the S-character of hybr	ridized o		
angle				10	
	(a)	decreases	(b)	increas	es
	(c)	does not change	6	(d)	becomes zero
Q.87	One of	the causes of reactions	s is that t	he syste	ems attains the
energy	state w	hich is of	200		
	(a)	higher in energy	(b)	lower	in energy
	(c)	balanced in energy	(d)	equal i	n energy
Q.88	The inc	crease in the bond energ		_	
	(a)	electronegativity			ion energy
	(c)	polarity	` ,	(d)	symmetry
Q.89	` ,	larity of a molecule is	expresse	` /	J
	(a)	bond strength	(b)	-	moment
	` '	bond length	(d)	shape	
Q.90		moment of H2O is	()	1	
	(a)	1.85	(b)	1.82	
•	(c)	1.87	(d)	1.83	
Qx.	*(-)	,	(-)		
Nor.		AN	ISWER	\mathbf{S}	

Question	1	2	3	4	5
S					
Answers	b	b	b	d	a
Question	6	7	8	9	10

S					b 15 c 20 c 25 d 30
Answers	a	a	c	c	b
Question	11	12	13	14	15
S					
Answers	b	d	С	b	c
Question	16	17	18	19	20
S					
Answers	a	b	a	d	c
Question	21	22	23	24	25
S					
Answers	a	a	b	d	d
Question	26	27	28	29	30
S					X
Answers	С	b	С	b	cb)
Question	31	32	33	34 0	35
S				:HNC	,
Answers	b	b	a	JC.	b
Question	36	37	38	39	40
S			1400		
Answers	С	b	Cc	d	a
Question	41	42	43	44	45
S		X			
Answers	c C	Ъ	a	b	b
Question	46	47	48	49	50
S	Co				
Answers	d	b	d	d	b
Question	51	52	53	54	55
S					
Answers	b	b	a	b	С
Question	56	57	58	59	60
S					
Answers	С	a	b	a	b
Question	61	62	63	64	65

1st year n0tes chemistry new

S Answers d b d a c Question 66 67 68 69 70 Answers c a a b a Question 71 72 73 74 75 S Answers c d b c Question 76 77 78 79 80 S 81 82 83 84 85 Answers d d a b c Question 86 87 88 89 90 S Answers a b c b a
S Answers d d a b c Question 86 87 88 89 90
S Answers d d a b c Question 86 87 88 89 90
S Answers d d a b c Question 86 87 88 89 90
S Answers d d a b c Question 86 87 88 89 90
S Answers d d a b c Question 86 87 88 89 90
S Answers d d a b c Question 86 87 88 89 90
S Answers d d a b c Question 86 87 88 89 90
S Answers d d a b c Question 86 87 88 89 90
S Answers d d a b c Question 86 87 88 89 90
S Answers d d a b c Question 86 87 88 89 90
S Answers d d a b c Question 86 87 88 89 90
Question 86 87 88 89 90
Question 86 87 88 89 90
Answers a b c b a
1486
Answers a b c wb a

CHAPTER 7

(a)

(c)

qp = qv

qp > qv

THERMOCHEMISTRY MCQs

Q.1	Which	of the following statements is	contrary	to the f	irst law of			
_		G	contrary	to the i	nst law or			
thermo	modynamics? (a) energy can neither be created nor destroyed							
	(b)	one form of energy can be tra			aguivalent			
020112	` /		iisiciicu	into an	equivalent			
amoun		er kinds of energy	114					
•, ,1	(c) in an adiabatic process, the work done is independent of							
its path			X.	_				
	(d) continuous production of mechanical work with out							
equiva		ount of heat is possible						
Q.2	The change in heat energy of a chemical reaction at constant							
temper		d pressure is called						
	(a)	enthalpy change		(b)	bond			
energy		C						
	(c)	heat of sublimation	(d)	interna	l energy			
change	,							
0.3	For the	reaction NaOH + HCl → NaO	C1 + H20	O. the c	hange in			
	y is call			-,	8			
o a a variable	•	heat of reaction		(b)	heat of			
format	` '	Jour of reneries		(0)	11000 01			
TOTTICE	()	heat of neutralization	(d)	heat of	combustion			
0.4	1.7.	is equivalent to	(u)	neat or	Combustion			
Q.4	A*	-	(l-)	11 O1 T				
KIK	` /	0.4184 J	` '	41.84 J				
	` ,	4.184 J	(d)	418.4 J	_			
_	For a given process, the heat change at pressure (qp) and constant							
volume	e (qv) ar	e related to each other as						

(b)

(d)

qp < qv

qp =

Q.6 brough known	t about	•		ction is same whether. It is in one or several steps. It is				
		Henry's law	(b)	Joule's principle				
	, ,	Hess's law	(d)					
energy	(•)	11000 0 10000	(4)	2411 01 0011301 (411311 [8])				
Q.7	Enthalr	ov of neutralisation of a	all the st	rong acids and strong bases				
_	_	alue because						
	(a) neutralisation leads to the formation of salt and H2O							
	(b)			. (V)				
	(c)	acids always give rise						
furnish	OH– ic	• •						
	(d)	the net chemical chan	ge invol	ve the combination of H+				
and OF	I– ions	to form water	6					
Q.8								
in the a	ir. The	temperature of the surn	ounding	gair				
(a)	remain	s constant	(b)	increase				
(c)	decreas	se	(d)	remain unchanged				
Q.9	In endo	othermic reactions, the	heat cor	ntent of the				
(a)	produc	ts is more than that of	reactant	S				
(b)	reactar	nts is more than that of	product	S				
(c)	both (a	and (b)						
Q.10	Hess's	law is also called						
(a)	first la	w of thermodynamics						
(b)	second	law of thermodynami	cs					
(c)	first la	w of thermochemistry						
(d)	second	l law of thermochemist	ry					
Q.11	Pressur	e – volume work is						
(a)	P D v		(b)	Fxd				
(c)	hΔv		(d)	H + p v				
Q.12	Kinetic	energy of molecules i	s due to					
		(a) rotational of	energy	(b)				
	vib	rational energy						

	(c)	translational energy		(d)	all of these		
Q.13	` '	ndition for standard en	thalpy c	` ,	S		
	(a)	1 atm 30oC	10	(b)	1 atm 0oC		
	(c)	1 atm 25oC		(d)	760 atm 25oC		
Q.14		it of enthalpy change i	S	, ,	18		
(a)	calorie		(b)	joule	M.		
(c)	volt		(d)	coulon	nb		
, ,	The sur	m of all kinds of a syst	em is io	ns or mo	olecules of a system		
is		·					
(a)	vibratio	onal energy	(b)	potent	ial energy		
(c)	kinetic	energy	(d)	interna	al energy		
Q.16	An end	othermic reaction is or	ne is wh	ich			
(a)	enthalp	by of reactants and pro-	ducts ar	e same			
(b)	enthalp	by of products is greate	er than r	eactant			
(c)	enthalpy of products is lesser than reactants						
(d)	heat is	evolved from system.	100				
Q.17	Bomb o	calorimeter is used to d	letermin	ne			
(a)	enthalp	y of solution					
(b)	enthalp	by of atomization					
(c)	enthalp	y of combustion					
(d)	enthalp	by of neutralization					
Q.18	Glass c	alorimeter is used to d	etermin	e			
	(a)	enthalpy of combustic	on				
	(b) N	enthalpy of reaction					
	(c) (c)	pressure-volume wor	k				
	(d)	none of above					
Q.19	Born-H	Haber cycle is used to d	calculate	e			
YY	(a)	enthalpy of combustion	on				
Kin	(b)	lattice energy of ionic	camps				
0	(c)	both a and b					
	(d)	none of above					
Q.20	Born-F	Haber cycle is an applic	cation of	f			
	(a)	first law of thermody	namics				

	(b)	second law of	thermod	ynamics					
	(c)	first law of the	rmocher	nistry					
	(d) Hess's law								
Q.21	An exothermic reaction is one in which enthalpy of reactants and products are same heat is absorbed by system enthalpy of products is greater than reactants enthalpy of reactants is lesser than products A substance under observation during an experiment								
(a)	enthalp	y of reactants a	nd prod	ucts are same	No				
(b)	heat is absorbed by system								
(c)	enthalpy of products is greater than reactants								
(d)	enthalp	by of reactants is	s lesser	than products	Cil				
Q.22	A subst	ance under obs	ervation	during an expe	eriment				
(a)	surrour	nding	(b)	system					
(c)	state fu	nction	(d)	universe					
Q.23	Enthalp	y of neutralizat	tion is m	erely	•				
	(a)	heat of solution	1	(b)	heat of atomization				
	(c)	heat of combus	stion	CO					
	(d)	heat of formati	on of H	200					
Q.24	Lattice	energy of NaCl		10					
	(a)	+500 kJ	NIL	(b) -344	kJ				
	(c)	– 776 kJ	Ch.	(d) -4111	κJ				
Q.25	Standar	d enthalpy of A	1203 ca	nnot be measu	red because				
(a)	it does	not catch fire							
(b)	it react	s with CO2							
(c)	protect	ive layer of oxi	de cover	the surface					
(d)	none o	f above							
Q.26	Ammor	nium chloride d	issolve i	in water this pr	ocess is				
(a)	endoth	ermic process	(b)	exothermic pr	ocess				
(c)	simple	hydration	(d)	none of above					
	First la	w of thermodyn	amics is	s represented as	S				
(a)	DE =	q + R T	(b)	DE = q + D	P				
(c)	$\Delta E =$	$q + \Delta P$	(d)	$\Delta E = q + w$					
Q.28	Pumpin	ng of water uphi	ill is						
(a)	spontai	neous reaction	(b)	exothermic rea	action				
(c)	non-sp	ontaneous react	tion						
(d)	endoth	ermic							

ANSWERS

	Q.29	In exothermic re	eaction	D H is				
	(a)	positive		(b)	negati	ive		
	(c)	zero		(d)	none o	f above		
								×0,
				ANSW	VERS			No
		Question	1	2	3	4	5	udy Material
		S						10,
		Answers	D	a	С	c	CC	
		Question	6	7	8	9	10	
		S					0	
		Answers	c	d	С	c	D	
		Question	11	12	13	14	15	
		S				X		
		Answers	a	d	c 5	a	d	
		Question	16	17	18	19	20	
		S		. X	0,			
		Answers	b	CM	b	b	d	
		Question	21	22	23	24	25	
		S	146	5				
		Answers	C	b	d	c	С	
		Question	2 6	27	28	29		
		S						
		Answers	a	d	b	b		
		-60						
		.62						
	•							
	914	*						
	Kir.							
. \	ે							
	-	Allsweis						
▼								

CHAPTER 8

CHEMICAL EQUILIBRIUM MCQs

Q.1	A react	ion is reversible becau	se	
	(a)		(b)	products are reactive
	(c)	products are stable	(d)	reactants are stable
Q.2	A large	value of Kc means that	, ,	
	(a)	less reactants and mor	_	(7)
	(b)	more reactants and les	-	A () '
	(c)	same amount	•	
	(d)	none		KO!
Q.3	Extent	to $H2 + I2 \rightarrow 2HI$ ca	an be inc	
	(a)	increasing pressure	(b)	increasing product
	(c)	increasing temp	78°	(d) adding a catalyst
Q.4	Strengt	h of an acid can be det	ermined	by
	(a)	PKa PKa	(b)	PKp
	(c)	POH	(d)	PKw
Q.5	In an ex	xothermic reversible re	action in	ncrease in temp shifts the
equilib	rium to			
	(a)	reactant side	(b)	product side
	(c)	remains unchanged	(d)	none
Q.6	Units o	f Kw are		
	(a) ©	mole dm-3	(b)	mole2 dm-3
	(c)	mole2 dm-6	(d)	mole2 dm-3
Q.7	A basic	Buffer solution can be	e prepare	ed by mixing
914	(a)	weak acid and its salt	with stro	ong base
10,	(b)	strong acid and its salt	t with w	eak base
3	(c)	weak base and its salt	with stre	ong acid
	(d)	strong base and its sal	t with w	eak acid
Q.8	Buffer	action can be explained	d by	
	(a)	common ion effect	(b)	law of mass action

	(c)	Le-Chatlier's principle	2	(d)	all above	
Q.9		ion of weak acid is expr				
consta		ion of weak actures expr	CSSCC		ii oi ioilowing	
Consta		V_{m}	,	(b)	V.	(
	` /	Kw		` /	Kn	
O 10	` /	Ka		` /	Kb	
Q.10		ity of Ca(OH)2 is exot				;
	(a)	_			ow temp	
0.11	` '	temp independent	` '			C
		ich system does the equ	ıılıbrı	um con	istant, Kc has units of)İ
concer	ntration				. 10	
	` '	N2 + 3H2 2NH3 (b)	,			
	• •	2NO2 N2O4 (d)				
Q.12		statement about the foll		_		
	2SO2(g	g) + O2(g) 2SO3(g)		- 1		
	(a)	the value of Kp falls w	ith a	rise in t	temp	
	(b)	the value of Kp falls w	ith in	creasin	g pressure	
	(c)	adding V2O5 catalyst i	increa	ase the	equilibrium yield of	
sulphu	r trioxid					
	(d)	the value of Kp is equ	ıal to	Kc		
Q.13	The PH	I of 10–3 mole dm–3 of	an a	queous	solution of H2SO4 is	}
	(a)	3.0	(b)	2.7		
	(c)	2.0	(d)	1.5		
Q.14	The sol	ubility product of AgCl	Ì is 2.	0 x 10-	-10 mole2 dm–6. The	Э
max co	oncentra	tion of Ag+ ions in the	solut	ion is		
	(a) C	2.0 x 10–10 mol dm–3 1.0 x 10–10 mol dm–3	(b)	1.4	41 x 10–5 mol dm–3	
	(c)	1.0 x 10–10 mol dm–3	(d)	4.0	0 x 10–20 mol dm–3	
Q.15	An exc	ess of aqueous silver ni	trate	to adde	d to aqueous barium	
4 1	*	recipitate is removed by			-	
in the	_	ı ,				
3	(a)	Ag+ and NO only	(b)	Ag+	and Ba2+ and NO3	
	• •	Ba2+ and NO only		_	2 and NO and Cl–	
Q.16	, ,	2 + 3H2 2NH3				
	(a)	Kc = Kp		(b)	Kp = Kc RT	

	(c)	Kp = Kc (RT)-2	(d)	Kp = Kc (RT)-1
Q.17	H2 + I2	2 2HI		-
_	In the a	above equilibrium syste	em, if the	e conc. of reactants of 25oC
is incre	ased, th	e value of Kc will		×
	(a)	increase	(b)	decrease
	(c)	remains constant		nts W
	(d)	depends upon nature of	of reactar	nts
Q.18	In a che	emical reaction, equilib	orium is s	said to have established
when				.91
	(a)	opposing reactions sto	ps	1010
	(b)	concentrations of reac	tants and	d products are equal
	(c)	rate constants of oppo	sing reac	ctions are equal
Q.19		ation between Kc and	_	
	(a)	$Kc = Kp (RT) \Delta n$ $Kp = Kc (RT) \Delta n$	(b)	$V Kp = Kc (RT) \Delta n$
	(c)	$Kp = Kc (RT) \Delta n$	(d)	Kp = Kc
Q.20	The pre	ecipitation occurs if the	ionic co	oncentration is
			_ v	more than Ksp
	(c)	equal to Ksp	(d)	is present at any moment
Q.21	The PH	I of oranges is		
	(a)	3.5	(b)	3.1
	(c)	4.6	(d)	4.2
Q.22	Which	one of following soluti	on have	zero PH
	(a)	1M HCl	(b)	0.5 MH2SO4
	(c) X	0.1 M HNO3	(d)	1M CH3COOH
Q.23	The sol	ubility product express	sion for l	BaF2 can be written as
_	(a)	[Ba2+] [F-]	(b)	[Ba2+] [2F]
	(c)	[Ba2+] [F–]2	` '	[Ba+] [F–]2
Q.24	To prep	pare a buffer with PH c	lose to 9	0.0, you could use a mixture
of				
9	(a)	NH4OH and NH4Cl		
	(b)	CH3COOH and CH3	3COON	ı
	(c)	HNO2 + NaNO2		
	(d)	NaHCO3 + H2CO3		

Q.25	For wh	ich reaction the num	nerical va	lue of Kc and Kp are same
	(a)	N2 + 3H2 2NH3	(b)	2SO2 + O2 2SO3
	(c)	H2 + C12 2HC1	(d)	N2O4 2NO2
Q.26	For wh	ich system does the	equilibri	um constant Kc have units
(mole d	dm-3)–	1		
	(a)	H2 + I2 2HI	(b)	N2 + 3H2 2NH3
	(c)	2NO2 N2O4		197
	(d)	CH3COOH + C2H	50H CI	H3COOC2H5 + H2O
Q.27	What c	an affect the magnit	ude of eq	uilibrium constant Kp of a
		eous reaction		
	(a)	temperature	(b)	pressure
	(c)	catalyst		(d) none of above
				~ 0
Q.28	Which	gas can change the l	PH towar	ds acidic
	(a)	argon	(b)	carbon dioxide
	(c)	nitrogen	(d)	oxygen
Q.29	The sol	lution having zero P	H will be	
	(a)	basic	(b)	high basic
	(c)	neutral	(d)	highly acidic
Q.30	A solut	tion have H+ ions co	ncentrati	on 1 x 10–7 its PH will be
	(a)	acid	(b)	basic
	(c)	neutral	(d)	zero
Q.31	Which	one of the following	g has high	nest PH
	` /	0.1 M HCl	(b)	1.0 M HCl
	(c)	gastric juice	(d)	lemons
Q.32	Which	PH is considered as	basic	
· ·	(a)	1	(b)	7
YY	(c)	2	(d)	11
Q.33	The sur	m of PH and POH is	3	
9	(a)	2	(b)	7
	(c)	14	(d)	13.5
Q.34	A buffe	er solution can be pr	epared by	y mixing
	(a)	a strong acid and w	eak base	

	(b)	a weak acid and weak	base		
	(c)	a strong acid and its sa	alt		
	(d)	a weak base and its sa	lt with s	strong acid	
Q.35	Law of	mass action was prese	nted by		×
	(a)	Henderson	(b)	Lewis	Singh Maj
	(c)	Guldberg and Waage	(d)	Arrehenius	12/12
Q.36	The uni	it of Kc for reaction			197
	N2 + O	2 2NO			
	(a)	mol dm-3	(b)	mol–1 dm3	
	(c)	mol-2 dm6	(d)	no units	
Q.37	PH of p	oure water is		Me	
	(a)	3.2	(b)	4.2	
	(c)	7.0	(d)	0	
Q.38	Which	of following change w	ill fayot	ir the formation	n of more
SO ₃ a	t equilib	prium	3		
		- O2 2SO3 + heat	6		
	(a)	by adding SO3 at equ	uilibriur	n	
	(b)	by increasing temp			
	(c)	by decreasing temp			
	(d)	by decreasing pressure	e		
Q.39	When p	pressure is applied to the	ne given	equilibrium	
ice wa	ater whi	ch of the following wil	ll happe	n	
	(a)	more ice will be forme	ed		
	(b)	more water will be for	rmed		
		equilibrium will not be	e disturl	bed	
	(d)	water will formed			
Q.40	Which	of following change w	ill favoı	ur the formation	n of more HI
in the g	given rea	action			
10.	H2 + I2	2 2HI			
9	(a)	increasing pressure			
	(b)	decreasing pressure			
	(c)	by adding more HI			

(d) by adding more H2 and I2

ANSWERS

Answers Barrel Carrel Carrel					ANSW	/ERS	_
S Answers c a c b b Question 21 22 23 24 25 S Answers a a c a c Question 26 27 28 29 30 S Answers b b d c Question 31 32 33 34 35 Answers d d c d c Question 36 37 38 39 40	_	1	2	3	4	5	Nate
S Answers c a c b b Question 21 22 23 24 25 S Answers a a c a c Question 26 27 28 29 30 S Answers b b d c Question 31 32 33 34 35 Answers d d c d c Question 36 37 38 39 40	Answers	b	a	С	a	A	17/4
Answers c a c b b Question 21 22 23 24 25 Answers a a c a c Question 26 27 28 29 30 S Answers b b d c Question 31 32 33 34 35 Answers d d c d c Question 36 37 38 39 40	_	6	7	8	9	10	Sings
Answers c a c b b Question 21 22 23 24 25 Answers a a c a c Question 26 27 28 29 30 S Answers b b d c Question 31 32 33 34 35 Answers d d c d c Question 36 37 38 39 40	Answers	a	a	d	С	b	.01
Answers c a c b b Question 21 22 23 24 25 Answers a a c a c Question 26 27 28 29 30 S Answers b b d c Question 31 32 33 34 35 Answers d d c d c Question 36 37 38 39 40	_	11	12	13	14	15	Mole
Answers c a c b b Question 21 22 23 24 25 Answers a a c a c Question 26 27 28 29 30 S Answers b b d c Question 31 32 33 34 35 Answers d d c d c Question 36 37 38 39 40	Answers	a	a	b	b	С	
Question s 21 22 23 24 25 Answers a a a c a c a c a c Question s 26 27 28 29 30 Answers b b b d c b d c c Question 31 32 33 34 35 S Answers d d c d c d c d c Question 36 37 38 39 40		16	17	18	19	20	
S Answers a a c a c Question 26 27 28 29 30 S Answers b b d c Question 31 32 33 34 35 S Answers d d c d c Question 36 37 38 39 40	Answers	С	a	С	b o	b	
Question 26 27 28 29 30 Answers b b d c Question 31 32 33 34 35 S 36 37 38 39 40	_	21	22	23	24	25	
Answers b b d c Question 31 32 33 34 35 S Answers d d c d c Question 36 37 38 39 40	Answers	a	a	c	a	c	
Question s 31 32 33 34 35 Answers d d c d c Question 36 37 38 39 40	_	26	27	28	29	30	
S Answers d d c d c Ouestion 36 37 38 39 40	Answers	b	b-C	b	d	c	
Ouestion 36 37 38 39 40	_	31	32	33	34	35	
Question 36 37 38 39 40 s d c c d d	Answers	dO	d	c	d	c	
Answers d c c d d	Question s	C 36	37	38	39	40	
	Answers	d	c	С	d	d	

CHAPTER 9

CIIA						
		SOLU	TIO	NS		:0
		MO	$\mathbb{C}\mathbf{Q}\mathbf{s}$			eigl
Q.1	Which (a) (b) (c) (d)	of the following solution of N 5.85% solution of N 18.0% solution of ur all have same boilings.	NaCl glucose ea		ghest boiling point?	
Q.2	` ,	olutions of NaCl and	-		d separately by	
-		ne amount of the solu			1 1	
statem	ents is t	true for these solution	ns	₹.O.		
	(a)	KCl solution will h	ave high	ner boilin	g point than NaCl	
solutio	n		2			
	(b)	both the solutions h		•	- I	
	(c)	KCl and NaCl solu	tions po	ssess san	ne vapour pressure	
Q.3		ity of pure water is		10		
	(a)		(b)	18		
0.4	(c)	55.5	(d)	6	771 1 . t	
Q.4		glucose is dissolved		m of wate	er. The relative	
lowern		apour pressure is equ		<i>5</i> 1		
	(a)	0,	(b)	5.1 6		
0.5	(c)	olar boiling point co	(d)	Ü	of the elevation in	
Q.J boiling	.()		listant 18	me rano	of the elevation in	
DOMINI	g point t (a)	molarity	(b)	mola	litz	
~O	(a) (c)	mole fraction of sol	` ,	(d)	less than that of	
water	(C)	more fraction of sol	ivent	(u)	iess than that of	
Q.6	An agu	ueous solution of me	thanol it	n water h	as vanour nressure	
1.0	(a)	equal to that of wat			tion to that of	
methar	` '	equal to that of wat	(0)	equa	tion to that of	
mound	(c)	more than that of w	ater	(d)	less than that of	
water	(-)			(4)	2722 Milli Milli OI	
			1			

Q.7	An ozeotropic mixture of two liquids boils at a lower temperature							
than ei	ther of t	hem when						
	(a)	it is saturated						
	(b)	it shows positive devi	ation fro	om Raoult's law				
	(c)	it shows negative dev	iation fro	om Raoult's law				
	(d)	it is metastable						
Q.8	In azeo	tropic mixture showing	g positiv	e deviation from Raoult's				
law, the		ne of mixture is		City.				
	(a)	slightly more than the	total vo	lume of components				
	(b)	slightly less than the t	otal volu	ame of the component				
	(c)	equal to the total volu		_				
	(d)	none of these						
Q.9	A solut	ion of glucose is 10%.	The vol	ume in which 1 gm mole of				
_	solved	•	6					
	(a)	1 dm3	(b)	1.8 dm3				
	(c)	200 cm3	(d)	900 cm3				
Q.10	Colliga	tive properties are the						
	(a)			as nearly ideal solutions				
	(b)	concentrated solutions	s which l	behave as nearly non-ideal				
solutio	ns							
	(c)	both (i) and (ii)		(d) neither (i) nor (ii)				
Q.11	The fre	ezing mixture used in	ice crean	n machine consists of ice				
and		20K						
	(a) v	NaCl	(b)	CaCl2				
	(c) C	KNO3	(d)	both a & c				
Q.12			6 x 10–3	gm of dissolved oxygen.				
-		tion of oxygen in sea w		•				
914	*	4.96 x 10–2	(b)	0.496				
Nº		4.96	(d)	49.6				
Q.13	A solut	tion of sucrose is 34.2%	6. The vo	olume of solution				
_		mole of solute						
	•	500 cm3	(b)	1000 cm3				
	` '	342 cm3	(d)	3420 cm3				
	` /		` /					

Q.14 gives	Salt of	when dissolved in water							
gives	(a)	acidic solution	(b)	basic solution					
	(c)		(0)	(d) none					
Q.15	` ,	fraction of 10% urea i	is	(d) none					
Q.13	(a)	0.042 (b) 0.023							
	(c)	0.032	(d)	0.072					
0.16	` /		` /	liquids show negative					
deviati									
	(a)	ethyl alcohol ether	(b)	HCl and water					
	(c)		()						
	(d)	•	omobenz	ene					
O.17	The term cryoscopy is used								
	(a) depression of freezing point								
	(b) elevation in boiling point								
	(c) lowering of vapour pressure								
	(d) osmotic pressure								
	` '								
Q.18	The term ebullioscopy is used								
	(a) depression of freezing point								
	(b) elevation in boiling point								
	(c)	lower of vapour pre	ssure						
	(d)	none of above							
Q.19	Azeotropic mixture								
	(a) obey Henry's law								
	(b) obey Raoult's law								
	(c)	do not obey Raoult'	's law						
NY.	(d)	obey Dalton's law							
Q.20	Hydro	olysis of potassium acc	etate pro	duce					
5	(a)	acidic solution	(b)	neutral solution					
	(c)	basic solution	(d)	none of these					
Q.21	Which	n one of the following	salts wil	ll not hydrolyse					
	(a)	NaCl	(b)	A1C13					

	(c)	Na2CO3	(d)	CH3COONa						
Q.22	The sur	n of mole fractions (X)) of com	ponents of a solution is						
equal to	0									
-	(a)	100	(b)	200						
	(c)	one	(d)	zero						
Q.23	Which pair of mixture is called idea solution									
	(a) nicotine–water									
	(b)	chlorobenzene & bromobenzene								
	(c)	water-ether								
	(d)	ch pair of mixture is called idea solution nicotine—water chlorobenzene & bromobenzene water—ether water—alcohol								
Q.24	The vap	pour pressure of aqueo	us solut	ion of sugar solution is						
	(a)	equal to vapour pressu	ire of w	ater						
	(b) more than vapour pressure of pure water									
	(c) less than vapour pressure of pure water									
	(d)	none of above	3							
Q.25	When 1	NaCl is dissolved in wa	iter							
	(a)	melting point decrease	e							
	(b)	boiling point decrease	;							
	(c)	both melting and boili	ng poin	t decrease						
	(d)	none of above								
Q.26	The sol	ution which distils wit	hout cha	ange in composition is						
called		\L:								
	(a)	unsaturated solution	(b)	saturated solution						
	(c)	zeotropic mixture	(d)	azeotropic mixture						
Q.27	Solubil	ity curve of Na2SO4 1	0 . H2O	shows						
	(a)	constant increase of so	olubility	,						
~ ``	(b)	constant decrease of s	olubility	y						
YY	(c)	discontinuous solubili	ty with	temp						
KI,	(d) none of above									
Q.28	Use of	glycol as antifreeze in	the auto	mobile is an important						
applica	tion of									
	(a)	colligative property								
	(b)	Roault's law								

	(c)	fractional crystallization	on					
	(d)	hydrolysis						
Q.29	Use of NaCl in ice cream making is an important application of							
	(a)	constitutive property						
	(b)	additive property						
	(c)	colligative property						
	(d)	Roault's law			,63			
Q.30	Which	one of the following so	lutions	will ha	ve higher vapour			
pressur	re than t	hat of water						
	(a)	aqueous solution of Cl	Н3ОН		·			
	(b)	aqueous solution of H	2SO4	5				
	(c)	aqueous solution of su	gar	10.	Note			
	(d)	aqueous solution of ur	rea	~				
Q.31	Ethyler	ne glycol is mixed with	water a	is anti f	reeze in radiator			
becaus	e		3					
	(a)	it has low vapour press	sure					
	(b)	it raises the boiling po	int of w	ater				
	(c)	it lowers the freezing point of water						
	(d)	it changes osmotic pre	essure					
	(e)	it has all characters						
Q.32	Which	one of following is not	soluble	e in alco	hol			
	(a)	KCl	(b)	urea				
	(c)	acetone		(d)	ether			
Q.33	Mixtur	e of alcohol and water of	can be s	separate	ed by			
	(a) C	solvent extraction	(b)	crystal	llization			
	(c)	filtration	(d)	fractio	onal distillation			
Q.34	Which	one of following is not	a conju	igate so	lution			
YY	(a)	ether + water	(b)	pheno	ol + water			
KI,	(c)	nicotine + water		(d)	ethanol + water			
Q.35	Which	one of the following ha	as disco	ntinuou	s solubility curve			
	(a)	NaCl	(b)	KCl				
	(c)	NaNO3	(d)	Ca	Cl2 . 6H2O			
Q.36	Which	one of following has co	ontinuo	us soluł	oility curve			

	(a)	NaCl	(b)	NaNO3
0.27	(c)	Na2SO4 . 10H2O	` /	both a and b
Q.37		ity of following decrea		-
	(a)	Ce2(SO4)3	(b)	CaCl2 . 6H2O
	(c)	Pb(NO3)2	(d)	K2Cr2O7
O 29	Aggord	ing to Dooult's law		H'
Q.38		ing to Roault's law	D is as	ual to male fraction of
coluto	(a)	relative lowering of v	.r. is eq	ual to mole fraction of
solute	(1-)	41. 1	. 4:41.	
£ 4:	(b)		s directi	y proportional to the mole
iractio	n of solu		1	
IID (tion is equal to product of
V.P. 01	•	olvent and mole fraction	n of solv	vent in solution
	(d)	all the above	5	
Q.39		lution of KCl	0,0	
	(a)	acidic	(b)	basic
	(c)	neutral	(d)	none of above
Q.40	Na2SO	4 solution is		
	(a)	acidic	(b)	basic
	(c)	neutral	(d)	none of above
Q.41	The sol	lution of CuSO4 is		
	(a)	acidic	(b)	basic
	(c)	neutral	(d)	none of above
Q.42	The sol	ution of AlCl3 is		
	(a) C	acidic	(b)	basic
4	(c)	neutral	(d)	none of above
Q.43	The sol	lution of CH3COONa		
446	(a)	acidic	(b)	basic
No	(c)	neutral	(d)	none of above
Q.44	The no	. of water of crystalliza	tion of	MgCl2
_	(a)	12	(b)	6
	(c)	3	(d)	4
Ω 45	· /	of water of crystalliza	` /	ΜσSO4

	(a)	12	(b)	7
	(c)	5	(d)	3
Q.46	Freezir	ng point depression is r	neasure	d by
_	(a)	Beckmann's apparatu		_
	(b)	Land's Berger's		
	(c)	Antifreeze apparatus		1/2.
	(d)	all the above		,63
Q.47	Elevati	on of boiling is measur	red by	or More Study Ma
	(a)	Beckmann's apparatu	S	
	(b)	Lands berger's metho	d	
	(c)	Antifreeze apparatus		
	(d)	none of above		
Q.48	Colliga	tive properties are the	properti	es of solution that depends
upon			6	3
	(a)	nature of molecules		quality
	(c)	physical property	(d)	no. of molecules
Q.49	Aqueo	us solution of glucose l	ooils at I	100.52oC. The solution
contair	ıs			
	(a)	180 gm glucose in 1 l	itre wate	er
	(b)	90 gm glucose in 1 lit	re water	:
	(c)	18 gm glucose in 1 lit	re water	•
	(d)	3.6 gm glucose in 1 li	tre wate	r
Q.50	Aqueo	us solution of methano	l is zeoti	ropic mixture because
		it does not obey the R		
	(b)	mixture cannot be sep	oarated b	by sublimate
•	(c)	mixture can be separa	•	
Ċ	(d)	greater volume than the		_
Q.51	When 6	equal volumes of ether	and wat	ter are shaken, then two
layers	are forn	ned the ether layer cont	tains wa	ter
	(a)	5.3%	(b)	6.3%
	(c)	1.2%	(d)	2.1%

ANSWERS

			T				1
	Question	1	2	3	4	5	
	S						
	Answers	d	b	c	c	В	, aie
	Question	6	7	8	9	10	Mo
	S						engh Majerial
	Answers	С	b	a	b	a	
	Question	11	12	13	14	15	
	S				101		
	Answers	d	С	b	b	С	
	Question	16	17	185	19	20	
	S			U.S.			
	Answers	b	a	b	c	С	
	Question	21	22	23	24	25	
	S						
	Answers	a	c	b	e	a	
	Question	26	27	28	29	30	
	S						
	Answers	d	c	a	С	d	
Kilk	Question	31	32	33	34	35	
Like Kitip: Ilia	s						
\ '	Answers	e	a	d	d	d	
	Question	36	37	38	39	40	

1st year chemistry n0tes new

	S						
	Answers	d	a	d	С	С	
	Question	41	42	43	44	45	
	S						and Material
	Answers	a	a	b	b	b	1107
	Question	46	47	48	49	50	
	S					ore	
	Answers	a	b	d	a	С	
	Question	51		C			
	S			200			
	Answers	С		Co			
ike hite!!to	Answers	omite					

CHAPTER 10

- Q.1 Electrolysis is the process in which a chemical reaction takes place at the expense of

 (a) chemical energy (b) electrical energy

 (c) heat energy (d) none of a grant of the expense of the expense of the energy (d) none of a grant of the energy (d) none of a grant of the energy (d) none of the
- Q.2 Standard hydrogen electrode has an arbitrarily fixed potential
- (a) 0.00 volt (b) 1.00 volt
- (c) 0.10 volt (d) none of these
- Q.3 The oxidation number of chromium in K2Cr2O7 is
- (a) 14 (b) 12
- (c) 6 (d) none of these
- Q.4 In the reaction 2 Fe + Cl2 (2FeCl3
- (a) Fe is reduced (b) Fe is oxidized
- (c) Cl2 is oxidized (d) none of these
- Q.5 When fused PbBr2 is electrolyzed
- (a) bromine appears at cathode
- (b) lead is deposited at the cathode
- (c) lead appears at the anode
- (d) none of these happens
- Q.6 When aqueous solution of NaCl is electrolysed
- (a) Cl2 is evolved at the cathode
- (b) H2 is evolved at cathode
- (c) Na is deposited at the cathode
- (d) Na appears at the anode
- Q.7 During electrolysis of KNO3, H2 is evolved at

- (a) anode (b) cathode
- (c) both (a) and (b) (d) none of these
- Material Q.8 During electrolysis of CuSO4 (aq) using Cu electrodes Cu is deposited at
- (a) anode (b) cathode
- (c) both (a) and (b) (d) none of these
- Q.9 During electrolysis of fused NaCl, which of the following reaction occurs at anode
- (a) Cl- ions oxidized (b) Cl- ions reduced
- (c) Na+ ions oxidized (d) Na+ ions reduced
- Q.10 An electrochemical cell is based upon
- (a) acid-base reaction (b) redox reaction
- (c) nuclear reaction (d) none of the above
- Q.11 Which one of the following will be good conductor of electricity
- (a) pure distilled water (b) molten NaCl
- (c) dilute solution of glucose
- (d) chloroform
- Q.12 Which one of the following represents the same net reaction as the electrolysis of aqueous H2SO4
- (a) electrolysis of water
- (b) electrolysis of molten NaCl
- (c) electrolysis of aqueous HCl
- (d) electrolysis of aqueous NaCl
- Q.13 In a galvanic cell, the reaction occurs
- 2H2O (O2 (g) + 4H + 4e It occurs at the
- (a) cathode (b) anode
- (c) cathode and anode (d) none of the above
- Q.14 Which statement below is not true for the reaction

$$Fe3++e-$$
 ($Fe2+$

- (a) Fe3+ is reduced
- (b) oxidation state of Fe has changed
- (c) Fe3+ can act as an oxidizing agent
- (d) both Fe2+ and Fe3+ are called anions
- of More Study Material
 Te Q.15 During a redox reaction, an oxidizing agent
- (a) gains electrons (b) is oxidized
- (c) loses electrons (d) is hydrolysed
- Q.16 In a salt bridge KCl is used because
- (a) it is an electrolyte
- (b) K+ and Cl- transfer easily
- (c) agar–agar forms a good jelly with it
- (d) KCl is also present in the calomel electrode
- Q.17 A oxidizing agent is a substance which brings about
- (a) electron donation (b) oxidation
- (c) reduction (d) hydrolysis
- Q.18 In the electrolysis the process of oxidation occurs at
- (a) anode (b) cathode
- (c) both cathode and anode
- (d) in electrolytic solution
- Q.19 In an oxidation process the oxidation number of the element
- (a) increases (b) decreases
- (c) does not change (d)
- Q.20 In the reduction process the oxidation number of the element
- (a) increases (b) decreases
- (c) does not change (d)
- Q.21 Oxidation number of oxygen in OF2 is
- (a) + 1 (b) 1
- (c) + 2 (d) 2
- Q.22 The e.m.f. of Zn Cu cell is

- (a) 1.10 v (b) 1.5 v
- (c) 2.0 v (d) 2.5 v
- re Study Material Q.23 The standard reduction potential of a standard hydrogen electrode
- (a) 0.0 v (b) 1.1 v
- (c) 1.5 v (d) 2.0 v
- Q.24 The oxidation number of Mn is K2 MnO4 is
- (a) + 2 (b) + 4
- (c) + 6 (d) + 7
- Q.25 Which of the following is the definition of oxidation
- (a) gain of electrons (b) loss of electrons
- (c) addition of H2 (d) removal of O2
- Q.26 During electrolysis of H2SO4 (aq) 02 is evolved at
- (a) cathode (b) anode
- (c) both a and b (d) none of these
- Q.27 The e.m.f. produced by a voltage cell is
- (a) electrode potential (b) reduction potential
- (c) cell potential (d) oxidation potential
- Q.28 Which of the following is not a redox reaction
- (a) CaCO3 (CaO + CO2
- (b) Cu + 4HNO3 (Cu(NO3)2 + 2NO2 + H2O
- (c) 2H2 + O2 (2H2O
- (d) MnO2 + 4HC1 (MnC12 + C12 + 2H2O
- Q.29 Which element acts as a reducing agent in the reaction
- Zn + H2SO4 (ZnSO4 + H2
- (a) Zn (b) H
- (c) S (d) O
- Q.30 Which element acts as a oxidizing agent in the reaction

$$MnO2 + 4HC1$$
 ($MnC12 + C12 + 2H2O$

- (a) Mn (b) O
- (c) H (d) Cl
- (a) anions move towards anode and cations move towards cathode

 (b) cations and anions both move towards anode

 (c) cations and anions both move

 (d) no Q.31 When the current is passed through an electrolytic solution, which of the following process will occur

- (d) no movement of the ions occur
- Q.32 Electric current passes through both molten and solution form of NaCl because of
- (a) ionic bonding (b) Na+ and Cl- ions
- (c) ions of water (d) hydration of ions
- Q.33 A cell which produces electric current by redox reaction is called
- (a) standard cell (b) voltaic cell
- (c) reversible cell (d) concentration cell
- Q.34 Which of the following conduct electricity due to the migration of electrons only
- (a) copper metal (b) NaCl molten
- (c) NaCl (d) NaCl solution
- Q.35 Oxidation number of sulphur in S2O eq $\accident{12-,3}$ is
- (a) + 6 (b)
- (c) + 2 (d) + 4
- Q.36 Substances through which electric current can pass are called
- (a) insulators (b) conductors
- (c) cathode (d) anode
- Q.37 Substances through which electric current cannot pass are called
- (a) insulators (b) conductors
- (c) anode (d) cathode
- Q.38 Metallic conduction is due to the

- (a) movement of electrons
- (b) movement of ions
- (c) both (a) and (b)
- (d) none of these
- Q.39 Metallic conductors conduct electricity
- (a) with chemical change
- (b) without any chemical change
- (c) both (a) and (b)
- (d) none of these
- Q.40 The flow of electrons is called
- (a) electrolyte (b) electric current
- (c) cathode (d) anode
- Formore Q.41 A substance which in molten state or in solution form allows electric current to pass through it is called
- (a) electrolyte (b) insulator
- (c) conduction (d) none of these
- Q.42 The process in which electric current is used to carry out a nonspontaneous redox reaction is called
- (a) electrolyte (b) electrolysis
- (c) metallic conductor (d) electrodes
- Q.43 In electrochemical cells, the electrode at which the reduction occurs is called
- (a) anode (b) cathode
- (c) electrolyte (d) electrolysis
- Q.44 The process of producing a chemical change in an electrolytic cell is called
 - (a) electrolyte (b) electrolysis
 - (c) electrodes (d) conductor
 - Q.45 The process in which ionic compound when fused or dissolved

in water split up into charged particles is called

- (a) electrolysis (b) hydration
- Q.46 An apparatus in which chemical energy in converted to electrical energy is called

 (a) electrolytic call (1)
- (a) electrolytic cell (b) galvanic cell
- (c) fuel cell (d) down cell
- Q.47 The metallic conductors in contact with the solution are called
- (a) insulator (b) electrodes
- (c) electrolyte (d) down cell
- Q.48 The reaction in a galvanic cell is
- (a) spontaneous (b) non–spontaneous
- (c) acid-base (d) none of these
- Q.49 Caustic soda is obtained by electrolysis of conc. aqueous solution of NaCl in a cell called
- (a) Daniell's cell (b) Nelson's cell
- (c) Down's cell (d) Voltaic cell
- Q.50 Sodium metal is obtained by the electrolysis of fused NaCl in a cell is called
- (a) Nelson's cell (b) Down's cell
- (c) Daniell cell (d) Voltaic cell
- Q.51 The e.m.f. of Daniell cell can be increased by
- (a) increasing the area of electrode
- (b) increasing the concentration of oxidising ion in the solution
- (c) increasing the concentration of reducing ion in the solution
- (d) adding the dil H2SO4
- Q.52 Metal and their ionic salts both conduct electricity. Which of the following statement is not correct both
- (a) are good conductors normally

- (b) are ionic in nature
- (c) decompose on passing current
- (d) are normally solid
- Study Material Q.53 The branch of chemistry which deals with the relationships between electricity and chemical reaction is called
- (a) chemical kinetics (b) electrochemistry
- (c) stiochiometry (d) thermochemistry
- Q.54 A system containing of electrodes that dips into an electrolyte in which a chemical reaction either uses or generates an electric current is called
- (a) voltaic cell (b) electrochemical cell
- (c) voltaic or galvanic cell (d) fuel cell
- Q.55 A cell in which spontaneous redox reaction generates an electric current is called
- (a) electrolytic cell
- (b) electrochemical cell
- (c) voltaic orgalvanic cell
- (d) biological cell
- Q.56 A cell in which an electric current drives a non–spontaneous reaction is called
- (a) electrolytic cell (b) voltaic cell
- (c) biological cell (d) electrochemical cell
- Q.57 A process for converting one metal with a thin layer of another metal is called
- (a) electrolysis (b) electroplating
- (c) electrode potential (d) standard electrode
- Q.58 In an electrical connection between cathode and anode of a voltaic cell, electrons flow from the
- (a) anode to the cathode (b) cathode to the anode

- (c) both (a) and (b) (d) none of these
- Lectrons
 Lendency to lose electrons
 (d) none of these
 Q.60 In lead accumulator the electrolyte H2SO4 solution is
 (a) 30 % (b) 60% H2SO4
 (c) 80% (d) 90%
 Q.61 In alkaline battery, the electrolyte H2SO4 solution is
 (a) MnO2 (b) KOTT
 (c) NICCT Q.59 Greater the value of standard reduction potential of a species
- Q.61 In alkaline battery, the electrolyte contains

 (a) MnO2 (b) KOH

 (c) NaCl (d) NaNa
- Q.62 Alkali metals have
- (a) lower value of reduction potential than coinage metals
- (b) higher value of reduction potential than coinage metals
- (c) equal values of reduction potential to coinage metals
- (d) none of these
- Q.63 Strong reducing agents have
- (a) greater positive value of standard reduction potential
- (b) greater negative value of standard reduction potential
- (c) lesser positive value of standard reduction potential
- (d) none of these
- Q.64 Strong oxidizing agents have
- (a) greater positive value of standard reduction potential
- (b) lesser positive value of standard reduction potential
- (c) greater negative value of standard reduction potential

- (d) none of these
- (c) electrode (d) none of these
 Q.66 Metals which are above SHE in electrochemical series
 (a) can liberate H2 from acid
 (b) cannot liberate H2 from acid
 (c) cannot always liberate H2 from acid
 (c) none of these
 Q.67 Corrosion reactions are
 (a) spontaneous redox reactions
 b) non–spontaneous redox reactions
 c) spontaneous acid–base reactions
 1) none of these Q.65 The electrode with more negative value of reduction potential

- (d) none of these
- Q.68 Voltaic cell can be changed into
- (a) electrochemical cell (b) electrolytic cell
- (c) reversible cell (d) primary cell
- Q.69 Strongest oxidizing agent in the electrochemical series is
- (a) Li (b) F
- (c) H2 (d) I2
- Q.70 Strongest reducing agent in the electrochemical series is
- (a) Li\(b) F
- (c) H2 (d) I2
- Q.71 Fuel cells are the means by which chemical energy may be converted into
- (a) heat energy (b) electrical energy
- (c) mechanical energy (d) sound energy

ANSWERS

b Questions 26 27 28 29 30 Answers b c a a a Questions 31 32 33 34 35 Answers a b b a c Questions 36 37 38 39 40 Answers b a a b b Questions 41 42 43 44 45 Answers a b b b c Questions 46 47 48 49 50 Answers b b a b b Questions 51 52 53 54 55 Answers c b b b c Questions 56 57 58 59 60 Answers a b a a a Questions 61 62 63 64 65 Jike http://kacebook.com/technithease Answers b a b a b Questions 66 67 68 69 70 Answers a a c b a

CHAPTER 11

REACTION KINETICS MCOS

		1,100		
Q.1	In zero	order reaction, the rate	e is indep	
	(a)	temperature of reactio	n	
	(b)	concentration of react	ants	197
	(c)	concentration of produ	ucts	Singy
	(d)	none of above		
Q.2	If the ra	ate equation of a reaction	on 2A +	$-B \otimes Product, Rate = k$
				en order of reaction is:
	(a)	1	(b)	2
	(c)	3	(d)	none of these
Q.3	The rat	e of reaction	60	
	(a)	increases as the reaction	on proce	eeds
	(b)	decreases as the reacti		
	(c)	remains the same as the	ne reacti	on proceeds
	(d)	may decrease or incre	ase as th	e reaction proceeds
Q.4	With in	creases of 10 oc temp	perature	the rate of reaction
double	s. This i	ncrease in the rate of r	eaction i	s due to
	(a)	decrease in activation	energy o	of reaction
	(b)	decrease in the number	er of coll	isions b/w reactants
molecu	ıles	20K		
	(c) N	increase in activation	energy c	of reactants
	(d) (increase in number of	effectiv	e collisions
Q.5	The un	it of the rate constant is	s the san	ne as that of the rate of
reactio	n in			
YY	(a)	first order reaction	(b)	second order reaction
XII.	(c)	zero order reaction	(d)	third order reaction
9				

Q.6	The un	it of reaction is		
	(a)	mole/dm3	(b)	mole/pound
	` /	mole/dm3 sec	` ′	mole/cm3
Q.7	` '		` '	f reactants is unity then rate
is equa		1		12
1	(a)	specific rate constant	(b)	average rate constant
	(c)	instantaneous rate con		.83
	(d)	none of above		Cito
Q.8	` ,	e of reaction between t	wo spec	cific time intervals is called
_	(a)	instantaneous rate	(b)	
	(c)	specific rate	(d)	ordinary rate
Q.9		aneous rate of a chemic	, ,	
	(a)	rate of reaction in the		
	` '	rate of reaction at the	_	
		rate of reaction at a gi		
		rate of reaction b/w tw		
Q.10		beginning the decrease	_	
	(a)	slow	(b)	
	(c)	rapid	(d)	none of above
Q.11	The sur	m of exponents of the c	conc. ter	rms in the rate equation is
called		-0/1		_
	(a)	rate of reaction		(b) order of reaction
	(c)	specific rate constant	(d)	average rate
Q.12	The av	erage rate and instantar	neous ra	te of a reaction are equal
	(a) C	at the start	(b)	at the end
4	(c)	in the middle		
	(d)	when two rate have tin	me inter	val equal to zero
Q.13	The eq	uation 2N2O5 ® 2N2	2 has or	der
100	(a)	first order	(b)	second order
	(c)	negative order	(d)	fractional order
Q.14	The hy	drolysis of tertiary buty	yl has or	der
	(a)	first order	(b)	pseudo first order
	(c)	fractional order		(d) zero order

Q.15	Photoc	hemical reactions usua	lly have	order	
	(a)	one	(b)	zero	
	(c)	two	(d)	three	
Q.16	The ex	perimental relationship	betwee	n a reac	ction rate and the
concen	tration	of reactants is called			1/2
	(a)	order of reaction	(b)	specif	ic rate
	(c)	law of mass action	(d)	rate la	w
Q.17	When t	the rate of reaction is e	ntirely i	ndepend	dent of the conc. of
reactan	its mole	cule then order of reac	tion is		
	(a)	zero	(b)	first	· 0/6
	(c)	second	(d)	third	
Q.18	Half lif	fe of U is		10.	
	(a)	7.1 x 108 years		(b)	6.1 x 108 years
	(c)	8.1 x 107 years		(d)	7.1 x 1010 years
Q.19	Half lif	e period for decompos			at 45 oC is
	(a)	24 minutes	1 / 4	34 mii	
	(c)	44 minutes	(d)	54 mii	nutes
Q.20	The de	composition of ozone l	has orde	r	
	(a)	first	(b)	negati	ve
	(c)	second	(d)	pseudo	o first order
Q.21	The eq	uation CHCl3 + Cl2 (® CC14	+ HCl	has order
	(a)	first	(b)	negati	ve
	(c)	fractional	(d)	second	1
Q.22	When	reaction occurs in ma	ny steps	s then th	ne slowest step is the
	(a) C	main step			
	(b)	enthalpy determining	step		
•	(c)	mechanism determini	ng step		
YY P	(d)	rate determining step			
Q.23	Spectro	ometry applied for rate	determi	nation v	when
	(a)	reactants or product a	bsorb U	.V., I.R	. light
	(b)	reaction involve ion			
	(c)	reaction involve chan	ge in vo	lume	
	(d)	none of above			

- Q.24 Electrical conductivity method is applied for rate determination when
- reactants and products involve absorption of U.V. or I.R. reaction involving ions reaction which involve change in refractive indices. (a) radiation
 - (b)
 - (c)
 - reactions which involve small volume change (d)
- Q.25 Dilatometric method is used for rate determination when
 - reactions involving ions (a)
 - reactions involving change of optical activity (b)
 - reaction involving small volume change (c)
 - (d) none of above
- Refractrometric method is used when Q.26
 - reactions involving absorption of I.R. or U.V. (a)
 - reactions involving change of refractive index (b)
 - reactions involving ions (c)
- cal ac .cal ac change of optical activity

Q.27	Optica	al rotation method is u	sed whe	n
	(a)	reaction involve ions		
	(b)	change of refractive		
	(c)			of optical activity
	(d)	none of above	8 8	1
Q.28	` ,	ubstance which retard	the rate	of chemical reaction
	(a)	catalyst		(b) inhibitor
	(c)	auto catalyst	(d)	enzyme
Q.29	` ,	nzyme used in the hyd	, ,	
	(a)	urease	(b)	amylase
	(c)	oxidase	, ,	(d) reductase
Q.30	In the	hydrolysis of CH3CC	OO2H5	the acid produce act as
	(a)	inhibitor		catalyst
	(c)	auto catalyst	(d)	Onone of above
Q.31	The o	rder of reaction can be		
	(a)	graphical method		method of hit and trial
	(c)	differential method	(d)	all of above
Q.32	The fa	actors which affect rate	of reac	etion
	(a)	nature of reactants	(b)	surface area
	(c)	light	(d)	all of above
Q.33	When	temp of reacting gase	s is raise	ed to 10 K, the reaction rate
becom	nes			
	(a)	remain same	(b)	double
	(c)	triple	(d)	increase four times
Q.34	Arrhe	nius equation describe	the effe	ect of
	(a)	temp on rate of react	tion	
	(b)	volume on rate of re	action	
111	(c)	pressure on rate of re	eaction	
K.	(d)	all the above		
Q.35	A sub	stance which alters the	rate of	reaction
	(a)	inhibitor	(b)	catalyst
	(c)	promoter	(d)	auto catalyst
Q.36	Homo	geneous catalysis whe	n	

Answers

Question

c

11

Q.37	(a) (b) (c) (d) The l (a) (b) (c) (d)	reactants products reactant none of heterogenou reactants reactants products all the al	and ca and pro above as catal and pro and ca and ca	ntalyst loducts l ysis roducts atalyst l	have san have san have di have di	me phas me phas ifferent fferent p	e e	FINGH May
Q.38	Tetra	ethyl lead	when a	dded to	netrol.	acts as	10,	
Q. 30	(a)	negative			(b)	auto ca		
	(c)	promote	•		(d)	catalys		
Q.39	Conc	centrated su	gar sol	ution u	ndergoe	s hydro	lysis by	an enzyme
	(a)	invertase	e		(b)	urease		
	(c)	zymase		·x	6	` /	glucase	
Q.40		ose is conv	erted in	ito etha	•	•		
	(a)	urease			(b)	inverta		
	(c)	zymase	146			(d)	glucose	
		(NSWEI	Q Ç				
Question 1 2 3 4 5								
		Sucstion	1	2	3		3	
	160	Answers	b	a	b	d	c	
440		Question	6	7	8	9	10	

a

12

b

13

c

14

c

15

	S						
	Answers	b	d	a	b	b	Study Material
	Question	16	17	18	19	20	delle
	s						'No
	Answers	d	a	a	a	b	1197
	Question	21	22	23	24	25	
	S					OTO	
	Answers	С	d	a	b	С	
	Question	26	27	28	29	30	
	s			30,56			
	Answers	b	C.	b	a	c	
	Question	31	32	33	34	35	
	S	1/20					
	Answers	d	d	b	a	b	
	Question	36	37	38	39	40	
	soo						
0.47	Answers	a	b	a	a	c	
ike hitip://fa							
Kilk							
ike.							
~							