Correction - DM1

Exercice 1. (10'+40'+30'=1h20) Résoudre dans \mathbb{R} et selon les valeurs du paramètre $m \in \mathbb{R}$, les inéquations suivantes:

1.
$$x^2 - (m+1)x + m \ge 0$$

$$2. \ \frac{m}{x-1} \le \frac{1}{x+2}$$

$$3. \sqrt{2x+m} \ge x+1$$

Correction 1.

1. Résolution dans \mathbb{R} de $x^2 - (m+1)x + m \ge 0$:

Ici le domaine de résolution est \mathbb{R} . On calcule le discriminant et on obtient que $\Delta=(m-1)^2$. On étudie donc 2 cas:

- Cas 1: si m = 1: Alors $\Delta = 0$ et x = 1 est la seule solution et $x^2 (m+1)x + m \ge 0 \Leftrightarrow (x-1)^2 \ge 0$. Ainsi $S_{m=1} = \mathbb{R}$.
- Cas 2 : si $m \neq 1$: alors $\Delta > 0$ et les deux solutions réelles distinctes sont $x_1 = \frac{m+1+|m-1|}{2}$ et $x_2 = \frac{m+1-|m-1|}{2}$. On doit donc distinguer deux cas :
 - * Si m < 1: les deux racines sont alors m et 1 et on obtient $S_{m<1} =]-\infty, m] \cup [1, +\infty[$.
 - * Si m > 1: les deux racines sont alors 1 et m et on obtient $\mathcal{S}_{m>1} =]-\infty,1] \cup [m,+\infty[$.

2. **Résolution dans** \mathbb{R} de $\frac{\mathbf{m}}{\mathbf{x} - \mathbf{1}} \le \frac{\mathbf{1}}{\mathbf{x} + \mathbf{2}}$: L'inéquation est définie si $x - 1 \ne 0$ et $x + 2 \ne 0$. Ainsi, $\mathcal{D} = \mathbb{R} \setminus \{-2, 1\}$. Sur cet ensemble, on obtient

$$\frac{m}{x-1} \le \frac{1}{x+2} \Leftrightarrow \frac{m(x+2) - (x-1)}{(x-1)(x+2)} \le 0 \Leftrightarrow \frac{x(m-1) + 2m + 1}{(x-1)(x+2)} \le 0.$$

• Si m=1, l'inéquation à résoudre devient alors

$$\frac{m}{x-1} \le \frac{1}{x+2} \Leftrightarrow \frac{3}{(x-1)(x+2)} \le 0.$$

Un tableau de signe donne alors : $|S_{m=1}| =]-2,1[$

- Si $m \neq 1$, alors la racine de x(m-1) + 2m + 1 est $\frac{2m+1}{1-m}$. Pour pouvoir faire un tableau de signe correct, on doit savoir où elle se situe par rapport à -2 et 1.
 - \star Si m > 1. La résolution de $\frac{2m+1}{1-m} \le -2$ est justement équivalente à m > 1. Ainsi, la racine $\frac{2m+1}{1-m}$ est la plus petite des trois. On peut alors faire un tableau de signe, en remarquant en particulier que $m > 1 \Leftrightarrow m - 1 > 0$:

x	$-\infty$		$\frac{2m+1}{1-m}$		-2		1		$+\infty$
(m-1)x + 2m + 1		-	0	+		+		+	
x + 2		-		-	0	+		+	
x-1		-		-		-	0	+	
$\frac{(m-1)x + 2m + 1}{(x-1)(x+2)}$		-	0	+		-		+	

Ainsi,
$$S_{m>1} = \left] -\infty, \frac{2m+1}{1-m} \right] \cup]-2, 1[$$
.

* Si $0 \le m < 1$. La résolution de $\frac{2m+1}{1-m} \ge 1$ est équivalente à $0 \le m < 1$. Ainsi, la racine $\frac{2m+1}{1-m}$ est la plus grande des trois. On peut alors faire un tableau de signe, en remarquant en particulier que $m < 1 \Leftrightarrow m - 1 < 0$:

x	$-\infty$		-2		1		$\frac{2m+1}{1-m}$		$+\infty$
(m-1)x + 2m + 1		+		+		+	0	-	
x + 2		-	0	+		+		+	
x-1		-		-	0	+		+	
$\frac{(m-1)x + 2m + 1}{(x-1)(x+2)}$		+		-		+	0	-	

Ainsi,
$$S_{m \in [0,1[} =] - 2, 1[\cup [\frac{2m+1}{1-m}, +\infty[]].$$

 \star Si m < 0.

Si m < 0. Ainsi, la racine $\frac{2m+1}{1-m}$ est entre les racines -2 et 1. On peut alors faire un tableau de signe, en remarquant en particulier que $m < 0 < 1 \Rightarrow m-1 < 0$:

x	$-\infty$		-2		$\frac{2m+1}{1-m}$		1		$+\infty$
(m-1)x + 2m + 1		+		+	0	-		-	
x + 2		-	0	+		+		+	
x-1		-		-		-	0	+	
$\frac{(m-1)x + 2m + 1}{(x-1)(x+2)}$		+		-	0	+		-	

Ainsi,
$$S_{m<0} = \left]-2, \frac{2m+1}{1-m}\right] \cup \left]1, +\infty\right[$$

3. Résolution dans \mathbb{R} de $\sqrt{2x+m} \ge x+1$:

- Domaine de résolution : L'inéquation a un sens si : $2x + m \ge 0 \Leftrightarrow x \ge -\frac{m}{2}$. Ainsi, $\mathcal{D} = \left[-\frac{m}{2}, +\infty \right[$.
- Résolution :
 - \star Cas 1: $x + 1 < 0 \Leftrightarrow x < -1$:

L'inéquation est alors toujours vérifiée car une racine carrée est toujours positive. Pour trouver l'ensemble solution, il faut alors étudier la position de $-\frac{m}{2}$ par rapport à -1.

$$-\frac{m}{2} \le -1 \Leftrightarrow -m \le -2 \Leftrightarrow m \ge 2.$$

Ainsi, on obtient

$$\circ$$
 Si $m \geq 2$, alors $S_{1,m\geq 2} = \left[-\frac{m}{2}, -1\right[$.

$$\circ$$
 Si $m < 2$, alors $S_{1,m<2} = \emptyset$.

 $\star \text{ Cas } 2: x+1 \ge 0 \Leftrightarrow x \ge -1:$

Les deux termes de l'inéquation sont alors positifs, on peut donc passer au carré tout en conservant l'équivalence et on obtient

$$\sqrt{2x+m} \ge x+1 \Leftrightarrow 2x+m \ge x^2+2x+1 \Leftrightarrow x^2+1-m < 0.$$

Le discriminant est $\Delta = 4(m-1)$, on a donc

- \circ Si m < 1, alors $\Delta < 0$ et $S_{2,m < 1} = \emptyset$.
- o Si $m \ge 1$, alors les deux solutions sont $-\sqrt{m-1}$ et $\sqrt{m-1}$. Il faut alors étudier la position de $-\sqrt{m-1}$ par rapport à $-\frac{m}{2}$ et à -1. On a

$$-\sqrt{m-1} \ge -\frac{m}{2} \iff \sqrt{m-1} \ge \frac{m}{2}$$
 $\Leftrightarrow m^2 - 4m + 4 \ge 0$ car les deux termes sont positifs $\Leftrightarrow (m-2)^2 \ge 0$ toujours vrai.

Ainsi, on a, pour $m \ge 1$, $-\sqrt{m-1} \ge -\frac{m}{2}$. Un raisonnement analogue montre que

$$-\sqrt{m-1} \le -1 \Leftrightarrow m \ge 2.$$

On en déduit les resultats suivants :

- Si $1 \le m < 2$, alors $-\sqrt{m-1} > -1$, $-\frac{m}{2} > -1$ et $-\sqrt{m-1} \ge -\frac{m}{2}$, donc $\mathcal{S}_{2,m \in [1,2[} = [-\sqrt{m-1}, \sqrt{m-1}].$
- ∘ Si $m \ge 2$, alors $-\sqrt{m-1} \le -1$, $-\frac{m}{2} \le -1$ et $-\sqrt{m-1} \ge -\frac{m}{2}$, donc $S_{2,m\ge 2} = [-1, \sqrt{m-1}]$.
- \star On peut alors conclure :
 - \circ Si m < 1, alors $S_{m < 1} = \emptyset$.

○ Si
$$1 \le m < 2$$
, alors $\mathcal{S}_{m \in [1,2[} = \emptyset \cup [-\sqrt{m-1}, \sqrt{m-1}]$, soit $\boxed{\mathcal{S}_{m \in [1,2[} = [-\sqrt{m-1}, \sqrt{m-1}]]}$.
○ Si $m \ge 2$, alors $\mathcal{S}_{m \ge 2} = [-\frac{m}{2}, -1[\cup [-1, \sqrt{m-1}]]$, soit $\boxed{\mathcal{S}_{m \ge 2} = \left[-\frac{m}{2}, \sqrt{m-1}\right]}$.

Exercice 2. (5'+10'+1'+5'+30'+10'=1h01) On considère l'équation suivante d'inconnue $x \in \mathbb{R}$:

$$\left|2x - \sqrt{5x - 1}\right| = 0 \qquad (E)$$

- 1. Déterminer le domaine de définition de (E).
- 2. Dire si les réels suivants sont solutions ou non de (E)

$$x_1 = \frac{1}{5}, x_2 = \frac{1}{2}, x_3 = 1, x_4 = 12$$

- 3. Pour tout $a \in \mathbb{R}$, rappeler un encadrement de la partie entière de a en fonction de a.
- 4. Montrer que résoudre (E) est équivalent à résoudre le système :

$$\begin{cases} \sqrt{5x-1} > 2x-1 & (E_1) \\ \sqrt{5x-1} \le 2x & (E_2) \end{cases}$$

- 5. Résoudre les deux inéquations obtenues à la question précédente.
- 6. Résoudre (E).

Correction 2.

1. Seule la fonction $x \mapsto \sqrt{x}$ n'est pas définie sur \mathbb{R} mais sur \mathbb{R}_+ ainsi (E) est bien définie pour tout x tel que $5x - 1 \ge 0$ c'est-à-dire

$$D_E =]\frac{1}{5}, +\infty[$$

2. Cours

$$\forall a \in \mathbb{R} \quad a - 1 < \lfloor a \rfloor \le a$$

3. Notons $f(x) = \lfloor 2x - \sqrt{5x - 1} \rfloor$ On a $f(\frac{1}{5}) = \lfloor 2\frac{1}{5} - \sqrt{5\frac{1}{5} - 1} \rfloor = \lfloor 2\frac{1}{5} \rfloor = 0$ Donc

$$\frac{1}{5}$$
 est solution de E

On a $f(\frac{1}{2}) = \left\lfloor 2\frac{1}{2} - \sqrt{5\frac{1}{2} - 1} \right\rfloor = \left\lfloor 1 - \sqrt{\frac{3}{2}} \right\rfloor$ Or $\frac{3}{2} > 1$ donc $\sqrt{\frac{3}{2}} > \sqrt{1} = 1$ et donc $1 - \sqrt{\frac{3}{2}} < 0$ ainsi

$$\frac{1}{2}$$
 n'est pas solution de E

On a
$$f(1) = |2 \times 1 - \sqrt{5-1}| = |2-2| = |0|$$

$$1$$
 est solution de E

On a $f(12) = \lfloor 2 \times 12 - \sqrt{60 - 1} \rfloor = \lfloor 24 - \sqrt{59} \rfloor$ Or $59 < 64 = 8^2$ donc $\sqrt{59} < 8$ et $24 - \sqrt{59} > 24 - 8 = 16$ ainsi f(2) > 16 et

12 n'est pas solution de ${\cal E}$

4. D'après ce qu'on vient de voir, pour tout $x \in D_E$ on a :

$$2x - \sqrt{5x - 1} - 1 < |2x - \sqrt{5x - 1}| \le 2x - \sqrt{5x - 1}$$

Si x est solution de (E) on a $\lfloor 2x - \sqrt{5x - 1} \rfloor = 0$ et donc l'équation (E) équivaut à $2x - \sqrt{5x - 1} - 1 < 0 \le 2x - \sqrt{5x - 1}$, soit

$$\begin{cases} \sqrt{5x-1} > 2x-1 & (E_1) \\ \sqrt{5x-1} \le 2x & (E_2) \end{cases}$$

5. Résolvons ces deux inéquations. Tout d'abord la première :

$$\sqrt{5x-1} > 2x-1$$
 (E₁)

On distingue deux cas:

ightharpoonup Cas 1: $2x - 1 \ge 0$ c'est-à-dire $x \ge \frac{1}{2}$

Alors on peut passer au carré dans l'équation car les deux cotés sont du même signe. On a alors :

$$(E_1) \iff 5x - 1 > (2x - 1)^2$$
$$\iff 5x - 1 > 4x^2 - 4x + 1$$
$$\iff 4x^2 - 9x + 2 < 0$$

Un petit discriminant comme on aime : $\Delta = 9^2 - 4 * 4 * 2 = 81 - 32 = 49 = 7^2$. $4x^2 - 9x + 2$ admet donc deux racines

$$r_1 = \frac{9+7}{8} = 2$$
 et $r_2 = \frac{9-7}{8} = \frac{1}{4}$

Ainsi les solutions de (E_1) sur $[\frac{1}{2}, +\infty[$ sont

$$S_1 = \frac{1}{4}, 2[\cap[\frac{1}{2}, +\infty[\cap D_E]]$$

= $[\frac{1}{2}, 2[$

Les solutions de (E_1) sur $\left[\frac{1}{2}, +\infty\right[$ sont $\mathcal{S}_1 = \left[\frac{1}{2}, 2\right[$

▶ Cas 2 : 2x - 1 < 0 c'est-à-dire $x < \frac{1}{2}$

Dans ce cas, tous les réels $x \in D_E$ sont solutions car le membre de gauche est positif et celui de droite négatif.

Les solutions de
$$(E_1)$$
 sur $]-\infty, \frac{1}{2}[$ sont $\mathcal{S}'_1=[\frac{1}{5},\frac{1}{2}]$

En conclusion:

Les solutions de
$$(E_1)$$
 sur D_E sont $\mathcal{S} = \mathcal{S}_1 \cup \mathcal{S}_1' = [\frac{1}{5}, 2[$

On fait la même chose pour (E_2)

$$\sqrt{5x-1} \le 2x \quad (E_2)$$

On distingue deux cas:

ightharpoonup Cas 1 : $2x \ge 0$ c'est-à-dire $x \ge 0$

Alors on peut passer au carré dans l'équation car les deux cotés sont du même signe. On a alors :

$$(E_1) \iff 5x - 1 \le (2x)^2$$

$$\iff 5x - 1 \le 4x^2$$

$$\iff 4x^2 - 5x + 1 \ge 0$$

Un petit discriminant comme on aime : $\Delta = 5^2 - 4 * 4 * 1 = 25 - 16 = 9 = 3^2$. $4x^2 - 5x + 1$ admet donc deux racines

$$r_1 = \frac{5+3}{8} = 1$$
 et $r_2 = \frac{5-3}{8} = \frac{1}{4}$

Ainsi les solutions de (E_2) sur $[0, +\infty[$ sont

$$\mathcal{E}_2 = (] - \infty, \frac{1}{4}] \cup [1, +\infty[) \cap [0, +\infty[\cap D_E]]$$
$$= [\frac{1}{5}, \frac{1}{4}] \cup [1, +\infty[$$

Les solutions de
$$(E_2)$$
 sur $[0, +\infty[$ sont $\mathcal{E}_2 = [\frac{1}{5}, \frac{1}{4}] \cup [1, +\infty[$

ightharpoonup Cas 2: 2x < 0 c'est-à-dire x < 0

Dans ce cas, aucun réel n'est solution car le membre de gauche est positif et celui de droite négatif.

Les solutions de
$$(E_2)$$
 sur $]-\infty,0[$ sont $\mathcal{E}_2'=\emptyset$

En conclusion:

Les solutions de
$$(E_2)$$
 sur D_E sont $\mathcal{E} = \mathcal{E}_2 \cup \mathcal{E}_2' = [\frac{1}{5}, \frac{1}{4}] \cup [1, +\infty[$

6. x est solution de (E) si et seulement si il est solution de (E_1) et (E_2) , l'ensemble des solutions correspond donc à l'intersection : $\mathcal{E} \cap \mathcal{S} = ([\frac{1}{5}, \frac{1}{4}] \cup [1, +\infty[) \cap [\frac{1}{5}, 2[=[\frac{1}{5}, \frac{1}{4}] \cup [1, 2[$

Les solutions de
$$(E)$$
 sont $\left[\frac{1}{5}, \frac{1}{4}\right] \cup \left[1, 2\right[$