Assignment 7

Released: 10/29/2020 Due: 11/03/2020

The objective of this homework is to apply and interpret statistical techniques, evaluate applications of statistical techniques and use a statistical application package.

Problem 1

The following table contains the ACT scores and the GPA (grade point average) for eight college students. Grade point average is based on a four-point scale and has been rounded to one digit after the decimal.

	T	1
Student	GPA	ACT
1	2.8	21
2	3.4	24
3	3.0	26
4	3.5	27
5	3.6	29
6	3.0	25
7	2.7	25
8	3.7	30

- (i) Estimate the relationship between GPA and ACT using OLS; that is, obtain the intercept and slope estimates in the equation $GPA = \beta_0 + \beta_1 ACT$. Comment on the direction of the relationship. Does the intercept have a useful interpretation here? Explain. How much higher is the GPA predicted to be if the ACT score is increased by five points?
- (ii) Compute the fitted values and residuals for each observation and verify the residuals sum to zero.
- (iii) What is the predicted value of GPA when ACT = 20?
- (iv) How much of the variation in GPA for these eight students is explained by ACT?

Problem 2

A student estimates the relation between annual income and consumption (both measured in dollars) using the function cons = -124.84 + 0.853 inc using information from 100 families. The r-square is 0.692.

- (i) Interpret the slope and intercept in this equation.
- (ii) What is the predicted consumption when the family income is \$30,000.

Problem 3

The following equation relates housing price (*price*) to the distance from a recently built garbage incinerator (*dist*)

$$log (price) = 9.4 + 0.312 log (dist)$$

 $n = 135 R^2 = 0.162$

- (i) Interpret the slope and intercept in this equation.
- (ii) What is the coefficient of determination? Interpret?

Problem 4

The data set in CEOSAL2 contains information on chief executive officers for U.S. corporations. The variable *salary* is annual compensation, in thousands of dollars, and *ceoten* is prior number of years as company CEO.

- (i) Find the average salary and the average tenure in the sample.
- (ii) How many CEOs are in their first year as CEO (i.e. *ceoten* = 0)? What is the longest tenure as a CEO?
- (iii) Estimate the simple regression model $\log(salary) = \beta_0 + \beta_1 ceoten + \varepsilon$
- (iv) Interpret the results of the regression model (coefficients and R²)
- (v) What is the predicted percentage increase in salary given one more year as a CEO?