Optimization and Control, Laboratory

Model Predictive Control of a "Two Tank System"

Winter term 2021/22

1 Introduction

Consider a system consisting of two tanks and a reservoir, as shown in Figure 1. Two pumps can be used to transfer water into the tanks. The goal of the lab is to design and

Figure 1: Lab experiment "two tank system"

test a model predictive controller to track a desired water level for the bottom tank.

2 Mathematical Model

The level in the top tank x_1 and in the bottom tank x_2 are used as state variables. They are defined as the sum of the length of the drains h_{01} , h_{02} and the water levels h_1 , h_2 , i.e. $x_i = h_i + h_{0i}$ (i = 1, 2). A mathematical model for the two tank system is given in form of the following nonlinear differential equations:

$$\frac{dx_1}{dt} = -k_1\sqrt{x_1} + z_{p,1}$$

$$\frac{dx_2}{dt} = -k_2\sqrt{x_2} + k_1\sqrt{x_1} + z_{p,2}$$

$$h_1 = x_1 - h_{01}$$

$$h_2 = x_2 - h_{02}$$

$$y = h_2$$

where parameters k_1 and k_2 are constant. The output is defined as the water level h_2 in the bottom tank. The inflow due to pump 1 is symbolized by $z_{p,1}$, the inflow due to

pump 2 by $z_{p,2}$. The nonlinear characteristics of the pumps are given as

$$z_{p,i}(u_i) = \begin{cases} \alpha_i + \sqrt{\beta_i + \gamma_i u_i} & \text{for } \beta_i + \gamma_i u_i > 0\\ 0 & \text{else} \end{cases}$$

Pump voltages u_1 and u_2 represent the inputs of the system. Parameter α_i , β_i and γ_i are constant. All parameters of the lab experiment are listed in Table 1.

Parameter	Tank 1	Tank 2
$k_i \ [cm^{1/2}s^{-1}]$	0.391	0.386
$h_{0i} [cm]$	10.17	10.53
$\alpha_i \ [cms^{-1}]$	0.055	0.059
$\beta_i \ [cm^2s^{-2}]$	-3.077	-3.246
$\gamma_i \left[cm^2 s^{-2} V^{-1} \right]$	3.551	3.610

Table 1: Parameters of the two tank system

3 Tasks

- **Task 1** Linearize the model in the equilibrium $y_E = 15 \, cm$.
- **Task 2** Build Simulink files for the linearized and the nonlinear model. Check the values of the calculated equilibrium by means of simulation.
- **Task 3** Discretize the linearized model $(T_S = 0.5 s)$.
- Task 4 The first pump is used as an actuator to control the level in the second tank. Pump 2 will be used in the lab to apply disturbances. Implement a MPC for the unconstrained case and test the controller in combination with the linearized model and the nonlinear model. Compare the results!
- Task 5 Modify your MPC to take into account the constraints for the pump voltages and the states that are given by $0 \le u_i \le 5V$ and $h_{0i} \le x_i \le 20 \, cm + h_{0i}$ (i = 1, 2). Test the closed loop behavior using the linearized and the nonlinear model. Compare the results!
- **Task 6** Change the prediction horizon N_P , the control horizon N_C and the matrices Q and R. What about the effect of those parameters?
- Task 7 Extend your MPC implementation by introducing soft constraints (with only one additional optimization variable). What are the effects when choosing different values of ρ ?