Codage des images (source Wikidia, activité sans ordinateur).

Dominique Larrieu, Pr. de Mathématiques, Lycée Régional de Valbonne, exercices pour classes de 2nd.

Images monochromes

Les images sur les écrans des premiers ordinateurs étaient composés de **pixels monochromes** qui pouvaient être soit allumés (en vert ou en orange par exemple), soit éteints.

Le codage de telles images était plutôt simple : pour représenter un pixel allumé, on utilisait un 1, et pour un pixel éteint, c'était un 0.

Les images noir et blanc de type fax (sans nuances de gris) sont toujours codées ainsi. Elles occupent très peu de place et leur acheminement sur un réseau est très rapide.

Exemple : une image de 800 pixels de large et 600 pixels de hauteur (on dit aussi *une définition de 800x600*) *codée en 1 bit* (c'est-à-dire *monochrome*) a une taille de $800 \times 600 \times 1 = \dots$ bits = bots

Quand on n'avait que des images monochromes, **un bit** suffisait pour les **2 couleurs** (noir et blanc par exemple). Mais une fois les ordinateurs capables d'afficher des couleurs, il a fallu coder les pixels sur plusieurs bits.

Images en couleurs

L'une des premières normes d'affichage, la norme CGA, permettait d'afficher des pixels dans une palette de **4 couleurs** différentes (prises parmi les 16 disponibles). Pour cela, il fallait que chaque pixel soit codé par **2 bits**. Par exemple :

	Numéro (décimal)	Numéro (binaire)	Couleur
0		00	noir
1		01	vert
2		10	rouge
3		11	jaune

Ensuite, le nombre de couleurs qu'on pouvait représenter à la fois a continué à augmenter. On peut à présent avoir des images de **16 couleurs**. Et puisque 16 = 2⁴ , il suffit pour cela de coder chaque pixel par une suite de **4 bits**. Voici un exemple de palette courante :

N° décimal	N° binaire	Couleur	N° décimal	N° binaire	Couleur
0	0000	noir	8	1000	gris foncé
1	0001	bleu	9	1001	bleu clair
2	0010	vert	10	1010	vert clair
3	0011	cyan	11	1011	cyan clair
4	0100	rouge	12	1100	rouge clair
5	0101	magenta	13	1101	magenta clair
6	0110	marron	14	1110	jaune
7	0111	gris	15	1111	blanc

Et on peut continuer ainsi pour découvrir des images de plus en plus belles grâce à leur grand nombre de couleurs : avec **8 bits** par pixels, on obtient **256 couleurs** (car 2⁸ = 256) ; avec **16 bits**, **65536 couleurs** ; avec **24 bits**, plus de **16 millions** de couleurs ; avec **32 bits**, plus de **4 milliards**. À partir de 24 bits, on parle d'ailleurs d'affichage en *vraies couleurs* tant le réalisme est parfait.

Mais attention! Émerveillés par tant de couleurs, on peut oublier que plus le nombre de bits pour coder un pixel est grand, plus la taille en mémoire de l'image le sera : en 32 bits, un pixel a besoin de 4 octets pour être codé... Voici donc quelques exemples :

- Une image de 800x600 en 16 couleurs (4 bits) fait bits = octets = ko
- Une image de 800x600 en 256 couleurs (8 bits) fait bits = octets = ko
- Une image de 800x600 en 16 millions de couleurs (24 bits) fait bits = octets = Mo

Activité avec le logiciel PhotoFiltre : Le PIXEL ART!

Ouvrir un nouveau fichier, choisir la hauteur et la largeur (16*16 par exemple). Dessiner pixel par pixel un dessin de votre choix (smiley, pacman)

Observer la taille des fichiers enregistrés sous différents formats (ce qui peut se faire en cliquant d'abord avec le bouton droit sur l'icône du fichier puis sur "Propriétés").