

Problem

1

MATRICES-LINES

1

Contents

2	Solution	1
3	Construction	2

1 Problem

If E,F,G and H are respectively the mid-points of the sides of a parallelogram ABCD, show that

$$ar(EFGH) = \frac{1}{2} ar(ABCD)$$

2 Solution

- 1. Construct a parallelogram with vertices A,B,C and D.
- 2. Point mid-points E,F,G and H on sides AB,BC,CD and DA.

$$E = \frac{A+B}{2}$$
 $F = \frac{B+C}{2}$
 $G = \frac{C+D}{2}$
 $H = \frac{D+A}{2}$

- 3. By joining the midpoints of adjacent sides of parallelogram ABCD, another parallelogram EFGH is formed.
- 4. The area of parallelogram ABCD is given as,

$$ar(ABCD) = ((A - B)x(A - D))$$
 (1)

$$(\mathbf{A} - \mathbf{B}) = \begin{pmatrix} \mathbf{10} \\ \mathbf{0} \end{pmatrix} \quad (2)$$

$$(\mathbf{A} - \mathbf{D}) = \begin{pmatrix} \mathbf{1.25} \\ \mathbf{4.8} \end{pmatrix} \quad (3)$$

$$((\mathbf{A} - \mathbf{B})\mathbf{x}(\mathbf{A} - \mathbf{D})) = \begin{vmatrix} \mathbf{10} & \mathbf{0} \\ \mathbf{1.25} & \mathbf{4.8} \end{vmatrix}$$
 (4)

From (4),
$$ar(ABCD) = 48$$

5. The area of parallelogram EFGH is given as,

$$ar(EFGH) = ((E - F)x(E - H))$$
 (5)

$$(\mathbf{E} - \mathbf{F}) = \begin{pmatrix} \mathbf{5.625} \\ \mathbf{2.4} \end{pmatrix} (6)$$

$$(\mathbf{E} - \mathbf{H}) = \begin{pmatrix} -4.375 \\ 2.4 \end{pmatrix} (7)$$

$$((\mathbf{E} - \mathbf{F})\mathbf{x}(\mathbf{E} - \mathbf{H})) = \begin{vmatrix} \mathbf{5.625} & \mathbf{2.4} \\ -4.375 & \mathbf{2.4} \end{vmatrix}$$
(8)

From (8), ar(EFGH) = 24

Hence,

$$ar(EFGH) = \frac{1}{2} ar(ABCD)$$

Figure 3 Construction

The parallelogram is constructed with l=10 and j=5,

Symbol	Co-ordinates	Description
1	10	AB
j	5	AD
A	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	point vector A
В	$\begin{pmatrix} l \\ 0 \end{pmatrix}$	point vector B
D	$\begin{pmatrix} j.cos(\theta) \\ j.sin(\theta) \end{pmatrix}$	point vector D
\mathbf{C}	$\left(\mathbf{B}+\mathbf{D}\right)$	point vector C

The figure above is generated using python code provided in the below source code link.

https://github.com/madind5668 /FWC/blob/main/matrices/lines /codes/main.py