(i. A compound defined by the general formula (I):

$$W_1$$
 W_2
 W_2
 W_3
 W_4
 W_5
 W_7
 W_8
 W_8
 W_9
 W_9

wherein:

one of R¹ and R² is selected from the group consisting of:

- a) -CO(CH₂)_jR⁴, wherein j is 1 to 6, and R⁴ is selected from the group consisting of:
 - 1) hydrogen and a halogen;
 - 2) -NR⁵R⁶, wherein R⁵ and R⁶ independently are hydrogen, substituted lower alkyl, unsubstituted lower alkyl, substituted aryl, unsubstituted aryl, substituted heteroaryl, unsubstituted heteroaryl, substituted aralkyl, unsubstituted aralkyl, lower alkylaminocarbonyl, or lower alkoxycarbony; or R⁵ and R⁶ are combined with a nitrogen atom to form a heterocyclic group;

 - 4) -SR²⁷, wherein R²⁷ is selected from the group consisting of:
 - i) hydrogen;
 - ii) substituted lower alkyl;
 - iii) unsubstituted lower alkyl;
 - iv) substituted aryl;
 - v) unsubstituted aryl;
 - vi) substituted heteroaryl;
 - vii) unsubstituted heteroaryl;

ļė

4 1"1 4"1 1"1 f"1

- viii) substituted aralkyl;
- ix) unsubstituted aralkyl;
- x) thiazolinyl;
- xi) -(CH₂)_aCO₂R²⁸, wherein a is 1 or 2, and R²⁸ is selected from the group consisting of: hydrogen and lower alkyl; and
- xii) $-(CH_2)_a CONR^5R^6$; and
- 5) OR²⁹ (wherein R²⁹ is hydrogen, substituted lower alkyl, unsubstituted lower alkyl, or COR³⁰ (wherein R³⁰ is hydrogen, lower alkyl, substituted aryl, unsubstituted aryl, substituted heteroaryl);
- b) -CH(OH)(CH₂)_bR^{4A}, wherein b is 1 to 6 and R^{4A} is hydrogen or the same as R⁴;
- c) -(CH₂)_dCHR³¹CO₂R³² wherein d is 0 to 5, R³¹ is hydrogen, -CONR⁵R⁶, or CO₂R³³ (wherein R³³ is hydrogen or lower alkyl), and R³² is hydrogen or lower alkyl;
- d) -(CH2)_dCHR³¹CONR⁵R⁵;
- e) -(CH₂)_kR⁷ wherein k is 2 to 6, and R⁷ is halogen, CO₂R⁸ (wherein R⁸ is hydrogen, lower alkyl, substituted aryl, unsubstituted aryl, substituted heteroaryl, or unsubstituted heteroaryl, CONR⁵R⁶, substituted aryl, unsubstituted aryl, substituted heteroaryl, unsubstituted heteroaryl, OR⁹ (wherein R⁹ is hydrogen, substituted lower alkyl, unsubstituted lower alkyl, acyl, substituted aryl, or unsubstituted aryl), SR^{27B} (wherein R^{27B} is the same as R²⁷), NR¹⁰R¹¹ (wherein R¹⁰ and R¹¹ are the same as R⁵ and R⁶) or N₃;
- f) -CH=CH(CH₂)_mR¹² wherein m is 0 to 4, and R¹² is hydrogen, lower alkyl,

 CO₂R^{8A} (wherein R^{8A} is the same as R⁸), -CONR⁵R⁶, substituted aryl,

 unsubstituted aryl, substituted heteroaryl, unsubstituted heteroaryl, OR^{9A}

 (wherein R^{9A} is the same as R⁹), or NR¹⁰ (wherein R^{10A} and R^{11A} are the same as R⁵ and R⁶);
- g) -CH=C(CO₂R^{33A})₂, wherein R^{33A} is the same as R 33 ;
- h) $-C = C(CH_2)_n R^{13}$, wherein n is 0 to 4, and R^{13} is the same as R^{12} ;
- i) -CH₂OR⁴⁴, wherein R⁴⁴ is substituted lower alkyl; \ and the other of R¹ or R² is selected from the group consisting of
 - j) hydrogen, lower alkyl, halogen, acyl, nitro, NR¹⁴R¹⁵ (wherein R¹⁴ or R¹⁵ is hydrogen or lower alkyl, and the other is hydrogen, lower alkyl, acyl, carbamoyl, lower alkylaminocarbonyl, substituted arylaminocarbonyl or unsubstituted arylaminocarbonyl);

- k) -CH(SR³⁴)₂, wherein R³⁴ is lower alkyl or alkylene;
- (wherein R³⁵ is OR³⁶ (wherein R³⁶ is tri-lower alkyl silyl in which the three lower alkyl groups are the same or different, or is the same as R²⁹), or SR³⁷ (wherein R³⁷ is the same as R²⁷);
- m) $-CO(CH_2)_qR^{16}$, wherein q is 1 to 6, and R^{16} is the same as R^4 ;
- n) -CH($O(H)(CH_2)_eR^{38}$, wherein e is 1 to 6, and R^{38} is the same as R^{4A} ;
- o) -(CH₂)_fCHR³⁹CO₂R⁴⁰, wherein f is 0 to 5, R³⁹ is the same as R³¹ and R⁴⁰ is the same as R³²;
- p) $-(CH_2)_rR^{17}$, wherein r is 2 to 6, and R^{17} is the same as R^7 ;
- q) -CH=CH(CH $_2$)₁R¹⁸, wherein t is 0 to 4, and R¹⁸ is the same as R¹²;
- r) -CH=C(CO₂R³) 8)₂, wherein R^{33B} is the same as R³³;
- s) $-C = C(CH_2)_u R^{19}$, wherein u is 0 to 4, and R^{19} is the same as R^{13});

R³ is hydrogen, acyl, or lower alkyl;

X is selected from the group consisting of:

- a) hydrogen;
- b) formyl;
- c) lower alkoxycarbonyl;
- d) -CONR²⁰R²¹, wherein:

R²⁰ and R²¹ independently are:

hydrogen;

lower alkyl;

-CH₂R²², wherein R $^{\frac{1}{2}}$ is hydroxy, or

-NR²³R²⁴ (wherein R²³ or R²⁴ is hydrogen or lower alkyl, and the other is hydrogen, lower alkyl, or the residue of an α -amino acid in which the hydroxy group of the carboxyl group is excluded, or R²³ and R²⁴ are combined with a nitrogen atom to form a heterocyclic group); and

e) -CH=N-R²⁵, wherein R²⁵ is hydroxy, lower alkoxy, amino, guanidino, or imidazolylamino;

Y is hydroxy, lower alkoxy, aralkyloxy, or acyloxy; or

X and Y combined represent, -X-Y-, =O, -CH₂O(C=O)O-, -CH₂OC(=S)O-, -CH₂NR²⁶C(=O)- (wherein R^{26} is hydrogen or lower alkyl), -CH₂NHC(=S)O-, -CH₂OS(=O)O-, or -CH₂OC(CH₃)₂O-; and

W¹ and W² are hydrogen, or W¹ and W² together represent oxygen; or a pharmaceutically acceptable salt thereof.

- 2. The compound of claim 1 wherein:
 - a) one of R^1 and R^2 is selected from the group consisting of $-(CH_2)_k R^7$, -CH=CH(CH₂)_mR¹², -C\(\text{CC}(CH₂)_nR¹³, -CO(CH₂)_iSR²⁷ and -CH₂OR⁴⁴, wherein R⁴⁴ is methoxymethyl, ethoxymethyl, or methoxyethyl; and the other of R1 and R2 is selected from the group consisting of $-(CH_2)_{0}R^{17}$, $-CH=CH(CH_2)_{0}R^{18}$, $-C=C(CH_2)_{0}R^{19}$, $NR^{14}R^{15}$, hydrogen, halogen, nitro, -CH2O-, substituted lower alkyl, unsubstituted lower alkyl, -CO(CH₂) $_{0}$ SR²⁷, -CH₂R³⁵, wherein R³⁵ is OR³⁶, and -CH₂SR³⁷, wherein R³ is selected from the group consisting of lower alkyl, pyridyl, and benzimidazole;
 - b) k and r are each 2, 3, or 4;
 - c) j and q are each 1 or 2;
 - d) R⁷ and R¹⁷ are:
 - 1) selected independently from the group consisting of: phenyl, pyridyl, imidazolyl, thiazolyl, or tetrazolyl; or
 - 2) selected pairwise, from the group consisting of:
 - i) -CO₂R⁸ and CO₂R^{8A}, where R⁸ and R^{8A}, independently, are hydrogen, methyl, ethyl, or phenyl;
 - ii) -OR9 and -OR9A, where R9 and R9A, independently, are hydrogen, methyl ethyl, phenyl, or acyl;
 - iii) -SR^{27B}, where R^{27B} is selected from the group consisting of unsubstituted lower alkyl, 2-thiazoline, and pyridyl; and
 - iv) -NR¹⁰R¹¹ and -NR¹⁴R¹⁵, where R¹⁰, R¹¹, R¹⁴, and R¹⁵, independently, are selected from the group consisting of hydrogen, methyl, ethyl, phenyl, carbamoyl, and lower alkylaminocarbonyl;
 - e) R²⁷ is selected from the group consisting of substituted lower alkyl, unsubstituted lower alkyl, substituted phenyl, unsubstituted phenyl, pyridyl, pyrimidinyl, thiazole, and tetrazole;

- R³⁶ is selected from the group consisting of methoxymethyl, ethoxymethyl, and methoxyethyl;
- g) m, n, t and u each is 0 or 1; and
- h) R¹², R¹³, R¹⁸, and R¹⁹ are independently selected from the group consisting of hydrogen, methyl ethyl, phenyl, pyridyl, imidazole, thiazole, tetrazole, -CO₂R⁸, -OR⁹, and NR¹⁰R¹¹, wherein R⁸, R⁹, R¹⁰, and R¹¹ each is hydrogen, methyl, ethyl, or phenyl.
- 3. The compound of claim 2, wherein R³ is hydrogen or acetyl, X is hydroxymethyl or lower alkoxycarbonyl, Y is hydroxy or acetyloxy, and W¹ and W² are hydrogen.
 - 4. The compound of claim \S , wherein X is methoxycarbonyl, Y is hydroxy, and R^3 is hydrogen.
 - 5. The compound of claim 3 wherein:

one of R¹ and R² is selected from the group consisting of
methoxycarbonylvinyl, ethoxycarbonylvinyl, styryl,
2-pyridylvinyl, 4-pyridylvinyl, 2-pyridylethyl,
4-pyridylethyl, phenylethyl, methoxypropynyl,
hydroxypropynyl, -COCH₂SEt, -C≡CCH₂NMeBn, -CH=CHEt,
-(CH₂)₂SMe, -(CH₂)₂S-2-thiazoline, -(CH₂)₃SMe, -CH=CHEt,
-CH=CH-2-imidazole, (CH₂)₂OC(=O)H,
methoxymethoxymethyl, ethoxymethoxymethyl,
methoxyethoxymethyl, and 2-hydroxyethyl;

and the other of R1 and R2 is selected from the group

consisting of hydrogen, halogen,

methoxycarbonylvinyl, ethoxycarbonylvinyl, styryl,

2-pyridylvinyl, 4-pyridylvinyl, 2-pyridylethyl,

4-pyridylethyl, phenylethyl, nitro, amino,

N-ethylurea, methoxypropynyl, hydroxypropynyl,

-COCH₂SEt, -C\(\frac{2}{2}\)CCH₂NMeBn, -CH=CH\(\frac{1}{2}\)t, -(CH₂)₂SMe,

-(CH₂)₂S-2-thiazoline, -(CH₂)₃SMe, -CH₂OMe, -CH₂OEt,

-CH₂SEt, pyridylthiomethyl, -CH₂S-2-benzimidazole,

Sch A2 132
-CH=CHEt, CH=CH-2-imidazole, -(CH₂)₂OC(=O)H,
methoxymethyl, ethoxymethyl, methoxymethyl,
and 2-hydroxyethyl.

6. A method for enhancing the function of a trophic factor responsive cell, comprising the step of contacting said cell with a compound defined by the general formula (I):

$$\begin{array}{c|c}
R_3 \\
W_1 \\
N \\
N \\
N \\
N \\
N \\
X \\
\end{array}$$

$$\begin{array}{c}
R_1 \\
R_2 \\
N \\
N \\
X \\
\end{array}$$

wherein:

one of R1 and R2 is selected from the group consisting of:

- a) -CO(CH₂)_iR⁴, where it is 1 to 6, and R⁴ is selected from the group consisting of:
 - 1) hydrogen and a halogen;
 - 2) -NR⁵R⁶, wherein R⁵ and R⁶ independently are hydrogen, substituted lower alkyl, unsubstituted lower alkyl, substituted aryl, unsubstituted aryl, substituted heteroaryl, unsubstituted heteroaryl, substituted aralkyl, unsubstituted aralkyl, lower alkylaminocarbonyl, or lower alkoxycarbonyl; or R⁵ and R⁶ are combined with a nitrogen atom to form a heterocyclic group;
 - 3) N_3 ;
 - 4) -SR²⁷, wherein R²⁷ is selected from the group consisting of:
 - i) hydrogen;
 - ii) substituted lower alkyl;
 - iii) unsubstituted lower alkyl;
 - iv) substituted aryl;

- v) unsubstituted aryl;
- vi) substituted heteroaryl;
- vii) unsubstituted heteroaryl;
- viii) substituted aralkyl;
- ix) unsubstituted aralkyl;
- x) thiazolinyl;
- xi) -(CH₂)_aCO₂R²⁸, wherein a is 1 or 2, and R²⁸ is selected from the group consisting of: hydrogen and lower alkyl; and
- xii) -(CH₂)_a CONR⁵R⁶; and
- 5) OR²⁹ (wherein R²⁹ is hydrogen, substituted lower alkyl, unsubstituted lower alkyl, or COR³⁰ (wherein R³⁰ is hydrogen, lower alkyl, substituted aryl, unsubstituted aryl, substituted heteroaryl);
- b) -CH(OH)(CH₂) R^{4A}, wherein b is 1 to 6 and R^{4A} is hydrogen or the same as R⁴;
- c) -(CH₂)_dCHR³¹CO₂R³² wherein d is 0 to 5, R³¹ is hydrogen, -CONR⁵R⁶, or CO₂R³³ (wherein R³³ is hydrogen or lower alkyl), and R³² is hydrogen or lower alkyl;
- d) -(CH2)dCHR31CQARX3R6;
- e) -(CH₂)_kR⁷ wherein k is 2 to 6, and R⁷ is halogen, CO₂R⁸ (wherein R⁸ is hydrogen, lower alkyl, substituted aryl, unsubstituted aryl, substituted heteroaryl, or unsubstituted heteroaryl, CONR⁵R⁶, substituted aryl, unsubstituted aryl, substituted heteroaryl, OR⁹ (wherein R⁹ is hydrogen, substituted lower alkyl, unsubstituted lower alkyl, acyl, substituted aryl, or unsubstituted aryl), SR^{27B} (wherein R^{27B} is the same as R²⁷), NR¹⁰R¹¹ (wherein R¹⁰ and R¹¹ are the same as R and R⁶) or N₃;
- f) -CH=CH(CH₂)_mR¹² wherein m is 0 to 4, and R¹² is hydrogen, lower alkyl,

 CO₂R^{8A} (wherein R^{8A} is the same as R⁸), -CONR⁵R⁶, substituted aryl,

 unsubstituted aryl, substituted heteroaryl, unsubstituted heteroaryl, OR^{9A}

 (wherein R^{9A} is the same as R⁹), or NR^{10A}R^{11A} (wherein R^{10A} and R^{11A} are the same as R⁵ and R⁶);
- g) -CH=C(CO₂R^{33A})₂, wherein R^{33A} is the same $\frac{1}{2}$ \$\times R³³;
- h) $-C = C(CH_2)_n R^{13}$, wherein n is 0 to 4, and R^{13} is the same as R^{12} ;
- i) -CH₂OR⁴⁴, wherein R⁴⁴ is substituted lower alkyl; and the other of R¹ or R² is selected from the group consisting of

- j) hydrogen, lower alkyl, halogen, acyl, nitro, NR¹⁴R¹⁵ (wherein R¹⁴ or R¹⁵ is hydrogen or lower alkyl, and the other is hydrogen, lower alkyl, acyl, carbamoyl, lower alkylaminocarbonyl, substituted arylaminocarbonyl or unsubstituted arylaminocarbonyl);
- k) -CH(SR³⁴)₂, wherein R³⁴ is lower alkyl or alkylene;
- l) -CH₂R³⁵, wherein R³⁵ is OR³⁶ (wherein R³⁶ is tri-lower alkyl silyl in which the three lower alkyl groups are the same or different, or is the same as R²⁹), or SR³⁷ (wherein R³⁷ is the same as R²⁷);
- m) -CO(CH₂)_qR¹⁶, wherein q is 1 to 6, and R¹⁶ is the same as R⁴;
- n) -CH(OH)(C_{H_2})_e R^{38} , wherein e is 1 to 6, and R^{38} is the same as R^{4A} ;
- o) -(CH₂)_fCHR³⁹CO₂R⁴⁰, wherein f is 0 to 5, R³⁹ is the same as R³¹ and R⁴⁰ is the same as R³²;
- p) -(CH₂)_rR¹⁷, wherein r is 2 to 6, and R¹⁷ is the same as R⁷;
- q) -CH=CH(CH₂)_t R^{18} \wherein t is 0 to 4, and R^{18} is the same as R^{12} ;
- r) -CH=C(CO₂R^{33B})₂, wherein R^{33B} is the same as R³³;
- s) $-C = C(CH_2)_u R^{19}$, wherein u is 0 to 4, and R^{19} is the same as R^{13});

R³ is hydrogen, acyl, or lower alky

X is selected from the group consisting of:

- a) hydrogen;
- b) formyl;
- c) lower alkoxycarbonyl;
- d) -CONR²⁰R²¹, wherein:

R²⁰ and R²¹ independently are:

hydrogen;

lower alkyl;

-CH2R²², wherein R²² is hydroxy, or

-NR²³R²⁴ (wherein R²³ or R²⁴ is hydrogen or lower alkyl, and the other is hydrogen, lower alkyl, or the residue of an α -amino acid in which the hydroxy group of the carboxyl group is excluded, or R²³ and R²⁴ are combined with a nitrogen atom to form a heterocyclic group); and

e) -CH=N-R²⁵, wherein R²⁵ is hydroxy, lower alkoxy, amino, guanidino, or imidazolylamino;

Y is hydroxy, lower alkoxy, aralkyloxy, or acyloxy; or

135

X and Y combined represent, -X-Y-, =O, -CH₂O(C=O)O-, -CH₂OC(=S)O-, -CH₂NR²⁶C(=O)(wherein R²⁶ is hydrogen or lower alkyl), -CH₂NHC(=S)O-, -CH₂OS(=O)O-, or
-CH₂OC(CH₃)₂O-; and

W¹ and W² are hydrogen, or W¹ and W² together represent oxygen; or a pharmaceutically acceptable salt thereof.

- 7. A method for enhancing the function of a trophic factor responsive cell, comprising the step of contacting said cell with at least one compound of claim 2.
- 8. A method for enhancing the function of a trophic factor responsive cell, comprising the step of contacting said cell with at least one compound of claim 5.
 - 9. The method of claim 6, wherein said trophic factor responsive cell is in a mammal.
 - 10. The method of claim 6, wherein said trophic factor responsive cell is a neuron.
- 11. The method of claim 10, wherein said neuron is selected from the group consisting of cholinergic neurons and sensory neurons.
- 12. A method for enhancing the survival of a trophic factor responsive cell, comprising the step of contacting said cell with a compound defined by the general formula (I):

wherein:

one of R¹ and R² is selected from the group consisting of:

- a) -CO(CH₂)_iR⁴, wherein j is 1 to 6, and R⁴ is selected from the group consisting of:
 - 1) hydrogen and a halogen;
 - 2) -NR⁵R⁶, wherein R⁵ and R⁶ independently are hydrogen, substituted lower alkyl, unsubstituted lower alkyl, substituted aryl, unsubstituted aryl, substituted heteroaryl, unsubstituted heteroaryl, substituted aralkyl, unsubstituted aralkyl, lower alkylaminocarbonyl, or lower alkoxycarbonyl; or R⁵ and R⁶ are combined with a nitrogen atom to form a heterocyclic group;
 - 3) N₃
 - 4) $-SR^{27}$, wherein R^{27} is selected from the group consisting of:
 - i)\hydrogen;
 - ii) substituted lower alkyl;
 - iii) unsubstituted lower alkyl;
 - iv) substituted aryl;
 - v) unsubstituted aryl;
 - vi) substituted heteroaryl;
 - vii) unsubstituted heteroaryl;
 - viii) substituted aralkyl;
 - ix) unsubstituted aralkyl;
 - x) thiazolinyl;
 - xi) -(CH₂)_aCO₂R²⁸, wherein a is 1 or 2, and R²⁸ is selected from the group consisting of: hydrogen and lower alkyl; and
 - xii) -(CH₂)_a CONR⁵R⁵; and
 - 5) OR²⁹ (wherein R²⁹ is hydrogen, substituted lower alkyl, unsubstituted lower alkyl, or COR³⁰ (wherein R³⁰ is hydrogen, lower alkyl, substituted aryl, unsubstituted aryl, substituted heteroaryl);
- b) -CH(OH)(CH₂)_bR^{4A}, wherein b is 1 to 6 and R^{4A} is hydrogen or the same as R⁴;
- c) -(CH₂)_dCHR³¹CO₂R³² wherein d is 0 to 5, R³¹ is hydrogen, -CONR⁵R⁶, or CO₂R³³ (wherein R³³ is hydrogen or lower alkyl), and R³² is hydrogen or lower alkyl;
- d) -(CH2)_dCHR³¹CONR⁵R⁶;
- e) -(CH₂)_kR⁷ wherein k is 2 to 6, and R⁷ is halogen, CO₂R⁸ (wherein R⁸ is

hydrogen, lower alkyl, substituted aryl, unsubstituted aryl, substituted heteroaryl, or unsubstituted heteroaryl), $CONR^5R^6$, substituted aryl, unsubstituted aryl, substituted heteroaryl, unsubstituted heteroaryl, OR^9 (wherein R^9 is hydrogen, substituted lower alkyl, unsubstituted lower alkyl, acyl, substituted aryl, or unsubstituted aryl), SR^{27B} (wherein R^{27B} is the same as R^{27}), $NR^{10}R^{11}$ (wherein R^{10} and R^{11} are the same as R^5 and R^6) or N_3 ;

- f) -CH=CH(CH₂)_mR¹² wherein m is 0 to 4, and R¹² is hydrogen, lower alkyl,

 CO₂R^{8A} (wherein R^{8A} is the same as R⁸), -CONR⁵R⁶, substituted aryl,

 unsubstituted aryl, substituted heteroaryl, unsubstituted heteroaryl, OR^{9A}

 (wherein R^{9A} is the same as R⁹), or NR^{10A}R^{11A} (wherein R^{10A} and R^{11A} are the same as R⁵ and R⁶);
- g) -CH=C(CO₂R^{33A})₂, wherein R^{33A} is the same as R³³;
- h) $-C = C(CH_2)_n R^{13}$, wherein n is 0 to 4, and R^{13} is the same as R^{12} ;
- i) -CH₂OR⁴⁴, wherein R⁴⁴ is substituted lower alkyl; and the other of R¹ or R² is selected from the group consisting of
 - j) hydrogen, lower arkyl, halogen, acyl, nitro, NR¹⁴R¹⁵ (wherein R¹⁴ or R¹⁵ is hydrogen or lower alkyl, and the other is hydrogen, lower alkyl, acyl, carbamoyl, lower alkylaminocarbonyl, substituted arylaminocarbonyl or unsubstituted arylaminocarbonyl);
 - k) -CH(SR³⁴)₂, wherein R³⁴ is lower alkyl or alkylene;
 - l) -CH₂R³⁵, wherein R³⁵ is OR³⁶ (wherein R³⁶ is tri-lower alkyl silyl in which the three lower alkyl groups are the same or different, or is the same as R²⁹), or SR³⁷ (wherein R³⁷ is the same as R²⁷);
 - m) $-CO(CH_2)_qR^{16}$, wherein q is 1 to 6, and R^{16} is the same as R^4 ;
 - n) -CH(OH)(CH₂)_eR³⁸, wherein e is 1 to 6, and R³⁸ is the same as R^{4A};
 - o) $-(CH_2)_1CHR^{39}CO_2R^{40}$, wherein f is 0 to 5, R^{39} is the same as R^{31} and R^{40} is the same as R^{32} ;
 - p) -(CH₂)_rR¹⁷, wherein r is 2 to 6,\and R¹⁷ is the same as R⁷;
 - q) -CH=CH(CH₂)_t R^{18} , wherein t is 0 to 4, and R^{18} is the same as R^{12} ;
 - r) -CH=C(CO₂R^{33B})₂, wherein R^{33B} is the same as R³³;
 - s) $-C = C(CH_2)_u R^{19}$, wherein u is 0 to 4, and R^{19} is the same as R^{13});

R³ is hydrogen, acyl, or lower alkyl;

X is selected from the group consisting of:

- a) hydrogen;
- b) formyl;
- c)\lower alkoxycarbonyl;
- d) -CONR²⁰R²¹, wherein:

R²⁰ and R²¹ independently are:

hydrogen;

lower alkyl;

-CH2R²², wherein R²² is hydroxy, or

-NR²³R²⁴ (wherein R²³ or R²⁴ is hydrogen or lower alkyl, and the other is hydrogen, lower alkyl, or the residue of an α -amino acid in which the hydroxy group of the carboxyl group is excluded, or R²³ and R²⁴ are combined with a nitrogen atom to form a heterocyclic group); and

e) -CH=N-R²⁵, wherein R²⁵ is hydroxy, lower alkoxy, amino, guanidino, or imidazolylamino;

Y is hydroxy, lower alkoxy, aralkyloxy, or acyloxy; or

X and Y combined represent, -X-Y-, =O, -CH₂O(C=O)O-, -CH₂OC(=S)O-, -CH₂NR²⁶C(=O)(wherein R²⁶ is hydrogen or lower alkyl), -CH₂NHC(=S)O-, -CH₂OS(=O)O-, or
-CH₂OC(CH₃)₂O-; and

W¹ and W² are hydrogen, or W and W² together represent oxygen; or a pharmaceutically acceptable salt thereof.

- 13. A method for enhancing the survival of a trophic factor responsive cell, comprising the step of contacting said cell with a compound of claim 2.
- 14. A method for enhancing the survival of a trophic factor responsive cell, comprising the step of contacting said cell with a compound of claim 5.
 - 15. The method of claim 12, wherein said trophic factor responsive cell is a neuron.
 - 16. The method of claim 15, wherein said neuron is a cholinergic neuron.

$$W_1$$
 W_2
 W_2
 W_3
 W_3
 W_4
 W_3
 W_4
 W_5
 W_4
 W_5
 W_7
 W_8
 W_8
 W_8
 W_8
 W_9
 W_9

wherein:

one of R¹ and R² is selected from the group consisting of:

- a) -CO(CH₂)_iR⁴\wherein j is 1 to 6, and R⁴ is selected from the group consisting of:
 - 1) hydrogen and a halogen;
 - 2) -NR⁵R⁶, wherein R⁵ and R⁶ independently are hydrogen, substituted lower alkyl, unsubstituted lower alkyl, substituted aryl, unsubstituted aryl, substituted heteroaryl, unsubstituted heteroaryl, substituted aralkyl, unsubstituted aralkyl, lower alkylaminocarbonyl, or lower alkoxycarbonyl; or R⁵ and R⁶ are combined with a nitrogen atom to form a heterocyclic group;
 - 3) N₃;
 - 4) -SR²⁷, wherein R²⁷ is selected from the group consisting of:
 - i) hydrogen;
 - ii) substituted lower alkyl;
 - iii) unsubstituted lower alkyl;
 - iv) substituted aryl;
 - v) unsubstituted aryl;
 - vi) substituted heteroaryl;
 - vii) unsubstituted heteroaryl;

.140

- viii) substituted aralkyl;
- ix) unsubstituted aralkyl;
- x) thiazolinyl;
- xi) -(CH₂)_aCO₂R²⁸, wherein a is 1 or 2, and R²⁸ is selected from the group consisting of: hydrogen and lower alkyl; and
- xii) -(CH₂)_a CONR⁵R⁶; and
- 5) OR²⁹ (wherein R²⁹ is hydrogen, substituted lower alkyl, unsubstituted lower alkyl, or COR³⁰ (wherein R³⁰ is hydrogen, lower alkyl, substituted aryl, unsubstituted aryl, substituted heteroaryl));
- b) -CH(OH)(CH₂)_bR^{4A}, wherein b is 1 to 6 and R^{4A} is hydrogen or the same as R⁴;
- c) -(CH₂)_dCHR³¹CO₂R³² wherein d is 0 to 5, R³¹ is hydrogen, -CONR⁵R⁶, or CO₂R³³ (wherein R³³ is hydrogen or lower alkyl), and R³² is hydrogen or lower alkyl;
- $_{d}$) -(CH2) $_{d}$ CHR 31 CONR 5 R 6 ;
- e) -(CH₂)_kR⁷ wherein k is 2 to 6, and R⁷ is halogen, CO₂R⁸ (wherein R⁸ is hydrogen, lower alky), substituted aryl, unsubstituted aryl, substituted heteroaryl, or unsubstituted heteroaryl, CONR⁵R⁶, substituted aryl, unsubstituted aryl, substituted heteroaryl, OR⁹ (wherein R⁹ is hydrogen, substituted lower alkyl, unsubstituted lower alkyl, acyl substituted aryl, or unsubstituted aryl), SR^{27B} (wherein R^{27B} is the same as R²⁷), NR¹⁰R¹¹ (wherein R¹⁰ and R¹¹ are the same as R³ and R⁶) or N₃;
- f) -CH=CH(CH₂)_mR¹² wherein m is 0 to 4, and R¹² is hydrogen, lower alkyl,

 CO₂R^{8A} (wherein R^{8A} is the same as R⁸), -CONR⁵R⁶, substituted aryl,

 unsubstituted aryl, substituted heteroaryl, unsubstituted heteroaryl, OR^{9A}

 (wherein R^{9A} is the same as R⁹), or NR^{10A}R^{11A} (wherein R^{10A} and R^{11A} are the same as R⁵ and R⁶);
- g) -CH=C(CO₂R^{33A})₂, wherein R^{33A} is the same as R³³;
- h) $-C = C(CH_2)_n R^{13}$, wherein n is 0 to 4, and R^{13} is the same as R^{12} ;
- i) -CH₂OR⁴⁴, wherein R⁴⁴ is substituted lower alkyl; and the other of R¹ or R² is selected from the group consisting of
 - j) hydrogen, lower alkyl, halogen, acyl, nitro, NR¹⁴R¹⁵ (wherein R¹⁴ or R¹⁵ is hydrogen or lower alkyl, and the other is hydrogen, lower alkyl, acyl, carbamoyl, lower alkylaminocarbonyl, substituted arylaminocarbonyl or unsubstituted arylaminocarbonyl);

- k) -CH(SR³⁴)₂, wherein R³⁴ is lower alkyl or alkylene;
- -CH₂R³⁵, wherein R³⁵ is OR³⁶ (wherein R³⁶ is tri-lower alkyl silyl in which the three lower alkyl groups are the same or different, or is the same as R²⁹), or SR³⁷ (wherein R³⁷ is the same as R²⁷);
- m) -CO(CH₂)_aR¹⁶, wherein q is 1 to 6, and R¹⁶ is the same as R⁴;
- (n) -CH(OH)(CH₂)_eR³⁸, wherein e is 1 to 6, and R³⁸ is the same as R^{4A};
- -(CH₂)_fCHR³⁹CO₂R⁴⁰, wherein f is 0 to 5, R³⁹ is the same as R³¹ and R⁴⁰ is the same as R³²;
- p) $-(CH_2)_rR^{17}$, wherein r is 2 to 6, and R^{17} is the same as R^7 ;
- q) $-\dot{O}H=CH(CH_2)_1R^{18}$, wherein t is 0 to 4, and R^{18} is the same as R^{12} ;
- r) -CH= $C(CO_2R^{33B})_2$, wherein R^{33B} is the same as R^{33} ;
- s) $-C = C(CH_2)_u R^{19}$, wherein u is 0 to 4, and R^{19} is the same as R^{13});

R³ is hydrogen, acyl, or lower alkyl;

X is selected from the group consisting of:

- a) hydrogen;
- b) formyl;
- c) lower alkoxycarbonyl;
- d) -CONR²⁰R², wherein:

R²⁰ and R²¹\independently are:

hydrogen;

lower alkyl;

-CH₂R²² wherein R²² is hydroxy, or

-NR²³R²⁴ (wherein R²³ or R²⁴ is hydrogen or lower alkyl, and the other is hydrogen, lower alkyl, or the residue of an α -amino acid in which the hydroxy group of the carboxyl group is excluded, or R²³ and R²⁴ are combined with a nitrogen atom to form a heterocyclic group); and

e) -CH=N-R²⁵, wherein R²⁵ is hydroxy, lower alkoxy, amino, guanidino, or imidazolylamino;

Y is hydroxy, lower alkoxy, aralkyloxy, or acyloxy; or

X and Y combined represent, -X-Y-, =O, -CH₂O(C=O)O-, -CH₂OC(=S)O-, -CH₂NR²⁶C(=O)- (wherein R^{26} is hydrogen or lower alkyl), -CH₂NHC(=S)O-, -CH₂OS(=O)O-, or -CH₂OC(CH₃)₂O-; and

or a pharmaceutically acceptable salt thereof.

- 18. A method for enhancing the survival of a cell at risk of dying, comprising the step of contacting said cell with a compound of claim 2.
- 19. A method for enhancing the survival of a cell at risk of dying, comprising the step of contacting said cell with a compound of claim 5.
- 20. The method of claim 17, wherein said cell is at risk of dying due to a process selected from the group consisting of aging, trauma, and disease.
 - 21. The method of claim 20, wherein said cell is a neuron.
- 22. The method of claim 16, wherein said method is used in the treatment of Huntington's disease.