数学整理

o7k40shen

2020年12月12日

目录

1	不等	式	3
	1.1	均值不等式	3
	1.2	对数平均不等式	3
	1.3	柯西不等式	3
	1.4	排序不等式	4
	1.5	权方和不等式	4
	1.6	舒尔不等式	5
	1.7	琴生不等式	5
	1.8	绝对值不等式	5
2	函数		5
	2.1	拉格朗日中值定理	5
	2.2	拉格朗日乘数法	5
	2.3	高次韦达定理	6
	2.4	泰勒展开	7
	2.5	极值点偏移	7
	2.6	最值函数基本定理	8
3	数列	J .	8
	3.1	不动点原理	8
4	组合	数学	8
	4.1		8

目录	2
· · · · •	

	4.2	伯努利装错信封问题	8					
5	向量	,	9					
	5.1		9					
	5.2	分点恒等式	9					
	5.3	三点共线定理	9					
	5.4	向量中值定理	9					
	5.5	向量数乘余弦定理1	0					
6	三角	10	n					
Ū	— 乃 6.1		0					
	6.2		0					
	6.3		0					
	6.4		1					
7	统计	、概率、分布 1	1					
	7.1	期望、方差、标准差	1					
	7.2	二项分布 1	1					
	7.3	正态分布 1	1					
	7.4	几何分布 1	2					
	7.5	超几何分布 1	2					
8	方程	1	2					
	8.1		2					
	8.2		2					
9	几何	1:	2					
	9.1	射影定理 1	2					
	9.2	阿波罗尼斯圆	3					
	9.3	角平分线定理	3					
10 方法 13								
			3					
			-					

1 不等式 3

1 不等式

1.1 均值不等式

 H_n 为调和平均数、 G_n 为几何平均数、 A_n 为算数平均数、 Q_n 为平方平均数。任意 $x_i > 0$ 都成立时,有

$$H_n = \frac{n}{\sum_{i=1}^n \frac{1}{x_i}} = \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}}$$

$$G_n = \sqrt[n]{\prod_{i=1}^n x_i} = \sqrt[n]{x_1 x_2 \dots x_n}$$

$$A_n = \frac{\sum_{i=1}^n x_i}{n} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

$$Q_n = \sqrt{\frac{\sum_{i=1}^n x_i^2}{n}} = \sqrt{\frac{x_1^2 + x_2^2 + \dots + x_n^2}{n}}$$

$$H_n \le G_n \le A_n \le Q_n$$

当且仅当 $x_1 = x_2 = \cdots = x_n$ 时取等号

1.2 对数平均不等式

 $a \neq b$ 时,有

$$\sqrt{ab} < \frac{a-b}{\ln a - \ln b} < \frac{a+b}{2}$$

1.3 柯西不等式

$$\sum_{i=1}^{n} a_i^2 \sum_{i=1}^{n} b_i^2 \ge \left(\sum_{i=1}^{n} a_i b_i\right)^2$$

当且仅当 $\frac{a_1}{b_1} = \frac{a_2}{b_2} = \cdots = \frac{a_n}{b_n}$ 时取等号 其中二维形式如下

$$(a^2 + b^2)(c^2 + d^2) \ge (ac + bd)^2$$

当且仅当 ad = bc 即 $\frac{a}{c} = \frac{b}{d}$ 时取等

1 不等式 4

1.4 排序不等式

排序不等式表示如下

设有两组数 a_1, a_2, \ldots, a_n 和 b_1, b_2, \ldots, b_n , 满足 $a_1 \leq a_2 \leq \cdots \leq a_n$ 且 $b_1 \leq b_2 \leq \cdots \leq b_n \ c_1, c_2, \ldots, c_n$ 是 b_1, b_2, \ldots, b_n 的乱序排列,则有:

$$a_1b_n + a_2b_{n-1} + \dots + a_nb_1 \le a_1c_1 + a_2c_2 + \dots + a_nc_n \le a_1b_1 + a_2b_2 + \dots + a_nb_n$$

当且仅当 $a_1 = a_2 = \cdots = a_n$ 或 $b_1 = b_2 = \cdots = b_n$ 时取等号。便于记忆,常记为:

反序和 < 乱序和 < 顺序和

1.5 权方和不等式

若 $a_i > 0$, $b_i > 0$, m > 0, 则有

$$\sum_{i=1}^{n} \frac{a_i^{m+1}}{b_i^{m}} \ge \frac{\left(\sum_{i=1}^{n} a_i\right)^{m+1}}{\left(\sum_{i=1}^{n} b_i\right)^{m}}$$

即为

$$\frac{a_1^{m+1}}{b_1^m} + \frac{a_2^{m+1}}{b_2^m} + \dots + \frac{a_n^{m+1}}{b_n^m} \ge \frac{(a_1 + a_2 + \dots + a_n)^{m+1}}{(b_1 + b_2 + \dots + b_n)^m}$$

当且仅当 $a_i = \lambda b_i$ 时取等号

其中二维形式如下

对于正数 a, b, x, y, 有

$$\frac{a^2}{x} + \frac{b^2}{y} \ge \frac{(a+b)^2}{x+y}$$

当且仅当 a:b=x:y 时取等号

也有

$$\frac{a^2}{ax} + \frac{b^2}{by} = \frac{a}{x} + \frac{b}{y} \ge \frac{(a+b)^2}{ax + by}$$

当且仅当 x = y 时取等号

2 函数 5

1.6 舒尔不等式

 $a,b,c \geq 0$ $t \in R$ 时,有

$$a^{t}(a-b)(a-c) + b^{t}(b-a)(b-c) + c^{t}(c-a)(c-b) \ge 0$$

当且仅当 a = b = c,或其中两个数相等且另一个等于零时,取等号。特别的,当 t 为非负偶数时,此不等式对任意实数 a,b,c 成立。

1.7 琴生不等式

设 f(x) 在区间 I 上是下凸函数,则对任意 $x_i \in I$ 及 $p_i > 0$ (i = 1, 2, ..., n),有

$$\frac{\sum_{i=1}^{n} p_i \cdot f(x_i)}{\sum_{i=1}^{n} p_i} \ge f \left(\frac{\sum_{i=1}^{n} p_i \cdot x_i}{\sum_{i=1}^{n} p_i} \right)$$

其中等号当且仅当 $x_1 = x_2 = \cdots = x_n$ 时成立,若 f(x) 在区间 I 上是上凸函数,则不等号反向。

1.8 绝对值不等式

$$||a| - |b|| \le |a \pm b| \le |a| + |b|$$

2 函数

2.1 拉格朗日中值定理

设 y = f(x) 在 [a,b] 上连续,在 (a,b) 上可导,则存在 $\xi \in (a,b)$ 使得

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}$$

2.2 拉格朗日乘数法

【例题】若正数 a, b 满足 2a + b = 1,则 $\frac{a}{2-2a} + \frac{b}{2-b}$ 的最小值为?解: 构造拉格朗日函数

$$L(a, b, \lambda) = \frac{a}{2 - 2a} + \frac{b}{2 - b} - \lambda(2a + b - 1)$$

2 函数 6

$$\frac{\partial L}{\partial a} = L_a = \frac{1}{2(1-a)^2} - 2\lambda = 0$$
$$\frac{\partial L}{\partial b} = L_b = \frac{2}{(2-b)^2} - \lambda = 0$$
$$\frac{\partial L}{\partial \lambda} = L_\lambda = -(2a+b-1) = 0$$

联立解得

$$a = \frac{5 - 3\sqrt{2}}{2}, b = 3\sqrt{2} - 4, \lambda = \frac{1}{27 - 18\sqrt{2}}$$

从而

$$\frac{a}{2-2a} + \frac{b}{2-b} = \frac{2\sqrt{2}}{3} - \frac{1}{2}$$

此即为所求的最小值。

2.3高次韦达定理

设 x_1, x_2, \ldots, x_n 为如下方程的根

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0$$

则有

$$x_1 + x_2 + \dots + x_n = -\frac{a_{n-1}}{a_n}$$
$$x_1 + x_2 + x_1 + x_3 + \dots + x_n + x_{n-1} = \frac{a_{n-2}}{a_n}$$

$$x_1 x_2 \dots x_n = (-1)^n \frac{a_0}{a_n}$$

其中三次的形式如下

若 $ax^3 + bx^2 + cx + d = 0$ ($a \neq 0$) 的 3 个根分别为 x_1, x_2, x_3 则有

$$x_1 + x_2 + x_3 = -\frac{b}{a}$$

$$x_1x_2 + x_1x_3 + x_2x_3 = \frac{c}{a}$$

$$x_1 \cdot x_2 \cdot x_3 = -\frac{d}{a}$$

2 函数 7

2.4 泰勒展开

若函数 f(x) 在 x_0 存在 n 阶导数,则有

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_{n+1}$$

上式即为函数 f(x) 在 x_0 处的泰勒展开式, 其中 $R_{n+1} = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}$ (其中 ξ 介于 x 和 x_0 间) 叫做拉格朗日余项。

拉格朗日余项可用于证明不等式。如:

-1 < x < 1 时

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4(1+\xi)^4}(-1 < \xi < 1)$$

因为
$$-\frac{x^4}{4(1+\xi)^4} \le 0$$
,所以 $\ln(1+x) \le x - \frac{x^2}{2} + \frac{x^3}{3}$

2.5 极值点偏移

【例题】已知函数 $f(x) = e^x - ax$ 有两个零点 x_1 和 x_2 , 证明: $x_1 + x_2 > 2$

$$f(x) = e^x - ax = 0 \Leftrightarrow \frac{e^x}{x} = a$$

令

$$\varphi(x) = \frac{e^x}{r}$$

则

$$f(x_1) = f(x_2) \Leftrightarrow \varphi(x_1) = \varphi(x_2), \quad \varphi'(x) = \frac{(x-1)e^x}{x^2}$$

因此 $\varphi(x)$ 在 (0,1) 单减, $(1,+\infty)$ 单增,不妨设 $0 < x_1 < 1 < x_2$

则
$$x_1 + x_2 > 2 \Leftrightarrow x_2 > 2 - x_1$$
, 注意到 $2 - x_1 > 1$

$$\Leftrightarrow \varphi(x_2) > \varphi(2-x_1)$$
, 注意到 $\varphi(x_1) = \varphi(x_2)$

则
$$\varphi(x_1) > \varphi(2 - x_1)$$
, 其中 $0 < x_1 < 1$

今

$$q(x) = \varphi(x) - \varphi(2-x), \quad 0 < x < 1$$

易知

所以
$$g(x)$$
 在 $(0,1)$ 上单减, $g(x) > g(1) = \varphi(1) - \varphi(1) = 0$ 即 $\varphi(x) - \varphi(2-x) > 0$,令 $x = x_1$,Q.E.D.

3 数列 8

2.6 最值函数基本定理

定理一:

$$\min\left\{a,b\right\} \leq \frac{a+b}{2} \leq \max\left\{a,b\right\}$$

$$\min\left\{a,b\right\} \leq \sqrt{ab} \leq \max\left\{a,b\right\}.(a>0,b>0)$$

定理二:

$$max \{|a+b|, |a-b|\} = |a| + |b|$$

 $min \{|a+b|, |a-b|\} = ||a| - |b||$

定理三:

$$\max\{|a|,|b|\} = \frac{|a+b|}{2} + \frac{|a-b|}{2}$$
$$\min\{|a|,|b|\} = \left|\frac{|a+b|}{2} - \frac{|a-b|}{2}\right|$$

3 数列

3.1 不动点原理

【例题】求 $a_1=1, a_{n+1}=2a_n+1$ 的通项公式 其特征函数为 f(x)=2x+1,令 f(x)=x,解得 x=-1带入得 $a_{n+1}-(-1)=2(a_n-(-1))$,即 $a_{n+1}+1=2(a_n+1)$,之后根据等 比数列可得 $a_n=2^n-1$

4 组合数学

4.1 容斥原理

建议根据韦恩图解题

4.2 伯努利装错信封问题

n 封信与 n 个信封全部错位的组合数为

$$f(n) = n! \left[\frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \dots + (-1)^n \frac{1}{n!} \right]$$

5 向量 9

5 向量

5.1 极化恒等式

重要恒等式: $4ab = (a+b)^2 - (a-b)^2$ 极化恒等式: $4a \cdot b = (a+b)^2 - (a-b)^2$

5.2 分点恒等式

在 $\triangle ABC$ 中,M 为 BC 上一等分点 当 $\overrightarrow{BM} = \lambda \overrightarrow{MC}$,有

$$\overrightarrow{AM} = \frac{1}{1+\lambda} \overrightarrow{AB} + \frac{\lambda}{1+\lambda} \overrightarrow{AC}$$

5.3 三点共线定理

在平面中 A、B、P 三点共线的充要条件是: 对于该平面内任意一点 O,存在唯一的实数 x,y 使得:

$$\overrightarrow{OP} = x\overrightarrow{OA} + y\overrightarrow{OB}$$

且

$$x + y = 1$$

特别的有: 当 P 在线段 AB 上时, x > 0, y > 0 P 在线段 AB 之外时,xy < 0

5.4 向量中值定理

在 $\triangle ABC$ 中, M 为 BC 的中点,则

$$AB^2 + AC^2 = 2(AM^2 + BM^2)$$

对应的向量公式有:

$$a^2 + b^2 = 2\left[\left(\frac{a+b}{2}\right)^2 + \left(\frac{a-b}{2}\right)^2\right]$$

6 三角 10

5.5 向量数乘余弦定理

在 $\triangle ABC$ 中, 有

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \frac{AB^2 + AC^2 - BC^2}{2}$$

6 三角

6.1 和差化积

$$\begin{split} \sin\alpha + \sin\beta &= 2\sin\frac{\alpha+\beta}{2} \cdot \cos\frac{\alpha-\beta}{2} \\ \sin\alpha - \sin\beta &= 2\cos\frac{\alpha+\beta}{2} \cdot \sin\frac{\alpha-\beta}{2} \\ \cos\alpha + \cos\beta &= 2\cos\frac{\alpha+\beta}{2} \cdot \cos\frac{\alpha-\beta}{2} \\ \cos\alpha - \cos\beta &= -2\sin\frac{\alpha+\beta}{2} \cdot \sin\frac{\alpha-\beta}{2} \end{split}$$

6.2 积化和差

$$\begin{split} sin\alpha cos\beta &= \frac{1}{2} \left[sin(\alpha + \beta) + sin(\alpha - \beta) \right] \\ cos\alpha sin\beta &= \frac{1}{2} \left[sin(\alpha + \beta) - sin(\alpha - \beta) \right] \\ cos\alpha cos\beta &= \frac{1}{2} \left[cos(\alpha + \beta) + cos(\alpha - \beta) \right] \\ sin\alpha sin\beta &= -\frac{1}{2} \left[cos(\alpha + \beta) - cos(\alpha - \beta) \right] \end{split}$$

6.3 半角公式

$$\begin{split} \sin\frac{\theta}{2} &= \pm\sqrt{\frac{1-\cos\alpha}{2}}\\ \sin\frac{\theta}{2} &= \pm\sqrt{\frac{1+\cos\alpha}{2}}\\ \tan\frac{\theta}{2} &= \pm\sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}} = \frac{\sin\alpha}{1+\cos\alpha} = \frac{1-\cos\alpha}{\sin\alpha} \end{split}$$

6.4 辅助角公式

$$asin\theta \pm bcos\theta = \sqrt{a^2 + b^2}sin(\theta \pm \varphi), \quad tan\varphi = \frac{b}{a}$$

7 统计、概率、分布

7.1 期望、方差、标准差

数学期望: 我们称 $E\xi = x_1p_1 + x_2p_2 + \cdots + x_np_n$ 为离散型随机变量 ξ 的数学期望

方差和标准差: 我们称 $D\xi=\sum_{i=1}^n(x_i-E\xi)^2p_i$ 为离散型随机变量 ξ 的方差,其算数平方根 $\sqrt{D\xi}=\sigma\xi$ 叫做离散型随机变量 ξ 的标准差

定理一:

$$E(a\xi + b) = aE\xi + b$$
$$D(a\xi + b) = a^{2}D\xi$$

定理二:

$$E(a\xi_1 + b\xi_2) = aE\xi_1 + bE\xi_2$$

7.2 二项分布

n 次试验中事件 A 恰好发生 k 次

$$P(E) = \binom{n}{k} p^k (1-p)^{n-k} \quad k = 1, 2, 3, \dots$$

我们称 ξ 服从二项分布,记作 $\xi \sim B(n,p)$

定理: $E\xi = np$, $D\xi = np(1-p)$

7.3 正态分布

$$f_{\xi}(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}} \quad x \in R, \sigma > 0$$

记作 $\xi \sim N(\mu, \sigma^2)$

性质: 1. 其正态曲线关于 $x = \mu$ 对称,最高点为 $\frac{1}{\sigma\sqrt{2\pi}}$

8 方程 12

 $2.E\xi = \mu, D\xi = \sigma^2$

 $3.\sigma$ 越大,正态曲线越"矮胖",表示分布越分散, σ 越小,正态曲线越"瘦高",表示分布越集中

7.4 几何分布

在 n 次伯努利试验中,试验 k 次才得到第一次成功的机率。 记为 $P(\xi=k)=g(k,p)=q^{k-1}p,$ 其中 q=1-p, 也记为 $\xi\sim GE(p)$ 定理: $E\xi=\frac{1}{p},D\xi=\frac{q}{p^2}$

7.5 超几何分布

它描述了从有限 N 个物件(其中包含 M 个指定种类的物件)中抽出 n 个物件,成功抽出该指定种类的物件的次数(不放回) 记为 $\eta \sim H(n,M,N)$

$$P\left(\eta=m\right) = \frac{\binom{M}{m} \cdot \binom{N-M}{n-m}}{\binom{N}{n}} \quad m=0,1,2,\ldots,\min\left\{n,M\right\}$$

8 方程

8.1 立方和分解

$$a^{3} + b^{3} = (a+b)(a^{2} - ab + b^{2})$$

8.2 立方差分解

$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

9 几何

9.1 射影定理

射影定理,又称"欧几里德定理":在直角三角形中,斜边上的高是两条直角边在斜边射影的比例中项,每一条直角边又是这条直角边在斜边上

10 方法 13

的射影和斜边的比例中项。

在 $Rt \triangle ABC$ 中, $\angle ABC = 90^{\circ}$,BD 为斜边 AC 上的高,则有射影定理 如下:

$$BD^2 = AD \cdot CD$$

$$AB^2 = AC \cdot AD$$

$$BC^2 = CD \cdot AC$$

9.2 阿波罗尼斯圆

平面内到两个定点的距离之比为常数 $k(k \neq 1)$ 的点的轨迹是圆

9.3 角平分线定理

在 $\triangle ABC$ 中, AM 为 $\angle BAC$ 的角平分线, M 在 BC 上, 则有:

$$\frac{AB}{AC} = \frac{MB}{MC}$$

10 方法

10.1 主元法

【例题】对任意 $m \in [-1,1]$, 函数 $f(x) = x^2 + (m-4)x + 4 - 2m$ 的值 恒大于零, 求 x 的取值范围。

$$f(x) = x^{2} + (m-4)x + 4 - 2m = (x-2)m + x^{2} - 4x + 4$$

令

$$g(m) = (x-2)m + x^2 - 4x + 4$$

所以有

$$\begin{cases} g(-1) = (x-2)(-1) + x^2 - 4x + 4 > 0 \\ g(1) = (x-2) \cdot 1 + x^2 - 4x + 4 > 0 \end{cases}$$

解得 x < 1 或 x > 3