ECOM20001 Econometrics 1

Week 4

Zheng Fan

The University of Melbourne

Semester 1, 2023

Introduction

Zheng Fan

- Ph.D student in Economics at Unimelb
- My email: fan.z@unimelb.edu.au

Seek for help:

- Ed discussion board
- Consultations: refer to Canvas for details
- Admin, assign, Covid, please reach Richard Hayes
- You may access my tutorial materials at https://github.com/zhengf1/2023ECOM1

Pre-tute

Make sure you have went through the pre-tute materials!!!

Suppose you collected 'ahe' from a random sample n = 5,000 of Victorians. You compute the sample mean of 28.25 and sample standard deviation of 10.66.

- a) Conduct a two-sided hypothesis test of the null that the population mean is 28.
- b) Using both the p-value and critical value approach to hypothesis testing, what do you conclude?

Suppose you collected 'ahe' from a random sample n = 5,000 of Victorians. You compute the sample mean of 28.25 and sample standard deviation of 10.66.

c) Construct a 95% confidence interval for the population mean.

Suppose you collected 'ahe' from a random sample n = 5,000 of Victorians. You compute the sample mean of 28.25 and sample standard deviation of 10.66.

d) Report the p-value for the two-sided hypothesis test of the null that the population mean is 28 as well as the 95% CI for the following sample sizes:

$$-n = 2,500 - n = 5,000 - n = 10,000 - n = 20,000$$

Suppose you also randomly sampled n=3,000 individuals from NSW and obtained a sample mean ahe of \$30.88 and sample standard deviation \$11.22.

b) Conduct a two-sample t -test of the null that the difference in means ahe for individuals in Victoria and NSW is 0. Conduct the test, at the 5% level of significance, using both the p-value and critical value approaches.

Suppose you have a random sample of data with a population mean, μ , and you conduct the following hypothesis test:

$$H_0: \mu = 10$$
 $H_1: \mu \neq 10$

Having performed the test, you obtain a p-value of 0.07.

- a. Does a 90% CI for the population mean contain $\mu=$ 10? Please explain.
- b. With only the information provided in the question, can you determine if $\mu=8$ is contained in the 90% CI? Explain.

Using R, what is the sample mean and standard deviation of *ahe* for males and females?

```
setwd("~/Library/CloudStorage/Dropbox/01 UoM-Teaching/2023-S1-Ecom1/Tut
data=read.csv("tute4_cps.csv")
## Mean and standard deviation of earnings for females
mean(data$ahe[data$female==1])
## [1] 17.80898
sd(data$ahe[data$female==1])
## [1] 8.873493
## Mean and standard deviation of earnings for males
mean(data$ahe[data$female==0])
## [1] 20.57906
sd(data$ahe[data$female==0])
## [1] 10.5533
```

Discuss these numbers and the density plots produced for *ahe* for males and females (reproduced below), which reveals what is known as the gender wage gap.

- Provide economic explanations for your results. (Recall from tutorial 2 that an economic explanation focuses on the costs and benefits of a behaviour for explaining empirical patterns).
- In this example, what are the different economic costs and benefits among males and females in generating household earnings?

Gender and Earnings

Using R, what is the sample mean and standard deviation for individuals of *ahe* for individuals with and without bachelor's degrees?

```
## Mean and standard deviation of earnings for individuals with bachelor
mean(data$ahe[data$bachelor==1])
## [1] 23.34672

sd(data$ahe[data$bachelor==1])
## [1] 10.71684

## Mean and standard deviation of earnings for individuals without bach
mean(data$ahe[data$bachelor==0])
## [1] 16.04614

sd(data$ahe[data$bachelor==0])
## [1] 7.855756
```

Discuss these numbers and the density plots produced for *ahe* for individuals with and without bachelor's degrees.

No Bachelor Degree Bachelor Degree Bachelor Degree Bachelor Degree Bachelor Degree Bachelor Degree

AHE

Education and Earnings

There does seem to be a difference in the average ahe between males and females who have degrees, and without degrees in 2012.

Alternatively, we may just simply

```
t.test(data$ahe[data$female==1 & data$year==2012 & data$bachelor==0],
       data$ahe[data$female==0 & data$year==2012 & data$bachelor==0])
##
##
    Welch Two Sample t-test
##
## data: data$ahe[data$female == 1 & data$year == 2012 & data$bachelor
## t = -15.361, df = 3269.9, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -4.425451 -3.423600
## sample estimates:
## mean of x mean of y
## 13.11905 17.04357
```

The dataset consumption.csv contains a population of 60 families. The variables are:

- Consumption: family consumption in \$/week
- Income: family disposable income in \$/week
- a). What is the population mean of consumption , i.e. $\mathsf{E}(\mathsf{Consumption})$
- b). What is the conditional mean $E(Consumption|Income \le 100)$?

```
data1 = read.csv(file="consumption.csv")

(ymean = mean(data1$Consumption))
## [1] 121.2

(ycondmean = mean(data1[data1$Income <= 100, "Consumption"], na.rm = TR
## [1] 71.54545</pre>
```

- c). Run the following in the population and confirm the Population Regression Line (PRL) is Consumption=17+0.6Income
- d). Using the R code below, construct a random sample of 13 families for the population. Call it Sample A. Run the following regression and also create a scatterplot.