

#### УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

| Группа <u>Р3109</u>              | К работе допущен |  |
|----------------------------------|------------------|--|
| Студент Суханкин Дмитрий Юрьевич | Работы выполнена |  |
| Преподаватель Крылов В. А.       | Отчет принят     |  |

# Рабочий протокол и отчет по лабораторной работе №1.01

# «Исследование распределения случайной

# Величины»

- 1. Цель работы.
  - 1. Провести многократные измерения определенного интервала времени.
  - 2. Построить гистограмму распределения результатов измерения.
  - 3. Вычислить среднее значение и дисперсию полученной выборки.
  - 4. Сравнить гистограмму с графиком функции Гаусса с такими же как и у экспериментального распределения средним значением и дисперсией.
- 2. Задачи, выполняемые при выполнении работы.

Исследование закономерностей в распределении случайных чисел.

3. Объект исследования.

Статические закономерности.

- 4. Метод экспериментального исследования.
  - 1. Анализ
  - 2. Лабораторный эксперимент
- 5. Рабочие формулы и исходные данные.

Закон распределения исследуемой величины

$$\rho(t) = \lim_{\substack{n \to \infty \\ \Delta t \to 0}} \frac{\Delta N}{N \Delta t} = \frac{1}{N} \frac{dN}{dt}$$

Нормальное распределение, описанное функцией Гаусса

$$\rho(t) = \frac{1}{\sigma\sqrt{2\pi}} exp\left(-\frac{(t-\langle t\rangle)^2}{2\sigma^2}\right)$$

Среднее арифметическое результатов измерений (выборочное среднее)

$$\langle t \rangle_N = \frac{1}{N} \sum_{i=1}^N t_i$$

Выборочное среднеквадратическое отклонение

$$\sigma_N = \sqrt{\frac{1}{N-1}\sum_{i=1}^N(t_i - \langle t \rangle_N)^2}$$

Нормальное распределение, описанное функцией Гаусса, если подставить  $t=\langle t \rangle$  для определения максимальной высоты гистограммы

$$\rho_{max} = \frac{1}{\sigma\sqrt{2\pi}}$$

Соотношение для вероятности попадания результата измерение в интервал  $[t_1, t_2]$ 

$$P(t_1 < t < t_2) = \int_{t_1}^{t_2} \rho(t) dt \approx \frac{N_{12}}{N}$$

Доверительный интервал для измеряемого промежутка времени

$$\Delta t = t_{\alpha,N} \cdot \sigma_{\langle t \rangle}$$

Для нахождения приближенных значений границ интервалов

$$\begin{bmatrix} t_N - \sigma_{\langle N \rangle}, \langle t \rangle_N + \sigma_N \end{bmatrix}$$
$$\begin{bmatrix} t_N - 2\sigma_{\langle N \rangle}, \langle t \rangle_N + 2\sigma_N \end{bmatrix}$$
$$\begin{bmatrix} t_N - 3\sigma_{\langle N \rangle}, \langle t \rangle_N + 3\sigma_N \end{bmatrix}$$

Стандартные доверительные интервалы для нахождения приближенных значений вероятности

$$t \in [\langle t \rangle - \sigma, \langle t \rangle + \sigma], P_{\sigma} \approx 0.683$$

$$t \in [\langle t \rangle - 2\sigma, \langle t \rangle + 2\sigma], P_{\sigma} \approx 0.954$$

$$t \in [\langle t \rangle - 3\sigma, \langle t \rangle + \sigma 3], P_{\sigma} \approx 0.997$$

## 6. Измерительные приборы.

| № п/п | Наименование | Тип прибора        | Используемый | Погрешность |
|-------|--------------|--------------------|--------------|-------------|
|       |              |                    | диапазон     | прибора     |
| 1     | Часы         | Измеритель времени | 0-60 с       | 0,5 c       |
| 2     | Электронный  | Измеритель времени | 0-60 с       | 0,005 c*    |
|       | секундомер   |                    |              |             |

<sup>\*</sup> Цена деления составляет 0,01 с

# 7. Схема установки.

# 8. Результаты прямых измерений и их обработки.

| №  | $t_i$ , $c$ | $t_i - \langle t \rangle_N, c$ | $(t_i - \langle t \rangle_N)^2, c^2$ |
|----|-------------|--------------------------------|--------------------------------------|
| 1  | 10.31       | 0.15                           | 0.02                                 |
| 2  | 10.19       | 0.03                           | 0.00                                 |
| 3  | 10.37       | 0.21                           | 0.04                                 |
| 4  | 10.11       | -0.05                          | 0.00                                 |
| 5  | 10.42       | 0.26                           | 0.07                                 |
| 6  | 10.1        | -0.06                          | 0.00                                 |
| 7  | 10.05       | -0.11                          | 0.01                                 |
| 8  | 9.98        | -0.18                          | 0.03                                 |
| 9  | 9.92        | -0.24                          | 0.06                                 |
| 10 | 10.17       | 0.01                           | 0.00                                 |
| 11 | 10.23       | 0.07                           | 0.00                                 |
| 12 | 10.18       | 0.02                           | 0.00                                 |
| 13 | 10.38       | 0.22                           | 0.05                                 |
| 14 | 10.94       | 0.78                           | 0.61                                 |
| 15 | 10.35       | 0.19                           | 0.04                                 |
| 16 | 9.92        | -0.24                          | 0.06                                 |
| 17 | 10.02       | -0.14                          | 0.02                                 |
| 18 | 9.72        | -0.44                          | 0.19                                 |
| 19 | 9.85        | -0.31                          | 0.10                                 |
| 20 | 10.53       | 0.37                           | 0.14                                 |
| 21 | 10.08       | -0.08                          | 0.01                                 |
| 22 | 10.26       | 0.1                            | 0.01                                 |
| 23 | 10.03       | -0.13                          | 0.02                                 |
| 24 | 10.01       | -0.15                          | 0.02                                 |
| 25 | 9.9         | -0.26                          | 0.07                                 |
| 26 | 10.24       | 0.08                           | 0.01                                 |

| №  | $t_i, c$                                 | $t_i - \langle t \rangle_N, c$                                  | $(t_i - \langle t \rangle_N)^2, c^2$                       |
|----|------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------|
| 27 | 10.22                                    | 0.06                                                            | 0.00                                                       |
| 28 | 10.12                                    | -0.04                                                           | 0.00                                                       |
| 29 | 10.06                                    | -0.1                                                            | 0.01                                                       |
| 30 | 10.11                                    | -0.05                                                           | 0.00                                                       |
| 31 | 10.37                                    | 0.21                                                            | 0.04                                                       |
| 32 | 10.15                                    | -0.01                                                           | 0.00                                                       |
| 33 | 10.49                                    | 0.33                                                            | 0.11                                                       |
| 34 | 10.03                                    | -0.13                                                           | 0.02                                                       |
| 35 | 10.12                                    | -0.04                                                           | 0.00                                                       |
| 36 | 10.35                                    | 0.19                                                            | 0.04                                                       |
| 37 | 10.17                                    | 0.01                                                            | 0.00                                                       |
| 38 | 10.22                                    | 0.06                                                            | 0.00                                                       |
| 39 | 10.14                                    | -0.02                                                           | 0.00                                                       |
| 40 | 10.03                                    | -0.13                                                           | 0.02                                                       |
| 41 | 10.07                                    | -0.09                                                           | 0.01                                                       |
| 42 | 10.22                                    | 0.06                                                            | 0.00                                                       |
| 43 | 10.13                                    | -0.03                                                           | 0.00                                                       |
| 44 | 9.87                                     | -0.29                                                           | 0.08                                                       |
| 45 | 10.18                                    | 0.02                                                            | 0.00                                                       |
| 46 | 10.43                                    | 0.27                                                            | 0.07                                                       |
| 47 | 10.12                                    | -0.04                                                           | 0.00                                                       |
| 48 | 10.04                                    | -0.12                                                           | 0.01                                                       |
| 49 | 10.18                                    | 0.02                                                            | 0.00                                                       |
| 50 | 9.82                                     | -0.34                                                           | 0.12                                                       |
|    | $\langle t \rangle_N = 10.16 \mathrm{c}$ | $\sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2 = 2.12 \text{ c}$ | $\sigma_N = 0.2 \text{ c}$ $\rho_{max} = 2 \text{ c}^{-1}$ |

Найдем выборочное среднеквадратичное отклонение

$$\sigma_N = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2} = \sqrt{\frac{2.12}{49}} \approx \sqrt{0.043} \approx 0.2 \text{ c}$$

Найдем максимальную высоту гистограммы 
$$\rho_{max} = \frac{1}{\sigma\sqrt{2\pi}} \approx \frac{1}{0.5} \approx 2 \ \mathrm{c}^{-1}$$
 
$$t_{min} = 9.72 \ c$$
 
$$t_{max} = 10.94 \ c$$

### 9. Расчет результатов косвенных измерений.

| Границы<br>интервалов, с | $\Delta N$ | $\frac{\Delta N}{N\Delta t}$ , $c^{-1}$ | $t_{\rm cp}, c$ | $\rho(t), c^{-1}$ |
|--------------------------|------------|-----------------------------------------|-----------------|-------------------|
| 9.72<br>9.92             | 2          | 0.2                                     | 9.82            | 0.47              |
| 9.98<br>10.05            | 1          | 0.28                                    | 10.015          | 1.53              |
| 10.06<br>10.12           | 1          | 0.33                                    | 10.09           | 1.88              |
| 10.12<br>10.17           | 2          | 0.8                                     | 10.145          | 2                 |
| 10.18<br>10.23           | 1          | 0.4                                     | 10.205          | 1.94              |
| 10.24<br>10.37           | 5          | 0.76                                    | 10.305          | 1.53              |
| 10.38<br>10.94           | 1          | 0.036                                   | 10.66           | 0.088             |

Примеры вычислений для первого интервала:

$$\begin{split} \frac{\Delta N}{N\Delta t} &= \frac{2}{50 \cdot 0.2} = 0.2 \ c^{-1} \\ t_{\rm cp} &= \frac{(9.72 + 9.92)}{2} = 9.82 \ c \\ \rho(t) &= \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(t - \langle t \rangle)^2}{2\sigma^2}\right) = \frac{1}{0.2 \cdot \sqrt{2\pi}} \exp\left(-\frac{(9.82 - 10.16)^2}{2 \cdot (0.2)^2}\right) = 0.47 \ c^{-1} \end{split}$$

|                                     | Интер | вал, с | $\Delta N$ $\frac{\Delta N}{N}$ | P    |       |
|-------------------------------------|-------|--------|---------------------------------|------|-------|
|                                     | ОТ    | до     |                                 | N    | P     |
| $\langle t \rangle_N \pm \sigma_N$  | 9.96  | 10.36  | 35                              | 0.7  | 0.683 |
| $\langle t \rangle_N \pm 2\sigma_N$ | 9.76  | 10.56  | 48                              | 0.96 | 0.954 |
| $\langle t \rangle_N \pm 3\sigma_N$ | 9.56  | 10.76  | 49                              | 0.98 | 0.997 |

#### 10. Размер погрешностей измерений.

Среднеквадратичное отклонение среднего значения

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2} = \sqrt{\frac{2.12}{2450}} = 0.03 \text{ c}$$

 $\alpha = 0.95$   $t_{\alpha,N} = 2$  (табличное значение)

 $\Delta t = t_{\alpha,N} \cdot \sigma_{\langle t \rangle} = 0.06$  с – доверительный интервал для измеряемого в работе промежутка

#### 11.Графики.



#### 12.Окончательные результаты.

$$\alpha = P(t \in [\langle t \rangle - \Delta t; \langle t \rangle + \Delta t]$$

$$\alpha = P(t \in [10.10; 10.22]$$

#### 13. Выводы и анализ результатов работы.

Входе данной работы было сделано по 50 измерений одного и того же отрезка времени. Указанными в методических указаниях формулами было доказано, что при проведении большого количества измерений, эти случайные величины можно описать закономерностями. Была построена гистограмма, кривая Гаусса, найдено среднее значение и дисперсия данной выборки. Полученные результаты в целом кривой Гаусса соответствуют.