Lidar Mapping - Prototype

Create a mapping system using a Livox Mid-40 Lidar and an APX-15 GNSS-INS module. This system can be used to scan and create a 3D point cloud of an area

#lidar #livox #mapping

Last update: 2021-06-29 15:27:33

Table of Content

- 1. System Block Diagram
- 2. Concerns

i This project is based on reference project of Livox High Precision Mapping with some modification, for learning and creating a customized prototype.

1. System Block Diagram

System Block diagram

Compare to a commercial product:

#	Prototype	LiAir V70
GNSS mode	Single GNSS Input with L1 + L2 Band	Dual GNSS Input L1 Band
Correction	Self-Correct using Multiple GNSS + INS	Self-Correct using Multiple GNSS + INS RTK using a Radio Station PP using a Base Station
Output format	LVX, Rosbag PointCloud2	LiData (private format)

#	Prototype	LiAir V70
Viewer	LiViewer	LiDAR360
Post Processing	No (APX-15 support POCPac UAV post-processing with a base station)	LiGeoreference (use the Base Station)
Analyser	Not Yet	LiPowerLine

LiAir V70, LiDAR360 and LiPowerLine are from GreenValley company, they have a private data format (in .LiData) file. Example outputs of LiAir V70 are in binary format with unknown data structure. However, they support the standard LAS format.

2. Concerns

1. The APX-15 Datasheet shows the accuracy with 0.5-2.0m in the Differential GPS (DGPS) method. RTK method can get 0.02-0.05m accuracy but it notes that this method requires Base Station and Radio Link.

Ask Supplier: How accurate is the APX-15 if it runs independently (no base station, no access to NTRIP caster)?

Some papers present how to process APX-15 data, but they all do Post-Processing, such as in this paper, and this paper.

The reference project uses NTRIP Caster to get precision accuracy!

2. Assume that at an early stage, we do not get cm-accuracy level?

Ask an AI engineer: How accurate is the point-cloud good for detecting objects? Need to get real data and evaluate the accuracy of object detection

3. POSPac UAV software for APX-15 can do Post processing, but it needs a Base Station. If we choose to do post-processing, we need to find a solution to stick processed data to point-cloud.

Need to get the output of APX-15 and chose a method to do post-processing It is better to use an APX-15 in a base station too if using the Trimble GSOF message format. If using ASCII NMEA format, any GNSS receiver can be used.