Appendix: Why is VaR not necessarily subadditive?

Imagine three bonds, A, B and C whose returns are independent. Each bond has a face value of £1,000, payable at maturity and a likelihood of default, where the loss is the full face value of the bond, of 0.5%. The 99% VaR of each bond, therefore, is £0.

How about the VaR of a portfolio containing A, B and C? There are three scenarios:

Scenario	Loss	Likelihood
No default	£0	0.995 x 0.995 x 0.995≈98.5%
1 default	£1,000	3×0.005×0.995×0.995≈1.5%
2 defaults	£2,000	3 x 0.005 x 0.005 x 0.995≈0.0075%
3 defaults	£3,000	3×0.005×0.005×0.995≈0.00001%

The portfolio VaR at 99% is £1,000, which is greater than the VaR of each bond multiplied by 3.