Die Taylorsche Formel und Taylorreihen

Def Sei $I \subset \mathbb{R}$ ein Intervall, $f: I \to \mathbb{R}$ n-mal differenzierbar auf $I, x_0 \in I$. Das Polynom

$$T_n(x) := f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

$$= \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!}(x - x_0)^k$$

heißt das n-te Taylorpolynom von f an der Stelle x_0 .

Satz 5.16 (Satz von Taylor) Sei $I \subset \mathbb{R}$ ein Intervall, $x_0 \in I$, $f: I \to \mathbb{R}$ (n+1)-mal differenzierbar. Sei $x \in I$. Dann gibt es eine Zahl ξ zwischen x und x_0 , so dass

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \frac{f^{(n+1)}(\xi)}{(n+1)!}(x - x_0)^{n+1}$$

$$\left(f(x) - T_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}\right)$$

Def Sei $f: I \to \mathbb{R}$ unendlich oft differenzierbar und $x_0 \in I$. Die Potenzreihe

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

heißt Taylorreihe von f um x_0 .

Satz 5.17 Sei $f: I \to \mathbb{R}$ unendlich oft differenzierbar und $x_0 \in I$. f ist im Punkt $x \in I$ gleich seiner Taylorreihe $\left(f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n\right)$ genau dann, wenn das Restglied $R_n(x) := \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$ für $n \to \infty$ gegen 0 strebt.

Satz 5.18 Wenn $\sum_{n=0}^{\infty} c_n(x-x_0)^n =: f(x)$ eine Potenzreihe mit dem Konvergenzradius R > 0, dann ist f in x_0 unendlich oft differenzierbar und es gilt

$$c_n = \frac{f^{(n)}(x_0)}{n!}$$
 für alle $n \in \mathbb{N}$,

d.h. f ist gleich seiner Taylorreihe für $x \in (x_0 - R, x_0 + R)$.

Satz 5.19 (Identitätssatz für Potenzreihen) Seien $\sum_{n=0}^{\infty} c_n(x-x_0)^n$ und $\sum_{n=0}^{\infty} d_n(x-x_0)^n$ zwei Potenzreihen mit positivem Konvergenzradius. Stimmen die Werte dieser Reihen auf $(x_0 - \delta, x_0 + \delta)$ für ein $\delta > 0$ überein, so ist $c_n = d_n$ für alle $n \in \mathbb{N}$.