Section 8.3 Power Series Solutions to Linear Differential Equations.

Definition: Suppose f(x) is a function whose Taylor series $\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n$ at $x = x_0$ has radius of convergence $\rho > 0$. We say that f(x) is analytic at f(x) if it's equal to the taylor series.

Facts.

- 1. Polynomials, $\sin(x)$, $\cos(x)$, and e^x are analytic at every point x_0 . $\ln(x)$ is analytic at x_0 whenever $x_0 > 0$.
- 2. If f(x) and g(x) are analytic at x_0 , so then so are f(x) + g(x) and f(x)g(x), and so is $\frac{f(x)}{g(x)}$ as long as $g(x_0) \neq 0$.
- 3. If f is analytic at x_0 and g is analytic at $f(x_0)$, then g(f(x)) is analytic at x_0 .

Example 1.

- 2. $\frac{1}{1+x}$ is all except $-1=\times_{\mathbf{D}}$
- 3. $\frac{1}{1+x^2}$ is \mathbf{e}^*

We consider a linear homogeneous equation of the form

$$a_2(x)y'' + a_1(x)y' + a_0(x)y = 0, (1)$$

which, after dividing by $a_2(x)$ and cancelling any common factors, we can rewrite in standard form

$$y'' + p(x)y' + q(x)y = 0.$$
 (2)

Definition:

(2) y'' + p(x)y' + q(x)y = 0 if p(x) if q(x) are neighborses.

Points x_0 that are not ordinary are called <u>Singular</u> points.

Theorem: If x_0 is an ordinary point of the equation (2)

(a) of
$$y'' + p(x)y' + q(x)y = 0$$

such that the Taylor series for p(x) and q(x) at x_0 is at least $\rho > 0$, then for any choice of initial conditions $y(x_0) = y_0, y'(x_0) = y_1$, the equation (x_0) has a power series solution at x_0 with radius of convergence at least ρ .

Example 2. Find the first 6 terms in the power series centered at $x_0 = 0$ for the general solution to the equation

$$V = \sum_{n=0}^{\infty} a_n x^n$$

$$V = \sum_{n=0}^{\infty} a_n x^{n-1} = \sum_{n=1}^{\infty} a_n x^{n-1} + \sum_{n=0}^{\infty} a_n x^{n-1} = \sum_{n=0}^{\infty} a_n x^{n-1} = \sum_{n=0}^{\infty} a_n x^{n-1} + \sum_{n=0}^{\infty}$$

Example 3. Find the power series centered at $x_0 = 0$ for the general solution to $N = \sum_{n=1}^{\infty} a_n x^n y^n = \sum_{n=1}^{\infty} a_n n x^{n-1} y^n = \sum_{n=1}^{\infty} a_n (n-1) n x^{n-2}$ the each equation. 2 = an (n-1)nx - 2+x = anx + = 0 $25a_{n}(n)nx^{n-2} + 5a_{n}nx^{n} + 5a_{n}x^{n} = 0$ $\frac{1}{2} = \frac{1}{2} a_{n+2} (n+1)(n+2) \times \frac{1}{2} + \sum_{n=1}^{\infty} a_n n x^n + a_n x^n = 0$ 1+2=2 $\sum_{n=0}^{\infty} (2\alpha_{n+2}(n+1)(n+2) + \alpha_n n + \alpha_n) x^n = 0$ $2a_{n+2}(n+1)(n+2)=-a_{n}n-a_{n}$ $Q_{y} = Q_{2} \cdot \frac{-1}{2 \cdot 4} = Q_{3} \cdot \frac{-1}{2 \cdot 1} \cdot \frac{-1}{24}$ 95=032.5=0; -1. $\int_{-a}^{b} = a \frac{1}{2^{\frac{1}{2}} \cdot n!} + a_0 \frac{1}{2^{\frac{1}{2}} \cdot n!} + a_0 \frac{1}{2^{\frac{1}{2}} \cdot n!} = a_$ separate even & old $a_1 = \frac{1}{2 \cdot 2}$ $a_4 = \frac{a_0}{2 \cdot 2 \cdot 2 \cdot 4}$ $a_1 = \frac{-a_0}{2 \cdot 2 \cdot 2 \cdot 4 \cdot 2 \cdot 6}$ eurin = 00 (-1)2 1

odd: $Q_{n} = Q_{1} \cdot (-1)^{2} \cdot \frac{1}{2 \cdot n!!}$

$$2. \ y'' - xy' + 4y = 0$$