Linjär Algebra Föreläsning 16

Erik Sjöström

December 8, 2015

1 Basbyten

Hur utnyttjar man basbyten? Låt:

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_2 \end{bmatrix} \in \mathbb{R}^3$$

Antag att vi vill rotera \vec{x} runt axeln vars riktning är \vec{v} (som ej är $\vec{e}_1, \vec{e}_2, \vec{e}_3$ -axlarna)

Rotationen ska ske med vinkeln θ moturs. Relativt \vec{v} :s riktning. Vi kan via basbyte återföra denna rotation till en rotation runt t.ex. x_1 -axeln (som vi ju har en rotationsmatris för,se lab 4).

Vi bildar en bas runt \vec{v} . Låt $\mathbf{G} = (\vec{g}_1, \vec{g}_2, \vec{g}_3)$ vara en ortonormal bas för \mathbb{R}^3 och $\vec{g}_1 = \frac{\vec{v}}{||\vec{v}||}$

Låt $\mathbf{G} = \begin{bmatrix} \vec{g}_1 & \vec{g}_2 & \vec{g}_3 \end{bmatrix}$ vara basbytesmatrisen, dvs:

$$\mathbf{G} \cdot \vec{x}_{\mathbf{G}} = \vec{x} \Leftrightarrow \vec{x}_{\mathbf{G}} = \mathbf{G}^{-1} \cdot \vec{x}$$

Rotera $\vec{x}_{\mathbf{G}}$ runt \vec{g}_1 axeln med standardmatrisen:

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \sin(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix}$$

Vi får $\mathbf{A} \cdot \vec{x}_{\mathbf{G}}$ (rotationen uttryckt i basen $(\vec{g}_1, \vec{g}_2, \vec{g}_3)$). Uttryck rotationen i standardbasen:

$$\mathbf{G} \cdot (\mathbf{A} \cdot \vec{x}_{\mathbf{G}})$$

Vi har alltså beräknat:

roterad
$$\vec{x}$$
 ($\vec{x}_{\mathbf{G}}$ uttryckt i ($\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}$))
$$\mathbf{G} \cdot \mathbf{A} \cdot \mathbf{G}^{-1} \cdot \vec{x}$$

Låt en linjär avbildning $f: \mathbb{R}^n \to \mathbb{R}^m$ ha matrisen $\mathbf{A}_{\mathbf{G}}$ relativt basen $\mathbf{G} = (\vec{g}_1, \vec{g}_2, ..., \vec{g}_n$ Då har avbildningen relativt standardbasen, matrisen:

$$\mathbf{A}_{\mathbf{E}} = \mathbf{G} \cdot \mathbf{A}_{\mathbf{G}} \cdot \mathbf{G}^{-1}$$

2 Linjära avbildningar

Till en linjär avbildning $f: \mathbb{R}^n \to \mathbb{R}^m$ hör en $(m \times n)$ -matris **A** sådan att:

$$f(\vec{x})_{\mathbf{E}} = \mathbf{A}_{\mathbf{E}} \cdot \vec{x}_{\mathbf{E}}$$
 och $\mathbf{A} = \begin{bmatrix} f(\vec{e}_1) & f(f(\vec{e}_2)) & \dots & f(\vec{e}_n) \end{bmatrix}$

(i standardbasen E). Vi har antagit förut att vi har opererat i standardbasen.

Den allmänna formulering av Bassatsen: Låt $f: \mathbb{R}^n \to \mathbb{R}^m$ vara en linjär avbildning och låt $\mathbf{G} = (\vec{g_1}, \vec{g_2}, ..., \vec{g_m})$ vara en bas i \mathbb{R}^m och låt $\mathbf{H} = (\vec{h_1}, \vec{h_2}, ..., \vec{h_n})$ vara en bas för \mathbb{R}^n . Då gäller att standardmatrisen för f relativt baserna \mathbf{G} och \mathbf{H} ges av:

$$\mathbf{A}_{\mathbf{H}\to\mathbf{G}} = \begin{bmatrix} f(\vec{h}_1)_{\mathbf{G}} & f(\vec{h}_2)_{\mathbf{G}} & \dots & f(\vec{h}_n)_{\mathbf{G}} \end{bmatrix}$$

där $f(\vec{h}_i)_{\mathbf{G}}$ är $f(\vec{h}_i)_{\mathbf{G}}$ i basen \mathbf{G} .

Exempel 2.1.

I rotations exemplet har vi m = n = 3, G = H. Dvs:

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos t\theta \end{bmatrix}$$

är standardmatris: $f: \mathbf{G} \to \mathbf{G}: f(\vec{x}_{\mathbf{G}}) = \mathbf{A} \cdot \vec{x}_{\mathbf{G}}$

3 Egenvärden och egenvektorer

Givet en kvadratisk matris $A_{(n\times m)}$, bestäm en vektor $\vec{v}\neq 0$ och tillhörande tal λ så att:

$$\mathbf{A} \cdot \vec{v} = \lambda \cdot \vec{v}$$

 \vec{v} är en egenvektor till \mathbf{A} om \vec{v} och $\mathbf{A}\cdot\vec{v}$ är parallella.

Exempel 3.1.

Givet en matris och en vektor:

$$A = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix}$$

Så är vektorn $\vec{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ en egenvektor och $\lambda = 2$ egenvärde ty:

$$\mathbf{A} \cdot \vec{v} = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \end{bmatrix} = 2 \cdot \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

Vektor $\vec{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ är en egenvektor och $\lambda = 1$ är det tillhörande egenvärdet ty:

$$\mathbf{A} \cdot \vec{v} = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 1 \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Men $\vec{v} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ är inte en egenvektor, eftersom:

$$\mathbf{A} \cdot \vec{v} = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -5 \\ -1 \end{bmatrix}$$

 $\ddot{a}r$ ej parallell med \vec{v} .

Om \vec{v} är en egenvektor så är den en lösning till:

$$(\mathbf{A} - \lambda \cdot \mathbf{I}) \cdot \vec{v} = \emptyset$$

ty:

$$\mathbf{A} \cdot \vec{v} = \lambda \cdot \vec{v} \Leftrightarrow \mathbf{A} \cdot \vec{v} - \lambda \cdot \vec{v} = \emptyset$$
$$\Leftrightarrow A \cdot \vec{v} - \lambda \cdot \mathbf{I} \cdot \vec{v} = \emptyset$$
$$\Leftrightarrow (\mathbf{A} - \lambda \cdot \mathbf{I}) \cdot \vec{v} = \emptyset$$

- Matrisen $(\mathbf{A} - \lambda \cdot \mathbf{I})$ är inte inverterbar om:

$$\det(\mathbf{A} - \lambda \cdot \mathbf{I} = 0)$$

Exempel 3.2.

För:

$$A = \begin{bmatrix} 1 & 4 \\ 1 & 1 \end{bmatrix}$$

har vi att:

$$\mathbf{det}(\mathbf{A} - \lambda \cdot \mathbf{I}) = \mathbf{det} \begin{pmatrix} \begin{bmatrix} 1 & 4 \\ 1 & 1 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{pmatrix} = \mathbf{det} \begin{pmatrix} \begin{bmatrix} 1 - \lambda & 4 \\ 1 & 1 - \lambda \end{bmatrix} \end{pmatrix}$$
$$= (1 - \lambda)(1 - \lambda) - 1 \cdot 4 = (1 - \lambda)^2 - 4 = 0$$

Som har lösningen:

$$\begin{cases} \lambda_1 = -1 \\ \lambda_2 = 3 \end{cases}$$

Egenvektorn som hör till egenvärdet $\lambda_1 = -1$ får vi genom att lösa ekvationen:

$$(\mathbf{A} - \lambda \cdot \mathbf{I}) \cdot \vec{v} = (\mathbf{A} + \mathbf{I}) \cdot \vec{v} = \emptyset$$

Dvs:

$$\begin{pmatrix}
\begin{bmatrix} 1 & 4 \\ 1 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}
\end{pmatrix} \cdot \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 2 & 4 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
\Leftrightarrow \begin{bmatrix} 2 & 4 & 0 \\ 1 & 2 & 0 \end{bmatrix} \sim \begin{bmatrix} 2 & 4 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Låt $\vec{v}_2 = t$, vi får då $\vec{v}_1 = -2t$, dvs:

$$\vec{v} = \begin{bmatrix} 1 \\ -2 \end{bmatrix} \cdot t$$
 $d\ddot{a}r \ t \neq 0 \ kan \ v\ddot{a}ljas \ godtyckligt$

Egenvektorn som hör ihop med $\lambda_2 = 3$

$$\left(\begin{bmatrix}1 & 4\\1 & 1\end{bmatrix} - 3 \cdot \begin{bmatrix}1 & 0\\0 & 1\end{bmatrix}\right) \begin{bmatrix}v_1\\v_2\end{bmatrix} = \begin{bmatrix}0\\0\end{bmatrix} \Leftrightarrow \begin{bmatrix}-2 & 4\\1 & -2\end{bmatrix} \begin{bmatrix}v_1\\v_2\end{bmatrix} = \begin{bmatrix}0\\0\end{bmatrix} \Rightarrow \begin{bmatrix}v_1\\v_2\end{bmatrix} = t \cdot \begin{bmatrix}2\\1\end{bmatrix}$$

 $d\ddot{a}r \ t \neq 0 \ kan \ v\ddot{a}ljas \ godtyckligt.$

Vi ser att om \vec{v} är en egenvektor så är $t \cdot \vec{v}$ $(t \neq 0)$ det också. (Ofta väljs t så att $||\vec{v}|| = 1$)

- Ett egenvärdesproblem för en $(n \times m)$ -matris har n stycken egenvärden. Med tillhörande egenvektorer. (Egenvärdena kan vara multipla och behöver ej vara reella).