Data Structure & Algorithms

Assignment 1. Innopolis University, Spring 2019

Name: Hany Hamed Group Number: BS18-06

Section 2.3: Tournament Rankings

1. Submission Number: 50038906

Submission Link: https://code forces.com/group/lk8Ud0ZeBu/contest/238197/submission/50038906.

2. Bonus Question

In this case, the sorting algorithm which can be easily modified is the **selection sort** as the selection sort choose the best suitable element for the position and swap it with the element in that position.

Section 3: Asymptotic Notation

3. (a) In the Worst case the first loop will have n-1 iterations and the second loop will have n-1 iterations. So, as the second loop is nested in the first loop. Then $T(n) = (n-1)^2$. So, in worst case, it will be $O(n^2)$. The explanation:

Num. line	Cost	Time of repetition
1	c1	n+1
2	c2	n
3	<i>c3</i>	(n+1) * n
4	c4	n^2
5	c5	n
6	<i>c6</i>	1

$$T(n) = c1 * (n+1) + c2 * n + c3 * (n+1) * n + c4 * (n^2) + c5 * n + c6$$
$$= (c3 + c4) * n^2 + (c1 + c2 + c3 + c5) * n + (c1 + c6)$$

DSA, Innopolis University, Spring 2019

Author: Hany Hamed

$$= n^2 + n + c = O(n^2)$$

- (b) In order to make the best case equals to n^2 ($\Omega(n^2)$), then B=1,2,3,...,n. Bshould have at least one element from A which is 1. This makes the if condition in line 4 true in every loop in 1st loop. So, the return in line 5 is not getting executed.
- (c) Yes, because $T(n) = n^2 + n$ (without any constants) and $g(n) = n^2$. Then

the answer will be Yes if and only if $T(n) = \theta(g(n))$ if and only if $0 \le c1 * g(n) \le T(n) \le c2 * g(n)$ where $c1,c2,n_0 \ge 0$ and for all

Then:

$$c1 * n^2 \le n^2 + n \le c2 * n^2$$

Then. $c1 * n^2 \le n^2 + n \le c2 * n^2$ $c1 \le 1 + \frac{1}{n} \le c2$ It is correct when $n \ge n_0 = 1$. Then, c1 = 1 and c2 = 2 Then, the worst-case run-time of the algorithm is $\theta(n2)$