- **2.1.** The stream cipher described in Definition 2.1.1 can easily be generalized to work in alphabets other than the binary one. For manual encryption, an especially useful one is a stream cipher that operates on letters.
- 1. Develop a scheme which operates with the letters A, B,..., Z, represented by the numbers 0,1,...,25. What does the key (stream) look like? What are the encryption and decryption functions?
- 2. Decrypt the following cipher text:

bsaspp kkuosp
which was encrypted using the key:
rsidpy dkawoa

3. How was the young man murdered?

## 2.1

1.  $y_i = x_i + K_i \mod 26$  $x_i = y_i - K_i \mod 26$ 

The keystream is a sequence of random integers from  $Z_{26}$ .

- 2.  $x_1 = y_1 K_1 = "B" "R" = 1 17 = -16 \equiv 10 \mod 26 = "K" \text{ etc } \cdots$ Decrypted Text: "KASPAR HAUSER"
- He was knifed.
- **2.3.** Assume an OTP-like encryption with a short key of 128 bit. This key is then being used periodically to encrypt large volumes of data. Describe how an attack works that breaks this scheme.

## 2.3

We need 128 pairs of plaintext and ciphertext bits (i.e., 16 byte) in order to determine the key.  $s_i$  is being computed by

$$s_i = x_i \oplus y_i$$
;  $i = 1, 2, \dots, 128$ .

- **2.5.** We will now analyze a pseudorandom number sequence generated by a LFSR characterized by  $(c_2 = 1, c_1 = 0, c_0 = 1)$ .
- 1. What is the sequence generated from the initialization vector ( $s_2 = 1, s_1 = 0, s_0 = 0$ )?
- 2. What is the sequence generated from the initialization vector ( $s_2 = 0, s_1 = 1, s_0 = 1$ )?
- 3. How are the two sequences related?



1.



3. The two sequences are shifted versions of one another.

2.

2.7. Compute the first two output bytes of the LFSR of degree 8 and the feedback polynomial from Table 2.3 where the initialization vector has the value FF in hexadecimal notation.

2.7 The feedback polynomial from 2.3 is  $x^8 + x^4 + x^3 + x + 1$ .



So, the resulting first two output bytes are  $(10010000111111111)_2 = (90FF)_{16}$ .