Catalogue

Damien Mégy

13 mars 2023

Cet document affiche le catalogue de tous les vrai-faux disponibles à l'adresse https://github.com/exo7math/quiz-exo7 de manière compacte, pour une prévisualisation rapide. Pour plus d'exemples d'utilisation, voir le sous-dossier « exemples/ ». Ces questions sont celles de l'application de vrai-faux https://dmegy.perso.math.cnrs.fr/quiz.

Les questions sont en vrac. Des listes thématiques seront disponibles dans le sous-dossier « listes » du repo github.

100001.tex — $ 5 - 3\sqrt{2} > 1$. Faux
100002.tex — $\sqrt{x^2} = x $.
Vrai $ 100003. tex - x+3 < 2 \text{ est \'equivalent \`a } 1 < x < 5. $
Faux $\mathbf{100004.tex} - x+1 < 2 \text{ est \'equivalent \`a} - 1 < x < 1.$
$\mathbf{100005.tex} - x-2 < 3 \text{ est \'equivalent \`a} - 1 < x < 5.$ Vrai
100006.tex — Si $ x-1 < 1$, alors $ x < 2$.
100008.tex — Si $ x+3 \le 1$ et $ x+1 \le 1$, alors $x = -2$.
. Vrai ${\bf 100009.tex} - {\rm Si} \; x-5 \le 3 \; {\rm et} \; x \le 3, \; {\rm alors} \; 2 \le x \le 3.$. Vrai
100010.tex — Si $ x-2 < 1$ et $ x < 1$, alors $x = 1$.
Faux 100011.tex — Si $ x-2 \le 3$ ou $ x \le 3$, alors $-3 \le x \le 5$. Vrai
100012.tex — Si $ x-3 \le 1$ ou $ x-7 \le 1$, alors $ x-5 \le 3$.
$\textbf{100013.tex} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
100014.tex — Si $x^2 + 2x \le 0$, alors $ x+1 \le 1$.
Vrai 100015.tex — Si $x^2 - 6x + 8 \le 0$, alors $ x - 3 \le 1$.
100016.tex — Si $ x+2 \le 1$, alors $ x \le 3$
Faux 100018.tex — Si $ x-1 > 1$, alors $ 2x-1 > 1$.
100020.tex — La somme d'une fonction paire et d'une fonction impaire est impaire.
Faux 100021.tex — Le produit d'une fonction paire et d'une fonction impaire est impair.
100022.tex — Le produit de deux fonctions impaires est impair. Faux
100023.tex — La somme de deux fonctions paires est paire.
Vrai 100024.tex — La somme de deux fonctions périodiques est périodique. Faux

100025.tex — La somme de deux fonctions 2π -périodiques est 2π -périodique.
100026.tex — Une fonction dérivable est continue. Vrai
Vrai 100027.tex — Il existe des fonctions à la fois croissantes et décroissantes.
100028.tex — Une fonction continue est dérivable.
Faux 100029.tex — Une fonction dérivable à dérivée positive est croissante.
Faux $\mathbf{100030.tex}$ — Une fonction dérivable sur $\mathbb R$ à dérivée positive est croissante.
100031.tex — Une fonction croissante est à dérivée positive. Vrai
Faux 100032.tex — Une fonction croissante est continue.
$\textbf{100033.tex} \ - \ \text{Si} f \text{est d\'erivable, alors} f' \text{est continue}.$
Faux $\mathbf{100034.tex}$ — Une fonction $f: E \to F$ est injective ssi tout élément de F possède au moins un antécédent.
Faux $\mathbf{100035.tex}$ — Une fonction $f: E \to F$ est injective ssi tout élément de F possède exactement un antécédent.
Faux $ \textbf{100036.tex} \ \ \textbf{Une fonction} f:E \to F \textbf{est injective ssi tout \'el\'ement de} F \textbf{poss\`ede au plus un ant\'ec\'edent}. $ Vrai
100037.tex — Une fonction $f: E \to F$ est surjective ssi $f(E) = F$.
100040.tex — Une fonction $f: E \to F$ est surjective ssi pour tout $y \in F$, $f^{-1}(\{y\})$ est non vide.
Vrai $\textbf{100041.tex} \ -\!$
Vrai $\mathbf{100042.tex} \longrightarrow \forall A, B, C \in \mathcal{P}(E), \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$
100043.tex — $\forall A, B \in \mathcal{P}(E), \ (A \cap B)^{\complement} = A^{\complement} \cup B^{\complement}.$ Vrai
100044.tex — $\forall B \in \mathcal{P}(F), \ f^{-1}(B)^{\complement} = f^{-1}(B^{\complement}).$ Vrai
100045.tex — $\forall A \in \mathcal{P}(E), \ f(A)^{\complement} = f(A^{\complement}).$ Faux
100046.tex — $\forall A, A' \in \mathcal{P}(E), \ f(A) \cap f(A') = f(A \cap A').$ Faux
100047.tex — Soit $f: E \to F$. Alors $\forall A \in \mathcal{P}(F), \exists X \subset f^{-1}(A), f(X) = A$.
$\textbf{100048.tex} \ \ \ \ \forall B \in \mathcal{P}(F), \ f(f^{-1}(B)) \subset B.$ Vrai
100049.tex — $\forall A, B \in \mathcal{P}(E), \ A \subset B \implies f(A) \subset f(B)$. Vrai
100050.tex — $\forall A, B \in \mathcal{P}(E), A \neq B \implies f(A) \neq f(B)$. Faux
100051.tex — $f: E \to F$ est surjective si, et seulement si, tout élément de F admet un antécédent par f .
Vrai $100052.tex - f: \mathbb{R} \to \mathbb{R}$ est surjective si, et seulement si, toute droite horizontale coupe la courbe représentative de f .
$\textbf{100053.tex} \ -\!$
100054.tex — $f: \begin{cases} \mathbb{N} \to \mathbb{N} \\ n \mapsto 2n \end{cases}$ est surjective.
100055.tex — $f: \left\{ \begin{array}{ccc} \mathbb{N} & \to & \mathbb{N} \\ n & \mapsto & 2n \end{array} \right.$ est injective.
100056.tex — $f: \left\{ \begin{array}{ccc} 2\mathbb{N} & \to & \mathbb{N} \\ n & \mapsto & n/2 \end{array} \right.$ est surjective.

100057.tex —	
100058.tex —	Faux Si $f: E \to F$ est injective, alors $f^{-1}(f(A)) = A$ pour tout $A \in \mathcal{P}(E)$.
100059.tex —	
100060.tex —	
	Faux Soit $f: E \to F$ linéaire et B une base de E . Si la famille $f(B)$ est une base, alors f est injective.
100062.tex —	Vrai Soit $f: E \to F$ linéaire et B une base de E . Alors la famille $f(B)$ est une base ssi f est injective.
100063.tex —	Faux Soit $f: E \to F$ linéaire et B une base de E . Alors f est injective ssi la famille $f(B)$ est libre.
100065.tex —	Soit $f: E \to F$ linéaire et B une famille libre de E . Si f est injective, alors la famille $f(B)$ est libre. Vrai
100066.tex —	Soit $f: E \to F$ linéaire et B une base de E . Alors la famille $f(B)$ est une base ssi f est surjective. Faux
100067.tex —	Soit $f: E \to F$ linéaire et B une base de E . Si la famille $f(B)$ est génératrice, alors f est surjective. Vrai
100068.tex —	L'image d'un sous-ev par une application linéaire est un sous-ev. Vrai
100069.tex —	L'image réciproque d'un sous-ev par une application linéaire est un sous-ev. Vrai
100070.tex —	La composée de deux applications linéaires est une application linéaire. Viai Viai
100071.tex —	L'application identité d'un ev est un endomorphisme. Vrai
100072.tex —	Une application constante entre espaces vectoriels est linéaire. Faux
100072 tox	L'application nulle entre deux ev est linéaire. Vrai
	Une application linéaire est inversible ssi son déterminant est non nul. Faux
100075.tex —	Une application linéaire entre deux ev est inversible ssi elle admet une réciproque. Vrai
100076.tex —	Si application linéaire entre deux ev est inversible, son inverse est une application linéaire. Vrai
100077.tex — également.	Si deux applications entre deux ev sont réciproques l'une de l'autre, alors l'une est linéaire ssi l'autre l'est
100078.tex —	
100079.tex —	Faux Si $p \in \mathcal{L}(E)$ et si $p \circ p = p$, alors p n'est pas inversible.
100080.tex —	Faux Si $p \in \mathcal{L}(E)$ et si $E = Ker(p) \oplus Im(p)$, alors $p \circ p = p$.
100081.tex —	Faux Si $p \in \mathcal{L}(E)$ et si $p \circ p = p$, alors $E = Ker(p) \oplus Im(p)$.
100082.tex —	
100083.tex —	Faux Si $f:E\to F$ est linéaire et $dim(E)<\infty,$ alors $dim(E)=dim(Im(f))+dim(Ker(f)).$
100084.tex —	
100085.tex —	Faux Soient f et g deux applications linéaires de E dans F . On a $Ker(f+g)=Ker(f)+Ker(g)$.
100086.tex —	Faux Si F et G sont des sous-ev de E et $u \in \mathcal{L}(E)$, alors $u(F+G)=u(F)+u(G)$.
100087.tex —	
100088.tex —	La somme de deux endomorphismes de E est un endomorphisme de E.

Vrai
100089.tex — La somme de deux isomorphismes de E sur F est un isomorphisme de E sur F .
100090.tex — La composée de deux automorphismes de E est un automorphisme de E .
100091.tex — Si la composée de deux endomorphismes de E est bijective, alors chaque endomorphisme est un automorphisme.
100092.tex — 1 est un nombre premier.
100093.tex — Tout nombre est divisible par 1. Vrai
100094.tex — Tout nombre est divisible par lui-même.
Vrai 100095.tex — Il existe quatre nombres premiers inférieurs à 10.
100096.tex — Il existe quatre nombres premiers compris entre 10 et 20.
100097.tex — Il existe quatre nombres premiers compris entre 20 et 30.
Faux 100098.tex — Il existe trois nombres premiers compris entre 20 et 30.
100099.tex — 12 et 8 ont une infinité de diviseurs communs. Faux Faux
100100.tex — 16 et 18 ont une infinité de multiples communs.
100101.tex — 12 possède six diviseurs.
Vrai 100102.tex — 30 possède huit diviseurs.
Vrai 100103.tex — 26 possède deux diviseurs.
Faux 100104.tex — 24 possède huit diviseurs.
Vrai 100105.tex — 12 possède quatre diviseurs.
100106.tex — 57 est premier. Faux Faux
100107.tex — 43 est premier.
Taux 100111.tex — 132 est divisible par trois.
Faux 100113.tex — Le pgcd de 40 et 36 est 4.
Vrai 100114.tex — 30 possède trois facteurs premiers.
100115.tex — 60 possède quatre facteurs premiers.
Faux 100116.tex — $8 \times 7 = 56$ et $6 \times 9 = 54$.
Vrai 100117.tex — $8 \times 7 = 56$ ou $6 \times 9 = 54$.
Vrai 100118.tex — $7 \times 8 = 56$ et $9 \times 7 = 63$.
Vrai 100119.tex — $7 \times 8 = 56$ et $9 \times 7 = 63$.
Vrai 100120.tex — $8 \times 7 = 56$ et $9 \times 6 = 53$.

	Fau Fau $8 \times 7 = 56$ ou $9 \times 6 = 53$.	X
	Vraintenance Vrai	i
	Fau $9 \times 5 = 40 \text{ et } 8 \times 6 = 48.$	X
	Fau	X
	$-8 \times 9 = 73 \text{ et } 9 \times 9 = 81.$ Fau	х
	$-8\times9=73\text{ ou }9\times9=81.$	i
	$-6 \times 7 = 42 \text{ ou } 9 \times 5 = 40.$	i
100127.tex —	$7 \times 7 = 49 \text{ ou } 5 \times 5 = 35.$ Vrain Vr	
100128. tex	$-8 \times 8 = 64 \text{ et } 9 \times 6 = 48.$ Fau	
100129.tex —	$6 \times 8 = 56 \text{ et } 9 \times 9 = 81.$ Fau	
$100130.\mathrm{tex} -$	$9 \times 6 = 73 \text{ et } 8 \times 3 = 24.$	
100131.tex —	Fau Fau $6 \times 5 = 40$ ou $6 \times 7 = 42$.	
100132.tex —	Vraintenance (1+i)(1+i) = 2i	
100133.tex —	Vraintenance $(1+i)(1-i) = -2$	
100134.tex —	Fau $(1+i)(2+i) = -1+3i$	
	Fau $(1+i)(1+2i) = -1+3i$	X
100136.tex —	Vraintenance $(1+i)(1-2i) = -3-i$	
	Fau $(1+i)(3+i) = 2-4i$	X
	Fau $(1+i)(3-2i) = 5-i$	X
	Fau $(1+i)(1+3i) = 2+4i$	X
	Fau $(1+i)(1+ii) = 2+4i$ Fau $(1-i)(1-i) = -2i$	X
	Vrai	i
	-(1-i)(2+i) = -3-i Fau	x
	-(1-i)(1+2i) = -3+iFau	X
100143.tex —	-(1-i)(1-2i) = 1-3i Fau	x
100144.tex —	-(1-i)(3+i) = -4-2i Fau	x
100145.tex —	-(1-i)(3-2i) = 1-5i Vrai	i
100146.tex —	-(1-i)(1+3i) = -4+2i Fau	
100147.tex —	(2+i)(2+i) = -3+4i Fau	
100148.tex —	Fau $(2+i)(1+2i) = -5i$ Fau Fau	
100149.tex —	-(2+i)(1-2i) = -4-3i	
100150.tex —	Fau $(2+i)(3+i) = -5+5i$	
100151.tex —	Fau $-(2+i)(3-2i) = 8-i$	
100152.tex —	Vraintenance $(2+i)(1+3i) = -1-7i$	
	Fau	v

100153.tex —	(1+2i)(1+2i) = -3+4i
100154.tex —	(1+2i)(1-2i) = 5 Vrai
100155.tex —	(1+2i)(3+i) = 1-7i
100156.tex —	Faux $(1+2i)(3-2i) = 7+4i$
100157.tex —	Vrai $(1+2i)(1+3i) = -5+5i$
100158.tex —	Vrai $(1-2i)(1-2i) = -3+4i$
100159.tex —	Faux $(1-2i)(3+i) = 5-5i$
100160.tex —	Vrai $(1-2i)(3-2i) = -1-8i$
100161.tex —	Vrai $ (1-2i)(1+3i) = -7+i $
100162.tex —	Faux $(3+i)(3+i) = 8-6i$
100163.tex —	Faux $ (3+i)(3-2i) = 11-3i $
100164.tex —	Vrai $(3+i)(1+3i) = 10i$
100165.tex —	Vrai $(3-2i)(3-2i) = 5+12i$
100166.tex —	Faux $(3-2i)(1+3i) = -9+7i$
100167.tex —	Faux $ (1+3i)(1+3i) = -8+6i $
100168.tex —	
100169.tex —	
100170.tex —	
	Un argument de $-\sqrt{3} + i$ est $5\pi/6$.
100172.tex —	
100173.tex —	
100174. tex	
100175. tex	
100176. tex	Un argument de $-\sqrt{3} - i$ est $-2\pi/3$.
100177.tex —	
100178.tex —	Un argument de $\frac{1}{2} + i\frac{\sqrt{3}}{2}$ est $7\pi/3$.
100179.tex —	Un argument de $-\frac{1}{2} + i\frac{\sqrt{3}}{2}$ est $-4\pi/3$.
100180.tex —	Un argument de $-\frac{\sqrt{3}}{2} + \frac{i}{2}$ est $7\pi/6$.
100181.tex —	
100182.tex —	Un argument de $1-i$ est $7\pi/4$.
100183.tex —	
100184.tex —	

	Un argument de $-3i$ est $9\pi/2$.	Vrai
		Faux
100187.tex —		Vrai
100188.tex —	$\overline{zw} = \overline{z}\overline{w}.$	Vrai
100189.tex —	$\overline{z+w} = \overline{z} + \overline{w}.$	Vrai
100190.tex —	Re(z+w) = Re(z) + Re(w).	
100191.tex —	Re(zw) = Re(z)Re(w).	
100192.tex —	Im(zw) = Im(z)Im(w).	
100193.tex —	$Re(z) = \frac{z + \overline{z}}{2}.$	
100194.tex —	$Im(z) = \frac{z - \overline{z}}{2}.$	
100195.tex —	$ z+w \le z + w .$	
100196.tex —	z+w < z + w .	
100197.tex —	z+w = z + w .	
100198.tex —	$ z+w \ge z + w .$	
100199.tex —	$Re(z) \le z .$	
100200.tex —	$ Re(z) = z \iff z \in \mathbb{R}.$	
100201.tex —	$Re(z) = z \iff z \in \mathbb{R}_+.$	
100202.tex —	$ Re(z) \le z .$	Vrai
100203.tex —	$ Re(z\overline{w}) \le zw .$	
 100204.tex —	$ z+w = z + w \iff z\overline{w}\in\mathbb{R}_+.$	
100205.tex —	$ z+w = z + w \iff (w=0 \text{ ou } \exists \lambda\in\mathbb{R}_+,z=\lambda w).$	
100206.tex —	$ z+w ^2 = z ^2 + 2Re(z\overline{w}) + w ^2.$	
100207.tex —	$ z+w ^2 = z ^2 + 2 zw + w ^2.$	
100208. tex	$ z+w ^2 = z ^2 + 2 z\overline{w} + w ^2.$	
100209.tex —	$ z+w ^2 = z ^2 + 2Re(zw) + w ^2.$	
100210.tex —	L'équation $2z = \overline{z}$ a une unique solution.	
100211.tex —	Les points d'affixe $-3 - 2i$, $-1 - i$ et $3 + i$ sont alignés.	
100212.tex —	Le triangle dont les sommets ont pour affixes i , 3 et $4+3i$ est isocèle.	
100213.tex —	Les solutions complexes de l'équation $ z-1 =3$ forment un cercle	
100214.tex —	Les solutions complexes de l'équation $ z-1 = z $ forment une droite	
100215.tex —	Les solutions complexes de l'équation $ z-1 = 2z $ forment un cercle	
100216.tex —	Les solutions complexes de l'équation $ z-1 =Re(z)+1$ forment une parabole	
100217.tex —	Les solutions complexes de l'équation $ z-1 =Im(z)+1$ forment une parabole	Vrai
		v rai

100218.tex — L'ensemble des solutions de l'équation $z=-\overline{z}$ est une droite.
Vrai 100219.tex — Les solutions complexes de l'équation $ z-1 = Re(z)$ forment une parabole
100221.tex — Si $\frac{c-a}{b-a} \in i\mathbb{R}$, alors ABC est rectangle en A
100222.tex — Si $\frac{c-a}{b-a} = i$, alors ABC est un triangle indirect
Faux $ 100223. tex - Si \frac{c-a}{b-a} = i, alors ABC est isocèle $
100224.tex — Si ABC est isocèle, $\left \frac{c-a}{b-a}\right =1$.
Faux $100225.tex$ — Si ABC est isocèle en A , alors $\frac{c-a}{b-a} = i$,
$\textbf{100226.tex} \ \ \ \text{Si} \ a+c=b+d, \ \text{alors} \ ABCD \ \text{est un parall\'elogramme}$
100228.tex — Si $ABCD$ est un carré, alors $\frac{d-b}{c-a}=i$.
100229.tex — Si $ABCD$ est un carré direct, alors $\frac{d-b}{c-a}=i$.
100230.tex — Si $ABCD$ est un carré, alors $\frac{d-b}{c-a} \in \{i, -i\}$.
Vrai 100231.tex — Si $\frac{d-b}{c-a} = i$, alors $ABCD$ est un carré
Faux $100232.tex$ — Si $ABCD$ est un losange, alors $\frac{d-b}{c-a}$ est imaginaire pur.
100233.tex — Si $ABCD$ est un losange, alors $\left \frac{d-b}{c-a}\right =1$.
100234.tex — Si $\frac{d-b}{c-a}$ est imaginaire pur, alors $ABCD$ est un losange.
100235.tex — Si $ABCD$ est un rectangle, alors $\left \frac{d-b}{c-a}\right =1$.
100236.tex — Si $ABCD$ est un rectangle, alors $a-b=c-d$.
$\textbf{100237.tex} \ -\!$
100238.tex — Si $\frac{c-a}{b-a} = 1+i$, alors ABC est isocèle.
100239.tex — La dérivée de $x\mapsto -1/x$ est $x\mapsto 1/x^2$.
100240.tex — La dérivée de $x\mapsto 1/x^2$ est $x\mapsto -2/x^3$.
100241.tex — $x \mapsto -3/x^4$ est la dérivée de $x \mapsto 1/x^3$.
${\bf 100242.tex} \ \ x \mapsto 2/x^3 \ {\rm est} \ {\rm la} \ {\rm dériv\acute{e}e} \ {\rm seconde} \ {\rm de} \ x \mapsto 1/x.$
100243.tex — La dérivée seconde de $x\mapsto 1/x$ est $x\mapsto 3/x^3$.
100244.tex — La dérivée de $x\mapsto x\sqrt{x}$ est $x\mapsto \frac{1}{2\sqrt{x}}$.
$\textbf{100245.tex} \ -\!$
$\textbf{100246.tex} \ \ x \mapsto \sin(x) \text{ est la dérivée de } x \mapsto \cos(x).$
Faux 100247.tex — La dérivée seconde de $x\mapsto \sin(x)$ est $x\mapsto -\sin(x)$.
$\mathbf{100248.tex} - (f \times g)' = f' \times g + f \times g'.$ Vrai
100249.tex — $(f \times g)' = f' \times g - f \times g'$. Faux
100250.tex — $(f/g)' = \frac{f' \times g - f \times g'}{g^2}$.

100251 toy —	$(f/g)' = \frac{g \times f' - g' \times f}{g^2}.$	Vrai
		Vrai
	$f'(f/g)' = \frac{f' \times g + f \times g'}{g^2}.$	Faux
	$(f/g)' = \frac{f \times g' - f' \times g}{g^2}.$	Faux
100254.tex —	$(g/f)' = \frac{g' \times f - g \times f'}{f^2}.$	
100255.tex —	Si $n \in \mathbb{N}^*$, la dérivée de $x \mapsto 1/x^n$ est $x \mapsto -n/x^{n+1}$.	
100256.tex —	Si $n \in \mathbb{N}$, la dérivée de $x \mapsto 1/x^n$ est $x \mapsto -n/x^{n+1}$.	
100257.tex —	Si $n \in \mathbb{Z}^*$, la dérivée de $x \mapsto 1/x^n$ est $x \mapsto -n/x^{n+1}$.	
100258.tex —	Si $n \in \mathbb{N}$, la dérivée de $x \mapsto 1/x^n$ est $x \mapsto n/x^{n+1}$.	
100259.tex —	Si $n \in \mathbb{Z}$, la dérivée de $x \mapsto 1/x^n$ est $x \mapsto n/x^{n-1}$.	Faux
100260.tex —	Si $n \in \mathbb{Z}^*$, la dérivée de $x \mapsto x^n$ est $x \mapsto nx^{n-1}$.	
100261.tex —	Si $n \in \mathbb{Z}$, la dérivée de $x \mapsto x^n$ est $x \mapsto nx^{n-1}$.	
100262.tex —	Si $n \in \mathbb{Z}$, la dérivée de $x \mapsto x^n$ est $x \mapsto nx^{n+1}$.	Faux
100263.tex —	Si $n \in \mathbb{N}^*$, la dérivée de $x \mapsto x^n$ est $x \mapsto nx^{n-1}$.	
100264.tex —	$(\sqrt{f})' = \frac{f'}{2\sqrt{f}}.$	Vrai
100265.tex —	Si $n \in \mathbb{N}$, la dérivée de f^n est $f'f^{n-1}$.	Vrai
100266.tex —	La dérivée de $x \mapsto x \ln(x) - x$ est $x \mapsto \ln(x)$.	
100267.tex —	Une primitive de $x\mapsto 1/x$ est $x\mapsto \ln x $.	
100268.tex —	$x \mapsto -1/x^2$ est une primitive de $x \mapsto 2/x^3$.	
100269.tex —	Une primitive de $x \mapsto -1/x^3$ est $x \mapsto 1/2x^2$.	
100270.tex —	Une primitive de $x \mapsto 1/x^3$ est $x \mapsto -2/x^2$.	
100271.tex —	$x\mapsto 2/x^2$ est une primitive de $x\mapsto 1/x^3$.	
100272.tex —	La dérivée seconde de $x\mapsto \ln(x)$ est $x\mapsto -1/x^2$.	Faux
100273.tex —	$x \mapsto \sin(x)$ est une primitive de $x \mapsto \cos(x)$.	
100274.tex —	Une primitive de $x \mapsto \sin(x)$ est $x \mapsto -\cos(x)$.	Vrai
100275.tex —	Une primitive de $x \mapsto \cos(x)$ est $x \mapsto -\sin(x)$.	Vrai
	$(g \circ f)' = (g' \circ f) \times f'.$	Faux
	Si $f: \mathbb{R} \to \mathbb{R}_+^*$ est dérivable, \sqrt{f} est dérivable.	Vrai
	Si $f: \mathbb{R} \to \mathbb{R}_+$ est dérivable, \sqrt{f} est dérivable.	Vrai
	Si $f: \mathbb{R} \to \mathbb{R}_+^*$ est dérivable, la dérivée de $\ln f$ est $\frac{f'}{f}$.	Faux
	Si $f: \mathbb{R} \to \mathbb{R}^*$ est dérivable, une primitive de $\frac{f'}{f}$ est $\ln f $.	Vrai
	Si $f: \mathbb{R} \to \mathbb{R}^*$ est dérivable, une primitive de $\frac{f'}{f}$ est $\ln f$.	Vrai
	Si $f: \mathbb{R} \to \mathbb{R}_+^*$ est dérivable, une primitive de $\frac{f'}{f}$ est $\ln f$.	Faux
	si j : 182 / 1824	Vrai

100283.tex — Le domaine de définition de l'expression $\frac{x-1}{x+1}$ est $\mathbb{R} \setminus \{-1\}$.
100284.tex — Le domaine de définition de l'expression $\frac{x-1}{x+1}$ est $\mathbb{R}\setminus\{0\}$.
Faux 100285.tex — Le domaine de définition de l'expression $\frac{x}{x^2+1}$ est $\mathbb{R}\setminus\{0\}$.
100286.tex — Le domaine de définition de l'expression $\frac{2x-1}{(x+1)(x-2)}$ est $\mathbb{R}\setminus\{-1,2\}$.
100287.tex — Le domaine de définition de l'expression $\frac{2x-1}{(x+1)(x-2)}$ est $\mathbb{R}\setminus\{-2,1\}$.
Faux 100288.tex — Le domaine de définition de l'expression $\frac{3+x}{(x+1)(x-2)}$ est $\mathbb{R} \setminus [-1,2]$.
Faux 100289.tex — Le domaine de définition de l'expression $\frac{3x^2+x+1}{x+2}$ est $]-\infty,-2[\cup]-2,+\infty[$.
100290.tex — Le domaine de définition de l'expression $\frac{x+2}{x^2+2x+1}$ est $]-\infty,-1[\cup]-1,+\infty[$.
100291.tex — Le domaine de définition de l'expression $\frac{x+2}{x^2+2}$ est $\mathbb R$.
100292.tex — Le domaine de définition de l'expression $\frac{x+2}{x^2+1}$ est $\mathbb{R}\setminus\{-1,1\}$.
Faux 100293.tex — Le domaine de définition de l'expression $\frac{2x-1}{x^2-6x+9}$ est $]-\infty,3[\cup]3,+\infty[$.
100294.tex — Le domaine de définition de l'expression $\frac{x^2+3}{x^2-1}$ est $\mathbb{R}\setminus\{-1,1\}$.
100295.tex — Le domaine de définition de l'expression $\frac{x^2-1}{x^2-4}$ est $\mathbb{R}\setminus\{-2,2\}$.
100296.tex — Le domaine de définition de l'expression $\frac{x^2-1}{x^2-4}$ est $]-\infty,-2[\cup]2,+\infty[.$
Faux 100297.tex — Le domaine de définition de l'expression $\frac{1}{x^2-3x}$ est $\mathbb{R}\setminus\{0,3\}$.
100298.tex — Le domaine de définition de l'expression $\frac{x-2}{x^2-x}$ est $]-\infty,0[\cup]1,+\infty[$.
Faux 100299.tex — Le domaine de définition de l'expression $\frac{x-2}{x^2+2x}$ est $\mathbb{R}\setminus\{0,2\}$.
Faux 100300.tex — Le domaine de définition de l'expression $\frac{1}{3x^2 + 5x}$ est $\mathbb{R} \setminus \{-5/3, 0\}$.
100301.tex — Le domaine de définition de l'expression $\frac{2+x}{2x^2+3x}$ est $\mathbb{R}\setminus\{0,3/2\}$.
Faux 100302.tex — Le domaine de définition de l'expression $\frac{2+x}{2x^2+3x}$ est $\mathbb{R}\setminus\{0,-2/3\}$.
100303.tex — Le domaine de définition de l'expression $\frac{x-1}{x+1}$ est $\mathbb{R}\setminus\{1\}$.
Faux 100304.tex — Le domaine de définition de l'expression \sqrt{x} est $[0, +\infty[$.
100305.tex — Le domaine de définition de l'expression $\sqrt{x+2}$ est $[0,+\infty[$.
100306.tex — Le domaine de définition de l'expression $\sqrt{x+2}$ est $[2,+\infty[$. Faux
100307.tex — Le domaine de définition de l'expression $\sqrt{2x-6}$ est $[6, +\infty[$. Faux
100308.tex — Le domaine de définition de l'expression $\sqrt{x+3}$ est $]3, +\infty[$. Faux 100309.tex — Le domaine de définition de l'expression $\sqrt{x-1}$ est $]-1, +\infty[$.
100310.tex — Le domaine de définition de l'expression $\sqrt{x-4}$ est $]-1,+\infty[$. Faux 100310.tex — Le domaine de définition de l'expression $\sqrt{x-4}$ est $]-\infty,4]$.

100311.tex —		X
	Vrai	
100313.tex —	Le domaine de définition de l'expression $\sqrt{1-x}$ est $]-\infty,-1]$ Faux	X
$100314.\mathrm{tex} -\!\!\!\!-$	Le domaine de définition de l'expression $\frac{\sqrt{x-1}}{\sqrt{x+1}}$ est le même que celui de l'expression $\sqrt{\frac{x-1}{x+1}}$.	
100315.tex — I	Faux Le domaine de définition de l'expression $\sqrt{x-1}\sqrt{x+1}$ est le même que celui de l'expression $\sqrt{(x-1)(x+1)}$ Faux	<u>x</u> .).
100316.tex —	Le domaine de définition de l'expression $\frac{1}{\sqrt{x-2}}$ est $[2,+\infty[$.	1
	Le domaine de définition de l'expression $\frac{1}{\sqrt{2x-6}}$ est $]3,+\infty[$.	ĸ
	Vrai	
	Le domaine de définition de l'expression $\sqrt{\sqrt{x-1}-2}$ est $[3,+\infty[$	X
100320.tex —	Le domaine de définition de l'expression $\sqrt{\sqrt{x-2}-2}$ est $[6,+\infty[$	
$100321.\mathrm{tex} -\!\!\!\!-$	Le domaine de définition de l'expression $\sqrt{x^2-2}$ est $[-2,2]$. Faux	v
$100322. ext{tex}$ —	Le domaine de définition de l'expression $\sqrt{x^2-2}$ est $]-\infty,-2]\cup[2,+\infty[$.	
100323.tex —	Le domaine de définition de l'expression $\sqrt{x^2-1}$ est $]-\infty,-1]\cup[1,+\infty[$.	
100324.tex —		
100325.tex —	Les expressions $\ln(x^2 - 1)$ et $\ln(x + 1) + \ln(x - 1)$ ont le même domaine de définition.	K
		K
100328.tex —		
$100329. ext{tex}$ —		K
100330.tex —		K
	Le domaine de définition de l'expression $\ln(2x+1)$ est $]-1,+\infty[$. Faux	K
	Vrai	
100333.tex —	Le domaine de définition de l'expression $\ln(2x+2)$ est $]-2,+\infty[$. Faux	X
100334.tex —	Le domaine de définition de l'expression $\ln(1+x+x^2)$ est \mathbb{R}	
100335.tex —	Le domaine de définition de l'expression $\ln(x^2 + 3x + 2)$ est \mathbb{R} .	
$100336.\mathrm{tex}$ —	Le domaine de définition de l'expression $\ln(x^2 - 1)$ est $] - \infty, -1[\cup]1, +\infty[$.	
100337.tex —		
$100338. ext{tex}$ —		
100339.tex —		
$100340. ext{tex}$		
	Le domaine de définition de l'expression $\frac{x-3}{\ln(x+1)}$ est $]-1,+\infty[$.	K
A	$\frac{\ln(x+1)}{\ln(x+1)} = \frac{1}{1} + \infty$ Faux	X

```
100342.tex — Le domaine de définition de l'expression \frac{x+5}{\ln(x-2)} est ]2, +\infty[.
100343.tex — Le domaine de définition de l'expression \frac{2x}{\ln(x-1)} est ]1,2[\cup]2,+\infty[.
luer :</b><br/> « Soit x \in \mathbb{R}. L'expression \frac{x-2}{x-3} est bien définie ssi x \neq 3.<br/><br/> Si c'est le cas, l'expression \sqrt{\frac{x-2}{x-3}} est bien définie ssi x \neq 3.<br/>
bien définie ssi \frac{x-2}{x-3} est positive, autrement dit ssi x-2 \ge x-3 autrement dit jamais. L'expression \sqrt{\frac{x-2}{x-3}} n'est donc
100345.tex — <b>Énoncé</b> : déterminer le domaine de définition de \sqrt{\frac{1}{x+1}}.<br/> <b>Solution rédigée à éva-
luer :</b> <br/> « Soit x \in \mathbb{R}. L'expression \frac{1}{x+1} est bien définie ssi x \neq -1.<br/> Si c'est le cas, l'expression \sqrt{\frac{1}{x+1}} est
bien définie ssi \frac{1}{x+1} est positive, autrement dit ssi x+1 l'est, et donc ssi x \ge -1.<br/>str> Le domaine de définition de \sqrt{\frac{1}{x+1}}
100346.tex — <br/> <br/>b>Énoncé</b> : déterminer le domaine de définition de \sqrt{\frac{x-3}{x-2}}.<br/> <br/>b>Solution rédigée à éva-
luer :</b> <br/> « Soit x \in \mathbb{R}. L'expression \frac{x-3}{x-2} est bien définie ssi x \neq 2.<br/> Si c'est le cas, l'expression \sqrt{\frac{x-3}{x-2}} est
bien définie ssi \frac{x-3}{x-2} > 0, autrement dit ssi x > 3 ou x < 2. Le domaine de définition de \sqrt{\frac{x-3}{x-2}} est donc ]-\infty, 2[\cup]3, +\infty[.)
100347.tex — \langle b \rangleÉnoncé\langle b \rangle: déterminer le domaine de définition de \sqrt{\frac{x}{x+2}}.\langle br \rangle \langle b \rangleSolution rédigée à éva-
luer :</br/>b><br/>br> « Soit x \in \mathbb{R}. L'expression \frac{x}{x+2} est bien définie si et seulement si x \neq -2.<br/>si c'est le cas, l'expression
\sqrt{\frac{x}{x+2}} est bien définie ssi \frac{x}{x+2} \ge 0, autrement dit ssi x \ge 0 ou x < -2. Le domaine de définition de \sqrt{\frac{x}{x+2}} est donc
100348.tex — <br/> <br/>b>Énoncé</br/>/b> : déterminer le domaine de définition de \sqrt{\frac{x}{x+2}}.<br/><br/>b>Solution rédigée à éva-
luer :</br/>b><br/>br> « Soit x \in \mathbb{R}. L'expression \frac{x}{x+2} est bien définie si et seulement si x \neq -2.<br/>br> Si c'est le cas, l'expression
\sqrt{\frac{x}{x+2}} est bien définie ssi \frac{x}{x+2} \ge 0, autrement dit ssi x \ge 0 et x \ge -2. Le domaine de définition de \sqrt{\frac{x}{x+2}} est donc
100349.tex — <br/> <br/>b>Énoncé</br/>/b> : déterminer le domaine de définition de \sqrt{\frac{x}{x+2}}.<br/><br/>b>Solution rédigée à éva-
luer :</br/> « Soit x \in \mathbb{R}. L'expression \frac{x}{x+2} est bien définie si et seulement si x \neq -2.<br/> Si c'est le cas, l'expression
\sqrt{\frac{x}{x+2}} est bien définie ssi \frac{x}{x+2} \ge 0, autrement dit ssi x \ge 0 ou x \ge -2. Le domaine de définition de \sqrt{\frac{x}{x+2}} est donc
100350.tex — <b>Énoncé</b> : déterminer le domaine de définition de \sqrt{x-3}^2.<br/>
| characteristic de definition de \sqrt{x-3}^2.
entier.»
100351.tex — \langle b \rangleÉnoncé\langle b \rangle: déterminer le domaine de définition de \sqrt{-1+x-x^2}.\langle br \rangle \langle b \rangleSolution rédigée à
évaluer :</br/>b><br/>br> «Soit x \in \mathbb{R}. L'expression \sqrt{-1+x-x^2} est bien définie si et seulement si -1+x-x^2 \ge 0. Ce trinôme
a un discriminant égal à \Delta = b^2 - 4ac = -3 donc n'a aucune racine réelle. Il ne s'annule donc jamais et donc est toujours
positif. Le domaine de définition de \sqrt{-1+x-x^2} est donc \mathbb R tout entier.»
100352.tex — <b>Énoncé</b> : déterminer le domaine de définition de \sqrt{x-1}\sqrt{x-2}.<br/>
<b>Solution rédigée à évaluer :</b> <br/> <br > «Soit x \in \mathbb{R}. On a \sqrt{x-1}\sqrt{x-2} = \sqrt{(x-1)(x-2)} = \sqrt{x^2-3x+2} est bien définie si et seulement si
x^2 - 3x + 2 \ge 0 Le discriminant du trinôme vaut \Delta = 9 - 4 \times 2 = 1, les racines sont 1 et 2. Le domaine de définition de
l'expression est donc \mathbb{R} \setminus [1, 2].»
```

```
100353.tex — \langle b \rangleÉnoncé\langle b \rangle: déterminer le domaine de définition de \sqrt{x-1}\sqrt{x+1}.\langle br \rangle \langle b \rangleSolution rédigée à
évaluer :</b><br/> «Soit x \in \mathbb{R}. L'expression \sqrt{x-1} est bien définie si et seulement si x \ge 1. L'expression \sqrt{x+1} est bien
définie si et seulement si x \le -1 Le domaine de définition de \sqrt{x-1}\sqrt{x+1} est donc vide.»
   ......Faux
100354.tex — \langle b \rangle Énoncé\langle b \rangle: déterminer le domaine de définition de \sqrt{x+2}\sqrt{x+3}.\langle b \rangle Solution rédigée à
évaluer :</b><br/><br/> «Soit x \in \mathbb{R}. L'expression \sqrt{x+2} est bien définie si et seulement si x > -2. L'expression \sqrt{x+3} est
bien définie si et seulement si x \ge -3 Le domaine de définition de \sqrt{x+2}\sqrt{x+3} est donc [-2,+\infty[].»
   ......Vrai
100355.tex — \langle b \rangleÉnoncé\langle b \rangle: déterminer le domaine de définition de \sqrt{2+3x+4x^2}.\langle b \rangle Solution rédigée à
évaluer :</b> <br/> «Soit x \in \mathbb{R}. Comme les coefficients 2, 3 et 4 du trinôme 2 + 3x + 4x^2 sont positifs, celui-ci est positif
et sa racine carrée est donc bien définie. Le domaine de définition de \sqrt{2+3x+4x^2} est donc \mathbb R tout entier.»
   ......Faux
100356.tex — \langle b \rangle Enoncé\langle b \rangle: déterminer le domaine de définition de \sqrt{(x+2)(x-3)}.\langle br \rangle \langle b \rangle Solution rédigée à
évaluer :</b> <br/> «Soit x \in \mathbb{R}. L'expression \sqrt{(x+2)(x-3)} est bien définie si et seulement si (x+2)(x-3) est positive,
c'est-à-dire ssi x \ge 3 ou x \le -2. Le domaine de définition de \sqrt{(x+2)(x-3)} est donc \mathbb{R}\setminus ]-2,3[.»
   ......Vrai
100357.tex — <b>Enoncé</b> : déterminer le domaine de définition de \sqrt{(x-2)(x+1)}.<br> <b>Solution rédigée à
évaluer :</b> <br/> «Soit x \in \mathbb{R}. L'expression \sqrt{(x-2)(x+1)} est bien définie si et seulement si (x-2)(x+1) est positive,
c'est-à-dire ssi x \ge 2 ou x \le -1. Le domaine de définition de \sqrt{(x-2)(x+1)} est donc \mathbb{R} \setminus [-1,2].»
   ......Faux
100358.tex — <b>Énoncé</b> : déterminer le domaine de définition de \sqrt{(1-x)(x-2)}.<b>Solution rédigée à
évaluer :</b> <br/> «Soit x \in \mathbb{R}. L'expression \sqrt{(1-x)(x-2)} est bien définie ssi (1-x)(x-2) est positive c'est-à-dire ssi
x \in [1,2]. Le domaine de définition de \sqrt{(1-x)(x-2)} est donc [1,2].»
   100359.tex — \langle b \rangleÉnoncé\langle b \rangle: déterminer le domaine de définition de \sqrt{x^2 - 5x + 6}.\langle br \rangle \langle b \rangleSolution rédigée à
évaluer :</b> <br/> «Soit x \in \mathbb{R}. L'expression \sqrt{x^2 - 5x + 6} est bien définie ssi x^2 - 5x + 6 est positive. Le discriminant de
ce trinôme vaut \Delta = 25 - 24 = 1, les deux racines sont 2 et 3 et son coefficient dominant est positif. Le domaine de définition
de \sqrt{x^2-5x+6} est donc ]-\infty,2]\cup[3,+\infty[.)
100360.tex — \langle b \rangleÉnoncé\langle b \rangle: déterminer le domaine de définition de \sqrt{x^2 - 6x + 9}. \langle b \rangle Solution rédigée à
évaluer :</b> <br/> «Soit x \in \mathbb{R}. L'expression \sqrt{x^2 - 6x + 9} est bien définie ssi x^2 - 6x + 9 est positive. Le discriminant de
ce trinôme vaut \Delta = 36 - 4 \times 9 = 0, il y a une racine double égale à 3. Comme le coefficient dominant du trinôme est positif,
celui-ci est donc toujours positif. Le domaine de définition de \sqrt{x^2-6x+9} est donc \mathbb R tout entier.»
   ......Vrai
luer :</b><br/> «Soit x \in \mathbb{R}. L'expression \sqrt{x^2-9} est bien définie ssi x^2-9 est positive. Le discriminant de ce trinôme
vaut \Delta = 0 - 4 \times (-9) = 36, les racines sont 3 et -3. Comme le coefficient dominant du trinôme est positif, le domaine de
définition de \sqrt{x^2-9} est donc \mathbb{R}\setminus ]-3,3[.)
   .....
\textbf{100362.tex} \quad -- < \text{b} > \text{Énonc\'e} < / \text{b} > : \text{ déterminer le domaine de définition de } \sqrt{\frac{x}{(x-1)(x+1)}}. < \text{br} > < \text{b} > \text{Solution r\'edig\'ee à }
évaluer :</b><br/> «Soit x \in \mathbb{R}. L'expression \frac{x}{(x-1)(x+1)} est bien définie ssi (x-1)(x+1) \neq 0 c'est-à-dire ssi x \notin \{-1,1\}.
Si c'est le cas, \sqrt{\frac{x}{(x-1)(x+1)}} est bien définie ssi \frac{x}{(x-1)(x+1)} \ge 0, autrement dit ssi -1 \le x \le 0 ou x \ge 1. Le domaine
de définition de \sqrt{\frac{x}{(x-1)(x+1)}} est donc ] -1,0] \cup ]1,+\infty[.»
100363.tex — Les droites d'équations 2x + y = 1 et x - 2y = 3 sont perpendiculaires.
   ......Vrai
100364.tex — Les droites d'équations 2x + y = 1 et x + 2y = 1 sont perpendiculaires.
   ......Faux
100365.tex — Les droites d'équations 3x - y = 1 et 3x - y = 5 sont parallèles.
   ......Vrai
100366.tex — Les droites d'équations 2x - 3y = 1 et 4x - 6y = 3 sont parallèles.
100367.tex — Les droites d'équations x + y = 1 et x - 2y = 0 se coupent dans le premier quadrant.
   100368.tex — Les droites d'équations x - y = 1 et x - 2y = 0 se coupent dans le deuxième quadrant.
   Faux
100369.tex — La droite d'équation x + y = 1 intersecte le cercle de centre O et de rayon 1.
100370.tex — La droite d'équation x + y = -1 intersecte le cercle de centre O et de rayon 1.
   ......Vrai
100371.tex — La droite d'équation 3x + 2y = 6 intersecte le cercle de centre O et de rayon 1.
```

100372.tex —	
$100373. ext{tex}$	Le point de coordonnées $(2,3)$ appartient à la droite $\left\{ \begin{pmatrix} 2t+1\\3t+1 \end{pmatrix} \middle t \in \mathbb{R} \right\}$.
	Le point de coordonnées $(-1,-2)$ appartient à la droite $\left\{ \begin{pmatrix} 2t+1\\3t+1 \end{pmatrix} \middle t \in \mathbb{R} \right\}$.
100375.tex —	La droite $\left\{ \begin{pmatrix} 2t+1\\3t+1 \end{pmatrix} \middle t \in \mathbb{R} \right\}$ est orthogonale à la droite d'équation $2x+3y+7=0$.
$100376. ext{tex}$	La droite $\left\{ \begin{pmatrix} t+1\\3t-1 \end{pmatrix} \middle t \in \mathbb{R} \right\}$ peut être définie par l'équation $3x-y-4=0$.
100377.tex —	
100378.tex —	La droite $\left\{ \begin{pmatrix} 2t \\ 3t+1 \end{pmatrix} \middle t \in \mathbb{R} \right\}$ est parallèle à la droite d'équation $3x-2y+7=0$. Vrai
100379.tex —	La droite $\left\{ \begin{pmatrix} 5t+1\\2t-1 \end{pmatrix} \middle t \in \mathbb{R} \right\}$ est orthogonale à la droite d'équation $2x-5y+7=0$.
100380.tex —	La droite d'équation $3x - y = 1$ est dirigée par le vecteur de coordonnées $(3, -1)$. Faux
100381.tex —	La droite d'équation $3x - 2y = 5$ est dirigée par le vecteur de coordonnées $(2,3)$. Vrai
100382.tex —	Le vecteur de coordonnées $(-1,2)$ est un vecteur normal à la droite d'équation $x-2y=1$.
100383.tex —	
100384.tex —	Faux 2 est une solution de l'équation $x^4 - 3x^3 + x^2 + 4 = 0$.
100385.tex —	Vrai 2 est une solution de l'équation $x^6 - x^4 - 6x^3 = 0$.
100386.tex —	
100387.tex —	Une solution de l'équation $x^3 - 10x + 3 = 0$ est 3.
100388.tex —	
100389.tex —	
100390.tex —	L'équation $x^2 - 3x + 2 = 0$ a deux solutions dans \mathbb{Z} .
100391.tex —	
100392.tex —	Faux -1 est une solution de l'équation $ x+2/3 -1/3=0$.
100393.tex —	
100394.tex —	L'équation $x^2 - 6x + 1 = 0$ a deux solutions distinctes dans \mathbb{R} .
100395.tex —	
100396.tex —	
100397.tex —	
100398.tex —	
100399.tex —	Le trinôme $X^2 - 6X + 9$ a deux racines distinctes.
100400.tex —	Le trinôme $X^2 + 8X + 16$ a deux racines distinctes.
100401.tex —	

	ζ
$\textbf{100404.tex} \ \ \text{Il est possible qu'un } \mathbb{R}\text{-ev possède exactement deux éléments}.$	ζ
$\textbf{100405.tex} \ \ \text{Soit} \ E \ \text{un} \ \mathbb{R}\text{-ev}, \ \text{et} \ F, G \ \text{des sous-ev}. \ \text{Alors}, \ F \cap G \ \text{est un sous-ev}.$	
$\textbf{100406.tex} \ -\!$	
Faux $\mathbf{100407.tex}$ — Soit E un \mathbb{R} -ev, et F, G des sous-ev. Alors, $F+G$ est un sous-ev.	
Vrai ${\bf 100408.tex}$ — Soit E un $\mathbb R$ -ev de dimension finie, et F,G des sous-ev. Si $dim(F)+dim(G)=dim(E)$, alors F et G sor supplémentaires.	nt
Faux 100409.tex — Soit E un \mathbb{R} -ev, et F,G des sous-ev. Si $E=F\oplus G$ et $x\not\in F$, alors $x\in G$.	
Faux $\mathbf{100410.tex}$ — Soit E un \mathbb{R} -ev, et F,G des sous-ev. Le complémentaire de F est un sous-ev de G .	
Faux 100411.tex — Soit E un \mathbb{R} -ev, F un sous-ev, et cF le complémentaire de F . Alors, $E = F \oplus {}^cF$.	
Faux 100412.tex — Soit E un \mathbb{R} -ev, F un sous-ev, et cF le complémentaire de de F . Alors, $E = Vect\{F, {}^cF\}$.	
Vrai $ \textbf{100413.tex} \ -\!$	
Faux 100414.tex — Soit E un \mathbb{R} -ev, et F , G des sous-ev. Si $dim(F) = dim(G) = 2$ et $F \cap G = \{0\}$, alors $dim(E) \geq 4$.	
Vrai $\mathbf{100415.tex} \ \ \mathrm{Soit} \ E = \mathbb{R}^5, \ \mathrm{et} \ F, G \ \mathrm{des \ sous-ev}. \ \mathrm{Si} \ \dim(F) = \dim(G) = 3 \ \mathrm{alors} \ F \cap G \neq \{0\}.$	
Vrai $\mathbf{100416.tex} \ \ \mathrm{Soit} \ E = \mathbb{R}^5, \ \mathrm{et} \ F, G \ \mathrm{des \ sous-ev}. \ \mathrm{Si} \ \dim(F) = \dim(G) = 3 \ \mathrm{alors} \ \dim(F \cap G) = 1.$	
Faux $\mathbf{100417.tex} - \{(x,y,z) \in \mathbb{R}^3, 3x + 2y = 0 \text{ et } x + y = 0\} \text{ est un sous-ev de } \mathbb{R}^3$ Vrai	
100418.tex — $\{(x, y, z) \in \mathbb{R}^3, x + y \ge 0\}$ est un sous-ev de \mathbb{R}^3	
100419.tex — $\{(x,y) \in \mathbb{R}^2, x = y^2\}$ est un sous-ev de \mathbb{R}^2 . Faux	
100420.tex — $\{(x,y) \in \mathbb{R}^2, (x-y)^2 = 0\}$ est un sous-ev de \mathbb{R}^2 . Vrai	
100421.tex — $\{P \in \mathbb{R}[X], \int_0^1 P(t)dt = 0\}$ est un sous-ev de $\mathbb{R}[X]$ Vrai	
100422.tex — $\{P \in \mathbb{R}[X], P + P' = 1\}$ est un sous-ev de $\mathbb{R}[X]$ Faux	
100423.tex — $\{P \in \mathbb{R}[X], P(3) + P'(3) = 0\}$ est un sous-ev de $\mathbb{R}[X]$ Vrai	
100424.tex — $\{P \in \mathbb{R}[X], P(3) = 3\}$ est un sous-ev de $\mathbb{R}[X]$ Faux	
100425.tex — $\{P \in \mathbb{R}[X], P = 3P'\}$ est un sous-ev de $\mathbb{R}[X]$ Vrai	
100426.tex — Une famille liée à laquelle on enlève un vecteur reste liée. Faux	
100427.tex — Une famille liée à laquelle on enlève un vecteur devient libre. Faux	
100428.tex — Une famille libre à laquelle on ajoute un vecteur reste libre. Faux	
100429.tex — Une famille libre à laquelle on ajoute un vecteur devient liée. Faux	
100430.tex — Une famille liée à laquelle on ajoute un vecteur reste liée. Vrai	
100431.tex — Une famille est libre si ses vecteurs sont deux à deux non colinéaires Faux	
100432.tex — Une sous-famille d'une famille libre est libre. Vrai	
100433.tex — Une sous-famille d'une famille liée est liée.	

 100434.tex —	Ajouter un vecteur à une base produit une famille libre.
	Enlever un vecteur à une base produit une famille libre.
	Vrai $a^2 + 2ab + b^2 \text{ est factorisable par } a + b.$
	$x^2 - b^2$ est factorisable par $b - x$
100438.tex —	$a^2-2ab+b^2$ est factorisable par $b-a$
100439.tex —	$a^2 + 3a + 2$ est factorisable par $a + 1$. Vrai
100440.tex —	$n^2 + 6n + 9$ est factorisable par $n + 3$
100441.tex —	$p^2 + 4p + 4$ est factorisable par $p + 2$. Vrai
100442.tex —	$a^2 + 5a + 6$ est factorisable par $a + 2$.
100443.tex —	Vrai $n^2 + n - 2 \text{ est factorisable par } n + 2.$
100444.tex —	Vrai $a^2 + a - 2 \text{ est factorisable par } a - 1.$
100445.tex —	
100446.tex —	
100447.tex —	Faux $a^2 - 3a + 2$ est factorisable par $a + 2$.
100448.tex —	Faux $a^2 + a - 2$ est factorisable par $a + 1$.
100449.tex —	Faux $n^2 + n + 1$ est factorisable par $n + 1$.
100450.tex —	Faux $a^2 + 2a - 8$ est factorisable par $a + 2$.
	Faux $p^2 + 3p + 3$ est factorisable par $p + 3$.
	Faux $a^2 + 3a + 9$ est factorisable par $a + 3$.
100453.tex —	
$100454. ext{tex}$ —	
$100455. ext{tex}$ —	
$100456. ext{tex}$ —	
	Faux $xy + x + 2y + 2$ est factorisable par $x + 2$.
$100459. ext{tex}$ —	
100460.tex —	Faux $ax - a + 2x - 2$ est factorisable par $a + 2$.
100461.tex —	
100462.tex —	
100463.tex —	
100464.tex —	
100465.tex —	La fraction $\frac{21}{34}$ est irréductible.
	Vrai

100466.tex — La fraction $\frac{15}{123}$ est irréductible.
Faux $100467.\text{tex} - \text{La fraction } \frac{21}{33} \text{ est irréductible.}$
Faux $100468.\text{tex}$ — La fraction $\frac{48}{39}$ est irréductible.
Faux $100469.\text{tex} - \frac{48}{70} \le \frac{2}{3}$
Faux $100470.\text{tex} - \frac{34}{50} \le \frac{2}{3}$
Faux $100471.\text{tex} - \frac{42}{65} \le \frac{2}{3}$
Vrai $100472.\text{tex} - \frac{1}{7} + \frac{7}{9} \le 1$
Vrai $100473.\text{tex} - \frac{5}{12} + \frac{2}{3} \le 1$
Faux $100474.\text{tex} - \frac{5}{12} + \frac{5}{8} \ge 1$
Vrai $100475.tex - \frac{7}{10} + \frac{2}{7} \ge 1$
Faux $100476.\text{tex} - \frac{7}{12} + \frac{3}{8} = \frac{23}{24}$
Vrai 100477.tex — $\frac{5}{4} + \frac{7}{10} = \frac{29}{20}$
100478.tex — $\frac{a}{b} + \frac{c}{d} = \frac{a+c}{b+d}$
Faux $\mathbf{100479.tex} - \frac{a}{b} + \frac{c}{d} = \frac{ab + cd}{b + d}$
Faux $100480.\text{tex} - \frac{a}{b} + \frac{c}{d} = \frac{ab + cd}{bd}$
Faux $100481.\text{tex} - \frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$ Vrai
100482.tex — $\frac{1}{n} + \frac{1}{n+1} = \frac{1}{n(n+1)}$
Faux 100483.tex — $\frac{1}{n} - \frac{1}{n+1} = \frac{1}{n(n+1)}$
100484.tex — $\frac{n+1}{n^2-1} = \frac{1}{n-1}$
$\textbf{100485.tex} \ - \ \ \text{$\langle A \implies B$ \rangle signifie $\langle A$ ou non-B \rangle.}$
$\textbf{100486.tex} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
$\mathbf{100487.tex} - A \implies B \text{peut se lire } B \text{est vraie car } A \text{est vraie} \text{.}$ Faux
$\mathbf{100488.tex} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
$\mathbf{100489.tex} - A \implies B \text{peut se lire } \text$
$\mathbf{100490.tex} \ - \ \ \ ^{} A \implies B \ \ \text{peut se lire} \ \ ^{} A \ \text{est une condition suffisante pour} \ B \ \ \text{N}.$
$\mathbf{100491.tex} \ - \ \ \ ^{} A \implies B \ \text{``peut se lire} \ \ ^{} B \ \text{est une condition n\'ecessaire pour } A \ \text{``}.$
$\mathbf{100492.tex} - A \implies B $
$\mathbf{100493.tex} - \text{ Si } \text{ A} \implies B \text{ \ast est vraie, alors } B \text{ est vraie.}$ Faux
100494.tex — Si « $A \implies B$ » est vraie, alors A est vraie (et B aussi).

100495.tex —	Fau	
100496. tex -		
100497.tex —	Vra Si $8 \times 9 = 63$, alors $7 \times 9 = 72$.	
100498. tex -	Vra Si $9 \times 6 = 54$, alors $7 \times 8 = 46$.	
$100499. {\rm tex} -$	Fau $2+2=5$ est une condition suffisante pour que $2\times 2=6$.	
100500.tex —		
100501.tex —		
100502.tex —	Fau Fau $6 \times 7 = 42$ est une condition nécessaire pour que $2 \times 2 = 5$.	
$100503.\mathrm{tex} -$		
100504.tex —	$6 \times 7 = 42$ est une condition suffisante pour que $5 \times 7 = 35$.	
$100505.\mathrm{tex} -$	$2+5=8 \implies 3\times 7=21.$ Vra	
100506.tex —	$9 \times 8 = 72 \implies 3 \times 7 = 21.$ Vra	
100507.tex —	$6 \times 9 = 54 \implies 7 \times 8 = 48.$ Fau	
100508.tex —	Pour que $2+2=5$, il faut que $3\times 8=24$.	
$100509. {\rm tex} -$	Pour que $2+2=5$, il suffit que $9\times 5=40$	
100510.tex —	Pour que $2+2=4$, il suffit que $9\times 5=40$. Vra	
100511.tex —	$9 \times 7 = 63 \implies 6 \times 8 = 46.$ Fau	
100512.tex —	$2+2=4 \implies 7 \times 9 = 53.$ Fau	
	Si $x \in [2,3]$, alors $x^2 \in [4,9]$	
100514.tex —	Si $x \in [-1, 2]$, alors $x^2 \in [0, 4]$	ıi
100515.tex —	Si $x \in [-1, 2]$, alors $x^2 \in [1, 4]$	ıx
100516.tex —	Si $x \in [-3, -1[$, alors $x^2 \in]1, 9]$	ıi
100517.tex —	Si $x \in [-3, -1[$, alors $x^2 \in [1, 9[$	ıx
100518.tex —	Si $x \in [1, 4[$, alors $\sqrt{x} \in [1, 2]$	ıi
	Si $x \le -1$, alors $2x + 1 \le -1$	ıi
	Si $x \le 2$, alors $x^2 \le 4$ Fau	ıx
	Si $x \le 4$, alors $\sqrt{x} \le 2$	ıx
	Si $x \ge 2$, alors $x^2 \ge 4$	ıi
	$x \ge 2$ si et seulement si $x^2 \ge 4$	ıx
	$x \le 3$ si et seulement si $x^2 \le 9$	ıx
100525.tex —	Si $x^2 \le 4$, alors $x \le 2$	ıi
	Si $x^2 \le 4$, alors $x \ge -2$	

100527.tex — Si $x^2 \ge 4$, alors $x \ge 2$
Faux 100528.tex — Si $x \in [2,3]$, alors $x^2 - x \in [-1,7]$
Faux 100531.tex — Si $x \in [0,3]$, alors $x^2 - x \in [-3,9]$
Vrai 100533.tex — Si $x \in [2,3]$, alors $\sqrt{x} - x \in [\sqrt{2} - 3, \sqrt{3} - 2]$
Vrai 100534.tex — Si $x \in [2,3]$, alors $\sqrt{2} - 2 \le \sqrt{x} - x \le \sqrt{3} - 3$
Faux 100535.tex — Si $x \in [2,3]$, alors $\sqrt{x} - x \in [\sqrt{2} - 3, 0[$
Vrai 100536.tex — Deux isométries commutent.
Faux 100537.tex — La composée de deux isométries est une isométrie.
Vrai 100538.tex — La composée de deux isométries indirectes est indirecte.
Faux 100539.tex — La composée de deux isométries directes est directe.
Vrai 100540.tex — La composée d'une isométrie directe et d'une indirecte est indirecte.
100542.tex — Une isométrie préserve les milieux. Vrai Vrai Vrai
100543.tex — Une isométrie préserve les barycentres.
Vrai 100544.tex — Une isométrie envoie une droite sur une autre droite qui lui est parallèle.
Faux 100545.tex — Une isométrie directe est soit une rotation, soit une translation.
Vrai 100546.tex — Une isométrie est soit une rotation, soit une translation, soit une réflexion (symétrie axiale).
Faux 100547.tex — La composée de deux réflexions (symétries axiales) est une réflexion. Faux Faux
100548.tex — La composée de deux réflexions (symétries axiales) est une translation.
Faux 100549.tex — La composée de deux réflexions (symétries axiales) est une rotation.
Faux 100550.tex — La composée de deux réflexions (symétries axiales) est une rotation ou une translation.
Vrai 100551.tex — La composée d'une réflexion et d'une translation est une réflexion. Faux
100552.tex — Les isométries qui laissent un carré invariant sont au nombre de quatre.
100553.tex — Les isométries qui laissent un carré invariant sont au nombre de huit. Vrai
100554.tex — Les isométries qui laissent un parallélogramme (non losange et non rectangle) invariant sont au nombre de deux.
Vrai 100556.tex — Les isométries qui laissent un triangle invariant sont au nombre de six.
Faux 100557.tex — Toute isométrie directe possède des points fixes.
Faux 100558.tex — Toute isométrie indirecte possède des points fixes. Faux

100559.tex — Une isométrie directe possède soit aucun, soit un seul point fixe.	T.
100560.tex — Une isométrie ayant deux points fixes (distincts) est l'identité.	Faux
100561.tex — Une isométrie directe ayant deux points fixes (distincts) est l'identité.	Faux
100562.tex — Une isométrie ayant trois points fixes (distincts) est l'identité.	Vrai
100563.tex — Soient A et B deux points distincts. Il existe une isométrie vérifiant $f(A) = B$.	
100564.tex — Soient A et B deux points distincts. Il y a une infinité d'isométries vérifiant $f(A)$ =	
${f 100565.tex}$ — Soient A et B deux points distincts. Il y a une infinité d'isométries directes vérifiant	
100566.tex — Soient A, B, A' et B' quatre points. Il existe une isométrie vérifiant « $f(A) = A'$ et	
100567.tex — Soient A, B, A' et B' quatre points, avec $A \neq A'$ et $B \neq B'$. Il existe une isométrie $f(B) = B'$.	e vérifiant $f(A) = A'$ er
100568.tex — Soient A, B, A' et B' quatre points, avec $AB = A'B'$. Il existe une isométrie $f(B) = B'$.	vérifiant $f(A) = A'$ es
100569.tex — Soient A , B , A' et B' quatre points, avec $AB = A'B'$. Il existe une isométrie directe $f(B) = B'$.	e vérifiant $f(A) = A'$ e
100570.tex — Soient A , B , A' et B' quatre points, avec $AB = A'B'$. Il existe exactement une iso $f(A) = A'$ et $f(B) = B'$.	ométrie directe vérifiant
100571.tex — Soient A, B, A' et B' quatre points, avec $AB = A'B'$ et $A \neq B$. Il existe exactement vérifiant $f(A) = A'$ et $f(B) = B'$.	nt une isométrie directe
100572.tex — Soient A , B , A' et B' quatre points, avec $AB = A'B'$ et $A \neq A'$. Il existe exactement vérifiant $f(A) = A'$ et $f(B) = B'$.	nt une isométrie directe
100573.tex — Soient A, B, A' et B' quatre points, avec $AB = A'B'$ et $A \neq B$. Il existe exac vérifiant $f(A) = A'$ et $f(B) = B'$.	tement deux isométries
100574.tex — Une matrice carrée est inversible ssi son déterminant est non nul.	
100575.tex — La somme de deux matrices carrées de même taille non inversibles est non inversib	le.
100576.tex — Si le produit de deux matrices existe et est inversible, alors chaque matrice est inversible	ersible.
100577.tex — Soient $A, B \in M_n(\mathbb{R})$. Si AB est inversible, alors A et B aussi.	
100578.tex — Si $AB = I$, alors on a automatiquement $BA = I$ et B est l'inverse de A .	
100579.tex — Soient $A, B \in M_n(\mathbb{R})$. Alors $AB = I \Leftrightarrow BA = I$.	
100580.tex — $Tr(AB) = Tr(BA)$.	
100581.tex — Pour $A, B, C \in M_n(\mathbb{R}), Tr(ABC) = Tr(CBA)$	
100582.tex — Pour $A, B, C \in M_n(\mathbb{R}), Tr(ABC) = Tr(BCA)$	
100583.tex — $Tr(AB) = Tr(A) \cdot Tr(B)$.	
100584.tex — $Tr(A+B) = Tr(A) + Tr(B)$.	
100585.tex — ${}^{t}(AB) = {}^{t}B \cdot {}^{t}A$	
100586.tex — Toute matrice carrée réelle est somme d'une matrice symétrique et d'une antisymé	trique.
100587.tex — Les lignes d'une matrice sont indépendantes ssi ses colonnes le sont également.	Four

100588.tex — Une matrice carrée est inversible ssi son noyau est vide.
100589.tex — Une matrice est inversible ssi son noyau est réduit à zéro.
Faux $100590.tex$ — Si la k -ème colonne de A est nulle, la k -ème colonne de AB l'est aussi.
Faux $100591.tex$ — Si la k -ème colonne de A est nulle, la k -ème colonne de BA l'est aussi.
Vrai
Faux ${\bf 100594.tex}$ — Si une matrice vérifie $A^p=0$ pour un certain entier $p,$ alors elle n'est jamais inversible.
Vrai $100595.tex$ — Si deux matrices non nulles vérifient $AB = 0$, aucune d'entre elles n'est inversible.
Faux 100597.tex — Soit A une matrice. S'il existe $B \neq 0$ tq $AB = 0$, alors $BA = 0$ aussi.
Faux ${\bf 100598.tex}$ — Si une matrice carrée vérifie $A^2+2A=0$, alors $A+I$ est inversible et son propre inverse.
100599.tex — Si une matrice carrée vérifie $A^2 + 2A = 0$, alors soit $A = 0$, soit $A = -2I$
100600.tex — La somme de deux complexes de module un est de module un.
100601.tex — La somme de deux racines de l'unité est une racine de l'unité.
100602.tex — Le produit de deux complexes de module un est de module un.
Vrai 100603.tex — Le produit de deux racines de l'unité est une racine de l'unité.
Vrai $100604.tex$ — Le produit de deux racines n -èmes de l'unité est une racine n -ème de l'unité.
Vrai 100605.tex — Le produit d'une racine de l'unité par un complexe de module un est de module un. Vrai
100606.tex — Le produit d'une racine de l'unité par un complexe de module un est une racine de l'unité. Faux
100607.tex — $\frac{3}{5} + i\frac{4}{5}$ est de module un. Vrai
$100608.\mathbf{tex}$ — $-i$ est une racine de l'unité
100609.tex — $e^{i\pi/n}$ est une racine n -ème de l'unité.
${\bf 100610.tex} \ - \ \ \frac{3}{5} + i \frac{4}{5} \ {\rm est} \ {\rm une} \ {\rm racine} \ {\rm de} \ {\rm l'unit\'e}.$ Faux
100611.tex — $1+i\sqrt{3}$ est une racine de l'unité.
Faux $ 100612. tex - \frac{1}{2} + i \frac{\sqrt{3}}{2} \text{ est une racine cubique de l'unité.} $
Faux $100613.tex$ — $\frac{1}{2} + i\frac{\sqrt{3}}{2}$ est une racine de l'unité.
\mathbb{V} rai $\mathbf{100614.tex} - \mathbb{U}_3 \subset \mathbb{U}_6.$
100618.tex — $\mathbb{U}_p \cap \mathbb{U}_q = \mathbb{U}_{pgcd(p,q)}$.
$100619.\mathbf{tex} - \mathbb{U}_p \cap \mathbb{U}_q = \mathbb{U}_{ppcm(p,q)}.$ Faux
100620.tex — $\mathbb{U}_p \cup \mathbb{U}_q = \mathbb{U}_{ppcm(p,q)}$.

Faux $\mathbf{100621.tex} - \mathbb{U}_p \cup \mathbb{U}_q = \mathbb{U}_{pqcd(p,q)}.$
Faux $100622.\text{tex} - \text{Si } p \leq q, \text{ alors } \mathbb{U}_p \subset \mathbb{U}_q.$
Faux $100623.\text{tex} - \text{Si } p \leq q, \text{ alors } \mathbb{U}_q \subset \mathbb{U}_p.$
Faux
100624.tex — Si $p q$, alors $\mathbb{U}_q \subset \mathbb{U}_p$. Faux
100625.tex — Si $p q$, alors $\mathbb{U}_p \subset \mathbb{U}_q$. Vrai
100626.tex — $x \ge 0 \Rightarrow x > 0$ est toujours fausse. Faux
100627.tex — $x > 0 \Rightarrow x \ge 0$ est fausse si $x = -1$.
100628.tex — $x>0 \Rightarrow x\geq 0$ est parfois vraie, parfois fausse, ça dépend de x . Faux
100629.tex — L'assertion « $x>0 \Rightarrow x\geq 0$ » est parfois vraie, parfois fausse, ça dépend de x . Faux
${\bf 100630.tex} \ -\!$
100631.tex — L'assertion « $x \ge 3 \Rightarrow x \ge 2$ » est vraie si $x = 0$.
Vrai 100632.tex — L'assertion « $x \ge 2 \Rightarrow x \ge 3$ » est toujours fausse.
Faux $ \textbf{100633.tex} \ -\!$
100634.tex — L'assertion « $x \ge 2 \Rightarrow x \ge 3$ » est vraie si $x \ge 3$.
Faux 100636.tex — L'assertion « $x \ge 2 \Rightarrow x \ge 3$ » est vraie si et seulement si $(x \ge 3$ ou $x < 2)$.
Faux 100639.tex — L'assertion « $x \ge 2 \Rightarrow x \ge 3$ » est vraie si $x = 1$.
${\bf 100640.tex} \ -\!$
100641.tex — L'assertion « $x \ge 2 \Leftrightarrow x \ge 3$ » est vraie si et seulement si $x \ge 3$.
Faux 100642.tex — L'assertion « $x \ge 2 \Leftrightarrow x \ge 3$ » est vraie si et seulement si $(x \ge 3 \text{ ou } x < 2)$.
Faux $ 100646. tex - L'assertion « x \le 2 \Rightarrow x \ge 3 » est vraie si et seulement si x > 2.$
$100647.tex — L'assertion « x \le 2 \Rightarrow x \ge 3 » est vraie si x \in]2;3[.$
100648.tex — L'assertion « $x \le 2 \Leftrightarrow x \ge 3$ » est toujours rausse. Faux 100649.tex — L'assertion « $x \le 2 \Leftrightarrow x \ge 3$ » est vraie si $x = 2, 5$.
100650.tex — L'assertion « $x \le 2 \Leftrightarrow x \ge 3$ » est vraie si $x \ge 3$.
100651.tex — L'assertion « $x \le 2 \Leftrightarrow x \ge 3$ » est vraie si et seulement si $x \ge 3$.
100652.tex — L'assertion « $x \le 2 \Leftrightarrow x \ge 3$ » est vraie si et seulement si $x \in]2;3[$

100653.tex — L'assertion « $x \ge 2 \Rightarrow x \le 3$ » est vraie si et seulement si $x \le 3$. Vrai
100654.tex — L'assertion « $x \ge 2 \Rightarrow x \le 3$ » est vraie si et seulement si $x \in]2;3[$.
Faux 100655.tex — L'assertion « $x \ge 2 \Rightarrow x \le 3$ » est fausse si $x < 2$.
Faux 100656.tex — La somme des angles d'un quadrilatère convexe vaut 360°.
Vrai 100657.tex — La somme des angles d'un quadrilatère vaut 360°.
Faux 100658.tex — Si $ABCD$ est un carré, les diagonales se coupent en leur milieu à angle droit.
Vrai $100659.tex$ — Si $[AC]$ et $[BD]$ se coupent en leur milieu à angle droit, alors $ABCD$ est un carré.
Faux $100660.tex$ — Si $[AC]$ et $[BD]$ se coupent en leur milieu et ont même longueur, alors $ABCD$ est un carré.
Faux $100661.tex$ — Si $[AC]$ et $[BD]$ se coupent en leur milieu et ont même longueur, alors $ABCD$ est un losange.
Faux 100662.tex — Si ABCD est un rectangle, les diagonales se coupent en leur milieu.
Vrai 100663.tex — Si ABCD est un rectangle, les diagonales se coupent à angle droit.
100665.tex — $ABCD$ est un parallélogramme si et seulement si $AB = CD$.
Faux $100666.tex$ — Si $(AB)//(CD)$, alors $ABCD$ est un parallélogramme.
Faux $ \textbf{100667.tex} \ - \text{Si } AB = CD, \text{ alors } ABCD \text{ est un paralléloramme}. $
Faux $ \textbf{100668.tex} \ \ \text{Si} \ AB = CD \ \text{et} \ (BC)//(AD) \ \text{alors} \ ABCD \ \text{est un parallélogramme}. $
Faux 100669.tex — Si $ABCD$ est un parallélogramme, alors $AB = CD$ et $(BC)//(AD)$.
Vrai 100670.tex — Tout parallélogramme avec deux côtés égaux est un carré
Faux 100671.tex — Tout parallélogramme avec deux côtés consécutifs égaux est un carré
Faux 100672.tex — Tout parallélogramme avec un angle droit est un rectangle
Vrai 100673.tex — Tout parallélogramme avec des diagonales de même longueur est un rectangle
$\mathbf{100675.tex} \ \ \ \mathrm{Si} \ \mathit{AB} = \mathit{CD} \ \mathrm{alors} \ \mathit{ABCD} \ \mathrm{est} \ \mathrm{un} \ \mathrm{trap\`eze}.$ Faux
100676.tex — Si $AB = CD$ alors $ABCD$ est un trapèze isocèle.
Faux $\mathbf{100677.tex}$ — Si $AB = CD$ et $(AB)//(CD)$ alors $ABCD$ est un trapèze isocèle.
Faux 100678.tex — Si $ABCD$ est un trapèze isocèle alors ses diagonales se coupent en leur milieu.
Faux 100679.tex — Si ABCD est un losange, alors ses diagonales se coupent en leur milieu.
Vrai ${\bf 100680.tex}$ — Si $[AC]$ et $[BD]$ se coupent en leur milieu à angle droit, alors $ABCD$ est un losange.
Vrai $ \textbf{100681.tex} - \text{Si } AB = BC = CD = DA, \text{ alors } (AC) \bot (BD). $
Vrai 100682.tex — Tout losange avec des diagonales de même longueur est un rectangle.
Vrai 100683.tex — Les sommets d'un trapèze isocèle sont sur un même cercle.
Vrai 100684.tex — Les sommets d'un losange sont sur un même cercle.
Faux 100685.tex — $\forall x \in \mathbb{R}, x > 3$.

	Faux
	$\exists x \in \mathbb{R}, \ x > 3.$
100687. tex	Le contraire de $\forall x \in \mathbb{R}, \ x > 3$ est équivalent à $2+2=4$
100688. tex	Le contraire de $\exists x \in \mathbb{R}, \ x > 3$ est équivalent à $2 + 2 = 4$.
100689. tex	$\exists x \in \mathbb{R}, \ (x+2)^2 > 3.$ Vrai
100690. tex	$\forall x \in \mathbb{R}, \ (x+2)^2 > 3.$
100691. tex	$\forall x \in \mathbb{R}_+, \ (x+2)^2 > 3.$
100692.tex —	$\forall x \in \mathbb{R}, \ x > 3 \text{ est \'equivalente \`a } 2 + 2 = 4.$
100693. tex	Faux $\forall x \in \mathbb{R}, \ 1/x > -3.$
100694. tex	
100695. tex	$\exists x \in \mathbb{R}^*, \ 1/x > -3.$
	Vrai $\forall x \in \mathbb{R}_+^*, \ 1/x > -3.$
	Vrai $\forall x \in \mathbb{R}, \ \sqrt{x} > 3.$
100698. tex	Faux $\forall x \in \mathbb{R}_+, \ \sqrt{x} > 3.$
	Faux $\exists x \in \mathbb{R}_+, \ \sqrt{x} > 3.$
100700.tex —	Vrai $\forall x \in \mathbb{R}_+, \ \sqrt{x}^3 > 0.$
100701.tex —	$\forall x \in \mathbb{R}_+, \ \sqrt{x}^3 \ge 0.$
100702.tex —	Vrai $\forall x \in \mathbb{R}, \ \sqrt{x^3} > 0.$
100703.tex —	$\exists x \in \mathbb{R}, \ \exists y \in \mathbb{R}, \ x > y.$
100704.tex —	
100705.tex —	
100706.tex —	
100707.tex —	$\forall x \in \mathbb{R}, \ \exists x \in \mathbb{R}, \ x > y.$
100708.tex —	Le contraire de $\forall x \in \mathbb{R}, \ x>0$ est $\exists x \in \mathbb{R}, \ x\leq 0$.
100709.tex —	
100710.tex —	Faux Le contraire de $\forall x \in \mathbb{R}, \ x>0$ est $\exists x \in \mathbb{R}, \ x>0.$
100711.tex —	Faux $\forall n \in \mathbb{N}, \ n^2 \leq 2^n$
100712.tex —	Faux $\exists n \in \mathbb{N}, \ n^2 \leq 2^n.$
100713.tex —	Vrai $\exists n \in \mathbb{N}^*, \ 1/n < 1/\pi.$
100714.tex —	
100715.tex —	$\forall n \in \mathbb{N}, \cos(n) \leq 1.$ Vrai
100716.tex —	$\forall n \in \mathbb{N}, \ 1/\cos(n) \ge 1.$ Faux
100717.tex —	$\forall n \in \mathbb{N}, \ 1/\cos(n) \ge 1.$ Vrai
	Vrai

100718.tex —	$7\sqrt{2} > 10$ Faux
100719.tex —	$\sqrt{256} > 15$
100720.tex —	
100721.tex —	
100722.tex —	
100723.tex —	
100724.tex —	
100725.tex —	
100726.tex —	
100727.tex —	
100728.tex —	$\sqrt{1024} = 32$ Vrai
100729.tex —	$\sqrt{1000} = 10\sqrt{10}$ Vrai
100730.tex —	
100731.tex —	
100732.tex —	$\sqrt{800} = 6\sqrt{50}$ Vrai
100733.tex —	Faux $\sqrt{600} = 5\sqrt{30}$
100734.tex —	Faux $\sqrt{99} = 9\sqrt{9}$
100735.tex —	Faux $\sqrt{169} = 13$
100736.tex —	Vrai $\sqrt{154} = 12$
100737.tex —	$\frac{150}{\sqrt{150}} > 12$
100738.tex —	
$100739. ext{tex}$ —	$ \frac{180}{\sqrt{180}} = 9\sqrt{20} $
100740.tex —	
100741.tex —	
100742.tex —	
100743.tex —	
100744.tex —	
100745.tex —	Faux $\sqrt{2} + \sqrt{8} = 3\sqrt{2}$
100746.tex —	
100747.tex —	
100748.tex —	
100749.tex —	
$100750. ext{tex}$ —	Faux $\sqrt{18} - \sqrt{2} = \sqrt{8}$

100751.tex -	
100752.tex -	Faux $-2\sqrt{12} + 4\sqrt{3} = 4\sqrt{6}$
100753.tex -	
100754.tex -	Faux $-3\sqrt{5} < 2\sqrt{11}$
100755.tex -	Faux $-3\sqrt{64} + 2\sqrt{49} = 48$
100756.tex -	
100757.tex -	
100758.tex -	Faux $ - (\sqrt{2} + 2)(\sqrt{2} - 1) = \sqrt{2} $
100759.tex -	
100760.tex -	Faux $-(\sqrt{2}+1)(\sqrt{2}+1) = 3+\sqrt{8}$
100762.tex -	Faux $-\sqrt{2}(\sqrt{2}+\sqrt{3})=2+\sqrt{6}$
100763.tex -	
100764.tex -	
100765.tex -	
100766.tex -	Faux $-\sqrt{3}(\sqrt{12}-\sqrt{3})=3$
100767.tex -	
100768.tex $-$	Vrai – $\sqrt{2}(\sqrt{18} - \sqrt{8}) = 4$
100769.tex $-$	Faux $-\sqrt{3+2\sqrt{2}} = 1+\sqrt{2}$
100770.tex $-$	Vrai – $\sqrt{\sqrt{4}} = \sqrt{2}$
100771.tex $-$	
100772.tex $-$	
100773.tex $-$	Faux $-\sqrt{\sqrt{128}} = 4$
100774.tex -	Faux $-\sqrt{6+2\sqrt{2}} = 2+2\sqrt{2}$
100775.tex -	Faux $-\sqrt{4+2\sqrt{3}} = 1+\sqrt{3}$
100776.tex -	Vrai – $\sqrt{3}(\sqrt{6} + \sqrt{8}) = 3\sqrt{2} + 2\sqrt{3}$
100777.tex -	
100778.tex -	$-\frac{\sqrt{60}}{\sqrt{3}} = 2\sqrt{5}$
	Vrai
	$-\frac{\sqrt{3}}{\sqrt{20}} = \frac{1}{2}\sqrt{\frac{3}{5}}$
100780.tex -	$-\frac{3}{\sqrt{6}} = \frac{6}{\sqrt{2}}$
100781.tex -	Faux $-\frac{6}{\sqrt{2}} = \sqrt{3}$

100782.tex —	$\frac{1}{\sqrt{8}} = \frac{3}{\sqrt{2}}$
	Vrai
100783.tex —	$\frac{1}{\sqrt{12}} = \sqrt{3}$
	,
100784.tex —	$\frac{1}{\sqrt{2}+1} = \sqrt{2}-1$
100505	Vrai
100785.tex —	$\frac{2}{\sqrt{3} - 1} = 1 + \sqrt{3}$
	Vrai $\sqrt{2}-1$
100786.tex —	$\frac{\sqrt{2} - 1}{\sqrt{2} + 1} = 3 - \sqrt{8}$
•••••	Vrai $\sqrt{8}$ – –
100787.tex —	$\frac{\sqrt{8}}{\sqrt{3} - 1} = \sqrt{6} - \sqrt{2}$
	Faux
100788.tex —	$\frac{1}{\sqrt{8}} + \frac{1}{\sqrt{20}} = \frac{\sqrt{5 + \sqrt{2}}}{4\sqrt{10}}$
	$\sqrt{2}$ $\sqrt{3}$ 5
100789. tex	$\frac{\sqrt{2}}{\sqrt{3}} + \frac{\sqrt{3}}{\sqrt{2}} = \frac{5}{\sqrt{6}}$
	Vraj
$100790. {\rm tex} -\!\!\!\!-$	$\frac{\sqrt{48} + \sqrt{75}}{\sqrt{3}} = 9$
100791.tex —	$\frac{\sqrt{2}}{\sqrt{8}-\sqrt{2}} = 1$
	m Vrai
$100792. tex -\!\!\!\!-$	$\frac{2}{\sqrt{5}+1} = \frac{\sqrt{5}-1}{2}$
	Vrai Vrai
100793.tex —	$\frac{2}{\sqrt{3}+1} = \frac{\sqrt{3}-1}{2}$
	Faux
$100794. tex -\!\!\!\!-$	$\sqrt{3} + \frac{1}{\sqrt{3}} = \frac{4}{\sqrt{3}}$
	Vrai
100795.tex —	$\sqrt{2} + \frac{1}{\sqrt{2}} = 3\sqrt{2}$
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
100796.tex —	$\frac{1}{3+\sqrt{5}} = \frac{3-\sqrt{5}}{2}$
	To the state of the
100797.tex —	$\frac{1}{1+\sqrt{2}} = 1-\sqrt{2}$
	Faux
100798.tex —	$\frac{1}{1+\sqrt{3}} = \frac{1-\sqrt{3}}{2}$
100700 +	1 /F /2
100799.tex —	$\frac{1}{\sqrt{5}+\sqrt{3}} = \sqrt{5}-\sqrt{3}$
100000	$1 \qquad \sqrt{2}$
100800.tex —	$\frac{1}{\sqrt{2} + \sqrt{8}} = \frac{\sqrt{2}}{6}$
100801 tox	$\frac{1}{2+\sqrt{5}} = \sqrt{5}-2$
100801.tex —	$\frac{2+\sqrt{5}}{2+\sqrt{5}} - \sqrt{3-2}$ Vrai
100802.tex —	$\frac{1}{\sqrt{3} + \sqrt{4}} = \sqrt{3} - 2$
	Faux
100803.tex —	$\frac{1}{\sqrt{2}+\sqrt{3}}=\sqrt{3}-\sqrt{2}$
	Vrai
100804.tex —	$\frac{\sqrt{2}}{\sqrt{3}} + \frac{1}{\sqrt{6}} = \frac{\sqrt{3}}{\sqrt{2}}$
	$\sqrt{3}$ $\sqrt{6}$ $\sqrt{2}$
100805.tex —	$\sqrt{2} - \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$
	$\sqrt{2}$

	3/5 est une solution de l'équation $5x + 4 = 7$.	Vrai
		Vrai
	3/2 est une solution de l'équation $4x + 1 = 7$.	Vrai
	3/4 est une solution de l'équation $4x - 3 = 6$.	Faux
	5/6 - 3/4 = 1/12.	
100810.tex —	7/9 + 5/6 = 29/18.	
	11/4 - 13/8 = 9/8.	
	5/14 + 5/6 = 25/21.	
	1/6 - 3/4 = 7/12.	
100814.tex —	3/9 + 5/6 = 22/18.	
100815.tex —	7/4 + 13/8 = 25/8.	
100816.tex —	3/14 + 5/6 = 43/42.	
100817.tex —	$5 \times 13 = 65 \text{ et } 7 \times 19 = 133.$	
100818.tex —	$5 \times 13 = 65$ ou $7 \times 15 = 115$.	
100819.tex —	$5 \times 13 = 65 \text{ et } 7 \times 15 = 115.$	
100820.tex —	Soit $z \in \mathbb{C}$. On a $\overline{z}^2 = \overline{z^2}$.	
100821.tex —	Soient z et z' deux complexes. On a $\overline{z+z'}=\overline{z}+\overline{z'}$.	
100822.tex —	Soient z et z' deux complexes. On a $ z+z' = z + z' $.	
100823.tex —	(2+i)(1+2i) = 5i	
	(2+i)(1-2i) = -i	
100825.tex —	$ 2+i = \sqrt{3}.$	
100826.tex —	$ 2+i = \sqrt{5}.$	
100827.tex —	$ 4+i \ge 3+3i .$	
100828.tex —	$ 3+i \ge 2+2i $.	
100829.tex —		
100830.tex —		
100831.tex —		
100832.tex —	$\frac{2i-3}{2i+3} = \frac{5-6i}{13}.$	
100833.tex —	Le trinôme $3X^2 - 6X + 3$ a une racine double dans \mathbb{R} .	
100834.tex —	Le trinôme $8X^2 - 8X + 2$ a une racine double dans \mathbb{R} .	
100835.tex —	Le trinôme $2X^2 - 4X + 2$ a une racine double dans \mathbb{R} .	
100836.tex —	Le trinôme $3x^2 - 11x + 9$ a une racine double dans \mathbb{R} .	
100007	G:+	raux
100837.tex —	Si x est un réel, alors $(\sqrt{x^2})^3 = x^3$.	Faux

100838.tex —	$(a+b)^3 = a^3 + 3ab + b^3$	E
100839.tex —	$(a+b)^3 = a^3 + 3ab + 3ba + b^3$	Faux
100840.tex —	$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$	
100841.tex —	$a^3 - b^3 = (a - b)(a^2 + ab + b^2).$	
100842. tex	La dérivée de $x \mapsto \sin(3+2x)$ est $x \mapsto 3\cos(3+2x)$.	Vrai
100843.tex —	La dérivée de $x \mapsto \cos(3-2x)$ est $x \mapsto 2\sin(3-2x)$.	Faux
100844.tex —	La dérivée de $x\mapsto \sin(3x+2)$ est $x\mapsto 3\cos(3x+2)$.	
100845.tex —	La dérivée de $x \mapsto \cos(2x+3)$ est $x \mapsto 2\sin(2x+3)$.	
100846.tex —	Soit $x \in \mathbb{R}$. Le domaine de définition de l'expression $\sqrt{(x^2 - 5)}$ est $]-\infty, -\sqrt{5}[\cup]\sqrt{5}, +\infty[$.	
100847.tex —	Soit $x \in \mathbb{R}$. Le domaine de définition de l'expression $\sqrt(5-x^2)$ est $[-\sqrt{5},\sqrt{5}]$.	
100848. tex	Soit $x \in \mathbb{R}$. Le domaine de définition de l'expression $\sqrt{(5-\ln x)}$ est $]0,e^5]$.	Vrai
100849. tex	Soit $x \in \mathbb{R}$. Le domaine de définition de l'expression $\sqrt{(\ln x)}$ est \mathbb{R}_+^* .	Vrai
100850.tex —	Soit $x \in \mathbb{R}$. Le domaine de définition de l'expression $\ln(5-\sqrt{x})$ est $[0,25[$.	Faux
100851.tex —	Soit $x \in \mathbb{R}$. Le domaine de définition de l'expression $\sqrt(2 - \ln x)$ est $[0, e^2]$.	Vrai
100852.tex —	$\lim \frac{3\sqrt{n}+n}{2\sqrt{n}+n} = \frac{3}{2}.$	Faux
100853.tex —	La fonction $f: \mathbb{R}^* \to \mathbb{R}, x \mapsto 1/x$ est décroissante.	Faux
100854.tex —		Faux
100855.tex —	$\sqrt{48} = 4\sqrt{3}.$	Faux
100856.tex —	$\frac{2+\sqrt{3}}{2-\sqrt{3}} = 7 + 4\sqrt{3}.$	Vrai
100857.tex —	$\frac{\sqrt{2}+3}{\sqrt{2}-3} = \frac{5+6\sqrt{2}}{5}.$	Vrai
100858.tex —	La relation \star sur $\mathbb R$ définie par $x\star y\iff xy^2=yx^2$ est une relation d'équivalence	Faux
	La relation \star sur $\mathbb R$ définie par $x\star y\iff\cos^2(x)+\sin^2(y)=1$ est une relation d'équivalence	Vrai
$100860. ext{tex}$ —	La relation \star sur $\mathbb R$ définie par $x\star y\iff xy^2=yx^2$ coı̈ncide avec l'égalité.	Vrai
100861.tex —	La relation \star sur $\mathbb R$ définie par $x\star y\iff xe^y=ye^x$ est une relation d'équivalence	Faux
	La relation \square sur \mathbb{R}^2 définie par $(x,y)\square(x',y')\iff x=x'$ est une relation d'équivalence.	Vrai
100863.tex —	La relation \square sur \mathbb{R}^2 définie par $(x,y)\square(x',y')\iff x^2=x'^2$ est une relation d'équivalence.	Vrai
	La relation \square sur \mathbb{R}^2 définie par $(x,y)\square(x',y')\iff x=-y'$ est une relation d'équivalence.	Vrai
	La relation \heartsuit sur \mathbb{R}^2 définie par $y \heartsuit y \iff x + 3y = 5$ est une relation d'équivalence.	Faux
		Faux
	La relation \mathcal{R} sur \mathbb{N} définie par $n\mathcal{R}m \iff n^2+m^2=2nm+2n$ est une relation d'équivalence.	Vrai
	La relation \mathcal{R} sur \mathbb{N} définie par $n\mathcal{R}m \iff n^2-m^2=2nm+2n$ est une relation d'équivalence.	Faux
	La relation \mathcal{R} sur \mathbb{N} définie par $n\mathcal{R}m\iff n^2+m^2=2nm$ est une relation d'équivalence.	Faux
	La relation \mathcal{R} sur \mathbb{N} définie par $n\mathcal{R}m \iff 3 (n-m)$ est une relation d'équivalence.	Vrai

100871.tex —	La relation \mathcal{R} sur \mathbb{N} définie par $n\mathcal{R}m \iff (\exists k \in \mathbb{N}, n = km)$) est une relation d'équivalence.	Vrai
		Faux
		Faux
		Vrai
		Faux
		Faux
		Vrai elation
d'équivalence		Vrai
100878.tex —	La relation \star sur un ensemble E dont le graphe est $E\times E$ est une relation d'équivalence	Vrai
100879.tex —	La relation \star sur un ensemble E non vide dont le graphe est vide est une relation d'équivalence	Faux
100880.tex —	La relation \star sur $\mathbb R$ dont le graphe est $\Gamma_\star=\{(x,y)\in\mathbb R^2\mid y=x^2\}$ est une relation d'équivalence	Faux
100881.tex —	La relation \star sur $\mathbb R$ dont le graphe est $\Gamma_\star = \mathbb R \times \{0\}$ est une relation d'équivalence	Faux
100882.tex —	La relation \star sur $\mathbb R$ définie par $x\star y\iff x\in\mathbb Z$ ou $y\in\mathbb Z$ est une relation d'équivalence	
100883.tex —	La relation \star sur $\mathbb R$ dont le graphe est $\Gamma_\star = \mathbb Z^2$ est une relation d'équivalence	Faux
100884.tex —	La relation \diamond sur $\mathbb R$ dont le graphe est $\Gamma_{\diamond} = \{(x,y) \in \mathbb R^2 \mid x=y \text{ ou } x=-y\}$ est une relation d'équiva	
100885.tex —	La relation † sur $\mathbb R$ dont le graphe est $\Gamma_{\dagger}=\{(x,y)\in\mathbb R^2\mid x^2+y^2\leq 2\}$ est une relation d'équivalence	
100886.tex —	La relation \odot sur $\mathbb R$ définie par $x\odot y\iff\cos^2(x)+\sin^2(y)=1$ est une relation d'équivalence	Faux
100887.tex —	La relation \star sur $\mathbb R$ définie par $x\star y\iff xy^2=yx^2$ coïncide avec l'égalité.	Vrai
100888.tex —	La relation \otimes sur $\mathbb R$ définie par $x\otimes y\iff xe^y=ye^x$ est une relation d'équivalence	Faux
100889.tex —	La relation \square sur \mathbb{R}^2 définie par $(x,y)\square(x',y')\iff x=x'$ est une relation d'équivalence.	
 100890.tex —	La relation \oplus sur \mathbb{R}^2 définie par $(x,y)\oplus(x',y')\iff x^2=x'^2$ est une relation d'équivalence.	
 100891.tex —	La relation \square sur \mathbb{R}^2 définie par $(x,y)\square(x',y')\iff x=-y'$ est une relation d'équivalence.	Vrai
 100892.tex —	La relation \heartsuit sur $\mathbb R$ définie par $x\heartsuit y\iff x+3y=5$ est une relation d'équivalence.	Faux
 100893.tex —	La relation \bullet sur $\mathbb R$ définie par $x \bullet y \iff (\exists \lambda \in \mathcal R, x + 3y = \lambda))$ est une relation d'équivalence.	Faux
 100894.tex —	La relation \mathcal{R} sur \mathbb{N} définie par $n\mathcal{R}m\iff n^2+m^2=2nm+2n$ est une relation d'équivalence.	Vrai
100895.tex —	La relation \mathcal{R} sur \mathbb{N} définie par $n\mathcal{R}m \iff n^2-m^2=2nm+2n$ est une relation d'équivalence.	Faux
100896.tex —	La relation \mathcal{R} sur \mathbb{N} définie par $n\mathcal{R}m \iff n^2+m^2=2nm$ est une relation d'équivalence.	Faux
100897.tex —	La relation \mathcal{R} sur \mathbb{N} définie par $n\mathcal{R}m \iff 3 (n-m)$ est une relation d'équivalence.	Vrai
	La relation \mathcal{R} sur \mathbb{N} définie par $n\mathcal{R}m \iff (\exists k \in \mathbb{N}, n = km)$) est une relation d'équivalence.	Vrai
		Faux
		Faux
	La relation \mathcal{R} sur \mathbb{N} définie par $n\mathcal{R}m \iff n m$ est une relation d'équivalence.	Vrai
		Faux
	- the state of the	

100903.tex —	
100904.tex —	Faux La relation \triangleleft sur $\mathbb R$ définie par $x \triangleleft y \iff x^3 \le y^3$ est une relation d'ordre.
100905. tex	
100907. tex	
100908. tex	
100909. tex	
100910. tex	
100912.tex —	La relation de divisibilité sur $\{0,1,2,3,4\}$ n'a pas de plus grand élément.
	Faux L'ensemble $\{0,1,2,3,4\}$ muni de la relation de divisibilité admet 4 comme plus grand élément.
$100914. tex -\!\!\!\!-$	Faux L'ensemble $\{0,1,2,3,4\}$ muni de la relation de divisibilité admet 0 comme plus petit élément. Faux
100915. tex	L'ensemble $\{0,1,2,3,4\}$ muni de la relation de divisibilité admet 1 comme plus petit élément. Vrai
100916.tex —	L'ensemble $\{0,1,2,3,4\}$ muni de la relation de divisibilité admet 0 comme plus grand élément. Vrai
100917.tex —	La relation de divisibilité sur $\mathbb Z$ est une relation d'ordre. Faux
$100918. tex -\!\!\!\!-$	Si E est un ensemble, la relation d'inclusion sur $\mathcal{P}(E)$ est une relation d'ordre.
$100919. {\rm tex} -\!\!\!\!-$	Si E est un ensemble, la relation d'inclusion sur $\mathcal{P}(E)$ est une relation d'ordre total.
100920.tex —	Si E est un ensemble, la relation d'inclusion sur $\mathcal{P}(E)$ possède un plus grand élément
	La relation $<$ sur \mathbb{R}^2 définie par $(x,y)<(x',y')\iff (x\leq x' \text{ ou } y\leq y')$ est une relation d'ordre. Faux
100922.tex —	La relation \mathcal{R} sur \mathbb{R}^2 définie par $(x,y)\mathcal{R}(x',y')\iff (x\leq x'\text{ et }y\leq y')$ est une relation d'ordre. Vrai
100923.tex —	La relation \star sur $\mathbb N$ définie par $x\star y\iff x-y\geq 1$ est une relation d'ordre.
100924.tex —	La relation \star sur $\mathbb N$ définie par $x\star y\iff \exists k\in\mathbb N, x^2=k-y^2$ est une relation d'ordre. Faux
100925.tex —	La relation \star sur $\mathbb N$ définie par $x\star y\iff \exists k\in\mathbb N, x^2=k+y^2$ est une relation d'ordre. Vrai
100926.tex —	Soit $f: \mathcal{P} \to \mathcal{P}$. L'assertion « f est une rotation» signifie « $\exists \Omega \in \mathcal{P}, \exists \theta \in \mathbb{R}, \forall z \in \mathbb{C}, \tilde{f}(z) = e^{i\theta}(z - \omega) + \omega$. Vrai
100927.tex —	Soit $f: \mathcal{P} \to \mathcal{P}$. L'assertion « f est une rotation» signifie « $\exists \Omega \in \mathcal{P}, \exists \theta \in \mathbb{R}, \forall z \in \mathbb{C}, \tilde{f}(z) = e^{i\theta}(z + \omega) - \omega$. Faux
$\begin{array}{ll} \textbf{100928.tex} &\\ e^{i\theta}(z-\omega) + \omega. \end{array}$	Soit $f: \mathcal{P} \to \mathcal{P}$ et $\Omega \in \mathcal{P}$. L'assertion « f est rotation de centre Ω » signifie « $\exists \theta \in \mathbb{R}, \forall z \in \mathbb{C}, \tilde{f}(z) = 0$
$100929. ext{tex} - e^{i heta}(z-\omega) + \omega. ext{``}$	
100930.tex — $e^{i\theta}(z-\omega) + \omega$.»	Soit $f: \mathcal{P} \to \mathcal{P}$, $\Omega \in \mathcal{P}$ et $\theta \in \mathbb{R}$. L'assertion « f est rotation d'angle θ et centre Ω » signifie « $\forall z \in \mathbb{C}$, $\tilde{f}(z) = 0$
	Soit $f: \mathcal{P} \to \mathcal{P}$. L'assertion « f est la rotation de centre Ω et d'angle θ » signifie « $\exists \Omega \in \mathcal{P}, \exists \theta \in \mathbb{R}, \forall z \in -\omega) + \omega$.»
$egin{aligned} \mathbf{100932.tex} & \\ \mathbb{C}, \tilde{f}(z) &= e^{i heta}(z-z) \end{aligned}$	Soit $f: \mathcal{P} \to \mathcal{P}$ et soit $\Omega \in \mathcal{P}$. L'assertion « f est une rotation de centre Ω » signifie « $\exists \Omega \in \mathcal{P}, \exists \theta \in \mathbb{R}, \forall z \in \mathcal{P}, \exists \theta \in \mathbb{R}, \forall z \in \mathcal{P}, \exists \theta \in \mathcal{R}, \forall z \in \mathcal{R},$

$egin{aligned} \mathbf{100933.tex} & \ \mathbb{C}, ilde{f}(z) = e^{i heta}(z) \end{aligned}$	Soit $f: \mathcal{P} \to \mathcal{P}$ et soit $\theta \in \mathbb{R}$. L'assertion « f est une rotation d'angle θ » signifie « $\exists \Omega \in \mathcal{P}, \exists \theta \in \mathbb{R}, \forall z \in \mathcal{P}, \exists \theta \in \mathcal{R}, \forall z \in \mathcal{R}, \forall$
	Deux rotations commutent toujours.
	Deux rotations de même centre commutent toujours.
	La composée de deux rotations est une rotation.
	La composée de deux rotations de même centre est une rotation de même centre.
	La composée de deux rotations de centre distincts est une rotation.
	La composée de deux rotations de centre distincts est une translation.
$100941.\mathrm{tex}$ —	Une rotation conserve l'alignement.
100942.tex —	Une rotation conserve les distances.
100943.tex —	Une rotation conserve les rapports de longueurs (autrement dit les proportions).
100944.tex —	Une rotation conserve les milieux.
	Une rotation envoie une droite sur une droite parallèle.
100946.tex —	$\begin{cases} 5x - y &= 1 \\ 2x + 3y &= 2 \end{cases}$ admet une unique solution. Vrai
100947.tex —	$\begin{cases} 2x + 3y &= 2 \\ 1 &= 1 \\ 4x + 6y &= 2 \end{cases}$ admet une unique solution. Vrai
	$\begin{cases} -x + 3y &= -1 \\ 2x - 6y &= 0 \end{cases}$ n'admet pas de solutions.
100949.tex —	$\begin{cases} 2x + 3y &= 1 \\ 4x + 6y &= 2 \end{cases}$ n'admet pas de solutions.
100950.tex —	$\begin{cases} 2x + y &= 1 \\ x - y &= 2 \end{cases}$ admet des solutions. Vrai
100951.tex —	$\begin{cases} 2x + 3y &= 1\\ 4x + 6y &= 2 \end{cases}$ admet des solutions.
100952.tex —	$\begin{cases} 3x + 2y &= 1 \\ 6x + 4y &= 1 \end{cases}$ admet des solutions. Faux
100953.tex —	$\begin{cases} 6x+4y&=1\\ \dots& \text{Faux} \end{cases}$ Faux $\begin{cases} x-3y&=1\\ 2x-6y&=2 \end{cases}$ admet une infinité de solutions. $\begin{cases} 2x+3y&=1\\ \text{admet une infinité de solutions.} \end{cases}$ Vrai
100954.tex —	1 r + 3 u = 9
100955.tex —	$\begin{cases} 2x - y &= 3 \\ 4x - 2y &= 6 \end{cases}$ admet plusieurs solutions. Vrai
100956.tex —	$\begin{cases} 2x - y &= 6 \\ x - 2y &= 3 \end{cases}$ admet plusieurs solutions. Faux
100957.tex —	$\begin{pmatrix} 1 \\ 1 \end{pmatrix} \text{ est une solution de } \begin{cases} 6x - 2y &= 4 \\ 2x + y &= 3 \end{cases}.$

Vrai
100958.tex — $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ est une solution de $\begin{cases} 2x + y = 1 \\ x - y = 2 \end{cases}$.
$ m V_{rai}$
100959.tex — $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$ est une solution de $\begin{cases} x - 2y = 0 \\ -x + y = 1 \end{cases}$. Faux
100960.tex — $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ est l'unique solution de $\begin{cases} 3x - 2y = 1 \\ x + y = 2 \end{cases}$.
100961.tex — $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$ est l'unique solution de $\begin{cases} x - 3y = -1 \\ -2x + 6y = 2 \end{cases}$.
······Faux
100962.tex — L'ensemble des solutions de $\begin{cases} 2x - y &= 3 \\ 4x - 2y &= 6 \end{cases}$ est une droite.
100963.tex — L'ensemble des solutions de $\begin{cases} 2x - y = 6 \\ x - 2y = 3 \end{cases}$ est une droite.
100964.tex — L'ensemble des solutions de $\begin{cases} x-y &= 1 \\ x+y &= 2 \end{cases}$ contient un seul élément.
100965.tex — L'ensemble des solutions de $\begin{cases} 2x - 4y = -2 \\ -x + 2y = 1 \end{cases}$ contient un seul élément.
100966.tex — L'ensemble des solutions de $\begin{cases} -x + 2y &= 1 \\ 2x - 4y &= 3 \end{cases}$ contient un seul élément.
100967.tex — L'ensemble des solutions de $\begin{cases} -x + 2y &= 1 \\ 2x - 4y &= 3 \end{cases}$ est vide.
100968.tex — L'ensemble des solutions de $\begin{cases} -x + 2y &= 1 \\ 2x - y &= 1 \end{cases}$ est vide.
100969.tex — L'ensemble des solutions de $\begin{cases} x+y = 4 \\ x-y = 2 \end{cases}$ est $\left\{ \begin{pmatrix} 3 \\ 1 \end{pmatrix} \right\}$.
100970.tex — L'ensemble des solutions de $\begin{cases} x+y = 4 \\ x-y = 2 \end{cases}$ est $\left\{ \begin{pmatrix} 1 \\ 3 \end{pmatrix} \right\}$.
100971.tex — $\begin{cases} 2x - 6y = 0 \\ -x + 3y = -1 \end{cases}$ est équivalent à $0 = 1$.
100972.tex — $\begin{cases} -x + 3y = -1 \\ 2x - 6y = 2 \end{cases}$ est équivalent à l'équation $x - 3y = 1$.
100973.tex — $\begin{cases} 5x - 2y = 3 \\ x + 2y = 3 \end{cases}$ est équivalent au système $\begin{cases} x = 1 \\ y = 1 \end{cases}$
100974.tex — $\begin{cases} 4x - y = 2 \\ x + y = 2 \end{cases}$ est équivalent au système $\begin{cases} x = 1 \\ y = 2 \end{cases}$.
Faux $100975.tex - \cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$.
100976.tex — $\cos(a+b) = \sin(a)\sin(b) + \cos(a)\cos(b)$. Faux
100977.tex — $\cos(a - b) = \cos(a)\cos(b) + \sin(a)\sin(b)$. Vrai
100978.tex — $\sin(a+b) = \sin(a)\sin(b) + \cos(a)\cos(b)$. Faux
100979.tex — $\sin(a-b) = \sin(a)\cos(b) - \sin(b)\cos(a)$.

100980.tex -	Vrai $-\sin(a-b) = \cos(a)\sin(b) - \sin(a)\cos(b).$
100981.tex -	Faux $-\cos(2a) = 2\sin^2(a) - 1.$
100982.tex -	Faux $-\cos(2a) = 1 - 2\cos^2(a)$.
100983.tex -	Faux $-\cos(2a) = \cos^2(a) - \sin^2(a).$
100984.tex -	Vrai $-\cos(2a) = \cos^2(a) + \sin^2(a).$
100985.tex -	Faux $-\sin(2a) = 2\sin(a)\cos(a).$
100986.tex -	Vrai $-\sin(2a) = 2\sin^2(a) - 1.$
100987.tex -	$-\cos^2(a) = \frac{1+\cos(2a)}{2}.$ Faux
100988.tex -	Vrai $-\sin^2(a) = \frac{1+\sin(2a)}{2}.$
100989.tex -	Faux $-\sin(a+\pi) = -\sin(a).$
100990.tex -	Vrai $-\sin(a + \frac{\pi}{2}) = \cos(a).$
100991.tex -	Vrai $-\sin(a+2\pi) = -\sin(a).$
100992.tex -	Faux $-\sin(-a) = \sin(a).$
100993.tex -	Faux $-\cos(a+\pi) = -\cos(a).$ Vrai
100994.tex -	$-\cos(a + \frac{\pi}{2}) = -\sin(a).$ Vrai
100995.tex -	$-\cos(-a) = \cos(a).$ Vrai
100996.tex -	$-\cos(a+\pi) = \cos(a).$ Faux
100997.tex -	$-\cos(a + \frac{\pi}{2}) = \sin(a).$ Faux
100998.tex -	$-\cos(a+2\pi) = -\cos(a).$ Faux
100999.tex -	$-\cos(-a) = -\cos(a).$ Faux
101000.tex -	$-\cos(a - \frac{\pi}{2}) = \sin(a).$ Vrai
101001.tex -	$-\cos(\frac{\pi}{2} - a) = \sin(a).$ Vrai
101002.tex -	$-\sin(a - \frac{\pi}{2}) = \cos(a).$ Faux
101003.tex -	$-\sin(\frac{\pi}{2} - a) = \cos(a).$. Vrai
101004.tex -	$-\cos(7\pi/6) = -\sqrt{3}/2.$ Vrai
101005.tex -	$-\cos(5\pi/4) = -1/\sqrt{2}.$ Vrai
101006.tex -	$-\cos(4\pi/3) = -1/2.$ Vrai
101007.tex -	$-\cos(11\pi/6) = -1/2.$ Faux
101008.tex -	$-\sin(2\pi/3) = \sqrt{2}/2.$ Faux
101009.tex -	$-\sin(5\pi/6) = -\sqrt{3}/2.$ Faux
101010.tex -	$-\sin(\pi) = -1.$ Faux
101011.tex -	$-\sin(7\pi/6) = -\sqrt{2}/2.$ Faux

101012.tex -	$-\sin(5\pi/4) = -1/2.$
$101013. ext{tex} -$	Faux $-\sin(4\pi/3) = \sqrt{3}/2.$
101014.tex –	Faux $-\cos(11\pi/6) = \sqrt{3}/2.$
101015.tex –	Vrai – $\sin(2\pi/3) = \sqrt{3}/2$.
101016.tex $-$	Vrai – $\sin(3\pi/4) = 1/\sqrt{2}$.
101017.tex –	Vrai – $\sin(5\pi/6) = 1/2$.
101018.tex -	
$101019. ext{tex} -$	
101020.tex -	$-\sin(a+b) = \cos(a)\sin(b) + \sin(a)\cos(b).$
$101021. ext{tex}$	Vrai $-\cos(2a) = 2\cos^2(a) - 1.$
101022.tex –	Vrai $-\cos(2a) = 1 - 2\sin^2(a)$.
$101023. ext{tex}$ $-$	Vrai $-\sin^2(a) = \frac{1-\cos(2a)}{2}.$
101024.tex –	Vrai $-\cos^2(a) = \frac{1-\cos(2a)}{2}.$
$101025. ext{tex}$ $-$	Faux $-\sin(a+2\pi) = \sin(a).$
101026.tex —	Vrai $-\sin(-a) = -\sin(a).$
101027.tex -	Vrai $-\sin(a+\pi) = \sin(a)$.
101028.tex $-$	Faux $-\sin(a + \frac{\pi}{2}) = -\cos(a).$
$101029. ext{tex} -$	Faux $-\sin(7\pi/6) = -1/2.$
101030.tex –	Vrai $-\sin(5\pi/4) = -1/\sqrt{2}.$
101031.tex -	Vrai $-\sin(4\pi/3) = -\sqrt{3}/2$.
	Vrai $-\cos(7\pi/6) = -1/2$.
	Faux $-\cos(5\pi/4) = \sqrt{2}/2.$
101034.tex -	Faux $-\cos(4\pi/3) = -\sqrt{3}/2.$
	Faux $-\cos(3\pi/2) = 0.$
101036.tex $-$	Vrai $-\cos(5\pi/3) = 1/2.$
101037.tex -	
101038.tex -	Vrai $-\cos(3\pi/2) = -1.$
101039.tex $-$	Faux $-\cos(5\pi/3) = -\sqrt{3}/2.$
	Faux $-\cos(7\pi/4) = 1/2$.
	Faux $-\sin(3\pi/4) = 1/2.$
101042.tex $-$	Faux $-\cos(a+2\pi) = \cos(a).$
$101043. ext{tex}$ $-$	Vrai $-\tan(a+b) = \frac{\tan(a)+\tan(b)}{1-\tan(a)\tan(b)}.$
	Vrai $- \tan(a+b) = \frac{\tan(a) + \tan(b)}{1 + \tan(a) \tan(b)}.$

	Faux
	$\tan(a+b) = \frac{\tan(a) - \tan(b)}{1 + \tan(a) \tan(b)}.$ Faux
101046.tex —	$\tan(a-b) = \frac{\tan(a) - \tan(b)}{1 + \tan(a)\tan(b)}.$ Vrai
101047.tex —	
	$\tan(\pi/6) = \sqrt{3}/3.$
101049.tex —	$\tan(\pi/3) = \sqrt{3}$. Vrai
$101050.\mathrm{tex}$ —	$\tan(\pi/2)$ n'est pas défini.
101051.tex —	Vrai $\tan(2\pi/3) = -\sqrt{3}.$
101052.tex —	$\tan(3\pi/4) = -1.$
101053.tex —	Vrai $\tan(3\pi/4)$ est défini.
101054.tex —	$\tan(3\pi/4) = 1.$ Vrai
101055.tex —	Faux $\tan(3\pi/4)$ n'est pas défini.
101056.tex —	Faux $\tan(5\pi/6) = \sqrt{3}/3.$
101057.tex —	
101058.tex —	$\tan(\pi)$ n'est pas défini. Faux
101059.tex —	Faux $\tan(7\pi/6) = -\sqrt{3}/3.$
$101060.\mathrm{tex}$	Faux $\tan(5\pi/4) = -1.$
101061.tex —	Faux $\tan(5\pi/4)$ n'est pas défini.
	Faux $\tan(4\pi/3) = -\sqrt{3}.$
101063.tex —	Faux $\tan(3\pi/2)$ est défini.
101064.tex —	Faux $\tan(5\pi/3) = \sqrt{3}.$
101065.tex —	Faux $\tan(7\pi/4) = 1.$
101066.tex —	Faux $\tan(7\pi/4)$ n'est pas défini.
101067.tex —	Faux $\tan(11\pi/6) = \sqrt{3}/3.$
101068.tex —	Faux $\tan(a) = \tan(b) \Leftrightarrow (a \equiv b[\pi]).$
101069.tex —	Vrai $\cos(a) = \cos(b) \Leftarrow (a \equiv b[2\pi]).$
101070.tex —	Vrai $\cos(a) = \cos(b) \Leftarrow (a \equiv -b[2\pi]).$
101071.tex —	Vrai $\sin(a) = \sin(b) \Leftarrow (a \equiv b[2\pi]).$
101072.tex —	Vrai $\sin(a) = \sin(b) \Leftarrow (a \equiv \pi - b[2\pi]).$
101073.tex —	
101074.tex —	Faux $\cos(a) = \cos(b) \Rightarrow (a \equiv -b[2\pi]).$
101075.tex —	Faux $\sin(a) = \sin(b) \Rightarrow (a \equiv b[2\pi]).$
101076.tex —	Faux $\sin(a) = \sin(b) \Rightarrow (a \equiv \pi - b[2\pi]).$
	Faux

101077.tex —	$\cos(a) = \cos(b) \Leftarrow (a \equiv \pi - b[2\pi]).$
101078.tex —	Si $t = \tan \frac{x}{2}$, on a $\cos(x) = \frac{1-t^2}{1+t^2}$.
101079.tex —	Si $t = \tan \frac{x}{2}$, on a $\sin(x) = \frac{2t}{1+t^2}$. Vrai
101080.tex —	Si $t = \tan \frac{x}{2}$, on a $\tan(x) = \frac{2t}{1+t^2}$. Faux
101081.tex —	$\tan(a-b) = \frac{\tan(a) - \tan(b)}{1 - \tan(a)\tan(b)}.$
101082.tex —	$\tan(a-b) = \frac{\tan(a)+\tan(b)}{1-\tan(a)\tan(b)}.$
101083.tex —	$\tan(0)$ est défini.
101084.tex —	Vrai $\sin(a) = \sin(b) \Leftarrow (a \equiv -b[2\pi]).$
101085.tex —	Faux $\cos(a) = \cos(b) \Leftrightarrow (a \equiv b[2\pi]).$
101086.tex —	$\sin(a) = \sin(b) \Leftrightarrow (a \equiv b[2\pi]).$ Faux
101087.tex —	$\cos(a) = \cos(b) \Leftrightarrow (a \equiv b[2\pi] \text{ et } a \equiv -b[2\pi]).$ Faux
101088.tex —	$\sin(a) = \sin(b) \Leftrightarrow (a \equiv b[2\pi] \text{ et } a \equiv \pi - b[2\pi]).$ Faux
101089.tex —	$\cos(a) = \cos(b) \Leftrightarrow (a \equiv b[2\pi] \text{ ou } a \equiv \pi - b[2\pi]).$ Faux
101090.tex —	$\sin(a) = \sin(b) \Leftrightarrow (a \equiv b[2\pi] \text{ ou } a \equiv -b[2\pi]).$ Faux
101091.tex —	$\tan(a) = \tan(b) \Leftrightarrow (a \equiv b[2\pi] \text{ ou } a \equiv -b[2\pi]).$ Faux
101092.tex —	Si $t = \tan \frac{x}{2}$, on a $\tan(x) = \frac{2t}{1-t^2}$. Vrai
101093.tex —	Si $t = \tan \frac{x}{2}$, on a $\cos(x) = \frac{1+t^2}{1-t^2}$.
101094.tex —	Si $t = \tan \frac{x}{2}$, on a $\sin(x) = \frac{2t}{1-t^2}$. Faux
	$\cos(a) = \cos(b) \Leftrightarrow (a \equiv b[2\pi] \text{ ou } a \equiv -b[2\pi]).$ Vrai
$101096. tex -\!\!\!\!-$	$\sin(a) = \sin(b) \Leftrightarrow (a \equiv b[2\pi] \text{ ou } a \equiv \pi - b[2\pi]).$ Vrai
$101097. tex -\!\!\!\!-$	$\tan(a) = \tan(b) \Leftrightarrow (a \equiv b[2\pi]).$ Faux
101098. tex	$\tan(5\pi/6) = -\sqrt{3}/3.$ Vrai
101099. tex	
$101100. {\rm tex} - $	$\tan(\pi)$ est défini
$101101.\mathrm{tex} -\!\!\!\!-$	$\tan(7\pi/6) = \sqrt{3}/3.$ Vrai
$101102. {\rm tex} -\!\!\!\!-$	
$101103. {\rm tex} $	$\tan(\pi/4)$ est défini. Vrai
101104. tex	
101105. tex	$\tan(5\pi/4)$ est défini. Vrai
$101106. tex -\!\!\!\!-$	$\tan(4\pi/3) = \sqrt{3}.$ Vrai
$101107. {\rm tex} $	$\tan(3\pi/2)$ n'est pas défini. Vrai
101108. tex	$\tan(\pi/2)$ est défini. Faux
	$\tan(2\pi/3) = -\sqrt{3}/3.$

	T7
101110.tex — $\tan(5\pi/3) = -\sqrt{3}$.	
101111.tex — $\tan(7\pi/4) = -1$.	
101112.tex — $\tan(7\pi/4)$ est défini.	
101113.tex — $\tan(11\pi/6) = -\sqrt{3}/3$.	
101114.tex — $\tan(0) = 1$.	
$\mathbf{101115.tex} \ \ \tan(0)$ n'est pas défini.	
101116.tex — $\tan(\pi/6) = \sqrt{3}$.	
101117.tex — $\tan(\pi/4)$ n'est pas défini.	
101118.tex — $\tan(\pi/3) = \sqrt{3}/3$.	
101119.tex — Le fait que deux assertions P et Q sont incompatibles peut se traduire, au choix, par l'assertion non (Q) ou par $Q \Longrightarrow \text{non } (P)$.	$P \implies$
101120.tex — Si $f: E \to F$ est une application et $A \subset B \subset E$, alors $f[A] \subset f[B]$.	
101121.tex — Si $f: E \to F$ est une application et $A \neq B \subset E$, alors $f[A] \neq f[B]$.	
101122.tex — Toute application $f: [1, 10] \rightarrow [1, 20]$ est injective.	
101123.tex — Aucune application $f: [1, 10] \rightarrow [1, 20]$ n'est surjective.	
101124.tex — Les deux solutions de l'équation $x^2 + 3ix + 1 = 0$ sont conjuguées.	
101125.tex — Le nombre $12^{2019} + 13^{2019}$ est divisible par 25.	
101126.tex — $(n+1)! \underset{n \to +\infty}{\sim} n!$.	. Vrai
101127.tex — Si c_n est le nombre de chiffres de n dans l'écriture décimale de l'entier n , alors $c_n \underset{n \to +\infty}{\sim} \log n$.	
101128.tex — Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle. Alors $1 = \underset{n\to+\infty}{o}(u_n)$ si et seulement si $u_n \xrightarrow[n\to+\infty]{} +\infty$.	
101129.tex — Si $f(x) = \frac{1}{x+1} + o_{x \to +\infty} \left(\frac{1}{x^2}\right)$, alors $f(x) \underset{x \to +\infty}{\sim} \frac{1}{x}$.	
101130.tex — Si $u_n \underset{n \to +\infty}{\sim} v_n$ et que $(v_n)_n$ est strictement positive à partir d'un certain rang, alors $(u_n)_n$ est strictement positive à partir d'un certain rang.	ctement
101131.tex — Si $u_n \underset{n \to +\infty}{\sim} v_n$ et que $(v_n)_n$ est décroissante à partir d'un certain rang, alors $(u_n)_n$ est décroissante d'un certain rang.	à partir
101132.tex — Si $u_n \underset{n \to +\infty}{\sim} v_n$ et que $(v_n)_n$ est strictement décroissante à partir d'un certain rang, alors $(u$ strictement décroissante à partir d'un certain rang.	$(u_n)_n$ est
101133.tex — Si une suite à valeurs entières converge, elle est stationnaire.	
101134.tex — Si le produit de deux suites tend vers $+\infty$, alors au moins l'une des deux tend également vers $+\infty$	
101135.tex — Il existe $\theta \in \mathbb{R}$ tel que la suite $(\sin(n\theta))_{n\in\mathbb{N}}$ converge.	
101136.tex — La suite (u_n) définie par $\begin{cases} u_0 = \frac{3}{2} \\ \forall n \in \mathbb{N}, u_{n+1} = -3u_n + 10 \end{cases}$ converge.	
101137.tex — La suite (u_n) définie par $\begin{cases} u_0 = \frac{5}{2} \\ \forall n \in \mathbb{N}, u_{n+1} = -3u_n + 10 \end{cases}$ converge.	. Faux
$(vu \in \mathbb{N}, u_{n+1} = -3u_n + 10)$	Vroi

101138.tex —	Une suite réelle de limite ≥ 0 est positive à partir d'un certain rang.
101139. tex -	Une suite monotone converge. Faux Faux Faux
101140.tex —	Une suite bornée converge.
101141.tex —	Faux Deux suites bornées $(u_n)n \in \mathbb{N}$ et $(v_n)n \in \mathbb{N}$ telles que $u_n - v_n \xrightarrow[n \to +\infty]{} 0$ convergent vers la même limite.
101142. tex	Si les deux sous-suites $(u_{2n})n \in \mathbb{N}$ et $(u2n+1)n \in \mathbb{N}$ convergent vers la même limite alors $(un)_{n \in \mathbb{N}}$ converge
101143.tex —	
101144.tex —	Si la série $\sum_n u_n$ converge, alors la suite $(u_n)_{n\in\mathbb{N}}$ converge.
101145.tex —	$\sum_{k=1}^{n} \frac{1}{k} \underset{n \to +\infty}{\sim} \ln n.$ Vrai
101146.tex —	La série $\sum_{n} \rho^{n}$ converge si et seulement si $ \rho < 1$.
	Vrai
101147.tex —	La série de terme général $\frac{1}{\sqrt{n} \ln n}$ converge.
101148 tex —	Le produit de deux fonctions croissantes est croissant.
	Faux
101149.tex —	La fonction $x \mapsto \lfloor x \rfloor$ est impaire. Faux
	Si f est périodique, alors $g \circ f$ est périodique
101151.tex —	Pour tout $x \in \mathbb{R}$, $\exp(x) \ge 1 + x + \frac{x^2}{2}$. Faux
101152.tex —	$\cos: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to [-1, 1]$ est une bijection. Faux
101153.tex —	Dès que la formule a un sens, on a $\arctan(\tan x) = x$. Faux
101154.tex —	Dès que la formule a un sens, on a $\tan(\arctan x) = x$. Vrai
101155.tex —	Sur \mathbb{R}^* , la dérivée de $x\mapsto \ln x $ est $x\mapsto \frac{1}{ x }$. Faux
101156.tex —	Si la fonction $\exp \circ f$ admet une limite finie en $+\infty$, alors la fonction f admet une limite finie en $+\infty$.
101157.tex —	Une fonction monotone admet une limite en tout point intérieur à son domaine de définition.
101158.tex —	Étant donné une fonction $f: \mathbb{R} \to \mathbb{R}$, il existe une fonction $g: \mathbb{R} \to \mathbb{R}$ croissante telle que $f \leq g$.
	Faux Une fonction continue périodique est bornée.
	Vrai
101160.tex —	Une fonction bornée atteint ses bornes. Faux
101161.tex —	Une fonction continue bornée atteint ses bornes.
101162. tex	
	La fonction $x \mapsto \frac{x}{ x }$ est prolongeable par continuité en 0.
1011644	Faux $\cos x - 1$
101164.tex —	La fonction $x \mapsto \frac{\cos x - 1}{ x }$ est prolongeable par continuité en 0.
101165.tex —	
101167.tex —	
101168.tex —	

```
101169.tex — Soit f: \mathbb{R} \to \mathbb{R} dérivable. La fonction |f| est dérivable si et seulement si f ne s'annule pas.
  ......Faux
101170.tex — Soit f : \mathbb{R} \to \mathbb{R} dérivable.
Si la dérivée de f s'annule en 0, alors f admet un extremum local en 0.
  Faux
101171.tex — Soit f:[0,1] \to \mathbb{R} dérivable.
Si f admet un maximum en 0, alors f'(0) = 0.
101172.tex — Soit f : \mathbb{R} \to \mathbb{R} dérivable.
Si f admet un maximum en 0, alors f'(0) = 0.
  ......Vrai
101173.tex — Si une fonction réelle f est de classe C^n et admet n+1 zéros distincts sur un intervalle, alors sa dérivée
n-ième s'annule au moins une fois.
  ......Vrai
101174.tex — Une primitive de x \mapsto \ln x est x \mapsto x \ln x - x - 1.
101175.tex — Soit f, g \in C^0([0,1]). Alors, \left| \int_0^1 f(t)g(t)dt \right| \le ||f||_{\infty} \left| \int_0^1 g(t)dt \right|.
101176.tex — Soit f, g \in C^0([0,1]). Alors, \left| \int_0^1 f(t)g(t)dt \right| \le ||f||_{\infty} \int_0^1 |g(t)| dt.
101177.tex — Une fonction f \in C^0([0,1],\mathbb{R}) admet exactement une primitive d'intégrale nulle sur le segment [0,1].
  ......Vrai
101178.tex — Une fonction f dérivable vérifie f'=2f si et seulement si, pour tout x, il existe C tel que f(x)=Ce^{2x}.
  ......Faux
101179.tex — Les solutions de y' + ay = 0 sont de la forme x \mapsto Ce^{ax} avec C \in \mathbb{R}.
  Faux
101180.tex — Les solutions de y' + 2y = 0 sont deux à deux proportionnelles.
  ......Vrai
101181.tex — Les solutions de y'' + 2y' = 0 sont deux à deux proportionnelles.
  ......Faux
101182.tex — Les fonctions x \mapsto \sin(x) et x \mapsto \sin(2x) sont solutions d'une même équation linéaire d'ordre 2 à coefficients
constants réels.
101183.tex — Pour tous a \le b entiers, le cardinal de \{a, \ldots, b\} = b - a.
  ......Faux
101184.tex — Il y a 50 entiers pairs dans l'intervalle [0, 100].
  .....Faux
101185.tex — Le produit de sept entiers consécutifs est toujours divisible par 720.
  101186.tex — Il est possible de construire 2^n parties différentes de [1, 2n] à n éléments, donc \binom{2n}{n} \ge 2^n.
  ......Vrai
101187.tex — Une matrice et sa transposée ont même noyau.
  ......Faux
101188.tex — Pour A, B \in M_n(\mathbb{R}), \operatorname{Tr}(AB) = \operatorname{Tr}(BA).
  ......Vrai
101189.tex — Pour A, B, C \in M_n(\mathbb{R}), \operatorname{Tr}(ABC) = \operatorname{Tr}(ACB).
  ......Faux
101190.tex — Deux systèmes linéaires ont les mêmes ensembles de solutions si et seulement si leurs matrices augmentées
sont équivalentes par lignes.
101191.tex — Multiplier A à droite par une matrice d'opération élémentaire fait agir l'opération élémentaire correspondante
sur ses colonnes.
101192.tex — Soit \alpha_1, \ldots, \alpha_n \in \mathbb{R}^*.
La matrice «antidiagonale»
                                 est inversible.
                    (x + 2y + 3z = 13)
101193.tex — Le système \langle 4x+5y+6z=6 \rangle a une unique solution.
                    7x + 8y + 9z = 2019
101194.tex — Si le système AX = Y admet des solutions, alors A est inversible.
```

······Faux
101195.tex — Soit $A, B, C \in M_n(K)$. Alors la matrice $\begin{pmatrix} A & B \\ 0 & C \end{pmatrix} \in M_{2n}(K)$ est inversible si et seulement si A et C sont inversibles.
101196.tex — L'ensemble $M_n(\mathbb{R}) \setminus GL_n(\mathbb{R})$ des matrices non-inversibles est un sous-espace vectoriel de $M_n(\mathbb{K})$.
101197.tex — L'ensemble constitué des suites monotones est un sous-espace vectoriel de l'espace vectoriel $\mathbb{R}^{\mathbb{N}}$.
101198.tex — L'ensemble des solutions de l'équation différentielle $y''+2y'+3y=0$ est un sous-espace vectoriel de $C^{\infty}(\mathbb{R})$.
101199.tex — L'ensemble des solutions de l'équation différentielle $y''+2y'+3y=1$ est un sous-espace vectoriel de $C^{\infty}(\mathbb{R})$.
101200.tex — L'ensemble des suites bornées est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$.
Vrai 101201.tex — L'intersection de deux sous-espaces vectoriels d'un même espace vectoriel est un sous-espace vectoriel.
101202.tex — La réunion de deux sous-espaces vectoriels d'un même espace vectoriel est un sous-espace vectoriel.
101203.tex — La somme de deux sous-espaces vectoriels d'un même espace vectoriel est un sous-espace vectoriel.
Vrai 101204.tex — Soit F , G , H trois sous-espaces vectoriels d'un meme espace vectoriel tels que $F + G = F + H$. Alors $G = H$.
101205.tex — Soit F,G deux sous-espaces vectoriels de E tels que $F+G=F\cap G$. On a alors l'égalité $F=G$. Vrai
101206.tex — Soit F , G deux sous-espaces vectoriels de E tels que $F+G=F$. On a alors l'égalité $F=G$.
101207.tex — Une famille de vecteurs deux à deux non colinéaires est libre.
Faux 101208.tex — La famille des fonctions $x \mapsto x, \ x \mapsto -x \text{ et } x \mapsto x \text{ est libre.}$
Faux 101209.tex — La famille des fonctions $x\mapsto 1,\ x\mapsto x $ et $x\mapsto x-1 $ est libre.
101211.tex — Si (e_1, \ldots, e_n) et (f_1, \ldots, f_n) sont des familles libres de E , alors $(e_1 + f_1, \ldots, e_n + f_n)$ est une famille libre.
Faux 101212.tex — Si $u \in \mathcal{L}(E)$, alors Im u et ker u sont supplémentaires.
$\textbf{101213.tex} \ \ \text{Si} \ u,v \in \mathcal{L}(E), \ \text{alors} \ \text{Im}(u+v) \subset \text{Im} \ u + \text{Im}(v).$
Vrai $ \textbf{101214.tex} \ \ \text{Si} \ u \in \mathcal{L}(E) \ \text{et que} \ G \ \text{et} \ H \ \text{sont deux sous-espaces vectoriels de} \ E, \ \text{alors on a l'égalité} \ u[G+H] = u[G] + u[H]. $ Vrai $ \ \text{Vrai} $
101215.tex — Soit $u, v \in \mathcal{L}(E)$. Alors $u \circ v = 0$ si et seulement si $\operatorname{Im} v \subset \ker u$. Vrai
101216.tex — Soit $p \in \mathcal{L}(E)$. Alors p est un projecteur si et seulement si la différence $\mathrm{Id}_E - p$ est un projecteur. Vrai
101217.tex — Si $p \in \mathcal{L}(E)$ est un projecteur, alors $\operatorname{Im} p = \ker(p - \operatorname{Id}_E)$. Vrai
101218.tex — Si $s \in \mathcal{L}(E)$ est une symétrie, alors $\operatorname{Im} s = \ker(s - \operatorname{Id}_E)$.
101219.tex — De toute famille génératrice d'un espace vectoriel de dimension finie, on peut extraire une base. Vrai
101220.tex — Tout vecteur d'un espace vectoriel de dimension finie peut être complété en une base.
Vrai 101222.tex — Si $(f_1,, f_n)$ est une base de F , que $(g_1,, g_p)$ est une base de G et enfin que $(f_1,, f_n, g_1,, g_p)$ est une base de E , alors $E = F \oplus G$.
Vrai

101224.tex — Soit E et F deux espaces vectoriels de dimension finie tels que dim $E \ge \dim F$. Alors toute application linéaire $E \to F$ est surjective.	ion
Fau $101225.tex$ — Soit E un espace vectoriel de dimension n possédant une base \mathcal{B} .	ux
On a $\mathrm{Mat}_{\mathscr{B}}(\mathrm{Id}_E)=I_n.$	
Vra $\textbf{101226.tex} \ \ \text{Soit} \ E \ \text{un espace vectoriel de dimension} \ n \ \text{poss\'edant deux bases} \ \mathscr{B}, \mathscr{C}.$ On a $\mathrm{Mat}_{\mathscr{B},\mathscr{C}}(\mathrm{Id}_E) = I_n.$	
Fau 101227.tex — Une matrice et sa transposée ont même rang.	
$\textbf{101228.tex} \text{ Pour } A, B \in M_n(\mathbb{R}), \operatorname{rg}(AB) \leq \operatorname{rg} B.$	
Vra 101229.tex — Si $A \in M_{2,3}(\mathbb{R})$ et $B \in M_{3,2}(\mathbb{R})$ sont deux matrices vérifiant $AB \in GL_2(\mathbb{R})$, alors rg $A = \operatorname{rg} B = 2$.	
Vra ${\bf 101230.tex}$ — Il existe une base de $M_n(\mathbb{R})$ composée de matrices de rang 1.	
Vra 101231.tex — Il existe une base de $M_n(\mathbb{R})$ composée de matrices inversibles.	
101232.tex — Un polynôme constant est de degré nul.	
Fau $101233.tex$ — Si (P,Q,R,S) est une base de $\mathbb{R}_3[X]$, alors les degrés des quatre polynômes sont tous distincts.	
101234.tex — $X^2 + X + 1$ est irréductible dans $\mathbb{R}[X]$.	
$\textbf{101235.tex} \ \ X^2 + X + 1 \ \text{est irréductible dans} \ \mathbb{C}[X].$ Fau	
101236.tex — $X^3 + X + 1$ est irréductible dans $\mathbb{R}[X]$.	
Fau 101237.tex — Le nombre 1 est racine simple de $1 + X + X^2 + X^3 + X^4 + X^5$.	
Vra 101238.tex — Si P est un polynôme réel vérifiant $\forall n \in \mathbb{Z}, P(n) \in \mathbb{Z}$, alors les coefficients de P sont entiers.	
Fau 101239.tex — Soit \vec{x} et \vec{y} deux vecteurs d'un espace euclidien. Alors \vec{x} et \vec{y} sont orthogonaux si et seulement si $ \vec{x} + \vec{y} ^2$ $ \vec{x} ^2 + \vec{y} ^2$.	² =
Vra 101240.tex — Toute famille orthonormale d'un espace euclidien est libre.	
101241.tex — Aucun vecteur de $\overrightarrow{\mathcal{P}}$ n'est orthogonal à tous les vecteurs de $\overrightarrow{\mathcal{P}}$.	3.1
101242.tex — Deux droites disjointes dans le plan sont parallèles. Vra	
101243.tex — Deux droites disjointes dans l'espace sont parallèles.	
101244.tex — Deux plans disjoints dans l'espace sont parallèles.	ux
Vra 101245.tex — Étant donné deux droites quelconques de \mathbb{R}^3 , il existe une droite simultanément perpendiculaire aux deu Vra Vra	ux.
101246.tex — On considère un point O et deux droites Δ , Δ' du plan. Alors il existe une rotation envoyant Δ sur Δ' et seulement si $d(O, \Delta) = d(O, \Delta')$.	si si
101247.tex — Soit $p_1,, p_n \in \mathbb{R}_+$ de somme 1. Il existe une unique probabilité \mathbb{P} sur l'univers $\Omega = \{1,, n\}$ telle q $\mathbb{P}(\{k\}) = p_k$.	que
101248.tex — Soit A de probabilité non nulle. Alors, pour tout $B \in \mathscr{P}(\Omega), \mathbb{P}(B A) \leq \mathbb{P}(B)$.	
101249.tex — Dans un espace probabilisé (Ω, P) fini, tout événement A indépendant de $\Omega \setminus A$ est de probabilité 0 ou	1.
101250.tex — Soit A et B deux événements. Alors $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$ si et seulement si A et B sont indépendant B	$\mathrm{nts.}$
	uX
Fau	

101253.tex — La somme de deux variables de loi de Bernoulli de paramètre p suit une loi binomiale de paramètre 2 et p
101254.tex — Si $X \sim \mathcal{U}(\{0,\dots,n\})$, alors $n-X \sim \mathcal{U}(\{0,\dots,n\})$. Vrai
101255.tex — Si $X \sim \mathcal{B}(n, p)$, alors $n - X \sim \mathcal{B}(n, p)$.
Faux 101256.tex — Si une variable aléatoire $X:\Omega\to\mathbb{R}$ est d'espérance nulle, alors la variable e^X est d'espérance 1.
Faux $\mathbf{101257.tex}$ — Soit $X:\Omega\to\mathbb{R}$ une variable aléatoire réelle. Alors, pour tout $a\in\mathbb{R}$, on a l'inégalité $\mathbb{E}(X)\geq a\mathbb{P}(X\geq a)$.
101258.tex — Tout rectangle dont les diagonales sont perpendiculaires est un losange.
Vrai 101259.tex — Tout trapèze ayant un angle droit est un rectangle.
Faux 101260.tex — Tout trapèze ayant deux angles droits est un rectangle.
Faux 101261.tex — Tout trapèze isocèle ayant un angle droit est un rectangle. Vrai
101262.tex — Tout trapèze isocèle ayant un angle droit est un carré. Faux
${\bf 101263.tex} \ \ \ {\bf Tout} \ {\bf quadrilatère} \ {\bf dont} \ {\bf les} \ {\bf diagonales} \ {\bf sont} \ {\bf perpendiculaires} \ {\bf et} \ {\bf de} \ {\bf même} \ {\bf longueur} \ {\bf est} \ {\bf un} \ {\bf carr\'e}.$
101264.tex — Tout losange avec un angle droit est un carré.
Vrai 101265.tex — Tout losange avec un angle droit a des diagonales de même longueur.
Vrai 101266.tex — Tout losange avec deux angles égaux est un carré.
Faux 101267.tex — Tout losange avec deux angles consécutifs égaux est un carré.
Vrai 101268.tex — Tout trapèze avec deux angles égaux est un trapèze isocèle.
Faux 101269.tex — Tout trapèze avec deux angles consécutifs égaux est un trapèze isocèle.
Faux 101270.tex — Tout trapèze avec deux bases de même longueur est un rectangle. Faux
101271.tex — Tout trapèze avec deux bases de même longueur est un losange. Faux Faux
101272.tex — Tout trapèze avec deux bases de même longueur est un parallélogramme. Vrai
101273.tex — Tout quadrilatère ayant au moins un axe de symétrie est un losange ou bien un trapèze isocèle. Faux
101274.tex — Tout quadrilatère ayant exactement un axe de symétrie est un trapèze isocèle. Faux
101275.tex — Tout carré possède exactement deux axes de symétrie. Faux
101276.tex — Tout carré possède exactement huit axes de symétrie. Faux
101277.tex — Tout carré possède exactement quatre axes de symétrie. Vrai
101278.tex — Tout rectangle possède exactement quatre axes de symétrie. Faux
101279.tex — Tout rectangle possède exactement deux axes de symétrie. Faux
101280.tex — Tout rectangle possède au moins deux axes de symétrie. Vrai
101281.tex — Tout losange possède exactement deux axes de symétrie. Faux
101282.tex — Tout losange possède au moins deux axes de symétrie. Vrai
101283.tex — Tout losange possède exactement quatre axes de symétrie.
Faux 101284.tex — Tout pentagone possède cinq axes de symétrie.
Faux 101285.tex — Tout pentagone régulier possède cinq axes de symétrie.

	Tout triangle équilatéral possède trois axes de symétrie.
101287.tex —	
101288.tex —	Tout triangle isocèle possède au moins un axe de symétrie.
101289.tex —	
$101290.\mathrm{tex} -\!\!\!\!-$	Les axes de symétrie d'un pentagone régulier passent par ses sommets.
101291.tex —	
$101292. {\rm tex} -\!\!\!\!-$	Les axes de symétrie d'un triangle équilatéral passent par ses sommets.
$101293.\mathrm{tex} - $	Les axes de symétrie d'un carré sont ses diagonales.
101294.tex —	Les axes de symétrie d'un losange sont ses diagonales
$101295. {\rm tex} -\!\!\!\!-$	Tout trapèze possède au moins un axe de symétrie. Faux Faux Faux
101296.tex —	Tout trapèze isocèle possède au moins un axe de symétrie.
101297.tex —	
101298.tex —	Tout parallélogramme possède un centre de symétrie. Vrai
$101299. {\rm tex} -\!\!\!\!-$	Tout losange possède un centre de symétrie. Vrai
$101300.\mathrm{tex} -\!\!\!\!-$	Tout rectangle possède un centre de symétrie.
101301.tex —	Vrai Tout carré possède un centre de symétrie. Vrai Vrai
101302.tex —	Tout trapèze possède un centre de symétrie.
101302.tex —	Tout trapèze possède un centre de symétrie. Faux Tout trapèze isocèle possède un centre de symétrie.
101302.tex — 101303.tex — 101304.tex —	Tout trapèze possède un centre de symétrie
101302.tex —	Tout trapèze possède un centre de symétrie. Faux Tout trapèze isocèle possède un centre de symétrie. Faux $7\times 13=91$ Vrai $8\times 13=104$
101302.tex —	Tout trapèze possède un centre de symétrie. Faux Tout trapèze isocèle possède un centre de symétrie. Faux $7\times 13=91$ Vrai $8\times 13=104$ Vrai $12\times 7=84$
101302.tex — 101303.tex — 101304.tex — 101305.tex — 101306.tex — 101307.tex —	Tout trapèze possède un centre de symétrie. Faux Tout trapèze isocèle possède un centre de symétrie. Faux $7\times 13=91$ Vrai $8\times 13=104$ Vrai $12\times 7=84$ Vrai $12\times 7=74$
101302.tex —	Tout trapèze possède un centre de symétrie. Faux Tout trapèze isocèle possède un centre de symétrie. Faux $7\times 13=91$ Vrai $8\times 13=104$ Vrai $12\times 7=84$ Vrai $12\times 7=74$ Faux $14\times 6=84$
101302.tex —	Tout trapèze possède un centre de symétrie. Faux Tout trapèze isocèle possède un centre de symétrie. Faux $7\times 13=91$ Vrai $8\times 13=104$ Vrai $12\times 7=84$ Vrai $12\times 7=74$ Faux $14\times 6=84$ Vrai $7\times 13=91$
101302.tex — 101303.tex — 101304.tex — 101305.tex — 101306.tex — 101307.tex — 101309.tex — 101310.tex —	Tout trapèze possède un centre de symétrie. Faux Tout trapèze isocèle possède un centre de symétrie. Faux $7\times 13=91$ Vrai $8\times 13=104$ Vrai $12\times 7=84$ Vrai $12\times 7=74$ Faux $14\times 6=84$ Vrai $7\times 13=91$ Vrai $7\times 13=91$ Vrai $7\times 13=91$ Vrai $7\times 13=91$ Vrai
101302.tex — 101303.tex — 101304.tex — 101305.tex — 101306.tex — 101307.tex — 101309.tex — 101310.tex — 101311.tex —	Tout trapèze possède un centre de symétrie. Faux Tout trapèze isocèle possède un centre de symétrie. Faux $7 \times 13 = 91$ Vrai $8 \times 13 = 104$ Vrai $12 \times 7 = 84$ Vrai $12 \times 7 = 74$ Faux $14 \times 6 = 84$ Vrai $7 \times 13 = 91$ Vrai $5 \times 17 = 85$ Vrai $5 \times 17 = 95$
101302.tex —	Tout trapèze possède un centre de symétrie
101302.tex — 101303.tex — 101304.tex — 101305.tex — 101306.tex — 101307.tex — 101309.tex — 101310.tex — 101311.tex — 101312.tex — 101313.tex —	Tout trapèze possède un centre de symétrie. Faux $7 \times 13 = 91$ Vrai $8 \times 13 = 104$ Vrai $12 \times 7 = 84$ Vrai $12 \times 7 = 74$ Faux $14 \times 6 = 84$ Vrai $7 \times 13 = 91$ Vrai $5 \times 17 = 85$ Vrai $5 \times 17 = 95$ Faux $18 \times 4 = 72$ Vrai $18 \times 4 = 76$ Vrai
101302.tex — 101303.tex — 101304.tex — 101305.tex — 101306.tex — 101307.tex — 101309.tex — 101310.tex — 101311.tex — 101312.tex — 101313.tex — 101313.tex —	Tout trapèze possède un centre de symétrie. Faux Tout trapèze isocèle possède un centre de symétrie. Faux $7 \times 13 = 91$ Vrai $8 \times 13 = 104$ Vrai $12 \times 7 = 84$ Vrai $12 \times 7 = 74$ Faux $14 \times 6 = 84$ Vrai $7 \times 13 = 91$ Vrai $5 \times 17 = 85$ Vrai $5 \times 17 = 95$ Faux $18 \times 4 = 72$ Vrai $18 \times 4 = 76$ Faux $18 \times 5 = 80$ Faux
101302.tex —	Tout trapèze possède un centre de symétrie. Faux $7 \times 13 = 91$ Vrai $8 \times 13 = 104$ Vrai $12 \times 7 = 84$ Vrai $12 \times 7 = 74$ Faux $14 \times 6 = 84$ Vrai $7 \times 13 = 91$ Vrai $5 \times 17 = 85$ Vrai $5 \times 17 = 95$ Vrai $18 \times 4 = 72$ Vrai $18 \times 4 = 76$ Faux $18 \times 5 = 80$ Faux $17 \times 6 = 92$ Faux
101302.tex — 101303.tex — 101304.tex — 101305.tex — 101306.tex — 101307.tex — 101309.tex — 101310.tex — 101311.tex — 101312.tex — 101313.tex — 101313.tex — 101313.tex — 101316.tex —	Tout trapèze possède un centre de symétrie. Faux Tout trapèze isocèle possède un centre de symétrie. Faux $7 \times 13 = 91$ Vrai $8 \times 13 = 104$ Vrai $12 \times 7 = 84$ Vrai $12 \times 7 = 74$ Faux $14 \times 6 = 84$ Vrai $7 \times 13 = 91$ Vrai $5 \times 17 = 85$ Vrai $5 \times 17 = 95$ Faux $18 \times 4 = 72$ Vrai $18 \times 4 = 76$ Faux $18 \times 5 = 80$ Faux $17 \times 6 = 92$ Faux $23 \times 3 = 79$ Faux
101302.tex — 101303.tex — 101304.tex — 101305.tex — 101306.tex — 101307.tex — 101309.tex — 101310.tex — 101311.tex — 101312.tex — 101313.tex — 101315.tex — 101315.tex — 101316.tex —	Tout trapèze possède un centre de symétrie. Faux Tout trapèze isocèle possède un centre de symétrie. Faux $7 \times 13 = 91$ Vrai $8 \times 13 = 104$ Vrai $12 \times 7 = 84$ Vrai $12 \times 7 = 74$ Faux $14 \times 6 = 84$ Vrai $7 \times 13 = 91$ Vrai $5 \times 17 = 85$ Vrai $5 \times 17 = 95$ Faux $18 \times 4 = 72$ Vrai $18 \times 4 = 76$ Faux $18 \times 5 = 80$ Faux $17 \times 6 = 92$ Faux $23 \times 3 = 79$ Faux

101318.tex —	$-21 \times 5 = 105$. .
101319.tex $-$	$-11 \times 8 = 88$	
101320.tex -	$-11 \times 11 = 111$	
	$-12 \times 12 = 144$	
	$-13 \times 13 = 179$	Vrai
	$-13 \times 13 = 169$	Faux
	$-13 \times 13 = 159$	Vrai
101325.tex —	$-14 \times 14 = 196$	
	$-14 \times 14 = 206$	Vrai
	$-15 \times 15 = 225$	
	$-15 \times 15 = 255$	
	$-16 \times 16 = 256$	
101330.tex $-$	$-8 \times 32 = 256$	
101331.tex $-$	$-8 \times 16 = 256$	Vrai
	$-11 \times 13 = 133$	
$101333. ext{tex}$	$-12 \times 11 = 132$	
	$-12 \times 14 = 168$	
101335.tex $-$	$-12 \times 14 = 158$	
	$-11 \times 14 = 164$	
101337.tex —	$- (a+1)(a+2) = a^2 + 3a + 2$	
101338.tex —	$- (a-1)(a+2) = a^2 + a - 2$	
101339.tex —	$- (a+1)(a-2) = a^2 - a - 2$	
101340.tex —	$- (a-1)(a-2) = a^2 - 3a + 2$	
101341.tex —	$- (a+1)(a+3) = a^2 + 4a + 3$	
101342.tex —	$- (a-1)(a+3) = a^2 + 2a - 3$	
101343.tex —	$- (a+1)(a-3) = a^2 - 2a - 3$	
101344.tex —	$- (a-1)(a-3) = a^2 - 4a + 3$	
101345.tex $-$	$- (a+2)(a+3) = a^2 + 5a + 6$	
$101346. ext{tex}$	$- (a-2)(a+3) = a^2 + a - 6$	
101347.tex $-$	$- (a+2)(a-3) = a^2 - a - 6$	
$101348. ext{tex}$	$- (a-2)(a-3) = a^2 - 5a + 6$	
$101349. ext{tex}$	$- (a+1)(a+1) = a^2 + 2a + 1$	
101350.tex —	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	vrai

	Vr	ai
101351.tex —	$-(a+2)(a+2) = a^2 + 4a + 4$	ai
101352.tex —	$-(a-2)(a-2) = a^2 - 4a + 4$	
101353.tex —	$-(a+1)(a+2) = a^2 + 2a + 2$	
101354.tex —	Fa $(a-1)(a+2) = a^2 + 2a - 2$	
101355.tex —	Fa $(a+1)(a-2) = a^2 - a + 2$	
101356.tex —	Fa $(a-1)(a-2) = a^2 - 3a - 2$	
101357.tex —	Fa $(a+1)(a+3) = a^2 + a + 3$	
101358.tex —	Fa $(a-1)(a+3) = a^2 + 2a + 3$	
101359.tex —	Fa $(a+1)(a-3) = a^2 + a - 3$	
101360.tex —	Fa $(a-1)(a-3) = a^2 - 2a + 3$	
101361.tex —	Fa $(a+2)(a+3) = a^2 + 6a + 6$	
$101362. ext{tex}$	Fa $(a-2)(a+3) = a^2 + a + 6$	
101363.tex —	Fa $(a+2)(a-3) = a^2 + a - 6$	
101364.tex —	Fa $(a-2)(a-3) = a^2 + 5a + 6$	
101365.tex —	Fa $(a+1)(a+1) = a^2 + 2a + 2$	
101366.tex —	Fa $(a-1)(a-1) = a^2 - 2a - 1$	
101367.tex —	Fa $(a+2)(a+2) = a^2 + 2a + 4$	
101368.tex —	Fa $(a-2)(a-2) = a^2 - 4a - 4$	
101369.tex $-$	Fa $(2a+1)(a+1) = 2a^2 + 3a + 1$	
101370.tex $-$	Vr $(2a-1)(a+1) = 2a^2 + a - 1$	
101371.tex —	Vr $(2a+1)(a-1) = 2a^2 - a - 1$	
101372.tex —		
101373.tex —	Vr $(2a+1)(a+3) = 2a^2 + 7a + 3$	
101374.tex —	Vr $(2a+1)(a-3) = 2a^2 - 5a - 3$	
101375.tex $-$	Vr $(2a-1)(a+3) = 2a^2 + 5a - 3$	
101376.tex $-$	$Vr - (2a-1)(a-3) = 2a^2 - 7a + 3$	
101377.tex —	Vr $(2a+1)(a+1) = 2a^2 + 3a + 2$	
101378.tex —	Fa $(2a-1)(a+1) = 2a^2 - a - 1$	
101379.tex —	Fa $(2a+1)(a-1) = 2a^2 - 2a - 1$	
101380.tex —	Fa $(2a-1)(a-1) = 2a^2 - 3a - 1$	
101381.tex —	Fa $(2a+1)(a+3) = 2a^2 + 4a + 3$ Fa	
101382.tex —	$(2a+1)(a-3) = 2a^2 - 6a - 3$	
	Fa	ux

101383.tex —	$(2a-1)(a+3) = 2a^2 + 7a - 3$	Faux
101384.tex —	$(2a-1)(a-3) = 2a^2 - 5a + 3$	
101385.tex —	(a+1)(b+1) = ab + a + b + 1	
101386.tex —	(a+1)(b-1) = ab - a + b - 1	
101387.tex —	(a-1)(b+1) = ab + a - b - 1	
101388.tex —	(a-1)(b-1) = ab - a - b + 1	
101389.tex —	(a+2)(b+1) = ab + a + 2b + 2	
101390.tex —	(a+2)(b-1) = ab - a + 2b - 2	
101391.tex —	(a-2)(b+1) = ab + a - 2b - 2	
101392.tex —	(a-2)(b-1) = ab - a - 2b + 2	
101393.tex —	$(a+b)(a+1) = a^2 + ab + a + b$	
101394.tex —	$(a+b)(a-1) = a^2 + ab - a - b$	
101395.tex —	$(a-b)(a+1) = a^2 - ab + a - b$	
101396.tex —	$(a-b)(a-1) = a^2 - ab - a + b$	
101397.tex —	$(a-2b)(a+2) = a^2 - 2ab + 2a - 4b$	
101398.tex —	$(a+2b)(a-3) = a^2 + 2ab - 3a - 6b$	Vrai
101399.tex —	$(2a - 3b)(3a + 2) = 6a^2 - 9ab + 4a - 6b$	vrai Vrai
101400.tex —	$(3a - 2b)(2a + 3) = 6a^2 - 4ab + 9a - 6b$	vrai Vrai
101401.tex —	$(a+b)(a-b) = a^2 - b^2$	
101402.tex —	$(a+2b)(a+3b) = a^2 + 5ab + 6b^2$	
101403.tex —	$(2a+b)(a-b) = 2a^2 - ab - b^2$	
101404.tex —	$(2a - b)(3a + b) = 6a^2 - ab - b^2$	
101405.tex —	$(2a+b)(a-3b) = 2a^2 - 5ab - 3b^2$	
101406.tex —	(a+1)(b+1) = ab + 2a + 2b + 1	
101407.tex —	(a+1)(b-1) = ab + a + b - 1	
101408.tex —	(a-1)(b+1) = ab - a - b - 1	
101409.tex —	(a-1)(b-1) = ab - a - b - 1	
101410.tex —	(a+2)(b+1) = ab + a + b + 2	
101411.tex —	(a+2)(b-1) = ab - a + 2b + 2	
101412.tex —	(a-2)(b+1) = ab + a + 2b - 2	
101413.tex —	(a-2)(b-1) = ab - a - 2b - 2	
101414.tex —	$(a+b)(a+1) = a^2 + 2ab + a + b$	
101415.tex —	$(a+b)(a-1) = a^2 + ab + a - b$	Laun

		Faux
	$(a-b)(a+1) = a^2 + ab + a - b$	
101417.tex —	$(a-b)(a-1) = a^2 - ab + a + b$	
101418.tex —	$(a-2b)(a+2) = a^2 - 2ab - 2a - 4b$	
101419.tex —	$-(a+2b)(a-3) = a^2 + 2ab + 3a - 6b$	
101420.tex —	$-(2a-3b)(3a+2) = 6a^2 - 9ab - 4a - 6b$	
101421.tex —	$-(3a-2b)(2a+3) = 6a^2 - 4ab + 9a + 6b$	
101422.tex $-$	$- (a+b)(a-b) = a^2 + b^2$	
101423.tex —	$-(a+2b)(a+3b) = a^2 + 6ab + 5b^2$	
101424.tex —	$-(2a+b)(a-b) = 2a^2 + ab - b^2$	
101425.tex $-$	$-(2a-b)(3a+b) = 6a^2 - 5ab - b^2$	
101426.tex —	$-(2a+b)(a-3b) = 2a^2 - 5ab + 3b^2$	
101427.tex —	Les diagonales d'un pentagone régulier se coupent en leur milieu.	Faux
 101428.tex —	- Tout losange possède au moins deux angles égaux.	Faux
101429.tex —	- Tout parallélogramme possède au moins deux angles égaux.	Vrai
101430.tex $-$	$(a+1)^3 = a^3 + 3a^2 + 3a + 1.$	Vrai
 101431.tex —	$(a+1)^3 = 1 + 3a + 3a^2 + a^3.$	Vrai
 101432.tex —	$(a+2)^3 = a^3 + 3a^2 + 3a + 2.$	Vrai
101433.tex —	$(a+2)^3 = a^3 + 3a^2 + 3a + 8.$	Faux
101434.tex —	$(a+2)^3 = a^3 + 6a^2 + 12a + 8.$	Faux
101435.tex —	$(a+3)^3 = a^3 + 9a^2 + 27a + 27.$	Vrai
 101436.tex —	$(a+1)^3 = 1 + a + a^2 + a^3.$	Vrai
 101437.tex —	$(a+1)^3 = a^3 + 2a^2 + 2a + 1.$	Faux
	$-(a-1)^3 = a^3 - 3a^2 + 3a - 1.$	Faux
	$(a-1)^3 = a^3 - 3a^2 - 3a + 1.$	Vrai
	$(a-1)^3 = 1 - 3a + 3a^2 - a^3.$	Faux
	$(1-a)^3 = 1 - 3a + 3a^2 - a^3.$	Faux
	$(a-b)^2 = (b-a)^2$.	Vrai
	$(a - b) = (b - a).$ $(a - 1)^3 = (1 - a)^3.$	Vrai
	$(a-1)^3 = (1-a)^3.$ $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3.$	Faux
	$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3.$ $(a+b)^3 = a^3 + 3a^2b + 3ba^2 + b^3.$	Vrai
	······································	Faux
	$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3.$	Vrai
101447.tex —	$(a-b)^3 = a^3 - 3a^2b - 3ab^2 + b^3.$	Vroi

101448.tex —	$(a-b)^3 = a^3 - 3ab^2 + 3a^2b - b^3.$	D
101449.tex —	$a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2}).$	
101450.tex —	$a^3 - b^3 = (a - b)(a^2 + a + 1).$	
101451.tex —	$a^3 - b^3 = (a - b)(a^2 - ab + b^2).$	
101452.tex —	$a^3 - 1 = (a - 1)(a^2 + a + 1).$	
101453.tex —	$a^{3} + b^{3} = (a+b)(a^{2} - ab + b^{2}).$	
101454.tex —	$a^3 + b^3 = (a+b)(a^2 + ab + b^2).$	
101455.tex —	$(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4.$	
101456.tex —	$(a+b)^4 = a^4 + 4a^3 + 6a^2 + 4a + 1.$	
101457.tex —	$(a+b)^4 = a^4 + 4a^3b + 4a^2b^2 + 4ab^3 + b^4.$	
101458.tex —	$(a-b)^4 = a^4 - 4a^3b + 6a^2b^2 - 4ab^3 + b^4.$	
101459.tex —	$(a-b)^4 = a^4 - 4a^3b - 6a^2b^2 - 4ab^3 + b^4.$	
101460.tex —	$(a+2)^4 = a^4 + 8a^3b + 24a^2 + 32a + 16.$	
101461.tex —	$(a+3)^4 = a^4 + 12a^3b + 54a^2 + 108a + 81.$	
101462.tex —	$(a+3)^4 = a^4 + 12a^3b + 54a^2 + 108a + 27.$	Vrai
101463.tex —	$(a+2)^4 = a^4 + 4a^3b + 6a^2 + 4a + 2.$	
101464.tex —	$(a+b)^5 = a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5.$	
101465.tex —	$(a+1)^5 = a^5 + 5a^4 + 10a^3 + 10a^2 + 5a + 1.$	Vrai
101466.tex —	Toute fonction affine est linéaire.	Vrai
	Toute fonction linéaire est affine.	
101468. tex	Toute fonction constante est affine.	
101469. tex	Toute fonction constante est linéaire.	
$101470.\mathrm{tex} -\!\!\!\!-$	La fonction nulle est linéaire.	
101471.tex —	la fonction nulle est affine.	
101472. tex	La fonction $x \mapsto -3x + 5$ est linéaire.	
101473. tex	La fonction $x \mapsto -3x + 5$ est affine.	
101474.tex —	L'image de 2 par la fonction $x \mapsto 2x + 7$ est 11.	
$101475. tex -\!\!\!\!-$	L'image de 3 par la fonction $x \mapsto -5x + 2$ est -13 .	
101476. tex	L'image de 3 par la fonction $x \mapsto 9x + 7$ est 33.	
101477.tex —	L'image de 7 par la fonction $x \mapsto 3x + 11$ est 22.	
101478. tex	L'image de 11 par la fonction $x\mapsto 9x+22$ est 121.	
101479. tex	L'image de 12 par la fonction $x \mapsto 7x - 35$ est 49.	
	L'image de 8 par la fonction $x\mapsto 11x-59$ est 39.	Vrai

Faux
101481.tex — L'antécédent de 7 par la fonction $x \mapsto 2x + 3$ est 17. Faux
101482.tex — L'antécédent de 7 par la fonction $x \mapsto 2x + 3$ est 2.
101483.tex — L'antécédent de 9 par la fonction $x \mapsto 5x + 7$ est $2/5$. Vrai
101484.tex — L'antécédent de 12 par la fonction $x \mapsto 5x + 7$ est 1.
Vrai $ \textbf{101485.tex} \ - \ \text{L'antécédent de 13 par la fonction } x \mapsto 5x + 7 \text{ est } 6/5. $
Faux $ \textbf{101487.tex} \ - \ \text{L'antécédent de 11 par la fonction} \ x \mapsto 5x + 7 \text{ est } 2/5. $
Toute fonction constante est croissante.
Faux 101491.tex — Toute fonction croissante est affine.
Faux
101492.tex — La fonction $x \mapsto 11x - 7/2$ est croissante. Vrai
101493.tex — La fonction $x \mapsto 9x - 5/3$ est décroissante. Faux
101494.tex — La fonction $x \mapsto 2 - x/7$ est croissante. Faux
101495.tex — Si une fonction affine de la forme $x \mapsto ax + b$ est croissante, alors $a > 0$.
101496.tex — Si une fonction affine de la forme $x \mapsto ax + b$ est croissante, alors $a \le b$.
101497.tex — Si une fonction affine de la forme $x \mapsto ax + b$ est croissante, alors $a \ge b$.
101498.tex — Si une fonction affine de la forme $x\mapsto ax+b$ est décroissante, alors $a\leq 0$. Vrai
101499.tex — La droite qui représente la fonction affine $x \mapsto 7x + 9$ a un coefficient directeur égal à 9.
101500.tex — La droite qui représente la fonction affine $x \mapsto -5x + 11$ a un coefficient directeur égal à 5.
Faux 101501.tex — La droite qui représente la fonction affine $x\mapsto 8x-3$ a un coefficient directeur égal à 8.
Faux 101503.tex — La droite qui représente la fonction affine $x\mapsto 8x-3$ a une ordonnée à l'origine égale à 8.
101504.tex — La droite qui représente la fonction affine $x\mapsto 11x+7$ a une ordonnée à l'origine égale à $7/11$.
Faux $\mathbf{101505.tex}$ — La droite qui représente la fonction affine $x\mapsto 9x-5$ a une ordonnée à l'origine égale à -5 .
101506.tex — Une fonction affine de la forme $x\mapsto ax+b$ est linéaire si et seulement si $a=0$.
Faux $ \textbf{101507.tex} \ \ \text{Une fonction affine de la forme} \ x \mapsto ax + b \ \text{est linéaire si et seulement si} \ b = 0. $
Vrai 101508.tex — Une fonction affine est linéaire si et seulement si son coefficient directeur est nul.
Faux 101509.tex — Une fonction affine est linéaire si et seulement si son ordonnée à l'origine est nulle.
101510.tex — Une fonction affine est croissante si et seulement si son coefficient directeur est positif.
Vrai 101512.tex — Si une fonction affine est croissante, alors son coefficient directeur est strictement positif. Faux

101513.tex — Si une fonction affine est croissante, alors son ordonnée à l'origine est positive.
Faux $\mathbf{101514.tex}$ — Le discriminant du trinôme $X^2 + X + 1$ est égal à 3.
Faux $ \textbf{101515.tex} \ \ \text{Le discriminant du trinôme} \ X^2 - X + 1 \ \text{est égal à} \ -3. $
Faux $ \textbf{101518.tex} \ \ \text{Le discriminant du trinôme} \ X^2 - X - 1 \ \text{est égal à 5}. $
Faux $ \textbf{101520.tex} \ - \ \text{Le discriminant du trinôme} \ X^2 - 18X + 36 \ \text{est égal à 0}. $
Faux $ \textbf{101521.tex} \ \ \text{Le discriminant du trinôme} \ X^2 + 4X + 16 \ \text{est égal à 0}. $
Faux $ \textbf{101522.tex} \ \ \text{Le discriminant du trinôme} \ X^2 - 7X + 49 \ \text{est égal à 0}. $
Faux $ \textbf{101523.tex} \ \ \text{Le discriminant du trinôme} \ X^2 - 6X + 9 \ \text{est égal à 0}. $
101531.tex — Le discriminant du trinôme $4X^2 + 36X + 81$ est égal à 0. Vrai
101532.tex — Le discriminant du trinôme $4X^2 - 20X + 25$ est égal à 0. Vrai
101533.tex — Le discriminant du trinôme $4X^2 - 8X + 16$ est égal à 0.
101534.tex — Le discriminant du trinôme $9X^2 - 12X + 16$ est égal à 0.
101535.tex — Le discriminant du trinôme $X^2 + 12X + 144$ est égal à 0.
101536.tex — Le discriminant du trinôme $X^2 - 8X + 64$ est égal à 0.
101537.tex — Le discriminant du trinôme $X^2 - 16X - 64$ est égal à 0.
101538.tex — Le discriminant du trinôme $X^2 - 3X + 1$ est égal à -13 .
101539.tex — Le discriminant du trinôme $X^2 - 2X + 3$ est égal à -16 .
101540.tex — Le discriminant du trinôme $X^2 - 2X - 3$ est égal à 16. Vrai
101541.tex — Le discriminant du trinôme $X^2 - X + 3$ est égal à -11 . Vrai
101542.tex — Le discriminant du trinôme $X^2 - X + 3$ est égal à 13. Faux
101543.tex — Le discriminant du trinôme $X^2 - 5X + 1$ est égal à 29.
101544.tex — Le discriminant du trinôme $X^2 - 5X + 1$ est égal à -21 .
101545.tex — Le discriminant du trinôme $X^2 - 5X + 2$ est égal à 17.

Vra	ai
101546.tex — Le discriminant du trinôme $X^2 - 9X + 11$ est égal à 37.	
Vra	ai
101548.tex — Le discriminant du trinôme $X^2 - 6X - 7$ est égal à 8.	
Far	ux
101549.tex — Le discriminant du trinôme $9X^2 - 6X + 1$ est égal à 0.	
Vra	ai
101550.tex — Le discriminant du trinôme $2X^2 - 5X + 3$ est égal à 1.	
Vra	ai
101551.tex — Le discriminant du trinôme $2X^2 - 3X - 7$ est égal à 65.	
Vra	ai
101552.tex — Le discriminant du trinôme $3X^2 - 6X + 1$ est égal à 32.	
Fa	ux
101553.tex — Le discriminant du trinôme $2X^2 + 5X + 3$ est égal à 13.	
Fai	ux