Modelling Convection, Phase Change and Salt Fluxes from Mushy Sea Ice

James Parkinson (james.parkinson@physics.ox.ac.uk)¹, Andrew Wells¹, Dan Martin², and Richard Katz¹

¹University of Oxford, ²Lawrence Berkeley National Laboratory

(b) C = 0.04, Rm = 600

Introduction

- Sea ice is a mushy layer of ice crystals and brine.
- Dense brine drains during ice formation (Fig. 1). affecting ocean circulation.

Our goal: constrain brine fluxes using numerical simulations.

Fig. 1: Solidification of salt water viewed from (a) side; Middleton et. al. (2016) and (b) below; Wettlaufer et. al. (1997). Arrows indicate where salty plumes leave the ice.

What is a mushy layer?

Fig. 2: (a) Sea ice is a porous mixture of solid ice crystals (white) and liquid brine (dark) [1]. (b) Trajectory (\rightarrow) of a solidifying salt water parcel through the phase diagram. As the temperature T_l decreases, more ice forms and the residual brine salinity S_l increases making the fluid denser, which can drive convection. Below the eutectic $(T_e, S_e) = (-21.1^\circ, 233)$ the system is entirely solid.

Numerical Method

Solve (1)-(4) using Chombo finite volume toolkit:

- Momentum and mass: projection method [2].
- Energy and solute:
- -Advective terms: explicit, 2nd order unsplit Godunov method.
- -Nonlinear diffusive terms: semi implicit, geometric multigrid.
- -Timestepping: Backward Euler.

This work was funded by NERC and a travel grant from the Royal Society.

[1] Hajo Eicken et al. Cold Regions Science and Technology 31.3 (2000), pp. 207–225. [2] D. F. Martin et al. Journal of Computational Physics 227.3 (2008), pp. 1863–1886. [3] J. S. Wettlaufer et al. J. Fluid Mech. 344 (1997), pp. 291–316. [4] M. G. Worster. Journal of Fluid Mechanics 224.-1 (1991), p. 335.

Summary:

- During transient growth, channel spacing increases over time.
- Scaling predictions for steady state growth are consistent with experimental observations

Simulated transient growth

Water of initial salinity $S_0 = 35 \,\mathrm{g\,kg^{-1}}$ and temperature $-2^{\circ}\mathrm{C}$ is frozen from above in a Hele-Shaw cell (plate separation d = 1mm). We assume $K_0 = 10^{-9}$ m², and vary the atmospheric temperature T_a .

Fig. 5 (\uparrow) . (a) Total salt rejected from ice. (b) Ice depth increases roughly $\propto \sqrt{t}$. (c) Average solid fraction ϕ increases following the onset of convection. (d) Average channel spacing \bar{L} increases over time. Fig. 4: Ice grown from a fixed boundary. https://goo.gl/4n9STV

 $T_a = -10^{\circ} \text{C}$

 $T_a = -15^{\circ} \text{C}$

 $T_a = -20^{\circ} \text{C}$

 $T_a=-20^{\circ}\mathrm{C}$

t (mins)

Steady state solutions

For ice grown at a constant rate V from water of initial salinity S_0 we investigate the sensitivity to the Rayleigh number Rm and concentration ratio \mathcal{C} ,

$$\mathcal{C} = \frac{S_0}{S_e - S}$$

In fig. 6 (right \rightarrow), we plot the porosity χ , streamlines (white) and salinity contours (red) for steady state solutions, where the domain width is chosen to maximise the solute flux. Decreasing \mathcal{C} reduces the porosity, confining convection to a narrow porous layer at the mush-liquid interface.

Below, we construct a scaling argument for $\mathcal{C} \ll 1$, then compare to numerical simulations (fig. 7) and experimental results (fig. 8).

(a) C = 0.04, Rm = 250

increases nearly linearly with (Rm -

Fig. 7: Numerically calculated salt flux Fig. 8: (a) Change in salinity of the underlying liquid during transient growth measured by [3]. (b) Collapse of $Rm_{crit})^{3/4}$ when $\mathcal{C} \ll 1$, where Rm_{crit} is the — the data predicted by $F \sim \mathcal{C}Rm^{3/4}$, where t_c is the time critical Rayleigh number for convection. when convection starts and $\gamma = l \kappa_l^{-3/8} (gK_0/\nu)^{-3/4}$.

Governing Equations for Flow in Porous Mushy Sea Ice

60 mins

Solve for flow and solidification in reactive porous media [4] with Darcy's law applied in a narrow Hele-Shaw cell with variable ice porosity. Scales: length $\sim l$, time $\sim l^2/\kappa_l$, velocity $\sim \kappa_l/l$, temperature $\Delta T \sim T_e - T_0$, salinity $\Delta S \sim S_e - S_0$, permeability $\sim K_0$, pressure $\sim \eta \kappa_l/K_0$.

Momentum $\mathbf{U} = Rm\Pi \left(-\nabla p - S_l \right),\,$ $\frac{DH}{Dt} + \mathbf{U} \cdot \nabla T = \nabla \cdot [\chi + (1 - \chi)k] \nabla T,$ $\nabla \cdot \mathbf{U} = 0,$ $\frac{DS}{Dt} + \mathbf{U} \cdot \nabla S = Le^{-1}\nabla \cdot \chi \nabla S.$ Mass, salt

Parameters $Rm = \frac{\rho_0 g \beta \Delta S K_0 l}{\kappa_{ll} n}$, $Le = \frac{\kappa_l}{D_l}$, $St = \frac{L}{c_{nl} \Delta T}$, $c_p = \frac{c_{p,s}}{c_{nl}}$, $k = \frac{k_s}{k_l}$.

U (Darcy velocity), χ (porosity), p (pressure), T (temperature), S_l (liquid salinity), $S = \chi S_l$ (bulk salinity),

 $H = St\chi + [\chi + (1 - \chi)c_p]T$ (enthalpy),

 $\Pi(\chi)^{-1} = \Pi_{\text{Hele-Shaw}}^{-1} + \chi^{-3}$ (permeability),

 η (viscosity); D_l (salt diffusivity); β (haline expansion);

 $c_{p,l}, c_{p,s}$ (liquid/solid specific heat); k_l, k_s (liquid/solid heat conductivity); d (Hele-Shaw cell thickness); K_0 (reference permeability);

l (box height); κ_l (liquid heat diffusivity); ρ_0 (reference density).

Future Work

- Consider growth over longer time periods (days to weeks), with time varying atmospheric forcing.
- Simulations with the liquid region governed by the Navier-Stokes equation, rather than flow in a Hele-Shaw cell.
- Three dimensional simulations, utilising the Adaptive Mesh Refinement capabilities of our code.