Задача 1. Олимп-Сити

Ограничение по времени: 1 секунда Ограничение по памяти: 512 мегабайт

Марсиане строят новый город для исследователей космоса — Олимп-Сити. Они активно изучают Вселенную, поэтому город будет огромных размеров. Сроки строительства довольно сжаты, поэтому необходимо успеть построить как можно больше зданий.

Известно, что марсианский календарь сильно отличается от земного. Год у марсиан длинный: он состоит из примерно 10^{13} дней и делится на месяцы. Первый месяц длится всего один день. Второй месяц длится два дня, третий — три дня, ..., **i**-й месяц длится **i** дней. Как и в земном календаре, дни у марсиан нумеруются с единицы. Например, первые 12 дней в году будут иметь номера дней в месяце 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1 и 2 соответственно.

Но дни, как и месяцы, имеют неодинаковую длину. А именно, \mathbf{X} -й день месяца длится ровно \mathbf{X} часов.

За постройку Олимп-Сити взялась лучшая бригада строителей на Марсе. Она может построить одно здание за час. То есть, в X-й день месяца будет построено X зданий. По плану, Олимп-Сити будет строиться с L-го по R-й день марсианского года включительно, причем строительство начнется и закончится в одном году.

Бригада уже готова приступить к делу, но, чтобы заказать необходимое количество стройматериалов, ей необходимо знать, сколько зданий можно построить в отведенные сроки. Помогите марсианам найти это количество.

Формат входных данных

Единственная строка входных данных содержит два целых числа ${\bf L}$ и ${\bf R}$ ($1 \le {\bf L} \le {\bf R} \le 10^{12}$) – первый и последний дни строительства.

Формат выходных данных

В единственной строке выведите одно число – количество зданий в Олимп-Сити, которые будут построены в срок.

Примеры

Стандартный ввод	Стандартный вывод	Комментарий
3 6	8	Номера дней с 3го по 6й в месяце - 2, 1,
		2 и 3, поэтому в Олимп-Сити будет
		2+1+2+3=8 зданий.
5 9	11	Номера дней с 5го по 9й в месяце - 2, 3,
		1, 2 и 3, поэтому в Олимп-Сити будет
		2+3+1+2+3=11 зданий.

Подзадача 1 (50 баллов)

 $\mathbf{L} \leq \mathbf{R} \leq 10^6$. В этой подзадаче 35 тестов (с 3 по 37). Баллы за подзадачу начисляются только в случае, если все тесты успешно пройдены.

Подзадача 2 (25 баллов)

R − **L** ≤ 10⁶. В этой подзадаче 10 тестов (с 38 по 47). Баллы за подзадачу начисляются только в случае, если все тесты этой и предыдущей подзадачи успешно пройдены.

Подзадача 3 (25 баллов)

Нет дополнительных ограничений. В этой подзадаче 5 тестов (с 48 по 52). Баллы за подзадачу начисляются только, если все тесты этой и предыдущих подзадач успешно пройдены.

Получение информации о результатах окончательной проверки

Сообщается результат окончательной проверки на каждом тесте.

Задача 2. Бинарный код

Ограничение по времени: 1 секунда Ограничение по памяти: 512 мегабайт

Мальчик Бит дополнительно занимается информатикой на факультативных занятиях. Бит знает о бинарном представлении данных в памяти компьютера, в том числе умеет представлять целые числа в виде нулей и единиц. И он решил дальше исследовать эту область.

Бит прочитал в книге о сжатом бинарном коде для квадратных матриц со стороной 2^{κ} , состоящих из нулей и единиц. Код строится по следующим правилам:

- ✓ Если матрица полностью состоит из нулей, то код равен '0'.
- ✓ Если матрица полностью состоит из единиц, то код равен `1'.
- ✓ Иначе матрица разбивается на четыре квадратные части со стороной 2^{к-1}. Эти части последовательно кодируются. Их коды записываются последовательно, и дополнительно, чтобы можно было восстановить исходную матрицу, результат записывается в скобках '(' и ')'. Части записываются в следующем порядке: сначала кодируется верхняя левая часть, затем верхняя правая, потом нижняя правая и нижняя левая части.

Бит научился кодировать и декодировать матрицы. Теперь ему интересны необычные свойства результатов такого кодирования, в частности, он хочет научиться вычислять количество нулей и единиц, зная бинарный код матрицы и число ${\bf K}$, описывающее количество строк и столбцов в матрице.

Напишите программу для подсчета количества нулей и единиц в исходной матрице.

Формат входных данных

Первая строка содержит два натуральных числа N, K ($1 \le N \le 300~000$, $1 \le K \le 30$) — длина записи бинарного кода и показатель размерности закодированной матрицы, соответственно. Числа в строке разделены пробелом.

Во второй строке записаны N символов — бинарный код матрицы. Для записи бинарного кода используются только следующие символы: `0', `1', `(', `)'.

Формат выходных данных

Выведите два числа – количество нулей и единиц в исходной матрице.

Примеры

Стандартный ввод	Стандартный вывод	Комментарий
11 2	6 10	Исходная матрица 4х4:
(10(1001)1)		1100
		1100
		1110
		1110
1 2	0 16	Исходная матрица состоит
1		только из единиц.
16 3	24 40	Исходная матрица имеет
(1(1110)0(1110))		размер 8х8.

Подзадача 1 (10 баллов)

Первая подзадача состоит из тестов 4-8, для которых выполняется ограничение $\mathbf{K} = 1$. Баллы за эту подзадачу начисляются только при прохождении всех тестов этой подзадачи.

Подзадача 2 (40 баллов)

Вторая подзадача состоит из тестов 9-27, для которых выполняется ограничение $\mathbf{K} \leq 9$. Баллы за эту подзадачу начисляются только при прохождении всех тестов этой и предыдущей подзадачи.

Тренировочный тур к региональному этапу 2020 Москва, 8 января 2020

Подзадача 3 (50 баллов)

Третья подзадача состоит из тестов 28-53 без дополнительных ограничений. Баллы за эту подзадачу начисляются только при прохождении всех тестов этой и предыдущей подзадачи.

Получение информации о результатах окончательной проверки

Сообщается номер первого непройденного теста в подзадаче + результат прохождения этого теста.

Задача 3. Контрольная работа

Ограничение по времени: 1 секунда Ограничение по памяти: 512 мегабайт

Марсиане – существа дружелюбные и любят делиться друг с другом. Они считают делимость целых чисел одной из важнейших тем в математике. В марсианской школе эта тема разбирается очень подробно.

Афанасий, сын Казимира Казимировича, как раз недавно проходил делимость целых чисел в школе. Он писал контрольную работу по этой теме. Одна из задач на этой контрольной заключалась в следующем.

Назовем последовательность M-кратной, если произведение чисел в ней делится на M без остатка. Например, последовательность (5, 3, 4, 2) является 12-кратной, поскольку произведение её элементов $5 \cdot 3 \cdot 4 \cdot 2 = 120$ делится на 12 без остатка.

В задаче необходимо было найти количество различных **М**-кратных последовательностей, состоящих из **N** целых чисел от 1 до **K**. Две последовательности ($A_1, A_2, ..., A_N$) и ($B_1, B_2, ..., B_N$) считаются различными, если для некоторого $1 \le i \le N$ верно, что $A_i \ne B_i$.

Афанасий справился с этой задачей на контрольной, но он не уверен в правильности своего ответа. Казимир Казимирович попросил Вас помочь Афанасию и написать программу, которая решает его задачу. Мальчику достаточно, чтобы программа вычисляла не сам ответ, а лишь его остаток от деления на 1 000 000 007.

Формат входных данных

Единственная строка входных данных содержит три целых числа N, M, K ($1 \le N \le 10~000$, $2 \le M$, K $\le 10~000$) — длина последовательности, число, на которое должно делиться произведение её элементов, и максимально возможное число в последовательности.

Формат выходных данных

Выведите одно число – остаток от деления количества последовательностей на число 1 000 000 007.

Примеры

Стандартный ввод	Стандартный вывод	Комментарий
3 2 2	7	Подходят следующие
		последовательности:
		(1, 1, 2), (1, 2, 1),
		(2, 1, 1), (1, 2, 2),
		(2, 2, 1), (2, 1, 2) и
		(2, 2, 2).
2 12 7	7	Подходят следующие
		последовательности: (2, 6),
		(3, 4), (4, 3), (4, 6),
		(6, 2), (6, 4) и (6, 6).
3 12 4	21	Примеры подходящих
		последовательностей:
		(4, 3, 1), (2, 2, 3),
		(4, 4, 3).
3 6 5	42	Примеры подходящих
		последовательностей:
		(5, 4, 3), (1, 2, 3),
		(3, 4, 2).

Тренировочный тур к региональному этапу 2020 Москва, 8 января 2020

Подзадача 1 (20 баллов)

 $N \le 100$, M = K = 2. Тесты с 5 по 14. Баллы за подзадачу начисляются только в случае, если все тесты для данной подзадачи пройдены.

Подзадача 2 (20 баллов)

N ≤ 100, M, K ≤ 3. Тесты с 15 по 24. Баллы за подзадачу начисляются только в случае, если все тесты для данной и предыдущей подзадачи пройдены.

Подзадача 3 (20 баллов)

№, М, К ≤ 500. Тесты с 25 по 34. Баллы за подзадачу начисляются только в случае, если все тесты для данной и предыдущей подзадачи пройдены.

Подзадача 4 (20 баллов)

N, M, $K \le 2000$. Тесты с 35 по 44. Баллы за подзадачу начисляются только в случае, если все тесты для данной и предыдущей подзадачи пройдены.

Подзадача 5 (20 баллов)

Нет дополнительных ограничений. Тесты с 45 по 54. Каждый тест оценивается в 2 балла. Баллы подзадачу начисляются только в случае, если все тесты всех предыдущих подзадач успешно пройдены. Баллы за каждый тест этой подзадачи начисляются независимо.

Получение информации о результатах окончательной проверки

Сообщаются только баллы за каждую подзадачу в целом.

Задача 4. Садовник

Ограничение по времени: 1 секунда Ограничение по памяти: 512 мегабайт

Казимир Казимирович – марсианский садовник. Он выращивает яблоки в своём саду на Марсе.

В саду Казимира Казимировича растет N яблонь. Все яблони расположены в ряд и пронумерованы целыми числами от 1 до N слева направо. На каждой из яблонь спеют яблоки. Введем характеристику $\mathbf{Z}_{\mathbf{i}}$ – спелость яблок на \mathbf{i} -й яблоне.

Казимир Казимирович – опытный садовник. Он знает, как изменяется спелость яблок в течение года. А именно, происходит следующее:

- 1. В начале года спелость яблок на i-й яблоне равна Z_i .
- 2. В некоторые моменты времени все яблоки со спелостью X_j созревают, и их спелость становится равной X_i +1.

Время от времени Казимир Казимирович проверяет, как растут яблоки. Для этого он выбирает все яблони с L_i по R_i включительно и считает количество яблонь, спелость яблок на которых не превышает некоторого целого числа Y_i .

Раньше Казимир Казимирович справлялся с подсчётом вручную, но он расширил свой сад, и теперь считать яблони стало слишком долго. Он попросил Вас написать программу, которая моделирует созревание яблок и отвечает на его запросы.

Формат входных данных

В первой строке входного файла содержится два целых числа $\mathbf N$ и $\mathbf Q$ ($1 \le \mathbf N$, $\mathbf Q \le 500~000$) – количество яблонь в саду Казимира Казимировича и количество событий.

Во второй строке входного файла содержится N целых чисел $\mathbf{Z}_{i} (1 \leq \mathbf{Z}_{i} \leq 1\ 000\ 000)$ – спелость яблок на \mathbf{i} -й яблоне в начале года.

В каждой из следующих ${\bf Q}$ строк содержится одно из событий. Каждая из этих строк начинается с целого числа ${\bf T_j}$ ($1 \le {\bf T_j} \le 2$) — тип события. События перечислены в хронологическом порядке и бывают следующих видов:

- 1. Если $T_j = 1$, то в этой строке содержится также целое число X_j ($1 \le X_j \le 1$ 500 000). Это означает, что у всех яблок, спелость которых равна X_i , она стала равна X_{i+1} .
- 2. Если T_j = 2, то в этой строке содержится также три целых числа L_j , R_j и Y_j ($1 \le L_j \le R_j \le N$, $1 \le Y_j \le 1$ 500 000). Это означает, что Казимир Казимирович хочет узнать, у скольких яблонь на отрезке с L_j по R_j спелость яблок не превышает Y_j .

Формат выходных данных

Выведите целые числа, по одному числу в отдельной строке для каждого события второго типа – ответы на запросы Казимира Казимировича.

Пример

Стандартный ввод	Стандартный вывод	Комментарий
7 9	2	Промоделируем ситуацию:
4 1 2 1 4 4 7 2 1 4 1	0 2	• В первом запросе подходят вторая и четвертая яблоня.
1 1 2 1 3 1	3	• После второго события Z_i становятся равны 4,2,2,2,4,4,7.
1 2 2 3 5 3		• К третьему событию яблок со спелостью 1 не осталось, поэтому ответ на запрос равен нулю.
2 3 5 2 1 4 2 2 6 4		• После четвертого события ничего не меняется, так как яблок со спелостью 1 не осталось.

Тренировочный тур к региональному этапу 2020 Москва, 8 января 2020

• После пятого события Z_i становятся равны 4,3,3,4,4,7.
• Ответ на шестой запрос – 2 (подходят третья и четвертая
яблони).
• Так как яблонь со спелостью яблок 1 и 2 не осталось, ответ на седьмой запрос равен нулю.
$ullet$ После восьмого события Z_{i} становятся равны 5,2,2,5,5,7.
• В последнем запросе подходят яблони с номерами 2, 3 и 4; ответ равен трём.

Подзадача 1 (30 баллов)

 $N, Q \le 100 000, Zi \le 50.$

В этой подзадаче 15 тестов со 2 по 16. Баллы начисляются только за прохождения всех тестов подзадачи.

Подзадача 2 (30 баллов)

 $N, Q \le 200 000, Zi \le 200.$

В этой подзадаче 15 тестов со 17 по 31. Баллы начисляются только за прохождения всех тестов этой и предыдущей подзадачи.

Подзадача 3 (25 баллов)

 $N, Q \le 200 000, Zi \le 100 000.$

В этой подзадаче 15 тестов с 32 по 46. Баллы начисляются только за прохождения всех тестов этой и всех предыдущих подзадач.

Подзадача 4 (15 баллов)

Нет дополнительных ограничений.

В этой подзадаче 5 тестов с 47 по 51. Баллы начисляются только за прохождения всех тестов этой и всех предыдущих подзадач.

Получение информации о результатах окончательной проверки

Сообщается результат окончательной проверки на каждом тесте каждой подзадачи.