FOR OFFICIAL USE			

KU	PS
L	

Total Marks

0300/402

NATIONAL QUALIFICATIONS 2000 MONDAY, 29 MAY 10.50 AM - 12.20 PM BIOLOGY STANDARD GRADE Credit Level

Full name of centre	Town
Forename(s)	Surname
Date of birth Day Month Year Scottish candidate number	Number of seat
 All questions should be attempted. The questions may be answered in any order be spaces provided in this answer book, and must be 	
3 Rough work, if any should be necessary, as well book. Additional spaces for answers and for roug book. Rough work should be scored through when	gh work will be found at the end of the
4 Before leaving the examination room you must give not, you may lose all the marks for this paper.	e this book to the invigilator. If you do

Diagram A shows three burrowing animals which live at different depths on Scottish beaches. They are eaten by various wading birds.

Diagram A

Diagram B shows the heads of three different species of wading birds.

(a) Complete diagram B by writing the name of the burrowing animal each bird is likely to be feeding on, in the space below the bird.

Diagram B

			Marks	KU	PS
(co i (<i>b</i>)	ntinue (i)	Which bird would be able to feed on all the burrowing animals			
		shown?	1		
	(ii)	Which bird would be able to feed on only one of the burrowing animals?			
(c)		les are very sensitive to pollution and cannot live in polluted sand. one effect on the wildlife of a beach if the cockles were to die out.	1		
			1		
(<i>d</i>)		name is given to a species, such as cockles, whose presence or ace gives information about conditions in the habitat?			
			1		
		[Tur	n over		
					,
00/402	1	Page three			,

Marks KU PS

2. The effect of carbon dioxide concentration on the growth rate of plants at 10 °C was investigated. Identical groups of plants were grown in different concentrations of carbon dioxide for 30 days.

The plants were then collected, heated at 100 °C and their dry mass recorded. The table below shows the results.

Concentration of carbon dioxide (%)	0	0.03	0.06	0.09	0.12	0.15
Gain in dry mass (g/day) at 10 °C	0	0.1	0.18	0.26	0.3	0.3

(a) (i) On the grid below, plot a line graph to show the effect of increasing carbon dioxide concentration on the rate of growth of the plants.

(Additional graph paper, if required, will be found on page 26.)

Gain in dry mass (g/day)

(ii) Describe the relationship between the carbon dioxide concentration and the rate of growth of the plants.

(iii) Why was the dry mass of the plants measured, rather than the gain in fresh weight?

1

					WRIT TH MAR	IIS
				Marks	KU	PS
2.	(a) (conti	nued)			
		(iv)	At concentrations above 0·12%, carbon dioxide was no longer a limiting factor in the growth of the plants. Suggest another possible limiting factor.			
				1		
	(b)	(i)	Name the layer of closely packed cells which carry out most of the photosynthesis in a leaf.			
				1		
		(ii)	What feature of the internal structure of a leaf allows carbon dioxide to diffuse from the stomata to the photosynthesising cells?			
				1		
	(c)	phote	diagram below shows the fate of the carbon dioxide used in osynthesis. Complete the diagram by naming each of the ohydrates described.			
			structural carbohydrate			
			simple sugar			
can	rbon	dioxid	e photosynthesis energy			
L						•
			storage carbohydrate	3		4
			[Tì	ırn oveı	•	
[03	00/40	2]	Page five			

DO NOT

						MAR	GIN
					Marks	KU	PS
3.	(a)		ments below refer to f ADH in the blood.	factors which affect the level of the			
			king a large volume of wa				
			wwater concentration in ag sweat when running	the blood			
			h water concentration in				
		Which tw in the bloc		pout a decrease in the level of ADH			
		Tick the co	prrect box.				
		1 and 2 on	ly	2 and 3 only			
		1 and 4 on	ly	3 and 4 only	1		
	(b)	The diagra	am below represents a ki	idney nephron.			
			A				
		Complete labelled pa	the table below to shorts of the nephron.	ow the names and functions of the			
		Letter	Name	Function			
				transports reabsorbed glucose			
			collecting duct				
		L			2		

[0300/402]

DO NOT
WRITE IN
THIS
MARGIN

PS

Marks KU

1

1

1

1

3. (continued)

(c) The following table shows the composition of glomerular filtrate and of

Substance	Composition of glomerular filtrate (%)	Composition of urine (%)
water	98.5	96
salts	1	1.8
glucose	0.1	0
urea	0.02	2
others	0.38	0.2

(i)	Which substance, present in the glomerular filtrate, is completely
	reabsorbed back into the blood?

(ii) A woman produced 150 litres of glomerular filtrate and 1.5 litres of urine in one day.

What percentage of the glomerular filtrate was passed as urine? Space for calculation

(iii) Even though most of the salt present in the glomerular filtrate is reabsorbed, the percentage of salt in the urine is greater than that in the filtrate.

Explain why this is so.

(d) Urine contains the waste chemical urea. From what food substance is urea produced?

[Turn over

[0300/402]

Page seven

Marks

KU PS

4. The diagram below shows a choice chamber.

Ten woodlice were released into the choice chamber. The number of animals present in both sides were recorded every minute for six minutes. The results are shown in the table.

Time (min)	Woodlice in Side A	Woodlice in Side B
1	4	6
2	3	7
3	1	9
4	2	8
5	1	9
. 6	0	10

(a) On the grid below, complete the bar graph of the results.

(An additional grid, if required, will be found on page 26.)

i) When such found to ga	woodlice to in humidity.	two differe		nged to study sities instead o			
i) When such found to ga	woodlice to in humidity.	two differe					
found to ga							
found to ga					2		
Explain the	mer in dark			he woodlice v	were		
woodlice.	e benefit of	f this res _l	ponse to the	survival of	the		
-					1		
					[Turn over		
						[Turn over	[Turn over

Marks	KU	$_{\rm PS}$
T. T. CO. 1 100		_ ~ ~

5. The diagram below shows the distribution of plants on a Scottish hillside.

(a) From the diagram, identify the plants which can live under oak trees and pine trees.

and	
and	

(b) Heather does not grow well under trees. Suggest **one** abiotic factor which might be needed for heather to grow well.

(c) S	Suggest	one	reason	why	there	are	no	trees	on	the	top	of	the	hill	
-------	---------	-----	--------	-----	-------	-----	----	-------	----	-----	-----	----	-----	------	--

1

Marks

KU PS

6. Several pieces of potato were blotted dry and weighed. Each was then placed in a different concentration of salt solution.

After 2 hours the pieces of potato were removed, blotted dry and reweighed. The percentage change in mass was calculated and the results plotted on a graph.

(a) At which salt concentration did the mass of the potato remain the same?

_____ $g/100 \, cm^3$

1

(b) State the percentage change in mass of the potato at a salt concentration of $7 \,\mathrm{g}/100 \,\mathrm{cm}^3$ after two hours.

1

(c) Predict the salt concentration that will produce a 30% decrease in mass.

_____ $g/100 \, cm^3$

1

(d) Cells from the potato in the $8 \,\mathrm{g}/100 \,\mathrm{cm}^3$ solution were examined with a microscope.

Which of the following diagrams best represents one cell from the potato?

Tick the correct box.

Page eleven

[Turn over

Marks | KU | PS

The distribution of heights of 175 school pupils is shown in the table.

Height range (cm)	148–152	153–157	158–162	163–167	168–172	173–177	178–182	183–187
Number of pupils	1	6	13	49	52	28	21	5

(a) Use the results to complete the bar graph. (An additional bar graph, if required, will be found on page 27.)

 $148-152\ 153-157\ 158-162\ 163-167\ 168-172\ 173-177\ 178-182\ 183-187$ Height range (cm)

(b) What percentage of the pupils had heights in the range 163-167 cm? Space for calculation

_ %

(c) Height is an example of continuous variation. Explain what is meant by continuous variation.

1

1

[0300/402]

		Marks	KU	PS
ie-bree	eding grey-bodied flies were crossed with black-bodied flies,			
Pare	nt phenotypes grey-bodied × black-bodied			
Pare	nt genotypes gg			
F1 p	henotype all grey-bodied			
F1 g	enotype	1		
(i)	F1 flies were crossed to produce an F2 generation containing 72 flies. Using the expected ratio, predict the number of grey bodied and black-bodied flies in the F2 generation. Space for calculation			
(ii)	Predicted number of grey-bodied flies Predicted number of black-bodied flies If the numbers of grey-bodied and black-bodied flies in the F2	1		
	generation were different from the predicted numbers, how could this be explained?			
		1		
		1		
	[Tu	rn over		
2]	Page thirteen			
	Compared Com	Parent genotype all grey-bodied F1 genotype (i) F1 flies were crossed to produce an F2 generation containing 72 flies. Using the expected ratio, predict the number of grey bodied and black-bodied flies in the F2 generation. Space for calculation Predicted number of grey-bodied flies Predicted number of black-bodied flies Predicted number of black-bodied flies in the F2 generation were different from the predicted numbers, how could this be explained? The letters G and g are used to represent different forms of a gene. What term means the different forms of a gene? [Tue	the Fruit fly Drosophila, grey body colour (G) is dominant to black (g). te-breeding grey-bodied flies were crossed with black-bodied flies, ducing an F1 generation which were all grey-bodied. Complete the diagram below to show the missing genotypes of the cross. Parent phenotypes grey-bodied × black-bodied Parent genotypes gg	te-breeding grey-bodied flies were crossed with black-bodied flies, ducing an F1 generation which were all grey-bodied. Complete the diagram below to show the missing genotypes of the cross. Parent phenotypes grey-bodied × black-bodied Parent genotype all grey-bodied F1 genotype all grey-bodied F1 genotype 1 (i) F1 flies were crossed to produce an F2 generation containing 72 flies. Using the expected ratio, predict the number of grey bodied and black-bodied flies in the F2 generation. Space for calculation Predicted number of grey-bodied flies

	ı
Marke	ı
IVIUIKA	

KU PS

- 9. The enzyme lipase catalyses the breakdown of fats into fatty acids and glycerol. It can be obtained as a dry powder and made into a solution before use.
 - (a) The effect of storage at different temperatures on the activity of the lipase solution was investigated. The results are shown in the graph.

(i) How long did it take the lipase activity to decrease to 50% when stored at 20°C?

_____ hours

1

(ii) Which of the following lipase solutions would be the most active? *Tick the correct box*.

Stored at 4°C for 30 hours

Stored at 4°C for 140 hours

Stored at 20 °C for 10 hours

Stored at 20 °C for 50 hours

1

[0300/402]

Page fourteen

(n -		~ <i>A</i>)	Marks	120	F
	ntinue	The lipase activity was estimated by measuring the change in pH			
(b)	(i)	while it was breaking down fats.			
		Explain why the pH changed during this reaction.			
			1		
			-		
	(ii)	The pH of the milk can also be changed by bacterial fermentation			
		during the souring of milk. Name the sugar in milk which is fermented by bacteria.			
		Name the sugar in fillik which is fermented by bacteria.			
			1		
(c)		nis investigation, the substrate for lipase was the fat in milk. ain why a starch suspension could not be used as the substrate for e.		-	
			1		
		[Tur	n over		

Page fifteen

[0300/402]

		Marks	KU	PS
10. Re	ead the passage below.			
"(Gene genie" adapted from an article in the Sunday Times, March 1998.			
O: ca	ancer is the survival and uncontrolled multiplication of damaged cells. The in four of us will still die of cancer. In 60% of cancer cases the main use is a faulty gene called p53 . This "guardian angel" gene is the body's turally occurring brake that stops cancer before it begins.			
su de	ealthy p53 tells a cell that it has been damaged by a cancer causing agent ch as tobacco smoke, a high fat diet or ultra-violet light. The cell then stroys itself. In some people the "guardian angel" gene does not switch. This makes the process fail and the result is a cancerous tumour.			
ac pr th wi	tivator drug in Dundee. The aim of the drug is to use mechanisms already esent in the body. It is designed to switch the p53 gene on and, as a result, the cancer cells should be destroyed without damage to healthy cells. This all make the drug much kinder than the chemotherapy or radiotherapy estiments used at present.			
ca	ne drug will be tested on a small number of patients with head and neck neers. Doctors believe these tumours are more accessible and easier to onitor than other types of cancer.			
Ar	nswer the following questions based on the passage.			
(a)	Name two cancer causing agents, mentioned in the passage.			
	1 2	1		
(<i>b</i>)	Describe how the p53 gene prevents cells forming cancerous tumours.	-		
		1		
(c)	Explain how cells with a faulty p53 gene may form cancerous tumours.			
		1		
(<i>d</i>)	Why should the new p53 drug be a safer alternative than present treatments?			
		1		
(e)	Give two reasons why the first trials will be on patients suffering from head and neck cancers.			
	1			
	2	1		
		1		
[0300/40]	Page sixteen			

PS

Marks	KU

1

1

1

11. (a) The diagram below shows stages in the brewing of beer.

storage tank

(i) What is the source of the sugar for the brewing of beer?

(ii) During fermentation, yeast carries out anaerobic respiration. Complete the following word equation for anaerobic respiration in yeast.

glucose + + heat energy

(iii) Explain why the fermentation vessel often has to be cooled during beer production.

(b) Brewing is a batch process.

Which of the following are typical features of batch processing? $Tick(\checkmark)$ the correct box or boxes.

Immobilised cells or enzymes are used

Product is mixed with cells or enzymes

Reaction is stopped and vessel is cleaned between production runs

Cells or enzymes can be re-used

1

[Turn over

Marks KU

KU PS

12. (a) The diagram shows a side view of the human brain.

Complete the table by naming parts A and B, and giving **one** function of each.

Part	Name	Function
A		
В		

2

(b) The diagram shows the semi-circular canals from the human ear. The canals detect movements of the head.

Describe the arrangement of the semi-circular canals and explain how this arrangement helps to detect head movements.

Description _____

Explanation _____

1

Marks	KII	PS

13. In an experiment to investigate washing powders, a pupil set up a petri dish as shown below. Four wells were cut in the milk agar using a cork borer. Milk agar contains protein which makes the agar cloudy.

Four drops of washing powder solutions A, B and C were put into the corresponding wells. Four drops of distilled water were put into well D. After two hours, clear zones were visible around the wells as shown below.

(a)	(i)	Suggest	how th	e reliability	of the	results	could 1	be i	improved.
-----	-----	---------	--------	---------------	--------	---------	---------	------	-----------

(ii) Well D is a control. What is the purpose of the control?

(iii) Washing powders A and C were biological detergents. Suggest why clear zones were produced around wells A and C only.

(b) Give **one** advantage of using biological detergents in the home, rather than non-biological detergents.

[Turn over

1

1

1

1

[0300/402]

Page nineteen

Marks KU

KU PS

14. The diagram shows part of the human digestive system.

(a) Use letters from the diagram to identify where the named digestive juices are **produced**.

Digestive juice	Letter
pancreatic juice	
saliva	
gastric juice	
bile	

PS

Marks	KU

14.	(continue	ed)
T.1.	COLLULIA	cu,

(b) A villus from region D is shown below.

Describe **two** ways in which a villus is adapted for its role in the absorption and transport of food.

1

2 _____

[Turn over

2

[0300/402]

Page twenty-one

Marks KU

KU PS

15.	The	nitrogen	cycle	describes	the	essential	movement	of	nitrogen	betweer
	livin	g organist	ns and	l their env	iron	ment.				

The grid below lists some of the ways in which this is achieved.

A	В	С
nitrification	denitrification	decay and decomposition
D	Е	F
nitrogen fixing	eating	uptake by roots

Use a letter from the grid to identify each of the following.

- (a) Protein in plants becomes animal protein.
- (b) Nitrates in soil become plant protein.
- (c) Atmospheric nitrogen becomes nitrates in soil.
- (d) Nitrates in soil become atmospheric nitrogen.
- (e) The stage in which fungi are most important.

Marks KU PS

The following table gives information about some common plants and their 16. fruits or seeds.

Plant	Description of flower	Diagram of fruit or seed (not drawn to same scale)
Bramble	bright white petals and sweet scented	
Thistle	bright purple petals with nectar	
Oak	small green petals and unscented	
Ash	brown petals and no scent or nectar	

Complete the table below by ticking the correct boxes.

Plant	Method of	pollination	Method of se	eed dispersal
	wind	insect	wind	animal
Bramble				
Thistle				
Oak				
Ash				

2

[Turn over

17. The diagram shows the apparatus used to investigate the energy contents of different foods.

1 g of each food was burned under a beaker containing 100 cm³ of water. The rise in water temperature was measured using a thermometer.

The energy content of the food can be calculated using the equation

energy content = temperature rise × 420 (joules/gram)

(a) Complete the table of results to show the energy content for protein.

Space for calculation

Food	Temperature rise (°C)	Energy content (joules/g)
Fat	25	10 500
Carbohydrate	12	5040
Protein	13	

(b) Suggest a reason why the energy contents found in this investigation were lower than the expected values.

1

Marks KU

KU PS

18. The graph below describes weight categories for British adults.

(a) An adult man is 1.8 metres tall and weighs 80 kg.
Use the graph to describe his weight category.

(b) A woman of 1.65 metres in height weighs 40 kg.

Calculate the minimum weight she needs to gain to reach an ideal weight.

Space for calculation

_____ kg

1

1

(c) The number of obese people in the UK has increased dramatically in recent years.

Suggest a possible reason for this trend.

1

[END OF QUESTION PAPER]

[0300/402]

Page twenty-five

SPACE FOR ANSWERS AND FOR ROUGH WORKING

ADDITIONAL GRAPH PAPER FOR QUESTION 2(a)(i)

ADDITIONAL GRID FOR QUESTION 4(a)

[0300/402]

Page twenty-six

SPACE FOR ANSWERS AND FOR ROUGH WORKING

ADDITIONAL GRID FOR QUESTION 7(a)

148–152 153–157 158–162 163–167 168–172 173–177 178–182 183–187 Height range (cm)

SPACE FOR ANSWERS AND FOR ROUGH WORKING

MRITE IN THIS DO NOT

7				
		collecting duct		
	transports reabsorbed glucose			
	noitənuA	әш v_N	Гептел	
	ent to snoitonut bas semen ent wo	he table below to sho ts of the nephron.		
	8—————————————————————————————————————			
	dney nephron.	n below represents a kio	The diagran	(q)
I.	3 and 4 bns 8		ylno 4 bns l	
	Z and 3 only		l and 2 only	
	out a decrease in the level of ADH	غ	Which two boold an Tick the corr	
		water concentration in	dgid A 4	
	poold əri	water concentration in t	v wol A 2	
	ıter	sw to smulov serel s er	1 Drinkir	
	actors which affect the level of the	ents below refer to fa HG in the blood. Ag a large volume of wa	IA ənomiod	(v)

			əvif əz n q	[0300/402]
A STATE OF THE STA				
		n over	nT]	
		ε	storage carbohydrate	
			photosynthesis	carbon dioxide
			simple sugar	
			structural carbohydrate	uog ma
			liagram below shows the fate of the carbon dioxide used in ynthesis. Complete the diagram by naming each of the systates described.	photos
		ī	What feature of the internal structure of a leaf allows carbon discisse to diffuse from the stomata to the photosynthesising cells?	
		ī		_
			Name the layer of closely packed cells which carry out most of the	
		ī	At concentrations above 0.12%, carbon dioxide was no longer a imiting factor in the growth of the plants. Suggest another possible limiting factor.	I
_			(pən	2. (a) (contin
GIN IIS	KU MRIT	sarbM		
	DO I			