Concours ATS SI 2010 - Borne escamotable autonome

2. Analyse fonctionnelle et structurelle

Q1:

S.C.1	Cellules photovoltaïques
S.C.2	Batterie
S.C.3	Platine électronique de gestion
S.C.4	Moteur (Motoréducteur)
S.C.5	Réducteur (Motoréducteur) + système roue vis sans fin
S.C.6	Système pignon crémaillère
S.C.7	Colonnes de guidage (2 pivots glissants)

Q2:

Le limiteur de couple permet de stopper la monté de la borne lorsque un obstacle se présente afin de préserver le système lui-même mais aussi d'éviter des dégradations sur l'obstacle qui peut être une voiture par exemple. Ce système peut être associé aux fonctions FC4 : Résister aux agressions du milieu extérieur et FC6 : Respecter les normes de sécurité mécanique et électrique.

Q3:

Le guidage du chariot supportant la borne est modélisé par 2 liaisons pivots glissants en parallèles.

Q4:

Méthode Statique	Méthode Cinématique
Nombre d'équations statiques	1 boucle \Rightarrow $Ec = 6$
$Es = 6 \times 1 = 6$	Nombre d'inconnues cinématiques
Nombre de mobilités	Ic = 4
$m_c = 1$	Nombre de mobilités
Nombre d'équations utiles	$m_c = 1$
$Eu = Es - m_c = 5$	Or
Nombre d'inconnues statiques	$Ic - Ec = m_c - h$
Is = 4 + 4 = 8	D'où:
$Eu - Is = -3 \Rightarrow$ le système est hyperstatique d'ordre 3	$h=3 \Rightarrow$ le système est hyperstatique d'ordre 3

Q5:

L'hyperstatisme d'ordre 3 implique 3 contraintes géométriques sur chacun des sous ensembles. Globalement, pour que cela fonctionne il faut que les 2 colonnes soient parallèles (2 Contraintes) et que l'entraxe soit précis (1 Contrainte).

Q6:

Le guidage du chariot supportant la borne est modélisé par 2 liaisons pivots glissants en parallèles ce qui réalise bien globalement **une liaison glissière**.

Remarque: Il faut remplacer 2 par Axe Moteur 2 sur le DR2

Q8:

Une liaison rotule et une liaison linéaire annulaire en parallèle forment une liaison pivot isostatique.

3. Etude statique

Q9: On isole l'ensemble E

Bilan des actions extérieures :

$$+ \text{ Liaisons pivots glissantes entre 0 et 1: } T_{A_{0 \to 1}} \begin{pmatrix} X_{A01} & 0 \\ 0 & M_{A01} \\ Z_{A01} & 0 \end{pmatrix}_{A, \vec{x}, \vec{y}, \vec{z}} \\ \text{ et } T_{B_{0 \to 1}} \begin{pmatrix} X_{B01} & 0 \\ 0 & M_{B01} \\ Z_{B01} & 0 \end{pmatrix}_{B, \vec{x}, \vec{y}, \vec{z}}$$

+ Action du poids en G :
$$T_{Poids} \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ -mg & 0 \end{pmatrix}_{G,\vec{x},\vec{y},\vec{z}}$$

+ Action de la crémaillère 0 en $C: T_{0\rightarrow3}$ (Donnée dans le sujet)

D'après les hypothèses du sujet :

$$X_{A01} = X_{B01} = X_{01}$$
 $Y_{A01} = Y_{B01} = 0$ $Z_{A01} = Z_{B01} = Z_{01}$ et $L_{A01} = L_{B01} = 0$ $M_{A01} = M_{B01} = M_{01}$

D'autre part, à limite du glissement en phase de monté nous aurons :

 $Z_{01} = -f.|X_{01}|$ (Effort tangentiel opposé à la vitesse de glissement 1/0)

Remarque : En toute rigueur on devrait écrire $Z_{01} = f(X_{01}, M_{01})$ mais le sujet ne le suggère pas.

Q10: PFS sur l'ensemble E

Le PFS en O nous donne les équations suivantes :

$$2. \begin{vmatrix} X_{01} \\ 0 \\ + \end{vmatrix} \begin{vmatrix} 0 \\ 0 \\ -mg \end{vmatrix} \begin{vmatrix} X_{03} \\ 0 \\ Z_{03} \end{vmatrix} \begin{vmatrix} 0 \\ 0 \\ 0 \end{vmatrix}$$
 (Th de la résultante statique)
$$2. \begin{vmatrix} 0 \\ M_{01} \\ 0 \end{vmatrix} + \begin{vmatrix} 0 \\ mgd \\ 0 \end{vmatrix} \begin{vmatrix} 0 \\ lX_{03} \\ 0 \end{vmatrix} = \begin{vmatrix} 0 \\ 0 \\ 0 \end{vmatrix}$$
 (Th du moment statique)

Q11:

L'équation des moments nous donne : $M_{01} = -\frac{1}{2}(mgd + lX_{03})$

Déterminons X_{03} et Z_{03} :

$$Z_{03} = mg - 2Z_{01}$$

Comme $Z_{01} < 0$ (Cf Q9) on a $Z_{03} > 0$

Or
$$\tan \alpha = -\frac{X_{03}}{Z_{03}}$$
, on a donc $X_{03} < 0$

Comme
$$X_{03}=-2X_{01}$$
, on a $X_{01}>0$ d'où $Z_{01}=-f.\left|X_{01}\right|=-f.X_{01}$

On a alors:
$$Z_{03} = mg - 2\left(-f(-\frac{1}{2}(-\tan\alpha Z_{03}))\right) d$$
'où $Z_{03} = mg + f\tan\alpha Z_{03}$

Et donc
$$Z_{03} = \frac{mg}{1 - f \tan \alpha}$$
 et $X_{03} = -\frac{mg \tan \alpha}{1 - f \tan \alpha}$ d'où

$$M_{01} = -\frac{1}{2}(mgd - l\frac{mg\tan\alpha}{1 - f\tan\alpha}) = \frac{mg}{2}(l\frac{\tan\alpha}{1 - f\tan\alpha} - d)$$

Q12:

Pour annuler le moment transmissible il faut :

$$l\frac{\tan\alpha}{1-f\tan\alpha}-d=0 \text{ d'où } d=l\frac{\tan\alpha}{1-f\tan\alpha}$$

Q13:

AN:
$$d = \frac{60 \tan 20^{\circ}}{1 - 0.22 \tan 20^{\circ}} = 23,74mm$$

4. Etude dynamique

Q14:

La liaison pivot 1-3 est considérée comme parfaite. Elle ne dissipe donc pas de puissance. En conséquence : $P(1 \leftrightarrow 3) = 0$

Q15:

Le solide 1 est en translation donc : $P(g \to 1/0) = \overrightarrow{V_{0 \in 1/0}} \cdot \overrightarrow{Poids} = -mgv$

En phase de monté : $P(g \rightarrow 1/0) = -30 \times 10 \times 0.083 = -24.9W$

En phase de descente : $P(g \rightarrow 1/0) = -30 \times 10 \times -0.083 = 24.9W$

Q16:

Le solide 1 est en translation donc : $P(0 \to 1/0) = \overline{V_{0 \in 1/0}} \cdot \overline{R_{0 \to 1}} = v \times 2Z_{01}^A$

En phase de monté : $P(0 \rightarrow 1/0) = 0.083 \times 2 \times -13 = -2.158W$

En phase de descente : $P(0 \to 1/0) = -0.083 \times 2 \times 11 = -1.826W$

Q17:

La puissance délivrée par le moteur est : $Pm = Cm \times \omega_m$

Q18:

L'énergie cinétique de l'ensemble en mouvement est :

$$E = \frac{1}{2} \left(m \times v^2 + Jm \times \omega_m^2 \right)$$

Comme
$$v = \frac{dp_3}{2} \times k \times \omega_m$$
, on a $E = \frac{1}{2} \left(m \times \left(\frac{dp_3}{2} \times k \right)^2 + Jm \right) \omega_m^2$

Q19:

Q20:

La dérivée, par rapport au temps, de **l'énergie cinétique galiléenne** d'un ensemble Σ est égale à la somme de la **puissance galiléenne** des actions mécaniques extérieurs à Σ et des puissances des actions mutuelles entre chaque solide.

$$\frac{d}{dt}T(\Sigma/Rg) = P(act.ext. \to \Sigma/Rg) + \sum P(Si \leftrightarrow Sj)$$

avec
$$T(\Sigma/Rg) = \sum T(Si/Rg)$$

$$J\frac{d\omega_m}{dt}\omega_m = P(g \to 1/0) + P(0 \to 1/0) + Pm$$

A vitesse constante on obtient : $Cm = -\frac{P(g \to 1/0) + P(0 \to 1/0)}{\omega_m}$ avec

$$\omega_m = \frac{v}{\frac{dp_3}{2} \times k} = \frac{\pm 83}{\frac{2 \times 30}{2} \times \frac{1}{60}} = \pm 166 rd/s$$

En phase de monté : $Cm_m = -\frac{-24.9 - 2.158}{166} = 0.163Nm$

En phase de descente : $Cm_d = -\frac{+24.9 - 1.826}{-166} = 0.139 Nm$

Q21:

En tenant compte du rendement :

$$Cm = -\frac{P(g \to 1/0) + P(0 \to 1/0)}{\omega_m} \times \frac{1}{\eta r}$$

En phase de monté : $Cm_m = -\frac{-24.9 - 2.158}{166} \times \frac{1}{0.4} = 0.4075 Nm$

En phase de descente : $Cm_d = -\frac{+24.9 - 1.826}{-166} \times \frac{1}{\eta r} = 0.3475 Nm$

Q22:

$$Cm_m = 0.4075Nm$$
 et $J = 72.5 \times 10^{-6} kg.m^2$

5. Construction mécanique

Q23:

La borne doit parcourir une course de 500 mm en 6 secondes. On a donc : $v_{10} = 500/6 = 83.3 mm/s$

Et
$$\omega_{31} = \frac{v_{10}}{dp_3/2} = \frac{83.3}{2 \times 30/2} = 2.78 rd/s$$
.

Le coussinet utilisé est un C 14x20x14 donc d'après la documentation, le diamètre intérieur d vaut 14 mm.

La vitesse de glissement du coussinet est donc : $v_{31} = \omega_{31} \times d/2 = 2.77 \times 14/2 = 19.4 mm/s$

Q24:

D'après la documentation :
$$p = \frac{\text{Charge Radiale}}{\text{Surface projetée}}$$
, donc $p = \frac{Fr}{d \times L} = \frac{175}{14 \times 14} = 0.893 MPa$

Q25:

Si on place le point (26.5 tr/mn; 0.893 MPa) dans diagramme donnée figure 7, on constate que l'on est au dessous de la courbe limite. D'autre part, $p \times v_{31} = 0.893 \times 0.0194 = 0.017 < 1.8$, donc le coussinet choisi convient largement.

Q26:

On dimensionne un roulement à partir de la durée de vie souhaitée L_{10} . L_{10} représente la durée de vie du roulement **en millions de tours** (Au minimum, 90% des roulements du même lot doivent attendre la durée de vie L_{10}).

La formule à utiliser est : $L_{10} = \left(\frac{C}{P}\right)^p$ où C représente la charge dynamique de base du roulement utilisé, P la charge équivalente et p = 3 (pour un roulement à billes).

Pour notre roulement, la charge est purement radial donc : P = Fr = 175 N.

On en déduit donc $L_{10} = \left(\frac{5100}{175}\right)^3 = 24751$ Millions de tours.

D'après la question Q23, $\omega_{31} = 2.77 rd / s = \frac{2.77}{2\pi} \times 3600 tr / h = 1587 tr / h$.

La durée de vie du roulement est donc de $\frac{24751\times10^6}{1587}$ = 15.6×10⁶ heures soit 1780 ans de fonctionnement en continu !!!

Q27:

La direction de l'effort sur la denture est fixe relativement au bâti. En conséquence, les bagues extérieures sont fixes par rapport à la direction de la charge et l'arbre est tournant par rapport à la direction de la charge. **On doit donc monter serrées les bagues intérieures**.

La solution classique pour ce type de cas est la **solution A**. Pour cette solution on est obligé de monter un des 2 roulements en dernier (Pb de montage de la roue dentée) ce qui n'est pas très simple. Pour résoudre le problème on peut envisager la **solution C** en réalisant le bâti en 2 parties mais le sujet ne le suggère pas. Enfin, étant donnée que pour la **solution A**, on est obligé de monter un des 2 roulements en dernier, on peut envisager la **variante B** qui pose le même problème.

Solution A Solution B

Solution C (Bâti en 2 parties)

Q28:

Solution A

Solution B

Solution C

Pour la lubrification, le plus simple est d'utiliser des roulements étanches graissés à vie.

Remarque : La clavette utilisée n'est pas la bonne. Pour ce type de montage on préféra une clavette à bout rond. La solution représentée correspond à la réponse à la question en réutilisant la solution proposée dans le sujet.