Evolutionary Computing Genetic Programming

Dr. Petr Musilek

Department of Electrical and Computer Engineering
University of Alberta

Fall 2019

Automatic Programming

- Automatic generation of computer programs
- Saying WHAT is wanted but not HOW to do it
- The programs can be of the most GENERAL form:
 - Subroutines (e.g. sorting, search)
 - Planning (e.g. sequence of moves of robotic arm)
 - Strategy in games (e.g. Pacman, Quake, Civilization ...)
 - Classification (e.g. character recognition)
 - Prediction (e.g. consumption of electricity)
 - Control (e.g. vehicle steering ...)
 - Design of electronic circuits (e.g. chip layout)

Genetic Programming (GP)

- GP is a branch of EC with a goal to generate a computer program (or just function/expression) that best fits user's requirements.
- The computer program acts as a candidate solution (like a binary string in GA).
- GP is computationally expensive and its application area was limited in 1990s.
- Recently, GP has started delivering human-competitive machine intelligence thanks to exponential growth in CPU power.

Representation of programs

- Programming languages: C, Java, Prolog, machine language, LISP
- Special languages: robots, Turing machines
- Typically, data and programs are treated the same way (lists or S-expressions):
 - (dotimes i 3 (setq v (* i i)))
 - (3 4 5 (to b c))
 - Language = functions + terminals

Example: Even parity

- Generate a computer program that takes 10 bits and returns whether the number of 1's is even:
 - Even-Parity $(1,0,0,0,1,0,0,1,1,0) \Rightarrow TRUE$
- In terms of:
 - Functions: AND, OR, NAND, NOR, NOT
 - Terminals: B0, B1, B2..., B9
- Large number of input/output test cases (2¹⁰ = 1024 cases)

Test cases for 10-bit even parity (1024 cases)

B0	B1	B2	B3	B4	B5	B6	B7	B8	B9	OUT
0	0	0	0	0	0	0	0	0	0	TRUE
0	0	0	0	0	0	0	0	0	1	FALSE
0	0	0	0	0	0	0	0	1	1	TRUE
1	1	1	1	1	1	1	1	1	1	TRUE

Example: Strategy for Pacman game

- Functions:
 - if-obstacle,
 if-pill,
 if-power-pill,
 if-ghost (they are of the
 form if-then-else)
 - sequence2, 3, 4 ...
- Terminals: advance, turn-left, -right
 - advance, turn-left, -right
- GOAL: to eat all pills within a time limit

Example of program in Pacman game

Symbolic Regression

- ullet Given: Set $S=\{(oldsymbol{x}_1,oldsymbol{y}_1),(oldsymbol{x}_2,oldsymbol{y}_2),\dots,(oldsymbol{x}_n,oldsymbol{y}_n)\}$ of points
- Wanted: functional relation φ : $\mathbb{R} \mapsto \mathbb{R}$

x	у				
-10	11.20975399				
-7	8.455665097				
-4	8.131449992				
-3	6.064537515				
2	6.725218415				
5	7.091508928				
6	8.104694856				
10	10.06724264				

Symbolic Regression - Alternatives

- Approximations: linear and non-linear Regression
- Parameterization of a given formula blueprint, e.g.:

$$y = \varphi(x) = a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0$$

 Method of least squares developed by Gauß in the 1790s at the age of 18 and first published by Legendre:

Find values for
$$a_0$$
 to a_4 that minimize $\sum_{i=1}^n \left(y_i - \mathbf{\varphi}(x_i)\right)^2$

- Often, we can do this efficiently with the Levenberg-Marquardt algorithm, the standard for non-linear regression
- If that does not work well, we can combine these methods with DE or CMA-ES ...
- But: Assumption about formula blueprint needed ...

Symbolic Regression - Idea

- New kind of optimization problem: Symbolic Regression
- We have:
 - Given set of points $S = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - A Function Set with elementary functions which can be combined arbitrarily: $\mathcal{F}=\{+,-,*,\sin,\sqrt,\exp,\dots\}$
 - A Terminal Set, i.e., the available null-ary functions containing things like the input variable x and real constants: $\mathcal{T} = \{x, \Re, ...\}$
- We want: Find a combination of elements from $\mathcal F$ and $\mathcal T$ which represents a formula that fits to the data.

Symbolic Regression - Representation

Symbolic Regression with Genetic Programming:

- represent formulas as tree data structures
- for example: minimize $f(\varphi) = \sum_{i=1}^{n} (y_i \varphi(x_i))^2$
- construct φ with Genetic Programming!

Program Representation

The program is generally represented by a parse tree of the function set and terminal set rather than lines of code.

E.g., a simple expression $a + b \cdot c$ would be represented as:

Program Representation

As another example, consider the following simple function in C language:

```
int foo (int time)
{
    int a, b;
    if(time > 10)
        a = 3;
    else
        a = 4;
    b = a + 1 + 2;
    return b;
}
```

Program Representation

The function can be represented by the following tree:

GP Algorithm

- Formation of an initial random population computer of programs, using functions and terminals
- Execution (!) of all programs and their evaluation (fitness function)
- Selection of well-performing programs
- Creation of a new population by applying genetic operators to selected programs
- Return to 2 until finding a "good" program

GP Cycle: Initialization

Start with a random set of programs

GP Cycle: Evaluation

Test the performance of each individual in simulation/evaluation plus criteria like size

GP Cycle: Fitness

Fitness $\nu(\varphi)$ in Symbolic Regression could be...

- square error $f(\varphi)$
- $\nu(\varphi) = f(\varphi) + \text{penalty} * size(\varphi)$

Fitness can be relative, determines expected number of offsprings

GP Cycle: Selection

Selection determines number of offspring based on fitness In GP usually either fitness proportionate or tournament selection

GP Cycle: Asexual Reproduction

Asexual reproduction: mutation (insert random sub-tree)

GP Cycle: Sexual Reproduction

Sexual reproduction: recombination (exchange sub trees)

GP Cycle: Itteration

Cycle starts all over until termination criterion is met

GP as search

- Genetic Programming performs a heuristic search in the space of computer programs (a type of "best-first" search with an opened list of limited size – the population)
- The heuristic function is the fitness function
- The search operators are the genetic operators (mutation and crossover)

Generation of an initial population

- Choose a function for the root of the tree
- Check the arity of the function
- For each argument of the function, generate:
 - a terminal; or
 - a subtree
- Practically, trees deeper that certain constant should not be generated

Tree Creation

• Tree Creation is a Nullary Reproduction

- In SGP an initial population composed of randomized individuals is needed (similarly to a set of random bit strings in GA).
- \bullet Normally, there is a maximum depth \hat{d} specified that the tree individuals are not allowed to surpass.
- The creation operation will return only trees where the path between the root and the most distant lead node is not longer than \hat{d} .
- There are three basic ways for realizing the create() and "createPop" operations for trees - according to the depth of the produced individuals: full, grow, and ramped hal-and-half

Full Method

- It creates trees where each (non-backtracking) path from the root to the leaf nodes has exactly the lenght \hat{d} .
- ullet For each node of a depth below \hat{d} , the type is chosen from the non-terminal symbols.
- A chain of function nodes is recursively constructed until the maximum depth minus one.
- ullet If \hat{d} is reached, only leaf nodes (with types from \sum) can be attached.

Grow Method

- Creates trees where each (non-backtracking) path from the root to the leaf nodes is not longer than \hat{d} but may be shorter.
- This is achieved by deciding randomly for each node if it should be a leaf or not when it is attached to the tree.
- ullet Of course, to nodes of the depth $\hat{d}-1$, only leaf nodes can be attached.

Petr Musilek ECE 720 A3 - 10 23 / 45

Ramped Half-and-Half Method

- Fills population with a good variety of trees of different shapes and sizes
- For each tree to be created, this algorithm draws a number r uniformly distributed between 2 and $\hat{d}:(r=\lfloor \operatorname{randomUni}[2,\hat{d}+1)\rfloor).$
- Now, either *full* or *grow* is chosen to finally create a tree with the maximum depth r (in place of \hat{d}).

Functions and Terminals

- Functions: functions or macros that take arguments
 - e.g. (+34)
- Terminals:
 - Functions that do not have arguments; e.g. (advance)
 - Constant: 3, a, . . .
 - (Ephemeral) random constant \mathcal{R} : for numerical problems and symbolic regression
 - Input variables: D0, D1, ...

Functions

- Funcions/terminals sufficient to express the solution (e.g. for boolean functions, AND, OR and NOT are sufficient)
- It may be useful to include powerful functions (so that the system does not have to rediscover them); e.g. sin(x)
- Differentiate between functions (evaluate arguments; e.g. sum) and macros (do not evaluate: if-then-else);
- Functions have to execute with any argument and without producing errors (closure); e.g. protection against division by zero
- In standard GP there are no data types. All functions must be prepared to receive any type and value of argument

Evaluation of programs (fitness)

- Raw:
 - e.g. number of correctly guessed cases or hits (even-parity)
 - e.g. function, such as $[0.7 \times points + 0.3 \times time]$ (Pacman)
- Standard: (to be minimized)
 - Standard Fitness = Maximum raw
- Adjusted: 1/(1 + standard); it exaggerates fitness near 0
- Normalized (or relative):
 - ajusted / (sum of adjusted fitnesses in population)

GP Operations

- Reproduction (selection)
- Mutation
- Crossover
- Architecture-altering operations

Selection

Selection of capable (well-performing) individuals

- Fitness proportional (probabilistic): uses normalized fitness
 - Problem: super-individuals
- Ranked
- Tournament
 - Match several individuals to compete among themselves: the best one reproduces
- Greedy Overselection (of the fitter individuals): create a high fitness group, H, and a low fitness group, L
 - 80% of the time select the parent from group H
 - 20% of the time select the parent from group L

Unary Reproduction: Mutation

- Usually defined as the random selection of a node in the tree, removing this node and all of its children, and finally replacing it with another node.
 - A copy $g \in \mathbb{G}$ from the original genotype $g_p \in \mathbb{G}$ is created.
 - ullet A random parent node t is selected from g.
 - One child of this node is replaced with a newly created subtree.
 - For creating this tree, the ramped half-and-half method is picked with a maximum depth similar to the one of the child which is replaced by it.

Unary Reproduction: Permutation

- Used to reproduce one single tree.
 - It first selects an internal node of the parental tree.
 - The child nodes attached to that node are then shuffled randomly.
 - The main goal of this operation is to re-arrange the nodes in highly fit subtrees in order to make them less fragile for other operations such as recombination.

Unary Reproduction: Editing

- Editing means creation of a new offspring tree which is more efficient but equivalent to its parent in terms of functional aspects.
- It also reduces the diversity in the genome which could degrade the performance by decreasing the variety of structures available.

Unary Reproduction: Encapsulation

- The basic idea is to identify useful subtrees and to turn them into atomic building block.
 - New terminal symbols are created (internally hidden), which are trees with multiple nodes.
 - This way, they will no longer be subject to potential damage by other reproduction operations.
 - The new terminal may spread throughout the population in the further course of the evolution.

Unary Reproduction: Wrapping

- Its purpose is to allow modifications of non-terminal nodes that have a high probability of being useful.
 - Wrapping first selects an arbitrary node n in the tree.
 - ullet A new non-terminal node m is created outside of the tree.
 - In *m*, at least one child node position is left unoccupied.
 - Then, n (and all its potential child nodes) is cut from the original tree and append it to m by plugging it into the free spot.
 - ullet Finally, m is hung into the tree position formerly occupied by n.

Unary Reproduction: Lifting

- Lifting is the inverse operation to wrapping that can remove nodes in non-terminal positions.
 - It begins with selecting an arbitrary inner node n of the tree.
 - This node then replaces its parent node.
 - The parent node inclusively all of its child nodes (except n) are removed from the tree.
 - With lifting, a tree that represents the mathematical formula (b+a)*3 can be transformed to b*3 in a single step.

Binary Reproduction/Recombination: Subtree crossover

- Applying the default subtree exchange recombination operator to two parental trees means to swap subtrees between them.
- Therefore, single subtrees are selected randomly from each parent and subsequently cut out and reinserted in the partner genotype.
- If a depth restriction is imposed on the genome, both, the mutation and the recombination operation have to respect them.

maximum depth

Binary Reproduction/Recombination: Headless Chicken

Recombination in Standard Genetic Programming can also have a very destructive effect on the individual fitness.

- Strong Headless Chicken Crossover (SHCC). Each parent tree is recombined with a new randomly created tree and the offspring is returned. The new child will normally contain a relatively small amount of random nodes.
- Weak Headless Chicken Crossover (WHCC). The parent tree is recombined with a new randomly created tree and vice versa. One of the offspring randomly selected, and returned. In half of the returned offspring, there will be a relatively small amount of non-random code.

Binary Reproduction/Recombination: Advanced Techniques

Several techniques have been proposed to mitigate the destructive effects of recombination in tree-based representations.

- Strong context preserving crossover permits only the exchange of subtrees that occupied the same positions in the parents
- Other similar single-point crossovers were proposed for tree genomes with the same purpose: increasing the probability of exchanging genetic material which is structurally and functionally similar decreasing the disruptiveness.
- Related approach was defined for linear Genetic Programming

Modules

- Automatically Defined Functions(ADFs). Provide some sort of pre-specified modularity for Genetic Programming. The root of the tree usually loses its functional responsibility and now serves only as glue that holds the individual together and has a fixed number n of children, from which n-1 are automatically defined functions and one is the result-generating branch.
- When evaluating the fitness of an individual, often only this first branch is taken into consideration whereas the root and the ADFs are ignored. The result-generating branch, however, may use any of the automatically defined functions to produce its output.
- Automatically Defined Macros (ADMs). Complements ADFs; it only differs from ADFs in the way that their parameters are handled.

Example I: Nonlinear Function Identification

Find a nonlinear function that satisfies the following relationship:

X	У
-1.00	1.00
-0.80	0.84
-0.60	0.76
-0.40	0.76
-0.20	0.84
0.00	1.00
0.20	1.24
0.40	1.56
0.60	1.96
0.80	2.44
1.00	3.00

Example I: Nonlinear Function Identification

Terminal set	$T = \{x, Random\text{-constants}\}$
Function set	$F = \{+, -, *, \%\}$
Fitness	Sum of errors between the candidate program's
	outputs and y's for all values of x.
Parameter	Population size: 4
Termination	When the sum of errors is less than, e.g. 0.1

Example II: Truck Backer Upper Control Law Design

Objective: Develop a control law $u=(x,y,\theta_S,\theta_C)$ that leads the trailer tail to $(x,y,\theta_S)=(0,0,0)$ when the backward linear velocity of the wheels is fixed.

Example II: Truck Backer Upper Control Law Design

There are four input variables of the controller:

- Horizontal position, x
- Vertical position, y
- Trailer angle, θ_S
- Cap angle, θ_C

Thus, *terminals* $T = \{x, y, \theta_S, \theta_C, \text{Random-constants}\}$

Function set: arithmetic and trigonometric functions

To *evaluate* a solution candidate during evolution process, we need to conduct simulation runs over many initial conditions of the trailer for hundreds of time steps.

Bloat in Genetic Programming

- Tree-representations are of variable size
- There may be big trees, there may be small trees
- What happens with the tree size during the course of the evolution?

Bloat

Growth of program size without corresponding increase in program fitness (the optimal solution might still be a large program).

Bloat

- Bloat is uncontrolled growth of programs
- Example is intron, a useless part of program

Bloat

- Bloat is bad
 - Elegant solutions are always simple and small
 - 2 Longer processing time for both, reproduction and evaluation
 - Oanger of overfitting
 - Occupy more memory

Possible reasons	Possible remedies
Useless code hitchhiking and reproducing with	Use MO optimization: min-
good individuals (high pressure \Rightarrow more bloat)	imize also program size
Protection against reproduction ops: mutation in	Use penalties in single-
useless code has no impact ⇒ program can survive	objective optimization
Removal bias: finite portion of removable useless	Set a conservative upper
nodes, but no direct limit to amount of nodes	bound for program size
which can be inserted	
Overfitting: code one decision for each training	Use specialized reproduc-
instance - perfect fitness (but no generalization)	tion operators