电子科技大学 期末考试试题 (一)

码表示为 ___________。3.11

二选择(每题2分,合计20分)

- 1. 下列结果正确的是 ()。
 A、 $(A \cup B) A = B$; B、 $(A \cap B) A = \Phi$; C、 $(A B) \cup B = A$; D、 $\Phi \cup \{\Phi\} = \Phi$
- 2. 在()下有*A*×*B* ⊂ *A*。

A, A=B; B, $B\subseteq A$; C, $A\subseteq B$; D, $A=\Phi \vec{\boxtimes} B=\Phi$

- 3. 若 公 式 $(P \land Q) \lor (\neg P \land R)$ 的 主 析 取 范 式 为 $m_{001} \lor m_{011} \lor m_{110} \lor m_{111}$ 则它的主合取范式为() A. $m_{001} \land m_{011} \land m_{110} \land m_{111}$; B. $M_{000} \land M_{010} \land M_{100} \land M_{101}$; C. $M_{001} \land M_{011} \land M_{110} \land M_{111}$, D. $m_{000} \land m_{010} \land m_{100} \land m_{101}$ 。
- 4. 命题"尽管有人聪明,但未必一切人都聪明"的符号化

(P(x): x 是聪明的, M(x): x 是人)(())

- $\exists x (M(x) \to P(x)) \land \neg (\forall x (M(x) \to P(x)))$
 - $\exists x (M(x) \land P(x)) \land \neg (\forall x (M(x) \land P(x)))$
 - $\exists x (M(x) \land P(x)) \land \neg (\forall x (M(x) \to P(x)))$
 - $\exists x (M(x) \land P(x)) \lor \neg (\forall x (M(x) \to P(x)))$
- 5. 设集合 A、B 是有穷集合,且 |A| = m , |B| = n ,则从 A 到 B 有 () 个不同的双射函数。

A. n; B. m; C. n!; D. m!

6. 设 K = {e,a,b,c}, < K,* > 是 Klein 四元群,则元素 a 的逆元为()。

A.e; B.a; C.b; D.c.

7. 连通非平凡的无向图 G 有一条欧拉回路当且仅当图 G ()。

A、只有一个奇度结点; B、只有两个奇度结点; A 4 4 5 5 4 5

C、只有三个奇度结点; D、没有奇度结点。

8. 设无向图 G=< V, E> 是连通的且 |V|=n , |E|=m 若 ()则 G 是树。

A. M=N+1; B. n=m+1; C. $m \le 3n-6$; D. $n \le 3m-6$.

9. n 个结点的无向完全图 K_n 的边数为 ()。

A.
$$n(n+1)$$
 : B. $\frac{n(n+1)}{2}$: C. $n(n-1)$: D. $\frac{n(n-1)}{2}$

10. 下列图中()是根树。

A. $G_1 = \langle \{a,b,c,d\}, \{\langle a,a \rangle, \langle a,b \rangle, \langle c,d \rangle \} \rangle$;

B. $G_2 = \langle \{a,b,c,d\}, \{\langle a,b \rangle, \langle b,d \rangle, \langle c,d \rangle \} \rangle$:

C. $G_3 = \langle \{a,b,c,d\}, \{\langle a,b \rangle, \langle a,d \rangle, \langle c,a \rangle \} \rangle$;

D. $G_4 = \langle \{a,b,c,d\}, \{\langle a,b \rangle, \langle a,c \rangle, \langle d,d \rangle \} \rangle$

三 计 算(每题8分, 合计40分)

1. 设 A={1, 2, 3, 4, 5}, A 上的偏序关系如下图所示, 求 A 的子集{3, 4,

5) 和 {1, 2, 3}, 的上界, 下界, 上确界和下确界。 (2) (3) (4)

R X = (e, a, b, d, < A, * > A Xiein Filtin Title

A. e.; 8. a. t. C. b.; D. c.

 $2. 求(Q \rightarrow P) \land (\neg P \land Q)$ 的主合取范式。

2)的主音取他式。

3. 求图中的一个最小生成树。

BALL OF BAF.

4. 将公式 $((P \lor Q) \land R) \to (P \land R)$ 划为只含有联结词一, \land 的等价公

 $v_1 (0 \ 0 \ 1 \ 0)$ 5. 己知某有向图的邻接矩阵如下: A= 试求: v3 到 v1 $v_4 (1 \ 0 \ 0 \ 0)$

的长度为4的有向路径的条数。

四 证明题 (每题 10 分, 合计 20 分)

1. 令 $R = \{m \mid m = a + b\sqrt{2}, a, b \in Q, +$ 为普通加法\}, 定义映射 g: $R \to R$ 为 $g(a+b\sqrt{2}) = a-b\sqrt{2}$, 试证: g 是 < R,+ > 到 < R,+ > 的自 同构映射。人工程度设备各具设备(第4年) ← (第4(0) / 3)) 法公律。

2. 用 CP 规则证明 $A \to (B \land C)$, $(E \to \neg F) \to \neg C$,

 $B \to (A \land \neg S)' B \to E$.

学解 让学习简单点

学解|让学习简单点

电子科技大学 期末考试试题 (一) 参考答案

一 填空题 (每空 2 分, 合计 20 分)

1
$$2^n$$
 2 $S \leftrightarrow P \land Q \land R$ 3 反自反 4 $\neg (P \land Q) \land (P \land \neg (Q \lor \neg S))$ 性、对称 性、传递

5 **6**
$$\binom{1}{1}$$
 $\binom{1}{1}$ 7 双射 8 $\nu - e + r = 2$ $\binom{1}{1}$ $\binom{1}$

- $(P \lor Q \lor R) \land (P \lor Q \lor \neg R) \; ; \; M_{000} \land M_{001}$
- 二选择(每题2分,合计20分,在正确答案上划1)

1	A	1	С	D	2	A	В	С	1	3	A	1	С	D
4	A	В	1	D	5	A	В	С	1	6	A	1	С	D

7	A	В	C	1	8	A	1	С	D	9	A	В	0	1
10	A	B	1	D		1 (1	2			1	1 0		

三 计 算(每题8分合计40分)

(3 2 1 2) grant 2-AA ES .1

{3, 4, 5}: 上界: 1, 3; 上确界: 3; 下界: 无; 下确界: 无;

{1, 2, 3}: 上界: 1; 上确界: 1; 下界: 4; 下确界: 4。

2

$$(Q \to P) \land (\neg P \land Q) \Leftrightarrow (\neg Q \lor P) \land (\neg P \land Q))$$

$$\Leftrightarrow (\neg Q \land \neg P \land Q) \lor (P \land \neg P \land Q) \Leftrightarrow F$$

$$\Leftrightarrow (P \lor Q) \land (P \lor \neg Q) \land (\neg P \lor Q) \land (\neg P \lor \neg Q)$$

3. 用 Kruskal 算法,选一条权最小的边,逐一选取剩余的边中与己知边未构成回路且权数最小的边 (v_1,v_2) ,每次选出的边记入T,其权加入T的成本。

$$(v_1, v_4)$$
 2+2+2+3+3

4. 原式 $\Leftrightarrow \neg((P \lor Q) \land R) \lor (P \land R) \Leftrightarrow (\neg P \land \neg Q) \lor \neg R \lor (P \land R)$ $\Leftrightarrow \neg(\neg(\neg P \land \neg Q) \land R \land \neg(P \land R))$ 。

 $S_{\rm MBB}(m_{\rm p}) = g(m_{\rm p}) , \quad \text{and} \quad \otimes , \quad \text{otherwise} \quad , \quad \text{where} \quad , \quad \text{where}$

四 证明题 (每题 10 分 合计 20 分)

① $g \stackrel{}{\sim} \{ (a_1 + b_1 \sqrt{2}) \}$

 $m_2 = (a_2 + b_2\sqrt{2}) \in \mathbb{R}$

 $g(m_1 + m_2) = g(a_1 + b_1\sqrt{2} + a_2 + b_2\sqrt{2}) = g((a_1 + a_2) + (b_1 + b_2)\sqrt{2}) = (a_1 + a_2) - (b_1 + b_2)\sqrt{2}$ $= (a_1 - b_1\sqrt{2}) + (a_2 - b_2\sqrt{2}) = g(m_1) + g(m_2)$

② g 是<R ,+>上的满射 $\forall m=(a+b\sqrt{2})\in R$, $\exists m'=a-b\sqrt{2}\in R$ 使 $g(m')=g(a-b\sqrt{2})=a-(-b)\sqrt{2}=a+b\sqrt{2}=m$ 所以 g 是<R ,+>上的 満射

③ g 是<R ,+>上的单射 $\forall m_1=(a_1+b_1\sqrt{2})$, $m_2=(a_2+b_2\sqrt{2})\in R$,

且 $m_1 \neq m_2$ 则 $g(m_1) = a_1 - b_1 \sqrt{2}$, $g(m_2) = a_2 - b_2 \sqrt{2}$; 如果 $g(m_1) = g(m_2)$

则 $(a_1 - a_2) - (b_1 - b_2)\sqrt{2} = 0$, .: 必有 $a_1 = a_2$, $b_1 = b_2$ 这与 $m_1 \neq m_2$ 矛盾。

故 $g(m_1) \neq g(m_2)$ 。 由①,②,③知 g 是从<R ,+>到<R ,+>的自同构映射。

2. 学大英塚干掛

(1) B P(附加前提)

 $(2) \quad B \to (A \land \neg S)$

(3) $A \wedge \neg S$ T(1)(2)

(4) A T(3)

 $(5) \quad A \to B \land C \qquad \qquad \mathsf{P}$

(6) $B \wedge C$ T(4)(5)

(7) C

(8) $(E \rightarrow \neg F) \rightarrow \neg C$

 $(9) \quad \neg(E \to \neg F) \qquad \qquad \mathsf{T}(7)(8)\mathsf{I}$

(10) $E \wedge F$

(11) E T(10)

 $(12) \quad B \to E$

学解|让学习简单点

学解。让学习简单点

电子科技大学 期末考试试题 (二)

一 填空題 (每空 2 分, 合计 20 分)
1. 任意两个不同小项的合取为
为
2. 设 R 为集合 A 上的等价关系, 对 $\forall a \in A$, 集合
[』] _z =,称为元素 a 形成的 R 等价类,
[a] _x ≠ Φ. 因为
3. 设 $A = \{0,1\}$, N 为自然数集, $f(x) = \begin{cases} 0, & x$ 是奇数, 若 $f: A \to A$,
则 f 是射的。若 $f: N \to A$. 则 f 是射的。
4. 设 S 为非空有限集,代数系统 < 2 ⁵ , U > 中幺元为,等元
为
5. $若 G = < V, E >$ 为汉密尔顿图。则对于结点集 V 的每个非空子集 S ,均
有 W(G-S) S 成立,其中 W(G-S)是
二选 拜(每周2分,合计20分)
1. 命题公式 $P \rightarrow (Q \lor P)$ 是 (),
A. 矛盾式: B、可满足式: C、重言式: D、等价式。

- 2. 下列各式中哪个不成立()。
- A. $\forall x (P(x) \lor Q(x)) \Leftrightarrow \forall x P(x) \lor \forall x Q(x)$:
- B. $\exists x (P(x) \lor Q(x)) \Leftrightarrow \exists x P(x) \lor \exists x Q(x)$:
- C. $\forall x (P(x) \land Q(x)) \Leftrightarrow \forall x P(x) \land \forall x Q(x)$: 9、长河南部一公中、江南、西下南京、下州城中边南平是江南南镇()
- D. $\forall x (P(x) \land Q) \Leftrightarrow \forall x P(x) \land Q$.
- 3. 谓词公式 $\forall x (P(x) \lor \exists y R(y)) \to Q(x)$ 中的 x 是 ()。
- A、自由变元: B、约束变元:

- C、既是自由变元又是约束变元: D、既不是自由变元又不是约束变元。
- 4. 设f和g都是X上的双射函数,则 $(f \circ g)$ 为()。
- A. $f^{-1} \circ g^{-1}$; B. $(g \circ f)^{-1}$; C. $g^{-1} \circ f^{-1}$; D. $g \circ f^{-1}$.
- 5. 下面集合(1)关于减法运算是封闭的。
- A. N: B. $\{2x | x \in I\}$: C. $\{2x+1 | x \in I\}$:
 - D、{x | x是质数}。
- 6. 具有如下定义的代数系统《G、*》、() 不构成群。
 - A、G={1,10},*是模11乘:
 - B、G={1,3,4,5,9},*是模11乗;
 - C、G=Q (有理数集), *是普通加法;
- D、G=Q (有理数集), *是普通乘法。
- 7、设 $G = \{2^m \times 3^n \mid m, n \in I\}$ 、*为普通乘法。则代数系统<G、*>的 幺元为()。

A、不存在 : B、 $e = 2^{0} \times 3^{0}$: C、 $e = 2 \times 3$: D、 $e = 2^{-1} \times 3^{-1}$ 。

8. 下面集合() 关于整除关系构成格。

A. {2, 3, 6, 12, 24, 36}; B. {1, 2, 3, 4, 6, 8, 12};

C, {1, 2, 3, 5, 6, 15, 30}; D, {3, 6, 9, 12}

9. 无向图G=<V,E>,如下图所示,下面哪个边集不是其边割集()。

A. $\{<v_1, v_4>, < v_3, v_4>\}$;

B. $\{<v_1, v_5>, < v_4, v_6>\}$;

D. {< v₁, v₂ >, < v₂, v₃ >} . The LEGALET X REPORT AT A

A, $n \ge 3m - 6$; B, $n \le 3m - 6$; C, $m \ge 3n - 6$; D, $m \le 3n - 6$.

三 计 算(每题8分,合计40分)

1. 设 $A = \{a,b,c\}$ 上的关系 $\rho = \{\langle a,a \rangle, \langle a,b \rangle, \langle b,c \rangle, \langle c,b \rangle\}$, 求

出 $r(\rho)$, $s(\rho)$ 和 $t(\rho)$

A、G={1,10}、*是模11菜

8. G=11.3.4.5.91. sEE 11 # :

c, G = Q (有观数集)。 *是音型相比 e = e = 2 = 3

n c−0 (有理意象), +让各项指示。

ac _10* 2* | m n= 1) * 方台 三和法。関代数系统 < G , * > |

《)成元年

2. 集合 $A = \{2,3,6,12,24,36\}$ 上的偏序关系 为整除关系。设 $B = \{6,12\}$, $C = \{2,3,6\}$, 试画出 的哈斯图, 并求 A, B, C 的最大元素、极大元素、下界、上确界。

5. 给定命题公式 $(P \wedge (-Q \wedge R)) \vee (-S \vee F')$,试给出相应的二元区

DESCRIPTION AND AND AND ADDRESS OF A

3. 图给出的赋权图表示五个城市 ν_1 , ν_2 , ν_3 , ν_4 , ν_5 及对应两城镇间公路的长度。试给出一个最优化的设计方案使得各城市间能够有公路

4. 己知 $G = \{1,2,3,4,5,6\}$, \times_{γ} 为模 7 乘法。试说明 < G, \times_{γ} > 是否构成群? 是否为循环群? 若是,生成元是什么?

2. 集合另一(2,3,6,12,24,36)上的原序人系 均积原关系 使 担当(6,13)。C=(2,3,6)、民际出 的解游剧、外来 A. B. C 的能 大玩家、最大无意、平张、上临来。

5. 给定命题公式 $(P \wedge (\neg Q \wedge R)) \vee (\neg S \vee W)$,试给出相应的二元树。

四 证明题 (每题 10 分, 合计 20 分)

1. 试证明若<G,*>是群, $H\subseteq G$,且任意的 $a\in H$,对每一个 $x\in G$,有a*x=x*a,则<H,*>是<G,*>的子群。

. 已知G=(1,2,3,4,5,6)、×,为疾7率法。试验明<G,×,>是否 tunns 是表表的表情等。 电子科技大学。。 期末考试试题(二)参考答案。

- 地空間(銀空2分、音音20分)

2. 符号化下列各命题,并说明结论是否有效(用推理规则)。任何人如果 他喜欢美术,他就不喜欢体育。每个人或喜欢体育,或喜欢音乐,有的人 不喜欢音乐,因而有的人不喜欢美术。

(会的社会 表別問題) 東 廿三

4. Mi cG.s. Street, Thomas Property S. Mr. -.

MENTAL PROPERTY.

电子科技大学 期末考试试题 (二)参考答案

一 **填空题** (每空 2 分, 合计 20 分)

- 1 永假式(矛盾 2 $[a]_R = \{x \mid x \in A, aR\}$ 3 双射 4 Φ 、S 式)、永真式 満射 (重言式) ; $a \in [a]_R$
- 5 ≤; *G*-*S* 的连通分支数。

二选择(每题2分,合计20分,在正确答案上划1)

1	A	В	1	D	2	1	В	C	D	3	A	В	1	D
4	A	В	1	D	5	A	1	С	D	6	A	В	С	1
7	A	1	С	D	8	A	В	1	D	9	A	1	С	D
10	A	В	C	1						100				

三 计 算 (每题 8 分 合计 40 分)

- 1. $\Re r(\rho) = \{\langle a, a \rangle, \langle a, b \rangle, \langle b, c \rangle, \langle c, b \rangle, \langle b, b \rangle, \langle c, c \rangle\}$, $s(\rho) = \{\langle a, a \rangle, \langle a, b \rangle, \langle b, c \rangle, \langle c, b \rangle, \langle b, a \rangle\}$, $\rho^2 = \rho \circ \rho = \{\langle a, a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle b, b \rangle, \langle c, c \rangle\}$, $\rho^3 = \rho^2 \circ \rho = \{\langle a, a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, b \rangle, \langle b, c \rangle, \langle c, b \rangle\}$
- $\therefore t(\rho) = \rho \cup \rho^2 = \{ \langle a, a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle b, b \rangle, \langle c, c \rangle, \langle b, c \rangle, \langle c, b \rangle \}$
- 2. 解: 的哈斯图为

+0/- 0/-				
集合	最大元	极大元	下界	上确界
А	无	24, 36	无	无
B I	ع = قد ع	12	6, 2, 3	12
С	6	6	23.无 8	6

3. 解:此问题的最优设计方案即要求该图的最小生成树,

由破圈法或避圈法得最小生成树为:

其权数为 1+1+3+4=9。

4. 解: $< G, \times_{7} >$ 既构成群,又构成循环群,其生成元为 3, 5。因为: \times_{7} 的运算表为:

. (<×,'>>	< 1.d>.	2	< 3.0	4	< 5.00	6 9)
1	(< 1 A>,	2	3	4	, < 5 ,n) =6 (q)
2	2	Δ	6	1	3	5
3	3	6	2	5	1	-
43.6	44.63	13.0	> 50,0	> 2 10.15	6 9	3
5 5 >	< 5	3	< (1,0)	< 16,00	1=490) q 2 (q)
6		5 26			2	1

- 1) 由运算表知, ×, 封闭;
- 2)×,可结合(可自证明)
- 3) 1为幺元;

由 $3^1 = 3$, $3^2 = 2$, $3^3 = 6$, $3^4 = 4$, $3^5 = 5$, $3^6 = 1$ 。所以, 3

为其生成元, 3 的逆元 5 也为其生成元。

5. 解: 命题公式对应的二元树见右图。

四 证明题 (每题 10 分 合计 20 分)

(1) 设群 < G,* > 的幺元为e,则 $\forall x \in G$ 有 x*e=e*x, $\therefore e \in H$ 即 H非空。

(2) $\forall a,b \in H$,则 $\forall x \in G$ 有 a*x=x*a,b*x=x*b,从而

$$(a*b^{-1})*x = (a*b^{-1})*x*(b*b^{-1})$$

$$= a*(b^{-1}*b)*x*b^{-1} = (a*x)*b^{-1}$$

$$= x*(a*b^{-1}), \quad \therefore a*b^{-1} \in H$$

故 < H, *>是< G, *>的子群。

设P(x): x喜欢美术, Q(x): x喜欢体育, R(x): x喜欢音乐。论域:

命题形式化为: 前提: $\forall x (P(x) \rightarrow \neg Q(x))$, $\forall x (Q(x) \lor R(x))$, $\exists x \neg R(x)$ 结论: $\exists x \neg P(x)$ 。

证明: (1) ∃x¬R(x) P

 $(2) \neg R(a)$ ES (1)

(3) $\forall x(Q(x) \lor R(x))$

 $(4) \quad Q(a) \vee R(a) \qquad \qquad \text{US}(4)$

(5) Q(a)

T(2)(4)I

 $(6) \quad \forall x (P(x) \to \neg Q(x))$

 $(7) \quad P(a) \to \neg Q(a)$

(8) $\neg P(a)$

 $(9) \quad \exists x \neg P(x) \qquad \qquad \text{EG}(8)$

∴ 结论有效。

电子科技大学 期末考试试题 (三)

一填空题(每空2分,合计20分)

1. 命题 P→Q 的真值为 0, 当且仅当

2. P(P(Φ)) = ____

3. 设 $A = \{x \mid (x \in N) \coprod (x < 5)\}, B = \{x \mid x \in E^+ \coprod x < 7\}$ (N: 自然数集,

E⁺ 正偶数) 则 $A \cup B =$ _____

4. 公式 $(P \land R) \lor (S \land R) \lor \neg P$ 的主合取范式为 _____

5. n 阶完全图结点 v 的度数 d(v) = _____

6. 代数系统<A,*>中,|A|>1,如果e和 θ 分别为<A,*>的幺元和零元,则

 $e^{ ext{A} heta}$ 的关系为 _______

7. 设 <G,*> 是一个群, <G,*> 是阿贝尔群的充要条件 $E = \nabla x(M(x) \wedge \nabla x(F(y)) \rightarrow H(x,y))$

8. 设 < G, *> 是由元素 $a \in G$ 生成的循环群,且 |G| = n,则 G

9. 拉格朗日定理说明若<H, *>是群<G,*>的子群,则可建立 G中的等价关系。

|H|=m 则 m 和 n 关系为 _______。

二选择(每题2分,合计20分)

1. 设 A={1, 2, 3},则 A上的二元关系有()个。

学解 让学习简单点

学解 让学习简单点

- A. 2^3 ; B. 3^2 ; C. $2^{3\times3}$; D. $3^{2\times2}$.
- 2.设 R, S 是集合 A 上的关系,则下列说法正确的是()
- A. 若 R, S 是自反的, 则 $R \circ S$ 是自反的;
- B. 若 R, S 是反自反的, 则 $R \circ S$ 是反自反的;
- C. 若 R, S 是对称的,则 $R \circ S$ 是对称的;
- D. 若 R, S 是传递的, 则 $R \circ S$ 是传递的。
- 3. 命题逻辑演绎的 CP 规则为()。
- A. 在推演过程中可随便使用前提;
- B. 在推演过程中可随便使用前面演绎出的某些公式的逻辑结果;
- C. 如要演绎出的公式为 $B \to C$ 形式,那么将B作为前提,设法演绎出C;
- D. $\Phi(A)$ 是含公式 A 的命题公式, $B \Leftrightarrow A$,则可用 B 替换 $\Phi(A)$ 中的 A。
- 4. 命题"有的人喜欢所有的花"的逻辑符号化为()。设 D: 全总个体
- 域, F(x): x 是花, M(x): x 是人, H(x,y): x 喜欢 y
- A. $\forall x (M(x) \to \forall y (F(y) \to H(x,y)))$
- B. $\forall x (M(x) \land \forall y (F(y) \rightarrow H(x, y)))$
- c. $\exists x (M(x) \to \forall y (F(y) \to H(x,y)))$
- D. $\exists x (M(x) \land \forall y (F(y) \rightarrow H(x, y)))$.
- 5.公式 $\forall x \forall y (P(x,y) \lor Q(y,z)) \land \exists x P(x,y)$ 换名 ()。
- A. $\forall x \forall u (P(x,u) \lor Q(u,z)) \land \exists x P(x,y)$
- B. $\forall x \forall y (P(x,u) \lor Q(u,z)) \land \exists x P(x,u)$
- C. $\forall x \forall y (P(x,y) \lor Q(y,z)) \land \exists x P(x,u)$

- D. $\forall u \forall y (P(u, y) \lor Q(y, z)) \land \exists u P(u, y)$,
- 6. N是自然数集,定义 $f: N \to N$, $f(x) = (x) \mod 3$ (即 x 除以 3 的 余数),则 f 是 ()。
- A、满射不是单射; B、单射不是满射; C、双射; D、不是单射也不是满射。
- 7.设 < A , \lor , \land > 是由格< A , \le >诱导的代数系统,若对 $\forall a,b,c \in A$, \Rightarrow $b \le a$ 时,有() < A , \le >是模格。
- A, $a \wedge (b \vee c) = b \vee (a \wedge c)$; B, $c \wedge (a \vee c) = a \vee (b \wedge c)$;
- c, $a \lor (b \land c) = b \land (a \lor c)$; b, $c \lor (a \land c) = b \land (a \lor c)$
- 8. 在()中,补元是唯一的。
- A、有界格: B、有补格: C、分配格: D、有补分配格。
- 9.在布尔代数 < A , ∨ , ^ , > 中, b ∧ c = 0 当且仅当 ()。
- A, $b \le B$, $c \le b$; C, $b \le c$; D, $c \le b$.
- 10. 设<A, \leq >是偏序集, " \leq " 定义为: $\forall a,b \in A, a \leq b \Leftrightarrow a \mid b$,则当 A= () 时, <A, \leq >是格。
- A, {1,2,3,4,6,12}; B, {1,2,3,4,6,8,12,14}; C, {1,2,3,···, 12}; D, {1,2,3,4}.
- 三 计 算 (每题 8 分 合计 40 分)
- 1. 给定 3个命题: P: 北京比天津人口多: Q: 2大于 1; R: 15 是素数。 求 复合命题: $(Q \to R) \leftrightarrow (P \land \neg R)$ 的真值。

网本专政部参阅证照票区9门 景程专完。每人每天只在下宇

Andrew Market

2. 给定解释 l: D={2, 3}, L (x,y) 为 L(2,2) = L(3,3) = 1, L(2,3) = L(3,2) = 0, 求谓词合式公式 $\exists y \forall x L(x,y)$ 的真值。

3. A={a,b,c,d}, R={<a,b>,<b,c>,<b,d>,<c,b>}为 A 上的关系,利用矩阵乘法求 R 的传递闭包,并画出 t (R) 的关系图。

an(bve) = bv(ane); g en(ave) = a

c, $a \lor (b \land c) = b \land (a \lor c)$, $c \lor (a \land c) = c \land (a \lor c)$

A STATE OF THE PARTY OF THE PAR

and 0 = 2 A LS = A. V. B. Somethick

the second was the

to use camma weary valetast

A= () 时, «A, 至>是格。

A. (1.2.3,4,6,12); B. (1.2.3,4,6,8,12,14); C. (1.2.3,--, 12); D. (1.2.3,4)

三 计 算 (範題8分 合计和分) [[[]

1、路定3个金匮; 9; 北京比天津人口争; 0: 2大于上 和 15 是素是。

王级共有 9 门洗修课程。

4. 某年级共有9门选修课程, 期末考试前必须提前将这9门 课程考完,毎人毎天只在下午 ν₁α 考一门课,若以课程表示结点,

有一人同时选两门课程,则这两点间有边(其图如右),问至少需几天?

期末考试试题 (三) B 5世

一 株文庫(年至2日、日田20日)

5. 用 Huffman 算法求出带权为 2, 3, 5, 7, 8, 9 的最优二叉树 T, 并求 W(T)。若传递 a, b, c, d, e, f 的频率分别为 2%, 3%, 5%, 7%, 8%, 9%求传输它的最佳前级码。

den ren ner hie akant. Releate

四 证明题 (每题 10 分 合计 20 分)

1. 设<A,*>, 是半群,e是左幺元且 $\forall x \in A$, $\exists \hat{x} \in A$,使得 $\hat{x} * x = e$,则

学解|让学习简单点

学解|让学习简单点 71 <A,*>是群。

2. 设 A={1, 2, 3, 4}, 在 $\mathcal{P}(A)$ 上规定二元关系如下: $R = \{ < s, t > | s, t \in S, t > t < T, t >$ $\mathcal{P}(A) \wedge (|s| |t|)$,证明 R 是 $\mathcal{P}(A)$ 上的等价关系并写出商集 $\mathcal{P}(A) / R$ 。

电子科技大学 期末考试试题 (三)参考答案

一 填空题 (每空2分,合计20分)

1 P 的真值 2 $\{\Phi, \{\Phi\}, \{\Phi\}\}, \{\Phi, \{\Phi\}\}\}$ 3 $\{0, 1, 2, 3, 4 (¬PV)\}$

4, 6} S∨R)∧

为 1, Q 的真值 为0

(¬P V

 $-S \vee R$

5 n-1 6 $e \neq \theta$

7 任意 ab ∈ G, (a*b)*(a*b)

(1 1 0 0 0 0 1 0 0 1 (b*b)

⁸
$$G = \{a, a^2, \dots a^{n-1}, a^n = e\}$$

 $\{\langle a,b\rangle | a\in G, b\in G, a^{-1}*b\in H\}: m/n:$

二选择(每题2分,合计20分,在正确答案上划√)

						- 4								
1	A	В	V	DO	2	010	В	C	D	3	A	В	1	D
4	A	В	C	1	5	4	В	C	D	6	A	В	С	4

学解 让学习简单点 72

学解|让学习简单点

7	1	В	C	D	8	A	В	С	1	9	A	В	1	D
10							13.7							

三 计 算 (每题 8 分 合计 40 分)

1. 解:

P, Q是真命题, R是假命题。

$$(Q \to R) \leftrightarrow (P \land \neg R) = (1 \to 0) \leftrightarrow (1 \land 1) = 0 \leftrightarrow 1 = 0$$

2. 解:

 $\exists \ y \forall \ xL(x,y) \Leftrightarrow \exists y(L(2,y) \land L(3,y)) \Leftrightarrow (L(2,2) \land L(3,2)) \lor (L(2,3) \land L(3,3)) \\ \Leftrightarrow (1 \land 0) \lor (0 \land 1) = 0 \lor 0 = 0$

3. 解:

$$M_R = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$M_{R^2} = M_R \circ M_R = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \circ \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$M_{R^{3}} = M_{R^{2}} \circ M_{R} = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \circ \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} = M_{R}$$

$$M_{\mathcal{R}^4}\!\!=\!\!M_{\mathcal{R}^3}\!\!\circ\!\!M_{\mathcal{R}} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}\!\!\circ\!\!\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \!\!=\!\!\begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \!\!=\!\!M_{\mathcal{R}^2}$$

$$\therefore M_{\ell(R)} = M_R \vee M_{R^2} \vee M_{R^3} \vee M_{R^4} = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

所以 t(R)={<a,b>,<a,c>,<a,d>,<b,b>,<b,c>,<b,d>,<c,b>,<c,c>,<c,d>}

关系图为

4.解:

 $\chi(G)$ 即为最少考试天数。

用 Welch-Powell 方法对 G 着色: $v_9v_3v_7v_1v_2v_4v_5v_8v_6$

第一种颜色的点 $v_9v_1v_4v_6$, 剩余点 $v_3v_7v_2v_5v_8$

第二种颜色的点 ν,ν,ν, 剰余点ν,ν,

第三种颜色的点 v_2v_8

所以χ(G)≤3

任 $v_2v_3v_9$ 构成一圈,所以 $\chi(G) \ge 3$

故 γ(G)=3

所以三天下午即可考完全部九门课程。 5.解: 2 3 5 7 8 9 34 5 5 7 8 9 19 15 10 7 8 9 10 1 9 7 8 10 15 9 5 5 3

 $W(T) = 2 \times 4 + 3 \times 4 + 5 \times 3 + 9 \times 2 + 7 \times 2 + 8 \times 2 = 83$

用 0000 传输 a、0001 传输 b、001 传输 c、01 传输 f、10 传输 d、11 传输 e 传输它们的最优前缀码为 $\{0000,\ 0001,\ 001,\ 10,\ 11\}$ 。

四 证明题 (每题 10 分 合计 20 分)

1

(1) $\forall a,b,c \in A$,若a*b=a*c则b=c

事实上::a*b = a*c:: $\exists \hat{a}$ 使 $\hat{a}*(a*b) = \hat{a}*(a*c)$ ($\hat{a}*a$)* $b = (\hat{a}*a)*c$,::e*b = e*c 即:b = c

(2) e 是<A, *>之幺元。

事实上: 由于 e 是左幺元, 现证 e 是右幺元。

 $\forall x \in A, x^*e \in A, \exists \hat{x}$ 使 $\hat{x}^*(x^*e) = (\hat{x}^*x)^*e = e^*e = e = \hat{x}^*x$ 由(1)即 $x^*e = x$, ∴ e为右 幺 元

(3) $\forall x \in A$, $\bigcup x^{-1} \in A$

事实上: $\forall x \in A \ (x^*\hat{x})^*x = x^*(\hat{x}^*x) = x^*e = x = e^*x$ $x^*\hat{x} = e$ 故有 $\hat{x}^*x = x^*\hat{x} = e$ ∴ x有逆元 \hat{x}

由 (2), (3) 知: <A,*>为群。

9

证明: $(1) \forall s \in \mathcal{P}(A)$,由于|s| = |s|,所以|s| = |s|,所以|s| = |s|,的R自反的。

- (2) $\forall s,t \in \mathcal{P}$ (A),若 $\langle s,t \rangle \in R$,则 $|s| |t| \Rightarrow |t| \Rightarrow |t| \Rightarrow |s|$ $\langle t,s \rangle \in R$,R是对称的。

由(1)(2)(3)知, R 是等价关系。

 $P(A) / R = \{ [\Phi]_R, [\{1\}]_R, [\{1, 2\}]_R, [\{1, 2, 3\}]_R, [\{1, 2, 3, 4\}]_R \}$