

Reproducibility Engineering Portfolio Exam

artificial business scenario "ducks vs. fish"

Sebastian Sippl Thomas Brandl

Table of contend

- Variables & Optimization
- Feasible Region & Excel Solver
- Reproduction Package
- Decoupling Dependency
- Docker
- Zenodo & GitHub
- Live demonstration

Optimizing the product mix for rubber ducks and fish. ("Head First Data Analysis")

→ Maximize the profit

Constrains:

- Variables which can't be controlled and therefore limit the output Decision Variables:

Variables which can be controlled and actively changed

Optimization Problem:

In general:
$$P = c_1 * x_1 + c_2 * x_2$$

In our scenario:
$$P = p_d * x_d + p_f * x_f$$
 with $p := Profit$, $x := Number$ $f := Fish$, $d := Ducks$

Feasible Region & Excel Solver

Original experimental setup

Rubber subbly for max.

500 ducks & 0 fishs or 400 fishs & 0 ducks

Production Time for max.

400 ducks and

300 fishs

Profits:

one Duck: 5\$

one Fish: 4\$

Best Product-Mix:

80 fishes * 4\$ + 400 ducks * 5\$ = 2320\$

[1]

Historical sales data

Historical sales data about 36 Month Data format: EXCEL-file (.xls)

Reproduction Package

Reproduction Package

Avoid proprietary software

The main advantiges of open source software:

- Long term availability
- No missing licenses or avoid fee from licensing the tools
- Open source alternative for most common tools
 - MS-Word -> LaTeX
 - MS-Excel -> R, Python.Numpy/.Matplotlib

Tools in our experiment

Realize the Excel Solver via python

- computes every possible product mix
- Beneficial for researchers who repeat our experiment and have no access to MS-Tools.

Exchange xls files with csv files

- light-weighted data format
- easy to read for humans (plain text)
- csv is supported by many scientific applications

Realize the documentation via LaTeX

- Documentation is generate automatically
- best look for scientific papers
- automatically import of figures

Reproducibility results

- Solved with python-script
- Able to edit the constraints via comand line interface
- Same constraints like the origin experiment
 + prediction constraint from historical data

[2][4]

Build and run the experiment

- Docker is used as encapsulated envirement (container)
 - For developing, shipping and running applications
 - Easy to share the same contend
 - An image is a read only template
 - A container is a runable instance of the image
- The container of the repro-package:
 - Holds the hole setup (data, sourcecode, doku)
 - During build-prozess all tools are installed and the setup is copied into
 - The experiment starts automaticly
 - The dokumentation are generated after that

History and long term availability

Git and GitHub:

- For a traceable project history
- To organize the project in the team
- No garantee for long-term documentation at GitHub

Zenodo

- financed by public funds from the EU
- Link to a releases of the project/experiment
- referenceable by other researchers with a DOI

Live demonstration of the experiment

References

- [1] Michael Milton, "Optimization: Take It to the Max," in Head First Data Analysis, O'Reilly Media Inc, 2009, pp. 75-109
- [2] Microsoft, 2022, https://support.microsoft.com/enus/office/define-and-solve-a problem-by-usingsolver-5d1a388f-079d-43ac-a7eb-f63e45925040 (accessed on 03.02.2022)
- [3] Docker Docs, 2021, https://docs.docker.com/getstarted/overview/ (accessed on 13.02.2022)
- [4] The Matplotlib Development team, 2021 https://matplotlib.org/ (accessed on 17.02.2022)
- [5] GitHub, Inc., 2022, https://github.com/ (accessed on 17.02.2022)
- [6] CERN Data Centre Invenio., 2022, https://zenodo.org/ (accessed on 17.02.2022)