Formale Grundlagen der Informatik II 3. Übungsblatt

Fachbereich Mathematik Prof. Dr. Martin Otto Sommersemester 2015 17. Juni 2015

Julian Bitterlich, Felix Canavoi, Kord Eickmeyer, Daniel Günzel

Gruppenübung

Aufgabe G1 (Resolutionsverfahren)

Seien φ und ψ AL-Formeln in KNF. Wie kann man das Resolutionsverfahren benutzen, um zu überprüfen, ob

- (a) φ unerfüllbar ist;
- (b) φ erfüllbar ist;
- (c) φ allgemeingültig ist;
- (d) φ nicht allgemeingültig ist;
- (e) $\varphi \models \psi$;
- (f) eine endliche Menge Φ von AL-Formeln unerfüllbar ist;
- (g) eine unendliche Menge Φ von AL-Formeln unerfüllbar ist?

Lösung:

- (a) $\Box \in \text{Res}^*(K(\varphi))$ $(K(\varphi))$ bezeichnet die Klauselmenge zu φ .)
- (b) $\square \notin \text{Res}^*(K(\varphi))$
- (c) $\Box \in \operatorname{Res}^*(K(\neg \varphi))$
- (d) $\square \notin \text{Res}^*(K(\neg \varphi))$
- (e) $\Box \in \text{Res}^*(K(\varphi \land \neg \psi))$
- (f) $\square \in \text{Res}^*(K(\bigwedge \Phi))$
- (g) $\square \in \text{Res}^*(K(\bigwedge \Phi_0))$ für ein endliches $\Phi_0 \subseteq \Phi$.

Aufgabe G2 (Resolutionsverfahren)

Seien

$$\varphi := (p \lor q) \land (q \lor \neg r) \land (p \lor \neg q \lor r)$$

$$\psi := (\neg p \land r) \lor (p \land \neg r) \lor (p \land q \land r).$$

Zeigen Sie mit Hilfe des Resolutionsverfahrens, dass

- (a) φ erfüllbar ist;
- (b) $\varphi \models \psi$ gilt.

Lösung:

$$Res^{0}(K) = \{ \{p, q\}, \{q, \neg r\}, \{p, \neg q, r\} \}$$

$$Res^{1}(K) = Res^{0}(K) \cup \{ \{p, r\}, \{p, r, \neg r\}, \{p, q, \neg q\} \}$$

$$Res^{2}(K) = Res^{1}(K) \cup \{ \{p, q, \neg r\} \}$$

$$Res^{3}(K) = Res^{2}(K)$$

(b) Klauseln: $\{p,q\}, \{q,\neg r\}, \{p,\neg q,r\}, \{p,\neg r\}, \{\neg p,r\}, \{\neg p,\neg q,\neg r\}$ $\{q,\neg r\}, \{\neg p,\neg q,\neg r\}, \{p,q\}, \{p,\neg q,r\}, \{p,\neg q,r\}, \{p,q\}, \{p,\neg q,r\}, \{p,\neg q,r\}, \{p,\neg q,r\}, \{p,q\}, \{p,\neg q,r\}, \{p,\neg q,r\}, \{p,\neg q,r\}, \{p,\neg q,r\}, \{p,q\}, \{$

Aufgabe G3 (Horn-Erfüllbarkeit)

Finden Sie das minimale Modell der folgende Horn-Formelmenge.

$$H_0 = \{(p \land s) \rightarrow q, \quad r, \quad q \rightarrow s, \quad r \rightarrow p\}$$

Lösung: Die Hornklauselmenge H_0 enthält keine negativen Hornklauseln, daher gibt es nach Lemma 5.12 ein minimales Modell \mathfrak{I}_0 der Variablen in H_0 . Wir verfahren wie im (konstruktiven) Beweis des Lemmas, konstruieren also schrittweise die Mengen X_i : Wir erhalten $\mathcal{X}_0 = \emptyset$, $\mathcal{X}_1 = \mathcal{X}_0 \cup \{r\}$, $\mathcal{X}_2 = \mathcal{X}_\infty = \mathcal{X}_1 \cup \{p\}$. Ein Modell ist $\mathfrak{I}(p) = \mathfrak{I}(r) = 1$, $\mathfrak{I}(q) = \mathfrak{I}(s) = 0$.

Aufgabe G4

Leiten Sie die folgende Sequenz in SK ab:

$$\vdash ((\phi \rightarrow \psi) \rightarrow \phi) \rightarrow \phi$$

Lösung:

Bekannt ist, dass für aussagenlogische Formeln $\phi \to \psi$ eine Abkürzung von $\neg \varphi \lor \psi$ ist. Wir leiten nun wie folgt im \mathcal{SK} ab:

$$\frac{\frac{-}{\phi \vdash \psi, \phi}(Ax)}{\frac{\vdash \neg \phi, \psi, \phi}{\vdash (\phi \to \psi), \phi}(\neg R)} (\neg R)$$

$$\frac{\frac{-}{\vdash (\phi \to \psi), \phi}(\neg L)}{\frac{\neg (\phi \to \psi) \vdash \phi}(\neg L)} (\neg L) \frac{\rightarrow}{\phi \vdash \phi} (\neg R)$$

$$\frac{(\phi \to \psi) \to \phi \vdash \phi}{\vdash \neg ((\phi \to \psi) \to \phi), \phi} (\neg R)$$

$$\frac{\vdash \neg ((\phi \to \psi) \to \phi), \phi}{\vdash ((\phi \to \psi) \to \phi) \to \phi} (\lor R)$$

Aufgabe G5

Zeigen Sie **semantisch**, d.h. indem Sie über Modelle argumentieren, dass die folgenden Regeln korrekt sind.

$$\frac{\vdash \phi \lor \psi}{\neg \psi \vdash \phi} \qquad \text{für AL-Formeln } \phi, \psi.$$

$$\frac{\neg \phi \vdash \neg \psi}{\psi \vdash \phi} \quad \text{für AL-Formeln } \phi, \psi.$$

Extra: Lässt sich die Regel b) in \mathcal{SK} oder \mathcal{SK}^+ ableiten? *Hinweis*: Aufgabe 6.10 im Skript.

Lösung:

- (a) Angenommen $\vdash \phi \lor \psi$ sei allgemeingültig. Nach Definition gilt somit für alle Interpretationen \mathfrak{I} , dass $\mathfrak{I} \models \phi \lor \psi$. Anders ausgedrückt: $\mathfrak{I}(\phi) + \mathfrak{I}(\psi) \ge 1$. Wird eine der beiden Formeln als *falsch* interpretiert, so muss die andere von der jeweiligen Interpretation wahr gemacht werden. Eine Folgerung daraus ist $\mathfrak{I}(\neg \psi) \Rightarrow \mathfrak{I}(\phi)$, also $\neg \psi \vdash \phi$.
- (b) Angenommen $\neg \phi \vdash \neg \psi$ ist allgemeingültig. Dann gilt nach Definition, dass $\neg \phi \models \neg \psi$, sprich für alle Interpretationen \Im gilt $(\neg \phi)^{\Im} = 1 \Rightarrow (\neg \psi)^{\Im} = 1$. Bilden der Kontraposition liefert $\psi^{\Im} = 0 \Rightarrow \phi^{\Im} = 0$ für alle Interpretationen \Im . Nach Definition ist dies äquivalent zu $\psi \models \phi$, was ebenfalls äquivalent zur Allgemeingültigkeit der Sequenz $\psi \vdash \phi$ ist.

Extra: Zuerst sollte man einsehen, dass NNL und NNR ableitbar in \mathcal{SK}^+ sind, aber nicht in \mathcal{SK} .

$$\frac{\neg \phi \vdash \neg \psi}{\neg \phi, \neg \neg \psi \vdash \emptyset} (\neg L)$$

$$\frac{\neg \phi, \neg \neg \psi \vdash \emptyset}{\neg \neg \psi \vdash \neg \neg \phi} (\neg R)$$

$$\frac{\psi \vdash \neg \neg \phi}{\psi \vdash \phi} (NNR)$$