慶應義塾大学 試験問題用紙

科 月 名	2019 年 1	月 30 日 (水) 9 時限
数学1B(一斉)	学科(学門)	月 30日(水) 2時限 年組 学科出席番号
担当者	学籍番号	
数学 1B 担当者全員	氏名	1 ~~>
		(-ページ数は必ずご記入く)

問題	用紙	可収	要	٠	(B)
签:	案 用	紙	e		不要
計 1	算 用	紙	(B)		不要
計算	用紙	回収	要	•	1
持	A) 持	込み不可	в.	すべて	寺込み可
込	C. 以	FのOでE	囲んだもの	のみ持	入时
山		等(書))
ਰ ਤ	(2) 配	布プリン	F (3)	自筆ノ	ート

数学 1B 期末試験

以下の設問 1から 5に答えなさい。解答は解答用紙の所定の欄に記入すること。

$$1 (1) 定積分 \int_0^{\frac{\pi}{2}} x(\cos^2 x - \sin^2 x) dx の値を求めなさい.$$

(2)
$$\frac{4x^2}{x^4-1}$$
 を部分分数分解した式を記し,定積分 $\int_0^{\frac{1}{\sqrt{3}}} \frac{4x^2}{x^4-1} dx$ の値を求めなさい。

② 累次積分 $I=\int_0^{\frac{1}{\sqrt{2}}} \left(\int_{x^2}^{1-x^2} xy\,dy\right) dx$ で表される重積分の積分領域を図示しなさい。また、 累次積分の積分順序を交換した式を記し、I の値を求めなさい。

③
$$\varphi(x,y) = e^{\frac{x^2+y^2}{2}}$$
, $\mathbf{f}(x,y) = \left(\frac{y}{1+x}, \frac{x}{1+y}, \left(\frac{xy}{1+x} + \frac{xy}{1+y}\right)e^{\frac{x^2+y^2}{2}}\right)$, $S = \{(x,y,\varphi(x,y)) \mid 0 \le x,y \le 1\}$ とする。面積分 $\iint_S \mathbf{f} \cdot d\mathbf{S}$ の値を求めなさい。ただし S の法線は z 成分が正になるように取るものとする。

④ $C = \{(x,y) \mid x^2 + y^2 = 1\}$, $C_{\varepsilon} = \{(x,y) \mid x^2 + y^2 = \varepsilon^2\}$, $D_{\varepsilon} = \{(x,y) \mid \varepsilon^2 \leq x^2 + y^2 \leq 1\}$, $0 < \varepsilon < 1$, 原点を除いた点で定義された関数 $\mathbf{f}(x,y) = (f(x,y),g(x,y)) = \left(\frac{-y}{x^2 + y^2},\frac{x}{x^2 + y^2}\right)$ を考える.

(1) 重積分
$$\iint_{D_{\epsilon}} \left(-\frac{\partial f}{\partial y} + \frac{\partial g}{\partial x} \right) dx dy$$
 の値を求めさない。

- (2) 線積分 $\int_C \mathbf{f} \cdot d\mathbf{r} + \int_{C_{\varepsilon}} \mathbf{f} \cdot d\mathbf{r}$ の値を求めなさい。 ただし線積分は,C を反時計回りに回り, C_{ε} を時計回りに回るものとする.
- (3) 線積分 $\int_C \mathbf{f} \cdot d\mathbf{r}$ の値を求めなさい。 ただし線積分は C を反時計回りに回るものとする。

(1) 極限値
$$\lim_{\epsilon \to 0+0} \iint_{D_{\epsilon}} f(x,y) dxdy$$
 を求めなさい.

(2) 広義積分
$$\iint_D f(x,y) dxdy$$
 が存在するか否か理由とともに答えなさい.