

Máxima verossimilhança

Edson Delatorre

Lab. de Genética Molecular de Microrganismos Instituto Oswaldo Cruz/FIOCRUZ

delatorre.ioc@gmail.com

Rio de Janeiro – RJ, janeiro de 2019

Modelando a evolução

Métodos de Reconstrução de Filogenias

Métodos baseados em um modelo explícito de evolução

Métodos **sem base** em um modelo explícito de evolução Métodos baseados em caracteres Métodos baseados em distância

Neighbor-Joining Evolução mínima UPGMA

Máxima parcimônia

Métodos baseados em distância

O maior problema com os métodos baseados em distâncias genéticas é que eles funcionam com medidas de similaridade geral.

Problemas em situações com homoplasia

Caracteres semelhantes que resultam de evolução independente

Estimativa básica da MV

• Encontrar a probabilidade dos dados (D) dado uma hipótese (H).

• Exemplo:

Estimativa do número de indivíduos parasitados em uma população:

Numa amostra de n= 10 indivíduos k= 4 são parasitadas → D

Vamos chamar **p** a probabilidade de ser parasitado → **H**

Estimativa básica da MV

Probabilidade de os dados fornecidos diferentes valores de p (0.2, 0.4...)

Função de verossimilhança de p dado os dados k e n

$$pMV = 0.4$$

MV na reconstrução filogenética

- Encontrar a probabilidade dos dados (D) dado uma hipótese (H).
- Em filogenia molecular:

Dados = alinhamento de sequências

 $Pr(D/H) = Pr(alinhamento/\tau, \nu, \Phi)$

MV na reconstrução filogenética

- Algumas hipóteses vão explicar os dados observados com maior probabilidade que outras.
- Hipótese de Máxima Verossimilhança (MV): conjunto de valores de parâmetros que dá a maior probabilidade aos dados observados.
- A principal ideia por trás da inferência filogenética usando o critério de máxima verossimilhança é encontrar a topologia de árvore, o comprimento dos ramos e os parâmetros do modelo evolutivo que maximizam a probabilidade de observar o alinhamento de sequências que temos.

```
1 j N
T1 C...G G A C A C G T T T A...C
T2 C...A G A C A C G T T T A...C
T3 C...G A A T A A G T T T A...C
T4 C...G G A T A G G T T T A...C
```

Cada sítio evolui independentemente

De onde vem estas probabilidades:

Ancestral: Freq nt no alinhamento Mudanças: Modelo de substituição

$$\mathbf{P_t} = \begin{bmatrix} P_{AA} & P_{AC} & P_{AG} & P_{AT} \\ P_{CA} & P_{CC} & P_{CG} & P_{CT} \\ P_{GA} & P_{GC} & P_{GG} & P_{GT} \\ P_{TA} & P_{TC} & P_{TG} & P_{TT} \end{bmatrix}$$

T1 C T2 C A T3 G T4

?

$$C C A G$$

$$Prob \begin{pmatrix} C C A G \\ A \end{pmatrix} + Prob \begin{pmatrix} C C A G \\ C \end{pmatrix} + Prob \begin{pmatrix} C C C A G \\ C \end{pmatrix} + Prob \begin{pmatrix} C C A G \\ C \end{pmatrix} + Prob \begin{pmatrix} C C C A G \\ C \end{pmatrix} + Prob \begin{pmatrix}$$

Cada árvore tem n-1 nós internos, dos quais cada um pode ter um de quatro estados nucleotídeos

4n-1

Resumo

- 1. Escolha um modelo evolutivo.
- 2. Com base no modelo evolutivo, calcular as probabilidades por coluna.
- Calcular a Verossimilhança da Árvore multiplicando as probabilidades para cada posição.

 Temos um método computacionalmente viável para avaliar a probabilidade de uma determinada árvore, mas isso nos deixa com a tarefa de encontrar a árvore de MV.

 Encontrar a árvore de ML exige uma pesquisa tanto de todas as topologias possíveis, como também de todos os possíveis conjuntos de comprimentos de ramos.

Busca heurística

Busca heurística

Um dos métodos mais populares de busca heurística é o denominado *Branch swapping (Troca de ramo)*:

- 1) Começamos com uma árvore T (NJ) e calculamos o valor de ML.
- 2) Introduzimos mudanças aleatórias na topologia de T para obter uma nova árvore T'.
- 3) Calculamos o valor de ML da nova árvore T':
- 4a) Se a MV da nova árvore T' > que a MV de T, então ficamos com T' e iniciamos uma nova rodada de perturbações da topologia.
- 4b) Caso contrário, ficamos com a árvore inicial T e começamos uma nova rodada de perturbações da topologia.

Busca heurística

Branch swapping (Troca de ramo):

- 1) Nearest neighbor interchange (NNI)
- (Troca entre vizinhos mais próximos): é o mais rápido.
- 2) Subtree pruning and regrafting (SPR)
- (Poda e enxerto de sub-árvores): é intermediário entre o NNI e o TBR.
- 3) Tree bisection and reconnection (TBR)
- (Bissecção e reconexão de árvore) : é o melhor e mais completo, mas também o mais lento.

Busca heurística: NNI (Troca entre vizinhos mais próximos)

Busca heurística: SPR (Pode e enxerto de sub-arvores)

Busca heurística: TBR (Bissecção e reconexão de árvores)

Espaço de árvores

Análise de MV

Vantagens:

- permite a comparação de diferentes árvores (hipóteses) possíveis
- pode ser utilizado para analisar datasets relativamente grandes (<5000 sequências)

Desvantagens:

- muito mais lento do que o NJ
- não temos qualquer garantia de encontrar a árvore de ML
- escolhe a partir de diferentes topologias de árvores a de maior verossimilhança e não sabemos quão diferente é essa topologia do resto das topologias pesquisadas.

Confiabilidade da topologia inferida por MV

Teste de razão de verossimilhanças aproximado

(aLRT, Approximate Likelihood-Ratio Test)

- O aLRT é uma modificação do teste padrão de verossimilhança (LRT) o qual compara a hipótese alternativa de um comprimento de ramo positivo (t ≥ 0) com a hipótese para um comprimento do ramo igual a zero (t = 0).
- No LRT aproximado (aLRT), a hipótese nula padrão "do ramo tem 0 comprimento" é aproximada pela hipótese mais geral "o ramo está incorrecto."
- Mais especificamente, o aLRT compara as verossimilhança do melhor e o do segundo melhor arranjo envolta do ramo de interesse.

Teste de razão de verossimilhanças aproximado

Teste de razão de verossimilhanças aproximado

- Valores elevados de aLRT (>0.90) é um indicativo de forte sinal filogenético nos dados em favor de um determinado cluster filogenético.
- A principal vantagem do aLRT é que ele é muito mais rápido do que o bootstrap ou a inferência Bayesiana.
- Em algumas circunstâncias, no entanto, o aLRT é um teste menos conservador (um cluster pode apresentar um valor de aLRT elevado, mesmo se estiver errado).