第十七章 电化学

物理化学多媒体课堂教学软件 V1.0版

物理化学多媒体课堂教学软件 V1.0版

水的电解池

电化学—研究电极与溶液的界面间所发生的化学 反应以及相关现象的科学

电化学反应的特点

- 1. 电化学反应一般应在特定的装置中进行,称为 电化学池(简称电池), 伴有电荷的流动。
- 2. 电化学反应的热力学特征是:反应中吉氏函数的变化值小于系统与环境间交换的电功
- 3. 电化学反应的动力学特征是:反应速率受电势 差或端电压的强烈影响。

电化学反应的特点

1. 电化学反应一般应在特定的装置中进行,称为 电化学池(简称电池), 伴有电荷的流动。 电池: 一种能够使化学能和电能直接相互 转化的装置

化学能

原电池

电解池

电能

条件:

- ◆ 氧化-还原反应
- ◆ 在电池中进行

丹尼尔电池 (原电池)

$$Zn \rightarrow Zn^{2+} + 2e^{-}$$

$$Cu^{2+} + 2e^- \rightarrow Cu$$

$$Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu$$

系统输出电能

水的电解池

$$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$$

$$2OH^- \rightarrow H_2O + \frac{1}{2}O_2 + 2e^-$$

$$H_2O \rightarrow H_2 + \frac{1}{2}O_2$$

系统获得电能

电池的组成

电极: 传导电子,参加反应

电解质溶液: 离子迁移,参加反应

电池由至少两个电极-溶液界面组合而成

电池的组成

阴极 → 发生还原反应, 电势较低 ← 负极

阳极 → 发生氧化反应, 电势较高 ← 正极

电池的组成

电极反应: 在电极-溶液界面上产生的伴有电子得失的氧化反应或还原反应

电池反应:各个电极反应、其它界面上的变化以及 离子迁移所引起的变化的总和 1. 电化学反应在电化学池(简称电池)中进行,伴 有电荷的流动。

术语:

电极反应——在电极-溶液界面上产生的伴有电子得失的氧化反应或还原反应。

电池反应——电池中各个电极反应、其它界面上的变化以及离子迁移所引起的变化的总和。

阴极——正离子趋向或负离子离开的电极。发生 得到电子的还原反应。

阳极——负离子趋向或正离子离开的电极。发生 失去电子的氧化反应。 1. 电化学反应在电化学池(简称电池)中进行,伴 有电荷的流动。

术语:

正极——电势较高的电极。

负极——电势较低的电极。

电池——由至少两个电极-溶液界面组合而成。

原电池——电池运行时对外做电功(输出电能)。 又称伽伐尼电池。

电解池——必须从外界得到电功(输入电能)才能 运行的电池。

电化学—研究电极与溶液的界面间所发生的化学 反应以及相关现象的科学

电化学反应的特点

- 1. 电化学反应一般应在特定的装置中进行,称为 电化学池(简称电池), 伴有电荷的流动。
- 2. 电化学反应的热力学特征是:反应中吉氏函数的变化值小于系统与环境间交换的电功
- 3. 电化学反应的动力学特征是:反应速率受电势 差或端电压的强烈影响。

2. 热力学特征:反应中吉氏函数的变化值小于系统与环境间交换的电功。

一般化学反应: $\Delta G_{T,p} \leq 0$

对恒温恒压下进行的过程

$$dG_{T,p} \leq dW', \qquad \Delta G_{T,p} \leq W'$$

原电池反应:

$$\Delta G_{T,p} \leq W'$$

$$W' \leq 0 \quad \Delta G_{T,p} \leq 0$$

电解池反应:

$$\Delta G_{T,p} \leq W'$$

$$W' \geq 0 \quad \Delta G_{T,p} \geq 0$$

原电池: 反应后系统可以对环境作出电功

$$Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu$$

25°C,
$$a_{\text{Zn}^{2+}} = a_{\text{Cu}^{2+}} = 1$$
, $\Delta_{\text{r}}G_{\text{m}} = -212.6\text{kJmol}^{-1}$

直接反应

$$\Delta_{\rm r}G_{\rm m}=-212.6{\rm kJmol}^{-1}$$

$$\Delta_{\rm r} H_{\rm m} = -224.8 {\rm kJmol}^{-1}$$

$$W_{\mathbf{p}}' = \mathbf{0}$$

$$Q = Q_p = \Delta_r H_m$$

在电池中进行

$$\Delta_{\rm r}G_{\rm m}=-212.6{\rm kJmol}^{-1}$$

$$\Delta_{\rm r} H_{\rm m} = -224.8 \text{kJmol}^{-1}$$

$$W' \leq -212.6 \text{kJmol}^{-1}$$

$$Q = \Delta_{\rm r} H_{\rm m} - W'$$

原电池: 反应后系统可以对环境作出电功

$$Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu$$

25°C,
$$a_{\text{Zn}^{2+}} = a_{\text{Cu}^{2+}} = 1$$
, $\Delta_{\text{r}}G_{\text{m}} = -212.6\text{kJmol}^{-1}$

直接反应

$$\Delta_{\rm r}G_{\rm m}=-212.6{\rm kJmol}^{-1}$$

$$\Delta_{\rm r} H_{\rm m} = -224.8 \text{kJmol}^{-1}$$

$$W_{\mathbf{p}}' = \mathbf{0}$$

$$Q = Q_p = \Delta_r H_m$$

在电池中可逆进行

$$\Delta_{\rm r}G_{\rm m}=-212.6{\rm kJmol}^{-1}$$

$$\Delta_{\rm r} H_{\rm m} = -224.8 {\rm kJmol}^{-1}$$

$$W'_{\rm R} = -212.6 {\rm kJmol}^{-1}$$

$$Q_{\rm R} = \Delta_{\rm r} H_{\rm m} - W_{\rm R}'$$

保持反应在电池中可逆进行的条件

- ◆在电极表面进行的电极反应是可逆 反应;
- ◆通过电池的电流无限小。

满足

可逆电池

不满足

不可逆电池

特征

◆反应可逆进行时系统对外作功最大;

$$W_{\rm R}' = \Delta G_{T,p}$$

◆不可逆进行时系统对外作功减小;

$$|W'| < |W'_{\rm R}|$$

- ◆不可逆程度越大,对外作功越小;
- ◆系统吉布斯函数的变化值大小代表了 系统可以对外作功的能力(潜力)。

电解池: 反应后可以使系统吉布斯函数增加

$$H_2O \rightarrow H_2 + \frac{1}{2}O_2$$

25°C,
$$p_{\rm H_2} = p_{\rm O_2} = 0.1 {\rm MPa}$$
, $\Delta_{\rm r} G_{\rm m} = 237.1 {\rm kJmol}^{-1}$

反应进行条件:

 $W' \ge 237.1 \text{kJmol}^{-1}$

反应可逆进行:

$$W_{\rm R}' = \Delta_{\rm r} G_{\rm m}$$

状态变化:

$$\Delta_{\rm r}G_{\rm m}=237.1{\rm kJmol}^{-1}$$

$$\Delta_{\rm r} H_{\rm m} = 285.8 {\rm kJmol}^{-1}$$

$$W' \geq \Delta_{\rm r} G_{\rm m} = W'_{\rm R}$$

$$Q = \Delta_{\rm r} H_{\rm m} - W'$$

特征

- ◆ 反应可逆进行时环境对系统作功最小: $W'_{R} = \Delta G_{T,p}$
- ◆不可逆进行时环境对系统作功增大; $|W'|>|W'_{R}|$
- ◆不可逆程度越大,环境作功越大;

电化学—研究电极与溶液的界面间所发生的化学 反应以及相关现象的科学

电化学反应的特点

- 1. 电化学反应一般应在特定的装置中进行,称为 电化学池(简称电池), 伴有电荷的流动。
- 2. 电化学反应的热力学特征是:反应中吉氏函数的变化值小于系统与环境间交换的电功
- 3. 电化学反应的动力学特征是:反应速率受电势 差或端电压的强烈影响。

3. 动力学特征是:反应速率受电势差或端电压强烈影响。

$$\dot{\xi} = d\xi / dt$$

$$\xi = Q/zF$$

$$\dot{\xi} = \frac{1}{zF} \frac{\mathrm{d}Q}{\mathrm{d}t} = \frac{I}{zF}$$

17-2 原电池的电动势

物理化学多媒体课堂教学软件 V1.0版

1. 原电池的书写惯例

- —表示稳定的相界面
- —表示可混液体之间 **不**独立地思言
 - 不稳定的相界面
- —表示已消除液接电 势的相界面

电池表达规则:

- ◆ 左面电极:氧化反应;右面电极:还原反应;
- ◆ 用 " | " " | " 表示3种相界面;
- ◆ 标明物质状态、活度、压力;
- ◆ 气体物质应有不活泼物质作载体(电极);
- ◆ 注明电池温度、压力;
- ◆ 根据上述规则写出的电池若电池电势小于零, 说明实际电池情况与书写表达相反。

1. 原电池的书写惯例

—表示稳定的相界面

—表示可混液体之间

不稳定的相界面

—表示已消除液接电 势的相界面

-) Cu' | Zn | ZnSO₄(aq) \vdots CuSO₄(aq) | Cu (+

 $\phi(Cu')\phi(Zn)\phi(ZnSO_4,aq)\phi(CuSO_4,aq)\phi(Cu)$

2. 原电池的电动势

连接右面电极(正极)的金属引线与连接左面电极(负极)的相同金属引线之间的内电势差称为电池电势。电流为零(达到平衡)时原电池的电池电势称为电动势

$$E \stackrel{\text{def}}{=} \lim_{I \to 0} [\phi(\text{右引线}) - \phi(\text{左引线})]$$

$$\phi(\mathbf{C}\mathbf{u}) - \phi(\mathbf{C}\mathbf{u}')$$

3. 界面电势差

$$\Delta_{Cu'}^{Zn} \phi = \phi(Zn) - \phi(Cu')$$

$$\Delta_{\text{ZnSO}_4,\text{aq}}^{\text{Zn}} \phi = \phi(\text{Zn}) - \phi(\text{ZnSO}_4,\text{aq})$$

$$\Delta_{\text{ZnSO}_4,\text{aq}}^{\text{CuSO}_4,\text{aq}} \phi = \phi(\text{CuSO}_4,\text{aq}) - \phi(\text{ZnSO}_4,\text{aq})$$

$$\Delta_{\text{CuSO}_4,\text{aq}}^{\text{Cu}} \phi = \phi(\text{Cu}) - \phi(\text{CuSO}_4,\text{aq})$$

$$E = \lim_{I \to 0} \left[\Delta_{\text{Cu}}^{\text{Zn}} \phi - \Delta_{\text{ZnSO}_4,\text{aq}}^{\text{Zn}} \phi + \Delta_{\text{ZnSO}_4,\text{aq}}^{\text{CuSO}_4,\text{aq}} \phi + \Delta_{\text{CuSO}_4,\text{aq}}^{\text{Cu}} \phi \right]$$

$$=\lim_{I\to 0} \left[\phi(\text{右引线}) - \phi(\text{左引线})\right]$$

电极与溶液间的界面电势差

接触电势

液接电势与盐桥

❖消除液接电势有两种方法,一是避免使用有液接电势的原电池,二是使用盐桥,使两种溶液不直接接触。

液接电势与盐桥

$$-)$$
 Cu' | Zn | ZnSO₄(aq) | CuSO₄(aq) | Cu (+

$$E = \lim_{I \to 0} \left[\Delta_{\text{CuSO}_4, \text{aq}}^{\text{Cu}} \phi - \Delta_{\text{ZnSO}_4, \text{aq}}^{\text{Zn}} \phi \right]$$

17-3 电化学系统的热学等

物理化学多媒体课堂教学软件 V1.0版

1. 电化学系统的热力学基本方程

$$dU = TdS - pdV + \sum_{\alpha=1}^{\pi} \sum_{i=1}^{K} \left(\mu_i^{(\alpha)} dn_i^{(\alpha)} + z_i F \phi^{(\alpha)} dn_i^{(\alpha)} \right) + \sigma dA_s$$

$$dG = -SdT + Vdp + \sum_{\alpha=1}^{\pi} \sum_{i=1}^{K} \left(\mu_i^{(\alpha)} dn_i^{(\alpha)} + z_i F \phi^{(\alpha)} dn_i^{(\alpha)} \right) + \sigma dA_s$$

$$\mathbf{0} = \mathbf{S} \mathbf{d} \mathbf{T} - \mathbf{V} \mathbf{d} \mathbf{p} + \sum_{\alpha=1}^{\pi} \sum_{i=1}^{K} \left(\mathbf{n}_{i}^{(\alpha)} \mathbf{d} \boldsymbol{\mu}_{i}^{(\alpha)} + \mathbf{n}_{i}^{(\alpha)} \boldsymbol{z}_{i} F \mathbf{d} \boldsymbol{\phi}^{(\alpha)} \right) + A_{s} \mathbf{d} \boldsymbol{\sigma}$$

2. 电化学势

$$\widetilde{\boldsymbol{\mu}}_i = \boldsymbol{\mu}_i + \boldsymbol{z}_i \boldsymbol{F} \boldsymbol{\phi}$$

$$dU = TdS - pdV + \sum_{\alpha=1}^{\pi} \sum_{i=1}^{K} \widetilde{\mu}_{i}^{(\alpha)} dn_{i}^{(\alpha)} + \sigma dA_{s}$$

$$dG = -SdT + Vdp + \sum_{\alpha=1}^{\pi} \sum_{i=1}^{K} \widetilde{\mu}_{i}^{(\alpha)} dn_{i}^{(\alpha)} + \sigma dA_{s}$$

$$\mathbf{0} = S dT - V dp + \sum_{\alpha=1}^{\pi} \sum_{i=1}^{K} n_i^{(\alpha)} d\widetilde{\mu}_i^{(\alpha)} + A_s d\sigma$$

$$\widetilde{\boldsymbol{\mu}}_{i} = \left(\frac{\partial \boldsymbol{U}}{\partial \boldsymbol{n}_{i}}\right)_{S,V,A_{s},\boldsymbol{n}_{j\neq i}} = \left(\frac{\partial \boldsymbol{G}}{\partial \boldsymbol{n}_{i}}\right)_{T,p,A_{s},\boldsymbol{n}_{j\neq i}}$$

3. 电化学平衡

◆开路下的电化学平衡

$$dU = dQ_R + dW_R = TdS - pdV + \sigma dA_s$$

电化学平衡判据

$$\sum_{\alpha=1}^{\pi} \sum_{i=1}^{K} \widetilde{\mu}_{i}^{(\alpha)} dn_{i}^{(\alpha)} = 0$$

或

$$\sum\nolimits_{\alpha=1}^{\pi}\sum\nolimits_{\mathbf{B}}\nu_{\mathbf{B}}\widetilde{\boldsymbol{\mu}}_{\mathbf{B}}^{(\alpha)}=\mathbf{0}$$

3. 电化学平衡

◆闭路下的电化学平衡 对外输出电能,做电功。

$$dU = dQ_R + dW_R = TdS - pdV + \sigma dA_s - zFE d\xi$$

电化学平衡判据

 $\mathrm{d}\,W_{\mathrm{#}}^{\,\prime}$

$$\sum_{\alpha=1}^{\pi} \sum_{i=1}^{K} \widetilde{\mu}_{i}^{(\alpha)} dn_{i}^{(\alpha)} = dW_{\pm}' = -zFEd\xi$$

或

$$\sum_{\alpha=1}^{\pi} \sum_{\mathbf{B}} \mathbf{v}_{\mathbf{B}} \widetilde{\boldsymbol{\mu}}_{\mathbf{B}}^{(\alpha)} = \boldsymbol{W}_{\mathbf{E}}' = -z \boldsymbol{F} \boldsymbol{E}$$

17-4 电池反应的电势标准电势

物理化学多媒体课堂教学软件 V1.0版

1. 电池反应的电势

$$Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu$$

$$\Delta G_{T,p} \leq W'$$

$$-zFE\Delta \xi$$

$$\Delta_{r}G_{m} \cdot \Delta \xi = \sum_{B} v_{B}\mu_{B} \cdot \Delta \xi$$

$$E \stackrel{\text{def}}{=} -\frac{\Delta_{r}G_{m}}{zF} = -\frac{1}{zF}\sum_{B} v_{B}\mu_{B}$$

电池电势与吉布斯函数

$$eE + fF \rightarrow gG + rR$$

$$\Delta_{\rm r}G_{\rm m}=-zFE$$

联系热力学 与电化学的 主要桥梁

对能量转 化限度的 度量

电池电势与吉布斯函数

$$\Delta_{\rm r}G_{\rm m}=-zFE$$

燃料电池
$$H_2 + \frac{1}{2}O_2 \rightarrow H_2O$$
 $\Delta_r G_m^{(1)}$ $z^{(1)} = 2$

$$2H_2 + O_2 \rightarrow 2H_2O \quad \Delta_r G_m^{(2)} \quad z^{(2)} = 4$$

$$E = -\frac{\Delta_{r}G_{m}^{(1)}}{z^{(1)}F} = -\frac{\Delta_{r}G_{m}^{(1)}}{2F}$$

$$\Delta_{\rm r}G_{\rm m}^{(2)}=2\Delta_{\rm r}G_{\rm m}^{(1)}$$

$$E = -\frac{\Delta_{\rm r} G_{\rm m}^{(2)}}{z^{(2)} F} = -\frac{2\Delta_{\rm r} G_{\rm m}^{(1)}}{4F} = -\frac{\Delta_{\rm r} G_{\rm m}^{(1)}}{2F}$$

1. 电池反应的电势

$$Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu$$

$$\Delta G_{T,p} = W'$$

$$E \stackrel{\text{def}}{=} -\frac{\Delta_{r}G_{m}}{zF} = -\frac{1}{zF} \sum_{B} v_{B} \mu_{B}$$

$$E\{Zn + Cu^{2+}(aq, b_{Cu^{2+}}) \rightarrow Zn^{2+}(aq, b_{Zn^{2+}}) + Cu\}$$

2. 电池反应的标准电势

$$E^{\theta} = \frac{\det}{zF} - \frac{\Delta_{\mathbf{r}} G_{\mathbf{m}}^{\theta}}{zF} = -\frac{1}{zF} \sum_{\mathbf{B}} v_{\mathbf{B}} \mu_{\mathbf{B}}^{\theta}$$

$$\Delta_{\rm r}G_{\rm m}^{\rm e}=-RT\ln K^{\rm e}$$

$$E^{\theta} = \frac{RT}{zF} \ln K^{\theta}$$

$$E^{\theta}\left\{\operatorname{Zn}(s) + \operatorname{Cu}^{2+}(\operatorname{aq}) \to \operatorname{Zn}^{2+}(\operatorname{aq}) + \operatorname{Cu}(s)\right\}$$

$$E^{\theta}\left\{\mathbf{H}_{2}(\mathbf{g})+\frac{1}{2}\mathbf{O}_{2}(\mathbf{g})\rightarrow\mathbf{H}_{2}\mathbf{O}(\mathbf{l})\right\}$$

$$-E^{\theta}\left\{\mathbf{H}_{2}\mathbf{O}(\mathbf{I}) \to \mathbf{H}_{2}(\mathbf{g}) + \frac{1}{2}\mathbf{O}_{2}(\mathbf{g})\right\}$$

3. 能斯特方程

$$0 = \sum_{\mathbf{B}} \nu_{\mathbf{B}} \mathbf{B}$$

$$\Delta_{r}G_{m} = \sum_{B} \nu_{B} \mu_{B}^{\theta} + RT \ln \prod_{B} a_{B}^{\nu_{B}}$$
$$= \Delta_{r}G_{m}^{\theta} + RT \sum_{B} \nu_{B} \ln a_{B}$$

$$E = E^{\theta} - \frac{RT}{zF} \sum_{B} \nu_{B} \ln a_{B}$$

能斯特方程

$$E = E^{\theta} - \frac{RT}{2F} \ln \frac{a_{Zn^{2+}}}{a_{Cu^{2+}}}$$

$$E = E^{\theta} - \frac{RT}{zF} \ln \frac{a_{G}^{g} a_{R}^{r}}{a_{E}^{e} a_{F}^{f}}$$

- ▶产物活度增大,电池电势减小;
- ▶产物活度减小,电池电势增大;
- ▶平衡时:

$$\Delta_{\rm r}G_{\rm m}=0, \qquad E=0$$

$$E^{\theta} = \frac{RT}{zF} \ln \left(\frac{a_{G}^{g} a_{R}^{r}}{a_{E}^{e} a_{F}^{f}} \right)_{eq} = \frac{RT}{zF} \ln K^{\theta}$$

4. 电池反应的条件电势

$$E = E^{\theta'} - \frac{RT}{zF} \sum_{\mathbf{B}} \nu_{\mathbf{B}} \ln(b_{\mathbf{B}}/b^{\theta})$$

$$E = E^{\theta'} - \frac{RT}{zF} \sum_{\mathbf{B}} v_{\mathbf{B}} \ln(c_{\mathbf{B}}/c^{\theta})$$

电 池

电极反应 电池反应

$$Zn + CuSO_4 \rightarrow ZnSO_4 + Cu$$

$$2H_2 + O_2 \rightarrow 2H_2O$$

$$AgCl \rightarrow Ag^+ + Cl^-$$

电池表达规则:

- ◆ 左面电极:氧化反应;右面电极:还原反应;
- ◆ 用 " | " " | " 表示3种相界面;
- ◆ 标明物质状态、活度、压力;
- ◆ 气体物质应有不活泼物质作载体(电极);
- ◆ 注明电池温度、压力;
- ◆ 根据上述规则写出的电池若电池电势小于零, 说明实际电池情况与书写表达相反。

电极反应和电池反应表达规则:

负极反应(氧化反应) + 正极反应(还原反应)

= 电池反应

- •按参与反应的物质的实际物态写;
- •可以忽略不参与反应的物质(离子);
- •物料平衡;
- •电荷平衡(用 e 表示一个负电荷)。

5. 电池反应电势的温度系数

$$\left(\frac{\partial E}{\partial T}\right)_{p} = -\frac{1}{zF} \left(\frac{\partial \Delta_{r}G_{m}}{\partial T}\right)_{p} = \frac{\Delta_{r}S_{m}}{zF}$$

$$\Delta_{\rm r} H_{\rm m} = \Delta_{\rm r} G_{\rm m} + T \Delta_{\rm r} S_{\rm m}$$

$$\Delta_{\mathbf{r}} \boldsymbol{H}_{\mathbf{m}} = -z \boldsymbol{F} \left[\boldsymbol{E} - \boldsymbol{T} \left(\frac{\partial \boldsymbol{E}}{\partial \boldsymbol{T}} \right)_{p} \right]$$

电池电势的温度系数与 $\Delta_r H_m \setminus \Delta_r S_m$

$$\Delta_{\rm r}G_{\rm m}=-zFE$$

$$\Delta_{r}H_{m} = -zFE + zFT(\partial E / \partial T)_{p}$$

$$\Delta_{r}S_{m} = (\Delta_{r}H_{m} - \Delta_{r}G_{m})/T = zF(\partial E / \partial T)_{p}$$

$$Q_{R} = T\Delta_{r}S_{m} = zFT(\partial E / \partial T)_{p}$$

$$Q_{R} = \Delta_{r}H_{m} - \Delta_{r}G_{m} = Q_{p} + zFE$$

$$\Delta_{r}G_{m}$$
 $\Delta_{r}H_{m}$ $\Delta_{r}S_{m}$ W'_{R}

4。实验测定电池的电动势(对消法)

- (1) 使 $U_{ac'} = E_n$
- (2) 使 $U_{ac} = E_X$

$$E_{\rm X} = \frac{ac}{ac'} E_{\rm n}$$

17-5 电极反应的电势和标准电势

物理化学多媒体课堂教学软件 V1.0版

如何获得电池反应电势?

1。直接实验测定

电池反应电势≈电池电动势

2。由电极电势计算

电池反应电势=∑电极电势

原电池的电动势

$$\phi(Cu')\phi(Zn)\phi(ZnSO_4,aq)\phi(CuSO_4,aq)\phi(Cu)$$

$$E \stackrel{\text{def}}{=} \lim_{I \to 0} [\phi(\text{右引线}) - \phi(\text{左引线})]$$

$$= \lim_{I \to 0} \left[\Delta_{\text{CuSO}_4, \text{aq}}^{\text{Cu}} \phi - \Delta_{\text{ZnSO}_4, \text{aq}}^{\text{Zn}} \phi \right] \left[\frac{\text{ZnSO}_4}{\text{lmolkg}^{-1}} \right]$$

1. 标准氢电极(SHE)

1. 标准氢电极(SHE)

$$H^{+}(a_{H^{+}}) + e^{-} \rightarrow \frac{1}{2}H_{2}(p)$$

$$H^+(aq)|H_2,Pt$$

$$p_{\mathrm{H}_2} = p^{\mathrm{e}} = 0.1 \mathrm{MPa}$$

$$a_{_{\mathrm{H}^{+}}}=1$$

2. 电极反应的标准电势

-)标准氢电极 ||指定电极(标准状态)(+

电极反应的标准电势 $E^{\mathfrak{o}}$

此电池反应的标准电势,定义为该电极上电极反应的标准电势。

-)
$$Pt, H_2 | H^+ | | Cu^{2+}(aq) | Cu (+$$

$$H_2 \to 2H^+(aq) + 2e^- \quad Cu^{2+}(aq) + 2e^- \to Cu$$

$$H_2 + Cu^{2+}(aq) \to 2H^+(aq) + Cu$$

$$E^{\theta} \left\{ \operatorname{Cu}^{2+}(\operatorname{aq}) | \operatorname{Cu} \right\}$$

$$= E^{\theta} \left\{ \operatorname{Cu}^{2+}(\operatorname{aq}) + 2e^{-} \to \operatorname{Cu} \right\}$$

$$\stackrel{\text{def}}{=} E^{\theta} \left\{ \operatorname{H}_{2} + \operatorname{Cu}^{2+} \to 2\operatorname{H}^{+} + \operatorname{Cu} \right\}$$

3. 电极反应的电势

-)标准氢电极 ||指定电极(+

电极反应的电势E

此电池反应的电势,定义为该电极上电极反应的电势。

例:

-)
$$Pt, H_2 | H^+ | | Cu^{2+}(a) | Cu (+$$

$$H_2 \to 2H^+(aq) + 2e^- \quad Cu^{2+}(a) + 2e^- \to Cu$$

$$H_2 + Cu^{2+}(a) \to 2H^+(aq) + Cu$$

$$E\{Cu^{2+}(a)|Cu\} = E\{Cu^{2+}(a) + 2e^{-} \to Cu\}$$

$$\stackrel{\text{def}}{=} E\{H_{2} + Cu^{2+}(a) \to 2H^{+} + Cu\}$$

$$= E^{\theta}\{H_{2} + Cu^{2+}(a) \to 2H^{+} + Cu\} - \frac{RT}{2F}\ln\frac{1}{a_{Cu^{2+}}}$$

$$\stackrel{\parallel}{=} \{Cu^{2+}(aq)|Cu\}$$

电极符号总是从溶液到电极

$$E^{\theta}\left\{\operatorname{Cu}\left|\operatorname{Cu}^{2+}(\operatorname{aq})\right\}\right\}$$

电极反应则写还原方向

$$E^{\theta}\left\{\mathrm{Cu} \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq}) + 2\mathrm{e}^{-}\right\} \times$$

$$E^{\theta}\left\{\mathbf{H}^{+}(\mathbf{aq}) + \mathbf{e}^{-} \rightarrow \frac{1}{2}\mathbf{H}_{2}\right\} = 0$$

4.电极反应的能斯特方程

$$E\{Cu^{2+}(aq)|Cu\} = E^{\theta}\{Cu^{2+}(aq)|Cu\} - \frac{RT}{2F}\ln\frac{1}{a_{Cu^{2+}}}$$

$$|\nu_{\rm O}| \, {\rm O} + z {\rm e}^- \rightarrow \nu_{\rm R} {\rm R}$$

$$E = E^{\theta} - \frac{RT}{zF} \ln \frac{\alpha_{\mathrm{R}}^{\nu_{\mathrm{R}}}}{\alpha_{\mathrm{O}}^{|\nu_{\mathrm{O}}|}} = E^{\theta} + \frac{RT}{zF} \ln \frac{\alpha_{\mathrm{O}}^{|\nu_{\mathrm{O}}|}}{\alpha_{\mathrm{R}}^{\nu_{\mathrm{R}}}}$$

5. 电极反应电势与电池反应电势的关系

$$||Zn(s)||Zn^{2+}(a_{Zn^{2+}})||Cu^{2+}(a_{Cu^{2+}})||Cu(s)||$$

标准氢电极
$$\|\operatorname{Cu}^{2+}(a_{\operatorname{Cu}^{2+}})|\operatorname{Cu}(s)$$
 (b)

标准氢电极
$$\|\mathbf{Z}\mathbf{n}^{2+}(a_{\mathbf{Z}\mathbf{n}^{2+}})\|\mathbf{Z}\mathbf{n}(\mathbf{s})$$
 (c)

标准氢电极 ||Cu²⁺(a_{Cu²⁺})|Cu(s)

$$H_2(p^{\theta}) + Cu^{2+}(aq) \rightarrow 2H^+(a_{H^+} = 1) + Cu$$
 (b)

标准氢电极 $\|\mathbf{Z}\mathbf{n}^{2+}(a_{\mathbf{Z}\mathbf{n}^{2+}})\|\mathbf{Z}\mathbf{n}(\mathbf{s})$

$$H_2(p^{\theta}) + Zn^{2+}(aq) \rightarrow 2H^+(a_{H^+} = 1) + Zn$$
 (c)

$$(b)-(c)$$

$$Zn + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu$$

$$Zn(s)|Zn^{2+}(a_{Zn^{2+}})||Cu^{2+}(a_{Cu^{2+}})||Cu(s)$$

$$\Delta_{\rm r}G_{\rm m}(a) = \Delta_{\rm r}G_{\rm m}(b) - \Delta_{\rm r}G_{\rm m}(c)$$

$$-zFE(a) = -zFE(b) - [-zFE(c)]$$

$$E(a) = E(b) - E(c)$$

$$E(entering) = E(Entering) - E(Entering)$$

$$E^{\circ}$$
(电池反应)= E° (正极)- E° (负极)

$$E\{\operatorname{Zn} + \operatorname{Cu}^{2+}(\operatorname{aq}, a_{\operatorname{Cu}^{2+}}) \to \operatorname{Zn}^{2+}(\operatorname{aq}, a_{\operatorname{Zn}^{2+}}) + \operatorname{Cu}\} =$$

+)
$$E\{Cu^{2+}(aq, a_{Cu^{2+}}) + 2e^{-} \rightarrow Cu\}$$

= $E^{\theta}\{Cu^{2+}(aq) + 2e^{-} \rightarrow Cu\} - \frac{RT}{2F}\ln\frac{1}{a_{Cu^{2+}}}$

-)
$$E\{\operatorname{Zn}^{2+}(\operatorname{aq}, a_{\operatorname{Zn}^{2+}}) + 2e^{-} \to \operatorname{Zn}\}\$$

= $E^{\theta}\{\operatorname{Zn}^{2+}(\operatorname{aq}) + 2e^{-} \to \operatorname{Zn}\} - \frac{RT}{2F}\ln\frac{1}{a_{\operatorname{Zn}^{2+}}}$

$$= E^{\theta} \left\{ \text{Zn} + \text{Cu}^{2+}(\text{aq}) \to \text{Zn}^{2+}(\text{aq}) + \text{Cu} \right\} - \frac{RT}{2F} \ln \frac{a_{\text{Zn}^{2+}}}{a_{\text{Cu}^{2+}}}$$

$$E($$
电池反应 $)=E($ 正极 $)-E($ 负极 $)$

$$= \left[E^{\theta}(\mathbb{E}W) - E^{\theta}(\mathcal{D}W)\right] - \frac{RT}{zF} \ln \frac{a_{G}^{g}a_{R}^{r}}{a_{E}^{e}a_{F}^{f}}$$

电池反应 能斯特方程

$$E = E^{\Theta} - \frac{RT}{zF} \ln \frac{a_{\mathrm{R}}^{\nu_{\mathrm{R}}}}{a_{\mathrm{O}}^{|\nu_{\mathrm{O}}|}}$$
 电极反应能斯特方程

 E° (电池反应)= E° (正极)- E° (负极)

17-6 各种类型的电极种类型的池

物理化学多媒体课堂教学软件 V1.0版

- 1. 金属-金属离子电极
- 2. 金属汞齐-金属离子电极
- 3. 铂-非金属-非金属离子电极
- 4. 氧化-还原电极
- 5. 金属-微溶盐-微溶盐的负离子电极
- 6.离子选择性电极

1. 金属-金属离子电极

$$\mathbb{Z}n^{2+} \mid \mathbb{Z}n$$

$$\mathbf{M}^{z+}(a_{\mathbf{M}^{z+}}) + z\mathbf{e}^{-} \to \mathbf{M}$$

$$E\{\mathbf{M}^{z+}(a_{\mathbf{M}^{z+}}) \mid \mathbf{M}\} = E^{\theta}\{\mathbf{M}^{z+} \mid \mathbf{M}\} - \frac{RT}{zF} \ln \frac{1}{a_{\mathbf{M}^{z+}}}$$

$$Ag^+ | Ag$$

$$Ag^+ + e^- \rightarrow Ag$$

$$Na^{+}|Na$$

$$Na^+ + e^- \rightarrow Na$$

$$Fe^{2+} + 2e^{-} \rightarrow Fe$$

$$Cd^{2+} \mid Cd$$

$$Cd^{2+} + 2e^- \rightarrow Cd$$

$$Pb^{2+} + 2e^- \rightarrow Pb$$

2. 金属汞齐-金属离子电极

$$Na^{+}|Na-Hg$$
 $Cd^{2+}|Cd-Hg$

$$\mathbf{M}^{z+}(a_{\mathbf{M}^{z+}}) + z\mathbf{e}^{-} \to \mathbf{M}(a_{\mathbf{M}})$$

$$E\{\mathbf{M}^{z+}(a_{\mathbf{M}^{z+}}) \mid \mathbf{M}(a_{\mathbf{M}})\} = E^{\Theta}\{\mathbf{M}^{z+} \mid \mathbf{M}\} - \frac{RT}{zF} \ln \frac{a_{\mathbf{M}}}{a_{\mathbf{M}^{z+}}}$$

3. 铂-非金属-非金属离子电极

$$H^{+}|H_{2}(g),Pt$$
 $Cl^{-}|Cl_{2}(g),Pt$ $Br^{-}|Br_{2}(l),Pt$ $I^{-}|I_{2}(s),Pt$

$$2H^{+}(a_{H^{+}}) + 2e^{-} \rightarrow H_{2}(p_{H_{2}})$$

$$Cl_{2}(p_{Cl_{2}}) + 2e^{-} \rightarrow 2Cl^{-}(a_{Cl^{-}})$$

$$Br_{2}(l) + 2e^{-} \rightarrow 2Br^{-}(a_{Br^{-}})$$

$$I_{2}(s) + 2e^{-} \rightarrow 2I^{-}(a_{I^{-}})$$

3. 铂-非金属-非金属离子电极

$$H^{+}|H_{2}(g),Pt$$
 $Cl^{-}|Cl_{2}(g),Pt$ $Br^{-}|Br_{2}(l),Pt$ $I^{-}|I_{2}(s),Pt$

$$2H^{+}(a_{H^{+}}) + 2e^{-} \rightarrow H_{2}(p_{H_{2}})$$

$$E\{\mathbf{H}^{+}(a_{\mathbf{H}^{+}}) | \mathbf{H}_{2}(p_{\mathbf{H}_{2}}), \mathbf{Pt}\} =$$

$$E^{\theta}\{\mathbf{H}^{+} | \mathbf{H}_{2}, \mathbf{Pt}\} - \frac{RT}{2F} \ln \frac{p_{\mathbf{H}_{2}} / p^{\theta}}{a_{\mathbf{H}^{+}}^{2}}$$

3. 铂-非金属-非金属离子电极

$$H^{+}|H_{2}(g),Pt$$
 $Cl^{-}|Cl_{2}(g),Pt$ $Br^{-}|Br_{2}(l),Pt$ $I^{-}|I_{2}(s),Pt$

$$\mathrm{Cl}_2(p_{\mathrm{Cl}_2}) + 2\mathrm{e}^- \rightarrow 2\mathrm{Cl}^-(a_{\mathrm{Cl}^-})$$

$$E\{\text{Cl}^-(a_{\text{Cl}^-}) \mid \text{Cl}_2(p_{\text{Cl}_2}), \text{Pt}\} =$$

$$E^{\theta}$$
{Cl⁻ | Cl₂, Pt} $-\frac{RT}{2F}\ln\frac{\alpha_{\text{Cl}}^2}{p_{\text{Cl}_2}/p^{\theta}}$

$$H^{+}(a_{H^{+}})|H_{2},Pt$$
 $2H^{+}+2e^{-} \rightarrow H_{2}$
 $OH^{-}(a_{OH^{-}})|H_{2},Pt$ $2H_{2}O+2e^{-} \rightarrow H_{2}+2OH^{-}$

$$2H_2O \Longrightarrow 2H^+ + 2OH^-$$

$$E\left\{H^{\Delta}\middle|G_{12},P^{Q}\right\} = E\left\{G_{11}^{A} + H_{2},P^{Q}\right\}$$

$$E^{\theta} \{ \mathbf{OH}^{-} \mid \mathbf{H}_{2} \} - E^{\theta} \{ \mathbf{H}^{+} \mid \mathbf{H}_{2} \} = \frac{RT}{F} \ln a_{\mathbf{H}^{+}} a_{\mathbf{OH}^{-}}$$
$$= \frac{RT}{F} \ln K_{\mathbf{W}}^{\theta}$$

$$H^{+}(a_{H^{+}})|O_{2},Pt$$
 $4H^{+}+O_{2}+4e^{-} \rightarrow 2H_{2}O$
 $OH^{-}(a_{OH^{-}})|O_{2},Pt$ $2H_{2}O+O_{2}+4e^{-} \rightarrow 4OH^{-}$

$$4H_2O \implies 4H^+ + 4OH^-$$

$$E\{H^+ | O_2, Pt\}$$
 = $E\{OH^- | O_2, Pt\}$

$$E^{\theta} \{ \mathbf{OH}^{-} \mid \mathbf{O}_{2} \} - E^{\theta} \{ \mathbf{H}^{+} \mid \mathbf{O}_{2} \} = \frac{RT}{F} \ln a_{\mathbf{H}^{+}} a_{\mathbf{OH}^{-}}$$
$$= \frac{RT}{F} \ln K_{\mathbf{W}}^{\theta}$$

4. 氧化-还原电极

$$Fe^{3+}, Fe^{2+} | Pt \qquad Cr^{3+}, Cr_2O_7^{2-}, H^+ | Pt$$

$$Fe^{3+}(a_{Fe^{3+}}) + e^{-} \rightarrow Fe^{2+}(a_{Fe^{2+}})$$

$$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$$

4. 氧化-还原电极

$$Fe^{3+}, Fe^{2+} | Pt \qquad Cr^{3+}, Cr_2O_7^{2-}, H^+ | Pt$$

$$\mathrm{Fe}^{3+}(a_{\mathrm{Fe}^{3+}}) + \mathrm{e}^{-} \to \mathrm{Fe}^{2+}(a_{\mathrm{Fe}^{2+}})$$

$$E\{Fe^{3+}(a_{Fe^{3+}}), Fe^{2+}(a_{Fe^{2+}}) | Pt\} =$$

$$E^{\theta} \{ \text{Fe}^{3+}, \text{Fe}^{2+} \mid \text{Pt} \} - \frac{RT}{F} \ln \frac{a_{\text{Fe}^{2+}}}{a_{\text{Fe}^{3+}}}$$

5. 金属-微溶盐-微溶盐的负离子电极

 $Cl^- | AgCl(s), Ag$

 $Cl^- | Hg_2Cl_2(s), Hg$

 $SO_4^{2-} \mid PbSO_4(s), Pb$

 $M(微溶盐) + ze^- \rightarrow zM + N^{z-}(a_{N^{z-}})$

甘汞电极 Cl⁻ | Hg₂Cl₂(s), Hg

$$Hg_2Cl_2(s) + 2e^- \rightarrow 2Hg(l) + 2Cl^-(a_{Cl^-})$$

$$E\{\text{Cl}^{-}(a_{\text{Cl}^{-}}) | \text{Hg}_{2}\text{Cl}_{2}(s), \text{Hg}\}$$

$$= E^{\theta}\{\text{Cl}^{-}/\text{Hg}_{2}\text{Cl}_{2}(s), \text{Hg}\}$$

$$-\frac{RT}{2F}\ln a_{\text{Cl}^{-1}}^{2}$$

甘汞电极 Cl⁻ | Hg₂Cl₂(s), Hg

$$Hg_2Cl_2(s) + 2e^- \rightarrow 2Hg(l) + 2Cl^-(a_{Cl^-})$$

表 17-4 三种不同甘汞电极的电极反应电势

$\frac{c_{\text{KCl}}}{\text{moldm}^{-3}}$	电极反应电势与温度的关系, E/V	E ₂₉₈ / V
0.1	$0.3335 - 8.75 \times 10^{-5} (t/\% - 25) - 3 \times 10^{-6} (t/\% - 25)$	0.3335
1	$0.2799 - 2.75 \times 10^{-4} (t/\% - 25) - 2.5 \times 10^{-6} (t/\% - 25)^2$	0.2799
饱 和	$-4 \times 10^{-9} (t/ \circ -25)^{3}$ $0.2410 -6.61 \times 10^{-4} (t/ \circ -25) -1.75 \times 10^{-6} (t/ \circ -25)^{2}$ $-9.0 \times 10^{-10} (t/ \circ -25)^{3}$	0.2410

氯化银电极 Cl⁻ | AgCl(s), Ag Ag⁺(a_{Ag⁺})/Ag

$$AgCl(s) + e^- \rightarrow Ag(s) + Cl^-(a_{Cl^-})$$

$$E\{\operatorname{Cl}^{-} | \operatorname{AgCl}, \operatorname{Ag}\} = E^{\theta}\{\operatorname{Cl}^{-} | \operatorname{AgCl}, \operatorname{Ag}\} - \frac{RT}{F} \ln a_{\operatorname{Cl}^{-}}\}$$

$$Ag^+(a_{Ag^+}) + e^- \rightarrow Ag(s)$$

$$E\left\{\mathbf{A}\mathbf{g}^{+} \mid \mathbf{A}\mathbf{g}\right\} = E^{\theta}\left\{\mathbf{A}\mathbf{g}^{+} \mid \mathbf{A}\mathbf{g}\right\} - \frac{RT}{F}\ln\frac{1}{a_{\mathbf{A}\mathbf{g}^{+}}}$$

-)
$$Ag | Ag^{+}(a_{Ag^{+}}) | | Cl^{-}(a_{Cl^{-}}) | AgCl(s), Ag (+$$

$$-) Ag(s) \rightarrow Ag^{+}(a_{Ag^{+}}) + e^{-}$$

+)
$$AgCl(s) + e^- \rightarrow Ag(s) + Cl^-(a_{Cl^-})$$

$$AgCl(s) \rightarrow Ag^{+}(a_{Ag^{+}}) + Cl^{-}(a_{Cl^{-}})$$

$$E = E^{\theta} - (RTM_{r}G)_{m}(aQ_{g^{+}}a_{Cl^{-}})E = -\frac{\Delta_{r}G_{m}}{zF} = 0$$

$$= E^{\theta} \{Cl^{-} | AgCl, Ag\} - E^{\theta} \{Ag^{+} | Ag\} - \left(\frac{RT}{F}\right) \ln(a_{Ag^{+}}a_{Cl^{-}})$$

$$= 0$$

$$E^{\theta}\left\{\text{Cl}^{-} \mid \text{AgCl}, \text{Ag}\right\} - E^{\theta}\left\{\text{Ag}^{+} \mid \text{Ag}\right\} = \left(\frac{RT}{F}\right) \ln K_{\text{sp}}$$

$$E\{Cl^{-} | AgCl, Ag\} = E^{\theta}\{Cl^{-} | AgCl, Ag\} - \frac{RT}{F} \ln a_{Cl^{-}}$$

$$= E^{\theta} \left\{ Ag^{+} \mid Ag \right\} + \left(\frac{RT}{F} \right) \ln K_{sp} - \frac{RT}{F} \ln a_{Cl}$$

$$= E^{\theta} \left\{ Ag^{+} \mid Ag \right\} - \left(\frac{RT}{F} \right) \ln \frac{a_{Cl^{-}}}{K_{sp}} \qquad K_{sp} = a_{Ag^{+}} a_{Cl^{-}}$$

$$= E^{\theta} \left\{ Ag^{+} \mid Ag \right\} - \left(\frac{RT}{F} \right) \ln \frac{1}{a_{Ag^{+}}} = E \left\{ Ag^{+} \mid Ag \right\}$$

注意

$$E\{Cl^- | AgCl, Ag\}$$
 $=$ $E\{Ag^+ | Ag\}$

$$E^{\theta}$$
{Cl⁻ | AgCl, Ag}

$$E^{\theta}\left\{ Ag^{+} \mid Ag \right\}$$

$$E^{\theta} \{ Cl^{-} | AgCl, Ag \} - E^{\theta} \{ Ag^{+} | Ag \} = \left(\frac{RT}{F} \right) lnK_{sp}$$

$$Hg \mid Hg_2^{2+} \mid Cl^- \mid Hg_2Cl_2(s), Hg$$

-)
$$2\text{Hg(l)} \rightarrow \text{Hg}_{2}^{2+}(a_{\text{Hg}_{2}^{2+}}) + 2e^{-}$$

+)
$$Hg_2Cl_2(s) + 2e^- \rightarrow 2Hg(l) + 2Cl^-(a_{Cl^-})$$

$$Hg_2Cl_2(s) \longrightarrow Hg_2^{2+}(a_{Hg_2^{2+}}) + 2Cl^-(a_{Cl^-})$$

$$E^{\theta} \{ \text{Cl}^- | \text{Hg}_2 \text{Cl}_2, \text{Hg} \} - E^{\theta} \{ \text{Hg}_2^{2+} | \text{Hg} \} = \frac{RT}{2F} \ln K_{\text{sp}}^{\theta}$$

$$E\{Cl^{-}|Hg_{2}Cl_{2},Hg\} = E\{Hg_{2}^{2+}|Hg\}$$

$$E\{Cl^- | AgCl, Ag\}$$

$$E\left\{ \mathbf{Ag}^{+} \mid \mathbf{Ag} \right\}$$

$$E\{Cl^- | Hg_2Cl_2, Hg\} =$$

$$E\left\{ \mathrm{Hg}_{2}^{2+}\,|\,\mathrm{Hg}\right\}$$

$$E\{\mathbf{H}^+ \mid \mathbf{O}_2, \mathbf{Pt}\}$$

$$= E\{OH^- | O_2, Pt\}$$

$$E\{H^+ \mid H_2, Pt\}$$

$$= E\{OH^-|H_2,Pt\}$$

Cl | AgCl(s), Ag

$$Cl^- | Hg_2Cl_2, Hg$$

$$\mathbf{H}^+ \mid \mathbf{H}_2, \mathbf{Pt}$$

$$OH^- \mid H_2, Pt$$

$$\mathbf{H}^+ \mid \mathbf{O}_2, \mathbf{Pt}$$

$$OH^- \mid O_2, Pt$$

$$AgCl + e^- \rightarrow Ag + Cl^-$$

$$Hg_2Cl_2 + 2e^- \rightarrow 2Hg + 2Cl^-$$

$$2H^+ + 2e^- \rightarrow H_2$$

$$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$$

$$4H^+ + O_2 + 4e^- \rightarrow 2H_2O$$

$$2H_2O + O_2 + 4e^- \rightarrow 4OH^-$$

金属、金属氧化物、OH-1(H+)离子电极

$$OH^{-} | Ag_2O(s), Ag \qquad H^{+} | Sb_2O_3(s), Sb$$

$$Ag_2O + H_2O + 2e^- \rightarrow 2Ag + 2OH^-$$

$$Sb_2O_3(s) + 6H^+(a_{H^+}) + 6e^- \rightarrow 2Sb(s) + 3H_2O$$

6. 离子选择性电极

玻璃电极

Ag2S膜片

固态膜电极

7. 标准电池

$$\begin{array}{c} Cd(汞荠) \to Cd^{2+} + 2e^{-} \\ Cd(汞荠) SO_{4}^{2}(s) + 2e^{-} \to \\ Cd(汞疹) SO_{4}^{2}(s) + \frac{8}{3}H_{2}O \to 2Hg(l) + CdSO_{4} \cdot \frac{8}{3}H_{2}O(s) \\ CdSO_{4} \cdot \frac{8}{3}H_{2}O(s) \end{array}$$

两大应用

由电池符号书写电极反应和电池反应

由电极反应和电池反应设计电池

由电池符号书写电极反应和电池反

负极反应(氧化反 + 正极反应(还原反

= 电池反

- ·左面→氧化反应,右面→还原反应; 可以忽略不参与反应的物质(离
- 物料平衡和电荷平衡;
- •酸碱条件下应用H20平衡反应。

由电极反应和电池反应设计电

氧化反应(负极反

+

还原反应(正极反

- •找出电池反应中被氧化和被还原物质;
- ·写出阳极(负极)反应和阴极(正极)反 注意物料平衡和电荷平衡;
- •按电池符号规定写出电池表达式。

17-7 电化学平衡计算

物理化学多媒体课堂教学软件 V1.0版

平衡判

法拉弟定

电极电

电解质活

 $a_{\pm}^{\nu} = a_{+}^{\nu_{+}} a_{-}^{\nu_{-}}$

$$\Delta_{\rm r}G_{\rm m} \leq -zFE$$

$$E = E^{\theta} - \frac{RT}{zF} \ln \frac{a_{G}^{g} a_{R}^{r}}{a_{E}^{e} a_{F}^{f}}$$

$$E^{\theta} = E_{\pm}^{\theta} - E_{\pm}^{\theta}$$

並

- 1. 电池反应电势和电极反应电势的基本运
- 2. 化学反应热力学函数和标准平衡常数的计
- 3. 水的离子积、微溶盐溶度积和络离子的不稳 常数的计算
- 4. 离子平均活度因子的计
- 5. 溶液 pH 测

$$E = E^{\theta} - \frac{RT}{zF} \ln \frac{a_{G}^{g} a_{R}^{r}}{a_{E}^{e} a_{F}^{f}}$$

应

 $\left(\frac{\partial E}{\partial T}\right)_{p}$

电极电势和 电池电势计 热力学函 计 算

平衡常数计

- ▶水的离子积
- ▶微溶盐溶度积
- ▶ 络离子的不稳定常
- ▶离子平均活度因子
- ▶溶液 pH 测定

由电池符号书写电极反应和电池反

负极反应(氧化反 + 正极反应(还原反

= 电池反

- ·左面→氧化反应,右面→还原反应; 可以忽略不参与反应的物质(离
- 物料平衡和电荷平衡;
- •酸碱条件下应用H20平衡反应。

由电极反应和电池反应设计电

氧化反应(负极反

+

还原反应(正极反

- •找出电池反应中被氧化和被还原物质;
- ·写出阳极(负极)反应和阴极(正极)反 注意物料平衡和电荷平衡;
- •按电池符号规定写出电池表达式。

例: 为反应 $2Hg(l) + O_2(g) + 2H_2O \rightarrow 2Hg^{2+} + 4OH^{-}$ 设计电池,并计算电池反应的标准电势。已知

$$E^{\theta}(Hg^{2+}|Hg) = 0.7971V$$
 $E^{\theta}(H^{+}|O_{2}) = 1.229V$

解:设计电池

$$-) 2Hg(l) \rightarrow 2Hg^{2+} + 4e^{-}$$

+)
$$O_2(g) + 2H_2O + 4e^- \rightarrow 4OH^-$$

$$||Hg(l)||Hg^{2+}(a_{Hg^{2+}})||OH^{-}(a_{OH^{-}})|O_{2}(p^{\theta}),Pt||$$

例:为反应 $2Hg(l)+O_2(g)+2H_2O\rightarrow 2Hg^{2+}+4OH^{-}$ 设计电池,并计算电池反应的标准电势。已知

$$E^{\theta}(Hg^{2+}|Hg) = 0.7971V$$
 $E^{\theta}(H^{+}|O_{2}) = 1.229V$

解:设计电池

$$E^{\theta}$$
(电池) = E^{θ} (H⁺|O₂) - E^{θ} (Hg²⁺|Hg)
= 1.229V - 0.7971V
= 0.4×19V ?

$$||Hg(l)||Hg^{2+}(a_{Hg^{2+}})||OH^{-}(a_{OH^{-}})||O_{2}(p^{\theta}),Pt||$$

-)
$$H_2O(l) \rightarrow \frac{1}{2}O_2(p^{\theta}) + 2H^+(a_{H^+}) + 2e^-$$

+)
$$\frac{1}{2}$$
O₂ (p^{θ}) + H₂O(l) + 2e⁻ \rightarrow 2OH⁻ $(a_{OH^{-}})$

$$2H_2O(1) \rightarrow 2H^+(a_{H^+}) + 2OH^-(a_{OH^-})$$

$$E($$
电池 $) = E^{\theta}($ 电池 $) - \frac{RT}{2F} \ln(a_{H^{+}} a_{OH^{-}})^{2} = 0$

$$E^{\theta}(\mathbf{OH}^{-}|\mathbf{O}_{2}) - E^{\theta}(\mathbf{H}^{+}|\mathbf{O}_{2}) = \frac{RT}{F} \ln K_{\mathbf{W}}$$

$$E^{\theta}(\mathbf{OH}^{-}|\mathbf{O}_{2}) - E^{\theta}(\mathbf{H}^{+}|\mathbf{O}_{2}) = \frac{RT}{F} \ln K_{\mathbf{W}}$$

$$E^{\theta} \left(\mathbf{OH}^{-} \middle| \mathbf{O}_{2} \right) = E^{\theta} \left(\mathbf{H}^{+} \middle| \mathbf{O}_{2} \right) + \frac{RT}{F} \ln K_{W}$$
$$= 0.401 \text{V}$$

$$E^{\theta}$$
(电池) = E^{θ} (OH⁻|O₂) - E^{θ} (Hg²⁺|Hg)
= 0.401V - 0.7971V
= -0.3961V

例:用玻璃电极测定溶液的pH值。298K时,当电池溶液的pH=4.00时,E(电池)=0.1122V。若E(电池)=0.2471V,此时溶液的pH为多少?

解

测pH电极 被测溶液(a_H) 参比电极

$$E(电池) = E(参比电极) - E(玻璃电极)$$

$$= E(参比) - E^{\theta}(玻璃) - \frac{RT}{F} \ln a_{H^{+}}$$

$$= E(参比) - E^{\theta}(玻璃) + \frac{2.303RT}{F} \text{pH}$$

$$pH = \frac{E(\pm im) - C}{2.303 RT / F} = \frac{E(\pm im) - C}{0.05916 V}$$

$$pH = 4.00, E(电池) = 0.1122V,$$
 $C = -0.1244V$
 $E(电池) = 0.2471V,$
 $pH = \frac{0.2471 + 0.1244}{0.05916} = 6.28$

物理化学多媒体课堂教学软件 V1.0版

1. 电极浓差电 气体电极浓

-) Pt,
$$H_2(p_1)$$
 | HCl(b) | $H_2(p_2)$, Pt (+ $p_1 > p_2$

$$-) \frac{1}{2} H_2(p_1) \to H^+(b) + e^-$$

$$+) H^+(b) + e^- \to \frac{1}{2} H_2(p_2)$$

$$\frac{1}{2}$$
 H₂ $(p_1) \rightarrow \frac{1}{2}$ H₂ (p_2)

$$E = -\frac{\Delta_{r}G_{m}}{F} = -\frac{RT}{F} \ln \left(\frac{p_{2}}{p_{1}}\right)^{1/2} = \frac{RT}{2F} \ln \frac{p_{1}}{p_{2}}$$

1. 电极浓差电 汞齐电极浓

-)
$$Cd - Hg(a_1) | CdSO_4(b) | Cd - Hg(a_2) (+ a_1 > a_2)$$

$$-) \operatorname{Cd}(a_1) \to \operatorname{Cd}^{2+}(b) + 2e^{-}$$

+)
$$\operatorname{Cd}^{2+}(b) + 2e^{-} \to \operatorname{Cd}(a_{2})$$

$$Cd(a_1) \rightarrow Cd(a_2)$$

$$E = -\frac{\Delta_{\rm r} G_{\rm m}}{2F} = -\frac{RT}{2F} \ln \frac{a_2}{a_1} = \frac{RT}{2F} \ln \frac{a_1}{a_2}$$

2. 溶液浓差电

-)
$$Ag | AgNO_3(a_+)_1 | | AgNO_3(a_+)_2 | Ag (+ a_1 < a_2)$$

-)
$$Ag \rightarrow Ag^{+}[(a_{+})_{1}] + e^{-}$$

+) $Ag^{+}[(a_{+})_{2}] + e^{-} \rightarrow Ag$

$$Ag^{+}[(a_{+})_{2}] \rightarrow Ag^{+}[(a_{+})_{1}]$$

$$E = -\frac{\Delta_{\rm r} G_{\rm m}}{F} = \frac{RT}{F} \ln \frac{(a_{+})_{2}}{(a_{+})_{1}} \approx \frac{RT}{F} \ln \frac{(a_{\pm})_{2}}{(a_{\pm})_{1}}$$

3. 无液接电势的溶液浓差电

- -) Pt, H₂(p) | HCl(b₁) | AgCl, Ag (+
- -) Pt, H₂(p) | HCl(b₂) | AgCl, Ag (+

-)
$$\frac{1}{2}$$
 $H_2(p) + AgCl \rightarrow Ag + H^+(b_1) + Cl^-(b_1)$

+)
$$Ag + H^{+}(b_{2}) + Cl^{-}(b_{2}) \rightarrow \frac{1}{2}H_{2}(p) + AgCl$$

$$E = -\frac{\Delta_{\rm r}G_{\rm m}}{F} = -\frac{RT}{F}\ln\frac{(a_{\rm H^+})_1(a_{\rm Cl^-})_1}{(a_{\rm H^+})_2(a_{\rm Cl^-})_2} = -\frac{2RT}{F}\ln\frac{(a_{\pm})_1}{(a_{\pm})_2}$$

-) Pt,
$$H_2(p)/HCl(a_1) : HCl(a_2)/H_2(p)$$
, Pt (+ $a_1 < a_2$

-) Pt, $H_2(p)/HCl(a_1) : HCl(a_2)/H_2(p)$, Pt (+ $a_1 < a_2$

-)
$$Pt, H_2(p)/HCl(a_1) : HCl(a_2)/H_2(p), Pt (+ a_1 < a_2)$$

-)
$$Pt, H_2(p)/HCl(a_1) : HCl(a_2)/H_2(p), Pt (+ a_1 < a_2)$$

$$t_{+}+t_{-}=1$$

$$t_{-}H^{+}[(a_{H^{+}})_{2}] + t_{-}Cl^{-}[(a_{Cl^{-}})_{2}]$$

$$t_{-}H^{+}[(a_{H^{+}})_{1}] + t_{-}Cl^{-}[(a_{Cl^{-}})_{1}]$$

$$E = -\frac{\Delta_{\rm r}G_{\rm m}}{F} = -\frac{t_{-}RT}{F}\ln\frac{(a_{{\rm H}^{+}})_{1}(a_{{\rm Cl}^{-}})_{1}}{(a_{{\rm H}^{+}})_{2}(a_{{\rm Cl}^{-}})_{2}}$$

$$t_{\scriptscriptstyle +} + t_{\scriptscriptstyle -} = 1$$

$$t_{-}H^{+}[(a_{H^{+}})_{2}]+t_{-}Cl^{-}[(a_{Cl^{-}})_{2}]$$

$$t_{-}H^{+}[(a_{H^{+}})_{1}]+t_{-}Cl^{-}[(a_{Cl^{-}})_{1}]$$

$$E = -\frac{\Delta_{\rm r}G_{\rm m}}{F} = -2t_{-}\frac{RT}{F}\ln\frac{(a_{\pm})_{1}}{(a_{+})_{2}}$$

-)
$$Pt, H_2(p_2) | HCl(a_1) | HCl(a_2) | H_2(p), Pt (+$$

$$a_1 < a_2$$

$$H^{+}[(a_{H^{+}})_{2}] \rightarrow H^{+}[(a_{H^{+}})_{1}]$$

$$E = -\frac{RT}{F} \ln \frac{(a_{H^{+}})_{1}}{(a_{H^{+}})_{2}} = -\frac{RT}{F} \ln \frac{(a_{\pm})_{1}}{(a_{\pm})_{2}}$$

$$E = -\frac{\Delta_{\rm r}G_{\rm m}}{F} = -2t_{-}\frac{RT}{F}\ln\frac{(a_{\pm})_{1}}{(a_{\pm})_{2}}$$

例 1 计算下列电池在 25℃时电池反应的电势。

$$\mathbf{Ag} \, | \, \mathbf{AgNO}_{3} \left(\begin{array}{c} b = 0.01 \text{molkg}^{-1} \\ \gamma_{\pm} = 0.900 \end{array} \right) || \, \mathbf{AgNO}_{3} \left(\begin{array}{c} b = 0.1 \text{molkg}^{-1} \\ \gamma_{\pm} = 0.720 \end{array} \right) || \, \mathbf{Ag} || \mathbf{AgNO}_{3} \left(\begin{array}{c} b = 0.1 \text{molkg}^{-1} \\ \gamma_{\pm} = 0.720 \end{array} \right) || \, \mathbf{Ag} || \mathbf{Ag} ||$$

$$E = \frac{RT}{F} \ln \frac{a_{\pm,2}}{a_{\pm,1}} = \frac{RT}{F} \ln \frac{b_2 \gamma_{\pm,2}}{b_1 \gamma_{\pm,1}}$$

$$= \left(\frac{8.3145 \times 298.15}{96485} \ln \frac{0.1 \times 0.720}{0.01 \times 0.900}\right) V$$
$$= 0.0534 V$$

例2 计算下列电池在25℃时电池反应的电势和液接电势。已知HCl在此浓度范围内 $t_{H^+} = 0.829$

Pt,
$$\mathbf{H}_{2}(p^{\theta})|\mathbf{HCl}\begin{pmatrix}b=0.01\mathrm{molkg}^{-1}\\ \gamma_{\pm}=0.904\end{pmatrix}$$
: $\mathbf{HCl}\begin{pmatrix}b=0.1\mathrm{molkg}^{-1}\\ \gamma_{\pm}=0.796\end{pmatrix}|\mathbf{H}_{2}(p^{\theta}),\mathbf{Pt}$

$$= [2(1-0.829)\frac{8.3145 \times 298.15}{96485} ln \frac{0.1 \times 0.796}{0.01 \times 0.904}]V = 0.0191V$$

$$E_{\text{i}/2} = E \frac{2t_{-} - 1}{2t_{-}} = 0.0191 \text{V} \times \frac{2 \times (1 - 0.829) - 1}{2 \times (1 - 0.829)} = -0.0368 \text{V}$$

17-14

极化现象与超电势

物理化学多媒体课堂教学软件 V1.0版

极化现象

电极电势与电极反应电势有显著差别的现象。

可极化电极

产生极化现象的电极。大多数实际电极均属此类。

非极化电极

极化现象不显著的电极。

超电势

实际的电极电势与平衡的电极反应电势之差

$$\eta = E(j) - E(0)$$

$$\eta_{\rm c} = E_{\rm c}(j) - E_{\rm c}(0) \qquad \eta_{\rm c} < 0$$

$$\eta_{\rm a} = E_{\rm a}(j) - E_{\rm a}(0) \qquad \eta_{\rm a} > 0$$

$$E_{\text{el}}(j) = E_{\text{a}}(j) - E_{\text{c}}(j) + IR$$

$$egin{aligned} E_{ ext{e} ext{m}}(j) &= E_{ ext{a}}(j) - E_{ ext{c}}(j) + IR \ &= E_{ ext{a}}(0) + \eta_{ ext{a}} - E_{ ext{c}}(0) - \eta_{ ext{c}} + IR \ E_{ ext{figure}}(j) &= E_{ ext{c}}(j) - E_{ ext{a}}(j) - IR \ &= E_{ ext{c}}(0) + \eta_{ ext{c}} - E_{ ext{a}}(0) - \eta_{ ext{a}} - IR \end{aligned}$$

超电势产生原

- ◆ 活化超电
- ◆ 传质超电

获取超电势的方

- ◆ 实验方
- ◆ 半经验半理论方
- ◆ 理论方

				3	₹17-6	25°C I	25℃时氢的烟电势。 _{一张} / V					
/ #20\020 ⁻⁴		Cu	Pt 🎘	Pŧ	石器	Ar	Fe	In	Vi	РЪ	<u>/</u> æ%cæ [™]	Hr
0	0.466		0.000		0.0022		0.2026				0	0.2805
0.1	0.651	0.351	0.0034		0.3166	0.2981	0.2183				0.0769	0.5562
1	0.981	0.479	0.01540	. 024	0.5995	0.4751	0.4036	0.7160	. 563 (). 52	0.769	0.8488
2			0.02080	. 034	0.6520	0.5787	0.4474). 726 0	. 633		1.54	0.9295
5	1.086	0.548	0.02720	. 051	0.7250	0.6922	0.5024). 726 0	. 705	1.060	3.87	1.0060
10	1. 134	0.584	0.03000	. 068	0.7788	0.7618	0.5571), 746 0	. 747	1.090	7.69	1.0361
100	1.216	0.801	0.04050	. 288	0.9774	0.8749	0.8184:	1.0641	. 048 :	1. 179	76.9	1.0665
1000	1.254	1.254	0.04830	. 676	1.2200	1.0890	1.2915	1.229 1	. 241	1.262	769	1.108

		表	表17-7		25℃时氧的超电势,			
j m.Acm.⊸	石製	Áп	Съ	ÁE	Pŧ	Pt 🎘	Ni	
1	0.525	0.673	0.422	0.580	0.721	0.398	0.353	
5	0.705	0.927	0.546	0.674	0.80	0.480	0.461	
10	0.896	0.963	0.580	0.729	0.85	0.521	0.519	
20	0.963	0.996	0.605	0.813	0.92	0.561		
50		1.064	0.637	0.912	1. 16	0.605	0.670	
100	1.091	1.224	0.660	0.984	1.28	0.638	0.726	
1000	1.240	1.63	0.793	1. 131	1.49	0.766	0.853	

表17_825℃时氯的超电势, 7./17

<i>j</i> m.Acm.⁻²	Pt ^M	j m.acm⊸	Pt	<u>)</u> ക്കറക് ^{-മ}	石器
1.1	0.0060	1.1	0.008	40	0. 186
5.7	0.0140	5.7	0.0199	70	0. 193
14.5	0.0180	11.4	0.0299	100	0.251
21.7	0.0190	22.8	0.0378	200	0.298
38.8	0.0210	43.0	0.0457	500	0.417
100	0.026	100	0.0540	740	0.466
1340	0.089	1000	0.236	1131	0.535

半经验半理论方

塔费尔方

$$|\eta| = a + b \ln\{j\}$$

b = 0.10 - 0.14V

a与电极材料有关

例1 用Pt电极电解 H_2SO_4 水溶液时,分解电势为 1.67V。试计算 O_2 在电流密度为零时的超电势。

$$H_2O \rightarrow H_2 + O_2$$

$$E(0) = E(H_2O \rightarrow H_2 + O_2) = 1.229V$$

$$j=0$$
, $\eta_{\rm c}=0$

$$E_{\beta M} = E_{a}(0) + \eta_{a} - E_{c}(0) - \eta_{c} + IR$$

$$\eta_{\rm a} = E_{\text{H}} - E(0) = (1.67 - 1.23) V = 0.44 V$$

例2 利用表17-6和塔费尔方程, 计算电流密度为 $0.5 \text{mA} \cdot \text{cm}^{-2}$ 时石墨电极上的氢超电势。

$$j = 0.1 \text{mA} \cdot \text{cm}^{-2}$$
 $\eta_{c} = -0.3166 \text{V}$

$$j = 1 \text{mA} \cdot \text{cm}^{-2} \qquad \eta_{\text{c}} = -0.5995 \text{V}$$

$$\eta_{\rm c} = -0.5995 {\rm V}$$

$$0.3166V = a + b \ln 0.1$$

$$0.5995V = a + b \ln 1 = a$$

$$a = 0.5995V$$

$$b = 0.1228V$$

例2 利用表17-6和塔费尔方程,计算电流密度为 0.5m $\mathbf{A} \cdot \mathbf{cm}^{-2}$ 时石墨电极上的氢超电势。

$$|\eta_c| = a + b \ln\{j\}$$

= 0.5995V + 0.1228V × ln 0.5
= 0.5144V

$$\eta_{\rm c} = -0.5144$$
V

17-15 应用举例

物理化学多媒体课堂教学软件 V1.0版

1. 化学电源

 $-) Pb, PbSO_4(s) | H_2SO_4(aq) | PbSO_4(s), PbO_2, Pb (+$

$$\Sigma$$
 PbO₂ + Pb + 2H₂SO₄ $\stackrel{\dot{D}}{\leftarrow}$ 2PbSO₄ + 2H₂O

2. 电解

电解食盐水制氯气、氢气和烧碱

$$Na^+ + e^- \rightarrow Na(汞齐)$$

$$Na(-Hg) + H_2O \rightarrow NaOH + \frac{1}{2}H_2$$

$$2H^+ + 2e^- \rightarrow H_2$$
 ?

例: 25 % 时以 Zn 为阴极电解 0.1 mol·kg^{-1} 的 $ZnSO_4$ 中性水溶液,电流密度为 10mAcm^{-2} ,问此时是析出 Zn 还是析出 H_2 。又何种条件下可析出第二种物质。

解: 在阴极可能发生的反应

$$\mathbb{Z}n^{2+} + 2e \longrightarrow \mathbb{Z}n$$
 $\mathbb{Z}n^{2+}(b = 0.1 \text{mol} \cdot \text{kg}^{-1}) | \mathbb{Z}n$

$$2H^{+} + 2e \rightarrow H_{2}$$
 $H^{+}(a_{H^{+}} = 10^{-7}) | H_{2}, Zn$

$$Zn^{2+} + 2e \rightarrow Zn$$

$$E = E^{\theta} \left\{ Zn^{++} \mid Zn \right\} - \frac{RT}{2F} \ln \frac{1}{a_{Zn^{2+}}}$$
$$= \left(-0.762 + \frac{0.05916}{2} \lg 0.1 \right) V = -0.792V$$

$$2H^+ + 2e \rightarrow H_2$$

$$E = E^{\theta} \{ H^{+} | H_{2} \} - (RT/F) \ln(1/a_{H^{+}})$$
$$= (-0.05916 \lg 10^{7}) V = -0.414 V$$

氢在锌电极上的超电 $|\eta|=a+b\ln\{j\}$

$$\eta_{\rm c}({\rm H}_2,{\rm Zn}) = -0.746{\rm V}$$

$$E(H^{+}(a_{H^{+}} = 10^{-7}) | H_{2}, Zn) = -0.414V - 0.746V$$

= -1.160V

阳极: 电势低者先析出 (氧化反应)

阴极: 电势高者先析出 (还原反应)

★如果要使H₂析出,则Zn²+|Zn的电极电势必须降低至-1.160V以下,这时 ZnSO₄溶液的浓度必须降低

$$-1.160V = \left(-0.762 + \frac{0.05916}{2} \lg a_{Zn^{2+}}\right)V$$

$$a_{\rm Zn^{2+}} = 3.8 \times 10^{-14}$$