Atmospheric Thermodynamic Approach about Decreasing Stratospheric Temperature 성충권 온도 감소의 대기열역학적 접근

- I. Introduction
 - 중간 발표 리뷰
- ${\rm I\hspace{-.1em}I}$. Stratospheric cooling
 - 성층권 냉각의 이유
- Ⅲ. The first law of thermodynamics
 - Thermodynamic model 1
 - Thermodynamic model 2
- IV. The second law of thermodynamics
 - 엔트로피 계산
- VI. Conclusion
 - Discussion

중간 발표 리뷰

- 성층권과 대류권만으로 이루어진 system이 단열이다.
- 성층권과 대류권, 2개의 subsystem
- subsystem은 서로 열 교환을 한다.
- 평균 관측 값들을 사용하여 성층권 온도 변화를 구한다.

Reasons of stratospheric cooling

Ozone layer depletion

오존의 양이 감소하여 성층권에서 태양에너 지의 흡수가 감소한다.

Oxygen

atom

molecule

Oxygen atom

Ozone

molecule

Diatomic oxygen molecules

Reasons of stratospheric cooling

Increase of GHG(Green House Gases) at both troposphere and stratosphere

- 1. 대류권의 온실기체 증가로 성층권에 도달하는 장파에 너지가 감소한다.
- 2. 온실기체는 성층권에서 방출과 흡수를 동시에 하는데 온실기체의 양이 많아지면 방출량이 많아지게 된다.

1법칙 모델의 가정

- -전체 지구대기는 단열
- -대류권에서 얻은 열은 성층권에서 잃은 열과 같다
- -성층권과 대류권의 압력 일정

대류권에서 얻은 열의 양: $|\delta Q| = |c_p m_t \Delta T_t - V \Delta p| = |\Delta H_t|$ 성층권에서 잃은 열의 양: $|\delta Q| = |c_p m_s \Delta T_s - V \Delta p| = |\Delta H_S|$ $\Delta p = 0$ 이고 균질하므로 대류권과 성층권의 c_p 는 같다.

Thermodynamic model 1

- 위 모델의 한계
- -실제 성층권 냉각의 이유를 설명하지 않는 모델
- -열의 흐름을 고려하면 두 system사이의 엔탈피 변화가 같지 않을 수 있다.
- →오존층감소, 대류권과 성층권의 온실기체 증가 등을 고려한 모델 구 상

새로운 모델의 가정

- 1.성층권 오존량의 감소는 성층권 태양 에너지 흡수량의 감소와 비례한다.
- 2. 대류권 온실기체의 증가는 대류권의 지구복사 에너지 흡수량의 증가와 비례한다.
- 3. 성층권의 방출량의 증가는 성층권의 온실기 체 증가량과 비례한다.
- 4. 성층권의 온실기체 증가량과 대류권의 온실기체 증가량은 동일하다
- 5. 성층권의 흡수율은 온실기체 변화에도 변하지 않는다.
- 6. 성층권의 상하 방출량의 비율은 일정하다.
- 7. 온실기체는 이산화탄소만 고려한다.
- 8. 1,2,3의 변화로 인한 평형의 깨짐은 내부에너지의 변화를 일으킨다.

대류권에서

- 1. 98->98(1+at)--- 변화량 +98at
- 2. 5->5(1+at)--- 변화량 +5at net=103at

성층권에서

- 1. 3->3(1-bt)--- 변화량 -3bt
- 2. $2 \rightarrow (110 98(1 + at))x_{\frac{1}{6}}^{\frac{1}{6}} -- 변화량 \frac{98}{6}at$
- 3. -11->-11(1+at)--- 변화량 -11at net=-3bt- $\frac{164}{6}$ at

net의 값이 엔탈피의 변화 즉 온도 변화를 일으킨다.

a,b를 결정하여야 한다!

II III IV V V

상수 결정

a의 결정-*CO*₂증가율

ΧI	등학 문서1 - Excel (제품 인증 실패									
파일	일 홈	삽입 퍼	이지 레이아듯	수식	데이터	검토 보	기 부하	부하 테스트 팀		
<i>fx</i> 함수 삽입	 자동 합격	★ 최근에 사용한 함수		리 텍스트날	시간 *	<mark>○</mark> 참조 영역 수학	θ 작/삼각 기타 *	함수 이름 관리지	이름 정況 수식에남 선택 의정의된	
F1	₩	i ×	✓ f _x	=E1/B1*1	100					
4	Α	В	С	D	Е	F	G	Н	I	
1	1958	315.71	1	0.150939	1.811264	0.573711				
2	1958	317.45	2	232.267	98					
3	1958	317.5	3	336.7166	142.0702					
4	1958	-99.99	4							
5	1958	315.86	5							
6	1958	314.93	6			0.1				
7	1958	313.2	7							
8	1958	-99.99	8							
9	1958	313.33	9							
10	1958	314.67	10							
11	1959	315.62	11							
12	1959	316.38	12							
13	1959	316.71	13							
14	1959	317.72	14							
15	1959	318.29	15							
16	1959	318.15	16							
17	1959	316.54	17							
18	1959	314.8	18							
19	1959	313.84	19							
20	1959	313.26	20							
21	1959	314.8	21							
22	1959	315.58	22							
4	+	Sheet1	(+)							

a=0.57%=0.0057 로 결정

b의 결정-오존의 감소율

오존의 감소율을 linearize 40년 동안 5% 감소 1년에 0.125% b=0.00125 로 결정 a,b를 대입

- → 대류권: net=103at=103x(0.0057)t=0.5871t
- → 성층권:net=-3bt- $\frac{164}{6}$ at=-3x(0.00125)- $\frac{164}{6}$ x(0.0057)=-0.15925t

첫번째 모델과 같은 가정하에 계산

$$\frac{\Delta H_T}{0.5871} = \frac{\Delta H_S}{-0.15925}$$

$$\frac{c_p m_t \Delta T_t}{0.5871} = \frac{c_p m_s \Delta T_s}{-0.15925}$$

1880년부터 2015년까지의 temperature anomaly를 이용하여 성층 권의 온도를 구한다.

구한 결과와 실제 관측값과의 비교

위변화에서 엔트로피를 계산 $T_{T,0} = 273K$ $T_{S,0} = 233K$ 사용

대류권 엔트로피 변화: $\Delta S_T=m_Tc_p\ln\frac{T_{T,0}+\Delta T_T}{T_{T,0}}$ 성층권 엔트로피 변화: $\Delta S_S=m_Sc_p\ln\frac{T_{S,0}+\Delta T_S}{T_{S,0}}$ $\Delta S_T+\Delta S_S$

엔트로피 변화가 음의 값이 나오는 이유 →대류권 온난화와 성층권 냉각을 일으키는 요인은 대기의 화학적 구성 변화이다. Chemical Potential 을 고려하여야 한다.

Discussions

- -2번째 모델도 실제 변화율과는 차이가 있음→
- 1.온실기체, 오존의 변화량과 열의 흡수, 방출률은 비례관계라고 말 할 수 없다.
- 2.성층권의 온실기체 증가율과 대류권의 증가율은 다르다.
- 3.CO2외에 다른 온실 기체를 고려하지 않았다
- 추가적으로 성층권의 온도는 화산폭발과도 연관이 있다.

위와 같은 점들을 고려하면 더 비슷한 경향을 가진 결과를 도출 할 수 있을 것으로 예상됨

재로운 모델의 가정

- 1.성층권 오존량의 감소는 성층권 태양 에너지 흡수량의 감소와 비례한다.
- 2. 대류권 온실기체의 증가는 대류권의 지구복 사 에너지 흡수량의 증가와 비례한다.
- 3. 생층권의 방출량의 증가는 성층권의 온실기 채 증가량과 비례한다.
- 4. 성층권의 온실기체 증가율과 대류권의 온실 기체 증가율은 동일하다
- 5. 성층권의 흡수율은 온실기체 변화에도 변하지 않는다.
- 6. 성층권의 상하 방출량의 비율은 일정하다.
- 7. 온실기체는 이산화탄소만 고려한다.
- 8. 1,2,3의 변화로 인한 평형의 깨짐은 내부에너 지의 변화를 일으킨다.

I II III IV V VI

Articles & Datas

Stratosphere Troposphere Interactions – an introduction, K. Mohanakumar pp.90-94

http://climate.nasa.gov/vital-signs/carbon-dioxide/

http://climate.nasa.gov/vital-signs/global-temperature/

http://www.esrl.noaa.gov/research/themes/o3/

Global Physical Climatology –Dennis Hartmann pp.28

Images

https://www.google.co.kr/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjtnIvQ4MvJAhVGE6YKHUBQAdwQjRwIBw&url=http%3A%2 F%2Fwww.pd4pic.com%2Fglobal-world-grid-coordinates-planet-sphere-earth.html&psig=AFQjCNGttZlItdiHcBaaqqhJqLfjFDoIIw&ust=1449646521437495 https://www.google.co.kr/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=&url=http%3A%2F%2Fwww.nasa.gov%2Fmultimedia%2Fimagegallery%2Fimage_feature_2502.html&psig=AFQjCNESQDwMH590jiAgx82cdGEENjNtbw&ust=1449650382013448 http://www.realclimate.org/

Thank you

Q&A