Exposição de Algumas das Principais Características da Distribuição FreeBSD

Glisbel Aponte¹, Marcia Oliveira², Wandressa Reis³

¹Ciência da Computação – Universidade Federal de Roraima (UFRR) CEP – 69310-000 – Boa Vista– RR – Brazil

²Departamento de Ciência da Computação

Abstract. This study highlights FreeBSD, an open-source operating system based on the BSD Unix. It describes the main features of FreeBSD, which is known for its flexibility and adaptability, robustness, security, and scalability.

Resumo. Este estudo destaca-se no FreeBSD que é um sistema operacional de código aberto baseado no Unix BSD, descreve os principais recursos do FreeBSD, conhecido por sua flexibilidade e adaptabilidade, robustez, segurança e escalabilidade.

1. Introdução

O foco deste estudo é a análise da distribuição FreeBSD, que é um sistema operacional de código aberto. Conhecido por sua robustez, segurança e desempenho em ambientes de desktop e servidor. O objetivo deste estudo é fornecer uma visão geral do FreeBSD, suas características e de como ele se destaca entre outros sistemas operacionais de código aberto. Também se discutirá os principais componentes do FreeBSD, como o kernel, shell, sistema de arquivos e gerenciador de pacotes. Finalmente, citaremos alguns casos de uso do FreeBSD em empresas e forneceremos algumas dicas úteis para quem quiser adotar este sistema operacional em seu ambiente de trabalho. Conforme (BAIO, 2021).

2. Trabalhos Correlatos

FreeBSD Documentation Project Primer for New Contributors.

3. Método Proposto

Neste estudo utilizou-se método qualitativo, em forma de pesquisa bibliográfica, para entender as características do FreeBSD.

4. Avaliação Experimental; Metodologia utilizada no estudo em questão.

4.1. Objetivos do FreeBSD

O FreeBSD foi criado com o objetivo principal de ser de código aberto para que seus usuários o utilizassem em fins diversos, sem restrições, incentivando o uso deliberado de seu código.

Possui um sistema operacional de alta qualidade podendo ser utilizado em diferentes arquiteturas computacionais. Foi desenvolvido para ser rápido, estável e eficientemente enérgico.

4.2. Domínio de usuários

O FreeBSD possui uma ampla gama de usuários em diversos domínios. Aqui estão alguns exemplos:

- Servidores Web: O FreeBSD é amplamente utilizado como plataforma para hospedar sites e aplicativos web.
- Roteamento IPv4 e IPv6: É uma escolha popular para configurar e gerenciar roteadores para redes IPv4 e IPv6.
- Firewalls e Gateways NAT (IP masquerading): O FreeBSD oferece recursos robustos para proteger redes e realizar a tradução de endereços IP.
- Servidores FTP: É comumente empregado como servidor para transferência de arquivos.
- Servidores de Email: O FreeBSD é utilizado para executar servidores de email, fornecendo serviços de envio e recebimento de mensagens.

Além disso, o FreeBSD tem várias aplicações em diferentes áreas:

- Educação: É usado como uma ferramenta educacional para fornecer experiências práticas no estudo de sistemas operacionais, arquitetura de computadores e redes.
- Rede: O FreeBSD pode ser usado para funções como roteamento, servidor DNS e firewall, contribuindo para o gerenciamento e a segurança de redes.
- Embarcado: É uma escolha popular para o desenvolvimento de sistemas embarcados, como roteadores, firewalls e outros dispositivos. O FreeBSD fornece uma base sólida para construir e personalizar esses sistemas.

4.3 Ambiente Gráfico

No FreeBSD, o sistema operacional em si não inclui um ambiente gráfico padrão. O FreeBSD é um sistema operacional altamente modular e flexível, permitindo que os usuários escolham o ambiente gráfico de sua preferência depois de fazer o processo de instalação. Se o usuário não escolher um ambiente gráfico específico, terá uma instalação básica sem um ambiente gráfico, onde poderá instalar e configurar manualmente o ambiente gráfico de sua escolha posteriormente, utilizando os pacotes do FreeBSD ou compilando o ambiente a partir do código-fonte.

A escolha do ambiente gráfico GNOME para o sistema operacional FreeBSD foi baseada em uma série de fatores. Ao desenvolver o sistema, foi escolhido adotar o GNOME devido à sua reputação como um ambiente gráfico estável, confiável e maduro.

4.4 Vantagens e facilidades do tipo de interface gráfica

O GNOME, sendo um projeto de código aberto, passou por extensos períodos de desenvolvimento e refinamento, contando com a colaboração ativa de uma comunidade de desenvolvedores dedicados. Essa longa trajetória de desenvolvimento garante a

solidez e a ausência de falhas significativas no ambiente gráfico, proporcionando aos usuários uma experiência consistente e confiável.

Além da estabilidade, o GNOME se destaca pela sua interface intuitiva e facilidade de uso. Foi projetado com foco na acessibilidade e na usabilidade, permitindo que os usuários interajam com o sistema operacional de forma natural e eficiente. A disposição organizada de menus, ícones e widgets no GNOME facilita a navegação e o acesso às funcionalidades do sistema.

A ampla gama de recursos e aplicativos integrados também influenciou a decisão de adotar o GNOME. O ambiente gráfico oferece uma variedade de aplicativos essenciais, como um gerenciador de arquivos, navegador web, cliente de e-mail e reprodutores de mídia. Esses aplicativos são poderosos e bem integrados ao ambiente, fornecendo aos usuários todas as ferramentas necessárias para suas atividades diárias.

A personalização é outro ponto forte do GNOME. Com uma variedade de temas, extensões e configurações disponíveis, os usuários têm a liberdade de adaptar o ambiente gráfico às suas preferências individuais. Isso permite que cada usuário personalize o sistema operacional de acordo com suas necessidades específicas, criando uma experiência mais personalizada e agradável.

4.5 Wallpapers, ícones, cores e outros

Como mencionado anteriormente, o FreeBSD não possui um ambiente gráfico específico ou uma distribuição personalizada com uma seleção predefinida de wallpapers, ícones, cores e outros elementos visuais. A escolha de wallpapers, ícones e esquemas de cores dependerá do ambiente gráfico específico que foi escolhido para instalar no FreeBSD.

4.6 Tutorial de instalação

Link do vídeo tutorial de instalação da distribuição:

https://github.com/wandressareis/MarciaGabrielle_GlisbelNieves_Wandressa_FreeBSD_OS_RR_2023/blob/main/Tutorial%20de%20Instala%C3%A7%C3%A3o/tutorial-de-instalacao.mp4

4.7 Uso, Vantagens e facilidades da distribuição FreeBSD

O FreeBSD é um sistema operacional do tipo Unix, livre e de código aberto, popular como servidor e também adequado para uso diário como desktop. Ele possui uma comunidade ativa e diversos recursos que facilitam a vida do usuário e do administrador.

Vantagens do FreeBSD:

O FreeBSD possui um amplo conjunto de aplicativos, com mais de 24.000 disponíveis como pacotes ou ports, facilitando a construção de um ambiente de desktop personalizado com uma variedade de aplicativos para uso diário.

Uma característica destacada do FreeBSD é o suporte ao sistema de arquivos ZFS. O ZFS oferece recursos avançados de armazenamento, como snapshots,

compressão de dados e replicação de arquivos. Além disso, o ZFS permite delegar a criação de conjuntos de dados e permissões para usuários específicos.

- O FreeBSD utiliza um controle de acesso granular com base nas permissões tradicionais do UNIX. Essas permissões são atribuídas como leitura, gravação e execução, podendo ser representadas por letras (r, w, x) ou números binários.
- O FreeBSD é conhecido por seu desempenho e estabilidade em servidores, sendo uma opção robusta e confiável para quem busca um sistema operacional para esse fim.
- O FreeBSD também oferece recursos para criar sistemas de armazenamento altamente disponíveis, como o CARP (Common Address Redundancy Protocol) e o devd(8). Essas ferramentas ajudam a garantir a alta disponibilidade de armazenamento e a criar sistemas robustos.

Resumindo, o FreeBSD possui uma ampla variedade de aplicativos que facilitam a personalização de um ambiente de desktop. Com suporte ao sistema de arquivos ZFS, controle de acesso granular e sua reputação de desempenho e estabilidade em servidores, o FreeBSD é uma escolha popular. Além disso, o sistema oferece recursos para criar sistemas de armazenamento altamente disponíveis, aumentando sua versatilidade.

Exemplos de uso:

Personalização do desktop: O FreeBSD permite a configuração personalizada de um ambiente de desktop com navegadores web, softwares de produtividade, visualizadores de documentos e aplicativos financeiros.

Configuração e ajuste de interfaces de rede: O FreeBSD fornece informações detalhadas sobre a configuração de interfaces de rede e outros componentes essenciais, como a tabela de partições.

Backup e recuperação de dados: O FreeBSD possui utilitários dedicados para criação e gerenciamento de backups, garantindo a segurança dos dados e facilitando a recuperação em caso de problemas.

Redimensionamento e expansão de discos: O FreeBSD permite redimensionar e expandir discos, mesmo quando os sistemas de arquivos estão montados. Isso pode ser feito através de comandos como 'gpart' e 'sysctl'.

Em resumo, o FreeBSD oferece uma variedade de benefícios e recursos que facilitam a vida tanto de usuários quanto de administradores, desde a instalação como desktop até a configuração de interfaces de rede e gerenciamento de dados. Sua flexibilidade e estabilidade o tornam uma escolha popular para servidores e ambientes de desenvolvimento.

4.8 Softwares presentes no FreeBSD

- 1. Kernel do FreeBSD O objetivo principal é gerenciar recursos do sistema como processamento, memória, armazenamento e rede.
- 2. Bash Um shell de linha de comando para interagir com o sistema operacional, digitar comandos e executar scripts.

- 3. Git Um sistema de controle de versão para gerenciar o histórico de arquivos de um projeto de software.
- 4. Apache Um servidor web usado para hospedar e entregar páginas web.
- 5. Nginx Um servidor web alternativo que também pode ser usado para hospedar e entregar páginas web.
- 6. PHP Uma linguagem de programação usada para desenvolver aplicativos web dinâmicos.
- 7. PostgreSQL Um sistema de gerenciamento de banco de dados relacional robusto e escalável usado em muitas aplicações corporativas.
- 8. MySQL Outro sistema de gerenciamento de banco de dados relacional popular usado principalmente em aplicativos web e escalonamento horizontal.

4.9 Gerenciador de pacotes

O gerenciador de pacotes padrão do FreeBSD é o pkg, responsável por gerenciar a instalação, atualização e remoção de pacotes de software. Permite que os usuários instalem pacotes de software de repositórios oficiais, além de repositórios de terceiros. Existem duas tecnologias para o gerenciamento de pacotes no FreeBSD: pacotes e ports. Os pacotes são binários pré-compilados de alguns dos softwares de terceiros mais usados. Os ports são coleções de arquivos que contêm o código-fonte de um software, scripts de compilação e outras informações necessárias para construir um pacote binário.

Em relação à lista de pacotes de software presentes na distribuição FreeBSD, a maioria dos pacotes são de código aberto (open source) e disponíveis gratuitamente para download. Entre os pacotes mais comuns estão os servidores web Apache, Nginx e Lighttpd, os sistemas de gerenciamento de banco de dados MySQL e PostgreSQL, e os sistemas de controle de versão Git e Subversion. Exemplos de pacotes de software proprietários e de terceiros incluem o Adobe Flash Player, o Google Chrome e o Skype.

4.10 Histórico sobre a distribuição FreeBSD

O FreeBSD foi criado por Nate Williams, Rod Grims e Jordan Hubbard em 1993 com o objetivo de aprimorar o Unofficial 386BSD Patchkit, corrigindo suas limitações no mecanismo de solução de problemas. Inicialmente, o projeto era chamado de 386BSD 0.5 ou 386BSD.

Quando o proprietário do 386BSD, Bill Jolitz, retirou seu apoio ao projeto, Williams, Grims e Hubbard continuaram seu desenvolvimento e renomearam o projeto para FreeBSD. Em seguida, eles identificaram as necessidades dos usuários da época e buscaram uma solução para aqueles que não tinham acesso fácil à internet. Eles entraram em contato com a Walnut Creek CD-ROM para distribuir o FreeBSD em CD-ROM, inspirado na fita 4.3BSD-Lite ("Net/2") da U.C. Berkeley. A empresa também forneceu acesso rápido à internet para o desenvolvimento do projeto. A versão 1.0 do FreeBSD foi lançada em CD-ROM em 1993, e a versão 1.1 foi lançada em 1994.

Nesse período, a Novell e a U.C. Berkeley resolveram um processo judicial relacionado ao código Net/2. A Novell afirmou que grande parte do código era de sua propriedade e permitiu que a U.C. Berkeley lançasse o 4.4BSD-Lite como software livre. O projeto FreeBSD teve que encerrar seu produto baseado no Net/2, lançando a versão final, FreeBSD 1.1.5.1.

Após o acordo, o FreeBSD reconstruiu seu sistema com base nos bits do 4.4BSD-Lite, que eram incompletos e faltavam partes essenciais. Em novembro de 1994, o FreeBSD 2.0 foi lançado, marcando a conclusão dessa transição. Ao longo do tempo, o FreeBSD continuou lançando versões sucessivas com melhorias de estabilidade, velocidade e recursos. Atualmente, o desenvolvimento de longo prazo ocorre no ramo 10.X-CURRENT, com snapshots de lançamento disponibilizados conforme o trabalho avança.

O FreeBSD é conhecido por suas capacidades de serviços web e é amplamente adotado por sites populares, incluindo Hacker News, Nefcraft, NetEase, Netflix, Sina, Sony Japan, Rambler, Yahoo! e Yandex. Sua reputação de segurança, recursos avançados, lançamentos previsíveis e licença permissiva o tornam uma escolha popular para construir dispositivos, appliances e produtos comerciais e de código aberto. Grandes empresas de tecnologia em todo o mundo confiam no FreeBSD como uma plataforma confiável.

Empresas que Utilizam

Algumas empresas conhecidas, como Cisco, Sony, Apple, Netflix, Apache e Voxer, fazem uso do FreeBSD em suas operações. Aqui estão algumas aplicações do FreeBSD nessas empresas:

Cisco: Os dispositivos de rede e anti-spam IronPort da Cisco usam uma versão personalizada do FreeBSD como base para seu funcionamento.

Sony: O console de videogame PlayStation 4 da Sony utiliza uma versão adaptada do FreeBSD como seu sistema operacional.

Apple: O sistema operacional OS X da Apple incorpora extensivamente o FreeBSD em sua pilha de rede, sistema de arquivos virtuais e em vários componentes de userland. O iOS da Apple também utiliza recursos emprestados do FreeBSD.

Netflix: A Netflix utiliza o appliance OpenConnect, baseado no FreeBSD, para transmitir filmes aos seus clientes. A Netflix contribui significativamente para o código-fonte do FreeBSD e trabalha para manter suas alterações em sincronia com a versão principal. Os dispositivos OpenConnect da Netflix desempenham um papel importante na entrega de uma parte significativa do tráfego de internet na América do Norte.

Apache: A Apache Software Foundation hospeda a maior parte de sua infraestrutura pública no FreeBSD, incluindo um dos maiores repositórios SVN do mundo.

Voxer: A empresa Voxer utiliza o sistema de arquivos ZFS, disponível no FreeBSD, para suportar sua plataforma de mensagens de voz móvel. A Voxer migrou do Solaris para o FreeBSD devido à sua documentação abrangente, comunidade engajada e ambiente de desenvolvimento favorável. Além do ZFS e do DTrace, o FreeBSD também oferece suporte ao TRIM no ZFS.

Além dessas empresas, o FreeBSD está envolvido no desenvolvimento de vários outros projetos de código aberto, como BSD Router, FreeNAS, GhostBSD, mfsBSD, NAS4Free, OPNSense, TrueOS, entre outros.

4.11 Kernel do FreeBSD

FreeBSD não utiliza o Kernel Linux, usa seu próprio kernel, chamado de FreeBSD Kernel, que é o núcleo do sistema operacional, responsável por gerenciar a memória, aplicar controles de segurança, gerenciar a rede, o acesso ao disco e muito mais. O kernel do FreeBSD é altamente configurável, permitindo aos usuários personalizarem o sistema de acordo com suas necessidades. Para criar e compilar um novo kernel, é necessário utilizar o arquivo de configuração do kernel. As principais características deste kernel são:

Estabilidade, sendo projetado para lidar com cargas de trabalho pesadas.

Segurança: inclui várias medidas de segurança, como o uso de Address Space Layout Randomization (ASLR) e a opção de desativar código executável em áreas de memória não utilizadas.

Desempenho: projetado para otimizar o desempenho em redes de alta velocidade e com várias CPUs.

Suporte a drivers: tem um sistema de gerenciamento de drivers modular e flexível, permitindo uma fácil integração de novos drivers e dispositivos.

Ferramentas de desenvolvimento: tem uma ampla variedade de ferramentas de desenvolvimento integradas, como compiladores C e C++, depuradores e ferramentas de profiling. Essas ferramentas ajudam a comunidade de desenvolvedores a criar e manter aplicativos para FreeBSD.

4.12 Segurança do FreeBSD

É conhecida por sua forte segurança. O sistema operacional FreeBSD, ao contrário do Linux, não é apenas um kernel, mas um sistema operacional completo. Ele oferece muitos recursos de segurança avançados, incluindo controle de acesso obrigatório, criptografia de disco e pilha de rede mais segura. O código do FreeBSD é sujeito a auditorias de segurança cuidadosas e frequentes para garantir a segurança do sistema. No entanto, a segurança do sistema operacional depende muito de como ele será configurado e implantado, portanto, é importante que os administradores de sistema adotem boas práticas de segurança ao configurar o sistema.

4.13 Documentação do FreeBSD

A documentação da distro Linux FREEBSD é extensa e abrangente, com uma vasta gama de informações disponíveis em sua documentação oficial, manuais, guias do usuário e em fóruns de discussão online. A documentação é frequentemente atualizada para abranger as mudanças mais recentes na tecnologia e na comunidade.

Além disso, existem muitos recursos adicionais disponíveis em sites de terceiros que complementam a documentação oficial, como tutoriais e fóruns de suporte. A documentação do FREEBSD é bem organizada e fácil de navegar, com explicações claras e concisas. A documentação da distro Linux FREEBSD é ampla e de alta qualidade, proporcionando aos usuários uma excelente fonte de informações e recursos para ajudá-los a instalar, configurar e usar a distribuição com eficácia.

4.14 Configuração mínima para instalação do FreeBSD

Os requisitos mínimos de instalação do FreeBSD variam dependendo da arquitetura utilizada. No entanto, para realizar a instalação, é necessário ter no mínimo 96 MB de RAM e 1,5 GB de espaço livre no disco rígido. Esses requisitos mínimos são adequados para aplicativos personalizados, como dispositivos embarcados. No entanto, para sistemas de desktop de uso geral, é recomendado ter entre 2 e 4 GB de RAM e pelo menos 8 GB de espaço no disco rígido como ponto de partida.

Aqui estão os requisitos de processador para cada arquitetura suportada pelo FreeBSD:

Arquitetura amd64: Essa é a arquitetura mais comum encontrada em desktops e laptops modernos. Ela é conhecida como Intel64 pela Intel e também é chamada de x86-64 por outros fabricantes. Exemplos de processadores compatíveis incluem AMD Athlon 64, AMD Opteron, processadores Intel Xeon multi-core e processadores Intel Core 2 e posteriores.

Arquitetura i386: Essa é uma arquitetura de 32 bits utilizada em desktops e laptops mais antigos. A maioria dos processadores compatíveis com i386 e que possuem uma unidade de ponto flutuante são suportados. Isso inclui todos os processadores Intel 486 ou superiores. O FreeBSD também suporta Extensões de Endereços Físicos (PAE) em CPUs com esse recurso, permitindo o uso de memória acima de 4 GB, embora com algumas restrições em drivers e recursos do sistema.

Arquitetura powerpc: O FreeBSD suporta todos os sistemas Apple Mac com ROM New World e USB incorporado. O multiprocessamento simétrico (SMP) é suportado em máquinas com vários CPUs. É importante destacar que um kernel de 32 bits nessa arquitetura só pode utilizar os primeiros 2 GB de RAM.

Arquitetura sparc64: Os sistemas suportados pelo FreeBSD/sparc64 estão listados no Projeto FreeBSD/sparc64. O SMP é suportado em todos os sistemas com mais de 1 processador. É necessário ter um disco dedicado, pois não é possível compartilhar um disco com outro sistema operacional no momento.

4.15 GPUs Suportadas

A distribuição FreeBSD suporta várias placas de GPU, incluindo:

NVIDIA GeForce GTX série 10 e 20

NVIDIA Quadro séries P400, P600, P1000 e P2000

AMD Radeon HD série 7000 e superior

AMD Radeon RX série 400 e superior

AMD Radeon Pro série WX

No entanto, o suporte pode variar de acordo com a versão do FreeBSD e a atualização do driver da GPU. É sempre recomendável verificar a lista de compatibilidade atualizada antes de escolher uma placa de GPU para uso com a distribuição FreeBSD.

Para determinar se uma placa GPU específica é compatível com o FreeBSD, é importante verificar a documentação do fabricante da placa GPU para garantir que os drivers estejam disponíveis para o FreeBSD. Se a documentação não estiver disponível, se pode pesquisar na lista de hardware compatível com o FreeBSD.

4.16. Suporte para TPM2, SecureBoot e descriptografia de armazenamento automatizado

O FreeBSD não oferece suporte nativo para recursos como TPM2, SecureBoot e descriptografia de armazenamento automatizada. No entanto, existem soluções alternativas e ferramentas de terceiros disponíveis para obter funcionalidades semelhantes. É importante ter em mente que essas soluções podem não ser tão robustas e confiáveis.

Em relação ao TPM2, embora o FreeBSD não tenha suporte nativo, projetos terceiros como o TrustBSD estão em desenvolvimento para fornecer uma implementação de TPM2 específica para o FreeBSD. No entanto, é necessário considerar que esses projetos podem não estar prontos para uso em produção.

O SecureBoot é um recurso que permite iniciar o sistema operacional apenas a partir de um bootloader confiável, garantindo a integridade durante o processo de inicialização. O FreeBSD não possui suporte nativo para o SecureBoot, mas é possível habilitar esse recurso usando o U Boot, um bootloader compatível com UEFI.

Quanto à descriptografia de armazenamento automatizada, que se refere à criptografia e descriptografia automática de dados em dispositivos de armazenamento, como discos rígidos ou SSDs, o FreeBSD não possui uma solução nativa. No entanto, é possível utilizar ferramentas de criptografia de disco, como GnuPG ou DiskCrypt, para criptografar e descriptografar manualmente os dados em seu dispositivo de armazenamento

4.17. Deamons padrões do OS

Os daemons padrões do FreeBSD são programas executados em segundo plano que têm a responsabilidade de monitorar e gerenciar vários aspectos do sistema. Eles desempenham funções essenciais, como o gerenciamento de serviços e rede, a monitorização da temperatura e do consumo de energia, entre outras tarefas relacionadas ao sistema.

Aqui estão alguns exemplos de daemons padrões do FreeBSD:

syslogd: Gerencia o serviço de log do sistema, que registra eventos e mensagens de sistema em um arquivo de log.

rc.d: Um serviço que gerencia a inicialização e a finalização de outros serviços do sistema

nfsserver: Um servidor NFS (Network File System) que permite compartilhar arquivos e diretórios em uma rede.

nfsd: Um cliente NFS que permite acessar arquivos e diretórios compartilhados em outros sistemas NFS.

bind: Um servidor DNS que resolve nomes de domínio em endereços IP.

dnslog: Um servidor de log de consultas DNS que registra informações sobre consultas DNS realizadas no sistema.

ntpd: Um servidor de tempo NTP (Network Time Protocol) que sincroniza o relógio do sistema com outros servidores NTP na rede.

sshd: Um servidor SSH (Secure Shell) que permite conexões seguras entre clientes e servidores.

4.18. Interpretador de comandos padrão do OS

O interpretador de comando padrão do FreeBSD é o "sh" (Bourne shell). No entanto, durante a instalação do FreeBSD, ele suporta outros interpretadores de comando, como o "csh" (C shell), "tcsh" (Tenex C shell), "bash" (Bourne-again shell) e outros, que podem ser instalados e configurados conforme necessário.

4.19. Edições ou spin-offs

Existem algumas edições e spin-offs que foram criados a partir do FreeBSD. Alguns exemplos notáveis incluem:

MidnightBSD: MidnightBSD é um sistema operacional derivado do FreeBSD que busca fornecer uma experiência de desktop voltada para simplicidade e facilidade de uso. Ele inclui um ambiente gráfico e uma seleção de aplicativos pré-instalados, com foco em fornecer uma plataforma estável e amigável para usuários de desktop.

GhostBSD: GhostBSD é outra distribuição baseada no FreeBSD que visa fornecer um ambiente de desktop pronto para uso. Ele oferece uma experiência do sistema operacional mais completa, com uma seleção de aplicativos pré-instalados e uma interface de usuário amigável.

pfSense: pfSense é um firewall e roteador baseado no FreeBSD. Ele oferece uma ampla gama de recursos de segurança, incluindo filtragem de pacotes, VPN, balanceamento de carga, monitoramento de tráfego e muito mais. O pfSense possui uma interface web intuitiva e flexível para facilitar a configuração e o gerenciamento de políticas de segurança.

5. Conclusão

FreeBSD é um sistema operacional de código aberto, que possui como principais características sua estabilidade, segurança, escalabilidade e flexibilidade como solução robusta e confiável para ambientes que exigem alta disponibilidade e desempenho. Suporta uma grande variedade de hardware e arquiteturas de processador. A comunidade de desenvolvedores do FreeBSD é muito ativa e oferece uma vasta gama de recursos e ferramentas disponíveis para serem utilizadas.

6. Referências

Lorenzo Salvadore. (2023) "FreeBSD Documentation Project Primer for New Contributors", https://docs.freebsd.org/pt-br/books/handbook/preface/, May.

Glen BarberFree. (2023) "BSD Project Administration and Management",

https://www.freebsd.org/administration/, May.

Danilo G. Baio. (2021) "About FreeBSD", https://www.freebsd.org/about/, May.

Free BSD Community. (2021) "The FreeBSD Project", https://docs.freebsd.org/pt-br/books/handbook/basics/, June.