母平均

機械学習

川田恵介 (keisukekawata@iss.u-tokyo.ac.jp)

Table of contents

1	キーワード	2
1.1	例	2
1.2	過学習/過剰適合	2
2	母分布	3
2.1	データ分析の根本問題と解決策	3
2.2	解決策: 母集団とサンプリング	3
3	評価	3
3.1	正答と回答	4
3.2	解決策: 評価	4
3.3	数值例	4
3.4	数值例	5
4	モデル推定	5
4.1	予測の誤差	5
4.2	最善の予測	6
4.3	数值例	6
4.4	数値例: データ (100 事例)	6
4.5	数値例: 想像上の母平均の追記	7
4.6	数値例: OLS との比較	7
4.7	数値例: OLS との比較	8
4.8	性質	8
4.9	数値例: 事例数の増加	8
4.10	数值例: 30	9
4.11	数值例: 300	9
4.12	数值例: 3000	10
4.13	数值例: 30000	10

4.14	性質	11
4.15	過学習/過剰適合	11
4.16	まとめ	11
4 17	実戦への示唆	11

1 キーワード

- 過学習/過剰適合
- 推定されたモデルが、事例と過剰に適合してしまう (事例から過度に学び過ぎてしまう) 現象
 - 矛盾して聞こえるが、データ分析において最も注意すべき
 - その理由とともに必ず理解を!!!

1.1 例

• Price を Size (とその 11 乗まで) で OLS 推定すると?

colour — Price ~ Size — Price ~ Size + .. + Size^{11}

1.2 過学習/過剰適合

- モデルを複雑化すると、データ上の平均に予測値が必ず近づく
 - データとの矛盾は減る

• 予測性能は悪化しうる!!!

2 母分布

- データ分析における論点整理のために、母分布を導入
 - 機械学習/統計学/計量経済学、全ての分野で用いられており、今後の講義や自学で学ぶ際に必須
 - なぜ"単純すぎる"経済モデルが実用的な場面があるのか、を理解する上でも重要
 - * 直接観察できない概念であり、人間の想像力に依拠

2.1 データ分析の根本問題と解決策

- 同じ社会や市場を対象にしたとしても、研究者によって
 - 異なる予測モデルを推定する
 - モデルについて異なる評価を下す
 - * どんなモデルもまぐれあたりする可能性がある
- 解決策: 全研究者共通の正答と各人の回答を分離

2.2 解決策: 母集団とサンプリング

- 評価に用いる事例 (テストデータ) は、仮想的な集団 (母集団) からランダムに選ばれたデータから、さらにランダムに選ばれた考える
 - 母集団全体を用いた評価やモデルが正答
 - 自身のデータから計算された評価やモデルが、各人の回答
- 現実においては、自身の回答しかわからないので、正答は誰も知らない
 - 高校までの勉強とは決定的に異なる

3 評価

• ある予測モデルの性能をどのように評価するか?

3.1 正答と回答

- 正答: あるモデルの予測値 f(X) と Yとの乖離を、母集団において計算 $(Y-f(X))^2$ の母集団における平均値
- 回答: 自身のテストデータ上で、上記を計算

3.2 解決策: 評価

- 理論的性質を用いて、評価の信頼性を議論
- 大数の法則: テストデータの事例数が十分あれば、回答 (データ上での評価) と正答 (母集団上での評価) は十分に近い値となる
 - データ全体の2割程度をテストに割くのが一般的
 - * 誤差の範囲も計算できる(後述)

3.3 数值例

- 共通の予測モデルの性能を50名の研究者が調べる
 - モデルは共通だが、テストデータは独立して収集
 - テストデータの事例数は 1,100 または 5000

3.4 数值例

4 モデル推定

- 想定: モデル推定に用いるデータ (訓練データ) も、評価に用いるデータと同じ母集団からランダムに選ばれているとする
- 最善の予測 (正答) と完璧な予測を区別できる
 - 「最善の予測に近い予測を生み出す」をガイドラインとして、推定方法を評価できる

4.1 予測の誤差

- 予測誤差: $Y \underbrace{f(X)}_{\text{Syndig}}$
- 完璧な予測は以下を要求: 全ての事例について

$$f(X) = Y$$

- X 内で個人差があれば、不可能
 - $-X = \{$ 年齢、学歴、性別 $\}$ から Y =賃金 を完璧に予測するためには、「同じ年齢、学歴、性別であれば、賃金が全く同じ社会」が前提だが、ありえない

4.2 最善の予測

- 最善のモデル = $(Y \underbrace{f(X)}_{\widehat{\tau}_{|||}})^2$ の母集団における平均値を最小化するモデル
 - 動機: まぐれあたりではなく、平均的に上手くいく予測モデルを採用したい
- 母集団を直接活動できれば、その平均値 (母平均) が最善の予測モデル

4.3 数值例

- Yの平均値 = X^2 もし X < 0.4 ならば
- Yの平均値 = $X^2 + 2$ もし X >= 0.4 ならば

4.4 数値例: データ (100 事例)

colour • データ上の平均

4.5 数値例: 想像上の母平均の追記

• 厳重注意: 青点は、想像上の存在

4.6 数値例: OLS との比較

colour ● データ上の平均 **─** 推定値: Y~X ● 母平均

4.7 数値例: OLS との比較

colour

- データ上の平均
- 推定値
- 母平均

4.8 性質

- 限られた事例数 (N=100) では、
 - **平均値は実用的ではない:** データ上の平均値と母平均は、大きく乖離している
 - **複雑なモデルも実用的ではない:** データ上の平均値に近づいており、母平均から乖離している
- 単純なモデルは実用的: $Y \sim X$ の OLS 推定結果は、母平均に近い
 - 問題点もある: "0.4 でジャンプする" という性質を捉えられない

4.9 数値例: 事例数の増加

- 以上は事例数が少ないことにも起因
 - 300/3000/30000 事例まで増やすと?

4.10 数値例: 30

colour

- データ上の平均
- ━ 推定値
- 母平均

4.11 数値例: 300

colour

- データ上の平均
- 推定値
- 母平均

4.12 数値例: 3000

colour

- データ上の平均
- 推定値
- 母平均

4.13 数値例: 30000

colour

- データ上の平均
- ━ 推定値
- 母平均

4.14 性質

- 事例数が増えると、複雑なモデルが実用的になる
 - 母平均とデータ上の平均が近づくので
 - "複雑な OLS" も、母平均に近づく
- 単純な OLS の予測精度は頭打ち
 - 母平均の乖離が、ほとんど変化しない
- 複雑なモデルの予測力が上がる!!!

4.15 過学習/過剰適合

- 事例数が少ないと、データ上の平均と母平均は大きく乖離する
 - 複雑なモデルはデータ上の平均に近いが、母平均から乖離する
 - * 最善の予測モデル (母平均) を推定するという目標に対して、(データへの)過剰適合/(データから) 過学習
- 事例数が増えると、過学習/過剰適合は緩和

4.16 まとめ

事例数/複雑さ	複雑	単純
少ない	(過剰適合)	(現実的な妥協)
多い	(理想的)	(不十分なデータ活用)

笑顔 = より良い予測モデル

4.17 実戦への示唆

- 事例数が多ければ複雑なモデルを推定できるが、少なければ単純なモデルで妥協する必要がある
- "推定するモデルの複雑さを適切に変えるべき"
 - 具体的には?
 - * かつては人力で頑張っていたが、難しい
 - * 次のスライドでは、データ主導のアプローチ (LASSO) を紹介