# CS 736

### Assignment - 4

By: Ank Kumar Gupta (22B0623) & Veenus (22B0704)

### Overview

Objective: Kernel Methods and Shape Analysis

#### Tasks:

- Shape Analysis on Human Hand Shapes
- 2. Shape Analysis on Human Cardiac Shapes
- 3. Robust Shape Mean
- 4. Kernel PCA to Model Variation in Object Segmentations

#### **Objective**

Shape Analysis on Human Hand Shapes

#### **Description**

- Implement two alignment functions, first Code11 which assumes that the pointsets are pre-processed into pre-shape space (centered and scaled), so only a rotation needs to be computed and Code2 which uses the approach from [Cootes et al. 1995 CVIU] to jointly solve for rotation, scale, and translation.
- Develop two methods for computing the optimal shape mean iteratively.
- Visualizing & Plotting the required images.

#### **Approach**

- Load the hands2D.mat dataset which contains multiple 2D hand shapes.
- Plot all initial raw shapes in a single graph using random colors for visual comparison.
- We used Orthogonal Procrustes Analysis to align shapes using rotation only, by solving for the optimal rotation matrix via SVD in the pre-shape space.
- Aligned shapes using full similarity transform (scale, rotation, translation) via SVD as done by Cootes et al. (1995).

#### **Approach**

- Computed optimal mean shape iteratively by aligning with rotation only (Code1) and updating the mean in pre-shape space.
- Estimated mean shape using full similarity alignment (Code2), updating iteratively with scale, rotation, and translation.
- Performed PCA on aligned shape vectors to extract principal modes of variation using eigen-decomposition of the covariance matrix.
- **PCA with modes**: Flatten aligned shapes, compute mean vector and covariance, then extract principal modes via eigen decomposition.
- **Visualize top shape variations** using ±k × std × eigenvectors from PCA around the mean shape.

### 1(a) Plot of Initial Estimate



### 1(b) Plots of computed shape mean with aligned pointsets





### 1(c) Plots of the variances





### 1(d) Shape variation around mean (Code11)



### 1(d) Shape variation around mean (code 22)



#### **Objective**

Shape Analysis on Human Cardiac Shapes

#### **Description**

- For each image from the given data, extract pointsets for the inner and outer boundaries (the ring) using contour detection and combine them.
- Repeat the shape analysis from the first question: compute the shape mean and principal modes of variation based on these pointsets.
- Compute and display the shape mean and aligned pointsets using two methods: Code11 (pre-shape, rotation only) and Code22 (joint scale, translation, and rotation).
- Perform PCA on the aligned shapes and plot the images wherever mentioned.

#### **Approach**

- Mostly same as Task 1
- First extract the data from the zip folder and show the plot of initial pointset with random color
- Every image is resized to a uniform 256x256 pixel grid. This step ensures all shapes are on the same scale, making it easier to compare them later and avoiding issues from different image resolutions.
- Convert each image into black and white and check the pixel brightness so be distinguish between ring and background

#### **Approach**

- Make a function called extract\_ring\_pointset to find the edge of the ring in each binary image. Look for where the image switch from black to white.
- The plot references aligned\_code22, suggesting Procrustes analysis to align point sets. The alignment minimizes:
- Add two extra shapes for each of the top 3 r  $E = \sum_{i=1}^{M} \|P_i (sRP^{\text{mean}} + t)\|^2$  le shape changes a few steps above and below the mean (e.g., 2-3 standard deviations).

2(b) Generation of pointsets corresponding to inner and outer boundaries



#### **2(c)** Computed shape mean, together with all the aligned pointsets





### **2(d)** Top 3 eigenvalue:





### 2(e) Shape Variation around mean (Code11)



### 2(e) Shape Variation around mean (Code22)



#### **Objective**

**Robust Shape Mean** 

#### **Description**

- Formulate an optimization problem minimizing the sum of squared Procrustes distances to compute the mean shape.
- Implement this method to compute and display the original pointsets, the estimated mean, and all pointsets aligned to the mean.
- Further, formulate a separate optimization problem minimizing the sum of (non-squared) Procrustes distances for enhanced robustness.
- Implement the robust method, then display the original pointsets, the robustly estimated mean, and all aligned pointsets.

#### **Approach**

- Loaded the dataset and for each pointset and compute the centered and normalized version.
- Measure dissimilarity using the Procrustes distance by aligning shapes via the optimization:  $\min_{s,R} \|Z sXR\|_F^2$  Where R is obtained by SVD of A=X<sup>T</sup>Z and the optimal scaling is s = trace(R<sup>T</sup>A).
- Formulated the problem to estimate the mean shape Z by minimizing:  $J(Z) = \sum_{k=1}^{M} \|Z s_m X^{(m)} R_m\|_F^2$  Where  $\mu(Z) = 0$  and  $\|Z\|_F = 1$ .
- For each iteration, aligned each shape to the current mean using rotation only (Code1), then update the mean as:

$$Z_{ ext{new}} = ext{normalize} \left( rac{1}{M} \sum_{m=1}^{M} s_m \, X^{(m)} \, R_m 
ight)$$

#### **Approach**

To reduce outlier sensitivity, minimized the sum of unsquared distances:

$$J(Z) = \sum_{m=1}^M \|Z - s_m X^{(m)} R_m\|_F$$
Using weights  $w_m = rac{1}{\epsilon + \|Z - s_m X^{(m)} R_m\|_F}$  so that  $Z_{ ext{new}} = ext{normalize} \left(rac{\sum_{m=1}^M w_m \, s_m \, X^{(m)} \, R_m}{\sum_{m=1}^M w_m}
ight)$ 

 Plotted the original (centered & normalized) pointsets, the computed mean Z, and all aligned shapes (overlaid) for each method.

(a) Designed Optimization Problem (sum of squared Procrustes distances)

$$\min_{Z,\{s_m,R_m\}} \sum_{m=1}^M \|Z-s_m R_m X^{(m)}\|_F^2$$
 Subject to  $\sum_{n=1}^N z_n = 0$  and  $\|Z\|_F = 1$ 

#### **Original Pointsets:**



Before Centering and Normalization



After Centering and Normalization

(a)





(b) Designed Optimization Problem (sum of squared Procrustes distances)

$$\min_{Z,\{s_m,R_m\}}\sum_{m=1}^M \|Z-s_mR_mX^{(m)}\|_F ext{ subject to } \sum_{n=1}^N z_n=0 ext{ and } \|oldsymbol{Z}\|_F=1.$$

#### **Original Pointsets:**



Before Centering and Normalization



After Centering and Normalization

(a)





#### **Objective**

Kernel PCA to Model Variation in Object Segmentations

#### **Description**

- Perform PCA on vectorized segmentation images; display the eigen spectrum, mean image, and first 2 principal modes of variation as images.
- Implement kernel PCA using a Gaussian kernel; visualize the eigen spectrum and estimate the pre-image closest to the RKHS mean.
- For distorted segmentations, project onto the first 3 PCA modes and display the reconstructed (projected) images.
- Similarly, project distorted images into RKHS using kernel PCA, and compute their pre-images for visualization.

#### **Approach**

- Resized each segmentation image to 64×64, normalized pixel values to [0,1] and vectorized each image as  $x \in R^{4096}$ .
- Centered data by  $\mu = \frac{1}{M} \sum_{i=1}^{M} x_i$  and computed covariance as as  $C = \frac{1}{M} \sum_{i=1}^{M} (x_i \mu)(x_i \mu)^T$  and then performed eigen decomposition.
- Plotted the eigen spectrum, displayed the mean image (μ reshaped to 64×64), and showed the first two principal modes.
- Compute the Gaussian kernel  $k(x,y)=\exp(-\gamma /\!\!/ x-y /\!\!/ ^2)$  to form the matrix K, centered it, and performed eigen-decomposition on it.
- Estimated the pre-image  $x^*$  by iteratively updating:  $x^{(t+1)} = \frac{\sum_i k(x^{(t)}, x_i) x_i}{\sum_i k(x^{(t)}, x_i)}$  Starting from the arithmetic mean of the training set.

#### **Approach**

• For a test image x, computed the coefficients  $c_j = v_j^T (x-\mu)$  and reconstructed as

$$x_{ ext{recon}} = \mu + \sum_{j=1}^{3} c_j v_j$$

- For each test image, computed and center its kernel vector, project onto the top 3 kernel eigenvectors, then estimate its pre-image using the iterative scheme.
- Finally plotted the eigen spectra, mean images, PCA reconstructions versus originals, and kernel PCA pre-image reconstructions.

(a) Eigen Spectrum, Mean Image and the first 2 modes of variation around the mean



Mean Segmentation Image



First 2 PCA Modes



#### (b) Eigen Spectrum, Kernel PCA pre-image of the mean





#### (c) PCA and projected segmentation image

Original Distorted



PCA Reconstructed



Original Distorted



PCA Reconstructed



Original Distorted



PCA Reconstructed



### (c) Kernel PCA

Original Distorted



Kernel PCA Pre-image



Original Distorted



Kernel PCA Pre-image



Original Distorted



Kernel PCA Pre-image



# Thank You!