Отчет

Архитектура вычислительной системы

Описание задания

Вариант 211

Обобщенный	Базовые альтернативы	Общие для всех	Общие для всех
артефакт,	(уникальные	альтернатив	альтернатив
используемый в	параметры, задающие	переменные	функции
задании	отличительные		
	признаки альтернатив)		
1. Плоская	1. Круг (целочисленные	Цвет фигуры	Вычисление
геометрическая	координата центра	(перечислимый тип) =	площади фигуры
фигура,	окружности, радиус)	{красный, оранжевый,	(действительное
размещаемые в	2. Прямоугольник	желтый, зеленый,	число)
координатной	(целочисленные	голубой, синий,	
сетке.	координаты левого	фиолетовый}	
	верхнего и правого		
	нижнего углов)		
	3. Треугольник		
	(целочисленные		
	координаты трех углов)		

16. Упорядочить элементы контейнера по убыванию используя сортировку методом деления пополам (Binary Insertion). В качестве ключей для сортировки и других действий используются результаты функции, общей для всех альтернатив.

Описание работы программы

Во входном файле tests.txt расположены все тесты, при выборе опции "считывание из файла" обрабатываются сразу все тесты, и в выходной файл выводится результат: сначала все фигуры контейнера по порядку, а затем отсортированный контейнер. При выборе опции "рандомный ввод" пользователь должен будет ввести seed, и будет сформирован один контейнер с рандомными фигурами, его элементы будут выведены сначала по порядку, а затем в соответствии со значением площади (по убыванию).

Формат одного теста:

<количество элементов в контейнере>

<ключ фигуры – целое число от 1 до 3, 1 – прямоугольник, 2 – треугольник, 3 - круг>

<параметры фигуры>

Если треугольник, то: <ax> <ay> <bx> <by> <cx> <cy> <цвет – целое число от 1 до 7>

Если прямоугольник, то: <left_up_x> <left_up_y> <right_down_x> <right_down_y> <цвет>

Если круг, то: <center_x> <center_y> <radius> <цвет>

Далее с новой строки ключ следующей фигуры и с новой строки ее параметры, и так далее, пока количество фигур не будет равно введенному в самой первой строке количеству.

Таблица типов

int	4
double	8

class rectangle	32	
left_up_x: int	4[0]	
left_up_y: int	4[4]	
right_down_x: int	4[8]	
right_down_y: int	4[12]	
	+ 16 из-за наследования от figure	
class triangle	40	
ax: int	4[0]	
ay: int	4[4]	
bx: int	4[8]	
by: int	4[12]	
cx: int	4[16]	
cy: int	4[20]	
·	+ 16 из-за наследования от figure	
class circle	32	
center_x: int	4[0]	
center_y: int	4[4]	
radius: int		
radius: int	4[8]	
	+ 16 из-за наследования от figure и	
	выравнивание до 32	
class figure	16	
k: key	4[0]	
color: color	4[4]	
15.5	Виртуальный конструктор - +8	
	3.12.1,2.12.11.110.10.12,11.10	
class container	80008	
len: int	4[0]	
container: figure*[max_size]	8*10000=80000[4]	
	4[80004]	
max_size: int	4[0004]	

Глобальная память

Глобальная память пустая, нет объявленных глобальных переменных.

Локальная память

main()	
file_in: ifstream	520[0]
size: int	4[520]
cont: container	80008[524]
file_out: ofstream	512[80532]
command_number: int	4[81044]
seed: int	4[81048]
	-

initialization() size: int	4[0]
binarySort() size: int i: int position: int right_bound: int selected_figure: figure*	4[0] 4[4] 4[8] 4[12] 8[16]
binarySearch() fig: figure* left: int right: int middle: int	8[0] 4[8] 4[12] 4[16]

Heap

В Heap хранятся элементы массива cont.container: figure*[max_size] — указатели типа figure, в которые помещаются указатели на объекты производных классов класса figure (rectangle, triangle, circle). Под каждый такой элемент выделяется 8 байт динамической памяти.

Stack вызовов функций

1) При вводе из файла

2) При случайном вводе

Характеристики программы

Число заголовочных файлов - 6

Число файлов реализации – 6

Размер исполняемого файла - 616 КБ

Размер исходных текстов программы – 27.1 КБ

Время:

Случайное заполнение:

Seed = 5 - 15625 ms

Seed = 10 - 78125 ms

Seed = 100 - 31250 ms

Seed = 1000 - 46875 ms

Seed = 10000 - 15625 ms

Тесты из файла tests.txt:

Время выполнения всех тестов из приложенного тестового файла – 15625 ms

Сравнительный анализ

Сходства с процедурным подходом: одинаковый стек вызовов функций, пустая глобальная память, одинаковый размер класса container

Отличия от предыдущей реализации: количество заголовочных файлов (убрала структуру point), из-за появления виртуальных деструкторов и наследования изменились размеры типов figure, rectangle, triangle, circle. В контейнере теперь хранятся указатели на типы rectangle, triangle, circle, приведенные к типу figure*. Появился полиморфизм и переопределение методов, появилась инкапсуляция.