RL Lecture: Notation Cheat Sheet

M. Lindauer – Leibniz University Hannover

Symbol	Meaning
\overline{S}	space of states
$s \in S$	one specific state
A	space of Actions (Warning: overloaded notation with advantage function)
$a \in A$	one specific action
$P: S \times A \to S$	dynamics of environment
$R: S \times A \to \mathbb{R}$	reward function
$r \in \mathbb{R}$	concrete reward value
$\gamma \in [0,1]$	discount factor
T	maximal time horizon (Warning: overloaded notation with terminal states)
t	concrete time step $t \leq T$
$\rho_0: S \to \mathbb{R}^+$	a distribution of start states
$\pi:S\to A$	policy (Note: could also be defined as $S \times A \to \mathbb{R}$ to highlight non-deterministic behavior)
$\pi^*:S\to A$	optimal policy
$G_t: S \to \mathbb{R}$	discounted sum of rewards from time step t to horizon (also with $S \times A$ possible)
$G_t^{(n)}:S o\mathbb{R}$	general n-step return
$V^{\pi}:S\to\mathbb{R}$	state-value function: Expected return starting from a given state following policy π
$V^*:S o\mathbb{R}$	expected return starting from a given state following the optimal policy
$N:S o\mathbb{R}$	number of times s was visited (also with $S \times A$ possible)
δ_t	TD (temporal difference) error
λ	weight for $TD(\lambda)$
$Q^{\pi}: S \times A \to \mathbb{R}$	state-action value function; follow π after taking the given action
$Q^*: S \times A \to \mathbb{R}$	state-action value function; follow the optimal π after taking the given action
ϵ	probability to do a random exploration step
α	step size for updating (e.g.) the Q -function
$\mathbb E$	expectation
∇	gradient
Δ	difference (e.g., update)
∂	partial derivative
·	approximation of \cdot (e.g., \hat{V} or \hat{Q})
x	feature vector
$\mathbf{w} \text{ or } \theta$	weight vector or tensor of function approximator
$\pi_{ heta}$	policy with policy network parameterized by θ
$d: S \to \mathbb{R}$	stationary distribution over states
τ or h	Trajectory or history (state, action, reward, state, action,)
$b:S o\mathbb{R}$	baseline (estimator) for a given state
μ	mean
σ	standard deviation
<u>H</u>	entropy