Project2

-、HMM

(一) 原理理解

在HMM中,我们可以把系统想象成一个有着隐藏状态和可观测状态的模型。隐藏状态表示我们不直接观察到的系统内部状态,而可观测状态则是我们能够观察到的数据。

HMM假设我们可以通过一个**发射概率矩阵**描述每个隐藏状态生成不同观测状态的概率,同时使用一个**转移概率矩阵**描述每个隐藏状态在下一时刻转移到其他隐藏状态的概率。此外,HMM还考虑了**初始标签概率**,即系统在起始时刻处于各个隐藏状态的概率分布。可以通过在训练集上利用**统计计算**的方法求解概率矩阵。

维特比解码的实质是在给定观测序列的情况下,寻找最有可能的对应隐状态序列。通过动态规划递归地计算每 个时间步的最优路径,我们可以得到整个序列的最优路径和概率。

(二) 代码基本结构与实验过程

代码包含初始化读取函数init()和类HMM。

- init(): 读取训练文件,得到wordlists, taglists, 以及词汇表words; 读取测试文件,得到wordlists
- 类HMM
 - o train(): 根据从训练文件读取得到的wordlists和taglists,统计并计算初始标签概率、发射概率矩阵和转移概率矩阵。
 - o viterbi(): 实现了HMM的维特比解码,通过动态规划寻找在给定观测序列(wordlist)下最有可能的隐状态序列。
 - o test(): 通过调用之前定义的 viterbi 方法,对输入的多个词汇序列进行测试,并将结果写入一个输出文件中(后续借助 check.py 进行测试)。

以中文识别为例,最开始实现代码后,运行测试发现正确率很低,如下:

	L COM - D I	NED 0				
•	yuki@MacBook	NER % python3				
		precision	recall	f1-score	support	
	D. NIAME	0.0000	0 0000	0.0000	100	
	B-NAME	0.0000	0.0000	0.0000	102	
	M-NAME	0.0000	0.0000	0.0000	75	
	E-NAME	0.0000	0.0000	0.0000	102	
	S-NAME	0.0000	0.0000	0.0000	8	
	B-CONT	0.0000	0.0000	0.0000	33	
	M-CONT	0.0000	0.0000	0.0000	64	
	E-CONT	0.0000	0.0000	0.0000	33	
	S-CONT	0.0000	0.0000	0.0000	0	
	B-EDU	0.0000	0.0000	0.0000	106	
	M-EDU	0.0000	0.0000	0.0000	177	
	E-EDU	0.0000	0.0000	0.0000	106	
	S-EDU	0.0000	0.0000	0.0000	0	
	B-TITLE	0.5476	0.0334	0.0629	689	
	M-TITLE	0.4737	0.0609	0.1078	1479	
	E-TITLE	0.0476	0.0029	0.0055	689	
	S-TITLE	0.0000	0.0000	0.0000	0	
	B-ORG	0.0734	0.0153	0.0254	522	
	M-ORG	0.3990	0.2399	0.2997	3622	
	E-ORG	0.5476	0.0441	0.0816	522	
	S-ORG	0.0000	0.0000	0.0000	0	
	B-RACE	0.0000	0.0000	0.0000	14	
	M-RACE	0.0000	0.0000	0.0000	0	
	E-RACE	0.0000	0.0000	0.0000	14	
	S-RACE	0.0000	0.0000	0.0000	1	
	B-PR0	0.0000	0.0000	0.0000	18	
	M-PR0	0.0000	0.0000	0.0000	33	
	E-PR0	0.0000	0.0000	0.0000	18	
	S-PR0	0.0000	0.0000	0.0000	0	
	B-L0C	0.0000	0.0000	0.0000	2	
	M-LOC	0.0000	0.0000	0.0000	6	
	E-LOC	0.0000	0.0000	0.0000	2	
	S-LOC	0.0000	0.0000	0.0000	0	
	micro avg	0.3884	0.1203	0.1837	8437	
	macro avg	0.0653	0.0124	0.0182	8437	
	weighted avg	0.3414	0.1203	0.1597	8437	
	5					

在代码中使用平滑技术处理未见过的单词或单词-标签组合,以防止零概率,提高模型的泛化能力,处理后正确率上升至50%以上,但依旧低;

后续又发现在维特比解码过程中可能会出现溢出,所以在解码前对于概率进行取对数操作,之后的预测结果正确率可以达到90%,如下图:

yuki@MacBook	NER % python3				
	precision	recall	f1-score	support	
B-NAME	0.9174	<u>0.9804</u>	0.9479	102	
M-NAME	0.9136	0.9867	0.9487	75	
E-NAME	0.9083	0.9706	0.9384	102	
S-NAME	1.0000	0.5000	0.6667	8	
B-CONT	0.8649	0.9697	0.9143	33	
M-CONT	0.8750	0.9844	0.9265	64	
E-CONT	0.8919	1.0000	0.9429	33	
S-CONT	0.0000	0.0000	0.0000	0	
B-EDU	0.8065	0.9434	0.8696	106	
M-EDU	0.7919	0.9887	0.8794	177	
E-EDU	0.8455	0.9811	0.9083	106	
S-EDU	0.0000	0.0000	0.0000	0	
B-TITLE	0.8194	0.8694	0.8437	689	
M-TITLE	0.8129	0.9020	0.8551	1479	
E-TITLE	0.9191	0.9724	0.9450	689	
S-TITLE	0.0000	0.0000	0.0000	0	
B-ORG	0.8869	0.9310	0.9084	522	
M-ORG	0.9185	0.9216	0.9201	3622	
E-ORG	0.7832	0.8238	0.8030	522	
S-ORG	0.0000	0.0000	0.0000	0	
B-RACE	0.9333	1.0000	0.9655	14	
M-RACE	0.0000	0.0000	0.0000	0	
E-RACE	0.9333	1.0000	0.9655	14	
S-RACE	0.0000	0.0000	0.0000	1	
B-PR0	0.4615	0.6667	0.5455	18	
M-PR0	0.5000	0.6364	0.5600	33	
E-PR0	0.5769	0.8333	0.6818	18	
S-PR0	0.0000	0.0000	0.0000	0	
B-L0C	0.0000	0.0000	0.0000	2	
M-LOC	0.0000	0.0000	0.0000	6	
E-LOC	0.0000	0.0000	0.0000	2	
S-L0C	0.0000	0.0000	0.0000	0	
micro avg	0.8697	0.9147	0.8916	8437	
macro avg	0.5425	0.5894	0.5605	8437	
weighted avg	0.8714	0.9147	0.8918	8437	

(三) 实验结果

英文:

yuki@MacBook	NER % python3	check.p	У	
	precision	recall	f1-score	support
B-PER	0.9435	0.5261	0.6755	1842
I-PER	0.9211	0.6611	0.7697	1307
B-ORG	0.7701	0.5846	0.6647	1341
I-ORG	0.8053	0.5672	0.6656	751
B-L0C	0.9129	0.7529	0.8252	1837
I-LOC	0.8462	0.6848	0.7570	257
B-MISC	0.9412	0.6594	0.7755	922
I-MISC	0.8097	0.5289	0.6399	346
micro avg	0.8831	0.6269	0.7332	8603
macro avg	0.8688	0.6206	0.7216	8603
weighted avg	0.8859	0.6269	0.7309	8603
weighted dvg	010055	0.0203	01/303	0005

yuki@MacBook	NER % python3				
	precision	recall	f1-score	support	
B-NAME	0.9174	0.9804	0.9479	102	
M-NAME	0.9136	0.9867	0.9487	75	
E-NAME	0.9083	0.9706	0.9384	102	
S-NAME	1.0000	0.5000	0.6667	8	
B-CONT	0.8649	0.9697	0.9143	33	
M-CONT	0.8750	0.9844	0.9265	64	
E-CONT	0.8919	1.0000	0.9429	33	
S-CONT	0.0000	0.0000	0.0000	0	
B-EDU	0.8065	0.9434	0.8696	106	
M-EDU	0.7919	0.9887	0.8794	177	
E-EDU	0.8455	0.9811	0.9083	106	
S-EDU	0.0000	0.0000	0.0000	0	
B-TITLE	0.8194	0.8694	0.8437	689	
M-TITLE	0.8129	0.9020	0.8551	1479	
E-TITLE	0.9191	0.9724	0.9450	689	
S-TITLE	0.0000	0.0000	0.0000	0	
B-ORG	0.8869	0.9310	0.9084	522	
M-ORG	0.9185	0.9216	0.9201	3622	
E-ORG	0.7832	0.8238	0.8030	522	
S-ORG	0.0000	0.0000	0.0000	0	
B-RACE	0.9333	1.0000	0.9655	14	
M-RACE	0.0000	0.0000	0.0000	0	
E-RACE	0.9333	1.0000	0.9655	14	
S-RACE	0.0000	0.0000	0.0000	1	
B-PR0	0.4615	0.6667	0.5455	18	
M-PR0	0.5000	0.6364	0.5600	33	
E-PR0	0.5769	0.8333	0.6818	18	
S-PR0	0.0000	0.0000	0.0000	0	
B-L0C	0.0000	0.0000	0.0000	2	
M-LOC	0.0000	0.0000	0.0000	6	
E-L0C	0.0000	0.0000	0.0000	2	
S-L0C	0.0000	0.0000	0.0000	0	
micro avg	0.8697	0.9147	0.8916	8437	
macro avg	0.5425	0.5894	0.5605	8437	
weighted avg	0.8714	0.9147	0.8918	8437	
_					

二、CRF

(一) 原理理解

CRF的核心思想是考虑观测序列和标签序列之间的条件概率分布,通过最大化这个条件概率来预测最可能的标签序列。

在构建CRF模型时,我们通过对观测序列生成一系列**特征**,并为这些特征定义对应的特征函数。这些特征可以涵盖丰富的信息,包括自身词汇、上下文关系以及标签之间的关系,从而综合考虑多方面的因素。

在特征的基础上,CRF通过对这些特征进行加权评估,引入权重参数。这些权重参数是可以根据模型的训练数据进行动态调整的,通过训练过程中的优化算法,使得模型学到合适的权重参数。这样,CRF就能够在考虑多种特征的基础上,通过权衡不同特征对标签序列的影响,达到更准确的序列标注任务。

(二) 代码基本结构与实验过程

本Part可以使用机器学习框架,代码上的工作主要是对特征的提取。

代码包含初始化读取函数init(), word2features(), sent2features()和类CRF。

- init(): 读取训练文件,得到wordlists, taglists;读取测试文件,得到wordlists。
- word2features(): 提取单词的特征(pre、nxt;对于英文也提取首字母是否大写)
- sent2features(): 对句子逐个单词的提取特征。
- 类CRF
 - o train(): 利用提取的特征,调用sklearn框架进行训练。
 - o test(): 调用sklearn框架对输入的多个词汇序列进行测试,并将结果写入一个输出文件中(后续借助 check.py 进行测试)。

(三) 实验结果

英文:

)	yuki@MacBook	NER % python3	check.p	у	
		precision	recall	f1-score	support
	B-PER	0.8965	0.8746	0.8854	1842
	I-PER	0.9104	0.9564	0.9328	1307
	B-ORG	0.8559	0.7927	0.8231	1341
	I-ORG	0.7151	0.8322	0.7692	751
	B-L0C	0.8802	0.8639	0.8720	1837
	I-LOC	0.9248	0.8132	0.8654	257
	B-MISC	0.9217	0.8167	0.8660	922
	I-MISC	0.8975	0.7341	0.8076	346
	micro avg	0.8737	0.8546	0.8640	8603
	macro avg	0.8753	0.8355	0.8527	8603
	weighted avg	0.8765	0.8546	0.8641	8603

中文:

yuki@MacBook	NER % python3			
	precision	recall	f1-score	support
B-NAME	0.9901	0.9804	0.9852	102
M-NAME	1.0000	0.9733	0.9865	75
E-NAME	0.9901	0.9804	0.9852	102
S-NAME	1.0000	1.0000	1.0000	8
B-CONT	1.0000	1.0000	1.0000	33
M-CONT	1.0000	1.0000	1.0000	64
E-CONT	1.0000	1.0000	1.0000	33
S-CONT	0.0000	0.0000	0.0000	0
B-EDU	0.9906	0.9906	0.9906	106
M-EDU	1.0000	1.0000	1.0000	177
E-EDU	0.9906	0.9906	0.9906	106
S-EDU	0.0000	0.0000	0.0000	0
B-TITLE	0.9202	0.9202	0.9202	689
M-TITLE	0.8921	0.9337	0.9125	1479
E-TITLE	0.9826	0.9826	0.9826	689
S-TITLE	0.0000	0.0000	0.0000	0
B-ORG	0.9626	0.9368	0.9495	522
M-ORG	0.9455	0.9671	0.9562	3622
E-0RG	0.9272	0.9023	0.9146	522
S-ORG	0.0000	0.0000	0.0000	0
B-RACE	1.0000	1.0000	1.0000	14
M-RACE	0.0000	0.0000	0.0000	0
E-RACE	1.0000	1.0000	1.0000	14
S-RACE	0.0000	0.0000	0.0000	1
B-PR0	0.8571	1.0000	0.9231	18
M-PR0	0.8049	1.0000	0.8919	33
E-PR0	0.8571	1.0000	0.9231	18
S-PR0	0.0000	0.0000	0.0000	0
B-L0C	1.0000	1.0000	1.0000	2
M-LOC	1.0000	1.0000	1.0000	6
E-L0C	1.0000	1.0000	1.0000	2
S-LOC	0.0000	0.0000	0.0000	0
micro avg	0.9405	0.9553	0.9478	8437
macro avg	0.7222	0.7362	0.7285	8437
weighted avg	0.9410	0.9553	0.9479	8437

三、BiLSTM+CRF

(一) 原理理解

BiLSTM-CRF模型主体由Bi-LSTM和CRF组成,模型输入是字符特征,输出是每个字符对应的预测标签。

BiLSTM接收每个字符的embedding,并预测每个字符的对所有标签的概率。但直接选择该步骤最大概率的标签类别得到的结果并不理想。这样的模型无法学习到输出的标注之间的**转移依赖关系**(标签的概率转移矩阵)以及**序列标注的约束条件**,所以引入CRF层学习序列标注的约束条件,确保预测结果的有效性。

CRF层将BiLSTM的Emission_score作为输入,输出最大可能的预测标注序列。在训练过程中,对于某一序列,需要计算模型的真实路径得分和所有路径得分;训练目的即提高真实路径得分在所有路径得分中的占比,其最大似然函数可以表示为:

$$\log P(y \mid x) = score(x, y) - \log \left(\sum_{y} exp(score(x, y)) \right)$$

(二) 代码基本结构与实验过程

代码包含类BiLSTM_CRF、类CRF、类NERdataset。

- 类CRF
 - o _all_path(): 计算所有可能路径得分之和。
 - o _real_path(): 计算真实路径得分。
 - o calc_loss(): 计算损失函数。
 - o viterbi(): 维特比解码,用于预测。
- 类BiLSTM_CRF
 - o forward(): 前向传播,依次经过嵌入层、LSTM层、全连接层、CRF层。
- 类NERdataset: 为了构造数据加载器,继承自类Dataset。
- train(): 训练函数,并将模型保存至 ckpts/[language]_BiLSTM_CRF_Model.pkl
- test(): 测试函数,调用已训练好的模型。

(三) 实验结果

英文:

rt
42
07
41
'51
37
.57
22
46
603
03
603
333

中文:

vuki@MacBook	NER % python3	check.p	V	
) and a coord	precision		f1-score	support
	p. 001010			Support
B-NAME	0.9901	0.9804	0.9852	102
M-NAME	0.9241	0.9733	0.9481	75
E-NAME	0.9802	0.9706	0.9754	102
S-NAME	1.0000	0.8750	0.9333	8
B-CONT	1.0000	1.0000	1.0000	33
M-CONT	1.0000	$\frac{1.0000}{1.0000}$	1.0000	64
E-CONT	1.0000	1.0000	1.0000	33
S-CONT	0.0000	0.0000	0.0000	0
B-EDU	0.9636	1.0000	0.9815	106
M-EDU	0.9831	0.9887	0.9859	177
E-EDU	0.9811	0.9811	0.9811	106
S-EDU	0.0000	0.0000	0.0000	0
B-TITLE	0.9419	0.9405	0.9412	689
M-TITLE	0.9521	0.9412	0.9466	1479
E-TITLE	0.9956	0.9956	0.9956	689
S-TITLE	0.0000	0.0000	0.0000	0
B-ORG	0.9769	0.9713	0.9741	522
M-ORG	0.9718	0.9702	0.9710	3622
E-ORG	0.9187	0.9310	0.9248	522
S-ORG	0.0000	0.0000	0.0000	0
B-RACE	1.0000	1.0000	1.0000	14
M-RACE	0.0000	0.0000	0.0000	0
E-RACE	1.0000	1.0000	1.0000	14
S-RACE	0.0000	0.0000	0.0000	1
B-PR0	0.8182	1.0000	0.9000	18
M-PR0	0.7674	1.0000	0.8684	33
E-PR0	0.8182	1.0000	0.9000	18
S-PR0	0.0000	0.0000	0.0000	0
B-L0C	1.0000	1.0000	1.0000	2
M-LOC	1.0000	1.0000	1.0000	6
E-LOC	1.0000	1.0000	1.0000	2
S-L0C	0.0000	0.0000	0.0000	0
	0.0627	0.0044	0.0630	0.427
micro avg	0.9637	0.9641	0.9639	8437
macro avg	0.7182	0.7350	0.7254	8437
weighted avg	0.9640	0.9641	0.9639	8437