Adaptive Semi-Strong Ecosystem Dynamics

Robbin Bastiaansen

Supervisors:

Arjen Doelman & Martina Chirilus-Bruckner

Motivation: desertification

How do we go from uniform vegetation to a bare soil?

Desertification – a simulation

Mathematical Model

Extended Klausmeier model

$$U_t = U_{xx} + a - U - UV^2$$
$$V_t = \varepsilon^2 V_{xx} - mV + UV^2$$

Variables:

[] water

V vegetation

Parameters:

lpha rainfall

 ${m m}$ mortality of vegetation

arepsilon small parameter

Movement of Pulses

Reduce full PDE to an ODE

$$\frac{dP_j}{dt} = \frac{\varepsilon}{m\sqrt{m}} \frac{1}{6} \left[U_x(P_j^+)^2 - U_x(P_j^-)^2 \right]$$

- ODE describes movement of the Pulses
- ODE may have fixed points

Modelling a climate change

- Decrease rainfall parameter *a*
- When *a* decreases, the *N*-pulse solution becomes unstable
 - ➤ One or more pulses disappear
 - ➤ We find a stability condition (per vegetation pulse)

$$2\varepsilon m^2 \left(\frac{u_j^2}{a^2}\right) < C(\varepsilon, m)$$

Simulations

Slow decreasing rainfall *a*

Fast decreasing rainfall *a*

Conclusions + Outlook

• The speed of the climate change plays an important factor in the desertification process

To Do:

- Understand period doubling
- Take topography into account

robbin.bastiaansen@gmail.com

