Varianssianalyysi ja ei-parametriset menetelmät

Jyrki Möttönen

Matematiikan ja tilastotieteen laitos, Helsingin yliopisto

Sosiaalitutkimuksen tilastolliset menetelmät, kevät 2017

Johdanto

- Verrataan yhden tai useamman ryhmittelymuuttujan vaikutusta jatkuvan muuttujan vaihteluun.
- Kahden riippumattoman otoksen t-testissä perusjoukko on jaettu kahteen ryhmään.
- Yksisuuntainen varianssianalyysi on kahden riippumattoman otoksen t-testin yleistys tilanteeseen, jossa perusjoukko on jaettu useampaan kuin kahteen ryhmään.
- Kaksisuuntaisessa varianssianalyysissä perusjoukko on jaettu ryhmiin kahden ryhmittelymuuttujan perusteella.
- Tutkitaan sekä havaintojen vaihtelua ryhmien sisällä että ryhmäkeskiarvojen vaihtelua koko populaatiossa.
- Ennen varianssianalyysin suorittamista olisi tutkittava varianssien yhtäsuuruutta eri ryhmissä sekä normaalijakaumaoletuksen voimassaoloa.

Esimerkkiaineisto 1/4

Luentoesimerkeissä käytetään Suomen ESS2010-aineistoa (European Social Survey). Halutaan tutkia mm. seuraavia kysymyksiä:

- Onko luottamus instituutioihin keskimäärin yhtä suuri miehillä ja naisilla?
- Onko luottamus instituutioihin keskimäärin yhtä suuri uskonnollisuuden mukaan jaettujen ryhmien välillä? Jos luottamuksissa on eroa, niin minkä ryhmien välillä?
- Onko luottamus instituutioihin keskimäärin yhtä suuri eri koulutusasteen ihmisillä? Jos luottamuksissa on eroa, niin minkä ryhmien välillä?
- Onko koulutusasteella ja uskonnollisuudella yhdysvaikutusta luottamukseen instituutioihin, ts. onko koulutusasteryhmien keskiarvoissa tapahtuva muutos erilaista eri uskonnollisuusryhmissä?

Esimerkkiaineisto 2/4

Käytettävät muuttujat:

• luottamus: Muuttujien trstprl, trstlgl, trstplc, trstplt, trstprt, trstep, trstun painotettu summa, jossa painot on valittu siten, että luottamus selittäisi mahdollisimman suuren osuuden muuttujien trstprl, ..., trstun vaihtelusta (pääkomponenttianalyysin ensimmäisen pääkomponentin pistemäärä). Kaikki painot ovat positiivisia, joten pieni muuttujan luottamus arvo viittaa vähäiseen luottamukseen ja suuri muuttujan arvo suureen luottamukseen instituutioita kohtaan.

Esimerkkiaineisto 3/4

Käytettävät muuttujat:

- sukupuoli: Muuttuja gndr (Gender). 1=Mies, 2=Nainen.
- uskonnollisuus: Muuttujasta rlgdgr (How religious are you) tehty viisiluokkainen järjestysasteikon muuttuja. $(0-1 \rightarrow 1, 2-3 \rightarrow 2, 4-6 \rightarrow 3, 7-8 \rightarrow 4, 9-10 \rightarrow 5)$. Pieni arvo viittaa vähäiseen uskonnollisuuteen ja suuri arvo voimakkaaseen uskonnollisuuteen.
- vasenoikea: Muuttujasta Irscale (Placement on left right scale) tehty kolmiluokkainen järjestysasteikon muuttuja. $(0-3 \rightarrow 1, 4-6 \rightarrow 2, 7-10 \rightarrow 3)$. Pieni arvo viittaa vasemmistolaisuuteen ja suuri arvo oikeistolaisuuteen.

Esimerkkiaineisto 4/4

Käytettävät muuttujat:

• koulutusaste: Muuttujasta edlvdfi (Highest level of education, Finland) tehty viisiluokkainen järjestysasteikon muuttuja. $(1-3 \rightarrow 1, 4-6 \rightarrow 2, 7-8 \rightarrow 3, 9-11 \rightarrow 4, 12-14 \rightarrow 5)$. Pieni arvo viittaa alhaiseen koulutustasoon ja suuri arvo korkeaan koulutustasoon. 1="Perusaste", 2="Keskiaste", 3="Alin korkea-aste", 4="Alempi korkeakouluaste", 5="Ylempi korkeakouluaste+tutkijakouluaste".

Kahden riippumattoman otoksen t-testi

- Kahden riippumattoman otoksen t-testissä perusjoukko on jaettu kahteen ryhmään.
- Tutkitaan onko jatkuvan muuttujan arvot keskimäärin yhtäsuuria vertailtavien ryhmien välillä.

Mallioletukset 1/2

Malli 1: Ryhmien hajonnat voivat olla erisuuret

- Ensimmäisen ryhmän havainnot tulevat normaalijakaumasta $N(\mu_1, \sigma_1^2)$, ts. normaalijakaumasta, jonka odotusarvo on μ ja hajonta σ_1 .
- Toisen ryhmän havainnot tulevat normaalijakaumasta $N(\mu_2,\sigma_2^2)$ eli ryhmän odotusarvo voi poiketa ensimmäisen ryhmän odotusarvosta ja keskihajonta voi erota ensimmäisen ryhmän keskihajonnasta.

Malli 2: Ryhmien hajonnat ovat yhtäsuuret

- Ensimmäisen ryhmän havainnot tulevat normaalijakaumasta $N(\mu_1, \sigma^2)$.
- Toisen ryhmän havainnot tulevat normaalijakaumasta $N(\mu_2,\sigma^2)$ eli ryhmän odotusarvo voi poiketa ensimmäisen ryhmän odotusarvosta ja keskihajonta on sama kuin ensimmäisessä ryhmässä

Mallioletukset 2/2

- Varianssien yhtäsuuruuden testauksen avulla voidaan päättää kumpaa mallia käytetään (mallia 1 tai 2). Testaukseen voidaan käyttää esimerkiksi Levenen testiä.
- Normaalijakaumaoletuksen tutkimiseen voidaan käyttää esimerkiksi todennäköisyyspaperikuvaa (Q-Q Plot). Mitä paremmin pisteet asettuvat suoralle, sitä lähempänä jakauma on normaalijakaumaa.

Testattava hypoteesi ja testisuure 1/3

Halutaan testata hypoteesia

$$H_0: \mu_1 = \mu_2$$

eli hypoteesia

 H_0 : Ryhmien odotusarvot ovat yhtäsuuret

- Jos ryhmien varianssit ovat yhtäsuuret (malli 2), niin hypoteesin H₀ testaukseen käytetään t-testisuuretta ja p-arvon laskemiseen t-jakaumaa.
- Jos ryhmien varianssit ovat erisuuret (malli 1), niin hypoteesin H_0 testaukseen käytetään t-testisuuretta (hiukan erilainen kaava kuin mallin 2 tapauksessa) ja *likimääräisen* p-arvon laskemiseen t-jakaumaa.

Testattava hypoteesi ja testisuure 2/3

Kahden riippumattomattoman otoksen t-testisuure (malli 1):

$$t = \frac{\bar{X}_1 - \bar{X}_2}{s\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}},$$

jossa \bar{X}_1 ja \bar{X}_2 ovat otosten keskiarvot, s on havaintoaineiston keskihajonnan estimaatti ja n_1 ja n_2 ovat otosten koot. Nollahypoteesin vallitessa t-testisuure noudattaa t-jakaumaa vapausastein n_1+n_2-2 .

Testisuureesta nähdään suoraan, että keskiarvojen ollessa lähellä toisiaan testisuureen arvo on lähellä nollaa. Jos taas keskiarvot ovat kaukana toisistaan, niin testisuureen arvo on itseisarvoltaan suuri. Näin ollen itseisarvoltaan suuret testisuureen arvot puoltavat vastahypoteesia $H_1: \mu_1 \neq \mu_2$.

Testattava hypoteesi ja testisuure 3/3

Kahden riippumattomattoman otoksen t-testisuure (malli 2):

$$t = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}},$$

jossa \bar{X}_1 ja \bar{X}_2 ovat otosten keskiarvot, s_1^2 ja s_2^2 ovat otosvarianssit (keskihajonnat s_1 ja s_2) ja n_1 ja n_2 ovat otosten koot. Testisuure noudattaa likimain t-jakaumaa. Itseisarvoltaan suuret testisuureen arvot puoltavat tässäkin tapauksessa vastahypoteesia $H_1: \mu_1 \neq \mu_2$.

Muuttujan luottamus jakauma miesten ja naisten joukossa

Todennäköisyyspaperikuva luottamus-muuttujalle miesten joukossa

Todennäköisyyspaperikuva luottamus-muuttujalle naisten joukossa

Yksinkertaisia tunnuslukuja luottamus-muuttujalle sukupuolittain

Group Statistics

	sukupuoli	N	Mean	Std. Deviation	Std. Error Mean
luottamus	mies	250	14.1587	4.14568	.26220
	nainen	250	14.5218	3.93940	.24915

Kahden riippumattoman otoksen t-testi

Independent Samples Test

		Levene's Test for Equality of Variances			t-test for E	quality of M	eans
		F	Sig.	Sig. (2 – Mean t df tailed) Difference			Mean Difference
luottamus	Equal variances assumed	.708	.400	-1.004	498	.316	36307
	Equal variances not assumed			-1.004	496.708	.316	36307

Independent Samples Test

		t-test fo	or Equality of N	Means .
		Std. Error	95% Confidence Interva of the Difference	
		Difference	Lower	Upper
luottamus	Equal variances assumed	.36169	-1.07370	.34756
	Equal variances not assumed	.36169	-1.07371	.34757

Mannin-Whitneyn testi

Kahden riippumattoman otoksen t-testi olettaa havaintojen tulevan normaalijakaumasta. Jos huomataan, että havainnot eivät tulekaan normaalijakaumasta, niin ryhmien välisiä eroja voi tutkia ei-parametrisella Mannin-Whitneyn testillä. Ei-parametrisuus tarkoittaa tässä sitä, että havaintojen jakaumasta tehdään hyvin vähän oletuksia. Ainoastaan oletetaan, että havainnot tulevat jatkuvista samanmuotoisista jakaumista. Mannin-Whitneyn testisuure perustuu havainnoista laskettuihin järjestyslukuihin.

Mallioletukset

Oletukset:

- Ensimmäisen ryhmän havainnot tulevat jatkuvasta jakaumasta, jonka mediaani on τ_1 .
- Toisen ryhmän havainnot tulevat jatkuvasta jakaumasta, jonka mediaani on τ_2 .
- Havainnot tulevat samanmuotoisista jatkuvista jakaumista (voi olla myös vino jakauma).

Huom. Toinen oletus tarkoittaa sitä, että jakaumien tiheysfunktiot ovat täsmälleen samanmuotoisia mutta jakaumien sijainti voi vaihdella.

Testattava hypoteesi ja testisuure

Halutaan testata hypoteesia

$$H_0: \tau_1 = \tau_2$$

eli hypoteesia

 H_0 : Ryhmien mediaanit ovat yhtäsuuret

Nollahypoteesin H_0 testaukseen voidaan käyttää Mannin-Whitneyn testisuuretta ja p-arvon laskemiseen voi käyttää tarkkaa jakaumaa tai normaaliapproksimaatiota.

Mannin-Whitneyn testi

Hypothesis Test Summary

	Null Hypothesis	Test	Sig.	Decision
1	The distribution of luottamus is the same across categories of sukupuoli.	Independent– Samples Mann– Whitney U Test	.441	Retain the null hypothesis.

Asymptotic significances are displayed. The significance level is .05.

Yksisuuntainen varianssianalyysi

- Yksisuuntaisessa varianssianalyysissä perusjoukko on jaettu k:hon ryhmään.
- Tutkitaan onko jatkuvan muuttujan arvot keskimäärin yhtäsuuria vertailtavien ryhmien välillä.

Mallioletukset 1/3

Vaihtoehto 1: Ryhmien hajonnat voivat olla erisuuret

- Ensimmäisen ryhmän havainnot $(n_1 \text{ kpl})$ tulevat normaalijakaumasta $N(\mu_1, \sigma_1^2)$.
- Toisen ryhmän havainnot (n_2 kpl) tulevat normaalijakaumasta $N(\mu_2, \sigma_2^2)$.
-
- k:nnen ryhmän havainnot (n_k kpl) tulevat normaalijakaumasta $N(\mu_k, \sigma_k^2)$.

Mallioletukset 2/3

Vaihtoehto 2: Ryhmien hajonnat ovat yhtäsuuret

- Ensimmäisen ryhmän havainnot (n_1 kpl) tulevat normaalijakaumasta $N(\mu_1, \sigma^2)$.
- Toisen ryhmän havainnot (n_2 kpl) tulevat normaalijakaumasta $N(\mu_2, \sigma^2)$.
-
- k:nnen ryhmän havainnot (n_k kpl) tulevat normaalijakaumasta $N(\mu_k, \sigma^2)$.

Mallioletukset 3/3

- Varianssien yhtäsuuruuden testauksen avulla voidaan päättää kumpaa mallia käytetään (vaihtoehtoa 1 tai 2). Testaukseen voidaan käyttää Levenen testiä.
- Normaalijakaumaoletuksen tutkimiseen voidaan käyttää todennäköisyyspaperikuvaa (Q-Q Plot).

Testattava hypoteesi ja testisuure

Halutaan testata hypoteesia

$$H_0: \mu_1 = \mu_2 = \cdots = \mu_k$$

eli hypoteesia

 \mathcal{H}_0 : Ryhmien odotusarvot eli populaatiokeskiarvot ovat yhtäsuuret

- Jos ryhmien varianssit ovat yhtäsuuret (malli 2), niin hypoteesin H₀ testaukseen käytetään F-testisuuretta ja p-arvon laskemiseen F-jakaumaa.
- Jos ryhmien varianssit ovat erisuuret (malli 1), niin hypoteesin H₀ testaukseen voi käyttää esimerkiksi Welchin testisuuretta ja likimääräisen p-arvon laskemiseen F-jakaumaa.

Pareittaiset vertailut (post hoc testit)

- Jos yksisuuntaisessa varianssianalyysissä H_0 hylätään, niin ainakin kahden ryhmän odotusarvot ovat erisuuria.
- Varianssianalyysi ei anna vastausta siihen mitkä odotusarvot eroavat toisistaan! Siihen kysymykseen voidaan etsiä vastausta parittaisten vertailujen testien avulla.

Pareittaiset vertailut (post hoc testit)

Parittaisin vertailuihin on kehitetty lukuisa joukko erilaisia testejä. Field (2009) ehdottaa seuraavia yleisiä ohjeita testin valintaan.

- a) Populaatiohajonnat yhtäsuuria
 - Otoskoot n_i yhtäsuuria \Rightarrow REGWQ tai Tukey.
 - Otoskoot n_i eroavat vain hiukan \Rightarrow Gabriel.
 - Otoskoot n_i eroavat paljon \Rightarrow Hochberg's GT2.
- b) Populaatiohajonnat erisuuria ⇒ Games-Howell

Muuttujan luottamus jakauma uskonnollisuusryhmittäin

Yksinkertaisia tunnuslukuja luottamus-muuttujalle uskonnollisuusryhmittäin

Descriptives

luottamus

					95% Confidence Interval for Mean			
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
1.00	100	12.5251	4.89467	.48947	11.5539	13.4963	.50	23.05
2.00	100	13.6921	4.57804	.45780	12.7837	14.6005	2.50	24.45
3.00	100	13.9333	4.38555	.43856	13.0631	14.8035	3.28	22.69
4.00	100	14.8803	4.18595	.41859	14.0497	15.7109	2.77	23.49
5.00	100	14.9863	4.46116	.44612	14.1011	15.8715	1.82	24.30
Total	500	14.0034	4.57798	.20473	13.6012	14.4057	.50	24.45

Varianssien yhtäsuuruuden testaus uskonnollisuusryhmien välillä

Test of Homogeneity of Variances

luottamus

Levene Statistic	df1	df2	Sig.
1.533	4	495	.191

Yksisuuntainen varianssianalyysi *luottamus*-muuttujalle. Ryhmittelijänä *uskonnollisuus*. Ryhmittäiset populaatiovarianssit oletettu yhtäsuuriksi.

ANOVA

luottamus

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	402.216	4	100.554	4.950	.001
Within Groups	10055.774	495	20.315		
Total	10457.990	499			

Yksisuuntainen varianssianalyysi *luottamus*-muuttujalle. Ryhmittelijänä *uskonnollisuus*. Ryhmittäiset populaatiovarianssit voivat erota.

Robust Tests of Equality of Means

luottamus

	Statistic ^a	df1	df2	Sig.
Welch	4.638	4	247.341	.001

a. Asymptotically F distributed.

Pareittaiset vertailut

Multiple Comparisons

Dependent Variable: luottamus

Tukey HSD

		Mean			95% Con Inte	
(I) uskonnollisuus	(J) uskonnollisuus	Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
1.00	2.00	-1.16695	.63741	.357	-2.9121	.5782
	3.00	-1.40816	.63741	.178	-3.1533	.3370
	4.00	-2.35515	.63741	.002	-4.1003	6100
	5.00	-2.46118	.63741	.001	-4.2063	7160
2.00	1.00	1.16695	.63741	.357	5782	2.9121
	3.00	24122	.63741	.996	-1.9864	1.5039
	4.00	-1.18821	.63741	.338	-2.9333	.5569
	5.00	-1.29424	.63741	.253	-3.0394	.4509
3.00	1.00	1.40816	.63741	.178	3370	3.1533
	2.00	.24122	.63741	.996	-1.5039	1.9864
	4.00	94699	.63741	.572	-2.6921	.7982
	5.00	-1.05302	.63741	.465	-2.7982	.6921
4.00	1.00	2.35515	.63741	.002	.6100	4.1003
	2.00	1.18821	.63741	.338	5569	2.9333
	3.00	.94699	.63741	.572	7982	2.6921
	5.00	10603	.63741	1.000	-1.8512	1.6391
5.00	1.00	2.46118	.63741	.001	.7160	4.2063
	2.00	1.29424	.63741	.253	4509	3.0394
	3.00	1.05302	.63741	.465	6921	2.7982
	4.00	.10603	.63741	1.000	-1.6391	1.8512

 $[\]ensuremath{^\star}.$ The mean difference is significant at the 0.05 level.

Luottamus-muuttujan keskiarvot uskonnollisuusryhmissä

Kruskalin-Wallisin testi

Edellä käsitelty klassinen yksisuuntainen varianssianalyysi olettaa havaintojen tulevan normaalijakaumasta. Jos huomataan, että havainnot eivät tulekaan normaalijakaumasta, niin ryhmien välisiä eroja voi tutkia ei-parametrisella Kruskalin-Wallisin testillä. Ei-parametrisuus tarkoittaa tässä sitä, että havaintojen jakaumasta tehdään hyvin vähän oletuksia. Ainoastaan oletetaan, että havainnot tulevat jatkuvista samanmuotoisista jakaumista. Kruskalin-Wallisin testisuure perustuu havainnoista laskettuihin järjestyslukuihin.

Mallioletukset

Oletukset:

- Ryhmän i havainnot $(n_i \text{ kpl})$ tulevat jatkuvasta jakaumasta, jonka mediaani on τ_i , $i=1,2,\ldots,k$.
- Havainnot tulevat samanmuotoisista jatkuvista jakaumista (voi olla myös vino jakauma).

Huom. Toinen oletus tarkoittaa sitä, että jakauman tiheysfunktio on täsmälleen samanmuotoinen mutta jakauman sijainti voi vaihdella. Esimerkiksi normaalijakaumien N(0,1), N(2,1), N(4,1) tiheysfunktiot ovat täsmälleen samanmuotoisia (koska hajonnat ovat samoja), ainoastaan sijainnit eroavat toisistaan.

Testattava hypoteesi ja testisuure

Halutaan testata hypoteesia

$$H_0: \tau_1 = \tau_2 = \cdots = \tau_k$$

eli hypoteesia

 H_0 : Ryhmien mediaanit ovat yhtäsuuret

Nollahypoteesin H_0 testaukseen voidaan käyttää Kruskalin-Wallisin testisuuretta ja likimääräisen p-arvon laskemiseen χ^2 -jakaumaa.

Kruskalin-Wallisin testisuureen yhteys varianssianalyysin *F*-testisuureeseen

Jos käytetään tavallisen *F*-testisuureen laskemiseen alkuperäisten havaintojen sijasta niiden järjestyslukuja, niin huomataan, että saatu testisuure on yhtäpitävä Kruskalin-Wallisin testisuureen kanssa. Laskettaessa (esim. SPSS:n avulla) järjestyslukuaineistolle yksisuuntaisen varianssianalyysin p-arvo, niin Kruskal-Wallisin testin pitäisi antaa suurinpiirtein sama p-arvo.

Kruskalin-Wallisin testin käyttörajoitus

Kruskalin-Wallisin testillä on hyvin lievät jakaumaoletukset. Havaintojen oletetaan ainoastaan tulevan joistain (tuntemattomista) jatkuvista samanmuotoisista jakaumista. Testi ei kuitenkaan sovellu aineistoihin, joissa ryhmittäiset varianssit eroavat selvästi toisistaan. Tällöin jakaumaoletus "kaikki havainnot tulevat samanmuotoisesta jatkuvasta jakaumasta"ei täyty.

Kruskalin-Wallisin testi *luottamus*-muuttujalle. Ryhmittelijänä *uskonnollisuus*.

Hypothesis Test Summary

	Null Hypothesis	Test	Sig.	Decision	
1	The distribution of luottamus is the same across categories of uskonnollisuus.	Independent– Samples Kruskal–Wallis Test	.001	Reject the null hypothesis.	

Asymptotic significances are displayed. The significance level is .05.

Kaksisuuntainen varianssianalyysi

- Kaksisuuntaisessa varianssianalyysissä perusjoukko on jaettu ryhmiin kahden ryhmittelymuuttujan perusteella.
- Tarkoituksena on tutkia onko kahden ryhmittelymuuttujan välillä yhdysvaikutusta jatkuvan muuttujan arvoihin, ts. onko ensimmäisen ryhmittelymuuttujan keskiarvoissa tapahtuva muutos erilaista toisen ryhmittelymuuttujan eri ryhmissä.
- Jos ryhmittelymuuttujien välillä ei ole yhdysvaikutusta, niin sen jälkeen voidaan tutkia ryhmittelymuuttujien omavaikutuksia jatkuvan muuttujien arvoihin.

Tilastollinen malli

Olkoon A ensimmäinen ryhmittelymuuttuja, jolla on a ryhmää ja B toinen ryhmittelymuuttuja, jolla on b ryhmää. Jatkuvan muuttujan y arvot voidaan luokitella nyt $a \cdot b$ soluun seuraavasti:

		В		
Α	1	2		Ь
1	<i>y</i> ₁₁₁ , <i>y</i> ₁₁₂	<i>y</i> ₁₂₁ , <i>y</i> ₁₂₂		<i>y</i> _{1<i>b</i>1} , <i>y</i> _{1<i>b</i>1}
2	<i>y</i> ₂₁₁ , <i>y</i> ₂₁₂	<i>y</i> ₂₂₁ , <i>y</i> ₂₂₂	• • •	$y_{2b1}, y_{2b2} \dots$
:	÷	:	٠	:
a	y_{a11}, y_{a12}, \dots	<i>y</i> _{a21} , <i>y</i> _{a22} · · ·		$y_{ab1}, y_{ab2} \dots$

Esim. y=luottamus, A=uskonnollisuus, a=5, B=koulutusaste, b=5, solujen lukumäärä on $a \cdot b=25$.

Tilastollinen malli

Mallioletukset:

- Solun (A = i, B = j) havainnot tulevat normaalijakaumasta, jonka odotusarvo μ_{ij} ja varianssi σ^2 , $i = 1, \ldots, a$, $j = 1, \ldots, b$.
- Kaikki havainnot ovat riippumattomia.

Huom! Yksittäisen solun havainnot tulevat samasta jakaumasta mutta eri soluissa voi olla eri odotusarvot.

Tilastollinen malli

Yksittäisen solun havaintojen odotusarvo voidaan nyt jakaa osiin seuraavasti:

$$\mu_{ij} = \mu + \alpha_i + \beta_j + (\alpha \beta)_{ij}, i = 1, \dots, a, j = 1, \dots, b,$$

jossa α_i on luokittelumuuttujan A i:nnen tason vaikutus, β_j on luokittelumuuttujan B j:nnen tason vaikutus ja $(\alpha\beta)_{ij}$ on luokittelumuuttujien A ja B yhdysvaikutus.

Jos yhdysvaikutusta ei ole (eli $(\alpha\beta)_{ij}=0$ kaikilla i,j), niin $\mu_{ij}=\mu+\alpha_i+\beta_j$. Tällöin odotusarvojen erot muuttujan B ryhmien välillä ovat samoja luokittelumuuttujan A ryhmissä. Luonnollisesti myös odotusarvojen erot muuttujan A ryhmien välillä ovat samoja luokittelumuuttujan B ryhmissä. Esimerkiksi, $\mu_{i2}-\mu_{i1}=\beta_2-\beta_1$ ja $\mu_{i3}-\mu_{i1}=\beta_3-\beta_1$ kaikilla $i=1,\ldots,a$.

Esimerkki: Luokittelumuuttujat ovat kaksiluokkaisia 1/6

Esim. Oletetaan, että meillä on jatkuvana muuttujana *luottamus* ja seuraavanlaiset luokittelumuttujat

$$A = sukupuoli (A=1="Mies", A=2="Nainen") ja$$

$$B = ty$$
össäkäynti ($B=1=$ "Työtön", $B=2=$ "Työssäkäyvä")

Oletetaan lisäksi, että
$$\alpha_1 = \beta_1 = (\alpha \beta)_{11} = (\alpha \beta)_{12} = (\alpha \beta)_{21} = 0$$
. Tällöin solujen havaintojen odotusarvot ovat seuraavat:

	Työssäkäynti				
Sukupuoli	Työtön	Työssäkäyvä			
Mies	μ	$\mu + \beta_2$			
Nainen	$\mu + \alpha_2$	$\mu + \alpha_2 + \beta_2 + (\alpha\beta)_{22}$			

Esimerkki: Luokittelumuuttujat ovat kaksiluokkaisia 2/6

Edellisiä odotusarvoja voidaan estimoida havaintoaineistosta laskettujen keskiarvojen avulla. Oletetaan, että on saatu seuraavanlaiset keskiarvot:

	Työssäkäynti				
Sukupuoli	Työtön	Työssäkäyvä			
Mies	$\bar{x}_{11}=13.3$	\bar{x}_{12} =14.1(=13.3+0.8)			
Nainen	\bar{x}_{21} =13.7(=13.3+0.4)	\bar{x}_{22} =14.55(=13.3+0.4+0.8+0.05)			

Kun verrataan työttömien ja työssäkäyvien luottamuksen eroa, niin naisilla luottamus kasvaa 0.05 verran enemmän kuin miehillä. Varianssianalyysin avulla voidaan testata onko tämä sukupuolten välinen ero merkitsevä eli testataan onko $(\alpha\beta)_{22}=0$. Jos testin tulos viittaisi siihen, että $(\alpha\beta)_{22}\neq 0$, niin työssäkäymisellä ja sukupuolella olisi yhdysvaikutusta.

Esimerkki: Luokittelumuuttujat ovat kaksiluokkaisia 3/6

Jos muuttujilla *sukupuoli* ja *työssäkäynti* **on yhdysvaikutusta** (eli $(\alpha\beta)_{22} \neq 0$), niin

- ryhmien "Työtön" ja "Työssäkäyvä" odotusarvojen ero on erisuuri miesten ja naisten joukossa.
- ryhmien "Mies" ja "Nainen" odotusarvojen ero on erisuuri työttömien ja työssäkäyvien joukossa.

Jos muuttujilla *sukupuoli* ja työssäkäynti **ei ole yhdysvaikutusta** (eli $(\alpha\beta)_{22}=0$), niin

- ryhmien "Työtön" ja "Työssäkäyvä" odotusarvojen ero on sama miesten ja naisten joukossa.
- ryhmien "Mies" ja "Nainen" odotusarvojen ero on sama työttömien ja työssäkäyvien joukossa.

Esimerkki: Luokittelumuuttujat ovat kaksiluokkaisia 4/6

Keskiarvot miesten ja naisten ryhmissä työssäkäynnin mukaan jaoteltuna. Suorat ovat lähes samansuuntaisia, joten (ainakaan mitään suurta) yhdysvaikutusta ei ole sukupuolen ja työssäkäynnin välillä.

Esimerkki: Luokittelumuuttujat ovat kaksiluokkaisia 5/6

Keskiarvot työttömien ja työssäkäyvien ryhmissä sukupuolen mukaan jaoteltuna.

Esimerkki: Luokittelumuuttujat ovat kaksiluokkaisia 6/6

Tässä on vielä esimerkki keskiarvokuviosta, kun muuttujien välillä on selkeä yhdysvaikutus. Suorat ovat selkeästi erisuuntaisia.

Yhdysvaikutuksen testaus

Ensimmäiseksi testataan aina yhdysvaikutuksen olemassaolo. Nollahypoteesina on nyt

$$H_0: (\alpha \beta)_{ij} = 0, \quad i = 1, \ldots, a, \ j = 1, \ldots, b.$$

eli

 H_0 : Muuttujilla A ja B ei ole yhdysvaikutusta.

Nollahypoteesin testaukseen käytetään F-testisuuretta, joka noudattaa *F*-jakaumaa nollahypoteesin vallitessa.

Itsenäisten vaikutusten eli päävaikutusten testaus 1/2

Jos yhdysvaikutuksen testauksen perusteella muuttujilla ei todeta tilastollisesti merkitsevää yhdysvaikutusta, niin sen jälkeen voidaan tutkia luokittelumuuttujan A itsenäistä vaikutusta.

Luokittelumuuttujan A itsenäisen vaikutuksen testaus, kun yhdysvaikutusta ei ole. Nollahypoteesina on

$$H_0: \alpha_1 = \ldots = \alpha_a = 0.$$

eli

 H_0 : Muuttujalla A ei ole itsenäistä vaikutusta

Nollahypoteesin testaukseen käytetään jälleen F-testisuuretta, joka noudattaa *F*-jakaumaa nollahypoteesin vallitessa.

Huom: H_0 on yksisuuntaisen varianssianalyysin nollahypoteesi.

Itsenäisten vaikutusten eli päävaikutusten testaus 2/2

Jos yhdysvaikutuksen testauksen perusteella muuttujilla ei todeta tilastollisesti merkitsevää yhdysvaikutusta, niin sen jälkeen voidaan tutkia luokittelumuuttujan *B* itsenäistä vaikutusta.

Luokittelumuuttujan B itsenäisen vaikutuksen testaus, kun yhdysvaikutusta ei ole. Nollahypoteesina on

$$H_0: \beta_1 = \ldots = \beta_b = 0.$$

eli

 H_0 : Muuttujalla B ei ole itsenäistä vaikutusta

Nollahypoteesin testaukseen käytetään jälleen F-testisuuretta, joka noudattaa *F*-jakaumaa nollahypoteesin vallitessa.

Huom: H_0 on yksisuuntaisen varianssianalyysin nollahypoteesi.

Testauksesta

- Tekijöiden A ja B itsenäisiä vaikutuksia eli päävaikutuksia ei voida tarkastella erillisinä, jos tekijöillä on yhdysvaikutusta.
- Jos jokaisessa solussa on yhtä paljon havaintoja, niin kyseessä on tasapainotettu koeasetelma.
- Kaksisuuntaisella varianssianalyysillä ei ole ei-parametrista vastinetta.

Luokittelumuuttujina uskonnollisuus ja koulutusaste.

Tests of Between-Subjects Effects

Dependent Variable: luottamus

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	1996.600 ^a	24	83.192	4.916	.000
Intercept	228671.430	1	228671.430	13513.667	.000
uskonnollisuus	1006.419	4	251.605	14.869	.000
koulutusaste	543.325	4	135.831	8.027	.000
uskonnollisuus * koulutusaste	207.309	16	12.957	.766	.726
Error	28428.109	1680	16.921		
Total	377553.190	1705			
Corrected Total	30424.709	1704			

a. R Squared = .066 (Adjusted R Squared = .052)

Parittaiset testit, kun luokittelumuuttujana on uskonnollisuus.

Multiple Comparisons

Dependent Variable: luottamus

Tukey HSD

		Mean			95% Confidence Interval	
(I) uskonnollisuus	(J) uskonnollisuus	Difference (I–J)	Std. Error	Sig.	Lower Bound	Upper Bound
1.00	2.00	-1.2984	.36904	.004	-2.3061	2906
	3.00	-1.6555	.31536	.000	-2.5167	7943
	4.00	-2.5654	.31745	.000	-3.4322	-1.6985
	5.00	-2.4547	.42911	.000	-3.6265	-1.2829
2.00	1.00	1.2984	.36904	.004	.2906	2.3061
	3.00	3571	.31493	.788	-1.2171	.5029
	4.00	-1.2670°	.31702	.001	-2.1327	4013
	5.00	-1.1563	.42879	.055	-2.3272	.0146
3.00	1.00	1.6555	.31536	.000	.7943	2.5167
	2.00	.3571	.31493	.788	5029	1.2171
	4.00	9099	.25251	.003	-1.5994	2203
	5.00	7992	.38356	.228	-1.8466	.2482
4.00	1.00	2.5654	.31745	.000	1.6985	3.4322
	2.00	1.2670	.31702	.001	.4013	2.1327
	3.00	.9099	.25251	.003	.2203	1.5994
	5.00	.1107	.38528	.999	9414	1.1628
5.00	1.00	2.4547	.42911	.000	1.2829	3.6265
	2.00	1.1563	.42879	.055	0146	2.3272
	3.00	.7992	.38356	.228	2482	1.8466
	4.00	1107	.38528	.999	-1.1628	.9414

Based on observed means.

The error term is Mean Square(Error) = 16.921.

^{*.} The mean difference is significant at the .05 level.

Parittaiset testit, kun luokittelumuuttujana on koulutusaste.

Multiple Comparisons

Dependent Variable: luottamus

Tukey HSD

		Mean			95% Con Inter	
		Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
(I) koulutusaste	(J) koulutusaste Keskiaste					
Perusaste		.1189	.255	.990	5766	.8143
	Alin korkea-aste	3765	.313	.749	-1.231	.4779
	Alempi korkeakouluaste	9025	.340	.061	-1.830	.0248
	Ylempi korkeakouluaste	-1.6001	.360	.000	-2.584	616
Keskiaste	Perusaste	1189	.255	.990	8143	.5766
	Alin korkea-aste	4954	.305	.483	-1.329	.3385
	Alempi korkeakouluaste	-1.0214	.333	.018	-1.930	113
	Ylempi korkeakouluaste	-1.7190°	.354	.000	-2.685	753
Alin korkea-aste	Perusaste	.3765	.313	.749	4779	1.231
	Keskiaste	.4954	.305	.483	3385	1.329
	Alempi korkeakouluaste	5260	.379	.636	-1.561	.5092
	Ylempi korkeakouluaste	-1.2236	.398	.018	-2.310	137
Alempi korkeakouluaste	Perusaste	.9025	.340	.061	0248	1.830
	Keskiaste	1.0214	.333	.018	.1129	1.930
	Alin korkea-aste	.5260	.379	.636	5092	1.561
	Ylempi korkeakouluaste	6976	.419	.456	-1.842	.4469
Ylempi korkeakouluaste	Perusaste	1.6001	.360	.000	.6162	2.584
	Keskiaste	1.7190	.354	.000	.7528	2.685
	Alin korkea-aste	1.2236	.398	.018	.1375	2.310
	Alempi korkeakouluaste	.6976	.419	.456	4469	1.842

Based on observed means.

The error term is Mean Square(Error) = 16.921.

^{*.} The mean difference is significant at the .05 level.

Uskonnollisuusryhmien keskiarvot koulutusasteen mukaan jaoteltuna.

Koulutusasteryhmien keskiarvot uskonnollisuuden mukaan jaoteltuna.

Luokittelumuuttujina uskonnollisuus ja vasenoikea.

Descriptive Statistics

Dependent	

vasenoikea	uskonnollisuus	Mean	Std. Deviation	N
1.00	1.00	12.6058	4.81055	57
	2.00	13.9219	4.32536	38
	3.00	13.0082	4.29891	64
	4.00	12.1453	4.67795	45
	5.00	12.2775	4.67645	13
	Total	12.8398	4.54044	217
2.00	1.00	12.5603	4.45268	142
	2.00	13.3930	4.58939	137
	3.00	13.9998	3.86901	301
	4.00	14.8686	4.05794	238
	5.00	14.5817	4.26525	68
	Total	13.9533	4.22767	886
3.00	1.00	12.5067	4.55777	49
	2.00	14.6879	3.71175	74
	3.00	15.0194	3.77193	177
	4.00	15.9494	3.50147	237
	5.00	16.0155	4.12638	65
	Total	15.2478	3.87955	602
Total	1.00	12.5602	4.53900	248
	2.00	13.8585	4.32696	249
	3.00	14.2157	3.93590	542
	4.00	15.1256	4.00751	520
	5.00	15.0149	4.35202	146
	Total	14 2687	4.22550	1705

Luokittelumuuttujina uskonnollisuus ja vasenoikea.

Tests of Between-Subjects Effects

Dependent Variable: luottamus

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	2284.639 ^a	14	163.188	9.801	.000
Intercept	169328.660	1	169328.660	10169.322	.000
uskonnollisuus	429.288	4	107.322	6.445	.000
vasenoikea	529.739	2	264.870	15.907	.000
uskonnollisuus * vasenoikea	345.997	8	43.250	2.597	.008
Error	28140.070	1690	16.651		
Total	377553.190	1705			
Corrected Total	30424.709	1704			

a. R Squared = .075 (Adjusted R Squared = .067)

Uskonnollisuusryhmien keskiarvot poliittisen suunnan mukaan jaoteltuna.

Poliittisen suunnan ryhmien keskiarvot uskonnollisuusryhmien mukaan jaoteltuna.

