Please check the examination details below	before entering your candidate information
Candidate surname	Other names
Centre Number Candidate Num	ber
Pearson Edexcel Interna	ational Advanced Level
I IIMA I DOUR /// MIDUITAS	wPH16/01 WPH16/01
Physics	
International Advanced Leve	el
UNIT 6: Practical Skills in Pl	
	lysics ii
You must have:	Total Marks
Scientific calculator, ruler	

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- Show all your working out in calculations and include units where appropriate.

Information

- The total mark for this paper is 50.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- The list of data, formulae and relationships is printed at the end of this booklet.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

Answer ALL questions.

1 A wire-wound resistor can become hot when there is a current in it. This heating effect can be investigated using the apparatus shown.

A student investigated whether the temperature rise of the water $\Delta\theta$ was proportional to the current I in the resistor. For each value of current, the student refilled the beaker with water at the same initial temperature.

(a) (i) Identify two other control variables for this investigation.

(2)

(ii) The student recorded the following data.

I/A	1.5	2	2.5	3
$\Delta \boldsymbol{ heta}$	3.5	7	9.5	15

Criticise the recording of this data.

(3)

(b) Explain one improvement the student could make to reduce the measurement of $\Delta\theta$ for each value of I .	uncertainty in the
	(=)
(Total fo	or Question 1 = 7 marks)

A pendulum of length *l* swings in a vertical plane. The string hits a peg placed at a distance *h* vertically below the point of suspension as shown. This makes the pendulum shorter for part of its motion.

(a) Determine the time period T for the whole oscillation when h = 0.25 m.

$$l = 1.00 \,\mathrm{m}$$

(3)

 $T = \dots$

(b) A student suggests that	an approximate relationship	between T and h is given by
-----------------------------	-----------------------------	---------------------------------

$$T^2 = \frac{\pi^2}{g} \left(2l - h \right)$$

Devise a plan to test the validity of the relationship using a graphical method. Include the use of a stopwatch and any additional apparatus as required.

(6)

(c) Another student suggests determining *T* by setting up a light gate attached to a data logger.

Discuss whether this modification would improve the investigation.

(3)

(Total for Question 2 = 12 marks)

BLANK PAGE

3 A student investigated standing waves using the apparatus shown.

The signal generator was adjusted until a loud sound was heard at a particular frequency, known as the resonant frequency.

(a) Describe how the student should use the oscilloscope to identify the resonant frequency and determine its value.

(4)

(b) The student reduced the volume V of air inside the bottle by adding known volumes of water. He recorded the following values of the resonant frequency f for each value of V.

V / cm ³	f/Hz	
576	221	
476	244	
376	275	
276	323	
176	408	
126	485	

(i) Plot a graph of $\log f$ against $\log V$ on the grid opposite. Use the additional columns in the table to record your processed data.

(6)

(ii) It is suggested that the relationship between f and V is given by

$$f = kV^{-\frac{1}{2}}$$

where k is a constant.

Discuss whether the graph supports this suggestion.

(5)

 	 	 	•••••	 •••••	 	•••••						
 	 	 •••••		 	 	 	 	 	 	 	 	

An L-shaped steel rod was held horizontally in a stand clamped by its shorter end as shown.

The end of the steel rod was at a height p above the bench.

A student attached a mass m to the end of the steel rod causing it to bend towards the bench. The end of the steel rod was then at a height q above the bench.

(a) (i) Describe two techniques she should use when measuring p and q.

(2)

to scale

(ii) The difference between p and q was recorded as $26 \,\mathrm{mm} \pm 1 \,\mathrm{mm}$.

Explain why the uncertainty in this value is given as 1 mm.

(2)

	Explain the most ap	propriate instru	ument the stud	ent should use	to measure d .	(2)
(ii)	Explain one techniq	ue that she sho	ould use to mea	asure d.		(2)
(iii)	She recorded the fo	llowing measu	rements.			
	2.35	2.37	2.34	2.35	2.33	
	Calculate the mean	value of d in m	nm and its unc	ertainty.		(2)

(c) The shear modulus G is a measure of a material's resistance to bending, and is given by

$$G = \frac{32mglx^2}{\pi vd^4}$$

where m is the mass attached to the end of the rod and y is the vertical deflection.

l and *x* are the lengths as shown below.

Diagram not to scale

(2)

Determine a value of G for steel in N m⁻².

 $m = 100 \,\mathrm{g}$ with negligible uncertainty

 $l = 58.9 \, \text{cm} \pm 0.1 \, \text{cm}$

 $x = 10.3 \, \text{cm} \pm 0.1 \, \text{cm}$

 $y = 26 \,\mathrm{mm} \pm 1 \,\mathrm{mm}$

 $G = \dots N \, \mathrm{m}^{-2}$

(d) The table shows values of ${\cal G}$ for different types of steel.

Type of steel	Structural steel	Carbon steel
$G/10^9{\rm Nm^{-2}}$	79.3	77.0

the type of steel the rod was made from.				
the type of steef the four was made from.	(4)			
(Total for Question 4 = 16	marks)			

TOTAL FOR PAPER = 50 MARKS

List of data, formulae and relationships

Acceleration of free ran $g = 9.51 \mathrm{m/s}$ (close to Earth's surface	Acceleration of free fall	$g = 9.81 \text{ m s}^{-2}$	(close to Earth's surface)
---	---------------------------	-----------------------------	----------------------------

Boltzmann constant
$$k = 1.38 \times 10^{-23} \text{ J K}^{-1}$$

Electron charge
$$e = -1.60 \times 10^{-19} \text{ C}$$

Electron mass
$$m_{\rm e} = 9.11 \times 10^{-31} \, \rm kg$$

Electronvolt
$$1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$$

Gravitational constant
$$G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$$

Gravitational field strength
$$g = 9.81 \text{ N kg}^{-1}$$
 (close to Earth's surface)

Permittivity of free space
$$\epsilon_0 = 8.85 \times 10^{-12} \ F \ m^{-1}$$

Coulomb's law constant
$$k = 1/4\pi\varepsilon_0$$

$$= 8.99 \times 10^9 \text{ N m}^2 \text{ C}^{-2}$$

Planck constant
$$h = 6.63 \times 10^{-34} \,\mathrm{J s}$$

Proton mass
$$m_{\rm p} = 1.67 \times 10^{-27} \, \text{kg}$$

Speed of light in a vacuum
$$c = 3.00 \times 10^8 \,\mathrm{m \, s^{-1}}$$

Stefan-Boltzmann constant
$$\sigma = 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$$

Unified atomic mass unit
$$u = 1.66 \times 10^{-27} \text{ kg}$$

Unit 1

Mechanics

Kinematic equations of motion
$$s = \frac{(u+v)t}{2}$$

$$v = u + at$$

$$s = ut + \frac{1}{2}at^2$$

$$v^2 = u^2 + 2as$$

Forces
$$\Sigma F = ma$$

$$g = \frac{F}{m}$$

$$W = mg$$

Momentum
$$p = mv$$

Moment of force
$$moment = Fx$$

Work and energy
$$\Delta W = F \Delta s$$

$$E_{\rm k} = \frac{1}{2} \, m v^2$$

$$\Delta E_{\rm grav} = mg\Delta h$$

Power
$$P = \frac{E}{t}$$

$$P = \frac{W}{t}$$

Efficiency efficiency =

useful energy output total energy input

 $efficiency = \frac{useful\ power\ output}{total\ power\ input}$

Materials

Density $\rho = \frac{m}{V}$

Stokes' law $F = 6\pi \eta r v$

Hooke's law $\Delta F = k\Delta x$

Elastic strain energy $\Delta E_{\rm el} = \frac{1}{2} F \Delta x$

Young modulus $E = \frac{\sigma}{\varepsilon}$ where

Stress $\sigma = \frac{F}{A}$

Strain $\varepsilon = \frac{\Delta x}{x}$

Unit 2

Waves

Wave speed	$v = f\lambda$
Speed of a transverse wave on a string	$v = \sqrt{\frac{T}{\mu}}$

Intensity of radiation
$$I = \frac{P}{A}$$

Refractive index
$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

$$n = \frac{c}{v}$$

Critical angle
$$\sin C = \frac{1}{n}$$

Diffraction grating
$$n\lambda = d\sin\theta$$

Electricity

Potential difference
$$V = \frac{W}{Q}$$

Resistance
$$R = \frac{V}{I}$$

Electrical power, energy
$$P = VI$$

$$P = I^2 R$$
$$V^2$$

$$P = \frac{V^2}{R}$$
$$W = VIt$$

Resistivity
$$R = \frac{\rho l}{A}$$

Current
$$I = \frac{\Delta Q}{\Delta t}$$

$$I = nqvA$$

Resistors in series
$$R = R_1 + R_2 + R_3$$

Resistors in parallel
$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

Particle nature of light

Photon model
$$E = hf$$

Einstein's photoelectric
$$hf = \emptyset + \frac{1}{2} m v_{\text{max}}^2$$
 equation

de Broglie wavelength
$$\lambda = \frac{h}{p}$$

Unit 4

Mechanics

Impulse $F\Delta t = \Delta p$

Kinetic energy of a non-relativistic particle $E_k = \frac{p^2}{2m}$

Motion in a circle $v = \omega r$

$$T = \frac{2\pi}{\omega}$$

$$a = \frac{v^2}{r}$$

$$a = r\omega^2$$

Centripetal force $F = ma = \frac{mv^2}{r}$

$$F = m\omega^2 r$$

Electric and magnetic fields

Electric field $E = \frac{F}{Q}$

Coulomb's law $F = \frac{Q_1 Q_2}{4_0 r^2}$

$$E = \frac{Q}{4 _{0}r^{2}}$$

$$E = \frac{V}{d}$$

Electrical potential $V = \frac{Q}{4_0 r}$

Capacitance $C = \frac{Q}{V}$

Energy stored in capacitor $W = \frac{1}{2}QV$

 $W = \frac{1}{2}CV^2$

 $W = \frac{1}{2} \frac{Q^2}{C}$

Capacitor discharge $Q = Q_0 e^{-t/RC}$

Resistor capacitor discharge $I = I_0 e^{-t/RC}$

$$V = V_0 e^{-t/RC}$$

$$\ln Q = \ln Q_0 - \frac{t}{RC}$$

$$ln I = ln I_0 - \frac{t}{RC}$$

$$\ln V = \ln V_0 - \frac{t}{RC}$$

In a magnetic field $F = Bqv \sin \theta$

$$F = BIl \sin \theta$$

Faraday's and Lenz's laws
$$\mathscr{E} = \frac{-d(N\phi)}{dt}$$

Nuclear and particle physics

In a magnetic field
$$r = \frac{p}{BQ}$$

Mass-energy
$$\Delta E = c^2 \Delta m$$

Unit 5

Thermodynamics

Heating
$$\Delta E = mc\Delta\theta$$

$$\Delta E = L\Delta m$$

Ideal gas equation
$$pV = NkT$$

Molecular kinetic theory
$$\frac{1}{2}m < c^2 > = \frac{3}{2}kT$$

Nuclear decay

Mass-energy
$$\Delta E = c^2 \Delta m$$

Radioactive decay
$$A = -\lambda N$$

$$\frac{\mathrm{d}N}{\mathrm{d}t} = -\lambda N$$

$$\lambda = \frac{\ln 2}{t_{1/2}}$$

$$N = N_0 e^{-\lambda t}$$

$$A = A_0 e^{-\lambda t}$$

Oscillations

Simple harmonic motion
$$F = kx$$

$$a = -\omega^2 x$$

$$x = A \cos \omega t$$

$$v = -A\omega \sin \omega t$$

$$a = A\omega^2 \cos \omega t$$

$$T = \frac{1}{f} = \frac{2\pi}{\omega}$$

$$\omega = 2\pi f$$

Simple harmonic oscillator
$$T = 2\pi \sqrt{\frac{m}{k}}$$

$$T = 2 \sqrt{\frac{l}{g}}$$

Astrophysics and cosmology

Gravitational field strength
$$g = \frac{F}{m}$$

Gravitational force
$$F = \frac{Gm_1m_2}{r^2}$$

Gravitational field
$$g = \frac{Gm}{r^2}$$

Gravitational potential
$$V_{grav} = \frac{-Gm}{r}$$

Stefan-Boltzmann law
$$L = \sigma T^4 A$$

Wien's law
$$\lambda_{\text{max}}T = 2.898 \times 10^{-3} \text{ m K}$$

Intensity of radiation
$$I = \frac{L}{4 d^2}$$

Redshift of electromagnetic
$$z = \frac{\Delta \lambda}{\lambda} \approx \frac{\Delta f}{f} \approx \frac{v}{c}$$
 radiation

Cosmological expansion
$$v = H_0 d$$

20