2016 高考卷三理数

levi

2020年8月20日

已知拋物线 $C:y^2=2x$ 的焦点为 F , 平行于 x 轴的两条直线 l_1,l_2 分别交 C 于 A,B 两点,交 C 的准线于 P,Q 两点.

- (I) 若 F 在线段 AB 上, R 是 PQ 的中点, 证明 AB // FQ;
- (II) 若 $\triangle PQF$ 的面积是 $\triangle ABF$ 的面积的两倍, 求 AB 中点的轨迹方程.
- (I) 证明:

设直线
$$AB: x = ky + \frac{1}{2}, l_1: y = y_1, l_2: y = y_2$$
 则: $A: (\frac{y_1^2}{2}, y_1), B: (\frac{y_2^2}{2}, y_2), R: (-\frac{1}{2}, \frac{y_1 + y_2}{2}), F: (\frac{1}{2}, 0), P: (-\frac{1}{2}, y_1), Q: (-\frac{1}{2}, y_2)$ 则: $k_{RA} = \frac{y_1 - \frac{y_1 + y_2}{2}}{\frac{y_1^2}{2} + \frac{1}{2}} = \frac{y_1 - y_2}{y_1^2 + 1}, k_{QF} = \frac{0 - y_2}{\frac{1}{2} + \frac{1}{2}} = -y_2$ 且 y_1, y_2 满足:

$$\begin{cases} C: y^2 = 2x \\ AB: x = ky + \frac{1}{2} \end{cases}$$
 (1)

故有:
$$y^2 - 2ky - 1 = 0$$

则: $y_1y_2 = -1 \Rightarrow y_2 = -\frac{1}{y_2}$
故: $k_{RA} = \frac{y_1 + \frac{1}{y_2}}{y_1^2 + 1} = \frac{y_1^2 + 1}{y_1(y_1^2 + y_1)} = \frac{1}{y_1} = -y_2 = k_{QF}$ 证毕

(II) 解:

易知
$$S_{\triangle PQF} = \frac{1}{2}(y_1 - y_2)[\frac{1}{2} - (-\frac{1}{2})] = \frac{y_1 - y_2}{2}$$

记 AB 与 x 轴交于 D 点, 设 $AB: x = ky + b$, 则 $D: (b, 0)$
故 $S_{\triangle ABF} = \frac{1}{2}|b - \frac{1}{2}|(y_1 - y_2)$
由 $S_{\triangle PQF} = 2S_{\triangle ABF} \Rightarrow \frac{y_1 - y_2}{2} = |b - \frac{1}{2}|(y_1 - y_2)$ 则: $|b - \frac{1}{2}| = \frac{1}{2}$ 故 $b = 1$ 或 $b = 0$ (舍去)
且 y_1, y_2 满足:

$$\begin{cases} C: y^2 = 2x \\ AB: x = ky + 1 \end{cases} \tag{3}$$

故有
$$y^2 - 2ky - 2 = 0$$

则: $y_1y_2 = -2$, $y_1 + y_2 = 2k$
则: $\frac{y_1^2}{2} + \frac{y_2^2}{2} = \frac{1}{2}[(y_1 + y_2)^2 - 2y_1y_2] = 2k^2 + 2$
故 AB 中点的轨迹方程为 $x = k^2 + 1 = y^2 + 1$, 即 $y^2 = x - 1$

设函数 $f(x) = \alpha \cos 2x + (\alpha - 1)(\cos x + 1)$, 其中 $\alpha > 0$, 记 |f(x)| 的最大值为 A

- (I) 求 f'(x);
- (II) 求 A;
- (III) 证明 $|f'(x)| \leq 2A$.

解:

(I)
$$f'(x) = -2\alpha \sin 2x + (\alpha - 1)(-\sin x) = -4\alpha \sin x \cos x - \alpha \sin x + \sin x;$$

(II)
$$(|f(x)| = |\alpha \cos 2x + (\alpha - 1)(\cos x + 1)| \le a + 2(a - 1) = 3a - 2)$$
 $f(x) = 2\alpha \cos^2(x) - \alpha + \alpha \cos x + \alpha - \cos x - 1$ $= 2\alpha (\cos x + \frac{\alpha - 1}{4\alpha})^2 - \frac{\alpha^2 - 2\alpha + 1}{8a} - 1$ $= 2\alpha (\cos x + \frac{\alpha - 1}{4\alpha})^2 - \frac{\alpha^2 + 6\alpha + 1}{8a}$ 记 $t = \cos x$, 则 $t \in [-1, 1]$, $f(x) = g(t) = 2\alpha (t - \frac{1 - \alpha}{4\alpha})^2 - \frac{\alpha^2 + 6\alpha + 1}{8a}$ 可知 $g(t)$ 为关于 t 的二次函数,开口向上,极小值 $A_1 = -\frac{\alpha^2 + 6\alpha + 1}{8a}$ 由 $t = \cos x \in [-1, 1]$,若 $\frac{1 - \alpha}{4\alpha} \in [-1, 1]$,即 $\alpha \geqslant \frac{1}{5}$ 时:极值在区间内 $\cos x = 1$ 时: $g(1) = 3\alpha - 2$, $\cos x = -1$ 时: $g(-1) = \alpha$ 则:

(i)
$$0 < \alpha \leqslant \frac{1}{5}$$
 时,:
$$|g(t)|$$
 的最大值在端点取得
$$\mathbb{Z} |g(-1)| - |g(1)| = \alpha - 2 + 3\alpha = 4\alpha - 2 < 0$$
 故此时 $A = |g(1)| = |3\alpha - 2| = 2 - 3\alpha$

(1)
$$a \ge 1$$
 时:
$$|g(-1)| \ge |A_1|$$
$$|g(1)| - |g(-1)| = 3\alpha - 2 - \alpha = 2\alpha - 2 \ge 0$$
故此时 $A = 3\alpha - 2$

(2)
$$a < 1$$
 时:
$$|g(-1)| < |A_1|$$

$$|A_1| - |g(1)| = \frac{\alpha^2 + 6\alpha + 1}{8a} - 2 + 3\alpha$$

$$= \frac{25\alpha^2 - 10\alpha + 1}{8\alpha}$$

$$= \frac{(5\alpha - 1)^2}{8\alpha} \geqslant 0$$
故此时 $A = |A_1| = \frac{\alpha^2 + 6\alpha + 1}{8\alpha}$

$$\begin{cases} 2 - 3\alpha &, \alpha \leqslant \frac{1}{5} \\ \frac{\alpha^2 + 6\alpha + 1}{8\alpha} &, \frac{1}{5} < \alpha < 1 \\ 3\alpha - 2 &, \alpha \geqslant 1 \end{cases}$$

(III) 证明:
$$|f'(x)| = |-2\alpha \sin 2x - (\alpha - 1)\sin x| < 2\alpha + |\alpha - 1|$$

(a)
$$\alpha \geqslant 1$$
 时:
$$|f'(x)| - 2A < 3\alpha - 1 - 6\alpha + 4 = 3 - 3\alpha \leqslant 0$$

(b)
$$\frac{1}{5} < \alpha < 1$$
 时:

$$|f'(x)| - 2A < \alpha + 1 - \frac{\alpha^2 + 6\alpha + 1}{4\alpha}$$
$$= \frac{3\alpha^2 - 2\alpha - 1}{4\alpha}$$
$$= \frac{(3\alpha + 1)(\alpha - 1)}{4\alpha} < 0$$

(c)
$$0 < \alpha \leqslant \frac{1}{5}$$
 时:
$$|f'(x)| - 2A < \alpha + 1 - 4 + 6\alpha = 7\alpha - 3 < 0$$

综上,
$$|f'(x)| \leqslant 2A$$