CSE 340 Assignment 3 Name: Shihab Muhtasim

ID: 21301610

sec: 8

- 0 mw x28, x5, X6
- @ add X16, X7, X28

Am to or 2

- 1 rum x28, X5, X6
- @ add ×16, X7, X28

Ans to or 3

$$X = (A[3] + B[5]) - (B[2] + 5x);$$

- Oflw #5, 12 (×16) # \$5 = A[3]
- @ HW +6, 20 (x17) # \$6 = BCS)
- 3 fadd.s \$5,\$5,\$6 #\$5 = A[3]+B[5]
- 9 HW \$6,8(x17) # \$6=B(2)
- 6 addi x5, x0,5 # x5 = 5
- 02. 6 fmul. 3 f19, x5, f18 #19 = 5x
 - (2) fadd.s f19, t6, f19 # f19 = B[2]+5x
 - 8 tsub. S f18, f5, f19 # f18= rusult.

Biased exported =
$$5+(2^{6-1}-1)$$

Floating point representation:

Hex: 0001 1001 00011 1111 1000 1010

(b)
$$-63.7712$$
 | exp = 4bit
= 1.1111111 x 2⁵
Biased exp = $5 + (2^{4-1}) = (12)10$
= (1100) 2
Floating point representation
 $1|1100|1111111$
Hex: $E7F$

Amtor 5

Kayou	multiplier 4 bit	multiplicand 8 bit	Product 8 bi+
0	0.111	00001001	00000000
1	0111	00001001	00001001
	0011	00010010	_
2	_	~	. 000 11011
	0001	00100100	
3	_	_	00111111
	0000	01001000	_
4	0000	10010000	

product = 00111111

í	multipliand 4 biz	Product 8 bit	i < multiplier bit len
0	0101	0000 0011	0 <= m2
1		01010011	1 <=4
2		0111 1001	2 <= 9
3		0001 1110	3 <= 4
4		0000 1111	4 < = 9 Stop
			·

Product 0000 111)

Amto of 7

x = 7ACD 0000 = 0111 1010 1100 1101 0000....

= 1°11 1010 1100 1101 0 ... × 2 30

y = 5BCA0000 = 0101 1011 1100 1010 00.... = 1.01101111001010... x 230

Add $x+y=11010110100101111 \times 2^{30}$ = 1.1010110 100101111 × 2³¹

Bios exp = $31 + (2^{8-1}1)$ = 158range = $1 + (2^{8-1}1)$

 $\frac{1}{100} = 1 + 2^{\circ} - 1 - 1$

.. No overflow/ underflow

- result = 1.101 00110 1001 0111 x 231

= 1'65074X231

= 3549990549

$$X = -9.325$$

$$(9.325)_{0} = 1001.0101001 = 1.001010101 \times 2^{3}$$

$$Y = 14.409$$

$$(14.409)_{10} = 1110.011010 = 1.110011 \times 2^{3}$$

$$X \neq Y = 10.00010011111100 \times 2^{3+3}$$

$$= 1.000010011 \times 2^{4+1}$$

$$= -1.000010011 \times 2^{7}$$

Biased exp =
$$7 + (2^7 - 1)$$

= 134
range = 1 to 254 : no over/underslow

$$-1.000010011 \times 2^{\frac{7}{4}}$$

$$=-1.0371\times2^{\frac{7}{4}}$$

$$=-1.32.75$$

CSE340: Computer Architecture

Assignment 3 [MSDH]

Chapter 3 (Arithmetic For Computers)

Total Marks: 30 (Marks are indicated in third brackets after each question)

[CO2] Question 1 [Marks: 3]

Let's assume you are trying to multiply the contents of register x5 and x6. Now, **write** the RISCV code for adding the *lower 32-bit* of the multiplication result with the value stored in register x7, saving the result in register x16.

[CO2] Question 2 [Marks: 3]

Let's assume you are trying to divide the contents of register x5 with x6. Now, **write** the RISCV code for adding the *remainder* of the result with the value stored in register x7, saving the result in register x16.

[CO2] Question 3 [Marks: 5]

Consider the below equation and write RISCV code for it:

$$X = (A[3] + B[5]) - (B[2] + 5X);$$

Assume array A stores floating point values and its base address in x16 and array B stores floating point values and its base address is in x17 variable X is in floating point register f18, all variables are of the *float datatype*. You can also use mul/div instructions!

[CO1] Question 4 [Marks: 6]

Consider the value - 63,7712

- a. Let's assume you have a 21-bit register having 6-bit for exponent. Now **convert** this value using IEEE floating point representation. Also convert this into hexadecimal form. [3]
- b. Let's assume you have a 12-bit register having 4-bit for exponent. Now **convert** this value using IEEE floating point representation. Also convert this into hexadecimal form. [3]

BRAC University

[CO1] Question 5 [Marks: 4]

Perform multiplication between 1001 (Multiplicand) and 111 (Multiplier) using the *long* multiplication approach. Suppose the *product* and multiplicand registers are 8-bit and the multiplier register is 4-bit.

[CO1] Question 6 [Marks: 3]

Perform multiplication between 0101 (Multiplicand) and 11 (Multiplier) using the optimized multiplication approach. Suppose the product register is 8-bit and the multiplicand register is 4-bit.

[CO1] Question 7 [Marks: 3]

Suppose X = 7ACD0000 and Y = 5BCA0000. **Perform** X + Y using IEEE floating point representation.

[CO1] Question 8 [Marks: 3]

Suppose X = -9.325 and Y = 14.409. **Perform** X * Y using IEEE floating point representation.