Frequent Itemsets 2

EE412: Foundation of Big Data Analytics

Announcements

- Homeworks
 - HW0 (due: 09/21)
 - HW1 will be posted this Thursday (due: 10/05)
- Classes
 - No classes at 09/19 and 09/21 (videos will be uploaded)

Recap: Frequent Itemsets

Market-basket model of data

- Support
- Association rule $I \rightarrow j$
- Confidence & interest

A-Priori algorithm

- Counting *pairs* is the hardest
- Triangular vs triples method
- Monotonicity
- Roles of the two passes
- Generalization to larger itemsets

<Pass 1>

<Pass 2>

Outline

- 1. PCY Algorithm
- 2. Extensions of PCY
- 3. Limited-pass Algorithms

Handling Larger Data in Memory

- The A-Priori algorithm is fine as long as:
 - Counting candidate pairs C_2 can be done in main memory
- Q: What if the memory is not enough?
- A: We need algorithms that cut down the size of C_2 :
 - PCY algorithm
 - Multistage algorithm
 - Multihash algorithm

PCY (Park-Chen-Yu) Algorithm

- In Pass 1 of A-Priori, most memory is idle
 - We store only individual item counts
- Q: Can we use the idle memory for pass 2?

<Pass 1>

PCY (Park-Chen-Yu) Algorithm

- In Pass 1 of A-Priori, most memory is idle
 - We store only individual item counts
- Q: Can we use the idle memory for pass 2?
- Idea of PCY: Maintain a hash table
 - Make it have as many buckets as fit in memory
 - Hash each pair and add 1 to the hashed bucket
 - For each bucket just keep the count

Observations about Buckets

- Q: Why do we do that?
- A: To eliminate pairs that has no chance to be frequent!
 - Each bucket B has count of all pairs that hash to B
 - If count \geq support threshold s, pairs could all be frequent
 - Otherwise (i.e., infrequent bucket), no pair can be frequent
 - So in Pass 2, define candidate pairs C_2 as $\{i, j\}$ such that:
 - Both *i* and *j* are frequent items
 - $\{i,j\}$ hashes to a frequent bucket \rightarrow distinguishes PCY from A-Priori
 - Later stages are similar to A-Priori

Between Passes in PCY

- Replace the buckets by a bit-vector:
 - 1 means the bucket count exceeded the support s (i.e., a frequent bucket)
 - 0 means it did not
- The bitmap reduces the space by 1/32
 - Since an integer is 32 bits

Main Memory: Picture of PCY

Source: Stanford CS246 (2022)

One Subtlety

- PCY cannot use triangular-matrix method for counting pairs
 - Because PCY utilizes the sparsity of candidate pairs
 - No way to "compact" triangular matrix removing infrequent pairs
- So PCY is always forced to use the triples method

and hash table for pairs // simultaneously Pop Quiz

- Here is a collection of baskets: {1,2,3}, {3,4,5}, {2,4,5}
- Suppose the support threshold is s=2
- On the first pass of PCY, we use a hash table with 3 buckets
 - The set $\{i, j\}$ is hashed to the bucket $[i \times j \mod 3]$
- Q: Which pairs are counted on the second pass of PCY?

$$\begin{array}{c} (2,4,5) -) & (2,4) -)2 \\ (2,5) -) & (2,5) -) & (2,5) - 2 \end{array}$$

Outline

- 1. PCY Algorithm
- 2. Extensions of PCY
- 3. Limited-pass Algorithms

Extensions of PCY

- Two extensions of PCY: Multistage and Multihash algorithms
 - Both create multiple hash tables to reduce # of candidate pairs
- The way they create multiple tables is different
 - Multistage: Create tables through successive passes
 - Multihash: Create tables at the same time (i.e., in parallel)

The Multistage Algorithm

- Improves PCY by creating several successive hash tables:
 - Pass 1: Same as PCY
 - Pass 2: Use the second hash table to generate another bitmap
 - Hash table has \$1/32 of the number of buckets due to first bitmap
 - Here a pair $\{i, j\}$ is hashed only if
 - Both *i* and *j* are frequent
 - The pair hashed to a frequent bucket in Pass 1
 - Idea: The second table can contain much fewer frequent buckets

Conditions for the Candidates

- A pair $\{i, j\}$ is in C_2 if and only if
 - 1. Both i and j are frequent \checkmark
 - 2. Pair $\{i, j\}$ hashed to a frequent bucket in first hash table
 - 3. Pair $\{i, j\}$ hashed to a frequent bucket in second hash table
- Q: Is Condition 2 necessary?

Conditions for the Candidates

- A pair $\{i, j\}$ is in C_2 if and only if
 - 1. Both i and j are frequent
 - 2. Pair $\{i, j\}$ hashed to a frequent bucket in first hash table
 - 3. Pair $\{i, j\}$ hashed to a frequent bucket in second hash table
- Q: Is Condition 2 necessary? Yes!
 - Let's say $\{i, j\}$ is hashed to a infrequent bucket in the first table
 - Then, it is not counted in Pass 2
 - ightharpoonup However, it doesn't mean $\{i,j\}$ cannot hash to frequent bucket
 - An infrequent pair $\{i,j\}$ may satisfy Conditions 1 and 3, but not 2

instropicat The buckers second fulle on stropped with Early 4 200 of 200

why of the state o

Work Way Lithord Comme or why way The Multistage Algorithm Item names Item Freq. Freq. Item names Item names to integers counts to integers items to integers items main memory n n n Bitmap 1 Bitmap 1 Bitmap 2 Second hash table for Hash table for bucket counts Data structure for counts of pairs inimensent how the <Pass 1> <Pass 3>

More Passes in Multistage

- We can add more passes until there is not enough space
- Truly frequent pairs will always hash to frequent buckets
 - No matter how many passes we use

The Multihash Algorithm

militage of past one with

- Idea: Get benefits of extra passes in a single pass
- Create two hash tables with different hash functions on Pass 1
- We can still expect most buckets to be infrequent if
 - The average count of a bucket is lower than the support threshold
- A pair $\{i, j\}$ is in C_2 if
 - 1. Both i and j are frequent
 - 2. The pair hashes to a frequent bucket in both hash tables

half rize we wan locke table 33 9/4

The Multihash Algorithm

More Tables in Multihash

Bartand sizet, Barx

- ullet We can increase the number n of tables as much as we want
- Q: How can we choose the optimal value of n?
- Let's say p^n is the probability of an infrequent pair being in \mathcal{C}_2 p: Probability of a pair to be frequent in each table
- ullet In limited memory, using more tables increases both n and p
 - At some point, increasing # of tables increases the value of p^n

Outline

- 1. PCY Algorithm
- 2. Extensions of PCY
- 3. <u>Limited-pass Algorithms</u>

Recap: Generalization of A-Priori

So far, we used one pass for each size of itemsets

- The creation of L_k requires a new pass
- C_k : Set of candidate k-tuples that might be frequent sets
- L_k : Set of truly frequent k-tuples

Limited-Pass Algorithms

Lapprophale acomey

- Many applications can sacrifice accuracy for speed
 - E.g., enough to find most of the frequent itemsets in supermarket
- We can find all or most frequent itemsets using ≤ 2 passes
 - Random sampling: Simplest approach
 - Toivonen: Two passes on average, but also may not terminate
 - **SON:** Divide the data into multiple chunks

Random Sampling

- Idea: Take a random sample of the market baskets
- Then, run a-priori or one of its improvements in main memory:
 - If sample is p% of baskets, adjust support threshold s to ps/100

$$B1 = \{m, c, b\}$$

$$B2 = \{m, p, j\}$$

$$B3 = \{m, c, b, n\}$$

$$B4 = \{c, j\}$$

$$B5 = \{m, p, b\}$$

$$B6 = \{m, c, b, j\}$$

$$B1 = \{m, c, b\}$$

$$B3 = \{m, c, b, n\}$$

$$B4 = \{c, j\}$$

$$B4 = \{c, j\}$$

$$B4 = \{c, j\}$$

$$B4 = \{c, j\}$$

$$B5 = \{m, c, b, j\}$$

$$B6 = \{m, c, b, j\}$$

$$B7 = \{m, c, b\}$$

$$B1 = \{m, c, b\}$$

$$B1 = \{m, c, b, n\}$$

$$B1 = \{m, c, b, n\}$$

$$B3 = \{m, c, b, n\}$$

$$B4 = \{c, j\}$$

$$B4 = \{c, j\}$$

$$B4 = \{c, j\}$$

$$B4 = \{c, j\}$$

$$B5 = \{m, c, b, j\}$$

$$B6 = \{m, c, b, j\}$$

$$B6 = \{m, c, b, j\}$$

Avoiding Errors in Sampling

- Sampling introduces both false positives and false negatives.
 - False positive: Itemset frequent in sample, but not the whole " ผู้เป็นสาราชานาร
 - False negative: Itemset frequent in the whole, but not the sample -> We wis>
- Eliminate false positives by making another pass through full dataset and counting all frequent itemsets in sample
- Reduce false negatives by reducing the sup. threshold (say to 0.9ps)

PUSTUD ड्यूटी

more steavent item; sor safety

Toivonen's Algorithm

- Q: Can we eliminate false negatives at all?
- Idea: Construct negative border for an efficient safety check
- Toivonen's Algorithm
 - Use one pass over samples and one pass over the full data nous whole allowithm
 - No false negatives or positives
 - However, there is a small chance it will not produce answer
 - The average number of passes to produce answer is still a constant

Toivonen's Algorithm (Pass 1)

- Find candidates from a small sample
 - Use support threshold less than proportional value ps (say 0.9ps)
- Construct negative border
 - Collection of itemsets that are not frequent in sample, but all of their immediate subsets are frequent in sample
 - Immediate subset: subsets constructed by deleting exactly one item

Negative Border Example

- $\{A, B, C, D\}$ is in the negative border if and only if:
 - It is not frequent in the sample, but
 - All of $\{A,B,C\}$, $\{B,C,D\}$, $\{A,C,D\}$, and $\{A,B,D\}$ are greater in somple
- $\{\overline{E}\}$ is in the negative border if it is not frequent
 - Its immediate subset Ø is considered frequent

Toivonen's Algorithm (Pass 2)

- Make a pass on entire dataset
 - Counting frequent itemsets in sample and itemsets in negative border
- If no member of negative border is frequent in whole dataset
 - We have found the correct set of frequent itemsets
- Otherwise, there may be a larger set that is frequent
 - Give no answer and repeat the algorithm with new random sample

at least 1 member 11 not sive the result and more -> reprin

Why Toivonen's Algorithm Works

- No false positives: Clearly because of Pass 2
- No false negatives:
 - ullet If there is an itemset S frequent in whole data, but not in sample
 - Then the border contains at least one itemset frequent in the whole
 - Why? One of the following holds:
 - *S* is in the negative order
 - S has an immediate subset T frequent in whole data, but not in the sample
 - This goes recursively until there is a subset in the negative order
 - Recall that every singleton is in the negative order

SON (Savasere, Omiecinski, Navathe)

SON Algorithm

- Avoids both false negatives and positives with two full passes
- Pass 1:
 - Divided input file into 1/p chunks
 - Run A-Priori with ps as support threshold
- Pass 2:
 - Take union of all frequent itemsets and select those with support $\geq s$
- There are no false negatives
 - A frequent itemset must be frequent in at least one chunk
 - If an itemset is not frequent in any chunk, its support is <(1/p)ps=s

SON with MapReduce

- MapReduce (or any other parallel computation) can be used
- Pass 1: Find candidate itemsets
 - Map: Take a chunk and return (F, 1) for each frequent itemset F
 - Support threshold is ps
 - Reduce: Ignore value and produce itemsets that appear at least once
- Pass 2: Find true frequent itemsets
 - Map:
 - Take candidate itemsets from Pass 1 and a portion of the input data
 - Return (C, v) where C is a candidate itemset and v is the support for this portion
 - **Reduce:** For each itemset, sum the values and output if the sum $\geq s$

Summary

- 1. PCY Algorithm
- 2. Extensions of PCY
 - Multistage algorithm
 - Multihash algorithm
- 3. Limited-pass Algorithms
 - Random sampling
 - Toivonen's algorithm
 - SON algorithm