Project Part F: All Together Now


```
In [70]: analyst = "Khoa Nguyen" # Replace this with your name
```

1 Introduction

1.1 Decision

Recommend a portfolio of 12 company investments that will maximize 12-month profit on a \$1,000,000 investment.

1.2 Approach

Retrieve a public company fundamentals dataset comprising thousands of US companies from quarters 1, 2, 3, and 4 of year 2017 + company stock price data for those companies from quarter 4 of year 2018.

Prepare the data so that each company and its associated information is represented as a single observation.

Apply various descriptive statistics and data visualizations to look for interesting patterns and inter-company relationships.

Transform the dataset using variable filtration, imputation, principal component analysis, and other methods to ready it for predictive model construction.

Build models to predict whether stock price will grow more than 30% over 12 months, given 12 months of past company fundamentals data, using machine learning model construction methods. Evaluate and tune the models for best business performance.

Build models to predict how much stock price will grow over 12 months, given 12 months of past company fundamentals data, using machine learning model construction methods. Evaluate and tune the models for best business performance.

Identify the best performing model.

Retrieve an investment opportunities dataset, comprising fundamentals for some set of public companies over some one-year period. Transform the representation of the investment opportunities to match the representation expected by the best performing model, leveraging previous analysis.

Use the best performing model to make predictions about the investment opportunities and accordingly recommend a portfolio of 12 company investments.

1.3 Data Source

Data files:

- · Data Dictionary.csv
- Company Fundamentals 2017.csv
- Company Fundamentals 2018.csv

The datasets and accompanying data dictionary are sourced from ...

- Wharton Research Data Services > Compustat Capital IQ from Standard & Poor's > North America Daily > Fundamentals Quarterly (https://wrds-www.wharton.upenn.edu/ (https://wrds-www.wharton.upenn.edu/))
 - Date Variable: Data Date
 - Date Range: 2017-01 to 2017-12 -or- 2018-01 to 2018-12
 - Company Codes: Search the entire database
 - Consolidtaion Level: C, Output
 - Industry Format: INDL, FS, Output
 - Data Format: STD, Output
 - Population Source: D, Output
 - Quarter Type: Fiscal View, Output
 - Currency: USD, Output (not CAD)
 - Company Status: Active, Output (not Inactive)
 - Variable Types: Data Items, Select All (674)
 - Query output:
 - Output format: comma-delimited text
 - Compression type: None
 - Data format: MMDDYY10

The datasets are restricted to select US active, publicly held companies that reported quarterly measures including stock prices for 1st, 2nd, 3rd, and 4th quarters in years 2017 and 2018. All non-missing stock prices exceed \$3 per share. File formats are all commaseparated values (CSV).

The data dictionary is from Variable Descriptions tab, copied to Excel, saved in csv format.

For this project, do not source any additional data from year 2019.

2 Business Model & Business Parameters

The business model is ...

$$\mathsf{profit} = \left(\sum_{i \in \mathsf{portfolio}} (1 + \mathsf{growth}_i) \times \mathsf{allocation}_i\right) - \mathsf{budget}$$

$$profit\ rate = profit \div budget$$

$$\mathsf{budget} = \sum_{i \in \mathsf{portfolio}} \mathsf{allocation}_i$$

Business parameters include ...

- budget is total investment to allocate across the companies in the portfolio
- portfolio size is number of companies in the portfolio
- · allocation is vector of amounts to allocate to specific companies in the portfolio, must sum to budget
- threshold is growth that qualifies as lowest attractive growth

```
In [72]: # Set the business parameters.

budget = 1000000
portfolio_size = 12
allocation = rep(1000000/12, 12) # you can keep or change this setting
threshold = 0.30 # you can keep or change this setting

# x = 1000000 / (12+11+10+9+8+7+6+5+4+3+2+1)
# allocation.1 = c(12*x, 11*x, 10*x, 9*x, 8*x, 7*x, 6*x, 5*x, 4*x, 3*x, 2*x, 1*x) # another of several possible fmtsx(fmt(budget), fmt(portfolio_size),fmt(allocation), fmt(threshold))
```

budget	portfolio_size	allocation	threshold
1,000,000	12	83,333	0.3
		83,333	
		83,333	
		83,333	
		83,333	
		83,333	
		83,333	
		83,333	
		83,333	
		83,333	
		83,333	
		83,333	

Portfolio to be filled with companies that will maximize profit.

3 Data

3.1 Retrieve Raw Data

```
In [73]: # Retrieve the 2017 data.
# How many observations and variables?

data.2017 = read.csv("Company Fundamentals 2017.csv", header=TRUE, na.strings=c("NA", ""), stringsAsFactors=[
fmtx(size(data.2017))
```

size(data.2017)

observations	variables
33.269	680

```
In [74]: # Retrieve the 2018 data.
# How many observations and variables?

data.2018 = read.csv("Company Fundamentals 2018.csv", header=TRUE, na.strings=c("NA", ""), stringsAsFactors=I

fmtx(size(data.2018))
```

size(data.2018)

observations	variables
35,728	680

3.2 Prepare

2017 Data:

Partition the dataset by calendar quarter in which information is reported. Filter in observations to include only those with non-missing prccq \geq 3. Then remove any observations about companies that reported more than once per quarter. Then change all the variable names (except for the gvkey, tic, and commovariables) by suffixing them with quarter information - e.g., in the Quarter 1 dataset, prccq becomes prccq.q1, etc. Consolidate the four quarter datasets into one dataset, with one observation per company that includes variables for all four quarters. Remove any observations with missing prccq.q4 values.

2018 Data:

Filter the dataset by calendar quarter in which information is reported, keeping only observations with information reported in quarter 4. Additionally, filter in observations to include only those with non-missing prcq, and keep only the gvkey and prccq variables. Then remove any observations about companies that reported more than once per quarter.

2017/2018 Data:

Consolidate the processed 2017 dataset and processed 2018 dataset, keeping only observations that have both 2017 and 2018 information. Then add these 2 synthetic variables:

growth =
$$(prccq - prccq.q4) \div prccq.q4$$

big growth = growth \ge threshold

size(data)

observations	variables
4,305	2,714

4 Exploratory Data Analysis

faction of observations with missing price data

0.0857

```
In [77]: # Show another interesting descriptive statistic.
# Present some additional interesting descriptive statistics.

cor.1_2_3_4_growth = cor(data[,c("prccq.q1","prccq.q2","prccq.q3","prccq.q4","growth","prccq")]) # correlation
fmtsx(fmt(cor.1_2_3_4_growth, "Correlation between quarters", row.names=TRUE))
```

Correlation between quarters

	prccq.q1	prccq.q2	prccq.q3	prccq.q4	growth	prccq
prccq.q1	1	NA	NA	NA	NA	NA
prccq.q2	NA	1	NA	NA	NA	NA
prccq.q3	NA	NA	1	NA	NA	NA
prccq.q4	NA	NA	NA	1.0000	0.0088	0.9603
growth	NA	NA	NA	0.0088	1.0000	0.0447
prccq	NA	NA	NA	0.9603	0.0447	1.0000

```
In [78]: # Present some additional interesting descriptive statistics.

cov.1_2_3_4_growth = cov(data[,c("prccq.q1","prccq.q2","prccq.q3","prccq.q4","growth","prccq")]) # covariance

fmtsx(fmt(cov.1_2_3_4_growth, "Covariance between quarters", row.names=TRUE))
```

Covariance between quarters

	prccq.q1	prccq.q2	prccq.q3	prccq.q4	growth	prccq
prccq.q1	NA	NA	NA	NA	NA	NA
prccq.q2	NA	NA	NA	NA	NA	NA
prccq.q3	NA	NA	NA	NA	NA	NA
prccq.q4	NA	NA	NA	105,973.371	1.3476	96,525.580
growth	NA	NA	NA	1.348	0.2199	6.469
prccq	NA	NA	NA	96,525.580	6.4690	95,345.195

A data.frame: 6 × 6

	mean	sd	median	min	max	range
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
prccq.q1	51.8391	295.4245	24.5750	3.0190	14000.00	13996.98
prccq.q2	52.9379	314.5788	24.2600	3.0000	14000.00	13997.00
prccq.q3	54.9956	350.7298	24.9200	3.0000	15500.00	15497.00
prccq.q4	54.7038	325.5355	24.6922	3.0000	14000.00	13997.00
prccq	49.5639	308.7802	20.9800	0.0250	14450.00	14449.98
growth	-0.1186	0.4689	-0.1492	-0.9956	10.24	11.24

```
In [85]: # Present some additional interesting descriptive statistics.
fmtsx(fmt(sum(data$big_growth == "YES")/nrow(data), "faction of observations as big growth", blank=TRUE))
```

faction of observations as big growth

0.0836

In [88]: # Visualize the amount of missing data across variables. miss.data = data.frame(na_count=as.numeric(summarize_all(data, ~sum(is.na(.))))) ggplot(miss.data) + geom_col(aes(x=rank(na_count, ties.method="first"), y = na_count), color=PALETTE[1]) + ggtitle("Variable Information | Missing Data") + xlab("variable # (sorted by completeness)") + ylab("number of missing values")

In [89]: # Show another interesting visualization. out(7,2.5) ggplot()+ xlim(-1,80) + geom_density(aes(prccq.q4, fill="YES"),data=data[data\$big_growth == "YES",], kernel="gaussian", bw=1, alpha = geom_density(aes(prccq.q4, fill="NO"),data=data[data\$big_growth == "NO",], kernel="gaussian", bw=1, alpha = scale_color_manual(values=c("YES"=PALETTE[1], "NO"=PALETTE[3])) + ggtitle("KDE of Price Q4 current year between big_growth vs not big_growth")


```
In [90]: # Present an additional interesting data visualization.
    out(4,4)
    ggscatmat(data[,c("prccq.q4","prccq","growth")])
```


5 Data Transformation

Transform data representation:

- Filter the data to include only predictor variables with at least 95% non-missing values.
- Impute missing data ...
 - for each numerical variable, use the mean of non-missing values
 - for each non-numerical variable, use the mode of non-missing values
- Filter the data to include only numerical variables with non-zero variance.

- Transform normalized numerical predictor variables to principal component representation.
- Restore the outcome and identifier variables.
- Filter in outcome and identifier variables, and first three principal components.

```
In [91]: # Specify outcome, identifier, and predictor variables.
         outvars = colnames(data[1:3]) #big growth, growth #price(prccq)
         idvars = colnames(data[4:6]) #qvkey, tic, conm
         prevars = colnames(data[4:ncol(data)]) #excluded outvars
         # Filter out sparse variables.
         data.filter = select if(data[, prevars], ~mean(is.na(.)) < 0.05)</pre>
         cn = colnames(data.filter) #predicted variables --> use later for test data
         # Impute missing data.
         ml = get impute(data.filter) ##imputed values --> use later for test data
         imputed data = impute(data.filter)
         #filter out observations have 0 variance
         data.var = select if(imputed data,~is.numeric(.))
         data.var = select if(data.var, ~var(., na.rm=TRUE) != 0)
         # Transform numerical predictor variables to principal component representation
         pc = prcomp(data.var, scale = TRUE, retx=TRUE)
         centroid = pc$center
         weight matrix = pc$rotation
         data.pc = as.data.frame(pc$x)
         # Restore the outcome and indentifier variables to the data.
         data.pcv = cbind(data[, 1:6], data.pc)
         # Filter in outcome and identifier variables, and first three principal components.
         prevars = colnames(data.pcv[4:9])
         data = data.pcv[, 1:9]
         # How many observations and variables?
         fmtx(size(data))
         # Show first few observations of transformed data.
         fmtx(data[1:6,], FFO)
```

size(data)

observations variab	lac

4,305

9

data (first few observations)

big_growth	growth	prccq	gvkey	tic	conm	PC1	PC2	PC3
NO	0.0507	43.69	1,004	AIR	AAR CORP	1.4098	0.2125	-0.1874
NO	-0.3829	32.11	1,045	AAL	AMERICAN AIRLINES GROUP INC	-2.8093	0.2246	1.4366
YES	0.3158	6.75	1,050	CECE	CECO ENVIRONMENTAL CORP	1.5247	0.4396	-0.1679
NO	-0.2165	8.66	1,062	ASA	ASA GOLD AND PRECIOUS METALS	1.5737	0.6384	0.0123
NO	-0.1185	15.25	1,072	AVX	AVX CORP	1.2813	0.4529	0.0929
NO	0.0002	85.20	1,075	PNW	PINNACLE WEST CAPITAL CORP	0.3698	-0.4861	-0.0128

6 Model 1

Model 1 is a naive Bayes classifier that predicts whether or not a company stock price will grow by 30% or more at 12 months.

```
In [92]: # Build, evaluate, and tune a naive Bayes model by iterating through PC1, PC2, PC3
         # predictor variable combinations.
         # Show the allocations assumed, predictor variable combination and estimated profit
         # for the searched and best performing models.
         tune = data.frame()
         for (f in exhaustive(names(data[,c("PC1","PC2","PC3")]), keep="big growth")) # try every combination of varid
             nfold = 5
             set.seed(0)
             fold = createFolds(data$big_growth, k=nfold)
             profit = c()
             for (i in 1:nfold) { data.train = data[setdiff(1:nrow(data), fold[[i]]),]
                                   data.test = data[fold[[i]],]
                                  model = naiveBayes(big_growth ~ ., data.train[,f], laplace=TRUE)
                                   prob = predict(model, data.test, type="raw")
                                   class.predicted = as.class(prob, class="YES", cutoff=0.25) #cutoff 0.25
                                  data.test$class.predicted = class.predicted
                                  data.test$prob = prob[,1]
                                 data.sorted = data.test[order(data.test$prob, decreasing=TRUE),]
                                 company.data.growth = data.sorted[1:12, "growth"]
                                  profit[i] = sum((1 + company.data.growth)*allocation) - budget }
             profit.cv = mean(profit)
             tune = rbind(tune, data.frame(method="naive bayes", variables=vector2string(f), profit.cv))
         best = tune[which.max(tune$profit.cv),]
         fmtsx(fmt(allocation),
              fmt(tune, "search for best model"),
              fmt(best))
```

allocation		search for best model				best	
83,333	method	variables	profit.cv		method	variables	profit.cv
83,333	naive bayes	PC1, big_growth	-85,297	-	naive bayes	PC3, big_growth	47,492
83,333	naive bayes	PC2, big_growth	-146,897				
83,333	naive bayes	PC3, big_growth	47,492				
83,333	naive bayes	PC1, PC2, big_growth	-142,451				
83,333	naive bayes	PC1, PC3, big_growth	-116,848				
83,333	naive bayes	PC2, PC3, big_growth	-112,989				
83,333	naive bayes	PC1, PC2, PC3, big_growth	-79,294				
83,333							
83,333							
83,333							
83,333							

Model 2 is a linear regression regressor that predicts company growth at 12 months.

```
In [93]: # Build, evaluate, and tune a linear regression model by iterating through PC1, PC2, PC3
         # predictor variable combinations.
         # Show the allocations assumed, predictor variable combination and estimated profit
         # for the searched and best performing models.
         tune = data.frame()
         for (f in exhaustive(names(data[,c("PC1","PC2","PC3")]), keep="growth")) # try every combination of variables
             nfold = 5
             set.seed(0)
             fold = createFolds(data$growth, k=nfold)
             profit = c()
             for (i in 1:nfold) {
                     data.test = data[fold[[i]],]
                     data.train = data[setdiff(1:nrow(data), fold[[i]]),]
                     model train = lm(growth ~ ., data.train[,f])
                     growth.predicted = predict(model train, data.test)
                     data.test = cbind(data.test,growth.predicted)
                     data.test = data.test[order(-data.test$growth.predicted),]
                     company.data.growth = data.test[1:12, "growth"]
                     profit[i] = sum((1 + company.data.growth)*allocation) - budget }
             profit.cv = mean(profit)
             tune = rbind(tune, data.frame(method="linreg", variables=vector2string(f), profit.cv))
         best = tune[which.max(tune$profit.cv),]
         fmtsx(fmt(allocation),
              fmt(tune, "search for best model"),
              fmt(best))
```

allocation		search for best model			best	
83,333	method	variables	profit.cv	method	variables	profit.cv
83,333	linreg	PC1, growth	-288,146	linreg	PC1, PC2, growth	-51,470
83,333	linreg	PC2, growth	-70,483			
83,333	linreg	PC3, growth	-111,428			
83,333	linreg	PC1, PC2, growth	-51,470			
83,333	linreg	PC1, PC3, growth	-75,214			
83,333	linreg	PC2, PC3, growth	-93,628			
83,333	linreg	PC1, PC2, PC3, growth	-87,246			
83,333						
83,333						
83,333						
83,333						

Using bagging method in two forms: linear regression to predict the company growth at 12 months and naive Bayes classifier to predict whether or not a company stock price will grow by 30% or more at 12 months.

```
In [94]: # Build, evaluate, and tune a model with bagging method using linear regression
         tune = data.frame()
         for (f in exhaustive(names(data[,c("PC1","PC2","PC3")]), keep="growth")) # try every combination of variables
             nfold = 5
             set.seed(0)
             fold = createFolds(data$growth, k=nfold)
             profit = c()
             rmse = c()
                 for (i in 1:5)
                   { data.test = data[fold[[i]],]
                     data.train = data[setdiff(1:nrow(data), fold[[i]]),]
                    set.seed(0)
                    data.1 = sample n(data.train,nrow(data.train),replace=TRUE)
                    data.2 = sample n(data.train,nrow(data.train),replace=TRUE)
                    data.3 = sample n(data.train,nrow(data.train),replace=TRUE)
                     model.1 = lm(growth \sim ., data.1[,f])
                    model.2 = lm(growth \sim ., data.2[,f])
                    model.3 = lm(growth \sim ., data.3[,f])
                     growth.predicted.1 = predict(model.1, data.test)
                    growth.predicted.2 = predict(model.2, data.test)
                    growth.predicted.3 = predict(model.3, data.test)
                       class.predicted = as.class(prob, class="YES", cutoff=0.25)
                     growth.predicted.total = data.frame(growth.predicted.1,growth.predicted.2,growth.predicted.3)
                    growth.predicted = apply(growth.predicted.total,1,max,na.rm=TRUE)
                     error = data.test$growth - growth.predicted
                     rmse[i] = sqrt(mean(error^2))
                     data.test = cbind(data.test,growth.predicted)
                     data.test = data.test[order(-data.test$growth.predicted),]
                     company.data.growth = data.test[1:12, "growth"]
                     profit = sum((1 + company.data.growth)*allocation) - budget }
             rmse.cv = mean(rmse)
             profit.cv = mean(profit)
             profit rate.cv = profit.cv/budget
             tune = rbind(tune, data.frame(method="bagging linreg", variables=vector2string(f), profit.cv, rmse.cv,pro
```

```
}
best = tune[which.max(tune$profit.cv),]
fmtsx(fmt(allocation),
    fmt(tune,"search for best model"),
    fmt(best))
```

allocation		sea	rch for bes	st model					best								
83,333	method	variables	profit.cv	rmse.cv	profit_rate.cv		method	variables	profit.cv	rmse.cv	profit_rate.cv						
83,333	bagging	PC1,	-167,105	0.4661	-0.1671	•	bagging	PC1,									
83,333	linreg	growth	107,100	0.1001	0.1071		linreg	PC2, growth	70,379	0.4661	0.0704						
83,333	bagging linreg	PC2, growth	-5,714	0.4661	-0.0057			J									
83,333	bagging	PC3,	-51,343	0.4662	-0.0513												
83,333	linreg	growth			-51,545	0.4002	-0.0513										
83,333	bagging linreg	PC1, PC2,	70,379	0.4661	0.0704												
83,333	iiiieg	growth	growth	growth													
83,333	bagging	PC1, PC3,	-160,998	0.4661	-0.1610												
83,333	linreg	growth							•								
83,333	bagging	PC2, PC3,	-46,127	0.4662	-0.0461												
83,333	linreg	growth	-40,127	0.4002	-0.0401												
	bagging linreg	PC1, PC2, PC3, growth	17,961	0.4661	0.0180												

```
In [95]: # Build, evaluate, and tune a model with bagging method using naiveBayes classification.
         tune = data.frame()
         for (f in exhaustive(names(data[,c("PC1","PC2","PC3")]), keep="big growth")) # try every combination of variation
             nfold = 5
             set.seed(0)
             fold = createFolds(data$big growth, k=nfold)
             profit = c()
                 for (i in 1:5)
                   { data.test = data[fold[[i]],]
                     data.train = data[setdiff(1:nrow(data), fold[[i]]),]
                    set.seed(0)
                    data.1 = sample n(data.train,nrow(data.train),replace=TRUE)
                    data.2 = sample n(data.train,nrow(data.train),replace=TRUE)
                    data.3 = sample_n(data.train,nrow(data.train),replace=TRUE)
                                               model = naiveBayes(big_growth ~ ., data.train[,f], laplace=TRUE)
                                     prob = predict(model, data.test, type="raw")
                                     class.predicted = as.class(prob, class="YES", cutoff=0.25) #cutoff 0.25
                     model.1 = naiveBayes(big_growth ~ ., data.1[,f],laplace=TRUE)
                    model.2 = naiveBayes(big growth ~ ., data.2[,f],laplace=TRUE)
                    model.3 = naiveBayes(big_growth ~ ., data.3[,f],laplace=TRUE)
                    prob.1 = predict(model.1, data.test, type="raw")[,1]
                    prob.2 = predict(model.2, data.test, type="raw")[,1]
                    prob.3 = predict(model.3, data.test, type="raw")[,1]
                       prob.total = data.frame(prob.1,prob.2,prob.3)
                       prob = apply(prob.total,1,max,na.rm=TRUE)
                    prob = (prob.1 + prob.2 + prob.3)/3
                     data.test$prob = prob
                     data.sorted = data.test[order(data.test$prob, decreasing=TRUE),]
                     company.data.growth = data.sorted[1:12, "growth"]
                     profit = sum((1 + company.data.growth)*allocation) - budget }
             profit.cv = mean(profit)
             tune = rbind(tune, data.frame(method="bagging naiveBayes", variables=vector2string(f), profit.cv))
         best = tune[which.max(tune$profit.cv),]
         fmtsx(fmt(allocation),
```

```
fmt(tune,"search for best model"),
fmt(best))
```

allocation	searc	h for best model		best		
83,333	method	variables	profit.cv	method	variables	profit.cv
83,333	bagging	PC1, big growth	-154,520	bagging	PC2, PC3,	41,327
83,333	naiveBayes	1 0 1, b.ig_g.o.u.i	101,020	naiveBayes	big_growth	11,021
83,333	bagging naiveBayes	PC2, big_growth	-103,785			
83,333	bagging	PC3, big growth	-231,896			
83,333	naiveBayes	PC3, blg_growth	-231,090			
83,333	bagging naiveBayes	PC1, PC2, big_growth	-228,132			
83,333	bagging	DOA DOO bir wareth	45.000			
83,333	naiveBayes	PC1, PC3, big_growth	-45,996			
83,333	bagging naiveBayes	PC2, PC3, big_growth	41,327			
83,333	bagging	PC1, PC2, PC3,				
83,333	naiveBayes	big_growth	-8,145			

Using kknn method in two forms: regression to predict the company growth at 12 months and classifier to predict whether or not a company stock price will grow by 30% or more at 12 months.

```
In [96]: # Build, evaluate, and tune a kknn (regression form)
         tune = data.frame()
         for (f in exhaustive(names(data[,c("PC1","PC2","PC3")]), keep="growth")) # try every combination of variables
             nfold = 5
             set.seed(0)
             fold = createFolds(data$growth, k=nfold)
             profit = c()
             for (i in 1:nfold) { data.train = data[setdiff(1:nrow(data), fold[[i]]),]
                                  data.test = data[fold[[i]],]
                                  data.test$growth.predicted = kknn(growth ~ ., data.train[,f], data.test, k=3)$fitted
                                  data.test = data.test[order(-data.test$growth.predicted),]
                                  company.data.growth = data.test[1:12, "growth"]
                                  profit[i] = sum((1 + company.data.growth)*allocation) - budget }
             profit.cv = mean(profit)
             tune = rbind(tune, data.frame(method="kknn regression", variables=vector2string(f), profit.cv))
         best = tune[which.max(tune$profit.cv),]
         fmtsx(fmt(allocation),
              fmt(tune, "search for best model"),
              fmt(best))
```

allocation	search for best model				best	
83,333	method	variables	profit.cv	method	variables	profit.cv
83,333	kknn regression	PC1, growth	166,333	kknn regression	PC1, PC2, PC3, growth	537,093
83,333	kknn regression	PC2, growth	-210,049			
83,333	kknn regression	PC3, growth	-80,475			
83,333	kknn regression	PC1, PC2, growth	242,857			
83,333	kknn regression	PC1, PC3, growth	270,131			
83,333	kknn regression	PC2, PC3, growth	-91,025			
83,333	kknn regression	PC1, PC2, PC3, growth	537,093			
83,333						
83,333						
83,333						
83,333						

```
In [97]: # Build, evaluate, and tune a kknn (classification form) model.
         tune = data.frame()
         for (f in exhaustive(names(data[,c("PC1","PC2","PC3")]), keep="big growth")) # try every combination of varid
             nfold = 5
             set.seed(0)
             fold = createFolds(data$big_growth, k=nfold)
             profit = c()
             for (i in 1:nfold) { data.train = data[setdiff(1:nrow(data), fold[[i]]),]
                                  data.test = data[fold[[i]],]
                                   prob = kknn(big_growth ~ ., data.train[,f], data.test, k=15)$prob
                                   class.predicted = as.class(prob,class="YES", cutoff=0.25) #cutoff 0.25
                                  data.test$class.predicted = class.predicted
                                  data.test$prob = prob[,1]
                                  data.sorted = data.test[order(data.test$prob, decreasing=TRUE),]
                                  company.data.growth = data.sorted[1:12, "growth"]
                                  profit[i] = sum((1 + company.data.growth)*allocation) - budget }
             profit.cv = mean(profit)
             tune = rbind(tune, data.frame(method="kknn (classification)", variables=vector2string(f), profit.cv))
         best = tune[which.max(tune$profit.cv),]
         fmtsx(fmt(allocation),
              fmt(tune, "search for best model"),
              fmt(best))
```

allocation	search for best model				best	
83,333	method	variables	profit.cv	method	variables	profit.cv
83,333	kknn	PC1, big growth	-109 305	kknn	PC1, PC2, PC3,	446,874
83,333	(classification)	1 0 1, 2.1 <u>g_g</u> 10 mar	100,000	(classification)	big_growth	770,077
83,333	kknn (classification)	PC2, big_growth	-21,928			
83,333	kknn	DO2 him	04.004			
83,333	(classification)	PC3, big_growth	-31,661			
83,333	kknn (classification)	PC1, PC2, big_growth	209,258			
83,333	kknn	DO4 DO0 1: #	101.000			
83,333	(classification)	PC1, PC3, big_growth	124,690			
83,333	kknn (classification)	PC2, PC3, big_growth	102,387			
83,333	kknn	PC1, PC2, PC3,				
83,333	(classification)	big_growth	446,874			

Model 5 uses stacking method to predicts whether or not a company stock price will grow by 30% or more at 12 months.

```
In [98]: # Build, evaluate, and tune a model using stacking method.
         tune=data.frame()
         for (f in exhaustive(names(data[,c("PC1","PC2","PC3")]), keep="big growth")) # try every combination of variation
             nfold = 5
             set.seed(0)
             fold = createFolds(data$big_growth, k=nfold)
             profit = c()
             for (i in 1:nfold) { data.train = data[setdiff(1:nrow(data), fold[[i]]),]
                                   data.test = data[fold[[i]],]
                                  #build diff model
                                  model.1 = rpart(big growth ~ ., data.train[,f],method="class",minsplit=3,cp=10,maxde
                                  model.2 = naiveBayes(big growth ~ ., data.train[,f], laplace=TRUE)
                                  model.3 = kknn(big growth ~ ., data.train[,f], data.train, k=3)
                                     class.predicted = as.class(prob.class="YES", cutoff=0.6) #cutoff 0.25
                                  #prob
                                  prob.1 = predict(model.1,data.train, type="prob")
                                  prob.2 = predict(model.2, data.train, type="raw")
                                  prob.3 = model.3$prob
                                 #assign class
                                  class.predicted.1 = as.class(prob.1, "YES", cutoff = 0.6) #0.6.0.6 = 177625
                                  class.predicted.2 = as.class(prob.2, "YES", cutoff = 0.6) #0.25,0.6 = 177625
                                  class.predicted.3 = as.class(prob.3, "YES", cutoff = 0.6) #0.25, 0.25 nope #0.25, 0.1
                                  class = data.train$big growth
                                  data.stack = data.frame(class.predicted.1,class.predicted.2,class.predicted.3,class)
                                 #test data with multiple model
                                  prob.1 = predict(model.1,data.test, type="prob")
                                  prob.2 = predict(model.2, data.test, type="raw")
                                  prob.3 = kknn(big growth ~ ., data.train[,f], data.test, k=3)$prob
                                  class.predicted.1 = as.class(prob.1, "YES", cutoff = 0.6)
                                  class.predicted.2 = as.class(prob.2, "YES", cutoff = 0.6)
                                  class.predicted.3 = as.class(prob.3, "YES", cutoff = 0.6)
                                  data.test.stack = data.frame(class.predicted.1, class.predicted.2, class.predicted.3)
                                  model = naiveBayes(class ~ class.predicted.1+class.predicted.2 + class.predicted.3 , d
                                  prob = predict(model, data.test.stack, type="raw")
                                  class.predicted = as.class(prob, class="YES", cutoff=0.8) #cutoff 0.5
```

allocation	search for best model				search for best model best			
83,333	method	variables	profit.cv	profit_rate.cv	method	variables	profit.cv	profit_rate.cv
83,333	stacking	PC1, big_growth	-194,066	-0.1941	stacking	PC1, PC3,	177,625	0.1776
83,333	stacking	PC2, big_growth	-66,607	-0.0666	3	big_growth	,	
83,333	stacking	PC3, big_growth	-131,359	-0.1314				
83,333	stacking	PC1, PC2,	-150,342	-0.1503				
83,333	•	big_growth	h,					
83,333	stacking	PC1, PC3, big_growth	177,625	0.1776				
83,333		PC2, PC3,	0.000	0.0004				
83,333	stacking	big_growth	-8,390	-0.0084				
83,333	stacking	PC1, PC2, PC3, big_growth	94,678	0.0947				
83,333								
83,333								

Model 6 is a bagging method with kknn(regression form) to predict the company growth at 12 months

```
In [99]: # Build, evaluate, and tune a bagging method with kknn (regression form) model.
         tune = data.frame()
         for (f in exhaustive(names(data[,c("PC1","PC2","PC3")]), keep="growth")) # try every combination of variables
             nfold = 5
             set.seed(0)
             fold = createFolds(data$growth, k=nfold)
             profit = c()
             rmse = c()
                 for (i in 1:5)
                   { data.test = data[fold[[i]],]
                     data.train = data[setdiff(1:nrow(data), fold[[i]]),]
                    data.1 = sample n(data.train,nrow(data.train),replace=TRUE)
                    data.2 = sample n(data.train,nrow(data.train),replace=TRUE)
                    data.3 = sample n(data.train,nrow(data.train),replace=TRUE)
                    model.1 = kknn(growth ~ ., data.1[,f], data.test, k=50)
                    model.2 = kknn(growth ~ ., data.2[,f], data.test, k=50)
                    model.3 = kknn(growth ~ ., data.3[,f], data.test, k=50)
                     growth.predicted.1 = model.1$fitted.values
                    growth.predicted.2 = model.2$fitted.values
                    growth.predicted.3 = model.3$fitted.values
                       class.predicted = as.class(prob, class="YES", cutoff=0.25)
                     growth.predicted.total = data.frame(growth.predicted.1,growth.predicted.2,growth.predicted.3)
                    growth.predicted = apply(growth.predicted.total,1,max,na.rm=TRUE)
                     error = data.test$growth - growth.predicted
                     rmse[i] = sqrt(mean(error^2))
                     data.test = cbind(data.test,growth.predicted)
                     data.test = data.test[order(-data.test$growth.predicted),]
                     company.data.growth = data.test[1:12, "growth"]
                     profit = sum((1 + company.data.growth)*allocation) - budget }
              rmse.cv = mean(rmse)
             profit.cv = mean(profit)
             profit rate.cv = profit.cv/budget
             tune = rbind(tune, data.frame(method="bagging kknn (regression)", variables=vector2string(f),
                                           profit.cv,rmse.cv,profit rate.cv))
```

```
best = tune[which.max(tune$profit.cv),]
fmtsx(fmt(allocation),
    fmt(tune,"search for best model"),
    fmt(best))
```

allocation		sear	ch for best	model				best		
83,333	method	variables	profit.cv	rmse.cv	profit_rate.cv	method	variables	profit.cv	rmse.cv	profit_ra
83,333	bagging	PC1,				bagging	PC1,			
83,333	kknn (regression)	growth	881,881	0.4704	0.8819	kknn (regression)	PC2, PC3,	1,262,831	0.4665	1
83,333	bagging	PC2,				(regression)	growth			
83,333	kknn (regression)	growth	-350,288	0.4807	-0.3503					
83,333	bagging	PC3,								
83,333	kknn (regression)	growth	-241,497	0.4841	-0.2415					
83,333	bagging	PC1,								
83,333	kknn (regression)	PC2, growth	1,244,886	0.4666	1.2449					
83,333	bagging	PC1,								
83,333	kknn	PC3,	1,018,221	0.4728	1.0182					
83,333	(regression)	growth								
	bagging kknn (regression)	PC2, PC3, growth	16,031	0.4760	0.0160					
	bagging kknn (regression)	PC1, PC2, PC3, growth	1,262,831	0.4665	1.2628					
4										

12 Investment Opportunities

Test the best performing model on new investment opportunities.

12.1 Retrieve Investment Data

```
In [100]: # Retrieve the investment opportunities data.
# How many observations and variables?

data.io = read.csv("Investment Opportunities.csv", header=TRUE, na.strings=c("NA", ""), stringsAsFactors=FALS

fmtx(size(data.io))
```

size(data.io)

observations	variables	
918	680	

12.2 Prepare Investment Data

```
In [101]: # Prepare the investment opportunities data as appropriate for transformation.
          # How many observations and variables?
          q = quarter(mdy(data.io$datadate))
          data.current.q1 = data.io[(q==1) & !is.na(data.io$prccq) & (data.io$prccq>=3),]
          data.current.q2 = data.io[(q==2) & !is.na(data.io$prccq) & (data.io$prccq>=3),]
          data.current.q3 = data.io[(q==3) & !is.na(data.io$prccq) & (data.io$prccq>=3),]
          data.current.q4 = data.io[(q==4) & !is.na(data.io$prccq) & (data.io$prccq>=3),]
          data.current.q1 = data.current.q1[!duplicated(data.current.q1\sqrt{gvkey}),]
          data.current.q2 = data.current.q2[!duplicated(data.current.q2$gvkey),]
          data.current.q3 = data.current.q3[!duplicated(data.current.q3$gvkey),]
          data.current.q4 = data.current.q4[!duplicated(data.current.q4$gvkey),]
          data.current.q1 = rename with(data.current.q1, ~ifelse(. %in% c("gvkey", "tic", "conm"), ., paste0(., ".q1")))
          data.current.q2 = rename_with(data.current.q2, ~ifelse(. %in% c("gvkey", "tic", "conm"), ., paste0(., ".q2")))
          data.current.q3 = rename with(data.current.q3, ~ifelse(. %in% c("gvkey", "tic", "conm"), ., paste0(., ".q3")))
          data.current.q4 = rename with(data.current.q4, ~ifelse(. %in% c("gvkey", "tic", "conm"), ., paste0(., ".q4")))
          # Consolidate the data partitions.
          data.current = merge(data.current.q1, data.current.q2,by=c("gvkey","tic","conm"), all=TRUE, sort=TRUE)
          data.current = merge(data.current, data.current.q3,by=c("gvkey","tic","conm"), all=TRUE, sort=TRUE)
          data.current = merge(data.current, data.current.q4,by=c("gvkey","tic","conm"), all=TRUE, sort=TRUE)
          data.current = data.current[!is.na(data.current$prccq.q4), ]
          data.ps = data.current[, cn]
          data.ps = put impute(data.ps,ml)
          fmtx(size(data.current))
```

size(data.current)

observations	variables
230	2,711

12.3 Transform Investment Data

size(data.real)

observations	variables
230	6

data.real (first few observations)

gvkey	tic	conm	PC1	PC2	PC3
1,004	AIR	AAR CORP	1.4196	0.0580	-0.2577
1,410	ABM	ABM INDUSTRIES INC	1.0563	0.0729	-0.1602
1,562	AMSWA	AMERICAN SOFTWARE -CL A	1.6304	0.3224	-0.1279
1,618	AXR	AMREP CORP	0.8877	0.1452	-0.6410
1,632	ADI	ANALOG DEVICES	-1.6234	-0.4854	-0.9771
1,686	APOG	APOGEE ENTERPRISES INC	1.4219	-0.1529	-0.3698

13 Apply Model

13.1 Build Best Model

```
In [103]: # Build the best performing model using all 2017 and 2018 data for training.
    set.seed(0)
    data.1 = sample_n(data,nrow(data),replace=TRUE)
    data.2 = sample_n(data,nrow(data),replace=TRUE)
    data.3 = sample_n(data,nrow(data),replace=TRUE)

model.1 = data.1
model.2 = data.2
model.3 = data.3
```

13.2 Recommend Portfolio

```
In [104]: # Use the model to inform the decision about how to fill the portfolio with companies
# from the investment opportunities.
# Show the portfolio: gvkey, tic, conm, allocation

growth.predicted.1 = kknn(growth ~ PC1 + PC2 + PC3, model.1, data.real, k=50)$fitted.values
growth.predicted.2 = kknn(growth ~ PC1 + PC2 + PC3, model.2, data.real, k=50)$fitted.values
growth.predicted.3 = kknn(growth ~ PC1 + PC2 + PC3, model.3, data.real, k=50)$fitted.values

growth.predicted.total = data.frame(growth.predicted.1,growth.predicted.2,growth.predicted.3)
growth.predicted = apply(growth.predicted.total,1,max,na.rm=TRUE)

portfolio = data.real
portfolio$growth.predicted = growth.predicted
portfolio = portfolio[order(-portfolio$growth.predicted),]
portfolio = portfolio[1:12, c("gvkey", "tic", "conm")]
portfolio$allocation = allocation
fmtx(portfolio)
```

portfolio

gvkey	tic	conm	allocation
137,310	MRVL	MARVELL TECHNOLOGY GROUP LTD	83,333
15,520	SIG	SIGNET JEWELERS LTD	83,333
1,562	AMSWA	AMERICAN SOFTWARE -CLA	83,333
28,084	COUP	COUPA SOFTWARE INC	83,333
7,138	MAYS	MAYS (J.W.) INC	83,333
2,818	CATO	CATO CORP -CL A	83,333
2,829	RFIL	R F INDUSTRIES LTD	83,333
9,599	SMTC	SEMTECH CORP	83,333
30,736	OKTA	OKTA INC	83,333
33,232	ZUO	ZUORA INC	83,333
34,055	KLXE	KLX ENERGY SERVS HLDNG	83,333
26,746	NTNX	NUTANIX INC	83,333

13.3 Store Portfolio Recommendation

```
In [105]: write.csv(portfolio, paste0(analyst, "-final.csv"), row.names=FALSE)
```

13.4 Confirm That Format Is Correct

Portfolio Recommendation | Format Check

analyst	columns	companies	allocations
Khoa Nguyen	TRUE	TRUE	TRUE

14 Discussion

In order to create a portfolio recommending 12 companies with the highest return on profit, understanding the dataset is my first step. I attempt to familiarize myself with the data dictionary, which describes the variables in the dataset, but there are several variables that I don't know the meaning of, so I decided to use principal components to transform the data.

Before applying the principal component transformation, I explore some insights from the consolidated data (after combining 2017 and 2018 data). I observe that the dataset has a low level of missing data and only a small portion of companies with big growth (growth of more than 30%). The data is not balanced in terms of big growth or not. To prepare the data for analysis, I clean it by filtering, imputing missing values, and transforming it using Principal Component Analysis (PCA).

Next, I apply various methods to find the best models. I start by trying linear regression and naive Bayes classification as guidance. I find that the naive Bayes method yields a higher profit, but the amount of profit is still low. In the descriptive analysis, I notice that the maximum growth is only 10%, which is insufficient for achieving the desired return on my budget.

To improve the models, I try the bagging method for both linear regression and naive Bayes classification. Although the results show some improvement, it is not significant. To gain deeper insights, I visualize the relationship between each Principal Component (PC) and growth with color-coding using big_growth. This visualization helps me identify concentrations within the two groups.

Motivated by these observations, I decide to perform cluster analysis using the Gaussian mixture method to group the data into two clusters based on PC1, PC2, and PC3. I aim to identify any trends in the data. I choose methods that have a strong methodology based on the relationships between the nearest points.

One method I try is the k-nearest-neighbor (k-NN) classifier to predict big_growth, which yields a jump in the results. This model works well as I achieve a profit. However, I realize that it predicts whether a company has big growth or not and ranks the companies based on the probability of being in the big growth category, rather than considering the actual growth rate.

To address this limitation, I decide to try the kknn method in regression form, which shows very promising results. Finally, I apply the bagging method on three kknn regression models, where the predicted value is the highest growth among these three model predictions.

Through this project, I have learned the importance of combining cross-validation with business parameters to select the best model. I also consider the sensitivity of each model to the chosen parameters, as my model's performance varies depending on these factors. In the future, I would like to improve my model to be more stable with business parameters or try some more methods to fit this problem.

I find this project to be very useful and interesting as I can apply different methods and compare their pros and cons based on the

Copyright (c) Huntsinger Associates, LLC

Document revised May 6, 2023