

**This Page Is Inserted by IFW Operations
and is not a part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

THIS PAGE BLANK (USPTO)

(19) BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENTAMT

(12) Offenlegungsschrift
(10) DE 195 13 696 A 1

(51) Int. Cl. 8:
H 02 J 7/14
B 60 L 7/28
B 60 L 11/00

(71) Anmelder:
Reichle, Alf, 88662 Überlingen, DE

(74) Vertreter:
Weiβ, P., Dipl.-Forstwirt, Dr.rer.nat., Pat.-Anw., 78234
Engen

(72) Erfinder:
gleich Anmelder

(56) Für die Beurteilung der Patentfähigkeit
in Betracht zu ziehende Druckschriften:

DE 43 31 569 A1
DE 41 16 899 A1
US 46 89 531
US 39 72 380
WO 89 05 244 A1

PHILIPPOW, Eugen: Grundlagen der Elektrotechnik,
8.Aufl., 1988, Dr.Alfred Hüthig Verlag, Heidelberg,
S. 273,274;
Wirbelstrombremse für die New Sanyo Linie. In:
Glas.Ann.92, 1968,H.9,September,S.276;

(64) Verfahren zum Laden von zumindest einem Batterieset

(57) Bei einem Verfahren zum Laden von zumindest einem
Batterieset (B1, B2) eines elektrisch betriebenen Fahrzeuges
(1) soll der mindestens eine Batterieset (B1, B2) wahlweise
oder gleichzeitig beim Betrieb des Fahrzeugs geladen
werden.

DE 195 13 696 A 1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

BUNDESDRUCKEREI 08.96 802 042/133

8/26

Beschreibung

Die Erfindung betrifft ein Verfahren zum Laden von zumindest einem Batterieset eines elektrisch betriebenen Fahrzeugs, sowie eine Vorrichtung zum Durchführen des Verfahrens.

In jedem Auto wird die Autobatterie aufgeladen, wobei diese hauptsächlich motorbetriebenen, insbesondere ottomotorbetriebenen Fahrzeuge Stromerzeuger, insbesondere Lichtmaschinen, aufweisen, welche die Batterien laden können. Dabei sind diese Lichtmaschinen so ausgelegt, daß sie im Betrieb des Motors die Batterie auf laden können, jedoch unter Last das Aufladen der Batterie verringert wird.

Ferner sind Elektrofahrzeuge bekannt, bei denen große und schwere Batteriesets vorhanden sind, die durch ein Netz lange aufgeladen werden müssen. Solche Batteriesets in dieser herkömmlichen Form haben den Nachteil, daß sie besonders schwer sind und somit eine Konstruktion des Fahrzeuges erheblich beeinflussen. Dabei muß der Antrieb besonders stark für ein größeres Fahrzeuggewicht ausgelegt sein.

Meist handelt es sich zudem um Elektrofahrzeuge, die nur für äußerst geringe Strecken geeignet sind, d. h., deren Reichweite sehr begrenzt ist.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde ein besonders zum Aufladen von Batteriesets geeignetes Verfahren sowie eine Vorrichtung dazu zu schaffen, welche die oben genannten Nachteile beseitigen, und bei denen ein Ladeverfahren geschaffen wird, das die Betriebsdauer eines elektrisch betriebenen Fahrzeugs erheblich erhöht.

Zur Lösung dieser Aufgabe führt, daß der mindestens eine Batterieset wahlweise oder gleichzeitig beim Betrieb des Fahrzeugs geladen wird.

In einem bevorzugten Ausführungsbeispiel der vorliegenden Erfindung sind beispielsweise mehrere Batterien zu einem Batterieset zusammengefaßt. Dabei können mehrere Sets in einem Fahrzeug integriert sein. Um ein gleichzeitiges Laden und eine Stromentnahme zu ermöglichen, sind mehrere Batteriesets vorgesehen, die über entsprechende Regler gemeinsam oder wahlweise aufgeladen werden können.

In einem Fahrzeug ist ein elektrischer Antrieb vorgesehen, der dieses in Bewegung setzt. Der elektrische Antrieb wird über Batteriesets gespeist. Ferner ist ein Elektromotor vorgesehen, der mit einer Lichtmaschine bzw. mit einem Stromerzeuger verbunden ist sowie mit einem Regler in Verbindung steht, an den die Batteriesets angeschlossen sind. Der Regler ermöglicht das wahlweise Aufladen der Batteriesets, wobei jedoch auch ein gleichzeitiges Aufladen der Batteriesets möglich ist.

Ferner ist an diesen Regler auch der elektrische Antrieb angeschlossen, der durch diesen Regler geschaltet und von den Batteriesets betrieben wird. Während der elektrische Antrieb in Betrieb gesetzt wird, besteht die Möglichkeit, über den Regler ein oder mehrere Batteriesets zuzuschalten, um die elektrische Antriebsleistung entsprechend zu erhöhen.

Der Elektromotor wird von einer Mehrzahl von Generatoren angetrieben, die an jedem Rad bzw. an jeder Achse der Räder des Fahrzeugs angeordnet sind und während der Fahrt zusätzlich Strom an den Elektromotor abgeben. Dort wird die Lichtmaschine zur Erzeugung eines Ladestroms angetrieben.

In einem weiteren Ausführungsbeispiel der vorliegenden Erfindung ist daran gedacht, über Wirbelstrombremsen, die in dem Fahrzeug vorgesehen sind, zusätz-

lich Strom beim Bremsen zu erzeugen, der zum Aufladen von zumindest einem Batterieset verwendet werden kann. Dabei sind die Wirbelstrombremsen an einem Regler des Elektromotors angeschlossen. Der Strom wird vom Regler dem Elektromotor zugeführt, der wiederum zumindest einen Stromerzeuger antreibt, der mit zumindest einem Regler verbunden ist. Jedem Stromerzeuger des Elektromotors ist ein Regler zugeordnet, die dann an die Batteriesets angeschlossen sind. Die Regler der Stromerzeuger stehen über eine Leitung direkt mit den Batteriesets in Verbindung, so daß ein Aufladen des einen oder anderen Batteriesets oder auch ein gleichzeitiges Aufladen beider Batteriesets möglich ist.

Eine besonders wirkungsvolle Ausgestaltung der Erfindung ist dann gegeben, wenn die Regler der Stromerzeuger mit dem Regler der Antriebseinheit verbunden sind, wobei dadurch ein Regeln des Ladevorgangs exakt steuerbar ist.

Ebenfalls ist der Regler des Elektromotors mit dem Regler der Antriebseinheit über eine Signalleitung verbunden.

Im Rahmen der Erfindung sollen jedoch auch andere Möglichkeiten neben der Wirbelstrombremse liegen, um dem System Energie zuzuführen. Es ist daran gedacht, daß beispielsweise über Solarzellen, die ggf. auf dem Dach angebracht sein können, Energie dem Elektromotor und damit den Stromerzeugern zugeführt werden kann, wobei hier wieder ein Ladestrom für entsprechende Batterien erzeugt wird.

Ein weiterer Vorteil der vorliegenden Erfindung ist, daß im Betrieb des elektrischen Antriebes eine Batterie entladen wird und weitere Batteriesets dazugeschaltet werden können, um die benötigte Leistung zu kompensieren, wobei über beispielsweise die Wirbelstrombremsen ein entladener Batterieset geladen werden kann. Sind alle Batteriesets entladen, so gibt es die Möglichkeit, den Antriebsmotor anstelle des elektrischen Antriebs dazuzuschalten und das Fahrzeug somit zu bewegen. Dabei können über die Lichtmaschine des Elektromotors, insbesondere durch den Stromerzeuger, die Batteriesets wieder aufgeladen werden.

Durch diese Möglichkeit kann das Fahrzeug sehr weite Strecken zurücklegen, wobei beispielsweise im Stadtbereich, in Wohngebieten bei geringen und sehr niedrigen Geschwindigkeiten der elektrische Antrieb sehr sparsam, leise und umweltfreundlich ist.

Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugt er Ausführungsbeispiele sowie anhand der Zeichnung; diese zeigt in

Fig. 1 eine blockschaltbildliche Darstellung eines erfindungsgemäßen Batterieladeverfahrens;

Fig. 2 eine blockschaltbildliche Darstellung eines weiteren Ausführungsbeispiels des Batterieladeverfahrens.

Gemäß Fig. 1 weist eine erfindungsgemäße Batterieladevorrichtung, insbesondere für elektrobetriebene Fahrzeuge, einen elektrischen Antrieb AE, auf. Dieser Antrieb ist in einem Fahrzeug 1 integriert und kann dieses über hier nicht gezeigte Antriebselemente antreiben.

Der elektrische Antrieb AE ist an einen Regler R über eine Leitung 3.1 angeschlossen. Neben dem elektrischen Antrieb AE ist ein Elektromotor EM mit einer Lichtmaschine LM angeordnet, die im Betrieb als Generator wirkt, um zusätzlich Strom bzw. Spannung abzugeben. Die Lichtmaschine LM des Elektromotors EM ist über eine Leitung 3.2 ebenfalls mit dem Regler R verbunden. Dabei wird der Elektromotor EM, um die Lichtmaschi-

ne LM anzutreiben, über Generatoren G1—G4 ange-trieben, die jeweils einem Rad bzw. einer Achse des Fahrzeugs 1 zugeordnet sind und während der Fahrt angetrieben werden. Die Generatoren G1—G4 speisen über eine Leitung 7.3 den Elektromotor EM, der die stark ausgelegte Lichtmaschine LM zur Stromerzeugung antriebt. Die Generatoren G1—G4 sind während der Fahrt durch Drehen der Achse oder des Rades immer in Betrieb.

An den Regler R schließen sich Leitungen 4.1 und 4.2 an, die jeweils zu einem Batterieset B₁, B₂ führen.

Das Batterieset B₁, B₂ kann aus mehreren hintereinander oder parallel geschalteten einzelnen wiederauf-ladbaren Batterieblöcken bestehen, die so ausgelegt sind, daß sie den elektrischen Antrieb AE mit ausrei-chender Energie speisen.

Dabei können diese Batteriesets B₁ und B₂ gleichzei-tig oder abwechselnd, je nach Schaltung des Reglers R, den elektrischen Antrieb AE des Fahrzeugs 1 durchaus eine gewisse Zeit antreiben, so daß das Fahrzeug 1 in der Lage ist, eine bestimmte Zeit mit unterschiedlichsten Geschwindigkeiten elektrisch betrieben zu fahren.

Es liegt auch im Rahmen der Erfindung, daß diese Batteriesets B₁ und B₂ beispielsweise nachts über das zentrale Stromversorgungsnetz mittels eines Ladege-räts aufgeladen werden können.

Fährt das Fahrzeug 1, so wird über die stark ausgelegte Lichtmaschine LM des Elektromotors EM über die Leitung 3.2 und über den Regler R eine Verbindung zu Batterieset B₁ und/oder zu Batterieset B₂ hergestellt, so daß der eine oder der andere Batterieset oder beide gleichzeitig über die Lichtmaschine LM während der Fahrt aufgeladen werden können. Auch wenn beispiels-weise durch Scheinwerfer od. dgl. Strom benötigt wird, ist die Lichtmaschine LM so ausgelegt, daß diese trotzdem noch in der Lage ist, entweder den Batterieset B₁ oder B₂ oder beide gleichzeitig aufzuladen.

Der elektrische Antriebsmotor AE kann beispielswei-se von dem Batterieset B₁ über die Leitung 4.1 und über den Regler R, aber auch über die Leitung 4.2 von dem Batterieset B₂ angetrieben werden. Ist eine hohe Antriebsleistung erforderlich, so besteht die Möglichkeit, den elektrischen Antrieb AE über beide Batteriesets B₁, B₂ gleichzeitig anzutreiben. Beim Fahren des Fahrzeu-ges 1 mittels des elektrischen Antriebs AE wird der Batterieset B₁ und/oder B₂ entladen.

Dieser Antrieb eignet sich nicht nur für den im Stadt-verkehr, wo bei geringen Geschwindigkeiten der elek-trischer Antrieb AE durchaus kostengünstiger und wirt-schaftlicher arbeiten kann und vor allen Dingen umwelt-freundlicher ist. Gerade auch in Wohnvierteln und in Stadtbereichen bietet sich der elektrische Antrieb AE an, da dieser auch besonders leise und umweltfreundlich ist.

In einem weiteren Ausführungsbeispiel der Erfindung ist das Batterieladeverfahren gemäß Fig. 2 erweitert. Dabei besteht hier die Möglichkeit, einen Großteil der Energie, die beispielsweise durch Bremsen des Fahrzeu-ges 1 verloren geht, zu nutzen. Dabei sind ggfs. alle Bremsen des Fahrzeugs 1 als Wirbelstrombremsen ausgelegt, wobei die Wirbelstrombremsen eine hohe Spannung abgeben, die über Energiewandler, Konden-satoren und dgl. zu einer niedrigen Spannung umgewan-det werden kann. Von ggfs. mehreren Wirbelstrom-bremsen W₁, W₂, die über Leitungen mit einem Regler REM mit integrierten Spannungs- und Stromwandler verbunden sind, besteht die Möglichkeit, über diesen Regler REM beispielsweise einen Elektromotor EM.1 zu

betreiben, der eine oder mehrere Stromerzeuger L₁, L₂ antriebt. Von diesen führt eine Leitung 6.1 und 6.2 zu Reglern R₁ und R₂. Diese Regler R₁ und R₂ sind jeweils mit den Batteriesets B₁ und B₂ verbunden und können ggfs. die Batteriesets B₁, B₂ aufladen.

Zwischen dem Regler R₁ und dem Regler R₂ besteht eine Verbindungsleitung 7, welche die Aufgabe hat, sollte beispielsweise einer der Batteriesets B₁ und B₂ nicht aufgeladen werden, die Leitung 6.1 oder 6.2 auf die Leitung 7 zu schalten, so daß die zusätzlich von dem Stromerzeuger L₁ oder L₂ abgegebene Energie an den anderen Batterieset B₁ oder B₂ zum Aufladen abgegeben werden kann.

Durch eine entsprechende Schaltung wird ermöglicht, daß über den Regler REM der durch Wirbelstrombrem-sen W₁, W₂ induzierte Strom einen Elektromotor EM.1 antreibt, der beispielsweise über Keilriemen und sonstige Antriebeinrichtungen zumindest einen Stromerzeu-ger L₁ und/oder L₂ antreibt. Ausgehend von dem Stromerzeuger L₁, der über die Leitung 6.1 mit dem Regler R₁ verbunden ist, besteht die Möglichkeit, über diesen den Batterieset B₁ aufzuladen. Wird aber gerade dieser Batterieset B₁ zum Antreiben des elektrischen Antriebes AE verwendet, so kann der Regler R₁ diesen Ladestrom über die Leitung 7 zusätzlich dem Regler R₂ bzw. dem Batterieset B₂ zukommen lassen.

Damit Regler R, R₁, R₂ und REM Steuermeßsignale empfangen bzw. abgeben können, sind diese über Si-gnalleitungen 8, 8.1, 8.2 miteinander verbunden. So kann der Regler REM bei gleichzeitiger Belastung der Bat-teriesets B₁ und B₂ durch den Regler R über die Signallei-tung 8 die Stromzufuhr zum Laden der Batteriesets B₁, B₂ über die Stromerzeuger L₁ und L₂ ausschalten.

Ferner ist der Regler R über die Signalleitung 8.1 mit dem Regler R₁ verbunden, so daß der Regler R₁ in Ab-hängigkeit von R zugeschaltet werden kann, sollte der Batterieset B₁ geladen werden. Ist dies nicht der Fall, so gibt Regler R ein entsprechendes Signal an den Regler R₁ ab, so daß die Leitung 6.1 mit der Leitung 7 über-brückt wird und der von dem Stromerzeuger L₁ erzeug-te Strom unmittelbar dem Regler R₂ und eventuell so-mit dem Batterieset B₂ zugeführt wird. Gleicher gilt für den Regler R₂, der ebenfalls über die Signalleitung 8.2 mit dem Regler R verbunden ist.

Diese Anordnung gestattet, daß während der Fahrt auf unterschiedliche Weise mittels der Generatoren G1—G4 und/oder dem Wirbelstromkreis W₁—W₂ eine Spannung bzw. ein Strom zusätzlich erzeugt wird, der dazu verwendet werden kann, die Batteriesets B₁ und/oder B₂ mittels einer Schaltung aufzuladen, um das elek-trisch betriebene Fahrzeug 1 in dieser Weise länger zu betreiben.

Patentansprüche

1. Verfahren zum Laden von zumindest einem Bat-terieset eines elektrisch betriebenen Fahrzeugs, dadurch gekennzeichnet, daß der mindestens eine Batterieset wahlweise oder gleichzeitig beim Be-trieb des Fahrzeugs geladen wird.

2. Verfahren nach Anspruch 1, dadurch gekenn-zeichnet, daß der aus mindestens einer Batterie be-stehende Batterieset von einem Stromerzeuger ei-nes Elektromotors geladen wird, wobei der Elek-tromotor von Generatoren gespeist wird.

3. Verfahren nach Anspruch 2, dadurch gekenn-zeichnet, daß ein mit dem Stromerzeuger des Elek-tromotors verbundener Regler mit zumindest ei-

nem Batterieset verbunden und dieser über den Regler aufgeladen wird.

4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß der Regler einen elektrischen Antrieb mit Strom aus zumindest einem Batterieset versorgt, wenn der elektrische Antrieb in Betrieb gesetzt wird, wobei ein nicht unter Last stehender Batterieset gleichzeitig von einem weiteren Stromerzeuger aufgeladen wird.

5. Verfahren nach Anspruch 3 und 4, dadurch gekennzeichnet, daß über den Regler alle Batteriesets ggf. zum Betreiben des elektrischen Antriebes zugeschaltet werden.

6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß bei dem elektrisch und/oder motorbetriebene Fahrzeug eine Stromerzeugung von zumindest einer Wirbelstrombremse zum zusätzlichen Aufladen der Batteriesets genutzt wird.

7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß der an der Wirbelstrombremse erzeugte Strom einen Elektromotor antreibt, der wiederum zumindest einen Stromerzeuger betreibt, der jeweils mit einem Regler verbunden sind, und der Strom über die Regler zum Aufladen an die Batteriesets abgegeben wird.

8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Regler der Batteriesets im Zusammenwirken mit dem Regler des elektrischen Antriebes wahlweise das Aufladen der Batteriesets ermöglichen.

9. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß die Regler der Batteriesets miteinander verbunden werden, um ein wahlweises Aufladen der Batteriesets zu erlauben.

10. Vorrichtung zum Laden von zumindest einem Batterieset (B₁, B₂) eines elektrisch betriebenen Fahrzeugs (1), dadurch gekennzeichnet, daß zumindest ein Batterieset (B₁, B₂) einem elektrischen Antrieb (AE) zugeordnet ist.

11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, daß der elektrische Antrieb (AE) über eine Leitung (3.1) mit einem Regler (R) verbunden ist.

12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, daß an den Regler (R) ein Elektromotor (EM) mit einem Stromerzeuger (L_M) angeschlossen ist, wobei der Stromerzeuger (L_M) mit dem Regler (R) über eine Leitung (3.2) verbunden ist.

13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, daß an den Elektromotor (EM) über eine Leitung (3.3) eine Mehrzahl von Generatoren (G₁, G₂, G₃, G₄) angeschlossen sind, die von Rädern und/oder Achsen des Fahrzeugs (1) betrieben werden.

14. Vorrichtung nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, daß mit dem Regler (R) der zumindest eine Batterieset (B₁, B₂) über Leitungen (4.1, 4.2) verbunden ist.

15. Vorrichtung nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, daß der Regler (R) wahlweise oder gleichzeitig einen von dem Stromerzeuger (L_M) erzeugten Strom an den Batterieset (B₁ und/oder B₂) als Ladestrom abgibt.

16. Vorrichtung nach einem der Ansprüche 12 bis 15, dadurch gekennzeichnet, daß zum Betreiben des elektrischen Antriebes (AE) der Regler (R) Strom

von zumindest einem Batterieset (B₁, B₂) an den elektrischen Antrieb (AE) weiterleitet.

17. Vorrichtung nach einem der Ansprüche 10 bis 16, dadurch gekennzeichnet, daß zumindest eine Wirbelstrombremse (W₁, W₂) mit einem Regler (REM) verbunden ist, wobei der Regler (REM) mit einem Elektromotor (EM-1) in Verbindung steht.

18. Vorrichtung nach Anspruch 17, dadurch gekennzeichnet, daß der Elektromotor (EM-1) zumindest einen Stromerzeuger (L₁, L₂) antreibt, der über zumindest eine Leitung (6.1, 6.2) mit zumindest einem Regler (R₁, R₂) an zumindest einem Batterieset (B₁, B₂) verbunden ist.

19. Vorrichtung nach Anspruch 18, dadurch gekennzeichnet, daß der Regler (R₁) über eine Leitung (7) mit dem Regler (R₂) verbunden ist.

20. Vorrichtung nach Anspruch 18 und 19, dadurch gekennzeichnet, daß der Regler (R₁) über eine Signalleitung (8.1) mit dem Regler (R) und der Regler (R₂) über eine Signalleitung (8.2) ebenfalls mit dem Regler (R) in Verbindung steht.

21. Vorrichtung nach wenigstens einem der Ansprüche 12 bis 20, dadurch gekennzeichnet, daß der Regler (R) über eine Signalleitung (8) mit dem Regler (REM) verbunden ist.

22. Vorrichtung nach einem der Ansprüche 10 bis 21, dadurch gekennzeichnet, daß der von Wirbelstrombremsen (W₁, W₂) erzeugte Strom über den Elektromotor (EM) und zumindest einen Stromerzeuger (L₁, L₂) entweder dem Batterieset (B₁) und/oder dem Batterieset (B₂) als Ladestrom zuführbar ist.

23. Vorrichtung nach einem der Ansprüche 10 bis 22, dadurch gekennzeichnet, daß der Batterieset (B₁, B₂) aus wenigstens einem Batterieblock besteht.

Hierzu 2 Seite(n) Zeichnungen

Fig. 1

Fig. 2