Lista 1

Łukasz Magnuszewski

25 lutego 2023

1	2	3	4	5	6	7
-	-	+	-	-	-	+

Zadanie 1

Zbiór spójników $\{\land, \neg\}$ jest funkcjonalnie pełny, więc wystarczy przedstawić te spójniki przy pomocy kreski Sheffera.

$$\neg \alpha \stackrel{\text{def}}{=} \alpha | \alpha$$

Teraz używając negacji

$$\alpha \wedge \beta \stackrel{\mathsf{def}}{=} \neg (\alpha | \beta)$$

Zadanie 2

Mamy następujący zbiór aksjomatów

$$\{p \to q \lor r, \neg q \to s, s \land p \to \neg r\}$$

A naszym celem jest $r \to \neg s \lor \neg p$. Poniżej jest dowód w notacji sekwentowej

naszym celem jest
$$r \to \neg s \lor \neg p$$
. Poniżej jest dowód w notacji sekwentowej
$$\frac{ \overline{\neg (\neg s \lor \neg p) \vdash \neg (\neg s \lor \neg p)}}{ \overline{\neg (\neg s \lor \neg p) \vdash s \land p}} \stackrel{\text{(Ass)}}{\text{(De Morgan)}} \frac{\overline{s \land p \to \neg r}}{\overline{s \land p \to \neg r}} \stackrel{\text{(Ax)}}{(\to E)} \frac{\overline{r \vdash r}}{\overline{r \vdash r}} \stackrel{\text{(Ass)}}{(\neg E)} \frac{\overline{r \vdash \neg s \lor \neg p}}{\overline{\vdash r \to \neg s \lor \neg p}} \stackrel{\text{(AAA)}}{(\to I)}$$

Zadanie 3

Wprowadźmy następujące oznaczenia:

 $p \stackrel{\text{\tiny def}}{=} \text{oskarżony jest winny}$

 $q \stackrel{\text{\tiny def}}{=}$ oskarżony miał wspólnika

Wtedy wypowiedź oskarżyciela można zapisać jako

$$p \rightarrow q$$

zaś obrońcy jako

$$\neg (p \rightarrow q)$$

co jest równoważne

$$p \wedge \neg q$$

Czyli twierdzi on że oskarżony jest winny, oraz nie miał wspólnika. Co raczej nie zapowiada zbyt krótkiego wyroku. 🖐

Zadanie 4

A)

$$\frac{\alpha \wedge \psi \vdash \alpha \wedge \psi}{\alpha \wedge \psi \vdash \psi} \stackrel{(Ass)}{(\wedge E_2)} \frac{\alpha \wedge \psi \vdash \alpha \wedge \psi}{\alpha \wedge \psi \vdash \alpha} \stackrel{(Ass)}{(\wedge I)} \frac{\psi \wedge \alpha \vdash \psi \wedge \alpha}{\psi \wedge \alpha \vdash \alpha} \stackrel{(Ass)}{(\wedge E_1)} \frac{\psi \wedge \alpha \vdash \psi \wedge \alpha}{\psi \wedge \alpha \vdash \alpha \wedge \psi} \stackrel{(Ass)}{(\wedge E_1)} \frac{\psi \wedge \alpha \vdash \psi \wedge \alpha}{\psi \wedge \alpha \vdash \alpha \wedge \psi} \stackrel{(Ass)}{(\wedge I)}$$

B)

$$\frac{}{(\alpha \wedge \psi) \wedge \sigma \iff \alpha \wedge (\psi \wedge \sigma)} (\iff I)$$

Zadanie 7

Niech α będzie formułą rachunku zdać. Niech $L(\alpha)$ i $P(\alpha)$ oznaczają odpowiednio liczbę lewych i prawych nawiasów w formule α . Udownijmy że dla każdej formuły zdaniowej $L(\alpha)=P(\alpha)$.

Przeprowadźmy dowód przez indukcję strukturalną:

1. Zmienne zdaniowe

Ustalmy dowolną zmienną zdaniową p, wtedy L(p) = 0 = P(p).

2. ⊤, ⊥

$$L(\bot) = 0 = P(\bot) \text{ oraz } L(\top) = 0 = P(\top)$$

3. Negacja

Ustalmy dowolną formułę α taką że $P(\alpha) = L(\alpha)$, wtedy

$$P((\neg \alpha)) = P(\alpha) + 1 \stackrel{\text{ind}}{=} L(\alpha) + 1 = L((\neg \alpha))$$

4. Koniunkcja

Ustalmy dowolne formuły α, β takie że $P(\alpha) = L(\alpha)$ oraz $P(\beta) = L(\beta)$, wtedy

$$P((\alpha \land \beta)) = P(\alpha) + P(\beta) + 1 \stackrel{\text{ind}}{=} L(\alpha) + L(\beta) + 1 = L((\alpha \land \beta))$$

Dowód dla pozostałych przypadków(impikacja, alternatywa, równoważność) analogiczny do tego dla koniunkcji 🖐

Zadanie 5

$$(RAA) \rightarrow (\neg \neg)$$

By to pokazać nastepującą formułe $\neg \neg \alpha \rightarrow \alpha$

$$\frac{\neg \alpha \vdash \neg \alpha}{\neg \alpha \vdash \neg \alpha} \stackrel{(Ass)}{\xrightarrow{\neg \alpha \vdash \neg \neg \alpha}} \stackrel{(Ass)}{\stackrel{(\neg \alpha)}{\xrightarrow{\neg \alpha}} \vdash \alpha} \frac{\neg \alpha \vdash \alpha}{\neg \alpha \rightarrow \alpha} \stackrel{(Ass)}{\xrightarrow{\neg \alpha}} \stackrel{(Ass$$

$$(\neg\neg) \to (TND)$$