Maximizing Resolution with DADA2 and Long-read Amplicon Sequencing

Strategy: Build Consensus from Multiple Reads of a Long DNA Molecule

Strategy: Build Consensus from Multiple Reads of a Long DNA Molecule

PacBio HiFi Sequencing

Strategy: Build Consensus from Multiple Reads of a Long DNA Molecule

PacBio HiFi Sequencing

Element Biosciences Synthetic Long Reads (SLRs)

Distribute UMI throughout long DNA molecule

Short-read sequencing

Consensus assembly

100%

HA Long Reads

Accuracy

LONGREADS

Read Length (kb)

50

Short Reads (Illumina)

Read length: ~250 nts

Per-base error-rate: 0.1 - 0.5%

Long Reads (PacBio, Oxford)

Read length: 1 - 200 kilobases

Per-base error-rate: 2 - 10%

HA Long Reads (HiFi, LoopSeq)

Read length: 1 - 20 kilobases

Per-base error-rate: < 0.1%

Highly-accurate long reads are effectively a new sequencing technology.

But do they really

But do they really work for amplicon sequencing?

HA Long Reads (HiFi, LoopSeq)

Read length: 1 - 20 kilobases

Per-base error-rate: < 0.1%

Zymo Mock Community

- Pseudomonas aeruginosa
- Escherichia coli
- Salmonella enterica
- Lactobacillus fermentum
- Enterococcus faecalis
- Staphylococcus aureus
- Listeria monocytogenes
- Bacillus subtilis

Zymo Mock Community

- Pseudomonas aeruginosa
- Escherichia coli
- Salmonella enterica
- Lactobacillus fermentum
- Enterococcus faecalis
- Staphylococcus aureus
- Listeria monocytogenes
- Bacillus subtilis

PacBio

HiFi +

DADA2

Zymo Mock Community

- Pseudomonas aeruginosa
- Escherichia coli
- Salmonella enterica
- Lactobacillus fermentum
- Enterococcus faecalis
- Staphylococcus aureus
- Listeria monocytogenes
- Bacillus subtilis

Full-length 16S Sequence Variants

Zymo Mock Community

- Pseudomonas aeruginosa
- Escherichia coli
- Salmonella enterica
- Lactobacillus fermentum
- Enterococcus faecalis
- Staphylococcus aureus
- Listeria monocytogenes
- Bacillus subtilis

Zymo Mock Community

8 Bacterial Strains at nominally equal concentrations

- Pseudomonas aeruginosa
- Escherichia coli
- Salmonella enterica
- Lactobacillus fermentum
- Enterococcus faecalis
- Staphylococcus aureus
- Listeria monocytogenes
- Bacillus subtilis

Enterococcus

Bacillus

Full-length 16S Sequence Variants

Escherichia

Lactobacillus

^{*} Modestly modified workflow for long-read amplicon sequencing.

Validating Highly-Accurate Long-Read Amplicon Seq

PacBio HiFi

High-throughput amplicon sequencing of the fulllength 16S rRNA gene with single-nucleotide resolution 3

Benjamin J Callahan ™, Joan Wong, Cheryl Heiner, Steve Oh, Casey M Theriot, Ajay S Gulati, Sarah K McGill, Michael K Dougherty

Nucleic Acids Research, Volume 47, Issue 18, 10 October 2019, Page e103, https://doi.org/10.1093/nar/gkz569

Published: 03 July 2019 Article history ▼

LoopSeq

Ultra-accurate microbial amplicon sequencing with synthetic long reads

Benjamin J. Callahan ™, Dmitry Grinevich, Siddhartha Thakur, Michael A. Balamotis & Tuval Ben Yehezkel

Microbiome 9, Article number: 130 (2021) | Cite this article
 5717 Accesses | 11 Citations | 44 Altmetric | Metrics

Validating Highly-Accurate Long-Read Amplicon Seq

PacBio HiFi

High-throughput amplicon sequencing of the fulllength 16S rRNA gene with single-nucleotide resolution 3

Benjamin J Callahan ™, Joan Wong, Cheryl Heiner, Steve Oh, Casey M Theriot, Ajay S Gulati, Sarah K McGill, Michael K Dougherty

Nucleic Acids Research, Volume 47, Issue 18, 10 October 2019, Page e103, https://doi.org/10.1093/nar/gkz569

Published: 03 July 2019 Article history ▼

LoopSeq

Ultra-accurate microbial amplicon sequencing with synthetic long reads

Benjamin J. Callahan ™, Dmitry Grinevich, Siddhartha Thakur, Michael A. Balamotis & Tuval Ben Yehezkel

Microbiome 9, Article number: 130 (2021) | Cite this article5717 Accesses | 11 Citations | 44 Altmetric | Metrics

Highly-accurate long reads are effectively a new sequencing technology.

But do they really work for amplicon sequencing?

Validating Highly-Accurate Long-Read Amplicon Seq

PacBio HiFi

High-throughput amplicon sequencing of the fulllength 16S rRNA gene with single-nucleotide resolution 3

Benjamin J Callahan ™, Joan Wong, Cheryl Heiner, Steve Oh, Casey M Theriot, Ajay S Gulati, Sarah K McGill, Michael K Dougherty

Nucleic Acids Research, Volume 47, Issue 18, 10 October 2019, Page e103, https://doi.org/10.1093/nar/gkz569

Published: 03 July 2019 Article history ▼

LoopSeq

Ultra-accurate microbial amplicon sequencing with synthetic long reads

Benjamin J. Callahan ™, Dmitry Grinevich, Siddhartha Thakur, Michael A. Balamotis & Tuval Ben Yehezkel

Microbiome 9, Article number: 130 (2021) | Cite this article
5717 Accesses | 11 Citations | 44 Altmetric | Metrics

Highly-accurate long reads are effectively a new sequencing technology.

But do they really work for amplicon sequencing?

Yes!

Multiple technologies
Out to 6+ kilo bases
>99.9% accuracy

We support long-read amplicon sequencing!

We support long-read amplicon sequencing!

We support long-read amplicon sequencing!

Long-read specific documentation

PacBio HiFi: https://github.com/benjjneb/LRASmanuscript

LoopSeq: https://github.com/benjjneb/LoopManuscript

PacBio at scale: Revio and Kinnex

Sequencing instrument

- Higher throughput
- Lower costs
- Binned quality scores

PacBio at scale: Revio and Kinnex

Sequencing instrument

- Higher throughput
- Lower costs
- Binned quality scores

Library preparation

- Higher throughput
- Lower costs
- Lower quality (16S)

PacBio at scale: Revio and Kinnex

Sequencing instrument

- Higher throughput
- Lower costs
- Binned quality scores

Library preparation

- Higher throughput
- Lower costs
- Lower quality (16S)

Updated methods and guidance for DADA2 worfklow (in progress)

Pseudo-Pooling

Pseudo-Pooling

2. DETECT_SINGLETONS=TRUE

Pseudo-Pooling

2. DETECT_SINGLETONS=TRUE

3. Long-read specific parameters.

Full-length 16S from Zymo mock community

Full-length 16S from Zymo mock community

Full-length 16S from human fecal samples

Full-length 16S from human fecal samples

Full-length 16S from retail meat samples

Full-length 16S from retail meat samples

Full genomic complement of 16S alleles

Limitations

- PCR Biases
- PCR Length Scaling (past ~5 kilo bases)
- Cost-per-base
- Chimeras
- Tooling (especially sub-species assignment)
- •

Limitations

- PCR Biases
- PCR Length Scaling (past ~5 kilo bases)
- Cost-per-base (big improvements recently!)
- Chimeras
- Tooling (especially sub-species assignment)

• . . .

3 | Computational Biology | Research Article

Serovar-level identification of bacterial foodborne pathogens from full-length 16S rRNA gene sequencing

Dmitry Grinevich, Lyndy Harden, Siddhartha Thakur, Benjamin Callahan 1,2

Dmitry Grinevich

Sid Thakur and lab

National Institute of Food and Agriculture

Acknowledgements

Bioinformatics

Susan Holmes Joey McMurdie Michael Rosen **Dmitry Grinevich**

Applications

Dmitry Grinevich Casey Theriot Siddhartha Thakur

Technology (PacBio)

Joan Wong Cheryl Heiner Steve Oh

Technology (Loop Genomics)

Tuval Ben Yehezkel Michael Balamotis

