

Protection device

TVS (transient voltage suppressor)
Bi-directional, 5.5 V, 0.1 pF, 0201, 0402, RoHS and halogen free compliant

Features

- ESD/transient protection of high speed data lines according to:
 - IEC61000-4-2 (ESD): ±14 kV (air), ±12 kV (contact)
 - IEC61000-4-4 (EFT): ±1.5 kV/±30 A (5/50 ns)
 - IEC61000-4-5 (surge): ±2 A (8/20 μs)
- Bi-directional working voltage up to: $V_{RWM} = \pm 5.5 \text{ V}$
- Extremely low capacitance $C_L = 0.1 \text{ pF (typical)}$ at f = 1 GHz
- Clamping voltage: $V_{CL} = 30 \text{ V (typical)}$ at $I_{TLP} = 16 \text{ A with } R_{DYN} = 1.5 \Omega \text{ (typical)}$
- Very low reverse current: I_R < 0.1 nA
- Small form factor SMD sizes 0201 and 0402 low profile
- Bi-directional and symmetric I/V characteristics for optimized design/assembly

Potential applications

Tailored for ESD protection of capacitance-susceptible application like:

- Super high speed interface
- RF antenna

For further application information please refer to application note AN327 [3].

Product validation

Qualified for industrial applications according to the relevant tests of JEDEC47/20/22

Device information

Figure 1 Pin configuration and schematic diagram

Table 1 Part information

Type Package		Configuration	Marking code
ESD101-B1-02ELS	TSSLP-2-4	1 line, bi-directional	<u>R</u>
ESD101-B1-02EL	TSLP-2-20	1 line, bi-directional	R

Protection device

Table of contents

Table of contents

	Features	1
	Potential applications	1
	Product validation	1
	Device information	1
	Table of contents	2
1	Maximum ratings	3
2	Electrical characteristics	
3	Typical characteristic diagrams	6
4	Package information	11
4.1	TSSLP-2-4	
4.2	TSLP-2-20	12
5	References	13
	Revision history	13
	Disclaimer	14

Protection device

Maximum ratings

1 Maximum ratings

Note: $T_A = 25$ °C, unless otherwise specified

Table 2 Maximum ratings

Parameter	Symbol	Values	Unit	Note or test condition
ESD air discharge 1)	V _{ESD}	±14	kV	_
ESD contact discharge 1)		±12		
Peak pulse power	P _{PK}	30	W	_
Peak pulse current ²⁾	I _{PP}	±2	Α	-
Operating temperature	T _{OP}	-55 to 125	°C	_
Storage temperature	$T_{\rm stg}$	-65 to 150	°C	-

Attention: Stresses above the maximum values listed here may cause permanent damage to the device.

Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings. Exceeding only one of these values may cause irreversible damage to the component.

 $^{^{1}}$ $V_{\rm ESD}$ according to IEC61000-4-2

Non-repetitive current pulse 8/20 μs exponential decay waveform according to IEC61000-4-5

infineon

Electrical characteristics

2 Electrical characteristics

Note: $T_A = 25$ °C, unless otherwise specified.

Device is electrically symmetrical.

Figure 2 Definitions of electrical characteristics

Protection device

Electrical characteristics

Table 3 **DC** characteristics

Parameter	Symbol	Values			Unit	Note or test condition
		Min.	Тур.	Max.		
Reverse current	I _{RWM}	-5.5	-	5.5	V	
Trigger voltage ¹⁾	V _{t1}	6.1	_	_		
Holding voltage	V_{h}	6.1	7.3	8.2		I _T = 1 mA
		6.1	7.0	7.9		I _T = 10 mA
Reverse leakage current	I _R	_	<0.1	20	nA	V _R = 5.5 V

AC characteristics Table 4

Parameter	Symbol	Values			Unit	Note or test condition
		Min.	Тур.	Max.		
Line capacitance	CL	_	_	0.2	pF	$V_{R} = 0 \text{ V}, f = 1 \text{ MHz}$
		_	0.1	_		$V_{R} = 0 \text{ V}, f = 1 \text{ GHz}$
Serie inductance	L _S	_	0.2	_	nH	ESD101-B1-02ELS
		_	0.4	_		ESD101-B1-02EL

Table 5 **ESD** and surge characteristics

Parameter	Symbol	Values			Unit	Note or test condition
		Min.	Тур.	Max.		
Clamping voltage ²⁾	V_{CL}	_	18	_	V	$I_{\text{TLP}} = 8 \text{ A}, t_{\text{p}} = 100 \text{ ns}$
		_	30	_		$I_{\text{TLP}} = 16 \text{ A}, t_{\text{p}} = 100 \text{ ns}$
Clamping voltage ³⁾		_	9	_		$I_{PP} = 1 \text{ A}, t_p = 8/20 \mu\text{s}$
		_	13	_		$I_{PP} = 2 \text{ A}, t_p = 8/20 \mu\text{s}$
Dynamic resistance 2)	R_{DYN}	_	1.5	_	Ω	t _p = 100 ns
		_				

¹ Verified by design

²

Please refer to application note AN210 [1], TLP parameters: Z_0 = 50 Ω , t_p = 100 ns, t_r = 300 ps Non-repetitive current pulse 8/20 μ s exponential decay waveform according to IEC61000-4-5 3

Typical characteristic diagrams

3 Typical characteristic diagrams

Note: $T_A = 25$ °C, unless otherwise specified

Figure 3 Reverse leakage current: $I_R = f(V_R)$

Figure 4 Line capacitance: $C_L = f(V_R)$, f = 1 GHz

Typical characteristic diagrams

Figure 5 Clamping voltage (ESD): $V_{CL} = f(t)$, 8 kV positive pulse from pin 1 to pin 2

Figure 6 Clamping voltage (ESD): $V_{CL} = f(t)$, 8 kV negative pulse from pin 1 to pin 2

Typical characteristic diagrams

Figure 7 Clamping voltage (TLP): $I_{TLP} = f(V_{TLP})$ [1], pin 1 to pin 2

Typical characteristic diagrams

9

Figure 8 Clamping voltage (Surge): $I_{PP} = f(V_{CL})$ [1], pin 1 to pin 2

Typical characteristic diagrams

Figure 9 Insertion loss vs. frequency in a 50 Ω system

Package information

Package information 4

4.1 TSSLP-2-4

Note: Dimension in mm

Figure 10 TSSLP-2-4 package outline

Figure 11 TSSLP-2-4 footprint

Figure 12 TSSLP-2-4 packing

Figure 13 TSSLP-2-4 marking example

Package information

4.2 TSLP-2-20

Note: Dimension in mm

Figure 14 TSLP-2-20 package outline

Figure 15 TSLP-2-20 footprint

Figure 16 TSLP-2-20 packing

Figure 17 TSLP-2-20 marking example

Protection device

References

5 References

- [1] Infineon AG **Application Note AN210**: Effective ESD protection design at system level using VF-TLP characterization methodology
- [2] Infineon AG Recommendations for PCB Assembly of Infineon TSLP/TSSLP/TSNP Packages
- [3] Infineon AG **Application Note AN327**: ESD101-B1/ESD103-B1, Bi-directional Ultra Low Capacitance Transient Voltage Suppression Diodes for High Power RD Applications

Revision history

Revision history: Rev. 1.3. 2015-07-13						
Page or Item	Subjects (major changes since previous revision)					
Revision 1.4, 2017-10-27						
All	Datasheet layout changed					
	Table 3 updated					

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2017-10-26 Published by Infineon Technologies AG 81726 Munich, Germany

© 2017 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document?

 ${\bf Email: erratum@infineon.com}$

Document reference IFX-bvo1508924672557

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury