ABSTRACT

The present invention provides a method for producing an optically active β -hydroxy ester compound represented by the general formula:

$$R^4$$
 R^5 CO_2R^3 (III)

wherein

20

R¹ represents an optionally substituted hydrocarbon group and the like,

 R^2 represents a nitrogen-containing heterocyclic group different from R^1 , which is represented by the general formula:

wherein the ring may be substituted and the like,

 $$\rm R^3$$ represents an optionally substituted hydrocarbon group $$\rm 15$$ and the like,

 $\mbox{\ensuremath{R^4}}$ and $\mbox{\ensuremath{R^5}}$ represent, the same or different, a hydrogen atom, a halogen atom and the like,

the symbol "*" represents an optically active center, which comprises reacting in the presence of a cinchona alkaloid and the like a compound represented by the general formula:

wherein ${\ensuremath{R}}^1$ and ${\ensuremath{R}}^2$ are as defined above with a compound represented by the general formula:

$$X \xrightarrow{\mathbb{Z}_{n}^{4} \mathbb{R}^{5}} \mathbb{CO}_{2}\mathbb{R}^{3}$$
 (II)

5 wherein R^3 , R^4 and R^5 are as defined above, and X is a halogen atom.