A probabilistic approach for estimating monthly catchment water balances from satellite and ground data

Gerrit Schoups

Delft University of Technology

Goal

 Estimate monthly basin water balance terms from data and water balance constraints

$$S_t = S_{t-1} + P_t - E_t - Q_t$$

- *S* is storage
- *P* is precipitation
- *E* is evaporation
- Q is river discharge

Overview

Data

- Off-the-shelf monthly data for each water balance term
- Period: 2006-2015; 346 MOPEX basins

Model

- Monthly water balance constraints
- Parameterized systematic and random data errors
- Joint Bayesian estimation of water balance terms and error parameters

Results

- How accurate are estimates of monthly basin-scale water balance terms?
- How large are systematic and random data errors?
- Any relation to basin characteristics?

MOPEX basins

Basin sizes: 60 – 10,000 km²

Monthly data

	Source	Туре	Spatial resolution
Precipitation	TRMM-B43	Satellite + ground	0.25°
Evaporation	SSEBop	Satellite	0.01°
River discharge	USGS stream gauges	Ground	Basin
Storage	GRACE	Satellite	1.0°

Time period: 2006-2015

Spatial scaling

Cumulative water balance error (mm)

Probabilistic model

 Systematic and random deviations between true and observed water balance terms

$$X^{true} \sim N(fX^{obs}, \sigma^2)$$

constant noise

$$X^{true} \sim N(fX^{obs}, (fX^{obs}CV)^2)$$

proportional noise

- *f* is scaling factor (multiplicative bias)
- σ is standard deviation
- CV is coefficient of variation

Probabilistic model: parameters

	Noise parameter	Prior (mode, CV)	Bias parameter	Prior (mode, CV)
Evaporation	CV_E	Gam(0.3, 0.9)	f_E	Gam(1, 0.9)
Storage	$\sigma_{\!S}$	Gam(30, 0.9)	f_{S}	Gam(1, 0.9)
River discharge	CV_Q	Gam(0.1, 0.4)	f_Q	$\delta(1.0)$
Precipitation	$\sigma_P = (1 - w)\sigma_{trmm}^{nc} + w\sigma_{trmm}^{pc}$ $w \sim U(0,1)$		f_P	$\delta(1.0)$

- TRMM and stream gauge data: assume unbiased
- Six parameters to be estimated

Solving the model

- Compute posterior distributions of
 - <u>parameters</u>: how large are systematic and random data errors?
 - water balance terms: how accurately can each be estimated?
- Methods
 - Sampling (MCMC) for <u>parameters</u>
 - Kalman smoothing for <u>water balance terms</u>

How large are **SSEBop** data errors?

parameter posteriors – basin 03451500

How large are **GRACE** data errors?

parameter posteriors – basin 03451500

How large are **Q** & **P** data errors?

parameter posteriors – basin 03451500

How accurately can **S** be estimated?

How accurately can **E** be estimated?

How reliable are these results?

- Model checking
 - compare model-predicted data to actual data
 - residual plots

Model-predicted **GRACE** data

Residual plots for S

should look Gaussian

should look random

Model-predicted **SSEBop** data

Residual plots for *E*

should look Gaussian

should look random

SSEBop multiplicative bias: all basins

SSEBop relative error: all basins

GRACE multiplicative bias: all basins

GRACE absolute error: all basins

To be continued...

- Figure out spatial patterns
- More / better data
 - P, E: compare/combine multiple data products
 - S: use higher resolution GRACE data
- Better error models
 - Q: rating curve error analysis
 - E: non-Gaussian, seasonal bias/noise
 - temporal correlation?