

产品概述

HX6610S 一款完整的单节锂离子电池充电器,带电池正负极反接保护,采用恒定电流/恒定电压线性控制。只需较少的外部元件数目使得 HX6610S 便携式应用的理想选择。HX6610S 可以适合 USB 电源和适配器电源工作。

由于采用了内部 PMOSFET 架构,加上防倒充电路,所以不需要外部检测电阻器和隔离二极管。热反馈可对充电电流进行自动调节,以便在大功率操作或高环境温度条件下对芯片温度加以限制。充电电流可通过一个电阻器进行外部设置。当电池达到 Vfloat (典型值 4.22V)之后,充电电流降至设定值 1/10,HX6610S 将自动终止充电。

当输入电压(交流适配器或 USB 电源)被拿掉时, HX6610S 自动进入一个低电流状态,电池漏电流在 3uA 以下。 HX6610S 的其他特点包括充电电流监控器、欠压闭锁、自动再充电和两个用于指示充电结束和输入电压接入的状态引脚。

主要特点

- 预设 4.22V±1%充电电压;
- 充电电压外部可调,最高可接近输入电压;
- 涓流/恒流/恒压三段式充电, 充电电流外部可调, 最大充电电流可达 1A;
- 最大输入电压: 7V;
- 支持对 0V 电池充电:
- 待机电流小于 1uA;
- 短路保护功能;
- OVP 保护功能,输入高于 6.2V,停止充电
- BAT-VDD 电压防倒灌功能;
- 电池正负极反接保护,避免电池极性接反烧毁芯片;
- 智能温控技术, 充电电流会随温度升高而降低, 在不会出现过热保护的前提下输出最大充电电流;
- 软启动限制了浪涌电流:
- 可直接从USB 端口给单节锂离子电池充电;
- 自动再充电;
- 支持 1 灯模式和两灯模式;
- 高度集成,极少的外围元器件;
- ESOP-8 (HX6610S) 和DIP-8 (HX6610D) 两种封装

原理图

引脚定义

	引脚名	引脚	功能说明
	BAT	1	电池正极
BAT VDD 8	Varoa	2	空载电压调整引脚: 1、R2不接时, Vfloat =4.22V
	Vprog		2、通过设置R2阻值,根据使用需求设置浮充门槛电压
² Vprog STDBY ⁷	GND	3	电源负极(地端)
3 GND CHRG 6	СТ	4	充满延时设定 (不需要延时转灯可不接)
4 CT Iprog 5	Iprog	5	充电电流调整引脚
	CHRG	6	充电指示灯引脚
	STDBY	7	饱和指示灯引脚
	VDD	8	电源正极

电路内部结构框图

电气特性参数

(除特殊说明外, 所有参数均在室温下测得, 并以 GND 端电位为 0 电位)

符号	特性	测试条件	单位	Min	Тур	Max
VIN	输入电压范围		V	4.5		6
VIN 掉电监 测	VIN 从低到高	Vin>BAT	mV	_	100	_
	VIN 从高到低	Vin>BAT	mV	_	30	_
Vfloat	浮充门槛电压	VDD=5V,R2 不接	V	4.18	4.22	4.26
Vovp	输入过电压保护		V		6.2	
lbat	BAT 倒灌电流	Vcc=3.5V, Vbat=4.2V	uA	_	±0.5	±5
		Vcc=0V, R2 不接	u, (_	_	1
VTRKL	涓流转恒流	VBAT 从低到高	V	_	2.8	_
VTRHYS	涓流充电迟滞电压		mV	_	100	_
VUV	Vcc 欠压闭锁门限	Vcc 从低到高	V	_	3.7	_
VUVHYS	Vcc 欠压闭锁迟滞		mV	_	200	_
Vmsd	手动停机门限电压		V	_	1.2	_
VmsdHYS	手动停机迟滞电压		mV	_	50	_
Vprog1	涓流时 PROG 电压		V	_	0.1	_
Vprog2	大电流时PROG 电压		V	_	1	_
OTR	过温恢复(恒温模式)	VDD=5V	$^{\circ}$ C		130	_

应用信息

正常充电循环

当 Vcc 引脚电压升至 UVLO 门限电平以上且在 PROG 引脚与地之间连接了一个精度为 1%的设定电阻器或当一个电池与充电器输出端相连时,一个充电循环开始。如果 BAT 引脚电平低于 2.8V,则充电器进入涓流充电模式。在该模式中, HX6610S 提供约 1/10 的设定充电电流,以便将电流电压提升至一个安全的电平,从而实现满电流充电。 当BAT 引脚电压升至 2.8V 以上时,充电器进入恒定电流模式,此时向电池提供恒定的充电电流。当 BAT 引脚电压达到最终浮充电压(典型值 4.22V)时, HX6610S 进入恒定电压模式,且充电电流开始减小。当充电电流降至设定值的 1/10,充电循环结束。

充电电流的设定

充电电流是采用一个连接在 PROG 引脚与地之间的电阻器来设定的。设定电阻器和充电电流采用下列

公式来计算:根据需要的充电电流来确定电阻器阻值,公式一:R = Ibat 例一:当需要设置充电电流为 IBAT

1200

=0.2A 时,采用公式一计算得: $R = 0.2 = 6000 \Omega$ 即 $RPROG = 6k\Omega$ 。最大充电电流可设置到 1A,但在大于 0.5A 应用中,芯片热量相对较大,温度保护会减小充电电流,不同环境测试电流与公式计算理论值也变的不 完全一致。客户应用中,可根据需求选取合适大小的 RPROG。

充满电压的设定

HX6610S 浮充门槛电压是通过调节 Vprog 引脚的电阻器来设定的。设定电阻器和充满电压采用下列公式来计算: 根据需要的充满来确定电阻器阻值,当设置充满电压高于 4.22V (典型值), Vprog 到地接一个电

阻 R,采用 公式一:R=Vprog-4.20例一: 当需要设置充满电压为Vprog=4.5V时,采用公式一计算

得: R=-4.5-4.20 =1.940M Ω 。当设置充满电压低于 4.2V,Vprog 到 BAT 接一个电阻 R,采用公式二:

R//265000 = 2.2 ,例二,当需要设置充满电压为 Vprog=3.6V 时,采用公式二计算得: R =618K Ω 。

关断延时设定

HX6610S 充满关断延迟是通过调节 CT 引脚的电容器来设定的。设定电容器和关断延时采用下列公式来计算: 根据需要的关断延时来确定电容容值,

$$\frac{1.5*10^{-6}}{2.2}*T$$
 例一:当需要设置关断延迟为 30ms 时,采用公式计算得: $C = \frac{1.5*10^{-6}}{2.2}*30*10^{-3}$

=20.50nF

电池反接保护功能

具备锂电池反接保护功能,当锂电池电池正负极反接于 HX6610S Vbat 输出引脚,HX6610S 会停机显示 故障状态,两个 LED 灯全灭,此时反接的锂电池漏电电流小于 0.5mA。将反接的电池正确接入,HX6610S 恢复正常充电状态。 电池反接情况下,电源电压加电池电压不能超过 8V。

充电状态指示器(CHRG STDBY)

HX6610S 有两个漏极开路状态指示输出端,CHRG 和 STDBY。当充电器处于充电状态时,CHRG 被 拉到低电平,STDBY 处于高阻态。当电池反接或者短路时,CHRG 和 STDBY 都处于高阻态,两个灯全灭。 当不用状态指示功能时,将不用的状态指示输出端接到 GND。

VIN	BAT	CHRG	STDBY	
断开	接入	灭	灭	
接入	断开	灭	亮	
接入	正在充电	亮	灭	
接入	充满	灭	亮	
接入	短路/反接	灭	灭	

热限制

如果芯片温度试图升至约 130℃的预设值以上,则一个内部热反馈环路将减小设定的充电电流。该功能可防止 HX6610S 过热,并允许用户提高给定电路板功率处理能力的上限而没有损坏 HX6610S 的风险。在保证充电器将在最坏情况条件下自动减小电流的前提下,可根据典型(而不是最坏情况)环境温度来设定充电电流。

增加热调节

降低IC的 V_{CC} 与BAT两端的压降能够显著减少IC中的 耗。在热调节时,这具有增加充电电流的作用。实现方式可以在输入电源与 V_{CC} 之间串联一个 $0.25\,\Omega$ 的功率电阻 或正向导通压降小于0.5V的二极管,从而将一部分功率耗掉。

欠压闭锁

一个内部欠压闭锁电路对输入电压进行监控,并在 VDD 升至欠压闭锁门限以上之前使充电器保持在停机模式。UVLO 电路将使充电器保持在停机模式。如果 UVLO 比较器发生跳变,则在 VDD 升至比电池电压高 50mV 之前充电器将不会退出停机模式。

PCB 设计指引

在设计 HX6610S PCB 时,需要遵循以下指南: VDD 的旁路电容需要紧靠芯片VDD 和 GND 引脚。 Vbat 的旁路电容需要紧靠芯片Vbat 和 GND 引脚。 R2 需要紧靠芯片Vprog,以减少对 Vfloat 的干扰。

静电防护措施

MOS 电路为静电敏感器件,在生产、运输过程中需采取下面的预防措施,可以有效防止 MOS 电路由于受静电放电影响而引起的损坏:

- ◆ 操作人员要通过放静电腕带接地;
- ◆ 生产设备外壳必须接地;
- ◇ 装配过程中使用的工具必须接地;
- ◆ 必须采用导体包装或抗静电材料包装或运输。

VCC=5V

R3

 1Ω

= C1 1UF

典型运用参考电路

普通运用
减少充电器瞬间高压

充满电压低于4.2V

具有输入反向极性保护

充满电压高于4.22V

全功能接耗散电阻

封装信息

SOLDERING FOOTPRINT

DIP-8 封装外观图

符号	毫米			英寸			
	最小	典型	最大	最小	典型	最大	
А			5.334			0.210	
A1	0.381			0.015			
A2	3.175	3.302	3.429	0.125	0.130	0.135	
b		1.524			0.060		
b1		0.457			0.018		
D	9.017	9.271	10.160	0.355	0.365	0.400	
E		7.620			0.300		
E1	6.223	6.350	6.477	0.245	0.250	0.255	
е		2.540			0.100		
L	2.921	3.302	3.810	0.115	0.130	0.150	
eB	8.509	9.017	9.525	0.335	0.355	0.375	
θ	0	7°	15°	0°	7°	15°	