

DEUTSCHES
PATENTAMT

Aktenzeichen:
Anmeldetag:

Offenlegungstag:

195 11 926.6 31. 3. 95 2. 10. 98

(7) Anmelder:

Schwider, Johannes, Prof. Dr., 91056 Erlangen, DE

@ Erfinder:
gleich Anmeider

(iii) Verfahren zur Prüfung technischer Oberflächen mit Hilfe von computererzeugten Hologrammen

Es wird ein Verfahren zur Prüfung von technischen Oberflächen vorgeschlagen, bei dem Computer-erzeugte Beugungsmasken sowohl als Strahlteller bzw. Vereiniger eingesetzt werden und diese Masken Wellenfelder generieren, die an die Makrogeometrie optimal angepaßt sind und gleichzeitig eine Referenzweile (z. B. die ungebeugte Welle nuliter Ordnung) liefern. Dabei werden die Weilen über das Objekt so geführt, daß die Rauhigkeit der technischen Oberfläche durch schrägen Einfall in ihrem Einfluß auf die Wellenfläche stark gemindert wird. Dedurch wird erreicht, daß die Interferenzbilder nur noch die Abweichungen von der Makroform anzeigen. Als Objekte sind solche besonders geeignet, die hauptsächlich in einer Dimension ausgedehnt sind, wie z. B. stückweise ebene Flächen oder Zylinder bzw. Kombinationsformen davon in an sich beliebiger Verknüpfung. In wesentlichen Sonderfällen sind die Interferometrischen Anordnungen so gestaltet, daß sich eine unmittelbare Kontrolle des leeren Interferometers ergibt.

Beschreibung

Stand der Technik

Zum Stand der Technik ist zu sagen, daß sich der Einsatz der interferometrischen Meßtechnik zur Prüfung der Makrogeometrie meist auf die Prüfung optischer Flächen mit hoher Genauigkeit beschränkt. Zwar werden technische Planflächen wie z. B. Si-wafer und andere Planflächen schon mit streifender Inzidenz geprüft. Diese Verfahren beschränken sich aber auf plane Flächen. Hier setzt aber unser Ansatz an, indem beliebige aber regelmäßige Oberflächen einer Messung mit hoher Genauigkeit zugänglich gemacht werden sollen

Ausführungsbeispiel

Es handelt sich um ein interferometrisches Prüfverfahren für technische Oberflächen mit verschiedenartigen Profilen und Geometrien, das mit synthetischen diffraktiven Referenzmasken (Computer Generierte Hologramme: CGH) arbeitet. Hierbei soll der Einsatz von Computer Generierten Hologrammen eine schnelle und berührungsfreie Absolutprüfung der Makrogeometrie 25 technischer Werkstücke ermöglichen.

An einem Ausführungsbeispiel soll der Einsatz neuartiger computer-erzeugter Masken in IR-Interferometem zur 3D-Profilmessung erläutert werden. Die computer-erzeugten Masken oder Hologramme (CGH) beinhalten hierbei die Information über ein Referenzobjekt. Das Werkstück soll dann in dem Interferometer mit dieser Referenz verglichen werden. Es werden also die Abweichungen des Werkstücks von der Sollform in 3D-Qualität mit extrem hoher Meßgeschwindigkeit und Genauigkeit erfaßt.

Insbesondere wird auch daran gedacht von einer CAD-erzeugten Struktur jeweils ein oder mehrere CGH's in ein IR-Interferometer einzubringen.

Das interferometrische Prinzip beruht auf der "gra- 40 zing incidence interferometry (streifende Inzidenz) (Fig. 1). Die dabei verwendeten CGH's wirken als Strahlenteiler und Vereiniger. Die Nullte Beugungsordnung des Strahlteilers läuft unbeeinflußt von diesem in der ursprünglichen Richtung weiter. Eine der gebeugten 45 Wellen trifft streifend auf das Werkstück und wird dort reflektiert und schließlich am Ort eines zweiten CGH's mit der nullten Ordnung überlagert. Die CGH's sind derart gestaltet, daß sie an das Objekt angepaßte Wellenfronten generieren, die zusammen mit dem zweiten 50 CGH einen Nulltest ermöglichen. Dabei ist eine spatiale Filterung vonnöten, um Störlicht zu beseitigen, oder mit anderen Worten: die üblichen kohärentoptischen Techniken sind sinngemäß auf dieses, Problem anzuwenden. Wie in Fig. 1 angedeutet, lassen sich auch komplexe 55 Oberflächenstrukturen untersuchen. Im einfachsten Falle hat dabei das Objekt einen gleichartigen Querschnitt über die gesamte Länge.

In diesem Fall sind durch die Beschränkung der Dimensionalität die Justierprobleme am geringsten. Jedoch lassen sich auch komplexere Geometrien mit einer solchen Methode vermessen. Allerdings muß man eventuelle Abschattungen und ähnliche Probleme beim Design der CGH's berücksichtigen. Dabei ist auch denkbar, daß senkrechte Flächenstücke mit erfaßt werden.

Noch ein W rt zur Genaulgkeit und der freien Parameterwahl beim Entwurf descomputererzeugten Hologramms. Das soll an dem einfachsten Fall einer ebenen 2

Fläche behandelt werden:
Ein Gitter beugt eine b ne Welle um den Winkel µ:

 $g \sin(u) = m\lambda$

Bei schräger Inzidenz unter dem Winkel u ergibt sich eine Empfindlichkeit von

$$\frac{\lambda}{2}\cos(90^{\circ}-\mathbf{u}) = \frac{\lambda}{2}\sin\mathbf{u}$$

Mithin korrespondiert der Abstand zweier Interferenzstreifen mit einer Oberflächenabweichung von:

<u>g</u>

wobel man im allgemeinen sich mit in = 1 begnügen und nur in Sonderfällen eine höhere Beugungsordnung verwenden wird. Man hat also in weiten Grenzen die Empfindlichkeit durch die Wahl der Gitterkonstanten in der Hand.

Man bezahlt allerdings geringe Empfindlichkeit (große Rauhigkeiten des Objekts bei der Prüfung) mit starken anamorphotischen Verzerrungen der Geometrie in einer Richtung. Dazu soll nun ein Beispiel folgen: g = 50 μm, λ = 3.4 μm ergibt einen Streifen für 25 μm Oberfächenabweichung und einen Winkel von 86 Grad, was bei einer Werkstücklänge von 0.5 m eine Bildhöhe von 34 mm bedeutet. Hier wird man also im Abbildungsstrahlengang mit anamorpohotischen Lösungen eine Anpassung an den Detektor suchen bzw. über eine Entzerrung durch entsprechende Software eine vernünftige Bildgeometrie erzeugen. Bei optoelektronischen Lösungen bei der Auswertung sind ohne weiteres 1150 Streifenabstand rms-Genauigkeiten zu erwarten, weshalb die Makrogeometrie im μm-Bereich erfaßbar ist.

Die Flexibilität des Verfahrens soll an einem einprägsamen Beispiel erläutert werden: Es soll ein Zylinder innen und außen gleichzeitig geprüft werden. In diesem Fall wird man zwei Axicons (das sind rotationssymmetrische CGH's mit äquidistanten Ringzonen) verwenden und die beiden ersten Beugungsordnungen zur Beleuchtung der Objektoberflächen einsetzen. Man erhält dann neben der Rundheit und anderen Oberflächenfehlern auch Aussagen über die relative Lage der Symmetrieachsen.

Noch eine Bemerkung zur Wahl der Wellenlänge: Für rauhe Flächen sollte die Wellenlänge möglichst groß sein, um die Makrogeometrie trotzdem prüfen zu können.

Jedoch ist die Rauhigkeit der Oberfläche des Prüflings nicht das einzige Argument für eine Vergrößerung der Wellenlänge zumal die Genauigkeit nur von der lokalen Gitterkonstanten im CGH abhängt. Vielmehr kann man durch eine größere Wellenlänge bei gleichbleibender Empfindlichkeit eine Herabsetzung der anamorphotischen Verzerrung erreichen. Durch eine größere Flexibilität in der Wahl der Wellenlänge läßt sich der Anwendungsbereich bedeutend erweitern.

Patentansprüche

 Verfahren zur interferometrischen Pr

ßrung von technischen Oberfl

ächen dadurch gekennzeichnet, daß das Licht einer koh

ärenten Lichtquelle ein

Nummer: Int. Cl.⁸: DE 198 11 928 A1 G 01 M 11/08 2. Oktober 1998

Offenlegungstag:

Fig. 1: Ausführungsbeispiel

Procedure for testing of technical surfaces using computer-generated holograms.

A procedure for testing of technical surfaces with computer-generated diffraction masks used as beam splitters as well as beam combiners is suggested. The diffraction masks generate wave fronts, optimized (in size) to match the macro geometry (object), while providing a reference wave front (e.g. non-diffracted zero order wave front) at the same time. The wave fronts strike the object at oblique incidence, thus significantly reducing the influence of the object's surface roughness on the wave front. The resulting interferograms indicate only the deviation from the macro form. Best suitable objects are long, with flat or cylindrical surfaces or any arbitrary combination of those. For special implementations, the interferometer wave fronts are arranged in a way, that direct calibration of the empty interferometer is possible.