Lezione del 4 maggio

Definizione 0.1. Sia J un sottoinsieme non vuoto di $\mathbb{P}(V)$ allora definiamo il sottospazio proiettivo associato a J come

$$L(J) = \bigcap_{\substack{\mathbb{P}(W) \subseteq \mathbb{P}(V) \\ J \subseteq \mathbb{P}(W)}} \mathbb{P}(W)$$

in modo analogo, possiamo definirlo come il più piccolo sottospazio proiettivo di $\mathbb{P}(V)$ che contiene J

Osservazione 1. Sia $S \subseteq \mathbb{P}(V)$

$$L(S) = S \quad \Leftrightarrow \quad S = \mathbb{P}(T)$$
 per qualche T sottospazio vettoriale di V

Definizione 0.2. Nel caso in cui $J = \{P_1, \dots, P_t\}$ è un insieme finito di punti, per notazione poniamo

$$L(J) = L(P_1, \ldots, P_t)$$

Osservazione 2. Sia $P_i = [v_i]$ per i = 1, ..., t allora

$$L(P_1,\ldots,P_t) = \mathbb{P}(Span(v_1,\ldots,v_t))$$

dunque in particolare

$$\dim(P_1,\ldots,P_t) \le t-1$$

Definizione 0.3. Siano P_1, \ldots, P_k punti dove $P_i = [v_i]$ per $i = 1, \ldots, k$. Diciamo che tali punti sono linearmente indipendenti se lo sono i vettori v_1, \ldots, v_k . In caso contrario, diciamo che i punti sono linearmente dipendenti

Osservazione 3. Siano P = [v] e Q = [w] due punti di $\mathbb{P}(V)$

P,Q sono linearmente indipendenti \Leftrightarrow P e Q sono distinti

infatti se $[v] \neq [w]$ allora $\forall \lambda \in \mathbb{K}^*$ si ha $v \neq \lambda w$ ovvero v, w sono linearmente indipendenti Osservazione 4. Se $P \neq Q$ denotiamo con L(P,Q) l'unica retta proiettiva che passa per P e per Q.

L'unicità deriva dalla minimalità di L(P,Q)

Osservazione 5. Siano $P, Q, R \in \mathbb{P}(V)$ punti distinti.

P, Q, R sono linearmente indipendenti se e solo se non sono allineati.

In questo piano L(P,Q,R) è un piano proiettivo, ed è l'unico che passa per questi 3 punti

Esempio 0.1 (Continuo dell'esercizio della volta precedente). I punti

$$P = \begin{bmatrix} \frac{1}{2}, 1, 1 \end{bmatrix}$$
 $Q = \begin{bmatrix} 1, \frac{1}{3}, \frac{4}{3} \end{bmatrix}$ $R = [2, -1, 2]$

sono linearmente dipendenti in quanto la matrice $\begin{pmatrix} 1 & 3 & 2 \\ 2 & 1 & -1 \\ 2 & 4 & 2 \end{pmatrix}$ ha determinante nullo

Osservazione 6. Siano $P_1, \ldots, P_t \in \mathbb{P}(V)$

$$P_1, \ldots, P_t$$
 linearmente indipendenti $\Rightarrow t \leq \dim V = n+1$

Definizione 0.4. Siano $P_1, \ldots, P_t \in \mathbb{P}(V)$

Diremo che tali punti sono in posizione generale se

- t < n+1 e sono linearmente indipendenti
- t > n + 1 e per ogni scelta di n + 1 punti tra essi, otteniamo un sottoinsieme costituito da punti linearmente indipendenti

Osservazione 7. Se P_1, \ldots, P_t sono in posizione generale con $t \geq n+1$ allora $L(P_1, \ldots, P_t) = \mathbb{P}(V)$

Osservazione 8. Sia $\{e_0, \ldots, e_n\}$ un riferimento proiettivo di $\mathbb{P}(V)$ allora i punti fondamentali e il punto unità sono in posizione generale

Mostriamo che vale una sorta di viceversa

Lemma 0.2. Sia V uno spazio vettoriale di dimensione n+1. Siano $P_0, \ldots, P_{n+1} \in \mathbb{P}(V)$ n+2 punti in posizione generale. Allora $\{P_0, \ldots, P_{n+1}\}$ definisce un riferimento proiettivo per cui

- P_0, \ldots, P_n sono i punti fondamentali
- P_{n+1} è il punto unità

Dimostrazione. Assumiamo $P_i = [v_i]$ per i = 0, ..., n + 1.

Per ipotesi v_0, \ldots, v_n sono linearmente indipendenti, di conseguenza

$$v_{n+1} = a_0v_0 + \dots + a_nv_n$$

Mostriamo che $a_i \neq 0$ per $i = 0, \dots n$.

Supponiamo, per assurdo $a_0=0$ allora v_{n+1} si esprime come combinazione lineare di v_1,\ldots,v_n da cui l'insieme $\{v_{n+1},v_1,\ldots,v_n\}$ è un insieme costituito da vettori linearmente dipendenti, da cui P_{n+1},P_1,\ldots,P_n sarebbero dipendenti, il che è assurdo per l'ipotesi sulla loro posizione generale.

Definiamo un riferimento proiettivo ponendo $e_i = a_i v_i$ per i = 0, ..., n di conseguenza $v_{n+1} = e_0 + \cdots + e_n$ da cui la tesi

Esempio 0.3. Consideriamo i seguenti punti in $\mathbb{P}^3(\mathbb{R})$

$$P_1 = [1, 0, 1, 2]$$
 $P_2 = [0, 1, 1, 1]$ $P_3 = [2, 1, 1, 2]$ $P_4 = [1, 1, 2, 3]$

Mostrare se tali punti sono in posizione generale e calcolare $\dim(L(P_1,\ldots,P_4))$

Essendo i punti 4 come la dimensione dello spazio, tali punti sono in posizione generale se e solo se sono linearmente indipendenti

1 Equazioni di sottospazi proiettivi

Sia dim V = n + 1.

Fissiamo un sottospazio vettoriale W di V di dimensione k, allora W possiede una base $\{v_0, \ldots, v_k\}$ dunque $p(W) = L(P_0, \ldots, P_k)$ con $P_i = [v_i]$.

Ora $\forall P = [v] \in \mathbb{P}(W)$ si ha

$$v = \lambda_0 v_0 + \dots + \lambda_k v_k \tag{1}$$

Fissando un riferimento proiettivo e_0, \ldots, e_n di $\mathbb{P}(V)$ allora

$$P = [x_0, \dots, x_n]$$
 $P_i = [y_{i,0}, \dots, y_{i,n}]$

possiamo riscrivere 1 nella seguente forma

$$\begin{cases}
x_0 = y_0 \lambda_{0,0} + \dots + \lambda + k y_{k,0} \\
\vdots \\
x_n = y_0 \lambda_{0,n} + \dots + \lambda + k y_{k,n}
\end{cases}$$
(2)

detta equazione parametrica di $L(P_1, \ldots, P_k)$

Esempio 1.1 (Equazione parametrica di una retta). Consideriamo il caso dim $\mathbb{P}(W) = 1$ allora 2 diventa

$$\begin{cases} x_0 = \lambda_0 y_{0,0} + \lambda_1 y_{1,0} \\ \vdots \\ x_n = \lambda_0 y_{0,n} + \lambda_1 y_{1,n} \end{cases}$$

ed è l'equazione parametrica della retta $L(P_0, P_1)$ con $P_0 = [y_{0,0}, \dots, y_{0,n}]$ e $P_1 = [y_{1,0}, \dots, y_{1,n}]$

Andiamo ora a studiare l'equazione cartesiana della retta per 2 punti in $\mathbb{P}^2(\mathbb{K})$.

Siano $P = [p_0, p_1, p_2]$ e $Q = [q_0, q_1, q_2]$ con $P \neq 0$.

Allora l'equazione cartesiana della retta per P, Q è della forma

$$\det \begin{pmatrix} x_0 & p_0 & q_0 \\ x_1 & p_1 & q_1 \\ x_2 & p_2 & q_2 \end{pmatrix} = 0$$

infatti se $[x_0,x_1,x_2]\in L(P,Q)$ allora i vettori

$$\begin{pmatrix} p_0 \\ p_1 \\ p_2 \end{pmatrix}, \begin{pmatrix} q_0 \\ q_1 \\ q_2 \end{pmatrix}, \begin{pmatrix} x_0 \\ x_1 \\ x_2 \end{pmatrix}$$

sono linearmente dipendenti.

In modo analogo se $P = [p_0, p_1, p_2, p_3], Q = [q_0, q_1, q_2, q_3]$ e $R = [r_0, r_1, r_2, r_3] \in \mathbb{P}^3(\mathbb{K})$ allora il piano per P, Q, R ha equazioni cartesiane della forma

$$\det \begin{pmatrix} x_0 & p_0 & q_0 & r_0 \\ x_1 & p_1 & q_1 & r_1 \\ x_2 & p_2 & q_2 & r_2 \\ x_3 & p_3 & q_3 & r_3 \end{pmatrix} = 0$$

Definizione 1.1. Siano S_1, S_2 due sottospazi proiettivi di $\mathbb{P}(V)$ allora chiamiamo sottospazio somma di S_1, S_2 il sottospazio proiettivo

$$L(S_1, S_2) = L(S_1 \cup S_2)$$

ovvero il sottospazio proiettivo generato dall'unione

Lemma 1.2. Se $S_1 = \mathbb{P}(W_1)$ e $S_2 = \mathbb{P}(W_2)$ allora

$$L(S_1, S_2) = \mathbb{P}(W_1 + W_2)$$

Dimostrazione. Essendo $L(S_1, S_2)$ un sottospazio proiettivo, si ha $L(S_1, S_2) = \mathbb{P}(W)$ per qualche W sottospazio vettoriale di V.

Osserviamo che

$$S_1 \subseteq L(S_1, S_2) \quad \Rightarrow \quad W_1 \subseteq W$$

$$S_2 \subseteq L(S_1, S_2) \quad \Rightarrow \quad W_2 \subseteq W$$

da cui $W_1 + W_2 \subseteq W$ ovvero $\mathbb{P}(W_1 + W_2) \subseteq \mathbb{P}(W)$.

Andiamo a mostrare l'altra inclusione.

$$W_1 \subseteq W_1 + W_2 \quad \Rightarrow \quad S_1 = \mathbb{P}(W_1) \subseteq \mathbb{P}(W_1 + W_2)$$

 $W_2 \subseteq W_1 + W_2 \quad \Rightarrow \quad S_2 = \mathbb{P}(W_2) \subseteq \mathbb{P}(W_1 + W_2)$

Ora $L(S_1, S_2)$ è il più piccolo sottospazio che contiene $S_1 \cup S_2$ da cui $L(S_1, S_2) \subseteq \mathbb{P}(W_1 + W_2)$

Proposizione 1.3 (Formula di Grassman proiettiva).

Siano S_1, S_2 sottospazi proiettivi allora

$$\dim L(S_1, S_2) = \dim L(S_1) + \dim L(S_2) - \dim(S_1 \cap S_2)$$

Dimostrazione. Dalla formula di Grassman per sottospazi vettoriali otteniamo

$$\dim L(S_1, S_2) = \dim \mathbb{P}(W_1 + W_2) = \dim(W_1 + W_2) - 1 = \dim W_1 + \dim W_2 - \dim(W_1 \cap W_2) =$$

$$= (\dim W_1 - 1) + (\dim W_2 - 1) - (\dim(W_1 \cap W_2) - 1) = \dim L(S_1) + \dim L(S_2) - \dim(S_1 \cap S_2)$$

Osservazione 9. Dalla formula di Grassman proiettiva otteniamo una stima sulla dimensione dell'intersezione infatti

$$\dim(S_1 \cap S_2) > \dim S_1 + \dim S_2 - \dim \mathbb{P}(V)$$

Proposizione 1.4.

- In un piano proiettivo due rette si incontrano
- In uno spazio proiettivo di dimensione 3 una retta ed un piano si incontrano
- In uno spazio proiettivo di dimensione 3 due piani distinti hanno in comune una retta

Dimostrazione.

• Siano S_1, S_2 due rette proiettive in un piano proiettivo dunque

$$\dim(S_1 \cap S_2) \ge \dim S_1 + \dim S_2 - \dim \mathbb{P}(V) = 1 + 1 - 2 = 0$$

dunque la loro intersezione è almeno un punto

 $\bullet\,$ Siano S_1 un piano e S_2 una retta allora

$$\dim(S_1 \cap S_2) \ge \dim S_1 + \dim S_2 - \dim \mathbb{P}(V) = 2 + 1 - 3 = 0$$

dunque la loro intersezione è almeno un punto

• Siano S_1, S_2 due piani proiettivi distinti. Essendo distinti si ha $\dim(S_1 \cap S_2) < 2$ inoltre dalla formula di Grassman

$$\dim(S_1 \cap S_2) \ge \dim S_1 + \dim S_2 - \dim \mathbb{P}(V) = 2 + 2 - 3 = 1$$

dunque $1 \leq \dim(S_1 \cap S_2) < 2$ da cui la tesi