

ARTIFICIAL NEURAL NETWORK PART-2

LECTURE 54

DR. GAURAV DIXIT

DEPARTMENT OF MANAGEMENT STUDIES

- Computing output values at nodes of each layer type
 - Hidden layer nodes
 - θ_i and w_{ij} are typically initialized to small random values in the range 0.0±0.05
 - Network updates these values after learning from data during each iteration or round of training
 - Output layer nodes
 - Steps are same as for hidden layer nodes, except the fact that input values are received from last hidden layer
 - Output values produced by nodes are used as
 - Predictions in a prediction task
 - Scores to be used to classify a record in a classification task

- Open RStudio
- Neural Network training process
 - Steps to compute neural network output values are repeated for all the records in the training partition
 - Prediction errors are used for learning after each iteration
- Linear and Logistic regression as special cases
 - A neural network with single output node and no hidden layers would approximate the linear and logistic regression models

- Linear and Logistic regression as special cases
 - If a linear transfer function (g(x) = bx) is used, output would be

$$y = \theta + \sum_{i=1}^{p} w_i x_i$$

- A formulation equivalent to multiple linear regression equation
- However, estimation method (least squares) is different from neural network (back propagation)

- Linear and Logistic regression as special cases
 - If a logistic transfer function $(g(x) = 1/1 + e^{-bx})$ is used, output would be

$$P(y = 1) = \frac{1}{1 + e^{\theta + \sum_{i=1}^{p} w_i x_i}}$$

- A formulation equivalent to logistic regression equation
- However, estimation method (maximum-likelihood method) is different from neural network (back propagation)

Normalization

- Scale of [0,1] is typically recommended for neural network models for performance purposes
- For numeric variables,

$$V_{norm} = \frac{V - \min(V)}{\max(V) - \min(V)}$$

- Normalization
 - Binary variables (categorical variables with two classes)
 - Create dummy variables: set of values {0, 1}
 - Nominal variables with m (>2) classes
 - Create m-1 dummy variables: set of values {0, 1}
 - Ordinal variables with m (>2) classes
 - Map the values to the set {0, 1/(m-1), 2/(m-1), ..., (m-2)/(m-1), 1}

Key References

- Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data by EMC Education Services (2015)
- Data Mining for Business Intelligence: Concepts, Techniques, and Applications in Microsoft Office Excel with XLMiner by Shmueli, G., Patel, N. R., & Bruce, P. C. (2010)

Thanks...