Forecasting Models

Forecasting aims to create models to predict the value that a variable of interest will take soon.

- Given a set of ordered records, we want to predict the value of a variable of interest for the next record;
- Contrary to classification, the values assumed by the target variable are numeric and potentially infinite - continuous - in classification, the values are discrete;
- Usually, the data to be forecasted is time-dependent, and are called time series;
- Against classification, the **target** is a **continuous variable**, and not a class the result information is called **predictor**;
- After training the predictor, we can apply it to predict the value of the target in **future time steps**;
- Considering a function f that maps the **input** to the **output**, and a function \hat{f} that maps the **input** to the **predicted output**;
 - The best estimation of \hat{f} is the one closest to f minimizes the square error;
 - $-MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i \hat{y}_i)^2;$
 - The MAE (Mean Absolute Error) is the absolute value of the error $MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i \hat{y}_i|$;
 - The RMSE (Root Mean Squared Error) is the square root of the MSE $RMSE = \sqrt{\frac{1}{n}\sum_{i=1}^{n}(y_i \hat{y_i})^2}$;
 - The MAPE (Mean Absolute Percentage Error) is the absolute value of the error divided by the actual value $MAPE = \frac{1}{n} \sum_{i=1}^{n} \frac{|y_i \hat{y}_i|}{y_i}$;
 - The R^2 (Coefficient of Determination) is the proportion of the variance in the dependent variable that is predictable from the independent variable(s) $R^2 = 1 \sum_{i=1}^{n} \frac{(y_i \hat{y_i})^2}{(y_i \bar{y_i})^2}$, where $\bar{y_i}$ is the mean of the actual values;

* We want R^2 to be close to 1;

There are several **forecasting models**:

- Simple models:
 - Simple average predicts the mean of the time series;

$$* x_t = \frac{1}{n} \sum_{i=1}^n x_i;$$

- Persistence model - predicts the last value of the time series;

$$* x_t = x_{t-1};$$

- Rolling mean - predicts the mean of the last w values of the time series;

$$* x_t = \frac{1}{w} \sum_{i=1}^{w} x_{t-i};$$

- Regression models:
 - Linear regression predicts the value of the time series based on a linear combination of the previous values;

*
$$x_t = \beta_0 + \beta_1 x_{t-1} + \beta_2 x_{t-2} + \dots + \beta_p x_{t-p};$$

- **ARMA**;
- ARIMA;
- SARIMA;
- Neural networks LSTMs.

ARMA (Autoregressive Moving Average) Models

- ARMA models, aka Box-Jenkins, combine 2 models:
 - Autoregressive Model (AR) the value of the variable at time t is a linear combination of the values of the variable at previous time steps;
 - * AR(p) assumes that our model depends on the last p values of the time series;
 - * If p = 2, the forecast X_t has the form $X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \epsilon_t$;
 - Moving Average Model (MA) the value of the variable at time
 t is a linear combination of the errors at previous time steps;
 - * MA(q) assumes that our model depends on the last q errors of the time series;
 - * If q = 2, the forecast X_t has the form $X_t = \theta_1 \epsilon_{t-1} + \theta_2 \epsilon_{t-2} + \epsilon_t$;

So, the **ARMA** model is a **linear combination** of the **previous values** and the **previous errors**. If p=q=2, the forecast X_t has the form $X_t=\phi_1X_{t-1}+\phi_2X_{t-2}+\theta_1\epsilon_{t-1}+\theta_2\epsilon_{t-2}+\epsilon_t$.

3 Steps to Build an ARMA Model

- 1. **Identify** the **order** of the model p and q;
- 2. Estimate the parameters of the model $\phi_1, \phi_2, \theta_1, \theta_2$;
- 3. Validate the model.

Things to Keep in Mind

- The time series must be stationary constant mean and constant variance;
- Have ate least 100 observations;
- It is important to confirm whether the time series contains a seasonal component.

ARIMA (Autoregressive Integrated Moving Average) & SARIMA (Seasonal ARIMA) Models

Integrated series are **stationary** series that are **differenced** to become **stationary** - subtracting the value of the previous time step from the current one.

- ARIMA models are ARMA models applied to integrated series, composed of 3 components:
 - AR Model p;
 - Integrated Component d the number of times the series was differenced to become stationary;
 - MA Model q;
- SARIMA models are ARIMA models applied to seasonal series;
 - Used to remove the seasonal component of the series;
 - $SARIMA(p,d,q)(P,D,Q)_s$ s is the **seasonal period**;
 - -P, D, Q are the **order** of the **seasonal ARIMA model**.

Both require the time series to be **stationary**. If it is not, remove trend, seasonality and apply differencing.

Matrix Profile

Matrix Profile is a time series data structure that allows us to find similar subsequences in a time series.

The MP has many highly desirable properties:

- Exact the MP methods provide no false positives nor false negatives;
- Simple and Parameter-Free the MP methods have no parameters to tune;
- Incrementally Maintainable the MP methods can be updated in realtime;
- Free of the Curse of Dimensionality the MP methods are not affected by the number of dimensions;
- Allows Anytime Algorithms the MP methods can be stopped at any time and still provide a valid result;
- It can Leverage Hardware the MP methods can be parallelized and distributed.
- It can be constructed in Deterministic Time the MP methods can be constructed in linear time;
- It can handle Missing Data the MP methods can handle missing data.

LSTM (Long Short-Term Memory) Models

 ${f LSTM}$ is a recurrent neural network that can learn long-term dependencies.

- Recurrent Neural Networks (RNN) are a class of neural networks
 that allow previous outputs to be used as inputs while having hidden
 states;
- LSTM is a type of RNN that can learn long-term dependencies;

• ...