

Graphical Models

- **Challenge**: How to formulate complex likelihoods/data models & priors for *actual* data?
 - **Example 1**: Match outcomes $y \in \{-1,1\}$ for a head-to-head match between two players
 - **Prior**: $p(s) = \mathcal{N}(s_1; \mu_1, \sigma_1^2) \cdot \mathcal{N}(s_2; \mu_2, \sigma_2^2)$ skill belief
 - **Likelihood**: $p(y|s) = \int \mathcal{N}(p_1; s_1, \beta^2) \cdot \mathcal{N}(p_2; s_2, \beta^2) \cdot \mathbb{I}(y(p_1 p_2) > 0)$ $dp_1 dp_2$ marginalization

 Match outcome

 Player performance
 - \Box **Example 2**: Time series y of temperatures given
 - Prior: $p(w) = \mathcal{N}(w; \mu, \sigma^2)$ External state mapping parameter belief

 Likelihood: $p(y|w, X) = \int \mathcal{N}(z_1; w \cdot x_1, \tau^2) \cdot \mathcal{N}(y_1; z_1, \beta^2) \cdot \mathcal{N}(z_2; z_1 + w \cdot x_2, \tau^2) \cdots d\mathbf{z}$ Probabilistic Machine Learning

 Dynamics model

 Bayesian Networks

Conditional hidden state model

Observed temperature model

Graphical Models

- **Observation**: The product structure of the probabilities seems crucial!
- **Idea**: Define a graph where each of the variables are nodes and edges indicate relationships between variables

$$\mathcal{N}(s_1; \mu_1, \sigma_1^2) \cdot \mathcal{N}(s_2; \mu_2, \sigma_2^2) \cdot \mathcal{N}(p_1; s_1, \beta^2) \cdot \mathcal{N}(p_2; s_2, \beta^2) \cdot \mathbb{I}(y(p_1 - p_2) > 0)$$

$$\mathcal{N}(w;\mu,\sigma^2)\cdot\mathcal{N}(z_1;\,w\cdot x_1,\tau^2)\cdot\mathcal{N}(y_1;z_1,\beta^2)\cdot\mathcal{N}(z_2;z_1+w\cdot x_2,\tau^2)\cdot\mathcal{N}(y_2;z_2,\beta^2)\cdots$$

Probabilistic Machine Learning

- Advantages: Simple way to visualize factor structure of the joint probability
 - Bayesian Networks: Insights into (conditional) independence based on graph properties
 - **Factor Graphs**: Insights into efficient inference and approximation algorithms

Bayesian Networks

Observation. Any joint distribution $p(x_1, ..., x_n)$ can be written as

$$p(x_1, ..., x_n) = \prod_{i=1}^{n} p(x_i | x_1, ..., x_{i-1})$$

- **Bayesian Network**. Given a joint distribution as a product of conditional distributions, $p(x_1,...,x_n) = \prod_{i=1}^n p(x_i|parents_i)$, a Bayesian network is a graph with a node for every variable x_i , and a directed from every variable $x \in \text{parent}_i$ to x_i . If the variable is independent of all other variables, it has no incoming edges.
- **Examples**: For 3 variables, we have these four generic Bayesian networks

$$p(x_1, x_2, x_3) = p(x_1) \cdot \prod_{i=2}^{3} p(x_i | x_1) \qquad p(x_1, x_2, x_3) = p(x_1) \cdot \prod_{i=2}^{3} p(x_i | x_{i-1}) \quad p(x_1, x_2, x_3) = p(x_3 | x_1, x_2) \cdot \prod_{i=1}^{2} p(x_i | x_i)$$

Learning

Probabilistic Machine

Bayesian Networks

full mesh star

Bayesian Network Models

- Plates. If a subset of variables has the same relation only differing in their index, we use a "plate" to collapse them into a single graphical element.
 - Increase readability of models for large amounts of parameters and data
- A Bayesian network must always be a directed acyclic graph because only those have a topological order corresponding to a variable order.
- Observed Variables. If a subset of variables has been observed ("data"), the variable nodes are usually shaded ("clamped")
 - Examples:

$p(x_1, x_2, x_3) = p(x_1) \cdot \prod_{i=2}^{n} p(x_i | x_1)$ x_1 x_1 x_1 x_1 x_1 x_1 x_1 x_1

Probabilistic Machine Learning

Conditional Independence

Philip Dawid (1946-)

- In modelling specific data, domain experts often know whether or not two (latent) measurements can affect each other or not (i.e., are independent)
 - Examples:
 - Skills of two players in a video game are not dependent if they never met before
 - Skills of two players in a video game are dependent if they have played many times!
- Bayesian networks are useful to determine conditional independence.
- Conditional Independence. A random variable x_i is conditionally independent of a random variable x_i given the variable x_k if for a values a of x_k

$$p(x_i|x_j, x_k = a) = p(x_i|x_k = a)$$

- Equivalent definition: $p(x_i, x_j | x_k = a) = p(x_i | x_k = a) \cdot p(x_j | x_k = a)$
- □ Shorthand notation (Dawid, 1979): $x_i \perp x_j | x_k$

Probabilistic Machine Learning

Conditional Independence: Warm-Up I

■ Tail-to-Tail Node (x_1) : $p(x_1, x_2, x_3) = p(x_1) \cdot p(x_2|x_1) \cdot p(x_3|x_1)$

$$p(x_2, x_3) = \sum_{x_1} p(x_1) \cdot p(x_2 | x_1) \cdot p(x_3 | x_1) \neq p(x_2) \cdot p(x_3)$$

not (always) conditionally independent

$$p(x_2, x_3 | x_1) = \frac{p(x_1) \cdot p(x_2 | x_1) \cdot p(x_3 | x_1)}{p(x_1)} = p(x_2 | x_1) \cdot p(x_3 | x_1)$$

conditionally independent

■ Head-to-Tail Node (x_2) : $p(x_1, x_2, x_3) = p(x_1) \cdot p(x_2|x_1) \cdot p(x_3|x_2)$

$$p(x_1, x_3) = p(x_1) \cdot \sum_{x_2} p(x_2 | x_1) \cdot p(x_3 | x_2) = p(x_1) \cdot p(x_3 | x_1) \neq p(x_1) \cdot p(x_3)$$

$$(x_1)$$
 (x_2) (x_3)

$$p(x_1, x_3 | x_2) = \frac{p(x_2 | x_1) \cdot p(x_1)}{p(x_2)} \cdot p(x_3 | x_2) = p(x_1 | x_2) \cdot p(x_3 | x_2)$$

Probabilistic Machine Learning

Conditional Independence: Warm-Up II

■ Head-to-Head Node (x_1) : $p(x_1, x_2, x_3) = p(x_2) \cdot p(x_3) \cdot p(x_1 | x_2, x_3)$

$$p(x_2, x_3) = \sum_{x_1} p(x_1 | x_2, x_3) \cdot p(x_2) \cdot p(x_3) = p(x_2) \cdot p(x_3)$$

(conditionally) independent

$$p(x_2, x_3 | x_1) = \frac{p(x_1 | x_2, x_3) \cdot p(x_2) \cdot p(x_3)}{p(x_1)} \neq p(x_2 | x_1) \cdot p(x_3 | x_1)$$

not (always) conditionally independent

- It can be shown that the path between x_2 and x_3 become are only independent if *none* of the *descendant* node from x_1 (that can be reached in the directed graph) is observed!
- **Skill Example (ctd)**: Consider the skills of two players

Probabilistic Machine Learning

Conditional Independence: d-separation

- **Blocked Node**. A node in a Bayesian network is said to be blocked if
 - 1. It's a head-to-tail or tail-to-tail node and the node is observed.
 - 2. It's a head-to-head node and neither the node or any of its descendants are observed.
- **d-separation**. Given a Bayesian network and a subset of observed variables, two non-observed variables x_i and x_j are conditionally independent (that is, d-separated) if every undirected path between x_i and x_j contains at least one blocked node.

Judea Pearl (1936-)

Examples.

Probabilistic Machine Learning

 x_1 and x_4 are independent

Thank You!

Inference in Probabilistic Models

- **Learning**: In order to learn from data for most data models, we need to marginalize ("sum-out") all non-observed variables given the observed variables (i.e., data).
 - Example: Two player game with one winner

$$p(\mathbf{s}|y) \propto p(\mathbf{s}) \cdot \int \mathcal{N}(p_1; s_1, \beta^2) \cdot \mathcal{N}(p_2; s_2, \beta^2) \cdot \mathbb{I}(y(p_1 - p_2) > 0) \ dp_1 \ dp_2$$

- **Problem**: Naïve summation scales exponentially because we have a sum of products (i.e., product of conditional disitrubtions of all latent variables)!
 - **Example**: Consider an example of n Bernoulli variables $x_1, ..., x_n$

$$p(x_1) = \sum_{x_2=0}^{1} \sum_{x_3=0}^{1} \cdots \sum_{x_n=0}^{1} p(x_1, x_2, \dots, x_n)$$

$$2^{n-1} \text{ summations}$$

- Idea: We exploit the product structure of the probabilisitic model of our data because not every variable depends on all variables before them
 - **Example (ctd)**. Consider $p(x_1, x_2, ..., x_n) = \prod_i p(x_i)$: then there are only O(n) sums!

Probabilistic Machine Learning

Factor Graphs

- **Factor Graph (Frey, 1998)**. Given a product of m functions $f_1, f_2, ..., f_m$, each over a subset of n variables $x_1, x_2, ..., x_n$, a factor graph if a bipartite graphical model with m factor nodes and n variable nodes where an undirected edge connects f_i and x_i if and only if the function f_i depends on x_i .
- Factor graphs are more expressive than a Bayesian network!

Brendan Frey (1968 -)

Bayesian network

 $p(x_1, x_2, x_3) = p(x_1) \cdot p(x_2) \cdot p(x_3 | x_1, x_2)$

Corresponding factor graph

$$p(x_1, x_2, x_3) = f_1(x_1) \cdot f_2(x_2) \cdot f_3(x_3, x_1, x_2)$$

Factor graph with more structure

$$p(x_1, x_2, x_3) = f_1(x_1) \cdot f_2(x_2) \cdot f_3(x_1, x_3) \cdot f_4(x_2, x_3)$$

Probabilistic Machine Learning

Factor Graphs and Message Passing

3/11

Sum-Product Algorithm: Marginals

Message $m_{f_j \to x_i}(x_i)$ is the sum over all variables in the subtree rooted at f_i

$$p(x_4) = \sum_{\{x_1\}} \sum_{\{x_2\}} \sum_{\{x_3\}} \sum_{\{x_5\}} f_1(x_1) \cdot f_2(x_2) \cdot f_3(x_2) \cdot f_4(x_1, x_3) \cdot f_5(x_2, x_3, x_4) \cdot f_6(x_4, x_5) \cdot f_7(x_5)$$

$$= \left[\sum_{\{x_1\}} \sum_{\{x_2\}} \sum_{\{x_3\}} f_1(x_1) \cdot f_2(x_2) \cdot f_3(x_3) \cdot f_4(x_1, x_3) \cdot f_5(x_2, x_3, x_4) \right] \cdot \left[\sum_{\{x_5\}} f_6(x_4, x_5) \cdot f_7(x_5) \right]$$

$$m_{f_5 \to x_4}(x_4)$$

$$m_{f_6 \to x_4}(x_4)$$

Probabilistic Machine Learning

Factor Graphs and Message Passing

Marginals are the product of all incoming messages from neighbouring factors!

Sum-Product Algorithm: Message from Factor to Variable

Message $m_{x_i \to f_j}(x_i)$ is the sum over all variables in the subtree rooted at x_i

$$m_{f_5 \to x_4}(x_4) = \sum_{\{x_1\}} \sum_{\{x_2\}} \sum_{\{x_3\}} f_1(x_1) \cdot f_2(x_2) \cdot f_3(x_3) \cdot f_4(x_1, x_3) \cdot f_5(x_2, x_3, x_4)$$

$$= \sum_{\{x_2\}} \sum_{\{x_3\}} f_5(x_2, x_3, x_4) \cdot \left[f_2(x_2)\right] \cdot \left[\sum_{\{x_1\}} f_1(x_1) \cdot f_3(x_3) \cdot f_4(x_1, x_3)\right]$$

$$m_{x_2 \to f_5}(x_2) \qquad m_{x_3 \to f_5}(x_3)$$

Probabilistic Machine Learning

Factor Graphs and Message

Messages from a factor to a variable sum out all neighboring variables weighted by their incoming message

Sum-Product Algorithm: Message from Variable to Factor

$$m_{x_3 \to f_5}(x_3) = \sum_{\{x_1\}} f_1(x_1) \cdot f_3(x_3) \cdot f_4(x_1, x_3)$$

$$= [f_3(x_3)] \cdot \left[\sum_{\{x_1\}} f_1(x_1) \cdot f_4(x_1, x_3) \right]$$

$$m_{f_3 \to x_3}(x_3) \qquad m_{f_4 \to x_3}(x_3)$$

Probabilistic Machine Learning

Sum-Product Algorithm

Sum-Product Algorithm (Aji-McEliece, 1997). Putting it all together, we have

$$p(x) = \prod_{f \in \text{ne}(x)} m_{f \to x}(x)$$

$$m_{f \to x}(x) = \sum_{\{x' \in \text{ne}(f) \setminus \{x\}\}} \cdots \sum_{\{x'' \in \text{ne}(f) \setminus \{x\}\}} f(x, x', \dots, x'') \prod_{x' \in \text{ne}(f) \setminus \{x\}} m_{x' \to f}(x')$$

$$m_{x \to f}(x) = \prod_{f' \in \text{ne}(x) \setminus \{f\}} m_{f' \to x}(x)$$

- Basis: Generalized distributive law (which also holds for max-product)
- **Efficiency**: By storing messages, we
 - Only have to compute local summations in $O(2^T)$ where degree $T = \max_{f} |ne(f)|!$
 - All marginals can be computed recursively in $O(E \cdot 2^T)$ vs $O(2^n)$!

Robert McEliece (1942 – 2019)

Probabilistic Machine Learning

Even more efficiency

Redundancies. By the very definition of messages and marginals

$$p(x) = \prod_{f \in \text{ne}(x)} m_{f \to x}(x) = m_{f' \to x}(x) \cdot \prod_{f \in \text{ne}(x) \setminus \{f'\}} m_{f \to x}(x) \longrightarrow m_{x \to f'}(x)$$

Interpretation. Application of Bayes' rule at a variable x at factor f

Storage Efficiency. We only store the marginals p(x) and $m_{f\to x}(x)$ because

$$m_{x \to f}(x) = \frac{p(x)}{m_{f \to x}(x)}$$

- **Exponential Family**. If all the messages from factors to variables are in the exponential family, then the marginals and messages from the variable to factors are simply additions and subtraction of natural parameters!
 - $\text{If } p(x) = \mathcal{G}(x; \tau_1, \rho_1) \text{ and } m_{f \to x}(x) = \mathcal{G}(x; \tau_2, \rho_2) \text{ then } m_{x \to f}(x) \propto \mathcal{G}(x; \tau_1 \tau_2, \rho_1 \rho_2)$

Probabilistic Machine Learning

Approximate Message Passing

• Message update from factors to variables. For general factors f, the sum-product algorithm is not closed under the application of

$$m_{f\to x}(x) = \sum_{\{x'\in \operatorname{ne}(f)\setminus\{x\}\}} \cdots \sum_{\{x''\in \operatorname{ne}(f)\setminus\{x\}\}} f(x,x',\ldots,x'') \prod_{x'\in \operatorname{ne}(f)\setminus\{x\}} m_{x'\to f}(x')$$

Example: Truncating a 1D-Gaussian distribution

■ **Idea**: Find the "best" approximation $\hat{p}(x)$ for the marginal p(x) and approximate $m_{f\to x}(x)$ by

$$\widehat{m}_{f \to x}(x) = \frac{\widehat{p}(x)}{m_{x \to f}(x)}$$

Example: Truncating a 1D-Gaussian distribution

Probabilistic Machine Learning

Factor Graphs and Message
Passing

9/11

Information Theoretic Approximation: KL Divergence

- **Problem**. We have a non-Gaussian posterior distribution p(x) and would like to approximate it by a Gaussian $q(x) = \mathcal{N}(x; \mu, \sigma^2)$.
- **Idea**. The best approximation μ^* , σ^{2^*} minimizes the Kullback-Leibler divergence

$$KL(p(\cdot)|\mathcal{N}(\cdot;\mu,\sigma^2)) = \int p(x) \cdot \log_2\left(\frac{p(x)}{\mathcal{N}(x;\mu,\sigma^2)}\right) dx$$

Theorem (Moment Matching). Given any distribution p(x) the minimizer μ^* , σ^{2^*} of the KL divergence $\mathrm{KL}\big(p(\cdot)|\mathcal{N}(\cdot;\mu,\sigma^2)\big)$ to a Gaussian distribution is

$$\mu^* = E_{x \sim p(x)}[x]$$
 and $\sigma^{2^*} = E_{x \sim p(x)}[x^2] - (\mu^*)^2$

Solomon Kullback (1909 – 1994)

Richard Leibler (1914 – 2003)

Probabilistic Machine Learning

Expectation Propagation

- **Idea**: If we have factors in the factor graph that require approximate messages, we keep iterating on the whole path between them until convergence minimizing $KL(p(\cdot)|\mathcal{N}(\cdot;\mu,\sigma^2))$ locally for the affected marginals of the approximate factor.
- **Theorem (Minka, 2003)**: Approximate message passing will converge if the approximating distribution is in the exponential family!

Tom Minka

Probabilistic Machine Learning

Thank You!

The Skill Rating Problem

Given:

□ **Match outcomes**: Orderings among k teams consisting of $n_1, n_2, ..., n_k$ players.

Team 1st Red Team		Score			
		50			
		40			
	Level	Gamertag	Avg. Life	Best Spree	Score
1st 😽	10	BlueBot	00:00:49	6	15
1st 🙋	7	SniperEye	00:00:41	4	14
1st 📜	9	ProThepirate	00:01:07	3	13
1st	10	dazdemon	00:00:59	3	8
2nd	10	WastedHarry	00:00:41	4	17
2nd \tag	3	Ascla	00:00:37	2	10
2nd	9		00:00:41	2	9
2nd 🚻	12		00:00:48	3	4

Questions:

- 1. Skill s_i for each player such that $s_i > s_j \Leftrightarrow P(\text{Player } i \text{ wins}) > P(\text{Player } j \text{ wins})$
- 2. Global ranking among all players
- 3. Fair matches between teams of players

Probabilistic Machine Learning

Two-Player Match Outcome Model

- **Simple Two-Player Games**: Our data is the identity i and j of the two players and the outcome $y \in \{-1, +1\}$ of a match between them
 - **Bradley-Terry Model (1952)**: Model of a win given skills s_i and s_i is

$$P(y=1|s_i,s_j) = \frac{\exp(s_i)}{\exp(s_i) + \exp(s_j)} = \frac{\exp(s_i-s_j)}{1 + \exp(s_i-s_j)}$$

 $(s_i - s_j)$ skill difference

Thurstone Case V Model (1927): Model of a win given skills s_i and s_j is

 $\mathcal{N}(p_1;s_1,\beta^2)$

 $\mathbb{I}(y \cdot (p_1 - p_2) > 0)$

 $(p_2)_{\mathcal{N}(p_2;s_2,\beta^2)}$

Probit sigmoid in skill difference

Logistic sigmoid in

Ralph A. Bradley (1923 - 2001)

Louis Leon Thurstone (1887 – 1955)

Two-Team Match Outcome Model

Team Assumption: Skill of a team is the sum of the skill of its players

- **Pro**: Games where the team scores are additive (e.g., kill count in first-person shooter)
- Con: Games where the outcome is determined by a single player (e.g., fastest car in a race)
- Observation: Match outcomes correlate the skills of players
 - □ Same Team: Anti-correlated
 - Opposite Teams: Correlated

Probabilistic Machine Learning

Multi-Team Match Outcome Model

■ **Possible Outcomes**: Permutations $y \in \{1,2,3\}^3$ of players

■ Easy to sample for given skills but computationally difficult to "invert"!

Probabilistic Machine Learning

From Match Outcomes to Pairwise Rankings

- **Learning**: In the ranking setting, we observe multi-team match outcomes and want to infer the skills!
- **Idea**: Leverage the transitivity of the real line of latent scores!

Probabilistic Machine Learning

TrueSkill Factor Graphs

Bayesian Network

Factor Graph

Probabilistic Machine Learning

(Approximate) Message Passing in TrueSkill Factor Graphs

Probabilistic Machine

Learning

Bayesian Ranking

 $\mathcal{N}(s_i; \mu_i, \sigma_i^2)$

- $\mathcal{N}(p_i; s_i, \beta^2)$
- $\delta\left(t_i-\sum_j p_j\right)$
- $\delta \left(d_{i,j}-\left(t_i-t_j\right)\right)^{\blacksquare}$

Four Phases

- 1. Pass prior messages (1)
- 2. Pass messages *down* to the team performances (2 to 3)
- 3. Iterate the approximate messages on the pairwise team differences (4 to 9)
- 4. Pass messages back from *up* from team performances to player skill (10 12)

Since this is a *tree*, the algorithm is guaranteed to converge!

converge:

Message Update Equations

Gaussian Factor

$$m_{f \to x}(x) = \mathcal{N}(x; \mu, \sigma^2)$$

Weighted Sum Factor

$$m_{f\rightarrow z}(z) = \mathcal{N}\left(z; a\mu_x + b\mu_y, a^2\sigma_x^2 + b^2\sigma_y^2\right)$$

Gaussian Mean Factor

$$m_{f\to y}(y) = \int \mathcal{N}(y; x, \beta^2) \cdot \mathcal{N}(x; \mu, \sigma^2) dx = \mathcal{N}(y; \mu, \sigma^2 + \beta^2)$$

Greater-Than Factor

Probabilistic Machine Learning

Bayesian Ranking

$$\widehat{m}_{f \to x}(x) = \frac{\widehat{p}(x)}{m_{x \to f}(x)} = \frac{\mathcal{N}(x; \widehat{\mu}, \widehat{\sigma}^2)}{\mathcal{N}(x; \mu, \sigma^2)}$$

Mean and variance of a truncated Gaussian $\mathcal{N}(x; \mu, \sigma^2)$

9/14

Truncated Gaussians

Truncated Gaussians. A truncated Gaussian given by $p(x) \propto \mathbb{I}(x > 0) \cdot \mathcal{N}(x; \mu, \sigma^2)$ has the following three moments

$$Z(\mu,\sigma) = \int_{-\infty}^{+\infty} p(x) \ dx = 1 - F(0;\mu,\sigma^2)$$
Additive update that goes to zero as $\frac{\mu}{\sigma} \to \infty$

$$E[X] = \int_{-\infty}^{+\infty} x \cdot p(x) \ dx = \mu + \sigma \cdot v\left(\frac{\mu}{\sigma}\right)$$
Multiplicative update that goes to 1 as $\frac{\mu}{\sigma} \to \infty$

$$var[X] = \int_{-\infty}^{+\infty} (x - E[X])^2 \cdot p(x) \ dx = \sigma^2 \cdot \left(1 - w\left(\frac{\mu}{\sigma}\right)\right)$$

where the probit
$$F(t; \mu, \sigma^2) \coloneqq \int_{-\infty}^t \mathcal{N}(x; \mu, \sigma^2) \, dx$$
 and
$$v(t) \coloneqq \frac{\mathcal{N}(t; 0, 1)}{F(t; 0, 1)} \longleftarrow \text{Converges to } -t \text{ as } t \to -\infty$$
$$w(t) \coloneqq v(t) \cdot [v(t) + t]$$

■ This can be generalized to an arbitrary interval [a, b] where the Gaussian is truncated!

Probabilistic Machine Learning

Decision Making: Match Quality and Leaderboards

- **Match Quality**: Decide if two players *i* and *j* should be matched
 - Idea: Pick the pair (i, j) where the two players have equal skills

Quality
$$(i,j) = \frac{P(p_i \approx p_j | \mu_i - \mu_j, \sigma_i^2 + \sigma_j^2)}{P(p_i \approx p_j | \mu_i - \mu_j = 0, \sigma_i^2 + \sigma_j^2 = 0)}$$

- **Observation**: This pair (i, j) approximately maximizes the information (entropy!) of the predicted match outcome because it gets closest to 50% winning probability
- Leaderboard: Decide how to display the best to worst player
 - Observation: There is an asymmetry in making a ranking mistake
 - Cheap: Ranking a truly good player lower than they should be (why?)
 - Expensive: Ranking a truly bad player higher than they should be (why?)
 - The loss minimizer of this decision process is a **quantile** $\mu k \cdot \sigma$

Probabilistic Machine Learning

Skill Dynamics

- **Dynamics**: In reality, skills of players evolve over time and are not stationary
 - Idea: Since we do not know which direction, assume that the skill of player i at time t depends on the skill of the same player at time t-1 via

Probabilistic Machine Learning

TrueSkill Through Time: Message Schedule

Four Phases

- **Prior (1)**: Send prior messages to each skill variable for the first year of a player
- 2. Annual Matches (2-11): Loop over all (2-player) matches in a year until the skill marginals for all active player in that year does not change (much) anymore
- **3. Forward Dynamics (12)**: Send skill dynamics messages forward in time from t to t+1 and keep running step 2. (13 17).
- dynamics (18): Send skill dynamics messages backward in time from year t+1 to t and keep running step 2. (2-Probabilistic Machine Learning 11)

Bayesian Ranking

 Stop when no variable in the outer loop changes much anymore.

TrueSkill-Through-Time: Chess Players

History of Chess

3.5M match outcomes 20 million variables 40 million factors

Probabilistic Machine Learning

Thank You!