姓名	班级		学	号	得分	
[说明] (1)第一、二、 (2)第五题将数 (3)除非特别说 (4)考试时间为	学模型、简要的明,所有计算	解题过程	和结果写	写在试题组	纸上;卷面空间不够时,请写在背面 字。	Î;
一、(8分)考虑	积分 $\int_0^2 e^{2x} \sin$	n(3x)dx	,若取去	步长 h=0.	01,则用梯形公式近似计算的结果	
为,	设绝对误差为	为10-6,	则用辛普	作森 公式i	近似计算的结果为;	
以 0 , 1 , 2	为插值节	i 点, i	函数 e	2x sin(3,	x) 的 Lagrange 插值多项式	
P(x)=				$\int_0^2 P(x) dx$	/ x =。(本	
题的计算结果均值	保留6位有效数	数字)		v		
二、(6分)试确。	定常数p和al	的值,使知	迭代法:	$x_{k+1} = p$	$x_k + \frac{qa}{x_k^2}$	
局部收敛于 \sqrt{a} (<i>a</i> ≥0), 并使	收敛阶尽:	量高,此	时 p=	,q=。收敛阶最高能	
是阶。						
三、(10 分)已知	n方程组 <i>Ax</i> = <i>l</i>	b , $A = \begin{bmatrix} b \end{bmatrix}$	4 2 1 1 2 2	$\begin{bmatrix} -2\\1\\4 \end{bmatrix}$, b	$=$ $\begin{bmatrix} 4\\2\\5 \end{bmatrix}$,使用列主元 Gauss 消去法求	
解所得 x =			_,Cond	₂ (A) =_	; 若取初值为 $x^{(0)} = [1,1,1]^T$	
时,则用 Gauss-Se	eidel 迭代法求解	邓时 $x^{(5)} =$,并判断 Gauss-Seidel	
迭代法是否收敛_	, 理由是			5		
					已知的条件如表所示,	
单位产品所需原料	4量(公斤)	Q1	Q2	Q3	原料可用量(公斤/日)	1
原料 P1		2	3	0	1500	1
原料 P2		0	2	4	800	1
原料 P3		3	2	5	2000	
单位产品的利润	(千元)	3	5	4		Ī
要使得每日的总规 所使用的命令是_ 此时要使每日				;	(公斤),你 若产品 Q3 至少要生产 100 公斤, ,Q2,Q3 的产量应分别调整为	

五、(20分)(本题中,选取显著性水平0.1;重力加速度取9.8米/平方秒) 特技演员从空中坠落时遇到的空气阻力是速度平方的函数。现在经过实验,得到了某一特技 演员遇到的空气阻力与速度的一组数据如下:

速度(米/秒)	1	3	5	7	10	13	15	18	20
阻力(牛顿)	0.2600	2.360	7.450	13.27	26.48	44.15	58.19	84.63	100.5

- (1) 利用以上数据,确定空气阻力与速度平方成线性关系的回归模型,并给出回归系数的置信区间。
- (2) 以上数据是否有异常点?若有,是第几个数据?并将其去掉后给出空气阻力与速度平方成正比例关系的模型。
- (3) 若该特技演员体重 70 千克,从 40 米高的空中自然坠落时,到达地面需要多长时间?此时速度为多少?(本小题要求:建立模型,给出计算程序和结果,计算结果保留三位有效数字。注意:与(2)中获得的模型相结合)