## inear independence

• Given 3 vectors  $\overrightarrow{v_1}$ ,  $\overrightarrow{v_2}$ ,  $\overrightarrow{v_3}$ , they are called **linearly independent** if and only if none of them is a linear combination of the others:

$$\overrightarrow{v_1} \neq a\overrightarrow{v_2} + b\overrightarrow{v_3}$$
 for any  $a, b \in \mathbb{R}$   
 $\overrightarrow{v_2} \neq a\overrightarrow{v_1} + b\overrightarrow{v_3}$  for any  $a, b \in \mathbb{R}$   
 $\overrightarrow{v_3} \neq a\overrightarrow{v_1} + b\overrightarrow{v_2}$  for any  $a, b \in \mathbb{R}$ 

This is equivalent to saying that:

$$a\vec{v_1} + b\vec{v_2} + c\vec{v_3} = 0$$
 iff  $a = b = c = 0$ 

## linear independence and spanning vectors

- $\vec{w}$  is in  $span(\vec{u}, \vec{v})$  or the plane spanned by  $(\vec{u}, \vec{v})$
- $\overrightarrow{w}$  is a linear combination of  $(\overrightarrow{u}, \overrightarrow{v})$ , so  $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$  is not linear independent.

