1 Introduction

1 Introduction

This is the documentation for the algebra files of the paparazzi project (paparazzi.nongnu.org). It should be a reference for the functions which are defined in the directory (paparazzi)/sw/airborne/math. The structure of this documentation is in the way how it should make most sense in a mathematical content. This documentation might be redundant.

The Conversion between FLOAT and REAL to BFP(binary floating point) and vice versa is not in this documentation yet.

2 Important definition

Unfortunately there are a lot of different definitions for rotations. There are 24 (some say 12, the author tends to think that there are much more) different ways to define euler angles. Therefore, paparazzi uses the convention, which is shown in *figure* ??. For instance, a resulting rotational

Fig. 1: The order of rotation from the reference frame to the body frame is first Yaw, then Pitch and finally Roll.

matrix would be

$$\mathbf{R}(\psi) \cdot \mathbf{R}(\theta) \cdot \mathbf{R}(\phi) \tag{1}$$

$$\begin{pmatrix}
\cos(\boldsymbol{\psi}) & -\sin(\boldsymbol{\psi}) & 0 \\
\sin(\boldsymbol{\psi}) & \cos(\boldsymbol{\psi}) & 0 \\
0 & 0 & 1
\end{pmatrix} \cdot \begin{pmatrix}
\cos(\theta) & 0 & \sin(\theta) \\
0 & 1 & 0 \\
-\sin(\theta) & 0 & \cos(\theta)
\end{pmatrix} \cdot \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos(\phi) & -\sin(\phi) \\
0 & \sin(\phi) & \cos(\phi)
\end{pmatrix}$$
(2)

$$\begin{pmatrix} \cos(\theta)\cos(\psi) & \sin(\phi)\sin(\theta)\cos(\psi) - \cos(\phi)\cos(\psi) & \cos(\phi)\sin(\theta)\cos(\psi) + \sin(\phi)\sin(\psi) \\ \cos(\theta)\sin(\psi) & \sin(\phi)\sin(\theta)\sin(\psi) + \cos(\phi)\cos(\psi) & \cos(\phi)\sin(\theta)\sin(\psi) - \sin(\phi)\cos(\psi) \\ -\sin(\theta) & \sin(\phi)\cos(\theta) & \cos(\phi)\cos(\theta) \end{pmatrix}$$
(3)

An equivalent multiplication from a quaternion with a vector would be

$$\begin{pmatrix} 0 \\ \overrightarrow{v}_o \end{pmatrix} = q \bullet \begin{pmatrix} 0 \\ \overrightarrow{v}_i \end{pmatrix} \bullet q^* \tag{4}$$

But, since paparazzi is a library for aerospace, the *choosen perspective is from the vehicle*. This is an important difference, because the attitude representation changes slightly, but it can mess up everything. In detail this means, that the order of the euler angles changes and also the sign¹ (figure ??).

Martin: "I still need to fix the citation"

Fig. 2: From the perspective of the vehicle the order and the sign of the euler angles change.

¹ If you have problems understanding this, pages 123f and 130-134 of [1] help a lot!

3 Overview 2

As a result the rotational matrix changes to the transposed/inverted.

$$\mathbf{R}(-\phi) \cdot \mathbf{R}(-\theta) \cdot \mathbf{R}(-\psi) \tag{5}$$

$$\begin{pmatrix} cos(\theta)cos(\psi) & cos(\theta)sin(\psi) & -sin(\theta) \\ sin(\phi)sin(\theta)cos(\psi) - cos(\phi)cos(\psi) & sin(\phi)sin(\theta)sin(\psi) + cos(\phi)cos(\psi) & sin(\phi)cos(\theta) \\ cos(\phi)sin(\theta)cos(\psi) + sin(\phi)sin(\psi) & cos(\phi)sin(\theta)sin(\psi) - sin(\phi)cos(\psi) & cos(\phi)cos(\theta) \end{pmatrix} \tag{6}$$

Same for the quaternion multiplication

$$\begin{pmatrix} 0 \\ \overrightarrow{v}_o \end{pmatrix} = q^* \bullet \begin{pmatrix} 0 \\ \overrightarrow{v}_i \end{pmatrix} \bullet q \tag{7}$$

3 Overview

An Overview of the implemented functions

				D		D 4 mm 0	0.77.4.00
function	VECT2	VECT3	MAT33	RMAT	EULER	RATES	QUAT
ZERO							
ASSIGN	$\sqrt{}$	$\sqrt{}$	()	()	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
COPY	$\sqrt{}$						
ADD	$\sqrt{}$	$\sqrt{}$			$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
SUM	$\sqrt{}$	$\sqrt{}$				$\sqrt{}$	
SUB	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	
DIFF	$\sqrt{}$	$\sqrt{}$			$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
SMUL	$\sqrt{}$	$\sqrt{}$			$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
$\mathrm{EW_MUL}$		$\sqrt{}$				$\sqrt{}$	
SDIV	$\sqrt{}$	$\sqrt{}$			$\sqrt{}$	$\sqrt{}$	
EW_DIV		$\sqrt{}$					
NORM	$\sqrt{}$			$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
STRIM	$\sqrt{}$	$\sqrt{}$					
BOUND_CUBE					$\sqrt{}$	$\sqrt{}$	
BOUND_BOX							

Martin: "Add Compiler #warning or #error for wrong use of Bound and Strim?"

3 Overview 3

Contents

4 Scalar 4

4 Scalar

For scalar values are a few functions available

4.1 Multiplication and Rightshift

Represents $a \cdot b$ with a right shift about r. This becomes close to

$$2^{-r}a \cdot b \tag{8}$$

but it is not the same. Function INT_MULT_RSHIFT(a, b, r) in File pprz_algebra_int.h

4.2 \sqrt{x} Squareroot

Calculates the squareroot $y = \sqrt{x}$. The function uses the Babylonian method.

$$y_{n+1} = \frac{1}{2} \left(y_n + \frac{x}{y_n} \right) \tag{9}$$

Function INT32_SQRT(out,in) in File pprz_algebra_int.h

4.3 atan2() 4-quadrant arctangent

Calculates the 4-quadrant arctangent of two values, x and y:

$$a = atan2(y, x) \tag{10}$$

The function uses a trick, which is desribed in detail at

• http://www.dspguru.com/comp.dsp/tricks/alg/fxdatan2.htm

In short:

Fig. 3: alternate atan2 function

If you have a set of x/y values (figure ??a), you can compute the ratio (figure ??b) of them:

$$r = \frac{x+y}{x-y} \tag{11}$$

and transform this ratio very close to the real values (figure ??c) using

$$\alpha = \frac{\pi}{4}(1-r) \tag{12}$$

4 Scalar 5

$$\alpha_2 = 0.1963 \cdot r^3 - 0.9817 \cdot r + \frac{\pi}{4} \tag{13}$$

Function INT32_ATAN2(a, y, x) in File pprz_algebra_int.h Function INT32_ATAN2_2(a, y, x) in File pprz_algebra_int.h

5 Vector

5.1 Definition

The main definition for every vector struct is that the values are called x, y and z (if it's a 3D-vector):

$$\overrightarrow{v} = \begin{pmatrix} x \\ y \end{pmatrix} \quad oor \quad \overrightarrow{v} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \tag{14}$$

It is available for the following simple types:

$_{ m type}$	struct 2D	struct 3D
uint16_t		Uint16Vect3
int16t		Int16Vect3
$int32_t$	Int32Vect2	Int32Vect3
$int64_t$	Int32Vect2	Int32Vect3
float	FloatVect2	FloatVect3
double	DoubleVect2	DoubleVect3

5.2 = Assigning

$$\overrightarrow{v} = \overrightarrow{0}$$

$$\overrightarrow{v} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad or \qquad \overrightarrow{v} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \tag{15}$$

Function INT_VECT2_ZERO(v) in File pprz_algebra_int.h Function INT_VECT3_ZERO(v) in File pprz_algebra_int.h Function INT32_VECT3_ZERO(v) in File pprz_algebra_int.h Function FLOAT_VECT2_ZERO(v) in File pprz_algebra_float.h Function FLOAT_VECT3_ZERO(v) in File pprz_algebra_float.h

$$\overrightarrow{a} = (x, y)^T$$
 or $\overrightarrow{a} = (x, y, z)^T$

$$\overrightarrow{a} = \begin{pmatrix} x \\ y \end{pmatrix} \qquad or \qquad \overrightarrow{a} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \tag{16}$$

Function VECT2_ASSIGN(a, x, y) in File pprz_algebra.h Function VECT3_ASSIGN(a, x, y, z) in File pprz_algebra.h Function FLOAT_VECT2_ASSIGN(a, x, y) in File pprz_algebra_float.h Function FLOAT_VECT3_ASSIGN(a,x,y,z) in File pprz_algebra_float.h

$$\overrightarrow{a} = \overrightarrow{b}$$

$$\overrightarrow{a} = \overrightarrow{b}$$
(17)

Function VECT2_COPY(a, b) in File pprz_algebra.h Function VECT3_COPY(a, b) in File pprz_algebra.h Function INT32_VECT3_COPY(o, i) in File pprz_algebra_int.h Function FLOAT_VECT2_COPY(a, b) in File pprz_algebra_float.h

5.3 + Addition

$$\overrightarrow{a} + = \overrightarrow{b}$$

$$\overrightarrow{a} = \overrightarrow{a} + \overrightarrow{b} \tag{18}$$

Function VECT2_ADD(a, b) in File pprz_algebra.h Function VECT3_ADD(a, b) in File pprz_algebra.h Function INT32 VECT3 ADD(a, b) in File pprz_algebra.h

Function INT32_VECT3_ADD(a, b) in File pprz_algebra_int.h

Function FLOAT_VECT2_ADD(a, b) in File pprz_algebra_float.h

$$\overrightarrow{c} = \overrightarrow{a} + \overrightarrow{b}$$

$$\overrightarrow{c} = \overrightarrow{a} + \overrightarrow{b} \tag{19}$$

Function VECT2_SUM(c, a, b) in File pprz_algebra.h

Function VECT3_SUM(c, a, b) in File pprz_algebra.h

Function INT32_VECT3_SUM(c, a, b) in File pprz_algebra_int.h

Function FLOAT_VECT2_SUM(c, a, b) in File pprz_algebra_float.h

Function DOUBLE_VECT3_SUM(c, a, b) in File pprz_algebra_double.h

5.4 - Subtraction

$$\overrightarrow{a} - = \overrightarrow{b}$$

$$\overrightarrow{a} = \overrightarrow{a} - \overrightarrow{b} \tag{20}$$

Function VECT2_SUB(a, b) in File pprz_algebra.h Function VECT3_SUB(a, b) in File pprz_algebra.h

Martin: "no INT32 vect3 sub?"

Function FLOAT_VECT2_SUB(a, b) in File pprz_algebra_float.h Function FLOAT_VECT3_SUB(a, b) in File pprz_algebra_float.h

$$\overrightarrow{c} = \overrightarrow{a} - \overrightarrow{b}$$

$$\overrightarrow{c} = \overrightarrow{a} - \overrightarrow{b} \tag{21}$$

Function VECT2_DIFF(c, a, b in File pprz_algebra.h

Function VECT3_DIFF(c, a, b) in File pprz_algebra.h

Function INT32_VECT3_DIFF(c, a, b) in File pprz_algebra_int.h

Function FLOAT_VECT2_DIFF(c, a, b) in File pprz_algebra_float.h

Function FLOAT_VECT3_DIFF(c, a, b) in File pprz_algebra_float.h

5.5 · Multiplication

 $\overrightarrow{v_o} = s \cdot \overrightarrow{v_i}$ With a scalar

$$\overrightarrow{v_o} = s \cdot \overrightarrow{v_i} \tag{22}$$

Function VECT2_SMUL(vo, vi, s) in File pprz_algebra.h

Function VECT3_SMUL(vo, vi, s) in File pprz_algebra.h

Function FLOAT_VECT2_SMUL(vo, vi, s) in File pprz_algebra_float.h

Function FLOAT_VECT3_SMUL(vo, vi, s) in File pprz_algebra_float.h or with a fraction

$$\overrightarrow{a} = \frac{num}{den} \cdot \overrightarrow{b} \tag{23}$$

Function INT32_VECT2_SCALE_2(a, b, num, den) in File pprz_algebra_int.h Function INT32_VECT3_SCALE_2(a, b, num, den) in File pprz_algebra_int.h

$\overrightarrow{v_o} = \overrightarrow{v_a} \cdot \overrightarrow{v_b}$ Element-wise

Also known as the "Dot-Multiplication" from MATLAB, Octave or FreeMat.

Function VECT3_EW_MUL(vo, va, vb) in File pprz_algebra.h

Martin: "Nothing for VECT2?"

 $\overrightarrow{v}_o = \overrightarrow{v}_1 \times \overrightarrow{v}_2$ Cross-Product

$$\overrightarrow{v}_o = \overrightarrow{v}_1 \times \overrightarrow{v}_2 = \begin{pmatrix} 0 & -z_1 & y_1 \\ z_1 & 0 & -x_1 \\ -y_1 & x_1 & 0 \end{pmatrix} \cdot \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix}$$
 (25)

Function FLOAT_VECT3_CROSS_PRODUCT(vo, v1, v2) in File pprz_algebra_float.h Function DOUBLE_VECT3_CROSS_PRODUCT(vo, v1, v2) in File pprz_algebra_double.h

 $\overrightarrow{v}_{out} = \mathbf{A} \cdot \overrightarrow{v}_{in}$ With a Matrix

$$\overrightarrow{v}_{out} = \mathbf{A} \cdot \overrightarrow{v}_{in} \tag{26}$$

Function MAT33_VECT3_MUL(vout, mat, vin) in File pprz_algebra.h Function RMAT_VECT3_MUL(vout, rmat, vin) in File pprz_algebra.h

Function FLOAT_RMAT_VECT3_MUL(vout, rmat, vin) in File pprz_algebra_float.h

Function DOUBLE_MAT33_VECT3_MUL(vout, mat, vin) in File pprz_algebra_double.h

$$\overrightarrow{v}_{out} = \mathbf{A}^T \cdot \overrightarrow{v}_{in} \tag{27}$$

Function MAT33_VECT3_TRANSP_MUL(vout, mat, vin) in File pprz_algebra.h Function DOUBLE_MAT33_VECT3_TRANSP_MUL(vout, mat, vin) in File pprz_algebra_double.h For rotational matrices, with additional right shift about the decimal point position:

$$\overrightarrow{v}_b = \mathbf{M}_{a2b} \cdot \overrightarrow{v}_a \tag{28}$$

Function INT32_RMAT_VMULT(vb, m_a2b, va) in File pprz_algebra_int.h With the transposed matrix

$$\overrightarrow{v}_b = \mathbf{M}_{b2a}^T \cdot \overrightarrow{v}_a \tag{29}$$

Function INT32_RMAT_TRANSP_VMULT(vb, m_b2a, va) in File pprz_algebra_int.h

With choosable right-shift:

$$\overrightarrow{v}_{out} = 2^{-f} \mathbf{M} \cdot \overrightarrow{v} \tag{30}$$

Function INT32_MAT33_VECT3_MULT(o, m, v, f) in File pprz_algebra_int.h

$\overrightarrow{v}_{out} = q \bullet \overrightarrow{v}_{in}$ With a quaternion

The quaternion is transformed to a rotational matrix and then the vector is multiplied with the matrix

$$\overrightarrow{v}_{out} = q \bullet \overrightarrow{v}_{in} \tag{31}$$

$$\overrightarrow{v}_{out} = \mathbf{R}_m(q) \cdot \overrightarrow{v}_{in} \tag{32}$$

$$\overrightarrow{v}_{out} = \begin{pmatrix}
1 - 2(q_y + q_z) & 2(q_x q_y - q_i q_z) & 2(q_x q_z + q_i q_y) \\
2(q_x q_y + q_i q_z) & 1 - 2(q_x + q_z) & 2(q_y q_z - q_i q_x) \\
2(q_x q_z - q_i q_y) & 2(q_y q_z + q_i q_x) & 1 - 2(q_x + q_y)
\end{pmatrix} \cdot \overrightarrow{v}_{in}$$
(33)

Function INT32_QUAT_VMULT(v_out, q, v_in) in File pprz_algebra_int.h Function FLOAT_QUAT_VMULT(v_out, q, v_in) in File pprz_algebra_float.h

5.6 ÷ Division

 $\overrightarrow{v_o} = \frac{1}{s} \cdot \overrightarrow{v_i}$ With a scalar

$$\overrightarrow{v_o} = \frac{1}{s} \cdot \overrightarrow{v_i} \tag{34}$$

Function VECT2_SDIV(vo, vi, s) in File pprz_algebra.h Function VECT3_SDIV(vo, vi, s) in File pprz_algebra.h Function INT32_VECT3_SDIV(a, b, s) in File pprz_algebra_int.h

$\overrightarrow{v_o} = \overrightarrow{v_a} \div \overrightarrow{v_b}$ Element-wise

Also known as the "Dot-Division" from MATLAB, Octave or FreeMat.

$$\begin{pmatrix} x_o \\ y_o \\ z_o \end{pmatrix} = \begin{pmatrix} x_a \div x_b \\ y_a \div y_b \\ z_a \div z_b \end{pmatrix}$$
 (35)

Function VECT3_EW_DIV(vo, va, vb) in File pprz_algebra.h

Martin: "Nothing for VECT2?"

5.7 Other

 $|\overrightarrow{v}|$ Norm

Computes the 2-norm of a vector (the length).

$$n = |\overrightarrow{v}| = \sqrt{\overrightarrow{v} \cdot \overrightarrow{v}} = \sqrt{x \cdot x + y \cdot y} \quad or \quad \sqrt{x \cdot x + y \cdot y + z \cdot z}$$
 (36)

Function INT32_VECT2_NORM(n, v) in File pprz_algebra_int.h Function INT32_VECT3_NORM(n, v) in File pprz_algebra_int.h Function FLOAT_VECT3_NORM(v) in File pprz_algebra_float.h

Martin: "float differs from int!"

Alternatively you can normalize a 3D - vector directly using Function FLOAT_VECT3_NORMALIZE(v) in File pprz_algebra_float.h

Right-Shift

Makes an bitwise right-shift with every value. This is close to the multiplication with 2^{-r} , but not the same.

$$\overrightarrow{v}_o = 2^{-r} \overrightarrow{v}_i \tag{37}$$

Function INT32_VECT2_RSHIFT(o, i, r) in File pprz_algebra_int.h

Left-Shift

Makes an bitwise left-shift with every value. This is close to the multiplication with 2^{l} , but not the same.

$$\overrightarrow{v}_o = 2^l \overrightarrow{v}_i \tag{38}$$

Function INT32_VECT2_LSHIFT(o, i, 1) in File pprz_algebra_int.h

 $min \leq \overrightarrow{v} \leq max$ Bounding

Bounds the vector so that every value is between min and max.

$$\overrightarrow{v} \in \mathbb{I}^2 \qquad or \qquad \overrightarrow{v} \in \mathbb{I}^3, \tag{39}$$

$$\mathbb{I} = [min; max] \tag{40}$$

$$\mathbb{I} = [min; max] \tag{40}$$

WARNING:

The functions "STRIM" have a higher priority for the lower border. So, if min > max and a value of \overrightarrow{v} is between those, the value is set to min.

The function "BOUND_CUBE" does that the other way round.

Function VECT2_STRIM(v, min, max) in File pprz_algebra.h

Function VECT3_STRIM(v, min, max) in File pprz_algebra.h

Function VECT3_BOUND_CUBE(v, min, max) in File pprz_algebra.h

Martin: "VECT3_STRIM and VECT3_BOUND_CUBE do nearly the same."

 $\overrightarrow{v}_{min} \leq \overrightarrow{v} \leq \overrightarrow{v}_{max}$ Bounding

Ensures that

$$\overrightarrow{v}_{min} \leq \overrightarrow{v} \leq \overrightarrow{v}_{max} \Leftrightarrow \begin{pmatrix} x_{min} \\ y_{min} \\ z_{min} \end{pmatrix} \leq \begin{pmatrix} x \\ y \\ z \end{pmatrix} \leq \begin{pmatrix} x_{max} \\ y_{max} \\ z_{max} \end{pmatrix} \tag{41}$$

Function VECT3_BOUND_BOX(v, v_min, v_max in File pprz_algebra.h

Martin: "Nothing for VECT2?"

Rounding

Rounds the values of a double vector to integer values.

$$\overrightarrow{v}_{out} = rint(\overrightarrow{v}_{in}) \tag{42}$$

Function DOUBLE_VECT3_RINT(vout, vin) in File pprz_algebra_double.h

6 Matrix 3×3 / Rotation Matrix

The indices of a matrix are zero-indexed, i.e. the first element in the matrix has the row and column number **Zero**.

Martin: "I choosed to start the indices with 1."

6.1 Definition

The matrix is represented as an array with the length 9.

$$\mathbf{M} = \begin{pmatrix} m_0 & m_1 & m_2 \\ m_3 & m_4 & m_5 \\ m_6 & m_7 & m_8 \end{pmatrix} = \begin{pmatrix} m[0] & m[1] & m[2] \\ m[3] & m[4] & m[5] \\ m[6] & m[7] & m[8] \end{pmatrix}$$
(43)

It is available for the following simple types:

$_{ m type}$	struct Mat	struct RMat
int32_t	Int32Mat33	Int32RMat
float	FloatMat33	FloatRMat
double	DoubleMat33	DoubleRMat

6.2 = Assigning

M = 0

$$\mathbf{M} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \tag{44}$$

Function FLOAT_MAT33_ZERO(m) in File pprz_algebra_float.h Function FLOAT_RMAT_ZERO(m) in File pprz_algebra_float.h

a_{ij} elements

Accessing an element is able with Function MAT33_ELMT(m, row, col) in File pprz_algebra.h Function RMAT_ELMT(m, row, col) in File pprz_algebra.h

 $\mathbf{M} = diag(d_{00}, d_{11}, d_{22})$

$$\mathbf{M} = \begin{pmatrix} d_{00} & 0 & 0\\ 0 & d_{11} & 0\\ 0 & 0 & d_{22} \end{pmatrix} \tag{45}$$

Function FLOAT_MAT33_DIAG(m, d00, d11, d22) in File pprz_algebra_float.h

A = B

$$mat1 = mat2 (46)$$

Function MAT33_COPY(mat1, mat2) in File pprz_algebra.h Function RMAT_COPY(o, i) in File pprz_algebra.h

$$\mathbf{M}_{b2a} = \mathbf{M}_{a2b}^{-1} = \mathbf{M}_{a2b}^{T}$$

$$\mathbf{M}_{b2a} = \mathbf{M}_{a2b}^{-1} = \mathbf{M}_{a2b}^{T} \tag{47}$$

Function FLOAT_RMAT_INV(m_b2a, m_a2b) in File pprz_algebra_float.h

6.3 - Subtraction

C = A - B

$$\mathbf{C} = \mathbf{A} - \mathbf{B} \tag{48}$$

Function RMAT_DIFF(c, a, b) in File pprz_algebra.h

For bigger matrices you have to spezify the number of rows (i) and the number of columns (j). Function MAT_SUB(i, j, C, A, B) in File pprz_simple_matrix.h

6.4 Multiplication

 $\mathbf{M}_{a2c} = \mathbf{M}_{b2c} \cdot \mathbf{M}_{a2b}$ with a Matrix (composition)

Makes a matrix-multiplication with additional Right-Shift about the decimal point.

Martin: "Not quite sure about that"

$$\mathbf{M}_{a2c} = \mathbf{M}_{b2c} \cdot \mathbf{M}_{a2b} \tag{49}$$

Function INT32_RMAT_COMP(m_a2c, m_a2b, m_b2c) in File pprz_algebra_int.h Function FLOAT_RMAT_COMP(m_a2c, m_a2b, m_b2c) in File pprz_algebra_float.h and with the inverse matrix

$$\mathbf{M}_{a2b} = \mathbf{M}_{b2c}^{-1} \cdot \mathbf{M}_{a2c} \tag{50}$$

Function INT32_RMAT_COMP_INV(m_a2b, m_a2c, m_b2c) in File pprz_algebra_int.h Function FLOAT_RMAT_COMP_INV(m_a2b, m_a2c, m_b2c) in File pprz_algebra_float.h Multiplication is also possible with bigger matrices

$$\mathbf{C}_{i \times j} = \mathbf{A}_{i \times k} \cdot \mathbf{B}_{i \times k}^{T} \tag{51}$$

Function MAT_MUL_T(i, k, j, C, A, B) in File pprz_simple_matrix.h or

$$\mathbf{C}_{i\times j} = \mathbf{A}_{i\times k} \cdot \mathbf{B}_{k\times j} \tag{52}$$

Function MAT_MUL(i, k, j, C, A, B) in File pprz_simple_matrix.h

6.5 Transformation from a Matrix

to euler angles

Martin: "This is only for the 321-convention"

The rotation matrix from euler angles is known

$$\mathbf{R}_{m} = \begin{pmatrix} \cos(\theta)\cos(\psi) & \cos(\theta)\sin(\psi) & -\sin(\theta) \\ \sin(\phi)\sin(\theta)\cos(\psi) - \cos(\phi)\cos(\psi) & \sin(\phi)\sin(\theta)\sin(\psi) + \cos(\phi)\cos(\psi) & \sin(\phi)\cos(\theta) \\ \cos(\phi)\sin(\theta)\cos(\psi) + \sin(\phi)\sin(\psi) & \cos(\phi)\sin(\theta)\sin(\psi) - \sin(\phi)\cos(\psi) & \cos(\phi)\cos(\theta) \end{pmatrix}$$

$$(53)$$

and the extraction is done vice versa.

$$e^{\phi} = \begin{pmatrix} \phi \\ \theta \\ \psi \end{pmatrix} = \begin{pmatrix} \arctan 2(r_{23}, r_{33}) \\ -\arcsin(r_{13}) \\ \arctan 2(r_{12}, r_{11}) \end{pmatrix}$$

$$(54)$$

Function INT32_EULERS_OF_RMAT(e, rm) in File pprz_algebra_int.h Function FLOAT_EULERS_OF_RMAT(e, rm) in File pprz_algebra_float.h

to a quaternion

Since the construction of a matrix from a quaternion is known

$$\mathbf{R}_{m} = \begin{pmatrix} 1 - 2(q_{y}^{2} + q_{z}^{2}) & 2(q_{x}q_{y} - q_{i}q_{z}) & 2(q_{x}q_{z} + q_{i}q_{y}) \\ 2(q_{x}q_{y} + q_{i}q_{z}) & 1 - 2(q_{x}^{2} + q_{z}^{2}) & 2(q_{y}q_{z} - q_{i}q_{x}) \\ 2(q_{x}q_{z} - q_{i}q_{y}) & 2(q_{y}q_{z} + q_{i}q_{x}) & 1 - 2(q_{x}^{2} + q_{y}^{2}) \end{pmatrix},$$

$$(55)$$

the extraction of a quaternion is done vice versa. But there are obviously many opportunities to extract the quaternion. They differ in the way which element of the quaternion is extracted from the diaognal elements r_{11} , r_{22} and r_{33} of the matrix.

$$1 = q_i^2 + q_x^2 + q_y^2 + q_z^2 (56)$$

First case

$$\zeta = \sqrt{1 + (r_{11} + r_{22} + r_{33})} = \sqrt{1 + (3q_i^2 - q_x^2 - q_y^2 - q_z^2)} = \sqrt{4q_i^2}$$
(57)

$$q_i = \frac{1}{2}\zeta\tag{58}$$

$$q_x = \frac{1}{2\zeta}(r_{23} - r_{32}) \tag{59}$$

$$q_y = \frac{1}{2\zeta}(r_{31} - r_{13}) \tag{60}$$

$$q_z = \frac{1}{2\zeta}(r_{12} - r_{21}) \tag{61}$$

Second case

$$\zeta = \sqrt{1 + (r_{11} - r_{22} - r_{33})} = \sqrt{1 + (-q_i^2 + 3q_x^2 - q_y^2 - q_z^2)} = \sqrt{4q_x^2}$$
(62)

$$q_i = \frac{1}{2\zeta}(r_{23} - r_{32}) \tag{63}$$

$$q_x = \frac{1}{2}\zeta\tag{64}$$

$$q_y = \frac{1}{2\zeta}(r_{12} + r_{21}) \tag{65}$$

$$q_z = \frac{1}{2\zeta}(r_{31} + r_{13}) \tag{66}$$

Third case

$$\zeta = \sqrt{1 + (-r_{11} + r_{22} - r_{33})} = \sqrt{1 + (-q_i^2 - q_x^2 + 3q_y^2 - q_z^2)} = \sqrt{4q_y^2}$$
(67)

$$q_i = \frac{1}{2\zeta}(r_{31} - r_{13}) \tag{68}$$

$$q_x = \frac{1}{2\zeta}(r_{12} + r_{21}) \tag{69}$$

$$q_y = \frac{1}{2}\zeta\tag{70}$$

$$q_z = \frac{1}{2\zeta}(r_{23} + r_{32}) \tag{71}$$

Fourth case

$$\zeta = \sqrt{1 + (-r_{11} - r_{22} + r_{33})} = \sqrt{1 + (-q_i^2 - q_x^2 - q_y^2 + 3q_z^2)} = \sqrt{4q_z^2}$$
(72)

$$q_i = \frac{1}{2\zeta}(r_{12} - r_{21}) \tag{73}$$

$$q_x = \frac{1}{2\zeta}(r_{31} + r_{13}) \tag{74}$$

$$q_y = \frac{1}{2\zeta}(r_{23} + r_{32}) \tag{75}$$

$$q_z = \frac{1}{2}\zeta\tag{76}$$

All are mathematically equivalent but numerically different. To avoid complex numbers and singularities the case with the biggest ζ should be choosen. Function INT32_QUAT_OF_RMAT(q, r) in File pprz_algebra_int.h

Function FLOAT_QUAT_OF_RMAT(q, r) in File pprz_algebra_float.h

6.6 Tranformation to a Matrix

from an axis and an angle

With a known axis of rotation \overrightarrow{u} and an angle α it is possible to compute a rotational matrix with

$$\mathbf{R}_{m} = \begin{pmatrix} 0 & -u_{z} & u_{y} \\ u_{z} & 0 & -u_{x} \\ -u_{y} & u_{x} & 0 \end{pmatrix} \sin \alpha + \left(\mathbf{I} - \overrightarrow{u} \overrightarrow{u}^{T}\right) \cos \alpha + \overrightarrow{u} \overrightarrow{u}^{T}. \tag{77}$$

Please note again, that all angles are from the perspective of the aircraft (see section ??). Therefore the angle is defined ngeative, leading to

$$\mathbf{R}_{m} = \begin{pmatrix} 0 & u_{z} & -u_{y} \\ -u_{z} & 0 & u_{x} \\ u_{y} & -u_{x} & 0 \end{pmatrix} \sin \alpha + \left(\mathbf{I} - \overrightarrow{u} \overrightarrow{u}^{T} \right) \cos \alpha + \overrightarrow{u} \overrightarrow{u}^{T}.$$
 (78)

Rearranging this equation leads to

$$\mathbf{R}_{m} = \begin{pmatrix} u_{x}^{2} + (1 - u_{x}^{2})\cos\alpha & u_{x}u_{y}(1 - \cos\alpha) + u_{z}\sin\alpha & u_{x}u_{z}(1 - \cos\alpha) - u_{y}\sin\alpha \\ u_{x}u_{y}(1 - \cos\alpha) - u_{z}\sin\alpha & u_{y}^{2} + (1 - u_{y}^{2})\cos\alpha & u_{y}u_{z}(1 - \cos\alpha) + u_{x}\sin\alpha \\ u_{x}u_{z}(1 - \cos\alpha) + u_{y}\sin\alpha & u_{y}u_{z}(1 - \cos\alpha) - u_{x}\sin\alpha & u_{z}^{2} + (1 - u_{z}^{2})\cos\alpha \end{pmatrix}.$$
(79)

Function FLOAT_RMAT_OF_AXIS_ANGLE(rm, uv, an) in File pprz_algebra_float.h

from euler angles

The transformation from euler angles e^{ϕ} to a rotational matrix depends on the order of rotation. Here, the default order is 321, which means first Yaw (about the *third* axis), then Pitch (the *second* axis) and finally Roll(the *first* axis). Please note the important definition about perspectives (page ??).

$$\mathbf{R}_{m} = \begin{pmatrix} cos(\theta)cos(\psi) & cos(\theta)sin(\psi) & -sin(\theta) \\ sin(\phi)sin(\theta)cos(\psi) - cos(\phi)cos(\psi) & sin(\phi)sin(\theta)sin(\psi) + cos(\phi)cos(\psi) & sin(\phi)cos(\theta) \\ cos(\phi)sin(\theta)cos(\psi) + sin(\phi)sin(\psi) & cos(\phi)sin(\theta)sin(\psi) - sin(\phi)cos(\psi) & cos(\phi)cos(\theta) \end{pmatrix}$$
(80)

Function INT32_RMAT_OF_EULERS(rm, e) in File pprz_algebra_int.h Function INT32_RMAT_OF_EULERS_321(rm, e) in File pprz_algebra_int.h Function FLOAT_RMAT_OF_EULERS(rm, e) in File pprz_algebra_float.h Function FLOAT_RMAT_OF_EULERS_321(rm, e) in File pprz_algebra_float.h

You can also choose the 312 definition (First Yaw, then Roll then Pitch $\Rightarrow \mathbf{R}(\psi)\mathbf{R}(\phi)\mathbf{R}(\theta)$). Again, remember the different order and sign:

$$\mathbf{R}_m = \mathbf{R}(-\theta)\mathbf{R}(-\phi)\mathbf{R}(-\psi) \tag{81}$$

$$\mathbf{R}_{m} = \begin{pmatrix} \cos(\theta)\cos(\mathbf{\psi}) - \sin(\phi)\sin(\theta)\sin(\mathbf{\psi}) & \cos(\theta)\sin(\mathbf{\psi}) + \sin(\phi)\sin(\theta)\cos(\mathbf{\psi}) & -\cos(\phi)\sin(\theta) \\ -\cos(\phi)\sin(\mathbf{\psi}) & \cos(\phi)\cos(\mathbf{\psi}) & \sin(\phi) \\ \sin(\theta)\cos(\mathbf{\psi}) + \sin(\phi)\cos(\theta)\sin(\mathbf{\psi}) & \sin(\theta)\sin(\mathbf{\psi}) - \sin(\phi)\cos(\theta)\cos(\mathbf{\psi}) & \cos(\phi)\cos(\theta) \end{pmatrix}$$
(82)

Function INT32_RMAT_OF_EULERS_312(rm, e) in File pprz_algebra_int.h Function FLOAT_RMAT_OF_EULERS_312(rm, e) in File pprz_algebra_float.h Function DOUBLE_RMAT_OF_EULERS_312(rm, e) in File pprz_algebra_float.h

from a quaternion

The most common definition for this transformation is

$$\mathbf{R}_{m} = \begin{pmatrix} 1 - 2(q_{y}^{2} + q_{z}^{2}) & 2(q_{x}q_{y} - q_{i}q_{z}) & 2(q_{x}q_{z} + q_{i}q_{y}) \\ 2(q_{x}q_{y} + q_{i}q_{z}) & 1 - 2(q_{x}^{2} + q_{z}^{2}) & 2(q_{y}q_{z} - q_{i}q_{x}) \\ 2(q_{x}q_{z} - q_{i}q_{y}) & 2(q_{y}q_{z} + q_{i}q_{x}) & 1 - 2(q_{x}^{2} + q_{y}^{2}) \end{pmatrix}.$$
(83)

Function INT32_RMAT_OF_QUAT(rm, q) in File pprz_algebra_int.h Function FLOAT_RMAT_OF_QUAT(rm, q) in File pprz_algebra_float.h

Martin: "I called the quicker function "INT32_RMAT_OF_QUAT_QUICKER""

6.7 Other

Trace

$$tr(\mathbf{R}_m) = a_{11} + a_{22} + a_{33} \tag{84}$$

Function RMAT_TRACE(rm) in File pprz_algebra.h

$||\mathbf{M}||_F$ Norm (Frobenius)

Calculates the Frobenius Norm of a matrix

$$||\mathbf{M}||_F = \sqrt{\sum_{i=1}^3 \sum_{i=1}^3 m_{ij}^2}$$
 (85)

Function FLOAT_RMAT_NORM(m) in File pprz_algebra_float.h

A^{-1} Inversion

The inversion of a 3-by-3 matrix is made using the adjugate matrix and the determinant:

$$\mathbf{A}^{-1} = \frac{adj(\mathbf{A})}{det(\mathbf{A})} = \frac{1}{det\mathbf{A}} \begin{pmatrix} a_{22}a_{33} - a_{23}a_{32} & a_{13}a_{32} - a_{12}a_{33} & a_{12}a_{23} - a_{13}a_{22} \\ a_{23}a_{31} - a_{21}a_{33} & a_{11}a_{33} - a_{13}a_{31} & a_{13}a_{21} - a_{11}a_{23} \\ a_{21}a_{31} - a_{22}a_{31} & a_{12}a_{31} - a_{11}a_{32} & a_{11}a_{22} - a_{12}a_{21} \end{pmatrix}$$
(86)

Function MAT_INV33(invS, S) in File pprz_simple_matrix.h

7 Euler Angles

7.1 Definition

The values are called

$$e^{\phi} = \begin{pmatrix} \phi \\ \theta \\ \frac{\psi}{\mathbf{v}} \end{pmatrix} = \begin{pmatrix} phi \\ Pitch \\ Yaw \end{pmatrix}$$
 (87)

It is available for the following simple types:

$_{ m type}$	struct	
int16_t	Int16Eulers	-
$int32_t$	Int32Eulers	IMPORTANT:
float	FloatEulers	
double	DoubleEulers	

Because there are many definitions of euler angles (some say 12, wikipedia says 24, the author tends to believe there are 48) and the choice of perspective, paparazzi choosed the following convention:

7.2 = Assigning

$$e^{\phi} = 0^{\phi}$$

$$v^{\phi} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \tag{88}$$

Function INT_EULERS_ZERO(e) in File pprz_algebra_int.h Function FLOAT_EULERS_ZERO(e) in File pprz_algebra_float.h

$$a^{\phi} = (\phi, \theta, \mathbf{\psi})^{T}$$

$$a^{\phi} = (\phi, \theta, \mathbf{\psi})^{T}$$
(89)

Function EULERS_ASSIGN(e, phi, theta, psi) in File pprz_algebra.h

$$a^{\phi} = b^{\phi}$$

$$a^{\phi} = b^{\phi} \tag{90}$$

Function EULERS_COPY(a, b) in File pprz_algebra.h

7.3 + Addition

$$a^{\phi} + = b^{\phi}$$

$$a^{\phi} = a^{\phi} + b^{\phi} \tag{91}$$

Function EULERS_ADD(a, b) in File pprz_algebra.h

Martin: "No EULERS_SUM function?"

7.4 - Subtraction

$$a^{\phi} - = b^{\phi}$$

$$a^{\phi} = a^{\phi} - b^{\phi} \tag{92}$$

Function EULERS_SUB(a, b) in File pprz_algebra.h

$$c^{\phi} = a^{\phi} - b^{\phi}$$

$$c^{\phi} = a^{\phi} - b^{\phi}$$
(93)

Function EULERS_DIFF(c, a, b) in File pprz_algebra.h

7.5 · Multiplication

$$e^\phi_o = s \cdot e^\phi_i$$
 With a scalar

$$e_o^{\phi} = s \cdot e_i^{\phi} \tag{94}$$

Function EULERS_SMUL(eo, ei, s) in File pprz_algebra.h

7.6 ÷ Division

 $e^\phi_o = \frac{1}{s} \cdot e^\phi_i$ With a scalar

$$e_o^{\phi} = \frac{1}{s} \cdot e_i^{\phi} \tag{95}$$

Function EULERS_SDIV(eo, ei, s) in File pprz_algebra.h

7.7 Transformation from euler angles

to a rotational matrix

The transformation from euler angles e^{ϕ} to a rotational matrix depends on the order of rotation. Here, the default order is 321, which means first Yaw (about the *third* axis), then Pitch (the *second* axis) and finally Roll(the *first* axis). Please note the important definition about perspectives (page ??).

$$\mathbf{R}_{m} = \begin{pmatrix} \cos(\theta)\cos(\psi) & \cos(\theta)\sin(\psi) & -\sin(\theta) \\ \sin(\phi)\sin(\theta)\cos(\psi) - \cos(\phi)\cos(\psi) & \sin(\phi)\sin(\psi) + \cos(\phi)\cos(\psi) & \sin(\phi)\cos(\theta) \\ \cos(\phi)\sin(\theta)\cos(\psi) + \sin(\phi)\sin(\psi) & \cos(\phi)\sin(\theta)\sin(\psi) - \sin(\phi)\cos(\psi) & \cos(\phi)\cos(\theta) \end{pmatrix}$$
(96)

Function INT32_RMAT_OF_EULERS(rm, e) in File pprz_algebra_int.h Function INT32_RMAT_OF_EULERS_321(rm, e) in File pprz_algebra_int.h Function FLOAT_RMAT_OF_EULERS(rm, e) in File pprz_algebra_float.h Function FLOAT_RMAT_OF_EULERS_321(rm, e) in File pprz_algebra_float.h You can also choose the 312 definition (First Yaw, then Roll then Pitch $\Rightarrow \mathbf{R}(\psi)\mathbf{R}(\phi)\mathbf{R}(\theta)$). Again, remember the different order and sign:

$$\mathbf{R}_{m} = \mathbf{R}(-\theta)\mathbf{R}(-\phi)\mathbf{R}(-\psi) \tag{97}$$

$$\mathbf{R}_{m} = \begin{pmatrix} \cos(\theta)\cos(\mathbf{\psi}) - \sin(\phi)\sin(\theta)\sin(\mathbf{\psi}) & \cos(\theta)\sin(\mathbf{\psi}) + \sin(\phi)\sin(\theta)\cos(\mathbf{\psi}) & -\cos(\phi)\sin(\theta) \\ -\cos(\phi)\sin(\mathbf{\psi}) & \cos(\phi)\cos(\mathbf{\psi}) & \sin(\phi) \\ \sin(\theta)\cos(\mathbf{\psi}) + \sin(\phi)\cos(\theta)\sin(\mathbf{\psi}) & \sin(\theta)\sin(\mathbf{\psi}) - \sin(\phi)\cos(\theta)\cos(\mathbf{\psi}) & \cos(\phi)\cos(\theta) \end{pmatrix}$$

$$(98)$$

Function INT32_RMAT_OF_EULERS_312(rm, e) in File pprz_algebra_int.h Function FLOAT_RMAT_OF_EULERS_312(rm, e) in File pprz_algebra_float.h Function DOUBLE_RMAT_OF_EULERS_312(rm, e) in File pprz_algebra_float.h

to a quaternion

The transformation is given by

$$q = \left[\cos\frac{\psi}{2} + \mathbf{k}\sin\frac{\psi}{2}\right]\left[\cos\frac{\theta}{2} + \mathbf{j}\sin\frac{\theta}{2}\right]\left[\cos\frac{\phi}{2} + \mathbf{i}\sin\frac{\phi}{2}\right] \tag{99}$$

In matrix notation:

$$q = \begin{pmatrix} \cos\frac{\phi}{2}\cos\frac{\phi}{2}\cos\frac{\phi}{2} + \sin\frac{\phi}{2}\sin\frac{\phi}{2}\sin\frac{\phi}{2} \\ \sin\frac{\phi}{2}\cos\frac{\phi}{2}\cos\frac{\phi}{2}\cos\frac{\phi}{2} - \cos\frac{\phi}{2}\sin\frac{\phi}{2}\sin\frac{\phi}{2} \\ \cos\frac{\phi}{2}\sin\frac{\phi}{2}\cos\frac{\phi}{2} + \sin\frac{\phi}{2}\cos\frac{\phi}{2}\sin\frac{\phi}{2} \\ \cos\frac{\phi}{2}\cos\frac{\phi}{2}\sin\frac{\phi}{2} - \sin\frac{\phi}{2}\cos\frac{\phi}{2}\sin\frac{\phi}{2} \end{pmatrix}$$
(100)

Function INT32_QUAT_OF_EULERS(q, e) in File pprz_algebra_int.h Function FLOAT_QUAT_OF_EULERS(q, e) in File pprz_algebra_float.h Function DOUBLE_QUAT_OF_EULERS(q, e) in File pprz_algebra_double.h

to rates

This function requires the euler angles e and also their derivative ed.

$$\omega_r = \begin{pmatrix} p \\ q \\ r \end{pmatrix} = \mathbf{I} \cdot \mathbf{I} \cdot \begin{pmatrix} \dot{\phi} \\ 0 \\ 0 \end{pmatrix} + \mathbf{R}(\phi) \cdot \mathbf{I} \cdot \begin{pmatrix} 0 \\ \dot{\theta} \\ 0 \end{pmatrix} + \mathbf{R}(\phi) \cdot \mathbf{R}(\theta) \cdot \begin{pmatrix} 0 \\ 0 \\ \dot{\psi} \end{pmatrix}$$
(101)

$$\mathbf{R}(\phi) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\phi) & -\sin(\phi) \\ 0 & \sin(\phi) & \cos(\phi) \end{pmatrix}$$
 (102)

$$\mathbf{R}(\theta) = \begin{pmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{pmatrix}$$
 (103)

$$\omega_r = \begin{pmatrix} p \\ q \\ r \end{pmatrix} = \begin{pmatrix} -\sin(\phi)\dot{\psi} + \dot{\phi} \\ \sin(\phi)\cos(\theta)\dot{\psi} + \cos(\phi)\dot{\theta} \\ \cos(\phi)\cos(\theta)\dot{\psi} - \sin(\phi)\dot{\theta} \end{pmatrix}$$
(104)

Function INT32_RATES_OF_EULERS_DOT(r, e, ed) in File pprz_algebra_int.h Function INT32_RATES_OF_EULERS_DOT_321(r, e, ed) in File pprz_algebra_int.h

7.8 Transformation to euler angles

form a rotational matrix

Martin: "This is only for the 321-convention"

The rotation matrix from euler angles is known

$$\mathbf{R}_{m} = \begin{pmatrix} \cos(\theta)\cos(\psi) & \cos(\theta)\sin(\psi) & -\sin(\theta) \\ \sin(\phi)\sin(\theta)\cos(\psi) - \cos(\phi)\cos(\psi) & \sin(\phi)\sin(\theta)\sin(\psi) + \cos(\phi)\cos(\psi) & \sin(\phi)\cos(\theta) \\ \cos(\phi)\sin(\theta)\cos(\psi) + \sin(\phi)\sin(\psi) & \cos(\phi)\sin(\theta)\sin(\psi) - \sin(\phi)\cos(\psi) & \cos(\phi)\cos(\theta) \end{pmatrix}$$

$$(105)$$

and the extraction is done vice versa.

$$e^{\phi} = \begin{pmatrix} \phi \\ \theta \\ \psi \end{pmatrix} = \begin{pmatrix} \arctan 2(r_{23}, r_{33}) \\ -\arcsin(r_{13}) \\ \arctan 2(r_{12}, r_{11}) \end{pmatrix}$$

$$(106)$$

Function INT32_EULERS_OF_RMAT(e, rm) in File pprz_algebra_int.h Function FLOAT_EULERS_OF_RMAT(e, rm) in File pprz_algebra_float.h

from a quaternion

This is done by constructing a rotational matrix out of a quaternion (note: not all elements need to be generated),

$$\mathbf{R}_{m} = \begin{pmatrix} 1 - 2(q_{y}^{2} + q_{z}^{2}) & 2(q_{x}q_{y} - q_{i}q_{z}) & 2(q_{x}q_{z} + q_{i}q_{y}) \\ & 2(q_{y}q_{z} - q_{i}q_{x}) \\ & 1 - 2(q_{x}^{2} + q_{y}^{2}) \end{pmatrix}, \tag{107}$$

which is equivalent to a rotational matrix, that is constructed from euler angles

$$\mathbf{R}_{m} = \begin{pmatrix} \cos(\theta)\cos(\mathbf{\psi}) & \cos(\theta)\sin(\mathbf{\psi}) & -\sin(\theta) \\ & \sin(\phi)\cos(\theta) \\ & \cos(\phi)\cos(\theta) \end{pmatrix}. \tag{108}$$

The euler angles are then

$$e^{\phi} = \begin{pmatrix} \phi \\ \theta \\ \psi \end{pmatrix} = \begin{pmatrix} \arctan 2(r_{23}, r_{33}) \\ -\arcsin(r_{13}) \\ \arctan 2(r_{12}, r_{11}) \end{pmatrix}$$

$$(109)$$

Function INT32_EULERS_OF_QUAT(e, q) in File pprz_algebra_int.h Function FLOAT_EULERS_OF_QUAT(e, q) in File pprz_algebra_float.h Function DOUBLE_EULERS_OF_QUAT(e, q) in File pprz_algebra_float.h

euler angles derivative from rates

The transformation from euler angles derivative to rates can be written as a matrix multiplication

$$\begin{pmatrix} p \\ q \\ r \end{pmatrix} = \begin{pmatrix} -\sin(\phi)\dot{\psi} + \dot{\phi} \\ \sin(\phi)\cos(\theta)\dot{\psi} + \cos(\phi)\dot{\theta} \\ \cos(\phi)\cos(\theta)\dot{\psi} - \sin(\phi)\dot{\theta} \end{pmatrix} \Leftrightarrow \begin{pmatrix} p \\ q \\ r \end{pmatrix} = \begin{pmatrix} 1 & 0 & -\sin(\phi) \\ 0 & \cos(\phi) & \sin(\phi)\cos(\theta) \\ 0 & -\sin(\phi) & \cos(\phi)\cos(\theta) \end{pmatrix} \cdot \begin{pmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{pmatrix}.$$
 (110)

This can be solved easily to

$$\begin{pmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{pmatrix} = \begin{pmatrix} 1 & \frac{\sin^2 \phi}{\cos \theta} & \frac{\sin \phi \cos \phi}{\cos \theta} \\ 0 & \cos \phi & -\sin \phi \\ 0 & \frac{\sin \phi}{\cos \theta} & \frac{\cos \phi}{\cos \theta} \end{pmatrix} \cdot \begin{pmatrix} p \\ q \\ r \end{pmatrix}.$$
(111)

Please note the singularity at the $gimbal \ lock\ (\theta=\pm90^\circ)!$ Function INT32_EULERS_DOT_OF_RATES(ed, e, r) in File pprz_algebra_int.h Function INT32_EULERS_DOT_321_OF_RATES(ed, e, r) in File pprz_algebra_int.h

7.9 Other

$-\pi \le \alpha \le \pi$ Normalizing

You have either the option to normalize a single angle to a value between

$$-\pi \le \alpha \le \pi \tag{112}$$

Function INT32_ANGLE_NORMALIZE(a) in File pprz_algebra_int.h Function FLOAT_ANGLE_NORMALIZE(a) in File pprz_algebra_float.h or between

$$0 \le \alpha \le 2\pi \tag{113}$$

Function INT32_COURSE_NORMALIZE(a) in File pprz_algebra_int.h

 $|e^{\phi}|$ Norm

Calculates the 2-norm

$$||e^{\phi}||_2 = \sqrt{\phi^2 + \theta^2 + \psi^2} \tag{114}$$

Function FLOAT_EULERS_NORM(e) in File pprz_algebra_float.h

 $min \leq v^{\phi} \leq max$ Bounding

Bounds the euler angles so that every angle ϕ , θ and ψ is between min and max.

$$v^{\phi} \in \mathbb{I}^3, \qquad \mathbb{I} = [min; max]$$
 (115)

WARNING:

The function "EULERS_BOUND_CUBE" works different than the function VECT3_BOUND_CUBE in the case of min > max. Here, the lower border min has a higher priority than the upper border max. So, if min > max and a value of \overrightarrow{e} is between those, the value is set to min. Function EULERS_BOUND_CUBE(v, min, max) in File pprz_algebra.h

Martin: "Better naming suggestion: choose e instead of v"

Martin: "The difference between EULERS_BOUND_CUBE and VECT3_BOUND_CUBE is not very good"

Martin: "No BOUND_BOX?"

8 Rates

8.1 Definition

The values are called

$$\omega = \begin{pmatrix} p \\ q \\ r \end{pmatrix} \tag{116}$$

It is available for the following simple types:

$_{ m type}$	struct
int16_t	Int16Rates
$int32_t$	Int32Rates
float	FloatRates
double	DoubleRates

8.2 = Assigning

 $\omega = 0$

$$\omega = \begin{pmatrix} p \\ q \\ r \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \tag{117}$$

Function FLOAT_RATES_ZERO(r) in File pprz_algebra_float.h

$$\omega = (p, q, r)^T$$

$$\omega_{=}(p, q, r)^T \tag{118}$$

Function RATES_ASSIGN(ra, p, q, r) in File pprz_algebra.h

$$\omega_a = \omega_b \tag{119}$$

Function RATES_COPY(a, b) in File pprz_algebra.h

8.3 + Addition

$$\omega_a + = \omega_b$$

$$\omega_a = \omega_a + \omega_b \tag{120}$$

Function RATES_ADD(a, b) in File pprz_algebra.h

$$\omega_c = \omega_a + \omega_b$$

$$\omega_c = \omega_a + \omega_b$$
 (121)

Function RATES_SUM(c, a, b) in File pprz_algebra.h

8.4 - Subtraction

 $\omega_a - = \omega_b$

$$\omega_a = \omega_a - \omega_b \tag{122}$$

Function RATES_SUB(a, b) in File pprz_algebra.h

 $\omega_c = \omega_a - \omega_b$

$$\omega_c = \omega_a - \omega_b \tag{123}$$

Function RATES_DIFF(c, a, b) in File pprz_algebra.h

8.5 · Multiplication

 $\omega_{ro} = s \cdot \omega_{ri}$ With a scalar

$$\omega_{ro} = s \cdot \omega_{ri} \tag{124}$$

Function RATES_SMUL(ro, ri, s) in File pprz_algebra.h

$\omega_c = 2^{-s} \cdot \omega_a \cdot \omega_b$ Element-wise with bit-shift

Makes an element-wise multiplication (also known as "Dot-Multiplication" from languages like MATLAB, FreeMat or Octave) and an additional bitshift to the right about s. The bitwise shift operation often results in a multiplication like 2^{-s} , but especially for the divisions of integer values it's not the same.

$$\omega_c = \begin{pmatrix} p_c \\ q_c \\ r_c \end{pmatrix} = \begin{pmatrix} 2^{-s} \ p_a \cdot p_b \\ 2^{-s} \ q_a \cdot q_b \\ 2^{-s} \ r_a \cdot r_b \end{pmatrix}$$
(125)

 $\omega_{vb} = \mathbf{M}_{b2a}^T \cdot \omega_{va}$ With a rotational matrix

$$\omega_{vb} = \mathbf{M}_{b2a}^T \cdot \omega_{va} \tag{126}$$

Function INT32_RMAT_TRANSP_RATEMULT(vb, m_b2a, va) in File pprz_algebra_int.h Function FLOAT_RMAT_TRANSP_RATEMULT(vb, m_b2a, va) in File pprz_algebra_float.h or without the not-transposed matrix

$$\omega_{vb} = \mathbf{M}_{a2b} \cdot \omega_{va} \tag{127}$$

Function FLOAT_RMAT_RATEMULT(vb, m_a2b, va) in File pprz_algebra_float.h

8.6 ÷ Division

 $\omega_{ro} = \frac{1}{s} \cdot \omega_{ri}$ With a scalar

$$\omega_{ro} = \frac{1}{s} \cdot \omega_{ri} \tag{128}$$

Function EULERS_SDIV(ro, ri, s) in File pprz_algebra.h

8.7 Transformation form rates

to euler angles (derivative)

The transformation from euler angles derivative to rates can be written as a matrix multiplication

$$\begin{pmatrix} p \\ q \\ r \end{pmatrix} = \begin{pmatrix} -\sin(\phi)\dot{\psi} + \dot{\phi} \\ \sin(\phi)\cos(\theta)\dot{\psi} + \cos(\phi)\dot{\theta} \\ \cos(\phi)\cos(\theta)\dot{\psi} - \sin(\phi)\dot{\theta} \end{pmatrix} \Leftrightarrow \begin{pmatrix} p \\ q \\ r \end{pmatrix} = \begin{pmatrix} 1 & 0 & -\sin(\phi) \\ 0 & \cos(\phi) & \sin(\phi)\cos(\theta) \\ 0 & -\sin(\phi) & \cos(\phi)\cos(\theta) \end{pmatrix} \cdot \begin{pmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{pmatrix}.$$
(129)

This can be solved easily to

$$\begin{pmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{pmatrix} = \begin{pmatrix} 1 & \frac{\sin^2 \phi}{\cos \theta} & \frac{\sin \phi \cos \phi}{\cos \theta} \\ 0 & \cos \phi & -\sin \phi \\ 0 & \frac{\sin \phi}{\cos \theta} & \frac{\cos \phi}{\cos \theta} \end{pmatrix} \cdot \begin{pmatrix} p \\ q \\ r \end{pmatrix}.$$
(130)

Please note the singularity at the $gimbal \ lock \ (\theta=\pm 90^\circ)!$ Function INT32_EULERS_DOT_OF_RATES(ed, e, r) in File pprz_algebra_int.h

Function INT32_EULERS_DOT_321_OF_RATES(ed, e, r) in File pprz_algebra_int.h

to a quaternion

This function computes the differential quaternion of measured rates after an amount of time. Let ω be the measured rates, then $|\omega|$ represents the absolute value of rates. Therefore,

$$\Delta \alpha = |\omega| \cdot \Delta t \tag{131}$$

is the rotational angle. The (normalized) axis of the rotation is then

$$\overrightarrow{v} = \frac{\omega}{|\omega|}.\tag{132}$$

The construction of a quaternion from an axis and an angle is

$$q = \left(\frac{\cos\frac{\alpha}{2}}{\overrightarrow{v}\sin\frac{\alpha}{2}}\right),\tag{133}$$

so that the resulting quaternion of measured rates becomes

$$q = \begin{pmatrix} \cos\frac{|\omega| \cdot \Delta t}{2} \\ \frac{\omega}{|\omega|} \sin\frac{|\omega| \cdot \Delta t}{2} \end{pmatrix}. \tag{134}$$

Function FLOAT_QUAT_DIFFERENTIAL(q_out, w, dt) in File pprz_algebra_float.h

8.8 Transformation to rates

from euler angles (derivative)

This function requires the euler angles e and also their derivative ed.

$$\omega_r = \begin{pmatrix} p \\ q \\ r \end{pmatrix} = \mathbf{I} \cdot \mathbf{I} \cdot \begin{pmatrix} \dot{\phi} \\ 0 \\ 0 \end{pmatrix} + \mathbf{R}(\phi) \cdot \mathbf{I} \cdot \begin{pmatrix} 0 \\ \dot{\theta} \\ 0 \end{pmatrix} + \mathbf{R}(\phi) \cdot \mathbf{R}(\theta) \cdot \begin{pmatrix} 0 \\ 0 \\ \dot{\psi} \end{pmatrix}$$
(135)

$$\mathbf{R}(\phi) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\phi) & -\sin(\phi) \\ 0 & \sin(\phi) & \cos(\phi) \end{pmatrix}$$
 (136)

$$\mathbf{R}(\theta) = \begin{pmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{pmatrix}$$
 (137)

$$\omega_r = \begin{pmatrix} p \\ q \\ r \end{pmatrix} = \begin{pmatrix} -\sin(\phi)\dot{\psi} + \dot{\phi} \\ \sin(\phi)\cos(\theta)\dot{\psi} + \cos(\phi)\dot{\theta} \\ \cos(\phi)\cos(\theta)\dot{\psi} - \sin(\phi)\dot{\theta} \end{pmatrix}$$
(138)

Function INT32_RATES_OF_EULERS_DOT(r, e, ed) in File pprz_algebra_int.h Function INT32_RATES_OF_EULERS_DOT_321(r, e, ed) in File pprz_algebra_int.h

8.9 Other

$|\omega|$ Norm

Computes the 2-norm of the rates (the length).

$$n = |\omega| = \sqrt{p^2 + q^2 + r^2} \tag{139}$$

Function FLOAT_RATES_NORM(v) in File pprz_algebra_float.h

$min \le \omega_v \le max$ Bounding

Bounds the rates so that every value (p, q, r) is between min and max.

$$\omega_v \in \mathbb{I}^3, \quad \mathbb{I} = [min; max]$$
 (140)

The lower border min has a higher priority than max. So, if min > max and a value of ω_v is between those, the value is set to min.

Function RATES_BOUND_CUBE(v, min, max) in File pprz_algebra.h

Martin: "See the note for euler angles and the naming is bad."

 $\omega_{v_{min}} \leq \omega_v \leq \omega_{v_{max}}$ Bounding

Ensures that

$$\omega_{v_{min}} \le \omega_v \le \omega_{v_{max}} \Leftrightarrow \begin{pmatrix} p_{min} \\ q_{min} \\ r_{min} \end{pmatrix} \le \begin{pmatrix} p \\ q \\ r \end{pmatrix} \le \begin{pmatrix} p_{max} \\ q_{max} \\ r_{max} \end{pmatrix} \tag{141}$$

The upper border max has a higher priority than min. So, if min > max and a value of ω_v is between those, the value is set to max.

Function RATES_BOUND_BOX(v, v_min, v_max in File pprz_algebra.h

Martin: "Not very consequent with the priority"

9 Quaternion

Martin: "I hate the naming convention for the real part."

9.1 Definition

The values are called

$$q = q_i + iq_x + jq_y + kq_z = \begin{pmatrix} q_i \\ q_x \\ q_y \\ q_z \end{pmatrix}$$
 (142)

It is available for the following simple types:

$_{ m type}$	struct
int32_t	Int32Quat
float	FloatQuat
double	DoubleQuat

9.2 = Assigning

q = Identity

Sets a quaternion to the identity rotation (no rotation).

$$q = 1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \tag{143}$$

Function INT32_QUAT_ZERO(q) in File pprz_algebra_int.h Function FLOAT_QUAT_ZERO(q) in File pprz_algebra_float.h

$$q = (q_i, q_x, q_y, q_z)^T$$

$$iis the real part of the quaternion. q_a = \begin{pmatrix} i \\ x \\ y \\ z \end{pmatrix}$$
(144)

Function QUAT_ASSIGN(q, i, x, y, z) in File pprz_algebra.h

$$q_o = q_i$$

$$q_o = q_i \tag{145}$$

Function QUAT_COPY(qo, qi) in File pprz_algebra.h Function FLOAT_QUAT_COPY(qo, qi) in File pprz_algebra_float.h

$$q_b = -q_a$$

$$q_b = -q_a \tag{146}$$

Function QUAT_EXPLEMENTARY(b, a) in File pprz_algebra.h Function FLOAT_QUAT_EXPLEMENTARY(b, a) in File pprz_algebra_float.h

Martin: "Naming the other way round?"

9.3 + Addition

 $q_o + = q_i$

$$q_o = q_o + q_i \tag{147}$$

Function QUAT_ADD(qo, qi) in File pprz_algebra.h Function FLOAT_QUAT_ADD(qo, qi) in File pprz_algebra_float.h

Martin: "No SUM function?"

9.4 - Subtraction

 $q_c = q_a - q_b$

$$q_c = q_a - q_b \tag{148}$$

Function QUAT_DIFF(qc, qa, qb) in File pprz_algebra.h

Martin: "no SUB function?"

9.5 · Multiplication

Martin: "FLOAT_QUAT_ROTATE_FRAME is still missing. The function seems useless to me."

 $q_o = s \cdot q_i$ With a scalar

$$q_o = s \cdot q_i \tag{149}$$

Function QUAT_SMUL(vo, vi, s) in File pprz_algebra.h
Function FLOAT_QUAT_SMUL(vo, vi, s) in File pprz_algebra_float.h

 $q_{a2c} = q_{b2c} \bullet q_{a2b}$ With a quaternion (composition)

Returns the multiplication/composition of two quaternions.

$$q_{a2c} = q_{b2c} \bullet q_{a2b} \tag{150}$$

$$q_{a2c} = \begin{pmatrix} q_{b2c,i} & -q_{b2c,x} & -q_{b2c,y} & -q_{b2c,z} \\ q_{b2c,x} & q_{b2c,i} & -q_{b2c,z} & q_{b2c,y} \\ q_{b2c,y} & q_{b2c,z} & q_{b2c,i} & -q_{b2c,x} \\ q_{b2c,z} & -q_{b2c,y} & q_{b2c,x} & q_{b2c,i} \end{pmatrix} \cdot \begin{pmatrix} q_{a2b,i} \\ q_{a2b,x} \\ q_{a2b,y} \\ q_{a2b,z} \end{pmatrix}$$
(151)

Function INT32_QUAT_COMP(a2c, a2b, b2c) in File pprz_algebra_int.h

Function FLOAT_QUAT_COMP(a2c, a2b, b2c) in File pprz_algebra_float.h

Function FLOAT_QUAT_MULT(a2c, a2b, b2c) in File pprz_algebra_float.h

Also available with inversions/conjugations (please note, that a inversion and a conjugation is the same for a unit quaternion):

$$q_{a2b} = q_{b2c}^* \bullet q_{a2c} \tag{152}$$

Function INT32_QUAT_COMP_INV(a2b, a2c, b2c) in File pprz_algebra_int.h Function FLOAT_QUAT_COMP_INV(a2b, a2c, b2c) in File pprz_algebra_float.h

$$q_{b2c} = q_{a2c} \bullet q_{a2b}^* \tag{153}$$

Function INT32_QUAT_INV_COMP(b2c, a2b, a2c) in File pprz_algebra_int.h Function FLOAT_QUAT_INV_COMP(b2c, a2b, a2c) in File pprz_algebra_float.h

Note Please note that due to the fact that it's done very often, the functions above are also available with Normalisation: Function FLOAT_QUAT_COMP_INV_NORM_SHORTEST(a2b, a2c, b2c) in File pprz_algebra_float.h

Function FLOAT_QUAT_INV_COMP_NORM_SHORTEST(b2c, a2b, a2c) in File pprz_algebra_float.h

Martin: "no Division?"

9.6 * Complementary

$$q_o = q_i^* \tag{154}$$

Function QUAT_INVERT(qo, qi) in File pprz_algebra.h Function INT32_QUAT_INVERT(qo, qi) in File pprz_algebra_int.h Function FLOAT_QUAT_INVERT(qo, qi) in File pprz_algebra_float.h

9.7 Transformation from Quaternions

to a rotational matrix

The most common definition for this transformation is

$$\mathbf{R}_{m} = \begin{pmatrix} 1 - 2(q_{y}^{2} + q_{z}^{2}) & 2(q_{x}q_{y} - q_{i}q_{z}) & 2(q_{x}q_{z} + q_{i}q_{y}) \\ 2(q_{x}q_{y} + q_{i}q_{z}) & 1 - 2(q_{x}^{2} + q_{z}^{2}) & 2(q_{y}q_{z} - q_{i}q_{x}) \\ 2(q_{x}q_{z} - q_{i}q_{y}) & 2(q_{y}q_{z} + q_{i}q_{x}) & 1 - 2(q_{x}^{2} + q_{y}^{2}) \end{pmatrix}.$$

$$(155)$$

 $\label{thm:condition} Function \ \ INT32_RMAT_OF_QUAT(rm,\ q) \ \ in \ File \ pprz_algebra_int.h \\ Function \ FLOAT_RMAT_OF_QUAT(rm,\ q) \ \ in \ File \ pprz_algebra_float.h \\$

 ${\bf Martin:} \ "I\ called\ the\ quicker\ function\ "INT32_RMAT_OF_QUAT_QUICKER""$

to euler angles

This is done by constructing a rotational matrix out of a quaternion (note: not all elements need to be generated).

$$\mathbf{R}_{m} = \begin{pmatrix} 1 - 2(q_{y}^{2} + q_{z}^{2}) & 2(q_{x}q_{y} - q_{i}q_{z}) & 2(q_{x}q_{z} + q_{i}q_{y}) \\ & 2(q_{y}q_{z} - q_{i}q_{x}) \\ & 1 - 2(q_{x}^{2} + q_{y}^{2}) \end{pmatrix}, \tag{156}$$

which is equivalent to a rotational matrix, that is constructed from euler angles

$$\mathbf{R}_{m} = \begin{pmatrix} \cos(\theta)\cos(\psi) & \cos(\theta)\sin(\psi) & -\sin(\theta) \\ & \sin(\phi)\cos(\theta) \\ & \cos(\phi)\cos(\theta) \end{pmatrix}. \tag{157}$$

The euler angles are then

$$e^{\phi} = \begin{pmatrix} \phi \\ \theta \\ \psi \end{pmatrix} = \begin{pmatrix} \arctan 2(r_{23}, r_{33}) \\ -\arcsin(r_{13}) \\ \arctan 2(r_{12}, r_{11}) \end{pmatrix}$$

$$(158)$$

Function INT32_EULERS_OF_QUAT(e, q) in File pprz_algebra_int.h Function FLOAT_EULERS_OF_QUAT(e, q) in File pprz_algebra_float.h Function DOUBLE_EULERS_OF_QUAT(e, q) in File pprz_algebra_float.h

9.8 Transformation to Quaternions

from an axis and an angle

A quaternion can be easily constructed from an axis \overrightarrow{u}_v and an angle α using

$$q = \begin{pmatrix} \cos\left(\frac{\alpha}{2}\right) \\ \sin\left(\frac{\alpha}{2}\right) \end{matrix} u_v = \begin{pmatrix} \cos\left(\frac{\alpha}{2}\right) \\ \sin\left(\frac{\alpha}{2}\right) u_x \\ \sin\left(\frac{\alpha}{2}\right) u_y \\ \sin\left(\frac{\alpha}{2}\right) u_z \end{pmatrix}$$
(159)

Function FLOAT_QUAT_OF_AXIS_ANGLE(q, uv, an) in File pprz_algebra_float.h

from euler angles

The transformation is given by

$$q = \left[\cos\frac{\psi}{2} + \mathbf{k}\sin\frac{\psi}{2}\right]\left[\cos\frac{\theta}{2} + \mathbf{j}\sin\frac{\theta}{2}\right]\left[\cos\frac{\phi}{2} + \mathbf{i}\sin\frac{\phi}{2}\right] \tag{160}$$

In matrix notation:

$$q = \begin{pmatrix} \cos\frac{\phi}{2}\cos\frac{\theta}{2}\cos\frac{\psi}{2} + \sin\frac{\phi}{2}\sin\frac{\theta}{2}\sin\frac{\psi}{2} \\ \sin\frac{\phi}{2}\cos\frac{\theta}{2}\cos\frac{\psi}{2} - \cos\frac{\phi}{2}\sin\frac{\theta}{2}\sin\frac{\psi}{2} \\ \cos\frac{\phi}{2}\sin\frac{\theta}{2}\cos\frac{\psi}{2} + \sin\frac{\phi}{2}\cos\frac{\theta}{2}\sin\frac{\psi}{2} \\ \cos\frac{\phi}{2}\cos\frac{\theta}{2}\sin\frac{\psi}{2} - \sin\frac{\phi}{2}\cos\frac{\theta}{2}\sin\frac{\psi}{2} \end{pmatrix}$$
(161)

Function INT32_QUAT_OF_EULERS(q, e) in File pprz_algebra_int.h Function FLOAT_QUAT_OF_EULERS(q, e) in File pprz_algebra_float.h Function DOUBLE_QUAT_OF_EULERS(q, e) in File pprz_algebra_double.h

from a rotational matrix

Since the construction of a matrix from a quaternion is known

$$\mathbf{R}_{m} = \begin{pmatrix} 1 - 2(q_{y}^{2} + q_{z}^{2}) & 2(q_{x}q_{y} - q_{i}q_{z}) & 2(q_{x}q_{z} + q_{i}q_{y}) \\ 2(q_{x}q_{y} + q_{i}q_{z}) & 1 - 2(q_{x}^{2} + q_{z}^{2}) & 2(q_{y}q_{z} - q_{i}q_{x}) \\ 2(q_{x}q_{z} - q_{i}q_{y}) & 2(q_{y}q_{z} + q_{i}q_{x}) & 1 - 2(q_{x}^{2} + q_{y}^{2}) \end{pmatrix},$$

$$(162)$$

the extraction of a quaternion is done vice versa. But there are obviously many opportunities to extract the quaternion. They differ in the way which element of the quaternion is extracted from the diaognal elements r_{11} , r_{22} and r_{33} of the matrix.

$$1 = q_i^2 + q_x^2 + q_y^2 + q_z^2 (163)$$

First case

$$\zeta = \sqrt{1 + (r_{11} + r_{22} + r_{33})} = \sqrt{1 + (3q_i^2 - q_x^2 - q_y^2 - q_z^2)} = \sqrt{4q_i^2}$$
(164)

$$q_i = \frac{1}{2}\zeta\tag{165}$$

$$q_x = \frac{1}{2\zeta} (r_{23} - r_{32}) \tag{166}$$

$$q_y = \frac{1}{2\zeta}(r_{31} - r_{13}) \tag{167}$$

$$q_z = \frac{1}{2\zeta}(r_{12} - r_{21}) \tag{168}$$

Second case

$$\zeta = \sqrt{1 + (r_{11} - r_{22} - r_{33})} = \sqrt{1 + (-q_i^2 + 3q_x^2 - q_y^2 - q_z^2)} = \sqrt{4q_x^2}$$
(169)

$$q_i = \frac{1}{2\zeta}(r_{23} - r_{32}) \tag{170}$$

$$q_x = \frac{1}{2}\zeta\tag{171}$$

$$q_x = \frac{1}{2}\zeta$$
 (171)
$$q_y = \frac{1}{2\zeta}(r_{12} + r_{21})$$
 (172)

$$q_z = \frac{1}{2\zeta}(r_{31} + r_{13}) \tag{173}$$

Third case

$$\zeta = \sqrt{1 + (-r_{11} + r_{22} - r_{33})} = \sqrt{1 + (-q_i^2 - q_x^2 + 3q_y^2 - q_z^2)} = \sqrt{4q_y^2}$$
(174)

$$q_i = \frac{1}{2\zeta}(r_{31} - r_{13}) \tag{175}$$

$$q_x = \frac{1}{2\zeta}(r_{12} + r_{21}) \tag{176}$$

$$q_u = \frac{1}{2}\zeta\tag{177}$$

$$q_z = \frac{1}{2\zeta}(r_{23} + r_{32}) \tag{178}$$

Fourth case

$$\zeta = \sqrt{1 + (-r_{11} - r_{22} + r_{33})} = \sqrt{1 + (-q_i^2 - q_x^2 - q_y^2 + 3q_z^2)} = \sqrt{4q_z^2}$$
(179)

$$q_i = \frac{1}{2\zeta}(r_{12} - r_{21}) \tag{180}$$

$$q_x = \frac{1}{2C}(r_{31} + r_{13}) \tag{181}$$

$$q_y = \frac{1}{2\zeta}(r_{23} + r_{32}) \tag{182}$$

$$q_z = \frac{1}{2}\zeta\tag{183}$$

All are mathematically equivalent but numerically different. To avoid complex numbers and singularities the case with the biggest ζ should be choosen. Function INT32_QUAT_OF_RMAT(q, r) in File pprz_algebra_int.h

Function FLOAT_QUAT_OF_RMAT(q, r) in File pprz_algebra_float.h

from measured rates

This function computes the differential quaternion of measured rates after an amount of time. Let ω be the measured rates, then $|\omega|$ represents the absolute value of rates. Therefore,

$$\Delta \alpha = |\omega| \cdot \Delta t \tag{184}$$

is the rotational angle. The (normalized) axis of the rotation is then

$$\overrightarrow{v} = \frac{\omega}{|\omega|}.\tag{185}$$

The construction of a quaternion from an axis and an angle is

$$q = \left(\frac{\cos\frac{\alpha}{2}}{\overrightarrow{v}\sin\frac{\alpha}{2}}\right),\tag{186}$$

so that the resulting quaternion of measured rates becomes

$$q = \begin{pmatrix} \cos\frac{|\omega| \cdot \Delta t}{2} \\ \frac{\omega}{|\omega|} \sin\frac{|\omega| \cdot \Delta t}{2} \end{pmatrix}. \tag{187}$$

Function FLOAT_QUAT_DIFFERENTIAL(q_out, w, dt) in File pprz_algebra_float.h

9.9 Other

|q| Norm

Returns the 2-norm of a quaternion

$$n = |q| = \sqrt{qq^*} = \sqrt{q_i^2 + q_x^2 + q_y^2 + q_z^2}$$
 (188)

Function INT32_QUAT_NORM(n, q) in File pprz_algebra_int.h Function FLOAT_QUAT_NORM(n, q) in File pprz_algebra_float.h It is also possible to directly normalise the quaternion

$$q := \frac{q}{|q|} \tag{189}$$

Function INT32_QUAT_NORMALISE(q) in File pprz_algebra_int.h Function FLOAT_QUAT_NORMALISE(q) in File pprz_algebra_float.h

Making the real value positive

It is possible to invert the quaternion if its real value is negative

$$q = \begin{cases} q & q_i > 0 \\ -q & q_i < 0 \end{cases} \tag{190}$$

Function INT32_QUAT_WRAP_SHORTEST(q) in File pprz_algebra_int.h Function FLOAT_QUAT_WRAP_SHORTEST(q) in File pprz_algebra_float.h

Derivative

Calculates the derivative of a quaternion using the rates. The resulting quaternion still needs to be normalized

$$\dot{q} = -\frac{1}{2}\mathbf{\Omega}(\omega) \bullet q \tag{191}$$

$$\dot{q} = -\frac{1}{2} \begin{pmatrix} 0 & \omega_p & \omega_q & \omega_r \\ -\omega_p & 0 & -\omega_r & \omega_q \\ -\omega_q & \omega_r & 0 & -\omega_p \\ -\omega_r & -\omega_q & \omega_p & 0 \end{pmatrix} \cdot q \tag{192}$$

Function FLOAT_QUAT_DERIVATIVE(qd, r, q) in File pprz_algebra_float.h

You can also use a method, which slightly normalizes the quaternion by itself. The intention is that you calculate a quaternion, which represents the difference to a unit quaternion

$$\Delta n = ||q||_2 - 1 \tag{193}$$

$$\Delta q = \Delta n \cdot q. \tag{194}$$

Now you substract this difference from the result

$$\dot{q} = -\frac{1}{2}\mathbf{\Omega}(\omega) \bullet q - \Delta q \tag{195}$$

$$\dot{q} = -\frac{1}{2}\Omega(\omega) \bullet q - \Delta n \cdot q \tag{196}$$

$$\dot{q} = -\frac{1}{2} \left(2\Delta n \mathbf{I} + \mathbf{\Omega}(\omega) \right) \bullet q \tag{197}$$

leading to

$$\dot{q} = -\frac{1}{2} \begin{pmatrix} 2\Delta n & \omega_p & \omega_q & \omega_r \\ -\omega_p & 2\Delta n & -\omega_r & \omega_q \\ -\omega_q & \omega_r & 2\Delta n & -\omega_p \\ -\omega_r & -\omega_q & \omega_p & 2\Delta n \end{pmatrix} \cdot q$$
(198)

Function FLOAT_QUAT_DERIVATIVE_LAGRANGE(qd, r, q) in File pprz_algebra_float.h

10 Optimization 31

10 Optimization

Functions can be re-written to make them run faster, more accurate or making them small (less memory). The result is not often easy-to-read, so the optimazation steps are written down here. The functions are in alphabetical order.

INT32_QUAT_VMULT

Step 1

Starting from the original matrix

$$\mathbf{R}_m \cdot \overrightarrow{v} = \begin{pmatrix} 1 - 2(q_y^2 + q_z^2) & 2(q_x q_y - q_i q_z) & 2(q_x q_z + q_i q_y) \\ 2(q_x q_y + q_i q_z) & 1 - 2(q_x^2 + q_z^2) & 2(q_y q_z - q_i q_x) \\ 2(q_x q_z - q_i q_y) & 2(q_y q_z + q_i q_x) & 1 - 2(q_x^2 + q_y^2) \end{pmatrix} \cdot \overrightarrow{v},$$
(199)

the first step is to rewrite the diagonal elements. Since

$$1 = q_i^2 + q_x^2 + q_y^2 + q_z^2 (200)$$

it is possible to rewrite the first element to

$$1 - 2(q_y^2 + q_z^2) (201)$$

$$=1-2(q_y^2+q_z^2)+1-1\tag{202}$$

$$=2-2(q_y^2+q_z^2)-1\tag{203}$$

$$=2(1-q_y^2+q_z^2)-1\tag{204}$$

$$=2(q_i^2+q_x^2+q_y^2+q_z^2-q_y^2+q_z^2)-1 (205)$$

$$=2(q_i^2+q_x^2)-1 (206)$$

$$= (2q_i^2 - 1) + 2q_r^2 \tag{207}$$

The same can be done for the other two elements

$$1 - 2(q_x^2 + q_z^2) = (2q_i^2 - 1) + 2q_y^2$$
(208)

$$1 - 2(q_x^2 + q_y^2) = (2q_i^2 - 1) + 2q_z^2$$
(209)

Note that the diagonal elements differ only for the last summand. Additionally you have nearly everywhere in the matrix a multiplication with two. A multiplication with two is the same like shifting one bit to the left and since this is in fixed point arithmetic, you have to shift anyway.

Step 2

Since you're only interested in the output vector, it is not necessary to compute every single step. Mostly it's a good choice to have a single, big equation and letting the compiler decide how to deal with it (storing it into a register or onto the RAM). But be aware of Overflows with Fixed-Point Values!

INT32_RMAT_OF_QUAT

Step 1

Starting from the original matrix

$$\mathbf{R}_{m} = \begin{pmatrix} 1 - 2(q_{y}^{2} + q_{z}^{2}) & 2(q_{x}q_{y} - q_{i}q_{z}) & 2(q_{x}q_{z} + q_{i}q_{y}) \\ 2(q_{x}q_{y} + q_{i}q_{z}) & 1 - 2(q_{x}^{2} + q_{z}^{2}) & 2(q_{y}q_{z} - q_{i}q_{x}) \\ 2(q_{x}q_{z} - q_{i}q_{y}) & 2(q_{y}q_{z} + q_{i}q_{x}) & 1 - 2(q_{x}^{2} + q_{y}^{2}) \end{pmatrix},$$

$$(210)$$

10 Optimization 32

the first step is to rewrite the diagonal elements. Since

$$1 = q_i^2 + q_x^2 + q_y^2 + q_z^2 (211)$$

it is possible to rewrite the first element to

$$1 - 2(q_y^2 + q_z^2) (212)$$

$$= 1 - 2(q_y^2 + q_z^2) + 1 - 1 (213)$$

$$=2-2(q_y^2+q_z^2)-1 (214)$$

$$=2(1-q_y^2+q_z^2)-1\tag{215}$$

$$=2(q_i^2+q_x^2+q_y^2+q_z^2-q_y^2+q_z^2)-1 (216)$$

$$= 2(q_i^2 + q_x^2) - 1 (217)$$

$$= (2q_i^2 - 1) + 2q_x^2 (218)$$

The same can be done for the other two elements

$$1 - 2(q_x^2 + q_z^2) = (2q_i^2 - 1) + 2q_y^2$$
(219)

$$1 - 2(q_x^2 + q_y^2) = (2q_i^2 - 1) + 2q_z^2$$
(220)

Note that the diagonal elements differ only for the last summand. Additionally you have nearly everywhere in the matrix a multiplication with two. A multiplication with two is the same like shifting one bit to the left and since this is in fixed point arithmetic, you have to shift anyway.

Step2

A further optimization step is to use the final matrix to store values in it:

$$\mathbf{R}_{m} = \begin{pmatrix} 2q_{x}^{2} & 2q_{x}q_{y} & 2q_{x}q_{z} \\ 0 & 2q_{y}^{2} & 2q_{y}q_{z} \\ 0 & 0 & 2q_{z}^{2} \end{pmatrix}$$
(221)

And finally:

$$\mathbf{R}_{m} = \begin{pmatrix} \mathbf{R}_{m}(1,1) + (2q_{i}^{2} - 1) & \mathbf{R}_{m}(1,2) - 2q_{i}q_{z} & \mathbf{R}_{m}(1,3) + 2q_{i}q_{y} \\ \mathbf{R}_{m}(1,2) + 2q_{i}q_{z} & \mathbf{R}_{m}(2,2) + (2q_{i}^{2} - 1) & \mathbf{R}_{m}(2,3) - 2q_{i}q_{x} \\ \mathbf{R}_{m}(1,3) - 2q_{i}q_{y} & \mathbf{R}_{m}(2,3) + 2q_{i}q_{x} & \mathbf{R}_{m}(3,3) + (2q_{i}^{2} - 1) \end{pmatrix}$$
(222)

The last step can save much memory and a very small amount of time.