- ✓ Sinal Diferencial x Sinal único
- ✓ Par Diferencial MOS
- ✓ Par Diferencial com carga ativa
- ✓ Par Diferencial BJT

Par diferencial TBJ básico

Operação em Modo Comum

Operação em Modo Diferencial

Par diferencial TBJ básico

Operação em Modo Diferencial

Operação em Modo Diferencial

Variação das correntes de coletor devido a tensão diferencial de entrada

Quando v_{id} aprox. $4V_T$, praticamente toda corrente migra para um dos lados do par.

"chaveamento de corrente"

Variação das correntes de coletor devido a tensão diferencial de entrada Acrescentando R_e — degeneração de emissor

Aumento na faixa linear, redução de g_m .

Análise de pequenos sinais

Impedância de entrada diferencial

Análise de pequenos sinais

Análise de pequenos sinais

Saída sinal único

$$\frac{v_{c1}}{v_{id}} = -\frac{1}{2}g_m R_C$$

$$\frac{v_{c1}}{v_{id}} = -\frac{1}{2}g_m R_C$$

$$\frac{v_{c2}}{v_{id}} = +\frac{1}{2}g_m R_C$$

Saída sinal diferencial

$$A_d \equiv \frac{v_{c2} - v_{c1}}{v_{id}} = g_m R_C$$

Com resistência no emissor

Saída sinal diferencial

$$A_d \equiv \frac{v_{c2} - v_{c1}}{v_{id}} = \frac{\alpha(2R_C)}{2r_e + 2R_e} \cong \frac{R_C}{r_e + R_e}$$

Razão de Rejeição de Modo Comum (CMRR)

 v_{icm} = sinal de interferência de modo comum

Razão de Rejeição de Modo Comum (CMRR)

Saída sinal único

$$\left| A_{cm} \right| = \frac{\alpha R_C}{2R_{EE}} \qquad \left| A_{du} \right| = 1/2 g_m R_C$$

$$CMRR_u \equiv \left| \frac{A_d}{A_{cm}} \right| \cong g_m R_{EE}$$

Saída sinal diferencial

$$|A_{cm}| = \frac{v_{c2} - v_{c1}}{v_{icm}} = 0$$
 $|A_d| = \frac{v_{c2} - v_{c1}}{v_{id}} = g_m R_C$

$$CMRR_d \equiv \left| \frac{A_d}{A_{cm}} \right| = \infty$$

Impedância de entrada de modo comum

$$R_{icm} = (\beta + 1) \left(\frac{r_o}{2} \right)$$

Tensão e corrente de offset do Par Diferencial

Fatores que contribuem na tensão de offset em um par diferencial TBJ

$$\Delta I_S \Rightarrow V_{OS} = V_T \frac{\Delta I_S}{I_S}$$

$$\Delta R_C \Rightarrow V_{OS} = V_T \frac{\Delta R_C}{R_C}$$

$$\Delta \beta \Rightarrow I_{OS} = I_B \frac{\Delta \beta}{\beta}$$
 $I_{OS} = |I_{B1} - I_{B2}|$

Tensão de offset de entrada $\Rightarrow V_{OS} = V_O / A_d$

Tensão de offset de entrada do Par Diferencial TBJ

Tensão de offset de entrada $\Rightarrow V_{OS} = V_O / A_d$

Lógica Acoplada por Emissor - ECL

Par diferencial funcionando como chave de corrente

+

Gerador de Tensão de referência

+

Buffer (seguidor de emissor)

Saída complementar!

Lógica Acoplada por Emissor - ECL

Ex. 1 – O <u>amplificador</u> diferencial TBJ da figura usa transistores com $\beta = 100$.

Encontre:

- a) A impedância diferencial de entrada R_{id} ;
- b) O ganho total (v_o/v_{sig}) (desconsidere o efeito *Early*);
- c) O ganho de modo comum quando a resistência de coletar variar 2%;
- d) A razão de rejeição de modo comum;
- e) A impedância de modo comum de entrada assumindo $V_A = 100 \text{ V}$.

Figura do exercício 1 - Amplificador diferencial TBJ

Sugestão de Estudo:

- Sedra & Smith 5ed. Cap. 7, item 7.3 Cap. 7, item 7.4.2 e item 7.4.3

- Razavi. 2ed. Cap. 10, item 10.2

Exercícios correspondentes.