PARTITA(P#, squadra-casa, squadra-ospite, risultato,) SQUADRA(S#, Nome, Città) CALCIATORE(C#, Nome, Cognome) GIOCA(#C, #S) MARCATURE(C#, P#, n-goal)		2021-2022 hanno segnato più di 1 goal in una stessa partita in casa. 1b) Codice, nome e cognome dei calciatori del Milan che non hanno segnato nessun gol fuori casa nel campionato 2021-2022.		
1a) MARC : 5,001,1	MARCATURE) CP1G : CI	ALCIATORE MMARC	MP : CP16 MPARTITA	MPS=MPWG10CA
MPSS=MPS M SQUAD	RA Q' = OSQUADRA, NOME : SQUAD	RA-CASA (MPSS) Query fi	nale: Q = 11HC, CALCIAR DIE. MONE. COZMO ME	SOUNDERN, MORE (Q)
			M (GIOCA M SQUADRA))	X CALCIATORE
Q' = MHC, NOME, COGNOME	PARTITA. SOUAPRA CASA !- NOMES QUAPRA	MJ)) Q = MHC, NOME, COG	MOME (CALCIATORE) - Q'	
Query finale (Q = MHC, NOME, COGNOME (ONOME	SOUADRA :: MILAN (Q M G 10 C	CA) M SQUADRA))	
2a) Dati lo schema di relazione R=ABCDE, $F=\{AB\ C, AB\ D, B\ E, CD\ E\}$ e la decomp dire se ρ preserva F e illustrare il procedimen	oosizione ρ={ABC,CDE} di R,			
2b) Dati lo schema di relazione R=ABCDEG F={ G AB, A E, E B, BE G} e la decompo dire se o ha un join senza perdita e illustrare				
2a) Le dip. pres	servate, che hanno t			singola decomposizion
Sono: AB+C, Co	>→E, devo controll	are AB→D e B→E	. (Pagina 28-29	degli APPUNTI)
· Considero AB→D	Z. AB 5. Ø 5.	(ABNABC) NABC		
		U = (A	B), NABC = ABC : 50	
		(AB (CDE), () CDE		
S', \ Z, → Z,= Z,	,US'0= ABC S', = (ABCUBBC) UBC		
		ARCUCDE) UCDE	CU (CINCDE) - ABCUC	= ABC S Z, = PFINE
		100110007; 11000		
La chiusura c	di AB in G e' ABC	, non vi e' D, quindi	p non preserva F.	
2b) Costruisco 1	istanza:			
		DEGA		BCDEG
ACD ab, a a	b. b. ACD 2 b. 2	a a b. ACD a		2 2 2 2 b.
CDG by by 3 2	a b. ABE a a b. b. a Cog b. b. a	Lab. ABE a ab, a Cogb	2 b b a b ABE d b, 2 2 b, 2 CDG	2 a b b a b FINE
	<u> </u>			310710101
3) Supponiamo di avere un file di 3.200.0	000 record. Ogni record occupa 250 byte, di cui 40	per il - il numero di blocchi del file pr	incipale?	
	048 byte. Un puntatore a blocco occupa 5 byte. Us hi sia del file principale che del file indice pieni a	- il ilumeto di bioccili dei me ili	dice? per ricercare un record del file principale?	
Recordx Block = [10	24/250] = 5 bocchi	×MainFile = [3200000/5]=	640000 ora voglio cap	ire quante chiavi
contiene un	blocco: \[\frac{1024-5}{5+40} \] = \[\frac{1019}{45} \]]=23 quindi 24 pu	nt atori	
• Liv (Fogle) = 640	0.000 nodi eliv 1= 16	40000/247= 26667 .LIV 2	: [26667/24] = 1112 · LIV 2 : [1111	1/247: 47 ·LIV 3 [47/24]:2
el / > Pance	LI . I		0	
*Liv 4: RADICE.	DIOCChi nell indie = 260	67+ 1112+ 47+2+1 ± 27829	, Accessi hecossari: 6.	