Environment expansion for MPS time evolution

Jesse Osborne ¹ Ian McCulloch ²

¹Max Planck Institute for Quantum Optics

²National Tsing Hua University

SQAI-NCTS Workshop on Quantum Technologies and Machine Learning

28 August 2025

Time evolution of matrix product states

- In general, entanglement entropy grows linearly
- For fixed error, need to increase bond dimension
- Conversely, for fixed bond dimension, error will grow

Reach T_{max} once cost or error becomes too large

MPS time evolution methods

Approximation of time-evolution operator $U(\Delta t) = e^{i\hat{H}\Delta t}$

- TEBD Vidal PRL 91, 147902 (2003); 93, 040502 (2004)
- MPO evolution Zaletel et al. PRB 91, 165112 (2015); Van Damme et al. SciPost Phys. 17, 135 (2024)
- Inherently increases bond dimension (need to truncate)

Time-dependent variational principle (TDVP)

Haegeman et al. PRL 107, 070601 (2011); PRB 94, 165116 (2016)

Local updates: fixed bond dimension

TDVP optimality?

PRL 107, 070601 (2011)

PHYSICAL RE

the TDVP equations are also invariant under time reversal (see [12] for a Trotter-based approach that recovers time-reversal invariance). This approach does not require any truncation and is thus <code>globally</code> optimal within the manifold $\mathcal{M}_{\text{uMPS}}$.

- TDVP is 'optimal' for a fixed bond dimension
- But increasing entanglement requires increasing the bond dimension
- Two-site TDVP? More expensive

Better: single-site TDVP with environment expansion

Many approaches (also for DMRG):

- White PRB **72**, 180403 (2005)
- Dolgov & Savostyanov SIAM J. Sci. Comput. 36, A2248 (2014)
- Hubig et al. PRB 91, 155115 (2015)
- Yang & White PRB **102**, 094315 (2020)

- Dunnet & Chin PRB **104**, 214302 (2021)
- Xu et al. JACS Au **2**, 335 (2022)
- Gleis et al. PRL 130, 246402 (2023); arXiv:2501.12291;
 Li et al. PRL 133, 026401 (2024)
- McCulloch & JJO arXiv:2403.00562; in preparation

Pre- and post-expansion

- Add new DoFs before evolution, then discard in truncation afterwards
- Two-site TDVP, ...

- Add new DoFs after evolution during the truncation step
- Subspace expansion/3S, ...
- Truncation fixes computational cost/error (fixed bond dim./singular value cutoff)
- Can use both pre- and post-expansion

Randomized SVD McCulloch & JJO arXiv:2403.00562; in preparation

Incorporate extra DoFs from SVD of

$$X = E_{i-2}$$

$$D$$

$$D$$

$$A_{i-1}$$

$$A_{i}$$

$$D$$

$$A_{i-1}$$

Randomized SVD: If we want k expansion vectors

- Multiply by $dD \times (k + p)$ Gaussian random matrix Ω (p: oversampling ~ 10)
- QR decomposition $QR = X\Omega$
- SVD $USV^{\dagger} = Q^{\dagger}X$, keeping k singular values
- Append extra states *QU* onto MPS tensor

Much cheaper: $O(dwkD^2)$ (linear in d); typically, we use k = 0.1D

Benchmark setup

XX model (= free fermions)

$$\hat{H} = \frac{1}{2} \sum_{j} \left(\hat{S}_{j}^{-} \hat{S}_{j+1}^{+} + \hat{S}_{j}^{+} \hat{S}_{j+1}^{-} \right)$$

Initial state

$$|\Psi(0)\rangle = |\cdots\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\cdots\rangle$$

Exactly solvable: dynamics described in terms of Bessel functions

$$S_j^z(t) = -\frac{(-1)^j}{2} J_0(2t)$$

We use infinite TDVP (repeat TDVP on unit cell of iMPS a couple of times)

Results

- lacksquare Δt : timestep
- \blacksquare ε : DM cutoff
- **Early** t error: Δt
- **Late** t error: ε
- Need to adjust ε if we decrease Δt $(\varepsilon \sim \Delta t^{1.5}?)$

Results

Conclusion

- Single-site TDVP: two kinds of environment expansion (pre- & post-)
- Acceleration via randomized SVD (linear in *d*)
- Fixed bond dimension vs fixed truncation error
- Early time error dominated by timestep, late by truncation

 $Code: \verb|https://github.com/mptoolkit| \\$