MTH1102D Calcul II

Chapitre 7, section 1: Les intégrales triples

Exemple 1: intégrale triple sur un domaine général

Évaluer l'intégrale $J = \iiint_E xy^2z \, dV$, où E est délimitée par les plans x = 0, z = 0, z = 1 et le cylindre parabolique $x + y^2 = 1$.

Évaluer l'intégrale
$$J = \iiint_E xy^2z \, dV$$
, où E est délimitée par les plans $x = 0$, $z = 0$, $z = 1$ et le cylindre parabolique $x + y^2 = 1$.

Cylindre $x + y^2 = 1$

Évaluer l'intégrale
$$J = \iiint_E xy^2z \, dV$$
, où E est délimitée par les plans $x = 0$, $z = 0$, $z = 1$ et le cylindre parabolique $x + y^2 = 1$.

Cylindre
$$x + y^2 = 1$$

Plan $x = 0$

Évaluer l'intégrale
$$J = \iiint_E xy^2z \, dV$$
, où E est délimitée par les plans $x = 0$, $z = 0$, $z = 1$ et le cylindre parabolique $x + y^2 = 1$.

Cylindre
$$x + y^2 = 1$$

Plan $x = 0$
Plans $z = 0$ et $z = 1$

Évaluer l'intégrale $J = \iiint_E xy^2z \, dV$, où E est délimitée par les plans x = 0, z = 0, z = 1 et le cylindre parabolique $x + y^2 = 1$.

Évaluer l'intégrale $J=\iiint_E xy^2z\ dV$, où E est délimitée par les plans $x=0,\ z=0,\ z=1$ et le cylindre parabolique $x+y^2=1$.

$$E = \{(x, y, z) \mid (x, y) \in D, 0 \le z \le 1\}$$

Évaluer l'intégrale $J=\iiint_E xy^2z\ dV$, où E est délimitée par les plans $x=0,\ z=0,\ z=1$ et le cylindre parabolique $x+y^2=1$.

$$E = \{(x, y, z) \mid 0 \le x \le 1 - y^2, -1 \le y \le 1, 0 \le z \le 1\}$$

Évaluer l'intégrale $J=\iiint_E xy^2z\,dV$, où E est délimitée par les plans $x=0,\ z=0,\ z=1$ et le cylindre parabolique $x+y^2=1$.

$$E = \{(x, y, z) \mid 0 \le x \le 1 - y^2, -1 \le y \le 1, 0 \le z \le 1\}$$

$$J = \int_{-1}^{1} \int_{0}^{1-y^2} \int_{0}^{1} xy^2 z \, dz dx dy$$

Évaluer l'intégrale $J = \iiint_E xy^2z \, dV$, où E est délimitée par les plans x = 0, z = 0, z = 1 et le cylindre parabolique $x + y^2 = 1$.

$$E = \{(x, y, z) \mid 0 \le x \le 1 - y^2, -1 \le y \le 1, 0 \le z \le 1\}$$

$$J = \int_{-1}^{1} \int_{0}^{1-y^{2}} \int_{0}^{1} xy^{2}z \, dz dx dy = \int_{-1}^{1} \int_{0}^{1-y^{2}} \frac{1}{2} xy^{2} \, dx dy$$

Évaluer l'intégrale $J=\iiint_E xy^2z\,dV$, où E est délimitée par les plans $x=0,\ z=0,\ z=1$ et le cylindre parabolique $x+y^2=1$.

$$E = \{(x, y, z) \mid 0 \le x \le 1 - y^2, -1 \le y \le 1, 0 \le z \le 1\}$$

$$J = \int_{-1}^{1} \int_{0}^{1-y^{2}} \int_{0}^{1} xy^{2}z \, dz dx dy = \int_{-1}^{1} \int_{0}^{1-y^{2}} \frac{1}{2}xy^{2} \, dx dy$$
$$= \int_{-1}^{1} \frac{1}{4} (1-y^{2})^{2}y^{2} \, dy$$

Évaluer l'intégrale $J=\iiint_E xy^2z\,dV$, où E est délimitée par les plans $x=0,\ z=0,\ z=1$ et le cylindre parabolique $x+y^2=1$.

$$E = \{(x, y, z) \mid 0 \le x \le 1 - y^2, -1 \le y \le 1, 0 \le z \le 1\}$$

$$J = \int_{-1}^{1} \int_{0}^{1-y^{2}} \int_{0}^{1} xy^{2}z \, dz dx dy = \int_{-1}^{1} \int_{0}^{1-y^{2}} \frac{1}{2}xy^{2} \, dx dy$$
$$= \int_{-1}^{1} \frac{1}{4} (1 - y^{2})^{2} y^{2} \, dy = \frac{4}{105}$$

Intégrale de type 2 :

$$J = \int_0^1 \int_{-1}^1 \int_0^{1-y^2} xy^2 z \, dx dy dz$$

Intégrale de type 3 :

$$J = \int_0^1 \int_0^1 \int_{-\sqrt{1-x}}^{\sqrt{1-x}} xy^2 z \, dy dx dz$$

Résumé

• Calcul d'une intégrale triple sur un domaine de type 1.

Résumé

- Calcul d'une intégrale triple sur un domaine de type 1.
- Le domaine aurait aussi pu être décrit comme un domaine de type 2 ou 3.