- (1) A 6T SRAM is shown in Fig. 1. Design the transistor widths for the SRAM to ensure proper functionality during both read and write operations. (20%) Generate the read and write operation curves for your SRAM cell, similar to those shown in Fig.2. (20%)
 - Transistor widths in table format:

我的設計是根據老師上課講義所說

- P1 和 P2 最弱
- N2 和 N4 次強
- N1 和 N3 最強

考慮到 PMOS 的 mobility 比較低,所以 P1 和 P2 即使寬度為 64nm,也會比同樣是 64nm 寬的 N2 和 N4 弱。

No.	Width
P1	64nm
P2	64nm
N1	100nm
N2	64nm
N3	100nm
N4	64nm

此外,做 bitline conditioning 的兩個 PMOS 寬度如下:

No.	Width
P1	64nm
P2	64nm

• Read Operation:

我有先把 A 的電壓初始化為 $0 \circ A_b$ 初始化為 $VDD \circ$

下圖是我沒在 bit 及 bit_b 加 load 的波形圖:

從上圖可以看到我的 bit_b 高於 0.9v。

為了解決這個問題,所以我在 bit 及 bit_b 各加上 3fF 的電容:

```
c1 bit gnd! 3f
c2 bit_b gnd! 3f
```

下圖是我在 bit 及 bit_b 加上 load 後的波形圖:

疊圖後的波型圖如下,此時的 bit_b 可以穩定在 VDD 了:

• Write Operation:

我先把 A 的電壓初始化為 $0 \circ A_b$ 初始化為 $VDD \circ$

接下來我試著寫入 A=1。

下圖是我 write 的波形圖

疊圖後如下:

- (2) Determine the butterfly curve and the quiescent Static Noise Margin (SVM_{hold}) of your SRAM cell in TT corners. (20%) Determine the butterfly curve and the read Static Noise Margin (SVM_{read}) of your SRAM cell TT corners. (20%)
 - SVM_{hold}:

我是在 word = 0 時跑模擬。

```
vphi phi gnd! xvdd
vw word gnd! 0v

* VA A gnd!
* .dc VA 0 xvdd 0.01
* .print V(A_b)

VA_b A_b gnd!
.dc VA_b 0 xvdd 0.01
.print V(A)
```

接著將兩組 VTC 數據丟進 excel 畫出下圖。

下圖是我模擬得出的 butterfly curve 加上 noise margin,正方形的邊 長為 0.25v。

• SVM_{read}:

我把 bit 和 bit_b 都初始化為 VDD, 然後 phi = VDD, word = VDD 以模擬 read operation。

```
vphi phi gnd! xvdd
vw word gnd! xvdd
.ic V(bit ) = xvdd
.ic V(bit_b) = xvdd

* VA A gnd!

* .dc VA 0 xvdd 0.01

* .print V(A_b)

VA_b A_b gnd!
.dc VA_b 0 xvdd 0.01
.print V(A)
```

接著將兩組 VTC 數據都丟進 excel 畫出下圖。 下圖是我模擬得出的 butterfly curve 加上 noise margin,正方形的邊 長為 0.1 v。

(3) Design a 6T SRAM cell array under TT corner as shown in Fig. 3. Set the initial value of A=0 and A_b=1 in SRAM0. Set the initial value of A=1 and A_b=0 in SRAM₁~SRAM₆₃. Perform a proper read operation (W₀~W₆₃=0, phi=0 → phi=1 → W₀=1) for SRAM₀. Generate the read operation curve and discuss the result to that of (1). What makes the difference? (20%)

下圖是 read 的波形圖:

疊圖後如下:

第一小題因為只有一個 SRAM,所以 bitline 上的 load 非常小,bitline 反而會因此有時候電壓略高過 VDD。

第三小題因為 SRAM 變多了,bit_b 上的 load 也變多了,所以 bit_b 的電壓變得比較低一些。此外,因為 load 變多的關係,bit_b 的電壓會緩慢往下掉,最終會穩定在 0.6v。但其實 bit_b 緩慢往下掉並不是大問題,因為實務上我們通常是看 bit 和 bit_b 哪邊先掉到 0,一旦其中一邊掉到 0時我們就已經知道 SRAM 內部存的值了,而另一邊的電壓值是不是能穩定在 VDD 老實說並不重要。