

AP2126

General Description

The AP2126 series are positive voltage regulator ICs fabricated by CMOS process.

The AP2126 series have features of low dropout voltage, low noise, high output voltage accuracy, and low current consumption which make them ideal for use in various battery-powered devices.

AP2126 is available in 1.25V to 5.5V adjustable voltage versions.

AP2126 series are available in SOT-23-5 Package.

Features

- Wide Operating Voltage: 3.0V to 6V
- High Output Voltage Accuracy: ±2%
- High Ripple Rejection:
 68dB@ f=1kHz, 54dB@ f=10kHz
- Low Standby Current: 0.1μA
- Low Dropout Voltage: 170mV@300mA for V_{OUT}=3.3V, 140mV@300mA for V_{OUT}=5.2V
- Low Quiescent Current: 60µA Typical
- Low Output Noise: 80μVrms@V_{OUT}=1.25V
- Short Current Limit: 50mA
- Over Temperature Protection
- Compatible with Low ESR Ceramic Capacitor: $1\mu F$ for C_{IN} and C_{OUT}
- Excellent Line/Load Regulation
- Soft Start Time: 50µs
- Auto Discharge Resistance: $R_{DS(ON)} = 60\Omega$

Applications

- Datacom
- Notebook Computers
- Mother Board

Figure 1. Package Type of AP2126

Pin Configuration

Figure 2. Pin Configuration of AP2126 (Top View)

Functional Block Diagram

Figure 3. Functional Block Diagram of AP2126

AP2126

Ordering Information

Package	Temperature Range	Part Number	Marking ID	Packing Type	
SOT-23-5	-40 to 85°C	AP2126K-ADJTRG1	GHH	Tape & Reel	

BCD Semiconductor's products, as designated with "G1" suffix in the part number, are RoHS compliant and Green.

AP2126

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Value	Unit
Input Voltage	V _{IN}	6.5	V
Shutdown Input Voltage	V _{CE}	-0.3 to V _{IN} +0.3	V
Output Current	I _{OUT}	450	mA
Junction Temperature	T_J	150	°C
Storage Temperature Range	T _{STG}	-65 to 150	°C
Lead Temperature (Soldering, 10sec)	T_{LEAD}	260	°C
Thermal Resistance (Junction to Ambient)	θ_{JA}	250	°C/W
ESD (Human Body Model)	ESD	6000	V
ESD (Machine Model)	ESD	250	V

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit	
Input Voltage	V_{IN}	3.0	6	V	
Operating Ambient Temperature Range	$T_{\mathbf{A}}$	-40	85	°C	

AP2126

Electrical Characteristics

(AP2126-ADJ, V_{IN} min=3.0V, C_{IN} =1 μ F, C_{OUT} =1 μ F, Bold typeface applies over -40°C \leq T_A \leq 85°C, unless otherwise specified.)

Parameter	Symbol	Conditions		Min	Тур	Max	Unit
Reference Voltage	V_{REF}	V_{IN} =3.0V 1mA \leq I _{OUT} \leq 300mA		1.225	1.25	1.275	V
Input Voltage	V _{IN}			3.0		6	V
Maximum Output Current	I _{OUT(MAX)}	V _{IN} =3.0V, V _{OUT} =98%×V _{OUT}		300	400		mA
Load Regulation	ΔV_{OUT} /($\Delta I_{OUT} * V_{OUT}$)	V_{IN} =3.0V, 1mA \leq I _{OUT} \leq 300mA				0.6	%/A
Line Regulation	$\Delta V_{OUT} / (\Delta V_{IN}^* V_{OUT})$	V _{IN} =3.0V to 6V I _{OUT} =30mA				0.06	%/V
Quiescent Current	I_Q	V_{IN} =3.0V, I_{OUT} =	=0mA		60	90	μΑ
Standby Current	I _{STD}	V_{IN} =3.0V, $V_{\overline{SHUTDOWN}}$ in off mode			0.1	1.0	μА
	PSRR	Ripple 1Vp-p V _{IN} =3.5V	f=100Hz		68		dB
Power Supply Rejection Ratio			f=1KHz		68		dB
regeonon rano			f=10KHz		54		dB
Output Voltage Temperature Coefficient	$(\Delta V_{OUT}/V_{OUT})$ $/\Delta T$	I _{OUT} =30mA, -40°C≤T _A ≤85°C			±100		ppm/°C
Short Current Limit	I _{SHORT}	V _{OUT} =0V			50		mA
Soft Start Time	t_{UP}				50		μs
RMS Output Noise	V_{NOISE}	T _A =25°C, 10Hz ≤f≤100kHz, V _{OUT} =1.25V			80		μVrms
Shutdown "High" Voltage		Shutdown input voltage "High"		1.5		6	V
Shutdown "Low" Voltage		Shutdown input voltage "Low"		0		0.4	V
V _{OUT} Discharge MOSFET R _{DS(ON)}		Shutdown input voltage "Low"			60		Ω
Shutdown Pull Down Resistance					3		ΜΩ
Thermal Shutdown					165		°C
Thermal Shutdown Hysteresis					30		°C
Thermal Resistance	$\theta_{ m JC}$	SOT-23-5			150		°C/W

Typical Performance Characteristics

Figure 4. Output Voltage vs. Output Current

Figure 5. Output Voltage vs. Output Current

Figure 6. Dropout Voltage vs. Output Current

Figure 7. Dropout Voltage vs. Case Temperature

Typical Performance Characteristics (Continued)

71
70
69
(4)
10ur=0
V_N=4.3V
V_{OUT}=3.3V

(6)
66
66
67
64
63
62
-40
-20
0
20
40
60
80
100
120

Case Temperature (°C)

Figure 8. Quiescent Current vs. Output Current

Figure 9. Quiescent Current vs. Case Temperature

Figure 10. Quiescent Current vs. Input Voltage

Figure 11. Output Voltage vs. Case Temperature

Typical Performance Characteristics (Continued)

Figure 12. Output Voltage vs. Input Voltage

 $\label{eq:Figure 13. Load Transient} Figure 13. Load Transient \\ (Conditions: C_{IN}=C_{OUT}=1 \mu F, V_{IN}=4.4 V, V_{OUT}=3.3 V \\ I_{OUT}=10 mA \ to \ 300 mA)$

 $\label{eq:conditions} Figure 14. Line Transient \\ (Conditions: I_{OUT}=30mA, C_{IN}=C_{OUT}=1\mu\text{F}, \\ V_{IN}=4 \ to \ 5\text{V}, V_{OUT}=3.3\text{V})$

 $\label{eq:figure 15.} Figure 15. Soft Start Time \\ (Conditions: I_{OUT}=0mA, C_{IN}=C_{OUT}=1\mu F, \\ V_{\overline{Shutdown}}=0 \ to \ 2V, \ V_{OUT}=3.3V) \\$

Typical Performance Characteristics (Continued)

Figure 16. PSRR vs. Frequency

AP2126

Typical Application

V_{OUT}=1.25*(1+R1/R2) V

Figure 17. Typical Application of AP2126

AP2126

Mechanical Dimensions

SOT-23-5 Unit: mm(inch)

BCD Semiconductor Manufacturing Limited

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

- Headquarters

BCD Semiconductor Manufacturing Limited

No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, China Tel: +86-21-24162266, Fax: +86-21-24162277

REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Unit A Room 1203, Skyworth Bldg., Gaoxin Ave.1.S., Nanshan District, Shenzhen,

China Tel: +86-755-8826 7951 Fax: +86-755-8826 7865

- Wafer Fab

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. 800 Yi Shan Road, Shanghai 200233, China Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

Taiwan Office

BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei,

Taiwan Tel: +886-2-2656 2808 Fax: +886-2-2656 2806

USA Office BCD Semiconductor Corp. 30920 Huntwood Ave. Hayward, CA 94544, USA Tel: +1-510-324-2988 Fax: +1-510-324-2788