

CHEMISTRY SAT | NTSE

CHEMICAL EQUILIBRIUM

THEORY AND EXERCISE BOOKLET

CONTENTS

S.NO.	ТОРІС	PAGE NO.
	Theory (Include Examples)	2 - 13
	Solved Examples	14 – 19
	Exercise - I (One option is correct)	20 – 36
	Exercise - II (Multiple choice Problems)	37 – 40
	Exercise - III (Subjective level - I)	41 - 55
	Exercise - IV (JEE PROBLEMS)	56 – 58
	Answer key	59 – 60
	· ·	

394 - Rajeev Gandhi Nagar Kota, Ph. No. 0744-2209671, 93141-87482, 93527-21564 IVRS No. 0744-2439051/52/53 www. motioniitjee.com, email-hr.motioniitjee@gmail.com

CHEMICAL EQUILIBRIUM

- 1. The state at which concentrations of reactants or products do not change with time.
- 2. It is attained when rate of forward reaction becomes equal to rate of backward reaction.
- **3.** A dynamic equilibrium, attained from either side.

IRREVERSIBLE AND REVERSIBLE REACTIONS

Irreversible reactions

- 1. Unidirectional
- 2. Go for completion
- 3. No equilibrium is attained
- A reaction is said to be irreversible when either of the product is settled down as solid or escapes out as gas, e.g.,

$$\begin{array}{c} \mathsf{BaCl_2} + \mathsf{Na_2SO_4} \to \mathsf{BaSO_4} \text{ (insoluble)} \\ & + 2\mathsf{NaCl} \\ \mathsf{CaCO_3} \to \mathsf{CaO} + \mathsf{CO_2} \uparrow \end{array}$$

Reversible reactions

- 1. Both directional
- 2. Never go for completion
- 3. Attains equilibrium
- 4. Otherwise the reaction is reversible e.g.,

in closed container

HOMOGENEOUS SYSTEM

The system in which all the reactant and product have same physical state.

$$\begin{aligned} N_2(g) + 3H_2(g) & \longrightarrow & 2NH_3(g) \\ 2SO_2(g) + O_2(g) & \longrightarrow & 2SO_3(g) \end{aligned}$$

$$CH_3COOC_2H_5(aq) + H_2O(aq) & \longrightarrow & CH_3COOH (aq) + C_2H_5OH (aq) \end{aligned}$$

HETEROGENEOUS SYSTEM

The system in which atleast one reactant or product have different physical states from others. eg.

$$CaCO_3(s) \longrightarrow CaO(s) + CO_2(g)$$

- ⇒ This is three phase system
 - Salt + $H_2O(aq) \rightarrow Salt (aq)$
- ⇒ Three phase system.

RATE OF REACTION

The change in concentration per unit time of reactant or product is called rate of reaction

- 1. Average Rate
- 2. Instantaneous Rate urturing potential through education

$$A \longrightarrow B$$

$$t = 0 \quad a \qquad 0$$

$$t = t \quad a - x \qquad x$$

$$Rate = \frac{-\Delta A}{\Delta t} = \frac{\Delta B}{\Delta t}$$

$$\frac{\Delta A}{\Delta t} = \frac{a - x - a}{t} = \frac{-x}{t}$$

$$\frac{\Delta B}{\Delta t} = \frac{x - 0}{t} = \frac{x}{t}$$

$$\begin{array}{ccc}
2A & \longrightarrow & B \\
t = 0 & a & 0 \\
t = t & a - 2x & x
\end{array}$$

$$\frac{\Delta A}{\Delta t} = \frac{a - 2x - a}{4t} = -\frac{2x}{\Delta t}$$

$$\frac{\Delta B}{\Delta t} = \frac{x}{t} \quad \Rightarrow \quad -\frac{1}{2}\frac{\Delta A}{\Delta t} = \frac{\Delta B}{\Delta t}$$

Instantaneous Rate:

$$\lim_{\Delta t \to 0} \frac{-\Delta A}{\Delta t} = \frac{-dA}{dt} \text{ (inst. Rate)}$$

t=0 a b 0 0 0
a - 3x b - 2x 5x 7x
$$\frac{\Delta A}{\Delta t} = -\frac{3x}{t}; \frac{\Delta B}{\Delta t} = -\frac{2x}{t}$$

$$\frac{\Delta C}{\Delta t} = \frac{5x}{t}; \frac{\Delta D}{\Delta t} = \frac{7x}{t}$$

$$\Rightarrow -\frac{1}{3}\frac{\Delta A}{\Delta t} = -\frac{1}{2}\frac{\Delta B}{\Delta t} = \frac{1}{5}\frac{\Delta C}{\Delta t} = \frac{1}{7}\frac{\Delta D}{\Delta t}$$

LAW OF MASS ACTION

$$A \longrightarrow B$$

- Ex.1 Is this a one step reaction or more than one step reaction?
- **Sol.** By merely seeing the reaction we can not predict the step of the reaction.

The above reaction can also be written as

$$A \longrightarrow C$$

$$C \longrightarrow D$$

$$\mathsf{D} \, \longrightarrow \, \mathsf{B}$$

Adding A
$$\longrightarrow$$
 B

Law of mass action is only valid for elementary reaction.

According "The rate of a chemical reaction is directly proportional to active mass of the reactants"

rate ∞ Active mass of A

where Active mass = Activity coefficient × molar concentration

when active coefficient = 1

Active mass = Molar concentration through education

ACTIVITY COEFFICIENT

The fraction of molecules taking part in effective collision is called activity coefficient. It is always less than 1.

Rate ∞ [A]

Rate = k[A]

k = Rate constant

 $A \rightarrow product (complex Reaction)$

Rate = $K[A]^x$ where x = order of Reaction w.r.t. A

• 2A → product

Rate = $K[A]^2$ [for elementory Reaction]

Rate = k [A]x [for complex Reaction]

"If there are more than one reactant then the rate of reaction is directly proportional to product of Active masses of substances."

Rate ∞ Active mass of A × Active mass of B

Rate =
$$k [A] [B]$$

and if any reaction is of the type

$$aA + bB \longrightarrow product$$

Rate =
$$k[A]^a [B]^b$$

Rate of forward Reaction $(R_f) = k_f [A]^a [B]^b$

Rate of backward Reation $(R_k) = k_k[C]^c[D]^d$

$$R_{\iota} = R_{\iota}$$

$$k_{f}[A]^{a}[B]^{b} = k_{b}[C]^{c}[D]^{d} \implies \frac{k_{f}}{k_{b}} = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$$

$$k_c = \frac{k_f}{k_b}$$

K_a → equilibrium constant in terms of concentration

$$K_p = \frac{p_c^c \times p_D^d}{p_A^a \times p_B^b}$$
 ($K_p = eq.$ constant in terms of partial pressure)

Consider the reaction

$$N_2(g) + 3 H_2(g) = 2NH_3(g)$$

then

$$K_{C} = \frac{[NH_{3}]^{2}}{[N_{2}][H_{2}]^{3}}$$

$$K_{p} = \frac{p_{NH_{3}}^{2}}{p_{N_{2}} \times p_{H_{2}}^{3}}$$

RELATION BETWEEN K, AND K,

PV = nRT

$$P = \frac{n}{V}RT$$

$$P = CRT$$

$$P_{\Lambda} = [A] RT$$

$$P_{B} = [B] RT$$

$$P_{A} = [A] RT$$

$$P_{B} = [B] RT$$

$$P_{c} = [C] RT$$

$$P_{D} = [D] RT$$

$$P_D^c = [D] RT$$

We know that for a reaction of the type

$$aA + bB \Longrightarrow cC + dD$$

$$k_p = \frac{p_C^c \times p_D^d}{p_A^a \times p_B^b}$$

$$k_{p} = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}} \frac{(RT)^{C+d}}{(RT)^{a+b}} \quad \text{(from eq. (1), (2), (3) \& (4))}$$

$$k_{p} = k_{c}(RT)^{\Delta n}$$

where $\Delta n = (c + d) - (a + b)$

 $\Delta n = no.$ of moles of gaseous Reactants – no. of moles of gaseous products

if
$$\Delta n = 0$$

$$\Rightarrow$$
 $K_{n} = K_{n}$

EQUILIBRIUM CONSTANT IN TERMS OF MOLE FRACTION

$$\mathbf{k}_{x} = \frac{\mathbf{x}_{C}^{c} \times \mathbf{x}_{D}^{d}}{\mathbf{x}_{B}^{b} \times \mathbf{x}_{A}^{a}}$$

Partial pressure = mole fraction × total pressure

Find the relation between K_p and K_x for the reaction $N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$ Ex.2

$$N_2(g) + 3 H_2(g) = 2 NH_3(g)$$

$$\textbf{Sol.} \qquad k_{p} = \frac{p_{NH_{3}}^{2}}{p_{N_{2}} \times p_{H_{2}}^{3}} \ = \ \frac{\left(x_{NH_{3}} \times p\right)^{2}}{\left(x_{N_{2}} \times p\right) \times \left(x_{H_{2}} \times p\right)^{3}} = \ \frac{x_{NH_{3}}}{x_{N_{2}} \times \left(x_{H_{2}}\right)^{3}} \frac{p^{2}}{p^{4}} \ \Rightarrow \ k_{p} = \frac{k_{x}}{p^{2}}$$

What is the relation between k_c and k_x for the same reaction? Ex.3

Sol.
$$k_c(RT)^{-2} = \frac{k_x}{p^2} \implies k_c = \frac{k_x R^2 T^2}{p^2}$$

CHEMICAL EQUILIBRIUM WITH GRAPH

$$N_2O_4(g) \stackrel{r_f}{=} 2NO_2(g)$$

equilibrium as $r_f = r_h$

Not equilibrium as r_, ≠ r_b

Not equilibrium as $r_i \neq r_h$

Same reason as below.

(f)

(not equilibrium rate of forward reaction and backward reaction can not increase together)

If we consider concentration and time for the above plot then only e and f will not show the state of equilibrium.

EXPRESSION FOR K, AND K, FOR A GIVEN REACTION

$$t = 0 \quad a \quad b \quad 0$$
At eq.
$$\frac{a - x}{v} \quad \frac{b - 3x}{v} \qquad \frac{2x}{v}$$

$$k_c = \frac{[NH_3]^2}{[N_2][H_2]^3} = \frac{\left(\frac{2x}{v}\right)^2}{\left(\frac{a - x}{v}\right)\left(\frac{b - 3x}{v}\right)^3}$$

$$k_c = \frac{4x^2}{(a - x)(b - 3x)^3v^2} \implies k_p = \frac{p_{NH_3}^2}{p_{N_2} \times p_{H_2}^3}$$

$$\Rightarrow \qquad k_p = \frac{\left(\frac{2x}{a + b - 2x} \times p\right)^2}{\left(\frac{a - x}{a + b - 2x} \times p\right) \times \left(\frac{b - 3x}{a + b - 2x} \times p\right)^3} \implies k_p = \frac{4x^2(a + b - 2x)^2}{(a - x)(b - 3x)^3p^2}$$

DEGREE OF DISSOCIATION

$$2NH_3(g)$$
 \longrightarrow $N_2(g) + 3 H_2(g)$
a - 2x x 3x
It is the no. of moles dissociated from 1 mole of reactant.

Fraction of moles dissociated from one mole of reactant. a moles NH, gives 2x mole

$$\therefore 1 \text{ mole NH}_3 \longrightarrow \frac{2x}{a}$$

 \Rightarrow

degree of dissociation (α) = $\frac{2x}{a}$

$$2NH_3 \longrightarrow N_2 + 3H_2$$

$$a(1-\alpha) \qquad \frac{a\alpha}{2} \qquad \frac{3a\alpha}{2}$$

DEGREE OF DISSOCIATION FROM VAPOUR DENSITY

The V.D. of mixture of PCl_s , PCl_3 and Cl_2 is 92. Find the degree of dissociation of PCl_s . Ex.4

Sol.
$$PCI_5 \stackrel{\longrightarrow}{\longleftarrow} PCI_3 + CI_2$$

$$1 \qquad 0 \qquad 0$$

$$1 - x \qquad x \qquad x$$

If initial concentration is not given in the question then we suppose initial mole = 1 mole molecular wt. of mixture. = $2 \times 92 = 184$

total moles of mix = 1 - x + x + x = 1 + x

wt. of the mixture = $(1 + x) \times 184$

wt. of initial mixture = 1×208.5

$$\Rightarrow$$
 1 × 208.5 = (1 + x) × 184 (according to law of mass conservation)
 \Rightarrow 208.5 = 184 + 184 x \Rightarrow x = 0.13

$$\Rightarrow$$
 208.5 = 184 + 184 x \Rightarrow x = 0.13

% dissociation = 13 %

 $nA \Longrightarrow A_n$ Ex.5

V.D. of A = d

V.D. of mix = D

find the degree of polymerisation.

Sol.
$$nA \longrightarrow A_n$$

moles of mix =
$$1 - x + \frac{x}{n}$$

wt. of mix =
$$(1-x+\frac{x}{n})\times 2D$$

$$1 \times 2d = (1 - x + \frac{x}{n}) \times 2D$$
 (According to law of mass conservation)

$$\frac{d}{D} = 1 + x \left(\frac{1}{n} - 1\right) \implies \frac{d}{D} - 1 = x \left(\frac{1}{n} - 1\right) \implies x = \frac{(d - D)n}{D(1 - n)} \implies x = \frac{(D - d)n}{D(n - 1)}$$

CHARACTERISTICS OF EQUILIBRIUM CONSTANT

1.
$$A + B \stackrel{k_1}{=} C + D$$

$$k_1 = \frac{[C][D]}{[A][B]}$$

$$C + D$$

$$CBSE[SAT]NTSE$$

$$OLYMPIADS$$

After reversing the reaction ng potential through education

C + D
$$\stackrel{k_2}{=}$$
 A + B
$$k_2 = \frac{[A][B]}{[C][D]} = \frac{1}{k_1}$$

After reversing the reaction the equilibrium constant get reversed.

2. E + F
$$\stackrel{k_2}{=}$$
 G and A + B $\stackrel{k_1}{=}$ C + D

After adding the reaction \rightarrow A + B + E + F $\stackrel{k_3}{=}$ C + D + G

$$k_3 = \frac{[C][D][G]}{[A][B][E][F]} \Rightarrow K_3 = K_1 \times K_2$$

when the two reaction are added there equilibrium constant get multiplied.

3.
$$A + B = \frac{k_1}{C + D}$$

 $k_1 = \frac{[C][D]}{[A][B]}$

After multiplying by n

$$nA + nB \stackrel{k_2}{=} nC + nD$$

$$k_2 = \frac{[C]^n [D]^n}{[A]^n [B]^n} = k_1^n \implies k_2 = k_1^n$$

When the reaction is multiplied by any number then eq. constant gets the same number in its power.

HETEROGENEOUS EQUILIBRIUM

$$CaCO_3(s)$$
 \subset $CaO_{(s)} + CO_{2(q)}$

 $\begin{tabular}{lll} $\sf CaCO_3(s)$ & $$ & $\sf CaO_{(s)} + \sf CO_{2(g)}$ \\ The density of the solid at constant temp. remains constant. \\ \end{tabular}$

$$d = \frac{m}{V}$$

$$\frac{d}{M} = \frac{m}{v} \times \frac{1}{M} = \frac{n}{V}$$

constant =
$$\frac{n}{v}$$

⇒ concentration = constant

Here m = mass of solid

M = molecular weight of solid

n = moles of solid.

$$\begin{aligned} k &= \frac{[CaO(s)][CO_2(g)]}{[CaCO_3(s)]} \quad \Rightarrow \quad k \times \frac{[CaCO_3(s)]}{[CaO(s)]} = [CO_2(g)] \\ \Rightarrow \quad K_c &= [CO_2(g)] \end{aligned}$$

PREDICTION OF THE DIRECTION OF THE REACTION

$$k_c = \frac{[C][D]}{[A]^2[B]} \Longrightarrow All concentration at eq.a.l through education$$

Reaction quotient $Q_C = \frac{[C][D]}{[A]^2[B]}$ Here concentration is at any time 't'

$$Q_C = \frac{5 \times 4}{4 \times 3} = \frac{5}{3}$$

If $Q_c > K_c \Rightarrow$ backward Reaction

 $Q_c \stackrel{\leftarrow}{<} K_c \stackrel{\circ}{\Rightarrow}$ forward Reaction $Q_c = K_c \Rightarrow$ Equilibrium condition

LE CHATELIER'S PRINCIPLE

When the equilibrium is disturbed by changing pressure, temp, volume and concentration of the reactants or products then reaction proceeds in that direction where the applied change is nullified"

1. **Effect of Temperature:**

(i) **Endothermic Reaction**

A + B
$$\longrightarrow$$
 product $\Delta H > 0$

or
$$A + B + heat \longrightarrow product$$

In case of endothermic reaction on increasing the temp, reaction proceeds in the forward direction and vice

On increasing temp, the value of eq. constant increasing.

$$\log \frac{k_2}{k_1} = \frac{\Delta H}{2.303R} \left[\frac{1}{T_1} - \frac{1}{T_2} \right]$$

If temp is increased

$$T_1 < T_2$$

 $\label{eq:T1} {\rm T_1} < {\rm T_2}$ for endothermic reaction, $\Delta {\rm H} > 0$ i.e. +ve

$$\begin{array}{lll} \text{Also} & \frac{1}{T_1} - \frac{1}{T_2} = + \text{ve} \\ \\ \Rightarrow & \log \frac{k_2}{k_1} > 0 & \Rightarrow & \log \frac{k_2}{k_1} > \log 1 \\ \\ \Rightarrow & \frac{k_2}{k_1} > 1 & \Rightarrow K_2 > K_1 \\ \\ \text{if} & T_1 > T_2 \\ \\ \Rightarrow & \log \frac{k_2}{k_1} < 0 \Rightarrow \log \frac{k_2}{k_1} < \log 1 & \Rightarrow k_2 < k_1 \end{array}$$

Thus it can be conclude that

$$\begin{array}{cccc} \Delta H > 0 & T \uparrow & k \uparrow \\ & \text{(endothermic)} & T \downarrow & k \downarrow \\ \Delta H < 0 & T \uparrow & k \downarrow \\ & \text{(exothermic reaction)} & T \downarrow & k \uparrow \end{array}$$

(ii) Exothermic Reaction($\Delta H < 0$)

On increasing temperature, the reaction proceeds in backward direction.

2. **Effect of Pressure:**

$$PCI_5$$
 PCI₃ + CI₂ otential through education At eq. n_1 n_2 n_3

At eq.
$$\Pi_1$$
 Π_2 Π_3 Π_3

$$k_{p} = \frac{\left(\frac{n_{2}}{n_{1} + n_{2} + n_{3}} \times P\right) \left(\frac{n_{3}}{n_{1} + n_{2} + n_{3}}\right) \times P}{\frac{n_{1}}{n_{1} + n_{2} + n_{3}} \times P}$$

$$\Rightarrow \qquad k_p = \frac{n_2 n_3 \times P}{n_1 (n_1 + n_2 + n_3)}$$

On increasing P, eq. will be disturbed $\therefore k_p$ will not defined at that pressure Hence Qp will be defined

$$Q_{p} = \frac{n_{2}n_{3}}{n_{1}(n_{2} + n_{1} + n_{3})} \times p^{1}$$

- \Rightarrow value of Q_p > value of k_p
- ⇒ backward reaction
- ⇒ On increasing Pressure the reaction shift in direction where the number of moles are less.
- ⇒ If no. of moles at reactant side and product side are equal then there will be no effect of changing pressure at equilibrium.

3. Effect of volume:

If the concentration of reactant increases or that of concentration product decreases then reaction proceeds in forward direction.

3. **Addition of Inert Gas**

- (1) At constant volume
- (2) At constant pressure

(i) At constant volume.

$$PCI_{5} \longrightarrow PCI_{3} + CI_{2}$$
At eq.
$$\frac{n_{1}}{V} \qquad \frac{n_{2}}{V} = \frac{n_{3}}{V}$$

$$k_c = \frac{\frac{n_2}{v} \times \frac{n_3}{v}}{\frac{n_1}{v}} = \frac{n_2 n_3}{n_1 v}$$

$$PV = nRT$$

After the Adding of inert gas

$$Q_c = \frac{n_2 n_3}{n_1 v}$$
 \Rightarrow $Q_c = K_c$

⇒ there is no effect of adding inert gas on the state of equilibrium at constant volume.

$$k_{p} = \frac{P_{PCl_{3}} \times P_{Cl_{2}}}{P_{PCl_{5}}} = \frac{\left(\frac{n_{2}}{n_{1} + n_{2} + n_{3}} \times p\right) \left(\frac{n_{3}p}{n_{1} + n_{2} + n_{3}}\right)}{\left(\frac{n_{1}}{n_{1} + n_{2} + n_{3}} \times P\right)} = \frac{n_{2}n_{3}p}{n_{1}\left(n_{1} + n_{2} + n_{3}\right)}$$

If we n₄ moles of inert gas is added

moles of inert gas is added
$$Q_{p} = \frac{n_{2} n_{3} p'}{(n_{1} + n_{2} + n_{3} + n_{4})} \Rightarrow \frac{P}{n} = constant$$

$$\Rightarrow$$
 Q_n = K

⇒ there will be no effect of adding inert gas on equilibrium at constant volume.

(ii) At constant pressure

$$PV = nRT$$

$$V \propto n$$

$$PCI_{5} \Longrightarrow PCI_{3} + CI_{2}$$

$$At eq. \frac{n_{1}}{v} \frac{n_{2}}{v} \frac{n_{3}}{v}$$

$$\Rightarrow k_{c} = \frac{n_{2}n_{3}}{n_{1}v}$$

After the Adding of inert gas

$$Q_c = \frac{n_2 n_3}{n_1 (v + \Delta v)}$$

- \Rightarrow Q_c < K_C \Rightarrow forward direction On Adding of inert gas At constant pressure, the reaction proceeds in that direction where the sum of stoichiometric coefficient is greater.

SIMULTANEOUS EQUILIBRIUM

- Applicable only when at least one of the product is common in both the reaction.
- Ex.6 The pressure at equilibrium over solid A is 50 atm and over solid D is 68 atm if both solid A and D are heated simultaneously then find the total pressure over the solids.
- Sol. At 1st equilibrium

$$k_{p_1} = (25)^2$$
; $k_{p_2} = (34)^2$

At IInd equilibrium

$$A_{(s)} \stackrel{\cdot}{=\!=\!=\!=} B_{(g)} + C_{(g)}$$

$$D_{(s)} = B_{(g)} + E_{(g)}$$

$$x + y \quad x$$

$$x + y \quad y$$

$$K_{p_1} = (x + y) \times x \qquad ...(i)$$

$$\begin{split} & \mathsf{K}_{\mathsf{p}_1} = (\mathsf{x} + \mathsf{y}) \! \times \! \mathsf{x} & ...(\mathsf{i}) \\ & \mathsf{K}_{\mathsf{p}_2} = (\mathsf{x} + \mathsf{y}) \! \times \! \mathsf{y} & ...(\mathsf{ii}) \end{split}$$

total pressure = $p_B + p_C + p_E = x + y + x + y = 2 (x + y)$

Also
$$k_{p_1} + k_{p_2} = (x + y)^2$$

$$\Rightarrow \qquad x+y=\sqrt{k_{p_1}+k_{p_2}}$$

$$\Rightarrow$$
 Total pressure = 2 (x + y) = $2\sqrt{k_{p_1} + k_{p_2}}$

- (i) In the above question find the mole ratio of C and B
- (ii) mole fraction of C
- Sol. At constant temp and volume

$$P \propto n\,$$

⇒ pressure Ratio will their mole ratio

$$\frac{k_{p_1}}{k_{p_2}} = \frac{x}{y}$$

Mole fraction of C (iii)

$$C = \frac{x}{2(x+y)}$$
 turing potential through education

As we know $\frac{k_{p_1}}{k_{p_2}} = \frac{x}{y}$

$$\Rightarrow \frac{y}{x} = \frac{k_{p_2}}{k_{p_1}} \Rightarrow \frac{x+y}{x} = \frac{k_{p_2} + k_{p_1}}{k_{p_1}}$$

$$\begin{array}{ll} \Rightarrow & & \frac{y}{x} = \frac{k_{p_2}}{k_{p_1}} & \Rightarrow & \frac{x+y}{x} = \frac{k_{p_2} + k_{p_1}}{k_{p_1}} \\ \\ \Rightarrow & & \frac{2(x+y)}{x} = \frac{2(k_{p_2} + k_{p_1})}{k_{p_1}} & \Rightarrow & \frac{x}{2(x+y)} = \frac{k_{p_1}}{2(k_{p_2} + k_{p_1})} \end{array}$$

$$\Rightarrow$$
 mole fraction of C = $\frac{k_{p_1}}{2(k_{p_2} + k_{p_1})}$

Ex.7
$$A(s) \longrightarrow H_2S(g) + B(g)$$
 At eq., pressure = 18 atm

$$C(s) \longrightarrow H_2S(g) + D(g)$$
 At eq., pressure = 36 atm

Calculation

(i) total pressure at new equilibrium when both the solids are heated simultaneously.

(ii) mole ratio of B and D

(iii) mole fraction of B in the mixture.

Sol.
$$kp_4 = (9)^2 = 81$$

$$kp_2 = (18)^2 = 324$$

After

$$A(s) \longrightarrow H_2S(g) + B(g)$$

$$X + V X$$

$$C(s) \longrightarrow H_2S(g) + D(g)$$

$$x + y = y$$

total pressure = x + y + x + y = 2(x + y)

$$kp_1 = x(x + y)$$

$$kp_2 = y(x + y)$$

$$\Rightarrow$$
 kp₁ + kp₂ = (x+y)² \Rightarrow x + y = $\sqrt{kp_1 + kp_2}$

$$\Rightarrow$$
 total pressure = 2 (x + y) = 2 $\sqrt{kp_1 + kp_2}$

$$= 2\sqrt{81+324} = 2\sqrt{405}$$
 atm

(ii) mole ratio of B & D =
$$\frac{x}{y} = \frac{81}{324} = \frac{9}{108} = \frac{1}{12}$$

(iii) mole fraction of B in mixture =
$$\frac{x}{2(x+y)} = \frac{kp_1}{2(kp_1 + kp_2)}$$

PHYSICAL EQUILIBRIUM

Let us consider the following physical equilibrium

$$H_2O(\ell) \longrightarrow H_2O(g)$$

1. Effect of temperature

Since it is an endothermic reaction therefore reaction will proceed in forward direction on increasing temp. (Le Chatelier's principle)

2. Effect of pressure: Nurturing potential through education

$$\frac{dP}{dT} = \frac{\Delta H}{T\Delta V}$$

for the above equilibrium $\Delta H > 0$

$$\Delta V$$
 ie $V_{q} - V_{\ell} = +ve$

$$\Rightarrow \frac{dP}{dT} = +ve$$

⇒ on increasing P, T increases

But As reaction is to complete at the initial temp, therefore temperature must be lowered. This will make the reaction go to direction as suggested by Le-chatelior (endothermic reaction)

Ex.8 A(s) (d = 1.14 gm/cc)

B(s) (d = 1.5 gm/cc)

 $A(s) \Longrightarrow B(s) + Heat$

If mass of A and B are equal, on increasing the pressure, will for formation of B \uparrow or \downarrow ?

 $A(s) \longrightarrow B(s)$ Sol.

As density of solid B > solid A

$$\Rightarrow$$
 V_B < V_A \Rightarrow V_B - V_A = - ve since reaction is exothermic

$$\therefore \Delta H = -ve$$

$$\Rightarrow \frac{dP}{dT} = \frac{\Delta H}{T\Delta V}$$

$$\Rightarrow \frac{dP}{dT} = +ve$$

⇒ on ↑ing P, Talso ↑es

To achieve initial temp. i.e., reaction temp. The temp. must lowered and lowering. the temp. in an exothermic reaction clearly indicates forward reaction.

On increasing pressure, the rate of formation of B will be enhanced. \Rightarrow

