Completeness

(EXERCISES FOR LECTURES 8-9)

- **7.1.** Let X be a topological space, $Y \subset X$, and $x \in X$. Show that $x \in \overline{Y}$ iff there is a net in Y which converges to x.
- **7.2.** Let X and Y be topological spaces. Show that a map $f: X \to Y$ is continuous at $x \in X$ iff for every net (x_{λ}) in X such that $x_{\lambda} \to x$ we have $f(x_{\lambda}) \to f(x)$ in Y.
- **7.3.** Show that a topological space X is Hausdorff iff every net in X has at most one limit.
- **7.4.** Show that a topological space X is compact iff every net in X has an accumulation point.
- **7.5.** Let X be a topological vector space. Prove that
- (a) each convergent net in X is a Cauchy net;
- (b) each Cauchy net in X which has an accumulation point $x \in X$ converges to x.
- **7.6.** Show that a continuous linear map between topological vector spaces takes Cauchy nets to Cauchy nets.
- **7.7.** Let $(X, \tau(P))$ be a locally convex space. Show that a net (x_{λ}) in X
- (a) converges to $x \in X$ iff $p(x_{\lambda} x) \to 0$ for every $p \in P$;
- (b) is a Cauchy net iff for each $p \in P$ and each $\varepsilon > 0$ there exists $\lambda_0 \in \Lambda$ such that we have $p(x_{\lambda} x_{\mu}) < \varepsilon$ whenever $\lambda, \mu \geqslant \lambda_0$.
- **7.8.** Let X be a vector space equipped with the projective locally convex topology generated by a family $\{\varphi_i \colon X \to X_i \colon i \in I\}$ of linear maps, where $\{X_i \colon i \in I\}$ is a family of locally convex spaces. Show that a net (x_λ) in X converges to $x \in X$ iff we have $\varphi_i(x_\lambda) \to \varphi_i(x)$ for all $i \in I$.
- **7.9.** Show that a compact subset of a Hausdorff topological vector space is complete.
- **7.10.** Let X be a topological vector space, and let $X_0 \subset X$ be a dense vector subspace. Show that every continuous linear map from X_0 to a complete topological vector space Y uniquely extends to a continuous linear map from X to Y.
- **7.11.** Let X be a metrizable topological vector space, and let ρ be a translation invariant metric on X that generates the topology of X. Prove that the following conditions are equivalent:
 - (i) X is complete;
 - (ii) X is sequentially complete;
- (iii) (X, ρ) is a complete metric space.
- **7.12.** Let S be an uncountable set, and let X be the subspace of \mathbb{K}^S consisting of all countably supported functions. Prove that X is sequentially complete, but is not complete.
- **7.13.** Let X be a topological vector space, and let $X_0 \subset X$ be a dense vector subspace. Show that
- (a) every continuous seminorm p on X_0 uniquely extends to a continuous seminorm \tilde{p} on X;
- (b) if P is a defining family of seminorms on X_0 , then $\{\tilde{p}: p \in P\}$ is a defining family of seminorms on X:
- (c) if \mathcal{U} is a base of neighborhoods of 0 in X_0 , then $\{\overline{U}: U \in \mathcal{U}\}$ is a base of neighborhoods of 0 in X.
- **7.14.** Let $(X_i)_{i\in I}$ be a family of locally convex spaces. Show that $\prod_{i\in I} X_i$ is complete iff all the spaces X_i are complete.

- **7.15.** Let $(X_i)_{i\in I}$ be a family of locally convex spaces. Show that $\bigoplus_{i\in I} X_i$ is complete iff all the spaces X_i are complete. As a corollary, the strongest locally convex space is complete.
- **7.16.** Show that the projective limit of a family of locally convex spaces is a closed subspace of their product. As a corollary, the projective limit of complete locally convex spaces is complete.
- **7.17.** Let X be a locally convex space, and let Y be a vector subspace of X. Suppose that Y is equipped with a locally convex topology that is stronger (=finer) than the topology induced from X. We say that Y is locally closed in X if there is a base of neighborhoods of 0 in Y consisting of sets closed in X. Show that, if X is complete and Y is locally closed in X, then Y is complete.
- **7.18.** Prove that the following locally convex spaces are complete:
- (a) C(T), where T is a locally compact topological space;
- (b) $C^{\infty}(U)$, where $U \subset \mathbb{R}^n$ is an open set;
- (c) the space s of rapidly decreasing sequences;
- (d) the Schwartz space $\mathscr{S}(\mathbb{R}^n)$;
- (e) $\mathcal{O}(U)$, where $U \subset \mathbb{C}$ is an open set;
- (f) $C_c(T)$, where T is a second countable locally compact topological space;
- (g) $C_c^{\infty}(U)$, where $U \subset \mathbb{R}^n$ is an open set.
- **7.19.** Let X be a complete locally convex space, and let P be a directed defining family of seminorms on X. Recall (see the lecture) that there exists a topological isomorphism $X \cong \varprojlim \tilde{X}_p$, where \tilde{X}_p (for every $p \in P$) is the completion of the normed space $X_p = (X/p^{-1}(0), \hat{p})$. Describe \tilde{X}_p explicitly for (0) $X = \mathbb{K}^S$, where S is a set, and for the spaces (a) (f) of Exercise 7.18.
- **7.20.** Let X be a Hausdorff locally convex space. Describe explicitly the completion of the dual space X' equipped with the weak* topology.
- **7.21.** Given a locally convex space X, let X^{∞} (resp. X_{∞}) denote the product (resp. the locally convex direct sum) of countably many copies of X. Let now X and Y be Banach spaces such that Y is continuously embedded into X and such that Y is dense in X (for example, $X = \ell^2$ and $Y = \ell^1$). Define

$$\varphi \colon X_{\infty} \oplus Y^{\infty} \to X^{\infty}, \quad (x,y) \mapsto x + y.$$

Prove that φ is an open map onto a proper dense subspace of X^{∞} . Deduce that the quotient $(X_{\infty} \oplus Y^{\infty})/\operatorname{Ker} \varphi$ is incomplete (while $X_{\infty} \oplus Y^{\infty}$ itself is complete).

- **7.22.** Let T be a locally compact Hausdorff topological space, and let $S \subset T$ be a closed subset. Prove that
 - (i) the restriction map $r_S: C(T) \to C(S)$ is an open map onto a dense subspace of C(S);
 - (ii) if T is not normal, then there exists a closed set $S \subset T$ such that r_S is not onto;
- (iii) if S is as in (ii), then the quotient $C(T)/\operatorname{Ker} r_S$ is incomplete (while C(T) itself is complete).