

By Tracy Otieno

INTRODUCTION

Goal: The project aims to develop a predictive model that can identify the key factors influencing H1N1 vaccine uptake, enabling organizations to design targeted interventions that increase vaccine adoption

BUSINESS VALUE

Why This Matters: Increasing vaccine uptake is essential for public health, especially in preventing the spread of contagious diseases like H1N1. Business Impact: Understanding the factors that influence vaccine uptake can help health organizations develop effective campaigns, allocate resources more efficiently, and ultimately improve public health outcomes.

DATA OVERVIEW

Data Set Size: 26,707 observations with 38 variables

Key Variables: Perceived risk of H1N1, doctor recommendations, behavioral factors, employment status, and health indicators

Missing Data: 6% of the data was missing, which was handled appropriately during preprocessing

KEY INSIGHTS FROM DATA EXPLORATION

Class Imbalance: The dataset has a significant class imbalance, with the majority of people not receiving the vaccine.

High Correlation: Behavioral factors like large gatherings and time spent outside the home correlate highly with vaccine uptake.

Perceived Risk & Doctor Recommendations: People who perceive a higher risk of H1N1 or receive a doctor's recommendation are more likely to get vaccinated.

METHODOLOGY

Data Preprocessing: SMOTE and NearMiss techniques were used to address class imbalance, followed by scaling of continuous variables using Standard Scaler.

Model Selection: Logistic regression, decision tree, and random forest models were tested, with logistic regression emerging as the best performer in terms of accuracy, precision, recall, and F1-score.

DATA VISUALIZATIONS

The target variable H1N1 Vaccine has a class imbalance with with class No being the highest at 78.3%

VACCINE UPTAKE VS. PERCEIVED RISK

The bar chart illustrates the relationship between the perceived risk of H1N1 (on a scale of 1 to 5) and vaccine uptake. It shows that higher perceived risk (levels 4 and 5) correlates with increased vaccine uptake, whereas lower perceived risk (levels 1 and 2) is associated with significantly fewer people choosing to vaccinate.

H1N1 VACCINE UPTAKE VS. DOCTOR RECOMMENDATION

The bar chart highlights the influence of doctor recommendations on H1N1 vaccine uptake. Individuals who received a doctor's recommendation (value 1) showed a significantly higher proportion of vaccine uptake than those who did not (value 0), where most chose not to vaccinate.

MODEL RESULTS

Best Model: Logistic Regression with a test accuracy of 87.22%, and balanced performance across both classes (diabetes and non-diabetes).

Other Models: Random Forest and Decision Tree showed good performance but had some issues like overfitting or lower accuracy.

Confusion Matrix: Logistic regression achieved 3,055 true negatives and 2,942 true positives, indicating good classification performance.

CONCLUSION

Key Takeaways:

- Factors like perceived risk, doctor recommendations, and behavioral characteristics are strong indicators of vaccine uptake.
- Logistic regression performed the best, offering a reliable model for predicting vaccine uptake.
- **Business Value:** This model helps health organizations target interventions more effectively, especially for at-risk groups, improving vaccination rates.

RECOMMENDATIONS

- Increase Awareness of Perceived Risk: Public health campaigns should focus on raising awareness about the risk of H1N1 to motivate individuals to get vaccinated.
- Leverage Doctor Recommendations: Encourage doctors to recommend the vaccine to patients, as this significantly increases uptake.
- Optimize Behavioral Factors: Incorporate behavioral data (e.g., large gatherings, time spent outside) into targeted interventions.