

Electrical Engineering Department,

Fourth Year - Communications & Electronics.

EE 431 DIGITAL INTEGRATED CIRCUITS

Lab#2:

CMOS Inverter Characteristics

PREPARED BY	SECTION	SEAT.NO.
Mahmoud Mohamed Kamal Ismail	7	250

> Contents 1. Part I: Layout Versus Schematic Page 3 2. Part II Inverter Characteristics Page 4

➤ List of Figures	
Figure 1: Screenshot of Schematic.	Page 3
Figure 2: T-Spice - Layout.	Page 3
Figure 3: T-Spice – Schematic.	Page 3
Figure 4: LVS Result "Circuits are equal".	Page 4
Figure 5: T-Spice – Transient analysis 1.	Page 4
Figure 6: Result – Transient analysis 1.	Page 5
Figure 7: T-Spice – Transient analysis 2.	Page 5
Figure 8: Result – Transient analysis 2.	Page 6
Figure 9: T-Spice – DC sweep.	Page 6
Figure 10: Result – DC sweep.	Page 7

Figure 11: T-Spice – DC sweep (V_{th} = VDD/2) – EX1.	Page 7
Figure 12: Result – DC sweep (V_{th} = VDD/2) – EX1.	Page 8
Figure 13: T-Spice – DC sweep (V_{th} = VDD/2) – EX2.	Page 8
Figure 14: Result – DC sweep (V_{th} = VDD/2) – EX2.	Page 9
Figure 15: T-Spice – Transient analysis (increase the input frequency VDD = 3 volt).	Page 9
Figure 16: Result – Transient analysis (increase the input frequency VDD = 3 volt).	Page 10
Figure 17: T-Spice – Transient analysis (increase the input frequency VDD = 5 volt).	Page 10
Figure 18: Result – Transient analysis (increase the input frequency VDD = 5 volt).	Page 11
Figure 19: Screenshot of Schematic (Add a load capacitance of 1pF).	Page 11
Figure 20: T-Spice – Transient analysis (Measure τPHL and τPLH).	Page 12
Figure 21: Result – τPHL = 1.02 nsec.	Page 12
Figure 22: Result – τPLH = 2.79 nsec.	Page 13
Figure 23: T-Spice – Transient analysis (Resize the transistor so that τPHL and τPLH are equal).	Page 13
Figure 24: Result – τPHL = 1.11 nsec.	Page 14
Figure 25: Result – τPLH = 1.11 nsec.	Page 14

1. Part I: Layout Versus Schematic

Figure 1: Screenshot of Schematic.

```
* <Poly2 Resistor>

* <Poly2 Resistor>

* <P Diff Resistor>

* <Pad Comment>

* Varning: Layers with Zero Resistance.

* <Poly1-Poly2 Capacitor>

* <NMOS Capacitor>

* <PMCS Capacitor>

* <PAd Comment>

* NODE NAME ALIASES

** NODE NAME ALIASES

** M1 GND IN OUT GND NNOS L=2u W=22u AD=66p PD=24u AS=66p PS=24u

* M1 DRAIN GATE SOURCE BULK (29 19 35 21)

** M2 OUT IN VDD VDD PMOS L=2u W=22u AD=66p PD=24u AS=66p PS=24u

* M2 DRAIN GATE SOURCE BULK (29 S1.5 35 53.5)

** Total Nodes: 4

* Total Nodes: 4

* Total Elements: 2

* Total Number of Shorted Elements not written to the SPICE file: 0

** Extract Elapsed Time: 0 seconds

.END
```

Figure 2: T-Spice - Layout.

```
F SPICE netlist written by S-Edit Win32 6.02

* Written on Dec 24, 2020 at 20:18:56

* Waveform probing commands
.probe
.options probefilename="sedit.dat"
+ probesdbfile="lab2.sdb"
+ probetopmodule="lab2m"
.include m15_20.md

* Main circuit: lab2m
M1 out in gnd gnd NMOS L=2u W=22u AD=66p PD=24u AS=66p PS=24u
M2 out in vdd vdd PMOS L=2u W=22u AD=66p PD=24u AS=66p PS=24u
End of main circuit: lab2m
```

Figure 3: T-Spice – Schematic.

Figure 4: LVS Result "Circuits are equal".

2. Part II Inverter Characteristics

Transient analysis 1

```
* SPICE netlist written by S-Edit Win32 6.02
* Written on Dec 24, 2020 at 21:43:30
* Waveform probing commands
.probe
.options probefilename="sedit.dat"
+ probesdbfile="H:\tanner l edit\lab2.sdb"
+ probetopmodule="lab2m"
.include "H:\tanner 1 edit\m15 20.md"
* Main circuit: lab2m
M1 out in gnd gnd NMOS L=2u W=22u AD=66p PD=24u AS=66p PS=24u
M2 out in vdd vdd PMOS L=2u W=22u AD=66p PD=24u AS=66p PS=24u
* End of main circuit: lab2m
VDC vdd and 5
VPULSE in gnd PULSE (0 5 0 0 0 10n 20n)
.tran/op 1n 50n method=bdf
.print tran v(in,gnd) v(out,gnd)
                  Figure 5: T-Spice – Transient analysis 1.
```


Figure 6: Result – Transient analysis 1.

Transient analysis 2

```
* SPICE netlist written by S-Edit Win32 6.02
* Written on Dec 24, 2020 at 21:43:30
* Waveform probing commands
.probe
.options probefilename="sedit.dat"
+ probesdbfile="H:\tanner_l_edit\lab2.sdb"
+ probetopmodule="lab2m"
.include "H:\tanner_l_edit\m15_20.md"
* Main circuit: lab2m
M1 out in gnd gnd NMOS L=2u W=22u AD=66p PD=24u AS=66p PS=24u
M2 out in vdd vdd PMOS L=2u W=22u AD=66p PD=24u AS=66p PS=24u
* End of main circuit: lab2m
VDC vdd gnd 5
VPULSE in gnd PULSE (0 5 0 0 0 10u 20u)
*.dc lin source VPULSE 0 5 0.1
*.print dc v(in,gnd) v(out,gnd)
.print tran v(in,gnd) v(out,gnd)
.tran/op 1n 50u method=bdf
```

Figure 7: T-Spice – Transient analysis 2.

Figure 8: Result – Transient analysis 2.

• DC sweep

```
* SPICE netlist written by S-Edit Win32 6.02
* Written on Dec 24, 2020 at 21:43:30
* Waveform probing commands
.probe
.options probefilename="sedit.dat"
+ probesdbfile="H:\tanner l edit\lab2.sdb"
+ probetopmodule="lab2m"
.include "H:\tanner_l_edit\m15_20.md"
* Main circuit: lab2m
M1 out in gnd gnd NMOS L=2u W=22u AD=66p PD=24u AS=66p PS=24u
M2 out in vdd vdd PMOS L=2u W=22u AD=66p PD=24u AS=66p PS=24u
* End of main circuit: lab2m
VDC vdd gnd 5
VPULSE in gnd PULSE (0 5 0 0 0 10n 20n)
.dc lin source VPULSE 0 5 0.1
.print dc v(in,gnd) v(out,gnd)
```

Figure 9: T-Spice – DC sweep.

Figure 10: Result – DC sweep.

DC sweep (V_{th} = VDD/2) – EX1

```
* SPICE netlist written by S-Edit Win32 6.02

* Written on Dec 24, 2020 at 21:43:30

* Waveform probing commands
.probe
.options probefilename="sedit.dat"
+ probesdbfile="H:\tanner_1_edit\lab2.sdb"
+ probetopmodule="lab2m"
.include "H:\tanner_1_edit\m15_20.md"

* Main circuit: lab2m
M1 out in gnd gnd NMOS L=2u W=22u AD=66p PD=24u AS=66p PS=24u
M2 out in vdd vdd PMOS L=2u W=70u AD=66p PD=24u AS=66p PS=24u

* End of main circuit: lab2m
VDC vdd gnd 5
VPULSE in gnd PULSE (0 5 0 0 0 10n 20n)
.dc lin source VPULSE 0 5 0.1
.print dc v(in,gnd) v(out,gnd)
```

Figure 11: T-Spice – DC sweep (V_{th} = VDD/2) – EX1.

Figure 12: Result – DC sweep $(V_{th} = VDD/2) - EX1$.

• DC sweep $(V_{th} = VDD/2) - EX2$

Figure 13: T-Spice – DC sweep $(V_{th} = VDD/2) - EX2$.

Figure 14: Result – DC sweep $(V_{th} = VDD/2) - EX2$.

• Transient analysis (increase the input frequency VDD = 3 volt)

```
* SPICE netlist written by S-Edit Win32 6.02
* Written on Dec 24, 2020 at 21:43:30
* Waveform probing commands
.probe
.options probefilename="sedit.dat"
+ probesdbfile="H:\tanner_l_edit\lab2.sdb"
+ probetopmodule="lab2m"
.include "H:\tanner_l_edit\m15_20.md"
* Main circuit: lab2m
M1 out in gnd gnd NMOS L=2u W=22u AD=66p PD=24u AS=66p PS=24u
M2 out in vdd vdd PMOS L=2u W=70u AD=66p PD=24u AS=66p PS=24u
* End of main circuit: lab2m
VDC vdd gnd 3
VPULSE in gnd PULSE (0 3 0 0 0 0.5n 1n)
*.dc lin source VPULSE 0 5 0.1
*.print dc v(in,gnd) v(out,gnd)
.print tran v(in,gnd) v(out,gnd)
.tran/op 1p 5n method=bdf
```

Figure 15: T-Spice – Transient analysis (increase the input frequency VDD = 3 volt).

Figure 16: Result – Transient analysis (increase the input frequency VDD = 3 volt).

• Transient analysis (increase the input frequency VDD = 5 volt)

```
* SPICE netlist written by S-Edit Win32 6.02
* Written on Dec 24, 2020 at 21:43:30
* Waveform probing commands
.probe
.options probefilename="sedit.dat"
+ probesdbfile="H:\tanner_l_edit\lab2.sdb"
+ probetopmodule="lab2m"
.include "H:\tanner_l_edit\m15_20.md"
* Main circuit: lab2m
M1 out in gnd gnd NMOS L=2u W=22u AD=66p PD=24u AS=66p PS=24u
M2 out in vdd vdd PMOS L=2u W=22u AD=66p PD=24u AS=66p PS=24u
* End of main circuit: lab2m
VDC vdd gnd 5
VPULSE in gnd PULSE (0 5 0 0 0 0.5n 1n)
*.dc lin source VPULSE 0 5 0.1
*.print dc v(in,gnd) v(out,gnd)
.print tran v(in,gnd) v(out,gnd)
.tran/op 1p 5n method=bdf
```

Figure 17: T-Spice – Transient analysis (increase the input frequency VDD = 5 volt).

Figure 18: Result – Transient analysis (increase the input frequency VDD = 5 volt).

Figure 19: Screenshot of Schematic (Add a load capacitance of 1pF).

Measure τPHL and τPLH.

```
* SPICE netlist written by S-Edit Win32 6.02
* Written on Dec 26, 2020 at 03:04:25
* Waveform probing commands
.probe
.options probefilename="sedit.dat"
+ probesdbfile="H:\tanner l edit\lab2.sdb"
+ probetopmodule="lab2m"
.include "H:\tanner 1 edit\m15 20.md"
* Main circuit: lab2m
C1 out gnd 1pF
M2 out in gnd gnd NMOS L=2u W=22u AD=66p PD=24u AS=66p PS=24u
M3 out in vdd vdd PMOS L=2u W=22u AD=66p PD=24u AS=66p PS=24u
* End of main circuit: lab2m
VDC vdd gnd 5
VPULSE in gnd PULSE (0 5 0 0 0 10n 20n)
.tran/op 1p 50n method=bdf
.print tran v(in,gnd) v(out,gnd)
```

Figure 20: T-Spice – Transient analysis (Measure τPHL and τPLH).

Figure 21: Result – $\tau PHL = 1.02$ nsec.

Figure 22: Result – τ PLH = 2.79 nsec.

• Resize the transistor so that τPHL and τPLH are equal

```
* SPICE netlist written by S-Edit Win32 6.02
* Written on Dec 26, 2020 at 03:04:25
* Waveform probing commands
.probe
.options probefilename="sedit.dat"
+ probesdbfile="H:\tanner l edit\lab2.sdb"
+ probetopmodule="lab2m"
.include "H:\tanner_l_edit\m15_20.md"
* Main circuit: lab2m
C1 out gnd 1pF
M2 out in gnd gnd NMOS L=2u W=22u AD=66p PD=24u AS=66p PS=24u
M3 out in vdd vdd PMOS L=2u W=70u AD=66p PD=24u AS=66p PS=24u
* End of main circuit: lab2m
VDC vdd gnd 5
VPULSE in gnd PULSE (0 5 0 0 0 10n 20n)
.tran/op 1p 50n method=bdf
.print tran v(in,gnd) v(out,gnd)
```

Figure 23: T-Spice – Transient analysis (Resize the transistor so that τPHL and τPLH are equal).

Figure 25: Result – τ PLH = 1.11 nsec.