Hochschule RheinMain

Fachbereich Design Informatik Medien Studiengang Angewandte Informatik Prof. Dr. Bernhard Geib

Fehlertolerante Systeme

Sommersemester 2021 (LV 7201)

5. Übungsblatt

Aufgabe 5.1

Zur zuverlässigen Meldung einer Grenzwertüberschreitung durch "Alarm" wird ein 2von-3-Auswahlsystem betrachtet (s. nachfolgende Abbildung). Eine vorliegende Grenzwertüberschreitung sollen alle 3 Kanäle mittels logischer 1 melden.

- a) Skizzieren Sie eine schaltungstechnische Realisierung für den Mehrheitsbildner und ergänzen Sie obige Abbildung.
- b) Welchen Zustand signalisiert die Ausfallanzeige, wenn der Messwert unterhalb des Grenzwertes liegt? Dabei werde angenommen, dass alle Messkanäle intakt seien.
- c) Der Messwert liege nun über dem Grenzwert. Es werde ferner angenommen, dass der Messkanal 2 defekt sei und fälschlicherweise eine logische 0 liefere. Wird ein korrekter Alarmzustand dennoch signalisiert? Welchen Zustand liefert die Ausfallanzeige? Lässt sich am Zustand der Ausfallanzeige der defekte Messkanal erkennen?
- d) Zu welchem Ergebnis gelangt man, wenn statt einem plötzlich zwei Messkanäle ausfallen und die beiden ausgefallenen Kanäle am Ausgang fälschlicherweise eine logische 0 liefern?

Üb FTS 5N 1

Aufgabe 5.2

a) Unter der Annahme voneinander stochastisch unabhängiger und identischer Komponenten mit der Verfügbarkeitsfunktion Vi(t)

$$V_i(t) = e^{-\lambda t}$$
 (i = 1, 2, 3)

berechne man die Systemverfügbarkeit Vs^{2v3}(t) einer 2-von-3-Redundanzstruktur.

- b) Tragen Sie die Verläufe $V_i(t)$ und $V_S^{2v3}(t)$ in ein Zeitdiagramm für t=0 bis $\lambda \cdot t=5$ ein.
- c) Zu welchem Zeitpunkt $t = t^*$ schneiden sich die beiden Verläufe Vi(t) und $Vs^{2v3}(t)$?
- d) Welchen Wert nehmen die Verfügbarkeiten $V_i(t)$ bzw. $V_s^{2V3}(t)$ zum Zeitpunkt $t = t^*$ ein?

Aufgabe 5.3

Wir betrachten den nachfolgenden Zustandsgraphen eines "Reparatur nach Ausfall"-Netzes.

Das Netzwerk besteht aus insgesamt K Server, die nacheinander ausfallen können. Dabei wird angenommen, dass das Netzwerk erst dann eine Reparatur erfährt, wenn alle Server ausgefallen sind. Mit λ_i sind die Ausfallraten und mit μ_i die Reparaturraten bezeichnet. Zum Zeitpunkt t=0 möge sich das Netzwerk im Zustand 0 befinden.

Bestimmen Sie für ein "Reparatur nach Ausfall"-Netzwerk auf analytischem Weg einen allgemein gültigen Ausdruck für die stationäre System-Unverfügbarkeit U_S in Abhängigkeit von den gewählten Systemparametern λ_i und μ_i sowie von K.

Üb FTS 5N