Intro to Math Thinking Fall 2024: Assignment 10.2

- 1. Let $A=\{r\in\mathbb{Q}\mid r>0\wedge r^2>3\}$. Let $b\in\mathbb{Q}$ be a lower bound such that $b\leq\sqrt{3}$. Since we know $\frac{p}{q}\neq\sqrt{3}$ where $p,q\in\mathbb{Z}$ have no common factors, b must be strictly less than $\sqrt{3}$. Thus, $\frac{p}{q}<\sqrt{3}$. We can find another such lower bound of the form $\frac{\frac{p}{q}}{2}<\sqrt{3}\Leftrightarrow\frac{p}{2q}<\sqrt{3}$. Since $\frac{p}{2q}<\frac{p}{q}<\sqrt{3}$, and we can do this for any $\frac{p}{q}<\sqrt{3}$, A has no greatest lower bound in \mathbb{Q} .
- 2. Let $x=1, y=\frac{1}{s-r}>0$ where $r,s\in\mathbb{R}$ and r< s. By the Archimedean property, $\exists n\in\mathbb{N}$ such that $nx>y\Leftrightarrow n>\frac{1}{s-r}\Leftrightarrow ns-nr>1$. Since ns-nr>1, there is an $m\in\mathbb{N}$ such that nr< m< ns. Dividing by n, we get $r<\frac{m}{n}< s$ where $\frac{m}{n}\in\mathbb{Q}$, which was to be proven. \blacksquare
- 3. a_n does not approach a as n goes to ∞ . $(\exists \epsilon > 0)(\forall n)[(m > n) \land |a_m a| \ge \epsilon]$ or $\lim_{n\to\infty} a_n \ne a$.
- 4. **Prove** $\lim_{n\to\infty} (\frac{n}{n+1})^2 = 1$ Proof. Let $\epsilon > 0$ be given. Choose N large enough so that $N \geq \frac{2}{\epsilon}$. Then, for $n \geq N$

$$|(\frac{n}{n+1})^2 - 1| = |\frac{n^2}{(n+1)^2} - 1| \text{ (simplify)}$$

$$= |\frac{n^2 - (n+1)^2}{(n+1)^2}| \text{ (simplify fraction)}$$

$$= |\frac{-(2n+1)}{(n+1)^2}| = \frac{2n+1}{(n+1)^2} \text{ (} n \in \mathbb{N}\text{)}$$

$$< \frac{2}{n} \le \frac{2}{N} \le \epsilon$$

By definition of limit, this proves the statement.

5. **Prove** $\lim_{n\to\infty} \frac{1}{n^2} = 0$ Proof. Let $\epsilon > 0$ be given. Choose N large enough so that $N \geq \frac{1}{\sqrt{\epsilon}}$. Then, for $n \geq N$

$$\left|\frac{1}{n^2} - 0\right| = \left|\frac{1}{n^2}\right| = \frac{1}{n^2} \ (n \in \mathbb{N})$$

 $\leq \frac{1}{N^2} \leq \epsilon$

By definition of limit, this proves the statement.

6. Prove $\lim_{n\to\infty} \frac{1}{2^n} = 0$ Proof. Let $\epsilon > 0$ be given. Choose N large enough so that $N \geq \frac{1}{\epsilon}$. Then, for $n \geq N$

$$\left| \frac{1}{2^n} - 0 \right| = \left| \frac{1}{2^n} \right| = \frac{1}{2^n} \ (n \in \mathbb{N})$$

$$< \frac{1}{n} \le \frac{1}{N} \le \epsilon$$

By definition of limit, this proves the statement.

- 7. A sequence tends to ∞ if for every given number, we can find a term in the sequence larger than it. $(\forall K \in \mathbb{R})(\exists n \in \mathbb{N})[m > n \Rightarrow a_m > K]$.
 - (a) Prove $\{n\}_{n=1}^{\infty} = \infty$. Given $K \in \mathbb{R}$, choose $n = \lceil K \rceil$. Since $n \geq K$ and m > n, we must have m > K. Hence, the statement is proven.
 - (b) Prove $\{2^n\}_{n=1}^{\infty} = \infty$. Given $K \in \mathbb{R}$, choose $n = \lceil log_2 K \rceil$. Since $2^n = 2^{log_2 K} \ge K$ and m > n, we must have $2^m > K$. Hence, the statement is proven.
- 8. Let $\{a_n\}_{n=1}^{\infty}$ be an increasing sequence such that $a_n \to a$ as $n \to \infty$. If $(\forall a_i \in A)(a_i \le a)$ and for any upper bound b of a_n , $a \le b$, then by definition of lub, $a = lub\{a_n \mid n \in \mathbb{N}\}$. Hence, proven.
- 9. Let $\{a_n\}_{n=1}^{\infty}$ be an increasing sequence bounded above. Let $L = lub\{a_n \mid n \in \mathbb{N}\}$ and $\epsilon > 0$ is arbitrary. Since L is the lub, $L \epsilon$ is not an upper bound. Thus, $\exists N \in \mathbb{N}$ such that $a_N > L \epsilon$. Since the sequence is increasing, $(\forall n \geq N)[a_n \geq a_N > L \epsilon]$. Since L is an upper bound for a_n , $(\forall n)(a_n \leq L)$. Combining these inequalities, we obtain $(\forall n \geq N)[L \epsilon < a_n \leq L]$. Rearranging, we get $0 \leq L a_n < \epsilon \Leftrightarrow |a_n L| < \epsilon$. Since ϵ is arbitrary, we can make it as small as we want, which is the definition of limit. Hence, $\lim_{n\to\infty} a_n = L$ and is proven. \blacksquare