Гомологии. Обзор

Введение в цепные, симплициальные, сингулярные и клеточные гомологии

20 февраля 2020 г.

Отображение групп (объектов абелевой категории) $f:A \to B$ имеет ядро $\operatorname{Ker} f \subset A$ и образ $\operatorname{Im} f \subset B$.

• Для групп $\operatorname{Ker} f = \{x \in A | f(x) = 0\}$, $\operatorname{Im} f = f(A)$.

Отображение групп (объектов абелевой категории) f:A o B имеет ядро ${\sf Ker}\, f\subset A$ и образ ${\sf Im}\, f\subset B$.

- ullet Для групп $\operatorname{Ker} f = \{x \in A | f(x) = 0\}, \operatorname{Im} f = f(A).$
- ullet Условие Ker f=0 означает инъективность $f\left(f(x)
 eq f(y) \right)$ при x
 eq y
- ullet Условие Im f=B означает сюрьективность f $(orall b\in B\exists a\in Af(a)=b)$

Отображение групп (объектов абелевой категории) f:A o B имеет ядро ${\sf Ker}\, f\subset A$ и образ ${\sf Im}\, f\subset B$.

- ullet Для групп $\operatorname{Ker} f = \{x \in A | f(x) = 0\}, \operatorname{Im} f = f(A).$
- ullet Условие Ker f=0 означает инъективность $f\left(f(x)
 eq f(y) \right)$ при x
 eq y
- ullet Условие Im f=B означает сюрьективность f $(orall b\in B\exists a\in Af(a)=b)$
- Что означает условие $\operatorname{Ker} f = A$, $\operatorname{Im} f = 0$?

Отображение групп (объектов абелевой категории) f:A o B имеет ядро ${\sf Ker}\, f\subset A$ и образ ${\sf Im}\, f\subset B$.

- Для групп $\operatorname{Ker} f = \{x \in A | f(x) = 0\}, \operatorname{Im} f = f(A).$
- ullet Условие Ker f=0 означает инъективность $f\left(f(x)
 eq f(y) \right)$ при x
 eq y
- ullet Условие Im f=B означает сюрьективность f $(orall b\in B\exists a\in Af(a)=b)$
- Что означает условие $\ker f = A$, $\operatorname{Im} f = 0$?

Важную роль будут играть свободные абелевы группы.

Отображение групп (объектов абелевой категории) f:A o B имеет ядро ${\sf Ker}\, f\subset A$ и образ ${\sf Im}\, f\subset B.$

- Для групп $\operatorname{Ker} f = \{x \in A | f(x) = 0\}, \operatorname{Im} f = f(A).$
- ullet Условие Ker f=0 означает инъективность $f\left(f(x)
 eq f(y) \right)$ при x
 eq y
- ullet Условие Im f=B означает сюрьективность f $(orall b\in B\exists a\in Af(a)=b)$
- Что означает условие $\operatorname{Ker} f = A$, $\operatorname{Im} f = 0$?

Важную роль будут играть свободные абелевы группы.

- Свободная (абелева) группа с образующими из множества A (обозн. \mathbb{Z}^A) это множество отображений $A \to \mathbb{Z}$, имеющих конечное количество элементов с ненулевым образом.
- ullet Для каждого $a\in A$ в \mathbb{Z}^A есть образующая $f:A o\mathbb{Z}, f(x)=\delta(x,a)$
- ullet Образующую, соответствующую элементу a, будем обозначать a
- Гомоморфизм $\mathbb{Z}^A o G$ в любую группу достаточно (произвольно) задать на образующих

Определение

$$\cdots \xrightarrow{f_{n-2}} U_{n-1} \xrightarrow{f_{n-1}} U_n \xrightarrow{f_n} U_{n+1} \rightarrow \cdots$$

Ограниченная или неограниченная последовательность абелевых групп F_n и их гомоморфизмов $f_n: F_n \to F_{n+1}$ (в общем случае, объектов абелевой категории) называется точной в члене n, если

$$\operatorname{Im} f_{n-1} = \operatorname{Ker} f_n$$
.

И просто точной, если она точна во всех членах.

Определение

$$\cdots \xrightarrow{f_{n-2}} U_{n-1} \xrightarrow{f_{n-1}} U_n \xrightarrow{f_n} U_{n+1} \to \cdots$$

Ограниченная или неограниченная последовательность абелевых групп F_n и их гомоморфизмов $f_n: F_n \to F_{n+1}$ (в общем случае, объектов абелевой категории) называется точной в члене n, если

$$\operatorname{Im} f_{n-1} = \operatorname{Ker} f_n$$
.

И просто точной, если она точна во всех членах.

$$\bullet \ 0 \to A \to C$$

Определение

$$\cdots \xrightarrow{f_{n-2}} U_{n-1} \xrightarrow{f_{n-1}} U_n \xrightarrow{f_n} U_{n+1} \to \cdots$$

Ограниченная или неограниченная последовательность абелевых групп F_n и их гомоморфизмов $f_n: F_n \to F_{n+1}$ (в общем случае, объектов абелевой категории) называется точной в члене n, если

$$\operatorname{Im} f_{n-1} = \operatorname{Ker} f_n$$
.

И просто точной, если она точна во всех членах.

- \bullet 0 \rightarrow $A \rightarrow C$
- $C \rightarrow B \rightarrow 0$

Определение

$$\cdots \xrightarrow{f_{n-2}} U_{n-1} \xrightarrow{f_{n-1}} U_n \xrightarrow{f_n} U_{n+1} \to \cdots$$

Ограниченная или неограниченная последовательность абелевых групп F_n и их гомоморфизмов $f_n: F_n \to F_{n+1}$ (в общем случае, объектов абелевой категории) называется точной в члене n, если

$$\operatorname{Im} f_{n-1} = \operatorname{Ker} f_n$$
.

И просто точной, если она точна во всех членах.

$$\bullet$$
 0 \rightarrow $A \rightarrow C$

$$\bullet \ C \to B \to 0$$

$$\bullet \ 0 \to F \to C \to B$$

Определение

$$\cdots \xrightarrow{f_{n-2}} U_{n-1} \xrightarrow{f_{n-1}} U_n \xrightarrow{f_n} U_{n+1} \to \cdots$$

Ограниченная или неограниченная последовательность абелевых групп F_n и их гомоморфизмов $f_n: F_n \to F_{n+1}$ (в общем случае, объектов абелевой категории) называется точной в члене n, если

$$\operatorname{Im} f_{n-1} = \operatorname{Ker} f_n.$$

И просто точной, если она точна во всех членах.

$$\bullet$$
 0 \rightarrow $A \rightarrow C$

•
$$C \rightarrow B \rightarrow 0$$

$$\bullet \ 0 \to F \to C \to B$$

•
$$G \rightarrow C \rightarrow B \rightarrow 0$$

Определение

$$\cdots \xrightarrow{f_{n-2}} U_{n-1} \xrightarrow{f_{n-1}} U_n \xrightarrow{f_n} U_{n+1} \to \cdots$$

Ограниченная или неограниченная последовательность абелевых групп F_n и их гомоморфизмов $f_n: F_n \to F_{n+1}$ (в общем случае, объектов абелевой категории) называется точной в члене n, если

$$\operatorname{Im} f_{n-1} = \operatorname{Ker} f_n.$$

И просто точной, если она точна во всех членах. Что означает точность в этих примерах?

$$\bullet$$
 0 \rightarrow $A \rightarrow C$

•
$$C \rightarrow B \rightarrow 0$$

•
$$0 \rightarrow F \rightarrow C \rightarrow B$$

$$\bullet \ G \to C \to B \to 0$$

ullet (Короткая точная последовательность) 0 o A o C o B o 0

Определение

$$\cdots \xrightarrow{f_{n-2}} U_{n-1} \xrightarrow{f_{n-1}} U_n \xrightarrow{f_n} U_{n+1} \to \cdots$$

Ограниченная или неограниченная последовательность абелевых групп F_n и их гомоморфизмов $f_n: F_n \to F_{n+1}$ (в общем случае, объектов абелевой категории) называется точной в члене n, если

$$\operatorname{Im} f_{n-1} = \operatorname{Ker} f_n.$$

И просто точной, если она точна во всех членах.

$$\bullet$$
 0 \rightarrow $A \rightarrow C$

•
$$C \rightarrow B \rightarrow 0$$

•
$$0 \rightarrow F \rightarrow C \rightarrow B$$

•
$$G \rightarrow C \rightarrow B \rightarrow 0$$

- ullet (Короткая точная последовательность) 0 o A o C o B o 0
- (Левая резольвента) $\cdots o P_2 o P_1 o F o 0$

А что, если ослабить условие ${\rm Im}\ f_n={\rm Ker}\ f_{n+1}$ до ${\rm Im}\ f_n\subset {\rm Ker}\ f_{n+1}$? Такая последовательность будет называться коцепной комплекс. Если перенумеровать группы в обратном порядке, то такой комплекс называют цепным, гомоморфизмы традиционно обозначают $\partial_n:F_n\to F_{n-1}$.

Лемма

Условие Im $\partial_{n+1} \subset \operatorname{Ker} \partial_n$ эквивалентно $\partial_n \partial_{n+1} = 0$.

А что, если ослабить условие ${\rm Im}\, f_n = {\rm Ker}\, f_{n+1}$ до ${\rm Im}\, f_n \subset {\rm Ker}\, f_{n+1}$? Такая последовательность будет называться коцепной комплекс. Если перенумеровать группы в обратном порядке, то такой комплекс называют цепным, гомоморфизмы традиционно обозначают $\partial_n: F_n \to F_{n-1}$.

Лемма

Условие Im ∂_{n+1} ⊂ Ker ∂_n эквивалентно $\partial_n\partial_{n+1}=0$.

Поскольку последовательность уже не точная, можно измерить, насколько сильно она не точная. Для этого положим $H_n=\mathop{\rm Ker}\partial_n/\mathop{\rm Im}\partial_{n+1}$

А что, если ослабить условие ${\rm Im}\, f_n = {\rm Ker}\, f_{n+1}$ до ${\rm Im}\, f_n \subset {\rm Ker}\, f_{n+1}$? Такая последовательность будет называться коцепной комплекс. Если перенумеровать группы в обратном порядке, то такой комплекс называют цепным, гомоморфизмы традиционно обозначают $\partial_n: F_n \to F_{n-1}$.

Лемма

Условие Im $\partial_{n+1} \subset \operatorname{Ker} \partial_n$ эквивалентно $\partial_n \partial_{n+1} = 0$.

Поскольку последовательность уже не точная, можно измерить, насколько сильно она не точная. Для этого положим $H_n=\operatorname{Ker}\partial_n/\operatorname{Im}\partial_{n+1}$

Итог

Цепной комплекс

$$\cdots \xleftarrow{\partial_{n-1}} K_{n-1} \xleftarrow{\partial_n} K_n \xleftarrow{\partial_{n+1}} K_{n+1} \leftarrow \cdots$$

А что, если ослабить условие ${\rm Im}\, f_n = {\rm Ker}\, f_{n+1}$ до ${\rm Im}\, f_n \subset {\rm Ker}\, f_{n+1}$? Такая последовательность будет называться коцепной комплекс. Если перенумеровать группы в обратном порядке, то такой комплекс называют цепным, гомоморфизмы традиционно обозначают $\partial_n: F_n \to F_{n-1}$.

Лемма

Условие Im $\partial_{n+1} \subset \operatorname{Ker} \partial_n$ эквивалентно $\partial_n \partial_{n+1} = 0$.

Поскольку последовательность уже не точная, можно измерить, насколько сильно она не точная. Для этого положим $H_n=\operatorname{Ker}\partial_n/\operatorname{Im}\partial_{n+1}$

Итог

Цепной комплекс

$$\cdots \xleftarrow{\partial_{n-1}} K_{n-1} \xleftarrow{\partial_n} K_n \xleftarrow{\partial_{n+1}} K_{n+1} \leftarrow \cdots$$

Элементы K_n – цепи, размерности n.

А что, если ослабить условие ${\rm Im}\, f_n = {\rm Ker}\, f_{n+1}$ до ${\rm Im}\, f_n \subset {\rm Ker}\, f_{n+1}$? Такая последовательность будет называться *коцепной комплекс*. Если перенумеровать группы в обратном порядке, то такой комплекс называют *цепным*, гомоморфизмы традиционно обозначают $\partial_n: F_n \to F_{n-1}$.

Лемма

Условие Im $\partial_{n+1} \subset \operatorname{Ker} \partial_n$ эквивалентно $\partial_n \partial_{n+1} = 0$.

Поскольку последовательность уже не точная, можно измерить, насколько сильно она не точная. Для этого положим $H_n=\operatorname{Ker}\partial_n/\operatorname{Im}\partial_{n+1}$

Итог

Цепной комплекс

$$\cdots \xleftarrow{\partial_{n-1}} K_{n-1} \xleftarrow{\partial_n} K_n \xleftarrow{\partial_{n+1}} K_{n+1} \leftarrow \cdots$$

Элементы K_n – цепи, размерности n.

Элементы $B_n=\operatorname{Im}\partial_{n+1}\subset K_n$ – границы.

Элементы $Z_n = \operatorname{Ker} \partial_n \subset K_n - \mu \kappa \pi \lambda \lambda$.

А что, если ослабить условие ${\rm Im}\, f_n = {\rm Ker}\, f_{n+1}$ до ${\rm Im}\, f_n \subset {\rm Ker}\, f_{n+1}$? Такая последовательность будет называться *коцепной комплекс*. Если перенумеровать группы в обратном порядке, то такой комплекс называют *цепным*, гомоморфизмы традиционно обозначают $\partial_n: F_n \to F_{n-1}$.

Лемма

Условие Im $\partial_{n+1} \subset \operatorname{Ker} \partial_n$ эквивалентно $\partial_n \partial_{n+1} = 0$.

Поскольку последовательность уже не точная, можно измерить, насколько сильно она не точная. Для этого положим $H_n=\mathop{\rm Ker}\partial_n/\mathop{\rm Im}\partial_{n+1}$

Итог

Цепной комплекс

$$\cdots \xleftarrow{\partial_{n-1}} K_{n-1} \xleftarrow{\partial_n} K_n \xleftarrow{\partial_{n+1}} K_{n+1} \leftarrow \cdots$$

Элементы K_n – цепи, размерности n.

Элементы $B_n = \operatorname{Im} \partial_{n+1} \subset K_n$ – границы.

Элементы $Z_n = \operatorname{Ker} \partial_n \subset K_n - циклы.$

Условие комплекса: $B_n \subset Z_n$. Гомологии $H_n = Z_n/B_n$.

А что, если ослабить условие ${\rm Im}\, f_n = {\rm Ker}\, f_{n+1}$ до ${\rm Im}\, f_n \subset {\rm Ker}\, f_{n+1}$? Такая последовательность будет называться *коцепной комплекс*. Если перенумеровать группы в обратном порядке, то такой комплекс называют *цепным*, гомоморфизмы традиционно обозначают $\partial_n: F_n \to F_{n-1}$.

Лемма

Условие Im $\partial_{n+1} \subset \operatorname{Ker} \partial_n$ эквивалентно $\partial_n \partial_{n+1} = 0$.

Поскольку последовательность уже не точная, можно измерить, насколько сильно она не точная. Для этого положим $H_n=\mathop{\rm Ker}\partial_n/\mathop{\rm Im}\partial_{n+1}$

Итог

Цепной комплекс

$$\cdots \xleftarrow{\partial_{n-1}} K_{n-1} \xleftarrow{\partial_n} K_n \xleftarrow{\partial_{n+1}} K_{n+1} \leftarrow \cdots$$

Элементы K_n – *цепи*, размерности n.

Элементы $B_n = \operatorname{Im} \partial_{n+1} \subset K_n$ – границы.

Элементы $Z_n = \operatorname{Ker} \partial_n \subset K_n$ – циклы.

Условие комплекса: $B_n \subset Z_n$. Гомологии $H_n = Z_n/B_n$.

Чему равны гомологии точной последовательности? -- - -- -- -- -- -- -- -- -- --

Все дальнейшие примеры гомологий описывают только построение цепного комплекса. Сами гомологии вычисляются в соответствии с определением гомологий цепного комплекса

ullet На X вводится некая геометрическая структура

Все дальнейшие примеры гомологий описывают только построение цепного комплекса. Сами гомологии вычисляются в соответствии с определением гомологий цепного комплекса

- ullet На X вводится некая геометрическая структура
- По этой стуктуре строится цепной комплекс

Все дальнейшие примеры гомологий описывают только построение цепного комплекса. Сами гомологии вычисляются в соответствии с определением гомологий цепного комплекса

- ullet На X вводится некая геометрическая структура
- По этой стуктуре строится цепной комплекс
- ullet У этого комплекса вычисляются гомологии и объявляются гомологиями X
- Обычно, геометрические комплексы состоят из свободных (абелевых) групп \mathbb{Z}^A .
- Вместо $\mathbb Z$ можно использовать поле, например, $\mathbb R$ или даже $\mathbb F_2$, в этом случае, вычисление упрощается, однако, теряется часть информации.

Все дальнейшие примеры гомологий описывают только построение цепного комплекса. Сами гомологии вычисляются в соответствии с определением гомологий цепного комплекса

- ullet На X вводится некая геометрическая структура
- По этой стуктуре строится цепной комплекс
- У этого комплекса вычисляются гомологии и объявляются гомологиями X
- Обычно, геометрические комплексы состоят из свободных (абелевых) групп \mathbb{Z}^A .
- Вместо $\mathbb Z$ можно использовать поле, например, $\mathbb R$ или даже $\mathbb F_2$, в этом случае, вычисление упрощается, однако, теряется часть информации.

Проблема

А если ввести геометрическую структуру иным образом, получатся ли гомологии такими же?

Все дальнейшие примеры гомологий описывают только построение цепного комплекса. Сами гомологии вычисляются в соответствии с определением гомологий цепного комплекса

- ullet На X вводится некая геометрическая структура
- По этой стуктуре строится цепной комплекс
- У этого комплекса вычисляются гомологии и объявляются гомологиями X
- Обычно, геометрические комплексы состоят из свободных (абелевых) групп \mathbb{Z}^A .
- Вместо $\mathbb Z$ можно использовать поле, например, $\mathbb R$ или даже $\mathbb F_2$, в этом случае, вычисление упрощается, однако, теряется часть информации.

Проблема

А если ввести геометрическую структуру иным образом, получатся ли гомологии такими же? Это называется инвариантностью гомологий.

- У топологического пространства с заданной триангуляцией
- Требуют задания явной структуры
- Имеют формальное обобщение
- Можно вычислять гомологии, хотя и трудоёмко
- Просто доказать условие комплекса $\partial\partial=0$
- Инвариантность доказать сложно

- У топологического пространства с заданной триангуляцией
- Требуют задания явной структуры
- Имеют формальное обобщение
- Можно вычислять гомологии, хотя и трудоёмко
- Просто доказать условие комплекса $\partial \partial = 0$
- Инвариантность доказать сложно

Симплекс Δ_n размерности n - выпуклая оболочка n+1 точки общего положения

- У топологического пространства с заданной триангуляцией
- Требуют задания явной структуры
- Имеют формальное обобщение
- Можно вычислять гомологии, хотя и трудоёмко
- Просто доказать условие комплекса $\partial\partial=0$
- Инвариантность доказать сложно

Симплекс Δ_n размерности n - выпуклая оболочка n+1 точки общего положения

$$\partial[01] = [0] - [1]; \partial[012] = [01] - [02] + [12];$$

$$\partial[x_1x_2\ldots x_n]=\sum_{i=1\ldots n}(-1)^{n-i}[x_1\ldots x_i\ldots x_n]$$

- У топологического пространства с заданной триангуляцией
- Требуют задания явной структуры
- Имеют формальное обобщение
- Можно вычислять гомологии, хотя и трудоёмко
- Просто доказать условие комплекса $\partial\partial=0$
- Инвариантность доказать сложно

Симплекс Δ_n размерности n - выпуклая оболочка n+1 точки общего положения

$$\partial [01] = [0] - [1]; \partial [012] = [01] - [02] + [12];$$

$$\partial[x_1x_2\ldots x_n]=\sum_{i=1\ldots n}(-1)^{n-i}[x_1\ldots x_i\ldots x_n]$$

Вопросы:

- Чему равно ∂[0123]?
- ullet Проверить $\partial\partial[012]=0$
- Почему $\partial \partial = 0$?

- У топологического пространства с заданной триангуляцией
- Требуют задания явной структуры
- Имеют формальное обобщение
- Можно вычислять гомологии, хотя и трудоёмко
- Просто доказать условие комплекса $\partial\partial=0$
- Инвариантность доказать сложно

Симплекс Δ_n размерности n - выпуклая оболочка n+1 точки общего положения

$$\partial[01] = [0] - [1]; \partial[012] = [01] - [02] + [12];$$
$$\partial[x_1 x_2 \dots x_n] = \sum_{i=1\dots n} (-1)^{n-i} [x_1 \dots x_i \dots x_n]$$

Вопросы:

- Чему равно ∂[0123]?
- ullet Проверить $\partial\partial[012]=0$
- Почему $\partial \partial = 0$?

Определение

- Симплициальное пространство состоит из симплексов
- Вместе с каждым симплексом включает все его грани
- Два симплекса не могут иметь более 1 общей грани!
- Симплициальный комплекс состоит из свободных (абелевых) групп
- По одной образующей n-ной компоненты на каждый n-симплекс
- Дифференциал определяется значениями на порождающих свободной группы

Пример — сфера.

- ullet 0 симплексов Δ_3
- 4 симплекса Δ₂
- ullet 6 симплексов Δ_1
- 4 симплекса Δ₀

- 0 симплексов Δ₃
- ullet 4 симплекса Δ_2
- ullet 6 симплексов Δ_1
- 4 симплекса Δ₀

- 0 симплексов Δ₃
- ullet 4 симплекса Δ_2
- ullet 6 симплексов Δ_1
- ullet 4 симплекса Δ_0

- ullet 0 симплексов Δ_3
- ullet 4 симплекса Δ_2
- ullet 6 симплексов Δ_1
- ullet 4 симплекса Δ_0

Симплициальные гомологии. Пример

Пример — сфера. Тут

- 0 симплексов Δ₃
- ullet 4 симплекса Δ_2
- ullet 6 симплексов Δ_1
- ullet 4 симплекса Δ_0

Симплициальные гомологии. Пример

Пример — сфера. Тут

- ullet 0 симплексов Δ_3
- 4 симплекса Δ_2
- ullet 6 симплексов Δ_1
- 4 симплекса ∆₀

$$K \quad 0 \quad \leftarrow \quad \mathbb{Z}^4 \quad \leftarrow \quad \mathbb{Z}^6 \quad \leftarrow \quad \mathbb{Z}^4 \quad \leftarrow \quad 0$$
 $Z \quad \qquad \qquad K_0 \quad \qquad B_1 \quad \qquad \mathbb{Z}$
 $B \quad \qquad \mathbb{Z}^3 \quad \qquad B_1 \quad \qquad 0$
 $B \quad \qquad \mathbb{Z} \quad \qquad 0 \quad \qquad \mathbb{Z}$

Сфера и проективная плоскость. С ней сложнее

Симплициальные

Цепные

Сингулярные гомологии

- У произвольного топологического пространства
- Не требуют никакой особой структуры
- Оперируют с бесконечнопорождёнными (несчётнопорождёнными) группами, вычислять гомологии очень сложно
- ullet Просто доказать условие комплекса $\partial\partial=0$
- Инвариантность очевидна
- Можно доказать инвариантность для других видов гомологий, путём сведения к сингулярным

Сингулярные гомологии

- У произвольного топологического пространства
- Не требуют никакой особой структуры
- Оперируют с бесконечнопорождёнными (несчётнопорождёнными) группами, вычислять гомологии очень сложно
- ullet Просто доказать условие комплекса $\partial\partial=0$
- Инвариантность очевидна
- Можно доказать инвариантность для других видов гомологий, путём сведения к сингулярным

Построение

- ullet В каждой размерности $n\geqslant 0$ берётся один симплекс Δ_n
- Рассматриваются всевозможные непрерывные отображения n-симплекса в топологическое пространство X. Каждое отображение образующая K_n .

Сингулярные гомологии

- У произвольного топологического пространства
- Не требуют никакой особой структуры
- Оперируют с бесконечнопорождёнными (несчётнопорождёнными) группами, вычислять гомологии очень сложно
- ullet Просто доказать условие комплекса $\partial\partial=0$
- Инвариантность очевидна
- Можно доказать инвариантность для других видов гомологий, путём сведения к сингулярным

Построение

- ullet В каждой размерности $n\geqslant 0$ берётся один симплекс Δ_n
- Рассматриваются всевозможные непрерывные отображения n-симплекса в топологическое пространство X. Каждое отображение образующая K_n .
- Оператор ∂ от отображения $f:\Delta_n\to X$ берёт сумму ограничений f на всевозможные грани Δ_n с соответствующими знаками.
- Далее, комплекс по образующим и заданию ∂ на образующих строится точно так же, как и симплициальный

Вычислим сингулярные гомологии . . .

Вычислим сингулярные гомологии ... точки (*).

0 1 2 3 4 ...

Z B H

Вычислим сингулярные гомологии ... точки (*).

ullet Для каждого n есть только одно отображение $f_n:\Delta_n o *$

Вычислим сингулярные гомологии ...точки (*).

- ullet Для каждого n есть только одно отображение $f_n:\Delta_n o *$
- $\partial f_n =$

Вычислим сингулярные гомологии ...точки (*).

- ullet Для каждого n есть только одно отображение $f_n:\Delta_n o *$
- $\partial f_n = f_{n-1} f_{n-1} + f_{n-1} \ldots + (-1)^n f_{n-1}$

Вычислим сингулярные гомологии ... точки (*).

- ullet Для каждого n есть только одно отображение $f_n:\Delta_n o *$
- $\partial f_n = f_{n-1} f_{n-1} + f_{n-1} \ldots + (-1)^n f_{n-1}$
- ullet Таким образом $\partial f_n=0$, если n нечётное, и f_{n-1} , если чётное

Вычислим сингулярные гомологии ...точки (*).

- ullet Для каждого n есть только одно отображение $f_n:\Delta_n o *$
- $\partial f_n = f_{n-1} f_{n-1} + f_{n-1} \ldots + (-1)^n f_{n-1}$
- ullet Таким образом $\partial f_n=0$, если n нечётное, и f_{n-1} , если чётное
- ullet $\partial f_n=0$ означает, что $f_n\in Z_n$ и $B_{n-1}=0$

Вычислим сингулярные гомологии . . . точки (*).

- ullet Для каждого n есть только одно отображение $f_n:\Delta_n o *$
- $\partial f_n = f_{n-1} f_{n-1} + f_{n-1} \ldots + (-1)^n f_{n-1}$
- ullet Таким образом $\partial f_n=0$, если n нечётное, и f_{n-1} , если чётное
- ullet $\partial f_n=0$ означает, что $f_n\in Z_n$ и $B_{n-1}=0$

Сингулярные

Симплициальные

Цепные

$$\begin{array}{ccccc} K_{n-1} {\longleftarrow} K_n {\longleftarrow} K_{n+1} \\ Z_{n-1} & Z_n & Z_{n+1} \\ B_{n-1} & B_n & B_{n+1} \\ H_{n-1} & H_n & H_{n+1} \end{array}$$

Сфера \mathbb{S}^n — граница n+1-мерного открытого шара (в метрическом смысле). Открытый шар O^n топологически n-мерное евклидого пространство. По определению, $O^0=*$.

Сфера \mathbb{S}^n — граница n+1-мерного открытого шара (в метрическом смысле). Открытый шар O^n топологически n-мерное евклидого пространство. По определению, $O^0=*$. Вопросы:

• Что такое 1-мерная сфера?

Сфера \mathbb{S}^n — граница n+1-мерного открытого шара (в метрическом смысле). Открытый шар O^n топологически n-мерное евклидого пространство. По определению, $O^0=*$. Вопросы:

- Что такое 1-мерная сфера? Ответ: окружность
- Что такое 0-мерная сфера?

Сфера \mathbb{S}^n — граница n+1-мерного открытого шара (в метрическом смысле). Открытый шар O^n топологически n-мерное евклидого пространство. По определению, $O^0=*$. Вопросы:

- Что такое 1-мерная сфера? Ответ: окружность
- Что такое 0-мерная сфера? Ответ: две точки
- Что такое -1-мерная сфера?

Сфера \mathbb{S}^n — граница n+1-мерного открытого шара (в метрическом смысле). Открытый шар O^n топологически n-мерное евклидого пространство. По определению, $O^0=*$. Вопросы:

- Что такое 1-мерная сфера? Ответ: окружность
- Что такое 0-мерная сфера? Ответ: две точки
- Что такое -1-мерная сфера? Ответ: пустое множество

Топологическое пространство можно профакторизовать по замкнутому множеству, т. е. склеить это замкнутое множество в одну точку.

ullet Если профакторизовать замкнутый шар D^n по границе (n>0), то получим

Сфера \mathbb{S}^n — граница n+1-мерного открытого шара (в метрическом смысле). Открытый шар O^n топологически n-мерное евклидого пространство. По определению, $O^0=*$. Вопросы:

- Что такое 1-мерная сфера? Ответ: окружность
- Что такое 0-мерная сфера? Ответ: две точки
- Что такое -1-мерная сфера? Ответ: пустое множество

Топологическое пространство можно профакторизовать по замкнутому множеству, т. е. склеить это замкнутое множество в одну точку.

• Если профакторизовать замкнутый шар D^n по границе (n>0), то получим сферу \mathbb{S}^n

Сфера \mathbb{S}^n — граница n+1-мерного открытого шара (в метрическом смысле). Открытый шар O^n топологически n-мерное евклидого пространство. По определению, $O^0 = *$. Вопросы:

- Что такое 1-мерная сфера? Ответ: окружность
- Что такое 0-мерная сфера? Ответ: две точки
- Что такое -1-мерная сфера? Ответ: пустое множество

Топологическое пространство можно профакторизовать по замкнутому множеству, т. е. склеить это замкнутое множество в одну точку.

- Если профакторизовать замкнутый шар D^n по границе (n > 0), то получим сферу \mathbb{S}^n
- Если открытый шар O^n открытое подмножество пространства X, то факторизация X по дополнению до шара — это \mathbb{S}^n . Причём это верно даже для n = 0.

Можно определить индекс отображения $\mathbb{S}^n \to \mathbb{S}^n$. Неформально — сколько раз одна сфера "наматывается" на другую. Индекс может быть отрицательным.

- У топологического пространства с заданным разбиением на клетки
- Требуют задания явной структуры
- Гомологии вычислять легко и приятно (нет)
- Инвариантность и ∂∂ доказать сложно, но можно свести к сингулярным, откуда это следует

- У топологического пространства с заданным разбиением на клетки
- Требуют задания явной структуры
- Гомологии вычислять легко и приятно (нет)
- Инвариантность и ∂∂ доказать сложно, но можно свести к сингулярным, откуда это следует

- Клетка размерности n непрерывное вложение открытого шара O^n в наше пространство X.
- Клетки не пересекаются. *X* это объединение всех клеток всех размерностей.
- n-остов объединение всех клеток размерности n и меньше, обозначение X_n

- У топологического пространства с заданным разбиением на клетки
- Требуют задания явной структуры
- Гомологии вычислять легко и приятно (нет)
- Инвариантность и ∂∂ доказать сложно, но можно свести к сингулярным, откуда это следует

- Клетка размерности n непрерывное вложение открытого шара O^n в наше пространство X.
- Клетки не пересекаются. *X* это объединение всех клеток всех размерностей.
- n-остов объединение всех клеток размерности n и меньше, обозначение X_n
- Вложение клетки продолжается по непрерывности на её границу (n-1-мерную сферу). Образ границы обязан лежать в n-1-остове и пересекаться лишь с конечным числом клеток размерности n-1 и меньше.

- У топологического пространства с заданным разбиением на клетки
- Требуют задания явной структуры
- Гомологии вычислять легко и приятно (нет)
- Инвариантность и ∂∂ доказать сложно, но можно свести к сингулярным, откуда это следует

- Клетка размерности n непрерывное вложение открытого шара O^n в наше пространство X.
- Клетки не пересекаются. *X* это объединение всех клеток всех размерностей.
- n-остов объединение всех клеток размерности n и меньше, обозначение X_n
- Вложение клетки продолжается по непрерывности на её границу (n-1)-мерную сферу. Образ границы обязан лежать в n-1-остове и пересекаться лишь с конечным числом клеток размерности n-1 и меньше.
- При построении CW-комплекса образующими K_n будут n-мерные клетки

- У топологического пространства с заданным разбиением на клетки
- Требуют задания явной структуры
- Гомологии вычислять легко и приятно (нет)
- Инвариантность и ∂∂ доказать сложно, но можно свести к сингулярным, откуда это следует

Пример

Сфера \mathbb{S}^2 . Можно собрать её из

- Клетка размерности n непрерывное вложение открытого шара O^n в наше пространство X.
- Клетки не пересекаются. *X* это объединение всех клеток всех размерностей.
- n-остов объединение всех клеток размерности n и меньше, обозначение X_n
- Вложение клетки продолжается по непрерывности на её границу (n-1-мерную сферу). Образ границы обязан лежать в n-1-остове и пересекаться лишь с конечным числом клеток размерности n-1 и меньше.
- При построении CW-комплекса образующими K_n будут n-мерные клетки

- У топологического пространства с заданным разбиением на клетки
- Требуют задания явной структуры
- Гомологии вычислять легко и приятно (нет)
- Инвариантность и ∂∂ доказать сложно, но можно свести к сингулярным, откуда это следует

Пример

Сфера \mathbb{S}^2 . Можно собрать её из одной 2-мерной клетки (O_2) и одной 0-мерной (точки). Весь круг — граница O_2 — отображается в точку.

- Клетка размерности n непрерывное вложение открытого шара O^n в наше пространство X.
- Клетки не пересекаются. *X* это объединение всех клеток всех размерностей.
- n-остов объединение всех клеток размерности n и меньше, обозначение X_n
- Вложение клетки продолжается по непрерывности на её границу (n-1-мерную сферу). Образ границы обязан лежать в n-1-остове и пересекаться лишь с конечным числом клеток размерности n-1 и меньше.
- При построении CW-комплекса образующими K_n будут n-мерные клетки

Пример

Проективная плоскость $\mathbb{R}P^2$. Сфера, у которой диаметрально противоположные точки отождествлены.

Пример

Проективная плоскость $\mathbb{R}P^2$. Сфера, у которой диаметрально противоположные точки отождествлены. Если удалить все "дубликаты" точек, получим

Пример

Проективная плоскость $\mathbb{R}P^2$. Сфера, у которой диаметрально противоположные точки отождествлены. Если удалить все "дубликаты" точек, получим

Пример

Проективная плоскость $\mathbb{R}P^2$. Сфера, у которой диаметрально противоположные точки отождествлены. Если удалить все "дубликаты" точек, получим

Пример

Проективная плоскость $\mathbb{R}P^2$. Сфера, у которой диаметрально противоположные точки отождествлены.

Если удалить все "дубликаты" точек, получим открытый круг, интервал и точку. Т. е. по одной клетке размерностей $0,\ 1,\ 2.$

Граничный гомоморфизм

• Чтобы построить ∂ нужно определить, сколько раз каждая n-1-клетка $y:O^{n-1}\to X$ входит в границу n-клетки $x:O^n\to X$.

Граничный гомоморфизм

- Чтобы построить ∂ нужно определить, сколько раз каждая n-1-клетка $y:O^{n-1}\to X$ входит в границу n-клетки $x:O^n\to X$.
- Для этого вспомним, что отображение x продолжается на границу шара O^n , которая является сферой \mathbb{S}^{n-1} . Получаем отображение $\bar{x}:\mathbb{S}^{n-1} \to X_{n-1}$ в n-1-мерный остов.

Граничный гомоморфизм

- Чтобы построить ∂ нужно определить, сколько раз каждая n-1-клетка $y:O^{n-1}\to X$ входит в границу n-клетки $x:O^n\to X$.
- Для этого вспомним, что отображение x продолжается на границу шара O^n , которая является сферой \mathbb{S}^{n-1} . Получаем отображение $\bar{x}:\mathbb{S}^{n-1} \to X_{n-1}$ в n-1-мерный остов.
- Если клетка y не пересекается с $\operatorname{Im} \bar{x}$, то она не входит в ∂x .

- Чтобы построить ∂ нужно определить, сколько раз каждая n-1-клетка $y:O^{n-1}\to X$ входит в границу n-клетки $x:O^n\to X$.
- Для этого вспомним, что отображение x продолжается на границу шара O^n , которая является сферой \mathbb{S}^{n-1} . Получаем отображение $\bar{x}:\mathbb{S}^{n-1} \to X_{n-1}$ в n-1-мерный остов.
- ullet Если клетка y не пересекается с ${\sf Im}\,ar x$, то она не входит в ∂x .
- Иначе, профакторизуем n-1-остов по дополнению до y. Как утверждалось, получим снова сферу \mathbb{S}^{n-1} и отображение из $\hat{y}: X_{n-1} \to \mathbb{S}^{n-1}$.

- Чтобы построить ∂ нужно определить, сколько раз каждая n-1-клетка $y:O^{n-1}\to X$ входит в границу n-клетки $x:O^n\to X$.
- Для этого вспомним, что отображение x продолжается на границу шара O^n , которая является сферой \mathbb{S}^{n-1} . Получаем отображение $\bar{x}:\mathbb{S}^{n-1} \to X_{n-1}$ в n-1-мерный остов.
- Если клетка y не пересекается с $\operatorname{Im} \bar{x}$, то она не входит в ∂x .
- Иначе, профакторизуем n-1-остов по дополнению до y. Как утверждалось, получим снова сферу \mathbb{S}^{n-1} и отображение из $\hat{y}: X_{n-1} \to \mathbb{S}^{n-1}$.
- Беря композицию отображения границы x в остов и отображения факторизации получим отображение $\hat{y} \circ \bar{x}: \mathbb{S}^{n-1} \to \mathbb{S}^{n-1}$

- Чтобы построить ∂ нужно определить, сколько раз каждая n-1-клетка $y:O^{n-1}\to X$ входит в границу n-клетки $x:O^n\to X$.
- Для этого вспомним, что отображение x продолжается на границу шара O^n , которая является сферой \mathbb{S}^{n-1} . Получаем отображение $\bar{x}:\mathbb{S}^{n-1} \to X_{n-1}$ в n-1-мерный остов.
- Если клетка y не пересекается с $\operatorname{Im} \bar{x}$, то она не входит в ∂x .
- Иначе, профакторизуем n-1-остов по дополнению до y. Как утверждалось, получим снова сферу \mathbb{S}^{n-1} и отображение из $\hat{y}: X_{n-1} \to \mathbb{S}^{n-1}$.
- Беря композицию отображения границы x в остов и отображения факторизации получим отображение $\hat{y} \circ \bar{x}: \mathbb{S}^{n-1} \to \mathbb{S}^{n-1}$
- Его степень индекс вхождения клетки y в ∂x .

- Чтобы построить ∂ нужно определить, сколько раз каждая n-1-клетка $y:O^{n-1}\to X$ входит в границу n-клетки $x:O^n\to X$.
- Для этого вспомним, что отображение x продолжается на границу шара O^n , которая является сферой \mathbb{S}^{n-1} . Получаем отображение $\bar{x}:\mathbb{S}^{n-1} \to X_{n-1}$ в n-1-мерный остов.
- Если клетка y не пересекается с $\operatorname{Im} \bar{x}$, то она не входит в ∂x .
- Иначе, профакторизуем n-1-остов по дополнению до y. Как утверждалось, получим снова сферу \mathbb{S}^{n-1} и отображение из $\hat{y}: X_{n-1} \to \mathbb{S}^{n-1}$.
- Беря композицию отображения границы x в остов и отображения факторизации получим отображение $\hat{y}\circ \bar{x}:\mathbb{S}^{n-1}\to \mathbb{S}^{n-1}$
- ullet Его степень индекс вхождения клетки y в ∂x .
- ullet Как и раньше, ∂ в общем виде задаётся значениями на образующих

Пример

Сфера \mathbb{S}^2 .

Пример

Пример

Пример

Пример

Пример

Проективная плоскость $\mathbb{R}P^2$.

Пример

Проективная плоскость $\mathbb{R}P^2$. Как было сказано, задаётся тремя клетками: двумерной, 1-мерной и 0-мерной.

Пример

Проективная плоскость $\mathbb{R}P^2$. Как было сказано, задаётся тремя клетками: двумерной, 1-мерной и 0-мерной. Тут придётся подумать, как устроены граничные операторы.

Пример

Проективная плоскость $\mathbb{R}P^2$. Как было сказано, задаётся тремя клетками: двумерной, 1-мерной и 0-мерной. Тут придётся подумать, как устроены граничные операторы.

Граница круга два раза наматывается на одномерную клетку. Поэтому коэффициент будет равен двум.

Пример

Проективная плоскость $\mathbb{R}P^2$. Как было сказано, задаётся тремя клетками: двумерной, 1-мерной и 0-мерной. Тут придётся подумать, как устроены граничные операторы.

Граница круга два раза наматывается на одномерную клетку. Поэтому коэффициент будет равен двум.

Граница полуокружности дважды переодит в 0-мерную клетку, но с разными знаками, поэтому коэффициент 0. Это очевидно также из включения $B_1\subset Z_1$

Пример

Проективная плоскость $\mathbb{R}P^2$. Как было сказано, задаётся тремя клетками: двумерной, 1-мерной и 0-мерной. Тут придётся подумать, как устроены граничные операторы.

Граница круга два раза наматывается на одномерную клетку. Поэтому коэффициент будет равен двум.

Граница полуокружности дважды переодит в 0-мерную клетку, но с разными знаками, поэтому коэффициент 0. Это очевидно также из включения $B_1\subset Z_1$

Пример

Проективная плоскость $\mathbb{R}P^2$. Как было сказано, задаётся тремя клетками: двумерной, 1-мерной и 0-мерной. Тут придётся подумать, как устроены граничные операторы.

Граница круга два раза наматывается на одномерную клетку. Поэтому коэффициент будет равен двум.

Граница полуокружности дважды переодит в 0-мерную клетку, но с разными знаками, поэтому коэффициент 0. Это очевидно также из включения $B_1\subset Z_1$

			0		1		2		
K	0	\leftarrow	\mathbb{Z}	\leftarrow	$\mathbb Z$	\leftarrow	\mathbb{Z}	\leftarrow	0
Ζ			\mathbb{Z}		$\mathbb Z$		0		
В			0		$2\mathbb{Z}$		0		
Η			\mathbb{Z}		\mathbb{Z}_2		0		

Верхняя группа гомологий 0, это признак того, что поверхность неориентируема.

Сингулярные

Симплициальные

Цепные

Клеточные

Что ещё интересного в основах теории гомологий

• Когомологии

- Когомологии
- Относительные гомологии

- Когомологии
- Относительные гомологии
- Другие теории гомологий

- Когомологии
- Относительные гомологии
- Другие теории гомологий
- Гомотопическая инвариантность

- Когомологии
- Относительные гомологии
- Другие теории гомологий
- Гомотопическая инвариантность
- Функториальность

- Когомологии
- Относительные гомологии
- Другие теории гомологий
- Гомотопическая инвариантность
- Функториальность
- Гомологическую точную последовательность

- Когомологии
- Относительные гомологии
- Другие теории гомологий
- Гомотопическая инвариантность
- Функториальность
- Гомологическую точную последовательность
- Умножение в когомологиях

- Когомологии
- Относительные гомологии
- Другие теории гомологий
- Гомотопическая инвариантность
- Функториальность
- Гомологическую точную последовательность
- Умножение в когомологиях
- Ещё много всего