

**PCT**WELTORGANISATION FÜR GEISTIGES EIGENTUM  
Internationales BüroINTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE  
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                   |                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| (51) Internationale Patentklassifikation <sup>7</sup> :<br><br><b>B05D 7/02</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  | A1                                                                                                                                                                                                | (11) Internationale Veröffentlichungsnummer: <b>WO 00/38846</b>      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                   | (43) Internationales Veröffentlichungsdatum: 6. Juli 2000 (06.07.00) |
| (21) Internationales Aktenzeichen: PCT/EP99/10242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  | (81) Bestimmungsstaaten: BR, JP, US, europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).                                                                |                                                                      |
| (22) Internationales Anmeldedatum: 21. Dezember 1999<br>(21.12.99)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |                                                                                                                                                                                                   |                                                                      |
| (30) Prioritätsdaten:<br>198 60 170.0 24. Dezember 1998 (24.12.98) DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  | Veröffentlicht<br><i>Mit internationalem Recherchenbericht.<br/>Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist; Veröffentlichung wird wiederholt falls Änderungen eintreffen.</i> |                                                                      |
| (71) Anmelder ( <i>für alle Bestimmungsstaaten ausser US</i> ): BASF COATINGS AG [DE/DE]; Glasuritstrasse 1, D-48165 Münster (DE).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |                                                                                                                                                                                                   |                                                                      |
| (72) Erfinder; und<br>(75) Erfinder/Anmelder ( <i>nur für US</i> ): PODLASKI-PYZIK, Beate [DE/DE]; Ringstrasse 147, D-48165 Münster (DE). HALTMANN, Astrid [DE/DE]; Asternweg 7, D-48165 Münster (DE). BREMSER, Wolfgang [DE/DE]; Am Brook 10, D-48165 Münster (DE).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |                                                                                                                                                                                                   |                                                                      |
| (74) Anwalt: FITZNER, Uwe; Lintorfer Strasse 10, D-40878 Ratingen (DE).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |                                                                                                                                                                                                   |                                                                      |
| (54) Title: MULTILAYER SYSTEMS WITH AT LEAST ONE LAYER BASED ON MESOMORPHIC POLYELECTROLYTE COMPLEXES, METHOD FOR PRODUCING THEM AND THEIR USE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |                                                                                                                                                                                                   |                                                                      |
| (54) Bezeichnung: MEHRSCHICHTSYSTEME MIT MINDESTENS EINER SCHICHT AUF DER BASIS MESOMORPHER POLYELEKTROLYTKOMPLEXE, VERFAHREN ZU IHRER HERSTELLUNG UND IHRE VERWENDUNG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |                                                                                                                                                                                                   |                                                                      |
| (57) Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |                                                                                                                                                                                                   |                                                                      |
| <p>The invention relates to a multilayer system containing (I) at least one component (IA) which contains mesomorphic polyelectrolyte complexes or at least consists of the same and which can be produced by reacting at least one polymeric and/or oligomeric, organic, anionic polyelectrolyte (IC) with at least one polymeric and/or oligomeric, organic, cationic polyelectrolyte (ID) and/or at least one cationic tenside (IE) or at least one polymeric and/or oligomeric, organic, cationic polyelectrolyte (ID) with at least one anionic tenside (IF) in a stoichiometric or non-stoichiometric ratio in a liquid phase (IB), pouring the resulting liquid phase (IG) onto a support or into a mould and allowing it to solidify and tempering the resulting solid (IH); and (II) at least one three-dimensionally cross-linked layer (IIA) which can be produced by applying at least one aqueous, thermally hardenable coating material (IIB) containing at least one binding agent (IIC) and at least one cross-linking agent (IID), to the surface of component (IA) and thermally hardening the resulting wet layer (IIE).</p>                                                                                                            |  |                                                                                                                                                                                                   |                                                                      |
| (57) Zusammenfassung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |                                                                                                                                                                                                   |                                                                      |
| <p>Mehrschichtsystem, welches (I) mindestens einen Bestandteil (IA), welcher mesomorphe Polyelektrolytkomplexe enthält oder hieraus besteht und welcher herstellbar ist, indem man in einer flüssigen Phase (IB) mindestens einen polymeren und/oder oligomeren, organischen, anionischen Polyelektrolyten (IC) mit mindestens einem polymeren und/oder oligomeren, organischen, kationischen Polyelektrolyten (ID) und/oder mindestens einem kationischen Tensid (IE) oder mindestens einen polymeren und/oder oligomeren, organischen, kationischen Polyelektrolyten (ID) mit mindestens einem anionischen Tensid (IF) in stöchiometrischem oder nicht stöchiometrischem Verhältnis umsetzt, die resultierende flüssige Phase (IG) auf eine Unterlage oder in eine Form gießt und sich verfestigen lässt und den resultierenden Festkörper (IH) tempert; sowie (II) mindestens eine Schicht (IIA), welche dreidimensional vernetzt ist und herstellbar ist, indem man mindestens einen wässrigen, thermisch härtbaren Beschichtungsstoff (IIB), enthaltend mindestens ein Bindemittel (IIC) und mindestens ein Vernetzungsmittel (IID), auf die Oberfläche des Bestandteils (IA) appliziert und die resultierende Naßschicht (IIE) thermisch härtet.</p> |  |                                                                                                                                                                                                   |                                                                      |

14.12.1999

BASF Coatings AG  
PAT 98151 PCT

**Mehrschichtsysteme mit mindestens einer Schicht auf der Basis mesomorpher Polyelektrolytkomplexe, Verfahren zur ihrer Herstellung und ihre Verwendung**

Die vorliegende Erfindung betrifft neue Mehrschichtsysteme, insbesondere Formteile,  
5 Laminate oder mehrschichtige Lackierungen, welche mindestens eine Schicht auf der Basis mesomorpher Polyelektrolytkomplexe enthalten. Außerdem betrifft die Erfindung neue reaktive Systeme, welche die Herstellung der neuen Mehrschichtsysteme ermöglichen, sowie ein Verfahren zur ihrer Herstellung. Desweiteren richtet sich die vorliegende Erfindung auf ein Verfahren zur Herstellung  
10 der neuen Mehrschichtsysteme mit Hilfe der neuen reaktiven Systeme. Nicht zuletzt betrifft die vorliegende Erfindung die Verwendung der neuen Mehrschichtsysteme als Formteile oder Laminate, insbesondere im Automobilbau, sowie die Verwendung der neuen reaktiven Systeme in der Automobilserien- und -reparaturlackierung, der industriellen Lackierung, inklusive Coil Coating, und der Möbellackierung.

15 Polyelektrolytkomplexe sind in der Lage, durch Selbstorganisation sogenannte mesomorphe Phasen zu bilden. Diese weisen bereits in flüssiger Phase eine Fernordnung auf. Aus den gefällten Polyelektrolytkomplexen lassen sich flexible Filme herstellen, die von hoher Homogenität und optischer Qualität sind sowie in vielen Fällen eine große mechanische Festigkeit aufweisen (vgl. den Artikel von  
20 Markus Antonietti und Christine Göltner "Überstrukturen funktioneller Kolloide: eine Chemie im Nanometerbereich" in Angewandte Chemie, Band 109, 1997, Seiten 944 bis 964, oder den Artikel von C. K. Ober und G. Wegner "Polyelectrolyte-Surfactant Complexes in the Solid State: Facile Building Blocks for Self-Organizing Materials"  
25 in Avanced Materials, Band 9, 1997, Seiten 17 bis 31. Indes geht aus diesem Artikel nicht hervor, ob sich die gefällten Polyelektrolytkomplexe für Anwendungszwecke eignen, welche besonders anspruchsvoll sind, wie etwa in Formteilen oder Laminaten

oder als Beschichtungsstoffe, insbesondere als Primerschichten für mehrschichtige Lackierungen.

In ihrem Vortrag „Structural studies on thin organic coatings built by repeated adsorption of polyelectrolytes“, gehalten anlässlich der 23<sup>rd</sup> International Conference in Organic Coatings in Athen, Griechenland, beschreiben A. M. Jonas et al. die Herstellung von ultradünnen Multischichten durch mehrfache Adsorption von Polymeren wie Poly(vinylsulfat) oder Poly(styrolsulfonsäure) einerseits und Poly(ethylenimin) andererseits. Über potentielle Verwendungszwecke wird indes nichts gesagt.

10

Für die Herstellung dieser bekannten mesomorphen Polyeletrolykomplexe müssen reine Ausgangsverbindungen verwendet werden, was im Hinblick auf die Wirtschaftlichkeit der Verfahren und die Zugänglichkeit der Ausgangsverbindungen von Nachteil ist.

15

Mesomorphe Polyelektrolytkomplexe, welche der Herstellung von Filmen, Folien, Fasern, Formkörpern und Beschichtungen dienen, sind aus der deutschen Patentanmeldung DE-A-44 28 641 oder der europäischen Patentschrift EP-A-0 775 162 bekannt. Hierbei handelt es sich vor allem um mesomorphe Komplexe aus anionischen oder kationischen Polyelektrolyten einerseits und kationischen oder anionischen Tensiden andererseits. Sie weisen bereits zahlreiche vorteilhafte anwendungstechnische Eigenschaften auf, indes kann insbesondere ihre Beständigkeit gegenüber Wasser, organischen und anorganischen Säuren und Basen sowie organischen Lösemitteln noch weiter verbessert werden. Außerdem ist nicht bekannt, ob sie sich für die Herstellung von Formteilen, Laminaten oder mehrschichtigen Lackierungen eignen.

In der internationalen Patentanmeldung WO 97/14751 wird die Herstellung eines wasserdispergierbaren Harzes beschrieben, bei dem man die wäßrige Dispersion eines modifizierten Epoxidharzes mit quaternären Ammoniumhydroxidgruppen mit 5 der wäßrigen Dispersion eines Acrylsäurepolymerisats neutralisiert. Zur resultierenden Dispersion gibt man wäßrigen Ammoniak, wonach man Methylmethacrylat in diesem Medium radikalisch polymerisiert. Das resultierende wasserdispergierbare Harz dient der Herstellung wäßriger Überzugsmittel. Diese üblichen und bekannten Beschichtungsstoffe bilden keine mesomorphen Phasen.

10

In der deutschen Patentanmeldung DE-A-44 45 200 werden Beschichtungsstoffe beschrieben, welche Bindemittel A) enthalten, die zumindest teilweise ionische Gruppen tragen. Außerdem enthalten sie weitere Bindemittel C), welche sowohl bei der Lagerungstemperatur als auch bei der Härtungstemperatur der Überzugsmittel 15 miteinander mischbar sind und ionische Gruppen tragen, deren Ladung entgegengesetzt zur Ladung der Bindemittel A) ist. Hierbei sind die Mengen an Bindemittel A) einerseits und der Bindemittel C) andererseits so aufeinander abgestimmt, daß 0,5 bis 70% der Anzahl der Ladungen der ionischen Gruppen von A) durch die Landungen der ionischen Gruppen von C) neutralisiert sind. Die 20 Bindemittel C) werden vor allem in Form von Pigmentpasten zugesetzt. Die Beschichtungsstoffe dienen der Herstellung von Einschichtig- und Mehrschichtlackierungen auf dem Kraftfahrzeugsektor. Diese üblichen und bekannten Beschichtungsstoffe bilden jedoch keine mesomorphen Phasen.

25 Desweiteren sind mehrschichtige Lackierungen auf den Gebieten der Kraftfahrzeulglockierung, der industriellen Lackierung oder der Möbelindustrie üblich und bekannt. Beispielhaft sei auf die in der Automobilserienlackierung verwendeten

Lackaufbauten aus Elektrotauchlack, Füller, Basislack und Klarlack verwiesen. Mehrschichtige Lackierungen, welche mindestens eine Schicht auf der Basis mesomorpher Polyelektrolytkomplexe enthalten, sind indes bislang nicht beschrieben worden.

5

Aufgabe der vorliegenden Erfindung ist es, neue Mehrschichtsysteme, insbesondere Formteile, Lamine oder mehrschichtige Lackierungen, bereitzustellen, welche mindestens eine Schicht auf der Basis mesomorpher Polyelektrolytkomplexe enthalten und eine Alternative zu den bislang bekannten Formteilen und Laminaten 10 und mehrschichtigen Lackierungen bieten. Vor allem sollen die Schichten auf der Basis mesomorpher Polyelektrolytkomplexe die Nachteile der bisher bekannten Schichten auf der Basis mesomorpher Polyelektrolytkomplexe nicht mehr länger aufweisen, sondern die Herstellung der neuen Mehrschichtsysteme, insbesondere der mehrschichtigen Lackierungen, ermöglichen.

15

Insbesondere sollen die neuen Mehrschichtsysteme, insbesondere die mehrschichtigen Lackierungen, eine gute Haftung zwischen den einzelnen Schichten und dem gegebenenfalls vorhandenen Substrat und hohe Härte bei gleichzeitig hoher Flexibilität und hoher Beständigkeit gegenüber Wasser, organischen anorganischen Säuren oder Basen und Lösungsmitteln aufweisen. Außerdem sollen sie witterungs- und lichtstabil sein, so daß sie auch für Außenanwendungen in Betracht kommen. Nicht zuletzt sollen sich die mesomorphen Polyelektrolytkomplexe, welche der Herstellung der neuen Mehrschichtsysteme, insbesondere der mehrschichtigen Lackierungen, dienen, nicht nur aus den reinen 20 Ausgangsverbindungen herstellen lassen, sondern auch aus den Gemischen, wie sie bei der großtechnischen Herstellung solcher Ausgangsverbindungen anfallen.

Außerdem ist es die Aufgabe der vorliegenden Erfindung, ein neues Verfahren bereitzustellen, welches die Herstellung der neuen Mehrschichtsysteme, insbesondere der mehrschichtigen Lackierungen, in einfacher Weise ermöglicht.

- 5 Desweiteren ist es die Aufgabe vorliegenden Erfindung, neue reaktive Systeme zu finden, welche neuartige vorteilhafte Eigenschaftskombinationen aufweisen und dadurch neue Anwendungsbereiche für mesomorphe Polyelektrolytkomplexe, insbesondere bei der Herstellung neuer Mehrschichtsysteme, erschließen.
- 10 Demgemäß wurde das neue Mehrschichtsystem gefunden, welches
  - (I) mindestens einen Bestandteil (IA), welcher mesomorphe Polyelektrolytkomplexe enthält oder hieraus besteht und welcher herstellbar ist, indem man
- 15 I.1) in einer flüssigen Phase (IB)
  - I.1.1) mindestens einen polymeren und/oder oligomeren, organischen, anionischen Polyelektrolyten (IC) mit mindestens einem polymeren und/oder oligomeren, organischen, kationischen Polyelektrolyten (ID) und/oder mindestens einem kationischen Tensid (IE)
- 20 oder
- 25 I.1.2) mindestens einen polymeren und/oder oligomeren, organischen, kationischen Polyelektrolyten (ID) mit mindestens einem anionischen Tensid (IF)

in stöchiometrischem oder nicht stöchiometrischem Verhältnis umsetzt,

5           I.2) die resultierende flüssige Phase (IG) auf ein Unterlage oder in eine Form gießt und

)           I.3) sich verfestigen lässt und

10          I.4) den resultierenden Festkörper (IH) tempert;

sowie

15          (II) mindestens eine Schicht (IIA), welche dreidimensional vernetzt ist und herstellbar ist, indem man

20           II.1) mindestens einen wässrigen, thermisch härtbaren Beschichtungsstoff (IIB), enthaltend

II.1.1) mindestens ein Bindemittel (IIC) und

II.1.2) mindestens ein Vernetzungsmittel (IID),

auf die Oberfläche des Bestandteils (IA) appliziert und

25           II.2) die resultierende Naßschicht (IIE) thermisch härtet.

Im Rahmen der vorliegenden Erfindung umfaßte Begriff „Mehrschichtsystem“ Formteile von beliebiger äußerer Form, planare oder im wesentlichen planare Lamine und mehrschichtige Lackierungen. Im folgenden wird das neue Mehrschichtsystem als „erfindungsgemäßes Mehrschichtsystem“ bezeichnet.

5

Außerdem wurde das neue Verfahren zur Herstellung des erfindungsgemäßen Mehrschichtsystems gefunden, bei dem man zunächst

10 (I) mindestens einen Bestandteil (IA), welcher mesomorphe Polyelektrolyt-komplexe enthält oder hieraus besteht, herstellt, indem man

I.1) in einer flüssigen Phase (IB)

15 I.1.1) mindestens einen polymeren und/oder oligomeren, organischen, anionischen Polyelektrolyten (IC) mit mindestens einem polymeren und/oder oligomeren, organischen, kationischen Polyelektrolyten (ID) und/oder mindestens einem kationischen Tensid (IE)

20 oder

I.1.2) mindestens einen polymeren und/oder oligomeren, organischen, kationischen Polyelektrolyten (ID) mit mindestens einem anionischen Tensid (IF)

25

in stöchiometrischem oder nicht stöchiometrischem Verhältnis umsetzt,

I.2) die resultierende flüssige Phase (IG) auf eine Unterlage oder in eine Form gießt und

5 I.3) sich verfestigen lässt und

I.4) den resultierenden Festkörper (IH) tempert;

wonach man auf dem resultierenden Bestandteil (IA)

10

(II) mindestens eine Schicht (IIA), welche dreidimensional vernetzt ist, herstellt, indem man

15 II.1) mindestens einen wässrigen, thermisch härtbaren Beschichtungsstoff (IIB), enthaltend

II.1.1) mindestens ein Bindemittel (IIC) und

II.1.2) mindestens ein Vernetzungsmittel (IID),

20

auf die Oberfläche des Bestandteils (IA) appliziert und

II.2) die resultierende Naßschicht (III) thermisch härtet.

25 Im folgenden wird das neue Verfahren zur Herstellung des erfindungsgemäßen Mehrschichtsystems der Kürze halber als „erfindungsgemäßes Verfahren“ bezeichnet.

Nicht zuletzt wurde das neue reaktive System gefunden, welches

(I) mindestens einen mesomorphen Polyelektrolytkomplex aus

5

I.1.1) mindestens einem polymeren und/oder oligomeren, organischen, anionischen Polyelektrolyten (IC) und mindestens einem polymeren und/oder oligomeren, organischen, kationischen Polyelektrolyten (ID) und/oder mindestens einem kationischen Tensid (IE)

10

oder

I.1.2) mindestens einem polymeren und/oder oligomeren, organischen, kationischen Polyelektrolyten (ID) und mindestens einem anionischen Tensid (IF)

15

sowie

(II) mindestens einen wässrigen, thermisch härtbaren Beschichtungsstoff (IIB),  
20 enthaltend

II.1.1) mindestens ein Bindemittel (IIC) und

II.1.2) mindestens ein Vernetzungsmittel (IID)

25

umfaßt.

- Im Hinblick auf den Stand der Technik war es überraschend und nicht vorhersehbar, daß die Aufgaben, welche der vorliegenden Erfindung zugrundeliegen, mit Hilfe der erfindungsgemäßen Teile, des erfindungsgemäßen Verfahrens und des erfindungsgemäßen reaktiven Systems gelöst werden konnten. Insbesondere ist  
5 hervorzuheben, in welch einfacher und eleganter und damit vorteilhafter und wirtschaftlicher Art und Weise mesomorphe Polyelektrolytkomplexe aus an sich bekannten Ausgangsverbindungen in die erfindungsgemäßen Mehrschichtsysteme eingebracht und dadurch neuen Anwendungsbereichen zugeführt werden können.
- 10 Die erste erfindungswesentliche Komponente (I) des erfindungsgemäßen Mehrschichtsystems ist der Bestandteil (IA). Hierbei kann das erfindungsgemäße Mehrschichtsystem einen oder mehrere Bestandteile (IA) enthalten.
- Der Bestandteil (IA) enthält oder besteht aus mindestens einem mesomorphen Polyelektrolytkomplex. Welcher Variante im Einzelfall der Vorzug gegeben wird,  
15 richtet sich nach dem jeweiligen Verwendungszweck des erfindungsgemäßen Mehrschichtsystems.
- Der eindeutige Nachweis mesomorpher Strukturen gelingt bekanntermaßen mittels  
20 der Kleinwinkel-Röntgendiffraktometrie. Hierbei zeigt sich mindestens ein schmaler Streupeak, welcher eine flüssigkristalline Morphologie im Bestandteil (IA) kennzeichnet. Weiterhin zeigen polarisationsmikroskopische Aufnahmen unter gekreuzten Polarisatoren bekanntermaßen bei den meisten mesomorphen Strukturen typische Texturen doppelbrechender Domänenstrukturen.
- 25 Für die Herstellung des Bestandteils (IA) werden in einer ersten Variante des erfindungsgemäßen Verfahrens in der flüssigen Phase (IB) mindestens ein polymerer

und/oder oligomerer, organischer, anionischer Polyelektrolyt (IC) mit mindestens einem polymeren und/oder oligomeren, organischen, kationischen Polyelektrolyten (ID) und/oder mindestens einem kationischen Tensid (IE) umgesetzt.

- 5 Geeignete erfindungsgemäß zu verwendende Polyelektrolyte (IC) enthalten anionische Gruppen wie Carboxylat-, Sulfonat-, Sulfit-, Sulfat-, Phosphat-, Phosphonat- oder Boratgruppen, von denen die Carboxylat-, Sulfonat- und die Phosphonatgruppen besonders vorteilhaft sind und deswegen besonders bevorzugt verwendet werden.

10

Beispiele geeigneter erfindungsgemäß zu verwendender Polyelektrolyte (IC) sind Poly- und Oligoester, Poly- und Oligourethane, Polymere und Oligomere von olefinisch ungesättigten Verbindungen, Epoxidharze oder Alkydharze, welche die vorstehend genannten anionischen Gruppen enthalten.

15

- Die Herstellung dieser Polyelektrolyte (IC) ist an sich bekannt. So können die Oligo- oder Polyester beispielsweise durch Umsetzung von Polyolen mit einem Überschuß an Polycarbonsäuren hergestellt werden. Die Oligo- oder Polyurethane können durch die Umsetzung von Polyolen, Polyisocyanaten und Dihydroxycarbonsäuren wie Dimethylolpropionsäure erhalten werden. Die anionischen Gruppen können in die Epoxidharze in einfacher Weise durch Umsetzung der Epoxidgruppen mit Phosphorsäure eingeführt werden. Die Oligomere und Polymere von olefinisch ungesättigten Verbindungen mit anionischen Gruppen können in einfacher Weise durch Oligomerisation oder Polymerisation geeigneter olefinisch ungesättigter Verbindungen hergestellt werden.

Von diesen sind die Polymere und Oligomere von olefinisch ungesättigten Verbindungen besonders vorteilhaft und werden erfindungsgemäß bevorzugt verwendet.

- 5 Von diesen sind wiederum diejenigen Polyelektrolyte (IC) ganz besonders vorteilhaft, welche 20 bis 100 mol-% von einer oder einer Mischung von mehreren der folgenden Monomereinheiten der Gruppe (1) enthalten:

**Gruppe (1):** monoethylenisch ungesättigte C<sub>3</sub>- bis C<sub>10</sub> - Monocarbonsäuren, deren  
10 Alkalimetallsalze und/oder Ammoniumsalze, beispielsweise Acrylsäure, Methacrylsäure, Dimethylacrylsäure, Ethylacrylsäure, Allylessigsäure oder Vinyllessigsäure; weiterhin monoethylenisch ungesättigte C<sub>4</sub>- bis C<sub>8</sub>-Dicarbonsäuren, deren Halbester, Anhydride, Alkalimetallsalze und/oder Ammoniumsalze, beispielsweise Maleinsäure, Fumarsäure, Itaconsäure, Mesaconsäure,  
15 Methylenmalonsäure, Citraconsäure, Maleinsäureanhydrid, Itaconsäureanhydrid oder Methylmalonsäureanhydrid; weiterhin Sulfonsäuregruppen enthaltende monoethylenisch ungesättigte Monomere, beispielsweise Allylsulfonsäure, Styrolsulfonsäure, 2-Acrylamido-2-methylpropansulfonsäure, Methallylsulfonsäure, Vinylsulfonsäure, Acrylsäure-3-sulfopropylester oder Methacrylsäure-3-sulfopropylester; weiterhin  
20 Phosphonsäuregruppen enthaltende monoethylenisch ungesättigte Monomere, beispielsweise Vinylphosphonsäure, Allylphosphonsäure oder Acrylamidomethylpropanphosphonsäure.

Die Polyelektrolyte (IC) werden in der Säureform, teilneutralisiert oder vollständig  
25 neutralisiert verwendet.

Bis zu 80 mol-% der Monomereinheiten des Polyelektrolyten (IC) können hierbei aus einem oder mehreren nichtionischen Monomeren der Gruppe (2) bestehen:

- Gruppe (2):** C<sub>1</sub>- bis C<sub>20</sub>- Alkyl- und Hydroxialkylester von monoethylenisch ungesättigten C<sub>3</sub>- bis C<sub>10</sub>-Monocarbonsäuren oder C<sub>4</sub>- bis C<sub>8</sub>- Dicarbonsäuren, beispielsweise Methylacrylat, Ethylacrylat, n-Butylacrylat, Stearylacrylat, Maleinsäurediethylester, Hydroxyethylacrylat, Hydroxypropylacrylat, Hydroxybutylacrylat, Hydroxyethylmethacrylat oder Hydroxypropylmethacrylat; weiterhin (Meth)Acrylester von alkoxylierten C<sub>1</sub>- bis C<sub>18</sub>-Alkoholen, die mit 2 bis 50 mol Ethylenoxid, Propylenoxid, Butylenoxid oder Mischungen hiervon umgesetzt sind; weiterhin Amide und N-substituierte Amide von monoethylenisch ungesättigten C<sub>3</sub>- bis C<sub>10</sub>-Monocarbonsäuren oder C<sub>4</sub>- bis C<sub>8</sub>- Dicarbonsäuren, beispielsweise Acrylamid, Methacrylamid, N-Alkylacrylamide oder N, N-Dialkylacrylamide mit jeweils 1 bis 18 C-Atomen in der Alkylgruppe wie N-Methacrylamid, N,N-Dimethylacrylamid, N-tert.-Butylacrylamid oder N-Octadecylacrylamid, Maleinsäuremonomethylhexylamid, Maleinsäuremonodecylamid, Dimethylaminopropylmethacrylamid oder Acrylamidoglykolsäure; weiterhin Alkylamidoalkyl(meth)acrylate, beispielsweise Dimethylaminoethylacrylat, Dimethylaminoethylmethacrylat, Ethylaminoethylacrylat, Diethylaminoethylmethacrylat, Dimethylaminopropylacrylat oder Dimethylaminopropylmethacrylat; weiterhin Vinylester, Vinylformiat, Vinylacetat oder Vinylpropionat, wobei diese nach der Polymerisation auch verseift vorliegen können; weiterhin N-Vinylverbindungen, beispielsweise N-Vinylpyrrolidon, N-Vinylprolactam, N-Vinylformamid, N-Vinyl-N-methylformamid, 1-Vinylimidazol oder 1-Vinyl-2-methylimidazol; weiterhin Vinylether von C<sub>1</sub>- bis C<sub>18</sub>-Alkoholen, Vinylether von alkoxylierten C<sub>1</sub>- bis C<sub>18</sub>-Alkoholen und Vinylether von Polyalkylenoxiden wie Polyethylenoxid, Polypropylenoxid oder Polybutylenoxid;

weiterhin lineare, verzweigte oder cyclische Olefine, beispielsweise Ethen, Propen, Buten, Isobuten, 1-Penten, Cyclopenten, 1-Hexen, 1-Hepten, 1-Octen, 2,4,4'-Trimethylpenten-1, 1-Nonen, 1-Decen, Styrol oder dessen Derivate wie alpha-Methylstyrol, Inden, Dicyclopentadien oder reaktive Doppelbindungen tragende höhere Olefine wie Oligopropen und Polyisobuten.

Auch bei den kationischen Polyelektrolyten (ID) handelt es sich um Oligo- und Polyester, Oligo- und Polyurethane, Oligomere und Polymere von olefinisch ungesättigten Verbindungen oder um Epoxidharze und Alkydharze, nur daß sie nunmehr kationische Gruppen enthalten. Außerdem können Oligomere und Polymere verwendet werden, welche Aminogruppen in der Hauptkette enthalten.

Beispiele geeigneter kationischer Gruppen sind primäre, sekundäre, tertiäre und quaternäre Ammoniumgruppen oder Sulfoniumgruppen, von denen die Ammoniumgruppen besonders vorteilhaft sind und deshalb besonders bevorzugt verwendet werden.

Zur Herstellung von Amino- oder Ammoniumgruppen enthaltenden Oligomeren und Polymeren werden beispielsweise die in Gruppe (3) aufgeführten Monomere in Anteilen von 20 bis 100 mol-% verwendet.

**Gruppe (3):** Monomere, die Amino- oder Iminogruppen wie z. B. Dimethylaminoethylacrylat, Diethylaminoethylmethacrylat, Dimethylaminopropylmethacrylamid oder Allylamin;

Monomere, die quaternäre Ammoniumgruppen tragen, z. B. vorliegend als Salze, wie sie durch Umsetzung der basischen Aminofunktionen mit Säuren wie Salzsäure,

Schwefelsäure, Salpetersäure, Ameisensäure oder Essigsäure erhalten werden, oder in quaternisierter Form (Beispiele geeigneter Quaternisierungsmittel sind Dimethylsulfat, Diethylsulfat, Methylchlorid, Ethylchlorid oder Benzylchlorid), wie z. B. Dimethylaminoethylacrylat-hydrochlorid, Diallyldimethylammoniumchlorid,  
5 Dimethylaminoethylacrylat-methochlorid, Dimethylaminooethylaminopropylmethacrylamid-methosulfat, Vinylpyridiniumsalze oder 1-Vinylimidazoliumsalze;

Monomere, bei denen die Aminogruppen und/oder Ammoniumgruppen erst nach der  
10 Polymerisation und anschließender Hydrolyse freigesetzt werden, wie beispielsweise N-Vinylformamid oder N-Vinylacetamid.

Bis zu 80 mol-% der Monomereinheiten des Polyelektrolyten (ID) können hierbei aus einem oder mehreren nichtionischen Monomeren der Gruppe (2) bestehen.

15 Weiterhin können als Polyelektrolyte (ID) Polyethylenimin oder Polypropylenimin verwendet werden.

Außerdem kommen Epoxidharze, deren Epoxidgruppen mit Aminen und/oder  
20 ketiminisierten Aminen umgesetzt worden sind, in Betracht.

Diese Polyelektrolyte (ID) werden in der Basenform teilweise neutralisiert oder vollständig neutralisiert verwendet.

25 Beispiele geeigneter kationischer Tenside (IE) sind solche, welche Ammoniumgruppen enthalten, wobei der Ammoniumverbindung vorteilhafterweise ein offenkettiges Amin zugrunde liegt, wie etwa C<sub>8</sub>- bis C<sub>18</sub>-

Alkytrimethylammoniumchloride oder -bromide, Dialgdimethylammoniumchlorid oder Lauryl-benzyl-dimethylammoniumchlorid.

Weitere Beispiele geeigneter kationischer Tenside (IE) sind solche, welche  
5 Sulfoniumgruppen enthalten. Tenside dieser Art werden erhalten durch Umsetzung von Epoxidharzen mit sekundären Sulfiden wie Thiodiethanol in der Gegenwart von Säuren.

Weitere Beispiele kationischer Tenside (IE) sind solche, denen ein cyclisches Amin  
10 oder Imin zugrunde liegt, z. B. Pyridinium-, Imidazolinium-, Piperidinium -, Oxazolinium- oder Pyrimidiniumgruppen enthaltende Tenside.

Zur Herstellung des Bestandteils (IA) werden in einer weiteren Variante des erfindungsgemäßen Verfahrens polymere und/oder oligomere, organische,  
15 kationische Polyelektrolyte (ID) mit anionischen Tensiden (IF) umgesetzt.

Beispiele geeigneter Polyelektrolyte (ID) werden vorstehend im Detail beschrieben.

Beispiele geeigneter Tenside (IF) sind Alkylbenzolsulfonate, Fettalkoholsulfate,  
20 Fettalkoholpolyglykolethersulfate, Alkylglycerylethersulfonate, Fettalkoholpolyglykolethermethylcarboxylate, Paraffinsulfonate, Olefinsulfonate, Sulfobernsteinsäurehalb- und -diester, Alkylphenolethersulfate sowie Alkyl- und  
Dialkylphosphate, insbesondere C<sub>8</sub>- bis C<sub>18</sub>-Alkansulfonate, C<sub>12</sub> - bis C<sub>16</sub>-  
25 Alkylsulfate, C<sub>12</sub>- bis C<sub>16</sub>-Alkylsulfosuccinate oder sulfatierte ethoxylierte C<sub>12</sub>- bis C<sub>16</sub>- Alkohole.

Weitere Beispiele geeigneter Tenside (IF) sind sulfatierte Fettsäurealkanolamine, alpha- Sulfovetsäureester, Fettsäuremonoglyceride oder Fettsäureester, -sarkoside, -glykolate, -lactate, -tauride oder -isothionate oder die üblichen Seifen, d. h. die Alkalimetallsalze der natürlichen Fettsäuren.

5

Die Tenside (IF) können in Form ihrer Natrium-, Kalium- oder Ammoniumsalze sowie als lösliche Salze organischer Basen wie Mono-, Di- oder Triethanolamin oder anderer substituierter Amine vorliegen.

10 Besonders vorteilhafte erfindungsgemäße Mehrschichtsysteme werden erhalten, wenn die vorstehend im Detail beschriebenen Polyelektrolyte (IC) mit den vorstehend im Detail beschriebenen Polyelektrolyten (ID) und/oder den Tensiden (IE), insbesondere aber den Polyelektrolyten (ID), umgesetzt werden. Diese Variante wird deshalb erfindungsgemäß besonders bevorzugt.

15

Weitere besondere Vorteile ergeben sich, wenn man Polyelektrolyte (IC) und (ID) auswählt, deren Polymerhauptketten, für sich selbst gesehen, nicht miteinander verträglich wären, sondern sich in fester Phase wieder entmischt. Der Fachmann kann daher ganz besonders vorteilhafte Kombinationen von Polyelektrolyten (IC) und (ID) in einfacher Weise auswählen.  
20

Der Bestandteil (IA) wird in erfindungsgemäßer Verfahrensweise in einer flüssigen Phase (IB) hergestellt. Erfindungsgemäß bilden sich in der flüssigen Phase (IB) aus den Ausgangsverbindungen mesomorphe Polyelektrolytkomplexe und/oder deren  
25 Vorstufen, wodurch die flüssige Phase (IG) resultiert.

Beispiele geeigneter flüssiger Phasen sind

homogene Schmelzen, welche im wesentlichen aus den nachstehend im Detail beschriebenen, erfindungsgemäß zu verwendenden Polyelektrolyten (IC) einerseits und Polyelektrolyten (ID) und/oder Tensiden (IE) andererseits oder 5 aus den erfindungsgemäß zu verwendenden Polyelektrolyten (ID) und Tensiden (IF) bestehen,

oder

10 - im wesentlichen molekulardisperse, homogene Lösungen der vorstehend genannten Ausgangsverbindungen in wäßrigen, wäßrig-organischen oder organischen Medien.

15 Im Rahmen der vorliegende Erfindungen werden unter wäßrigen Medien Wasser oder wäßrige Lösungen von organischen und anorganischen Säuren, Basen, Salzen oder sonstigen, kovalenten Verbindungen, ausgenommen organische Lösemittel, verstanden.

Unter wäßrig-organischen Medien sind die vorstehend genannten Medien zu 20 verstehen, wenn sie wirksame Mengen an organischen Lösemitteln enthalten. Wirksam sind solche Mengen, welche bewirken, daß sich die Ausgangsverbindungen, die in rein wäßrigen Medien unlöslich wären, hierin lösen. Außerdem können sie hierin lösliche organische und anorganische Säuren, Basen, Salze oder sonstige, kovalente Verbindungen enthalten

Organische Medien sind rein organische Lösemittel oder Lösemittelgemische, welche hierin lösliche organische und anorganische Säuren, Basen, Salze oder sonstige, kovalente Verbindungen enthalten können.

- 5    Welche Variante für Herstellung eines erfindugswesentlichen Bestandteils (IA) die meisten Vorteile bietet, kann der Fachmann in einfacher Weise anhand der Eigenschaften der vorstehend genannten Ausgangsverbindungen entscheiden.

10   So kommen für die Herstellung der Bestandteile (IA) in der Schmelze (IB) vor allem thermoplastische Ausgangsverbindungen in Betracht. Ihre Vermischung und weitere Umsetzung kann beispielsweise in einem üblichen und bekannten Kneter oder Extruder erfolgen.

15   Werden die Bestandteile (IA) in Lösung hergestellt, ist es von Vorteil, die in Lösung resultierenden mesomorphen Polyelektrolytkomplexe und/oder ihre Vorstufen durch mehrfaches Ausfällen aus der Lösung und Wiederauflösen zu reinigen. Gegebenenfalls können durch mehrmaliges Waschen des organischen Mediums mit Wasser im Sinne eines Sol-Gel-Separationsprozesses überschüssige Reaktanden und Salze ausgewaschen werden. Selbstverständlich können diese Reinigungsverfahren 20   auch auf die mesomorphen Polyelektrolytkomplexe und/oder ihre Vorstufen angewandt werden, welche in einer Schmelze erzeugt worden sind.

Erfindungsgemäß können

- 25   -       die Polyelektrolyte (IC) mit den Polyelektrolyten (ID) und/oder den Tensiden (IE) oder

- die Polyelektrolyte (ID) mit den Tensiden (IF)

in stöchiometrischem oder nicht stöchiometrischem Verhältnis umgesetzt werden. Welche Variante man hierbei wählt, richtet sich danach, welches Eigenschaftsprofil  
5 des Bestandteils (IA) man erzeugen will. Der Fachmann kann daher die vorteilhaftesten Reaktionsbedingungen anhand einfacher Vorversuche ermitteln.

Die gereinigten mesomorphen Polyelektrolytkomplexe und/oder ihre Vorstufen werden dann wieder in einem geeigneten Medium aufgelöst oder sie werden  
10 aufgeschmolzen, wodurch die flüssige Phase (IG) resultiert.

Die in erfundungsgemäßer Verfahrensweise resultierende flüssige Phase (IG) wird im weiteren Verlauf des erfundungsgemäßen Verfahrens auf eine geeignete Unterlage gegossen. Im Rahmen der vorliegenden Erfindungen umfaßt der Begriff "Gießen"  
15 alle üblichen und bekannten Methoden der Applikation flüssiger Phasen wie Tauchen, Spritzen, Rakeln, Streichen, Aufwalzen (Roller Coating) oder Gießen in Form eines flüssigen Vorhangs. Beispiele geeigneter Unterlagen sind Filme, Folien, Fasern, Gewebe oder Formteile, insbesondere Automobilkarosseriebauteile, aus Metall, Glas, Holz, Papier, Kunststoff, Leder oder Verbundmaterialien hieraus. Diese  
20 Unterlagen können beim Gießen statisch ruhen oder bewegt werden wie etwa beim Coil Coating-Verfahren. Beispielsweise kann die flüssige Phase (IG) in gleichmäßiger, dünner Schicht auf ein Metallband ausgegossen und dann in geeigneter Weise weiterverarbeitet werden.

25 Die resultierende flüssige Phase (IG) kann indes auch in eine Form gegossen werden. Im Rahmen der vorliegenden Erfindungen ist hierunter nicht nur das Ausgießen in eine vorgefertigte feste Hohlform zu verstehen, sondern auch die formgebende

Bearbeitung, insbesondere von Schmelzen (IG), durch Extrusion, Coextrusion, Spritzgießen, Kalandrieren oder Folienblasen zu Folien, Filmen, Strängen, Fasern, Geweben, Profilen, Platten, Rohren, körnigen Massen, Granulaten oder anderen Formteilen. Diese können wiederum als Unterlage im Sinne der vorliegenden

- 5 Erfindung verwendet werden.

Diese Variante des erfindungsgemäßen Verfahrens wird insbesondere dann angewandt, wenn als erfindungsgemäße Teile Formteile hergestellt werden sollen, welche im wesentlichen aus dem Bestandteil (IA) bestehen, d.h., bei denen der

- 10 Bestandteil (IA) die Form vorgibt.

In erfindungsgemäßer Verfahrensweise läßt man die flüssige Phase (IG) sich verfestigen. Im Falle der Schmelze (IG) geschieht dies durch Abkühlen und Erstarren. Im Falle lösemittelhaltiger flüssiger Phasen (IG) läßt man die Lösemittel bei

- 15 Raumtemperatur oder höheren Temperaturen, gegebenenfalls unter Zuhilfenahme von Vakuum, verdampfen.

Für die vorliegende Erfindung ist es wesentlich, daß man den hierbei resultierenden Festkörper (IH) tempert. Die Zeit, welche für das Temperiern aufgebracht werden muß,

- 20 richtet sich nach dem Eigenschaftsprofil des jeweils vorliegenden Festkörpers (IH) und kann von Fall zu Fall sehr unterschiedlich sein. Erfindungsgemäß ist es indes von Vorteil, eine Temperzeit von einer Minute nicht zu unterschreiten und eine solche von zehn Stunden nicht zu überschreiten.

- 25 Die Temperaturen, welche beim Temperiern angewandt werden, richten sich gleichfalls nach dem Eigenschaftsprofil des jeweils vorliegenden Festkörpers (IH) und können daher ebenfalls von Fall zu Fall sehr unterschiedlich sein. Erfindungsgemäß ist es von

Vorteil, beim Tempern 80 °C nicht zu unterschreiten und 300 °C nicht zu überschreiten. Je nach vorliegendem Festkörper (IH) werden kurze Temperzeiten mit hohen Tempertemperaturen oder lange Temperzeiten mit vergleichsweise niedrigen Tempertemperaturen kombiniert. Indes kann es durchaus auch notwendig sein, den

- 5 Festkörper (IH) während einer langen Zeit bei hohen Temperaturen oder während einer kurzen Zeit bei niedrigen Temperaturen zur tempern. Während des Temperns kann die Temperatur konstant gehalten oder nach einem vorgegebenen Programm variiert werden. Welche Temperbedingungen in jedem Einzelfall vorteilhaft sind, kann der Fachmann anhand einfacher Vorversuche ermitteln.

10

Der hierbei resultierende Bestandteil (IA) kann Zusatzstoffe (J) enthalten. Im allgemeinen sind diese Zusatzstoffe in dem Bestandteil (IA) in einer Menge enthalten, welche seine mesomorphen Eigenschaften nicht oder nur in vernachlässigbarem Ausmaß beeinträchtigt. Im allgemeinen empfiehlt es sich, die 15 Menge der Zusatzstoffe (J) auf 60, vorzugsweise 50 und insbesondere 40 Gew.-%, bezogen auf die Gesamtmenge des Bestandteils (IA), inklusive Zusatzstoffe (J), zu begrenzen. In speziellen Fällen können diese Mengen indes überschritten werden.

20

Beispiele geeigneter Zusatzstoffe (J) sind Polymere, Vernetzer, Katalysatoren für die Vernetzung, Initiatoren, insbesondere Photoinitiatoren, Pigmente, Farbstoffe, Füllstoffe, Verstärkerfüllstoffe, Rheologiehilfsmittel, Netz- und Dispergiermittel, Entschäumer, Haftvermittler, Additive zur Verbesserung der Untergrundbenetzung, Additive zur Verbesserung der Oberflächenglätte, Mattierungsmittel, Verlaufsmittel, Filmbildehilfsmittel, Trockenstoffe, Hautverhinderungsmittel, Lichtschutzmittel, 25 Korrosionsinhibitoren, Biozide, Flammschutzmittel, Polymerisationsinhibitoren, insbesondere Photoinhibitoren, oder Weichmacher, wie sie beispielsweise auf dem Kunststoff- oder Lacksektor üblich und bekannt sind. Die Auswahl der Zusatzstoffe

(J) richtet sich nach dem gewünschten Eigenschaftsprofil des Bestandteil (IA) und dessen Verwendungszweck und kann daher vom Fachmann in einfacher Weise, gegebenenfalls unter Zuhilfenahme einfacher Vorversuche, getroffen werden.

- 5 Die Zusatzstoffe (J) können zur flüssigen Phase (IB), zur flüssigen Phase (IG) und/oder zum Bestandteil (IA) hinzugegeben werden. Erfindungsgemäß ist es von Vorteil, sie zu den genannten flüssigen Phasen (IB) und/oder (IG) hinzuzugeben, weil hierdurch eine bessere Verteilung der Zusatzstoffe (J) erreicht wird.
- 10 Die zweite erfindungswesentliche Komponente (II) des erfindungsgemäßen Mehrschichtsystems ist mindestens eine Schicht (IIA), welche dreidimensional vernetzt ist und welche erfindungsgemäß hergestellt wird, indem man mindestens einen wässrigen, thermisch härtbaren Beschichtungsstoff (IIB), enthaltend mindestens ein Bindemittel (IIC) und mindestens ein Vernetzungsmittel (IID), auf die Oberfläche des Bestandteils (IA) appliziert und die resultierende Naßschicht (IIE) thermisch härtet.
- 15

- Für die Herstellung des erfindungsgemäß Mehrschichtsystems sind grundsätzlich alle üblichen und bekannten, am Markt erhältlichen, wässrigen, thermisch härbaren Beschichtungsstoffe (IIB) geeignet. Beispiele geeigneter Beschichtungsstoffe (IIB) sind Elektrotauchlacke, Wasserfüller, Wasserbasislacke oder wässrige Klarlacke, inklusive Pulverslurry-Klarlacke, wie sie beispielsweise in den Patentschriften EP-A-0 643 734, US-A-4,791,168, US-A- 4,423,179, EP-A-0 424 705, EP-A-0 522 420, EP-A-0 089 492, EP-A-0 521 928, EP-A-0 436 941, JP-A-1-280757, EP-A-0 619 329, DE-A-43 22 242, DE-A-41 32 430, EP-A-0 358 979, DE-A-195 42 626, DE-A-44 21 823, EP-A-0 652 264, DE-A-196 17 086, EP-A-0 654 052 oder DE-A-196 23 371 beschrieben werden.

Der erste wesentliche Bestandteil der wässrigen, thermisch härbaren Beschichtungsstoffe (IIB) ist mindestens ein Bindemittel (IIC), das ein in Wasser lösliches oder gegebenenfalls auch in Form einer Pulver-Slurry dispergierbares, 5 oligomeres oder polymeres Harz mit funktionellen Gruppen, die mit den entsprechenden komplementären reaktiven funktionellen Gruppen in den Vernetzungsmitteln (IID) reagieren können, darstellt.

Beispiele geeigneter erfindungsgemäß bevorzugter Bindemittel (IIC) sind lineare 10 und/oder verzweigte und/oder blockartig, kammartig und/oder statistisch aufgebaute Poly(meth)acrylate, Polyester, Alkyde, Polyurethane, acrylierte Polyurethane, acrylierte Polyester, Polylactone, Polycarbonate, Polyether, Epoxidharz-Amin-Addukte, (Meth)Acrylatdiole, partiell verseifte Polyvinylester oder Polyharnstoffe, von denen die Poly(meth)acrylate, die Polyester, die Polyurethane, die Polyether und 15 die Epoxidharz-Amin-Addukte besonders vorteilhaft sind und deshalb besonders bevorzugt verwendet werden.

Hinsichtlich der Herstellbarkeit, der Handhabung und der besonders vorteilhaften Eigenschaften der hiermit hergestellten erfindungsgemäßen Beschichtungsmittel 20 bieten die Poly(meth)acrylate, die Polyester und/oder die Polyurethane ganz besondere Vorteile, weswegen sie bevorzugt verwendet werden.

Beispiele geeigneter wasserlöslicher oder -dispergierbarer Bindemittel (IIC) enthalten entweder

- (i) funktionelle Gruppen, die durch Neutralisationsmittel und/oder Quaternisierungsmittel in Kationen überführt werden können, und/oder kationische Gruppen

oder

5

- (ii) funktionelle Gruppen, die durch Neutralisationsmittel in Anionen überführt werden können, und/oder anionische Gruppen

und/oder

10

- (iii) nichtionische hydrophile Gruppen.

Beispiele geeigneter funktioneller Gruppen, die durch Neutralisationsmittel und/oder Quaternisierungsmittel in Kationen überführt werden können, sind primäre, sekundäre oder tertiäre Aminogruppen, sekundäre Sulfidgruppen oder tertiäre Phoshingruppen, insbesondere tertiäre Aminogruppen oder sekundäre Sulfidgruppen.

Beispiele geeigneter kationischer Gruppen sind primäre, sekundäre, tertiäre oder quaternäre Ammoniumgruppen, tertiäre Sulfoniumgruppen oder quaternäre 20 Phosphoniumgruppen, insbesondere quaternäre Ammoniumgruppen.

Beispiele geeigneter funktioneller Gruppen, die durch Neutralisationsmittel in Anionen überführt werden können, sind Carbonsäure-, Sulfonsäure- oder Phosphonsäuregruppen, insbesondere Carbonsäuregruppen.

25

Beispiele geeigneter anionischer Gruppen sind Carboxylat-, Sulfonat- oder Phosphonatgruppen, insbesondere Carboxylatgruppen.

Beispiele geeigneter erfindungsgemäß zu verwendender nichtionischer hydrophiler Gruppen sind Polyethergruppen, insbesondere Poly(alkylenether)gruppen.

- 5 Hinsichtlich der Herstellbarkeit, der Handhabung und der vorteilhaften Eigenschaften der hiermit hergestellten Beschichtungsstoffe (IIB) bieten die Bindemittel (IIc), welche die anionenbildenden Gruppen und/oder Anionen (ii), insbesondere die Carbonsäure- und/oder die Carboxylatgruppen enthalten, ganz besondere Vorteile, weswegen sie bevorzugt verwendet werden.

10

Der weitere wesentliche Bestandteil der wässrigen, thermisch härtbaren Beschichtungsstoffe (IIB) sind Vernetzungsmittel (IID), welche mit den reaktiven funktionellen Gruppen der Bindemittel (IIc) unter Bildung eines dreidimensionalen duroplastischen Netzwerks reagieren können.

15

Beispiele geeigneter komplementärer reaktiver funktioneller Gruppen, welche solche Vernetzungsreaktionen eingehen, sind in der folgenden Übersicht zusammengestellt.

## **Übersicht:**

## Funktionelle Gruppen in

## **5 Bindemittel (IIC) und Vernetzer (IID)**

**oder**

## **Vernetzer (IID) und Bindemittel (IIC)**

-SH<sub>2</sub>

$$-\text{C}(\text{O})\text{-OH}$$

10

-NH<sub>2</sub>

$$-\text{C}(\text{O})-\text{O}-\text{C}(\text{O})-$$

-OH

-NCO

15

$$-\text{NH}-\text{C}(\text{O})-\text{OR}$$

$$-\text{CH}_2\text{-OH}$$

$$-\text{CH}_2\text{-O-CH}_3$$

20

= Si(OR)<sub>2</sub>



25

$$-\text{O}-\text{C}(\text{O})-\text{NH}-\text{C}(\text{O})-\text{NH}_2$$

$$-\text{CH}_2\text{-OH}$$

-O-C(O)-NH<sub>2</sub>

-CH<sub>2</sub>-O-CH<sub>3</sub>

5

-C(O)-OH



10 -O-C(O)-CR=CH<sub>2</sub>

-OH

-NH<sub>2</sub>

-C(O)-CH<sub>2</sub>-C(O)-R

15

In der Übersicht steht die Variable R für einen organischen Rest, insbesondere einen Alkyl- oder Arylrest.

20

Die Kombination von Bindemitteln (IIC), welche als reaktive funktionelle Gruppe Hydroxylgruppen enthalten, und von Vernetzungsmitteln (IID), welche die entsprechenden komplementären funktionellen Gruppen aufweisen, sind von Vorteil. Entsprechende Beschichtungsstoffe (IIB) werden deshalb bevorzugt verwendet.

25

Beispiele für Vernetzungsmittel (IID), welche für die bevorzugten Beschichtungsstoffe (IIB) geeignet sind, sind die üblichen und bekannten Aminoplastharze, deren Methylol- und/oder Methoximethylgruppen z. T. mittels

Carbamat- oder Allophanatgruppen defunktionalisiert sein können. Vernetzungsmitteln (IID) dieser Art werden in den Patentschriften US-A-4,710, 542 und EP-B-0 245 700 sowie in dem Artikel von B. Singh und Mitarbeiter "Carbamylmethylated Melamines, Novel Crosslinkers for the Coatings Industry" in 5 Advanced Organic Coatings Science and Technology Series, 1991, Band 13, Seiten 193 bis 207, beschrieben.

Weitere Beispiele für Vernetzungsmitteln (IID), welche für die bevorzugten Beschichtungsstoffe (IIB) geeignet sind, sind Siloxangruppen enthaltende 10 Verbindungen oder Harze, Anhydridgruppen enthaltende Verbindungen oder Harze, Epoxidgruppen enthaltende Verbindungen oder Harze, blockierte und/oder unblockierte, monomere und/oder oligomere Polyisocyanate, wie sie beispielsweise in "Methoden der organischen Chemie", Houben-Weyl, Band 14/2, 4. Auflage, Georg Thieme Verlag, Stuttgart 1963, Seiten 61 bis 70, und von W. Siefken in Liebigs 15 Annalen der Chemie, Band 562, Seiten 75 bis 136, beschrieben werden, Tris(alkoxycarbonylamino)triazine, wie sie in den Patentschriften US-A-4,939,213, US-A-5,084,541, US-A-5,288,865 oder EP-A-0 604 922 beschrieben werden und/oder beta-Hydroxyalkylamide wie N,N,N',N'-Tetrakis(2-hydroxyethyl)adipamid oder N,N,N',N'-Tetrakis(2-hydroxypropyl)-adipamid.

Neben diesen wesentlichen Bestandteilen können die wässrigen, thermisch härtbaren 20 Beschichtungsstoffe (IIB) die vorstehend beschriebenen Zusatzstoffe (J) in üblichen und bekannten Mengen enthalten. Außerdem können sie Bestandteile enthalten, welche mit aktinischem Licht, insbesondere UV-Strahlung, und/oder 25 Elektronenstrahlung härtbar sind.

In erfindungsgemäßer Verfahrensweise werden die vorstehend beschriebenen wäßrigen, thermisch härbaren Beschichtungsstoffe (IIB) auf die Oberfläche der vorstehend im Detail beschriebenen Bestandteile (IA) appliziert. Methodisch gesehen weist die Applikation keine Besonderheiten auf, sondern richtet sich insbesondere  
5 danach, ob die Bestandteile (IA) als dreidimensionale Formteile oder zweidimensionale Gegenstände bzw. auf dreidimensionalen Formteilen oder zweidimensionalen Gegenständen vorliegen und/oder nach dem Verwendungszweck der resultierenden erfindungsgemäßen Mehrschichtsysteme. Grundsätzlich kommen daher die vorstehend aufgeführten Applikationsmethoden in Betracht, wobei der  
10 Fachmann die Methode, welche für den jeweiligen Einzelfall vorteilhaft ist, anhand seiner Erfahrung gegebenenfalls unter Zuhilfenahme orientierender Versuche vornehmen kann.

Erfindungsgemäß werden die applizierten Naßschichten (IIE) thermisch gehärtet.  
15 Hierbei werden vorteilhafterweise Temperaturen zwischen 100 und 200 °C angewandt. In speziellen Anwendungsformen der erfindungsgemäßen Beschichtungsmittel können auch tiefere Härtungstemperaturen von 100 bis 160 °C angewendet werden.  
  
20 Sofern die wäßrigen, thermisch härbaren Beschichtungsstoffe (IIB) Bestandteile enthalten, welche mit aktinischem Licht, insbesondere UV-Strahlung, und/oder Elektronenstrahlung härtbar sind, geht der thermischen Härtung die Härtung durch Strahlung voraus oder nach. Die Härtung durch Strahlung, insbesondere UV-Strahlung, weist keine methodischen Besonderheiten auf, sondern wird in  
25 üblichen und bekannten Anlagen unter den Bedingungen durchgeführt, wie sie beispielsweise von R. Holmes in U.V. and E.B. Curing Formulations for Printing Inks, Coatings and Paints, SITA Technology, Academic Press, London, United

Kindom 1984, oder von D. Stoye und W. Freitag (Editoren) in Paints , Coatings and Solvents, Second Completely Revised Edition, Wiley-VCH, Weinheim, New York, 1998, beschrieben werden.

- 5 Außer den beiden erfindungswesentlichen Komponenten (I) und (II) können die erfindungsgemäßen Mehrschichtsysteme noch weitere Komponenten enthalten. Beispiele geeigneter weiterer Komponenten sind die vorstehend genannten Unterlagen, insbesondere die Filme, Folien, Fasern, Gewebe oder Formteile, insbesondere Automobilkarosseriebauteile, aus Metall, Glas, Holz, Papier, Kunststoff,
- 10 Leder oder Verbundmaterialien hieraus. Weitere Beispiele geeigneter weiterer Komponenten sind zusätzliche Schichten, welche auf die Oberfläche der Schicht (IIA) und/oder die Schicht (IA) aufgetragen werden, insbesondere zusätzliche Lackschichten und/oder Klebstoffschichten.
- 15 Die resultierenden erfindungsgemäßen Mehrschichtsysteme sind vielfältig anwendbar, beispielsweise als Formteile und Laminate, insbesondere im Automobilbau, oder als mehrschichtige Lackierung in der Automobilserien- und – reparatlackierung, der industriellen Lackierung, inklusive Coil Coating, und der Möbellackierung. Hierbei weisen die Gegenstände insbesondere die Automobile,
- 20 Coils oder Möbel, welche mindestens ein erfindungsgemäßes Mehrschichtsystem enthalten, eine gute Korrosionsbeständigkeit auf.

**Beispiel**

**1. Die Herstellung erfundungsgemäßer mehrschichtiger Lackierungen**

5    **1.1 Die Herstellung des Bestandteils (IA)**

**1.1.1 Die Herstellung eines anionischen Polyelektrolyten (IC)**

1424,2 Teile Butylglykol wurden in einem Harzreaktor vorgelegt und auf 140 °C  
10 erhitzt. Anschließend wurde eine Mischung aus 1280 Teilen n-Butylacrylat, 144,2  
Teilen Acrylsäure, 28,5 Teilen Peroxid TBPB (tert.-Butylperbenzoat) und 188 Teilen  
Butylglykol während zwei Stunden unter Rühren zudosiert. Die resultierende  
Mischung wurde danach unter Rühren während vier Stunden auf 140 °C erhitzt. Die  
15 resultierende Lösung des Polymerisats wies einen Festkörpergehalt von 50% auf. Das  
Kopfgruppenäquivalentgewicht des Polymerisats lag bei 712 g/mol. Bei den  
Kopfgruppen handelt es sich bekanntermaßen um den hydrophilen Teil eines Tensids.

**1.1.2 Die Herstellung eines Ammoniumgruppen enthaltenden Polyelektrolyten  
(ID)**

20                  490 Teile Epikote<sup>R</sup> 1001 (Epoxidharz der Firma Shell mit einem  
Epoxidäquivalentgewicht von 490 g/mol) wurden in 190,1 Teilen Butylglykol  
aufgelöst und auf 100 °C erhitzt. Hiernach wurden 373,8 Teile DETA Ketimin  
(Diketimin hergestellt aus Diethylentriamin und Methylisobutylketon, 75%-ig in  
25 Methylisobutylketon) hinzugegeben, und die resultierende Reaktionsgemisch wurde  
während drei Stunden unter Rühren auf 100 bis 115 °C erhitzt. Anschließend wurden  
36 Teile Wasser zur Hydrolyse der Ketimingruppen zugesetzt. Es resultierte eine

Lösung mit einem Festkörpergehalt von 54%. Das Kopfgruppenäquivalentgewicht des kationischen Polyelektrolyten (ID) lag bei 712 g/mol.

### **1.1.3 Die Beschichtung von Blechen mit dem Bestandteil (IA)**

5

Eine Lösung des Polyelektrolyten (IC), entsprechend 1424 Teilen Polyelektrolyt (C), und eine Lösung des Polyelektrolyten (ID), entsprechend 1099 Teilen Polyelektrolyt (ID) (vgl. die Beispiele 1.1.1 und 1.1.2), wurden miteinander vermischt, so daß das molare Verhältnis der Kopfgruppen bei 1: 1 lag. Die so erhaltene flüssige Phase (IG) 10 wurde auf blanke Bleche von 0,13 mm Dicke aufgerakelt, so daß eine Trockenfilmdicke von 60 µm resultierte. Anschließend wurde der Film auf dem Blech während einer Stunde bei 130 °C eingebrennt.

Es wurden glatte, harte Filme des Bestandteils (IA) mit hoher Flexibilität erhalten. 15 Sie waren beständig gegenüber wäßrigen Lösungen von Salzen und verdünnten Säuren. Die beschichteten Bleche konnten bis zu einem T-Bend von 0 ohne Filmabplatzungen umgeformt werden.

Kleinwinkel-röntgendiffraktometrische Messungen an den Filmen ergaben 20 Streu Peaks, welche auf das Vorliegen mesomorpher Strukturen hinwiesen.

## **1.2 Die Herstellung der erfindungsgemäßen mehrschichtigen Lackierungen**

### **1.2.1 bis 1.2.4**

25 Die gemäß dem Beispiel 1.1.3 hergestellten beschichteten Bleche wurden bei den Beispielen 1.2.1 bis 1.2.3 mit wäßrigen, thermisch härtbaren Beschichtungsstoffen (IIB) beschichtet, so daß jeweils eine Trockenschichtdicke von 12 bis 15 µm

resultierte. Anschließend wurden die Beschichtungsstoffe während 10 min bei 80 °C belüftet und anschließend während 45 min bei 145 °C eingearbeitet.

Bei dem Beispiel 1.2.4 wurde nach dem Naß-in-naß-Verfahren zunächst ein  
5 Wasserbasislack appliziert, so daß eine Trockenschichtdicke von 12 bis 15 µm resultierte. Nach dem Vortrocknen der Naßschicht während 10 min bei 80 °C wurde ein konventioneller Klarlack appliziert, so daß eine Trockenschichtdicke von 25 bis 30 µm resultierte, wonach die beiden Schichten während 30 min bei 130 °C eingearbeitet wurden.

10

Hierbei wurden für das

- **Beispiel 1.2.1** ein handelsüblicher wässriger Coil Coating-Decklack mit einem Polyester als Bindemittel (IIC) und Aminoplastharzen als Vernetzungsmittel (IID) (CD24-7106 der Firma BASF Coatings AG),  
15
- **Beispiel 1.2.2** ein handelsüblicher wässriger Packbandlack (CW24-9093 der Firma BASF Coatings AG),
- **Beispiel 1.2.3** ein handelsüblicher wässriger Einkomponenten-Basislack (FV92-0920 der Firma BASF Coatings AG) und  
20
- **Beispiel 1.2.4** ein handelsüblicher Wasserbasislack (FV9630UF der Firma BASF Coatings AG) und ein handelsüblicher Klarlack (FF950111 der Firma BASF Coatings AG)  
25

verwendet.

Die mit Hilfe der wäßrigen Beschichtungsstoffe (IIB) hergestellten Schichten (IIA) hafteten auf den Schichten aus dem Bestandteil (IA). Insgesamt resultierten korosionsstabile mehrschichtige Lackierungen.

**Patentansprüche**

1. Mehrschichtsystem, enthaltend

5 (I) mindestens einen Bestandteil (IA), welcher mesomorphe Polyelektrolytkomplexe enthält oder hieraus besteht und welcher herstellbar ist, indem man

I.1) in einer flüssigen Phase (IB)

10 I.1.1) mindestens einen polymeren und/oder oligomeren, organischen, anionischen Polyelektrolyten (IC) mit mindestens einem polymeren und/oder oligomeren, organischen, kationischen Polyelektrolyten (ID) und/oder mindestens einem kationischen Tensid (IE)

15

oder

20

I.1.2) mindestens einen polymeren und/oder oligomeren, organischen, kationischen Polyelektrolyten (ID) mit mindestens einem anionischen Tensid (IF)

in stöchiometrischem oder nicht stöchiometrischem Verhältnis umsetzt,

25

I.2) die resultierende flüssige Phase (IG) auf eine Unterlage oder in eine Form gießt und

I.3) sich verfestigen läßt und

I.4) den resultierenden Festkörper (IIH) tempert;

5

sowie

(II) mindestens eine Schicht (IIA), welche dreidimensional vernetzt ist und herstellbar ist, indem man

10

II.1) mindestens einen wäßrigen, thermisch härbaren Beschichtungsstoff (IIB), enthaltend

II.1.1) mindestens ein Bindemittel (IIC) und

15

II.1.2) mindestens ein Vernetzungsmittel (IID),

auf die Oberfläche des Bestandteils (IA) appliziert und

20

II.2) die resultierende Naßschicht (IIE) thermisch härtet.

2. Verfahren zur Herstellung von Mehrschichtsystemen, bei dem man mindestens zwei Bestandteile übereinander appliziert und nach jeder Applikation härtet, dadurch gekennzeichnet, daß man hierbei

25

(I) mindestens einen Bestandteil (IA), welcher mesomorphe Polyelektrolytkomplexe enthält oder hieraus besteht, herstellt, indem man

5 I.1) in einer flüssigen Phase (IB)

)  
10 I.1.1) mindestens einen polymeren und/oder oligomeren, organischen, anionischen Polyelektrolyten (IC) mit mindestens einem polymeren und/oder oligomeren, organischen, kationischen Polyelektrolyten (ID) und/oder mindestens einem kationischen Tensid (IE)

oder

15 I.1.2) mindestens einen polymeren und/oder oligomeren, organischen, kationischen Polyelektrolyten (ID) mit mindestens einem anionischen Tensid (IF)

)  
20 in stöchiometrischem oder nicht stöchiometrischem Verhältnis umsetzt,

I.2) die resultierende flüssige Phase (IG) auf eine Unterlage oder in eine Form gießt und

25 I.3) sich verfestigen lässt und

I.4) den resultierenden Festkörper (IH) tempert;

wonach man auf dem resultierenden Bestandteil (IA)

- 5                   (II) mindestens eine Schicht (IIA), welche dreidimensional vernetzt ist,  
                     herstellt, indem man
- 10                  II.1) mindestens einen wässrigen, thermisch härbaren  
                     Beschichtungsstoff (IIB), enthaltend
- 15                  II.1.1) mindestens ein Bindemittel (IIC) und  
                     II.1.2) mindestens ein Vernetzungsmittel (IID),  
                     auf die Oberfläche des Bestandteils (IA) appliziert und  
                     II.2) die resultierende Naßschicht (IIE) thermisch härtet.

- 20                 3. Reaktives System, umfassend
- 25                 (I) mindestens einen Bestandteil (I.A), enthaltend mindestens einen  
                     mesomorphen Polyelektrolytkomplex aus
- I.1.1) mindestens einem polymeren und/oder oligomeren,  
                     organischen, anionischen Polyelektrolyten (IC) und  
                     mindestens einem polymeren und/oder oligomeren,  
                     organischen, kationischen Polyelektrolyten (ID) und/oder  
                     mindestens einem kationischen Tensid (IE)

oder

5           I.1.2) mindestens einem polymeren und/oder oligomeren, organischen, kationischen Polyelektrolyten (ID) und mindestens einem anionischen Tensid (IF)

sowie

10          (II) mindestens einen wässrigen, thermisch härtbaren Beschichtungsstoff (IIB), enthaltend

II.1.1) mindestens ein Bindemittel (IIC) und

15          II.1.2) mindestens ein Vernetzungsmittel (IID).

4.         Das Mehrschichtsystem nach Anspruch 1, das Verfahren zu seiner Herstellung nach Anspruch 2 oder das reaktive System nach Anspruch 3, dadurch gekennzeichnet, daß man die in flüssiger Phase (B) erzeugten mesomorphen Polyelektrolytkomplexe und/oder ihre Vorstufen durch mehrfaches Ausfällen aus einer Lösung und Wiederauflösen reinigt.

5.         Das Mehrschichtsystem nach Anspruch 1 oder 4, das Verfahren zu seiner Herstellung nach Anspruch 2 oder 4 oder das reaktive System nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß man solche Polyelektrolyte (IC) und

(ID) auswählt, deren Polymerketten (IC) und (ID) für sich selbst gesehen nicht verträglich wären, sondern sich in fester Phase wieder entmischten.

6. Das Mehrschichtsystem nach einem der Ansprüche 1, 4 oder 5 oder das Verfahren zu seiner Herstellung nach einem der Ansprüche 2, 4 oder 5, dadurch gekennzeichnet, daß man den Festkörper (IH) während 1 min bis 10 h tempert.
7. Das Mehrschichtsystem nach einem der Ansprüche 1 oder 4 bis 6 oder das Verfahren zu seiner Herstellung nach einem der Ansprüche 2 oder 4 bis 6, dadurch gekennzeichnet, daß man den Festkörper (IH) bei Temperaturen zwischen 80 bis 300 °C tempert.
8. Das Mehrschichtsystem nach einem der Ansprüche 1 oder 4 bis 7, das Verfahren zu seiner Herstellung nach einem der Ansprüche 2 oder 4 bis 7 oder das reaktive System nach einem der Ansprüche 3 bis 5 oder 7, dadurch gekennzeichnet, daß der Bestandteil (IA), die Schicht (IIA) und/oder der wäßrige, thermisch härtbare Beschichtungsstoff (IIB) Zusatzstoffe (J), insbesondere Polymere, Vernetzer, Katalysatoren für die Vernetzung, Initiatoren, insbesondere Photoinitiatoren, Pigmente, Farbstoffe, Füllstoffe, Verstärkerfüllstoffe, Rheologiehilfsmittel, Netz- und Dispergiermittel, Entschäumer, Haftvermittler, Additive zur Verbesserung der Untergrundbenetzung, Additive zur Verbesserung der Oberflächenglätte, Mattierungsmittel, Verlaufsmittel, Filmbilbehilfsmittel, Trockenstoffe, Hautverhinderungsmittel, Lichtschutzmittel, Korrosionsinhibitoren, Biozide, Flammenschutzmittel, Polymerisationsinhibitoren, insbesondere Photoinhibitoren, und/oder Weichmacher, enthalten.

9. Das Mehrschichtsystem nach einem der Ansprüche 1 oder 4 bis 8, das Verfahren zu seiner Herstellung nach einem der Ansprüche 2 oder 4 bis 8 oder das reaktive System nach einem der Ansprüche 3 bis 5 oder 8, dadurch gekennzeichnet, daß die Schicht (IIA) und/oder der wäßrige, thermisch härtbare Beschichtungsstoff (IIB) Bestandteile enthalten, welche mit aktinischem Licht, insbesondere UV-Strahlung, und/oder Elektronenstrahlung härtbar sind.
- 10 10. Verwendung der Mehrschichtsysteme gemäß einem der Ansprüche 1 oder 4 bis 9 oder der nach dem Verfahren gemäß einem der Ansprüche 2 oder 4 bis 9 hergestellten Mehrschichtsysteme als Formteile und Laminate, insbesondere im Automobilbau.
- 15 11. Verwendung der Mehrschichtsysteme gemäß einem der Ansprüche 1 oder 4 bis 9, der nach dem Verfahren gemäß einem der Ansprüche 2 oder 4 bis 9 hergestellten Mehrschichtsysteme oder des reaktiven Systems nach einem der Ansprüche 3 bis 5, 8 oder 9, in der Automobilserien- und – reparaturlackierung, der industriellen Lackierung, inklusive Coil Coating, und der Möbellackierung.
- 20 12. Gegenstände, insbesondere Automobile, Coils oder Möbel, enthaltend mindestens ein Mehrschichtsystem gemäß einem der Ansprüche 1 oder 4 bis 9 oder mindestens ein nach dem Verfahren gemäß einem der Ansprüche 2 oder 4 bis 9 hergestelltes Mehrschichtsystem.

**Zusammenfassung**

Mehrschichtsystem, welches

- 5       (I) mindestens einen Bestandteil (IA), welcher mesomorphe Polyelektrolyt-komplexe enthält oder hieraus besteht und welcher herstellbar ist, indem man in einer flüssigen Phase (IB) mindestens einen polymeren und/oder oligomeren, organischen, anionischen Polyelektrolyten (IC) mit mindestens einem polymeren und/oder oligomeren, organischen, kationischen Polyelektrolyten (ID) und/oder mindestens einem kationischen Tensid (IE) oder mindestens einen polymeren und/oder oligomeren, organischen, kationischen Polyelektrolyten (ID) mit mindestens einem anionischen Tensid (IF) in stöchiometrischem oder nicht stöchiometrischem Verhältnis umsetzt, die resultierende flüssige Phase (IG) auf ein Unterlage oder in eine Form gießt und sich verfestigen lässt und den resultierenden Festkörper (IH) tempert;
- 10      15

sowie

- (II) mindestens eine Schicht (IIA), welche dreidimensional vernetzt ist und herstellbar ist, indem man mindestens einen wässrigen, thermisch härtbaren Beschichtungsstoff (IIB), enthaltend mindestens ein Bindemittel (IIC) und mindestens ein Vernetzungsmittel (IID), auf die Oberfläche des Bestandteils (IA) appliziert und die resultierende Naßschicht (III) thermisch härtet.
- 20