Package 'exSamp'

April 6, 2021

Version 0.0.1.1000	
Description What the package does (one paragraph).	
License Apache License ($i=2$)	
Encoding UTF-8	
LazyData true	
$\mathbf{Roxygen} \ \operatorname{list}(\operatorname{markdown} = \operatorname{TRUE})$	
RoxygenNote 7.1.1	
Depends R ($i = 4.0.3$)	
dplyr, ggplot2, covr, moments Config/testthat/edition 3 R topics documented:	
analyticalThompsonSampling	
	6
bavesianUpdateBinomial	4
bayesianUpdateBinomial	•
bayesianUpdateBinomial	•
bayesianUpdatePoisson	4
bayesianUpdatePoisson	4
bayesianUpdatePoisson	4
bayesianUpdatePoisson . BinomialExplorationSampling . cdfProductBeta . evaluateDiffThompsonShares . expectedRegret . explorationSampling .	4 4 4
bayesianUpdatePoisson BinomialExplorationSampling cdfProductBeta evaluateDiffThompsonShares expectedRegret explorationSampling generateBinomialOutcome	4 4 6
bayesianUpdatePoisson BinomialExplorationSampling cdfProductBeta evaluateDiffThompsonShares expectedRegret explorationSampling generateBinomialOutcome inSampleRegret	4 4 6 6
bayesianUpdatePoisson BinomialExplorationSampling cdfProductBeta evaluateDiffThompsonShares expectedRegret explorationSampling generateBinomialOutcome inSampleRegret optimalSelected	4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
bayesianUpdatePoisson BinomialExplorationSampling cdfProductBeta evaluateDiffThompsonShares expectedRegret explorationSampling generateBinomialOutcome inSampleRegret optimalSelected proportionalAssignment	
bayesianUpdatePoisson BinomialExplorationSampling cdfProductBeta evaluateDiffThompsonShares expectedRegret explorationSampling generateBinomialOutcome inSampleRegret optimalSelected proportionalAssignment sampleDistribution	4 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
bayesianUpdatePoisson BinomialExplorationSampling cdfProductBeta evaluateDiffThompsonShares expectedRegret explorationSampling generateBinomialOutcome inSampleRegret optimalSelected proportionalAssignment	

analytical Thompson Sampling

Analytical Thompson shares

Description

Get the analytical Thompson shares based on the characteristics of the distributions of treatments.

Usage

analyticalThompsonSampling(dist_cache)

Arguments

dist_cache

List containing the characteristics of the distributions of treatments.

Value

List that contains (i) the analytical Thompson shares and (ii) the absolute error associated to the numerical integration procedure. TODO: be clear about the distribution. Only implemented for bernoulli.

bayesianUpdateBinomial

 $Bayesian\ update\ for\ a\ Binomial\ outcome$

Description

Obtain the posterior of the parameter theta for an outcome distributed as a Binomial with prior Beta.

Usage

```
bayesianUpdateBinomial(treatment, outcome, alpha0 = 1, beta0 = 1)
```

Arguments

 $\begin{array}{lll} \text{treatment} & A \text{ vector.} \\ \text{outcome} & A \text{ vector.} \\ \text{alpha0} & A \text{ vector.} \\ \text{beta0} & A \text{ vector.} \end{array}$

Value

A list with the distribution and parameters of the posterior distribution of theta.

bayesianUpdatePoisson Bayesian update for a poisson outcome

Description

Obtain the posterior of the parameter theta for an outcome distributed as poisson with prior Gamma.

Usage

```
bayesianUpdatePoisson(treatment, outcome, alpha0 = 1, beta0 = 0)
```

Arguments

```
\begin{array}{lll} \text{treatment} & A \text{ vector.} \\ \text{outcome} & A \text{ vector.} \\ \text{alpha0} & A \text{ vector.} \\ \text{beta0} & A \text{ vector.} \\ \end{array}
```

Value

A list with the distribution and parameters of the posterior distribution of theta.

```
BinomialExplorationSampling
```

Full exploration sampling method

Description

Get exploration sampling shares from a sample of outcomes and treatments.

Usage

```
BinomialExplorationSampling(
   treatment,
   outcome,
   alpha0 = 1,
   beta0 = 1,
   sample_resolution = 1e+05,
   treatment_cost = NA
)
```

Arguments

```
\begin{array}{cccc} \text{treatment} & A \ \text{vector.} \\ \text{outcome} & A \ \text{vector.} \\ \text{alpha0} & A \ \text{vector.} \\ \text{beta0} & A \ \text{vector.} \\ \text{sample\_resolution} & A \ \text{number.} \\ \text{treatment\_cost} & A \ \text{vector.} \\ \end{array}
```

Value

A vector with the proportion shares, obtained through exploration sampling, for each treatment.

cdfProductBeta

Product of 1 Beta pdf and k-1 Beta cdfs

Description

Calculate the product of 1 Beta pdf and k-1 Beta cdfs, where k is the number of treatments. The selected treatment that characterizes the Beta pdf is declared with the argument index. The k-1 beta cdfs are calculated using the distributions of the remaining treatments.

Usage

```
cdfProductBeta(x, dist_cache, index)
```

Arguments

x Value at which the pdfs and cdfs are evaluated.

dist_cache List containing the characteristics of the distributions of treatments.

index Scalar denoting the treatment associated to the beta pdf.

Value

product of the beta pdf and k-1 beta cdfs.

evaluateDiffThompsonShares

Difference between Thompson shares and analytical Thompson shares

Description

Get the difference between Thompson shares and analytical Thompson shares.

Usage

```
evaluate {\tt DiffThompsonShares(thompson\_shares, analytical\_thompson\_shares)}
```

Arguments

thompson_shares

Vector containing Thompson shares.

analytical_thompson_shares

List containing the analytical Thompson shares and their associated absolute error.

Value

Minimum difference between Thomson shares and analytical Thompson shares.

expected Regret5

 ${\tt expected Regret}$

 $Expected\ regret$

Description

Generate the expected policy regret of the sample allocation based on p-shares and true treatment effects.

Usage

```
expectedRegret(shares, true_treatment_effects)
```

Arguments

shares

A vector.

 $true_treatment_effects$

A vector.

Value

A number equal to the expected policy regret.

explorationSampling

Exploration sampling

Description

Get exploration sampling shares by modifying the proportion shares obtained through Thompson sampling.

Usage

```
explorationSampling(prop_shares)
```

Arguments

 ${\tt prop_shares}$

A vector.

Value

A vector with the proportion shares, obtained through exploration sampling, for each treatment.

6 inSampleRegret

```
generateBinomialOutcome
```

 $Simulate\ a\ binomial\ outcome$

Description

Simulate a single binomial outcome based on a vector of true treatment effects.

Usage

```
generateBinomialOutcome(single_treatment, true_theta)
```

Arguments

 $single_treatment$

A number between 1 and the number of treatments.

 $true_theta$

An ordered vector with the probabilities of success of each treatment. Its length must be equal to the number of treatments.

Value

A simulated binomial outcome.

 $in {\tt Sample Regret}$

 $In\text{-}sample\ regret$

Description

Generate the in-sample regret of the sample allocation based on p-shares and true treatment effects.

Usage

```
inSampleRegret(treatment, true_treatment_effects, sample_size)
```

Arguments

true_treatment_effects

A vector.

shares

A vector.

Value

A number equal to the expected policy regret.

optimalSelected 7

optimalSelected

 $Optimal\ treatment\ selected$

Description

Find whether the optimal treatment has the highest proportion share.

Usage

```
optimalSelected(shares, true_treatment_effects)
```

Arguments

```
\begin{array}{ccc} \text{shares} & A \ \text{vector.} \\ \text{true\_treatment\_effects} \\ & A \ \text{vector.} \end{array}
```

Value

1 if the highest proportion treatment is the optimal treatment, 0 otherwise.

```
proportionalAssignment
```

Sample based on proportions

Description

Generate a sample of size sample_size based on the proportions in the vector shares.

Usage

```
proportionalAssignment(shares, sample_size)
```

Arguments

```
\begin{array}{ll} \mbox{shares} & \mbox{A vector.} \\ \mbox{sample\_size} & \mbox{A number.} \end{array}
```

Value

A vector with the new sample based on the proportions in the vector shares.

8 thompsonSampling

sampleDistribution

Sample from a posterior distribution.

Description

Sample from a posterior distribution.

Usage

```
sampleDistribution(dist_cache, sample_resolution = 50000)
```

Arguments

```
\label{list_cache} \mbox{$A$ list with the structure of a bayesian $UpdateBinomial output.} \\ \mbox{sample\_resolution}
```

A number.

Value

A matrix with the samples drawn from the posterior distribution.

thompsonSampling

Thompson sampling

Description

Use Thompson sampling to find the proportion shares of each treatment.

Usage

```
thompsonSampling(theta_matrix, treatment_cost = NA)
```

Arguments

```
theta_matrix A matrix. treatment_cost A vector.
```

Value

A vector with the proportion shares, obtained through Thompson sampling, for each treatment.

Index

```
analyticalThompsonSampling, 2
bayesianUpdateBinomial, 2
bayesianUpdatePoisson, 3
BinomialExplorationSampling, 3
cdfProductBeta, 4
evaluateDiffThompsonShares, 4
expectedRegret, 5
explorationSampling, 5
generateBinomialOutcome, 6
inSampleRegret, 6
optimalSelected, 7
proportionalAssignment, 7
sampleDistribution, 8
thompsonSampling, 8
```