Dans cet exercice σ désigne un réel strictement positif.

On considère les trois fonctions définies respectivement sur \mathbb{R} , \mathbb{R} et \mathbb{R}^* par :

$$f_{\sigma}(x) = \begin{cases} 0 & \text{si } x \le 0, \\ \frac{x}{\sigma^2} e^{-\frac{x^2}{2\sigma^2}} & \text{si } x > 0 \end{cases} \quad g(x) = xe^{-x}, \quad h(x) = \frac{2}{ex}$$

 \mathcal{C}_{σ} désigne la courbe représentative de f_{σ} et \mathcal{H} la courbe représentative de h

- 1. Soit $I_{\sigma}(t) = \int_{0}^{t} f_{\sigma}(x) dx$. Calculer $I_{\sigma}(t)$ pour tout $t \geq 0$ et en déduire la limite $\lim_{t \to \infty} I_{\sigma}(t)$ L'année prochaine, on dira que f_{σ} est une fonction de densité.
- 2. f_{σ} est-elle continue?
- 3. (a) Démontrer que g admet un maximum que l'on déterminera.
 - (b) En déduire que :

$$\forall x \in \mathbb{R}_+^*, \quad f_{\sigma}(x) \le h(x).$$

(c) Etudier le cas d'égalité dans l'inégalité précédente puis montrer que pour tout $\sigma \in \mathbb{R}_+^*$, les courbes \mathcal{C}_{σ} et \mathcal{H} ont une tangente commune dont on donnera une équation cartésienne.