[86.03/66.25] Dispositivos Semiconductores 1er Cuatrimestre de 2020

Diseño de un amplificador emisor común

→ Es el problema inverso del análisis.

→ Es el problema inverso del análisis.

Análisis:

Valores de componentes, dispositivo y topología conocidos

Obtengo parámetros del amplificador

→ Es el problema inverso del análisis

Análisis:

Valores de componentes, dispositivo y topología conocidos

Obtengo parámetros del amplificador

Diseño:

Parámetros del amplificador que necesito (llamadas especificaciones o *specs*)

El dispositivo a usar, los valores de los componentes, etc...

¿A que nos referimos con diseño?

Es el problema inverso del análisis

Análisis:

Valores de componentes, dispositivo y topología conocidos

Obtengo parámetros del amplificador

Diseño:

Parámetros del amplificador que necesito (llamadas especificaciones o specs)

El dispositivo a usar, los valores de los componentes del circuito, etc...

Ganancia, resistencia de entrada, resistencia de salida, sin distorsión

Ancho de banda, potencia de salida, bajo ruido, temperatura de operación, costo, etc...

Es el problema inverso del análisis

Análisis:

Valores de componentes, dispositivo y topología conocidos

Obtengo parámetros del amplificador

Diseño:

Parámetros del amplificador que necesito (llamadas especificaciones o *specs*)

El dispositivo a usar, los valores de los componentes, etc...

En general es un proceso más difícil que el análisis:

- Es menos directo.
- Tengo más grados de libertad.
- Es iterativo, requiere prueba y error.
- Existen múltiples soluciones para el mismo problema.

- Búsqueda de info y recurrir a la bibliografía.
- Armar algo en papel usando ecuaciones simples y aproximaciones.
- → Haber practicado con análisis y tener una buena intuición sobre el problema ayuda mucho.

En caso de que el diseño no logre cumplir las especificaciones, debo volver hacia atrás y seguir probando.

(Final 7/7/2015) Dado el siguiente amplificador emisor común hallar $R_{\mathcal{C}}$ y $R_{\mathcal{B}}$ tal que:

- $R_{in} \leq 250 \Omega$
- $V_{OUT} = \frac{1}{2} \cdot V_{CC}$
- P_{DC} sea mínima

Con los valores hallados calcular I_{CQ} y A_{v0} del circuito. Datos: $V_{CC}=10~V$, $\beta=250$, $V_A=100~V$.

(Final 7/7/2015) Dado el siguiente amplificador emisor común hallar $R_{\mathcal{C}}$ y $R_{\mathcal{B}}$ tal que:

- $R_{in} \leq 250 \Omega$
- $V_{OUT} = \frac{1}{2} \cdot V_{CC}$
- P_{DC} sea mínima

Especificaciones

└→ Diseño

Con los valores hallados calcular I_{CQ} y A_{v0} del circuito. Datos: $V_{CC}=10~V$, $\beta=250$, $V_A=100~V$.

• $R_{in} \le 250 \Omega \rightarrow R_{in} = R_B //r_{\pi}$

- $R_{in} \le 250 \Omega \rightarrow R_{in} = R_B //r_{\pi}$
- Cuando I_B es del orden de $\mu A \to R_B$ es del orden de los $10~k\Omega$ a $100~k\Omega$
- r_{π} generalmente es chica, menor a $1 k\Omega$

$$\longrightarrow R_B \gg r_{\pi}$$

- $R_{in} \le 250 \Omega \rightarrow R_{in} = R_B //r_{\pi}$
- Cuando I_B es del orden de $\mu A \to R_B$ es del orden de los $10~k\Omega$ a $100~k\Omega$
- r_{π} generalmente es chica, menor a $1 k\Omega$

$$\rightarrow R_B \gg r_{\pi}$$

Podemos aproximar: $R_{in}=R_B//r_\pi\simeq r_\pi \ \rightarrow \ r_\pi<250~\Omega$

•
$$R_{in} \le 250 \Omega \rightarrow R_{in} = R_B //r_{\pi}$$

- Cuando I_B es del orden de $\mu A \to R_B$ es del orden de los $10~k\Omega$ a $100~k\Omega$
- r_{π} generalmente es chica, menor a $1 k\Omega$

$$\longrightarrow R_B \gg r_{\pi}$$

Podemos aproximar: $R_{in}=R_B//r_\pi\simeq r_\pi \ \rightarrow \ r_\pi<250~\Omega$

$$\rightarrow r_{\pi} = \left[\frac{\partial i_B}{\partial v_{BE}} \mid_{Q}\right]^{-1} = \frac{\beta}{g_m} = \frac{\beta v_{th}}{I_{CQ}} < 250 \,\Omega$$

$$\rightarrow I_{CQ} \ge \frac{\beta \ v_{th}}{250 \ \Omega} = 25 \ mA$$

$$\rightarrow I_{BQ} = \frac{I_{CQ}}{\beta} \ge 100 \ \mu A$$

Toda la potencia es entregada por la fuente

Toda la potencia es entregada por la fuente

$$\longrightarrow P_{DC} = V_{CC} \cdot (I_{CQ} + I_{BQ})$$

Toda la potencia es entregada por la fuente

$$P_{DC} = V_{CC} \cdot (I_{CQ} + I_{BQ})$$

 \longrightarrow Para que sea mínima quiero que I_{CQ} e I_{BQ} sean mínimas

Toda la potencia es entregada por la fuente

$$P_{DC} = V_{CC} \cdot (I_{CQ} + I_{BQ})$$

 \longrightarrow Para que sea mínima quiero que I_{CQ} e I_{BQ} sean mínimas

 \longrightarrow Ahora de la malla de entrada despejo R_B

$$\rightarrow V_{CC} = I_{BQ} \cdot R_B + V_{BE} \rightarrow R_B = \frac{V_{CC} - V_{BE(ON)}}{I_{BQ}} = 93 \text{ k}\Omega$$

wo Notar que se verifica que $R_B\gg r_\pi$

$$V_{OUT} = \frac{1}{2} \cdot V_{CC} = 5 V$$

$$\rightarrow V_{CC} = I_{CQ} \cdot R_C + V_{OUT} \rightarrow R_C = \frac{V_{CC} - V_{OUT}}{I_{CQ}} = 200 \,\Omega$$

$$V_{OUT} = \frac{1}{2} \cdot V_{CC} = 5 V$$

$$\rightarrow V_{CC} = I_{CQ} \cdot R_C + V_{OUT} \rightarrow R_C = \frac{V_{CC} - V_{OUT}}{I_{CQ}} = 200 \,\Omega$$

• Ganancia A_{v0}

$$V_{OUT} = \frac{1}{2} \cdot V_{CC} = 5 V$$

$$\rightarrow V_{CC} = I_{CQ} \cdot R_C + V_{OUT} \rightarrow R_C = \frac{V_{CC} - V_{OUT}}{I_{CQ}} = 200 \,\Omega$$

• Ganancia A_{v0}

$$\to A_{v0} = -g_m \cdot R_{OUT}$$

$$V_{OUT} = \frac{1}{2} \cdot V_{CC} = 5 V$$

$$\rightarrow V_{CC} = I_{CQ} \cdot R_C + V_{OUT} \rightarrow R_C = \frac{V_{CC} - V_{OUT}}{I_{CQ}} = 200 \,\Omega$$

• Ganancia A_{v0}

$$\rightarrow A_{v0} = -g_m \cdot R_{OUT} = -g_m \cdot R_C / / r_o$$

$$\Rightarrow g_m = \frac{\partial i_C}{\partial v_{BE}} \Big|_Q = \frac{I_{CQ}}{v_{th}} = 1$$

$$\Rightarrow r_o = \left[\frac{\partial i_C}{\partial v_{CE}} \Big|_Q \right]^{-1} = \frac{V_A}{I_{CQ}} = 4 k\Omega$$

$$\rightarrow A_{v0} = -190$$

• ¿Que sucede con la tensión de reposo V_{OUT} si pongo un transistor con β mayor?

• ¿Que sucede con la tensión de reposo V_{OUT} si pongo un transistor con β mayor?

$$\longrightarrow \text{Si }\beta\uparrow \to I_{CQ}\uparrow \to V_{RC}\uparrow \to V_{CE}\downarrow \to V_{OUT}\downarrow$$
 (Análisis de incremento)

• ¿Que sucede con la tensión de reposo V_{OUT} si pongo un transistor con β mayor?

- ¿Que sucede con la tensión de reposo V_{OUT} si pongo un transistor con β mayor?
- Considerando un fuente de señal con $R_S = R_{in}$ donde $v_S = \hat{v}_S \cdot \sin(\omega t)$ ¿Cuál será la máxima \hat{v}_S admisible tal que el amplificador no distorsione?

- ¿Que sucede con la tensión de reposo V_{OUT} si pongo un transistor con β mayor?
- Considerando un fuente de señal con $R_s=R_{in}$ donde $v_s=\hat{v}_s\cdot\sin(\omega t)$ ¿Cuál será la máxima \hat{v}_s admisible tal que el amplificador no distorsione?

Distorsiones:
$$\begin{cases} \text{Corte} & \to \hat{v}_{s_1} \\ \text{Saturación} & \to \hat{v}_{s_2} \\ \text{Alinealidad} & \to \hat{v}_{s_3} \end{cases} \to \text{¿Cual es la más limitante?}$$

- ¿Que sucede con la tensión de reposo V_{OUT} si pongo un transistor con β mayor?
- Considerando un fuente de señal con $R_S = R_{in}$ donde $v_S = \hat{v}_S \cdot \sin(\omega t)$ ¿Cuál será la máxima \hat{v}_S admisible tal que el amplificador no distorsione?
- Normalizar los valores de los componentes usando resistencias con 10% de tolerancia (serie E-12) y verificar si se siguen cumpliendo las especificaciones.

- ¿Que sucede con la tensión de rep
- Considerando un fuente de señal o máxima \hat{v}_s admisible tal que el am
- Normalizar los valores de los comp (serie E-12) y verificar si se siguen

	E12 (10%)	E24 (5%)	E48 (2%)	E96 (1%)	E12 (10%)	E24 (5%)	E48 (2%)	E96 (1%)	E12 (10%)	E24 (5%)	E48 (2%)	E96 (1%)
					(continued)				(continued)			
S	100	100	100	100		220	215	215		470	464	464
				102				221				475
			105	105			226	226			487	487
				107				232				499
		110	110	110		240	237	237		510	511	511
ŗ				113				243				523
			115	115			249	249			536	536
				118				255				549
Υ	120	120	121	121	270	270	261	261		560	562	562
				124				267				576
			127	127			274	274			590	590
				130				280				604
۱ţ		130	133	133		300	287	287		620	619	619
' ዘ				137				294				634
1			140	140			301	301			649	649
				143				309				665
	150	150	147	147	330	330	316	316		680	681	681
				150				324				698
			154	154			332	332			715	715
				158				340				732
		160	162	162		360	348	348		750	750	750
				165				357				768
			169	169			365	365			787	787
				174				374				806
	180	180	178	178	390	390	383	383		820	825	825
				182				392				845
			187	187			402	402			866	866
				191				412				887
		200	196	196		430	422	422		910	909	909
				200				432				931
			205	205			442	442			953	953
				210				453				976

- ¿Que sucede con la tensión de reposo V_{OUT} si pongo un transistor con β mayor?
- Considerando un fuente de señal con $R_S=R_{in}$ donde $v_S=\hat{v}_S\cdot\sin(\omega t)$ ¿Cuál será la máxima \hat{v}_S admisible tal que el amplificador no distorsione?
- Normalizar los valores de los componentes y verificar si se siguen cumpliendo las especificaciones.
- Simular y verificar el correcto funcionamiento del amplificador.