Performance Modeling of Computer Systems and Networks

Prof. Vittoria de Nitto Personè

Trace-driven simulation
Case study 1

Università degli studi di Roma Tor Vergata

Department of Civil Engineering and Computer Science Engineering

Copyright © Vittoria de Nitto Personè, 2021 https://creativecommons.org/licenses/by-nc-nd/4.0/

1

terminology

synonymous

- queue/center/node
- job/user/request

in the book usual

- waiting time delay
- response/sojourn time \rightarrow wait

Prof. Vittoria de Nitto Personè

The interarrival time between jobs i-1 and i is $\begin{matrix} r_i=a_i-a_{i-1} \\ \text{where, by definition, } a_0=0 \end{matrix}$ where, by definition, $a_0=0$ $\begin{matrix} r_i & & \\ & &$

Discrete-event simulation

Trace-driven simulation

trace-driven simulation

- The model is driven by external data:
 Given the arrival times a_i and service times s_i, can the delay times d_i be computed?
- For some queue disciplines, this question is difficult to answer
- If the queue discipline is FIFO, d_i is determined by when a_i (the arrival) occurs relative to c_{i-1} (the previous departure)

Prof. Vittoria de Nitto Personè

7

7

J

Discrete-event simulation Output statistics

Output statistics

(intuitiva)

- The purpose of simulation is insight gained by looking at statistics
- The importance of various statistics varies on perspective;
 - User perspective (job): wait time is most important
 - Manager perspective: utilization is critical
- · Statistics are broken down into two categories
 - Job-averaged
 - Time-averaged

Prof. Vittoria de Nitto Personè

10

Discrete-event simulation **Output statistics**

Job-averaged statistics

• Average service time
$$\overline{s} = \frac{1}{n} \sum_{i=1}^{n} s_i$$

Service rate $\frac{1}{\overline{s}}$ -CS empio: \bar{n} = average interiornival e 32 Sec/Job; $\frac{1}{\overline{n}}$ * [306] \bar{s} = average service time e 34.7 sec/Job; $\frac{1}{\overline{s}}$ * [502]

Prof. Vittoria de Nitto Personè

11

11

Discrete-event simulation **Output statistics**

Job-averaged statistics

• The average delay and average wait are defined as

$$\overline{d} = \frac{1}{n} \sum_{i=1}^{n} d_{i}$$

$$\overline{w} = \frac{1}{n} \sum_{i=1}^{n} w_{i} \quad (\text{response time})$$

$$W_{i} = d_{i} + s_{i} \quad \text{diffeson services}$$

$$\text{Tempore services}$$

$$\text{Tempore services}$$

Recall w_i = d_i + $s_i \ \forall \ i$, hence

$$\overline{w} = \frac{1}{n} \sum_{i=1}^{n} w_i = \frac{1}{n} \sum_{i=1}^{n} (d_i + s_i) = \frac{1}{n} \sum_{i=1}^{n} d_i + \frac{1}{n} \sum_{i=1}^{n} s_i = \overline{d} + \overline{s} = \overline{W}$$

Sufficient to compute any two of

con 2 vol. trovo il 3°, vina e bene anche calcalardo da se poi confrontali! (VERIFICO) Prof. Vittoria de Nitto Personè

13

Discrete-event simulation Output statistics

Over the time interval $(0, \tau)$:

time-averaged number in the node: $\bar{l} = \frac{1}{\tau} \int_0^{\tau} l(t) dt$ time-averaged number in the queue: $\bar{q} = \frac{1}{\tau} \int_0^{\tau} q(t) dt$ time-averaged number in service: $\bar{x} = \frac{1}{\tau} \int_0^{\tau} x(t) dt$ $(\bar{z} \text{ Server utilization})$ Def. Utilization The proportion of time that the server is busy

Since $I(t) = q(t) + x(t) \quad \forall t$ $\bar{l} = \bar{q} + \bar{x}$ $\exists e \bar{v} \in [v_1 1]$ Poich: Singula service:

P.32)

Discrete-event simulation

Def. Traffic intensity

The ratio of the arrival rate to the service rate

$$\frac{1/\overline{r}}{1/\overline{s}} = \frac{\overline{s}}{\overline{r}} = \frac{\overline{s}}{a_n/n} = \left(\frac{c_n}{a_n}\right) \overline{x}$$
$$\overline{x} = \frac{n}{c_n} \overline{s}$$

When c_n/a_n is close to 1.0, the traffic intensity and utilization will be nearly equal

Prof. Vittoria de Nitto Personè

19