

Thanks to machine-learning algorithms, the robot apocalypse was short-lived.

Ensemble Methods

Ensemble Methods

- Improve classification accuracy by aggregating the predictions of multiple classifiers
- Construct a set of base classifiers from training data and perform classification by taking a vote on the predictions made by each classifier.
- Consider an ensemble of 25 (non-identical) base classifiers, each with an error rate, ϵ = 0.35
- The ensemble will make a wrong prediction only if more than half (13) of the base classifiers predict incorrectly.
- Error rate of the ensemble: $\sum_{i=13}^{25} {25 \choose i} \varepsilon^i (1-\varepsilon)^{25-i} = 0.06$

Ensemble Classifiers

- For an ensemble classifier to perform better than a single classifier:
 - All base classifiers must perform better than 50% (i.e. better than random guessing)
 - All base classifiers must be independent (not identical)

General Approach

Types of Ensembles

- Homogenous All base classifiers are of the same type
 - Typically these are called "ensemble classifiers"
- Heterogeneous Multiple types of base classifiers
 - Typically these are called "voting classifiers" or "multiple classifier systems"
- The ensemble itself is a supervised learner
 - It is trained then used to make a classification

Bias and Variance

The goal of ensemble methods is to reduce both bias and variance

Methods for constructing an ensemble classifier

- By manipulating the training set (e.g. bagging and boosting)
- By manipulating the input features (e.g. random forests)
- By manipulating the class labels (e.g. multi-class partitioning)
- By manipulating the learning algorithm (e.g. extremely randomized trees)

 Can give each base classifier an equal vote, or can weight each vote based on the accuracy of the base classifier

Bagging

- Bootstrap aggregating Use the bootstrap sampling method (sampling with replacement) to train base classifiers
- Sampling with replacement

Original Data	1	2	3	4	5	6	7	8	9	10
Bagging (Round 1)	7	8	10	8	2	5	10	10	5	9
Bagging (Round 2)	1	4	9	1	2	3	2	7	3	2
Bagging (Round 3)	1	8	5	10	5	5	9	6	3	7

- Build classifier on each bootstrap sample
- Each data instance has probability 1- $(1-1/n)^n$ (converges to 63.2%) of being selected as part of the bootstrap sample

Bagging Algorithm

Algorithm 5.6 Bagging Algorithm

- Let k be the number of bootstrap samples.
- 2: for i = 1 to k do
- Create a bootstrap sample of size n, D_i.
- 4: Train a base classifier C_i on the bootstrap sample D_i .
- 5: end for
- 6: C*(x) = arg max_y ∑_i δ(C_i(x) = y), {δ(·) = 1 if its argument is true, and 0 otherwise.}

Consider 1-dimensional data set:

Original Data:

X	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	1
У	1	1	1	-1	-1	7	1	1	1	1

- Classifier is a decision stump
 - Decision rule: $x \le k$ versus x > k
 - Split point k is chosen based on entropy

$$x \le 0.35 \Rightarrow y = 1$$

 $x > 0.35 \Rightarrow y = -1$

Baggir	ng Rour	ıd 6:									
X	0.2	0.4	0.5	0.6	0.7	0.7	0.7	0.8	0.9	1	$x <= 0.75 \Rightarrow y = -1$
У	1	-1	-1	-1	-1	-1	-1	1	1	1	$x > 0.75 \implies y = 1$
Danain	D	. d. 7.									
	ng Rour		0.4	0.0	0.7	0.0	0.0	0.0	0.0		v 0.75 - -> v 1
Х	0.1	0.4	0.4	0.6	0.7	0.8	0.9	0.9	0.9	1	$x \le 0.75 \Rightarrow y = -1$ $x > 0.75 \Rightarrow y = 1$
У	1	-1	-1	-1	-1	1	1	1	1	1	X > 0.10 2 y - 1
Raggin	ng Rour	74 8·					1				
	0.1	0.2	0.5	0.5	0.5	0.7	0.7	0.8	0.9	1	x <= 0.75 → y = -1
X	0.1	0.2						0.6	0.9	-	$x > 0.75 \implies y = 1$
У	1	1	-1	-1	-1	-1	-1	1	1	1	o o 2 ,
Baggir	ng Rour	nd 9·									
X	0.1	0.3	0.4	0.4	0.6	0.7	0.7	0.8	1	1	$x \le 0.75 \Rightarrow y = -1$
У	1	1	-1	-1	-1	-1	-1	1	1	1	$x > 0.75 \implies y = 1$
Baggir	g Rour	nd 10:									
X	0.1	0.1	0.1	0.1	0.3	0.3	8.0	8.0	0.9	0.9	$x <= 0.05 \rightarrow y = 1$
У	1	1	1	1	1	1	1	1	1	1	$x > 0.05 \implies y = 1$

Summary of Training sets:

Round	Split Point	Left Class	Right Class
1	0.35	1	-1
2	0.7	1	1
3	0.35	1	-1
4	0.3	1	-1
5	0.35	1	-1
6	0.75	-1	1
7	0.75	-1	1
8	0.75	-1	1
9	0.75	-1	1
10	0.05	1	1

- Assume test set is the same as the original data
- Use majority vote to determine class of ensemble classifier

Round	x=0.1	x=0.2	x = 0.3	x=0.4	x=0.5	x=0.6	x=0.7	x=0.8	x=0.9	x=1.0
1	1	1	1	-1	-1	-1	-1	-1	-1	-1
2	1	1	1	1	1	1	1	1	1	1
3	1	1	1	-1	-1	-1	-1	-1	-1	-1
4	1	1	1	-1	-1	-1	-1	-1	-1	-1
5	1	1	1	-1	-1	-1	-1	-1	-1	-1
6	-1	-1	-1	-1	-1	-1	-1	1	1	1
7	-1	-1	-1	-1	-1	-1	-1	1	1	1
8	-1	-1	-1	-1	-1	-1	-1	1	1	1
9	-1	-1	-1	-1	-1	-1	-1	1	1	1
10	1	1	1	1	1	1	1	1	1	1
Sum	2	2	2	-6	-6	-6	-6	2	2	2
Sign	1	1	1	-1	-1	-1	-1	1	1	1

Predicted Class

Random Forests

- An extension of bagged decision trees
- Randomly select a subset of the input features for candidate splits, instead of examining all available features

Extremely randomized trees take the randomness one step further:
 Candidate splitting thresholds are drawn at random and the best of those is selected

Boosting

- Iteratively change the distribution of the training examples so the base classifiers will focus on hard-to-classify examples
- Assign a weight to each example and update that weight at the end of each boosting round.
- Use weight as a sampling distribution to draw a set of bootstrap samples.

Boosting

- Records that are wrongly classified will have their weights increased
- Records that are classified correctly will have their weights decreased

Boosting (Round 1) 7 3 2 8 7 9 4 10 6 Boosting (Round 2) 5 4 9 4 2 5 1 7 4	$\overline{}$
Boosting (Round 2) 5 4 9 4 2 5 1 7 4	3
	2
Boosting (Round 3) (4) (4) 8 10 (4) 5 (4) 6 3	4

- Example 4 is hard to classify
- Its weight is increased, therefore it is more likely to be chosen again in subsequent rounds

AdaBoost

- Base classifiers: C₁, C₂, ..., C_T
- Error rate:

$$\varepsilon_i = \frac{1}{N} \sum_{j=1}^{N} w_j \delta(C_i(x_j) \neq y_j)$$

• Importance of a classifier:

$$\alpha_i = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_i}{\varepsilon_i} \right)$$

AdaBoost Algorithm

• Weight update:
$$w_j^{(i+1)} = \frac{w_j^{(i)}}{Z_i} \begin{cases} \exp^{-\alpha_i} & \text{if } C_i(x_j) = y_j \\ \exp^{\alpha_i} & \text{if } C_i(x_j) \neq y_j \end{cases}$$
 where Z_i is the normalization factor

- If any intermediate rounds produce error rate higher than 50%, the weights are reverted back to 1/n and the resampling procedure is repeated
- Classification: $C^*(x) = \underset{y}{\operatorname{argmax}} \sum_{i=1}^{r} \alpha_i \delta(C_i(x) = y)$

AdaBoost Algorithm

Algorithm 5.7 AdaBoost Algorithm

```
1: \mathbf{w} = \{w_j = 1/n \mid j = 1, 2, \dots, n\}. {Initialize the weights for all n instances.}

    Let k be the number of boosting rounds.

 3: for i = 1 to k do
       Create training set D_i by sampling (with replacement) from D according to w.
      Train a base classifier C_i on D_i.
      Apply C_i to all instances in the original training set, D.
     \epsilon_i = \frac{1}{n} \left[ \sum_j w_j \, \delta(C_i(x_j) \neq y_j) \right] {Calculate the weighted error}
     if \epsilon_i > 0.5 then
         \mathbf{w} = \{w_j = 1/n \mid j = 1, 2, \dots, n\}. {Reset the weights for all n instances.}
       Go back to Step 4.
10:
11:
     end if
     \alpha_i = \frac{1}{2} \ln \frac{1 - \epsilon_i}{\epsilon_i}.
      Update the weight of each instance according to equation (5.88).
14: end for
15: C^*(\mathbf{x}) = \arg \max_y \sum_{j=1}^T \alpha_j \delta(C_j(\mathbf{x}) = y).
```

AdaBoost Example

Consider 1-dimensional data set:

Original Data:

X	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	1
у	1	1	1	-1	-1	-1	-1	1	1	1

- Classifier is a decision stump
 - Decision rule: $x \le k$ versus x > k
 - Split point k is chosen based on entropy

AdaBoost Example

• Training sets for the first 3 boosting rounds:

Boostii	ng Roui	nd 1:								
X	0.1	0.4	0.5	0.6	0.6	0.7	0.7	0.7	0.8	1
у	1	-1	-1	-1	-1	-1	-1	-1	1	1
Boostii	ng Roui	nd 2:								
X	0.1	0.1	0.2	0.2	0.2	0.2	0.3	0.3	0.3	0.3
У	1	1	1	1	1	1	1	1	1	1
_	_									
Boostii	ng Roui	าd 3:								
X	0.2	0.2	0.4	0.4	0.4	0.4	0.5	0.6	0.6	0.7
у	1	1	-1	-1	-1	-1	-1	-1	-1	-1

• Summary:

Round	Split Point	Left Class	Right Class	alpha
1	0.75	-1	1	1.738
2	0.05	1	1	2.7784
3	0.3	1	-1	4.1195

AdaBoost Example

Weights

Round	x=0.1	x=0.2	x = 0.3	x=0.4	x=0.5	x=0.6	x=0.7	x = 0.8	x = 0.9	x = 1.0
1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
2	0.311	0.311	0.311	0.01	0.01	0.01	0.01	0.01	0.01	0.01
3	0.029	0.029	0.029	0.228	0.228	0.228	0.228	0.009	0.009	0.009

Classification

Round	x=0.1	x=0.2	x=0.3	x=0.4	x=0.5	x=0.6	x=0.7	x=0.8	x=0.9	x=1.0
1	-1	-1	-1	-1	-1	-1	-1	1	1	1
2	1	1	1	1	1	1	1	1	1	1
3	1	1	1	-1	-1	-1	-1	-1	-1	-1
Sum	5.16	5.16	5.16	-3.08	-3.08	-3.08	-3.08	0.397	0.397	0.397
Sign	1	1	1	-1	-1	-1	-1	1	1	1

Predicted Class

Multiclass Partitioning

- Can be used when there is a large number of classes
- Randomly partition classes into 2 subsets: A and B
 - Can use half-half, 1-rest, or 1-1 partitions
- Re-label training examples with A/B to train a base classifier
- Repeat random partitioning and re-labeling to train multiple base models

- When a test example is presented, each classifier predicts A or B
- If A is predicted by base classifier 1, all classes in A get a vote, repeat for each base classifier
- All votes are tallied and highest wins

Stacking

- Make multiple classifiers (often, classifiers of different types)
- Classify all of the training points using the multiple base classifiers
- Use the predictions of the base classifiers as additional features into a "stacked" classifier

ID	x1	x2		M1 prediction	M2 prediction		Class
1	5	7	•••	А	В	•••	А
2	6	12		В	А		В
3	2	10		А	А		А