课程内容

- 数制与码制(第一章)
- 逻辑代数(第二章)
- 组合逻辑电路(第四章)
- 半导体存储器 (第五章)
- 时序逻辑电路(第六章)
- 门电路(第三章)
- 脉冲波形的产生和整形电路(第七章)

问题1: 如何使波形较为理想?

问题2: 如何改变脉冲宽度?

问题3: 时钟信号从哪里来?

第七章 脉冲波形的产生和整形电路

问题1: 如何使波形较为理想?

7.2 施密特触发器

7.3 单稳态触发器

问题2:如何改变脉冲宽度?

7.4 多谐振荡器

7.5 555定时器及应用

问题3: 时钟信号从哪里来?

描述矩形脉冲特性的参数

- $1、脉冲幅度 V_{\rm m}$
- $3、下降时间<math>t_{fall}$
- 5、脉冲周期 T

- 2、上升时间 t_{rise}
- $4、脉冲宽度<math>t_w$
- 6、占空比 q= t_w/T

TTL非门电压传输特性曲线 page117

临界不稳定

V_{IH}>1.4V时,T2,T5导通 实际要求V_{IH}>2.0V

7.2 施密特非门的电压传输特性

施密特触发器的特点

- 1. 输入信号从低电平上升的过程中,电路状态转换时对应的输入电平,与输入信号从高电平下降过程中对应的输入转换电平不同。
- 2. 电路状态转换时,通过电路 内部的正反馈过程使输出电 压波形的边沿变得很陡。

$$\Delta V_{\rm T} = V_{\rm T+} - V_{\rm T-}$$

ΔV_T称为回差电压

电压传输特性

普通TTL非门

输入电压 V_I

$$L \rightarrow H$$
 阈值相同 $V_{TH}=1.4V$ $H \rightarrow L$ 但不稳定

施密特非门

输入电压
$$V_I \left\{ egin{array}{ll} L
ightarrow H , 阈值 $V_{T^+} \\ H
ightarrow L , 阈值 $V_{T^-} \end{array}
ight.$$$$

阈值不同,有两个阈值 正向阈值电压V_{T+} 负向阈值电压V_{T-}

施密特非门内部电路?

p350

7.5 555定时器及应用

3个5亿分区

7.5 555定时器及应用

对称结构,约定: S'与Q同侧

电压比较器

Comparator

V₊ > V₋ 时, Vc = 高电平 Vc = H; Vc = 1;

555多功能定时器

当5端接有 $V_{\rm CO}$ 时:

所有结论仍成立

$$V_{RI} = V_{CO}, V_{R2} = \frac{1}{2}V_{CO}$$

将上述
分析中的
$$\frac{1}{3}V_{CC} \longrightarrow V_{CO}$$

输 入			过 渡		输 出	
R_{D}^{\prime}	$v_{\rm I1}$	$v_{_{ m I2}}$	$v_{ m C1}$	$v_{ m C2}$	$v_{ m o}$	T _D 状态
0	X	X	X	X	0	导通
1	$>\frac{2}{3}V_{\rm CC}$	$> \frac{1}{3}V_{\rm CC}$	0	1	0	导通
1	$<\frac{2}{3}V_{\rm CC}$	$>\frac{1}{3}V_{\rm CC}$	1	1	保持	保持
1	$<\frac{2}{3}V_{\rm CC}$	$<\frac{1}{3}V_{\rm CC}$	1	0	1	截止
1	$> \frac{2}{3}V_{\rm CC}$	$<\frac{1}{3}V_{\rm CC}$	0_	0	1	截止

从电压波形知: 此为施密特反相器

$$V_{\text{T+}} = \frac{2}{3}V_{\text{CC}}, V_{\text{T-}} = \frac{1}{3}V_{\text{CC}}$$

$$\Delta V_{\text{T}} = \frac{1}{3}V_{\text{CC}}$$

施密特触发器的应用: 用于脉冲整形

例2 已知施密特非门的输入电压波形,画出输出波形

施密特触发器的应用: 用于脉冲幅度鉴别

例3 已知施密特非门的输入电压波形,画出输出波形

施密特触发器的应用: 1, 用于波形变换

练习1 已知施密特非门的输入电压波形,画出输出波形

练习2 画出下面施密特缓冲门的电压传输特性曲线

施密特缓冲门(同相)

逻辑符号 => 逻辑功能

同相输出特性