

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

1. (Currently Amended): A method for forming a pattern over a substrate, comprising:
 - providing a master having at least one opening;
 - providing a substrate having an etching layer formed thereon;
 - locating the master over the etching layer, the master being separated from the substrate at a distance;
 - filling a resist in the at least one opening of the master; and
 - moving away separating the master from the substrate to leave the resist on the substrate,

wherein the master is separated from the substrate by a few micrometers (μm) during filling the resist in opening of the master.
2. (Original): The method of claim 1, wherein the filling a resist in the at least one opening of the master comprises:
 - contacting a resist supplying roll to the master; and
 - filling the resist in the at least one opening of the master by rotating the resist supplying roll over the at least one opening of the master.
3. (Original): The method of claim 1, wherein the filling a resist in the at least one opening of the master comprises:
 - applying the resist on the master; and
 - planarizing the applied resist on the surface of the master by using a doctor blade.
4. (Canceled).
5. (Original): The method of claim 1, wherein the etching layer is a metal layer.

6. (Original): The method of claim 1, wherein the etching layer is an insulating layer.

7. (Original): The method of claim 6, wherein the insulating layer is formed of one of SiO_x or SiN_x.

8. (Original): The method of claim 1, wherein the etching layer is a semiconductor layer.

9. (Original): The method of claim 1, further comprising hardening the resist.

10. (Previously Prevented): A method for forming a pattern over a substrate, comprising:

providing a master having at least one opening;
style="padding-left: 40px;">providing a substrate having an etching layer formed thereon;
style="padding-left: 40px;">placing the master over an area corresponding to the etching layer to be etched, the master being separated from the substrate at a distance;
style="padding-left: 40px;">applying a resist on the master;
style="padding-left: 40px;">planarizing the applied resist on the surface of the master and filling the resist in the at least one opening by using a doctor blade;
style="padding-left: 40px;">hardening the planarized resist; and
style="padding-left: 40px;">forming a resist pattern on the etching layer by separating the master from the substrate,
wherein the master is separated from the substrate by a few micrometers (μm) during filling the resist in opening of the master.

11. (Canceled).

12. (Previously Prevented): A method for forming a pattern over a substrate, comprising:

providing a master having at least one opening
style="padding-left: 40px;">providing a substrate having an etching layer formed thereon;
style="padding-left: 40px;">placing the master over the etching layer, the opening of the master being corresponding to the etching region to be etched;

contacting a resist supplying roll on the master to fill the resist in the at least one opening of the master, the master being separated from the substrate at a distance; hardening the filled resist in the at least one opening of the master; and forming a resist pattern on the etching layer by separating mechanically the master from the substrate,
wherein the master is separated from the substrate by a few micrometers (μm) during filling the resist in opening of the master.

13. (Canceled).

14. (New) The method of claim 1, wherein the master is separated from the substrate by 1-9 μm during filling the resist in opening of the master.

15. (New) The method of claim 1, the master is separated from the substrate by several micrometers (μm) during filling the resist in opening of the master.

16. (New) The method of claim 10, wherein the master is separated from the substrate by 1-9 μm during filling the resist in opening of the master.

17. (New) The method of claim 10, the master is separated from the substrate by several micrometers (μm) during filling the resist in opening of the master.

18. (New) The method of claim 12, wherein the master is separated from the substrate by 1-9 μm during filling the resist in opening of the master.

19. (New) The method of claim 12, the master is separated from the substrate by several micrometers (μm) during filling the resist in opening of the master.