Cross-lingual Word Embedding

Speaker: TIAN-Junfeng (@rgtjf)

References

[1] arXiv13-Mikolov et al.-Exploiting Similarities among Languages for Machine Translation [2] ICLR17-Smith et al.-Offline Bilingual Word Vectors, Orthogonal Transformations and the Inverted Softmax

[3] ACL17-Meng Zhang et al.-Adversarial Training for Unsupervis-ed Bilingual Lexicon Induction

Recap

How to measure the similarity between words?

e.g. Dog V.S. Cat

Recap

How to measure the similarity between words?

```
e.g. Dog V.S. Cat
```

Solution I

WordNet

- carnivore ['kɑ:nɪvɔ:(r)] (肉食动物)
- feline ['fi:laɪn] (猫科动物), canine ['keɪnaɪn] (.)

Recap

How to measure the similarity between words?

```
e.g. Dog V.S. Cat
```

```
the cat is walking in the bedroom.
the dog is running in the kitchen.
```

Solution II

```
the cat is walking in the bedroom.
the dog is running in the kitchen.
```

- Context Information (Co-occurrence Matrix)
 - word-document (Topic Models)
 - word-word (word2vec)
- However,
 - sparsity
 - curse of dimensionality

Don't count, predict!

CBoW, Skip-gram, etc.

Cross-lingual Word Embeddings

How to measure the similarity between words from different languages?

Solution I

- Bi-lingual Lexicon or Machine Translation
 - expensive, time-consuming, and need experts
 - require large parallel data to build translation model

- approximate isomorphism [ˌaɪsəʊ'mɔ:fɪzəm] 同形
- it is possible to learn an accurate linear mapping from one space to another

How it works

• Acquire:

- monolingual data (hundreds of millions of words)
- seed dictionary (hundreds to thousands of words)

• Learn:

- translation matrix (SGD or other learning algorithm)
- distributed representations of words (CBoW or Skip-gram)

Translation Matrix

Let x, y be distributed word representations for two words in a translation pair.

Then we want to learn a matrix W such that:

$$y = Wx$$

This gives an optimization problem over translation pairs in the seed dictionary:

$$|| rg \min_{W} \sum || W x_i - y_i ||^2$$

Dataset

monolingual data

Language	Training tokens	Vocabulary size
English	575M	127K
Spanish	84M	107K
Czech	155M	505K

- seed dictionary (Google Translator)
 most frequent 5K words / 1k test
- Cz: Czech [tʃek] 捷克语

Baselines

- Edit Distance (morphological structure)
- Word Co-occurrence

 [1]. form count-based word vectors (dictionary size)
 - [2]. count occurrrence of in-dictionary words with a short window (up to 10 words) for each test word in source language / target language [3]. using the dictionary, map the word count vectors from source to target language [4]. for each test word, search for the most similar vector in the targe language

Translation	Edit Distance		Word Co-occurrence		Translation Matrix		ED + TM		Coverage
	P@1	P@5	P@1	P@5	P@1	P@5	P@1	P@5	
$En \rightarrow Sp$	13%	24%	19%	30%	33%	51%	43%	60%	92.9%
$Sp \rightarrow En$	18%	27%	20%	30%	35%	52%	44%	62%	92.9%
$En \rightarrow Cz$	5%	9%	9%	17%	27%	47%	29%	50%	90.5%
$Cz \rightarrow En$	7%	11%	11%	20%	23%	42%	25%	45%	90.5%

- related spellings languages (English and Spanish)
- distant language pairs (English and Czech)
- the word vectors trained on source language should be several times (around 2x-4x) larger than that on the target language.

With more data...

Performance doubles if the amount of data increases by two orders of magnitude.

Spanish word	Computed English Translations	Dictionary Entry
emociones	emotions	emotions
	emotion	
	feelings	
protegida	wetland	protected
	undevelopable	
	protected	
imperio	dictatorship	empire
	imperialism	
	tyranny	
determinante	crucial	determinant
	key	
	important	
preparada	prepared	prepared
	ready	
	prepare	
millas	kilometers	miles
	kilometres	
	miles	
hablamos	talking	talk
	talked	
	talk	
destacaron	highlighted	highlighted
	emphasized	
	emphasised	

More Findings

Orthogonal Transformations

ullet define similarity matrix $S=YWX^T$

$$S_{ij} = y_i^T W x_j = y_i \cdot (W x_j)$$

ullet define a second similarity matrix $S' = XQY^T$

$$S'_{ji} = x_j^T Q y_i = x_j \cdot (Q y_i)$$
 $S' = S^T, S^T = X W^T Y^T \Rightarrow Q = W^T$

$$ullet x \backsim W^T y, y \backsim W x \Rightarrow x \backsim W^T W x$$

How it works

```
under orthogonality (W^TW=I)
rg \min_{W} \sum_{i} ||y_{i*} - Wx_{i*}||
= rg \min_{W} \sum_{i} (|y_{i*}|^2 + |x_{i*}|^2 - 2y_{i*}^T W x_{i*})
= rg \max_{W} \sum_{i} y_{i*}^T W x_{i*}
= \arg \max_{W} Tr(XWY^T)
= \operatorname{arg\ max\ }_{W} Tr(Y^{T}XW)(Tr(AB) = Tr(BA))
Perform SVD on Y^TX = U\Sigma V^T
= \operatorname{arg\ max\ }_{W} Tr(U\Sigma V^{T}W)
= \arg \max_{W} Tr(\Sigma V^T W U)
\Rightarrow V^T W U = I
\Rightarrow W = VU^T
```

TLDR, just tell me what to do!

```
def learn_transformation(source_matrix, target_matrix, nor
    Source and target matrices are numpy arrays, shape
    (dictionary_length, embedding_dimension). These contai
    word vectors from the bilingual dictionary.
    # optionally normalize the training vectors
    if normalize_vectors:
        source_matrix = normalized(source_matrix)
        target_matrix = normalized(target_matrix)
    # perform the SVD
    product = np.matmul(source_matrix.transpose(), target_
    U, s, V = np.linalg.svd(product)
    # return orthogonal transformation which aligns source
    return np.matmul(U, V)
```

21

Table 1: Translation performance using the expert training dictionary, English into Italian.

Precision	Mikolov et al.	Dinu et al.	CCA	SVD	+ inverted softmax	+ dimensionality reduction
@1	0.338	0.385	0.361	0.369	0.417	0.431
@5	0.483	0.564	0.527	0.527	0.587	0.607
@10	0.539	0.639	0.581	0.579	0.655	0.664

Table 2: Translation performance using the expert training dictionary, Italian into English.

Precision	Mikolov et al.	Dinu et al.	CCA	SVD		+ dimensionality reduction
@1	0.249	0.246	0.310	0.322	0.373	0.380
@5	0.410	0.454	0.499	0.496	0.577	0.585
@10	0.474	0.541	0.570	0.557	0.631	0.636

And if, without any cross-lingual signals as supervision

Adversarial Game

Adversarial Game

- ullet G is a mapping function: $f: \mathbb{R}^d {
 ightarrow} \mathbb{R}^d$
- ullet D is a binary classfier to distinguish between fake target word embedding G(x) and real ones y

Adversarial Game

Model (a).

$$L_D = -\mathrm{log}\; D(y) - \mathrm{log}\; (1 - D(G(x)))$$
 $L_G = -\mathrm{log}\; D(G(x))$

• Model (b).

$$L_G = -\mathrm{log}\; D_1(G(x)) - \mathrm{log}\; D_2(G^T(x))$$

• Model (c).

$$L_R = -\cos \left(x, G^T G x \right)$$

method	# seeds	accuracy (%)
MonoGiza w/o emb.	0	0.05
MonoGiza w/ emb.	0	0.09
TM	50	0.29
IM	100	21.79
IA	50	18.71
IA	100	32.29
Model 1	0	39.25
Model 1 + ortho.	0	28.62
Model 2	0	40.28
Model 3	0	43.31

Table 2: Chinese-English top-1 accuracies of the MonoGiza baseline and our models, along with the translation matrix (TM) and isometric alignment (IA) methods that utilize 50 and 100 seeds.

Conslustion

- 1. Translation Matrix
- 2. Orthogonal Transformations
- 3. Adversarial Game

Future work

- 1. distant language pairs
- 2. multilingual task
- 3. low-resource language