1. Let f_n be the n^{th} Fibonacci number. Prove that, for n > 0: $f_1^2 + f_2^2 + \cdots + f_n^2 = f_n f_{n+1}$

Solution: By the recursive definition of the Fibonacci sequence: $f_{n+2} = f_n + f_{n+1}$ or $f_n = f_{n-1} + f_{n-2}$ or $f_{n+1} = f_n + f_{n-1}$

Proof Using Mathematical Induction

$$P(n): f_1^2 + f_2^2 + \dots + f_n^2 = f_n f_{n+1} \text{ for } n > 0$$

Basis Step:
$$P(1): f_1^2 = 1^2 = 1, f_n f_{n+1} = (1)(1) = 1, 1=1$$
 True

Inductive Step: Show $P(k) \implies P(k+1)$

$$P(k): f_1^2 + f_2^2 + \dots + f_k^2 = f_k f_{k+1}$$

$$P(k+1): f_1^2 + f_2^2 + \dots + f_k^2 + f_{k+1}^2 = f_{k+1}f_{k+2}$$

We can replace the part of P(k+1) that is the same as P(k) with the equivalent to P(k)

Now,
$$f_k f_{k+1} + f_{k+1}^2 = f_{k+1} f_{k+2}$$

$$f_k f_{k+1} + f_{k+1}^2 = f_k f_{k+1} + f_{k+1} f_{k+1} = f_{k+1} (f_k + f_{k+1})$$

By using the definition of the Fib. Seq. we can rewrite $f_k + f_{k+1}$ as f_{k+2} . This gives us $f_{k+1}f_{k+2}$ which equals P(k+1), so the inductive step is proved Q.E.D

2. Find f(2), f(3), f(4), and f(5) if f is defined recursively by f(0) = -1, f(1) = 2, and for n = 1, 2, 3, ...

```
(a) f(n+1) = f(n) + 3f(n-1)
```

Solution:

f(2) = f(1+1) : f(1) + 3f(0) = 2 + 3(-1) = -1 (n = 1)

f(3): f(2) + 3f(1) = -1 + 3(2) = 5 (n = 2)

f(4): f(3) + 3f(2) = 5 + 3(-1) = 2 (n = 3)

f(5): f(4) + 3f(3) = 2 + 3(5) = 17 (n = 4)

(b) $f(n+1) = (f(n))^2 \cdot f(n-1)$

Solution:

f(2): $(f(1))^2 \cdot f(0) = 4 * -1 = -4$

f(3): $(f(2))^2 \cdot f(1) = 16 * 2 = 32$

f(4): $(f(3))^2 \cdot f(2) = 32^2 * -4 = -4,096$

f(5): $(f(4))^2 \cdot f(3) = 4096^2 * 32 = 536,870,912$

(c) $f(n+1) = 3(f(n))^2 - 4f(n-1)$

Solution:

f(2): 16

f(3): 760

f(4): 1732736

f(5): 9007122134048

(d)
$$f(n+1) = \frac{f(n-1)}{f(n)}$$

Solution:

f(2): f(0)/f(1) = -1/2 = -0.5

f(3): f(1)/f(2) = 2/-0.5 = -4

f(4): f(2)/f(3) = -0.5/-4 = 1/8 = 0.125

f(5): f(3)/f(4) = -4/0.125 = -32

3. You have a locked box which has a five-digit pin. Since this is 2021, it is fair to assume that you will open the box on the very last attempt. How many attempts would it take?

Solution:

There are 5 spaces that contain a digit 0-9 which is 10 digits. We can repeat numbers and the order does not matter, so the last attempt will occur at the 10⁵ th attempt.

- 4. Suppose you are a minimalist and have only 4 shirts of colors blue, red, black, orange and pants of colors blue, black and tan.
 - (a) How many combinations of shirts and pants are possible?

Solution: $4 \times 3 = 12$

(b) How many combinations of shirts and pants are possible if you are cannot wear a pant and a shirt of the same color?

Solution: Total possibilities- $4 \times 3 - 2 = 10$. Because you cannot wear a combination of blue or black clothes.

5. How many bitstrings of length 5 contain the sub-string 010 or 000?

Solution: Let's suppose we have a string x which can take values of length 3 - 010 and 000. We now have 3 positions to work with. Therefore total number of combinations are $3 \times 2 \times 2^2 = 24$, because x can be at 3 positions and can take on 2 values. But there are some overlap values. For example, 01000 will be counted twice. The possible overlapping cases are 01000,00010,00000(thrice),01010,10000,00001. Total possible cases 24 - 7 = 17.

6. There are 28 different time periods during which classes at a university can be scheduled per room. If there are 539 different classes, what is the minimum number of different rooms that will be needed?

Solution: There exists a time period that will have at least $\lceil 539/28 \rceil = 20$ classes during it. So 20 different rooms will be needed.

- 7. Suppose that valid passwords must be strings of length 10 containing only numbers and letters.
 - (a) How many passwords exist if uppercase and lowercase letters are indistinguishable from one another?

Solution: Each character can be either a number - 0-9 or a letter a-z. Since the case doesn't matter, each character can be chosen from a possible 36 character set. Number of valid passwords - 36^{10} .

(b) How many passwords exist if uppercase and lowercase letters are distinguishable?

Solution: Each character can be either a number - 0-9 or a letter a-z. Since the case does matter, each character can be chosen from a possible 62 character set (Because each letter and its capital are distinct). Number of valid passwords - 62^{10} .

(c) How many passwords exist if passwords must contain at least one uppercase and at least one lowercase letter?

Hint: Let $U = \{ \text{Passwords with at-least 1 uppercase letter} \}$, let $L = \{ \text{Passwords with at-least 1 lowercase letter} \}$, let $T = \{ \text{All possible passwords } \}$.

Solution:

$$\begin{split} |U\cup L| &= |U| + |L| - |U\cap L| \text{ (Principle of Inclusion-Exclusion / Subtraction Rule)} \\ |T| - |U^C| + |T| - |L^C| - |T| + |(U\cup L)^C| \text{ (Universal set - complement of a set = original set)} \\ &= |T| - |U^C| - |L^C| + |(U\cup L)^C| \text{ (Cancel)} \\ &= 62^{10} - 36^{10} - 36^{10} + 10^{10} \end{split}$$