DISC Course: Multi-agent Network Dynamics and Games

Homework 3

Hai Zhu

Delft University of Technology

h.zhu@tudelft.nl

April 23, 2018

Problem 1

Solution: a) For different values of x,

• Case 1: x = 0. The payoff matrix is

1,1	2,0
0,2	3,3

There are two pure strategy Nash equilibria: (e_1, e_1) and (e_2, e_2) .

Apparently, (e_2, e_2) is a strict symmetric Nash equilibrium. Thus, e_2 is an evolutionary stable strategy (Corollary 5.53 in [1]). For e_1 , since we have $\pi(e_1, e_1) > \pi(e_2, e_1)$, thus e_1 is also an evolutionary stable strategy.

• Case 2: x = 1. The payoff matrix is

There are two pure strategy Nash equilibria: (e_1, e_1) and (e_2, e_2) .

Similarly, since (e_2,e_2) is a strict symmetric Nash equilibrium. Thus, e_2 is an evolutionary stable strategy (Corollary 5.53 in [1]). For e_1 , we have $\pi(e_1,e_1)=\pi(e_2,e_1)$ but $\pi(e_1,e_2)<\pi(e_2,e_2)$. So e_1 is not an evolutionary stable strategy.

• Case 3: x = 2. The payoff matrix is

1,1	2,2
2,2	3,3

There is only one pure strategy Nash equilibria: (e_2, e_2) .

Note that the only one pure strategy Nash equilibrium is strict symmetric. Thus e_2 is the evolutionary stable strategy (Corollary 5.53 in [1]).

b) Recall the definition of weakly dominated strategy [1]:

Definition 1. A strategy s_i of player i is termed weakly dominated if there exists another strategy t_i of player i satisfying the following two conditions:

(i) For every strategy vector s_{-i} of other players,

$$\pi(s_i, s_{-i}) \le \pi(t_i, s_{-i}) \tag{1}$$

(ii) There exists a strategy vector t_{-i} of other players such that

$$\pi(s_i, t_{-i}) < \pi(s_i, t_{-i}) \tag{2}$$

If the equal condition in equation (1) is removed, then the above definition is refined to "strictly dominated".

In the given game, since X is weakly dominated and (X, X) is a Nash equilibrium, we have

$$c = a \tag{3}$$

$$d > b$$
 (4)

We can compute

$$\pi(X, X) = a \tag{5}$$

$$\pi(Y, X) = c \tag{6}$$

We further compute that

$$\pi(X,Y) = b \tag{7}$$

$$\pi(Y,Y) = d \tag{8}$$

Thus we have $\pi(X,X)=\pi(Y,X)$ but $\pi(X,Y)<\pi(Y,Y)$. Hence, X is not an evolutionary stable strategy.

Problem 2

Solution: a) Let $s_1 = e_1$ the first pure strategy of player 1. We can suppose $t_i = e_2, e_3, e_4$ and check if it satisfies the above conditions. The result they all do not satisfy the conditions since

$$\pi(e_1, e_2) > \pi(e_2, e_2)$$

$$\pi(e_1, e_1) > \pi(e_3, e_1)$$

$$\pi(e_1, e_3) > \pi(e_4, e_3)$$
(9)

which contradicts with equation (1). Hence, the first pure strategy of player 1 is not dominated by a pure strategy.

b) We suppose that it is weakly dominated by a mixed strategy $p = [p_1, p_2, p_3, p_4]^T$. Then the payoff of player 1 by choosing this mixed strategy is

$$\pi(p,q) = p^T A q \tag{10}$$

where $q = [q_1, q_2, q_3, q_4]$ is a strategy of the other player. Then according to the definition of "weakly dominated", we can get the following condition

$$p^T A q \ge e_1^T A q, \ \forall q \in Q \tag{11}$$

$$p^T A q > e_1^T q, \ \exists q \in Q \tag{12}$$

where Q is the strategy space of the other player. The above conditions can be written more clearly as follows

$$[p_1, p_2, p_3, p_4]A \ge [1, 2, 0, -2] \tag{13}$$

$$||[p_1, p_2, p_3, p_4]A|| > ||[1, 2, 0, -2]||$$
 (14)

$$p_1 + p_2 + p_3 + p_4 = 1 (15)$$

To solve the above underdetermined equation, we can use optimization based method such as linear programming. Here is a solution $p = [0, \frac{2}{3}, \frac{1}{3}, 0]^T$. Furthermore, we can valid that this mixed strategy actually strictly dominants the first pure strategy.

- c) Yes. We have shown that the mixed strategy $p = [0, \frac{2}{3}, \frac{1}{3}, 0]^T$ strictly dominants the first pure strategy in previous question.
- **d**) No, it is impossible. According to the Theorem 5.20 in [1], in every Nash equilibrium of a game in strategic form, the pure strategy strictly dominated by a mixed strategy is chosen by the player with probability 0. Since we have shown that the first pure strategy of player 1 is strictly dominated by a mixed strategy, it is impossible that it is at a Nash equilibrium.
 - e) Use the definition of strictly dominated, we can valid the following statements:
 - The first pure strategic e_1 of player 1 is strictly dominated by a mixed strategy $p = [0, \frac{2}{3}, \frac{1}{3}, 0]^T$.
 - The forth pure strategic e_4 of player 1 is strictly dominated by a mixed strategy $p = [0, \frac{2}{3}, \frac{1}{3}, 0]^T$.

Therefore, the set of Nash equilibrium is confined to the space of strategies e_2 and e_3 , esulting in the following two-player payoff table:

It can be verified that

$$\pi(e_3, e_3) > \pi(e_2, e_3) \tag{16}$$

$$\pi(e_3, e_3) > \pi(e_3, e_2) \tag{17}$$

Hence, (e_3, e_3) is a pure strategy Nash equilibrium of the symmetric game.

f) According to the Theorem 5.51 in [1], for any two-player symmetric game, an evolutionary stable equilibrium is also a Nash equilibrium. Since we have shown that there is only one Nash equilibrium (e_3, e_3) of the given game in previous questions, we only need to check if it is evolutionary stable.

Please observe equation (16) and (17). It shows that (e_3, e_3) is a strict symmetric Nash equilibrium, then the conditions for ESS hold (Corollary 5.53 [1]). Hence, e_3 is an evolutionary stable strategy in this game.

Problem 3

Proof. To show that "can be", I only need to give an example to support the statement. Consider the following payoff matrix

$$\begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 2 \\
0 & 0 & 1
\end{bmatrix}$$
(18)

The replicator dynamics are

$$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \\ \dot{x_3} \end{bmatrix} = \begin{bmatrix} -x_1(x_1x_2 - x_2 + x_3(2x_2 + x_3)) \\ -x_2(x_1x_2 - 2x_3 + x_3(2x_2 + x_3)) \\ -x_3(x_1x_2 - x_3 + x_3(x_2 + x_3)) \end{bmatrix}$$
(19)

A ω -limit point is a point where the dynamics are zero. For the replicator dynamics (RP) means that $\pi(e^i, x) = \pi(x, x)$. Furthermore, if $\hat{x} \in \Delta$ and is a ω -limit point then $\hat{x} \in \Delta^{NE}$ (Preposition 3.5 in [2]).

It can be verified that in this game, (e_1,e_1) is the unique Nash equilibrium. However, e_1 is not Lyapunov stable. The proof is given below: Define a ball around e^1 with r>0 as $B_r=\{x\in\Delta|\ ||x-e_1||\le r\}$. Furthermore, let $V(x)=\frac{1}{2}^Tx$ be a Lyapunov function candidate. Then we have $V(x)=x^T\dot{x}$. According to the Theorem 4.3 in [4] for $\forall x^*\in B_r$ if V(x)>0 then e^1 is unstable. If we check for the neighbor mixed strategy of e^1 $x_{test}=[1-\epsilon\ \epsilon\ 0]^T|\epsilon>0$ we get $V(x_{test})=e^2*(2*e^2-3*e+1)>0$ with ϵ sufficiently small. So e_1 is unstable. Futhermore, since all ω -limit point of all orbits x(t) in the interior of simplex converge to e_1 because it is the strongly dominant strategy. Hence, The state is unstable. This completes the proof.

Problem 4

Proof. Recall the definition of asymptotically stable set (Theorem 6.3 [2]):

Definition 2. Suppose that $A \in C$ is a closed set. Then A is asymptotically stable if and only if there exists a neighborhood D of A and a continuous function $v: D \to R_+$ satisfying the following conditions:

$$v(x) = 0$$
 if and only if $x \in A$, (20)

$$v(\xi(t,x)) < v(x) \quad \text{if } x \notin A, t > 0, \text{ and } \xi(s,x) \in D \ \forall s \in [0,t]. \tag{21}$$

For this theorem, there is a proof in [2] (Proposition 3.13). The main idea goes as follows:

Consider that $X \subset \delta$ is a evolutionary stable set (ES set). Then $\forall x \in X$, there exists W_x be a neighbor of x such that:

$$\pi(x,y) > \pi(y,y) \tag{22}$$

 $\forall y \in W_x \setminus \{x\}$. Let $Q_x \in \Delta$ be the set of mixed strategies $y \in \Delta$ that assign positive probabilities to all pure strategies with positive probabilities assigned by x:

$$Q_x = \{ y \in \Delta : C(x) \subset C(y) \}$$
 (23)

Then $V_x = W_x \cap Q_x$ is a (relative) neighborhood of x on which the entropy function H_x is defined. After, we identify a neighborhood P of X which is a basin of attraction for X. Hence, $\forall x \in \Delta \exists \alpha_x \in \mathbb{R} : \alpha_x > 0$ such that the lower contour set $P_x = \{y \in Q_x : H_x(y) < \alpha_x\}$ is contained in the above neighborhood V_x . Let P be the union of all P_x . Then $P \subset \Delta$ is a neighborhood of X (relative to Δ). Furthermore, if $y \in P \setminus \{x\}$, then $y \in P_x$ for some $x \in X$, and $\dot{H}_x(y < 0)$ for each such x.

For each $y \in P$ let $X(y) = \{x \in X : C(x) \subset C(y)\}$ with the function H defined as:

$$H(y) = \min(H_x(y)) \tag{24}$$

By Berge's maximum theorem, H is continuous. Furthermore, $H(y) \ge 0 \forall y \in P$ if and only if $y \in X$. As we defined previously $y \in P \setminus \{x\}$, consequently $\xi(x_0, t) \in P$ and $H(\xi(x_0, t)) < H(x_0 \forall t > 0)$ Hence, X is asymptotically stable.

References

[1] M. Maschler, E. Solan, and S. Zamir. *Game Theory*. Cambridge: Cambridge University Press, 2013.

- [2] Weibull, Jörgen W. Evolutionary Game Theory. MIT Press, 1997.
- [3] W. H. Sandholm, E. Dokumaci, and F. Franchetti. *Dynamo: Diagrams for Evolutionary Game Dynamics*. 2012. http://www.ssc.wisc.edu/whs/dynamo.
- [4] H.K. Khalil. *Nonlinear systems*. Prentice Hall, Upper Saddle River, USA, third edition, 2002.