2024 矩阵分析与应用

作业五

 $1.\mathbf{A}(x,y,z)=(x+2y-z,-y,x+7z)$ 为 R^3 的一个线性算子,记

$$\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\} \quad \mathcal{B}' = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}.$$

- (1) 计算 $[\mathbf{A}]_{\mathcal{B}}$ 和 $[\mathbf{A}]_{\mathcal{B}'}$.
- (2) 求矩阵 \mathbf{Q} 使得 $[\mathbf{A}]_{\mathcal{B}'} = \mathbf{Q}^{-1}[\mathbf{A}]_{\mathcal{B}}\mathbf{Q}$ 成立。
- 2. 设 **T** 为 R^4 的一个线性算子,其定义为 $\mathbf{T}(x_1, x_2, x_3, x_4) = (x_1 + x_2 + 2x_3 x_4, x_2 + x_4, 2x_3 x_4, x_3 + x_4)$. 令 $\mathcal{X} = span\{\mathbf{e}_1, \mathbf{e}_2\}$. 试说明 \mathcal{X} 为 \mathbf{T} 的一个不变子空间,并计算 $[\mathbf{T}_{/\mathcal{X}}]_{\{\mathbf{e}_1,\mathbf{e}_2\}}$.
 - 3. 对于 $\mathcal{R}^{2\times2}$ 空间,

$$\mathcal{B} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

为其一组基,对于该空间中任意矩阵 A,线性算子 T 定义如下:

$$\mathbf{T}(\mathbf{A}) = \frac{\mathbf{A} + \mathbf{A^T}}{2},$$

计算 [T]_B.