TD 1: Modèles bayésiens conjugués

Objectifs:

- 1. Découvrir des exemples d'application concrets des statistiques Bayésiennes.
- 2. Se familiariser avec les lois de probabilités classiques et leur utilisation pratique en modélisation.
- 3. Pratiquer, s'exercer et tester ses connaissances et sa compréhension de la méthode Bayésienne.

Nom	Domaine	Densité	Espérance	Variance
Bernoulli $(p, 0 \le p \le 1)$	{0,1}	$p^x(1-p)^{1-x}$	p	p(1-p)
Binomiale $(n \in \mathbb{N}, 0 \le p \le 1)$	$\{0,\ldots, {\color{red} n}\}$	$\binom{n}{x}p^x(1-p)^{n-x}$	np	np(1-p)
$Poisson(\lambda > 0)$	N	$\frac{\lambda^x e^{-\lambda}}{x!}$	λ	λ
Exponentielle($\lambda > 0$)	\mathbb{R}^+	$\lambda e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
$Normale(\mu \in \mathbb{R}, \ \sigma^2 > 0)$	\mathbb{R}	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	μ	σ^2
$Beta(\alpha, \beta > 0)$	[0,1]	$\frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$
$\operatorname{Gamma}(\alpha,\beta>0)$	\mathbb{R}^+	$\frac{\beta^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x}$	$\frac{\alpha}{\beta}$	$\frac{\alpha}{\beta^2}$
Inverse-Gamma($\alpha > 1, \beta > 0$)	R ⁺	$\frac{\beta^{\alpha}}{\Gamma(\alpha)}x^{-\alpha-1}e^{-\beta/x}$	$\frac{\beta}{\alpha-1}$	$\frac{\beta^2}{(\alpha-1)^2(\alpha-2)}$, si $\alpha > 2$

Table 1: Tableau des distributions de probabilité classiques

Exercice 1 (Modèlisation des sinistres en assurance) — Une compagnie d'assurance automobile souhaite mettre à jour son estimation de la fréquence des sinistres d'un client A après n années. Le nombre de sinistres par an est souvent modélisé par une loi de Poisson car les sinistres sont des événements rares et indépendants. On note ce nombre par la variable aléatoire N qui suit une loi de Poisson $\mathcal{P}(\lambda)$. On rappelle sa densité:

$$\mathbb{P}(N=k) = \frac{\lambda^k e^{-\lambda}}{k!}, \quad k \in \mathbb{N}$$

Les observations des n dernières années du client A notées par N_1, \ldots, N_n sont données par 1, 0, 3, 2, 0 (ici n=5). Comme la moyenne de $\mathcal{P}(\lambda)$ est égale à λ , λ peut être interprétée comme le nombre moyen de sinistre par an. L'assurance a également des données historiques du nombre moyen de sinistres par an pour chacun de ses m clients: μ_1, \ldots, μ_m dont la moyenne et l'écart type sont données par $\bar{\mu} = \frac{1}{m} \sum_{i=1}^m \mu_i = 3.4$ et $\hat{\sigma_{\mu}} = \sqrt{\frac{1}{m} \sum_{i=1}^m (\mu_i - \bar{\mu})^2} = 2$.

Dans toutes les questions suivantes, donnez d'abord les formules en fonction des variables de l'énoncé avant d'utiliser les valeurs empiriques mentionnées.

1. Estimez λ en adoptant une approche fréquentiste. Cet estimateur est noté $\widehat{\lambda}_F$.

- 2. On souhaite à présent adopter une approche Bayésienne en prenant une loi a priori $\lambda \sim \text{Gamma}(\alpha, \beta)$. On note sa moyenne λ_{prior} . Comment peut-on choisir ses paramètres α, β ?
- 3. Déterminez la loi a posteriori $\lambda | N_1, \dots, N_n$.
- 4. À quoi correspond l'estimateur de Bayes dans ce cas?
- 5. Écrivez la formule de l'estimateur de Bayes $\widehat{\lambda}_B$ comme combinaison convexe de la moyenne fréquentiste et de la moyenne a priori, c-à-d, trouvez $Z \in [0, 1]$ tel que:

$$\widehat{\lambda_B} = Z\widehat{\lambda_F} + (1 - Z)\lambda_{\text{prior}}$$

- 6. En théorie de crédibilité, Z est un score associé au client A. Il est appelé "facteur de crédibilité". Pourquoi à votre avis ?
- 7. Expliquez l'influence du nombre d'années d'observation n sur l'estimation.

Exercice 2 (Bayesian A/B testing) – Google souhaite comparer l'efficacité de deux publicités (A et B) en menant un test A/B. Chaque publicité est affichée à un certain nombre d'utilisateurs n_A , n_B . On mesure le taux de conversion θ_A (resp. θ_B), c'est-à-dire la probabilité qu'un utilisateur clique sur la publicité A (resp. B) après l'avoir vue. On note X_A et X_B le nombre de clics respectivement obtenus pour les publicités A et B. Le but de l'étude est de comparer θ_A et θ_B en utilisant d'abord une approche fréquentiste, puis une approche bayésienne. On observe les chiffres suivants: $X_A = 40$, $X_B = 65$, $n_A = 1100$, $n_B = 1300$.

1. Approche Fréquentiste

- 1. Quel est le modèle approprié?
- 2. Proposez un estimateur pour chaque paramètre θ_A et θ_B avec l'approche fréquentiste. On note ces estimateurs $\widehat{\theta}_{Af}$ et $\widehat{\theta}_{Bf}$.
- 3. Montrez que ces estimateurs sont asymptotiquement Gaussiens et déterminer les paramètres de leur limite Gaussienne.
- 4. On suppose que les données des deux publicités sont indépendantes. En déduire la distribution asymptotique de leur différence.
- 5. On considère l'hypothèse $H_0: \theta_A = \theta_B = \theta$, proposez un estimateur de θ . Déduire de la question précédente une statistique de la forme $W \stackrel{\text{def}}{=} \frac{\widehat{\theta_A}_f \widehat{\theta_B}_f}{Z}$ avec Z à déterminer telle que:

$$W \overset{n_A,n_B \to +\infty}{\sim} \mathcal{N}(0,1).$$

6. En déduire un moyen de tester si l'hypothèse $\theta_A < \theta_B$ est vraie.

2. Approche Bayésienne

Google souhaite maintenant adopter une approche bayésienne en utilisant une loi Beta comme a priori :

$$\theta_A \sim \text{Beta}(\alpha_A, \beta_A), \quad \theta_B \sim \text{Beta}(\alpha_B, \beta_B)$$

- 7. Pour quelles valeurs de α, β obtiendrait-on des lois a priori non-informatives?
- 8. Déterminez la loi a posteriori de θ_A et θ_B après observation des données.
- 9. Comment peut-on définir un estimateur bayésien de $\theta_A \theta_B$?
- 10. Proposez une méthode de simulation empirique pour évaluer $\mathbb{P}(\theta_A < \theta_B)$.
- 11. Implémentez cette méthode et comparez le résultat à celui de l'approche fréquentiste.
- 12. Les entreprises en tech qui ont recours à la procédure du test A/B pour décider la meilleure version d'un produit, site-web, système de recommandation etc.. ont tendance à adopter l'approche Bayésienne. Comment pouvez-vous l'expliquer ?

Exercice 3 (Rendements de portefeuille) — Un analyste financier veut estimer la rentabilité moyenne μ d'un portefeuille d'actions. On suppose que les rendements passés X_1, \ldots, X_n suivent une loi normale:

$$X_i | \mu \sim \mathcal{N}(\mu, \sigma^2)$$

Partie 1. σ^2 connue.

On suppose σ^2 connue. L'analyste a une croyance a priori sur μ et modélise cette incertitude par une loi normale :

$$\mu \sim \mathcal{N}(\mu_0, \tau_0^2)$$

- 1. Donnez l'estimateur de μ selon une approche fréquentiste.
- 2. Déterminez la loi a posteriori de μ après observation des rendements passés.
- 3. Déduisez l'estimateur bayésien de μ .
- 4. Expliquez comment cet estimateur prend en compte l'information a priori et les données observées.

Partie 2. σ^2 inconnue.

On suppose maintenant que la variance σ^2 est inconnue et qu'on la modélise avec une loi a priori Inverse-Gamma :

$$\sigma^2 \sim \mathrm{IG}(\alpha_0, \beta_0)$$

- 5. Déterminez la loi jointe a posteriori de (μ, σ^2) après observation des rendements.
- 6. Identifiez la distribution marginale a posteriori de σ^2 .
- 7. Donnez l'estimateur bayésien de μ en intégrant l'incertitude sur σ^2 .
- 8. Comparez cet estimateur avec celui obtenu lorsque σ^2 était supposé connue.

Exercice 4 (Modélisation de durée) — Un hôpital souhaite modéliser le temps d'attente T des patients avant une consultation médicale. On suppose que T suit une loi exponentielle :

$$T|\lambda \sim \operatorname{Exp}(\lambda)$$

où λ représente le taux d'arrivée des patients. L'hôpital utilise une approche bayésienne et modélise λ avec une loi Gamma :

$$\lambda \sim \text{Gamma}(\alpha_0, \beta_0)$$

- 1. Donnez l'estimateur fréquentiste de λ basé sur les durées d'attente observées.
- 2. Déterminez la loi a posteriori de λ après observation des temps d'attente.
- 3. Trouvez l'estimateur bayésien de λ .
- 4. Comparez l'estimateur bayésien et l'estimateur fréquentiste.