10주차 1차시 IPv6 개요

[학습목표]

- 1. IPv4의 한계와 그에 대한 IPv6의 등장배경에 대해 설명할 수 있다.
- 2. IPv6의 특징에 대해 IPv4와 비교를 통해 설명할 수 있다.

학습내용1: IPv4의 한계 및 IPv6의 등장배경

1. IPv6 (Internet Protocol version6) 한계

1) IPv4의 하계

- IP 주소에 대한 수요 증가로 주소 고갈 문제 발생
- 클래스 단위 주소 할당 방식으로 인한 주소의 낭비
- 다양한 서비스 제공, 보안기술 등 새로운 요구 사항 등장

2) IPv6 의 등장

- 1996년 IETF에서 IPv6(IP version 6, RFC 2460)를 표준화
- 기존 IPv4의 32비트 주소길이를 4배 확장한 128비트 주소 길이를 사용(약 3.4×1038(2128)개)
- 보안, 라우팅 효율성 문제, QoS(Quality of Service) 보장, 무선
- 인터넷 지원 등 다양한 기능들을 제공

3) IPv6의 등장배경

학습내용2: IPv6의 특징

1. 확장된 주소공간

- 128 비트의 주소 공간
 - IPv4 주소 부족 문제를 해결할 수 있을 만큼의 주소 공간
 - NAT(Network Address Translation)와 같은 주소 변환 기술도 불필요
- 유니캐스트(Unicast), 애니캐스트(Anycast), 멀티캐스트(Multicast) 주소 형태
- 주소 자동 생성 기능을 지원

2. 새로운 헤더포맷

- IPv4의 일부 헤더 필드를 삭제하고 확장 헤더를 도입
 - 패킷을 중계하는 라우터들의 부하를 줄임
- 헤더를 고정 길이로 변경
 - IPv4의 가변길이 패킷과의 호환을 위해 확장헤더 사용
- 패킷 단편화 관련 필드가 삭제
 - 라우터의 부담을 줄이고, 네트워크의 효율적인 이용
 - 경로 MTU(Maximum Transmission Unit) 탐색 기능 사용
- 체크섬(checksum) 필드 삭제

3. 향상된 서비스의 지원

- 응용 프로그램의 특정 서비스 품질(QoS) 요구
 - 실시간 트래픽 및 비실시간 트래픽 구분
- IPv6 헤더 내에 플로우 레이블(Flow Label)필드 정의
 - 트래픽 플로우에 대한 구분을 수행

4. 보안 기능

- IPv6는 프로토콜 내에 보안관련 기능을 탑재
 - IPSec(Internet Protocol Security)
 - 보안과 관련된 인증 절차, 데이터 무결성 보호, 메시지의 발신지 확인 등의 기능 제공
 - 확장 헤더를 이용하여 네트워크 계층에서의 종단간 암호화를 제공

5. 주소 자동설정

- LAN상의 MAC(Medium Access Control)주소와 라우터가 제공하는 네트워크 프리픽스(prefix)를 결합하여 IP 주소 자동설정
- 시스템 관리나 설정에 필요한 비용과 시간을 줄여줌
- 사용자에게 편리함 제공
 - 예) 이동형 컴퓨터에서 어느 곳에서든 네트워크와 연결을 하면 자동으로 포워딩 주소 설정
- 상태 보존형 자동설정 (Stateful auto-configuration)
 - DHCP(Dynamic Host Configuration Protocol) 서버로부터 주소를 비롯한 모든 네트워크 정보를 얻음
 - 장점
 - 주소의 이용 효율성 향상
 - 호스트의 인증과정 등을 이용하여 보안성 유지
 - 단점
 - 서버의 설치 및 구성과 관리가 복잡
 - 대규모의 데이터베이스를 구축
- 비상태형 자동설정(Stateless auto-configuration)
 - 호스트 측에서 스스로 주소를 생성
 - 호스트가 자신의 인터페이스 정보와 라우터로부터 얻은 네트워크 프리픽스 정보 또는 well-known 프리픽스 정보를 이용하여 자체적으로 IPv6 주소 생성
 - 장점
 - 특별한 서버가 필요 없음
 - 단점
 - 이용 권한 없는 호스트의 접근 등으로 인한 보안 관련 문제

6. IPv4 vs. IPv6

구 분	IPv4	IPv6
주소 길이	32비트	128비트
표시 방법	8비트씩 4부분으로 10진수로 표시 예) 203.252.53.55	16비트씩 8부분으로 16진수로 표시 예) 2002:0221:ABCD:DCBA:0000:0000:FFFF:4002
주소개수	약 43억개	2128개(약 43억× 43억× 43억 개)
주소할당 방식	A,B,C,D등의 클래스단위 비순차적 할당	네트워크 규모, 단말기 수에 따른 순차적 할당
브로드캐스트 주소	있음	없음(대신, 로컬 범위 내에서의 모든 노드에 대한 멀티캐스트 주소 사용)
보안	IPSec 프로토콜 별도 설치	IPSec자체 지원
서비스 품질	제한적 품질 보장 (Type of Service에 의한 서비스 품질 일부 지원)	확장된 품질 보장 (트래픽 클래스, 플로우 레이블에 의한 서비스 품질 지원)
Plug &Play	불가	가능

[학습정리]

- 1. IPv4의 주소 고갈 문제를 해결하기 위해 IETF에서 IPv6를 표준화하였다.
- 2. IPv6는 IPv4 주소 공간의 4배인 128비트의 주소 공간을 갖는다.