MWS LAB2

Piotr Mikołajczyk

26.04.2021

Zad1

a) Dopasuj do tych danych rozkład Poissona (wy estymuj parametr lambda). Sprawdź zgodność otrzymanego rozkładu z zaobserwowanym danymi porównując granicznie rzeczywiste (zaobserwowane) i wynikające z modelu liczby "skrętów w prawo".

Rys.1 – Histogram danych z pliku "skrety.txt" oraz wpisany rozkład Poissona z danych rzeczywistych

Przyjęto parametr lambda jako średnią arytmetyczną z danych w pliku "skrety.txt".

b) Metodą bootstrapu nieparametrycznego oszacuj odchylenie standard. estymatora lambda Wy estymowano odchylenie standardowe estymatora lambda na poziomie ok. 0.1314 (zależnie od wylosowanej próby).

Zad2

Narysuj histogram ww. odstępów. Czy rozkład gamma mógłby być odpowiednim modelem dla zarejestrowanych danych? Metodą momentów oraz metodą największej wiarygodności wyznacz estymatory parametr alfa i beta rozkładu gamma odpowiadające zarejestrowanym danym. Narysuj na jednym wykresie histogram z punktu a. oraz funkcje gęstości rozkładu gamma o parametrach uzyskanych w punkcie b. co można powiedzieć na podstawie tych wykresów? Metodą bootstrapu parametrycznego wyznacz odchylenia standardowe estymatorów z punktu b. oraz przedziały ufności na poziomie ufności 95% dla parametrów alfa oraz beta. Porównaj wyniki uzyskane dla estymatorów metody momentów i estymatorów największej wiarygodności.

Rys.2 – Histogram danych z pliku "fotony.txt" oraz wpisany rozkład Gamma z danych rzeczywistych z wbudowanych funkcji R (czerwonym) oraz z próby i metody momentów (niebieskim)

Ad. Rozkład Gamma uzyskany w punkcie c) przedstawiono na rys. 2. W istocie rozkład gamma wpisuje się w dane z pliku "fotony.txt". W tabeli poniżej zamieszczono wyniki estymacji parametrów alfa oraz beta, korzystając z metody momentów oraz największej wiarygodności. Obydwie metody dają przybliżone wyniki, oraz pasują do danych – obydwie metody mogą być użyte z powodzeniem dla tego typu danych.

$$lpha = rac{\mathrm{E}^2[X]}{\mathrm{Var}(x)}\,,$$

$$eta = rac{\mathrm{E}[X]}{\mathrm{Var}(x)} \ .$$

Wzór 1 – Wzory na alfe oraz bete rozkładu gamma

Tabela 1 – Wyniki estymacji parametrów alfa oraz beta dla metod NW oraz MM

Parametry	Wartości	
NW mean	81.3771962849	
NW var.	6764.30119005086	
NW std.	82.2453718457814	
NW_alpha	0.978999587559961	
NW_beta	83.1228095690244	
MM mean	78.3279443610467	
MM var.	6605.19302894608	
MM std.	81.2723386457292	
MM_alpha	0.928855044953345	
MM_beta	84.3274144729235	
R mean	80.1298932384342	
R var.	6660.6113970392	
R std.	81.2723386457292	
R_alpha	0.963995556512584	
R_beta	83.1226790383947	

Porównując wyniki funkcji wbudowanych w środowisku RStudio , metoda NW daje dała bardziej zbliżone rezultaty do rezultatów funkcji wbudowanych. Metoda momentów jednak również jest dobrym przybliżeniem estymatorów a co za tym idzię współczynników alfa oraz beta.

Tabela 2 – Przedziały ufności estymowanych parametrów alfa oraz beta uzyskanymi Metodami Momentów oraz Największej Wiarygodności

Parametr	Przedział (Długość przedziału	
	5%	95%	
Alfa MM	0.90086849488608	0.954853458373362	0.05398496348
Alfa NW	0.951188928706047	1.00472965173409	0.05354072302
Beta MM	84.0704484220658	84.7454336349784	0.67498521291
Beta NW	82.7960049072605	83.6043299965763	0.80832508931

Za pomocą wzoru 2 oraz

$$\frac{(n-1)s^2}{\chi^2_{right}} < \sigma^2 < \frac{(n-1)s^2}{\chi^2_{left}}$$

Wzór 2 a) – funkcja kwantylowa rozkładu Chi-Squared

Zad3

a) Wyestymuj średnią i wariancje generującego rozkładu

Parametr	Wartość Estymatora	
średnia	3.90435033553125	
wariancja	142.129825251949	

b) Podaj 90%, 95% oraz 99% przedziały ufności dla średniej

Parametr	Przedział ufności		Długość przedziału
średnia	9	11.566138	
	-1.878719	9.687419	
	95%		8.59654992
	-0.3939246	8.20262532	
	90%		7.1466123
	0.3310442	7.4776565	

Wraz z mniejszym przedziałem ufności skraca się przedział oraz odchylenie średniej. Wyznaczone zostały za pomocą funkcji t.test() która jest odpowiednikiem poniższego wzoru.

$$\left[\overline{X}_n - \frac{S}{\sqrt{n}}F_{t_{n-1}}^{-1}\left(\frac{1+\gamma}{2}\right)\text{, }\overline{X}_n + \frac{S}{\sqrt{n}}F_{t_{n-1}}^{-1}\left(\frac{1+\gamma}{2}\right)\right].$$

Wzór 3 – Przedział ufności dla średniej na poziomie ufności gamma

Bibliografia:

[1] Slajdy wykładowe do przedmiotu MWS, Rafał Rytel-Andrianik