Recursion and Backtracking

1. How Recursion Truly Works

At its heart, recursion is the process of a function calling itself to solve a smaller version of the same problem. To avoid an infinite loop, a recursive function must have two key parts:

- Base Case: This is the simplest possible version of the problem, the "stopping condition."
 When the function receives this simple case, it returns a result directly without calling itself again.
- 2. Recursive Step: This is the "work" part. The function breaks the current problem into a smaller, simpler piece and calls itself on that smaller piece. It then uses the result from that recursive call to solve the current problem.

Part	Meaning	
✓ Base Case	The condition to stop recursion (the simplest input)	
Recursive Case	The part where the function calls itself with a smaller input	

Backtracking is a specific, advanced form of recursion. It's a technique for finding solutions to a problem by exploring all possible paths. If a path leads to a dead end or an invalid solution, it "backtracks" (returns from the recursive call) to the previous decision point and tries a different option.

2. Visualizing with the Call Stack

The magic behind recursion is the call stack. Think of it as a stack of plates.

- When a function is called, its state (local variables, parameters) is placed on top of the stack like a new plate.
- If that function calls itself, another new "plate" for the new call is placed on top of the first one.
- When a function hits its base case and returns, its plate is removed from the top of the stack, and execution returns to the function below it.

This Last-In, First-Out (LIFO) process ensures that the function "unwinds" in the correct order, with each call finishing its work after the smaller calls it depended on have finished.

Example: Factorial of N

3. How Recursion Works Internally (Stack)

Every recursive call is pushed onto the **call stack**. When a base case is reached, functions start **returning** (unwinding the stack).

Think Like a Stack:

```
factorial(3)

→ 3 * factorial(2)

→ 2 * factorial(1)

→ 1 * factorial(0)

→ returns 1

→ returns 2→
returns 6
```

LIFO (Last In, First Out): Last function called is the first to complete.

4. Infinite Recursion & Stack Overflow

⚠ If there's **no base case** or it's not reachable, the function keeps calling itself → causes a **StackOverflowError** in Java!

```
int recurse(int n) {
   return recurse(n - 1); // X No base case}
```

5. Recursive Mindset

Ask yourself:

- Can I divide this problem into smaller parts?
- What's the simplest version of this problem (base case)?
- Is the recursive call moving toward the base case?

6. Try This Exercise (Dry Run on Paper)

Print numbers from N to 1 using recursion:

Try for n = 3. \bigwedge Trace on paper:

```
printNto1(3)
    print 3
    print 2
    print 1
    return
```

Backtracking & Recursive Search

Goal: Learn how to try all possibilities, backtrack when needed, and build solutions step-by-step.

This is the core of problems like N-Queens, Sudoku Solver, and Combinations.

What is Backtracking?

```
"Try \rightarrow Check \rightarrow Backtrack \rightarrow Try Next"
```

You explore possible solutions using recursion, **undo** the step (backtrack) when the current path fails, and **try other paths**.

Classic structure:

```
void backtrack(...) {
  if (solution found) return;

for (choices) {
    make choice
    backtrack
    undo choice //  backtrack step
}}
```

Core Problems to Master Backtracking

1. Subsets (Power Set)

```
Input: [1, 2, 3]
Output: [[], [1], [2], [1,2], [3], [1,3], [2,3], [1,2,3]]
```

2. Subset Sum (Find all subset sums)

```
void subsetSums(int[] arr, int i, int sum, List<Integer> result) {
   if (i == arr.length) {
      result.add(sum);
      return;
   }
   subsetSums(arr, i + 1, sum + arr[i], result); // include
   subsetSums(arr, i + 1, sum, result); // exclude
}
```

3. Generate All Permutations

```
Input: [1,2,3]Output: [1,2,3], [1,3,2], [2,1,3]...
```

```
void permute(int[] nums, int index, List<List<Integer>> result) {
   if (index == nums.length) {
      List<Integer> perm = new ArrayList<>();
      for (int num : nums) perm.add(num);
      result.add(perm);
      return;
   }
   for (int i = index; i < nums.length; i++) {</pre>
```

```
swap(nums, index, i);
permute(nums, index + 1, result);
swap(nums, index, i); // backtrack
}}
```

4. Palindrome Partitioning

```
Input: "aab"

Output: [["a", "a", "b"], ["aa", "b"]]
```

```
void partition(String s, int start, List<String> path, List<List<String>>
result) {
    if (start == s.length()) {
        result.add(new ArrayList<>(path));
        return;
    }

    for (int end = start; end < s.length(); end++) {
        String substr = s.substring(start, end + 1);
        if (isPalindrome(substr)) {
            path.add(substr);
            partition(s, end + 1, path, result);
            path.remove(path.size() - 1);
        }
    }
}</pre>
```

Other Challenges

- N-Queens Problem
- Sudoku Solver
- Word Search
- Combination Sum
- Rat in a Maze

Other Patterns

Tree Recursion Patterns

Pattern 1: DFS Traversals (Preorder, Inorder, Postorder)

```
// Inorder: Left > Node > Right
void inorder(TreeNode root) {
    if (root == null) return;         inorder(root.left);
    System.out.print(root.val + " ");
    inorder(root.right);
}
```

```
    Preorder → Node → Left → Right
    Postorder → Left → Right → Node
```

Pattern 2: Find Height (Max Depth)

```
int height(TreeNode root) {
   if (root == null) return 0;
   return 1 + Math.max(height(root.left), height(root.right));
}
```

- 🖈 Pattern: **Bottom-up recursion** 💡 Key: Return value bubbles up from the children.
- Pattern 3: Count Paths / Path Sum / Root-to-Leaf

```
boolean hasPathSum(TreeNode root, int target) {
   if (root == null) return false;
   if (root.left == null && root.right == null) return root.val == target;
   return hasPathSum(root.left, target - root.val) ||
        hasPathSum(root.right, target - root.val);
}
```

- ★ Pattern: Top-down decision making, no return value building (in simpler form).
- Pattern 4: Lowest Common Ancestor (LCA)

```
TreeNode lca(TreeNode root, TreeNode p, TreeNode q) {
   if (root == null || root == p || root == q) return root;

   TreeNode left = lca(root.left, p, q);
   TreeNode right = lca(root.right, p, q);

if (left != null && right != null) return root; // current is LCA return left != null ? left : right;}
```

Divide and conquer with return values.

Linked List Recursion Patterns**

Pattern 1: Reverse a Linked List Recursively

```
ListNode reverse(ListNode head) {
   if (head == null || head.next == null) return head;
   ListNode newHead = reverse(head.next);
   head.next.next = head;
   head.next = null;
   return newHead;}
```

Pattern 2: Find Mid Node (Helper for Rec Merge Sort)

```
ListNode findMid(ListNode head) {
   ListNode slow = head, fast = head;
   while (fast != null && fast.next != null && fast.next.next != null) {
        slow = slow.next;
        fast = fast.next.next;
      }
   return slow;
}
```

- ★ Used in Divide & Conquer patterns.
- Pattern 3: Merge Two Sorted Linked Lists (Recursively)

```
ListNode merge(ListNode l1, ListNode l2) {
   if (l1 == null) return l2;

   if (l2 == null) return l1;

   if (l1.val < l2.val) {
       l1.next = merge(l1.next, l2);
       return l1;
   } else {
       l2.next = merge(l1, l2.next);
       return l2;
   }
}</pre>
```

- You can use this as part of Merge Sort too.
- Pattern 4: Check Palindrome (Recursive Two Pointer)

```
ListNode frontPointer;

boolean isPalindrome(ListNode head) {
    frontPointer = head;
    return recursivelyCheck(head);
}

boolean recursivelyCheck(ListNode current) {
    if (current == null) return true;
    if (!recursivelyCheck(current.next)) return false;

    boolean isEqual = (current.val == frontPointer.val);
    frontPointer = frontPointer.next;

    return isEqual;}
```

Classic recursive technique using stack-like behavior.

Templates

Template 1: Subsequence Pattern

Used when you need to include/exclude elements — classic recursion intro!

Core Structure:

```
void solve(int index, List<Integer> current, int[] arr) {
   if (index == arr.length) {
       System.out.println(current);
       return;
   }
   current.add(arr[index]); // Pick the element
   solve(index + 1, current, arr);
   current.remove(current.size() - 1); // Backtrack
   solve(index + 1, current, arr); // Do NOT pick the element
}
```

Used In:

- All Subsequences
- Subset Sums
- Count number of subsequences with sum k
- Can be converted into DP with memoization later

Template 2: Pick / Not Pick with Return Type (Functional Style)

Return-type version of subsequence for problems like:

"Return all subsequences with sum X", "Return subsets of a string", etc.

Core Structure:

```
List<List<Integer>> solve(int index, int[] arr, List<Integer> current) {
    if (index == arr.length) {
        List<List<Integer>> base = new ArrayList<>();
        base.add(new ArrayList<>(current));
        return base;
}

current.add(arr[index]); // Pick

List<List<Integer>> left = solve(index + 1, arr, current);

current.remove(current.size() - 1);

List<List<Integer>> right = solve(index + 1, arr, current); // Not Pick

left.addAll(right); // Merge results

return left;
}
```

Used In:

- Return all subsequences
- Power set

- Count/print/return variants
- Palindromic partitions (modified)

Template 3: Tree Recursion (Backtracking Style)

The ultimate recursive tool: Used in permutations, N-Queens, Sudoku, etc.

Core Structure:

```
void solve(List<Integer> current, boolean[] used, int[] nums) {
    if (current.size() == nums.length) {
        System.out.println(current);
        return;
    }

    for (int i = 0; i < nums.length; i++) {
        if (used[i]) continue;
        current.add(nums[i]); // Choose
        used[i] = true;

        solve(current, used, nums); // Recurse
        current.remove(current.size() - 1); // Backtrack
        used[i] = false;
}</pre>
```

Used In:

- Permutations
- Combination Sum
- N-Queens
- Sudoku
- Path Finding in grid/maze

Key Pitfalls in Recursion and Backtracking

1. Missing or Incorrect Base Case

This is the most fundamental error in any recursive algorithm. The **base case** is the condition that stops the recursion. If it's missing, incorrect, or can never be reached, the function will call itself infinitely.

- Why it's a problem: This leads to a Stack Overflow Error, as the call stack grows
 indefinitely until the program runs out of memory and crashes.
- **Example**: A function to calculate a factorial that forgets to stop when n equals 0.

2. Forgetting to Backtrack (Corrupted State)

This is the signature mistake in backtracking problems. Backtracking involves making a choice, exploring its consequences recursively, and then **undoing that choice**.

- Why it's a problem: If you forget to undo your choice (e.g., remove a queen from a board, un-mark a cell as visited, remove an element from a subset), the state remains "dirty." All subsequent recursive calls at that level will operate on a corrupted state, leading to incorrect or missing solutions.
- **Example**: In a Sudoku solver, placing a 5 in a cell, finding it leads to a dead end, but forgetting to reset that cell to empty. The algorithm will then proceed as if the 5 was part of the original puzzle.

3. Creating Cycles or Redundant Computations

This is common in problems that traverse graphs, grids, or state spaces (like mazes).

- Why it's a problem: If you don't keep track of the nodes/states visited in the current path,
 the algorithm can enter an infinite loop by moving back and forth between two nodes. Even
 without a loop, it leads to massively redundant computations by exploring the same path
 multiple times.
- **Example**: In a maze pathfinding problem, moving from cell A to B, and then immediately allowing a recursive call to move from B back to A. This is prevented by a visited set or by marking the path on the grid itself.

4. Inefficient State Passing

This is a subtle but significant performance pitfall, especially in languages like C++.

- Why it's a problem: Passing large data structures (like a Sudoku board, a list of results, or the current subset) by value in each recursive call creates a full copy of that data structure every single time. This can be extremely slow and memory-intensive.
- **Example**: Passing a vector<int> for the current subset by value instead of **by reference**. The program will spend more time copying the vector than solving the actual problem.

5. Mishandling the Final Result

Many backtracking problems require you to find all valid solutions or the single best one. Managing how this result is stored can be tricky.

- Why it's a problem: If you use a single object to build a path (like a list of nodes) and add it to your final results list, you might be adding a *reference* to that object. When you later backtrack and modify that object, you inadvertently change the version you already saved in your results.
- **Example**: In the "All Paths" problem, adding the currentPath list to your results, but then continuing to modify currentPath through backtracking. The solution is to add a **deep copy** of currentPath to the results list.