Exercice 1 (Démonstration de cours)

Rappeler la propriété concernant le complémentaire d'une réunion et le complé- On définit une relation binaire sur \mathbb{R}^2 par mentaire d'une intersection. Prouver l'un des deux résultats (au choix).

Exercice 2 (Démonstration de cours)

Rappeler les propriétés concernant l'image directe d'une intersection et l'image directe d'une union. Prouver ces résultats.

Exercice 3 (Démonstration de cours)

Rappeler la définition d'une application bijective et prouver l'unicité de l'application réciproque.

Exercice 4

Soit E, F, G trois ensembles, et $f: E \to F$ et $g: F \to G$ deux applications.

- 1. Prouver que si f et q sont injectives, alors $q \circ f$ est injective.
- 2. Prouver que si f et q sont surjectives, alors $q \circ f$ est surjective.
- 3. Prouver que si f et q sont bijectives, alors $q \circ f$ est bijective, et

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}.$$

Exercice 5

Écrire l'ensemble des parties de $E = \{a, b, c, d\}$.

Exercice 6

Les applications suivantes sont-elles injectives? Surjectives? Bijectives?

$$(a) f: \mathbb{N} \to \mathbb{N}, n \mapsto n+1$$

(a)
$$f: \mathbb{N} \to \mathbb{N}, n \mapsto n+1$$
 (b) $g: \mathbb{Z} \to \mathbb{Z}, n \mapsto n+1$

(c)
$$h: \mathbb{R}^2 \to \mathbb{R}^2, (x,y) \mapsto (x+y,x-y)$$
 (d) $h: \mathbb{R}^2 \to \mathbb{R}, (x,y) \mapsto x+y$

$$(d) h: \mathbb{R}^2 \to \mathbb{R}, (x,y) \mapsto x+y$$

Exercice 7

Soit f et q deux applications de N dans N définies par f(n) = 2n et

$$g(n) = \begin{cases} \frac{n}{2} & \text{si } n \text{ est pair} \\ 0 & \text{sinon} \end{cases}$$

- 1. Déterminer $f \circ q$ et $q \circ f$.
- 2. Les fonctions f et g sont-elles injectives? Surjectives? Bijectives?

Exercice 8

$$(x,y) \sim (x',y') \Longleftrightarrow x = x'.$$

Démontrer que \sim est une relation d'équivalence, et décrire la classe d'équivalence d'un élément $(x_0, y_0) \in \mathbb{R}^2$.

Exercice 9

Est-ce que $A \subset B \cup C$ entraı̂ne $A \subset B$ ou $A \subset C$?

Exercice 10

Soit trois ensembles A, B, C tels que

$$A \cup B = B \cap C$$
.

Montrer que $A \subset B \subset C$.

Exercice 11

Soit E un ensemble et $A, B, C \in \mathcal{P}(E)$.

- 1. Démontrer que si $A \cup B = A \cap B$, alors A = B.
- 2. Démontrer que si $A \cap B = A \cap C$ et $A \cup B = A \cup C$, alors B = C. Une seule des deux conditions suffit-elle?

Exercice 12

On note

$$D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}.$$

Démontrer que l'ensemble D ne peut pas s'écrire comme le produit cartésien de deux sous-ensembles de \mathbb{R} .

Exercice 13

Soit

$$A = \{(x, y) \in \mathbb{R}^2 \mid 4x - y = 1\} \text{ et } B = \{(t + 1, 4t + 3) \mid t \in \mathbb{R}\}.$$

Démontrer que A = B.

Exercice 14

On définit sur \mathbb{Z} la relation $x \sim y$ si et seulement si x + y est pair. Montrer qu'on définit ainsi une relation d'équivalence. Décrire les classes d'équivalence de cette relation.