IV - Algèbre linéaire

I - Systèmes d'équations linéaires : pivot de Gauss

Définition 1 - Système linéaire

Soient $(a_{1,1}, \ldots, a_{1,p}, \ldots, a_{n,1}, \ldots, a_{n,p}, b_1, \ldots, b_n)$ des réels. Le système (\mathscr{S})

$$(\mathscr{S}) \begin{cases} a_{1,1}x_1 + \dots + a_{1,p}x_p &= b_1 \\ a_{2,1}x_1 + \dots + a_{2,p}x_p &= b_2 \\ \vdots &= \vdots \\ a_{n,1}x_1 + \dots + a_{n,p}x_p &= b_n \end{cases}$$

est un système linéaire d'inconnues x_1, \ldots, x_p .

- Un p-uplet (x_1, \ldots, x_p) est solution de (\mathcal{S}) s'il est solution de chacune des lignes du système.
- Deux systèmes sont dits équivalents s'ils ont le même ensemble de solutions.

Exemple 1

Les systèmes suivants sont des systèmes d'équations linéaires :

$$\begin{cases}
2x + 3y + z = 0 \\
x + 5y + 2z = 1
\end{cases}$$

$$\begin{cases}
2x + 3y = 1 \\
2x + y = 3 \\
x + 5y = 2
\end{cases}$$

$$\bullet \ \left\{ 2x + 3y = 1 \right.$$

$$\bullet \ \left\{ 2x + 3y + 5z = 2 \right.$$

$$\begin{array}{ll}
\bullet & \begin{cases}
2x + y &= 3 \\
x + 5y &= 2
\end{cases}
\end{array}$$

Définition 2 - Opérations élémentaires

Nous noterons L_1, \ldots, L_n les lignes du système et appellerons opérations élémentaires sur les lignes du système les transformations suivantes:

- Pour $i \neq j$, l'échange des lignes L_i et L_i , symbolisé par
- Pour $\alpha \neq 0$, la multiplication de la ligne L_i par α , symbolisée par $L_i \leftarrow \alpha L_i$.
- Pour $i \neq j$ et $\beta \in \mathbb{R}$, l'ajout à L_i de la ligne L_i multipliée par β , symbolisé par $L_i \leftarrow L_i + \beta L_i$.

Théorème 1

Le système obtenu par application d'opérations élémentaires sur les lignes est équivalent au système initial.

Principe de l'algorithme du pivot de Gauss : On utilise les opérations élémentaires pour transformer le système en un système échelonné, c'està-dire dans lequel le nombre d'inconnues décroît strictement quand on passe d'une ligne à la suivante.

Algorithme:

- On cherche une ligne où le coefficient α de x_1 est non nul et simple. Notons cette ligne L_{i_0} .
- On échange les lignes 1 et $i_0, L_1 \leftrightarrow L_{i_0}$.
- \bullet On utilise la nouvelle ligne L_1 pour éliminer les occurrences de x_1 dans les lignes suivantes, c'est la ligne pivot. Par exemple, si à la ligne L_2 le coefficient de x_1 est a, on effectue $L_2 \leftarrow \alpha L_2 - aL_1$.
- On reprend ensuite les étapes de l'algorithme en travaillant sur

23

toutes les lignes sauf la première de manière à éliminer x_2 ...

• Enfin, on exprime les solutions en fonction des variables libres.

Définition 3 - Rang d'un système linéaire

Le *rang* du système est le nombre d'équations non triviales du système échelonné.

Théorème 2 - Ensemble de solutions

Soit S l'ensemble des solutions du système (\mathcal{S}) .

- Soit $S = \emptyset$, les équations sont *incompatibles*.
- ullet Soit S est un singleton, le rang est alors égal au nombre d'inconnues.
- Soit S est infini, le rang est alors strictement inférieur au nombre d'inconnues.

Exemple 2 - Résolution de système

Résolvons le système

$$(\mathscr{S}) \begin{cases} 2x + 3y + z &= 7 \\ x - y + 2z &= -3 \\ 3x + y - z &= 6 \end{cases}$$

On utilise l'algorithme du pivot de Gauss : $(x, y, z) \in \mathbb{R}^3$ est solution de (\mathscr{S}_0)

Le système (\mathscr{S}_0) possède une unique solution. L'ensemble des

solutions est

$$\{(1,2,-1)\}$$
.

Exercice 1. Résoudre les systèmes suivants :

1.
$$\begin{cases} x + y &= 2 \\ x - 2y &= 5 \end{cases}$$

2.
$$\left\{ x + 2y + 3z = 1 \right\}$$

II - Espaces vectoriels

On note $\overrightarrow{0_n} = (0, \dots, 0) \in \mathbb{R}^n$. Les lettres n et p désignent des entiers naturels non nuls.

Définition 4 - L'espace vectoriel \mathbb{R}^n

On définit sur \mathbb{R}^n une addition et une multiplication par un réel de la manière suivante :

Addition Si
$$(x_1, \ldots, x_n) \in \mathbb{R}^n$$
 et $(y_1, \ldots, y_n) \in \mathbb{R}^n$, alors

$$(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n).$$

Multiplication par un réel Si $(x_1, \ldots, x_n) \in \mathbb{R}^n$ et $\alpha \in \mathbb{R}$, alors

$$\alpha \cdot (x_1, \dots, x_n) = (\alpha x_1, \dots, \alpha x_n).$$

Exemple 3 - Cas où n=2, 3

• Si n = 2.

$$(1,2) + (3,4) = (4,6)$$

 $(1,5) + (-1,0) = (0,5)$
 $3 \cdot (4,2) = (12,6)$

• Si n = 3.

$$(1,-1,2) + (4,5,-5) = (5,4,-3)$$

 $(1,0,-1) + (3,1,2) = (4,1,1)$
 $2 \cdot (4,1,-2) = (8,2,-4)$

Proposition 1 - Structure d'espace vectoriel

- Propriétés de l'addition. Soit x, y, z des vecteurs de \mathbb{R}^n et $\overrightarrow{0_n} = (0, \dots, 0)$.
 - * Associativité : x + (y + z) = (x + y) + z.
 - * Élément neutre : $x + \overrightarrow{0_n} = \overrightarrow{0_n} + x = x$.
 - * Existence d'un opposé : $x+(-1)\cdot x=(-1)\cdot x+x=\overrightarrow{0}_n$.
 - \star Commutativité : x + y = y + x.
- Propriétés de la multiplication pour un réel. Soit $x, y \in \mathbb{R}^n$ et $\alpha, \beta \in \mathbb{R}$.

$$\lambda \cdot (\mu \cdot x) = (\lambda \mu) \cdot x \mid (\lambda + \mu) \cdot x = \lambda \cdot x + \mu \cdot x$$
$$1 \cdot x = x \quad \lambda \cdot (x + \mu) = \lambda \cdot x + \lambda \cdot y$$

 \mathbb{R}^n est un espace vectoriel. Les éléments de \mathbb{R}^n sont des vecteurs.

III - Familles de vecteurs

Dans tout ce chapitre, p désigne un entier naturel non nul.

III.1 - Sous-espace vectoriel

Définition 5 - Sous-espace vectoriel

Une parție A de \mathbb{R}^n est un sous-espace vectoriel si

- $\bullet \overrightarrow{0_n} \in A$
- pour tout $x, y \in \mathbb{R}^n$ et $\alpha, \beta \in \mathbb{R}, \alpha x + \beta y \in A$.

Exemple 4 - Exemple de sous-espaces vectoriels

- \mathbb{R}^n est un sous-espace vectoriel de \mathbb{R}^n .
- $\{\overrightarrow{0_n}\}$ est un sous-espace vectoriel de \mathbb{R}^n .
- Géométriquement,
 - \star les droites sont des sous-espaces vectoriels de \mathbb{R}^2 ,
 - \star les droites sont des sous-espaces vectoriels de \mathbb{R}^3 ,
 - \star les plans sont des sous-espaces vectoriels de \mathbb{R}^3 .

Définition 6 - Combinaison linéaire

Soit (x_1, \ldots, x_p) une famille de vecteurs de \mathbb{R}^n .

- si $\alpha_1, \ldots, \alpha_p \in \mathbb{R}$, le vecteur $\alpha_1 x_1 + \cdots + \alpha_p x_p$ est une combinaison linéaire des vecteurs (x_1, \ldots, x_p) .
- L'ensemble des combinaisons linéaires de (x_1, \ldots, x_p) est noté :

$$\operatorname{Vect}\{x_1,\ldots,x_p\} = \left\{\sum_{i=1}^p \alpha_i x_i, \, \alpha_1,\ldots,\alpha_p \in \mathbb{R}\right\}.$$

Proposition 2

Soit (x_1, \ldots, x_p) une famille de vecteurs de \mathbb{R}^n . Alors, Vect $\{x_1, \ldots, x_p\}$ est un sous-espace vectoriel de \mathbb{R}^n .

Exemple 5

- $D = \text{Vect}\{(1,2)\} = \{\alpha(1,2), \alpha \in \mathbb{R}\}$ est un sous-espace vectoriel de \mathbb{R}^2 .
- $D = \text{Vect}\{(1,0)\} = \{\alpha(1,0), \alpha \in \mathbb{R}\}$ est un sous-espace vectoriel de \mathbb{R}^2 .
- $D = \text{Vect}\{(1,0,1)\} = \{\alpha(1,0,1), \alpha \in \mathbb{R}\}$ est un sous-espace vectoriel de \mathbb{R}^3 .
- $P = \text{Vect}\{(1,0,0), (0,0,1)\} = \{(\alpha,0,\beta), \alpha, \beta \in \mathbb{R}\} \text{ est un plan de } \mathbb{R}^3.$

III.2 - Bases

Dans cette partie, (x_1, \ldots, x_p) désigne une famille de vecteurs de \mathbb{R}^n .

Définition 7 - Famille libre

La famille (x_1, \ldots, x_p) est *libre* si, pour tout $\alpha_1, \ldots, \alpha_p \in \mathbb{R}$,

$$\sum_{i=1}^{p} \alpha_i x_i = \overrightarrow{0_n} \implies \forall \ i \in [1, p], \ \alpha_i = 0.$$

La famille (x_1, \ldots, x_n) est une famille de vecteurs lin'eairement in'efapendants.

Exemple 6

La famille ((1,2),(3,4)) est une famille libre de \mathbb{R}^2 . En effet, soit $\alpha, \beta \in \mathbb{R}$ tel que $\alpha(1,2) + \beta(3,4) = (0,0)$. Alors,

$$(\alpha + 3\beta, 2\alpha + 4\beta) = (0, 0)$$

De même,

$$\begin{cases} \alpha + 3\beta &= 0 \\ 2\alpha + 4\beta &= 0 \end{cases} \Leftrightarrow \begin{cases} \alpha + 3\beta &= 0 \\ -2\beta &= 0 \end{cases} \Leftrightarrow \begin{cases} \alpha &= 0 \\ \beta &= 0 \end{cases}$$

Exercice 2.

- 1. Montrer que ((1,0),(0,1)) est une famille libre de \mathbb{R}^2 .
- **2.** Montrer que ((1,2,-1),(2,1,1)) est une famille libre de \mathbb{R}^3 .
- **3.** Montrer que ((1,1,1),(0,1,1),(2,0,1)) est une famille libre de \mathbb{R}^3 .

Définition 8 - Famille génératrice

La famille $(x_1, ..., x_p)$ est génératrice si, pour tout $x \in \mathbb{R}^n$, il existe $\alpha_1, ..., \alpha_p \in \mathbb{R}$ tels que $x = \sum_{i=1}^p \alpha_i x_i$.

Exercice 3. Montrer que ((1,0),(0,1)) est une famille génératrice de \mathbb{R}^2 .

Définition 9 - Base

La famille (x_1, \ldots, x_p) est une *base* si elle est génératrice et que ses vecteurs sont linéairement indépendants.

Exemple 7 - Bases canoniques

- ((1,0),(0,1)) est une base de \mathbb{R}^2 .
- ((1,0,0),(0,1,0),(0,0,1)) est une base de \mathbb{R}^3 .

Proposition 3 - Dimension

Si (x_1, \ldots, x_p) et (y_1, \ldots, y_q) sont des bases de \mathbb{R}^n , alors p = q = n. L'entier n est la dimension de l'espace vectoriel \mathbb{R}^n .

Exercice 4.

- 1. Déterminer la dimension de \mathbb{R}^2
- 2. Déterminer la dimension de \mathbb{R}^3
- **3.** Déterminer la dimension de $\{(x,y,z) \in \mathbb{R}^3 ; x+2y+z=0\}$.

Proposition 4 - Caractérisation des bases

Soit (x_1, \ldots, x_p) une famille de vecteurs de \mathbb{R}^n . Il y a équivalence entre :

- (i). (x_1, \ldots, x_p) est une base de \mathbb{R}^n .
- (ii). (x_1, \ldots, x_p) est une famille de vecteurs linéairement indépendants et p = n.
- (iii). (x_1, \ldots, x_p) est une famille génératrice et p = n.

Exercice 5. Montrer que ((1,2,3),(1,0,1),(0,1,-1)) est une base de \mathbb{R}^3

Théorème 3 - Théorème de la base incomplète

Soit (x_1, \ldots, x_p) une famille libre de \mathbb{R}^n . Il existe une famille (y_{p+1}, \ldots, y_n) telle que $(x_1, \ldots, x_p, y_{p+1}, \ldots, y_n)$ soit une base de \mathbb{R}^n .

IV - Applications linéaires

Définition 10 - Application linéaire

Soit $f: \mathbb{R}^n \to \mathbb{R}^p$. L'application f est une application linéaire si pour tout $x, y \in \mathbb{R}^n$ et $\alpha, \beta \in \mathbb{R}$,

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y).$$

L'ensemble des applications linéaires de \mathbb{R}^n dans \mathbb{R}^p est noté $\mathscr{L}(\mathbb{R}^n, \mathbb{R}^p)$.

Exemple 8 - Applications linéaires

- $f: \mathbb{R}^3 \to \mathbb{R}^2, (x, y, z) \mapsto (3x + 2y, x + 2z).$
- $f: \mathbb{R}^3 \to \mathbb{R}^3$, $(x, y, z) \mapsto (3x + 2y, x + 2z, x + y + z)$.
- $f: \mathbb{R}^2 \to \mathbb{R}^3, (x,y) \mapsto (3x + 2y, x + 2y, x + y).$
- $f: \mathbb{R}^2 \to \mathbb{R}, (x,y) \mapsto 3x + 2y$.

Proposition 5

Si $f \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$, alors $f(\overrightarrow{0_n}) = \overrightarrow{0_p}$.

Proposition 6 - Opérations sur les applications linéaires

- Soit $f \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$ et $\alpha \in \mathbb{R}$. Alors, $\alpha \cdot f : x \mapsto \alpha \cdot f(x)$ est une application linéaire de \mathbb{R}^n dans \mathbb{R}^p .
- Soit $f, g \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$. Alors, $f + g : x \mapsto f(x) + g(x)$ est une application linéaire de \mathbb{R}^n dans \mathbb{R}^p .
- Soit $f \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$ et $g \in \mathcal{L}(\mathbb{R}^q, \mathbb{R}^n)$. $f \circ g : x \mapsto f(g(x))$ est une application linéaire de \mathbb{R}^q dans \mathbb{R}^p .

Exemple 9

• Si $f:(x,y,z)\mapsto (2x+y,x+y)$ et $g:(x,y,z)\mapsto (x+y+z,x-y-z)$, alors

$$f + g : (x, y, z) \mapsto (3x + 2y + z, x - z).$$

• Si $f:(x,y)\mapsto x+2y$ et $g:(x,y,z)\mapsto (x+z,y+z)$, alors $f\circ g:(x,y,z)\mapsto x+2y+3z.$

IV.1 - Noyau & Image

Définition 11 - Noyau, Image

Soit $f \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$.

• Le noyau de f, noté Ker(f), est l'ensemble

$$\operatorname{Ker}(f) = \{ x \in \mathbb{R}^n ; f(x) = \overrightarrow{0_p} \}.$$

• L'image de f, notée Im(f), est l'ensemble

$$Im(f) = \{ f(x), x \in \mathbb{R}^n \}.$$

Exemple 10 - TODO

Proposition 7

oit $f \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$.

- Ker f est un sous-espace vectoriel de \mathbb{R}^n .
- Im f est un sous-espace vectoriel de \mathbb{R}^p .

Exemple 11 - TODO

Théorème 4 - Caractérisation des applications linéaires injectives

Soit $f \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$. Les propositions suivantes sont équivalentes.

- (i). f est injective.
- (ii). $\operatorname{Ker}(f) = \{\overrightarrow{0_n}\}.$

Théorème 5 - Théorème du rang (admis)

Soit $f \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$. Alors,

$$\dim(\operatorname{Ker} f) + \operatorname{Rg} f = \dim(\mathbb{R}^n).$$

Proposition 8 - S

it $f \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n)$. Les propositions suivantes sont équivalentes :

- \bullet f est bijective.
- f est injective.
- f est surjective.