ĐẠI HỌC QUỐC GIA THÀNH PHỐ HÒ CHÍ MINH TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN KHOA KỸ THUẬT MÁY TÍNH

BÁO CÁO PROJECT MÔN THIẾT KẾ LUẬN LÝ SỐ – CE118

HỌ VÀ TÊN:	Vòng Chí Cường
MSSV	21521910
HỌ VÀ TÊN:	Vũ Hoàng Tuấn
MSSV	21521640
LÓP:	CE118.N22.2

GIẢNG VIÊN HƯỚNG DẪN:

Trương Văn Cương

TP. HÒ CHÍ MINH – Tháng 7 năm 2023

1) Kiến thức tổng quát

1. Số dấu phẩy tĩnh (fixed point number)

Ví dụ : $1,24_{(10)} = 1.0011110101110000101$

Dấu phẩy tĩnh: Có một vị trí cố định ngăn cách giữa phần nguyên và phần lẻ.

2. Số dấu phẩy động (floating point number)

Số được biểu diễn dưới dạng: $X = M \times R^E$

Trong đó:

• M: Mantissa

• R: Radix

• E: Exponent

Ví dụ:

•
$$14.2268_{(10)} = 1.42268 \times 10^1 = 1.42268 \text{ E} + 01$$

•
$$0.0154_{(10)} = 1.54 \times 10^{-2} = 1.54 \text{ E-}02$$

Vị trí dấu phẩy trong biểu diễn bình thường do phần bậc định ra trên phần định trị nên gọi là dấu phảy động.

3. Floating-point binary format (Intel)

Single Precision IEEE 754 Floating-Point Standard

Trong đó:

- Singed bit (1 bit): 0 là dương, 1 là âm
- Bias exponent (characteristic): $c = E + 2^{t-1} 1$
- E: là số mũ cần chứa
- t : là độ dài bit của trường Exponent

Ví du:

Ta cần chứa 6 bit mà phần Exponent có độ dài là 8 bit

$$\rightarrow$$
 c = 6 + 2⁸⁻¹ -1 = 6 + 127 = 133 (10) = 1000 0101 (2)

4. Chuyển Decimal sang Binary Floating-point

- Bước 1: Xác định dấu
- o Bước 2: Chuyển đổi phần nguyên thành số nhị phân không dấu
- o Bước 3: Chuyển đổi phần thập phân thành số nhị phân
- o Bước 4: Chuẩn hóa giá trị bằng cách điều chỉnh phần mũ
- o Bước 5: Thêm độ lệch vào phần mũ
- o Bước 6: Chuyển đổi phần mũ có độ lệch thành số nhị phân không dấu
- o Bước 7: Xác định các bit cuối cùng cho phần lưu giữa
- O Bước 8: Tổng hợp tất cả lại

Ví dụ: Chuyển 1.375 sang 32-bit Floating-point

Convert to binary: $12.375_{(10)} = 1100.011_{(2)}$

- 1) Sign bit : 0
- 2) Add exponent part: $1100.011 = 1100.011 \times 2^0$
- 3) Normalize: $1100.011 \times 2^0 = 1.100011 \times 2^3$
- 4) Exponent: $3 + 2^{8-1} 1 = 3 + 127 = 130_{(10)} = 1000_{(10)} = 1000_{(10)}$

5. Chuyển Binary Floating-point sang Decimal

o Bước 1: Trích xuất bit dấu

- o Bước 2: Trích xuất phần mũ
- o Bước 3: Đồng bộ hóa phần mũ
- o Bước 4: Chuyển đổi phần dạng thập phân
- O Bước 5: Tính toán độ lớn của giá trị tổng quát
- O Bước 6: Đưa vào biểu diễn của bit dấu.

Ví dụ: Chuyển 32-bit Floating-point 0 10000001 00001001100110011001101 sang Decimal

- 1) Sign bit : 0 → Số dương.
- 2) Exponent: $10000001_{(2)} = 129_{(10)} \implies c = 129 2^{8-1} 1 = 129 127 = 2$
- 3) Mantissa: 1.0000100110011001101101
- 5) Convert: $100_{(2)} = 4_{(10)}$; $001001100110011001101_{(2)} \approx 0.15_{(10)}$
- \rightarrow Result = 4.15

6. Nhân hai số Floating point (Floating point Multiplication)

$$S_a.M_a.2^{Ea} \times S_b.M_b.2^{Eb} = (S_a \oplus S_b) \cdot (M_a \times M_b) \cdot (2^{(Ea+Eb)-bias})$$

- Trích xuất dấu của kết quả từ hai bit dấu.
- Cộng hai phần mũ (E). Trừ đi thành phần độ lệch (bias) từ tổng này.
- Nhân mantissa của b (M_b) với mantissa của a (M_a) , lưu ý các bit ẩn.
- Nếu bit MSB của tích 1' thì dịch kết quả sang phải 1 bit.
- Do đó, phần mũ được tăng lên 1 đơn vị do kết quả dịch sang phải 1 bit.

7. Chia hai số Floating Point (Floating point Division)

$$\frac{S_a \cdot M_a \cdot 2^{E_a}}{S_b \cdot M_b \cdot 2^{E_b}} = (S_a \oplus S_b) \cdot (\frac{M_a}{M_b}) \cdot (2^{(E_a - E_b) + bias})$$

- Trích xuất dấu của kết quả từ hai bit dấu.
- Tìm giá trị tuyệt đối của hiệu hai số mũ (E). Cộng hiệu của E với bias.
- Chia mantissa của a (M_a) cho mantissa của b (M_b) và xem xét các bit ẩn.
- Nếu có một số 0 dẫn đầu thì chuẩn hóa kết quả bằng cách dịch trái.
- Do việc chuẩn hóa, số mũ được giảm đi theo số lần dịch trái.

2) Sơ đồ mạch

Floating point Multiplication

Mạch nhân floating point:

Mantissa:

1. Bảng ALU

Opcode (S ₁ S ₀)	Chức năng
00	ADD
01	SUB
10	A+1
11	AND

2. Bång Shifter

S ₁ S ₀	Chức năng
00	Không dịch
01	Dịch trái 1 bit
10	Dịch phải luận lý 1 bit
11	Output = 0

3. Phần Control

Bảng trạng thái – thực thi:

ТТНТ	TTKT	Các biến trong khối đường dữ liệu
	Điều kiện, trạng thái	Điều kiện, thực thi
S0	Start = 0, S0	, Done = 0
30	Start = 1, S1	, Outport $= 0$
S1	S2	Multipler = Import
S2	S3	Multiplicand = Import
S3	S4	Result = 0
S4	S5	Result = Result + Multiplicand
S5	S6	Multiplicand << 1
S6	Zero = 0 (Multipler \neq 0), S4	Multipler >> 1
30	Zero = 1 (Multipler = 0), S7	Withtiplet >> 1
S7	S0	, Done = 1
3/	SU	, Outport = Result

Bảng chuyển đổi:

	TTHT		TTKT				D-FF				
	$Q_2Q_1Q_0$		Q_2^+Q	$Q_1^+Q_0^+$			$\mathbf{D}_2\mathbf{\Gamma}$	$\mathbf{D}_{1}\mathbf{D}_{0}$			
			Start	, Zero		Start, Zero					
		00	01	10	11	00	01	10	11		
S0	000	000	000	001	001	000	000	001	001		
S1	001	010	010	010	010	010	010	010	010		
S2	010	011	011	011	011	011	011	011	011		
S3	011	100	100	100	100	100	100	100	100		
S4	100	101	101	101	101	101	101	101	101		
S5	101	110	110	110	110	110	110	110	110		
S6	110	100	111	100	111	100	111	100	111		
S7	111	000	000	000	000	000	000	000	000		

Biểu thức luận lý sau khi rút gọn :

$$D2 = (Q2 \cdot (|Q1 + |Q0)) + (|Q2 \cdot Q1 \cdot Q0)$$

$$D1 = ((Q1 \cdot | Q0) \cdot (|Q2 + Zero)) + (|Q1 \cdot Q0)$$

$$D0 = ((|Q1 \cdot |Q0) \cdot (Start + Q2)) + ((Q1 \cdot |Q0) \cdot (|Q2 + Zero))$$

Bảng ngõ ra điều khiển

TTHT	$Q_2Q_1Q_0$	IE	WE	Mul	W_addr	A	В	C	Opcode	Shifter	OE	AorB	Nạp
S0	000	0	0	0	XX	XX	XX	XX	XX	XX	0	X	0
S1	001	1	1	X	Multipler 00	XX	XX	XX	XX	XX	0	1	1
S2	010	1	1	X	Multiplicand 01	XX	XX	XX	XX	XX	0	0	0
S3	011	0	1	0	Result 10	00	00	XX	Sub 01	00	0	X	0
S4	100	0	1	1	10	10	01	00	ADD 00	00	0	X	0
S5	101	0	1	0	01	01	01	XX	AND 11	Shift Left 01	0	X	0
S6	110	0	1	0	00	00	00	XX	AND 11	Shift Right 10	0	X	0
S7	111	0	0	0	X	10	10	XX	AND 11	00	1	X	0

Biểu thức luận lý sau khi rút gọn :

$$Opcode[1] = Q2 \cdot (Q0 + Q1)$$

$$Opcode[0] = Q0 + Q1$$

Shifter[1] =
$$(Q1 \cdot |Q0)$$

Shifter[0] =
$$(|Q1 \cdot Q0)$$

$$OE = Q2 \cdot Q1 \cdot Q0$$

$$IE = Q2'Q1'Q0 + Q2'Q1Q0'$$

$$WE = Q2Q1' + Q2'Q0 + Q1Q0'$$

$$Mul = Q2Q1'Q0'$$

$$W_{addr}[1] = Q1'Q0' + Q1Q0$$

$$W_addr[0] = Q2Q0 + Q2'Q0'$$

$$RA_addr[1] = Q1'Q0' + Q2Q1Q0$$

RA
$$addr[0] = Q1'Q0$$

$$RB_addr[1] = Q2Q1Q0$$

$$RB_addr[0] = Q1$$

RC addr[1] =
$$0$$

$$RC_addr[0] = 0$$

$$AorB = Q1'$$

$$Nap = Q2'Q1'Q0$$

Bảng ngõ ra trạng thái:

TTHT	$Q_2Q_1Q_0$	Done
S0	000	0
S1	001	0
S2	010	0
S3	011	0
S4	100	0
S5	101	0
S6	110	0
S7	111	1

Done = $Q2 \cdot Q1 \cdot Q0$

4. Normalizer

Floating point Division

Mạch chia floating point

Mantissa:

Datapath:

1. Bảng ALU

Opcode (S ₁ S ₀)	Chức năng
00	ADD
01	SUB
10	A + 1
11	AND

2. Bång Shifter

S ₁ S ₀	Chức năng
00	Không dịch
01	Dịch trái 1 bit
10	Dịch phải luận lý 1 bit
11	Output = 0

3. Phần Control

Bảng trạng thái – thực thi:

ТТНТ	TTKT	Các biến trong khối đường dữ liệu			
	Điều kiện, trạng thái	Điều kiện, thực thi			
S0	Start = 0, S0	, Done = 0			
50	Start = 1, S1	, Outport = 0			
S1	S2	Remainder = Import			
S2	S3	Divisor = Inport			
S3	S4	Quotient = 0			
S4	S5	i = 0			
S5	S6	Remainder = Remainder – Divisor			
S6	S7	Quotient << 1			
S7	S8	Ramainder[47] = 0, Quotient += 1			
37	30	Ramainder[47] = 1, Quotient $+= 0$			
S8	S9	Ramainder[47] = 0, Ramainder $+= 0$			
36	3)	Ramainder[47] = 1, Ramainder += Divisor			
S9	S10	Divisor >> 1			
S10	Is $25 = 0$ ($i \neq 25$), S5	i = i + 1			
310	Is25 = 1 (i = 25), S11	1-1:1			
S11	S0	, Done = 1			
511	50	, Outport = Quotient			

Bảng chuyển đổi:

	TTHT	TTKT				D-FF					
	$Q_3Q_2Q_1Q_0$		$Q_3^+Q_2^+$	$\mathbf{Q}_{1}^{+}\mathbf{Q}_{0}^{+}$		$D_3D_2D_1D_0$					
		Start, Is25				Start, Is25					
		00	01	10	11	00	01	10	11		
SO	0000	0000	0000	0001	0001	0000	0000	0001	0001		
S1	0001	0010	0010	0010	0010	0010	0010	0010	0010		
S2	0010	0011	0011	0011	0011	0011	0011	0011	0011		
S3	0011	0100	0100	0100	0100	0100	0100	0100	0100		
S4	0100	0101	0101	0101	0101	0101	0101	0101	0101		
S5	0101	0110	0110	0110	0110	0110	0110	0110	0110		
S6	0110	0111	0111	0111	0111	0111	0111	0111	0111		
S7	0111	1000	1000	1000	1000	1000	1000	1000	1000		
S8	1000	1001	1001	1001	1001	1001	1001	1001	1001		
S9	1001	1010	1010	1010	1010	1010	1010	1010	1010		
S10	1010	0101	1011	0101	1011	0101	1011	0101	1011		
S11	1011	0000	0000	0000	0000	0000	0000	0000	0000		
S12	1100	0000	0000	0000	0000	0000	0000	0000	0000		
S13	1101	0000	0000	0000	0000	0000	0000	0000	0000		
S14	1110	0000	0000	0000	0000	0000	0000	0000	0000		
S15	1111	0000	0000	0000	0000	0000	0000	0000	0000		

Biểu thức luận lý sau khi rút gọn :

$$D3 = ((Q3 \cdot | Q2) \cdot ((Is25 \cdot | Q0) + | Q1)) + (|Q3 \cdot Q2 \cdot Q1 \cdot Q0)$$

$$D2 = ((|Q3 \cdot Q2) \cdot (|Q1 + |Q0)) + (|Is25 \cdot Q3 \cdot |Q2 \cdot Q1 \cdot |Q0) + (|Q3 \cdot |Q2 \cdot Q1 \cdot Q0)$$

$$D1 = \left(\ |Q3 \cdot \left(\ (|Q1 \cdot Q0) + (Q1 \cdot |Q0) \ \right) \ \right) + \left(\ |Q2 \cdot \left(\ (|Q1 \cdot Q0) + (Is25 \cdot Q1 \cdot |Q0) \ \right) \ \right)$$

$$D0 = ((|Q2 \cdot |Q0) \cdot (Q1 + Q3 + Start)) + ((|Q3 \cdot |Q0) \cdot (Q1 + (Q2 \cdot |Q1)))$$

Bảng ngõ ra điều khiển:

	AorB	IE	WE	W_addr	RA	RB	Sign	Plus	Divide	Opcode	Shifter	OE	Nạp
	AULD	112	WE	vv_auui	KA	KD	Enable	Signal	Signal	Opcode	Sinter	OL	ıvậh
SO	X	0	0	XX	XX	XX	0	X	X	XX	XX	0	1
S1	0	1	1	Remainder 00	XX	XX	0	X	X	XX	XX	0	0
S2	1	1	1	Divisor 01	XX	XX	0	X	X	XX	XX	0	0
S3	X	0	1	Quotient 10	00	00	0	0	0	Sub 01	00	0	0
S4	X	0	1	i 11	00	00	0	0	0	Sub 01	00	0	0
S5	X	0	1	00	00	01	1	0	0	Sub 01	00	0	0
S6	X	0	1	10	10	10	0	0	0	AND 11	Shift Left 01	0	0
S7	X	0	1	10	10	XX	0	X	1	ADD 00	00	0	0
S8	X	0	1	00	00	01	0	1	0	ADD 00	00	0	0
S9	X	0	1	01	01	01	0	0	0	AND 11	Shift Right 10	0	0
S10	X	0	1	11	11	XX	0	0	0	ADD 1 10	00	0	0
S11	X	0	0	10	10	10	0	0	0	AND 11	00	1	0

Biểu thức luận lý sau khi rút gọn :

$$AorB = Q1$$

IE =
$$(|Q3 \cdot |Q2) \cdot ((Q1 \cdot |Q0) + (|Q1 \cdot Q0))$$

WE =
$$(|Q3 \cdot Q1) + (Q3 \cdot |Q0) + (|Q1 \cdot Q0) + Q2$$

$$W_addr[1] = (Q1 \cdot (Q0 + Q3)) + (Q2 \cdot |Q0)$$

$$W_{addr}[0] = (|Q1 \cdot ((Q3 \cdot Q0) + (|Q3 \cdot |Q0))) + (|Q2 \cdot Q1 \cdot |Q0)$$

$$RA[1] = Q1 \cdot (Q2 + Q3)$$

$$RA[0] = (|Q2 \cdot Q1 \cdot |Q0) + (Q3 \cdot |Q1 \cdot Q0)$$

$$RB[1] = Q1 \cdot (|Q0 + Q3)$$

$$RB[0] = |Q1 \cdot (Q3 + Q0)$$

$$SignEn = |Q3.Q2.|Q1.Q0$$

Plus Signal =
$$(Q3 \cdot |Q1 \cdot |Q0)$$

Divide Signal = $(Q2 \cdot Q1 \cdot Q0)$

Opcode[1] =
$$(Q1 \cdot |Q0) + (Q3 \cdot Q0)$$

Opcode[0] =
$$(|Q3 \cdot (|Q0 + |Q1)) + (|Q2 \cdot Q0)$$

Shifter[1] =
$$(Q3 \cdot |Q1 \cdot Q0)$$

Shifter[0] = (
$$|Q3 \cdot Q1 \cdot |Q0)$$

$$OE = (Q3 \cdot Q1 \cdot Q0)$$

$$Nap = (|Q3 \cdot |Q2 \cdot |Q1 \cdot |Q0)$$

Bảng ngõ ra trạng thái:

TTHT	Q2Q1Q0	Done
S0	0000	0
S1	0001	0
S2	0010	0
S3	0011	0
S4	0100	0
S5	0101	0
S6	0110	0
S7	0111	0
S8	1000	0
S9	1001	0
S10	1010	0
S11	1011	1
S12	1100	X
S13	1101	X
S14	1110	X
S15	1111	X

Done = $(Q3 \cdot Q1 \cdot Q0)$

4. Exponent

5. Normalier

3) Test case

Test case 1:

Giá trị	Giá tri Decimal		Binary					
Gia tri		S	E	M				
X	2.15	0	10000000	00010011001100110011010				
Y	3.15	0	10000000	1001001100110011011010				
Product	6.7725	0	10000001	10110001011100001010010				
Test case	6.7725	0	10000001	10110001011100001010010				
Quotient	0.6825	0	01111110	01011101011100001010010				
Test case	0.5	0	01111110	000000000000000000000000000000000000000				

Sai số nhân = 0

Sai số chia = 0.1825

Test case 2:

Giá trị	Decimal			Binary
Ola tri		S	E	М
X	10.25	0	10000010	01001000000000000000000
Y	20.5	0	10000011	01001000000000000000000
Product	210.125	0	10000110	10100100010000000000000
Test case	210.125	0	10000110	10100100010000000000000
Quotient	0.5	0	01111110	000000000000000000000000000000000000000
Test case	0.5	0	01111110	000000000000000000000000000000000000000

Sai số nhân = 0

Sai số chia = 0

Test case 3:

Giá trị	Decimal		Binary				
Gia trị		S	E	M			
X	30	0	10000011	111000000000000000000000000000000000000			
Y	3.3	0	10000000	1010011001100110011			
Product	99	0	10000101	10001100000000000000000			
Test case	98.9999	0	10000101	1000101111111111111111			
Quotient	9.0909	0	10000010	00100010111010001010100			
Test case	8	0	10000010	000000000000000000000000000000000000000			

Sai số nhân = 10^{-4}

Sai số chia = 1.0909

Test case 4:

Giá trị	Decimal	Binary				
Ola tri		S	E	M		
X	7.4586	0	10000001	11011101010110011011010		
Y	5.7862	0	10000001	01110010010100010001101		
Product	43.313178	0	10000100	01011010100000010110010		
Test case	43.156951	0	10000100	01011001010000010111000		
Quotient	1.293698	0	01111111	01001011001011111100101		
Test case	1.25	0	01111111	01000000000000000000000		

Sai số nhân = 0.156227

Sai số chia = 0.043698

Test case 5:

Giá trị	Decimal	Binary						
Gia tri		S	E	M				
X	1.25	0	01111111	0100000000000000000000				
Y	1.4	0	01111111	0110011001100110011				
Product	1.75	0	01111111	110000000000000000000000000000000000000				
Test case	1.749999	0	01111111	101111111111111111111				
Quotient	0.892857	0	01111110	11001001001001001000111				
Test case	0.5	0	01111110	000000000000000000000000000000000000000				

Sai số nhân = 10^{-6}

Sai số chia = 0.392857

Test case 6:

Giá trị Decimal		Binary				
Gia tri		S	E	М		
X	-5.312	1	10000001	01010011111101111100111		
Y	12.56	0	10000010	10010001111010111000011		
Product	-66.71872	1	10000101	000010101101111111111100		
Test case	-66.718719	1	10000101	000010101101111111111100		
Quotient	-0.422929	1	01111101	10110001000101000100110		
Test case	-0.25	1	01111101	00000000000000000000000		

Sai số nhân = -10^{-6}

Sai số chia = -0.172929

Test case 7:

Giá trị	Decimal		Binary				
Ola tri		S	E	M			
X	-4.8	1	10000001	0011001100110011011010			
Y	-1.5	1	01111111	10000000000000000000000			
Product	7.2	0	10000001	1100110011001100110			
Test case	7.2	0	10000001	1100110011001100111			
Quotient	3.2	0	10000000	1001100110011001101			
Test case	3.199999	0	10000000	1001100110011001100			

Sai số nhân = 0

Sai số chia = 10^{-6}

Test case 8:

Giá trị Decima	Decimal	Binary				
Gia tri	Decimal	S	E	M		
X	-2.587499	1	10000000	01001011001100110010101		
Y	-2.25	1	10000000	0010000000000000000000		
Product	5.821887	0	10000001	01110100100110011100110		
Test case	5.821872	0	10000001	01110100100110011000111		
Quotient	1.149999	0	01111111	0010011001100110010111		
Test case	1.149998	0	01111111	00100110011001100101000		

Sai số nhân = 1.5×10^{-5}

Sai số chia = 10^{-6}

Test case 9:

Giá trị Decimal	Decimal	Binary			
Oia tri	Decimal	S	E	M	
X	1422.58965	0	10001001	01100011101001011011110	
Y	12.485	0	10000010	10001111100001010001111	
Product	17761.03178	0	10001101	00010101100001000010000	
Test case	17761.029296	0	10001101	00010101100001000001111	
Quotient	113.943904	0	10000101	11000111110001101000111	
Test case	64	0	10000101	000000000000000000000000000000000000000	

Sai số nhân = 0.02484

Sai số chia = 49.943904

Test case 10:

Giá trị	Decimal		Binary			
Gia trị	Decimal	S	E	M 00011001010001111010111 10010000000010100011111 10001010100010100001101 101101		
X	17.58	0	10000011	00011001010001111010111		
Y	-200.02	1	10000110	10010000000010100011111		
Product	-3156.3156	1	10001010	10001010100010100001101		
Test case	-3516.35156	1	10001010	10110111100010110100000		
Quotient	-0.087891	1	01111011	0110100000000000110010		
Test case	-0.0625	1	01111011	000000000000000000000000000000000000000		

Sai số nhân = 0

Sai số chia = -0.025391

Test case 11:

Giá trị	Decimal		Binary			
Ola II į	Decimal	S	E	M		
X	0	0	00000000	000000000000000000000000000000000000000		
Y	2.6	0	10000000	0100110011001100110		
Product	0	0	00000000	000000000000000000000000000000000000000		
Test case	0	0	00000000	000000000000000000000000000000000000000		
Quotient	0	0	00000000	000000000000000000000000000000000000000		
Test case	0	0	00000000	000000000000000000000000000000000000000		

Sai số nhân = 0

Sai số chia = 0

Test case 12:

Giá trị	Decimal	Binary			
		S	E	M	
X	2.6	0	10000000	0100110011001100110	
Y	0	0	00000000	000000000000000000000000000000000000000	
Product	0	0	00000000	000000000000000000000000000000000000000	
Test case	0	0	00000000	000000000000000000000000000000000000000	
Quotient	x	X	XXXXXXX	XXXXXXXXXXXXXXXXXXXX	
Test case	0	0	00000000	000000000000000000000000000000000000000	

Ta mặc định là trường hợp chia cho 0 thì đầu ra thương sẽ bằng 0 (Ngõ vào Start sẽ không được bật nên không bao giờ chuyển sang trạng thái S1 nếu Y=0).

Sai số nhân = 0

Sai số chia = 0

