8/10/22, 9:11 PM Machine_learning

Simple Linear Regression using Python

- ## Predicting Salary using Experience data
- ## Total 11_steps

01_step Importing libraries

```
In []: import pandas as pd
   import numpy as np
   import seaborn as sns
   import matplotlib.pyplot as plt
```

02_step Loading Data

```
In [ ]: df = pd.read_csv("salary_data.csv")
    df.head()
```

Out[]: _	YearsExperience		Salary
	0	1.1	39343
	1	1.3	46205
2	2	1.5	37731
3	3	2.0	43525
	4	2.2	39891

03_step Checcking Numll values

```
In [ ]: df.isnull().sum()
```

8/10/22, 9:11 PM Machine_learning

```
Out[]: YearsExperience & Salary & dtype: int64
```

05_Spliting Data

```
In [ ]: X = df[["YearsExperience"]]
y = df["Salary"]
```

06_step Importing sciket-learn

```
In [ ]: pip install scikit-learn
In [ ]: import sklearn
```

07_step model selection

```
In [ ]: from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y, test_size=0.2, random_state=0)
```

08_step Impoting Linearregression

```
In []: from sklearn.linear_model import LinearRegression
   model = LinearRegression().fit(X_train,y_train)
   model
```

```
Out[]: • LinearRegression
LinearRegression()
```

09_step Visualization of train and test data

```
In []: plt.scatter(X_train, y_train)
    plt.plot(X_train, model.predict(X_train), color= "Black")
    plt.title("Train data Plot")
    plt.xlabel("Experience data of train data")
    plt.ylabel("Salary data of train data")
    plt.show()
```



```
In []: from turtle import color

plt.scatter(X_test, y_test)
plt.plot(X_test, model.predict(X_test), color= "Red")
plt.title("test data plot")
plt.xlabel("Experience data")
plt.ylabel("Salary data")
plt.show()
```

8/10/22, 9:11 PM Machine_learning

10_step Checking fitness of your model

```
In []: model.score(X_train, y_train)
Out[]: 0.9411949620562126

In []: model.score(X_test, y_test)
Out[]: 0.988169515729126
```

11_step Predicting Values using your model

Out[]: array([54717.82453082])