Государственное бюджетное общеобразовательное учреждение города Москвы

«Школа №2103»

Документация по командному кейсу №1. "Автоматизированный генератор псевдослучайных чисел" МОСКОВСКОЙ ПРЕДПРОФЕССИОНАЛЬНОЙ

ОЛИМПИАДЫ ШКОЛЬНИКОВ

''ГРУТ''

Работу выполнила команда "Грут"

Ученики 11 «Т» класса ГБОУ Школы №2103

Усачёв Даниил Сергеевич Бриллиантов Михаил Константинович Наседкин Тимофей Филиппович Сагдуллин Юрий Романович Владимир Владимирович Шафранский

Научный руководитель инженер Ткаченко Артём Алексеевич

Оглавление

Наша команда		2
Введение		3
Описание устройства		4
Функциональность		5
Функционал		
Функционал, реализованный согласно техническо	ому заданию	
Функционал, реализованный сверх требований Т	3	
Функциональная схема		6
Узлы устройства		7
Механические узлы и 3D модели механизмов		
Принцип работы		10
Структурная схема	11	
Электрические схемы		13
Список компонентов		13
Монтажная схема системы наведения	14	
Принципиальная схема системы наведения		15
Монтажная схема системы слежения		16
Таблицы подключений		17
Алгоритм и блок-схемы	19	
Блок-схема для турели (система наведения)	19	
Блок-схема главного компьютера	24	
Используемые библиотеки		31
Исходный код		32
Литература	40	

Наша команда

Бриллиантов Михаил 'Программист'

Усачев Даниил 'Капитан'

Наседкин Тимофей 'Документалист'

Сагдуллин Юрий 'Конструктор'

Шафранский Владимир 'Электронщик'

Наш логотип.

Введение

Основной задачей нашего проекта является разработка автоматизированного генератора псевдослучайных чисел. Источники настоящих случайных чисел найти крайне трудно. Физические шумы, такие, как детекторы событий ионизирующей радиации, дробовой шум в резисторе или космическое излучение, могут быть такими источниками.

В то же время случайные числа, получаемые из физического источника, могут использоваться в качестве порождающего элемента для программных генераторов псевдослучайных чисел. Такие генераторы применяются в игровых автоматах, лотереях, а также в настольных играх.

Мы создали устройство, которое способно определить и запомнить полученные с игровых кубиков числа. Мы считаем, что наш проект будет полезен как в промышленных сферах(в игровых автоматах, лотереях), так и в повседневной жизни.

Нас заинтересовал этот кейс использованием системы компьютерного зрения. Мы считаем, что при помощи этой системы упростится считывание данных с игральных кубиков в любой настольной игре. Наше устройство облегчит совершение бросаний игральных кубиков и также обеспечит честность выпадения очков и разнообразит любую настольную игру.

Актуальность и проблематика

Источники настоящих случайных чисел найти крайне трудно. Физические шумы, такие, как детекторы событий ионизирующей радиации, дробовой шум в резисторе или космическое излучение, могут быть такими источниками. В то же время случайные числа, получаемые из физического источника, могут использоваться в качестве порождающего элемента для программных генераторов псевдослучайных чисел. Такие комбинированные генераторы применяются в криптографии, лотереях, игровых автоматах и даже в настольных играх.

Для устранения фальсификации процесс перемешивания должен быть независимым и автоматизированным. Решения данной проблемы - компьютерное зрение. Сегодня данной технология получила широкое распространение в различныъ сферах жизни, таких как: распознавание по биометрии, перевод текста, разработка автопилота.

Наша команда озадачилась проблемой генератора псевдослучайных чисел, и нами была разработана система для упрощения и внедрения справедливости в повседневную жизнь.

Создание независимого от внешних факторов и основанного на работе механизма генератора случайных чисел. Который будет получать комбинацию чисел, выпавших на 1-3 игральных кубиках. После выпадания способен распознать числа при помощи системы технического зрения и вывести полученный результат на сервер.

Изучить новые и отточить имеющиеся навыки в области программирования, конструирования, моделирования, анализа, структуризации.

В нашем устройстве должно быть предусмотрено:

- 1) Автоматизированный лифт для подъёма игральных кубиков в барабан.
- 2) Двухступенчатое перемешивание игральных кубиков (первое при помощи барабана, а второе в башне свободного падения).
- 3) При помощи системы компьютерного зрения происходит считывание и распознавание результатов, полученных на игральных кубиках.
- 4) Сохранение результатов в облако и выведение их на дисплей.
- 5) Система возврата кубиков для дальнейшего использования из системы распознавания в систему перемешивания без непосредственного вмешательства участников.

- 1. Анализ кейсового задания, формирование требований ограничений к разрабатываемому устройству.
- 2. Анализ предметной области и инструментов для решения задачи.
- 3. Проектирование устройства:
 - а) эскиз устройства
 - b) проектирование кинематической системы
 - c) UML-диаграммы
- 4. Проектирование 3D-модели устройства:
 - а) его составных частей
 - b) корпуса
- 5. Проектирование электротехнической системы устройства.
- 6. Проектирование алгоритмов работы программного обеспечения.
- 7. Разработка систем устройства:
 - а) кинематической системы
 - b) электротехнической системы
- 8. Разработка программного обеспечения.
- 9. Изготовление и сборка устройства.
- 10. Прототипирование устройства.
- 11. Тестирование и отладка устройства.
- 12. Подготовка документации.

Описание проекта общее описание

Общая структурная схема

Функционал

Физические кнопки:

1. Аварийная остановка

Дисплей:

- 1. Система отладки
 - 1.1. Запуск подсистемы возврата игральных костей из области распознавания в подсистему перемешивания
 - 1.2. Запуск подсистемы оптического распознавания численного результата, выпавшего на игральных костях
 - 1.3. Запуск подсистемы перемешивания игральных костей
 - 1.4. Запуск подсистемы возврата игральных костей из области падения в подсистему распознавания
- 2. Конечное выполнение
 - 2.1. Выбор количества повторений
 - 2.2. Запуск программы
 - 2.3. Завершение программы по завершении цикла
- 3. Бесконечное выполнение
 - 3.1. Запуск программы
 - 3.2. Завершение программы по завершении цикла
- 4. История бросков
 - 4.1. Результаты
 - 4.2. Мода
 - 4.3. Среднее арифметическое
 - 4.4. Счетчик выпавших чисел

Система:

- 1. Связь с удаленным сервером
- 2. Передача информации

Диаграмма Use Case

Диаграмма StateMachine

рис. 1

S0	перемещение всех элементов в начальные положения			
S1	ожидание команды			
S2	предупреждение: игральные кости загружены			
S2.1	работа программы(см. рис 1)			
S3	предупреждение: игральные кости загружены			
S3.1	работа программы(см. рис 1)			
S4	таблица результатов выпадения			
S5	работа отдельных элементов			
	12			

Диаграмма Sequence

Устройство и кинематика Фото узлов

Кинематика

3Д модель

Текстовое описание

Нами были выбраны двигатели:

- 1. Электродвигатель DC Motor 555: Момента силы достаточно для вращения системы перемешивания
- 2. Сервопривод SG90: участвует в цикле возврата игральных костей в систему распознавания.

Энергопотребление

- 1. Затраты на питание системы 97 Вт.
- 2. Для питания системы был выбран оптимальный источник с достаточным запасом мощности Li-Po3S 184 Bt.
- 3. В системе предусмотрены конденсаторы для предотвращения от проблем с питанием.
- 4. Присутствует запас мощности в 87 Вт.

Таблица электрокомпонентов

Имя	Устройства	Модель	Параметры	Комментарий	
nano	Отладочная плата на базе ATmega328	Arduino Nano	7-12V 16 Mhz 40 mAh ATmega328	Управляет двигателями, оптопарами и сервоприводом.	
Pi 4B	Одноплатный компьютер	I Raspherry Pl 3B I		Управляет системой распознавания, экраном. Реализует алгоритмы машинного зрения	
U3	Оптопара	топара ТСКТ5000		Датчик для	
U4	Оптопара	TCRTS000	3,3-5V 10mA	определения положения барабана.	
U95	Камера	Камера Raspberry Pi camera		Камера для распознавания чисел.	
U6	Сенсорный 3.5 inch LCD дисплей Display		480x320 IPS HDMI	Сенсорный дисплей для управления функциями аппарата.	
Dc	Электродвигате ль	DC Motor 555	12V 140 mA 2200-3000rpm	Двигатель для барабана.	
L298N	Драйвер L298N		5-35V 0-2A 25W	Драйвер для электродвигателя DC Motor 555.	
J1	Сервопривод SG90		1,5 кг*см 180° 4,8-6V 650mA	Сервопривод для лифта.	
M1	DC DC Понижающий LM2596S преобразователь		In:2,4-40V Out:1,2-37V 3A(4,5A max) USB port	Понижает напряжение с 11,1V до 5V для Raspberry Pi 4B	

C1 C2	Керамические конденсаторы		35V 0,1мкФ	Защита от перепадов тока
U2	Аккумулятор	Li-Po3S(11,1V)	3S 11.1V 30s 5200mAh	Источник питания.

Монтажная схема

Принципиальная схема

fritzing

Таблица подключений

Raspberry Pi 3B

Пин	Назначение пина	Устройство	Пин устройства	Комментарий
Шина CSI	Camera Serial Interface	Raspberry Pi Cam Module	Шина CSI	Камера, разработана для Raspberry Pi. Подключается шлейфом CSI и обеспечивает больший FPS.
DISPLAY	Display Interface	3.5 inch LCD Display	DISPLAY	Подключает сенсорный экран

Arduino Nano

Пин	Назначение пина	Устройство	Пин устройства	Комментарий
GND	Заземление	Керамические конденсатор Оптопара L298N LM2596S SG90	GND OUT- -	Общее заземление компонентов.
5V	Питание 5V	Оптопара	VCC	Питание для оптопары.
A6	Прием сигнала	Оптопара	A0	Считывание
A7				сигналов от оптопары.
D3	Передача сигнала	SG90	pulse	Программируе мый порт для сервопривода.

D5	Передача сигнала	L298N	IN4	Подключается к драйверу.
D6	Передача сигнала	L298N	IN3	Подключается к драйверу.
VIN	Питание	Керамические конденсатор	+	Для безопасности.
USB	Обмен информацией с Raspberry Pi 3B	Raspberry Pi 3B	USB	Связь между Arduino Nano и Raspberry Pi 3B.

Алгоритм

Вывод