

SRM Institute of Science and Technology Department of Mathematics 18MAB204T-Probability and Queueing Theory Module I & II Remedial Assignment-1

S. No.	Questions								
1	The following is the distribution function of a discrete random variable <i>X</i> :								
	х -	3	-1	0	1	2	3	5	8
	F(x)	0.10	0.30	0.45	0.65	0.75	0.90	0.95	1
	Find (i) the probability distribution of X (ii) $E(X^2)$ (iii) $P(1 \le X \le 8)$ (iv) $P(X \le 1)$ and (v) $P(X \ge 3 X > 0)$.								
2	A random variable X has the pdf $f(x) = \begin{cases} 2x, & 0 < x < 1 \\ 0, & otherwise \end{cases}$ Find (i) $P(X < \frac{1}{2})$ (ii) $P\left(\frac{1}{4} < X < \frac{1}{2}\right)$ (iii) $P\left(X > \frac{3}{4} X > \frac{1}{2}\right)$, (iv) $P\left(X < \frac{1}{2}\right)$ and (v) $E(X)$.								
3	In a continuous distribution the relative frequency density is given by: $f(x) = y_0$. $(2 - x)$, $0 \le x \le 2$, find (i) y_0 (ii) the <i>rth</i> moment about the origin and hence find the mean, variance and μ_3 .								
4	Four coins w 100 times wa $\begin{array}{ c c c c c c c c c c c c c c c c c c c$		d. The re			s. The nu	mber of h	neads x fa	allen in each of the
	Fit a Binomial distribution to the following data and find the expected frequencies.								
5	A manufacturer of medicine bottles finds that 0.1% of the bottles are defective. The bottles are packed in boxes containing 500 bottles. A drug manufacturer buys 100 boxes from the manufacturer of bottles. Using Poisson distribution, find how many boxes will contain (i) no defective? (ii) atleast 2 defectives? (iii) atmost 2 defectives?								