

AUTHOR INDEX

- Albrecht, W. A.** Plant nutrition and the hydrogen ion: V, 265-271
- Allison, L. E.** *See Christiansen, J. E.*
- Barshad, I.** California prairie soils, 423-442
- Beach, W. S.** Pathogenic and physiogenic damping-off, 37-46
- Bray, R. H.** *See Kurtz, T.*
- Bryant, J. C.** *See Slater, C. S.*
- Cantino, E. C.** Determination of sulfate in natural waters and soil extracts, 361-368
- Chepil, W. S.** Dynamics of wind erosion: IV, 167-178; V, 257-263; VI, 331-340
- Christiansen, J. E.**, Fireman, M., and Allison, L. E. Displacement of soil-air by CO₂ for permeability tests, 355-360
- Chupp, C.** Factors in disease incidence, 31-36
- Clements, L. B.** *See MacIntire, W. H.*
- Colwell, W. E.** *See Mehlich, A.*
- Daines, R. H.** Control of plant diseases by inorganic amendments, 55-66
- Davis, F. L.** Retention of phosphates by soils: IV, 179-190
- DeTurk, E. E.** *See Kurtz, T.*
- Dunham, H. W.** *See MacIntire, W. H.*
- Edginton, G.** *See Robinson, W. O.*
- Fireman, M.** *See Christiansen, J. E.*
- Garrett, S. D.** Soil as a medium for disease organisms, 3-8
- Greaves, J. E.**, and Pittman, D. W. Influence of fertilizers on crops and soil, 239-246
- Haise, H. R.**, and Kelley, O. J. Relation of moisture tension to heat transfer and electrical resistance, 411-422
- Hilmoe, R. J.** *See Searight, W. V.*
- Hunter, A. S.**, and Kelley, O. J. Soil moisture tensiometers for field use, 215-217
- Jamison, V. C.** Potassium and magnesium in Florida soils, 443-453
- Jenny, H.** Arrangement of soils according to functions of soil-forming factors, 375-391
- Johnson, J.** Soil-steaming for disease control, 83-91
- Kelley, O. J.** *See Haise, H. K.; Hunter, A. S.*
- Kincaid, R. R.** Soil factors affecting incidence of root knot, 101-109
- Kurtz, T.**, DeTurk, E. E., and Bray, R. H. Phosphate adsorption by Illinois soils, 111-124
- Larsson, K. G.** *See Mattson, S.*
- MacIntire, W. H.**, Winterberg, S. H., Dunham, H. W., and Clements, L. B. Variance in carbonatation of silicate materials in soils, 295-311
- McKinney, H. H.** Soil factors in relation to virus diseases, 93-100
- Madhok, M. R.**, and Uddin, F. Losses of nitrogen from soils on desiccation, 275-280
- Martin, J. P.** Microorganisms and soil aggregation: II, 157-166
- Mattson, S.**, and Larsson, K. G. Laws of soil colloidal behavior: XXIV, 313-330
- Mehlich, A.**, and Colwell, W. E. Absorption of calcium by peanuts from kaolin and bentonite, 369-374
- Moxon, A. L.** *See Searight, W. V.*
- Newhall, A. G.** Soil fumigants for plant disease control, 67-82
- Peterson, J. B.** Clay minerals and soil structure formation, 247-256; relation of parent materials and environment to clay minerals in Iowa soils, 465-475
- Pittman, D. W.** *See Greaves, J. E.*
- Reitemeier, R. F.** Effect of dilution on ions of soils of arid regions, 195-214
- Reitemeier, R. F.**, and Wilcox, L. V. Estimating soil solution concentration from electrical conductivity 281-293
- Robinson, W. O.**, and Edginton, G. Fluorine in soils, 341-353
- Sanford, G. B.** Soil-borne diseases and microflora, 9-21
- Schuster, C. E.** *See Stephenson, R. E.*
- Searight, W. V.**, Moxon, A. L., Hilmoe, R. J., and Whitehead, E. I. Selenium in South Dakota soils, 455-463
- Slater, C. S.**, and Bryant, J. C. Methods of soil moisture measurement, 131-155
- Smith, V. T.**, Wheating, L. C., and Vandecaveye, S. C. Effects of organic residues and nitrogen fertilizers on semi-arid soil, 393-410
- Stephenson, R. E.**, and Schuster, C. E. Straw mulch for soil improvement, 219-224
- Stewart, E. H.**, and Volk, N. J. Soil potash extractable by plants, 125-129

- Tidmore, J. W. *See* Volk, N. J.
Uddin, F. *See* Madhok, M. R.
Vandecaveye, S. C. *See* Smith, V. T.
Volk, N. J. *See* Stewart, E. H.
Volk, N. J., and Tidmore, J. W. Effect of nitrogen sources on soil reaction, exchangeable ions, and crop yields, 477-492
Wadleigh, C. H. Soil moisture stress on a root system in saline soil, 225-238
Walker, J. C. Soil management and plant nutrition in relation to disease, 47-54
Weindling, R. Microbial antagonism and disease control, 23-30
Wheeting, L. C. *See* Smith, V. T.
Whitehead, E. I. *See* Searight, W. V.
Wilcox, L. V. *See* Reitemeier, R. F.
Winterberg, S. H. *See* MacIntire, W. H.

SUBJECT INDEX

- Absorption—
curve of phosphates, 111
effect of soil-solution ratio on, 112
of ammonium and calcium ions by kaolin,
bentonite, 318
of calcium by peanuts from kaolin and
bentonite, 369-374
of phosphates by Illinois soils, 111-124
- Aggregation—
composition, 334
effect of montmorillonite and kaolinite
on, 248
soil and microorganisms, 157-166
- Air, displacement by carbon dioxide, per-
meability tests, 355-360
- Antagonism, microbial—
and disease control, 23-30
mechanism, 28-30
soil invaders affected by, 25-26
- Anion, replacement, 120
- BOOKS**
- Atomic Energy for Military Purposes, 191
Brazil, Orchid of the Tropics, 191
De Ment, J. Fluorochemistry, 191
Demolon, A. La Dynamique du Sol, ed. 3, 191
Dynamique du Sol, 191
Fertilizer, Wood Products for, 192
Food problem, World's Hunger, 192
Foster, M. B., and Foster, R. S. Brasil, Orchid of the
Tropics, 191
Foster, R. S. See Foster, M. B.
Fluorochemistry, 191
Geology, Rocks and Rivers of America, 192
Harper, F. A. See Pearson, F. A.
Pearson, F. A., and Harper, F. A. World's Hunger, 192
Photosynthesis and Related Processes, Vol. 1, 192
Rabinowitch, E. I. Photosynthesis and Related Pro-
cesses, 192
Rocks and Rivers of America, 192
Schuler, E. W. Rocks and Rivers of America, 192
Smyth, H. D. Atomic Energy for Military Purposes,
191
Soil, Dynamique du Sol, 191
Soil conservation, Rocks and Rivers of America, 192
Wood Products for Fertilizer, 192
World's Hunger, 192
- Calcium—
adsorption at varying levels, 369-374
content of peanuts, 372
exchangeable, distribution in podzols,
324-325
water-soluble, 180
- Carbon—
content of prairie soils, 425
- Carbon—(continued)
nitrogen ratios, 407
organic content, 404
- Carbon disulfide, see Fumigants
- Carbonation—
effect of cropping on, of calcium silicates,
304
effect of quenching and fluoride content
on, of calcium silicate materials, 302
of quenched slags and wollastonite, 299
variance in, of glassy and crystalline cal-
cium silicate in soils, 295-311
- Chloropicrin, see Fumigants
- Classification, according to functions of soil-
forming factors, 375-391
- Clays—
estimates of content, 469
relation of calcium adsorption, cation-
exchange capacity and type, 372
relation of parent material and environ-
ment to minerals, 465-475
thermal curves, 439, 471
- Conductivity—
effect of saturation on, 283
effect of soil solution concentration on, 287
electrical, of saturated soils, 281-293
soil minerals, 289
- Copper, value as fungicide, 59
- Damping-off—
control, 45
effects of environmental factors on, 42-44
pathogenic and physiogenic, 37-46
relative prevalence, 41
- Desorption curves of plaster of paris, 419
- Disease—
Actinomyces scabies, 10-13
development in relation to soil manage-
ment and plant nutrition, 47-54
incidence, 17-19, 31-36
medium for organisms, 3-8
pathogenic, plants affected, 31
potato stem canker, 13-15
root rot of wheat, 15-16
soil-borne, 9-22
soil factors in relation to incidence and
symptom expression of virus, 93-100
- Donnan equilibria—
distribution of cations in ideal system, 316
in soil formation, 313-330
- Erosion—
cumulative intensity of soil drifting, 257-
263

- Erosion—(*continued*)
 dynamics of wind, 167-177, 257-263, 331-340
 effect of action of wind-borne sand particles, 168
- Ethylene dichloride, *see* Fumigants
- Exchange capacity of prairie soils, 429
- Fertilizers, influence on yield, composition of crop and soil, 239-246
- Fluorine—
 content of—
 fertilized and unfertilized soils, 348
 liming materials, 297
 micaceous clays, 347
 plants, 250
 soils, 341-352
 extraction from soils by plants, 349
- Fumigants—
 factors affecting efficiency of soil, 69
 hazards, 75
 volatile, for plant disease control, 67-82
- Gravimetric plugs, field behavior during moisture tests, 139
- Lime—
 control of clubroot, 57
 effect on release of magnesium and potassium, 447
- Limestone, relative effectiveness of coarse and fine, 265-271
- Magnesium—
 exchangeable, 452
 release by hydrolysis, 446
- Mercury, control of scab and Rhizoctonia, 61
- Methods—
 soil aggregation, 157
 soil moisture measurement, 131-155
 sulfates in waters and soil extracts, 361-368
 wind erosion tests, 167
- Methyl bromide, *see* Fumigants
- Microflora—
 and aggregation, 162
 associated with crops and soil amendments, 9-22
 causal organisms of damping-off, 40
- Moisture—
 comparison of utility of instruments for, 149
 difference in mean soil, 144
 effect of, content on dissolved and exchangeable ions, 195-214
 effect on exchangeable bases, 208
 in semiarid soils, 402
 in soils, comparison of four methods of measurement, 131-155
- Moisture—(*continued*)
 pH values at various contents, 231
 stress on root system, 225-238
 tension, relation to heat transfer and electrical resistance, 411-422
 variability, as determined by sampling, 151
- Mulch—
 effect on soluble phosphorus and potassium, 221
 straw for soil improvement, 219-224
- Neutralization—
 curves of kaoline, bentonite, 317
 values of liming materials, 297
- Nitrogen—
 changes in soil, 401
 content of—
 cultivated and drifted soils, 333
 prairie soils, 425
 wheat, 398-399,
 effect of—
 ammonium on losses of nitrous, 279
 desiccation on total, 278
 losses of nitrous, on desiccation, 275-280
 nitrate, content of soil, 403
 sources, effect on—
 exchangeable ions, 483
 soils and plants, 477-492
 yields, 479
- Organic matter—
 content of—
 cultivated and drifted soils, 333
 prairie soils, 425
 effect of residues and nitrogen fertilizers on a semiarid soil, 393-410
 effect on water-stable structure, 249
- Phosphates—
 adsorption by Illinois soil, 111-124
 and pH, 182
 content of potatoes and beets, 241
 retention by soils, 179-190
 solubility in acids, 184-188
 water-soluble, 180
- Plant disease control by use of inorganic soil amendments, 55-66
- Potassium—
 different forms in soils, 127
 exchangeable, 448
 magnesium relationships of sandy soils, 443-453
 rate of removal from soils by plants, 126
 release by hydrolysis, 446
- Prairie soils of California, pedologic study, 423-442
- Resistance blocks, field behavior during moisture tests, 138

- Rhizosphere, disease incidence in relation to, 17-19
- Root knot, soil factors affecting incidence of, 101-109
- Selenium—
content of—
plants, 461
soils, 457
- occurrence in Pliocene deposits and derivatives, 45-463
- Sequences—
bio-, 387
chrono-, 377
climo-, 387
hydro-, 386
litho-, 379
significance of, 390
topo-, 382
- Soil series, analyses, descriptions of, or experiments with—
Arredonda, 343; Altamont, 387; Barnes, 343; Beltsville, 132; Brassua, 343; Bridgeport, 343; Brookston, 388; Cajon, 290; Caribou, 348; Carrington, 343, 428; Cayucos, 424; Cecil, 126, 478; Cherokee, 428; Chester, 343; Cisne, 114; Clarksville, 126; Clarion, 433, 465; Clement, 114; Clinton, 465; Clyde, 388; Coachella, 387; Colbert, 126; Colby, 343; Collington, 348; Colma, 380, 424; Crosby, 388; Cypress, 169, 258; Davidson, 126; Decatur, 126, 348, 478; Delco, 157; Delhi, 387; Des Moines, 467; Drummer, 388; Durham, 126; Edina, 471; Exeter, 357; Fallbrook, 288, 387; Fayette, 344; Fort Collins, 198, 288, 357; Fox Valley, 169, 334; Frederick, 344; Fullerton, 303; Gleason, 424; Glendale, 357; Gosport, 465; Greenfield, 378; Greenville, 344; Hagerstown, 344; Hammond, 179; Hanford, 378; Hartells, 126, 300, 478; Hatton, 169, 258, 334; Haverhill, 169, 258, 334; Herrick, 348; Hesperia, 198, 357; Holdrege, 344; Holland, 387; Houston, 344; Hugo, 380; Imperial, 198; Indio, 198, 289; Kalkaska, 344; Kirvin, 345; Kokono, 388; Las Posas, 387; Levis, 385; Los Osos, 387, 424; Madison, 345; Marina, 387; Marshall, 345, 428, 465; Maury, 345; Merriam, 387; Miami, 345, 388; Millville, 239; Mohave, 387; Montevallo, 297; Muirkirk, 133; Muscatine, 111; Muskingum, 345; Norfolk, 345, 443, 478; Oahu, 345; Oakley, 387; Octagon, 388; Odell, 388; Orangeburg, 126, 478; Otterbein, 388; Oxalis, 385; Palouse, 198, 346; Panoche, 228, 379; Parr, 388; Placentia, 378; Putnam, 266; Ramona, 378; Reagan, 198, 290, 357; Redding, 346; Regina, 334; Ritzville, 395; Rositas, 387; Ruston, 370; Sable, 114, 348; San Joaquin, 378; Sassafras, 59, 63, 348; Savannah, 126; Sceptre, 169, 258, 334; Sharkey, 346; Shelby, 346, 428, 465; Sheridan, 380, 384, 424; Sierra, 387; Sobrante, 387; Soquel, 387; Sorrento, 387; Summit, 428; Sweeney, 380, 424; Tama, 248, 465; Tifton, 126; Tujunga, 378; Vale, 357; Vallecitos, 387; Vernon, 346; Vista, 387; Volusia, 63; Weathersfield, 348; Webster, 465; Wooster, 348; Yolo, 357, 387
- Specific gravity and equivalent diameter of soil grains, 336
- Steaming—
influence on—
plant growth, 85
soil, 85
- methods of, 87
- of soils for disease control, 83-92
- Structure—
as affected by—
lignin, 163
polysaccharides, 160
protein, 163
- formation, role of clay minerals in, 247-256
- Sulfur—
content of alfalfa, 243
control of *Actinomyces scabies*, 56
- Tensiometers—
changes in construction, 215-217
field behavior, 135
- Whitson, A. R., obituary, 273

