Planning Search Heuristic Analysis

by Teruyuki Takahashi

Planning Problems

I was given three planning problems in the Air Cargo domain that use the same action schema:

```
Action(Load(c, p, a),
   PRECOND: At(c, a) Λ At(p, a) Λ Cargo(c) Λ Plane(p) Λ Airport(a)
   EFFECT: ¬ At(c, a) Λ In(c, p))
Action(Unload(c, p, a),
   PRECOND: In(c, p) Λ At(p, a) Λ Cargo(c) Λ Plane(p) Λ Airport(a)
   EFFECT: At(c, a) Λ ¬ In(c, p))
Action(Fly(p, from, to),
   PRECOND: At(p, from) Λ Plane(p) Λ Airport(from) Λ Airport(to)
   EFFECT: ¬ At(p, from) Λ At(p, to))
```

Problem 2

The three problems have the following initial states and goals:

Problem 1:	Problem 2:	Problem 3:
Init(At(C1, SFO) ∧ At(C2, JFK)	Init(At(C1, SFO) A At(C2, JFK) A At(C3, ATL)	Init(At(C1, SFO) Λ At(C2, JFK) Λ At(C3, ATL) Λ At(C4, ORD)
Λ At(P1, SFO) Λ At(P2, JFK)	Λ At(P1, SFO) Λ At(P2, JFK) Λ At(P3, ATL)	Λ At(P1, SFO) Λ At(P2, JFK)
Λ Cargo(C1) Λ Cargo(C2)	Λ Cargo(C1) Λ Cargo(C2) Λ Cargo(C3)	Λ Cargo(C1) Λ Cargo(C2) Λ Cargo(C3) Λ Cargo(C4)
∧ Plane(P1) ∧ Plane(P2)	Λ Plane(P1) Λ Plane(P2) Λ Plane(P3)	Λ Plane(P1) Λ Plane(P2)
Λ Airport(JFK) Λ Airport(SFO))	Λ Airport(JFK) Λ Airport(SFO) Λ Airport(ATL))	Λ Airport(JFK) Λ Airport(SFO) Λ Airport(ATL) Λ Airport(ORD)
Goal(At(C1, JFK) A At(C2, SFO))	Goal (At (C1, JFK) A At (C2, SFO) A At (C3, SFO))	Goal (At (C1, JFK) \wedge At (C3, JFK) \wedge At (C2, SFO) \wedge At (C4, SFO))

The goals above can be reached using different plans, but the **optimal plan lengths** for problems 1,2, and 3 are **6**, **9**, **and 12 actions**, respectively. Below are sample plans with optimal length:

Problem 3:

FIODICIII I.	FIODICIII 2.	FIODICIII 3.
Load(C1, P1, SFO)	Load(C1, P1, SFO)	Load(C1, P1, SFO)
Load(C2, P2, JFK)	Load(C2, P2, JFK)	Load(C2, P2, JFK)
Fly(P1, SFO, JFK)	Load(C3, P3, ATL)	Fly(P1, SFO, ATL)
Fly(P2, JFK, SFO)	Fly(P1, SFO, JFK)	Load(C3, P1, ATL)
Unload(C1, P1, JFK)	Fly(P2, JFK, SFO)	Fly(P2, JFK, ORD)
Unload(C2, P2, SFO)	Fly(P3, ATL, SFO)	Load(C4, P2, ORD)
	Unload(C3, P3, SFO)	Fly(P1, ATL, JFK)
	Unload(C2, P2, SFO)	Fly(P2, ORD, SFO)
	Unload(C1, P1, JF	Unload(C4, P2, SFO)
		Unload(C3, P1, JFK)
		Unload(C2, P2, SFO)
		Unload(C1. P1. JFK)

Uninformed Search Strategies Analysis

Performance measures were collected using the following commands:

```
python run_search.py -p 1 -s 1 2 3 4 5 6 7 >> run_uninformed_search_results_p1.txt python run_search.py -p 2 -s 1 3 5 7 >> run_uninformed_search_results_p2.txt python run_search.py -p 3 -s 1 3 5 7 >> run_uninformed_search_results_p3.txt
```

For Problem 2, because their execution time exceeded 10 minutes, we cancelled data collection for Breadth First Tree Search, Depth Limited Search, and Recursive Best First Search (per Udacity staff instruction). For the same reason, with Problem 3 we did not collect any data for Breadth First Tree Search, Depth Limited Search, Uniform Cost Search, and Recursive Best First Search.

Problem 1 Results

Problem 1:

Search Strategy	Optimal	Path Length	Execution Time(s)	Node Expantions
Breadth First Search	Yes 6		0.024	43
Breadth First Tree Search	Yes	6	0.772	1458
Depth First Graph Search	No	12	0.006	12
Depth Limited Search	No	50	0.068	101
Uniform Cost Search	Yes	6	0.029	55
Recursive Best First Search	Yes	6	2.174	4229
Greedy Best First Graph Search	Yes	6	0.005	7

Problem 2 Results

Search Strategy	Optimal	Path Length	Execution Time(s)	Node Expantions	
Breadth First Search	Yes	9	6.863	3401	
Breadth First Tree Search					
Depth First Graph Search	No	346	1.309	350	
Depth Limited Search					
Uniform Cost Search	Yes	9	9.211	4761	
Recursive Best First Search					
Greedy Best First Graph Search	Yes	9	1.064	550	

Problem 3 Results

Search Strategy	Optimal	Path Length	Execution Time(s)	Node Expantions
Breadth First Search	arch Yes 12		35.743	14491
Breadth First Tree Search				
Depth First Graph Search	No	1878	17.985	1948
Depth Limited Search				
Uniform Cost Search	Yes	12	42.705	17783
Recursive Best First Search				
Greedy Best First Graph Search	No	22	9.861	4031

Analysis

I didn't execute 2,4,6 at problem2,3. Because need much time.

And in my opinion Breadth First Search is better way. Because can take optimal answer at all problem, and need less time and less node.

Informed (Heuristic) Search Strategies Analysis

Performance measures were collected using the following commands:

```
python run_search.py -p 1 -s 8 9 10 >> run_informed_search_results_p1.txt
python run_search.py -p 2 -s 8 9 10 >> run_informed_search_results_p2.txt
python run_search.py -p 3 -s 8 9 >> run_informed_search_results_p3.txt
```

Problem 1 Results

Search Strategy	Optimal	Path Length	Execution Time(s)	Node Expantions
A*Search with h1 heuristic	Yes	6	0.030	55
A*Search with Ignore PreConditions Heuristic	Yes	6	0.028	41
A*Search with Level Sum Heuristic	Yes	6	0.786	11

Problem 2 Results

Search Strategy	Optimal	Path Length	Execution Time(s)	Node Expantions
A*Search with h1 heuristic	Yes	9	9.169	4761
A*Search with Ignore PreConditions Heuristic	Yes	9	3.347	1506
A*Search with Level Sum Heuristic	Yes	9	142.696	86

Problem 3 Results

Search Strategy	Optimal	Path Length	Execution Time(s)	Node Expantions
A*Search with h1 heuristic	Yes	12	40.072	17783
A*Search with Ignore PreConditions Heuristic	Yes	12	13.493	5081
A*Search with Level Sum Heuristic				

Analysis

I didn't execute 10 at problem3 because need much time.

8,9,10 can get optimal answer and don't use much node, but need long time.