波特率设置及引入误差

对于标准晶振及谐振器频率来说,异步模式下的实际通信的波特率可通过波特率计算公式来获得,它与常用通信波特率之间的误差可用如下公式来计算:

$Error[\%] = (Baud_{real}/Baud - 1)*100\%$

其中,Baud 为常用的通信波特率,Baud_{real} 为通过计算公式算出来的波特率,带入波特率计算公式即可得到波特率误差与系统时钟 f_{sys} 和波特率寄存器 UBRR 值之间的关系如下:普通模式:

 $Error[\%] = (f_{sys}/(16*(UBRR+1))/Baud - 1)*100\%$

倍速模式:

$Error[\%] = (f_{sys}/(8*(UBRR+1))/Baud - 1)*100\%$

当不考虑通信两边的时钟误差,即系统时钟 fsys 为标准时钟时,即可得到波特率误差 UBRR 值之间的关系。下表即为 16MHz 系统时钟下不同 UBRR 值设置下的波特率误差。

波特率 (bps)	f _{sys} = 16.000MHz			
	普通模式(U2X = 0)		倍速模式(U2X = 1)	
	UBRR	误差	UBRR	误差
2400	416	-0.1%	832	0.0%
4800	207	0.2%	416	-0.1%
9600	103	0.2%	207	0.2%
14.4K	68	0.6%	138	-0.1%
19.2K	51	0.2%	103	0.2%
28.8K	34	-0.8%	68	0.6%
38.4K	25	2.1%	34	-0.8%
57.6K	16	0.2%	51	0.2%
76.8K	12	0.2%	25	0.2%
115.2K	8	-3.5%	16	2.1%
230.4K	3	8.5%	8	-3.5%
250K	3	0%	7	0%
0.5M	1	0%	3	0%
1M	0	0%	1	0%

16MHz 系统时钟下设置 UBRR 值所产生的误差

多处理器通信模式

置位 UCSRA 的多处理器通信模式(MPCM)位可以对 USART 接收器接收到的数据帧进行过滤。 那些没有地址信息的帧将被忽略,也不会存入接收缓冲器。在一个多处理器系统中,各处理 器通过相同的串行总线进行通信,这种过滤有效的减少了需要 CPU 处理的数据帧的数量。 MPCM 位的设置不影响发送器的工作,但在多处理器通信的系统中,它的使用方法会有所不同。

如果接收器所接收的数据帧长度为 5 到 8 位,那么第一个停止位会用来表示当前帧包含的是数据还是地址信息。如果接收器所接收的数据帧长度是 9 位,那么由第 9 位来确定是数据还是地址信息。如果帧类型标志位为"1",那么这是地址帧,否则为数据帧。