Intro to R for Data Science

Dr. Laurie Baker Office for National Statistics/Department for International Development (updated: 2020-05-19)

Learning objectives: Part 2

- Introduction to data wrangling using the tidyverse set of metapackages.
- Use the tidyverse verbs to explore the gapminder data set.
- Learn to merge datasets using left_join.
- Create meaningful visualisations of the data using ggplot2.
- Learn where to go for help.

Subsetting and summarising using dplyr:

dplyr, has made a lot of data manipulation easier and clearer using **verbs** to filter and select different elements.

- select() subsets columns based on their names.
- filter() subsets rows based on their values.
- summarise() calculates summary statistics.
- group_by() groups variable for summarising.
- mutate() adds new columns that are functions of existing variables.

These verbs can be combined in powerful ways to do some really interesting data manipulation tasks!

select

```
select(gapminder, lifeExp, pop)
```

```
## # A tibble: 1,704 x 2
     lifeExp
##
               pop
##
       <dbl>
       28.8 8425333
##
        30.3 9240934
##
        32.0 10267083
##
        34.0 11537966
##
        36.1 13079460
##
##
        38.4 14880372
        39.9 12881816
##
        40.8 13867957
##
        41.7 16317921
##
   9
## 10
        41.8 22227415
    ... with 1,694 more rows
```

The pipe operator

• %>% = "and then"

```
gapminder %>%
  select(lifeExp, country)
## # A tibble: 1,704 x 2
##
      lifeExp country
        <dbl> <chr>
##
         28.8 Afghanistan
##
         30.3 Afghanistan
##
         32.0 Afghanistan
##
         34.0 Afghanistan
##
         36.1 Afghanistan
##
         38.4 Afghanistan
##
         39.9 Afghanistan
##
         40.8 Afghanistan
##
    8
         41.7 Afghanistan
##
         41.8 Afghanistan
## 10
     ... with 1,694 more rows
```

Assign your output to a new data frame

2

3

4

5

6

30.3 Afghanistan

32.0 Afghanistan 34.0 Afghanistan

36.1 Afghanistan

38.4 Afghanistan

```
lifeExp_by_country ← gapminder %>%
    select(lifeExp, country)

head(lifeExp_by_country)

## # A tibble: 6 x 2

## lifeExp country

## <dbl> <chr>
## 1 28.8 Afghanistan
```

Exercises Part I

1. Run the following line of code, what does the minus do?

```
select(-c(lifeExp, country))
## # A tibble: 1,704 x 6
     continent year
                      pop gdpPercap infant mortality fertility
##
     <chr>
                <dbl>
                       <dbl>
                                   <dbl>
                                                    <dbl>
                                                               <dbl>
   1 Asia
                 1952 8425333
                                    779.
                                                       NA
                                                                  NA
   2 Asia
                1957 9240934
                                    821.
                                                       NΑ
                                                                  NA
   3 Asia
                1962 10267083
                                    853.
                                                       NΑ
                                                                  NA
   4 Asia
                1967 11537966
                                    836.
                                                                  NA
                                                       NA
   5 Asia
                                                                  NA
                1972 13079460
                                    740.
                                                       NA
   6 Asia
                 1977 14880372
                                    786.
                                                                  NA
                                                       NA
   7 Asia
                 1982 12881816
                                    978.
                                                                  NA
                                                       NA
   8 Asia
                1987 13867957
                                    852.
                                                                  NA
                                                       NA
   9 Asia
                 1992 16317921
                                    649.
                                                       NΑ
                                                                  NA
## 10 Asia
                 1997 22227415
                                    635.
                                                       NA
                                                                  NA
## # ... with 1,694 more rows
```

gapminder %>%

2. Select the columns country, continent and gdpPercap from the data frame.

```
gapminder %>%
  select("country", "continent", "gdpPercap")
## # A tibble: 1,704 x 3
     country continent gdpPercap
     <chr>
                 <chr>
                                <dbl>
   1 Afghanistan Asia
                                 779.
   2 Afghanistan Asia
                                 821.
   3 Afghanistan Asia
                                 853.
   4 Afghanistan Asia
                                 836.
   5 Afghanistan Asia
                                 740.
   6 Afghanistan Asia
                                 786.
   7 Afghanistan Asia
                                 978.
   8 Afghanistan Asia
                                 852.
   9 Afghanistan Asia
                                 649.
## 10 Afghanistan Asia
                                 635.
## # ... with 1,694 more rows
```

3. Write 2 ways to select all the columns except for year.

Option 1

Option 2

```
gapminder %>%
  select(-year)
```

filter

• filter: subsetting rows

Logical Operator	Description
<	Less Than
<=	Less Than or Equal To
>	Greater Than
>=	Greater Than or Equal To
==	Equal To
!=	Not Equal To
&	And
%in% c()	Membership one in a list of elements

Filter using double "="

• Filter a particular country:

```
gapminder %>%
  filter(country = "Yemen, Rep.") %>%
  head()
## # A tibble: 6 x 8
     country
               continent year lifeExp pop gdpPercap infant mortality fertility
##
                <chr>
                           <dbl>
                                   <dbl>
                                          <dbl>
                                                     <dbl>
                                                                      <dbl>
                                                                                <dbl>
    <chr>
## 1 Yemen, Rep. Asia
                           1952
                                   32.5 4963829
                                                      782.
                                                                         NA
                                                                                   NΑ
## 2 Yemen, Rep. Asia
                           1957
                                    34.0 5498090
                                                      805.
                                                                         NΑ
                                                                                   NΑ
## 3 Yemen, Rep. Asia
                           1962
                                    35.2 6120081
                                                      826.
                                                                         NA
                                                                                   NΑ
## 4 Yemen, Rep. Asia
                           1967
                                    37.0 6740785
                                                      862.
                                                                         NA
                                                                                   NΑ
## 5 Yemen, Rep. Asia
                           1972
                                    39.8 7407075
                                                     1265.
                                                                         NA
                                                                                   NA
## 6 Yemen, Rep. Asia
                           1977
                                   44.2 8403990
                                                     1830.
                                                                         NA
                                                                                   NA
```

Filter rows from a set of matches

```
gapminder %>%
  filter(country %in% c("Jordan", "Oman",
                         "Svria". "Yemen. Rep."))
## # A tibble: 48 x 8
##
     country continent year lifeExp
                                         pop gdpPercap infant mortality fertility
                        <dbl>
                                <dbl>
                                        <dbl>
                                                   <dbl>
                                                                    <dbl>
                                                                              <dbl>
     <chr>
              <chr>
   1 Jordan Asia
                         1952
                                 43.2
                                       607914
                                                   1547.
                                                                     NA
                                                                              NΑ
   2 Jordan Asia
                         1957
                                                   1886.
                                                                              NΑ
                                 45.7
                                       746559
                                                                     NA
                                                   2348.
   3 Jordan Asia
                         1962
                                 48.1 933559
                                                                     96.6
                                                                               7.9
###
   4 Jordan Asia
                         1967
                                 51.6 1255058
                                                   2742.
                                                                     75.2
                                                                               8.03
                                                                     60.2
   5 Jordan Asia
                         1972
                                 56.5 1613551
                                                   2111.
                                                                               7.82
   6 Jordan Asia
                                 61.1 1937652
                                                   2852.
                         1977
                                                                     49.1
                                                                               7.46
                                 63.7 2347031
                                                   4161.
                                                                               7.07
   7 Jordan Asia
                         1982
                                                                     40.2
   8 Jordan Asia
                         1987
                                 65.9 2820042
                                                   4449.
                                                                     33.1
                                                                               6.16
   9 Jordan Asia
                         1992
                                 68.0 3867409
                                                   3432.
                                                                     28.3
                                                                               5.17
## 10 Jordan Asia
                                 69.8 4526235
                         1997
                                                   3645.
                                                                     24.9
                                                                               4.4
    ... with 38 more rows
```

Combining multiple filters

• You can add multiple filters with a comma.

```
gapminder %>%
  filter(country = "Yemen, Rep.", year ≥ 1960 & year ≤ 1985)
## # A tibble: 5 x 8
              continent year lifeExp
                                         pop gdpPercap infant mortality fertility
    country
###
    <chr>
                <chr>
                          <dbl>
                                  <dbl>
                                          <dbl>
                                                    <dbl>
                                                                    <dbl>
                                                                              <dbl>
                                   35.2 6120081
## 1 Yemen, Rep. Asia
                           1962
                                                    826.
                                                                       NΑ
                                                                                 NΑ
  2 Yemen, Rep. Asia
                           1967
                                   37.0 6740785
                                                    862.
                                                                       NA
                                                                                 NΑ
## 3 Yemen, Rep. Asia
                           1972
                                                    1265.
                                   39.8 7407075
                                                                       NA
                                                                                 NA
## 4 Yemen, Rep. Asia
                                                    1830.
                           1977
                                   44.2 8403990
                                                                       NA
                                                                                 NΑ
## 5 Yemen, Rep. Asia
                           1982
                                   49.1 9657618
                                                    1978.
                                                                       NA
                                                                                 NΑ
```

Exercises Part 2

1. What do these lines of code filter the data for?

```
gapminder %>%
  filter(continent = "Europe", lifeExp > 70)
## # A tibble: 257 x 8
     country continent year lifeExp
                                          pop gdpPercap infant mortality fertility
##
     <chr> <chr>
                        <dbl>
                                <dbl>
                                        <dbl>
                                                   <dbl>
                                                                    < [db] >
                                                                              <dbl>
###
   1 Albania Europe
                         1982
                                                                               3.46
                                 70.4 2780097
                                                   3631.
                                                                     56.1
   2 Albania Europe
                        1987
                                                   3739.
                                                                     40.8
                                      3075321
                                                                               3.13
   3 Albania Europe
                         1992
                                 71.6 3326498
                                                   2497.
                                                                     32.5
                                                                               2.87
   4 Albania Europe
                         1997
                                 73.0 3428038
                                                   3193.
                                                                     26.8
                                                                               2.61
   5 Albania Europe
                         2002
                                                   4604.
                                                                     21
                                                                               2.2
                                 75.7 3508512
   6 Albania Europe
                         2007
                                 76.4 3600523
                                                   5937.
                                                                     16.7
                                                                               1.8
   7 Austria Europe
                         1967
                                 70.1 7376998
                                                  12835.
                                                                     26.4
                                                                               2.62
   8 Austria Europe
                         1972
                                 70.6 7544201
                                                  16662.
                                                                     24.1
                                                                               2.09
   9 Austria Europe
                         1977
                                 72.2 7568430
                                                                     16.6
                                                                               1.63
                                                 19749.
## 10 Austria Europe
                         1982
                                 73.2 7574613
                                                 21597.
                                                                     12.6
                                                                               1.66
    ... with 247 more rows
```

2. Filter the data for countries in "Asia" where the "lifeExp" was below 35

```
gapminder %>%
  filter(continent = "Asia", lifeExp < 35)
## # A tibble: 7 x 8
     country
                 continent year lifeExp
                                              pop gdpPercap infant mortality fertility
                           <dbl>
                                            <dbl>
                                                       <dbl>
                                                                                  <dbl>
##
     <chr>
                 <chr>
                                   <dbl>
                                                                        <dbl>
## 1 Afghanistan Asia
                            1952
                                    28.8 8425333
                                                        779.
                                                                          NΑ
                                                                                  NA
  2 Afghanistan Asia
                            1957
                                    30.3 9240934
                                                        821.
                                                                          NΑ
                                                                                  NA
## 3 Afghanistan Asia
                                                        853.
                            1962
                                    32.0 10267083
                                                                          NΑ
                                                                                  NΑ
## 4 Afghanistan Asia
                            1967
                                    34.0 11537966
                                                        836.
                                                                                  NA
                                                                          NΑ
## 5 Cambodia
                 Asia
                            1977
                                    31.2
                                          6978607
                                                        525.
                                                                         155.
                                                                                   5.44
## 6 Yemen, Rep. Asia
                            1952
                                    32.5 4963829
                                                        782.
                                                                          NA
                                                                                  NA
## 7 Yemen, Rep. Asia
                            1957
                                    34.0 5498090
                                                        805.
                                                                          NΑ
                                                                                  NΑ
```

3. Filter the data for observations where the gdpPercap was equal to 1000 or less.

```
gapminder %>%
  filter(gdpPercap ≤ 1000)
## # A tibble: 351 x 8
                                                pop gdpPercap infant mortality fertility
##
      country
                  continent year lifeExp
      <chr>>
                  <chr>
                             <dbl>
                                     <dbl>
                                              <dbl>
                                                         <dbl>
                                                                                     <dbl>
##
                                                                           <dbl>
    1 Afghanistan Asia
                              1952
                                      28.8
                                            8425333
                                                          779.
                                                                                        NA
   2 Afghanistan Asia
                              1957
                                      30.3 9240934
                                                          821.
                                                                              NA
                                                                                        NA
    3 Afghanistan Asia
                                      32.0 10267083
                                                          853.
                              1962
                                                                              NA
                                                                                        NA
    4 Afghanistan Asia
                                                          836.
                              1967
                                      34.0 11537966
                                                                              NΑ
                                                                                        NA
    5 Afghanistan Asia
                              1972
                                      36.1 13079460
                                                          740.
                                                                              NA
                                                                                        NA
    6 Afghanistan Asia
                              1977
                                      38.4 14880372
                                                          786.
                                                                              NΑ
                                                                                        NA
   7 Afghanistan Asia
                              1982
                                      39.9 12881816
                                                          978.
                                                                              NA
                                                                                        NA
   8 Afghanistan Asia
                              1987
                                      40.8 13867957
                                                          852.
                                                                                        NA
                                                                              NΑ
    9 Afghanistan Asia
                              1992
                                      41.7 16317921
                                                          649.
                                                                              NA
                                                                                        NA
  10 Afghanistan Asia
                              1997
                                      41.8 22227415
                                                          635.
                                                                                        NA
                                                                              NΑ
    ... with 341 more rows
```

4. Filter using %in% for countries "Chile", "Argentina", "Uruguay", and "Peru" and year >= to 1992.

```
gapminder %>%
  filter(country %in% c("Chile", "Argentina", "Uruguay", "Peru") & year ≥ 1992)
## # A tibble: 16 x 8
##
      country
                continent vear lifeExp
                                              pop gdpPercap infant mortality fertility
      <chr>>
                <chr>
                           <dbl>
                                   <dbl>
                                            <dbl>
                                                       <dbl>
                                                                                   <dbl>
##
                                                                        <dbl>
    1 Argentina Americas
                           1992
                                   71.9 33958947
                                                      9308.
                                                                         22.8
                                                                                    2.92
   2 Argentina Americas
                                                                         19.6
                                                                                   2.66
                           1997
                                   73.3 36203463
                                                     10967.
    3 Argentina Americas
                           2002
                                    74.3 38331121
                                                      8798.
                                                                         17.1
                                                                                   2.38
    4 Argentina Americas
                                                                                    2.25
                           2007
                                    75.3 40301927
                                                     12779.
                                                                         14.1
   5 Chile
                Americas
                           1992
                                    74.1 13572994
                                                      7596.
                                                                         13.7
                                                                                   2.56
    6 Chile
                Americas
                           1997
                                    75.8 14599929
                                                      10118.
                                                                         10.2
                                                                                    2,25
   7 Chile
                Americas
                                                                                    2.01
                           2002
                                    77.9 15497046
                                                     10779.
                                                                          8.3
   8 Chile
                Americas
                           2007
                                    78.6 16284741
                                                     13172.
                                                                          7.6
                                                                                    1.9
   9 Peru
                Americas
                           1992
                                    66.5 22430449
                                                      4446.
                                                                         51
                                                                                    3.62
                Americas
                                    68.4 24748122
                                                       5838.
                                                                                    3.14
## 10 Peru
                           1997
                                                                         36.9
                Americas
                                    69.9 26769436
## 11 Peru
                           2002
                                                       5909.
                                                                         25.7
                                                                                    2.82
```

5. Filter the data using \neq to include the data from all continents apart from Europe.

```
gapminder %>%
  filter(continent ≠ "Europe")
## # A tibble: 1,344 x 8
                  continent year lifeExp
                                                 pop gdpPercap infant mortality fertility
##
      country
      <chr>>
                  <chr>
                             <dbl>
                                     <dbl>
                                              <dbl>
                                                         <dbl>
##
                                                                           <dbl>
                                                                                     <dbl>
    1 Afghanistan Asia
                              1952
                                      28.8
                                            8425333
                                                          779.
                                                                              NA
                                                                                        NA
    2 Afghanistan Asia
                                      30.3 9240934
                                                          821.
                              1957
                                                                              NA
                                                                                        NA
    3 Afghanistan Asia
                                      32.0 10267083
                                                          853.
                              1962
                                                                              NΑ
                                                                                        NA
    4 Afghanistan Asia
                                                          836.
                              1967
                                      34.0 11537966
                                                                              NΑ
                                                                                        NA
    5 Afghanistan Asia
                              1972
                                      36.1 13079460
                                                          740.
                                                                                        NA
                                                                              NΑ
    6 Afghanistan Asia
                              1977
                                      38.4 14880372
                                                          786.
                                                                              NΑ
                                                                                        NA
   7 Afghanistan Asia
                              1982
                                      39.9 12881816
                                                          978.
                                                                              NΑ
                                                                                        NA
   8 Afghanistan Asia
                              1987
                                      40.8 13867957
                                                          852.
                                                                                        NA
                                                                              NΑ
    9 Afghanistan Asia
                              1992
                                      41.7 16317921
                                                          649.
                                                                              NΑ
                                                                                        NA
  10 Afghanistan Asia
                              1997
                                      41.8 22227415
                                                          635.
                                                                                        NA
                                                                              NΑ
     ... with 1,334 more rows
```

summarise()

- summarise() uses existing R functions to calculate summary statistics.
- mean lifeExp for all countries:

```
## # A tibble: 1 x
## mean_lifeExp
## <dbl>
## 1 59.5
```

summarise() multiple summary statistics

• Calculate multiple summary statistics by separating using ","

```
## # A tibble: 1 x 3
## mean_lifeExp min_lifeExp max_lifeExp
## <dbl> <dbl> <dbl>
## 1 59.5 23.6 82.6
```

group_by()

- group_by() used to group variables.
- summarise min, mean, and max lifeExp per country

```
## # A tibble: 142 x 4
                 mean_lifeExp min_lifeExp max_lifeExp
##
     country
###
     <chr>
                        <dbl>
                                    <dbl>
                                                <dbl>
   1 Afghanistan
                         37.5
                                     28.8
                                                 43.8
   2 Albania
                                     55.2
                         68.4
                                                 76.4
   3 Algeria
                         59.0
                                     43.1
                                                 72.3
   4 Angola
                         37.9
                                     30.0
                                                 42.7
   5 Argentina
                         69.1
                                     62.5
                                                 75.3
   6 Australia
                                     69.1
                                                 81.2
                         74.7
   7 Austria
                                     66.8
                                                 79.8
                         73.1
   8 Bahrain
                         65.6
                                     50.9
                                                 75.6
   9 Bangladesh
                         49.8
                                     37.5
                                                 64.1
```

Exercises Part 3

1. What does the following bit of code do?

```
gapminder %>%
      group by(continent, year) %>%
      summarise(mean gdpPercap = mean(gdpPercap))
## # A tibble: 60 x 3
## # Groups:
              continent [5]
     continent year mean_gdpPercap
     <chr>
                <dbl>
                               <dbl>
##
   1 Africa
                1952
                               1253.
   2 Africa
                1957
                               1385.
   3 Africa
                1962
                               1598.
   4 Africa
                               2050.
                1967
   5 Africa
                1972
                               2340.
   6 Africa
                               2586.
                1977
   7 Africa
                1982
                               2482.
   8 Africa
                1987
                               2283.
   9 Africa
                               2282.
                1992
## 10 Africa
                1997
                               2379.
    ... with 50 more rows
```

2. Group the data by country and summarise the minimum and maximum population sizes.

```
## # A tibble: 8 x 3
    country
               min_pop max_pop
    <chr>
            <dbl>
                          < dbl >
## 1 Afghanistan 8425333 31889923
## 2 Albania
           1282697 3600523
## 3 Algeria 9279525 33333216
## 4 Angola 4232095 12420476
## 5 Argentina 17876956 40301927
## 6 Australia
             8691212 20434176
## 7 Austria 6927772 8199783
## 8 Bahrain
            120447
                        708573
```

3. Group the data by continent and year. Summarise the max and min population.

The pipe function %>%

The pipe function

• The pipe function %>% allows you to combine multiple data wrangling steps

Let's calculate life expectancy in Yemen pre 1980. First we take the gapminder data

```
yemen_pre1980_mean_lifeExp ← gapminder %>%
   filter(country = "Yemen, Rep.", year <1980) %>%
   select(lifeExp) %>%
   summarise(meanlifeExp = mean(lifeExp))
```

And then, we filter for Yemen and years less than 1980.

```
yemen_pre1980_mean_lifeExp ← gapminder %>%
    filter(country = "Yemen, Rep.", year <1980) %>%
    select(lifeExp) %>%
    summarise(meanlifeExp = mean(lifeExp))
```

And then we can select our column of interest lifeExp

```
yemen_pre1980_mean_lifeExp ← gapminder %>%
  filter(country = "Yemen, Rep.", year <1980) %>%
  select(lifeExp) %>%
  summarise(meanlifeExp = mean(lifeExp))
```

And then we can use summarise to calculate the mean lifeExp

```
yemen_pre1980_mean_lifeExp 		 gapminder %>%
    filter(country = "Yemen, Rep.", year <1980) %>%
    select(lifeExp) %>%
    summarise(mean_lifeExp = mean(lifeExp))

yemen_pre1980_mean_lifeExp
```

mean_lifeExp

37.1175

Looking at a slice()

slice() chooses rows by their position within the group, e.g. minimum lifeExp.

```
gapminder %>%
  group_by(year) %>%
  slice(which.min(lifeExp))
```

country	continent	year	lifeExp	pop	gdpPercap	infant_mortality	fertility
Afghanistan	Asia	1952	28.801	8425333	779.4453	NA	NA
Afghanistan	Asia	1957	30.332	9240934	820.8530	NA	NA
Afghanistan	Asia	1962	31.997	10267083	853.1007	NA	NA
Afghanistan	Asia	1967	34.020	11537966	836.1971	NA	NA
Sierra Leone	Africa	1972	35.400	2879013	1353.7598	185.2	6.80
Cambodia	Asia	1977	31.220	6978607	524.9722	155.4	5.44
Sierra Leone	Africa	1982	38.445	3464522	1465.0108	164.1	7.03
Angola	Africa	1987	39.906	7874230	2430.2083	134.1	7.20

Looking at a slice()

• Which country had the highest life Expectancy in each year?

```
gapminder %>%
  group_by(year) %>%
  slice(which.max(lifeExp))
```

country	continent	year	lifeExp	pop	gdpPercap	infant_mortality	fertility
Norway	Europe	1952	72.670	3327728	10095.422	NA	NA
Iceland	Europe	1957	73.470	165110	9244.001	NA	NA
Iceland	Europe	1962	73.680	182053	10350.159	16.9	3.98
Sweden	Europe	1967	74.160	7867931	15258.297	12.6	2.27
Sweden	Europe	1972	74.720	8122293	17832.025	10.4	1.91
Iceland	Europe	1977	76.110	221823	19654.962	9.2	2.49
Japan	Asia	1982	77.110	118454974	19384.106	6.5	1.75
Japan	Asia	1987	78.670	122091325	22375.942	5.0	1.67

Mutate

• mutate() adds new columns that are functions of existing variables.

```
(gapminder ← gapminder %>%
    mutate(gdp = gdpPercap*pop))
```

country	continent	year	lifeExp	рор	gdpPercap	infant_mortality	fertility	gdp
Afghanistan	Asia	1952	28.80100	8425333	779.4453	NA	NA	6.567086e+09
Afghanistan	Asia	1957	30.33200	9240934	820.8530	NA	NA	7.585449e+09
Afghanistan	Asia	1962	31.99700	10267083	853.1007	NA	NA	8.758856e+09
Afghanistan	Asia	1967	34.02000	11537966	836.1971	NA	NA	9.648014e+09
Afghanistan	Asia	1972	36.08800	13079460	739.9811	NA	NA	9.678553e+09
Afghanistan	Asia	1977	38.43800	14880372	786.1134	NA	NA	1.169766e+10
Afghanistan	Asia	1982	39.85400	12881816	978.0114	NA	NA	1.259856e+10
Afghanistan	Asia	1987	40.82200	13867957	852.3959	NA	NA	1.182099e+10
Afghanistan	Asia	1992	41.67400	16317921	649.3414	NA	NA	1.059590e+10

Joining data frames: when one data frame is not

- Our data is often spread out over several data frames!
- We can **join** these data frames together using a variety of join functions from the dplyr package.

Joining data

1 Job_1 Programmer

Job_2 Statistician

Person Table

Job Table

Inner join:

```
person_table
    Person_ID Name Job_ID
##
## 1 Person1 Jane Doe Job_1
## 2 Person2 John Smith
                         NA
job_table
    Job_ID Job_Name
## 1 Job_1 Programmer
## 2 Job_2 Statistician
 • inner_join: only rows where there is a match.
inner_join(x = person_table, y = job_table, by = "Job_ID")
    Person_ID Name Job_ID Job_Name
##
## 1
    Person1 Jane Doe Job_1 Programmer
```

Left join:

1 ## 2

```
person table
    Person ID
              Name Job ID
##
     Person1
## 1
              Jane Doe Job 1
## 2
     Person2 John Smith
                            NA
job_table
    Job ID
           Job Name
## 1 Job_1
             Programmer
## 2 Job 2 Statistician
 • left_join: All rows on the left side of join.
```

Person1 Jane Doe Job_1 Programmer

Person2 John Smith NA

• Only rows from the right side where there's a match on the left.

<NA>

```
left_join(x = person_table, y = job_table, by = "Job_ID")
    Person_ID Name Job_ID Job_Name
##
```

Right join:

```
person table
    Person ID
              Name Job ID
##
     Person1
## 1
              Jane Doe Job 1
## 2
     Person2 John Smith
                           NA
job_table
    Job ID
           Job Name
     Job_1
            Programmer
    Job 2 Statistician
```

- right_join: Rows from the left side only where there is a match on the right.
- All rows from the right side of the join.

```
right_join(x = person_table, y = job_table, by = "Job_ID")
### Person_ID Name Job_ID Job_Name
```

```
## 1 Person1 Jane Doe Job_1 Programmer
## 2 <NA> <NA> Job_2 Statistician
```

Full join

2

3

Person2 John Smith NA

<NA>

```
person table
    Person ID
              Name Job ID
##
## 1
     Person1
              Jane Doe Job 1
## 2
     Person2 John Smith
                            NA
job_table
    Job ID
           Job Name
     Job_1
             Programmer
## 2 Job 2 Statistician
 • full_join: All rows from the left.
```

• All rows from the right, **Joined** where the criteria matches. NAs where no matches.

<NA>

<NA> Job_2 Statistician

```
full_join(x = person_table, y = job_table, by = "Job_ID")

## Person_ID Name Job_ID Job_Name
## 1 Person1 Jane Doe Job_1 Programmer
```

- Let's look at the per capita GDP in a way that's more meaningful.
- Let's create gdpPercap_rel, that is the gdpPercap of the country **relative** to the UK's gdpPercap of that same year.
- How? Country A: gdpPercap divided by UK's gdpPercap in the same year.

• Create a new dataframe uk_gdpPercap_df

```
uk_gdpPercap_df ← gapminder %>%
  filter(country = "United Kingdom") %>%
  select(gdpPercap, year) %>%
  rename(uk_gdpPercap = gdpPercap)
```

• Filter the rows for country = "United Kingdom".

```
uk_gdpPercap_df ← gapminder %>%
    filter(country = "United Kingdom") %>%
    select(gdpPercap, year) %>%
    rename(uk_gdpPercap = gdpPercap)
```

• Select the columns gdpPercap and year.

```
uk_gdpPercap_df ← gapminder %>%
  filter(country = "United Kingdom") %>%
  select(gdpPercap, year) %>%
  rename(uk_gdpPercap = gdpPercap)
```

• Rename the variable gdpPercap to uk_gdpPercap.

```
uk_gdpPercap_df ← gapminder %>%
  filter(country = "United Kingdom") %>%
  select(gdpPercap, year) %>%
  rename(uk_gdpPercap = gdpPercap)
```

• Inspect the data frame.

```
uk_gdpPercap_df ← gapminder %>%
  filter(country = "United Kingdom") %>%
  select(gdpPercap, year) %>%
  rename(uk_gdpPercap = gdpPercap)
head(uk_gdpPercap_df)
```

```
## # A tibble: 6 x 2
   uk gdpPercap year
##
          <dbl> <dbl>
###
    9980. 1952
## 1
     11283. 1957
## 2
## 3
    12477. 1962
    14143. 1967
## 4
     15895. 1972
        17429. 1977
## 6
```

Joining uk_gdpPercap_df to the gapminder data frame

- We want to divide all the other country's gdpPercap by the UK gdpPercap in that same year.
- We can match the two data frames using a left_join on the common variable, year.

Calculating the relative GDP per capita

```
gapminder ← gapminder %>%
mutate(gdpPercap_rel = gdpPercap/uk_gdpPercap)
```

• Doublechecking our calculations... Is the United Kindom relative gdp always 1?

1

3 ## 4 ## 5 ## 6

```
gapminder %>%
  filter(country = "United Kingdom") %>%
  select(gdpPercap_rel) %>%
  head()

## # A tibble: 6 x 1

## gdpPercap_rel

## <dbl>
```

How many countries had a smaller gdp per capita than the UK each year?

```
gapminder %>%
  group_by(year) %>%
  filter(gdpPercap_rel < 1) %>%
  summarise(count = n())

## # A tibble: 12 x 2
## year count
## <dbl> <int>
## 1 1952 134
## 2 1957 134
```

Exercises Part 4

1. What does the following bit of code do?

```
## # A tibble: 4 x 4
    country
             max_gdp min_gdp mean_gdp
               <dbl> <dbl>
                              <dbl>
    <chr>
## 1 Argentina
               0.608
                      0.298
                              0.495
## 2 Brazil
               0.386
                      0.211
                              0.295
## 3 Chile
               0.397 0.256
                               0.345
## 4 Peru
               0.409 0.196
                               0.315
```

2. How many countries had a higher relative gdp per capita than the United Kindom per year?

```
gapminder %>%
  group_by() %>%
  filter(gdpPercap_rel > 1) %>%
  summarise(count = n())
```

count

170

3. **Which countries** had a higher relative gdp per capita than the UK in 2007? Fill in the blanks

```
gapminder %>%
  filter(gdpPercap_rel > 1, year = 2007) %>%
  select(country) %>%
  unique()
```

country

Australia

Austria

Belgium

Canada

Denmark

Finland

Answers to our poll

Using what we've learned so far, let's go back to our original comparisons.

Which country had a higher infant mortality rate in 2007?

• Sri Lanka or Turkey

```
gapminder %>%
  filter(year = 2007, country %in% c("Sri Lanka", "Turkey")) %>%
  select(country, infant_mortality)
```

country	infant_mortality
Sri Lanka	10.7
Turkey	20.2

• **Turkey**, difference = 9.5.

Which country had a higher infant mortality rate in 2007?

• Poland or Malaysia

```
gapminder %>%
  filter(year = 2007, country %in% c("Poland", "Malaysia")) %>%
  select(country, infant_mortality)
```

country	infant_mortality
Malaysia	6.9
Poland	6.0

• Malaysia, difference = 0.9

Which country had a higher infant mortality rate in 2007?

Pakistan or Vietnam

```
gapminder %>%
  filter(year = 2007, country %in% c("Pakistan", "Vietnam")) %>%
  select(country, infant_mortality)
```

country	infant_mortality
Pakistan	77.4
Vietnam	21.4

• Pakistan, difference = 56

Which country had a higher life Expectancy in 2007?

• South Africa or Yemen

```
gapminder %>%
  filter(year = 2007, country %in% c("South Africa", "Yemen, Rep.")) %>%
  select(country, lifeExp)
```

country	lifeExp
South Africa	49.339
Yemen, Rep.	62.698

• Yemen, difference ~ 13.4 years

Which country had a higher life Expectancy in 2007?

• Chile or Hungary

```
gapminder %>%
  filter(year = 2007, country %in% c("Chile", "Hungary")) %>%
  select(country, lifeExp)
```

country	lifeExp
Chile	78.553
Hungary	73.338

• Chile, difference ~ 5.2 years

Which country do you think had the highest gdpPercap in 2007?

• Switzerland or Kuwait

```
gapminder %>%
  filter(year = 2007, country %in% c("Switzerland", "Kuwait")) %>%
  select(country, gdpPercap)
```

country	gdpPercap
Kuwait	47306.99
Switzerland	37506.42

• Kuwait, difference ~ 10,000 USD, about 20-25% more

Which country do you think had the highest gdpPercap in 2007?

• Colombia or Nepal

```
gapminder %>%
  filter(year = 2007, country %in% c("Colombia", "Nepal")) %>%
  select(country, gdpPercap)
```

country	gdpPercap
Colombia	7006.58
Nepal	1091.36

• Colombia, difference ~ 5,915, more than 6x

Which results did you find the most surprising?

Intro to Data Visualisation Using ggplot2

• See the data visualisation presentation and exercises accompanying these materials.

Getting Help

1. **Help and Vignette** Check the function or the documentation of the package you're working with using the help function? or vignette respectively.

```
?filter
vignette("dplyr")
```

- 1. CRAN Task View Looking for a package to carry out a particular analysis? Check out CRAN Task View
- 2. **Stack Overflow** Stack Overflow Check out Stack Overflow. This is one of the first calls where members from the R Community will help you answer questions.

Getting Help

1. **Cheatsheets** Many of the tidyverse packages come with their own cheatsheets, which are a quick reference on how to use various functions. It also gives a good overview of what functions are available.

Data Transformation with dplyr:: cheat sheet

-, e.g, -Species

dplyr functions work with pipes and expect tidy data. In tidy data:

Each variable is in its own column

Each observation, or case, is in its own row

Manipulate Cases

EXTRACT CASES

Row functions return a subset of rows as a new table.

→

filter(.data, ...) Extract rows that meet logical criteria, filter(iris, Sepal.Length > 7)

distinct(.data, ..., .keep_all = FALSE) Remove rows with duplicate values. distinct(iris, Species)

sample_frac(tbl, size = 1, replace = FALSE, weight = NULL, .env = parent.frame()) Randomly select fraction of rows. sample frac(iris, 0.5, replace = TRUE)

sample_n(tbl, size, replace = FALSE, weight = NULL, .env = parent.frame()) Randomly select size rows. sample_n(iris, 10, replace = TRUE)

slice(.data, ...) Select rows by position. slice(iris, 10:15)

top_n(x, n, wt) Select and order top n entries (by group if grouped data). top_n(iris, 5, Sepal.Width)

Manipulate Variables

EXTRACT VARIABLES

Column functions return a set of columns as a new vector or table.

pull(.data, var = -1) Extract column values as a vector. Choose by name or index. pull(iris, Sepal.Length)

select(.data, ...) Extract columns as a table. Also select if(). select(iris, Sepal, Length, Species)

Use these helpers with select (),

e.g. select(iris, starts_with("Sepal"))

num_range(prefix, range) :, e.g. mpg:cyl contains(match) ends_with(match) one_of(...) matches(match) starts with(match)

MAKE NEW VARIABLES

These apply vectorized functions to columns, Vectorized funs take vectors as input and return vectors of the same length as output

(see back). vectorized function

Summarise Cases

These apply summary functions to columns to create a new table of summary statistics. Summary functions take vectors as input and return one value (see back).

summary function

Compute table of summaries. summarise(mtcars, avg = mean(mpg))

count(x, ..., wt = NULL, sort = FALSE) Count number of rows in each group defined by the variables in ... Also tally(). count(iris, Species)

VARIATIONS

summarise_all() - Apply funs to every column.

Getting Help

- 1. **Google.** Google is your friend! Type "R help" followed by the warning or error message you received and I guarantee there will be someone who has had this problem before.
- 2. Meet ups and coding clubs Join a meet up or coffee and code group. Check out R-Ladies.
- 3. **Further resources** Looking to develop your learning further? Check out my trello board on R Resources for Data Science. This is still a work in progress, but I'm continually updating it with useful resources.

References

- Changing R Studio Settings and Overview of RStudio Panels Sydney R Ladies
- Showcasing RStudio features, overview of functions using <code>seq()</code> as an example. Stat 545 University of British Columbia Blog by Jenny Bryan
- Introduction to ggplot2 and the grammar of graphics. R for Data Science by Hadley Wickham and Garret Gromelund.

Thanks!

Slides created via the R package **xaringan**.

The chakra comes from remark.js, **knitr**, and R Markdown.