О просто типизированном лямбда-исчислении по Чёрчу

Типизированное по Карри исчисление использует для лямбда-выражений синтаксис, эквивалентный бестиповому лямбда-исчисленю, поэтому бета-редукция, теорема Чёрча-Россера и другие результаты и конструкции можно без изменений взять из бестипового исчисления. Однако, исчисление по Чёрчу имеет особый синтаксис для выражений, что требует от нас переформулировки определений и передоказывания теорем.

0.1 Синтаксис

Фиксируем множество атомарных типовых переменных V_T — маленькие греческие буквы начала алфавита $(\alpha, \beta, \gamma, \dots)$, возможно, с индексами и штрихами.

Буквами из конца алфавита (σ, τ, \dots) будем обозначать метапеременные для типов.

Определение 0.1. Будем говорить, что строчка является типом τ , если выполнено одно из условий:

- 1. τ является атомарной переменной;
- 2. существуют два типа σ и ϕ , что $\tau = (\sigma \to \phi)$.

Будем обозначать множество типов как T.

Фиксируем множество атомарных переменных V_{Λ} — маленькие латинские буквы начала алфавита (a,b,c,\dots) , возможно, с индексами и штрихами. Буквами конца алфавита (x,y,z) будем обозначать метапеременные для атомарных переменных. Большими буквами будем обозначать метапеременные для лямбда-выражений.

Определение 0.2. Будем говорить, что строчка A является лямбда-предтермом по Чёрчу, если выполнено одно из условий:

- 1. A является атомарной переменной из множества V_{Λ} ;
- 2. существуют переменная x, тип τ и лямбда-выражение P, что $A=(\lambda x:\tau.P)$. Указывать тип x допустимо и с помощью верхнего индекса: $A=(\lambda x^{\tau}.P)$;
- 3. существуют выражения P и Q, что A = (P Q).

Обозначим множество предтермов как $\Lambda_{\mathtt{q}}$.

Несмотря на то, что мы потребовали обязательно указывать все скобки в выражениях, мы будем опускать часть скобок в примерах, в предположении, что читатели без труда их расставят правильным образом. Стрелка в типах правоассоциативна, тип $\alpha \to \beta \to \gamma$ следует понимать как $(\alpha \to (\beta \to \gamma))$. Правила расстановки скобок в лябмда-выражениях аналогичны таковым для бестипового исчисления: применение левоассоциативно; абстракция жадна и съедает столько, сколько может.

0.2 Лямбда-термы

Определим альфа-эквивалентность на лямбда-предтермах по Чёрчу. Мы не даём определений для понятий подстановки (в т.ч. подстановки типа), свободы для подстановки и других — они сохраняют стандартный смысл.

Определение 0.3. Назовём терм A альфа-эквивалентным терму B, если выполнено одно из следующих условий:

- 1. оба выражения одинаковые переменные: найдётся переменная x, что A=x и B=x;
- 2. оба выражения применения эквивалентных выражений: найдутся $P_A,\ P_B,\ Q_A$ и $Q_B,\$ что $A=(P_A\ Q_A),\ B=(P_B\ Q_B),\ P_A=_{\alpha}P_B,\ Q_A=_{\alpha}Q_B.$
- 3. оба выражения абстракции эквивалентных выражений: найдутся P_A , P_B , x, y и тип τ , что $A = \lambda x : \tau.P_A$, $B = \lambda y : \tau.P_B$, и что если зафиксировать некоторую свежую переменную t, то $P_A[x := t] =_{\alpha} P_B[y := t]$.

Определение 0.4. Построим фактор-множество по множеству $\Lambda_{\tt q}$ с помощью отношения альфа-эквивалентности, и назовём его *множеством лямбда-термов по Чёрчу*: $\Lambda_{\tt q} = \Lambda_{\tt q}/(=_{\alpha})$.

Определение 0.5. Определим *множество свободных переменных* лямбда-предтерма A так:

$$FV(A) = \begin{cases} \{x\}, & A = x \\ FV(P) \cup FV(Q), & A = (P Q) \\ FV(P) \setminus \{x\}, & A = (\lambda x : \sigma.P) \end{cases}$$

Несложно показать, что данное множество не зависит от выбора представителя класса эквивалентности, потому мы можем распространить данное определение и на лямбда-термы.

0.3 Редукция

Определение 0.6. Будем писать $A \to_{\beta} B$, если имеет место одна из следующих ситуаций:

- 1. $A = (\lambda x : \sigma.P) Q, B = P[x := Q];$
- 2. $A = (P_A \ Q), B = (P_B \ Q),$ причём $P_A \to_{\beta} P_B$;
- 3. $A = (P Q_A), B = (P Q_B),$ причём $Q_A \to_{\beta} Q_B$;
- 4. $A = (\lambda x : \sigma.P_A), B = (\lambda x : \sigma.P_B),$ причём $P_A \rightarrow_{\beta} P_B$.

Обратите внимание, редукция не обращает внимание на типы. Если в процессе подстановки возникнет конфликт переменных (не будет выполнена свобода для подстановки), то требуется произвести переименование связанных переменных и продолжить редукцию — аналогично бестиповому исчислению.

Многошаговая бета-редукция $\twoheadrightarrow_{\beta}$ (бета-редуцируемость), бета-редекс и прочие понятия определяются аналогично просто-типизированному лямбда-исчислению.

0.4 Типизация

Определение 0.7. *Контекстом* выражения мы назовём список Γ , содержащий выражения вида $x : \sigma$.

Определение 0.8. Будем говорить, что лямбда-терм M имеет тип α в контексте Γ по Чёрчу, и записывать это как $\Gamma \vdash_{\mathbf{q}} M : \alpha$, если это утверждение является заключением одного из трёх (корректно применённых) правил вывода:

$$\frac{\Gamma, x : \sigma \vdash_{\texttt{ч}} M : \tau}{\Gamma, x : \tau \vdash_{\texttt{ч}} x : \tau} \ (\text{если} \ x \notin \Gamma) \quad \frac{\Gamma, x : \sigma \vdash_{\texttt{ч}} M : \tau}{\Gamma \vdash_{\texttt{ч}} \lambda x : \sigma . M : \sigma \to \tau} \ (\text{если} \ x \notin \Gamma) \quad \frac{\Gamma \vdash_{\texttt{ч}} M : \sigma \to \tau \quad \Gamma \vdash_{\texttt{ч}} N : \sigma}{\Gamma \vdash_{\texttt{ч}} M \ N : \tau}$$

Индекс «ч» внизу знака выводимости мы будем опускать, если из контекста ясно, что речь идёт о типизации по Чёрчу.

0.5 Теорема Чёрча-Россера

Здесь мы перечислим некоторые важные леммы, не давая им доказательства (доказательство аналогично доказательствам лемм для бестипового исчисления).

Лемма 0.1. Лемма о редукции. Если $\Gamma \vdash_{\mathbf{q}} M : \sigma, M \to_{\beta} N$, то $\Gamma \vdash_{\mathbf{q}} N : \sigma$.

Теорема 0.2. Теорема Чёрча-Россера. Пусть даны $A, B, C \in \Lambda_{\mathfrak{q}}$, такие, что:

- 1. $\Gamma \vdash_{\Psi} A : \sigma, \Gamma \vdash_{\Psi} B : \sigma, \Gamma \vdash_{\Psi} C : \sigma;$
- 2. $B \neq_{\alpha} C$:
- 3. $A \twoheadrightarrow_{\beta} B$ и $A \twoheadrightarrow_{\beta} C$.

Тогда существует такой D, что:

- 1. $\Gamma \vdash_{\mathbf{q}} D : \sigma$;
- 2. $B \rightarrow_{\beta} D$ и $C \rightarrow_{\beta} D$.

Доказательство. Аналогично теореме Чёрча-Россера для бестипового исчисления с использованием леммы о редукции терма. \Box