appendix 1

1. The generation process of rK in MN-SC mechanism

The generation process of rK in MN-SC mechanism is as follows:

(1)Initialization stage

Distributor KGC_C , $NP_i = \{NP_1, NP_2, \dots, NP_n\}$, master key is r_k . The distributor KGC_C randomly selects n points K_1, K_2, \dots, K_n , on the elliptic curve $E_p(a, b)$, and makes its vertical coordinate $r_{k_1}, r_{k_2}, \dots, r_{k_n}$ as the subkey of NP_i , G is the base point selected on $E_p(a, b)$. KGC_C distributes its subkeys to NP_i , $i \in [1, n]$ over a secure channel. KGC_C calculates $G'_i = k_i G$, $i \in [1, n]$. Then, parameters (E, G, n, H(x), G') is disclosed.

(2)Key distribution

- a. Distributor KGC_C randomly selects a point Q on $E_p(a, b)$ and a t-1 degree polynomial $f(x) = a_0 + \sum_{i=1}^{t-1} a_i x^i$, where $f(0) = a_0 = r_K$ and Q is the public parametlates and f(x) is retained by the distributor.
- b. Distributor KGC_C calculates $f(i) = r_{k_i}$, $A_l = a_lG$, $1 \le l \le t 1$, $D_i = (i, f(i)) K_iQ$. The parameters A_l and D_i are disclosed.
- c. Distributor KGC_C calculates $F_i = H(K_iQ)$, which is used to verify the authenticity of the subkeys interacted by the NP_i .

(3) Verification of subkeys

After receiving the subkey distributed by KGC_C , $NP_i(1 \le i \le n)$ first verifies the authenticity of the subkey. Then it calculates $C_i = K_iQ$ and $(i, r_{k_i}) = (D_i + C_i)$. If the equation $r_{k_i}G = \sum_{k=0}^{t-1} A_l i_l^i$ holds, then the subkey is true. If the equation $F_i = H(C_i)$ holds, it means that the identity between NP_i is true.

(4) Master key reconstruction:

When the number l of participants satisfies $l \ge t$, allow the participants be $NP_{i_1}, NP_{i_2}, \dots NP_{i_l}$, and the master key r_K can be reconstructed by Lagrange interpolation. For the subkeys $r_{k_i}, i \in [1,t]$ of t different NP_i , a unique Lagrange interpolation polynomial $L(x) = \sum_{i=0}^{t-1} r_{k_i} l_i(x)$ can be constructed by (x_i, r_{k_i}) , where $l_i(x) = \prod_{0 \le j \le t-1} \frac{x-x_i}{x_i-x_j}, 0 \le i \le t-1$. Because L(x) is a polynomial of degree t-1 and corresponds to different values, there is $L(0)=f(0)=r_k$. Get the master key and send r_k to NP_1 .