CS/MATH 111 SPRING 2016 Final Test

- The test is 2 hours and 30 minutes long, starting at **7:00PM** and ending at **9:30PM**.
- There are 8 problems on the test. Each problem is worth 10 points.
- Write legibly. What can't be read won't be credited.
- Calculators are not allowed.
- Before you start:
 - Make sure that your final has all 8 problems
 - Put your name and your student ID on each page

Name	SID

problem	1	2	3	4	5	6	7	8	total
score									

NAME: SID:

Problem 1: Amber needs to buy 33 bagels for a party. There are three flavors to choose from: poppyseed, blueberry, and garlic. She needs at least 3 poppyseed bagels, at most 11 blueberry bagels and at most 13 garlic bagels. How many possible combinations of bagels are there that satisfy these requirements? Show your work¹.

¹You must use the method for counting integer partitions that we covered in class. Brute force listing of all solutions will not be credited.

Problem 2: For each graph below determine the minimum number of colors necessary to color its vertices. Justify your answer, by giving a coloring and explaining why it is not possible to use fewer colors.

To give a coloring, use positive integers 1, 2, ... for colors and mark the color of each vertex in the box next to it. For ease of grading, assign color 1 to vertex \mathbf{a} and color 2 to vertex \mathbf{b} .

Why the number of colors of G is minimized?	Why the number of colors of H is minimized?

Problem 3: (a) Compute $12^{-1} \pmod{19}$. Show your work.

(b) Compute $2^{5983207} \pmod{101}$. Show your work.

(c) Compute $7^{17} \pmod{23}$. Show your work.

NAME:

SID:

Problem 4: Solve the following recurrence equation:

$$Z_n = Z_{n-1} + 2Z_{n-2} + 3^n$$

$$Z_0 = 3$$

$$Z_1 = 4$$

Problem 5: For each integer $n \ge 1$ we define a tree T_n , as follows: T_1 and T_2 consist of just a single node. For $n \ge 3$, T_n is formed by creating five new nodes and attaching to them two copies of subtree $T_{\lfloor n/3 \rfloor}$, as in the picture below:

Let Q(n) be the number of nodes in T_n . For example, we have Q(1) = Q(2) = 1, $Q(3) = Q(4) = \dots = Q(8) = 7$, and so on.

(a) Give a recurrence equation for Q(n) and justify it. (b) Then determine the asymptotic value of Q(n), expressing it using the Θ -notation. Justify your solution.

(Reminder: |x| is the largest integer not larger than x. For example, |2.7| = 2 and |23/3| = 7.)

NAME: SID:

Problem 6: Consider numbers B_n defined recursively as follows: $B_0 = B_1 = B_2 = 1$, and $B_n = B_{n-1} + B_{n-2} + B_{n-3}$ for all integers $n \geq 3$. Using mathematical induction, prove that $B_n \leq 2^n$ for all $n \geq 0$.

NAME:	SID:
Problem 7: Complete statements of the	ne following theorems.
(a) Euler's Theorem: Let G be a con	nected graph. G has an Euler tour if and only if
(b) Dirac's Theorem: Let G be a gra	sph with n vertices. If
	\ldots then G has a hamiltonian cycle.
(c) Hall's Theorem: Let $G = (L, R, R)$	E) be a bipartite graph. G has a perfect matching if
and only if	
(d) Kuratowski's Theorem: Let G be	e a graph. G is planar if and only if

Problem 8: Give the formulas for the following quantities. Provide a justification for each.

- (a) (2 points) The number of all strings of length n formed from letters a, b, c, d, e.
- (b) (2 points) The number of all strings of length n formed from letters a, b, c, d, e that contain exactly two a's and exactly two b's. (Here we assume $n \ge 4$.)

(c) (6 points) The number of all strings of length n formed from letters $\mathtt{a},\mathtt{b},\mathtt{c},\mathtt{d},\mathtt{e}$ that contain at least two \mathtt{a} 's and at least two \mathtt{b} 's. (Here we assume $n \geq 4$.)