# Введение в искусственный интеллект. Машинное обучение

Лекция 6. Машины опорных векторов – SVM

Бабин Д.Н., Иванов И.Е., Петюшко А.А.

кафедра Математической Теории Интеллектуальных Систем

24 марта 2020 г.





## План лекции

- Случай линейной разделимости
- 2 Случай линейной неразделимости
- Решение с помощью двойственной задачи
- Обобщение SVM с помощью ядрового трюка
- Ответительный в поражений в поражений



# Дорожная карта Scikit-Learn<sup>1</sup>



<sup>1</sup>https://scikit-learn.org/stable/tutorial/machine\_learning\_map/



# Дорожная карта Scikit-Learn<sup>1</sup>



<sup>1</sup>https://scikit-learn.org/stable/tutorial/machine\_learning\_map/ + D > + @ > + 2 > + 2 > + 2 > + 2



# Дорожная карта Scikit-Learn<sup>1</sup>





## Вспомним прошлую лекцию

Рассмотрим задачу бинарной классификации:  $X \to Y$ ,  $X = \mathbb{R}^n$ ,  $Y = \{+1, -1\}$  на обучающей выборке  $X^m = (x_i, y_i)_{i=1}^m$ . Линейный классификатор  $a(x; w, w_0) = \text{sign}(\langle w, x \rangle - w_0)$ .



## Вспомним прошлую лекцию

Рассмотрим задачу бинарной классификации:  $X \to Y$ ,  $X = \mathbb{R}^n$ ,  $Y = \{+1, -1\}$  на обучающей выборке  $X^m = (x_i, y_i)_{i=1}^m$ .

Линейный классификатор  $a(x; w, w_0) = \text{sign}(\langle w, x \rangle - w_0)$ .

Минимизация эмпирического риска в данном случае:

$$R(w, w_0, X^m) = \sum_{i=1}^m [a(x_i; w, w_0) \neq y_i] = \sum_{i=1}^m [M_i(w, w_0) < 0],$$

где отступ объекта  $x_i$ :  $M_i = (\langle w, x_i \rangle - w_0)y_i$ .





## Вспомним прошлую лекцию

Рассмотрим задачу бинарной классификации:  $X \to Y$ ,  $X = \mathbb{R}^n$ ,  $Y = \{+1, -1\}$  на обучающей выборке  $X^m = (x_i, y_i)_{i=1}^m$ .

Линейный классификатор  $a(x; w, w_0) = \text{sign}(\langle w, x \rangle - w_0)$ .

Минимизация эмпирического риска в данном случае:

$$R(w, w_0, X^m) = \sum_{i=1}^m [a(x_i; w, w_0) \neq y_i] = \sum_{i=1}^m [M_i(w, w_0) < 0],$$

где отступ объекта  $x_i$ :  $M_i = (\langle w, x_i \rangle - w_0)y_i$ .

Добавим аппроксимацию и  $L_2$  регуляризацию:

$$R(w, w_0, X^m) \le \sum_{i=1}^m \max(0, 1 - M_i(w, w_0)) + \frac{1}{2C} ||w||^2$$





## Аппроксимация и регуляризация

• Аппроксимация штрафует за приближение к границе классов:  $M_i=1$ 



## Аппроксимация и регуляризация

- Аппроксимация штрафует за приближение к границе классов:  $M_i = 1$
- Регуляризация штрафует неустойчивые решения



#### Линейная разделимость

 $\exists w, w_0$  т.ч.  $M_i(w, w_0) > 0$  для всех  $i = 1, \dots m$ .

Очевидно, что можно перенормировать вектор w, т.ч.  $\min_i M_i(w, w_0) = 1$ .

Разделяющая полоса:  $-1 < \langle w, x_i \rangle - w_0 < +1$ .

Разделяющая гиперплоскость (посередине):

$$\langle w, x_i \rangle - w_0 = 0.$$

Можем добиться того, что существует по крайней мере одна точка на каждой из границ

(Упражнение: доказать): 
$$\exists x_{\pm} : \langle w, x_{\pm} \rangle - w_0 = \pm 1$$
.

Ширина полосы: 
$$\frac{\langle x_+ - x_-, w \rangle}{||w||} = \frac{2}{||w||} o \mathsf{max}_w$$





# Случай линейной разделимости – вывод

Т.о., в случае линейной разделимости можно оптимизационную задачу записать как:

$$egin{cases} rac{1}{2}||w||^2 
ightarrow \min_w, \ y_i(\langle w, x_i 
angle - w_0) \geq 1, \quad i=1,\ldots,m \end{cases}$$





**Обобщим** $^3$  задачу на этот случай: алгоритм может допускать ошибки на обучающих объектах.

<sup>&</sup>lt;sup>3</sup>Cortes, C., and Vapnik, V. (1995). Support-vector networks.

**Обобщим** $^3$  задачу на этот случай: алгоритм может допускать ошибки на обучающих объектах.

Ограничение: таких ошибок должно быть поменьше.



<sup>&</sup>lt;sup>3</sup>Cortes, C., and Vapnik, V. (1995). Support-vector networks.

**Обобщим** $^3$  задачу на этот случай: алгоритм может допускать ошибки на обучающих объектах.

Ограничение: таких ошибок должно быть поменьше.

**Решение**: введение дополнительных переменных  $\xi_i \geq 0$ , характеризующих величину ошибки (уменьшение отступа) на объектах  $x_i$ .



<sup>&</sup>lt;sup>3</sup>Cortes, C., and Vapnik, V. (1995). Support-vector networks.

**Обобщим** $^3$  задачу на этот случай: алгоритм может допускать ошибки на обучающих объектах.

Ограничение: таких ошибок должно быть поменьше.

**Решение**: введение дополнительных переменных  $\xi_i \geq 0$ , характеризующих величину ошибки (уменьшение отступа) на объектах  $x_i$ .

$$\begin{cases} \frac{1}{2} ||w||^2 + C \sum_{i=1}^m \xi_i \to \min_{w,w_0,\xi}, \\ y_i(\langle w, x_i \rangle - w_0) \ge 1 - \xi_i, & i = 1, \dots, m, \\ \xi_i \ge 0 & i = 1, \dots, m. \end{cases}$$



<sup>&</sup>lt;sup>3</sup>Cortes, C., and Vapnik, V. (1995). Support-vector networks.

**Обобщим** $^3$  задачу на этот случай: алгоритм может допускать ошибки на обучающих объектах.

Ограничение: таких ошибок должно быть поменьше.

**Решение**: введение дополнительных переменных  $\xi_i \geq 0$ , характеризующих величину ошибки (уменьшение отступа) на объектах  $x_i$ .

$$\begin{cases} \frac{1}{2} ||w||^2 + C \sum_{i=1}^m \xi_i \to \min_{w,w_0,\xi}, \\ y_i(\langle w, x_i \rangle - w_0) \ge 1 - \xi_i, & i = 1, \dots, m, \\ \xi_i \ge 0 & i = 1, \dots, m. \end{cases}$$

**Замечание**. Положительная константа C определяет компромисс между максимизацией ширины разделяющей полосы и минимизацией суммарной ошибки.



<sup>&</sup>lt;sup>3</sup>Cortes, C., and Vapnik, V. (1995). Support-vector networks.

#### O константе C

Поставленная выше оптимизационная задача эквивалентна минимизации аппроксимированного э.р. с регуляризатором:

$$\sum_{i=1}^{m} \max(0, 1 - y_i(\langle w, x_i \rangle - w_0)) + \frac{1}{2C} ||w||^2 \to min_{w,w_0}$$





#### O константе C

Поставленная выше оптимизационная задача эквивалентна минимизации аппроксимированного э.р. с регуляризатором:

$$\sum_{i=1}^{m} \max(0, 1 - y_i(\langle w, x_i \rangle - w_0)) + \frac{1}{2C} ||w||^2 \to min_{w, w_0}$$

Большое значение C: узкая полоса, мало ошибок







## О константе С

Поставленная выше оптимизационная задача эквивалентна минимизации аппроксимированного э.р. с регуляризатором:

$$\sum_{i=1}^{m} \max(0, 1 - y_i(\langle w, x_i \rangle - w_0)) + \frac{1}{2C} ||w||^2 \to \textit{min}_{w, w_0}$$

Большое значение C: узкая полоса, мало ошибок



Маленькое значение C: широкая полоса, много ошибок







# Условия Каруша-Куна-Таккера $(KKT)^{4,5}$

Условия ККТ – это **необходимые** условия решения задачи нелинейного программирования (обобщение метода множителей Лагранжа). Задача нелинейного программирования:

$$egin{cases} f(x) 
ightarrow \mathsf{min}_{\mathsf{x}}, \ g_i(x) \leq 0, & i = 1, \dots, k, \ h_j(x) = 0, & j = 1, \dots, \ell. \end{cases}$$



<sup>&</sup>lt;sup>4</sup>W. Karush (1939). Minima of Functions of Several Variables with Inequalities as Side Constraints.

<sup>&</sup>lt;sup>5</sup>Kuhn, H. W.; Tucker, A. W. (1951). Nonlinear programming.

# Условия Каруша-Куна-Таккера $(KKT)^{4,5}$

Условия ККТ – это **необходимые** условия решения задачи нелинейного программирования (обобщение метода множителей Лагранжа). Задача нелинейного программирования:

$$egin{cases} f(x) 
ightarrow \min_{x}, \ g_{i}(x) \leq 0, & i = 1, \ldots, k, \ h_{j}(x) = 0, & j = 1, \ldots, \ell. \end{cases}$$

Необходимые условия: если x - точка локального минимума, то  $\exists$  множители  $\mu_i, \lambda_j$ , т.ч.

$$\begin{cases} \frac{\partial L}{\partial x} = 0; L(x,\mu,\lambda) = f(x) + \sum_{i=1}^k \mu_i g_i(x) + \sum_{j=1}^\ell \lambda_j h_j(x) & \text{ (функция Лагранжа)} \\ g_i(x) \leq 0, h_j(x) = 0 & \text{ (исходные ограничения)} \\ \mu_i \geq 0 & \text{ (двойственные ограничения)} \\ \mu_i g_i(x) = 0 & \text{ (дополняющая нежесткость)} \end{cases}$$



<sup>5</sup>Kuhn, H. W.; Tucker, A. W. (1951). Nonlinear programming.

<sup>&</sup>lt;sup>4</sup>W. Karush (1939). Minima of Functions of Several Variables with Inequalities as Side Constraints.

#### Условия ККТ и SVM

#### Функция Лагранжа для SVM

$$L(w, w_0, \xi; \lambda, \eta) = \frac{1}{2} ||w||^2 - \sum_{i=1}^m \lambda_i (M_i(w, w_0) - 1) - \sum_{i=1}^m \xi_i (\lambda_i + \eta_i - C)$$
, где:  $\lambda_i$  – переменные, двойственные к ограничениям  $M_i(w, w_0) \ge 1 - \xi_i$ ,  $\eta_i$  – переменные, двойственные к ограничениям  $\xi_i > 0$ .





#### Условия ККТ и SVM

#### Функция Лагранжа для SVM

$$L(w,w_0,\xi;\lambda,\eta)=rac{1}{2}||w||^2-\sum_{i=1}^m\lambda_i(M_i(w,w_0)-1)-\sum_{i=1}^m\xi_i(\lambda_i+\eta_i-C)$$
, где:  $\lambda_i$  – переменные, двойственные к ограничениям  $M_i(w,w_0)\geq 1-\xi_i$ ,  $\eta_i$  – переменные, двойственные к ограничениям  $\xi_i\geq 0$ .

Необходимые условия примут вид:

$$\begin{cases} \frac{\partial L}{\partial w} = 0; \frac{\partial L}{\partial w_0} = 0; \frac{\partial L}{\partial \xi} = 0 \\ \xi_i \geq 0, \lambda_i \geq 0, \eta_i \geq 0 & i = 1, \dots, m \\ \lambda_i = 0 \text{ либо } M_i(w, w_0) = 1 - \xi_i & i = 1, \dots, m \\ \eta_i = 0 \text{ либо } \xi_i = 0 & i = 1, \dots, m \end{cases}$$





$$L(w, w_0, \xi; \lambda, \eta) = \frac{1}{2} ||w||^2 - \sum_{i=1}^m \lambda_i (M_i(w, w_0) - 1) - \sum_{i=1}^m \xi_i (\lambda_i + \eta_i - C).$$

$$\begin{cases} \frac{\partial L}{\partial w} = w - \sum_{i=1}^m \lambda_i y_i x_i = 0 & \Rightarrow w = \sum_{i=1}^m \lambda_i y_i x_i \\ \frac{\partial L}{\partial w_0} = - \sum_{i=1}^m \lambda_i y_i = 0 & \Rightarrow \sum_{i=1}^m \lambda_i y_i = 0 \\ \frac{\partial L}{\partial \xi_i} = -\lambda_i - \eta_i + C = 0 & \Rightarrow \lambda_i + \eta_i = C \end{cases}$$





$$L(w, w_0, \xi; \lambda, \eta) = \frac{1}{2} ||w||^2 - \sum_{i=1}^m \lambda_i (M_i(w, w_0) - 1) - \sum_{i=1}^m \xi_i (\lambda_i + \eta_i - C).$$

$$\begin{cases} \frac{\partial L}{\partial w} = w - \sum_{i=1}^m \lambda_i y_i x_i = 0 & \Rightarrow w = \sum_{i=1}^m \lambda_i y_i x_i \\ \frac{\partial L}{\partial w_0} = - \sum_{i=1}^m \lambda_i y_i = 0 & \Rightarrow \sum_{i=1}^m \lambda_i y_i = 0 \\ \frac{\partial L}{\partial \xi_i} = -\lambda_i - \eta_i + C = 0 & \Rightarrow \lambda_i + \eta_i = C \end{cases}$$

**1**  $\lambda_i = 0, \eta_i = C, \xi_i = 0, M_i > 1$ : периферийные объекты





$$L(w, w_0, \xi; \lambda, \eta) = \frac{1}{2} ||w||^2 - \sum_{i=1}^m \lambda_i (M_i(w, w_0) - 1) - \sum_{i=1}^m \xi_i (\lambda_i + \eta_i - C).$$

$$\begin{cases} \frac{\partial L}{\partial w} = w - \sum_{i=1}^m \lambda_i y_i x_i = 0 & \Rightarrow w = \sum_{i=1}^m \lambda_i y_i x_i \\ \frac{\partial L}{\partial w_0} = - \sum_{i=1}^m \lambda_i y_i = 0 & \Rightarrow \sum_{i=1}^m \lambda_i y_i = 0 \\ \frac{\partial L}{\partial \xi_i} = -\lambda_i - \eta_i + C = 0 & \Rightarrow \lambda_i + \eta_i = C \end{cases}$$

- **1**  $\lambda_i = 0, \eta_i = C, \xi_i = 0, M_i > 1$ : периферийные объекты
- **2**  $0 < \lambda_i < C, 0 < \eta_i < C, \xi_i = 0, M_i = 1$ : опорные объекты на границе





$$L(w, w_0, \xi; \lambda, \eta) = \frac{1}{2} ||w||^2 - \sum_{i=1}^m \lambda_i (M_i(w, w_0) - 1) - \sum_{i=1}^m \xi_i (\lambda_i + \eta_i - C).$$

$$\begin{cases} \frac{\partial L}{\partial w} = w - \sum_{i=1}^m \lambda_i y_i x_i = 0 & \Rightarrow w = \sum_{i=1}^m \lambda_i y_i x_i \\ \frac{\partial L}{\partial w_0} = - \sum_{i=1}^m \lambda_i y_i = 0 & \Rightarrow \sum_{i=1}^m \lambda_i y_i = 0 \\ \frac{\partial L}{\partial \xi_i} = -\lambda_i - \eta_i + C = 0 & \Rightarrow \lambda_i + \eta_i = C \end{cases}$$

- **1**  $\lambda_i = 0, \eta_i = C, \xi_i = 0, M_i > 1$ : периферийные объекты
- **2**  $0 < \lambda_i < C, 0 < \eta_i < C, \xi_i = 0, M_i = 1$ : опорные объекты на границе
- **3**  $\lambda_i = C, \eta_i = 0, \xi_i > 0, M_i < 1$ : опорные объекты-ошибки





Прямая задача:

$$egin{cases} f(x) 
ightarrow \min_x, \ g_i(x) \leq 0, & i = 1, \ldots, k, \ h_j(x) = 0, & j = 1, \ldots, \ell. \end{cases}$$

Функция Лагранжа:  $L(x,\mu,\lambda)=f(x)+\sum_{i=1}^k\mu_ig_i(x)+\sum_{j=1}^\ell\lambda_jh_j(x) o \min_x.$ 



Прямая задача:

$$egin{cases} f(x) 
ightarrow \min_x, \ g_i(x) \leq 0, & i = 1, \ldots, k, \ h_j(x) = 0, & j = 1, \ldots, \ell. \end{cases}$$

Функция Лагранжа:  $L(x,\mu,\lambda)=f(x)+\sum_{i=1}^k \mu_i g_i(x)+\sum_{j=1}^\ell \lambda_j h_j(x)\to \min_x.$  Двойственная функция:  $Q(\mu,\lambda)=\min_x L(x,\mu,\lambda).$ 



Прямая задача:

$$egin{cases} f(x) 
ightarrow \min_x, \ g_i(x) \leq 0, & i = 1, \ldots, k, \ h_j(x) = 0, & j = 1, \ldots, \ell. \end{cases}$$

Функция Лагранжа:  $L(x,\mu,\lambda)=f(x)+\sum_{i=1}^k \mu_i g_i(x)+\sum_{j=1}^\ell \lambda_j h_j(x) o \min_x.$ 

**Двойственная** функция:  $Q(\mu, \lambda) = \min_{\mathbf{x}} L(\mathbf{x}, \mu, \lambda)$ .

Двойственная задача:

$$egin{cases} Q(\mu,\lambda) 
ightarrow \mathsf{max}_{\mu,\lambda}, \ \mu_i \geq 0, & i = 1,\dots,k \end{cases}$$





Прямая задача:

$$egin{cases} f(x) 
ightarrow ext{min}_x, \ g_i(x) \leq 0, & i=1,\ldots,k, \ h_j(x) = 0, & j=1,\ldots,\ell. \end{cases}$$

Функция Лагранжа:  $L(x,\mu,\lambda)=f(x)+\sum_{i=1}^k\mu_ig_i(x)+\sum_{j=1}^\ell\lambda_jh_j(x) o \min_x.$ 

Двойственная функция:  $Q(\mu,\lambda) = \min_{x} L(x,\mu,\lambda)$ .

Двойственная задача:

$$egin{cases} Q(\mu,\lambda) 
ightarrow \mathsf{max}_{\mu,\lambda}, \ \mu_i \geq 0, & i = 1,\dots,k \end{cases}$$

## Теорема (Дуальность Вулфа<sup>6</sup>)

Если  $f(x), g_i(x), h_j(x)$  – выпуклые функции,  $x^*$  – решение прямой задачи, а  $(\mu^*, \lambda^*)$  – решение двойственной задачи, то  $Q(\mu^*, \lambda^*) = f(x^*)$ .

<sup>6</sup>Wolfe, P. (1961). A duality theorem for non-linear programming.

Подставим решения прямой задачи

$$w = \sum_{i=1}^{m} \lambda_i y_i x_i, \sum_{i=1}^{m} \lambda_i y_i = 0, \lambda_i + \eta_i = C$$

в функцию Лагранжа

$$L(w, w_0, \xi; \lambda, \eta) = \frac{1}{2} ||w||^2 - \sum_{i=1}^m \lambda_i (y_i (\langle w, x_i \rangle - w_0) - 1) - \sum_{i=1}^m \xi_i (\lambda_i + \eta_i - C).$$





Подставим решения прямой задачи

$$w = \sum_{i=1}^{m} \lambda_i y_i x_i, \sum_{i=1}^{m} \lambda_i y_i = 0, \lambda_i + \eta_i = C$$

в функцию Лагранжа

$$L(w,w_0,\xi;\lambda,\eta)=rac{1}{2}||w||^2-\sum_{i=1}^m\lambda_i(y_i(\langle w,x_i\rangle-w_0)-1)-\sum_{i=1}^m\xi_i(\lambda_i+\eta_i-C).$$
 Получим:

$$Q(\lambda) = \frac{1}{2} \sum_{i=1}^{m} \lambda_i y_i x_i \sum_{j=1}^{m} \lambda_j y_j x_j - \sum_{i=1}^{m} \lambda_i y_i \left\langle \sum_{j=1}^{m} \lambda_j y_j x_j, x_i \right\rangle + w_0 \sum_{i=1}^{m} \lambda_i y_i + \sum_{i=1}^{m} \lambda_i - \sum_{i=1}^{m} \xi_i (C - C) = 0$$

$$=-\frac{1}{2}\sum_{i=1}^{m}\sum_{i=1}^{m}\lambda_{i}\lambda_{j}y_{i}y_{j}\langle x_{i},x_{j}\rangle+\sum_{i=1}^{m}\lambda_{i}$$





Объединяя, получаем формулировку двойственной задачи:

$$\begin{cases} -Q(\lambda) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \lambda_i \lambda_j y_i y_j \langle x_i, x_j \rangle - \sum_{i=1}^{m} \lambda_i \to \min_{\lambda}, \\ 0 \le \lambda_i \le C, \\ \sum_{i=1}^{m} \lambda_i y_i = 0. \end{cases}$$





Объединяя, получаем формулировку двойственной задачи:

$$\begin{cases} -Q(\lambda) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \lambda_i \lambda_j y_i y_j \langle x_i, x_j \rangle - \sum_{i=1}^{m} \lambda_i \to \min_{\lambda}, \\ 0 \le \lambda_i \le C, \\ \sum_{i=1}^{m} \lambda_i y_i = 0. \end{cases}$$

Минимизируется квадратичный функционал  $Q(\lambda)$ , имеющий неотрицательно определённую квадратичную форму  $\Rightarrow$  этот функционал – выпуклый.



<sup>&</sup>lt;sup>7</sup>https://en.wikipedia.org/wiki/Quadratic\_programming

## Двойственная задача для SVM

Объединяя, получаем формулировку двойственной задачи:

$$\begin{cases} -Q(\lambda) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \lambda_i \lambda_j y_i y_j \langle x_i, x_j \rangle - \sum_{i=1}^{m} \lambda_i \to \min_{\lambda}, \\ 0 \leq \lambda_i \leq C, \\ \sum_{i=1}^{m} \lambda_i y_i = 0. \end{cases}$$

Минимизируется квадратичный функционал  $Q(\lambda)$ , имеющий неотрицательно определённую квадратичную форму  $\Rightarrow$  этот функционал – выпуклый. Область, определяемая линейными ограничениями, также выпуклая.



<sup>&</sup>lt;sup>7</sup>https://en.wikipedia.org/wiki/Quadratic\_programming

## Двойственная задача для SVM

Объединяя, получаем формулировку двойственной задачи:

$$\begin{cases} -Q(\lambda) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \lambda_{i} \lambda_{j} y_{i} y_{j} \langle x_{i}, x_{j} \rangle - \sum_{i=1}^{m} \lambda_{i} \to \min_{\lambda}, \\ 0 \leq \lambda_{i} \leq C, \\ \sum_{i=1}^{m} \lambda_{i} y_{i} = 0. \end{cases}$$

Минимизируется квадратичный функционал  $Q(\lambda)$ , имеющий неотрицательно определённую квадратичную форму  $\Rightarrow$  этот функционал – выпуклый. Область, определяемая линейными ограничениями, также выпуклая. Следовательно, данная двойственная задача имеет **единственное** решение.



## Двойственная задача для SVM

Объединяя, получаем формулировку двойственной задачи:

$$\begin{cases} -Q(\lambda) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \lambda_i \lambda_j y_i y_j \langle x_i, x_j \rangle - \sum_{i=1}^{m} \lambda_i \to \min_{\lambda}, \\ 0 \le \lambda_i \le C, \\ \sum_{i=1}^{m} \lambda_i y_i = 0. \end{cases}$$

Минимизируется квадратичный функционал  $Q(\lambda)$ , имеющий неотрицательно определённую квадратичную форму  $\Rightarrow$  этот функционал — выпуклый. Область, определяемая линейными ограничениями, также выпуклая. Следовательно, данная двойственная задача имеет **единственное** решение. Способ решения — методами **квадратичного** программирования (например, можно использовать метод внутренней точки<sup>7</sup>).



<sup>&</sup>lt;sup>7</sup>https://en.wikipedia.org/wiki/Quadratic\_programming

## Решение прямой задачи для SVM

Пусть единственное решение двойственной задачи  $(\lambda_i)_{i=1}^m$ . Тогда решение прямой задачи выражается через решение двойственной как:

$$egin{cases} w = \sum_{\lambda_i 
eq 0} \lambda_i y_i x_i, & \text{суммируем только по опорным векторам } \lambda_i 
eq 0 \ w_0 = \langle w, x_j 
angle - y_j & \text{для опорного вектора на границе } 0 < \lambda_j < C \end{cases}$$





## Решение прямой задачи для SVM

Пусть единственное решение двойственной задачи  $(\lambda_i)_{i=1}^m$ . Тогда решение прямой задачи выражается через решение двойственной как:

$$egin{cases} w = \sum_{\lambda_i 
eq 0} \lambda_i y_i x_i, & \text{суммируем только по опорным векторам } \lambda_i 
eq 0 \ w_0 = \langle w, x_j 
angle - y_j & \text{для опорного вектора на границе } 0 < \lambda_j < C \end{cases}$$

При этом сам линейный классификатор примет вид

$$a(x) = \operatorname{sign}(\sum_{i=1}^{m} \lambda_i y_i \langle x_i, x \rangle - w_0)$$

что можно понимать как линейность в пространстве  $\mathbb{R}^m$  с признаками  $f_i = \langle x_i, x \rangle$ .





#### Ядро и неотрицательность

Если в исходном пространстве сложно разделить выборку, то попробуем перейти в пространство большей размерности<sup>8</sup>  $\varphi: X \to H$ .



<sup>&</sup>lt;sup>8</sup>Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers.

#### Ядро и неотрицательность

Если в исходном пространстве сложно разделить выборку, то попробуем перейти в пространство большей размерности<sup>8</sup>  $\varphi: X \to H$ .

#### Определение ядра

Ядро – функция  $K: X \times X \to \mathbb{R}$ , т.ч.  $K(x_1, x_2) = \langle \varphi(x_1), \varphi(x_2) \rangle$  при некотором  $\varphi: X \to H$ , где H – гильбертово пространство.



<sup>&</sup>lt;sup>8</sup>Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers.

### Ядро и неотрицательность

Если в исходном пространстве сложно разделить выборку, то попробуем перейти в пространство большей размерности<sup>8</sup>  $\varphi: X \to H$ .

#### Определение ядра

Ядро – функция  $K: X \times X \to \mathbb{R}$ , т.ч.  $K(x_1, x_2) = \langle \varphi(x_1), \varphi(x_2) \rangle$  при некотором  $\varphi: X \to H$ , где H – гильбертово пространство.

#### Неотрицательная определенность

Следующие два определения эквивалентны для проверки  $K(x_1, x_2)$ 

- ullet  $\int_X \int_X K(x_1,x_2) f(x_1) f(x_2) dx_1 dx_2 \geq 0$  для любой функции  $f:X o\mathbb{R}$
- ullet Для любой конечной выборки  $X^m = (x_1, \dots, x_m)$  из X матрица  $K = \|K(x_i, x_i)\|$ размера  $m \times m$  неотрицательно определена:  $z^T K z > 0$  для любого  $z \in \mathbb{R}^m$ .



<sup>&</sup>lt;sup>8</sup>Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers on the 17 / 31

## Проверка на ядро

#### Теорема Мерсера<sup>9</sup>

Функция  $K(x_1, x_2)$  является ядром тогда и только тогда, когда:

- $\bullet$   $K(x_1, x_2)$  симметрична:  $K(x_1, x_2) = K(x_2, x_1)$ , и
- $K(x_1, x_2)$  неотрицательно определена.

<sup>&</sup>lt;sup>9</sup>Mercer, J. (1909). Functions of positive and negative type, and their connection the theory of integral equations.

## Проверка на ядро

#### Теорема Мерсера<sup>9</sup>

Функция  $K(x_1, x_2)$  является ядром тогда и только тогда, когда:

- $K(x_1, x_2)$  симметрична:  $K(x_1, x_2) = K(x_2, x_1)$ , и
- $K(x_1, x_2)$  неотрицательно определена.

Замечание. Если K не удовлетворяет указанным выше условиям, то минимизируемый функционал для классификатора уже не будет выпуклым, и решение может оказаться не единственным!

<sup>&</sup>lt;sup>9</sup>Mercer, J. (1909). Functions of positive and negative type, and their connection the theory of integral equations.

ullet Скалярное произведение  $K(x_1,x_2)=\langle x_1,x_2
angle$  – ядро



- ullet Скалярное произведение  $K(x_1,x_2)=\langle x_1,x_2
  angle$  ядро
- Константа  $K(x_1, x_2) = c ядро$



- ullet Скалярное произведение  $K(x_1,x_2)=\langle x_1,x_2
  angle$  ядро
- Константа  $K(x_1, x_2) = c ядро$
- ullet Произведение ядер  $K(x_1,x_2)=K_1(x_1,x_2)K_2(x_1,x_2)$  ядро





- ullet Скалярное произведение  $K(x_1,x_2)=\langle x_1,x_2
  angle$  ядро
- Константа  $K(x_1, x_2) = c ядро$
- ullet Произведение ядер  $K(x_1,x_2)=K_1(x_1,x_2)K_2(x_1,x_2)$  ядро
- ullet Для любой  $arphi:X o\mathbb{R}$  сепарабельная  $K(x_1,x_2)=arphi(x_1)arphi(x_2)$  ядро





- ullet Скалярное произведение  $K(x_1,x_2)=\langle x_1,x_2
  angle$  ядро
- Константа  $K(x_1, x_2) = c ядро$
- ullet Произведение ядер  $K(x_1,x_2)=K_1(x_1,x_2)K_2(x_1,x_2)$  ядро
- ullet Для любой  $arphi:X o\mathbb{R}$  сепарабельная  $K(x_1,x_2)=arphi(x_1)arphi(x_2)$  ядро
- ullet Линейная  $K(x_1,x_2)=lpha_1K_1(x_1,x_2)+lpha_2K_2(x_1,x_2)$  ядро при  $lpha_1,lpha_2>0$ ,  $K_1,K_2$  ядрах





- ullet Скалярное произведение  $K(x_1,x_2)=\langle x_1,x_2
  angle$  ядро
- Константа  $K(x_1, x_2) = c ядро$
- ullet Произведение ядер  $K(x_1,x_2)=K_1(x_1,x_2)K_2(x_1,x_2)$  ядро
- ullet Для любой  $arphi:X o\mathbb{R}$  сепарабельная  $K(x_1,x_2)=arphi(x_1)arphi(x_2)$  ядро
- ullet Линейная  $K(x_1,x_2)=lpha_1K_1(x_1,x_2)+lpha_2K_2(x_1,x_2)$  ядро при  $lpha_1,lpha_2>0$ ,  $K_1,K_2$  ядрах
- ullet Для любой arphi:X o X подстановка  $K(x_1,x_2)=K_1(arphi(x_1),arphi(x_2))$  ядро при  $K_1$  ядро





- Скалярное произведение  $K(x_1, x_2) = \langle x_1, x_2 \rangle$ ядро
- Константа  $K(x_1, x_2) = c ядро$
- Произведение ядер  $K(x_1, x_2) = K_1(x_1, x_2)K_2(x_1, x_2)$ ядро
- ullet Для любой  $arphi:X o\mathbb{R}$  сепарабельная  $K(x_1,x_2)=arphi(x_1)arphi(x_2)$  ядро
- Линейная  $K(x_1, x_2) = \alpha_1 K_1(x_1, x_2) + \alpha_2 K_2(x_1, x_2)$  ядро при  $\alpha_1, \alpha_2 > 0$ ,  $K_1, K_2$  ядрах
- Для любой  $\varphi: X \to X$  подстановка  $K(x_1, x_2) = K_1(\varphi(x_1), \varphi(x_2))$  ядро при  $K_1$  ядро
- $K(x_1,x_2)=k(x_1-x_2)$  ядро  $\Leftrightarrow$  Фурье-образ  $F[k](\omega)=(2\pi)^{\frac{n}{2}}\int_{\mathcal{V}}e^{-i\langle\omega,x\rangle}k(x)dx$ неотрицателен





- Скалярное произведение  $K(x_1, x_2) = \langle x_1, x_2 \rangle$ ядро
- Константа  $K(x_1, x_2) = c ядро$
- Произведение ядер  $K(x_1, x_2) = K_1(x_1, x_2)K_2(x_1, x_2)$ ядро
- ullet Для любой  $arphi:X o\mathbb{R}$  сепарабельная  $K(x_1,x_2)=arphi(x_1)arphi(x_2)$  ядро
- Линейная  $K(x_1, x_2) = \alpha_1 K_1(x_1, x_2) + \alpha_2 K_2(x_1, x_2)$  ядро при  $\alpha_1, \alpha_2 > 0$ ,  $K_1, K_2$  ядрах
- Для любой  $\varphi: X \to X$  подстановка  $K(x_1, x_2) = K_1(\varphi(x_1), \varphi(x_2))$  ядро при  $K_1$  ядро
- $K(x_1,x_2)=k(x_1-x_2)$  ядро  $\Leftrightarrow$  Фурье-образ  $F[k](\omega)=(2\pi)^{\frac{n}{2}}\int_{\mathcal{X}}e^{-i\langle\omega,x\rangle}k(x)dx$ неотрицателен
- Композиция произвольного ядра  $K_1$  и произвольной функции  $f: \mathbb{R} \to \mathbb{R}$ . представимой в виде сходящегося степенного ряда с неотрицательными коэффициентами  $K(x_1, x_2) = f(K_1(x_1, x_2)) - ядро$





## SVM с другими ядрами

Изначально наша двойственная задача была сформулирована в терминах линейного ядра:

$$\begin{cases}
-Q(\lambda) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \lambda_i \lambda_j y_i y_j \langle x_i, x_j \rangle - \sum_{i=1}^{m} \lambda_i \to \min_{\lambda}, \\
0 \le \lambda_i \le C, \\
\sum_{i=1}^{m} \lambda_i y_i = 0.
\end{cases}$$



## SVM с другими ядрами

Изначально наша двойственная задача была сформулирована в терминах линейного ядра:

$$\begin{cases} -Q(\lambda) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \lambda_i \lambda_j y_i y_j \langle x_i, x_j \rangle - \sum_{i=1}^{m} \lambda_i \to \min_{\lambda}, \\ 0 \leq \lambda_i \leq C, \\ \sum_{i=1}^{m} \lambda_i y_i = 0. \end{cases}$$

Когда мы меняем ядро с  $\langle x_i, x_i \rangle$  на  $K(x_i, x_i)$ , задача преобразуется в:

$$\begin{cases}
-Q(\lambda) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \lambda_i \lambda_j y_i y_j K(x_i, x_j) - \sum_{i=1}^{m} \lambda_i \to \min_{\lambda}, \\
0 \le \lambda_i \le C, \\
\sum_{i=1}^{m} \lambda_i y_i = 0.
\end{cases}$$

20 / 31



## SVM с другими ядрами

Изначально наша двойственная задача была сформулирована в терминах линейного ядра:

$$\begin{cases} -Q(\lambda) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \lambda_i \lambda_j y_i y_j \langle x_i, x_j \rangle - \sum_{i=1}^{m} \lambda_i \to \min_{\lambda}, \\ 0 \leq \lambda_i \leq C, \\ \sum_{i=1}^{m} \lambda_i y_i = 0. \end{cases}$$

Когда мы меняем ядро с  $\langle x_i, x_j \rangle$  на  $K(x_i, x_j)$ , задача преобразуется в:

$$\begin{cases} -Q(\lambda) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \lambda_i \lambda_j y_i y_j K(x_i, x_j) - \sum_{i=1}^{m} \lambda_i \to \min_{\lambda}, \\ 0 \le \lambda_i \le C, \\ \sum_{i=1}^{m} \lambda_i y_i = 0. \end{cases}$$

При этом сам линейный классификатор принимает вид  $(x_j$  - опорный вектор на границе):

$$a(x) = sign(\sum_{i=1}^{m} \lambda_i y_i K(x_i, x) - w_0), w_0 = \sum_{i=1}^{m} \lambda_i y_i K(x_i, x_j) - y_j$$





Пусть 
$$X = \mathbb{R}^2$$
,  $K(u, v) = \langle u, v \rangle^2$  при  $u = (u_1, u_2), v = (v_1, v_2)$ . Хотим найти  $H$  и  $\varphi : X \to H$ , т.ч.  $K(x_1, x_2) = \langle \varphi(x_1), \varphi(x_2) \rangle$ .





Пусть 
$$X=\mathbb{R}^2, K(u,v)=\langle u,v\rangle^2$$
 при  $u=(u_1,u_2), v=(v_1,v_2).$  Хотим найти  $H$  и  $\varphi:X\to H$ , т.ч.  $K(x_1,x_2)=\langle \varphi(x_1),\varphi(x_2)\rangle.$  Сделаем эквивалентные преобразования:

$$K(u,v) = \langle u,v \rangle^2 = \langle (u_1,u_2), (v_1,v_2) \rangle^2 = (u_1v_1 + u_2v_2)^2 = u_1^2v_1^2 + u_2^2v_2^2 + 2u_1v_1u_2v_2$$





Пусть 
$$X = \mathbb{R}^2$$
,  $K(u, v) = \langle u, v \rangle^2$  при  $u = (u_1, u_2), v = (v_1, v_2)$ .  
Хотим найти  $H$  и  $\varphi: X \to H$ , т.ч.  $K(x_1, x_2) = \langle \varphi(x_1), \varphi(x_2) \rangle$ .  
Сделаем эквивалентные преобразования:  
 $K(u, v) = \langle u, v \rangle^2 = \langle (u_1, u_2), (v_1, v_2) \rangle^2 = (u_1 v_1 + u_2 v_2)^2 = u_1^2 v_1^2 + u_2^2 v_2^2 + 2u_1 v_1 u_2 v_2$   
 $K(u, v) = \langle (u_1^2, u_2^2, \sqrt{2}u_1 u_2), (v_1^2, v_2^2, \sqrt{2}v_1 v_2) \rangle$ 





Пусть 
$$X=\mathbb{R}^2$$
,  $K(u,v)=\langle u,v\rangle^2$  при  $u=(u_1,u_2),v=(v_1,v_2)$ .   
 Хотим найти  $H$  и  $\varphi:X\to H$ , т.ч.  $K(x_1,x_2)=\langle \varphi(x_1),\varphi(x_2)\rangle$ .   
 Сделаем эквивалентные преобразования: 
$$K(u,v)=\langle u,v\rangle^2=\langle (u_1,u_2),(v_1,v_2)\rangle^2=(u_1v_1+u_2v_2)^2=u_1^2v_1^2+u_2^2v_2^2+2u_1v_1u_2v_2$$
 
$$K(u,v)=\langle (u_1^2,u_2^2,\sqrt{2}u_1u_2),(v_1^2,v_2^2,\sqrt{2}v_1v_2)\rangle$$
 Т.о.  $H=\mathbb{R}^3$  и  $\varphi:(u_1,u_2)\mapsto (u_1^2,u_2^2,\sqrt{2}u_1u_2)$ .





Пусть 
$$X = \mathbb{R}^2$$
,  $K(u, v) = \langle u, v \rangle^2$  при  $u = (u_1, u_2), v = (v_1, v_2)$ . Хотим найти  $H$  и  $\varphi : X \to H$ , т.ч.  $K(x_1, x_2) = \langle \varphi(x_1), \varphi(x_2) \rangle$ .

Сделаем эквивалентные преобразования:

$$K(u,v) = \langle u,v \rangle^2 = \langle (u_1,u_2),(v_1,v_2) \rangle^2 = (u_1v_1 + u_2v_2)^2 = u_1^2v_1^2 + u_2^2v_2^2 + 2u_1v_1u_2v_2$$
  
 $K(u,v) = \langle (u_1^2,u_2^2,\sqrt{2}u_1u_2),(v_1^2,v_2^2,\sqrt{2}v_1v_2) \rangle$   
T.o.,  $H = \mathbb{R}^3$  in  $\varphi: (u_1,u_2) \mapsto (u_1^2,u_2^2,\sqrt{2}u_1u_2)$ .

Линейной поверхности в H будет соответствовать квадратичная поверхность в X.





ullet Полиномиальное ядро с мономами степени  $d\colon K(x_1,x_2) = \langle x_1,x_2 \rangle^d$ 



22 / 31

- Полиномиальное ядро с мономами степени d:  $K(x_1, x_2) = \langle x_1, x_2 \rangle^d$
- Полиномиальное ядро с мономами степени  $\leq d$ :  $K(x_1, x_2) = (\langle x_1, x_2 \rangle + 1)^d$



- Полиномиальное ядро с мономами степени  $d: K(x_1, x_2) = \langle x_1, x_2 \rangle^d$
- Полиномиальное ядро с мономами степени < d:  $K(x_1, x_2) = (\langle x_1, x_2 \rangle + 1)^d$
- Радиальное ядро (RBF):  $K(x_1, x_2) = \exp(-\gamma ||x_1 x_2||^2)$  (наиболее универсальное)





- Полиномиальное ядро с мономами степени  $d: K(x_1, x_2) = \langle x_1, x_2 \rangle^d$
- Полиномиальное ядро с мономами степени  $\leq d$ :  $K(x_1, x_2) = (\langle x_1, x_2 \rangle + 1)^d$
- Радиальное ядро (RBF):  $K(x_1, x_2) = \exp(-\gamma ||x_1 x_2||^2)$  (наиболее универсальное)

## Линейное ядро

$$K(x_1,x_2) = \langle x_1,x_2 \rangle$$







- Полиномиальное ядро с мономами степени  $d: K(x_1, x_2) = \langle x_1, x_2 \rangle^d$
- Полиномиальное ядро с мономами степени  $\leq d$ :  $K(x_1, x_2) = (\langle x_1, x_2 \rangle + 1)^d$
- Радиальное ядро (RBF):  $K(x_1, x_2) = \exp(-\gamma ||x_1 x_2||^2)$  (наиболее универсальное)

## Линейное ядро $K(x_1,x_2)=\langle x_1,x_2\rangle$



#### Полиномиальное ядро $K(x_1, x_2) = (\langle x_1, x_2 \rangle + 1)^3$







- Полиномиальное ядро с мономами степени  $d: K(x_1, x_2) = \langle x_1, x_2 \rangle^d$
- Полиномиальное ядро с мономами степени  $\leq d$ :  $K(x_1, x_2) = (\langle x_1, x_2 \rangle + 1)^d$
- Радиальное ядро (RBF):  $K(x_1, x_2) = \exp(-\gamma ||x_1 x_2||^2)$  (наиболее универсальное)

#### Линейное ядро $K(x_1,x_2)=\langle x_1,x_2\rangle$



Полиномиальное ядро  $K(x_1, x_2) = (\langle x_1, x_2 \rangle + 1)^3$ 



Радиальное ядро  $K(x_1, x_2) = \exp(-||x_1 - x_2||^2)$ 







#### Многоклассовый SVM

Предположим, что нужно построить классификатор методом опорных векторов для задачи классификации с количеством классов |Y| = N > 2. Тогда возможны 2 варианта:



#### Многоклассовый SVM

Предположим, что нужно построить классификатор методом опорных векторов для задачи классификации с количеством классов |Y| = N > 2. Тогда возможны 2 варианта:

#### Стратегия "один-против-всех"

Обучаем N бинарных

SVM-классификаторов, каждый из которых отделяет некоторый класс от остальных

N-1 классов.

Затем в качестве класса берем

$$a(x, w, w_0) = \operatorname{arg\,max}_{c \in Y}(\langle \dot{w}^c, x \rangle - w_0^c)$$



#### Многоклассовый SVM

Предположим, что нужно построить классификатор методом опорных векторов для задачи классификации с количеством классов |Y| = N > 2. Тогда возможны 2 варианта:

#### Стратегия "один-против-всех"

Обучаем N бинарных

SVM-классификаторов, каждый из которых отделяет некоторый класс от остальных N-1 классов.

Затем в качестве класса берем  $a(x, w, w_0) = \arg\max_{c \in Y} (\langle w^c, x \rangle - w_0^c)$ 

#### Стратегия "каждый-против-каждого"

Обучаем  $\frac{N(N-1)}{2}$  бинарных

SVM-классификаторов, каждый из которых отделяет между собой некоторую пару классов.

В результате применения классификаторов получаем  $\frac{N(N-1)}{2}$  доминирующих классов. Итоговый класс выбирается большинством голосов.





# Плюсы и минусы SVM

#### Плюсы

- Наглядная оптимизационная модель
- Задача имеет единственное решение
- Легко обобщается для нелинейной классификации

# Плюсы и минусы SVM

#### Плюсы

- Наглядная оптимизационная модель
- Задача имеет единственное решение
- Легко обобщается для нелинейной классификации

#### Минусы

- Непонятно, как подбирать ядро в конкретном случае
- $\bullet$  Подбор константы C
- Решение задачи квадратичного программирования, особенно с экзотическими ядрами, может занять много времени





# Дорожная карта Scikit-Learn<sup>10</sup>







# Семинар





#### Задача

Методом опорных векторов разделить классы  $A = \{x_1, x_2\}$  и  $B = \{x_3\}$ , если  $x_1 = (0,0), x_2 = (2,0), x_3 = (1,0).$  Полагаем, что  $y_1 = y_2 = +1, y_3 = -1.$ 







#### Указание [доказать]

Любые m+1 векторов могут быть разделены на любые два класса с помощью мономиального отображения степени не больше m.



#### Указание [доказать]

Любые m+1 векторов могут быть разделены на любые два класса с помощью мономиального отображения степени не больше m.

Поэтому отображение ищем в виде  $\varphi: X \to \{x_1^{i_1}x_2^{i_2}\dots x_n^{i_n}\}_{i_1+i_2+\dots+i_n\leq m}$  для  $X=\mathbb{R}^n, n=2, m=2.$ 





#### Указание [доказать]

Любые m+1 векторов могут быть разделены на любые два класса с помощью мономиального отображения степени не больше m.

Поэтому отображение ищем в виде  $\varphi: X \to \{x_1^{i_1} x_2^{i_2} \dots x_n^{i_n}\}_{i_1+i_2+\dots+i_n \le m}$  для  $X = \mathbb{R}^n$ , n = 2, m = 2.

Ядро, соответствующее этому отображению:  $K(x_1, x_2) = (\langle x_1, x_2 \rangle + 1)^2$ .



28 / 31



#### Указание [доказать]

Любые m+1 векторов могут быть разделены на любые два класса с помощью мономиального отображения степени не больше m.

Поэтому отображение ищем в виде  $\varphi: X \to \{x_1^{i_1}x_2^{i_2}\dots x_n^{i_n}\}_{i_1+i_2+\dots+i_n\leq m}$  для  $X=\mathbb{R}^n, n=2, m=2.$ 

Ядро, соответствующее этому отображению:  $K(x_1,x_2)=(\langle x_1,x_2\rangle+1)^2$ . Будем решать задачу

$$\begin{cases}
-Q(\lambda) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \lambda_i \lambda_j y_i y_j K(x_i, x_j) - \sum_{i=1}^{m} \lambda_i \to \min_{\lambda}, \\
0 \le \lambda_i \le C, \\
\sum_{i=1}^{m} \lambda_i y_i = 0.
\end{cases}$$





$$\begin{array}{l} -Q(\lambda) = \frac{1}{2} \sum_{i=1}^{3} \sum_{j=1}^{3} \lambda_{i} \lambda_{j} y_{i} y_{j} (\langle x_{i}, x_{j} \rangle + 1)^{2} - \sum_{i=1}^{3} \lambda_{i} = \\ \frac{1}{2} (2\lambda_{1}\lambda_{2} - 2\lambda_{1}\lambda_{3} + \lambda_{1}^{2} - 18\lambda_{2}\lambda_{3} + 25\lambda_{2}^{2} + 4\lambda_{3}^{2}) - (\lambda_{1} + \lambda_{2} + \lambda_{3}). \end{array}$$





$$-Q(\lambda)=rac{1}{2}\sum_{i=1}^{3}\sum_{j=1}^{3}\lambda_{i}\lambda_{j}y_{i}y_{j}(\langle x_{i},x_{j}
angle+1)^{2}-\sum_{i=1}^{3}\lambda_{i}=rac{1}{2}(2\lambda_{1}\lambda_{2}-2\lambda_{1}\lambda_{3}+\lambda_{1}^{2}-18\lambda_{2}\lambda_{3}+25\lambda_{2}^{2}+4\lambda_{3}^{2})-(\lambda_{1}+\lambda_{2}+\lambda_{3}).$$
 Из условия  $\sum_{i=1}^{3}\lambda_{i}y_{i}=0$  имеем  $\lambda_{3}=\lambda_{1}+\lambda_{2}.$ 



$$-Q(\lambda)=rac{1}{2}\sum_{i=1}^3\sum_{j=1}^3\lambda_i\lambda_jy_iy_j(\langle x_i,x_j
angle+1)^2-\sum_{i=1}^3\lambda_i=rac{1}{2}(2\lambda_1\lambda_2-2\lambda_1\lambda_3+\lambda_1^2-18\lambda_2\lambda_3+25\lambda_2^2+4\lambda_3^2)-(\lambda_1+\lambda_2+\lambda_3).$$
 Из условия  $\sum_{i=1}^3\lambda_iy_i=0$  имеем  $\lambda_3=\lambda_1+\lambda_2.$  Подставим в выражение для  $-Q(\lambda)=rac{1}{2}(3\lambda_1^2+11\lambda_2^2-10\lambda_1\lambda_2)-2(\lambda_1+\lambda_2).$ 





$$-Q(\lambda)=rac{1}{2}\sum_{i=1}^{3}\sum_{j=1}^{3}\lambda_{i}\lambda_{j}y_{i}y_{j}(\langle x_{i},x_{j}
angle+1)^{2}-\sum_{i=1}^{3}\lambda_{i}=rac{1}{2}(2\lambda_{1}\lambda_{2}-2\lambda_{1}\lambda_{3}+\lambda_{1}^{2}-18\lambda_{2}\lambda_{3}+25\lambda_{2}^{2}+4\lambda_{3}^{2})-(\lambda_{1}+\lambda_{2}+\lambda_{3}).$$
 Из условия  $\sum_{i=1}^{3}\lambda_{i}y_{i}=0$  имеем  $\lambda_{3}=\lambda_{1}+\lambda_{2}.$  Подставим в выражение для  $-Q(\lambda)=rac{1}{2}(3\lambda_{1}^{2}+11\lambda_{2}^{2}-10\lambda_{1}\lambda_{2})-2(\lambda_{1}+\lambda_{2}).$  Дифференцируем  $Q$  по  $\lambda$ :

$$\begin{cases} \frac{\partial Q}{\partial \lambda_1} = 0 & \Leftrightarrow 3\lambda_1 - 5\lambda_2 = 2, \\ \frac{\partial Q}{\partial \lambda_2} = 0 & \Leftrightarrow -5\lambda_1 + 11\lambda_2 = 2 \end{cases}$$





$$-Q(\lambda)=rac{1}{2}\sum_{i=1}^3\sum_{j=1}^3\lambda_i\lambda_j y_i y_j (\langle x_i,x_j
angle+1)^2-\sum_{i=1}^3\lambda_i=rac{1}{2}(2\lambda_1\lambda_2-2\lambda_1\lambda_3+\lambda_1^2-18\lambda_2\lambda_3+25\lambda_2^2+4\lambda_3^2)-(\lambda_1+\lambda_2+\lambda_3).$$
 Из условия  $\sum_{i=1}^3\lambda_i y_i=0$  имеем  $\lambda_3=\lambda_1+\lambda_2.$  Подставим в выражение для  $-Q(\lambda)=rac{1}{2}(3\lambda_1^2+11\lambda_2^2-10\lambda_1\lambda_2)-2(\lambda_1+\lambda_2).$  Дифференцируем  $Q$  по  $\lambda$ :

$$\begin{cases} \frac{\partial Q}{\partial \lambda_1} = 0 & \Leftrightarrow 3\lambda_1 - 5\lambda_2 = 2, \\ \frac{\partial Q}{\partial \lambda_2} = 0 & \Leftrightarrow -5\lambda_1 + 11\lambda_2 = 2 \end{cases}$$

Решая линейную систему уравнений, получаем  $(\lambda_1, \lambda_2, \lambda_3) = (4, 2, 6)$ .





Найдем разделяющую поверхность в виде:

$$f(x) = \sum_{i=1}^{3} \lambda_i y_i K(x_i, x) - w_0, \ w_0 = \sum_{i=1}^{3} \lambda_i y_i K(x_i, x_j) - y_j, x = (x_{(1)}, x_{(2)}).$$





Найдем разделяющую поверхность в виде:

$$f(x) = \sum_{i=1}^{3} \lambda_i y_i K(x_i, x) - w_0$$
,  $w_0 = \sum_{i=1}^{3} \lambda_i y_i K(x_i, x_j) - y_j$ ,  $x = (x_{(1)}, x_{(2)})$ . Поскольку все  $\lambda > 0$ , то можем взять в качестве опорного вектора  $x_1$ .





Найдем разделяющую поверхность в виде:

$$f(x) = \sum_{i=1}^{3} \lambda_i y_i K(x_i, x) - w_0, \ w_0 = \sum_{i=1}^{3} \lambda_i y_i K(x_i, x_j) - y_j, x = (x_{(1)}, x_{(2)}).$$

Поскольку все  $\lambda > 0$ , то можем взять в качестве опорного вектора  $x_1$ .







Найдем разделяющую поверхность в виде:

$$f(x) = \sum_{i=1}^{3} \lambda_i y_i K(x_i, x) - w_0, \ w_0 = \sum_{i=1}^{3} \lambda_i y_i K(x_i, x_j) - y_j, x = (x_{(1)}, x_{(2)}).$$

Поскольку все  $\lambda > 0$ , то можем взять в качестве опорного вектора  $x_1$ .

Получим 
$$w_0 = 4K(x_1, x_1) + 2K(x_2, x_1) - 6K(x_3, x_1) - 1 = -1.$$

Теперь рассчитаем основную часть: 
$$\sum_{i=1}^{3} \lambda_i y_i K(x_i, x) = 4 \cdot 1 + 2(2x_{(1)} + 1)^2 - 6(x_{(1)} + 1)^2$$
.



Найдем разделяющую поверхность в виде:

$$f(x) = \sum_{i=1}^{3} \lambda_i y_i K(x_i, x) - w_0, \ w_0 = \sum_{i=1}^{3} \lambda_i y_i K(x_i, x_j) - y_j, x = (x_{(1)}, x_{(2)}).$$

Поскольку все  $\lambda > 0$ , то можем взять в качестве опорного вектора  $x_1$ .

Получим 
$$w_0 = 4K(x_1, x_1) + 2K(x_2, x_1) - 6K(x_3, x_1) - 1 = -1.$$

Теперь рассчитаем основную часть: 
$$\sum_{i=1}^{3} \lambda_i y_i K(x_i, x) = 4 \cdot 1 + 2(2x_{(1)} + 1)^2 - 6(x_{(1)} + 1)^2$$
.

Объединяя, получаем разделяющую поверхность:  $f(x) = 2x_{(1)}^2 - 4x_{(1)} + 1$ .



Найдем разделяющую поверхность в виде:

$$f(x) = \sum_{i=1}^{3} \lambda_i y_i K(x_i, x) - w_0, \ w_0 = \sum_{i=1}^{3} \lambda_i y_i K(x_i, x_j) - y_j, x = (x_{(1)}, x_{(2)}).$$

Поскольку все  $\lambda > 0$ , то можем взять в качестве опорного вектора  $x_1$ .

Получим 
$$w_0 = 4K(x_1, x_1) + 2K(x_2, x_1) - 6K(x_3, x_1) - 1 = -1.$$

Теперь рассчитаем основную часть: 
$$\sum_{i=1}^{3} \lambda_i y_i K(x_i, x) = 4 \cdot 1 + 2(2x_{(1)} + 1)^2 - 6(x_{(1)} + 1)^2$$
.

Объединяя, получаем разделяющую поверхность:  $f(x) = 2x_{(1)}^2 - 4x_{(1)} + 1$ .

Нули разделителя:  $f(x) = 0 \Leftrightarrow x_{(1)} = 1 \pm \frac{\sqrt{2}}{2}$ .





Найдем разделяющую поверхность в виде:

$$f(x) = \sum_{i=1}^{3} \lambda_i y_i K(x_i, x) - w_0, \ w_0 = \sum_{i=1}^{3} \lambda_i y_i K(x_i, x_j) - y_j, x = (x_{(1)}, x_{(2)}).$$

Поскольку все  $\lambda>0$ , то можем взять в качестве опорного вектора  $x_1.$ 

Получим 
$$w_0 = 4K(x_1, x_1) + 2K(x_2, x_1) - 6K(x_3, x_1) - 1 = -1.$$

Теперь рассчитаем основную часть: 
$$\sum_{i=1}^{3} \lambda_i y_i K(x_i, x) = 4 \cdot 1 + 2(2x_{(1)} + 1)^2 - 6(x_{(1)} + 1)^2$$
.

Объединяя, получаем разделяющую поверхность: 
$$f(x) = 2x_{(1)}^2 - 4x_{(1)} + 1$$
.

Нули разделителя: 
$$f(x)=0 \Leftrightarrow x_{(1)}=1\pm \frac{\sqrt{2}}{2}$$
.

Первый край полосы 
$$(f(x) = -1)$$
:

$$f_1(x) = f(x) + 1 = 2(x_{(1)} - 1)^2$$
. Нули:  $x_{(1)} = 1$ .





Найдем разделяющую поверхность в виде:

$$f(x) = \sum_{i=1}^{3} \lambda_i y_i K(x_i, x) - w_0, \ w_0 = \sum_{i=1}^{3} \lambda_i y_i K(x_i, x_j) - y_j, x = (x_{(1)}, x_{(2)}).$$

Поскольку все  $\lambda>0$ , то можем взять в качестве опорного вектора  $x_1.$ 

Получим 
$$w_0 = 4K(x_1, x_1) + 2K(x_2, x_1) - 6K(x_3, x_1) - 1 = -1.$$

Теперь рассчитаем основную часть: 
$$\sum_{i=1}^{3} \lambda_i y_i K(x_i, x) = 4 \cdot 1 + 2(2x_{(1)} + 1)^2 - 6(x_{(1)} + 1)^2$$
.

Объединяя, получаем разделяющую поверхность:  $f(x) = 2x_{(1)}^2 - 4x_{(1)} + 1$ .

Нули разделителя: 
$$f(x)=0\Leftrightarrow x_{(1)}=1\pm rac{\sqrt{2}}{2}.$$

Первый край полосы 
$$(f(x) = -1)$$
:

$$f_1(x) = f(x) + 1 = 2(x_{(1)} - 1)^2$$
. Нули:  $x_{(1)} = 1$ .

Второй край полосы (f(x) = +1):

$$f_2(x) = f(x) - 1 = 2x_{(1)}(x_{(1)} - 2)$$
. Нули:  $x_{(1)} = 0, x_{(1)} = 2$ .





Найдем разделяющую поверхность в виде:

$$f(x) = \sum_{i=1}^{3} \lambda_i y_i K(x_i, x) - w_0, \ w_0 = \sum_{i=1}^{3} \lambda_i y_i K(x_i, x_j) - y_j, x = (x_{(1)}, x_{(2)}).$$

Поскольку все  $\lambda > 0$ , то можем взять в качестве опорного вектора  $x_1$ .

Получим 
$$w_0 = 4K(x_1, x_1) + 2K(x_2, x_1) - 6K(x_3, x_1) - 1 = -1.$$

Теперь рассчитаем основную часть: 
$$\sum_{i=1}^{3} \lambda_i y_i K(x_i, x) = 4 \cdot 1 + 2(2x_{(1)} + 1)^2 - 6(x_{(1)} + 1)^2$$
. Объединяя, получаем разделяющую поверхность:  $f(x) = 2x_{(1)}^2 - 4x_{(1)} + 1$ .

Нули разделителя:  $f(x)=0\Leftrightarrow x_{(1)}=1\pm rac{\sqrt{2}}{2}.$ 

Первый край полосы 
$$(f(x) = -1)$$
:

$$f_1(x) = f(x) + 1 = 2(x_{(1)} - 1)^2$$
. Нули:  $x_{(1)} = 1$ .

Второй край полосы (f(x) = +1):

$$f_2(x) = f(x) - 1 = 2x_{(1)}(x_{(1)} - 2)$$
. Нули:  $x_{(1)} = 0, x_{(1)} = 2$ .





#### Источники

Ha основе материалов сайта http://www.machinelearning.ru.

