\$Id: cmps104a-2011q4-exam1.mm,v 1.19 2011-10-20 19:08:47-07 - - \$

page 1	page 2	page 3
	Y '	γ \
	\wedge	\land

Please print clearly:	
Name:	
Login:	@ucsc.edu

No books; No calculator; No computer; No email; No internet; No notes; No phone. Neatness counts! Do your scratch work elsewhere and enter only your final answer into the spaces provided.

- 1. Using as few states as possible, draw *deterministic* finite αὐτόματα for each of the following flex regular expressions. Do not show garbage states. Draw a separate transition for each symbol. [5]
 - (i) a|bc+
 - (ii) (a|b)*c*
 - (iii) a+b*c
 - (iv) x[3-5]*x
 - (v) (a|b)+
- 2. Write some flex regular expressions as described by the following: [5]
 - (i) An identifier consists of one ore more upper- or lower-case letters, digits, and underscores, but must begin with a letter. An underscore, if present, must be preceded and followed by a letter or a digit.
 - (ii) A number consists of one or more digits with an optional decimal point. If the decimal point is present, it must be preceded and followed by a digit.
 - (iii) A string constant begins with a double quote mark (") and may have zero or more character denotations in between. A character denotation is any character that is not a quote or a newline.
 - (iv) A comment in C or Java which begins with a double slash and continues until end of line, not including the newline character at the end of the line.
 - (v) A single pattern which recognizes one of the reserved words if, then, else, or fi.

3. Using *Thompson*'s construction, convert the following **flex** regular expression into a *nondeterministic* finite αὐτόματον. Draw it to the right of the table, and number each one starting at 0. Call the initial state state 0. Then fillin the table with the ε-closure of each state. Scribble out state numbers that are not needed. [5] abc|de*

S	ε -closure (s)
0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	

- 4. Define an unambiguous grammar similar to ETF, which contains identifiers, parentheses, and two operators. The operator & is right associative and has a higher precedence than the operator &, which is also right associative. [24]
- 5. For the ETF grammar given at the left, draw abstract syntax trees for each of the following expressions. [3]

$$E \to E + T$$

$$E \rightarrow T$$

$$T \to T * F$$

$$T \to F$$

$$I \rightarrow I'$$

$$F \to (E)$$

$$F \rightarrow i$$

(ii) a+b*c+d

(i) a*b+c*d

(iii) a+b+c+d

Multiple choice. To the *left* of each question, write the letter that indicates your answer. Write Z if you don't want to risk a wrong answer. Wrong answers are worth negative points. [11 ν]

number of		× 1 =	= a
correct answers			
number of		× ½ =	= <i>b</i>
wrong answers			
number of		× 0 =	0
missing answers			
column total	11		= c
$c = \max(a - b, 0)$			

- 1. What is the proper ordering of these functions?
 - (A) parsing then scanning then symbol table
 - (B) scanning then parsing then symbol table
 - (C) scanning then symbol table then parsing
 - (D) symbol table then scanning then parsing
- 2. What kind of Chomsky grammar is used to build a scanner?
 - (A) context-free
 - (B) context-sensitive
 - (C) regular
 - (D) unrestricted
- 3. What kind of Chomsky grammar is used to build a parser?
 - (A) context-free
 - (B) context-sensitive
 - (C) regular
 - (D) unrestricted
- 4. The set of languages recognizable by a DFA is ____ the set of languages recognizable by an NFA.
 - (A) a proper subset of
 - (B) a proper superset of
 - (C) the same as
 - (D) none of the above
- 5. If a *nondeterministic* finite αὐτόματον is constructed from a regular expression r and used to scan a string s, how much time will it take to perform the scan? (The notation |r| means: the length of r.)
 - (A) $O(2^{|r|})$
 - (B) O(|r|)
 - (C) O(|s|)
 - (D) $O(|r| \times |s|)$

- 6. If a *deterministic* finite αὐτόματον is constructed from a regular expression r and used to scan a string s, how much time will it take to perform the scan? (The notation |r| means: the length of r.)
 - (A) $O(2^{|r|})$
 - (B) O(|r|)
 - (C) O(|s|)
 - (D) $O(|r| \times |s|)$
- 7. The following grammar is:

$$A \rightarrow A + A$$

$$A \rightarrow A * A$$

 $A \rightarrow i$

- (A) LL(1)
- (B) LR(1)
- (C) ambiguous
- (D) regular
- 8. How long should it take to find something in a hash table with *n* items in it?
 - (A) O(1)
 - (B) $O(\log_2 n)$
 - (C) *O*(*n*)
 - (D) $O(n \log_2 n)$
- 9. What is prohibited in a *deterministic* finite αὐτόματον?
 - (A) cycles in the graph
 - (B) epsilon transitions
 - (C) multiple final states
 - (D) all of the above
- 10. Which parsing action pops the right hand side of a rule off of the parsing stack, performs a semantic action, then pushes the left hand side of the same rule onto the stack?
 - (A) accept
 - (B) reduce
 - (C) scan
 - (D) shift
- 11. The intersection of the set of ambiguous grammars with the set of LALR(1) grammars is:
 - (A) a non-empty subset of the set of context free grammars.
 - (B) the empty set.
 - (C) the same as the set of context free grammars.
 - (D) the same as the set of regular grammars.