Problem Set 1 Avinash Iyer

Problem 1

If F is a finite set and $k : F \to F$ is a self-map, prove that k is injective if and only if k is surjective.

Let k be injective.

$$\begin{aligned} & card(F) = card(k(F)) & definition \ of \ injection \\ & k(F) \subseteq F & definition \ of \ function \\ & k(F) = F \end{aligned}$$

Let k be surjective.

$$k \circ k^{-1}(F) = F$$
 definition of surjection
$$(k \circ k^{-1}) \circ k(F) = k(F)$$
 apply k on the right
$$k \circ (k^{-1} \circ k)(F) = k(F)$$
 associative property

Therefore, $k^{-1} \circ k = id_F$, meaning k is injective.

Problem 2

Prove that a set A is infinite if and only if there is a non-surjective injection $f: A \to A$.

Problem 3

Let A, B, and C be sets and suppose $card(A) < card(B) \le card(C)$. Prove that card(A) < card(C).

Problem 4

If $A \subseteq B$ is an inclusion of sets with A countable and B uncountable, show that $B \setminus A$ is uncountable.

Let A be countable. Then, $A = \emptyset$, A is finite, or $\exists f : \mathbb{N} \mapsto A$.

Let $k : \mathbb{N} \to B \setminus A$. There are three cases: $A = \emptyset$, A is finite, and $\exists f : \mathbb{N} \mapsto A$.

Case 1 If A is the empty set, then $B \setminus A = B$, and since $\forall g : \mathbb{N} \to B$, g is not a surjection, k cannot be a surjection.

Case 2 If A is finite, then $\exists g : \{1, 2, ..., n\} \mapsto A$, for $n \in \mathbb{N}$.

Case 3 If $\exists f : \mathbb{N} \mapsto A$.

Problem 5

Is the set $\{x \in \mathbb{R} \mid x > 0 \text{ and } x^2 \in \mathbb{Q}\}$ countable?

Problem 6

Consider the set $\mathcal{F}(\mathbb{N})$ of all finite subsets of \mathbb{N} . Is $\mathcal{F}(\mathbb{N})$ countable?

Problem 7

Let $k \in \mathbb{N}$.

- (i) Prove that $\mathbb{N}^k = \underbrace{\mathbb{N} \times \mathbb{N} \times \cdots \mathbb{N}}_{k \text{ times}}$ is countable.
- (ii) Show that the set $\mathbb{N}^{\infty} := \{(n_k)_{k\geqslant 1} \mid n_k \in \mathbb{N}\}$ consisting of all sequences of natural numbers is uncountable.
- (iii) Prove that the set of **finitely-supported** natural sequences $c_c(\mathbb{N}) := \{(n_k)_{k\geqslant 1} \mid n_k \in \mathbb{N}, n_k = 0 \text{ for all but finitely many } k\}$ is countable.

Problem Set 1 Avinash Iyer

Problem 8

Let $f : \mathbb{R} \to \mathbb{R}$ be a function that sends rational numbers to irrational numbers and irrational numbers to rational numbers. Prove that the range ran(f) cannot contain any interval.

Problem 9

Prove that the set

$$\mathcal{P} \coloneqq \left\{ \sum_{k=0}^n \alpha_k x^k \mid n \subseteq \mathbb{N}_0, \alpha_k \in \mathbb{Q} \right\}$$

consisting of all polynomials with rational coefficients, is countable.

Problem 10

A real number t is called **algebraic** if there is a nonzero polynomial p with rational coefficients such that p(t) = 0. If $t \in \mathbb{R}$ is not algebraic, then it is called **transcendental**. For example, $\sqrt{2}$ is algebraic, but π is transcendental. Show that the set of algebraic numbers is countable, and conclude that there are uncountably many transcendental numbers.