1 Topology

1.1 Separation/Countability

1.1.1 Axioms of Separation

Definition 1.1. (Separation axioms)

Let X be a topological space. We give the following definitions and names

- 1.) We call X a T_1 space if $(\forall x \neq y)(\exists U_x, U_y) \pitchfork (U_x \cap \{y\} = \phi \land U_y \cap \{x\} = \phi)$
- 2.) We call X a T_2 , or **Hausdorff** space if $(\forall x \neq y)(\exists U_x, U_y) \pitchfork (U_x \cap U_y = \phi)$
- 3.) We call X a T_3 , or **regular** space, if X is T_1 , and $(\forall \operatorname{closed} C \subset x)(\forall x \in \complement C)(\exists U_x, V \in \tau_X) \pitchfork (C \subset V \land U_x \cap V = \phi)$.
- 4.) We call X a T_4 , or **Normal** space if X is a T_1 space and $(\forall \text{ closed } C, K \subset X) \pitchfork (C \cap K = \phi)(\exists U, V \in \tau_X) \pitchfork (C \subset U \land K \subset V \land U \cap V = \phi)$

Proposition 1.1. (Closed singletons)

Let X be a T_1 space. Let $x \in X$. Then $\{x\}$ is closed.

Proof. (Exercise)

Theorem 1. (Hausdorff Facts)

Let (X, \mathcal{T}) be a topological space. The following are equivalent.

- 1.) X is Hausdorff.
- 2.) Let $x \in X$. Then for each $y \neq x$. $(\exists U_x) \pitchfork (y \notin \overline{U_x})$
- 3.) For each $x \in X$, $\bigcap \{\overline{U_x} : U_x \text{ is a nbh of } x\} = \{x\}$
- 4.) $\Delta = \{(x, x) : x \in X\}$ is closed in $X \times X$.

Proposition 1.2. (Dense set)

Let X be a topological space. Then the following are equivalent.

- 1.) $D \subset X$ is dense
- 2.) $(\forall x \in X)(\forall U_x)(U_x \cap D \neq \phi)$

Theorem 2. Let X, Y be topological spaces. Let Y be Hausdorff. Suppose $f, g: X \to Y$ are continuous. Let D be dense in X. Then the following hold.

- 1.) $K = \{x \in X : f(x) = g(x)\}$ is closed.
- 2.) If $D \subset X$ and $f|_D = g|_D \implies f = g$.
- 3.) $G(f) = \{(x, f(x)) : x \in X\}$ is closed in $X \times Y$.
- 4.) If f is injective, then X is Hausdorff

Definition 1.2. (Separable Space)

We say a topological space X is separable if X contains a countable dense subset

1.1.2 Axioms of Countability

Definition 1.3. (Axioms of Countability)

Let X be a topological space. We give the following labels to X

- 1. We say X is 1^{st} countable if each element of X has a countable neighborhood base
- 2. We say X is 2^{nd} countable if X has a countable basis.

Note that second countability implies first countability, but the converse is not generally true.

Theorem 3. (separable)

Let X and Y be topological spaces. Let $T: X \to Y$ be continuous.

- 1.) If X is separable then T(X) is separable.
- 2.) X and Y are separable iff $X \times Y$ is separable.
- 3.) There exists a separable space which has a non separable subspace.

1.2 Connected Topological Spaces

1.2.1 Basics

Definition 1.4. (Connectedness)

Let (X,\mathcal{T}) be a topological space. We say that X is **Connected** if X is not the union of two nonempty disjoint sets open in X.

Theorem 4. Let X be a topological space. Then the following are equivalent

- 1.) X is connected.
- 2.) X and ϕ are the only closed and open sets in X.
- 3.) There is no continuous surjection $f: X \to \overline{2}$ where $\overline{2} = \{0,1\}$ and $\tau_{\overline{2}} = \{\{0,1\},\{1\},\{0\},\phi\}$

Proof. $(1 \implies 2)$

Suppose $\phi \neq U \subset X$ is closed and open. Then $\mathcal{C}U$ is clopen, and $X = U \cup \mathcal{C}U$.

Proof. $(2 \implies 3)$

Suppose there is a continuous surjection $f: X \to \overline{2}$. Then $f^{-1}(\{0\}) \in \tau_X$. Also $Cf^{-1}(\{0\}) = f^{-1}(C\{0\}) = f^{-1}(\{1\}) \in \tau_X$. Thus $CCf^{-1}(\{0\}) = f^{-1}(\{0\})$ is closed, a contradiction because $f^{-1}(\{0\}) \neq X$.

Proof. $(3 \implies 1)$

Suppose X is not connected. Then $X = A \cup B$ which are disjoint and open. Then χ_A is continuous and surjective., which is a contradiction!

2

Theorem 5. (Shared Point Connectedness)

Let X be a topological space. Let $\{C_{\alpha}\}_{{\alpha}\in\mathscr{A}}$ be a family of connected sets such that there exists $x_0\in\bigcap_{{\alpha}\in\mathscr{A}}C_{\alpha}$ Then $C=\bigcup_{{\alpha}\in\mathscr{A}}C_{\alpha}$ is connected.

Proof. Let $f: C \to \overline{2}$ be continuous. Then $(\forall \alpha \in \mathscr{A})(f|_{C_{\alpha}})$ is non surjective. Let $\beta \in \mathscr{A}$. Suppose $f_{\beta}(x_0) = 0$. Then $f_{\alpha}(x_0) = 0$ for all $\alpha \in \mathscr{A}$. Therefore f is non surjective.

Theorem 6. (Connectedness Topological invariance)

Let X, Y be topological spaces. Let $f: X \to Y$ be continuous. Let X be connected. Then f(X) is connected.

Proof. Suppose there exists a continuous surjective mapping $g: f(X) \to \overline{2}$. The composition of the two mappings reaches a contradiction.

Theorem 7. Any interval Y in \mathbb{R} is connected

Proof. Suppose Y is not connected. Then $Y = A \cup B$ where $A \cap B = \phi$ and $\phi \neq A, B \in \tau_Y$.

WLOG, suppose a < b with $a \in A$, $b \in B$.

Define $\alpha = \sup\{x : [a,x) \subset A\}$. Then $\alpha \leq b \ (\forall b \in B)$ because if $\alpha > b$ for some b, then $b \in A$.

Since Y is an interval, $\alpha \in Y$, and $\alpha \in \overline{A}_Y$

Since $A = \mathcal{C}_Y B$ is closed in Y, $\alpha \in A$.

However, $A \in \tau_Y$, so $(\exists \epsilon > 0) \pitchfork (\alpha - \epsilon, \alpha + \epsilon) \subset A$, a contradiction.

Corollary 1.1. (Intermediate value theorem)

Let X be a topological space. Let $f: X \to \mathbb{R}$ be continuous. Suppose A is a connected subset of X. Let $a, b \in A$. Let f(a) < c < f(b).

Then $(\exists x_0 \in A)(f(x_0) = c)$.

Proof. A is connected so f(A) is an interval. Thus $c \in f(A)$

Lemma 1.1. (Closure connected)

Let X be a topological space and let $A \subset X$ be connected. Then for each K such that $A \subset K \subset \overline{A}$, K is connected.

Proof. Suppose K is not connected.

1.2.2 Components

Definition 1.5. (Connected Components)

Let X be a topological space. Let $x \in X$. We define C(x) to be the union of all connected subsets containing x. We call C(x) the Component of x.

Theorem 8. (Component properties)

Let X be a topological space. Let $x \in X$ then

- 1. C(x) is a maximal connected subset of X
- 2. The family of all distinct components in X partitions X
- 3. C(x) is closed in X

Proof. (1)

This follows directly from the definition.

Proof. (2)

Proof. (3)