Исследование зависимости погрешности численного интегрирования от возмущений в сетке

Коновалов Андрей, 073

1 Введение

Рассмотрим определенный интеграл без особенностей

$$I = \int_{a}^{b} f(x)dx. \tag{1}$$

Для приближенного вычисления интеграла (1) рассмотрим равномерую сетку, то есть разобьем отрезок [a,b] на некоторое число n равных отрезков

$$a = x_0 < \dots < x_n = b.$$
 (2)

Теперь рассмотрим другую сетку

$$a = \hat{x}_0 < \dots < \hat{x}_n = b,$$
 (3)

равномерную с точностью до некоторой погрешности Δx . Это означает, что любой узел \hat{x}_k отличается от узла равномерной сетки x_k не более, чем на Δx , то есть

$$|\hat{x}_k - x_k| < \Delta x, \quad k = 0, ..., n.$$

Будем считать, что при вычислении значения функции f(x) в некоторой точке x ее значение f(x) известно с некоторой погрешностью Δf , то есть

$$|\hat{f}(x) - f(x)| \le \Delta f,$$

где $\hat{f}(x)$ - полученное при вычислении значение. На каждом отрезке $[\hat{x}_k,\hat{x}_{k+1}]$ построим линейный интерполянт $P_k(x)$ такой, что

$$P_k(\hat{x}_k) = \hat{f}(\hat{x}_k), \ P_k(\hat{x}_{k+1}) = \hat{f}(\hat{x}_{k+1}).$$

Интеграл интерполянта на $[\hat{x}_k, \hat{x}_{k+1}]$ будем вычислять по формуле трапеций

$$\int_{\hat{x}_k}^{\hat{x}_{k+1}} P_k(x) dx = (\hat{x}_{k+1} - \hat{x}_k) \cdot \frac{\hat{f}(\hat{x}_{k+1}) + \hat{f}(\hat{x}_k)}{2}.$$

Рассмотрим функцию P(x), которая на каждом из отрезков $[\hat{x}_k, \hat{x}_{k+1}]$ совпадает с $P_k(x)$. Искомый интеграл будет вычисляться как

$$\hat{I} = \sum_{k=0}^{n-1} \int_{\hat{x}_k}^{\hat{x}_{k+1}} P_k(x) dx = \int_a^b P(x) dx$$

В результате, интеграл (1) будет вычислен с некоторой погрешностью

$$\Delta I = |\hat{I} - I| = \left| \int_{a}^{b} P(x)dx - \int_{a}^{b} f(x)dx \right|, \quad (4)$$

которая зависит от самой функции f(x), выбранных узлов \hat{x}_k и значений в них $\hat{f}(\hat{x}_k)$.

2 Теоретическая оценка

Получим оценку сверху для ΔI , в зависимости от погрешности вычисления значений подынтегральной функции Δf , а также от погрешности задания узлов сетки Δx .

Для начала преположим, что выполняется

$$h = \frac{b - a}{n} > 2\Delta x,$$

это понадобится в дальнейшем.

Рассмотрим линейные интерполянты $Q_k(x)$, построенные на узлах равномерной сетки (2), то есть такие, что

$$Q_k(x_k) = f(x_k), \ Q_k(x_{k+1}) = f(x_{k+1}),$$

а также функцию Q(x), которая на каждом из отрезков $[x_k, x_{k+1}]$ совпадает с $Q_k(x)$.

Ясно, что

$$\sum_{k=0}^{n-1} \int_{\hat{x}_k}^{\hat{x}_{k+1}} Q_k(x) dx = \int_a^b Q(x) dx$$

Ошибку (4) оценим как

$$\Delta I \le \Delta I_1 + \Delta I_2,\tag{5}$$

где

$$\Delta I_1 = \left| \int_a^b P(x)dx - \int_a^b Q(x)dx \right|$$
$$\Delta I_2 = \left| \int_a^b Q(x)dx - \int_a^b f(x)dx \right|$$

Широко известно, что

$$\Delta I_2 \le \frac{b-a}{8} \sup_{x \in [a,b]} |f''(x)| h^2,$$

где $h=rac{b-a}{n}$ - шаг равномерной сетки. Теперь представим ΔI_1 как

$$\Delta I_1 = \left| \sum_{k=0}^{n-1} \int_{\hat{x}_k}^{\hat{x}_{k+1}} (P_k(x) - Q_k(x)) dx \right|,$$

и оценим как

$$\Delta I_1 \le \sum_{k=0}^{n-1} \left| \int_{\hat{x}_k}^{\hat{x}_{k+1}} (P_k(x) - Q_k(x)) dx \right|.$$

Займемся оценкой

$$\Delta J_k = \left| \int_{\hat{x}_k}^{\hat{x}_{k+1}} (P_k(x) - Q_k(x)) dx \right|.$$

Рис. 1: Интерполянты

Смысл величины J_k состоит в разнице площадей под прямыми $P_k(x)$ и $Q_k(x)$ на отрезке $[\hat{x}_k, \hat{x}_{k+1}]$.

На рисунке изображены точки $(x_k, f(x_k))$ и $(x_{k+1}, f(x_{k+1}))$, а также их окрестности в виде прямоугольников, в которых лежат точки $(\hat{x}_k, \hat{f}(\hat{x}_k))$ и $(\hat{x}_{k+1}, \hat{f}(\hat{x}_{k+1}))$ соответственно.

Заметим, что прямоугольники не пересекаются б) в силу предположения $x_{k+1} - x_k = h > 2\Delta x$.

По определению $Q_k(x)$ - прямая, проходящая через точки M и N, а $P_k(x)$ - некоторая прямая, пересекающая оба прямоугольника.

Из рисунка ясно, что разность площадей под прямыми будет максимальна, когда $P_k(x)$ совпадает с $P_k'(x)$, которая проходит через точки A и F. Получим оценку для этой разности.

Запишем уравнения обеих прямых

$$Q_k(x) = \frac{x - x_{k+1}}{x_k - x_{k+1}} f_k + \frac{x - x_k}{x_{k+1} - x_k} f_{k+1},$$

$$P'_{k}(x) = \frac{x - (x_{k+1} - \Delta x)}{(x_{k} - \Delta x) - (x_{k+1} - \Delta x)} (f_{k} + \Delta f) + \frac{x - (x_{k} - \Delta x)}{(x_{k+1} - \Delta x) - (x_{k} - \Delta x)} (f_{k+1} + \Delta f),$$

(8) где введены обозначения

$$f_k = f(x_k), \quad f_{k+1} = f(x_{k+1}).$$

Преобразуем $P'_k(x)$:

$$P'_{k}(x) = \frac{x - (x_{k+1} - \Delta x)}{x_{k} - x_{k+1}} (f_{k} + \Delta f) + \frac{x - (x_{k} - \Delta x)}{x_{k+1} - x_{k}} (f_{k+1} + \Delta f).$$

Оценим величину

$$\Delta_k = \sup_{x \in [\hat{x}_k, \hat{x}_{k+1}]} |P'_k(x) - Q_k(x)|.$$

Ясно, что прямые Q(x) и $P_k'(x)$ параллельны, а значит

$$\Delta_k = |P_k'(x_k) - Q_k(x_k)|.$$

Заметим, что

$$Q_k(x_k) = \frac{x_k - x_{k+1}}{x_k - x_{k+1}} f_k = f_k,$$

 \mathbf{a}

$$P'_{k}(x_{k}) = \frac{x_{k} - x_{k+1} + \Delta x}{x_{k} - x_{k+1}} (f_{k} + \Delta f) + \frac{\Delta x}{x_{k+1} - x_{k}} (f_{k+1} + \Delta f).$$

После приведения к общему знаменателю и сокращения некоторых слагаемых, получим

$$\Delta_k = \left| \frac{(f_{k+1} - f_k)\Delta x + (x_{k+1} - x_k)\Delta f}{x_{k+1} - x_k} \right|.$$

Немного преобразуя, получим:

$$\Delta_k = \left| \frac{(f_{k+1} - f_k)\Delta x}{x_{k+1} - x_k} + \Delta f \right|,$$

а значит справедлива оценка

$$\Delta_k \le \frac{|f_{k+1} - f_k| \, \Delta x}{x_{k+1} - x_k} + \Delta f.$$

Используя, что

$$|f_{k+1} - f_k| \le \sup_{x \in [x_k, x_{k+1}]} |f'(x)| (x_{k+1} - x_k),$$

получим

$$\Delta_k \le \sup_{x \in [x_k, x_{k+1}]} |f'(x)| \Delta x + \Delta f.$$

Обозначим

$$\Delta = \sup_{k=0,\dots,n-1} \Delta_k.$$

Ясно, что

$$\Delta \le \sup_{x \in [a,b]} |f'(x)| \, \Delta x + \Delta f. \tag{9}$$

Мы получили оценку для (8):

$$\Delta J_k < \Delta (\hat{x}_{k+1} - \hat{x}_k).$$

Эта оценка была получена в предположении, что $f_k \leq f_{k+1}$. Ясно, что если $f_k > f_{k+1}$, то прямую $P_k'(x)$ надо проводить через точки D и G, но предложенный способ подсчета дает такой же результат и в этом случае.

Возвращаясь к (7), запишем

$$\Delta I_1 \le \sum_{k=0}^{n-1} J_k \le \Delta(\hat{x}_n - \hat{x}_0) = \Delta(b-a)$$
 (10)

Используя (5), (6), (9) и (10), получаем, что

$$\Delta I \leq \frac{b-a}{8} \sup_{x \in [a,b]} |f''(x)| \, h^2 +$$

$$+(b-a)(\sup_{x\in[a,b]}|f'(x)|\,\Delta x + \Delta f) \tag{11}$$

Итого, мы получили оценку сверху для погрешности численного интегрирования (4) в предположении, что $h>2\Delta x$.

3 Проверка оценки

В качестве проверки полученной оценки (11) численно посчитаем интеграл от функции

$$f(x) = \sin x$$

на интервале $[0,2\pi]$ при различных сетках (3). При этом будем считать, что

$$n = 1000, \ \Delta f = 0$$

В данном случае $h \approx 0.0063$, а значит Δx не может быть больше, чем $\frac{h}{2} \approx 0.0031$.

Puc. 2: Зависимость $\Delta I(\Delta x)$

График зависимости погрешности численного интегрирования ΔI от погрешности задания узлов сетки Δx изображен на рисунке.

Сплошной линии соответствует теоретическая оценка посчитанная по формуле (11).

Ромбами изображены погрешности численного интегрирование при специально выбираемой 'плохой' сетке. Выбор точек (3) в данном случае осуществлялся таким образом: на интервалах убывания f(x) брались $\hat{x}_k = x_k - \Delta x$, а на интервалах возрастания - $\hat{x}_k = x_k + \Delta x$.

Кругами изображены результаты погрешности при случайно выбираемой сетке. То есть отклонения \hat{x}_k от x_k случайно выбирались из $[-\Delta x, \Delta x]$ с равномерным распределением. Неудивительно, что погрешности получились очень малы, по сравнению с теоретическим максимумом - они просто скомпенсировали друг друга, так как отклонялись равномерно в обе стороны от x_k .