Parcial 2, Lenguajes Formales 2006

- 1. V o F, justifique:
 - (a) Sean $f:\omega\to\omega,\ g:\omega^3\to\omega.$ Si $f\in\operatorname{PR}_3^\Sigma$ y $g\in\operatorname{PR}_5^\Sigma$ entonces $R(f,g)\in\operatorname{PR}_6^\Sigma-\operatorname{PR}_5^\Sigma.$
 - (b) Si R(f,g) = R(f',g') entonces f = f' y g = g'.
 - (c) Sea $f: D_f \subseteq \omega \to \omega$. Entonces $\lambda x_1 x_2[x_2^{x_1}] \circ (C_0^{1,0}, f) = C_1^{1,0}$.
 - (d) Sean $<_1$ y $<_2$ los dos posibles órdenes totales sobre $\{a,b\}$. Entonces $*^{<_1}$ o $\#^{<_2} = *^{<_2}$ o $\#^{<_1}$.
- 2. Sea $P:\omega^2\times \Sigma^{*2}\to \dot{\omega}$ dado por

$$P(x, y, \beta, \gamma) = (\exists \alpha \in \Sigma^*)_{|\alpha| \le x^2} \quad \beta \gamma^y = \bigcup_{t=x+1}^{|\alpha|} [\alpha]_t [\gamma]_t$$

Pruebe que P es Σ -PR. Puede usar las funciones que han sido probadas Σ -PR en el teórico. Enuncie los lemas que aplique.

3. Sean $S_1, S_2 \subseteq \omega$ no vacios. Pruebe que si $S_1 \times S_2$ es Σ -PR, entonces S_1 es Σ -PR.