FINAL GENOME ANALYSIS

Ciara F. Blanco BIOL 4810 - Bioinformatics

Introduction

Bacteria: Vibrio cholerae

Sample Description: O1

SRR: <u>SRR33049458</u>

Background: Two specific serogroups of *Vibrio cholerae* are

associated with causing cholera—O1 and O139.

Question: Will pathogenic *Vibrio* species have higher Average

Nucleotide Identity (ANI) results with my *V. cholerae*

sample than non-pathogenic Vibrio species?

Methods ($\frac{1}{3}$)

- 1. Genome Assembly with SPAdes (v4.1.0) and ABySS (v2.3.7)
 - 2. Quality Check with QUAST (v5.3.0)

SPAdes QUAST Report

```
Assembly
                             scaffolds
# contigs (>= 0 bp)
                             837
                             55
# contigs (>= 1000 bp)
# contigs (>= 5000 bp)
                             25
# contigs (>= 10000 bp)
                             19
 contigs (>= 25000 bp)
                             17
# contigs (>= 50000 bp)
                             17
Total length (>= 0 bp)
                             4456675
Total length (>= 1000 bp)
                             4034084
Total length (>= 5000 bp)
                             3972412
Total length (>= 10000 bp)
                             3925738
Total length (>= 25000 bp)
                             3901578
Total length (>= 50000 bp)
                             3901578
# contias
                             476
Largest contig
                             638239
Total length
                             4295388
GC (%)
                             47.69
N50
                             246717
N90
                             72121
auN
                             325175.3
L50
190
                             17
# N's per 100 kbp
                             6.98
```

ABySS QUAST Report

```
Assembly
                             assembly-scaffolds
# contigs (>= 0 bp)
                             1001
  contigs (>= 1000 bp)
                             149
  contigs (>= 5000 bp)
                             113
 contigs (>= 10000 bp)
                             85
 contigs (>= 25000 bp)
                             51
# contigs (>= 50000 bp)
                             26
Total length (>= 0 bp)
                             4166685
Total length (>= 1000 bp)
                             4008622
Total length (>= 5000 bp)
                             3900163
Total length (>= 10000 bp)
                             3697469
Total length (>= 25000 bp)
                             3169209
Total length (>= 50000 bp)
                             2250260
# contias
                             170
Largest contig
                             172801
Total length
                             4021995
GC (%)
                             47.50
N50
                             57580
N90
                             12537
                             65738.4
auN
L50
                             22
L90
                             79
                             42.14
# N's per 100 kbp
```

SPAdes QUAST Report

	scaffolds
# contigs (>= 0 bp)	837
# contigs (>= 1000 bp)	55
# contigs (>= 5000 bp)	25
# contigs (>= 10000 bp)	19
# contigs (>= 25000 bp)	17
# contigs (>= 50000 bp)	17
Total length (>= 0 bp)	4456675
Total length (>= 1000 bp)	4034084
Total length (>= 5000 bp)	3972412
Total length (>= 10000 bp)	3925738
Total length (>= 25000 bp)	3901578
Total length (>= 50000 bp)	3901578
# contigs	476
Largest contig	638239
Total length	4295388
GC (%)	47.69
N50	246717
N90	72121
auN	325175.3
L50	5
L90	17
# N's per 100 kbp	6.98
	•

ABySS QUAST Report

	assembly-scaffolds	
# contigs (>= 0 bp)	1001	
# contigs (>= 1000 bp)	149	
# contigs (>= 5000 bp)	113	
# contigs (>= 10000 bp)	85	
# contigs (>= 25000 bp)	51	
# contigs (>= 50000 bp)	26	
Total length (>= 0 bp)	4166685	
Total length (>= 1000 bp)	4008622	
Total length (>= 5000 bp)	3900163	
Total length (>= 10000 bp)	3697469	
Total length (>= 25000 bp)	3169209	
Total length (>= 50000 bp)	2250260	
# contigs	170	
Largest contig	172801	
Total length	4021995	
GC (%)	47.50	
N50	57580	
N90	12537	
auN	65738.4	
L50	22	
L90	79	
# N's per 100 kbp	42.14	

Methods ($\frac{2}{3}$)

3. Use NCBI to download Vibrio spp. files.

Methods (3/3)

4. Determine Pathogenicity with PathogenFinder2 (v0.4.1)

Vibrio spp.	PathogenFinder2 Results	Categorization
V. vulnificus	0.9501	Human Pathogenic
V. diazotrophicus	0.7999	Human Pathogenic
V. ponticus V. tritonius	0.7405 0.6404	Human Pathogenic Human Pathogenic
V. tasmaniensis	0.4500	Human Non Pathogenic
V. rumoiensis	0.3899	Human Non Pathogenic
V. penaeicida	0.3347	Human Non Pathogenic
V. atlanticus	0.2794	Human Non Pathogenic
V. cholerae	0.9765	Human Pathogenic

Results

5. Measure Overall Similarity Between Genomes with fastANI (v1.34)

• • • vibrioneighbors.txt —	- Edited			
spadesout/scaffolds.fastavulnificus.fasta	78.912	414	1320	
spadesout/scaffolds.fastadiazotrophicus.fasta	78.8503	378	1320	
spadesout/scaffolds.fastaponticus.fasta	78.7645	337	1320	
spadesout/scaffolds.fastatritonius.fasta	78.6619	309	1320	
spadesout/scaffolds.fastaatlanticus.fasta	78.1464	269	1320	

Vibrio spp.	PathogenFinder2 Results	Categorization	fastANI Results
V. vulnificus	0.9501	Human Pathogenic	78.912
V. diazotrophicus	0.7999	Human Pathogenic	78.8503
V. ponticus	0.7405	Human Pathogenic	78.7645
V. tritonius	0.6404	Human Pathogenic	78.1464
V. tasmaniensis	0.4500	Hu. Non Pathogenic	N/A
V. rumoiensis	0.3899	Hu. Non Pathogenic	N/A
V. penaeicida	0.3347	Hu. Non Pathogenic	N/A
V. atlanticus	0.2794	Hu. Non Pathogenic	78.1464

Conclusion

The fastANI algorithm is designed to remove distant genomes (Jain et al., 2018).

Given that 3/4 of the non-pathogenic *Vibrio* spp. were removed from the fastANI results, it is likely they share less similarity to the *V. cholerae* sample than the pathogenic *Vibrio* spp.

References

- Ferrer Florensa, A., Almagro Armenteros, J. J., Kaas, R. S., Clausen, P. T., Nielsen, H., Rost, B., Aarestrup, F. M. (2025). Whole-genome prediction of bacterial pathogenic capacity on novel bacteria using protein language models, with PathogenFinder2. bioRxiv, 2025-04.
- Jain, C., Rodriguez-R, L.M., Phillippy, A.M. *et al.* High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. *Nat Commun* 9, 5114 (2018). https://doi.org/10.1038/s41467-018-07641-9