

GC-MVSNet: Multi-View, Multi-Scale, Geometrically-Consistent Multi-View Stereo

Vibhas K. Vats ¹ Sripad Joshi ¹ David J. Crandall ¹ Md. Alimoor Reza ² Soon-Heung Jung ³

¹Indiana University, Bloomington, Indiana ²Drake University, Des Moines, Iowa ³Electronics and Telecommunications Research Institute, Korea

Multi-View Stereo Problems

- Depth map-based MVS algorithms estimate the reference view depth maps using multiple RGB inputs (Reference + Source views)
- A consistent scene requires geometric consistency of depth estimates across multiple views

Two broader approaches are undertaken to ensure geometric consistency in estimated depth maps:

- Repeated application of geometric constraints during the depth estimation process → Traditional MVS Algorithms
- \bullet Geometric constraints applied as a post-processing step \to Learning-based MVS Algorithms

GC-MVSNet is a learning-based algorithm with geometric constraints applied during the learning process.

Learning-Based MVS Algorithms

A learning-based MVS method:

- Extract multi-level features using CNNs
- Creates a matching 3D cost volume using features
- Regularize cost volume using 3D-CNN
- Filter geometrically consistent points to generate 3D point-cloud

They only use Geometric Constraints as a post-processing step for filtering multi-view consistent points. It leads to:

- Limited geometric cues during the learning process
- Require more training iterations to learn to reason about geometry

Hypothesis

GC-MVSNet:

- Explicitly models cross-view geometric constraints during learning
- It penalizes geometrically inconsistent estimates during learning

With such explicit geometric constraint modeling, GC-MVSNet should:

- \bullet Develop a better understanding of multi-view geometry \to Improved quantitative results
- \blacksquare Learn quickly to reason about scene geometry \to Require less training iterations

Forward-Backward-Reprojection

 $\begin{array}{l} \textbf{Inputs:} \ D_0, c_0, D_i^{gt}, c_i^{gt} \\ \textbf{Output:} \ D_{P_0''}'', P_0'' \\ \\ K_R, E_R \leftarrow c_0; K_S, E_S \leftarrow c_i^{gt} \\ D_{(R \rightarrow S)} \leftarrow K_S \cdot E_S \cdot E_R^{-1} \cdot K_R^{-1} \cdot D_0 \\ X_{D_{(R \rightarrow S)}}, Y_{D_{(R \rightarrow S)}} \leftarrow D_{(R \rightarrow S)} \\ D_{S_{remap}} \leftarrow REMAP(D_i^{gt}, X_{D_{(R \rightarrow S)}}, Y_{D_{(R \rightarrow S)}}) \\ D_{P_0''} \leftarrow K_R \cdot E_R \cdot E_S^{-1} \cdot K_S^{-1} \cdot D_{S_{remap}} \\ P_0''' \leftarrow (X_{D_{P_0''}'}, Y_{D_{P_0''}'}) \\ \end{array} \Rightarrow \text{Back project}$

Other Modifications

Two additional modifications were to stabilize the model's performance.

- Keeping the feature-extraction-network as Feature Pyramid Network, replaced the regular conv-layers with deformable conv-layers
- Replaced BatchNorm-layers with GroupNorm-layers as BatchNorm is not well suited for small batch-size

Reconstructed Scene Point Clouds

Method

Geometric-Consistency (GC) Module:

- Applied at the end of each stage to check cross-view consistency of the reference view depth maps
- Generates penalty for geometrically inconsistent estimates for each stage

Geometric-Consistency Module

Complete GC-Algorithm

Initialize Mask-Sum $\rightarrow 0$

For each Src. depth map:

- 1. forward-backward-reprojection to get PDE and RDD \bullet PDE $\leftarrow ||P_0 P_0''||_2$
- RDD $\leftarrow ||I_0 I_0||_2$ ■ RDD $\leftarrow ||D_0||D_{P_0''}'' - D_0||_1$
- 2. Select geometrically inconsistent pixels
 - $PDE_{mask} > D_{pixel}$
- $RDD_{mask} > D_{depth}$ 3. Combine inconsistent pixels from both masks
- Logical-OR (PDE_{mask}, RDD_{mask})
- 4. Current-Mask ← Assign penalty to each pixel
 Inconsistent pixels → 1
 - All other pixels $\rightarrow 0$
- 5. Add Current-Mask to initial Mask-Sum

Geometric penalty (ξ_p) \leftarrow average Mask-Sum Apply reference view binary mask to generate final ξ_p

GC-MVSNet Architecture

Error Plot - Train (Tanks & Temples)

Quantitative Results

Our method achieves State-of-the-art results on two datasets:

DTU and BlendedMVS

	Method	Acc↓	Comp ↓	Overall ↓							
Traditional	Furu [9]	0.613	0.941	0.777							
	Tola [36]	0.342	1.190	0.766							
	Gipuma [10]	0.283	0.873	0.578							
	COLMAP [33]	0.400	0.664	0.532							
Learning-based	SurfaceNet [16]	0.450	1.040	0.745							
	MVSNet [48]	0.396	0.527	0.462							
	P-MVSNet [25]	0.406	0.434	0.420							
	R-MVSNet [49]	0.383	0.452	0.417							
	Point-MVSNet [2]	0.342	0.411	0.376							
	CasMVSNet [12]	0.325	0.385	0.355							
	CVP-MVSNet [47]	0.296	0.406	0.351							
	UCS-Net [3]	0.338	0.349	0.344							
	AA-RMVSNet [41]	0.376	0.339	0.357							
	UniMVSNet [30]	0.352	0.278	0.315							
	TransMVSNet [6]	0.321	0.289	0.305							
	GBi-Net* [28]	0.312	0.293	0.303							
	MVSTER [39]	0.350	0.276	$\overline{0.313}$							
	GC-MVSNet (ours)	0.330	0.260	0.295							
	GBi-Net [28]	0.315	0.262	0.289							
	GC-MVSNet (ours)	0.323	0.255	0.289							
DTU Dataset											
,	Method	EPE	P1	e2							

Method	EPE↓	$e_1\downarrow$	$e_3\downarrow$	
MVSNet [48]	1.49	21.98	8.32	
CasMVSNet [12]	1.43	19.01	9.77	
CVP-MVSNet [47]	1.90	19.73	10.24	
Vis-MVSNet [54]	1.47	15.14	5.13	
EPP-MVSNet [26]	1.17	12.66	6.20	
TransMVSNet [6]	<u>0.73</u>	<u>8.32</u>	3.62	
GC-MVSNet (ours)	0.48	0.89	0.97	

BlendedMVS Dataset

GC: A Plug-in Module

GC module is designed as a plug-in module

- Plug into any depth map-based MVS method
- Retraining the network with GC-module provides:
 Improved quantitative results to its previous performance
- Require less training iterations to achieve optimal performance

We demonstrate this on two different methods:

CasMVSNet and TransMVSNet

Methods	Loss	Other	GC	Overall↓	Epoch
CasMVSNet [2]	L_1	×	×	0.355	16
	L_1	\checkmark	×	0.357	16
	L_1	×	\checkmark	0.335	11
	FL	×	×	0.305	16
TransMVSNet [1]	FL	\checkmark	×	0.322	16
	FL	×	\checkmark	0.303	8

Table 1. GC-module as a plug-in in TransMVSNet and CasMVSNet

References

- [1] Yikang Ding, Wentao Yuan, Qingtian Zhu, Haotian Zhang, Xiangyue Liu, Yuanjiang Wang, and Xiao Liu.

 Transmysnet: Global context-aware multi-view stereo network with transformers
- Transmysnet: Global context-aware multi-view stereo network with transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8585–8594, 2022.
- [2] Xiaodong Gu, Zhiwen Fan, Siyu Zhu, Zuozhuo Dai, Feitong Tan, and Ping Tan. Cascade cost volume for high-resolution multi-view stereo and stereo matching. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 2495–2504, 2020.

Connect with us

