Rocks and rock cycle

- Minerals are the building blocks of rocks.
- Generally more than one mineral constitutes a rock.
- -There are three ways you can make rocks:
 - 1. Bring molten magma to the surface and solidify it.
 - 2. Metamorphose the existing rock and make a new one.
 - 3. Break down existing rocks and solidify after re-deposition.

-Types:

- A. Igneous rock.
- B. Metamorphic rock
- C. Sedimentary rocks

Rock cycles:

- Generation of different rock types are interlinked.
- Generation of new rocks and destruction of old rocks is a continuous cycle.

Igneous rock

- Rock forms when molten rock (magma) cools and solidifies. [Ignis = Fire]
- A variety of different minerals could be found.
- Magma composition is generally uniform----- still we see a variety of different igneous rocks differing in their composition.

http://activities.macmillanmh.com/science/ca/scienceinmotion/Common/SIM.html? Module=../Grade4/Chapter3-IgneousRockFormation/

Some common igneous rocks:

- 1. Granite
- 2. Basalt

Sedimentary rock

- Sediments are the materials from pre-existing rocks generated by the processes of weathering. Weathering: Physical disintegration + Chemical decomposition of rocks. **Erosion** moving of disintegrated rock material from one place to a new location
- How do you transform sediments into rocks???

- -These are generally layered rocks.
- Fossils or remains of ancient life could only be found from this kind of rock.

Metamorphic rock

Metamorphosis: Transformation

Metamorphic rocks: produced by changes in pre-existing rocks.

Parent rocks: Igneous, metamorphic, sedimentary rocks

Some common metamorphic rocks:

- 1. Marble
- 2. Slate

What is rock cycle?

• Three different types of rocks are closely related in their formation.

- 1. Form igneous rocks
- 2. Rocks that you get from igneous rocks (formation of metamorphic and igneous rocks)
- 3. Relationship between metamorphic and sedimentary rocks

Magma: The parent material

Magma = Molten rock that comes from the Earth's interior.

Lava = Magma that reaches the surface.

- 1. Extrusive/Volcanic igneous rocks: When molten rocks solidify above the ground.
- 2. Intrusive/Plutonic igneous rocks: When molten rocks solidify below the ground.

Extrusive rocks: Basalts

Deccan Traps

Intrusive rocks: Granite

Intrusive structures

Plutons: The igneous structures that form under the surface.

- -They can only be studied if they are uplifted and exposed above the surface.
- They could cut through the existing rocks (discordant) or form parallel layers (concordant).

- -Three main types:
 - Dikes
 - Sills
 - Batholiths

Intrusive structure

Dike: Discordant bodies produced when magma is injected into fractures.

Sills: Concordant bodies produced when magma is injected along sedimentary bedding surface.

Batholiths: Largest intrusive igneous bodies

http://reynolds.asu.edu/blocks/intpdst.htm

Magma to Rock

- As magma cools down, solids crystallizes.
- It settles down from the magma.
- -This is known as Fractional Crystallization
- -The remaining magma changes the composition.

That is the reason behind the generation of different rocks from the same magma.

Texture of igneous rocks:

Three factors decide how an igneous rock going to look like (texture):

- 1. The rate at which magma cools
- 2. The amount of silica
- 3. Amount of dissolved gas

Rate of cooling & crystallization

If it cools rapidly, the crystals could not grow for very long time --- small crystals.

If it cools very slowly, the crystals grow over a long period --- large crystals.

- What would be the crystal size of an extrusive igneous rock?
- What about intrusive ones?

When rocks only have unordered ions, it is referred to as glass.

Types of igneous texture

- 1. Aphanitic (fine-grained) texture: Crystals too small to see.
- 2. Phaneritic (Coarse-grained) texture: Crystals large enough to see.
- 3. Porphyritic (mixed) texture: Both large and small crystals.
- 4. Glassy texture: No crystal structure.
- 5. Pyroclastic (fragmented) texture: Consolidation of rocks fragments.
- 6. Pegmatitic texture: Unusually large crystals because of the volatile content.

Igneous composition

- Mainly composed of silicate minerals.
- Other ions include Al, Ca, Na, K, Mg, Fe
- As magma cools elements combine to form two major groups of silicates --
 - 1. Dark silicates high in Mg, Fe; low in silica
 - 2. Light silicates high in silica; also has Na, K, Ca

Mafic igneous rocks:

- Composed of dark colored minerals
- High in Mg, Fe (hence the name)
- Basaltic composition

Felsic igneous rocks:

- Composed of light colored minerals
- High in feldspar, silica (hence the name)
- Granitic composition

Classification of igneous rocks

Two main components:

- 1. Composition: Tells you something about the parent magma
- 2. Texture: Tells you something about the cooling history **Composition**

Classification of igneous rocks

Viscosity of the magma

What determines the composition?

- Magma does not freeze at one particular temperature, rather over a range.
- -With progressive cooling different minerals form at different temperatures.
- As a result the composition of the melt is continually changing.
- Bowen's reaction series explains the formation sequence of different minerals.

How do you get various composition?

- -Igneous rocks greatly vary in their composition.
- A particular parent magma has a fairly homogeneous composition.

Main mechanisms responsible behind formation of different rocks from same magma:

1. Magmatic differentiation due to crystal settling.

2. Assimilation

3.Magma mixing

Assimilation

(Host rocks incorporated into magma)

Crystallization & settling

Magma mixing

(Younger magma body intrudes older

one)

Old magma

Things that come out of a volcano: Lava

- Most of the lava are basaltic in composition
- Flow rate 10-300meters / hour

Types:

- Aa lava: The outer crust has sharp edges.
- 2. Pahoehoe (ropy) lava: "on which one can walk".
- Pahoehoe is extremely slow in its progression
- Pahoehoe could transform into aa lava once it starts cooling.

http://www.youtube.com/watch?v=xExdEXOaA9A&feature=relat ed

http://dsc.discovery.com/videos/understanding-volcanoes-lavaflow.html

3. Pillow lava: When lava forms underwater

http://video.yahoo.com/watch/185214

Things that come out of a volcano: Pyroclastic material

- Pyro = fire, Clast = fragment
- Ejected particles from a volcano
- Size range dust to boulders
- Explosive eruptions often generates volcanic ash and tuff
- Depending on the size of the particle, it could be called:

Lapilli (little rock)

Cinders

Bombs

Blocks

- Depending on the texture and composition, it could be called
- 1. Pumice (Felsic): very light
- 2. Scoria (Mafic)

- * Volcanic ash
 - Fine ash <0.06mm</p>
 - Coarse ash –0.06mm to2mm
- * Cinders
 - 2 mm and 64 mm

Bombs

- Larger than 64mm
- Molten rock solidifies in the air
- Shapes vary

Anatomy of a volcano

Conduit

The pipe magma comes through.

Vent

surface opening of the conduit.

Crater

Funnel shaped depression at the summit.

Caldera

Very large crater.

Fumaroles

Vents only emitting gases.

Lahar

mudflow

(http://www.youtube.com/watch?v=5x5tZAHEoRU)

http://www.pbs.org/wgbh/nova/volca nocity/anat-flash.html

Shield volcanoes

- -Looks like warrior's shield
- Produced by accumulation of basaltic lavas.
- Most have grown up from ocean floor to form islands or seamounts.
- Example: Hawaiian chain, Iceland

Cinder cone

- Built from the ejected particles from the volcano
- Most abundant type of volcano
- Example: Mount Etna, Italy

Composite cone

- Mostly located in "Ring of fire".
- Most destructive type.
- Large, nearly symmetrical structure
- Composed of both lava & pyroclastic deposits.
- -Product of gas-rich andesitic magma.
- -Example: Vesuvius, Mount St. Helens.

This type of volcano is also called a stratovolcano --- it has stratified layers of lava and pyroclastic deposits.

Distribution of volcanoes

- A. Convergent plate volcanism (oceanic-ocenic)
- B. Divergent plate volcanism (oceanic ridge)
- C. Intraplate volcanism
- D. Convergent plate volcanism (oceanic-continental)
- E. Divergent plate volcanism (continental rifting)

Mt. Kilimanjaro, Africa

2 J. Intraplate volcanism Kauai 3.8-5.6 Oahu 2.2-3.3 Molokai 1.3-1.8 Heliker, and Wright, 1987, and Hamilton, 1976 Maui less than 1.0 Direction of plate motion Hot spot Hawaii -0.7 to present Oceanic lithosphere Emperor Seamount chain Hawaiian chain Mantle plume Ages given in millions of years © 2009 Tasa Graphic Arts, Inc.

Hawaiian volcanoes

What determines the "explosiveness" of a volcano?

Primary factors:

- 1. Temperature
- 2. Composition
- 3. Dissolved gas

Mobility / Viscosity

More viscous the material, the greater resistance it has against the flow.

- 1. With increasing temperature, magma flows more easily.
- 2. Silica content determines the viscosity. Felsic magma is more viscous than their mafic counterpart.
- 3. Dissolved water makes magma less viscous.

