Self-Updating Map Robot

P1

::: 실내 매장의 변화를 검출하여 지도를 업데이트하는 인공지능

CONTENTS

- 01 주제 선정 배경
- **O2** Project Overview
- O3 P1 Spec
- 04 데이터 수집
- **O5** POI Change Detection
- **06** Mapping
- **07** Conclusions

01 주제 선정 배경

What is Point-of-Interest (POI)?

• 지도를 통해 알고자 하는 우리의 관심 지점

지도 최신성 유지의 중요성

- 국내 공간 정보는 해마다 30% 이상 변화
- POI 변화는 빠르고 비정기적으로 발생
- 지속적으로 업데이트되지 않은 지도는 사용자의 혼란 야기

01 주제 선정 배경

부평지하상가 쇼핑몰 내부

실내 지도의 필요성

- GPS, Wi-Fi 문제로 실내에서 위치 정보 알기 어려움
- 실외 지도처럼 실내 공간 정보를 얻을 수 있는 플랫폼 필요

POI 변화가 잦은 쇼핑몰

- 실내 공간 중 특히 쇼핑몰의 변화 주기 빠름
- POI 변화가 잦은 쇼핑몰의 공간 정보를 업데이트하는 기술 필요

02 Project Overview

프로젝트 개요

- 대상 공간을 쇼핑몰로 지정하고 POI를 쇼핑몰 내 개별 매장으로 정의
- 시간 간격을 두고 촬영한 매장 이미지를 비교하여 매장의 변화 여부 판단
- 변화가 발생했을 경우 지도 업데이트

Process

- 로봇이 실내 공간을 주행하며 매장 영상 촬영하고 동시에 라이다 센서를 통해 맵을 생성한다
- 매장 정보와 맵을 결합하여 실내 지도를 만든다
- 몇 개의 매장이 변화한 후 로봇이 동일한 공간을 재촬영한다
- 현재 매장과 과거 매장 이미지를 비교하여 변화가 있는지 판별한다
- 변화가 검출된 경우 변화된 매장 정보를 지도에 업데이트한다

02 Project Overview Project Flow

O3 P1 Spec 터틀봇기능

TURTLEBOT 3 구동 및 센서 구조

DYNAMIXEL(XL430)

이미지 정보 수집

mjpg-streamer HTTP 서버로 영상 프레임 전송

Raspberry Pi B+ 3

Logitech C922 Pro Stream Webcam

04 데이터 수집 영상

04 데이터 수집 사집 방법

Distance Total: 11.5 m Duration : 2분 38초

Camera : Logitech C922 webcam Collected : 400~500 장

04 데이터 수집 수집 결과

• 학습에 적절하지 않은 이미지 삭제

분류하기 애매한 경우

여러 POI를 포함하고 있는 경우

POI가 없는 경우

Data augmentation

Original image

Augmented image

최종 데이터셋

• 총매장수: 30개

• 바뀐 매장 수: 3개

• 총 데이터셋 : 13,000장

Naive Approach

Keypoint matching based

실내 공간에서 keypoint 정확도 보장 어려움

POI 변화 검출 실패

Object detection based

간판 검출의 성능에 크게 의존, 간판 오분류 가능성

POI 변화 검출 실패

Related work

Distance metric learning

- 1. Extract image signatures
 - = Points in hig-dim space

2. Decision

= Measuring the distance

Related work

Triplet network

- The loss wants to
 - · pull relevant images closer
 - push apart non-relevant images

Loss =
$$max (0, (d(d_a, d_b) + m) - d(d_a, d_c))$$

Related work

Triplet sampling

• Semi-hard Negative Sampling Random과 Hard Negative Sampling 중간

• **Hard Negative Sampling**Anchor와 같은 클래스 내에서 가장 먼 Positive
다른 클래스에서 가장 가까운 Negative 선택

Random Negative Sampling
Anchor와 다른 클래스에서 Negative 랜덤하게 선택

Sampling 방법 평가

Semi-hard Negative Sampling 선정

• 모델 평가 : 최종 선정 모델 ResNet18

모델평가 기준 Parameters

• learning rate : 2e-4

• weight_decay: 1e-5

• n_epoch : 20

• n_classes : 10

• n_samples : 16

• sampling method : SemihardNegativeTripletSelector

Self-Updating Map Robot

06 Mapping

• 맵과 매장정보 결합 방법

17

07 Conclusions

• 개선점

• 송수신할 데이터가 많아 그것을 처리할 하드웨어가 부족하여 완전한 자율 주행은 구현하지 못함

• 문제를 단순화하기 위해 POI 변화를 기존 매장이 다른 매장으로 바뀌는 경우로 한정함

07 Conclusions

응용 분야

- 실내지도를 활용한 AR 네비게이션 길안내 서비스
- 네비게이션과 AR 인터페이스를 결합하여 사용자에게 유용한 쇼핑 정보 제공

