Recent results on the Sorted L-One Penalized Estimator

Malgorzata Bogdan University of Wroclaw (Poland), Lund University (Sweden)

27th of April, 2022

Outline

- ► Sorted L-One Penalized Estimator for multiple regression
- ► Graphical SLOPE

Model selection in high-dimension

Linear regression model: $y = X\beta + \varepsilon$,

- $y = (y_i)$: vector of response of length n
- $ightharpoonup X = (X_{ij})$: a standardized design matrix of dimension $n \times p$
- $\beta = (\beta_j)$: regression coefficient of length *p*
- $\triangleright \ \varepsilon \sim \mathcal{N}(0, \sigma^2 I_n)$

Model selection in high-dimension

Linear regression model: $y = X\beta + \varepsilon$,

- $y = (y_i)$: vector of response of length n
- $ightharpoonup X = (X_{ij})$: a standardized design matrix of dimension $n \times p$
- $\beta = (\beta_j)$: regression coefficient of length *p*
- \triangleright $\varepsilon \sim \mathcal{N}(0, \sigma^2 I_n)$

Assumptions:

▶ high-dimension: p large (comparable or larger than n)

▶ LASSO - solution to the convex optimization problem

$$argmin_b \quad \left\{ \frac{1}{2} \left\| y - Xb \right\|_2^2 + \lambda_L \|b\|_1 \right\}, \tag{LASSO}$$

where $\lambda_L > 0$ is a tuning parameter

▶ LASSO - solution to the convex optimization problem

$$argmin_b = \left\{ \frac{1}{2} \left\| y - Xb \right\|_2^2 + \lambda_L \|b\|_1 \right\},$$
 (LASSO)

where $\lambda_L > 0$ is a tuning parameter

▶ Difficulty - selection of λ_L

▶ LASSO - solution to the convex optimization problem

$$argmin_b \quad \left\{ \frac{1}{2} \left\| y - Xb \right\|_2^2 + \lambda_L \|b\|_1 \right\}, \tag{LASSO}$$

where $\lambda_L > 0$ is a tuning parameter

- ▶ Difficulty selection of λ_L
- $\lambda_L = \sqrt{\frac{2\log p}{n}}$ related to the Bonferroni criterion, allows for consistency when the signal is sufficiently sparse

▶ LASSO - solution to the convex optimization problem

$$argmin_b \quad \left\{ \frac{1}{2} \left\| y - Xb \right\|_2^2 + \lambda_L \|b\|_1 \right\}, \tag{LASSO}$$

where $\lambda_L > 0$ is a tuning parameter

- ▶ Difficulty selection of λ_L
- $\lambda_L = \sqrt{\frac{2\log p}{n}}$ related to the Bonferroni criterion, allows for consistency when the signal is sufficiently sparse
- cross-validation optimization of predictive properties, many false discoveries

The sign vector of β is defined as $S(\beta) = (S(\beta_1), \dots, S(\beta_p)) \in \{-1, 0, 1\}^p$, where for $x \in \mathbb{R}$, $S(x) = \mathbf{1}_{x>0} - \mathbf{1}_{x<0}$

```
The sign vector of \beta is defined as S(\beta) = (S(\beta_1), \dots, S(\beta_p)) \in \{-1, 0, 1\}^p, where for x \in \mathbb{R}, S(x) = \mathbf{1}_{x>0} - \mathbf{1}_{x<0} Let I := \{i \in \{1, \dots, p\} \mid \beta_i \neq 0\}
```

The sign vector of β is defined as $S(\beta) = (S(\beta_1), \dots, S(\beta_p)) \in \{-1, 0, 1\}^p$, where for $x \in \mathbb{R}$, $S(x) = \mathbf{1}_{x>0} - \mathbf{1}_{x<0}$ Let $I := \{i \in \{1, \dots, p\} \mid \beta_i \neq 0\}$

Irrepresentability condition:

$$\|X'X_I(X_I'X_I)^{-1}S(\beta_I)\|_{\infty} \leq 1$$

The sign vector of β is defined as $S(\beta) = (S(\beta_1), \dots, S(\beta_p)) \in \{-1, 0, 1\}^p$, where for $x \in \mathbb{R}$, $S(x) = \mathbf{1}_{x>0} - \mathbf{1}_{x<0}$ Let $I := \{i \in \{1, \dots, p\} \mid \beta_i \neq 0\}$

Irrepresentability condition:

$$||X'X_I(X_I'X_I)^{-1}S(\beta_I)||_{\infty} \leq 1$$

When

$$||X'X_I(X_I'X_I)^{-1}S(\beta_I)||_{\infty} > 1$$

then probability of the support recovery by LASSO is smaller than 0.5 (Wainwright, 2009).

Identifiability condition

Definition (Identifiability)

Let X be a $n \times p$ matrix. The vector $\beta \in R^p$ is said to be identifiable with respect to the I norm if the following implication holds

$$X\gamma = X\beta \text{ and } \gamma \neq \beta \Rightarrow \|\gamma\|_1 > \|\beta\|_1.$$
 (1)

Theorem (Tardivel, B., SJS 2022)

For any $\lambda > 0$ LASSO can separate well the causal and null features if and only if vector β is identifiable with respect to l_1 norm and $\min_{i \in I} |\beta_i|$ is sufficiently large.

Irrepresentablity vs identifiability

Rysunek: n = 100, p = 300, in the right panel $\rho(X_i, X_j) = 0.9$, vertical lines correspond to $n/(2 \log p)$ and the transition curve of Donoho and Tanner (2009).

SLOPE

 SLOPE (B., van den Berg, Su, Candès, arxiv 2013, B.,van den Berg, Sabatti, Su, Candès, AoAS, 2015) penalizes larger coefficients more stringently

$$\begin{split} \hat{\beta}_{SLOPE} &= \arg\min_{\beta \in \mathbb{R}^p} \frac{1}{2} \|y - X\beta\|^2 + \sigma \sum_{j=1}^p \lambda_j |\beta|_{(j)}, \\ \text{where } \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_p \geq 0 \text{ and } \\ |\beta|_{(1)} \geq |\beta|_{(2)} \geq \cdots \geq |\beta|_{(p)}. \end{split}$$

False discovery rate (FDR) control

- ▶ Let $\widetilde{\beta}$ be estimate of β
- ▶ We define:
 - ▶ the number of all discoveries, $R := |\{i : \widetilde{\beta}_i \neq 0\}|$
 - ▶ the number of false discoveries, $V := |\{i : \beta_i = 0, \widetilde{\beta}_i \neq 0\}|$
 - false discovery rate expected proportion of false discoveries among all discoveries

$$\mathit{FDR} := \mathbb{E}\left[rac{V}{\mathsf{max}\{R,1\}}
ight]$$

Theorem (B,van den Berg, Su and Candès (2013)) When $X^TX = I$ SLOPE with

$$\lambda_i^{BH} := \sigma \Phi^{-1} \Big(1 - i \cdot \frac{q}{2p} \Big)$$

controls FDR at the level $q_{p_0}^{p_0}$.

Orthogonal design, n = p = 5000

Asymptotic optimality, Su and Candès (Annals of Statistics, 2016) and FDR control, Kos (2018)

Theorem

Let $X_{ij} \sim N(0, 1/\sqrt{n})$. Fix 0 < q < 1 and choose $\lambda = \sigma(1+\varepsilon)\lambda^{BH}(q)$ for some arbitrary constant $0 < \varepsilon < 1$. Suppose $k/p \to 0$ and $\frac{k\log p}{n} \to 0$. Then

$$\sup_{||\beta_0|| \leq k} P\left(\frac{||\hat{\beta}_{SL} - \beta||^2}{2\sigma^2 k \log(p/k)} > 1 + 3\varepsilon\right) \to 0$$

$$\inf_{\hat{\beta}} \sup_{||\beta_0|| \le k} P\left(\frac{||\hat{\beta} - \beta||^2}{2\sigma^2 k \log(p/k)} > 1 - \varepsilon\right) \to 1$$

(M. Kos, 2018) If additionally $k^2/n \rightarrow 0$ then

$$FDR_n \leq \Delta_n \rightarrow q$$

Minimax estimation/prediction rate $[k \log(p/k)]$ under weighted restricted eigenvalue condition (large collection of random matrices)

Minimax estimation/prediction rate $[k \log(p/k)]$ under weighted restricted eigenvalue condition (large collection of random matrices)

 $\lambda_i = \rho \sqrt{2 \log(p/i)}, \ \rho$ is larger than one Bellec, Lecué, Tsybakov (2016,2017)

Minimax estimation/prediction rate $[k \log(p/k)]$ under weighted restricted eigenvalue condition (large collection of random matrices)

 $\lambda_i = \rho \sqrt{2 \log(p/i)}$, ρ is larger than one

Bellec, Lecué, Tsybakov (2016,2017)

Extension to GLM by Abramovich and Grinshtein (2017)

Minimax estimation/prediction rate $[k \log(p/k)]$ under weighted restricted eigenvalue condition (large collection of random matrices)

 $\lambda_i = \rho \sqrt{2 \log(p/i)}$, ρ is larger than one

Bellec, Lecué, Tsybakov (2016,2017)

Extension to GLM by Abramovich and Grinshtein (2017)

LASSO rate of convergence - $k \log(p)$

Clustering properties of SLOPE (2)

- Schneider and Tardivel, arxive 2020 class of models attainable by SLOPE
- B., Dupuis, Graczyk, Kołodziejek, Skalski, Tardivel, Wilczyński, arxiv 2022: Necessary and sufficient condition for SLOPE pattern recovery

Unit balls for different SLOPE sequences by D.Brzyski

SLOPE pattern (Schneider, Tardivel, 2020)

Definition

For $b \in \mathbb{R}^p$ its SLOPE pattern $\operatorname{patt}(b)$ is defined in a following way:

- ightharpoonup sign(patt(b)) = sign(b) (sign preservation),
- ▶ $|b_i| = |b_j| \Rightarrow |\text{patt}(b)_i| = |\text{patt}(b)_j|$ (clustering preservation),
- ▶ $|b_i| > |b_j| \Rightarrow |\text{patt}(b)_i| > |\text{patt}(b)_j|$ (hierarchy preservation).

Example

Let
$$\beta = (4, 0, -1.5, 1.5, -4)$$
. Then $patt(\beta) = (2, 0, -1, 1, -2)$.

Fact:

$$\operatorname{patt}(b_1) = \operatorname{patt}(b_2) \Leftrightarrow \partial_{\operatorname{slope}}(b_1) = \partial_{\operatorname{slope}}(b_2)$$

SLOPE model matrix(1)

Definition

Let m be a model for SLOPE in R^p where $||m||_{\infty} = k$ (the number of non-null clusters). The matrix $U_m \in \mathbb{R}^{p \times k}$ is defined as follows

$$\forall i \in \{1, \ldots, p\}, \forall j \in \{1, \ldots, k\}, (U_m)_{ij} = sign(m_i)\mathbf{1}_{(|m_i|=k+1-j)}.$$

By convention, when m=0 we define the null model matrix as $U_0:=0$.

Model matrix example

Let p = 8 and m = (3, -3, 2, 1, 2, -1, 0, 3). Here k = 3 and the model matrix is

$$U_m = egin{pmatrix} 1 & 0 & 0 \ -1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \ 0 & 1 & 0 \ 0 & 0 & -1 \ 0 & 0 & 0 \ 1 & 0 & 0 \end{pmatrix}$$

Irrepresentability condition for SLOPE (Bogdan et al. (2022)

$$ilde{X} = XU_M, ilde{\Lambda} = (ilde{\lambda}_1, \dots, ilde{\lambda}_l) \quad ext{where} \quad ilde{\lambda}_j = \sum_{i=k_{j-1}+1}^{k_j} \lambda_i.$$

Irrepresentability condition:

$$J^D_{\lambda}(X'\tilde{X}(\tilde{X}'\tilde{X})^{-1}\tilde{\Lambda}) \leq 1$$

where

$$J_{\lambda}^{D}(x) := \max \left\{ \frac{|x|_{(1)}}{\lambda_{1}}, \dots, \frac{\sum_{i=1}^{p} |x|_{(i)}}{\sum_{i=1}^{p} \lambda_{i}} \right\}, \text{ where} |x|_{(1)} \geq \dots \geq |x|_{(p)}.$$

Theorem (Bogdan et al. (2022))

SLOPE can properly identify a given SLOPE model if and only if the irrepresentability condition is satisfied and the signal is strong enough.

LASSO vs SLOPE, $\rho_{ij} = 0.9^{|i-j|}$, n = 100, p = 200, k = 30

LASSO vs SLOPE, $\rho_{ij} = 0.9^{|i-j|}$, n = 100, p = 200, k = 30

Clustering in financial applications

- ► Kremer, Lee, B., Paterlini, *Journal of Banking and Finance* 110, 105687, 2020 application for portfolio selection.
- ► Kremer, Brzyski, B., Paterlini, *Quantitative Finance*, 2022 application for index tracking.

Portfolio Optimization, (Kremmer et al, 2020, JBF)

$$R_{t imes k} = (R_1, \dots, R_k)$$
 - asset returns, $Cov(R) = \Sigma$

$$\min_{w \in \mathbb{R}^k} w' \Sigma w + J_{\lambda}(w) \tag{2}$$

s.t.
$$\sum_{i=1}^{k} w_i = 1$$
 (3)

Evolution of Portfolio

SLOPE clustering

Gaussian Graphical Model

$$Y = (Y_1, \dots, Y_p) \sim N(0, \Sigma)$$

Gaussian Graphical Model

$$Y = (Y_1, \ldots, Y_p) \sim N(0, \Sigma)$$

$$\Omega = \Sigma^{-1}$$
 - precision matrix

Gaussian Graphical Model

$$Y = (Y_1, \ldots, Y_p) \sim N(0, \Sigma)$$

$$\Omega = \Sigma^{-1}~$$
 - precision matrix

 Y_i is conditionally independent of Y_j if and only if $\Omega_{ij}=0$

Gaussian Graphical Model

$$Y = (Y_1, \ldots, Y_p) \sim N(0, \Sigma)$$

$$\Omega = \Sigma^{-1}~$$
 - precision matrix

 Y_i is conditionally independent of Y_j if and only if $\Omega_{ij}=0$ Goal - identification of nonzero elements of Ω

$$X_{n \times p} : X_{1 \cdot}, \dots, X_{n \cdot} \text{ iid } N(0, \Sigma)$$

$$X_{n\times p}: X_{1\cdot}, \ldots, X_{n\cdot} \text{ iid } N(0, \Sigma)$$

$$S = \frac{1}{n}X'X$$
- sample covariance matrix

$$X_{n\times p}: X_{1\cdot}, \ldots, X_{n\cdot} \text{ iid } N(0, \Sigma)$$

$$S = \frac{1}{n}X'X$$
- sample covariance matrix

$$L(\Omega, X) = C + \frac{n}{2} \log \det \Omega - \frac{n}{2} tr(S\Omega). \tag{4}$$

Riccobello, B., Bonaccolto, Kremer, Paterlini, Sobczyk, arxiv 2022

$$X_{n\times p}: X_{1\cdot}, \ldots, X_{n\cdot} \text{ iid } N(0, \Sigma)$$

$$S = \frac{1}{n}X'X$$
- sample covariance matrix

$$L(\Omega, X) = C + \frac{n}{2} \log \det \Omega - \frac{n}{2} tr(S\Omega). \tag{4}$$

LASSO:

$$\widehat{\Omega}_L = \mathop{\arg\max}_{\Omega \in \mathit{Sym}_+^p} [\log \det \Omega - \mathit{tr}(S\Omega) - \lambda ||\Omega||_1] \ ,$$

Riccobello, B., Bonaccolto, Kremer, Paterlini, Sobczyk, arxiv 2022

$$X_{n \times p}: X_{1 \cdot}, \dots, X_{n \cdot} \text{ iid } N(0, \Sigma)$$

$$S = \frac{1}{n}X'X$$
- sample covariance matrix

$$L(\Omega, X) = C + \frac{n}{2} \log \det \Omega - \frac{n}{2} tr(S\Omega). \tag{4}$$

LASSO:

$$\widehat{\Omega}_L = \mathop{\arg\max}_{\Omega \in \mathit{Sym}_+^p} [\log \det \Omega - \mathit{tr} \big(S\Omega \big) - \lambda ||\Omega||_1] \ ,$$

SLOPE:

$$\widehat{\Omega}_{SL} = \underset{\Omega \in Svm_i^p}{\operatorname{arg max}} \left[\log \det \Omega - tr(S\Omega) - J_{\lambda}(\Omega) \right] ,$$

Selection of the tuning parameter for Glasso

Banerjee and d'Aspremont (2008), FWER control for block diagonal matrices:

$$\lambda = \frac{t_{n-2}(1 - \frac{\alpha}{2p^2})}{\sqrt{n - 2 + t_{n-2}^2(1 - \frac{\alpha}{2p^2})}}$$

Selection of the tuning parameter for Glasso

Banerjee and d'Aspremont (2008), FWER control for block diagonal matrices:

$$\lambda = \frac{t_{n-2}(1 - \frac{\alpha}{2p^2})}{\sqrt{n - 2 + t_{n-2}^2(1 - \frac{\alpha}{2p^2})}}$$

Ricobello et al. (2022),

$$\lambda^{Bon} = \frac{t_{n-2}(1 - \frac{\alpha}{2m})}{\sqrt{n - 2 + t_{n-2}^2(1 - \frac{\alpha}{2m})}} ,$$

with $m = \frac{p(p-1)}{2}$.

Selection of the tuning parameter for Gslope

Ricobello et al. (2022)

$$m = \frac{p(p-1)}{2}$$

$$\lambda_k^{\mathsf{Holm}} = \frac{t_{n-2}(1 - \frac{\alpha}{2(m+1-k)})}{\sqrt{n-2 + t_{n-2}^2(1 - \frac{\alpha}{2(m+1-k)})}}$$

Selection of the tuning parameter for Gslope

Ricobello et al. (2022)

$$m = \frac{\rho(\rho - 1)}{2}$$

$$\lambda_k^{\mathsf{Holm}} = \frac{t_{n-2}(1 - \frac{\alpha}{2(m+1-k)})}{\sqrt{n - 2 + t_{n-2}^2(1 - \frac{\alpha}{2(m+1-k)})}}$$

$$\lambda_k^{\text{BH}} = \frac{t_{n-2}(1 - \frac{\alpha k}{2m})}{\sqrt{n - 2 + t_{n-2}^2(1 - \frac{\alpha k}{2m})}}$$

Different tuning sequences, $p = 100 \ (m = 4950), \ n = 50$

FWER control by Glasso

 C_k - the connectivity component of k^{th} node

Theorem

If the tuning parameter for Glasso is equal to λ^{Bon} then

$$P\left(\forall k \in \{1,\ldots,p\}: \hat{C}_k^{\lambda} \subset C_k\right) \geq 1-\alpha$$
.

FWER control by Gslope

 C_k - the connectivity component of k^{th} node

Theorem

If the tuning sequence for Gslope is equal to λ^{Holm} and the sample correlation coefficients are such that the Hochberg multiple testing procedure controls FWER then

$$P\left(\forall k \in \{1,\ldots,p\}: \hat{C}_k^{\lambda} \subset C_k\right) \geq 1-\alpha$$
.

Motivation

SLOPE dual problem

$$\hat{W} = \underset{J_{\lambda}^{D}(W-S) \leq 1}{\operatorname{arg max}} \log \det(W) . \tag{5}$$

lacktriangle Distribution of the sample correlation coefficient when $ho_{ij}=0$

$$\sqrt{n-2}\frac{S_{ij}}{\sqrt{1-S_{ij}^2}}\sim t(n-2)$$

where t(n-2) is Student distribution with n-2 degrees of freedom.

FWER control

Power and FWER for block diagonal matrices

 α =0.1. Number of variables is 200. Block size is 20. Off-diagonal value is ρ

Distant FDR Control

Power and distant FDR for block diagonal matrices

The rows of X are independent from the multivariate t-distribution with the covariance matrix Φ

The rows of X are independent from the multivariate t-distribution with the covariance matrix Φ

$$\Omega = \Phi^{-1}$$

The rows of X are independent from the multivariate t-distribution with the covariance matrix Φ

$$\Omega = \Phi^{-1}$$

Finegold and Drton (2011) - represent t-distribution as a scale mixture of normals, estimate parameters using EM algorithm with scales as hidden latent variables

The rows of X are independent from the multivariate t-distribution with the covariance matrix Φ

$$\Omega = \Phi^{-1}$$

Finegold and Drton (2011) - represent t-distribution as a scale mixture of normals, estimate parameters using EM algorithm with scales as hidden latent variables

Riccobello (2021): Use gSLOPE in the M-step

The rows of X are independent from the multivariate t-distribution with the covariance matrix Φ

$$\Omega = \Phi^{-1}$$

Finegold and Drton (2011) - represent t-distribution as a scale mixture of normals, estimate parameters using EM algorithm with scales as hidden latent variables

Riccobello (2021): Use gSLOPE in the M-step

Shiny application comparing different methods for estimation of the covariance matrix illustrates very good properties of tSLOPE as compared to other methods

distant FDR control

F1 scores

Frobenius distance

Gene expression network

