

	Offic	ce Us	se O	nly
_	□ Ope			g
none, auth	ot bee , smar orised your p	t l item	s are	
nate	rial foi	r pers	onal	use
ng in	an exa	am is a	a	
rmit	ted)			

Semester Two 2017

		Examina	ation Pe	riod				
		Faculty of	f Engine	ering				
EXAM CODES: TITLE OF PAPER EXAM DURATION READING TIME:	: CO	G1060 MPUTING FOR ours writing tim minutes		RS - PAPER 1				
THIS PAPER IS FO	OR STUDENTS ST	TUDYING AT:(ti	ick where	applicable)				
□ Berwick□ Caulfield□ Parkville	☑ Clayton ☐ Gippsland ☐ Other (specif	☑ Malaysia □ Peninsula		ff Campus Learning onash Extension	☐ Open Learning☐ Sth Africa			
for your exam. Th watch/device, cal	is includes book culator, pencil ca ns/materials on y	s, notes, paper, o	electronic on any part	device/s, mobile pho of your body. Any a	as not been authorised one, smart authorised items are on your person will be			
No examination	materials are to	be removed f	rom the ro	oom.				
This includes reta or to share with a	~ ~	_	_		aterial for personal use			
				to cheat or cheating uncil) Regulations.	g in an exam is a			
AUTHORISED MA	ATERIALS							
OPEN BOOK CALCULATORS (Only calc	culators with an	\square	YES YES 'Use' Facu	☑ NO □ NO lty sticker are per	mitted)			
SPECIFICALLY PERMITTED ITEMS ☐ YES ☑ NO if yes, items permitted are: NONE								
Candidate	es must complet	e this section if	frequired	to write answers w	ithin this paper			
STUDENT ID:			DESK NUMI	BER:				

EXAM INSTRUCTIONS

- Complete the **Student ID** and **Desk Number** details on the cover page
- Write all answers in the answer boxes
- Write your answers with a pen
- DO NOT use a red pen or marker
- Blank sheets are provided at the back of the exam for workings. These workings will not be marked.
- You may detach the blank sheets and formula sheets from the back of the exam paper.

EXAM OUTLINE

PART A (40 MARKS)

Attempt ALL Questions

PART B (60 MARKS)

Attempt ALL Questions

Blank sheets for workings (not marked)

MATLAB Information and FORMULAS

Office Use Only

A1 /7	A2 /8	A3 /6	A4 /8	A5 /6	A6 /5	B1 /15	B2 /15	B3 /15	B4 /15	TOTAL

PART A: ATTEMPT ALL QUESTIONS

Question A1 (7 marks)

Consider the following matrices:

$$S = \begin{bmatrix} 8 & 9 & 3 & 9 \\ 0 & 6 & 5 & 2 \\ 4 & 1 & 11 & 9 \\ 7 & 6 & 2 & 16 \end{bmatrix}, \qquad T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \qquad U = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$$

Where S, T and U are double types.

Note: if an output returns an error, write down "error".
(a) Provide the syntax to create the U vector
(b) Provide the syntax to extract the 3 rd column of matrix S
(c) Provide the output of transpose(T)
(d) Provide the output of C = [T ; U]
(e) Provide the output of D = eye(size(S))

(g) Provide a one-line syntax that modifies T to the following matrix without addressing individual elements: $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$
$T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}$
(h) Provide the syntax to extract the 3x3 matrix comprised of elements common from the 1 st , 3 rd and 4 th rows, and the 1 st , 2 nd and 4 th columns of S. You must not address individual elements and you must complete it in a single line.
marriada diemente and yeu maet eemplete it in a emigle inte.
(i) Provide the output of K=sum(S,2)

Question A2 (8 marks)

Answer the following short questions: Note: if an output returns an error, write down "error".
(a) Consider result = [1 5 7 9]. Provide the output of result = [result 7].
(b) Consider D = 4:3:571 . Provide the output of B = D(91) – D(85)
(c) Provide the function that computes the logarithmic value of X to the base 10
(d) Provide the output of imag(5 + 9i)
 (e) Consider x, y and z to be vectors of the same size. State which of the following variables [A, B, C, D] contain unnecessary element-by-element operation(s): A = x.*y +5*sin(z);
B = $z./y - 7.*pi$; C = $10.^x + 4./y$
$D = \exp(z./y) + 2/9 - \cos(5.*x)$
(f) Describe the line specifications of the following function: plot(k,m,'px')

(g) Describe the eps built-in variable in IVIA I LAB
(h) Describe why the following line produces an error :
1st_line = 1:100;
(i) Write a single MATLAB command that creates a vector that is logarithmically spaced between 10 ⁰ to 10 ⁵ (inclusive) using 700 points.
between 10 ⁰ to 10 ⁵ (inclusive) using 700 points.
between 10 ⁰ to 10 ⁵ (inclusive) using 700 points.
between 10 ⁰ to 10 ⁵ (inclusive) using 700 points.
between 10 ⁰ to 10 ⁵ (inclusive) using 700 points.
between 10 ⁰ to 10 ⁵ (inclusive) using 700 points.
between 10 ⁰ to 10 ⁵ (inclusive) using 700 points.

Question A3 (6 marks)

The distance between two points in polar coordinates can be calculated using the Law of Cosines equation $d = \sqrt{r_A^2 + r_B^2 - r_A r_B \cos(\theta_A - \theta_B)}$ where r_A , r_B , θ_A and θ_B are defined in the following figure:

(a) Provide MATLAB syntax to create a **function file** which calculates the distance (d) between two points in polar coordinates given the radii (r_A and r_B) and angles (θ_A and θ_B) of the points. You are not required to document the function and all inputs should be considered as scalars. **It should NOT work with vectors**. Use the following information for your function file:

Function name: LOC

• Input variables: ra, rb, tha, thb

• Output variables: d

(b) You are now working in a separate m-file. Provide MATLAB code to calculate the distance between point A(3, π /3) and point B(4, 3π /4).

(C)) Provide Th	the • dista	syntax		•			tollowing < value>	state	ment	using	tprintt
		value:	> repres	sents t	he valu	ue conf	tained	in the vari	able d p	rinted	in fixe	d poin
(d)) The varia	able d	is class	ified a	s "shor	t" if its	value	is less tha	n or equ	ual to 5	i, and cl	lassified
	as "long" 'long' to		•					B code to	assign 1	the str	ings 's	hort' o
(e)	•		•		•			tors for t				•
	function	file yo	u wrote	in par	t (a) b	ecause	they	unable to are vector s a vector	s. Instea	ad, pro	vide the	
					<u> </u>				<u> </u>			

Question A4 (8 marks)

Consider the following MATLAB function	Consider	the f	following	MATL	_AB	functio
--	----------	-------	-----------	------	-----	---------

```
function [souls, HF] = DS3(nameless,king,ng)
king = round(king);

if ng < 5
    HF = nameless + ng - king;
else
    HF = nameless - ng + king;
end

souls = nameless.*(3/2) + ng./king;
Gael = sin(souls).^5;
end</pre>
```

souls = nameless.*(3/2) + ng./king; Gael = sin(souls).^5; end
Note: if an output returns an error, write down "error".
(a) Provide the name and extension format of this function file
(b) Provide the output of [souls, HF] = DS3(1, 3.5, 5)
(c) Provide the output of [in, valid] = DS3([1 1], [4.3 4.8], [4 6])
(d) Provide the output of $Y = DS3(1, 2, 3)$.

anonymous function? If yes, provide the syntax for the anonymous function. If no, explain why it is not possible.
(f) MATLAB provides a single warning for the function file. Identify and describe what the warning is.
(g) Describe one difference between sub functions and nested functions in relation to the inputs of the parent function.

Question A5 (6 marks)

The figure below depicts a gear represented by an x,y curve and the location of its defects as represented by the asterisk markers. The equations for x and y are given as:

$$x = r \cos(t)$$

$$y = r \sin(t)$$

where

$$r = a + \frac{1}{b} \tanh(b \sin(nt))$$

with a=1, b=10, n=9 and t is a vector from 0 to 2π (inclusive) with 7000 points in total. The coordinates of the defects correspond to the first (x,y) point and then every 600^{th} (x,y) point thereafter, i.e. defects occur at the 1^{st} , 601^{st} , 1201^{st} , 1801^{st} , ... points.

Write MATLAB code in the following parts to successfully reproduce the figure.

Figure 1: Gear with defect locations.

(a) This is the start of the m-file. Clear all variables, close all figure windows and clear the command window.
% start of m-file
(b) Create all relevant variables for plotting. Use element-by-element operators where
appropriate.
% variable creation
(c) Plot y against x and label the plot accordingly. The line specification is a black
continuous line.
% plotting y against x
(d) Create variables which define the x and y coordinates of the defect locations.
% defect locations

specification is a black asterisk marker. Ensure you include the legend.				
% plotting the defect locations				

(e) Plot the defect locations on the same figure produced in part c. The line

Question A6 (5 marks)

Consider the following matrices:

$$X = \begin{bmatrix} 70 & 4 & 69 & 3 \\ 3 & 9 & 31 & 43 \\ 27 & 82 & 95 & 38 \end{bmatrix}, \quad Y = \begin{bmatrix} 76 & 48 & 70 & 67 \\ 79 & 44 & 75 & 65 \\ 18 & 64 & 27 & 16 \end{bmatrix}, \quad Z = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

Where X, Y and Z are double types.

Note: if an output returns an error, write down "error".

(a) Provide the output of $A = (X > 50)$
(b) Provide the output of B = (X == 95) (Y < 50)
(c) Provide the output of C = (Z == 1) & (X < Y)
(d) Provide the output of [D1, D2] = find(Y==75)

(e) Provide the output of E = X(Z)	
(f) Provide the output of F = ~ logical(-Z)	

PART B: ATTEMPT ALL QUESTIONS

Question B1 (15 marks)

Figure 2 shows a plot of the function $Y = 3X^5 - 12.5X^3 + 8X + 12$ over the range of $0 \le X \le 2$.

Figure 2

(a) Write the equation whose root must be found to determine the value of *X* which has a *Y*-value equal to 10.

(b) Use the method of False Position to calculate X at Y = 10. You should use a precision of 0.05 and employ initial guesses for the lower limit to be 0 and the upper limit to be 1.5. Fill in the details of each iteration in the table below, provide 3 decimal places.
Note: You might need less rows, but should not need more. Workings for this part are not required)

Iteration	Lower Limit	Upper Limit	Estimated Root	$f(X_r)$
number	X_l	X_u	X_r	, (1)

(c)	Write an M-file that uses the Newton-Raphson method to locate the local maximum
	seen in Figure 2. Use a precision of 10 ⁻⁶ and determine an initial guess that will
	converge to the local maximum of the function (but NOT the local minimum seen Figure
	2). Complete the M-file below by filling in the answer boxes with the missing code,
	making sure to follow the instructions in the comments.

%	Define	the	anonymous	functions	to	find	the	maximum	of	the	function	using	the
Ne	wton-R	aphs	son method										

g =		
dg =		

% Define initial guess and precision

xi =			
precision =			

% Calculate initial values for the functions
gxi
dgxi =
% Jump start the while loop
gxr =
gai –
% Iteration for Newton-Raphson method starts
while
end
% return root value
root =
% Print root to 4 decimal places

share a similarity in concept. words the underlying idea use	Given a current guess for the root, x_i , briefly describe in ed to find the next estimate x_{i+1} . Clearly state the way in it (ZERO marks for just writing down the formulae).

Question B2 (15 marks)

The net force (N) acting on an object can be represented by the following function:

$$f(s) = 5.26e^{0.04s}$$

where s is the displacement of the object measured in metres (m).

The work done by the net force exerted on the object can be determined by integrating the function over the distance travelled between two points (a and b) along the x-axis.

$$W = \int_{a}^{b} f(s) \, \mathrm{d}s$$

(a) Use the **Composite Trapezoidal** rule with 4 segments to calculate the total work done by the force exerted on the object to travel a distance of 5 m from the starting point (0 m). Show ALL your working and provide answers to 3 decimal places.

i			
S			
f(s)			

T	
, –	
1 —	

 Use the Composite Simpson's 1/3 rule with 4 segments to calculate the total work done by the force exerted on the object to travel a distance of 5 m from the starting point (0 m). Show your working and provide answers to 3 desired places
(0 m). Show your working and provide answers to 3 decimal places.
I =
Without calculating the analytical solution, which of your answers from part (a) and (b) do you think would be closer to the real solution. Briefly explain your reasoning.
More accurate answer: Reasoning:
 Provide one method of improving the integral estimates when using the Composite Simpson's 1/3 rule and say why it would improve the estimate.

(e) The local and global truncation error in the composite Simpson's 1/3 rule scale like

$$E_{Local} \approx h^5 \frac{d^4 f}{dx^4}$$
 $E_{Global} \approx h^4 \frac{d^4 f}{dx^4}$

If you wanted to decrease the error in your answer in part (b) by a factor of 4, what step size would you need to take? Provide brief reasoning for your answer.

(f) Consider the function plotted in the following figure:

Figure 3

(I) Consider the 2-segment Composite Trapezoidal rule AND a single application of Simpson's 1/3 rule to calculate its integral from x=2 to 8. Which would likely give a better answer for the integral? (You might wish to draw on the figure)

(II) Next consider using 4 segments and both the Composite Trapezoidal	and
Composite Simpson's 1/3 rule. Which would likely give a better answer in this case	э?
Answer:	
(III) Do your answers for parts (I) and (II) seem contradictory and are they consist	
with your response to part (c)? If so, explain what is happening. If they don't s contradictory, explain why you expect these answers.	eem

Question B3 (15 marks)

The concentration of harmful bacteria in a water collection basin was measured after a storm and resulted in the following data:

t (hours)	3	6	9	12
C (CFU/100ml)	1230	890	670	490

The time t is measured in hours after the end of the storm. The concentration of bacteria c is measured in CFU per 100ml, and is observed to decay approximately **exponentially**. CFU stands for "Colony Forming Unit", which measures the number of living bacteria.

(a) You are required to perform curve fitting on the above data set, to estimate a suitable model that would represent bacterial growth in the water collection basin. From your observation of the data in the table, which of the following is the best functional form you would choose? Provide a reason:

Put a tick in the box against the best model fit:	
Fut a tick in the box against the best model iit.	
(i) A positive exponential model $ c = lpha { m e}^{eta t} $	
(ii) A negative exponential model $c = lpha { m e}^{-eta t}$	
(iii) Either model	
Provide the reason for your answer	

this non-line	ar mode		· working	g and STA		-	o use. Linea rds what you	
Write the linear	-				ntifying	the correspo	ndence betw	een
		у	=	a_0	+	a ₁	X	
Linearize	ed model	:	=		+			
(c) You will fit a	straight	line to the lin	 learized	data using	 g Least :	Squares Reg	ression to ob	tain
		•				you need to culate sums	first calculate	∌ by
Tilling in the			T			1	/· □	
	<i>i</i> 1	X_i	Yi		$X_i Y_i$	X_i^2		
	2							
	3							
	4							
	SUM							
	MEAN							

(d) **ASSUME** you obtained the values in the table below (instead of the values you calculated above in part (c)), and then calculate the linear coefficients a_0 and a_1 . **SHOW YOUR WORKING**.

i	X_i	Y_i	$X_i Y_i$	X_i^2
SUM	30	26	190	270
MEAN	7.5	6.5		

	calculate the non-linear coefficients (α and β) SHOW the non-linear equation in the box as requested.
Equation of fitted curve:	

(f) When curve fitting using MATLAB, the syntax of the MATLAB built-in functions **polyfit** and **polyval** are

P = polyfit(x,y,N) finds the coefficients of a polynomial P(x) of degree N that fits the data y best in a least-squares sense. P is a row vector of length N+1 containing the polynomial coefficients in reverse order, i.e. the polynomial is written

```
y(x) = P(1)*x^N + P(2)*x^(N-1) + ... + P(N)*x + P(N+1).
```

y = polyval(P,x) returns the value of a polynomial P evaluated at x. Here, P is the same vector that is defined above (using polyfit).

For the raw data in the table at the top of this question, complete the M-file below to fit the population data *without linearising*, by directly fitting a linear model using **polyfit()**. Once you have the fit, plot the function using polyval and 50 evenly spaced values of **t** between 0 to 20 hours inclusive (do not worry about axis labels, etc.).

Question B4 (15 marks)

(a) When considering numerical solution of the ODE $\frac{dy}{dt} = f(t,y)$, given the solution y_i at time t_i , then the solution at time t_{i+1} (= t_i +h) is written y_{i+1} . The midpoint method calculates this using:

$$y_{i+1/2} = y_i + f(t_i, y_i) \frac{h}{2}$$

$$t_{i+1/2} = t_i + \frac{h}{2}$$

$$y_{i+1} = y_i + f(t_{i+1/2}, y_{i+1/2})h$$

(I) In words, describe what $f(t_i, y_i)$ and $f(t_{i+1/2}, y_{i+1/2})$ represent (**ZERO** marks for writing "the function values at ...").

$$f(t_i, y_i)$$
 is $f(t_{i+1/2}, y_{i+1/2})$ is

(QUESTION CONTINUED ON NEXT PAGE)

(II) On the figure below, describe the predictor step and corrector step graphically, including the following features $f(t_i, y_i)$ $t_{i+1/2}$, $y_{i+1/2}$, $f(t_{i+1/2}, y_{i+1/2})$ and y_{i+1} (You could use arrows to represent the values of f and include one or two very brief comments for clarity if desired.)

(b) Consider the following statement:

"Heun's method for solving an ODE is more accurate than the midpoint method."

In the answer box below state whether this statement is correct or not. Provide a brief written justification for your answer. You may wish to mention the order of accuracy of the methods or the differences between them when estimating the right hand side.

"Heun's method for solving an ODE is more accurate than the midpoint method."

Circle your answer

TRUE / FALSE

REASON:

(c) Consider the case where $f(t,y) = 1-y^2$ and thus the ODE is

$$\frac{dy}{dt} = 1 - y^2$$

Solve this initial value problem using *Euler's method* over the interval from t=0 to 1.5 using a step size of h=0.5. The initial condition is y(0)=0. Fill in the blank entries in the table below to 3 decimal places (if a cell is blacked out, you do not need to calculate it).

i	t_i	y_i	$f(t_i, y_i)$
0	0	0	0
1			
2			
3			

The space below can be used for working – IT WILL NOT BE MARKED

(d) Use *Heun's method* to do the same integration, filling in the table below to 3 decimal places (NOTE: the first predictor step has been done for you).

i	t_i	y _i	$f(t_i, y_i)$	y^{0}_{i+1}	t_{i+1}	$f(t_{i+1}, y^{\theta}_{i+1})$
0	0	0	1.0	0.5	0.5	0.75
1						
2						
3						

The	space	below	can	be	used	for	working -	IT	WILL	NOT	BE
MAR	RKED										

(ε	The ODE in part (c) has an analytic solution given by $y = \frac{e^{2t} - 1}{e^{2t} + 1}$ Calculate the percentage error in your predicted solutions from parts (c) and (d) at
	t=1.5 and write them in the box below (use 1 decimal point in the %). Is this what you
	expect? Why or why not? (NOTE: (%Error=(predicted value – actual value) : (actual
	value) × 100%)
-1	

END of EXAM

Blank page for workings (will not be marked)

Blank page for workings (will not be marked)

Blank page for working (will not be marked)

MATLAB Information and Formulas

OPERATOR PRECEDENCE

1	()	Parentheses				
2	٠, ،	Transpose, Matrix Transpose,				
_	.^ ^	Power, Matrix Power				
3	~	Logical Negation				
	* *	Multiplication, Matrix Multiplication,				
4	./ /	Right Division, Matrix Right Division,				
	٠١ ١	Left Division, Matrix Left Division				
5	+	Addition				
	-	Subtraction				
6	:	Colon Operator				
	< <=	Less Than, Less Than Or Equal To,				
7	> >=	Greater Than, Greater Than Or Equal				
	== ~=	То,				
		Equal To, Not Equal To				
8	&	Element-wise AND				
9	1	Element-wise OR				
1	&&	Short-circuit AND				
1	П	Short-circuit OR				

fprintf SPECIFIER

JI THE SI ECIFIER
Integer
Fixed-Point
Notation
Exponential
Notation
String of
Characters
Single Character
Horizontal Tab
New Line
Percent Character
Single Quote Mark
Backslash
Backspace

Fixed-Point Notation Syntax %<field_width>.cision>f

COLOR SPECIFIER

	1
r	Red
g	Green
b	Blue
С	Cyan
m	Magenta
У	Yellow
k	Black
W	White

LINE STYLE SPECIFIER

-	Solid Line
	Dashed Line
:	Dotted Line
	Dash-dot Line

MARKER TYPE SPECIFIER

+	Plus Sign	
0	Circle	
*	Asterisk	
•	Point	
Х	Cross	
S	Square	
d	Diamond	
^	Triangle (Up)	
V	Triangle (Down)	
>	Triangle (Right)	
<	Triangle (Left)	

Root Finding

Bisection Method

$$x_r = \frac{x_l + x_u}{2}$$

Newton-Raphson Method

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Modified Secant Method

$$x_{i+1} = x_i - \frac{\delta x_i f(x_i)}{f(x_i + \delta x_i) - f(x_i)}$$

False Position Method

$$x_r = x_u - \frac{f(x_u)(x_l - x_u)}{f(x_l) - f(x_u)}$$

Secant Method

$$x_{i+1} = x_i - \frac{f(x_i)(x_{i-1} - x_i)}{f(x_{i-1}) - f(x_i)}$$

Alternative Modified Secant Method

$$x_{i+1} = x_i - \frac{\delta f(x_i)}{f(x_i + \delta) - f(x_i)}$$

Curve Fitting

Linear Regression:

$$y = a_0 + a_1 x$$

$$a_{1} = \frac{n \sum x_{i} y_{i} - \sum x_{i} \sum y_{i}}{n \sum x_{i}^{2} - (\sum x_{i})^{2}}$$

$$a_0 = \overline{y} - a_1 \overline{x}$$

Coefficient of Determination

$$r^2 = \frac{S_t - S_r}{S_t}$$

Standard Deviation

$$S_t = \sum_{i=1}^n (y_i - \overline{y})^2$$

$$S_{y} = \sqrt{\frac{S_{t}}{n-1}}$$

Standard Error of the Regression Estimate

$$S_r = \sum_{i=1}^n (y_i - a_0 - a_1 x_i)^2$$

$$S_{y/x} = \sqrt{\frac{S_r}{n-2}}$$

Linearizing Nonlinear Models

Linearizing Nonlinear Moucis			
Nonlinear	Linearized		
$y = \alpha_1 e^{\beta_1 x}$	$ \ln y = \ln \alpha_1 + \beta_1 x $		
$y = \alpha_2 x^{\beta_2}$	$\log y = \log \alpha_2 + \beta_2 \log x$		
$y = \alpha_3 \frac{x}{\beta_3 + x}$	$\frac{1}{y} = \frac{1}{\alpha_3} + \frac{\beta_3}{\alpha_3} \frac{1}{x}$		

Numerical Integration (*n* **is the number of points)**

Trapezoidal Rule:

$$I = (b-a)\frac{f(b) + f(a)}{2}$$
$$E_t = -\frac{1}{12}f''(\xi)(b-a)^3$$

Composite Trapezoidal Rule

$$I = \frac{h}{2} \left[f(x_1) + 2 \sum_{i=2}^{n-1} f(x_i) + f(x_n) \right]$$
where
$$h = \frac{(b-a)}{n-1}$$

Composite Trapezoidal Rule with Unequal Segments

$$I = (x_2 - x_1) \frac{f(x_2) + f(x_1)}{2} + (x_3 - x_2) \frac{f(x_3) + f(x_2)}{2} + \dots + (x_n - x_{n-1}) \frac{f(x_{n-1}) + f(x_n)}{2}$$

Simpson's 1/3 Rule

$$I = \frac{h}{3} [f(x_1) + 4f(x_2) + f(x_3)]$$
$$E_t = -\frac{1}{2880} f^{(4)}(\xi)(b - a)^5$$

Simpson's 3/8 Rule

$$I = \frac{3h}{8} \left[f(x_1) + 3f(x_2) + 3f(x_3) + f(x_4) \right]$$
$$E_t = -\frac{1}{6480} f^{(4)}(\xi)(b-a)^5$$

Composite Simpson's 1/3 Rule:
$$I = \frac{h}{3} \left[f(x_1) + 4 \sum_{\substack{i=2,4,6,...\\i,\text{ even}}}^{n-1} f(x_i) + 2 \sum_{\substack{j=3,5,7,...\\j,\text{ odd}}}^{n-2} f(x_j) + f(x_n) \right]$$

ODE: Initial Value Problems

Euler's Method

$$y_{i+1} = y_i + f(t_i, y_i)h y_{i+1}^0 = y_i + f(t_i, y_i)h$$

$$f(t_i, y_i) + f(t_i, y_i) + f(t_i,$$

Heun's Method

$$y_{i+1}^{0} = y_i + f(t_i, y_i)h$$

$$y_{i+1} = y_i + \frac{f(t_i, y_i) + f(t_{i+1}, y_{i+1}^{0})}{2}h$$

Midpoint Method

$$y_{i+1/2} = y_i + f(t_i, y_i) \frac{h}{2}$$

$$t_{i+1/2} = t_i + \frac{h}{2}$$

$$y_{i+1} = y_i + f(t_{i+1/2}, y_{i+1/2})h$$