▼ Step 1 : Import Libraries

```
import numpy as np
import pandas as pd
import matplotlib.pylab as plt
import seaborn as sns
from sklearn.model_selection import KFold, cross_val_score
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn import metrics
from sklearn import preprocessing
from sklearn.metrics import classification_report, confusion_matrix , precision_score, recall_score, auc,roc_curve,accuracy_score,f1_score
from sklearn.metrics import roc_curve, roc_auc_score
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from \ sklearn.tree \ import \ Decision Tree Classifier
from sklearn import tree
from sklearn.ensemble import RandomForestClassifier
from tabulate import tabulate
import warnings as warn
from warnings import filterwarnings
filterwarnings("ignore")
```

→ Step 2 : Read Dataset

```
data = pd.read_csv("IRIS.csv")
df = pd.DataFrame(data)

df["species"].replace({"Iris-setosa":0 , "Iris-versicolor":1 , "Iris-virginica":2} , inplace = True)
df
```

	sepal_length	sepal_width	petal_length	petal_width	species	\blacksquare
0	5.1	3.5	1.4	0.2	0	ıl.
1	4.9	3.0	1.4	0.2	0	
2	4.7	3.2	1.3	0.2	0	
3	4.6	3.1	1.5	0.2	0	
4	5.0	3.6	1.4	0.2	0	
145	6.7	3.0	5.2	2.3	2	
146	6.3	2.5	5.0	1.9	2	
147	6.5	3.0	5.2	2.0	2	
148	6.2	3.4	5.4	2.3	2	
149	5.9	3.0	5.1	1.8	2	
150 rd	ows × 5 columns					

Step 3 : Dataset Overview

```
df.describe(include = 'all')
```

***	species	petal_width	petal_length	sepal_width	sepal_length	
ılı	150.000000	150.000000	150.000000	150.000000	150.000000	count
	1.000000	1.198667	3.758667	3.054000	5.843333	mean
	0.819232	0.763161	1.764420	0.433594	0.828066	std
	0.000000	0.100000	1.000000	2.000000	4.300000	min
	0.000000	0.300000	1.600000	2.800000	5.100000	25%
	1.000000	1.300000	4.350000	3.000000	5.800000	50%

Text(0.5, 1.0, 'Triangle Correlation Heatmap')

Triangle Correlation Heatmap

sns.pairplot(df , hue='species' , diag_kind="hist" , corner=True , palette = 'hls')

→ Step 4: Data science & Visualization

```
<u>a</u>. |
                                                                         Num = ['sepal_length' , 'sepal_width' , 'petal_length' , 'petal_width']
j = 0
while j < 5:
   fig = plt.figure (figsize = [20 , 4])
    plt.subplot(1, 2, 1)
    sns.boxplot (x = Num[j] , data = df , color='skyblue')
    sns.set(font_scale=1.25)
    j += 1
    plt.subplot(1, 2, 2)
    sns.boxplot (x = Num[j] , data = df , color='skyblue')
    sns.set(font_scale=1.25)
    j += 1
    if j == 4:
        break
    plt.show()
```

species 0

1

2

→ Step 5: Models

4 0.194444

0.666667

0.067797

```
X = pd.DataFrame(df , columns = ["sepal_length" , "sepal_width" , "petal_length" , "petal_width"])
y = df["species"].values.reshape(-1,1)
Scaler = preprocessing.MinMaxScaler(feature_range = (0,1))
Norm1 = Scaler.fit_transform(df)
Norm1_df=pd.DataFrame (Norm1 , columns = ["species" , "sepal_length" , "sepal_width" , "petal_length" , "petal_width"])
Norm1_df.head()
         species sepal_length sepal_width petal_length petal_width
     0 0.222222
                      0.625000
                                    0.067797
                                                  0.041667
                                                                          ıl.
     1 0.166667
                      0.416667
                                   0.067797
                                                 0.041667
                                                                    0.0
     2 0.111111
                      0.500000
                                    0.050847
                                                  0.041667
                                                                    0.0
     3 0.083333
                      0.458333
                                    0.084746
                                                  0.041667
                                                                    0.0
```

```
X_train, X_test, y_train, y_test = train_test_split(X,y , test_size=0.5 , random_state = 0)
```

0.041667

```
def Evaluate_Performance(Model, Xtrain, Xtest, Ytrain, Ytest) :
    Model.fit(Xtrain,Ytrain)
    overall_score = cross_val_score(Model, Xtrain,Ytrain, cv=10)
    model_score = np.average(overall_score)
    Ypredicted = Model.predict(Xtest)
    avg = 'weighted'
    print("\n • Training Accuracy Score : ", round(Model.score(Xtrain, Ytrain) * 100,2))
    print(f" • Cross Validation Score : {round(model_score * 100,2)}")
    print(f" • Testing Accuracy Score :{round(accuracy_score(Ytest, Ypredicted) * 100,2)}")
    print(f" • Precision Score is : {np.round(precision_score(Ytest, Ypredicted , average=avg) * 100,2)}")
    print(f" • Recall Score is : {np.round(f1_score(Ytest, Ypredicted , average=avg) * 100,2)}")
    print(f" • F1-Score Score is : {np.round(f1_score(Ytest, Ypredicted , average=avg) * 100,2)}")
```

0.0

Logestic Regression

```
LogReg = LogisticRegression(solver = "liblinear" , C=50)
LogReg.fit(X\_train \ , \ y\_train.ravel())
y_pred_LR = LogReg.predict(X_test)
print("Logistic Regression : ")
Evaluate_Performance(LogReg, X_train, X_test, y_train, y_test)
     Logistic Regression :
      • Training Accuracy Score : 98.67
     • Cross Validation Score : 97.32
      • Testing Accuracy Score :94.67
     • Precision Score is : 94.67
     • Recall Score is : 94.67
      • F1-Score Score is : 94.67
kfold = KFold(37)
LR_r = cross_val_score (LogReg, X, y, cv = kfold)
print(np.std(LR_r))
     0.10335850365390781
cm = confusion_matrix (y , LogReg.predict(X))
fig, ax = plt.subplots (figsize = (8, 8))
ax.imshow(cm)
ax.grid(False)
ax.set_xlabel('Predicted outputs', fontsize= 14 , color='black')
```

```
cm = confusion_matrix (y , LogReg.predict(X))

fig, ax = plt.subplots (figsize = (8, 8))
    ax.imshow(cm)
    ax.grid(False)
    ax.set_xlabel('Predicted outputs', fontsize= 14 , color='black')
    ax.set_ylabel('Actual outputs', fontsize= 14 , color='black')
    ax.xaxis.set(ticks=range(3))
    ax.yaxis.set(ticks=range(3))
    ax.set_ylim(2.5 , -0.5)

for i in range(3):
    for j in range(3):
        ax.text(j, i, cm[i, j], ha = 'center' , va = 'center' , color = 'red')

plt.show()
```

▼ K Nearest Neighbors

```
training_acc = []
test_acc = []
neighbors_setting = range(1,30)

for n_neighbors in neighbors_setting:
    KNN = KNeighborsClassifier(n_neighbors = n_neighbors)
    KNN.fit(X_train , y_train.ravel())
    training_acc.append(KNN.score(X_train , y_train))
    test_acc.append(KNN.score(X_test , y_test))

plt.plot(neighbors_setting , training_acc , label = "Accuracy of the training set")
plt.plot(neighbors_setting , test_acc , label = "Accuracy of the test set")
plt.xlabel("Number of neighbors")
plt.ylabel("Accuracy")
plt.grid(linestyle='-')
plt.legend()
```

<matplotlib.legend.Legend at 0x79d6989e2b90>


```
parameters = {"n_neighbors" : range(1,50)}
grid_kn = GridSearchCV(estimator = KNN , param_grid = parameters , scoring = "accuracy" , cv = 5 , verbose = 1 , n_jobs = -1)
grid_kn.fit(X_train , y_train.ravel())
grid_kn.best_params_

Fitting 5 folds for each of 49 candidates, totalling 245 fits
{'n_neighbors': 3}

K = 3
KNN = KNeighborsClassifier(K)
KNN.fit(X_train , y_train.ravel())
y_pred_KNN = KNN.predict(X_test)
print("K-Nearest Neighbors : ")
Evaluate_Performance(KNN, X_train, X_test, y_train, y_test)
```

K-Nearest Neighbors :

- Training Accuracy Score : 98.67
- Cross Validation Score : 97.14
- Testing Accuracy Score :93.33
- Precision Score is : 93.63
- Recall Score is : 93.33 • F1-Score Score is : 93.27

```
KNN_r = cross_val_score (KNN, X, y, cv = 10)
K = np.std(KNN_r)
print(K)
```

0.04472135954999579

```
cm = confusion_matrix (y , KNN.predict(X))
fig, ax = plt.subplots (figsize = (8, 8))
ax.imshow(cm)
ax.grid(False)
ax.set_vlabel('Predicted outputs', fontsize= 14 , color='black')
ax.set_ylabel('Actual outputs', fontsize= 14 , color='black')
ax.xaxis.set(ticks=range(3))
ax.yaxis.set(ticks=range(3))
ax.yaxis.set_ylim(2.5 , -0.5)
for i in range(3):
    for j in range(3):
        ax.text(j, i, cm[i, j], ha = 'center' , color = 'red')
plt.show()
```


Naive Bayes

```
NB = GaussianNB()
NB.fit(X_train , y_train.ravel())
y_pred_NB = NB.predict(X_test)
print("Naive Bayes : ")
Evaluate_Performance(NB, X_train, X_test, y_train, y_test)
```

Naive Bayes :

• Training Accuracy Score : 97.33 • Cross Validation Score : 97.14

```
Testing Accuracy Score :94.67Precision Score is : 95.29
```

• Recall Score is : 94.67 • F1-Score Score is : 94.59

```
NB_r = cross_val_score (NB, X, y, cv = 10)
N = np.std(NB_r)
print(N)
```

0.04268749491621898

```
cm = confusion_matrix (y , NB.predict(X))

fig, ax = plt.subplots (figsize = (8, 8))
ax.imshow(cm)
ax.grid(False)
ax.set_vlabel('Predicted outputs', fontsize= 14 , color='black')
ax.set_vlabel('Actual outputs', fontsize= 14 , color='black')
ax.saxis.set(ticks=range(3))
ax.yaxis.set(ticks=range(3))
ax.yaxis.set(ticks=range(3))
ax.set_vlim(2.5 , -0.5)

for i in range(3):
    for j in range(3):
        ax.text(j, i, cm[i, j], ha = 'center' , va = 'center' , color = 'red')

plt.show()
```


Support Vector Machine

```
SVM = SVC()
SVM.fit(X_train , y_train)
y_pred_SVM = SVM.predict(X_test)
print("SVM : ")
Evaluate_Performance(SVM, X_train, X_test, y_train, y_test)
```

```
SVM :
```

```
• Training Accuracy Score : 96.0
• Cross Validation Score : 95.71
• Testing Accuracy Score :94.67
• Precision Score is : 94.8
• Recall Score is : 94.67
• F1-Score Score is : 94.64
```

```
SVM_r = cross_val_score (SVM, X, y, cv = 10)
S = np.std(SVM_r)
print(S)
```

0.03265986323710904

```
cm = confusion_matrix (y , SVM.predict(X))

fig, ax = plt.subplots (figsize = (8, 8))
ax.imshow(cm)
ax.grid(False)
ax.set_xlabel('Predicted outputs', fontsize= 14 , color='black')
ax.set_ylabel('Actual outputs', fontsize= 14 , color='black')
ax.xaxis.set(ticks=range(3))
ax.yaxis.set(ticks=range(3))
ax.yaxis.set(ticks=range(3))
for i in range(3):
    for j in range(3):
        ax.text(j, i, cm[i, j], ha = 'center' , va = 'center' , color = 'red')

plt.show()
```


- **Decision Tree**

```
DT = DecisionTreeClassifier(max_depth = 3)
DT = DT.fit(X_train , y_train)
```

```
y_pred_DT = DT.predict(X_test)
print("Decision Tree : ")
Evaluate_Performance(DT, X_train, X_test, y_train, y_test)
```

Decision Tree :

```
Training Accuracy Score: 98.67
Cross Validation Score: 94.46
Testing Accuracy Score: 96.0
Precision Score is: 96.03
Recall Score is: 96.0
F1-Score Score is: 95.99
```

```
DT_r = cross_val_score (DT, X, y, cv = 10)
D = np.std(DT_r)
print(D)
```

0.03265986323710903

```
cm = confusion_matrix (y , DT.predict(X))

fig, ax = plt.subplots (figsize = (8, 8))
ax.imshow(cm)
ax.grid(False)
ax.set_xlabel('Predicted outputs', fontsize= 14 , color='black')
ax.set_ylabel('Actual outputs', fontsize= 14 , color='black')
ax.xaxis.set(ticks=range(3))
ax.yaxis.set(ticks=range(3))
ax.yaxis.set(ticks=range(3))
ax.set_ylim(2.5 , -0.5)

for i in range(3):
    for j in range(3):
        ax.text(j, i, cm[i, j], ha = 'center' , va = 'center' , color = 'red')

plt.show()
```



```
#white box one
F = ["sepal_length" , "sepal_width" , "petal_length"]
```

```
T = ['0' , '1' , '2']
fig = plt.figure(figsize = (25 , 20))
plot = tree.plot_tree (DT , feature_names = F , class_names = T , filled = True)
```

```
petal_length <= 2.35

gini = 0.659

samples = 75

value = [29, 20, 26]

class = 0
```

gini = 0.0 samples = 29 value = [29, 0, 0] class = 0 petal_length <= 5.05 gini = 0.491 samples = 46 value = [0, 20, 26] class = 2

petal_width <= 1.75 gini = 0.165 samples = 22 value = [0, 20, 2] class = 1 gini = 0 samples = value = [0, class =

 $\begin{array}{c} \text{gini} = 0.0\\ \text{samples} = 19\\ \text{value} = [0, 19, 0]\\ \text{class} = 1 \end{array}$

gini = 0.444 samples = 3 value = [0, 1, 2] class = 2

Random Forest

```
RF = RandomForestClassifier(n_estimators = 400, max_depth = 3)
RF = RF.fit(X_train , y_train)
y_pred_RF = RF.predict(X_test)
print("Random Forest : ")
Evaluate_Performance(RF, X_train, X_test, y_train, y_test)
```

Random Forest :

- Training Accuracy Score : 98.67
- Cross Validation Score : 95.71
- Testing Accuracy Score :93.33
- Precision Score is : 93.63
- Recall Score is : 93.33
- F1-Score Score is : 93.27

```
RF_r = cross_val_score (RF, X, y, cv = 10)
R = np.std(RF_r)
print(R)
```

0.05999999999999984

```
cm = confusion_matrix (y , RF.predict(X))
fig, ax = plt.subplots (figsize = (8, 8))
ax.imshow(cm)
ax.grid(False)
ax.set_vlabel('Predicted outputs', fontsize= 14 , color='black')
ax.set_ylabel('Actual outputs', fontsize= 14 , color='black')
ax.xaxis.set(ticks=range(3))
ax.yaxis.set(ticks=range(3))
ax.yaxis.set_ylim(2.5 , -0.5)

for i in range(3):
    for j in range(3):
        ax.text(j, i, cm[i, j], ha = 'center' , va = 'center' , color = 'red')

plt.show()
```



```
#white box one
F = ["sepal_length" , "sepal_width" , "petal_length" , "petal_width"]
T = ['0' , '1' , '2']
fig = plt.figure(figsize = (25 , 20))
plot = tree.plot_tree (RF.estimators_[5] , feature_names = F , class_names = T , filled = True)
```

```
petal_width <= 0.75

gini = 0.667

samples = 48

value = [25, 25, 25]

class = 0
```

gini = 0.0 samples = 18 value = [25, 0, 0] class = 0

 $petal_length <= 5.05$ gini = 0.5 samples = 30 value = [0, 25, 25] class = 1

sepal_length <= 6.1gini = 0.191 samples = 16 value = [0, 25, 3] class = 1 gini = 0 samples = value = [0, class =

aini = 0.32

aini = 0.0

Step 6 : Conclusion

VAIIIP = III I / 3I

Value = 10 13 01

Precision F1-score ______ 0 Logestic Regression 0.946667 0.946667 0.946667 0.946667 0.103359 0.936277 0.933333 0.932698 0.933333 0.0447214 1 KNN 2 Naive Bayes 0.952941 0.946667 0.945909 0.946667 0.0426875 3 SVM 0.947955 0.946667 0.946667 0.0326599 0.946367 4 Decision Tree 0.960281 0.96 0.959902 0.96 0.0326599 5 Random Forest 0.947955 0.946667 0.946367 0.946667 0.06

```
fig, ax = plt.subplots(figsize=(10, 6), dpi= 80, facecolor='#99ccff')
ax.set_facecolor('#66ccff')
ax.set_title('Comparison of predicted models', fontdict={'size':22}, color='b')
ax.errorbar(models['Accuracy'], models['Model'], xerr = models['Err'], fmt='o', marker='s', color='b', linewidth=2, capsize=3)
```

```
ax.set(xlim=(0.8, 1), xticks=np.arange(0.8, 1, step = 0.05))
plt.grid(color = '#333366', axis = 'y', linestyle = '--', linewidth = 0.5)
plt.show()
```


All the models have good results in all four parameters (Recall, F1_score, Precision, Accuracy), but the Decision Tree Algorithm predicted slightly better than the rest of the models