北京邮电大学 2019-2020 年第一学期

《概率论与数理统计》期末考试试题(4学分)

考试注意事项:

学生必须将答题内容做在试题答题纸上,做在试题纸上一律无效.

一、填空题(每小题4分,共40分)

- 1..设事件 A , B 相互独立, 且 $P(A) = \frac{1}{4}$, $P(B) = \frac{1}{3}$, 则 $P(B \mid A \cup B) = _____$
- 2.设 $X \sim N(-1,1)$,则Y = 2X + 1的概率密度 $f_{Y}(y) =$ _____.
- 3.设随机变量 X 和 Y 相互独立, X 服从均值为 $\frac{1}{2}$ 的指数分布, $Y \sim N(0,4)$,则 $D(2X+Y)= \qquad .$
- 4.设(X,Y) $\sim N(1,0,4,4,\frac{1}{2})$,则 $E[X(X-Y)] = _____$.
- 5. 设 X_1, X_2, \cdots, X_{12} 独 立 同 分 布 , $X_1 \sim U(0,2)$, 利 用 中 心 极 限 定 理 ,

$$P\{10 < \sum_{i=1}^{12} X_i < 14\}$$
的近似值为_____.

- 6. 有两箱同类型的零件,每箱都装有 6 个零件,第一箱有 4 个一等品,第二箱有 2 个一等品,从两箱中任选一箱,然后从该箱中有放回地取零件两次,每次取一个,令 $X_i = \begin{cases} 1, \text{第i}次取到一等品, i = 1, 2,则 <math>X_1$ 与 X_2 的相关系数为 ______.
- 7. 某种电子产品的某一参数服从正态分布,从这种电子产品中抽取 16 件,测量他们的这一参数,并算得样本均值为 $\bar{x}=53.38$,样本标准差为s=8.00,则 μ 的置信度为95%的置信区间为 ______.
- 8. 设 X_1, X_2, X_3, X_4 为来自参数为 2 的泊松分布总体的样本, \bar{X} 为样本均值,则 $D(\bar{X}) = ___.$
- 9. 设 X_1, X_2, \dots, X_{10} 为来自总体 $N(0, \sigma^2)$ 的样本,若统计量 $T = \frac{a(X_1^2 + X_2^2)}{\sum_{i=3}^{10} X_i^2}$ 服从

$$F$$
分布,则 $a = ____$,该 F 分布的自由度为 _____.

10. 设 $\hat{\theta}_1$, $\hat{\theta}_2$ 为 θ 的两个无偏估计, $\hat{\theta}_1$ 与 $\hat{\theta}_2$ 相互独立,且 $D(\hat{\theta}_1) = 3D(\hat{\theta}_2)$,为使 $\hat{\theta} = a\hat{\theta}_1 + b\hat{\theta}_2$ 为 θ 的无偏估计且方差最小,则 $a = _____$, $b = ______$.

二、(12分)

设随机变量
$$X$$
 的概率密度为 $f(x) = \begin{cases} \frac{3}{2}x^2, & -1 < x < 1, \\ 0, & 其它 \end{cases}$

三、(10分)

盒子中有 1 个红球,2 个白球,先从盒子中任取 1 球,以 X 表示取出的红球数,将取出的球放回盒子中并再放入 1 个与取出的球颜色相同的球,再从盒子中任取 2 球, Y 表示取出的红球数,求(1)(X,Y)的分布律;(2)Y的分布律;(3)Y=1的条件下 X的条件分布律.

四、(12分)

设(X,Y)的概率密度为

$$f(x,y) = \begin{cases} \frac{3}{8}(x+y), & x > 0, y > 0, x+y < 2, \\ 0, 其他, \end{cases}$$

求

- (1)X的概率密度;
- (2) $P\{X > Y\}$;
- (3)Z = X+Y的概率密度.

五、(10分)

设 X_1, X_2, \dots, X_n 为来自总体X的样本,总体X的概率密度为

$$f(x;\theta) = \begin{cases} \frac{x}{\theta^2} e^{-\frac{x}{\theta}}, x > 0, \\ 0, & \sharp \Xi, \end{cases}$$

其中 $\theta > 0$ 为未知参数,

(1) 求 θ 的最大似然估计量; (2) θ 的最大似然估计量是否为 θ 的无偏估计?

六、(8分)

甲、乙两台机床加工某种零件,为了比较两台机床加工零件的内径有无差异,现从两台机床加工的零件中各抽取 8 件产品,测量其内径, 经计算得样本均值和样本方差如下:

甲机床:
$$\bar{x} = 87.8$$
, $s_1^2 = 10.8$,

乙机床:
$$\bar{y} = 83.6$$
, $s_2^2 = 7.2$,

设甲、乙两台机床加工零件的内径分别服从正态分布 $N(\mu_1,\sigma_1^2)$ 和 $N(\mu_2,\sigma_2^2)$,

- (1) 试检验假设: $H_0: \sigma_1 = \sigma_2$ $H_1: \sigma_1 \neq \sigma_2$ (显著性水平取 $\alpha = 0.1$);
- (2)在显著水平 $\alpha = 0.05$ 下,能否认为两台机床加工零件的内径的均值有显著差异?

七、(8分)

下面数据是退火温度x(单位:100 0 C)对黄铜延性y(%)的试验结果:

经计算有
$$\sum_{i=1}^{6} x_i = 33$$
 , $\sum_{i=1}^{6} y_i = 360$, $\sum_{i=1}^{6} x_i^2 = 199$, $\sum_{i=1}^{6} y_i^2 = 22610$, $\sum_{i=1}^{6} x_i y_i = 2112$,

- (1) 求线性回归方程 $\hat{y} = \hat{a} + \hat{b}x$;
- (2) 对回归方程作显著性检验,即检验假设 $H_0:b=0$ $H_1:b\neq 0$ (显著性水平取 $\alpha=0.01$).

附:
$$\Phi(0.5) = 0.6915$$
, $\Phi(1) = 0.8413$, $t_{0.025}(15) = 2.13$, $t_{0.025}(14) = 2.1448$,

$$t_{0.005}(4) = 4.6041$$
, $F_{0.01}(1,4) = 21.2$, $F_{0.05}(7,7) = 3.79$.