Algoritmos Elementales de Grafos

COMP-420: Análisis de Algoritmos e Introducción a las Matemáticas Discretas

Entregar: (10 de Octubre de 2018)

Ejercicio 1. Dibuje un grafo unidirigido conectado tal que cada vértice esté en algún ciclo no dirigido, pero que independientemente de la orientación que se dé a las aristas (es decir que se conviertan en aristas dirigidas) el grafo no esté fuertemente conectado.

Ejercicio 2. Determine los árboles de búsqueda primero en profundidad (DFS) para el grafo de la Figura 1 con **G** como vértice de partida y haciendo el siguiente supuesto acerca del orden dentro de las listas de adyacencia:

• Cada lista de adyacencia está en orden alfabético.

Nota: En el diagrama del árbol de búsqueda, muestre el tiempo (paso) en el que se descubrió y término cada elemento. Por ejemplo, 4/7 indica que se descubrió en el 4 y se termino en 7.

Figure 1: Grafo 1

Ejercicio 3. Sea G un grafo conectado, y sea s un vértice de G. Sea T_D un árbol de búsqueda DFS que se forma efectuando una búsqueda primero en profundidad en G partiendo de s. Sea T_B unárbol abarcante primero en en amplitud (BFS) que se forma efectuando búsqueda primero en amplitud en G partiendo de s. ¿Siempre se cumple que $altura(T_D) \geq altura(T_B)$?¿Importa si el grafo es dirigido o no? Presente un argumento claro o un contraejemplo.

Ejercicio 4. Ejecute rastreo DFS con el grafo dirigido de la Figura 2, y clasifique todas las aristas. Para esta clasificación **redibuje** el grafo que muestre los tiempos de descubrimiento y terminación de cada elemento explorado (**igual que en la nota del Ejercicio 2**). En su nuevo diagrama utilice la siguiente notación para etiquetar las aristas: (t) tree edge, (b) back edge, (c) cross edge y (f) forward edge. Para este ejercicio suponga que los vértices están indexados en orden alfabético en un arreglo vertices Adya y que todas las listas de adyacencia están en orden alfabético.

Figure 2: Grafo 2

Ejercicio 5. De un ejemplo de algún grafo dirigido G = (V, E), un vértice de inicio $s \in V$, y un conjunto de aristas de árbol $E_{\pi} \subseteq E$ tal que para cada vértice $v \in V$, el único camino simple en el grafo V, E_{π} de s a v es el camino más corto en G. En este ejemplo, el conjunto de aristas E_{π} debe ser imposible de generar con BFS ejecutado sobre G, sin importar el orden de los vértices en la lista de adyacencia.

Ejercicio 6. Si un grafo dirigido G contiene un camino de u a v, entonces u (u.d) se descubre siempre antes de v (v.d) en un BFS del grafo G, y por lo tanto v es un descendiente de u en el DFS forest que se produce. Lo anterior, ¿siempre se cumple? Presente un argumento claro del porque o un contraejemplo.

Ejercicio 7. Bosqueje las etapas clave de un algoritmo que utilizando la clasificación de aristas pueda determinar si un grafo no dirigido G = (V, E) contiene un ciclo o no. El algoritmo debe correr en tiempo O(V), independientemente de |E|. El algoritmo debe emplear DFS.

Ejercicio 8 (Johan). Escribe P(n,k) la función que genera todas las particiones de n en k elementos. Por ejemplo P(3,2) debe generar: $\{\{0,1\}\{2\}\}, \{\{0\}\{1,2\}\}, \{\{1\}\{0,2\}\}\}$