PH - 2016

1

EE24BTECH11064 - Harshil Rathan

- 1) Protons and α particles of equal initial momenta are scattered off a gold foil in a Rutherford scattering experiment. The scattering for proton on gold and α -particle on gold are σ_p and σ_α respectively. The ratio $\frac{\sigma_\alpha}{\sigma_p}$ is ___
- 2) For the digital circuit given below, the output X is

a)
$$\frac{\overline{\overline{A} + B \cdot C}}{\overline{\overline{A} \cdot (B + C)}}$$

b)
$$\overline{\overline{A} \cdot (B+C)}$$

c)
$$\overline{A} \cdot (\underline{B+C})$$

d) $A + (\overline{B\cdot C})$

d)
$$A + \overline{(B \cdot C)}$$

3) The Fermi energies of two metals X and Y are 5ev and 7ev and their Debye temperatues are 170K and 340K, respectively. The moalr specific heats of these metals at constant volume at low temparatues can be written ad $(C_v) x = \gamma_X T + A_X T^3$ and $(C_v)Y = \gamma_v T + A_v T^3$, where γ and A are constants. Assuming that the thermal effective mass of the elctrons in the two metals are same, which of the following is correct?

a)
$$\frac{\gamma_X}{\gamma_Y} = \frac{7}{5}, \frac{A_X}{A_Y} = 8$$

a)
$$\frac{\gamma_X}{\gamma_Y} = \frac{7}{5}, \frac{A_X}{A_Y} = 8$$

b) $\frac{\gamma_X}{\gamma_Y} = \frac{5}{7}, \frac{A_X}{A_Y} = \frac{1}{8}$

c)
$$\frac{\gamma_X}{\gamma_Y} = \frac{7}{5}$$
, $\frac{A_X}{A_Y} = \frac{1}{8}$
d) $\frac{\gamma_X}{\gamma_Y} = \frac{5}{7}$, $\frac{A_X}{A_Y} = 8$

d)
$$\frac{\gamma_X}{\gamma_Y} = \frac{5}{7}, \frac{A_X}{A_Y} = \frac{5}{7}$$

4) A two-level system has energies zero and E. The level with zero energy is nondegenerate, while the level with energy E is triply degenerate. The mean energy of a classical particle in this system at temperature T is

a)
$$\frac{Ee^{-E/k_bT}}{1+3e^{-E/k_bT}_{E/k_bT}}$$

b)
$$\frac{3Ee^{-E/k_bT}}{1+e^{-E/k_bT}}$$

c)
$$\frac{Ee^{-E/k_bT}}{E}$$

c)
$$\frac{Ee^{-E/k_bT}}{1+e^{-E/k_bT}}$$

d) $\frac{3Ee^{-E/k_bT}}{1+3e^{-E/k_bT}}$

5) A partical of rest mass M is moving along the positive x-direction. It decays into two photons γ_1 and γ_2 as shown in the figure. The energy of γ_1 is 1GeV and the energy of γ_2 is 0.82GeV. The value of M (in units of GeV/ c^2 is . Give your answer upto two decimal places)

6) If x and p are the x components of the position and the momentum operators of a particle respectively, the commutator $[x^2, p^2]$ is

a) ih(xp - px)

c) ih(xp + px)

b) 2ih(xp - px)

d) 2ih(xp + px)

7) The x-y plane is the boundary between free space and a magnetic material with relative permeability μ_r . The magnetic field in the free space is $B_x\hat{i}+B_z\hat{k}$. The magnetic field in the magnetic material is

a)
$$B_x \hat{i} + B_z \hat{k}$$

c)
$$\frac{1}{\mu_r} B_x \hat{i} + B_z \hat{k}$$

d) $\mu_r B_x \hat{i} + B_z \hat{k}$

a)
$$B_x \hat{i} + B_z \hat{k}$$

b) $B_x \hat{i} + \mu_r B_z \hat{k}$

d)
$$\mu_r B_x \hat{i} + B_z \hat{k}$$

8) Let $|l,m\rangle$ be the simultaneous eigenstates of L^2 and L_z . Here L is the angular momentum operator with Cartesian components (L_x, L_y, L_z) , l is the angular momentum quantum number and m is the azimuthal quantum number. The value of $\langle 1, 0 | (L_x + iL_y) | 1, -1 \rangle$ is

(C)
$$\sqrt{2}h$$

(D)
$$\sqrt{3}h$$

9) For the parity operator P, whoch of the following statements is NOT true?

a)
$$P^{+} = P$$

c)
$$P^2 = I$$

b)
$$P^2 = -P$$

d)
$$P^+ = P^{-1}$$

10) For the transistor shown in the figure, assume $V_{BE} = 0.7V$ and $\beta_{dc} = 100$. If $V_{in} = 5V$, V_{out} (in Volts) is ______. (Give your answer upto one decimal place)

11) The state of a system is given by

$$|\psi\rangle = |\phi_1\rangle + 2|\phi_2\rangle + 3|\phi_3\rangle$$

where $|\phi_1\rangle$, $|\phi_2\rangle$ and $|\phi_3\rangle$ form an orthonormal set. The probability of finding the system in the state $|\phi_2\rangle$ is ______. (Give your answer upto two decimal places)

- 12) According to the nuclear shee model, the respective groudn state spin-parity values of ${}_{8}^{15}O$ and ${}_{8}^{17}O$ nuclei are
 - a) $\frac{1^+}{2}$, $\frac{1^-}{2}$ b) $\frac{1^-}{2}$, $\frac{5^+}{2}$

- c) $\frac{3^{-}}{2}$, $\frac{5^{+}}{2}$ d) $\frac{3^{-}}{2}$, $\frac{1^{-}}{2}$
- 13) A particle of mass m and energy E, moving in the positive x direction, is incident on a step potential at x = 0, as indicated in the figure. The height of the potential is V_0 , where $V_0 > E$. At $x = x_0$, where $x_0 > 0$, the probability of finding the electron is $\frac{1}{e}$ times the probability of finding it at x = 0. If $\alpha = \sqrt{\frac{2m(V_0 - E)}{H^2}}$, the value of x_0 is

a) $\frac{2}{\alpha}$ b) $\frac{1}{\alpha}$

c) $\frac{1}{2\alpha}$ d) $\frac{1}{4\alpha}$