

Complex Social Science Gateway – a tool for cross-cultural analysis in R

Select dataset, Select varialbes, Submit analysis

http://socscicom pute.ss.uci.edu/

(but moving soon)

R Analysis options

 Two-stage least squares to handle spatially correlated errors (OLS, logit, multinomial logit)

 Bootstrap sampling of Bayesian network (package bnlearn) to confirm OLS effects, or suggest other moderating/mediating effects

Depend. var

In a nutshell: Bayesian Network captures probabilistic dependencies between variables

Image Analysis of Rural Photography 175K war and depression era photos extracting features for datamining

Title:

"Destitute pea pickers in California.

Mother of seven children."

Histogram of Gradients CellSize = [32 32]

Feature length = 10260

For each pixel in a cell, take filters:

 $[-1\ 0\ 1]$

And

[-1

0

1]

Take weighted average and bin into 9 orientations; the bin frequency is like magnitude

Title:

"Destitute pea pickers in California. Mother of seven children."

Take all orientations, at different scales, as 1 big vector, and feed into classifier trained to recognize Face.

Title:

"Destitute pea pickers in California. Mother of seven children." By D. Lange, 1936, California, [metadata]

Metadata processing:

- Parse and tag speech (using Stanford NLP tools, word ontologies, in Python NLP toolkit)
- Several words identify 'person'

 SQL: give me all pictures by Lange with possible 'person' and num_faces > 0

Early 20th century, ~15k prison Bertillon id cards extracting information

Segment, binarize, denoise

extract field and cell

(word spotting) Get profile and compare to known templates

Linear to Logistic to Neural Network model

• $y = bo * 1 + b_1 * xi_1 + b_2 * xi_2 ... = B*X$

• Squash $bo * 1 + b_1 * xi_1$ to 0,1 range using Logistic Function:

Logistic Regression to Neural Networks

Use several squash functions (hidden layer)

Take further combinations (output layer)

More powerful but more complex

many parameters, many options, needs more training

organize connections into cells, add layers (deepen), add special pooling operations at some layers - you get a convolution network

SciKit python package has a convolution neural network

```
nn2 = Classifier(
    layers=[
     Convolution("Rectifier", channels=numch, kernel_shape=(10,10),pool_shape=(2,2)),
     Convolution("Rectifier", channels=numch, kernel_shape=(6,6),pool_shape=(4,4)),
    Layer("Sigmoid", units=numalpha2do*4),
    Layer("Sigmoid",units=numalpha2do*2)
    verbose=False,
  learning_rate=0.001,valid_set=(Xtrain,Ytrain),
  n_iter=myiter)
  nn2.fit(Xtrain, Ytrain)
```


v15c_slp20_label_

HH_2

v15c_slp20_label_

JJ_2

v15c_slp20_label_

LL_10

v15c_slp20_label_

MM_{_3}

v15c_slp20_label_

HH_1

v15c_slp20_label_

FF_5

v15c_slp20_label_ MM_4

Topic Modelling with Latent Dirichlet Allocation

- Each circle is 1 word occurrence
- 2 topics (filled/empty circles), 15 docun
- Initially random assignments

	River	Stream	Bank	Money	Loan
1			0000	●000●0	●●○●○○
2	i		00000	000000	1 ●00●
3	!		0000000	00000	●000
4			●●●○●○○	000000	000
5			●●○●○●○	•••	0000000
6			00000000	000	0000
	o i		0000	●●○○●○	00000
8 6		○●	000000	0000	•••
9		000	00000	•	. ∞
10	0	••0	●00000	•	●00●
	>●	0	000	•••	. ●
12	000 i	00000	000000	i o	i
13	000000	000	●0000●●	!	! 0
	00	••••	●●○●○○	! 	;
15	0000	••••	●○●○●	1	!
	0000	••••	0000	 	!

After learning, topics are well formed

	River	Stream	Bank	Money	Loan
1 2 3 4 5 6 7 8	0	00	0000 00000 000000 000000 000000 0000000	00000 000000 00000 00000 00000	**************************************
9 10	0	000	00000	•	•••
11 12	00	000	0000000	•••	•
13	000000	000	●00000		•
14 15	0000	0000000	00000	 	
16	00000	0000000	0000	l L	

LDA optimization

- Start with initial guess of topic=t, and parameters
- Repeat:

Compute the expected value of word=w

Compute the parameters that maximize likelihood L of t given w

Parameters are estimated from word/topic counts

With each iteration, objective function L goes up

Topic Modelling with Latent Dirichlet Allocation on HPC

- R LDA package: wraps C programs for Gibbs sampling or EM
- Mallet: Gibbs sampling multicore, java code
- Spark LDA: EM
- Asymptotic Distributed LDA: MPI based, no bells&whistles

Example Case:

articles from post WWII journals

topic21 topic35 worker labor employment percent industry defense service work increase employ population labor train unemployment citizen employee department employer occupation rate number production number earnings woman

topic46

work labor wage employ service employer Example Case:
 Sample topic plot (tree map)

