Politechnika Warszawska Instytut Automatyki i Informatyki Stosowanej

Sprawozdanie z projektu na przedmiot Optymalizacja we Wspomaganiu Decyzji

 ${\rm Jan\ Adam\ Kumor,\ s234694}$

22 stycznia 2018

Spis treści

1	Treść zadania	2
2	Model programowania mieszanego liniowego-całkowitoliczbowego	3
	2.1 Parametry	3
	2.2 Zmienne	3
	2.3 Ograniczenia	3
	2.4 Metoda punktu odniesienia	5
3	Model dla programu AMPL	5
	3.1 Plik z modelem (.mod)	5
	3.2 Plik z danymi (.mod)	8
	3.3 Skrypty uruchomieniowe (.run)	10
4	Symulacja procesu podejmowania decyzji	12

1 Treść zadania

Dane nr 7

Pewne miasto jest zasilane w wodę z trzech ujęć wodnych A, B, C. Badania statystyczne pozwoliły oszacować zapotrzebowanie na wodę na najbliższe 4 godziny. Kształtuje się ono w kolejnych godzinach następująco 1377 ton, 1429 ton, 445 ton i 1712 ton.

Ujęcie wody A może pobrać maksymalnie 896 ton wody w ciągu godziny. Koszt pobrania jednej tony wody wynosi 87zł, jeśli ujęcie pobiera nie więcej niż 716 ton w ciągu godziny i 125zł za każdą tonę powyżej tego progu.

Ujęcie wody B może pobrać maksymalnie 570 ton wody w ciągu godziny. Koszt pobrania jednej tony wody wynosi 93zł, jeśli ujęcie pobiera nie więcej niż 456 ton w ciągu godziny i 193zł za każdą tonę powyżej tego progu.

Ujęcie wody C może pobrać maksymalnie 771 ton wody w ciągu godziny. Koszt pobrania jednej tony wody wynosi 78zł, jeśli ujęcie pobiera nie więcej niż 539 ton w ciągu godziny i 120zł za każdą tonę powyżej tego progu.

W trakcie uzdatniania wody powstają odpady chemiczne. Ilość odpadów uzależniona jest od jakości wody czerpanej przez dane ujęcie. Dla ujęcia pierwszego jest to 300g/tonę, dla ujęcia drugiego 310g/tonę, dla ujęcia trzeciego 270g/tonę odpadów.

Każde ujęcie może być czynne lub nieczynne. Ujęcie nieczynne nie pobiera wody i nie ponosi żadnych kosztów stałych. Ujęcie czynne może pobierać wodę w przewidzianym dla siebie zakresie lub może nie pobierać wody w ogóle. Ujęcie czynne ponosi stałe koszty niezależne od ilości pobieranej wody. Koszty te są różna dla poszczególnych ujęć i wynoszą odpowiednio 9800zł/h, 6600zł/h i 6000zł/h.

Zasady bezpieczeństwa wymagają, aby w każdej godzinie przynajmniej 2 ujęcia były czynne. Ilość pobieranej wody jest ustalana na początku każdej godziny.

Należy opracować plan pracy poszczególnych ujęć wody w kolejnych cczterych godzinach horyzontu planowania zapewniający pokrycie programowanego zapotrzebowania na wodę, przy jednoczesnej minimalizacji kosztów oraz ilości wytwarzanych odpadów. Należy stworzyć system wykorzystujący metodę punktu odniesienia do wspomagania podejmowania decyzji w tym zakresie.

- 1. Sformułować model programowania mieszanego liniowego-całkowitoliczbowego. Model w zapisie matematycznym powinien zostać zawarty w sprawozdaniu z wykonania projektu. Należy zdefiniować i opisać wszystkie zmienne występujące w modelu. Funkcja celu oraz ograniczenia (grupy ograniczeń) muszą zostać dokładnie opisane: funkcja każdego z nich, rola poszczególnych jego składników, itp. Opis modelu musi być czytelny, wyczerpujący i wskazujący na zrozumienie zagadnienia. Sprawdzający powinien na jego podstawie móc ocenić intencje autora.
- 2. Przygotować model dla programu AMPL i załączyć do sprawozdania.
- 3. Przeprowadzić symulację procesu podejmowania decyzji. Wyniki kolejncyh kroków (przynajmniej 10 kroków) zapisać w sprawozdaniu.

2 Model programowania mieszanego liniowego-całkowitoliczbowego

W celu rozwiązania postawionego zadania dokonano sformułowania modelu programowania mieszanego liniowego-całkowitoliczbowego. Poniżej przedstawiono zapis matematyczny modelu.

2.1 Parametry

Parametr	Opis		
mp_i	Maksymalna produkcja i-tego ujęcia [t]		
ks_i	Godzinowy koszt stały pracy i-tego ujęcia wody [zł]		
kz_{ij}	Koszt zmienny wydobycia tony wody przez i-te ujęcie, w j-tym przypadku		
	(przypadek zależy od ilości wody pobieranej przez ujęcie) [zł/t]		
wz_i	Ilość zanieczyszczeń wytwarzanych przez i-te ujęcie przy pobieraniu wody [g/t]		
pr_{ij} Próg produkcji i-tego ujęcia po przekroczeniu, którego koszt wydobycia o			
	powiada przypadkowi j+1, dla najwyższego progu arbitralnie wysoka liczba		
	(999999) [t]		
zap_k	zap_k Zaporzebowanie miasta na wodę w k-tej godzinie [t]		
$T = \{1,, n_T\}$	Zbiór reprezentujący kolejne godziny horyzontu planowania produkcji, gdzie		
	$n_T = 4$ - liczba godzin		
$I = \{1,, n_I\}$	Zbiór reprezentujący ujęcia wody, gdzie $n_I=3$ - liczba ujęć		
$J = \{1,, n_J\}$	$\{1,,n_J\}$ Zbiór reprezentujący zakresy kosztów pracy ujęć wody, gdzie $n_J=2$ - liczb		
	zakresów		

2.2 Zmienne

Zmienna	Opis			
a_{ik}	Zmienne binarne określająca aktywność i-tego ujęcie w k-tej godzinie. Jeśli ujęcie jest			
	aktywne przyjmują wartość 1, w przeciwnym wypadku 0			
p_{ik}	Produkcja i-tego ujęcia w k-tej godzinie (główna zmienne decyzyjne) [t]			
uz_{ijk}	Zmienne binarne określające czy i-te ujęcie w k-tej godzinie produkuje wodę w j-			
	tym zakresie kosztów. Jeśli j-ty zakres jest wykorzystywany przyjmują wartość 1, w			
	przeciwnym wypadku 0			
pz_{ijk}	Produkcja i-tego ujęcia w k-tej godzinie przypadająca na j-ty zakres kosztów [t]			
pg_k	Sumaryczna produkcja wody w k-tej godzinie [t]			
ksg_k	Koszt stały pracy ujęć w k-tej godzinie [zł]			
kzg_k	Koszt zmienny pracy ujęć w k-tej godzinie [zł]			
kg_k	Sumaryczny koszt pracy ujęć w k-tej godzinie [zł]			
k	Całkowity koszt pracy ujęć [zł]			
z	Całkowita ilość zanieczyszczeń wytworzonych przy pobieraniu wody [g]			

2.3 Ograniczenia

Obliczenie sumarycznej produkcji wody w k-tej godzinie:

$$pg_k = \sum_{i \in I} p_{ik}, \quad \forall k \in T$$

Obliczenie kosztu stałego pracy ujęć w k-tej godzinie:

$$ksg_k = \sum_{i \in I} a_{ik} ks_i, \quad \forall k \in T$$

Obliczenie kosztu zmiennego pracy ujęć w k-tej godzinie:

$$kzg_k = \sum_{i \in I} \sum_{j \in J} pz_{ijk}kz_{ij}, \quad \forall k \in T$$

Obliczenie sumarycznego kosztu pracy ujęć w k-tej godzinie:

$$kg_k = ksg_k + kzg_k, \quad \forall k \in T$$

Obliczenie całkowitego kosztu pracy ujęć:

$$k = \sum_{k \in T} k g_k$$

Obliczenie ilości wytworzonych zanieczyszczeń:

$$z = \sum_{k \in T} \sum_{i \in I} p_{ik} w z_i$$

Ograniczenie na minimalną ilość aktywnych ujęć (co najmniej 2 aktywne w każdej godzinie):

$$\sum_{i \in I} a_{ik} \geqslant 2, \quad \forall k \in T$$

Ograniczenie na produkcję nieaktywnych ujęć (tylko aktywne ujęcia mogą produkować wodę):

$$a_{ik} = 0 \implies p_{ik} = 0$$

Ograniczenie maksymalnej godzinowej produckji każdego z ujęć:

$$p_{ik} \leqslant mp_i, \forall i \in I, \quad \forall k \in T$$

Ograniczenie wolumenu produkcji każdego z ujęć przypadającego na dany zakres kosztów produkcji:

$$pz_{ijk} \leqslant \begin{cases} pr_{ij}, & j=1\\ pr_i - pr_{i(j-1)}, & j \in J \setminus \{1\} \end{cases}$$

Ograniczenie odpowiedzialne za ustawienie zmiennych binarnych mówiących o tym czy dany zakres kosztów produkcji w k-tej godzinie jest wykorzystywany:

$$pz_{ijk} \geqslant \begin{cases} pr_{ij}uz_{ijk}, & j=1\\ (pr_{ij}-pr_{i(j-1)}uz_{ijk}, & j\in J\setminus\{1\} \end{cases}$$

2.4 Metoda punktu odniesienia

Metoda punktu odniesienia wprowadza zestaw dodatkowych parametrów i zmiennych:

Parametr	Opis			
asp_k	Poziom aspiracji kosztu produkcji wody			
asp_z	Poziom aspiracji ilości wyprodukowanych zanieczyszczeń			
λ_k, λ_z	Współczynniki normalizujące, odpowiednio dla kosztu i zanieczyszczeń. W omawia-			
	nym przypadku preferowany koszt i poziom zanieczyszczeń jest zgodny lub mniejszy			
	od odpowiednich poziomów aspiracji, stąd ze względu na ogólne sformułowanie meto-			
	dy punktu odniesienia jako problemy maksymalizacji, przyjmą one wartości ujemi			
β	Współczynnik pomniejszający wartość ocen wykraczających powyżej poziomu aspi-			
	racji			
ϵ	Współczynnik składnika regularyzacyjnego			
Zmienne	Opis			
oc_k, oc_z	Wartości indywidualnych funkcji osiągnięć dla kosztu i zanieczyszczeń			
v	Zmienna pomocnicza metody punktu odniesienia			

Ograniczenia zmiennej v przez wartości indywidualnych funkcji osiągnięć:

$$v \leqslant oc_k$$
 oraz $v \leqslant oc_z$

Ograniczenia indywidualnych funkcji osiągnięć:

$$oc_k \leq \lambda_k(k - asp_k)$$

 $oc_k \leq \beta \lambda_k(k - asp_k)$
 $oc_z \leq \lambda_z(z - asp_z)$
 $oc_z \leq \beta \lambda_z(z - asp_z)$

Funkcja celu metody punktu odniesienia w postaci dla programowania liniowego:

$$\max v + \epsilon(oc_k + oc_z)$$

3 Model dla programu AMPL

3.1 Plik z modelem (.mod)

Listing 1: Model AMPL.

```
11
12
   # Ujecia wody
   set INTAKES;
14
   # Zakresy wolumenu produkcji ujec o roznych kosztach
15
   set RANGES ordered;
16
17
   ############
18
   # Parametry #
19
   #############
21
   # Liczba godzin
22
   param T >= 1;
23
   # Maksymalna wydajnoc ujec wody [t/h]
25
   param efficiency {INTAKES} >= 0;
26
27
   # Koszta zmienne pracy ujec [zl/t]
   param variableCost {INTAKES, RANGES} >= 0;
29
   # Progi zakresow wolumenu produkcji o roznych kosztach [t/h]
31
   param threshold {INTAKES, RANGES} >= 0;
33
   # Koszta stale pracy ujec [zl/h]
34
   param fixedCost {INTAKES} >= 0;
35
36
   # Iloc wytwarzanych zanieczyszcze [g/t]
37
   param pollution {INTAKES} >= 0;
38
   # Zapotrzebowanie na wode w kolejnych godzinach [t]
40
   param hourlyDemand {1..T} >= 0;
41
42
  ##########
43
  # Zmienne #
   ##########
45
   # Aktywnoc danego ujecia w danej godzinie
   var active {1..T, INTAKES} binary;
48
   # Wolumen produkcji wody danego ujecia w danej godzinie
49
   var intakeProduction {1..T, i in INTAKES} >=0, <= efficiency[i];</pre>
   # Godzinowa produkcja
   var hourlyProduction {1..T} >= 0;
52
   # Wolumen produkcji wody przypadajacy na dany zakres kosztow dla \hookleftarrow
53
       danego ujecia w danej godzinie
   var intakeProductionInRange {1..T, i in INTAKES, r in RANGES} >=0;
   var thresholdExceeded {t in 1..T, i in INTAKES, r in RANGES} binary;
55
  # Koszt zmienny poboru wody przez dane ujecie w danej godzinie
  var intakeVariableCost {1..T, INTAKES} >= 0;
  # Koszta stale pracy ujec dla danej godziny
  var hourlyFixedCost {1..T} >= 0;
  # Koszta zmienne pracy ujec w danej godzinie
   var hourlyVariableCost {1..T} >= 0;
   # Koszt pracy ujec dla danej godziny
  var hourlyCost {1...T} >= 0;
63
  # Calkowity koszt pracy ujec wody
65  var totalCost >= 0;
```

```
# Calkowita iloc wytwarzanych zanieczyszcze przy zalozonym \hookleftarrow
66
       wolumenie produkcji
    var totalPollution >= 0;
67
68
    #####################
69
    # Ograniczenia modelu #
70
    #######################
71
    # Obliczenie godzinowej produkcji
72
    subject to CalculateHourlyProduction {t in 1..T}:
73
             hourlyProduction[t] = sum {i in INTAKES} intakeProduction[t,i↔
74
                ];
    # Ograniczenia zakresow kosztow produkcji
75
    subject to Range1 {t in 1..T, i in INTAKES}:
76
             intakeProductionInRange[t,i,first(RANGES)] \leftarrow threshold[i, \leftarrow)
                first(RANGES)];
    subject to Range2 {t in 1..T, i in INTAKES, r in RANGES: r != first(←)
78
       RANGES) }:
             intakeProductionInRange[t,i,r] <= (threshold[i,r]-threshold[i↔
79
                , prev(r)]) * thresholdExceeded[t,i,prev(r)];
    subject to Range3 {t in 1..T, i in INTAKES}:
80
             threshold[i,first(RANGES)]*thresholdExceeded[t,i,first(RANGES↔
                )] <= intakeProductionInRange[t,i,first(RANGES)];
    subject to Range4 {t in 1..T, i in INTAKES, r in RANGES: r != first(\leftrightarrow
82
       RANGES) }:
             (threshold[i,r]-threshold[i,prev(r)])*thresholdExceeded[t,i,r↔
83
                ] <= intakeProductionInRange[t,i,r];</pre>
    # Obliczenie wolumenu produkcji dla danego ujecia
84
    subject to CalculateIntakeProduction {t in 1..T, i in INTAKES}:
85
             intakeProduction [t,i] = sum \{r in RANGES\} \leftarrow
86
                intakeProductionInRange[t,i,r];
    # Obliczenie kosztow pracy ujec
87
    subject to CalculateHourlyFixedCost {t in 1..T}:
88
             hourlyFixedCost[t] = sum {i in INTAKES} fixedCost[i] * active↔
89
    subject to CalculateIntakeVariableCost {t in 1..T, i in INTAKES}:
90
             \verb|intakeVariableCost[t,i]| = \verb|sum| \{ \verb|r| in RANGES \} \leftarrow
91
                intakeProductionInRange[t,i,r]*variableCost[i,r];
    subject to CalculateHourlyVariableCost {t in 1..T}:
92
             hourlyVariableCost[t] = sum {i in INTAKES} intakeVariableCost←
93
                [t,i];
    subject to CalculateHourlyCost {t in 1..T}:
            hourlyCost[t] = hourlyFixedCost[t] + hourlyVariableCost[t];
95
    subject to CalculateTotalCost:
96
             totalCost = sum {t in 1..T} hourlyCost[t];
97
    # Obliczenie calkowitej liczby wyprodukowanych zanieczyszcze
98
    subject to CalculateTotalPollution:
99
             totalPollution = sum {t in 1..T, i in INTAKES} \leftarrow
100
                intakeProduction[t,i] * pollution[i];
    # Ograniczenia wolumenu planowanej produkcji aktywnych ujec
101
    subject to InactiveIntakesProduction {t in 1..T, i in INTAKES}:
102
             active[t,i] = 0 ==> intakeProduction[t,i] = 0;
103
    # Zapewnienie aktywnoci co najmniej dwoch ujec w kazdej godzinie
104
    subject to NumberOfActive {t in 1..T}:
105
             sum {i in INTAKES} active[t,i] >= 2;
106
    # Pokrycie zapotrzebowania na wode w kazdej godzinie
107
    subject to HourlyDemand {t in 1..T}:
```

```
hourlyProduction[t] = hourlyDemand[t];
109
110
    ##############################
111
   # Metoda punktu odniesienia #
112
    #############################
113
    # Skladniki wektora oceny
    set RATED = {"COST", "PLTN"};
115
    # Wektor oceny
116
    var value {r in RATED} =
117
            if r == "COST" then totalCost
            else if r == "PLTN" then totalPollution;
119
   # Wektor aspiracji
120
    param aspiration {RATED};
121
    # Wspolczynniki normalizujace - ujemna lambda gdy minimalizujemy ↔
122
       skladnik
   param lambda {RATED};
123
   # Wspolczynnik skladnika regularyzacyjnego
124
   param epsilon;
   # Wspolczynnik pomniejszenia wartoci ocen ponad poziomem aspiracji
126
   param beta;
127
    # Indywidualne funkcje osiagniec
    var individualRating {RATED};
130
    # Zmienna pomocnicza metody punktu odniesienia
    var v;
131
    # Skalaryzujaca funkcja osiagniecia
132
    var rating = v + epsilon * (sum {r in RATED} individualRating[r]);
    # Odlegloc od punktu odniesienia
134
   var distance {r in RATED} = value[r]-aspiration[r];
135
    # Znormalizowana odlegloc od punktu odniesienia
    var normalizedDistance {r in RATED} = lambda[r]*distance[r];
137
138
    # Ograniczenia zmiennej v przez indywidualne funkcje osiagniec
139
    subject to VSubject {r in RATED}:
140
141
            v <= individualRating[r];</pre>
    # Ograniczenia indywidualnych funkcji osiagniec
142
    subject to IndividualRatingSubjectBeta {r in RATED}:
143
            individualRating[r] <= beta*normalizedDistance[r];</pre>
    subject to IndividualRatingSubject {r in RATED}:
145
            individualRating[r] <= normalizedDistance[r];</pre>
146
147
   ################
   # Funkcje celu #
149
   #################
150
   maximize MaximizeRating: rating;
    minimize MinimizeCost: totalCost;
    minimize MinimizePollution: totalPollution;
153
    maximize MaximizeCost: totalCost;
154
    maximize MaximizePollution: totalPollution
155
```

3.2 Plik z danymi (.mod)

Listing 2: Dane dla modelu AMPL.

```
# ujec wody.
3
                                                                #
   # DANE
4
                                                                #
   # Autor: Jan Kumor
   # Zbiory indeksowe
   # Ujecia wody
9
   set INTAKES := A B C;
10
11
   # Zakresy wolumenu produkcji ujec o roznych kosztach
12
   set RANGES := NORMAL HIGH;
13
14
   # Liczba godzin
15
   param T := 4;
16
17
   # Maksymalna wydajnosc ujec wody [t/h]
18
   param efficiency :=
19
                    896
           Α
           В
                    570
21
            C
                    771
22
23
   # Koszta zmienne pracy ujec [zl/t]
^{24}
   param variableCost:
25
                    NORMAL
                           HIGH :=
26
                    87
                                     125
27
            Α
            В
                    93
                                     193
28
            С
                    78
                                     120
29
30
   # Progi zakresow wolumenu produkcji o roznych kosztach [t/h]
31
   param threshold default 999999:
32
                    NORMAL :=
33
           Α
                    716
34
           В
                    456
35
36
            C
                    539
37
   # Koszta stale pracy ujec [zl/h]
38
           fixedCost :=
   param
            Α
                    9800
40
           В
                    6600
41
            С
                    6000
42
43
   # Ilosc wytwarzanych zanieczyszcze [g/t]
44
           pollution :=
   param
45
                    300
46
           Α
           В
                    310
47
            С
                    270
48
49
50
   # Zapotrzebowanie na wode w kolejnych godzinach [t]
51
           hourlyDemand :=
   param
52
           1
                    1377
53
                    1429
            2
54
            3
                    445
55
            4
                    1712
56
57
```

```
# Metoda punktu odniesienia
59
60
    param epsilon = 0.000025;
61
62
    param beta = 0.001;
63
64
                       lambda :=
    param
65
             COST
                       -0.00001115
66
             PLTN
                       -0.00001037
67
69
                       aspiration :=
    param
70
             COST
                       582029
71
                       1503070
             PLTN
72
73
```

3.3 Skrypty uruchomieniowe (.run)

Listing 3: Skrypt wyznaczający wektory utopii i nadiru.

```
# System wspomagajacy decyzje w zakresie planowania pracy #
2
  # ujec wody.
                                                #
  # SKRYPT URUCHAMIAJACY - Wyznaczenie utopii i nadiru
  # Autor: Jan Kumor
  #######################
8
  # Konfiguracja modelu #
  ######################
10
  model OWD.mod;
11
  data OWD.dat;
12
  option solver cplex;
13
14
  # Rozwiazania optymalne dla wyznaczenia granic zmiennoci #
16
  # tj wektorow zenitu i nadiru
17
  18
  # Minimalny koszt
19
  printf "###############";
20
  printf "### Minimizing cost ###\n";
21
  printf "###############\n";
  objective MinimizeCost;
  solve;
24
  printf "Cost: %d\n", totalCost;
25
  printf "Pollution: %d\n", totalPollution;
26
  # Maksymalny koszt
28
  printf "###############"\n";
29
  printf "### Maximizing cost ###\n";
  printf "###############";
31
  objective MaximizeCost;
32
  solve;
33
  printf "Cost: %d\n", totalCost;
printf "Pollution: %d\n", totalPollution;
```

```
36
37
   # Minimalny poziom zanieczyszcze
38
   printf "\n################";
39
   printf "### Minimizing pollution ###\n";
40
   printf "##################"\n";
   objective MinimizePollution;
42
   solve:
43
   printf "Cost: %d\n", totalCost;
44
   printf "Pollution: %d\n", totalPollution;
46
   # Maksymalny poziom zanieczyszcze
47
   printf "\n################";
48
   printf "### Maximizing pollution ###\n";
49
   printf "#################";
50
   objective MaximizePollution;
51
  solve;
52
  printf "Cost: %d\n", totalCost;
   printf "Pollution: %d\n", totalPollution;
```

Listing 4: Skrypt dokonujący kroku symulacji z wykorzystaniem metody punktu referencyjnego.

```
# System wspomagajacy decyzje w zakresie planowania pracy #
2
  # ujec wody.
  # SKRYPT URUCHAMIAJACY - Metoda punktu odniesienia
                                                       #
  # Autor: Jan Kumor
  ########################
8
  # Konfiguracja modelu #
  #########################
10
  model OWD.mod;
11
  data OWD.dat;
  option solver cplex;
13
14
  ################################
  # Metoda punktu odniesienia #
16
  #################################
17
  printf "\n######################\n";
18
  printf "### Reference point method ###\n";
  printf "######################\n";
20
   objective MaximizeRating;
21
   solve;
22
   for \{t in 1...T\} \{
23
          printf "\n###########",";
24
          printf "### Hour %d ###\n", t;
25
          printf "############"\n";
26
          printf "Intakes production:\n";
27
          for {i in INTAKeS} {
28
                 printf "- %s ", i;
29
                 if active[t,i]
30
                 then printf "(ACTIVe) ";
                 else printf "(INACTIVe) ";
32
                 printf "%dt (", intakeProduction[t,i];
33
                 for {r in RANGeS} {
```

```
printf "%s: %d ", r, intakeProductionInRange[←
35
                               t,i,r];
36
                    printf ")\n";
37
           }
38
           printf "Demand: %d\n", hourlyDemand[t];
           printf "Production: %d\n", hourlyProduction[t];
40
           printf "Cost:\n - Fixed: %d\n - Variable: %d\n - Total: %d\n"←
41
                    hourlyFixedCost[t], hourlyVariableCost[t], hourlyCost
   }
43
   printf "\n###########";
44
   printf "Total cost: %d\n", totalCost;
   printf "Pollution produced: %d\n", totalPollution;
46
   printf "\n\tValue\tAspiration\tDistance\tLambda\n";
47
   for {r in RATeD} {
48
           printf "%s\t%d\t%d\t\t%f\n", r, value[r], aspiration[r↔
               ], distance[r], lambda[r];
   }
50
   printf "Rating: %f\n", MaximizeRating;
```

4 Symulacja procesu podejmowania decyzji

Przed przeprowadzeniem właściwej symulacji wyznaczono maksymalne i minimalne osiągalne wartości kosztu oraz ilości wyprodukowanych zanieczyszczeń (utopia i nadir), które posłużyły do wyznaczenia parametrów λ_k oraz $lambda_z$. W tym celu wykorzystano skrypt przedstawiony na Listing 3. Wyniki działania skryptu przedstawia Listing 5

Listing 5: Wynik działania skryptu wyznaczającego wektory utopii i nadiru.

```
#########################
1
   ### Minimizing cost ###
   #######################
   CPLEX 12.8.0.0: optimal integer solution; objective 492360
   4 MIP simplex iterations
   0 branch-and-bound nodes
   Cost: 492360
   Pollution: 1422690
   #######################
   ### Maximizing cost ###
   #######################
11
   CPLEX 12.8.0.0: optimal integer solution; objective 582029
12
   8 MIP simplex iterations
   0 branch-and-bound nodes
14
   Cost: 582029
15
   Pollution: 1503070
16
17
   ############################
18
   ### Minimizing pollution ###
19
   ############################
20
   CPLEX 12.8.0.0: optimal integer solution; objective 1406610
21
   0 MIP simplex iterations
```

```
0 branch-and-bound nodes
23
   Cost: 532901
24
   Pollution: 1406610
26
   ############################
27
   ### Maximizing pollution ###
   #############################
29
   CPLEX 12.8.0.0: optimal integer solution; objective 1503070
30
   1 MIP simplex iterations
31
   0 branch-and-bound nodes
   Cost: 582029
33
   Pollution: 1503070
34
```

Wartości wektora utopii:

$$k^u = 492360$$
 oraz $z^u = 1406610$

Wartości wektora nadiru:

$$k^n = 582029$$
 oraz $z^n = 1503070$

Na tej podstawie, wykorzystując zależność $\lambda_i=1/(y_i^u-y_i^n)$, wyznaczono następujące wartości parametrów:

$$\lambda_k = 1{,}115 \cdot 10^{-5}$$
 oraz $\lambda_z = 1{,}037 \cdot 10^{-5}$

Następnie przeprowadzono 10 kroków symulacji dla różnych wartości poziomów aspiracji:

1. Punkt odniesienia: koszt i ilość zanieczyszczeń optymalne:

	Poziom aspiracji	Wartość	Różnica
Koszt	492360	498664	6304
Ilość zanieczyszczeń	1406610	1413388	6778

Wartość funkcji celu: -0,070298

Ilość iteracji: 35

2. Punkt odniesienia: koszt optymalny, ilość zanieczyszczeń suboptymalna, niska:

	Poziom aspiracji	Wartość	Różnica
Koszt	492360	493412	1052
Ilość zanieczyszczeń	1420000	1421131	1131

Wartość funkcji celu: -0,011732

Ilość iteracji: 38

3. Punkt odniesienia: koszt optymalny, ilość zanieczyszczeń suboptymalna, wysoka:

	Poziom aspiracji	Wartość	Różnica
Koszt	492360	492360	0
Ilość zanieczyszczeń	1470000	1422690	-47310

Wartość funkcji celu: 0.000000

Ilość iteracji: 53

4. Punkt odniesienia: koszt suboptymalny, niski, ilość zanieczyszczeń optymalna:

	Poziom aspiracji	Wartość	Różnica
Koszt	500000	502804	2804
Ilość zanieczyszczeń	1406610	1409625	3015

Wartość funkcji celu: -0.031269

Ilość iteracji: 27

5. Punkt odniesienia: koszt suboptymalny, wysoki, ilość zanieczyszczeń optymalna:

	Poziom aspiracji	Wartość	Różnica
Koszt	550000	509901	-40099
Ilość zanieczyszczeń	1406610	1406610	0

Wartość funkcji celu: 0.000000

Ilość iteracji: 21

6. Punkt odniesienia: koszt i ilość zanieczyszczeń lepsze od stanu utopii:

	Poziom aspiracji	Wartość	Różnica
Koszt	480000	500337	20337
Ilość zanieczyszczeń	1390000	1411867	21867

Wartość funkcji celu: $-0.226777\,$

Ilość iteracji: 28

7. Punkt odniesienia: koszt lepszy od utopii, ilość zanieczyszczeń optymalna:

	Poziom aspiracji	Wartość	Różnica
Koszt	480000	493451	13451
Ilość zanieczyszczeń	1406610	1421073	14463

Wartość funkcji celu: -0.149990

Ilość iteracji: 37

8. Punkt odniesienia: koszt optymalny, ilość zanieczyszczeń lepsza od utopii:

	Poziom aspiracji	Wartość	Różnica
Koszt	492360	501995	9635
Ilość zanieczyszczeń	1400000	1410360	10360

Wartość funkcji celu: -0.107442

Ilość iteracji: 27

9. Punkt odniesienia: koszt i ilość zanieczyszczeń suboptymalne, niskie:

	Poziom aspiracji	Wartość	Różnica
Koszt	500500	500862	362
Ilość zanieczyszczeń	1411000	1411390	390

Wartość funkcji celu: -0.004046

Ilość iteracji: 30

10. Punkt odniesienia: koszt i ilość zanieczyszczeń równe wektorowi nadiru:

	Poziom aspiracji	Wartość	Różnica
Koszt	582029	495954	-86075
Ilość zanieczyszczeń	1503070	1432470	-70600

Wartość funkcji celu: 0.000732

Ilość iteracji: 35