МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное автономное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

Базовая кафедра авиационных приборов, интерфейсов и систем

ОТЧЁТ ПО ПРАКТИКЕ ЗАЩИЩЁН С ОЦЕНКОЙ							
РУКОВОДИТЕЛЬ Заведующий базовой кафедрой АПИиС д-р техн. наук, доцент			M	2	Хвощ С. Т.		
должность, уч. степень, звание			подпись,	цата	инициалы, фамилия		
		ОТЧ	ЁТ ПО ПРАК	ГИКЕ			
ид практики производственная							
тип практики технологическая							
на тему индивидуального задани			Разработка программ для микроконтроллера				
STM32103C8T6							
выполнен Гридиным Артёмом Максимовичем							
фамилия, имя, отчество обучающегося в творительном падеже							
по направлению подготовки		09.0	03.01 Ин	форматика и в	вычислительная техника		
		К	од	наимено	вание направления		
направленности		()2 комп	компьютерные технологии, системы и сети			
		K	0Д	наименова	ние направленности		
Обучающийся гру	ппы № 414		3,08.24 Жрээ поднись, лата		А. М. Гридин инициалы, фамилия		

Содержание

1.	Задание на практику	2
	Описание задач и требований к программам	
3.	Пример программы	4
	Результаты выполнения	
5.	Используемые технические средства для разработки и выполнения	
	программ	16
6.	Выводы по работе	16
Сп	исок использованных источников	16

1. Задание на практику

Написать программы для выполнения поставленных задач.

2. Описание задач и требований к программам

1) Светодиод

Описание задачи:

- Подключите светодиод к микроконтроллеру.
- Используйте функцию HAL Delay () для создания задержек.
- Напишите программу, которая заставляет светодиод мигать с интервалом 1 секунда (1000 миллисекунд).

2) Кнопка

Описание задачи:

- Подключите 2 светодиода и 2 кнопки к микроконтроллеру.
- Напишите программу, которая при нажатии на первую кнопку зажигает первый светодиод, а при нажатии на вторую кнопку гасит второй светодиод.
- При отпускании кнопок светодиоды должны возвращаться в начальное состояние (первый не горит, второй горит).

3) Таймер

Описание задачи:

- Используйте таймер для управления миганием светодиода.
- Напишите программу, которая заставляет светодиод мигать с интервалом 1 секунда (1000 миллисекунд) через таймер.

4) ШИМ (Широтно-импульсная модуляция)

Описание задачи:

- Подключите светодиод и используйте ШИМ для управления его яркостью.
- Напишите программу, которая плавно уменьшает и

увеличивает яркость светодиода.

5) Энкодеры

Описание задачи:

- Подключите энкодер и 4 светодиода.
- Напишите программу, которая зажигает светодиоды в зависимости от направления вращения энкодера. При вращении вправо загорается следующий справа светодиод, при вращении влево следующий слева.

6) Энкодер и светодиод

Описание задачи:

- Подключите энкодер и светодиод.
- Используйте энкодер для управления яркостью светодиода через ШИМ.

7) АЦП (Аналого-цифровой преобразователь)

Описание задачи:

- Напишите программу, использующую АЦП для измерения напряжения с делителя напряжения и фоторезистора.
- Используйте полученные данные для какого-либо действия, например, управления яркостью светодиода.

8) Матричная клавиатура

Описание задачи:

- Подключите матричную клавиатуру 3х3 и матричный индикатор.
- Напишите программу, которая отображает номер нажатой клавиши на индикаторе.
- Оптимизируйте код сканирования клавиатуры, сделав его максимально кратким.

9) Подключение нагрузки через транзистор 2N3904

Описание задачи:

- Подключите лампочку на 12V через транзистор 2N3904.
- Напишите программу, которая управляет включением и выключением лампочки через кнопку.

3. Пример программы

C. Lipiniop hearing.
Пример кода для выполнения задачи «Матричная клавиатура»: /* USER CODE BEGIN Header */
/**

* @file : main.c
* @brief : Main program body

* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*


```
*/
/* USER CODE END Header */
/* Includes -----*/
#include "main.h"
/* Private includes -----*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Private typedef -----*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define -----*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -----*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables -----*/
/* USER CODE BEGIN PV */
GPIO InitTypeDef GPIO InitStructPrivate = {0};
uint32 t previousMillis = 0;
```

```
uint32 t currentMillis = 0;
 uint8 t keyPressed = 0;
/* USER CODE END PV */
/* Private function prototypes -----*/
void SystemClock Config(void);
static void MX GPIO Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code -----*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
 * @brief The application entry point.
 * @retval int
 */
int main(void)
{
 /* USER CODE BEGIN 1 */
 /* USER CODE END 1 */
/* MCU Configuration-----*/
```

```
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX GPIO Init();
/* USER CODE BEGIN 2 */
HAL GPIO WritePin(GPIOB, GPIO PIN 3|GPIO PIN 4|GPIO PIN 5, 1);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
 {
 /* USER CODE END WHILE */
 /* USER CODE BEGIN 3 */
/* USER CODE END 3 */
}
```

```
/**
 * @brief System Clock Configuration
 * @retval None
 */
void SystemClock Config(void)
{
 RCC OscInitTypeDef RCC OscInitStruct = {0};
 RCC ClkInitTypeDef RCC ClkInitStruct = {0};
 /** Initializes the RCC Oscillators according to the specified parameters
 * in the RCC OscInitTypeDef structure.
 */
 RCC OscInitStruct.OscillatorType = RCC OSCILLATORTYPE HSI;
 RCC OscInitStruct.HSIState = RCC HSI ON;
 RCC OscInitStruct.HSICalibrationValue
RCC HSICALIBRATION DEFAULT;
 RCC OscInitStruct.PLL.PLLState = RCC PLL NONE;
 if (HAL RCC OscConfig(&RCC OscInitStruct) != HAL OK)
 {
  Error Handler();
 }
 /** Initializes the CPU, AHB and APB buses clocks
 */
 RCC ClkInitStruct.ClockType
RCC CLOCKTYPE HCLK|RCC CLOCKTYPE SYSCLK
               |RCC CLOCKTYPE PCLK1|RCC CLOCKTYPE PCLK2;
 RCC ClkInitStruct.SYSCLKSource = RCC SYSCLKSOURCE HSI;
 RCC ClkInitStruct.AHBCLKDivider = RCC SYSCLK DIV1;
```

```
RCC ClkInitStruct.APB1CLKDivider = RCC HCLK DIV1;
 RCC ClkInitStruct.APB2CLKDivider = RCC HCLK DIV1;
 if (HAL RCC ClockConfig(&RCC ClkInitStruct, FLASH LATENCY 0) !=
HAL OK)
 {
  Error Handler();
 }
/**
 * @brief GPIO Initialization Function
 * @param None
 * @retval None
static void MX GPIO Init(void)
{
 GPIO InitTypeDef GPIO InitStruct = {0};
/* USER CODE BEGIN MX GPIO Init 1 */
/* USER CODE END MX GPIO Init 1 */
 /* GPIO Ports Clock Enable */
 HAL RCC GPIOA CLK ENABLE();
 __HAL_RCC_GPIOB_CLK_ENABLE();
 /*Configure GPIO pin Output Level */
 HAL GPIO WritePin(GPIOA,
GPIO PIN 0|GPIO PIN 1|GPIO PIN 2|GPIO PIN 3
             |GPIO PIN 4|GPIO PIN 5|GPIO PIN 6, GPIO PIN RESET);
```

```
/*Configure GPIO pin Output Level */
 HAL GPIO WritePin(GPIOB,
                                    GPIO PIN 3|GPIO PIN 4|GPIO PIN 5,
GPIO PIN RESET);
 /*Configure GPIO pins : PA0 PA1 PA2 PA3
              PA4 PA5 PA6 */
 GPIO InitStruct.Pin = GPIO PIN 0|GPIO PIN 1|GPIO PIN 2|GPIO PIN 3
             |GPIO PIN 4|GPIO PIN 5|GPIO PIN 6;
 GPIO InitStruct.Mode = GPIO MODE OUTPUT PP;
 GPIO InitStruct.Pull = GPIO NOPULL;
 GPIO InitStruct.Speed = GPIO SPEED FREQ LOW;
 HAL GPIO Init(GPIOA, &GPIO InitStruct);
 /*Configure GPIO pins : PB3 PB4 PB5 */
 GPIO InitStruct.Pin = GPIO PIN 3|GPIO PIN 4|GPIO PIN 5;
 GPIO InitStruct.Mode = GPIO MODE OUTPUT PP;
 GPIO InitStruct.Pull = GPIO NOPULL;
 GPIO InitStruct.Speed = GPIO SPEED FREQ LOW;
 HAL GPIO Init(GPIOB, &GPIO InitStruct);
 /*Configure GPIO pins : PB6 PB7 PB8 PB9 */
 GPIO InitStruct.Pin = GPIO PIN 6|GPIO PIN 7|GPIO PIN 8|GPIO PIN 9;
 GPIO InitStruct.Mode = GPIO MODE IT RISING;
 GPIO InitStruct.Pull = GPIO PULLDOWN;
 HAL GPIO Init(GPIOB, &GPIO InitStruct);
 /* EXTI interrupt init*/
 HAL NVIC SetPriority(EXTI9 5 IRQn, 0, 0);
 HAL NVIC EnableIRQ(EXTI9 5 IRQn);
```

```
}
/* USER CODE BEGIN 4 */
void HAL GPIO EXTI Callback(uint16 t GPIO Pin)
{
 currentMillis = HAL GetTick();
 if (currentMillis - previousMillis > 10) {
 /*Configure GPIO pins : PB6 PB7 PB8 PB9 to GPIO INPUT*/
 GPIO InitStructPrivate.Pin
GPIO PIN 6|GPIO PIN 7|GPIO PIN 8|GPIO PIN 9;
  GPIO InitStructPrivate.Mode = GPIO MODE INPUT;
 GPIO InitStructPrivate.Pull = GPIO NOPULL;
  GPIO InitStructPrivate.Speed = GPIO SPEED FREQ LOW;
 HAL GPIO Init(GPIOB, &GPIO InitStructPrivate);
 HAL GPIO WritePin(GPIOB, GPIO PIN 4|GPIO PIN 5, 0);
 HAL GPIO WritePin(GPIOB, GPIO PIN 3, 1);
 if(GPIO Pin == GPIO PIN 7 && HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_7))
Disp CA(3);
       if(GPIO Pin = GPIO PIN 8)
 else
                                       &&
                                             HAL GPIO ReadPin(GPIOB,
GPIO PIN 8)) Disp CA(6);
       if(GPIO Pin
                    == GPIO PIN 9
 else
                                       \&\&
                                             HAL GPIO ReadPin(GPIOB,
GPIO PIN 9)) Disp CA(9);
 HAL GPIO WritePin(GPIOB, GPIO PIN 3|GPIO PIN 5, 0);
 HAL GPIO WritePin(GPIOB, GPIO PIN 4, 1);
 if(GPIO Pin == GPIO PIN 6 && HAL GPIO ReadPin(GPIOB, GPIO PIN 6))
                                  11
```

/* USER CODE BEGIN MX GPIO Init 2 */

/* USER CODE END MX GPIO Init 2 */

```
Disp CA(0);
  else
       if(GPIO Pin
                         GPIO PIN 7
                                       &&
                                            HAL GPIO ReadPin(GPIOB,
                    ==
GPIO PIN 7)) Disp CA(2);
  else
       if(GPIO Pin
                         GPIO PIN 8
                                       &&
                    ==
                                             HAL GPIO ReadPin(GPIOB,
GPIO PIN 8)) Disp CA(5);
       if(GPIO Pin
                         GPIO PIN 9
                                       &&
                                            HAL GPIO ReadPin(GPIOB,
  else
                    ==
GPIO PIN 9)) Disp CA(8);
 HAL GPIO WritePin(GPIOB, GPIO PIN 3|GPIO PIN 4, 0);
 HAL GPIO WritePin(GPIOB, GPIO PIN 5, 1);
 if(GPIO Pin == GPIO PIN 7 && HAL GPIO ReadPin(GPIOB, GPIO PIN 7))
Disp CA(1);
       if(GPIO Pin
                         GPIO PIN 8
                                       &&
                                             HAL GPIO ReadPin(GPIOB,
                    ==
GPIO PIN 8)) Disp CA(4);
                         GPIO PIN 9
                                       &&
       if(GPIO Pin ==
                                            HAL GPIO ReadPin(GPIOB,
GPIO PIN 9)) Disp CA(7);
 HAL GPIO WritePin(GPIOB, GPIO PIN 3|GPIO PIN 4|GPIO PIN 5, 1);
 /*Configure GPIO pins : PB6 PB7 PB8 PB9 back to EXTI*/
 GPIO InitStructPrivate.Mode = GPIO MODE IT RISING;
  GPIO InitStructPrivate.Pull = GPIO PULLDOWN;
 HAL GPIO Init(GPIOB, &GPIO InitStructPrivate);
 previousMillis = currentMillis;
 }
}
void Disp CA(unsigned char var 1)
{
     unsigned
                                                                  char
disp arr[]=\{0x40,0x79,0x24,0x30,0x19,0x12,0x02,0x78,0x00,0x10,0x08,0x03,0x46,
```

```
0x21,0x06,0x0e,0xff};
     unsigned char data1, bit var;
     data1=disp arr[var 1];
     bit var=data1 & 0x01;
     HAL GPIO WritePin(GPIOA,GPIO PIN 0,bit var);
     bit var=(data1>>1) \& 0x01;
     HAL GPIO WritePin(GPIOA,GPIO PIN 1,bit var);
     bit var=(data1>>2) \& 0x01;
     HAL GPIO WritePin(GPIOA,GPIO PIN 2,bit var);
     bit var=(data1>>3) \& 0x01;
     HAL GPIO WritePin(GPIOA,GPIO PIN 3,bit var);
     bit var=(data1>>4) \& 0x01;
     HAL GPIO WritePin(GPIOA,GPIO PIN 4,bit var);
     bit var=(data1>>5) \& 0x01;
     HAL GPIO WritePin(GPIOA,GPIO PIN 5,bit var);
     bit var=(data1>>6) \& 0x01;
     HAL GPIO WritePin(GPIOA,GPIO PIN 6,bit var);
}
/* USER CODE END 4 */
/**
 * @brief This function is executed in case of error occurrence.
 * @retval None
 */
```

```
void Error Handler(void)
 /* USER CODE BEGIN Error Handler Debug */
 /* User can add his own implementation to report the HAL error return state */
   disable irq();
 while (1)
 {
 /* USER CODE END Error Handler Debug */
}
#ifdef USE FULL ASSERT
/**
 * @brief Reports the name of the source file and the source line number
       where the assert param error has occurred.
 * @param file: pointer to the source file name
 * @param line: assert param error line source number
 * @retval None
 */
void assert failed(uint8 t*file, uint32 t line)
{
 /* USER CODE BEGIN 6 */
 /* User can add his own implementation to report the file name and line number,
   ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
 /* USER CODE END 6 */
#endif
                      /*
                                         USE FULL ASSERT
                                                                               */
```

4. Результаты выполнения

Запуск микроконтроллера осуществляется в среде Proteus 8. R1 150Ohm R2 150Ohm R3 1500hm R4 1500hm U1 NRST R5 PA0-WKUP **1**1 PA1 PA2 **1**2 1500hm ■13 ■14 PA3 R6 PA4 ■ 15 ■ 16 ■ 17 PA5 PA6 PA7 1500hm = 29 = 30 = 31 R7 PA8 PA9 1500hm PA10 = 32 = 33 PA11 PA12 = 34 = 37 PA13 PA14 PA15 = 38 PC13_RTC 3≡ PC14-OSC32_IN PC15-OSC32_OUT 4= = 18 PB0 = 19 = 20 = 39 PB1 PB2 OSCIN_PD0 PB3 = 40 = 41 OSCOUT_PD1 PB4 В PB5 ■ 42 ■ 43 PB6 VDDA PB7 **4**5 PB8 VSSA = 46 = 21 = 22 = 25 PB9 PB10 VBAT PB11 PB12 = 26 PB13 PB14 воото PB15 STM32F103C8

Рисунок 1 — Пример работы схемы для задачи «Матричная клавиатура» в среде Proteus 8

Результат работы всех программ предоставлен в виде видеоматериалов по ссылке: URL:

https://drive.google.com/drive/folders/1cRvHdvwiR05op55vUWk2yqEpixA7-koN?usp=sharing

5. Используемые технические средства для разработки и выполнения программ

Для разработки, отладки и выполнения программ были использованы следующие технические средства:

- Язык программирования С: Код написан на языке программирования С, который широко используется для разработки системного и прикладного программного обеспечения;
 - Библиотека НАL;
 - Программы STM32CubeIDE и Proteus 8;
 - Микроконтроллер STM32F103C8T6;

6. Выводы по работе

Были разработаны программы для решения описанных задач. Результаты работы соответствуют поставленным задачам.

Список использованных источников

- 1 STM32F103C8T6 Datasheet [Электронный ресурс], URL https://www.st.com/resource/en/datasheet/stm32f103c8.pdf
- 2 Уроки по STM32 [Электронный ресурс], URL https://www.micropeta.com/
- 3 74LS148 Datasheet [Электронный ресурс], URL https://www.futurlec.com/74LS/74LS148.shtml