Seguimiento y predicción de la trayectoria de una pelota usando Flujo Óptico y K-Means

Diego García Currás Alberto León Luengo

INTRODUCCIÓN

OBJETIVOS

- Segmentar una pelota utilizando K-Means.
- Rastrear su movimiento con flujo óptico.
- Predecir la posición futura de la pelota.

APLICACIONES

- Robótica: Seguimiento de objetos más eficiente (Reducción ROI)
- Análisis deportivos: Fútbol, tenis.
- Sistemas de vigilancia automática.

DIAGRAMA GENERAL DEL SISTEMA

SEGMENTACIÓN CON K-MEANS

PROCESO

PASO 1: Convertir imagen a espacio HSV (mejor para segmentar por colores).

PASO 2: Aplicar K-Means con 2 o más clusters (al menos uno para la pelota).

PASO 3: Postprocesamiento con morfología matemática (erosión + dilatación).

FLUJO ÓPTICO (LUCAS KANADE)

PROCESO

PASO 1: Identificar puntos de interés en la pelota (Centro y bordes).

PASO 2: Calcular el desplazamiento con la función calcOpticalFlowPyrLK().

PASO 3: Recopilar suficientes muestras para determinar un vector de

desplazamiento fiable.

PREDICCIÓN DE LA TRAYECTORIA

FÓRMULA DE EXTRAPOLACIÓN

Posición Futura = Posición Actual + Desplazamiento Promedio x ΔFrames

INTERFAZ DE USUARIO

- Trackbar para ajustar el tiempo de predicción (Frames).
- Graficación de un círculo azul para representar la posición estimada.

INTERFAZ DE USUARIO

ELEMENTOS

- Ventana principal en la que se reproduce el rosbag
- Trackbar "Tiempo de Predicción (Frames)"
- Visualización de diferentes elementos:
 - Puntos verdes para las características rastreadas.
 - Flechas rojas para dibujar los vectores de movimiento.
 - Círculo azul para marcar la predicción.

RESULTADOS CUALITATIVOS

EJEMPLOS EXITOSOS

- Pelota en movimiento rectilíneo y constante (buena precisión).
- Contraste entre la pelota y el fondo (segmentación correcta).

CASOS LÍMITE

- Falsos positivos con K-Means: La pelota es muy pequeña respecto al fondo.
- K-Means es muy costoso.
- Pérdida del tracking de la pelota al difuminarse la pelota con el fondo (Escala de grises, textura similar)

MÉTRICAS CUANTITATIVAS

TIEMPO DE PREDICCIÓN (Frames)	ERROR OBTENIDO (PÍXELES)
10	e < 10%
15	10% < e < 15%
20	e > 15%

LIMITACIONES

PROBLEMAS IDENTIFICADOS

- Dependencia del color de la pelota.
- Pérdida de precisión en movimientos no lineales y cambios de dirección.
- Pérdida de tracking debido a FPS lentos y movimientos rápidos.

CONCLUSIONES

LOGROS

- Prueba de concepto para seguimiento predictivo en tiempo real.
- Predicción aceptable en intervalos cortos de tiempo.

MEJORAS A FUTURO

- Usar redes neuronales para mejorar la segmentación.
- Implementar un Filtro de Kalman para manejar posibles aceleraciones.
- Más FPS para un movimiento más suave que LK pueda asumir.

DEMO

¿PREGUNTAS? ¿COMENTARIOS?

Muchas gracias por la atención