

Inhaltsverzeichnis

l	Wasserdargebot für Wasserkraft	2	2.2	Bernoulli-Druck-Gleichung für Speicherwasserkraftwerke	3
	1.1 Abflussganglinie	2	2.3	Bernoulli-Höhen-Gleichung für Speicherwasserkraftwerke	3
	1.2 Abflussdauerkurve	2	2.4	Örtliche Energieverluste	
	1.3 Nutzwassermenge	2	2.5	Reibungsverluste	3
2	Wasserkraft	3	1	Verlusthöhe durch Reibung	
	2.1 Kontinuitätsgleichung des Durchflusses	3	2.7	Reynolds-Zahl Re	4

1 Wasserdargebot für Wasserkraft

1.1 Abflussganglinie

Abfluss Q_b in $\frac{m^3}{s}$ während eines Jahres (365 Tage) Q_a Q_x Q_x Q_y Q_y Q

1.2 Abflussdauerkurve

Abfluss Q_b in $\frac{m^3}{s}$ während eines Jahres (365 Tage), sortiert der Grösse nach Q_B [m³/s] Q_X Q_X

Abfluss ist an 275 Tagen mindestens Q_x

1.3 Nutzwassermenge

2 Wasserkraft

2.1 Kontinuitätsgleichung des Durchflusses

Die Kontinuitätsgleichung beschreibt die Erhaltung des Volumenstroms in einer strömenden Flüssigkeit:

Q = A	$ \begin{array}{c c} v & Q_1 = Q_2 \\ \end{array} A_1 \cdot v_1 = A_2 \cdot v_2 $	$Q = \dot{V} = \frac{\Delta V}{\Delta t}$	= const
$[Q_x]$	Durchflussrate		$\frac{m^3}{s}$
$[A_x]$	Querschnittsfläche		m^2
$[v_x]$	Fliessgeschwindigkeit		$\frac{m}{s}$
$[\dot{V}]$	Volumenstrom (Volumen pro Zeit)		$\frac{\underline{m}}{s}$ $\frac{\underline{m}^3}{s}$
$[\Delta V]$	Volumenänderung		m^3
$[\Delta t]$	Zeitänderung		S

2.2 Bernoulli-Druck-Gleichung für Speicherwasserkraftwerke

$$\frac{1}{2} \cdot \rho \cdot v^{2} + \rho \cdot g \cdot z + p = \text{constant}$$

$$p_{1} + \rho \cdot g \cdot h_{1} + \frac{1}{2}\rho \cdot v_{1}^{2} = p_{2} + \rho \cdot g \cdot h_{2} + \frac{1}{2}\rho \cdot v_{2}^{2}$$

$$[\frac{1}{2}\rho v^{2}] \quad \text{Kinetische Energie (je Kubikmeter)}$$

$$[\rho gz] \quad \text{Potentielle Energie}$$

$$[p] \quad \text{Druckenergie}$$

$$p \rightarrow \frac{\rho gz}{A} + \frac{1}{2}\rho v^{2} = \frac{\text{constant}}{D}$$

2.3 Bernoulli-Höhen-Gleichung für Speicherwasserkraftwerke

H = z +	$-\frac{P}{\rho \cdot g} + \frac{1}{2 \cdot g} + \sum H_{\nu}$	
[H]	Bruttogefälle	m
[z]	Höhenlage (potenzielle Energie)	m
[<i>p</i>]	Druck	$Pa = \frac{N}{m^2}$
[ho]	Dichte des Wassers	$\frac{kg}{m^3}$
[g]	Erdbeschleunigung	$\frac{m}{s^2}$
[v]	Geschwindigkeit	$\frac{m}{s}$
$\left[\frac{p}{\rho g}\right]$	Druckhöhe	m
$\begin{bmatrix} \frac{p}{\rho g} \\ \frac{v^2}{2g} \end{bmatrix}$	Geschwindigkeitshöhe	m
$[\sum H_v]$	Hydraulische Energieverluste	m

2.4 Örtliche Energieverluste

	28	
$[h_v]$	Örtliche Energieverlusthöhe	m
[ζ]	Verlustbeiwert (dimensionslos)	_
[v]	Geschwindigkeit	$\frac{m}{s}$
[g]	Erdbeschleunigung	$\frac{m}{2}$

2.5 Reibungsverluste

''	$K^2 \cdot R_h^{4/3}$	
$[H_{\rm vr}]$	Reibungsverlusthöhe	m
[v]	Strömungsgeschwindigkeit	$\frac{m}{s}$
[L]	Länge der Strömungsstrecke	m
[<i>K</i>]	Rauhigkeitsbeiwert nach Strickler	$m^{1/3}/s$
$[R_h]$	Hydraulischer Radius	m

2.5.1 Tabelle Rauhigkeitsbeiwert K

Material	Zustand	K [m ^{1/3} /s]
Stahl	neu	75
Stahl	schlechter Zustand, verrostet, verkrustet	60
Beton	glatt	85
Beton	rauh	60
PE, PVC		100

2.5.2 Hydraulischer Radius

Rechteckqueerschnitt

Kreisqueerschnitt

$$F = b \cdot h$$

$$P = b + 2 \cdot h$$

$$R_h = \frac{b \cdot h}{b + 2 \cdot h}$$

$$R_h = \frac{F}{P}$$

$$F = \frac{D^2 \cdot \pi}{4}$$

$$P = D \cdot \pi$$

$$R_h = \frac{D}{4} R_h = \frac{F}{P}$$

- [F] Abflussquerschnittsfläche
 n

 [P] Benetzter Umfang
 n
- $[R_h]$ Hydraulischer Radius

2.6 Verlusthöhe durch Reibung

$$\begin{vmatrix} h_{\text{v,r}} = \lambda \cdot \frac{L}{d_{\text{hy}}} \cdot \frac{v}{2 \cdot g} \end{vmatrix} \begin{vmatrix} h_{\text{v,r}} = \lambda \cdot \frac{L}{d_i} \cdot \frac{\delta \cdot Q}{g \cdot \pi^2 \cdot d_i^4} \end{vmatrix} \begin{vmatrix} h_{\text{v,r}} = \frac{\delta \cdot \lambda \cdot L \cdot Q}{g \cdot \pi^2 \cdot d_i^5} \end{vmatrix}$$

$$\begin{vmatrix} [h_{\text{v,r}}] & \text{Verlusth\"ohe durch Reibung} & & & & & \\ [L] & \text{L\"ange} & & & & & \\ [v_m] & \text{Mittlere Geschwindigkeit} & & & & \\ [Q] & \text{Durchfluss} & & & & \\ [d_i] & \text{Innendurchmesser} & & & & & \\ [d_{\text{hy}}] & \text{Hydraulischer Durchmesser} & & & & & \\ \end{vmatrix}$$

Benetzter Umfang

$$d_{\text{hy}} = d_{\text{Kreisrohr}} = d_i = 4R_{\text{hy}} = 4\left(\frac{A}{l_u}\right)$$

2.7 Reynolds-Zahl Re

Die Reynolds-Zahl Re beschreibt das Verhältnis von Trägheitskräften zu Zähigkeitskräften in einer Strömung und wird wie folgt berechnet:

$$Re = \frac{v_m \cdot d_{\text{hy}}}{v}$$

 $[l_u]$

Bemerkung: $d_{\text{hy}} = d_{\text{Kreisrohr}} = d_i$

[Re]	Reynolds-Zani (dimensionsios)	_
$[v_m]$	Mittlere Strömungsgeschwindigkeit	$\frac{m}{s}$
$[d_{\rm hy}]$	Hydraulischer Durchmesser	m
$[d_i]$	Innendurchmesser (für Kreisrohr gleich d_{hy})	m
$[\nu]$	Kinematische Viskosität	$\frac{m^2}{s}$