Data Mining

Classification IV - Random Forests (Part B)

Dr. Jason T.L. Wang, Professor
Department of Computer Science
New Jersey Institute of Technology
/

Where am I?

➤ Part A explains how the random forests algorithm works.

➤ Part B presents an example to show how the algorithm grows a tree.

The whole training set

Phone_Usage	Income_Source	Living_Place	Current_Carrier	Change_Plan
>150	1	Town	AT&T	Yes
<75	1	Town	AT&T	No
<75	2	City	Sprint	No
75150	2	City	MCI	Yes
75150	2	City	Sprint	Yes
75150	1	Town	MCI	Yes
75150	2	City	AT&T	Yes
<75	1	City	Sprint	No
>150	1	City	MCI	Yes
<75	2	Town	AT&T	No
>150	2	Town	Sprint	Yes
>150	2	Town	MCI	Yes
75150	2	Town	MCI	Yes
>150	2	City	AT&T	No
>150	2	City	MCI	No
75150	2	Town	AT&T	No

A tree growing example

Phone_Usage	Income_Source	Living_Place	Current_Carrier	Change_Plan
>150	1	Town	AT&T	Yes
<75	1	Town	AT&T	No
<75	2	City	Sprint	No
75150	2	City	MCI	Yes
75150	2	City	Sprint	Yes
75150	1	Town	MCI	Yes

The 6 records above are randomly picked and are used for growing a tree. There are M = 4 attributes in the training set.

Randomly pick $\sqrt{M} = \sqrt{4} = 2$ attributes for splitting the root node t. Assume Income_Source and Current_Carrier are picked for splitting t.

Income_Source	Current_Carrier	Change_Plan
1	AT&T	Yes
1	AT&T	No
2	Sprint	No
2	MCI	Yes
2	Sprint	Yes
1	MCI	Yes

Since there are 4 records with "Yes" and 2 records with "No" in node t, the gini impurity measure for t is $1-(4/6)^2-(2/6)^2=0.444$.

There is only one possible split for Income_Source.

There are three possible splits for Current_Carrier.

We are going to find the best split among these four possible splits.

One possible split s_1 for Income_Source:

Income_Source	Change_Plan
1	Yes
1	No
2	No
2	Yes
2	Yes
1	Yes

otherwise

Income_SourceChange_Plan1Yes1No1Yes

 $g(t_L)=1-(2/3)^2-(1/3)^2=4/9$

Income_Source	Change_Plan	
2	No	
2	Yes	
2	Yes	

$$g(t_R)=1-(2/3)^2-(1/3)^2=4/9$$

$$\Delta g(s_1,t)=0.44-(3/6)(4/9)-(3/6)(4/9)=0$$

One possible split s_2 for Current_Carrier:

Current_Carrier	Change_Plan
AT&T	Yes
AT&T	No
Sprint	No
MCI	Yes
Sprint	Yes
MCI	Yes

otherwise

AT&T

Current_Carrier Change_Plan AT&T Yes AT&T No

$$g(t_L)=1-(1/2)^2-(1/2)^2=1/2$$

Current_Carrier	Change_Plan	
Sprint	No	
MCI	Yes	
Sprint	Yes	
MCI	Yes	

$$g(t_R)=1-(3/4)^2-(1/4)^2=3/8$$

$$\Delta g(s_2,t)$$
=0.44-(2/6)(1/2)-(4/6)(3/8)=0.028

One possible split s_3 for Current_Carrier:

Current_Carrier	Change_Plan
AT&T	Yes
AT&T	No
Sprint	No
MCI	Yes
Sprint	Yes
MCI	Yes

otherwise

Current_Carrier Change_Plan
Sprint No
Sprint Yes

 $g(t_L)=1-(1/2)^2-(1/2)^2=1/2$

Current_Carrier	Change_Plan
AT&T	Yes
AT&T	No
MCI	Yes
MCI	Yes

$$g(t_R)=1-(3/4)^2-(1/4)^2=3/8$$

$$\Delta g(s_3,t)=0.44-(2/6)(1/2)-(4/6)(3/8)=0.028$$

Sprint

One possible split s_4 for Current_Carrier:

Current_Carrier	Change_Plan
AT&T	Yes
AT&T	No
Sprint	No
MCI	Yes
Sprint	Yes
MCI	Yes

otherwise

Current_Carrier Change_Plan

MCI Yes

MCI Yes

 $g(t_L)=1-(2/2)^2-(0/2)^2=0$

Current_Carrier	Change_Plan	
AT&T	Yes	
AT&T	No	
Sprint	No	
Sprint	Yes	

$$g(t_R)=1-(2/4)^2-(2/4)^2=1/2$$

$$\Delta g(s_4,t)=0.44-(2/6)(0)-(4/6)(1/2)=0.11$$

MCI

Phone_Usage	Income_Source	Living_Place	Current_Carrier	Change_Plan
>150	1	Town	AT&T	Yes
<75	1	Town	AT&T	No
<75	2	City	Sprint	No
75150	2	City	MCI	Yes
75150	2	City	Sprint	Yes
75150	1	Town	MCI	Yes

$\Delta g(s_1,t)=0$
$\Delta g(s_2,t) = 0.028$
$\Delta g(s_3,t)=0.028$
$\Delta g(s_4,t)=0.11$

 s_4 is the best split.

PU	IS	LP	CC	CP
75150	2	City	MCI	Yes
75150	1	Town	MCI	Yes

PU	IS	LP	CC	СР
>150	1	Town	AT&T	Yes
<75	1	Town	AT&T	No
<75	2	City	Sprint	No
75150	2	City	Sprint	Yes

Randomly pick $\sqrt{M} = \sqrt{4} = 2$ attributes for splitting node t^1 . Assume Phone_Usage and Living_Place are picked for splitting t^1 .

Phone_Usage	Living_Place	Change_Plan
>150	Town	Yes
<75	Town	No
<75	City	No
75150	City	Yes

Since there are 2 records with "Yes" and 2 records with "No" in node t^1 , the gini impurity measure for t^1 is $1-(2/4)^2-(2/4)^2=0.5$.

There are three possible splits for Phone_Usage.

There is only one possible split for Living_Place.

We are going to find the best split among these four possible splits.

One possible split s_1^1 for Phone_Usage:

>150 otherwise

Phone_Usage	Change_Plan
>150	Yes

$$g(t_L^1)=1-(1/1)^2-(0/1)^2=0$$

Phone_Usage	Change_Plan
<75	No
<75	No
75150	Yes

$$g(t_R^1)=1-(1/3)^2-(2/3)^2=4/9$$

$$\Delta g(s_1^1, t_1^1) = 0.5 - (1/4)(0) - (3/4)(4/9) = 0.167$$

One possible split s_2^1 for Phone_Usage:

Phone_Usage	Change_Plan
>150	Yes
<75	No
<75	No
75150	Yes

75...150 otherwise

Phone_Usage	Change_Plan
75150	Yes

$$g(t_L^1)=1-(1/1)^2-(0/1)^2=0$$

Phone_Usage	Change_Plan
>150	Yes
<75	No
<75	No

$$g(t_R^1)=1-(1/3)^2-(2/3)^2=4/9$$

$$\Delta g(s^1_2,t^1)=0.5-(1/4)(0)-(3/4)(4/9)=0.167$$

One possible split s^{1}_{3} for Phone_Usage:

Phone_Usage	Change_Plan
>150	Yes
<75	No
<75	No
75150	Yes

<75 otherwise

Phone_Usage	Change_Plan
<75	No
<75	No

$$g(t_L^1)=1-(0/2)^2-(2/2)^2=0$$

Phone_Usage	Change_Plan
>150	Yes
75150	Yes

$$g(t_R^1)=1-(2/2)^2-(0/2)^2=0$$

$$\Delta g(s_3^1,t_1)=0.5-(2/4)(0)-(2/4)(0)=0.5$$

One possible split s_4^1 for Living_Place:

Town otherwise

Living_Place	Change_Plan	
Town	Yes	
Town	No	

$$g(t_L^1)=1-(1/2)^2-(1/2)^2=1/2$$

$$g(t_R^1)=1-(1/2)^2-(1/2)^2=1/2$$

$$\Delta g(s_4^1, t_1^1) = 0.5 - (2/4)(1/2) - (2/4)(1/2) = 0$$

Phone_Usage	Income_Source	Living_Place	Current_Carrier	Change_Plan
>150	1	Town	AT&T	Yes
<75	1	Town	AT&T	No
<75	2	City	Sprint	No
75150	2	City	MCI	Yes
75150	2	City	Sprint	Yes
75150	1	Town	MCI	Yes

 $\Delta g(s_1, t_1) = 0.167$ $\Delta g(s_2, t_1) = 0.167$ $\Delta g(s_3, t_1) = 0.5$ $\Delta g(s_4, t_1) = 0$

 s_3^1 is the best split.

PU	IS	LP	CC	СР
>150	1	Town	AT&T	Yes
<75	1	Town	AT&T	No
<75	2	City	Sprint	No
75150	2	City	Sprint	Yes

Phone_Usage: <75 otherwise

PU	IS	LP	CC	CP
<75	1	Town	AT&T	No
<75	2	City	Sprint	No

PU	IS	LP	CC	СР
>150	1	Town	AT&T	Yes
75150	2	City	Sprint	Yes

16

End of Random Forests Module (Part B)