HOCHSCHULE LUZERN

InformatikFH Zentralschweiz

Relationen - Übung III

Prof. Dr. Josef F. Bürgler

Semesterwoche 8

Alle Aufgaben sind zusammen mit dem Lösungweg in möglichst einfacher Form darzustellen.

Abgabetermin: eine Woche nach Verteilung der Übung!

Aufgabe 1

Die Division $\mathbf{R} \div \mathbf{S}$ zweier Relationen \mathbf{R} und \mathbf{S} kann einerseits mit Hilfe der Definition

$$R \div S = \{(x) | \exists (x, y) \in R \ \forall (y) \in S \}$$

aber auch mit Hilfe folgender Idee bestimmt werden:

- (a) Berechne alle jene x, die nicht durch irgend ein $y \in \mathbf{S}$ disqualifiziert werden.
- (b) Ein x-Wert wird disqualifiziert, falls man durch Bildung aller möglicher Tupel (x, y) mit beliebigem $y \in \mathbf{S}$ ein Tupel erhält, welches nicht in \mathbf{R} liegt. Die disqualifizierten x-Werte ergeben sich durch:

$$\Pi_{\mathcal{X}}\left(\left(\Pi_{\mathcal{X}}\left(\mathbf{R}\right)\times\mathbf{S}\right)\setminus\mathbf{R}\right)$$

Somit findet man das Resultat der Division auf dem zweiten Weg wie folgt:

$$R \div S = \Pi_{\mathcal{X}}(\mathbf{R}) \setminus \Pi_{\mathcal{X}}((\Pi_{\mathcal{X}}(\mathbf{R}) \times \mathbf{S}) \setminus \mathbf{R})$$

Man führe diese zweite Berechnungsmöglichkeit für folgende Relationen durch:

A		$oxed{B_1}$	$oxed{B_2}$
sno	pno	pno	pno
s_1	p_1	p_2	p_2
1	p_2		p_4
1	p_3		
81	p_4	$\mathbf{A} \div \mathbf{B_1}$	
2	p_1	sno	
2	p_2	s_1	$\mathbf{A} \div \mathbf{B_2}$
3	p_2	s_2	sno
4	p_2	s_3	s_1
	p_4	s_4	s_4

Relation **A** listet auf, welche Lieferanten (engl. supplier) s_1 , s_2 , s_3 , s_4 welche Teile (engl. parts) p_1 , p_2 , p_3 , p_4 liefern. Was stellen dann die Relationen $\mathbf{A} \div \mathbf{B_1}$, $\mathbf{A} \div \mathbf{B_2}$ und $\mathbf{A} \div \mathbf{B_3}$ dar? $\mathbf{A} \div \mathbf{B_1} = s_1, s_2, s_3, s_4$ $\mathbf{A} \div \mathbf{B_2} = s_1, s_4$

 $A \div B3 = s1$

Aufgabe 2

Wir verwenden in den folgenden Aufgaben die folgenden Relationalen Schemas

 \mathbf{R} (sid: integer, bid: integer, day: date)

S (sid: integer, sname: string, rating: integer, age: real)

B (bid: integer, bname: string, color: string)

Dabei steht **R** für Reservationen (engl. reservations), **S** für Segler (engl. sailors) und **B** für Boote (engl. boats). Die konkreten Instanzen sind nachfolgend aufgelistet:

R					
$\underline{\operatorname{sid}}$	$\underline{\text{bid}}$	day			
22	101	10.10.06			
22	102	10.10.06			
22	103	10.08.06			
22	104	10.07.06			
31	102	11.10.06			
31	103	11.06.06			
31	104	11.12.06			
64	101	9.05.06			
64	102	9.08.06			
74	103	9.08.06			

$oxed{\mathbf{S}}$						
$\underline{\operatorname{sid}}$	sname	rating	age			
22	Dustin	7	45.0			
29	Brutus	1	33.0			
31	Lubber	8	55.5			
32	Andy	8	35.0			
58	Rusty	10	35.0			
64	Horatio	7	35.0			
71	Zorba	10	16.0			
74	Horatio	9	35.0			
85	Art	3	25.5			
95	Bob	3	63.5			

В					
$\underline{\text{bid}}$	bname	color			
101	Interlake	blue			
102	Interlake	red			
103	Clipper	green			
104	Marine	red			

Stellen sie die folgenden Queries als Ausdrücke der Relationenalgebra dar. Versuchen sie auch einen dazu äquivalenten Ausdruck anzugeben!

- (a) Finden sie die Namen der Segler, die ein rotes Boot reserivert haben.

 Projektion[sname](S > Projektion[sid](R > Projektion[bid](Selektion[color=red](B))))
- (b) Finden sie die Farbe der Boote, die von Lubber reserviert wurden. Projektion[color(]B > Projektion[bid](R > Projektion[sid](Selektion[sname=Lubber](S))))
- (c) Finden sie die Namen der Segler, die wenigstens ein Boot reserviert haben. Projektion[sname](Projektion[sid](R) >< S)

Aufgabe 3

Betrachte wiederum die in der Aufgabe 2 definierten Relationen \mathbf{R} , \mathbf{S} und \mathbf{B} . Wiederum sollen die folgenden Queries als Ausdrücke der Relationenalgebra dargestellt werden und es soll versucht werden, auch äquivalenten Ausdrücke aufzuschreiben.

- (a) Finde die Namen der Segler, die ein rotes oder grünes Boot reserviert haben.

 Projektion[sname](S > Projektion[sid](R > Projektion[bid](Selektion[color=red v color=green](B))))
- (b) Finde die Namen der Segler, die ein rotes und grünes Boot reserviert haben. Projektion[sname](S > Projektion[sid](R > Projektion[bid](Selektion[color=red ^ color=green](B))))
- (c) Finde die Namen der Segler, die wenigstens zwei Boote reserviert haben.

Aufgabe 4

Betrachte wiederum die in der Aufgabe 2 definierten Relationen \mathbf{R} , \mathbf{S} und \mathbf{B} . Wiederum sollen die folgenden Queries als Ausdrücke der Relationenalgebra dargestellt werden und es soll versucht werden, auch äquivalenten Ausdrücke aufzuschreiben.

- (a) Finde die sid's der Segler mit einem Alter über 20, die kein rotes Boot resviert haben. Projektion[sid](Selektion[age > 20](S)) / Projektion[sid](R > Selektion[color=red](B))
- (b) Finde die Namen der Segler, die alle Boote reserviert haben. $\frac{\mathsf{Projetkion[sname](S} \times \mathsf{Projektion[sid](R} \div \mathsf{Projektion[bid](B)))}{\mathsf{Projetkion[sid](R} \div \mathsf{Projektion[bid](B)))} }$
- (c) Finde die Namen der Segler, die alle Boote mit dem Namen *Interlake* reserviert haben. Projetkion[sname](S > Projektion[sid](R ÷ Projektion[bid](Selektion[bname=Interlake](B))))

Aufgabe 5

Zeichnen sie die Query-Trees für die Ausdrücke der Relationenalgebra aus Aufgaben 2-4. Schätzen sie ab, welcher der äquivalenten Ausdrücke der effizienteste ist.

Viel Vergnügen!