Study of Exoplanets

A Journey Through Data & Space

Team Members

Anand Kumar | Atharva Yeola | Colin Zhong | Rohan Sreedhar | Wang Liu

Table of contents

01 Introduction

Dataset Details & Overview of our work

03 Discovery Viz.

Visualising the Exoplanet Discovery Details

02 Planet Viz.

Visualising the Exoplanet features and inferring from them

04 Prediction

Predicting key exoplanet features using ML models

INTRODUCTION

Dataset Details & Overview

NASA Dataset on Discovered Planets, 1992-2023

Planet Info

- o[†] Name
- o Density (g/cm³)
- Orbital period (days)
- SemiMajor axis (au)
- Eccentricity
- Radial Velocity (m/s)
- Transit depth (%)

System Position

- Distance from Earth (parsec)
- Right Ascension (dec)
- Declination (dec)
- System Rotational Velocity (km/s)

Discovery

- Methods
- Year
- Telescope
- Locale
- o+ Facility

Overview of our Work

01 | Planet Viz.

Visualizing and drawing inference from the planet info

02 | Discovery Viz.

Using discovery data, to obtain interesting insights

03 | Prediction

Predicting important exoplanet features using ML models.

02

PLANET VISUALIZATION

Visualising the Exoplanet features

Exoplanet Interactive Visualisation

Exoplanets Discovery Year, Distance and Method

Planet Discovery Methods

Planet Discovery Methods – Without Transit

Detections Via Radial Velocity

Equivolume Histogram

Histogram of Exoplanets Discovered for Equivolume Bins

Number of Planets

03

DISCOVERY VISUALIZATION

Visualising the Exoplanet Discovery Details

Discovery Facility and Count

Discovery Facility and Count

- Kepler emerges as the leading facility
- Top 3 are satellite telescopes

Distribution between Telescopes & Instruments

Discovery Facility, Method and Locale

Discovery Instrument

Discovery Telescope

Ground-discovered planets often involve a variety of instruments, and telescopes.

Ground Discovery Facilities on Map

04

PREDICTION

Predicting key exoplanet features using ML models

Predicting the Density of Exoplanets

Why?

2. Helps to identify earth-like planets and observe them keenly

How?

Input Features & Models Tested

Easy to obtain Exoplanet features

- Orbital period (days)
- SemiMajor axis (au)
- Eccentricity
- Radial Velocity (m/s)
- Transit depth (%)
- System Rotational Velocity (km/s)

Models Tested

- Linear Regression
- Random Forest
- XGBoost

Tráin - Test Split

- Train Dataset: Nearby Exoplanets(<2000 parsecs)
- Test Dataset: Further away
 Exoplanets (>2000 parsecs)

Mean Squared Error (MSE) Comparison for all Models

Feature Importance of Random Forest & XGBoost

- XGBoost is more robust.
- It doesn't depend on transit depth alone

Thanks!

