# CAR - Dag 4

C, Arduino & Robots

#### Huiswerk

▶ 1. Drukknop voor groen licht (als het rood is).



#### Huiswerk...

 Drukknop voor groen licht (als het rood is).



```
les_4_p10_stoplicht_3
void setup() {
  pinMode (5, OUTPUT);
                               // rode
                                         led
  pinMode(6, OUTPUT);
                               // gele
                                         led
  pinMode (7, OUTPUT);
                               // groene led
  pinMode(11, INPUT PULLUP); // knop input
                                                pull-up
  // start serial
  Serial.begin(115200);
  Serial.println("Hallo arduino wereld.");
int Toestand = 0;
int Tijd = 0;
void loop() {
  delay(100);
  Tijd = Tijd + 1;
  Serial.println(Tijd);
  switch (Toestand) {
    case 0 : { // rood licht
      // rood
                            geel
                                                   groen
      digitalWrite(5, 1); digitalWrite(6, 0);
                                                  digitalWrite(7, 0);
      if (Tijd > 20) {
        Tijd = 0;
        Toestand = 1;
      if (digitalRead(11) == 0) { // sop ingedrukt?
        Tijd = 0;
        Toestand = 1;
      break:
```

#### Huiswerk...

Voorspel de output

```
les_3_p60_puzzel
void setup() {
 // start serial
  Serial.begin(115200);
  Serial.println("Hallo arduino wereld.");
int State = 7:
void loop() {
  delay(100);
  Serial.print("***");
  switch(State) {
    case 0 : {
      Serial.println("Nul ");
      State = 1;
    case 1 : {
      Serial.println("Een ");
      State = 2;
     break:
    case 2 : {
      Serial.println("Twee");
      State = 0;
    default : {
      Serial.println("Ongeldige state");
      State = 1;
      break:
  } // einde van switch
```

#### Huiswerk...

```
Hallo arduino wereld.

***Ongeldige state

***Een

***Twee
Ongeldige state

***Een

***Twee
Ongeldige state

***Een

***Twee
Ongeldige state

***Een

***Twee
Ongeldige state

***Twee
Ongeldige state

***Een

***Twee
Ongeldige state
```

```
les_3_p60_puzzel
void setup() {
  // start serial
  Serial.begin(115200);
  Serial.println("Hallo arduino wereld.");
int State = 7:
void loop() {
  delay(100);
  Serial.print("***");
  switch(State) {
    case O : {
      Serial.println("Nul ");
      State = 1;
    case 1 : {
      Serial.println("Een ");
      State = 2;
     break:
    case 2 : {
      Serial.println("Twee");
      State = 0;
    default : (
      Serial.println("Ongeldige state");
      State = 1;
      break:
  } // einde van switch
```

Duidelijke manier om informatie te geven vanuit je programma.

```
les_4_p20_printf
                                         // to support printf
                                         int my putc(char c, FILE *t) {
                                           Serial.write(c);
Toevoegen
                                         // the setup routine runs once when you press reset:
                                         void setup() {
                                           // start serial
                                           Serial.begin(115200);
                                           fdevopen( &my putc, 0);
                                                                    // vice O (stdout) output naar my putc()
                                           printf("Opstarten gereed."
Gebruiken
                                         int Seconde:
                                         void loop() {
                                           delay(1000);
                                           Seconde = Seconde + 1;
                                          printf("Weer een seconde.
```

NewLine (\n)



```
les_4_p25_printf_lf§
// to support printf
int my putc(char c, FILE *t) {
 Serial.write(c);
// the setup routine runs once when you press reset:
void setup() {
 // start serial
  Serial.begin(115200);
  fdevopen( &my putc, 0); // device 0 (stdout) output naar my_putc()
  printf("Opstarten gereet.\nJa, echt
int Seconde:
void loop() {
 delay(1000);
  Seconde = Seconde + 1:
  printf("Weer een second(.\n
```

#### Meer escape karakters

| Escape sequence | Connotation                |  |
|-----------------|----------------------------|--|
| \n              | Newline (Line Feed)        |  |
| \r              | Carriage Return            |  |
| \t              | Horizontal Tab             |  |
| 11              | Backslash                  |  |
| \"              | Single quotation mark      |  |
| \"              | Double quotation mark      |  |
| \0              | Null (string terminator)   |  |
| \x <i>hh</i>    | Hexadecimal representation |  |

http://en.wikipedia.org/wiki/Escape\_sequences\_in\_C

- Variabele (waarde) als parameter.
- %d => decimale waarde in format string
- %x => hexadecimale waarde

#### Netjes onder elkaar:

- %8d => gebruik (minimaal) 8 posities
- > %08d => gebruik (minimaal) 8 posities met voorloop nullen.

```
int Seconde;
void loop() {
  delay(1000);
  Seconde = Seconde + 1;
  printf("Er zijr %d deconden verstreken sinds reset.\n" Seconde
}
```

### while-loop

```
int teller = 0;
while (teller < 6) {
  teller = teller + 1;
  printf("Teller is %d\n", teller);
}</pre>
```

### Oefening: while-loop (1)

```
les_4_p50_while
// to support printf
int my putc(char c, FILE *t) {
 return Serial.write(c);
// the setup routine runs once when you press reset:
void setup() {
 // start serial
 Serial.begin(115200);
 fdevopen( amy putc, 0); // device 0 (stdout) output naar my putc()
 printf("Opstarten gereed.\n");
void loop() {
 int teller = 0;
 while (teller < 6) {</pre>
    teller = teller + 1;
   printf("Teller is %d\n", teller);
  delay(5000);
```

#### Resultaat: while-loop (1)

```
les 4 p50 while
// to support printf
int my putc(char c, FILE *t) {
  return Serial.write(c);
// the setup routine runs once when you press reset:
void setup() {
 // start serial
 Serial.begin(115200);
 fdevopen( amy putc, 0); // device 0 (stdout) output naar my putc()
 printf("Opstarten gereed.\n");
void loop() {
 int teller = 0;
 while (teller < 6) {
    teller = teller + 1;
   printf("Teller is %d\n", teller);
  delay(5000);
```



### Oefening: while-loop (2)

```
les_4_p51_while
// to support printf
int my putc(char c, FILE *t) {
 return Serial.write(c);
// the setup routine runs once when you press reset:
void setup() {
 // start serial
 Serial.begin(115200);
 fdevopen( &my putc, 0); // device 0 (stdout) output naar my putc()
 printf("Opstarten
                                             if (teller == 1) continue;
                                            printf("###\n");
void loop() {
 int teller = 0;
 while (teller < 6) {
   teller = teller + 1;
   nrintf("Tollor is %d\n", teller);
   if (teller == 1) continue;
   printf("###\n");
  delay(5000);
```

#### Resultaat: while-loop (2)

```
les_4_p51_while
// to support printf
int my putc(char c, FILE *t) {
 return Serial.write(c);
// the setup routine runs once when you press reset:
void setup() {
 // start serial
 Serial.begin(115200);
  fdevopen( amy putc, 0); // device 0 (stdout) output naar my putc()
 printf("Opstarten gereed.\n");
void loop() {
  int teller = 0:
  while (teller < 6) { ←
    teller = teller + 1;
   printf("Teller is %d\n", teller);
   if (teller == 1) continue;
   printf("###\n");
  delay(5000);
```



# Oefening while-loop (3)

```
les_4_p52_while
void loop() {
                                    if (teller == 4) break;
                                    printf("***\n");
  int teller = 0;
  while (teller < 6) {</pre>
   teller = teller + 1:
   printf("Teller is %d\n" /teller);
   if (teller == 1) continue;
   print( "###\II");
   if (teller == 4) break;
   printf("***\n");
  delay(5000);
```

### Resultaat while-loop (3)

```
les_4_p52_while
void loop() {
  int teller = 0;
  while (teller < 6)◀
    teller = teller + 1:
    printf("Teller is %d\n", teller);
    if (teller == 1) continue;
   printf("###\n");
    if (teller == 4) break; ___
    printf("***\n");
  delay(5000);
```

```
© COM16
Opstarten gereed.
Teller is 1
Teller is 2
###
* * *
Teller is 3
###
Teller is 4
### 4
Teller is 1 ←
Teller is 2
###
* * *
Teller is 3
```

#### Voor thuis: while-loop (4)

Test het programma met verkorte notatie.

```
teller = teller + 1;

doet hetzelfde als

teller += 1;

doet hetzelfde als

++teller;

doet hetzelfde als

teller++;
```

Niet helemaal hetzelfde, maar in dit geval hetzelfde resultaat.

# Sharp sensor

- Driehoeksmeting
- Analoge uitgang





### Analoge ingang

- Lees analoge waarde
- Bereik 0...1023 voor 0...5V
- Pin A0..A5

```
les_4_p60_analoog_in

// the setup routine runs once when you press reset:
void setup() {
    // start serial
    Serial.begin(115200);

    fdevopen( &my_putc, 0); // device 0 (stdout) output naar my_putc()
    printf("Opstarten gereed.\n");
}

void loop() {
    delay(200);
    int SensorValue = analogRead(A2);
    printf("Sensor input is ta;n", SensorValue);
}
```

# Oefening: Analoge ingang



```
les_4_p60_analoog_in

void loop() {
  delay(200);

  int SensorValue = analogRead(A2);
  printf("Sensor input is %d\n", SensorValue);
}
```



# Sharp sensor - lineair 1

| Afstand | ADC |
|---------|-----|
| 5       | 646 |
| 10      | 510 |
| 15      | 358 |
| 20      | 277 |
| 25      | 225 |
| 30      | 193 |
| 35      | 168 |
| 40      | 148 |
| 45      | 136 |
| 50      | 122 |
| 55      | 115 |
| 60      | 106 |
|         |     |



### Sharp sensor – lineair 2

#### L = Constante /ADC

| ADC |
|-----|
| 646 |
| 510 |
| 358 |
| 277 |
| 225 |
| 193 |
| 168 |
| 148 |
| 136 |
| 122 |
| 115 |
| 106 |
|     |



### Sharp sensor – lineair 3

L = Constante /ADC Constante = L \* ADC(L)

| ADC |
|-----|
| 646 |
| 510 |
| 358 |
| 277 |
| 225 |
| 193 |
| 168 |
| 148 |
| 136 |
| 122 |
| 115 |
| 106 |
|     |



### Sharp sensor - lineair 4

L = Constante /ADC Constante = L \* ADC(L) Constante = 40 \* 148



### Sharp sensor - linear 5

L = (40 \* 148) / ADC

| Afstand | ADC | L        |
|---------|-----|----------|
| 5       | 646 | 9.164087 |
| 10      | 510 | 11.60784 |
| 15      | 358 | 16.53631 |
| 20      | 277 | 21.37184 |
| 25      | 225 | 26.31111 |
| 30      | 193 | 30.67358 |
| 35      | 168 | 35.2381  |
| 40      | 148 | 40       |
| 45      | 136 | 43.52941 |
| 50      | 122 | 48.52459 |
| 55      | 115 | 51.47826 |
| 60      | 106 | 55.84906 |





# Oefening - Analoog 2

Formule: Afstand = (40 \* 148) / SensorValue

#### Opgave:

- Reken de waarde van de analoge ingang (SensorValue) om naar Afstand (in cm).
- Print SensorValue en Afstand.

```
printf("Sensor input is %d, Afstand: %d\n", SensorValue, Afstand);
```

### Resultaat- Analoog 2

```
les_4_p65_analoog_cm
// to support printf
int my putc(char c, FILE *t) {
 return Serial.write(c);
// the setup routine runs once when you press reset:
void setup() {
  // start serial
  Serial.begin(115200);
  fdevopen( amy putc, 0); // device 0 (stdout) output naar my putc()
 printf("Opstarten gereed.\n");
void loop() {
  int SensorValue = analogRead(A2);
  int Afstand = (40*148) / SensorValue;
                                              SensorValue, Afstand);
 printf("Sensor input is %d,
```

#### Afstand functie

```
les_4_p66_analoog_cm
// to support printf
int my putc(char c, FILE *t) {
 return Serial.write(c);
// the setup routine runs once when you press reset:
void setup() {
 // start serial
 Serial.begin(115200);
  fdevopen( amy putc, 0); // device 0 (stdout) output naar my_putc()
 printf("Opstarten gereed.\n");
void loop() {
  int Centimeters = SharpAfstand(A2);
  printf("Gengor Afstand: %d)n" Contimeters);
int SharpAfstand(int Pin)
  int SensorValue = analogRead(Pin);
  int Afstand = (40*148) / SensorValue;
  return Afstand:
```

### PWM uitgang

- PWM = Pulsebreedte.
- 'Soort' analoge output
- Sturing van motoren en dimmen van led's
- Bereik 0...255





### Oefening -PWM

- Stuur de PWM uitgang aan met 3 \* afstand (in cm)
- Gebruik de functie analogWrite()
- led op uitgang D6
- print sensorwaarde (raw), afstand & pwm waarde

### Resultaat- Analoog in & PWM

```
les_4_p70_analoog_in_pwm
// to support printf
int my putc(char c, FILE *t) {
  return Serial.write(c);
// the setup routine runs once when you press reset:
void setup() {
 // start serial
 Serial.begin(115200);
  fdevopen( amy putc, 0); // device 0 (stdout) output near my putc()
 printf("Opstarten gereed.\n");
void loop() {
  int SensorValue = analogRead(A2);
  int Material (40 140) / SangerValue;
  int PwmValue = Afstand * 3;
  analogWrite(6, PwmValue);
 printf("Sensor input i (%d,)
                                                                sensorValue, Afstand, PwmValue);
```

#### Voor thuis

- 1. Maak de onderstaande statemachine voor PWM aansturing van de LED.
- Loop tijd is 10 ms.



#### State acties:

- State 0: Pwm = 0
- State 1: verhoog Pwm in stapjes van 2
- State 2: verhoog teller Duur met 1, te beginnen bij 0.
- State 3: verlaag Pwm in stapjes van 1.

#### Voor thuis...

#### 2. Voorspel de output

Opmerking: optionele opgave, wordt volgende keer niet besproken.

```
les 4 p80 puzzel
int my putc(char c, FILE *t) {
 return Serial.write(c);
void setup() {
 Serial.begin(115200);
 fdevopen( &my putc, 0); // device 0 (stdout) output naar my p
 printf("Opstarten gereed.\n");
 printf("* %d *\n", 123);
 printf("* %6d *\n", 123);
 printf("* %06d *\n", 123);
 printf("* %-6d *\n", 123);
 printf("* 0x%02x *\n", 123);
 printf("* 0x%02X *\n", 123);
 int x = 7:
 while (x) {
   printf("x: %d\n", x);
   x--;
 int y = -3;
 while (y<100) {
   printf("y: %d\n", y);
   y += 7;
 while (1) {
    delay(1000);
   printf("lus \"while (1)\"\n");
void loop() {
 delay(1000);
 printf("Hoofdlus.\n");
```

#### Voor thuis...

- 3. Bouw de robot.
- Volg de beschrijving.
- Batterijhouder op 'chassis bottom', aan de voorzijde (beperkte gewicht op kogel-wieltje).
- Gebruik volle alkaline batterijen (geen NiMh / NiCd oplaadbare batterijen).
- Ardiuno eventueel voorzichtig vastmaken op 'chassis up'. Let op: geen kortsluiting maken.
- Motoren aansluiten op +/- schroef-aansluitingen op het motorshield
- Motor test programma MotorTest\_Rev3.ino
- Controleer of beweging wiel overeen komt met tekst op console

#### Voor thuis...

3. Bouw de robot (vervolg).

Sharp sensor

horizontaal monteren

Dag 5 oefeningen:

- eerst: sharp sensor recht vooruit
- vervolg: schuin naar rechts voor (ca 45 graden).

#### Problemen? bericht op

https://groups.google.com/forum/#!forum/hcc\_robotmc zodat we het voor de start van de volgende les op kunnen lossen!

#### Tot slot

Volgende keer starten we een uur vroeger, om 12.00