

CSci 5551 Introduction to Intelligent Robotics Systems

Rotations "round 'n round we go"

Notation Differences

$$R_{01} \equiv_1^0 R$$

$$R_{AB} \equiv_B^A R$$

Exercise

Find the rotation matrix which relates frame F_1 to frame F_0 , given that F_1 is established by a rotation of θ about the y_0 axis (the axis along j_0).

Step 1 – compute the elements of R

$$\begin{split} &i_{o} \cdot i_{1} = \cos \theta \\ &i_{o} \cdot j_{1} = 0 \\ &i_{o} \cdot k_{1} = \cos (\pi/2 - \theta) = -\sin \pi/2 \sin (-\theta) = \sin (\theta) \\ &j_{o} \cdot i_{1} = 0 \\ &j_{o} \cdot j_{1} = 1 \\ &j_{o} \cdot k_{1} = 0 \\ &k_{o} \cdot i_{1} = \cos (\pi/2 + \theta) = -\sin (\theta) \\ &k_{o} \cdot j_{1} = 0 \\ &k_{o} \cdot k_{1} = \cos \theta \end{split}$$

Step 2 – represent R

$$R_{01} = \begin{bmatrix} i_0 \cdot i_1 & i_0 \cdot j_1 & i_0 \cdot k_1 \\ j_0 \cdot i_1 & j_0 \cdot j_1 & j_0 \cdot k_1 \\ k_0 \cdot i_1 & k_0 \cdot j_1 & k_0 \cdot k_1 \end{bmatrix} = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}$$

Exercise #2

Given the two frames F_0 and F_1 described in the previous exercise, and given a physical vector \underline{a} described as vector \underline{a}^1 in frame F_1 , find the corresponding vector \underline{a}^0 in frame F_0 .

Formulate first

From our previous discussion:

$$\underline{a} = F_1^T a^1$$

$$a^0 = F_0 \cdot \underline{a}$$

$$a^0 = F_0 \cdot F_1^T a^1$$

$$a^0 = R_{01} a^1$$

We already know R_{01}

$$R_{01} = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}$$

Substituting for R₀₁

$$a^{0} = \begin{bmatrix} a_{1x} \cos \theta + a_{1z} \sin \theta \\ a_{1y} \\ -a_{1x} \sin \theta + a_{1z} \cos \theta \end{bmatrix}$$

Basic Rotation Matrices

$$R_x(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix}$$

$$R_y(\theta) = \begin{bmatrix} cos(\theta) & 0 & sin(\theta) \\ 0 & 1 & 0 \\ -sin(\theta) & 0 & cos(\theta) \end{bmatrix}$$

$$R_z(\theta) = \begin{bmatrix} cos(\theta) & -sin(\theta) & 0\\ sin(\theta) & cos(\theta) & 0\\ 0 & 0 & 1 \end{bmatrix}$$

Composition of Rotations

Establish how rotations can be composed to represent a <u>series of rotations</u>.

We know:

$$\mathbf{p^0} = \mathbf{R_{01}p^1}$$

And by that logic:

$$\mathbf{p^1} = \mathbf{R_{12}p^2}$$

Combining:

$$\mathbf{p^0} = \mathbf{R_{01}} \mathbf{R_{12}} \mathbf{p^2}$$

Composition of Rotations

Thus we can state that, given two consecutive **current frame** rotations R_{01} and R_{12} (namely, a rotation between $\boldsymbol{F_0}$ and $\boldsymbol{F_1}$, followed by a rotation between $\boldsymbol{F_0}$ and $\boldsymbol{F_2}$ can be represented by:

$$R_{02} = R_{01}R_{12}$$

In general, **current frame** rotations are denoted by

$$R_{ik} = R_{i,i+1}R_{i+1,i+2}\cdots R_{k-1,k}$$

An example of rotation composition

• Find the rotation matrix R which represents a rotation of φ about \mathbf{x}_0 (\mathbf{i}_0) followed by a rotation of - θ about the new \mathbf{y}_1 (\mathbf{j}_1)

An example of rotation composition

An example of rotation composition

• Find the rotation matrix R which represents a rotation of φ about \mathbf{x}_0 (\mathbf{i}_0) followed by a rotation of $-\theta$ about the new \mathbf{y}_1 (\mathbf{j}_1)

Two successive "current frame" rotations

$$R_{02} = R_x(\phi) R_y(-\theta)$$

Where:

$$R_{02} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\phi & -\sin\phi \\ 0 & \sin\phi & \cos\phi \end{bmatrix} \begin{bmatrix} \cos\theta & 0 & -\sin\theta \\ 0 & 1 & 0 \\ \sin\theta & 0 & \cos\theta \end{bmatrix} = \begin{bmatrix} c\theta & 0 & -s\theta \\ -s\phi s\theta & c\phi & -s\phi c\theta \\ c\phi s\theta & s\phi & c\phi c\theta \end{bmatrix}$$

Important to Remember

Please note: the sequence of the matrix multiplication is crucial.

$$R_x(\phi)R_y(\theta) \neq R_y(\theta)R_x(\phi)$$

Unless

$$R_x \equiv R_y(\theta) \equiv I$$

Fixed Frame Rotations

In this case we are considering <u>rotating a vector</u> (and its attached frame) about <u>multiple axes</u> of the <u>same fixed frame</u>.

Rotate the vector \boldsymbol{p} about x_0 by φ (to a location \underline{p} ') followed by a rotation about y_0 by $-\theta$ to \mathbf{p} ".

both rotations are done with respect to the F_0 frame.

Consider the first rotation which moves **p** to **p**'. As in the previous example:

$$p'^0 = R_x(\phi)p^0$$

Now consider the second rotation, which moves p to p .

Substituting the value of p':

Fixed Frame Rotation -Generalized Form

$$R_{ik} = R_{k-1,k} \cdots R_{i+1,i+2} R_{i,i+1}$$

Observe

Fixed-frame (2) is in the reverse order of the current-frame (1) case:

$$R_{ik} = R_{i,i+1}R_{i+1,i+2}\cdots R_{k-1,k} \tag{1}$$

$$R_{ik} = R_{k-1,k} \cdots R_{i+1,i+2} R_{i,i+1} \tag{2}$$

Euler Angles

- Rotations in the Current Frame (Z-Y-Z)
 - Rotate φ about the current (original) z_0 axis to form a new frame F_1
 - Rotate θ about the current y_1 axis to form a new frame F_2
 - Rotate ψ about the current z_2 axis to form a new frame F_3

(Z-Y-Z) Euler Angles

(Z-Y-Z) Euler Angles

$$R_{0,3} = R_z(\phi) R_y(\theta) R_z(\psi)$$
,

$$R_{0,3} = \begin{bmatrix} \cos\phi & -\sin\phi & 0 \\ \sin\phi & \cos\phi & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix} \begin{bmatrix} \cos\psi & -\sin\psi & 0 \\ \sin\psi & \cos\psi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$R_{0,3} = \begin{bmatrix} c\phi c\theta c\psi - s\phi s\psi & -c\phi c\theta s\psi - s\phi c\psi & c\phi s\theta \\ s\phi c\theta c\psi + c\phi s\psi & -s\phi c\theta s\psi + c\phi c\psi & s\phi s\theta \\ -s\theta c\psi & s\theta s\psi & c\theta \end{bmatrix}$$

Roll-Pitch-Yaw Representations

- Frame does not move
 - But the gripper does
- Order of fixed-frame rotations:
 - Yaw about x₀
 - Pitch about y₀
 - Roll about z₀

Roll-Pitch-Yaw Representations

$$R = R_{z}(\phi)R_{y}(\theta)R_{x}(\psi)$$

$$= \begin{bmatrix} c\phi c\theta & c\phi s\theta s\psi - s\phi c\psi & c\phi s\theta c\psi + s\phi s\psi \\ s\phi c\theta & s\phi s\theta s\psi + c\phi c\psi & s\phi s\theta c\psi - c\phi s\psi \\ -s\theta & c\theta s\psi & c\theta c\psi \end{bmatrix}$$

Summary

- Representation of rotations
 - Current frame
 - Fixed frame
 - Euler Angles (Z-Y-Z)
 - Pitch-Roll-Yaw

The Subaru that sucks (dirt)

