WIRTSCHAFTSSTATISTIK MODUL 3: HÄUFIGKEITEN UND HÄUFIGKEITSVERTEILUNGEN

WS 2023/24

DR. E. MERINS

DATEN

INPUT

54.114,78188.34,65 158,650,75200,500,00 175.654,4578.850,509.955,50 145.768,50165.874,67475.358,50 89.135,89458.285,50214.554,85 165.005,6766.650,00356.765,45 55.674,00185.111,50106.112,33 405.056.35 359.660,00180.510,50253.185,80 125.865,3334.355,85309.000,00 186.169,45 258.543,38286.909,50256.770,89 110.007,45 249.867.54160.800.20118.560.35 265.878,98236.679,90226.303,89 150.117,25246.151,15175.600,00 148.890,00248.690,23166.876,28 186.440,76357.890,56100.568,45 320.689,45154,670,50 129,999,69199,568,26

OUTPUT

Umsätze der Meyer AG über die Großhändler in NRW im Jahr 2008

Umsatzklasse in Tsd. €	Anzahl Großhändler (absolute Häufigkeit)	Anteil Großhändler von Gesamt in % (relative Häufigkeit)
0 bis unter 100	7	14%
100 bis unter 200	23	46%
200 bis unter 300	12	24%
300 bis unter 400	5	10%
400 bis unter 500	3	6 %
Summe	50	100%

(Quelle: Umsatzstatistiken der Vertriebsabteilung, 2008)

Tabelle 1

Datenerhebung

Datenaufbereitung

DATENDOKUMENTATION

Formen als Dokumentation der Daten:

Einzelwerte (Einzelbeobachtungen) → ungeordnete Reihe (**Urliste**,

Rohdaten, Primärdaten) → INPUT-Blase auf der Folie 2

→ Die Urliste ist im Bereich der Statistik das direkte Ergebnis einer

<u>Datenerhebung</u>

Vorteile:

Die Urliste enthält alle Beobachtungswerte und damit: keine Auslassungen, keine Übertragungsfehler und keine verlorene Information

Nachteile:

Urlisten können in der Praxis tausende oder Millionen von Datensätze enthalten, die für sich genommen unübersichtlich und nicht auswertbar sind; außerdem können bei einer unkorrigierten Urliste noch offensichtliche Fehler, wie Zahlendreher oder unplausible Daten enthalten sein

HÄUFIGKEITSVERTEILUNGEN

Die Daten einer Urliste müssen in der Praxis also aufbereitet werden, um ihren Zweck zu erfüllen. Das geschieht meist durch das Bilden von <u>Häufigkeitsverteilungen</u>:

Schritt 1: Sortieren der Daten → geordnete Reihe nach irgendeiner Ordnung, z. B. alphabetische Ordnung der Merkmalsträger oder Größenordnung der Merkmalsausprägung

Schritt 2: Verdichten der sortierten Daten auf Merkmalsausprägungen und zählen wie oft diese vorkommen → geordnete Menge von Wertepaaren (Merkmalsausprägung und zugehörige Häufigkeit) heißt Häufigkeitsverteilung

Schritt 3: <u>Darstellen</u> tabellarisch von nach Merkmalsausprägungen sortierten Häufigkeitsverteilungen → die Häufigkeitstabelle

Für klassierte Daten:

Schritt 1: Einteilung der Werte in Klassen → klassierte Daten (Sortierung nicht nötig)

Schritt 2: <u>Verdichten</u> der klassierten Daten → Häufigkeitsverteilung für klassierte Daten (klassierte Verteilung)

Schritt 3: <u>Darstellen</u> der klassierten Daten → **Häufigkeitstabelle** für klassierte Daten

ABSOLUTE UND RELATIVE HÄUFIGKEITEN

Merkmalsausprägung und zugehörige Häufigkeit

Bezug zur Grundgesamtheit

- absolute Häufigkeit → die Anzahl des Auftretens einer bestimmten Merkmalsausprägung
- relative Häufigkeit → das Verhältnis der absoluten Häufigkeit und der Summe der Einzelhäufigkeiten

EINDIMENSIONALE HÄUFIGKEITSVERTEILUNG

n = 20 Personen

Beispiel 1:

Frage: Familienstand (Merkmal X mit j=4 Merkmalsausprägungen:

x1 = ledig, x2 = verheiratet, x3 = geschieden, x4 = verwitwet)

Antworten (Primärdaten):

ledig, verheiratet, geschieden, ledig, verheiratet, verwitwet, verheiratet, ledig, verheiratet, verwitwet, verheiratet, ledig, verheiratet, ledig, verheiratet, ledig, verheiratet, ledig, verheiratet, ledig, verheiratet

→ Verdichten in eine Häufigkeitsverteilung und Darstellen als eine Häufigkeitstabelle

		Anzahl	Anteil	Anteil in %
j	X_j	$h(x_j)$	f(x _j)	$f(x_j)$ (%)
1	ledig	6	0,30	30
2	verheiratet	9	0,45	45
3	geschieden	2	0,10	10
4	verwitwet	3	0,15	15
	Summe	20	1,00	100

EINDIMENSIONALE HÄUFIGKEITSVERTEILUNG

Beispiel 2:

Frage: Wo wohnen Sie?

Antworten: B C A B C B B B A A D k.A. A B B A k.A. A B B (k.A. = keine Antwort)

→ Verdichten in eine Häufigkeitsverteilung und Darstellen als eine Häufigkeitstabelle

i	Wohnort x _i	Anzahl h(x _i)	Anteil f(x _i) (%) (bezogen auf alle Antworten)	Anteil f(x _i) (%) (bezogen auf die gültigen Antworten)
1	А	6	30,0%	33,3%
2	В	9	45,0%	50,0%
3	С	2	10,0%	11,1%
4	D	1	5,0%	5,6%
5	k. A.	2	10,0%	-
Summe		20	100,0%	100,0%

SUMMENHÄUFIGKEITEN

→ sinnvoll nur für Rangmerkmale und metrische Merkmale

<u>absolute</u> Summenhäufigkeiten

(absolute kumulierte Häufigkeit)

$$H(x_1) = h(x_1)$$

$$H(x_2) = h(x_1) + h(x_2)$$

$$H(x_3) = h(x_1) + h(x_2) + h(x_3)$$

• •

$$H(x_i) = h(x_1) + h(x_2) + ... + h(x_i)$$

• • •

$$H(x_i) = h(x_1) + h(x_2) + ... + h(x_i) = n$$

<u>relative</u> Summenhäufigkeiten

(relative kumulierte Häufigkeit)

$$F(x_1) = f(x_1)$$

$$F(x_2) = f(x_1) + f(x_2)$$

$$F(x_3) = f(x_1) + f(x_2) + f(x_3)$$

. . .

$$F(x_i) = f(x_1) + f(x_2) + ... + f(x_i)$$

. . .

$$F(x_i) = f(x_1) + f(x_2) + ... + f(x_i) = 1 (100\%)$$

EINDIMENSIONALE HÄUFIGKEITSVERTEILUNG MIT SUMMENHÄUFIGKEITEN

→ sinnvoll nur für <u>Rangmerkmale</u> und <u>metrische</u> Merkmale

Index	Merkmals- ausprägungen	absolute Häufigkeit	relative Häufigkeit	relative Häufigkeit in %	absolute Summenhäufigkeit	relative Summenhäufigkeit	relative Summenhäufigkeit
i	X _i	h(x _i)	f(x _i)	f(x _i) (%)	H(x _i)	F(x _i)	F(x _i) (%)
1	а	28	0,11	11,0%	28	0,11	11,0%
2	b	102	0,402	40,2%	28 + 102 = 130	0,110 + 0,402 = 0,512	11,0 + 40,2 = 51,2%
3	С	61	0,24	24,0%	130 + 61 = 191	0,512 + 0,240 = 0,752	51,2 + 24,0 = 75,2%
4	d	39	0,154	15,4%	191 + 39 = 230	0,752 + 0,154 = 0,906	75,2 + 15,4 = 90,6%
5	е	11	0,043	4,3%	230 + 11 = 241	0,906 + 0,043 = 0,949	90,6 + 4,3 = 94,9%
6	f	9	0,035	3,5%	241 + 9 = 250	0,949 + 0,035 = 0,984	94,9 + 3,5 = 98,4%
7	h	3	0,012	1,2%	250 + 3 = 253	0,984 + 0,012 = 0,996	98,4 + 1,2 = 99,6%
8	g	1	0,004	0,4%	253 + 1 = 254	0,996 + 0,004 = <u>1</u>	99,6 + 0,4 = <u>100,0%</u>
Summe		n=254	1	100%	-	-	-

EINDIMENSIONALE KLASSIERTE HÄUFIGKEITSVERTEILUNG MIT SUMMENHÄUFIGKEITEN

Klasse Nr.	Klasse	absolute Häufigkeit	relative Häufigkeit in %	absolute Summen- häufigkeit	relative Summen- häufigkeit	<u>Klassenbreite</u>	<u>Klassenmitte</u>
i		h _i	f _i (%)	H_i	F _i (%)	b _i	m _i
1	0 b.u. 20	30	15%	30	15%	20 - 0 = 20	(20 + 0) /2 = 10
2	20 b.u. 50	60	30%	30 + 60 = 90	15 + 30 = 45%	50 - 20 = 30	(50 + 20) /2= 35
3	50 b.u. 100	80	40%	90 + 80 = 170	45 + 40 = 85%	100 – 50 = 50	(100 + 50) /2 = 75
4	100 b.u. 200	30	15%	170 + 30 = 200	85 + 15 = 100%	200 - 100 = 100	(200 + 100) /2 = 150
Summe		n=200	100%	-	-	-	-

Klassenbreite b_i:

Die Differenz aus der oberen und der unteren Klassengrenze heißt Klassenbreite **b** der Klasse **i**

$$\rightarrow$$
 b_i = $x_{k-1} - x_k$

Klassenmitte m_i:

Das arithmetische Mittel aus der unteren und der oberen Klassengrenze heißt Klassenmitte \mathbf{m} der Klasse $\mathbf{i} \rightarrow \mathbf{m}_{i} = 1/2 (\mathbf{x}_{k-1} + \mathbf{x}_{k})$

ZWEIDIMENSIONALE HÄUFIGKEITSVERTEILUNG

Zweidimensionale Häufigkeitsverteilung: $G \rightarrow M$ Kreuztabelle

Randverteilung: eindim.

Häufigkeits-

verteilung von M

Absolute Häufigkeiten der Merkmalsausprägungskombinationen

Relative

Spaltenhäufigkeiten (bedingte relative Häufigkeiten)

Relative

Zeilenhäufigkeiten (bedingte relative Häufigkeiten)

Relative Häufigkeiten der Merkmalsausprägungskombinationen

0			
$M/G \rightarrow$	W	m	Σ
A	400 40,0% 33,3% 20,0%	800 80,0% 66,7% 40,0%	1.200 60%
В	600 200 60,0% 20,0% 75,0% 25,0% 30,0% 10,0%		800 40%
Σ	1.000 50%	1.000 50%	2.000 100%

Randverteilung: eindim. Häufigkeitsverteilung von G

Die Verteilungsfunktion enthält die gesamte Information, die in den Daten steckt, nur die ursprüngliche Reihenfolge geht verloren

theoretische
Verteilung ist
eine
"idealisierte"
Verteilung

In der mathematischen Statistik klingt das dann in etwa wie folgt:

"Das Maximum der Abweichungen der empirischen Verteilungsfunktion von der theoretisch zugrunde liegenden konvergiert mit Wahrscheinlichkeit Eins gegen Null."

Eigenschaften:

- Die empirische Verteilungsfunktion F(x) ist (relative) Summenhäufigkeitskurve,
 relative Summenfunktion
- Die empirische Verteilungsfunktion F(x) gibt für jede beliebige reelle Zahl x den Anteil der Merkmalsträger an, für die das Merkmal X einen Wert x_i annimmt, der kleiner oder gleich x ist
- Wertebereich: $0 \le F(x) \le 1$
- F(x) ist monoton nichtfallend (steigt oder ist konstant)
- F(x) ist eine Treppenfunktion mit Sprungstellen bei $x_1, x_2, ..., x_i$
- Die Größe der Sprünge beträgt $f_i = F(x_i) F(x_{i-1})$

Treppenfunktion

Die Abbildung zeigt die **empirische Verteilungsfunktion** für das Merkmal Abitur-Notendurchschnitt. Greift man auf der x-Achse den Wert 3 heraus, so lässt sich der dazugehörige y-Wert 0.8 wie folgt interpretieren:

80 % der Abiturienten haben im schlechtesten Fall den Notendurchschnitt 3 bekommen.

Anders formuliert:

Der Notendurchschnitt ist bei 80 % der Schüler kleiner oder gleich 3.

Beispiel für eine andere Darstellung der Treppenfunktion:

EMPIRISCHE VERTEILUNGSFUNKTION BEI KLASSIERTEN DATEN

Obere Klassengrenze

EIGENSCHAFTEN DER HÄUFIGKEITSVERTEILUNGEN

Lage

Streuung

= Wölbung, Form

Schiefe

GRAFISCHE DARSTELLUNG DER HÄUFIGKEITSVERTEILUNG

Ziel:

- ein anschauliches Bild der Daten
- das Wesentliche der Verteilung aufzuzeigen

Wahlentscheidung:

- Form der grafischen Darstellung
- Achsenmaßstab
- Evtl. Ausschnitt darstellen
 - → Manipulationen sind denkbar (optische Täuschung!)
- Die am weitesten verbreiteten grafischen Darstellungsformen:
 - Säulendiagramm
 - Stabdiagramm
 - Balkendiagramm
 - Kreisdiagramm
 - Histogramm (bei klassierten Daten)

SÄULENDIAGRAMM

Säulendiagramm

- höhenproportionale Darstellungsform einer Häufigkeitsverteilung durch auf der x-Achse senkrecht stehende, nicht aneinandergrenzende Säulen (mit beliebiger Breite)
- eignet sich besonders, um wenige Ausprägungen zu veranschaulichen. Bei mehr als 15
 Kategorien leidet die Anschaulichkeit und es sind Liniendiagramme zu bevorzugen.

STABDIAGRAMM

Stabdiagramm / Liniendiagramm

- Stabdiagramm = S\u00e4ulendiagramm mit schmalen S\u00e4ulen
- Liniendiagramm = S\u00e4ulendiagramm mit sehr schmalen S\u00e4ulen in Breite einer Linie

BALKENDIAGRAMM

Balkendiagramm

- einer der am häufigsten verwendeten Diagrammtypen
- Balkendiagramm = S\u00e4ulendiagramm mit horizontalen Balken
- eignet sich sehr gut zur Darstellung von Rangfolgen (= Reihenfolge mehrerer vergleichbarer
 Objekte, deren Sortierung eine Bewertung festlegt, z.B. hier Weltrangliste in Musik)

KREISDIAGRAMM

Kreisdiagramm (Kuchen- oder Tortendiagramm)

- Kreisförmig, in mehrere Sektoren eingeteilt, wobei jeder Kreissektor einen Teilwert und der Kreis somit die Summe der Teilwerte (das Ganze) darstellt
- Faustregel: max. 7 Teilwerte, sonst unübersichtlich. Zur besseren Übersichtlichkeit die Teilwerte im Uhrzeigersinn der Größe nach sortieren
- eignet sich zur Darstellung von diskreten Daten, besonders für das Nominal- und das Ordinalskalenniveau zu empfehlen.
- Verwenden wenn:
 - nur eine Datenreihe wird dargestellt
 - keine negativen Werte auftreten
 - keine Nullwerte vorhanden sind
 - die Kategorien Teile des gesamten
 Kreisdiagramms repräsentieren

HISTOGRAMM

Histogramm

- grafische flächenproportionale Darstellung der Häufigkeiten von klassierten Daten
- Im Unterschied zum S\u00e4ulendiagramm muss bei einem Histogramm die x-Achse immer eine Skala sein, deren Werte geordnet sind und gleiche Abst\u00e4nde haben
- direkt nebeneinanderliegende Rechtecke (keine Abstände dazwischen) der Breite der jeweiligen Klasse
- Absolute oder relative Häufigkeiten der Klassen werden durch die Flächen der Rechtecke dargestellt:

 Fläche = Breite x Höhe
 - Die Breite der Rechtecke entspricht der Breite der Klasse
 - Die Höhe der Rechtecke entspricht den Klassenhäufigkeiten
 - Die Fläche eines Rechtecks = $c \cdot f(x_j)$, wobei $f(x_j)$ die relative Klassenhäufigkeit der Klasse j und c ein Proportionalitätsfaktor ist. Ist c gleich dem Stichprobenumfang (c = n), so ist die Fläche eines jeden Rechtecks gleich der absoluten Klassenhäufigkeit. Das Histogramm wird absolut genannt wenn Summe der Flächeninhalte aller Rechtecke = n. Verwendet das Histogramm die relativen Klassenhäufigkeiten (c = 1), wird das Histogramm relativ oder normiert genannt (Summe der Flächeninhalte aller Rechtecke ist 1).

HISTOGRAMM

Histogramm

Klasse	Zahl der PKW pro 1.000 Personen	absolute Häufigkeit	relative Häufigkeit	Klassen- breite	Rechteck- höhe
i		Anzahl der Länder (h _i)	Anteil der Länder (f _i)	b _i	r _i =h _i /b _i
1	0 b. 200	5	15,63 %	200-0=200	5/200=0,025
2	ü. 200 b. 300	6	18,75 %	300-200=100	6/100=0,06
3	ü. 300 b. 400	6	18,75 %	400-300=100	6/100=0,06
4	ü. 400 b. 500	9	28,12 %	500-400=100	9/100=0,09
5	ü. 500 b. 700	6	18,75 %	700-500=200	6/200=0,03
Summe		32	100 %	-	-

HISTOGRAMM

Beispiel:

Vier Histogramme für den gleichen Datensatz: die Klassenbreiten sind in jedem Histogramm gleich 2.0, aber der Beginn der ersten Klasse verschiebt sich von -6,0 über -5,5 und -5,0 auf -4,5.

Fazit: Neben dem Problem der Klassenanzahl bzw. Klassenbreite spielt also auch die Wahl der (linken) Klassengrenzen eine Rolle

Beispiel:

Segmente

Thema:

Erreichbarkeitsanalyse in der medizinischen Versorgung

Beispiel:

Wärmekarte (erzeugt mit dem Programm GIS)

Thema:

Erreichbarkeitsanalyse in der medizinischen Versorgung

Beispiel:

Punkte-Wärmekarte (erzeugt mit dem Programm GIS)

Thema:

Erreichbarkeitsanalyse in der medizinischen Versorgung

Beispiel:

Clusteranalyse mit Zentroiden (die schnellste Strecke zum roten Punkt wird genommen) (erzeugt mit dem Programm GIS)

Thema:

Erreichbarkeitsanalyse in der medizinischen Versorgung, Erreichbarkeit in Zeitlicher Abhängigkeit

Beispiel:

Netzwerkanalyse in einer geographischen Karte (erzeugt mit dem Programm GIS)

Thema:

Erreichbarkeitsanalyse in der medizinischen Versorgung. Ermittlung der Fahrzeiten anhand der realen Straßenprofile.

