- **1.** Which ones of the usual symbols of addition, subtraction, multiplication and division define an operation (composition law) on the numerical sets \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} ?
 - **2.** Let $A = \{a_1, a_2, a_3\}$. Determine the number of:
 - (i) operations on A;
 - (ii) commutative operations on A;
 - (iii) operations on A with identity element.

Generalization for a set A with n elements $(n \in \mathbb{N}^*)$.

- **3.** Decide which ones of the numerical sets \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} are groups together with the usual addition or multiplication.
 - **4.** Let "*" be the operation defined on \mathbb{R} by x * y = x + y + xy. Prove that:
 - (i) $(\mathbb{R}, *)$ is a commutative monoid.
 - (ii) The interval $[-1, \infty)$ is a stable subset of $(\mathbb{R}, *)$.
 - **5.** Let "*" be the operation defined on \mathbb{N} by x * y = g.c.d.(x, y).
 - (i) Prove that $(\mathbb{N}, *)$ is a commutative monoid.
- (ii) Show that $D_n = \{x \in \mathbb{N} \mid x/n\}$ $(n \in \mathbb{N}^*)$ is a stable subset of $(\mathbb{N}, *)$ and $(D_n, *)$ is a commutative monoid.
 - (iii) Fill in the table of the operation "*" on D_6 .
 - **6.** Determine the finite stable subsets of (\mathbb{Z}, \cdot) .
 - **7.** Let (G, \cdot) be a group. Show that:
 - (i) G is abelian $\iff \forall x, y \in G, (xy)^2 = x^2y^2.$
 - (ii) If $x^2 = 1$ for every $x \in G$, then G is abelian.
- **8.** Let "." be an operation on a set A and let $X,Y\subseteq A$. Define an operation "*" on the power set $\mathcal{P}(A)$ by

$$X * Y = \{x \cdot y \mid x \in X, y \in Y\}.$$

Prove that:

- (i) If (A, \cdot) is a monoid, then $(\mathcal{P}(A), *)$ is a monoid.
- (ii) If (A, \cdot) is a group, then in general $(\mathcal{P}(A), *)$ is not a group.

1. Let r, s, t, v be the homogeneous relations defined on the set $M = \{2, 3, 4, 5, 6\}$ by

$$x r y \Longleftrightarrow x < y$$

$$x s y \Longleftrightarrow x | y$$

$$x t y \Longleftrightarrow g.c.d.(x, y) = 1$$

$$x v y \Longleftrightarrow x \equiv y \pmod{3}.$$

Write the graphs R, S, T, V of the given relations.

- **2.** Let A and B be sets with n and m elements respectively $(m, n \in \mathbb{N}^*)$. Determine the number of:
 - (i) relations having the domain A and the codomain B;
 - (ii) homogeneous relations on A.
- **3.** Give examples of relations having each one of the properties of reflexivity, transitivity and symmetry, but not the others.
- **4.** Which ones of the properties of reflexivity, transitivity and symmetry hold for the following homogeneous relations: the strict inequality relations on \mathbb{R} , the divisibility relation on \mathbb{N} and on \mathbb{Z} , the perpendicularity relation of lines in space, the parallelism relation of lines in space, the congruence of triangles in a plane, the similarity of triangles in a plane?
- **5.** Let $M = \{1, 2, 3, 4\}$, let r_1 , r_2 be homogeneous relations on M and let π_1 , π_2 , where $R_1 = \Delta_M \cup \{(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2)\}$, $R_2 = \Delta_M \cup \{(1, 2), (1, 3)\}$, $\pi_1 = \{\{1\}, \{2\}, \{3, 4\}\}$, $\pi_2 = \{\{1\}, \{1, 2\}, \{3, 4\}\}$.
 - (i) Are r_1, r_2 equivalences on M? If yes, write the corresponding partition.
 - (ii) Are π_1, π_2 partitions on M? If yes, write the corresponding equivalence relation.
 - **6.** Define on \mathbb{C} the relations r and s by:

$$z_1 r z_2 \iff |z_1| = |z_2|$$
; $z_1 s z_2 \iff arg z_1 = arg z_2 \text{ or } z_1 = z_2 = 0$.

Prove that r and s are equivalence relations on \mathbb{C} and determine the quotient sets (partitions) \mathbb{C}/r and \mathbb{C}/s (geometric interpretation).

7. Let $n \in \mathbb{N}$. Consider the relation ρ_n on \mathbb{Z} , called the *congruence modulo* n, defined by:

$$x \rho_n y \iff n|(x-y)$$
.

Prove that ρ_n is an equivalence relation on \mathbb{Z} and determine the quotient set (partition) \mathbb{Z}/ρ_n . Discuss the cases n=0 and n=1.

- **8.** Determine all equivalence relations and all partitions on the set $M = \{1, 2, 3\}$.
- **9.** Let $M = \{0, 1, 2, 3\}$ and let $h = (\mathbb{Z}, M, H)$ be a relation, where

$$H = \{(x, y) \in \mathbb{Z} \times M \mid \exists z \in \mathbb{Z} : x = 4z + y\}.$$

Is h a function?

10. Consider the following homogeneous relations on \mathbb{N} , defined by:

$$m r n \Longleftrightarrow \exists a \in \mathbb{N} : m = 2^a n$$
,

$$m s n \iff (m = n \text{ or } m = n^2 \text{ or } n = m^2).$$

Are r and s equivalence relations?

- 1. Let M be a non-empty set and let $S_M = \{f : M \to M \mid f \text{ is bijective}\}$. Show that (S_M, \circ) is a group, called the *symmetric group* of M.
- **2.** Let M be a non-empty set and let $(R,+,\cdot)$ be a ring. Define on $R^M=\{f\mid f:M\to a\}$ R} two operations by: $\forall f, g \in R^M$,

$$f+g: M \to R$$
, $(f+g)(x) = f(x) + g(x)$, $\forall x \in M$,

$$f \cdot g : M \to R$$
, $(f \cdot g)(x) = f(x) \cdot g(x)$, $\forall x \in M$.

Show that $(R^M, +, \cdot)$ is a ring. If R is commutative or has identity, does R^M have the same property?

- **3.** Prove that $H = \{z \in \mathbb{C} \mid |z| = 1\}$ is a subgroup of (\mathbb{C}^*, \cdot) , but not of $(\mathbb{C}, +)$.
- **4.** Let $U_n = \{z \in \mathbb{C} \mid z^n = 1\}$ $(n \in \mathbb{N}^*)$ be the set of n-th roots of unity. Prove that U_n is a subgroup of (\mathbb{C}^*,\cdot) .
 - **5.** Let $n \in \mathbb{N}$, $n \geq 2$. Prove that:
 - (i) $GL_n(\mathbb{C}) = \{A \in M_n(\mathbb{C}) \mid det(A) \neq 0\}$ is a stable subset of the monoid $(M_n(\mathbb{C}), \cdot)$;
 - (ii) $(GL_n(\mathbb{C}), \cdot)$ is a group, called the general linear group of rank n;
 - (iii) $SL_n(\mathbb{C}) = \{A \in M_n(\mathbb{C}) \mid det(A) = 1\}$ is a subgroup of the group $(GL_n(\mathbb{C}), \cdot)$.
 - **6.** Show that the following sets are subrings of the corresponding rings:

 - (i) $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\} \text{ in } (\mathbb{C}, +, \cdot).$ (ii) $\mathcal{M} = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \middle| a, b, c \in \mathbb{R} \right\} \text{ in } (M_2(\mathbb{R}), +, \cdot).$
- **7.** (i) Let $f: \mathbb{C}^* \to \mathbb{R}^*$ be defined by f(z) = |z|. Show that f is a group homomorphism between (\mathbb{C}^*, \cdot) and (\mathbb{R}^*, \cdot) .
- (ii) Let $g: \mathbb{C}^* \to GL_2(\mathbb{R})$ be defined by $g(a+bi) = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$. Show that g is a group homomorphism between (\mathbb{C}^*,\cdot) and $(GL_2(\mathbb{R}),\cdot)$.
- **8.** Let $n \in \mathbb{N}$, $n \geq 2$. Prove that the groups $(\mathbb{Z}_n, +)$ of residue classes modulo n and (U_n,\cdot) of n-th roots of unity are isomorphic.
 - **9.** Let $n \in \mathbb{N}$, $n \geq 2$. Consider the ring $(\mathbb{Z}_n, +, \cdot)$ and let $\widehat{a} \in \mathbb{Z}_n^*$.
 - (i) Prove that \hat{a} is invertible \iff (a, n) = 1.
 - (ii) Deduce that $(\mathbb{Z}_n, +, \cdot)$ is a field $\iff n$ is prime.
- **10.** Let $\mathcal{M} = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \middle| a, b \in \mathbb{R} \right\} \subseteq M_2(\mathbb{R})$. Show that $(\mathcal{M}, +, \cdot)$ is a field isomorphic to $(\mathbb{C}, +, \cdot)$.

1. Let K be a field. Show that K[X] is a K-vector space, where the addition is the usual addition of polynomials and the scalar multiplication is defined as follows: $\forall k \in K$, $\forall f = a_0 + a_1 X + \dots + a_n X^n \in K[X],$

$$k \cdot f = (ka_0) + (ka_1)X + \dots + (ka_n)X^n.$$

- **2.** Let K be a field and $m, n \in \mathbb{N}$, $m, n \geq 2$. Show that $M_{m,n}(K)$ is a K-vector space, with the usual addition and scalar multiplication of matrices.
- **3.** Let K be a field, $A \neq \emptyset$ and denote $K^A = \{f \mid f : A \to K\}$. Show that K^A is a K-vector space, where the addition and the scalar multiplication are defined as follows: $\forall f, g \in K^A, \forall k \in K, f + g \in K^A, kf \in K^A,$

$$(f+g)(x) = f(x) + g(x), \quad (k \cdot f)(x) = k \cdot f(x), \forall x \in A.$$

- **4.** Let $V = \{x \in \mathbb{R} \mid x > 0\}$ and define the operations: $x \perp y = xy$ and $k \uparrow x = x^k$, $\forall k \in \mathbb{R} \text{ and } \forall x, y \in V.$ Prove that V is a vector space over \mathbb{R} .
- **5.** Let K be a field and let $V = K \times K$. Decide whether V is a K-vector space with respect to the following addition and scalar multiplication:
- (i) $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + 2y_2)$ and $k \cdot (x_1, y_1) = (kx_1, ky_1), \forall (x_1, y_1), (x_2, y_2) \in$ V and $\forall k \in K$.
- (ii) $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$ and $k \cdot (x_1, y_1) = (kx_1, y_1), \forall (x_1, y_1), (x_2, y_2) \in V$ and $\forall k \in K$.
 - **6.** Let p be a prime number and let V be a vector space over the field \mathbb{Z}_p .
 - (i) Prove that $\underbrace{x+\cdots+x}_{}=0,\,\forall x\in V.$
- (ii) Is there a scalar multiplication endowing $(\mathbb{Z}, +)$ with a structure of a vector space over \mathbb{Z}_p ?
 - 7. Which ones of the following sets are subspaces of the real vector space \mathbb{R}^3 :
 - (i) $A = \{(x, y, z) \in \mathbb{R}^3 \mid x = 0\};$
 - (ii) $B = \{(x, y, z) \in \mathbb{R}^3 \mid x = 0 \text{ or } z = 0\};$
 - (iii) $C = \{(x, y, z) \in \mathbb{R}^3 \mid x \in \mathbb{Z}\};$
 - $\begin{aligned} &(iii) \ C = \{(x,y,z) \in \mathbb{R}^3 \mid x+y+z=0\}; \\ &(iv) \ D = \{(x,y,z) \in \mathbb{R}^3 \mid x+y+z=1\}; \\ &(v) \ E = \{(x,y,z) \in \mathbb{R}^3 \mid x+y+z=1\}; \\ &(vi) \ F = \{(x,y,z) \in \mathbb{R}^3 \mid x=y=z\}? \end{aligned}$

 - 8. Which ones of the following sets are subspaces:
 - (i) [-1,1] of the real vector space \mathbb{R} ;
 - (ii) $\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$ of the real vector space \mathbb{R}^2 ;
 - (iii) $\left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \middle| a, b, c \in \mathbb{Q} \right\}$ of $\mathbb{Q}M_2(\mathbb{Q})$ or of $\mathbb{R}M_2(\mathbb{R})$;
 - (iv) $\{f: \mathbb{R} \to \mathbb{R} \mid f \text{ continuous}\}\$ of the real vector space $\mathbb{R}^{\mathbb{R}}$?
 - **9.** Which ones of the following sets are subspaces of the K-vector space K[X]:
 - (i) $K_n[X] = \{ f \in K[X] \mid \text{degree}(f) \le n \} \ (n \in \mathbb{N});$
 - (ii) $K'_n[X] = \{ f \in K[X] \mid \text{degree}(f) = n \} \ (n \in \mathbb{N}).$
- 10. Show that the set of all solutions of a homogeneous system of two equations and two unknowns with real coefficients is a subspace of the real vector space \mathbb{R}^2 .

- 1. Determine the following generated subspaces:
- $(i) < 1, X, X^2 >$ in the real vector space $\mathbb{R}[X]$

(i)
$$\langle 1, A, A \rangle$$
 in the real vector space $\mathbb{R}[A]$.
(ii) $\langle \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \rangle$ in the real vector space $M_2(\mathbb{R})$.

- **2.** Consider the following subspaces of the real vector space \mathbb{R}^3 :
- (i) $A = \{(x, y, z) \in \mathbb{R}^3 \mid x = 0\};$
- (ii) $B = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\};$ (iii) $C = \{(x, y, z) \in \mathbb{R}^3 \mid x = y = z\}.$

Write A, B, C as generated subspaces with a minimal number of generators.

3. Consider the following vectors in the real vector space \mathbb{R}^3 :

$$a = (-2, 1, 3), b = (3, -2, -1), c = (1, -1, 2), d = (-5, 3, 4), e = (-9, 5, 10).$$

Show that $\langle a, b \rangle = \langle c, d, e \rangle$.

4. Let

$$S = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\},\$$
$$T = \{(x, y, z) \in \mathbb{R}^3 \mid x = y = z\}.$$

Prove that S and T are subspaces of the real vector space \mathbb{R}^3 and $\mathbb{R}^3 = S \oplus T$.

- **5.** Let S and T be the set of all even functions and of all odd functions in $\mathbb{R}^{\mathbb{R}}$ respectively. Prove that S and T are subspaces of the real vector space $\mathbb{R}^{\mathbb{R}}$ and $\mathbb{R}^{\mathbb{R}} = S \oplus T$.
 - **6.** Let $f, g: \mathbb{R}^2 \to \mathbb{R}^2$ and $h: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by

$$f(x,y) = (x+y, x-y),$$

$$g(x,y) = (2x - y, 4x - 2y),$$

$$h(x, y, z) = (x - y, y - z, z - x).$$

Show that $f, g \in End_{\mathbb{R}}(\mathbb{R}^2)$ and $h \in End_{\mathbb{R}}(\mathbb{R}^3)$.

- 7. Which ones of the following functions are endomorphisms of the real vector space \mathbb{R}^2 :
- (i) $f: \mathbb{R}^2 \to \mathbb{R}^2$, f(x,y) = (ax + by, cx + dy), where $a, b, c, d \in \mathbb{R}$; (ii) $g: \mathbb{R}^2 \to \mathbb{R}^2$, g(x,y) = (a+x,b+y), where $a,b \in \mathbb{R}$?

(ii)
$$g: \mathbb{R}^2 \to \mathbb{R}^2$$
, $g(x,y) = (a+x,b+y)$, where $a,b \in \mathbb{R}^4$

8. Let $a \in \mathbb{R}$ and let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by

$$f(x,y) = (x\cos a - y\sin a, x\sin a + y\cos a).$$

Prove that $f \in End_{\mathbb{R}}(\mathbb{R}^2)$.

- 9. Determine the kernel and the image of the endomorphisms from Exercise 6.
- **10.** Let V be a vector space over K and $f \in End_K(V)$. Show that the set

$$S = \{ x \in V \mid f(x) = x \}$$

of fixed points of f is a subspace of V.

- **1.** Let $v_1 = (1, -1, 0)$, $v_2 = (2, 1, 1)$, $v_3 = (1, 5, 2)$ be vectors in the canonical real vector space \mathbb{R}^3 . Prove that:
 - (i) v_1, v_2, v_3 are linearly dependent and determine a dependence relationship.
 - (ii) v_1, v_2 are linearly independent.
 - 2. Prove that the following vectors are linearly independent:
 - (i) $v_1 = (1, 0, 2), v_2 = (-1, 2, 1), v_3 = (3, 1, 1)$ in \mathbb{R}^3 .
 - (ii) $v_1 = (1, 2, 3, 4), v_2 = (2, 3, 4, 1), v_3 = (3, 4, 1, 2), v_4 = (4, 1, 2, 3) \text{ in } \mathbb{R}^4.$
- **3.** Let $v_1 = (1, a, 0)$, $v_2 = (a, 1, 1)$, $v_3 = (1, 0, a)$ be vectors in \mathbb{R}^3 . Determine $a \in \mathbb{R}$ such that the vectors v_1, v_2, v_3 are linearly independent.
- **4.** Let $v_1 = (1, -2, 0, -1)$, $v_2 = (2, 1, 1, 0)$, $v_3 = (0, a, 1, 2)$ be vectors in \mathbb{R}^4 . Determine $a \in \mathbb{R}$ such that the vectors v_1, v_2, v_3 are linearly dependent.
 - **5.** Let $v_1 = (1, 1, 0), v_2 = (-1, 0, 2), v_3 = (1, 1, 1)$ be vectors in \mathbb{R}^3 .
 - (i) Show that the list (v_1, v_2, v_3) is a basis of the real vector space \mathbb{R}^3 .
- (ii) Express the vectors of the canonical basis (e_1, e_2, e_3) of \mathbb{R}^5 as a linear combination of the vectors v_1 , v_2 and v_3 .
 - (iii) Determine the coordinates of u = (1, -1, 2) in each of the two bases.
 - **6.** Let $n \in \mathbb{N}^*$. Show that the vectors

$$v_1 = (1, \dots, 1, 1), v_2 = (1, \dots, 1, 2), v_3 = (1, \dots, 1, 2, 3), \dots, v_n = (1, 2, \dots, n - 1, n)$$

form a basis of the real vector space \mathbb{R}^n and write the coordinates of a vector (x_1, \dots, x_n) in this basis.

7. Let
$$E_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $E_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $E_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $E_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, $A_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $A_2 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$, $A_3 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$, $A_4 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$. Prove that the lists (E_1, E_2, E_3, E_4) and (A_1, A_2, A_3, A_4) are bases of the real vector space $M_2(\mathbb{R})$ and determine the coordinates of $B = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}$ in each of the two bases.

- **8.** Let $\mathbb{R}_2[X] = \{f \in \mathbb{R}[X] \mid degree(f) \leq 2\}$. Show that the lists $E = (1, X, X^2)$, $B = (1, X a, (X a)^2)$ $(a \in \mathbb{R})$ are bases of the real vector space $\mathbb{R}_2[X]$ and determine the coordinates of a polynomial $f = a_0 + a_1X + a_2X^2 \in \mathbb{R}_2[X]$ in each basis.
 - **9.** Determine the number of bases of the vector space \mathbb{Z}_2^3 over \mathbb{Z}_2 .
- 10. Determine the number of elements of the general linear group $(GL_3(\mathbb{Z}_2), \cdot)$ of invertible 3×3 -matrices over \mathbb{Z}_2 .

1. Determine a basis and the dimension of the following subspaces of the real vector space \mathbb{R}^3 :

$$A = \{(x, y, z) \in \mathbb{R}^3 \mid z = 0\}$$

$$B = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}$$

$$C = \{(x, y, z) \in \mathbb{R}^3 \mid x = y = z\}.$$

- **2.** Let K be a field and $S = \{(x_1, \dots, x_n) \in K^n \mid x_1 + \dots + x_n = 0\}.$
- (i) Prove that S is a subspace of the canonical vector space K^n over K.
- (ii) Determine a basis and the dimension of S.
- **3.** Determine a basis and the dimensions of the vector spaces \mathbb{C} over \mathbb{C} and \mathbb{C} over \mathbb{R} . Prove that the set $\{1,i\}$ is linearly dependent in the vector space \mathbb{C} over \mathbb{C} and linearly independent in the vector space \mathbb{C} over \mathbb{R} .
- **4.** Let $f: \mathbb{R}^3 \to \mathbb{R}^2$ be defined by f(x, y, z) = (y, -x). Prove that f is an \mathbb{R} -linear map and determine a basis and the dimension of $Ker\ f$ and $Im\ f$.
- **5.** Let $f \in End_{\mathbb{R}}(\mathbb{R}^3)$ be defined by f(x,y,z) = (-y + 5z, x, y 5z). Determine a basis and the dimension of Ker f and Im f.
- **6.** Complete the bases of the subspaces from Exercise 1. to some bases of the real vector space \mathbb{R}^3 over \mathbb{R} .
 - 7. Determine a complement for the following subspaces:
 - (i) $A = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y + 3z = 0\}$ in the real vector space \mathbb{R}^3 ;
 - (ii) $B = \{aX + bX^3 \mid a, b \in \mathbb{R}\}\$ in the real vector space $\mathbb{R}_3[X]$.
- **8.** Let V be a vector space over K and let S,T and U be subspaces of V such that $dim(S\cap U)=dim(T\cap U)$ and dim(S+U)=dim(T+U). Prove that if $S\subseteq T$, then S=T.
 - 9. Consider the subspaces

$$S = \{(x, y, z) \in \mathbb{R}^3 \mid x = 0\},\$$
$$T = <(0, 1, 1), (1, 1, 0) >$$

of the real vector space \mathbb{R}^3 . Determine $S \cap T$ and show that $S + T = \mathbb{R}^3$.

10. Determine the dimensions of the subspaces S, T, S+T and $S \cap T$ of the real vector space $M_2(\mathbb{R})$, where

$$S = \left\langle \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \right\rangle, \qquad \quad T = \left\langle \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \right\rangle.$$

7

- 1. Let $A = \begin{pmatrix} 1 & 4 & 2 \\ 2 & 3 & 1 \\ 3 & 0 & -1 \end{pmatrix}$, $X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ and $B = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$. Show that A is invertible, determine A^{-1} and solve the linear system AX = B.
- 2. Using the Kronecker-Capelli theorem, decide if the following linear systems are compatible and then solve the compatible ones:

(i)
$$\begin{cases} x_1 + x_2 + x_3 - 2x_4 = 5 \\ 2x_1 + x_2 - 2x_3 + x_4 = 1 \\ 2x_1 - 3x_2 + x_3 + 2x_4 = 3 \end{cases}$$
 (ii)
$$\begin{cases} x_1 - 2x_2 + x_3 + x_4 = 1 \\ x_1 - 2x_2 + x_3 - x_4 = -1 \\ x_1 - 2x_2 + x_3 + 5x_4 = 5 \end{cases}$$

(iii)
$$\begin{cases} x + y + z = 3 \\ x - y + z = 1 \\ 2x - y + 2z = 3 \\ x + z = 4 \end{cases}$$

- 3. Using the Rouché theorem, decide if the systems from 2. are compatible and then solve the compatible ones.
- 4. Decide when the following linear system is compatible determinate and in that case solve it by using Cramer's method:

$$\begin{cases} ay + bx = c \\ cx + az = b \\ bz + cy = a \end{cases} (a, b, c \in \mathbb{R}).$$

Solve the following linear systems by the Gauss and Gauss-Jordan methods:

5. (i)
$$\begin{cases} 2x + 2y + 3z = 3 \\ x - y = 1 \\ -x + 2y + z = 2 \end{cases}$$
 (ii)
$$\begin{cases} 2x + 5y + z = 7 \\ x + 2y - z = 3 \\ x + y - 4z = 2 \end{cases}$$
 (iii)
$$\begin{cases} x + y + z = 3 \\ x - y + z = 1 \\ 2x - y + 2z = 3 \\ x + z = 4 \end{cases}$$

6.
$$\begin{cases} 2x_1 + x_2 + x_3 + x_4 = 1\\ x_1 + 2x_2 - x_3 + 4x_4 = 2\\ x_1 + 5x_2 - 4x_3 + 11x_4 = \lambda \end{cases} \quad (\lambda \in \mathbb{R})$$

7.
$$\begin{cases} ax + y + z = 1 \\ x + ay + z = a \\ x + y + az = a^2 \end{cases} (a \in \mathbb{R})$$

8. Determine the positive solutions of the following non-linear system:

$$\begin{cases} xyz = 1\\ x^3y^2z^2 = 27\\ \frac{z}{xy} = 81 \end{cases}$$

8