Data tidying with tidyr:: CHEAT SHEET

Tidy data is a way to organize tabular data in a consistent data structure across packages. A table is tidy if:

Each variable is in its own **column**

Each **observation**, or case, is in its own row

Preserve **cases** in vectorized operations

Tibbles

AN ENHANCED DATA FRAME

Tibbles are a table format provided by the **tibble** package. They inherit the data frame class, but have improved behaviors:

- **Subset** a new tibble with], a vector with [[and \$.
- No partial matching when subsetting columns.
- **Display** concise views of the data on one screen.

options(tibble.print_max = n, tibble.print_min = m, tibble.width = Inf) Control default display settings.

View() or **glimpse()** View the entire data set.

CONSTRUCT A TIBBLE

tibble(...) Construct by columns.

tibble(x = 1:3, y = c("a", "b", "c"))

tribble(...) Construct by rows.

Both make this tibble

as_tibble(x, ...) Convert a data frame to a tibble. enframe(x, name = "name", value = "value") Convert a named vector to a tibble. Also **deframe()**. **is_tibble(**x**)** Test whether x is a tibble.

Reshape Data - Pivot data to reorganize values into a new layout.

pivot_longer(data, cols, names to = "name". values to = "value", values drop na = FALSE)

"Lengthen" data by collapsing several columns into two. Column names move to a new names to column and values to a new values to column.

pivot_longer(table4a, cols = 2:3, names_to = "year", values_to = "cases")

pivot_wider(data, names_from = "name", values from = "value")

The inverse of pivot_longer(). "Widen" data by expanding two columns into several. One column provides the new column names, the other the values.

pivot_wider(table2, names_from = type, values_from = count)

Expand Tables

carb)

expand(data, ...) Create a new tibble with all possible combinations of the values of the variables listed in ... Drop other variables. expand(mtcars, cyl, gear,

x1 x2 x3 complete(data, ..., fill = list()) Add missing possible combinations of values of variables listed in ... Fill remaining variables with NA. complete(mtcars, cyl, gear, carb)

2000 pop

2000

table2

Split Cells - Use these functions to split or combine cells into individual, isolated values.

1	table5				
country	century	year		country	year
Α	19	99		Α	19 <mark>99</mark>
Α	20	00	\rightarrow	Α	2000
В	19	99		В	19 <mark>99</mark>
В	20	00		В	2000

2K

20M

37K

80K

174M

212K

1T

213K

2000

1999

2000

80K

212K

213K

1T

rate		country	year	cases	рор
0.7K/19M		Α	1999	0.7K	19M
2K/20M	\rightarrow	Α	2000	2K	20M
37K/172M		В	1999	37K	172
80K/174M		В	2000	80K	174
	0.7K/19M 2K/20M 37K/172M	0.7K/19M 2K/20M 37K/172M	0.7K/19M A A A A A A A A A A A A A A A A A A A	0.7K/19M A 1999 2K/20M A 2000 37K/172M B 1999	0.7K/19M A 1999 0.7K 2K/20M A 2000 2K 37K/172M B 1999 37K

				country	year	rate	
	table3	3		Α	1999	0.7K	
country	year	rate		Α	1999	19M	
Α	1999	0.7K/19M		Α	2000	2K	
Α	2000	2K/20M	\rightarrow	Α	2000	20M	
В	1999	37K/172M		В	1999	37K	
В	2000	80K/174M		В	1999	172M	
				В	2000	80K	
				В	2000	174M	

unite(data, col, ..., sep = " ", remove = TRUE, na.rm = FALSE) Collapse cells across several columns into a single column.

unite(table5, century, year, col = "year", sep = "")

separate(data, col, into, sep = "[^[:alnum:]]+", remove = TRUE, convert = FALSE, extra = "warn", fill = "warn", ...) Separate each cell in a column into several columns. Also extract().

separate(table3, rate, sep = "/", into = c("cases", "pop"))

separate rows(data, ..., sep = "[^[:alnum:].]+". convert = FALSE) Separate each cell in a column into several rows.

separate_rows(table3, rate, sep = "/")

Handle Missing Values

Drop or replace explicit missing values (NA).

drop_na(data, ...) Drop rows containing NA's in ... columns. $drop_na(x, x2)$

fill(data, ..., .direction = "down") Fill in NA's in ... columns using the next or previous value. fill(x, x2)

replace_na(data, replace) Specify a value to replace NA in selected columns. replace_na(x, list(x2 = 2))

Nested Data

A **nested data frame** stores individual tables as a list-column of data frames within a larger organizing data frame. List-columns can also be lists of vectors or lists of varying data types. Use a nested data frame to:

- Preserve relationships between observations and subsets of data. Preserve the type of the variables being nested (factors and datetimes aren't coerced to character).
- Manipulate many sub-tables at once with purrr functions like map(), map2(), or pmap() or with dplyr rowwise() grouping.

"cell" contents

CREATE NESTED DATA

nest(data, ...) Moves groups of cells into a list-column of a data frame. Use alone or with dplyr::group_by():

1. Group the data frame with **group_by()** and use **nest()** to move the groups into a list-column.

n_storms <- storms %>%
 group_by(name) %>%
 nest()

2. Use **nest(new_col = c(x, y))** to specify the columns to group using dplyr::**select()** syntax.

n_storms <- storms %>%
nest(data = c(year:long))

												yr	lat	long	
name	yr	lat	long		name	yr	lat	long				1975	27.5	-79.0	
Amv	1975	27.5	-79.0		Amy	1975	27.5	-79.0				1975	28.5	-79.0	
Amv	1975				Amy	1975	28.5	-79.0	ı	neste	d data frame	1975	29.5	-79.0	
Amv	1975				Amy	1975	29.5	-79.0		name	data	yr	lat	long	
Bob	1979	22.0	-96.0		Bob	1979	22.0	-96.0		Amy	<tibble [50x3]=""></tibble>	1979	22.0	-96.0	
Bob	1979	22.5	-95.3	→	Bob	1979	22.5	-95.3	→	Bob	<tibble [50x3]=""></tibble>	1979	22.5	-95.3	
Bob	1979	23.0	-94.6		Bob	1979	23.0	-94.6		Zeta	<tibble [50x3]=""></tibble>	1979	23.0	-94.6	
Zeta	2005	23.9	-35.6		Zeta	2005	23.9	-35.6			cibble [boxb]				
Zeta	2005	24.2	-36.1		Zeta	2005	24.2	-36.1				yr	lat	long	
Zeta	2005	24.7	-36.6		Zeta	2005	24.7	-36.6				2005		-35.6	
												2005		-36.1	
												2005	247	-36.6	

Index list-columns with [[]]. n_storms\$data[[1]]

CREATE TIBBLES WITH LIST-COLUMNS

tibble::tribble(...) Makes list-columns when needed.

tribble(~max,~seq,

3, 1:3, 4, 1:4.

5, 1:5)

max	seq
3	<int [3]=""></int>
4	<int [4]=""></int>
5	<int [5]=""></int>

tibble::tibble(...) Saves list input as list-columns.

tibble(max = c(3, 4, 5), seq = list(1:3, 1:4, 1:5))

tibble::**enframe(**x, name="name", value="value") Converts multi-level list to a tibble with list-cols. enframe(list('3'=1:3, '4'=1:4, '5'=1:5), 'max', 'seq')

OUTPUT LIST-COLUMNS FROM OTHER FUNCTIONS

dplyr::mutate(), transmute(), and summarise() will output list-columns if they return a list.

mtcars %>% group_by(cyl) %>% summarise(q = list(quantile(mpg)))

RESHAPE NESTED DATA

unnest(data, cols, ..., keep_empty = FALSE) Flatten nested columns
back to regular columns. The inverse of nest().

n storms %>% unnest(data)

unnest_longer(data, col, values_to = NULL, indices_to = NULL)
Turn each element of a list-column into a row.

starwars %>% select(name, films) %>% unnest_longer(films)

		name	1111115
		Luke	The Empire Strik
		Luke	Revenge of the S
name	films	Luke	Return of the Jed
Luke	<chr [5]=""></chr>	 C-3PO	The Empire Strik
C-3PO	<chr [6]=""></chr>	C-3PO	Attack of the Cl
R2-D2	<chr[7]></chr[7]>	C-3PO	The Phantom M
		R2-D2	The Empire Strik
		R2-D2	Attack of the Cl
		R2-D2	The Phantom M

unnest_wider(data, col) Turn each element of a list-column into a regular column.

starwars %>% select(name, films) %>% unnest_wider(films)

name	films		name	1	2	3
Luke	<chr [5]=""></chr>	\longrightarrow	Luke	The Empire	Revenge of	Return of
C-3PO	<chr [6]=""></chr>		C-3PO	The Empire	Attack of	The Phantom
R2-D2	<chr[7]></chr[7]>		R2-D2	The Empire	Attack of	The Phantom

hoist(.data, .col, ..., .remove = TRUE) Selectively pull list components out into their own top-level columns. Uses purrr::pluck() syntax for selecting from lists.

starwars %>%
select(name, films) %>%
hoist(films, first_film = 1, second_film = 2)

name	films		name	first_film	second_film	films
Luke	<chr [5]=""></chr>	\longrightarrow	Luke	The Empire	Revenge of	<chr [3]=""></chr>
C-3PO	<chr [6]=""></chr>		C-3PO	The Empire	Attack of	<chr [4]=""></chr>
R2-D2	<chr[7]></chr[7]>		R2-D2	The Empire	Attack of	<chr [5]=""></chr>

TRANSFORM NESTED DATA

A vectorized function takes a vector, transforms each element in parallel, and returns a vector of the same length. By themselves vectorized functions cannot work with lists, such as list-columns.

dplyr::rowwise(.data, ...) Group data so that each row is one group, and within the groups, elements of list-columns appear directly (accessed with [[]), not as lists of length one. When you use rowwise(), dplyr functions will seem to apply functions to list-columns in a vectorized fashion.

Apply a function to a list-column and create a new list-column.

Apply a function to a list-column and create a regular column.

Collapse multiple list-columns into a single list-column.

starwars %>%
rowwise() %>%
mutate(transport = list(append(vehicles, starships)))

Apply a function to multiple list-columns.

starwars %>% length() returns one integer per row

rowwise() %>% mutate(n_transports = length(c(vehicles, starships)))

See **purrr** package for more list functions.

