Санкт-Петербургский Политехнический университет Петра Великого

Институт прикладной математики и механики
Высшая школа прикладной математики и вычислительной физики

Отчёт по лабораторной работе 8 по дисциплине "математическая статистика"

Выполнил студент:

Аникин Александр Алексеевич, группа $3630102\80201$

Проверил:

к.ф.-м.н., доцент Баженов Александр Николаевич

Санкт-Петербург 2021

Содержание

1	Пос	танов	ка задачи	4
2	Teo	рия		5
	2.1	Крите	ерий Фишера	5
		2.1.1	Внутригрупповая дисперсия	5
		2.1.2	Межгрупповая дисперсия	5
		2.1.3	Критерий Фишера	5
3	Pea	лизац	ия	6
4	Рез	ультат	ъ	7
Л	итер	атура		9

Список иллюстраций

1	График сигнала с разбиением на области	 7
2	Гистограмма сигнала	 8

Список таблиц

1 Характерис	тики областей сигнала .						8
--------------	-------------------------	--	--	--	--	--	---

1 Постановка задачи

Провести дисперсионный анализ с применением критерия Фишера по данным регистраторов для одного сигнала (содержит 1024 элемента). Определить области однородности сигнала, переходные области, шум/фон.

2 Теория

2.1 Критерий Фишера

2.1.1 Внутригрупповая дисперсия

Внутригрупповая дисперсия:

$$s_{IntraGroup}^2 = \frac{1}{k} \sum_{i=1}^k s_i^2 = \frac{1}{k} \sum_{i=1}^k \frac{\sum_{j=1}^n (x_{ij} - \overline{X})^2}{k - 1},$$
(1)

 \overline{X} — среднее для части выборки, k — количество частей выборки, n — количество элементов в рассматриваемой части выборки. Внутригрупповая дисперсия является дисперсией сово-купности и рассматривается как среднее значение выборочных дисперсий

2.1.2 Межгрупповая дисперсия

Межгрупповая дисперсия:

$$s_{InterGroup}^2 = \frac{k}{k-1} \sum_{i=1}^k (\overline{X}_i - \overline{X})^2, \tag{2}$$

где \overline{X}_i – среднее значение i-ой подвыборки, \overline{X} – среднее значение средних значений подвыборок.

2.1.3 Критерий Фишера

Критерий Фишера:

$$F = \frac{s_{InterGroup}^2}{s_{IntraGroup}^2} \tag{3}$$

3 Реализация

Лабораторная работа выполнена на языке Python 3.8 с помощью загружаемых пакетов MatPlotLib, NumPy. Исходный код лабораторной работы находится на GitHub репозитории.

4 Результаты

Рис. 1: График сигнала с разбиением на области

Рис. 2: Гистограмма сигнала

Промежуток	Тип	Количество разбиений	Критерий Фишера
1	Фон	7	0.0571
2	Переход	6	66.8766
3	Сигнал	8	0.1285
4	Переход	6	65.3247
5	Фон	7	0.3202

Таблица 1: Характеристики областей сигнала

Критерий Фишера в областях фона и сигнала находится в окрестности 1; в областях перехода критерий много больше 1. Остюда можно сделать вывод, что промежутки "фон"и "сигнал" однородны, а промежутки "сигнал неоднородны.

Список литературы

[1] Максимов Ю.Д. Математика. Теория и практика по математической статистике. Конспект-справочник по теории вероятностей: учеб. пособие / Ю.Д. Максимов; под ред. В.И. Антонова. — СПб.: Изд-во Политехн. ун-та, 2009. — 395 с. (Математика в политехническом университете).