南开大学2018级"一元函数积分(信)"结课统考试卷(A卷)2019年1月7日

(说明:答案务必写在装订线右侧,写在装订线左侧无效。影响成绩后果自负。)

题号	_	 三	四	五.	六	七	卷面 成绩	核分 签名	复核 签名
得分									

一、选择题(每小题 4 分)

(1) 设 f(x) 是连续函数, $F(x) = \int_{1/x}^{\ln x} f(t)dt$, (x > 0),则 F'(x) = (

一 题 得分 草

(A)
$$f(\ln x) + f(1/x)$$
; (B) $f(\ln x) - f(1/x)$; (C) $(1/x)f(\ln x) + (1/x^2)f(1/x)$; (D) $(1/x)f(\ln x) - (1/x^2)f(1/x)$

(2)
$$\int \frac{dx}{\sqrt{x(1-x)}} = ($$
): (A) $\frac{1}{2} \arcsin \sqrt{x} + C$; (B) $\arcsin \sqrt{x} + C$;

(C)
$$2\arcsin(2x-1)+C$$
; (D) $\arcsin(2x-1)+C$

(3) 极限
$$\lim_{x\to 0} \frac{\int_0^x \operatorname{arcsin} t dt}{\ln(1+x^2)} = ($$

(A) 1; (B)
$$1/2$$
; (C) 2; (D) 0

(4) 设
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + 2y^2}, (x,y) \neq (0,0) \\ 0, x = y = 0 \end{cases}$$
, 则 $f(x,y)$ 在点(0,0)为():

- (A) 连续且偏导数存在; (B) 连续但不可微; (C) 不连续但偏导数存在; (D) 不连续且偏导数不存在
- (5) 设有直线 $L: \begin{cases} x+3y+2z+1=0 \\ 2x-y-10z+3=0 \end{cases}$,平面 $\pi: 4x-2y+z-2=0$,则它们的位置关系为().
 - (A) L平行于 π ; (B) $L \perp \pi$; (C) L在 π 上; (D) 不确定

(信) A4--1

二、填空题 (每小题 4分):

(1)
$$\lim_{x \to 0, y \to 0} \frac{y^2 \sin x}{2x^2 + y^2} = \underline{\hspace{1cm}}$$

- (2) 设 $\ln x = \int_{2}^{x^{2}+1} f(t)dt$, $(x \ge 1)$, 其中 f(x) 为连续函数,则 f(5) =_______
- (3) yOz 平面上的曲线 $y^2 + 8z^2 = 1$ 绕 z 轴旋转一周,所得旋转曲面的方程为_____
- (5) 曲线 $y = \frac{2}{3}x^{3/2}$ 相应于 x 从 0 到 3 的那一段弧的长度为 _____
- 三、求下列不定积分: (每小题 6 分)
- (1) $\int \cos \sqrt{x} dx$;

三题	
得分	

草

$$(3) \int \frac{2+x^2}{x^3} \cos x dx;$$

(信) A4--2

草

四、求下列定积分(每小题7分):

$$(1) \int_{0}^{1} \frac{8x}{\sqrt{1+8x}} dx;$$

(2)
$$\int_{0}^{4} x | x - 2 | dx;$$

四题

(3)
$$\int_{0}^{\pi/2} \frac{dx}{1 + \sin x + \cos x}$$

五、(8分) 设函数
$$f(x,y) = \begin{cases} (xy)\sin\frac{1}{\sqrt{x^2 + y^2}}, x^2 + y^2 > 0 \\ 0, x = y = 0 \end{cases}$$
 试讨论 $f(x,y)$ 在(0,0) 点是否连续、是否可微?

五题 得分

六、(7分) 设函数 f''(x) 在 $[0,\pi]$ 上连续,且 $f(0) = f(\pi) = 1$,试求 $\int_{0}^{\pi} [f(x) + f''(x)] \sin x dx$

六题 得分

七、(6 分) 设 f(x) 在[0,1]上连续,且满足 $\int_{0}^{1} x^{2} f(x) dx = 1$,令 $M = \max\{|f(x)|; 0 \le x \le 1\}$,

七题 得分

证明: (1) $M \ge 3$; (2) 又若 $\int_{0}^{1} xf(x)dx = 0$, 则 $M \ge 8$.