COURSE PLAN

Department :	MATHEMATICS									
Course Name & code :	ENGINEERING MATH	ENGINEERING MATHEMATICS IV_ MAT 2256								
Semester & branch:	IV SEMESTER	Sec	Second year common to CSE/ICT/CCE							
Name of the faculty:	SHS,VM,SHK, KK,ABI	SHS,VM,SHK, KK,ABB,SKV,DN ,SP, SME								
No of contact hours/week:	L	T	P	С						
	2	1	0	3						

COURSE OUTCOMES (COS)

At the	e end of this course, the student should be able to:	No. of Contact Hours	Marks	Program Outcom es (POs)	PSO	BL (Recommended)
CO1	Discuss the relevance of probability in engineering problems	5	7	1,2,8,12		1,2,3,4
CO2	Explain the concepts of random variable and probability distribution.	7	10	1,2,8,12		1,2,3,4
CO3	Identify situations where different discrete probability distributions can be applied and use suitable continuous distributions to various situations.	7	14	1,2,8,12		1,2,3,4
CO4	Understand the measures of probability distributions, point estimation and interval estimation.	12	13	1,2,8,12		1,2,3,4
CO5	Understand and apply the concept of forming a hypothesis and testing it.	7	6	1,2,8,12		1,2,3,4
	Total	50	50			

*** COURSE LEARNING OUTCOMES (CLOS)

At the	end of this course, the student should be able to:	No. of Contact Hours	Marks	Program Outcomes(POs)	Learning Outcomes (LOs)	BL (Recommended)
CLO1	Discuss the relevance of probability in engineering problems.	5	7	1,2,8,9		1,2,3,4
CLO2	Explain the concepts of random variable and probability distribution.	7	10	1,2,8.9		2,3,4
CLO3	Identify situations where different discrete	7	14	1,2,8,9		1,2,3

	probability distributions can be applied and use suitable continuous distributions to various situations.				
CLO4	Understand the measures of probability distributions, point estimation and interval estimation.	12	13	1,2,8,9	1,2,3
CLO5	Understand and apply the concept of forming a hypothesis and testing it.	7	6	1,2,8,9	3,4
	Total	50	50		

*** Applicable to programs applied for IET accreditation only.

Assessment Plan

IN – SEMESTER ASSESSMENTS Typology of S. Assessment Time **Assessment Questions** **Topics Covered Marks Weightage Schedule Method Duration No. Mode (Recommended) **MISAC** 60 Mins 15 **Objective:** 5M Bloom's Yet be L1 - L151 **In-semester** to announced Exam 1 $10 \text{ MCQs} \times \frac{1}{2} = 5 \text{ marks}$ taxonomy (B) level of the **Descriptive:** 10 M question should be (2 Questions of 2 marks L3 and above. +2 Questions of 3 marks) Assignment 1 15 days 5 $10 \text{ MCQs} \times \frac{1}{2} = 5$ Bloom's L1-L10 taxonomy (BT) level of the question should be L3 and above. Assignment 2 15 days 5 2 STQ \times 2½= 5 Bloom's L11—L20 (BT) taxonomy of level the question should be L3 and above.

2 STQ \times 2½= 5

2 STQ \times 2½= 5

Bloom's

Bloom's

taxonomy level of

taxonomy level of

question should be L3 and above.

question should be L3 and above.

(BT)

(BT)

the

the

L21—L26

L27—L34

15 days

15 days

5

5

Assignment 3

Assignment 4

		4	In-semester Exam 2	60 Mins	15	Objective: 5M $10 \text{ MCQs} \times \frac{1}{2} = 5 \text{ marks}$ Descriptive: 10 M (2 Questions of 2 marks) +2 Questions of 3 marks)	Bloom's taxonomy (BT) level of the question should be L3 and above.	Yet annour	to nced	be	L16—L31
END – SEMESTER ASSESSMENT											
1	Regular/Mak	e-U	Jp Exam	180 Mins	50	Answer all 5 full questions of 10 marks each. Each question can have 3 parts of 2/3/4/5/6 marks.	Bloom's taxonomy (BT) level of the question should be L3 and above.	17 th v semest	veek o	of the	Comprehensive examination covering full syllabus.

** Individual faculty will be entering the topics

<u>NOTE:</u> Information provided in the table is as per the In-semester assessment plan and schedule of V and VII semester B. Tech provided from Academic Section.

^{***} Individual faculty must identify the assessment method from table 3 and fill in the details.

LESSON PLAN

L No	TOPICS	Course Outcome Addressed
1	Introduction to the course, Definition and Axioms of probability.	CO1
2	Addition rule , independent events, problems.	CO1
3	Conditional probability, problems.	CO1
4	Total probability, problems.	CO1
5	Baye's Theorem with proof, problems.	CO1
6	Tutorial	CO1
7	One dimensional random variables, CDF, Mode, Median, problems.	CO2
8	Mean and Variance of one dimensional random variables, Chebyshev's inequality without proof, Problems.	CO2
9	Tutorial	CO2
10	Two dimensional Random variables, Marginal Pdf's, problems.	CO2
11	Mean and variance of discrete and continuous random variables, conditional probability function and Conditional pdf's, Problems.	CO2
12	Covariance and Correlation Co-efficient, Properties, Problems.	CO2
13	Tutorial	CO2
14	Probability distributions: Binomial distribution, mean and variance with problems	CO3
15	Poisson's distribution - mean and variance, Uniform distribution - mean and variance.	CO3
16	Tutorial	CO3
17	Normal distribution, mean and variance , problems	CO3
18	Problems on Normal distribution.	CO3
19	Gamma, Exponential and Chi- Square Distribution mean and variance.	CO3
20	Gamma, Exponential and Chi- Square Distribution: Problems.	CO3
21	Functions of one dimensional random variables, Problems.	CO4
22	Functions of two dimensional random variables, Problems.	CO4
23	F and t- distribution (Definition only) and Problems	CO4
24	Tutorial	CO4
25	Moment generating functions (mgf), Problems	CO4
26	Problems related to mgf of both continuos and discrete random variables.	CO4
27	Introduction to Sampling Theory and related problems	CO4
28	Central limit theorem with proof, Problems.	CO4
29	Problems on Central limit theorem.	CO4
30	Point estimation, problems.	CO4
31	Maximum Likelihood estimator (MLE) , problems.	CO4
32	Significance level, critical region and power of the test, Problems.	CO5
33	Testing of Hypothesis with problems	CO5
34	Chi-square test, problems	CO5
35	Best critical region, Neyman-Pearson lemma, Problems	CO5
36	Tutorial	CO5

Course Articulation Matrix

со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	3						1				1			
CO2	3	3						1				1			
CO3	2	3						1				1			
CO4	2	2						1				1			
CO5	2	1						1				1			
Articul ation Level	2.4	2.4						1				1			

FACULTY MEMBERS TEACHING THE COURSE (IF MULTIPLE SECTIONS EXIST):

FACULTY	SECTION	FACULTY	SECTION
SHS	CS(A)	ABB	IT(A)
VM	CS(B)	DN	IT(B)
SHK	CS(C)	SKV	IT(C)
KK	CS(D)	SP	CCE(A)
		VM	CCE(B)
		SME	CCE(C)

References:

- **1.** Meyer P.L. Introduction to probability and statistical applications, 2nd edition, 1980, Oxford and IBH Publishing, Delhi.
- 2. Miller, Freund and Johnson Probability and Statistics for Engineers, 8th edn, PHI, 2011.
- 3. Hogg and Craig, Introduction to Mathematical Statistics, 6th edition, Pearson education, New Dehli, 2012.
- **4.** Ross Sheldon M, Introduction to Probability and Statistics for Engineers and Scientists, Elseveir, 2010.

Submitted by: Dr. Sujatha H S

(Signature of the faculty)

Date: 6.2.2023

Approved by: Dr Sudhakara G.

(Signature of HOD)