(ii) \Rightarrow (i) k を代数閉体とし、ある $f \in k[X,Y]$ が存在して、 $V(f) = \{(0,0)\}$ と仮定する. このとき、

$$V(f) = \{(0,0)\} = V((X,Y))$$

なので、Hilbert の零点定理より、 $\sqrt{(f)}=\sqrt{(X,Y)}=(X,Y)$ が成り立つ。ここで、 $X,Y\in (X,Y)$ なので、ある n,m が存在して、 $X^n,Y^m\in (f)$ となる。ゆえに、ある $g,h\in k[X,Y]$ が存在して、 $X^n=fg$ かつ $Y^m=fh$ が成り立つ。したがって、f が定数または n=m=0 となる。f が定数の場合は明らかに矛盾であり、n=m=0 の場合は、 $g=h=f^{-1}$ なので、 $V(f)\neq\emptyset$ であることに矛盾。これらより、任意の $f\in k[X,Y]$ について、 $V(f)\neq\{(0,0)\}$ が成り立つ。

(i) \Rightarrow (ii) k は代数閉ではないので、二次以上の既約多項式 $g \in k[X]$ が存在して、g は k 上で根をもたない。 この g に対して、 $f = Y^{\deg g}g(X/Y)$ が(ii)を満たす.