Indian Institute of Technology Kanpur

Department of Mathematics and Statistics

Quiz -2 Solution (MTH305A)

Semester: 2022-2023, I

Full Marks. 20 Time. 45 Minutes

(1) Are the following statements TRUE/FALSE? Justify your answer.

(a) If $B \subset \mathbb{R}^n$ is closed, $x \in \mathbb{R}^m$ and \mathcal{O} is an open cover of $\{x\} \times B \subset \mathbb{R}^m \times \mathbb{R}^n$, then there is an open set $U_x \subset \mathbb{R}^m$ containing x such that $U \times B$ is covered by a finite number of sets in \mathcal{O} .

[3 points]

Solution.

FALSE.

Counter-example. Consider $m=1=n, B=[1,\infty)\subset\mathbb{R}, x=1\in\mathbb{R}$ and

$$N = \left\{ (x, y) \in \mathbb{R}^2 \mid y > \frac{1}{2}, |x - 1| < \frac{1}{y} \right\}.$$

Then $\mathcal{O} = \{N\}$ is open cover of $\{x\} \times B$. But for every $\epsilon > 0$,

$$(1 - \epsilon, 1 + \epsilon) \times B \not\subset N$$
.

Draw a figure for better understanding.

(b) The function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x,y) = \sqrt{|xy|}$ is not differentiable at (0,0).

Solution. TRUE

If f is differentiable at (0,0), then the function $g: \mathbb{R} \to \mathbb{R}$ defined by g(t) = f(t,t) is also differentiable at 0. But $g(t) = f(t,t) = \sqrt{t^2} = |t|$ is not differentiable at 0.

[2 points]

(2) Let $B^n = \{x \in \mathbb{R}^n \mid ||x|| < 1\}$. Consider the function $f: B^n \to \mathbb{R}^n$ defined by

$$f(x) = \frac{x}{\sqrt{1 - \|x\|^2}}.$$

- (a) f is continuously differentiable.
- (b) f is invertible.
- (c) $f^{-1}: \mathbb{R}^n \to B^n$ is also continuously differentiable.
- (d) Find a diffeomorphism $f: B_r^n(a) \to \mathbb{R}^n$, where r > 0 and $B_r^n(a) = \{x \in \mathbb{R}^n \mid ||x a|| < r\}.$

Solution.

If f(x) = y, then we have

$$\frac{x}{\sqrt{1 - \|x\|^2}} = y$$

$$\implies \frac{\|x\|}{\sqrt{1 - \|x\|^2}} = \|y\|$$

$$\implies \frac{\|x\|^2}{1 - \|x\|^2} + 1 = \|y\|^2 + 1$$

$$\implies \sqrt{1 - \|x\|^2} = \frac{1}{\sqrt{1 + \|y\|^2}}.$$

Now,
$$\frac{x}{\sqrt{1-\|x\|^2}} = y \implies x = y\sqrt{1-\|x\|^2} = \frac{y}{\sqrt{1+\|y\|^2}}$$
. Define

$$g(y) = \frac{y}{\sqrt{1 + ||y||^2}}$$
, for all $y \in \mathbb{R}^n$.

We note that $g: \mathbb{R}^n \to B^n$ is inverse of $f: B^n \to \mathbb{R}^n$.

- (a) The function $h: B^n \to \mathbb{R}$ defined by $h(x) = \sqrt{1 ||x||^2}$ is C^{∞} and no-where zero. The function $k_i: B^n \to \mathbb{R}$ defined by $k_i(x) = x_i$ is C^{∞} (note $k_i = \pi_i|_{B^n}$), $i = 1, \ldots, n$. Therefore $f_i(x) = \frac{k_i(x)}{h(x)}$ is C^{∞} . Now, it follows that $f = (f_1, \ldots, f_n)$ if C^{∞} .
- (b) g is inverse of f, hence f is invertible.
- (c) A similar argument as in part (a) shows that $f^{-1} = g$ is also C^{∞} .
- (d) The function $d: B_r^n(a) \to B^n$ defined by $d(x) = \frac{x-a}{r}$ is a diffeomorphism. Therefore, $F: B_r^n(a) \to \mathbb{R}^n$ defined by $F(x) = f \circ d(x) = \frac{x-a}{\sqrt{a^2 \|x-a\|^2}}$ is also a diffeomorphism as a composition of two diffeomorphism.

[8 points]

(3) Apply Lagrange's multiplier method to find the point on the line of intersection of the two planes $x_1 + x_2 + x_3 + 2 = 0$ and $x_1 - x_2 - x_3 - 2 = 0$ (in \mathbb{R}^3) which is nearest to the origin.

[7 points]

- Objective function: $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2$
- Constraint equations:

$$g_1(x_1, x_2, x_3) = x_1 + x_2 + x_3 + 2 = 0$$
 and $g_1(x_1, x_2, x_3) = x_1 - x_2 - x_3 - 2 = 0$.

• Lagrangian function:

$$\phi(x_1, x_2, x_3) = f(x_1, x_2, x_3) + \lambda_1 g_1(x_1, x_2, x_3) + \lambda_2 g_2(x_1, x_2, x_3)$$

$$= x_1^2 + x_2^2 + x_3^2 + \lambda_1 (x_1 + x_2 + x_3 + 2) + \lambda_2 (x_1 - x_2 - x_3 - 2)$$

$$= x_1^2 + x_2^2 + x_3^2 + (\lambda_1 + \lambda_2) x_1 + (\lambda_1 - \lambda_2) x_2 + (\lambda_1 - \lambda_2) x_3 + 2(\lambda_1 - \lambda_2).$$

• The system of equations are: $\frac{\partial \phi}{\partial x_i} = 0, i = 1, 2, 3,$ give

$$2x_1 + \lambda_1 + \lambda_2 = 0$$

$$2x_2 + \lambda_1 - \lambda_2 = 0$$

$$2x_3 + \lambda_1 - \lambda_2 = 0$$

• Solving $\frac{\partial \phi}{\partial x_i} = 0, i = 1, 2, 3$ and the constraint equations we have $(x_1, x_2, x_3) = (0, -1, -1)$ and $\lambda_1 = 1, \lambda_2 = -1$.