(3 Hours)

[Total Marks: 80]

	NB:	2)			1
	ı.	a) b) c)	Find the Laplace transform of $te^{2t} \sin 4t$. Find half-range cosine series for $6x = e^x$, $0 < x < 1$. Is $f(z) = \frac{z}{2}$ analytic?	05 05 05	ACA', O
		d)	Prove that $\nabla x(\bar{a}x\nabla \log r) = 2\frac{(\bar{a}F)^2}{r^4}$, where \bar{a} is a constant vector.	.05	
	2,	a)	Find the Z-transform of $\frac{1}{(z-5)^3}$ if $ z < 5$.	06	
		b)	If $V=3x^2y+6xy-y^3$, show that V is harmonic & find the corresponding analytic function.	06	
		c)	Obtain Fourier series for the function	08	
			$f(x) = \begin{cases} 1 + \frac{2x}{s}, -\pi \le x \le 0 \\ 1 - \frac{2x}{s}, 0 \le x \le \pi \end{cases}$ hence deduce that $\frac{\pi^2}{8} = \frac{1}{3^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$		
				122	
	3.	a)	Find L ⁻¹ $\left[\frac{(s+2)^2}{(s^2+4s+8)^2}\right]$ using convolution theorem.	06	
		b)	$l_x \sin\left(\frac{\pi x}{L}\right), \cos\left(\frac{\pi x}{L}\right), \sin\left(\frac{2\pi x}{L}\right), \cos\left(\frac{2\pi x}{L}\right), \dots$	06	,
		c)	Form an orthogonal set in (-L,L,Xarid construct an orthonormal set. Verify Green's theorem for [63x - xy²] dx + (yex + y²) dy	08	
			Where C is the closed carrie bounded by $y^2 = x & x^2 = y$.		
	4.	a)	Find Laplace transform of $f(x) = K + \frac{1}{T}$ for $0 < t < T & f(t) = f(t+T)$.	06	
			Show that the vector, $\ddot{F} = (x^2 - yz)i + (y^2 - zx)j + (z^2 - xy)k$ is	06	
		c)	irrotational and hence, find ϕ such that $F = \nabla \phi$. Find Fought series for $f(x)$ in $(0, 2\pi)$,	08	
			$f(x) = \begin{cases} x, & 0 \le x \le \pi \\ 2\pi - x, \pi \le x \le 2\pi \end{cases}$ hence deduce that		
			$\frac{\Phi^2}{2a} = \frac{1}{12} + \frac{1}{3^2} - \frac{1}{1^2} - \dots$		
	5.	3	Use Gauss's Divergence theorem to evaluate	06	
			$\sum_{i=1}^{n} \overline{F} dx$ where $\overline{F} = 2xi + xyj + zk$ over the region bounded by the cylinder x^2		
. 4		200	-3-4-2-0-2-6	06	
1		01	Find interse Z - transform of $f(x) = \frac{z}{(z-1)(z-2)}, z > 2$	06	

Q.P. Code: 540701

2

c) (i) Find
$$L^{-1} \left[\log \left(\frac{s+1}{s-1} \right) \right]$$

(ii) Find $L^{-1} \left[\frac{s+2}{s^2-4s+13} \right]$

6. a) Solve (D^2+3D+2) $y=2(t^2+t+1)$ with y(0)=2 & y'(0)=0.

solve (D-3D-2) y = 2(1-1) with y(0) = 2 & y (0) = 0.
 Find the bilinear transformation which maps the points 0, i, -2i of z-plane onto the points -4i, ∞, 0 respectively of w-plane. Also obtain fixed points of the transformation.

c) Find Fourier sine integral of

$$f(x) = \begin{cases} x, & 0 < x < 1 \\ 2 - x, 1 < x < 2 \\ 0, & x > 2 \end{cases}$$

08

06 NOW 16

1907 P.Z. MEST

857725 HOW. 10 13.4

Y. J.