Optimization Model for a SCRUM-driven Software Development Company

Generated from Entities/Relationships/Goals/Conditions/DecisionVariables CSVs ${\rm August~12,~2025}$

Contents

1	1. Sets (Entities)	2
2	2. Indices	3
3	3. Goals	4
4	4. Conditions	5
5	5. DecisionVariables	7

1 1. Sets (Entities)

- \mathcal{P} : Projects (**Project**) attributes: id, name, project_start, project_end, description, budget, status, target_audience, priority.
- \mathcal{T} : Teams (**Team**) attributes: id, name, team_size, team_start, team_status, location, team_type.
- W: Workers (Worker) attributes: id, name, first_name, email, start_date, status, availability.
- \mathcal{F} : Features (**Feature**) attributes: id, title, description, status, priority, estimated_effort.
- S: Skills (Skill) attributes: id, label, description, level, certified, category.
- \mathcal{R} : Roles (Role) attributes: id, role_name, description, area_of_responsibility.
- \mathcal{PO} : Product Owners (**ProductOwner**) attributes: id, name, email, availability.
- \mathcal{SM} : Scrum Masters (**ScrumMaster**) attributes: id, name, email, experience.
- \mathcal{PB} : Product Backlogs (**ProductBacklog**) attributes: id, created_on, last_updated, number_of_entries, status.
- SP: Sprints (**Sprint**) attributes: id, sprint_number, start_date, end_date, status, achievement_of_goal.
- SPP: Sprint Plannings (**SprintPlanning**) attributes: id, date, duration (min), moderation, outcome_documentation.
- \mathcal{DS} : Daily Scrums (**DailyScrum**) attributes: id, date, time, duration, moderation.
- SR: Sprint Reviews (**SprintReview**) attributes: id, date, duration, feedback_documentation, attendees_count.
- SRE: Sprint Retrospectives (**SprintRetrospective**) attributes: id, date, duration, improvement_actions, team_satisfaction, moderation.
- \mathcal{SBL} : Sprint Backlogs (**SprintBacklog**) attributes: id, number_of_tasks, last_updated, status, total_effort.
- SG: Sprint Goals (**SprintGoal**) attributes: id, objective_description, achievement_status, benefit.
- \mathcal{E} : Epics (**Epic**) attributes: id, title, description, priority, status, estimated effort.
- *US*: User Stories (**UserStory**) attributes: id, title, description, acceptance_criteria, priority, story_points, status.
- TSK: Tasks (Task) attributes: id, title, description, status, effort, type.
- \mathcal{DEV} : Development Snapshots (**DevelopmentSnapshot**) attributes: id, version_number, creation_date, test_status, deployment_target, documentation.
- \mathcal{BL} : Blockers (**Blocker**) attributes: id, title, description, severity, status, detected_on, resolved_on.
- \mathcal{SH} : Stakeholders (**Stakeholder**) attributes: id, name, organization, role, email, area_of_interest, influence_level, relevance_to_feature.

- VEL: Velocities (**Velocity**) attributes: id, number_of_sprints_used, avg_story_points, max_velocity, min_velocity, trend.
- \mathcal{REP} : Release Plans (**ReleasePlan**) attributes: id, version, planned_date, included_features, status.
- \mathcal{RM} : Roadmaps (**Roadmap**) attributes: id, start_date, end_date, milestones, objectives, versions.
- \mathcal{SCB} : Scrum Boards (**ScrumBoard**) attributes: id, board_type, columns, number_of_cards, last_updated.
- \mathcal{FED} : Feature Docs (**FeatureDocumentation**) attributes: id, title, description, creation_date, change_log, linked_requirements, author.

2 2. Indices

- $p \in \mathcal{P}$ (projects), $t \in \mathcal{T}$ (teams), $w \in \mathcal{W}$ (workers), $f \in \mathcal{F}$ (features), $s \in \mathcal{S}$ (skills), $r \in \mathcal{R}$ (roles).
- $po \in \mathcal{PO}$, $sm \in \mathcal{SM}$, $pb \in \mathcal{PB}$, $sp \in \mathcal{SP}$, $spp \in \mathcal{SPP}$, $ds \in \mathcal{DS}$, $sr \in \mathcal{SR}$, $sre \in \mathcal{SRE}$.
- $sbl \in \mathcal{SBL}$, $sg \in \mathcal{SG}$, $e \in \mathcal{E}$, $us \in \mathcal{US}$, $tsk \in \mathcal{TSK}$, $dev \in \mathcal{DEV}$, $bl \in \mathcal{BL}$, $sh \in \mathcal{SH}$.
- $v \in \mathcal{VEL}$, $rep \in \mathcal{REP}$, $rm \in \mathcal{RM}$, $scb \in \mathcal{SCB}$, $fed \in \mathcal{FED}$.
- Relationship-induced index maps (from *Relationships.csv*):
 - $-\mathcal{T}(p)$ teams assigned to project p (R1).
 - $\mathcal{W}(t)$ workers belonging to team t (R2).
 - $-\mathcal{S}(w)$ skills of worker w (R3).
 - $-\mathcal{R}(w)$ roles taken by worker w (R4).
 - -pb(po) the backlog managed by product owner po (R5).
 - -sm(t) the Scrum Master supporting team t (R6).
 - $-\mathcal{F}(pb)$ features in product backlog pb (R7).
 - $-\mathcal{E}(pb)$ epics in product backlog pb (R8).
 - $-\mathcal{US}(e)$ user stories in epic e (R9).
 - $-\mathcal{TSK}(us)$ tasks of user story us (R10).
 - $-\mathcal{SBL}(sp)$ sprint backlog of sprint sp (R12).
 - -sg(sp) sprint goal of sprint sp (R13).
 - $-\mathcal{TSK}(scb)$ tasks visualized on scrum board scb (R14).
 - fdoc(f) feature documentation of feature f (R15).
 - $-\mathcal{BL}(tsk)$ blockers of task tsk (R16).
 - $-\mathcal{SR}_{-}\sqrt{\neg\nabla \sqcup (sp)}$ stakeholders participating in sprint review of sprint sp (R17).
 - $-\mathcal{SRE}_{-} \mathfrak{p}(sm)$ retrospectives moderated by Scrum Master sm (R18).
 - -t(v) team to which a velocity record v refers (R19).
 - $-\mathcal{F}(rep)$ features included in release plan rep (R20).
 - -rm(rep) roadmap that contains release plan rep (R21).

- dev(sp) snapshot generated by sprint sp (R22).

Entity attributes as parameters (selected, from *Entities.csv*):

- B_p : project budget; status., priority., dates, etc.
- n_{nb}^{entries} : number_of_entries of product backlog pb.
- $spoints_{us}$: story_points of user story us; $prio_{us}$: priority of us.
- $effort_{tsk}$: effort of task tsk; $status_{tsk}$: status of task tsk.
- sev_{bl} : severity of blocker bl; $status_{bl}$: status of blocker bl.
- $avail_w$: availability of worker w; $status_w$: status of worker w.
- $level_s$: skill level; $cert_s \in \{0,1\}$: certified flag.
- dur_{spp}^{plan} : duration (min) of sprint planning spp; dur_{ds}^{daily} : duration of daily scrum ds.
- att_{sr} : attendees_count of sprint review sr; sat_{sre} : team_satisfaction of retrospective sre.
- v_v^{max} : max_velocity from velocity record v_v^{min} : min_velocity; v_v^{avg} : avg_story_points.
- exp_{sm} : experience of Scrum Master sm.

3 3. Goals

We aggregate multiple goals using a weighted-sum scalarization. For each goal g, let weight $\gamma_g > 0$ (from Weight) and sign $\sigma_g \in \{+1, -1\}$ where $\sigma_g = +1$ for GoalType=max and $\sigma_g = -1$ for GoalType=min. The master objective is:

$$\max \sum_{g \in \mathcal{G}} \sigma_g \, \gamma_g \, F_g(\text{variables; data}),$$

where F_g are the goal-specific expressions below. (Goals marked IsSum=True sum over their relevant sets.)

• G0 maximize_velocity (IsSum=True, GoalType=max, Entity=Velocity):

$$F_{G0} = \sum_{v \in \mathcal{VEL}} v_v^{\text{max}}$$
 (maximize recorded max velocity across teams; CriteriaType=1)

• G1 minimize_backlog_size (IsSum=False, GoalType=min, Entity=ProductBacklog):

$$F_{G1} = \sum_{pb \in \mathcal{PB}^{\text{active}}} n_{pb}^{\text{entries}}$$
 (minimize total entries of active PBs; CriteriaType=2)

• **G2** minimize_total_task_effort (*IsSum=True*, *GoalType=min*, Entity=**Task**):

$$F_{G2} = \sum_{us \in \mathcal{US}} \sum_{tsk \in \mathcal{TSK}(us)} \sum_{w \in \mathcal{W}} a_{w,tsk} \ effort_{tsk}$$
 (assignments drive realized effort; CriteriaType=2)

• G3 maximize_story_points (IsSum=True, GoalType=max, Entity=UserStory):

$$F_{G3} = \sum_{us \in \mathcal{US}} x_{us} \ spoints_{us}$$
 (maximize selected story points; CriteriaType=1)

• G4 maximize_team_availability (IsSum=True, GoalType=max, Entity=Worker):

$$F_{G4} = \sum_{w \in \mathcal{W}^{\text{active}}} avail_w$$
 (favor higher available capacity; CriteriaType=1)

• G5 minimize_blocker_severity (IsSum=True, GoalType=min, Entity=Blocker):

$$F_{G5} = \sum_{tsk \in \mathcal{TSK}} \sum_{bl \in \mathcal{BL}(tsk) \cap \mathcal{BL}^{\text{open}}} sev_{bl} \qquad \text{(reduce unresolved blocker risk; CriteriaType=2)}$$

• G6 maximize_skill_level_alignment (IsSum=True, GoalType=max, Entity=Skill):

$$F_{G6} = \sum_{w \in \mathcal{W}} \sum_{tsk \in \mathcal{TSK}} a_{w,tsk} \left(\sum_{s \in \mathcal{S}(w)} level_s \right)$$
 (prefer higher-skilled assignees; Criteria Type=1)

• G7 minimize_planning_time (IsSum=True, GoalType=min, Entity=SprintPlanning):

$$F_{G7} = \sum_{spp \in \mathcal{SPP}} \text{dur}_{spp}^{\text{plan}}$$
 (reduce planning overhead; CriteriaType=1)

• G8 minimize_meeting_overhead (IsSum=True, GoalType=min, Entity=DailyScrum):

$$F_{G8} = \sum_{ds \in \mathcal{DS}} \operatorname{dur}_{ds}^{\text{daily}}$$
 (reduce daily meeting time; CriteriaType=1)

• **G9** maximize_review_engagement (*IsSum=True*, *GoalType=max*, Entity=**SprintReview**):

$$F_{G9} = \sum_{cr \in SP} att_{sr}$$
 (encourage stakeholder attendance; CriteriaType=1)

• G10 maximize_team_satisfaction (IsSum=True, GoalType=max, Entity=SprintRetrospective):

$$F_{G10} = \sum_{sre \in SRE} sat_{sre}$$
 (improve team well-being; CriteriaType=1)

• G11 minimize_project_budget_use (IsSum=True, GoalType=min, Entity=Project):

$$F_{G11} = \sum_{p \in \mathcal{P}} b_p^{\text{alloc}}$$
 (limit allocated budget; CriteriaType=1)

4 4. Conditions

Logical constraints (hard if CriteriaType=2, soft/preferential if CriteriaType=1, exclusion if CriteriaType=0). Where helpful, we filter entities into condition-satisfying subsets and then constrain variables.

• C0 team_size_at_least_min (IsSum=False, GoalType=min, Entity=Team, CriteriaType=2): Logical: every staffed sprint has a minimum team size.

Mathematical: for each $sp \in \mathcal{SP}$, let N_{sp} be the staffed team size (decision variable). Then

$$N_{sp} \geq \tau_{\min}$$
.

• C1 worker_status_active_only (IsSum=False, GoalType=min, Entity=Worker, CriteriaType=0):

Logical: inactive workers cannot be assigned. Define $W^{\text{active}} = \{w \in W \mid status_w = \text{``active''}\}.$

Mathematical:

$$a_{w,tsk} = 0 \quad \forall w \in \mathcal{W} \setminus \mathcal{W}^{\text{active}}, \ \forall tsk \in \mathcal{TSK}.$$

• C2 task_status_not_done (IsSum=False, GoalType=min, Entity=Task, CriteriaType=0): Logical: tasks already done are excluded from assignment. Let $\mathcal{TSK}^{open} = \{tsk \mid status_{tsk} \neq \text{"done"}\}$.

Mathematical:

$$\sum_{w \in \mathcal{W}} a_{w,tsk} = 0 \quad \forall \, tsk \in \mathcal{TSK} \setminus \mathcal{TSK}^{\text{open}}.$$

• C3 user_story_priority_at_least (IsSum=False, GoalType=min, Entity=UserStory, CriteriaType=2):

Logical: only stories with $prio_{us} \geq \pi_{\min}$ can be selected.

Mathematical:

$$x_{us} = 0 \quad \forall us \in \mathcal{US} \text{ with } prio_{us} < \pi_{\min}.$$

• C4 epic_status_in_progress_or_new (IsSum=False, GoalType=min, Entity=Epic, CriteriaType=2):

Logical: only epics not closed are considered. Let $\mathcal{E}^{\text{open}} = \{e \in \mathcal{E} \mid status_e \in \{\text{"new"}, \text{"in-progress"}\}\}$. Mathematical: selections or priorities apply only to $\mathcal{E}^{\text{open}}$:

$$p_e^{\text{bucket}} \in \{1, \dots, 5\}$$
 only for $e \in \mathcal{E}^{\text{open}}$; $p_e^{\text{bucket}} = 0$ otherwise.

• C5 skill_certified_preferred (*IsSum=False*, *GoalType=max*, Entity=Skill, CriteriaType=1):

Logical: prefer certified skills on assignments. Let $cert_s \in \{0, 1\}$.

Soft constraint (implemented via penalty/bonus):

$$\sum_{w,tsk} a_{w,tsk} \left(\sum_{s \in \mathcal{S}(w)} cert_s \right) \ge \eta \sum_{w,tsk} a_{w,tsk},$$

for some preference threshold $\eta \in [0, |\mathcal{S}|]$.

• C6 sprint_within_date_range (IsSum=False, GoalType=min, Entity=Sprint, CriteriaType=2):

Logical: each sprint used for project p must respect project dates.

Mathematical: if sp is linked to p, then

$$start_date_{sp} \ge project_start_p, \qquad end_date_{sp} \le project_end_p.$$

• C7 backlog_status_active_only (IsSum=False, GoalType=min, Entity=ProductBacklog, CriteriaType=2):

Logical: only active PBs are considered. Define $\mathcal{PB}^{\text{active}} = \{pb \mid status_{pb} = \text{``active''}\}\$. Mathematical: all PB-driven terms (e.g., F_{G1}) use $\mathcal{PB}^{\text{active}}$ only.

• C8 blocker_status_unresolved_only (IsSum=False, GoalType=min, Entity=Blocker, CriteriaType=2):

Logical: only unresolved blockers are counted/activated. Let $\mathcal{BL}^{\text{open}} = \{bl \mid status_{bl} \neq$

"resolved" $\}$.

Mathematical:

$$\sum_{w} a_{w,tsk} \leq M \cdot \mathbb{1} \left(\mathcal{BL}(tsk) \cap \mathcal{BL}^{\text{open}} = \varnothing \right) \quad \forall \, tsk \in \mathcal{TSK},$$

where M is a sufficiently large constant and $\mathbb{K}(\cdot)$ the indicator.

• C9 scrum_master_experience_min (IsSum=False, GoalType=max, Entity=ScrumMaster, CriteriaType=2):

Logical: any assigned Scrum Master must meet a minimum experience. Mathematical:

$$z_{sm,t} = 1 \implies exp_{sm} > \xi_{\min} \quad \forall sm \in \mathcal{SM}, \ t \in \mathcal{T}.$$

• C10 release_plan_status_planned_or_active (IsSum=False, GoalType=max, Entity=ReleasePlan, CriteriaType=2):

Logical: only planned/active release plans are considered. Let $\mathcal{REP}^{use} = \{rep \mid status_{rep} \in \{\text{"planned", "active"}\}\}$.

Mathematical: feature inclusion variables y_f are counted per $rep \in \mathcal{REP}^{\text{use}}$ only.

• C11 stakeholder_influence_capped (IsSum=True, GoalType=min, Entity=Stakeholder, CriteriaType=1):

Logical: cap aggregate stakeholder influence in reviews.

Mathematical:

$$\sum_{sp \in \mathcal{SP}} \sum_{sh \in \mathcal{SR}_{-\sqrt{}} \neg \nabla \sqcup (sp)} influence_{sh} \leq \kappa.$$

Additional structural constraints from relationships (selections/assignments):

- User story—task consistency: $\sum_{tsk \in \mathcal{TSK}(us)} \sum_{w} a_{w,tsk} \leq K x_{us}$, with K large (link DV0 and DV6).
- Per-worker task cap: $\sum_{tsk \in \mathcal{TSK}} a_{w,tsk} \leq K^{\text{max}}$ for all w (DV6).
- Feature–release selection: $y_f \in \{0,1\}$ and, for any $rep \in \mathcal{REP}^{use}$, $\sum_{f \in \mathcal{F}(rep)} y_f \leq Y^{max}$ (DV2).
- Team size control: N_{sp} integer with $N_{sp} \ge \tau_{\min}$ and $N_{sp} \le \tau_{\max}$ (DV5, C0).
- Budget allocation: $\sum_{p} b_{p}^{\text{alloc}} \leq B^{\text{total}}; 0 \leq b_{p}^{\text{alloc}} \leq B_{p} \text{ (DV4)}.$

5 5. Decision Variables

Let the following decision variables be defined, reflecting *DecisionVariables.csv*. Domains and bounds follow the CSV fields.

- DV0 select_user_story: $x_{us} \in \{0,1\}$ for each $us \in \mathcal{US}$ (select story into sprint).
- DV1 assign_worker_to_task: $a_{w,tsk} \in \{0,1\}$ for each $(w,tsk) \in \mathcal{W} \times \mathcal{TSK}^{\text{open}}$ (assignment).
- DV2 choose_feature_for_release: $y_f \in \{0,1\}$ for each $f \in \mathcal{F}$ (include in next release).
- DV3 set_sprint_length_days: $L^{\text{days}} \in \mathbb{Z}$, $7 \le L^{\text{days}} \le 30$ (chosen sprint length).

- $\bullet \ \mathbf{DV4} \ \mathtt{allocate_budget_to_project} \colon \ b_p^{\mathrm{alloc}} \in \mathbb{R}_{\geq 0} \ \mathrm{for} \ p \in \mathcal{P}, \ 0 \leq b_p^{\mathrm{alloc}} \leq 10^6.$
- DV5 set_team_size: $N_{sp} \in \mathbb{Z}$ for $sp \in \mathcal{SP}, \ 3 \leq N_{sp} \leq 15$.
- DV6 set_max_tasks_per_worker: $K^{\max} \in \mathbb{Z}$, $1 \leq K^{\max} \leq 10$ (global cap).
- DV7 assign_scrum_master_to_team: $z_{sm,t} \in \{0,1\}$ for $(sm,t) \in \mathcal{SM} \times \mathcal{T}$ with $\sum_{sm} z_{sm,t} = 1$ if team t is staffed.
- **DV8** allow_overtime: $o \in \{0, 1\}$ (overtime allowance flag; may scale effective availability).
- DV9 set_review_attendees_target: $R^{\mathrm{target}} \in \mathbb{Z}_{\geq 0}, \ 0 \leq R^{\mathrm{target}} \leq 100.$
- $\mathbf{DV10}$ set_velocity_target: $V^{\mathrm{target}} \in \mathbb{Z}_{\geq 0}, \ 0 \leq V^{\mathrm{target}} \leq 200.$
- DV11 prioritize_epic_level: $p_e^{\mathrm{bucket}} \in \{1, 2, 3, 4, 5\} \text{ for } e \in \mathcal{E}^{\mathrm{open}}.$

Linking and capacity constraints (illustrative):

• Capacity with availability and overtime:

$$\sum_{tsk} a_{w,tsk} \, effort_{tsk} \, \leq \, (1 + \alpha o) \, avail_w \quad \forall w \in \mathcal{W}^{\text{active}},$$

with overtime uplift $\alpha \geq 0$.

• Story—task coverage:

$$\sum_{tsk \in \mathcal{TSK}(us)} \sum_{w} a_{w,tsk} \geq m \ x_{us}, \quad \sum_{tsk \in \mathcal{TSK}(us)} \sum_{w} a_{w,tsk} \leq M \ x_{us},$$

for constants $0 < m \le M$.