

TMA4183 Opt. II Spring 2017

Exercise set 5

Norwegian University of Science and Technology Department of Mathematical Sciences

Please read section 2.15 in [Tr]. Note that the regularity of optimal controls relies upon the preservation of the weak differentiability by the projection map $\mathbb{P}_{[u_a,u_b]}(u) = \max\{u_a,\min\{u_b,u\}\}$. Since $\max\{u_1,u_2\} = (|u_1-u_2|+u_1+u_2)/2$, this issue hinges upon the preservation of the weak differentiability by the absolute value map.

1 Let Ω be an open set in \mathbb{R}^N . We will prove the following fact: if $u \in H^1(\Omega)$ then $|u| \in H^1(\Omega)$.

For $\epsilon > 0$ we will use the following regularization (approximation) of $|\cdot|$: $f_{\epsilon}(t) = (t^2 + \epsilon^2)^{1/2}$.

a) Let $\epsilon > 0$. Show that f_{ϵ} is a Lipschitz continuous function with Lipschitz constant 1.

The second "trick" is the density of "nice" functions, for example $C^1(\Omega)$, in $H^1(\Omega)$. For any $u_k \in H^1(\Omega) \cap C^1(\Omega)$ and any $\phi \in C_0^{\infty}(\Omega)$ we have the equality

$$\int_{\Omega} f_{\epsilon}(u_k) D_i \phi = -\int_{\Omega} \phi f_{\epsilon}'(u_k) D_i u_k.$$

Furthermore, for any $u \in H^1(\Omega)$ there is a sequence of $u_k \in H^1(\Omega) \cap C^1(\Omega)$ such that that $\lim_{k\to\infty} \|u_k - u\|_{H^1(\Omega)} = 0$. Per definition, it means that both the function values and its derivatives converge in $L^2(\Omega)$, and thus converge almost everywhere pointwise for some subsequence. We relabel $\{u_k\}$ to be this subsequence. We now want to show that both sides of the integral equality above are continuous with respect to this type of convergence.

b) Use the Lipschitz continuity of f_{ϵ} to show that

$$\lim_{k\to\infty} \int_{\Omega} |(f_{\epsilon}(u_k) - f_{\epsilon}(u))D_i\phi| = 0.$$

c) Show that

$$\lim_{k \to \infty} \int_{\Omega} |\phi[f'_{\epsilon}(u_k)D_i u_k - f'_{\epsilon}(u)D_i u| = 0.$$

At this point we know that $\forall u \in H^1(\Omega), \phi \in C_0^{\infty}(\Omega)$ we have the equality

$$\int_{\Omega} f_{\epsilon}(u) D_{i} \phi = - \int_{\Omega} \phi f_{\epsilon}'(u) D_{i} u.$$

We now let $\epsilon \to 0$, show that both sides of the equality converge, and identify the limits.

d) Show that

$$\lim_{\epsilon \to \infty} \int_{\Omega} |[f_{\epsilon}(u) - |u|]D_i \phi| = 0.$$

e) Finally, show that

$$\lim_{\epsilon \to 0} \int_{\Omega} \phi |f'_{\epsilon}(u) - \operatorname{sign} u| D_{i}u = 0.$$

Thus, we have established that $D_i|u| = \text{sign}(u)D_iu$, which is clearly in $L^2(\Omega)$. Thus $|u| \in H^1(\Omega)$.