PROB 140 Spring 2022

Probability for Data Science

WEEK 5 STUDY GUIDE

The Big Picture

You can think of a stochastic process as a random process indexed by time. A Markov chain is a stochastic process with a particular dependence structure that allows it to be used as a simple model in many settings.

- Under conditions that are pretty general, Markov chains run for a long time have powerful long-run properties.
- Steady state or stationarity has a physical interpretation and many uses.
- Many Markov chains, when run for a long time, exhibit different kinds of balance. These can be used to identify steady state properties.

Week At a Glance

Mon 2/14	Tue 2/15	Wed 2/16	Thu 2/17	Fri 2/18
	Lecture	Sections	Lecture	Sections
HW 4 Party 9AM-noon HW 4 Due HW 5 (Due Mon 2/21)				
Lab 2 (Due Mon 2/21)				Lab 2 Party 3PM-5PM
Happy Valentine's Day! Forget 140.	Read Sec 10.1-10.2	Skim Sec 10.3, 11.1	Read Sec 10.3, 10.4	Read Sec 11.1

Reading, Practice, and Live Sessions

Book	Topic	Lectures: Prof. A.	Sections: GSIs	Optional Additional Practice
Ch 10	Markov chains - 10.1 introduces terminology, notation, and basics, along with a computational approach to the long run - 10.2 narrows down the type of chain we'll be studying, but even the narrowed-down group is large and interesting - 10.3 takes a more theoretical approach to the long run	Tuesday 2/15 - Introduction to Markov chains - Long run behavior	Wednesday 2/16 - Brief review of Quiz 1 - Ch 11 Ex 1, 5	None. There are no exercises in Ch 10. All the Markov Chains exercises are in Ch 11, at which point you'll have techniques that make some of the solutions easier.
Ch 11	Balance, and a Markov model - Review of "balance" from 10.3 - 11.1 is about different kinds of balance, and how one of them can make it easy to identify the other - 11.2 solves the code-breaking problem with a tiny alphabet, by complete enumeration	Thursday 2/17 - Different kinds of balance - An approach to code breaking, based on Markov Chains	Friday 2/18 - Ch 11 Ex 2, 3, 4	Chapter 11 All the textbook's own exercises in Ch 11 will be done in section Try some of the Konstantopoulos exercises listed after Ex 5. They come with complete solutions.