1. Wielomiany Legendre'a $\{P_k\}$, ortogonalne w przedziale [-1,1] z wagą $p(x)\equiv 1$. Przyjmiemy, że

$$P_k(1) = 1$$
 $(k = 0, 1, ...).$

Uwaga. Niech $c_k:=\bar{P}_k(1)$. Wówczas $P_k=c_k^{-1}\bar{P}_k$ dla $k=0,1,\ldots$ ZWIĄZEK REKURENCYJNY:

$$P_0(x) \equiv 1, \quad P_1(x) = x,$$

$$P_k(x) = \frac{2k-1}{k} x P_{k-1}(x) - \frac{k-1}{k} P_{k-2}(x) \qquad (k \ge 2).$$

Wielomiany standardowe Legendre'a $\{\bar{P}_k\}$:

$$\bar{P}_0(x) \equiv 1, \quad \bar{P}_1(x) = x,$$

$$\bar{P}_k(x) = x\bar{P}_{k-1}(x) - \frac{(k-1)^2}{(2k-1)(2k-3)}\bar{P}_{k-2}(x) \qquad (k \geqslant 2).$$

2. Wielomiany Czebyszewa I rodzaju $\{T_k\}$, ortogonalne w przedziale [-1,1] z wagą $p(x) = (1-x^2)^{-1/2}$:

$$\int_{-1}^{1} (1 - x^{2})^{-1/2} T_{k}(x) T_{l}(x) dx = 0 \qquad (k \neq l),$$

$$\int_{-1}^{1} (1 - x^{2})^{-1/2} [T_{k}(x)]^{2} dx = \begin{cases} \frac{1}{2} \pi & (k \geqslant 1), \\ \pi & (k = 0). \end{cases}$$

Przyjmiemy, że

$$T_k(1) = 1$$
 $(k = 0, 1, ...).$

ZWIĄZEK REKURENCYJNY:

$$T_0(x) \equiv 1, \quad T_1(x) = x,$$

 $T_k(x) = 2xT_{k-1}(x) - T_{k-2}(x) \qquad (k \ge 2).$

Wielomiany standardowe Czebyszewa $\{\bar{T}_k\}$:

$$\bar{T}_0(x) \equiv 1, \quad \bar{T}_1(x) = x,$$

$$\bar{T}_k(x) = x\bar{T}_{k-1}(x) - \gamma_k\bar{T}_{k-2}(x) \qquad (k \geqslant 2),$$

gdzie $\gamma_2 = \frac{1}{2}$ i $\gamma_k = \frac{1}{4}$ dla k > 2.

3. Wielomiany Czebyszewa II rodzaju $\{U_k\}$, ortogonalne w przedziale [-1,1] z wagą $p(x) = (1-x^2)^{1/2}$. Przyjmiemy, że

$$U_k(1) = k + 1$$
 $(k = 0, 1, ...).$

ZWIĄZEK REKURENCYJNY:

$$U_0(x) \equiv 1, \quad U_1(x) = 2x,$$

 $U_k(x) = 2xU_{k-1}(x) - U_{k-2}(x) \qquad (k \ge 2).$

Wielomiany standardowe Czebyszewa II rodzaju $\{\bar{U}_k\}$:

$$\bar{U}_0(x) \equiv 1, \quad \bar{U}_1(x) = x,$$

$$\bar{U}_k(x) = x\bar{U}_{k-1}(x) - \frac{1}{4}\bar{U}_{k-2}(x) \qquad (k \geqslant 2).$$

4. Wielomiany Gegenbauera $\{C_k^{\lambda}\}$, ortogonalne w przedziale [-1,1] z wagą $p(x)=(1-x^2)^{\lambda-1/2}$, $\lambda>-\frac{1}{2}$. Przyjmiemy, że

$$C_k^{\lambda}(1) = \frac{(2\lambda)(2\lambda+1)\cdots(2\lambda+k-1)}{k!}$$
 $(k=0,1,\dots).$

ZWIĄZEK REKURENCYJNY:

$$C_0^{\lambda}(x) \equiv 1, \quad C_1^{\lambda}(x) = 2\lambda x,$$

 $C_k^{\lambda}(x) = 2\frac{k+\lambda-1}{k}xC_{k-1}^{\lambda}(x) - \frac{k+2\lambda-3}{k}C_{k-2}^{\lambda}(x) \qquad (k \geqslant 2).$

5. Wielomiany Jacobiego $\{P_k^{(\alpha,\beta)}\}$, ortogonalne w przedziale [-1,1] z wagą $p(x) = (1-x)^{\alpha}(1+x)^{\beta}$, $\alpha, \beta > -1$.

$$P_0^{(\alpha,\beta)}(x) \equiv 1, \qquad P_1^{(\alpha,\beta)}(x) = \left(\frac{a+b}{2} + 1\right)x + \frac{a-b}{2},$$

$$2k(k+\alpha+\beta)(2k+\alpha+\beta-2)P_k^{(\alpha,\beta)}(x)$$

$$= (2k+\alpha+\beta-1)\left[(2k+\alpha+\beta)(2k+\alpha+\beta-2)x + \alpha^2 - \beta^2\right]P_{k-1}^{(\alpha,\beta)}(x)$$

$$-2(k+\alpha-1)(k+\beta-1)(2k+\alpha+\beta)P_{k-2}^{(\alpha,\beta)}(x)$$

6. Wielomiany Laguerre'a $\{L_k^{\alpha}\}$, ortogonalne w przedziale $[0,\infty)$ z wagą $p(x)=e^{-x}x^{\alpha}$. Przyjmiemy, że

$$L_k^{\alpha}(x) = \frac{(-1)^k}{k!} x^k + \dots \qquad (k \ge 0).$$

ZWIĄZEK REKURENCYJNY:

$$\begin{split} L_0^{\alpha}(x) &\equiv 1, \quad L_1^{\alpha}(x) = \alpha + 1 - x, \\ L_k^{\alpha}(x) &= \frac{2k + \alpha - 1 - x}{k} L_{k-1}^{\alpha}(x) - \frac{k + \alpha - 1}{k} L_{k-2}^{\alpha}(x) \qquad (k \geqslant 2). \end{split}$$

Wielomiany standardowe Laguerre'a $\{\bar{L}_k^{\alpha}\}$:

$$\bar{L}_0^{\alpha}(x) \equiv 1, \quad \bar{L}_1^{\alpha}(x) = x - \alpha - 1,
\bar{L}_k^{\alpha}(x) = (x - 2k - \alpha + 1)\bar{L}_{k-1}^{\alpha}(x) - (k - 1)(k + \alpha - 1)\bar{L}_{k-2}^{\alpha}(x) \qquad (k \geqslant 2).$$

7. Wielomiany Hermite'a $\{H_k\}$, ortogonalne na prostej $(-\infty, \infty)$ z wagą $p(x) = e^{-x^2}$. Przyjmiemy, że

$$H_k(x) = 2^k x^k + \dots \qquad (k \geqslant 0).$$

ZWIAZEK REKURENCYJNY:

$$H_0(x) \equiv 1, \quad H_1(x) = 2x,$$

 $H_k(x) = 2xH_{k-1}(x) - 2(k-1)H_{k-2}(x) \qquad (k \geqslant 2).$

Wielomiany standardowe Hermite'a $\{\bar{H}_k\}$

$$\bar{H}_0(x) \equiv 1, \quad \bar{H}_1(x) = x,$$

$$\bar{H}_k(x) = x\bar{H}_{k-1}(x) - \frac{1}{2}(k-1)\bar{H}_{k-2}(x) \qquad (k \geqslant 2).$$