Frednáska 21 - problém nejmensich Etvercü Motivace: Maximum likelihood estimate (MLE) prodpokladejme, že vane model predpovidajícé jistý fenomén/fyzikální jev/děj -> model v Zavislosti na vstupních datech a kalibraci vrací aproximaci/predikci vysledného stavu: \vec{z} & $\vec{\theta}$ modeln \vec{y} = $\vec{F}(\vec{z},\vec{\theta})$ predikce modeln Výber modeln = problém pro odborniky v dané oblasti. Volba parametri (= kalibrace modeln) na základé dat = problem matematiky/data-science Napr: Zajíme me polyb planet -> modelen je polyb po elipse (Keplerův zákon) m> po které? -> problém nalezem správných paranetrů D. · Volba modela (f. funkce F(x, d)) je u kazdélo problemh jiné. Prekvapive, volba d'Ize analyzovat relativné obecné

Ackoliv Syi - N (mi, 5i) nem vzdy oprávnemý předpoklad, na základe CLT (central linit theorem) lze cenalogicky postupovat riv případě zdy Syi jsou "pouze" iid (independent, identically distributed). Problém nejmensich Etvercü (least-squares problem) minže byt linearm (=> $f(x_i,\vec{\theta}) = \vec{a}_i^T \cdot \vec{\theta} + c_i$ pro néjaké \vec{a}_i,c_i ne linearm (=) bem linearm Jak obeent resime? -> jako v prvaku-> majdeme (, kandidaty) tj. $\vec{\theta}_{\ell}$, $\ell=1,2,...$ $\vec{\theta}_{\ell}$ | $\left[\frac{1}{\vec{\theta}_{i}}f(x_{i},\vec{\theta}) - \vec{b}_{i}\right]_{i=1,...,m}$ | $\vec{\theta}_{\ell}$ | $\vec{\theta}_{$ · pro linearmi LS -> le "explicitue" spozitat pro nelinearm' LS -> musime pouzit numerické metody k aproximaci takových bodů. Linearmi LS: $f(x_i, \vec{\theta}) = \vec{a}_i^T \cdot \vec{\theta} + c_i \Rightarrow \begin{cases} f(x_i, \vec{\theta}) \\ f(x_m, \vec{\theta}) \end{cases} = \begin{pmatrix} \vec{a}_i^T \cdot \vec{\theta} + c_1 \\ \vec{a}_m \cdot \vec{\theta} + c_m \end{pmatrix} = \begin{pmatrix} \vec{a}_i^T \cdot \vec{\theta} + c_m \\ \vec{a}_m \cdot \vec{\theta} + c_m \end{pmatrix} = \begin{pmatrix} \vec{a}_i^T \cdot \vec{\theta} + c_m \\ -\vec{a}_m - \end{pmatrix} \begin{pmatrix} c_i \\ -\vec{a}_m - \end{pmatrix}$ Nekteré nu merické metody ale s vůbec ne pracují a uplatnují jiné postupy. $=) \left\| \left[\frac{1}{\sigma_i} f(x_{i,1} \vec{\theta}) - b_i \right]_{i=1,\dots,m} \right\|^2 = \left\| \frac{1}{\sigma_i} \vec{A} \cdot \vec{\theta} + \vec{c} - \vec{b} \right\|^2$ =: A =: 6 mm) preznacíme:

=> Cinearne LS ~ min ||AB-B||² kde AER^{mxn}, BER^m m> m = pocét méreur & n = pocét parametri =) m > n repo do konce m >> n => A je obdélm'kova' Pozorování NAÐ-5N² > 0 +0 => hedane Ð t., Ze $A\vec{\theta} = \vec{b}$ m> resem lin. sous. Covnic s obdéluéboven maticé. Lze prevést na systém se ctvercoven? Lemma: $\sqrt{6}(||5-A\hat{\theta}||^2) = 2.\overline{A}(A\hat{\theta}-\hat{b})$ (lze primo vypocitat -> «jedenduché" cviko z analýzy) tzv. systém normálových rovnic $ATA \sim n \frac{m}{m} \sqrt{m} \sim n \frac{n}{m}$, ale · sestavit A'A vyžaduje nasobení matic (drahé)

• $\chi(A^TA) = \chi(A)^2$ m) zhoršení podmíněnsti