Homework Assignment 13

Due Saturday, May 7

- 1. In class we proved a cancellation law for integral domains. We can actually say something a bit stronger (and quite useful). Let R be a ring and $a, b, c \in R$. Suppose that a is not zero or a zero divisor, and that ab = ac. Prove b = c.
- 2. Let R and S be rings and $\varphi: R \to S$ a ring homomorphism.
 - (a) Show that im φ is a subring of S.
 - (b) Show that $\ker \varphi$ is a (two-sided) ideal of R.
 - (c) Suppose $J \subseteq S$ is an ideal. Show that $\varphi^{-1}(J)$ is an ideal of R.
 - (d) Suppose R and S are unital rings with *nonzero* identities 1_R and 1_S respectively. Prove that if $\varphi(1_R) \neq 1_S$ then $\varphi(1_R)$ is either zero, or a zero divisor in S.
 - (e) Deduce that if S is an integral domain and φ is nonzero then $\varphi(1_R) = 1_S$. (Remark: many authors require rings to be unital, and also require ring homomorphisms to take the identity to the identity.)
- 6. Let R be a commutative ring with $1 \neq 0$.
 - (a) Fix $a \in R$. Show that (a) = R if and only if $a \in R^{\times}$.
 - (b) Fix $a, b \in R$, and suppose that a is not a zero divisor. Show that (a) = (b) if and only if a = ub for some unit $u \in R^{\times}$.
 - (c) Let I be any ideal. Show that I = R if and only if I contains a unit $u \in R^{\times}$.
 - (d) Prove that R is a field if and only if the only ideals in R are (0) and R itself.
- 7. Let R be a commutative ring. The *nilradical* of R is $\mathfrak{N}(R) = \{r \in R : r \text{ is nilpotent}\}$. By HW12 Problem 3 we know that $\mathfrak{N}(R)$ is an ideal of R.
 - (a) Show that $R/\mathfrak{N}(R)$ is reduced. This is often called the *reduction of* R, and is denoted R_{red} .
 - (b) Compute $\mathfrak{N}(R)$ and R_{red} for the following two rings.
 - i. $R = \mathbb{Z}[x]/(x)^n$ for $n \geq 2$.
 - ii. $R = \mathbb{Z}/p^n\mathbb{Z}$ for $n \geq 2$.