Example: Polynomial Continuity

Example: Polynomial Continuity

Polynomial functions are continuous everywhere on \mathbb{R} , providing fundamental examples of continuous functions.

Statement

Every polynomial function $p: \mathbb{R} \to \mathbb{R}$ defined by:

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

where $a_i \in \mathbb{R}$, is continuous at every point $c \in \mathbb{R}$.

Proof Strategy

We build up from simple cases:

- 1. Constant function: $f(x) = a_0$ is continuous
 - For any $\varepsilon > 0$, choose any $\delta > 0$
 - Then $|f(x) f(c)| = |a_0 a_0| = 0 < \varepsilon$
- 2. **Identity function**: f(x) = x is continuous
 - For any $\varepsilon > 0$, choose $\delta = \varepsilon$
 - If $|x-c| < \delta$, then $|f(x)-f(c)| = |x-c| < \delta = \varepsilon$
- 3. Products and sums: Using the arithmetic properties of continuous functions:
 - If f and g are continuous at c, then f + g and $f \cdot g$ are continuous at c
 - By induction, x^n is continuous for all $n \in \mathbb{N}$
 - Therefore, $a_i x^i$ is continuous for each term
 - The sum $p(x) = \sum_{i=0}^{n} a_i x^i$ is continuous

Specific Example

Consider
$$p(x) = x^3 - 2x + 1$$
. To verify continuity at $c = 1$: - $p(1) = 1 - 2 + 1 = 0$ - For sequences $x_n \to 1$: $p(x_n) = x_n^3 - 2x_n + 1 \to 1^3 - 2(1) + 1 = 0 = p(1)$

Importance

Polynomial continuity is crucial because: - Polynomials approximate other functions (Taylor series) - They form a dense subset of continuous functions (Weierstrass approximation) - They provide concrete examples for testing theorems about continuity

Dependency Graph

Local dependency graph