KUBIG 머신러닝 분반 3조

김민혁 윤정현 윤지현 전보민

Index

- 1. Purpose of Analysis
- 2. Data Exploration
- 3. Dimension Reduction (PCA)
- 4. Oversampling (SMOTE)
- 5. Modeling
- 6. Result

1. Purpose of Analysis

	Unnamed: 0	class	aa_000	ab_000	ac_000	ad_000	ae_000	af_000	ag_000	ag_001	 ee_002	ee_003	ee_004	ee_005	ee_006	ee_007	
0	52803	neg	41386	NaN	508.0	488.0	0.0	0.0	0.0	0.0	 438088.0	202172.0	383094.0	392838.0	228526.0	104226.0	1:
1	38189	neg	29616	NaN	1616.0	1490.0	0.0	0.0	0.0	0.0	 145524.0	72858.0	171332.0	308328.0	379466.0	213826.0	
2	23291	neg	241352	NaN	NaN	NaN	NaN	NaN	0.0	0.0	 3617298.0	2477772.0	3631902.0	997462.0	436380.0	202002.0	1
3	16862	neg	8100	NaN	86.0	76.0	0.0	0.0	0.0	0.0	 66980.0	36658.0	91898.0	86634.0	60276.0	23616.0	
4	14055	neg	2290	NaN	636.0	448.0	0.0	0.0	0.0	0.0	 11542.0	7394.0	14206.0	69592.0	3108.0	108.0	

- 분석의 목적은 Scania Truck 부품별 데이터를 기반으로 정비 필요 여부를 예측하는 모형을 적합하는 것
- Loss = false positive * 10 + false negative * 500 를 최소화하는 것을 목적으로 한다.

2. Data Exploration

🕰 결측치 처리

	결측치 비율
br_000	82.059649
bq_000	81.121053
bp_000	79.456140
cr_000	77.171930
ab_000	77.171930
bo_000	77.161404
bn_000	73.222807
bm_000	65.884211

- 결측치 비율이 높은 열 존재
- 결측치 비율이 50%가 넘는 열은 불필요하다고 판단해 제거
- 나머지 결측치에 대해서는 평균값으로 대체

2. Data Exploration

(class 열 확인 - 불균형 데이터 처리 필요성 인식

```
train['class'].value_counts()
           55934
  neg
            1066
  pos
  Name: class, dtype: int64
50000
40000
30000
20000
10000
    neg
```


Train / Validation set split

```
from sklearn.model_selection import train_test_split
X_train, X_val, v_train, v_val = train_test_split(train_set, train_set['class'],
                                                   test_size = 0.2, random_state = 42,
                                                   stratify = train set['class'])
```

- stratify parameter를 이용해 class열의 pos/neg 비율이 유지되도록 하면서 data split
- train data를 활용해 PCA, SMOTE 진행

불균형한 데이터 처리를 위해 사용할 SMOTE 기법

PCA를 통해 차원을 축소한 뒤 SMOTE를 진행하기로 판단

- KNN 알고리즘을 사용
- 차워의 저주 문제에 취약

Scaling

```
from sklearn.preprocessing import StandardScaler
# Fit on training set only.
scaler = StandardScaler()
scaler.fit(X_train)

# Apply transform to both the training set and the test set.
X_train_scaled = scaler.transform(X_train)
X_val_scaled = scaler.transform(X_val)
```

- PCA 진행 전, 변수에 따른 스케일로 인해 오류가 생기는 것 방지

[∞] PCA

- 61개의 변수로 약 90%의 설명력을 가짐

이 61개의 변수만으로 분석 진행하기로 결정

4. Oversampling (SMOTE)

₩ SMOTE를 활용한 불균형 데이터 처리

```
from imblearn.over_sampling import SMOTE
print("Before OverSampling, '1': {}".format(sum(y_train=='pos')))
print("Before OverSampling, 'D': {}".format(sum(y_train=='neg')))
Before OverSampling, '1': 853
Before OverSampling, '0': 44747
smote = SMOTE(random state = 42)
X_train_over, y_train_over = smote.fit_resample(X_train_pca, y_train)
print('After OverSampling, shape of X: {}'.format(X_train_over.shape))
print('After OverSampling, shape of v: {} \psin', format(v train over, shape))
print("After OverSampling, '1': {}".format(sum(y_train_over=='pos')))
print("After OverSampling, '0': {}".format(sum(y_train_over=='neg')))
After OverSampling, shape of X: (89494, 61)
After OverSampling, shape of y: (89494.)
After OverSampling, '1': 44747
After OverSampling, '0': 44747
```

pos의 개수가 neg와 같은 개수로 oversampling된 것을 확인

Loss function 정의

false positive * 10 + false negative * 500

```
import numpy as np

def truckloss(y_true, y_pred):

    FP = np.logical_and(y_true == 'neg', y_pred == 'pos')
    FN = np.logical_and(y_true == 'pos', y_pred == 'neg')

    FPsum = sum(FP)
    FNsum = sum(FN)

    return FPsum*10 + FNsum*500
```

우리의 목표는 이 Loss값을 최소로 만드는 모델을 찾는 것!

Softmax Regression

- Predict the class with the highest estimated probability

```
from sklearn.linear_model import LogisticRegression
softmax_reg = LogisticRegression(multi_class="multinomial", solver="lbfgs", C=10)
softmax_reg.fit(X_train_over, y_train_over)

...

y_pred_softmax = softmax_reg.predict(X_val_pca)

print('f1 score:', f1_score(y_val.replace({'neg': 0, 'pos' : 1}), pd.Series(y_pred_softmax).replace({'neg': 0, 'pos' : 1}))
print('accuracy score:', accuracy_score(y_val.replace({'neg': 0, 'pos' : 1}), pd.Series(y_pred_softmax).replace({'neg': 0, 'pos' : 1}))

f1 score: 0.5689404934687954
accuracy score: 0.9739473684210527

truckloss(y_val, y_pred_softmax)

11300
```


Support Vector Machine

- capable of performing linear/ nonlinear classification, regression, even outlier detection
- Fitting the widest possible street between the classes

RandomForest

- Ensemble of Decision Trees

```
from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier(n_jobs=-1, random_state=42)
rf.fit(X_train_over, y_train_over)
RandomForestClassifier(n_jobs=-1, random_state=42)

y_pred_rf = rf.predict(X_val_pca)

from sklearn.metrics import accuracy_score, f1_score

print('f1 score:', f1_score(y_val.replace({'neg': 0, 'pos' : 1}), pd.Series(y_pred_rf).replace({'neg': 0, 'pos' : 1})))
print('accuracy score:', accuracy_score(y_val.replace({'neg': 0, 'pos' : 1}), pd.Series(y_pred_rf).replace({'neg': 0, 'pos' : 1})))
f1 score: 0.6691176470588235
accuracy score: 0.9842105263157894

truckloss(y_val, y_pred_rf)

16990
```


AdaBoost

- Boosting method (combine several weak learners into a strong learner)
- Train predictors sequentially, each trying to correct its predecessor

AdaBoost

```
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import AdaBoostClassifier
ada clf = AdaBoostClassifier(
    DecisionTreeClassifier(max depth=1), n estimators=200.
    algorithm="SAMME.R", learning_rate=0.5, random_state=42)
ada_clf.fit(X_train_over, y_train_over)
AdaBoostClassifier(base estimator=DecisionTreeClassifier(max depth=1).
                   learning_rate=0.5, n_estimators=200, random_state=42)
y_pred_ada = ada_clf.predict(X_val_pca)
print('f1 score:', f1_score(y_val.replace({'neg': 0, 'pos' : 1}), pd.Series(y_pred_ada).replace({'neg': 0, 'pos' : 1})))
print('accuracy score:', accuracy_score(y_val.replace({'neg': 0, 'pos' : 1}), pd.Series(y_pred_ada).replace({'neg': 0, 'pos' : 1})))
fl score: 0.44866071428571425
accuracy score: 0.956666666666666667
truckloss(v val. v pred ada)
10820
```

이 모델로 결정!

6. Result

Test data에 적용

```
class_pred_ada_df['class'].value_counts()
```

17923 neg 1077

Name: class, dtype: int64

<Test Score>

loss	20940
accuracy	95.684

Thank you

