

Rec'd PCT/PTO 06 MAY 2005

PCT/SE 03/01693

04-11-2003

INVESTOR IN PEOPLE

The Patent Office
Concept House
Cardiff Road
Newport
South Wales
NP10 8QQ

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

I also certify that the attached copy of the request for grant of a Patent (Form 1/77) bears an amendment, effected by this office, following a request by the applicant and agreed to by the Comptroller-General.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

**PRIORITY
DOCUMENT**
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

Signed *Alun Davies*

Dated 20 October 2003

BEST AVAILABLE COPY

1/77
08NOV02 341938-1 D00159
P01/7700 0.00-0226042.0

Request for grant of a patent

(See the notes on the back of this form. You can also get an explanatory leaflet from the Patent Office to help you fill in this form)

The Patent Office

Cardiff Road
Newport
South Wales
NP10 8QQ

1. Your reference

P16905GB - NHF/ns

2. Patent application number

(The Patent Office will fill in this part)

0226042.0

F 7 NOV 2002

3. Full name, address and postcode of the or of each applicant (*underline all surnames*)

Autoliv Development AB
Patent Department Sweden
S-447 83 VARGARDA
Sweden

Patents ADP number (*if you know it*)

3210180c6

If the applicant is a corporate body, give the country/state of its incorporation

Sweden

4. Title of the invention

"IMPROVEMENTS IN OR RELATING TO AN AIR-BAG ARRANGEMENT, AND A METHOD OF PREPARING AND MOUNTING AN AIR-BAG"

5. Name of your agent (*if you have one*)

Forrester Ketley & Co.

"Address for service" in the United Kingdom to which all correspondence should be sent (*including the postcode*)

Forrester House
52 Bounds Green Road
London
N11 2EY

Patents ADP number (*if you know it*)

133001

6. If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and (*if you know it*) the or each application number

Country

Priority application number
(*if you know it*)

Date of filing
(day / month / year)

7. If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application

Number of earlier application

Date of filing
(day / month / year)

8. Is a statement of inventorship and of right to grant of a patent required in support of this request? (Answer 'Yes' if

YES

- a) any applicant named in part 3 is not an inventor, or
- b) there is an inventor who is not named as an applicant, or
- c) any named applicant is a corporate body.
See note (d)

Patents Form 1/77

9. Enter the number of sheets for any of the following items you are filing with this form.
Do not count copies of the same document

Continuation sheets of this form

Description	13
Claim(s)	4
Abstract	1
Drawing(s)	3

10. If you are also filing any of the following, state how many against each item.

Priority documents

Translations of priority documents

Statement of inventorship and right to grant of a patent (*Patents Form 7/77*)

X

Request for preliminary examination and search (*Patents Form 9/77*)

X /

Request for substantive examination
(*Patents Form 10/77*)

Any other documents
(please specify)

*File copy & deliver copy at
spec. location*

11.

We request the grant of a patent on the basis of this application.

Signature
Forrester Ketley & Co.
Forrester Ketley & Co.

Date
7 November 2002

12. Name and daytime telephone number of person to contact in the United Kingdom

FRANKLAND, Nigel H.
(020) 8889 6622

Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- a) If you need help to fill in this form or you have any questions, please contact the Patent Office on 08459 500505.
- b) Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- d) If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- e) Once you have filled in the form you must remember to sign and date it.
- f) For details of the fee and ways to pay please contact the Patent Office.

PATENTS ACT 1977

P16905GB - NHF/NGJ/sz1

5 DESCRIPTION OF INVENTION

**"IMPROVEMENTS IN OR RELATING TO AN AIR-BAG
ARRANGEMENT, AND A METHOD OF PREPARING AND
10 MOUNTING AN AIR-BAG"**

THE PRESENT INVENTION relates to an air-bag arrangement, and to a
15 method of preparing and mounting an air-bag in a vehicle cabin.

Various designs of "inflatable curtain" air-bags have been proposed for
use in vehicles. Such inflatable curtains are air-bags which are initially stored
within the roof lining of the vehicle immediately above the door openings, the
20 air-bag inflating, in response to a signal from an appropriate sensor, to form a
"curtain" lying adjacent a side window of the vehicle. Typically such an
air-bag is provided with a generally rectangular inflatable region, the upper
edge of which is provided with mounting lugs by means of which the air-bag
may be mounted in position. The inflatable region may be divided into a
25 plurality of separate inflatable cells, and an internal gas-flow passage is
provided to direct gas from a gas generator to the cells that are to be inflated.

It is known in the art to roll up an inflatable curtain and provide it within
a motor vehicle in an "inboard" manner, that is, with the roll mounted towards

the vehicle cabin or compartment interior. Upon inflation of such an "inboard" rolled inflatable curtain, the unrolling inflatable curtain tends to move towards the interior of the motor vehicle, and may strike the head of an occupant in an undesirable manner if the occupant is in an "out of position" situation, for example, if the head of the occupant is placed against the side window of the motor vehicle.

The present invention seeks to provide an improved air-bag, and a method for preparing and mounting an air-bag in a vehicle.

10

According to this invention there is provided an air-bag arrangement comprising an inflatable curtain formed from at least two super-imposed layers and having an attachment edge provided with a plurality of mounting elements for mounting the inflatable curtain in a vehicle cabin for deployment beside an interior surface of the vehicle cabin, with one layer being an inboard layer, and the other layer being an outboard layer, the inflatable curtain also having a deployable edge spaced from the attachment edge, a gas-flow passage extending along the attachment edge, and between the attachment edge and the deployable edge an inflatable region which is divided into a plurality of cells by partitions extending substantially transversely relative to the axis of the gas-flow passage, the cells communicating with the gas-flow passage, each mounting element being positioned intermediate an adjacent pair of partitions, the deployable edge of the inflatable curtain being movable from a stowed position to a deployed position by inflation of the inflatable region of the inflatable curtain, the inflatable curtain being at least partially rolled-up with its deployable edge within the roll, with the roll being adjacent part of the outboard layer with the inboard layer forming the exterior of the roll.

Conveniently the partitions are seams.

Advantageously the seams are formed by stitching.

5 Alternatively the air-bag is formed from woven fabric, and the seams are formed integrally with the air-bag.

As a further alternative the seams are formed by adhesion.

10 Preferably the mounting elements are each located substantially centrally of a respective adjacent pair of partitions.

Conveniently a portion of the outboard layer of the inflatable curtain extends from the attachment edge and then turns to join the roll.

15 Advantageously straps extend from spaced-apart points on the air-bag, each strap having a free end adapted to be secured to a respective anchoring point formed on the interior of the vehicle cabin.

20 Preferably the air-bag is enclosed in a sleeve or housing.

Conveniently parts of the air-bag extend through apertures formed in the sleeve or housing such that said parts protrude from the sleeve or housing.

25 Advantageously the air-bag is connected to a gas generator.

According to another aspect of this invention there is provided a method of preparing an air-bag for a vehicle cabin for deployment beside an interior surface of the vehicle cabin, the air-bag comprising an inflatable curtain formed

from at least two super-imposed layers and having an attachment edge provided with a plurality of mounting elements for mounting the inflatable curtain in a vehicle cabin for deployment beside an interior surface of the vehicle cabin, with one layer being an inboard layer, and the other layer of fabric being an outboard layer, the inflatable curtain also having a deployable edge spaced from the attachment edge, a gas-flow passage extending along the attachment edge, and between the attachment edge and the deployable edge an inflatable region which is divided into a plurality of cells by partitions extending substantially transversely relative to the axis of the gas-flow passage, the cells communicating with the gas-flow passage, each mounting element being positioned intermediate an adjacent pair of partitions, the deployable edge of the inflatable curtain being movable from a stowed position to a deployed position by inflation of the inflatable region of the inflatable curtain, the method comprising the steps of rolling at least part of the inflatable curtain with its deployable edge within the roll, with the roll being adjacent part of the outboard layer and with the inboard layer forming the exterior of the roll.

Preferably the air-bag is folded such that a portion of the outboard layer of the inflatable curtain extends from the attachment edge and then turns to join the roll.

Advantageously the method further comprises the step of encasing the air-bag in a sleeve or housing.

Preferably the method further comprises the step of locating parts of the air-bag to extend through apertures formed in the sleeve or housing such that said parts protrude from the sleeve or housing.

Conveniently the method further comprises the step of connecting the air-bag to a gas generator.

In order that the invention might be more readily understood, and so that
5 further features thereof may be appreciated, embodiments of the invention will
now be described, by way of example, with reference to the accompanying
drawings in which:

FIGURE 1 is a diagrammatic side view of an air-bag according to a first
10 embodiment of the invention in a condition prior to preparation,

FIGURE 2 is an enlarged detail of Figure 1,

FIGURE 2A is a view corresponding to the cross-section 2A-2A shown
15 in Figure 2 when the air-bag of Figure 2 is prepared according to the method of
the present invention,

FIGURE 2B corresponds to Figure 2A at an initial stage of inflation,

20 FIGURE 2C corresponds to Figure 2A at a further stage of inflation,

FIGURE 3 is diagrammatic side-elevational view corresponding to the
air-bag of Figure 2A, and

25 FIGURE 4 shows an air-bag prepared according to a second
embodiment of the method of the present invention.

Referring initially to Figure 1, an air-bag 2 embodying the invention is
illustrated in the form of an inflatable curtain. The air-bag is formed from two

superimposed layers of fabric, each layer of fabric having the same outer peripheral shape. The two layers of fabric may be secured together to form seams by stitching. Alternatively, the entire bag may be constructed using a one piece weaving technique, familiar to those skilled in the art, in which the seams
5 are integrally woven into the bag. The two layers could as a further alternative be secured together using adhesive to form the seams, or using any other suitable securing method known in the art. As will become clear one layer of fabric is an inboard layer, and the other layer is an outboard layer.

10 The inflatable curtain has a substantially rectangular main inflatable region 4, defined by four side edges: an upper side edge 6, lower side edge 8 and two opposed side edges 10 and 12. The upper and lower side edges 6, 8 are longer than the two opposed side edges 10, 12, and the lower side edge 8 extends substantially parallel to the upper side edge 6.

15

The upper side edge 6 constitutes an attachment edge which is provided with a plurality of mounting elements in the form of mounting tabs 14.. Each of the mounting tabs 14 has a hole 16 formed therethrough to facilitate the mounting of the air-bag in the cabin of a vehicle. The mounting tabs 14 are
20 located on the upper side edge 6 of the substantially rectangular main inflatable region of the air-bag at evenly spaced intervals.

A projecting portion 18 is formed at one end of the substantially rectangular main inflatable region 4, and extends from an upper corner of the
25 region 4 in a direction parallel to the upper side edge 6 of the air-bag and perpendicular to a side edge 10 of the air-bag. The projecting portion 18 is formed from the fabric used to form the main inflatable region 4 and thus the air-bag is formed integrally.

The projecting portion 18 defines a substantially rectangular shaped gas inlet throat 20. One end 22 of the gas inlet throat 20, which is remote from the rectangular region of the air-bag, is connected to a gas generator 24. This gas 5 generator is connected to a collision and roll-over sensor 26. The other end of the gas inlet throat 20 communicates with a gas-flow passage 28 formed in the interior of the rectangular main inflatable region 4 of the air-bag. The gas-flow passage 28 is generally linear and runs along the top of the air-bag adjacent to the upper side edge 6. The gas-flow passage 28 defines an axis. An inner gas- 10 flow duct of metal, plastic or fabric may be provided within the gas-flow passage 28 to protect the fabric of the air-bag from the effects of the aggressive flow of gas from the gas generator.

A plurality of partitions in the form of substantially vertically extending 15 seams 30 define a plurality of substantially parallel inflatable cells 32. The seams 30 extend substantially transversely of the axis of the gas-flow passage 28, and each cell has a substantially vertical axis which intersects the lower edge 8 of the rectangular region of the air-bag. The top of each of the cells 32 communicates with the gas-flow passage 28. The inflatable cells 32 20 are, in the illustrated embodiment, in a row and are generally rectangular. When inflated, these cells 32 each adopt a substantially cylindrical profile.

The mounting tabs 14 are each positioned on the upper side edge 6 intermediate a pair of seam 30 defining a cell 32. Preferably each mounting 25 tab 14 is located on the upper side edge 6 substantially midway between the adjacent seams 30 defining a respective cell 32. Each cell 32 has a respective mounting tab 14 so that there is an equal number of cells 32 and tabs 14.

A pair of straps 34, 36 extend from two spaced apart points, each point being on a respective side edge 10, 12 of the air-bag 2. Each strap has a free end which is adapted to be secured or mounted to a respective anchoring point formed on the interior of the cabin of a vehicle in which the air-bag is to be 5 mounted.

In the event that the vehicle in which the air-bag 2 is mounted is involved in a side-impact collision or a rollover, or in response to other pre-determined conditions, the sensor 26 generates a signal which is sent to the 10 gas generator 24, causing the gas generator to generate and discharge gas. The gas flows through the gas inlet throat 20 and along the gas-flow passage 28 and hence into the cells 32, to inflate the cells. The air-bag thus becomes inflated.

As the cells inflate, they adopt a substantially cylindrical profile, 15 resulting in the lower edge of the bag 8 decreasing in length. This reduction in length creates a line of tension between the anchoring points to which the straps 34, 36 are secured which acts to hold the bag in place beside the interior surface of the vehicle cabin. The substantially vertical axes of the cells 32 intersect this line of tension.

20 It has been found, surprisingly, that with the mounting tabs 14 located between adjacent seams 30, and above the cells 32, a good unrolling or deployment characteristic is achieved. It has been found that with mounting tabs located in alignment with the seams separating the cells the inflatable 25 curtain can, during deployment, self-lock and not come down at all.

When the air-bag is inflated, one of the superimposed layers of fabric, the "inboard" layer, is on the side of the inflatable curtain closest to the interior

of the cabin, and the other layer of fabric, the "outboard" layer, is closest to the side of the vehicle.

Referring now to Figure 2A, an air-bag 2 prepared according to the
5 method of the present invention is shown mounted to the interior wall or
surface 38 of a vehicle cabin.

The air-bag of Figure 1 has been rolled-up about the deployable lower
side edge 8. The lower side edge 8 of the air-bag thus lies in a stowed position
10 at the middle of the roll along its central axis. The roll has been formed so that
the roll is located adjacent the outboard layer of fabric, with the inboard layer of
fabric forming the exterior of the roll.

The rolled-up air-bag has been encased within a sleeve or housing 39 as
15 best seen in Figure 3. The mounting tabs 14 extend through apertures formed
in the upper side edge of the sleeve or housing 39, such that the mounting
tabs 14 protrude from the sleeve or housing 39 and the straps 34, 36 extend
through apertures formed in the ends of the sleeve or housing 39 such that the
straps 34, 36 protrude from the sleeve or housing 39. The air-bag is connected
20 to a gas generator 24 which is located within the roof lining of the vehicle. The
gas generator is connected to a collision and roll-over sensor 26.

Returning to Figure 2A, the air-bag has been mounted to the vehicle
with the roll of the air-bag adjacent the interior side wall or surface of the
25 vehicle cabin. This means that the direction of wind of the roll mounted on a
left-hand side of the vehicle is clockwise (travelling from the outside of the roll
in towards its middle) and the roll mounted on a right-hand side of the vehicle
is anti-clockwise (travelling from the outside of the roll towards its middle) as

seen when looking down the axis of the roll from the vantage point of the back of the vehicle looking forwards.

The air-bag 2 is mounted adjacent an interior wall or surface 38 of the
5 vehicle near the roof-line of the vehicle by means of fixings 40 which pass the mounting tabs 14.

In the illustrated embodiment, the free end of a first strap 36 is attached to the "A" post, and the free end of a second strap 34 is attached to the "B" post, although the straps may be attached between any of the "A", "B", "C" or 10 "D" posts, as appropriate. The air-bag 2 may be sized appropriately to cover the side wall or surface of the vehicle cabin between any two of the "A", "B", "C" or "D" posts as desired.

15 Figure 2B shows the air-bag 2 in a initial stage of inflation. As can clearly be seen, gas has started to flow into the air-bag 2, and the inflatable region 4 of the air-bag has begun to fill. As a result, the air-bag begins to deploy or unroll, and is prevented from rolling upwards by the secure fixing of the mounting tabs 14. The early stages of inflation of the air-bag have caused 20 the air-bag to rupture and break through the sleeve or housing 39.

Figure 2C shows the air-bag 1 in a later stage of inflation, in which the air-bag has inflated further and the curtain has begun to unroll. The air flowing into the air-bag 2 forces the curtain to unroll in a direction which has a 25 component directed towards the interior wall or surface 38 of the vehicle, that is, away from the interior of the vehicle cabin and towards the exterior of the vehicle, as indicated by the arrow marked "A". The roll is effectively trapped between that part of the inflatable curtain that has inflated and the side of the vehicle.

It is to be appreciated that the air-bag will further unroll until it is fully deployed. The lower side edge 8 hence defines a deployable edge which moves from a stowed position in the middle of the roll to a deployed position at the
5 lower edge of the inflated air-bag. If the head of the occupant is in an out of position situation, that is, with the head of the occupant displaced towards or placed against the side window, the unrolling outboard roll would try to move downwards into the space between the head of the occupant and the window, thus forcing the head of the occupant back into the cabin and helping to reduce
10 the risk of the head of the occupant from moving out of the cabin, for example through a broken window.

As mentioned earlier, when the cells are inflated, they adopt a substantially cylindrical profile, resulting in the lower edge of the bag
15 decreasing in length. This reduction in length creates a line of tension between the anchoring points to which the straps 36, 38 are secured which acts to hold the air-bag 2 in place. The substantially vertical axes of the cells 32 intersect this line of tension.

20 Figure 4 shows an alternative embodiment of an air-bag according to the present invention mounted in a vehicle, in which only part of the air-bag 2 is rolled up. The roll is a roll that does not commence at the lower edge of the inflatable curtain, but instead starts at a point on the inboard layer of fabric above the lower edge. Thus there is more of the outboard layer of fabric
25 remaining above the roll 42 than there is of the inboard layer of fabric. The roll is located on the inboard side of the rest of the inflatable curtain, but the part of the inflatable curtain between the roll and the upper side edge 6 hangs down and is folded up about a lower-most fold-line 42 located beneath the roll. Again the roll lies adjacent part of the outboard fabric layer with the inboard

fabric layer forming the exterior of the completed roll. This air-bag is also encased in a sleeve or housing 39 and is similarly connected to a gas-generator 24 and sensor 26 arrangement (not shown).

5 It is to be appreciated that this air-bag will have a similar inflation characteristic to that illustrated in Figures 2A-2C, the difference being that the region of the air-bag depending downwardly from the fixing tab 14 to the fold 42 will inflate first, moving the entire roll downwardly before the roll of the air-bag 2 unrolls. This may tend to cause the roll to move inwardly towards
10 the compartment of the vehicle, but this movement may be prevented by strategically located elements of trim.

Whilst the invention has been described with reference to preferred embodiments, it is to be appreciated that many different embodiments may be devised without departing from the scope of the invention. For example, the number of inflatable cells and the configuration of the inflatable cells may be changed substantially according to the specific design of the motor vehicle in which the inflatable curtain is to be mounted. Alternatively, the main inflatable region may simply be undivided, that is, it may simply be a single inflatable
15 region which is not divided into separate inflatable cells as in the illustrated
20 embodiments.

As a further alternative, the air-bag could be positioned to unroll over or in front of a different wall or surface of the vehicle cabin, e.g. it could be
25 positioned to unroll in front of the windscreen or rear window.

In the present Specification "comprises" means "includes or consists of" and "comprising" means "including or consisting of".

The features disclosed in the foregoing description, or the following Claims, or the accompanying drawings, expressed in their specific forms or in terms of a means for performing the disclosed function, or a method or process
5 for attaining the disclosed result, as appropriate, may, separately, or in any combination of such features, be utilised for realising the invention in diverse forms thereof.

CLAIMS:

5 1. An air-bag arrangement comprising an inflatable curtain formed from at least two super-imposed layers and having an attachment edge provided with a plurality of mounting elements for mounting the inflatable curtain in a vehicle cabin for deployment beside an interior surface of the vehicle cabin, with one layer being an inboard layer, and the other layer being an outboard layer, the inflatable curtain also having a deployable edge spaced from the attachment edge, a gas-flow passage extending along the attachment edge, and between the attachment edge and the deployable edge an inflatable region which is divided into a plurality of cells by partitions extending substantially transversely relative to the axis of the gas-flow passage, the cells communicating with the gas-flow passage, each mounting element being positioned intermediate an adjacent pair of partitions, the deployable edge of the inflatable curtain being movable from a stowed position to a deployed position by inflation of the inflatable region of the inflatable curtain, the inflatable curtain being at least partially rolled-up with its deployable edge within the roll, with the roll being adjacent part of the outboard layer with the inboard layer of fabric forming the exterior of the roll.

20 2. An air-bag arrangement according to Claim 1 wherein the partitions are seams.

25 3. An air-bag arrangement according to Claim 2 wherein the seams are formed by stitching.

4. An air-bag arrangement according to Claim 2 wherein the air-bag is formed from one piece woven fabric, and the seams are formed integrally with the air-bag.

5 5. An air-bag arrangement according to Claim 2 wherein the seams are formed by adhesion.

10 6. An air-bag arrangement according to any one of the preceding Claims wherein the mounting elements are each located substantially centrally of a respective adjacent pair of partitions.

7. An air-bag arrangement according to any of the preceding Claims wherein a portion of the outboard layer of the inflatable curtain extends from the attachment edge and then turns to join the roll.

15

8. An air-bag arrangement according to any one of the preceding Claims wherein straps extend from spaced-apart points on the air-bag, each strap having a free end adapted to be secured to a respective anchoring point formed on the interior of the vehicle cabin.

20

9. An air-bag according to any one of the preceding Claims wherein the air-bag is enclosed in a sleeve or housing.

25 10. An air-bag according to Claim 10 wherein parts of the air-bag extend through apertures formed in the sleeve or housing such that said parts protrude from the sleeve or housing.

11. An air-bag according to any one of the preceding Claims wherein the air-bag is connected to a gas generator.

12. A method of preparing an air-bag for a vehicle cabin for deployment beside an interior surface of the vehicle cabin, the air-bag comprising an inflatable curtain formed from at least two super-imposed layers and having an
5 attachment edge provided with a plurality of mounting elements for mounting the inflatable curtain in a vehicle cabin for deployment beside an interior surface of the vehicle cabin, with one layer being an inboard layer, and the other layer being an outboard layer, the inflatable curtain also having a deployable edge spaced from the attachment edge, a gas-flow passage extending along the attachment edge, and between the attachment edge and the deployable edge an inflatable region which is divided into a plurality of cells by partitions extending substantially transversely relative to the axis of the gas-flow passage, the cells communicating with the gas-flow passage, each mounting element being positioned intermediate an adjacent pair of partitions;
10 the deployable edge of the inflatable curtain being movable from a stowed position to a deployed position by inflation of the inflatable region of the inflatable curtain, the method comprising the steps of rolling at least part of the inflatable curtain with its deployable edge within the roll, with the roll being adjacent part of the outboard layer and with the inboard layer forming the
15 exterior of the roll.

13. A method according to Claim 12 wherein the air-bag is folded such that a portion of the outboard layer of the inflatable curtain extends from the attachment edge and then turns to join the roll.

25

14. A method according to any one of the preceding Claims, the method further comprising the step of encasing the air-bag in a sleeve or housing.

15. A method according to Claim 14 the method further comprising the step of locating parts of the air-bag to extend through apertures formed in the sleeve or housing such that said parts protrude from the sleeve or housing.
- 5 16. A method according to any one of Claims 12 to 15 the method further comprising the step of connecting the air-bag to a gas generator.
17. An air-bag substantially as herein described with reference to and as shown in Figures 1 to 3 of the accompanying drawings.
- 10 18. An air-bag substantially as herein described with reference to and as shown in Figures 1 to 3 of the accompanying drawings as modified by Figure 4.
- 15 19. A method of preparing an air-bag substantially as herein described with reference to Figures 1 to 4 of the accompanying drawings.
20. Any novel feature or combination of features disclosed herein.

ABSTRACT

5 **"IMPROVEMENTS IN OR RELATING TO AN AIR-BAG ARRANGEMENT, AND A METHOD OF PREPARING AND MOUNTING AN AIR-BAG"**

- 10 An inflatable curtain (2) has an attachment edge (6) provided with mounting elements (14) for mounting the inflatable curtain in a vehicle cabin for deployment beside an interior surface (38) of the vehicle cabin. A gas-flow passage (28) extends along the attachment edge, and communicates with cells (32) defined by parallel seams (30) in an inflatable region (4) which has a lower edge (8). Each mounting element (14) is located between the seams (30) of a respective cell (32). The inflatable curtain is formed from an inboard layer of fabric and an outboard layer of fabric, and is rolled from the region of the lower edge (8) with the roll being adjacent the outboard layer and with part of the inboard layer forming the exterior of the roll.
- 15

Fig 1

Fig. 2

Fig. 2A

Fig. 2B

2/3

2/3

Fig. 2C

Fig. 4

42

Fig 3

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.