Algebra 1A, lista 7.

Konwersatorium 5.12.2016, ćwiczenia 6.12.2016.

OS. Materiał teoretyczny: Grupy macierzy i grupy przekształceń liniowych: $GL(n,\mathbb{R})$, $O(n,\mathbb{R})$, $SO(n,\mathbb{R})$, $SL(n,\mathbb{R})$, $Aut(\mathbb{R}^n)$, $Izo_{lin}(\mathbb{R}^n)$, $Izo(\mathbb{R}^n)$, ich izomorfizmy, związki z wyznacznikiem, obrotami. Każda skończona grupa izometrii \mathbb{R}^n ma punkt stały. Środek cieżkości układu punktów. Każda skończona grupa izometrii przestrzeni \mathbb{R}^n jest izomorficzna z pewną podgrupą grupy $O(n,\mathbb{R})$. Wyliczenie wszystkich skończonych podgrup $O(2,\mathbb{R})$ i $SO(2,\mathbb{R})$, z dokładnością do izomorfizmu.

Wyliczenie skończonych podgrup grupy $SO(3,\mathbb{R})$. Grupy obrotów własnych brył platońskich. Grupa izometrii własnych czworościanu foremnego. Definicje: pierścień (przemienny, z jednością), dzielnik zera, element odwracalny, grupa elementów odwracalnych pierścienia, dziedzina (pierścień całkowity), ciało. Przykłady pierścieni. Każda skończona dziedzina jest ciałem. Wyliczenie, które pierścienie \mathbb{Z}_n są ciałami.

- 1S. Udowodnić, że $[O(n,\mathbb{R}):SO(n,\mathbb{R})]=2$.
- 2S. Udowodnić, że $SO(2,\mathbb{R})$ jest izomorficzna z grupą S liczb zespolonych modułu 1, z mnożeniem. Wskazówka: macierzy $\begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$ przypisać liczbę $z_{\varphi}=$ $\cos \varphi + i \sin \varphi$.
- 3S. Które z grup $GL(2,\mathbb{R})$, $SL(2,\mathbb{R})$, $SO(2,\mathbb{R})$, $O(2,\mathbb{R})$ są abelowe? Następnie to samo dla grup w wymiarze 3 zamiast 2.
- 4^* . Niech G będzie grupą skończoną oraz $a \in G$. Określamy funkcję $f: G \to [a]_{\sim}$ $([a]_{\sim} \text{ to klasa sprzężenia elementu } a)$ wzorem:

$$f(x) = xax^{-1}$$

(a) Udowodnić, że fjest surjekcją i klasy abstrakcji relacji \sim_f na G to dokładnie lewostronne warstwy centralizatora C(a). Tzn:

$$f(x) = f(y) \iff xC(a) = yC(a).$$

- Wywnioskować stąd, że $|[a]_{\sim}|=[G:C(a)]$. (b) Udowodnić, że $|G|=|Z(G)|+\sum_{i=1}^n[G:C(a_i)]$, gdzie a_1,\ldots,a_n są reprezentantami wszystkich klas sprzężenia w G rozłącznych z Z(G). Zauważyć też, że $[a]_{\sim}$ jest jednoelementowy wtedy i tylko wtedy, gdy $a \in Z(G)$.
- (c) Udowodnić twierdzenie Cauchy'ego: jeśli p jest liczbą pierwszą dzielącą |G|, to G ma podgrupę rzędu p (wsk: skorzystać z (b)).
 - (d) Udowodnić, że jeśli $|G| = p^2$, to G jest abelowa.
 - (e) Wykazać, że dowolna grupa rzędu 15 jest cykliczna.
- 5*. (a) Udowodnić, że grupa obrotów własnych sześcianu jest izomorficzna z S_4 . (Wsk: oznaczmy przez 1, 2, 3, 4 przekątne sześcianu. Rozważyć obroty własne sześcianu jako permutacje przekątnych.)
- (b) Udowodnić, że grupa obrotów własnych dwunastościanu foremnego jest izomorficzna z A_5 . (Wsk: w dwunastościan foremny można wpisać pięć sześcianów (tak,

że wierzchołki sześcianów są wierzchołkami dwunastościanu). Rozważyć obroty tej bryły jako permutacje tego zbioru sześcianów.)

- 6. (a) W grupie izometrii własnych czworościanu foremnego wskazać podgrupę izomorficzną z grupą D_3 (wsk:rozważyć izometrie własne ustalonej ściany czworościanu).
- (b) W grupie izometrii własnych sześcianu wskazać podgrupę izomorficzną z grupą D_4 i podgrupę izomorficzną z grupą D_3 (wskazówka: sześcian jest stowarzyszony z ośmiościanem foremnym, mają więc izomorficzne grupy izometrii własnych).
- (c) W grupie izometrii własnych dwunastościanu foremnego wskazać podgrupę izomorficzną z D_5 i podgrupę izomorficzną z D_3 .
- 7. (a) W grupie automorfizmów linowych płaszczyzny $Aut(\mathbb{R}^2)$ wskazać elementy rzędu 2 oraz rzędu ∞ , niebędące izometriami.
 - (b)* Czy w (a) istnieje taki element rzędu 3?
- (c) Udowodnić, że jeśli automorfizm liniowy płaszczyzny ma rząd nieparzysty, to jego macierz ma wyznacznik 1.
- 8S. Sprawdzić, że podane niżej zbiory sa pierścieniami przemiennymi (z jednością lub bez), ze zwykłymi działaniami dodawania i mnożenia liczb. Czy są one ciałami ?
 - (a) $n\mathbb{Z}$, gdzie $n \in \mathbb{N}_+$.
 - (b) $\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\}$, pierścień Gaussa (tu $i \in \mathbb{C}$ to jednostka urojona).
 - (c) $\mathbb{Z}[\sqrt{d}] = \{a + b\sqrt{d} : a, b \in \mathbb{Z}\}, d \in \mathbb{N} \text{ nie jest kwadratem liczby naturalnej.}$
 - 9S. Wykazać, że struktura (A, \oplus, \odot) nie jest pierścieniem.
 - (a) $A = \mathbb{R} \setminus \{0\}, \ \oplus = +, \ \odot = \cdot$.
 - (b) $A = \mathbb{R}, \ a \oplus b = \frac{a+b}{2}, \ a \odot b = a \cdot b.$
 - (c) $A = \mathbb{N}, \ \oplus = +, \ \odot = \cdot$.
 - (d) $A = \{a + b\sqrt[3]{2} : a, b \in \mathbb{Z}\}, \oplus i \odot \text{ to zwykle dodawanie i mnożenie liczb.}$
 - (e) $A = \mathbb{R}_+, \ a \oplus b = a \cdot b, \ a \odot b = a^b$.
- 10S. Załóżmy, że A,B są podpierścieniami pierścienia R. Udowodnić, że $A\cap B$ jest podpierścieniem pierścienia R.
- 10K. (a) Dany jest pierścień przemienny z jednością R. Udowodnić, że R^* jest grupą względem mnożenia (zwaną grupą elementów odwracalnych pierścienia R).
- (b) Wypisać wszystkie dzielniki zera w pierścieniu \mathbb{Z}_{24} i wszystkie elementy odwracalne w pierścieniu \mathbb{Z}_{24} . Czy \mathbb{Z}_{24}^* jest cykliczna? Znaleźć produkt grup cyklicznych izomorficzny z \mathbb{Z}_{24}^* .
 - (c) To samo, co w (b), dla pierścienia \mathbb{Z}_{10} .
- (d) Niech n > 1. Udowodnić, że $a \in \mathbb{Z}_n \setminus \{0\}$ jest dzielnikiem zera w \mathbb{Z}_n wtedy i tylko wtedy, gdy a i n nie są względnie pierwsze.
- (e) Niech n > 1. Udowodnić, że $a \in \mathbb{Z}_n \setminus \{0\}$ jest odwracalny wtedy i tylko wtedy, gdy a i n są względnie pierwsze. (Wsk: wzorować się na dowodzie z wykładu, że skończona dziedzina jest ciałem. Rozważyć liczby $a \cdot_n 1, a \cdot_n 2, \ldots, a \cdot_n (n-1)$.)
- 11. (a) Udowodnic, że grupa $Aut(\mathbb{Z}_{24}, +_{24})$ jest izomorficzna z grupą \mathbb{Z}_{24}^* (wsk: automorfizm grupy \mathbb{Z}_{24} jest wyznaczony przez wartość na generatorze 1, a wartość ta może być dowolnym innym generatorem tej grupy).
 - (b)* Ogólniej: $Aut(\mathbb{Z}_n, +_n) \cong \mathbb{Z}_n^*$.

- 12. Niech $+, \cdot$ będą działaniami określonymi w zbiorze A. Wiadomo, że (A, +) jest grupą, zaś działanie \cdot jest łączne, rozdzielne względem + i ma element neutralny $1 \in A$. Wykazać, że wtedy $(A, +, \cdot)$ jest pierścieniem. (wsk: wystarczy udowodnić przemienność +. W tym celu wymnożyć na dwa sposoby (1+1)(a+b) i porównać wyniki.)
- 13. Załóżmy, że $(R, +, \cdot)$ jest pierścieniem, w którym grupa addytywna (R, +) jest cykliczna. Udowodnić, że R jest przemienny.
- 14. Niech S oznacza grupę liczb zespolonych modułu 1, z mnożeniem, zaś S_{∞} jej podgrupę złożoną ze wszystkich zespolonych pierwiastków z 1. Udowodnić, że każdy element grupy ilorazowej S/S_{∞} różny od elementu neutralnego ma rząd ∞ .
- 15*. Załóżmy, że w pierścieniu R mamy $a^2=a$ dla wszystkich $a\in R$ (uwaga: a^2 oznacza $a\cdot a$).
 - (a) Udowodnić, że 2a = 0 dla wszystkich $a \in R$. (uwaga: 2a oznacza a + a).
 - (b) Udowodnić, że R jest przemienny (wsk: rozważyć $(a+b)^2$).