Network Working Group Request for Comments: 3816 Category: Standards Track J. Quittek M. Stiemerling NEC H. Hartenstein University of Karlsruhe June 2004

Definitions of Managed Objects for RObust Header Compression (ROHC)

Status of this Memo

This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

Copyright (C) The Internet Society (2004).

Abstract

This memo defines a portion of the Management Information Base (MIB) for use with network management protocols in the Internet community. In particular, it describes a set of managed objects that allow monitoring of running instances of RObust Header Compression (ROHC). The managed objects defined in this memo are grouped into three MIB modules. The ROHC-MIB module defines managed objects shared by all ROHC profiles, the ROHC-UNCOMPRESSED-MIB module defines managed objects specific to the ROHC uncompressed profile, the ROHC-RTP-MIB module defines managed objects specific to the ROHC RTP (Real-Time Transport Protocol) profile, the ROHC UDP (User Datagram Protocol) profile, the ROHC LLA (Link Layer Assisted) profile.

Table of Contents

1.	Introduction			•			•		•			•	•	•	•	2
2.	The Internet-Standard Management	Fr	am	ew	orl	k.	•	•	•			•	•	•	•	2
3.	Overview															3
4.	Structure of the MIB modules															3
	4.1. The ROHC-MIB module															4
	4.1.1. rohcChannelTable							•		•	•				•	5
	4.1.2. rohcInstanceTable							•	•						•	5
	4.1.3. rohcProfileTable						•								•	6
	4.1.4. rohcContextTable						•		•			•				7
	4.2. The ROHC-UNCOMPRESSED-MIB mo	odu	le		•				•	•	•	•	•	•	•	8
	4.2.1. rohcUncmprContextTabl	le .							•	•	•	•	•	•	•	8
	4.3. The ROHC-RTP-MIB module	•	•	•			•	•	•	•	•	•	•	•	•	8
	4.3.1. rohcRtpContextTable.	•	•	•	•		•	•	•	•	•	•	•	•	•	8
	4.3.2. rohcPacketSizeTable.	•	•	•	•		•	•	•	•	•	•	•	•	•	9
5.	Definitions															
6.	Security Considerations	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	50
Ž.	Acknowledgements	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	51
8.	References	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	51
0.	8.1. Normative References															
	8.2. Informative References															
9.	Authors' Addresses	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	52
	Full Copyright Statement															
±0.	inte copyreque statement	•	•	•	•		•	•	•	•	•	•	•	•	•	~

1. Introduction

This memo defines a portion of the Management Information Base (MIB) for use with network management protocols in the Internet community. In particular, it describes a set of managed objects that allow monitoring of running instances of robust header compression.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14, RFC 2119 [RFC2119].

2. The Internet-Standard Management Framework

For a detailed overview of the documents that describe the current Internet-Standard Management Framework, please refer to section 7 of RFC 3410 [RFC3410].

Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. MIB objects are generally accessed through the Simple Network Management Protocol (SNMP). Objects in the MIB are defined using the mechanisms defined in the Structure of Management Information (SMI). This memo specifies a MIB

module that is compliant to the SMIv2, which is described in STD 58, RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580 [RFC2580].

Overview

This section describes the basic model of RObust Header Compression (ROHC, [RFC3095]) used when developing the MIB modules for ROHC described in the following sections.

ROHC presents a framework for IP header compression that allows flexible adjustment of compression efficiency versus robustness against channel errors depending on the underlying channel characteristics.

ROHC introduces header compressors/decompressors at the end-points (interfaces) of (wireless) channels on which packets with compressed headers are transferred. ROHC exploits the temporal redundancy in successive packet headers of a packet flow by storing non-changing fields of the headers as well as reference values of predictably changing fields as context information. When the context information for a packet flow is also established at the decompressor, only delta-information and unpredictably changing header fields have to be sent over the channel.

This document specifies MIB modules in order to provide a means for managing ROHC implementations via SNMP and within the IETF management framework. The objects defined support configuration management, fault management and performance monitoring.

For configuration management implementation parameters (see Section 6.3 of [RFC3095]) and configuration parameters (including the ones specified in Section 5.1.1 of [RFC3095] and in Section 5.1.1 of [RFC3242]) can be verified by using the MIB modules specified below.

For fault management compressor/decompressor state and mode can be checked.

For performance management a set of statistics is provided including the number of flows that have used ROHC, the current and long term compression ratio, the number of reinitializations and the number of packets sent or received with different header types.

4. Structure of the MIB modules

This section presents the structure of the MIB modules that are specified in Section 5. Basically, the MIB is structured according to the ROHC architecture described in [RFC3759].

ROHC is an evolving technology. [RFC3095] specifies the header compression framework and four profiles: uncompressed, RTP, UDP, and ESP (Real-Time Transport Protocol, User Datagram Protocol, Encapsulating Security Payload). [RFC3242] specifies a profile with additional link layer assistance called LLA (Link Layer Assisted). A profile for compression of TCP (Transmission Control Protocol) flows is under development within the ROHC working group and SCTP (Stream Control Transmission Protocol) compression is being discussed as potential next candidate. Therefore, the managed objects defined below are structured into three MIB modules: the general ROHC-MIB module and the profile-specific ROHC-UNCOMPRESSED-MIB and ROHC-RTP-MIB modules. This flexible approach allows to support future profiles each by its own profile-specific module.

The ROHC-MIB module defines properties of information on ROHC instances, ROHC channels, ROHC profiles, and ROHC compressor and decompressor contexts. All managed objects in this module are assumed to be shared by all profiles.

The ROHC-UNCOMPRESSED-MIB module extends the ROHC-MIB by managed objects that are specific to the ROHC uncompressed profile 0x0000 defined in [RFC3095]. The ROHC-RTP-MIB module extends the ROHC-MIB by managed objects that are specific to the three profiles defined in [RFC3095] (ROHC RTP profile 0x0001, ROHC UDP profile 0x0002, and ROHC ESP profile 0x0003), and to the ROHC LLA profile 0x0005 defined in [RFC3242]. An analysis of these profiles showed that they are tightly related and can share most of the managed objects in the ROHC-UNCOMPRESSED-MIB module. Therefore, a joint module for all of them was preferred to individual modules.

The number of managed objects in the ROHC-UNCOMPRESSED-MIB Module and the ROHC-RTP-MIB Module is rather small. They contain context state and context mode, and profile-specific context statistics. It is assumed that MIB modules for future profiles, such as TCP and SCTP, will be similarly small and easy to design.

4.1. The ROHC-MIB module

The ROHC-MIB module defines managed objects that are expected to be useful for all current and future ROHC profiles. Objects in the ROHC-MIB module are arranged into four tables: the rohcChannelTable, the rohcInstanceTable, the rohcProfileTable, and the rohcContextTable. The managed objects in the first three tables are rather static (except for provided statistics), while the objects in the rohcContextTable are more dynamic.

All tables are indexed by the IP interface number and by a numeric channel identifier. The channel identifier is used for channels to which compressors and decompressors are attached (called ROHC channels in [RFC3759]), as well as for dedicated feedback channels (called ROHC feedback channels in [RFC3759]). Compressor and decompressor instances are further indexed by their type (either compressor or decompressor). Contexts are indexed by the same index as their corresponding instance and their individual context identifier (CID).

4.1.1. rohcChannelTable

The rohcChannelTable lists all channels used by ROHC instances for transferring compressed packets and/or for giving feedback from the decompressor to the compressor. Listed channels are either ROHC channels or feedback channels as defined in [RFC3759]. The channels are listed per IP interface.

The information per channel in the rohcChannelTable includes

- o the channel ID,
- o the channel type, either 'notInUse', 'rohc', or 'dedicatedFeedback',
- o the channel for which feedback is provided by this channel (if applicable),
- o a string for describing the channel, and
- o the status of the channel being either 'enabled' or 'disabled'.

4.1.2. rohcInstanceTable

The rohcInstanceTable defines properties of ROHC compressor instances and ROHC decompressor instances.

As described in [RFC3759], an instance is associated with exactly one channel and only one instance can be associated with the same channel. Therefore, the same index consisting of ifIndex and rohcChannelID could have been used for both tables. But when accessing the rohcInstanceTable (and the rohcContextTable that shares a part of its index with the rohcInstanceTable) there are many cases where either a compressor contexts or a decompressor contexts are of interest. Therefore, the rohcInstanceType indicating either a compressor or a decompressor was added to the table's index. This allows listing all compressors without accessing any decompressor.

Note that still the combination of ifIndex and rohcChannelID uniquely identifies an instance. It is always possible to directly identify and access the channel corresponding to a given instance.

The set of instance properties in the rochInstanceTable includes

- o the vendor of the implementation, version number and description,
- o the channels used for compressed packets and for feedback,
- implementation and configuration properties including clock resolution, maximum context identifier number (MAX_CID), the LARGE_CIDS flag, and the Maximum Reconstructed Reception Unit (MRRU),
- o the storage time for contexts created by this instance,
- o the status of the instance (operational or not).

Optionally, the rohcInstanceTable also contains instance statistics including

- o the total number of compressed flows,
- o the current number of compressed flows,
- o the total number of packets passing this instance
- o the total number of static Initialization and Refreshes (IRs) passing this instance
- o the total number of dynamic Initialization and Refreshes (IR-DYNs) passing this instance, and
- o the total compression ratio achieved on the channel.

Instances are listed per IP interface.

4.1.3. rohcProfileTable

The rohcProfileTable lists available profiles per instance including information on

- o the profile number,
- o the vendor and version number, and
- o a string describing the profile.

Quittek, et al.

Standards Track

o a flag indicating whether or not using this profile has been negotiated with the corresponding (de)compressor.

4.1.4. rohcContextTable

The rohcContextTable lists compressor contexts or decompressor contexts per instance and context identifier (CID). Each row of this table represents a context. If a new context is created, also a new row in this table is created. After expiration or termination of a context, the row will continue to exist until the context's storage time expires or until the CID is re-used. Then the row will be deleted.

For each context, the following attributes are listed:

- o the type of context ('compressor' or 'decompressor'), also used as part of the table index,
- o the CID,
- o the state of the CID ('unused', 'active', 'expired', or 'terminated'), also used as part of the table index,
- o the used profile,
- o in case of a decompressor: the decompressor depth, and
- o the storage time.

Optionally, context statistics is provided including

- o activation and deactivation time of the context,
- o the number of packets sent or received, respectively,
- o the numbers of IRs and IR-DYNs sent or received, respectively,
- o the number of feedbacks sent or received, respectively,
- in case of a decompressor context: the numbers of decompressor failures and repairs,
- o the total compression ratio of all packets passing this context,
- the total compression ratio of all packet headers compressed in this context,

- o the mean compressed packet size of all packets passing this context,
- o the mean header size of all compressed headers passing this context,
- o the compression ratio of the last 16 packets passing this context,
- the compression ratio of the last 16 packet headers compressed in this context,
- o the mean compressed packet size of the last 16 packets passing this context,
- o the mean header size of the last 16 compressed headers passing this context.

4.2. The ROHC-UNCOMPRESSED-MIB module

The ROHC-UNCOMPRESSED-MIB module defines managed objects that are specific to ROHC uncompressed profile (0x0000) specified in [RFC3095].

4.2.1. rohcUncmprContextTable

The rohcUncmprContextTable extends the rohcContextTable. It provides information on state and mode of the compressor for profile 0x0000. Optionally, it also provides a counter of ACK feedbacks sent or received by the context, respectively.

4.3. The ROHC-RTP-MIB module

The ROHC-RTP-MIB module defines managed objects that are specific to three profiles specified in [RFC3095] (ROHC RTP profile 0x0001, ROHC UDP profile 0x0002, and ROHC ESP profile 0x0003) and to the ROHC LLA profile 0x0005 specified in [RFC3242]. The ROHC-RTP-MIB contains two tables, the rohcRtpContextTable and the rohcRtpPacketSizeTable.

4.3.1. rohcRtpContextTable

The rohcRtpContextTable extends the rohcContextTable. It provides information on context state and context mode for profiles 0x0001 - 0x0003 and 0x0005. For compressor contexts it optionally contains managed object containing the numbers of allowed and used packet sizes. As further option, counters of the numbers of ACKs, NACKs, and SNACKs in this context are specified.

4.3.2. rohcPacketSizeTable

The optional rohcPacketSizeTable lists per compressor context the allowed packet sizes for profiles ROHC RTP, ROHC UDP, ROHC ESP, or the preferred packet sizes for ROHC LLA, respectively. Allowed packet sizes are marked if they are used. For preferred packet sizes, it is indicated whether the preferred size applies to NHP only, to RHP only or to all packets.

5. Definitions

ROHC-MIB DEFINITIONS ::= BEGIN

IMPORTS

MODULE-IDENTITY, OBJECT-TYPE, Unsigned32, Counter32, mib-2 FROM SNMPv2-SMI

-- [RFC2578]

TEXTUAL-CONVENTION, TruthValue, TimeInterval, DateAndTime FROM SNMPv2-TC

-- [RFC2579]

MODULE-COMPLIANCE, OBJECT-GROUP FROM SNMPv2-CONF

-- [RFC2580]

SnmpAdminString

FROM SNMP-FRAMEWORK-MIB

-- [RFC3411]

ifIndex

FROM IF-MIB;

-- [RFC2863]

rohcMIB MODULE-IDENTITY

LAST-UPDATED "200406030000Z" -- June 3, 2004

ORGANIZATION "IETF Robust Header Compression Working Group" CONTACT-INFO

"WG charter:

http://www.ietf.org/html.charters/rohc-charter.html

Mailing Lists:

General Discussion: rohc@ietf.org
To Subscribe: rohc-request@ietf.org
In Body: subscribe your_email_address

Editor:

Juergen Quittek NEC Europe Ltd. Network Laboratories Kurfuersten-Anlage 36

```
69221 Heidelberg
           Germany
           Tel: +49 6221 90511-15
           EMail: quittek@netlab.nec.de"
    DESCRIPTION
         "This MIB module defines a set of basic objects for monitoring and configuring robust header compression.

The module covers information about running instances
          of ROHC (compressors or decompressors) at IP interfaces.
          Information about compressor contexts and decompressor
          contexts has different structure for different profiles.
          Therefore it is not provided by this MIB module, but by
          individual modules for different profiles.
          Copyright (C) The Internet Society (2004). The
          initial version of this MIB module was published
          in RFC 3816. For full legal notices see the RFC
          itself or see:
         http://www.ietf.org/copyrights/ianamib.html"
                 "200406030000Z" -- June 3, 2004
    DESCRIPTION "Initial version, published as RFC 3816."
    ::= { mib-2 112 }
RohcChannelIdentifier ::= TEXTUAL-CONVENTION
    DISPLAY-HINT "d"
    STATUS
                  current
    DESCRIPTION
         "A number identifying a channel.
         The value of 0 must not be used as identifier
          of an existing channel."
                  Unsigned32 (1..4294967295)
RohcChannelIdentifierOrZero ::= TEXTUAL-CONVENTION
    DISPLAY-HINT "d"
    STATUS
                  current
    DESCRIPTION
         "A number identifying a channel.
         The value of 0 is indicates that
         no channel is identified."
                  Unsigned32 (0..4294967295)
RohcCompressionRatio ::= TEXTUAL-CONVENTION
    DISPLAY-HINT "d"
    STATUS
                  current
    DESCRIPTION
        "A number indicating a compression ratio over
```

```
a set of bytes. The value is defined as
         1000 * bytes(compressed) / bytes(original)
         rounded to the next integer value.
         Note that compressed sets of bytes can be larger
         than the corresponding uncompressed ones.
         Therefore, the number can be greater than 1000."
    SYNTAX
                  Unsigned32
-- The groups defined within this MIB module:
rohcObjects     OBJECT IDENTIFIER ::= { rohcMIB 1 }
rohcConformance     OBJECT IDENTIFIER ::= { rohcMIB 2 }
-- The ROHC Instance group lists properties of ROHC
-- instances in the rohcInstanceTable, about the channels used
-- by the instances in the rohcChanneltable and about the profiles
-- available at the instances in the rohcProfileTable.
-- Channel Table
-- Listing all channels used for ROHC data channel
-- and/or as feedback channel.
rohcChannelTable OBJECT-TYPE
    SYNTAX SEQUENCE OF RohcChannelEntry MAX-ACCESS not-accessible
               current
    STATUS
    DESCRIPTION
         "This table lists and describes all ROHC channels
         per interface."
    ::= { rohcInstanceObjects 1 }
rohcChannelEntry OBJECT-TYPE
    SYNTAX RohcChannelEntry
    MAX-ACCESS not-accessible
    STATUS
                current
    DESCRIPTION
        "An entry describing a particular script. Every script that
         is stored in non-volatile memory is required to appear in
```

```
this script table.
         Note, that the rohcChannelID identifies the channel
         uniquely. The ifIndex is part of the index of this table
          just in order to allow addressing channels per interface."
    INDEX { ifIndex, rohcChannelID }
    ::= { rohcChannelTable 1 }
RohcChannelEntry ::= SEQUENCE {
    rohcChannelID
                                   RohcChannelIdentifier,
    rohcChannelType
                                   INTEGER,
    rohcChannelFeedbackFor
                                   RohcChannelIdentifierOrZero,
    rohcChannelDescr
                                   SnmpAdminString,
    rohcChannelStatus
                                   INTEGER
}
rohcChannelID OBJECT-TYPE
                 RohcChannelIdentifier
    SYNTAX
    MAX-ACCESS not-accessible
    STATUS
                 current
    DESCRIPTION
         "The locally arbitrary, but unique identifier associated
         with this channel. The value is REQUIRED to be unique
         per ROHC MIB implementation independent of the associated
          interface.
         The value is REQUIRED to remain constant at least from one re-initialization of the entity's network management system to the next re-initialization. It is RECOMMENDED that the
          value persist across such re-initializations.
         "RFC 3095, Section 5.1.1"
    ::= { rohcChannelEntry 2 }
rohcChannelType OBJECT-TYPE
    SYNTAX
                 INTEGER {
                      notInUse(1),
                      rohc(2),
                      dedicatedFeedback(3)
    MAX-ACCESS read-only
    STATUS
                 current
    DESCRIPTION
         "Type of usage of the channel. A channel might be currently
          not in use for ROHC or feedback, it might be in use as
         a ROHC channel carrying packets and optional piggy-backed
          feedback, or it might be used as a dedicated feedback
          channel exclusively carrying feedback."
```

```
::= { rohcChannelEntry 3 }
rohcChannelFeedbackFor OBJECT-TYPE
                RohcChannelIdentifierOrZero
    SYNTAX
    MAX-ACCESS read-only
    STATUS
                current
    DESCRIPTION
         'The index of another channel of this interface for which
         the channel serves as feedback channel.
         If no feedback information is transferred on this channel,
         then the value of this ID is 0. If the channel type is set
         to notInUse(1), then the value of this object must be 0. If the channel type is rohc(2) and the value of this object
         is a valid channel ID, then feedback information is
         piggy-backed on the ROHC channel. If the channel type is
         dedicatedFeedback(3), then feedback is transferred on this
         channel and the value of this object MUST be different from
         O and MUST identify an existing ROHC channel."
    REFERENCE
        "RFC 3095, Section 5.1.1"
    ::= { rohcChannelEntry 4 }
rohcChannelDescr OBJECT-TYPE
    SYNTAX
                SnmpAdminString
    MAX-ACCESS read-only
    STATUS
                current
    DESCRIPTION
        "A textual description of the channel."
    ::= { rohcChannelEntry 5 }
rohcChannelStatus OBJECT-TYPE
                INTEGER {
    SYNTAX
                     enabled(1)
                     disabled(2)
                 }
    MAX-ACCESS
                read-only
    STATUS
                current
    DESCRIPTION
        "Status of the channel."
    ::= { rohcChannelEntry 6 }
-- Instances of ROHC
-- This table lists properties of running instances of ROHC
-- compressors and decompressors at the managed node.
```

```
rohcInstanceTable OBJECT-TYPE
    SYNTAX
               SEQUENCE OF RohcInstanceEntry
    MAX-ACCESS not-accessible
    STATUS
                current
    DESCRIPTION
        "This table lists properties of running instances
         of robust header compressors and decompressors
         at IP interfaces. It is indexed by interface number,
         the type of instance (compressor or decompressor),
         and the ID of the channel used by the instance as
         ROHC channel.
         Note that the rohcChannelID uniquely identifies an
         instance. The ifIndex and rohcInstanceType are part
         of the index, because it simplifies accessing instances
         per interface and for addressing either compressors or
         decompressors only.
    ::= { rohcInstanceObjects 2 }
rohcInstanceEntry OBJECT-TYPE
    SYNTAX RohcInstanceEntry
    MAX-ACCESS not-accessible
    STATUS
               current
    DESCRIPTION
        "An entry describing a particular instance
    of a robust header compressor or decompressor."
INDEX { ifIndex, rohcInstanceType, rohcChannelID }
    ::= { rohcInstanceTable 1 }
RohcInstanceEntry ::= SEQUENCE {
                                    INTEGER,
    rohcInstanceType
    rohcInstanceFBChannelID
                                    RohcChannelIdentifierOrZero,
                                    OBJECT IDENTIFIER,
    rohcInstanceVendor
    rohcInstanceVersion
                                    SnmpAdminString,
    rohcInstanceDescr
                                    SnmpAdminString,
    rohcInstanceClockRes
                                    Unsigned32,
                                    Unsigned32,
    rohcInstanceMaxCID
    rohcInstanceLargeCIDs
                                    TruthValue,
    rohcInstanceMRRŪ
                                    Unsigned32,
    rohcInstanceContextStorageTime TimeInterval,
    rohcInstanceStatus
                                    INTEGER,
    rohcInstanceContextsTotal
                                    Counter32
    rohcInstanceContextsCurrent
                                    Unsigned32,
    rohcInstancePackets
                                    Counter32,
    rohcInstanceIRs
                                    Counter32,
                                    Counter32,
    rohcInstanceIRDYNs
    rohcInstanceFeedbacks
                                    Counter32,
```

```
rohcInstanceCompressionRatio RohcCompressionRatio
}
rohcInstanceType OBJECT-TYPE
    SYNTAX
                   INTEGER {
                        compressor(1),
                        decompressor(2)
                   not-accessible
    MAX-ACCESS
    STATUS
                   current
    DESCRIPTION
         "Type of the instance of ROHC. It is either a
          compressor instance or a decompressor instance."
    ::= { rohcInstanceEntry 2 }
rohcInstanceFBChannelID OBJECT-TYPE
                   RohcChannelIdentifierOrZero
    SYNTAX
    MAX-ACCESS read-only
    STATUS
                   current
    DESCRIPTION
          'Identifier of the channel used for feedback.
          If no feedback channel is used, the value of
          this object is 0 ."
    REFERENCE
         "RFC 3095. Section 5.1.1"
    ::= { rohcInstanceEntry 4 }
rohcInstanceVendor OBJECT-TYPE
    SYNTAX
                  OBJECT IDENTIFIER
    MAX-ACCESS read-only
    STATUS
                   current
    DESCRIPTION
         "An object identifier that identifies the vendor who
          provides the implementation of robust header description.
This object identifier SHALL point to the object identifier directly below the enterprise object identifier {1 3 6 1 4 1} allocated for the vendor. The value must be the object identifier {0 0} if the vendor is not known."
    ::= { rohcInstanceEntry 5 }
rohcInstanceVersion OBJECT-TYPE
    SYNTAX
                   SnmpAdminString (SIZE (0..32))
    MAX-ACCESS
                   read-only
    STATUS
                   current
    DESCRIPTION
          "The version number of the implementation of robust header
          compression. The zero-length string shall be used if the
           implementation does not have a version number.
```

```
It is suggested that the version number consist of one or
         more decimal numbers separated by dots, where the first
         number is called the major version number."
    ::= { rohcInstanceEntry 6 }
rohcInstanceDescr OBJECT-TYPE
    SYNTAX
                 SnmpAdminString
    MAX-ACCESS read-only
    STATUS
                current
    DESCRIPTION
        "A textual description of the implementation."
    ::= { rohcInstanceEntry 7 }
rohcInstanceClockRes OBJECT-TYPE
    SYNTAX
                 Unsigned32
                 "milliseconds"
    UNITS
    MAX-ACCESS read-only
                current
    STATUS
    DESCRIPTION
         "This object indicates the system clock resolution in
         units of milliseconds. A zero (0) value means that there is no clock available."
    ::= { rohcInstanceEntry 8 }
rohcInstanceMaxCID OBJECT-TYPE
                Unsigned32 (1..16383)
    SYNTAX
    MAX-ACCESS read-only
    STATUS
                 current
    DESCRIPTION
         "The highest context ID number to be used by the
         compressor. Note that this parameter is not coupled to,
         but in effect further constrained by,
         rohcChannelLargeCIDs."
    REFERENCE
        "RFC 3095, Section 5.1.1"
    ::= { rohcInstanceEntry 9 }
rohcInstanceLargeCIDs OBJECT-TYPE
                 TruthValue
    SYNTAX
    MAX-ACCESS read-only
    STATUS
                 current
    DESCRIPTION
         "When retrieved, this boolean object returns false if
         the short CID representation (0 bytes or 1 prefix byte, covering CID 0 to 15) is used; it returns true, if the
         embedded CID representation (1 or 2 embedded CID bytes covering CID 0 to 16383) is used."
```

```
REFERENCE
         "RFC 3095, Section 5.1.1"
    ::= { rohcInstanceEntry 10 }
rohcInstanceMRRU OBJECT-TYPE
    SYNTAX
                  Unsianed32
    MAX-ACCESS
                  read-only
                 current
    STATUS
    DESCRIPTION
         'Maximum reconstructed reception unit. This is the
          size of the largest reconstructed unit in octets that
         the decompressor is expected to reassemble from segments (see RFC 3095, Section 5.2.5). Note that this size includes the CRC. If MRRU is negotiated to be 0, no segment headers are allowed on the channel."
    REFERENCE
         "RFC 3095, Section 5.1.1"
    ::= { rohcInstanceEntry 11 }
rohcInstanceContextStorageTime OBJECT-TYPE
                  TimeInterval
    SYNTAX
                  "centi-seconds"
    UNITS
    MAX-ACCESS read-write
    STATUS
                 current
    DESCRIPTION
         "This object indicates the default maximum amount of time
          information on a context belonging to this instance is kept
          as entry in the rohcContextTable after the context is
          expired or terminated. The value of this object is used
          to initialize rohcContexStorageTime object when a new
          context is created.
          Changing the value of an rohcInstanceContextStorageTime
          instance does not affect any entry of the rohcContextTable
          created_previously.
          ROHC-MIB implementations SHOULD store the set value of this
          object persistently."
    DEFVAL { 360000 }
    ::= { rohcInstanceEntry 12 }
rohcInstanceStatus OBJECT-TYPE
                 INTEGER {
    SYNTAX
                      enabled(1)
                      disabled(2)
    MAX-ACCESS read-only
                  current
    STATUS
    DESCRIPTION
         "Status of the instance of ROHC."
```

```
::= { rohcInstanceEntry 13 }
rohcInstanceContextsTotal OBJECT-TYPE
                Counter32
    SYNTAX
    MAX-ACCESS read-only
   DESCRIPTION
        'Counter of all contexts created by this instance.
         Discontinuities in the value of this counter can
         occur at re-initialization of the management
         system, and at other times as indicated by the
         value of ifCounterDiscontinuityTime."
    ::= { rohcInstanceEntry 14 }
rohcInstanceContextsCurrent OBJECT-TYPE
    SYNTAX
                Unsigned32
    MAX-ACCESS read-only
                current
    STATUS
    DESCRIPTION
        'Number of currently active contexts created by this instance."
    ::= { rohcInstanceEntry 15 }
rohcInstancePackets OBJECT-TYPE
    SYNTAX Counter32
    MAX-ACCESS read-only
    STATUS
                current
    DESCRIPTION
        'Counter of all packets passing this instance.
         Discontinuities in the value of this counter can
         occur at re-initialization of the management
         system, and at other times as indicated by the value of ifCounterDiscontinuityTime."
    ::= { rohcInstanceEntry 16 }
rohcInstanceIRs OBJECT-TYPE
              Counter32
    SYNTAX
    MAX-ACCESS read-only
    STATUS
                current
    DESCRIPTION
        "The number of all IR packets that are either sent
         or received by this instance.
         Discontinuities in the value of this counter can
         occur at re-initialization of the management
         system, and at other times as indicated by the
```

```
value of ifCounterDiscontinuityTime."
    REFERENCE
         "RFC 3095, Section 5.7.7.1"
    ::= { rohcInstanceEntry 17 }
rohcInstanceIRDYNs OBJECT-TYPE
    SYNTAX Counter32
MAX-ACCESS read-only
                 current
    STATUS
    DESCRIPTION
         "The number of all IR-DYN packets that are either sent
          or received by this instance.
          Discontinuities in the value of this counter can
          occur at re-initialization of the management
          system, and at other times as indicated by the
          value of ifCounterDiscontinuityTime."
    REFERENCE
         "RFC 3095, Section 5.7.7.2"
    ::= { rohcInstanceEntry 18 }
rohcInstanceFeedbacks OBJECT-TYPE
                 Counter32
    SYNTAX
    MAX-ACCESS read-only
    STATUS
                  current
    DESCRIPTION
         "The number of all feedbacks that are either sent
          or received by this instance.
          Discontinuities in the value of this counter can
          occur at re-initialization of the management
          system, and at other times as indicated by the value of ifCounterDiscontinuityTime."
    ::= { rohcInstanceEntry 19 }
rohcInstanceCompressionRatio OBJECT-TYPE
                  RohcCompressionRatio
    SYNTAX
    MAX-ACCESS read-only
    STATUS
                 current
    DESCRIPTION
         "This object indicates the compression ratio so far over all packets on the channel served by this instance. The compression is computed over all bytes of the IP packets
          including the IP header but excluding all lower layer
          headers.
    ::= { rohcInstanceEntry 20 }
```

```
-- Profile Table
rohcProfileTable OBJECT-TYPE
               SEQUENCE OF RohcProfileEntry
    SYNTAX
    MAX-ACCESS not-accessible
    STATUS
                current
    DESCRIPTION
        "This table lists a set of profiles supported by the
         instance.
    REFERENCE
        "RFC 3095, Section 5.1.1"
    ::= { rohcInstanceObjects 3 }
rohcProfileEntry OBJECT-TYPE
                RohcProfileEntry
    SYNTAX
    MAX-ACCESS not-accessible
    STATUS
                current
    DESCRIPTION
        "An entry describing a particular profile supported by the instance. It is indexed by the rohcChannelID
         identifying the instance and by the rohcProfile.'
    INDEX { rohcChannelID, rohcProfile }
    ::= { rohcProfileTable 1 }
RohcProfileEntry ::= SEQUENCE {
    rohcProfile
                            Unsigned32
                            OBJEČT IDENTIFIER,
    rohcProfileVendor
    rohcProfileVersion
                            SnmpAdminString,
    rohcProfileDescr
                            SnmpAdminString,
    rohcProfileNegotiated TruthValue
rohcProfile OBJECT-TYPE
                Unsigned32 (0..65535)
    SYNTAX
    MAX-ACCESS not-accessible
    STATUS
                current
    DESCRIPTION
        "Identifier of a profile supported. For a listing of
         possible profile values, see the IANA registry for
          RObust Header Compression (ROHC) Profile Identifiers'
         at http://www.iana.org/assignments/rohc-pro-ids"
    ::= { rohcProfileEntry 2 }
rohcProfileVendor OBJECT-TYPE
             OBJECT IDENTIFIER
    SYNTAX
    MAX-ACCESS read-only
    STATUS
              current
```

```
DESCRIPTION
        "An object identifier that identifies the vendor who
         provides the implementation of robust header description.
         This object identifier SHALL point to the object identifier
         directly below the enterprise object identifier
         {1 3 6 1 4 1} allocated for the vendor. The value must be the object identifier {0 0} if the vendor is not known."
    ::= { rohcProfileEntry 3 }
rohcProfileVersion OBJECT-TYPE
               SnmpAdminString (SIZE (0..32))
    SYNTAX
    MAX-ACCESS read-only
    STATUS
                current
    DESCRIPTION
        "The version number of the implementation of robust header
         compression. The zero-length string shall be used if the
         implementation does not have a version number.
         It is suggested that the version number consist of one or
         more decimal numbers separated by dots, where the first
         number is called the major version number."
    ::= { rohcProfileEntry 4 }
rohcProfileDescr OBJECT-TYPE
    SYNTAX
                SnmpAdminString
    MAX-ACCESS read-only
    STATUS
                current
    DESCRIPTION
        "A textual description of the implementation."
    ::= { rohcProfileEntry 5 }
rohcProfileNegotiated OBJECT-TYPE
    SYNTAX
                TruthValue
    MAX-ACCESS read-only
               current
    STATUS
    DESCRIPTION
        'When retrieved, this boolean object returns true
         if the profile has been negotiated to be used at
         the instance, i.e., is supported also be the
         corresponding compressor/decompressor."
    ::= { rohcProfileEntry 6 }
-- Context Table
rohcContextTable OBJECT-TYPE
    SYNTAX SEQUENCE OF RohcContextEntry
```

```
MAX-ACCESS not-accessible
                current
    STATUS
    DESCRIPTION
        "This table lists and describes all compressor contexts
         per instance."
    ::= { rohcObjects 2 }
rohcContextEntry OBJECT-TYPE
                RohcContextEntry
    SYNTAX
    MAX-ACCESS
                not-accessible
    STATUS
                current
    DESCRIPTION
        "An entry describing a particular compressor context."
        rohcChannelID
        rohcContextCID
    ::= { rohcContextTable 1 }
RohcContextEntry ::= SEQUENCE {
    rohcContextCID
                                     Unsigned32,
    rohcContextCIDState
                                     INTEGER,
                                     Unsigned32.
    rohcContextProfile
    rohcContextDecompressorDepth
                                     Unsianed32.
    rohcContextStorageTime
                                     TimeInterval,
    rohcContextActivationTime
                                     DateAndTime,
    rohcContextDeactivationTime
                                     DateAndTime.
    rohcContextPackets
                                     Counter32,
                                     Counter32,
    rohcContextIRs
    rohcContextIRDYNs
                                     Counter32,
                                     Counter32,
    rohcContextFeedbacks
    rohcContextDecompressorFailures Counter32,
    rohcContextDecompressorRepairs
                                     Counter32,
    rohcContextAllPacketsRatio
                                     RohcCompressionRatio,
    rohcContextAllHeadersRatio
                                     RohcCompressionRatio,
    rohcContextAllPacketsMeanSize
                                     Unsigned32,
    rohcContextAllHeadersMeanSize
                                     Unsigned32,
    rohcContextLastPacketsRatio
                                     RohcCompressionRatio,
    rohcContextLastHeadersRatio
                                     RohcCompressionRatio,
    rohcContextLastPacketsMeanSize
                                     Unsigned32,
    rohcContextLastHeadersMeanSize
                                     Unsigned32
}
rohcContextCID OBJECT-TYPE
    SYNTAX
                Unsigned32 (0..16383)
    MAX-ACCESS
                not-accessible
                current
    STATUS
    DESCRIPTION
```

```
"The context identifier (CID) of this context."
     REFERENCE
          "RFC 3095, Sections 5.1.1 and 5.1.3"
     ::= { rohcContextEntry 2 }
rohcContextCIDState OBJECT-TYPE
     SYNTAX
                     INTEGER {
                          unused(1),
                           active(2),
                          expired(3)
                          terminated(4)
                     }
     MAX-ACCESS read-only
     STATUS
                     current
     DESCRIPTION
           "State of the CID. When a CID is assigned to a context,
            its state changes from `unused' to `active'. The active
            context may stop operation due to some explicit
           signalling or after observing no packet for some specified time. In the first case then the CID state changes to `terminated', in the latter case it changes to `expired'. If the CID is re-used again for another context, the state changes back to `active'."
     ::= { rohcContextEntry 3 }
rohcContextProfile OBJECT-TYPE
                   Unsigned32 (0..65535)
     SYNTAX
     MAX-ACCESS read-only
     STATUS
                     current
     DESCRIPTION
           "Identifier of the profile for this context.
            The profile is identified by its index in the
           rohcProfileTable for this instance. There MUST exist a corresponding entry in the rohcProfileTable using the value of rohcContextProfile as second part of the index (and using the same rohcChannelID as first part of the
            index)."
     ::= { rohcContextEntry 4 }
rohcContextDecompressorDepth OBJECT-TYPE
                    Unsigned32
     SYNTAX
     MAX-ACCESS read-only
     STATUS
                     current
     DESCRIPTION
           "This object indicates whether reverse decompression, for
            example as described in RFC 3095, Section 6.1, is used
            on this channel or not, and if used, to what extent.
```

Its value is only valid for decompressor contexts, i.e., if rohcInstanceType has the value decompressor(2). For compressor contexts where rohcInstanceType has the value compressor(1), the value of this object is irrelevant and MUST be set to zero (0).

The value of the reverse decompression depth indicates the maximum number of packets that are buffered, and thus possibly be reverse decompressed by the decompressor. A zero (0) value means that reverse decompression is not used."

::= { rohcContextEntry 5 }

rohcContextStorageTime OBJECT-TYPE

SYNTAX TimeInterval
UNITS "centi-seconds"
MAX-ACCESS read-write
STATUS current

DESCRIPTION

"The value of this object specifies how long this row can exist in the rohcContextTable after the rohcContextCIDState switched to expired(3) or terminated(4). This object returns the remaining time that the row may exist before it is aged out. The object is initialized with the value of the associated rohcContextStorageTime object. After expiration or termination of the context, the value of this object ticks backwards. The entry in the rohcContextTable is destroyed when the value reaches 0.

The value of this object may be set in order to increase or reduce the remaining time that the row may exist. Setting the value to 0 will destroy this entry as soon as the rochContextCIDState has the value expired(3) or terminated(4).

Note that there is no guarantee that the row is stored as long as this object indicates. In case of limited CID space, the instance may re-use a CID before the storage time of the corresponding row in rohcContextTable reaches the value of 0. In this case the information stored in this row is not anymore available."

::= { rohcContextEntry 6 }

rohcContextActivationTime OBJECT-TYPE
SYNTAX DateAndTime
MAX-ACCESS read-only
STATUS current

```
DESCRIPTION
        "The date and time when the context started to be able to
         compress packets or decompress packets, respectively.
         The value '0000000000000000'H is returned if the context
         has not been activated yet."
    DEFVAL { '0000000000000000'H'}
    ::= { rohcContextEntry 7 }
rohcContextDeactivationTime OBJECT-TYPE
                DateAndTime
    SYNTAX
    MAX-ACCESS read-only
                current
    STATUS
    DESCRIPTION
        "The date and time when the context stopped being able to
         compress packets or decompress packets, respectively,
         because it expired or was terminated for other reasons.
         The value '0000000000000000'H is returned if the context
         has not been deactivated yet.'
    DEFVAL { '0000000000000000'H }
    ::= { rohcContextEntry 8 }
rohcContextPackets OBJECT-TYPE
    SYNTAX
             Counter32
    MAX-ACCESS read-only
    STATUS
               current
    DESCRIPTION
        "The number of all packets passing this context.
         Discontinuities in the value of this counter can
         occur at re-initialization of the management
         system, and at other times as indicated by the
         value of ifCounterDiscontinuityTime. For checking
         ifCounterDiscontinuityTime, the interface index is required. It can be determined by reading the
         rohcChannelTable.'
    ::= { rohcContextEntry 9 }
rohcContextIRs OBJECT-TYPE
               Counter32
    SYNTAX
    MAX-ACCESS read-only
    STATUS
                current
    DESCRIPTION
        "The number of all IR packets sent or received,
         respectively, by this context.
         Discontinuities in the value of this counter can
         occur at re-initialization of the management
         system, and at other times as indicated by the
```

```
value of ifCounterDiscontinuityTime. For checking
         ifCounterDiscontinuityTime, the interface index is
         required. It can be determined by reading the
         rohcChannelTable."
    REFERENCE
        "RFC 3095, Section 5.7.7.1"
    ::= { rohcContextEntry 10 }
rohcContextIRDYNs OBJECT-TYPE
    SYNTAX
               Counter32
    MAX-ACCESS read-only
    STATUS
                current
    DESCRIPTION
        "The number of all IR-DYN packets sent or received,
         respectively, by this context.
         Discontinuities in the value of this counter can
         occur at re-initialization of the management
         system, and at other times as indicated by the
         value of ifCounterDiscontinuityTime. For checking ifCounterDiscontinuityTime, the interface index is required. It can be determined by reading the
         rohcChannelTable."
    REFERENCE
        "RFC 3095. Section 5.7.7.2"
    ::= { rohcContextEntry 11 }
rohcContextFeedbacks OBJECT-TYPE
                Counter32
    SYNTAX
    MAX-ACCESS read-only
    STATUS
                 current
    DESCRIPTION
        "The number of all feedbacks sent or received,
         respectively, by this context.
         Discontinuities in the value of this counter can
         occur at re-initialization of the management
         system, and at other times as indicated by the
         value of ifCounterDiscontinuityTime. For checking
         ifCounterDiscontinuityTime, the interface index is
         required. It can be determined by reading the
         rohcChannelTable."
    ::= { rohcContextEntry 12 }
rohcContextDecompressorFailures OBJECT-TYPE
              Counter32
    SYNTAX
    MAX-ACCESS read-only
    STATUS
              current
```

DESCRIPTION

"The number of all decompressor failures so far in this context. The number is only valid for decompressor contexts, i.e., if rohcInstanceType has the value decompressor(2).

Discontinuities in the value of this counter can occur at re-initialization of the management system, and at other times as indicated by the value of ifCounterDiscontinuityTime. For checking ifCounterDiscontinuityTime, the interface index is required. It can be determined by reading the rohcChannelTable."

::= { rohcContextEntry 13 }

rohcContextDecompressorRepairs OBJECT-TYPE

SYNTAX Counter32
MAX-ACCESS read-only
STATUS current

DESCRIPTION

"The number of all context repairs so far in this context. The number is only valid for decompressor contexts, i.e., if rohcInstanceType has the value decompressor(2).

Discontinuities in the value of this counter can occur at re-initialization of the management system, and at other times as indicated by the value of ifCounterDiscontinuityTime. For checking ifCounterDiscontinuityTime, the interface index is required. It can be determined by reading the rohcChannelTable."

::= { rohcContextEntry 14 }

rohcContextAllPacketsRatio OBJECT-TYPE

SYNTAX RohcCompressionRatio

MAX-ACCESS read-only STATUS current

DESCRIPTION

"This object indicates the compression ratio so far over all packets passing this context. The compression is computed over all bytes of the IP packets including the IP header but excluding all lower layer headers."

::= { rohcContextEntry 15 }

rohcContextAllHeadersRatio OBJECT-TYPE SYNTAX RohcCompressionRatio

MAX-ACCESS read-only

```
current
    STATUS
    DESCRIPTION
           'This object indicates the compression ratio so far over all
           packet headers passing this context. The compression is
           computed over all bytes of all headers that are subject to
           compression for the used profile."
     ::= { rohcContextEntry 16 }
rohcContextAllPacketsMeanSize OBJECT-TYPE
     SYNTAX
                    Unsigned32
    MAX-ACCESS read-only
                   current
    STATUS
    DESCRIPTION
          "This object indicates the mean compressed packet size
           of all packets passing this context. The packet size includes the IP header and payload but excludes all lower layer headers. The mean value is given in byte rounded
           to the next integer value."
     ::= { rohcContextEntry 17 }
rohcContextAllHeadersMeanSize OBJECT-TYPE
    SYNTAX
               Unsigned32
    MAX-ACCESS read-only
                   current
    STATUS
    DESCRIPTION
          "This object indicates the mean compressed packet header size
           of all packets passing this context. The packet header size is the sum of the size of all headers of a packet that are subject to compression for the used profile. The mean value
           is given in byte rounded to the next integer value.'
     ::= { rohcContextEntry 18 }
rohcContextLastPacketsRatio OBJECT-TYPE
     SYNTAX
                    RohcCompressionRatio
    MAX-ACCESS read-only
    STATUS
                   current
    DESCRIPTION
          "This object indicates the compression ratio
           concerning the last 16 packets passing this context
           or concerning all packets passing this context
    if they are less than 16, so far. The compression is
  computed over all bytes of the IP packets including the IP
  header but excluding all lower layer headers."
::= { rohcContextEntry 19 }
rohcContextLastHeadersRatio OBJECT-TYPE
                    RohcCompressionRatio
     SYNTAX
    MAX-ACCESS read-only
```

```
current
     STATUS
     DESCRIPTION
           'This object indicates the compression ratio concerning the
            headers of the last 16 packets passing this context or
           concerning the headers of all packets passing this context
           if they are less than 16, so far. The compression is computed over all bytes of all headers that are subject to
            compression for the used profile."
     ::= { rohcContextEntry 20 }
rohcContextLastPacketsMeanSize OBJECT-TYPE
                   Unsigned32
     SYNTAX
     MAX-ACCESS read-only
     STATUS
                     current
     DESCRIPTION
           "This object indicates the mean compressed packet size
            concerning the last 16 packets passing this context or
           concerning all packets passing this context if they are
           less than 16, so far. The packet size includes the IP header and payload but excludes all lower layer headers. The mean value is given in byte rounded to the next integer value."
     ::= { rohcContextEntry 21 }
rohcContextLastHeadersMeanSize OBJECT-TYPE
     SYNTAX Unsigned32
     MAX-ACCESS read-only
     STATUS
                    current
     DESCRIPTION
           'This object indicates the mean compressed packet header size
            concerning the last 16 packets passing this context or
           concerning all packets passing this context if they are less than 16, so far. The packet header size is the sum of the size of all headers of a packet that are subject to compression for the used profile. The mean value is given in byte rounded to the next integer value."
     ::= { rohcContextEntry 22 }
-- conformance information
rohcCompliances OBJECT IDENTIFIER ::= { rohcConformance 1 }
                   OBJECT IDENTIFIER ::= { rohcConformance 2 }
rohcGroups
-- compliance statements
```

```
rohcCompliance MODULE-COMPLIANCE
    STATUS
                current
   DESCRIPTION
        "The compliance statement for SNMP entities that implement
         the ROHC-MIB.
         Note that compliance with this compliance
         statement requires compliance with the
         ifCompliance3 MODULE-COMPLIANCE statement of the
         IF-MIB (RFC2863)."
                -- this module
   MODULE
   MANDATORY-GROUPS {
            rohcInstanceGroup, rohcContextGroup
   GROUP
            rohcStatisticsGroup
   DESCRIPTION
       "A compliant implementation does not have to implement
        the rohcStatisticsGroup."
   GROUP
            rohcTimerGroup
   DESCRIPTION
       'A compliant implementation does not have to implement
        the rohcTimerGroup."
   OBJECT rohcInstanceContextStorageTime
   MIN-ACCESS read-only
   DESCRIPTION
        "A compliant implementation does not have to support changing
         the value of object rohcInstanceContextStorageTime.
   OBJECT rohcContextStorageTime
   MIN-ACCESS
                read-only
   DESCRIPTION
        "A compliant implementation does not have to support changing
         the value of object rohcContextStorageTime."
   GROUP
            rohcContextStatisticsGroup
   DESCRIPTION
       A compliant implementation does not have to implement
       the rohcContextStatisticsGroup."
    ::= { rohcCompliances 1 }
rohcInstanceGroup OBJECT-GROUP
   OBJECTS {
        rohcChannelType,
        rohcChannelFeedbackFor,
        rohcChannelDescr,
        rohcChannelStatus,
        rohcInstanceFBChannelID,
        rohcInstanceVendor,
```

```
rohcInstanceVersion,
        rohcInstanceDescr,
        rohcInstanceClockRes,
        rohcInstanceMaxCID.
        rohcInstanceLargeCIDs,
        rohcInstanceMRRU.
        rohcInstanceStatus.
        rohcProfileVendor,
        rohcProfileVersion,
        rohcProfileDescr,
        rohcProfileNegotiated
    STATUS
                current
   DESCRIPTION
        "A collection of objects providing information about
         ROHC instances, used channels and available profiles."
    ::= { rohcGroups 2 }
rohcStatisticsGroup OBJECT-GROUP
   OBJECTS {
        rohcInstanceContextsTotal,
        rohcInstanceContextsCurrent,
        rohcInstancePackets,
        rohcInstanceIRs.
        rohcInstanceIRDYNs.
        rohcInstanceFeedbacks,
        rohcInstanceCompressionRatio
   STATUS
                current
   DESCRIPTION
        "A collection of objects providing ROHC statistics."
    ::= { rohcGroups 4 }
rohcContextGroup OBJECT-GROUP
   OBJECTS {
        rohcContextCIDState,
        rohcContextProfile,
        rohcContextDecompressorDepth
    STATUS
               current
   DESCRIPTION
        "A collection of objects providing information about
         ROHC compressor contexts and decompressor contexts."
    ::= { rohcGroups 5 }
rohcTimerGroup OBJECT-GROUP
   OBJECTS {
        rohcInstanceContextStorageTime,
```

```
rohcContextStorageTime,
        rohcContextActivationTime,
        rohcContextDeactivationTime
    STATUS
               current
    DESCRIPTION
         'A collection of objects providing statistical information
         about ROHC compressor contexts and decompressor contexts."
    ::= { rohcGroups 6 }
rohcContextStatisticsGroup OBJECT-GROUP
    OBJECTS {
        rohcContextPackets,
        rohcContextIRs,
        rohcContextIRDYNs,
        rohcContextFeedbacks,
        rohcContextDecompressorFailures,
        rohcContextDecompressorRepairs,
        rohcContextAllPacketsRatio,
        rohcContextAllHeadersRatio,
        rohcContextAllPacketsMeanSize,
        rohcContextAllHeadersMeanSize,
        rohcContextLastPacketsRatio.
        rohcContextLastHeadersRatio,
        rohcContextLastPacketsMeanSize,
        rohcContextLastHeadersMeanSize
    STATUS
                current
    DESCRIPTION
        "A collection of objects providing statistical information
         about ROHC compressor contexts and decompressor contexts."
    ::= { rohcGroups 7 }
END
ROHC-UNCOMPRESSED-MIB DEFINITIONS ::= BEGIN
IMPORTS
    MODULE-IDENTITY, OBJECT-TYPE, Counter32, mib-2
         FROM SNMPv2-SMI
                                                        -- [RFC2578]
     MODULE-COMPLIANCE, OBJECT-GROUP
         FROM SNMPv2-CONF
                                                        -- [RFC2580]
     rohcChannelID, rohcContextCID
         FROM ROHC-MIB;
```

```
rohcUncmprMIB MODULE-IDENTITY
    LAST-UPDATED "200406030000Z" -- June 3, 2004
    ORGANIZATION "IETF Robust Header Compression Working Group"
    CONTACT-INFO
        "WG charter:
           http://www.ietf.org/html.charters/rohc-charter.html
        Mailing Lists:
           General Discussion: rohc@ietf.org
           To Subscribe: rohc-request@ietf.org
           In Body: subscribe your email address
         Editor:
           Juergen Quittek
           NEC Europe Ltd.
           Network Laboratories
           Kurfuersten-Anlage 36
           69221 Heidelberg
           Germany
           Tel: +49 6221 90511-15
EMail: quittek@netlab.nec.de"
    DESCRIPTION
         "This MIB module defines a set of objects for monitoring
          and configuring RObust Header Compression (ROHC).
          The objects are specific to ROHC uncompressed
          (profile 0x0000).
          Copyright (C) The Internet Society (2004). The
          initial version of this MIB module was published
          in RFC 3816. For full legal notices see the RFC
          itself or see:
          http://www.ietf.org/copyrights/ianamib.html"
    REVISION "200406030000Z" -- June 3, 2004 DESCRIPTION "Initial version, published as RFC 3816."
    ::= { mib-2 113 }
-- The groups defined within this MIB module:
rohcUncmprObjects     OBJECT IDENTIFIER ::= { rohcUncmprMIB 1 }
rohcUncmprConformance     OBJECT IDENTIFIER ::= { rohcUncmprMIB 2 }
-- Context Table
-- The rohcUncmprContextTable lists all contexts per interface
```

```
-- and instance. It extends the rohcContextTable.
rohcUncmprContextTable OBJECT-TYPE
    SYNTAX
                SEQUENCE OF RohcUncmprContextEntry
    MAX-ACCESS not-accessible
    STATUS
                current
    DESCRIPTION
        "This table lists and describes ROHC uncompressed profile
         specific properties of compressor contexts and
         decompressor contexts. It extends the rohcContextTable of the ROHC-MIB module."
    ::= { rohcUncmprObjects 1 }
rohcUncmprContextEntry OBJECT-TYPE
    SYNTAX
                RohcUncmprContextEntry
    MAX-ACCESS
                not-accessible
    STATUS
                current
    DESCRIPTION
        "An entry describing a particular context."
    INDEX {
        rohcChannelID.
        rohcContextCID
    ::= { rohcUncmprContextTable 1 }
RohcUncmprContextEntry ::= SEQUENCE {
    rohcUncmprContextState
                                    INTEGER,
                                     INTEGER,
    rohcUncmprContextMode
    rohcUncmprContextACKs
                                     Counter32
}
rohcUncmprContextState OBJECT-TYPE
                INTEGER {
    SYNTAX
                     initAndRefresh(1),
                     normal(2),
noContext(3)
                     fullContext(4)
                 }
    MAX-ACCESS
                read-only
    STATUS
                 current
    DESCRIPTION
        "State of the context. States initAndRefresh(1) and normal(2)
         are states of compressor contexts, states noContext(3)
         and fullContext(4) are states of decompressor contexts."
    REFERENCE
        "RFC 3095, Section 5.10.3"
```

```
::= { rohcUncmprContextEntry 3 }
rohcUncmprContextMode OBJECT-TYPE
    SYNTAX
                INTEGER {
                    unidirectional(1),
                    bidirectional(2)
    MAX-ACCESS
                read-only
    STATUS
                current
    DESCRIPTION
        "Mode of the context."
    REFERENCE
        "RFC 3095, Section 5.10.3"
    ::= { rohcUncmprContextEntry 4 }
rohcUncmprContextACKs OBJECT-TYPE
    SYNTAX
                Counter32
    MAX-ACCESS read-only
    STATUS
                current
    DESCRIPTION
        "The number of all positive feedbacks (ACK) sent or
         received in this context, respectively.
         Discontinuities in the value of this counter can
         occur at re-initialization of the management
         system, and at other times as indicated by the
         value of ifCounterDiscontinuityTime. For checking
         ifCounterDiscontinuityTime, the interface index is
         required. It can be determined by reading the
         rohcChannelTable of the ROHC-MIB.
    REFERENCE
        "RFC 3095, Section 5.2.1"
    ::= { rohcUncmprContextEntry 5 }
-- conformance information
rohcUncmprCompliances OBJECT IDENTIFIER
    ::= { rohcUncmprConformance 1 }
                      OBJECT IDENTIFIER
rohcUncmprGroups
    ::= { rohcUncmprConformance 2 }
-- compliance statements
rohcUncmprCompliance MODULE-COMPLIANCE
```

```
STATUS
                 current
    DESCRIPTION
         "The compliance statement for SNMP entities that implement
         the ROHC-UNCOMPRESSED-MIB.
         Note that compliance with this compliance
         statement requires compliance with the rohcCompliance MODULE-COMPLIANCE statement of the
         ROHC-MIB and with the ifCompliance3 MODULE-COMPLIANCE
         statement of the IF-MIB (RFC2863).
                 -- this module
    MANDATORY-GROUPS {
            rohcUncmprContextGroup
    GROUP
            rohcUncmprStatisticsGroup
    DESCRIPTION
       "A compliant implementation does not have to implement
        the rohcUncmprStatisticsGroup.
    ::= { rohcUncmprCompliances 1 }
rohcUncmprContextGroup OBJECT-GROUP
    OBJECTS {
        rohcUncmprContextState,
        rohcUncmprContextMode
    STATUS
                 current
    DESCRIPTION
        "A collection of objects providing information about
         ROHC uncompressed compressors and decompressors.
    ::= { rohcUncmprGroups 1 }
rohcUncmprStatisticsGroup OBJECT-GROUP
    OBJECTS {
        rohcUncmprContextACKs
    STATUS
                 current
    DESCRIPTION
    "An object providing context statistics."
::= { rohcUncmprGroups 2 }
END
ROHC-RTP-MIB DEFINITIONS ::= BEGIN
IMPORTS
    MODULE-IDENTITY, OBJECT-TYPE,
    Unsigned32, Counter32, mib-2
        FROM SNMPv2-SMI
                                                          -- [RFC2578]
```

```
TruthValue
        FROM SNMPv2-TC
                                                            -- [RFC2579]
    MODULE-COMPLIANCE, OBJECT-GROUP
        FROM SNMPv2-CONF
                                                            -- ΓRFC25801
    rohcChannelID, rohcContextCID
                                                            -- [RFC3816]
        FROM ROHC-MIB;
rohcRtpMIB MODULE-IDENTITY
    LAST-UPDATED "200406030000Z" -- June 3, 2004
    ORGANIZATION "IETF Robust Header Compression Working Group"
    CONTACT-INFO
       "WG charter:
          http://www.ietf.org/html.charters/rohc-charter.html
        Mailing Lists:
           General Discussion: rohc@ietf.org
           To Subscribe: rohc-request@ietf.org
           In Body: subscribe your email address
        Editor:
           Juergen Quittek
          NEC Europe Ltd.
          Network Laboratories
          Kurfuersten-Anlage 36
           69221 Heidelberg
           Germany
           Tel: +49 6221 90511-15
           EMail: quittek@netlab.nec.de"
    DESCRIPTION
         "This MIB module defines a set of objects for monitoring
         and configuring RObust Header Compression (ROHC).
         The objects are specific to ROHC RTP (profile 0x0001), ROHC UDP (profile 0x0002), and ROHC ESP (profile 0x0003) defined in RFC 3095 and for the ROHC LLA profile (profile
         0x0005) defined in RFC 3242.
         Copyright (C) The Internet Society (2004). The
          initial version of this MIB module was published
          in RFC 3816. For full legal notices see the RFC
          itself or see:
         http://www.ietf.org/copyrights/ianamib.html"
                 "200406030000Z" -- June 3, 2004
    REVISION
    DESCRIPTION "Initial version, published as RFC 3816."
    ::= { mib-2 114 }
```

```
-- The groups defined within this MIB module:
rohcRtpObjects
                     OBJECT IDENTIFIER ::= { rohcRtpMIB 1 }
rohcRtpConformance OBJECT IDENTIFIER ::= { rohcRtpMIB 2 }
-- Context Table
-- The rohcRtpContextTable lists all contexts per interface
-- and instance. It extends the rohcContextTable.
rohcRtpContextTable OBJECT-TYPE
    SYNTAX
               SEQUENCE OF RohcRtpContextEntry
    MAX-ACCESS not-accessible
    STATUS
                current
    DESCRIPTION
        "This table lists and describes RTP profile specific
         properties of compressor contexts and decompressor
         contexts. It extends the rohcContextTable of the
         ROHC-MIB module."
    ::= { rohcRtpObjects 1 }
rohcRtpContextEntry OBJECT-TYPE
               RohcRtpContextEntry
    SYNTAX
    MAX-ACCESS
                not-accessible
    STATUS
                current
    DESCRIPTION
        "An entry describing a particular context."
    INDEX {
        rohcChannelID,
        rohcContextCID
    ::= { rohcRtpContextTable 1 }
RohcRtpContextEntry ::= SEQUENCE {
                                    INTEGER,
    rohcRtpContextState
    rohcRtpContextMode
                                    INTEGER.
    rohcRtpContextAlwaysPad
                                    TruthValue,
    rohcRtpContextLargePktsAllowed
                                    TruthValue,
    rohcRtpContextVerifyPeriod
                                    Unsigned32,
    rohcRtpContextSizesAllowed
                                    Unsigned32,
                                    Unsigned32,
    rohcRtpContextSizesUsed
    rohcRtpContextACKs
                                    Counter32,
                                    Counter32,
    rohcRtpContextNACKs
    rohcRtpContextSNACKs
                                    Counter32,
```

```
Counter32,
    rohcRtpContextNHPs
                                     Counter32,
    rohcRtpContextCSPs
                                     Counter32,
    rohcRtpContextCCPs
                                     Counter32,
    rohcRtpContextPktsLostPhysical
    rohcRtpContextPktsLostPreLink
                                     Counter32
}
rohcRtpContextState OBJECT-TYPE
                INTEGER {
    SYNTAX
                    initAndRefresh(1),
                    firstOrder(2),
                    secondOrder(3),
                    noContext(4),
                    staticContext(5),
                    fullContext(6)
                }
    MAX-ACCESS
                read-only
    STATUS
                current
    DESCRIPTION
        "State of the context as defined in RFC 3095.
         initAndRefresh(1), firstOrder(2), and secondOrder(3)
         are states of compressor contexts, states noContext(4),
         staticContext(5) and fullContext(6) are states of
         decompressor contexts."
    REFERENCE
        "RFC 3095"
    ::= { rohcRtpContextEntry 3 }
rohcRtpContextMode OBJECT-TYPE
    SYNTAX
                INTEGER {
                    unidirectional(1),
                    optimistic(2),
                    reliable(3)
                read-only
    MAX-ACCESS
    STATUS
                current
    DESCRIPTION
        "Mode of the context."
    REFERENCE
        "RFC 3095, Section 4.4"
    ::= { rohcRtpContextEntry 4 }
rohcRtpContextAlwaysPad OBJECT-TYPE
                TruthValue
    SYNTAX
    MAX-ACCESS
                read-only
    STATUS
                current
    DESCRIPTION
        "Boolean, only applicable to compressor contexts using the
```

LLA profile. If its value is true, the compressor must pad every RHP packet with a minimum of one octet ROHC padding.

The value of this object is only valid for LLA profiles, i.e., if the corresponding rohcProfile has a value of 0x0005. If the corresponding rohcProfile has a value other than 0x0005, then this object MUST NOT be instantiated."

REFERENCE

"RFC 3242, Section 5.1.1"
DEFVAL { false }
::= { rohcRtpContextEntry 5 }

rohcRtpContextLargePktsAllowed OBJECT-TYPE

SYNTAX TruthValue
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Boolean, only applicable to compressor contexts using the LLA profile. It specifies how to handle packets that do not fit any of the preferred packet sizes specified. If its value is true, the compressor must deliver the larger packet as-is and must not use segmentation. If it is set to false, the ROHC segmentation scheme must be used to split the packet into two or more segments, and each segment must further be padded to fit one of the preferred packet sizes.

The value of this object is only valid for LLA profiles, i.e., if the corresponding rohcProfile has a value of 0x0005. If the corresponding rohcProfile has a value other than 0x0005, then this object MUST NOT be instantiated."

REFERENCE

"RFC 3242, Section 5.1.1"
DEFVAL { true }
::= { rohcRtpContextEntry 6 }

rohcRtpContextVerifyPeriod OBJECT-TYPE

SYNTAX Unsigned32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"This object is only applicable to compressor contexts using the LLA profile. It specifies the minimum frequency with which a packet validating the context must be sent. This tells the compressor that a packet containing a CRC

field must be sent at least once every N packets, where N is the value of the object. A value of 0 indicates that periodical verifications are disabled.

The value of this object is only valid for LLA profiles, i.e., if the corresponding rohcProfile has a value of 0x0005. If the corresponding rohcProfile has a value other than 0x0005, then this object MUST NOT be instantiated."

REFERENCE

"RFC 3242, Section 5.1.1"
DEFVAL { 0 }

::= { rohcRtpContextEntry 7 }

rohcRtpContextSizesAllowed OBJECT-TYPE
SYNTAX Unsigned32 (1..4294967295)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The value of this object is only valid for decompressor contexts, i.e., if rohcInstanceType of the corresponding rohcContextEntry has the value decompressor(2). For compressor contexts where rohcInstanceType has the value compressor(1), this object MUST NOT be instantiated.

This object contains the number of different packet sizes that may be used in the context."

REFERENCE

"RFC 3095, Section 6.3.1"
::= { rohcRtpContextEntry 8 }

rohcRtpContextSizesUsed OBJECT-TYPE

SYNTAX Unsigned32 (1..4294967295)

MAX-ACCESS read-only STATUS current

DESCRIPTION

"The value of this object is only valid for decompressor contexts, i.e., if rohcInstanceType of the corresponding rohcContextEntry has the value decompressor(2). For compressor contexts where rohcInstanceType has the value compressor(1), this object MUST NOT be instantiated.

This object contains the number of different packet sizes that are used in the context."

REFERENCE

"RFC 3095, Section 6.3.1" ::= { rohcRtpContextEntry 9 }

```
rohcRtpContextACKs OBJECT-TYPE
    SYNTAX
                 Counter32
    MAX-ACCESS read-only
    STATUS
                 current
    DESCRIPTION
        "The number of all positive feedbacks (ACK) sent or
         received in this context, respectively.
         Discontinuities in the value of this counter can
         occur at re-initialization of the management
         system, and at other times as indicated by the
         value of ifCounterDiscontinuityTime. For checking
         ifCounterDiscontinuityTime, the interface index is required. It can be determined by reading the rohcChannelTable of the ROHC-MIB."
    REFERENCE
        "RFC 3095, Section 5.2.1."
    ::= { rohcRtpContextEntry 10 }
rohcRtpContextNACKs OBJECT-TYPE
    SYNTAX
                 Counter32
    MAX-ACCESS read-only
    STATUS current
    DESCRIPTION
        "The number of all dynamic negative feedbacks (ACK) sent
         or received in this context, respectively.
         Discontinuities in the value of this counter can
         occur at re-initialization of the management
         system, and at other times as indicated by the
         value of ifCounterDiscontinuityTime. For checking
         ifCounterDiscontinuityTime, the interface index is required. It can be determined by reading the
         rohcChannelTable of the ROHC-MIB."
    REFERENCE
        "RFC 3095, Section 5.2.1."
    ::= { rohcRtpContextEntry 11 }
rohcRtpContextSNACKs OBJECT-TYPE
    SYNTAX
               Counter32
    MAX-ACCESS read-only
    STATUS
                 current
    DESCRIPTION
        "The number of all static negative feedbacks (ACK) sent
         or received in this context, respectively.
         Discontinuities in the value of this counter can
         occur at re-initialization of the management
```

system, and at other times as indicated by the value of ifCounterDiscontinuityTime. For checking ifCounterDiscontinuityTime, the interface index is required. It can be determined by reading the rohcChannelTable of the ROHC-MIB."

REFERENCE

"RFC 3095, Section 5.2.1."
::= { rohcRtpContextEntry 12 }

rohcRtpContextNHPs OBJECT-TYPE

SYNTAX Counter32
MAX-ACCESS read-only
STATUS current

DESCRIPTION

"This object is only applicable to contexts using the LLA profile. It contains the number of all no-header packets (NHP) sent or received in this context, respectively.

Discontinuities in the value of this counter can occur at re-initialization of the management system, and at other times as indicated by the value of ifCounterDiscontinuityTime. For checking ifCounterDiscontinuityTime, the interface index is required. It can be determined by reading the rohcChannelTable of the ROHC-MIB.

The value of this object is only valid for LLA profiles, i.e., if the corresponding rohcProfile has a value of 0x0005. If the corresponding rohcProfile has a value other than 0x0005, then this object MUST NOT be instantiated."

REFERENCE

"RFC 3242, Section 4.1.1."
::= { rohcRtpContextEntry 13 }

rohcRtpContextCSPs OBJECT-TYPE

SYNTAX Counter32 MAX-ACCESS read-only STATUS current

DESCRIPTION

"This object is only applicable to contexts using the LLA profile. It contains the number of all context synchronization packets (CSP) sent or received in this context, respectively.

Discontinuities in the value of this counter can occur at re-initialization of the management

system, and at other times as indicated by the value of ifCounterDiscontinuityTime. For checking ifCounterDiscontinuityTime, the interface index is required. It can be determined by reading the rohcChannelTable of the ROHC-MIB.

The value of this object is only valid for LLA profiles, i.e., if the corresponding rohcProfile has a value of 0x0005. If the corresponding rohcProfile has a value other than 0x0005, then this object MUST NOT be instantiated."

REFERENCE

"RFC 3242, Section 4.1.2."
::= { rohcRtpContextEntry 14 }

rohcRtpContextCCPs OBJECT-TYPE

SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"This object is only applicable to contexts using the LLA profile. It contains the number of all context check packets (CCP) sent or received in this context, respectively.

Discontinuities in the value of this counter can occur at re-initialization of the management system, and at other times as indicated by the value of ifCounterDiscontinuityTime. For checking ifCounterDiscontinuityTime, the interface index is required. It can be determined by reading the rohcChannelTable of the ROHC-MIB.

The value of this object is only valid for LLA profiles, i.e., if the corresponding rohcProfile has a value of 0x0005. If the corresponding rohcProfile has a value other than 0x0005, then this object MUST NOT be instantiated."

REFERENCE

"RFC 3242, Section 4.1.3."
::= { rohcRtpContextEntry 15 }

rohcRtpContextPktsLostPhysical OBJECT-TYPE

SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION

"This object is only applicable to decompressor contexts

using the LLA profile. It contains the number of physical packet losses on the link between compressor and decompressor, that have been indicated to the decompressor.

Discontinuities in the value of this counter can occur at re-initialization of the management system, and at other times as indicated by the value of ifCounterDiscontinuityTime. For checking ifCounterDiscontinuityTime, the interface index is required. It can be determined by reading the rohcChannelTable of the ROHC-MIB.

The value of this object is only valid for LLA profiles, i.e., if the corresponding rohcProfile has a value of 0x0005. If the corresponding rohcProfile has a value other than 0x0005, then this object MUST NOT be instantiated."

REFERENCE

"RFC 3242, Section 5.1.2."
::= { rohcRtpContextEntry 16 }

rohcRtpContextPktsLostPreLink OBJECT-TYPE

SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"This object is only applicable to decompressor contexts using the LLA profile. It contains the number of pre-link packet losses on the link between compressor and decompressor, that have been indicated to the decompressor.

Discontinuities in the value of this counter can occur at re-initialization of the management system, and at other times as indicated by the value of ifCounterDiscontinuityTime. For checking ifCounterDiscontinuityTime, the interface index is required. It can be determined by reading the rohcChannelTable of the ROHC-MIB.

The value of this object is only valid for LLA profiles, i.e., if the corresponding rohcProfile has a value of 0x0005. If the corresponding rohcProfile has a value other than 0x0005, then this object MUST NOT be instantiated."

REFERENCE
 "RFC 3242, Section 5.1.2."
::= { rohcRtpContextEntry 17 }

```
-- Packet Sizes Table
_ _
-- The rohcPacketSizeTable lists allowed, preferred, and used
-- packet sizes per compressor context.
rohcRtpPacketSizeTable OBJECT-TYPE
    SYNTAX
                SEQUENCE OF RohcRtpPacketSizeEntry
    MAX-ACCESS
                not-accessible
    STATUS
                current
    DESCRIPTION
        "This table lists all allowed, preferred, and used packet
         sizes per compressor context and channel.
         Note, that the sizes table represents implementation
         parameters that are suggested by RFC 3095 and/or RFC 3242,
         but that are not mandatory.'
    ::= { rohcRtpObjects 2 }
rohcRtpPacketSizeEntry OBJECT-TYPE
    SYNTAX
                RohcRtpPacketSizeEntry
    MAX-ACCESS
                not-accessible
    STATUS
                current
    DESCRIPTION
        "An entry of a particular packet size."
    INDEX {
        rohcChannelID
        rohcContextCID
        rohcRtpPacketSize
    }
    ::= { rohcRtpPacketSizeTable 1 }
RohcRtpPacketSizeEntry ::= SEQUENCE {
    rohcRtpPacketSize
                                      Unsianed32.
    rohcRtpPacketSizePreferred
                                      TruthValue.
    rohcRtpPacketSizeUsed
                                      TruthValue,
    rohcRtpPacketSizeRestrictedType INTEGER
}
rohcRtpPacketSize OBJECT-TYPE
                Unsigned32 (1..4294967295)
    SYNTAX
    MAX-ACCESS
                not-accessible
                current
    STATUS
    DESCRIPTION
        "A packet size used as index."
    ::= { rohcRtpPacketSizeEntry 3 }
rohcRtpPacketSizePreferred OBJECT-TYPE
```

```
SYNTAX
                 TruthValue
    MAX-ACCESS
                  read-only
    STATUS
                  current
    DESCRIPTION
         "This object is only applicable to compressor contexts
          using the LLA profile. When retrieved, it will have the value true(1) if the packet size is preferred. Otherwise, its value will be false(2).
          The value of this object is only valid for LLA profiles,
          i.e., if the corresponding rohcProfile has a value of
          0x0005. If the corresponding rohcProfile has a value
          other than 0x0005, then this object MUST NOT be
          instantiated."
    REFERENCE
          "RFC 3242, Section 5.1.1"
    ::= { rohcRtpPacketSizeEntry 4 }
rohcRtpPacketSizeUsed OBJECT-TYPE
    SYNTAX
                 TruthValue
    MAX-ACCESS
                  read-only
    STATUS
                 current
    DESCRIPTION
         'This object is only applicable to compressor contexts
          using the UDP, RTP, or ESP profile. When retrieved,
          it will have the value true(1) if the packet size is
          used. Otherwise, its value will be false(2).
          The value of this object is only valid for UDP, RTP,
          and ESP profiles, i.e., if the corresponding rohcProfile
          has a value of either 0x0001, 0x0002 or 0x0003. If
          the corresponding rohcProfile has a value other than 0x0001, 0x0002 or 0x0003, then this object MUST NOT be
          instantiated."
    REFERENCE
          "RFC 3095, Section_6.3.1<u>"</u>
    ::= { rohcRtpPacketSizeEntry 5 }
rohcRtpPacketSizeRestrictedType OBJECT-TYPE
    SYNTAX
                  INTEGER {
                      nhpOnly(1),
                      rhpOnly(2),
                      noRestrictions(3)
    MAX-ACCESS
                  read-only
    STATUS
                  current
    DESCRIPTION
         "This object is only applicable to preferred packet
```

```
sizes of compressor contexts using the LLA profile. When retrieved, it will indicate whether the packet
          size is preferred for NHP only, for RHP only, or
          for both of them.
          The value of this object is only valid for LLA profiles,
          i.e., if the corresponding rohcProfile has a value of 0x0005. If the corresponding rohcProfile has a value
          other than 0x0005, then this object MUST NOT be
          instantiated.
    REFERENCE
          "RFC 3242, Section 5.1.1"
    ::= { rohcRtpPacketSizeEntry 6 }
-- conformance information
rohcRtpCompliances OBJECT IDENTIFIER ::= { rohcRtpConformance 1 }
                     OBJECT IDENTIFIER ::= { rohcRtpConformance 2 }
rohcRtpGroups
-- compliance statements
rohcRtpCompliance MODULE-COMPLIANCE
    STATUS
                 current
    DESCRIPTION
         "The compliance statement for SNMP entities that implement
          the ROHC-RTP-MIB.
          Note that compliance with this compliance
          statement requires compliance with the
          rohcCompliance MODULE-COMPLIANCE statement of the
          ROHC-MIB and with the ifCompliance3 MODULE-COMPLIANCE statement of the IF-MIB (RFC2863)."
    MODULE
                 -- this module
    MANDATORY-GROUPS {
             rohcRtpContextGroup
    GROUP
             rohcRtpPacketSizesGroup
    DESCRIPTION
        "A compliant implementation does not have to implement
        the rohcRtpPacketSizesGroup."
    GROUP
             rohcRtpStatisticsGroup
    DESCRIPTION
        "A compliant implementation does not have to implement
         the rohcRtpStatisticsGroup."
    ::= { rohcRtpCompliances 1 }
```

```
rohcRtpContextGroup OBJECT-GROUP
    OBJECTS {
        rohcRtpContextState,
        rohcRtpContextMode.
        rohcRtpContextAlwaysPad,
        rohcRtpContextLargePktsAllowed,
        rohcRtpContextVerifyPeriod
    STATUS
                current
    DESCRIPTION
        "A collection of objects providing information about
         ROHC RTP compressors and decompressors."
    ::= { rohcRtpGroups 1 }
rohcRtpPacketSizesGroup OBJECT-GROUP
    OBJECTS {
        rohcRtpContextSizesAllowed,
        rohcRtpContextSizesUsed,
        rohcRtpPacketSizePreferred,
        rohcRtpPacketSizeUsed,
        rohcRtpPacketSizeRestrictedType
    STATUS
                current
    DESCRIPTION
        "A collection of objects providing information about
         allowed and used packet sizes at a ROHC RTP compressor."
    ::= { rohcRtpGroups 2 }
rohcRtpStatisticsGroup OBJECT-GROUP
    OBJECTS {
        rohcRtpContextACKs,
        rohcRtpContextNACKs
        rohcRtpContextSNACKs,
        rohcRtpContextNHPs.
        rohcRtpContextCSPs,
        rohcRtpContextCCPs,
        rohcRtpContextPktsLostPhysical,
        rohcRtpContextPktsLostPreLink
    STATUS
                current
    DESCRIPTION
        "A collection of objects providing ROHC compressor and decompressor statistics."
    ::= { rohcRtpGroups 3 }
END
```

6. Security Considerations

The managed objects defined by the ROHC-MIB module, the ROHC-UNCOMPRESSED-MIB module and the ROHC-RTP-MIB module do not have a MAX-ACCESS value of read-write and/or read-create except rohcInstanceContextStorageTime and rohcContextStorageTime, both of which have a MAX-ACCESS value of read-write. These objects determine how long context information is stored after its termination. Unauthorized access to these objects can have one of two negative effects. If they are set to a value lower than required, e.g., to zero, then context information about past contexts might get lost. If they are set to a very high value, then context information will not be deleted and memory consumption of the agent implementation might become very high. However, unauthorized access to these objects cannot cause harm to existing ROHC connections nor can it allow manipulation of running instances of ROHC in a malicious way.

Another security issue is unauthorized access to readable objects in the MIB modules for getting information about existing communication sessions. It is thus important to control even GET and/or NOTIFY access to these objects and possibly to even encrypt the values of these objects when sending them over the network via SNMP. However, the only information that might be disclosed is the use of channels. Users and their addresses are not visible in the MIB. This information can only be mis-used in conjunction with the mis-use of further information.

SNMP versions prior to SNMPv3 did not include adequate security. Even if the network itself is secure (for example by using IPSec), even then, there is no control as to who on the secure network is allowed to access and GET/SET (read/change/create/delete) the objects in this MIB module.

It is RECOMMENDED that implementers consider the security features as provided by the SNMPv3 framework (see [RFC3410], section 8), including full support for the SNMPv3 cryptographic mechanisms (for authentication and privacy).

Further, deployment of SNMP versions prior to SNMPv3 is NOT RECOMMENDED. Instead, it is RECOMMENDED to deploy SNMPv3 and to enable cryptographic security. It is then a customer/operator responsibility to ensure that the SNMP entity giving access to an instance of this MIB module is properly configured to give access to the objects only to those principals (users) that have legitimate rights to indeed GET or SET (change/create/delete) them.

7. Acknowledgements

Many thanks to Lars-Erik Jonsson and Mark West for their guidance through the ROHC world and to Ghyslain Pelletier for explaining how the ROHC LLA profile works. Further thanks to Frank Strauss for his advice on tricky SMI issues. Special thanks to Mike Heard who acted as MIB doctor. He studied every tiny detail, raised a long list of issues and helped to significantly improve this document.

8. References

8.1. Normative References

- [RFC2578] McCloghrie, K., Perkins, D., and J. Schoenwaelder, "Structure of Management Information Version 2 (SMIv2)", STD 58, RFC 2578, April 1999.
- [RFC2579] McCloghrie, K., Perkins, D., and J. Schoenwaelder,
 "Textual Conventions for SMIv2", STD 58, RFC 2579, April
 1999.
- [RFC2580] McCloghrie, K., Perkins, D., and J. Schoenwaelder, "Conformance Statements for SMIv2", STD 58, RFC 2580, April 1999.
- [RFC2863] McCloghrie, K. and F. Kastenholz, "The Interfaces Group MIB", RFC 2863, June 2000.
- [RFC3095] Bormann, C., Burmeister, C., Degermark, M., Fukushima, H., Hannu, H., Jonsson, L., Hakenberg, R., Koren, T., Le, K., Liu, Z., Martensson, A., Miyazaki, A., Svanbro, K., Wiebke, T., Yoshimura, T., and H. Zheng, "RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed", RFC 3095, July 2001.
- [RFC3242] Jonsson, L. and G. Pelletier, "RObust Header Compression (ROHC): A Link-Layer Assisted Profile for IP/UDP/RTP", RFC 3242, April 2002.
- [RFC3411] Harrington, D., Presuhn, R., and B. Wijnen, "An Architecture for Describing Simple Network Management Protocol (SNMP) Management Frameworks", STD 62, RFC 3411, December 2002.

8.2. Informative References

[RFC3410] Case, J., Mundy, R., Partain, D., and B. Stewart, "Introduction and Applicability Statements for Internet-Standard Management Framework", RFC 3410, December 2002.

9. Authors' Addresses

Juergen Quittek NEC Europe Ltd. Network Laboratories Kurfuersten-Anlage 36 69115 Heidelberg Germany

Phone: +49 6221 90511-15 EMail: quittek@netlab.nec.de

Martin Stiemerling NEC Europe Ltd. Network Laboratories Kurfuersten-Anlage 36 69115 Heidelberg Germany

Phone: +49 6221 90511-13

EMail: stiemerling@netlab.nec.de

Hannes Hartenstein University of Karlsruhe Computing Center and Institute of Telematics 76128 Karlsruhe Germany

Phone: +49 721 608 8104

EMail: hartenstein@rz.uni-karlsruhe.de

10. Full Copyright Statement

Copyright (C) The Internet Society (2004). This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.

This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org.

Acknowledgement

Funding for the RFC Editor function is currently provided by the Internet Society.