Nim Sum

The Nim sum of two numbers a, b is denoted by $a \oplus b$. We form the Nim sum as follows: Write the two numbers in binary, and add "without carry", i.e. in each digit,

$$0 \oplus 0 = 1 \oplus 1 = 0$$
, and $0 \oplus 1 = 1 \oplus 0 = 1$.

Example: Let's compute $5 \oplus 6$. We write:

$$5 = 101$$
 in binary
 $6 = 110$ in binary
 $5 \oplus 6 = 011 = 3$

More examples:

Properties:

- $a \oplus b$ is another whole number.
- $a \oplus b = b \oplus a$ (commutative)
- $(a \oplus b) \oplus c = a \oplus (b \oplus c)$ (associative)
- $a \oplus a = 0$ for any number a.
- Given a and c, there is one and only one number b such that $a \oplus b = c$.

Computing Nim Sums

Compute each of the following Nim sums:

1.
$$2 \oplus 3 =$$

2.
$$2 \oplus 4 =$$

3.
$$8 \oplus 7 =$$

4.
$$15 \oplus 14 =$$

5.
$$25 \oplus 31 =$$

More Nim Sums

Complete the following Nim-sums:

1. (a)
$$5 \oplus (?) = 10$$

(b)
$$12 \oplus (?) = 3$$

(c)
$$10 \oplus (?) = 76$$

(b)
$$12 \oplus (?) = 3$$
 (c) $10 \oplus (?) = 76$ (d) $511 \oplus (?) = 512$

2. (a)
$$(?) \oplus 2 = 7$$

(b)
$$(?) \oplus 21 = 3$$

(c)
$$(?) \oplus 40 = 46$$

2. (a)
$$(?) \oplus 2 = 7$$
 (b) $(?) \oplus 21 = 3$ (c) $(?) \oplus 40 = 46$ (d) $(?) \oplus 1025 = 133$

Nim Practice

Each of the following is an N-position for Nim. Find a move to a P-position. The first several positions are given in binary. For the second batch, you (might) need to calculate them!

(3,5,7)		(:	(2,14,15)		(15,129,511)		(123,456,789)
1. (a)	11 101 111	(b)	10 1110 1111	(c)	1111 10000001 11111111	(d)	1111011 111001000 1100010101

- 2. (a) (4,7,12) (b) (9,15,1234567654321)
- (c) (3,9,11) (d) (7,17,21)

Analyzing Nim

Claim: Our claim is that (a, b, c) is a P-position for Nim precisely when $a \oplus b = c$. In order to establish this claim, and complete our analysis of Nim, we need to establish the following facts:

- (a) From every P-position, it is only possible to move to N-positions.
- (b) From every N-position, it is possible to move to a P-position.

In other words, we need to prove the following facts:

- (a) If $a \oplus b = c$, and one of a, b, c is decreased, then we no longer have $a \oplus b = c$.
- (b) If $a \oplus b \neq c$, then it is possible to decrease one of the numbers a, b, c so that $a \oplus b = c$.

Prove away!