

Analyzing the Impact of COVID-19 on Demand for Subway Systems

David Tian, Ilana Zane, Daniel Pattathil, Srinivas Rajagopalan

Introduction

City Movement

Annual New York City ridership

Introduction

Reduced demand due to social distancing

Residents still need access to essential goods

Research Question: How can we model ridership changes during epidemics?

Introduction - Motivation

- Observed that ridership changes vary greatly between stations
- Considered factors such as confirmed COVID-19 cases, geographic area, socioeconomic status, and essential workers

Design - Data Sources

MTA Turnstile Counts

Number of returns with unemployment compensation

Confirmed COVID-19
Cases

Design

- Data Cleaning
 - MTA turnstile data given as cumulative counts
 - Calculate diff to get entries and exits per day, remove faulty entries
 - Assign geographic coordinates to each station

- Linear Regression Model
 - whether subway is closed/open
 - percentage of non-white residents
 - unemployment compensation returns

Evaluation - Visualization

- We first verified the integrity and accuracy of our data with an animated visualization
- Absolute ridership numbers from February to April 2020
- Lines up with social distancing measures implemented in March

Evaluation - Linear Regression Model

- Overall, model has significant p-value (< 2.2e-16)
- Most significant predictors of EXITS_DIFF were coronavirus cases and number of unemployment returns

Predictor	p-value in model
Coronavirus Cases (In Zip Code of Station)	0.287047
Closed Subway Line	< 2e-16
Percent of Non-White Residents	< 2e-16
Number of Unemployment Returns In Zip Code (2017)	0.000213

Evaluation - Model

- We observed that there was correlation between the number of unemployment returns and coronavirus cases (R = .51)
 - This could indicate that areas of greater coronavirus cases are in greater poverty areas.
- We did not observe any significant differences between VIF for each predictor.
 - This shows that there was not multicollinearity between our predictors

Evaluation - Recommendations

- Our analysis shows that coronavirus cases are linked towards poorer socioeconomic areas.
- However, the correlation between coronavirus cases and the number of exits for each station was poor (R = -0.07).
- Accuracy of the data should be noted: some stations had abnormally high values for number of exits, these datapoints were removed
 - 942 data points were greater than Q3 + 1.5*IQR
- If more people use the subway, there is less of an opportunity to practice social distancing
- This can lead to higher numbers of confirmed cases

Conclusion

- Based on our data and visualizations we see that there is a correlation between confirmed cases, economic status, and subway volume
- We can use this data to predict future demand for the following weeks and how to better prepare the subway infrastructure in the case of another pandemic