AST 1430 Observational Cosmology

Ш

FLRW &

The Measure of a Metric

	Week Index	Dates	Topics
Keith	Week 1	Jan 11, 13	logistics, introduction, basic observations
	Week 2	Jan 18, 20	Basic GR, RW metric, Distances, coordinates, Friedmann equations
	Week 3	Jan 25, 27	Cosmological models, consistency with observations, Early Hot Universe, BBN
	Week 4	Feb 1, 3	Inflation, Perturbations & Structure pre- recombination
	Week 5	Feb 8, 10	CMB: basics, polarization, secondaries
	Week 6	Feb 15, 17	Early-Universe Presentations + Review
	Reading Week – No Class		
	Week 7	Mar 1, 3	Post-recombination growth of structure, formation of dark matter halos, halo mass function
of	Week 8	Mar 8, 10	The relation between dark matter halos and galaxies
	Week 9	Mar 15, 17	Probing the cosmic density field / clustering
	Week 10	Mar 22, 24	Late-time cosmological observations: BAO, supernovae, weak lensing, etc.
	Week 11	Mar 29, 31	H0 controversy: how fast exactly is the Universe expanding today?
'	Week 12	Apr 5	Late Universe Presentations + Review

[Friedman-Lemaitre-] Robertson-Walker Metric

- What is the most general metric for homogenous and isotropic space?
- F/L each derived, R/W each proved the sol'n.

$$ds^2 = -c^2 dt^2 + a(t)^2 \left[dr^2 + S_\kappa(r)^2 d\Omega^2 \right]$$
 Scale Factor
$$S_\kappa(r) = \left\{ \begin{array}{ll} R \sin(r/R) & (\kappa = +1) \\ r & (\kappa = 0) \\ R \sinh(r/R) & (\kappa = -1) \\ \end{array} \right.$$
 Radius of Sign of Curvature Curvature

Times and Distances

Cosmology is a mess of conflicting and misleading terms. Worse, "distance" and "time" are slippery concepts in relativity.

```
Comoving Coords => raw coordinates, defined to match proper positions at t=t<sub>0</sub>
```

Proper Time => clock of a fundamental observer

Proper Distance => spatial interval between fundamental

observers at a common proper time

Comoving Dist => proper distance at t=t₀

Effective Distance => "radius" of illumination, D == $a(t)S_{\kappa}(r)$

(for a flat universe, equal to proper dist)

Luminosity Dist => distance a photon has travelled

$$D_L = D (1+z)$$

Angular diameter Dist => geometric (Euclidean) distance

$$D_A = D / (1+z)$$

Ok... so...?

- We have two unknowns before we can make physical sense of the FLRW metric:
 - the "scale factor" a(t).
 - $-S_{\kappa}(r)$, which depends on the "curvature" κ/R^2
- Deriving these from physics requires more work, and results in the Friedmann Equations
- But: we can measure them directly, and see how/if the Universe behaves. (Do we even live in an RW Homogeneous & Isotropic Universe?)

The Evolution of Light

$$ds^2 = -c^2 dt^2 + a(t)^2 \left[dr^2 + S_{\kappa}(r)^2 d\Omega^2 \right]$$

$$(r,\theta,\phi)=(r,0,0)$$

$$t_1 \qquad t_1 + \Delta t_1$$

$$a(t) = a(t_1)$$

$$\Delta t_1 = \nu_1^{-1}$$

$$\mathrm{d}t = -\frac{a(t)}{c}\,\mathrm{d}r$$

$$\mathrm{d}t = -\frac{a(t)}{c}\,\mathrm{d}r$$

Observation
$$(r,\theta,\phi)=(0,0,0)$$

$$t_0$$
 $t_0 + \Delta t_0$

$$a(t) = a(t_0) = 1$$

$$\Delta t_0 = \nu_0^{-1}$$

$$\int_{t_1}^{t_0} \frac{c \, \mathrm{d}t}{a(t)} = -\int_r^0 \mathrm{d}r$$

$$\int_{t_1 + \Delta t_1}^{t_0 + \Delta t_0} \frac{c \, \mathrm{d}t}{a(t)} = -\int_r^0 \, \mathrm{d}r$$

$$\int_{t_1}^{t_0} \frac{c \, \mathrm{d}t}{a(t)} + \frac{c \, \Delta t_0}{a(t_0)} - \frac{c \, \Delta t_1}{a(t_1)} = \int_{t_1}^{t_0} \frac{c \, \mathrm{d}t}{a(t)}$$

$$\Delta t_0 = \frac{\Delta t_1}{a(t_1)}$$

$$\nu_0 = \nu_1 a(t_1)$$

Redshift, z

$$z == v_1 / v_0 - 1$$
$$= \lambda_0 / \lambda_1 - 1$$

Redshift can be seen as time dilation.

ALL processes show time dilation. It's been seen in SNe light curves.

Redshift in Practice

Hubble Diagram & Constant

$$H(t) = \dot{a}(t)/a(t)$$

Things expanding away from us this way are said to be caught in the "Hubble Flow"

Apparent Intensity

Source at proper distance $a(t_0)r$ (i.e., comoving distance r).

Bolometric Luminosity is L_{bol} what is the flux on earth?

Rate of photon arrival dilated: $n / \Delta t_0 = n a(t_1) / \Delta t_1 = (n / \Delta t_1) / (1+z)$

Energy per photon decreased:

$$E_0 = hv_0 = hv_1/(1+z) = E_1/(1+z)$$

Area of the sphere being illuminated:

$$A = \int_{d\Omega} dl^2 = \int_{d\Omega} a(t)(S_{\kappa}(r)d\Omega^2) = 4\pi \ a(t_0)^2 S_{\kappa}(r)^2$$

== D²
"Effective Distance"

Observing Luminosity

 L_{bol} is integrated over all ν (or λ), difficult to observe in practice.

Instead, measure f_v (f_λ), flux per frequency (wavelength), based on L_v (L_λ), luminosity per frequency (wavelength):

 f_{v} :

Bandwidth stretch

$$\Delta v_1 = \Delta v_0 (1+z)$$

$$f_v = L_{v0} / 4\pi D_L^2$$

 $L_{v1} / (1+z) 4\pi D^2$

 f_{λ} :

Bandwidth compresison

$$\Delta \lambda_0 = \Delta \lambda_1 (1+z)$$

$$f_{\lambda} = L_{\lambda 0} / 4\pi D_{L}^{2}$$

 $L_{\lambda 1} / (1+z)^{3} / 4\pi D^{2}$

K-correction

- When observing, 1. correct to rest-frame $v(\lambda)$
 - 2. correct for bandwidth compression

In Magnitude units, these are additive. For monochromatic light,

$$\Delta m(v) = K(z,v) = -2.5 \log ((1+z) L_v(v(1+z)) / L_v(v))$$

 $\Delta m(\lambda) = K(z,\lambda) = -2.5 \log (1/(1+z) L_{\lambda}(\lambda/(1+z)) / L_{\lambda}(\lambda))$

For a finite bandwidth, we have to integrate the SED.

Distance Modulus

$$DM = 5 \log (D_L(z) / 10pc) = 5 \log (D (1+z) / 10pc)$$

Convenient Conversion from Absolute Magnitude M(v) to apparent magnitude m(v,z)

$$m(\lambda,z) = M(\lambda) + DM + K(\lambda,z)$$

Negative K-correction

For steeply falling spectra, $(f_{\lambda} \propto \lambda^{-3})$, K-correction can cancel Distance Modulus, leading to flux independent of redshift.

Angular Sizes

Proper size of an object at time t is $dl^2 = a(t)^2 (dr^2 + S_{\kappa}(r)^2 d\Omega^2)$

"Angular Diameter Distance" $D_A = d/\Delta\theta = S_{\kappa}(r)a(t)$

Recall:
$$D = a(t_0)S_{\kappa}(r)$$
, $=> D_A = D / (1+z)$

(Distance to an object implied by Euclidean geometry.)

Angular Diameter Distance, D_A

Angular sizes are frozen at emission! For bound structures (don't expand with Hubble flow), can calculate physical sizes from angular sizes with D_A

Angular Size

Note: D_A is (1+z) *smaller* than D, the "effective distance."

Bound objects get LARGER past z≈1.5!

Measurement Review

```
(r,\theta,\phi), (x,y,z), etc => raw coordinates, used to define the metric (these don't change with expansion) Comoving Coords => raw coordinates, but defined to match
```

Proper Time => clock of a fundamental observer

Proper Distance => spatial interval between fundamental

proper positions at t=t₀

observers at a common proper time

Comoving Dist => proper distance at t=t₀

Effective Distance => "radius" of illumination, D == $a(t)S_{\kappa}(r)$ (for a flat universe, equal to proper dist)

Luminosity Dist => Euclidean dist implied by diminution of flux $D_1 = D (1+z)$

Angular diameter Dist => geometric (Euclidean) distance $D_{\Delta} = D / (1+z)$

Surface Brightness

$$\mu \propto fA^{\text{-1}}D^{\text{-2}}$$

Static Flat Universe: $\mu \propto f D^2 D^{-2}$

Expanding Universe: $\mu \propto f D_A^2 D_L^{-2}$

$$\mu_{bol0} \sim \mu_{bol1} / (1+z)^4 \longleftarrow$$
 ("Tolman Effect")

$$\mu_{v0} \sim \mu_{v1} / (1+z)^3$$

$$\mu_{\lambda 0} \sim \mu_{\lambda 1} / (1+z)^5$$

These are strictly a consequence of expanding spacetime, completely independent of what makes it expand (GR).

Thinking In Expanding Spacetime

Decelerating Expansion

Changing Perspective

Changing Perspective

Comoving Coordinates

Conformal Time

Next Time:

Measuring a(t) and $S_{\kappa}(r)$