Logistic Regression

Logistic regression in one dimension

a) Example: APACHE II Score and Mortality in Sepsis

The following figure shows 30 day mortality in a sample of septic patients as a function of their baseline APACHE II Score. Patients are coded as 1 or 0 depending on whether they are dead or alive in 30 days, respectively.

Sigmoid Function

- Bernoulli distribution has 2 possible outcomes
 - PMF: $p(x) = y^x (1 y)^{1-x}$
- Recall for linear regression

$$y(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + \varepsilon$$
 where $\varepsilon \sim$ Gaussian

• Error Histogram

Sigmoid Function

- Bernoulli distribution has 2 possible outcomes
 - PMF: $p(x) = y^x (1 y)^{1-x}$
- If the response is binary, $y \in \{0,1\}$, then $\varepsilon \sim \text{Bernoulli}$ $p(y|\mathbf{x}, \mathbf{w}) = Ber(y|\mathbf{w}^T\mathbf{x})$
- Pass $\mathbf{w}^T \mathbf{x}$ through function $f(\mathbf{w}^T \mathbf{x})$ such that $0 \le f(\mathbf{w}^T \mathbf{x}) \le 1$
- For logistic regression, choose sigmoid (logistic) function

$$sigm(\mathbf{w}^T\mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^T\mathbf{x})}$$

Weight Vector

- How to choose optimal weight vector **w**?
 - Gradient descent (ascent) method
 - $\mathbf{w} = \operatorname{argmin}_{\mathbf{w}} J(\mathbf{w}) \rightarrow \mathbf{w} = \mathbf{w} \eta \frac{\partial J(\mathbf{w})}{\partial \mathbf{w}} \text{ if } J(\mathbf{w}) \text{ is convex}$
 - $\mathbf{w} = \operatorname{argmax}_{\mathbf{w}} J(\mathbf{w}) \rightarrow \mathbf{w} = \mathbf{w} + \eta \frac{\partial J(\mathbf{w})}{\partial \mathbf{w}} \text{ if } J(\mathbf{w}) \text{ is not convex}$
- With 1 training example, formulate the cost function
 - If model predicts correctly, "reward" the model, cost = 0
 - Else "penalize" heavily, cost = ∞
 - Cost = $-[y \log(f(x)) + (1-y) \log(1-f(x))]$
- With N training examples

$$J = -\sum_{i=1}^{N} y^{(i)} \log(f(\mathbf{x}^{(i)})) + (1 - y^{(i)}) \log(1 - f(\mathbf{x}^{(i)}))$$

• Is *J* convex ?

Stochastic Gradient Descent

```
shuffle data set randomly  \text{repeat } \{ \\ \text{for i = 1, ..., N } \{ \\ w_j = w_j - \eta \nabla_{w_j} J \text{ where } \nabla_{w_j} J = \left[ sigm(\mathbf{w}^T \mathbf{x}^{(i)}) - y^{(i)} \right] x_j^{(i)} \\ (j = 0, 1, ..., d) \\ \} \\ \bullet \quad x_i^{(i)} \text{: j-th feature of the i-th training example}
```

• Recall the update equation for Linear Regression

$$w_j = w_j - \eta \nabla_{w_j} J \text{ where } \nabla_{w_j} J = [f(\mathbf{x}^{(i)}) - y^{(i)}] x_j^{(i)}$$

• Once the optimal weight vector is obtained, use the sigmoid function to classify a test data

The bias

• The bias plays a role in shifting the sigmoid curve

•
$$s = sigm(z) = \frac{1}{1 + \exp(-z)}$$

Where $z = \mathbf{w}^T \mathbf{x} = w_0 x_0 + w_1 x_1 + w_2 x_2 + \cdots$
Note: $x_0 = 1$

Logistic Regression Classification Example with 2-D Dataset

• Assume
$$\mathbf{w}^T = [w_0 \ w_1 \ w_2] = [0.5 \ -1.3 \ 3.2]$$

• If
$$s > 0.5 \rightarrow \text{Class } 1$$
, else $\rightarrow \text{Class } 0$

•
$$s = sigm(z) = \frac{1}{1 + \exp(-z)}$$

 $z = \mathbf{w}^T \mathbf{x} = w_0 x_0 + w_1 x_1 + w_2 x_2$
 $x_0 = 1$

x_1	x_2	y	Z	S	$\widehat{\mathbf{y}}$
4.1	1.3	0	-0.67	0.34	0
4.5	1.5	1	-0.55	0.38	0*
1.7	0.4	0	-0.43	0.39	0
0.5	0.7	1	2.09	0.89	1

^{*} Misclassified

Softmax Regression

- Generalization of logistic regression for multi-class classification
- a.k.a. Multinomial Logistic Regression, Maximum Entropy Classifier
- Logistic regression

$$s = sigm(z) = \frac{1}{1 + \exp(-z)} = \frac{\exp(z)}{1 + \exp(z)}$$
Where $z = \mathbf{w}^T \mathbf{x}$

Softmax regression

$$\phi = softmax(\mathbf{z}) = \frac{\exp(z_j)}{\sum_{i=1}^{K} \exp(z_i)} = p(y = j | \mathbf{z})$$
$$p(y = j | \mathbf{z}) \rightarrow \text{probability of class } j$$

Training

• Cross entropy

$$H(p,q) = -\sum_{i} p_{i} \log(q_{i})$$

• Update equation for each class

$$\mathbf{w}_{j} = \mathbf{w}_{j} - \eta \, \nabla_{\mathbf{w}_{j}} J$$

$$J = -\frac{1}{N} \sum_{i=0}^{N} H\left(y_{i}, \phi(\mathbf{x}^{(i)})\right)$$

$$\nabla_{\mathbf{w}_{j}} J = \frac{1}{N} \sum_{i=0}^{N} \left[\left\{ \phi(\mathbf{x}^{(i)}) - y^{(i)} \right\} x_{j}^{(i)} \right] \quad j \in \{1, \dots, D\}$$

- $y^{(i)}$: true class label
- $oldsymbol{\phi}(\mathbf{x}^{(i)})$: softmax output (not the predicted label)
- *J* : average of all cross entropies over all training examples
- \mathbf{w}_i : weight vector for j^{th} feature
- $x_j^{(i)}$: j^{th} feature in i^{th} training example

Prediction

• Compute a score for each class

$$s_j(\mathbf{x}) = p(y = j | \mathbf{z}) = \frac{\exp(z_j)}{\sum_{i=1}^K \exp(z_i)}$$
Where $z = \mathbf{w}^T \mathbf{x}$

Choose the class with the highest score

$$\hat{y} = \operatorname{argmax}_{j} s_{j}(\mathbf{x})$$