

INDR 450/550

Spring 2022

Lecture 6: ARIMA processes

March 2, 2022

Fikri Karaesmen

Announcements

- The first lab video was uploaded on Friday. The second lab will be uploaded on Friday this week. Please follow them.
- First HW will be assigned this week
 - You can work in groups of two or three for the homeworks
- Looking forward to seeing you on campus next week.

Auto-Correlation

Sample estimators:

- For our purposes, we will be interested in the auto-correlation of the process that generates demand: for instance $Corr(Y_t, Y_{t-1})$ or $Corr(Y_t, Y_{t-k})$. This looks at the correlation between demand observation separated by k periods (how demand from k periods ago affects the demand today).
- Note our paired observations are $(y_1, y_{1+k}), (y_2, y_{2+k}), ..., (y_{n-k}, y_n)$.
- The k-lag autocorrelation can then be estimated by:

$$r_k = \frac{\sum_{t=k+1}^{n} (y_t - \bar{y})(y_{t-k} - \bar{y})}{\sum_{t=1}^{n} (y_t - \bar{y})^2}$$

Auto-Correlation: stationary i.i.d demand

• Recall the simple model: $Y_t = c + \varepsilon_t$. Here's the autocorrelation structure:

The data (generated randomly)

Auto-Correlation: The effects of patterns

The effect of patterns:

- We would like to explore the auto-correlation structure of the demand time series to construct models that can take into account the dependence explicitly.
- First, a relatively trivial observation. All basic patterns in the data (trend, seasonality) etc. reflect onto the autocorrelation structure.
- To perform any useful autocorrelation analysis, we first have to transform the data to remove the trend, seasonality etc.

Auto-Correlation: The effects of patterns

• The effect of patterns:

month

Auto-Correlation: The effects of patterns

• The effect of patterns: deseasonalized Australian Beer Production

Deseasonalized Australian Monthly Beer Production

After deseasonalizing no significant AC left. Then taking a simple seasonal difference would be a sufficient forecast.

Auto-Regressive (AR) models

- We started our modeling analysis with demand models that were in the form of $Y_t = f(t) + \epsilon_t$ (where ϵ_t are iid). Note that if we know f(t) or once we figure out the functional form of its pattern from existing data, there is no remaining auto-correlation.
- We'll now consider models with a dependence structure. For instance, the AR model has the following structure:

$$Y_t = c + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \dots + \phi_p Y_{t-p} + \epsilon_t$$

This is referred to as an AR-p model since it has p auto-regressive terms. Note that this is different than a typical regression because the right hand side involves terms from the same series (hence auto-regression).

Auto-Regressive models: AR(1)

• Let us consider the simplest model of this type, AR-1

$$Y_t = c + \phi_1 Y_{t-1} + \epsilon_t$$

- We can already figure out some of the basic properties. First, we have to have the AR coefficient: $-1 < \phi_1 < 1$, otherwise the series would diverge (in expectation). Note that for general AR-p processes the stability conditions for the parameters are more complicated (please see Hyndman and Athansapoulos, Chapter 8).
- If we take ϕ_1 to be positive and high (i.e. close to 1), it is clear that Y_{t-1} and Y_t are highly correlated. In fact, we can verify that $Corr(Y_{t-1}, Y_t) = \phi$.
- But due to the recursive structure, Y_{t-2} and Y_t are also correlated. In fact, we can verify that $Corr(Y_{t-2}, Y_t) = \phi_1^2$ and in general $Corr(Y_{t-k}, Y_t) = \phi_1^k$.

Auto-Regressive models: AR(1)

- If we take ϕ_1 to be negative and high (i.e. close to -1), it is clear that Y_{t-1} and Y_t are highly but negatively correlated (i.e. ϕ close to -1). We know that $Corr(Y_{t-k},Y_t)=\phi^k$. Therefore, we have positive AC at even lags and negative AC at odd lags.
- When ϕ is close to +1, the process tends to take high (i.e. above average values) for a number of consecutive periods and then may fall due to the error component, once it falls it tends to stay low for a while.
- When ϕ is close to -1, the process tends to alternate between high and low values in consecutive periods (zigzagging).

AR(1) Examples

Randomly Generated Data: AR(1) with ϕ_1 =0.7.

Note the geometric decrease in the AC's starting from lag 1.

AR(1) Examples

Randomly Generated Data: AR(1) with ϕ_1 =-0.7.

This time the AC's geometrically decreasing in absolute value but alternating in sign -,+,- etc.

Poll: March 2, 2022

•
$$Y_t = 20 + (0.6)Y_{t-1} + \varepsilon_t$$
.

Moving Average (MA) models

• The AR-process generates dependence by making Y_t linearly dependent on Y_{t-k} . This is a particular type of dependence. An alternative to this to generate dependence through the error terms. The following process is called a Moving Average (MA)- process:

$$Y_t = c + \theta_1 \epsilon_{t-1} + \theta_2 \epsilon_{t-2} + \dots + \theta_q \epsilon_{t-q} + \epsilon_t$$

The above is referred to as an MA-q model since it has q MA terms.

• Note that this is considerably different than the AR-process. Y_t can be viewed as a weighted average of past q forecast errors. Depending on the sign of θ_j , the forecast error may have a positive or negative effect on Y_t .

Moving Average (MA) models: MA(1)

• Let us take MA-1

$$Y_t = c + \theta_1 \epsilon_{t-1} + \epsilon_t$$

- First, for stability we need $|\theta_1| < 1$. Once again for general MA-q processes the stability conditions for the parameters are more complicated (please see Hyndman and Athansapoulos, Chapter 8).
- Next, we can verify that Y_{t-1} and Y_t are correlated but Y_{t-2} and Y_t are not. Therefore, the auto-correlation structure is very different than the AR-process.

If θ_1 is positive then AC at lag 1 is negative, if θ_1 is negative then AC at lag 1 is positive.

MA(1) Examples

Randomly Generated Data: MA(1) with θ_1 =0.7.

Note that there is a single spike at lag 1 but no geometric decay (AC's at all other lags are insignificant).

ARMA Framework

 We can combine AR-terms and MA-terms. The resulting models are called ARMA and include both AR and MA components.

$$Y_{t} = c + \phi_{1}Y_{t-1} + \phi_{2}Y_{t-2} + \dots + \phi_{p}Y_{t-p} + \theta_{1}\epsilon_{t-1} + \theta_{2}\epsilon_{t-2} + \dots + \theta_{q} + \epsilon_{t-q} + \epsilon_{t}$$

This is useful in practice because we need flexible models to fit data. Real auto-correlations rarely correspond to pure AR or MA processes.

ARMA: Mixing AR and MA

- ARMA: mixing AR and MA terms
- Ex: $Y_t = c + \phi_1 Y_{t-1} + \theta_1 \varepsilon_{t-4} + \varepsilon_t$
- A flexible model: Geometrical decrease starting from from lag 1 but there is an additional single spike at lag 4.

Model Identification

- We have a fairly rich framework but we need to have a way of guiding the model fitting process.
- As we will see, a good part of model fitting may be automated but we obtain much better results if we can do some preliminary analysis to guide the fitting process.
- How do we identify the correct model (how many AR and MA terms at which lags?)
- This cannot be done by simply plotting the data.
- The ACF plot is useful but we need more help.

Model Identification: ACF and PACF

- Auto-Correlation Function (ACF) and Partial Auto-Correlation Function (PACF)
- The ACF gives the $Corr(Y_{t-k}, Y_t)$ as a function of the lag k.
- The PACF is the coefficient that corresponds to the coefficient lag-k when we run a linear regression with lagged observations on the right hand side.
- The ACF and PACF capture different aspects. For instance an AR(1) process
 has the highest AC at lag 1 but also geometrically decreasing AC's at lags 2,
 3 etc. The PA coefficient just takes a non-zero value at lag 1 but there is no
 PA at other lags.

$$Y_t = c + \phi_1 Y_{t-1} + \epsilon_t$$

AR ACF-PACF patterns

Randomly Generated Data: AR(1) with ϕ_1 =0.7.

Note that the PAC has a spike at lag 1 but vanishes at higher lags.

MA(1) ACF-PCF patterns

- For an MA(1) process things reverse
- The ACF plot only shows AC at lag 1 but no AC at higher lags.
- The PACF plot shows the highest PAC at lag 1 but also geometrically decreasing PAC's at higher lags.

$$Y_t = c + \theta_1 \epsilon_{t-1} + \epsilon_t$$

This enables us to distinguish MA and AR patterns from the ACF and PACF.

MA(1) ACF-PCF patterns

Randomly Generated Data: MA(1) with θ_1 =-0.7.

Note the geometric decrease in the PAC this time.

Poll 2

Poll Example: AR (2)

$$Y_t = 6 + 1.2Y_{t-1} - 0.8Y_{t-2} + e_t$$

It's hard to tell from the ACF, this is AR(2) but with help from PACF we can conclude that it is likely to be AR(2) (two spikes at lags 1 and 2 but no decreasing behavior).

Makridakis, Wheelwright and Hyndman (1997)

Example: MA (2)

$$Y_t = e_t - e_{t-1} + 0.8e_{t-2}$$
.

This time the ACF is more helpful.

Makridakis, Wheelwright and Hyndman (1997)

Summary of ACF and PACF patterns for simple AR and MA models

ntial decay: on positive $\phi_1 > 0$ and alternating in arting on negative side if the ntial decay or damped we. The exact pattern depends on the signs and sizes of ϕ_p .	zero: spike positive if $\phi_1 > 0$, negative if $\phi_1 < 0$. Spikes at lags 1 to p , then cuts off to zero.
ntial decay or damped we. The exact pattern de- on the signs and sizes of ϕ_p .	negative if $\phi_1 < 0$. Spikes at lags 1 to p , then cuts off to zero.
ntial decay or damped we. The exact pattern de- on the signs and sizes of ϕ_p .	Spikes at lags 1 to p , then cuts off to zero.
ve. The exact pattern de- on the signs and sizes of ϕ_p .	to zero.
ve. The exact pattern de- on the signs and sizes of ϕ_p .	to zero.
on the signs and sizes of ϕ_p .	
ϕ_p .	17 47 1 1
* •	17 47 1 1
log 1 then outs off to gorou	T3 (* 1 1
lag 1 then cuts off to zero:	Exponential decay: on negative
spike positive if $\theta_1 < 0$, negative if $\theta_1 > 0$.	side if $\theta_1 > 0$ and alternating in
	sign starting on positive side if
	$\theta_1 < 0$.
at lags 1 to q , then cuts off	Exponential decay or damped
to zero.	sine-wave. The exact pattern de-
	pends on the signs and sizes of
	$\theta_1, \ldots, \theta_q$.
	at lags 1 to q , then cuts off

Makridakis, Wheelwright and Hyndman (1997)

Example: Number of Pigs Slaughtered

Number of pigs slaughtered

Maybe: