Foundations of Computing Lecture 23

Arkady Yerukhimovich

April 18, 2023

Outline

- 1 Lecture 22 Review
- \bigcirc co- \mathcal{NP}
- 3 Redefining Our Notion of Proof
- Interactive Proofs
- 5 Polynomial Identity Testing

Lecture 22 Review

- $\bullet \ \mathsf{More} \ \mathcal{NP}\text{-}\mathsf{complete} \ \mathsf{problems} \\$
- \bullet The class co- \mathcal{NP}

Outline

- 1 Lecture 22 Review
- \bigcirc co- \mathcal{NP}
- Redefining Our Notion of Proof
- Interactive Proofs
- 5 Polynomial Identity Testing

Question

Do all languages have poly-size proofs?

Question

Do all languages have poly-size proofs?

Consider the following language:

UNSAT

 $\mathsf{UNSAT} = \{ \langle \phi \rangle \mid \phi \text{ is not satisfiable} \}$

Question

Do all languages have poly-size proofs?

Consider the following language:

UNSAT

 $\mathsf{UNSAT} = \{ \langle \phi \rangle \mid \phi \text{ is not satisfiable} \}$

ullet For all possible assignments $w \in \{0,1\}^{|\phi|}$, $\phi(w)=0$

Question

Do all languages have poly-size proofs?

Consider the following language:

UNSAT

$$\mathsf{UNSAT} = \{ \langle \phi \rangle \mid \phi \text{ is not satisfiable} \}$$

- For all possible assignments $w \in \{0,1\}^{|\phi|}$, $\phi(w) = 0$
- \bullet We define co- $\!\mathcal{NP}$ to contain all such languages that are complements of languages in \mathcal{NP}

 $\overline{\mathcal{P}}$

 $L \in \mathcal{P}$ if there exists poly-time DTM M s.t $M(x) = [x \in L]$

\mathcal{P}

 $L \in \mathcal{P}$ if there exists poly-time DTM M s.t $M(x) = [x \in L]$

\mathcal{NP}

 $L \in \mathcal{NP}$ if there exists poly-time DTM V s.t. for $x \in L$ there exists a witness w s.t. V(x, w) = 1

\mathcal{P}

 $L \in \mathcal{P}$ if there exists poly-time DTM M s.t $M(x) = [x \in L]$

$\overline{\mathcal{N}}\mathcal{P}$

 $L \in \mathcal{NP}$ if there exists poly-time DTM V s.t. for $x \in L$ there exists a witness w s.t. V(x, w) = 1

co- \mathcal{NP}

 $L \in \text{co-}\mathcal{NP}$ if there exists poly-time DTM V s.t. for $x \in L$ for all w, V(x,w) = 0

\mathcal{P}

 $L \in \mathcal{P}$ if there exists poly-time DTM M s.t $M(x) = [x \in L]$

\mathcal{NP}

 $L \in \mathcal{NP}$ if there exists poly-time DTM V s.t. for $x \in L$ there exists a witness w s.t. V(x, w) = 1

$co-\mathcal{NP}$

 $L\in ext{co-}\mathcal{NP}$ if there exists poly-time DTM V s.t. for $x\in L$ for all w, V(x,w)=0

Question:

Can you prove that $x \in L$, when $L \in \text{co-}\mathcal{NP}$?

Proving that $x \in L$ for $L \in \text{co-}\mathcal{NP}$

The Problem

Suppose, I am given an input formula ϕ and I want to prove that ϕ is not satisfiable.

Proving that $x \in L$ for $L \in \text{co-}\mathcal{NP}$

The Problem

Suppose, I am given an input formula ϕ and I want to prove that ϕ is not satisfiable.

 It is widely believed that there is no poly-size, efficiently verifiable proof w that you could give for UNSAT

Proving that $x \in L$ for $L \in \text{co-}\mathcal{NP}$

The Problem

Suppose, I am given an input formula ϕ and I want to prove that ϕ is not satisfiable.

- It is widely believed that there is no poly-size, efficiently verifiable proof w that you could give for UNSAT
- $\mathcal{NP} \neq \text{co-}\mathcal{NP}$

Outline

- 1 Lecture 22 Review
- \bigcirc co- \mathcal{NP}
- Redefining Our Notion of Proof
- Interactive Proofs
- 5 Polynomial Identity Testing

Traditional Definition

A proof is a string that convinces us of the truth of some mathematical statement x

Traditional Definition

A proof is a string that convinces us of the truth of some mathematical statement x

• x is a satisfiable formula

Traditional Definition

A proof is a string that convinces us of the truth of some mathematical statement x

- x is a satisfiable formula
- The Pythagorean Theorem is true

Traditional Definition

A proof is a string that convinces us of the truth of some mathematical statement x

- x is a satisfiable formula
- The Pythagorean Theorem is true
- ...

Traditional Definition

A proof is a string that convinces us of the truth of some mathematical statement x

- x is a satisfiable formula
- The Pythagorean Theorem is true
- ...

New Definition

A proof is any process at the end of which one party (the prover) can convince the other party (the verifier) of the truth of some statement x

Traditional Definition

A proof is a string that convinces us of the truth of some mathematical statement x

- x is a satisfiable formula
- The Pythagorean Theorem is true
- ...

New Definition

A proof is any process at the end of which one party (the prover) can convince the other party (the verifier) of the truth of some statement x

• A proof doesn't have to be a string

Traditional Definition

A proof is a string that convinces us of the truth of some mathematical statement x

- x is a satisfiable formula
- The Pythagorean Theorem is true
- ...

New Definition

A proof is any process at the end of which one party (the prover) can convince the other party (the verifier) of the truth of some statement x

- A proof doesn't have to be a string
- Can be an interactive procedure

Traditional Definition

A proof is a string that convinces us of the truth of some mathematical statement x

- x is a satisfiable formula
- The Pythagorean Theorem is true
- ...

New Definition

A proof is any process at the end of which one party (the prover) can convince the other party (the verifier) of the truth of some statement x

- A proof doesn't have to be a string
- Can be an interactive procedure
- The verifier (and prover) can use randomness to decide whether to accept

An Example – Aladdin's Cave

Sighted, who ont on Lift tark, come out on R

Outline

- 1 Lecture 22 Review
- \bigcirc co- \mathcal{NP}
- 3 Redefining Our Notion of Proof
- 4 Interactive Proofs
- 5 Polynomial Identity Testing

Definition

 $L \in \mathcal{IP}$ if there exist a pair of interactive algorithms (P, V) with V being poly-time (in |x|) s.t.

unbounded poly-time

Definition

 $L \in \mathcal{IP}$ if there exist a pair of interactive algorithms (\dot{P}, V) with V being poly-time (in |x|) s.t.

• (Completeness) If $x \in L$, then $\Pr[\langle P, V \rangle(x) = 1] = 1$

Definition

 $L \in \mathcal{IP}$ if there exist a pair of interactive algorithms (P, V) with V being poly-time (in |x|) s.t.

- (Completeness) If $x \in L$, then $\Pr[\langle P, V \rangle(x) = 1] = 1$
- (Soundness) If $x \notin L$, then for any (possibly unbounded) P^* , we have $\Pr[\langle P^*, V \rangle(x) = 1] \le 1/2$

Definition

 $L \in \mathcal{IP}$ if there exist a pair of interactive algorithms (P, V) with V being poly-time (in |x|) s.t.

- (Completeness) If $x \in L$, then $Pr[\langle P, V \rangle(x) = 1] = 1$
- ② (Soundness) If $x \notin L$, then for any (possibly unbounded) P^* , we have $\Pr[\langle P^*,V\rangle(x)=1] \le 1/2$

Examples:

Definition

 $L \in \mathcal{IP}$ if there exist a pair of interactive algorithms (P, V) with V being poly-time (in |x|) s.t.

- (Completeness) If $x \in L$, then $\Pr[\langle P, V \rangle(x) = 1] = 1$
- ② (Soundness) If $x \notin L$, then for any (possibly unbounded) P^* , we have $\Pr[\langle P^*, V \rangle(x) = 1] \le 1/2$

Examples:

• Aladdin's cave example from earlier

Definition

 $L \in \mathcal{IP}$ if there exist a pair of interactive algorithms (P, V) with V being poly-time (in |x|) s.t.

- (Completeness) If $x \in L$, then $\Pr[\langle P, V \rangle(x) = 1] = 1$
- ② (Soundness) If $x \notin L$, then for any (possibly unbounded) P^* , we have $\Pr[\langle P^*, V \rangle(x) = 1] \le 1/2$

Examples:

- Aladdin's cave example from earlier
- \bullet $\mathcal{P} \subset \mathcal{IP}$

Definition

 $L \in \mathcal{IP}$ if there exist a pair of interactive algorithms (P, V) with V being poly-time (in |x|) s.t.

- (Completeness) If $x \in L$, then $\Pr[\langle P, V \rangle(x) = 1] = 1$
- ② (Soundness) If $x \notin L$, then for any (possibly unbounded) P^* , we have $\Pr[\langle P^*, V \rangle(x) = 1] \le 1/2$

Examples:

- Aladdin's cave example from earlier
- $\mathcal{P} \subseteq \mathcal{IP}$
- $\mathcal{NP} \subset \mathcal{IP}$

Another Example – Graph Isomorphism

Another Example – Graph Isomorphism

Claim

Graph Isomorphism $\in \mathcal{IP}$

Question

How can we prove that two graphs G_0 and G_1 are NOT isomorphic?

Question

How can we prove that two graphs G_0 and G_1 are NOT isomorphic?

The Protocol:

Question

How can we prove that two graphs G_0 and G_1 are NOT isomorphic?

The Protocol:

• V chooses $b \leftarrow \{0,1\}$, and applies a random permutation π to the vertices of G_b and sends this graph G^* to P

Question

How can we prove that two graphs G_0 and G_1 are NOT isomorphic?

The Protocol:

- V chooses $b \leftarrow \{0,1\}$, and applies a random permutation π to the vertices of G_b and sends this graph G^* to P
- ② P determines if G^* is isomorphic to G_0 and sends b'=0 if so, or b'=1 otherwise back to V

Question

How can we prove that two graphs G_0 and G_1 are NOT isomorphic?

The Protocol:

- **1** V chooses $b \leftarrow \{0,1\}$, and applies a random permutation π to the vertices of G_b and sends this graph G^* to P
- ② P determines if G^* is isomorphic to G_0 and sends b'=0 if so, or b'=1 otherwise back to V
- **3** V accepts if b' = b

Question

How can we prove that two graphs G_0 and G_1 are NOT isomorphic?

The Protocol:

- V chooses $b \leftarrow \{0,1\}$, and applies a random permutation π to the vertices of G_b and sends this graph G^* to P
- ② P determines if G^* is isomorphic to G_0 and sends b'=0 if so, or b'=1 otherwise back to V
- **3** V accepts if b' = b

Question

How can we prove that two graphs G_0 and G_1 are NOT isomorphic?

The Protocol:

- V chooses $b \leftarrow \{0,1\}$, and applies a random permutation π to the vertices of G_b and sends this graph G^* to P
- ② P determines if G^* is isomorphic to G_0 and sends b'=0 if so, or b'=1 otherwise back to V
- **3** V accepts if b' = b

Why This Works:

1 (Completeness) Suppose that G_0 and G_1 are not isomorphic.

Question

How can we prove that two graphs G_0 and G_1 are NOT isomorphic?

The Protocol:

- V chooses $b \leftarrow \{0,1\}$, and applies a random permutation π to the vertices of G_b and sends this graph G^* to P
- ② P determines if G^* is isomorphic to G_0 and sends b'=0 if so, or b'=1 otherwise back to V
- 3 V accepts if b' = b

- **1** (Completeness) Suppose that G_0 and G_1 are not isomorphic.
 - Then G* can only be isomorphic to one of the two graphs

Question

How can we prove that two graphs G_0 and G_1 are NOT isomorphic?

The Protocol:

- V chooses $b \leftarrow \{0,1\}$, and applies a random permutation π to the vertices of G_b and sends this graph G^* to P
- ② P determines if G^* is isomorphic to G_0 and sends b'=0 if so, or b'=1 otherwise back to V
- 3 V accepts if b' = b

- **1** (Completeness) Suppose that G_0 and G_1 are not isomorphic.
 - ullet Then G^* can only be isomorphic to one of the two graphs
 - P can perfectly determine which one this is

Question

How can we prove that two graphs G_0 and G_1 are NOT isomorphic?

The Protocol:

- V chooses $b \leftarrow \{0,1\}$, and applies a random permutation π to the vertices of G_b and sends this graph G^* to P
- ② P determines if G^* is isomorphic to G_0 and sends b'=0 if so, or b'=1 otherwise back to V
- 3 V accepts if b' = b

- **1** (Completeness) Suppose that G_0 and G_1 are not isomorphic.
 - Then G^* can only be isomorphic to one of the two graphs
 - P can perfectly determine which one this is
 - So Pr[b' = b] = 1

Question

How can we prove that two graphs G_0 and G_1 are NOT isomorphic?

The Protocol:

- V chooses $b \leftarrow \{0,1\}$, and applies a random permutation π to the vertices of G_b and sends this graph G^* to P
- ② P determines if G^* is isomorphic to G_0 and sends b'=0 if so, or b'=1 otherwise back to V
- 3 V accepts if b' = b

- **1** (Completeness) Suppose that G_0 and G_1 are not isomorphic.
 - ullet Then G^* can only be isomorphic to one of the two graphs
 - P can perfectly determine which one this is
 - So Pr[b' = b] = 1
- ② (Soundness) Suppose that G_0 and G_1 are isomorphic

Question

How can we prove that two graphs G_0 and G_1 are NOT isomorphic?

The Protocol:

- V chooses $b \leftarrow \{0,1\}$, and applies a random permutation π to the vertices of G_b and sends this graph G^* to P
- ② P determines if G^* is isomorphic to G_0 and sends b'=0 if so, or b'=1 otherwise back to V
- 3 V accepts if b' = b

- **1** (Completeness) Suppose that G_0 and G_1 are not isomorphic.
 - Then G* can only be isomorphic to one of the two graphs
 - P can perfectly determine which one this is
 - So Pr[b' = b] = 1
- **②** (Soundness) Suppose that G_0 and G_1 are isomorphic
 - Then G^* is isomorphic to both G_0 and G_1

Question

How can we prove that two graphs G_0 and G_1 are NOT isomorphic?

The Protocol:

- V chooses $b \leftarrow \{0,1\}$, and applies a random permutation π to the vertices of G_b and sends this graph G^* to P
- ② P determines if G^* is isomorphic to G_0 and sends b'=0 if so, or b'=1 otherwise back to V
- 3 V accepts if b' = b

- **1** (Completeness) Suppose that G_0 and G_1 are not isomorphic.
 - ullet Then G^* can only be isomorphic to one of the two graphs
 - P can perfectly determine which one this is
 - So Pr[b' = b] = 1
- ② (Soundness) Suppose that G_0 and G_1 are isomorphic
 - Then G^* is isomorphic to both G_0 and G_1
 - P has no way to tell which one V started from

Question

How can we prove that two graphs G_0 and G_1 are NOT isomorphic?

The Protocol:

- V chooses $b \leftarrow \{0,1\}$, and applies a random permutation π to the vertices of G_b and sends this graph G^* to P
- ② P determines if G^* is isomorphic to G_0 and sends b'=0 if so, or b'=1 otherwise back to V
- 3 V accepts if b' = b

- **1** (Completeness) Suppose that G_0 and G_1 are not isomorphic.
 - ullet Then G^* can only be isomorphic to one of the two graphs
 - P can perfectly determine which one this is
 - So Pr[b' = b] = 1
- **②** (Soundness) Suppose that G_0 and G_1 are isomorphic
 - Then G^* is isomorphic to both G_0 and G_1
 - P has no way to tell which one V started from
 - Thus, $\Pr[b'=b]=1/2$

 $\bullet \ \mathsf{GNI} \in \mathsf{co}\text{-}\mathcal{NP}$

- $\mathsf{GNI} \in \mathsf{co}\text{-}\mathcal{NP}$
- It is not believed that there is a short witness w s.t. $V((G_0, G_1), w) = 1$ if G_0 and G_1 are not isomorphic. I.e., $\mathsf{GNI} \notin \mathcal{NP}$

- GNI \in co- \mathcal{NP}
- It is not believed that there is a short witness w s.t. $V((G_0, G_1), w) = 1$ if G_0 and G_1 are not isomorphic. I.e., $\mathsf{GNI} \notin \mathcal{NP}$
- The power of interaction and randomness has allowed us to do what we couldn't do before

So far, we defined soundness as:

$$\Pr[\langle P^*, v \rangle(x) = 1] \le 1/2$$

So far, we defined soundness as:

$$\Pr[\langle P^*, v \rangle(x) = 1] \le 1/2$$

What if we don't want malicious prover to win so often?

So far, we defined soundness as:

$$\Pr[\langle P^*, v \rangle(x) = 1] \le 1/2$$

What if we don't want malicious prover to win so often?

Soundness Amplification

So far, we defined soundness as:

$$\Pr[\langle P^*, v \rangle(x) = 1] \le 1/2$$

What if we don't want malicious prover to win so often?

Soundness Amplification

• Run the proof *n* times sequentially on same input *x*, but different randomness

So far, we defined soundness as:

$$\Pr[\langle P^*, v \rangle(x) = 1] \le 1/2$$

What if we don't want malicious prover to win so often?

Soundness Amplification

- Run the proof n times sequentially on same input x, but different randomness
- Accept if ALL proofs accept

So far, we defined soundness as:

$$\Pr[\langle P^*, v \rangle(x) = 1] \le 1/2$$

What if we don't want malicious prover to win so often?

Soundness Amplification

- Run the proof n times sequentially on same input x, but different randomness
- Accept if ALL proofs accept
- **3** P^* wins with probability $\leq 1/2$ in each run, so

$$\Pr[\langle P^*, V \rangle(x) = 1] \le 1/2^n$$

