

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский институт)»

(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Информатика и системы управления КАФЕДРА ИУ7

Отчёт

по лабораторной работе № 1

Дисциплина: Архитектура ЭВМ

Тема лабораторной работы работы: Синхронные одноступенчатые триггеры со статическим и динамическим управлением записью

Студенты гр. ИУ7-41		Лучина Е.Д.
	(Подпись, дата)	(И.О. Фамилия)
Преподаватель		Попов А. Ю.
	(Подпись, дата)	(И.О. Фамилия)

Москва, 2018г

1. Асинхронный RS-триггер с инверсными входами в статическом режиме

Асинхронный RS-триггер - это простейший триггер, который используется как запоминающая ячейка. Состояния Q и /Q RS-триггера, соответствующие различным сочетаниям сигналов на его входах R и S, приведены в таблице переходов.

схема RS-триггера на ЛЭ И-НЕ, к выходам Q и /Q триггера подключены световые индикаторы;

/S(S1)	/R(S2)	Qn+1
0	0	запрещено
0	1	1
1	0	0
1	1	Qn

Запрещенная ситуация:

Сохраняется предыдущее состояние Qn

2. Синхронный RS-триггер в статическом режиме

Синхронный RS-триггер имеет два информационных входа R и S и вход синхронизации C. ЛЭ U3 и U4 образуют схему управления, ЛЭ U1 и U2 – асинхронный RS - триггер (запоминающую ячейку).

схема RS-триггера на ЛЭ И-НЕ

Как и все синхронные триггеры, синхронный RS - триггер при C=0 сохраняет предыдущее внутреннее состояние. Сигналы по входам S и R переключают синхронный RS-триггер только с поступлением импульса на вход синхронизации C. При C=1 синхронный триггер переключается как асинхронный. Одновременная подача сигналов C=S=R=1 запрещена. При S=R=0 триггер не изменяет своего состояния.

S(S1)	R(S2)	C(S2)	Qn+1
0	0	0	Qn
0	0	1	Qn
1	1	0	Qn
1	1	1	запрещено
0	1	0	Qn
0	1	1	0
1	0	0	Qn
1	0	1	1

3. Синхронный D-триггер в статическом режиме

Синхронный D -триггер имеет один информационный вход – D, состояние которого с каждым синхронизирующим импульсом передается на выход, т.е. выходные сигналы представляют собой задержанные входные сигналы.

схема D-триггера на ЛЭ И-НЕ

Таблица переходов:

S1 (D)	S3 (C)	Qn+1
0	0	Qn
0	1	0
1	1	1
1	0	Qn

4. Синхронный D-триггер с динамическим управлением записью в статическом режиме

Характерной особенностью синхронных триггеров с динамическим управлением записью является то, что прием информационных сигналов и передача на выход принятой информации выполняются в момент изменения синхросигнала на С -входе из "0" в "I" или из "I" в "0", т.е. перепадом синхросигнала. Такой С -выход называется динамическим, причем в первом случае динамический С -вход - прямой, во втором - инверсный

$egin{array}{c} { m Bремя} & t_n \\ { m Bходы} \end{array}$		Время t_{n+1} Выход Q_{n+1}			
				C_n	S_n, V_n
1	2	3	4	5	7
0	0	0	0	0	0
0	0	0	1	1	1
0	0	1	0	0	0
0	0	1	1	1	1
0	1	0	0	0	0
0	1	0	1	1	1
0	1	1	0	0	0
0	1	1	1	1	1
1	0	0	0	0	0
1	0	0	1	1	1
1	0	1	0	0	0
1	0	1	1	0	1
1	1	0	0	1	0
1	1	0	1	1	0
1	1	1	0	X	1
1	1	1	1	X	1

5. Синхронный DV-триггер с динамическим управлением записью в динамическом режиме.

нхронный DV-триггер имеет один информационный вход D и один подготовительный разрешающий вход V для разрешения приема информации. При C=0 DV-триггер, как и синхронные триггеры всех типов, сохраняет предыдущее внутреннее состояние, т.е. Q(n+1)=Q(n). При C=1 и при наличии

сигнала V=1 разрешения приема информации DV-триггер принимает информационный сигнал, действующий на входе D, т.е. работает как асинхронный DV-триггер. При C=1 и V=0 DV триггер сохраняет предыдущее внутреннее состояние, т.е. Q(n+1)=Q(n).

6. DV-триггер, включенный по схеме TV-триггера

1. Что называется триггером?

Триггер является запоминающим элементом с двумя устойчивыми состояниями, которые кодируются цифрами 0 и 1.

2. Какова структурная схема триггера?

Структурную схему триггера (рис. 1) можно представить в виде запоминающей ячейки (ЗЯ) и схемы управления (СУ). На рис. 1 $x_1, x_2, ..., x_n$ - информационные входы; С - вход синхронизации или тактовый вход; \mathbf{Q} и $\overline{\mathbf{Q}}$ – прямой и инверсный выходы триггера.

3. По каким основным признакам классифицируют триггеры?

Триггеры классифицируют по следующим основным признакам.

- 1. По способу организации логических связей, т.е. по виду логического уравнения, характеризующего состояние входов и выходов триггера в момент времени t_n до его срабатывания и в момент t_{n+1} после его срабатывания различают триггеры:
 - с раздельной установкой состояний "0" и "1" (RS-триггеры);
 - со счетным входом (Т-триггеры);
 - универсальные с раздельной установкой состояний "0" и "1" (ЈК- триггеры);
 - с приемом информации по одному входу (D триггеры);
 - универсальные с управляемым приемом информации по одному входу (DV триггеры);
 - комбинированные (например, RST-, JKRS, DRS триггеры) и т.д.

Разнообразие схем триггеров определяется возможностью изменения организации СУ и способами подключения обратной связи к входам СУ.

- 2. По способу запаси информации различают триггеры:
 - асинхронные (несинхронизируемые);
 - синхронные (синхронизируемые), или тактируемые.
- 3. По способу синхронизации различают триггеры: синхронные со статическим управлением записью; синхронные с динамическим управлением записью.
- 4. По способу передачи информации с входов на выход различают триггеры о одноступенчатым и двухступенчатым запоминанием информации.

4. Каково функциональное назначение входов триггеров?

Номер п/п	Наименование входов	Обозначение
1	S-вход — вход для раздельной установки триггера в состояние "1" (Set – установка)	S
2	R-вход — вход для раздельной установки триггера в состояние "0" (Reset – сброс, очистка)	R
3	Ј-вход — вход для установки состояния "1" в универсальном ЈК-триггере (Jerk — внезапное включение)	J
4	К-вход — вход для установки состояния "0" в универсальном JK-триггере (Kill – внезапное отключение)	K
5	Т -вход -счетный вход (Toggle - релаксатор)	T
6	D-вход —информационный вход для установки триггера в состояния "1" или "0" (Data – данные, Delay – задержка)	D
7	V-вход — подготовительный управляющий вход для разрешения приема информации (Valve – клапан, вентиль)	V
8	С-вход - исполнительный управляющий (командный) вход для осуществления приема информации, вход синхронизации (Clock – источник синхросигналов)	С

5. Что такое асинхронный и синхронный триггеры?

Запись информации в асинхронный триггер осуществляется непосредственно с поступлением информационных сигналов на его входы. Запись информации в синхронные триггеры осуществляется только при подаче разрешающего импульса на вход синхронизации С.

6. Что такое таблица переходов?

Работу триггера можно описать с помощью таблицы переходов, отражающей зависимость выходного сигнала триггера в момент времени tn+1 от входных сигналов и от состояния триггера в предыдущий момент времени tn

- 7. Как работает асинхронный RS-триггер?
- 8. Как работает синхронный RS -триггер? Какова его таблица переходов?
- 9. Что такое D-триггер?
- 10. Объясните работу синхронного D-триггера.
- 11. Что такое DV –триггер?
- 12. Объясните работу DV-триггера.
- 13. Что такое Т-триггер? Какова его таблица переходов?
- 14. Объясните работу схемы синхронного RS-триггера со статическим управлением.
- 15. Какова характерная особенность переключения синхронных триггеров с динамическим управлением записью?
- 16. Как работает схема синхронного D -триггера с динамическим управлением записью на основе трех RS -триггеров?
- 17. Составьте временные диаграммы работы синхронного D-триггера с динамическим управлением записью.
- 18. Какова структура и принцип действия синхронного DV-триггера с динамическим управлением записью?
- 19. Составьте временные диаграммы синхронного DV-триггера.
- 20. Объясните режимы работы D-триггера.