$$\frac{dy}{dt} = \frac{dz}{dz} \frac{dy}{dz}$$

$$\frac{dy}{dz} = \frac{dz}{dz} \frac{dy}{dz}$$

$$\frac{dy}{dz} = \frac{dz}{dz} \frac{dy}{dz}$$

$$\frac{dy}{dz} = \frac{dz}{dz} \frac{dy}{dz}$$

$$\frac{dy}{dz} = \frac{dz}{dz} \frac{dy}{dz}$$

$$\frac{dz}{dz} = \frac{dz}{dz} \frac{dy}{dz}$$

$$A(X \cdot M_{i,j} + P_{i,j})$$

$$x - (1) - y \qquad y = \frac{1}{x}$$

$$\frac{dy}{dx} = -\frac{1}{x^2}$$

$$= -(\frac{1}{x})^2$$

$$= -y^2$$

y = exp(x)

$$\frac{dx}{d\lambda} = \exp(x)$$

$$X = \frac{1}{1 + \exp(-x)}$$

$$\frac{\partial L}{\partial x} = \frac{\partial L}{\partial y} \left(\frac{1}{1 + \exp(-x)} \right)^{2} \exp(-x)$$

$$= \frac{\partial L}{\partial y} \left(\frac{1}{1 + \exp(-x)} \right)^{2} \exp(-x)$$

$$= \frac{\partial L}{\partial y} \left(\frac{1}{1 + \exp(-x)} \right)^{2} \left(\frac{1}{1 + \exp(-x)} \right)$$

$$= \frac{\partial L}{\partial y} \left(\frac{1}{1 - y} \right)^{2}$$

$$= \frac{\partial L}{\partial y} \left(\frac{1}{1 - y} \right)^{2}$$

Training Conter

App

迎教午% 에폭당 반복

$$600 \rightarrow Loss$$
 $(200 \rightarrow Loss)$
 $(800 \rightarrow Loss)$

$$X \cdot W + b$$

if $W = 0$, $b = 0 \rightarrow 0$
 $W = 0$, $b = 0$

Kems

X.W+P

क्षः Affine धिर्ध

선정망: 완전연절 Donse

model.summary()		
Layer (type) Param #	Output Shape	
======================================	(None, 50)	184x50+50 = 39,250
dense_2 (Dense) 5100	(None, 100)	50 x100 +/00 = 5,100

∠ # 60k

