Hálózatok II. A hálózati réteg torlódás vezérlése

2007/2008. tanév, I. félév

Dr. Kovács Szilveszter

E-mail: szkovacs@iit.uni-miskolc.hu

Miskolci Egyetem

Informatikai Intézet 106. sz. szoba

Tel: (46) 565-111 / 21-06 mellék

A hálózati réteg funkciói

Forgalomirányítás

- a csomag célbajuttatása.
- ismerni kell a topológiát
- terhelésmegosztás (alternatív utak)

Torlódásvezérlés

- Ne legyenek a hálózat egyes részei túlterheltek
- Hasonló a forgalomszabályozáshoz, de ez nem csak két pont (adó-vevő) közötti, hanem a hálózat egészére vonatkozik.
- Hálózatközi együttműködés
 - Ez az első réteg, ahol különböző hálózatok összekapcsolhatók (heterogén hálózatok kialakítása)

A torlódásvezérlés célja

• Megelőzze és/vagy elhárítsa azokat a szituációkat, melyekben egy összeköttetés vagy egy csomópont túlterheltté válik.

Torlódásvezérlő algoritmusok

- Pufferek előrefoglalása
- Csomageldobás (különböző eldobási szempontokkal)
- Lefojtó-csomagok módszere
- Izaritmikus torlódásvezérlés
- Forgalomszabályozásos torlódásvezérlés

Pufferek előrefoglalása

- Minden átvinni kívánt csomagnak előre foglal puffert
- Virtuális áramkör alapú hálózatokban használható, a hívásfelépítés során rendel a virtuális áramkörhöz pufferterületet - a hívásfelépítő csomag nemcsak táblabejegyzéseket generál, hanem puffereket is foglal.
- Elutasítás lehetséges, amennyiben nem áll rendelkezésre az igényelt erőforrás Pl. az adóablak méretnek megfelelő puffert foglal le
- Hátrány:
 nem gazdaságos (fölösleges pufferkapacitást foglal le)
 (sőt elutasíthat emiatt más hívásfelépítést).
 Megoldás pl: a sokáig tétlen puffereket felszabadítja.
 (ez kockázatos lehet)

Csomageldobás

First-Come-First-Served módon használja a puffereket ⇒ ha betelnek, eldobja az újabbakat

(Nem foglalnak előre puffereket, de valamekkora minden vonalon van.) (Más protokollok biztosíthatják az újraadást.)

Módosításai:

 A bemenetekre legalább 1db puffert le kell foglalni és szabadon kell hagyni (ne váljon süketté)
 Pl: szolgálati üzenetek: ha egyéb, eldobja, ha speciális üzenet ⇒ feldolgozza ⇒ nem lesz "süket".

Csomageldobás

Módosításai:

- Pufferek felosztása a kimenetek között
 - korlátozza a kimeneti puffer-sorok maximális hosszait
 - ugyanakkor minimális pufferszámot is előír a kimenetekre (a "kiéhezés" ellen)
 - A max pufferszám a forgalom függvénye.
 - Pl: "Ökölszabály" a kimeneti pufferek max számára : ahol
 - p: a pufferek össz száma;
 - k: a kimenetek száma;
 - m: a max hossz egy kimenetre.

(a többieknek nem maradna)

Torlódásvezérlés Csomageldobás

Csomageldobás

Eldobási szempontok (prioritások)

- pl. prioritási osztályok szerint, vagy
- pl. az ugrások számát nézik, és azt dobják el, amelyik kevesebbet utazott (valószínűleg kisebb erőforrás-igényű

ennek a megismétlése)

Lefojtó-csomagok módszere

Choke packets:

- · A források fojtása (még mielőtt a torlódás beállna)
- Csomópont figyeli a kimenő vonalainak telítettségét, és ha az egy küszöbértéket túllép ⇒ lefojtó-csomagot küld a feladónak
 - (ebbe az irányba csökkentsék a forgalmat jelentéssel), de az eredeti csomagot továbbítja.
 - Az eredeti (továbbított) csomagot meg is jelölheti:
 - ⇒ ez a csomag már váltott ki fojtóüzenetet
 - (a rákövetkező csomópontoknak már nem kell küldenie)

Torlódásvezérlés Lefoitás

Lefojtó-csomagok módszere

• A küldő adaptivitása:

- az első lefojtó-csomag vétele után csökkenti a forgalmát, majd
- egy időzítés ideig nem fogad újabb fojtó csomagot (nem csökkenti tovább forgalmát) (duplikált fojtások lehetnek – pl. ugyanazon szekvencia több eleme).
- Ennek leteltével újabb időzítés:
 - ha ezalatt újabb fojtócsomag érkezik
 ⇒ tovább csökkenti forgalmát,
 - ha nem érkezik
 - ⇒ visszanöveli az adott célirányú forgalmát.

Izaritmikus torlódásvezérlés

- Korlátozza a hálózatban egyidejűleg bentlévő csomagok számát
- Engedélyező csomagokat (permit) használ
 - ⇒ csak akkor adhat, ha engedélyező csomagot kapott
 - ⇒ majd utána újabb engedélyező csomagot generál
- Az engedélyező csomagok körbejárnak a hálózaton.
- · Módosítása:

Engedélyező központ, akitől lehet engedélyt kérni.

- szolgálati overhead-del jár (bár nem naggyal), és
- · érzékeny a központ kiesésére
- Gond:

Engedélyező csomagok megsemmisülése (Nehezen menedzselhető (pótolható))

kivéve az engedélyező központos megoldást.

Torlódásvezérlés Izaritmikus

Forgalomszabályozásos torlódásvezérlés

- A forgalomszabályozás:
 - adó ne árasszon el vevőt (két állomás viszonyára)
- A fogadóállomások a forgalomszabályozást nem a kapacitásuk függvényében alkalmazzák, hanem valamilyen abszolút korlátozást vesznek figyelembe ⇒ esetleg az adóra is telepíthető, így közvetlen a kibocsátásnál érvényesíthető.
- Ha a korlátok megfelelőek ⇒ biztos, hogy jó
 → ha egy kicsit nagyobbak ⇒ lehet, hogy nem
 egyenletes terhelés esetén egyes pontokon torlódások
 alakulnak ki.
- Gond: alacsony korlátok esetén ⇒ nagy késleltetések.

A hálózati réteg funkciói

Forgalomirányítás

- a csomag célba juttatása.
- ismerni kell a topológiát
- terhelésmegosztás (alternatív utak)

Torlódásvezérlés

- Ne legyenek a hálózat egyes részei túlterheltek
- Hasonló a forgalomszabályozáshoz, de ez nem csak két pont (adó-vevő) közötti, hanem a hálózat egészére vonatkozik.

Hálózatközi együttműködés

 Ez az első réteg, ahol különböző hálózatok összekapcsolhatók (heterogén hálózatok kialakítása)

