SEAS Winter 2020 Semester-6 Digital Signal Processing

LAB 6

Objectives:

Understand different concepts of ideal digital Filters

Prerequisites:

• LTI Systems, DTFT-IDTFT, Sampling Theorem, Digital Frequency

Important notes:

• Explore SINC function in Matlab, You need to use different Matlab function which you have already make like impulse, signal addition, convolution etc.

Problems

- 1. Obtain the impulse response of
 - a) Ideal Low pass filter $H_{lp}(\omega)$

b) Ideal High pass filter – $H_{hp}(\omega)$

c) Ideal Band pass filter- $H_{bp}(\omega)$

d) Ideal Band stop filter- $H_{bs}(\omega)$

Steps to obtain impulse response of ideal digital filters:

- Based on frequency response given above, obtains specifications for $H(\omega)$ for all four filters.
- After obtaining $H(\omega)$ for each filter. Take IDTFT for each filter type to obtain h(n)
- Adjust h(n) in terms of "SINC" function
- Create single matlab script and write h(n) equation for each filter type.
- Plot h(n) for each filter type. Take h(n) range from n=-20 to n=20 (Truncated response).
- Take $f_c = 1/6$, $f_L = 1/9$, $f_H = 1/3$
- 2. Let input signal x(n) = $10 \cos\left(\frac{2\pi n}{20}\right) + 5\cos\left(\frac{2\pi n}{8}\right)$ passes though ideal low pass and ideal high pass filter by determining f_{c1} and f_{c2} .
- Find y(n) (i.e. Convolution) in both case using your own function. Make sure that output response is same as equation. Take $f_c = 1/12$
- This is the application of convolution for signal filtering.