Table of Contents

running teammates runge kutta 4th order code to get SIR population data for seasonal influenza	1
Part II - Interpolation - Paige Pellouchoud	2
linear interpolation	2
Error for Linear Interpolation	3
print errors for Linear Interpolation	
Quadratic Interpolation	
Error for Quadratic Interpolation	
print errors for Quadratic Interpolation	

running teammates runge kutta 4th order code to get SIR population data for seasonal influenza

Givens

```
S(1) = 990;
I(1) = 10;
R(1) = 0;
h = 2; % time step 2 days
Time = 100; % T = 100 days
% Seasonal Influenza
% Beta = 0.3 Gamma = 0.1
N = Q(S, I, R) S + I + R;
Beta = 0.3;
gamma = 0.1;
dSdt = @(N, S, I) (-Beta/N)*S*I;
dIdt = @(N, S, I) (Beta/N)*S*I - gamma*I;
dRdt = @(I) gamma*I;
Population(1) = S(1) + I(1);
Population 2(1) = 0;
Population 3(1) = 0;
for i = 1:50
    Population(i+1) = N(S(i), I(i), R(i));
    K1Susceptible = dSdt(Population(i), S(i), I(i));
    K1Infected = dIdt(Population(i), S(i), I(i));
    K1Recovered = dRdt(I(i));
```

```
K2StepsizeS = S(i)+1/2*K1Susceptible*h; %K1 Seasonal Influenza
    K2StepsizeI = I(i)+1/2*K1Infected*h; %K1 Infected
    K2StepsizeR = R(i) + 1/2*K1Recovered*h; %K1 Recovery
    Population2(i+1) = N(K2StepsizeS, K2StepsizeI, K2StepsizeR);
    K2SusceptibleS = dSdt(Population2(i+1), K2StepsizeS, K2StepsizeI); %K2
Seasonal Influenza
    K2Infected = dIdt(Population2(i+1), K2StepsizeS, K2StepsizeI); %K2
    K2Recovered = dRdt(K2StepsizeI); %K2 Recovery
    K3StepsizeS = S(i)+1/2*K2SusceptibleS*h; %K3 Seasonal Influenza
    K3StepsizeI = I(i) + 1/2*K2Infected*h; %K3 Infected
    K3StepsizeR = R(i) + 1/2*K2Recovered*h; %K3 Recovery
    Population3(i+1) = N(K3StepsizeS, K3StepsizeI, K3StepsizeR);
    K3SusceptibleS = dSdt(Population3(i+1), K3StepsizeS, K3StepsizeI);
    K3Infected = dIdt(Population3(i+1), K3StepsizeS, K3StepsizeI);
    K3Recovered = dRdt(K3StepsizeI);
    K4StepsizeS = S(i) + K3SusceptibleS; %K4 Seasonal Influenza
    K4StepsizeI = I(i) + K3Infected; %K4 Infected
    K4StepsizeR = R(i) + K3Recovered; %K4 Recovery
    Population4(i+1) = N(K4StepsizeS, K4StepsizeI, K4StepsizeR);
    K4SusceptibleS = dSdt(Population4(i+1), K4StepsizeS, K4StepsizeI);
   K4Infected = dIdt(Population4(i+1), K4StepsizeS,K4StepsizeI);
    K4Recovered = dRdt(K4StepsizeI);
    % Adding all the K values up
    S(i+1) = S(i) + (1/3)*(K1Susceptible + 2*K2SusceptibleS +
2*K3SusceptibleS + K4SusceptibleS); % 1/6 changed to 1/3 since h = 2 now
    I(i+1) = I(i) + (1/3)*(K1Infected + 2*K2Infected + 2*K3Infected +
K4Infected); % 1/6 changed to 1/3 since h = 2 now
    R(i+1) = R(i) + (1/3)*(K1Recovered + 2*K2Recovered + 2*K3Recovered +
K4Recovered); % 1/6 changed to 1/3 since h = 2 now
% as of now there is some small error for this 4th order runge kutta code I
% find the mistake
% vectors for h = 2 for 4th order runge kutta 51 values per vector includes
% day zero aka position 1
S;
I;
R:
```

Part II - Interpolation - Paige Pellouchoud

Sint = S;
Iint = I;
Rint = R;

linear interpolation

```
for i = 1:50
```

Error for Linear Interpolation

```
Nint = 50; % number of interpolated points
%make null set for last values in interpolated sets because from 0 to 100
%there are 51 even values and 50 odd values
Sint(51) = [];
Iint(51) = [];
Rint(51) = [];
% running teammates runge kutta 4th order for seasonal influenza for h = 1 to
extract the odd
%values for the error calculation
% Givens
SS(1) = 990;
II(1) = 10;
RR(1) = 0;
h = 1; % time step 1 days
Time = 100; % T = 100 days
% Seasonal Influenza
% Beta = 0.3 Gamma = 0.1
N = @(SS, II, RR) SS + II + RR;
Beta = 0.3;
gamma = 0.1;
dSdt = @(N, SS, II) (-Beta/N)*SS*II;
dIdt = @(N, SS, II) (Beta/N)*SS*II - gamma*II;
dRdt = @(II) gamma*II;
Population(1) = SS(1) + II(1);
Population 2(1) = 0;
Population3(1) = 0;
for i = 1:100
```

```
Population(i+1) = N(SS(i), II(i), RR(i));
    K1Susceptible = dSdt(Population(i), SS(i), II(i));
    K1Infected = dIdt(Population(i), SS(i), II(i));
   K1Recovered = dRdt(II(i));
    K2StepsizeS = SS(i)+1/2*K1Susceptible*h; %K1 Seasonal Influenza
    K2StepsizeI = II(i)+1/2*K1Infected*h; %K1 Infected
    K2StepsizeR = RR(i) + 1/2*K1Recovered*h; %K1 Recovery
    Population2(i+1) = N(K2StepsizeS, K2StepsizeI, K2StepsizeR);
    K2SusceptibleS = dSdt(Population2(i+1), K2StepsizeS, K2StepsizeI); %K2
Seasonal Influenza
    K2Infected = dIdt(Population2(i+1), K2StepsizeS, K2StepsizeI); %K2
Infected
    K2Recovered = dRdt(K2StepsizeI); %K2 Recovery
    K3StepsizeS = SS(i)+1/2*K2SusceptibleS*h; %K3 Seasonal Influenza
    K3StepsizeI = II(i) + 1/2*K2Infected*h; %K3 Infected
    K3StepsizeR = RR(i) + 1/2*K2Recovered*h; %K3 Recovery
    Population3(i+1) = N(K3StepsizeS, K3StepsizeI, K3StepsizeR);
    K3SusceptibleS = dSdt(Population3(i+1), K3StepsizeS, K3StepsizeI);
    K3Infected = dIdt(Population3(i+1), K3StepsizeS, K3StepsizeI);
    K3Recovered = dRdt(K3StepsizeI);
    K4StepsizeS = SS(i) + K3SusceptibleS; %K4 Seasonal Influenza
    K4StepsizeI = II(i) + K3Infected; %K4 Infected
    K4StepsizeR = RR(i) + K3Recovered; %K4 Recovery
    Population4(i+1) = N(K4StepsizeS, K4StepsizeI, K4StepsizeR);
    K4SusceptibleS = dSdt(Population4(i+1), K4StepsizeS, K4StepsizeI);
    K4Infected = dIdt(Population4(i+1), K4StepsizeS,K4StepsizeI);
    K4Recovered = dRdt(K4StepsizeI);
    % Adding all the K values up
    SS(i+1) = SS(i) + (1/6)*(K1Susceptible + 2*K2SusceptibleS +
2*K3SusceptibleS + K4SusceptibleS);
    II(i+1) = II(i) + (1/6)*(K1Infected + 2*K2Infected + 2*K3Infected +
K4Infected);
   RR(i+1) = RR(i) + (1/6)*(K1Recovered + 2*K2Recovered + 2*K3Recovered +
K4Recovered);
end
% population results for h = 1 day
 SS;
 II;
RR;
% null 101
SS(101) = [];
II(101) = [];
RR(101) = [];
%extracting odd days
Sodd = SS(2:2:end);
Iodd = II(2:2:end);
Rodd = RR(2:2:end);
Sodd;
Iodd;
```

```
Rodd;
%ran teammates runge kutta 4th order for seasonal influenza for h = 1 to
extract the odd
%values for the error calculation

for i = 1:50
    SEL2 = sqrt(sum((Sint(i)-Sodd(i)).^2)./Nint);
    IEL2 = sqrt(sum((Iint(i)-Iodd(i)).^2)./Nint);
    REL2 = sqrt(sum((Rint(i)-Rodd(i)).^2)./Nint);
end
```

print errors for Linear Interpolation

```
SEL2
IEL2
REL2

SEL2 = 0.3099

IEL2 = 0.0188

REL2 = 0.3286
```

Quadratic Interpolation

```
% Begin newton quadratic interpolation
% Operate on S vector-51 values at even numbered days
% Interpolated values will be calculated at odd numbered days.

Time = [1:1:101];

%quadratic interpolation results for 49 values starting at t=1 day
% and ending at t=49 days

for i=1:49 %i=1 when Time=0
    %Begin quadratic interpolation for S
    M(i) = (S(i+1)-S(i))./(Time(i+1)-Time(i));
    P(i) = ((S(i+2)-S(i+1))./(Time(i+2)-Time(i+1)))-M(i);
    %Some values for I calculation are inserted as +1 for this interpolation
    %Some values for S calc are inserted as -1 for this interpolation
    Squint(i)=S(i)+(M(i).*1)+((P(i)./(Time(i+2)-Time(i))).*(1).*(-1));
    %page 217(i)
```

```
%Begin quadratic interpolation for I
  M(i) = (I(i+1)-I(i))./(Time(i+1)-Time(i));
   P(i) = ((I(i+2)-I(i+1))./((Time(i+2)-Time(i+1)))-M(i));
   Iquint(i)=I(i)+(M(i).*1)+((P(i)./(Time(i+2)-Time(i))).*(1).*(-1));
   %page 217
   %Begin quatratic interpolation for R
  M(i) = (R(i+1)-R(i))./(Time(i+1)-Time(i));
   P(i) = ((R(i+2)-R(i+1))./((Time(i+2)-Time(i+1)))-M(i));
   Rquint(i)=R(i)+(M(i).*1)+((P(i)./(Time(i+2)-Time(i))).*(1).*(-1));
   %page 217
   %equation 6.51 quadratic interpolation
end
% quadratic interpolation results for 50th odd day value manually
% calculated makes arrays even for 50 odd number days in the interval.
Squint(50) = 86.945;
Iquint(50) = 1.8280;
Rquint(50) = 938.9814;
print quadratic interpolated values for print = 2 days
Squint;
Iquint;
Rquint;
```

Error for Quadratic Interpolation

```
for i = 1:50
SEL2Q = sqrt(sum((Squint(i)-Sodd(i)).^2)./Nint);
IEL2Q = sqrt(sum((Iquint(i)-Iodd(i)).^2)./Nint);
REL2Q = sqrt(sum((Rquint(i)-Rodd(i)).^2)./Nint);
end
```

print errors for Quadratic Interpolation

```
SEL2Q
IEL2Q
REL2Q = 3.9295
IEL2Q = 0.0203
```


0.0247

Published with MATLAB® R2023b

	Error in Odd-Day Values when Odd Days were estimated with Linear Interpolation	Error in Odd-Day Values when Odd Days were estimated with Quadratic Interpolation
Susceptible		
Population	0.3099 (SEL2)	3.9295 (SEL2Q)
Infected Population	0.0188 (IEL2)	0.0203 (IEL2Q)
Recovered Population	0.3286 (REL2)	0.0247 (REL2Q)