Projeto 3: Soluções numéricas da equação de Schrödinger unidimensional - aplicações.

Anderson Araújo de Oliveira 11371311

1 Questão 1

Para esse projeto definimos $\Delta x = T.10^{-4}$ onde T é o tamanho do sistema, essa parte do projeto definimos T=2.L onde L=10 e a constante da mola k=1, para o método do encontro determinamos a razão entre as derivadas como critério para definir quais funções de ondas são suaves $\frac{\psi_r(x_m)}{\psi_l(x_m)}=1$. A tabela abaixo mostra as energias obtidas numericamente e o valor analítico para as energias do oscilador Harmônico.

Número quântico	Numericamente	Analítico
0	0,4999	0,5000
1	1,4998	1,5000
2	2,4999	2,5000
3	3,4998	3,5000
4	4,4998	4,5000
5	5,4999	5,5000
6	6,4999	6,5000
7	7,4998	7,5000
8	8,4998	8,5000
9	9,4998	9,5000

Tabela 1: energia numérica e analítica

O erro entre a energia analítica e numérica é aproximada $\sigma_E \approx \pm 0,0001$, vemos que a diferença é muito pequena.

Figura 1: Função de onda analítica obtida através de um código Python

funcoes de onda para o potencial harmonico

funções de onda para o potencial harmonico

(c) Função de onda de Oscilador harmônico n=6 e 7 (d) Função de onda de Oscilador harmônico n=8 e 9

Questão 2 2

Consideramos as condições de contorno as mesmas da parte anterior sendo a única diferença a constante da mola da Anarmonicidade x^4 é $k_2 = 0, 1$ e a constante da mola para x^2 é $k_1 = 1$, pegamos as 10 primeiras energias e comparamos elas.

Figura 3: Energia do sistema

Para valores maiores de N a curva começa a virar um exponencial.

3 Questão 3

As condições para o Leonnard-Jones $x_L=0,5,\,x_R=9,5$, $\epsilon=200,\,\sigma=1$ e o ponto de encontro $x_m=1,3.$

Temos que as energias obtidas na tabela abaixo.

Número quântico	energia
1	-150,7100
2	-77,4400
3	-32,1700
4	-8,9600

Tabela 2: energias de Leonnard-Jones obtidos numericamente

O intervalo entre as energias não segue um padrão bem definido, porem as primeiras energia são as mais afastadas como pode ser observado na tabela acima.

4 Questão 4

Para essa parte do projeto realizamo a seguinte discretização da equação.

$$\psi(i+1) = 2\psi(i) - \psi(i-1) + (\Delta x)^2 \left(\frac{l^2+l}{r^2} - 2E + 2V(r)\right)\psi(i)$$
(1)

obtivemos as seguintes energias n=1 e n=3 para vê com mais clareza a diferença entre as funções de onda, colocamos as condições para l=0, $x_r = 15$ e o ponto de encontro $x_m = 5$.

Figura 5: Função de onda obtida numericamente

Para a função analítica onde podemos ver uma certa diferença entre as curvas.

Figura 6: Função de onda obtida analiticamente

Para l=1 colocamos as seguintes condições de contorno $x_r=30$ e o ponto de encontro $x_m=5$.

Figura 7: Função de onda para L=1