Nested Logic

Your local library needs your help! Given the expected and actual return dates for a library book, create a program that calculates the fine (if any). The fee structure is as follows:

- 1. If the book is returned on or before the expected return date, no fine will be charged (i.e.: fine = 0).
- 2. If the book is returned after the expected return day but still within the same calendar month and year as the expected return date, $fine = 15 \text{ Hackos} \times (\text{the number of days late})$.
- 3. If the book is returned after the expected return month but still within the same calendar year as the expected return date, the $fine = 500 \text{ Hackos} \times \text{(the number of months late)}$.
- 4. If the book is returned after the calendar *year* in which it was expected, there is a fixed fine of **10000 Hackos**.

Input Format

The first line contains 3 space-separated integers denoting the respective day, month, and year on which the book was actually returned.

The second line contains 3 space-separated integers denoting the respective day, month, and year on which the book was expected to be returned (due date).

Constraints

- $1 \le D \le 31$
- $1 \le M \le 12$
- 1 < Y < 3000
- It is guaranteed that the dates will be valid Gregorian calendar dates.

Output Format

Print a single integer denoting the library fine for the book received as input.

Sample Input

9 6 2015 6 6 2015

Sample Output

45

Explanation

Given the following return dates:

Actual:
$$D_a = 9, M_a = 6, Y_a = 2015$$

Expected: $D_e = 6, M_e = 6, Y_e = 2015$

Because $Y_e \equiv Y_a$, we know it is less than a year late.

Because $M_e \equiv M_a$, we know it's less than a month late.

Because $D_e < D_a$, we know that it was returned late (but still within the same month and year).

Per the library's fee structure, we know that our fine will be $15~{\rm Hackos}~\times~(\#~{\rm days~late})$. We then print the result of $15\times(D_a-D_e)=15\times(9-6)=45$ as our output.