Research on the combination of Top-K and Perm-K gradient sparsification algorithms for distributed setting

T. Kharisov¹ K. Acharya¹ A. Beznosikov¹

¹Department of Applied Mathematics and Informatics Moscow Institute of Physics and Technology

Science Practice Conference, May 2 2023

Table of Contents

- Introduction
- 2 Theoretical results
- 3 Experiments
- 4 Results
- 6 Q&A

Federated learning

Credit: Wikipedia

3/28

Figure: Federated Learning scheme

Communication cost is a bottleneck for the Federated Learning approach: worker devices use unstable and slow networks such as WIFI and Cellular.

Brief introduction

- Distributed optimization methods/machine learning methods require the efficient organization of communications, since communications in this case very often take up most of the time of the algorithm.
- To reduce the cost of one communication, you can apply compression of the transmitted information.
- Different Techniques: Random Approaches, Greedy Approaches.
- In this work, the novel method of combining the greedy approach of Top-k and the random approach of Perm-k algorithms for better performance is introduced.

Problem statement

We consider optimization problems of the form

$$\min_{x \in \mathbb{R}^d} \left\{ f(x) := \frac{1}{n} \sum_{i=1}^n f_i(x) \right\},\,$$

where $x \in \mathbb{R}^d$ collects the parameters of a statistical model to be trained, n is the number of workers/devices, and $f_i(x)$ is the loss incurred by model x on data stored on worker i.

 A general baseline for solving problem is distributed gradient descent, performing updates of the form

$$x^{k+1} = x^k - \frac{\eta^k}{n} \sum_{i=1}^n \nabla f_i \left(x^k \right),$$

where $\eta^k > 0$ is a stepsize.

Compressors review

- Paper: On Biased Compression for Distributed Learning (Aleksandr Beznosikov, Samuel Horváth, Peter Richtárik, Mher Safaryan)
- Main contribution: Distributed SGD with Biased Compression and Error Feedback Algorithm

Definition

Top-k

$$C(x) := \sum_{i=d-k+1}^{d} x_{(i)}e_{(i)}$$

where coordinates are ordered by their magnitudes so that $|x_{(1)}| \le |x_{(2)}| \le \cdots \le |x_{(d)}|$.

Definition

Error Feedback $e_i^{k+1} = e_i^k + \nabla f_i(x^k) - C(e_i^k + \nabla f_i(x^k))$

Compressors review

- Paper: Permutation Compressors for Provably Faster Distributed Nonconvex Optimization (Rafał Szlendak, Alexander Tyurin, Peter Richtárik)
- Main contribution: Construction of the new compressors based on the idea of a random permutation (Perm K).
 Provably reduce the variance caused by compression beyond what independent compressors can achieve.

Definition

(Perm K for $d \geq n$). Assume that $d \geq n$ and d = qn, where $q \geq 1$ is an integer. Let $\pi = (\pi_1, \dots, \pi_d)$ be a random permutation of $\{1, \dots, d\}$. Then for all $x \in \mathbb{R}^d$ and each $i \in \{1, 2, \dots, n\}$ we define

$$\mathcal{C}_i(x) := n \cdot \sum_{j=q(i-1)+1}^{qi} x_{\pi_j} e_{\pi_j}.$$

Table of Contents

- Introduction
- 2 Theoretical results
- 3 Experiments
- 4 Results
- 5 Q&A

Biased classes

Biased compressor class

We say $C \in \mathbb{B}^3(\delta)$ for some $\delta > 1$ if

$$\mathrm{E}\left[\|C(x) - x\|_{2}^{2}\right] \leq \left(1 - \frac{1}{\delta}\right) \|x\|_{2}^{2}, \quad \forall x \in \mathbb{R}^{d}$$

Bounds for compressors

• TopK: $(1 - \frac{1}{\delta}) = \frac{d-k}{d}$ [Alistarh et al., 2018a]

Error feedback proof

Lemma 22 [Beznosikov et al. 2020]

$$\eta^k \leq \frac{1}{14(2\delta+B)L}, \forall k \geq 0 \text{ and } \left\{\left(\eta^k\right)^2\right\}_{k \geq 0} - 2\delta\text{-slow decreasing. Then}$$

$$\operatorname{E}\left[\left\|\frac{1}{n}\sum_{i=1}^{n}e_{i}^{k+1}\right\|_{2}^{2}\right] \leq \frac{(1-1/\delta)}{49L(2\delta+B)}\sum_{j=0}^{k}\left[\left(1-\frac{1}{4\delta}\right)^{k-j}\left(f\left(x^{j}\right)-f\left(x^{*}\right)\right)\right] + \frac{1}{2}\left[\left(1-\frac{1}{4\delta}\right)^{k-j}\left(f\left(x^{j}\right)-f\left(x^{*}\right)\right)\right] + \frac{1}{2}\left[\left(1-\frac{1}{4\delta}\right)^{k-j}\left(f\left(x^{j}\right)-f\left(x^{j}\right)\right)\right] + \frac{1}{2}\left[\left(1-\frac{1}{4\delta$$

$$+\eta^k \frac{2(\delta-1)}{7L} \left(2D + \frac{C}{2\delta+B}\right).$$

Furthermore, for any 4δ -slow increasing non-negative sequence $\left\{w^k\right\}_{k\geq 0}$ it holds:

$$3L \cdot \sum_{k=0}^{K} w^k \cdot \mathrm{E}\left[\left\| \frac{1}{n} \sum_{i=1}^{n} \mathrm{e}_i^k \right\|_2^2 \right] \le$$

$$\leq \frac{1}{4} \sum_{k=0}^{K} w^{k} \left(\mathbb{E}\left[f\left(x^{k}\right) \right] - f\left(x_{*}\right) \right) + \left(3\delta D + \frac{3C}{4} \right) \sum_{k=0}^{K} w^{k} \eta^{k}.$$

Proof [Beznosikov et al. 2020]

$$\begin{split} &\mathbf{E}\left[\left\|\frac{1}{n}\sum_{i=1}^{n}e_{i}^{k+1}\right\|_{2}^{2}\right]\overset{Jensen}{\leq}\frac{1}{n}\mathbf{E}\left[\sum_{i=1}^{n}\left\|e_{i}^{k+1}\right\|_{2}^{2}\right] = \\ &=\frac{1}{n}\mathbf{E}\left[\sum_{i=1}^{n}\left\|e_{i}^{k}+\eta^{k}g_{i}^{k}-\tilde{g}_{i}^{k}\right\|_{2}^{2}\right] = \\ &=\frac{1}{n}\sum_{i=1}^{n}\mathbf{E}\left[\left\|e_{i}^{k}+\eta^{k}g_{i}^{k}-\mathcal{C}\left(e_{i}^{k}+\eta^{k}g_{i}^{k}\right)\right\|_{2}^{2}\right]\overset{\mathbb{B}(\delta)}{\leq} \\ &\stackrel{\mathbb{B}(\delta)}{\leq}\frac{1-1/\delta}{n}\sum_{i=1}^{n}\mathbf{E}_{\nabla}\left[\left\|e_{i}^{k}+\eta^{k}g_{i}^{k}\right\|_{2}^{2}\right] = \\ &=\frac{1-1/\delta}{n}\sum_{i=1}^{n}\mathbf{E}_{\nabla}\left[\left\|e_{i}^{k}+\eta^{k}\nabla f_{i}\left(x^{k}\right)+\eta^{k}\xi_{i}^{k}\right\|_{2}^{2}\right] \end{split}$$

Proof [NEW]

$$\begin{split} & \operatorname{E}\left[\left\|\frac{1}{n}\sum_{i=1}^{n}e_{i}^{k+1}\right\|_{2}^{2}\right]^{definition} \\ & = \operatorname{E}\left[\left\|\frac{1}{n}\sum_{i=1}^{n}e_{i}^{k}+\eta^{k}g_{i}^{k}-\mathcal{C}\left(e_{i}^{k}+\eta^{k}g_{i}^{k}\right)\right\|_{2}^{2}\right] = \\ & = \operatorname{E}\left[\left\|\frac{1}{n}\left(\sum_{i=1}^{n}\mathcal{C}\left(e_{i}^{k}+\eta^{k}g_{i}^{k}\right)\right)-\frac{1}{n}\left(\sum_{i=1}^{n}e_{i}^{k}+\eta^{k}g_{i}^{k}\right)\right\|_{2}^{2}\right]^{y_{i}:=e_{i}^{k}+\eta^{k}g_{i}^{k}} \\ & = \operatorname{E}\left[\left\|\frac{1}{n}\left(\sum_{i=1}^{n}\mathcal{C}\left(y_{i}\right)\right)-\frac{1}{n}\left(\sum_{i=1}^{n}y_{i}\right)\right\|_{2}^{2}\right] \stackrel{?}{\leq} (1-\delta)\left\|\sum_{i=1}^{n}y_{i}\right\|^{2} \end{split}$$

Optimization problem

Main lemma

$$\mathbb{E}\left[\left\|\frac{1}{n}\left(\sum_{i=1}^{n} TopK\left(Perm_{i}\left(y_{i}\right)\right)\right) - \frac{1}{n}\left(\sum_{i=1}^{n} y_{i}\right)\right\|_{2}^{2}\right] \stackrel{?}{\leq} (1 - \delta)\left\|\sum_{i=1}^{n} y_{i}\right\|^{2}$$

Main lemma (simple case)

Lets assume, that $\forall i, j \nabla f_i(x) = \nabla f_j(x) = y$.

Then the following implies:

$$\mathbb{E}\|\frac{1}{n}\sum_{i}^{n} Top_{k}(Perm_{i}(y)) - y\|^{2} \leq (1 - \frac{nk}{d})\|y\|^{2}$$

This is *n* times better than better than $(1 - \frac{k}{d})$. [Beznosikov et al. 2020]

Proof. 1. Lets proof the inequality itself. Fix the norm $||y||^2 = const$. Without loss of generality, y coordinates are in increasing order $y_1 < y_2 < \ldots < y_d$.

$$\mathbb{E}\|\frac{1}{n}\sum_{i}^{n}Top_{k}(Perm_{i}(y)) - y\|^{2} = \frac{1}{\#\sigma}\sum_{\sigma}\frac{1}{n^{2}}\|\sum_{i}^{n}Top_{k}(Perm_{i}(y)) - ny\|^{2} = \frac{1}{\#\sigma}\frac{1}{n^{2}}\sum_{\sigma}\sum_{j}^{d}(nI_{y_{j}}^{\sigma}y_{j} - ny_{j})^{2}$$

Where $I_{y_j}^{\sigma}=1$ if y_j is chosen by at least one Top_k in the σ permutation of Perm-s, and 0 otherwise. Then this for each j in fixed permutation σ we have:

$$(nI_{y_j}^{\sigma}-n)^2=egin{cases} 0 & ext{if } y_j ext{ is not chosen} \ n^2, & ext{otherwise} \end{cases}$$

For each $1 \le j \le d$ let $p_j = \sum_{\sigma} (nI_{y_j}^{\sigma} - ny_j)^2$. Then it is clear that $\forall i < j \ p_i \ge p_j$, because greater the value of y_i more often it is chosen by Top_k .

$$\sum_{\sigma} \sum_{j}^{d} (nI_{y_{j}}^{\sigma}y_{j} - ny_{j})^{2} = \sum_{j}^{d} \sum_{\sigma} (nI_{y_{j}}^{\sigma}y_{j} - ny_{j})^{2} = \sum_{j}^{d} p_{j}y_{j}^{2}$$

Lets look at $y_i < y_{i+1}$. If we increase y_i^2 by ε and decrease y_{i+1}^2 by the same value, then $(y_i^2 + \varepsilon) + (y_{i+1}^2 - \varepsilon) = y_i^2 + y_{i+1}^2$. But $p_i(y_i^2 + \varepsilon) + p_{i+1}(y_{i+1}^2 - \varepsilon) \geq p_i y_i^2 + p_{i+1} y_{i+1}^2$. If $0 < y_i < y_{i+1}$ or $y_i < y_{i+1} < 0$, then moving y_i and y_{i+1} towards each other only increases variance value. So we can move all coordinates, until we have $y_1 = y_2 = \ldots = y_m < 0 < y_{m+1} = \ldots = y_d$. Without loss of generality, $||y_i||^2 \leq ||y_{m+1}||^2$.

2. It stands that the case, when $y_1 = y_2 = \ldots = y_d$ is optimal for maximizing the variance with $||y||^2 = const$. In that case, it can be easily observed, that the constant is $1 - \frac{n_t}{r}$.

$$\mathbb{E}\|\frac{1}{n}\sum_{i}^{n}Top_{k}(Perm_{i}(y))-y\|^{2}=\sum_{i}^{\text{not chosen }d-nk}v_{j}^{2}=(d-nk)y_{1}^{2}=(1-\frac{nk}{d})\|y\|^{2}$$

Kharisov (MIPT)

Hessian variance

Hessian variance

Let $L_{\pm} \geq 0$ be the smallest quantity such that

$$\frac{1}{n} \sum_{i=1}^{n} \|\nabla f_i(x) - \nabla f_i(y)\|^2 - \|\nabla f(x) - \nabla f(y)\|^2 \le L_{\pm}^2 \|x - y\|^2, \quad \forall x, y \in \mathbb{R}^d.$$

We can refer to the quantity L_{+}^{2} by the name Hessian variance.

- Theoretical proof will help us to find the best μ parameter depending on other hyperparameters, including L_{\pm} .
- The following attempts were to estimate the communication complexity of the algorithm on the problem where $L_+ = 0$.

General case

Main lemma

$$\mathbb{E}\left[\left\|\frac{1}{n}\left(\sum_{i=1}^{n} TopK\left(Perm_{i}\left(y_{i}\right)\right)\right) - \frac{1}{n}\left(\sum_{i=1}^{n} y_{i}\right)\right\|_{2}^{2}\right] \stackrel{?}{\leq} (1 - \delta)\left\|\sum_{i=1}^{n} y_{i}\right\|^{2}$$

Gradient's coefficients

In case when $\nabla f(x) = y$, assuming that $y_1 < y_2 < \ldots < y_d$. We want to count the probability P_i - that y_i is chosen by TopK(Perm(y)) in all possible permutations.

$$P_{i} = \frac{\sum_{j=0}^{k-1} \mathbb{C}_{i-1}^{j} \cdot \mathbb{C}_{d-i}^{\frac{d}{n}-1-j}}{\mathbb{C}_{d-1}^{\frac{d}{n}-1}}$$

Further considerations

- We can try solving this quadratic optimization problem by using numerical solvers. This will help us to find the dependence on L_\pm , n, k, d.
 - Bottleneck: exponential complexity with increase of n and d!
- We may test the hypothesis, that inequation's optimum is the case of equal gradients. For that TopK(Perm_i) = Perm_i case can be checked. Also numerical results will give insights.
- Easier cases can be checked. For example, when $\forall i,j \|\nabla f_i \nabla f_j\|^2 \leq \mathcal{C}$ for $\mathcal{C} \in \mathbb{R}^+$

Table of Contents

- Introduction
- 2 Theoretical results
- 3 Experiments
- 4 Results
- **5** Q&A

Observable compressors and EFs

TopK + Error Feedback

$$C(x) := T_k(x)$$

Unbiased TopK-PermK

$$C(x) := T_k \circ \mathcal{P}_q(x) \cdot n$$

Biased TopK-PermK + Error Feedback

$$C(x) := T_k \circ \mathcal{P}_q(x)$$

Classic Error Feedback

$$e_i^{k+1} = e_i^k + \nabla f_i(x^k) - C(Q_i^k(e_i^k + \nabla f_i(x^k)))$$

Framework implementation

We have developed framework for our optimization problems and algorithm. Implementation is based on Horthath et al. 2020.

MnistNet comparison

CIFAR-10 + VGG11

Dataset mix-up (common 10%)

Table of Contents

- Introduction
- 2 Theoretical results
- 3 Experiments
- 4 Results
- 5 Q&A

Results

- **1** It was rigorously proven, that in $L_{\pm}=0$ regime TopK+PermK combined with the classic Error Feedback achieves n times better convergence results than TopK with Error Feedback.
- A theoretical search of convergence rate in a general regime is equivalent to the quadratic optimization task with d * n variables and d! * n inequalities.
- Experiments prove that with an increase in datasets correlation, TopK-PermK perfomance enjoys a similar convergence rate as TopK-EF.
- With the increase of nodes number TopK-PermK without Error Feedback shows better perforance than one with Error Feedback.

References

Rafał Szlendak and Alexander Tyurin and Peter Richtárik (2021)

Permutation Compressors for Provably Faster Distributed Nonconvex Optimization *ICLR* 2022, poster session

Aleksandr Beznosikov and Samuel Horváth and Peter Richtárik and Mher Safaryan (2022)

On Biased Compression for Distributed Learning

CoRR abs/2002.12410, arXiv:2002.1241

Horváth, Samuel and Richtárik, Peter (2020)

A Better Alternative to Error Feedback for Communication-Efficient Distributed Learning

arXiv preprint, arXiv:2006.11077

Table of Contents

- Introduction
- 2 Theoretical results
- 3 Experiments
- 4 Results
- **5** Q&A

Q&A

Your questions, please!

