場の量子論の数学と2次元4次元対応

2022年1月29日

目次

1	2 次元 4 次元対応とは	1
2	場の量子論とはどんなものか.	1
3	2d Liouville \succeq 4d $\mathcal{N}=2$ SU(2) $w/4$ flavors	2
4	6d からの視点	2

1 2次元4次元対応とは

- ●「物理」では, 二次元の共形場理論, 特に Liuville 理論と四次元のゲージ理論, 特に SU(2) の対応.
- 数学では,無限次元代数, Virasoro とインスタントンモジュライ空間の幾何の対応

2009 年に見つかったときにはびっくり.対応の両側とも 35 年くらい別個に数理物理で研究されていた $.^{*1}$ なぜ対応があるか.六次元の" $\mathcal{N}=(2,0)$ 理論"を $S^4\times C(\mathrm{Riemann}$ 面)で考える.C が小さい場合C で定まる四次元の QFT があり S^4 が小さいと S^4 で定まる二次元の QFT がある.ここでトポロジカルな物理量を考える.トポロジカルというのは S^4 とC のサイズによらず,どちらで計算しても答えがかわらないものである.

2 場の量子論とはどんなものか.

 $0+1{
m d}$ QFT $=1{
m d}$ QFT とは普通の量子力学のことである. ${\cal H}$ を Hilbert 空間 (状態空間) とし,この上の作用素 A_1,A_2,\dots を考える.この中で時間発展を決める特別なものがあり,それを Hamiltonian といい ${\cal H}$ と書くことにする.一次元時空の 各点に Hilbert 空間があり, t_1 の時間発展を $e^{-t_1{\cal H}}$ が指定する.

閉じた 1d 多様体に対しては二点 A, B があると

$$\operatorname{tr}_{\mathcal{H}} e^{-t_1 H} A e^{-t_2 H} B \in \mathbb{C} \tag{1}$$

という複素数を対応させる.

開いた 1d 多様体に対しては線型写像

$$e^{-tH}: \mathcal{H} \to \mathcal{H}$$
 (2)

を対応させる.

これらは空間の切り貼りに対して compatible である.

一般化すると , (D-1)+1d QFT = D-d QFT Q とは境界なし D-d 多様体 M を与えられると分配関数 $Z_Q(M)\in\mathbb{C}$ を出力し , さらにいろいろと条件を満たすものである .

場の量子論の作り方は大きく分けて三通りある.

 $^{^{*1}}$ いろいろ precursor はあったが .

• 公理系を満たすデータを手で与える.

e.g. 自由場の理論, topological QFT

• 経路積分を行う.

e.g. 4d pure gauge theory

$$Z_{\mathrm{QFT},d=4,G}(M) \coloneqq \int_{M} \operatorname{Lo}_{G} \operatorname{Ext} \exp \left\{ -\int \operatorname{tr} |F|^{2} \operatorname{d} \operatorname{vol}_{M} \right\} [\mathcal{D} \operatorname{Vol}]$$
 (3)

- 数学的にきちんと構成し,性質を調べたら賞金一億円
- スパコン上に近似して乗せられる.これは実験をよく再現する.
- 超弦理論に押し付ける.

e.g. 10d \mathcal{O} quantum gravity theory

3 2d Liouville \succeq 4d $\mathcal{N}=2$ SU(2) w/4 flavors

2d Liuville は経路積分による構成 (2) で始まったが,結局直接定義する構成 (2) になった 2d 共形場理論である. f を holomorophic な $\mathbb C$ 上の変換として微小変換 $z\mapsto z'=z+\sum_n\epsilon_nz^{n+1}$ で与えられる.

生成子は $\xi_n\coloneqq z^{n+1}\partial_z, ar{\xi}_n\coloneqq ar{z}^{n+1}ar{\partial}_z$ で交換関係は

$$[\xi_m, \xi_n] = (m-n)\xi_{m+n} \tag{4}$$

$$[\bar{\xi}_m, \bar{\xi}_n] = (m-n)\bar{\xi}_{m+n} \tag{5}$$

$$[\xi_m, \bar{\xi}_n] = 0 \tag{6}$$

4 6d からの視点

参考文献