Министерство науки и высшего образования Российской Федерации

Федеральное государственное вюджетное образовательное учреждение высшего образования Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет) $(M\Gamma T Y \text{ им. H.Э. Баумана})$

ФАКУЛЬТЕТ	«Информатика и системы управления»				
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»				
НАПРАВЛЕНІ	ИЕ ПОДГОТОВКИ «09.03.04 Программная инженерия»				

ОТЧЕТ по лабораторной работе №1

Название:	Расстояния Л	евенштейна и Дамерау – Левен	штейна
Дисциплина:		Анализ алгоритмов	
Студент	<u>ИУ7-56Б</u> Группа	—————————————————————————————————————	Ковель А.Д. И. О. Фамилия
Преподаватель			Волкова Л.Л.
Преподаватель			Строганов Ю.В.
		Подпись, дата	И.О.Фамилия

Оглавление

\mathbf{B}_{1}	веде	ние	4
1	Ана	алитический раздел	6
	1.1	Расстояние Левенштейна	6
	1.2	Расстояние Дамерау – Левенштейна	7
	1.3	Рекурсивная формула	7
	1.4	Матрица расстояний	Ć
	1.5	Рекурсивный алгоритм расстояния Дамерау – Левенштейна с	
		мемоизацией	Ć
	1.6	Вывод	10
2	Koi	нструкторский раздел	11
	2.1	Матричные итерационные алгоритмы	11
	2.2	Модификация матричных алгоритмов	11
	2.3	Разработка алгоритмов	11
	2.4	Вывод	17
3	Tex	нологический раздел	18
	3.1	Требования к ПО	18
	3.2	Средства реализации	18
	3.3	Листинги кода	18
		3.3.1 Реализация алгоритмов	18
		3.3.2 Подпрограммы	22
	3.4	Тестовые данные	23
	3.5	Вывод	23
4	Исс	следовательская часть	2 4
	4.1	Технические характеристики	24
	4.2	Демонстрация работы программы	24
	4.3	Время выполнения алгоритмов	25
	4.4	Использование памяти	28

	4.4.1	Нерекурсивный алгоритм поиска расстояния Дамерау-	
		Левенштейна	29
	4.4.2	Рекурсивный алгоритм поиска расстояния без кэша	
		Дамерау-Левенштейна	29
	4.4.3	Рекурсивный алгоритм поиска расстояния с использо-	
		ванием кэша Дамерау-Левенштейна	30
4.5	Вывод		30
Заклю	очение		32
Списо	к испо.	льзованных источников	33

Введение

Цель лабораторной работы — разработка, реализация и исследование алгоритмов нахождения расстояний Левенштейна и Дамерау-Левенштейна.

Нахождение редакционного расстояния одна из задач компьютерной лингвистики, которая находит применение в огромном количестве областей, начиная от предиктивных систем набора текста и заканчивая разработкой искусственного интеллекта. Впервые задачу поставил советский ученый В. И. Левенштейн [1], впоследствии её связали с его именем. В данной работе будут рассмотрены алгоритмы редакционного расстояния Левенштейна и расстояние Дамерау — Левенштейна [2].

Расстояния Левенштейна — метрика, измеряющая разность двух строк символов, определяемая в количестве редакторских операций (а именно удаления, вставки и замены), требуемых для преобразования одной последовательности в другую. Расстояние Дамерау — Левенштейна модификация, добавляющая к редакторским операциям транспозицию, или обмен двух соседних символов местами. Алгоритмы имеют некоторое количество модификаций, позволяющих эффективнее решать поставленную задачу. В данной работе будут предложены реализации алгоритмов, использующие парадигмы динамического программирования.

Задачи данной лабораторной следующее:

- 1) изучение расстояний Левенштейна и Дамерау-Левенштейна;
- 2) применение метода динамического программирования для реализации алгоритма;
- 3) получение практических навыков реализаций алгоритма Левенштейна и Дамерау-Левенштейна;
- 4) проведение сравнительного анализа алгоритмов определения расстояния между строками по затратам времени и памяти;
- 5) получение экспериментального подтверждения различий по временной эффективности алгоритмов расстояния между строками, путем измерения процессорного время с помощью разработанного программного обеспечения;
- 6) описание и обоснование полученных результатов в отчете о выполненной лабораторной работе, выполненного как расчетно-пояснительная записка к работе.

1 Аналитический раздел

В этом разделе будут представлены описания алгоритмов нахождения редакторских расстояний Левенштейна и Дамерау-Левенштейна и их практическое применение.

1.1 Расстояние Левенштейна

Редакторское расстояние (расстояние Левенштейна) — это минимальное количество операций вставки, удаления и замены, необходимых для превращения одной строки в другую. Каждая редакторская операция имеет цену (штраф). В общем случае, имея на входе строку, $X = x_1x_2 \dots x_n$, и, $Y = y_1y_2 \dots y_n$, расстояние между ними можно вычислить с помощью операций:

- delete $(u, \varepsilon) = \delta$;
- insert $(\varepsilon, v) = \delta$;
- replace $(u, v) = \alpha(u, v) \le 0$ (здесь, $\alpha(u, u) = 0 \ \forall \ u$).;

Необходимо найти последовательность замен с минимальным суммарным штрафом. Далее, цена вставки и удаления будет считаться равной 1. Пусть даны строки: s1 = s1[1..L1], s2 = s2[1..L2], s1[1..i] — подстрока s1 длинной i, начиная с 1-го символа, s2[1..j] - подстрока s2 длинной j, начиная с 1-го символа. Расстояние Левентштейна посчитывается формулой 1.1:

$$D(s1[1..i], s2[1..j]) = \begin{cases} 0, i = 0, \\ i, i > 0, j = 0, \\ j, j > 0, i = 0, \\ \min(D(s1[1..i], s2[1..j - 1]) + 1, \\ \min(D(s1[1..i - 1], s2[1..j]) + 1, \\ \min(D(s1[1..i - 1], s2[1..j]) + 1 \\ + \begin{bmatrix} 0, & s1[i] = s2[j] \\ 1 \end{cases} \end{cases}$$

$$(1.1)$$

1.2 Расстояние Дамерау – Левенштейна

Расстояние Дамерау – Левенштейна — модификация расстояния Левенштейна, добавляющая транспозицию к редакторским операциям, предложенными Левенштейном (см. 1.1). изначально алгоритм разрабатывался для сравнения текстов, набранных человеком (Дамерау показал, что 80% человеческих ошибок при наборе текстов составляют перестановки соседних символов, пропуск символа, добавление нового символа, и ошибка в символе. Поэтому метрика Дамерау – Левенштейна часто используется в редакторских программах для проверки правописания).

Используя условные обозначения, описанные в разделе 1.1, рекурсивная формула для нахождения расстояния Дамерау—Левенштейна, f(i,j), между подстроками, $x_1 \dots x_i$ и, $y_1 \dots y_j$, имеет следующий вид 1.3:

$$f_{X,Y}(i,j) = \begin{cases} \delta_i, \ j=0, \\ \delta_j, \ i=0, \\ \delta + f_{X,Y}(i-1,j-1) \\ \delta + f_{X,Y}(i-1,j) \\ \delta + f_{X,Y}(i,j-1) \\ \delta + f_{X,Y}(i-2,j-2), & \text{если } i,j>1; \\ x_i = y_{j-1}; \\ x_{i-1} = y_j \\ \infty, & \text{иначе} \end{cases}$$
 (1.2)

1.3 Рекурсивная формула

Используя условные обозначения, описанные в разделе 1.2, рекурсивная формула для нахождения расстояния Дамерау – Левенштейна f(i,j) между

подстроками, $x_1 \dots x_i$, и, $y_1 \dots y_j$, имеет вид 1.3:

детроками,
$$x_1 \dots x_i$$
, и, $y_1 \dots y_j$, имеет вид 1.3:
$$\begin{cases} \delta_i, \ j=0, \\ \delta_j, \ i=0, \\ \\ \left\{ \begin{array}{l} \alpha(x_i,y_i) + f_{X,Y}(i-1,j-1) \\ \delta + f_{X,Y}(i-1,j) \\ \delta + f_{X,Y}(i,j-1) \\ \\ \left\{ \begin{array}{l} \delta + f_{X,Y}(i-2,j-2), & \text{если } i,j>1; \\ \\ x_i = y_{j-1}; \\ \\ x_{i-1} = y_j \\ \\ \infty, & \text{иначе} \\ \end{array} \right. \end{cases}$$

 $f_{X,Y}$ — редакционное расстояние между двумя подстроками — первыми i символами строки X и первыми j символами строки Y. Можно вывести следующие утверждения:

- если редакционное расстояние нулевое, то строки равны: $f_{XY} = 0 \Rightarrow X = Y;$
- редакционное расстояние симметрично: $f_{X,Y} = f_{Y,X};$
- ullet максимальное значение $f_{X,Y}$ размерность более длинной строки: $f_{X,Y} \leq max(|X|,|Y|);$
- ullet минимальное значение $f_{X,Y}$ разность длин обрабатываемых строк: $f_{X,Y} \ge abs(|X| - |Y|);$
- аналогично свойству треугольника, редакционное расстояние между двумя строками не может быть больше чем редакционные расстояния каждой из этих строк с третьей:

$$f_{X,Y} \le f_{X,Z} + f_{Z,Y}.$$

1.4 Матрица расстояний

В алгоритме нахождения редакторского расстояния Дамерау – Левенштейна возможно использование матрицы расстояний.

Пусть, $C_{0...|X|,0...|Y|}$, — матрица расстояний, где, $C_{i,j}$ — минимальное количество редакторских операций, необходимое для преобразования подстроки, $x_1 \dots x_i$, в подстроку, $y_1 \dots y_j$. Матрица заполняется следующим образом 1.4:

$$Ci, j = \begin{cases} i & j = 0, \\ j & i = 0, \\ \min \begin{cases} C_{i-1,j-1} + \alpha(x_i, y_i), \\ C_{i-1,j} + 1, \\ C_{i,j-1} + 1 \end{cases}$$
 (1.4)

При решении данной задачи используется ключевая идея динамического программирования — чтобы решить поставленную задачу, требуется разбить на отдельные части задачи (подзадачи), после чего объединить решения подзадач в одно общее решение. Здесь небольшие подзадачи — это заполнение ячеек таблицы с индексами, i < |X|, j < |Y|. После заполнения всех ячеек матрицы в ячейке, $C_{|X|,|Y|}$, будет записано искомое расстояние.

1.5 Рекурсивный алгоритм расстояния Дамерау – Левенштейна с мемоизацией

При реализации рекурсивного алгоритма используется мемоизация — сохранение результатов выполнения функций для предотвращения повторных вычислений. Отличие от формулы 1.4 состоит лишь в начальной инициализации матрицы флагом ∞, который сигнализирует о том, была ли обработана ячейка. В случае если ячейка была обработана, алгоритм переходит к следующему шагу.

1.6 Вывод

Были рассмотрены обе вариации алгоритма редакторского расстояния (Левенштейна и Дамерау – Левенштейна). Также были приведены разные способы реализации этих алгоритмов такие как: рекурсивный, итеративный и рекурсивный с мемоизацией. Итеративный может быть реализован с помощью парадигм динамического программирования или матрицей расстояния. Рекурсивный алгоритм с мемоизацией позволяет ускорить обычный рекурсивный алгоритм за счет матрицы, в которой промежуточные подсчеты.

2 Конструкторский раздел

В данном разделе представлены схемы реализуемых алгоритмов и их модификации.

2.1 Матричные итерационные алгоритмы

На рисунке 2.2 изображена схема алгоритма нахождения расстояния Дамерау—Левенштейна итеративно с использованием матрицы расстояний.

2.2 Модификация матричных алгоритмов

Мемоизация — это прием сохранения промежуточных результатов, которые могут еще раз понадобиться в ближайшее время, чтобы избежать их повторного вычисления. Матричный алгоритм нахождения расстояния Дамерау — Левенштейна может быть модифицирован, используя мемоизацию — достаточно инициализировать матрицу значением ∞, которое будет рассмотрено в качестве флага. На рисунке 2.4 изображена схема алгоритма, использующая этот прием.

2.3 Разработка алгоритмов

На рисунке 2.5 изображена схема рекурсивного алгоритма нахождения расстояния Дамерау – Левенштейна.

Рисунок 2.1 – Схема итерационного алгоритма расстояния Левенштейна с заполнением матрицы расстояний

Рисунок 2.2 — Схема итерационного алгоритма расстояния Дамерау — Левенштейна с заполнением матрицы расстояний

Рисунок 2.3 — Схема итерационного алгоритма расстояния Дамерау — Левенштейна с заполнением матрицы расстояний

Рисунок 2.4 — Схема рекурсивного алгоритма расстояния Дамерау — Левенштейна с мемоизацией

Рисунок 2.5— Схема рекурсивного алгоритма расстояния Дамерау—Левенштейна

Рисунок 2.6— Схема рекурсивного алгоритма расстояния Дамерау—Левенштейна

2.4 Вывод

На основе формул и теоретических данных, полученных в аналитическом разделе, были спроектированы схемы алгоритмов.

3 Технологический раздел

В данном разделе будут приведены требования к программному обеспечению, средства реализации и листинга кода.

3.1 Требования к ПО

Программа должна отвечать следующим требованиям:

- в программе возможно измерение процессорного времени;
- программа принимает на вход две строки;
- программа выдает редакторские расстояние Левенштайна и Дамерау Левенштейна.

3.2 Средства реализации

Для реализации ПО был выбран язык программирования Golang[3].

В данном языке есть все требующиеся инструменты для данной лабораторной работы.

В качестве среды разработки была выбрана среда VS Code[4], запуск происходил через команду go run main.go.

3.3 Листинги кода

В листингах представлены реализации алгоритмов поиска редакторских расстояний.

3.3.1 Реализация алгоритмов

В листингах 3.1 - 3.3 приведены реализации алгоритмов, описанных в разделе 1.

Листинг 3.1 – Программный код нахождения расстояния Дамерау – Левенштейна итеративно

```
func CountDamNoRec(src, dest string) (int, MInt) {
2
3
    var (n, m, dist, shortDist, transDist int)
4
    srcRune , destRune := []rune(src), []rune(dest)
5
6
7
    n, m = len(srcRune), len(destRune)
    distMat := makeMatrix(n, m)
8
9
    for i := 1; i < n + 1; i++ \{
10
11
12
      for j := 1; j < m + 1; j ++ \{
13
         insDist := distMat[i][j-1] + 1
14
         delDist := distMat[i - 1][j] + 1
15
         match := 1
16
17
         if src[i-1] = dest[j-1] {
18
           match = 0
19
20
21
         eqDist := distMat[i - 1][j - 1] + match
         transDist = -1
22
         if i > 1 \&\& j > 1 {
23
           transDist = distMat[i - 2][j - 2] + 1
24
25
         }
26
         if transDist != -1 \&\& srcRune[i - 1] == destRune[j - 2] \&\&
27
28
29
         srcRune[i - 2] = destRune[j - 1] 
           dist = getMinOfValues(insDist, delDist, eqDist, transDist)
30
         } else {
31
           dist = getMinOfValues(insDist, delDist, eqDist)
32
33
34
         distMat[i][j] = dist
35
      }
36
    shortDist = distMat[n][m]
37
38
    return shortDist, distMat
39 }
```

Листинг 3.2 – Программный код нахождения расстояния

Дамерау – Левенштейна рекурсивно

```
func countDamRecElem(src, dest []rune, i, j int) int {
    if (getMinOfValues(i, j) == 0) {
      return getMaxOf2Values(i, j)
3
4
    }
5
6
    match := 1
7
    if (src[i-1] = dest[j-1]) {
      match = 0
8
9
    }
10
    insert := countDamRecElem(src, dest, i, j - 1) + 1
11
12
    delete := countDamRecElem(src, dest, i - 1, j) + 1
    replace := match+ countDamRecElem(src, dest, i - 1, j - 1)
13
14
15
    transpose := -1
16
17
    if i > 1 && j > 1 {
18
      transpose = countDamRecElem(src, dest, i - 2, j - 2) + 1
    }
19
20
    min := 0
21
    if transpose !=-1 \&\& src[i-1] == dest[j-2]
22
    && src[i - 2] = dest[j - 1] {
23
      min = getMinOfValues(insert, delete, replace, transpose)
24
    } else {
25
      min = getMinOfValues(insert, delete, replace)
26
27
    }
28
    return min
29 }
30
31 func CountDamRecNoCache(src, dest string) int {
32
    srcRune , destRune := []rune(src), []rune(dest)
33
    n, m := len(srcRune), len(destRune)
34
35
    return countDamRecElem(srcRune, destRune, n, m)
36
|37|
```

Листинг 3.3 — Программный код нахождения расстояния Дамерау — Левенштейна рекурсивно с кэшем

```
1 func countDamRecElemCache(src, dest [] rune, i, j int, distMat
     MInt) int {
    if (getMinOfValues(i, j) == 0) {
3
      return getMaxOf2Values(i, j)
4
5
    if distMat[i][j] != -1 {
      return distMat[i][j]
6
7
8
    match := 1
9
    if (src[i-1] = dest[j-1]) {
      match = 0
10
11
    }
12
    insert := countDamRecElemCache(src, dest, i, j - 1, distMat) +
    delete := \_countDamRecElemCache(src, dest, i - 1, j, distMat) +
13
14
    replace := match + countDamRecElemCache(src, dest, i - 1, j - 1
       1, distMat)
    transpose := -1
15
    if i > 1 && j > 1 {
16
      transpose = countDamRecElemCache(src, dest, i - 2, j - 2,
17
         distMat) + 1
18
    min := 0
19
    if transpose !=-1 \&\& src[i-1] == dest[j-2]
20
    && src[i - 2] = dest[j - 1] {
21
      min = getMinOfValues(insert , delete , replace , transpose)
22
23
    } else {
      min = getMinOfValues(insert, delete, replace)
24
25
    distMat[i][j] = min
26
    return distMat[i][j]
27
28 | \}
29 func CountDamRecCache(src, dest string) int {
    srcRune , destRune := []rune(src), []rune(dest)
    n, m := len(srcRune), len(destRune)
31
    distMat := makeMatrixInf(n, m)
32
    return countDamRecElemCache(srcRune, destRune, n, m, distMat)
33
34|}
```

3.3.2 Подпрограммы

В листингах 3.4 - 3.6 приведены используемые подпрограммы.

Листинг 3.4 – Функция нахождения минимума из N целых чисел

```
func getMinOfValues(values ...int) int {
1
2
      min := values[0]
      for , i := range values {
3
        if min > i {
4
          min = i
5
6
7
8
      return min
9
   }
```

Листинг 3.5 – Функция нахождения максимума из двух целых чисел

```
func getMaxOf2Values(v1, v2 int) int {
  if v1 < v2 {
    return v2
  }
  return v1
}</pre>
```

Листинг 3.6 — Определение типа целочисленной матрицы; его инициализация

```
type MInt [][]int
1
    func makeMatrix(n, m int) MInt {
2
       matrix := make(MInt, n + 1)
3
       for i := range matrix {
4
         matrix[i] = make([]int, m + 1)
5
6
       for i := 0; i < m + 1; i++ \{
7
         matrix[0][i] = i
8
9
       }
       for i := 0; i < n + 1; i++ \{
10
         matrix[i][0] = i
11
12
13
       return matrix
14
    }
15|}
```

Листинг 3.7 – Вывод матрицы расстояний

```
1
2
   func (mat MInt) PrintMatrix() {
     for i := 0; i < len(mat); i++ {
3
        for j := 0; j < len(mat[0]); j++ {
4
          fmt.Printf("%3d", mat[i][j])
5
6
       fmt.Printf("\n")
7
     }
8
9
   }
```

3.4 Тестовые данные

Таблица 3.1 – Тестирование строк

$N_{\overline{0}}$	S_1	S_2	ДЛ (итер.)	ДЛ (рек.)	ДЛ (кэш)	Лев (итер.)
1	« »	« »	0	0	0	0
2	«book»	«bosk»	1	1	1	1
3	«book»	«back»	2	2	2	2
4	«book»	«bacc»	3	3	3	3
5	«aboba»	«acacb»	4	4	4	4
6	«дверь»	«деврь»	1	1	1	2
6	«дверь»	«дверь»	0	0	0	0

3.5 Вывод

На основе схем из конструкторского раздела были разработаны программные реализации требуемых алгоритмов.

4 Исследовательская часть

В данном разделе будут приведены примеры работы программ, постановка эксперимента и сравнительный анализ алгоритмов на основе полученных данных.

4.1 Технические характеристики

Тестирование выполнялось на устройстве со следующими техническими характеристиками:

- Операционная система Pop!_OS 22.04 LTS [5] Linux [6];
- Оперативная память 16 Гб;
- Процессор AMD® Ryzen 7 2700 eight-core processor × 16 [7].

Во время тестирования устройство было подключено к блоку питания и не нагружено никакими приложениями, кроме встроенных приложений окружения, окружением и системой тестирования.

4.2 Демонстрация работы программы

Программа получает на вход 2 слова и выдает 4 расстояния, соответствующих алгоритмов поиска редакторского расстояния Левенштейна, итеративного Дамерау-Левенштейна, рекурсивного Дамерау-Левентейна, рекурсивного с мемоизацией Дамерау-Левенштейна.

На рисунке 4.1 представлен результат работы программы.

```
stud_52 git:(lab-@1) X go run main.go
Расстояние Левенштейна
Введте первое слово: first
Введите второе слово: second
Левейнштейн не рекурсивный: 6
          2
              3
  0
                          б
         2
             3
      1
                          б
  1
                  4
     2 2
  3
     3
        4
                 4
  4
            4
                         б
  5
     4
Дамерау-Левенштейн не рекурсивный: б
          2
              3
                         б
  0
  1
      1
         2
             3
                 4
                         б
             3 4
     2 2
Дамерау-Левенштейн рекурсивный без кэша: б
Дамерау-Левенштейн рекурсивный с кэшем: 6
```

Рисунок 4.1 – Пример работы программы

4.3 Время выполнения алгоритмов

Алгоритмы тестировались при помощи профилирования — сбора характеристик работы программы: времени выполнения. Для каждой функции были написаны тесты оценки эффективности, представленные библиотеками Си.

Листинг 4.1 - Пример теста эффективности

```
import "C"
 2
3 func test(){
 4
    cputime1 := C.getThreadCpuTimeNs()
5
6
    doWork()
 7
8
    cputime2 := C.getThreadCpuTimeNs()
9
    fmt.Printf(cputime2 - cputime1)
10
11
12 }
```

Результаты тестирования приведены в таблице 4.1. Прочерк в таблице означает что тестирование для этого набора данных не выполнялось.

Таблица 4.1 – Время выполнения алгоритмов

Длина Время выполнения				Р
строк	ДЛ	ДЛ	Лев	ДЛ (рек.)
	(шех)	(итер.)	(итер.)	
5	2344	1114	1091	17228
10	6747	3142	2823	109170295
40	92218	36281	33362	-
80	402839	142910	122148	-
160	1582974	646498	499268	-
240	3505394	1348110	1122182	-

На рисунке 4.2 представлен график времени работы алгоритмов поиска редакторского расстояния Дамерау-Левенштейна.

Рисунок 4.2 — Сравнение рекурсивного с мемоизацией, итеративного и рекурсивного расстояния Дамерау — Левенштейна

На рисунке 4.3 представлен график времени работы алгоритмов поиска редакторского расстояния Дамерау-Левенштейна без рекурсивного.

Рисунок 4.3 — Сравнение рекурсивного с мемоизацией, итеративного расстояния Дамерау—Левенштейна

4.4 Использование памяти

Далее будем считать, что sizeof(int) = 8, sizeof(char) = 1, sizeof(slice) = 24. Все значения в этом разделе указываются в байтах.

Длину строки S_1 обозначим как n, а длину строки S_2 — как m. Тогда затраченную память можно вычислить следующим образом:

4.4.1 Нерекурсивный алгоритм поиска расстояния Дамерау-Левенштейна

Размер выделяемой памяти:

- размер строк $S_1, S_2 m + n;$
- размер n = 2 и m = 8;
- размер матрицы $-8 \cdot (m+1) \cdot (n+1);$
- размер вспомогательных переменных в циклах $8 + 8 + 6 \cdot 8$.

Таким образом, общая затраченная память в нерекурсивном алгоритме равняется 8mn + 9m + 9n + 88

4.4.2 Рекурсивный алгоритм поиска расстояния без кэша Дамерау-Левенштейна

Максимальная глубина стека вызовов при рекурсивной реализации равна сумме длин входящий строк.

Размер общей выделяемой памяти:

- размер строк $S_1, S_2 m + n;$
- \bullet размер n = 2 и m = 8.

Размер выделяемой памяти для каждого вызова функции:

- размер аргументов функции $2 \cdot 24 + 2 \cdot 8$;
- размер вспомогательных переменных $6 \cdot 8$;
- \bullet размер адреса возврата 4.

Таким образом, общая затраченная память в рекурсивном алгоритме равняется $m+n+2\cdot 8+(2\cdot 24+2\cdot 8+6\cdot 8+4)\cdot (n+m)=117m+117n+16$

4.4.3 Рекурсивный алгоритм поиска расстояния с использованием кэша Дамерау-Левенштейна

Максимальная глубина стека вызовов при рекурсивной реализации равна сумме длин входящий строк.

Размер общей выделяемой памяти:

- размер строк $S_1, S_2 m + n;$
- размер n = 2 и m = 8;
- размер матрицы $-8 \cdot (m+1) \cdot (n+1)$.

Размер выделяемой памяти для каждого вызова функции:

- размер аргументов функции $3 \cdot 24 + 2 \cdot 8$;
- размер вспомогательных переменных $6 \cdot 8$;
- \bullet размер адреса возврата 4.

Таким образом, общая затраченная память в рекурсивном алгоритме равняется $m+n+2\cdot 8+8\cdot (m+1)\cdot (n+1)+(3\cdot 24+2\cdot 8+6\cdot 8+4)\cdot (n+m)=8mn+149m+149n+24$

4.5 Вывод

В данном разделе были сравнены алгоритмы по памяти и по времени. Рекурсивный алгоритм Дамерау – Левенштейна работает дольше итеративных реализаций — время этого алгоритма увеличивается в геометрической прогрессии с ростом размера строк. Рекурсивный алгоритм с мемоизацией превосходит простой рекурсивный алгоритм по времени. По расходу памяти все реализации проигрывают рекурсивной за счет большого количества выделенной памяти под матрицу расстояний.

То есть самым эффективный по памяти: рекурсивный алгоритм. Самый эффективный по времени: итеративный алгоритм (исходя из сделанных тестов.)

Стоит отметить, что для языков, где возможна передача указателя на массивы, самым эффективным и по времени, и по памяти будет алгоритм, использующий мемоизацию.

Заключение

В рамках лабораторной работы были:

- рассмотрены три алгоритма нахождения редакторского расстояния Дамерау – Левенштейна и одно Левенштейна;
- в аналитическом разделе были изучены смысловые различия между алгоритмами и их формульное представление;
- в рамках конструкторского раздела были получены схемы алгоритмов;
- в технологическом разделе был выбран язык программирования и представлена реализация на нем, также были приведены тестовые данные;
- в исследовательской части были сравнены алгоритмы по скорости и по памяти. Самым эффективным по времени оказался итеративный алгоритм. Самым эффективным по памяти рекурсивный алгоритм.

По итогу реализации алгоритма поиска редакторского расстояния Дамерау – Левенштейна итеративным способом оказался быстрее остальных алгоритмов на 38 % при длине слова в 240 символов, то есть на 0.2 секунды.

В ходе лабораторной работы получены навыки динамического программирования, реализованы и изученные алгоритмы нахождения редакторского расстояния. Цель работы достигнута.

Список использованных источников

- [1] Левенштейн В. И. Двоичные коды с исправлением выпадений, вставок и замещений символов. М.: «Наука», Доклады АН СССР, 1965. Т. 163. С. 845–848.
- [2] Черненький В. М. Гапанюк Ю. Е. Методика идентификации пассажира по установочным данным. М.: Вестник МГТУ им. Н.Э. Баумана. Сер. "Приборостроение", 2012. Т. 163. С. 30–34.
- [3] Golang Документация[Электронный ресурс]. Режим доступа: https://go.dev/doc/ (дата обращения: 24.09.2022).
- [4] Go rune. Режим доступа: https://golangdocs.com/rune-in-golang (дата обращения: 04.09.2022).
- [5] Pop OS 22.04 LTS [Электронный ресурс]. Режим доступа: https://pop.system76.com (дата обращения: 04.09.2022).
- [6] Linux Документация [Электронный ресурс]. Режим доступа: https://docs.kernel.org (дата обращения: 24.09.2022).
- [7] Процессор AMD® Ryzen 7 2700 eight-core processor × 16 [Электронный ресурс]. Режим доступа: https://www.amd.com/en/products/cpu/amd-ryzen-7-2700 (дата обращения: 04.09.2022).