Classification: Logistic Regression Hung-yi Lee 李宏毅

Step 1: Function Set

Function set: Including all different w and b

$$\begin{cases} z \geq 0 & \text{class 1} \\ z < 0 & \text{class 2} \end{cases}$$

$$P_{w,b}(C_1|x) = \sigma(z)$$

$$z = w \cdot x + b = \sum_{i} w_i x_i + b$$

$$\sigma(z) = \frac{1}{1 + exp(-z)}$$

Step 1: Function Set

Step 2: Goodness of a Function

Training
$$x^1$$
 x^2 x^3 x^N Data C_1 C_2 C_1

Assume the data is generated based on $f_{w,b}(x) = P_{w,b}(C_1|x)$

Given a set of w and b, what is its probability of generating the data?

$$L(w,b) = f_{w,b}(x^1) f_{w,b}(x^2) \left(1 - f_{w,b}(x^3) \right) \cdots f_{w,b}(x^N)$$

The most likely w^* and b^* is the one with the largest L(w,b).

$$w^*, b^* = arg \max_{w,b} L(w,b)$$

 \hat{y}^n : 1 for class 1, 0 for class 2

$$L(w,b) = f_{w,b}(x^1) f_{w,b}(x^2) \left(1 - f_{w,b}(x^3) \right) \cdots$$

$$w^{*}, b^{*} = arg \max_{w,b} L(w,b) = w^{*}, b^{*} = arg \min_{w,b} -lnL(w,b)$$

$$-lnL(w,b)$$

$$= -lnf_{w,b}(x^{1}) \longrightarrow -\left[1 \ln f(x^{1}) + 0 \ln \left(1 - f(x^{1})\right)\right]$$

$$-lnf_{w,b}(x^{2}) \longrightarrow -\left[1 \ln f(x^{2}) + 0 \ln \left(1 - f(x^{2})\right)\right]$$

$$-ln\left(1 - f_{w,b}(x^{3})\right) \longrightarrow -\left[0 \ln f(x^{3}) + 1 \ln \left(1 - f(x^{3})\right)\right]$$

Step 2: Goodness of a Function

$$L(w,b) = f_{w,b}(x^{1})f_{w,b}(x^{2}) \left(1 - f_{w,b}(x^{3})\right) \cdots f_{w,b}(x^{N})$$

$$-lnL(w,b) = lnf_{w,b}(x^{1}) + lnf_{w,b}(x^{2}) + ln\left(1 - f_{w,b}(x^{3})\right) \cdots$$

$$\hat{y}^{n} : 1 \text{ for class 1, 0 for class 2}$$

$$= \sum_{n=0}^{\infty} -\left[\hat{y}^{n}lnf_{x,n}(x^{n}) + (1 - \hat{y}^{n})ln\left(1 - f_{x,n}(x^{n})\right)\right]$$

$$= \sum_{n} -\left[\hat{y}^{n} ln f_{w,b}(x^{n}) + (1 - \hat{y}^{n}) ln \left(1 - f_{w,b}(x^{n})\right)\right]$$
Cross entropy between two Bernoulli distribution

Distribution p:

$$p(x = 1) = \hat{y}^n$$
$$p(x = 0) = 1 - \hat{y}^n$$

cross entropy Distribution q:

$$q(x = 1) = f(x^n)$$
$$q(x = 0) = 1 - f(x^n)$$

$$H(p,q) = -\sum_{x} p(x) ln(q(x))$$

Step 2: Goodness of a Function

$$L(w,b) = f_{w,b}(x^1) f_{w,b}(x^2) \left(1 - f_{w,b}(x^3)\right) \cdots f_{w,b}(x^N)$$

$$-lnL(w,b) = lnf_{w,b}(x^1) + lnf_{w,b}(x^2) + ln\left(1 - f_{w,b}(x^3)\right) \cdots$$

$$\hat{y}^n \colon 1 \text{ for class 1, 0 for class 2}$$

$$= \sum_{n} -\left[\hat{y}^n lnf_{w,b}(x^n) + (1 - \hat{y}^n) ln\left(1 - f_{w,b}(x^n)\right)\right]$$
Cross entropy between two Bernoulli distribution

Step 3: Find the best function

$$\frac{\left(1 - f_{w,b}(x^n)\right)x_i^n}{-lnL(w,b)} = \sum_{n} -\left[\hat{y}^n \frac{lnf_{w,b}(x^n)}{\partial w_i} + (1 - \hat{y}^n)\underline{ln\left(1 - f_{w,b}(x^n)\right)}\right] \frac{\partial w_i}{\partial w_i}$$

$$\frac{\partial lnf_{w,b}(x)}{\partial w_i} = \frac{\partial lnf_{w,b}(x)}{\partial z} \frac{\partial z}{\partial w_i} \frac{\partial z}{\partial w_i} = x_i$$

$$\frac{\partial ln\sigma(z)}{\partial z} = \frac{1}{\sigma(z)} \frac{\partial \sigma(z)}{\partial z} = \frac{1}{\sigma(z)} \sigma(z) (1 - \sigma(z))$$

$$f_{w,b}(x) = \sigma(z)$$

$$= \frac{1}{1 + \exp(-z)}$$

$$z = w \cdot x + b = \sum_{i} w_i x_i + b$$

Step 3: Find the best function

$$\frac{\left(1 - f_{w,b}(x^n)\right)x_i^n}{-lnL(w,b)} = \sum_{n} -\left[\hat{y}^n \frac{lnf_{w,b}(x^n)}{\partial w_i} + (1 - \hat{y}^n) \frac{ln\left(1 - f_{w,b}(x^n)\right)}{\partial w_i}\right]$$

$$\frac{\partial \ln\left(1 - f_{w,b}(x)\right)}{\partial w_i} = \frac{\partial \ln\left(1 - f_{w,b}(x)\right)}{\partial z} \frac{\partial z}{\partial w_i} \qquad \frac{\partial z}{\partial w_i} = x_i$$

$$\frac{\partial \ln\left(1 - \sigma(z)\right)}{\partial z} = -\frac{1}{1 - \sigma(z)} \frac{\partial \sigma(z)}{\partial z} = -\frac{1}{1 - \sigma(z)} \sigma(z) \left(1 - \sigma(z)\right)$$

$$f_{w,b}(x) = \sigma(z)$$

= 1/1 + exp(-z) $z = w \cdot x + b = \sum_{i} w_i x_i + b$

Step 3: Find the best function

$$\frac{\left(1 - f_{w,b}(x^n)\right)x_i^n}{-lnL(w,b)} = \sum_{n} -\left[\hat{y}^n \frac{lnf_{w,b}(x^n)}{\partial w_i} + (1 - \hat{y}^n) \frac{ln\left(1 - f_{w,b}(x^n)\right)}{\partial w_i}\right]$$

$$= \sum_{n} - \left[\hat{y}^{n} \left(1 - f_{w,b}(x^{n}) \right) \underline{x_{i}^{n}} - (1 - \hat{y}^{n}) \underline{f_{w,b}(x^{n}) x_{i}^{n}} \right]$$

$$= \sum -[\hat{y}^n - \hat{y}^n f_{w,b}(x^n) - f_{w,b}(x^n) + \hat{y}^n f_{w,b}(x^n)] \underline{x_i^n}$$

$$= \sum_{i=1}^{n} -(\hat{y}^{n} - f_{w,b}(x^{n}))x_{i}^{n}$$
 Larger difference, larger update

$$w_i \leftarrow w_i - \eta \sum_n -\left(\hat{y}^n - f_{w,b}(x^n)\right) x_i^n$$

Logistic Regression + Square Error

Step 1:
$$f_{w,b}(x) = \sigma\left(\sum_{i} w_i x_i + b\right)$$

Step 2: Training data: (x^n, \hat{y}^n) , \hat{y}^n : 1 for class 1, 0 for class 2

$$L(f) = \frac{1}{2} \sum_{n} (f_{w,b}(x^n) - \hat{y}^n)^2$$

Step 3:

$$\frac{\partial (f_{w,b}(x^n) - \hat{y})^2}{\partial w_i} = 2(f_{w,b}(x^n) - \hat{y}^n) \frac{\partial f_{w,b}(x^n)}{\partial z} \frac{\partial z}{\partial w_i}$$
$$= 2(f_{w,b}(x^n) - \hat{y}^n) f_{w,b}(x^n) \left(1 - f_{w,b}(x^n)\right) x_i$$

$$\hat{y}^n = 1$$
 If $f_{w,b}(x^n) = 1$ (close to target) $\partial L/\partial w_i = 0$

If
$$f_{w,b}(x^n) = 0$$
 (far from target) $\partial L/\partial w_i = 0$

Logistic Regression + Square Error

Step 1:
$$f_{w,b}(x) = \sigma\left(\sum_{i} w_i x_i + b\right)$$

Step 2: Training data: (x^n, \hat{y}^n) , \hat{y}^n : 1 for class 1, 0 for class 2

$$L(f) = \frac{1}{2} \sum_{n} (f_{w,b}(x^n) - \hat{y}^n)^2$$

Step 3:

$$\frac{\partial (f_{w,b}(x^n) - \hat{y})^2}{\partial w_i} = 2(f_{w,b}(x^n) - \hat{y}^n) \frac{\partial f_{w,b}(x^n)}{\partial z} \frac{\partial z}{\partial w_i}$$
$$= 2(f_{w,b}(x^n) - \hat{y}^n) f_{w,b}(x^n) \left(1 - f_{w,b}(x^n)\right) x_i$$

$$\hat{y}^n = 0$$
 If $f_{w,b}(x^n) = 1$ (far from target) $\partial L/\partial w_i = 0$

If
$$f_{w,b}(x^n) = 0$$
 (close to target) $\partial L/\partial w_i = 0$

Cross Entropy v.s. Square Error

Logistic Regression

Linear Regression $f_{w,b}(x) = \sum_{i} w_i x_i + b$

Step 1:
$$f_{w,b}(x) = \sigma\left(\sum_{i} w_i x_i + b\right)$$

Output: between 0 and 1

Output: any value

Step 2:

Step 3:

Logistic Regression

Step 1:
$$f_{w,b}(x) = \sigma\left(\sum_{i} w_i x_i + b\right)$$

$$f_{w,b}(x) = \sum_{i} w_i x_i + b$$

Output: between 0 and 1

Output: any value

Training data: (x^n, \hat{y}^n)

Training data: (x^n, \hat{y}^n)

 \hat{y}^n : 1 for class 1, 0 for class 2

 \hat{y}^n : a real number

$$L(f) = \sum_{n} l(f(x^n), \hat{y}^n)$$

$$L(f) = \frac{1}{2} \sum_{n} (f(x^{n}) - \hat{y}^{n})^{2}$$

Cross entropy:

Step 2:

$$l(f(x^n), \hat{y}^n) = -[\hat{y}^n ln f(x^n) + (1 - \hat{y}^n) ln (1 - f(x^n))]$$

Linear Regression

$$f_{w,b}(x) = \sum_{i} w_i x_i + b$$

 $f_{w,b}(x) = \sigma\left(\sum_{i} w_i x_i + b\right)$

Output: between 0 and 1

Output: any value

Training data: (x^n, \hat{y}^n) \hat{y}^n : 1 for class 1, 0 for class 2 Step 2:

Training data: (x^n, \hat{y}^n) \hat{y}^n : a real number

 $L(f) = \sum l(f(x^n), \hat{y}^n)$

 $L(f) = \frac{1}{2} \sum_{n} (f(x^n) - \hat{y}^n)^2$

Step 3:

Step 1:

Logistic regression:
$$w_i \leftarrow w_i - \eta \sum_n - \left(\hat{y}^n - f_{w,b}(x^n) \right) x_i^n$$

Linear regression: $w_i \leftarrow w_i - \eta \sum_{i=1}^{n} -\left(\hat{y}^n - f_{w,b}(x^n)\right) x_i^n$

Discriminative v.s. Generative

$$P(C_1|x) = \sigma(w \cdot x + b)$$

directly find w and b

Will we obtain the same set of w and b?

Find μ^1 , μ^2 , Σ^{-1}

$$w^{T} = (\mu^{1} - \mu^{2})^{T} \Sigma^{-1}$$

$$b = -\frac{1}{2} (\mu^{1})^{T} (\Sigma^{1})^{-1} \mu^{1}$$

$$+ \frac{1}{2} (\mu^{2})^{T} (\Sigma^{2})^{-1} \mu^{2} + \ln \frac{N_{1}}{N_{2}}$$

The same model (function set), but different function may be selected by the same training data.

All: hp, att, sp att, de, sp de, speed

73% accuracy

Defense

79% accuracy

Defense

Example

Testing Data

How about Naïve Bayes?

$$P(x|C_i) = P(x_1|C_i)P(x_2|C_i)$$

Example

$$P(C_1) = \frac{1}{13} \qquad P(x_1 = 1 | C_1) = 1 \qquad P(x_2 = 1 | C_1) = 1$$

$$P(C_2) = \frac{12}{13} \qquad P(x_1 = 1 | C_2) = \frac{1}{3} \qquad P(x_2 = 1 | C_2) = \frac{1}{3}$$

Model the decision boundary between classes.

Models the actual distribution of each class.

- Usually people believe discriminative model is better
- Benefit of generative model
 - With the assumption of probability distribution
 - less training data is needed
 - more robust to the noise
 - Priors and class-dependent probabilities can be estimated from different sources.

Multi-class Classification (3 classes as example)

$$C_1$$
: w^1 , b_1 $z_1 = w^1 \cdot x + b_1$

$$C_2$$
: w^2 , b_2 $z_2 = w^2 \cdot x + b_2$

$$C_3$$
: w^3 , b_3 $z_3 = w^3 \cdot x + b_3$

Probability:

■
$$1 > y_i > 0$$

$$\blacksquare \sum_i y_i = 1$$

$$y_i = P(C_i \mid x)$$

Multi-class Classification (3 classes as example)

If $x \in class 1$

$$\hat{y} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

If $x \in class 2$

$$\hat{y} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

If $x \in class 3$

$$\hat{y} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Limitation of Logistic Regression

Input Feature		Label
x_{1}	\mathbf{x}_{2}	Label
0	0	Class 2
0	1	Class 1
1	0	Class 1
1	1	Class 2

Limitation of Logistic Regression

Feature transformation

 x_1' : distance to $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$

 x_2' : distance to $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$

Limitation of Logistic Regression

Cascading logistic regression models

Deep Learning!

All the parameters of the logistic regressions are jointly learned.

Neural Network

Reference

• Bishop: Chapter 4.3

Appendix

Step 2: Loss function

$$f_{w,b}(x) = \begin{cases} z \ge 0 & +1 \\ z < 0 & -1 \end{cases}$$

Ideal loss:

$$L(f) = \sum_{n} \delta(f(x^n) \neq \hat{y}^n)$$

0 or 1

Approximation:

Ideal loss $\delta(f(x^n) \neq \hat{y}^n)$

l(*) is the upper bound of $\delta(*)$

Step 2: Loss function

 $l(f(x^n), \hat{y}^n)$: cross entropy

$$\hat{y}^n = +1$$
 $f(x^n)$ Ground $\hat{y}^n = -1$ $1 - f(x^n)$ entropy 1.0 Truth

If
$$\hat{y}^n = +1$$
:

$$l(f(x^n), \hat{y}^n) = -\ln f(x^n) = -\ln \sigma(z^n) = -\ln \frac{1}{1 + exp(-z^n)}$$
$$= \ln (1 + exp(-z^n)) = \ln (1 + exp(-\hat{y}^n z^n))$$

If
$$\hat{y}^n = -1$$
:

$$l(f(x^n), \hat{y}^n) = -\ln(1 - f(x^n))$$

$$= -\ln(1 - \sigma(z^n)) = -\ln\frac{exp(-z^n)}{1 + exp(-z^n)} = -\ln\frac{1}{1 + exp(z^n)}$$

$$= \ln(1 + exp(z^n)) = \ln(1 + exp(-\hat{y}^n z^n))$$

Step 2: Loss function

