# PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-064750

(43) Date of publication of application: 13.03.2001

| (51)Int.Cl. | C22C 38/00<br>C21D 9/48<br>C22C 38/06<br>C22C 38/58 |  |
|-------------|-----------------------------------------------------|--|
|             | C23C 2/06<br>C23C 2/28                              |  |

(21)Application number: 11-241576

(71)Applicant: NIPPON STEEL CORP

(22)Date of filing:

27.08.1999

(72)Inventor: YOSHINAGA NAOKI

TAKAHASHI MANABU

YOSHIDA TORU AKISUE OSAMU

# (54) HIGH STRENGTH COLD ROLLED STEEL SHEET AND HIGH STRENGTH GALVANIZED COLD ROLLED STEEL SHEET EXCELLENT IN BENDABILITY AND DEEP DRAWABILITY AND PRODUCTION THEREOF

# (57) Abstract:

PROBLEM TO BE SOLVED: To provide a high strength (galvanized) cold rolled steel sheet excellent in bendability and deep drawability and used for automobiles, house appliances, buildings or the like. SOLUTION: This steel sheet has a compsn. contg., by weight,  $\leq 0.0025\%$  C (by  $\leq 0.0050\%$  in the case of being incorporated with Ti and Nb),  $\leq 1.5\%$  Si, 0.7 to 2.5% Mn,  $\leq$ 0.15% P,  $\leq 0.015\%$  Si, 0.005 to 0.2% Aland  $\leq 0.005\%$  N, suitably contg. 0.005 to 0.15% Ti and 0.005 to 0.15% Nb or 0.010 to 0.15% Ti+Nb and also contg. Si, Mn and P in the relation satisfying 15≤[X=7 × Si(%)+6 × Mn(%)+110 × P (%)]≤30 (by 9 to 25 in the case of being incorporated with Ti and Nb), and the balance Fe with inevitable impurities, in which the X-ray random intensity ratio in the {100} face parallel to the sheet face in the outermost surface of the sheet thickness of the steel sheet is ≥3.0, the X-ray random intensity ratio in the {111} face parallel to the sheet face in the center layer of the sheet thickness in the steel sheet is ≥4.5, and also, sheet thickness is 0.5 to 2.0 mm.



# (19)日本国特許庁(JP)

# (12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-64750 (P2001-64750A)

(43)公開日 平成13年3月13日(2001.3.13)

| (51) Int.Cl. <sup>7</sup> | 識別記号                  | FΙ           |          | ī          | ·?]}*(参考) |
|---------------------------|-----------------------|--------------|----------|------------|-----------|
| C 2 2 C 38/00             | 301                   | C 2 2 C 38/0 | 0        | 301T       | 4K027     |
| C_2_1_D9/48               | <b></b>               | C 2 1 D 9/4  | 8        | H_         | 4K037     |
|                           |                       |              |          | J          |           |
| C 2 2 C 38/08             | 3                     | C 2 2 C 38/0 | 6        |            |           |
| 38/58                     | 3                     | 38/5         | 8        |            |           |
| ·                         |                       | 請求 未請求 請求項の  | 数10 OL   | (全 12 頁)   | 最終頁に続く    |
|                           |                       |              |          | ···        |           |
| (21)出願番号                  | 特願平11-241576          | (71)出願人 00   | 00006655 |            |           |
|                           |                       | <b>***</b>   | 日本製鐵株式   | <b>式会社</b> |           |
| (22)出願日                   | 平成11年8月27日(1999.8.27) | 東            | 京都千代田区   | 工大手町2丁     | 目6番3号     |
|                           |                       | (72)発明者 吉    | 永 直樹     |            |           |
|                           |                       | <b>1</b>     | 葉県富津市籍   | 所富20-1     | 新日本製鐵株式   |
|                           |                       | 会            | 社技術開発本   | 本部内        |           |
|                           |                       | (72)発明者 高    | 橋 学      |            |           |
|                           |                       | <b></b>      | 葉県富津市籍   | 所富20-1     | 新日本製鐵株式   |
|                           |                       | 会            | 社技術開発本   | <b>本部内</b> |           |
|                           |                       | (74)代理人 10   | 00077517 |            |           |
|                           |                       | 弁            | 理士 石田    | 敬 (外3      | 名)        |
|                           |                       |              |          |            |           |
|                           | ·                     |              |          |            | 最終頁に続く    |

# (54) 【発明の名称】 曲げ性と深絞り性に優れた高強度冷延鋼板と高強度亜鉛めっき冷延鋼板およびその製造方法

# (57) 【要約】

【課題】 曲げ性と深絞り性に優れた高強度(亜鉛めっき)冷延鋼板を提供する。

【解決手段】 重量%で、C:0.0025% 以下(Ti、Nb含有時0.0050% 以下)、Si:1.5% 以下、Mn:0.7~2.5%、P:0.15% 以下、S:0.015%以下、A1:0.005~0.2%およびN:0.005%以下、適宜Ti:0.005~0.15%、Nb:0.005~0.15% もしくはTi+Nb:0.010~0.15%を含有し、かつSi、MnおよびPを、15≦ [X=7×Si(%)+6×Mn(%)+110×P(%)] ≤30 (Ti、Nb含有時9~25)を満たす関係の下で含有し、残部はFeおよび不可避的不純物からなり、鋼板の板厚最表面における板面と平行な{100}面のX線ランダム強度比が3.0以上で、鋼板の板厚中心層における板面と平行な{111}面のX線ランダム強度比が4.5以上であり、かつ板厚が0.5mm以上2.0mm以下である曲げ性と深絞り性に優れた高強度(亜鉛めっき)冷延鋼板。



# 【特許請求の範囲】

【請求項1】 重量%で、C:0.0025%以下、Si:1.5%以 下、Mn:0.7~2.5%、P:0.15%以下、S:0.015%以下、Al: 0.005~0.2%、および、N:0.005%以下を含有し、かつ、S i、MnおよびPを、

 $X = 7 \times Si (\%) + 6 \times Mn (\%) + 110 \times P (\%)$ において、15≦X≦30を満たす関係の下で含有し、残部 はFeおよび不可避的不純物からなる高強度冷延鋼板であ って、該鋼板の板厚最表面における板面と平行な {100 } 面のX線ランダム強度比が3.0 以上であるととも に、同鋼板の板厚中心層における板面と平行な {111} 面のX線ランダム強度比が4.5 以上であり、かつ、板厚 が0.5mm 以上2.0mm 以下であることを特徴とする曲げ性 と深絞り性に優れた高強度冷延鋼板。

【請求項2】 重量%で、C:0.0050%以下、Si:1.5%以 下、Mn:0.7~2.5%、P:0.15% 以下、S:0.015%以下、Al: 0.005~0.2%、および、N:0.005%以下、さらに、Ti:0.00 5~0.15%、Nb:0.005~0.15%、もしくは、Ti+Nb (Ti とNbの合計): 0.01~0.15% を含有し、かつ、Si、Mnお よびP を、

 $X = 7 \times Si (\%) + 6 \times Mn (\%) + 110 \times P (\%)$ 

において、9 ≦ X ≤ 25を満たす関係の下で含有し、残部 はFeおよび不可避的不純物からなる高強度冷延鋼板であ って、該鋼板の板厚最表面における板面と平行な {100 } 面のX線ランダム強度比が5.0 以上であるととも に、同鋼板の板厚中心層における板面と平行な {111} 面のX線ランダム強度比が6.0以上であり、かつ、板厚 が0.5mm 以上2.0mm 以下であることを特徴とする曲げ性 と深絞り性に優れた高強度冷延鋼板。

【請求項3】 前記高強度冷延鋼板の化学成分におい て、さらに、重量%で、B:0.0002~0.004%、V:0.002 ~ 0. 1%, W: 0. 002  $\sim$  0. 1%, Mo: 0. 003  $\sim$  0. 4%, Sn: 0. 002  $\sim$  0. 3%、Cu:0.005~0.3%未満、Cr:0.005~0.4%、Ni:0.005~ 0.3%のうち1種または2種以上を含有することを特徴と する請求項1または2に記載の曲げ性と深絞り性に優れ た高強度冷延鋼板。

【請求項4】 請求項1、2または3に記載の高強度冷 延鋼板に亜鉛めっきを施したことを特徴とする曲げ性と 深絞り性に優れた高強度亜鉛めっき冷延鋼板。

【請求項5】 重量%で、C:0.0025%以下、Si:1.5%以 40 下、Mn:0.7~2.5%、P:0.15% 以下、S:0.015%以下、Al: 0.005~0.2%、および、N:0.005%以下を含有し、かつ、S i、MnおよびP を、

 $X = 7 \times Si (\%) + 6 \times Mn (\%) + 110 \times P (\%)$ 

において、15≦X≦30を満たす関係の下で含有し、残部 はFeおよび不可避的不純物からなる鋼スラブを熱間圧延 し、圧下率50~90%の冷間圧延を施し、連続焼鈍ライン にて ((Ac<sub>1</sub> +Ac<sub>3</sub>)/2) ℃以上の温度で焼鈍し、焼鈍温度が Ac: 変態点以上の場合には、少なくともAr: 変態点から (Ar₃変態点-20) ℃までの温度範囲を平均冷却速度2 ℃/s 50

以上10℃/s以下で冷却し、また、焼鈍温度が((Acı +A c<sub>3</sub>)/2)℃以上Ac<sub>3</sub>変態点未満の場合には、少なくとも焼 鈍温度から (焼鈍温度-20)℃までの温度範囲を平均冷却 速度2 ℃/s以上10℃/s以下で冷却することを特徴とする 曲げ性と深絞り性に優れた高強度冷延鋼板の製造方法。

重量%で、C:0.0050%以下、Si:1.5%以 【請求項6】 下、Mn:0.7~2.5%、P:0.15% 以下、S:0.015%以下、Al: <u>0.005~0.2%、および、N:0.005%以下、さらに、Ti:0.00</u> 5~0.15%、Nb:0.005~0.15%、もしくは、Ti+Nb (Ti とNbの合計): 0.01~0.15% を含有し、かつ、Si、Mnお よびP を、

 $X = 7 \times Si (\%) + 6 \times Mn (\%) + 110 \times P (\%)$ 

において、9 ≦X≦25を満たす関係の下で含有し、残部 はFeおよび不可避的不純物からなる鋼スラブを熱間圧延 し、圧下率50~90%の冷間圧延を施し、連続焼鈍ライン にて ((Ac₁ +Ac₃)/2) ℃以上の温度で焼鈍し、焼鈍温度が Acs 変態点以上の場合には、少なくともArs 変態点から (Ar<sub>3</sub>変態点-20) ℃までの温度範囲を平均冷却速度2 ℃/s 以上10℃/s以下で冷却し、また、焼鈍温度が((Acı +A c<sub>3</sub>)/2)℃以上Ac<sub>3</sub> 変態点未満の場合には、少なくとも焼 鈍温度から (焼鈍温度-20)℃までの温度範囲を平均冷却 速度2 ℃/s以上10℃/s以下で冷却することを特徴とする 曲げ性と深絞り性に優れた高強度冷延鋼板の製造方法。

【請求項7】 重量%で、C:0.0025%以下、Si:1.5%以 下、Mn:0.7~2.5%、P:0.15%以下、S:0.015%以下、A1: 0.005~0.2%、および、N:0.005%以下を含有し、かつ、S i、MnおよびP を、

 $X = 7 \times Si (\%) + 6 \times Mn (\%) + 110 \times P (\%)$ 

において、15≤X≤30を満たす関係の下で含有し、残部 はFeおよび不可避的不純物からなる鋼スラブを熱間圧延 し、圧下率50~90%の冷間圧延を施し、連続溶融亜鉛め っきラインにて ((Ac<sub>1</sub> +Ac<sub>3</sub>)/2) ℃以上の温度まで加熱 し、加熱温度がAca変態点以上の場合には、少なくともA r, 変態点から (Ar, 変態点-20) ℃までの温度範囲を平均 冷却速度2 ℃/s以上10℃/s以下で冷却し、また、加熱温 度が ((Ac<sub>1</sub> +Ac<sub>3</sub>)/2) ℃以上Ac<sub>3</sub> 変態点未満の場合には、 少なくとも加熱温度から (加熱温度-20)℃までの温度範 囲を平均冷却速度2 ℃/s以上10℃/s以下で冷却し、その 後、亜鉛めっき浴中に浸漬することを特徴とする曲げ性 と深絞り性に優れた高強度亜鉛めっき冷延鋼板の製造方 法。

【請求項8】 重量%で、C:0.0050%以下、Si:1.5%以 下、Mn:0.7~2.5%、P:0.15%以下、S:0.015%以下、Al: 0.005~0.2%、および、N:0.005%以下、さらに、Ti:0.00 5~0.15%、Nb:0.005~0.15%、もしくは、Ti+Nb (Ti とNbの合計): 0.01~0.15% を含有し、かつ、Si、Mnお よびP を、

 $\dot{X} = 7 \times Si (\%) + 6 \times Mn (\%) + 110 \times P (\%)$ において、 $9 \le X \le 25$ を満たす関係の下で含有し、残部 はFeおよび不可避的不純物からなる鋼スラブを熱間圧延

し、圧下率50~90% の冷間圧延を施し、連続溶融亜鉛めっきラインにて ((Ac₁+Ac₃)/2) ℃以上の温度まで加熱し、加熱温度がAc₃変態点以上の場合には、少なくともAr₃変態点から (Ar₃変態点-20) ℃までの温度範囲を平均冷却速度2 ℃/s以上10℃/s以下で冷却し、また、加熱温度が ((Ac₁+Ac₃)/2) ℃以上Ac₃変態点未満の場合には、少なくとも加熱温度から (加熱温度-20) ℃までの温度範囲を平均冷却速度2 ℃/s以上10℃/s以下で冷却し、その後、亜鉛めっき浴中に浸漬することを特徴とする曲げ性と深絞り性に優れた高強度亜鉛めっき冷延鋼板の製造方法。

【請求項9】 前記亜鉛めっき浴中への浸漬後、460~600 ℃までの温度範囲で、1s以上の熱処理を行うことを特徴とする請求項7 または8 に記載の曲げ性と深絞り性に優れた高強度亜鉛めっき冷延鋼板の製造方法。

【請求項10】 前記鋼スラブの化学組成において、さらに、重量%で、B:0.0002~0.004%、V:0.002~0.1%、W:0.002~0.1%、Mo:0.003~0.4%、Sn:0.002~0.3%、Cu:0.005~0.3%未満、Cr:0.005~0.4%、Ni:0.005~0.3%のうち1種または2種以上を含有することを特徴とする請求項5、6、7、8または9に記載の曲げ性と深絞り性に優れた高強度冷延鋼板または高強度亜鉛めっき冷延鋼板の製造方法。

# 【発明の詳細な説明】

#### [0001]

【発明の属する技術分野】本発明は、曲げ成形性と深絞り成形性とを兼ね備えた冷延鋼板およびその製造方法に関するものである。本発明の冷延鋼板は、自動車、家庭電気製品、建物などに使用されるものであって、表面処理をしない狭義の冷延鋼板と、防錆のために溶融亜鉛め 30っき、電気めっきなどの表面処理を施した広義の冷延鋼板を含むものである。

【0002】なお、ここで、亜鉛めっきとは、純亜鉛のほか、主成分が亜鉛である合金のめっきも含むものである。

#### [0003]

【従来の技術】地球環境問題が深刻化する中、自動車の軽量化を軽量化への要望は高まる一方である。自動車の軽量化を推進するためには、現状用いられている自動車用部材をさらに機械的強度の高い鋼板で置換して板厚を減少することが、有効な方法の一つである。また、搭乗者の安全確保のためにも、高強度鋼板の需要は増加してきている。

【0004】しかしながら、高強度鋼板には、良好な形 状凍結性をいかに確保するかという課題がある。すなわ ち、高強度鋼板を、加工治具を用いて自動車部品などの 所定の形状に成形すると、加工時具から離れて加工前の 形状に戻ろうとするスプリングバックと呼ばれる現象が 起こる。当然のことながら、スプリングバックが大きい ほど形状凍結性は劣悪となり、加工後の形状において適 正な形状を得ることができない。

【0005】従来より、形状凍結性を改善するための技術は、いくつか提示されている。特開平2-118029号公報には、鋼板の化学成分を高純度化することによって鋼板強度を低下せしめ、形状凍結性を向上させる技術が開示されている。しかしながら、このような鋼板は軟質であるため、現状の板厚に対して、板厚をさらに低減せしめるものではない。

【0006】特開昭55-28375号公報には、表面粗さを規定し、さらに、鋼板の組織をフェライトとマルテンサイトの混合組織とすることでスプリングバックの小さい鋼板を提供する技術が開示されている。このような混合組織を有する鋼板は、降伏強度が小さいのでスプリングバック量も小さいと考えられがちであるが、加工度の大きな成形や曲げ成形時のスプリングバック量は、必ずしも小さくなっていない。

【0007】特開平10-237581号公報には、複合組織熱延鋼板において、鋼板表面におけるフェライト体積率とフェライト粒径を増加させることによって、鋼板板厚の表面層を中心層に比べて軟質として、形状凍結性を向上させ得ることが開示されている。しかしながら、このように表面だけが軟質な熱延鋼板を製造するためには、製造条件がかなりの程度限定されてしまい、所望の鋼板を安定的に製造することは困難である。また、このような製造方法には、板厚精度の問題もある。

【0008】一方で、特開平7-178460号公報に開示されている技術に代表されるように、部材を作るときの成形方法を工夫することによって形状凍結性を改善しようという試みも多数なされている。特開平10-72644号公報には、鋼板の集合組織を制御することによってスプリングバック量を低減する技術が開示されている。しかし、これはオーステナイト系ステンレス冷延鋼板に係る技術である。オーステナイト(面心立方構造金属)は、加工を受けた際の金属物理学的性質(たとえばすべり系)がフェライト(体心立方構造金属)とは全く異なるものであるから、オーステナイトにおける形状凍結性改善技術を、直ちに、フェライトに適用することはできない。

【0009】また、特開平10-72644号公報開示の技術の適用対象は、自動車部材ではなく、浴槽、鍋、食器、流しなどである。さらに、同公報には、フェライト系鋼板におけるスプリングバックを低減する方法については、何ら記載されていないし、また、示唆するところもない。一方、本発明者らは、特願平10-225176号出願において、曲げ成形時の形状凍結性を抜本的に改善する技術を提示した。この技術は、鋼板板面と平行な{100}面の集積度を高め、かつ、{111}面の集積度を低減するもので、鋼板の曲げ成形性を高める点において優れているものであるが、深絞り成形性には言及していないものである。しかしながら、鋼板を自動車用部品に加工する際には、実際に、曲げ成形と絞り成形が同時に行われて

50

いる場合が多いから、自動車用の鋼板においては、良好な曲げ成形性と絞り加工性がともに必要となる。

#### [0010]

7 , ·

【発明が解決しようとする課題】上述のとおり、従来の高強度鋼板は、曲げ加工や、加工度の大きな深絞り成形や張り出し成形を行った場合には、形状凍結性が不十分なものであるという問題点や、曲げ成形時の形状凍結性には優れるものの深絞り成形性は考慮されていないという問題点を有していた。さらに、従来の高強度鋼板の製造方法においては、製造条件の制約から生産性に係る問題点もあった。

【0011】本発明は、これらの問題点を抜本的に解消し、曲げ成形性と深絞り成形性に優れたフェライト系冷延鋼板およびその製造方法を提供するものである。

# [0012]

【課題を解決するための手段】本発明者らは、形状凍結性に及ぼす鋼板の結晶方位の影響について鋭意検討を行った。その結果、鋼板の板面と平行な{100}面の存在比率が高いほど、形状凍結性が向上することを見いだした。しかしながら、極低炭素鋼をベースとした冷延鋼板において、板面と平行に{100}面が集積した集合組織(以下「ND//〈100〉集合組織」ともいう。なお、{111}面に係るものについては同様に、「ND//〈111〉集合組織」ともいう。)を得ることは不可能と考えられていた。これは、極低炭素鋼を冷間圧延した後、これに再結晶焼鈍を施すと、先鋭なND//〈111〉集合組織が形成されてしまい、ND//〈100〉集合組織は得られないからである。

【0013】 このND//〈111〉集合組織を弱くすることは、ある程度可能である。例えば、鉄と鋼第66年 (1980) 第1号102-111頁には、TiやNbを含有しない極低炭素鋼を冷延後に $\alpha \rightarrow \gamma \rightarrow \alpha$ 変態させると、集合組織がランダム化されることが記載されている。さらに、 $\alpha \rightarrow \gamma \rightarrow \alpha$ 変態させるときの加熱速度および冷却速度を極端に低下させると、鋼板の表面に、弱いND//〈100〉集合組織が形成されることも同論文に示されている。しかしながら、このような極端な徐加熱・徐冷却は、生産性や設備能力の観点から、連続焼鈍プロセスや連続溶融亜鉛めっきプロセスへの適用が不可能であるばかりでなく、このようにして得られるND//〈100〉のX線ランダム強度比は最高でも3.0程度であり、スプリングバックの低減には十分ではない。

【0014】本発明においては、特定の化学成分を有する鋼であれば、連続焼鈍および連続溶融亜鉛めっきラインにおける加熱速度と冷却速度を速くしても、α→γ→α変態によって、鋼板表面のND//〈100〉集合組織を著しく発達せしめることが可能であることを新たに見いだした。曲げ成形においては、鋼板表面に対する加工度が最も大きいので、鋼板表面の集合組織をND//〈100〉に集積せしめれば、曲げ成形性および曲げ成形時の形状凍結性50

を改善することができる。また、本発明では、鋼板の板厚中心層における集合組織は、ND//〈111〉に集積するため、深絞り成形性にも優れている。

【0015】本発明の提供する鋼板は、鋼板表層近傍の加工度が高い成形、例えば、曲げ加工時の形状凍結性に優れるのはもちろんのこと、深絞り成形性および深絞り成形時の形状凍結性にも優れているものである。本発明は、このような思想と新知見に基づいて構築された従来にはない全く新しい鋼板およびその製造方法であり、その要旨とするところは以下のとおりである。

【0016】(1)重量%で、C:0.0025%以下、Si:1.5%以下、Mn:0.7~2.5%、P:0.15%以下、S:0.015%以下、Al:0.005~0.2%、および、N:0.005%以下を含有し、かつ、Si、MnおよびPを、

 $X = 7 \times Si (\%) + 6 \times Mn (\%) + 110 \times P (\%)$ 

において、15≦X≦30を満たす関係の下で含有し、残部はFeおよび不可避的不純物からなる高強度冷延鋼板であって、該鋼板の板厚最表面における板面と平行な{100} . ) 面のX線ランダム強度比が3.0 以上であるととも

に、同鋼板の板厚中心層における板面と平行な {111 } 面のX線ランダム強度比が4.5 以上であり、かつ、板厚が0.5mm 以上2.0mm 以下であることを特徴とする曲げ性と深絞り性に優れた高強度冷延鋼板。

【0017】(2) 重量%で、C:0.0050%以下、Si:1.5%以下、Mn:0.7~2.5%、P:0.15%以下、S:0.015%以下、Al:0.005~0.2%、および、N:0.005%以下、さらに、Ti:0.005~0.15%、Nb:0.005~0.15%、もしくは、Ti+Nb(TiとNbの合計):0.01~0.15%を含有し、かつ、Si、MnおよびPを、

X=7×Si(%) +6 ×Mn(%) +110 ×P(%) において、9 ≦X≦25を満たす関係の下で含有し、残部はFeおよび不可避的不純物からなる高強度冷延鋼板であって、該鋼板の板厚最表面における板面と平行な{100} )面のX線ランダム強度比が5.0以上であるとともに、同鋼板の板厚中心層における板面と平行な{111} 面のX線ランダム強度比が6.0以上であり、かつ、板厚が0.5mm以上2.0mm以下であることを特徴とする曲げ性と深絞り性に優れた高強度冷延鋼板。

【0018】(3)前記高強度冷延鋼板の化学成分において、さらに、重量%で、B:0.0002~0.004%、V:0.002~0.1%、W:0.002~0.1%、Mo:0.003~0.4%、Sn:0.002~0.3%、Cu:0.005~0.3%未満、Cr:0.005~0.4%、Ni:0.005~0.3%のうち1種または2種以上を含有することを特徴とする前記(1)または(2)に記載の曲げ性と深絞り性に優れた高強度冷延鋼板。

【0019】(4)前記(1)、(2)または(3)に記載の高強度冷延鋼板に亜鉛めっきを施したことを特徴とする曲げ性と深絞り性に優れた高強度亜鉛めっき冷延鋼板。

(5) 重量%で、C:0.0025%以下、Si:1.5%以下、Mn:

法。

0.7~2.5%、P:0.15%以下、S:0.015%以下、Al:0.005~0.2%、および、N:0.005%以下を含有し、かつ、Si、MnおよびPを、

 $X = 7 \times Si (\%) + 6 \times Mn (\%) + 110 \times P (\%)$ 

において、15≦ X ≦ 30 を満たす関係の下で含有し、残部はFe および不可避的不純物からなる鋼スラブを熱間圧延し、圧下率50~90%の冷間圧延を施し、連続焼鈍ラインにて ((Ac₁+Ac₃)/2) ℃以上の温度で焼鈍し、焼鈍温度がAc₃変態点以上の場合には、少なくともAr₃変態点から(Ar₃変態点-20) ℃までの温度範囲を平均冷却速度2 ℃/s 10以上10℃/s以下で冷却し、また、焼鈍温度が((Ac₁+Ac₃)/2) ℃以上Ac₃変態点未満の場合には、少なくとも焼鈍温度から(焼鈍温度-20) ℃までの温度範囲を平均冷却速度2 ℃/s以上10℃/s以下で冷却することを特徴とする曲げ性と深絞り性に優れた高強度冷延鋼板の製造方法。【0020】(6)重量%で、C:0.0050%以下、Si:1.5

【0020】(6)重量%で、C:0.0050%以下、Si:1.5%以下、Mn:0.7~2.5%、P:0.15%以下、S:0.015%以下、Al:0.005~0.2%、および、N:0.005%以下、さらに、Ti:0.005~0.15%、Nb:0.005~0.15%、もしくは、Ti+Nb(TiとNbの合計):0.01~0.15%を含有し、かつ、Si、MnおよびPを、

 $X = 7 \times Si (\%) + 6 \times Mn (\%) + 110 \times P (\%)$ 

において、9 ≦ X ≦ 25を満たす関係の下で含有し、残部はFe および不可避的不純物からなる鋼スラブを熱間圧延し、圧下率50~90%の冷間圧延を施し、連続焼鈍ラインにて((Ac1+Ac3)/2)℃以上の温度で焼鈍し、焼鈍温度がAc3 変態点以上の場合には、少なくともAr3 変態点から(Ar3 変態点-20)℃までの温度範囲を平均冷却速度2 ℃/s以上10℃/s以下で冷却し、また、焼鈍温度が((Ac1+Ac3)/2)℃以上Ac3 変態点未満の場合には、少なくとも焼鈍温度から(焼鈍温度-20)℃までの温度範囲を平均冷却速度2 ℃/s以上10℃/s以下で冷却することを特徴とする曲げ性と深絞り性に優れた高強度冷延鋼板の製造方法。

【0021】(7)重量%で、C:0.0025%以下、Si:1.5%以下、Mn:0.7~2.5%、P:0.15%以下、S:0.015%以下、Al:0.005~0.2%、および、N:0.005%以下を含有し、かつ、Si、MnおよびPを、

 $X = 7 \times Si (\%) + 6 \times Mn (\%) + 110 \times P (\%)$ 

において、15≦X≦30を満たす関係の下で含有し、残部はFeおよび不可避的不純物からなる鋼スラブを熱間圧延し、圧下率50~90%の冷間圧延を施し、連続溶融亜鉛めっきラインにて((Ac1+Ac2)/2)℃以上の温度まで加熱し、加熱温度がAc2変態点以上の場合には、少なくともAr2変態点から(Ar2変態点-20)℃までの温度範囲を平均冷却速度2℃/s以上10℃/s以下で冷却し、また、加熱温度が((Ac1+Ac2)/2)℃以上Ac2変態点未満の場合には、少なくとも加熱温度から(加熱温度-20)℃までの温度範囲を平均冷却速度2℃/s以上10℃/s以下で冷却し、その後、亜鉛めっき浴中に浸漬することを特徴とする曲げ性と深絞り性に優れた高強度亜鉛めっき冷延鋼板の製造方

【0022】(8) 重量%で、C:0.0050%以下、Si:1.5%以下、Mn:0.7~2.5%、P:0.15%以下、S:0.015%以下、Al:0.005~0.2%、および、N:0.0050%以下、さらにTi:0.005~0.15%、Nb:0.005~0.15%、もしくは、Ti+Nb(TiとNbの合計):0.01~0.15%を含有し、かつ、Si、MnおよびPを、

 $X=7\times Si(\%) + 6\times Mn(\%) + 110\times P(\%)$ 

において、 $9 \le X \le 25$ を満たす関係の下で含有し、残部はFeおよび不可避的不純物からなる鋼スラブを熱間圧延し、圧下率 $50 \sim 90\%$  の冷間圧延を施し、連続溶融亜鉛めっきラインにて( $(Ac_1 + Ac_3)/2$ ) $\mathbb{C}$ 以上の温度まで加熱し、加熱温度がAc3 変態点以上の場合には、少なくともAr3 変態点から (Ar3 変態点-20)  $\mathbb{C}$ までの温度範囲を平均冷却速度 $2 \mathbb{C}/s$ 以上 $10 \mathbb{C}/s$ 以下で冷却し、また、加熱温度が( $(Ac_1 + Ac_3)/2$ )  $\mathbb{C}$ 以上Ac3 変態点未満の場合には、少なくとも加熱温度から(加熱温度-20)  $\mathbb{C}$ までの温度範囲を平均冷却速度 $2 \mathbb{C}/s$ 以上 $10 \mathbb{C}/s$ 以下で冷却し、その後、亜鉛めっき浴中に浸漬することを特徴とする曲げ性と深絞り性に優れた高強度亜鉛めっき冷延鋼板の製造方法。

【0023】(9)前記亜鉛めっき浴中への浸漬後、460~600℃までの温度範囲で、1s以上の熱処理を行うことを特徴とする前記(7)または(8)に記載の曲げ性と深絞り性に優れた高強度亜鉛めっき冷延鋼板の製造方法。

(10) 前記鋼スラブの化学組成において、さらに、重量%で、B:0.0002~0.004%、V:0.002~0.1%、W:0.002~0.002~0.1%、W:0.002~0.1%、Mo:0.003~0.4%、Sn:0.002~0.3%、Cu:0.005~0.3%未満、Cr:0.005~0.4%、Ni:0.005~0.3%のうち1種または2種以上を含有することを特徴とする前記(5)、(6)、(7)、(8)または(9)に記載の曲げ性と深絞り性に優れた高強度冷延鋼板または高強度亜鉛めっき冷延鋼板の製造方法。

[0024]

【発明の実施の形態】以下、本発明について詳細に説明 する

Cは、鋼板の板厚中心層における {111 } 面の X 線強度を決定する重要な元素である。炭化物形成元素であるTi やNbを含有しない場合、Cが0.0025% 超となると、冷間圧延前に残存する固溶Cの影響または固溶CとMnとの複合体に起因する効果によって、板厚中心層における {11 1 } 面強度が極端に低下し、深絞り性を確保することが困難になる。この観点から、TiやNbを含まない場合には、C量を0.0025%以下とし、さらに、0.0020%以下とすることが望ましい。

【0025】TiやNbを含有する場合には、C量がある程度まで多くなっても、板厚中央層の{111}面強度を確保できるので、その上限を0.0050%とする。Ti、Nbを含有する場合には、0.0030%以下が好ましい範囲である。

Siは、安価に強度を増加させる元素として知られており、その添加量は狙いとする強度レベルに応じて変化するが、添加量が1.5%超となると、Ac, およびAc, 変態温度が高くなりすぎて、冷間圧延後の加熱温度を非常に高くせねばならず製造が困難となる。また、化成処理性の低下を招くこともある。合金化溶融亜鉛めっきを施す場合には、めっき密着性の低下、合金化反応の遅延による生産性の低下などの問題が生じるので、0.6%以下とすることが好ましい。

【0026】Mnは、強度を増加させるのに有効な固溶体強化元素である他、鋼板中心層の{111}面および表面の{100}面におけるX線強度を高くするために有効な元素である。また、Mnは、MnSを形成し熱延時のSによる耳割れを抑制したり、熱延板組織を微細にするので、0.7%以上を添加する。一方、2.5%を超えて添加すると強度が高くなりすぎたり、亜鉛めっきの密着性が阻害されたりするので、上限を2.5%とする。1.0%以上2.0%以下が好ましい範囲である。

【0027】Pは、Siと同様に安価に強度を増加させる元素として知られており、狙いとする鋼板の強度レベルに応じて添加する。また、Pは、熱延組織を微細にし、加工性を向上する効果も有する。ただし、添加量が0.15%を超えると、熱間圧延や冷間圧延時に割れが生ずる場合がある。さらに、連続溶融亜鉛めっき時に合金化反応が極めて遅くなり、生産性が低下する。また、2次加工性も劣化する。したがって、その上限を0.15%とする。

任も劣化する。したかって、その上限をU. 15% とする。 【0028】さらに、本発明においては、Si、MnおよびPを、X=7×Si(%)+6×Mn(%)+110×P(%)で表されるXが、Ti、Nbを含有しない場合には15≦X≦30、Ti、Nbを含有する場合には9≦X≦25となるように添加する。Xに関する前記の限定は、Ti、Nbを含有しない鋼板、ならびに、Ti、Nbを含有する鋼板において、Si、MnおよびPの添加量を系統的に変化させて、化学成分と鋼板表面のND/〈100〉X線強度、さらには、曲げ成形時のスプリングバック量との関係について調査した結果に基づくものである。すなわち、Xを所定の範囲内に制御することによって、初めて、鋼板の表層におけるND//〈100〉集合組織の形成が顕著に促進される。

【0029】Xに適正範囲が存在することの理由は必ずしも明らかではないが、Si、MnおよびPが、表面エネルギーの結晶方位依存性に対して何らかの影響を及ぼすものと推察される。Xの好ましい範囲は、Ti、Nbを含有しない場合には18≦X≦27、Ti、Nbを含有する場合には14≦X≦23である。

【0030】Sは、0.015%超では、熱間割れの原因となったり、加工性を劣化させるので、上限を0.015%とする。Alは、脱酸調製に、および、Tiを添加しない場合にはNの固定に使用する元素であるが、0.005%未満の添加ではその効果が不十分である。一方、0.2%超の添加になると、コストアップを招いたり、表面性状の劣化を招く

ので、上限を0.2%とする。

【0031】Nは、多すぎると、Nを固定するために多 量のTi、Nb、Alが必要になったり、加工性が劣化したり するので、上限を0.005%とする。TiおよびNbは、本発明 において重要な元素である。TiおよびNbの1種以上を適 量添加すると、板厚中心層のND//<111〉集合組織が発達 するだけなく、板厚表層部におけるND//<100> 集合組織 も顕著に発達することが明らかとなった。この効果を発 現せしめるために、Tiを0.005%~0.15%、Nbを0.005%~ 0.15%、もしくは、Ti+Nb(TiとNbの合計):0.01~0.15 % を添加する。Tiおよび/もしくはNbの添加量が少なす ぎると、集合組織に対する効果が十分でなく、一方、Ti および/もしくはNbの添加量が多すぎても、目的とする 集合組織の発達をむしろ妨げてしまうばかりでなく、再 結晶温度が著しく上昇したり、亜鉛めっきの密着性も阻 害される。Tiおよび/もしくはNbの好ましい範囲は、T i:0.015~0.10%、Nb:0.005~0.04%、また、Ti+Nb:0.0 2~0.10% である。

【0032】Bは、2次加工脆化の防止に有効であるほか、鋼板中心層のND//<111〉集合組織を得るのに有効な元素であるので、必要に応じて0.0002%以上添加する。しかし、0.004%を超えて添加しても格段の効果がないばかりか、鋼板の延性が劣悪となるので、上限を0.004%とする。これらを主成分とする鋼に、V、W、Mo、Sn、Cu、Cr、Niのうち1種または2種以上を、V:0.002~0.1%、W:0.002~0.1%、Mo:0.003~0.4%、Sn:0.002~0.3%、Cu:0.005~0.3%未満、Cr:0.005~0.4%、Ni:0.005~0.3%の範囲で含有しても構わない。

【0033】本発明の冷延鋼板においては、Ti、Nbを含 30 有しない場合、良好な曲げ性を確保するために、鋼板最 表面の板面と平行な{100}面のX線ランダム強度比を 3.0以上とし、また、優れた深絞り性を得るために、鋼板中心層の板面と平行な{111}面のX線ランダム強度 比を4.5以上に限定する。また、本発明の冷延鋼板においては、Ti、Nbを含有する場合、同様の理由により、鋼板最表面の板面と平行な{100}面のX線ランダム強度 比を5.0以上とし、また、鋼板中心層の板面と平行な {111}面のX線ランダム強度比を6.0以上に限定する。

【0034】そして、本発明の冷延鋼板の板厚は、0.5~2.0mmである。板厚が0.5mm未満では、表面に発達したND//〈100〉集合組織の影響が大きすぎて、深絞り性を確保することが困難となる。一方、板厚が2.0mmを超えると、表面の寄与が小さくなりすぎて、曲げ性の確保が困難となる。X線による面強度の測定は、例えば、新版カリティX線回折要論(1986年発行、松村源太郎訳、株式会社アグネ)290-292 頁に記載の方法に従って行えばよい。X線測定用の試料調整は以下のようにして行う。【0035】鋼板最表面における{100}面のX線強度

【0035】鋼板最表面における{100}面のX線強度 を測定する場合は、本発明によって得られる冷延鋼板の

表面に、スケールや錆のないことが前提となるので、試 料に特段の処理を行わないが、油等の汚れがある場合に は脱脂を行う。鋼板に亜鉛めっきを施してある場合に は、適当な方法によって亜鉛めっき層を剥離してから測 定する。亜鉛めっき層の剥離には、例えば、鉄インヒビ ターを添加した5%塩酸水溶液などを用いればよい。

•

【0036】鋼板中心層における {111} 面のX線強度 を測定する場合には、機械研磨や化学研磨などによって 板厚中心付近まで研削し、バフ研磨によって鏡面に仕上 げた後、電解研磨や化学研磨によって歪みを除去すると 同時に、板厚中心層が測定面となるように調整する。な お、鋼板の板厚中心層に偏析帯が認められる場合には、 板厚の3/8から5/8の範囲で偏析帯のない場所につ いて測定すればよい。

【0037】次に、製造条件の限定理由について述べ る。熱間圧延に供するスラブは特に限定されるものでは ない。すなわち、連続鋳造スラブや薄スラブキャスター などで製造したものであればよい。また、鋳造後に直ち に熱間圧延を行う連続鋳造ー直接圧延(CC-DR)の ようなプロセスも採用し得る。熱間圧延における粗圧延 後は、シートバーを接合して連続的に熱間仕上げ圧延を 行ってもよい。

【0038】熱間圧延の際の加熱温度は特に限定される ものではないが、熱間圧延時の変形抵抗を小さくするた めに、900 ℃以上とし、一方、表面スケールの過度の生 成を抑制するために、1350℃以下とすることが好まし い。熱間圧延における仕上げ温度は特に限定されるもの ではない。すなわち、通常のAr;変態温度以上のγ相単 相域で行ってもよいし、 $Ar_3$  点未満の $\alpha + \gamma 2$  相域また はα単相域で行ってもよい。いずれの場合にも、潤滑を 30 施しても構わない。

【0039】熱間圧延後の冷却は、冷却条件が限定され るものではないが、熱間圧延の仕上げをAra 点以上で行 った場合には、圧延後1.5 秒以内に冷却を開始し、巻取 温度までの平均冷却速度を30℃/s以上とすることが、冷 延焼鈍板の板厚中心層におけるND//<111〉集合組織を発 達しやすくするという点で好適である。巻取り温度は特 に限定されないが、TiやNbを添加しないときには、650 ~800℃とすることが望ましい。これによって、AIN の 形成、成長が促され、良好な成形性が確保される。Tiや Nbを添加する際には、Nは巻取前に固定されるので、巻 取温度は室温から800 ℃とすればよい。巻取り温度の上 限が800 ℃であることは、コイル両端部での材質劣化に 起因する歩留低下を防止すること、また、熱延組織の粗 大化を防止する観点から決定される。

【0040】冷間圧延は、通常の条件で行ってよいが、 焼鈍後の深絞り性を確保する目的から、その圧下率を、 50% 以上とする。一方、圧下率が90% を超えると、深絞 り性が劣化するので、上限を90%とする。連続焼鈍ある いはライン内焼鈍方式の連続溶融亜鉛めっき設備におけ 50

る焼鈍温度は、本発明において特に重要である。すなわ ち、本発明で目的とする板厚最表面および板厚中心層の 集合組織は、焼鈍時の加熱中に起こる  $\alpha \rightarrow \gamma$  変態、およ び、焼鈍後の冷却中に起こる γ→α変態を介して形成す るものであるから、焼鈍温度を((Acı +Ac₃ ) /2) ℃以上 としなければならない。

【0041】((Ac₁+Ac₃)/2) ℃未満の温度では、 α→γ 変態率が十分でなく、鋼板表面のND//<100> 集合組織の 発達が不十分となる。鋼板表面のND//<100> 集合組織を さらに発達させるためには、焼鈍温度をAc3 変態温度以 上とすることが好ましい。焼鈍温度の上限は、特に限定 されるものではないが、焼鈍温度が高すぎると連続焼鈍 ラインや連続溶融亜鉛めっきライン内で板破断などが発 生したり、製品の表面性状が劣悪となるので、1100℃以 下とすることが好ましい。

【0042】焼鈍後の冷却条件も重要である。すなわ ち、この条件を適切にすることによって、特に、鋼板表 面におけるND//<100> 集合組織を高めることができる。 焼鈍温度がAc3 変態点以上の場合には、少なくとも、Ar 20 3 変態点から (Ar<sub>3</sub>-20) ℃の温度範囲を、また、焼鈍温度 が((Ac<sub>1</sub> +Ac<sub>3</sub>)/2) ℃以上Ac<sub>3</sub> 変態温度未満の場合には、 少なくとも、焼鈍温度から(焼鈍温度-20)℃の温度範囲 を、2 C/s~10C/sの平均冷却速度で冷却する。すなわ ち、少なくとも、変態の初期段階における冷却速度を制 御する必要がある。

【0043】冷却速度が10℃/sを超えると、鋼板表面の ND//<100〉集合組織が弱まり、ND//<100〉以外の結晶方 位が増加してしまう。一方、冷却速度が2℃/s未満で は、鋼板の板厚中心層のND//〈111〉集合組織および同表 面のND//<100> 集合組織が発達しないので、下限を2℃ /sとする。このように冷却速度が鋼板表面における集合 組織形成に影響を及ぼす理由については、必ずしも明ら かではないが、以下のように推察できる。

【0044】すなわち、冷却速度が10℃/sを超えると  $\gamma \rightarrow \alpha$ 変態の駆動力が大きくなる結果、 $\gamma \rightarrow \alpha$ 変態中 に、鋼板表面にND//<100〉以外の方位を持つα粒が多数 核生成し、ND//〈100〉の集積度が低下する。一方で、冷 却速度が2℃/s未満となると、鋼板の内部(最表面以外 の場所) で形成したND//<100> 以外の結晶方位を有する 結晶粒が成長する結果、その一部が表面まで達し、ND// 〈100〉の集積度が弱くなる。

【0045】冷却後の過時効処理は集合組織の形成には 影響しないので、必要に応じて行えばよい。連続溶融亜 鉛めっきを施す場合には、冷却後めっき浴に浸漬し、さ らに、亜鉛めっきをFeと合金化する必要があれば、460 ~600 ℃の温度で1s 以上熱処理を行う。加熱温度が46 0 ℃未満では、合金化が十分に進行せず、一方、600 ℃ 超では、合金化が進行し過ぎて、プレス加工により自動 車用部材とする際にパウダダリングなどの問題が発生す る。それ故、合金化温度を460 ~600 ℃の範囲とする。

合金化時間は特に限定する必要がないが、生産効率の観点から、60s 以内とすることが好ましい。

【0046】焼鈍時の雰囲気は、特に限定されるものではないが、鋼板表面を酸化させない雰囲気にしなくてはならない。すなわち、10% 以下の水素と窒素との混合気体などが好適である。これは、焼鈍過程における  $\alpha \to \gamma$  および  $\gamma \to \alpha$  変態あるいは変態中に鋼板表面に酸化物が形成されると、鋼板表面のND// $\langle 100 \rangle$  集合組織の形成が妨げられるからである。

【0047】焼鈍後は形状矯正や耐時効性の確保のためにスキンパス圧延を施してもよい。本発明によって得られる冷延鋼板は曲げ性と深絞り性とを兼備し、成形後の形状凍結性に優れる高強度鋼板である。次に本発明を実施例にて説明する。

#### [0048]

【実施例】 〈実施例 1 〉表 1 に示す組成を有する鋼(表 1 中、A-1 ~A-10 およびC-1 ~C-10 は、本発明の化学成分に合致するものであり、B-1 ~B-7 およびD-1 ~D-8 は、同化学成分に合致せず、それぞれ、A-1 ~A-10 およびC-1 ~C-10 に対する比較成分となるものである。)を溶製し、スラブ加熱温度 1250 で、仕上げ温度 930 で、巻取り温度 700 でで熱間圧延し、4.0 mm 厚の鋼帯とした。酸洗後、80 % の圧下率の冷間圧延を施し0.8 mm 厚の冷延板とし、次いで、連続焼鈍設備にて10 で/s で加熱し、 $\gamma$  単相域で40 s の焼鈍後、焼鈍温度から (Ars-40) での温度範囲を 5 で/s で冷却し、(Ars-40) で未満の温度を 15 で/s で冷却した。得られた冷延鋼板から 11 S 5号 引張試験片を

14

採取しr値(10%引張)を測定することにより深絞り性の評価を行った。また、引張強度、降伏強度、全伸びもJI S5号引張試験片を用いて評価した。さらに、曲げ加工試験を中川威雄監修の「プレス成形難易ハンドブック第2版」(日刊工業新聞社発行、1997)の482~483頁に記載されているハット曲げ試験方法に準拠して行った。なお、パンチ肩Rおよびダイ肩Rは5mmとした。曲げ成形後の形状凍結性の指標としては、90°曲げ後の開口角度から90°を差し引いた値を用いた。さらに、鋼板表面における{100}面のX線ランダム強度比および鋼板中心層における{111}面のX線ランダム強度比を測定した。

【0049】結果を表2、図1および図2に示す。ここで、図1は、Ti、Nbを添加していない場合の引張強度とスプリングバック量との関係を、また、図2は、Ti、Nbを添加した場合の引張強度とスプリングバック量との関係を表す。これらから明らかなように、Mnの添加量を0.7%以上、さらには、 $X=7\times Si(%)+6\times Mn(%)+110\times P(%)$ で表すXを、Ti、Nbを添加しない場合には $15\leq X\leq 30$ とし、Ti、Nbを添加する場合には $9\leq X\leq 25$ とすることによって、同一引張強度レベルの比較材に比べて、曲げ成形時の形状凍結性と深絞り性に優れた冷延鋼板を得ることができる。また、Xの値は適正であるが、X0、X1、X2、X3、X3、X4、X4、X5 ができる。また、X5 ができる。また、X6 ができる。また、X7 がかの添加量が十分でない比較例X5 に、X6 ができる。また、X7 がかの添加量が十分でない比較例X7 に、X8 がかかる。

[0050]

【表1】

|                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <del>,</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | , <del></del>                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| T3+Nb                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [ 1 ] [ 1 ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000000000000000000000000000000000000                         | 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.00.00.00.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |
| ×                        | 27-00-100-100-100-100-100-100-100-100-100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2011-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                | 26.25.1.25.05.<br>26.25.1.25.05.<br>26.25.1.25.05.<br>26.25.05.05.05.05.05.05.05.05.05.05.05.05.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (4)                           |
| V. W. Ko. Sn. Cu. Cr. Ni | =0, 20, Ki=0, 11  -0, 26, Cr-0, 15  Y=0, 006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cu=0. 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sn=0. 15<br>                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C+ (e) + E × N-(e) + 11 (p) D |
| æ                        | 0. 00<br>0. 00<br>1. 0003<br>1. 0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0003                                                         | 0.0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Y=7 × C                       |
| 2                        | 000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0. 0024<br>0. 0021<br>0. 0023<br>0. 0023<br>0. 0018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0. 0025<br>0. 0025<br>0. 0025<br>0. 0023<br>0. 0023<br>0. 0023 | 0.0020<br>0.0023<br>0.0023<br>0.0023<br>0.0023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |
| Nb                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.022<br>0.008<br>0.030<br>0.015<br>0.028<br>-                 | 0.003 A<br>0.004 A<br>0.020<br>0.022<br>0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |
| Ti                       | 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0. 018<br>0. 053<br>0. 035<br>0. 040<br>0. 024<br>0. 044       | 0, 004 A<br>0, 0032 A<br>0, 040 A<br>0, 070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |
| 1,1                      | 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.055<br>0.042<br>0.050<br>0.050<br>0.051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0000000000<br>000000000000000000000000000                      | 0.000000<br>0.000000<br>0.000000<br>0.0000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S<br>田<br>人                   |
| S                        | 000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00.000<br>0.0000<br>0.0003<br>0.0005<br>0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 000000000000000000000000000000000000000                        | 000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5発田の節                         |
| ۵.                       | 0.0.0.0.0.0.0.0<br>0.0.0.0.0.0.0.0<br>0.0.0.0.0.0.0<br>0.0.0.0.0.0<br>0.0.0.0.0.0<br>0.0.0.0.0.0.0<br>0.0.0.0.0.0.0.0<br>0.0.0.0.0.0.0.0<br>0.0.0.0.0.0.0.0.0<br>0.0.0.0.0.0.0.0<br>0.0.0.0.0.0.0.0<br>0.0.0.0.0.0.0.0<br>0.0.0.0.0.0.0.0<br>0.0.0.0.0.0.0.0<br>0.0.0.0.0.0.0.0<br>0.0.0.0.0.0.0<br>0.0.0.0.0.0.0.0<br>0.0.0.0.0.0.0<br>0.0.0.0.0.0<br>0.0.0.0.0<br>0.0.0.0.0<br>0.0.0.0<br>0.0.0.0<br>0.0.0.0<br>0.0.0.0<br>0.0.0.0<br>0.0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0 | 0.000<br>0.000<br>0.000<br>0.000<br>0.013<br>147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00.00.00.00.00.00.00.00.00.00.00.00.0                        | 00000000<br>0000000<br>00000000<br>000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | * · <                         |
| K.                       | 01111111111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.22.0000<br>5.52.22.23.53.53<br>5.52.23.53.53<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52.20<br>5.52. |                                                                | 22.01.01.01.0<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.0000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.0000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.0000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.0000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.0000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.0000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.0000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80.000<br>80 |                               |
| Si                       | 00000004400<br>00000044000<br>00000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3000001<br>3000001<br>3000001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 325 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                      | 00000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |
| ວ                        | 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000000000000000000000000000000000000000                        | 0.000000<br>0.0000000<br>0.00024<br>0.00234<br>0.00234<br>0.00234<br>0.00234<br>0.00234<br>0.00234<br>0.00234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |
| 爾爾                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ######################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ကရာအအရေ မေရ<br>ပင်္ပင်္ပင်္ပင်္ပင်္ပင်္ပင်္                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7-4- a ¥                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |

[0051]

【表2】

| 表2                                               |                                                             | • •                                                                                     |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                           |                                                                                  |                                        |                                        |                                    |                              |                                         |                                                                                                                                                                                                                      |
|--------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|------------------------------------|------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 鋼種                                               | 焼鈍温度                                                        | Acı                                                                                     | ÅC2                                                                  | Acs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 引張強度                                                      | 降伏強度                                                                             | 伸び                                     | 平均                                     | 表層(100 ) X 線                       | 中心層 (111 ) X 線               | スプリングバック                                | 備考                                                                                                                                                                                                                   |
|                                                  | °C                                                          | ${\mathfrak C}$                                                                         | $\mathfrak{C}$                                                       | ${\mathfrak C}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MPa                                                       | MPa                                                                              | *                                      | r値                                     | ランタム強度比                            | デンダム強度比                      | 角度°                                     |                                                                                                                                                                                                                      |
| A                                                | 910<br>920<br>920<br>830<br>930<br>930<br>930<br>910        | 50000000000000000000000000000000000000                                                  | 90000000000000000000000000000000000000                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 35040<br>35040<br>44445555544<br>5544                     | 800488821753<br>8000000000000000000000000000000000000                            | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | האסטטטר-אינטנטטאי                      | 804'00:00:00:00-<br>ನೆಣ'ತಣಕಾಕಕಾಕಿತ | 73822743997                  | 8381962534<br>67786768098               | 発養養養養養養養養養養養養養養養養養養養養養養養養養養養養養養養養養養養養                                                                                                                                                                                |
| BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB           | 915<br>905<br>940<br>940<br>910<br>850<br>940               | 85<br>862<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95 | 99555555<br>9956688                                                  | 85550<br>85500<br>85500<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>856000<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>85600<br>856000<br>85600<br>85600<br>85600<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>850000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>850000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>850000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>850000<br>850000<br>850000<br>850000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>85000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>800 | 835000000000000000000000000000000000000                   | HANGE STA                                                                        | 88758877533<br>17533                   | ************************************** | 4444<br>9504759<br>Nederleisi-i    | 44444<br>60436495<br>9439443 | 9.34<br>9.04<br>10.44<br>15.14<br>17.84 | <b>社会</b><br><b>被投资</b><br><b>被投资</b><br><b>被投资</b><br><b>被投资</b><br><b>被投资</b><br><b>被投资</b><br><b>被投资</b><br><b>被投资</b><br><b>被投</b><br><b>被投资</b><br><b>被投</b><br><b>被投</b><br><b>被投</b><br><b>被投</b><br><b>被</b> |
| 100045557800<br>00000000000000000000000000000000 | 910<br>905<br>920<br>890<br>910<br>930<br>910<br>930<br>835 | 875<br>885<br>845<br>845<br>880<br>890<br>890<br>890<br>840                             | 5000<br>99185<br>1555<br>1555<br>1555<br>1555<br>1555<br>1555<br>155 | 780<br>760<br>8745<br>8745<br>7750<br>7750<br>7750<br>7750<br>7750<br>7750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 370115602886104<br>4562886104<br>4562867404<br>4562867404 | 355385855859<br>2553858585858585858585858585858585858585                         | ************************************** | 897-67-65-56                           | 21715150000001<br>66657555555      | 5406-24-35<br>7:87:67:6ddd66 | <u> </u>                                | <b>教教教养养养养养养养养</b><br><b>教教例例例例例例例例例例例例</b>                                                                                                                                                                          |
| 12345 <del>0</del> 7-8                           | 5550005000<br>988933500<br>988933500                        | 87558855550<br>88855550<br>888688888888888888888                                        |                                                                      | 75000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SH-8800000000000000000000000000000000000                  | 288<br>258<br>265<br>265<br>266<br>266<br>266<br>266<br>266<br>266<br>266<br>266 | % <del>3%%%%</del> 219 <sup>~</sup>    | 9448456                                | 4333322221                         | 444444455<br>744654455       | 444444<br>200000000004<br>767700100**   | 校校校校校校校校校校校                                                                                                                                                                                                          |

‡均一伸びが10%に満たないため評価不能

\*\*曲げ変形時に亀裂発生

△:本発明の範囲外

<実施例2>表1に示す鋼A-1、C-1 およびC-2 を用い \* て、スラブ加熱温度1200℃、仕上げ温度900 ℃、巻取り温度550 ℃で熱間圧延し、3.5mm 厚の鋼帯とした。酸洗後、80% の圧下率の冷間圧延を施し0.7mm 厚の冷延板とし、次いで、連続焼鈍設備にて10℃/sで加熱し、α単相からγ単相まで焼鈍温度を変化させた。その後、700℃まで3.5 ℃/sの平均冷却速度で冷却し、さらに、700 ℃より400 ℃まで平均冷却速度を50℃/sとし、次いで、40 30 0 ℃にて150sの過時効処理を行った。さらに、1.0%の圧下率の調質圧延をし、実施例1と同様の方法で、引張試\*表3

\*験、X線による面強度の測定、および、曲げ試験を行った。

【0052】結果を表3に示す。これより明らかなように、焼鈍温度が適正な範囲にない場合には、鋼板表面の {100} 面強度が低くなるため、曲げ成形時のスプリングバック量が大きくなっている。これに対して、焼鈍を適正な温度範囲で行った場合には、曲げ成形時の形状凍結性と深絞り性に優れた冷延鋼板を得ることができる。

[0053]

【表3】

| 匈種         | 焼鈍温度<br>℃        | Ac₁<br>℃ | %C₃ | Aca<br>℃ | 引張強度<br>MPa | 降伏強度<br>MPa | 伸び<br>*     | 平均<br>r値 | 表層 {100 } X 線<br>ランタム強度比 | 中心層(111) X 線<br>ランタム強度比 | スプリングバック<br>角度 <sup>°</sup> | 備考         |
|------------|------------------|----------|-----|----------|-------------|-------------|-------------|----------|--------------------------|-------------------------|-----------------------------|------------|
| A-1        | 900              | 865      | 895 | 820      | 374         | 251         | 37          | 1.5      | 4. 4                     | 5. 9                    | 6. 6                        | 発明例        |
|            | 890              |          |     |          | 371         | 244         | <b>38</b> . | 1.6      | 4. 1                     | 5. 9                    | <b>6.</b> 8.                | 発明例        |
|            | 870 <sup>Δ</sup> |          |     |          | 368         | 233         | 39          | 1.7      | 1.7                      | 6.4                     | 8. 9                        | 比較例        |
|            | 840 <sup>Δ</sup> | _        | ļ   |          | 370         | 239         | 38          | 1.6      | 1. 3 <sup>Δ</sup>        | 6. 2                    | 9. 9                        | 比較例        |
| C-1        | 915              | 875      | 905 | 795      | 367         | 248         | 36          | 1.8      | 6. 4                     | 7. 3                    | 4. 9                        | 発明例        |
|            | 895              |          |     |          | 365         | 240         | 37          | 1.8      | <b>6.</b> 1              | 7. 0                    | 5. 2                        | 発明例        |
|            | 885 <sup>△</sup> | 1        |     |          | 359         | 235         | 37          | 1.9      | 2.7△                     | 7. 7                    | 8. 6                        | <b>比較例</b> |
|            | 850 <sup>△</sup> |          |     |          | 365         | 241         | 38          | 1.7      | 2.3 <sup>Δ</sup>         | 6. 9                    | 9. 5                        | 比較例        |
| <b>C-2</b> | 910              | 865      | 900 | 775      | 409         | 280         | · 33        | 1.8      | 7.4                      | 8. 3                    | 6. 1                        | 発明例        |
|            | 890              |          |     |          | 405         | 274         | 33          | 1.8      | 7. 1                     | 8.1                     | 6. 4                        | 発明例        |
|            | 875 <sup>Δ</sup> |          |     |          | 403         | 270         | 34          | 1.9      | 2.9 <sup>Δ</sup>         | 8.8                     | 10. 4                       | 比較例        |
|            | 830 <sup>Δ</sup> |          |     |          | 420         | 296         | 31          | 1.7      | 1.8 <sup>Δ</sup>         | 7. 1                    | 10.9                        | 比較例        |

△:本発明の範囲外

巻取り温度550、℃で熱間圧延し、3.5mm 厚の鋼帯とした。酸洗後、80% の圧下率の冷間圧延を施し0.7mm 厚の冷延板とし、次いで、連続焼鈍設備にて10℃/sで加熱し、910 ℃で40s の焼鈍を行った。その後、700 ℃まで種々の冷却速度で冷却し、さらに、700 ℃より室温まで平均冷却速度を80℃/sで冷却した。このようにして得られた冷延鋼板について、実施例1および2と同様にし

19

て、引張試験、X線による面強度の測定、および、曲げ 試験を行った。 \*【0054】結果を表4に示す。これより明らかなように、冷却速度を適正な範囲とした場合には、曲げ成形時の形状凍結性と深絞り性に優れた冷延鋼板を得ることができるが、冷却速度を本発明の範囲外とすると、鋼板表面の{100}面強度が低くなるため、曲げ成形時のスプリングバック量が大きくなっている。

[0055]

【表4】

表4

| 鋼種          | 冷却速度<br>℃/s      | Ac₁<br>℃ | γc₃<br>γc₃ | Ac₃<br>℃ | 引張強度<br>MPa | 降伏強度<br>MPa | 伸び<br>% | 平均<br>r値 | 表層 {100 } X 線<br>ランダム強度比 | 中心層 {111 } X 線<br>ランタム強度比 | スプリンダバック<br>角度 。  | 備考  |
|-------------|------------------|----------|------------|----------|-------------|-------------|---------|----------|--------------------------|---------------------------|-------------------|-----|
| <b>Å</b> −1 | 1^               | 865      | 895        | 825      | 369         | 254         | 38      | 1.4      | 2.2 <sup>Δ</sup>         | <b>5</b> . 1              | 10.9 <sup>△</sup> | 比較例 |
|             | 5                |          |            | 805      | 379         | . 266       | 36      | 1.5      | 4.0                      | 5. 8                      | 7. 0              | 発明例 |
|             | 10               |          |            | 790      | 380         | 269         | 36      | 1.5      | 3.4                      | 6. 0                      | 7.7               | 発明例 |
|             | 20 <sup>Δ</sup>  |          |            | 760      | 387         | 288         | 34      | 1.5      | 2.0 <sup>Δ</sup>         | 6. 1                      | 11.0 <sup>△</sup> | 比較例 |
| C-1         | · 1 <sup>Δ</sup> | 875      | 905        | 805      | 355         | 238         | 37      | 1. 7     | 2.5 <sup>4</sup>         | 6.4                       | 8. 7 <sup>△</sup> | 比較例 |
|             | 5                |          |            | 790      | 368         | 250         | 36      | 1.8      | 6. 4                     | 7. 6                      | 4.9               | 発明例 |
|             | 10               |          |            | 780      | 373         | 253         | 36      | 1.9      | 5. 5                     | 8. 0                      | 5.7               | 発明例 |
|             | 20 <sup>△</sup>  |          |            | 755      | 389         | 262         | 34      | 1.9      | 2.9△                     | 8. 4                      | 9.3 <sup>Δ</sup>  | 比較例 |
| C-2         | 1 4              | 865      | 900        | 785      | 404         | 261         | 34      | 1.6      | 2.8 <sup>^</sup>         | 6.3                       | 9.8 <sup>Δ</sup>  | 比較例 |
|             | 5                |          |            | 765      | 422         | 287         | 32      | 1.8      | 6. 9                     | 8.2                       | 6. 2              | 発明例 |
|             | 10               |          |            | 750      | 429         | 295         | 31      | 1.8      | 5. 4                     | 8. 4                      | 6.9               | 発明例 |
|             | 20 △             |          |            | 730      | 433         | 317         | 27      | 1. 9     | 2.7△                     | 8.5                       | 10.6 <sup>Δ</sup> | 比較例 |

#### △:本発明の範囲外

〈実施例4〉表1の試料C-1、C-8、D-1 およびD-8を、実施例1と同じ条件で熱間圧延、冷間圧延を行った。次いで、連続溶融亜鉛めっきラインにて加熱速度15℃/s、最高到達温度をγ単相域、最高到達温度から(Ar: 3-30)℃までを4℃/sで冷却し、さらに、500℃まで10℃/sで冷却し、460℃のめっき浴に浸漬し、再加熱して、※表5

※520 ℃で20s の合金化熱処理を行った。これらの結果を表5に示す。これより、化学成分と製造条件を適正な範囲に制御することで、曲げ性と深絞り性に優れた溶融亜鉛めっき冷延鋼板を得ることができることがわかる。

[0056]

【表5】

| 鋼種  | 最高到達<br>温度℃ | Ac₁<br>℃ | Ac₃<br>℃ | Ac. | 引張強度<br>MPa | 降伏強度<br>Wa | 伸び<br>% | 平均<br>r值 | 表層 {100 } X 線<br>ランタム強度比 | 中心層 {111 } X 線<br>ランタム強度比 | スプリンダパック<br>角度 ° | 備考  |
|-----|-------------|----------|----------|-----|-------------|------------|---------|----------|--------------------------|---------------------------|------------------|-----|
| C-1 | 920         | 880      | 910      | 795 | 382         | 262        | 34      | 1.7      | 6. 8                     | 7. 3                      | 5. 4             | 発明例 |
| C-8 | 915         | 870      |          | 750 | 355         | 248        | 38      | 1.9      | 5. 9                     | 9. 0                      | 5. 2             | 発明例 |
| D-1 | 920         | 885      | 920      | 755 | 410         | 288        | 31      | 1.4      | 3.5 <sup>△</sup>         | 6. 9                      | 7.7 <sup>Δ</sup> | 比較例 |
| D-7 | 905         | 865      | 900      | 790 | 349         | 231        | 38      |          | 2.5 <sup>△</sup>         | 5. 3 <sup>△</sup>         | 8.9 <sup>Δ</sup> | 比較例 |

△:本発明の範囲外

#### [0057]

【発明の効果】本発明により、鋼板表層近傍の加工度が高い成形、例えば、曲げ加工時の形状凍結性に優れるのはもちろんのこと、深絞り成形性および深絞り成形時の形状凍結性にも優れた冷延鋼板と溶融亜鉛めっき冷延鋼板を得ることができる。このように、本発明の冷延鋼板は、強度と加工性を兼ね備えた鋼板であるので、使用に

当たっては今までの冷延鋼板より板厚を減少でき、例えば、自動車の車体の軽量化を可能とするものである。したがって、本発明は、地球環境保全にも寄与できるものである。

# 【図面の簡単な説明】

【図1】Ti、Nbを添加していない場合の引張強度と曲げ成形時のスプリングバック量との関係を表す図である。

【図2】Ti、Nbを添加した場合の引張強度と曲げ成形時\* \*のスプリングバック量との関係を表す図である。

【図1】

図 1



【図2】

図 2 14.0 . 12.0 スプリングバック屋。 10.0 8.0 6.0 ● 発明例 ▲ 比較例 4.0 2.0 300 350 400 450 500 550 引張強度, MPa

フロントページの続き

(51) Int. Cl. <sup>7</sup>

識別記号

C 2 3 C 2/06

2/28

(72) 発明者 吉田 亨

千葉県富津市新富20-1 新日本製鐵株式

会社技術開発本部内

(72) 発明者 秋末 治

千葉県富津市新富20-1 新日本製鐵株式

会社技術開発本部内

F I 2/06 C 2 3 C 2/28

テーマコート (参考)

Fターム(参考) 4K027 AA02 AA23 AB28 AB42 AC12

AC18 AC73. AE12 AE18

4K037 EA00 EA01 EA02 EA04 EA11

EA13 EA15 EA16 EA17 EA18

EA19 EA20 EA23 EA25 EA27 EA28 EA31 EA32 EA33 EB01

EB05 EB09 FA01 FA02 FA03

FD04 FE03 FE05 FH01 FJ01

FJ06 FK02 FK03 FK08 FL02

FM02 GA05 GA07 JA06