



# Giới thiệu

- Thuật ngữ:
  - Data compression
  - **■** Encoding
  - Decoding
  - Lossless data compression
  - Lossy data compression
  - ...

Cấu trúc dữ liệu và giải thuật - HCMUS 2011

### Giới thiệu

- Nén dữ liệu
  - Nhu cầu xuất hiện ngay sau khi hệ thống máy tính đầu tiên ra đời.
  - □ Hiện nay, phục vụ cho các dạng dữ liệu đa phương tiện
  - Tăng tính bảo mật.
- - Lưu trữ
  - Truyền dữ liệu

Cấu trúc dữ liệu và giải thuật - HCMUS 2011



- Nguyên tắc:
  - Encode và decode sử dụng cùng một scheme.



Cấu trúc dữ liệu và giải thuật - HCMUS 2011

# Khái niệm

- Tỷ lệ nén (Data compression ratio)
  - Tỷ lệ giữa kích thước của dữ liệu nguyên thủy và của dữ liệu sau khi áp dụng thuật toán nén.
  - Goi:
    - N là kích thước của dữ liệu nguyên thủy,
    - N₁ là kích thước của dữ liệu sau khi nén.
    - Tỷ lệ nén R:  $R = \frac{N}{N_1}$
  - Ví du:
    - Dữ liệu ban đầu 8KB, nén còn 2 KB. Tỷ lệ nén: 4-1

Cấu trúc dữ liệu và giải thuật - HCMUS 2011

# Khái niệm

- Tỷ lệ nén (Data compression ratio)
  - Về khả năng tiết kiệm không gian: Tỷ lệ của việc giảm kích thước dữ liệu sau khi áp dụng thuật toán nén.
  - □ Gọi:
    - N là kích thước của dữ liệu nguyên thủy,
    - N₁ là kích thước của dữ liệu sau khi nén.
    - Tỷ lệ nén R:  $R = 1 \frac{N_1}{N}$
  - Ví du:
    - Dữ liệu ban đầu 8KB, nén còn 2 KB. Tỷ lệ nén: 75%

Cấu trúc dữ liệu và giải thuật - HCMUS 2011

# Khái niệm

- Nén dữ liệu không mất mát thông tin (Lossless data compression)
  - Cho phép dữ liệu nén được phục hồi nguyên vẹn như dữ liệu nguyên thủy (lúc chưa được nén).
  - Ví du:
    - Run-length encoding
    - LZW
    - ...
  - □ Úng dụng:
    - Anh PCX, GIF, PNG,..
    - Tập tin \*. ZIP
    - Úng dụng gzip (Unix)

Cấu trúc dữ liệu và giải thuật - HCMUS 2011

### Khái niệm

- Nén dữ liệu mất mát thông tin (Lossy data compression)
  - Dữ liệu nén được phục hồi
    - không giống hoàn toàn với dữ liệu nguyên thủy;
    - gần đủ giống để có thể sử dụng được.
  - □ Úng dụng:
    - Dùng để nén dữ liệu đa phương tiện (hình ảnh, âm thanh, video):
      - Anh: JPEG, DjVu;
      - Âm thanh: AAC, MP2, MP3;
      - Video: MPEG-2, MPEG-4

Cấu trúc dữ liệu và giải thuật - HCMUS 2011

Nến Huffman tĩnh

Cấu trúc dữ liệu và giải thuật - HCMUS 2011

#### Giới thiệu

11

- Mong muốn:
  - Một giải thuật nén bảo toàn thông tin;
  - Không phụ thuộc vào tính chất của dữ liệu;
  - Úng dụng rộng rãi trên bất kỳ dữ liệu nào, với hiệu suất tốt.

Cấu trúc dữ liệu và giải thuật - HCMUS 2011

#### Giới thiệu

12

- Tư tưởng chính:
  - Phương pháp cũ: dùng 1 dãy bit cố định để biểu diễn 1 ký tự
  - David Huffman (1952): tìm ra phương pháp xác định mã tối ưu trên dữ liệu tĩnh :
    - Sử dụng vài bit để biểu diễn 1 ký tự (gọi là "mã bit" bit code)
    - Độ dài "mã bit" cho các ký tự không giống nhau:
    - Ký tự xuất hiện nhiều lần: biểu diễn bằng mã ngắn;
    - Ký tự xuất hiện ít : biểu diễn bằng mã dài
    - => Mã hóa bằng mã có độ dài thay đổi (Variable Length Encoding)

Cấu trúc dữ liệu và giải thuật - HCMUS 2011

### Giới thiệu

13

Giả sử có dữ liệu sau đây:
 ADDAABBCCBAAABBCCCBBBCDAADDEEAA

| Ký tự | Tần số xuất hiện |
|-------|------------------|
| A     | 10               |
| В     | 8                |
| C     | 6                |
| D     | 5                |
| Е     | 2                |

o Biểu diễn 8 bit/ký tự cần:

$$(10 + 8 + 6 + 5 + 2) * 8 =$$
**248 bit**

Cấu trúc dữ liệu và giải thuật - HCMUS 2011

# Giới thiệu

14

• Dữ liệu:

ADDAABBCCBAAABBCCCBBBCDAADDEEAA

o Biểu diễn bằng chiều dài thay đổi:

| Ký tự | Tần số | Mã  |
|-------|--------|-----|
| A     | 10     | 11  |
| В     | 8      | 10  |
| C     | 6      | 00  |
| D     | 5      | 011 |
| Е     | 2      | 010 |

$$(10*2 + 8*2 + 6*2 + 5*3 + 2*3) = 69$$
 bit

Cấu trúc dữ liệu và giải thuật - HCMUS 2011

### Thuật toán nén

15

[B1]: Duyệt tập tin -> Lập bảng thống kê tần số xuất hiện của các ký tự.

[B2]: Xây dựng cây Huffman dựa vào bảng thống kê tần số xuất hiện

[B3]: Phát sinh bảng mã bit cho từng ký tự tương ứng

[B4]: Duyệt tập tin -> Thay thế các ký tự trong tập tin bằng mã bit tương ứng.

[B5]: Lưu lại thông tin của cây Huffman cho giải nén

Cấu trúc dữ liệu và giải thuật - HCMUS 2011



# Thuật toán nén - Thống kê tần số

17

#### • Dữ liệu:

#### ADDAABBCCBAAABBCCCBBBCDAADDEEAA

| Ký tự | Tần số xuất hiện |
|-------|------------------|
| A     | 10               |
| В     | 8                |
| C     | 6                |
| D     | 5                |
| Е     | 2                |

Cấu trúc dữ liệu và giải thuật - HCMUS 2011

# Thuật toán nén – Tạo cây Huffman

Cây Huffman: cây nhị phân

- Mỗi node lá chứa 1 ký tự
  - Mỗi node cha chứa các ký tự của những node con.
  - Trọng số của node:
    - Node con: tần số xuất hiện của ký tự tương ứng
    - Node cha: Tổng trọng số của các node con.



Cấu trúc dữ liệu và giải thuật - HCMUS 2011



#### Thuật toán nén - Tạo cây Huffman

20

- Phát sinh cây:
  - Bước 1: Chọn trong bảng thống kê hai phần tử *x*,*y* có trọng số thấp nhất.
  - Bước 2: Tạo 2 node của cây cùng với node cha z có trọng số bằng tổng trọng số của hai node con.
  - Bước 3: Loại 2 phần tử x,y ra khỏi bảng thống kê.
  - Bước 4: Thêm phần tử z vào trong bảng thống kê.
  - Bước 5: Lặp lại Bước 1-4 cho đến khi còn 1 phần tử trong bảng thống kê.

Cấu trúc dữ liệu và giải thuật - HCMUS 2011

# Thuật toán nén - Tạo cây Huffman

21

- Quy ước:
  - Node có trọng số nhỏ hơn sẽ nằm bên nhánh trái. Node còn lại nằm bên nhánh phải.
  - Nếu 2 node có trọng số bằng nhau
    - Node nào có ký tự nhỏ hơn thì nằm bên trái
    - Node có ký tự lớn hơn nằm bên phải.

Cấu trúc dữ liệu và giải thuật - HCMUS 2011

# 









### Thuật toán nén - Phát sinh mã bit

27

- Mã bit của từng ký tự: đường đi từ node gốc của cây Huffman đến node lá của ký tự đó.
- o Cách thức:
  - Bit 0 được tạo ra khi đi qua nhánh trái
  - Bit 1 được tạo ra khi đi qua nhánh phải

Cấu trúc dữ liệu và giải thuật - HCMUS 2011



# Thuật toán nén – Nén dữ liệu

29

- Duyệt tập tin cần nén
- Thay thế tất cả các ký tự trong tập tin bằng mã bit tương ứng của nó.

Cấu trúc dữ liệu và giải thuật - HCMUS 2011

### Thuật toán nén – Lưu lại thông tin

30

- o Phục vụ cho việc giải nén.
- o Cách thức:
  - Cây Huffman
  - Bảng tần số

Cấu trúc dữ liệu và giải thuật - HCMUS 2011

#### Thuật toán giải nén

31

- Phục hồi cây Huffman dựa trên thông tin đã lưu trữ.
- Lặp
  - □ Đi từ gốc cây Huffman
  - Đọc từng bit từ tập tin đã được nén
    - Nếu bit 0: đi qua nhánh trái
    - Nếu bit 1: đi qua nhánh phải
    - Nếu đến node lá: xuất ra ký tự tại node lá này.
- o Cho đến khi nào hết dữ liệu

Cấu trúc dữ liệu và giải thuật - HCMUS 2011

# Vấn đề khác

32

• Có thể không lưu trữ cây Huffman hoặc bảng thống kê tần số vào trong tập tin nén hay không?

Cấu trúc dữ liệu và giải thuật - HCMUS 2011

# Vấn đề khác

33

 Thống kê sẵn trên dữ liệu lớn và tính toán sẵn cây Huffman cho bộ mã hóa và bộ giải mã.

#### Ưu điểm:

- Giảm thiểu kích thước của tập tin cần nén.
- Giảm thiểu chi phí của việc duyệt tập tin để lập bảng thống kê

#### Khuyết điểm:

■ Hiệu quả không cao trong trường hợp khác dạng dữ liệu đã thống kê

Cấu trúc dữ liệu và giải thuật - HCMUS 2011

34

# Hỏi và Đáp

Cấu trúc dữ liệu và giải thuật - HCMUS 2011