

Features

- ★ Split Gate Trench MOS Technology
- ★ 100% EAS Guaranteed
- ★ Fast Switching Speed
- ★ Green Device Available

Product Summary

BVDSS	RDSON	ID
30V	5.5mΩ	45A

Applications

- ★ High Frequency Switching and Synchronous Rectification.
- ★ DC/DC Converter.

PDFN3333-8L Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units	
V _{DS}	Drain-Source Voltage	30	V	
V _G S	Gate-Source Voltage	±20	V	
I _D @T _C =25℃	Continuous Drain Current, V _{GS} @ 10V ¹	45	А	
I _D @T _C =100℃	Continuous Drain Current, V _{GS} @ 10V ¹	33	Α	
I _D @T _A =25℃	Continuous Drain Current, V _{GS} @ 10V ¹		А	
I _D @T _A =70℃	I _D @T _A =70°C Continuous Drain Current, V _{GS} @ 10V ¹		Α	
I _{DM}	Pulsed Drain Current ²	208	А	
EAS	EAS Single Pulse Avalanche Energy ³		mJ	
I _{AS}	I _{AS} Avalanche Current		Α	
P _D @T _C =25°C	P _D @T _C =25°C Total Power Dissipation⁴		W	
T _{STG}	T _{STG} Storage Temperature Range		$^{\circ}$	
TJ	T _J Operating Junction Temperature Range		°C	

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
R _{0JA}	Thermal Resistance Junction-Ambient ¹		60	°C/W
Rejc	Thermal Resistance Junction-Case ¹		4.1	°C/W

Electrical Characteristics (T_J=25 , unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} =0 V , I_D =250 u A	30			V
Dagger	Static Drain-Source On-Resistance ²	V _{GS} =10V , I _D =20A		5.5	7	m0
R _{DS(ON)}		V _{GS} =4.5V , I _D =15A		7.5	10	mΩ
V _{GS(th)}	Gate Threshold Voltage	V _{GS} =V _{DS} , I _D =250uA	1.2	1.6	2	V
l	Drain Source Lookage Current	V _{DS} =30V , V _{GS} =0V , T _J =25°C			1	uA
I _{DSS}	Drain-Source Leakage Current	V _{DS} =30V , V _{GS} =0V , T _J =100°C			100	
Igss	Gate-Source Leakage Current	V _{GS} =±20V , V _{DS} =0V			±100	nA
gfs	Forward Transconductance	V _{DS} =10V , I _D =20A		60		S
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		1.5		Ω
Qg	Total Gate Charge (4.5V)			10.3		
Qgs	Gate-Source Charge	V _{DS} =15V , V _{GS} =10V , I _D =20A		1.8		nC
Q _{gd}	Gate-Drain Charge			1.7		
T _{d(on)}	Turn-On Delay Time			4.4		
Tr	Rise Time	V_{DD} =15V , V_{GS} =10V , R_{G} =3 Ω		3.6		
T _{d(off)}	Turn-Off Delay Time	I _D =20A		12.2		ns
Tf	Fall Time			2.7		
Ciss	Input Capacitance			625		
Coss	Output Capacitance V _{DS} =15V , V _{GS} =0V , f=1MHz			240		pF
C _{rss}	Reverse Transfer Capacitance			25		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
ls	Continuous Source Current ^{1,6}	V _G =V _D =0V , Force Current			45	Α
V_{SD}	Diode Forward Voltage ²	V _{GS} =0V , I _S =1A , T _J =25°C			1.2	V
t _{rr}	Reverse Recovery Time	IF=20A , di/dt=100A/μs ,		20		nS
Qrr	Reverse Recovery Charge	T _J =25℃		4		nC

Note:

- 1. The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.
- 2.The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%
- 3. The EAS data shows Max. rating . The test condition is VDD=25V, VGS=10V, L=0.4 mH , IAS=13A $\,$
- 4. The power dissipation is limited by 150°C junction temperature
- 5. The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

Typical Characteristics

Figure 1. Output Characteristics

Figure 3. Forward Characteristics of Reverse

Figure 5. R_{DS(ON)} vs. I_D

Figure 2. Transfer Characteristics

Figure 4. $R_{DS(ON)}$ vs. V_{GS}

Figure 6. Normalized $R_{DS(on)}$ vs. Temperature

Figure 7. Capacitance Characteristics

Figure 9. Power Dissipation

Figure 8. Gate Charge Characteristics

Figure 10. Safe Operating Area

Figure 11. Normalized Maximum Transient Thermal Impedance

Package Mechanical Data-PDFN3333-8L-Single

Front View

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M,1994.
- 2. ALL DIMNESIONS IN MILLIMETER (ANNGLE IN DEGREE).
- DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD FLASH PROTRUSIONS OR GATE BURRS.

DIM.	MILLIMETER			
DIM.	MIN.	NOM.	MAX.	
A	0.70	0.75	0.80	
b	0.25	0.30	0.35	
c	0.10	0.20	0.25	
D	3.00	3.15	3.25	
D1	2.95	3.05	3.15	
D2	2.39	2.49	2.59	
E	3.20	3.30	3.40	
E1	2.95	3.05	3.15	
E2	1.70	1.80	1.90	
e	0.65 BSC			
Н	0.30	0.40	0.50	
L	0.25	0.40	0.50	
a			15°	

DIMENSIONS:MILLIMETERS