CODEFEST AD ASTRA

PRESENTADO A:

FUERZA AEREA DE COLOMBIA

PRESENTADO POR:

VICTOR HUGO CARDENAS

JUAN BARRERAS

NATALIA HERNANDEZ

IVAN MUÑOZ

JUAN OSPITIA

UNICOMFACAUCA

2022

Contenido

DI	ESCRIPCION DEL SOFTWARE USADO	3
	GitHub	3
	Azure	
	Python	
	OGis	

DESCRIPCION DEL SOFTWARE USADO

GitHub

Dado que se pide una licencia "permisiva" se debe tener en cuenta que se otorga permiso público de uso, modificación y distribución, sin ninguna condición de bajada. Las licencias más populares de código abierto son MIT, Apache 2.0, ISC y BSD.

Nosotros elegimos Apache 2.0 debido a que usamos Python como lenguaje referente en el repositorio. Además, se añadió el README FILE, y se creó el repositorio colaborativo.

Azure

Se creo el clúster y la maquina virtual con las especificaciones dadas por el proyecto, se enlazó el repositorio de imágenes requeridas por los organizadores del proyecto al almacenamiento de la nube mediante dirección SAS y su respectivo token ,posteriormente se copiaron al contenedor creado por el equipo, después se configuró el clúster mediante Python DataBrick y la máquina virtual, de los cuales esta ultima se conectó al contenedor creado anteriormente mediante Microsoft Azure Storage Explorer y se instalaron los programas de SIG requeridos para visualizar las imágenes.

Python

Se creo un script de Python el cual usa las librerías Rasterio para la manipulación de imágenes satelitales, Numpy permite leer las imágenes en formato de array y Base64 el cual será usado para la codificación de las imágenes.

QGis

Es un software GIS de código abierto el cual es compatible con Python y será el software de referencia para probar y manipular las imágenes modificadas por el software y le permitirá al operador probar las imágenes y manipularlas de acuerdo a su criterio.

CONFIGURACION DE AZURE

Data Factory

De acuerdo a la dirección SAS y el Token suministrados por los organizadores del concurso procedemos a realizar la ingesta en la página principal Data Factory.

Se configura el origen como un Azure Blob con la SAS y el token proporcionado por los Organizadores y se establece como copia binaria.

Se crea un contenedor en Microsoft Storage y se configura la salida como Azure Blob y se envía al contenedor creado.

Almacén de datos de destino

Especifique el almacén de datos de destino para la tarea de copia. Puede utilizar una conexión de almacén de datos existente o especificar un nuevo almacén de datos. Tipo de destino Almacenamiento de blobs de Azure > Conexión * V / / Editar + Nueva conexión AzureBlobStorage1 Ruta de acceso de la carpeta * Si la identidad que usa para acceder al almacén de datos solo tiene permiso para el subdirectorio en lugar de tenerlo para toda la cuenta, especifique la ruta de acceso a examinar. Examinar Nombre de archivo Los nombres de archivo los define el origen. Tipo de compresión Ninguno Comportamiento de copia ① Ninguno Número máximo de conexiones simultáneas ①

Se revisa, prueba y finaliza.

< Anterior

Cancelar

DataBricks

Se configura el Databricks y le damos en Launch Workspace.

Creamos el cluster

CD. CAMILO's Cluster 🖍

