Chapter 6

Spatial concepts and data models

-Niraj K.C.

Table of Content

- Models of spatial information: field based model, objectbased models
- Spatial data types
- ➤ Operation on spatial objects: set oriented, topologies, directional, metric space, Euclidean
- ➤ ER model with spatial nation: extending ER model with pictogram
- Object oriented data modeling with UML, comparison between ER and UML

Database management system

- ➤ A place to organize, store and retrieve large amount of data easily.
- > Used in all kinds of production and businesses.
- > Silent success story of the information age.

Database management system

- > Using SQL, DBMS allow us to ask queries like:
 - List the top 10 customers, in terms of sales, in year 2010.
 - List employee id and the corresponding salaries and sort them in decreasing order.
- ➤ However, traditional DBMS are either incapable or not user-friendly in answering spatial queries.

Spatial queries

- ➤ What are spatial queries?
 - ➤ What are the names of all the bookstores within 10 km of mahendrapool?
 - ➤ Which country have the most neighboring countries?
 - ➤ Where is the nearest gas station?
- ➤ Spatial data is generally more complex than traditional business data.
 - How to store different shapes?
 - How to conduct efficient queries on these data?

Spatial Data Model

- > Field model
- Object model

State-park SDB example

Field viewpoint

$$f(x,y) = \begin{cases} \text{pine,} & 2 \le x \le 4; \ 2 < y \le 4 \\ \text{Fir,} & 0 \le x \le 2; \ 0 \le y \le 2 \\ \text{Oak,} & 2 < x \le 4; \ 0 \le y \le 2 \end{cases}$$

Object viewpoint

Area-ID	Dominant Tree Species	Area/Boundary
FS1	Pine	[(0,2),(4,2),(4,4),(0,4)]
FS2	Fir	[(0,0),(2,0),(2,2),(0,2)]
FS3	Oak	[(2,0),(4,0),(4,2),(2,2)]

Field model

- > Three components:
 - Spatial framework
 - Euclidean space
 - Latitude longitude
 - Field function
 - F: spatial framework → Attribute domain(A_i)
 - {fir, oak, pine}
 - Field operation
 - Model relationship and interactions
 - Union, composition, etc.

Field model

- > Field operation
 - Can be classified into three categories.
 - Local
 - Depends only on the value of the input field at that location
 - Focal
 - Depends on the values that the input field assumes in a small neighborhood of the location
 - Zonal
 - Associated with aggregate operation

Field operation

≻ Local

- Depends only on the value of the input field at that location
- Union is an example

$$f(x) = \begin{cases} 1, & if \ x = tree \\ 0, & otherwise \end{cases}$$

$$g(x) = \begin{cases} 1, & if \ x = lake \\ 0, & otherwise \end{cases}$$

$$(f+g)(x) = \begin{cases} 1, & if \ x = tree \ or \ lake \\ 0, & otherwise \end{cases}$$

Field operation

≻ Focal

- Depends on the values that the input field assumes in a small neighborhood of the location
- Analogy to differentiation
- For example, if f(x,y) is defined as the elevation of point (x,y), then inclination(gradient) at (x,y) is a kind of focal operation

Field operation

- ➤ Zonal
 - >Associated with aggregate operation
 - ➤ Analogy to integration
 - For example, if f(x,y) is defined as the elevation of point (x,y), then average elevation of an area is a kind of zonal operation

$$\iint_{x} f(x,y) dx dy / Area(x,y)$$

Object model

- Abstract spatial information into distinct, identifiable and relevant things, or entities, which are called objects.
- > Data are modeled as attributes of interests
 - Non-spatial("Fir" is alphanumeric attribute)
 - Spatial (Polygon represents its spatial extend is spatial attribute)

Object model

➤ OGIS' proposed building blocks of spatial geometry in UML notation.

Operations on spatial objects

- > Set-oriented
- > Topological
- Directional
- ➤ Metric space
- > Euclidean

Set-oriented operation

- Simplest and most general
- > Adequately modeled by set theory
- > Union, intersection, containment, membership, etc.
 - Hierarchical relationships
 - Forest-stand contained in forest
 - Is Shanghai a city of China?

Topological

- Topology is mathematics concerned with spatial properties that are preserved under continuous deformation of objects.
- Think topological properties as those which can be draw on a rubber sheet and preserved when the rubber is stretched or bended.

Topological

- Neighboring countries meet each other no matter on a flat map or a sphere.
- Meet, within, overlap, open, closed are topological properties
- > Area, distance, length are non-topological properties
 - Which country have the most neighboring countries?

Directional

- **≻** Absolute
 - North, South, East, West, etc.
- ➤ Object-relative
 - Front, Behind, Above, Left, etc.
- ➤ Viewer based
 - Left, Right, etc.

Metric space

- Metric space is a set X for any pair of points x and y in X, a real number d(x,y), called the distance from x to y, is defined and have the following properties:
 - D(x,y) >= 0 and d(x,x) = 0
 - D(x,y) = d(y,x)
 - D(x,y) <= d(x,z) + d(z,y)
- ➤ Within a metric space, topological properties can be defined.
 - What are the names of all the bookstores within 10 km of mahendrapool?
 - Where is the nearest gas station?

Euclidean

- > Euclidean is a vector space over real numbers.
- ➤ Vector space is a set V with the following two operations defined:
 - Addition: u+v in V for all u, v in V
 - Product: au in V for real a, v in V
- All previously mentioned relationships, including set-oriented, topological, metric, directional can be defined on vector space.

Comparison of the two models

- ➤ Which one to choose?
 - Based on the requirement of the application.
 - Field model is better at modeling "continuous" or "dynamic" data
 - Elevation
 - Temperature
 - Object model is better at modeling transportation networks, land parcels for property tax, etc.

Conclusion

- The above two models only give a way to abstract spatial data and relationship.
- ➤ It does not provide any information on how to store, query in these model.
- Modeling spatial data is challenging and the specific task at hand determines the best way to model the data.

Assignment 6

- 1. What do you understand by spatial model? Mention its types and explain them in brief with their spatial operations.
- Briefly explain the three steps of database design with suitable example.
- 3. How ER model are mapped into the relational model?
- 4. How ER model are extends with spatial concepts (Pictograms)?
- Describe Object oriented data modelling with UML in detail.
- 6. Compare and contrast
 - a) ER Model and UML Model
 - b) Focal operation and Zonal operation
 - c) Euclidean space and Metric space
 - d) Topological and set oriented operation
 - e) Topological and directional operation