National Chiao Tung University Department of Computer Science

Fall 2020: 1175 Probability – Final Exam

2020/12/30, 10:10AM-12:10PM

- This exam contains 6 problems. Total of points is 110.
- Write your solutions in the booklet, and only the solutions in the booklet will be graded.
- You are allowed to bring a two-sided, A4 formula sheet.
- When giving a formula for a MGF/CDF/PMF/PDF, make sure to specify the range over which the formula holds.
- For Problem 1, please mark each subproblem with 'O' or 'X'.
- Partial credit could be awarded for the problems.
- Good luck! May the force be with you.

- 1. (32 points) Please mark whether each of the following arguments is true (O) or false (X). If you mark a subproblem as false (X), please briefly explain the reason or provide a counterexample. If you mark a subproblem as true (O), then no justification is required:
 - (a) (4 points) Let Z_1 and Z_2 be two independent normal random variables. Then, Z_1 and Z_2 have a joint PDF that is bivariate normal with zero correlation coefficient.
 - (b) (4 points) Two real numbers U and V are selected independently and uniformly at random from the interval (0,1). Then, we know $P(U^2 + V^2 \ge 1 \text{ and } U \le V) = 1 \frac{\pi}{4}$.
 - (c) (4 points) Let X be a continuous uniform random variable between -1 and +3. Then, by Markov's inequality, for any a > 0, we have $P(X > a) \le E[X]/a = 1/a$.
 - (d) (4 points) Consider two sequences of random variables X_1, X_2, \cdots and Y_1, Y_2, \cdots defined on the same sample space. Suppose that X_n converges to $a \in \mathbb{R}$ and Y_n converges to $b \in \mathbb{R}$ almost surely, respectively. Then, $X_n^2 Y_n^3$ converges to $a^2 b^3$ almost surely.
 - (e) (4 points) Let X_1 and X_2 be two Bernoulli random variables with $E[X_1^2] = \frac{1}{2}$ and $E[X_2^2] = \frac{1}{2}$. Then, X_1 and X_2 must be positively correlated.
 - (f) (4 points) Let $\{X_n\}_{n\in\mathbb{N}}$ be a sequence of i.i.d. continuous uniform random variables between 0 and 1. For each $n\in\mathbb{N}$, define $Y_n=\min\{X_1,X_2,\cdots,X_n\}$. Then, Y_n converges to 0 in probability, but not almost surely.
 - (g) (4 points) Let $D = \{Z_i\}_{i=1}^n$ be the observed data of i.i.d. normal random variables with an unknown mean μ and a known variance σ^2 . Then, under the dataset D, the maximum likelihood estimate of μ is the empirical mean $\frac{1}{n} \sum_{i=1}^n Z_i$.
 - (h) (4 points) Suppose we are given a special coin with an unknown head probability $\theta \in (0, 1)$. Consider the prior distribution over θ as $P(\theta = 0.3) = 0.4$ and $P(\theta = 0.7) = 0.6$. Suppose we toss the coin for 3 times and observe {tail, head, tail}. Then, the maximum a posteriori estimate of θ is $\theta = 0.7$. (Hint: posterior \propto prior \times likelihood)
- 2. (16 points) Let X be a continuous random variable with the PDF given by

$$f_X(x) = \begin{cases} \frac{1}{4}, & \text{if } x \in (-1,3) \\ 0, & \text{else} \end{cases}$$

- (a) (6 points) Find $M_X(t)$, i.e. the moment generating function of X.
- (b) (10 points) Use $M_X(t)$ to find E[X] and Var[X]. (Hint: When evaluating the first-order and second-order derivative of $M_X(t)$, you may need to leverage the L'Hôpital's rule)
- 3. (12 points) Let X_1, X_2, \dots, X_n be a sequence of <u>i.i.d.</u> standard normal random variables. Let $S_n = X_1^2 + X_2^2 + \dots + X_n^2$. Please leverage the central limit theorem to find an approximation for $P(S_n \le n + \sqrt{2n})$. (Hint: What are the mean and variance of X_1^2 ? Recall that the MGF of a standard normal is $\exp(\frac{t^2}{2})$. You may express your answer using the symbol $\Phi(\cdot)$)
- 4. (22 points) Let X be a <u>standard normal</u> random variable and U be a Bernoulli random variable with mean 0.5. Suppose X and U are independent. Define Z = (2U 1)X:

- (a) (8 points) Show that Z is also a standard normal random variable. (Hint: Write down the CDF of Z by considering the two cases U = 0 and U = 1)
- (b) (8 points) Please find out Cov(X, Z).
- (c) (6 points) Are X and Z independent? Please justify your answer.
- 5. (12 points) Let X be an exponential random variable with mean = 1. For each $n \in \mathbb{N}$, define a random variable Y_n as

$$Y_n = \begin{cases} 1, & \text{if } X > n \\ 0, & \text{else} \end{cases}$$

Show that Y_n converges to 0 in probability. (Hint: We say that Y_n converges to 0 in probability if $\lim_{n\to\infty} P(\{\omega: |Y_n(\omega)-0|\geq \varepsilon\}) = 0$ for every $\varepsilon > 0$)

- 6. (16 points) Suppose we have two binary classifiers A and B for predicting the labels of the images (e.g., whether there is a dog in the photo or not). Moreover, we are given a testing dataset of N images. For each image in the dataset, A and B would output the correct label independently with probability θ_a and θ_b , respectively.
 - (a) (8 points) Let $X_{A,N}$ denote the number of correct labels out of the N predicted labels provided by the classifier A. Then, by using the Chebyshev's inequality, for any $\delta > 0$, could you write down an upper bound for $P(\frac{X_{A,N}}{N} \leq \theta_a \delta)$? (Please express your answer using N, θ_a , and δ)
 - (b) (8 points) Similarly, let $X_{B,N}$ denote the number of correct labels out of the N predicted labels provided by the classifier B. Suppose $\theta_a > \theta_b$ and define $\Delta = \theta_a \theta_b$. By using Chebyshev's inequality, could you provide a non-trivial lower bound for the probability of the event that A has a better empirical accuracy than B (i.e., $\frac{X_{A,N}}{N} > \frac{X_{B,N}}{N}$)? (Hint: The event $\{\frac{X_{A,N}}{N} > \theta_a \frac{\Delta}{2}\} \cap \{\frac{X_{B,N}}{N} \leq \theta_b + \frac{\Delta}{2}\}$ is a subset of the event $\{\frac{X_{A,N}}{N} > \frac{X_{B,N}}{N}\}$. Please express your answer using N, θ_a , θ_b , and Δ)