

# How and Why is Change Modeled? – A Scoping Literature Review

**Thomas Weber**, Johan Cederbladh, Sebastian Weber, Arne Lange, Antonio Cicchetti, Ralf Reussner KASTEL-DSiS 07/10/2025



# Introduction

### Change

- Change is central to development in computer science [1]
- 'The only constant is change.' Heraclitus<sup>a</sup>

Attributed to Heraclitus, based on fragments of his writings. See: https://www.reference.com/world-view/said-only-thing-constant-change-d50c0532e714e12b





# Introduction

### Change

- Change is central to development in computer science [1]
- 'The only constant is change.' Heraclitus<sup>a</sup>

### Focus

- Concrete artifacts: models and metamodels
- Shared conceptual core of change across domains

Attributed to Heraclitus, based on fragments of his writings. See: https://www.reference.com/world-view/said-only-thing-constant-change-d50c0532e714e12b





# Introduction

### Change

- Change is central to development in computer science [1]
- 'The only constant is change.' Heraclitus<sup>a</sup>

### Focus

- Concrete artifacts: models and metamodels
- Shared conceptual core of change across domains

### Scope

Model-Based Engineering

Excludes other dimensions, e.g., organizational change

M3: Meta-Metamodel (e.g., MOF) defines M2: Metamodel (e.g., UML) defines M1: Model (e.g., Class Diagram) defines M0: Data / Runtime Instances





# **Motivation**

Why Model Change?

Isn't dealing with change enough?





# **Motivation**

Why Model Change?

Isn't dealing with change enough?

We need to embrace the change!





# **Motivation**

### Why Model Change?

Isn't dealing with change enough?

We need to embrace the change!

### Rationale

- Models evolve over time
- Changes must be tracked and understood
- States alone may lose information [1]
- Example: rename vs delete + re-add





# **Delta Concept**

# What is a Delta?

- Delta, i.e., description of change
- Artifact structure affects how change is defined and modeled





# **Delta Concept**

### What is a Delta?

- Delta, i.e., description of change
- Artifact structure affects how change is defined and modeled

### Semantics of a Delta

- Artifacts range from semantically meaningful (metamodels) to syntactic (e.g., Git blobs)
- Metamodel-level changes can be interpreted as domainspecific or domain-agnostic





# **Scoping Literature Review**

# What is a Scoping Review?

- Maps key concepts and definitions in broad field
- Identifies characteristics or factors related to a concept
- More structured than traditional reviews, less rigid than systematic ones



# **Scoping Literature Review**

### What is a Scoping Review?

- Maps key concepts and definitions in broad field
- Identifies characteristics or factors related to a concept
- More structured than traditional reviews, less rigid than systematic ones

### Why Use a Scoping Review?

- Suitable for vast, interconnected literature
- Helps clarify the concept of change
- Enables focused inclusion/exclusion criteria



# **Scoping Literature Review**

### What is a Scoping Review?

- Maps key concepts and definitions in broad field
- Identifies characteristics or factors related to a concept
- More structured than traditional reviews, less rigid than systematic ones

# Why Use a Scoping Review?

- Suitable for vast, interconnected literature
- Helps clarify the concept of change
- Enables focused inclusion/exclusion criteria

### **This Review**

- Based on Munn et al.'s guidelines. [2]
- Inclusion: MDE context, concept & definition of change, model/metamodel focus
- Exclusion: Non-English, not peer-reviewed, no full text
- Sources: Scopus, IEEE, ACM, Google Scholar
- Final set: 41 core papers selected



### **Modeling Change**

- Change defined by consequence,
   i.e., difference before and after
- Requires structured artifacts to assess and model change
- Changes are modeled as modifications to models and metamodels





### **Modeling Change**

- Change defined by consequence,
   i.e., difference before and after
- Requires structured artifacts to assess and model change
- Changes are modeled as modifications to models and metamodels

### Structure

- Structure enables modeling at different abstraction levels
- Granularity ranges from blackbox blobs to, e.g., line-based divisions





# **RQ2: Purpose of Change Metamodel**

### **Why Purpose Matters**

- Purpose defines goals and requirements of change metamodels
- Different stakeholders different motivations for change
- Use cases influence design priorities, e.g., completeness or performance





**Analyze** 











# **RO2: Purpose of Change Metamodel**

# Why Purpose Matters

- Purpose defines goals and requirements of change metamodels
- Different stakeholders different motivations for change
- Use cases influence design priorities, e.g., completeness or performance

# **Purpose and Trade-offs**

- Supports versioning, synchronization, transformation
- Different purposes imply different requirements
- Traceability vs. performance trade-offs
- Stakeholder diversity affects modeling needs



















# **RQ3: Atomic and Composite Changes**

### **Modeling Change Types**

- Atomic: complete coverage of change types
- Enables rollback, traceability, automation





# **RQ3: Atomic and Composite Changes**

# **Modeling Change Types**

- Atomic: complete coverage of change types
- Enables rollback, traceability, automation

## Composite Changes

- Composite changes, i.e., finite atomic groupings, but incomplete in regard to possible changes
- Composite: user intent [3], productivity, understanding





# **Example:** EDelta: Reusable Metamodel Refactorings [4]

### **EDelta Overview**

- Supports atomic and composite metamodel changes
- Enables reusable refactoring catalog
- Built on Xtext and EMF
- Purpose: enable safe and automated evolution of metamodels





# **Example:** Delta Operation Language [5]

### **Delta Operations**

- Software Product Line Engineering
- Metamodel-independent approach, deriving metamodelspecific change metamodels
- Models differences via delta operations
- Supports complete atomic change modeling
- Purpose: Enables product derivation with deltas





# **Example:** Wodel – DSL for Model Mutation [6]

### **Mutation DSL**

- Domain-independent DSL for model mutation
- Supports atomic and composite changes
- Enables programmatic generation of model variants
- Purpose: testing, variant creation, mutation analysis





# **Artifact Structure**

### Structure

- Structure can be semantic or syntactic
- Metamodels: domain-specific, strict structure
- Text-based artifacts: less structured
- Structure affects change modeling capability





# Meta-Metamodel Level

# **Cross-Domain Flexibility**

- Changes at meta-metamodel level are domain-agnostic
- Metamodel defines domainspecific semantics
- Enables reuse across domains
- Supports flexible change modeling





### Structural Scope

- Artifacts range from blackbox blobs to structured models [7]
- More structure enables finer change modeling, but reduces generality [8]



### Structural Scope

- Artifacts range from blackbox blobs to structured models [7]
- More structure enables finer change modeling, but reduces generality [8]

# **Metamodeling Approaches**

- Most approaches build on EMF [9], with exceptions [10, 11, 12, 13, 14]
- Change metamodels defined at metamodel or meta-metamodel level [15, 16, 17]
- Parametrized metamodels balance generality and specificity [16]



### Structural Scope

- Artifacts range from blackbox blobs to structured models [7]
- More structure enables finer change modeling, but reduces generality [8]

# **Metamodeling Approaches**

- Most approaches build on EMF [9], with exceptions [10, 11, 12, 13, 14]
- Change metamodels defined at metamodel or meta-metamodel level [15, 16, 17]
- Parametrized metamodels balance generality and specificity [16]

# **Advanced Concepts**

- Semantic vs. syntactic dimensions influence applicability [18]
- Terminology varies: change, delta, operation, event, mutation [19, 6]



# RQ2: What is the Purpose of the Change Metamodel?

# **Describing and Reusing Change**

- Central purpose: describe modifications between model versions [20, 21, 22, 5]
- Reusable change formats enable reuse across models [23]



# RQ2: What is the Purpose of the Change Metamodel?

# **Describing and Reusing Change**

- Central purpose: describe modifications between model versions [20, 21, 22, 5]
- Reusable change formats enable reuse across models [23]

### **Versioning and Collaboration**

- Changes can represent entire model states for versioning [24, 25, 26, 1]
- Support for collaborative modeling, conflict management, and live modeling [27, 28, 11, 12, 13, 14]



# RQ2: What is the Purpose of the Change Metamodel?

# **Describing and Reusing Change**

- Central purpose: describe modifications between model versions [20, 21, 22, 5]
- Reusable change formats enable reuse across models [23]

## **Versioning and Collaboration**

- Changes can represent entire model states for versioning [24, 25, 26, 1]
- Support for collaborative modeling, conflict management, and live modeling [27, 28, 11, 12, 13, 14]

# **Consistency and Evolution**

- Enables consistency preservation and model repair [29, 30, 16, 31]
- Supports co-evolution, variant derivation, and semantic reasoning [32, 33, 34, 17, 18]



# RQ3: To What Extent Can Atomic and Composite Changes Be Modeled?

### **Atomic Changes**

- Most approaches define complete atomic change metamodels [6]
- Atomic changes serve as the foundation for model variant generation and fine-grained evolution



# RQ3: To What Extent Can Atomic and Composite Changes Be Modeled?

# **Atomic Changes**

- Most approaches define complete atomic change metamodels [6]
- Atomic changes serve as the foundation for model variant generation and fine-grained evolution

## **Composite Changes**

- Composite changes extend atomic models via refactoring catalogs or user-defined constructs [23, 16]
- Used to support users with grouped changes and traceability [8]



# RQ3: To What Extent Can Atomic and Composite Changes Be Modeled?

# **Atomic Changes**

- Most approaches define complete atomic change metamodels [6]
- Atomic changes serve as the foundation for model variant generation and fine-grained evolution

# **Composite Changes**

- Composite changes extend atomic models via refactoring catalogs or user-defined constructs [23, 16]
- Used to support users with grouped changes and traceability [3]

# **Granularity and Completeness**

- Granularity affects understandability and correctness of change modeling
- Incomplete metamodels or heuristic-based grouping may lead to erroneous co-evolution [16]



# Discussion: Designing and Applying Change Metamodels

### **Metamodel Selection**

- Choose between existing, derived, or custom metamodels based on purpose and domain [35]
- Domain-specificity and expressive power guide the selection process



# Discussion: Designing and Applying Change Metamodels

### **Metamodel Selection**

- Choose between existing, derived, or custom metamodels based on purpose and domain [35]
- Domain-specificity and expressive power guide the selection process

# **Granularity and Intent**

- Higher abstraction captures developer intent but risks incompleteness
- Define granularity and change acquisition method (recorded vs. derived)



# Discussion: Designing and Applying Change Metamodels

### **Metamodel Selection**

- Choose between existing, derived, or custom metamodels based on purpose and domain [35]
- Domain-specificity and expressive power guide the selection process

### **Granularity and Intent**

- Higher abstraction captures developer intent but risks incompleteness
- Define granularity and change acquisition method (recorded vs. derived)

### **Combining Metamodels**

- Use multiple metamodels for different tasks (e.g., consistency vs. user display)
- Annotate changes with intent or standards [3]



# Conclusion

### **Key Insights**

- Presented scoping literature review change metamodels
- Addressed three RQ modeling, purpose, and granularity
- Identified diverse approaches in change modeling
- Concept reuse can improve efficiency





# Conclusion

# **Key Insights**

- Presented scoping literature review change metamodels
- Addressed three RQ modeling, purpose, and granularity
- Identified diverse approaches in change modeling
- Concept reuse can improve efficiency

### **Future Work**

- Build a systematic literature review based on this study
- Explore combining metamodels for complex use cases
- Align abstraction levels with user needs and consistency mechanisms





# References I

- J. W. Wittler, T. Saglam, and T. Kühn, "Evaluating model differencing for the consistency preservation of state-based views." J. Object Technol., vol. 22, no. 2, pp. 1–14, 2023.
- Z. Munn, M. D. Peters, C. Stern, C. Tufanaru, A. McArthur, and E. Aromataris, "Systematic review or scoping review? guidance for authors when choosing between a systematic or scoping review approach," BMC medical research methodology, vol. 18, pp. 1-7, 2018.
- J. Cederbladh, E. Kamburian, D. A. Manrique-Negrin, R. Mittal, and T. Weber, "Traceability support for engineering reviews of horizontal model evolution." Systems Engineering, vol. n/a, no. n/a, p. e70001, 2025. [Online]. Available: https://incose.onlinelibrary.wilev.com/doi/abs/10.1002/sys.70001
- L. Bettini, D. Di Ruscio, L. Iovino, and A. Pierantonio, "Edelta 2.0: supporting live metamodel evolutions," in Proceedings of the 23rd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems: Companion Proceedings, 2020, pp. 1–10.



# References II

- D. Kuryazov and A. Winter, "Representing model differences by delta operations," in 2014 IEEE 18th International Enterprise Distributed Object Computing Conference Workshops and Demonstrations. IEEE, 2014, pp. 211–220.
- P. Gómez-Abajo, E. Guerra, and J. De Lara, "Wodel: a domain-specific language for model mutation," in Proceedings of the 31st Annual ACM Symposium on Applied Computing, 2016. pp. 1968-1973.
- N. N. Zolkifli, A. Ngah, and A. Deraman, "Version control system: A review," *Procedia* Computer Science, vol. 135, pp. 408-415, 2018.
- T. T. Nguyen, H. A. Nguyen, N. H. Pham, and T. N. Nguyen, "Operation-based, fine-grained version control model for tree-based representation." in *International Conference on* Fundamental Approaches to Software Engineering. Springer, 2010, pp. 74–90.
- D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF; eclipse modeling framework, Pearson Education, 2008.



# References III

- J. Exelmans. C. Teodorov, R. Heinrich, A. Egyed, and H. Vangheluwe, "Collaborative live modelling by language-agnostic versioning," in 2023 ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C). 2023. pp. 364-374.
- J. Exelmans, J. Pietron, A. Raschke, H. Vangheluwe, and M. Tichy, "A new versioning approach for collaboration in blended modeling," Journal of Computer Languages, vol. 76, p. 101221, 2023.
- J. Exelmans, C. Teodorov, and H. Vangheluwe, "Operation-based versioning as a foundation for live executable models," Software and Systems Modeling, pp. 1–19, 2024.
- I. David, E. Syriani, and C. Masson, "Extensible conflict-free replicated datatypes for real-time collaborative software engineering," in 2022 17th Conference on Computer Science and Intelligence Systems (FedCSIS). IEEE, 2022, pp. 849–853.



# References IV

- I. David and E. Syriani, "Real-time collaborative multi-level modeling by conflict-free replicated data types," Software and Systems Modeling, vol. 22, no. 4, pp. 1131–1150, 2023.
- E. Burger and B. Gruschko, "A change metamodel for the evolution of mof-based metamodels," in *Modellierung 2010*. Gesellschaft für Informatik eV. 2010, pp. 285–300.
- H. Klare, M. E. Kramer, M. Langhammer, D. Werle, E. Burger, and R. Reussner, "Enabling consistency in view-based system development—the vitruvius approach." Journal of Systems and Software, vol. 171, p. 110815, 2021.
- C. Seidl, I. Schaefer, and U. Aßmann, "Deltaecore-a model-based delta language generation framework," in *Modellierung 2014*. Gesellschaft für Informatik eV. 2014, pp. 81–96.
- A. Cicchetti and F. Ciccozzi, "Towards a novel model versioning approach based on the separation between linguistic and ontological aspects." in ME@ MoDELS. Citeseer, 2013, pp. 60-69.



# References V

- G. Bergmann, I. Dávid, Á. Hegedüs, Á. Horváth, I. Ráth, Z. Ujhelyi, and D. Varró, "Viatra 3: A reactive model transformation platform," in *Theory and Practice of Model Transformations*: 8th International Conference, ICMT 2015, Held as Part of STAF 2015, L'Aquila, Italy, July 20-21, 2015. Proceedings 8. Springer, 2015, pp. 101-110.
- J. E. Rivera and A. Vallecillo, "Representing and operating with model differences," in International Conference on Objects, Components, Models and Patterns. Springer, 2008, pp. 141-160.
- C. Brun and A. Pierantonio. "Model differences in the eclipse modeling framework." UPGRADE, The European Journal for the Informatics Professional, vol. 9, no. 2, pp. 29–34, 2008.
- A. Cicchetti, D. Di Ruscio, and A. Pierantonio, "Model patches in model-driven engineering," in International Conference on Model Driven Engineering Languages and Systems. Springer, 2009, pp. 190-204.



# References VI

- L. Bettini, D. Di Ruscio, L. Iovino, A. Pierantonio et al., "Edelta: An approach for defining and applying reusable metamodel refactorings." in MODELS (satellite events), 2017, pp. 71–80.
- X. Blanc, I. Mounier, A. Mougenot, and T. Mens, "Detecting model inconsistency through operation-based model construction." in Proceedings of the 30th international conference on Software engineering, 2008, pp. 511-520.
- A. Yohannis, D. Kolovos, and F. Polack, "Turning models inside out," in CEUR Workshop Proceedings 1403. York, 2017, pp. 430–434.
- M. Herrmannsdoerfer and M. Koegel, "Towards a generic operation recorder for model evolution," in Proceedings of the 1st International Workshop on Model Comparison in Practice, 2010, pp. 76-81.
- M. Koegel, M. Herrmannsdoerfer, Y. Li, J. Helming, and J. David, "Comparing state-and operation-based change tracking on models," in 2010 14th ieee international enterprise distributed object computing conference. IEEE, 2010, pp. 163–172.



# References VII

- G. Taentzer, C. Ermel, P. Langer, and M. Wimmer, "A fundamental approach to model versioning based on graph modifications: from theory to implementation," Software & Systems Modelina. vol. 13, no. 1, pp. 239-272, 2014.
- G. Taentzer, M. Ohrndorf, Y. Lamo, and A. Rutle, "Change-preserving model repair," in International conference on fundamental approaches to software engineering. Springer, 2017, pp. 283-299.
- L. Marchezan, R. Kretschmer, W. K. Assunção, A. Reder, and A. Egyed, "Generating repairs for inconsistent models," Software and Systems Modeling, vol. 22, no. 1, pp. 297–329, 2023.
- X. Blanc, A. Mougenot, I. Mounier, and T. Mens, "Incremental detection of model inconsistencies based on model operations," in International Conference on Advanced Information Systems Engineering. Springer, 2009, pp. 32–46.



# References VIII

- M. Herrmannsdoerfer. "Cope-a workbench for the coupled evolution of metamodels and models," in International conference on software language engineering. Springer, 2010, pp. 286-295.
- A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio, "Automating co-evolution in model-driven engineering," in 2008 12th International IEEE enterprise distributed object computing conference. IEEE, 2008, pp. 222–231.
- I. Schaefer, L. Bettini, V. Bono, F. Damiani, and N. Tanzarella, "Delta-oriented programming of software product lines." in Software Product Lines: Going beyond: 14th International Conference, SPLC 2010, Jeju Island, South Korea, September 13-17, 2010. Proceedings 14. Springer, 2010, pp. 77-91.
- H. Vangheluwe, J. De Lara, and P. J. Mosterman, "An introduction to multi-paradigm modelling and simulation," in Proceedings of the AIS'2002 conference (AI, Simulation and Planning in High Autonomy Systems), Lisboa, Portugal, vol. 21, no. 1, 2002.

