Capítulo 7 - Testes de Hipóteses

Nos capítulos anteriores considerámos a estimação pontual (Capítulo 5) e intervalar (Capítulo 6) de um parâmetro populacional desconhecido, digamos θ , partindo de uma amostra aleatória X_1,\ldots,X_n da população respectiva.

No entanto, num estudo estatístico nem sempre o interesse do investigador está em estimar o valor de θ mas sim aferir/testar se o mesmo pertence a um determinado subconjunto do espaço de valores possíveis para o parâmetro θ , digamos Θ .

Definição (Hipótese Estatística)

Uma hipótese estatística é uma conjectura acerca de um qualquer parâmetro populacional desconhecido e/ou acerca da própria distribuição da população.

Se a hipótese estatística conjectura um único valor para o parâmetro populacional desconhecido e/ou especifica completamente a distribuição da população então diz-se uma **hipótese simples** (por exemplo, $\theta \in \{\theta_0\} \subseteq \Theta$).

Caso contrário é chamada de **hipótese composta** (por exemplo, $\theta \in \Theta_0 \subseteq \Theta$).

Definição (Hipóteses nula e alternativa)

Para cada hipótese sobre θ que se conjecture, doravante designada por hipótese nula (H_0) , há sempre outra hipótese, designada por hipótese alternativa (H_1) . A saber,

- H_0 quantifica/conjectura a crença do investigador sobre o valor do parâmetro desconhecido e/ou a distribuição da população
- ullet H_1 é qualquer hipótese que contradiga a hipótese nula

Definição (Teste de hipóteses)

Um teste de hipóteses é um procedimento estatístico que permite testar a hipótese nula H_0 contra a hipótese alternativa H_1 e que envolve a recolha de uma amostra representativa da população em causa (reúne evidência estatística contra ou a favor H_0) bem como uma regra de decisão (quantifica quando temos evidência suficiente para rejeitar H_0).

Habitualmente H_0 é rejeitada quando se considera ter reunido "**muita**" evidência contra H_0 .

Algumas notas importantes:

- ullet Não rejeitar H_0 não significa que H_0 seja verdade! Significa sim, que não se reuniu, de acordo com a regra de decisão estabelecida, evidência estatística suficiente contra H_0
- ullet Rejeitar H_0 significa que se reuniu evidência estatística suficiente contra H_0 , admitindo-se portanto a plausibilidade de H_1

Exemplo

Seja (X_1,\ldots,X_n) uma amostra aleatória da população X dos pesos das formigas Solenopsis onde $X\sim N(\mu,2^2)$. Um biólogo pretende testar

$$H_0: \mu \leq 8 \quad vs \quad H_1: \quad \mu > 8,$$

usando o critério "rejeitar H_0 se $\frac{\bar{X}-8}{2/\sqrt{n}} > 1.64$ ".

Tendo-se observado os pesos seguintes

 $7.88\ 8.54\ 12.12\ 9.14\ 9.26\ 12.43\ 9.92\ 6.47\ 7.63\ 8.11$

indique se há ou não evidência estatística contra a conjectura do biólogo.

Com base na amostra observada calculamos $\bar{x}=9.15$ vindo portanto $\frac{9.15-8}{2/\sqrt{10}}\simeq 1.82>1.64$ pelo que, segundo a regra de decisão estabelecida, se conclui haver evidência para rejeitar H_0 .

Exemplo

No contexto do exemplo anterior, se o biólogo tivesse observado $\bar{x}=9.15$ numa amostra de tamanho n=5 qual seria a decisão do teste? Comente os dois resultados.

Neste caso viria $\frac{9.15-8}{2/\sqrt{5}}\simeq 1.29 \not > 1.64$ pelo que, segundo a regra de decisão estabelecida não se reuniu evidência suficiente para rejeitar H_0 .

Observamos agora, que apesar de em ambos os casos se ter obtido uma média amostral $\bar{x}=9.15$, a decisão do teste foi diferente. Isto significa em particular, que **o tamanho** amostral é muito importante!!!

Definição (Erros do tipo I e II e potência do teste)

A rejeição de H_0 quando ela é verdadeira é chamado **erro do tipo I** do teste e a não rejeição de H_0 quando esta é falsa é chamado **erro do tipo II** do teste.

Sejam as probabilidades

$$\alpha = P(\text{erro de tipo I}) = P(\text{rejeitar } H_0|H_0 \text{ \'e verdadeira})$$

 $\beta = P(\text{erro de tipo II}) = P(\text{n\~ao rejeitar } H_0|H_0 \text{ \'e falsa}).$

Nestas condições, α diz-se o nível de significância do teste e $1-\beta$ diz-se a potência do teste.

Idealmente gostar-se-ia de minimizar os dois erros (tipo I e II) simultaneamente (equivalentemente, minimizar o erro do tipo I e maximizar a potência do teste).

Infelizmente tal é impossível (dado que a redução de um implica o aumento do outro) pelo que, num teste de hipóteses estatístico, o erro que se controla é o erro do tipo I (também chamado <u>nível do teste</u>), i.e., o teste é realizado obrigando a que o erro do tipo I não exceda um determinado valor.

Os níveis usuais de um teste de hipóteses estatístico são $\alpha=0.01,\ 0.05$ e 0.1

Os testes de hipóteses para a média populacional μ que iremos estudar são

$$H_0: \mu = \mu_0 \ vs \ H_1: \mu \neq \mu_0$$
 (teste bilateral)
 $H_0: \mu \leq \mu_0 \ vs \ H_1: \mu > \mu_0$ (teste unilateral direito)
 $H_0: \mu \geq \mu_0 \ vs \ H_1: \mu < \mu_0$ (teste unilateral esquerdo)

A ideia para a realização os testes de hipóteses para a média populacional μ passa por:

- ullet observar uma concretização x_1,\ldots,x_n da a.a. X_1,\ldots,X_n
- usar o estimador \bar{X} de μ (que sabemos ser centrado e consistente) para estimar μ , i.e, calcular \bar{x}
- se \bar{x} estiver "(muito) longe" de μ_0 rejeitar H_0 , caso contrário indicar que não se reuniu evidência estatística para rejeitar H_0

No contexto de um teste de hipóteses estatístico, a noção de "(muito) longe" está relacionada com \bar{x} cair nas caudas da distribuição de \bar{X} sob H_0 , ou equivalentemente, com

$$\frac{\bar{x}-\mu_0}{\sigma/\sqrt{n}} \ (\sigma^2 \ \text{conhecido}) \qquad \text{ou} \qquad \frac{\bar{x}-\mu_0}{s/\sqrt{n}} \ (\sigma^2 \ \text{desconhecido})$$

caírem nas caudas das distribuições de

$$rac{ar{X}-\mu_0}{\sigma/\sqrt{n}} \; (\sigma^2 \; {\rm conhecido}) \qquad {\rm ou} \qquad rac{ar{X}-\mu_0}{S/\sqrt{n}} \; (\sigma^2 \; {\rm desconhecido})$$

sob H_0 , respectivamente.

A área atribuída $\grave{a}(s)$ cauda(s) é igual ao nível de significância α que é pré-especificado pelo investigador. A decisão passa então por rejeitar H_0 ao nível de significância α , se o valor observado da estatística pertencer ao intervalo de valores (designado por **região crítica** do teste) que é definido pela área atribuída $\grave{a}(s)$ cauda(s).

População Normal com variância σ^2 conhecida

Considere-se uma amostra aleatória (X_1,\ldots,X_n) de uma população X tal que $X\sim N(\mu,\sigma^2)$, em que σ^2 é conhecido. Queremos testar

$$H_0: \mu = \mu_0 \ vs \ H_1: \mu \neq \mu_0$$

(NOTA: teste bilateral ⇒ rejeição nas duas caudas)

Para isso consideramos o estimador \bar{X} de μ que sabemos nestas condições ser tal que $\bar{X}\sim N(\mu,\sigma^2/n)$. Sob H_0 virá então que $\bar{X}\sim N(\mu_0,\sigma^2/n)$, i.e.,

$$\bar{X} \underset{H_0}{\sim} N(\mu_0, \sigma^2/n).$$

Assim a estatística de teste para este teste de hipóteses será então

$$Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} \underset{H_0}{\sim} N(0, 1)$$

faltando-nos portanto definir nas caudas da distribuição da estatística de teste sob H_0 a **região crítica** do teste!

População Normal com variância σ^2 conhecida

Para um **nível de significância** α , pré-especificado, define-se a região de rejeição do teste, como a solução da inequação

$$\left| \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} \right| > z_{\alpha/2},$$

(isto equivale a dizer que Z cai na cauda direita ou na cauda esquerda da Normal reduzida)

e escrevemos

$$RC_{\alpha} =]-\infty, -z_{\alpha/2}[\cup]+z_{\alpha/2}, +\infty[.$$

Deste modo, observada uma concretização x_1,\ldots,x_n da a.a. X_1,\ldots,X_n , rejeitamos H_0 ao nível α sempre que

$$z_{obs} = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} \in RC_{\alpha}.$$

População Normal com variância σ^2 conhecida

Exemplo

Consideremos novamente o exemplo da população X dos pesos (em dg) das formigas Solenopsis tal que $X \sim N(\mu, 2^2)$, da qual observámos a amostra de 4 pesos (8,13,9,8.5). Pretende-se testar, a um nível de significância α de 5%, a hipótese de que o peso médio populacional μ é 10dg.

Informação populacional: $X \sim N(\mu, \sigma^2)$ com $\sigma^2 = 4$ conhecida

Informação amostral: n=4; $\bar{x}=9.625$

Hipóteses em teste: $H_0: \mu=10 \ vs \ H_1: \mu\neq 10 \ (\mu_0=10)$

(teste bilateral)

Estatística de teste:
$$Z=rac{ar{X}-\mu_0}{\sigma/\sqrt{n}} \underset{H_0}{\sim} N(0,1)$$
 com X_1,\ldots,X_n a.a. da pop. X

Valor observado da estatística de teste:
$$z_{obs}=\frac{\bar{x}-10}{2/\sqrt{4}}=\frac{9.625-10}{2/\sqrt{4}}=-0.375$$

$$\frac{\text{Região crítica do teste:}}{RC_{0.05}=]-\infty, -1.96[\;\cup\;]1.96, +\infty[} \stackrel{\alpha}{=} 0.025 \; \text{donde} \; z_{0.025} \underset{tabela}{\simeq} 1.96 \; \text{e assim}$$

Decisão do teste: como $z_{obs}=-0.375 \notin RC_{0.05}$ não há evidência para rejeitar H_0 ao nível 5%.

Distinguimos agora as 4 possíveis estatísticas de teste para o teste de hipóteses bilateral bem como as respectivas regiões críticas do teste

$$H_0: \mu = \mu_0 \ vs \ H_1: \mu \neq \mu_0$$
 (teste bilateral)

População	Variância σ^2	Estatística de teste	Região crítica RC_lpha
$N(\mu, \sigma^2)$	conhecida	$\frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \underset{H_0}{\sim} N(0, 1)$	$]-\infty,-z_{\frac{\alpha}{2}}[\ \cup\]+z_{\frac{\alpha}{2}},+\infty[$
	desconhecida	$\frac{\overline{X} - \mu_0}{S/\sqrt{n}} \underset{H_0}{\sim} t_{n-1}$	$]-\infty,-t_{n-1,\frac{\alpha}{2}}[\;\cup\;]+t_{n-1,\frac{\alpha}{2}},+\infty[$
Desconhecida $(n \ge 30)$	conhecida	$\frac{\overline{X}-\mu_0}{\sigma/\sqrt{n}} \stackrel{a}{\underset{H_0}{\sim}} N(0,1)$	$]-\infty,-z_{\frac{lpha}{2}}[\;\cup\;]+z_{rac{lpha}{2}},+\infty[$
	desconhecida	$\frac{\overline{X} - \mu_0}{S/\sqrt{n}} \underset{H_0}{\overset{a}{\sim}} N(0,1)$	$]-\infty,-z_{\frac{\alpha}{2}}[\ \cup\]+z_{\frac{\alpha}{2}},+\infty[$

Analogamente, agora para o teste de hipóteses unilateral direito

$$H_0: \mu \leq \mu_0 \ vs \ H_1: \mu > \mu_0$$
 (teste unilateral direito)

População	Variância σ^2	Estatística de teste	Região crítica RC_lpha
$N(\mu, \sigma^2)$	conhecida	$\frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \underset{H_0}{\sim} N(0, 1)$	$]z_{lpha},+\infty[$
	desconhecida	$\frac{\overline{X} - \mu_0}{S/\sqrt{n}} \underset{H_0}{\sim} t_{n-1}$	$]t_{n-1,\alpha},+\infty[$
Desconhecida $(n \ge 30)$	conhecida	$\frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \stackrel{a}{\underset{H_0}{\sim}} N(0, 1)$	$]z_{\alpha},+\infty[$
	desconhecida	$\frac{\overline{X} - \mu_0}{S/\sqrt{n}} \underset{H_0}{\overset{a}{\sim}} N(0,1)$	$]z_{\alpha},+\infty[$

Analogamente, agora para o teste de hipóteses unilateral esquerdo

$$H_0: \mu \ge \mu_0 \ vs \ H_1: \mu < \mu_0$$
 (teste unilateral esquerdo)

População	Variância σ^2	Estatística de teste	Região crítica RC_{lpha}
$N(\mu, \sigma^2)$	conhecida	$\frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \underset{H_0}{\sim} N(0, 1)$	$]-\infty,-z_{lpha}[$
	desconhecida	$\frac{\overline{X} - \mu_0}{S/\sqrt{n}} \underset{H_0}{\sim} t_{n-1}$	$]-\infty,-t_{n-1,\alpha}[$
Desconhecida $(n \ge 30)$	conhecida	$\frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \stackrel{a}{\underset{H_0}{\sim}} N(0, 1)$	$]-\infty,-z_{\alpha}[$
	desconhecida	$\frac{\overline{X} - \mu_0}{S/\sqrt{n}} \underset{H_0}{\overset{a}{\sim}} N(0,1)$	$]-\infty,-z_{lpha}[$

Definição (p - valor do teste)

 $O\ p-valor$ de um teste de hipóteses estatístico quantifica a probabilidade de, sob a distribuição postulada em H_0 , se observar uma amostra como a amostra que foi observada (equivalentemente, de, sob a distribuição postulada em H_0 , se observar um valor da estatística de teste igual ou mais extrema do que a que foi observada). Assim,

- um p-valor pequeno é desfavorável a H_0 .
- um p-valor elevado indica que as observações são consistentes com H_0 .

Num teste de hipóteses de nível α , a regra de decisão é

"Rejeitar
$$H_0$$
 se $p-valor < \alpha$ "

decisão esta, que é equivalente à decisão baseada na região crítica $RC_{lpha}.$

p-valor

Regra de cálculo do p-valor:

Seja (x_1,x_2,\ldots,x_n) uma concretização da amostra aleatória X_1,\ldots,X_n e $w_{obs}=W(x_1,x_2,\ldots,x_n)$ o valor observado da estatística de teste W.

Região de rejeição	p-valor	
$]-\infty,-c[\ \cup\]c,+\infty[$		
ou	$2 \times \min \left(P(W < w_{obs} \mid H_0), P(W > w_{obs} \mid H_0) \right)$	
$]0,b[\ \cup\]c,+\infty[$	(teste bilateral)	
$]-\infty,c[$		
ou	$P(W < w_{obs} \mid H_0)$	
]0,c[(teste unilateral esquerdo)	
$]c,+\infty[$	$P(W > w_{obs} \mid H_0)$	
	(teste unilateral direito)	

Exemplo

Consideremos novamente o exemplo da população X dos pesos (em dg) das formigas Solenopsis tal que $X \sim N(\mu, 2^2)$, da qual observámos a amostra de 4 pesos (8,13,9,8.5). Pretende-se testar, a um nível de significância α de 5%, a hipótese de que o peso médio populacional μ é 10dg. Tome a sua decisão com base no p-valor do teste.

Este exercício é em tudo idêntico ao anterior de modo que passamos imediatamente ao cálculo do p-valor

$$\begin{aligned} p-valor &= 2 \times \min\{P(Z>z_{obs}), P(Z-0.375), P(Z<-0.375)\} \\ &= 2 \times P(Z<-0.375) = 2\Phi(-0.375) = 2(1-\Phi(0.375)) \simeq 2(1-\Phi(0.38)) \\ &\underset{tabela}{\simeq} 2(1-0.6480) = 2 \times 0.352 = 0.704 \end{aligned}$$

Decisão do teste: como $p-valor=0.704 \not< 0.05$ não temos evidência para rejeitar H_0 ao nível 5%.

Testes de hipóteses para a variância σ^2 de uma população Normal com média desconhecida

Hipóteses:

$$\bullet \ \ H_0: \sigma^2 = \sigma_0^2 \ \ vs \ \ H_1: \sigma^2 \neq \sigma_0^2$$
 (teste bilateral)

Estatística de teste:

$$X^2 = \frac{(n-1)S^2}{\sigma_0^2} \underset{H_0}{\sim} \chi_{n-1}^2$$

Região de rejeição do teste, para um nível de significância α pré-especificado:

1
$$R_{\alpha} =]0; \chi^{2}_{n-1,1-\frac{\alpha}{2}}[\cup]\chi^{2}_{n-1,\frac{\alpha}{2}}; +\infty[$$

(teste bilateral)

$$R_{\alpha} = |\chi_{n-1}^2|_{\alpha}; +\infty[$$

(teste unilateral direito)

3
$$R_{\alpha} = [0; \chi^2_{n-1,1-\alpha}]$$

(teste unilateral esquerdo)

(teste unilateral esquerdo)

Testes de hipóteses para a variância σ^2 de uma população Normal com média desconhecida

Exemplo

Consideremos novamente o exemplo da população X dos pesos (em dg) das formigas Solenopsis tal que $X \sim N(\mu, \sigma^2)$, da qual observámos a amostra de 4 pesos (8,13,9,8.5). Pretende-se testar, a um nível de significância α de 5%, a hipótese de que o desvio padrão populacional σ é superior a 2.25dg.

Informação populacional: $X \sim N(\mu, \sigma^2)$ com σ^2 desconhecida

Informação amostral: n=4; $\bar{x}=9.625$; $s^2\simeq 5.229$

Estatística de teste:
$$X^2 = \frac{(n-1)S^2}{\sigma_n^2} \underset{H_0}{\sim} \chi_{n-1}^2 \operatorname{com} X_1, \dots, X_n$$
 a.a. da pop. X

Valor observado da estatística de teste: $x_{obs}^2 = 3 \times 5.229/2.25^2 \simeq 3.099$

Região crítica do teste: $\alpha=0.05; \chi^2_{3,0.05} \underset{tabela}{\sim} 7.815$ e portanto $RC_{0.05}=]7.815, +\infty[$

Decisão do teste: como $x_{obs}^2=3.099\notin RC_{0.05}$ não há evidência para rejeitar H_0 ao nível 5%; usando $p-valor=P(X^2>x_{obs}^2)=P(X^2>3.099)\underset{Rstudio}{\simeq} 0.377 \not< 0.05$

Testes de hipóteses para a proporção populacional, p

Suponhamos que observamos uma amostra aleatória de dimensão n de uma população, em que determinada proporção desconhecida p dos seus elementos possui certa característica.

Hipóteses:

1
$$H_0: p = p_0 \ vs \ H_1: p \neq p_0$$

(teste bilateral)

$$2 H_0: p \le p_0 vs H_1: p > p_0$$

(teste unilateral direito)

3
$$H_0: p \ge p_0 \ vs \ H_1: p < p_0$$

(teste unilateral esquerdo)

Estatística de teste:

$$Z = \frac{\hat{P} - p_0}{\sqrt{p_0(1 - p_0)/n}} \underset{H_0}{\sim} N(0, 1)$$

Região de rejeição do teste, para um nível de significância α pré-especificado:

(teste bilateral)

$$R_{\alpha} =]z_{\alpha}; +\infty[$$

(teste unilateral direito)

(teste unilateral esquerdo)

Testes de hipóteses para a proporção populacional, p

Exemplo

Um médico oncologista está convencido de que percentagem de doentes com cancro do cólon que morre 5 anos após a sua detecção é superior ou igual a 10%. De 200 casos de pessoas com cancro do cólon, aleatoriamente detectadas, 12 morreram após 5 anos da detecção. Teste a conjectura do médico aos níveis de significância usuais.

(teste unilateral esquerdo)

Informação populacional:

$$X={\bf n^{\underline 0}}$$
 pessoas que morreram de cancro do cólon em n casos,

sendo
$$p$$
 a probabilidade de morrer (sucesso) $\sim Bin(n,p)$

Informação amostral:
$$n=200$$
; $x=12$; vindo a estimativa $\hat{p}=0.06$

Hipóteses em teste:
$$H_0: p \ge 0.1 \ vs \ H_1: p < 0.1$$

$$\underline{\text{Estatística de teste:}} \ Z = \frac{\hat{P} - p_0}{\sqrt{p_0(1-p_0)/n}} \ \overset{a}{\underset{H_0}{\sim}} \ N(0,1)$$

Valor observado da estatística de teste:
$$z_{obs} = \frac{0.06-0.1}{\sqrt{0.1\times0.9/200}} \simeq -1.89$$

P-valor do teste:
$$p - valor \stackrel{a}{\simeq} P(Z < z_{obs}) = \Phi(-1.89) = 1 - \Phi(1.89) \stackrel{\sim}{\underset{tabela}{\simeq}} 0.0294$$

Decisão do teste: sendo p-valor < 0.05, 0.1 e tal que $p-valor \not< 0.01$ temos evidência para rejeitar H_0 apenas aos níveis 5 e 10%

Intervalos de confiança e testes de hipóteses

Existe uma relação estreita entre os ICs estudados no Capítulo 6 e os testes de hipóteses bilaterais

Quando construímos um IC a $(1-\alpha)100\%$ para um parâmetro desconhecido θ ,

- \bullet todos os valores nesse intervalo são valores plausíveis para o parâmetro θ
- \bullet todos os valores fora desse intervalo são valores implausíveis para o parâmetro θ

Assim, quando o valor $heta_0$ especificado pela hipótese nula para heta

- estiver contido no $IC_{(1-\alpha)100\%}(\theta)$, não temos evidência para rejeitar H_0 ao nível $\alpha100\%$
- não estiver contido no $IC_{(1-\alpha)100\%}(\theta)$, temos evidência para rejeitar H_0 ao nível $\alpha100\%$

Vejam o video