CIS 635 - Knowledge Discovery & Data Mining

HP Optimization

So, essentially we are fitting a function; right?

Model

$$\hat{y} = \beta_0 + \beta_1 x$$
$$\Theta = \{\beta_0, \beta_1\}$$

Fitting Error

$$\epsilon = |\hat{y} - y|$$

$$E_{\Theta} = \frac{1}{2} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

$$\Theta^* = \operatorname{argmin}_{\Theta} E\{(x_i, y_i)\}_{i=1, \dots, N}$$

 $E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$

Model

$$\hat{y} = \beta_0 + \beta_1 x$$

$$\Theta = \{\beta_0, \beta_1\}$$

$$\epsilon = |\hat{y} - y|$$

$$E_{\Theta} = \frac{1}{2} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

$$\Theta^* = \operatorname{argmin}_{\Theta} E\{(x_i, y_i)\}_{i=1,\dots,N}$$

Model

$$\hat{y} = \beta_0 + \beta_1 x$$

$$\Theta = \{\beta_0, \beta_1\}$$

$$\epsilon = |\hat{y} - y|$$

Essentially, the same formulation

 $E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$

Generally ML vs Math conventions

$$E_{\Theta} = \frac{1}{2} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

$$\Theta^* = \operatorname{argmin}_{\Theta} E\{(x_i, y_i)\}_{i=1,\dots,N}$$

Model

x: scalar

 \boldsymbol{x} , \mathbf{x} : vector

X: Matrix

$$\hat{y} = \beta_0 + \beta_1 x$$

$$\Theta = \{\beta_0, \beta_1\}$$

$$\epsilon = |\hat{y} - y|$$

Essentially, the same formulation

 $E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$

Generally ML vs Math conventions

$$E_{\Theta} = \frac{1}{2} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

$$\Theta^* = \operatorname{argmin}_{\Theta} E\{(x_i, y_i)\}_{i=1,\dots,N}$$

Table 1.1 Table of the coefficients w* for polynomials of various order. Observe how the typical magnitude of the coefficients increases dramatically as the order of the polynomial increases.

	M = 0	M = 1	M = 6	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^{\star}				-557682.99
w_{0}^{\star}				125201.43

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

Regularizer

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

Table 1.2 Table of the coefficients \mathbf{w}^* for M=9 polynomials with various values for the regularization parameter λ . Note that $\ln \lambda = -\infty$ corresponds to a model with no regularization, i.e., to the graph at the bottom right in Figure 1.4. We see that, as the value of λ increases, the typical magnitude of the coefficients gets smaller.

3-	log ₂ (x)	log_(x)	
1		lo	g _n (x)
1	111111	11111	+ + + + + + + + + + + + + + + + + + +
-1-			100
2-			
3-			20

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
w_0^{\star}	0.35	0.35	0.13
w_1^{\star}	232.37	4.74	-0.05
w_2^{\star}	-5321.83	-0.77	-0.06
w_3^{\star}	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^{\star}	1042400.18	-45.95	-0.00
w_8^{\star}	-557682.99	-91.53	0.00
w_9^{\star}	125201.43	72.68	0.01

Hyperparameter Optimization

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

Regularizer

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

Regularizer

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

λ (lambda)
is the
Hyperparameter a LR
model

able 1.1 Table of the coefficients w* for polynomials of various order.

Observe how the typical magnitude of the coefficients increases dramatically as the order of the polynomial increases.

	M = 0	M = 1	M = 6	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^{\star}				-557682.99
w_9^\star				125201.43

Table 1.1 Table of the coefficients w* for polynomials of various order. Observe how the typical magnitude of the coefficients increases dramatically as the order of the polynomial increases.

	M = 0	M = 1	M = 6	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^{\star}				-557682.99
w_9^\star				125201.43

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$
 shrinking growing

M = 1 M = 6

0.31

7.99

-25.43

17.37

0.82

-1.27

0.19

M = 9

232.37

-5321.83

48568.31

-231639.30 640042.26 -1061800.52 1042400.18

-557682.99

125201.43

0.35

Training Data

Training Data

D1 D2 D3

3-fold-cv

- RF
- SVM
- NNs

Notebook presentation

Medical Insurance Cost Prediction