$12a_{0597} (K12a_{0597})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{61} - u^{60} + \dots + u + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 61 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{61} - u^{60} + \dots + u + 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{7} + 2u^{5} + 2u^{3} + 2u \\ u^{7} + u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{14} - 3u^{12} - 6u^{10} - 9u^{8} - 8u^{6} - 6u^{4} - 2u^{2} + 1 \\ -u^{14} - 2u^{12} - 5u^{10} - 6u^{8} - 6u^{6} - 4u^{4} - u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{3} \\ u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{10} + u^{8} + 2u^{6} + u^{4} + u^{2} + 1 \\ u^{12} + 2u^{10} + 4u^{8} + 4u^{6} + 3u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{29} - 4u^{27} + \dots + 2u^{3} + 3u \\ -u^{31} - 5u^{29} + \dots + 4u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{55} + 8u^{53} + \dots + 18u^{5} + 10u^{3} \\ u^{57} + 9u^{55} + \dots + 4u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{40} + 7u^{38} + \dots + 4u^{2} + 1 \\ u^{40} + 6u^{38} + \dots - 12u^{6} + 2u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^{59} + 4u^{58} + \cdots + 12u + 2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_{1}, c_{6}	$u^{61} + 19u^{60} + \dots - 5u - 1$
c_2, c_7	$u^{61} + u^{60} + \dots + u - 1$
c_3, c_{12}	$u^{61} + u^{60} + \dots - 39u - 5$
c_4, c_5, c_{10} c_{11}	$u^{61} + u^{60} + \dots - 3u - 1$
<i>C</i> 8	$u^{61} - 5u^{60} + \dots + 861u - 259$
<i>c</i> ₉	$u^{61} + 19u^{60} + \dots + 42053u + 4523$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^{61} + 47y^{60} + \dots - 57y - 1$
c_2, c_7	$y^{61} + 19y^{60} + \dots - 5y - 1$
c_3, c_{12}	$y^{61} - 53y^{60} + \dots - 1749y - 25$
c_4, c_5, c_{10} c_{11}	$y^{61} + 71y^{60} + \dots - 5y - 1$
c ₈	$y^{61} - 17y^{60} + \dots - 237181y - 67081$
<i>c</i> ₉	$y^{61} - 29y^{60} + \dots + 159849859y - 20457529$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.198222 + 0.979758I	-0.89670 - 2.63312I	-3.63978 + 3.74927I
u = -0.198222 - 0.979758I	-0.89670 + 2.63312I	-3.63978 - 3.74927I
u = 0.069123 + 1.009000I	3.02018 + 3.11542I	-2.16036 - 3.84044I
u = 0.069123 - 1.009000I	3.02018 - 3.11542I	-2.16036 + 3.84044I
u = -0.716119 + 0.680098I	8.47263 + 3.12456I	5.89203 - 2.57979I
u = -0.716119 - 0.680098I	8.47263 - 3.12456I	5.89203 + 2.57979I
u = -0.626262 + 0.796421I	0.48829 - 1.58753I	-1.44496 + 3.51896I
u = -0.626262 - 0.796421I	0.48829 + 1.58753I	-1.44496 - 3.51896I
u = 0.257675 + 0.950012I	1.57037 - 0.31655I	2.17444 + 0.48608I
u = 0.257675 - 0.950012I	1.57037 + 0.31655I	2.17444 - 0.48608I
u = 0.667956 + 0.719080I	1.32938 - 1.40534I	2.56264 + 4.66576I
u = 0.667956 - 0.719080I	1.32938 + 1.40534I	2.56264 - 4.66576I
u = -0.294395 + 0.976008I	9.73503 + 2.12680I	3.77784 + 0.86173I
u = -0.294395 - 0.976008I	9.73503 - 2.12680I	3.77784 - 0.86173I
u = -0.026838 + 0.978454I	-3.53400 - 1.53833I	-6.81314 + 5.04627I
u = -0.026838 - 0.978454I	-3.53400 + 1.53833I	-6.81314 - 5.04627I
u = 0.206301 + 1.015650I	1.05887 + 6.04063I	0.60481 - 8.09978I
u = 0.206301 - 1.015650I	1.05887 - 6.04063I	0.60481 + 8.09978I
u = -0.214262 + 1.034720I	9.14721 - 8.20432I	2.64600 + 6.28027I
u = -0.214262 - 1.034720I	9.14721 + 8.20432I	2.64600 - 6.28027I
u = 0.591025 + 0.917591I	5.89659 + 2.23149I	0 2.95980I
u = 0.591025 - 0.917591I	5.89659 - 2.23149I	0. + 2.95980I
u = 0.820314 + 0.739466I	5.73172 - 1.77173I	0
u = 0.820314 - 0.739466I	5.73172 + 1.77173I	0
u = -0.831181 + 0.729794I	7.87844 + 5.39756I	7.24983 - 4.52597I
u = -0.831181 - 0.729794I	7.87844 - 5.39756I	7.24983 + 4.52597I
u = 0.840697 + 0.726055I	16.1180 - 7.6640I	9.08437 + 0.I
u = 0.840697 - 0.726055I	16.1180 + 7.6640I	9.08437 + 0.I
u = -0.823878 + 0.757079I	8.38019 - 1.56812I	8.32978 + 0.I
u = -0.823878 - 0.757079I	8.38019 + 1.56812I	8.32978 + 0.I

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.712977 + 0.865338I	3.82340 + 2.72723I	8.74224 + 0.I
u = 0.712977 - 0.865338I	3.82340 - 2.72723I	8.74224 + 0.I
u = 0.833971 + 0.766158I	16.8468 + 3.4795I	0
u = 0.833971 - 0.766158I	16.8468 - 3.4795I	0
u = -0.653737 + 0.933662I	0.02925 - 3.43744I	0
u = -0.653737 - 0.933662I	0.02925 + 3.43744I	0
u = -0.755724 + 0.871667I	11.89910 - 2.85751I	0
u = -0.755724 - 0.871667I	11.89910 + 2.85751I	0
u = 0.672779 + 0.960113I	0.61376 + 6.63166I	0
u = 0.672779 - 0.960113I	0.61376 - 6.63166I	0
u = -0.683815 + 0.982225I	7.58853 - 8.50302I	0
u = -0.683815 - 0.982225I	7.58853 + 8.50302I	0
u = -0.753356 + 0.982783I	7.68554 - 4.33983I	0
u = -0.753356 - 0.982783I	7.68554 + 4.33983I	0
u = 0.744405 + 0.991746I	4.95753 + 7.64010I	0
u = 0.744405 - 0.991746I	4.95753 - 7.64010I	0
u = 0.763531 + 0.981755I	16.1819 + 2.4910I	0
u = 0.763531 - 0.981755I	16.1819 - 2.4910I	0
u = -0.746432 + 1.000940I	7.04607 - 11.30270I	0
u = -0.746432 - 1.000940I	7.04607 + 11.30270I	0
u = 0.749645 + 1.006720I	15.2551 + 13.6064I	0
u = 0.749645 - 1.006720I	15.2551 - 13.6064I	0
u = -0.668707 + 0.053438I	12.66400 - 5.34174I	9.57934 + 3.17709I
u = -0.668707 - 0.053438I	12.66400 + 5.34174I	9.57934 - 3.17709I
u = 0.638982 + 0.042408I	4.44397 + 3.29723I	8.06395 - 4.69300I
u = 0.638982 - 0.042408I	4.44397 - 3.29723I	8.06395 + 4.69300I
u = -0.605215	2.19284	3.85720
u = 0.485051 + 0.321167I	6.99050 + 1.74446I	6.06464 - 3.55680I
u = 0.485051 - 0.321167I	6.99050 - 1.74446I	6.06464 + 3.55680I
u = -0.258895 + 0.323692I	0.116836 - 0.908570I	2.53961 + 7.56880I

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.258895 - 0.323692I	0.116836 + 0.908570I	2.53961 - 7.56880I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_6	$u^{61} + 19u^{60} + \dots - 5u - 1$
c_2, c_7	$u^{61} + u^{60} + \dots + u - 1$
c_3, c_{12}	$u^{61} + u^{60} + \dots - 39u - 5$
c_4, c_5, c_{10} c_{11}	$u^{61} + u^{60} + \dots - 3u - 1$
<i>C</i> 8	$u^{61} - 5u^{60} + \dots + 861u - 259$
<i>c</i> ₉	$u^{61} + 19u^{60} + \dots + 42053u + 4523$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^{61} + 47y^{60} + \dots - 57y - 1$
c_{2}, c_{7}	$y^{61} + 19y^{60} + \dots - 5y - 1$
c_3, c_{12}	$y^{61} - 53y^{60} + \dots - 1749y - 25$
c_4, c_5, c_{10} c_{11}	$y^{61} + 71y^{60} + \dots - 5y - 1$
c ₈	$y^{61} - 17y^{60} + \dots - 237181y - 67081$
<i>c</i> 9	$y^{61} - 29y^{60} + \dots + 159849859y - 20457529$