Textual Affect

Alexandros Potamianos

Dept. of ECE, Technical Univ. of Crete, Chania, Greece

Acknowledgements

Intro

- Elias Iosif: Semantic similarity computation, semantic networks
- Nikos Malandrakis: Affective models for text and multimedia
- Shri Narayanan (USC): Affective modeling of dialogue interaction

References

- [1] E. Iosif and A. Potamianos. 2010. "Unsupervised semantic similarity computation between terms using web documents". IEEE Transactions on Knowledge and Data Engineering.
- [2] N. Malandrakis, A. Potamianos, E. Iosif, S. Narayanan. 2011. "Kernel methods for affective lexicon creation". Proc. Interspeech.
- [3] . 2011. "EmotiWord: Affective Lexicon Creation with Application to Interaction and Multimedia Data". Proc. of MUSCLE workshop.
- [4] E. Iosif and A. Potamianos. 2012. "Semsim: Resources for normalized semantic similarity computation using lexical networks". In Proc. I REC.
- [5] N. Malandrakis, E. Iosif, A. Potamianos. 2012. "DeepPurple: Estimating Sentence Semantic Similarity using N-gram Regression Models and Web Snippets". In Proc SemEval (collocated with NAACL-HLT).
- [6] E. Iosif and A. Potamianos. 2012. "Similarity computation using semantic networks created from web-harvested data". Natural Language Engineering (submitted to).

Problem Definition

- Semantic Similarity Computation
 - Given a pair of words or terms (w_i, w_j)
 - Compute semantic similarity between them S(i,j)
- Related tasks
 - Phrase or sentence level semantic similarity
 - Strength of associative relation between words
 - Affective score (valence) of words and sentences
- Motivation
 - Organizing principle of human cognition
 - Building block of machine learning in NLP/semantic web
 - Entry point for the semantics of language

Problem Definition

- How to define semantic relations between words?
 - Linguists: well-defined in terms of a handful of relations
 - Cognitive scientists: no idea!
- How to define associative relations between words?
 - Linguists: long-tail of relations, why is this thing useful anyhow?
 - Cognitive scientists: well-defined experimentally via priming
- What is lexical priming?
 - Activation of associated words in cognitive lexical net
 - Cache for quick access of most probable candidates
 - Look-ahead useful for pruning improbable hypotheses

- Using Kahneman's (and others) formalism:
 - System 1 (intuition): generates
 - impressions, feelings, and inclinations
 - System 2 (reason): turns System 1 input into
 - beliefs, attitudes, and intentions
- Associative relations reside in System 1
- But where do semantic relations reside?

Example

Example from vision: system 1 vs system 2

Semantic Relationship Scoring

Experiment

- Please quickly rate the following word pair in terms of semantic similarity using a score between 0 (totally dissimilar) and 4 (semantically equivalent). Record this score.
- Then take your time adjusting this score to the most appropriate semantic similarity value between 0 and 4.

Semantic Relationship Scoring

Min Error Sim.

Experiment

- Please quickly rate the following word pair in terms of semantic similarity using a score between 0 (totally dissimilar) and 4 (semantically equivalent). Record this score.
- Then take your time adjusting this score to the most appropriate semantic similarity value between 0 and 4.
- Word pair: (hand, glove)

Semantic Relationship Scoring

Experiment

- Please quickly rate the following word pair in terms of semantic similarity using a score between 0 (totally dissimilar) and 4 (semantically equivalent). Record this score.
- Then take your time adjusting this score to the most appropriate semantic similarity value between 0 and 4.
- Word pair: (hand, glove)
- Results:
 - System 1: strong association fast score 3 or 4
 - System 2: weak (or non-existent) semantic relationship slow score 2 or 3

Associative Anchoring

- What you experienced: associative anchoring
- Anchoring is a cognitive deficiency due to system 1 vs 2 cognitive organization, e.g.,

$$x = 1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \text{ vs}$$

$$y = 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1$$

- Fast estimate of y greater than that of x
- Slow estimate of y greater than that of x
- Semantic score of (hand, glove) should be 0 or 1
 - instead due to associative anchoring 2 or 3

Semantic score a (system 2) post-correction of association (system 1) score

A cognitive model of lexical semantics

- Distributed representation [Rogers & McClelland, '04]
- Similarity: common vs. distinctive attributes [Tversky, '77]

Intro

Main approaches of lexical semantics

- Word are associated with feature vectors
 - crisp, parsimonious representation of semantics
- Distributional semantic models (DSMs)
 - Semantic information extracted from word frequencies
 - Estimate co-occurence counts of word pairs or triplets
 - Estimate statistics of word context vectors
- Semantic networks
 - discovery of new relations via systematic co-variation
 - robust estimates smoothing corpus statistics over network
 - rapid language acquisition

Example of Semantic Network

- Linked nodes: lexicalized senses and attributes
 - Informative for semantic similarity computation
- Computation of structural properties, e.g., cliques

Evaluation

Conclusions

Proposed semantic similarity two-tier system

- Unifies the three approaches
- Fuzzy vs explicit semantic relations
- Word senses vs words vs concepts
- A two tier system
 - An associative network backbone
 - Semantic relations defined as operations on network neighborhoods (cliques)
- Consistent with system 1 vs system 2 view
- Furthermore we believe that the
 - underlying network consists of word senses, and
 - is a low dimensional semi-metric space

- Resource-based, e.g., WordNet
 - Require expert knowledge
 - Not available for all languages
- Corpus-based
 - Distributional semantic models (DSMs)
 - Unstructured (unsupervised): no use of linguistic structure

Textual Affect

- Structured: use of linguistic structure
- Pattern-based, e.g., Hearst patterns
- Mixed

Semantic Sim. Computation: Sense Similarity

- Maximum sense similarity assumption [Resnik, '95]:
 - Similarity of words equal to similarity of their closest senses
 - If words are considered as sets of word senses, this is the "common sense" set distance
- Given words w_1 , w_2 with senses s_{1i} , s_{2j}

$$S(w_1, w_2) = \max_{ij} S(s_{1i}, s_{2j})$$

Semantic Sim. Computation: Attributional Similarity

Textual Affect

Attributional similarity assumption

- Attributes (features) reflect semantics
 - Item-Relation-Attribute, e.g., canary-color-yellow
- Main representation schemes
 - Hierarchical/Categorical
 - Mainly taxonomic relations, e.g., IsA, PartOf
 - Distributed (networks)
 - Open set of relations, e.g., Cause-Effect, etc
- Similarity between words
 - Function of attribute similarity
 - Defined wrt representation

Types of Similarity Metrics

Co-occurrence-based

- Assumption: co-occurrence implies relatedness
- Co-occurrence counts: web hits, corpus-based
- Examples: Dice coef., point-wise mutual information, ...

Context-based

- Assumption: context similarity implies relatedness (distributional hypothesis of meaning)
- Contextual features extracted from corpus
- Examples: Kullback-Leibler divergence, cosine similarity, ...
- Network-based (proposed)
 - Build lexical net using co-occurrence and/or context sim.
 - Notion of semantic neighborhoods
 - Assumptions: neighborhoods capture word semantics

Queries to Web Search Engines

- Number of hits
- Document URLs (download)
- Document snippets

Conclusions

- Two types of web queries
 - AND, e.g., "money + bank" "... leading bank in India offering online money transfer ..."
 - IND, e.g., "bank"
 - '... downstream parallel to the banks of the river ..."
- AND gueries
 - Pros: Similarity computation highly correlated (0.88) with human ratings [losif & Potamianos, '10]
 - Cons: Quadratic query complexity wrt lexicon L
- IND queries
 - Pros: Linear query complexity wrt lexicon L
 - Cons: Sense ambiguity: moderate correlation (0.55)

Semantic Similarity Estimation

- Co-occurrence based metrics
 - From web: hits of IND, AND queries
 - From (web) corpus: co-occurence counts at the snippet or sentence level
 - Metrics: Dice, Jacard, Mutual Information, Google
- Context-based metrics
 - Download a corpus of documents of snippets using IND queries
 - Construct lexical context vector for each word (window ± 1)
 - Cosine similarity using binary or log-weighted counts

Enter semantic networks

- Why do IND queries fail to achieve good performance?
 - 1 Word senses are often semantically diverse
 - co-occurrence acts as a semantic filter
 - 2 Word senses have poor coverage in IND queries
 - rare word senses of words not well-represented
- Solution: use semantic networks
 - 1 Create a corpus for all words in lexicon (not just semantic similarity pair)
 - Use semantic neighborhoods for semantic cohesion
 - improved robustness
 - Inverse frequency word-sense discovery
 - discover rare senses via co-occurrence with infrequent words

Corpus and Network Creation

Goals

- Linear web query complexity for corpus creation
- New similarity metrics with high performance
- Proposed method
 - IND queries to aggregate data for large L ($\approx 9K$)
 - Create network and semantic neighborhoods
 - Neighborhood-based similarity metrics
- Advantages
 - Network: parsimonious representation of corpus statistics
 - Smooth distributions
 - Rare words: well-represented
 - Enable discovery of less frequent senses

Lexical Network

- Undirected graph G = (N, E)
 - Vertices N: words in lexicon L
 - Edges *E*: word similarities

Semantic Neighborhoods

- For word *i* create subgraph G_i
- Select neighbors of i
 - Compute $S(i,j), \forall j \in L, i \neq j$
 - Sort *i* according to S(i, j)
 - Select $|N_i|$ top-ranked i

Semantic Neighborhoods: Examples

Word	Neighbors		
automobile	auto, truck, vehicle,		
	car, engine, bus,		
car	truck, vehicle , travel,		
	service, price, industry,		
slave	slavery, beggar, nationalism,		
	society, democracy, aristocracy,		
journey	trip, holiday, culture,		
	travel, discovery, quest,		

- Synonymy
- Taxonomic: IsA, Meronymy
- Associative
- Broader semantics/pragmatics

Neighborhood-based Similarity Metrics: M_n

M_n metric: maximum similarity of neighborhoods

- Motivated by maximum sense similarity assumption
 - Neighbors are semantic features denoting senses
 - Similarity of two closest senses
- Select max. similarity: $M_n("forest", "fruit") = 0.30$

Sem.Similarity

Sem.Similarity Evaluation Conclusions

Neighborhood-based Similarity Metrics: R_n

R_n metric: correlation of neighborhood similarities

- Motivated by attributional similarity assumption
 - Neighborhoods encode word attributes (or features)
 - Similar words have co-varying sim. wrt their neighbors
- Compute correlation r of neighborhood similarities
 - $r_1((0.16...0.09), (0.10...0.01)), r_2((0.002...0), (0.63...0.13))$
- Select max. correlation: $R_n("forest","fruit") = -0.04$

Neighborhood-based Similarity Metrics: metric $E_n^{\theta=2}$

 $E_n^{\theta=2}$ metric: sum of squared neighborhood similarities

- Motivation: middle road between M_n and R_n
 - Accumulation of word—to—neighbor similarities
 - Non-linear weighting of similarities via $\theta = 2$
- $E_n^{\theta=2} (\text{"forest", "fruit"}) = \sqrt{(0.10^2 + \dots + 0.01^2) + (0.002^2 + \dots + 0^2)} = 0.22$

Sem.Similarity

Sem.Similarity

- Task: similarity judgment on noun pairs
- Dataset: MC [Miller and Charles, 1998]
- Evaluation metric: Pearson's correlation wrt to human ratings

Dataset	Neighbor	Similarity	Metrics		
	selection	computation	$M_{n=100}$	$R_{n=100}$	$E_{n=100}^{\theta=2}$
MC	co-occur.	co-occur.	0.90	0.72	0.90
MC	co-occur.	context	0.91	0.28	0.46
MC	context	co-occur.	0.52	0.78	0.56
MC	context	context	0.51	0.77	0.29

Main findings

- Network construction
 - Co-occurence metrics achieve high-recall for word senses
 - Context-based metrics achieve high-recall for attributes
- Semantic similarity performance
 - Co-occurence a more robust feature that context
 - Max sense similarity assumption is valid and gives best performance
 - Attributional similarity assumption valid for certain cases/languages

Performance of web-based similarity metrics

For MC dataset

Sem.Similarity

Feature	Description	Correlation
context	AND queries	0.88
context	IND queries	0.55
context	IND queries: network	0.90

Comparable to structured DSMs, WordNet-based approaches

Minimum Error Semantic Similarity

- Assumption 1
 - Senses lexicalized as single words
- Assumption 2
 - Sim. of w_i , w_i : pairwise max. sim. between their senses
- Assumption 3
 - 3a. w_i , w_i always co-occur with their two closest senses 3b. ...
- Assumption 4
 - Uniform distribution of senses
 - 4h. ...

Sem.Similarity

Performance of min error semantic similarity

■ Modify pointwise mutual info. $I(w_i, w_j) = \log \frac{\rho(w_i, w_j)}{\hat{\rho}(w_i)\hat{\rho}(w_i)}$ as

$$I_{\alpha}(w_i, w_j) = \frac{1}{2} \left[\log \frac{\hat{p}(w_i, w_j)}{\hat{p}^{\alpha}(w_i)\hat{p}(w_j)} + \log \frac{\hat{p}(w_i, w_j)}{\hat{p}(w_i)\hat{p}^{\alpha}(w_j)} \right]$$

- Assumptions: 1, 2, 3a, and 4b
- Co-occurrence considered at sentence-level
- α estimated to max. sense coverage of sem. neigh.
- Task: similarity judgment, correlation wrt to human ratings

Dataset	1	I_{lpha}
MC	0.78	0.89
RG	0.77	0.84
WS353	0.60	0.68

SemEval 2012: Sentence Level Semantic Similarity

- BLEU-based semantic similarity metric:
 - Baseline BLEU: using single BLEU hit rate as rating
 - Semantic Similarity (SS) BLEU: modified unigram BLEU that includes semantic similarity of non-matched words

Correlation performance of 1-gram BLEU scores					
with semantic similarity metrics (nouns-only)					
	par	vid	euro	Mean	Ovrl
BLEU	0.54	0.60	0.39	0.51	0.58
SS-BLEU WordNet	0.56	0.64	0.41	0.54	0.58
SS-BLEU I(i,j)	0.56	0.63	0.39	0.53	0.59
SS-BLEU $I_a(i,j)$	0.57	0.64	0.40	0.54	0.58

Sem.Similarity

Proposed a language agnostic, unsupervised and scalable algorithm for semantic similarity computation

- No linguistic knowledge required, works from text corpus or using a web query engine
- Shown to perform at least as well as resource-based semantic similarity computation algorithms, e.g.,
 WordNet-based methods

Evaluation

Conclusions

EmotiWord: Affective Lexicon Creation with Application to Interaction and Multimedia Data

Motivation

- Affective text labeling at the core of many multimedia applications, e.g.,
 - Sentiment analysis
 - Spoken dialogue systems
 - Emotion tracking of multimedia content
- Affective lexicon is the main resource used to bootstrap affective text labeling
 - Lexica are currently of limited scope and quality

Goals and Contributions

Our goal: assigning continuous high-quality polarity ratings to any lexical unit

- We present a method of expanding an affective lexicon, using web-based semantic similarity
- Assumption: semantic similarity implies affective similarity.
- The expanded lexica are accurate and broad in scope, e.g., they can contain proper nouns, multi-word terms

Our lexicon expansion method

Expansion of [Turney and Littman, '02].

Assumption: the valence of a word can be expressed as a linear combination of its semantic similarities to a set of seed words and their valence ratings:

$$\hat{v}(w_j) = a_0 + \sum_{i=1}^{N} a_i \ v(w_i) \ d(w_i, w_j), \tag{1}$$

Lexicon expansion

- \mathbf{w}_{i} : the wanted word
- $w_1...w_N$: seed words
- $\mathbf{v}(\mathbf{w}_i)$: valence rating of word \mathbf{w}_i
- \blacksquare a_i : weight assigned to seed w_i
- $d(w_i, w_j)$: measure of semantic similarity between words w_i and w_i

- an initial lexicon of K words
- a set of N < K seed words

we can use (1) to create a system of K linear equations with N+1 unknown variables:

$$\begin{bmatrix} 1 & d(w_1, w_1)v(w_1) & \cdots & d(w_1, w_N)v(w_N) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & d(w_K, w_1)v(w_1) & \cdots & d(w_K, w_N)v(w_N) \end{bmatrix} \cdot \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_N \end{bmatrix} = \begin{bmatrix} 1 \\ v(w_1) \\ \vdots \\ v(w_K) \end{bmatrix}$$
(2)

Solving with Least Mean Squares estimation provides the weights a_i.

Example, N = 10 seeds

Order	Wi	$V(W_i)$	ai	$v(w_i) \times a_i$
1	mutilate	-0.8	0.75	-0.60
2	intimate	0.65	3.74	2.43
3	poison	-0.76	5.15	-3.91
4	bankrupt	-0.75	5.94	-4.46
5	passion	0.76	4.77	3.63
6	misery	-0.77	8.05	-6.20
7	joyful	0.81	6.4	5.18
8	optimism	0.49	7.14	3.50
9	loneliness	-0.85	3.08	-2.62
10	orgasm	0.83	2.16	1.79
-	w ₀ (offset)	1	0.28	0.28

Sem.Similarity

Simple combinations of word ratings:

linear (average)

$$v_1(s) = \frac{1}{N} \sum_{i=1}^{N} v(w_i)$$

weighted average

$$v_2(s) = \frac{1}{\sum\limits_{i=1}^{N} |v(w_i)|} \sum\limits_{i=1}^{N} v(w_i)^2 \cdot \text{sign}(v(w_i))$$

max

$$v_3(s) = \max_i (|v(w_i)|) \cdot \operatorname{sign}(v(w_z)), \quad z = \arg\max_i (|v(w_i)|)$$

Generalize method to n-grams

$$v_i(s) = a_0 + a_1 v_i(unigram) + a_2 v_i(bigram)$$

- Starting from all 1-grams and 2-grams, select terms:
 - Backoff: use overlapping bigrams as default, revert to unigrams based on mutual information-based criterion
 - Weighted interpolation: use all unigrams and bigrams as default, reject bigrams based on criterion
- In both cases unigrams and bigrams are given linear weights, trained using LMS

Evaluation

- ANEW Word Polarity Detection Task
 - Affective norms for English words (ANEW) corpus
 - 1.034 English words, continuous valence ratings
- General Inquirer Word Polarity Detection
 - General Inquirer words corpus
 - 3.607 English words, binary valence ratings
- BAWLR Word Polarity Detection Task
 - Berlin affective word list reloaded (BAWLR) corpus
 - 2.902 German words, continuous valence ratings
- SemEval 2007 Sentence Polarity Detection
 - SemEval 2007 News Headlines corpus
 - 1.000 English sentences, continuous valence ratings
 - ANEW used for lexicon training
 - 250 sentence development set used for word fusion training

- Corpus selection
 - Web corpus (web)
 - Lexically balanced web corpus (14m, 116m)
- Semantic Distance
 - Co-occurence based (G = google)
 - Context-based using web snippets (S)
- All experiments: training on ANEW seed words (cross-validation)

Word Polarity Detection (ANEW)

2-class word classification accuracy (positive vs negative)

Word Polarity Detection (GINQ)

2-class word classification accuracy (positive vs negative)

2-class word classification accuracy (positive vs negative)

Sentence Polarity Detection (SemEval 2007)

2-class sentence classification accuracy (positive vs negative), using weighted interpolation

Sentence Polarity Detection (SemEval 2007)

2-class sentence classification accuracy (positive vs negative), vs bigram rejection threshold

ChIMP Sentence Frustration/Politeness Detection

- ChIMP Children Utterances corpus
- 15.585 English sentences, Politeness/Frustration/Neutral ratings
- SoA results, binary accuracy P vs 0 / F vs O:
 - 81% / 62.7% [Yildirim et al, '05]
- 10-fold cross-validation
- ANEW used for training/seeds to create word ratings
- ChiMP words added to ANEW with weight w, to adapt to the task
- Similarity metric: Google semantic relatedness
- Only content words taken into account

Sem.Similarity

Sem.Similarity

- The word-level ratings are very accurate and robust across different corpora
- N-gram sentence-level ratings significantly better than the state-of-the-art, despite the simplistic sentence level fusion model and disregard of syntax/negations
- Adaptation provided good performance on the politeness detection task (linear fusion)
- The baseline model performed best on the frustration detection task (max fusion)

Conclusions

Proposed a high-performing, robust, general-purpose and scalable algorithm for affective lexicon creation

- Investigated linear and non-linear sentence level fusion schemes, showing good but task-dependent performance
- Investigated domain adaptation with good but task-dependent performance (politeness vs frustration detection task)
- Demonstrated that distributional approach can generalize to n-grams

Ongoing Work

- Similarity metrics on semantic networks
 - Graph theoretic approaches, e.g., cliques
 - Local and global normalization
- (Non-)compositional models Semantics and Affect:
 - Additional information, modifiers, functionals: syntax, negations, modifiers
 - Fusion of semantic and distributional models
 - Temporal integration of sentence ratings
 - Modeling context and affective reversal
- Cognitive models of semantics and affect
 - Low dimensional semi-metric semantic spaces

