7.4 1) La construction de la boîte demande un minimum de matériau si son aire totale est minimale.

Soient x la longueur du côté du carré de la base et y la hauteur de la boîte. L'aire totale est donnée par $f(x, y) = x^2 + 4xy$.

- 2) Puisque le volume de la boîte vaut 1 litre = 1 dm^3 , en prenant le dm pour unité de longueur, on a $x^2 y = 1$.
- 3) Il en résulte $y = \frac{1}{x^2}$.

L'aire totale de la boîte s'écrit ainsi $f(x) = x^2 + 4x \cdot \frac{1}{x^2} = x^2 + \frac{4}{x}$.

La seule contrainte sur la dimension x est d'être positive : $D_f =]0; +\infty[$.

4) Déterminons la plus petite valeur prise par la fonction $f(x) = x^2 + \frac{4}{x}$ sur son ensemble de définition $D_f =]0; +\infty[$.

$$f'(x) = \left(x^2 + \frac{4}{x}\right)' = (x^2 + 4x^{-1})' = 2x - 4x^{-2} = 2x - \frac{4}{x^2} = \frac{2(x^3 - 2)}{x^2}$$
$$= \frac{2(x - \sqrt[3]{2})(x^2 + \sqrt[3]{2}x + \sqrt[3]{4})}{x^2}$$

	$0 \sqrt[3]{2}$		
2	+	+ 0	+
$x-\sqrt[3]{2}$	_	_	+
$x^2 + \sqrt[3]{2}x + \sqrt[3]{4}$	+	+	+
x^2	+	+	+
f'	_	- 0	+
f	\searrow	\ _m	7

$$f(\sqrt[3]{2}) = (\sqrt[3]{2})^2 + \frac{4}{\sqrt[3]{2}} = \sqrt[3]{4} + \frac{4}{\sqrt[3]{2}} = \sqrt[3]{4} + \left(\frac{4}{\sqrt[3]{2}}\right) \cdot \frac{\sqrt[3]{4}}{\sqrt[3]{4}} = \sqrt[3]{4} + \frac{4\sqrt[3]{4}}{2}$$
$$= \sqrt[3]{4} + 2\sqrt[3]{4} = 3\sqrt[3]{4}$$

$$\lim_{\substack{x \to 0 \\ x > 0}} f(x) = \lim_{\substack{x \to 0 \\ x > 0}} x^2 + \frac{4}{x} = 0 + \infty = +\infty$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^2 + \frac{4}{x} = +\infty + 0 = +\infty$$

5) La construction de la boîte demande un minimum de matériau si les côtés de la base mesurent $x = \sqrt[3]{2}$ dm.

Alors la hauteur mesure $y = \frac{1}{x^2} = \frac{1}{(\sqrt[3]{2})^2} = \frac{1}{\sqrt[3]{4}}$ dm.

Avec ces dimensions, l'aire totale de la boîte est minimale et vaut $3\sqrt[3]{4}$ dm².