Midterm 1 Discrete Mathematics (Math 61-001)

Answer the questions in the spaces provided. If you run out of room for an answer, continue on the back of the page. You must show your work.

Name:	U ID:
Section:	

Question:	1	2	3	4	Total
Points:	5	5	5	5	20
Score:					

1. 5 points Prove by induction that $4^{n-1} > n^2$ for all $n \ge 3$.

2. 5 points Let $f: X \to Y$ and $g: Y \to Z$ be two functions such that $g \circ f: X \to Z$ is surjective, i.e., onto. Then prove that g is surjective.

3. 5 points Let $\mathbb{N} = \{1, 2, 3, ..., \}$ be the set of natural numbers. Let R be a relation on \mathbb{N} defined as $(x, y) \in R$ if and only if 5 divides x + 4y. Prove that R is an equivalence relation.

4. 5 points Compute that the number of n-bit strings defined on the set $S = \{0, 1\}$ which contains exactly k number of 0's such that no two 0's are sitting next to each other. (Warning: You must explain how you are arriving to your solution for this problem. Writing only the answer will earn you 0 point.)