This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(19)日本国特許庁(JP)

(12) 公開特許公報 (A) (11)特許出願公開番号

特開平5-310989

(43)公開日 平成5年(1993)11月22日

(51) Int. Cl. ⁵		識別記号	庁内整理番号	FΙ	技術表示箇所
C 0 8 J	9/26	102	7148-4 F		
B 0 1 D	71/26		8822 - 4 D		
C 0 8 J	9/26	CES	7148-4 F		
H 0 1 M	2/16	P			
// C08L	23:06		7107—4 Ј		
	審査請求	未請求 請求	項の数 4	**************************************	(全5頁)
(21)出願番号	特願平4-111820			(71)出願人	000005968
					三菱化成株式会社
(22)出願日	平成4年(1992)4月30日				東京都千代田区丸の内二丁目5番2号
				(72)発明者	杉浦 克彦
					神奈川県横浜市緑区鴨志田町1000番地 三
				(70) 7% DD +K	菱化成株式会社総合研究所内
				(72)発明者	半田 敬信
		_	•	•	岡山県倉敷市潮通三丁目10番地 三菱化成
					株式会社水島工場内
				(74)代理人	弁理士 長谷川 一 (外1名)

(54) 【発明の名称】ポリエチレン多孔膜

(57)【要約】

【目的】過熱時における自己閉塞性を有する電池用セパ レーターを提供する。

【構成】粘度平均分子量(Mv)500,000以上の 超高分子量ポリエチレンからなる多孔膜であって、該ポ リエチレンの融点以上の温度で熱処理した時、透気度が 1000秒/100cc以上となることを特徴とするポ リエチレン多孔膜。

【特許請求の範囲】

【請求項1】 粘度平均分子量(Mv)500,000 以上の超高分子量ポリエチレンからなる多孔膜で(a) 厚さ10~50μm、(b) 透気度20~1000秒/ 100cc、(c)空孔率25~80%、(d)破断点 強度が縦方向、横方向とも100Kg/cm²以上、

(e) バブルポイント (BP値) 2~5 Kg/cm²、

(f) 透水量100リットル/hr・m²・atm以 上、(g) 0.091μmのスチレンラテックス粒子を リエチレンの融点以上200℃以下の温度で熱処理した 時、透気度が1000秒/100cc以上となることを 特徴とするポリエチレン多孔膜

【請求項2】 175℃で熱処理した時、膜形状を維持 していることを特徴とする請求項1に記載のポリエチレ ン多孔膜

【請求項3】 濾過膜として使用することを特徴とする 請求項1に記載のポリエチレン多孔膜

【請求項4】 電池セパレーターとして使用することを 特徴とする請求項1に記載のポリエチレン多孔膜

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はポリエチレン多孔膜に関 する、詳しくは、気体、液体およびイオン透過性に優 れ、高温での膜形状維持性が優れている超精密濾過膜お よび電池セパレター用膜に敵したポリエチレン多孔膜に 関する。

[0002]

【従来の技術】携帯用小型機器の発達にともない小型で 高性能な電池が求められるようになってきた。リチウム 30 こすなど問題がある。透気度は20~1000秒/10 電池は最も卑な金属であるリチウムを使うことにより発 生起電圧が高く小型高性能電池用電極材としては非常に 有用である。しかしリチウムは反応性が高く取扱を間違 えると大きな事故となる。リチウム電池においても過去 に発火事故などの事例が発生しており安全性確保は重要 課題である。

[0003]

【発明が解決しようとする課題】セパレーターに髙温膜 形状維持特性が不足していると、短絡事故などで短時間 に大電流が流れ、リチウム電池は発熱し、熱によるセパ 40 レーター破損での内部短絡による爆発、発火事故などが 発生する危険性がある。セパレーターには電池内部温度 が上昇した時、セパレーターの孔が熱により自動的に閉 塞する性質(自己閉塞性)と高温になっても膜形状を維 持し電極を隔てておく性質(高温膜形状維持特性)が必 要とされる。

【0004】ポリプロピレン製セパレーター膜は高温で の形状維持性に優れているが、特にリチウム電池セパレ ーターとして使用する際、自己閉塞性を発現する温度が 約175℃でありリチウムの発火温度180℃と接近し 50 Kg/cm²以上が必要である。これ未満だと膜製造時

ており危険である。また、セパレーター膜においては通 常強度向上のために延伸を行うが、延伸した膜は髙温膜 形状維持特性が低くポリエチレン製では150~160 ℃、ポリプロピレン製では180℃近辺で破断し、電極 の隔離性に問題を生じる。

[0005]

【課題を解決するための手段】そこで発明者らはかかる 問題点を解決すべく鋭意検討を行った結果、低温閉塞性 が高く、高温膜形状維持特性を改良した上でセパレータ 50%以上阻止するポリエチレン多孔膜であって、該ポ 10 一としての基本的な特性を満足した膜を発明するに至っ た。本発明は即ち粘度平均分子量(Mv)500,00 0以上の超高分子量ポリエチレンからなる多孔膜で

> (a) 厚さ10~50μm、(b) 透気度20~100 0秒/100cc、(c)空孔率25~80%、(d) 破断点強度が縦方向、横方向とも100Kg/cm2以 上、(e) バブルポイント (BP値)、2~5Kg/c m²、(f) 透水量100リットル/hr・m²・atm 以上、(g) 0. 091 μ mのスチレンラテックス粒子 を50%以上阻止するポリエチレン多孔膜であって、該 20 ポリエチレンの融点以上200℃以下の温度で熱処理し た時、透気度が1000秒/100cc以上となること を特徴とするポリエチレン多孔膜である。

【0006】以下本発明を詳細に説明する。本発明のポ リエチレン多孔膜の厚さは10~50μmであり、更に 好ましくは15~30μmである。10μmより薄い膜 は絶対強度が小さく、製膜時の破断や電池加工後の膜破 れなどが発生しやすく好ましくない。また、50μmを 超えた膜厚では透水量が小さくなったり、電池内に占め るセパレーターの割合が大きくなり電池の容量低下を起 0 c c であり好ましくは50~300秒/100 c c で ある。透気度が20秒/100cc未満だと膜表面積に 占める孔の割合 (開孔率) が大きくなり膜の強度が低下 する。1000秒/100ccより大きいとイオンの透 過抵抗が大きくなりセパレーターとして使用できなくな

【0007】しかし該ポリエチレンの融点(通常135 ℃程度)以上で、通常は200℃以下の温度に1~2分 程度加熱されることによって1000秒/100cc以 上となりイオン電流を遮断することができ、電池が短絡 事故など発熱しても安全に電極反応を止めることが出来 る。透気度が1000秒/100ccより大きくなるこ とは濾過膜としては濾過抵抗が大きくなりすぎ実用的で

【0008】空孔率は25~80%である。空孔率が2 5%未満だと孔構造が緻密すぎて濾過やイオン透過に不 都合を生じる。80%より大きいと単位体積中に占める ポリエチレンの量が小さくなりすぎ強度が低下して好ま しくない。破断点強度は縦、横どちらの方向にも100

や濾過膜をカートリッジ加工する際などに破断しやすく 作業性が悪くなる。バブルポイントは2~5 Kg/cm ²以上である。バブルポイントが2Kg/cm²未満だと 孔構造が疎となり実用的でない。また5 Kg/cm²よ り大きいと孔構造が緻密すぎて濾過やイオン透過の抵抗 となり好ましくない。

【0009】透水量は100~1500リットル/hr ·m²·a tmである。透水量が100リットル/hr ・m²・a t m未満だと濾過速度が遅く実用的でない。 1500リットル/hr・m²・atmより大きいと孔 構造が疎となり電池セパレーターとして使用したとき電 極同志が接触する危険がある。0.091μmのスチレ ンラテックス粒子は50%以上を阻止する必要がある。 50%未満だと濾過性能の点で十分に不要粒子を濾過で きない。

【0010】本発明の多孔膜を得るのに好ましい方法と しては、超高分子量ポリエチレンと可塑剤からなる組成 物を溶融押出してシートを得、ついて該シートから可塑 剤を除去してして得られる多孔シートが供される。また 熱処理には加熱ロール法、またはテンター方式等を用い 20 ることができる。このようにして得られた多孔膜の構造 はフィブリルからなる網目状構造を有しているのが特徴 である。

【0011】本発明に使用されるポリエチレンは重量平 均分子量が500,000以上であるいわゆる超高分子 量ポリエチレンであり、特に粘度平均分子量が1×10 6~3. 0×106のものが好ましい。また該ポリエチレ ンを50%以上含み分子量5×105~2×106の他の ポリオレフィン、変性ポリオレフィンを含んでもよい。 ことが困難で微細孔構造を有する多孔膜を得ることがで きない。また安定したシート成形が不可能となる。次に 可塑剤としてはポリエチレンとの相溶性がよく、沸点が 該ポリエチレンの溶融成形温度 (~250℃) 以上でし かもシート成形中に蒸散が起こりにくい様、蒸気圧が低 いことが必要条件である。

【0013】さらに、製品の途中段階で得られるポリエ チレンと可塑剤からなるシートの安定性、取扱の容易さ を考慮すると具体的には流動パラフィン、固形パラフィ ン、ステアリルアルコール、セチルアルコール等が望ま 40 しい。特に常温で固体であるものは取扱上非常に有用で ある。これら可塑剤と超髙分子量ポリエチレンとは通常 のミキサーで混合された後、一旦溶融混練により均一混 練、ペレット化した後シート成形に供されるが、特にス テアリルアルコールは細かい顆粒状の製品を使用するこ とができ、粉末状である超高分子量ポリエチレンと機械 的なプレンドをすることが容易であり、このまま押出機 供給部に供給することにより安定した押出成形が可能で ある。さらに本組成に熱安定剤、酸化防止剤、着色剤な どを添加しても構わない。

【0014】 超高分子量ポリエチレンと可塑剤との混合 の比率は通常、重量比で超高分子量ポリエチレン/可塑 剤=10/90~40/60であり、好ましくは15/ 85~35/65の範囲である。ポリエチレンの比率が 低すぎると、押出機における押出状態が不安定となり良 好なシートを得ることができない。またポリエチレンの 比率が髙すぎると粘度が大きくなり過ぎ、ダイス部分で の流れが不安定となり安定したシートを得ることが不可 能となる。これら組成物を一旦溶融混練してペレット化 10 したものはシート成形時に該ポリエチレンと可塑剤の分 級を防止することができ成形安定性の向上につながる。

4

【0015】シートの成形はポリエチレンと可塑剤を溶 融混練したペレットまたはポリエチレンと可塑剤を機械 的にブレンドした混合物を押出機に供給し、次に均一な 溶融状態とし、適宜選択されたダイスからシート状に押 し出すことによって行う。通常Tダイ成形品シートの厚 みは0.03~0.5mmでり、好ましくは0.03~ 0. 08 mmである。

【0016】この際、シートに延伸を加えず、分子配向 をなるべく起こさないように成形する事が望ましい。次 に行う可塑剤の除去(抽出)は可塑剤の溶解度が高く、 易揮発性溶剤による抽出法が望ましい。易揮発性溶剤と してはペンタン、ヘキサン、ヘプタン等の炭化水素系、 塩化メチレン、クロロホルム、四塩化炭素、三フッ化エ タン等のハロゲン化炭化水素系、メタノール、エタノー ル、プロパノール等のアルコール系が挙げられ、全量可 塑剤を除去し、その後乾燥により揮発性溶剤を除去する ことにより多孔性のシートを得る。この多孔性シートに 残存する可塑剤含有率は1重量%未満にするのが好まし 【0012】分子畳が低すぎると可塑剤と均一混練する 30 い。可塑剤の除去は除去効率をよくするため常温以上で 行うのが望ましい。

> 【0017】上記多孔シートはそのままでも十分多孔化 しセパレーターとして使用することが可能であるが、さ らに温度による収縮を防止するために熱処理をすること が出来る。工業的には加熱ロール法、テンター法等があ り、熱処理温度は高温の方が望ましいが、該ポリエチレ ンの融点以上になると孔が閉塞して透気度が大幅に上昇 して好ましくない。加熱ロール法の場合、融点以下、好 ましくは130℃以下で熱処理を行うのが好ましい。

[0018]

【実施例】以下、本発明を実施例を挙げて詳細に説明す るが、本発明はその要旨を越えない限り下記の実施例に 限定されるものではない。実施例における試験方法は次 の通りである。

- 1. 透気度(単位;秒/100cc) JIS P81
- 2. 空孔率(%)=空孔容積/多孔膜容積×100%
- 3. 破断強度 (単位 ; Kg/cm²) JIS K67
- 50 4. バブルポイント (BP) JIS K3832

- 5. 透水量 (単位;リットル/hr·m²·atm) アミコン社製 8010型セルを使用し、差圧1kg/c m²温度23℃にて測定
- 6. 孔径測定 (スチレンラテックス阻止率) ダウ社製 重量平均粒径0. 091μm、0. 212μmのスチ レンラテックス粒子を水に分散させ、アミコン社製80 10型セルをしようして差圧1Kg/cm²にて透過試 験を実施しその前後のスチレンラテックス濃度をUV計 で測定してその阻止率を次の式で求めた。

[0019]

【数1】阻止率(%)=(透過前の濃度-透過後の濃 度) / (透過前の濃度)×100

実施例1

粘度平均分子量2×10°のポリエチレンパウダー(融 点135℃)20重量部と粒状のステアリルアルコール 80重量部のドライブレンド物を押出機に供給して24 O℃で混練しながら連続的に幅550mm、ダイクリア ランス 0. 2 mmの Tダイより押し出して厚さ 0. 07 mmのシートを得た。

【0020】このシートを60℃のイソプロピルアルコ 20 率は45%となった。 ール浴でステアリルアルコールを抽出し、ポリエチレン 製多孔膜を得た。この膜の物性は

- (a) 膜厚 47 µ m
- (b) 透気度 105秒/100cc
- (c)空孔率 67%
- (d) 破断点強度 170 Kg/cm²(縦方向)、1

20Kg/cm² (横方向)

- (e) バブルポイント 3. 4 Kg/cm²
- (f) 透水量 400リットル/hr·m²·atm
- (g) スチレンラテックス阻止率 (SR阻止率) 98 %以上

であった。

【0021】この膜を熱風循環オーブン中150℃で1 分間加熱したものの透気度は測定不能(1200秒/1 00 c c以上) であった。さらにこの膜を175℃で1

10 分間加熱処理しても膜形状は保持されたままだった。 実施例2

実施例1で得られた膜厚47μmのポリエチレン製多孔 膜を表面温度120℃の加熱ピンチロールを用いて30 秒間熱処理して33μmの膜を作成し、多孔膜を得た。 この膜の物性を表-1に示す。

比較例1

粘度平均分子量4. 5×105のポリエチレン(融点1 28℃)を使用する以外実施例1と同様に行い膜を作成 した。この膜の 0. 091 µ m スチレンラテックス除去

比較例2

実施例1で作成した多孔膜を表面温度140℃(融点+ 5℃)の加熱ロールを用いて30秒間熱処理を行った。 この膜の物性を表-1に示す。

[0022]

【表1】

				8
175°C 68 職形状	形状維持	形状維持	格 融 破 断	形状維持
数	> 1 2 0 0	> 1 2 0 0	ı	ı
S 表 第	8 5	8 6	4 5	6 6 <
派 本	4 0 0	580	8 0 0	3 0
8 P 值	. 8	3 . 4	2.3	8.0
被废废。	1 2 0	150	1 0 0	170
破 強 慰 疑 疑 ()	170	2 5 0	1 2 0	260
公 名	6 7	4 5	6 5 .	2 5
透风	105	8	2 5	1200
斑	4 7	8 8	4 7	2 1
	城施贸 1	米施例2	比較例 1	比較例 2

表 | |

[0023]

【発明の効果】本発明によれば低温閉塞性に優れ、しか も高温まで膜形状を保持した多孔膜を作成することが出 来る。この膜により安全性に優れた電池用セパレーター を供することが出来る。