Unification

Définition

- La notion de substitution s'étend aux termes et se note $t\sigma$ (de manière postfixe), où t est un terme et σ une substitution;
- Elle se définit par récurrence structurelle sur les termes :
 - ▶ Si $x \in \mathbb{V}$ alors $x\sigma = \sigma(x)$;
 - ▶ Si $f \in \mathcal{F}$ et $t_1, \ldots, t_n \in \mathcal{T}$ alors $f(t_1, \ldots, t_n)\sigma = f(t_1\sigma, \ldots, t_n\sigma)$.

Exemples

- f(x,g(y,z))[a/x,h(b)/y,c/z] = f(a,g(h(b),c));
- f(x,g(y,z))[a/x,h(b)/y] = f(a,g(h(b),z)).

Algorithme d'unification de Robinson

- $G\{s_1 = t_1, \dots, s_n = t_n\} \hookrightarrow \{x_1 = u_1, \dots, x_m = u_m\}$ où x_i sont des variables distinctes et $x_i \notin u_i$;
- Règles :
 - $G \cup \{t = t\} \hookrightarrow G \text{ (delete)};$
 - $G \cup \{f(s_1,\ldots,s_n) = f(t_1,\ldots,t_n)\} \hookrightarrow G \cup \{s_1 = t_1,\ldots,s_n = t_n\}$ (decompose);
 - ► $G \cup \{f(s_1, \ldots, s_n) = g(t_1, \ldots, t_m)\} \hookrightarrow \bot$, si $f \neq g$ ou $n \neq m$ (conflict);
 - $F G \cup \{f(s_1,\ldots,s_n) = x\} \hookrightarrow G \cup \{x = f(s_1,\ldots,s_n)\} \text{ (swap)};$
 - $G \cup \{x = t\} \hookrightarrow G[t/x] \cup \{x = t\}$, si $x \notin t$ et $x \in G$ (eliminate);
 - $G \cup \{x = f(s_1, \dots, s_n)\} \hookrightarrow \bot$, si $x \in f(s_1, \dots, s_n)$ (check).

D. Delahaye

Automatisation en logique d'ordre 1

M2 Info. 2022-2023

3 / 20

D. Delahaye

Automatisation en logique d'ordre 1

M2 Info. 2022-2023

Unification

Algorithme d'unification de Robinson

- Ensemble initial d'équations : $\{f(x,g(a))=f(b,y)\}$;
- $\{f(x,g(a)) = f(b,y)\} \hookrightarrow_{\text{decompose}}$ $\{x = b, g(a) = y\} \hookrightarrow_{\text{swap}}$ $\{x = b, y = g(a)\};$
- mgu(f(x,g(a)),f(b,y)) = [b/x,g(a)/y].