Solutions Exacts Rocket MOTTON Question type 1 - flight of a single stage sounding rocket
$h_{red} = 50 \text{ m}$ $V_w = 10 \text{ m/s}$ $V_s = 3 = constant$ $V_s = 1000 \text{ kg}$ $V_s = 3 = constant$
Me=200 kg In homogeneous quarity field without drog. The rocket is infinitely (statically) stable
1 Derive MA) starting from definition of Y and determine to.
V=====================================
Integration gives: Elea = -GH Intil 1 = GH Intil 1 = GH Intil 1 = GH Intil 1 = God In
If we take to=0 and ti=t we get Mo=Mo and Mi=M t = Goff In Me > tgoy = In Me > M=Mo exp(-tgoff) Get Me A College And Me A C
at tets M=Me. From this we can obtain to: to=Celt In A 904
The Isp is defined as Isp= ingo ingo go the burn here becomes.
$6 = \frac{\text{Lep}}{V} \ln \Lambda = \frac{300}{3} \ln \left(\frac{1000}{360} \right) = 100 \ln 5 = 160.9 \text{ sec}$
E=W3 Se
(b) Set-up the EOH, determine $V(\psi,t)$ and $Z(\psi,t)$ for the vertical part of the flight and determine there is and there is the part of the flight and determine there is and there is $A = \frac{1}{M} - \frac{1}{2} = \frac{1}{2}$
Tr Who = 90 t (4-1) / 60.
At t=0, $V=0$: $V = got(\psi-i) = \frac{dz}{dt}$

Zi= 主96℃(4-1) 16。
for t=0, Z=0 ve get Z=t-got2(41)
at $Z=50$ m, we can solve for t: t= 2Z = 2.50 =2,258 sec $t=2,26$ sec
at t=tr we can find Vr: V=90 tr(4-1)=9,81.2,258.(3-1)=44,34 m/s N=44.34 m/s
@ Compute to for When the rodal has just left the guide rail
Wall Josephorizon
For an inhititely statically stable rocket, as will always be excent to
Zero. Y, the angle behavior the air velocity and the local hotizern is equal to Θ and is given by: $V_0 = \operatorname{dictan} \left(\frac{V_z}{V_W} \right) = \operatorname{ardian} \left(\frac{U_1 U_2 U_3}{V_0} \right) = 77.3^{\circ}$ $V_0 = \overline{FB3}^{\circ}$
1) Sketch the trajectory of the rocket offer leaving the launch rail until time of impact. Inducate Vis and explain wind affect. Estimate the wind offset based on to 1=5 min.
Yealight edindron point

The rocket describes a gravity turn wit the reference frame attrached to the wirld. It Vw(h)=Vw=correct, this frame has a uniform notion with the inertial reference frame, so the EOM remain which might.

The point of impact follows from the motion of the wint in relative to the ground, which is given by the wind offset.

The wind effect is given by: $\Delta X_i = V_W t_f = 10.5.60 = 3 \text{ km}$ $\Delta X_i = V_W t_f = 10.5.60 = 3 \text{ km}$

Obive FOH for gravitation In gravity twin $\alpha = 0 \Rightarrow \theta = \gamma \Rightarrow \cos\theta = \frac{1}{2}$, $\sin\theta = \frac{1}{2}$ $\alpha = \frac{1}{2}\cos\theta = \frac{1}{2}\sin\theta = \frac{1}{2}\sin$ ax11 - Tsing-W = T 4/4-W = 216/4 M Multiply first by Vx and second by Vz and ad: Kalk+ 1/2 1/2 - TK+1/2 - gok= TV-gosinyV= Vall At = I -go siny Multiply first by V= and second by Vx and substited:

MV-dk-4dV=]=MgoVx

HIV-dk-4dV=]=MgoVx dalate by Vi V2 3 LdV= 第 3 世 - 12 世 - 12 世 - 12 是 11 (1/12) Velle stany. We get

d(tany) = ge = ge = in dy in in Vely = go COSY

d+ vx = Voosy = cosy d+ in Vely = go COSY

Question type 2 - reentry using repeating stipping trajectory

VE=8 KM/s

L/D=1 = constant

@ Set-up EOM in direction parallel with and perpendicular to velocity vector. Next, derive VCV) and VCD under assumption of exponential atmosphere. Indicate assumptions

-MVdy L-Mgocosy

We know $\psi = \sigma + \chi \rightarrow \frac{df}{df} = \frac{d\sigma}{df} + \frac{d\chi}{df} = \frac{d\sigma}{df} + \frac{d\chi}{df} = \frac{\chi}{df} = \frac{\chi}{df$

For skipping flight Last and Essi. We get MdV = D

-MV4x = L

When we devide these two, we find \frac{1}{dV} = \frac{D}{L} \rightarrow \linV|_{V_E} = \frac{D}{L} \lambda \rightarrow \linV|_{V_E} \rightarrow \frac{1}{2} \lambda \l

We can see dy/of so = yethide decollownes.

-MVdy dp dh = L = { eVCeS dp dh dt Assuming an isothermal almosphere

dPAn=-Rgo-sh=-Vsing

We get:

-MV ego Vsing of = \frac{1}{2} eV^2 C_2 S = -WV^2 e Siny of or after integration and assuming \$ \frac{1}{2} \in \text{O} \text{O} = \frac{1}{2} \text{V/S} \text{O} = \frac{1}{2} \text{V/S} \text{O} = \frac{1}{2} \text{V/S} \text{O} = \frac{1}{2} \text{V/S} \text{O} - P_E = \frac{1}{2} \text{V/S} \text{O} - P_E = \frac{1}{2} \text{V/S} \text{O} = \frac{1}{2} \text{V/S} \text{O} - P_E = \frac{1}{2} \text{V/S} \text{O} = \frac{1}{2} \text

(B) Draw asketch of variation of V as fundament of from entry to 2nd exit

Since dyff to lowest point is when y=0. Since at end of the skip Q=QE=0 COSY= COSYE and since dyfelt co => y==-YF. lowest point first skip: y=0: V=VE exp(Y-YE)=6,15 km/se

exit atmosphere: Y=Ye: V=4,733km/s:

highest point: In this point, there is only a horizontal velocity:

almospheric entry: From characteristics of the ellipse shaped Hajectory we

lowest point : 1=0; V=3,64 km/s exit atmosphere : 1=1/s; V=2,8 km/s

O Derive Quentry conditions) for the lowest point. Compute hip given ₩=0, H=7000.

At the lower allitude, you. At he regen. We got Ne get: 9H 2W/65 PP = 2512 /2 Pr= 4sin 1 W L P= 491.7000 . 2000 Giv 75 =0,001985 /160 と = exp(片) 3-H/nを=h=44,976 km=45km Question type? - Rodo+ with booser engines (t),=2005" $(T)_{i} = 3000, 10^{3} N$ (H), = 605 (Isp), = 300 S. (He), =40000 kg 9/ = 9,81 m/s2 Tg = 1000.10 N (Md,=36000 kg Three boosters (Isp),= 2005 @ Set up EOM for vertical flight of single stage recket and derive V2 and Z3 as function of C. Mand Vo. Struck = x lnx x azH=T-Mg=WzH=MC-Mg $V_{z=\frac{dZ}{dt}} = c \ln \frac{dV}{dt} - g + \frac{dV}{$

 $V_{2} = \frac{dV}{dt} = \frac{dM}{dt} - \frac{dM}{dt} = \frac{dM}{dt} - \frac{dM}{dt} = \frac{dM}{dt} - \frac{dM}{dt} = \frac{dM}{dt} - \frac{dM}{dt} - \frac{dM}{dt} = \frac{dM}{dt} - \frac{dM}{dt$

Z= 184,218 Km

Z=Zb+ 3361.7° = 760,213 km

Question type 4 - vertical flight of a two stage rocket. In homogeneous gravity field and in a vacuum @ Derive Zelte/26) Where to is coasting time between stogs DV, = C, lh 1, -966), , DVz = Geln/2-90(th)2 for two we find he= sh, + sh, + Cavetall's Dha= OV, ta- = go ta > VDo= OV, - go ta > VDe= OV, -gota+ OV2 The culmination attitude with coast time becomes: Dhic= Ah,+Ahz+AVite-19olic+(AV,+AVe-golic)+(AV,-golic)ton = Oh, + Ohz + OV, to } gote + (AVitAV) -201, gote - 201, gote + gote + Gote + (AVitAV) - 201, gote - 201, gote + gote + Gote + (AVitAV) - 201, gote - 201, gote - 201, gote + gote + (AVitAV) - 201, gote - 201, gote + gote + Gote + (AVitAV) - 201, gote - 201, gote - 201, gote + gote + Gote + (AVitAV) - 201, gote - 201, gote - 201, gote - 201, gote + gote + Gote + (AVitAV) - 201, gote - 201 =hc-(Ale+9(0))t. - DVL+M,-gote Dhz+(N, t= > 90 (2) tb2 + W/-9-tc MADA all the Mrz + W. by ĻΑV. - AV.

Dh. Dh. - V=0 (B) Present this relation as well for in case of drag. Explain the difference. It can be advantaged to coast to higher altitudes before firing up the floor stage since higher velocities will occur when the density is lower stass day. If 4 to become to large, velocity reducting integritive effect

domindes - optimilian. It is locied that in become due to

O Denve tour (...) and show it is independent of be and bearn times

Le=(ty)+(t)+(ty)+(ty)+(ty)

Ate is time until V=0: V=0=(AV+AV=gote)-gote

Le=(ty)+(ty)+(ty)+(ty)+(ty)

Le=(ty)+(ty)+(ty)+(ty)+(ty)

Over get

Cuestion type 5-tydistic Slight

Question type 5-bolistic flight

No=5°E

Po=120°

Re=6370.10°M

No=5500 km/s

N=39.8600,4 km³/s²

Yo = 55°

@ Make a skeld in z-D place and explain

$$P(H) = \frac{H^2}{M}$$

Energy laws $\frac{V^2}{f} = \frac{M}{f} = -\frac{M}{2a} = constant$

$$\frac{V_0^2 - \mu}{2 - Re} = \frac{\lambda l}{20} \Rightarrow \frac{Q}{Re} \left(\frac{V_0^2 Re}{2} - \mu \right) = -\frac{M}{2} \Rightarrow \frac{Q}{Re} = \frac{M}{2 \left[\frac{V_0^2 Re}{2} - \mu \right]} = \frac{1}{2 - V_0^2 Re} = \frac{1$$

(d) Derive an expression for the large of rodot and compute it

$$1 = \frac{\Gamma}{Re} = \frac{P/Re}{1 + e \cos \theta_0} = \frac{50^2 \cos^2 y_0}{1 + V_1 + 5^2 \cos^2 y_0} = \frac{50^2 \cos y_0}{\cos \theta_0} = \frac{50^2 \cos y_0}{1 + V_1 + 5^2 \cos^2 y_0} \cos \theta_0 + \frac{1 - V_1 + 5^2 \cos^2 y_0}{1 + V_1 + 5^2 \cos^2 y_0} \cos \theta_0$$

$$1 - \frac{P}{Re} = \frac{1}{2} \cos \theta_0 = \frac{1 + V_1 + \frac{1}{2} \cos^2 y_0}{1 + V_1 + \frac{1}{2} \cos^2 y_0} \cos \theta_0$$

$$\cos y_0 = \frac{1 - 50 \cos y}{\sqrt{1 - 500 \cos y} \cos y}$$

$$y_0 = 35^\circ = 0.6138 = \frac{dx}{2} = 3d = 7$$

@ Skatch all important paramaters for 3-0

$$tan(\Lambda_i - \Omega) = tan(\phi + d) cosi$$

 $tan(\lambda_i) = tan(\phi + d) sin i cos(\Lambda_i - \Omega)$

i = arccos (sin B cos λ_0) = 57,7°

No-N=arctan(sin λ_0) = -53,77 $\rightarrow \Omega$ = 58,77° $\rightarrow \Omega$ = 28,77° β_0 = arctan(sin λ_0) = -68,66° $\rightarrow \beta_0$ = 11,33 since β_0 > 90 β_0 = $\frac{1}{2}$ = 30,73° λ_1 = $\frac{1}{2}$ = $\frac{1}{2}$ arctan(tan(β_0) + $\frac{1}{2}$ (cos β_0) $\rightarrow \lambda_1$ = 35,88° λ_1 = arctan(tan(β_0) sin i cos(λ_1 - Ω)) $\rightarrow \lambda_1$ = 31,71