Programação Linear e Grafos

Sistemas de Informação - UNISUL

Aran Bey Tcholakian Morales, Dr. Eng. (Apostila 1)

Pesquisa Operacional

A Pesquisa Operacional é a aplicação de métodos científicos voltada para a resolução de problemas reais envolvendo situações de tomada de decisão, através de modelos matemáticos habitualmente processados computacionalmente.

Teoria de Grafos

No século 18 a cidade de Königsberg ficou famosa pôr ter um conjunto de sete pontes que cruzavam o rio Pregel, (descrito por Euler em 1736). Elas (as pontes) conectavam duas ilhas entre si e as ilhas com as margens.

É possível cruzar as sete pontes numa caminhada contínua sem passar duas vezes pôr qualquer uma delas?

Podemos representar este problema, com dois tipos de objetos, as pontes e as regiões de terra.

Neste caso podemos denotar as regiões de terra como um conjunto \boldsymbol{V} (vértices), e o conjunto de pontes \boldsymbol{E} (arestas = edges), e estabelecer uma relação entre estes dois conjuntos.

É possível definir **grafo** como um par **G = (V,E),** onde **V** é um conjuntos finito e não vazio, e **E** é uma relação (função) sobre os elementos de **V**

Podemos denotar a relação \mathbf{E} como \mathbf{E} : $\mathbf{v}_i \to \mathbf{v}_j$ onde \mathbf{v}_i , $\mathbf{v}_j \in \mathbf{V}$. Os elementos de \mathbf{V} são chamados de **vértices** (ou nós), e os pares ordenados (\mathbf{v}_i , \mathbf{v}_j), que representam as relações entre os elementos de \mathbf{V} , de **arestas (edges)** (linhas) do grafo.

Definições:

- Uma aresta é dita incidente com os vértices que ela liga.
 Se uma aresta é incidente em um único vértice é chamado de laço.
- 2. Dois vértices são chamados de **adjacentes** se estão ligados pôr arestas.

Um vértice é dito **isolado**, se não tem aresta incidindo nele.

Vértices Adjacentes:

$$(v_1, v_2), (v_1, v_5), (v_2, v_3), (v_2, v_4), (v_3, v_5), (v_4, v_5).$$

Vértice Isolado: v₆

Definições:

- 3. Define-se **grau** de um vértice \mathbf{v} pertencente a \mathbf{V} , denotado pôr $\mathbf{gr}(\mathbf{v})$ como sendo o número de arestas incidentes em \mathbf{v} .
- Um grafo é dito **regular de grau r** se todos seus vértices tem grau **r**.
- Se o grafo é regular de grau zero, é dito **nulo**.
- Um vértice de grau 1, é dito **pendente**.

Exemplo:

$$Gr(v1)=3$$

$$Gr(v2)=3$$

$$Gr(v3)=0$$

$$Gr(v4)=2$$

$$Gr(v5)=4$$

$$Gr(v6)=2$$

Definições:

- 4. A ordem de um grafo G, é o cardinal de vértices: | V | =n.
 O cardinal de | A | = m.
- 5. Duas arestas que incidam no mesmo vértice são ditas **adjacentes**. Se os dois vértices de incidência são os mesmos, as arestas são ditas **paralelas**.

Exemplo:

Grafo regular de grau 3 (r = 3);

Ordem do Grafo: | V | =4; | A | = 6

Arestas Adjacentes:

 (v_1, v_2) e (v_1, v_4) , que incidem sobre v_1 (v_1, v_2) e (v_2, v_3) , que incidem sobre v_2

Exemplo:

Vértice de Grau nulo: v6;

Vértice Pendente: v4, pois $gr(v_4) = 1$

Arestas Adjacentes:

 $(v_3, v_4), (v_2, v_3) e (v_5, v_3),$ que incidem sobre v_3

 (v_1, v_5) e (v_5, v_3) , que incidem sobre v_2

Arestas paralelas: (v₅, v₃)

Ordem do Grafo: |V |=6; |A| = 6

Definições:

- 6. Um grafo, onde existe um número $\mathbf{w_{ij}}$, associado a cada aresta, é denominado de **grafo valorado** e $\mathbf{w_{ii}}$ é chamado da **custo** de aresta.
- 7. **Sub-grafo**, é o grafo obtido de outro grafo eliminando algum vértice e as arestas adjacentes.
- 8. **Grafo parcial**, é quando são excluídas algumas arestas do grafo original.
- 9. **Grafo simples**, é o grafo que não contém nenhum par de arestas paralelas ou laços.
- 10. **Grafo completo**, um grafo simples será completo quando existir uma aresta entre cada par de seus vértices.

1: Grafo

2: Sub-grafo 3 e 4: Grafos parciais

Grafo valorado (custo das arestas)

Grafo completo

Definições:

- 11. Grafo Complementar, um grafo G é dito complementar de G se possui a mesma ordem de G e se uma aresta (v,w) ∈ G, então (v,w) ∉ G e vice-versa.
- 12. **Grafo Bipartite, s**e $G(V_1 \cup V_2, A)$ é tal que, para $V_1 \cap V_2 = \emptyset$ e para toda aresta $(v_i, v_j) \in A$, tem-se que $v_i \in V_1$ e $v_j \in V_2$, então o grafo é denominado bipartite.

Ou seja, o grafo pode ser dividido logicamente em dois conjuntos de vértices, tal que toda aresta começa no vértice de um dos conjuntos e termina no vértice do outro conjunto.

Matriz de Adjacência

Dado um grafo G(V,E), a matriz de adjacência $A = [a_{ij}]$ é uma matriz $\mathbf{n} \times \mathbf{n}$ tal que: $\mathbf{a}_{ij} = \mathbf{1}$ se e somente se existe $(vi,vj) \times E$ $\mathbf{0} \text{ em caso contrário.}$

Então $\mathbf{a}_{ij} = \mathbf{1}$ se os vértices são adjacentes.

Vantagem: nessa representação a recuperação de uma aresta é imediata.

Desvantagem: o armazenamento é da ordem de **n**², mesmo que o número de arestas seja muito inferior a **n**

Matriz de Adjacência - Propriedades:

- 1. Na diagonal principal o valor 1 representa um laço;
- 2. As arestas paralelas não são representadas na MA;
- A soma das linhas (ou colunas) de um grafo representa o grau dos vértices;
- 4. A MA de um grafo sempre é simétrica;

Matriz de Incidência

Dado um grafo G(V, E) de n vértices e m arestas, a matriz de incidência de G é denotada pôr $B = [b_{ij}]$ e é uma matriz $n \times m$ definida como:

 $\mathbf{b}_{ij} = \mathbf{1}$ se a aresta \mathbf{e}_{i} , incide no vértice \mathbf{v}_{j}

= 0 em caso contrário

Matriz de Incidência - Propriedades:

- Em toda coluna tenho 2 valores diferentes de zero, exceto nos laços onde tenho somente um valor diferente de zero;
- 2. Na MI, podemos representar arestas paralelas;
- 3. A soma das linhas representa o grau dos vértices;

Matriz Valorada

Um grafo valorado, pode ser representado pôr uma matriz $\mathbf{n} \times \mathbf{n}$ de valores $\mathbf{W} = [\mathbf{w}_{ij}]$, onde $\mathbf{w}_{ii} = \text{valor}$ da aresta, se $(\mathbf{v}i, \mathbf{v}j) \in \mathbf{E}$

Propriedades:

- A MV de um grafo não orientado é simétrica;
- 2. As arestas paralelas não podem ser representadas;

Continuação das definições:

- 13. Um grafo é dito orientado ou **dirigido** ou **dígrafo** se suas arestas possuem orientação.
 - Em um grafo dirigido, as arestas são chamadas de arcos.
- 14. **Sucessor** de um vértice $\mathbf{v_i}$: é todo $\mathbf{v_j}$ que seja extremidade final de um **arco** que parte de $\mathbf{v_i}$.
- 15. **Antecessor**: de um vértice \mathbf{v}_i , é todo vértice \mathbf{v}_j , que seja extremidade inicial de um **arco** que termina em \mathbf{v}_i .
- 16. O **grau** de um vértice em um grafo orientado, é a soma dos grau dos arcos que saem do vértice e dos arcos que entram no vértice, isto é o grau de **emissão** (de saída) e o grau de **recepção** (de entrada).

Grafo dirigido ou dígrafo

v5 e v9 são **Sucessores** do vértice v10

v10 é antecessor do v5 e v9

$$Gr(v10) = 3$$

$$Gr(v9) = 4$$

$$Gr(v3) = 5$$

$$Gr(v2) = 2$$

Matriz de Adjacência de um Grafo Orientado

Dado um grafo G(V,E), a matriz de adjacência $A = [a_{ij}]$ é uma matriz $\mathbf{n} \times \mathbf{n}$ tal que: $a_{ij} = \mathbf{1}$ se e somente se existe $(vi,vj) \in E$

Então $\mathbf{a}_{ii} = \mathbf{1}$ se os vértices são adjacentes.

Observações:

• a definição de MA é a mesma definição que para um grafo;

0 em caso contrário.

- em grafos orientados, a MA não é necessariamente simétrica;
- Em grafos orientados, a soma das linhas representa o grau de saída, a soma das colunas o grau de entrada;

Exemplo: Matriz de Adjacência

	\mathbf{v}_1	\mathbf{v}_{2}	$\mathbf{v_3}$	$\mathbf{v_4}$
\mathbf{v}_1	0	1	0	1
\mathbf{v}_{2}	0	0	1	0
$\mathbf{v_3}$	0	0	0	1
\mathbf{v}_4	1	1	1	0

Matriz de Incidência de um Grafo Orientado

Dado um grafo G(V, E) de n vértices e m arestas, a matriz de incidência de G é denotada pôr $B = [b_{ij}]$ e é uma matriz $n \times m$ definida como:

- $\mathbf{b}_{ij} = \mathbf{1}$ se a aresta \mathbf{e}_{i} , sai no vértice \mathbf{v}_{j}
 - = -1 se a aresta \mathbf{e}_{i} , chega no vértice \mathbf{v}_{j}
 - = 0 em caso contrário

Matriz de Incidência - Propriedades:

- A MI de um grafo orientado, tem valores negativos;
- Em grafos orientados a soma dos valores positivos representa o grau de saída, a soma dos negativos o grau de entrada.
 - Para laços, tenho que somar um para os positivos e um para os negativos.

Exemplo: Matriz de Incidência

	$\mathbf{e_1}$	$\mathbf{e_2}$	$\mathbf{e_3}$	$\mathbf{e_4}$	$\mathbf{e_5}$
$\mathbf{v_1}$	0	0	-1	-1	1
$\mathbf{v_2}$	1	0	0	1	0
\mathbf{v}_3	-1	1	0	0	-1
$\mathbf{v_4}$	0	-1	1	0	0

Matriz Valorada de um Grafo Orientado

Um grafo valorado, pode ser representado pôr uma matriz $\mathbf{n} \times \mathbf{n}$ de valores $\mathbf{W} = [\mathbf{w}_{ij}]$, onde $\mathbf{w}_{ij} = \text{valor}$ da aresta, se $(\mathbf{v}i, \mathbf{v}j) \in \mathbf{E}$

Observação: é a mesma definição que para grafos sem orientação;