

Rajshahi University of Engineering & Technology

Department of Electrical & Computer Engineering

Lab Report

Course Code	ECE 1202
Course Title	Circuits and Systems II Sessional
Date of Submission	03-09-2024

Submitted By:		Submitted To:		
Name	: Noushin Tabassum	Oishi Jyoti		
Roll	: 2210058	Assistant Professor		
Registration: 1112		Department of Electrical and		
Session	: 2022-2023	Computer Engineering		
Departme	ent of ECE, RUET	RUET		

Name of the Experiment: Study the relation between line current and phase current of a delta connected 3 phase balanced system.

Theory: In a balanced three-phase system, the three-phase voltages have the same magnitude and are displaced by 120 degrees from each other. In a delta-connected system, Phase Current (I_P) is the current flowing through each winding of the delta connection and Line Current(I_L) is the current flowing through each line conductor supplying the delta load. In a delta-connected system, the current relationships differ from those in a wye connection. For a balanced three-phase system, line current is equal to the phase current multiplied by $\sqrt{3}$ in a delta connection. Mathematically,

$$I_L = \sqrt{3*I_P}$$

$$V_L = V_P$$

Circuit diagram:

Fig:01

Required Apparatus:

- 1. Source
- 2. Ammeter

- 3. Resistor
- 4. Multimeter
- 5. Connecting Wire

Data Table:

S _L No	I_L	$I_{P}(m)$	I _P (c)	V _P	$V_{\rm L}$	Error(%)
1	1.5	0.8	0.86	40	40	6.97
2	2.3	1.2	1.32	60	60	9.09
3	3.8	2.1	2.19	80	80	4.11
4	4.3	2.3	2.48	100	100	7.26

Calculation:

For the 1st one:

$$I_L = 1.5 \text{ A}$$
, $I_P(c) = I_L / \sqrt{3} = 0.86 \text{ A}$, $I_P(m) = 0.8 \text{ A}$, Error = 6.97%

For the 2nd one:

$$I_L = 2.3~A,~I_P(c) = \!\! I_L/\sqrt{3} = 1.32~\text{A},~I_P(m) = 1.2~\text{A}$$
 , Error = 9.09%

For the 3rd one:

$$I_L = 3.8 \text{ A}, \ I_P(c) = I_L / \sqrt{3} = 2.19 \text{ A}, I_P(m) = 2.1 \text{ A}, \text{Error} = 4.11\%$$

For the 4th one:

$$I_L = 4.3 \text{ A}, I_P(c) = I_L / \sqrt{3} = 2.48 \text{ A}, I_P(m) = 2.3 \text{ A}, \text{ Error} = 7.26\%$$

Conclusion:

The measured line current and phase current values were found to be consistent with theoretical calculations. The experimental results validated the theoretical relationships between line and phase currents in a delta-connected system.