

Inversão Não-Linear Aplicada a dados geofísicos

Professor: Rodrigo Bijani Mario Martins Ramos (Seu Mario) 2019/1

Tema: Capítulo 6: Aprendizado de máquina

Calendário - Alteração

O cumpridas

- O a cumprir
- O provas

JANEIRO

Dom Seg Ter Qua Qui Sex Sáb

1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19

 13
 14
 15
 16
 17
 18
 19

 20
 21
 22
 23
 24
 25
 26

 27
 28
 29
 30
 31
 --

MAIO

Dom Seg Ter Qua Qui Sex Sáb

1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 7 18 19 20 21 22 23 24 25 26 27 28 29 30 41

SETEMBRO

 Dom
 Seg
 Ter
 Qua
 Qui
 Sex
 Sáb

 1
 2
 3
 4
 5
 6
 7

 8
 9
 10
 11
 12
 13
 14

 15
 16
 17
 18
 19
 20
 21

 22
 23
 24
 25
 26
 27
 28

 29
 30

FEVEREIRO

Dom Seg Ter Qua Qui Sex Sáb

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

JUNHO

Dom Seg Ter Qua Qui Sex Sáb

2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 20 2 22 23 24 25 26 27 28 29 30

OUTUBRO

Dom Seg Ter Qua Qui Sex Sáb

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MARÇO

Dom Seg Ter Qua Qui Sex Sáb

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

JULHO

Dom Seg Ter Qua Qui Sex Sáb

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 23 24 25 26 27 28 29 30 31

NOVEMBRO

Dom Seg Ter Qua Qui Sex Sáb

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

ABRIL

Dom Seg Ter Qua Qui Sex Sáb

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 23 24 25 6 27 28 29 30

AGOSTO

Dom Seg Ter Qua Qui Sex Sáb

 4
 5
 6
 7
 8
 9
 10

 11
 12
 13
 14
 15
 16
 17

 18
 19
 20
 21
 22
 23
 24

 25
 26
 27
 28
 29
 30
 31

DEZEMBRO

 Dom
 Seg
 Ter
 Qua
 Qui
 Sex
 Sáb

 1
 2
 3
 4
 5
 6
 7

 8
 9
 10
 11
 12
 13
 14

 15
 16
 17
 18
 19
 20
 21

 22
 23
 24
 25
 26
 27
 28

 29
 30
 31

Ementa v.2

- Cap 1: Introdução;
 - O que é inversão?;
 - Conceitos preliminares;
 - Objetivos do curso;
- Cap 2: Formulação;
 - Revisão de operadores matriciais;
 - Problemas lineares;
 - Problemas não lineares;
- Cap 3: Problemas não-lineares
 - Problemas de otimização;
 - Tipos de problemas de otimização;
 - Estabilização de problemas inversos;
 - Problemas geofísicos propostos;

- Cap 4: Otimização numérica determinística
 - Conceito de Heurística;
 - Método do gradiente (máxima descida);
 - Métodos de Newton e Quase-Newton;
 - Método de Gauss-Newton e Levenberg-Marguardt;
 - Aplicação aos problemas geofísicos propostos;
- Cap 5: Otimização numérica estocástica
 - Conceito de estocástico e Meta-Heurística;
 - Método de Monte Carlo;
 - Algoritmo do Simplex;
 - Método do Arrefecimento simulado:
 - Método dos Algoritmos Genéticos;
 - Aplicação aos problemas geofísicos propostos;
 - Cap 6: Aprendizagem de máquina;
 - o Introdução;
 - Classificadores supervisionado e não-supervisionados

Parameter Estimation and Inverse Problems (Aster)

Parameter Estimation and Inverse Problems (Aster)

Problema: f(m) = d

- Problema direto (encontrar <u>d</u> com base em <u>m</u>).
- Problema Inverso (encontrar **m** com base em **d**).
- Identificação de Sistema (system identification problem).
 (Encontrar <u>f</u> com base em <u>m</u> e <u>d</u>).

System Identification: An Introduction (Keesman)

System Identification: An Introduction (Keesman) Exemplos de modelos

- White box model: leis da física (matemática).
 - F = m a
- Grey box model: parâmetros incertos/desconhecidos obtidos à partir dos dados.
 - \circ Gardner, 1974 (Empírica) $ho = lpha V_p^eta$
- Black box model: modelos lineares que não tem (necessariamente) relação com as leis físicas ou com os processos envolvidos.
 - Reconhecimento facial

System Identification: An Introduction (Keesman)

modelos

- White box model: leis da física (matemática).
- Grey box model: parâmetros incertos/desconhecidos obtidos à partir dos dados.
- Black box model: Machine Learning e Clusterização.

Problema Inverso

Subdivisões do Aprendizado:

Redução de dimensões

- Remoção de ruídos.
- Facilitar a visualização do dado.
- Reduzir o custo computacional.

Não Supervisionado - Clustering (Agrupamento)

- Encontrar padrões nos próprios dados.
- Não se conhece o resultado, mas se sabe a estrutura do problema (eu sei aonde quero chegar).
- Explorar a estrutura dos dados.

Não Supervisionado - Clustering

Α

Affinity propagation

· Automatic clustering algorithms

В

BFR algorithm

BIRCH

C

· Canopy clustering algorithm

· Chinese Whispers (clustering method)

· Cluster-weighted modeling

· Cobweb (clustering)

· Complete-linkage clustering

· Constrained clustering

CURE algorithm

D

· Data stream clustering

DBSCAN

Е

Expectation–maximization algorithm

F

FLAME clustering

Fuzzy clustering

н

Hierarchical clustering

· Hoshen-Kopelman algorithm

I

· Information bottleneck method

K

K q-flats

K-means clustering

K-means++

K-medians clustering

K-medoids

K-SVD

L

· Linde-Buzo-Gray algorithm

· Low-energy adaptive clustering hierarchy

M

Mean shift

N

· Nearest-neighbor chain algorithm

Neighbor joining

0

OPTICS algorithm

P

Pitman-Yor process

0

Quantum clustering

S

Self-organizing map

SimRank

· Single-linkage clustering

Spectral clustering

• SUBCLU

U

UPGMA

w

· Ward's method

WPGMA

Não Supervisionado - Clustering

A	FLAME clusteringFuzzy clustering	Nearest-neighbor chain algorithmNeighbor joining
Affinity propagation Automatic clustering algorithms	н	0
B • BFR algorithm	Hierarchical clusteringHoshen–Kopelman algorithm	OPTICS algorithm
BIRCH	I Information bottleneck method	Pitman–Yor process
С		Q
Canopy clustering algorithm Chinese Whispers (clustering method) Cluster-weighted modeling Cobweb (clustering) Complete-linkage clustering Constrained clustering CURE algorithm	 K q-flats K-means clustering K-means++ K-medians clustering K-medoids K-SVD 	 Quantum clustering Vizeus Self-organizing map SimRank Single-linkage clustering Spectral clustering SUBCLU
Data stream clusteringDBSCAN	L Linde-Buzo-Gray algorithm Low-energy adaptive clustering hierarchy	U • UPGMA
E	M	W • Ward's method
Expectation–maximization algorithm	Mean shift N	• WPGMA

K-Means

Supervisionado

- Já se conhece a resposta correta.
- O modelo é treinado para alcançar a resposta correta (já conhecida).
- Possui um "sistema de recompensas" para que o modelo alcance a resposta correta.

Supervisionado perceptron e redes

Supervisionado perceptron e redes

Supervisionado perceptron e redes

Ir pro quadro!

- SVM
- Perceptron
- Backpropagation
- etc...

Supervisionado perceptron e redes

Ir pro quadro!

- SVM
- Perceptron
- Backpropagation
- etc...

Por Reforço

O aprendizado por reforço (reinforcement learning) é bem similar ao aprendizado supervisionado,

a diferença é que as decisões são tomadas de forma aleatória, pois o objetivo não é "copiar" o treinador, mas sim criar um modelo completamente distinto, que pode superar o treinador.

Relacionar dados discretos, contínuos e classificatórios

Bayesian network classifiers for mineral potential mapping

Alok Porwal; E.J.M. Carranza; M. Halea.

Fig. 5. Favorability maps generated using naive classifier, (A) gray-scale favorability map and (B) binary favorability map. Gray triangles are known base metal deposits.

A general approach for porosity estimation using artificial neural network method: a case study from Kansas gas field

SAGAR SINGH; ALI ISMET KANLI; AND SELCUK SEVGEN.

Fig. 1.

A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region

Zhibin He; Xiaohu Wen; Hu Liu; Jun Du;

Geologic Log Analysis Using Computer Methods - Doveton

Abricon -
TABLE OF CONTENTS
Chapter 1
Statistical Methods for Log Analysis of Reservoir Properties
Chapter 2
Graphical Techniques for the Analysis and Display of Logging Information
Chapter 3
Compositional Analysis of Lithologies from Wireline Logs 4
Chapter 4
Multivariate Pattern Recognition and Classification Methods
Chapter 5
Theory and Applications of Time Series Analysis to Wireline Logs
Chapter 6
Lateral Correlation and Interpolation of Logs12
Chapter 7
Applications of Artificial Intelligence to Log Analysis

Python Machine Learning

scikits learn

A scikit-learn é uma biblioteca de aprendizado de máquina e estatística de código aberto para a linguagem de programação Python.

Python Machine Learning

Python Machine Learning - Raschka

Python Machine Learning

Encyclopedia of Machine Learning - (Sammut; Webb)

Exemplo k-means

Ir pro script!