# 1 Contents

| 2 | Da  | ta Cleaning and Preparation                       | 1  |
|---|-----|---------------------------------------------------|----|
| 3 | Cre | eating Pivot Tables and Data Analysis             | 5  |
|   | 3.1 | Average Annual Salary by Bike Purchase and Gender | 5  |
|   | 3.2 | Bike Purchase by Commute Distance                 | 7  |
|   | 3.3 | Bike Purchase by Age Groups                       | 10 |
| 4 | Da  | shboard Creation                                  | 12 |

# 2 Data Cleaning and Preparation

First of all, let's remove the duplicates from the "ID" column, since they should be unique.



In the "Marital Status" and "Gender" columns, both of them have the letter "M." To avoid confusion, we will write the full forms in both columns.



To prevent any changes to the column names, we should enable the "Match case" and "Match entire cell contents" options.

In order to enhance readability and visualization, we need to eliminate specific zeros within the "Income" columns.





To facilitate interpretation from visualization due to the presence of numerous age values, a new column called "Age Brackets" has been created.

| L     |    | M              |
|-------|----|----------------|
| Age 🔻 |    | Age Brackets 💌 |
|       | 50 | Middle Age     |
|       | 40 | Middle Age     |
|       | 54 | Middle Age     |
|       | 36 | Middle Age     |
|       | 55 | Old            |
|       | 35 | Middle Age     |
|       | 45 | Middle Age     |
|       | 38 | Middle Age     |
|       | 59 | Old            |
|       | 47 | Middle Age     |
|       | 35 | Middle Age     |
|       | 55 | Old            |
|       | 36 | Middle Age     |
|       | 35 | Middle Age     |
|       | 35 | Middle Age     |
|       | 56 | Old            |
|       | 34 | Middle Age     |
|       | 63 | Old            |
|       | 29 | Young          |
|       | •• |                |

The "Age Brackets" column has been generated using the following function to categorize ages:

```
=IF(L2>54,"Old",IF(L2>=31,"Middle Age",IF(L2<31,"Young","Invalid")))
```

The code snippet is an Excel formula using the IF function to categorize ages into different brackets based on the value in cell L2. Let's break it down:

- IF(L2>54, "Old", ...): This is the first condition. If the value in cell L2 is greater than 54, it will be labeled as "Old".
- IF(L2>=31, "Middle Age", ...): If the first condition is not met, this condition checks if the value in cell L2 is greater than or equal to 31. If it is, the age will be labeled as "Middle Age".
- IF(L2<31, "Young", "Invalid"): If none of the previous conditions are met, this condition is evaluated. If the value in cell L2 is less than 31, it will be labeled as "Young". If it doesn't satisfy this condition, it is labeled as "Invalid".

#### To summarize:

- Ages greater than 54 are categorized as "Old".
- Ages between 31 and 54 (inclusive) are categorized as "Middle Age".
- Ages less than 31 are categorized as "Young".
- Any other values or errors will be labeled as "Invalid".

Please note that this formula assumes the age value is in cell L2 and it has been applied to other cells accordingly.

# 3 Creating Pivot Tables and Data Analysis

# 3.1 Average Annual Salary by Bike Purchase and Gender



In the Pivot table, I placed the "Gender" column in the rows section, the "Average of Income" column in the values section, and the "Purchased Bike" column in the columns section.



The provided Pivot table displays the average yearly salary categorized by gender and whether individuals purchased bicycles. The data reveals that men earn \$4,500 more on average than women. Among women, those who purchased bicycles earn roughly \$2,300 more compared to those who did not. Similarly, among men, individuals who purchased bicycles earn approximately \$4,000 more than those who did not. Now let's proceed to visualize this information on a graph.



Here, we selected the recommended graph type, which is the clustered column. Additionally, we added a data table. However, the commas in the data table are visually distracting, so now we will remove these excessive decimal places.

| Average of Income   |   | Column Labels |        |                    |
|---------------------|---|---------------|--------|--------------------|
| Row Labels          | * | No            | Yes    | <b>Grand Total</b> |
| Female              |   | 53,440        | 55,774 | 54,581             |
| Male<br>Grand Total |   | 56,208        | 60,124 | 58,063             |
|                     |   | 54,875        | 57,963 | 56,360             |

In the Pivot table, we selected the numeric values from which we want to remove commas, and then we chose "Number" from the "Home", decrease the decimals and clicked to the thousands seperator.

# 3.2 Bike Purchase by Commute Distance



In the Pivot table, the "Commute Distance" column was placed in the rows section, the "Count of Purchased Bike" column in the values section, and the "Purchased Bike" column in the columns section.

| Count of Purchased Bil | e Column Labels | Column Labels 🔻 |                    |  |
|------------------------|-----------------|-----------------|--------------------|--|
| Row Labels             | ▼ No            | Yes             | <b>Grand Total</b> |  |
| 0-1 Miles              | 166             | 200             | 366                |  |
| 10+ Miles              | 78              | 33              | 111                |  |
| 1-2 Miles              | 92              | 77              | 169                |  |
| 2-5 Miles              | 67              | 95              | 162                |  |
| 5-10 Miles             | 116             | 76              | 192                |  |
| Grand Total            | 519             | 481             | 1000               |  |

In this table, I need to edit the "10+ Miles" section so that the numerical values can be properly sorted.

| Count of Purchased Column Labels 🔻 |     |     |                    |  |  |
|------------------------------------|-----|-----|--------------------|--|--|
| Row Labels 🔻 No                    |     | Yes | <b>Grand Total</b> |  |  |
| 0-1 Miles                          | 166 | 200 | 366                |  |  |
| 1-2 Miles                          | 92  | 77  | 169                |  |  |
| 2-5 Miles                          | 67  | 95  | 162                |  |  |
| 5-10 Miles                         | 116 | 76  | 192                |  |  |
| More than 10 Miles                 | 78  | 33  | 111                |  |  |
| Grand Total                        | 519 | 481 | 1000               |  |  |

We changed "10+ Miles" to "More than 10 Miles," and as seen in the Pivot table, it is now sorted properly from smallest to largest.



In these Pivot table and graph, we observe that individuals whose commute distance falls between 0 and 1 mile are more likely to prefer purchasing a bicycle compared to other distance intervals. More than half of the individuals within this distance range have chosen to purchase a bicycle. On the other hand, over half of the individuals whose commute distance ranges from 1 to 2 miles have chosen not to purchase a bicycle. In contrast, more than half of the individuals with a commute distance between 2 and 5 miles have preferred purchasing a bicycle. For individuals whose commute distance ranges from 5 to 10 miles, slightly over half have chosen not to purchase a bicycle. It is evident that the majority of individuals with a commute distance exceeding 10 miles prefer not to purchase a bicycle.

| Count of Purchased Bik | ce Column Labels | -              |                    |
|------------------------|------------------|----------------|--------------------|
| Row Labels             | ▼ No             | Yes            | <b>Grand Total</b> |
| 0-1 Miles              | 45.369           | 6 54.64%       | 100.00%            |
| 1-2 Miles              | 54.449           | 45.56%         | 100.00%            |
| 2-5 Miles              | 41.369           | 6 58.64%       | 100.00%            |
| 5-10 Miles             | 60.429           | 6 39.58%       | 100.00%            |
| More than 10 Miles     | 70.279           | 6 29.73%       | 100.00%            |
| Grand Total            | 51.909           | <b>48.10</b> % | 100.00%            |

To address the imbalance in data counts within the commute distance groups in this pivot table, I rearranged the rows using the "% of row totals" format as you can see above.



By using this approach, we can obtain a more reliable graph. Additionally, as observed from the graph, we can see that apart from the 2-5 mile range, as **commute distance** increases, the trend of **not purchasing** bicycles also increases.

# 3.3 Bike Purchase by Age Groups



I have performed the necessary steps to create the Pivot table as described above, similar to the previous instructions.



In this Pivot table, we observe that there is a significantly higher number of individuals in the middle-aged group compared to the younger and older groups. Similarly to before, let's convert the rows into percentages to better observe the purchasing bike preference of each age group and visualize it in a graph.



Based on the data, we can see that the majority of young and elderly individuals do not prefer purchasing bicycles. In the middle-aged group, however, there is a slightly higher number of individuals who choose to purchase bicycles. However, it should be noted that the validity of this analysis is debatable due to the relatively small number of individuals in the young and elderly groups.

#### 4 Dashboard Creation



I have placed the necessary graphs in the dashboard, as shown in the figure, and added a slicer indicating whether the individual is married.

I selected "Report Connections" in the slicer section and chose all the Pivot tables so that the slicer in the figure interacts with all the graphs.



In addition, I added Education and Region slicers as you can see image below, ensuring they are also connected to all the Pivot tables for interactive functionality.



This dashboard provides the individual with controlled, efficient, and interactive data analysis capabilities. The filtering tools, namely slicers, allow for quick and interactive results according to the user's preferences.