Optimization Models and Algorithms

Applications - Capacitated Vehicle Routing Problem

Mathieu Lerouge mathieu.lerouge@unibo.it

29 October 2024

Plan

Introduction to CVRP •0000

- Introduction to CVRP

CVRP - Definition

Capacitated Vehicle Routing Problem (CVRP):

- **Determining routes** for a fleet of identical vehicles, which have the same capacity and are originally located at a central depot, in order to serve a set of clients having different demands.

CVRP - Definition

Capacitated Vehicle Routing Problem (CVRP):

- **Determining routes** for a fleet of identical vehicles, which have the same capacity and are originally located at a central depot, in order to serve a set of clients having different demands.
- Routes are such that:
 - each route starts and ends at the depot;
 - each client is served by exactly one vehicle;
 - the total demand served by each vehicle does not exceed its capacity.

CVRP - Definition

Capacitated Vehicle Routing Problem (CVRP):

- **Determining routes** for a fleet of identical vehicles, which have the same capacity and are originally located at a central depot, in order to serve a set of clients having different demands.
- Routes are such that:
 - each route starts and ends at the depot;
 - each client is served by exactly one vehicle;
 - the total demand served by each vehicle does not exceed its capacity.
- The aim is to minimize the total cost of all routes. given that any vehicle displacement has a cost.

Conclusion

CVRP - Illustration

Figure: Illustration of the CVRP.

(Source: https://ingenieriaindustrialonline.com)

Notations:

- G = (V, A): directed graph, with nodes $V = \{0, 1, ..., n\}$, such that:
 - 0 represents the depot;
 - $\{1, \ldots, n\}$ represent the **clients**.
- d_j : **demand** of client j (for $j \in V \setminus \{0\}$).
- k: number of identical vehicles.
- b: vehicle capacity.
- c_a : **cost** associated with arc a (for $a \in A$).

Assumptions:

- *G* is assumed to be **complete** (without loss of generality).
- Triangle inequalities assumed to hold, therefore visiting once client j = visiting once node j.

Two-index formulation

Notations:

- G = (V, A): directed graph, with nodes $V = \{0, 1, \dots, n\}$, such that:
 - 0 represents the depot;
 - $\{1,\ldots,n\}$ represent the **clients**.
- d_i : **demand** of client j (for $j \in V \setminus \{0\}$).

Assumptions:

Two-index formulation

Notations:

- G = (V, A): directed graph, with nodes $V = \{0, 1, \dots, n\}$, such that:
 - 0 represents the depot;
 - $\{1,\ldots,n\}$ represent the **clients**.
- d_i : **demand** of client j (for $j \in V \setminus \{0\}$).
- k: number of identical vehicles.

Assumptions:

3 / 35

Notations:

- G = (V, A): directed graph, with nodes $V = \{0, 1, \dots, n\}$, such that:
 - 0 represents the depot;
 - $\{1,\ldots,n\}$ represent the **clients**.
- d_i : **demand** of client j (for $j \in V \setminus \{0\}$).
- k: number of identical vehicles.
- b: vehicle capacity.

Assumptions:

Notations:

- G = (V, A): directed graph, with nodes $V = \{0, 1, \dots, n\}$, such that:
 - 0 represents the depot;
 - $\{1,\ldots,n\}$ represent the **clients**.
- d_i : **demand** of client j (for $j \in V \setminus \{0\}$).
- k: number of identical vehicles.
- b: vehicle capacity.
- c_a: cost associated with arc a (for a ∈ A).

Assumptions:

3 / 35

Notations:

- G = (V, A): directed graph, with nodes $V = \{0, 1, \dots, n\}$, such that:
 - 0 represents the depot;
 - $\{1,\ldots,n\}$ represent the **clients**.
- d_i : **demand** of client j (for $j \in V \setminus \{0\}$).
- k: number of identical vehicles.
- b: vehicle capacity.
- c_a: cost associated with arc a (for a ∈ A).

Assumptions:

- G is assumed to be complete (without loss of generality).

Two-index formulation

Notations:

- G = (V, A): directed graph, with nodes $V = \{0, 1, \dots, n\}$, such that:
 - 0 represents the depot;
 - $\{1,\ldots,n\}$ represent the **clients**.
- d_i : **demand** of client j (for $j \in V \setminus \{0\}$).
- k: number of identical vehicles.
- b: vehicle capacity.
- c_a: cost associated with arc a (for a ∈ A).

Assumptions:

- G is assumed to be complete (without loss of generality).
- **Triangle inequalities** assumed to hold, therefore: visiting once client $i \equiv visiting$ once node i.

Conclusion

- In this course, we study **three formulations** of the CVRP:
 - Two-index formulation:
 - Three-index formulation:

- Set-partitioning formulation.

- In this course, we study **three formulations** of the CVRP:
 - Two-index formulation:
 - Three-index formulation:
 - Set-partitioning formulation.

- In this course, we study three formulations of the CVRP:
 - Two-index formulation:
 - Three-index formulation:

- Set-partitioning formulation.
- One formulation might be preferred to another depending on the context / problem:
 - basic CVRP.
 - CVRP with heterogeneous capacities,
 - CVRP with time-windows.

- In this course, we study three formulations of the CVRP:
 - Two-index formulation:
 - Three-index formulation:
 - Set-partitioning formulation.
- One formulation might be preferred to another depending on the context / problem:
 - basic CVRP.
 - CVRP with heterogeneous capacities,
 - CVRP with time-windows.
- A In this course, while we model the CVRP as an ILP model, we are "only" interested in the **resolution of its LP-relaxation**.

Plan

- Introduction to CVRP
- 2 Two-index formulation (Section 3.1)
- Three-index formulation (Section 3.2)
- Conclusion

Plan

- Introduction to CVRP
- 2 Two-index formulation (Section 3.1)
 - Formulation generalities
 - Strong model of challenging constraints
 - Weak model of challenging constraints
- Three-index formulation (Section 3.2)
- 4 Conclusion

Two-index formulation - Principle

Two-index formulation

Principle:

- This model uses, for each arc $a \in A$, a binary variable x_a to indicate whether a belongs to any vehicle route in the solution, without specifying to which one.
- indices **nodes instead of arcs**, i.e. using x_{ii} , with $(i, j) \in V^2$

Two-index formulation - Principle

Two-index formulation

Principle:

- This model uses, for each arc $a \in A$, a binary variable x_a to indicate whether a belongs to any vehicle route in the solution, without specifying to which one.
- In the literature, this model is often written using as variable indices **nodes instead of arcs**, i.e. using x_{ii} , with $(i, j) \in V^2$ such that $(i, j) \in A$, instead of x_a .
 - → Hence the name "two-index" formulation.

Two-index formulation - Decision variables and objective

Decision variables:

$$x_a = \begin{cases} 1 & \text{if arc } a \text{ belongs to one of the } k \text{ routes,} \\ 0 & \text{otherwise.} \end{cases}$$

min
$$\sum_{a \in A} c_a x_a$$

Two-index formulation - Decision variables and objective

Decision variables:

$$x_a = \begin{cases} 1 & \text{if arc } a \text{ belongs to one of the } k \text{ routes,} \\ 0 & \text{otherwise.} \end{cases}$$

Objective:

min
$$\sum_{a \in A} c_a x_a$$

Two-index formulation

Constraints:

$$\sum_{a \in \delta^{-}(i)} x_{a} = 1, \quad i \in V \setminus \{0\}$$

$$\sum_{a \in \delta^{+}(i)} x_{a} = 1, \quad i \in V \setminus \{0\}$$

$$\sum_{a \in \delta^{+}(0)} x_{a} = k,$$

$$\sum_{a \in$$

Two-index formulation

Constraints:

$$\sum_{a \in \delta^{-}(i)} x_{a} = 1, \quad i \in V \setminus \{0\}$$
 (Flow at client nodes & single client visit)
$$\sum_{a \in \delta^{+}(i)} x_{a} = 1, \quad i \in V \setminus \{0\}$$
 (Flow at depot & fixing nb of vehicles to k)
$$\sum_{a \in \delta^{+}(0)} x_{a} = k, \quad \text{fixing nb of vehicles to } k$$
 (Subtour elimination)
$$\text{???} \qquad \text{???} \qquad \text{(Subtour elimination)}$$

$$\text{???} \qquad x_{a} \in \{0,1\}, \quad a \in A$$

Conclusion

Constraints:

$$\sum_{a \in \delta^{-}(i)} x_a = 1, \quad i \in V \setminus \{0\}$$
 (Flow at client nodes & single client visit)
$$\sum_{a \in \delta^{+}(i)} x_a = 1, \quad i \in V \setminus \{0\}$$
 (Flow at depot & fixing nb of vehicles to k)
$$\sum_{a \in \delta^{+}(0)} x_a = k,$$
 (Subtour elimination)
$$\underset{???}{???} ???$$
 (Subtour elimination)
$$\underset{???}{x_a \in \{0,1\}}, \quad a \in A$$

"Challenging" constraints

Two-index formulation

Constraints:

$$\sum_{a \in \delta^{-}(i)} x_a = 1, \quad i \in V \setminus \{0\}$$
 (Flow at client nodes & single client visit)
$$\sum_{a \in \delta^{+}(i)} x_a = 1, \quad i \in V \setminus \{0\}$$
 (Flow at depot wisit)
$$\sum_{a \in \delta^{-}(0)} x_a = k,$$
 (Flow at depot & fixing nb of vehicles to k)
$$\sum_{a \in \delta^{+}(0)} x_a = k,$$
 (Subtour elimination)
$$??? \qquad ??? \qquad (Subtour elimination)$$

$$??? \qquad (Capacity)$$

$$x_a \in \{0,1\}, \quad a \in A$$

→ "Challenging" constraints.

Two ways for modeling these challenging constraints (one single set of constraints for both considerations).

Two ways for modeling these challenging constraints (one single set of constraints for both considerations).

- **Stronger** model, but **hard-to-use** in practice, based on: variants of ATSP (alternative) subtour elimination constraints and the **optimal value** of a BPP;

Introduction to CVRP

Two-index formulation

Two ways for modeling these challenging constraints (one single set of constraints for both considerations).

- Stronger model, but hard-to-use in practice, based on: variants of ATSP (alternative) subtour elimination constraints and the optimal value of a BPP;
- Weaker but sufficient model, easy-to-use in practice, based on: variants of ATSP (alternative) subtour elimination constraints and the trivial lower bound of the same BPP.
- → Let us recall some previous notions and results!

Two ways for modeling these challenging constraints (one single set of constraints for both considerations).

- Stronger model, but hard-to-use in practice, based on: variants of ATSP (alternative) subtour elimination constraints and the optimal value of a BPP;
- Weaker but sufficient model, easy-to-use in practice, based on: variants of ATSP (alternative) subtour elimination constraints and the trivial lower bound of the same BPP.
- → Let us recall some previous notions and results!

Recalls about ATSP - Illustration

Figure: Illustration of the ATSP. (Source: https://en.wikipedia.org/)

Subtour elimination constraints:

Given a graph G = (V, A) and binary decision variables $\{x_a\}$, s.t. for each $a \in A$, $x_a = 1$ if a belongs to the solution, 0 otherwise, subtour elimination constraints are:

$$\sum_{a \in A(S)} x_a \le |S| - 1, \quad \forall S \subseteq V, \ 2 \le |S| \le |V| - 2$$

$$\updownarrow$$

$$\sum_{a \in \delta^+(S)} x_a \ge 1, \quad \forall S \subseteq V, \ 2 \le |S| \le |V| - 2.$$

Subtour elimination constraints:

Given a graph G = (V, A) and binary decision variables $\{x_a\}$, s.t. for each $a \in A$, $x_a = 1$ if a belongs to the solution, 0 otherwise, subtour elimination constraints are:

$$\sum_{a \in A(S)} x_a \le |S| - 1, \quad \forall S \subseteq V, \ 2 \le |S| \le |V| - 2$$

$$\updownarrow$$

$$\sum_{a \in \delta^+(S)} x_a \ge 1, \quad \forall S \subseteq V, \ 2 \le |S| \le |V| - 2.$$

Subtour elimination constraints:

Given a graph G = (V, A) and binary decision variables $\{x_a\}$, s.t. for each $a \in A$, $x_a = 1$ if a belongs to the solution, 0 otherwise, subtour elimination constraints are:

$$\sum_{a \in A(S)} x_a \le |S| - 1, \quad \forall S \subseteq V, \ 2 \le |S| \le |V| - 2$$

$$\updownarrow$$

$$\sum_{a \in \delta^+(S)} x_a \ge 1, \quad \forall S \subseteq V, \ 2 \le |S| \le |V| - 2.$$

Subtour elimination constraints:

Given a graph G = (V, A) and binary decision variables $\{x_a\}$, s.t. for each $a \in A$, $x_a = 1$ if a belongs to the solution, 0 otherwise, subtour elimination constraints are:

$$\sum_{a \in A(S)} x_a \le |S| - 1, \quad \forall S \subseteq V, \ 2 \le |S| \le |V| - 2$$

$$\updownarrow$$

$$\sum_{a \in \delta^+(S)} x_a \ge 1, \quad \forall S \subseteq V, \ 2 \le |S| \le |V| - 2.$$

Recalls about BPP - Illustration

Two-index formulation

Figure: Illustration of the BPP. (Source: Chraibi et al. (2022))

Recalls about BPP - Trivial lower bound

Trivial lower bound:

Given n items of weights d_1, \ldots, d_n and identical bins of capacity b, a **trivial lower bound** on the nb of bins required to pack all items is:

$$\frac{\sum_{i=1}^{n} d_i}{h}$$

Plan

- Introduction to CVRP
- 2 Two-index formulation (Section 3.1)
 - Formulation generalities
 - Strong model of challenging constraints
 - Weak model of challenging constraints
- Three-index formulation (Section 3.2)
- 4 Conclusion

Idea:

- Given $S \subseteq V \setminus \{0\}$, let $\sigma(S)$ be the **optimal value** of the **BPP** obtained by considering as:
 - ▶ set of **objects** \equiv subset of **clients** S,
 - objects' weights \equiv clients' demands $\{d_j\}_{j\in S}$,
 - ightharpoonup container capacity \equiv vehicle capacity b
- "Given a set of clients $S \subseteq V \setminus \{0\}$, at least $\sigma(S)$ vehicles are needed to serve these clients."

$$\sum_{a \in \delta^+(S)} x_a \ge \sigma(S), \quad S \subseteq V \setminus \{0\}$$

- ▶ **Subtour elimination** constraints as $\sigma(S) \ge 1$
- Capacity constraints by definition of $\sigma(S)$.

Two-index formulation

Idea:

- Given $S \subseteq V \setminus \{0\}$, let $\sigma(S)$ be the **optimal value** of the **BPP** obtained by considering as:
 - ▶ set of **objects** \equiv subset of **clients** S,
 - ▶ objects' weights ≡ clients' demands $\{d_i\}_{i \in S}$,
 - container capacity \equiv vehicle capacity b.
- "Given a set of clients $S \subseteq V \setminus \{0\}$, at least $\sigma(S)$ vehicles are

$$\sum_{a\in\delta^+(S)} x_a \ge \sigma(S), \quad S \subseteq V \setminus \{0\}$$

Idea:

- Given $S \subseteq V \setminus \{0\}$, let $\sigma(S)$ be the **optimal value** of the **BPP** obtained by considering as:
 - ▶ set of **objects** \equiv subset of **clients** S,
 - ▶ objects' weights ≡ clients' demands $\{d_j\}_{j \in S}$,
 - container capacity \equiv vehicle capacity b.
- "Given a set of clients $S \subseteq V \setminus \{0\}$, at least $\sigma(S)$ vehicles are needed to serve these clients."

$$\sum_{a\in\delta^+(S)} x_a \ge \sigma(S), \quad S \subseteq V \setminus \{0\}$$

- ▶ **Subtour elimination** constraints as $\sigma(S) \ge 1$
- **Capacity** constraints by definition of $\sigma(S)$.

Idea:

- Given $S \subseteq V \setminus \{0\}$, let $\sigma(S)$ be the **optimal value** of the **BPP** obtained by considering as:
 - set of objects ≡ subset of clients S,
 - ▶ objects' weights ≡ clients' demands $\{d_j\}_{j \in S}$,
 - container capacity \equiv vehicle capacity b.
- "Given a set of clients $S \subseteq V \setminus \{0\}$, at least $\sigma(S)$ vehicles are needed to serve these clients."

$$\sum_{a \in \delta^+(S)} x_a \ge \sigma(S), \quad S \subseteq V \setminus \{0\}$$

- ▶ **Subtour elimination** constraints as $\sigma(S) \ge 1$
- **Capacity** constraints by definition of $\sigma(S)$.

Two-index formulation

Idea:

- Given $S \subseteq V \setminus \{0\}$, let $\sigma(S)$ be the **optimal value** of the **BPP** obtained by considering as:
 - ▶ set of **objects** \equiv subset of **clients** S,
 - ▶ objects' weights ≡ clients' demands $\{d_i\}_{i \in S}$,
 - container capacity ≡ vehicle capacity b.
- "Given a set of clients $S \subseteq V \setminus \{0\}$, at least $\sigma(S)$ vehicles are needed to serve these clients."

$$\sum_{\mathbf{a}\in\delta^+(S)}x_{\mathbf{a}}\geq\sigma(S),\quad S\subseteq V\smallsetminus\{0\}$$

- **Subtour elimination** constraints as $\sigma(S) \ge 1$.

Two-index formulation

Idea:

- Given $S \subseteq V \setminus \{0\}$, let $\sigma(S)$ be the **optimal value** of the **BPP** obtained by considering as:
 - ▶ set of **objects** \equiv subset of **clients** S,
 - ▶ objects' weights ≡ clients' demands $\{d_i\}_{i \in S}$,
 - container capacity ≡ vehicle capacity b.
- "Given a set of clients $S \subseteq V \setminus \{0\}$, at least $\sigma(S)$ vehicles are needed to serve these clients."

$$\sum_{\mathbf{a}\in\delta^+(S)}x_{\mathbf{a}}\geq\sigma(S),\quad S\subseteq V\smallsetminus\{0\}$$

- **Subtour elimination** constraints as $\sigma(S) \ge 1$.
- **Capacity** constraints by definition of $\sigma(S)$.

CVRP two-index formulation:

min
$$\sum_{a \in A} c_a x_a$$

s.t. $\sum_{a \in \delta^-(i)} x_a = 1$, $i \in V \setminus \{0\}$ (Flow at client nodes & $\sum_{a \in \delta^+(i)} x_a = 1$, $i \in V \setminus \{0\}$ single client visit)
$$\sum_{a \in \delta^-(0)} x_a = k$$
, (Flow at depot & fixing nb of vehicles to k)
$$\sum_{a \in \delta^+(0)} x_a = k$$
, (Subtour elimination & vehicle capacity)
$$x_a \in \{0,1\}, \quad a \in A$$

A Exponential nb of constraints \rightarrow separation with $\tilde{S} \subseteq 2^{V \setminus \{0\}}$

CVRP two-index formulation LP-relaxation:

min
$$\sum_{a \in A} c_a x_a$$

s.t. $\sum_{a \in \delta^-(i)} x_a = 1$, $i \in V \setminus \{0\}$ (Flow at client nodes & $\sum_{a \in \delta^+(i)} x_a = 1$, $i \in V \setminus \{0\}$ single client visit)
$$\sum_{a \in \delta^-(0)} x_a = k$$
, (Flow at depot & fixing nb of vehicles to k)
$$\sum_{a \in \delta^+(0)} x_a = k$$
, (Subtour elimination & vehicle capacity)
$$x_a \in [0, 1], \quad a \in A$$

A Exponential nb of constraints \rightarrow separation with $\tilde{S} \subseteq 2^{V \setminus \{0\}}$

CVRP two-index formulation LP-relaxation:

min
$$\sum_{a \in A} c_a x_a$$

s.t. $\sum_{a \in \delta^-(i)} x_a = 1$, $i \in V \setminus \{0\}$ (Flow at client nodes & $\sum_{a \in \delta^+(i)} x_a = 1$, $i \in V \setminus \{0\}$ single client visit)
$$\sum_{a \in \delta^-(0)} x_a = k$$
, (Flow at depot & fixing nb of vehicles to k)
$$\sum_{a \in \delta^+(0)} x_a = k$$
, (Subtour elimination & vehicle capacity)
$$x_a \in [0, 1], \quad a \in A$$

Exponential nb of constraints \rightarrow separation with $\tilde{S} \subseteq 2^{V \setminus \{0\}}$

CVRP two-index formulation LP-relaxation:

$$\begin{aligned} & \min & & \sum_{a \in A} c_a x_a \\ & \text{s.t.} & & \sum_{a \in \delta^-(i)} x_a = 1, & i \in V \setminus \{0\} \\ & & & \sum_{a \in \delta^+(i)} x_a = 1, & i \in V \setminus \{0\} \\ & & & \sum_{a \in \delta^+(0)} x_a = k, & \text{(Flow at depot \& fixing nb of vehicles to k)} \\ & & & \sum_{a \in \delta^+(0)} x_a = k, & \text{(Subtour elimination \& vehicle capacity)} \\ & & & & x_a \in [0,1], & a \in A \end{aligned}$$

Exponential nb of constraints \rightarrow separation with $\tilde{S} \subseteq 2^{V \setminus \{0\}}$.

Consider the CVRP **LP-relaxation** (initialized with a "small" subset of challenging constraints \tilde{S}). Let x^* be its **optimal solution**.

Separation

• Identify **if there exists** a subset $S^* \subseteq V \setminus \{0\}$ such that:

$$\sum_{a \in \delta^+(S^*)} x_a^* < \sigma(S^*)$$

- Use (M)ILP to model this problem into a separation problem?
- \triangle Cannot be formulated as a reasonable (M)ILP because the model would have to both select vertices to form S^* and compute the BPP optimal value $\sigma(S^*)$.
 - \rightarrow Use heuristics to find S^* or change of separation problem

Two-index formulation

Consider the CVRP **LP-relaxation** (initialized with a "small" subset of challenging constraints \tilde{S}). Let x^* be its **optimal solution**.

Separation:

• Identify if there exists a subset S* ⊆ V \ {0} such that:

$$\sum_{a \in \delta^+(S^*)} x_a^* < \sigma(S^*)$$

Consider the CVRP **LP-relaxation** (initialized with a "small" subset of challenging constraints \tilde{S}). Let x^* be its **optimal solution**.

Separation:

• Identify **if there exists** a subset $S^* \subseteq V \setminus \{0\}$ such that:

$$\sum_{a \in \delta^+(S^*)} x_a^* < \sigma(S^*)$$

- Use (M)ILP to model this problem into a separation problem?
- **A** Cannot be formulated as a reasonable (M)ILP because the model would have to both select vertices to form S^* and compute the BPP optimal value $\sigma(S^*)$.
- \rightarrow Use heuristics to find S^* or change of separation problem

Consider the CVRP **LP-relaxation** (initialized with a "small" subset of challenging constraints \tilde{S}). Let x^* be its **optimal solution**.

Separation:

• Identify **if there exists** a subset $S^* \subseteq V \setminus \{0\}$ such that:

$$\sum_{a \in \delta^+(S^*)} x_a^* < \sigma(S^*)$$

- Use (M)ILP to model this problem into a separation problem?
- **A** Cannot be formulated as a reasonable (M)ILP because the model would have to both select vertices to form S^* and compute the BPP optimal value $\sigma(S^*)$.
- \rightarrow Use heuristics to find S^* or change of separation problem.

Two-index formulation

Consider the CVRP **LP-relaxation** (initialized with a "small" subset of challenging constraints \tilde{S}). Let x^* be its **optimal solution**.

Separation:

• Identify if there exists a subset S* ⊆ V \ {0} such that:

$$\sum_{a \in \delta^+(S^*)} x_a^* < \sigma(S^*)$$

- Use (M)ILP to model this problem into a separation problem?
- ▲ Cannot be formulated as a reasonable (M)ILP because the model would have to both select vertices to form S^* and compute the BPP optimal value $\sigma(S^*)$.
- \rightarrow Use heuristics to find S^* or change of separation problem.

Plan

- Introduction to CVRP
- 2 Two-index formulation (Section 3.1)
 - Formulation generalities
 - Strong model of challenging constraints
 - Weak model of challenging constraints
- Three-index formulation (Section 3.2)
- 4 Conclusion

Weak model - Principle and constraints

Principle:

• Same BPP problem as before, but rather than making use of the optimal value $\sigma(S)$, we use its **trivial lower bound**:

$$\sigma(S) \geq \frac{\sum_{j \in S} d_j}{b}$$

• "Given a set of clients $S \subseteq V \setminus \{0\}$, at least $\frac{\sum_{j \in S} d_j}{b}$ vehicles are needed to serve these clients."

$$\sum_{e \delta^{+}(S)} x_a \ge \frac{\sum_{j \in S} d_j}{b}, \quad S \subseteq V \setminus \{0\}$$

Weak model - Principle and constraints

Principle:

• Same BPP problem as before, but rather than making use of the optimal value $\sigma(S)$, we use its **trivial lower bound**:

Three-index formulation

$$\sigma(S) \ge \frac{\sum_{j \in S} d_j}{b}$$

• "Given a set of clients $S \subseteq V \setminus \{0\}$, at least $\frac{\sum_{j \in S} d_j}{b}$ vehicles are needed to serve these clients."

$$\sum_{e \delta^{+}(S)} x_a \ge \frac{\sum_{j \in S} d_j}{b}, \quad S \subseteq V \setminus \{0\}$$

Weak model - Principle and constraints

Principle:

• Same BPP problem as before, but rather than making use of the optimal value $\sigma(S)$, we use its **trivial lower bound**:

$$\sigma(S) \ge \frac{\sum_{j \in S} d_j}{b}$$

• "Given a set of clients $S \subseteq V \setminus \{0\}$, at least $\frac{\sum_{j \in S} d_j}{b}$ vehicles are needed to serve these clients."

$$\sum_{a \in \delta^{+}(S)} x_a \ge \frac{\sum_{j \in S} d_j}{b}, \quad S \subseteq V \setminus \{0\}$$

CVRP two-index formulation:

$$\begin{aligned} & \min & & \sum_{a \in A} c_a x_a \\ & \text{s.t.} & & \sum_{a \in \delta^-(i)} x_a = 1, & & i \in V \setminus \{0\} \\ & & \sum_{a \in \delta^+(i)} x_a = 1, & & i \in V \setminus \{0\} \\ & & \sum_{a \in \delta^+(0)} x_a = k, & & \text{(Flow at depot \& fixing nb of vehicles to k)} \\ & & \sum_{a \in \delta^+(0)} x_a = k, & & \text{fixing nb of vehicles to k)} \\ & & \sum_{a \in \delta^+(S)} x_a \geq \frac{\sum_{j \in S} d_j}{b}, & S \subseteq V \setminus \{0\} & & \text{vehicle capacity}) \\ & & & x_a \in \{0,1\}, & & a \in A \end{aligned}$$

Exponential nb of constraints \rightarrow **separation** with $\tilde{\mathcal{S}} \subseteq 2^{V \setminus \{0\}}$.

CVRP two-index formulation LP-relaxation:

$$\begin{aligned} & \min & & \sum_{a \in A} c_a x_a \\ & \text{s.t.} & & \sum_{a \in \delta^-(i)} x_a = 1, & & i \in V \setminus \{0\} \\ & & \sum_{a \in \delta^+(i)} x_a = 1, & & i \in V \setminus \{0\} \\ & & \sum_{a \in \delta^+(0)} x_a = k, & & \text{(Flow at depot \& fixing nb of vehicles to k)} \\ & & \sum_{a \in \delta^+(0)} x_a = k, & & \text{fixing nb of vehicles to k)} \\ & & \sum_{a \in \delta^+(S)} x_a \geq \frac{\sum_{j \in S} d_j}{b}, & S \subseteq V \setminus \{0\} & & \text{vehicle capacity}) \\ & & & x_a \in [0,1], & & a \in A \end{aligned}$$

A Exponential nb of constraints \rightarrow separation with $\tilde{S} \subseteq 2^{V \setminus \{0\}}$

CVRP two-index formulation LP-relaxation:

Two-index formulation

$$\begin{aligned} & \min & & \sum_{a \in A} c_a x_a \\ & \text{s.t.} & & \sum_{a \in \delta^-(i)} x_a = 1, & i \in V \setminus \{0\} \\ & & \sum_{a \in \delta^+(i)} x_a = 1, & i \in V \setminus \{0\} \\ & & \sum_{a \in \delta^+(0)} x_a = k, & \text{(Flow at depot \& fixing nb of vehicles to k)} \\ & & \sum_{a \in \delta^+(0)} x_a = k, & \text{(Subtour elimination \& vehicle capacity)} \\ & & & x_a \in [0, 1], & a \in A \end{aligned}$$

Exponential nb of constraints \rightarrow separation with $\tilde{S} \subseteq 2^{V \setminus \{0\}}$

Conclusion

CVRP two-index formulation LP-relaxation:

$$\begin{aligned} & \min & & \sum_{a \in A} c_a x_a \\ & \text{s.t.} & & \sum_{a \in \delta^-(i)} x_a = 1, & i \in V \setminus \{0\} \\ & & \sum_{a \in \delta^+(i)} x_a = 1, & i \in V \setminus \{0\} \\ & & \sum_{a \in \delta^+(0)} x_a = k, & \text{(Flow at depot \& fixing nb of vehicles to k)} \\ & & \sum_{a \in \delta^+(0)} x_a = k, & \text{(Subtour elimination \& vehicle capacity)} \\ & & & x_a \in [0,1], & a \in A \end{aligned}$$

Exponential nb of constraints \rightarrow **separation** with $\tilde{S} \subseteq 2^{V \setminus \{0\}}$.

Three-index formulation

Weak formulation - Separation

Consider the CVRP LP-relaxation (initialized with a "small" subset of challenging constraints \tilde{S}). Let x^* be its **optimal solution**.

$$\sum_{a \in \delta^{+}(S^{*})} x_{a}^{*} < \frac{\sum_{j \in S^{*}} d_{j}}{b} \quad i.e. \quad \sum_{j \in S^{*}} d_{j} - b \sum_{a \in \delta^{+}(S^{*})} x_{a}^{*} > 0$$

Weak formulation - Separation

Consider the CVRP LP-relaxation (initialized with a "small" subset of challenging constraints \tilde{S}). Let x^* be its **optimal solution**.

Separation:

Identify **if there exists** a subset $S^* \subseteq V \setminus \{0\}$ such that:

$$\sum_{a \in \delta^{+}(S^{*})} x_{a}^{*} < \frac{\sum_{j \in S^{*}} d_{j}}{b} \quad i.e. \quad \sum_{j \in S^{*}} d_{j} - b \sum_{a \in \delta^{+}(S^{*})} x_{a}^{*} > 0$$

Three-index formulation

Weak formulation - Separation

Consider the CVRP LP-relaxation (initialized with a "small" subset of challenging constraints \tilde{S}). Let x^* be its **optimal solution**.

Separation:

Identify **if there exists** a subset $S^* \subseteq V \setminus \{0\}$ such that:

$$\sum_{a \in \delta^{+}(S^{*})} x_{a}^{*} < \frac{\sum_{j \in S^{*}} d_{j}}{b} \quad i.e. \quad \sum_{j \in S^{*}} d_{j} - b \sum_{a \in \delta^{+}(S^{*})} x_{a}^{*} > 0$$

Use **ILP** to model this problem into a **separation problem**.

Decision variables:

$$y_i = \begin{cases} 1 & \text{if client } i \text{ belongs to } S^*, \\ 0 & \text{otherwise.} \end{cases}$$

$$z_a = \begin{cases} 1 & \text{if arc } a \text{ belongs to } \delta^+(S^*) \\ 0 & \text{otherwise.} \end{cases}$$

Objective

$$\exists S^* \subseteq V \setminus \{0\}, \quad \sum_{j \in S^*} d_j - b \sum_{a \in \delta^+(S^*)} x_a^* > 0$$

$$\downarrow \qquad \qquad \downarrow$$

$$\max \quad \sum_{i \in V} d_i y_i - b \sum_{a \in A} x_a^* z_a > 0 \quad ?$$

Decision variables:

$$y_i = \begin{cases} 1 & \text{if client } i \text{ belongs to } S^*, \\ 0 & \text{otherwise.} \end{cases}$$

$$z_a = \begin{cases} 1 & \text{if arc } a \text{ belongs to } \delta^+(S^*), \\ 0 & \text{otherwise.} \end{cases}$$

Objective

$$\exists S^* \subseteq V \setminus \{0\}, \quad \sum_{j \in S^*} d_j - b \sum_{a \in \delta^+(S^*)} x_a^* > 0$$

$$\downarrow \qquad \qquad \downarrow$$

$$\max \quad \sum_{i \in V} d_i y_i - b \sum_{a \in A} x_a^* z_a > 0$$
?

Decision variables:

$$y_i = \begin{cases} 1 & \text{if client } i \text{ belongs to } S^*, \\ 0 & \text{otherwise.} \end{cases}$$

$$z_a = \begin{cases} 1 & \text{if arc } a \text{ belongs to } \delta^+(S^*), \\ 0 & \text{otherwise.} \end{cases}$$

Objective:

$$\exists S^* \subseteq V \setminus \{0\}, \quad \sum_{j \in S^*} d_j - b \sum_{a \in \delta^+(S^*)} x_a^* > 0 \quad ?$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\max \quad \sum_{i \in V} d_i y_i - b \sum_{a \in A} x_a^* z_a > 0 \quad ?$$

Decision variables:

$$y_i = \begin{cases} 1 & \text{if client } i \text{ belongs to } S^*, \\ 0 & \text{otherwise.} \end{cases}$$

$$z_a = \begin{cases} 1 & \text{if arc } a \text{ belongs to } \delta^+(S^*), \\ 0 & \text{otherwise.} \end{cases}$$

Objective:

$$\exists S^* \subseteq V \setminus \{0\}, \quad \sum_{j \in S^*} d_j - b \sum_{a \in \delta^+(S^*)} x_a^* > 0 \quad ?$$

$$\downarrow \qquad \qquad \downarrow$$

$$\max \quad \sum_{i \in V} d_i y_i - b \sum_{a \in A} x_a^* z_a > 0 \quad ?$$

Separation problem:

$$\max \sum_{i \in V} d_{i}y_{i} - b \sum_{a \in A} x_{a}^{*} z_{a}$$
s.t. $y_{0} = 0$

$$z_{(i,j)} \leq y_{i}, \qquad (i,j) \in A$$

$$z_{(i,j)} \leq 1 - y_{j}, \quad (i,j) \in A$$

$$z_{(i,j)} \geq y_{i} - y_{j}, \quad (i,j) \in A$$

$$y_{i} \in \{0,1\}, \quad i \in V$$

$$z_{a} \in \{0,1\}, \quad a \in A$$

 \hookrightarrow If the optimal value is positive, add $S^* = \{i \in V \setminus \{0\}, \ v_i = 1\}$ to \tilde{S}

Separation problem:

$$\max \sum_{i \in V} d_i y_i - b \sum_{a \in A} x_a^* z_a$$
s.t. $y_0 = 0$

$$z_{(i,j)} \le y_i, \qquad (i,j) \in A$$

$$z_{(i,j)} \le 1 - y_j, \quad (i,j) \in A$$

$$z_{(i,j)} \ge y_i - y_j, \quad (i,j) \in A$$

$$y_i \in \{0,1\}, \quad i \in V$$

$$z_a \in \{0,1\}, \quad a \in A$$

 \rightarrow If the optimal value is positive, add $S^* = \{i \in V \setminus \{0\}, \ y_i = 1\} \text{ to } \tilde{S}$

Separation problem:

$$\max \sum_{i \in V} d_i y_i - b \sum_{a \in A} x_a^* z_a$$
s.t. $y_0 = 0$

$$z_{(i,j)} \le y_i, \qquad (i,j) \in A$$

$$z_{(i,j)} \le 1 - y_j, \quad (i,j) \in A$$

$$z_{(i,j)} \ge y_i - y_j, \quad (i,j) \in A$$

$$y_i \in \{0,1\}, \quad i \in V$$

$$z_a \in \{0,1\}, \quad a \in A$$

→ If the optimal value is positive, add $S^* = \{i \in V \setminus \{0\}, y_i = 1\}$ to \tilde{S}

Weak formulation - Separation problem

Separation problem:

$$\max \sum_{i \in V} d_i y_i - b \sum_{a \in A} x_a^* z_a$$
s.t. $y_0 = 0$

$$z_{(i,j)} \le y_i, \qquad (i,j) \in A$$

$$z_{(i,j)} \le 1 - y_j, \quad (i,j) \in A$$

$$z_{(i,j)} \ge y_i - y_j, \quad (i,j) \in A$$

$$y_i \in \{0,1\}, \quad i \in V$$

$$z_a \in \{0,1\}, \quad a \in A$$

 \hookrightarrow If the optimal value is positive, add $S^* = \{i \in V \setminus \{0\}, y_i = 1\}$ to \tilde{S} .

Plan

- Introduction to CVRF
- 2 Two-index formulation (Section 3.1)
- 3 Three-index formulation (Section 3.2)
- 4 Conclusion

Plan

- Introduction to CVRP
- 2 Two-index formulation (Section 3.1)
- 3 Three-index formulation (Section 3.2)
 - Formulation generalities
 - Extension to CVRP with heterogenous capacities
 - Extension to CVRP with time windows
- 4 Conclusion

Three-index formulation

Three-index formulation - Principle

Principle:

- This model uses, for each arc a ∈ A and each vehicle $h \in \{1, \dots, k\}$, a binary variable x_a^h to indicate whether arc a belongs to vehicle h's route.

Three-index formulation

Three-index formulation - Principle

Principle:

- This model uses, for each arc a ∈ A and each vehicle $h \in \{1, \dots, k\}$, a binary variable x_a^h to indicate whether arc a belongs to **vehicle** *h*'s route.
- From a resolution perspective, this three-index formulation does not offer any advantages over the two-index one. However, it is considerably easier to adapt it to integrate additional characteristics of routing problems.

Decision variables:

- $x_a^h = \begin{cases} 1 & \text{if arc } a \text{ belongs to route } h, \\ 0 & \text{otherwise.} \end{cases}$

$$\min \sum_{h=1}^{k} \sum_{a \in A} c_a x_a^h$$

Decision variables:

- $x_a^h = \begin{cases} 1 & \text{if arc } a \text{ belongs to route } h, \\ 0 & \text{otherwise.} \end{cases}$
- $y_i^h = \begin{cases} 1 & \text{if client } i \text{ is served by route } h, \\ 0 & \text{otherwise.} \end{cases}$
- \rightarrow Variables $\{y_i^h\}$ are introduced for readability purpose: they correspond to sum over part of variables $\{x_a\}$.

Objective:

$$\min \sum_{h=1}^{k} \sum_{a \in A} c_a x_a^h$$

Decision variables:

- $x_a^h = \begin{cases} 1 & \text{if arc } a \text{ belongs to route } h, \\ 0 & \text{otherwise.} \end{cases}$
- $y_i^h = \begin{cases} 1 & \text{if client } i \text{ is served by route } h, \\ 0 & \text{otherwise.} \end{cases}$
- \rightarrow Variables $\{y_i^h\}$ are introduced for readability purpose: they correspond to sum over part of variables $\{x_a\}$.

Objective

$$\min \sum_{h=1}^{k} \sum_{a \in A} c_a x_a^h$$

Decision variables:

- $x_a^h = \begin{cases} 1 & \text{if arc } a \text{ belongs to route } h, \\ 0 & \text{otherwise.} \end{cases}$
- $y_i^h = \begin{cases} 1 & \text{if client } i \text{ is served by route } h, \\ 0 & \text{otherwise.} \end{cases}$
- \rightarrow Variables $\{y_i^h\}$ are introduced for readability purpose: they correspond to sum over part of variables $\{x_a\}$.

Objective:

$$\min \sum_{h=1}^{k} \sum_{a \in A} c_a x_a^h$$

$$\sum_{a \in \delta^{-}(i)} x_a^h = y_i^h, \quad h \in \{1, \dots, k\}, \ i \in V \setminus \{0\}$$
 (Flow at client node)
$$\sum_{a \in \delta^{-}(i)} x_a^h = y_i^h, \quad h \in \{1, \dots, k\}, \ i \in V \setminus \{0\}$$
 (Each client visited once
$$\sum_{h=1}^k y_i^h = 1, \quad i \in V \setminus \{0\}$$
 (Flow at depot)
$$\sum_{a \in \delta^{-}(0)} x_a^h = 1, \quad h \in \{1, \dots, k\}, \ i \in V \setminus \{0\}$$
 (Flow at depot)
$$\sum_{a \in \delta^{+}(0)} x_a^h = 1, \quad h \in \{1, \dots, k\}, \ i \in V \setminus \{0\}$$
 (Capacity)
$$\sum_{i \in V \setminus \{0\}} x_i^h \leq b, \quad h \in \{1, \dots, k\}, \ S \subseteq V \setminus \{0\}, \ i \in S$$
 (Subtour elimination)
$$x_a^h \in \{0, 1\}, \quad h \in \{1, \dots, k\}, \ a \in A$$

$$y_i^h \in \{0, 1\}, \quad h \in \{1, \dots, k\}, \ i \in V \setminus \{0\}$$

$$\sum_{a \in \delta^-(i)} x_a^h = y_i^h, \qquad h \in \{1, \dots, k\}, \ i \in V \setminus \{0\} \qquad \qquad \text{(Flow at client node)}$$

$$\sum_{a \in \delta^+(i)} x_a^h = y_i^h, \qquad h \in \{1, \dots, k\}, \ i \in V \setminus \{0\}$$

$$\sum_{h=1}^k y_i^h = 1, \qquad i \in V \setminus \{0\} \qquad \qquad \text{(Each client visited once)}$$

$$\sum_{a \in \delta^-(0)} x_a^h = 1, \qquad h \in \{1, \dots, k\}, \ i \in V \setminus \{0\} \qquad \qquad \text{(Flow at depot)}$$

$$\sum_{a \in \delta^+(0)} x_a^h = 1, \qquad h \in \{1, \dots, k\}, \ i \in V \setminus \{0\}$$

$$\sum_{i \in V \setminus \{0\}} d_i y_i^h \leq b, \quad h \in \{1, \dots, k\}, \ i \in V \setminus \{0\}, \ i \in S \qquad \text{(Subtour elimination)}$$

$$\sum_{a \in \delta^+(S)} x_a^h \leq y_i^h, \qquad h \in \{1, \dots, k\}, \ s \in A$$

$$y_i^h \in \{0, 1\}, \qquad h \in \{1, \dots, k\}, \ i \in V \setminus \{0\}$$

$$\sum_{a \in \delta^{-}(i)} x_a^h = y_i^h, \qquad h \in \{1, \dots, k\}, \ i \in V \setminus \{0\} \qquad \qquad \text{(Flow at client node)}$$

$$\sum_{a \in \delta^{+}(i)} x_a^h = y_i^h, \qquad h \in \{1, \dots, k\}, \ i \in V \setminus \{0\}$$

$$\sum_{h=1}^k y_i^h = 1, \qquad i \in V \setminus \{0\} \qquad \qquad \text{(Each client visited once)}$$

$$\sum_{a \in \delta^{-}(0)} x_a^h = 1, \qquad h \in \{1, \dots, k\}, \ i \in V \setminus \{0\} \qquad \qquad \text{(Flow at depot)}$$

$$\sum_{a \in \delta^{+}(0)} x_a^h = 1, \qquad h \in \{1, \dots, k\}, \ i \in V \setminus \{0\}$$

$$\sum_{a \in \delta^{+}(S)} x_a^h \leq b, \quad h \in \{1, \dots, k\}, \ i \in V \setminus \{0\}, \ i \in S \qquad \text{(Subtour elimination)}$$

$$x_a^h \in \{0, 1\}, \qquad h \in \{1, \dots, k\}, \ a \in A$$

$$y_i^h \in \{0, 1\}, \qquad h \in \{1, \dots, k\}, \ i \in V \setminus \{0\}$$

$$\sum_{a \in \delta^-(i)} x_a^h = y_i^h, \qquad h \in \{1, \dots, k\}, \ i \in V \setminus \{0\} \qquad \qquad \text{(Flow at client node)}$$

$$\sum_{a \in \delta^+(i)} x_a^h = y_i^h, \qquad h \in \{1, \dots, k\}, \ i \in V \setminus \{0\}$$

$$\sum_{h=1}^k y_i^h = 1, \qquad i \in V \setminus \{0\} \qquad \qquad \text{(Each client visited once)}$$

$$\sum_{a \in \delta^-(0)} x_a^h = 1, \qquad h \in \{1, \dots, k\}, \ i \in V \setminus \{0\} \qquad \qquad \text{(Flow at depot)}$$

$$\sum_{a \in \delta^+(0)} x_a^h = 1, \qquad h \in \{1, \dots, k\}, \ i \in V \setminus \{0\}$$

$$\sum_{a \in \delta^+(0)} d_i y_i^h \leq b, \quad h \in \{1, \dots, k\}, \ i \in V \setminus \{0\}$$

$$\sum_{a \in \delta^+(S)} x_a^h \leq y_i^h, \quad h \in \{1, \dots, k\}, \ S \subseteq V \setminus \{0\}, \ i \in S \qquad \text{(Subtour elimination)}$$

$$x_a^h \in \{0, 1\}, \qquad h \in \{1, \dots, k\}, \ a \in A$$

$$y_i^h \in \{0, 1\}, \qquad h \in \{1, \dots, k\}, \ i \in V \setminus \{0\}$$

$$\sum_{a \in \delta^-(i)} x_a^h = y_i^h, \qquad h \in \{1, \dots, k\}, \ i \in V \setminus \{0\} \qquad \qquad \text{(Flow at client node)}$$

$$\sum_{a \in \delta^+(i)} x_a^h = y_i^h, \qquad h \in \{1, \dots, k\}, \ i \in V \setminus \{0\}$$

$$\sum_{h=1}^k y_i^h = 1, \qquad i \in V \setminus \{0\} \qquad \qquad \text{(Each client visited once)}$$

$$\sum_{a \in \delta^-(0)} x_a^h = 1, \qquad h \in \{1, \dots, k\}, \ i \in V \setminus \{0\} \qquad \qquad \text{(Flow at depot)}$$

$$\sum_{a \in \delta^+(0)} x_a^h = 1, \qquad h \in \{1, \dots, k\}, \ i \in V \setminus \{0\}$$

$$\sum_{i \in V \setminus \{0\}} d_i y_i^h \leq b, \quad h \in \{1, \dots, k\}, \ i \in V \setminus \{0\}, \ i \in S \qquad \text{(Subtour elimination)}$$

$$\sum_{a \in \delta^+(S)} x_a^h \leq y_i^h, \qquad h \in \{1, \dots, k\}, \ S \subseteq V \setminus \{0\}, \ i \in S \qquad \text{(Subtour elimination)}$$

$$x_a^h \in \{0, 1\}, \qquad h \in \{1, \dots, k\}, \ a \in A \qquad h \in \{0, 1\}, \qquad h \in \{1, \dots, k\}, \ i \in V \setminus \{0\}$$

Constraints of LP-relaxation:

$$\sum_{a \in \delta^-(i)} x_a^h = y_i^h, \qquad h \in \{1, \dots, k\}, \ i \in V \setminus \{0\} \qquad \qquad \text{(Flow at client node)}$$

$$\sum_{a \in \delta^+(i)} x_a^h = y_i^h, \qquad h \in \{1, \dots, k\}, \ i \in V \setminus \{0\}$$

$$\sum_{h=1}^k y_i^h = 1, \qquad i \in V \setminus \{0\} \qquad \qquad \text{(Each client visited once)}$$

$$\sum_{a \in \delta^-(0)} x_a^h = 1, \qquad h \in \{1, \dots, k\}, \ i \in V \setminus \{0\} \qquad \qquad \text{(Flow at depot)}$$

$$\sum_{a \in \delta^+(0)} x_a^h = 1, \qquad h \in \{1, \dots, k\}, \ i \in V \setminus \{0\}$$

$$\sum_{a \in \delta^+(0)} d_i y_i^h \leq b, \quad h \in \{1, \dots, k\}, \ i \in V \setminus \{0\}, \ i \in S \qquad \text{(Capacity)}$$

$$\sum_{a \in \delta^+(S)} x_a^h \leq y_i^h, \qquad h \in \{1, \dots, k\}, \ S \subseteq V \setminus \{0\}, \ i \in S \qquad \text{(Subtour elimination)}$$

$$x_a^h \in [0, 1], \qquad h \in \{1, \dots, k\}, \ a \in A \qquad b \in \{1, \dots, k\}, \ i \in V \setminus \{0\}$$

Constraints of LP-relaxation:

$$\begin{split} \sum_{a \in \delta^-(i)} x_a^h &= y_i^h, \quad h \in \{1, \dots, k\}, \ i \in V \smallsetminus \{0\} \\ \sum_{a \in \delta^+(i)} x_a^h &= y_i^h, \quad h \in \{1, \dots, k\}, \ i \in V \smallsetminus \{0\} \\ \sum_{h=1}^k y_i^h &= 1, \quad i \in V \smallsetminus \{0\} \\ \sum_{a \in \delta^-(0)} x_a^h &= 1, \quad h \in \{1, \dots, k\}, \ i \in V \smallsetminus \{0\} \\ \sum_{a \in \delta^-(0)} x_a^h &= 1, \quad h \in \{1, \dots, k\}, \ i \in V \smallsetminus \{0\} \\ \sum_{a \in \delta^+(0)} x_a^h &= 1, \quad h \in \{1, \dots, k\}, \ i \in V \smallsetminus \{0\} \\ \sum_{a \in \delta^+(0)} x_a^h &= 1, \quad h \in \{1, \dots, k\}, \ i \in V \smallsetminus \{0\} \\ \sum_{a \in \delta^+(0)} x_a^h &\leq y_i^h, \quad h \in \{1, \dots, k\}, \ S \subseteq V \smallsetminus \{0\}, \ i \in S \quad \text{(Subtour elimination)} \\ x_a^h &\in [0, 1], \quad h \in \{1, \dots, k\}, \ a \in A \\ y_i^h &\in [0, 1], \quad h \in \{1, \dots, k\}, \ i \in V \smallsetminus \{0\} \end{split}$$

Constraints of LP-relaxation:

$$\begin{split} \sum_{a \in \delta^-(i)} x_a^h &= y_i^h, \quad h \in \{1, \dots, k\}, \ i \in V \smallsetminus \{0\} \\ \sum_{a \in \delta^+(i)} x_a^h &= y_i^h, \quad h \in \{1, \dots, k\}, \ i \in V \smallsetminus \{0\} \\ \sum_{h=1}^k y_i^h &= 1, \quad i \in V \smallsetminus \{0\} \\ \sum_{a \in \delta^-(0)} x_a^h &= 1, \quad h \in \{1, \dots, k\}, \ i \in V \smallsetminus \{0\} \\ \sum_{a \in \delta^-(0)} x_a^h &= 1, \quad h \in \{1, \dots, k\}, \ i \in V \smallsetminus \{0\} \\ \sum_{a \in \delta^+(0)} x_a^h &= 1, \quad h \in \{1, \dots, k\}, \ i \in V \smallsetminus \{0\} \\ \sum_{a \in \delta^+(0)} x_a^h &= 1, \quad h \in \{1, \dots, k\}, \ i \in V \smallsetminus \{0\} \\ \sum_{a \in \delta^+(S)} x_a^h &\leq y_i^h, \quad h \in \{1, \dots, k\}, \ S \subseteq V \smallsetminus \{0\}, \ i \in S \quad \text{(Subtour elimination)} \\ x_a^h &\in [0, 1], \quad h \in \{1, \dots, k\}, \ a \in A \\ y_i^h &\in [0, 1], \quad h \in \{1, \dots, k\}, \ i \in V \smallsetminus \{0\} \end{split}$$

Constraints of LP-relaxation with separation:

$$\sum_{a \in \delta^{-}(i)} x_a^h = y_i^h, \qquad h \in \{1, \dots, k\}, \ i \in V \setminus \{0\}$$
 (Flow at client node)
$$\sum_{a \in \delta^{+}(i)} x_a^h = y_i^h, \qquad h \in \{1, \dots, k\}, \ i \in V \setminus \{0\}$$
 (Each client visited once)
$$\sum_{h=1}^k y_i^h = 1, \qquad i \in V \setminus \{0\}$$
 (Each client visited once)
$$\sum_{a \in \delta^{-}(0)} x_a^h = 1, \qquad h \in \{1, \dots, k\}, \ i \in V \setminus \{0\}$$
 (Flow at depot)
$$\sum_{a \in \delta^{+}(0)} x_a^h = 1, \qquad h \in \{1, \dots, k\}, \ i \in V \setminus \{0\}$$
 (Capacity)
$$\sum_{i \in V \setminus \{0\}} d_i y_i^h \leq b, \quad h \in \{1, \dots, k\}, \ i \in V \setminus \{0\}$$
 (Subtour elimination)
$$\sum_{a \in \delta^{+}(S)} x_a^h \leq y_i^h, \quad h \in \{1, \dots, k\}, \ a \in A$$

$$y_i^h \in [0, 1], \qquad h \in \{1, \dots, k\}, \ i \in V \setminus \{0\}$$

Three-index formulation - Separation

Consider the CVRP **LP-relaxation** (initialized with a "small" subset of challenging constraints \tilde{S}). Let \bar{x} , \bar{y} be its **optimal solution**.

Three-index formulation

Separation

• Identify **if there exist** a route h, a subset $\bar{S} \subseteq V \setminus \{0\}$ and a client $i \in \bar{S}$ such that:

$$\sum_{a \in \delta^+(\bar{S})} \bar{x}_a^h < \bar{y}_i^h$$

- Use ILP to model this as $\mathcal{O}(kn)$ separation problems:
 - by considering each route $h \in \{1, ..., k\}$ and each client $i \in V \setminus \{0\}$ such that $\bar{v}_i^h > 0$,
 - ▶ and by searching for \bar{S} (with $i \in \bar{S}$) as above.

Three-index formulation

Three-index formulation - Separation

Consider the CVRP **LP-relaxation** (initialized with a "small" subset of challenging constraints \tilde{S}). Let \bar{x} , \bar{y} be its **optimal solution**.

Separation:

• Identify **if there exist** a route h, a subset $\bar{S} \subseteq V \setminus \{0\}$ and a client $i \in \bar{S}$ such that:

$$\sum_{a \in \delta^+(\bar{S})} \bar{x}_a^h < \bar{y}_i^h$$

- Use ILP to model this as $\mathcal{O}(kn)$ separation problems:

Three-index formulation - Separation

Consider the CVRP **LP-relaxation** (initialized with a "small" subset of challenging constraints \tilde{S}). Let \bar{x} , \bar{y} be its **optimal solution**.

Separation:

• Identify **if there exist** a route h, a subset $\bar{S} \subseteq V \setminus \{0\}$ and a client $i \in \bar{S}$ such that:

$$\sum_{a \in \delta^+(\bar{S})} \bar{x}_a^h < \bar{y}_i^h$$

- Use **ILP** to model this as $\mathcal{O}(kn)$ separation problems:
 - by considering each route $h \in \{1, ..., k\}$ and each client $i \in V \setminus \{0\}$ such that $\bar{y}_i^h > 0$,
 - ▶ and by searching for \bar{S} (with $i \in \bar{S}$) as above.

Three-index formulation

Three-index formulation - Separation problem

Let $h \in \{1, ..., k\}$ be a route and $i \in V \setminus \{0\}$ a client such that $\bar{v}_i^h > 0$.

$$w_j = \begin{cases} 1 & \text{if client } i \text{ belongs to } \bar{S} \\ 0 & \text{otherwise.} \end{cases}$$

$$z_a = \begin{cases} 1 & \text{if arc } a \text{ belongs to } \delta^+(\bar{S}) \\ 0 & \text{otherwise.} \end{cases}$$

Let $h \in \{1, ..., k\}$ be a route and $i \in V \setminus \{0\}$ a client such that $\bar{y}_i^h > 0$.

Decision variables:

$$w_j = \begin{cases} 1 & \text{if client } i \text{ belongs to } \bar{S}, \\ 0 & \text{otherwise.} \end{cases}$$

$$z_a = \begin{cases} 1 & \text{if arc } a \text{ belongs to } \delta^+(\bar{S}) \\ 0 & \text{otherwise.} \end{cases}$$

Objective:

$$\exists S^* \subseteq V \setminus \{0\}, \quad \sum_{a \in \delta^+(\bar{S})} \bar{x}_a^h < \bar{y}_i^h \quad ?$$

$$\downarrow \qquad \qquad \downarrow$$

$$\max \quad \sum_{a \in A} \bar{x}_a^h z_a < \bar{y}_i^h \quad ?$$

Let $h \in \{1, ..., k\}$ be a route and $i \in V \setminus \{0\}$ a client such that $\bar{v}_i^h > 0$.

Decision variables:

$$w_j = \begin{cases} 1 & \text{if client } i \text{ belongs to } \overline{S}, \\ 0 & \text{otherwise.} \end{cases}$$

$$z_a = \begin{cases} 1 & \text{if arc } a \text{ belongs to } \delta^+(\bar{S}), \\ 0 & \text{otherwise.} \end{cases}$$

Introduction to CVRP

$$\exists S^* \subseteq V \setminus \{0\}, \quad \sum_{a \in \delta^+(\bar{S})} \bar{x}_a^h < \bar{y}_i^h \quad ?$$

$$\downarrow \qquad \qquad \downarrow$$

$$\max \quad \sum_{a \in A} \bar{x}_a^h z_a < \bar{y}_i^h \quad ?$$

Let $h \in \{1, ..., k\}$ be a route and $i \in V \setminus \{0\}$ a client such that $\bar{y}_i^h > 0$.

Decision variables:

$$w_j = \begin{cases} 1 & \text{if client } i \text{ belongs to } \overline{S}, \\ 0 & \text{otherwise.} \end{cases}$$

$$z_a = \begin{cases} 1 & \text{if arc } a \text{ belongs to } \delta^+(\bar{S}), \\ 0 & \text{otherwise.} \end{cases}$$

Objective:

$$\exists \ S^* \subseteq V \smallsetminus \{0\}, \quad \sum_{a \in \delta^+(\bar{S})} \bar{x}_a^h < \bar{y}_i^h \quad ?$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\max \quad \sum_{a \in A} \bar{x}_a^h z_a < \bar{y}_i^h \quad ?$$

Let $h \in \{1, ..., k\}$ be a route and $i \in V \setminus \{0\}$ a client such that $\bar{y}_i^h > 0$.

Decision variables:

•
$$w_j = \begin{cases} 1 & \text{if client } i \text{ belongs to } \bar{S}, \\ 0 & \text{otherwise.} \end{cases}$$

$$z_a = \begin{cases} 1 & \text{if arc } a \text{ belongs to } \delta^+(\bar{S}), \\ 0 & \text{otherwise.} \end{cases}$$

Objective:

$$\exists \ S^* \subseteq V \setminus \{0\}, \quad \sum_{a \in \delta^+(\bar{S})} \bar{x}_a^h < \bar{y}_i^h \quad ?$$

$$\downarrow \qquad \qquad \downarrow$$

$$\max \quad \sum_{a \in A} \bar{x}_a^h z_a < \bar{y}_i^h \quad ?$$

Separation problem:

$$\max \sum_{a \in A} \bar{x}_{a}^{h} z_{a}$$
s.t. $w_{0} = 0$

$$w_{i} = 1$$

$$z_{(i,j)} \leq w_{i}, \qquad (i,j) \in A$$

$$z_{(i,j)} \leq 1 - w_{j}, \quad (i,j) \in A$$

$$z_{(i,j)} \geq w_{i} - w_{j}, \quad (i,j) \in A$$

$$w_{i} \in \{0,1\}, \quad i \in V$$

$$z_{a} \in \{0,1\}, \quad a \in A$$

 \rightarrow If the optimal value is smaller than \bar{y}_i^h add $S^* = \{i \in V \setminus \{0\}, w_i = 1\}$ to \tilde{S} .

Separation problem:

$$\begin{array}{lll} \max & \sum_{a \in A} \bar{x}_{a}^{h} z_{a} \\ \text{s.t.} & w_{0} &= 0 \\ & w_{i} &= 1 \\ & z_{(i,j)} \leq w_{i}, & (i,j) \in A \\ & z_{(i,j)} \leq 1 - w_{j}, & (i,j) \in A \\ & z_{(i,j)} \geq w_{i} - w_{j}, & (i,j) \in A \\ & w_{i} &\in \{0,1\}, & i \in V \\ & z_{a} &\in \{0,1\}, & a \in A \end{array}$$

Separation problem:

$$\max \sum_{a \in A} \bar{x}_{a}^{h} z_{a}$$
s.t. $w_{0} = 0$

$$w_{i} = 1$$

$$z_{(i,j)} \leq w_{i}, \qquad (i,j) \in A$$

$$z_{(i,j)} \leq 1 - w_{j}, \quad (i,j) \in A$$

$$z_{(i,j)} \geq w_{i} - w_{j}, \quad (i,j) \in A$$

$$w_{i} \in \{0,1\}, \quad i \in V$$

$$z_{a} \in \{0,1\}, \quad a \in A$$

 \rightarrow If the optimal value is smaller than \bar{y}_i^h add $S^* = \{i \in V \setminus \{0\}, w_i = 1\}$ to \tilde{S} .

Separation problem:

$$\begin{array}{lll} \max & \sum_{a \in A} \bar{x}_a^h z_a \\ \text{s.t.} & w_0 &= 0 \\ & w_i &= 1 \\ & z_{(i,j)} \leq w_i, & (i,j) \in A \\ & z_{(i,j)} \leq 1 - w_j, & (i,j) \in A \\ & z_{(i,j)} \geq w_i - w_j, & (i,j) \in A \\ & w_i &\in \{0,1\}, & i \in V \\ & z_a &\in \{0,1\}, & a \in A \end{array}$$

 \rightarrow If the optimal value is smaller than \bar{y}_{i}^{h} , add $S^{*} = \{i \in V \setminus \{0\}, w_{i} = 1\}$ to \tilde{S} .

Three-index formulation

Plan

- Three-index formulation (Section 3.2)
 - Formulation generalities
 - Extension to CVRP with heterogenous capacities

CVRP with heterog. cap. - Definition and notations

Same as for the basic CVRP with a few changes

Three-index formulation

- **serve** a **set** of clients having different demands.

- b: vehicle capacity b_h: capacity of vehicle h.

CVRP with heterog. cap. - Definition and notations

Same as for the basic CVRP with a few changes

Definition:

Introduction to CVRP

- **Determining routes** for a fleet of identical heterogeneous vehicles, which have the same capacity different capacities and are originally located at a central depot, in order to **serve** a **set** of **clients** having different demands.

- b: vehicle capacity b_h: capacity of vehicle h.

Three-index formulation

CVRP with heterog. cap. - Definition and notations

Same as for the basic CVRP with a few changes

Definition:

- **Determining routes** for a fleet of identical heterogeneous vehicles, which have the same capacity different capacities and are originally located at a central depot, in order to **serve** a **set** of **clients** having different demands.

Notations:

- $G = (V, A), \{d_i\}, ... ;$
- b: vehicle capacity b_h: capacity of vehicle h.

CVRP with heterog. cap. - Definition and notations

Same as for the basic CVRP with a few changes

Three-index formulation

Definition:

- **Determining routes** for a fleet of identical heterogeneous vehicles, which have the same capacity different capacities and are originally located at a central depot, in order to **serve** a **set** of **clients** having different demands.

Notations:

- $G = (V, A), \{d_i\}, ... ;$
- b: vehicle capacity b_h: capacity of vehicle h.

CVRP with heterog. cap. - Decision var. and objective

Decision variables:

•
$$x_a^h = \begin{cases} 1 & \text{if arc } a \text{ belongs to route } h, \\ 0 & \text{otherwise.} \end{cases}$$

•
$$y_i^h = \begin{cases} 1 & \text{if client } i \text{ is served by route } h, \\ 0 & \text{otherwise.} \end{cases}$$

Objective:

$$\min \sum_{h=1}^{k} \sum_{a \in A} c_a x_a^h$$

CVRP with heterog. cap. - Constraints

Constraints:

$$\sum_{a \in \delta^-(i)} x_a^h = y_i^h, \qquad h \in \{1, \dots, k\}, \ i \in V \smallsetminus \{0\} \qquad \qquad \text{(Flow at client node)}$$

$$\sum_{a \in \delta^+(i)} x_a^h = y_i^h, \qquad h \in \{1, \dots, k\}, \ i \in V \smallsetminus \{0\}$$

$$\sum_{h=1}^k y_i^h = 1, \qquad i \in V \smallsetminus \{0\} \qquad \qquad \text{(Each client visited once)}$$

$$\sum_{a \in \delta^-(0)} x_a^h = 1, \qquad h \in \{1, \dots, k\}, \ i \in V \smallsetminus \{0\} \qquad \qquad \text{(Flow at depot)}$$

$$\sum_{a \in \delta^+(0)} x_a^h = 1, \qquad h \in \{1, \dots, k\}, \ i \in V \smallsetminus \{0\}$$

$$\sum_{a \in \delta^+(0)} d_i y_i^h \leq b^h, \quad h \in \{1, \dots, k\}, \ i \in V \smallsetminus \{0\}, \ i \in S \qquad \text{(Capacity)}$$

$$\sum_{a \in \delta^+(S)} x_a^h \leq y_i^h, \qquad h \in \{1, \dots, k\}, \ S \subseteq V \smallsetminus \{0\}, \ i \in S \qquad \text{(Subtour elimination)}$$

$$x_a^h \in \{0, 1\}, \qquad h \in \{1, \dots, k\}, \ a \in A$$

$$y_i^h \in \{0, 1\}, \qquad h \in \{1, \dots, k\}, \ i \in V \smallsetminus \{0\}$$

Plan

- Introduction to CVRP
- 2 Two-index formulation (Section 3.1)
- Three-index formulation (Section 3.2)
 - Formulation generalities
 - Extension to CVRP with heterogenous capacities
 - Extension to CVRP with time windows
- 4 Conclusion

Same as for the basic CVRP with additional considerations

- in order to serve a set of clients having different demands

Same as for the basic CVRP with additional considerations

Definition:

- Determining routes for a fleet of identical vehicles, which have the same capacity and are originally located at a central depot, in order to serve a set of clients having different demands and different visiting time windows.
- Routes are such that
 - each route starts at the depot at time 0, goes from client to client without idle time, and ends at the depot;
 - each client is served by exactly one vehicle, during their time window, given that the service time is null;
 - the total demand served by each vehicle does not exceed its capacity.

Two-index formulation

Same as for the basic CVRP with additional considerations

Definition:

- Determining routes for a fleet of identical vehicles, which have the same capacity and are originally located at a central depot, in order to serve a set of clients having different demands and different visiting time windows.
- Routes are such that:
 - each route starts at the depot at time 0, goes from client to client without idle time, and ends at the depot;
 - each client is served by exactly one vehicle, during their time window, given that the service time is null;
 - the total demand served by each vehicle does not exceed its capacity.

Same as for the basic CVRP with additional considerations

Definition:

- **Determining routes** for a fleet of identical vehicles, which have the same capacity and are originally located at a central depot, in order to serve a set of clients having different demands and different visiting time windows.
- Routes are such that:
 - each route starts at the depot at time 0, goes from client to client without idle time, and ends at the depot;
 - each client is served by exactly one vehicle, during their **time window**, given that the service time is null:
 - the total demand served by each vehicle does not exceed its capacity.

Three-index formulation

Notations:

- $G = (V, A), \{d_i\}, ...;$

Three-index formulation

Notations:

- $G = (V, A), \{d_i\}, ...;$
- $[e_i, l_i]$: **time window** of client *i*.

Three-index formulation

Notations:

- $G = (V, A), \{d_i\}, ... ;$
- $[e_i, l_i]$: **time window** of client *i*.

- G complete graph and triangle inequalities hold.

Three-index formulation

Notations:

- $G = (V, A), \{d_i\}, ...;$
- $[e_i, l_i]$: **time window** of client *i*.

- G complete graph and triangle inequalities hold.
- c_a is not only the cost of the arc a but also the **travel time** (and the time spent between two nodes must be exactly c_a).

CVRP with time windows - Decision var. and objective

Three-index formulation

Decision variables:

- $\{x_{a}^{h}\}$ and $\{y_{i}^{h}\}$

min
$$\sum_{h=1}^{k} \sum_{a \in A} c_a x_a^h$$

CVRP with time windows - Decision var. and objective

Decision variables:

- $\{x_{i}^{h}\}$ and $\{y_{i}^{h}\}$
- $s_i^h \in \mathbb{R}^+$: time at which client i is served, if served by vehicle h, (s_i^h) equals 0 if not served by vehicle h)

min
$$\sum_{h=1}^{k} \sum_{a \in A} c_a x_a^h$$

Three-index formulation

CVRP with time windows - Decision var. and objective

Decision variables:

- $\{x_{i}^{h}\}$ and $\{y_{i}^{h}\}$
- $s_i^h \in \mathbb{R}^+$: time at which client *i* is served, if served by vehicle *h*, (s_i^h) equals 0 if not served by vehicle h)

Objective:

$$\min \sum_{h=1}^{k} \sum_{a \in A} c_a x_a^h$$

Travel time constraints:

Logical (non-linear) formulation:

$$x_{(i,j)}^h = 1 \Rightarrow s_j^h = s_i^h + c_{(i,j)}$$

Linear formulation using "big-M" techniques:

$$\begin{aligned} s_j^h &\geq s_i^h + c_{(i,j)} - M(1 - x_{(i,j)}^h) \\ s_j^h &\leq s_i^h + c_{(i,j)} + M(1 - x_{(i,j)}^h) \end{aligned}$$

with M chosen "sufficiently" large.

▲ Such big-M formulations often cause weak LP relaxation:

- if possible, try to avoid big-M formulation:
- ▶ if not, use **smallest possible** (but still "safe") values of *M*

Travel time constraints:

Logical (non-linear) formulation:

$$x_{(i,j)}^h = 1 \Rightarrow s_j^h = s_i^h + c_{(i,j)}$$

• **Linear** formulation using "**big-M**" techniques:

$$s_{j}^{h} \ge s_{i}^{h} + c_{(i,j)} - M(1 - x_{(i,j)}^{h})$$

$$s_{j}^{h} \le s_{i}^{h} + c_{(i,j)} + M(1 - x_{(i,j)}^{h})$$

- ▲ Such big-M formulations often cause weak LP relaxation:

Travel time constraints:

• Logical (non-linear) formulation:

$$x_{(i,j)}^h = 1 \Rightarrow s_j^h = s_i^h + c_{(i,j)}$$

Linear formulation using "big-M" techniques:

$$s_j^h \ge s_i^h + c_{(i,j)} - M(1 - x_{(i,j)}^h)$$

 $s_j^h \le s_i^h + c_{(i,j)} + M(1 - x_{(i,j)}^h)$

with *M* chosen "sufficiently" large.

- ▲ Such big-M formulations often cause weak LP relaxation:
 - if possible, try to avoid big-M formulation:
 - ▶ if not, use **smallest possible** (but still "safe") values of *M*

Travel time constraints:

Introduction to CVRP

Logical (non-linear) formulation:

$$x_{(i,j)}^h = 1 \Rightarrow s_j^h = s_i^h + c_{(i,j)}$$

Three-index formulation

Linear formulation using "big-M" techniques:

$$s_j^h \ge s_i^h + c_{(i,j)} - M(1 - x_{(i,j)}^h)$$

 $s_j^h \le s_i^h + c_{(i,j)} + M(1 - x_{(i,j)}^h)$

with M chosen "sufficiently" large.

▲ Such big-M formulations often cause weak LP relaxation:

Travel time constraints:

Logical (non-linear) formulation:

$$x_{(i,j)}^{h} = 1 \Rightarrow s_{j}^{h} = s_{i}^{h} + c_{(i,j)}$$

Linear formulation using "big-M" techniques:

$$s_{j}^{h} \ge s_{i}^{h} + c_{(i,j)} - M(1 - x_{(i,j)}^{h})$$

$$s_{j}^{h} \le s_{i}^{h} + c_{(i,j)} + M(1 - x_{(i,j)}^{h})$$

with M chosen "sufficiently" large.

- Such big-M formulations often cause weak LP relaxation:
 - if possible, try to avoid big-M formulation;
 - if not, use **smallest possible** (but still "safe") values of M.

CVRP with time windows - Constraints

Constraints:

Plan

- Introduction to CVRP
- Two-index formulation (Section 3.1)
- Three-index formulation (Section 3.2)
- 4 Conclusion

Conclusion

- The CVRP serves as a core model for routing problems, commonly applied to freight transportation. Despite being a basic problem, it already presents the combined complexities of standard routing (TSP) and loading (BPP) problems, leading to the use of separation techniques, or other sophisticated techniques.
- We studied two different formulations:
 - the two-index formulation that is the simplest one;
 - the three-index formulation that is easier to adapt for incorporating additional characteristics (e.g. time windows or heterogeneous capacities).
- Another formulation to study: the set partitioning formulation that leverages column generation techniques.

Conclusion

- The CVRP serves as a core model for routing problems, commonly applied to freight transportation. Despite being a basic problem, it already presents the combined complexities of standard routing (TSP) and loading (BPP) problems, leading to the use of separation techniques, or other sophisticated techniques.
- We studied two different formulations:
 - the two-index formulation that is the simplest one;
 - the three-index formulation that is easier to adapt for incorporating additional characteristics (e.g. time windows or heterogeneous capacities).
- Another formulation to study: the set partitioning formulation that leverages column generation techniques.

Conclusion

- The CVRP serves as a core model for routing problems, commonly applied to freight transportation. Despite being a basic problem, it already presents the combined complexities of standard routing (TSP) and loading (BPP) problems, leading to the use of separation techniques, or other sophisticated techniques.
- We studied two different formulations:
 - the two-index formulation that is the simplest one;
 - the three-index formulation that is easier to adapt for incorporating additional characteristics (e.g. time windows or heterogeneous capacities).
- Another formulation to study: the set partitioning formulation that leverages column generation techniques.