```
In [2]: import pandas as pd
   import numpy as np
   import seaborn as sns
   import matplotlib.pyplot as plt

In [3]: df = pd.read_csv('Emp_EDA.csv')
   df.head(10)
```

|   | First<br>Name | Gender | Salary | Team                    | Age  | Experience | New_Salary   | Bonus | Senior<br>Management |
|---|---------------|--------|--------|-------------------------|------|------------|--------------|-------|----------------------|
| 0 | Maria         | Female | 130590 | Finance                 | NaN  | 5          | 146075.36220 | 20000 | False                |
| 1 | Angela        | Female | 54568  | Business<br>Development | 27.0 | 5          | 64675.63064  | 19000 | True                 |
| 2 | Allan         | Male   | 125792 | Client<br>Services      | 28.0 | 6          | 132134.43260 | 18500 | False                |
| 3 | Rohan         | Female | 45906  | Finance                 | 28.0 | 7          | 51230.17788  | 18000 | True                 |
| 4 | Douglas       | Male   | 97308  | Marketing               | 28.0 | 7          | 104066.04060 | 17000 | True                 |
| 5 | Brandon       | Male   | 112807 | Human<br>Resources      | 30.0 | 8          | 132539.20040 | 16000 | True                 |
| 6 | Diana         | Female | 132940 | Client<br>Services      | 31.0 | 9          | 158307.61080 | 15800 | False                |
| 7 | Frances       | NaN    | 139852 | Business<br>Development | 34.0 | 10         | 150374.46450 | 15500 | True                 |
| 8 | Matthew       | Male   | 100612 | Marketing               | 34.0 | 10         | 114340.50740 | 15000 | False                |
| 9 | Larry         | Male   | 101004 | Client<br>Services      | 35.0 | 11         | 102406.94560 | 14700 | True                 |
|   |               |        |        |                         |      |            |              |       |                      |

1. Remove the irrelevant column 'Senior Management' and display top 5 rows (use inplace=True)

```
In [4]: df.drop('Senior Management', axis=1, inplace=True)
  top_5_rows = df.head(5)
  print(top_5_rows)
```

```
First Name Gender Salary
                                          Team
                                               Age Experience \
     Maria Female 130590
                                       Finance
                                                             5
                                                             5
1
     Angela Female
                   54568 Business Development 27.0
                               Client Services 28.0
2
      Allan
              Male 125792
                                                             6
3
      Rohan Female
                   45906
                                       Finance 28.0
                                                             7
                                     Marketing 28.0
                                                             7
    Douglas
              Male
                   97308
    New_Salary Bonus
0 146075.36220 20000
   64675.63064 19000
2 132134.43260 18500
  51230.17788 18000
4 104066.04060 17000
```

2. Remove the duplicate rows and display the shape of the dataframe (use inplace=True)

```
In [5]: df.drop_duplicates(inplace=True)
    df.shape
```

Out[5]: (24, 8)

3) Rename the column 'Bonus' to 'Incentive' and display top 5 rows (use inplace=True)

```
In [6]: df.rename(columns={'Bonus': 'Incentive'}, inplace=True)
    df.head(5)
```

| Out[6]: |   | First<br>Name | Gender | Salary | Team                    | Age  | Experience | New_Salary   | Incentive |
|---------|---|---------------|--------|--------|-------------------------|------|------------|--------------|-----------|
|         | 0 | Maria         | Female | 130590 | Finance                 | NaN  | 5          | 146075.36220 | 20000     |
|         | 1 | Angela        | Female | 54568  | Business<br>Development | 27.0 | 5          | 64675.63064  | 19000     |
|         | 2 | Allan         | Male   | 125792 | Client Services         | 28.0 | 6          | 132134.43260 | 18500     |
|         | 3 | Rohan         | Female | 45906  | Finance                 | 28.0 | 7          | 51230.17788  | 18000     |
|         | 4 | Douglas       | Male   | 97308  | Marketing               | 28.0 | 7          | 104066.04060 | 17000     |

4. Drop the missing value row-wise and display the shape of dataframe (use inplace=True)

```
In [7]: df.dropna(inplace=True)
    df.shape
```

Out[7]: (22, 8)

5. Calculate the central tendency measures for 'Experience' and display the same

```
In [8]: mean_exp = df['Experience'].mean()
   median_exp = df['Experience'].median()
   mode_exp = df['Experience'].mode().iloc[0]
   print("Mean Experience:", mean_exp)
```

```
print("Median Experience:", median_exp)
print("Mode Experience:", mode_exp)
```

Mean Experience: 13.6818181818182

Median Experience: 12.5 Mode Experience: 7

6. Calculate the variability measures for 'Experience' and display the same

```
In [9]: range_exp = df['Experience'].max() - df['Experience'].min()
    variance_exp = df['Experience'].var()
    stddev_exp = df['Experience'].std()
    print("Range:", range_exp)
    print("Variance:", variance_exp)
    print("Standard:", stddev_exp)
```

Range: 21

Variance: 37.84632034632035 Standard: 6.151936308701542

7. Calculate the IQR using quantile for 'Experience' and display the same

```
In [27]: q1 = df['Experience'].quantile(0.25)
q3 = df['Experience'].quantile(0.75)
print('iqr' , q3 - q1)
iqr 8.0
```

8. Calculate the z-score for 'Experience' and display the same

```
In [28]: import scipy.stats as stats
  zscore = stats.zscore(df['Experience'])
  print('zscore',zscore)
```

```
zscore 0
            -1.444443
    -1.278068
2
     -1.111692
3
    -1.111692
4
    -0.945316
5
    -0.778941
6
    -0.612565
7
     -0.446189
8
     -0.446189
9
     -0.279814
10
    -0.279814
11
     -0.113438
12
    -0.113438
13
      0.052938
14
      0.219313
15
      0.219313
16
      0.718440
17
      1.051192
18
      1.217568
19
      1.550319
20
      1.883070
21
      2.049446
Name: Experience, dtype: float64
```

9. Plot the heatmap using the correlation ('Salary', 'Experience', 'Age')



10. Add 2 rows at the end of the dataframe with the given values and display last 5 rows

{'First Name':'Zion', 'Gender':'Male', 'Team':'Finance', 'Age':37, 'Experience':90,'New\_Salary':146075.4, 'Incentive':20000} {'First Name':'Frances', 'Gender':'Male', 'Salary':139852, 'Team':'Business Development', 'Age':34, 'Experience':95, 'New\_Salary':150374.5, 'Incentive':15500}

Out[13]

| 3]: |    | First<br>Name | Gender | Salary   | Team                    | Age  | Experience | New_Salary   | Incentive | zscore   |
|-----|----|---------------|--------|----------|-------------------------|------|------------|--------------|-----------|----------|
|     | 19 | Donna         | Female | 81014.0  | Product                 | 49.0 | 23         | 82548.40516  | 10600     | 1.514675 |
|     | 20 | Ruby          | Female | 65476.0  | Product                 | 54.0 | 25         | 72031.45712  | 10400     | 1.839776 |
|     | 21 | Lillian       | Female | 59414.0  | Product                 | 55.0 | 26         | 60160.23984  | 10300     | 2.002326 |
|     | 22 | Zion          | Male   | NaN      | Finance                 | 37.0 | 90         | 146075.40000 | 20000     | NaN      |
|     | 23 | Frances       | Male   | 139852.0 | Business<br>Development | 34.0 | 95         | 150374.50000 | 15500     | NaN      |

11. Replace NaN value in 'Salary' with mean Salary and display last 5 rows

```
In [46]: mean_salary = df['Salary'].mean()
    df['Salary'].fillna(mean_salary, inplace=True)
    df.tail(5)
Out[46]: First
```

|   | Out[46]: |    | First<br>Name | Gender | Salary  | Team                    | Age  | Experience | New_Salary  | Incentive | zscore   |             |
|---|----------|----|---------------|--------|---------|-------------------------|------|------------|-------------|-----------|----------|-------------|
|   |          | 17 | Kimberly      | Female | 41426.0 | Finance                 | 44.0 | 20         | 44512.23700 | 11000     | 1.027023 |             |
| • |          | 18 | Louise        | Female | 63241.0 | Business<br>Development | 45.0 | 21         | 72810.62812 | 10800     | 1.189574 | <b>&gt;</b> |
|   |          | 19 | Donna         | Female | 81014.0 | Product                 | 49.0 | 23         | 82548.40516 | 10600     | 1.514675 |             |
|   |          | 20 | Ruby          | Female | 65476.0 | Product                 | 54.0 | 25         | 72031.45712 | 10400     | 1.839776 |             |
|   |          | 21 | Lillian       | Female | 59414.0 | Product                 | 55.0 | 26         | 60160.23984 | 10300     | 2.002326 |             |
|   |          |    |               |        |         |                         |      |            |             |           |          |             |

12. Detect the outliers in 'Experience' with boxplot

```
In [ ]: sns.catplot(x='Experience' , kind = 'box' , data = df)
```

13. Remove the outliers using IQR and recalculate IQR in outlier removed 'Experience' column and analyse with boxplot (Use df.copy())

```
In [21]: df_copy = df.copy()
    q1 = df_copy['Experience'].quantile(0.25)
    q3 = df_copy['Experience'].quantile(0.75)
    iqr = q3 - q1
    lower_bound = q1 - 1.5 * iqr
    upper_bound = q3 + 1.5 * iqr
    df_copy = df_copy[(df_copy['Experience'] >= lower_bound) & (df_copy['Experience'] <
        iqr_removed = df_copy['Experience'].quantile(0.75) - df_copy['Experience'].quantile
    plt.figure(figsize=(6, 8))
    sns.boxplot(data=df_copy, y='Experience')
    plt.title("Boxplot Removed Experience")</pre>
```

plt.show()
iqr\_removed





Out[21]: 8.0

14. Remove the outliers using z-score and recalculate z-score in outlier removed

'Experience' column and analyse with boxplot (Use df.copy())

```
In [23]: df_copy = df.copy()
   mean_exp = df_copy['Experience'].mean()
   std_exp= df_copy['Experience'].std()
   zscore = 3
   df_copy['Experience_zscore'] = (df_copy['Experience'] - mean_exp) / std_exp
   df_copy = df_copy[abs(df_copy['Experience_zscore']) <= zscore]</pre>
```

```
mean_exp_rem = df_copy['Experience'].mean()
stddev_exp_rem = df_copy['Experience'].std()
df_copy['Experizscore_rem'] = (df_copy['Experience'] - mean_experience_removed) / s
plt.figure(figsize=(6, 8))
sns.boxplot(data=df_copy, y='Experience')
plt.title("Boxplot of Experience (z-score)")
plt.show()
```





15. Drop the last two rows added in the dataframe

```
In [24]: df.drop(df.index[-2:], inplace=True)
    df
```

Out[24]:

|    | First<br>Name | Gender | Salary   | Team                    | Age  | Experience | New_Salary   | Incentive | zscore    |
|----|---------------|--------|----------|-------------------------|------|------------|--------------|-----------|-----------|
| 0  | Angela        | Female | 54568.0  | Business<br>Development | 27.0 | 5          | 64675.63064  | 19000     | -1.411233 |
| 1  | Allan         | Male   | 125792.0 | Client<br>Services      | 28.0 | 6          | 132134.43260 | 18500     | -1.248683 |
| 2  | Rohan         | Female | 45906.0  | Finance                 | 28.0 | 7          | 51230.17788  | 18000     | -1.086133 |
| 3  | Douglas       | Male   | 97308.0  | Marketing               | 28.0 | 7          | 104066.04060 | 17000     | -1.086133 |
| 4  | Brandon       | Male   | 112807.0 | Human<br>Resources      | 30.0 | 8          | 132539.20040 | 16000     | -0.923582 |
| 5  | Diana         | Female | 132940.0 | Client<br>Services      | 31.0 | 9          | 158307.61080 | 15800     | -0.761032 |
| 6  | Matthew       | Male   | 100612.0 | Marketing               | 34.0 | 10         | 114340.50740 | 15000     | -0.598481 |
| 7  | Larry         | Male   | 101004.0 | Client<br>Services      | 35.0 | 11         | 102406.94560 | 14700     | -0.435931 |
| 8  | Joshua        | Male   | 90816.0  | Client<br>Services      | 35.0 | 11         | 107903.93860 | 14300     | -0.435931 |
| 9  | Jerry         | Male   | 72000.0  | Finance                 | 35.0 | 12         | 78724.80000  | 14000     | -0.273380 |
| 10 | Lois          | Female | 64714.0  | Legal                   | 35.0 | 12         | 67906.98876  | 14000     | -0.273380 |
| 11 | Dennis        | Male   | 115163.0 | Legal                   | 36.0 | 13         | 126823.25380 | 13000     | -0.110830 |
| 12 | John          | Male   | 97950.0  | Client<br>Services      | 37.0 | 13         | 111538.60350 | 12000     | -0.110830 |
| 13 | Thomas        | Male   | 61933.0  | Marketing               | 38.0 | 14         | 68711.56685  | 11900     | 0.051721  |
| 14 | Shawn         | Male   | 111737.0 | Human<br>Resources      | 39.0 | 15         | 118903.81120 | 11500     | 0.214271  |
| 15 | Gary          | Male   | 109831.0 | Product                 | 39.0 | 15         | 116235.24560 | 11500     | 0.214271  |
| 16 | Jeremy        | Male   | 90370.0  | Human<br>Resources      | 42.0 | 18         | 97029.36530  | 11000     | 0.701922  |
| 17 | Kimberly      | Female | 41426.0  | Finance                 | 44.0 | 20         | 44512.23700  | 11000     | 1.027023  |
| 18 | Louise        | Female | 63241.0  | Business<br>Development | 45.0 | 21         | 72810.62812  | 10800     | 1.189574  |
| 19 | Donna         | Female | 81014.0  | Product                 | 49.0 | 23         | 82548.40516  | 10600     | 1.514675  |
| 20 | Ruby          | Female | 65476.0  | Product                 | 54.0 | 25         | 72031.45712  | 10400     | 1.839776  |
| 21 | Lillian       | Female | 59414.0  | Product                 | 55.0 | 26         | 60160.23984  | 10300     | 2.002326  |
|    |               |        |          |                         |      |            |              |           | <b>•</b>  |