ISO26262

Zakres ISO26262

- ADAS Advanced driver-assistance systems (np. LiDAR, image processing, car-net, image processing)
- Passive systems systemy bezpieczeństwa pasywnego
- Active systems systemy bezpieczeństwa aktywnego
- By-wire systems systemy sterowania
- Electronic Stability Control systemy stabiliza jazdy i pokonywania zakrętów

Elementy normy ISO26262

- Norma składa się z 10 części:
 - 1. Słownik (ang. Vocabulary)
 - 2. Zarządzanie bezpieczeństwem funkcjonalnym (ang. Management of functional safety)
 - 3. Faza koncepcji (ang. Concept phase)
 - 4. Tworzenie produktu na poziomie systemu (ang. Product development at the system level)
 - 5. Tworzenie produktu na poziomie komponentów sprzętowych (ang. Product development at the hardware level)
 - 6. Tworzenie produktu na poziomie oprogramowania (ang. Product development at the software level)
 - 7. Produkt i operacje (ang. Product and operation)
 - 8. Procesy wspierające (ang. Supporting processes)
 - 9. Poziomy ASIL (ang. Automotive Safety Integrity Level and safety-oriented analysis)
 - 10. Wytyczne standardu (ang. Guideline ISO26262)

1. Vocabulary							
	2. Management of	functional safety					
2-5 Overall safety management		2-6 Safety management during the concept phase and the product development		2-7 Safety management after the item's release for production			
3. Concept phase	4. Product developr	4. Product development at the system level					
3-5 Item definition	4-5 Initiation of product development at the system level	4-11 Release for prod	uction	7-5 Production			
3-6 Initiation of the safety lifecycle	4-6 Specification of the technical safety requirements	4-10 Functional safety	assessment	7-6 Operation, service (maintenance and repair), and decommissioning			
3-7 Hazard analysis and risk assessment	4-7 System design	4-9 Safety validation 4-8 Item integration as	nd testing	decommissioning			
3-8 Functional safety concept	Product development at the	6. Product develop		-11			
	5-5 Initiation of product development at the hardware level 5-6 Specification of hardware safety requirements 5-7 Hardware design 5-8 Evaluation of the hardware architectural metrics 5-9 Evaluation of the safety goal violations due to random hardware failures 5-10 Hardware integration and testing	6-5 Initiation of production of production of production of production of production of software architects. 6-7 Software architects implementation 6-9 Software unit testing. 6-10 Software integratesting. 6-11 Verification of software integratesting.	tural design ign and ing				
		g processes					
8-5 Interfaces within distributed developments 8-6 Specification and management of safety requirements 8-7 Configuration management 8-8 Change management		8-10 Documentation 8-11 Confidence in the use of software tools 8-12 Qualification of software components 8-13 Qualification of hardware components					
8-9 Verification	8-14 Proven in use argu	ment					
	9. ASIL-oriented and sa	afety-oriented analyses					
9-5 Requirements decomposition with respect to ASIL tailoring 9-6 Criteria for coexistence of elements		9-7 Analysis of dependent failures 9-8 Safety analyses					
	10. Guideline	on ISO 26262					

Cykl wytwarzania oprogramowania

- Norma promuje dobre praktyki związane z procesem wytwarzania oprogramowania w obszarze procesowym (ang. Automotive Safety Lifecycle):
 - Zarządzanie (ang. management)
 - Tworzenie (ang. development)
 - Produkcja (ang. production)
 - Operacje (ang. operation)
 - Serwisowanie (ang. service)
 - Likwidacja (ang. decommissioning)
- Do każdego z tych etapów, dostarcza opis aktywności występujących w danym cyklu
- Ma bezpośrednie odzwierciedlenie w Automotive SPICE (ISO15504)
- Bazuje na szacowaniu ryzyka rezydualnego w ramach ASIL (dalej)

Potencjalne ryzyko dodatkowego zagrożenia dla człowieka i środowiska po uwzględnieniu wszystkich zabiegów mających na celu ograniczenie zagrożeń przewidywalnych

ASIL

- Norma ISO26262 jest dedykowaną dla branży Automotive pochodną IEC61508 która adresuje potrzeby bezpieczeństwa dla wszystkich systemów E/E
- Pojęcia poziomów bezpieczeństwa SIL (ang. Safety Integrity Level), zostały zmodyfikowane pod potrzeby przemysłu samochodowego
- Odpowiadają na pytanie: Jakie reperkusje czekają kierującego w przypadku awarii jeśli dane awaria wystąpi?
- O poziomie ASIL decyduje:
 - Jak długo występuje narażenie na negatywny efekt (ang. Exposure)?
 - Jak dokładnie możemy zminimalizować jego skutki (ang. Controlability)?
 - Jak poważne są konsekwencje wystąpienia awarii (ang. Severity)?

ASIL Level	Random hardware failure target values
D	< 10 ⁻⁸ per hour
С	< 10 ⁻⁷ per hour
В	< 10 ⁻⁷ per hour
Α	< 10 ⁻⁶ per hour

Szacowanie ASIL (1/2)

Severity:

- S0 brak konsekwencji
- S1 małe lub średnie konsekwencje
- S2 poważne konsekwencje (przeżycie możliwe)
- S3 zagrażające życiu konsekwencje, przeżycie niemożliwe

• Exposure:

- E0 nieistotne (pomijalne)
- E1 bardzo niskie (niezauważalne krótkotrwałe)
- E2 niskie (krótkotrwałe zauważalne)
- E3 średnie (widoczne)
- E4 wysokie (częste)

Controlability:

- C0 kontrolowane
- C1 łatwa kontrola
- C2 kontrola wymagająca zaangażowania
- C3 trudna i bardzo trudna kontrola

Szacowanie ASIL (2/2)

		C1	C2	C3
S1	E1	QM	QM	QM
	E2	QM	QM	QM
	E3	QM	QM	ASIL A
	E4	QM	ASIL A	ASIL B
S2	E1	QM	QM	QM
	E2	QM	QM	ASIL A
	E3	QM	ASIL A	ASIL B
	E4	ASIL A	ASIL B	ASIL C
S3	E1	QM	QM	ASIL A
	E2	QM	ASIL A	ASIL B
	E3	ASIL A	ASIL B	ASIL C
	E4	ASIL B	ASIL C	ASIL D

Komponenty sprzętowe

- Kwalifikacja elementów sprzętowych odbywa się wg:
 - Wpływu ryzyka ze źródła danego komponentu na całość rozwiązania
 - Oszacowania jego awaryjności
- Komponenty sprzętowe są testowane w środowisku ich naturalnego działania (z wpływem warunków zewnętrznych)
- Na podstawie danych z testów oraz ich analizy statystycznej, następuje kwalifikacja ich awaryjności

Komponenty oprogramowania

- Dla tych komponentów, przeprowadza się analizy:
 - Wymagań funkcjonalnych wpływających na ich bezpieczeństwo
 - Zużycia zasobów platformy sprzętowej w normalnym, uśpionym (ang. stanby) oraz przeciążonym trybie
- Norma promuje użycie przetestowanych rozwiązań, znanych szkieletów aplikacyjnych (ang. frameworks) oraz bibliotek
- Testowanie obejmuje także wymuszanie błędów w komponencie (poprzez odbiegające od normy dane wejściowe)
- Norma wymaga odkładania informacji o odkrytych błędach i ich replikacji przy tworzeniu podobnych lub identycznych komponentów
- Znaleziony błąd który "ucieleśni się" awarią, wpływa na cały proces projektowania oprogramowania (począwszy do etapu "design")

"Sprawdzone w działaniu"

- Norma nie wymaga pełnego sprawdzania bezpieczeństwa komponentów sprzętowych jak i programowych które są już wdrożone i obecne na rynku w milionach egzemplarzy
- Zakłada że przed ISO26262 także powstawały bezpieczne systemy
- Obejmuje to:
 - Komponenty występujące w podobnych aplikacjach (np. systemy RTOS)
 - Starsze przetestowane, wdrożone i poprawnie działające systemy
 - Narzędzia testujące które udowodniły swoje poprawne działanie w innych kontekstach związanych z bezpieczeństwem funkcjonalnym

Sznyt procesu

- Norma narzuca by każdy z procesów wytwarzania, przechodził przez ścieżkę:
 - Wczesnej analizy ryzyka jakie niesie ze sobą
 - Tworzenia wymagań bezpieczeństwa
 - Dowodu w postaci testów spełniania tychże wymagań

Testy

- Test wykrywający naruszenie bezpieczeństwa funkcjonalnego w świetle normy ISO26262 (jeśli wykrył błąd), powinien mieć odnotowany przebieg i wpływać także na bieżący i przyszły projekt rozwiązania (zgodnie z wykładnią wzrastającego kosztu likwidacji od procesu tworzenia poprzez wdrożenie aż do użycia – zasada x 10)
- Testy wykonywane są end-to-end (poziom urządzeń elektrycznych, elektronicznych, warstwa oprogramowania)
- Narzędzia testujące tak jak wszystkie inne związane z tworzeniem oprogramowania, kwalifikowane są na poziomach zaufania...

Poziomy TCL

- TCL (ang. Tool Confidence Level) poziom zaufania narzędzia
- Na poziom zaufania do narzędzia wpływa:
 - Możliwość nieprawidłowego działania oprogramowania i błędnego wyjścia które wpływa na naruszenie jakiegokolwiek wymagania związanego z bezpieczeństwem
 - Prawdopodobieństwo uniknięcia i detekcji takiego zachowania w wynikach pracy narzędzia
- Poziomy numerowane są do 1 do 4 gdzie poziom 1 to niskie zaufanie a 4 wysokie zaufanie do narzędzia.

TCL4

TCL3

TCL2

TCL1

Wymagania kwalifikacji narzędzia

- Wyniki działania narzędzia, odnoszone są do ASIL
- Narzędzie powinno posiadać:
 - Dokumentację użycia
 - Numer wersji
 - Opis celu działania i jego właściwości
 - Opisany proces instalacji I/lub wariantów instalacji
 - Określenie (dokładnego) środowiska pracy
 - Sprawdzone działanie w warunkach anormalnych
- Kwalifikacja narzędzia odbywa się w etapach:
 - STQP (ang. Software Tool Qualification Plan) etapy: określenie planu kwalifikacji dla narzędzia, określenie przypadków użycia narzędzia
 - STD (ang. Software Tool Documentation) zebranie i sprawdzenie kompletności dokumentacji narzędzia
 - STCA (ang. Software Tool Classification Analysis) etapy: określenie wpływu narzędzia (TI Tool Impact TI1 nie wpływa na bezpieczeństwo, TI2 wpływa), określenie poziomu TD (ang. Tool Error Detection, TD1 słaba diagnostyka TD4 silna)
 - STQR (ang. Software Tool Qualification Report)

Zaufanie przez "sprawdzone w działaniu"

- Nie każde narzędzie powinno podlegać kwalifikacji zaufania w świetle ISO26262
- Norma (jak poprzednio dla komponentów) zakłada że narzędzia sprawdzone w poprzednich projektach mogą zostać uznane za zaufane
- Można sobie na to pozwolić w następujących warunkach:
 - Narzędzie używane w tych samych przypadkach użycia poprzednio
 - Specyfikacja narzędzia nie ulega zmianie (ta sama wersja sprawdzona wcześniej)
 - Narzędzie nie wpływa na aspekty bezpieczeństwa funkcjonalnego