Curs: Statistică (2017 - 2018) Instructori: A. Amărioarei, S. Cojocea

Examen

11 Februarie 2018

Timp de lucru 2h. Toate documentele, computerele personale, telefoanele mobile și/sau calculatoarele electronice de mână sunt autorizate. Orice modalitate de comunicare între voi este **strict** interzisă. Aveți 3 subiecte, fiecare valorând 10 puncte. Mult succes!

Exercițiul 1

Fie X o variabilă aleatoare repartizată

$$\mathbb{P}_{\theta}(X=k) = A(k+1)\theta^k, \quad k \in \mathbb{N}$$

unde $\theta \in (0,1)$ un parametru necunoscut și $A \in \mathbb{R}$ este o constantă.

1. Determinați constanta A și calculați $\mathbb{E}[X]$ și Var(X).

Dorim să estimăm pe θ plecând de la un eșantion X_1, X_2, \dots, X_n de talie n din populația dată de repartiția lui X.

- 2. Determinați estimatorul $\tilde{\theta}$ a lui θ obținut prin metoda momentelor și calculați $\mathbb{P}_{\theta}(\tilde{\theta}=0)$.
- 3. Determinați estimatorul de verosimilitate maximă $\hat{\theta}$ a lui θ și verificați dacă acesta este bine definit.
- 4. Studiați consistența estimatorului $\tilde{\theta}$ și determinați legea lui limită.

Exercitiul 2

Fie X_1, X_2, \dots, X_n un eșantion de talie n din populația f_{θ} unde

$$f_{\theta}(x) = \frac{1}{\theta} e^{-\frac{x-\theta}{\theta}} \mathbf{1}_{[\theta, +\infty)}(x)$$

cu $\theta > 0$, parametru necunoscut.

- 1. a) Determinați repartiția lui $\frac{X_1}{\theta} 1$.
 - b) Determinați estimatorul $\tilde{\theta}$ a lui θ obținut prin metoda momentelor și calculați eroarea pătratică medie a acestuia.
 - c) Găsiți legea limită a lui θ .
- 2. a) Determinați estimatorul $\hat{\theta}$ a lui θ obținut prin metoda verosimilității maxime.
 - b) Calculați eroarea pătratică medie a lui $\hat{\theta}$ și verificați dacă estimatorul este consistent.
 - c) Construiți un interval de încredere pentru θ de nivel de încredere $1-\alpha$.
 - d) Pe care dintre cei doi estimatori îl preferați?

Grupele: 301, 311 Pagina 1

Universitatea din București Facultatea de Matematică și Informatică

Curs: Statistică (2017 - 2018) Instructori: A. Amărioarei, S. Cojocea

Exercitiul 3

Fie X_1, X_2, \dots, X_n un eșantion de talie n din populația f_θ unde

$$f_{\theta}(x) = \frac{3}{(x-\theta)^4} \mathbf{1}_{[1+\theta,+\infty)}(x)$$

- 1. a) Calculați $\mathbb{E}_{\theta}[X_1]$, $Var_{\theta}(X_1)$ și funcția de repartiție $F_{\theta}(x)$ a lui X_1 .
 - b) În cazul în care $\theta=2$ dorim să generăm 3 valori aleatoare din repartiția lui $X\sim f_{\theta}(x)$. Pentru aceasta dispunem de trei valori rezultate din repartiția uniformă pe $[0,\,1]:\,u_1=0.25,\,u_2=0.4$ și $u_3=0.5$. Descrieți procedura.
- 2. a) Determinați estimatorul $\hat{\theta}_n^M$ a lui θ obținut prin metoda momentelor și calculați eroarea pătratică medie a acestui estimator. Care este legea lui limită ?
 - b) Găsiți un interval de încredere asimptotic de nivel de încredere de 95% pentru θ .
- 3. a) Exprimați în funcție de θ mediana repartiției lui X_1 și plecând de la aceasta găsiți un alt estimator $\hat{\theta}_n^Q$ al lui θ .
 - b) Determinați legea lui limită a lui $\hat{\theta}_n^Q$ și arătați că, asimptotic, acesta este mai bun decât $\hat{\theta}_n^M$.
 - c) Găsiți un interval de încredere asimptotic de nivel de încredere de 95% pentru θ .
- 4. a) Determinați estimatorul de verosimilitate maximă $\hat{\theta}_n^{VM}$ a lui θ și verificați dacă este deplasat.
 - b) Calculați funcția de repartiție a lui $\hat{\theta}_n^{VM} \theta$.
 - c) Pe care dintre cei trei estimatori îl preferați?

Grupele: 301, 311 Pagina 2

 $=)E[X](1-\theta)=2\theta=)E[X]=\frac{2\theta}{1-\theta}$ Don(XI) = E[Xi] - E2[XI] $E[x_i^2] = \sum_{k \ge 0} k^2 \cdot P(x = k) = \sum_{k \ge 0} k^2 (1 - \theta)^2 (1 + k) \theta^k =$ $= \sum_{k} k^{2} (1-\theta)^{2} (k+1) \theta^{k} =$ $= \sum_{k=2}^{\infty} (k+1)^2 (1-\theta)^2 (k+2) + \sum_{k=2}^{\infty} (k+2)^2 (1-\theta)^2 (1-\theta)^$ = (1-0)2 Z (k+1) (k2+3k+2) + k+1 = (1-0)2 = (2+1)2 + 0 +1 +3 (1-0)2 = (141) kok+ $+2(1-0)^{2} \geq (k+1) + 0 + 1 =$ = O E[xi] + 3 O E[Xi] + 2(1-0)2 0 1 $= \Theta \mathbb{E}[X_1^2] + 3\theta \cdot \frac{2\theta}{1-\theta} + 2\theta = 0$ =) $E[x_1^2](1-\theta) = 6\theta^2 + 2\theta(1-\theta) =)$ =) $\mathbb{E}[x,^2] = 6\theta^2 + 2\theta - 2\theta^2 = 4\theta^2 + 2\theta$ $2ar(X_1) = 40^2 + 20 - (20)^2 - 40^2 + 20 - 40^2 = 20 - (1-0)^2$ 2) 0 = 1 × P+ (0=0)=1 Metoola momentiloz: E [X] = Xn & 2 $\frac{2\theta}{1-\theta} = \overline{X_m} = \frac{1}{2\theta} = \overline{X_m} \left(1-\theta\right) = \overline{X_m} = \frac{1}{2\theta}$ =) $\phi(x_m + 2) = x_m = 0 = x_m$ $= \frac{1}{2} = \frac{$ iid

ME = 0) = 2 TE-0 0/16 115=0= N, 0=0 $\vec{\Theta} = 0 =) \quad \vec{X}_m = 0 =) \quad \vec{X}_m = 0$ 3) Estimateral de recramilitate moist & m =? , & m - leine del L(0; x,,..., xm) = 17 180((xx)) = 17 (1-0)2(1+xi). 0x= = (1-0)0m (X1+1) ... (Xm+1) + = X $l(\theta; \chi_1, ..., \chi_m) = leg L(\theta; \chi_1, ..., \chi_m) =$ = 2 m log (1-0) + log(x+1)+...+ log(x+1) + 2 x: log(0) $\frac{90}{9}$ $\int (10; \times 1)^{-1} \times 10^{-1} = -\frac{1-0}{5} + \frac{1}{5} \times 10^{-1} = 0 (=)$ (=) $-2m\theta + \frac{3}{2} \times (1-\theta) = 0$ (=) (=) 0 (-2m - 2 xi) + 2 xi = 0 (=) (=) & (2m+ \(\frac{1}{2}\)Xi) = \(\frac{1}{2}\)Xi (=) (=) + = = × + 1 = × + 1 = × + 2 70 14) Gudanti comintente attionatorilia O'm is del Cogo lui limità LNM: To STER]= 200 To gett = X+2 Hely go continues Solam & opening solines Do (Xn) as > 8 (20) 1.2. 7m +2 010 1-0 12 20+4 = 2(0+2) -0+2 testimas our não como to a moto como