Current Expected Credit Loss (CECL) Loss Rates & PD Modeling

ROHIT KHURANA
FINANCIAL MATHEMATICS, NC STATE UNIVERSITY

Objective & Methodology

- Understand the need for CECL
- Data Exploration & Preparation
- Model Loss Rates & Probability of Default

Data Exploration Vintage Mortgage Transition Matrix Validating Results LGD & EAD

Data Exploration

- Dealing with NULL values
- Selecting relevant variables from Acquisition and Performance data
- Foreclosure Date populated = Default
- Correlation heat map on features to check for multicollinearity
- Findings:
 - 1. Defaults were very low, data was balanced later
 - 2. Interest rates on defaults were slightly higher
 - 3. Lesser defaults on loans with 2 borrowers
 - 4. Relatively high DTI for default loans
- 5. Significant difference between median credit scores

Vintage Model (Loss Rate)

Loss rate model with closed pools

Sorted by origination

Works well with homogenous portfolio

Qualitative factor (Q), enhances the estimates

Projected loss rate is given by,

$$LR_{Proj} = [LR_{Avg}/Q_{Avg}]^*Q_{Proj}$$

Loss Rates by Vintage							Q Factor by Vintage-Unemployment Rate						
	Y1	Y2	Y3	Y4	Y5	Y6		Y1	Y2	Y3	Y4	Y5	Y6
2001	0.00%	0.05%	0.13%	0.13%	0.08%	0.06%	2001	4.70%	5.80%	6.00%	5.50%	5.10%	4.60%
2002	0.00%	0.05%	0.09%	0.08%	0.06%		2002	5.80%	6%	5.50%	5.10%	4.60%	
2003	0.00%	0.02%	0.05%	0.06%			2003	6%	5.50%	5.10%	4.60%		
2004	0.00%	0.03%	0.07%				2004	5.50%	5.10%	4.60%			
2005	0.00%	0.03%					2005	5.10%	4.60%				
2006	0.01%						2006	4.60%					
Average	0.00%	0.04%	0.09%	0.09%	0.07%	0.06%	Average	5.28%	5.40%	5.30%	5.07%	4.85%	4.60%
Q factor	0.03%	0.67%	1.60%	1.78%	1.44%	1.30%							
	Loss	Rates by	Vintage (v	with forec	ast)		Reasonable estimate of Q factor (true rates - historical data)						
	Y1	Y2	Y3	Y4	Y5	Y6		Y1	Y2	Y3	Y4	Y5	Y6
2001	0.00%	0.05%	0.13%	0.13%	0.08%	0.06%	2001	4.70%	5.80%	6.00%	5.50%	5.10%	4.60%
2002	0.00%	0.05%	0.09%	0.08%	0.06%	0.06%	2002	5.80%	6%	5.50%	5.10%	4.60%	4.60%
2003	0.00%	0.02%	0.05%	0.06%	0.07%	0.08%	2003	6%	5.50%	5.10%	4.60%	4.60%	5.80%
2004	0.00%	0.03%	0.07%	0.08%	0.08%	0.12%	2004	5.50%	5.10%	4.60%	4.60%	5.80%	9.30%
2005	0.00%	0.03%	0.07%	0.10%	0.13%	0.13%	2005	5.10%	4.60%	4.60%	5.80%	9.30%	9.60%
2006	0.01%	0.03%	0.09%	0.17%	0.14%	0.12%	2006	4.60%	4.60%	5.80%	9.30%	9.60%	8.90%
Average	0.00%	0.04%	0.08%	0.10%	0.09%	0.09%	Average	5.28%	5.27%	5.27%	5.82%	6.50%	7.13%
Q factor	0.03%	0.67%	1.60%	1.78%	1.44%	1.30%							

Loss Rate Matrix

Improvements

- Qualitative factors can be lagging indicators of loss rates
- Multiple factors like Interest Rates, HPI, etc., can be incorporated into the Q factor

Mortgage Transition Model

- Estimate losses at loan level
- Expected Credit Loss = PD * LGD * EAD
- Various delinquency states including prepaid and default are considered discrete Markov states
- Estimate Transition Probabilities using Multinomial Logistic Regression
- State space, S = {-1,0,1,2,3,4}

State	Description
-1	Prepaid
0	Current
1	Not performing for 30 days
2	Not performing for 60 days
3	Not performing for 90 days
4	Default

One Step Transition Matrix

- Monthly delinquency transitions are considered
- Transition matrix is represented as follows:
- ► The corresponding probabilities are calculated using Logistic Regression:
- Covariates:

X1 = Credit Score

X2 = % change in HPI

X3 = % change in Unemployment Rate

X4 = % change in CPI

X5 = 3-month Treasury Rate

$$\log \frac{p_{ij}}{1 - p_{ij}} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_5$$

Transition Probabilities and Matrix

$$\log \frac{p_{0-1}}{1 - p_{0-1}} = -8.6033 + 0.0112x_1 - 0.6396x_2 + 0.2722x_3 + 0.0886x_4 - 0.2576x_5$$

$$\log \frac{p_{00}}{1 - p_{00}} = -4.5249 + 0.005x_1 + 0.2636x_2 + 0.4964x_3 - 0.0153x_4 - 0.0601x_5$$

$$p_{01} = 1 - p_{00} - p_{0-1}$$

$$\log \frac{p_{10}}{1 - p_{10}} = -0.1828 - 0.0002x_1 - 0.2284x_2 + 0.0311x_3 - 0.0059x_4 - 0.0043x_5$$

$$p_{12} = 1 - p_{10}$$

$$\log \frac{p_{21}}{1 - p_{21}} = -0.2989 - 0.0008x_1 + 0.0237x_2 - 0.0017x_3 - 0.0007x_4 + 0.0035x_5$$

$$p_{23} = 1 - p_{21}$$

$$\log \frac{p_{32}}{1 - p_{32}} = -0.3857 - 0.0072x_1 - 0.4520x_2 - 0.3802x_3 + 0.1055x_40.0183x_5$$

$$p_{34} = 1 - p_{32}$$

At baseline credit score 650

State 0					State 2				
	precision	recall	f1-score	support		precision	recall	f1-score	support
0-1	0.54	0.50	0.52	5962	21	0.00	0.00	0.00	1701
00 01	0.47 0.57	0.31 0.76	0.37 0.65	6111 7716	23	0.85	1.00	0.92	9324
avg / total	0.53	0.54	0.52	19789	avg / total	0.72	0.85	0.77	11025

•	State 1	precision	recall	f1-score	support	•	State 4	precision	recall	f1-score	support
	10 12	0.60 0.00	1.00	0.75 0.00	17050 11440		32 34	0.67 0.90	0.01 1.00	0.01 0.95	666 6136
	avg / total	0.36	0.60	0.45	28490		avg / total	0.88	0.90	0.86	6802

Efficiency

Remarks & Limitations

- Credit Score is the only borrower characteristic, updated quarterly
- Need predicted macroeconomic variables for future forecasts
- Unbalanced data set, can adjust feature variable distributions by applying transformations
- Verify cross validation scores and AUC to pick the champion & challenger models

LGD & EAD

- Loss given Default = Unpaid Balance + Expenses Proceeds
- LGD can be modelled using a linear regression with features like Credit Score, CLTV, HPI, Unemployment Rate, Loan type, etc.
- Exposure at Default = Unpaid balance at Default
- EAD can be modelled using a linear regression with features like Current Unpaid Balance, CLTV, and Balance Clearing Rate from history

Thank You