Algebra 3

Jan Pantner (jan.pantner@gmail.com)

15. november 2024

Kazalo

1	Galoisova teorija		
	1.1	Polja s karakteristiko 0	3
	1.2	Fundamentalni izrek Galoisove teorije	3
	1.3	Rešljivost polinomskih enačb z radikali	4
2	Moduli		
	2.1	Vložitev kolobarja v kolobar endomorfizmov	6
	2.2	Definicija modula	6
	2.3	Osnovni pojmi teorije modulov	7
	2.4	Baze modulov in prosti moduli	10
A	Nal	oge	12

1 Galoisova teorija

1.1 Polja s karakteristiko 0

Izrek 1.1.1. Naj bo F polje s karakteristiko 0. Potem ima vsak nerazcepen polinom $p(x) \in F[x]$ v vsaki razširitvi same enostavne ničle.

Izrek 1.1.2. Naj bo F polje s karakteristiko 0, naj bo $f(x) \in F[x]$ nekonstanten polinom, naj bo K razpadno polje f(x) nad F, naj bo $\varphi \colon F \to F'$ izomorfizem in naj bo K' razpadno polje $f_{\varphi}(x)$ nad F'. Potem obstaja natanko [K:F] razširitev izomorfizma φ do izomorfizma iz K v K'.

Definicija 1.1.3. Razširitev K polja F je **enostavna**, če je K = F(a) za neki $a \in K$. Tak a imenujemo **primitivni elemen** te razširitve.

Opomba 1.1.3.1. Primitivni element ni nujno enolično določen.

Izrek 1.1.4 (o primitivnem elementu). Vsaka končna razširitev polja s karakteristiko 0 je enostavna.

1.2 Fundamentalni izrek Galoisove teorije

Definicija 1.2.1. Naj bo K razširitev polja F. Grupo avtomorfizmov K, ki fiksirajo F označimo z

$$\operatorname{Aut}(K/F) := \{ \sigma \in \operatorname{Aut}(K) \mid \forall \lambda \in F. \ \sigma(\lambda) = \lambda \}.$$

Definicija 1.2.2. Naj bo $H \leq \operatorname{Aut}(K/F)$. *Polje fiksnih točk* podgrupe H definiramo kot

$$K^H := \left\{ x \in K \mid \forall \sigma \in H. \ \sigma(x) = x \right\}.$$

Lema 1.2.3. Naj bo polje K razširitev polja F s karakteristiko 0. Če je $\sigma \in \operatorname{Aut}(K/F)$ in $a \in K$ ničla $f(x) \in F[x]$, potem je $\sigma(a)$ ničla f(x).

Opomba 1.2.3.1. Naj bo K končna razširitev polja F s karakteristiko 0. Po izreku o primitivnem elementu je K = F(a). Vsak avtomorfizmem je tako enolično določen z delovanjem v a. Naj bo p(x) minimalni polinom a nad F. Sledi, da vsak avtomorfizem, ki fiksira F, le permutira ničle p(x), zato je takšnih avtomorfizmov kvečjemu $\deg(p(x))$. Po lemi (ref) pa vemo, da jih je natanko $\det(p(x)) = [K : F]$.

Lema 1.2.4. Naj bo $a \in K$ in naj bodo $a_1 = a, a_2, \ldots, a_m$ različni elementi množice $\{\sigma(a) \mid \sigma \in H\}$. Potem je

$$p(x) = (x - a_1)(x - a_2) \cdots (x - a_m)$$

minimalni polinom a nad K^H .

Lema 1.2.5. Velja $|H| = [K : K^H]$ in $[K : F] = |H| \cdot [K^H : F]$.

Izrek 1.2.6. Naj bo K končna razširitev polja F s karakteristiko 0. Naslednji pogoji so ekvivalentni:

(i)
$$|Aut(K/F)| = [K : F].$$

- (ii) $K^{\operatorname{Aut}(K/F)} = F$.
- (iii) Vsak nerazcepen polinom v F[x] z ničlo v K, razpade v K.
- (iv) K je razpadno polje nekega nerazcepnega polinoma iz F[x].
- (v) K je razpadno polje nekega polinoma iz F[x].

Definicija 1.2.7. Končna razširitev K polja F s karakteristiko 0, se imenuje **Galoisova razširitev**, če ustreza vsem pogojem izreka 1.2.6. Tedaj $\operatorname{Aut}(K/F)$ označujemo z $\operatorname{Gal}(K/F)$.

Če je K razpadno polje polinoma $f(x) \in F[x]$, potem K imenujemo tudi **Galoisova** razširitev polinoma f(x).

Opomba 1.2.7.1. Splošneje te pojme vpeljemo za polja s poljubno karakteristiko. Galoisova razširitev je normalna in separabilna razširitev.

Razširitev je *normalna*, če zadošča pogoju (iii) iz izreka 1.2.6.

Razširitev K/F je **separabilna**, če je vsak nerazcepen polinom iz F[x] **separabilen**, tj. vse njegove ničle so enostavne.

Izrek 1.2.8 (Fundamentalni izrek Galoisove teorije). Naj bo K Galoisova razširitev polja F s karakteristiko 0. S \mathcal{F} označimo množico vseh vmesnih polj med F in K, z \mathcal{G} pa množico vseh podgrup grupe $G := \operatorname{Gal}(K/F)$.

(a) Preslikava

$$\alpha \colon \mathcal{B} \to \mathcal{F}, \qquad \alpha(H) = K^H$$

je bijektivna z inverzom

$$\beta \colon \mathcal{F} \to \mathcal{B}, \qquad \beta(L) = \operatorname{Gal}(K/L).$$

(b) ČeHpripada L – torej $H=\mathrm{Gal}(K/L)$ oziroma $L=K^H$ – potem

$$|H| = [K:L]$$
 in $[G:H] = [L:F]$.

- (c) Če H in H' zaporedoma pripadata L in L', potem $H\subseteq H'$ natanko tedaj, kadar $L\supseteq L'$.
- (d) Če H pripada L, potem je $H \triangle G$ natanko tedaj, kadar je L Galoisova razširitev F. V tem primeru velja $G/H \cong \operatorname{Gal}(L/F)$.

1.3 Rešljivost polinomskih enačb z radikali

Definicija 1.3.1. Grupa G je rešljiva, če obstajajo take edinke

$$\{1\} = N_0 \le N_1 \le N_2 \le \dots \le N_m = G,$$

da je N_{i+1}/N_i Abelova grupa za $i=0,\ldots,m-1$.

Direktno iz definicije sledi, da enostavna nekomutativna grupa ne more biti rešljiva.

Primer 1.3.1.1. Grupa A_5 ni rešljiva.

Izrek 1.3.2 (Feit-Thompson). Vsaka grupa lihega reda je rešljiva.

Trditev 1.3.3. 1. Podgrupa rešljive grupe je rešljiva.

2. Naj bo $N \triangleleft G$. Grupa G je rešljiva natanko tedaj, kadar sta rešljivi N in G/N.

Primer 1.3.3.1. Grupa S_n , kjer je $n \geq 5$, vsebuje A_5 , torej ni rešljiva.

Lema 1.3.4. Naj bo $F \subseteq \mathbb{C}$ polje in $a \in F$. Potem je Galoisova grupa polinoma $f(x) = x^n - 1$ rešljiva.

Definicija 1.3.5. Naj bo F polje. Polinom $f(x) \in F[x]$ je **rešljiv z radikali** nad F, če obstajajo taki elementi a_1, \ldots, a_m neke razširitve F, da:

- Polinom f(x) razpade v $F(a_1, \ldots, a_m)$
- Obstajajo takšni $n_1, \ldots, n_m \in \mathbb{N}$, da velja $a_1^{n_1} \in F$ in $a_i^{n_i} \in F(a_1, \ldots, a_{i-1})$.

Opomba 1.3.5.1. Druga točka nam pove to, da imamo tudi korenjenje.

Primer 1.3.5.2. Naj bodo $a, b, c \in \mathbb{C}$ in $f(x) = ax^2 + bx + c$. Polinom f(x) je rešljiv z radikali nad F = Q(a, b, c). Njegovi ničli sta

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a},$$

torej ustreza $a_1 = \sqrt{b^2 - 4ac}$.

Podobno velja za polinome tretje in četrte stopnje.

Izrek 1.3.6. Naj bo $F \subseteq \mathbb{C}$ in $f(x) \in F[x]$. Polinom f(x) je rešljiv z radikali nad F natanko tedaj, kadar je Galoisova grupa f(x) nad F rešljiva.

Lema 1.3.7. Naj bo $p(x) \in \mathbb{Q}[x]$ nerazcepen polinom stopnje 5 z natanko tremi realnimi ničlami. Potem p(x) ni rešljiv z radikali nad \mathbb{Q} .

Izrek 1.3.8. Obstajajo polinomi iz $\mathbb{Q}[x]$ stopnje 5, ki niso rešljivi z radikali.

2 Moduli

2.1 Vložitev kolobarja v kolobar endomorfizmov

Naj bo M aditivna grupa. Množica endomorfizmov $\operatorname{End}(M)$ skupaj z operacijama

$$(\varphi + \psi)(v) = \varphi(v) + \psi(v)$$
 in
 $(\varphi \cdot \psi)(v) = \varphi(\psi(v))$

je kolobar.

Izrek 2.1.1. Vsak kolobar lahko vložimo v kolobar endomorfizmov neke aditivne grupe.

Dokaz. Naj bo K kolobar in $\operatorname{End}(K)$ kolobar endomorfizmov aditivne grupe (K,+). definiramo

$$\varphi \colon K \to \operatorname{End}(K),$$

 $a \mapsto l_a,$

kjer je l_a levo množenje: $l_a(x) = ax$. Velja

$$\varphi(a+b) = l_{a+b} = l_a + l_b = \varphi(a) + \varphi(b),$$

$$\varphi(a \cdot b) = l_{a \cdot b} = l_a \circ l_b = \varphi(a) \cdot \varphi(b),$$

$$\varphi(1) = l_1 = \mathrm{id}_K.$$

Velja še

$$\varphi(a) = 0 \Rightarrow l_a = 0 \Rightarrow l_a(1) = 0 \Rightarrow a = 0,$$

torej je jedro trivialno in res imamo vložitev.

Izrek 2.1.2. Vsako algebro lahko vložimo v algebro endomorfizmov $\operatorname{End}_F(V)$ za neki vektorski prostor V.

Dokaz. Dokaz je podoben dokazu izreka 2.1.1.

Posledica 2.1.2.1. Vsako končnorazsežno algebro lahko vložimo v $\operatorname{End}_F(V) \cong M_n(F)$, kjer je V n-dimenzionalni vektorski prostor nad F.

Primer 2.1.2.2. Naj bo A n-razsežna realna algebra. Ali obstajata takšna $s, t \in A$, da velja st - ts = 1?

Po posledici je to ekvivalentno obstoju $S, T \in M_n(\mathbb{R})$, kjer velja ST - TS = I. To ni mogoče, saj velja

$$0 = \operatorname{tr}(ST - TS) \neq \operatorname{tr}(I) = n.$$

2.2 Definicija modula

Definicija 2.2.1. Naj bo K kolobar. Množica M skupaj z binarno operacijo seštevanja + in zunanjo binarno operacijo $K \times M \to M$, $(a, u) \mapsto au$ imenovano **modulsko množenje** (tudi skalarno množenje), se imenuje **(levi) modul** nad K ali K-**modul**, če velja:

- (M, +) je Abelova grupa,
- $\forall a \in K. \ \forall u, v \in M. \ a(u+v) = au + av,$
- $\forall a, b \in K$. $\forall u \in M$. (a+b)u = au + bu,
- $\forall a, b \in K. \ \forall u \in M. \ (ab)u = a(bu),$
- $\forall u \in M$. 1u = u.

Opomba 2.2.1.1. Analogno lahko definiramo tudi desni modul.

Opomba 2.2.1.2. Če je M K-modul, je $\varphi \colon K \to \operatorname{End}(M)$, $\varphi(a)(u) = au$, homomorfizem kolobarjev.

Obratno, če je $\varphi \colon K \to \operatorname{End}(M)$ homomorfizem kolobarjev, postane M K-modul, če vpeljemo $au := \varphi(a)(u)$.

Primer 2.2.1.3. (1) Vektorski prostor nad poljem F je F-modul.

- (2) Vsaka Abelova (aditivna) grupa je Z-modul. Obratno, Z-modul je aditivna grupa.
- (3) Vsak kolobar K je K-modul, če za modulsko množenje vzamemo običajno množenje v kolobarju.
- (4) Če je I levi ideal K, ga lahko obravnavamo kot levi K-modul.
- (5) Če je K podkolobar K', je K' K-modul.
- (6) Naj bo $K = M_n(F)$ in $M = F^n$. Potem je M K-modul za običajno množenje matrike s stolpcem.

2.3 Osnovni pojmi teorije modulov

Podmoduli

Definicija 2.3.1. Podmnožica N K-modula M je podmodul, če je za isti operaciji tudi sama K-modul.

Ekvivalentno

$$\forall a, b \in K. \ \forall u, v \in N. \ au + bv \in N$$

oziroma

$$(\forall u, v \in N. \ u + v \in N) \land (\forall a \in K. \forall t \in N. \ at \in N).$$

Primer 2.3.1.1. (1) Če je K polje, so podmoduli podprostori.

- (2) Če je $K = \mathbb{Z}$, so podmoduli podgrupe.
- (3) Podmoduli K-modula K so levi ideali.

(4) Množici $\{0\}$ in M sta vedno podmodula modula M.

Trditev 2.3.2. Če sta N_1 in N_2 podmodula, sta podmodula tudi

$$N_1 + N_2 = \{v_1 + v_2 \mid v_i \in N_i\}$$

in $N_1 \cap N_2$.

Definicija 2.3.3. Modul $M \neq \{0\}$, ki nima drugih podmodulov poleg $\{0\}$ in M, se imenuje *enostavni modul*.

Primer 2.3.3.1. (1) Če je K polje, so enostavni moduli 1-razsežni prostori.

- (2) Če je $K = \mathbb{Z}$, so enostavni moduli \mathbb{Z}_p , kjer je p praštevilo.
- (3) Naj bo $K = M_n(F)$ in $M = F^n$. Naj bo $N \neq \{0\}$ podmodul M in $x \in N$. Velja

$$\forall y \in M. \ \exists A \in K. \ Ax = y.$$

Torej ni pravega podmodula – M je enostaven K-modul.

Homomorfizmi modulov

Definicija 2.3.4. Naj bosta M in M' K-modula. Preslikava $\varphi \colon M \to M'$ je **homomorfizem modulov**, če velja $\varphi(u+v) = \varphi(u) + \varphi(v)$ in $\varphi(au) = a\varphi(u)$. Homomorfizme modulov imenujemo tudi **linearne preslikave** oziroma K-linearne preslikave.

Ekvivalentno mora veljati $\varphi(au + bv) = a\varphi(u) + b\varphi(v)$.

Seveda velja, da je inverz izomorfizma izomorfizem in da je kompozitum homomorfizmov homomorfizem. Na standarden način definiramo **jedro** in **sliko** homomorfizma. Jedro in slika sta podmodula.

Primer 2.3.4.1. 1. Če je K polje, so homomorfizmi "običajne" linearne preslikave.

- 2. Če je $K = \mathbb{Z}$, so homomorfizmi aditivne preslikave homomorfizmi aditivnih grup.
- 3. Naj bo I levi ideal K. Naj bo $c \in I$. Preslikava $\varphi \colon I \to I$, $u \mapsto uc$, je homomorfizem.

Kolobarji endomorfizmov in Schurova lema

Naj bo M K-modul. Potem je množica vseh endomorfizmov M, $\operatorname{End}_K(M)$, kolobar za običajno seštevanje in komponiranje kot množenje.

Velja, da je $\varphi \in \operatorname{End}_K(M)$ bijektivna preslikavava natanko tedaj, kadar je avtomorfizem oziroma natanko tedaj, kadar je φ obrnljiv element $\operatorname{End}_K(M)$.

Lema 2.3.5 (Schur). Če je M enostaven K-modul, je $\operatorname{End}_K(M)$ obseg.

Dokaz. Naj bo $\varphi \operatorname{End}_K(M)$. Upoštevamo, da sta $\ker \varphi$ in $\operatorname{im} \varphi$ podmodula enostavnega modula. Torej je $\varphi = 0$ ali pa je φ bijektiven endomorfizem.

Kvocientni moduli

Definicija 2.3.6. Naj bo N podmodul K-modula M. Potem

$$M/N := \{u + N \mid u \in M\}$$

postane K-modul, če vpeljemo

$$(u+N) + (v+n) = (u+v) + N, a(u+N) = au + N.$$

Imenujemo ga kvocientni modul.

Preslikava $\Pi: M \to M/N$, $\Pi(u) = u + N$ je epimorfizem modulov. Imenujemo ga **kano**nični epimorfizem.

Tudi za module velja izrek o izomorfizmu.

Izrek 2.3.7 (o izomorfizmu). Naj bo $\varphi \colon M \to M'$ homomorfizem modulov. Velja

$$M/_{\ker \varphi} \cong \operatorname{im} \varphi.$$

Primer 2.3.7.1. 1. Če je K polje, so kvocientni moduli kvocientni prostori.

- 2. Če je $K = \mathbb{Z}$, so kvocientni moduli kvocientne grupe.
- 3. Podmodul K-modula K je levi ideal I. Množica

$$K/I = \{ a \in I \mid a \in K \}$$

je aditivna grupa K/I z modulsko operacijo

$$a(b+I) = ab + I.$$

Direktne vsote modulov

Naj bodo N_1, \ldots, N_s K-moduli. Potem $N_1 \times \cdots \times N_s$ postane K-modul, če definiramo

$$(u_1, \ldots, u_s) + (v_1, \ldots, v_s) := (u_1 + v_1, \ldots, u_s + v_s),$$

 $a(u_1, \ldots, u_s) := (au_1, \ldots, au_s).$

Imenujemo ga **zunanja direktna vsota** modulov N_1, \ldots, N_s . Oznaka $N_1 \oplus \cdots \oplus N_s$.

Primer 2.3.7.2. 1. Če je K polje, je to direktna vsota vektorskih prostorov.

2. Če je $K = \mathbb{Z}$, je to direktna vsota aditivnih grup.

Naj bodo N_1, \ldots, N_s podmoduli K-modula M. Ce velja

1.
$$M = N_1 + \cdots + N_s = \{n_1 + \cdots + n_s \mid n_i \in N_i\}$$
 in

2.
$$N_i \cap (N_1 + \dots + N_{i-1} + N_{i+1} + \dots + N_s) = \{0\} \text{ za } i \in \{1, \dots, s\}.$$

potem je M notranja direktna vsota podmulov N_1, \ldots, N_s .

Trditev 2.3.8.

Definicija 2.3.9.

Primer 2.3.9.1.

Generatorji modulov

Definicija 2.3.10.

Primer 2.3.10.1.

Definicija 2.3.11.

Lema 2.3.12.

Dokaz.

Definicija 2.3.13.

2.4 Baze modulov in prosti moduli

Definicija 2.4.1. Podmnožica B K-modula M je linearno neodvisna, če za vse različne elemente $e_1, \ldots, e_s \in B$ in vse $a_1, \ldots, a_s \in K$ velja

$$a_1b_1 + \dots + a_sb_s = 0 \quad \Rightarrow \quad a_1 = \dots = a_s = 0.$$

Definicija 2.4.2. Če je B linearno neodvisna množica in generira modul M, ji rečemo baza modula M.

Če je B baza, potem za vsak element $u \in M$ obstajajo taki elementi $e_1, \ldots, e_s \in B$, da je $u = a_1 e_1 + \ldots a_s e_s$ za neke (enolilno določene) $a_i \in K$.

Poenostavljeno zapišemo $u = \sum_i a_i e_i$, kjer je $B = \{e_i\}_i$. Tu moramo razumeti, da je le končno mnogo a_i -jev lahko različnih od 0.

Primer 2.4.2.1. Končna netrivialna aditivna grupa nima baze, saj nima nepraznih neodvisnih množic. Velja namreč

$$ne = 0 \Rightarrow n = 0$$
,

saj ima v končni grupi vsak element končen red.

Definicija 2.4.3. Modul, ki ima bazo, se imenuje *prosti modul*.

Primer 2.4.3.1. 1. Naj bo K kolobar. Potem je $K^s = K \oplus \cdots \oplus K$ prost K-modul z bazo $\{(1,0,\ldots,0),(0,1,0,\ldots,0),(0,\ldots,0,1)\}.$

Če je M prost K-modul z bazo $\{e_1, \ldots, e_s\}$, je $M \cong K^s$ (izomorfizem: $a_1e_1 + \cdots + a_se_s \mapsto (a_1, \ldots, a_s)$).

2. Naj bo K kolobar. Potem je K[X] prost K-modul z bazo $\{1, x, x^2, \dots\}$.

Definicija 2.4.4. Prostemu Z-modulu pravimo prosta Abelova grupa.

Opomba 2.4.4.1. To ni isto kot prosta grupa.

Primer 2.4.4.2. Primer proste Abelove grupe je \mathbb{Z}^s .

Opomba 2.4.4.3. Podmodul prostega modula ni nujno prost.

Primer 2.4.4.4. Modul \mathbb{Z}_4 je prost \mathbb{Z}_4 -modul. Njegov podmodul $2\mathbb{Z}_4 = \{0, 2\}$ ni prost.

Opomba 2.4.4.5. Če je M prost modul in N podmodul, tedaj M/N ni nujno prost.

Primer 2.4.4.6. Modul \mathbb{Z} je prost \mathbb{Z} -modul in $n\mathbb{Z}$ je prost podmodul. Modul $M/N = \mathbb{Z}_n$ pa ni prost \mathbb{Z} -modul.

Opomba 2.4.4.7. Če ima prost modul bazo z n elementi, ni nujno res, da je vsaka linearno neodvisna množica z n elementi tudi baza.

Primer 2.4.4.8. Modul \mathbb{Z} ima bazo $\{-1\}$, množica $\{2\}$ pa ni baza.

Opomba 2.4.4.9. Obstajajo kolobarji K (nujno nekomutativni), za katere velja $K^s \cong K^t$ tudi, če $s \neq t$.

A Naloge

Vaje 1

- 1. Dokaži, da je število $\sqrt{2}+i\sqrt{3}$ algebraično. Poišči njegov minimalni polinom.
- 2. Določi $[\mathbb{Q}(\sqrt{2}+\sqrt[3]{2}):\mathbb{Q}], [\mathbb{Q}(\sqrt{2}+\sqrt[4]{2}):\mathbb{Q}]$ in $[\mathbb{Q}(\sqrt[6]{2}):\mathbb{Q}(\sqrt{2})].$
- 3. Naj bo K/\mathbb{Q} kvadratična razširitev (tj. razširitev stopnje 2). Dokaži, da obstaja enolično določeno celo število $a \in \mathbb{Z}, a \neq 1$, brez kvadratov, za katerega je $K \cong \mathbb{Q}(\sqrt{a})$.
- 4. Naj bo $p \in \mathbb{N}$ praštevilo in $\zeta = e^{2\pi i/p}$ primitivni p-ti koren enote. Dokaži, da je ζ algebraično število, in določi stopnjo $[\mathbb{Q}(\zeta):\mathbb{Q}]$.

Vaje 2

1. Naj bosta a in b algebraična elementa nad poljem F. Denimo, da sta stopnji [F(a):F] in [F(b):F] tuji si števili. Dokaži, da je

$$[F(a,b):F] = [F(a):F][F(b):F].$$

- 2. Določi razpadno polje K polinoma x^5-2 in izračunaj $[K:\mathbb{Q}]$.
- 3. Poišči primitiven element za razširitev $\mathbb{Q}(\sqrt{2}, \sqrt{3})/\mathbb{Q}$.
- 4. Izračunaj $[\mathbb{Q}(\sqrt{2} + \sqrt{3} + \sqrt{5}) : \mathbb{Q}].$
- 5. Naj bo ω transcendenten element nad \mathbb{Z}_2 . Dokaži, da je polinom $f(x) = x^2 \omega$ nerazcepen nad $\mathbb{Z}_2(\omega)$, a ima dvakratno ničlo.
- 6. Naj bo p neko praštevilo. Dokaži, da razširitev $\mathbb{Z}_p(X,Y)/\mathbb{Z}_p(X^p,Y^p)$ ni enostavna.

Vaje 3

- 1. Pokaži, da je grupa avtomorfizmov realnih števil $\mathbb{R},$ $\operatorname{Aut}(\mathbb{R}),$ trivialna.
- 2. Dokaži, da sta edina zvezna avtomorfizma kompleksnih števil $\mathbb C$ identiteta in konjugiranje.
- 3. Naj bo [K:F]=2. Dokaži, da je K Galoisova razširitev F. Določi tudi grupo avtomorfizmov polja K, ki fiksirajo vse elemente iz F.
- 4. Ali je $\mathbb{Q}(\sqrt[4]{2})/\mathbb{Q}$ Galoisova razširitev? Poišči grupo $\operatorname{Aut}(\mathbb{Q}(\sqrt[4]{2})/\mathbb{Q})$.
- 5. Če sta K/F in L/K Galoisovi razširitvi, ali je nujno tudi L/F Galoisova razširitev?
- 6. Dokaži, da lahko Galoisovo grupo polinoma stopnje n vložimo v S_n in zato red te Galoisove grupe deli n!.

Vaje 4

- 1. Razširitev K/F imenujemo **bikvadratična**, če je $K = F(\sqrt{a}, \sqrt{b})$ za neka $a, b \in F$ in je [K:F]=4. Poišči Galoisovo grupo bikvadratične razširitve K/F in določi vsa polja L, ki ležijo med F in K.
- 2. Določi vsa podpolja polja $\mathbb{Q}(e^{2\pi i/7})$.
- 3. Določi vsa podpolja polja $\mathbb{Q}(\sqrt[4]{2})$.

Vaje 5

- 1. Naj bo K razpadno polje polinoma x^5-2 nad $\mathbb Q$. Določi vse $a\in\mathbb Z$, za katere je $\sqrt{a}\in K$.
- 2. Naj bo K/F Galoisova razširitev z [K:F]=14. Dokaži, da so so vsa vmesna polja L, za katere je [L:F]=7, med seboj izomorfna. Določi tudi, koliko takih vmesnih polj obstaja.
- 3. Naj bo K/F Galoisova razširitev. Denimo, da je Gal(K/F) komutativna grupa. Pokaži, da je vmesno polje L Galoisova razširitev.
- 4. Grupi G, v kateri je vsaka podgrupa tudi edinka, rečemo **Dedekindova grupa**. Taka grupa G je bodisi komutativna bodisi obstaja epimorfizem $\pi: G \to Q_8$, kjer je Q_8 kvaternionska grupa. Premisli, kako lahko iz strukture vmesnih polj neke Galoisove razširitve K/F vidimo, da je Gal(K/F) komutativna grupa.

Vaje 6

- 1. Naj bo $\alpha=\sqrt{(2+\sqrt{2})(3+\sqrt{3})}$ in $K=\mathbb{Q}(\sqrt{2},\sqrt{3},\alpha)$. Dokaži, da je razširitev K/\mathbb{Q} Galoisova stopnje 8 in da je Galoisova grupa $\mathrm{Gal}(K/\mathbb{Q})$ izomorfna $Q_8=\{\pm 1,\pm i,\pm j,\pm k\}.$
- 2. Naj bo $K = C^{\infty}(\mathbb{R})$ kolobar vseh gladkih funkcij na premici in naj bo $\Gamma = (\mathbb{R}^3)^{\mathbb{R}}$ množica vseh vektorskih polj na \mathbb{R} . Dokaži, da je Γ desni K-modul.
- 3. Naj bo $T_n(F)$ kolobar vseh zgornje trikotnih matrik nad poljem F. Poišči vse podmodule $T_n(F)$ -modula F^n .
- 4. Pokaži, da je neničeln K-modul M enostaven natanko tedaj, ko je M=Ka za vsak neničeln $a\in K$.
- 5. Naj bo M levi K-modul. Premisli, da ima množica $M^* = \operatorname{Hom}_K(M, K)$ vseh K-modul homomorfizmov iz M v K naravno strukturo desnega K-modula. Dokaži, da je $(K_K)^* \cong K_K$.

Stvarno kazalo

```
baza, 10
bikvadratična razširitev, 13
Dedekindova grupa, 13
desni modul, 7
enostavni modul, 8
Galoisova razširitev, 4
Galoisova razširitev polinoma, 4
homomorfizem modulov, 8
izrek
   o izomorfizmu, 9
K-linearna preslikava, 8
kanonični epimorfizem, 9
kvocientni modul, 9
levi modul, 6
linearna neodvisnost, 10
linearna preslikava, 8
modul, 6
modulsko množenje, 6
normalna razširitev, 4
podmodul, 7
prosta Abelova grupa, 10
prosti modul, 10
rešljiva grupa, 4
rešljivost z radikali, 5
separabilen polinom, 4
separabilna razširitev, 4
zunanja direktna vsota, 9
```