Informed Search

Introduction to Artificial Intelligence

G. Lakemeyer

Winter Term 2016/17

Best-First Search

Search methods differ in their strategies which node to expand next

Uninformed fixed strategies without information about the cost

search: from a given node to a goal.

uses information about the cost from a given node

Informed search: to a goal in the form of an evaluation function f,

assigning each node a real number.

Best-First Search: always expand the node with the "best" *f*-value.

h(n) = estimated cost from state at node n to a goal

Greedy Search: state. Expand node n where h(n) is minimal.

Use f = h.

AI/WS-2016/17 2 / 16

Greedy Search Example

h=253

Δ×

combines uniform cost search with greedy search.

g(n) = actual cost from the initial state to n.

h(n) = estimated cost from n to the nearest goal.

f(n) := g(n) + h(n).

f(n) = is the estimated cost of the cheapest path which passes through n.

Let $h^*(n)$ be the actual cost of the optimal path from n to the nearest goal.

Admissible Heuristic

h is called admissible if we have for all n:

$$h(n) \leq h^*(n)$$
.

=> f(n) < h'a)

We require for A^* that h is admissible.

Example A*

Note: in the example f is monotone nondecreasing. The following can always be guaranteed:

Path-Max Equation

Let n, n' be nodes, where is n parent of n'. Then let

$$f(n') = max(f(n), g(n') + h(n')).$$

AI/WS-2016/17 5 / 16

Contour Lines in A*

AI/WS-2016/17 6/16

Goal State

 h_1 = number of tiles in the wrong position.

 h_2 = sum of the distances to the goal location for all tiles (Manhattan Distance)

$$h_2(s) = 2+3+3+2+4+2+0+2=18$$

Heuristic Function 1

Goal State

 h_1 = number of tiles in the wrong position.

 h_2 = sum of the distances to the goal location for all tiles (Manhattan Distance)

Effective branching factor b^* : If A^* generates N nodes with solution depth d, then b^* is the branching factor of a uniform tree of depth d with N+1 nodes, i.e.

 $N+1=1+b^*+(b^*)^2+\ldots+(b^*)^d$

 b^* is a measure for the goodness of h: the closer b^* is to 1 the better.

AI/WS-2016/17 7 / 16

Heuristic Function 2

iteration deepening

	Search Cost			Effective Branching Factor		
d	IDS	$A*(h_1)$	$A*(h_2)$	IDS	$A*(h_1)$	$A*(h_2)$
2 4 6 8 10 12 14 16	10 112 680 6384 47127 364404 3473941	6 13 20 39 93 227 539 1301	6 12 18 25 39 73 113 211	2.45 2.87 2.73 2.80 2.79 2.78 2.83	1.79 1.48 1.34 1.33 1.38 1.42 1.44	1.79 1.45 1.30 1.24 1.22 1.24 1.23 1.25
18 20 22	- -	3056 7276 18094	363 676 1219	- -	1.46 1.47 1.48	1.26 1.27 1.28
24		39135	1641	_	1.48	1.28

AI/WS-2016/17 8/16

How to Find a Heuristic

General Strategy:

- Simplify the problem
- Compute the exact solution for the simplified problem
- Use the solution cost as heuristic

AI/WS-2016/17 9 / 16

How to Find a Heuristic

General Strategy:

- Simplify the problem
- Compute the exact solution for the simplified problem
- Use the solution cost as heuristic

For example:

- h₁ is the solution cost for the simplified 8-puzzle where tiles can be placed at an arbitrary position with a single action.
- h₂ corresponds to the exact solution, if tiles can be moved to an arbitrary position but actions are restricted to moving a tile to a neighboring position.

AI/WS-2016/17 9 / 16

Pattern Databases

Start State

Goal State

Idea: Compute the exact solution for each *pattern* with four numbers and use that value as heuristic. When more than one pattern applies, use the

maximum value.

Better than Manhattan!

Can't just take the sum, as 2 patterns usually share mores i.e. the sum is not admissible!

AI/WS-2016/17

function IDA*(problem) returns a solution sequence

inputs: problem, a problem

```
static: f-limit, the current f- COST limit
         root, a node
  root \leftarrow MAKE-NODE(INITIAL-STATE[problem])
 f-limit \leftarrow f- COST(root)
  loop do
      solution, f-limit \leftarrow DFS-CONTOUR(root, f-limit)
      if solution is non-null then return solution
      if f-limit = \infty then return failure; end
function DFS-CONTOUR(node, f-limit) returns a solution sequence and a new f- COST limit
  inputs: node, a node
          f-limit, the current f- COST limit
  static: next-f, the f- Cost limit for the next contour, initially \infty
  if f- Cost[node] > f-limit then return null, f- Cost[node]
  if GOAL-TEST[problem](STATE[node]) then return node, f-limit
                                                     eventually compute the deventually of cost object.
  for each node s in SUCCESSORS(node) do
      solution.new-f \leftarrow DFS-Contour(s. f-limit)
      if solution is non-null then return solution, f-limit
      next-f \leftarrow MIN(next-f, new-f): end
  return null. next-f
```

AI/WS-2016/17

SMA* 2

```
function SMA*(problem) returns a solution sequence
  inputs: problem, a problem
  static: Queue, a queue of nodes ordered by f-cost
  Queue \leftarrow MAKE-QUEUE({MAKE-NODE(INITIAL-STATE[problem])})
  loop do
      if Queue is empty then return failure
      n \leftarrow deepest least-f-cost node in Queue
      if GOAL-TEST(n) then return success
      s \leftarrow \text{Next-Successor}(n)
      if s is not a goal and is at maximum depth then
          f(s) \leftarrow \infty
      else
          f(s) \leftarrow Max(f(n), g(s)+h(s))
      if all of n's successors have been generated then
          update n's f-cost and those of its ancestors if necessary
      if SUCCESSORS(n) all in memory then remove n from Queue
      if memory is full then
          delete shallowest, highest-f-cost node in Queue
          remove it from its parent's successor list
          insert its parent on Queue if necessary
      insert s on Oueue
  end
```

AI/WS-2016/17 13 / 16

Hill Climbing


```
function HILL-CLIMBING(problem) returns a solution state
inputs: problem, a problem
static: current, a node
next, a node

current ← MAKE-NODE(INITIAL-STATE[problem])
loop do
next ← a highest-valued successor of current
if VALUE[next] < VALUE[current] then return current
current ← next
end
```

AI/WS-2016/17 14/16

Simulated Annealing

function SIMULATED-ANNEALING(problem, schedule) returns a solution state

inputs: problem, a problem

schedule, a mapping from time to "temperature"

static: current, a node

next, a node

T, a "temperature" controlling the probability of downward steps

 $current \leftarrow MAKE-NODE(INITIAL-STATE[problem])$

for $t \leftarrow 1$ to ∞ do

 $T \leftarrow schedule[t]$

if T=0 then return current

 $next \leftarrow$ a randomly selected successor of *current*

 $\Delta E \leftarrow \text{VALUE}[next] - \text{VALUE}[current]$

if $\Delta E > 0$ then $current \leftarrow next$

else $current \leftarrow next$ only with probability $e^{\Delta E/T}$

JAEL O

15 / 16

AI/WS-2016/17 16 / 16