工科数学分析

贺丹 (东南大学)

本节主要内容:

本节主要内容:

• 空间曲线的切线与法平面

本节主要内容:

- 空间曲线的切线与法平面
- 空间曲面的切平面与法线

本节主要内容:

- 空间曲线的切线与法平面
- 空间曲面的切平面与法线
- 曲线的弧长

6.1 空间曲线的切线与法平面

6.1 空间曲线的切线与法平面

定义

设 M_0 是空间曲线 Γ 上的一点,

M是 Γ 上的另一点.

当点M沿曲线 Γ 趋近于点 M_0 时,

割线 M_0M 的极限位置 M_0T , 称

为曲线 Γ 在点 M_0 处的切线.

过点 M_0 且与切线 M_0 T垂直的平面

称为Γ点 M_0 处的法平面.

6.1 空间曲线的切线与法平面

定义

设 M_0 是空间曲线 Γ 上的一点,

M是 Γ 上的另一点.

当点M沿曲线 Γ 趋近于点 M_0 时,

割线 M_0M 的极限位置 M_0T , 称

为曲线 Γ 在点 M_0 处的切线.

过点 M_0 且与切线 M_0 T垂直的平面 称为 Γ 点 M_0 处的法平面.

设曲线
$$\Gamma$$
的参数方程为
$$\begin{cases} x=x(t) \\ y=y(t) \\ z=z(t) \end{cases} ,$$
 其中 $x(t),y(t),z(t)$ 可微.

设曲线 Γ 上对应于 $t=t_0$ 及 $t=t_0+\Delta t$ 的两点为 $M_0(x_0,y_0,z_0)$ 及

 $M(x_0 + \Delta x, y_0 + \Delta y, z_0 + \Delta z)$, 则割线 $M_0 M$ 的方程为

设曲线
$$\Gamma$$
的参数方程为
$$\begin{cases} x=x(t) \\ y=y(t) \ , \ \mathbf{其}\mathbf{中}x(t), y(t), z(t) \ \mathbf{可微}. \\ z=z(t) \end{cases}$$

设曲线 Γ 上对应于 $t=t_0$ 及 $t=t_0+\Delta t$ 的两点为 $M_0(x_0,y_0,z_0)$ 及

$$M(x_0 + \Delta x, y_0 + \Delta y, z_0 + \Delta z)$$
, 则割线 $M_0 M$ 的方程为

$$\frac{x - x_0}{\Delta x} = \frac{y - y_0}{\Delta y} = \frac{z - z_0}{\Delta z},$$

设曲线 Γ 上对应于 $t=t_0$ 及 $t=t_0+\Delta t$ 的两点为 $M_0(x_0,y_0,z_0)$ 及

 $M(x_0 + \Delta x, y_0 + \Delta y, z_0 + \Delta z)$, 则割线 $M_0 M$ 的方程为

$$\frac{x - x_0}{\Delta x} = \frac{y - y_0}{\Delta y} = \frac{z - z_0}{\Delta z},$$

上式分母除以
$$\Delta t$$
得: $\frac{x-x_0}{\frac{\Delta x}{\Delta t}} = \frac{y-y_0}{\frac{\Delta y}{\Delta t}} = \frac{z-z_0}{\frac{\Delta z}{\Delta t}}$,

设曲线 Γ 上对应于 $t = t_0 \Delta t = t_0 + \Delta t$ 的两点为 $M_0(x_0, y_0, z_0)$ 及

 $M(x_0 + \Delta x, y_0 + \Delta y, z_0 + \Delta z)$, 则割线 $M_0 M$ 的方程为

$$\frac{x - x_0}{\Delta x} = \frac{y - y_0}{\Delta y} = \frac{z - z_0}{\Delta z},$$

上式分母除以
$$\Delta t$$
得: $\frac{x-x_0}{\frac{\Delta x}{\Delta t}} = \frac{y-y_0}{\frac{\Delta y}{\Delta t}} = \frac{z-z_0}{\frac{\Delta z}{\Delta t}}$,

当点M沿曲线 Γ 趋向于点 M_0 时, 有 $\Delta t \rightarrow 0$, 于是

设曲线 Γ 上对应于 $t = t_0 \Delta t = t_0 + \Delta t$ 的两点为 $M_0(x_0, y_0, z_0)$ 及

 $M(x_0 + \Delta x, y_0 + \Delta y, z_0 + \Delta z)$, 则割线 $M_0 M$ 的方程为

$$\frac{x - x_0}{\Delta x} = \frac{y - y_0}{\Delta y} = \frac{z - z_0}{\Delta z},$$

上式分母除以
$$\Delta t$$
得: $\frac{x-x_0}{\frac{\Delta x}{\Delta t}} = \frac{y-y_0}{\frac{\Delta y}{\Delta t}} = \frac{z-z_0}{\frac{\Delta z}{\Delta t}}$,

当点M沿曲线 Γ 趋向于点 M_0 时, 有 $\Delta t \rightarrow 0$, 于是

$$\frac{x - x_0}{x'(t_0)} = \frac{y - y_0}{y'(t_0)} = \frac{z - z_0}{z'(t_0)}.$$

综上, 空间曲线
$$\Gamma$$
:
$$\begin{cases} x=x(t) \\ y=y(t) \text{ 在点} M_0(t=t_0)$$
处的切线方程为:
$$z=z(t) \end{cases}$$

$$\frac{x - x_0}{x'(t_0)} = \frac{y - y_0}{y'(t_0)} = \frac{z - z_0}{z'(t_0)}.$$

$$\frac{x - x_0}{x'(t_0)} = \frac{y - y_0}{y'(t_0)} = \frac{z - z_0}{z'(t_0)}.$$

切线的方向向量: $\vec{a} = \{x'(t_0), y'(t_0), z'(t_0)\}.$

$$\frac{x - x_0}{x'(t_0)} = \frac{y - y_0}{y'(t_0)} = \frac{z - z_0}{z'(t_0)}.$$

切线的方向向量: $\vec{a} = \{x'(t_0), y'(t_0), z'(t_0)\}.$

曲线 Γ 在点 M_0 的法平面方程为:

$$\frac{x - x_0}{x'(t_0)} = \frac{y - y_0}{y'(t_0)} = \frac{z - z_0}{z'(t_0)}.$$

切线的方向向量: $\vec{a} = \{x'(t_0), y'(t_0), z'(t_0)\}.$

曲线 Γ 在点 M_0 的法平面方程为:

$$x'(t_0)(x - x_0) + y'(t_0)(y - y_0) + z'(t_0)(z - z_0) = 0.$$

例1. 求螺旋线
$$\begin{cases} x = 2\cos t \\ y = 2\sin t \text{ 上对应于} t = \frac{\pi}{4}$$
的点 M 处的切线
$$z = \sqrt{2}t$$

解: 当
$$t = \frac{\pi}{4}$$
时,点 M 对应为 $(\sqrt{2},\sqrt{2},\frac{\sqrt{2}}{4}\pi)$.

解: 当 $t = \frac{\pi}{4}$ 时,点M对应为 $(\sqrt{2},\sqrt{2},\frac{\sqrt{2}}{4}\pi)$.

解: 当 $t = \frac{\pi}{4}$ 时,点M对应为 $(\sqrt{2},\sqrt{2},\frac{\sqrt{2}}{4}\pi)$.

$$\vec{a} = \{x'(t), y'(t), z'(t)\}|_{t = \frac{\pi}{4}} = \{-\sqrt{2}, \sqrt{2}, \sqrt{2}\},\$$

解: 当 $t = \frac{\pi}{4}$ 时,点M对应为 $(\sqrt{2},\sqrt{2},\frac{\sqrt{2}}{4}\pi)$.

$$\vec{a} = \{x'(t), y'(t), z'(t)\}|_{t = \frac{\pi}{4}} = \{-\sqrt{2}, \sqrt{2}, \sqrt{2}\},\$$

故所求切线方程为:
$$\frac{x-\sqrt{2}}{-1} = \frac{y-\sqrt{2}}{1} = \frac{z-\frac{\sqrt{2}}{4}\pi}{1}$$
,

解: 当 $t = \frac{\pi}{4}$ 时,点M对应为 $(\sqrt{2},\sqrt{2},\frac{\sqrt{2}}{4}\pi)$.

所求切线的方向向量为:

$$\vec{a} = \{x'(t), y'(t), z'(t)\}|_{t = \frac{\pi}{4}} = \{-\sqrt{2}, \sqrt{2}, \sqrt{2}\},\$$

故所求切线方程为:
$$\frac{x-\sqrt{2}}{-1} = \frac{y-\sqrt{2}}{1} = \frac{z-\frac{\sqrt{2}}{4}\pi}{1}$$
,

所求法平面方程为: $4x - 4y - 4z + \sqrt{2}\pi = 0$.

例2. 求曲线 Γ : $\left\{ egin{array}{ll} y=16x^2 \\ z=12x^2 \end{array}
ight.$ 在对应于 $x=rac{1}{2}$ 的点M处的切线

与法平面方程.

解: 以 x 为参数来求解.

解: 以 x 为参数来求解.

当
$$x = \frac{1}{2}$$
时,点 M 对应为 $(\frac{1}{2}, 4, 3)$.

例2. 求曲线 Γ : $\left\{ egin{array}{ll} y=16x^2 \\ z=12x^2 \end{array}
ight.$ 在对应于 $x=rac{1}{2}$ 的点M处的切线

与法平面方程.

解: 以 x 为参数来求解.

当
$$x=rac{1}{2}$$
时,点 M 对应为 $(rac{1}{2},4,3).$

解: 以 x 为参数来求解.

当
$$x=rac{1}{2}$$
时,点 M 对应为 $(rac{1}{2},4,3).$

$$\vec{a} = \{x'(t), y'(t), z'(t)\}|_{t = \frac{\pi}{4}} = \{1, 16, 12\},\$$

解: 以 x 为参数来求解.

当
$$x=rac{1}{2}$$
时,点 M 对应为 $(rac{1}{2},4,3).$

所求切线的方向向量为:

$$\vec{a} = \{x'(t), y'(t), z'(t)\}|_{t=\frac{\pi}{4}} = \{1, 16, 12\},$$

故所求切线方程为: $\frac{x-\frac{1}{2}}{1} = \frac{y-4}{16} = \frac{z-3}{12}$,

解: 以 x 为参数来求解.

当
$$x=rac{1}{2}$$
时,点 M 对应为 $(rac{1}{2},4,3).$

所求切线的方向向量为:

$$\vec{a} = \{x'(t), y'(t), z'(t)\}|_{t=\frac{\pi}{4}} = \{1, 16, 12\},$$

故所求切线方程为:
$$\frac{x-\frac{1}{2}}{1} = \frac{y-4}{16} = \frac{z-3}{12}$$
,

所求法平面方程为: 2x + 32y + 24z - 201 = 0.

例3. 求抛物柱面 $z=x^2$ 及圆柱面 $x^2+y^2=1$ 相交所成的空间曲线在 $M_0(\frac{3}{5},\frac{4}{5},\frac{9}{25})$ 处的切线和法平面方程.

例3. 求抛物柱面 $z=x^2$ 及圆柱面 $x^2+y^2=1$ 相交所成的空间曲线在 $M_0(\frac{3}{5},\frac{4}{5},\frac{9}{25})$ 处的切线和法平面方程.

解: 曲线的参数方程为 $\begin{cases} x = \cos t \\ y = \sin t \\ z = \cos^2 t \end{cases}$, 则所求切线的方向向量为:

例3. 求抛物柱面 $z=x^2$ 及圆柱面 $x^2+y^2=1$ 相交所成的空间曲线在 $M_0(\frac{3}{5},\frac{4}{5},\frac{9}{25})$ 处的切线和法平面方程.

解: 曲线的参数方程为 $\begin{cases} x = \cos t \\ y = \sin t \\ z = \cos^2 t \end{cases}, 则所求切线的方向向量为:$

$$\vec{a} = \{-\sin t, \cos t, -2\sin t \cos t\}|_{M_0} = \{-\frac{4}{5}, \frac{3}{5}, -\frac{24}{25}\},\$$

例3. 求抛物柱面 $z=x^2$ 及圆柱面 $x^2+y^2=1$ 相交所成的空间曲线在 $M_0(\frac{3}{5},\frac{4}{5},\frac{9}{25})$ 处的切线和法平面方程.

解: 曲线的参数方程为 $\begin{cases} x = \cos t \\ y = \sin t \\ z = \cos^2 t \end{cases}, 则所求切线的方向向量为:$

$$\vec{a} = \{-\sin t, \cos t, -2\sin t \cos t\}|_{M_0} = \{-\frac{4}{5}, \frac{3}{5}, -\frac{24}{25}\},\$$

故所求切线方程为:
$$\frac{x-\frac{3}{5}}{-20} = \frac{y-\frac{4}{5}}{15} = \frac{z-\frac{9}{25}}{-24}$$
,

例3. 求抛物柱面 $z=x^2$ 及圆柱面 $x^2+y^2=1$ 相交所成的空间曲线在 $M_0(\frac{3}{5},\frac{4}{5},\frac{9}{25})$ 处的切线和法平面方程.

解: 曲线的参数方程为 $\begin{cases} x = \cos t \\ y = \sin t \\ z = \cos^2 t \end{cases}, 则所求切线的方向向量为:$

$$\vec{a} = \{-\sin t, \cos t, -2\sin t \cos t\}|_{M_0} = \{-\frac{4}{5}, \frac{3}{5}, -\frac{24}{25}\},\$$

故所求切线方程为:
$$\frac{x-\frac{3}{5}}{-20} = \frac{y-\frac{4}{5}}{15} = \frac{z-\frac{9}{25}}{-24}$$
,

所求法平面方程为:
$$20x - 15y + 24z - \frac{216}{25} = 0$$
.

说明:

• 与 $\vec{a} = \{x'(t_0), y'(t_0), z'(t_0)\}$ 成比例的向量都可作为 切线的方向向量.

- 与 $\vec{a} = \{x'(t_0), y'(t_0), z'(t_0)\}$ 成比例的向量都可作为 切线的方向向量.
- 若曲线的方程为 Γ : $\begin{cases} y=y(x), \\ z=z(x) \end{cases}$,则可视x作为参数, 曲线在 $M_0(x_0,y_0,z_0)$ 处的切向量 $\vec{a}=\{1,y'(x_0),z'(x_0)\},$ 在该点处的切线方程为

- 与 $\vec{a} = \{x'(t_0), y'(t_0), z'(t_0)\}$ 成比例的向量都可作为 切线的方向向量.
- 若曲线的方程为 Γ : $\begin{cases} y=y(x), \\ z=z(x) \end{cases}$,则可视x作为参数, 曲线在 $M_0(x_0,y_0,z_0)$ 处的切向量 $\vec{a}=\{1,y'(x_0),z'(x_0)\},$ 在该点处的切线方程为

$$\frac{x - x_0}{1} = \frac{y - y(x_0)}{y'(x_0)} = \frac{z - z(x_0)}{z'(x_0)}.$$

6.3 空间曲面的切平面与法线

6.3 空间曲面的切平面与法线

定义

若曲面 Σ 上过点 M_0 的任意一条光滑

曲线在该点的切线都在同一平面上,

则这个平面就称为曲面 Σ 在点 M_0 的

切平面,

过点 M_0 与切平面垂直的直线

称为曲面 Σ 在点 M_0 的法线.

设曲面 Σ 的方程为F(x,y,z)=0,其中F(x,y,z)可微,且偏导数 F_x,F_y,F_z 不全为0.

设 $M_0(x_0,y_0,z_0)$ 为 Σ 上一点.

设 $M_0(x_0,y_0,z_0)$ 为 Σ 上一点.考察曲面 Σ 上过点 M_0 的任意一条 光滑曲线 Γ . 设其方程为

$$\begin{cases} x = x(t), \\ y = y(t), \quad t = t_0 \leftrightarrow M_0(x_0, y_0, z_0). \\ z = z(t), \end{cases}$$

设 $M_0(x_0,y_0,z_0)$ 为 Σ 上一点.考察曲面 Σ 上过点 M_0 的任意一条 光滑曲线 Γ . 设其方程为

$$\begin{cases} x = x(t), \\ y = y(t), \quad t = t_0 \leftrightarrow M_0(x_0, y_0, z_0). \\ z = z(t), \end{cases}$$

由于曲线 Γ 在 Σ 上,因此 $F(x(t),y(t),z(t))\equiv 0$,

设 $M_0(x_0,y_0,z_0)$ 为 Σ 上一点.考察曲面 Σ 上过点 M_0 的任意一条 光滑曲线 Γ . 设其方程为

$$\begin{cases} x = x(t), \\ y = y(t), \quad t = t_0 \leftrightarrow M_0(x_0, y_0, z_0). \\ z = z(t), \end{cases}$$

由于曲线 Γ 在 Σ 上,因此 $F(x(t), y(t), z(t)) \equiv 0$,

对t在 $t = t_0$ 求导可得

设 $M_0(x_0,y_0,z_0)$ 为 Σ 上一点.考察曲面 Σ 上过点 M_0 的任意一条 光滑曲线 Γ ,设其方程为

$$\begin{cases} x = x(t), \\ y = y(t), \quad t = t_0 \leftrightarrow M_0(x_0, y_0, z_0). \\ z = z(t), \end{cases}$$

由于曲线 Γ 在 Σ 上,因此 $F(x(t), y(t), z(t)) \equiv 0$,

对t在 $t = t_0$ 求导可得

$$\frac{\mathrm{d}}{\mathrm{d}t}F[(x(t), y(t), z(t))]\Big|_{t=t_0} = 0,$$

即有
$$F_x(M_0)x'(t_0) + F_y(M_0)y'(t_0) + F_z(M_0)z'(t_0) = 0.$$

$$\vec{\mathbf{q}} \vec{a} = \{ x'(t_0), y'(t_0), z'(t_0) \},$$

$$\vec{n} = \{F_x(M_0), F_y(M_0), F_z(M_0)\},$$
 则

即有
$$F_x(M_0)x'(t_0) + F_y(M_0)y'(t_0) + F_z(M_0)z'(t_0) = 0.$$

令 $\vec{a} = \{x'(t_0), y'(t_0), z'(t_0)\},$
 $\vec{n} = \{F_x(M_0), F_y(M_0), F_z(M_0)\}, 则$

 $\vec{n} \cdot \vec{a} = 0$, $\mathbb{P} \vec{n} \perp \vec{a}$.

由于 \vec{a} 为曲线 Γ 在点 M_0 处的切线的方向向量,而 Γ 是曲面 Σ 上任一过 M_0 点的曲线,上式说明,曲面 Σ 上过点 M_0 的任意一条光滑曲线在 M_0 点的切线都与向量 \vec{n} 垂直,因此向量 \vec{n} 就是曲面 Σ 在点 M_0 处切平面的法向量.

综上, 曲面 Σ 在点 M_0 切平面方程为

$$F_x(M_0)(x-x_0) + F_y(M_0)(y-y_0) + F_z(M_0)(z-z_0) = 0,$$

$$F_x(M_0)(x-x_0) + F_y(M_0)(y-y_0) + F_z(M_0)(z-z_0) = 0,$$

切平面的法向量为 $\vec{n} = \{F_x(M_0), F_y(M_0), F_z(M_0)\},$

$$F_x(M_0)(x-x_0) + F_y(M_0)(y-y_0) + F_z(M_0)(z-z_0) = 0,$$

切平面的法向量为 $\vec{n} = \{F_x(M_0), F_y(M_0), F_z(M_0)\},$

曲面 Σ 在点 M_0 的法线方程为

$$F_x(M_0)(x-x_0) + F_y(M_0)(y-y_0) + F_z(M_0)(z-z_0) = 0,$$

切平面的法向量为 $\vec{n} = \{F_x(M_0), F_y(M_0), F_z(M_0)\},$

曲面 Σ 在点 M_0 的法线方程为

$$\frac{x - x_0}{F_x(M_0)} = \frac{y - y_0}{F_y(M_0)} = \frac{z - z_0}{F_z(M_0)}.$$

特别地, 若曲面 Σ 的方程是由显函数z = f(x, y)给出, 且f在 (x_0, y_0) 点可微,

 (x_0, y_0) 点可微,则 $\vec{n} = \{f_x(x_0, y_0), f_y(x_0, y_0), -1\},$

特别地, 若曲面 Σ 的方程是由显函数z = f(x, y)给出, 且f在

特别地,若曲面 Σ 的方程是由显函数z = f(x,y)给出,且f在 (x_0,y_0) 点可微,则 $\vec{n} = \{f_x(x_0,y_0), f_y(x_0,y_0), -1\},$

故曲面 Σ 在 $M_0(x_0,y_0,z_0)$ 点(其中 $z_0=f(x_0,y_0)$)的切平面方程为

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0).$$

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0).$$

法线方程为
$$\frac{x-x_0}{f_x(x_0,y_0)} = \frac{y-y_0}{f_y(x_0,y_0)} = \frac{z-z_0}{-1}$$
.

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0).$$

法线方程为
$$\frac{x-x_0}{f_x(x_0,y_0)} = \frac{y-y_0}{f_y(x_0,y_0)} = \frac{z-z_0}{-1}$$
.

注: 令 $\Delta x = x - x_0, \Delta y = y - y_0$,将切平面改写为

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0).$$

法线方程为
$$\frac{x-x_0}{f_x(x_0,y_0)} = \frac{y-y_0}{f_y(x_0,y_0)} = \frac{z-z_0}{-1}$$
.

注: $\diamondsuit \Delta x = x - x_0, \Delta y = y - y_0$,将切平面改写为

$$z - z_0 = f_x(x_0, y_0)\Delta x + f_y(x_0, y_0)\Delta y.$$

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0).$$

法线方程为
$$\frac{x-x_0}{f_x(x_0,y_0)} = \frac{y-y_0}{f_y(x_0,y_0)} = \frac{z-z_0}{-1}.$$

注: $\diamondsuit \Delta x = x - x_0, \Delta y = y - y_0$,将切平面改写为

$$z - z_0 = f_x(x_0, y_0) \Delta x + f_y(x_0, y_0) \Delta y.$$

二元函数全微分的几何意义:

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0).$$

法线方程为
$$\frac{x-x_0}{f_x(x_0,y_0)} = \frac{y-y_0}{f_y(x_0,y_0)} = \frac{z-z_0}{-1}$$
.

注: 令 $\Delta x = x - x_0, \Delta y = y - y_0$,将切平面改写为

$$z - z_0 = f_x(x_0, y_0)\Delta x + f_y(x_0, y_0)\Delta y.$$

二元函数全微分的几何意义: 函数z = f(x,y)在点 M_0 的全微分在几何上表示该点切平面竖坐标的增量.

例1. 求圆锥面 $z=\sqrt{x^2+y^2}$ 在点(3,4,5)处的切平面及法线方程.

解: 设
$$f(x,y) = \sqrt{x^2 + y^2}$$
, 则

解: 设
$$f(x,y) = \sqrt{x^2 + y^2}$$
, 则

$$f_x(x,y) = \frac{x}{\sqrt{x^2 + y^2}}, \ f_y(x,y) = \frac{y}{\sqrt{x^2 + y^2}},$$

解: 设
$$f(x,y) = \sqrt{x^2 + y^2}$$
, 则

$$f_x(x,y) = \frac{x}{\sqrt{x^2 + y^2}}, \ f_y(x,y) = \frac{y}{\sqrt{x^2 + y^2}},$$

于是切平面的法向量为

例1. 求圆锥面 $z = \sqrt{x^2 + y^2}$ 在点(3, 4, 5)处的切平面 及法线方程.

解: 设 $f(x,y) = \sqrt{x^2 + y^2}$, 则

$$f_x(x,y) = \frac{x}{\sqrt{x^2 + y^2}}, \ f_y(x,y) = \frac{y}{\sqrt{x^2 + y^2}},$$

于是切平面的法向量为

$$\vec{n} = \{f_x(3,4), f_y(3,4), -1\} = \{\frac{3}{5}, \frac{4}{5}, -1\},\$$

解: 设 $f(x,y) = \sqrt{x^2 + y^2}$, 则

$$f_x(x,y) = \frac{x}{\sqrt{x^2 + y^2}}, \ f_y(x,y) = \frac{y}{\sqrt{x^2 + y^2}},$$

于是切平面的法向量为

$$\vec{n} = \{f_x(3,4), f_y(3,4), -1\} = \{\frac{3}{5}, \frac{4}{5}, -1\},\$$

所以圆锥面在点(3,4,5)处的切平面方程为

解: 设 $f(x,y) = \sqrt{x^2 + y^2}$, 则

$$f_x(x,y) = \frac{x}{\sqrt{x^2 + y^2}}, \ f_y(x,y) = \frac{y}{\sqrt{x^2 + y^2}},$$

于是切平面的法向量为

$$\vec{n} = \{f_x(3,4), f_y(3,4), -1\} = \{\frac{3}{5}, \frac{4}{5}, -1\},\$$

所以圆锥面在点(3,4,5)处的切平面方程为

$$\frac{3}{5}(x-3) + \frac{4}{5}(y-4) - (z-5) = 0$$
, 即 $3x + 4y - 5z = 0$;

解: 设 $f(x,y) = \sqrt{x^2 + y^2}$, 则

$$f_x(x,y) = \frac{x}{\sqrt{x^2 + y^2}}, \ f_y(x,y) = \frac{y}{\sqrt{x^2 + y^2}},$$

于是切平面的法向量为

$$\vec{n} = \{f_x(3,4), f_y(3,4), -1\} = \{\frac{3}{5}, \frac{4}{5}, -1\},\$$

所以圆锥面在点(3,4,5)处的切平面方程为

$$\frac{3}{5}(x-3) + \frac{4}{5}(y-4) - (z-5) = 0$$
, $\square 3x + 4y - 5z = 0$;

法线方程为
$$\frac{x-3}{3} = \frac{y-4}{4} = \frac{z-5}{-5}$$
.

解:
$$\diamondsuit F(x, y, z) = 4x^2 + 2y^2 + z^2 - 4$$
, 则

解:
$$\diamondsuit F(x, y, z) = 4x^2 + 2y^2 + z^2 - 4$$
, 则

$$F_x = 8x, F_y = 4y, F_z = 2z.$$

解:
$$\diamondsuit F(x, y, z) = 4x^2 + 2y^2 + z^2 - 4$$
, 则

$$F_x = 8x, F_y = 4y, F_z = 2z.$$

由题意可得: $\{8x, 4y, 2z\}//\{2, 2, 1\}$,

解:
$$\diamondsuit F(x, y, z) = 4x^2 + 2y^2 + z^2 - 4$$
, 则

$$F_x = 8x, F_y = 4y, F_z = 2z.$$

由题意可得: $\{8x, 4y, 2z\}//\{2, 2, 1\}$, 即 $\frac{8x}{2} = \frac{4y}{2} = \frac{2z}{1}$,

解:
$$\diamondsuit F(x, y, z) = 4x^2 + 2y^2 + z^2 - 4$$
, 则

$$F_x = 8x, F_y = 4y, F_z = 2z.$$

由题意可得:
$$\{8x, 4y, 2z\}//\{2, 2, 1\}$$
, 即 $\frac{8x}{2} = \frac{4y}{2} = \frac{2z}{1}$,

于是有
$$y=z=2x$$
,代入曲面方程可得 $x=\pm \frac{1}{2}$,

解:
$$\diamondsuit F(x, y, z) = 4x^2 + 2y^2 + z^2 - 4$$
, 则

$$F_x = 8x, F_y = 4y, F_z = 2z.$$

由题意可得:
$$\{8x, 4y, 2z\}//\{2, 2, 1\}$$
, 即 $\frac{8x}{2} = \frac{4y}{2} = \frac{2z}{1}$,

于是有
$$y=z=2x$$
,代入曲面方程可得 $x=\pm \frac{1}{2}$,

故所求M点为 $(\pm \frac{1}{2}, \pm 1, \pm 1)$.

例3. 求曲线 $\begin{cases} x^2 + y^2 + z^2 - 3x = 0, \\ 2x - 3y + 5z - 4 = 0 \end{cases}$ 在点(1, 1, 1)处的

例3. 求曲线
$$\begin{cases} x^2 + y^2 + z^2 - 3x = 0, \\ 2x - 3y + 5z - 4 = 0 \end{cases}$$
 在点 $(1, 1, 1)$ 处的

解法一: 曲面 $x^2 + y^2 + z^2 - 3x = 0$ 在点(1,1,1,)处的法向量为

解法一: 曲面 $x^2+y^2+z^2-3x=0$ 在点(1,1,1,)处的法向量为 $\overrightarrow{n_1}=\{2x-3,2y,2z\}\big|_{(1,1,1)}=\{-1,2,2\};$

解法一: 曲面 $x^2 + y^2 + z^2 - 3x = 0$ 在点(1,1,1,)处的法向量为 $\overrightarrow{n_1} = \{2x - 3, 2y, 2z\}\big|_{(1,1,1)} = \{-1,2,2\};$

平面2x - 3y + 5z - 4 = 0在的法向量为 $\overrightarrow{n_2} = \{2, -3, 5\};$

解法一: 曲面 $x^2+y^2+z^2-3x=0$ 在点(1,1,1,)处的法向量为 $\overrightarrow{n_1}=\{2x-3,2y,2z\}\big|_{(1,1,1)}=\{-1,2,2\};$

平面2x - 3y + 5z - 4 = 0在的法向量为 $\overrightarrow{n_2} = \{2, -3, 5\};$

则所求切线的方向向量为 $\vec{a} = \overrightarrow{n_1} \times \overrightarrow{n_2} = \{16, 9, -1\},$

解法一: 曲面 $x^2 + y^2 + z^2 - 3x = 0$ 在点(1,1,1,)处的法向量为 $\overrightarrow{n_1} = \{2x - 3, 2y, 2z\}\big|_{(1,1,1)} = \{-1,2,2\};$

平面2x - 3y + 5z - 4 = 0在的法向量为 $\overrightarrow{n_2} = \{2, -3, 5\};$

则所求切线的方向向量为 $\vec{a} = \overrightarrow{n_1} \times \overrightarrow{n_2} = \{16, 9, -1\},$

故所求切线方程为 $\frac{x-1}{16} = \frac{y-1}{9} = \frac{z-1}{-1}$,

解法一: 曲面 $x^2 + y^2 + z^2 - 3x = 0$ 在点(1,1,1,)处的法向量为 $\overrightarrow{n_1} = \{2x - 3, 2y, 2z\}\big|_{(1,1,1)} = \{-1,2,2\};$

平面2x - 3y + 5z - 4 = 0在的法向量为 $\overrightarrow{n_2} = \{2, -3, 5\};$

则所求切线的方向向量为 $\vec{a} = \overrightarrow{n_1} \times \overrightarrow{n_2} = \{16, 9, -1\},$

故所求切线方程为
$$\frac{x-1}{16} = \frac{y-1}{9} = \frac{z-1}{-1}$$
,

法平面方程为
$$16(x-1) + 9(y-1) - (z-1) = 0$$
,

例3. 求曲线
$$\begin{cases} x^2 + y^2 + z^2 - 3x = 0, \\ 2x - 3y + 5z - 4 = 0 \end{cases}$$
 在点 $(1, 1, 1)$ 处的

例3. 求曲线 $\begin{cases} x^2 + y^2 + z^2 - 3x = 0, \\ 2x - 3y + 5z - 4 = 0 \end{cases}$ 在点(1, 1, 1)处的

解法二: 隐函数存在定理可得, 题中两方程在(1,1,1)点附近确定了隐函数y = y(x), z = z(x).

例3. 求曲线 $\begin{cases} x^2 + y^2 + z^2 - 3x = 0, \\ 2x - 3y + 5z - 4 = 0 \end{cases}$ 在点(1,1,1)处的 切线方程与法平面方程.

解法二: 隐函数存在定理可得, 题中两方程在(1,1,1)点附近确定了隐函数y = y(x), z = z(x). 分别对x求导, 得

解法二: 隐函数存在定理可得, 题中两方程在(1,1,1)点附近确定了隐函数y=y(x),z=z(x). 分别对x求导, 得

$$\left\{ \begin{array}{l} 2x + 2yy'(x) + 2z'(x) - 3 = 0, \\ 2 - 3y'(x) + 5z'(x) = 0 \end{array} \right. , \, \text{代入点}(1,1,1)$$
可得

例3. 求曲线 $\begin{cases} x^2 + y^2 + z^2 - 3x = 0, \\ 2x - 3y + 5z - 4 = 0 \end{cases}$ 在点(1, 1, 1)处的

切线方程与法平面方程.

解法二: 隐函数存在定理可得, 题中两方程在(1,1,1)点附近确定了隐函数y = y(x), z = z(x). 分别对x求导, 得

$$\left\{\begin{array}{ll} 2x+2yy'(x)+2z'(x)-3=0,\\ 2-3y'(x)+5z'(x)=0 \end{array}\right.,$$
 代入点 $(1,1,1)$ 可得

$$\begin{cases} 2y'(1) + 2z'(1) - 1 = 0, \\ -3y'(1) + 5z'(1) + 2 = 0 \end{cases}, \ \mathbf{\textit{\textbf{解}}} \ \mathbf{\textit{\textbf{\textit{\textbf{H}}}}} \ y'(1) = \frac{9}{16}, z'(1) = -\frac{1}{16},$$

解法二: 隐函数存在定理可得, 题中两方程在(1,1,1)点附近确定了隐函数y = y(x), z = z(x). 分别对x求导, 得

$$\left\{\begin{array}{ll} 2x+2yy'(x)+2z'(x)-3=0,\\ 2-3y'(x)+5z'(x)=0 \end{array}\right.,$$
 代入点 $(1,1,1)$ 可得

$$\begin{cases} 2y'(1) + 2z'(1) - 1 = 0, \\ -3y'(1) + 5z'(1) + 2 = 0 \end{cases}, \ \mathbf{R} \mathbf{\mathcal{H}} y'(1) = \frac{9}{16}, z'(1) = -\frac{1}{16},$$

于是切线的方向向量为 $\vec{a} = \{1, \frac{9}{16}, -\frac{1}{16}\} //\{16, 9, -1\};$

例3. 求曲线 $\begin{cases} x^2 + y^2 + z^2 - 3x = 0, \\ 2x - 3y + 5z - 4 = 0 \end{cases}$ 在点(1, 1, 1)处的

切线方程与法平面方程.

解法二: 隐函数存在定理可得, 题中两方程在(1,1,1)点附近确定了隐函数y = y(x), z = z(x). 分别对x求导, 得

$$\left\{\begin{array}{ll} 2x+2yy'(x)+2z'(x)-3=0,\\ 2-3y'(x)+5z'(x)=0 \end{array}\right.,$$
 代入点 $(1,1,1)$ 可得

$$\begin{cases} 2y'(1) + 2z'(1) - 1 = 0, \\ -3y'(1) + 5z'(1) + 2 = 0 \end{cases}, \ \mathbf{R} \mathbf{\mathcal{H}} y'(1) = \frac{9}{16}, z'(1) = -\frac{1}{16},$$

于是切线的方向向量为 $\vec{a} = \{1, \frac{9}{16}, -\frac{1}{16}\} //\{16, 9, -1\};$

故所求切线方程为
$$\frac{x-1}{16} = \frac{y-1}{9} = \frac{z-1}{-1}$$
,

例3. 求曲线 $\begin{cases} x^2 + y^2 + z^2 - 3x = 0, \\ 2x - 3y + 5z - 4 = 0 \end{cases}$ 在点(1,1,1)处的 切线方程与法平面方程.

解法二: 隐函数存在定理可得, 题中两方程在(1,1,1)点附近确定了隐函数y = y(x), z = z(x). 分别对x求导, 得

$$\left\{ \begin{array}{l} 2x+2yy'(x)+2z'(x)-3=0,\\ 2-3y'(x)+5z'(x)=0 \end{array} \right.,$$
 代入点 $(1,1,1)$ 可得

$$\begin{cases} 2y'(1) + 2z'(1) - 1 = 0, \\ -3y'(1) + 5z'(1) + 2 = 0 \end{cases}, \ \mathbf{R} \mathbf{\mathcal{H}} y'(1) = \frac{9}{16}, z'(1) = -\frac{1}{16},$$

于是切线的方向向量为 $\vec{a} = \{1, \frac{9}{16}, -\frac{1}{16}\} //\{16, 9, -1\};$

故所求切线方程为
$$\frac{x-1}{16} = \frac{y-1}{9} = \frac{z-1}{-1}$$
,

法平面方程为16x + 9y - z - 24 = 0.

证明: 设 $\varphi(x, y, z) = F(cx - az, cy - bz),$

证明: 设 $\varphi(x, y, z) = F(cx - az, cy - bz),$

则曲面在任一点处的法向量为

证明: 设 $\varphi(x, y, z) = F(cx - az, cy - bz),$

则曲面在任一点处的法向量为

$$\vec{n} = \{\varphi_x, \varphi_y, \varphi_z\} = \{cF_1, cF_2, -aF_1 - bF_2\}.$$

证明: 设 $\varphi(x, y, z) = F(cx - az, cy - bz),$

则曲面在任一点处的法向量为

$$\vec{n} = \{\varphi_x, \varphi_y, \varphi_z\} = \{cF_1, cF_2, -aF_1 - bF_2\}.$$

于是有 $\vec{n} \cdot \vec{A} = \{cF_1, cF_2, -aF_1 - bF_2\} \cdot \{a, b, c\} = 0$

证明: 设 $\varphi(x, y, z) = F(cx - az, cy - bz),$

则曲面在任一点处的法向量为

$$\vec{n} = \{\varphi_x, \varphi_y, \varphi_z\} = \{cF_1, cF_2, -aF_1 - bF_2\}.$$

于是有
$$\vec{n} \cdot \vec{A} = \{cF_1, cF_2, -aF_1 - bF_2\} \cdot \{a, b, c\} = 0$$

则 $\vec{n} \perp \vec{A}$

证明: 设 $\varphi(x, y, z) = F(cx - az, cy - bz),$

则曲面在任一点处的法向量为

$$\vec{n} = \{\varphi_x, \varphi_y, \varphi_z\} = \{cF_1, cF_2, -aF_1 - bF_2\}.$$

于是有
$$\vec{n} \cdot \vec{A} = \{cF_1, cF_2, -aF_1 - bF_2\} \cdot \{a, b, c\} = 0$$

则 $\vec{n} \perp \vec{A}$

故曲面上各点的法向量总垂直于常向量 \vec{A} .

平面曲线的弧长

设A, B是曲线弧上的两个端点, 在弧 \widehat{AB} 上任取分点:

$$A = M_0, M_1, \cdots, M_{n-1}, M_n = B,$$

在 \widehat{AB} 上任取分点:

$$A = M_0, M_1, \cdots, M_{n-1}, M_n = B,$$

并依次连接相邻的分点得到一内接折线, 此折线长为:

在 \widehat{AB} 上任取分点:

$$A = M_0, M_1, \cdots, M_{n-1}, M_n = B,$$

并依次连接相邻的分点得到一内接折线, 此折线长为:

$$s_n = \sum_{i=1}^n \overline{M_{i-1}M_i},$$

在 \widehat{AB} 上任取分点:

$$A = M_0, M_1, \cdots, M_{n-1}, M_n = B,$$

并依次连接相邻的分点得到一内接折线, 此折线长为:

$$s_n = \sum_{i=1}^n \overline{M_{i-1}M_i},$$

若当最大线段长趋于零时,折线 s_n 有极限s,则称s为曲线弧 \widehat{AB} 的 弧长、即

在 \widehat{AB} 上任取分点:

$$A = M_0, M_1, \cdots, M_{n-1}, M_n = B,$$

并依次连接相邻的分点得到一内接折线, 此折线长为:

$$s_n = \sum_{i=1}^n \overline{M_{i-1}M_i},$$

若当最大线段长趋于零时,折线 s_n 有极限s,则称s为曲线弧 \widehat{AB} 的

弧长, 即
$$s = \lim_{\lambda \to 0} s_n = \lim_{\lambda \to 0} \sum_{i=1}^{n} \overline{M_{i-1}M_i}$$

在 \widehat{AB} 上任取分点:

$$A = M_0, M_1, \cdots, M_{n-1}, M_n = B,$$

并依次连接相邻的分点得到一内接折线, 此折线长为:

$$s_n = \sum_{i=1}^n \overline{M_{i-1}M_i},$$

若当最大线段长趋于零时,折线 s_n 有极限s,则称s为曲线弧 \widehat{AB} 的

弧长, 即
$$s = \lim_{\lambda \to 0} s_n = \lim_{\lambda \to 0} \sum_{i=1}^n \overline{M_{i-1}M_i}$$

其中 λ 表示最大线段长,这时也称曲线弧 \widehat{AB} 是可求长的.

直角坐标情形

设平面曲线弧的直角坐标方程为y = f(x) ($a \le x \le b$), 且f在[a,b]具有连续导数(称曲线是光滑的).

设平面曲线弧的直角坐标方程为 $y = f(x) \ (a \le x \le b),$

且f在[a,b]具有连续导数(称曲线是光滑的).

设平面曲线弧的直角坐标方程为 $y = f(x) \ (a \le x \le b),$

且f在[a,b]具有连续导数(称曲线是光滑的).

(1) 取积分变量为x, 积分区间为[a,b];

设平面曲线弧的直角坐标方程为y = f(x) ($a \le x \le b$), 且f在[a,b]具有连续导数(称曲线是光滑的).

- (1) 取积分变量为x, 积分区间为[a,b];
- (2) 在区间[a,b]上取一小区间 $[x,x+\mathrm{d}x]$,与它相应的弧长用过点M的切线长|MT|来近似,从而得到弧长微元:

设平面曲线弧的直角坐标方程为 $y = f(x) \ (a \le x \le b),$ 且f在[a,b]具有连续导数(称曲线是光滑的).

- (1) 取积分变量为x, 积分区间为[a,b];
- (2) 在区间[a, b]上取一小区间[x, x + dx],与它相应的弧长用过点M的切线长MT|来近似,从而得到弧长微元:

$$ds = \sqrt{(dx)^2 + (dy)^2} = \sqrt{1 + y'^2} dx$$

设平面曲线弧的直角坐标方程为 $y = f(x) \ (a \le x \le b),$ 且f在[a,b]具有连续导数(称曲线是光滑的).

- (1) 取积分变量为x, 积分区间为[a,b];
- (2) 在区间[a, b]上取一小区间[x, x + dx],与它相应的弧长用过点M的切线长MT|来近似,从而得到弧长微元:

$$ds = \sqrt{(dx)^2 + (dy)^2} = \sqrt{1 + y'^2} dx$$

——弧微分公式

设平面曲线弧的直角坐标方程为 $y = f(x) \ (a \le x \le b),$ 且f在[a,b]具有连续导数(称曲线是光滑的).

- (1) 取积分变量为x, 积分区间为[a,b];
- (2) 在区间[a, b]上取一小区间[x, x + dx],与它相应的弧长用过点M的切线长MT|来近似,从而得到弧长微元:

$$ds = \sqrt{(dx)^2 + (dy)^2} = \sqrt{1 + y'^2} dx$$

——弧微分公式

(3)
$$s = \int_a^b ds = \int_a^b \sqrt{1 + y'^2} dx$$

在第一象限中,
$$y = \sqrt{R^2 - x^2}$$
 $(x \ge 0, y \ge 0)$,

在第一象限中,
$$y = \sqrt{R^2 - x^2}$$
 $(x \ge 0, y \ge 0)$,

$$\therefore y' = \frac{-x \mathrm{d}x}{\sqrt{R^2 - x^2}},$$

在第一象限中,
$$y = \sqrt{R^2 - x^2}$$
 $(x \ge 0, y \ge 0)$,

$$\therefore y' = \frac{-x \mathrm{d}x}{\sqrt{R^2 - x^2}},$$

$$\therefore ds = \sqrt{1 + y'^2} dx = \frac{R}{\sqrt{R^2 - x^2}} dx,$$

在第一象限中,
$$y = \sqrt{R^2 - x^2}$$
 $(x \ge 0, y \ge 0)$,

$$\therefore y' = \frac{-x \mathrm{d}x}{\sqrt{R^2 - x^2}},$$

$$\therefore ds = \sqrt{1 + y'^2} dx = \frac{R}{\sqrt{R^2 - x^2}} dx,$$

$$\therefore s = 4 \int_0^R \frac{R}{\sqrt{R^2 - x^2}} dx = 4R \arcsin \frac{x}{R} \Big|_0^R = 2\pi R.$$

参数方程情形

若曲线是由参数方程 $\begin{cases} x=\varphi(t),\\ y=f(t), \end{cases} \quad (\alpha\leqslant t\leqslant\beta) \ \text{表示,则弧长的}$ 微元为:

若曲线是由参数方程 $\begin{cases} x = \varphi(t), \\ y = f(t), \end{cases}$ $(\alpha \leqslant t \leqslant \beta)$ 表示,则弧长的 微元为:

$$ds = \sqrt{(dx)^2 + (dy)^2} = \sqrt{[\varphi'(t)dt]^2 + [f'(t)dt]^2}$$

若曲线是由参数方程 $\begin{cases} x = \varphi(t), \\ y = f(t), \end{cases} \quad (\alpha \leqslant t \leqslant \beta) \ \text{表示,则弧长的}$ 微元为:

$$\mathrm{d}s = \sqrt{(\mathrm{d}x)^2 + (\mathrm{d}y)^2} = \sqrt{[\varphi'(t)\mathrm{d}t]^2 + [f'(t)\mathrm{d}t]^2}$$
$$= \sqrt{[\varphi'(t)]^2 + [f'(t)]^2} \mathrm{d}t,$$

若曲线是由参数方程 $\begin{cases} x = \varphi(t), \\ y = f(t), \end{cases}$ $(\alpha \leqslant t \leqslant \beta)$ 表示,则弧长的 微元为:

$$ds = \sqrt{(dx)^2 + (dy)^2} = \sqrt{[\varphi]}$$

$$ds = \sqrt{(dx)^2 + (dy)^2} = \sqrt{[\varphi'(t)dt]^2 + [f'(t)dt]^2}$$
$$= \sqrt{[\varphi'(t)]^2 + [f'(t)]^2}dt,$$
$$\therefore s = \int_0^\beta \sqrt{[\varphi'(t)]^2 + [f'(t)]^2}dt.$$

例2. 计算摆线
$$\begin{cases} x=a(t-\sin t)\\ y=a(1-\cos t) \end{cases} \quad (a>0) \text{ 的一拱} (0\leqslant t\leqslant 2\pi)$$
 的长度.

$$\mathbf{R}$$: $x'(t) = a(1 - \cos t), \ y'(t) = a\sin t,$

解:
$$x'(t) = a(1 - \cos t), y'(t) = a \sin t,$$

∴ $ds = \sqrt{[a(1 - \cos t)]^2 + [a \sin t]^2} dt$

M:
$$x'(t) = a(1 - \cos t), y'(t) = a \sin t,$$

$$\therefore ds = \sqrt{[a(1 - \cos t)]^2 + [a \sin t]^2} dt$$

$$= \sqrt{a^2(2 - 2\cos t)} dt = 2a \left| \sin \frac{t}{2} \right| dt,$$

解:
$$x'(t) = a(1 - \cos t), y'(t) = a \sin t,$$

$$\therefore ds = \sqrt{[a(1 - \cos t)]^2 + [a \sin t]^2} dt$$

$$= \sqrt{a^2(2 - 2\cos t)} dt = 2a \left| \sin \frac{t}{2} \right| dt,$$

$$\therefore s = \int_0^{2\pi} 2a \sin \frac{t}{2} dt$$

例2. 计算摆线
$$\begin{cases} x=a(t-\sin t)\\ y=a(1-\cos t) \end{cases} \quad (a>0) \text{ 的一拱} (0\leqslant t\leqslant 2\pi)$$
 的长度.

解:
$$x'(t) = a(1 - \cos t)$$
, $y'(t) = a \sin t$,
∴ $ds = \sqrt{[a(1 - \cos t)]^2 + [a \sin t]^2} dt$

$$= \sqrt{a^2(2 - 2\cos t)} dt = 2a \left| \sin \frac{t}{2} \right| dt$$

$$\therefore s = \int_0^{2\pi} 2a \sin \frac{t}{2} dt = 2a \left[-2 \cos \frac{t}{2} \right] \Big|_0^{2\pi} = 8a.$$

极坐标方程情况

若曲线是由极坐标方程 $\rho = \rho(\theta) \ (\alpha \leq \theta \leq \beta)$ 表示,

若曲线是由极坐标方程 $\rho = \rho(\theta) \ (\alpha \leq \theta \leq \beta)$ 表示,

则曲线弧的参数方程为
$$\begin{cases} x = \rho(\theta)\cos\theta, \\ y = \rho(\theta)\sin\theta, \end{cases}$$

若曲线是由极坐标方程 $\rho = \rho(\theta) \ (\alpha \leqslant \theta \leqslant \beta)$ 表示,

则曲线弧的参数方程为
$$\begin{cases} x = \rho(\theta)\cos\theta, \\ y = \rho(\theta)\sin\theta, \end{cases}$$

$$\therefore dx = (\rho' \cos \theta - \rho \sin \theta) d\theta, dy = (\rho' \sin \theta + \rho \cos \theta) d\theta,$$

若曲线是由极坐标方程 $\rho = \rho(\theta) \ (\alpha \leq \theta \leq \beta)$ 表示,

则曲线弧的参数方程为 $\begin{cases} x = \rho(\theta)\cos\theta, \\ y = \rho(\theta)\sin\theta, \end{cases}$

$$\therefore dx = (\rho' \cos \theta - \rho \sin \theta) d\theta, dy = (\rho' \sin \theta + \rho \cos \theta) d\theta,$$

$$\therefore ds = \sqrt{(dx)^2 + (dy)^2}$$

若曲线是由极坐标方程 $\rho = \rho(\theta) \ (\alpha \leq \theta \leq \beta)$ 表示,

则曲线弧的参数方程为
$$\begin{cases} x = \rho(\theta)\cos\theta, \\ y = \rho(\theta)\sin\theta, \end{cases}$$

$$\therefore dx = (\rho' \cos \theta - \rho \sin \theta) d\theta, dy = (\rho' \sin \theta + \rho \cos \theta) d\theta,$$

$$\therefore ds = \sqrt{(dx)^2 + (dy)^2}$$
$$= \sqrt{(\rho' \cos \theta - r \sin \theta)^2 + (\rho' \sin \theta + \rho \cos \theta)^2} d\theta$$

若曲线是由极坐标方程 $\rho = \rho(\theta) \ (\alpha \leq \theta \leq \beta)$ 表示,

则曲线弧的参数方程为
$$\begin{cases} x = \rho(\theta)\cos\theta, \\ y = \rho(\theta)\sin\theta, \end{cases}$$

$$\therefore dx = (\rho' \cos \theta - \rho \sin \theta) d\theta, dy = (\rho' \sin \theta + \rho \cos \theta) d\theta,$$

$$\therefore ds = \sqrt{(dx)^2 + (dy)^2}$$

$$= \sqrt{(\rho' \cos \theta - r \sin \theta)^2 + (\rho' \sin \theta + \rho \cos \theta)^2} d\theta$$

$$= \sqrt{\rho^2(\theta) + (\rho'(\theta))^2} d\theta$$

若曲线是由极坐标方程 $\rho = \rho(\theta) \ (\alpha \leq \theta \leq \beta)$ 表示,

则曲线弧的参数方程为 $\begin{cases} x = \rho(\theta)\cos\theta, \\ y = \rho(\theta)\sin\theta, \end{cases}$

$$\therefore dx = (\rho' \cos \theta - \rho \sin \theta) d\theta, dy = (\rho' \sin \theta + \rho \cos \theta) d\theta,$$

$$\therefore ds = \sqrt{(dx)^2 + (dy)^2}$$

$$= \sqrt{(\rho' \cos \theta - r \sin \theta)^2 + (\rho' \sin \theta + \rho \cos \theta)^2} d\theta$$

$$= \sqrt{\rho^2(\theta) + (\rho'(\theta))^2} d\theta$$

$$\therefore s = \int_{\alpha}^{\beta} \sqrt{\rho^{2}(\theta) + (\rho'(\theta))^{2}} d\theta.$$

例3. 求阿基米德螺线 $\rho=a\theta~(a>0)$ 的第一圈 $(0\leqslant\theta\leqslant2\pi)$ 的弧长.

例3. 求阿基米德螺线 $\rho=a\theta~(a>0)$ 的第一圈 $(0\leqslant\theta\leqslant2\pi)$ 的弧长.

解:
$$s = \int_0^{2\pi} \sqrt{\rho^2(\theta) + (\rho'(\theta))^2} d\theta$$

例3. 求阿基米德螺线 $\rho=a\theta~(a>0)$ 的第一圈 $(0\leqslant\theta\leqslant2\pi)$ 的弧长.

解:
$$s = \int_0^{2\pi} \sqrt{\rho^2(\theta) + (\rho'(\theta))^2} d\theta$$
$$= \int_0^{2\pi} \sqrt{(a\theta)^2 + a^2} d\theta$$

解:
$$s = \int_0^{2\pi} \sqrt{\rho^2(\theta) + (\rho'(\theta))^2} d\theta$$
$$= \int_0^{2\pi} \sqrt{(a\theta)^2 + a^2} d\theta$$
$$= a \int_0^{2\pi} \sqrt{\theta^2 + 1} d\theta$$

$$\mathbf{\mathfrak{R}} \colon s = \int_0^{2\pi} \sqrt{\rho^2(\theta) + (\rho'(\theta))^2} d\theta$$

$$= \int_0^{2\pi} \sqrt{(a\theta)^2 + a^2} d\theta$$

$$= a \int_0^{2\pi} \sqrt{\theta^2 + 1} d\theta$$

$$= a \left[\frac{\theta}{2} \sqrt{\theta^2 + 1} + \frac{1}{2} \ln(\sqrt{\theta^2 + 1} + \theta) \right]_0^{2\pi}$$

$$\mathbf{\widetilde{R}}: s = \int_0^{2\pi} \sqrt{\rho^2(\theta) + (\rho'(\theta))^2} d\theta$$

$$= \int_0^{2\pi} \sqrt{(a\theta)^2 + a^2} d\theta$$

$$= a \int_0^{2\pi} \sqrt{\theta^2 + 1} d\theta$$

$$= a \left[\frac{\theta}{2} \sqrt{\theta^2 + 1} + \frac{1}{2} \ln(\sqrt{\theta^2 + 1} + \theta) \right]_0^{2\pi}$$

$$= \frac{a}{2} [2\pi \sqrt{4\pi^2 + 1} + \ln(\sqrt{4\pi^2 + 1} + 2\pi)].$$

小结

• 若曲线为直角坐标方程 $y = f(x) (a \le x \le b)$, 则其弧长为

$$s = \int_a^b \sqrt{1 + f'^2(x)} \mathrm{d}x$$

• 若曲线为直角坐标方程 $y = f(x) (a \le x \le b)$, 则其弧长为

$$s = \int_a^b \sqrt{1 + f'^2(x)} \mathrm{d}x$$

• 若曲线有极坐标方程 $\rho = \rho(\theta) \ (\alpha \leqslant \theta \leqslant \beta)$, 则其弧长为

$$s = \int_{0}^{\beta} \sqrt{\rho^{2}(\theta) + (\rho'(\theta))^{2}} d\theta$$

小结

小结

• 若平面曲线为参数方程 $\begin{cases} x=\varphi(t) \\ y=f(t) \end{cases}$ $(\alpha\leqslant t\leqslant\beta),$ 则其弧长为:

$$s = \int_{\alpha}^{\beta} \sqrt{[\varphi'(t)]^2 + [f'(t)]^2} dt$$

• 若平面曲线为参数方程 $\begin{cases} x = \varphi(t) \\ y = f(t) \end{cases}$ $(\alpha \leqslant t \leqslant \beta)$, 则其弧长为:

$$s = \int_{\alpha}^{\beta} \sqrt{[\varphi'(t)]^2 + [f'(t)]^2} dt$$

• 若空间曲线为参数方程 $\begin{cases} x=x(t)\\ y=y(t) & (\alpha\leqslant t\leqslant\beta), \, \text{则其弧长}\\ z=z(t) \end{cases}$ 为:

$$s = \int_{a}^{\beta} \sqrt{[x'(t)]^2 + [y'(t)]^2 + [z'(t)]^2} dt$$

