Пошуковий аналіз даних

Ознайомитись з методами перевірки статистичних гіпотез. Після завершення цієї лабораторної роботи ви зможете:

- Досліджувати дані за допомогою візуалізацій
- Робити описовий аналіз
- Групувати дані для аналізу
- Знаходити зв'язок між ознаками
- Перевіряти гіпотези про значущість коефіцієнта кореляції та про вигляд закону розподілу
- Робити дисперсійний аналіз
- 1. Скачати дані із файлу 'clean_data2.csv', який зберегли наприкінці попередньої роботи (Data2.csv з виправленими помилками та заповненими пропусками). Записати дані у dataframe. Дослідити ознаки, побудувавши їх візуалізації
- 2. Порахувати кореляцію між всіма кількісними ознаками
- 3. Побудувати діаграми розсіювання для кількісних ознак та 'CO2 emission'. Побудувати діаграму розмаху для 'CO2 emission' по регіонам. Візуально оцініть наявність та силу зв'язку між цими ознаками.
- 4. Які кількісні ознаки можуть бути предикторами кількості викидів СО2?
- 5. Виконати дисперсійний аналіз для кількості викидів CO2, згрупувати дані по регіонам

Завдання #1:

Зчитую дані з файлу у датафрейм

```
# Напишіть ваш код нижче та натисніть Shift+Enter для виконання
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
df = pd.read csv("clean data2.csv", encoding='cp1252')
print(df)
              Country Name
                                                 Region
                                                         GDP per capita
               Afghanistan
                                             South Asia
                                                             561,778746
                   Albania
                                  Europe & Central Asia
                                                            4124.982390
```

2	Algeria	a Middle East & North Africa 3916.881571
3	American Samoa	East Asia & Pacific 11834.745230
4	Andorra	Europe & Central Asia 36988.622030
212	Virgin Islands (U.S.)) Latin America & Caribbean 6.327732
213	West Bank and Gaza	a Middle East & North Africa 2943.404534
214	Yemen, Rep.	. Middle East & North Africa 990.334774
215	Zambia	Sub-Saharan Africa 1269.573537
216	Zimbabwe	Sub-Saharan Africa 1029.076649
0 1 2 3 4 212 213 214 215 216	Population C02 emis 34656032 9809.22 2876101 5716.85 40606052 145400.21 55599 31.16 77281 462.04 102951 57.57 4551566 2540.27 27584213 22698.73 16591390 4503.07 16150362 12020.42	25000 652860.0 53.083405 53000 28750.0 100.038296 17000 2381740.0 17.048902 90793 200.0 277.995000 42000 470.0 164.427660 77071 350.0 294.145714 70209 6020.0 756.074086 30000 527970.0 52.245796 76000 752610.0 22.045136
[217 rows x 7 columns]		

Будую графіки

```
# Напишіть ваш код нижче та натисніть Shift+Enter для виконання df.hist(figsize=(12, 12)) plt.suptitle('Гістограми') plt.show()
```

Гістограми


```
fig, axs = plt.subplots(1, 4, figsize=(16, 16))
fig.suptitle('Діаграми розмаху', fontsize=16)
axs[0].set_title('GDP per capita')
axs[0].boxplot(df['GDP per capita'])
axs[1].set_title('Population')
axs[1].boxplot(df['Population'])
axs[2].set_title('CO2 emission')
axs[2].boxplot(df['CO2 emission'])
```

```
axs[3].set_title('Area')
axs[3].boxplot(df['Area'])
plt.show()
```

Діаграми розмаху

Завдання #2:

Рахую кореляцію між всіма кількісними ознаками

```
# Напишіть ваш код нижче та натисніть Shift+Enter для виконання
df.iloc[:, 2:].corr()
{"summary":"{\n \"name\": \"df\",\n \"rows\": 5,\n \"fields\": [\n
       \"column\": \"GDP per capita\",\n \"properties\": {\n
\"dtype\": \"number\",\n \"std\": 0.41472330275464725,\n
\"semantic type\": \"\",\n
                                 },\n {\n \"column\":
\"Population\",\n \"properties\": {\n
                                              \"dtype\":
\"number\",\n\\"std\": 0.46960814377433235,\n
                                                      \"min\": -
0.0282322394377628,\n \
\"num_unique_values\": 5,\n
                                 \"samples\": [\n
                                                        1.0, n
],\n
                                                           }\
n },\n {\n \"column\": \"CO2 emission\",\n \"properties\": {\n \"dtype\": \"number\",\n 0.44359901700443544,\n \"min\": -0.0259947444871
                                                       \"std\":
                           \"min\": -0.025994744487178145,\n
\"max\": 1.0,\n \"num_unique_values\": 5,\n \"samples\":
            0.8042756753281473,\n -0.025994744487178145,\n
[\n
            ],\n
                       \"semantic type\": \"\",\n
1.0\n
{\n
                                                 \"column\":
\"Area\",\n \"properties\": {\n
                                        \"dtype\": \"number\",\n
\"std\": 0.4221393478914457,\n \"min\": -0.06396864925528256,\n
\"max\": 1.0,\n \"num unique values\": 5,\n \"samples\":
            0.45373505170699885,\n -0.06396864925526250,\
134484\n ],\n \"semantic_type\": \"\",\n
                                          -0.06396864925528256,\n
0.5886823760434484\n
\"description\": \"\"\n
                          }\n },\n {\n \"column\":
\"Density\",\n\\"properties\": {\n\n\"std\": 0.4503872073954158,\n\
                                         \"dtype\": \"number\",\
                                            \"min\": -
0.06396864925528256,\n\\"max\": 1.0,\n
\"num_unique_values\": 5,\n \"samples\": [\n - 0.025994744487178145\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n
      }\n ]\n}","type":"dataframe"}
}\n
<qoogle.colab. quickchart helpers.SectionTitle at 0x7aa41d1725c0>
from matplotlib import pyplot as plt
_df_12['GDP per capita'].plot(kind='hist', bins=20, title='GDP per
capita')
plt.gca().spines[['top', 'right',]].set visible(False)
```

```
from matplotlib import pyplot as plt
df 13['Population'].plot(kind='hist', bins=20, title='Population')
plt.gca().spines[['top', 'right',]].set visible(False)
from matplotlib import pyplot as plt
df 14['C02 emission'].plot(kind='hist', bins=20, title='C02
emission')
plt.gca().spines[['top', 'right',]].set visible(False)
from matplotlib import pyplot as plt
df 15['Area'].plot(kind='hist', bins=20, title='Area')
plt.gca().spines[['top', 'right',]].set_visible(False)
<google.colab. quickchart helpers.SectionTitle at 0x7aa41d170820>
from matplotlib import pyplot as plt
df 16.plot(kind='scatter', x='GDP per capita', y='Population', s=32,
alpha=.8)
plt.gca().spines[['top', 'right',]].set visible(False)
from matplotlib import pyplot as plt
_df_17.plot(kind='scatter', x='Population', y='CO2 emission', s=32,
alpha=.8)
plt.gca().spines[['top', 'right',]].set visible(False)
from matplotlib import pyplot as plt
df 18.plot(kind='scatter', x='CO2 emission', y='Area', s=32,
\overline{alpha}=.8)
plt.gca().spines[['top', 'right',]].set_visible(False)
from matplotlib import pyplot as plt
_df_19.plot(kind='scatter', x='Area', y='Density', s=32, alpha=.8)
plt.gca().spines[['top', 'right',]].set_visible(False)
<google.colab. guickchart helpers.SectionTitle at 0x7aa416472650>
from matplotlib import pyplot as plt
df 20['GDP per capita'].plot(kind='line', figsize=(8, 4), title='GDP
per capita')
plt.gca().spines[['top', 'right']].set_visible(False)
from matplotlib import pyplot as plt
df 21['Population'].plot(kind='line', figsize=(8, 4),
title='Population')
plt.gca().spines[['top', 'right']].set_visible(False)
from matplotlib import pyplot as plt
_df_22['CO2 emission'].plot(kind='line', figsize=(8, 4), title='CO2
emission')
plt.gca().spines[['top', 'right']].set visible(False)
```

```
from matplotlib import pyplot as plt
_df_23['Area'].plot(kind='line', figsize=(8, 4), title='Area')
plt.gca().spines[['top', 'right']].set_visible(False)
```

Завдання #3:

Будую діаграму розсіювання для кількісних ознак та 'CO2 emission'

```
# Напишіть ваш код нижче та натисніть Shift+Enter для виконання

axes = sns.regplot(x=df['Area'], y=df['C02 emission'])

axes.set_ylim(0, 2000000)

axes.set_xlim(0, 2000000)

plt.show()
```



```
axes = sns.regplot(x=df['Population'], y=df['C02 emission'])
axes.set_ylim(0, 2000000)
axes.set_xlim(0, 20000000)
```

```
plt.show()
```



```
axes = sns.regplot(x=df['GDP per capita'], y=df['C02 emission'])
axes.set_ylim(0, 2000000)
# axes.set_xlim(0, 200000)
plt.show()
```


Візуально помінтий прямий зв'язок між CO2 emission та іншими кількісними ознаками. Найсильніший зв'язок між CO2 emission та Population

Будую діаграму розмаху для 'CO2 emission' по регіонам

```
# Напишіть ваш код нижче та натисніть Shift+Enter для виконання plt.figure(figsize=(16, 16))

axes = sns.boxplot(x='Region', y='CO2 emission', data=df)

axes.set_ylim(0, 6000000)

plt.show

<function matplotlib.pyplot.show(close=None, block=None)>
```


Завдання #4:

Обчислюю коефіцієнт кореляції Пірсона та P-value для всіх кількісних змінних та 'CO2 emission'

```
from scipy import stats

# Напишіть ваш код нижче та натисніть Shift+Enter для виконання

# data =
pearson_area, p_value_area = stats.pearsonr(df['Area'], df['C02
```

```
emission'l)
pearson population, p value population =
stats.pearsonr(df['Population'], df['CO2 emission'])
pearson gdp, p value gdp = stats.pearsonr(df['GDP per capita'],
df['C02 emission'])
df_corr = pd.DataFrame({'Variable': ['Area', 'Population', 'GDP per
capita'],
                        'Pearson': [pearson area, pearson population,
pearson_gdp],
                        'p value': [p value area, p value population,
p value gdp]})
print(df corr)
         Variable
                    Pearson
                                  p value
0
             Area 0.588682 1.250796e-21
       Population 0.804276 1.710419e-50
1
  GDP per capita 0.099721 1.431548e-01
```

Оскільки p-value < 0.001 для всіх кількісних ознак, кореляція між рівнем викиду СО2 та площею/кількістю населення/ВВП на душу населення є статистично значущою.

Лінійний зв'язок між CO2 emission та Area (~0.588) помірний.

Лінійний зв'язок між CO2 emission та Area (~0.804) дуже сильний.

Лінійний зв'язок між CO2 emission та Area (~0.099) дуже слабкий.

Завдання #5:

Групую дані, щоб побачити чи впливає 'Region' на 'CO2 emission'.

```
# Напишіть ваш код нижче та натисніть Shift+Enter для виконання
grouped=df[['Region', 'CO2 emission']].groupby(['Region'])
print(grouped.head(2), '\n\n')
grouped.get group('South Asia')['CO2 emission']
                        Region
                                 CO2 emission
0
                    South Asia
                                  9809.225000
1
         Europe & Central Asia
                                  5716.853000
2
    Middle East & North Africa 145400.217000
3
           East Asia & Pacific
                                    31.100793
4
         Europe & Central Asia
                                   462.042000
5
            Sub-Saharan Africa
                                 34763.160000
6
     Latin America & Caribbean
                                   531.715000
7
                                204024.546000
     Latin America & Caribbean
```

```
10
           East Asia & Pacific 361261.839000
14
    Middle East & North Africa
                                 31338.182000
15
                    South Asia
                                 73189.653000
20
            Sub-Saharan Africa
                                   6318.241000
21
                 North America
                                   575.719000
35
                 North America 537193,498000
          9809.225
0
15
         73189.653
22
          1001.091
       2238377.137
88
121
          1334.788
138
          8030.730
148
        166298.450
179
         18393.672
Name: CO2 emission, dtype: float64
```

Скористаюсь функцією f_oneway з модуля "stats" для отримання F-test score та P-value.

```
print('\n\nУнікальні записи у полі Region:\n', df['Region'].unique())
Унікальні записи у полі Region:
 ['South Asia' 'Europe & Central Asia' 'Middle East & North Africa'
 'East Asia & Pacific' 'Sub-Saharan Africa' 'Latin America &
Caribbean'
 'North America'l
# Напишіть ваш код нижче та натисніть Shift+Enter для виконання
f val, p val = stats.f oneway(grouped.get group('South Asia')['CO2
emission'l,
                              grouped.get group('Europe & Central
Asia')['CO2 emission'],
                              grouped.get group('Middle East & North
Africa')['CO2 emission'],
                              grouped.get group('East Asia & Pacific')
['CO2 emission'],
                              grouped.get_group('Sub-Saharan Africa')
['CO2 emission'],
                              grouped.get group('Latin America &
Caribbean')['CO2 emission'],
                              grouped.get group('North America')['C02
emission'],)
print("F-statistic:", f_val)
print("p-value:", p val)
```

```
F-statistic: 3.5508824714043836
p-value: 0.002270432690210372
```

p-value < 0.05, це означає що оцінка є статистично значущою, а F показник вказує на (насправді не дуже великий) рівень кореляції.

Але чи означає це, що всі групи корелюють між собою?

Розглянемо їх окремо.

```
# Напишіть ваш код нижче та натисніть Shift+Enter для виконання
regions = df['Region'].unique()
for i in range(len(regions)-1):
  for j in range(i+1, len(regions)):
    f val, p val = stats.f oneway(grouped.get group(regions[i])['CO2
emission'],
                              grouped.get group(regions[i])['CO2
emission'l)
    if (p \text{ val} > 0.1):
      print('!!!!!!!!') #відмічено завелике значення р
    print(f"Mix {regions[i]} i {regions[j]}\n"
          f"F-statistic: {f_val}\n"
          f"p-value: {p val}\n")
11111111111
Між South Asia і Europe & Central Asia
F-statistic: 2.4563284325681862
p-value: 0.12198356892674468
111111111111
Між South Asia i Middle East & North Africa
F-statistic: 1.1676868056769816
p-value: 0.28943512933225635
11111111111
Miж South Asia i East Asia & Pacific
F-statistic: 0.010779237880269849
p-value: 0.9177924654224876
Miж South Asia i Sub-Saharan Africa
F-statistic: 7.300524087267293
p-value: 0.009192711202178152
Miж South Asia i Latin America & Caribbean
F-statistic: 4.901414243471789
p-value: 0.031619114432338585
!!!!!!!!!!!!
```

Miж South Asia i North America F-statistic: 2.4462636855311657 p-value: 0.1522433374176963

111111111111

Miж Europe & Central Asia i Middle East & North Africa

F-statistic: 0.07107110672565103

p-value: 0.7904962203272123

111111111111

Miж Europe & Central Asia i East Asia & Pacific

F-statistic: 1.4465924181848755 p-value: 0.23212866889855782

Miж Europe & Central Asia i Sub-Saharan Africa

F-statistic: 5.842896019941366 p-value: 0.01738064211148622

11111111111

Між Europe & Central Asia і Latin America & Caribbean

F-statistic: 2.2613927410805226 p-value: 0.1358506720763068

Між Europe & Central Asia i North America

F-statistic: 27.542942507369514 p-value: 2.192558279480627e-06

111111111111

Miж Middle East & North Africa i East Asia & Pacific

F-statistic: 0.47071503086045974 p-value: 0.49548927919429053

Miж Middle East & North Africa i Sub-Saharan Africa

F-statistic: 12.667677209560903 p-value: 0.0006894524567808801

Miж Middle East & North Africa i Latin America & Caribbean

F-statistic: 4.508747692054755 p-value: 0.037786578610934526

Miж Middle East & North Africa i North America

F-statistic: 10.870039824858475 p-value: 0.0032855685573012923

111111111111

Miж East Asia & Pacific i Sub-Saharan Africa

F-statistic: 2.195045163818428 p-value: 0.1422417679455547

!!!!!!!!!!!!

```
Між East Asia & Pacific i Latin America & Caribbean
F-statistic: 1.6264217369678258
p-value: 0.2060330582252482
!!!!!!!!!!!!
Між East Asia & Pacific i North America
F-statistic: 2.1223376115912314
p-value: 0.15337905025775542
!!!!!!!!!!!!!
Між Sub-Saharan Africa і Latin America & Caribbean
F-statistic: 2.0307483518164124
p-value: 0.15768181172333404
Між Sub-Saharan Africa і North America
F-statistic: 29.889184991922956
p-value: 1.5319132629213873e-06
Між Latin America & Caribbean i North America
F-statistic: 24.830715550606573
p-value: 1.0700462806894996e-05
```

Між групами відміченими знаками оклику значення р > 0.1, тому між цими групами розрахований показник F не є статистично значущим.

Додаткове завдання:

- 1. По результатам дисперсійного аналізу для кількості викидів СО2 по регіонам, вкажіть пару регіонів, що відрізняються найсильніше.
- 2. Створіть якісну ознаку 'Rich country', згрупувавши дані 'GDP per capita' в кілька категорій (багаті-бідні країни, 3-5 категорій). Побудуйте діаграму розмаху для 'CO2 emission' по категоріям 'Rich country'. Візуально оцініть наявність зв'язку між цими ознаками.
- 3. Виконайте дисперсійний аналіз для 'CO2 emission', згрупувавши дані по категоріям 'Rich country'.
- 1) Щоб знайти пару регіонів, що відрозняються найбільше, упустимо пари у яких показник F не ϵ статистично значущим (p > 0.1).

```
emission'])
  if (p_val<0.1 and f_val > max_f):
    max_reg = [regions[i], regions[j]]
    max_f = f_val

print(f"Між регіонами {max_reg} найбільша різниця, що складає:
{max_f}")

Між регіонами ['Sub-Saharan Africa', 'North America'] найбільша різниця, що складає: 29.889184991922956

#2

df['Rich country'] = pd.cut(df['GDP per capita'], bins=3, labels=['Нижчий', 'Середній', 'Вищий'])

plt.figure(figsize=(14, 6))
sns.boxplot(x='CO2 emission', y='Rich country', data=df)
plt.show()
```


Візуально присутня різниця між першим і третім квартилями (особливо тут виділяється середній рівень багатства), а також максимальними і мінімальними значеннями (вусиками коробки), однак медіанні значення для всіх країн знаходяться на одному рівні.

```
#3
unique_categories = df['Rich country'].unique()
data_by_category = (df[df['Rich country'] == category]['C02 emission']
for category in unique_categories)
f_val, p_val = stats.f_oneway(*data_by_category)
```

```
print("F-statistic:", f_val)
print("p-value:", p_val)

F-statistic: 1.3471041186853305
p-value: 0.2621876608725918
```

Значення р ϵ занадто великим, тож кореляція не ϵ статистично значущою.