Watts' Network Cascades Model A Simple Model of Global Cascades on Random Networks

Marco Brack Carsten Hartenfels

2016-08-05

Content

- Motivation
- Simulation
- Explanation
- ► Watts' Model
- Findings
- Limitations

Motivation - Culture

Twilight

Quelle: https://en.wikipedia.org/wiki/File:Twilightbook.jpg

Motivation - Technology Adoption

WhatsApp

Quelle: https://commons.wikimedia.org/wiki/File:WhatsApp.svg

Motivation - Social Dynamics

Political Coups

Quelle: http://tinyurl.com/jmv529r

Network Cascades

Network Cascades

(Maybe)

Network Cascades

(Maybe)

(It's a Nice Model Anyway)

Simulation

https://github.com/turbopope/nss/tree/master/simulator

Nodes

► Observe *k* Neighbors

▶ State $\in \{0, 1\}$

▶ Threshold $\Phi \in [0, 1]$

► Random Impulse Happens

Nodes Check in Random Intervals

Stuff Happens

► Things Occur

Coup Successful

Watts' Model

► Each person/agent is a node in a graph

▶ Agents have a state $\in \{0, 1\}$

Agents observe their neighbors

▶ Agents change to a state if a fraction of their neighbors has that state

▶ *n* nodes

n nodes

 \triangleright p_k propability of n to have k neighbors

n nodes

 \triangleright p_k propability of n to have k neighbors

• $z = \langle k \rangle$ expectation value or average degree

▶ *n* nodes

 \triangleright p_k propability of n to have k neighbors

- $ightharpoonup z = \langle k \rangle$ expectation value or average degree
- $ho_k = rac{e^{-z}z^k}{k!}$ Poisson-distributed (Erdős–Rényi-Model with $p = rac{z}{n}$)

► Cascades in Sparse Networks

- Cascades in Sparse Networks
 - Limited by Connectivity

- Cascades in Sparse Networks
 - Limited by Connectivity
 - Cascade Size Exhibits Power-Law Distribution

- Cascades in Sparse Networks
 - Limited by Connectivity
 - Cascade Size Exhibits Power-Law Distribution
 - Most Highly Connected Cluster is Critical Triggers

- Cascades in Sparse Networks
 - Limited by Connectivity
 - Cascade Size Exhibits Power-Law Distribution
 - Most Highly Connected Cluster is Critical Triggers
- Cascades in Dense Networks

- Cascades in Sparse Networks
 - Limited by Connectivity
 - Cascade Size Exhibits Power-Law Distribution
 - Most Highly Connected Cluster is Critical Triggers
- Cascades in Dense Networks
 - Limited by Threshold

- Cascades in Sparse Networks
 - Limited by Connectivity
 - Cascade Size Exhibits Power-Law Distribution
 - Most Highly Connected Cluster is Critical Triggers
- Cascades in Dense Networks
 - Limited by Threshold
 - Cascade Size Bimodal (Most are Small, Some are Large)

- Cascades in Sparse Networks
 - Limited by Connectivity
 - Cascade Size Exhibits Power-Law Distribution
 - Most Highly Connected Cluster is Critical Triggers
- Cascades in Dense Networks
 - Limited by Threshold
 - Cascade Size Bimodal (Most are Small, Some are Large)
 - Cluster with Average Degrees are Triggers (Because They are Frequent)

- Cascades in Sparse Networks
 - Limited by Connectivity
 - Cascade Size Exhibits Power-Law Distribution
 - Most Highly Connected Cluster is Critical Triggers
- Cascades in Dense Networks
 - Limited by Threshold
 - Cascade Size Bimodal (Most are Small, Some are Large)
 - Cluster with Average Degrees are Triggers (Because They are Frequent)
- ► Threshold Heterogenity Increases Cascade Likelihood

- Cascades in Sparse Networks
 - Limited by Connectivity
 - Cascade Size Exhibits Power-Law Distribution
 - Most Highly Connected Cluster is Critical Triggers
- Cascades in Dense Networks
 - Limited by Threshold
 - Cascade Size Bimodal (Most are Small, Some are Large)
 - Cluster with Average Degrees are Triggers (Because They are Frequent)
- Threshold Heterogenity Increases Cascade Likelihood
- Degree Heterogenity Decreases Cascade Likelihood

► No Personal Knowledge

- ► No Personal Knowledge
- ► No Global Adoption Rate

- ▶ No Personal Knowledge
- ► No Global Adoption Rate
- No Relationship Strength

- ▶ No Personal Knowledge
- ► No Global Adoption Rate
- ► No Relationship Strength
- One-Way Threshold

- ▶ No Personal Knowledge
- No Global Adoption Rate
- ▶ No Relationship Strength
- One-Way Threshold
- Sample Size for Bimodal Distribution Very Limited

- ▶ No Personal Knowledge
- No Global Adoption Rate
- ► No Relationship Strength
- One-Way Threshold
- Sample Size for Bimodal Distribution Very Limited
- ▶ No Threats to Validity Mentioned

Thank You All For Listening