Business Analytics with SAS Project on Finding Attrition rate in a company

Image Source: https://www.talentlyft.com/en/resources/what-is-attrition

Instructor: Dr. James Zhang

Project Members (Group 3)

Venkata Sarath Chandra Muktevi

Vinay Manideep Cheviti

Vamshi Enishetty

Harshavardhan Yarlagadda

Contents

1.	Data Mining Objective and Motivation:	3
1.1	Objective:	3
1.2	Motivation:	3
1.3	Executive Summary:	3
1.4	Data set:	3
1.5	Data Preprocessing:	5
2.	Predictive Analysis:	10
2.1	Decision Tree:	10
2.2	Logistic Regression:	15
2.2.	1 Logistic Regression with Selection Model as None:	15
2.2.	2 Logistic Regression- Forward Regression:	18
2.2.	3 Logistic Regression – Backward Regression:	20
2.2.	4 Logistic Regression – Step-wise Regression:	22
2.3	Neural Network:	24
2.4	Gradient Boosting:	26
2.5	Final Model:	28
2.5.	1 Model Comparison:	28
3.	Conclusion:	30
4.	References:	31

1. Data Mining Objective and Motivation:

1.1 Objective:

To predict the likelihood of a person leaving a company (Attrition rate), to analyze the elements which are contributing towards this factor, and to analyze the descriptive pattern among data set.

1.2 Motivation:

Employee attrition means the reduction of workforce in a company through normal process, like resignation or retirement. In recent years this has become a serious problem in the Industries. In one of the studies conducted by 'FurstPerson' the attrition rate has a financial toll on companies. It states that if they lose an employee, they have to suffer a loss anywhere between \$1500 to \$16500. To avoid it, companies are analyzing what are the key factors and circumstances that are leading to this cause. Differences in pay scale, Level of job satisfaction, involvement in job, Total working hours, Distance from home, work life balance, years with current manager, Education field, Total working years, work Environment are some of the factors that are leading to the Employee attrition rate. If companies can find out effective reasons why an employee likes to leave the industry they can avoid it by taking necessary actions which eventually decrease their financial burden in Employee replacement.

1.3 Executive Summary:

We took a Third-party dataset and found out the important factors contributing to Employee attrition. We also measured the best model or classifier which helps in predicting the attrition rate in a company. There are total of 1470 rows and 35 columns in our data set.

1.4 Data set:

In this project, we will be working on the second-hand dataset named 'IBM HR Analytics Employee Attrition and Performance' obtained from -

https://www.kaggle.com/pavansubhasht/ibm-hr-analytics-attrition-dataset

The data consists of Attributes of employees, there are 35 attributes related to an employee.

- TIME: Yearsatcompany, Yearsincurrentrole, YearsSinceLastPromotion, YearsWithCurrManager
- EMPLOYEE DETAILS: Age, Education, EducationField, Gender, WorkLifeBalance, DistanceFromHome, JobSatisfaction, MaritalStatus, NumCompaniesWorked
- INCOME: MonthlyIncome, MonthlyRate, DailyRate, HourlyRate, StockOptionLevel, PercentSalaryHike
- JOB RELATED: PerformanceRating, JobInvolvement, JobLevel, JobRole, Department, EnvironmentSatisfaction, TotalWorkingYears, TrainingTimesLastYear

Age	Age of employee	INTERVAL
Attrition	Weather employee quits or not	BINARY
BusinessTravel	Frequency of Travel	NOMINAL
DailyRate	The amount of money employees is paid per day	INTERVAL
Department	Name of the department employee work	NOMINAL
DistanceFromHome	Commute Distance	INTERVAL
Education	Education level	INTERVAL
EducationField	Field of education	NOMINAL
EmployeeNumber	Actual Departure Time (local time: hh mm)	NOMINAL
EnvironmentSatisfaction	Environment Satisfaction	NOMINAL
Gender	Gender	NOMINAL
HourlyRate	the amount of money employees are paid per hour	INTERVAL
JobInvolvement	Employee involvement in assigned task	NOMINAL
JobLevel	Job Level	NOMINAL
JobRole	Job Role	NOMINAL
JobSatisfaction	Job Satisfaction	NOMINAL

MaritalStatus	Marital Status	NOMINAL
MonthlyIncome	the amount of money employees are paid per month	INTERVAL
NumCompaniesWorked	Number of companies previously worked	INTERVAL
Over Time	Over Time	NOMINAL
PercentSalaryHike	Salary hike	INTERVAL
PerformanceRating	Performance Rating	INTERVAL
StandardHours	Standard Hours	INTERVAL
StockOptionLevel	Stock Option Level	INTERVAL
TotalWorkingYears	Number of year employee worked in his total career	INTERVAL
TrainingTimesLastYear	Times a particular employee trained	INTERVAL
WorkLifeBalance	Work Life Balance	INTERVAL
YearsAtCompany	Year worked in the company	INTERVAL
YearsInCurrentRole	Years worked in current role	INTERVAL
YearsSinceLastPromotion	Years since last promotion	INTERVAL
YearsWithCurrManager	Team worked with current manager	INTERVAL

1.5 Data Preprocessing:

Following steps are performed for Data Preprocessing –

- 1. We changed the data format of Education Column from 1,2,3,4,5 to 1 'Below College' 2 'College' 3 'Bachelor' 4 'Master' 5 'Doctor'
- 2. We changed the data format of Environment Satisfaction from 1,2,3,4,5 to 1 'Low' 2 'Medium' 3 'High' 4 'Very High'.
- 3. We changed the data format of Job Involvement from 1,2,3,4,5 to 1 'Low' 2 'Medium' 3 'High' 4 'Very High'.

4. Removed Columns: Employee Number (Not relevant), Standard Hours (unary data), over 18 (Unary data), Employee Count (Unary Data), Monthly Rate (Field Context is Not Discussed), Relationship Satisfaction (Field Context is Not Discussed), Daily Rate (Field Context is Not Discussed) which seems to be out of context in finding Attrition Rate.

After Preprocessing

5. Data summary

Summarization of the dataset. We can see that there are total of 1470 rows and 35 columns in our data set.

6. Final Data Preprocessing:

Firstly, we imported the file. As there were no missing values in our dataset, we didn't perform data impute. Also, there was no need of using the data replacement node as there were no requirement of replacing the data. So we directly connected the File import node to StatExplore node.

7. Data partition

In data mining, the quality of Model generalization is assessed by partitioning the data source. A portion of the data, from the project called the *training data set*, is used for initial model fitting. The remaining is reserved for empirical validation of the dataset and is often split into two parts: validation data and test data. The *validation data set* is mainly used to prevent a modeling node from overfitting the training data. The final *test data set* is used for assessment of the model. We partitioned the data as, 50 % for training and 50% for validation.

2. Predictive Analysis:

Attrition rate is predicted based on different input variables. Since our target variable – attrition is binary Yes/No, we have used four different models for predictive analysis:

- 1. Decision Tree
- 2. Logistic Regression
- 3. Neural Network
- 4. Gradient Boosting

2.1 Decision Tree:

To find the important variables in the Dataset we ran decision tree on processed data. We selected the variables based on the 'Variable Importance' table in the output which are Overetime, Totalworkingyears, stockoptionlevel, Yearsatcompany, MonthlyIncome the results are as follow:

Varia	ble Importa	nce					
							Ratio of
			N	umber of			Validation
			ន	plitting		Validation	to Training
Varia	ble Name	Label		Rules	Importance	Importance	Importance
0verT	ime	OverTime		1	1.0000	1.0000	1.0000
Dista	nceFromHome	DistanceFr	omHome	1	0.9640	0.0000	0.0000
Stock	OptionLevel	StockOption	nLevel	1	0.8543	0.6705	0.7848
Total	WorkingYear	s TotalWorki	ngYears	1	0.6139	0.3461	0.5638
Tree :	Leaf Report	;	Training		Validation		
Tree :	Leaf Report	; Training	Training Percent	Validation	Validation Percent		
	Leaf Report Depth		-	Validation Observations			
Node	•	Training	Percent		Percent		
Node Id	Depth	Training Observations	Percent YES	Observations	Percent YES		
Node Id 3	Depth 1	Training Observations 525	Percent YES 0.10	Observations 529	Percent YES 0.11		
Node Id 3 5	Depth 1 2	Training Observations 525 99	Percent YES 0.10 0.15	Observations 529 106	Percent YES 0.11 0.19		

Confusion Matrix:

Confusion matrix is calculated from Classification table present in the output.

Event Classification Table							
Data Role=	TRAIN Target	=Attrition T	arget Label=Attrition				
False Negative	True Negative	False Positive	True Positive				
92	613	3	27				
Data Role=	VALIDATE Tar	get=Attritio	n Target Label=Attrition				
False	True	False	True				
Negative	Negative	Positive	Positive				
97	597	20	21				

From above we can plot confusion matrix as below -

		Predicted			
		Positive	Negative		
-	Positive	21	20		
Actual	Negative	97	597		

Using Confusion Matrix, the Accuracy of the model is calculated using the following formula -

$$Accuracy = \frac{(597 + 21)}{(21 + 20 + 97 + 597)}$$

Accuracy of the model is 0.8408 i.e. 84.08%

2.2 Logistic Regression:

The skewness in the data set will affect the overall prediction of Attrition rate. To avoid it, we performed some data transformations on the variables which affect the target variable to reduce the skewness of the data. For performing the transformation, we used the available Transformation node in the SAS Enterprise Miner. Below are the results of transformations performed which led us to the best results.

Source A	Method	Variable Name	Formula	Number of Levels	Non Missing	Missing	Minimu m	Maximum	Standar d Deviatio n	Mean	Skewness	Kurtosis	Label
Input	Original	DistanceFromH			735	0	1	29	8.020	8.994	0.973457	-0.1641	DistanceFromHome
Input	Original	Monthlylncome			735	0	10	19926	4562	6382	1.417929	1.171247	Monthlylncome
Input	Original	PercentSalaryHike			735	0	11	25	3.656	15.34	0.751964	-0.37501	PercentSalaryHike
Input	Original	TotalWorkingYe			735	0	0	40	7.742	11.12	1.227129	1.302885	TotalWorkingYears
Input	Original	YearsAtCompany			735	0	0	37	5.941	6.940	1.766833	4.129705	YearsAtCompany
Input	Original	YearsInCurrentR			735	0	0	18	3.515	4.239	0.787486	0.088087	YearsInCurrentRole
Input	Original	YearsSinceLast			735	0	0	15	3.287	2.269	1.930556	3.383104	YearsSinceLastPro
Output	Computed	LOG DistanceF	log(DistanceFro		735	0	0.69	3.401197	0.861	1.957	-0.00757	-1.24932	Transformed: Dista
Output	Computed	LOG Monthlylnc	log(MonthlyInco		735	0	6.99	9.899831	0.646	8.544	0.33161	-0.65311	Transformed: Month
Output	Computed	LOG PercentSa	log(PercentSala		735	0	2.48	3.258097	0.214	2.770	0.435944	-0.85824	Transformed: Perce
Output	Computed	LOG YearsAtCo	log(YearsAtCom		735	0	0	3.637586	0.744	1.813	-0.23273	-0.25149	Transformed: Years
Output	Computed	LOG YearsInCu	log(YearsInCurr		735	0	0	2.944439	0.782	1.390	-0.42692	-0.75728	Transformed: Yearsl
Output	Computed	LOG YearsSinc	log(YearsSinceL		735	0	0	2.772589	0.820	0.808	0.676427	-0.68569	Transformed: Years
Output	Computed	OPT TotalWorki	Optimal Binning(. 2		0							Transformed: Total

2.2.1 Logistic Regression with Selection Model as None:

To find the important variables we ran Logistic Regression with selected model as 'None' on processed data. We ranked the variables based on the 'Variable Importance' table in the output.

We found the results as follow:

Type 3 Analy	ysis of E	Effects	
		Wald	
Effect	DF	Chi-Square	Pr > ChiSq
Age	1	1.7482	0.1861
BusinessTravel	2	26.3936	<.0001
DailyRate	1	3.5576	0.0593
Department	0	0.0000	
Education	4	4.0913	0.3938
EducationField	5	2.7511	0.7383
EnvironmentSatisfaction	3	11.9192	0.0077
Gender	1	2.3841	0.1226
HourlyRate	1	2.8954	0.0888
JobInvolvement	3	7.6536	0.0537
JobLevel	4	14.7625	0.0052
JobRole	8	62.1643	<.0001
JobSatisfaction	3	7.8913	0.0483
LOG_DistanceFromHome	1	9.9404	0.0016
LOG_MonthlyIncome	1	0.0070	0.9333
LOG_PercentSalaryHike	1	0.0366	0.8482
LOG_YearsAtCompany	1	0.2770	0.5987
LOG_YearsInCurrentRole	1	6.2065	0.0127
LOG_YearsSinceLastPromotion	1	6.0705	0.0137
MaritalStatus	2	1.5517	0.4603
NumCompaniesWorked	1	10.7107	0.0011
OPT_TotalWorkingYears	1	9.6259	0.0019
OverTime	1	39.2405	<.0001
PerformanceRating	1	0.4619	0.4967
StockOptionLevel	3	13.4906	0.0037
TrainingTimesLastYear	6	8.0732	0.2328
WorkLifeBalance	3	8.9982	0.0293
YearsWithCurrManager	1	0.0390	0.8434

Analysis of Maximum Likelihood Estimates								
				Standard	Wald		Standardized	
Parameter		DF	Estimate	Error	Chi-Square	Pr > ChiSq	Estimate	Exp(Est)
Intercept		1	-3.3715	14.9182	0.05	0.8212		0.034
Age		1	-0.0262	0.0198	1.75	0.1861	-0.1332	0.974
BusinessTravel	Non-Travel	1	-1.7010	0.4893	12.09	0.0005		0.183
BusinessTravel	Travel Frequently	1	1.5697	0.3180	24.37	<.0001		4.805
DailyRate	_	1	-0.00068	0.000360	3.56	0.0593	-0.1501	0.999
Department	Human Resources	1	-1.5265					0.217
Department	Research & Development	1	-1.2125					0.297
Education	Bachelor	1	-0.2945	0.2753	1.14	0.2847		0.745
Education	Below College	1	0.0476	0.3934	0.01	0.9037		1.049
Education	College	1	0.4215	0.3255	1.68	0.1953		1.524
Education	Doctor	1	-0.4365	0.6806	0.41	0.5213		0.646
EducationField	Human Resources	1	-0.1476	1.0778	0.02	0.8910		0.863
EducationField	Life Sciences	1	-0.0160	0.3291	0.00	0.9613		0.984
EducationField	Marketing	1	-0.2618	0.4749	0.30	0.5814		0.770
EducationField	Medical	1	0.1535	0.3445	0.20	0.6559		1.166
EducationField	Other	1	-0.3733	0.5885	0.40	0.5259		0.688
EnvironmentSatisfaction	High	1	-0.0419	0.2310	0.03	0.8560		0.959
EnvironmentSatisfaction	Low	1	0.8773	0.2672	10.78	0.0010		2.404
EnvironmentSatisfaction	Medium	1	-0.3270	0.2755	1.41	0.2353		0.721
Gender	Female	1	-0.2296	0.1487	2.38	0.1226		0.795
HourlyRate		1	0.0127	0.00744	2.90	0.0888	0.1425	1.013
JobInvolvement	High	1	-0.1218	0.2455	0.25	0.6198		0.885
JobInvolvement	Low	1	1.0588	0.4151	6.51	0.0108		2.883
JobInvolvement	Medium	1	0.0180	0.2805	0.00	0.9487		1.018
JobLevel	1	1	-1.7378	79.7404	0.00	0.9826		0.176
JobLevel	2	1	-3.4844	79.7374	0.00	0.9651		0.031
JobLevel	3	1	-1.8382	79.7371	0.00	0.9816		0.159
JobLevel	4	1	-3.5221	79.7409	0.00	0.9648		0.030
JobRole	Healthcare Representative	1	4.7337	89.1916	0.00	0.9577		113.718
JobRole	Human Resources	1	6.1768	89.1923	0.00	0.9448		481.454
JobRole	Laboratory Technician	1	5.0143	89.1908	0.00	0.9552		150.553
JohRole	Manager	1	-20.4138	320.8	0.00	0.9493		0.000
JohRole	Manufacturing Director	1	5.1255	89.1910	0.00	0.9542		168.252
JobRole	Research Director	1	-8.7822	310.3	0.00	0.9774		0.000
JobRole	Research Scientist	1	4.3865	89.1908	0.00	0.9608		80.356
JohRole	Sales Executive	1	2.4881	89.1904	0.00	n. 9777		12,039

By observing the values under column Pr > ChiSq, we can conclude most significant variables — BusinessTravel, JobRole, OverTime.

Confusion Matrix:

We can calculate the Confusion matrix from below table present in the output.

Event Class	sification Ta	able		
Data Role=T	RAIN Target	=Attrition Ta	rget Label=At	ttrition
False Negative	True Negative	False Positive	True Positive	
51	602	14	68	
Data Role=V	ALIDATE Tar	get=Attrition	. Target Labe	l=Attrition
False	True	False	True	
Negative	Negative	Positive	Positive	
54	579	38	64	

From above we can plot confusion matrix as below.

		Predicted	
		Positive	Negative
-	Positive	64	38
Actual	Negative	54	579

We can find the Accuracy of the model from Confusion matrix using following formula.

$$Accuracy = \frac{(64 + 579)}{(64 + 38 + 579 + 54)}$$

Accuracy of the model is 0.8748 i.e. 87.48%

2.2.2 Logistic Regression- Forward Regression:

To find the important variables we ran Logistic Regression with selected model as 'Forward' on processed data. We selected the variables based on the 'Variable Importance' table in the output.

We found the results as follow:

Type 3 Analysis of Effects

Effect	DF	Wald Chi-Square	Pr > ChiSq
BusinessTravel	2	24.4892	<.0001
EnvironmentSatisfaction	3	11.4699	0.0094
JobInvolvement	3	12.9764	0.0047
JobLevel	4	13.5748	0.0088
JobRole	8	14.3600	0.0729
JobSatisfaction	3	8.9944	0.0294
LOG_DistanceFromHome	1	9.4195	0.0021
NumCompaniesWorked	1	10.1846	0.0014
OPT_TotalWorkingYears	1	21.7537	<.0001
OverTime	1	40.5495	<.0001
StockOptionLevel	3	29.3042	<.0001
WorkLifeBalance	3	7.6682	0.0534

				Standard	Wald		Standardized	
Parameter		DF	Estimate	Error	Chi-Square	Pr > ChiSq	Estimate	Exp(Est)
Intercept		1	-3.7622	21.6750	0.03	0.8622		0.023
BusinessTravel	Non-Travel	1	-1.3888	0.4523	9.43	0.0021		0.249
BusinessTravel	Travel_Frequently	1	1.3459	0.2897	21.58	<.0001		3.842
EnvironmentSatisfaction	High	1	-0.0580	0.2121	0.07	0.7845		0.944
EnvironmentSatisfaction	Low	1	0.7618	0.2350	10.51	0.0012		2.142
EnvironmentSatisfaction	Medium	1	-0.2922	0.2572	1.29	0.2560		0.747
JobInvolvement	High	1	-0.2287	0.2176	1.10	0.2934		0.796
JobInvolvement	Low	1	1.2649	0.3763	11.30	0.0008		3.543
JobInvolvement	Medium	1	0.00512	0.2571	0.00	0.9841		1.005
JobLevel	1	1	-1.3502	34.9873	0.00	0.9692		0.259
JobLevel	2	1	-2.9978	34.9846	0.01	0.9317		0.050
JobLevel	3	1	-1.7626	34.9850	0.00	0.9598		0.172
JobLevel	4	1	-2.5716	34.9882	0.01	0.9414		0.076
JobRole	Healthcare Representative	1	3.2809	44.3336	0.01	0.9410		26.599
JobRole	Human Resources	1	4.2277	44.3331	0.01	0.9240		68.557
JobRole	Laboratory Technician	1	3.5336	44.3319	0.01	0.9365		34.248
JobRole	Manager	1	-18.0457	218.1	0.01	0.9341		0.000
JobRole	Manufacturing Director	1	3.7260	44.3328	0.01	0.9330		41.512
JobRole	Research Director	1	-8.1876	137.7	0.00	0.9526		0.000
JobRole	Research Scientist	1	3.0920	44.3321	0.00	0.9444		22.020
JobRole	Sales Executive	1	4.8264	44.3312	0.01	0.9133		124.756
JobSatisfaction	1	1	0.5168	0.2300	5.05	0.0246		1.677
JobSatisfaction	2	1	-0.0626	0.2440	0.07	0.7976		0.939
JobSatisfaction	3	1	0.1434	0.2066	0.48	0.4878		1.154
LOG_DistanceFromHome		1	0.5002	0.1630	9.42	0.0021	0.2375	1.649
NumCompaniesWorked		1	0.1664	0.0521	10.18	0.0014	0.2348	1.181
OPT_TotalWorkingYears	01:1ow-2.5	1	1.0219	0.2191	21.75	<.0001		2.779
OverTime	No	1	-0.8780	0.1379	40.55	<.0001		0.416
StockOptionLevel	0	1	0.7785	0.2224	12.25	0.0005		2.178
StockOptionLevel	1	1	-0.8631	0.2600	11.02	0.0009		0.422
StockOptionLevel	2	1	-0.3725	0.3700	1.01	0.3140		0.689
WorkLifeBalance	1	1	0.7858	0.3948	3.96	0.0465		2.194
WorkLifeBalance	2	1	-0.1084	0.2583	0.18	0.6747		0.897
WorkLifeBalance	3	ì	-0.5653	0.2192	6.65	0.0099		0.568

By observing the values under column Pr > ChiSq, we can conclude most significant variables – BusinessTravel, OPT_TotalWorkingYears, OverTime, StockOptionLevel.

Confusion Matrix:

We can calculate the Confusion matrix from below table present in the output.

Event Classification Table						
Data Role=T	TRAIN Target	=Attrition Ta	arget Label=A	ttrition		
False Negative	True Negative	False Positive	True Positive			
62	605	11	57			
Data Role=V	ALIDATE Tar	get=Attritior	n Target Labe.	l=Attritior		
False	True	False	True			
Negative	Negative	Positive	Positive			
68	589	28	50			

From above we can plot confusion matrix as below.

		Predicted	
		Positive	Negative
-	Positive	50	28
Actual	Negative	68	589

We can find the Accuracy of the model from Confusion matrix using following formula.

$$Accuracy = \frac{(50 + 589)}{(50 + 589 + 68 + 28)}$$

Accuracy of the model is 0.8694 i.e. 86.94%

2.2.3 Logistic Regression – Backward Regression:

To find the important variables we ran Logistic Regression with Selected model as 'Backward' on processed data. We selected the variables based on the 'Variable Importance' table in the output.

We found the results as follow:

Type 3 Anal	ysis of 1	Effects	
		Wald	
Effect	DF	Chi-Square	Pr > ChiSq
Age	1	1.7482	0.1861
BusinessTravel	2	26.3936	<.0001
DailyRate	1	3.5576	0.0593
Department	0	0.0000	
Education	4	4.0913	0.3938
EducationField	5	2.7511	0.7383
EnvironmentSatisfaction	3	11.9192	0.0077
Gender	1	2.3841	0.1226
HourlyRate	1	2.8954	0.0888
JobInvolvement	3	7.6536	0.0537
JobLevel	4	14.7625	0.0052
JobRole	8	62.1643	<.0001
JobSatisfaction	3	7.8913	0.0483
LOG_DistanceFromHome	1	9.9404	0.0016
LOG_MonthlyIncome	1	0.0070	0.9333
LOG_PercentSalaryHike	1	0.0366	0.8482
LOG_YearsAtCompany	1	0.2770	0.5987
LOG_YearsInCurrentRole	1	6.2065	0.0127
LOG_YearsSinceLastPromotion	1	6.0705	0.0137
MaritalStatus	2	1.5517	0.4603
NumCompaniesWorked	1	10.7107	0.0011
OPT_TotalWorkingYears	1	9.6259	0.0019
OverTime	1	39.2405	<.0001
PerformanceRating	1	0.4619	0.4967
StockOptionLevel	3	13.4906	0.0037
TrainingTimesLastYear	6	8.0732	0.2328
WorkLifeBalance	3	8.9982	0.0293
YearsWithCurrManager	1	0.0390	0.8434

	Analy	sis of	Maximum Like	elihood Estim	nates			
				Standard	Wald		Standardized	
Parameter		DF	Estimate	Error	Chi-Square	Pr > ChiSq	Estimate	Exp(Est)
Intercept		1	-3.3715	14.9182	0.05	0.8212		0.034
Age		1	-0.0262	0.0198	1.75	0.1861	-0.1332	0.974
BusinessTravel	Non-Travel	1	-1.7010	0.4893	12.09	0.0005		0.183
BusinessTravel	Travel Frequently	1	1.5697	0.3180	24.37	<.0001		4.805
DailyRate	= -	1	-0.00068	0.000360	3.56	0.0593	-0.1501	0.999
Department	Human Resources	1	-1.5265					0.217
Department	Research & Development	1	-1.2125					0.297
Education	Bachelor	1	-0.2945	0.2753	1.14	0.2847		0.745
Education	Below College	1	0.0476	0.3934	0.01	0.9037		1.049
Education	College	1	0.4215	0.3255	1.68	0.1953		1.524
Education	Doctor	1	-0.4365	0.6806	0.41	0.5213		0.646
EducationField	Human Resources	1	-0.1476	1.0778	0.02	0.8910		0.863
EducationField	Life Sciences	1	-0.0160	0.3291	0.00	0.9613		0.984
EducationField	Marketing	1	-0.2618	0.4749	0.30	0.5814		0.770
EducationField	Medical	1	0.1535	0.3445	0.20	0.6559		1.166
EducationField	Other	1	-0.3733	0.5885	0.40	0.5259		0.688
EnvironmentSatisfaction	High	1	-0.0419	0.2310	0.03	0.8560		0.959
EnvironmentSatisfaction	Low	1	0.8773	0.2672	10.78	0.0010		2.404
EnvironmentSatisfaction	Medium	1	-0.3270	0.2755	1.41	0.2353		0.721
Gender	Female	1	-0.2296	0.1487	2.38	0.1226		0.795
HourlyRate		1	0.0127	0.00744	2.90	0.0888	0.1425	1.013
JobInvolvement	High	1	-0.1218	0.2455	0.25	0.6198		0.885
JobInvolvement	Low	1	1.0588	0.4151	6.51	0.0108		2.883
JobInvolvement	Medium	1	0.0180	0.2805	0.00	0.9487		1.018
JobLevel	1	1	-1.7378	79.7404	0.00	0.9826		0.176
JobLevel	2	1	-3.4844	79.7374	0.00	0.9651		0.031
JobLevel	3	1	-1.8382	79.7371	0.00	0.9816		0.159
JobLevel	4	1	-3.5221	79.7409	0.00	0.9648		0.030
JobRole	Healthcare Representative	1	4.7337	89.1916	0.00	0.9577		113.718
JobRole	Human Resources	1	6.1768	89.1923	0.00	0.9448		481.454
JobRole	Laboratory Technician	1	5.0143	89.1908	0.00	0.9552		150.553
JobRole	Manager	1	-20.4138	320.8	0.00	0.9493		0.000
JobRole	Manufacturing Director	1	5.1255	89.1910	0.00	0.9542		168.252
JobRole	Research Director	1	-8.7822	310.3	0.00	0.9774		0.000
JobRole	Research Scientist	1	4.3865	89.1908	0.00	0.9608		80.356

By observing the values under column Pr > ChiSq, we can conclude most significant variables – BusinessTravel, JobRole, OverTime.

Confusion Matrix:

We can calculate the Confusion matrix from below table present in the output.

Event Classification Table						
Data Role=TRAIN Target=Attrition Target Label=Attrition						
False	True	False	True			
Negative	Negative	Positive	Positive			
66	599	17	53			
Data Role=N	/ALIDATE Tar	get=Attrition	n Target Label=Attrition			
False	True	False	True			
Negative	Negative	Positive	Positive			
70	589	28	48			

From above we can plot confusion matrix as below.

		Predicted	
		Positive	Negative
а	Positive	48	28
Actual	Negative	70	589

We can find the Accuracy of the model from Confusion matrix using following formula.

$$Accuracy = \frac{(48 + 589)}{(48 + 589 + 70 + 28)}$$

Accuracy of the model is 0.8667 i.e. 86.67%

2.2.4 Logistic Regression – Step-wise Regression:

To find the important variables we ran Logistic Regression with Selected model as 'Step-Wise' on processed data. We selected the variables based on the 'Variable Importance' table in the output.

We found the results as follow:

Type 3	Analysis of	Effects	
Effect	DF	Wald Chi-Square	Pr > ChiSq
BusinessTravel	2	19.6184	<.0001
EnvironmentSatisfaction	3	12.9549	0.0047
JobInvolvement	3	13.2312	0.0042
OPT_TotalWorkingYears	1	34.2379	<.0001
OverTime	1	41.9449	<.0001
StockOptionLevel	3	26.9624	<.0001

Analysis	οf	${\tt Maximum}$	Likelihood	Estimates
----------	----	-----------------	------------	-----------

				Standard	Wald		Standardized	
Parameter		DF	Estimate	Error	Chi-Square	Pr > ChiSq	Estimate	Exp(Est)
Intercept		1	-0.9039	0.2963	9.31	0.0023		0.405
BusinessTravel	Non-Travel	1	-1.2478	0.4259	8.58	0.0034		0.287
BusinessTravel	Travel_Frequently	1	1.1186	0.2653	17.78	<.0001		3.061
EnvironmentSatisfaction	High	1	0.000494	0.1913	0.00	0.9979		1.000
EnvironmentSatisfaction	Low	1	0.7004	0.2093	11.20	0.0008		2.015
EnvironmentSatisfaction	Medium	1	-0.2684	0.2366	1.29	0.2567		0.765
JobInvolvement	High	1	-0.2885	0.1977	2.13	0.1445		0.749
JobInvolvement	Low	1	1.1906	0.3413	12.17	0.0005		3.289
JobInvolvement	Medium	1	-0.1086	0.2307	0.22	0.6378		0.897
OPT_TotalWorkingYears	01:1ow-2.5	1	1.0210	0.1745	34.24	<.0001		2.776
OverTime	No	1	-0.7814	0.1206	41.94	<.0001		0.458
StockOptionLevel	0	1	0.6959	0.1980	12.35	0.0004		2.006
StockOptionLevel	1	1	-0.7094	0.2359	9.04	0.0026		0.492
StockOptionLevel	2	1	-0.3244	0.3351	0.94	0.3330		0.723

By observing the values under column Pr > ChiSq, we can conclude most significant variables – BusinessTravel, OPT_TotalWorkingYears, OverTime, StockOptionLevel.

Confusion Matrix:

We can calculate the Confusion matrix from below table present in the output.

Event Clas	Event Classification Table						
Data Role=	Data Role=TRAIN Target=Attrition Target Label=Attrition						
False Negative	True Negative	False Positive	True Positive				
82	598	18	37				
Data Role=	VALIDATE Tar	get=Attritio	n Target Label=Attrition				
False	True	False	True				
Negative	Negative	Positive	Positive				
87	603	14	31				

From above we can plot confusion matrix as below.

		Predicted	
		Positive	Negative
a	Positive	31	14
Actual	Negative	87	603

We can find the Accuracy of the model from Confusion matrix using following formula.

$$Accuracy = \frac{(31+603)}{(31+603+14+87)}$$

Accuracy of the model is 0.8626 i.e. 86.26%

2.3 Neural Network:

We ran the Neural Network model and found the misclassification rate as follows –

Confusion Matrix: We can calculate the Confusion matrix from below table present in the output.

Event Classification Table				
Data Role=7	TRAIN Target	=Attrition Ta	arget Label=A	ttrition
False	True	False	True	
Negative	Negative	Positive	Positive	
40	607	9	79	
Data Role=V	VALIDATE Tar	get=Attrition	n Target Labe	l=Attrition
		-	_	
False	True	False	True	
Negative	Negative	Positive	Positive	
-	-			
63	582	35	55	

From above we can plot confusion matrix as below.

		Predicted		
		Positive	Negative	
а	Positive	55	35	
Actual	Negative	63	582	

We can find the Accuracy of the model from Confusion matrix using following formula.

$$Accuracy = \frac{(55 + 582)}{(55 + 582 + 63 + 35)}$$

Accuracy of the model come to 0.8667 i.e. 86.67%

2.4 Gradient Boosting:

To find the important variables we ran Gradient Boosting on processed data. We selected the variables based on the 'Variable Importance' table in the output which are OverTime, StockOptionLevel, JobRole, MonthlyIncome, Age. We found the results as follow:

Vari:	ariable Importance					
0bs	NAME	LABEL	NRULES	IMPORTANCE	VIMPORTANCE	RATIO
1	OverTime	OverTime	9	1.00000	1.00000	1.00000
2	StockOptionLevel	StockOptionLevel	10	0.90263	0.52587	0.58260
3	JobRole	JobRole	15	0.79289	0.35379	0.44621
4	MonthlyIncome	MonthlyIncome	5	0.71741	0.60092	0.83762
5	Age	Age	7	0.58877	0.38341	0.65120
6	YearsWithCurrManager	YearsWithCurrManager	4	0.57837	0.49712	0.85951
7	TotalWorkingYears	TotalWorkingYears	4	0.57561	0.39130	0.67979
8	EnvironmentSatisfaction	EnvironmentSatisfaction	6	0.52932	0.17700	0.33439
9	BusinessTravel	BusinessTravel	4	0.48650	0.04798	0.09862
10	DistanceFromHome	DistanceFromHome	6	0.46867	0.18800	0.40114
11	JobLevel	JobLevel	5	0.42134	0.37067	0.87975
12	NumCompaniesWorked	NumCompaniesWorked	4	0.40055	0.17049	0.42564
13	JobSatisfaction	JobSatisfaction	5	0.38929	0.26344	0.67672
14	DailyRate	DailyRate	4	0.31169	0.02109	0.06765
15	YearsInCurrentRole	YearsInCurrentRole	1	0.30849	0.00000	0.00000
16	PercentSalaryHike	PercentSalaryHike	3	0.30528	0.00000	0.00000
17	MaritalStatus	MaritalStatus	2	0.29358	0.00000	0.00000
18	YearsAtCompany	YearsAtCompany	1	0.28512	0.27043	0.94849
19	TrainingTimesLastYear	TrainingTimesLastYear	2	0.28065	0.00000	0.00000
20	JobInvolvement	JobInvolvement	1	0.22837	0.15801	0.69189
21	Education	Education	1	0.19052	0.00000	0.00000
22	YearsSinceLastPromotion	YearsSinceLastPromotion	1	0.15726	0.00000	0.00000

Fit Statistics				
Target=Attri	tion Target Label=Attrition			
Fit				
Statistics	Statistics Label	Train	Validation	
NOBS	Sum of Frequencies	735.00	735.00	
sumw	Sum of Case Weights Times Freq	1470.00	1470.00	
MISC	Misclassification Rate	0.13	0.14	
MAX	Maximum Absolute Error	0.96	0.97	
SSE	Sum of Squared Errors	134.68	151.12	
ASE	Average Squared Error	0.09	0.10	
RASE	Root Average Squared Error	0.30	0.32	
DIV	Divisor for ASE	1470.00	1470.00	
DFT	Total Degrees of Freedom	735.00		

Confusion Matrix:

We can calculate the Confusion matrix from Classification table present in the output.

Event Classification Table				
Data Role=	TRAIN Target	=Attrition Ta	rget Label= <i>i</i>	Attrition
False Negative	True Negative	False Positive	True Positive	
Negacive	Megacive	10510100	10010100	
91	615	1	28	
Data Role=	VALIDATE Tar	get=Attrition	Target Labe	el=Attrition
False	True	False	True	
Negative	Negative	Positive	Positive	
98	615	2	20	

From above we can plot confusion matrix as below -

		Predicted		
		Positive	Negative	
а	Positive	20	2	
Actual	Negative	98	615	

We can find the Accuracy of the model from Confusion matrix using following formula -

$$Accuracy = \frac{(20 + 615)}{(20 + 615 + 98 + 2)}$$

Accuracy of the model is 0.8639 i.e. 86.39%

2.5 Final Model:

Following snapshot shows the final model. It involves all the nodes used for Data preprocessing, Descriptive Analysis and Predictive Modeling.

2.5.1 Model Comparison:

We ran 7 models/Classifiers on the data set. We connected the Classifiers to Model Comparison node to find the best suitable model to find the attrition rate. Considering the misclassification rates for Train and Validation data sets and accuracy calculated using Confusion Matrix as well as misclassification rate, we can conclude that 'Regression with all inputs' is the best model for predicting attrition.

Below is the snapshot of Model Comparison Output -

3. Conclusion:

After running 7 statistical models on the processed dataset, we found that OverTime, BusinessTravel, StockOptionLevel are the three significant variables which have greater impact on an Employee leaving a company. Taking Confusion Matrix and Misclassification Rate. We concluded that for predicting the likelihood of attrition, **Regression with Selection Model None** is the best possible model.

4. References:

 $\frac{\text{http://support.sas.com/documentation/cdl/en/emgsj/66018/HTML/default/viewer.htm\#p03iy98sk0c9bvn1r6x7ppx8uj08.htm}{}$

https://support.sas.com/kb/24/205.html

https://support.sas.com/resources/papers/proceedings15/SAS1965-2015.pdf

http://support.sas.com/publishing/pubcat/chaps/57587.pdf