Wireless Phone GSM tracking

Denis Foo Kune,

John Koelndorfer, Nick Hopper, Yongdae Kim

Can someone track your phone?

- GPS
 - Need access to phone
- Cell network trilateration/triangulation
 - Multiple base stations measure the RSSI for a phone
 - Estimate location from signal strength
 - Need access to service provider database
- WiFi
 - Trilateration works
 - A laptop can measure signal strength of broadcast messages
 - A commercially available WiFi card can listen to those messages
 - Need to know IEEE MAC address

What about the cell towers?

- Large array of towers broadcasting messages
 - Can those messages reveal a phone's location?
- Given a person's phone number
 - can we locate the tower they are attached to in a GSM network?
- No collaboration from the service provider.
- No support from apps.
- No GPS, trilateration or WiFi
- GSM: dominant protocol worldwide
 - Analysis of layer 2/3 messages only.

Cellular network timeline

GSM Today

- 4.2 Billion worldwide users in 2010
 - United Nations NTU estimate
 - 5.3 Billion mobile users total
 - Includes users on CDMA, UMTS, LTE.
- Dominant protocol outside of the US
- Still widely used worldwide (including US)

Recent works and attacks on GSM

- Security of GSM, Nohl '09, '10, '11
 - Breaking the A5/1 cipher (2009)
 - Intercepting GSM call (2010)
 - Impersonating a mobile station (2011)
- Flooding attack using the SMS protocol
 - Traynor '05
- SMS of death, Muliner '11
- Location Based Services
 - Application layer of smart platforms, Cheng '06, Kalnis '07
- Location information from service provider
 - Triangulation/trilateration, Caffery-Stuber '98
- IP layer location information inference
 - Might not work for large networks behind NATs, Krishnamurthi '04

Cellular network architecture

University of Minnesota

Driven to Discover[™]

The GSM paging procedure

Building the measurement platform

OsmocomBB (Open Source Mobile Communication Baseband)

- http://bb.osmocom.org
- Open source software -- free GSM implementation
- Served as the base for our location leak attack
 - Allows us to see paging & immediate assignment messages on frequencies of our choosing
- Custom firmware handles OSI layer 1 on phone, layers 2 and 3 handled on laptop
- Targetted for European users.

Basic mods on OsmocomBB

- Mods based on Phil Hug and Silvain Munaut
- PCS protocol on the 1900 MHz band
 - Frequencies in use in the U.S.
- SIM reader
 - allows reading network information from SIM card
- Uplink sniffing
 - Switch to uplink frequencies and wait for burst indication

Custom mods

- 100 lines of code changed to get Osmocom working
 - Minimal changes from the attacker
- Other nice changes
 - High resolution timestamp for output
 - Following specific immediate assignments
 - Sending uplink data to Wireshark for examination
- Heavy lifting with Perl scripts
 - Scanning frequencies with directional antenna
 - TMSI deanonymization

OsmocomBB live

The TMobile G1

Copyright 2008. Portelligent is a registered TM of UBM LLC.

Hacking the Android Kernel

- Great tool to measure the layout of cell towers
- Custom kernel driver, output to a serial device
- Intercept messages to / from the baseband chip in the kernel.
- Findings:
 - Possible to intercept network traffic from OSI layer
 3 and up
 - Baseband chips controlled by Hayes AT commands. GSM extensions, 3GPP TS 27,007

Android Radio Interface Layer

Hayes AT Commands revived

- ATDT phone number
 - Calls that phone number
 - Just like old school modems
- Tmobile G1
 - Baseband 62.33.20.08H with Qualcomm RTR6785 transceiver
- iPhone 3G
 - Baseband 06.15.00 with Infeneon transceiver.
- Any other interesting commands?
 - AT+CSQ

The AT+CSQ return message

Other development boards (Sparkfun)

 Responds to AT commands from 3GPP TS 27.007

GSM paging channel observations

	T-Mobile LAC 747b	AT&T LAC 7d11
Paging Requests – IMSI	27,120	8,897
Paging Requests – TMSI	257,159	84,526
Paging Requests Type 1	284,279	91,539
Paging Requests Type 2	1,635	26
Paging Requests Type 3	0	1
Observation period	24 hours	24 hours

Pages and human activity

University campus

 Day of the week during the semester

Time/min, April 2011, CDT

Phone number-TMSI mapping

No recovered TMSI

Silent paging

- Delay between the call initiation and the paging request
 - 3 seconds

Time/seconds

- Median delay between call initiation and ring
 - 6 seconds

Time/seconds

Bounding the LAC

- LACs can be very large.
 - T-Mobile LAC 747d: 100km²
- Used a wall-following algorithm, road permitting.
- Call to MS on NW corner.
- Observed paging request on SE corner.

The GSM paging procedure

Same tower test

 Delay between the paging request and the immediate assignment message.

Time difference between paging and IA messages / seconds

Finding individual towers

- Find individual towers with a hill-climbing algorithm.
 - Non-uniform RF attenuation.
 - Overshoot by 50m to avoid local maximum.

Where is the phone likely to be?

Directional antenna

- Use existing OsmocomBB code to perform frequency scan
- Sort list of frequencies by RSSI
- Attempt to camp on each frequency
- Record which frequencies contain cells and in which direction the cell is located

Directional antenna experiments

- Goal: determine how far we can hear cell broadcast messages
- Method: from a clear vantage point, scan through frequencies at intervals of 15 degrees to map nearby cells
- Findings: we are able to map cells in a 200km² area

Coverage with one antenna

John's new "haircut"

Following a walking person

- Goal: determine if location testing is feasible on a moving target
- Method: using a directional antenna and high vantage point, follow the procedures for finding a victim's TMSI
- Findings: following a walking person is feasible; following a moving vehicle would be difficult
- Hard to follow a vehicle with only 1 antenna.

Tracking users in motion

Defenses

- Page multiple areas.
 - Less than 0.6% of paging requests are not type 1.
 - Available bandwidth for additional pages.
 - Human trajectories are predictable.
- Continuous time mixes.
 - Switch TMSI at least once per page.
 - phone/TMSI bitwise unlinkable.
 - Prevent traffic analysis.
 - Cover traffic.
 - Add exponential delay to paging requests.

How do we prevent those attacks?

- Page multiple areas
- Make phone/TMSI bitwise unlinkable
- Prevent traffic analysis
 - Cover traffic
 - Change distribution of egress traffic

Paging multiple LACs

- Less than 0.6% of paging requests are not type 1
 - Available bandwidth for additional pages
- Human trajectories are very predictable
 - Gonzales, Hidalgo, Barabasi '05

Applying known anonymity schemes

- Continuous time mixes applied to the paging channel
 - Arrival rate follows a Poisson distribution
 - Change departure rate to an exponential distribution

Conclusion

- Systems with broadcast paging protocols could leak location information.
- Leaks observable with
 - readily available equipment equipment,
 - no (direct) help from the service provider.
- Proposed low cost fixes.
- Responsible disclosures.
 - 3GPP, Nokia, AT&T research

Questions

- foo@cs.umn.edu
- http://www.cs.umn.edu/~foo

