串行外设接口协议SPI模式

主要内容

- SPI总线协议
 - 总线结构
 - 工作模式
 - 数据传输时序
- MSP430 SPI模块
 - 模块的特性
 - 主从机模式
 - SPI模块寄存器

SPI总线介绍

- SPI接口是Motorola首先提出的全双工三/四线同步串行外围接口,采用主从模式架构,支持多从设备应用,一般只支持单主设备。
- 利用3~4条线完成两个芯片之间的双工高速通信。两条数据线用于收发数据,一条时钟线用于同步,一条作为从机选择。
- 时钟由主设备控制,当主机发送一字节数据(通过主出从 入MOSI引脚)的同时,从机返回一字节数据(通过主入 从出MISO引脚)。
- 总线上允许连接多个设备,在同一时刻只允许一个主机操作总线,并且同时只能与一个从机通信。主机控制数据的传输过程。
- 目前应用中的数据传输速率可达Mbps级(每秒传输的位数,波特率)。

SPI总线结构

SPI总线可在软件的控制下构成各种简单的或复杂的系统:

- 1个主MCU和几个从MCU
- 几个从MCU相互连接构成多主机系统(分布式系统)
- 1个主MCU和1个或几个从I/O设备 <常用>

SPI典型结构如下:

SPI工作模式

主机模式:

当器件作为主机时,使用一个IO引脚拉低相应从机的选择引脚(STE),传输的起始由主机发送数据来启动,时钟(SCLK)信号由主机产生。通过MOSI发送数据,同时通过MISO引脚接收从机发出的数据。

从机模式:

当器件作为从机时,传输在从机选择引脚(STE)被主机拉低后开始,接收主机输出的时钟信号,在读取主机数据的同时通过MISO引脚输出数据。

SPI电气连接

以 4 线SPI为例, 其通信时需要的4个引脚分别为:

引脚名称	类型	描述	
SCLK	输入/输出	串行时钟,用于同步SPI接口间数据传输的时钟信号。该时钟信号总是由主机驱动,并且从机接收	
STE	输入	从机选择,SPI从机选择信号是一个低有效信号,用于指示被选择参与数据传输的从机。每个从机都有各自特定的从机选择输入信号。	
MISO	输入/输出	主入从出,MISO信号是一个单向的信号,它将数据由从机传 输到主机。	
MOSI	输入/输出	主出从入,MOSI信号是一个单向的信号,它将数据从主机传 输到从机。	

STE引脚作用

- STE:从机模式发送接收允许控制引脚,控制多主从系统中的多个从机。该引脚不用于3线SPI操作,可以在4线SPI操作中使多主机共享总线,避免发生冲突。
- 4线SPI操作主模式中, STE的含义如下:
 - SIMO和SCLK被强制进入输入状态
 - SIMO和SCLK正常操作
- 4线SPI操作从模式中,STE的含义如下:
 - 允许从机发送接收数据,SIMO正常操作
 - 禁止从机发送接收数据, SIMO被强制进入输入状态

SPI数据传输

数据传输格式:

通常是高位(MSB)在前,低位(LSB)在后。一些增强型MCU中可以通过软件设置高位在前或低位在前。

下面以8位数据的传输为例,看一下4种不同数据传输格式的时序。首先介绍两个概念:

- 1.时钟极性:表示时钟信号在空闲时是高电平还是低电平。
- 2.时钟相位:决定数据是在SCLK的上升沿采样还是在SCLK的结束沿采样。

SPI传输时序

传输模式

根据时钟极性(CPOL)及相位(CPHA)不同可以组合成4种工作模式:SPI0,SPI1,SP2,SP3.

- (1) SPI0: CPOL=0,CPHA=0
- (2) SPI1: CPOL=0,CPHA=1
- (3) SPI2: CPOL=1,CPHA=0
- (4) SPI3: CPOL=1,CPHA=1

传输模式

时钟极性(CPOL)定义了时钟空闲状态电平,对传输协议 没有重大影响。

• CPOL=0: 时钟空闲状态为低电平。

• CPOL=1: 时钟空闲状态为高电平。

传输模式

- · 时钟相位(CPHA)定义数据的采样时间。
- CPHA=0:在时钟的第一个跳变沿(上升沿或下降沿)进行数据采样。
- CPHA=1:在时钟的第二个跳变沿(上升沿或下降沿)进行数据采样。

SPI接口内部结构

特点

- 优点:
 - (1) 接口简单, 利于硬件设计与实现。
 - (2) 时钟速度快,且没有系统开销。
 - (3) 相对抗干扰能力强,传输稳定。

特点

缺点:

- (1) 缺乏流控制机制,无论主器件还是从器件均不对消息进行确认,主器件无法知道从器件是否繁忙。因此,需要软件弥补,增加了软件开发工作量。
- (2) 没有多主器件协议,必须采用很复杂的软件和外部逻辑来实现多主器件架构。

通用串行通信接口(USCI)模块

- 通用串行通信接口(USCI)模块支持多种串行通信模式。不同的USCI 模块支持不同的模式
- USCI_Ax 模块支持:
 - UART 模式
 - IrDA 通信的脉冲整形
 - LIN 通信的自动波特率检测
 - SPI 模式
- USCI_Bx 模块支持:
 - I2C 模式
 - SPI 模式

MSP430模块特点

MSP430的SPI模块有如下特点:

- 支持3线或4线SPI操作
- 支持7位或8位数据格式
- 接收和发送有单独的移位寄存器
- 接收和发送有独立的缓冲器
- 接收和发送有独立的中断能力
- 时钟的极性和相位可编程
- 主模式的时钟频率可编程
- 传输速率可编程
- 支持连续收发操作
- 支持主从方式

主模式

MSP430 USCI作为主机、外围设备作为从机

从模式

外围设备作为主机,MSP430 USCI作为从机

UCSI串行时序

同步串行通信时序,UCMSB=1

SPI模式下可用的USCI寄存器

USCI_Ax和USCI_Bx都有SPI模块,下面以USCI_Bx为例,介绍相关寄存器

名称	描述	访问	复位值	寄存器访问
UCBxCTLW0	USCI_Bx控制字0	读/写	0001h	字
UCBxBRW	USCI_Bx波特率控制字	读/写	0000h	字
UCBxMCTL	USCI_Bx调制器控制			
UCBxSTAT	USCI_Bx状态寄存器	读/写	00h	字节
UCBxRXBUF	USCI_Bx接收缓存	读/写	00h	字节
UCBxTXBUF	USCI_Bx发送缓存	读/写	00h	字节
UCBxI2COA	USCI_Bx I2C本机地址	读/写	0000h	字
UCBxI2CSA	USCI_Bx I2C从机地址	读/写	0000h	字
UCBxICTL	USCI_Bx中断控制	读/写	0200h	字
UCBxIE	USCI_Bx中断使能	读/写	00h	字节
UCBxIFG	USCI_Bx中断标志	读/写	02h	字节
UCBxIV	USCI_Bx中断向量	读	0000h	字

1	NC		Do not connect with other NC pins	
2	GDR	0	N-Channel MOSFET Gate Drive Control	
3	RESE	I	Current Sense Input for the Control Loop	
4	VGL	С	Negative Gate driving voltage	
5	VGH	С	Positive Gate driving voltage	
6	TSCL	0	I ² C Interface to digital temperature sensor Clock pin	
7	TSDA	I/O	I ² C Interface to digital temperature sensor Data pin	
8	BS1	I	Bus Interface selection pin	Note 5-4
9	BUSY	0	Busy state output pin	Note 5-3
10	RES#	I	Reset signal input. Active Low.	
11	D/C#	I	Data /Command control pin	Note 5-2
12	CS#	I	Chip select input pin	Note 5-1
13	D0	I	Serial Clock pin (SPI)	
14	Dl	I	Serial Data pin (SPI)	
15	VDDIO	P	Power Supply for interface logic pins It should be connected with VCI	
16	VCI	P	Power Supply for the chip	
17	VSS	P	Ground	
18	VDD	С	Core logic power pin VDD can be regulated internally from VCI. A capacitor should be connected between VDD and VSS under all circumstances	
19	VPP	P	Power Supply for OTP Programming	
20	VSH	С	Positive Source driving voltage	
21	PREVGH	С	Power Supply pin for VGH and VSH	
22	VSL	С	Negative Source driving voltage	
23	PREVGL	С	Power Supply pin for VCOM, VGL and VSL	
24	VCOM	С	VCOM driving voltage	
= Inn	ut Pin O=Outout Pi	1/O	= Bi-directional Pin (Input/Output) P = Power Pin C = Canacitor	Pin

I = Input Pin, O =Output Pin, I/O = Bi-directional Pin (Input/Output), P = Power Pin, C = Capacitor Pin

电纸屏2.04寸

课堂任务+作业

课上实验:

指导书中SPI实验内容,下载老师提供代码查看电子纸屏幕显示内容并做记录。

- 要求 (1) 结合给定电子纸屏幕用户说明书和老师课上SPI 通信内容的讲解,学习电子纸屏幕的驱动代码。
 - (2) 记录电子纸屏幕显示内容。
- 作业(选做):
 - (1) 指导书P57页4.4.2节。

谢谢