Deep Learning for Computer Vision

Explaining CNNs: Recent Methods

Vineeth N Balasubramanian

Department of Computer Science and Engineering Indian Institute of Technology, Hyderabad

• Forward pass the data \mathbf{x} , to get $y = f(\mathbf{x})$, where y is DNN's output corresponding to a given class.

NPTEL

¹Simonyan et al, Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps, ICLRW 2014

- Forward pass the data \mathbf{x} , to get $y = f(\mathbf{x})$, where y is DNN's output corresponding to a given class.
- Backward pass to input layer to get the gradient $\frac{\partial y}{\partial x}$.

NPTEL

Vineeth N B (IIT-H) §6.4 Explaining

¹Simonyan et al, Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps, ICLRW 2014

- Forward pass the data \mathbf{x} , to get $y = f(\mathbf{x})$, where y is DNN's output corresponding to a given class.
- Backward pass to input layer to get the gradient $\frac{\partial y}{\partial x}$

Original image (left); Vanilla Gradients Attribution map (right)

Is this enough to explain a Deep Neural Network?

¹Simonyan et al, Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps, ICLRW 2014

- Forward pass the data \mathbf{x} , to get $y = f(\mathbf{x})$, where y is DNN's output corresponding to a given class.
- ullet Backward pass to input layer to get the gradient $rac{\partial}{\partial t}$

Original image (left); Vanilla Gradients Attribution map (right)

Is this enough to explain a Deep Neural Network?

Not always!

¹Simonyan et al, Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps, ICLRW 2014

Saturation Problem!

Illustration of saturation problem

Saturation Problem!

Illustration of saturation problem

• Gradient of h w.r.t both i_1 and i_2 is zero when $i_1+i_2>1$ (causing both gradients and Guided Backprop to be zero)

Saturation Problem!

Illustration of saturation problem

- Gradient of h w.r.t both i_1 and i_2 is zero when $i_1 + i_2 > 1$ (causing both gradients and Guided Backprop to be zero)
- Gradient of y w.r.t. h is negative (causing Guided Backprop and deconvolutional networks to assign zero importance)

• Idea: Instead of gradients, measure difference in output from some 'reference' output (Δt) in terms of difference of input from some 'reference' input (Δx_i) .

²Shrikumar et al, Learning important features through propagating activation differences, ICML 2017

- **Idea**: Instead of gradients, measure difference in output from some 'reference' output (Δt) in terms of difference of input from some 'reference' input (Δx_i) .
- Assigns contribution scores $C_{\Delta x_i \Delta t}$ s.t. $\sum_{i=1}^n C_{\Delta x_i \Delta t} = \Delta t$

²Shrikumar et al, Learning important features through propagating activation differences, ICML 2017

- **Idea**: Instead of gradients, measure difference in output from some 'reference' output (Δt) in terms of difference of input from some 'reference' input (Δx_i) .
- Assigns contribution scores $C_{\Delta x_i \Delta t}$ s.t. $\sum_{i=1}^n C_{\Delta x_i \Delta t} = \Delta t$

²Shrikumar et al, Learning important features through propagating activation differences, ICML 2017

- **Idea**: Instead of gradients, measure difference in output from some 'reference' output (Δt) in terms of difference of input from some 'reference' input (Δx_i) .
- Assigns contribution scores $C_{\Delta x_i \Delta t}$ s.t. $\sum_{i=1}^n C_{\Delta x_i \Delta t} = \Delta t$

DeepLift overcomes saturation problem

²Shrikumar et al, Learning important features through propagating activation differences, ICML 2017

• Idea: Start from output layer L & proceed backwards layer by layer, redistributing the difference of prediction score from baseline, until input layer is reached

- **Idea**: Start from output layer L & proceed backwards layer by layer, redistributing the difference of prediction score from baseline, until input layer is reached
- Notations:
 - $ullet z_{ji} = w_{ji}^{(l+1,l)} x_i^l$: weighted activation of a neuron i onto neuron j in the next layer

- **Idea**: Start from output layer L & proceed backwards layer by layer, redistributing the difference of prediction score from baseline, until input layer is reached
- Notations:
 - ullet $z_{ji} = w_{ji}^{(l+1,l)} x_i^l$: weighted activation of a neuron i onto neuron j in the next layer
 - $\overline{z_{ji}} = w_{ji}^{(l+1,l)} \bar{x}_i^l$: weighted activation of a neuron i onto neuron j in the next layer, when baseline \bar{x} fed as the input.

- Idea: Start from output layer L & proceed backwards layer by layer, redistributing the difference of prediction score from baseline, until input layer is reached
- Notations:
 - ullet $z_{ji} = w_{ji}^{(l+1,l)} x_i^l$: weighted activation of a neuron i onto neuron j in the next layer
 - $\overline{z_{ji}} = w_{ji}^{(l+1,l)} \bar{x}_i^l$: weighted activation of a neuron i onto neuron j in the next layer, when baseline \overline{x} fed as the input.
 - $r_i^{(l)}$: relevance of unit i of layer l.

- Idea: Start from output layer L & proceed backwards layer by layer, redistributing the difference of prediction score from baseline, until input layer is reached
- Notations:

 - $z_{ji}=w_{ji}^{(l+1,l)}x_i^l$: weighted activation of a neuron i onto neuron j in the next layer $\overline{z_{ji}}=w_{ji}^{(l+1,l)}\overline{x}_i^l$: weighted activation of a neuron i onto neuron j in the next layer, when baseline \overline{x} fed as the input.
 - $r_i^{(l)}$: relevance of unit i of layer l.
- $r_i^{(L)}$: $\begin{cases} = \mathsf{y}_i(x) y_i(\bar{x}) \text{ if unit } i \text{ is target unit of interest} \\ = 0 \text{ otherwise} \end{cases}$

5 / 25

- Idea: Start from output layer L & proceed backwards layer by layer, redistributing the difference of prediction score from baseline, until input layer is reached
- Notations:
 - $ullet z_{ji} = w_{ji}^{(l+1,l)} x_i^l$: weighted activation of a neuron i onto neuron j in the next layer
 - $\overline{z_{ji}} = w_{ji}^{(l+1,l)} \bar{x}_i^l$: weighted activation of a neuron i onto neuron j in the next layer, when baseline \overline{x} fed as the input.
 - $r_i^{(l)}$: relevance of unit i of layer l.
- $\bullet \ r_i^{(L)} \colon \begin{cases} = \mathsf{y}_i(x) y_i(\bar{x}) \text{ if unit } i \text{ is target unit of interest} \\ = 0 \text{ otherwise} \end{cases}$
- $r_i^{(l)} = \sum_j \frac{z_{ji} \overline{z_{ji}}}{\sum_{i'} (z_{ji'} \overline{z_{ji'}})} r_j^{(l+1)}$

IG: Integrated Gradients³

Image of Fireboat (left), Vanilla Gradients (right)

³Sundararajan et al, Axiomatic Attribution for Deep Networks, ICML 2017

IG: Integrated Gradients³

Image of Fireboat (left), Vanilla Gradients (right)

Due to saturation problem, vanilla gradients highlight regions irrelevant to fireboat

³Sundararajan et al, Axiomatic Attribution for Deep Networks, ICML 2017

IG: Integrated Gradients³

Image of Fireboat (left), Vanilla Gradients (right)

- Due to saturation problem, vanilla gradients highlight regions irrelevant to fireboat
- IG overcomes problem of saturating gradients by cumulating gradients at different pixel intensities, α 's.

³Sundararajan et al, Axiomatic Attribution for Deep Networks, ICML 2017

Gradients at increasing α values from top-left to bottom-right

Gradients at increasing α values from top-left to bottom-right

• Region of importance is changing with increasing α . To get a more realistic picture of what is going on, cumulate these gradients using **path integral**

• Integrated gradient along i^{th} dimension for input x and baseline x' given by:

$$\mathsf{IG}_i(x) ::= (x_i - x_i') \int_{\alpha=0}^1 \frac{\partial f(x' + \alpha(x - x'))}{\partial x_i} \partial \alpha$$

• Integrated gradient along i^{th} dimension for input x and baseline x' given by:

$$\mathsf{IG}_i(x) ::= (x_i - x_i') \int_{\alpha=0}^1 \frac{\partial f(x' + \alpha(x - x'))}{\partial x_i} \partial \alpha$$

 $\bullet \ \mathsf{IG}_i^{\mathsf{approx}}(x) ::= (x_i - x_i') \sum_{k=1}^m \frac{\partial f(x' + \frac{k}{m}(x - x'))}{\partial x_i} \frac{1}{m} \ \mathsf{where} \ m \ \mathsf{is} \ \mathsf{a} \ \mathsf{hyperparameter}.$

NPTEL

• Integrated gradient along i^{th} dimension for input x and baseline x' given by:

$$\mathsf{IG}_i(x) ::= (x_i - x_i') \int_{\alpha=0}^1 \frac{\partial f(x' + \alpha(x - x'))}{\partial x_i} \partial \alpha$$

• $\mathsf{IG}_i^{\mathsf{approx}}(x) ::= (x_i - x_i') \sum_{k=1}^m \frac{\partial f(x' + \frac{k}{m}(x - x'))}{\partial x_i} \frac{1}{m}$ where m is a hyperparameter.

IG attribution map

 Add pixel-wise Gaussian noise to many copies of the image, and average resulting gradients.

⁴Smilkov et al, SmoothGrad: removing noise by adding noise, ICMLW 2017

- Add pixel-wise Gaussian noise to many copies of the image, and average resulting gradients.
- Removes noise from saliency map by adding noise!

⁴Smilkov et al, SmoothGrad: removing noise by adding noise, ICMLW 2017

- Add pixel-wise Gaussian noise to many copies of the image, and average resulting gradients.
- Removes noise from saliency map by adding noise!
- Besides vanilla gradients, other attribution methods also have their SmoothGrad counterparts, e.g. Smooth Integrated Gradients

⁴Smilkov et al, SmoothGrad: removing noise by adding noise, ICMLW 2017

- Add pixel-wise Gaussian noise to many copies of the image, and average resulting gradients.
- Removes noise from saliency map by adding noise!
- Besides vanilla gradients, other attribution methods also have their SmoothGrad counterparts, e.g. Smooth Integrated Gradients

Original Image (left), Vanilla Gradients (center), SmoothGrad (right)

⁴Smilkov et al, SmoothGrad: removing noise by adding noise, ICMLW 2017

• Get attribution map given by IG

⁵Kapishnikov et al, XRAI: Better Attributions Through Regions, ICCV 2019

- Get attribution map given by IG
- Over-segment the image

⁵Kapishnikov et al, XRAI: Better Attributions Through Regions, ICCV 2019

- Get attribution map given by IG
- Over-segment the image
- Start with an empty mask

⁵Kapishnikov et al, XRAI: Better Attributions Through Regions, ICCV 2019

- Get attribution map given by IG
- Over-segment the image
- Start with an empty mask
- Populate this mask by selectively adding segments that yield maximum gain in total attributions per area

⁵Kapishnikov et al, XRAI: Better Attributions Through Regions, ICCV 2019

- Get attribution map given by IG
- Over-segment the image
- Start with an empty mask
- Populate this mask by selectively adding segments that yield maximum gain in total attributions per area

Original image (left), IG (center), XRAI (right)

⁵Kapishnikov et al, XRAI: Better Attributions Through Regions, ICCV 2019

 $^{^6}$ Kapishnikov et al, XRAI: Better Attributions Through Regions, ICCV 2019

Vineeth N B (IIT-H) §6.4 Explaining NNs: Recent Methods

• Idea: Approximate underlying model locally by an interpretable (typically linear) one

⁷Ribiero et al, Why Should I Trust You?: Explaining the Predictions of Any Classifier, KDD 2016

- Idea: Approximate underlying model locally by an interpretable (typically linear) one
- Interpretable models are trained on small perturbations of original instance

⁷Ribiero et al, Why Should I Trust You?: Explaining the Predictions of Any Classifier, KDD 2016

- Idea: Approximate underlying model locally by an interpretable (typically linear) one
- Interpretable models are trained on small perturbations of original instance

Blue/Pink background: black box model's decision function f

⁷Ribiero et al, Why Should I Trust You?: Explaining the Predictions of Any Classifier, KDD 2016

- Idea: Approximate underlying model locally by an interpretable (typically linear) one
- Interpretable models are trained on small perturbations of original instance

- intuition for Liivit
- \bullet Blue/Pink background: black box model's decision function f
- Bold red cross: instance being explained

⁷Ribiero et al, Why Should I Trust You?: Explaining the Predictions of Any Classifier, KDD 2016

- Idea: Approximate underlying model locally by an interpretable (typically linear) one
- Interpretable models are trained on small perturbations of original instance

- Blue/Pink background: black box model's decision function f
- Bold red cross: instance being explained
- Dashed line: learned explanation

⁷Ribiero et al, Why Should I Trust You?: Explaining the Predictions of Any Classifier, KDD 2016

• Given a point x, let $z' \in \mathcal{Z}$ be a point obtained by perturbing one dimension (or region) in x; \mathcal{Z} is the set of perturbations

- Given a point x, let $z' \in \mathcal{Z}$ be a point obtained by perturbing one dimension (or region) in x; \mathcal{Z} is the set of perturbations
- $\pi_x(z')$: proximity measure between instances z' and x, e.g. $\pi_x(z') = \exp(-D(x,z')^2/\sigma^2)$

- Given a point x, let $z' \in \mathcal{Z}$ be a point obtained by perturbing one dimension (or region) in x; \mathcal{Z} is the set of perturbations
- $\pi_x(z')$: proximity measure between instances z' and x, e.g. $\pi_x(z') = \exp(-D(x,z')^2/\sigma^2)$
- $f: \mathbb{R}^d \to \mathbb{R}$: model being explained

- Given a point x, let $z' \in \mathcal{Z}$ be a point obtained by perturbing one dimension (or region) in x; \mathcal{Z} is the set of perturbations
- $\pi_x(z')$: proximity measure between instances z' and x, e.g. $\pi_x(z') = \exp(-D(x,z')^2/\sigma^2)$
- $ullet f: \mathbb{R}^d o \mathbb{R}$: model being explained
- \bullet Build a sparse linear model, $g(z') = w_g \cdot z'$

- Given a point x, let $z' \in \mathcal{Z}$ be a point obtained by perturbing one dimension (or region) in x; \mathcal{Z} is the set of perturbations
- $\pi_x(z')$: proximity measure between instances z' and x, e.g. $\pi_x(z') = \exp(-D(x,z')^2/\sigma^2)$
- $ullet f: \mathbb{R}^d o \mathbb{R}$: model being explained
- Build a sparse linear model, $g(z') = w_g \cdot z'$
- Learn w_q to minimize:

$$\mathcal{L}(f, g, \pi_x) = \sum_{z, z' \in \mathcal{Z}} \pi_x(z) (f(z) - g(z'))^2$$

- Given a point x, let $z' \in \mathcal{Z}$ be a point obtained by perturbing one dimension (or region) in x; \mathcal{Z} is the set of perturbations
- $\pi_x(z')$: proximity measure between instances z' and x, e.g. $\pi_x(z') = \exp(-D(x,z')^2/\sigma^2)$
- $ullet f: \mathbb{R}^d o \mathbb{R}$: model being explained
- Build a sparse linear model, $g(z') = w_g \cdot z'$
- Learn w_q to minimize:

$$\mathcal{L}(f, g, \pi_x) = \sum_{z, z' \in \mathcal{Z}} \pi_x(z) (f(z) - g(z'))^2$$

(a) Original Image

(b) Explaining Electric quitar (c) Explaining Acoustic quitar

(d) Explaining Labrador

Notations:

 \bullet $\mathcal{L}(f,g,\pi_x)$: measure of how unfaithful g is in approximating f in the locality defined by π_x

- ullet $\mathcal{L}(f,g,\pi_x)$: measure of how unfaithful g is in approximating f in the locality defined by π_x
- \bullet $g \in G$: model belonging to class of interpretable models, e.g. linear model $g(z') = w_g.z'$

- ullet $\mathcal{L}(f,g,\pi_x)$: measure of how unfaithful g is in approximating f in the locality defined by π_x
- ullet $g\in G$: model belonging to class of interpretable models, e.g. linear model $g(z')=w_g.z'$
- ullet $\Omega(g)$: Complexity of g model

- ullet $\mathcal{L}(f,g,\pi_x)$: measure of how unfaithful g is in approximating f in the locality defined by π_x
- ullet $g\in G$: model belonging to class of interpretable models, e.g. linear model $g(z')=w_g.z'$
- ullet $\Omega(g)$: Complexity of g model
 - Depth of trees in decision trees

- ullet $\mathcal{L}(f,g,\pi_x)$: measure of how unfaithful g is in approximating f in the locality defined by π_x
- ullet $g\in G$: model belonging to class of interpretable models, e.g. linear model $g(z')=w_g.z'$
- ullet $\Omega(g)$: Complexity of g model
 - Depth of trees in decision trees
 - Number of weights in linear models

- ullet $\mathcal{L}(f,g,\pi_x)$: measure of how unfaithful g is in approximating f in the locality defined by π_x
- ullet $g\in G$: model belonging to class of interpretable models, e.g. linear model $g(z')=w_g.z'$
- $\Omega(g)$: Complexity of g model
 - Depth of trees in decision trees
 - Number of weights in linear models
 - For images, $\Omega(g) = \mathbb{1}[||w_g||_0 > K]$ where K is limit on number of super-pixels

- ullet $\mathcal{L}(f,g,\pi_x)$: measure of how unfaithful g is in approximating f in the locality defined by π_x
- ullet $g\in G$: model belonging to class of interpretable models, e.g. linear model $g(z')=w_g.z'$
- $\Omega(g)$: Complexity of g model
 - Depth of trees in decision trees
 - Number of weights in linear models
 - For images, $\Omega(g) = \mathbb{1}[||w_g||_0 > K]$ where K is limit on number of super-pixels
- LIME explanation obtained as a trade-off:

$$\varepsilon(x) = \underset{g}{\operatorname{arg\,min}} \mathcal{L}(f, g, \pi_x) + \Omega(g)$$

SHAP8

- Inspired from Shapley values in game theory
- let N: Total number of features; v: Value function that assigns a real number to any coalition $S \subseteq N$; and $\phi_v(i)$: Attribution score for feature i

⁸Lundberg et al, A Unified Approach to Interpreting Model Predictions; NeurIPS 2017

SHAP⁸

- Inspired from Shapley values in game theory
- let N: Total number of features; v: Value function that assigns a real number to any coalition $S \subseteq N$; and $\phi_v(i)$: Attribution score for feature i
- Attribution score: Marginal contribution that player (in our case, feature) i makes upon joining the team, averaged over all orders in which team can be formed

$$\phi_v(i) = \sum_{S \subseteq \{1,2,\dots,N\} \setminus \{i\}} \frac{1}{N!} |S|! (N-|S|-1)! \underbrace{(v(S \cup i) - v(S))}_{\text{Value of adding player i to a coalition}}$$

NPTEL

⁸Lundberg et al, A Unified Approach to Interpreting Model Predictions; NeurIPS 2017

SHAP8

- Inspired from Shapley values in game theory
- let N: Total number of features; v: Value function that assigns a real number to any coalition $S \subseteq N$; and $\phi_v(i)$: Attribution score for feature i
- Attribution score: Marginal contribution that player (in our case, feature) i makes upon joining the team, averaged over all orders in which team can be formed

$$\phi_v(i) = \sum_{S \subseteq \{1,2,\dots,N\} \setminus \{i\}} \frac{1}{N!} |S|! (N-|S|-1)! \underbrace{(v(S \cup i) - v(S))}_{\text{Value of adding player i to a coalition}}$$

• With f(x) as model prediction, we marginalize over out-of-coalition features $x_{\bar{S}}$ where $\bar{S} = \{1, 2, ..., N\} \setminus S$ to get:

$$v(S) = \mathbb{E}_{p(x'|x_S)}[f(x_S \cup x'_{\bar{S}})]$$

• SHAP assumes features to be independent $\implies v(S) = \mathbb{E}_{p(x')}[f(x_S \cup x'_{\bar{q}})]$

⁸Lundberg et al, A Unified Approach to Interpreting Model Predictions; NeurIPS 2017

DeepSHAP

• Assumes input features are independent of one another and explanation model is linear

DeepSHAP

- Assumes input features are independent of one another and explanation model is linear
- Take distribution of baselines and compute DeepLIFT attribution for each input-baseline pair, then average resulting attributions per input example

DeepSHAP

- Assumes input features are independent of one another and explanation model is linear
- Take distribution of baselines and compute DeepLIFT attribution for each input-baseline pair, then average resulting attributions per input example

⁹Melis et al, Towards Robust Interpretability with Self-Explaining Neural Networks, NeurIPS 2018

 $^{^{10}}$ Petsiuk et al, RISE: Randomized Input Sampling for Explanation of Black-box Models, BMVC 2018

IoU of thresholded salient region with ground truth bounding box (if available)

⁹Melis et al, Towards Robust Interpretability with Self-Explaining Neural Networks, NeurIPS 2018

¹⁰Petsiuk et al, RISE: Randomized Input Sampling for Explanation of Black-box Models, BMVC 2018

- IoU of thresholded salient region with ground truth bounding box (if available)
- Faithfulness⁹: Correlation between attribution scores and output differences on perturbation:

$$F = \langle \rho(R, \Delta) \rangle_{p(\mathbf{x})}$$

where R_i is relevance of pixel i and $\Delta_i = f(\mathbf{x}) - f(\mathbf{x}_i)$ where \mathbf{x}_i is image obtained after perturbing pixel i

NPTEL

⁹Melis et al, Towards Robust Interpretability with Self-Explaining Neural Networks, NeurIPS 2018

¹⁰Petsiuk et al, RISE: Randomized Input Sampling for Explanation of Black-box Models, BMVC 2018

- IoU of thresholded salient region with ground truth bounding box (if available)
- Faithfulness⁹: Correlation between attribution scores and output differences on perturbation:

$$F = \langle \rho(R, \Delta) \rangle_{p(\mathbf{x})}$$

where R_i is relevance of pixel i and $\Delta_i = f(\mathbf{x}) - f(\mathbf{x}_i)$ where \mathbf{x}_i is image obtained after perturbing pixel i

- Causal Metric (Deletion Metric)¹⁰:
 - Delete pixels sequentially, most relevant first

⁹Melis et al, Towards Robust Interpretability with Self-Explaining Neural Networks, NeurIPS 2018

 $^{^{10}}$ Petsiuk et al, RISE: Randomized Input Sampling for Explanation of Black-box Models, BMVC 2018

- IoU of thresholded salient region with ground truth bounding box (if available)
- Faithfulness⁹: Correlation between attribution scores and output differences on perturbation:

$$F = \langle \rho(R, \Delta) \rangle_{p(\mathbf{x})}$$

where R_i is relevance of pixel i and $\Delta_i = f(\mathbf{x}) - f(\mathbf{x}_i)$ where \mathbf{x}_i is image obtained after perturbing pixel i

- Causal Metric (Deletion Metric)¹⁰:
 - Delete pixels sequentially, most relevant first
 - 2 Compute AUC of network's output as function of perturbed inputs vs amount of perturbation; lesser AUC better

⁹Melis et al, Towards Robust Interpretability with Self-Explaining Neural Networks, NeurIPS 2018

 $^{^{10}}$ Petsiuk et al, RISE: Randomized Input Sampling for Explanation of Black-box Models, BMVC 2018

- IoU of thresholded salient region with ground truth bounding box (if available)
- Faithfulness⁹: Correlation between attribution scores and output differences on perturbation:

$$F = \langle \rho(R, \Delta) \rangle_{p(\mathbf{x})}$$

where R_i is relevance of pixel i and $\Delta_i = f(\mathbf{x}) - f(\mathbf{x}_i)$ where \mathbf{x}_i is image obtained after perturbing pixel i

- Causal Metric (Deletion Metric)¹⁰:
 - 1 Delete pixels sequentially, most relevant first
 - 2 Compute AUC of network's output as function of perturbed inputs vs amount of perturbation; lesser AUC better

Similarly, **Insertion Metric** inserts pixels sequentially, least relevant first; higher AUC better

⁹Melis et al, Towards Robust Interpretability with Self-Explaining Neural Networks, NeurIPS 2018

 $^{^{10}}$ Petsiuk et al, RISE: Randomized Input Sampling for Explanation of Black-box Models, BMVC 2018

- ROAR: RemOve And Retrain¹¹:
 - 1 Get saliency map for each image in training data

 $^{^{11}}$ Hooker et al, A Benchmark for Interpretability Methods in Deep Neural Networks, NeurIPS 2019

¹²Adebayo et al, Sanity Checks for Saliency Maps, NeurIPS 2018

¹³Sundararajan et al, Axiomatic Attribution for Deep Networks, ICML 2017

- ROAR: RemOve And Retrain¹¹:
 - Get saliency map for each image in training data
 - 2 Retrain the model after perturbing most relevant pixels

¹¹Hooker et al, A Benchmark for Interpretability Methods in Deep Neural Networks, NeurIPS 2019

¹²Adebayo et al, Sanity Checks for Saliency Maps, NeurIPS 2018

¹³Sundararajan et al, Axiomatic Attribution for Deep Networks, ICML 2017

- ROAR: RemOve And Retrain¹¹:
 - Get saliency map for each image in training data
 - 2 Retrain the model after perturbing most relevant pixels
 - 3 New model should have large reduction in accuracy

 $^{^{11}}$ Hooker et al, A Benchmark for Interpretability Methods in Deep Neural Networks, NeurIPS 2019

¹²Adebayo et al, Sanity Checks for Saliency Maps, NeurIPS 2018

 $^{^{13}}$ Sundararajan et al, Axiomatic Attribution for Deep Networks, ICML 2017

- ROAR: RemOve And Retrain¹¹:
 - Get saliency map for each image in training data
 - 2 Retrain the model after perturbing most relevant pixels
 - 3 New model should have large reduction in accuracy
- Sanity checks for saliency maps¹² (Homework reading!)

 $^{^{11}}$ Hooker et al, A Benchmark for Interpretability Methods in Deep Neural Networks, NeurIPS 2019

¹²Adebayo et al, Sanity Checks for Saliency Maps, NeurIPS 2018

 $^{^{13}}$ Sundararajan et al, Axiomatic Attribution for Deep Networks, ICML 2017

- ROAR: RemOve And Retrain¹¹:
 - Get saliency map for each image in training data
 - 2 Retrain the model after perturbing most relevant pixels
 - 3 New model should have large reduction in accuracy
- Sanity checks for saliency maps¹² (Homework reading!)
- Axioms for attribution¹³ (Homework reading!)

 $^{^{11}}$ Hooker et al, A Benchmark for Interpretability Methods in Deep Neural Networks, NeurIPS 2019

¹²Adebayo et al, Sanity Checks for Saliency Maps, NeurIPS 2018

¹³Sundararajan et al, Axiomatic Attribution for Deep Networks, ICML 2017

Summary

- Both DeepLIFT and Integrated Gradients overcome saturating gradients problem;
 although DeepLIFT is usually faster, it violates Implementation Invariance axiom¹⁴ (one of the axioms for homework reading!) due to use of discrete gradients
- Smooth Integrated Gradients may be preferred over Integrated Gradients when sparsity is desired
- For better interpretability in terms of visual coherence, XRAI is good choice whose mask is composed of relevant segments rather than pixels
- LIME is model-agnostic and can be used for image, text as well as tabular data but is slow and appears inconsistent between runs
- SHAP has strong game-theoretic background but needs approximations for real world experiments

¹⁴Sundararajan et al, Axiomatic Attribution for Deep Networks, ICML 2017

Homework

Reading

- Go through list of axioms of attribution in Sundararajan et al, Axiomatic Attribution for Deep Networks, ICML 2017 and for each axiom try to identify the attribution algorithms that satisfy that
- Go through proposed sanity checks and experimental findings in Adebayo et al, Sanity Checks for Saliency Maps, NeurIPS 2018

Programming

- Play with Captum: A popular library for model interpretation by Facebook Open Source
- Try visualizing your models through the lens of OpenAl Microscope

Extra Resources

- Molnar, Interpretable machine learning: A Guide for Making Black Box Models Explainable, 2019: https://christophm.github.io/interpretable-ml-book/.
- For a collection of tutorials and software packages, please refer:
 https://github.com/jphall663/awesome-machine-learning-interpretability

References I

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. "Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps". In: 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Workshop Track Proceedings. Ed. by Yoshua Bengio and Yann LeCun. 2014.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ""Why Should I Trust You?": Explaining the Predictions of Any Classifier". In: *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016.* 2016, pp. 1135–1144.

Scott M Lundberg and Su-In Lee. "A Unified Approach to Interpreting Model Predictions". In: *Advances in Neural Information Processing Systems* 30. Ed. by I. Guyon et al. Curran Associates, Inc., 2017, pp. 4765–4774.

References II

Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. "Learning Important Features Through Propagating Activation Differences". In: *Proceedings of the 34th International Conference on Machine Learning*. Ed. by Doina Precup and Yee Whye Teh. Vol. 70. Proceedings of Machine Learning Research. International Convention Centre, Sydney, Australia: PMLR, 2017, pp. 3145–3153.

D. Smilkov et al. "SmoothGrad: removing noise by adding noise". In: ICML workshop on visualization for deep learning (June 2017). arXiv: 1706.03825 [cs.LG].

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. "Axiomatic Attribution for Deep Networks". In: Proceedings of the 34th International Conference on Machine Learning. Ed. by Doina Precup and Yee Whye Teh. Vol. 70. Proceedings of Machine Learning Research. International Convention Centre, Sydney, Australia: PMLR, 2017, pp. 3319–3328.

Julius Adebayo et al. "Sanity Checks for Saliency Maps". In: Advances in Neural Information Processing Systems 31. Ed. by S. Bengio et al. Curran Associates, Inc., 2018, pp. 9505–9515.

References III

David Alvarez Melis and Tommi Jaakkola. "Towards Robust Interpretability with Self-Explaining Neural Networks". In: *Advances in Neural Information Processing Systems 31*. Ed. by S. Bengio et al. Curran Associates, Inc., 2018, pp. 7775–7784.

Vitali Petsiuk, Abir Das, and Kate Saenko. "RISE: Randomized Input Sampling for Explanation of Black-box Models". In: *Proceedings of the British Machine Vision Conference (BMVC)*. 2018.

Sara Hooker et al. "A Benchmark for Interpretability Methods in Deep Neural Networks". In: Advances in Neural Information Processing Systems 32. Ed. by H. Wallach et al. Curran Associates, Inc., 2019, pp. 9737–9748.

Andrei Kapishnikov et al. "XRAI: Better Attributions Through Regions". In: *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*. 2019.

 $\verb|http://www.unofficialgoogledatascience.com/2017/03/attributing-deep-networks-prediction-to.html|.$