Unsupervised learning

Balázs Pintér

2019-05-14

Contents

- 1 Intorduction
- 2 Clustering
 - Hard clustering k-means
 - Soft clustering topic models
- 3 Dimensionality reduction
 - Covariance, correlation
 - Principal component analysis
- 4 Autoencoders

Contents

- Intorduction
- - Hard clustering k-means
 - Soft clustering topic models
- - Covariance, correlation
 - Principal component analysis

Supervised learning - classification

Supervised learning - regression

Unsupervised learning - clustering

Unsupervised learning

- Supervised learning learns a function from labeled data
- Other approaches
 - Unsupervised learning
 - 2 Semi-supervised learning
 - 3 Reinforcement learning
 - 4 Evolutionary algorithms
 - 5 Neuroevolution
 - http://www.youtube.com/watch?v=qv6UV0Q0F44

Contents

- 1 Intorduction
- 2 Clustering
 - Hard clustering k-means
 - Soft clustering topic models
- 3 Dimensionality reduction
 - Covariance, correlation
 - Principal component analysis
- 4 Autoencoders

Example – distribution-based clustering

Example – distribution-based clustering

Problem

- Assign items to groups where similar items should belong to the same group
 - They should be as similar as possible within a group
 - They should be less similar between group
- The items are usually points in \mathbb{R}^n or nodes in a graph, like
 - Client data for market segmentation
 - Documents modeled as bag of words to determine topics or group search results
 - Contexts of words to induce word senses
 - Data about which servers are active together to optimize traffic
- A group is called a *cluster*

Hard and soft clustering

- Hard and soft clustering
 - Hard clustering: an item can belong only to a single cluster
 - Soft clustering: weights describe the degree to which an item belongs to the clusters
- Finer distinctions
 - Overlapping clustering: an item can belong to multiple clusters, but it either belongs to a cluster or not
 - Hierarchical clustering: the clusters are organized into a hierarchy. The items that belong to a child cluster also belong to the parent cluster.

Hierarchical clustering

Naturally occurring clustering of word representations – words with the same meaning are the same color (t-SNE)

Contents

- 1 Intorduction
- 2 Clustering
 - Hard clustering k-means
 - Soft clustering topic models
- 3 Dimensionality reduction
 - Covariance, correlation
 - Principal component analysis
- 4 Autoencoders

Example

Problem

- Given: *k*, the number of clusters
- Each cluster is represented by its centroid
 - the mean of the points in the cluster
- Find the *k* centroids and assign the points to these in a way that minimizes the squared distances of the points from the centroid of their cluster
 - Equivalent to minimizing pairwise distances within clusters
 - NP-hard, so we approximate
 - We can only find a local optimum
 - We can run it multiple times with different random initializations

k-means problem

$$\arg\min_{\mathbf{S}} \sum_{i=1}^k \sum_{\mathbf{x} \in S_i} \|\mathbf{x} - \boldsymbol{\mu}_i\|^2 = \arg\min_{\mathbf{S}} \sum_{i=1}^k \frac{1}{2|S_i|} \sum_{\mathbf{x}, \mathbf{y} \in S_i} \|\mathbf{x} - \mathbf{y}\|^2$$

Algorithm

- Given: k and the items in \mathbb{R}^n
- Initialize centroids $m_1^{(1)}, m_2^{(1)}, \dots, m_k^{(1)}$ by either
 - choosing k points randomly to be the centroids, or
 - assigning each point randomly to a cluster and computing the centroids of these clusters
- Do the following two steps until convergence
 - 1 Assign each item to the nearest centroid:

$$S_{i}^{(t)} = \left\{ x_{p} : \left\| x_{p} - m_{i}^{(t)} \right\|^{2} \leq \left\| x_{p} - m_{j}^{(t)} \right\|^{2} \, \forall j, 1 \leq j \leq k \right\}$$

2 Compute the new centroids:

$$m_i^{(t+1)} = \frac{1}{|S_i^{(t)}|} \sum_{x_i \in S_i^{(t)}} x_j$$

Hard clustering – k-means

Hard clustering – k-means

Hard clustering – k-means

Hard clustering – k-means

Issue – k is too small

Hard clustering – k-means

Issue – k is too large

Issue – bad initialization

Issue – the real clusters are not centroid based

Python examples

- Color quantization: http://scikit-learn.org/stable/auto_examples/ cluster/plot_color_quantization.html
- Document clustering: https://scikit-learn.org/0.19/ auto_examples/text/document_clustering.html

Contents

- 1 Intorduction
- 2 Clustering
 - Hard clustering k-means
 - Soft clustering topic models
- 3 Dimensionality reduction
 - Covariance, correlation
 - Principal component analysis
- 4 Autoencoders

Topic models

- Soft clustering example: topic models
 - What topics is a document about?
 - What words belong to a topic?
 - Example: Latent Semantic Analysis (LSA), which is a SVD

Latent Semantic Analysis

Clustering

Soft clustering – topic models

Group-sparse regularization

Example: generating odd one out puzzles

Words that belong together				Odd one out
cao	wei	liu	emperor	king
superman	clark	luthor	kryptonite	batman
devil	demon	hell	soul	body
egypt	egyptian	alexandria	pharaoh	bishop
singh	guru	sikh	saini	delhi
language	dialect	linguistic	spoken	sound
mass	force	motion	velocity	orbit
voice	speech	hearing	sound	view
athens	athenian	pericles	corinth	ancient
data	file	format	compression	image
function	problems	polynomial	equation	physical

Contents

- 1 Intorduction
- 2 Clustering
 - Hard clustering k-means
 - Soft clustering topic models
- 3 Dimensionality reduction
 - Covariance, correlation
 - Principal component analysis
- 4 Autoencoders

Why dimensionality reduction?

- The data are low dimensional in a higher dimensional space
- Data visualization
- Noise reduction
- Decrease the complexity of the learning problem (better results, smaller runtimes, . . .)
- We can conjecture new relationships on the visualized lower dimensional data
- We need a lower dimensional and/or dense representation to solve a problem

Example: Swiss roll

Example: Rotating a letter

Contents

- 1 Intorduction
- 2 Clustering
 - Hard clustering k-means
 - Soft clustering topic models
- 3 Dimensionality reduction
 - Covariance, correlation
 - Principal component analysis
- 4 Autoencoders

Covariance, correlation

Covariance, correlation

Covariance, correlation

Covariance, (Pearson) correlation

- They measure the degree to which the *X*, *Y* random variables move together
- They only show linear relationships
- Cov(X,Y) = E[(X E[X])(Y E[Y])]
- For example, if it's positive: If X > E(X), then Y > E(Y), if X < E(X), then Y < E(Y)
- Cov(X, Y) = E[XY] E[X]E[Y]
- Correlation: "normalized" covariance, between -1 and 1

$$\rho_{X,Y} = \operatorname{corr}(X,Y) = \frac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y} = \frac{E[(X-\mu_X)(Y-\mu_Y)]}{\sigma_X \sigma_Y}$$

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

Covariance, correlation

The correlation is 0.816 for all four datasets

Covariance matrix

- **X** is a vector whose elements are random variables
- The entries of the covariance matrix are covariances between X_i , X_j

$$\Sigma_{ij} = \operatorname{cov}(X_i, X_j) = \operatorname{E}\left[(X_i - \mu_i)(X_j - \mu_j)\right]$$

$$\blacksquare \ \mu_i = \mathrm{E}(X_i)$$

$$\begin{bmatrix} \mathrm{E}[(X_1 - \mu_1)(X_1 - \mu_1)] & \mathrm{E}[(X_1 - \mu_1)(X_2 - \mu_2)] & \cdots & \mathrm{E}[(X_1 - \mu_1)(X_n - \mu_n)] \\ \mathrm{E}[(X_2 - \mu_2)(X_1 - \mu_1)] & \mathrm{E}[(X_2 - \mu_2)(X_2 - \mu_2)] & \cdots & \mathrm{E}[(X_2 - \mu_2)(X_n - \mu_n)] \\ \vdots & \vdots & \ddots & \vdots \\ \mathrm{E}[(X_n - \mu_n)(X_1 - \mu_1)] & \mathrm{E}[(X_n - \mu_n)(X_2 - \mu_2)] & \cdots & \mathrm{E}[(X_n - \mu_n)(X_n - \mu_n)] \end{bmatrix}$$

- The main diagonal contains the variances
- Equivalent: $\Sigma = \mathrm{E}(\mathbf{X}^{\top}\mathbf{X}) \mu^{\top}\mu$

Contents

- 1 Intorduction
- 2 Clustering
 - Hard clustering k-means
 - Soft clustering topic models
- 3 Dimensionality reduction
 - Covariance, correlation
 - Principal component analysis
- 4 Autoencoders

Example - normal distribution in 2d

Principal component analysis

- Principal component analysis (PCA)
- Demo: http://setosa.io/ev/principal-component-analysis/
- The dataset is transformed to a new coordinate system whose axes are orthogonal
- The projection of the dataset with the greatest variance is on the first axis (principal component)
- The projection with the second greatest variance is on the second principal component, . . .
- New variables/data: we project the original variables to the principal components. These are uncorrelated.
- Dimensionality reduction: We discard the axes (and coordinates) with small variance

Principal component analysis

- **X** $\in \mathbb{R}^{n \times p}$: data set, one row is an item
- $\mathbf{t}_{(i)} = (t_1, \dots, t_l)_{(i)}$: the items transformed to the new coordinate system using $\mathbf{w}_{(k)} = (w_1, \dots, w_p)_{(k)}$

$$t_{k(i)} = \mathbf{x}_{(i)} \cdot \mathbf{w}_{(k)}$$
 for $i = 1, \dots, n$ $k = 1, \dots, l$

Maximizing variance on the first principal component

$$\mathbf{w}_{(1)} = \operatorname*{arg\ max}_{\|\mathbf{w}\|=1} \left\{ \sum_{i} \left(t_1\right)_{(i)}^2 \right\} = \operatorname*{arg\ max}_{\|\mathbf{w}\|=1} \left\{ \sum_{i} \left(\mathbf{x}_{(i)} \cdot \mathbf{w}\right)^2 \right\}$$

Principal component analysis

■ The same with a matrix:

$$\mathbf{w}_{(1)} = \operatorname*{arg\ max}_{\|\mathbf{w}\|=1} \left\{ \|\mathbf{X}\mathbf{w}\|^2 \right\} = \operatorname*{arg\ max}_{\|\mathbf{w}\|=1} \left\{ \mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w} \right\}$$

As w is a unit vector:

$$\mathbf{w}_{(1)} = \mathsf{arg} \; \mathsf{max} \; \left\{ rac{\mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w}}{\mathbf{w}^T \mathbf{w}}
ight\}$$

- This is the Rayleigh-quotient, whose largest possible value is the largest eigenvalue of **X**^T**X**, where **w** is the corresponding eigenvector
- This is also true for the other components → the principal components are the eigenvectors of X^TX

Principal component analysis - algorithm

- Our dataset is in the X matrix
- Make the dataset zero mean (subtract the mean)
- Compute covariance matrix $\mathbf{Q} = \mathbf{X}^T \mathbf{X}$
- Determine the eigenvalues and eigenvectors of this matrix
- The eigenvectors are the principal components, the basis that consists of the eigenvectors is the new coordinate system
- The principal component that corresponds to the largest eigenvalue has the largest variance, and so on
- Dimensionality reduction: we only keep the *k* principal components with the largest eigenvalues

PCA and SVD

SVD

$$\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{W}^T$$

Computing PCA with SVD

$$\mathbf{X}^{T}\mathbf{X} = \mathbf{W}\mathbf{\Sigma}^{T}\mathbf{U}^{T}\mathbf{U}\mathbf{\Sigma}\mathbf{W}^{T}$$
$$= \mathbf{W}\mathbf{\Sigma}^{T}\mathbf{\Sigma}\mathbf{W}^{T}$$
$$= \mathbf{W}\mathbf{\hat{\Sigma}}^{2}\mathbf{W}^{T}$$

W contains the eigenvectors of $\mathbf{X}^T\mathbf{X}$. The singular values are the square roots of the eigenvalues.

PCA is linear too

Dimensionality reduction

Principal component analysis

Python examples

Importance of feature scaling: http://scikit-learn.org/stable/auto_examples/ preprocessing/plot_scaling_importance.html

Contents

- 1 Intorduction
- 2 Clustering
 - Hard clustering k-means
 - Soft clustering topic models
- 3 Dimensionality reduction
 - Covariance, correlation
 - Principal component analysis
- 4 Autoencoders

Autoencoders

Autoencoders

Simple autoencoders

$$\mathcal{L}(\mathbf{x}, \mathbf{x}') = \|\mathbf{x} - \mathbf{x}'\|^2 = \|\mathbf{x} - \sigma'(\mathbf{W}'(\sigma(\mathbf{W}\mathbf{x} + \mathbf{b})) + \mathbf{b}')\|^2$$

- This simple autoencoder projects to the subspace of PCA
- Flexible, there are many variations
 - Denoising autoencoder: produces noiseless output from noisy input
 - Sparse autoencoder: the hidden representation is sparse
 - VAE: A probabilistic framework, approximates the posterior distribution
- Autoencoders can be important when pretraining a deep neural network
- https://transcranial.github.io/keras-js/#/mnist-vae

Thank you for your attention!

Thank you for your attention!