The following is a complete listing of all claims in the application, with an indication of the status of each:

Listing of claims:

1	1 (Currently amended). A computer-implemented method for reconstructing
2	surface geometry from discrete points on an object comprising steps of:
3	providing input data to a computer derived from said discrete points;
4	generating a graph from said input data, said graph including
5	biconnected graphs;
6	subjecting said graph to triconnected component decomposition to
7	generate a component graph;
8	generating all possible embeddings including possible face loops from
9	said component graph;
10	filling said possible face loops with possible surfaces to reconstruct
11	said surface geometry;
12	examining geometrical acceptance of said possible surfaces and
13	omitting embeddings including at least one geometrically unacceptable surface
14	from reconstruction and scoring said embeddings depending on said
15	examination; and
16	sorting said embeddings with respect to said scores to select
17	embeddings for reconstructing said surface geometry.
	·
1	2 (Original). The method according to the claim 1, wherein said discrete
2	points forms a wire-frame corresponding to said object.
	r gradosjoot.
1	3 (Original). The method according to the claim 1, wherein said examining
2	and scoring step of said embeddings includes steps of;
	- Morados stops of,

3	examining geometrical acceptance of said possible surfaces and
4	scoring said face loops;
5	examining geometrical acceptance of combinations of said possible
6	surfaces and scoring said combinations; and
7	examining surface area of said embeddings and scoring said surface
8	area.
1	4 (Currently amended). The method according to the claim 3, wherein said
2	step of examining geometrical acceptance of combinations of said possible
3	surfaces utilize characteristics selected from the group consisting of a kind of
4	surface, an area, and a variation rate an and range of normal vectors of the
5	possible surface or any combinations thereof and said step of examining said
6	combinations of said possible surfaces utilizes other characteristics selected
7	from the group consisting of an interference between said possible surfaces, a
8	contact between said possible surface at edges, and an overlap between said
9	possible surfaces or any combinations thereof.
l	5 (Original). The method according to the claim 1, wherein further
2	comprising a step of discarding at least one acceptable face loop so as to
3	reconstruct said surface geometry of an open shell structure.
	6 (Original). The method according to the claim 5, wherein said at least one
?	acceptable face loop is determined by the following formula;
i L	$\underline{\underline{S}}_{max} > 0.30 and \underline{\underline{S}}_{next} < 0.5$ $\Sigma_{i}S_{i} \qquad S_{mext} = 0.5$
	$\Sigma_{i} S_{i}$ S_{max}

3	wherein S_{max} and S_{next} are a surface area of the largest face loop and a surface
6	area of the second largest surface area, respectively and S _i is an area of each
7	face loop.
1	7 (Currently amended). A computer based system for reconstructing surface
2	geometry from discrete points on an object comprising;
3	means for providing input data to a computer derived from said
4 .	discrete points;
5	means for generating a graph from said input data, said graph
6	including biconnected graphs;
7	means for subjecting said graph to triconnected component
8	decomposition to generate a component graph;
9	means for generating all possible embeddings including possible face
10	loops from said component graph;
11	means for filling said possible face loops with possible surface to
12	reconstruct said surface geometry;
13	means for examining geometrical acceptance of said possible surfaces
14	and omitting embeddings including at least one geometrically unacceptable
15	surface from reconstruction and scoring said embeddings depending on said
16	examination; and
17.	means for sorting said embeddings with respect to said scores to select
18	embeddings for reconstructing said surface geometry.
1	8 (Original). The system according to the claim 7, wherein said discrete
2	points forms a wire-frame corresponding to said object.
	·
1	9 (Original). The method according to the claim 7, wherein said means for
2	examining and embeddings comprising;

JP920000185US1 09/648,139 00280816AA

3	means for examining geometrical acceptance of said possible surfaces
4	and scoring said face loops;
5	means for examining geometrical acceptance of combinations of said
6	possible surfaces and scoring said combinations; and
7	means for examining surface area of said embeddings and scoring said
8	surface area.
1	10 (Currently amended). The system according to the claim 9, wherein said
2	means for examining geometrical acceptance of said possible surfaces utilize
3	characteristics selected from the group consisting of a kind of surface, an area
4	and a variation rate and range of normal vectors of the possible surface or any
5	combinations thereof and said means for examining said geometrical
6	acceptance of combinations of said possible surfaces utilizes other
7	characteristics selected from the group consisting of an interference between
8	said possible surfaces, a contact between said possible surface at edges, and ar
9	overlap between said possible surfaces or any combinations thereof.
1	11 (Original). The system according to the claim 9, wherein further
2	comprising means for discarding at least one acceptable face loop so as to
3	reconstruct said surface geometry of an open shell structure.
1	12 (Original). The system according to the claim 7, wherein said at least one
2	acceptable face loop is determined by the following formula;
3 4	$\frac{S_{\text{max}}}{\Sigma_{i}S_{i}} > 0.30 and \frac{S_{\text{next}}}{S_{\text{max}}} < 0.5$

5	wherein S_{max} and S_{next} are a surface area of the largest face loop and a surface
6	area of the second largest surface area, respectively and S _i is an area of each
7	face loop.
1	13 (Original). The system according to the claim 7, wherein said system is a
2	computer aided design system.
1	14 (Currently amended). A computer readable program product for
2	reconstructing surface geometry from discrete points on an object comprising;
3	providing input data derived from said discrete points;
4	generating a graph from said input data, said graph including
5	biconnected graphs;
6	subjecting said graph to triconnected component decomposition to
7	generate a component graph;
8	generating all possible embeddings including possible face loops from
9	said component graph;
10	filling said possible face loops with possible surface to reconstruct said
11	surface geometry;
12	examining geometrical acceptance of said possible surfaces and
13	omitting embeddings including at least one geometrically unacceptable surface
14	from reconstruction and scoring said embeddings depending on said
15	examination; and
16	sorting said embeddings with respect to said scores to select
17	embeddings for reconstructing said surface geometry.
1	15 (Original). The program product according to the claim 14, wherein said
2	discrete points forms a wire-frame corresponding to said object.

1	16 (Original). The program product according to the claim 14, wherein said
2	means for examining
3	and embeddings comprising;
4	examining geometrical acceptance of said possible surfaces and
5	scoring said face loops;
6	examining geometrical acceptance of combinations of said possible
7	surfaces and scoring said combinations; and
8	examining surface area of said embeddings and scoring said surface
9	area.
1	17 (Currently amended). The program product according to the claim 16,
2	wherein wherein said step means of examining geometrical acceptance of
3	combinations of said possible surfaces utilize characteristics selected from the
4	group consisting of a kind of surface, an area, and a variation rate and range of
5	normal vectors of the possible surface or any combinations thereof and said
6	step of examining said combinations of said possible surfaces utilizes other
7	characteristics selected from the group consisting of an interference between
8	said possible surfaces, a contact between said possible surface at edges, and an
9	overlap between said possible surfaces or any combinations thereof.
1	18 (Original). The system according to the claim 16, wherein further
2	comprising a step of discarding at least one acceptable face loop so as to
3	reconstruct said surface geometry of an open shell structure.
1	19 (Original). The system according to the claim 14, wherein said at least one
2	acceptable face loop is determined by the following formula;
3 4	$\underline{\underline{S}}_{max} > 0.30 \ and \ \underline{\underline{S}}_{next} < 0.5$ $\Sigma_{i}S_{i} \qquad S_{max}$
r	$\omega_{i}\omega_{i}$ δ_{max}

JP920000185US1 09/648,139 00280816AA

- 5 wherein S_{max} and S_{next} are a surface area of the largest face loop and a surface
- area of the second largest surface area, respectively and S_i is an area of each
- 7 face loop.
- 1 20 (Original). The program product according to the claim 14, wherein said
- 2 program product is implemented in a computer aided design system.