Algorithm for 3D Transformation

1. Input

- Coordinates of the rotation axis (x1, y1, z1 and x2, y2, z2).
- Angle of rotation (angle) in degrees.
- The 3D object to be rotated (e.g., a cube's vertices).

2. Calculate Direction Cosines

• Compute the direction vector of the axis:

$$dx = x2 - x1$$
, $dy = y2 - y1$, $dz = z2 - z1$

• Calculate the length of the axis:

$$L = \sqrt{(dx^2 + dy^2 + dz^2)}$$

• Direction cosines of the axis:

$$cos(\alpha) = dx / L$$
, $cos(\beta) = dy / L$, $cos(\gamma) = dz / L$

3. Create Transformation Matrices

1. Translation to Origin:

$$T1 = [1, 0, 0, -x1]$$

$$[0, 1, 0, -y1]$$

$$[0, 0, 1, -z1]$$

2. Rotation About X-axis to Align with ZX-plane:

0]

1]

$$Rx = [1, 0,$$

[0,
$$cos(\alpha)$$
, $-sin(\alpha)$, 0]

$$[0, \sin(\alpha), \cos(\alpha), 0]$$

3. Rotation About Y-axis to Align with Z-axis:

$$Ry = [\cos(\beta), 0, \sin(\beta), 0]$$

$$[-\sin(\beta), 0, \cos(\beta), 0]$$

0]

11

4. Rotation About Z-axis by Given Angle:

Rz =
$$[\cos(\theta), -\sin(\theta), 0, 0]$$

 $[\sin(\theta), \cos(\theta), 0, 0]$
 $[0, 0, 1, 0]$
 $[0, 0, 0, 1]$

5. Inverse Transformations:

Reverse Y-axis Rotation: Ry^{-1} Reverse X-axis Rotation: Rx^{-1}

Reverse Translation: T2

4. Combine Transformations

Composite transformation matrix:

Composite =
$$T2 * Rx^{-1} * Ry^{-1} * Rz * Ry * Rx * T1$$

5. Apply Transformation

Transform the vertices of the object:

Transformed Vertices = Composite * Vertices T

6. Visualize Results

Plot the original and transformed objects using matplotlib.