Predicting Sale Price of Auction Machinery

4/17/2020 Chelsea, Henry, Jaime, Min, Niv

Problem & Data Description

- Chose to predict heavy equipment auction prices
 - Were more interested in prediction over inference
- Training dataset was from one CSV containing > 400,000 entries and > 50 columns
- Data was messy
 - Many of the > 30 machine configuration categorical columns had > 50% null values
- Needed to do feature selection and impute a lot of data
- Wanted to accomplish maximizing model performance on unseen data with tuning through regularization

Team Organization

- Set a goal to understand the data
- Initial skeleton
 - Pull from main repo
- Self-exploration of the data
- Trade notes via slack and Zoom conversation

Process:

- Brainstormed all the features which might impact Sales.
- Created Master helper function: cleaned all the selected features.
- Tested RMSE for Linear_Regression, Ridge and Lasso.
- Baseline Model Score: 0.7188 (SaleYear and YearMade).
- Model-1 Score: 0.7186 (added MachineHoursCurrentMeter).
- Model-2 Score: 0.5712 (added 15 more).
- Model-3 Score:0.570.

Accomplishments

- Starting models
 - Linear
 - Ridge
 - Lasso
- Performance metrics
 - Root Mean Squared Log Error
- Validation
 - We went with a 10 fold validation, with test size of 0.2
- Grid search and found Ridge Regression achieving best results

Performance on Unseen Data

- Final RMSLE = 0.5773 on unseen data
 - o Ridge Regression @ alpha 25
 - Model performance on train data: RMSLE = 0.570

- 14 Features Used
 - 9 or 14 features were created from transformations we performed on dataset
 - 4 types of Features used
 - Date/Age: YearMade, Saleday, Salemonth, Saledayofyear. Age
 - IDs: ModelID, SalesID MachineID
 - Size: Tire_Size, ProductSize,
 - Enclosure: Enclosure_EROPS, Enclosure_EROPS AC, Enclosure_None Unspecified, Enclosure_OROPS

New Things We Learned

- Important to research & understand features
- How to handle null values by imputing variables
- Cleaning data
- Different model for prediction
- Search for the best model for best score

Appendix

Final Model Feature List

- Final RMSLE = 0.5773
 - Utilized Ridge Regression @ alpha 25
- Feature List
 - Date/Age: YearMade, Saleday, Salemonth, Saledayofyear. Age
 - o **IDs:** ModellD, SalesID MachinelD
 - Size: Tire_Size, ProductSize,
 - Enclosure: Enclosure_EROPS, Enclosure_EROPS AC, Enclosure_None Unspecified, Enclosure_OROPS

Group Work Approach

- One Team Member creates initial branch with:
 - Cursory Cleaning
 - Selection of two three features
 - Brief Transformation
 - Linear Regression run
 - Cross Validation to establish baseline score
 - Set Random Seed so it is consistent
- Split up so each team member can:
 - Do furth EDA
 - Add/Remove features from baseline model
 - Transformations
 - Linear Regression
 - Cross Validation and compare to baseline
 - Repeat
- Take best model, use it on test data, submit!

Brainstorming (delete/move later)

Initial Features:

- MachineHoursCurrentMeter → need to figure out how to handle r linear correlation
- YearMade
- Saledate --> transformed to get year only
- UsageBand
- ProductSize
- State
- Drive_System Chels looked into, may be dead-end because most are unknown

```
O Unique vals: ([nan, 'Four Wheel Drive', 'Two Wheel Drive' o 'All Wheel Drive'], dtype=object)
```

- Transformation: Change nan to 'No', then map to ints:
- map({'No':0, 'Four Wheel Drive':4, 'Two Wheel Drive':2, 'All Wheel Drive
- Enclosure chels looking into

```
O OROPS

173932 - "Open Roll Over Protect

EROPS

139026 - "Enclosed Roll Over Protect

EROPS w AC

87820 - treat same as "EROPS"

EROPS AC

17 - treat same as "EROPS"

NO ROPS

3 - treat same as "None or some or unspecified

None or Unspecified

Put NaNs into this group

Name: Enclosure, dtype: int64
```

