Farmbot Project Home	<u>.</u>
1.1 PROJECT PRODUCT	
1.2 REQUIREMENTS	
1.2.1 PERSONAS	j
1.2.2 PRODUCT BACKLOG	0
1.2.3 PROJECT INFORMATION	3
1.2.4 PROJECT PLANNING	6
1.2.5 SCOPE AND REQUIREMENTS	8
1.2.5.1 FUNCTIONAL REQUIREMENTS	9
1.2.5.2 NONFUNCTIONAL REQUIREMENTS	
1.2.5.3 SCOPE	
1.2.6 USER STORIES	23
1.2.6.1 USER STORIES VERSION 2	4

Farmbot Project Home

Project Overview:

Project Overview

- The overall gaol of our part of the project is integrating a
 thermal camrea to a robot named farmbot, so that the users
 could collect thermal data of plants remotely. Users should
 access the camera on farmbot web-app and can take thermal
 pictures if they wish. Once there is an emergency (for example
 threatening temperature) the system could send alarms to user.
- click here for detailed project information

Goals of the Whole Project

- Integration of an e-nose sensor within the web-app controlling the robot
- Integration of an thermal camera within the web-app controlling the robot (our part)
- Integration of AI solvers that automatically control the robot.

Client and Supervisor

Nir Lipovetzky

Client

Nir Lipovetzky

Lin Li Supervisor

Lin Li

Team Members

Dikai ZHU Scrum Master

Dikai ZHU

Chengtian Jiang
Software Developer
Chengtian JIANG

Yuxi He
Product Owner
YUXI HE

Tingzheng Ren
Test Leader
Tingzheng Ren

Zhiyu Chen
Software Developer
Zhiyu Chen

Resource Links:

Team work space:

Confluence Shortcuts:

Other Resources:

github repository

requirements

Farmbot Control

trello board

goodle drive

meeting minutes

Farmbot Training

conference home

project product

Farmbot Official

rojest produst

Farmbot Previous

Project

Github

RoadMaps and Plans:

Project Plans:

- Our goal is to finalize the project development during Sprint 2 and Sprint 3. To achieve that, we have reorganized the user stories into user cases, meanwhile taking into account their priorities of the user cases. Our team has created a welldefined development plan, which can be viewed on Trello: FA-Boxjelly development plan.
- Click here for detailed project plan

Road Map:

Inception Sprint	Friday, March 31st 2023 Team Building and Project Design
Sprint 1	Friday, April 28th 2023 Finish Half Stories and First Release
Sprint 2	Friday, May 26th 2023 Finish Project Release and Final Present
Sprint 3	Friday, June 9th 2023 Review and Self-Reflection

Recent updates:

Recent space activity

Dikai ZHU

Farmbot Project Home updated 9 minutes ago • view change

YUXI HE

Farmbot Project Home updated 12 minutes ago • view change

Dikai ZHU

PROJECT PLANNING updated 39 minutes ago • view change

PERSONAS updated 46 minutes ago • view change

SCOPE updated about an hour ago • view change

Space contributors

No contributors found for: authors on selected page(s)

PROJECT PRODUCT

REQUIREMENTS

- PERSONAS
 PRODUCT BACKLOG
 PROJECT INFORMATION
 PROJECT PLANNING
 SCOPE AND REQUIREMENTS
 USER STORIES

PERSONAS

Туре	Bio	Goals	Frustrations
Sustain able Farm Owner	Samantha is 36-year-old lady, and owns a small-scale sustainable farm that grows a variety of fruits and vegetables. She is passionate about using environmentally friendly methods and wants to ensure that her crops are free from pests and diseases without the use of harmful chemicals.	1. Avoid using harmful chemicals 2. Reduce the amount of time spent monitoring farm manually 3. Quickly detect any pests or diseases	1. Focus on Cost and Time 2. Competin g against larger farms with more resources and funding 3. Provide healthy and chemical-free produce
High School Teacher	Yamanaka Sawako is a 35-year-old high school teacher in Tokyo who devoted to teaching agriculture. Grown up in coutryside, she worked at sakura high school as a teacher after complete her degree, . She is responsible for leading the school's agriculture program, which provides students with hands-on learning experiences by allowing them to plant and harvest real crops.	1. Ensure the crops are well-cared 2. Give student better understanding of farming and agriculture 3. Enable students stay update to latest agricultural technologies.	1. Large class size to manage 2. Student not proper care the crops 3. Not familiar with robots
Agrcult ural Resear cher	Dr. John Smith is 39-year-old agricultural researcher based in Australia. Growing up on a family farm in rural New South Wales, John developed an early interest in the natural world. After completing a degree in agricultural science at the University of Sydney, John went on to earn his Ph.D. in plant genetics from the University of Melbourne. His research has focused on developing new plant varieties that are resistant to pests and diseases, as well as improving crop yields through precision agriculture techniques.	1. Develop new plant varieties that are resistant to pests and diseases 2. Improve the quality and nutritional value of crops through precision agriculture techniques 3. Increase the efficiency and productivity of farming practices through the use of innovative technologies	1. Limited time and resource to collect data from crops. 2. Lack of effective alarm that can quickly notify crop emergenci es. 3. Currently equipment s are not precise enough.

Yamanaka Sawako

"Education is not about filling a bucket, it's about lighting a fire."

Age: **35**

Work: High School Teacher

Family: Married Location: Japan

Personality

Introvert	Extrovert
Thinking	Feeling
Thinking	reeling
Sensing	Intuition
Judging	Perceiving

Friendly

Hardworking

Goals

- · Ensure the crops are well-cared.
- Give student better understanding of farming and agriculture.
- · Enable students stay update to latest agricultural technologies.

Frustrations

- · Large class size to manage.
- · Student not proper care the crops.
- Not familiar with robots.

Bio

Yamanaka Sawako is a 35-year-old high school teacher in Tokyo who devoted to teaching agriculture. Grown up in coutryside, she worked at sakura high school as a teacher after complete her degree, . She is responsible for leading the school's agriculture program, which provides students with hands-on learning experiences by allowing them to plant and harvest real crops.

Samantha

"We have not inherited the earth from our ancestors, we have borrowed it from our children."

Age: 36

Work: Sustainable Farm

Owner

Family: Married Location: India

Personality

Hardworking

Enthusiastic

Goals

- · Avoid using harmful chemicals
- · Reduce the amount of time spent monitoring farm manually
- · Quickly detect any pests or diseases

Frustrations

- · Focus on Cost and Time
- Competing against larger farms with more resources and funding
- · Provide healthy and chemical-free produce

Bio

Samantha is 36-year-old lady, and owns a small-scale sustainable farm that grows a variety of fruits and vegetables. She is passionate about using environmentally friendly methods and wants to ensure that her crops are free from pests and diseases without the use of harmful chemicals.

John Smith

"The future of agriculture is not about better recipes, it's about a better understanding of ecology."

Age: 39

Work: Agricultural researcher

Family: Married Location: Australia

Personality

Introvert	Extrovert
Thinking	Feeling
Sensing	Intuition
Judging	Perceiving

Professional

Enthusiastic

Goals

- Develop new plant varieties that are resistant to pests and diseases.
- Improve the quality and nutritional value of crops through precision agriculture techniques.
- Increase the efficiency and productivity of farming practices through the use of innovative technologies.

Frustrations

- · Limited time and resource to collect data from crops.
- Lack of effective alarm that can quickly notify crop emergencies.
- · Currently equipments are not precise enough.

Bio

Dr. John Smith is 39-year-old agricultural researcher based in Australia. Growing up on a family farm in rural New South Wales, John developed an early interest in the natural world. After completing a degree in agricultural science at the University of Sydney, John went on to earn his Ph.D. in plant genetics from the University of Melbourne. His research has focused on developing new plant varieties that are resistant to pests and diseases, as well as improving crop yields through precision agriculture techniques.

PRODUCT BACKLOG

Versions

1.1	Rename column user case ID into task ID, rename column user description to task description	2023-03-24
1.0	Initialize user cases based on user stories version 2	2023-03-22

Some rules for this table:

1 Story point equals around 0.5 days of work (3 hours)

Small-sized user case is less than 1 day. (1 to 2 points)

Medium-sized user case is 2 to 3 days (3 to 6 points)

Large-sized user case is 4 to 5 days (7 to 10 points)

User Story ID	User Stories	Story Priority	Story theme	Estimate Story Points In Total	Task ID	Task Description	Supplementary notes	Story Points	Size	Status	Assigned Sprint										
1.1	1.1 As a teacher /researcher /farmer, I want to use the camera to capture pictures of	researcher pictures mer, I want to the camera to ure pictures of	Capture pictures, CPP	21	1.1.1	The camera should be attached to the robot so that the camera could move with the robot	By moving the robot arm. we can adjust the position of the camera	1	SMALL	TO DO	Sprint 2										
	different stages of crops, so that the students can learn the lifecycle of crops.				1.1.2	Insert a UI to the front end of a web app that users can access and could configure the camera	Configuration includes starting and stopping, configuring camera settings, and taking pictures with the camera.	8	LARGE	TO DO	Sprint 2										
						1.1.3	After clicking the take picture button, the system could set the camera to real picture mode and take a picture		4	MEDIUM	TO DO	Sprint 2									
								1.1.4	The web app should be able to visualize data from farmbot		8	LARGE	TO DO	Sprint 2							
1.2	As a teacher, I want to show the students the automated process of	ng, g ney d	w the the ations, the ed of tering, sting at they stand ology n ral	'	5	1.2.1	Detailed introduction document to the technology for the robot		4	MEDIUM	TO DO	Sprint 3									
	planting, watering, and harvesting crops, so that they can understand how technology works in agricultural production.																1.2.2	Attach to video for educational purposes		1	SMALL
1.3	As a teacher, I want to deploy the Farmbot in class so that students can gain hands-on	HIGH	Deployme nt, DPL	16	1.3.1	Users can run scripts provided to deploy the whole system automatically.		8	LARGE	TO DO	Sprint 2										
	experience in high- tech farming.		h-											1.3.2	Provide a directly accessible web app and demo account for users to deploy and test		1	SMALL	TO DO	Sprint 2	
								1.3.3	packer the whole project with docker so that all dependencies could be prepared for deployment.		5	MEDIUM	TO DO	Sprint 2							
		1.3.4	Detailed ReadMe file and user manual so that the users could know what to do when they have the project.		2	SMALL	TO DO	Sprint 2													

1.4	As a farmer /researcher /teacher, I want to farm remotely so	HIGH	Remote Access, RMA	20	1.4.1	Control movement of the robot based on data including thermal data	Keep detecting; ai planning for abnormal status	8	LARGE	TO DO	Sprint 2									
	that I can reduce costs and get more time.				1.4.2	Support ssh to get connect remotely		4	MEDIUM	TO DO	Sprint 2									
					1.4.3	Thermal camera auto-connects to the network	Plug and play	8	LARGE	TO DO	Sprint 3									
2.1	As a teacher /researcher, I want to receive alarms when the crops are dry so that I	LOW	Alarms, ALM	8	2.1.1	Set the drying threshold based on the data returned by a thermal camera		4	MEDIUM	TO DO	Sprint 3									
	can remind students that they forgot to water the plants.				2.1.2	If dry plants are detected, an alert is immediately sent to the person in charge by email		4	MEDIUM	TO DO	Sprint 3									
2.2	As a sustainable farm owner, I want to use the thermal camera to detect whether the crops are infected with	LOW	Disease Detection, DTC	20	2.2.1	Data pre- processing of data on plant body surface temperature distribution		8	LARGE	TO DO	Sprint 3									
	pests and diseases so that I can timely detect and treatment of pests and diseases.						2.2.2	Analysis of changes in plant body surface temperature to determine the presence and extent of pests and diseases		8	LARGE	TO DO	Sprint 4							
								2.2.3	If any pests and diseases are detected, an alert is immediately sent to the farm owner by email		4	MEDIUM	TO DO	Sprint 4						
2.3	As a sustainable farm owner, I want to use thermal cameras to help me accurately control the	Base Con	MEDIUM	Thermal Based Controls, TBC	20	2.3.1	Use Farmbot software to set up the irrigation program, including irrigation time and water volume.		4	MEDIUM	TO DO	Sprint 4								
	irrigation water quantity so that I can accurately control irrigation volume, thereby improving crop growth efficiency.														2.3.2	Set up the camera program in Farmbot software to automatically capture thermal images of plants during irrigation.		4	MEDIUM	TO DO
					2.3.3	Analyze the thermal images of plants captured automatically during irrigation to determine their water status. Thermal images can display the surface temperature of plants, and based on the temperature changes, it is possible to determine whether the plants need irrigation.		8	LARGE	ΤΟ DO	Sprint 4									
					2.3.4	Based on the thermal images and the irrigation program settings, Farmbot can automatically control the irrigation water amount. If the plant needs more water, Farmbot will increase the irrigation water amount, and vice versa		4	MEDIUM	TO DO	Sprint 4									

2.4	As a farmer /researcher, I want to use the infrared imaging function to detect the	HIGH	Thermal Picture Analysis, TPA	17	2.4.1	Continuous monitoring of soil conditions with stream data from a thermal camera.		4	MEDIUM	TO DO	Sprint 3			
	temperature of the environment including the plant and the soil so that I can improve the quality and				2.4.2	Identify each plant on the thermal picture with computer vision algorithms.	Ensure that each plant is individually recognized through image-processing techniques	4	MEDIUM	TO DO	Sprint 3			
	nutritional value of crops through precision agriculture techniques				2.4.3	Analyzing the thermal energy of each plant's leaves using a thermal imaging camera.	Help to assess the environmental stress on the plants.	8	LARGE	TO DO	Sprint 3			
					2.4.4	Calculate the environmental stress on each plant and save the data.	This data can be used to guide other processes and research.	1	SMALL	TO DO	Sprint 3			
3.1	As a teacher /researcher, I want to collect thermal data through farmbot so that it could be used for	Auto Coll	Data Auto Collection , DAC	Auto Collection	Auto Collection	Auto Collection	12	3.1.1	The thermal camera should be able to take thermal pictures automatically.		2	SMALL	TO DO	Sprint 3
	could be used for further study.				3.1.2	The user should have access to control the frequency of autocollection.		4	MEDIUM	TO DO	Sprint 3			
								3.1.3	The camera would categorize data and send the data to the web app so that it could be saved and the user could download it.		8	LARGE	TO DO	Sprint 3
3.2	As an agricultural researcher, I want to manage my database related	HIGH	Database Managem ent, DBM	10	3.2.1	The data collected from farmbot should be stored in a database	A database that could hold all data including the raw image data.	4	MEDIUM	TO DO	Sprint 2			
	to the plants so that I have a clean and reliable dataset for my study.				3.2.2	The data, including the results of any analysis and raw images, should be well-organized and interconnected.	The design of the data structure should be clear and accepted by the client.	2	SMALL	TO DO	Sprint 2			
		3.2.3	3.2.3	The web application should have the capability to select, create, update, and delete any data that has been stored.	This should be accessed through a simple UI on the front, do not need to support multiple users at the same time (maybe in the future)	4	MEDIUM	ТО ДО	Sprint 2					

PROJECT INFORMATION

Project Overiew

• The overall goal of our part of the project is integrating a thermal camera to a robot called farmbot, so that the users could collect thermal data of plants remotely. Users can access the camera on farmbot web-app and can take thermal pictures at will. Once there is an emergency (for example threatening temperature) the system could send alarms to users.

Project Backgound

The farmbot project is an open-source project started in 2011 by Rory Aronson and aims at making farming automatic. The FarmBot system
is made up of a robot mounted on a raised bed or greenhouse controlled by web-based software. Through the web app, users could ask the
robot to plant seeds, clean weeds, water plants, and many other farming processes. Since the whole system is open-sourced, researchers
could self-hold the web app and integrate different tools to customize their robot to fulfill their research interest.

Client Goals

- Integrate a thermal camera into the farmbot.
- Use the thermal camera to collect and analyze the thermal data of the plants.
- Use the thermal data to fulfill other requirements such as detecting pests or giving alarms.

Technique Details

- · Deployment with docker and shell scripts
- Backend implemented with flask
- Frontend implemented with TypeScript
- Camera controlled with python script
- Camera connected with farmbot through Ethernet

Do-Be-Feel List

WHO (Roles)	DO (Functional Goal)	BE (Quality Goal)	FEEL (Emotional Goal)
Farmer	Can be accessed remotely	User-friendly	Encouraging
Agricultural Researcher	Detect temperature anomolies	Precise	Supported
Teacher	Alarm when there's emergency	Efficient	Relieved
Student	Take qualified thermal picture	Well-integrated	
Farmbot Team Member	Save thermal data to database	Reliable	
	Analyze thermal data		

Motivational Model

Project Structure Diagram

PROJECT PLANNING

Introduction

• Our goal is to finalize the project development during Sprint 2 and Sprint 3. To achieve that, we have reorganized the user stories into user cases, meanwhile taking into account their priorities of the user cases. Our team has created a well-defined development plan, which can be viewed on Trello: FA-Boxjelly development plan.

Sprints

• Sprint 2:

Time Period	Plans
week 5	 Familiar with the source code from web-app and find a way to test the web-app without compose Control the camera with python script on PC Design and pruchase tools to attach camera to the robot Find a way to register farmbot to self-host web-app
week 6	 Insert code into web-app to create our own UI on the web-app Design and set up database for the thermal data and connect the database to web-app Find a way to attach the camera to the farmbot Find a way to connect the camera to the raspberry pi and control it with python code
week 7	 By clicking the UI on the frontend, run python code implemented inside the webapp to control camera Set up python code to fully control the camera (set up configuration, caputring and real-time data streaming) Try save thermal data to database
week 8	 Test deployment and transfer data into shell and pack in docker. Write and test the system with designed test cases Documentation review Release the product version 1.0.

• Sprint 3:

Time Period	Plans
-------------	-------

week 9	 Bug fix for previous release Preprocess thermal image data Familiar with computer vision algorithms
week 10	 Set up controls for auto-picture taking Set up auto picture process and save analyzed data to database Distinguish each plants on the picture with computer vision algorithms
week 11	 Set up dry soil definition according to thermal data and set up alarms Set up plant stress definition Set up movement mode to auto-water dried plants
week 12	 Test deployment and transfer data into shell and pack in docker. Write and test the system with designed test cases Documentations review Release the product version 2.0.

Infrastructure to deploy the project

Deployment plan process

Scope	4 days
Establishing project's scope	1 day
Identifying main resources	3 days

Scope	4 days
Camera check and review	1 day
Web-app check and review	2 days
Deployment check and review	1 day

Scope	5 days
Camera evaluation and improvement	2 days
Web-app evaluation and improvement	2 days
Deployment evaluation and improvement	1 day

SCOPE AND REQUIREMENTS

- FUNCTIONAL REQUIREMENTSNONFUNCTIONAL REQUIREMENTS
- SCOPE

FUNCTIONAL REQUIREMENTS

Version1

Epic	Features	User stories				
Integration of Thermal	The user should be able to control the thermal on the web app with interface operations	As a teacher, I want to deploy the Farmbot in class so that students can gain hands-on experience in high-tech farming.	16			
Camera in	The photos taken by the thermal camera should be able to transmit to the web app	1.1 As a teacher/researcher/farmer, I want to use the camera to capture pictures of different stages of crops, so that the students can learn the lifecycle of crops.	21			
Farmbot	The web app should have a user interface for camera data visualization	2.4 As a farmer/researcher, I want to use the infrared imaging function to detect the temperature of the environment including the plant and the soil so that I can improve the quality and nutritional value of crops through precision agriculture techniques	17			
Camera Monitoring	The web app should have an interface for plant monitor and can control the movement accordingly	2.3 As a sustainable farm owner, I want to use thermal cameras to help me accurately control the irrigation water quantity so that I can accurately control irrigation volume, thereby improving crop growth efficiency.				
Monitoring	The web app should be able to control the farmbot by sending instructions remotely	1.4 As a farmer/researcher/teacher, I want to farm remotely so that I can reduce costs and get more time.	20			
	An alarm should be able to send from farmbot to the web app if an emergency show up	2.1 As a teacher/researcher, I want to receive alarms when crops are dry, so that I can remind students that they forgot to water the plants.	8			
Data	The data collected from farmbot should be able to transmit to the database	3.1 As a teacher/researcher, I want to collect thermal data through farmbot so that it could be used for further study.	12			
Management	The users should have an interface to search for the data stored	3.2 As an agricultural researcher, I want to manage my database related to the plants so that I have a clean and reliable dataset for my study.				
	The web app should have an interface for data processing or data visualization	2.2 As a sustainable farm owner, I want to use the thermal camera to detect whether the crops are infected with pests and diseases so that I can timely detect and treatment of pests and diseases.	20			
	The web app should have a module to display a detailed introduction document of the technology for the robot and an educational video	1.2 As a teacher, I want to show the students the automated process of planting, watering, and harvesting crops, so that they can understand how technology works in agricultural production.	5			

NONFUNCTIONAL REQUIREMENTS

Figure 1: Key non-functional requirements (Paradkar. 2017)

For non-functional requirements, we referenced the book Mastering Non-Functional Requirements:

Performance

- The data obtained by the thermal camera should be clear, accurate, and credible.
- Farmbot's remote access should be accurate.

Scalability

• The thermal camera should be able to monitor data from multiple plants at the same time.

Availability

• The farmbot web app should be able to be used by users at any time.

Security

- Users' private data should be protected by encryption.
- Regulate the use mechanism of farmbot to avoid unnecessary loss of personnel and property.

Maintainability

· Thermal imaging cameras must be regularly tuned and maintained to ensure their stability and accuracy.

Manageability

• The web app interface should be able to manage the farmbot, including actions control, camera monitoring, data analysis, and so on.

- The database is supposed to be managed by the users for data management.
- Users should have access to download any data from the database.

Reliability

- The operating system and interface of the web app should be reliable for farmbot control
- The database should be reliable for data storage and operations

Extensibility

- The web app structure should be flexible for extensions in the future
 The database should be scalable for future usage.

Recovery

- · The database should have the ability to recover after crashes
- The web app should be able to recover from network interruption

Interoperability

• The thermal camera should be able to seamlessly integrate with the Farmbot web app, ensuring a seamless and efficient experience for users.

Usability

· Instead of a complex command terminal, the web app should feature a user-friendly and intuitive interface to enhance users' clarity and ease of

References:

• Paradkar, S. (2017). Mastering Non-Functional Requirements [electronic resource] / Paradkar, Sameer. Packt Publishing.

SCOPE

Requirements in scope

Function	Description
Camera management	 Users can access and could configure the camera The system could set the camera to real picture mode and take a picture when the user clicks the "take a picture" button
Data management	 Data are visible on the web app for users Users can access to select, create, update, and delete any data that has been stored. interconnected.
Plant drying detection	Users will hear an alarm if the plant drying data is lower than the threshold.
Receiving email	If dry plants or pests and diseases are detected, an alert is immediately sent to the user in charge by email
pests and diseases detection	If any pests and diseases are detected, an alert is immediately sent to the user by email
irrigation program	 Users can set up irrigation time Users can set up irrigation volume

Requirements not in scope

Function	Description				
Multiple users operate a component at the same time	Concurrency issues are addressed in future development				
Uploading customized avatar	we do not develop customized uploaded avatars.				
Fix the previous team's bug	 The current step sometimes cannot work as expected in the create task which is designed by the previous team. We have not fixed this bug. 				

USER STORIES

latest version for user stories

- USER STORIES VERSION 1USER STORIES VERSION 2

USER STORIES VERSION 2

Versions

2.2	Reset story points according to the product backlog and story themes	2023-02-24
2.1	Reset Priorities and the color of priority and status	2023-02-23
2.0	Merge user stories according to guidance from the client, rewrite some user stories, reorder the IDs	2023-03-22
1.0	Initialize a user story table based on the current understanding of requirements, goal model, and persona.	2023-03-21

• The user stories were first created in March 2023 after the meeting with the client. As the team got started on coding partial functions and we followed the agile developing approach, some user stories were updated and optimized. Also, new user stories were created after a discussion with the client.

Feature	Global ID	Local ID	User Stories	User Story Themes	Priority	Story Points	Remarks	Update	Version	Status
Control	1	1.1	As a teacher/researcher/farmer, I want to use the camera to capture pictures of different stages of crops, so that the students can learn the lifecycle of crops.	Capture pictures,	MEDIUM	21		2023.03.22	2.1	TO DO
	2	1.2	As a teacher, I want to show the students the automated process of planting, watering, and harvesting crops, so that they can understand how technology works in agricultural production.	Documentat ions,	MEDIUM	5		2023.03.22	2.1	TO DO
	3	1.3	As a teacher, I want to deploy the Farmbot in class so that students can gain hands-on experience in high-tech farming.	Deployment , DPL	<u>HIGH</u>	16		2023.03.22	2.1	TO DO
	4	1.4	As a farmer/researcher/teacher, I want to farm remotely so that I can reduce costs and get more time.	Remote Access, RMA	<u>HIGH</u>	20		2023.03.22	2.1	TO DO
Monitor	5	2.1	As a teacher/researcher, I want to receive alarms when the crops are dry so that I can remind students that they forgot to water the plants.	Alarms, ALM	LOW	8		2023.03.22	2.1	TO DO
	6	2.2	As a sustainable farm owner, I want to use the thermal camera to detect whether the crops are infected with pests and diseases so that I can timely detect and treatment of pests and diseases.	Disease Detection, DTC	LOW	20		2023.03.22	2.1	TO DO
	7	2.3	As a sustainable farm owner, I want to use thermal cameras to help me accurately control the irrigation water quantity so that I can accurately control irrigation volume, thereby improving crop growth efficiency.	Thermal Based Controls, TBC	MEDIUM	20		2023.03.22	2.1	TO DO
	8	2.4	As a farmer/researcher, I want to use the infrared imaging function to detect the temperature of the environment including the plant and the soil so that I can improve the quality and nutritional value of crops through precision agriculture techniques	Thermal Picture Analysis, TPA	HIGH	17		2023.03.22	2.1	TO DO
Data	9	3.1	As a teacher/researcher, I want to collect thermal data through farmbot so that it could be used for further study.	Data Auto Collection, DAC	<u>HIGH</u>	12		2023.3.22	2.1	TO DO
	10	3.2	As an agricultural researcher, I want to manage my database related to the plants so that I have a clean and reliable dataset for my study.	Database Manageme nt, DBM	<u>HIGH</u>	10		2023.3.22	2.1	TO DO