The Measure of the SO(3) group manifold

First, write $d \mu(g) = \sin \theta d \theta d \phi f(\psi) d \psi = d \Omega d \psi f(\psi)$

and suppose that $f(\psi)$ is proportional to ψ^2

$$ln[1]:= Rz[\psi] := \{\{Cos[\psi], -Sin[\psi], 0\}, \{Sin[\psi], Cos[\psi], 0\}, \{0, 0, 1\}\}$$

 $Rz[\psi]$ // MatrixForm

$$\begin{pmatrix}
\cos \left[\psi\right] & -\sin \left[\psi\right] & 0 \\
\sin \left[\psi\right] & \cos \left[\psi\right] & 0 \\
0 & 0 & 1
\end{pmatrix}$$

IdentityMatrix[3] // MatrixForm

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

Write an infinitesimal rotation as $R(\delta, \epsilon, \sigma) = I + \begin{pmatrix} 0 & -\delta & \sigma \\ \delta & 0 & -\epsilon \\ -\sigma & \epsilon & 0 \end{pmatrix} = I + A$

$$In[2]:=$$
 A[δ , ϵ , σ] := {{0, - δ , σ }, {` δ , 0, - ϵ }, {- σ , ϵ , 0}}; A[δ , ϵ , σ] // MatrixForm

Out[3]//MatrixForm=

$$\left(\begin{array}{ccc}
\mathbf{0} & -\delta & \sigma \\
\delta & \mathbf{0} & -\epsilon \\
-\sigma & \epsilon & \mathbf{0}
\end{array}\right)$$

$$R(\overrightarrow{n}, \psi') = R(\overrightarrow{n}, \psi) R = R(\overrightarrow{n}, \psi) (I + A)$$
 fix \overrightarrow{n} as z-axis
= $R(e_z, \psi) (I + A) =$

$$In[4]:= R = Dot[Rz[\psi], (IdentityMatrix[3] + A[\delta, \epsilon, \sigma])];$$

R // MatrixForm

Out[5]//MatrixForm=

$$\begin{pmatrix} \cos[\psi] - \delta \sin[\psi] & -\delta \cos[\psi] - \sin[\psi] & \sigma \cos[\psi] + \epsilon \sin[\psi] \\ \delta \cos[\psi] + \sin[\psi] & \cos[\psi] - \delta \sin[\psi] & -\epsilon \cos[\psi] + \sigma \sin[\psi] \\ -\sigma & \epsilon & 1 \end{pmatrix}$$

Remark

How can we determine rotation angle and direction for given rotation matrix R?

Rotation Angle

Note that rotations of same angle are in same equivalence class regardless of its directions.

$$R(\overrightarrow{n}, \theta) \sim R(\overrightarrow{m}, \theta) \sim R(\overrightarrow{e}_z, \theta)$$

and, character is a function of class

$$\operatorname{tr}(R(\overrightarrow{n}, \theta)) = \operatorname{tr}(R(\overrightarrow{m}, \theta)) = \operatorname{tr}(R(\overrightarrow{e}_z, \theta)) = \operatorname{tr}\begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} = 1 + \cos \theta$$

Rotation direction

Use the fact that that $R \vec{n} = \vec{n}$. Then,

$$R^T \vec{n} = R^T (R \vec{n}) = (R^T R) \vec{n} = \vec{n}$$
. Henceforth, $(R - R^T) \vec{n} = 0$

The solution of above homogenous equation is the direction of rotation! Let's see.

Since above equation is homogeneous linear system, utilize NullSpace[] for instead.

$$\text{Out} [7] = \left\{ \left\{ -\frac{-\epsilon - \epsilon \, \mathsf{Cos} \, [\psi] \, + \sigma \, \mathsf{Sin} \, [\psi]}{2 \, \left(\mathcal{S} \, \mathsf{Cos} \, [\psi] \, + \mathsf{Sin} \, [\psi] \, \right)} \, , \, -\frac{-\sigma - \sigma \, \mathsf{Cos} \, [\psi] \, - \epsilon \, \mathsf{Sin} \, [\psi]}{2 \, \left(\mathcal{S} \, \mathsf{Cos} \, [\psi] \, + \mathsf{Sin} \, [\psi] \, \right)} \, , \, \, \mathbf{1} \right\} \right\}$$

$$ln[8]:= \mathbf{n} = \mathbf{n} / . \delta \rightarrow \mathbf{0}$$

$$\mathsf{Out}[\mathtt{B}] = \left\{ \left\{ -\frac{1}{2} \mathsf{Csc}\left[\psi\right] \; \left(-\varepsilon - \varepsilon \; \mathsf{Cos}\left[\psi\right] \right. + \sigma \, \mathsf{Sin}\left[\psi\right] \right) \text{, } -\frac{1}{2} \, \mathsf{Csc}\left[\psi\right] \; \left(-\sigma - \sigma \, \mathsf{Cos}\left[\psi\right] \right. - \varepsilon \, \mathsf{Sin}\left[\psi\right] \right) \text{, } \mathbf{1} \right\} \right\}$$

Now we have determined the rotation axis. Obtaining rotation angle is more easy

$$1 + 2 \cos [\psi + \delta] == Tr[R]$$

$$1 + 2 \cos [\delta + \psi] = 1 + 2 \cos [\psi] - 2 \delta \sin [\psi]$$

Note that
$$f(x + \delta x) \simeq f(x) + f'(x) \delta x$$

Now call the Cartesian coordinate near ψ' by (x^1, x^2, x^3)

$$\begin{aligned} & \text{Out} \text{[12]=} & \left\{ \left\{ -\frac{1}{2} \, \psi \, \mathsf{Csc} \left[\psi \right] \, \left(-\varepsilon - \varepsilon \, \mathsf{Cos} \left[\psi \right] \, + \sigma \, \mathsf{Sin} \left[\psi \right] \right) , \right. \\ & \left. -\frac{1}{2} \, \psi \, \mathsf{Csc} \left[\psi \right] \, \left(-\sigma - \sigma \, \mathsf{Cos} \left[\psi \right] \, - \varepsilon \, \mathsf{Sin} \left[\psi \right] \right) , \, \delta + \psi \right\} , \, \left\{ \varepsilon \text{, } \sigma \text{, } \delta \right\} \right\} \end{aligned}$$

Then we can evaluate Jacobian for the transformation from the Cartesian coordinates $(\epsilon, \sigma, \delta)$ (near identity) to the Cartesian coordinates (x^1, x^2, x^3) (near ψ')

In[16]:= JacobianMatrix[coord, ψcoord] // MatrixForm

$$\begin{pmatrix} -\frac{1}{2} \, \psi \, \left(-\mathbf{1} - \mathsf{Cos} \left[\psi \right] \, \right) \, \mathsf{Csc} \left[\psi \right] & -\frac{\psi}{2} & 0 \\ \frac{\psi}{2} & -\frac{1}{2} \, \psi \, \left(-\mathbf{1} - \mathsf{Cos} \left[\psi \right] \, \right) \, \mathsf{Csc} \left[\psi \right] & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

ln[17]:= J = JacobianDeterminant[coord, ψ coord]

Out[17]=
$$\frac{1}{4} \psi^2 \left(1 + \text{Cot} [\psi]^2 + 2 \text{Cot} [\psi] \text{Csc} [\psi] + \text{Csc} [\psi]^2 \right)$$

In[18]:=
$$J = Simplify \left[\frac{1}{4} \psi^2 \left(1 + Cot \left[\psi \right]^2 + 2 Cot \left[\psi \right] Csc \left[\psi \right] + Csc \left[\psi \right]^2 \right) \right]$$
Out[18]:= $\frac{1}{4} \psi^2 Csc \left[\frac{\psi}{2} \right]^2$

In[19]:= **4 J**

Out[19]=
$$\psi^2 \operatorname{Csc}\left[\frac{\psi}{2}\right]^2$$

From $J d \in d \sigma d \delta = dx^1 dx^2 dx^3$,

$$d \in d \sigma d \delta = dx^{1} dx^{2} dx^{3} / J = \{ (\psi^{2} d \psi) (\sin \theta d \theta d \phi) \} / (\psi^{2} \csc^{2}(\psi/2))$$
$$= \psi^{2} d \psi d \Omega \sin^{2}(\psi/2) / \psi^{2} = d \Omega d \psi \sin^{2}(\psi/2)$$

Notice that the factor ψ^2 canceled out. Finally $f(\psi) = \sin^2(\psi/2)$

Series
$$\left[\left(\sin \left[\psi / 2 \right] \right)^2, \{ \psi, 0, 5 \} \right]$$

 $\frac{\psi^2}{4} - \frac{\psi^4}{48} + 0 \left[\psi \right]^6$

By construction, for very small angle ψ , $f(\psi)$ is proportional to ψ^2

Remark

The integrals of class functions over the SO(3) group manifold

$$\int_{SO(3)} dl \, \mu(g) \, F(g) = \int_0^{\pi} dl \, \psi(\sin^2(\psi/2)) \, F(\psi)$$

■ Example. Character Orthogonality

For finite group, we can confirm the character orthogonality by utilizing following;

$$\sum_{g \in G} (\chi^{(r)}(g))^* \chi^{(s)} \star (g) = N(G) \, \delta_{rs}$$

When dealing with continuous group, substitute $\int dl \mu(g)$ for \sum_q

 $\int_{SO(3)} dl \mu(g) (\chi(k, \psi))^* \chi(j, \psi) \text{ where character of irreducible representation of SO(3) } \chi \text{ is given by}$ $\chi(j, \psi) = \frac{\sin(j+1/2)\psi}{\sin(\psi/2)}$

$$\log 20 = \chi[j_{,} \psi_{]} := \frac{\sin[(j+1/2)\psi]}{\sin[\psi/2]}$$

$$\int_{SO(3)} dl \, \mu(g) \longrightarrow \int_0^{\pi} dl \, \psi(\sin^2(\psi/2))$$

$$\int_{\mathsf{SO}(3)} dl \, \mu(g) \, (\chi(k, \, \psi))^* \, \chi(j, \, \psi) \, \rightarrow \, \int_0^\pi \! dl \, \psi(\mathsf{sin}^2(\psi/2)) \, (\chi(k, \, \psi))^* \, \chi(j, \, \psi)$$

 $\mathsf{HoldForm}\big[\mathsf{Integrate}\big[\big(\mathsf{Sin}\big[\psi\big/\,2\big]\big)^2\,\mathsf{Conjugate}\big[\chi[\mathsf{k},\,\psi]\,]\,\chi[\mathsf{j},\,\psi]\,,\,\{\psi,\,\emptyset,\,\pi\}\big]\big]\,\,//$ **TraditionalForm**

$$\int_0^{\pi} \sin^2\left(\frac{\psi}{2}\right) \chi(k, \psi)^* \chi(j, \psi) d\psi =$$

$$\int_0^{\pi} \frac{\sin^2\left(\frac{\psi}{2}\right) \left(\frac{\sin\left(\left(k+\frac{1}{2}\right)\psi\right)}{\sin\left(\frac{\psi}{2}\right)}\right)^* \sin\left(\left(j+\frac{1}{2}\right)\psi\right)}{\sin\left(\frac{\psi}{2}\right)} d\psi = \int_0^{\pi} d\psi \left(\sin\left(\left(k+\frac{1}{2}\right)\psi\right)\right)^* \sin\left(\left(j+\frac{1}{2}\right)\psi\right)$$

$$= \frac{1}{2} \int_0^{\pi} d\psi \left(\cos(j-k)\psi - \cos(j+k+1)\psi\right) = \frac{\pi}{2} \delta_{ij}$$

Note that the volume of the group SO(3) is $\pi/2$

Reference

• A. Zee. Group Theory in a Nutshell for Physicists. Princeton University Press, 2016