Assignment-5

Python Programming

Assignment Date	09 November 2022
Student Name	K.Saran
Student Roll Number	210519205044
Maximum Marks	2 Marks

11/9/22, 8:52 PM Untitled1.ipynb - Colaboratory

- Assignment-4

Customer Segmentation Analysis

Double-click (or enter) to edit

Problem Statement:-

You own the mall and want to understand the customers who can quickly converge [Target Customers] so that the insight can be given to the marketing team and plan the strategy accordingly.

Clustering the data and performing classification algorithms

1. Perform Below Visualizations.

Import Libraries

```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.cluster import KMeans
from sklearn.metrics import confusion_matrix,classification_report, accuracy_score
```

Import Dataset

```
data = pd.read_csv('Mall_Customers.csv')
data
```

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	Male	19	15	39
1	2	Male	21	15	81
2	3	Female	20	16	6
3	4	Female	23	16	77
4	5	Female	31	17	40
195	196	Female	35	120	79
196	197	Female	45	126	28
197	198	Male	32	126	74
198	199	Male	32	137	18
199	200	Male	30	137	83

200 rows × 5 columns

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	CustomerID	200 non-null	int64
1	Gender	200 non-null	object
2	Age	200 non-null	int64
3	Annual Income (k\$)	200 non-null	int64
4	Spending Score (1-100)	200 non-null	int64

dtypes: int64(4), object(1) memory usage: 7.9+ KB

▼ Univariate Analysis

```
plt.hist(data['Gender']);
plt.xlabel('Gender');
```


plt.hist(data['Age']);
plt.xlabel('Age');

plt.hist(data['Annual Income (k\$)']);
plt.xlabel('Annual Income (k\$)');

sns.boxplot(x=data['Annual Income (k\$)'])
plt.xlabel('Annual Income (k\$)');

plt.hist(data['Spending Score (1-100)']);
plt.xlabel('Spending Score (1-100)');

→ Bivariate Analysis

```
plt.figure(figsize=(10, 6))
sns.lineplot(x=data["Age"], y=data["Annual Income (k$)"]);
plt.xlabel('Age');
plt.ylabel('Annual Income (k$)');
```



```
plt.figure(figsize=(10, 6))
sns.lineplot(x=data["Age"], y=data["Spending Score (1-100)"]);
plt.xlabel('Age');
plt.ylabel('Spending Score (1-100)');
```


→ Multi-variate Analysis

sns.pairplot(data, hue='Gender');

Untitled1.ipynb - Colaboratory

plt.figure(figsize=(10, 6));
sns.heatmap(data.corr(), annot=True);

- 1

Descriptive Statistics

data.describe()

	Spending Score (1-100)	Annual Income (k\$)	Age	CustomerID	
	200.000000	200.000000	200.000000	200.000000	count
	50.200000	60.560000	38.850000	100.500000	mean
	25.823522	26.264721	13.969007	57.879185	std
	1.000000	15.000000	18.000000	1.000000	min
	34.750000	41.500000	28.750000	50.750000	25%
	50.000000	61.500000	36.000000	100.500000	50%
	73.000000	78.000000	49.000000	150.250000	75%
,	99.000000	137.000000	70.000000	200.000000	max

data.skew()

```
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarning: Dropping """Entry point for launching an IPython kernel.
```

dtype: float64

data.kurt()

4

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarning: Dropping """Entry point for launching an IPython kernel.

CustomerID -1.200000
Age -0.671573
Annual Income (k\$) -0.098487
Spending Score (1-100) -0.826629

dtype: float64

data.var()

4

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarning: Dropping """Entry point for launching an IPython kernel.

```
11/9/22, 8:52 PM Untitled1.ipynb - Colaboratory

CustomerID 3350.000000

Age 195.133166

Annual Income (k$) 689.835578

Spending Score (1-100) 666.854271
dtype: float64
```

Handling Missing Values

```
data.isna().sum()

CustomerID 0
Gender 0
Age 0
Annual Income (k$) 0
Spending Score (1-100) 0
dtype: int64
```

Outlier Handling

```
numeric_cols = ['Age', 'Annual Income (k$)', 'Spending Score (1-100)']
def boxplots(cols):
                 fig, axes = plt.subplots(3, 1, figsize=(15, 20))
                 t=0
                 for i in range(3):
                                 sns.boxplot(ax=axes[i], data=data, x=cols[t])
                                  t+=1
                 plt.show()
def Flooring_outlier(col):
                 Q1 = data[col].quantile(0.25)
                  Q3 = data[col].quantile(0.75)
                 IQR = Q3 - Q1
                 whisker_width = 1.5
                  lower_whisker = Q1 -(whisker_width*IQR)
                  upper_whisker = Q3 + (whisker_width*IQR)
                  \verb| data[col] = \verb| np. where (data[col] > \verb| upper_whisker, upper_whisker, np. where (data[col] < \verb| lower_whisker, upper_whisker, upper_whi
 print('Before Outliers Handling')
 print('='*100)
 boxplots(numeric_cols)
 for col in numeric_cols:
```

Flooring_outlier(col)
print('\n\nAfter Outliers Handling')
print('='*100)
boxplots(numeric_cols)

- Encode Categorical Columns

```
data = pd.get_dummies(data, columns = ['Gender'])
data
```

	CustomerID	Age	Annual Income (k\$)	Spending Score (1- 100)	Gender_Female	Gender_Male
0	1	19.0	15.00	39.0	0	1
1	2	21.0	15.00	81.0	0	1
2	3	20.0	16.00	6.0	1	0

Standard Scaling

```
data = data.drop(['CustomerID'], axis=1)
data
```

	Age	Annual Income (k\$)	Spending Score (1-100)	<pre>Gender_Female</pre>	<pre>Gender_Male</pre>
0	19.0	15.00	39.0	0	1
1	21.0	15.00	81.0	0	1
2	20.0	16.00	6.0	1	0
3	23.0	16.00	77.0	1	0
4	31.0	17.00	40.0	1	0

195	35.0	120.00	79.0	1	0
196	45.0	126.00	28.0	1	0
197	32.0	126.00	74.0	0	1
198	32.0	132.75	18.0	0	1
199	30.0	132.75	83.0	0	1

200 rows × 5 columns

12/18

```
[-0.42100102, 0.32302/1/, 1.42003343],
[-0.99396865, 0.6320435 , -1.48298362],
[-0.77866858, 0.6320435 , 1.81684904],
[ 0.65666521, 0.6320435 , -0.55126616],
[-0.49160182, 0.6320435, 0.92395314],
[-0.34806844, 0.67038984, -1.09476801],
[-0.34806844, 0.67038984, 1.54509812],
[ 0.29783176, 0.67038984, -1.28887582],
[ 0.010765 , 0.67038984, 1.46745499],
[ 0.36959845, 0.67038984, -1.17241113],
[-0.06100169, 0.67038984, 1.00159627],
[ 0.58489852, 0.67038984, -1.32769738],
[-0.85043527, 0.67038984, 1.50627656],
[-0.13276838, 0.67038984, -1.91002079],
[-0.6351352 , 0.67038984, 1.07923939],
[-0.34806844, 0.67038984, -1.91002079],
[-0.6351352 , 0.67038984, 0.88513158],
[ 1.23079873, 0.70873618, -0.59008772],
[-0.70690189, 0.70873618, 1.27334719],
[-1.42456879, 0.78542885, -1.75473454],
[-0.56336851, 0.78542885, 1.6615628],
[\ 0.80019859,\ 0.9388142\ ,\ -0.93948177],
[-0.20453507, 0.9388142 , 0.96277471],
[ 0.22606507, 0.97716054, -1.17241113], [-0.41983513, 0.97716054, 1.73920592],
[-0.20453507, 1.01550688, -0.90066021],
[-0.49160182, 1.01550688, 0.49691598],
[ 0.08253169, 1.01550688, -1.44416206],
[-0.77866858, 1.01550688, 0.96277471],
[-0.20453507, 1.01550688, -1.56062674],
[-0.20453507, 1.01550688, 1.62274124],
[ 0.94373197, 1.05385321, -1.44416206],
[-0.6351352 , 1.05385321, 1.38981187],
[ 1.37433211, 1.05385321, -1.36651894],
[-0.85043527, 1.05385321, 0.72984534],
[ 1.4460988 , 1.2455849 , -1.4053405 ],
[-0.27630176, 1.2455849 , 1.54509812],
[-0.13276838, 1.39897025, -0.7065524 ],
[-0.49160182, 1.39897025, 1.38981187],
[ 0.51313183, 1.43731659, -1.36651894],
[-0.70690189, 1.43731659, 1.46745499],
[ 0.15429838, 1.47566292, -0.43480148],
[-0.6351352 , 1.47566292 , 1.81684904],
[ 1.08726535 , 1.5523556 , -1.01712489],
[-0.77866858 , 1.5523556 , 0.69102378],
[ 0.15429838, 1.62904827, -1.28887582],
[-0.20453507, 1.62904827, 1.35099031],
[-0.34806844, 1.62904827, -1.05594645],
[-0.49160182, 1.62904827, 0.72984534],
[-0.41983513, 2.01251165, -1.63826986],
[-0.06100169, 2.01251165, 1.58391968],
[ 0.58489852, 2.28093601, -1.32769738],
[-0.27630176, 2.28093601, 1.11806095],
[ 0.44136514, 2.51101403, -0.86183865],
[-0.49160182, 2.51101403, 0.92395314],
[-0.49160182, 2.76985181, -1.25005425],
```

data[['Age', 'Annual Income (k\$)', 'Spending Score (1-100)']] = sc data

	Age	Annual Income (k\$)	Spending Score (1-100)	Gender_Female	Gender_Male
0	-1.424569	-1.745429	-0.434801	0	1
1	-1.281035	-1.745429	1.195704	0	1
2	-1.352802	-1.707083	-1.715913	1	0
3	-1.137502	-1.707083	1.040418	1	0
4	-0.563369	-1.668737	-0.395980	1	0
	***		***		
195	-0.276302	2.280936	1.118061	1	0
196	0.441365	2.511014	-0.861839	1	0
197	-0.491602	2.511014	0.923953	0	1
198	-0.491602	2.769852	-1.250054	0	1
199	-0.635135	2.769852	1.273347	0	1

200 rows × 5 columns

- Clustering

```
TWSS = []
k = list(range(2,13))
for i in k:
    kmeans = KMeans(n_clusters = i , init = 'k-means++')
    kmeans.fit(data)
    TWSS.append(kmeans.inertia_)
TWSS
     [487.65867172744953,
      393.6497829986831,
      302.7542334541679,
      264.3903755157514,
      229.9106024423537,
      209.77702386241236,
      186.0163645303913,
      167.9777361984937,
      148.39231267577674,
      135.69562671961853,
      129.30659450120024]
```

```
plt.plot(k, TWSS, 'ro--')
plt.xlabel('# Clusters')
plt.ylabel('TWSS')
```



```
model = KMeans(n_clusters = 5)
model.fit(data)

KMeans(n_clusters=5)
```

- Add the Cluster data with Primary dataset

```
mb = pd.Series(model.labels_)
data['Cluster'] = mb
data
```

	Age	Annual Income (k\$)	Spending Score (1-100)	Gender_Female	Gender_Male	Cluster
0	-1.424569	-1.745429	-0.434801	0	1	0
1	-1.281035	-1.745429	1.195704	0	1	0

 $\label{localization} $$ {\rm data[['Age', 'Annual \ Income \ (k$)', 'Spending \ Score \ (1-100)']] = scaler.inverse_transform(data \ data \) } $$$

	Age	Annual Income (k\$)	Spending Score (1- 100)	Gender_Female	Gender_Male	Cluster
0	19.0	15.00	39.0	0	1	0
1	21.0	15.00	81.0	0	1	0
2	20.0	16.00	6.0	1	0	3
3	23.0	16.00	77.0	1	0	0
4	31.0	17.00	40.0	1	0	3
		****	•••			•••
195	35.0	120.00	79.0	1	0	4
196	45.0	126.00	28.0	1	0	1
197	32.0	126.00	74.0	0	1	4
198	32.0	132.75	18.0	0	1	1
199	30.0	132.75	83.0	0	1	4

200 rows × 6 columns

mb=pd.Series(model.labels_)
data

	Age	Annual Income (k\$)	Spending Score (1- 100)	Gender_Female	Gender_Male	Cluster
0	19.0	15.00	39.0	0	1	0
1	21.0	15.00	81.0	0	1	0
2	20.0	16 00	e 0	1	0	2

Split Data Into Dependent & Independent Features

```
X=data.drop('Cluster',axis=1)
Y=data['Cluster']
Χ, Υ
           Age Annual Income (k$) Spending Score (1-100) Gender_Female \
                  15.00
15.00
           21.0
                                                        81.0
      1
         20.0
23.0
31.0
                            16.00
16.00
17.00
                                                                          1
1
1
                                                        6.0
      3
                                                        77.0
      4
                                                        40.0
     195 35.0 120.00
196 45.0 126.00
197 32.0 126.00
198 32.0 132.75
199 30.0 132.75
                                                          . . .
                                                      79.0
                                                        28.0
                                                        74.0
                                                        18.0
                                                        83.0
           Gender_Male
      0
      1
      2
      3
      4
      195
                    0
      196
      197
                    1
      198
      199
      [200 rows x 5 columns], 0
         0
      2
             3
      3
             0
             3
      195
           1
      196
      197
      198
             1
```

Name: Cluster, Length: 200, dtype: int32)

199

- Split the data into Training And Testing Data

```
X_train,X_test,Y_train,Y_test=train_test_split(X,Y,test_size=0.2,random_state=42)
X_train.shape, X_test.shape, Y_train.shape, Y_test.shape
((160, 5), (40, 5), (160,), (40,))
```

→ Train Model & Evaluate

```
model=DecisionTreeClassifier()
model.fit(X_train,Y_train)

DecisionTreeClassifier()
```

- Evaluate

```
model.score(X_train, Y_train)
    1.0
model.score(X_test, Y_test)
    0.95
Y_pred = model.predict(X_test)
accuracy_score(Y_pred, Y_test)
    0.95
print(classification_report(Y_pred, Y_test))
                  precision recall f1-score support
                               1.00
                                         1.00
               1
                       1.00
                                0.83
                                          0.91
                                                      12
               2
                       1.00
                                1.00
                                          1.00
                                                      9
                                1.00
                                          0.90
                       0.82
```