Homework 2 Solutions

Math 198: Math for Machine Learning

Due Date: February 19 Name: Sean Vernon

1 Comparing Vector Spaces

- 1. Exhibit a basis for $\mathbb{R}^3 := \mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R}$. One basis for \mathbb{R}^3 is the standard basis, $\{(1,0,0),(0,1,0),(0,0,1)\}$. Any three linearly independent vectors in \mathbb{R}^3 will do.
- 2. Exhibit a basis for $\mathbb{P}^2 := \{f : \mathbb{R} \to \mathbb{R} : f(x) = a_0 + a_1 x + a_2 x^2 \text{ for some } a_0, a_1, a_2 \in \mathbb{R} \}$, the space of 3rd degree polynomials with real coefficients. Note that your basis elements should be polynomials. The standard basis for \mathbb{P}^2 is $\{1, x, x^2\}$.
- 3. Conclude that \mathbb{R}^3 and \mathbb{P}^2 are *isomorphic* (i) by a dimension argument and (ii) by exhibiting an *isomorphism* between them. When two vector spaces V, W are isomorphic, we write $V \cong W$. As noted in class, any vector space with dimension d is isomorphic to \mathbb{R}^d . \mathbb{P}^2 has dimension 3, as there are 3 elements in the basis. Therefore, $\mathbb{P}^2 \cong \mathbb{R}^3$. We can also exhibit the following isomorphism between them. Let e_i denote the i-th element of the standard basis for \mathbb{R}^3 and f_i denote the i-th element of the standard basis for \mathbb{P}^2 . Then $T: \mathbb{R}^3 \to \mathbb{P}^2$ given by $e_i \mapsto f_i$ is an isomorphism, as its inverse $T^{-1}: \mathbb{P}^2 \to \mathbb{R}^3$ given by $f_i \mapsto e_i$ exists. So, $\mathbb{R}^3 \cong \mathbb{P}^2$.

2 Characterizing the Inner Product

1. Let $\langle \cdot, \cdot \rangle$ be an inner product on \mathbb{R}^n . Show that there exists $A \in \mathbb{R}^{n \times n}$ with $A^{\top} = A$ such that $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^{\top} A \mathbf{y}$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. (Hint: what is the action of $\langle \cdot, \cdot \rangle$ on the standard basis?) Define a matrix A such that $A_{ij} = \langle e_i, e_j \rangle$. Then for any two vectors $v, w \in \mathbb{R}^n$, we have

$$\langle v, w \rangle = \langle \sum_{i=1}^{n} \alpha_i e_i, \sum_{j=1}^{n} \beta_j e_j \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} \langle \alpha_i e_i, \beta_j e_j \rangle$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \beta_j \langle e_i, e_j \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \beta_j A_{ij}$$
$$= v(\sum_{j=1}^{n} \beta_j A_j) = vAw^{\top}$$

From here, it suffices to show that $A^{\top} = A$. By definition, we have that $A_{ij} = \langle e_i, e_j \rangle = \langle e_j, e_i \rangle = A_{ji}$. This completes the proof.

3 Linear Maps

Let V, W be vector spaces, and let $T: V \to W$ be a linear map.

- 1. Show that T is one-to-one (a.k.a. injective) if and only if the kernel of T is trivial, i.e. $\{v \in V : T(v) = \mathbf{0}_W\} = \{\mathbf{0}_V\}$.
 - (\rightarrow) If T is one-to-one, then no two unique vectors $v_1, v_2 \in V$ map to the same vector $w \in W$. Therefore, only one vector in V maps to 0_W . Since $T(0_V) = 0_W$, 0_V is the only vector in V which maps to 0_W , and so $\ker(T) = \{0_v\}$ (i.e. the kernel is trivial).
 - (\leftarrow) Let the kernel of T be trivial. Suppose there are two unique vectors $v_1, v_2 \in V$ such that $T(v_1) = T(v_2)$. But then $T(v_1 v_2) = T(v_1) T(v_2) = 0$, which implies $v_1 v_2 \in \ker(T)$. Since the kernel of T is trivial, this in turn implies $v_1 v_2 = 0$, and so $v_1 = v_2$. This contradicts our assumption that v_1 and v_2 are not the same vector, and so no two unique vectors in V map to the same vector in V. Therefore, V is one-to-one.
- 2. Let $\{\mathbf{b}_1,...,\mathbf{b}_n\}$ be a basis for V, and let T be such that $\{T(\mathbf{b}_1),...,T(\mathbf{b}_n)\}$ is a basis for W. Show that T is an isomorphism.

We first show that T is onto – since $\{T(\mathbf{b}_1), \dots, T(\mathbf{b}_n)\}$ is a basis for W, the range of T spans W. Furthermore, since no two basis vectors in V map to the same basis vector in W under T, no two vectors in V will map to the same vector in W, and so T is one-to-one. Therefore, T is an isomorphism.

4 Dual Spaces (Optional)

Given a vector space V, we can form the vector space of linear maps from V to \mathbb{R} , called the *dual space* of V. Formally, the dual space is given by $V^* := L(V, \mathbb{R})$, and its elements are known as *linear functionals* (or, in some contexts, covectors). Note that the questions in this section are optional.

- 1. Let V be a real vector space with basis $B = \{\mathbf{b}_1, ..., \mathbf{b}_n\}$. Exhibit a basis for V^* and conclude that $V \cong V^*$.
 - Recall that any linear map is defined by its action on a basis. So, we can exhibit a basis for V^* by considering the set of linear maps which map each individual basis vector in V to $1 \in \mathbb{R}$. Then, by scaling and combining these linear maps, we can create linear maps with arbitrary actions on the basis of V, and thus this set will span all linear maps in V^* while remaining linearly independent, our condition for a basis. This basis is $\{\delta_1, \delta_2, \ldots, \delta_n\}$ where δ_i is the function which maps b_i to 1 and all other basis vectors to 0. Since this basis has n elements, $\dim(V^*) = n$, and so $V \cong V^*$.
- 2. Consider V^{**} , the dual space of the dual space of V, called the *double dual space* of V. Without choosing a basis for V, construct an isomorphism between V and V^{**} . Since such an isomorphism exists, we say that V and V^{**} are *canonically isomorphic*.
 - Since V^* is a space of functions, and we wish to map those functions to the real numbers, one can consider the elements of V^{**} as being the "arguments" to those functions, i.e. the *i*-th basis element of V^{**} would be the vector which maps δ_i to 1 and all other basis elements of V^* to 0.
 - More generally, define a map $\Phi: V \to V^{**}$ given by $x \mapsto \phi_x$, where ϕ_x is the evaluation map given by $\phi_x(\xi) = \xi(x)$. By the linearity of elements of V^* (the ξ 's), Φ is linear. We have already established that $V \cong V^{**}$, and Φ is clearly one-to-one. Thus, Φ is the canonical isomorphism we're looking for.
- 3. Let H be a (real) Hilbert space, i.e. an inner product space (perhaps infinite-dimensional) that is complete with respect to the metric induced by its inner product. Form the *continuous dual space* of H, $H' = \{\xi \in H^* : \xi \text{ is continuous}\}$. It turns out that H is canonically isomorphic to its continuous dual; this result in functional analysis known as the Riesz Representation Theorem. Give a guess as to the canonical isomorphism $H \to H'$. (Hint: It depends completely upon the coordinate-wise linearity of the inner product.)
 - Define $\Psi: V \to V'$ given by $\Psi(x)(y) = \langle y, x \rangle$. Our Ψ maps x to the functional $y \mapsto \langle y, x \rangle$. If we call this functional ψ_x , then $||\psi_x||_{\text{op}} = ||x||_H$ so ψ_x is bounded and thus continuous. Since \mathbb{R}^n is a Hilbert space with the standard inner product, every linear functional is of the form $\langle \cdot, x \rangle$ for some $x \in \mathbb{R}^n$.

5 Projections

A set of vectors is *orthogonal* if each vector is pairwise orthogonal to all the rest. An orthogonal set of vectors is *orthonormal* if each vector has norm 1 (i.e., $\langle \mathbf{v}, \mathbf{v} \rangle = 1$).

1. Show that any set of orthonormal vectors is linearly independent.

We first show that only the zero vector is orthogonal to itself, as in the definition of inner product, $\langle v, v \rangle = 0$ if and only if v = 0. Note that the zero vector could never be a member of a set of orthonormal vectors, as its norm is not 1 (it is 0). Suppose we have a set of orthonormal vectors $\{v_1, \ldots, v_n\}$ which is not linearly independent. Then some vector in this set can be written as a linear combination of the others. Without loss of generality, let this vector be v_i . Then

$$\sum_{j \neq i}^{n} \alpha_j v_j = v_i$$

However, we have that

$$\langle \sum_{j\neq i}^{n} \alpha_j v_j, v_i \rangle = \sum_{j\neq i}^{n} \alpha_j \langle v_j, v_i \rangle = 0$$

since the set is orthonormal. This is a contradiction, as no non-zero vector is orthogonal to itself, and 0 cannot be a member of our set. Therefore, no linearly dependent set of orthonormal vectors exists.

- 2. Show that, for a space V with dimension d, a set of d orthonormal vectors in V is a basis for V. This follows easily from the previous problem, as any d linearly independent vectors in a space with dimension d constitute a basis. Since d orthonormal vectors are always linearly independent, any set of d orthonormal vectors in V is a basis for V.
- 3. Suppose we have a vector space V, a subspace $W \subset V$, and a vector $\mathbf{v} \in V$ such that $\mathbf{v} \notin W$. Let $\{\mathbf{w}_1, \dots, \mathbf{w}_k\}$ be an orthonormal basis for W.
 - (a) Show that

$$\mathbf{v}_w = \sum_{i=1}^k \langle \mathbf{v}, \mathbf{w}_i \rangle \mathbf{w}_i$$

is an orthogonal projection of \mathbf{v} into W.

Note that we can extend the orthonormal basis for W to an orthonormal basis for V by adding vectors orthogonal to all those in our current basis until we reach $\dim(V)$ vectors. Suppose we have done so and obtained a basis $\{w_1, \ldots, w_n\}$. Then we can write v in terms of this basis as

$$v = \alpha_1 w_1 + \ldots + \alpha_n w_n$$

Note that $\langle v, w_i \rangle = \alpha_i$ as our basis is orthonormal. So,

$$v_w = \sum_{i=1}^k \alpha_i w_i$$

and

$$v - v_w = \sum_{i=k+1}^n \alpha_i w_i$$

which is a linear combination of vectors orthogonal to every vector in W and is thus orthogonal to W. By the proof in the notes, this implies v_w is an orthogonal projection of v into W.

- (b) Let \mathbf{P}_W be a matrix such that $\mathbf{P}_W \mathbf{v} = \mathbf{v}_w$. \mathbf{P}_W is known as a projection matrix.
 - i. Show that $\mathbf{P}_W^2 = \mathbf{P}_W$.

Note that $P_W(P_Wv)$ will return a vector v_w such that $P_Wv - v_w$ is orthogonal to W. But both P_Wv and v_w are in W, which is closed, so $P_Wv - v_w \in W$. Therefore, in order for $P_Wv - v_w$ to be orthogonal to all $w \in W$, it must be orthogonal to itself, and thus it is the zero vector. So $P_Wv - P_W(P_Wv) = 0$, and thus $P_W^2 = P_W$.

ii. Show that $\mathbf{P}_W^{\top} = \mathbf{P}_W$.

Recall that P_W is the matrix such that $P_W v = \sum_{i=1}^k \langle v, w_i \rangle w_i$. We can rewrite the expression on the right to get a new matrix form for P_W :

$$\sum_{i=1}^{k} \langle v, w_i \rangle w_i = \sum_{i=1}^{k} v^\top w_i w_i = \sum_{i=1}^{k} u_i u_i^\top v = (\sum_{i=1}^{k} u_i u_i^\top) v = U U^\top v$$

where U is a matrix with u_1, \ldots, u_k as its columns. (This last step is known as the *sum-of-outer-products identity*.) Therefore, $P_W = UU^\top = (UU^\top)^\top = P_W^\top$.

iii. Show that $\mathbf{P}_W \mathbf{w} = \mathbf{w}$ for all $w \in W$. Conclude that \mathbf{P}_W has the same action as the identity matrix \mathbf{I} on vectors in W.

This proof follows from the proof in part i. Note that since any vector in W has the first same k components as an infinite number of vectors in V, range $(P_W) = W$. Since $P_W^2 = P_W$, $P_W^2 = IP_W v$. This implies that since $P_W v$ is always a vector in W, the action of P_W on a vector in W is the same as the action of I on a vector in W.

4. Let $V = \mathbb{R}^4$ and $U \cong \mathbb{R}^2$ such that $\{e_1, e_2\}$ is a basis for U (i.e. all vectors in U take the form (a, b, 0, 0) with respect to the standard basis for \mathbb{R}^4). Note that U is a subspace of V. Determine the matrix form of \mathbf{P}_U , and show that it has the same properties as \mathbf{P}_W from problem 3.

As noted in 3a, $\sum_{i=1}^{k} \langle v, u_i \rangle u_i$ is an orthogonal projection of v into U. Using the bases given in this problem, we can determine the action of this summation on the standard basis for \mathbb{R}^4 , and use this to define a matrix P_U . We have that:

$$\sum_{i=1}^{2} \langle e_1, e_i \rangle e_i = e_1, \ \sum_{i=1}^{2} \langle e_2, e_i \rangle e_i = e_2$$

$$\sum_{i=1}^{2} \langle e_3, e_i \rangle e_i = 0, \ \sum_{i=1}^{2} \langle e_4, e_i \rangle e_i = 0$$

therefore,

Note that

as desired.