BRAC University MAT-215 Practice Sheet # 4 PART_A

1. Evaluate
$$\int_{(0,1)}^{(2,5)} (3x + y) dx + (2y - x) dy$$
 along

- (a) the curve $y = x^2 + 1$
- (b) the straight line joining (0,1) and (2,5)
- (c) the straight lines from (0,1) to (0,5) and then from (0,5) to (2,5)
- (d) the straight lines from (0,1) to (2,1) and then from (2,1) to (2,5).
- 2. Evaluate $\oint_C (x+2y) dx + (y-2x) dy$ around the ellipse C defined by $x = 4\cos\theta$, $y = 3\sin\theta$, $0 \le \theta \le 2\pi$ if C is described in a counterclockwise direction.

3. Evaluate
$$\int_C (x^2 - iy^2) dz$$
 along

- (a) the parabola $y = 2x^2$ from (1,1) to (2,8)
- (b) the straight lines from (1,1) to (1,8) and then from (1,8) to (2,8)
- (c) the straight line from (1,1) to (2,8).
- 4. Evaluate $\oint_C |z|^2 dz$ around the square with vertices at (0,0), (1,0),(1,1),(0,1).

5. Evaluate
$$\int_{C} (z^2 + 3z) dz$$

- (a) along the circle |z| = 2 from (2,0) to (0,2) in a counter clockwise direction.
- (b) the straight line from (2,0) to (2,2) and then from (2,2) to (0,2).

6. Evaluate
$$\int_{i}^{2-i} (3xy + iy^2) dz$$

- (a) along the straight line joining z = i and z = 2 i
- (b) along the parabola x = 2t 2, $y = 1 + t t^2$.
- 7. Evaluate $\oint_C (\overline{z})^2 dz$ around the circles (a) |z| = 1 and (b) |z 1| = 1.
- 8. Evaluate $\oint_C \frac{dz}{z-2}$ around (a) the circle |z-2|=4 (b) the circle |z-1|=9.

9. Evaluate $\oint_C (5z^4 - z^3 + 2) dz$ around the circle |z| = 1.

(Cauchy's Integral Formula) PART_B

1. Evaluate $(a) \oint_C \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)} dz$ $(b) \oint_C \frac{e^{2z}}{(z+1)^4} dz$

where *C* is the circle |z| = 3.

2. Evaluate $\oint_C \frac{e^z}{(z^2 + \pi^2)^2} dz$

where *C* is the circle |z| = 4.

3. Evaluate $\oint_C \frac{e^{3z}}{z - \pi i} dz$

where *C* is the circle |z-1|=4.

4. Evaluate $\frac{1}{2\pi i} \oint_C \frac{e^{zt}}{(z^2+1)^2} dz$ if t > 0 and C is the circle |z| = 3.