东南大学 2009-2010 学年《高等数学(上)》期末考试试卷

课程名称

高等数学

考试学期 09-10

得分

适用专业 选高数 AB 的专业 考试形式

闭卷

考试时间长度 150 分钟

一. 填空题

1. 函数 $f(x) = \frac{1}{x - [x]}$ 的定义域是 ,值域是____;

2. 设 $f(x) = \begin{cases} \frac{\ln x}{1-x}, & x > 0, x \neq 1 \\ a, & x = 1 \end{cases}$, 当 a =_____时, f(x) 在 x = 1 处连续;

3. 曲线 $y = \frac{x^2}{2(x+1)}$ 的斜渐进线的方程是_____;

4. $\int_{-1}^{1} \left(x + \sqrt{1 - x^2} \right)^2 dx =$

 $6. \int \frac{\mathrm{d}x}{\sqrt{x(1-x)}} = \underline{\hspace{1cm}};$

7. 设 y = y(x) 是由 $x - \int_{1}^{x+y} e^{-t^2} dt = 0$ 所确定的函数,则 $\frac{dy}{dx}\Big|_{x=0} =$ ______;

8. 曲线族 $xy = C_1 e^x + C_2 e^{-x}$ (C_1, C_2 为任意常数)所满足的微分方程是_____;

1

9. $\lim_{n\to\infty} \frac{1}{n} \sum_{k=1}^{n} \sin \frac{k}{n} \pi = \underline{\hspace{1cm}}$

二.按要求计算下列各题(本题共5小题,每小题6分,满分30分)

10.
$$\int \frac{\ln \sin x}{\sin^2 x} dx$$

11.
$$\int_{2}^{+\infty} \frac{\mathrm{d}x}{(x+7)\sqrt{x-2}}$$

12.
$$\lim_{x \to 0} \frac{\cos(\sin x) - \cos x}{x^2 (1 - \cos x)}$$

13.
$$\int_0^{\pi} \frac{dx}{2 + \cos 2x}$$

14.设
$$f'(x) = \arcsin(x-1)^2$$
, $f(0) = 0$, 计算 $\int_0^1 f(x) dx$.

三 (15). (本题满分 8 分) 求微分方程 $y'' - 2y' = x + e^{2x}$ 满足初始条件 y(0) = 1,

$$y'(0) = \frac{5}{4}$$
 的特解.

四(16).(本题满分 8 分)设函数 y = f(x) 在区间[0,1] 上可导,在(0,1) 内恒取正值,且满足 $xf'(x) = f(x) + 3x^2$,又由曲线 y = f(x) 与直线 x = 1, y = 0 所围成的图形 s 的面积为 2 ,求函数 f(x) 的表达式,并计算图形 s 绕 y 轴旋转一周所得旋转体的体积.

五(17).(本题满分 6 分) 已知方程 $\frac{x^2}{2} - \ln(1 + x^2) = a$ 在区间 (-1,1) 内存在两个互异的实根,试确定常数 a 的取值范围.

六(18). (本题满分 6 分) 设 f(x) 在区间[0,1] 上非负、连续, 且满足 $f^2(x) \le 1 + 2 \int_0^x f(t) dt$

证明: 对 $\forall x \in [0,1]$, 有 $f(x) \le 1 + x$

七 (19). (本题满分 6 分) 设 $f \in C[-l, l]$, f(x) 在 x = 0 处可导, 且 $f'(0) \neq 0$,

(1) 求证: $\forall x \in (0,l), \exists \theta \in (0,1)$, 使得

$$\int_{0}^{x} f(t)dt + \int_{0}^{-x} f(t)dt = x[f(\theta x) - f(-\theta x)]$$

(2) 求极限 lim θ.

09-10-2 高等数学(上)期末参考答案

一.填空题(本题共9小题,每小题4分,满分36分)

1.
$$R \setminus Z$$
 , $\underline{}(1, +\infty)$ **2.** $a = \underline{} -1$ **3.** $y = \frac{1}{2}x - \frac{1}{2}$

2.
$$a = -1$$

3.
$$y = \frac{1}{2}x - \frac{1}{2}$$

4. 2; **5.**
$$x = 0$$
; **6.** $2 \arcsin \sqrt{x} + C$ \implies $\arcsin(2x-1) + C$;

7.
$$\frac{dy}{dx}\Big|_{x=0} = \underline{e-1}$$
; 8. $xy'' + 2y' - xy = 0$ 9. $\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \sin \frac{k}{n} \pi = \underline{\frac{2}{\pi}}$

二.按要求计算下列各题(本题共5小题,每小题6分,满分30分)

10.
$$\int \frac{\ln \sin x}{\sin^2 x} dx = -\cot x \ln \sin x - \cot x - x + C$$

11.
$$\int_{2}^{+\infty} \frac{dx}{(x+7)\sqrt{x-2}} = \frac{\pi}{3}$$

12.
$$\lim_{x\to 0} \frac{\cos\sin x - \cos x}{x^2(1-\cos x)} = \frac{1}{3}$$

13.
$$\int_0^{\pi} \frac{dx}{2 + \cos 2x} = \frac{\pi}{\sqrt{3}}$$

14.
$$\int_0^1 f(x) dx = \frac{\pi}{4} - \frac{1}{2}$$

三(15). (本题满分8分)

$$y = C_1 + C_2 e^{2x} - \frac{1}{4}(x^2 + x) + \frac{1}{2}xe^{2x}$$
, $\Leftrightarrow \text{#ft } y = \frac{1}{2} + \frac{1}{2}e^{2x} - \frac{1}{4}(x^2 + x) + \frac{1}{2}xe^{2x}$

四(16). (本题满分7分)

$$f(x) = 2x + 3x^2$$
 $V = \frac{17}{6}\pi$

五(17). (本题满分7分)

$$\frac{1}{2} - \ln 2 < a < 0$$

六(18). (本题满分6分)

法一: 令
$$F(x) = \int_0^x f(t)dt$$
, $\Rightarrow F'(x) = f(x) \Rightarrow F'^2(x) \le 1 + 2F$

$$\Rightarrow \frac{dF}{dx} \le \sqrt{1 + 2F} \Rightarrow \int_0^x \frac{1}{\sqrt{1 + 2F}} dF \le \int_0^x dx$$

$$\Rightarrow \sqrt{1 + 2F} - \sqrt{1 + 2F(0)} \le x \Rightarrow \sqrt{1 + 2F} \le 1 + x$$

$$\Rightarrow f^2(x) \le 1 + 2F \le (1 + x)^2 \Rightarrow$$
 结 论 成 立.

法二:

七(19). (本题满分6分)

(1)证明:
$$\diamondsuit$$
 $F(x) = \int_0^x f(t)dt + \int_0^{-x} f(t)dt$

对 F(x)在[0,x]上 使 用 Lagrange中 值 定 理 得:

$$F(x) - F(0) = F'(\theta x)x,$$

$$\mathbb{RP}: \int_0^x f(t)dt + \int_0^{-x} f(t)dt = x[f(\theta x) - f(-\theta x)]$$

(2)
$$\oplus$$
 (1) $\Rightarrow \frac{\int_{0}^{x} f(t)dt + \int_{0}^{-x} f(t)dt}{x^{2}} = \frac{f(\theta x) - f(-\theta x)}{x}$

两边取极限, 并由导数的定义得:

$$f'(0) = 2 f'(0) \lim_{r \to 0^+} \theta$$

$$\Rightarrow \lim_{x \to 0^+} \theta = \frac{1}{2}$$