Karnaugh maps

Jia Chen jiac@ucr.edu

Karnaugh map

- A systematic and graphical way to reduce the product or sum terms in an expression.
- Key: apply uniting property as judiciously as possible

Uniting Theorem
$$ab + ab' = a$$
 $(a + b)\cdot(a + b')=a$

Truth table

	Row number	x_1	x_2	x_3	f
	0	0	0	0	$oxed{1}$
f = x3'+x1x2'	1	0	0	1	0
1 70 - 7172	2	0	1	0	1
	3	0	1	1	0
	4	1	0	0	1
	5	1	0	$1 \mid$	1
	6	1	1	0	1
	7	1	1	1	0
					I

	x_1	x_2	<i>x</i> ₃
m_0	0	0	0
m_2	0	1	0
m ₄	1	0	0
m_6	1	1	0

	x_1	x_2	<i>x</i> ₃
<i>m</i> ₄	1	0	0
m_5	1	0	1

- If x3=0, f=1 regardless of the values of x1 and x2
- If x1=1and x2=0, f=1 regardless of the value of x3
- How to easily discover groups of minterms for f=1 that can be combined into single terms?

Karnaugh map

An alternative to the truth-table form for representing a function

 A map consists of cells corresponding to the rows of the truth table

Location of two-variable minterms

- Advantage: minterms in any two cells that are adjacent, either in the same row or the same column, can be combined.
- Test m2+m3 ?

Steps for SOP simplification

- Create a 2-D truth table with input variables on each dimension, and adjacent column(j)/row(i) only change one bit in the variable.
- Fill each (i, j) with the corresponding result in the truth table
- Combine 2, 4, 8, 16, ..., 2ⁿ Minterms to obtain a SINGLE product term
 - ➤ Therefore, in a K map, we can only circle 2, 4, 8, 16, ..., 2ⁿ adjacent cells to obtain a single term!
 - How to get a SINGLE product term (see next slide)
- Find the "minimum cover" that covers all 1s in the graph
- OR the united product terms of all minimum cover

How to get a SINGLE product term?

- A product terms include only those variables having the same value for all cells in the group represented by this term
- If the variable is 1 in the group, it appears uncomplemented

If the variable is 0 in the group, it appears complemented

Strategy for SOP simplification

- Intuitive strategy: find as few as possible for the number of groups & as large as possible for the number of cells with 1s for each group
- Each group of 1s has to comprise cells that can be represented by a single product term
- The larger the group of 1s, the fewer the number of variables in the corresponding product term

2-variable K-map example

Inp	Output	
A	В	Output
0	0	1
0	1	1
1	0	1
1	1	0

Practicing 2-variable K-map

- What's the simplified function of the following K-map?
 - A. A'
 - B. A'B
 - C. AB'
 - D. B
 - E. A

Practicing 2-variable K-map

- What's the simplified function of the following K-map?
 - A. A'
 - B. A'B
 - C. AB'
 - D. B
 - E. A

3-variable K-map?

- Reduce to 2-variable K-map 1 dimension will represent two variables
- Adjacent points should differ by only 1 bit
 - So we only change one variable in the neighboring column
 - 00, 01, 11, 10 such numbering scheme is so-called **Gray-code**

	Input	Output	
A	В	C	Output
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Minimum number of SOP terms to cover the following

function?

A. 1

B. 2

C. 3

D. 4

E. 5

	Input	Output	
A	В	C	Output
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Minimum number of SOP terms to cover the following

function?

	Input	Output	
A	В	C	Output
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Minimum number of SOP terms to cover the following

function?

A. 1

B. 2

C. 3

D. 4

E. 5

	Input	Output	
A	В	C	Output
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Minimum number of SOP terms to cover the following

function?

Α.	1

B. 2

C. 3

D. 4

E. 5

	Input	Output	
Α	В	С	Output
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

A'B'

			<u> </u>	АВ	AD_	AD		_
	C	(A,	0,0	0,1	1,1	1,0	0,0	
C'	0		1	0	0	1	1	
С	1		1	0	0	1	1	

A'D'

Minimum SOP terms

What's the minimum sum-of-products expression of the

given truth table?

A.
$$A'B'C' + A'BC' + A'BC + AB'C'$$

$$B. A'B'C + AB + AC$$

D.
$$A'B + B'C'$$

E.
$$A'C' + A'B + AB'C'$$

	Input	Output	
A	В	C	Output
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Minimum SOP terms

What's the minimum sum-of-products expression of the

given truth table?

A.
$$A'B'C' + A'BC' + A'BC + AB'C'$$

$$B. A'B'C + AB + AC$$

E.
$$A'C' + A'B + AB'C'$$

ı		AB	<u> </u>	AB_	AB AB
		0,0	0,1	1,1	1,0
C'	0	1	1 B	'C' 0	1
C	1	0	1	0	0

	Input	Output			
A	В	C	Output		
0	0	0	1		
0	0	1	0		
0	1	0	1		
0	1	1	1		
1	0	0	1		
1	0	1	0		
1	1	0	0		
1	1	1	0		

A'B

A D₁

4-variable K-map

- Reduce to 2-variable K-map both dimensions will represent two variables
- Adjacent points should differ by only 1 bit
 - · So we only change one variable in the neighboring column
 - Use Gray-coding 00, 01, 11, 10

		A'B'	A'E	BA	В	AB'
A	B'C	7 00	01	11	10	
C'D'	00	1	0	0	0	
C'D	01	1	0	0	0	
CD	11	0	0	0	0	
CD'	10	1	0	0	1	
	R	CI	,			•

$$F(A, B, C) = A'B'C'+B'CD'$$

4-variable K-map

 What's the minimum sum-of-products expression of the given K-map?

A.
$$B'C' + A'B'$$

B.
$$B'C'D' + A'B' + B'C'D'$$

D.
$$AB' + A'B' + A'B'D'$$

E.
$$B'C' + A'C'D'$$

		A'B'	A'B	AB	AB'
		00	01	11	10
C'D'	00	1	0	0	1
C'D	01	1	0	0	1
CD	11	0	0	0	0
CD'	10	1	1	0	0

4-variable K-map

 What's the minimum sum-of-products expression of the given K-map?

A.
$$B'C' + A'B'$$

D.
$$AB' + A'B' + A'B'D'$$

Steps for POS simplification

- Create a 2-D truth table with input variables on each dimension, and adjacent column(j)/row(i) only change one bit in the variable.
- Fill each (i, j) with the corresponding result in the truth table
- Combine 2, 4, 8, 16, ..., 2ⁿ Maxterms to obtain a SINGLE sum term
 - ➤ Therefore, in a K map, we can only circle 2, 4, 8, 16, ..., 2ⁿ adjacent cells to obtain a single term!
 - How to get a SINGLE sum term (see next slide)
- Find the "minimum cover" that covers all 0 s in the graph
- AND the united sum terms of all minimum cover

How to get a SINGLE sum term?

- A sum terms include only those variables having the same value for all cells in the group represented by this term
- If the variable is 1 in the group, it appears complemented
- If the variable is 0 in the group, it appears uncomplemented

Strategy for POS simplification

- Intuitive strategy: find as few as possible for the number of groups & as large as possible for the number of cells with 0s for each group
- Each group of 0 s has to comprise cells that can be represented by a single sum term

 The larger the group of 0 s, the fewer the number of variables in the corresponding sum term

Simplification of PoS forms

$$F = (x3+x4)(x2+x3)(x1'+x2'+x3'+x4')$$

Incompletely Specified Functions

- Situations where the output of a function can be either 0 or 1 for a particular combination of inputs
- This is specified by a don't care in the truth table
- This happens when
 - The input does not occur. e.g. Decimal numbers 0... 9 use 4 bits, so (1,1,1,1) does not occur.
 - The input may happen but we don't care about the output. E.g. The output driving a seven segment display we don't care about illegal inputs (greater than 9)

You can treat "X" as either 0 or 1

depending on which is more advantageous

		A'B'	A'B	AB	AB'
		0,0	0,1	1,1	1,0
C'	0	1	0 X	1	1
С	1	1	1	0	0

If we treat the "X" as 0?

$$F(A,B,C)=A'B'+A'C+AC'$$

		A'B'	A'B	AB	AB'		
		0,0	0,1	1,1	1,0		
C'	0	1	X	1	1	C'	
С	1	1	1	0	0		
A'							

If we treat the "X" as 1?

$$F(A,B,C) = C' + A'$$

You can treat "X" as either 0 or 1

depending on which is more advantageous

If we treat the "X" as 0? If we treat the "X" as 1?

$$F(A,B,C)=A'B'+A'C+AC'$$

$$F(A,B,C) = C' + A'$$

4-input K-Maps with Don't Cares

- How many of the following could be a valid for the given K-map?
 - (1) C'D + A'CD + A'BC
 - (2) C'D + A'D + A'BC
 - (3) C'D + A'CD
 - 4 A'D + B'C'D + A'BCD'
 - A. 0
 - B. 1
 - C. 2
 - D. 3
 - E. 4

		A'B'	A'B	AB	AB'
		00	01	11	10
C'D'	00	0	0	0	0
C'D	01	1	1	Х	1
CD	-11	1	х	0	0
CD'	10	0	1	0	0

4-input K-Maps with Don't Cares

How many of the following could be a valid for the given K-map?

$$(1)$$
 C'D + A'CD + A'BC

$$(2)$$
 C'D + A'D + A'BC

$$\bigcirc$$
 C'D + A'CD

$$(4)$$
 A'D + B'C'D + A'BCD'

A. 0

B. 1

C. 2

D. 3

E. 4

