(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 8 November 2001 (08.11.2001)

PCT

(10) International Publication Number WO 01/83701 A2

(51) International Patent Classification7:

C12N.

- (21) International Application Number: PCT/US01/14394
- (22) International Filing Date: 2 May 2001 (02.05.2001)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/201,602

3 May 2000 (03.05.2000) US

- (71) Applicant: MONTEREY BAY AQUARIUM RE-SEARCH INSTITUTE [US/US]; 7700 Sandholt Road, Moss Landing, CA 95039 (US).
- (72) Inventors: DELONG, Edward, F.; 4 Blacktail Lane, Monterey, CA 93940 (US). BEJA, Oded; 408 Holovits Court, Marina, CA 93933 (US).

- (74) Agent: KAMINSKY, Rena; Lumen Intellectual Property Services, Inc., 45 Cabot Avenue, Suite 110, Santa Clara, CA 95051 (US).
- (81) Designated States (national): AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CO, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

[Continued on next page]

(54) Title: LIGHT-DRIVEN ENERGY GENERATION USING PROTEORHODOPSIN

(57) Abstract: A light-driven energy generation system using proteorhodopsin is provided. Proteorhodopsin sequences were retrieved and amplified from naturally occurring members of the domain Bacteria using proteorhodopsin-specific polymerase chain reaction primers. Proteorhodopsin sequences were placed in expression vectors for production of proteorhodopsin proteins in a host, for instance, *E. coli* and other bacteria. The system also includes a light source and a source of retinal, that allows the system to convert light into biochemical energy. The generated biochemical energy could be mediated into electrical energy by a mediator.

01/83701 A2

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

PATENT APPLICATION

LIGHT-DRIVEN ENERGY GENERATION USING PROTEORHODOPSIN

INVENTORS

Edward F. DeLong and Oded Beja

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is cross-referenced to and claims priority from U.S Provisional application 60/201,602 filed 05/03/2000, which is hereby incorporated by reference.

STATEMENT REGARDING FEDERALLY SPONDORED RESEARCH OR DEVELOPMENT

This invention was supported in part by grant number OCE 0001619 from the National Science Foundation (NSF). The U.S. government has certain rights in the invention.

STATEMENT TO COMPUTER DISK AND SEQUENCE LISTING

This application includes a sequence listing of 65 sequences and a computer disk labeled "Sequence Listing for application entitled "Light-driven energy generation using proteorhodopsin" by Edward F. DeLong and Oded Beja" containing files "MBA101-SEQLIST.prj", dated "04/23/01" with 174,089 bytes, which is the PatentIn

project file generated using PatentIn Version 3.0 software provided by the USPTO, and "MBA101-SEQLIST.txt", dated "04/23/01" with 323,739 bytes, which is the generated sequence listing from the PatentIn project file MBA101-SEQLIST.prj using PatentIn Version 3.0 software, all which are herein incorporated. The information recorded in computer readable format on the incorporated computer disk labeled "Sequence Listing" containing files "MBA101-SEQLIST.prj" and "MBA101-SEQLIST.txt" are identical to the incorporated written sequence listing.

FIELD OF THE INVENTION

The present invention relates generally to gene expression of functional recombinant proteins in bacteria. More particularly, the present invention relates to proteorhodopsin genes and proteins that function as a light-driven energy generator in *Escherichia coli* (E. coli) and other bacteria.

BACKGROUND ART

Retinal (vitamin A aldehyde) is a chromophore that binds integral membrane proteins (opsins) to form light-absorbing pigments called rhodopsins. Rhodopsins are currently known to belong to two distinct protein families. The visual rhodopsins, found in the eye throughout the animal kingdom, are photosensory pigments. Archeal rhodopsins, found in extreme halophilic environments, function as light-driven protons pumps (bacteriorhodopsins), chloride ion pumps (halorhodopsins), or photosensory receptors (sensory rhodopsins). The two protein families show no significant sequence similarity and may have different origins. They do, however, share identical topologies characterized by seven transmembrane α -helices that form a pocket in which retinal is covalently linked, as a pronated Schiff base (helix G).

The archaeal rhodopsins are able to generate a photocycle which produces a chemiosmotic membrane potential in response to light, as such light energy is converted into biochemical energy. Recently, a protein with high sequence similarity to the archaeal rhodopsins has also been retrieved in the eukaryote Neurospora crassa (J.A. Bieszke et al., Proceedings of National Academy of Sciences USA 96:8034, 1999). The eucaryal rhodopsin formed a photochemically reactive pigment when bound to all-trans retinal and exhibited photocycle kinetics similar to those of archaeal sensory rhodopsins (J.A. Bieszke et al., Biochemistry 38:14138, 1999). To date, however, no rhodopsin-like sequences have been reported in members of the domain Bacteria, and no light-driven proton pumps based on rhodopsin have ever before been functionally expressed in E coli.

The phototropic conversion of light energy into biochemical energy using bacteriorhodopsin can be harnessed for a variety of processes and applications, such as bio-electronic applications and bio-materials, as has been reported in US Patent No. 5,757,525 for optical devices, US Patent No. 5,854,710 for optical Fourier processing, and US Patent No. 5,470,690 for optical information storage. Bacteriorhodopsin in bio-electronic applications is aimed to interface, integrate, or substitute the silicon based microelectronics systems as well as molecular devices. Bacteriorhodopsin as a bio-material is integrated, for instance, in optical films for light mediated computer memory applications and pattern recognition.

Prevsiously, archaeal rhodopsins capable of generating a chemiosmotic membrane potential in response to light had only been found in halophilic archaea. Therefore, rhodopsins that originate from archaea adapted to highly saline environments cannot be functionally expressed in *E. coli*. Finally, the isolation and cultivation of

halorhodopsins is an elaborate process. At present one does not foresee an economic utilization possible for this process (e.g. US Patent 5,290,699).

Accordingly, as one skilled in the art might readily acknowledge, there is a strong need to retrieve and provide rhodopsin-like sequences from naturally occurring members of the domain Bacteria.

OBJECTS AND ADVANTAGES

In light of the above, it is the primary objective of the present invention to provide rhodopsin-like sequences from naturally occurring members of the domain Bacteria. More specifically, it is the objective of the present invention to provide a method to retrieve proteorhodopsin genes from DNA of naturally occurring bacteria that encodes DNA sequence for proteorhodopsin proteins.

It is another objective of the present invention to provide proteorhodopsin-specific polymerase chain reaction primers that amplify the proteorhodopsin-containing gene from a DNA sample of naturally occurring bacteria.

It is yet another objective of the present invention to produce variants of a proteorhodopsin gene using the same proteorhodopsin-specific polymerase chain reaction primers by amplifying a proteorhodopsin-containing gene from of a mixed sample of naturally occurring bacteria.

It is still another objective of the present invention to provide an expression vector that produces a proteorhodopsin protein in *E. coli* and other bacteria.

It is another objective of the present invention to provide a light-driven energy generator in which the functional properties of proteorhodopsin are utilized. These properties include the ability to integrate within a host, for instance a cell membrane of *E. coli*, making an integrated proteorhodopsin protein, and the ability to bind retinal, making a light absorbing pigment.

It is another objective of the present invention to provide a light source and illuminate the light absorbing pigment to convert light energy into biochemical energy.

It is another objective of the present invention to provide a mediator and mediate the biochemical energy into electrical energy.

It is another objective of the present invention to provide methods to manipulate the kinetics of the light-driven energy generator.

The advantage of the present invention over the prior art is that it is not restricted to operate in halophilic archaea and could therefore be functionally expressed in *E. coli* and other bacteria. Accordingly, another advantage of the present invention is that it provides for a fast and cheap production method that allows for mass production of functionally active proteorhodopsin.

SUMMARY

The present invention provides proteorhodopsin gene and protein sequences retrieved from samples of naturally occurring members of the domain Bacteria. More specifically, the present invention provides a method for the retrieval and amplification of proteorhodopsin genes from DNA samples of naturally occurring marine bacteria. In accordance with several exemplary embodiments of the present invention, DNA samples were obtained from naturally occurring bacteria such as, for instance, marine proteobacteria, SAR86 bacteria, or recombinant DNA libraries containing naturally occurring bacteria. The present invention provides proteorhodopsin-specific polymerase chain reaction (PCR) primers to amplify a proteorhodopsin gene from DNA samples of these marine bacteria. The present invention also provides a device and method for the placement of proteorhodopsin genes in an expression vector to produce functional proteorhodopsin proteins in *E. coli* and other bacteria.

Accordingly, the present invention provides a method to produce and obtain variants of proteorhodopsin genes and proteins. The same proteorhodopsin-specific polymerase chain reaction primers amplify different variants of proteorhodopsin-containing genes from a mixed sample of naturally occurring bacteria. As one skilled in the art might readily acknowledge, these variants of a proteorhodopsin gene produce functional variations in the photocycle kinetics of the proteorhodopsin protein.

Furthermore, the present invention provides a light-driven energy generator that utilizes proteorhodopsin to convert light-energy into biochemical energy. This light-driven energy generator takes advantage of the functional properties of the proteorhodopsin protein once expressed in, for example, *E. coli* or other bacteria as is

described in exemplary embodiments. These properties include the ability to integrate within a host such as, for instance, a cell membrane of *E. coli* or other Bacteria, and thereby making an integrated proteorhodopsin protein or integrated cell membrane protein. These properties also include the ability to bind retinal and thereby making a light absorbing pigment. Illuminating the light absorbing pigment with a light source converts light energy into biochemical energy. Finally, the biochemical energy can be mediated into electrical energy by a mediator.

In accordance with exemplary embodiments, the present invention enables one skilled in the art to manipulate the kinetics of the proteorhodopsin protein photocycle once it is operational in the light-driven energy generator. In particular, the present invention provides examples in which the light source characteristics are manipulated. Examples are the manipulation of the delivery of fast-light pulses and/or the delivery of light at different wavelengths. The present invention also provides examples in which incremental additions of retinal influences the function of the light-driven energy generator. In addition, a proteorhodopsin gene or protein variant can be selected to determine an absorption spectra of the light absorbing pigment to change the kinetics of the light energy generator, for instance to meet a design/functional criteria of an application wherein proteorhodopsin is utilized.

BRIEF DESCRIPTION OF THE FIGURES

The objectives and advantages of the present invention will be understood by reading the following detailed description in conjunction with the drawings, in which:

- FIG. 1 illustrates the phylogenetic tree of bacterial 16S rRNA gene sequences including that encoded on the 130 kb bacterioplankton BAC clone (EBAC31A8).
- FIG. 2 provides a nucleotide sequence of polymerase chain reaction primer 1 (Sequence ID No:2) used to amplify a proteorhodopsin gene.
- FIG. 3 provides a nucleotide sequence of polymerase chain reaction primer 2 (Sequence ID No:3) used to amplify a proteorhodopsin gene.
- FIG. 4 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:4) amplified from clone EBAC31A8 (Sequence ID No:1) using PCR primers 1 (Sequence ID No:2) and 2 (Sequence ID No:3), and the deduced amino acid sequence (Sequence ID No:5) of the proteorhodopsin gene Sequence ID No:4 amplified from clone EBAC31A8 (Sequence ID No:1).
- FIG. 5 provides a map of the secondary structure of the proteorhodopsin protein (Sequence ID No:7). Single letter amino acid codes are used (according to J. Sasaki and J.L. Spudich, Biophys. J. 75:2435, 1998). Predicted retinal binding pocket residues are marked in black.
- FIG. 6 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:8) amplified from clone EBAC40E8 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence (Sequence ID No:9) of the proteorhodopsin gene Sequence ID No:8 amplified from clone EBAC40E8.
- FIG. 7 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:10) amplified from clone EBAC41B4 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence (Sequence ID No:11) of the proteorhodopsin gene Sequence ID No:7 amplified from clone EBAC41B4.

- FIG. 8 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:12) amplified from clone EBAC64A5 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence (Sequence ID No:13) of the proteorhodopsin gene Sequence ID No:12 amplified from clone EBAC64A5.
- FIG. 9 provides a variants map of the DNA sequences of the proteorhodopsin gene with Sequence ID No:4, Sequence ID No:8, Sequence ID No:10, and Sequence ID No:12 that were amplified from clone EBAC38A8, EBAC40E8, EBAC41B4 and EBAC64A5 respectively using the proteorhodopsin-specific PCR primer 1 (Sequence ID No:2) and 2 (Sequence ID No:3). Dots represent sequences having identical sequence as those in Sequence ID No:4.
- FIG. 10 provides a variant map of the deduced amino acid sequences encoded by the proteorhodopsin gene with Sequence ID No:4, Sequence ID No:8, Sequence ID No:10, and Sequence ID No:12 that were amplified from respectively EBAC38A8, EBAC40E8, EBAC41B4 and EBAC64A5 using the proteorhodopsin-specific primer 1 (Sequence ID No:2) and 2 (Sequence ID No:3). Lower case represents the PCR primer sequence region. Dots represent residues having identical sequence as those in Sequence ID No:5.
- FIG. 11 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:14) amplified from clone HOT0m1 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence (Sequence ID No:15) of the proteorhodopsin gene Sequence ID No:14 amplified from clone HOT0m1.
- FIG. 12 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:16) amplified from clone HOT75m1 using PCR primers 1 (Sequence ID

- No:2) and 2 (Sequence No:3), and the deduced amino acid sequence (Sequence ID No:17) of the proteorhodopsin gene Sequence ID No:16 amplified from clone HOT75m1.
- FIG. 13 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:18) amplified from clone HOT75m3 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence (Sequence ID No:19) of the proteorhodopsin gene Sequence ID No:18 amplified from clone HOT75m3.
- FIG. 14 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:20) amplified from clone HOT75m4 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence (Sequence ID No:21) of the proteorhodopsin gene Sequence ID No:20 amplified from clone HOT75m4.
- FIG. 15 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:22) amplified from clone HOT75m8 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence (Sequence ID No:23) of the proteorhodopsin gene Sequence ID No:22 amplified from clone HOT75m8.
- FIG. 16 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:24) amplified from clone MB0m1 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence (Sequence ID No:25) of the proteorhodopsin gene Sequence ID No:24 amplified from clone MB0m1.
- FIG. 17 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:26) amplified from clone MB0m2 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence

- (Sequence ID No:27) of the proteorhodopsin gene Sequence ID No:26 amplified from clone MB0m2.
- FIG. 18 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:28) amplified from clone MB20m2 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence (Sequence ID No:29) of the proteorhodopsin gene Sequence ID No:28 amplified from clone MB20m2.
- FIG. 19 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:30) amplified from clone MB20m5 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence (Sequence ID No:31) of the proteorhodopsin gene Sequence ID No:30 amplified from clone MB20m5.
- FIG. 20 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:32) amplified from clone MB20m12 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence (Sequence ID No:33) of the proteorhodopsin gene Sequence ID No:32 amplified from clone MB20m12.
- FIG. 21 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:34) amplified from clone MB40m1 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence (Sequence ID No:35) of the proteorhodopsin gene Sequence ID No:34 amplified from clone MB40m1.
- FIG. 22 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:36) amplified from clone MB40m5 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence

- (Sequence ID No:37) of the proteorhodopsin gene Sequence ID No:36 amplified from clone MB40m5.
- FIG. 23 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:38) amplified from clone MB40m12 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence (Sequence ID No:39) of the proteorhodopsin gene Sequence ID No:38 amplified from clone MB40m12.
- FIG. 24 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:40) amplified from clone MB100m5 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence (Sequence ID No:41) of the proteorhodopsin gene Sequence ID No:40 amplified from clone MB100m5.
- FIG. 25 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:42) amplified from clone MB100m7 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence (Sequence ID No:43) of the proteorhodopsin gene Sequence ID No:42 amplified from clone MB100m7.
- FIG. 26 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:44) amplified from clone MB100m9 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence (Sequence ID No:45) of the proteorhodopsin gene Sequence ID No:44 amplified from clone MB100m9.
- FIG. 27 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:46) amplified from clone MB100m10 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence

- (Sequence ID No:47) of the proteorhodopsin gene Sequence ID No:46 amplified from clone MB100m10.
- FIG. 28 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:48) amplified from clone PALB1 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence (Sequence ID No:49) of the proteorhodopsin gene Sequence ID No:48 amplified from clone PALB1.
- FIG. 29 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:50) amplified from clone PALB2 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence (Sequence ID No:51) of the proteorhodopsin gene Sequence ID No:50 amplified from clone PALB2.
- FIG. 30 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:52) amplified from clone PALB5 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence (Sequence ID No:53) of the proteorhodopsin gene Sequence ID No:52 amplified from clone PALB5.
- FIG. 31 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:54) amplified from clone PALB7 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence (Sequence ID No:55) of the proteorhodopsin gene Sequence ID No:54 amplified from clone PALB7.
- FIG. 32 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:56) amplified from clone PALB6 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence

- (Sequence ID No:57) of the proteorhodopsin gene Sequence ID No:56 amplified from clone PALB6.
- FIG. 33 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:58) amplified from clone PALB8 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence (Sequence ID No:59) of the proteorhodopsin gene Sequence ID No:58 amplified from clone PALB8.
- FIG. 34 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:60) amplified from clone PALE1 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence (Sequence ID No:61) of the proteorhodopsin gene Sequence ID No:60 amplified from clone PALE1.
- FIG. 35 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:62) amplified from clone PALE6 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence (Sequence ID No:63) of the proteorhodopsin gene Sequence ID No:62 amplified from clone PALE6.
- FIG. 36 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:64) amplified from clone PALE7 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence (Sequence ID No:65) of the proteorhodopsin gene Sequence ID No:64 amplified from PALE7.
- FIG. 37 illustrates a phylogenetic tree of different proteorhodopsin genes.
- FIG. 38 provides an example of an alignment of proteorhodopsin amino acid sequences.
- FIG. 39 provides a light-driven energy generator that utilizes proteorhodopsin.

- FIG. 40 provides an example of a proteorhodopsin-expressing E. coli cell suspension (+) compared to control cells (-), both with all-trans retinal.
- FIG. 41 provides an example of absorption spectra of retinal-constituted proteorhodopsin in E coli membranes and a negative control.
- FIG. 42 provides an example of a light-driven transport of protons by a proteorhodopsin-expressing E. coli cell suspension.
- FIG. 43 provides an example of a transport of [³H]TPP⁺ in E. coli right-side-out vesicles containing expressed proteorhodopsin, reconstituted with or without 10 μM retinal in the presence of light or in the dark.
- FIG. 44 provides an example of laser flash-induced absorbance changes in suspensions of *E. coli* membranes containing proteorhodopsin.
- FIG. 45 provides an example of absorption spectra of retinal-constituted proteorhodopsin in *E. coli* membranes.

DETAILED DESCRIPTION

Although the following detailed description contains many specifics for the purposes of illustration, anyone of ordinary skill in the art will appreciate that many variations and alterations to the following details are within the scope of the invention. Accordingly, the following preferred embodiment of the invention is set forth without any loss of generality to, and without imposing limitations upon, the claimed invention.

Proteorhodopsin

The present invention provides rhodopsin-like gene and protein sequences retrieved from naturally occurring members of the domain Bacteria. More specifically, the present invention provides a method for the retrieval and amplification of proteorhodopsin genes from DNA samples of naturally occurring marine bacteria. In accordance with exemplary embodiments of the present invention, DNA samples were obtained from naturally occurring marine bacteria such as bacteria from the SAR86 group. Provided as an exemplary embodiment of the SAR86 group, DNA samples were obtained from a bacterioplankton Bacterial Artificial Chromosome (BAC) clone BAC31A8 (also referred to as EBAC31A08). In general, as will be appreciated by those of ordinary skill in the art, suitable DNA samples can also be obtained from other sources, e.g., from a marine environment or from a recombinant DNA library containing genomic fragments of samples of naturally occurring bacteria.

FIG. 1 shows the phylogenetic tree of bacterial 16S rRNA gene sequences including that encoded on the EBAC31A8. FIG. 1 also shows the relationship of EBAC31A8 to the SAR86 bacteria group as well as to the gamma-proteobacteria group. A subclone shotgun library was constructed from BAC clone 31A8, and subclones were sequenced in both directions on the MegaBACE 1000 capillary array electrophoresis DNA sequencing instrument (Molecular Dynamics, Sunnyvale, CA). Sequence analysis of a 130-kb genomic DNA that encodes the ribosomal RNA operon from BAC31A8, reveals an open reading frame encoding a proteorhodopsin. In an exemplary embodiment, the contiguous sequence was assembled using SEQUENCHER 3.1.1 software (Gene Codes Co., Ann Arbor, MI). Other sequencing techniques can also be used, as will be recognized by those skilled in the art. The sequence of the proteorhodopsin-containing contig has been deposited in GenBank under accession #AF279106 and deposit date October 23rd, 2000. Appendix A, hereby incorporated, shows the nucleotide sequence of the BAC clone BAC31A8 (Sequence ID No:1)

which contains the 130 kilobases genomic DNA from a naturally occurring marine bacterium.

Proteorhodopsin was amplified from the 130 kilobase bacterioplankton BAC clone 31A8 (Sequence ID No:1) by polymerase chain reaction (PCR), using the proteorhodopsin-specific primers 5'-aCCATGGgtaaattattactgatattagg-3' (Sequence ID No:2 and shown in FIG. 2) and 5'-agcattagaagattctttaacagc-3' (Sequence ID No:3 and shown in FIG. 3). References for PCR are, for instance, The Polymerase Chain Reaction, Mullis et al., Ed. (Birkhauser, Boston, 1994) and U.S. Patent Nos. 4,683,195 and 4,683,202 to Mullis et al. The proteorhodopsin-specific PCR primers include the addition of 3 nucleotides that encoded one amino acid not found in the native gene sequence of clone BAC31A8 (Sequence ID No:6), in the second amino acid position which is a glycine located on the 2nd codon ("GGT"). Therefore, compare the second amino acid position in the Sequence ID No:5 using PCR primers 1 and 2 with the native Sequence ID no:7. This addition of one non-native amino acid created a new restriction endonuclease site (NcoI site) not present in the native sequence. allowed subcloning of the amplified fragment into the Ncol restriction site of an expression vector pBAD TOPO TA Cloning® Kit (Invitrogen, La Jolla, CA). The present invention is not limited to the use of this type of expression vector and other expression vectors could also be used.

FIG. 4 shows the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:4) that results from amplification of the proteorhodopsin-containing DNA in BAC31A8 using proteorhodopsin-specific PCR primers Sequence ID No:2 and Sequence No:3. FIG. 4 also shows the deduced amino acid sequences (Sequence ID No:5) encoded by the proteorhodopsin gene (Sequence ID No:4).

FIG. 5 shows an exemplary embodiment of a secondary structure of proteorhodopsin after it has been folded in a cell membrane 510 and bonded with retinal 520. FIG. 5 shows the native proteorhodopsin gene (Sequence ID No:6) obtained from clone BAC31A8 and encodes a proteorhodopsin protein of 249 amino acids with a molecular weight of 27 kD (Sequence ID No:7). In FIG. 5, 530 indicates seven transmembrane domains, a typical feature of the rhodopsin protein family, that aligned well with the corresponding helices of the archaeal rhodopsins. FIG. 5 also shows the amino acid residues that form a retinal binding pocket indicated by 520. Although the proteorhodopsin proteins shown in FIGS. 4 and 5 both originate from BAC31A8, they differ with respect to the second amino acid position. The reason is that the proteorhodopsin-specific PCR primers that were used to amplify the proteorhodopsin gene from BAC31A8 (which resulted in proteorhodopsin protein as in FIG. 4; Sequence ID No:5) included the addition of 3 nucleotides. These 3 nucleotides encoded one amino acid not found in the native gene sequence (Sequence ID No:6), in the second amino acid position which is a glycine located on the 2nd codon ("GGT"). Proteorhodopsin protein (Sequence ID No:7) as shown in FIG. 5 originates from the native gene sequence without the addition of the 3 nucleotides. As mentioned above, the addition of the 3 nucleotides created a new restriction endonuclease site (NcoI site) that was not present in the native sequence and thereby allowed the amplified fragment to be subcloned into the NcoI site of the expression vector.

In the exemplary embodiment presented above, PCR primers with Sequence ID No:2 and Sequence ID No:3 were used. In general, the present invention provides a method for designing different proteorhodopsin-specific PCR primers that are all capable of amplifying a proteorhodopsin gene from DNA samples of naturally occurring microbial populations by polymerase chain reaction. In designing these

primers one first needs to determine a DNA sequence of a proteorhodopsin gene. Then one can design oligodeoxynucleotide primers with a Watson-Crick base pair complementary to 5' and 3' ends of the proteorhodopsin gene.

Variants of Proteorhodopsin

In the previous section, an exemplary embodiment is provided of a proteorhodopsin gene and protein. The present invention also provides the retrieval of genetic variations of proteorhodopsin from naturally occurring genetic variations in naturally occurring bacterial populations. These genetic variations in proteorhodopsin sequences result in functional variations in the proteorhodopsin proteins as is discussed below.

The present invention enables one skilled in the art to use the same proteorhodopsin-specific PCR primers as shown in FIGS. 2 and 3 to successfully amplify different sequence variants from DNA originating from mixed naturally occurring bacterial populations when it is compared to for instance the proteorhodopsin gene as shown in FIG. 4. As mentioned above, different proteorhodopsin-specific PCR primers could be used to amplify genetic variants of proteorhodopsin.

FIGS. 6-8 show exemplary embodiments of three different and unique variants of the proteorhodopsin gene that were retrieved from a recombinant DNA library of other naturally occurring bacteria (i.e. the bacterial artificial chromosome library (BAC)). In general, genetic variants could be obtained from different DNA libraries containing naturally occurring bacteria as well as from samples of naturally occurring bacteria.

FIG. 6 shows the variant of the proteorhodopsin gene sequence (Sequence ID No:8) that is amplified from the BAC clone 40 (BAC40E8) with the same proteorhodopsin-

specific PCR primers as provided in Sequence ID No:2 and 3. Accordingly, FIG. 6 also shows the deduced amino acid sequence (Sequence ID No:9) of the genetic variant of proteorhodopsin shown in FIG. 6. FIG. 7 shows the variant of the proteorhodopsin gene sequence (Sequence ID No:10) that is amplified from the BAC clone 41 (BAC41B4) with the same proteorhodopsin-specific PCR primers as provided in Sequence ID No:2 and 3. Accordingly, FIG. 7 also shows the deduced amino acid sequence (Sequence ID No:11) of the genetic variant of proteorhodopsin shown in FIG. 7. FIG. 8 shows the variant of the proteorhodopsin gene sequence (Sequence ID No:12) that is amplified from the BAC clone 64 (BAC64A5) with the same proteorhodopsin-specific PCR primers as provided in Sequence ID No:2 and 3. Accordingly, FIG. 8 also shows the deduced amino acid sequence (Sequence ID No:13) of the genetic variant of proteorhodopsin shown in FIG. 8.

FIG. 9 provides a variants map of the nucleotide sequences of the proteorhodopsin gene Sequence ID No:4, Sequence ID No:8, Sequence ID No:10, and Sequence ID No:12 amplified from respectively BAC31A8, BAC40E8, BAC41B4 and BAC64A5 using the proteorhodopsin-specific PCR primers Sequence ID No:2 and Sequence ID No:3. In FIG. 9 lower case letters represent the PCR primer sequence region. Dots represent residues having identical sequence as those in Sequence ID No:4. These proteorhodopsin gene sequences differ by as much as 31 nucleotides as is shown in FIG. 10. FIG. 10 provides a variant map of the deduced amino acid sequences of the proteorhodopsin genes shown in FIG. 9.

Using the same proteorhodopsin-specific PCR primers, as for instance shown in FIGS. 2 and 3, proteorhodopsin genes were also amplified from bacterioplankton extracts. As mentioned above, any proteorhodopsin-specific PCR primer can be used. These bacterioplankton extracts include those from the Monterey Bay (referred to as MB

clones), the Southern Ocean (Palmer Station, referred to as PAL clones), and waters of the central North Pacific Ocean (Hawaii Ocean Time series station, referred to as HOT clones).

FIGS. 11-36 show exemplary embodiments of different and unique variants of proteorhodopsin that were retrieved from the MB clones, PAL clones, and HOT clones. FIGS. 11-36 each show a variant of a proteorhodopsin gene sequence that is amplified with the same proteorhodopsin-specific PCR primers as provided in Sequence ID No:2 and Sequence ID No:3 from respectively clones HOT0m1, HOT75m1, HOT75m3, HOT75m4, HOT75m8, MB0m1, MB0m2, MB20m2, MB20m5, MB20m12, MB40m1, MB40m5, MB40m12, MB100m5, MB100m7, MB100m9, MB100m10, PALB1, PALB2, PALB5, PALB7, PALB6, PALB8, PALE1, PALE6 and PALE7. The proteorhodopsin gene sequences retrieved from clones HOT0m1, HOT75m1, HOT75m3, HOT75m4, HOT75m8, MB0m1, MB0m2, MB20m2, MB20m5, MB20m12, MB40m1, MB40m5, MB40m12, MB100m5, MB100m7, MB100m9, MB100m10, PALB1, PALB2, PALB5, PALB7, PALB6, PALB8, PALE1, PALE6 and PALE7, have respectively Sequence ID Nos: 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, and 64. Accordingly, FIGS. 11-36 also show the deduced amino acid sequence of each genetic variant of proteorhodopsin. The deduced amino acid sequence encoded by the proteorhodopsin gene retrieved from clones HOT0m1, HOT75m1, HOT75m3, HOT75m4, HOT75m8, MB0m1, MB0m2, MB20m2, MB20m5, MB20m12, MB40m1, MB40m5, MB40m12, MB100m5, MB100m7, MB100m9, MB100m10, PALB1, PALB2, PALB5, PALB7, PALB6, PALB8, PALE1, PALE6 and PALE7, have respectively Sequence ID Nos: 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, and 65.

In an exemplary embodiment shown in FIG. 37, fifteen different variants of proteorhodopsin in the PCR generated MB gene library 3710 were detected, falling into three clusters. The MB gene library includes MB clones MB0m2, MB40m5, MB20m2, MB40m12, MB100m10, MB20m12, MB40m1, MB100m5, MB20m5, MB100m7, MB0m1, and MB100m9 as well as BAC clones BAC40E8, BAC31A8 and BAC64A5. FIG. 37 is based on a phylogenetic analysis of the inferred amino acids of cloned proteorhodopsin genes. Evolutionary distances calculated from 220 positions were used to infer the tree topology by the neighbor joining method using the PaupSearch program of the Wisconsin Package version 10.0 (Genetics Computer Group (GCG), Madison Wisconsin). Other methods could also be used. The variants of the MB library share at least 97% identity over 248 amino acids, as shown in FIG. 38, and 93% identity at the DNA level. All the PCR amplified proteorhodopsin genes from Antarctic marine bacterioplankton (e.g. the PAL clones) were different from those of Monterey Bay (e.g. the MB clones) sharing 78% identity over 248 amino acids with the Monterey clade. The changes in amino acid sequences were not restricted to the hydrophilic loops, but spread over the entire protein including changes near the retinal binding domain 3830 as shown in FIG. 38, which are predicted retinalbinding residues. FIG. 38 shows an example of a multiple alignment of proteorhodopsin amino acid sequences that were obtained from different clones 3820. The secondary structure is derived from hydropathy plots (boxes 3810 shows transmembrane helices).

Light-driven energy generator

FIG. 39 provides a light-driven energy generator 3900 that utilizes proteorhodopsin, as obtained from naturally occurring bacteria as described above, to convert light-energy into biochemical energy. Light-driven energy generator 3900 takes advantage of the

functional properties of the proteorhodopsin protein once expressed in, for instance, E. coli and other bacteria. These properties include the ability of proteorhodopsin 3906 to integrate within the cell membrane 3904 of, for instance, E. coli making an integrated proteorhodopsin protein 3908 (also called an integrated cell membrane protein). These properties also include the ability of proteorhodopsin 3906 to bind retinal 3910, making a light absorbing pigment 3912. The source of retinal 3910 is not limited to chromophore retinal but could also include chemical derivatives of retinal, such as 3-methyl-5-(1-pyryl)-2E,4E-pentadienal, 3,7-dimethyl-9-(1-pyryl)-2E,4E,6E,8E-nonatetraenal, all-trans-9-(4-azido-2,3,5,6-tetrafluorophenyl)-3,7dimethyl-2,4,6,8,-nonatetraenal and 2,3-dehydro-4-oxoretinal. Illuminating light absorbing pigment 3912 with a light source 3914 results in a chemiosmotic gradient or proton pump in which light energy 3916 is converted into biochemical energy 3918. The chemiosmotic gradient involves pumping of protons from the inside to the outside of cell membrane 3904. When the protons return to the inside of cell membrane 3904 it produces biochemical energy 3918 via a proton translocating ATP-ase. Finally, the biochemical energy 3918 is harnessed by a mediator 3920 to produce energy 3922 for a particular process. For example, since proteorhodopsin functions as a light driven proton pump, it generates energy in the form of a proton motive force across the host cell membrane upon illumination. This light-driven proton motive force can be converted to many other forms of energy, one example above being the regeneration of adenosine triphosphate (ATP), via a proton-translocating ATPase. This coupling of the proton motive force generated by proteorhodopsin, for use by proton-translocating ATPases to synthesize ATP, could be accomplished both in living cells, as well as in artificially constructed membrane systems such as liposomes. Proteorhodopsin-based systems can convert light energy to a wide variety of useful mechanical, chemical, and electrical energy forms, for many industrial and technological applications. These

include, but are not limited to, use in targeted drug delivery, uses as primary or secondary energy generators for biocatalyic reactors, fuel cells and nano-machines (including molecular motors), as well as uses in molecular switching or data storage devices.

Applications that can potentially benefit from proteorhodopsin-light driven energy generation are, for instance, bio-electronics applications that are aimed to interface, integrate, or substitute the silicon based microelectronics systems as well as molecular devices. Other applications that can potentially benefit from proteorhodopsin-light driven energy generation are, for instance, in bio-materials, wherein proteorhodopsin is integrated as a bio-material in, for instance, optical films for light mediated computer memory applications, optical information storage and pattern recognition.

Alternatively, proteorhodopsin is useful for a process to enhance yield or increase the potential of recombinant protein production or converting the light induced membrane potential into cellular signals, including modulation of gene expression. The biochemical energy derived from functional proteorhodopsin exposed to light could be harnessed to support a variety of cellular processes. For instance, the energy derived from light-mediated proton pumping could be used to enhance the production of secondary metabolites, or recombinant proteins in host cells, such as *E. coli*. Often, production of specific compounds in the biotechnology industry is limited, since their optimal expression or production occurs in the late stationary phase of growth, when energy reserves of the host cells are low. Retinal-bound proteorhodopsin expressed in such cells would provide an ample source of biochemical energy, by simple illumination. Proteorhodopsin-mediated light driven proton production could enhance any variety of biosynthetic or physiological processes which require energy.

The biochemical energy derived from proteorhodopsin light driven proton pumping could also be converted to other generally useful energy forms, for example electricity. Microbial fuel cells currently use carbon-based compounds, such as glucose, as the primary energy source. Via specific mediators of reduction potential (e.g. electrons), these microbial fuel cells convert cellular biochemical energy to electrical potential. Unlike carbon-based microbial fuel cells, proteorhodopsin uses light as the energy source, that can then be converted into a chemiosmotic potential, and finally into cellular biochemical energy by membrane-bound proton ATP-ases. Therefore, the use of proteorhodopsin could be employed to derive energy from light as the primary or supplementary energy source, that could then be converted into electrical potential (analogous microbial fuel cells that derive their energy from glucose).

In addition to energy generation in vivo in living cells, membranes containing proteorhodopsin could be used to enhance or enable other specific processes in vitro. Polymers produced from proteorhodopsin-containing membranes may have specific properties that could be used similarly to those containing bacteriorhodopsin. One example includes the use of these light sensitive molecules for optical computing applications.

As shown in FIG. 39, the kinetics of proteorhodopsin as it is utilized in 3900 is influenced by various factors such as the type of light source 3914 and the manipulation of light source 3914 in terms of frequency and/or wavelength at which the light 3916 is delivered. Light source 3914 could be any type of light source that delivers light energy 3916 that would be absorbed by light absorbing pigment 3918.

For example, the light source 3914 could be tuned to optimally excite rhodopsin variances with an absorbance maximum of 490 nm or alternatively those rhodopsins with an absorbance maximum of 520 nm. Manipulation of the light source 3914 or the light 3916 being emitted by the light source 3914, for example, involves changing the frequency of fast-light pulses or the delivery of light 3916 as individual pulses, a train of pulses, or a continuous source of light. Manipulation also involves changing the wavelength of the delivery of light 3916 at different wavelengths. In addition, as is clear for one skilled in the art, changing the frequency and/or amount of retinal that will bind within integrated cell membrane protein 3908 also varies the function of proteorhodopsin. Finally, as was mentioned in the previous section, genetic variants of proteorhodopsin result in variants of the proteorhodopsin proteins that changes the kinetics of 3600 due to a difference in absorption of light at different wavelengths. The functional expression of such variation in these proteorhodopsin proteins adds another source of variation to the kinetics of proteorhodopsin as it is utilized in 3900.

As shown in FIG. 39, the light-driven energy generator includes a host 3902. In the present invention, as a preferred embodiment, host 3902 is a cell membrane preparation of *E. coli*. However, the present invention is not limited to the use of *E. coli* and, alternatively, other bacteria or eukaryotes could be used to provide host 3902 as an intact cell (in vivo) and/or as a cell membrane preparation (in vitro). For example, but not limited to, bacteria and yeast with developed genetic systems such as Bacillus spp. Species, Saccharomyces spp., Streptomyces spp. or Pichia spp. could be used as host for the expression of proteorhodopsin. In addition, in case a cell membrane preparation (in vitro) is used, host 3902 becomes equivalent to cell membrane 3904.

The light-driven energy generator 3900, as shown in FIG. 39, further includes proteorhodopsin 3906. Proteorhodopsin is presented in the form of the earlier presented expression vector containing a proteorhodopsin gene or one of its variants. Once proteorhodopsin 3906 has been put into host 3902, the proteorhodopsin expression vector expresses the proteorhodopsin protein in host 3902. An integral cell membrane protein 3908 is created in which the proteorhodopsin protein inserts into and folds properly within the cell membrane 3904. This is accomplished in the *E. coli* host by virtue of the native signal sequence found in the 5' end of the proteorhodopsin gene. It could also be accomplished by replacement of native sequence with another host-specific signal sequence in non-*E. coli* host systems.

As shown in FIG. 39, once retinal 3910 is added to cell membrane 3904, retinal 3910 binds within integrated cell membrane protein 3908 and forms a light absorbing pigment **3912**. The particular example of FIG. 40 shows an integrated proteorhodopsin protein 3908 bound to retinal 3910 in E. coli. Chemical derivatives of retinal (as discussed above) could also be used as a substitute chromophore to generate functional proteorhodopsin. For the particular example of FIG. 40, the proteorhodopsin protein was cloned with its native signal sequence and included an addition of the V5 epitope, and a polyhistidine tail in the C-terminus. proteorhodopsin protein was expressed in host 3902, i.e. E. coli outer-membrane protease-deficient strain UT5600, and induced with 0.2 % arabinose for 3 hours. Cell membranes 3904 were prepared and resuspended in 50 mM Tris-Cl (pH 8.0) and 5 mM MgCl₂. **FIG. 40** shows a proteorhodopsin-expressing *E.coli* cell suspension. After 3 hours of induction in the presence of 10 µM all-trans retinal, cells expressing the protein acquire a reddish pigmentation as indicated by 4010 and the + (plus) symbol. FIG. 40 also shows that a cell suspension using the same PCR primers

(Sequence ID No:2 and 3) but now in opposite orientation as a negative control, did not acquire a reddish pigmentation as indicated by 4020 and the – (minus) symbol.

FIG. 41 shows an exemplary embodiment of the absorption spectra of light absorbing pigment 3912 upon illumination with light source 3914 as is shown in FIG 39. As mentioned above, the light absorbing pigment is a retinal-reconstituted proteorhodopsin in E. coli. FIG. 41 shows absorption spectra of light absorbing pigment 3912 as well as a negative control. After retinal 3910 addition to integrated proteorhodopsin protein 3908, light absorbing pigment 3912 was made. The retinal 3910 addition was done at selected time points, i.e. 10, 20, 30 and 40 min, and shows a progression from low to high absorption values indicated by respectively 4110, 4120, 4130 and 4140 upon illumination with light source 3914. FIG. 41 also shows the absorption spectra of retinal 3910 addition at these similar time points but now to a negative control of retinal 3910 containing a proteorhodopsin 3906 that was created using the same PCR primers in opposite orientation. 4150, 4160, 4170 and 4180 indicate the four absorption spectra for the negative control. An absorption peak at 520 nm was observed after 10 minutes (4110) of incubation as illustrated in FIG. 41. On further addition of retinal, the peak at 520 nm increased, and had a ~100 nm half bandwidth. The 520 nm absorption peak was generated only in membranes containing proteorhodopsin 3906, and only in the presence of retinal 3910. The red shifted λ max of retinal (λ max = 370 nm in the free state) is indicative of a protonated Shiff base covalent linkage of retinal to proteorhodopsin.

FIG. 42 shows an exemplary embodiment of the light mediated proton pump of the light-driven energy generator 3900 indicating the conversion of light energy 3916 as shown in FIG. 39. The proton pump action is illustrated by measuring pH changes in

the medium surrounding the host 3902, which in this particular example involves a cell suspension of $E.\ coli$, illuminated by light source 3914. The beginning and cessation of illumination (with yellow light >485 nm delivered by 3916) is indicated 4110 ("ON") and 4120 ("OFF") respectively. The cells were suspended in 10 mM NaCl, 10 mM MgSO₄·7H₂O and 100 μ M CaCl₂. Net outward transport of protons was observed solely in proteorhodopsin-containing $E.\ coli$ cells, and only in the presence of retinal 3910 and light 3916 and is indicated by 4210 in FIG. 42. Light-induced acidification of the medium was completely abolished by the presence of 10 μ M of the protonophore CCCP.

FIG. 43 is an exemplary embodiment showing that illumination by light source 3914 generates an electrical potential at the membrane 3904 in proteorhodopsin-containing right-side-out membrane vesicles, in the presence of retinal 3910, reaching –90 mV after 2 minutes from light 3916 onset. Transport of [³H]TPP+ in *E. coli* right-side-out vesicles containing expressed proteorhodopsin, reconstituted with (4310 and 4320) or without (4330 and 4340) 10 μM retinal 3910 in the presence of light (4310 and 4330) delivered by the light source 3914 or in the dark (4320 and 4340). FIG. 43 shows that proteorhodopsin, in its form of 3912 as a light absorbing pigment, pumps protons from the inside to the outside of cell membrane in a physiologically relevant range. The ability of proteorhodopsin to generate a physiologically significant membrane potential, even when heterologously expressed in nonnative membranes, is consistent with the proton pumping function for proteorhodopsin in the native gamma proteobacteria from which it is derived.

FIG. 44 is an exemplary embodiment showing that proteorhodopsin can have a fast photocycle and can therefore be characterized as a fast and therefore efficient

transporter of protons. For the particular example of FIG. 44, light absorbing pigment 3912 is induced by laser pulses delivered by light source 3914. Laser pulse-induced absorption changes are shown by 3912 in host 3902, which in this case are suspensions of E. coli membranes containing proteorhodopsin. A 532-nm pulse (6 ns duration, 40 mJ) was delivered at time 0 and absorption changes were monitored at various wavelengths in the visible range in a lab-constructed pulse photolysis system. 64 transients were collected for each wavelength. 4410 indicates transients at 3 wavelengths exhibiting maximal amplitudes. 4420 indicates absorption difference absorption spectra calculated from amplitudes at 0.5 ms (indicated by 4430) and between 0.5 ms and 5.0 ms (indicated by 4440). In 4410, transient depletion occurred near the absorption maximum of pigment 3912 (500-nm trace indicated by 4450), and transient absorption increase was detected at 400 nm (indicated by 4460) and 590 nm (indicated by 4470), indicating a functional photocyclic reaction pathway. In 4420, the absorption difference spectrum shows that within 0.5 ms an intermediate with maximal absorption near 400 nm is produced (indicated by 4430), typical of unprotonated Schiff base forms (M intermediates) of retinylidene pigments. The 5-ms minus 0.5-ms difference spectrum 4440 shows that following M decay an intermediate species redshifted from the unphotolyzed 520-nm state appears. The decay of proteorhodopsin final intermediate is the rate limiting step in the photocycle and is fit well by a single exponential process of 15 ms, with an upward baseline shift of 13% of the initial amplitude.

As mentioned above, a proteorhodopsin gene or protein variant can be selected to determine an absorption spectra of the light absorbing pigment to change the kinetics of the light energy generator 3900, for instance to meet a design/functional criteria of an application wherein proteorhodopsin is utilized. FIG. 45 shows an exemplary

embodiment of different absorption spectra of retinal-reconstituted proteorhodopsins in *E. coli* as a function of wavelength 4510. As shown in FIG. 45, the absorbance 4520 is different and depends on the clone from which the proteorhodopsin was amplified. In this particular example, 5 µm all-trans retinal was added to the membranes suspensions in a 100 mM phosphate buffer, with a pH 7.0, and absorption spectra were recorded. The four spectra 4530, 4540, 4550, and 4560 are respectively for the proteorhodopsin genes retrieved from clones HOT75m4, PALE6, HOT0m1, and BAC31A8 at 1 hour after retinal addition. The proteorhodopsin gene retrieved from clone HOT75m4 4530 and PALE6 4540 produced a blue (490 nm) absorption maximum. The proteorhodopsin gene retrieved from clone HOT0m1 4550 and BAC31A8 4560 produced a green (527 nm) absorption maximum. In general, a range of wavelengths could be obtained that is not limited to the range shown in the example of FIG. 45.

It will be clear to one skilled in the art that the above embodiment may be altered in many ways without departing from the scope of the invention, such as for instance by mutagenesis to change the genetic sequence of proteorhodopsin and thereby changing the kinetics of the proteorhodopsin protein once it is expressed. Accordingly, the following claims and their legal equivalents should determine the scope of the invention.

DEPOSITS

Depository address: 10801 University Boulevard, Manassas, VA 20110, USA.

The Escherichia coli containing cloned DNA BAC 31A8 having assigned ATCC number PTA-3083, the Escherichia coli containing cloned DNA BAC 40E8 having assigned ATCC number PTA-3082, the Escherichia coli containing cloned DNA BAC 41B4 having assigned ATCC number PTA-3080, and the Escherichia coli containing cloned DNA BAC 64A5 having assigned ATCC number PTA-3081, all having been deposited on February 21, 2001 with the ATCC Patent Depository.

The Escherichia coli containing a plasmid PAL E6 having assigned ATCC number PTA-3250, the Escherichia coli containing a plasmid HOT 0m1 having assigned ATCC number PTA-3251, the Escherichia coli containing a plasmid HOT 75m4 having assigned ATCC number PTA-3252, and the Escherichia coli containing cloned DNA BAC64A5 having assigned ATCC number PTA 3082, all having been deposited on March 30, 2001 with the ATCC Patent Depository.

LIGHT-DRIVEN ENERGY GENERATION USING PROTEORHODOPSIN

LIST OF SEQUENCES THAT ARE LISTED IN THE INCORPORATED SEQUENCE LISTING

Sequence ID No:1 bacterial artificial chromosome (BAC) clone 31A8 (EBAC31A8).

Sequence ID No:2 nucleotide sequence of proteorhodopsin-specific polymerase chain reaction (PCR) primer 1.

Sequence ID No:3 nucleotide sequence of proteorhodopsin-specific polymerase chain reaction (PCR) primer 2.

Sequence ID No:4 nucleotide sequence of the proteorhodopsin gene amplified from clone EBAC31A8 (Sequence ID No. 1) using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:5 deduced amino acid sequences of the proteorhodopsin gene amplified from clone EBAC31A8 (Sequence ID NO:4).

Sequence ID No:6 native proteorhodopsin nucleotide sequence from clone EBAC31A8 (Sequence ID No:1).

Sequence ID No:7 deduced amino acid sequences of the native proteorhodopsin nucleotide sequence from clone EBAC31A8 (Sequence ID No:6).

Sequence ID No:8 nucleotide sequence of the proteorhodopsin gene amplified from clone EBAC40E8 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:9 deduced amino acid sequences of the proteorhodopsin gene amplified from clone EBAC40E8 (Sequence ID NO:8).

Sequence ID No:10 nucleotide sequence of the proteorhodopsin gene amplified from clone EBAC41B4 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:11 deduced amino acid sequences of the proteorhodopsin gene amplified from clone EBAC41B4 (Sequence ID NO:10).

Sequence ID No:12 nucleotide sequence of the proteorhodopsin gene amplified from clone EBAC64A5 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:13 deduced amino acid sequences of the proteorhodopsin gene amplified from clone EBAC64A5 (Sequence ID NO:12).

Sequence ID No:14 nucleotide sequence of the proteorhodopsin gene amplified from clone HOT0m1 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:15 deduced amino acid sequences of the proteorhodopsin gene amplified from clone HOT0m1 (Sequence ID NO:14).

Sequence ID No:16 nucleotide sequence of the proteorhodopsin gene amplified from clone HOT75m1 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:17 deduced amino acid sequences of the proteorhodopsin gene amplified from clone HOT75m1 (Sequence ID NO:16).

Sequence ID No:18 nucleotide sequence of the proteorhodopsin gene amplified from clone HOT75m3 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:19 deduced amino acid sequences of the proteorhodopsin gene amplified from clone HOT75m3 (Sequence ID NO:18).

Sequence ID No:20 nucleotide sequence of the proteorhodopsin gene amplified from clone HOT75m4 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:21 deduced amino acid sequences of the proteorhodopsin gene amplified from clone HOT75m4 (Sequence ID NO:20).

Sequence ID No:22 nucleotide sequence of the proteorhodopsin gene amplified from clone HOT75m8 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:23 deduced amino acid sequences of the proteorhodopsin gene amplified from clone HOT75m8 (Sequence ID NO:22).

Sequence ID No:24 nucleotide sequence of the proteorhodopsin gene amplified from clone MB0m1 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:25 deduced amino acid sequences of the proteorhodopsin gene amplified from clone MB0m1 (Sequence ID NO:24).

Sequence ID No:26 nucleotide sequence of the proteorhodopsin gene amplified from clone MB0m2 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:27 deduced amino acid sequences of the proteorhodopsin gene amplified from clone MB0m2 (Sequence ID NO:26).

Sequence ID No:28 nucleotide sequence of the proteorhodopsin gene amplified from clone MB20m2 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:29 deduced amino acid sequences of the proteorhodopsin gene amplified from clone MB20m2 (Sequence ID NO:28).

Sequence ID No:30 nucleotide sequence of the proteorhodopsin gene amplified from clone MB20m5 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:31 deduced amino acid sequences of the proteorhodopsin gene amplified from clone MB20m5 (Sequence ID NO:30).

Sequence ID No:32 nucleotide sequence of the proteorhodopsin gene amplified from clone MB20m12 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:33 deduced amino acid sequences of the proteorhodopsin gene amplified from clone MB20m12 (Sequence ID NO:32).

Sequence ID No:34 nucleotide sequence of the proteorhodopsin gene amplified from clone MB40m1 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:35 deduced amino acid sequences of the proteorhodopsin gene amplified from clone MB40m1 (Sequence ID NO:34).

Sequence ID No:36 nucleotide sequence of the proteorhodopsin gene amplified from clone MB40m5 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:37 deduced amino acid sequences of the proteorhodopsin gene amplified from clone MB40m5 (Sequence ID NO:36).

Sequence ID No:38 nucleotide sequence of the proteorhodopsin gene amplified from clone MB40m12 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:39 deduced amino acid sequences of the proteorhodopsin gene amplified from clone MB40m12 (Sequence ID NO:38).

Sequence ID No:40 nucleotide sequence of the proteorhodopsin gene amplified from clone MB100m5 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:41 deduced amino acid sequences of the proteorhodopsin gene amplified from clone MB100m5 (Sequence ID NO:40).

Sequence ID No:42 nucleotide sequence of the proteorhodopsin gene amplified from clone MB100m7 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:43 deduced amino acid sequences of the proteorhodopsin gene amplified from clone MB100m7 (Sequence ID NO:42).

Sequence ID No:44 nucleotide sequence of the proteorhodopsin gene amplified from clone MB100m9 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:45 deduced amino acid sequences of the proteorhodopsin gene amplified from clone MB100m9 (Sequence ID NO:44).

Sequence ID No:46 nucleotide sequence of the proteorhodopsin gene amplified from clone MB100m10 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:47 deduced amino acid sequences of the proteorhodopsin gene amplified from clone MB100m10 (Sequence ID NO:46).

Sequence ID No:48 nucleotide sequence of the proteorhodopsin gene amplified from clone PALB1 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:49 deduced amino acid sequences of the proteorhodopsin gene amplified from clone PALB1 (Sequence ID NO:48).

Sequence ID No:50 nucleotide sequence of the proteorhodopsin gene amplified from clone PALB2 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:51 deduced amino acid sequences of the proteorhodopsin gene amplified from clone PALB2 (Sequence ID NO:50).

Sequence ID No:52 nucleotide sequence of the proteorhodopsin gene amplified from clone PALB5 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:53 deduced amino acid sequences of the proteorhodopsin gene amplified from clone PALB5 (Sequence ID NO:52).

Sequence ID No:54 nucleotide sequence of the proteorhodopsin gene amplified from clone PALB7 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:55 deduced amino acid sequences of the proteorhodopsin gene amplified from clone PALB7 (Sequence ID NO:54).

Sequence ID No:56 nucleotide sequence of the proteorhodopsin gene amplified from clone PALB6 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:57 deduced amino acid sequences of the proteorhodopsin gene amplified from clone PALB6 (Sequence ID NO:56).

Sequence ID No:58 nucleotide sequence of the proteorhodopsin gene amplified from clone PALB8 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:59 deduced amino acid sequences of the proteorhodopsin gene amplified from clone PALB8 (Sequence ID NO:58).

Sequence ID No:60 nucleotide sequence of the proteorhodopsin gene amplified from clone PALE1 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:61 deduced amino acid sequences of the proteorhodopsin gene amplified from clone PALE1 (Sequence ID NO:60).

Sequence ID No:62 nucleotide sequence of the proteorhodopsin gene amplified from clone PALE6 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:63 deduced amino acid sequences of the proteorhodopsin gene amplified from clone PALE6 (Sequence ID NO:62).

Sequence ID No:64 nucleotide sequence of the proteorhodopsin gene amplified from clone PALE7 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:65 deduced amino acid sequences of the proteorhodopsin gene amplified from clone PALE7 (Sequence ID NO:64).

1/126	A Page	APPENDIX	MBA-101
840	ıcc tctataggca gtggaaaagc	gcaacaaggc tcctactttc aggtatcacc	tatttttctt gcaacaaggc
780	rtg ggtattccac cgatcgagat	tggtctgtta taaatccagt tctatatgtg	gtgattacct tggtctgtt
720	cc atattagaga tatctaaaat	gcttccattt cagtggggtt tgaaatatcc	attaatcaaa gcttccattt
099	ta tctacaactc caggaatatt	ttaggcttgt ttgctgcaaa tattccatta	taatacagtt ttaggcttgt
009	tg taaaattatt acttagaaac	gagcttatat cagctataga aggcttgctg	tgattcaaaa gagcttata
540	ıca tatggatcaa aggtaaagcc	atctcaaaag agggcaaggt tgtatccaca	taaatactta
480	tt actccctcat ggaactttaa	tataaaaaac ttattgcaga atcaggtttt	acacccattt tataaaaaac
420	rct aaagtcaaag gaaaaaagc	ggtgttgaat ttcctatgtt ctcaactgct	tacagaatac ggtgttgaa
360	igc gatgttgcag aattttgttc	gattttcttc aagaatactc tgatgaaagc	cccatctaga gattttctt
300	gattttctag taattgggat	caaaagttat atgaaagtta taaagatgaa	tgctggcctt caaaagttat
240	iga tgtggttaca cttatcaata	gctttactag ttgtgaatgt tgcaagtaga	tgaaggaaaa gctttacta
180	nag tcaagaaacc tttgcgagtt	acagacatga gagttcttga ttccgctgag	tcttctagat acagacatg
120	ta aatgcatttt cttgctcaga	tatatatttg ggttattgtt ttttacacta	gaataaattt tatatattt
09	ıta ctaatatata attagtttat	agtaatggct attgctccaa taacttaata	ttgttatatc agtaatggct

	2/12	Page		APPENDIX A	A		MBA-101
0	1680	gtagatgcag	tggggacaac	tactccaaca	ggagccaaaa	taaaagatgt aaaaagattt	taaaagatgt
0	1620	gaaataaaaa	aacaactcca	ttatgccaat	tgcttgatag	aaaaattaat	gtaagaaatt
0	1560	gccagtgcat	tcaaggggta	gaaatcatgc	gcatcagcag	agaagaggg ggttattgct	agaagaggg
0	1500	gatgccgaaa	aaatttatcc	acaagattgt	ggagcgtata	tattttcttt taaaaacaga	tattttcttt
0	1440	ctgcaaccta	aagagaggat	ttttcctaaa	gggaataaag	taaatatttc ttcaaagctg	taaatatttc
0	1380	acatttgctc	atcacctata	tagcattaaa	gtttatgacg	taatgcatct	agcttattcc
0	1320	aagtacctaa	gaattcccag	gttcttttaa	aaaaaaacag	ttattttgag actaaaaatt	ttattttgag
0	1260	aggtagttaa	aagaaaatat	gttataatac	cactcataga	agcaacattt atctttgagc	agcaacattt
	1200	tagcttgttt	atatattcta	attatttttg	caggatgaag	aaaatcatct	tccaatacct
0	1140	ttgagccggt	aaattaactg	ttctataaaa	cctttagttc	agcaaatttg tgcctatgct	agcaaatttg
	1080	aaacagctcc	tctgaactag	tgatgaagca	ttaataattt	gacetetate ecatttteat	gacctctatc
0	1020	taaggctaaa	actacatcat	agctatatca	ctatgtaata	agacacctca tctgcaccat	agacacctca
0	096	aattttcagg	ttaataagac	accaccacct	tatgtgcgcc	ttttctctag	agcaactatc
0	900	tagaggcaga	ataaactcgt	aactatacat	ttgactgatc	ttaaccatct	tcccaaaaga

MBA-101

APPENDIX

ď

Page 3/126

Page 4/126

. 2580	. 2640	. 2700	2760	2820	2880	2940	3000	3060	3120	3180	3240	3300	3360
atatttaggg	ggaaataaat	atattaattg	ggnactatt	gttaatactt	ctttgaacaa	aatagaccaa	aagctacgcc	catctgaaaa	tgatctcatg	aatcatatga	ttctatattg	aaaattttct	taactctcca
caatgaaaga	agagaaattt	ttttggaaag	aaataagtca	aaaatgaaag	tcccacggct	ccacctttag	atttggaacg	tatccattag	ctcttaagtc	tcttgtcttg aatcatatga	tcctttctta	gctatcttgt	ttaaagaagc
gctctcataa	taaattttct	taggttcagc	taaatcattt	aagattttt	gctagggttt	gtaaattctc	tttatatcta	tttataaagg	aacaaattga	agataaggta	ccattcattt	tattgaacct	tttctctccc
agtgactcag	ggagagatgt	tacaggaacc	gacaagctaa	aaggcataca	aaagctcatc	cctcctcgtc	cgagctcata	tattatttcc	ctttcaaagc	ttagatcaaa	gccatatcag	catttggaaa	accgattatc
tggcagaaat	tgagaagccg	cttatttcat	taaggataaa	aacctctaac	ttaattgaaa	gatctatcat	gacaaaggag	tcattaacta	ggattttttg	ttaaaccaat	ttattatcct	cttaagttat	ttcgaatccc
atatggttgg	gagagtttcc	ggmatatttc	gcatcgagag	ttacagaaga	taatctaaat	ctcggattga	aaatagatat	agtattaaat	aatactaata	tttattattt ttaaaccaat	ggcaagatta	cgcattgatt	accataccca
												•	

Page 5/126

4200	atctatcata	ataaccgagt	ccgcgtattt	ctccaatcct	ctgggggcag	gcaattatag
4140	tttcttctga	tcttcattac	ctcgcaacct	ttttagctgc	gaatagtttt	atcaatatca
4080	ttaatgcaaa	tgagtaagtc	attacttttt	attcattatt	aatactccaa	acttgctaca
4020	catcagcctc	gaaaaggctt	tcttccaact	cataatagtc	gatcgaagag	ctttgttcga
3960	tatttccaag	ccaagcgttt	taccatgaag	caacattcgt	ttcgcctgtc atttcattct	ttcgcctgtc
3900	ctgttgatga	ataacattga	gatgtaatca	aacgaatatt	aatttttttg	atatgtaatt
3840	acagatctga	tctgaggcta	accatctttt	gcccattttt	aaactgagtc ctatacccaa	aaactgagtc
3780	gaagatatgt	agtttatttg	tatgttagat	ggcttccact	gtcgtcttca aaataaagaa	gtcgtcttca
3720	ttaactcgaa	ccaaagtcat	ttgcagataa	agtctcttct	gcatgaatcc	tccaatacca
3660	ttcgatttcc	tcatttattt	attatcaaat	atatcgagct	atttgtttta	tccataatct
3600	ttagatcaat	gcatcataat	agctgtgtca	ttgaattacc	ttgatcgatg cctattggat	ttgatcgatg
3540	aagaattttt	ttaaaactaa	agagttgtcc	attgaaattt	ttaaaatcta	agatctaaag
3480	ttttcccaga	atagttgtat	ttttcttgtg	aggcttcatt	ataaaggggt	ttttgatttg
3420	ctattcttct	gctgtaatac	ctcaaagtct	agttctttgc	cagaatgaat	gtcatatgtc

6/126

Page

MBA-101

ttttcataga

gctaaagtta

taagtaaaag tgataatgag

agcacagagg

tgaccaaatc

Page 8/126

ccagaatgca	gttaattata	aaatatatag	gtattaagta	aaagttaatt	tttagagagc	5940
agactctatt	ttttgtatta	gcttttcgat	atctttatta	tttaaagcag	agtcagtatt	0009
ctcggttggc	ttggataaaa	gcttactagc	catagttaga	ccagctatca	ccaaggcatt	0909
attcttatca	ctgatgccat	caagctcatc	atttaataat	tttgcagctc	taatgagttg	6120
gtctttctct	tctggcggac	aggctaacgt	cagatctcgg	ccaaaaattc	ttaaagatag	6180
cgtttccatt	tctgacatta	ttttttgagt	ttagttattt	ctttatttag	tatgagctta	6240
tatttttee	agtctctttc	cctttgcaca	taagaatcta	ttattccttt	ttgctcatca	6300
aatcttttta	tcaaaagatc	taccttatcc	tctagttcaa	ataatgatga	tttttttct	6360
tctgacattg	tataagttta	attgtactag	aatgaattgg	aaagtttctt	taataaaaga	6420
gtaaaataag	gcatggaaaa	aataattttt	aaaaacagaa	gagattcact	tataaaacac	6480
ctacctaaga	attcagcctt	aattgtacct	ggtgcagatt	tgcaatatag	aaatgctgac	6540
tcatcttata	atttaagaca	ggaaagtagc	ttctactatc	tgtctggctt	ttgtgagccc	0099
tettetetaa	tggttttagt	taataatgga	aaaagcattg	attcaataat	ttttgttcct	0999
gaaaaagata	aacttaaaga	aatctgggat	ggttatcgag	ctggccctga	gggcgcaata	6720

7560	gatgataacc	ttaagccagg	tttatgaagt	gggagatgag	actacatgga	gatgttggtg
7500	tgatgttcat	ggcttggact	gtgggacatt	tatgcataag	aggactttta	ggtgcattca
7440	tcataaaaat	ttaatcagct	tctggcgatg	gggtattcta	ttgtagagtt	actgaaggtc
7380	aaaagtaatt	tggtttcaga	gagccccaaa	tagcataatg	gatgctgtaa aaactggtaa	gatgctgtaa
7320	tgctgcaatc	aagccaatct	attgtccaca	aatttataat	aacagctaca	tttcagatg
7260	aagtggaaaa	ccttcccagt	atcacaagaa	tgcatctgat	acaaaatgta	ggatgtgaat
7200	ggtagacgca	atttaatttt	gcttcatcag	taaagagtta	ttgcattata ttgaaaatga	ttgcattata
7140	tgcttgtgta	gaggtgaggg	atagttgctg	ttatacacct	aggggaggaa ggtttccagc	aggggaggaa
7080	attcgccaaa	ttttatatga	gaggcgctat	gcaggaaata	gggacaatga	ataaagcctg
7020	catgaaatct	atattgaggt	gctgaatcat	tgaaatttca	agagagcttg	gatattatga
0969	gcatgaaatt	tcaaagataa	ttaaggetta	ggtaggaaat	gctcttcgat	attattgatg
0069	atcaattgat	ggcacagcaa	tctaaagata	cgcagcaaat	aaagtaattg actggacatg	aaagtaattg
6840	ctttgatcag	agaaaaatgg	tcaataggga	agttttttat	atccttcaag ggctagaaaa	atccttcaag
6780	aatgcctgaa	cagatgcttt	aataataaat	agcttttgaa	aatgattttc tttttgatca	aatgattttc

Page 10/126

	acaatcgagc	caggcatcta	tatcagtagc	gcaatggatg	tagatgacaa	atggaaaggc	7620
	atcggcataa	gaatagagga	cgacatcctt	gtaacagatt	caggcaatat	taatctaaca	7680
	gagaaggtgc	gagaaggtgc catctaatcc	tcaagaaata	gaatcattga	tggcttagac	tatggaggtt	7740
	ccaattgtta	tttctggcgg	agggataata	ggtaattaca	tttctcttag	gcttgaaaaa	7800
٠	aataatatca	aaaccgttat	tgtcgaaaaa	gctagtagtt	tcaaagccct	agataagggt	7860
	ataagaacag	tcactctcaa	tgagcattct	atgcaaatgc	taaaaaatat	tggtatttgc	7920
	ccatcaattg ctcaaatca	ctcaaatcaa	cagcatcgac	gtattagatg	gtgagggtac	aggcaaaatt	7980
	caatttctag	caaaggacgt	aggcagcgaa	aacctttcat	atgtaaccta	tttcaatgaa	8040
	ttacaaaaac	taatttctga	tccatgtaaa	gaaagaacct	tatttaataa	tgagattgat	8100
	tcagttcaga	atcttaatac	agaatctgat	ccagagatca	tgcttaaaga	tggcatgacc	8160
	ataaaaacga atctaattg	Ŋ	tggatgtgat	ggaagaaatt	caaatattgc	aaaaattgct	8220
	tcacttacaa gcagcttcg	gcagcttcga	tgactactta	caaacagctt	taacttttgt	cgttgatatt	8280
	gataatgatt	cacatggcaa	agctcaccaa	gttttttctg	aaaaaggaat	atttgcactt	8340
	atgccactcc	cagaaggcaa	gggtgagatg	aataaatgca	cagtggtttg	gtcaataaaa	8400

9240	ctaatcagaa	tgggagagct	acaatctgac	tacggcatgc	atttatttat	tgtgaaacaa atttatttat	
9180	gcaatactat	gaggaactta	atagaacact	acgcgatttt	actcattgaa	gacatatttt actcattga	
9120	cctgttactt	tggtatctta	ttcctgactg	gaaacattgt	tttagcgtga	tagtcctatt	
0906	aactttcttt	attaggaaaa	gtgtgtgaag	caaaatttgt	agattcaacc	acctgttctc agattcaacc	
0006	agatttacga	agatacttta	taccttttgc	atgattctca	ttttttatca	cactaatgcc ttttttatc	
8940	ttaagaactt	tctaagttct	gacctttagc	taaacttttt	aaatttgtat	aataagtttt aaatttgta	
8880	ctctggaatg	taagacatgc	gcattcttta	gtttgttaaa	ataaatcaaa	tcttcgttaa	
8820	tttaggtatt	tgatcagaaa	tatctaaggc	agaaaattta	tttgtggatt tatttggttc	tttgtggatt	
8760	tatggacttt	tgttgaagtc	aactttttaa	aaaaagtatg	agattagaag	aaaagatatg agattagaa	
8700	atcagtttta	ttaatgagaa	gggattgcct	ttataaaaaa	taattagttc	tgtgaagagg	
8640	agatactttt	ttgcagatgc	aatctaggat	tcaaggtatt	ccttagcagg	tcaattcacc	
8580	tgctgctcac	ttcttggtga	cctattgttc	tattagcgga	aaccatcatt ttgaaaacta	aaccatcatt	
8520	taaattatcg	ttttaagttt	aagtcagaaa	tctcagggtt	ttaatgttag	gaatcaaagc	
8460	ttctttttt	aaaataacat	gagtttgtaa	gcctgtatct	aatcaagttt tgggagatga	aatcaagttt	

IBA-10

APPENDIX A

Page 11/12

Page 12/126

9960 10020 10080	aaggagagct gagacaggat acgagttcaa	tcagactatc attaatcctg gaaattgtag	gttgattgat agattttgag agcagatttt	atctggttgg gatcagatac cagtgattca	gttcttggta gcctggaata attatagttc	gcatggaatc aatggttcct tgcacaaatg
0066	taggttctaa	agatcaggtt	ggttatacct	ttgcagcaat	gtacttagaa gatcccggtc	tacttagaa
9840	gttttgcaat	atacctattg	atctcagttg	aagcaggaac	ctcagccttc	agatagtaat ctcagcctt
9780	gggcatgcct	ttggatttaa	ctcggcagga	aaacaaaggg	cctcaatatg	gataccctta
9720	tgggatccaa	aacccactaa	taagatcatt	acataaaaat	aaattgaaaa	agagcttťaa
0996	ttcaaccagg	aaatctttta	atgtaagtta	ctttaaaaaa	aagttcatgg aaagacttat	agttcatgg
0096	ttctcgttga	ctggcagaaa	aacatgcggg	ttacgtattc	aatcctcata	tatttcagaa
9540	acatagatgc	atgcaaatgt	caatccatca	taataggcca	tctgttttaa	attcatttcc
9480	gtttaagtga	cttatccaaa	gatcgttaag	gccctggtga	tacttttctg	tgatgagctt
9420	cagtctatac	atagctgaag	taattatcca	gtgatgggct	gcagactttt gatatatgca	cagactttt
9360	aaagaactaa	agcactgcag	aatattctgt	tagtagataa	cattcaattt	ctgcaaatct
9300	tatcatgtta	gcaaataaaa	cattgaagaa	caagaaaagg	agaccattag	agattttgat

13/126

Page

APPENDIX

MBA-101

11160

11220

11280

11340

11100

10980

aataataagt

ttttattaaa

ttgccgaaac

tacttaagag

aacagaagtt

ggtctggaaa

11400

11460

gaccaatcat ttaaaacttg aacaagcctc gctaaagaga tttattaata cgatttgaga aagagattaa cgatcttcgg agggcacagc attgctctcg agtaggaact aagtataaaa gctgcaaact agttgatgga ggttctagtt aacagcagct aggcggagtt tgaagagcat caaccccttc ttcctaatcg attctaagca taattatcga gccctttaat gaggagaaca taaaaataat ctagagactt taaccccca aaattctctg agagttgata ggcatatatc tttggttcta attggtttaa gaaataaatt ttgggatcag atcaataaca accatagaca tccaattatt agaagggttt taaatttata tttagttcca tggtgaaatt aaaagctaaa ctctgttaat tttagataac agccttagat aatgcaatca cgctccactc aaatttagtc aacagagaga ttgcagatat taaaagaaaa cagtattagt atagatttaa ctttagtgcc ttaggcagtc ctaaattaat caattgaagc agacttggct gacgaggatt aatctgccta cttgtgatac atggagctgg MBA-101

15/126

Page

APPENDIX

MBA-101

13440	tgagatgctc	acttccatcc	ttctggtaag	tcaacaacga	ttcatataaa	aatggactga	
13380	gggttttgcc	agtctgagtt	ctgtatttat	tttatatttt	aagctctaat	ttttcacctt	•
13320	tttttatttc	tttattgagg	ctctaatact	acaacaatat	atctatagca	cgtgacccgc atctatagc	
13260	tatttaccac	cgcaccaggg	ttgggccaac	aaaatattat	gtaacgtcac atctttttct	gtaacgtcac	
13200	ttcgcaataa	ttctaactcc	ttaaggttct	taagtatctc	tctgtaccca	tcatcaccgg tctgtaccc	
13140	ccatctctaa	tgtctcatct	ttaaatctaa	tatctattat	agcatcctgg	catatttcct	
13080	atatctgctc	tgaaacaaaa	cagcatggat	ctaaacccat	ggaagataat	caccctttac ggaagataa	
13020	aaaacagaag	tgaccatata	aagcttcatc	acagtacttg	gttcctagca	ttttagataa gttcctago	
12960	tccctttgtt	ctgtattctt	ttatatcagc	tttagatttt	atcaactggc	cctcatcaaa	
12900	cttgccgcat	ataggtttgt	atatttctgg	tttttcttat	ttcagaaatt	aaattttact	
12840	ttagttccta	atccaatatc	ttttaagttg	aaagggtctc	aatttttgtg	tctttttatg aatttttgt	
12780	tactcaacat	gaaatcagcg	taagaactct	tcaatagact	agaaggtata	caaccaatac agaaggtat	
12720	aaccctgact	gttggttata	cgtcttcagg	aatctttgtg	ttctccctgg cttgcccttt	ttctccctgg	
12660	gcaatcattc	aacagatctt	ttcctaggaa	tagttatgta	gtccttaaaa	ctttaggttt	

MRA-10

APPENDIX A

Page 16/126

Page 17/126

APPENDIX A

14280	gggcaagaag	tcaagacctt	atttcttata	taatgctcgc	gcaacagcaa	cgaatgaaca
14220	aacctgcctc	ttaaattttta	aatatctacc	ctatttcacc	gcatttaagc	taaactagag
14160	ttataggtat	aattgtctta	tcgatttatt	agttttttca	tataagagta	cctcgtcatt
14100	tggtttgtag	tgaccctagt	tagctatttt	agtatctcca	agaagattta	tttcttgcga agaagatt
14040	tgtatttcaa	tccctcaaga	ctcctaagtc	gttttgcctg	agatataaag	taatagatct agatataa
13980	caatttttta	cttccatcca	ttacaagatc	gttggacttt	gagagtgtaa	attcctcgca
13920	ttaaaatcat	cattaaatta	tatgcaaaaa	taaagatcaa	gttagttcta	cttctgcttc gttagttc
13860	atatcaatat	tagatcaaat	tttttctact	ttagagttta	cactactttc	actcaattag cactactt
13800	ctttcaggcc	atgttgaagc	aacttctttc	tttagatcaa	gaaaattatt	gaagatggct
13740	cttccttcag	agaaacctct	cagaaattaa	ccattgtcac	ttctttaaag	tttttaacca
13680	tattcataag	attgccaatc	aaaaccaagg	aaaaagatag	ccgctgataa	aacatcattt
13620	catcgaagaa	tcttgtattt	gttacccatg	taatttcatt	aagttaatac	atctagacta aagttaat
13560	atgaaacttt	gaccttacca	taaagaataa	gagggatttt	gacaattcta	taatttccat
13500	ctcgattgat	ggtcggaagg	catttatctc	ttgtatggaa	gattggatag	ttactttttt gattggat

MBA-10

14940 14520 14820 15000 14340 14400 14460 14580 14640 14700 14760 14880 15060 15120 aaatcctatc ctagtccaga caggtccgcc ccattccttt gatggggcgt cgatgtgtaa tacccaatat tatgatcttt ttacctcagg ctggggagcc tattgggcag tacttaagct atcggaatgg gccaaaaact catatcaaca ccaattgcca acgagagtta gaagcaagtt tttaatattt aatataacgc ccacccatgc accaccgttc gatgatgcca tactttgata tagtgggtag ttggcagcag gcctctcctg gacatgaaat aaccaatcct tttatggcta agttcctcct atttgcagac cgtgtctgtg tgcaatttgc taatatagcg taaagatttt tggtccatac tattccggcg tcagcgaaat ggcactgcaa tgagtcaaag ttgcaatata atatgtttag tagcaattcc ttacattaga cccttcaac gaacgtcacc cataagtgtc attttttgat tttttgaatt cagatgcaag aggtaaaact ttcgtcatga tgttatttgt caaaattacc aattcattct tctaatataa aaagcagtat acaccagcca ataaaagact atagaagccc tcttcaatag gttttattgg tctatatcga aaagatgggc aaacttgcct taaaaatttt aaaacttttc aattcttgaa gaatgctaaa tctttgaact agcacctgca aatttttaaa agcagtcaaa gcacgcgcat taatatgaca gtttcttaat aatgatccca catcaagatt agtttttgca agcgcatatc gccacaaaat aagatttttt aaattatgtt

15300

15360

15420

15480

15180

15600

15660

15720

15540

tttatacata atattggtca tataatttca gaagccttca tttatgaatg agcctgtaaa actctgaata gtcaccttga aggcccactt atgccctgaa tgatatctct cattgaaata attcattttt tttgattaag tattatctgg aaagtactac aaattccatt ctagttgata caaaatcatt cagataaatt cattaaccat tctttcatgc atcttttta agggcaacat ttaagtgttt ttgtcactcc ttaattacag atatcgtaaa tcatctagca tcccatgaag gcacaattac tttaaaaaga atcttctctc cgaaccgtct attttgatta tccagagccc attaaaatta ccatatcata tggcgaatga tgtttttct cataaagaag aaaacttcc atgaaaactt gagaacaatt ttaaccaaac ctgttttagt catcaacttt ataatgaatt tacagccccg tcgactcaaa caagatctat cccaagagct ttaaggcaaa ccatctgttc gggaccctaa tctaaagaag aaataactac ttatagttaa tgagatgcat aacatttcaa gaagcgtcac tttaaatcca aattcagaaa gttctagaaa atacttttaa tcattttcaa gagaagggta

catttgggggg

tactaatatc

gattcacact

acggtcatcg

taaccttgat

aaattacaaa

APPENDIX

16860 16920 16980 17040 17100 17160 17220 17280 17340 17400 17460 17520 17580 17640 gacaatacat gccaggaaga ccaccatttt aggettgtee attgttagtt ttaatttaac attatttatt gtgtccaaca tttggagttc ttttgatggt gcaagattga ataaagaggc gtattagaga atcttgatct atgaataaac caataggatc tgctttcatc ctgtggggca tgaataatgt cttgatttag caattacaga agtcacccat tctctgagct gggatggaag ggcgtgactg tgggttgcat agtggggaag taataataat cgccgaggga ttcccgggcg aatgtatcaa attaaatctt ttcttgataa aagctataaa aaataaaaat actttttgtt tttcctttt ttctcctgat tttttgtgag tctagcatat taaaaaaag gcaacatgtc atatgaatct ctaaaagaag aagtggggcg cccatgagga tcctaaagga tggtcttata gcagtctcta ccttcggaga attctggagg ttttacttgc ttttttatcc aataagaatt agatagaaga aacgtaacca ctttgaacca cataatccgg aggatatatc acagtattct agtaggcctc ttgaaatatt ctttaatgcc ctatatttgc ctgttccgtg actgttttag ttcaataata cttggattag gaggttggaa tttcagatgc tgattcgggt agatcctttc ataaaaatat tctattgcaa tcaatggcat atttccataa gccagcagca cgaaggtgat ctccataaat atgctttgag tctccaaaat ttatgagcac cagctagaat aaaaagatca

22/126

Page

4

18420 18000 18120 18180 18240 18300 18360 17760 17820 17880 18060 18480 17700 17940 gggtgggact taatgttcca ataatgaaat aaatagccc gttttttat tagacagtgt ctatgattat agcttttaga tttttaaaga attaaataat aaatatct ctttgttact tatcccagat agtaatacat caaaaactct tcgggctcta cccaccaatc ctgccaaagt tatgaggatc ttttcactgg atgaaacatt atgttgttaa tttgatacac agtgagctca ggtgagatgc accetggtcc taaaaagaat atacgttaga atgecteaac acaatttgat accettgtcg agataaaggg aaccctggtg gatgggaaaa ttgcctttat acagacgaat atatagagag tttaattcta aactaggaga acatgatggt atctcgttcg tcatgggagg tattgcctgg aacagctccc tattattgag agatgatata tggtgaatcc aatatcaaaa cgctcaaaaa aacaatgtgc atgaggatat tagaagaaaa ctgaaataga agaccggaga caaagcaggg cccagccgca tggaggggtc ttactaaaat tgattggcaa atgaaattat gataaacata cccaagcatc cagatcattc ggctagtaga atgataaaga tggataaccc ccaaaagaag aaaaatttgg aatctctcaa aaaatctgtt atggacttaa agatggagtc agatggtgag aatacttatt tgcccacctc attatttaa tgatttatat tttctcgcat ttggatttca gcctacaata aaatcagagg gagcatctag catacccata atgtacggaa

MBA-101

ď

MBA-101

18660 18720 18960 19020 19080 19140 19260 18540 18780 18900 19200 19320 18600 18840 agataaagat aatagcttct atctttttca attttttgaa tttatcatta aactggtgag gcaaccaata atgccttcta atttgagaat taggcacaga atcattagat agctaaatat ttttctataa tggcaatatg aagatacgaa atattgattg aatcaattat caggaatctc tccatcctat aagttaaatt ctttctcctc tctttttac getecettae gggtctctcc taatagtagc gtgatattga actttgtttg ggccaccaga ttatcaggta ttatgtaaga cttttcataa tcatttatgc tttttaataa ctagattttg aaaaccattc tcagagatgc gatgaaaaga tcaaaagtta tatgcctcac tgcatgcatt agttcttttg gttgttattg ctaggagagg ctttttattt gtcttcgtta tgatgatgtg aaagcttata cgctaagagt agaaagtta ggctccaaga atcttgatcg agggcccatt taacttatca cgggtctacg tgagcctgag tcttagaaag acgcatctaa agcttgttta taatttaatc gaataaatgg attatattca aaagaaagc catcaattga cactagaata cacatttatt cgataggaga acattatgga caacacagtc gtctttgggg tcaattcatt ctattcgaaa acaagctata attttaaggt actcctgggc acaggcgatc gggcatggaa ctaacaagag aaacttacta agtctagaag atatcaatat atagtatcct atgggaaagg tagtaatcgt attccaaata

gatagatcat

tcctaaatta

ttgtcgtgtc

tcggcaaggg

aaccgaagga

gagactcaac

MBA-101

APPENDIX

25/126

Page

APPENDIX

MBA-101

MBA-101

21300 21060 21120 21180 21240 21360 21420 21540 21600 21480 ttattgaatg gcgattcgta aaaaatttag tttatatagg ttgaaggttg aaggggcaga agtcaagagt catcaatagg ggtcatatac atcgatcttt attaaattga atcaaagtct tagattttta tcttaaataa tttgtaatga attattaata ttgagtatgc atcattcagt ctttccaggt tcttttaaca agggttagat tcagcgaata agtaatcctg acttcgcatt tttcgtttgc ctttgtattc ttcgaggcat ggacattatt aattaatatc tgcagcatta tggcgcgtcc aagagtaacc ccctcaaacc ttcctctctt tatttgctaa cagcttatgt ttgtaaagtt ctataaagct ggtcgggtgt agaagggatt ccctcactgt ctttgggatt cctcgttaga acaagaagaa tgttttacca aaattctttc aagaaaacc teggetatet gtcttccatc tatggattgc ttggtttcta tcgttaatat agatccattt aaatcagcaa atgttttggg tagattacta attctttgaa aaattcttta agctaatatt tagatattgt aaggatcttc gattacttga atcgctatca actatagtct attaaatgtt ttgttttgaa ggggttaatg tgcctgaaga ttctattaaa aatttgttgc gtttttataa tttgtcatat

ataacgtata

gggttcattt

tttaatagct

gtggtacttc

tattttggaa

aattgcgata

ttctatttt

cgttatgatc

ttaagcccat

gtgtatatgc

taaccttctt

atagatacaa

tttttaactg

ggctgcaact

cagacttctt

gttgcttttg

attagctatt

tagatttatt

23580

ggtgcaattt

agatttataa

atatatttt caccettett

tgctgcactc

gtttcttcat

23700

tttttaactg

ggcaacagtt

tagcttttt

ttttaactg

ggtaacagtt

gagcttttt

23760

gaattttagg

agattttata

gattttttt cgaccatgta

tactgtcttg

gagctttttt

23820

atttaatact

tttttaattt

agctagtcat

tgacaaaatt

tatcagatac

gtggagaaaa

23880

ggaagatgca

caacaacctt

ccaaatgtct

aagtcttggc

catccgagct

ttcaagtacc

24000

ttctgcttga

gagttatttc

gtatctattg

agctccattg

acatatcacc

gatccggcaa

24060

tgtaatagca

cggcgccttt

acacttccat

atctataaca

caaccccttt

gcatgcttct

24120

tttaccagaa

caaggctttc

acagcatcat

ataaaagcta

gcttttcttt

gtcatatagg

tcaaattttt

aaagcaacag

acgtccttgt

gttaccatgt

23940

atgcataaac

gaaggtaggc

tgcttcaata ttattccctt

acttagcaca

tagtttgcaa

cttagcgtca

tcatagttct

agcatgctgc

actaactcca

caagatacgc

tctgatttac

25740 25260 25320 25380 25440 25500 25560 25620 25680 25800 ccacatcaga aagctccaac gacctggaac tacctgaatt atattaaaat cttttatctc tatattttgc cagaacccgc taattttatt tattataaat aatttcttct ttgcctccaa aaatcttgat gctaagtcat gtggcaaccc ataacagcca tcaaatttaa gttgcttcag attagcctgg acctcatcaa caactaaatg tcaggagtaa gcatttttta taactttaag attgtattcg cgttgtcatg agcagttaag gccgctcatg tattacggcc taagccaaag gagagtcagg tttccctcaa ctggttcgac ccaatctaat gttctttatt gatagttcat ctttccccaa aaactctaaa catgaccgtg ttgaaggaat ttccctgcta aaacctctgg gaaggagcta gctgaggtgg ggaaccctg agagagtcaa attttttcaa tctaaaaact ccacctatta ccgcctagcg gacaggacca aaagcccata attaaatatt ccttcctgta aggaagaccg ttcttgagct agaattattg caaatctgca cttaattaaa aaccattctt ttcaagactt atattcatta tacaatgtct

aagctaattc

ttatgtgtca

atcaatttta

ctatggattt

ttgaataagg

cttggcctct

APPENDIX

K

Page

PCT/US01/14394

APPENDIX

Page 34/126

30240

29520

29580

29640

29700

29760

29460

29880

29940

30000

30060

30120

29820

Page 37/126

APPENDIX A

30300	30360	30420	30480	30540	30600	30660	30720	30780	30840	30900	30960	31020	31080
ctcaattatt	ataattotta	aattattgga	accaccctta	caaggcagag	ttgctcgaga	caaaggaata	taaagacccg	aatgccgtct	gttcacaatg	tccacatgca	actaatacat	accctcaaga	aaaatctata
tattatcaat	taaaaataga	atgttttgct	gttctttcat	agagaactct	catcggttgc	tctctgcaat	ttgctgtttt	tgtcaccatg	catgaaattt	ttactttatt	agttccatgg	cgccggtggg	agtatctgag
agatcagaaa	tcagcagacc	ctatcaagag	ccaattttta	tcttgtacac	cgaataatat	atgcctcctg	tgaatttttt	tttgaaagca	accccaatct	ggcttaactg	gcaacaggaa	gcattgatct	tgttttgcat
ctcgtctttt	atctacatta	agcattgaga	ttgagggttt	atatatttcg	aaatgctgaa	cattgaattt	aaggctgctt	gttattaacc	atcttttggg	atgttctgag	tataagtatt	gtaagatagg	gccaacagct
gtccaaattg	caaaattttc	ctttgacgta	tgtcaagatt	aaagatcgtc	cagagctatc	aatcaacaat	ggttacttgc	cccctttgat	aatttaaagc	gaattgaagt	ttatttgccc	cttttggtga	ctgtttggag
tgaagtattg gtccaaat	gttggagcta	tcttcaaaac	ccgatatctg	atcattgata aaagatcg	catcgctgtc	agtgcgcttg	attgattcat ggttacttgc	gtgaatgcaa	cctaggatta	atgtagccaa	agggctgcac	aaaatatggc	atatggtctt ctgtttggag

WEA-1C

APPENDIX

4

Page 38/126

cataggtgct

gccgaacatg

ccaatatgct ccttttacga

tttcataatc

gcatgcttaa

ctcgctctta

gttttgttct

aatgcatcta

ttcgcttaga

ctagcccata

tctttattat

APPENDIX

Page

APPENDIX

ď

Page 42/126

4 APPENDIX

Page

taaaatccag

tttttggtaa

gctcgtcgta

tcttccgatg

ttttaaaagc

tattaatatc

37020 37080 37260 37320 37380 37440 37500 37560 37620 37140 37200 cgtagtttta tctgggggct tattaatact ¡cccagctttt caaaggagct tttgtttggg atccattata agtaattcca agattaacta accaacatt gatagtatta ctaaaagaaa agaaaatgag taatccttcc ctcagcttgg tcttccact gtctcttagg tgcttgaaga atggcaccac cagttgccca aatatgtaat accactctta gggtctgtag gtccacccag actaaataag aggcaaaact ccatagaatc gatattaggc gcatttatta atttttgcat gcaattattg ggtggttcga ggctctgtta ataagaaaat ggtatcttat cttattctta tcgtatgcat acggatgagc tcattaaaaa aaaaaacac aaacaacttt acaagaagaa tttatacaag agcettteta tttaacaatg agttgttctt ttcctttata gatttttgtt atttttaggc tgtcttttt catttttcct ttgggaaaag tttcgtttac taattcatgc gggtgaggtc caaaaaacg cttcagttgg ccttcttttc tgcactttgt ttaaattatc taatgcaatt tatattttag taacttttat tttagacaag atgagaatat ttatgggagc atacgaagct ccctgataa taaatgcctt caaggctttg cttaccatta agtccgggat attgagcctc gaatttttca agtatggctt tatcttatag tatgtagcag atagaatctc tggggctatg gaataaatta tccgaagatt ttagagcgca ctttgaacat tggctaaagg

MBA-101

4

APPENDIX

aaagagcggc	aaaaaagaa	aaaaagaaat	agttttttgt	agaagactat	tattatctag	37860
tcgacctagg	gccatcttta	aaatctattt	taaagaacaa	cattattccg	gtcactgagc	37920
ttactaaagc	taaaatagaa	aatattttta	aaagaaggtt	gtcgatatta	tctcttctt	37980
tccaatccat	aatatgaaac	ccccacatca	gatcccatat	tttccattta	ttagatctaa	38040
tggccacaac	ctctgctgag	taaacattaa	tgtaaacatt	taattcagta	cctttaacat	38100
ttttactttt	tactctataa	attggcaatg	atctgcctct	atattcagat	cctgattttt	38160
catttacaac	ttcttcggta	gcaaatggca	aaagagttgt	ttggcttgaa	actgaatcta	38220
tagcatcttc	tagcatcttc catagaaatc	tttgttaaag	gctgcccaag	catattcaga	tacttagttg	38280
agccctttgt	tgtgatgata	acaatctctt	gacctaatct	ttttttgaat	ttaacttctt	38340
tagctttctc	tatttcaaaa	tttaacttac	ttaaatcaaa	agatgtttca	acatgattaa	38400
ggtattgctc	gcctcttacg	agctcaatct	tattaaaagc	aaagtatatg	cctgagatag	38460
tccaaagtaa	tccaaagtaa taactgaaga	gagataaaaa	aacttaggta	cttatgaatt	ttcctaacta	38520
aaaagttcat	cttttcataa	tcttcattat	ttcatcaatt	tttacatcaa	attcgtcatc	38580
accttttaaa	gattccttaa	tgcattcacg	caaatgggtt	tttagaattt	tgccctcaac	38640

APPENDIX A

Page 46/126

39420 39180 39480 38700 38760 38820 38880 38940 39000 39060 39120 39240 39300 39360 cttgccccag gaagatgcaa ggatttgaag agtattgacc agcttattaa tacgtaaaaa **Ettttctag** taagttttgt taaagcttat aggtgatttc ctattcttt cacaaaccat atgcatcaaa aatgaccttc cggaactata aggcatatga tagtgttatg gcttgcaaaa atctcagaga gtttcatgta attcttttta atacctagat caaagtagaa taaatttcta agatcaacat gcacagaaat ccttcaacaa atatcaacgc cacaacatat tcatagttat ctaatgcaaa atttgagagt atcaaccatg ttgattaaga ctggccctct ataaaaacct catagtacag cagcagggca cagttaccag cttctttcg aatacctctt tccattatca gccttatcat gatcttttcc gtgcttttat gtttcatttt gctacagatg agttctgggt acaatcatta aatggaaata gctggcaagg tagaaagaat tcactacttt ctatatttac cgcctcgcac aagtttttga taaaaaatt cttacgatcg tttacatcaa gaattcttaa attccttgaa tgctctgcct ggtaattaag aacaaaaata aaaattcgac ttttggccat gaaaaggcaa tcttttagaa tgacatggat tcctgcaatg agtaataatt ttcctcaacc ttgctcttta ttgtagcgaa tttctgaaca agttgatata caccaagagc ataatgaaaa atcagacata gacatcttta tcccttcacg cctctcaggg attgagatag ttttgcctta

Page 48/126

APPENDIX A

39540	39600	39660	39720	39780	39840	39900	39960	40020	40080	40140	40200	40260	40320
cgcttgaaag	acataaaatg	cataaaaaaa	ttttaaccat	gttgaatata	agcccgcata	tacttccagg	ttctattcac	tagccctttc	cattaaaggt	catcagcatt	gtatcttacc	gaaatcacca	actagcccat
gcaataaggc	taaaatctgt	agggcattac	tttttttgg	gcaaatccaa	tttaacccaa	ttatttttaa	aaagtatttt	aatttatttt	taaatagaat	atcggtcttg	cccatggggg	cattttcaat	aaaaatacta
attctccgcc	tttctccttt	aaactcaaca	tgttacagta	aacgtaagga	gttaatatcc	accataaaaa	ttgggatgta	gttcttataa	gtagtggaaa	agagtaggat	tttatatata	tccaagcgcc	cagatgcata
cactatggtc	ttttcatatt	cgtcatagcc	atgatttatt	tgtagtcagc	taaatttact	ctccatggat	ataaattcct	agttttctgt	aggttggaga	ttgttccgcc	aaatgattat	caggcatctc	atagctatag
ccatgcatac	aataataatt	ctcgtatctg	ggatacgtag	tgtaaatcat	tagtctttgc	gtttcccagt	gattgaaaat	aaacgaaaat	gaatatttgt	tacattatgg	aaaaaaacta	aaattaattt	aaaaataacc
atgagaatgc	caaagtaatt	taaatcccag	tttcaattct	aacccatgta	ttcttcttta	ccacttccgg	cacaattcct	caaataagta	taggccaatg	atctgattta	aaagaccatt	ataggattat	tcagaattcc

ggctctccaa

tcttaataga

gcacctgttc cacctaatat

ctctaataat

ctaaagactc

51/126

Page

ď

APPENDIX

42900 42960 43020 43080 43140 43200 43260 43320 43380 43440 43500 43560 43620 43680 agttttgtag ggtggaagat ccatcaaata cttgataaaa gaagttggaa agtectgttt tattetgate aacacttttt agctattctt aatatttatt aatatagatt acagaaataa ccaaaaaata tcagacccat ttgaatgttg cgttggggct atcattttca aggtcttggt aactaattac ttcagatccc ggcgcatgct ttatttatca aatttcaatt taataattct tggagatcca ttcttcttca cttagagtta attgctaaat aaacaataaa aaactcttaa atcttggagc aggttgatcc tgagtgactt cttatgacga tattatgatc cagaattttt tcgaatgggt gatttaattt ttaataatgg caaaccaatc ctgg‡attta ctaattttgg gtagagaaca tcaaaattaa gaaaaaagca tcttcttctt ttaattaatg atttcaaccc tggaagccaa aaaaagata tattttgatt tcactagtta gcagaaggaa ggtatatttg aaccagggtg gatatagaag tagaaattta atttttccag ttttagtaac tattgattat taaatctaat acaggictta taaaaataca tggtaagttg taagggctat aggcatcaat ccaaaatgct taaatctcta ttcaagacca aacaaatgct tatttggaaa gggagaattt aatttgcaga atggtcctta aaatgtctgg ttaatattgc attcatcaaa ttaatagtaa gaaaagatca aaaattggat gtttttcaat atataaatga tatacttaac atgcactgaa

tgggcaagaa

ttattcatta

gacaatggac

tatgaacatg

taattatgga

taacaaacat

43740

tcatacaact

tacttctgag

cccataacaa

tactctgatt

tgagttctat

ttggtaaag

gccctgtatc

attaaatcag

tattaaaaca

atctagagat

aaaaatcata

tctagatata

45240 44760 45000 45060 45120 45300 44700 44880 44940 45180 45360 44640 44820 aactaaaaat ttttaaaaac agaaaaata aaaatataat atgttctctc ttttagactg atgcttataa aatattcagt agtacatgtg taaaaaatt tagttgttgt atcatccatg tagtatggag aggttatttt gcgcattctt tatggaattt aatgaagttt cccaaaagta tctgataatt tcgttatcga acaaataatg accctaaatt atactcagcc gaggttcctg cattatttag ttaagagttg actcaataac tgatattgcc tgatttgtct tattgatctc ttggagggat gcatttttgt tgatcagaac aacaagtatt caaagcaatc tgaaattttt taaggattcc gaaagcttat tttactaaag caaaccttct atcctttttt ttttatttag tttcacttgg aaattcatga tatacgacaa ttatttaaac tttacagaaa atggaaaaat ttgataacat atcgagaaaa caattttatg gagaatggat ggatttgatt ttgaataaga agttttaaca gttgataggg ttaaaaaata ataaatgtag agtccagagg ggtattgaat gaattaaaaa gacataaatt acaaatctta ctcatacaaa atttgtaatt agagaaaaa tcataatgac ggagtactcg tttagatttt atatatcgag acttggaacc ttttagcaat tcttcataga cttatcaaaa attaaatgat gagtatttcg tgaaatatct cgcacacaaa MBA-101

Page

4

APPENDIX

45420 45480 45540 45600 45660 45720 45780 45840 45900 45960 46020 46080 46140 46200 cttactgtaa gtgattatca gtattgatat ataaactctc ttttatgtgt attttactcc ttgaagatgc ctgataaaga taacaagaga ggtctgatca tacaaaggtc atttaccaaa cattagttgc acttattcga cgaaagtttc ttatatcaca acctttcttc ccatattatt tctgtagagt gatatgaaaa aaatctatag ggatgtgagg gctggcattg gttgaagtta tcgatggttc gctgatgctg tttgatattc aaaactgagc gcaagagatg ggtagaattg atttaaaaat ggcaattaca ctatcatgat tggataatag cgtggatgtt gatgatccta tttgcattac attgcatcct atgggggttt agaaaggtat tccatcccca actagggctt ggatggagat atggaatata tgtagctgca gaatgacact cttctgataa ttgatgtgca taaacctcac ttagttgccc tatctggaga acattgtgat atgttggtac aagagggagg ttacatttaa caggtatgcc cttggttgtg acagcgccta ctagttgtta gctgatattg caggcagcca gaagcagaac gtagttaata tgtaagaaat gatccaaaaa tatcctgatg gtcgccgaac agaattgtaa gagggcatgc atgaaaccct tggtgagtta tttactatta tggccataca tgttgatctt gttagataag attagtagat caagatgaaa ttctcgttca tgtgtgtgat tacccaacat gctaagaaaa tgatgaaata cttatatgat atatgatgta

A-101

APPENDIX A

Page

APPENDIX

Page

tgttctatca

gccttcacct

tcataagata

gaggatgtat

accggctgct

gagttaaaag

48060

cccatatca

aacatttaca

tatgagactg

gcagcatgaa

cacatgtttt

tttgaggaag

48120

cctgcatttg

tccaccgata

atcctggctt

gcttcaaaaa

cgaagtatct

tgtcccaatc

aacaaaatat

cgttttcttt

aggaaaatt

cttcacataa

taattttcat

tattacaaaa

gctattatta

47940

gcacctagtt

atatccagcc

ttgtaactgc

gctgcagctt

aaaactcaca

tccattcagc

MBA-10

tgaaaatata

tggctcgtcc

tttttttatt

aggttaatac

aaggtcatta

taacctttta

taaatgcaga

attagagatt

agaaaaagt

48900

aagaaaaag

ctaaataaaa

cattccattg

gaaagtattt

acaattgttg

tatcggccca

48960

caggtggttg

gataataaaa

cagcatttct

caagagtcgg

tttttaagtg

cgtcttagca

49020

ttagtattga

attaaaagtt

taatcaaatc

aaactgcact

agagcgagta

gtatgcctat

49080

cagtagatag

cagccaggaa

ttttggtcta

atgccattat

accaatccaa

attacgaaga

48780

attttgggcc

cataataaag

tggaatactt

tcgtcgcaag

gatgaaatta

gtcctcaata

49200

caggcaaact

ccatctgatt

atattattga tacagcaagt

cagctaaaaa

tagtgtattg

tttcatatta

atgaatatat

atagttggtt

gatggggaag agattcagcc

aatttcttgg

49140

ctccagaata

aatttattta

aaaagaaggt

aaagaaatgt

tgaattaagc gaacctttta

49320

aatttcaggc

gactggtcta

taaatattat

aaatgagtat

ttaggggaaa

caacactagg

cggagaattg

aaaaggagat

tgcttgcgga

atcagtttga

atttatgaca

aaaaactcta

atagtgagcc

attcttaatg

gctcagttat

tctcaggtgg

gatatgtata

tcgatggaag

acatagttga

ggttttttat

tgatgacgag

50580

aaatcgcaga

cagttaccac

tgttatctat

aagttsaaaa

tatccagctg

agaaaatgtt

50640

cctttgttgc

actggtaaag

gtggggtgag

atagccctaa

attggtattg

agttggagtt

50700

taaaaaatct

gatcattgtt

agaagtcata

tgacggcaga

gatcatgaat

tttaaagccc

50760

gaaatgctac

gctcttccaa

agaaagttga gtttattgca

aaaattccag

agcaaagtac

aggtaaagtt

agcctaagct

ttctttaaca

50820

aaaaaaccc

50460

ctgcttactt

acaggtgatg

gtggttaaaa

ttgaagacgg

agagattctt

agaggctact

gaaataacct

aaggttatag

agctgattgc

ttcataaatc

gattcctgct

Page

ø

51300 51360 51420 51480 51540 51600 51660 51780 51840 51900 51960 52020 52080 attcacatat taacaagacc caaagaaaa tgtaatcact tacctaatat tgaataaaa taaaaagcat atatttattt atcctggttc aatcaccagt gactctttga gcctagagga ttgttggttt ttataagagg aggttacaaa gcaataccag gcaataacac gaagcataat attaagtaga tctcttcaa gaaacaccag ctttaaatta gttgcaattt aaagtagagg gcttgtgcaa acagttggcg aggggttgcg cctcttttta agaaactcta aaacaccata agcagcaaga gtatctaaat atgccagaaa taaccaaaaa tgtaggaagt taatgacaaa atattaatag taacatgaaa atcgaaaaac tattattgat aggaaatgaa agactatgga ctgcagcaaa atagtaacca atgtgtaata tgtacatgta cagcagtaac actcctatat gtatcatatt cattagttgc tccattttgc atcttgcaaa accaatcaat ctattttaa gtcacacgga ctaagagtga gatccagcaa accetetea aatgatgttt atgaaattta actgttagta gctaataaag tcaccaccac ttcatatata aatagaaaat gacttgttta gttgcaatag ttagcccaat ttaacagttg atcacaaatg agatacagtt cagtaataat tccaagaaag cttaaataat taatagagga ttcaatccat tacagtagat agcatcaagg ctaattaaat tagaattaat tgcataagta ctttgaccc caaggttgtt

MBA-10:

63/126

Page

4

52320 52380 52500 52620 52680 52800 52140 52260 52440 52560 52740 52860 52920 52200 ataggtcgct atgtatcttc ttcatcctat caaaaaaag cagggctcgc tcagctgagt ttttttccag agcggatgaa acatttttt aaaaaatcct ttatgtttat ttagatagtt ataattcttt ttatttttg gcaacaatga tcgaagtttg acaagcttca gcatttattg tggactacca ctctagtatc ggcatttttt gataccgact gcatcctgaa ttttattaac gaagttttca ttttttatca agtctcattt atcattataa aggcgatata taaaatatcc taatgtagtt cetecaacet etattgettg gcatctaaat ctaactcatt aaatattgcc tagagtgact atttcagtta cttagctctg tagtgccttt gcccaaggtt gaagaataat accttctggg gtttgataaa accaaaagaa atatttgttt ttgaatatga gttttacaaa aatttaaatt tcagacgcat cagacttaaa cgagtagaca tttttttaac agaggttcag attgatccaa atatgatcat attcctaaat attgaaagca gcacttcgag tcttttacaa gaaaaggctt gtttctgatt aaagaaatat atatacattt atagctttta attgacgatc atttttagaa aattaattca actcccagac agtaagatgc agaagtcttt cagctactaa ttttagctaa gattcattaa cctacgagca ggctcccaat tagcttaatt agtagagcag tagctctttg cttctcttcc ttgcattaaa cgatatcaga cctcatcaaa caattctaag

Page 64/126

52980	53040	53100	53160	.53220	53280	53340	53400	53460	53520	53580	53640	53700	53760
tttactgagg	gcttctttca	ggaagttcag	ttgttcccga	caagattttt	ttgttccaac	cttgtttttg	cttcttgaat	aatatgcttg	gaattgcata	taaaaccttc	tcttaggtaa	aatatgctgc	aacttggtgt
aacttgatct	gtgtatcctt	ttcaacctct	gctggagtaa	tttgcattag	acaacgtttc	gaaatcactg	tgggatctga	tcatactgtg	atacttagct	ccattgatat	acaatgtcta	ttctttctca	gtctcttttg
agctttcgac	ggtttctgtt	tcagggttgt	tactatgtca	gtaatcatat	caagagatca	actagtggcc	atttgaaaac	atttgctctt	aaagagtggc	aataccttgg	ctgacttcca	tttagatgat	ttcaacccat
cttctttcta	ttccatctaa	ttaattgctc	tattaatttt	tggcaagtat	tttatgaatg	cttccagggc	atgttaaaac	gagtattttc atttgctctt	agaagaattg	atggaactgg	cagattctga	ttgcactgct	ccaatgctaa
atattttgct	atccaccact	tttaaatttt	ctgagtaaat	agtcttagat	tataagtttt	acttgagtcg	tttgcaacta	tctgtaaata	gagttaacgg	cctgttactg	tggtttgttt	gctacacttc	tagttatttt
taaaaattat atattttgct	tttcaaagct	gcaaagagcc	gcatttttaa	tgcgagccct agtcttagat	ttccgcgctg	tctgtagcca	agcatttaca tttgcaacta	aatccttctt	cttccttctt	atteettett eetgttaetg	atagttaaat tggtttgttt	atgatttgaa	ttttaactgg

MBA-101

54000 53820 53880 53940 54060 54180 54240 54300 54360 cagatattgc cagatgtaga gctctttatc ctctaccaat ttcttgaggc ataacccaac ttcttactaa atttagattg agttagttga cttcattata ctgaatattt gctttttctt gcagttcttt gttttgatag tattcgttcc tctgttctaa agctcagcag tctgtaagag gtaaccctgg tgaaccttaa ttctcaagcg gttatggctg caaagtctgc ttcagcagca gagcggctga agctcttcct catctcccaa ttcatttaag aagtgatcct ttgaactcca tgtagggtca ttttttaata gccaaaataa attgagcctc tgttttgctt gatcaagttg ctgctttata ttgcagaata ctctaagtac aaccatgtat ctagtctaaa ggagaagcgc ttatcaatag ataagcaaac aaagactctc tgctcaaatg tcaaatgcca tattgctgct gaatattccg gtaatactcg aagattttgc aaaagagtta tttacttaga atcgaatctt tgcatttaga caataatttt tggcaggtca cctatattga tgtgtaaatt tttttttaat cagagcattt tccactcaag gatatccaaa tgctaaatat

4

APPENDIX

54660 55140 54720 54780 54840 54960 55020 55080 55320 54900 55200 55260 55380 55440 gtatacggat tgaagctctt taaggtctct aggtgttgag taatttctct taagtcttct taaattcaaa gcatttatta aaaaaagact tcaagctcaa attagaggtt tgattcttcc cgatgaaacc taaggctggg ggacatcaat gacctgggat attcggttga atggctttat ataaagtttc gagatgatta tatctgatga ataatggaga aacagcttaa tcgttaatga gctatttgat aaaataaact taaatggctt ctaaaaaatc agaaattctg acgatagagt gtcaaaaaaa cacccggaac gtaaatgccc atcactttta attcagataa gttcttgata gttctaaaag aaattctctg gggctcaaaa agacccccaa ggctcacatt attgtatgct actagatcct aattgatgag agtttctgtt agaataccaa agtggggctc aactatagag tcctggatta ttggtcatta aattcaagaa aaaagtatct tgctggagcg ttttgaagat gctagattca tgctcagggt caattgggga gagattctaa catattttga tcttatctgg gttcaaacat gtaaacttca atggtgttgg cagttctctg ttgcaatcaa tcataccaac caaatcattt ggggtatgcc aaaagtggta acttggtttt gcaattgaag gaattaaagc ccaaatccta acatctaacc ctcatccttt ggtggccttc gagcttgaat tatgtgaatc tcaggttatt gatgatggaa agagtaaaaa aaggccaaag gaggaagcag gatgataaac

67/126

Page

ď

APPENDIX

MBA-101

56040 55500 55560 55920 55980 56100 55620 55680 55740 55800 55860 56160 56220 56280 gcttcagaat agagggcgaa gattttaaat cctatcaact tgcattgttt aggtttaaaa gtcgttcgtc caatatagtt ctgtaatagt agggtccgca aaaaatttgt gcctcctcta gcgagatgaa aaggtttaaa ctcatacaga agataaaaa ctttactttg tattgcctaa aagatcacat caaaagtttc aactttcgga tttcatctaa actcagccgg tgagagggaa taagatacgg atatttcaat atgataaaca taaacattca tacagaaatc tggcttaaca ctttcatcac catattgcaa cagacgagag ttacctggaa atcatgcctt agaaataata aaatctcagg ggaaggatat aagcctaaag atttttataa ctagattcaa gttgaggggg tatgcacttg attttgtgaa tatgtctgct aaataatgac agatggtctg caaggaaaga tttaagtatt aggcccagcc gcttttttta tttccaggca agttcaagag agatgttcta gaagaagggc taataatgca cattaaaaga gagaaagatc ttctgccagg caaaagacat aacttgcaat tagaaagtgc atgctgattc atgatgttct cagggcaaac aaacttttag atgaaacaga ataaatcttt attctggtaa aatttaaaaa acttgggact gcaattgggg cttttagatt tcaagtacca attcttgcag attaatgcag cctcaatttg agaatagcag gaaagaaga caggacttaa aaacaagcaa ctaaggcatt tatagaatcg atagttactg

56820 56340 56520 56580 56640 56880 56760 56400 56460 56700 tttcatcccc tcattcaaat tcttttgctg tctgaattga tgctactcgt ggacttactt gtctctagca gctgaagagt attggagatg cttgatgctg tcaaaatttc tgatccaaaa tgatggaccc agagcttggg tataggaaaa tcttttaatc aaaagaaagg caagcaatat tttgcctaat attctatgat ttttaatggc gttctcagga ttggagatgt aatttgcaaa agagagactg caattagcct tagatagagc gaatggcttg atgcaatgtc gataatgcaa gaagctatgg gcaagaactg gttgatttac ggtaactggg aagttaacta cagcctaatt tatgtcattt acctcaacta agcaagaaaa caaataacct agaatactct attttattga aatattaatg cagctcaagc tatgaaagaa ctatgcaatg cgctgcatat agatggtcaa tacagaatct aaatgaatcc agctttctat agaacgcacc tgttcaaaga caaaaaatca agtcgattgg tccatctcat atcacagttg actcccatct atggagacgg gccttaagcc ggacttggtg aaaatataaa cttatcttaa gctcaaagta accettttgt caatgaggta agtctggaac ttccagccaa caacagatat ataatccaaa cagcttgttc ttgtccaaaa

ď

APPENDIX

57600 57180 57240 57300 57360 57420 57480 57660 57840 57900 57540 57780 57960 actggaaaag atcaacgcat atgcttaaga ccagtaaggc cacctttttg agaaaagaaa catatccttg agagaatcag gcaaatgcaa gaacaagaaa aagacaagac ttgaaaggtg gaagtaagam actcttgtca accaggtaaa cgataggctg aatttattcg agctgatcaa ccacaaggag tgtaatgaat tttgatttca gctagtcttt aaagattatt tgatatccag aatcaagtta tgagtttgga tgaagaagaa tcaaatcatt actaagctct atgctgaaga taaatatgaa ttaaactttc agctgaatga tagagcaaat atgaaggaga tgaaagaatg ataaagtaat aagttttttc aggataagaa agctagaaca aaataaaga ttgaaaaat gttgatttat catagactcg gatcttactg aattatagag ttagatttag attacagctt acagaagcca agcaaagatg tctaaaattt aacagagtaa caactagcca caaacagata gagcttattg caatgggcgc aaactagaa aattgtttat aataattgct tttctcccta taggttaagg agctcaagcc agcatctggg tttaaaatcg tttacaaaaa aaaagatatt ggtagcagaa aatggtggtt aagagaagca aattaaaaat gaccaaaagt taccttatca aaaaattcc ttgtcataac catcaactga ctgtaataag aggggttatt ataattcgcc gcggcttcaa atgagccaaa tccttgagat gagatacttt ttaaaacatt aatctccaat

70/126

Page

4

58020 58080 58200 58500 58620 58140 58320 58380 58440 58560 58680 58740 58800 58260 aaaggccatg tatggaagag tcacttgcaa gtatctgcag ttcatgatta aataagaaat attaaagtaa atttttaaga ataccaaccg gaggctagct ctagaaact aaggtagata tctcaaaaat acctaacagt gaaggcttac tacaggaagg tgaagataaa tcttaaagcc cagactttta aataataaat acttgtttct actcaaagat cttggagaaa cagaagtgca acttcaagat tatggtttct aggatatagg attatagatt aagcagacct ggaaagggca aagggaataa cccatgcgca ctggctggat gtgatcctat ttgggaatga agtttaaaaa caaatattgg tattattagg actcaaatgg tcactttaaa aagaagactg gagaagatgt tgcttccaca tcttcattga tttgtatata gcagcagttt gctcattttc ttgtctgcag gagttaatga aagagattcc gtttttcttg agaggaatgg tatatttcag atccctcatg aggggaaata ttagaagtta tcctatagag tacagtagtc aaagttcatt tggatatggc tcatcaacta cagctcactt atttatgaaa gccaactctt tcaagtttca tccatctgct agcaaaagaa tgaaagcgga aagagcaaaa agaggttgag gagacgatca ctgagcctat ttgatgaatt ttttaatccc agatagaccc gaaagagcaa gtcactctct attctggagt tgaatactgc caggaaaagc ctaaatttat aaatgattga atatttctac

ď

Page

ď

59700

ataaatgcca

tagagatttg

ctcatttatg

MRA-10

APPENDIX

62460 62880 62940 63000 62400 62580 62640 62820 62220 62340 62520 62280 gattagaata caaccgcaat ttggtctcat ttgaatctgc ctttctcaga aacccattgt gatcaaaatt atgctgatat taattccatc tcgatatggg cagtttattc ctttaatagg atggaattca agaatgctag gctcatcatc agagatctta aaaaaatac ctaattaaaa gtaaaaagaa ttgtctttgg gcgatatctg aaaatattaa tttgataaaa gaatttgatc tcaattgagg aatgagttac gcaaagacag gttttgtcag taatgctcat tgatgatttt ttctgcattt attccatcat taaaaatata ttattcatta tattttggcg ctttgatggc aaatccatca ttctcatggc tegcaataat tatttctgca agacagccaa caataatatc tagaaattta caatcaataa cattagctag atgaatatga ttaaaagaca aagaaagtat acatttcggc tgtctggggg tctggctaga ctgaagattt tgaccaataa ctatagtcat ttgctgatga tegtaacaca gttgtttatt tttgatggca tctaatgccc tcaaacacta tctatcaaat gttattttga attgaggcag ttagatgaca aatcagatag actcatgtta actaacacta tcaccaagca ctaaaatatg tttaaaaact aattcaggat taaaggaagt agaattttct ttatgatatt agaacataat aacttttgtg ttttaataat aaatggaaat aatttggtca tgataagact tgagctaggc cattgaatct tattcactat aaaatcttta

MBA-101

ď

aagatattga

aaaataaata

actaaataaa

tactaacgag

agccacctca

taatccagca

64020

catttagggt

attatgatgg

ttcaaaaaaa

ctttataaga

agtataagaa

gctcagccaa

64080

caatgtctaa

tttagtatag

ttaataatga

acctttttat

ataattaccc

attaaattcc

64140

cttaaatgat

caaaaaagc

ataattttgc

taaatataca

aaacattaaa

aaataaattt

64200

tgatatcaaa

ttctatcact

gccgaaaatg

tgataataaa

aaaccctcag

atttgcactg

63900

cacttggaat

ataaaatagt

atctttcttt

atttcgagac

ttggtcttaa

caacgggtta

64320

tatcatgggt

ataaaattag

ataaaagcta

agttgaggag

ccgaaaagtt

aagtctttat

gtagagggca

attatgaaga

ctcatcgatt

MBA-101

cttgaatcta

aattttatta

tcttgggagt

64260

taggcatgca

caaattcgaa

attgcaactg

caacatcatt

ggtatttctt cttttgctga

78/126

Page

APPENDIX

TBA-101

atttatgatt

attggaaaat

gaaaaaagg

tttattgctg

ttcaggtggt

cttttaagta

Page

aatagcctta

ttggatctgc

ccgccgttta

caggattaag

ttatttttag

gggttatgta

67380

acaacagaga

agccatttca

aactttctag

tttatggaat

ccttacctbt

tttttattat

67440

tataactcaa

ccttatggta ctgcatggaa

agacgcagac

atttgaaccc

gttttaactt

67500

gggctcccaa

gttatcagga

aatggaaaag

aggcggaatt

caattggatc

tcaaaaatag

67560

acagatttta tttttgctgt tattgctgaa

agagacagaa

atdttttacc

gcccatcttg

gagtttggtt ttattggagt

67260

ttatgtcagg

ttagtagtat

gggaaccagt

aacctgactt

gtagctagac

atttgcactt

67620

atkactcaga

ctgtattttg ttatcagtat ttdtctttat

ttactgcaat

aagatagcca

123

67680

aggaggccta

ggttaactat

agattttgca

tgcaagagat

tagcatttaa

tgtttatatt

agtttagttt

gtagttggta

atagcttttg

aaattatatt

APPENDIX

Page 82/126

APPENDIX

00069 69120 69420 69480 69540 00969 09969 68940 09069 69180 69240 69300 69360 69720 tttcatcagc aatatgcttt ctggatactg caggaagtaa ttgtggctga aaaaagcatg tatctgatct cagaatatgc ctttggagat ataagctttt ttagattttt tttggggtgg ttcctagaac ctcctatcgt acagaagctg tctattactc gaaaatcatt ttaaatagaa aatatccagg actagctatg aaagttacgg gttgcaattg tatgctgcct tttccagaag acagttgttg gagtatggat aatattacag ctaattagitg aatgaactct taaaattatg cattaataaa tattaagcaa aactggtcat agaggatata agctggaaaa gcttccagat gaggcttatt aagattactt agttaataac tgacgaagta tgatgcctct agaatatcag cttttaacaa cctttataga attcaacagg cagctaacta atggtgttaa agtcaggcaa ggggcggtat tgggagttct ctgtttataa ctagcatgac tatctcttga tcgttgactt tatcttccca gtgcagaaaa gggtctaaga gaaagaggct atctttcaga gccaatctga aagcaattta gactcagcag tcagcaaaaa aagatgttaa atacttggcg aatgttgaaa atagaaccag aatggtttaa attatgattc gatcgttttt aaaagattta atataagcag atggagagac aagtttcaaa agatttggaa tcagattgca gagaatgcaa tttaaaaggt aggcggcact gaataatacg gtcagataat acaagaaag tacaacag

4

APPENDIX

cccatttctg

agggctggcc

gcgcaacgaa

tggctcacaa

ttcttgcgcg

tatcaaatgc

86/126

Page

ď

APPENDIX

72180 71460 71520 71580 71700 71,760 71820 71880 71940 72000 71640 72060 72120 72240 aagattaatt ctattattt tcaagagctc attagaatct ttttgctcaa tctagatcta tatcaaaccc tgagcaaaag tattttgtga acctcaaaaa atttgatctt tttttactta tataaaaaga tagccgagtit gattgctaac atctttttta ttaatctcaa tgatctattt gataaatgtt ataaagaaga aaaagcatgc agatttaatc gctaacaagc aatttctcct atagtcttgt caagcaagtg gttttttaa atatatca ttgatcatga tatttaaaat aataatagtc tcttttctg tattgaagag aattaaatag agatccaaaa ctcacatttc cagactcaag atctcttgta tttctaaatt aagatatcaa aatataaata ccctttattt tatctgaaga gtattttcc atatcatatt ttgtcattgc tcaaaccgaa tcatagtatc tttttcttt aagcattttc tttctttgaa agacaacctc ttctgcattt ttcgatttat tttatatgta cagccagtta aattaattcc attctcagct gacactacta aaatttatta atttggtcag tatttttgag attaagttca gcctccatag attaaattgg tttcataacc aaagatccag ataattgttt ttattttta tccaatcatt gattttgacg ttatttgatc tattttaatt tgagccaaat atctttatta atctttagag ctgatctaaa gtgcaaatgg tttgtttatt ttagagaaga aagaattagg tatttagttg aaggtcttag ttaaataaca

ctttttgctc

gcttctatat

tgtcgatagc cagtgctaaa

gatgccacat

gtttattgtt

cagaaatatt

tttagtcgat

tgtctctctt

caaaagtatc

ataaatgtat

tgatgagtcc

73140

cgtaatacca

gtaaatcttg

gtcagatgaa

catctgcatt

tcaaacattt

tgaattttta

atatcctcca

tcatagttag

tagaagtgaa

tgatttttgc

gcctgagtaa

acacatttct

cacttttttc

aatttaaatc

4

APPENDIX

76680 76740 76980 77040 77160 77280 76500 76560 76620 76800 76860 77100 ctatatagat agctctatac gcttgttttt taaattcctc caaagtctat tactttgaaa gaatatcttc tttttaggat cccgcttcag atttcaatgc gagttttcaa attattaaac caagaaatgc ggttggggcc tgctccgcat atagcaaaaa atttacagat aaattcatcc tagtagtata gagacatgtc tttattatta aaatcttgtt agaagattga tgaagaattt gaccctattt atgttgacac tttaaatttg tatatatgct ataagttcaa tattatttca taagactaat tttgcatggg tctcgccaaa gcactttatc tttgccaagt tcacattgga agatagatat tgcagcagga tctagttccg tttaacagaa tggcttctgg atagaatggt tataatagat gtattgattc tttgatttgc cttccttttc agttgatttt aaacctccg ttaaatggga tcacctgcaa cagctatatc agaatctcag aatacttcat tatgagtata ccatctctta ggtgaacctc atcacttctt ttgcattgat ctgccatata aatatattca atagtatatt ttcatctcta ctcaagcgtc aaagatttgc tgaattcaat gctatgctcg atagtgctat tttttataag catataataa tgttaaagca atgtctgaaa agatattaaa tttaaagata agcatccctg ttataataaa ttttcttca aagtgatttg aataccagtt tcttgtatat atcccttata atttataagc tatccaagta caacattggt

MBA-101

77400 77520 77580 77640 77700 77760 77820 77880 77340 77460 ttcatatatg agggcatcaa tctctatttt ccagggatat ttttattaaa cttttatatg atctgaatta tcaaaataaa aaagcatgat tgagagcaaa aaaagttat atgatatggt gttttattct ctagactata gactatcgcc ggctcatcgg aaaataaaga aagcaagaat taaaaatttt agaaagattt atattttacc cagtaataag gaggatttaa gctttttctt ctaagtactt agaaaagaa gttatgtcct taactcagtc aatacacatg actttcgcac ttgcttccaa actcttgaag aaagtagatc attattgtct gccgcatcaa gaataaaccc aattttttat agctagaatt tgctctagat tatgttccag acaagtcaga ctcttgatga gttaaaaatt atatttcagt cgtcctgttc ctatgatttg gaagacttaa ttttaaaaat aatctgctgc aaattgcaaa caccgtctat gagaatacaa taggagtaaa tagctgaaca ttagatggtg gtttctttaa ttaattctca catggaggag tcagataaaa tatcctgatt tgccattacc atgtgtgatc actaaaaaa cctatttggc tttgatgctc ggaccaggtg ttttgatcat taacacggta

78180 78240 78420 78660 78720 78780 78300 78360 78480 78540 78600 cagctccttc aaattaatgg aacaattatc tttattacat gtttgcatca atataagaaa acaagggatg accttggcct gatgagataa atgatatttc actgaatcaa tattatatct taatcagata ctttaccgcc caatttttca aaaaaatcaa gtcaattctt ttttaaaaga gtttaatggc tgaagcaaaa aatatgcata tgtttcatgg gtatgaaaag ttactttcct tgagaggaaa tttgaaaaa tatccaacaa gttgaagatt taactgctat cttctattaa acagagtagg acttaagcat ttgatataga atgcaataga gatggagaaa gctcttgatg ggtaagtcgg tccaaagagt aaccettate aaaatttaat acaattacat aatataagtt tcaaaaaag atgattgcta tctatgcgat gcagatagcc gaagtaagtg gttgaaagac agcatcatat ttaatctctt gctttgatcc ataatgtgaa tgaaagcagc taaaatttta gtcaggttct gacctcacta ctcaaaaagc gccaacaacc tgcagtggat gattgatgat acaaagagtt gattcggcct gattgtttaa taaatgccaa tactacttca aaaggtaaac atgactaaat atactatgag tggttggtga aaaaaccaca aagagccgat ttgctgacga gttacaggtg cacttgttga gagggcagcg

gatctaggcc

tattactcat

caatactttt

ctaggcatgt

taaaaatgaa

tgtctaagct

79440

aaagaattga

aaaagaaaat

caaattccca

gatatcaact

tgagggaaga

atattaaatt

aaaaaatgt

tgggggagat

79500

cgaatgacag

attatcacca

cttatgggtc

tttcaagatc

79380

tataagggga

cttagtttct

ctatagcaaa

ttgggtaagg

aaagtcaact

ctggatctgg

79320

gttggggaat

aattggcctg

aaaatactac

agtatttata

tacttccttt

ctgttaaaaa

79260

acttttcatg

taaaaagaat

ctaatttttt

ataccttcaa

ttactactca

acttaaatgt

MBA-101

tgaatcctgc

ttcaggtaat

atccgcatga

acgaaaggat

79080 79140 79200 cttttagatg gttgaacaag gagatcaatg tacaaaaaa tggcaagata gccaataatt ttatgaagaa ctcacgaata taagtgatga gataaccctg aacaaccct aatgtttgtg attttctgac tgaggtattt gcccaaatta gaaatactgt tegtteaaga cagaacctca

MBA-10

APPENDIX

Page

81480	tctatattaa	agatggcgac	caataattaa	ggcttaattg	tgcagatggc	ctccagaggc
81420	gggcacatta	atttgttgtt	gcactcatgg	ttttcaggag	agacggtcgt	cttttataac
81360	gatcaggtag	aggtcttggc	taatgggtca	acatctgcca	gctaaaacca	tgagagaaat
81300	ggtccaggca	gccaaaagga	gatatgaagg	gttgtaatta	ctataaaagc tggagatgtt	ctataaaagc
81240	ctatctaaat	taaagcaatc	aagaaggggt	gattcagaag	tegtgtattt	aaggaagtgc
81180	acttcctttg	taaagaagga	aaattacggg	gcagttgcaa	gaaagatggt	gcaacttagc
81120	attctgtatg	ccatcttaga	aatcaaatag	aatccaatta	atcatttgat	agataattaa
81060	cctgatcaag	accttacgag	ctggaataaa	gaaaatcttt	ttaccggtca gacgcttgct	ttaccggtca
81000	tgtcttaccg	acacggcaat	agggattact	ttgcttgaga	aatgaaaact	ttcagccact
80940	aatggcggta	actcaatgct	atatgtctga	ggttctcatt	tggcagatct taagcccttt	tggcagatct
80880	acacccgtta	aggaaaaaaa	ttacaagaat	ctagatgact	tgatttagag	caataggggt
80820	atggcgcatt	tttattggcc	cagttctgca	tcaactaatg	tggtaattgc tctaggaggt	tggtaattgc
80760	gctataacaa	ttttgagaat	ctaagaatgc	gatattatga	taagccttca	aaaaagatat
80700	aatttattag	agcgataatg	aggctggcga	gattgtttta	caaagaagat	tttcacacga

MBA-10

APPENDIX

Page 97/126

APPENDIX

MBA-101

4

Page

taagcataag

ttagaatatt

gagataatat

gaaaaagcaa

ttggaaggct

cttgaggatg

ď

PCT/US01/14394

102/126

Page

4

WEA-101

A D D FATTLY Y

4

Page 103/126

Page 104/126

tttttgcaaa atgggtatg	atgggtatgc	ctatttatta	aataaatata	attamaaata catttaaact	catttaaact	86580
aagttataat	tcatccatgm	gtcctacaag	ataattttag	aaaagcaatg	aggagctata	86640
tttactctgt cagtgtgat	cagtgtgatg	tcaaatgttg	acgagaataa	aaagtttagt	gctataacag	86700
tttcttcagt tacctctgt	tacctctgtt	tctttagatc	ctcctagttt	gctcgtttgt	atcaataaat	86760
cagctggaat tcacaactc	tcacaactca	ataaaagaag	ggtcctcttt	ttgcataaac	cttttaaata	86820
aaaatcaaga	agatatttct	aatctatgca	gttcatttaa	gaccgaaggt	gatagattta	86880
atagtggtga	ctgggattta	agcggcactc	cgtttttaaa	aagtgcccag	gctaatattt	86940
tttgtactgt tgatcaatt	tgatcaatta	atttcatacc	acacacatac	tattgtgatt	ggtcatgtca	87000
caaactctct tagcgatga	tagcgatgag	aaaattaata	cactgacata	tgttgatggt	agctatgaat	87060
aaattttcaa	aaaatgtatt	ttttatttta	ataatactca	actcttttt	tattgaatat	87120
aacatttttg ctagccagg	ctagccagga	agagtgtgaa	gaaaagccaa	gtgtttttat	tatctctcct	87180
caagacggtt ttatctcag	ttatctcaga	atctaataat	gtaaaagtct	tatttggatc	aaaaaatatt	87240
gaaataaatc	cagctggcaa	aggtgagatt	gcaaaaaata	aatgttttgc	aagcgggcat	87300
caccatcttt tagttaata	tagttaatat	cgaagcattg	ccagagagct	ttattccttt	tgacaagggt	87360

tggaacctat

acaattcttg atcttgatcc

tcaaactgaa

ttggaggagg

tatttacatt

Page 106/126

APPENDIX

gtt 88320		gtt 88440 gct 88500	aga 88560	tct 88620	aag 88680	atc 88740	tct 88800	aga 88860	aat 88920	ctc 88980	cag 89040	
tttagaagtt		tattaatgtt tagagaagct	actagcaaga	ggctgaatct	gcaaactaag	atcagtaatc	aagaatttct	tgatatcaga	aggctccaat	agtaaagctc	actgtcccag	
atcttgaggc	aatttcctgg	agataaactc cattggatga	ctgaacaagt	atcttgataa	ttaaatttga	tagatacagg	atgttgaagc	agtatgaatt	tgtcaaccgg	caggatcaat	caattaagtc	
ברכרמרכממ	gtaactagag	atacctggaa gaacttgcct	tttgatttag	tctattcaag	ttttatagag	aatagatttc	ggctctagca	attggagatg	ctggctccca	ttttttaatc	acatgggttc	
などのなったのである。	tgaatatgct	agcatttgaa cttaggggat	aaaggctaaa	tgggcatatt	gcagtatgat	agttattcaa	agaaatttta	caaggttaag	gttagagaga	atttgatacc	agcaaaaggt	-
ctcttttatt	aaatgcttga	agtctaagct atgaggtcat	taaatcaatc	tcagagcaga	tagctaagtc	cttttaatgg	tccaagtttt	actatatgaa	caaaagctac	caatttttag	tcactgagaa	
accgtcatag	cttgaggtta	ccatcagacc agtctaag	ttagcacaat	tatataaatc tcagagcaga	gatcaaatag tagctaag	ttactagctc cttttaatgg	aatgcaggtg	attccaatga	ggaatatcta	aataggttag	aaactaagca tcactgagaa	

acttaataat

tcagcggaac

tatgcttttg

tgaagacgaa

ttatttattt

cttgttgatg

89220

aataaaataa

aaggaaaat

aaaattattg

cggagctcaa

taattttagg

ggtgatttag

89280

ctttagcatt

ttatttctaa

gcctaggata

taatagaaaa

attaattttc

aatgaatgtt

89340

acctgaact

attcaagaaa

ttcagttcca

cttctgggct

tctggaattt

tatattactt

89400

aaagaattga

gcatcccag

tcttcccggg

ttcgtatttt

tggggaggtg

ggctgagaga

89100

tgttagagat

aacaagtagt

attaacgagc

catatatacc

gtatttgggc

tccgaacaag

89520

aaagtgtacc

gaattaaatc

aattgtagtt

gtttttcaac

attactcaag

tgaatcaatt

aagctcaatc

ggttcaagac

cttggtccaa

attgaagaga

tcctatactt

tgctgtaacc

aacagatgaa

ccagctaaaa

atttcaagat

tcctcaaggt

89580

89640

ctgttcagta

acgactataa

aagcagtggt

ttcttgatag

89460

gttgaagaaa tcgatgagct

acttagagaa

tagaaatcaa

gtaaatgatc

aacagagata

89940 00006 09006 90120 90180 90240 90300 90360 90420 90540 00906 90660 90720 ttagatcagc gcattcaaaa tcactataga taaaaagttt gttgtaggtt taggattgct ctggattaaa ctgctgcaac gtattgaatt ttttggcgtt aggatgtgga tagatgatgt ttaatggaaa attatgtaga aagtetttt tttettggaa tcttcattag ccgactgaga gttatgattg attattgcac ccgttcttta aatatacaga atattcttgt aatgagcttg agaagagcat atcatacagc agagtccatg gctccattag gaagggtcga tgccattttc tatttgcctg cactggaatt ttataagaat gtctataaca ggaaaaatt actcaaagat taaatcagag tattgaagac attttctcaa agaaactctg taaaaaattt aaacttatgg tgttactgga aggtttataa cttacacaac ttttagcttt tgacatctat cagtcattat tgagttatat ttttatatag aggttattaa gaaccggatc ttgttgaaga aaggactaaa ttcttcctat atgagatgag ccagttctga actcttatcc gacgaatctg atatttttg cccttgcata aattctgagc atacctatca tcaaaaatcc tctgttgctg attgttgtag gggattattg tcaatttcac gtattatatt atggcaatga aataattgtt ggcatttatt tgtagttatt acgcgcaaca ttcattagca agcaacaacc attaatggtt ctcaaacaac actctcagaa tttagtttat cgtaggcggc

BA-10

_

caaacaaatc

agctcactaa

ď

Page

MBA-101

APPENDIX

ď

Page 112/126

actaccaata

catcaaaaaa

gtccatctat

MBA-101

APPENDIX

ď

113/126

Page

MBA-101

APPENDIX

Page

ctcccaataa

tcaatataat

ctacatgtct

caagaattgt

aatgtgcatc

gtagtatcca

ttcatgggca aaggcagaag aagcaggctt aaaagttcaa acagttgctg attcggtaat

	116/126	Page 1		APPENDIX A	Ā		MBA-101
	97440	agctaaggtc	gtaggggctg	aatagagtcg	aaattcatcc	gaagctacaa	aagcaataga
	97380	ctgttatgaa	actggcggac	caatgatggc	gtcgacaaag	ttgaatgact	agatgacttc
	97320	gaaaattege	atacagtcag	actagaaaat	tgaaaggaat	aaaaaagcaa	tagcgatacc
•	97260	aagtaattac	agtggaccca	tgattatgtg	ctgagtatgg	tcaaatactg	ttactcaata
	97200	ctaatatgca	ggtggcattg	aattcaagaa	tcacagactt	acaaaactaa	ccttcatgaa
	97140	attttgaatg	gagatggcat	ctacagtgaa	ttgaggcagg	agctgggttt gaaactctag	agctgggttt
	97080	ctttaattaa	gggcttaccg	tttatgtggc	aacaagcagt	ttatttggcg	agaaacagat
	97020	aagaagaaac	acatctttta	tgttcttgaa	cgagggctgg	aatggcggca	tgcaaaagca
	09696	ctctatctta	aaagatgtag	ttattcagca	gtgatgaaga	gatgctttaa	tatatatgaa
	00696	ctctcatagc	ggcgttccat	caatggtgga	gtacttatac	actgttagaa	tccaggccat
	96840	caccaaaagg	attatgattg	taacagcgta	ctgaagcaac	aaaatagttc	tcattttgaa
	96780	gctttaatat	tttgcacatg	aattcttgca	aaaccagtgc	ccaaacttaa	cgaaatcaag
	96720	tatatgaaac	caaaaaaata	agatgaattc	ttttggcacc	ttggttatga	ccaagcagat

aaaattaatt

gaaattaatt

ggtggataaa

cacaaaaatt

ttcctaaatt

taaaatgaag

ttaccacggt

gggagggcgt

tctaacctta

aagtagatag

attgcaccag

atggaagtgg

tcaacgactt

gtataatggg

gcagacttgt

agcagtcgga

101520

101640

gtccattatc

tctaacctag

agattgaagt

cacccttgta

cttgaaatac

tggagtcatc

100920

100980

101040

100860

gtgacggaga

ctgcgatggg

ctttttataa

tattcctgta

aacaggttaa

gtcgatggga

101280

101400

101460

101160

ataaaggcag

tgaggtaagt

teggacateg

cttatcacgg

cgaaggtatc

cggaggagta

101820

cttagtgatc

gaaactaggt

gagcaggtag

tcgacggatc

gactgcgaga

aaggatgctt

101880

gggataacag

aggtacgccg

aacggataaa

gccatcgctc

gaatggaagg

cggtggttct

101940

gtcggctcat

gcacctcgat

gaggtgtttg

catategaeg

cccaagagtt

gctgataccg

102000

aagtggtacg

tcgccattta

gtatggctgt

ggtcccaagg

ggctggagca

cacatcctgg

101700

taaagagtaa

ggtctcctcc

tgactggggc

ctgggtagtt

acagtgcgtg

tggatcaggg

102120

tggtgttccg

gacgaacctc

gaccgaattg

agtacgagag

agctgattct

atttgaggga

gctgaaagca

aaggataacc

tatgttcgga

gccgggtagc

cagtggcatt

gttgtcacgc

actttatgtc tcctaaagag

tctcccagag

caagattaaa

aagcctctcc

tataagcggg

102060

gcgtttggag

tctgctgtgg

teggteeeta

gtgagacagt

ttagaacgtc

cgagctgggt

102300

gttgagctaa

gctgcgaggc

atgtgtaagc

gataggcaag

ctatgacgtt

tcgtcataga

MBA-101

103320 102540 102660 102720 102840 102900 103020 103080 103200 103260 102600 102780 102960 ttacgataag aacatcacca tagagatgct ggagaggcta ttcaatctga tctttaaggc tgatttaggt ttctcctgga gattattgga tgaggttgat tcttgagaat aaaacaagtt gatgtgaaaa aatgcaaact catataaaaa tcaagaccaa caggcttttt acttctttat tatctacaaa ataataatcg agtaatttta ttattacatc gggcctcaag cctctagaga ctgatctaaa tgctctgaga atacccagat aaaaaagga agttgcccta gaaacaaatt aataagcaag tagacctttc taataaaatt aaagaagctt cagatagtaa gtgtgagagt aggaaatcgt gccgctgcag agcaccctat ctcaagtata gtgtatttaa aatccttcaa ttaaatgagt tttagaactt ctaatgaaga tatttttca actcattttt gaatattatt tttttttat gtctgctatt tatcaataac tggcaaatct tcaagttgct atttggtgaa tatggagtta acaatattta ttgactgtga atgacgtact gggtctccct ttatggtgcc cgcagattaa atactaaata ggtgattggg gcattggttc tagatgcaga tgcgcgaact ccatagttcg ctttctactg ctggaagcct ttatttctca attattcatc tattctattg attattactg tggtagtgca aggctgaaat caaaataaat ttccagttta ttaacaggag atatcagtct tatactgatt agtatttctg aatgttttac acctgtcaaa tatagatttt

103380 103500 103440 103680 103740 103560 103620 103860 103920 103980 104040 104100 104160 tcatcggttt gagtggcttg aatatgcctc cactatttct caagatcatt gcagcataac atattccttt attcttgaga atgagaaag aatatttatt tattactatt catcgagctg ctagtaattg actctaaaag ccactttcaa gatttttttg agcataagcc cttagaccaa gtaattttta tttactatag tccaatttta tcaagtactt aacttttttg tttaaataat tottoctott acatcgtcgt gatatttgta acaagttttt tataaattag tcaaacattg tctccattca agtacttgtt ttactattt aatgctcttt ccaatggaca ttcaggtaca aagcatagat aagatcacta atagctctct actgctaata atcatttgat ttgaccgtta agattctgtc tgtatttggt cagaattaat ctattgattc cttgtctttg tttaagaaag cttgcgtatc ttcttgtcac tctctagctc ctatttccga tatttcacc cttcggcaat tttctagtcc actcaatggt gtttcaacat gaagattaaa ttgtttatgc tcattttttg gaatatag tacttcattt ttaggttcgt tgaaagatat atttctgata agaagcaatc agaacaattt gctatatctg cattgagact tcgatgagtg tcttttgaat actattttgt agatttttac ggctttttta tctgcctaac tttttcattt tattcttata taaatgatct cctacttttc gaattgctgc ctgcttctca attccttaaa aattttattg ttttgcttgc

MBA-10

APPENDIX

104700 104220 104340 104400 104520 104580 104640 104760 104940 104280 104460 104820 104880 105000 ctattcctct ttcttcttga ttttgttatt gaatgggaga attctgttgt ggatgatgat caccttcact agaattttga ttttattatt tatccgtccc tggcaattat ttcctgtcat aagtagccct ctagtgtttg ttacctgcat tgaggtattt ctgaagattc aaccgaaact gttccaacaa gcctggtgaa tgcgcatttt agcctttcaa aaagataaga tgattatcta tctataactt ccaagaacta ttatatttcg acatttgttg gtatctgctg gtggtggatg aattctttt cccaccagat tttttttccg cattccaggt gcttggcatt taaaatttga aattagagct ccccttaac agccatagga gcattccagt tactgcttca gttttggaat tcccatgccc atcgtcttct caatttcttc caatagttac gtatatgaag tttggtcttc gatcagctct gactaaactc ttatgatata tgcctgatct cattttcttt tatgatcatc gtctcaagag atctaaaaaa gatacttctt tggatagcaa gcatcaaagt tctatatcgc atattcgtag cttaattgtt aagtcattaa tttttaaata ttagcttcaa tcaccttgtc tctgttccaa ttttcgtgat ccatagattt gaaataaaaa ctctgcttct agactctctt ataacctgga ttcatgcctt ttctttccac ccttcctgcc taaatatgct attttcctt tgaaagcatt tcttccatcc aagaaatact gacatttagg cccagaaagt

Page 126/126

105060 105184 105120 105180 cattettett eegggeattg ttetacetgt atgeteatea ateaaaagaa eeteaeegtt aaatttcata atttttaaat tagaaacaga gtaagcccat ctgaggctcc aagccgattc ttgcttgaac gctctaagtg taagaagctt taatccacat tctttttaaa cctaaccaaa cagc

CLAIMS

What is claimed is:

- 1. A proteorhodopsin gene, comprising an isolated DNA sequence for encoding a proteorhodopsin protein.
 - 2. The proteorhodopsin gene of claim 1, wherein said proteorhodopsin gene is retrieved from a genomic fragment of a sample of naturally occurring bacteria.
 - 3. The proteorhodopsin gene of claim 2, wherein said naturally occurring bacteria are marine proteobacteria.
 - 4. The proteorhodopsin gene of claim 2, wherein said naturally occurring bacteria are SAR86 bacteria.
 - The proteorhodopsin gene of claim 2, wherein said naturally occurring bacterial genomic fragment is retrieved from a recombinant DNA library.
 - 6. The proteorhodopsin gene of claim 5, wherein said naturally occurring bacterial genomic fragment is retrieved from a bacterial artificial chromosome library.

- 7: The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone BAC31A8, said proteorhodopsin gene is Sequence ID No:4 and said proteorhodopsin protein is Sequence ID No:5.
- 8. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone BAC40E8, said proteorhodopsin gene is Sequence ID No:8 and said proteorhodopsin protein is Sequence ID No:9.
- 9. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone BAC41B4, said proteorhodopsin gene is Sequence ID No:10 and said proteorhodopsin protein is Sequence ID No:11.
- 10. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone BAC64A5, said proteorhodopsin gene is Sequence ID No:12 and said proteorhodopsin protein is Sequence ID No:13.
- 11. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone HOT0m1, said proteorhodopsin gene is Sequence ID No:14 and said proteorhodopsin protein is Sequence ID No:15.

- 12. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone HOT75m1, said proteorhodopsin gene is Sequence ID No:16 and said proteorhodopsin protein is Sequence ID No:17.
- 13. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone HOT75m3, said proteorhodopsin gene is Sequence ID No:18 and said proteorhodopsin protein is Sequence ID No:19.
- 14. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone HOT75m4, said proteorhodopsin gene is Sequence ID No:20 and said proteorhodopsin protein is Sequence ID No:21.
- 15. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone HOT75m8, said proteorhodopsin gene is Sequence ID No:22 and said proteorhodopsin protein is Sequence ID No:23.
- 16. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone MB0m1, said proteorhodopsin gene is Sequence ID No:24 and said proteorhodopsin protein is Sequence ID No:25.

- 17. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone MB0m2, said proteorhodopsin gene is Sequence ID No:26 and said proteorhodopsin protein is Sequence ID No:27.
- 18. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone MB20m2, said proteorhodopsin gene is Sequence ID No:28 and said proteorhodopsin protein is Sequence ID No:29.
- 19. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone MB20m5, said proteorhodopsin gene is Sequence ID No:30 and said proteorhodopsin protein is Sequence ID No:31.
- 20. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone MB20m12, said proteorhodopsin gene is Sequence ID No:32 and said proteorhodopsin protein is Sequence ID No:33.
- 21. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone MB40m1, said proteorhodopsin gene is Sequence ID No:34 and said proteorhodopsin protein is Sequence ID No:35.

- 22. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone MB40m5, said proteorhodopsin gene is Sequence ID No:36 and said proteorhodopsin protein is Sequence ID No:37.
- 23. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone MB40m12, said proteorhodopsin gene is Sequence ID No:38 and said proteorhodopsin protein is Sequence ID No:39.
- 24. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone MB100m5, said proteorhodopsin gene is Sequence ID No:40 and said proteorhodopsin protein is Sequence ID No:41.
- 25. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone MB100m7, said proteorhodopsin gene is Sequence ID No:42 and said proteorhodopsin protein is Sequence ID No:43.
- 26. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone MB100m9, said proteorhodopsin gene is Sequence ID No:44 and said proteorhodopsin protein is Sequence ID No:45.

- 27. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone MB100m10, said proteorhodopsin gene is Sequence ID No:46 and said proteorhodopsin protein is Sequence ID No:47.
- 28. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone PALB1, said proteorhodopsin gene is Sequence ID No:48 and said proteorhodopsin protein is Sequence ID No:49.
- 29. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone PALB2, said proteorhodopsin gene is Sequence ID No:50 and said proteorhodopsin protein is Sequence ID No:51.
- 30. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone PALB5, said proteorhodopsin gene is Sequence ID No:52 and said proteorhodopsin protein is Sequence ID No:53.
- 31. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone PALB7, said proteorhodopsin gene is Sequence ID No:54 and said proteorhodopsin protein is Sequence ID No:55.

- 32. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone PALB6, said proteorhodopsin gene is Sequence ID No:56 and said proteorhodopsin protein is Sequence ID No:57.
- 33. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone PALB8, said proteorhodopsin gene is Sequence ID No:58 and said proteorhodopsin protein is Sequence ID No:59.
- 34. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone PALE1, said proteorhodopsin gene is Sequence ID No:60 and said proteorhodopsin protein is Sequence ID No:61.
- 35. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone PALE6, said proteorhodopsin gene is Sequence ID No:62 and said proteorhodopsin protein is Sequence ID No:63.
- 36. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone PALE7, said proteorhodopsin gene is Sequence ID No:64 and said proteorhodopsin protein is Sequence ID No:65.

- 37. The proteorhodopsin gene of claim 1, wherein said proteorhodopsin gene is amplified from a genomic fragment by polymerase chain reaction.
 - 38. The proteorhodopsin gene of claim 37, wherein said polymerase chain reaction is performed by primers with Sequence ID No:2 and Sequence ID No:3.
- 39. The proteorhodopsin gene of claim 1, wherein said proteorhodopsin gene is derived from a marine environment and placed in an expression vector for producing said proteorhodopsin protein in a host.
 - 40. The proteorhodopsin gene of claim 39, wherein said host is an artificial membrane system.
 - 41. The proteorhodopsin gene of claim 39, wherein said host is a bacterium.
 - 42. The proteorhodopsin gene of claim 41, wherein said host is a cell membrane preparation of said bacterium.
 - 43. The proteorhodopsin gene of claim 39, wherein said host is an eukaryote.
 - 44. The proteorhodopsin gene of claim 43, wherein said host is a cell membrane preparation of said eukaryote.

- 45. A method of retrieving a proteorhodopsin gene, comprising the steps of:
 - (a) providing a sample of naturally occurring bacteria;
 - (b) extracting a genomic fragment of said sample of naturally occurring bacteria; and
 - (c) amplifying said proteorhodopsin gene from said genomic fragment using polymerase chain reaction.
 - 46. The method of claim 45, further comprising the step of creating an expression vector containing said proteorhodopsin gene.
 - 47. The method of claim 45, wherein said naturally occurring bacteria are marine proteobacteria.
 - 48. The method of claim 45, wherein said naturally occurring bacteria are SAR86 bacteria.
 - 49. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is retrieved from a recombinant DNA library.
 - 50. The method of claim 49, said naturally occurring bacterial genomic fragment is retrieved from a bacterial artificial chromosome library.
 - 51. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone BAC31A8, and wherein said amplified

- 52. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone BAC40E8, and wherein said amplified proteorhodopsin gene from said clone BAC40E8 is Sequence ID No:8 and encodes a proteorhodopsin protein according to Sequence ID No:9.
- 53. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone BAC41B4, and wherein said amplified proteorhodopsin gene from said clone BAC41B4 is Sequence ID No:10 and encodes a proteorhodopsin protein according to Sequence ID No:11.
- 54. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone BAC64A5, and wherein said amplified proteorhodopsin gene from said clone BAC64A5 is Sequence ID No:12 and encodes a proteorhodopsin protein according to Sequence ID No:13.
- 55. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone HOT0m1, and wherein said amplified proteorhodopsin gene from said clone HOT0m1 is Sequence ID No:14 and encodes a proteorhodopsin protein according to Sequence ID No:15.
- 56. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone HOT75m1, and wherein said amplified

proteorhodopsin gene from said clone HOT75m1 is Sequence ID No:16 and encodes a proteorhodopsin protein according to Sequence ID No:17.

- 57. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone HOT75m3, and wherein said amplified proteorhodopsin gene from said clone HOT75m3 is Sequence ID No:18 and encodes a proteorhodopsin protein according to Sequence ID No:19.
- 58. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone HOT75m4, and wherein said amplified proteorhodopsin gene from said clone HOT75m4 is Sequence ID No:20 and encodes a proteorhodopsin protein according to Sequence ID No:21.
- 59. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone HOT75m8, and wherein said amplified proteorhodopsin gene from said clone HOT75m8 is Sequence ID No:22 and encodes a proteorhodopsin protein according to Sequence ID No:23.
- 60. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone MB0m1, and wherein said amplified proteorhodopsin gene from said clone MB0m1 is Sequence ID No:24 and encodes a proteorhodopsin protein according to Sequence ID No:25.
- 61. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone MB0m2, and wherein said amplified

proteorhodopsin gene from said clone MB0m2 is Sequence ID No:26 and encodes a proteorhodopsin protein according to Sequence ID No:27.

- 62. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone MB20m2, and wherein said amplified proteorhodopsin gene from said clone MB20m2 is Sequence ID No:28 and encodes a proteorhodopsin protein according to Sequence ID No:29.
- 63. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone MB20m5, and wherein said amplified proteorhodopsin gene from said clone MB20m5 is Sequence ID No:30 and encodes a proteorhodopsin protein according to Sequence ID No:31.
- 64. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone MB20m12, and wherein said amplified proteorhodopsin gene from said clone MB20m12 is Sequence ID No:32 and encodes a proteorhodopsin protein according to Sequence ID No:33.
- 65. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone MB40m1, and wherein said amplified proteorhodopsin gene from said clone MB40m1 is Sequence ID No:34 and encodes a proteorhodopsin protein according to Sequence ID No:35.
- 66. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone MB40m5, and wherein said amplified

proteorhodopsin gene from said clone MB40m5 is Sequence ID No:36 and encodes a proteorhodopsin protein according to Sequence ID No:37.

- 67. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone MB40m12, and wherein said amplified proteorhodopsin gene from said clone MB40m12 is Sequence ID No:38 and encodes a proteorhodopsin protein according to Sequence ID No:39.
- 68. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone MB100m5, and wherein said amplified proteorhodopsin gene from said clone MB100m5 is Sequence ID No:40 and encodes a proteorhodopsin protein according to Sequence ID No:41.
- 69. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone MB100m7, and wherein said amplified proteorhodopsin gene from said clone MB100m7 is Sequence ID No:42 and encodes a proteorhodopsin protein according to Sequence ID No:43.
- 70. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone MB100m9, and wherein said amplified proteorhodopsin gene from said clone MB100m9 is Sequence ID No:44 and encodes a proteorhodopsin protein according to Sequence ID No:45.
- 71. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone MB100m10, and wherein said amplified

proteorhodopsin gene from said clone MB100m10 is Sequence ID No:46 and encodes a proteorhodopsin protein according to Sequence ID No:47.

- 72. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone PALB1, and wherein said amplified proteorhodopsin gene from said clone PALB1 is Sequence ID No:48 and encodes a proteorhodopsin protein according to Sequence ID No:49.
- 73. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone PALB2, and wherein said amplified proteorhodopsin gene from said clone PALB2 is Sequence ID No:50 and encodes a proteorhodopsin protein according to Sequence ID No:51.
- 74. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone PALB5, and wherein said amplified proteorhodopsin gene from said clone PALB5 is Sequence ID No:52 and encodes a proteorhodopsin protein according to Sequence ID No:53.
- 75. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone PALB7, and wherein said amplified proteorhodopsin gene from said clone PALB7 is Sequence ID No:54 and encodes a proteorhodopsin protein according to Sequence ID No:55.
- 76. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone PALB6, and wherein said amplified

proteorhodopsin gene from said clone PALB6 is Sequence ID No:56 and encodes a proteorhodopsin protein according to Sequence ID No:57.

- 77. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone PALB8, and wherein said amplified proteorhodopsin gene from said clone PALB8 is Sequence ID No:58 and encodes a proteorhodopsin protein according to Sequence ID No:59.
- 78. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone PALE1, and wherein said amplified proteorhodopsin gene from said clone PALE1 is Sequence ID No:60 and encodes a proteorhodopsin protein according to Sequence ID No:61.
- 79. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone PALE6, and wherein said amplified proteorhodopsin gene from said clone PALE6 is Sequence ID No:62 and encodes a proteorhodopsin protein according to Sequence ID No:63.
- 80. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone PALE7, and wherein said amplified proteorhodopsin gene from said clone PALE7 is Sequence ID No:64 and encodes a proteorhodopsin protein according to Sequence ID No:65.
- 81. The method of claim 45, wherein said polymerase chain reaction is performed by primers with Sequence ID No:2 and Sequence ID No:3.

- 82. The method of claim 45, further comprising the step of providing a host.
 - 83. The method of claim 82, wherein said host is an artificial membrane system.
 - 84. The method of claim 82, wherein said host is a bacterium.
 - 85. The method of claim 84, wherein said host is a cell membrane preparation of said bacterium.
 - 86. The method of claim 82, wherein said host is an eukaryote.
 - 87. The method of claim 86, wherein said host is a cell membrane preparation of said eukaryote.
- 88. A light-driven energy generator, comprising:
 - (a) a proteorhodopsin protein;
 - (b) a host to correctly fold said proteorhodopsin protein in said host, thereby creating an integrated proteorhodopsin protein; and
 - (c) a source of retinal to bind covalently to said integrated proteorhodopsin protein, thereby creating a light absorbing pigment.
 - 89. The light-driven energy generator of claim 88, wherein said proteorhodopsin protein is encoded by a proteorhodopsin gene retrieved from a genomic fragment of a sample of naturally occurring bacteria.

- 90. The light-driven energy generator of claim 89, wherein said naturally occurring bacteria are marine proteobacteria.
- 91. The light-driven energy generator of claim 89, wherein said naturally occurring bacteria are SAR86 bacteria.
- 92. The light-driven energy generator of claim 89, wherein said naturally occurring bacterial genomic fragment is retrieved from a recombinant DNA library.
 - 93. The light-driven energy generator of claim 92, wherein said naturally occurring bacterial genomic fragment is retrieved from a bacterial artificial chromosome library.
- 94. The light-driven energy generator of claim 89, wherein said genomic fragment is retrieved from a clone, wherein said clone is a member of the group consisting of BAC31A8, BAC40E8, BAC41B4, BAC64A5, HOT0m1, HOT75m1, HOT75m3, HOT75m4, HOT75m8, MB0m1, MB0m2, MB20m2, MB20m5, MB20m12, MB40m1, MB40m5, MB40m12, MB100m5, MB100m7, MB100m9, MB100m10, PALB1, PALB2, PALB5, PALB7, PALB6, PALB8, PALE1, PALE6 and PALE7.
- 95. The light-driven energy generator of claim 88, wherein said host is an artificial membrane system.

- 96. The light-driven energy generator of claim 88, wherein said host is a cell membrane obtained from a bacterium.
 - 97. The light-driven energy generator of claim 96, wherein said host is a cell membrane preparation obtained from a bacterium.
- 98. The light-driven energy generator of claim 88, wherein said host is a cell membrane obtained from an eukaryote.
 - 99. The light-driven energy generator of claim 98, wherein said host is a cell membrane preparation obtained from an eukaryote.
- 100. The light-driven energy generator of claim 88, further comprising a light source for illuminating said light absorbing pigment, whereby said energy generator converts light into biochemical energy.
 - 101. The light-driven energy generator of claim 100, wherein said light source is a fast-pulsed light source.
 - 102. The light-driven energy generator of claim 101, wherein said fast-pulsed light source comprises a mechanism for delivering intermittant fast-light pulses at predetermined time intervals.

- 103. The light-driven energy generator of claim 100, wherein said light source is a light source exhibiting different predetermined wavelengths.
- 104. The light-driven energy generator of claim 88, further comprising a mediator for mediating energy generated by said energy generator into chemical, mechanical or electrical energy.
- 105. The light-driven energy generator of claim 88, wherein said proteorhodops in protein is selected to determine an absorption spectra of said light absorbing pigment.
- 106. A method for making a light-driven energy generator, comprising the steps of:
 - (a) providing a proteorhodopsin protein;
 - (b) providing a host to correctly fold said proteorhodopsin protein in said host, thereby creating an integrated proteorhodopsin protein; and
 - (c) providing a source of retinal to bind covalently to said integrated proteorhodopsin protein, thereby creating a light absorbing pigment.
 - 107. The method of claim 106, wherein said proteorhodopsin protein is encoded by a proteorhodopsin gene retrieved from a genomic fragment of a sample of naturally occurring bacteria.
 - 108. The method of claim 107, wherein said naturally occurring bacteria are marine proteobacteria.

- 109. The method of claim 107, wherein said naturally occurring bacteria are SAR86 bacteria.
- 110. The method of claim 107, wherein said naturally occurring bacterial genomic fragment is retrieved from a recombinant DNA library.
 - 111. The method of claim 110, wherein said naturally occurring bacterial genomic fragment is retrieved from a bacterial artificial chromosome library.
- 112. The method of claim 107, wherein said genomic fragment is retrieved from a clone, wherein said clone is a member of the group consisting of BAC31A8, BAC40E8, BAC41B4, BAC64A5, HOT0m1, HOT75m1, HOT75m3, HOT75m4, HOT75m8, MB0m1, MB0m2, MB20m2, MB20m5, MB20m12, MB40m1, MB40m5, MB40m12, MB100m5, MB100m7, MB100m9, MB100m10, PALB1, PALB2, PALB5, PALB7, PALB6, PALB8, PALE1, PALE6 and PALE7.
- 113. The method of claim 106, wherein said host is an artificial membrane system.
- 114. The method of claim 106, wherein said host is a cell membrane obtained from a bacterium.

- 115. The method of claim 114, wherein said host is a cell membrane preparation obtained from a bacterium.
- 116. The method of claim 106, wherein said host is a cell membrane obtained from an eukaryote.
 - 117. The method of claim 116, wherein said host is a cell membrane preparation obtained from an eukaryote.
- 118. The method of claim 106, further comprising the step of providing a light source for illuminating said light absorbing pigment, whereby said energy generator converts light into biochemical energy.
 - 119. The method of claim 118, wherein said light source is a fast-pulsed light source.
 - 120. The method of claim 119, wherein said fast-pulsed light source comprises a mechanism for delivering intermittant fast-light pulses at predetermined time intervals.
 - 121. The method of claim 118, wherein said light source is a light source exhibiting different predetermined wavelengths.
- 122. The method of claim 106, further comprising the step of providing a mediator for mediating energy generated by said energy generator into chemical, mechanical or electrical energy.

- 123. The method of claim 106, wherein said proteorhodopsin protein is selected to determine an absorption spectra of said light absorbing pigment.
- 124. A PCR apparatus for amplifying a proteorhodopsin gene from DNA samples of naturally occurring microbial populations using polymerase chain reaction, comprising oligodeoxynucleotide primers with a Watson-Crick base pair complementarity to 5' and 3' ends of said proteorhodopsin gene.
 - 125. The apparatus of claim 124, wherein said primers are according to Sequence ID No:2 and Sequence ID No:3.
- 126. A method of designing PCR primers, comprising the steps of:
 - (a) determining a DNA sequence of a proteorhodopsin gene; and
 - (b) based on said determined DNA sequence in (a), designing oligodeoxynucleotide primers with a Watson-Crick base pair complementarity to said 5' and 3' ends of said proteorhodopsin gene.
 - 127. The method of claim 126, further comprising the step of using said oligodeoxynucleotide primers to amplify said proteorhodopsin gene from DNA samples of naturally occurring microbial populations by polymerase chain reaction.
 - 128. The method of claim 127, further comprising the step of cloning said amplified proteorhodopsin gene into an expression vector.

WO 01/83701

129. The method of claim 126, wherein said primers are according to Sequence ID No:2 and Sequence ID No:3.

Fig. 1

29

gatattagg aattattact accatgggta

agcattagaa gattctttaa cagc

48	96	144	192	240	288	336
aca Thr	gtt 7 Val	ttc Phe	act . Thr	atg Met 80	tac Tyr	tta . Leu
cct Pro 15	ggt Gly	. ttt Phe	tta Leu	tac Tyr	aga Arg 95	tac Tyr
ctt Leu	act Thr 30	gta Val	tca Ser	atg Met	ttt Phe	ttc Phe 110
gca Ala	tac Tyr	act Thr 45	aca Thr	tac Tyr	gta Val	gaa Glu
att Ile	gat Asp	tat Ser	aaa Lys 60	cat His	act Thr	tgt Cys
gtt Val	agt Ser	gca Ala	tgg Trp	tgg Trp 75	CCa Pro	ata Ile
agt Ser 10	gct Ala	tta Leu	aaa Lys	ttc Phe	tcg Ser 90	tta Leu
ggt Gly	gat Asp 25	tta Leu	gca Ala	gct Ala	gat	cta Leu 105
tta Leu	ctt Leu	gct Ala 40	tct Ser	att Ile	ggt Gly	cct Pro
ata Ile	gac Asp	gct Ala	gtt Val 55	ggt Gly	act Thr	gtt Val
ctg Leu	ggt Gly	act Thr	aga Arg	act Thr 70	gaa Glu	aca Thr
tta Leu 5	ggt Gly	gtt Val	gat Asp	gtt Val	att Ile 85	cta Leu
tta Leu	ggt Gly 20	tta Leu	aga Arg	ctt Leu	tgg Trp	tta Leu 100
aaa Lys	gca Ala	tgg Trp 35	gaa Glu	ggt Gly	gta Val	tgg Trp
ggt Gly	gct Ala	ttt Phe	gtt Val 50	tct Ser	ggg Gl $_{ m Y}$	gat Asp
atg Met 1	ttt Phe	Ser	ttt Phe	gta Val 65	aga Arg	att Ile
		•				

Figure

					·	
384	432	480	228	576	624	672
tta Leu	gca Ala	tgg Trp 160	tgt Cys	tat Tyr	ggt Gly	tat Tyr
aaa t Lys]	gaa g Glu 2	gct t Ala	gca t Ala (175	atg t Met 1	aca g Thr G	atc t Ile 1
aag Lys	ggt Gly	tta	Ser	atg a Met 1	ttc (ctt ; Leu :
ttt Phe 125	atg Met	tgt Cys	aaa Lys	aca Thr	tat Tyr 205	aac Asn
tta Leu	tac Tyr 140	ggg Gl $_{ m Y}$	gga Gly	aac Asn	ggt Gly	tta Leu
tca Ser	ggt Gly	att 11e 155	gaa Glu	tac Tyr	gta Val	aac Asn
gga Gly	ttt Phe	att Ile	gga Gly 170	gct Ala	cct Pro	ctt Leu
gct Ala	gtg Val	ttc Phe	gct Ala	tca Ser 185	tat Tyr	gct Ala
gtt Val 120	ctt Leu	gca Ala	tgg Trp	caa Gln	att Ile 200	tca Ser
aat Asn	atg Met 135	cct Pro	tta Leu	gtg Val	gcg Ala	gga G1 <u>y</u> 215
act Thr	gtt Val	tgg Trp 150	gaa Glu	gct Ala	tgg Trp	ggt Gly
gca Ala	ctt Leu	gca Ala	tat Tyr 165	cct Pro	ggt Gly	gac Asp
gct Ala	tct Ser	gct Ala	att Ile	agt Ser 180	ttt Phe	ggt Gly
gct Ala 115	ggt Gly	atg Met	atg Met	gca Ala	atc Ile 195	atg Met
ctt Leu	gtt Val 130	atc Ile	tac Tyr	act Thr	atc Ile	ctg Leu 210
att Ile	cta Leu	gga G1 <u>y</u> 145	gta Val	aat Asn	att Ile	tac Tyr

Figure

4.
0
Н
Ħ
b
H
闰

	0
720	7.50
att ata tgg Ile Ile Trp 240	
tta Leu	
ggt Gly	
ttt Phe 235	
cta Leu	gct Ala 250
att Ile	aat Asn
aag Lys	tct Ser
aac Asn	tat Ser
gtt Val 230	gaa Glu
ttt Phe	aaa Lys 245
gac Asp	gtt Val
gct Ala	gct Ala
ctt Leu	gtt Val

aat Asn 1

					·	
48	96	144	192	240	. 78	336
aca Thr	gtt Val	ttc Phe	act Thr	atg Met 80	tac Tyr	tta Leu
cct Pro 15	ggt Gly	ttt Phe	tta Leu	tac Tyr	aga Arg 95	tac Tyr
ctt Leu	act Thr 30	gta Val	tca Ser	atg Met	ttt Phe	ttc Phe 110
gca Ala	tac Tyr	act Thr 45	aca Thr	tac Tyr	gta Val	gaa Glu
att Ile	gat Asp	tct Ser	aaa Lys 60	cat His	act Thr	tgt Cys
gtt Val	agt Ser	gca Ala	tgg Trp	tgg Trp 75	cca Pro	ata Ile
agt Ser 10	gct Ala	tta Leu	aaa Lys	ttc Phe	tcg Ser 90	ttg Leu
ggt Gly	gat Asp 25	cta Leu	gca Ala	gct Ala	gat Asp	cta Leu 105
tta Leu	ctt Leu	gct Ala 40	tct Ser	att Ile	ggt Gly	cct Pro
ata Ile	gac Asp	gct Ala	gtt Val 55	ggt Gly	act Thr	gtt Val
ctg Leu	ggt Gly	act Thr	aga Arg	act Thr 70	gag Glu	aca Thr
tta Leu 5	ggt Gly	gtt Val	gat Asp	gtt Val	att Ile 85	cta Leu
tta Leu	ggt Gly 20	tta Leu	aga Arg	ctt Leu	tgg Trp	tta Leu 100
aaa Lys	gca Ala	tgg Trp 35.	gaa Glu	ggt Gly	gta Val	tgg Trp
ggt Gly	gct Ala	ttt Phe	gtt Val 50	tcg Ser	ggg Gl $_{ m Y}$	gat Asp
atg Met 1	ttt Phe	tct Ser	ttt Phe	gta Val 65	aga Arg	att Ile

Figure 6

384	432	480	528	576	624	672
ttt aag aaa tta Phe Lys Lys Leu 125	atg ggt gag gca Met Gly Glu Ala	r tgt tta gct tgg r Cys Leu Ala Trp 160	aag gct gca tgt Lys Ala Ala Cys 175	aca atg atg tat Thr Met Met Tyr 190	tat ttc aca ggt Tyr Phe Thr Gly 205	aac ctt atc tat Asn Leu Ile Tyr
gct ggc ctg Ala Gly Leu	ttt ggt tac Phe Gly Tyr 140	gtt att ggg Val Ile Gly 155	gga gaa ggc Gly Glu Gly 170	gct tac aac Ala Tyr Asn	cct gta ggt Pro Val Gly	ctt aac tta Leu Asn Leu 220
aat gtt gct Asn Val Ala 120	atg ctt gtg Met Leu Val 135	ggt gca ttc Gly Ala Phe	cta tgg gct Leu Trp Ala	gtg caa tca Val Gln Ser 185	gca att tat Ala Ile Tyr 200	gga tca gct Gly Ser Ala 215
t gca aca a Ala Thr	ctt gtt Leu Val	gct tgg Ala Trp 150	tat gaa Tyr Glu 165	gt cct gct g er Pro Ala V 80	ggt tgg Gly Trp	gac ggt Asp Gly
att ctt gct gc Ile Leu Ala Al 115	ttg gtt ggt tct Leu Val Gly Ser 130	gga att atg aac Gly Ile Met Asn 145	gta tac atg att Val Tyr Met Ile	aat act gca ag Asn Thr Ala Se 18	ata atc atc ttt Ile Ile Ile Phe 195	tac cta atg ggt Tyr Leu Met Gly 210

Figure

750

720

tgg Trp 240	
ata Ile	
att Ile	
tta Leu	
ggt Gly	
ttt Phe 235	
cta Leu	gct Ala 250
att Ile	aat Asn
aag Lys	tct Ser
aac Asn	tct Ser
gtt Val 230	gaa Glu
ttt Phe	aaa Lys 245
gac Asp	ct gtt la Val
gct Ala	gct Ala
ctt Leu	gtt Val
gac Asp 225	aat Asn

48	96	144	192	240	2 8 8 7	336
aca Thr	gtt Val	ttc Phe	act Thr	atg Met 80	tac Tyr	tta Leu
cct Pro 15	ggt Gly	ttt Phe	tta Leu	tac Tyr	aga Arg 95	tac Tyr
ctt Leu	act Thr 30	gta Val	tca Ser	atg Met	ttt Phe	ttc Phe
gca Ala	tac Tyr	act Thr 45	aca Thr	tac Tyr	gta Val	gaa Glu
att Ile	gat Asp	tct Ser	aaa Lys 60	cat His	act Thr	tgt Cys
gtt Val	agt Ser	gca Ala	tgg Trp	tgg Trp 75	cca Pro	ata Ile
agt Ser 10	gct Ala	tta Leu	ааа Lys	ttc Phe	tcg Ser 90	tta Leu
ggt Gly	gat Asp 25	tta Leu	gca Ala	gct Ala	gat Asp	cta Leu 105
tta Leu	ctt Leu	gct Ala 40	tct Ser	att Ile	$\texttt{ggt}\\ \texttt{G1} \texttt{Y}$	cct Pro
ata Ile	gac Asp	gct Ala	gtt Val 55	ggt Gly	act Thr	gtt Val
ctg c	ggt Gly	act Thr	aga Arg	act Thr 70	gaa Glu	aca Thr
tta Leu 5	ggt Gly	gct Ala	gat Asp	gtt Val	att Ile 85	cta Leu
tta Leu	ggt Gly 20	tta Leu	aga Arg	ctt Leu	tgg Trp	tta Leu 100
aaa Lys	gca Ala	tgg Trp 35	gaa Glu	ggt Gly	gta Val	tgg Trp
ggt Gly	gct Ala	ttt Phe	gtt Val 50	tct Ser	ggg G $1_{ m Y}$	gat Asp
atg Met 1	ttt Phe	tct Ser	ttt Phe	gta Val 65	aga Arg	att Ile

Figure

	•					
384	432	480	228	576	624	672
tta Leu	gca Ala	tgg Trp 160	tgt Cys	tat Tyr	ggt Gly	tat Tyr
aaa t Lys I	gaa g Glu A	gct t Ala I	gca t Ala C 175	atg t Met T	aca g Thr G	atc t Ile T
aag Lys	ggt Gly	tta Leu	Ser	atg Met 1 190	ttc . Phe '	ctt a
ttt Phe 125	atg Met	tgt Cys	aaa Lys	aca Thr	tat Tyr 205	aac Asn
tta Leu	tac Tyr 140	ggg G $1 Y$	gga Gly	aac Asn	ggt Gly	tta Leu 220
tca Ser	ggt Gly	att 11e 155	gaa Glu	tac Tyr	gta Val	aac Asn
gga Gly	ttt Phe	att Ile	gga Gly 170	gct Ala	cct Pro	ctt Leu
gct Ala	gtg Val	ttc Phe	gct Ala	tca Ser 185	tat Tyr	gct Ala
gtt Val 120	ctt	gca Ala	tgg Trp	caa Gln	att Ile 200	tca Ser
aat Asn	atg Met 135	cct	cta Leu	gtg Val	gcg Ala	gga Gly 215
act Thr	gtt. Val	tgg Trp 150	gaa G1u	gct Ala	tgg Trp	ggt Gly
gct Ala	ctt. Leu	gca Ala	tat Tyr 165	cct Pro	ggt Gly	gac Asp
gct Ala	tct Ser	gct Ala	att Ile	agt Ser 180	ttt Phe	ggt Gly
gct Ala 115	ggt. . Gly	atg Met	atg Met	gca Ala	atc Ile 195	atg Met
c ctt	a gtt 1 Val 130	a atc	tac . Tyr	act Thr	atc	ctg Leu 210
att Ile	cta Leu	gga G1 <u>y</u> 145	gta Val	aat Asn	att Ile	tac Tyr

Figure '

720	750
tgg Trp 240	
ata Ile	
att Ile	
tta Leu	
ggt Gly	
ttt Phe 235	
cta Leu	gct Ala 250
att Ile	aat Asn
aag Lys	tct Ser
aac Asn	tct Ser
gtt Val 230	gaa Glu
ttt Phe	aaa Lys 245
gat Asp	gtt Val
gct Ala	gct. Ala
ctt Leu	gtt Val
sac Asn 225	aat Asn

48	96	144	192	240	288	336
aca Thr	gtt Val	ttc Phe	act Thr	atg Met 80	tac Tyr	tta Leu
cct Pro 15	ggt Gly	ttt Phe	tta Leu	tac Tyr	aga Arg 95	tac Tyr
ctt Leu	act Thr 30	gta Val	tca Ser	atg Met	ttt Phe	ttc Phe 110
gca Ala	tac Tyr	act Thr 45	aca Thr	tac Tyr	gta Val	gaa Glu
att Ile	gat Asp	tct Ser	aaa Lys 60	cat His	act Thr	tgt Cys
gtt Val	agt Ser	gca Ala	tgg Trp	tgg Trp 75	cct Pro	ata Ile
agt Ser 10	gct Ala	tta Leu	ааа Lys	ttc Phe	tcg Ser 90	tta Leu
ggt Gly	gat Asp 25	cta Leu	gca Ala	gct Ala	gat Asp	tta Leu 105
tta Leu	ctt Leu	gct Ala 40	tct Ser	att Ile	ggt Gly	cct Pro
ata Ile	gac Asp	gct Ala	gtt Val 55	ggt Gly	act Thr	gtt Val
ctg Leu	ggt Gly	aca Thr	aga Arg	act Thr 70	gaa Glu	aca Thr
tta Leu 5	ggc Gly	gtt Val	gat Asp	gtt Val	att Ile 85	cta Leu
tta Leu	ggt Gly 20	tta Leu	aga Arg	ctt Leu	tgg Trp	tta Leu 100
aaa Lys	gca Ala	tgg Trp 35	gaa Glu	ggt Gly	gta Val	tgg Trp
ggt Gly	gct Ala	ttt Phe	gtt Val 50	tct Ser	gga $_{ m G1Y}$	gat Asp
atg Met 1	ttt Phe	tct Ser	ttt Phe	gta Val 65	aga Arg	att Ile

384	432	480	528	576	624	672
aaa ctt Lys Leu	na gca u Ala	it tgg .a Trp 160	a tgt a Cys 5	g gct t Ala	a ggt k Gly	t tat e Tyr
aag Lys	g ggt gaa t Gly Glu	t tta gct s Leu Ala	a tct gca s Ser Ala 175	a atg atg r Met Met 190	t ttc aca r Phe Thr 5	c ctt att n Leu Ile
tta tt Leu Ph 12	tac atg 7 Tyr Met 140	ggg tgt e Gly Cys	ı gga aaa ı Gly Lys	aac aca : Asn Thr	ggt tat Gly Tyr 205	tta aac Leu Asn 220
ggc tca Gly Ser	ttt ggt . Phe Gly	att att Ile Ile 155	gga gaa Gly Glu 170	gct tac Ala Tyr	cct ata Pro Ile	ctt aac Leu Asn
gtt gcc Val Ala 120	ctt gtg Leu Val	gca ttc Ala Phe	tat gct Tyr Ala	caa tca Gln Ser 185	att tat Ile Tyr 200	tca gct Ser Ala
act aat Thr Asn	gtt atg Val Met 135	tgg cct Trp Pro 150	gaa cta Glu Leu	tcg gtt Ser Val	tgg gca Trp Ala	ggt gga Gly Gly 215
gct gca Ala Ala	tct ctt Ser Leu	gca gct Ala Ala	att tat Ile Tyr 165	agt cct Ser Pro 180	ttc ggt Phe Gly	ggt gac Gly Asp
ctt gct Leu Ala 115	gtt ggt Val Gly 130	att atg Ile Met	tac atg Tyr Met	act gca Thr Ala	ata gtc Ile Val 195	cta atg Leu Met 210
att Ile	cta . Leu	gga G1 <u>Y</u> 145	gta Val	aat Asn	atc Ile	tac Tyr

Figure (

750

720

tgg Trp 240	
ata Ile	
att Ile	
tta Leu	
ggt Gly	
ttt Phe 235	
cta ttt Leu Phe 235	gct Ala
att Ile	aat Asn
aag Lys	tct Ser
aac Asn	tct Ser
gtt Val 230	gaa Glu
ttt Phe	aaa Lys 245
gac Asp	gtt Val
gct Ala	gct Ala
ctt Leu	gtt Val
aac Asn 225	aat Asn

50 50 50	100 100 100 100	150 150 150 150	200 200 200 200	250 250 250 250	300 300 300 300
attaggTAGT GTTATTGCAC TTCCTACATT	TTGATGCTAG TGATTACACT GGTGTTTCTT	TTATTAGCAT CTACTGTATT TTTCTTTGTT C	AAAATGGAAA ACATCATTAA CTGTATCTGG	TCTGGCATTA CATGTACATG AGAGGGGTAT	CCAACTGTAT TTAGATACAT TGATTGGTTA
atgggtaaat tattactgat	TGCTGCAGGT GGTGGTGACC	TTTGGTTAGT TACTGCTGCT	GAAAGAGATA GAGTTTCTGC	TCTTGTTACT GGTATTGCTT	GGATTGAAAC TGGTGATTCG
ਜਜਜਜ	51 51 51	101 101 101 101	151 151 151 151	201 201 201 201	251 0 251 251 251
EBAC31A8 EBAC40 EBAC41 EBAC64	EBAC31A8 EBAC40 EBAC41 EBAC64	EBAC31A8 EBAC40 EBAC41 EBAC64	EBAC31A8 EBAC40 EBAC41 EBAC64	EBAC31A8 EBAC40 EBAC41 EBAC64	EBAC31A8 EBAC40 EBAC41 EBAC64

Figure

350 350 350 350	400 400 400 400	450 450 450 450	500 500 500	550 550 550 550	600 600 600
TTGCTGCTGC	GGTTCTCTTG	GGCTGCATGG .AACT	TTTATGAATTC.	CCTGCTGTGC	TTGGGCGATTA
TACTTAATTC	ATTACTAGTTT.GC.T	CAGGAATCAT	GTATACATGA	TACTGCAAGT	TCATCTTTGG
ATGTGAATTC	TATTTAAGAA .G	ATGGGTGAAGG.	TTTAGCTTGG	CTGCATGTAA	ATGTATATTA A.
CTCTATTAATG	GCTGGATCATCTGGCC	GTTTGGTTAC	TTATTGGGTG	GAAGGAAAAT CGG	CAACACAATG
CTAACAGTTC	AACTAATGTTA T	TTATGCTTGT	CCTGCATTCA GGG	ATGGGCTGGA	AATCAGCTTA
301 301 301 301	351 351 351 351	401 401 401 401	451 451 451 451	501 501 501 501	551 551 551 551
EBAC31A8 EBAC40 EBAC41 EBAC64	EBAC31A8 EBAC40 EBAC41 EBAC64	EBAC31A8 EBAC40 EBAC41 EBAC64	EBAC31A8 EBAC40 EBAC41 EBAC64	EBAC31A8 EBAC40 EBAC41 EBAC64	EBAC31A8 EBAC40 EBAC41 EBAC64

Figure

WO 01/83701

Q
'igure
124

650 650 650	700	700	700	750	750	750	750
			•	ttctaatgct		•	•
GTTATTTCAC AGGTTACCTG ATGGGTGACG GTGGATCAGC	TGACTTTGTT AACAAGATTC			ttaaagaatc	•	•	•
AGGTTACCTG	ATAACCTTGC			AATTATATGG AATGTTGCtg	•	•	•
GTTATTTCAC	AACCTTATCT		E.		•	•	•
TATCCTGTAG	TCTTAACTTA			TATTTGGTTT	•	•	
601 601 601	651	651 651	651		701	701	701
EBAC31A8 EBAC40 EBAC41	EBAC31A8	EBAC40 EBAC41	EBAC64	EBAC31A8	EBAC40	EBAC41	EBAC64

EBAC31A8	Н ,	ILGS VIALPTFAAG GGDLDASDYT GVSFWLVTAA	LLASTVEFEV	50
ر ا ا			•	20
 	\leftarrow		•	20
EBAC64_1	\leftarrow		•	20
1 A S	<u>ր</u>	NEWE TST.TVSGI.VT GIAFWHYMYM BGYMIFTGDS	D#V/FRVTDMT	100
	l 1		T & C + + \ 1 .) (
$EBAC40_{-}I$	ΣÇ			100
$\mathtt{EBAC41}_1$	51		• • • • • • •	100
EBAC64_1	51		•	100
EBAC31A8	101	CEF YLILAAATNV AGSLEKKLLV GSLVMLVFGY	MGEAGIMAAW	150
	101	AG	Z	150
EBAC41 1	101		•	4 L
	ι τ Ο (•) (
	TOT		•	150
EBAC31A8	151	LAW VYMIYELWAG EGKSACNTAS PAVQSAYNTM	MYIIIFGWAI	200
	151	GV	•	200
	151		•	200
	151	Y S A.	V	200
	201	GYL MGDGGSALNL NLIYNLADFV NKILFGLIIW	NVAVKESSNA	250
EBAC40_1	201		•	250
	201		•	250
	201		•	250

WO 01/83701		PCT/US01/14394
•	21/108	

•						
48	96	144	192	240	288	336
aca Thr	gtt Val	ttc Phe	act Thr	atg Met 80	tac Tyr	tta Leu
cct Pro 15	ggt Gly	ttt Phe	tta Leu	tac Tyr	aga Arg 95	tac Tyr
ctt Leu	act Thr 30	gta Val	tca Ser	atg Met	ttt Phe	ttc Phe 110
gca Ala	tac Tyr	act Thr 45	aca Thr	tac Tyr	gta Val	gaa Glu
att Ile	gat Asp	tct Ser	aaa Lýs 60	cat His	act Thr	tgt Cys
gtt Val	agt Ser	gca Ala	tgg Trp	tgg Trp 75	cca Pro	ata Ile
agt Ser 10	gct Ala	tta Leu	aaa Lys	ttc Phe	tcg Ser 90	ttg Leu
ggt Gly	gat Asp 25	cta Leu	gca Ala	gct Ala	gat Asp	cta Leu 105
tta Leu	ctt Leu	gct Ala 40	tct Ser	att Ile	ggt Gly	cct Pro
ata Ile	gac Asp	gct Ala	gtt Val 55	ggt Gly	acc Thr	gtt Val
ctg Leu	ggt Gly	act Thr	aga Arg	act Thr 70	gag Glu	aca Thr
tta Leu 5	ggt Gly	gtt Val	gat Asp	gtt Val	att Ile 85	cta Leu
tta Leu	ggt Gly 20	tta Leu	aga Arg	ctt Leu	tgg Trp	tta Leu 100
aaa Lys	gca Ala	tgg Trp 35	gaa G1u	ggt Gly	gta Val	tgg Trp
ggt Gly	gct Ala	ttt Phe	gtt Val 50	tcg Ser	ggg G $1_{ m Y}$	gat Asp
atg Met 1	ttt Phe	tct Ser	ttt Phe	gta Val 65	aga Arg	att Ile

Figure 11

WO 01/83701		PCT/US01/14394
•	22/108	

384	432	480	528	576	624	672
tta Leu	gca Ala	tgg Trp 160	tgt Cys	tat Tyr	ggt Gly	tat Tyr
aaa Lys	gag Glu	gct Ala	gca Ala 175	atg Met	aca Thr	atc Ile
aag Lys	ggt Gly	tta Leu	gct Ala	atg Met 190	ttc Phe	ctt Leu
ttt Phe 125	atg Met	tgt Cys	aag Lys	aca Thr	tat Tyr 205	aac Asn
ctg Leu	tac Tyr 140	ggg Gl $_{ m Y}$	ggc Gly	aac Asn	ggt Gly	tta Leu 220
ggc $_{\rm G1Y}$	ggt Gly	att Ile 155	gaa Glu	tac Tyr	gta Val	aac Asn
gct Ala	ttt Phe	gtt Val	gga Gly 170	gct Ala	cct Pro	ctt Leu
gct Ala	gtg Val	ttc Phe	gct Ala	tca Ser 185	tat Tyr	gct Ala
gtt Val 120	ctt Leu	gca Ala	tgg Trp	caa Gln	att Ile 200	tca Ser
aat Asn	atg Met 135	ggt Gly	cta Leu	gtg Val	gca Ala	gga G1y 215
аса Тћг	gtt Val	tgg Trp 150	gaa Glu	gct Ala	tgg Trp	ggt Gly
gca Ala	ctt Leu	gct Ala	tat Tyr 165	cct Pro	ggt Gly	gac Asp
gct Ala	tct Ser	aac Asn	att Ile	agt Ser 180	ttt Phe	ggt Gly
gct Ala 115	ggt Gly	atg Met	atg Met	gca Ala	atc Ile 195	atg Met
ctt Leu	gtt Val 130	att Ile	tac Tyr	act Thr	atc Ile	cta Leu 210
att Ile	ttg Leu	gga G1 <u>y</u> 145	gta Val	aat Asn	ata Ile	tac Tyr

Figure 11

720	750
tgg Trp 240	
ata Ile	
att Ile	
tta Leu	
ggt Gly	
ttt Phe 235	
cta Leu	gct Ala 250
att Ile	aat Asn
aag Lys	tct Ser
aac Asn	tct Ser
gtt Val 230	gaa Glu
ttt Phe	aaa Lys 245
gac Asp	gtt Val
gct Ala	gct Ala
ctt	gtt Val
ac sn : 25	at sn

WO 01/83701	

WO 01/8	33701		24/108	` }		PCT/US01/1
48	96	144	192	240	288	336
t aaa tta tta ctg ata tta ggt agt gct att gca ctt cca tca Y Lys Leu Leu Ile Leu Gly Ser Ala Ile Ala Leu Pro Ser 10	t gct gct ggt ggc gat cta gat ata agt gat act gtt ggt gtt a Ala Ala Gly Gly Asp Leu Asp Ile Ser Asp Thr Val Gly Val 20	c tgg ctg gtt aca gct ggt atg tta gcg gca act gtg ttc ttt e Trp Leu Val Thr Ala Gly Met Leu Ala Ala Thr Val Phe 35	a gaa aga gac caa gtc agc gct aag tgg aaa act tca ctt gct 1 Glu Arg Asp Gln Val Ser Ala Lys Trp Lys Thr Ser Leu Ala 55	ggt tta att act ggt ata gct ttt tgg cat tat ctc tat atg Gly Leu Ile Thr Gly Ile Ala Phe Trp His Tyr Leu Tyr Met 70	gtt tgg ata gac act ggt gat acc cca aca gta ttc aga tat Val Trp Ile Asp Thr Gly Asp Thr Pro Thr Val Phe Arg Tyr 90	tgg tta tta act gtt cca tta caa atg gtt gag ttc tat cta Trp Leu Leu Thr Val Pro Leu Gln Met Val Glu Phe Tyr Leu 100
atg ggt Met Gly 1	ttt gct Phe Ala	tca ttc Ser Phe	ttt gta Phe Val 50	gta tct Val Ser 65	aga ggt Arg Gly	att gat Ile Asp

Figure 12

PCT/US01/14394

WO 01/83701	
,	25/108

384	432	480	528	576	624	672
agt gtt gct gct tca tta ttt aag aag ctt Ser Val Ala Ala Ser Leu Phe Lys Lys Leu 120	atg tta ggt gct gga ttt gca ggc gaa gct Met Leu Gly Ala Gly Phe Ala Gly Glu Ala 135	cct gct ttc att att ggt atg gct gga tgg Pro Ala Phe Ile Ile Gly Met Ala Gly Trp 155	cta tat atg ggt gaa ggt aag gct gct gta Leu Tyr Met Gly Glu Gly Lys Ala Ala Val 170	gtt aac tct gca tac aac gca atg atg Val Asn Ser Ala Tyr Asn Ala Met Met Met 185	gca att tat cct gct gga tat gct gct ggt Ala Ile Tyr Pro Ala Gly Tyr Ala Ala Gly 200	ggt gta tac gct tca aac tta aac ctt ata Gly Val Tyr Ala Ser Asn Leu Asn Leu Ile 215
tgt aca Cys Thr	tta gta Leu Val	gta tta Val Leu 150	tat gag Tyr Glu 165	cct gct Pro Ala	gga tgg Gly Trp	ggc gaa Gly Glu
gct Ala	tca Ser	cct Pro	att t Ile 7	agt c Ser I 180	gtt g Val G	ggt g Gly G
gct 1 Ala 115	ggt Gly	gct Ala	atg Met	gca	gtt Val 195	atg Met
ctt	gct Ala 130	tta Teu	tac Tyr	act Thr	att Ile	cta Leu 210
att Ile	cta Leu	gga Gly 145	tta Leu	agt Ser	att Ile	tac Tyr

Figure 12

PCT/US01/14394

753

720

	,
att Ile 240	
atc Ile	
ttg Leu	
ggt Gly	
ttt Phe	
cta Leu 235	gct Ala
att Ile	aat Asn 250
aag Lys	tct Ser
aac Asn	tct Ser
gtt Val	gaa Glu
ctt Leu 230	aaa Lys
gac Asp	gtt Val 245
gcc Ala	gct Ala
ctt Leu	gtt Val
aac Asn	aat Asn
tat Tyr 225	tgg Trp

48	96	144	192	240	288	336
cca tca Pro Ser 15	ggt gtt Gly Val	ttc ttt Phe Phe	ctt act Leu Thr	tac atg Tyr Met 80	aga tat Arg Tyr 95	tat cta Tyr Leu
ctt Leu	gtt Val 30	gta Val	tca Ser	ctc Leu	ttt Phe	ttc Phe 110
att gca Ile Ala	gat act Asp Thr	gca act Ala Thr 45	aaa act Lys Thr 60	cat tat His Tyr	aca gta Thr Val	gtt gag Val Glu
gct Ala	agt Ser	gcg Ala	tgg Trp	tgg Trp 75	cca Pro	atg Met
ggt agt Gly Ser 10	gat ata Asp Ile 25	atg tta Met Leu	gct aag Ala Lys	gct ttt Ala Phe	gat aca Asp Thr 90	tta caa Leu Gln 105
tta Leu	cta Leu	ggt Gly 40	agc Ser	ata Ile	ggt Gly	cca Pro
ctg ata Leu Ile	ggc gat Gly Asp	aca gct Thr Ala	caa gtc Gln Val 55	act ggt Thr Gly 70	gat act Asp Thr	act gtt Thr Val
tta Leu 5	ggt Gly	gtt Val	gac Asp	att Ile	ata Ile 85	tta Leu
aaa tta Lys Leu	gct gct Ala Ala 20	tgg ctg Trp Leu 35	gaa aga Glu Arg	ggt tta Gly Leu	gtt tgg Val Trp	tgg tta Trp Leu 100
ggt Gly	gct Ala	ttc Phe	gta Val 50	tct Ser	ggt Gly	gat Asp
atg Met 1	ttt Phe	tca Ser	ttt Phe	gta Val 65	aga Arg	att Ile

Figure 13

WO	01	/23"	7 0 1
** **	w	/ (3.)	

7	/1	ΛQ

PCT/US01/1439

					•	
384	432	480	528	576	624	672
ctt Leu	gct Ala	tgg Trp 160	gta .val	aag Lys	ggt Gly	ata Ile
aag Lys	gaa Glu	gga Gly	gct Ala 175	atg Met	gct Ala	ctt Leu
aag Lys	ggc Gly	gct Ala	gct Ala	atg Met 190	gct Ala	aac Asn
ttt Phe 125	gca Ala	atg Met	aag Lys	gca Ala	tat Tyr 205	tta Leu
tta Leu	ttt Phe 140	ggt Gly	ggt Gly	aac Asn	gga Gly	aac Asn 220
tca Ser	gga Gly	att Ile 155	gaa Glu	tac Tyr	gct. Ala	tca Ser
gct Ala	gct Ala	att Ile	ggt Gly 170	gca Ala	cct Pro	gct Ala
gct Ala	ggt Gly	ttc Phe	atg Met	tct Ser 185	tat Tyr	tac Tyr
gtt Val 120	tta Leu	gct Ala	cat His	aac Asn	att Ile 200	gta Val
agt Ser	atg Met 135	cct Pro	cta Leu	gtt Val	gca Ala	ggt Gly 215
aca Thr	gta Val	tta Leu 150	gag Glu	gct Ala	tgg Trp	gac Asp
tgt Cys	tta Leu	gta Val	tat Tyr 165	cct Pro	gga $\mathtt{G1}_{Y}$	ggt Gly
gct Ala	tca Ser	cct Pro	att Ile	agt Ser 180	att Ile	agt Ser
gct Ala 115	ggt Gly	gct Ala	atg Met	gca Ala	gtt Val 195	atg Met
ctt Leu	gct Ala 130	tta Leu	tac Tyr	act Thr	att 11e	cta Leu 210
att Ile	cta Leu	ggt Gly 145	tta Leu	agt Ser	att Ile	tac Tyr
			•			

	-	
-)

720	753
ttt ggt ttg atc att Phe Gly Leu Ile Ile 240	
cta t Leu P 235	gct Ala
att Ile	aat Asn 250
aag Lys	tct Ser
aac Asn	tct Ser
gtt Val	gaa Glu
ttt Phe 230	aaa Lys
gac Asp	gtt Val 245
gct Ala	gct Ala
ctt Leu	gtt Val
aac Asn	aat Asn
tat Tyr 225	tgg Trp

พก	11	/92	701

30/108

рст	ATTCA+	/1 / 20 /
rui	/ USU I	/14394

					. •	
48	96	144	192	240	288	336
						,
tca Ser	gtt Val	ttt Phe	act Thr	atg Met 80	tat Tyr	cta Leu
cca Pro 15	ggt Gly	ttc Phe	ctt Leu	tat Tyr	aga Arg 95	tat Tyr
ctt Leu	gtt Val 30	gtg Val	tca Ser	ctc Leu	ttc Phe	ttc Phe 110
gca Ala	act Thr	act Thr 45	act Thr	tat Tyr	gta Val	gag Glu
att Ile	ρK	gca Ala	aaa Lys 60	cat His	aca Thr	gtt Val
gct Ala	agt Ser	gcg Ala	tgg Trp	tgg Trp 75	cca Pro	gtg Val
agt Ser 10	ata Ile	tta Leu	aag Lys	ttt Phe	acc Thr 90	caa Gln
ggt Gly	gat Asp 25	atg Met	gct Ala	gct Ala	gat Asp	tta Leu 105
tta Leu	cta Leu	ggt Gly 40	agc Ser	ata Ile	ggt Gly	cca Pro
ata Ile	gat	gct Ala	gtc Val 55	ggt Gly	act Thr	gtt Val
ctg Leu	ggc Gly	aca Thr	caa Gln	act Thr 70	gac Asp	act Thr
tta Leu 5	ggt Gly	gtt Val	gac Asp	att Ile	ata Ile 85	tta Leu
tta Leu	gct Ala 20	ctg Leu	aga Arg	tta Leu	tgg Trp	tta Leu 100
aaa Lys	gct Ala	tgg Trp 35	gaa Glu	ggt Gly	gtt Val	tgg Trp
ggt Gly	gct Ala	ttc Phe	gta Val 50	tct Ser	ggt Gly	gat Asp
atg Met 1	ttt Phe	tca Ser	ttt Phe	gta Val 65	aga Arg	att Ile

Figure 14

						•
384	432	480	528	576	624	672
g ctt s Leu	a gct u Ala	a tgg Y Trp 160	t gta a Val	atg Met	ggt a Gly	ata 1 Ile
g aag s Lys	gaa Glu	gga Gly	gct Ala 175	atg Met	gct Ala	ctt Leu
aag Lys	ggc Gly	gct Ala	gct Ala	atg Met 190	gct Ala	aac Asn
ttt Phe 125	gca Ala	atg Met	aag Lys	gca Ala	tat Tyr 205	tta Leu
tta Leu	ttt Phe 140	ggt Gly	ggt Gly	aac Asn	gga Gly	aac Asn 220
tca Ser	gga Gly	att Ile 155	gaa Glu	tac Tyr	gct Ala	tca Ser
gct Ala	gct Ala	att Ile	ggt Gly 170	gca Ala	cct Pro	gct Ala
gct Ala	ggt Gly	ttc Phe	atg. Met	tct Ser 185	tat Tyr	tac Tyr
gtt Val 120	tta Leu	gct Ala	tat Tyr	aac Asn	att Ile 200	gta Val
agt Ser	atg Met 135	cct Pro	cta Leu	gtt Val	gca Ala	ggt Gly 215
aca Thr	gta Val	tta Leu 150	gag Glu	gct Ala	tgg Trp	gaa Glu
tgt Cys	tta Leu	gta Val	tat Tyr 165	cct Pro	gga ${ t G1}Y$	ggc Gly
gct Ala	tca Ser	cct Pro	att. Hle	agt Ser 180	gtt Val	ggt Gly
gct Ala 115	ggt Gly	gct Ala	atg Met	gca Ala	gtt Val 195	atg Met
ctt Leu	gct Ala 130	tta Leu	tac Tyr	act Thr	att Ile	cta Leu 210
att Ile	cta Leu	gga G1Y 145	tta Leu	agt Ser	att Ile	tac Tyr

Figure 14

720	753
ttt ggt ttg atc att Phe Gly Leu Ile Ile 240	
cta Leu 235	gct Ala
att Ile	aat Asn 250
aag Lys	tct Ser
aac Asn	tct Ser
gtt Val	gaa Glu
ttt Phe 230	aaa Lys
gac Asp	gtt Val 245
gct Ala	gct Ala
ctt Leu	gtt Val
aac Asn	aat Asn
tat Tyr 225	tgg Trp

						. •
48	96	1.44	192	240	288	336
tca Ser	gtt Val	ttt	act Thr	atg Met 80	tat Tyr	cta Leu
cca Pro 15	ggt Gly	ttc Phe	ctt Leu	tat Tyr	aga Arg 95	tat Tyr
ctt Leu	gtt Val 30	gtg Val	tca Ser	ctc Leu	ttc Phe	ttc Phe 110
gca Ala	act Thr	act Thr 45	act Thr	tat Tyr	gta Val	gag Glu
att Ile	gat Asp	gca Ala	aaa Lys 60	cat His	aca Thr	gtt Val
gct Ala	agt Ser	gcg Ala	tgg Trp	tgg Trp 75	cca Pro	atg Met
agt Ser 10	ata Ile	tta Leu	aag Lys	ttt Phe	acc Thr 90	caa Gln
ggt Gly	gat Asp 25	atg Met	gct Ala	gct Ala	gat Asp	tta Leu 105
tta Leu	cta Leu	ggt Gly 40	agc Ser	ata Ile	ggt Gly	cca Pro
ata Ile	gat Asp	gct Ala	gtc Val 55	ggt Gly	act Thr	gtt Val
ctg Leu	ggc Gly	aca Thr	caa Gln	act Thr 70	ga <i>c</i> Asp	act Thr
tta Leu 5	ggt Gly	gtt Val	gac Asp	att Ile	ata Ile 85	tta Leu
tta Leu	gct Ala 20	ctg Leu	aga Arg	tta Leu	tgg Trp	tta Leu 100
aaa Lys	gct Ala	tgg Trp 35	gaa Glu	ggt Gly	gtt Val	tgg Trp
ggt Gly	gct Ala	ttc Phe	gta Val 50	tot Ser	ggt Gly	gat Asp
atg Met 1	ttt Phe	tca Ser	ttt Phe	gta Val 65	aga Arg	att Ile

Figure 1

				-		
384	432	480	528	576	624	672
ctt gct gct tgt aca aat gtt gct gct tca tta ttt aag aag ctt Leu Ala Ala Cys Thr Asn Val Ala Ala Ser Leu Phe Lys Lys Leu 115	gct ggt tca tta gta atg tta ggt gct gga ttt gca ggc gaa gct Ala Gly Ser Leu Val Met Leu Gly Ala Gly Phe Ala Gly Glu Ala 130	ttg gct cct gta tgg cct gct ttc att att ggt atg gct gga tgg Leu Ala Pro Val Trp Pro Ala Phe Ile Ile Gly Met Ala Gly Trp 150	tac atg att tat gag cta tat atg ggt gaa ggt aag gct gct gta Tyr Met Ile Tyr Glu Leu Tyr Met Gly Glu Gly Lys Ala Ala Val 175	act gca agt cct gct gtt aac tct gca tac aac gca atg atg gtg Thr Ala Ser Pro Ala Val Asn Ser Ala Tyr Asn Ala Met Wet Val 180	t gtt gtt gga tgg gca att tat cct gct gga tat gct gct ggt e Val Val Gly Trp Ala Ile Tyr Pro Ala Gly Tyr Ala Ala Gly 205	cta atg ggt ggc gaa ggt gta tac gct tca aac tta aac ctt ata Leu Met Gly Glu Gly Val Tyr Ala Ser Asn Leu Asn Leu Ile 210
att o Ile I	cta gc Leu Al 13	gga t Gly L 145	tta t Leu T	agt a Ser T	att at Ile Il	tac c Tyr L

LC.)
~	Į
Œ)
7	Į
Ē	,
<u>-</u>	ï
Įz.	ı

720	753
ttt ggt ttg atc att Phe Gly Leu Ile Ile 240	
ctt gtt aac aag att cta t Leu Val Asn Lys Ile Leu 1 230	aaa gaa tct tct aat gct Lys Glu Ser Ser Asn Ala 250
tat aac ctt gcc gac Tyr Asn Leu Ala Asp 225	tgg aat gtt gct gtt Trp Asn Val Ala Val

WO 01/83701	•	PCT/US01/14394
	36/108	

					,	
48	96	144	192	240	2 88	336
aca Thr	gtt Val	ttc	act Thr	atg Met 80	tac Tyr	tta Leu
cct Pro 15	ggt Gly	ttt Phe	tta Leu	tac Tyr	aga Arg 95	tac Tyr
ctt Leu	act Thr 30	gta Val	tca Ser	atg Met	ttt Phe	ttc Phe 110
gca Ala	tac Tyr	act Thr 45	aca Thr	tac Tyr	gta Val	gaa Glu
att Ile	gat Asp	tct Ser	aaa Lys 60	cat His	act Thr	tgt Cys
gtt Val	agt Ser	gca Ala	tgg Trp	tgg Trp 75	cca Pro	ata Ile
agt Ser 10	gct Ala	tta Leu	aaa Lys	ttc Phe	tcg Ser 90	ttg Leu
ggt Gly	gat Asp 25	cta Leu	gca Ala	gct Ala	gat Asp	cta Leu 105
tta Leu	ctt Leu	gct Ala 40	tct Ser	att Ile	ggt Gly	cct Pro
ata Ile	gac Asp	gct Ala	gtt Val 55	ggt Gly	act Thr	gtt Val
ctg Leu	ggt Gly	act Thr	aga Arg	act Thr 70	gag Glu	aca Thr
tta Leu 5	ggt Gly	gtt Val	gat Asp	gtt Val	att Ile 85	cta Leu
tta Leu	ggt Gly 20	tta Leu	aga Arg	ctt Leu	tgg Trp	tta Leu 100
aaa Lys	gca Ala	tgg Trp 35	gaa Glu	ggt Gly	gta Val	tgg Trp
ggt Gly	gct Ala	ttt Phe	gtt Val 50	tct Ser	ggg Gly	gat Asp
atg Met 1	ttt Phe	tct Ser	ttt Phe	gta Val 65	aga Arg	att Ile

D	CT	/TIC	Λ1	/1	1394
	CI .	<i>,</i> US	VI.	/ 4	4.774

WO 01/83701			PCT/US01/14394
,	27/1	vo	

						,
384	432	480	528	576	624	672
tta Leu	gca Ala	tgg Trp 160	tgt Cys	gct	ggt Gly	tat Tyr
aaa Lys	gag Glu	gct Ala	gca Ala 175	atg Met	aca Thr	att Ile
aag Lys	ggt Gly	tta Leu	ser	atg Met 190	ttc Phe	ctt Leu
ttt Phe 125	atg Met	tgt Cys	ааа Lys	aca Thr	tat Tyr 205	aac Asn
ctg Leu	tac Tyr 140	ggg G $1 Y$	gga ${ t G1}Y$	aac Asn	ggt Gly	tta Leu 220
ggc Gly	ggt Gly	att I1e 155	gaa Glu	tac Tyr	gta Val	aac Asn
gct Ala	ttt Phe	att Ile	gga Gly 170	gct Ala	cct	ctt Leu
gct Ala	gtg Val	ttc Phe	gct Ala	tca Ser 185	tat Tyr	gct Ala
gtt Val 120	ctt Leu	gca Ala	tat Tyr	caa G1n	att Ile 200	tca Ser
aat Asn	atg Met 135	cct Pro	cta Leu	gtt Val	gca Ala	gga G1 <u>y</u> 215
aca Thr	gtt Val	tgg Trp 150	gaa Glu	tcg Ser	tgg Trp	ggt Gly
gca Ala	ctt Leu	gct Ala	tat Tyr 165	cct	ggt Gly	gac Asp
gct Ala	tct Ser	aac Asn	att Ile	agt Ser 180	ttc Phe	ggt Gly
gct Ala 115	ggt Gly	atg Met	atg Met	gca Ala	gtc Val 195	atg Met
ctt Leu	gtt Val 130	att Ile	tac Tyr	act Thr	ata Ile	cta Leu 210
att Ile	ttg Leu	gga G1Y 145	gta Val	aat Asn	atc Ile	tac TYr

		_
	U	•
	7	1
	(D
	Ş	4
	į	3 3
	•	٠
1	<u>,</u>	-
	þ	4

720	750
t ata tgg e Ile Trp 240	
tta att Leu Ile	
ggt Gly	
ttt Phe 235	
cta Leu	gct Ala 250
att Ile	aat Asn
aag Lys	tct Ser
aac Asn	tct Ser
gtt Val 230	gaa Glu
ttt Phe	aaa Lys 245
gac Asp	gtt Val
gct Ala	gct Ala
ctt Leu	gtt Val
8 BC	at

48	96 ,	144	192	240	288	336
aca Thr	gtt Val	ttc Phe	act Thr	atg Met 80	tac Tyr	tta Leu
cct Pro 15	ggt Gly	ttt Phe	tta Leu	tac Tyr	aga Arg 95	tac Tyr
ctt Leu	act Thr 30	gta Val	tca Ser	atg Met	ttt Phe	ttc Phe 110
gca Ala	au	act Thr 45	aca Thr	tac Tyr	gta Val	gaa Glu
att Ile	gat Asp	tct Ser	aaa Lys 60	cat His	act Thr	tgt Cys
gtt Val	agt Ser	gca Ala	tgg Trp	tgg Trp 75	cca Pro	ata Ile
agt Ser 10	gct Ala	tta Leu	aaa Lys	ttc Phe	tcg Ser 90	tta Leu
ggt Gly	gat Asp 25	tta Leu	gca Ala	gct Ala	gat Asp	cta Leu 105
tta Leu	ctt Leu	gct Ala 40	tct Ser	att Ile	ggt Gly	cct Pro
ata Ile	gac Asp	gct Ala	gtt Val 55	ggt Gly	act Thr	gtt Val
ctg Leu	ggt $_{ m G1Y}$	act Thr	aga Arg	act Thr 70	gaa Glu	aca Thr
tta Leu 5	ggt Gly	gtt Val	gat Asp	gtt Val	att Ile 85	cta Leu
tta Leu	ggt Gly 20	tta Leu	aga Arg	ctt Leu	tgg Trp	tta Leu 100
aaa Lys	gca Ala	tgg Trp 35	gaa Glu	ggt Gly	gta Val	tgg Trp
ggt Gly	gct Ala	ttt Phe	gtt Val 50	tct Ser	ggg G 1_Y	gat
atg Met 1	ttt	tct Ser	ttt	gta Val 65	aga Arg	att Ile

Figure 17

384	432	480	528	576	624	672.
tta Leu	gca Ala	tgg Trp 160	tgt Cys	atg Met	ggt Gly	tat Tyr
ааа Lys	gaa Glu	gct Ala	gcg Ala 175	atg Met	aca Thr	atc Ile
aag Lys	ggt Gly	tta Leu	gct Ala	atg Met 190	ttc Phe	ctt Leu
ttť Phe 125	atg Met	tgt Cys	ааа Lys	aca Thr	tat Tyr 205	aac Asn
ctg Leu	tac Tyr 140	ggg Gl $_{ m Y}$	gga Gly	aac Asn	ggt Gly	tta Leu 220
ggc Gly	ggt Gly	att Ile 155	gaa Glu	tac Tyr	gta Val	aac Asn
gct Ala	ttt Phe	gtt Val	gga G1y 170	gct Ala	cct Pro	ctt Leu
gct Ala	gtg Val	ttc Phe	ctt Leu	tca Ser 185	tat Tyr	gca Ala
gtt Val 120	ctt Leu	gca Ala	tgg Trp	cag Gln	att Ile 200	tca Ser
aat Asn	atg Met 135	ggt Gly	ctt Leu	gtt Val	gca Ala	gga G1y 215
act Thr	gtt Val	tgg Trp 150	gag Glu	gct Ala	tgg Trp	ggt Gly
gct Ala	ctt Leu	gct Ala	tat Tyr 165	cct Pro	ggt Gly	gac Asp
gct Ala	tct Ser	aac Asn	att Ile	agt Ser 180	ttt Phe	ggt Gly
gct Ala 115	ggt Gly	atg Met	atg Met	gca Ala	atc Ile 195	atg Met ~
ctt Leu	gtt Val 130	att Ile	tac Tyr	aca Thr	atc Ile	cta Leu 210
att Ile	ttg Leu	gga Gly 145	gta Val	aat Asn	atc Ile	tac Tyr

Figure 17

750

720

tgg Trp 240	
ata Ile	
att Ile	
tta Leu	
ggt Gly	
ttt Phe 235	
cta Leu	gct Ala 250
att Ile	aat Asn
aag Lys	tct Ser
aac Asn	tct Ser
gtt Val 230	gaa Glu
ttt Phe	aaa Lys 245
gac Asp	gtt Val
gct Ala	gct Ala
ctt Leu	gtt Val
aac Asn 225	aat Asn

PC1	/US01	/14394

WO 01/83701			PCT/US01/1439
	•	42/109	

48	96	144	2	0,	ω,	9
4.	O1	1,	192	24	28.	33
,						•
aca Thr	gtt Val	ttc Phe	act Thr	atg Met 80	tac Tyr	tta Leu
cct Pro 15	ggt Gly	ttt Phe	tta Leu	tac Tyr	aga Arg 95	tac Tyr
ctt Leu	act Thr 30	gta Val	tca Ser	atg Met	ttt Phe	ttc Phe 110
gca Ala	tac Tyr	act Thr 45	aca Thr	tac Tyr	gta Val	gaa Glu
att Ile	gat Asp	tct Ser	aaa Lys 60	cat His	act Thr	tgt Cys
gtt Val	agt Ser	gca Ala	tgg Trp	tgg Trp 75	cca Pro	ata Ile
agt Ser 10	gct Ala	tta Leu	aaa Lys	ttc Phe	tog Ser 90	tta Leu
ggt Gly	gat Asp 25	tta Leu	gca Ala	gct Alà	gat Asp	cta Leu 105
tta Leu	ctt Leu	gct Ala 40	tct Ser	att Ile	ggt Gly	cct Pro
ata Ile	gac Asp	gct Ala	gtt Val 55	ggt Gly	act Thr	gtt Val
ctg Leu	ggt Gly	act Thr	aga Arg	act Thr 70	gaa Glu	aca Thr
tta Leu 5	ggt $_{ m G1Y}$	gtt Val	gat Asp	gtt Val	att Ile 85	cta Leu
tta Leu	ggt Gly 20	tta Leu	aga Arg	ctt Leu	tgg Trp	tta Leu 100
aaa Lys	gca Ala	tgg Trp 35	gaa Glu	ggt Gly	gta Val	tgg Trp
ggt Gly	gct Ala	ttt Phe	gtt Val 50	tct Ser	ggg Gly	gat Asp
atg Met 1	ttt Phe	tat Ser	ttt Phe	gta Val 65	aga Arg	att Ile
	•				•••	

Figure 18

WO 01/83701		PCT/US01/14394
'	43/108	

384	432	480	528	576	624	672
	•	•	υ,	α,	•	v
et 51		— 0 —				
tta Leu	gca Ala	tgg Trp 160	tgt Cys	tat Tyr	ggt Gly	tat Tyr
ааа Lys	gag Glu	gct Ala	gca Ala 175	atg Met	aca Thr	atc Ile
aag Lys	ggt Gly	tta Leu	gct Ala	atg Met 190	ttc Phe	ctt Leu
ttt Phe 125	atg Met	tgt Cys	aag Lys	aca Thr	tat Tyr 205	aac Asn
ctg Leu	tac Tyr 140	ggg Gly	ggc Gly	aac Asn	ggt Gly	tta Leu 220
ggc Gly	ggt Gly	att Ile 155	gaa Glu	tac Tyr	gta Val	aac Asn
gct Ala	ttt Phe	gtt Val	gga Gly 170	gct Ala	cct Pro	ctt Leu
gct Ala	gtg Val	ttc Phe	gct Ala	tca Ser 185	tat Tyr	gct Ala
gtt Val 120	ctt Leu	gca Ala	tgg Trp	caa Gln	att Ile 200	tca Ser
aat Asn	atg Met 135	ggt Gly	cta Leu	gtg Val	gca Ala	gga G1y 215
act Thr	gtt Val	tgg Trp 150	gaa Glu	gct Ala	tgg Trp	ggt Gly
gca Ala	ctt Leu	gct Ala	tat Tyr 165	cct Pro	ggt Gly	gac Asp
gct Ala	tct Ser	aac Asn	att Ile	agt Ser 180	ttt Phe	ggt Gly
gct Ala 115	ggt Gly	atg Met	atg Met	gca Ala	atc Ile 195	atg Met
ctt	gtt Val 130	att Ile	tac Tyr	act Thr	atc Ile	cta Leu 210
att Ile	ttg Leu	gga G1 <u>y</u> 145	gta Val	aat Asn	ata Ile	tac Tyr

720	750
ata tgg Ile Trp 240	
att Ile	
tta Leu	
ggt Gly	
ttt Phe 235	
cta Leu	gct Ala 250
att Ile	aat Asn
aag Lys	tct Ser
aac Asn	tct Ser
gtt Val 230	gaa Glu
ttt Phe	aaa Lys 245
gac Asp	gtt Val
gct Ala	gct Ala
ctt	gtt Val

aac Asn 225

aat Asn

48	96	144	192	240	288	336
ctt cct aca Leu Pro Thr 15	act ggt gtt Thr Gly Val 30	gta ttt ttc. Val Phe Phe	tca tta act Ser Leu Thr	atg tac atg Met Tyr Met 80	ttt aga tac Phe Arg Tyr 95	ttc tac tta Phe Tyr Leu 110
att gca ct Ile Ala Le	gat tac ac Asp Tyr Th 30	tct act gt Ser Thr Va 45	aaa aca tc Lys Thr S6 60	cat tac at His Tyr Me	act gta tt Thr Val Pł	tgt gaa tt Cys Glu Pl 11
agt gtt at Ser Val II 10	gct agt ge Ala Ser As	tta gca tc Leu Ala Se	aaa tgg aa Lys Trp Ly 6(ttc tgg ca Phe Trp Hi 75	tcg cca ac Ser Pro Th 90	tta ata tç Leu Ile C <u>y</u>
tta ggt ag Leu Gly Se 10	ctt gat go Leu Asp A 25	gct cta ti Ala Leu Le 40	tct gca a? Ser Ala Ly	att gct ti Ile Ala Pl	ggt gat to Gly Asp S6 9(cct cta ti Pro Leu Le 105
ctg ata t Leu Ile L	ggt gac c Gly Asp L	aca gct g Thr Ala A	aga gtt to Arg Val So 55	act ggt ai Thr Gly I: 70	gaa act ge Glu Thr G	aca gtt co Thr Val P
tta tta c Leu Leu L 5	ggt ggc g Gly Gly G 20	tta gtt a Leu Val T	aga gat a Arg Asp A	ctt gtt a Leu Val T	tgg att g Trp Ile G 85	tta cta a Leu Leu T 100
ggt aaa t Gly Lys L	gct gca g Ala Ala G 2	ttt tgg t Phe Trp L 35	gtt gaa a Val Glu A 50	tct ggt c Ser Gly L	gg gta ly Val	gat tgg t Asp Trp L
atg g Met G 1	ttt g Phe P	tct t Ser E	ttt g Phe V	gta t Val S 65	aga g Arg G	att g Ile A

Figure 1

				•	• .	
384	432	480	228	576	624	672
tta Leu	gca Ala	tgg Trp 160	tgt Cys	gct Ala	ggt Gly	tat Tyr
aaa Lys	gaa Glu	gct Ala	gca Ala 175	atg Met	aca Thr	att Ile
aag Lys	ggt Gly	tta Leu	tct Ser	atg Met 190	ttc Phe	ctt Leu
ttt Phe 125	atg Met	tgt Cys	ааа Lys	aca Thr	tat Tyr 205	aac Asn
tta Leu	tac Tyr 140	ggg G $1 Y$	gga Gly	aac Asn	ggt Gly	tta Leu 220
tca Ser	ggt Gly	att Ile 155	gaa Glu	tac Tyr	gta Val	aac Asn
gga Gly	ttt Phe	att Ile	gga G1Y 170	gct Ala	cct Pro	ctt Leu
gct Ala	gtg Val	ttc Phe	gct Ala	tca Ser 185	tat Tyr	gct Ala
gtt Val 120	ctt Leu	gca Ala	tat Tyr	caa Gln	att Ile 200	tca Ser
aat Asn	atg Met 135	cct Pro	cta Leu	gtt Val	gca Ala	ggg Gly 215
act	gtt Val	tgg Trp 150	gaa Glu	tcg Ser	tgg Trp	ggt Gly
gct Ala	ctt Leu	gca Ala	tat Tyr 165	cct Pro	ggt Gly	gac Asp
gct Ala	tct Ser	gct Ala	att Ile	agt Ser 180	ttc Phe	ggt Gly
gct Ala 115	ggt Gly	atg Met	atg Met	gca Ala	gtc Val 195	atg Met
ctt Leu	gtt Val 130	att Ile	tac Tyr	act Thr	ata Ile	cta Leu 210
att Ile	cta Leu	caa Gln 145	gta Val	aat Asn	atc Ile	tac Tyr

Figure 19

0	1
E	オアル

720	750
ctt ggt tta att ata tgg Leu Gly Leu Ile Ile Trp 235	
aag att cta Lys Ile Leu	tct aat gct Ser Asn Ala 250
c ttt gtt aac p Phe Val Asn 230	t aaa gaa tct 1 Lys Glu Ser 245
aac ctt gct ga Asn Leu Ala Asj 225	aat gtt gct gtt Asn Val Ala Val

48	96	144	192	240	288	336
aca Thr	gtt Val	ttc Phe	act Thr	atg Met 80	tac Tyr	tta Leu
cct Pro 15	ggt Gly	ttt Phe	tta Leu	tac Tyr	aga Arg 95	tac Tyr
ctt Leu	act Thr 30	gta Val	tca Ser	atg Met	ttt Phe	ttc Phe 110
gca Ala	tac Tyr	act Thr 45	aca Thr	tac Tyr	gta Val	gaa Glu
att Ile	gat Asp	Ser	aaa Lys 60	cat	act Thr	tgt Cys
gtt Val	agt Ser	gca Ala	tgg Trp	tgg Trp 75	cca Pro	ata Ile
agt Ser 10	gct Ala	tta Leu	ааа Lys	ttc Phe	tcg Ser 90	tta Leu
ggt Gly	gat Asp 25	tta Leu	gca Ala	gct Ala	gat Asp	cta Leu 105
tta Leu	ctt Leu	gct Ala 40	tct Ser	att Ile	ggt Gly	cct Pro
ata Ile	gac Asp	gct Ala	gtt Val 55	ggt Gly	act Thr	gtt Val
ctg Leu	ggt Gly	act Thr	aga Arg	act Thr 70	gaa Glu	aca Thr
tta Leu 5	ggt Gl <u>y</u>	gtt Val	gat Asp	gtt Val	att Ile 85	cta Leu
tta Leu	ggt Gly 20	tta Leu	aga Arg	ctt Leu	tgg Trp	tta Leu 100
aaa Lys	gca Ala	tgg Trp 35	gaa Glu	ggt Gly	gta Val	tgg Trp
ggt Gly	gct Ala	ttt Phe	gtt Val 50	tct Ser	ggg Gl $_{ m Y}$	gat Asp
atg Met 1	ttt Phe	tct Ser	ttt Phe	gta Val 65	aga Arg	att 11e

Figure 20

384	432	480	528	576	624	672
tta Leu	gca Ala	tgg Trp 160	tgt Cys	tat Tyr	ggt Gly	tat Tyr
aaa Lys	gaa Glu	gct Ala	gca Ala 175	atg Met	aca Thr	atc Ile
aag Lys	ggt Gly	tta Leu	Ser	atg Met 190	ttc Phe	ctt Leu
ttt Phe 125	atg Met	tgt Cys	ааа Lys	aca Thr	tat Tyr 205	aac Asn
tta Leu	tac Tyr 140	ggg G $1_{ m Y}$	gga $_{ m G1Y}$	aac Asn	ggt Gly	tta Leu 220
tca Ser	ggt Gly	att Ile 155	gaa Glu	tac Tyr	gta Val	aac Asn
gga Gly	ttt Phe	att Ile	gga Gly 170	gcc Ala	cct Pro	ctt Leu
gct Ala	gtg Val	ttc Phe	gct Ala	tca Ser 185	tat Tyr	gct Ala
gtt Val 120	ctt Leu	gca Ala	tgg Trp	caa Gln	att Ile 200	tca Ser
aat Asn	atg Met 135	cct Pro	tta Leu	gtg Val	gcg Ala	gga G1 <u>y</u> 215
gct Ala	gtt Val	tgg Trp 150	gaa Glu	gct Ala	tgg Trp	ggt Gly
gca Ala	ctt Leu	gca Ala	tat Tyr 165	cct Pro	ggt Gly	gac Asp
gct Ala	tat Ser	gct Ala	att Ile	agt Ser 180	ttt Phe	ggt Gly
gct Ala 115	ggt Gly	atg Met	atg Met	gca Ala	atc Ile 195	atg Met
ctt Leu	gtt Val 130	atc Ile	tac Tyr	act Thr	atc Ile	ttg Leu 210
att Ile	cta Leu	gga Gly 145	gta Val	aat Asn	att Ile	tac Tyr

Figure 20

C	J	
C	V	٠
(D	
1	4	
į	ת כ)
Ģ	4	

720	750
ata tgg Ile Trp 240	
att Ile J	
tta Leu	
ggt Gly	
ttt Phe 235	
cta Leu	gct Ala
att cta Ile Leu	aat Asn
aag Lys	tct Ser
aac Asn	tct Ser
gtt aac Val·Asn 230	gaa G1u
rtt Phe	aaa Lys
gac Asp	gtt Val
gct Ala	gct Ala
Leu	gtt Val
ac sn 25	at sn

WO 01/83701		PCT/US01/14394
	51/108	

		•				
48	96	144	192	240	288	336
aca Thr	gtt Val	ttc Phe	act Thr	atg Met 80	tac Tyr	tta Leu
cct Pro 15	ggt Gly	ttt Phe	tta Leu	tac Tyr	aga Arg 95	tac Tyr
ctt Leu	act Thr 30	gta Val	tca Ser	atg Met	ttt Phe	ttc Phe 110
gca Ala	tac Tyr	act Thr 45	aca Thr	tac Tyr	gta Val	gaa Glu
att Ile	gat Asp	tct Ser	aaa Lys 60	cat His	act Thr	tgt Cys
gtt Val	agt Ser	gca Ala	tgg Trp	tgg Trp 75	cca Pro	ata Ile
agt Ser 10	gct Ala	tta Leu	ааа Lys	ttc Phe	tcg Ser 90	tta Leu
ggt Gly	gat Asp 25	cta Leu	gca Ala	gct Ala	gat Asp	tta Leu 105
ata Ile	ctt Leu	gct Ala 40	tct Ser	att Ile	ggt Gly	cct Pro
ata Ile	gac Asp	gct Ala	gtt Val 55	ggt Gly	act Thr	gtt Val
ctg Leu	ggt Gly	aca Thr	aga Arg	act Thr 70	gaa Glu	aca Thr
tta ctg Leu Leu 5	ggc Gly	gtt Val	gat Asp	gtt Val	att Ile 85	cta Leu
tta Leu	ggt Gly 20	tta Leu	aga Arg	ctt Leu	tgg Trp	tta Leu 100
aaa Lys	gca Ala	tgg Trp 35	gaa Glu	ggt Gly	gta Val	tgg Trp
ggt Gly	gct Ala	ttt Phe	gtt Val 50	Ser	gga G1y	gat Asp
atg Met 1	ttt Phe	tct Ser	ttt Phe	gta Val 65	aga Arg	att Ile

Figure 21

				•		
384	432	480	528	576	624	672
•	•	. •	2,	2,		•
	·			,	· .	
ctt Leu	gca Ala	tgg Trp 160	tgt Cys	tat Tyr	ggt Gly	tat Tyr
aaa Lys	gaa Glu	gct Ala	gca Ala 175	atg Met	аса Тћг	atc Ile
aag Lys	ggt Gly	tta Leu	tct Ser	atg Met 190	ttc Phe	ctt Leu
ttt Phe 125	atg Met	tgt Cys	aaa Lys	aca Thr	tat Tyr 205	aac Asn
tta Leu	tac Tyr 140	ggg Gly	gga Gly	aac Asn	ggt Gly	tta Leu 220
tca Ser	ggt Gly	att Ile 155	gaa Glu	tac Tyr	gta Val	aac Asn
ggc Gly	ttt Phe	att Ile	gga Gly 170	gct Ala	cct Pro	ctt Leu
gcc Ala	gtg Val	ttc Phe	gct Ala	tca Ser 185	tat Tyr	gct Ala
gtt Val 120	ctt Leu	gca Ala	tat Tyr	caa Gln	att Ile 200	tca Ser
aat Asn	atg Met 135	cct Pro	cta Leu	gtg Val	gcg Ala	gga Gly 215
act Thr	gtt Val	tgg Trp 150	gaa Glu	gct Ala	tgg Trp	ggt Gly
gca Ala	ctt Leu	gct Ala	tat Tyr 165	cct Pro	ggt	gac Asp
gct Ala	tct Ser	gca Ala	att Ile	agt Ser 180	ttt Phe	ggt Gly
gct Ala 115	ggt Gly	atg Met	atg Met	gca Ala	gtc Val 195	atg Met
ctt Leu	gtt Val 130	att Ile	tat Tyr	aca Thr	atc Ile	ctg Leu 210
att Ile	cta Leu	gga G1 <u>y</u> 145	gta Val	aat Asn	att Ile	tac Tyr

Figure 21

77
7
Ø
H
5
ĮΨ
- <u>-</u> H

720	750
ggt tta att ata tgg Gly Leu Ile Ile Trp 240	
ggt Gly	
ttt Phe 235	
cta Leu	gct Ala 250
att Ile	aat Asn
aag Lys	tct Ser
aac Asn	tct Ser
gtt Val 230	gaa G1u
ttt Phe	aaa Lys 245
gac Asp	gtt Val
gct Ala	gct Ala
ctt Leu	gtt Val
ac sn 25	at

D	$oldsymbol{c}$	/TIC	M1 /1	14394
-				4.174

WO 01/83	3701		54/108			PCT/US01/14
48	96	144	192	240	288	336
ta tta ggt agt gtt att gca ctt cct aca le Leu Gly Ser Val Ile Ala Leu Pro Thr 10	gac ctt gat gct agt gat tac act ggt gtt Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val 25	gct gct cta tta gca tct act gta ttt ttc Ala Ala Leu Leu Ala Ser Thr Val Phe 40	gtt tct gca aaa tgg aaa aca tca tta act Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 55	gt att gct ttc tgg cat tac atg tac atg ly Ile Ala Phe Trp His Tyr Met Tyr Met 75	act ggt gat tcg cca act gta ttt aga tac Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr 90	gtt cct cta ttg ata tgt gaa ttc tac tta Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu 105
atg ggt aaa tta tta ctg at Met Gly Lys Leu Leu Ll 1	ttt gct gca ggt ggt ggt ga Phe Ala Ala Gly Gly As 20	tct ttt tgg tta gtt act gc Ser Phe Trp Leu Val Thr Al 35	ttt gtt gaa aga gat aga gt Phe Val Glu Arg Asp Arg Va 50	gta tcg ggt ctt gtt act gg Val Ser Gly Leu Val Thr Gl 65	aga ggg gta tgg att gag ac Arg Gly Val Trp Ile Glu Th 85	att gat tgg tta cta aca gt Ile Asp Trp Leu Leu Thr Va

Figure 22

	7701		55/108			101,0001,11
384	432	480	528	576	624	672
tta Leu	gca Ala	tgg Trp 160	tgt Cys	tat Tyr	ggt Gly	tat Ty <i>r</i>
aaa Lys	gag Glu	gct Ala	gca Ala 175	atg Met	aca Thr	atc Ile
aag Lys	ggt Gly	tta Leu	gct Ala	atg Met 190	ttc Phe	ctt Leu
ttt Phe 125	atg Met	tgt Cys	aag Lys	aca Thr	tat Tyr 205	aac Asn
ctg Leu	tac Tyr 140	ggg Gly	ggc Gly	aac Asn	ggt Gly	tta Leu 220
ggc Gly	ggt Gly	att Ile 155	gaa Glu	tac Tyr	gta Val	aac Asn
gct Ala	ttt Phe	gtt Val	gga G1 <u>y</u> 170	gct Ala	cct Pro	ctt Leu
gct Ala	gtg Val	ttc Phe	gct Ala	tca Ser 185	tat Tyr	gct Ala
gtt Val 120	ctt Leu	gca Ala	tgg Trp	caa Gln	att Ile 200	tca Ser
aat Asn	atg Met 135	ggt Gly	cta Leu	gtg Val	gca Ala	gga G1y 215
aca Thr	gtt Val	tgg Trp 150	gaa Glu	gct Ala	tgg Trp	ggt Gly
gca Ala	ctt Leu	gct Ala	tat Tyr 165	cct Pro	ggt Gly	gac Asp
gct Ala	tct Ser	aac Asn	att Ile	agt Ser 180	ttt Phe	ggt Gly
gct Ala 115	ggt Gly	atg Met	atg Met	gca Ala	atc Ile 195	atg Met
ctt Leu	gtt Val 130	att Ile	tac Tyr	act Thr	atc Ile	cta Leu 210
att Ile	ttg Leu	gga G1 <u>y</u> 145	gta Val	aat Asn	ata Ile	tac Tyr

750

720

(C	3
(r	į
		ns.
١.	2	נ
	Ė	3
	t	Ŋ
	_	

tgg Trp 240	
ata Ile	
att Ile	
tta Leu	
ggt Gly	
ttt Phe 235	
cta Leu	gct Ala 250
aat Asn	aat Asn
aag Lys	tct Ser
aac Asn	tct Ser
gtt Val 230	gaa Glu
rtt Phe	aaa Lys 245
gac Asp	gtt Val
gct Ala	gct Ala
CCT	gtt Val
aac Asn 225	aat Asn

WO 01/8	3701		57/108			PC1/USU1/14
48	96	144	. 192	240	288	336
g ggt aaa tta tta cgg ata tta ggt agt gtt att gca ctt cct aca t Gly Lys Leu Leu Arg Ile Leu Gly Ser Val Ile Ala Leu Pro Thr 5	ttt gct gca ggt ggc ggt gac ctt gat gct agt gat tac act ggt gtt Phe Ala Ala Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val 25	t ttt tgg tta gtt aca gct gct cta tta gca tct act gta ttt ttc r Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe 35	t gtt gaa aga gat aga gtt tct gca aaa tgg aaa aca tca tta act e Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 50	a tct ggt ctt gtt act ggt att gct ttc tgg cat tac atg tat atg l Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met 70	a gga gta tgg att gaa act ggt gat tcg cca act gta ttt aga tac g Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr 90	tt gat tgg tta cta aca gtt cct tta tta ata tgt gaa ttc tac tta le Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu 100
atg Met 1	th Th	tct Ser	ttt Phe	gta Val 65	aga Arg	øН

Figure 23

WO 01/83701		PCT/US01/14394
	58/108	

						· :
384	432	480	528	576	624	672
tca tta ttt aag aaa tta Ser Leu Phe Lys Lys Leu 125	ggt tac atg ggt gaa gca . Gly Tyr Met Gly Glu Ala 140	att ggg tgt tta gct tgg Ile Gly Cys Leu Ala Trp 155	gaa gga aaa tct gca tgt Glu Gly Lys Ser Ala Cys 175	tac aac aca atg atg tat Tyr Asn Thr Met Met Tyr 190	gta ggt tat ttc aca ggt Val Gly Tyr Phe Thr Gly 205	aac tta aac ctt atc tat Asn Leu Asn Leu Ile Tyr 220
ot gct gca act aat gtt gct gga la Ala Ala Thr Asn Val Ala Gly 15	gt tct ctt gtt atg ctt gtg ttt ly Ser Leu Val Met Leu Val Phe 135	og gct gca tgg cct gca ttc atter st Ala Ala Trp Pro Ala Phe Ile 150	og att tat gaa cta tgg gct gga et Ile Tyr Glu Leu Trp Ala Gly 165	ta agt cct gct gtg caa tca gct la Ser Pro Ala Val Gln Ser Ala 180	c gtt ggt tgg gcg att tat cct le Val Gly Trp Ala Ile Tyr Pro 35	ig ggt gac ggt gga tca gct ctt et Gly Asp Gly Gly Ser Ala Leu 215
att ctt gct Ile Leu Ala 115	cta gtt gg Leu Val Gl 130	gga atc atg Gly Ile Met 145	gta tac atg Val Tyr Met	aat act gca Asn Thr Ala	atc atc at Ile Ile Il	tac ctg atg Tyr Leu Met 210

Figure 23

· · ·
(1
Φ
H
5
T
Ŀ
_

720	750
ttt ggt tta att ata tgg Phe Gly Leu Ile Ile Trp 235	
ac aag att cta sn Lys Ile Leu	tct tct aat gct Ser Ser Asn Ala 250
ac ctt gct gac ttt gtt a sn Leu Ala Asp Phe Val A 25	at gtt gct gtt aaa gaa sn Val Ala Val Lys Glu 245
8 K C	დ ≮

48	96	144	192	240	88	336
	•		Н	0	7	m
aca Thr	gtt Val	ttc Phe	act Thr	atg Met 80	tac Tyr	tta Leu
cct Pro 15	ggt Gly	ttt	tta Leu	tac Tyr	aga Arg 95	tac Tyr
ctt Leu	act Thr 30	gta Val	tca Ser	atg Met	ttt Phe	ttc Phe 110
gca Ala	tac Tyr	act Thr 45	aca Thr	tac Tyr	gta Val	gaa Glu
att	gat Asp	tct Ser	aaa Lys 60	cat His	act Thr	tgt Cys
gtt Val	agt Ser	gca Ala	tgg Trp	tgg Trp 75	cca Pro	ata Ile
agt Ser 10	gct Ala	tta Leu	aaa Lys	ttc Phe	tcg Ser 90	tta Leu
ggt Gly	gat Asp 25	cta Leu	gca Ala	gct Ala	gat Asp	tta Leu 105
tta Leu	ctt Leu	gct Ala 40	tct Ser	att Ile	ggt Gly	cct Pro
ata Ile	gac Asp	gct Ala	gtt Val 55	ggt Gly	act Thr	gtt Val
ctg Leu	ggt Gly	aca Thr	aga Arg	act Thr 70	gaa Glu	aca Thr
tta Leu 5	ggc Gly	gtt Val	gat Asp	gtt Val	att Ile 85	cta Leu
tta Leu	ggt Gly 20	tta Leu	aga Arg	ctt Leu	tgg Trp	tta Leu 100
aaa Lys	gca Ala	tgg Trp 35	gaa Glu	ggt Gly	gta Val	tgg Trp
ggt Gly	gct Ala	ttt Phe	gtt Val 50	tct Ser	gga ${ t G1}{ t Y}$	gat Asp
atg Met 1	ttt Phe	tct Ser	ttt Phe	gta Val 65	aga Arg	att Ile

Figure 24

384	432	480	528	576	624	672
ctt Leu	gca Ala	tgg Trp 160	tgt Cys	gct Ala	ggt Gly	tat Tyr
aaa Lys	gaa Glu	gct Ala	gca Ala 175	atg Met	aca Thr	att Ile
aag Lys	ggt Gly	tta Leu	tct Ser	atg Met 190	ttc Phe	ctt Leu
ttt Phe 125	atg Met	tgt Cys	aaa Lys	aca Thr	tat Tyr 205	aac Asn
tta Leu	tac Tyr 140	999 G1y	gga Gly	aac Asn	ggt Gly	tta Leu 220
tca Ser	ggt Gly	att Ile 155	gaa Glu	tac Tyr	gta Val	aac Asn
ggc Gly	ttt Phe	att Ile	gga Gly 170	gct Ala	cct Pro	ctt Leu
gcc Ala	gtg Val	ttc Phe	gct Ala	tca Ser 185	tat Tyr	gct Ala
gtt Val 120	ctt Leu	gca Ala	tat Tyr	caa Gln	att Ile 200	tca Ser
aat Asn	atg Met 135	cct Pro	cta Leu	gtt Val	gca Ala	gga G1 <u>y</u> 215
act Thr	gtt Val	tgg Trp 150	gaa Glu	tcg Ser	tgg Trp	ggt Gly
gca Ala	ctt Leu	gct Ala	tat Tyr 165	cct Pro	ggt Gly	gac Asp
gct Ala	tct Ser	gca Ala	att Ile	agt Ser 180	ttc Phe	ggt Gly
gct Ala 115	ggt Gly	atg Met	atg Met	gca Ala	gtc Val 195	atg Met
ctt Leu	gtt Val 130	att Ile	tac Tyr	act Thr	ata Ile	cta Leu 210
att Ile	cta Leu	gga G1y 145	gta Val	aat Asn	atc Ile	tac Tyr

Figure 24

4
~
0
й
7
ヸ
널
II.

720	750
tgg Trp 240	
ata Ile	
att Ile	
tta Leu	
ggt Gly	
ttt Phe 235	
cta Leu	gct Ala 250
att Ile	aat Asn
aag Lys	tct Ser
aac Asn	tct Ser
gtt Val 230	gaa Glu
ttt Phe	aaa Lys 245
gac Asp	gtt Val
gct Ala	gct Ala
ctt Leu	gtt Val
25 25	at Sn

48	96	144	192	240	288	336
aca Thr	gtt Val	ttc Phe	act Thr	atg Met 80	tac Tyr	tta Leu
cct Pro 15	ggt Gly	ttt Phe	tta Leu	tac Tyr	aga Arg 95	tac Tyr
cťt Leu	act Thr 30	gta Val	tca Ser	atg Met	ttt Phe	ttc Phe 110
gca Ala	tac Tyr	act Thr 45	aca Thr	tac Tyr	gta Val	gaa Glu
att Ile	gat Asp	tat	aaa Lys 60	cat His	act Thr	tgt Cys
gtt Val	agt Ser	gca Ala	tgg Trp	tgg Trp 75	cca Pro	ata Ile
agt Ser 10	gct Ala	tta Leu	aaa Lys	ttc Phe	tcg Ser 90	tta Leu
ggt Gly	gat Asp 25	tta Leu	gca Ala	gct Ala	gat Asp	cta Leu 105
tta Leu	ctt Leu	gct Ala 40	tct Ser	att Ile	ggt Gly	cct Pro
ata Ile	gac Asp	gct Ala	gtt Val 55	ggt Gly	act Thr	gtt Val
ctg Leu	ggt Gly	act Thr	aga Arg	act Thr 70	gaa Glu	aca Thr
tta Leu 5	ggt Gly	gtt Val	gat Asp	gtt Val	att Ile 85	cta Leu
tta Leu	ggt Gly 20	tta Leu	aga Arg	ctt Leu	tgg Trp	tta Leu 100
aaa Lys	gca Ala	tgg Trp 35	gaa Glu	ggt Gly	gta Val	tgg Trp
ggt Gly	gct Ala	ttt Phe	gtt Val 50	tct Ser	$\tt ggg \\ \tt G1y$	gat Asp
atg Met 1	ttt Phe	tat Ser	ttt Phe	gta Val 65	aga Arg	att Ile
,						

Figure 25

		04/100			
432	480	528	576	624	672
ta gtt ggt tct ctt gtt atg ctt gtg ttt ggt tac atg ggt gaa gca eu Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 130	a att atg gca gct t y Ile Met Ala Ala T 5	ta tac atg att tat gaa cta tat gct gga gaa gga aaa tct gca tgt 11 Tyr Met Ile Tyr Glu Leu Tyr Ala Gly Glu Gly Lys Ser Ala Cys 170	it act gca agt cct tcg gtt caa tca gct tac aac aca atg atg gct in Thr Ala Ser Pro Ser Val Gln Ser Ala Tyr Asn Thr Met Met Ala 180	c ata gtc ttc ggt tgg gca att tat cct gta ggt tat ttc aca ggt e Ile Val Phe Gly Trp Ala Ile Tyr Pro Val Gly Tyr Phe Thr Gly 205	tac cta atg ggt gac ggt gga tca gct ctt aac tta aac ctt att tat Tyr Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr 210
OH	01 0 11	حز ان	וט אנן	₩ H	ъH
	ggt tct ctt gtt atg ctt gtg ttt ggt tac atg ggt gaa gca 43 Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 135	gtt ggt tct ctt gtt atg ctt gtg ttt ggt tac atg ggt gaa gca 43 Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 130 att atg gca gct tgg cct gca ttc att att ggg tgt tta gct tgg 160 Ile Met Ala Ala Trp Pro Ala Phe Ile Ile Gly Cys Leu Ala Trp 150 150	yal ggt tct ctt gtt atg ctt gtg ttt ggt tac atg ggt gaa gca Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 130 att atg gca gct tgg cct gca ttc att att ggg tgt tta gct tgg 48 Ile Met Ala Ala Trp Pro Ala Phe Ile Ile Gly Cys Leu Ala Trp 160 tac atg att tat gaa cta tat gct gga gaa gga aaa tct gca tgt 77 tac atg att tat gaa cta tat gct gga gaa gga aaa tct gca tgt 77 Tyr Met Ile Tyr Glu Leu Tyr Ala Gly Glu Gly Lys Ser Ala Cys 175	a gft ggt tct ctt gft atg ctt gtg ttt ggt tac atg ggt gaa gca 132 130 a att atg gca gct tgg cct gca ttc att att ggg tgt tta gct tgg 480 y lle Met Ala Ala Trp Pro Ala Phe lle lle Gly Cys Leu Ala Trp 160 a tac atg att tat gaa cta tat gct gga gaa gga aaa tct gca tgt 528 1 Tyr Met lle Tyr Glu Leu Tyr Ala Gly Glu Gly Lys Ser Ala Cys 165 t act gca agt cct tcg gtt caa tca gct tac aac aca atg atg gct 175 t act gca agt cct tcg gtt caa tca gct tac aac aca atg atg gct 180 t Thr Ala Ser Pro Ser Val Gln Ser Ala Tyr Asn Thr Met Met Ala 180 180	The Met Ice of the ten val Phe Gly Tyr Met Gly Glu Ala att atg gra gra gra gra gra Iss att atg gra gra gra try Pro Ala Phe Ile Ile Gly Cys Leu Ala Try Iss att at gra gra gra gra gra gra gra try Ala Gly Glu Gly Lys Ser Ala Cys Iss Iss at gra gra trat gra gra gra gra ara try Glu Ice Tyr Ala Gly Glu Gly Lys Ser Ala Cys Iss Iss at gra gra ara try Glu Ice Tyr Ala Gly Glu Gly Iys Ser Ala Cys Iss Iss at gra gra ara try Asn Thr Met Met Ala Ser Val Gln Ser Ala Tyr Asn Thr Met Met Ala Ser Val Gln Ser Ala Tyr Asn Thr Met Met Ala Ser Val Gln Ser Ala Tyr Asn Thr Met Met Ala Ser Pro Ser Val Gln Ser Ala Tyr Asn Thr Met Gly Tyr Asn Thr Met Its ara gra att trat crt gra gra trat tro ara gra Iss Iss Iss Iss Iss Iss Iss Iss Iss Is

Figure 25

Ŋ
~
O
Н
5
5
-H
14

720	750
tgg Trp 240	
ata Ile	
att Ile	
tta Leu	
ggt Gly	
ttt Phe 235	
cta Leu	gct Ala 250
att Ile	aat Asn
aag Lys	tct Ser
aac Asn	tct Ser
gtt Val 230	gaa Glu
ttt Phe	aaa Lys 245
gac Asp	gtt Val
gct Ala	gct Ala
ctt Leu	gct Ala
aac Asn 225	aat Asn

			00/100			
48	96	144	192	240	2 8 8	336
a ctt cct aca a Leu Pro Thr 15	act ggt gtt Thr Gly Val	gta ttt ttc Val Phe Phe	tca tta act Ser Leu Thr	atg tat atg Met Tyr Met 80	ttt aga tac Phe Arg Tyr 95	ttc tac tta Phe Tyr Leu 110
t gtt att gca r Val Ile Ala	t agt gat tac a Ser Asp Tyr	a gca tct act u Ala Ser Thr 45	a tgg aaa aca s Trp Lys Thr 60	c tgg cat tac e Trp His Tyr 75	g cca act gta r Pro Thr Val	a ata tgt gaa ı Ile Cys Glu
tta ggt agt Leu Gly Ser 10	ctt gat gct Leu Asp Ala 25	gct tta tta Ala Leu Leu 40	tct gca aaa Ser Ala Lys	att gct ttc Ile Ala Phe	ggt gat tcg Gly Asp Ser 90	cct tta tta Pro Leu Leu 105
tta ctg ata Leu Leu Ile 5	ggt ggt gac Gly Gly Asp	gtt act gct Val Thr Ala	gat aga gtt Asp Arg Val 55	gtt act ggt Val Thr Gly 70	att gaa act Ile Glu Thr 85	cta aca gtt Leu Thr Val
atg ggt aaa tta Met Gly Lys Leu 1	ttt gct gca ggt Phe Ala Ala Gly 20	tct ttt tgg tta Ser Phe Trp Leu 35	ttt gtt gaa aga Phe Val Glu Arg 50	gta tct ggt ctt Val Ser Gly Leu 65	aga ggg gta tgg Arg Gly Val Trp	ata gat tgg tta Ile Asp Trp Leu 100
				•	- •	

Figure 26

~~~	~~~	
PCT	/11801	/14394

WO 01/8	3701		67/108			PCT/US01/14
384	432	480	528	576	624	672
tta Leu	. gca . Ala	tgg Trp 160	tgt Cys	tat Tyr	ggt Gly	tat Ty <i>r</i>
ааа Lys	gaa Glu	gct Ala	gca Ala 175	atg Met	aca Thr	att Ile
aag Lys	ggt Gly	tta Leu	tct Ser	atg Met 190	ttc Phe	ctt Leu
ttt Phe 125	atg Met	tgt Cys	aaa Lys	aca Thr	tat Tyr 205	aac Asn
tta Leu	tac Tyr 140	ggg Gļy	gga Gly	aac Asn	ggt Gly	tta Leu 220
tca Ser	ggt Gly	att Ile 155	gaa Glu	tac Tyr	gta Val	aac Asn
gga Gly	ttt Phe	att Ile	gga G1y 170	gct Ala	cct Pro	ctt Leu
gct Ala	gtg Val	ttc Phe	gct Ala	tca Ser 185	tat Tyr	gca Ala
gtt Val 120	ctt Leu	gca Ala	tgg Trp	caa Gln	att Ile 200	tca Ser
aat Asn	atg Met 135	cct Pro	cta Leu	gtg Val	gcg Ala	gga G1y 215
act Thr	gtt Val	tgg Trp 150	gaa Glu	gct Ala	tgg Trp	ggt Gly
gca Ala	ctt Leu	gca Ala	tat Tyr 165	cct Pro	ggt Gly	gac Asp
gct Ala	tct Ser	gct Ala	att Ile	agt Ser 180	ttt Phe	ggt Gly
gcc Ala 115	ggt Gly	atg Met	atg Met	gca Ala	atc Ile 195	atg Met
ctt Leu	gtt Val 130	atc Ile	tac Tyr	act Thr	atc Ile	ctt Leu 210
att Ile	ctt Leu	gga Gly 145	gta Val	aat Asn	atc Ile	tac Tyr
•						

Figure 26

7.7	75
tgg Trp 240	
ata Ile	
att Ile	
tta Leu	
ggt Gly	
cta ttt Leu Phe 235	
cta Leu	gct Ala 250
att Ile	aat Asn
aac aag Asn Lys	tct Ser
aac Asn	tct Ser
gtt Val 230	gaa G1u
ttt Phe	aaa Lys 245
gac Asp	gtt Val
gct Ala	gct Ala
ctt Leu	gtt Val
ac sn 25	at sn

figure 20

•						
48	96	144	192	240	. 8 8	336
aca Thr	gtt Val	ttc Phe	act	atg Met 80	tac Tyr	tta Leu
cct Pro 15	ggt Gly	ttt Phe	tta Leu	tat Tyr	aga Arg 95	tac Tyr
ctt Leu	act Thr 30	gta Val	tca Ser	atg Met	ttt Phe	ttc Phe 110
gca Ala	tac Tyr	act Thr 45	aca Thr	tac Tyr	gta Val	gaa Glu
att 11e	gat Asp	tct Ser	aaa Lys 60	cat His	act Thr	tgt Cys
gtt Val	agt Ser	gcg Ala	tgg Trp	tgg Trp 75	cca Pro	ata Ile
agt Ser 10	gct Ala	tta Leu	aaa Lys	ttc Phe	tcg Ser 90	tta Leu
ggt Gly	gat Asp 25	cta Leu	gca Ala	gct Ala	gat Asp	tta Leu 105
tta Leu	ctt Leu	gct Ala 40	tct Ser	att Ile	ggt Gly	cct Pro
ata Ile	gac Asp	gct Ala	gtt Val 55	ggt Gly	act Thr	gtt Val
ctg Leu	ggt Gly	aca Thr	aga Arg	act Thr 70	gaa Glu	aca Thr
tta Leu 5	ggc $_{ m G1Y}$	gtt Val	gat Asp	gtt Val	att Ile 85	cta
tta Leu	ggt Gly 20	tta Leu	aga Arg	ctt Leu	tgg Trp	tta Leu 100
aaa Lys	gca Ala	tgg Trp 35	gaa Glu	ggt Gly	gta Val	tgg Trp
ggt Gly	gct Ala	ttt Phe	gtt Val 50	tct Ser	gga Gly	gat Asp
atg Met 1	ttt Phe	tct Ser	ttt Phe	gta Val 65	aga Arg	att Ile

WO 01/83701		PCT/US01/14394
	70/108	

4	7	0	ω .	9	4	0
38	43	48	52	57	62,	67.
ctt Leu	gca Ala	tgg Trp 160	tgt Cys	tat Tyr	ggt Gly	tat Tyr
aaa Lys	gaa Glu	gca Ala	gca Ala 175	atg Met	aca Thr	att Ile
aag Lys	ggt Gly	tta Leu	tct Ser	atg Met 190	ttc Phe	ctt Leu
ttt Phe 125	atg Met	tgt Cys	ааа Lys	aca Thr	tat Tyr 205	aac Asn
tta Leu	tac Tyr 140	gga $_{ m GLY}$	gga Gly	aac Asn	ggt Gly	cta Leu 220
tca Ser	ggt Gly	gtt Val 155	gaa Glu	tac Tyr		
ggc Gly	ttt Phe	atc Ile	ggt Gly 170	gct Ala	cct gta Pro Val	cttjaat Leu Asn
gcc Ala	gtg Val	ttc Phe	gct Ala	tca Ser 185	tat Tyr	gct Ala
gtt Val 120	ctt Leu	gca Ala	tgg Trp	cag Gln	att Ile 200	tca Ser
aat Asn	atg Met 135	cct Pro	cta Leu	gta Val	gca Ala	gga Gly 215
act Thr	gtt Val	tgg Trp 150	gaa Glu	gct Ala	tgg Trp	ggt Gly
gca Ala	ctt Leu	gct Ala	tat Tyr 165	cct Pro	ggt Gly	gac Asp
gct Ala	tct Ser	gcg Ala	att Ile	agt Ser 180	gtt Val	ggt Gly
gct Ala 115	ggt Gly	atg Met	atg Met	gca Ala	atc Ile 195	atg Met
ctt Leu	gtt Val 130	ata Ile	tat Tyr	act Thr	atc Ile	cta Leu 210
att Ile	cta Leu	gga G1 <u>y</u> 145	gta Val	aat Asn	atc Ile	tac Tyr

Figure 27

750

720

tgg Trp 240	
ata Ile	
att Ile	
tta Leu	
ggt Gly	
ttt Phe 235	
cta Leu	gct Ala 250
att Ile	aat Asn
aag Lys	tct Ser
aac Asn	tct Ser
gtt Val 230	gaa Glu
ttt Phe	aaa Lys 245
gac Asp	gtt Val
gct Ala	gct Ala
ctt Leu	gtt Val
aac Asn 225	aat Asn

WO 01/83701		PCT/US01/14394
	72/108	

48	96	144	192	240	288	336
gca ctt cca tca Ala Leu Pro Ser 15	act gtt ggt gtt Thr Val Gly Val 30	act gta ttc ttt Thr Val Phe Phe 45	act tca ctt act Thr Ser Leu Thr	tat ctc tac atg Tyr Leu Tyr Met 80	gta ttt aga tat Val Phe Arg Tyr 95	gag ttc tat cta Glu Phe Tyr Leu 110
gct att Ala Ile	agt gat Ser Asp	gcg gca ac Ala Ala Th 45	tgg aaa Trp Lys 60	tgg cat Trp His 75	cca aca gt Pro Thr Va	atg gtt ga Met Val Gl
ggt agt . Gly Ser 10	gat ata Asp Ile 25	atg tta Met Leu	gct aag Ala Lys	gct ttt Ala Phe	gat aca Asp Thr 90	tta caa Leu Gln 105
ata tta Ile Leu	gat cta Asp Leu	gct ggt Ala Gly 40	gtc agc Val Ser 55	ggt ata Gly Ile	act ggt Thr Gly	gtt cca Val Pro
a tta ctg 1 Leu Leu 5	c ggt ggc a Gly Gly	g gtt aca 1 Val Thr	a gac caa y Asp Gln	att act IIle Thr 70	gata gat Ile Asp 85	tta act Leu Thr
t aaa tta y Lys Leu	t gct gct a Ala Ala 20	c tgg ctg e Trp Leu 35	a gaa aga 1 Glu Arg	t ggt tta r Gly Leu	t gtt tgg y Val Trp	t tgg cta p Trp Leu 100
atg ggt Met Gly 1	ttt gct. Phe Ala	tca ttc Ser Phe	ttt gta Phe Val 50	gta tct Val Ser 65	aga ggt Arg Gly	att gat Ile Asp

384	432	480	528	576	624	672
.,	•	•	-,	<b>-</b> ,		•
ä ä	fi e	<u>Б</u> 4 0	ta al	වා	۲ ۲	<b>ለ</b> ብ
ctt Leu	gc Al	tgg Trp 160	δ > .	aag Lys	ggt Gly	ati II
aag Lys	gaa Glu	ggt Gly	gct Ala 175	atg Met	gct Ala	ctt Leu
aag Lys	ggc $_{ m G1Y}$	gct Ala	gct Ala	atg Met 190	gct Ala	aac Asn
ttt Phe 125	gca Ala	atg Met	aag Lys	gca Ala	tat Tyr 205	tta Leu
tta Leu	ttt Phe 140	ggt Gly	ggt Gly	aat Asn	gga Gly	aac Asn 220
tca Ser	gga $_{ m G1Y}$	ctt Leu 155	gaa Glu	gct tac Ala Tyr	gct Ala	tca Ser
gct Ala	gct Ala	att Ile	ggt Gly 170	gct Ala	cct Pro	gct Ala
gct Ala	ggt Gly	ttc Phe	atg Met	tct Ser 185	tat Tyr	tac Tyr
gtt Val 120	tta Leu	gct Ala	cat His	aac Asn	att Ile 200	gta Val
agt Ser	atg Met 135	cct Pro	cta Leu	gtt Val	gca Ala	ggt Gly 215
aca Thr	gta Val	tta Leu 150	gag Glu	gct Ala	tgg Trp	gac Asp
tgt Cys	tta Leu	gta Val	tat Tyr 165	cct Pro	gga Gly	ggt Gly
gct Ala	tca Ser	cct Pro	att Ile	agt Ser 180	att Ile	agt Ser
gct Ala 115	ggt Gly	gct Ala	atg Met	gca Ala	gtt Val 195	atg Met
ctt Leu	gct Ala 130	tta Leu	tac Ty <i>r</i>	act Thr	att Ile	cta Leu 210
att Ile	cta Leu	ggt Gly 145	tta Leu	agt Ser	att Ile	tac Tyr
					,	

Figure 28

720	753
att Ile 240	
atc Ile	
ttg Leu	
ggt Gly	
ttt Phe	
cta Leu 235	gct Ala
att Ile	aat Asn 250
aag Lys	tct Ser
aac Asn	tct Ser
gtt Val	gaa Glu
ttt Phe 230	aaa Lys
gac Asp	gtt Val 245
gct Ala	gct Ala
aac ctt Asn Leu	gtt Val
aac Asn	aat Asn
tat Tyr 225	tgg Trp

PCT	US01	/14394

WO 01/8	33701	•	75/108			PCT/US01/143
48	96	144	192	240	288	336
ata tta ggt agt gct att gca ctt cca tca Ile Leu Gly Ser Ala Ile Ala Leu Pro Ser 10	gat cta gat ata agt gat act gtt ggt gtt Asp Leu Asp Ile Ser Asp Thr Val Gly Val 25	gct ggt atg tta gcg gca act gtg ttc ttt Ala Gly Met Leu Ala Ala Thr Val Phe Phe 40	gtc agc gct gag tgg aaa act tca ctt act Val Ser Ala Glu Trp Lys Thr Ser Leu Thr 55	ggt ata gct ttt tgg cat tat ctc tat atg Gly Ile Ala Phe Trp His Tyr Leu Tyr Met 75	act Thr	gtt cca tta caa atg gtt gag ttc tat cta Val Pro Leu Gln Met Val Glu Phe Tyr Leu 105
tta ctg Leu Leu 5	ggt ggc Gly Gly	gtt aca Val Thr	gac caa Asp Gln	att act Ile Thr 70	ata gat Ile Asp 85	tta act Leu Thr
aaa tta t Lys Leu L 5	gct gct g Ala Ala G 20	tgg ctg g Trp Leu V 35	gaa aga g Glu Arg A	ggt tta a Gly Leu I	gtt tgg a Val Trp I 8	tgg tta t Trp Leu L
τ Γa	a t A G	n e n Ei w	g A	ה ממ	η γ. Q ζ	ij (t

tca ttc Ser Phe

ttt gct gct Phe Ala Ala

ggt aaa tta Gly Lys Leu

atg Met 1

Figure 29

aga ggt gtt Arg Gly Val

att gat tgg Ile Asp Trp

tct ggt Ser Gly

gta Val 65

ttt gta ç Phe Val ( 50

384	432	480	528	576	624	672
ctt gct gct tgt aca agt gtt gct gct tca tta ttt aag aag ctt Leu Ala Ala Cys Thr Ser Val Ala Ala Ser Leu Phe Lys Lys Leu 115	gct ggt tca tta gta atg tta ggt gct gga ttt gca ggc gaa gct A3 Ala Gly Ser Leu Val Met Leu Gly Ala Gly Phe Ala Gly Glu Ala 130	tta gct cct gta tta cct gct ttc att att ggt atg gct gga tgg Leu Ala Pro Val Leu Pro Ala Phe Ile Ile Gly Met Ala Gly Trp 150	tac atg att tat gag cta tat atg ggt gaa ggt aag gct gct gta 52 Tyr Met Ile Tyr Glu Leu Tyr Met Gly Glu Gly Lys Ala Ala Val 170	act gca agt cct gct gtt aac tct gca tac aac gca atg atg atg Thr Ala Ser Pro Ala Val Asn Ser Ala Tyr Asn Ala Met Met Met 180	att gtt gtt gga tgg gca att tat cct gct gga tat gct gct ggt 62 Ile Val Val Gly Trp Ala Ile Tyr Pro Ala Gly Tyr Ala Ala Gly 205	cta atg ggt ggc gaa ggt gta tac gct tca aac tta aac ctt ata 67 Leu Met Gly Gly Glu Gly Val Tyr Ala Ser Asn Leu Asn Leu Ile 210
att Ile	cta Leu	gga G1 <u>Y</u> 145	tta Leu	agt Ser	att Ile	tac Tyr

Figure 29

720	753
ttt ggt ttg atc att Phe Gly Leu Ile Ile 240	
cta t Leu 1 235	gct Ala
att Ile	aat Asn 250
aag Lys	tat Ser
aac Asn	tct Ser
gtt Val	gaa Glu
ttt Phe 230	ааа Lys
gac Asp	gtt Val 245
gct Ala	gct Ala
ctt Leu	gtt Val
aac Asn	aat Asn
tat Tyr 225	tgg Trp

48	9	144	192	240	. 288	336
		•				
tca Ser	gtt Val	ttt Phe	act Thr	atg Met 80	tat Tyr	cta Leu
cca Pro 15	ggt Gly	ttc Phe	ctt Leu	tat Tyr 1	aga Arg '	tat Tyr ]
ctt Leu	gtt Val 30	gtg Val	tca Ser	ctc Leu	ttc Phe	ttc Phe 110
gca Ala	act Thr	act Thr 45	act Thr	tat Tyr	gta Val	gag Glu
att Ile	gat Asp	gca Ala	aaa Lys 60	cat His	aca Thir	gtt Val
gct Ala	agt Ser	gcg Ala	tgg Trp	tgg Trp 75	cca Pro	atg Met
agt Ser 10	ata Ile	tta Leu	aag Lys	ttt Phe	acc Thr 90	caa Gln
ggt Gly	gat Asp 25	atg Met	gct Ala	gcc Ala	gat Asp	tta Leu 105
tta Leu	cta Leu	ggt Gly 40	agc Ser	ata Ile	ggt Gly	cca Pro
ata Ile	gat Asp	gct Ala	gtc Val 55	ggt Gly	act Thr	gtt Val
ctg Leu	ggc Gly	aca Thr	caa Gln	act Thr 70	gac Asp	act Thr
tta Leu 5	ggt Gly	gtt Val	gac Asp	att Ile	ata Ile 85	tta Leu
tta Leu	gct Ala 20	ctg Leu	aga Arg	tta Leu	tgg Trp	tta Leu 100
aaa Lys	gct Ala	tgg Trp 35	gaa Glu	ggt Gly	gtt Val	tgg Trp
ggt Gly	gct Ala	ttc Phe	gta Val 50	tct Ser	ggt Gly	gat Asp
atg Met 1	ttt Phe	tca Ser	ttt Phe	gta Val 65	aga Arg	att Ile

Figure 30

WO 01/83701		PCT/US01/14394
	79/108	

384	432	480	528	576	624	672
ctt Leu	gct Ala	tgg Trp 160	gta Val	atg Met	ggt Gly	ata Ile
aag Lys	gaa Glu	gga Gly	gct Ala 175	atg Met	gct Ala	ctt Leu
aag Lys	ggc Gly	gct Ala	gct Ala	atg Met 190	gct Ala	aac Asn
ttt Phe 125	gca Ala	atg Met	aag Lys	gca Ala	tat Tyr 205	cta Leu
tta Leu	ttt Phe 140	ggt Gly	ggt Gly	aac Asn	gga G1y	aac Asn 220
tca Ser	gga Gly	att Ile 155	gaa Glu	tac Tyr	gct Ala	tca Ser
gct Ala	gct Ala	att Ile	ggt Gly 170	gca Ala	cct Pro	gct Ala
gct Ala	ggt Gly	ttc Phe	atg Met	tct Ser 185	tat Tyr	tac Tyr
gtt Val 120	tta Leu	gct Ala	tat Tyr	aac Asn	att Ile 200	gta Val
aat Asn	atg Met 135	cct Pro	cta Leu	gtt Val	gca Ala	ggt Gly 215
aca Thr	gta Val	tgg Trp 150	gag Glu	gct Ala	tgg Trp	gaa Glu
tgt Cys	tta Leu	gta Val	tat Tyr 165	cct Pro	gga Gly	ggc Gly
gct Ala	tca Ser	cct	att Ile	agt Ser 180	gtt Val	ggt Gly
gct Ala 115	ggt Gly	gct Ala	atg Met	gca Ala	gtt Val 195	atg Met
ctt Leu	gct Ala 130	tta Leu	tac Tyr	act Thr	att Ile	cta Leu 210
att Ile	cta Leu	gga Gly 145	tta Leu	agt Ser	att Ile	tac Tyr

Figure 30

720	753
ttt ggt ttg atc att Phe Gly Leu Ile Ile 240	
cta Leu 235	gct Ala
att. He	aat Asn 250
aag Lys	tct Ser
aac Asn	tct Ser
gtt Val	gaa Glu
ttt Phe 230	aaa Lys
gac Asp	gtt Val 245
gct Ala	gct Ala
ctt Leu	gtt Val
aac Asn	aat gtt Asn Val
tat Tyr 225	tgg Trp

WO 01/83701		PCT/US01/14394
•	81/108	,

48	96	144	192	240	288	336
					.,	<b>(</b> -1
tca Ser	gtt Val	ttt Phe	act Thr	atg Met 80	tat Tyr	cta Leu
cca Pro 15	ggt Gly	ttc Phe	ctt Leu	tac Tyr	aga Arg 95	tat Tyr
ctt Leu	gtt Val 30	gta Val	tca Ser	ctc Leu	ttt Phe	ttc Phe 110
gcg Ala	act Thr	act Thr 45	act Thr	tat Tyr	gta Val	gag Glu
att Ile	gat Asp	gca Ala	aaa Lys 60	cat His	aca Thr	gtt Val
gct Ala	agt Ser	gcg Ala	tgg Trp	tgg Trp 75	cca Pro	atg Met
agt Ser 10	ata Ile	tta Leu	aag Lys	ttt Phe	aca Thr 90	caa Gln
ggt Gly	gat Asp 25	atg Met	gct Ala	gct Ala	gat Asp	tta Leu 105
tta Leu	cta Leu	ggt Gly 40	agc Ser	ata Ile	ggt Gly	cca Pro
ata Ile	gat Asp	gct Ala	gtc Val 55	ggt Gly	act Thr	gtt Val
ctg	Gly	acg Thr	caa Gln	act Thr 70	gat Asp	act Thr
tta Leu 5	ggt Gly	gtt Val	gac Asp	att Ile	ata Ile 85	tta Leu
tta Leu	gct Ala 20	ctg Leu	aga Arg	tta Leu	tgg Trp	tta Leu 100
aaa Lys	gct Ala	tgg Trp 35	gaa Glu	ggt t Gly 1	gtt Val	tgg Trp
ggt Gly	gct Ala	ttc Phe	gta Val 50	tct Ser	ggt Gly	gat Asp
atg Met 1	ttt Phe	tca Ser	ttt Phe	gta Val 65	aga Arg	att Ile

Figure 31

WO 01/83701		PCT/US01/14394
	82/108	

384	432	480	528	576	624	672
•				·		
ctt Leu	gct Ala	tgg Trp 160	gta Val	atg Met	ggt, Gly	ata Ile
aag Lys	gaa Glu	gga G1Y	gct Ala 175	atg Met	gct Ala	ctc Leu
aag Lys	ggc Gly	gct Ala	gct Ala	atg Met 190	gct Ala	aac Asn
ttt Phe 125	gca Ala	atg Met	aag Lys	gca Ala	tat Tyr 205	tta Leu
tta Leu	tct Ser 140	ggt Gly	ggt Gly	aac Asn	gga Gly	aac Asn 220
tca Ser	gga Gly	att Ile 155	gaa Glu	tac Tyr	gct Ala	tca Ser
gct Ala	gct Ala	att Ile	ggt Gly 170	gca Ala	cct Pro	gct Ala
gct Ala	ggt Gly	ttc Phe	atg Met	tct Ser 185	tat Tyr	tac Tyr
gtt Val 120	tta Leu	gct Ala	tat Tyr	aac Asn	att Ile 200	gta Val
agt Ser	atg Met 135	cct Pro	cta Leu	gtt Val	gca Ala	ggt Gly 215
aca Thr	gta Val	tta Leu 150	gag Glu	gct Ala	tgg Trp	gaa Glu
tgt Cys	ttg Leu	gta Val	tat Tyr 165	cct Pro	gga Gly	ggc Gly
gct Ala	tca Ser	cct Pro	att Ile	agt Ser 180	gtt Val	ggt Gly
gcc Ala 115	ggt Gly	gct Ala	atg Met	gca Ala	gtt Val 195	atg Met
ctt Leu	gct Ala 130	tta Leu	tac Tyr	act Thr	att Ile	cta Leu 210
att Ile	cta Leu	gga G1 <u>y</u> 145	tta Leu	agt ` Ser	att Ile	tac Tyr

Figure 31

720	753
c att e Ile 240	
at Il	
ttg Leu	
ggt Gly	e agil sire i sag
.i) (i)	-
cta tti Leu Phe 235	gct Ala
att Ile	aat Asn 250
aag Lys	tct Ser
aac Asn	tct Ser
gtt Val	gaa Glu
ttt Phe 230	ааа Lys
gac Asp	gtt Val 245
ctt gct g Leu Ala A	gtt gct Val Ala
ctt	gtt Val
aac Asn	aat Asn
tat Tyr 225	tgg Trp

			84/108			
48	96	144	192	240	288	336
tca Ser	gtt Val	ttt Phe	act Thr	atg Met 80	tat Tyr	cta Leu
cca Pro 15	ggt Gly	ttc Phe	ctt Leu	tat Tyr	aga Arg 95	tat Tyr
ctt Leu	gtt Val 30	gtg Val	tca Ser	ctc Leu	ttc Phe	ttc Phe 110
gca Ala	act Thr	act Thr 45	act Thr	tat Tyr	gta Val	gag Glu
att Ile	gat Asp	gca Ala	aaa Lys 60	cat His	aca Thr	gtt Val
gct Ala	agt Ser	gcg Ala	tgg Trp	tgg Trp 75	cca Pro	atg Met
agt Ser 10	ata Ile	tta Leu	aag Lys	ttt Phe	acc Thr 90	caa Gln
ggt Gly	gat Asp 25	atg Met	gct Ala	gct Ala	gat Asp	tta Leu 105
tta Leu	cta Leu	ggt Gly 40	agc Ser	ata Ile	ggt Gly	cca Pro
ata Ile	gat Asp	gct Ala	gtc Val 55	ggt Gly	act Thr	gtt Val
ctg Leu	ggc Gly	aca Thr	caa Gln	act Thr 70	gac Asp	act Thr
tta Leu 5	ggt Gly	gtt Val	gac Asp	att Ile	ata Ile 85	tta Leu
tta Leu	gct Ala 20	ctg Leu	aga Arg	tta Leu	tgg Trp	tta Leu 100
aaa Lys	gct Ala	tgg Trp 35	gaa G1u	ggt Gly	gtt Val	tgg Trp
ggt Gly	gct Ala	ttc Phe	gta Val 50	tct Ser	ggt Gly	gat Asp
atg Met 1	ttt Phe	tca Ser	ttt Phe	gta Val 65	aga Arg	att Ile

Figure 32

WO 01/8	33701		85/108			PCT/US01/1	
384	432	480	528	576	624	672	
ctt gct gct tgt aca aat gtt gct gct tca tta ttt aag aag ctt e Leu Ala Ala Cys Thr Asn Val Ala Ala Ser Leu Phe Lys Lys Leu 115	a gct ggt tca tta gta atg tta ggt gct gga ttt gca ggc gaa gct 1 Ala Gly Ser Leu Val Met Leu Gly Ala Gly Phe Ala Gly Glu Ala 130	a tta gct cct gta tgg cct gct ttc att att ggt atg gct gga tgg 7 Leu Ala Pro Val Trp Pro Ala Phe Ile Ile Gly Met Ala Gly Trp 5	tac atg att tat gag cta tat atg ggt gaa ggt aag gct gct gta 1 Tyr Met Ile Tyr Glu Leu Tyr Met Gly Glu Gly Lys Ala Ala Val 170	c act gca agt cct gct gtt aac tct gca tac aac gca atg atg gtg c Thr Ala Ser Pro Ala Val Asn Ser Ala Tyr Asn Ala Met Met Val 180	att gtt gtt gga tgg gca att tat cct gct gga tat gct gct ggt e Ile Val Val Gly Trp Ala Ile Tyr Pro Ala Gly Tyr Ala Ala Gly 200	cta atg ggt ggc gaa ggt gta tac gct tca aac cta aac ctt ata Leu Met Gly Gly Glu Gly Val Tyr Ala Ser Asn Leu Asn Leu Ile 210	
att Ile	cta Leu	gga Gl <u>y</u> 145	tta Leu	agt Ser	att Ile	tac Tyr	

Figure 32

720	753
c att e Ile 240	
at Il	
ttg Leu	,
ggt Gly	
ttt Phe	
cta Leu 235	gct Ala
att Ile	aat Asn 250
aag Lys	tct Ser
aac Asn	tct Ser
gtt Val	gaa Glu
ttt Phe 230	aaa Lys
gac Asp	gtt Val 245
gct Ala	gct Ala
ctt Leu	gtt Val
aac Asn	aat Asn
tat Tyr 225	tgg Trp

			87/108			
48	96	144	192	240	288	336
tca Ser	gtt Val	ttt Phe	act Thr	atg Met 80	tat Tyr	cta Leu
ССА Рго 15	ggt Gly	ttc Phe	ctt Leu	tat Tyr	aga Arg 95	tat Tyr
ctt Leu	gtt Val 30	gtg Val	tca Ser	ctc Leu	ttc Phe	ttc Phe 110
gca Ala	act Thr	act Thr 45	act Thr	tat Tyr	gta Val	gag Glu
att Ile	gat Asp	gca Ala	aaa Lys 60	cat His	aca Thr	gtt Val
gct Ala	agt Ser	gcg Ala	tgg Trp	tgg Trp 75	cca Pro	atg Met
agt Ser 10	ata Ile	tta Leu	aag Lys	ttt Phe	acc Thr 90	caa Gln
ggt Gly	gat Asp 25	atg Met	gct Ala	gct Ala	gat Asp	tta Leu 105
tta Leu	cta Leu	ggt Gly 40	agc Ser	ata Ile	ggt Gly	cca Pro
ata Ile	gat Asp	gct Ala	gtc Val 55	ggt Gly	act Thr	gtt Val
ctg Leu	ggc Gly	aca Thr	caa Gln	act Thr 70	gac Asp	act Thr
tta Leu 5	ggt Gly	gtt Val	gac Asp	att Ile	ata Ile 85	tta Leu
tta Leu	gct Ala 20	ctg Leu	aga Arg	tta Leu	tgg Trp	tta Leu 100
aaa Lys	gct Ala	tgg Trp 35	gaa Glu	ggt Gly	gtt Val	tgg Trp
ggt Gly	gct Ala	ttc Phe	gta Val 50	Ser	ggt Gly	gat Asp
atg Met 1	ttt Phe	tca Ser	ttt Phe	gta Val 65	aga Arg	att Ile

figure 33

PCT/US01/14394

W O 01/	00701		88/108			1 0 17 0 5 0 17 1
384	432	480	228	576	624	672
ctt Leu	gct Ala	tgg Trp 160	gta Val	atg Met	ggt Gly	ata Ile
aag Lys	gaa Glu	gga G1y	gct Ala 175	atg Met	gct Ala	ctt Leu
aag Lys	ggc Gly	gct Ala	gct Ala	atg Met 190	gct Ala	aac Asn
ttt Phe 125	gca Ala	atg Met	aag Lys	gca Ala	tat Tyr 205	tta
tta Leu	ttt Phe 140	ggt Gly	ggt Gly	aac Asn	gga $_{ m G1y}$	aac Asn 220
tca Ser	gga G1y	att Ile 155	gaa Glu	tac Tyr	gct Ala	tca Ser
gct Ala	gct Ala	att. Ile	ggt Gly 170	gca Ala	cct Pro	gct Ala
gct Ala	ggt Gly	ttc Phe	atg Met	tct Ser 185	tat Ty <i>r</i>	tac Tyr
gtt Val 120	tta Leu	gct Ala	tat Tyr	aac Asn	att Ile 200	gta Val
agt Ser ,	atg Met 135	cct Pro	cta Leu	gtt Val	gca Ala	ggt Gly 215
aca Thr	gta Val	tta Leu 150	gag Glu	gct Ala	tgg Trp	gaa G1u
tgt Cys	tta Leu	gta Val	tat Tyr 165	cct Pro	gga G1y	ggc Gly
gct Ala	tca Ser	cct Pro	att Ile	agt Ser 180	gtt Val	ggt Gly
gct Ala 115	ggt Gly	gct Ala	atg Met	gca Ala	gtt Val 195	atg Met
ctt Leu	gct Ala 130	tta Leu	tac Tyr	act Thr	att Ile	cta Leu 210
att Ile	cta Leu	gga G1y 145	tta Leu	agt Ser	att Ile	tac Tyr

WO 01/83701

Figure 33

753

720

y atc att 1 Ile Ile 240	
ttg Leu	
ggt Gly	
ttt Phe	
cta Leu 235	gct Ala
att Ile	aat Asn 250
aag Lys	tct Ser
aac Asn	tct Ser
gtt Val	gaa Glu
ctt Leu 230	aaa Lys
gac Asp	gtt Val 245
gct Ala	gct Ala
ctt	gtt Val
aac Asn	aat Asn
tat Tyr 225	tgg Trp

48	96	144	192	240	 288 2	336
tca Ser	gtt Val	ttt Phe	act Thr	atg Met 80	tat Tyr	cta Leu
cca Pro 15	ggt Gly	ttc Phe	ctt Leu	tat Tyr	aga Arg 95	tat Tyr
ctt Leu	gtt Val 30	gtg Val	tca Ser	ctc Leu	ttc Phe	ttc Phe 110
gca Ala	act Thr	act Thr 45	act Thr	tat Tyr	gta Val	gag Glu
att Ile	gat Asp	gca Ala	aaa Lys 60	cat His	aca Thr	gtt Val
gct Ala	agt Ser	gcg Ala	tgg Trp	tgg Trp 75	cca Pro	gtg Val
agt Ser 10	ata Ile	tta Leu	aag Lys	ttt Phe	acc Thr 90	caa Gln
ggt Gly	gat Asp 25	atg Met	gct Ala	gct Ala	gat Asp	tta Leu 105
tta Leu	cta Leu	ggt Gly 40	agc Ser	ata Ile	ggt Gly	cca Pro
ata Ile	gat Asp	gct Ala	gtc Val 55	ggt Gly	act Thr	gtt Val
ctg Leu	ggc Gly	aca Thr	caa Gln	act Thr 70	gac Asp	act Thr
tta Leu 5	ggt Gly	gtt Val	gac Asp	att Ile	ata Ile 85	tta Leu
tta Leu	gct Ala 20	ctg Leu	aga Arg	tta Leu	tgg Trp	tta Leu 100
aaa Lys	gct Ala	tgg Trp 35	gaa Glu	ggt Gly	gtt Val	tgg Trp
ggt Gly	gct Ala	ttc Phe	gta Val 50	ser	ggt Gly	gat Asp
atg Met 1	ttt Phe	tca Ser	ttt Phe	gta Val 65	aga Arg	att Ile

Figure 34

D	CT	/TISO	1/1	4394
	<b>.</b>	/ U.SU	1/1	4.774

WO 01/83701		PCT/US01/14394
	91/108	

384	432	480	528	576	624	672
aag aag ctt Lys Lys Leu	ggc gaa gct Gly Glu Ala	gct gga tgg Ala Gly Trp 160	gct gct gta Ala Ala Val 175	atg atg atg Met Met Met 190	gct gct ggt Ala Ala Gly	aac ctt ata Asn Leu Ile
tta ttt Leu Phe 125	ttt gca Phe Ala 140	ggt atg Gly Met	ggc aag Gly Lys	aac gca Asn Ala	gga tat Gly Tyr 205	aac tta Asn Leu 220
tca Ser	gga Gly	att Ile 155	gaa Glu	tac Tyr	gct Ala	tca Ser
gct gct Ala Ala )	ggt gct 1 Gly Ala	ttc att Phe Ile	atg ggt Met Gly 170	cct gca Pro Ala 185	tat cct Tyr Pro	tac gct Tyr Ala
agt gtt Ser Val 120	atg tta Met Leu 135	cct gct Pro Ala	cta tat Leu Tyr	gtt aac Val Asn	gca att Ala Ile 200	ggt gta Gly Val 215
tgt aca Cys Thr	tta gta Leu Val	gta tta Val Leu 150	tat gag Tyr Glu 165	cct gct Pro Ala	gga tgg Gly Trp	ggc gaa Gly Glu
gct Ala	tca Ser	cct Pro	att Ile	agt Ser 180	gtt Val	ggt Gly
ctt gct Leu Ala 115	gct ggt Ala Gly 130	tta gct Leu Ala	tac atg Tyr Met	act gca Thr Ala	att gtt Ile Val 195	cta atg Leu Met 210
att Ile	cta Leu	gga Gl <u>y</u> 145	tta Leu	agt Ser	att Ile	tac Tyr

Figure 34

720	753
ttg atc att Leu Ile Ile 240	
ggt Gly	
ttt Phe	
cta Leu 235	gct Ala
att Ile	aat Asn 250
aag Lys	tct Ser
aac Asn	tct Ser
gtt Val	gaa Glu
ttt Phe 230	aaa Lys
gac Asp	gtt Val 245
gct Ala	gct Ala
ctt	gtt Val
aac Asn J	aat Asn
tat Tyr 225	tgg Trp

Figure 3.

WO 01/83701			PCT/US01/14394
	. 😈	93/108	

					•	
48	0. 0	144	192	40		36
		77		73	7	M
nt ti	1 <b>.</b>		13. 6.	<b>.</b>		
tca Ser	gtt Val	ttt Phe	act Thr	atg Met 80	tat Tyr	cta Leu
cca Pro 15	ggt Gly	ttc Phe	ctt Leu	tac Tyr	aga Arg 95	tat Tyr
ctt Leu	gtt Val 30	gta Val	tca Ser	ctc Leu	ttt Phe	ttc Phe 110
gca Ala	act Thr	act Thr 45	act Thr	tat Tyr	gta Val	gag Glu
att Ile	gat Asp	gca Ala	aaa Lys 60	cat His	aca Thr	gtt Val
gct Ala	agt Ser	gcg Ala	tgg Trp	tgg Trp 75	cca Pro	atg Met
agt Ser 10	ata Ile	tta Leu	aag Lys	ttt Phe	aca Thr 90	caa Gln
ggt Gly	gat Asp 25	atg Met	gct Ala	gct Ala	gat Asp	tta Leu 105
tta Leu	cta Leu	ggt Gly 40	agc Ser	ata Ile	ggt Gly	cca Pro
ata Ile	gat Asp	gct Ala	gtc Val 55	ggt Gly	act Thr	gtt Val
ctg Leu	ggc Gly	aca	caa Gln	act Thr 70	gat Asp	act Thr
tta Leu 5	ggt Gly	gtt Val	gac Asp	att	ata 11e 85	tta Leu
tta Leu	gct Ala 20	ctg Leu	aga Arg	tta	tgg Trp	tta Leu 100
aaa Lys	gct Ala	tgg Trp 35	gaa Glu	ggt Gly	gtt Val	tgg Trp
ggt Gly	gct Ala	ttc Phe	gta Val 50	tat Ser	ggt Gly	gat Asp
atg Met 1	ttt Phe	tca Ser	ttt Phe	gta Val 65	aga Arg	att Ile
					•	

Figure 35

WO 01/83701		PCT/US01/14394
	0.4/1.00	

4	2	0	œ	9	<del>ct</del> i	0.7
38	433	48(	528	57(	624	672
ctt Leu	gct Ala	tgg Trp 160	gta Val	aag Lys	ggt Gly	ata Ile
aag Lys	gaa Glu	gga Gly	gct Ala 175	atg Met	gct Ala	ctt Leu
aag Lys	ggc Gly	gct Ala	gct Ala	atg Met 190	gct Ala	aac Asn
ttt Phe 125	gca Ala	atg Met	aag Lys	gca Ala	tat Tyr 205	tta Leu
tta Leu	ttt Phe 140	ggt Gly	ggt Gly	aac Asn	gga Gly	aac Asn 220
tca Ser	gga Gly	att Ile 155	gaa Glu	tac Tyr	gct Ala	tca Ser
gct Ala	gct Ala	att Ile	ggt Gly 170	gca Ala	cct Pro	gct Ala
gct Ala	ggt Gly	ttc Phe	atg Met	tct Ser 185	tat Tyr	tac Tyr
gtt Val 120	tta Leu	gct Ala	cat His	aac Asn	att Ile 200	gta Val
agt Ser	atg Met 135	cct Pro	cta Leu	gtt Val	gca Ala	ggt Gly 215
aca Thr	gta Val	tta Leu 150	gag Glu	gct Ala	tgg Trp	gac Asp
tgt Cys	tta Leu	gta Val	tat Tyr 165	cct Pro	gga Gly	ggt Gly
gct Ala	tca Ser	cct Pro	att Ile	agt Ser 180	att Ile	agt Ser
gct Ala 115	ggt Gly	gct Ala	atg Met	gca Ala	gtt Val 195	atg Met
ctt Leu	gct Ala 130	tta Leu	tac Tyr	act Thr	att Ile	cta Leu 210
att Ile	cta Leu	ggt Gly 145	tta Leu	agt Ser	att Ile	tac Tyr

Figure 35

720	753
ttt ggt ttg atc att Phe Gly Leu Ile Ile 240	
cta Leu 235	aat gct Asn Ala 250
aag att Lys Ile	tct aat Ser Asn 250
aac Asn	tct Ser
gtt Val	gaa Glu
ttt Phe 230	aaa Lys
gac Asp	gtt Val 245
gct Ala	gct Ala
ctt Leu	gtt Val
aac Asn	aat Asn
tat Tyr 225	tgg Trp

48	96	144	192	240	288	336
tca Ser	gtt Val	ttt Phe	act Thr	atg Met 80	tat Tyr	a Te
						cta Leu
cca Pro 15	ggt Gly	ttc Phe	ctt Leu	tat Tyr	aga Arg 95	tat Tyr
ctt Leu	gtt Val 30	gtg Val	tca Ser	ctc Leu	ttc Phe	ttc Phe 110
gca Ala	act Thr	act Thr 45	act Thr	tat Tyr	gta Val	gag Glu
att Ile	gat Asp	gca Ala	aaa Lys 60	cat His	aca Thr	gtt Val
gct Ala	agt Ser	gcg Ala	tgg Trp	tgg Trp 75	cca Pro	atg Met
agt Ser 10	ata Ile	tta Leu	aag Lys	ttt Phe	acc Thr 90	caa Gln
ggt Gly	gat Asp 25	atg Met	gct Ala	gct Ala	gat Asp	tta Leu 105
tta Leu	cta Leu	ggt Gly 40	agc Ser	ata Ile	ggt Gly	cca Pro
ata Ile	gat Asp	gct Ala	gtc Val 55	ggt Gly	act Thr	gtt Val
ctg Leu	ggc Gly	aca Thr	caa Gln	act Thr 70	gat Asp	act Thr
tta Leu 5	ggt Gly	gtt Val	gac Asp	att Ile	ata Ile 85	tta Leu
tta Leu	gct Ala 20	ctg Leu	aga Arg	tta Leu	tgg Trp	tta Leu 100
aaa Lys	gct Ala	tgg Trp 35	gaa Glu	ggt Gly	gtt Val	tgg Trp
ggt Gly	gct Ala	ttc Phe	gta Val 50	tct Ser	ggt Gly	gat Asp
atg Met 1	ttt Phe	tca Ser	ttt Phe	gta Val 65	aga Arg	att Ile

Figure 36

,						
384	432	480	528	576	624	672
ctt Leu	gct Ala	tgg Trp 160	gta Val	atg Met	ggt Gly	ata Ile
aag Lys	gaa Glu	gga Gly	gct Ala 175	atg Met	gct Ala	ctt Leu
aag Lys	ggc Gly	gct Ala	gct Ala	atg Met 190	gct Ala	aac Asn
ttt Phe 125	gca Ala	atg Met	aag Lys	gca Ala	tat Tyr 205	tta Leu
tta Leu	ttt Phe 140	ggt Gly	ggt Gly	aac Asn	gga Gly	aac Asn 220
tca Ser	gga Gly	att 11e 155	gaa Glu	tac Tyr	gct Ala	tca Ser
gct Ala	gct Ala	att Ile	ggt Gly 170	gca Ala	cct Pro	gct Ala
gct Ala	ggt Gly	ttc Phe	atg Met	tct Ser 185	tat Tyr	tac Tyr
gtt Val 120	tta Leu	gct Ala	tat Tyr	aac Asn	att Ile 200	gta Val
agt Ser	atg Met 135	cct Pro	cta Leu	gtt Val	gca Ala	ggc G1y 215
aca	gta Val	tta Leu 150	gag Glu	gct Ala	tgg Trp	gaa Glu
tgt Cys	tta Leu	gta Val	tat Tyr 165	cct Pro	gga Gly	ggc
gct Ala	tca Ser	cct Pro	att Ile	agt Ser 180	gtt Val	ggt Gly
gct Ala 115	ggt Gly	gct Ala	atg Met	gca Ala	gtt Val 195	atg Met
ctt Leu	gct Ala 130	tta Leu	tac Tyr	act Thr	att Ile	cta Leu 210
att Ile	cta Leu	gga G1 <u>y</u> 145	cta Leu	agt Ser	att Ile	tac Tyr
. •						

Figure 36

720	753
ttt ggt ttg atc att Phe Gly Leu Ile Ile 240	· .
cta Leu 235	t gct n Ala 0
aag att Lys Ile	tct aa Ser-As 25
t aac 1 Asn	aa tct lu Ser
ttt gtt Phe Val 230	aaa ga Lys Gl
gac Asp	gtt Val 245
gct Ala	gct Ala
ctt Leu	gtt Val
aac Asn	aat Asn
tat Tyr 225	tgg Trp

Figure 3



Fig. 37







Fig. 39



BEST AVAILABLE COPY

Fig. 40



Fig. 41 BEST AVAILABLE COPY



Fig. 42



Fig. 43 BEST AVAILABLE COPY



Fig. 44 BEST AVAILABLE COPY



71g. 4;

## SEQUENCE LISTING

<110> MBARI DeLong, Edward Beja, Oded
<120> Light-driven energy generation using proteorhodopsin
<130> MBA-101
<150> 60/201,602 <151> 2000-05-03
<160> 65
<170> PatentIn version 3.0
<pre>&lt;210&gt; 1 &lt;211&gt; 105184 &lt;212&gt; DNA &lt;213&gt; Naturally occurring gamma proteobacterium  &lt;220&gt; &lt;221&gt; CDS(complement) &lt;222&gt; (50866)(51615) &lt;223&gt; light-driven proton pump; has the properties of a light-driven proton pump when expressed with retinal in Escherichia col</pre>
<pre>&lt;300&gt; &lt;301&gt; Beja,O., Aravind,L., Koonin,E.V., Suzuki,M.T., Hadd,A.,Nguyen,L.P., Jovanovich,S.B., Gates,C.M., Feldman,R.A., DeLong,E.F &lt;302&gt; Bacterial rhodopsin: evidence for a new type of phototrophy in the sea &lt;303&gt; Science &lt;304&gt; 289 &lt;305&gt; 5486 &lt;306&gt; 1902-1906 &lt;307&gt; 2000-09-15 &lt;308&gt; AF279106 &lt;309&gt; 2000-06-15 &lt;313&gt; (50866)(51615)</pre>
<400> 1 ttgttatatc agtaatggct attgctccaa taacttaata ctaatatata attagtttat 60
gaataaattt tatatatttg ggttattgtt ttttacacta aatgcatttt cttgctcaga 120
tcttctagat acagacatga gagttcttga ttccgctgag tcaagaaacc tttgcgagtt 180
tgaaggaaaa gctttactag ttgtgaatgt tgcaagtaga tgtggttaca cttatcaata 240





















tttaaatcca ttaaggcaaa gtaaccaggg gtatgttctg catatggacc gatccctcca 15900 aattcagaaa taaagaagaa tttattatca ggcgtaatca caatatcttc tgggtttgag 15960 aaattacaaa taaccttgat acggtcatcg gattcacact tactaatatc catttggggg 16020 cctatatagt cagtagatac gacagttaca gaaataaata aataaagaat agaaaccggg 16080 acggtaatct tataatagtg ctttataaaa atttctaaaa tctttgaagc atgatttgga 16140 agtgcgatca gccaaacccc ttttaaaaaa gatagagccc ccataacaac aaaaattact 16200 gaccatagec tgtcagacca ttccggctga agaagaccag ttaaaaaaag aatcatccca 16260 aagaataaag ctaaatagcc tgagattttg actttcgatc caacaaattt cgaaaagaga 16320 tatgtataaa gaggctttat aagaactagt aaaccacagg ccaagaaaaa gaatgctaag 16380 tagtaattca taagttagtt tttatataaa tgctccttaa taatactaac aagttctaag 16440 16500 ggcttgtcca atggaacatg gtgagcagct ccaggaaccc cctcaaaagt cataatgtca ccatatgtat ttttaatatt gtccaagata cttccggagg ttaataagct gtcttcaccg 16560 tggatgaaca aagcagggca gccaaatgaa aatgtgtaac cgaataacct ttcaagactg 16620 ctaaacatga catcatcaaa tttccatctc cacccagcct caatattttt tactgagtgc 16680 tcagcaatgt atcttaagta ccaatcattc gtacaatctt gcttaggcat taacctaaac 16740 cttttaataa tatctgtctt gtcttgatag tgcttgatca ttctgagagg agaagagtgt 16800 tgattcgggt cataatccgg tggtcttata aatgtatcaa taataataat attatttatt 16860 agateettte ttteagatge aacgtaacca geaacatgte egeegaggga gtgteeaaca 16920 ataaaaatat ttgaaatatt ttttttatcc ttttcctttt caattacaga gacaatacat 16980 tctccaaaat ctttaatgcc atatgaatct ctaaaagaag agtcacccat gccaggaaga 17040 tctattgcaa ctatatttgc gcagtctcta aagtggggcg caataggatc ccaccatttt 17100 ttatgagcac ctgttccgtg aataagaatt attaaatctt tgctttcatc tttggagttc 17160 cagctagaat aggatatatc cccatgagga ttcttgataa tctctgagct aggcttgtcc 17220 tcaatggcat ctttgaacca ctgtggggca tgaataatgt cttgatttag attgttagtt 17280 atttccataa acagtattct aagctataaa aaataaaaat atgaataaac ttaatttaac 17340 gccagcagca actgttttag tcctaaagga ttctcctgat gggatggaag ttttgatggt 17400





























PCT/US01/14394































taaaggaagt tttgatggca tagaaattta tgatgatttt gctcatcatc caaccgcaat agaattttct tctaatgccc tcgtaacaca aaatccatca aaaaaaatac ttggtctcat 62760 tgagetagge teaaacacta tgtetggggg tteteatgge ttgtetttgg ttgaatetge 62820 aaaatcttta actcatgtta tctggctaga tcgcaataat gttttgtcag agaatgctag 62880 cattgaatct actaacacta ctgaagattt tatttctgca gcgatatctg ctttctcaga 62940 ttatgatatt gttattttga tgaccaataa agacagccaa aaaatattaa aacccattgt 63000 agatcacttt gaaaaataat aatttaccag tttttccttt aggaatagtc gccctcccag 63060 63120 gtagcatcca atctcttcaa atttttgagc ctaggtatat acagatggtt aaaacatgtc 63180 tatccaagaa ccatggattt gtaattgttt ttaatgccaa taatgagtct caaggcgatt tcactttttc taagaaggga agttttgttg aaattataga ctttaataat ttgccaaatg 63240 63300 gccttcttgg gataactgta aaatctataa ataaggtgat aatcagtaat atatgtcaat taqaaqatgg actgcatatt gctgatatta aggcacagat agatccagag gtagatgatc 63360 aagctgtttt ggcagaatat cctgagatat ctagcattct ttctcagctt gtaaagcatc 63420 63480 ctaagattag tgacctgccc atccaggttg actttggctc tgctgattca gttgcatacc acttagcagg ccttatacct ctaagctcaa atgagaaaca aaaactatta gaagcattcg 63540 atgcagcaca gcggatgaga attctttcag actatattga aagaatatct actacataaa 63600 ttatttattt taatattatt ggcggcttat tagattttgc tctaagccaa ttgatggact 63660 taaaaaccgt agggatttct acaaaccttt tttcaatata gtatttgcct ggatagttac 63720 63780 taagcattag cccaataata atagtgaaca aacctggcca ggtaacacca gcatcatgat 63840 tcccccaata ataagggaat aacctaaaat atttttaatc agtaaaacta aataccacaa 63900 caacgggtta ttggtcttaa atttcgagac atctttcttt ataaaatagt cacttggaat 63960 taatccagca agccacctca tactaacgag actaaataaa aaaataaata aagatattga 64020 gctcagccaa agtataagaa ctttataaga ttcaaaaaaa attatgatgg catttagggt 64080 attaaattcc ataattaccc acctttttat ttaataatga tttagtatag caatgtctaa 64140 aaataaattt aaacattaaa taaatataca ataattttgc caaaaaaagc cttaaatgat atttgcactg aaaccctcag tgataataaa gccgaaaatg ttctatcact tgatatcaaa 64200









PCT/US01/14394

WO 01/83701











taagtcatga tttaaaggtt attagatcga tgtcagactt tatttttgtt atgaaaaatg 79860 79920 gagaaatcgt agagtcagga ccttctcaca aggtctttga aagcccagag caagactata 79980 ctaaaaaatt actatcagct gctttaaagt atgcatctga ataattaaat atatymcmtm tggcaaatag aaartattca aaagagctcg ttgacggtcc taatcaagct gcttctagat 80040 caatgcttag aggagtaggt ttcacatctg aggmtttcac aaaaccattt gttgggattg 80100 cttccacagg agcaaaagta accccatgca atatgcacat aaatgcactt tcagagatcg 80160 ttgagaaatc agttgatagt tcaggaggaa agggtgttct ttttaatact attactgttt 80220 80280 ccgatggaat ttctatgggt acacagggta tgaaatattc tcttgtttct cgagaggtaa 80340 ttgcagattc aatagaaact gttgtgggat gtcttggtta tgatggagtt attgctgtcg gtggttgtga taaaaatatg cctggatgca ttattggaat ggcaagatta aatagaccat 80400 caatatttat atatggtggt tctatcaaac ctagtaaaga aaataccgac tatgttactg 80460 tttgtgagaa aactggagag tactcaaaag gcgatcttaa agaatctgaa ttaattcatg 80520 80580 tagaaaaaat ttccgtaaaa gggcctggat cttgtggggg aatgtatacg gcaaatacta tggcttctgc gattgaagct ctaggcatga gtcttcctgg aagcagcagt caagatgcaa 80640 tttcacacga caaagaagat gattgtttta aggctggcga agcgataatg aatttattag 80700 aaaaagatat taagccttca gatattatga ctaagaatgc ttttgagaat gctataacaa 80760 tggtaattgc tctaggaggt tcaactaatg cagttctgca tttattggcc atggcgcatt 80820 80880 caataggggt tgatttagag ctagatgact ttacaagaat aggaaaaaaa acacccgtta 80940 tggcagatct taagcccttt ggttctcatt atatgtctga actcaatgct aatggcggta 81000 ttcagccact aatgaaaact ttgcttgaga agggattact acacggcaat tgtcttaccg 81060 ttaccggtca gacgcttgct gaaaatcttt ctggaataaa accttacgag cctgatcaag agataattaa atcatttgat aatccaatta aatcaaatag ccatcttaga attctgtatg 81120 81180 qcaacttaqc qaaagatggt gcagttgcaa aaattacggg taaagaagga acttcctttg 81240 aaggaagtgc tcgtgtattt gattcagaag aagaaggggt taaagcaatc ctatctaaat 81300 ctataaaagc tggagatgtt gttgtaatta gatatgaagg gccaaaagga ggtccaggca 81360 tgagagaaat gctaaaacca acatctgcca taatgggtca aggtcttggc gatcaggtag







PCT/US01/14394



89220 89280 aatgaatgtt attaattttc taatagaaaa gcctaggata ttatttctaa ctttagcatt tatattactt tctqqaattt cttctqqqct ttcaqttcca attcaaqaaa accctgaact 89340 ggctgagaga tggggaggtg ttcgtatttt tcttcccggg gcatccccag aaagaattga 89400 89460 aacagagata gtaaatgatc tagaaatcaa acttagagaa gttgaagaaa tcgatgagct 89520 tgaatcaatt attactcaag gtttttcaac aattgtagtt gaattaaatc aaagtgtacc 89580 tcctatactt attgaagaga cttggtccaa ggttcaagac aagctcaatc aaatagttat tecteaaggt geagaaatat ttettgatag aageagtggt eegeetatea etgtteagta 89640 89700 tgctgtaacc tggaacggca gtggagatgc tccactaata atgatgtcca gactagcaag 89760 aacagatgaa gaaattttaa ttgaactaga ttcatcaaag ctatcttcgc ttggattatc 89820 89880 atttcaagat atcgcaagtg ctattcaagc cctagatgca aaaaaaccta ttggtgtatc ctcaaacaac aattctgagc ttttatatag actcaaagat aatatacaga gcattcaaaa 89940 90000 actotoagaa atacotatoa aggttattaa taaatoagag atoatacago tagatgatgt ggcatttatt tcaaaaatcc cggtttctcc tattgaagac atattcttgt ttaatggaaa 90060 tgtagttatt tctgttgctg gaaccggatc attttctcaa agagtccatg attatgtaga 90120 90180 acgcgcaaca attgttgtag atgagatgag agaaactctg ccgactgaga tcactataga 90240 tttagtttat gacgaatctg cttacacaac taaaaaattt aatgagcttg taaaaagttt ttcattagca atattttttg ttttagcttt aagtcttttt tttcttggaa ttagatcagc 90300 aataattgtt actcttatcc tgccattttc tatttgcctg gttatgattg gttgtaggtt 90360 tataggetta ecettgeata tgacatetat eactggaatt attattgeae taggattget 90420 90480 tatagataat gggattattg ttgttgaaga ttataagaat agaagagcat ctggattaaa 90540 tatcaatgat tcaatttcac aaggactaaa aaacttatgg gctccattag ctgctgcaac agcaacaacc gtcttctctt ttcttcctat tgttactgga gaagggtcga gtattgaatt 90600 90660 cgtaggcggc atggcaatga cagtcattat gtctataaca tcttcattag ttttggcgtt attaatggtt ccagttctga tgagttatat ggaaaaaatt ccgttcttta aggatgtgga 90720

PCT/US01/14394

tattagcaag gaagggtata	gaaatgaaaa	aatccttaat	aaatataggg	cctttttaaa	90780
ctgggcgttc ttagttccta	gaagagcaat	catgatatcg	cttgcattgc	ctgttctagg	90840
attctttctt tttaattctt	tacctaaaga	tttctttcct	gctcaagata	gagatatgtt	90900
tagagttaat atagaactgc	cttctaacgc	ctcatcactt	actacaatgc	agagagttaa	90960
ggaaattaga gaagatattc	tagatagtga	tttaatttca	atagaaaaag	attattcgtt	91020
tatcggcaga atgatgccta	gagttttgat	gaatgttgtt	ggtggagaag	aaaaacaagg	91080
atccaataat attgcgcagt	ctgtattttt	tgctactgat	tattatgaaa	tgattgaaaa	91140
ccttccagat ttatcaagaa	gactggttaa	aaataaccct	gacattatag	ttaatattga	91200
tagtttctcg tctggccccc	cggttttttc	agatgttagt	tatgtaattt	ttggagatga	91260
tccagattta ctaaaatcac	ttggtgagga	gctagagcta	attattaaca	attctcctga	91320
tgtgagtctt acgaaatctg	caacttcaaa	ctcaataacc	aatgttgagt	ttgaacttaa	91380
cageteaaat attteaetgt	ctggtcaaaa	tgccaattat	cttgtaaatg	aaatgtttac	91440
tgcaaacaat ggaatatttg	ttggcactat	gttggattca	aacaaagaaa	taccagtcag	91500
gctgaaaggg ctgtctaata	aaaacaatat	tacgggaaat	actagtttta	taacaatgcc	91560
ctctcaaggt ggttttgagt	attttgatag	tttcggaaaa	agctcactaa	caaacaaatc	91620
gtcaacaatt actaggcttg	atggccaaag	aacaaatgat	gttgagggct	ggatttggac	91680
aggtacgete cegtetgeta	ctgaaaaatc	tattaaaaaa	gatgttaaag	attttgaatt	91740
aagattgcca ataggctatt	cattaaaaca	acttggcgag	gctgaaagca	ggggccaatc	91800
tcaagcctca ttatactctt	cagcttttat	gtatttcatt	cttataatag	taggcttggt	91860
tatggcgctt aattctttca	gagaggctgg	tctaattttg	tctgttgcat	tcttatcaat	91920
tggactatcc tttcttggtt	tatttatagg	ccagcaaaat	tatggattta	ttggaactat	91980
aagtgcaata gggttaattg	gcttatcaat	aaatgattca	attattgtct	tatctcacat	92040
aaaagaagag gctgagaaga	aatcactaac	caaagctgag	cttgttgaag	ttgttatcag	92100
gtctacacgt catataatca	ctacctcttt	gacaacactt	ggtggttttc	ttccacttat	92160
ttttgcaagt gtattcttca	aaccgcttgc	ttgggcaatg	agcattggag	tattaggcgc	92220
gactattaca gccttattat	atattcctgc	aatgtttatg	ataatgagaa	aggttaagta	92280



PCT/US01/14394

WO 01/83701









tggatcaggg acagtgcgtg ctgggtagtt tgactggggc ggtctcctcc taaagagtaa 101700 cggaggagta cgaaggtatc cttatcacgg tcggacatcg tgaggtaagt ataaaggcag 101760 aaggatgett gactgegaga tegaeggate gageaggtag gaaactaggt ettagtgate 101820 cggtggttct gaatggaagg gccatcgctc aacggataaa aggtacgccg gggataacag 101880 gctgataccg cccaagagtt catatcgacg gcggtgtttg gcacctcgat gtcggctcat 101940 cacatectgg ggctggagea ggteceaagg gtatggetgt tegecattta aagtggtaeg 102000 cgagctgggt ttagaacgtc gtgagacagt tcggtcccta tctgctgtgg gcgtttggag 102060 atttgaggga agctgattct agtacgagag gaccgaattg gacgaacctc tggtgttccg 102120 gttgtcacgc cagtggcatt gccgggtagc tatgttcgga aaggataacc gctgaaagca 102180 tataagcggg aagcctctcc caagattaaa tctcccagag actttatgtc tcctaaagag 102240 tcgtcataga ctatgacgtt gataggcaag atgtgtaagc gctgcgaggc gttgagctaa 102300 cttgtactaa taactcgtga ggcttgatca tgtaacctta agcaaggttc ataatttgag 102360 taaaacattg tagtgagaat taaaaaataa aaagttacat accagtttgc ctgatgacaa 102420 tagcaacttg gaaccacctg atcccatctc gaactcagaa gtgaaacgag ttaacgccaa 102480 tggtagtgca gggtctccct gtgtgagagt aggaaatcgt caggcttttt tctttaaggc 102540 ttccagttta ctggaagcct tttttttat ctcaagtata atacccagat gattattgga 102600 ttaacaggag gcattggttc tggcaaatct gccgctgcag acttctttat tgatttaggt 102660 atatcagtct tagatgcaga tcaagttgct aaagaagctt tatctacaaa ttctcctgga 102720 tatactgatt ttatttctca atttggtgaa gtgtatttaa ataataatcg tgaggttgat 102780 aggetgaaat tgegegaaet tattttttea aateetteaa aaaaaaagga tettgagaat 102840 attattcatc ccatagttcg gtctgctatt agtaatttta ttattacatc aacatcacca 102900 tattctattg ttatggtgcc actcattttt gaaacaaatt catataaaaa ttacgataag 102960 attattactg ttgactgtga tttagaactt cagatagtaa gggcctcaag tagagatgct 103020 caaaataaat cgcagattaa gaatattatt aataagcaag cctctagaga ggagaggcta 103080 agtatttctg atgacgtact tatcaataac agcaccctat ctgatctaaa aaaacaagtt 103140 aatgttttac atactaaata tatggagtta ttaaatgagt agttgcccta gatgtgaaaa 103200



aagaaatact aagtcattaa gatcagctct agccatagga acatttgttg ggatgatgat 104820 gacatttagg ccatagattt gactaaactc tactgettea gtatctgetg tteetgetat 104880 eecagaaagt titttaaata atetaaaaaa gtittggaat gtggtggatg etagtgittg 104940 agactetett tggatageaa eatittetti geaticeagt geetggtgaa eaeeticaet 105000 eatiettett eegggeattg tietaeetgt atgeteatea ateaaaagaa eeteaeegt 105060 eetaaeeaaa taateeaeat tetittaaa taagaagett getetaagtg tigettgaae 105120 aaatiteata atiittaaat tagaaaeaga gtaageeeat etgaggetee aageegatte 105180 eage

```
<210> 2
<211> 29
<212> DNA
<213> pcr primer
<220>
<221> oligo-nucleotide-primer
<222> (1)..(29)
<300>
<301> Beja,O., Aravind,L., Koonin,E.V., Suzuki,M.T., Hadd,A.,
Nguyen, L.P., Jovanovich, S.B., Gates, C.M., Feldman, R.A., Spudich, J.L.,
Spudich, E.N. and DeLong, E.F.
<302> Bacterial rhodopsin: evidence for a new type of phototrophy in the
sea
<303> Science
<304> 289
<305> 5486
<306> 1902-1906
<307>
      2000-09-15
<309>
<400> 2
                                                                       29
accatgggta aattattact gatattagg
```

```
<210> 3
<211> 24
<212> DNA
<213> pcr primer
<220>
<221> oligo-nucleotide-primer
```

<222> (1)..(24)

```
<300>
<301> Beja,O., Aravind,L., Koonin,E.V., Suzuki,M.T., Hadd,A.,
Nguyen, L.P., Jovanovich, S.B., Gates, C.M., Feldman, R.A., Spudich, J.L.,
Spudich, E.N. and DeLong, E.F.
<302> Bacterial rhodopsin: evidence for a new type of phototrophy in the
sea
<303>
      Science
<304>
      289
<305>
      5486
      1902-1906
<306>
<307>
      2000-09-15
<309>
<400> 3
                                                                       24
agcattagaa gattctttaa cagc
<210>
       4
<211>
      750
<212> DNA
<213> Naturally occurring gamma proteobacterium
<220>
<221>
      CDS
<222>
      (1)..(750)
      light-driven proton pump; has the properties of a light-driven pr
<223>
       oton pump when expressed with retinal in Escherichia coli. Note
       that additional three nucleotide residues incorporated by pcr pri
       ming with reference to the original 31A08 DNA sequence (DNA resid
       ues 4-6, ggt), adding a new restriction site for cloning
<300>
<301> Beja,O., Aravind,L., Koonin,E.V., Suzuki,M.T.,
Hadd, A., Nguyen, L.P., Jovanovich, S.B., Gates, C.M.,
Feldman, R.A., Spudich, J.L., Spudich, E.N. and DeLong, E.F.
<302> Bacterial rhodopsin: evidence for a new type of phototrophy in the
sea
<303>
      Science
<304>
      289
<305> 5486
<306> 1902-1906
<307> 2000-09-15
<308> AAG10475
<309> 2000-06-15
<313> (1)..(750)
<400> 4
                                                                       48
atg ggt aaa tta tta ctg ata tta ggt agt gtt att gca ctt cct aca
Met Gly Lys Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr
1
                                    10
```

	_	_						-			gat Asp				_		96
						_	_			_	tct Ser		_				144
	-	_		_	_	-		_			aaa Lys 60						192
_				_				_			cat His		_		_		240
								_			act Thr			_		÷	288
	-					_					tgt Cys	_					336
		_	-	_			_	_			tta <b>Le</b> u		_				384
											tac Tyr 140						432
		_	_	_			_				Gly ggg	_		_			480
_		_			_			_		_	gga Gly			_	_		528
		-	-		_				_		aac Asn			_			576
										-	ggt Gly						624
											tta Leu 220						672

130

aac ct Asn Le 225	_	_		_		_									,	720
aat gt Asn Va																750
<210><211><211><212><213>	5 250 PRT Natu	rall	λ occ	curri	ing (	gamma	a pro	oteok	oacte	eriur	n					
<400>	5															
Met Gl	y Lys	Leu	Leu 5	Leu	Ile	Leu	Gly	Ser 10	Val	Ile	Ala	Leu	Pro 15	Thr	•.	•
Phe Al	a Ala	Gly 20	Gly	Gly	Asp	Leu	Asp 25	Ala	Ser	Asp	Tyr	Thr 30	Gly	Val		
Ser Ph	e Trp 35	Leu	Val	Thr	Ala	Ala 40	Leu	Leu	Ala	Ser	Thr 45	Va1	Phe	Phe		
Phe Va 50	l Glu	Arg	Asp	Arg	Val 55	Ser	Ala	Lys	Trp	Lys 60	Thr	Ser	Leu	Thr		
Val Se	r Gly	Leu	Val	Thr 70	Gly	Ile	Ala	Phe	Trp 75	His	Tyr	Met	Tyr	Met 80		
Arg Gl	y Val	Trp	Ile 85	Glu	Thr	Gly	Asp	Ser 90	Pro	Thr	Val	Phe	Arg 95	Tyr		
Ile As	p Trp	Leu 100	Leu	Thr	Val	Pro	Leu 105	Leu	Ile	Сув	Glu	Phe 110	Туг	Leu		
Ile Le	u Ala 115	Ala	Ala	Thr	Asn	Val 120	Ala	Gly	Ser	Leu	Phe 125	Lys	Lys	Leu - ₋		
Leu Va	_	Ser	Leu	Val	Met	Leu	Val	Phe	Gly	Tyr	Met	Gly	Glu	Ala	,	

140

135

Gly Ile Met Ala Ala Trp Pro Ala Phe Ile Ile Gly Cys Leu Ala Trp 145 150 155 Val Tyr Met Ile Tyr Glu Leu Trp Ala Gly Glu Gly Lys Ser Ala Cys 165 Asn Thr Ala Ser Pro Ala Val Gln Ser Ala Tyr Asn Thr Met Met Tyr 180 185 190 Ile Ile Ile Phe Gly Trp Ala Ile Tyr Pro Val Gly Tyr Phe Thr Gly 195 200 205 Tyr Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr 210 215 Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp 225 230 235 Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245 250 <210> 6 747 <211> <212> DNA <213> Naturally occurring gamma proteobacterium <220> <221> CDS <222> (1)..(747) <223> Native proteorhodpsion DNA sequence from BAC clone 31A08 <300> <301> Beja,O., Aravind,L., Koonin,E.V., Suzuki,M.T., Hadd,A., Nguyen, L.P., Jovanovich, S.B., Gates, C.M., Feldman, R.A., Spudich, J.L., Spudich, E.N. and DeLong, E.F. <302> Bacterial rhodopsin: evidence for a new type of phototrophy in the sea <303> Science <304> 289 **<305>** 5486 <306> 1902-1906 <307> 2000-09-15 <309>



-100	)> 6	5															
atg	aaa	tta		_				_	_		gca Ala						48
-					-			_		_	tac Tyr			_			96
			-		_	_			_		act Thr	_					144
											aca Thr 60						192
											tac Tyr						240
											gta Val						288
_					_					_	gaa Glu						336
							_				ttt Phe						384
											atg Met 140						432
						-					tgt Cys		_		-		480
											aaa Lys					,	528
								_			aca Thr						576
atc	.atc	ttt	ggt	tgg	gcg	att	tat	cct	gta	ggt	tat	ttc	aca	ggt	tac		624

Ile Ile	Phe 195	Gly	Trp	Ala	Ile	Туг 200	Pro	Val	Gly	Tyr	Phe 205	Thr	Gly	Tyr	
ctg atg Leu Met 210	Gly					Ala									672
ctt gct Leu Ala 225					_										720
gtt gct Val Ala	-		_				_	•		÷					747
<210> <211> <212> <213>		rally	y oc	curr:	ing q	gamma	a pro	oteol	oacte	eriu	n				
<400>	7			•											

WO 01/83701

Met Lys Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr Phe 

Ala Ala Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val Ser 

Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe 

Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr Val 

Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met Arg 

Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr Ile 

Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu Ile 

Leu Ala Ala Ala Thr Asn Val Ala Gly Ser Leu Phe Lys Lys Leu Leu

115 120 125 Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala Gly 130 135 Ile Met Ala Ala Trp Pro Ala Phe Ile Ile Gly Cys Leu Ala Trp Val 150 155 Tyr Met Ile Tyr Glu Leu Trp Ala Gly Glu Gly Lys Ser Ala Cys Asn 170 175 165 Thr Ala Ser Pro Ala Val Gln Ser Ala Tyr Asn Thr Met Met Tyr Ile 180 185 Ile Ile Phe Gly Trp Ala Ile Tyr Pro Val Gly Tyr Phe Thr Gly Tyr 200 Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr Asn 210 215 220 Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp Asn 230 235 225 Val Ala Val Lys Glu Ser Ser Asn Ala 245 <210> 8 <211> 750 <212> DNA <213> Naturally occurring gamma proteobacterium <220> <221> CDS <222> (1)..(750) <223> proteorhodopsin variant from clone EBAC40 <400> 8 atg ggt aaa tta tta ctg ata tta ggt agt gtt att gca ctt cct aca-48 Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr 5 10 15 1 96 ttt gct gca ggt ggt ggt gac ctt gat gct agt gat tac act ggt gtt

Phe	Ala	Ala	Gly 20	Gly	Gly	Asp	Leu	Asp 25	Ala	Ser	Asp	Tyr	Thr 30	Gly	Val		
				_		_	_			gca Ala			_				144
										tgg Trp							192
										tgg Trp 75							240
										cca Pro			Phe				288
	_			Leu		_			_	ata Ile	_	_				,	336
										ggc Gly							384
_	_				_	_				ggt Gly		_			_		432
		_		_			_		_	att Ile 155		_		_			480
										gaa Glu							528
									-	tac Tyr							576
						_				gta Val							624
										aac Asn					tat- Tyr		672
gac	ctt	gct	gac	ttt	gtt	aac	aag	att	cta	ttt	ggt	tta	att	ata	tgg		720

Asp Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp 225 230 235 aat gtt gct gtt aaa gaa tct tct aat gct 750 Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245 <210> 9 <211> 250 <212> PRT <213> Naturally occurring gamma proteobacterium <400> 9 Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr Phe Ala Ala Gly Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val 20 25 Ser Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe 35 40 45 Phe Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 50 55 60 Val Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met 70 75 Arg Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr 85 90 95 Ile Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu 100 105 110 Ile Leu Ala Ala Ala Thr Asn Val Ala Ala Gly Leu Phe Lys Lys Leu 115 120 125 Leu Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala-130 135

Gly Ile Met Asn Ala Trp Gly Ala Phe Val Ile Gly Cys Leu Ala Trp

145 150 155 160 Val Tyr Met Ile Tyr Glu Leu Trp Ala Gly Glu Gly Lys Ala Ala Cys 165 Asn Thr Ala Ser Pro Ala Val Gln Ser Ala Tyr Asn Thr Met Met Tyr 180 185 190 Ile Ile Ile Phe Gly Trp Ala Ile Tyr Pro Val Gly Tyr Phe Thr Gly 195 200 205 Tyr Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr 210 215 220 * Asp Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp 225 230 235 Control of State (1987) Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245 <210> 10 <211> 750 <212> DNA <213> Naturally occurring gamma proteobacterium <220> <221> CDS <222> (1)..(750) <223> proteorhodpsin variant from clone EBAC41 <400> 10 atg ggt aaa tta tta ctg ata tta ggt agt gtt att gca ctt cct aca 48 Met Gly Lys Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr ttt gct gca ggt ggt ggt gac ctt gat gct agt gat tac act ggt gtt 96 Phe Ala Ala Gly Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val 20 25 tet ttt tgg tta get act get get tta tta gea tet act gta ttt tte 144 Ser Phe Trp Leu Ala Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe 35 45 ttt gtt gaa aga gat aga gtt tct gca aaa tgg aaa aca tca tta act 192

Phe	Val 50	Glu	Arg	Asp	Arg	Val 55	Ser	Ala	Lys	Trp	Lys 60	Thr	Ser	Leu	Thr		
													atg Met			•	240
													ttt Phe				288
													ttc Phe 110				336
													aag Lys				384
													ggt Gly				432
				Ala									tta Leu				480
									. — —	_			tct Ser	_	_		528
		Ala											atg Met 190				576
													ttc Phe				624
	-					-		_					ctt Leu				672
													att Ile				720
	_		_	aaa Lys 245				Asn	-		•						750

<210> 11

<211> 250

<212> PRT

<213> Naturally occurring gamma proteobacterium

<400> 11

Met Gly Lys Leu Leu Leu Gly Ser Val Ile Ala Leu Pro Thr
1 5 10 15

Phe Ala Ala Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val 20 25 30

Ser Phe Trp Leu Ala Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe 35 40 45

Phe Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 50 55 60

Val Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met 65 70 75 80

Arg Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr 85 90 95

Ile Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu 100 105 110

Ile Leu Ala Ala Ala Thr Asn Val Ala Gly Ser Leu Phe Lys Lys Leu 115 120 125

Leu Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 130 135 140

Gly Ile Met Ala Ala Trp Pro Ala Phe Ile Ile Gly Cys Leu Ala Trp 145 150 155 160

Val Tyr Met Ile Tyr Glu Leu Trp Ala Gly Glu Gly Lys Ser Ala Cys 165 170 175

Asn Thr Ala Ser Pro Ala Val Gln Ser Ala Tyr Asn Thr Met Met Tyr

65

180 185 190 Ile Ile Ile Phe Gly Trp Ala Ile Tyr Pro Val Gly Tyr Phe Thr Gly 195 200 Tyr Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr 210 215 220 Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp 225 230 235 240 Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245 <210> 12 <211> 750 <212> DNA <213> Naturally occurring gamma proteobacterium <220> <221> CDS. <222> (1)..(750)<223> Proteorhodopsin variant from clone EBAC64 <400> 12 atg ggt aaa tta tta ctg ata tta ggt agt gtt att gca ctt cct aca 48 Met Gly Lys Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr 10 ttt get gea ggt gge ggt gae ett gat get agt gat tae act ggt gtt 96 Phe Ala Ala Gly Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val 20 tet ttt tgg tta gtt aca get get eta tta gea tet act gta ttt tte 144 Ser Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe 35 ttt gtt gaa aga gat aga gtt tct gca aaa tgg aaa aca tca tta act 192 Phe Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 50 55 60 gta tot ggt ott gtt act ggt att gct tto tgg cat tac atg tac atg-240 Val Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met

aga gga gta tgg att gaa act ggt gat tcg cct act gta ttt aga tac

75

80

288

70

Arg	Gly	Val	Trp	Ile 85	Glu	Thr	Gly	Asp	Ser 90	Pro	Thr	Val	Phe	Arg 95	Tyr	
	gat Asp										_	-				336
	ctt ·Leu															384
	gtt Val 130															432
	att Ile															480
	tac Tyr															528
	act Thr								_					_		576
	ata Ile	_				_										624
	cta Leu 210	_		_	-			. —								672
	ctt Leu															720
	gtt Val															750

<210> 13

<211> 250

<212> PRT

<213> Naturally occurring gamma proteobacterium

<400> 13

Met Gly Lys Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr

1 . Phe Ala Ala Gly Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val Ser Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe Phe Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr Val Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met Arg Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr Ile Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu Ile Leu Ala Ala Ala Thr Asn Val Ala Gly Ser Leu Phe Lys Lys Leu Leu Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala Gly Ile Met Ala Ala Trp Pro Ala Phe Ile Ile Gly Cys Leu Ala Trp Val Tyr Met Ile Tyr Glu Leu Tyr Ala Gly Glu Gly Lys Ser Ala Cys Asn Thr Ala Ser Pro Ser Val Gln Ser Ala Tyr Asn Thr Met Met Ala Ile Ile Val Phe Gly Trp Ala Ile Tyr Pro Ile Gly Tyr Phe Thr Gly 

Tyr Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr

210 215 220

Asn	Leu	Ala	Asp	Phe	Val Asn	Lys	Ile	Leu	Phe	Gly	Leu	Ile	Ile	Trp
225					230				235		:			240

Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245 250

<210> 14 <211> 750

<212> DNA

<213> Naturally occurring gamma proteobacterium

<220>

<221> CDS

<222> (1)..(750)

<223> Proteorhodopsin variant from pcr clone HOT01m: GenBank# AF349978

								•						•	
<4.0	0> 1	14									•				
	ggt Gly														48
	gct Ala	_	 		_		_	_	_	_			 _		96
	ttt Phe		_		_	_			_			_			144
	gtt Val 50			-	_		_								192
	tcg Ser														240
	Gl ^y aaa														288
	gat Asp														336

att ctt gct gct Ile Leu Ala Ala 115	gca aca aat Ala Thr Asn	gtt gct gct Val Ala Ala 120	ggc ctg ttt Gly Leu Phe 125	aag aaa Lys Lys	tta 384 Leu
ttg gtt ggt tct Leu Val Gly Ser 130					
gga att atg aac Gly Ile Met Asn 145	gct tgg ggt Ala Trp Gly 150	gca ttc gtt Ala Phe Val	att ggg tgt Ile Gly Cys 155	tta gct Leu Ala	tgg 480 Trp . 160
gta tac atg att Val Tyr Met Ile					
aat act gca agt Asn Thr Ala Ser 180					
ata atc atc ttt Ile Ile Ile Phe 195	ggt tgg gca Gly Trp Ala	att tat cct Ile Tyr Pro 200	gta ggt tat Val Gly Tyr 205	ttc aca Phe Thr	ggt 624 Gly
tac cta atg ggt Tyr Leu Met Gly 210					
aac ctt gct gac Asn Leu Ala Asp 225				Ile Ile	
aat gtt gct gtt Asn Val Ala Val	_	_			750
<210> 15					
<211> 250 <212> PRT	occurring g	gamma proteob	pacterium	·	
<400> 15					
Met Gly Lys Leu 1	Leu Leu Ile 5	Leu Gly Ser 10	Val Ile Ala	Leu Pro 15	Thr

Phe Ala Ala Gly Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val 20 25 30

Ser	Phe	Trp 35	Leu	Val	Thr	Ala	Ala 40	Leu	Leu	Ala	Ser	Thr 45	Val	Phe	Phe
Phe	Val 50	Glu	Arg	Asp	Arg	Val 55	Ser	Ala	Lуз	Trp	Lys 60	Thr	Ser	Leu	Thr
Val 65	Ser	Gly	Leu	Val	Thr 70		Ile	Ala		Trp 75	His	Tyr	Met	Tyr	Met 80
Arg	Gly	Val	Trp	Ile 85	Glu	Thr	Gly	Asp	Ser 90	Pro	Thr	Val	Phe	Arg 95	Туг
Ile	Asp	Trp	Leu 100	Leu	Thr	Val	Pro	Leu 105	Leu	Ile	Cys	Glu	Phe 110	Tyr	Leu
Ile	Leu	Ala 115	Ala	Ala	Thr	Asn	Val 120		Ala	Gly	Leu	Phe. 125	Lys	Lys.	Leu
Leu	Val 130	Gly	Ser	Leu	Val	Met 135	Leu	Val	Phe	Gly	Tyr 140	Met	Gly	Glu	Ala
Gly 145		Met	Asn	Ala	Trp 150	Gly	Ala	Phe	Val	Ile 155	Gly	Суз	Leu	Ala	Trp 160
Val	Tyr	Met	Ile	Туг 165	Glu	Lęu	Trp	Ala	Gly 170	Glu	Gly	Lys	Ala	Ala 175	Cys
Asn	Thr	Ala	Ser 180	Pro	Ala	Val	Gln	Ser 185	Ala	Tyr	Asn	Thr	Met 190	Met	Tyr
Ile	Ile	Ile 195	Phe	Gly	Trp	Ala	Ile 200	Tyr	Pro	Val	Gly	Tyr 205	Phe	Thr	Gly
Tyr	Leu 210	Met	Gly	Asp	Gly	Gly 215	Ser	Ala	Leu	Asn	Leu 220	Asn	Leu	Ile	Tyr
Asn 225	Leu	Ala	Asp	Phe	Val 230	Asn	·Lys	Ile	Leu	Phe 235	Gly	Leu	Ile	Ile	Trp 240

<210> 16

## Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245 250

<21: <21: <21:	l> ' 2> 1	753 DNA Natu	cally	y oco	curr	ing (	yamma	a pri	toeol	oacte	eriu	n .		. •			
<220 <220 <220 <220	1> ( 2>	CDS (1). Prote			sin v	varia	ant :	Érom	pcr	clo	ne HO	OT751	n1: (	GenBa	ank#1	\F349	979
<40	) > ·	16													•	٠	·
atg	ggt	aaa Lys															48
		gct Ala															96
		tgg Trp 35	_	_		_		_			_						144
		gaa Glu															192
		ggt Gly															240
		gtt Val															288
		tgg Trp															336
		gct Ala 115															384
cta Leu	gct Ala 130	ggt Gly	tca Ser	tta Leu	gta Val	atg Met 135	tta Leu	ggt Gly	gct Ala	gga Gly	ttt Phe 140	gca Ala	ggc Gly	gaa Glu	gct Ala		432

			•			
	cct gta tta Pro Val Leu 150	Pro Ala Ph				480
	g att tat gag : Ile Tyr Glu 165	,				528
	a agt cct gct a Ser Pro Ala 180		r Ala Tyr A			576
	gtt gga tgg Val Gly Trp					624
-	g ggt ggc gaa : Gly Gly Glu		r Ala Ser A			672
	gcc gac ctt Ala Asp Leu 230	Val Asn Ly	_			720
	gct gtt aaa Ala Val Lys 245		_			753
<210> 17						
<211> 251		. ·	•			
<212> PRT <213> Natu	rally occurr	ing gamma n	rtoeobacter	ri 11m		*
	rarry occurr	rng ganda p	rcoeopacter	. L cuit		•
<400> 17						
Met Gly Lys 1	: Leu Leu Leu 5	Ile Leu Gl	y Ser Ala I 10		Pro Ser 15	
Phe Ala Ala	Ala Gly Gly 20	Asp Leu As	p Ile Ser A	asp Thr Val	Gly Val	
Ser Phe Trp	Leu Val Thr	Ala Gly Me	t Leu Ala A	ala Thr Val	Phe Phe	
Phe Val Glu 50	ı Arg Asp Gln	Val Ser Al 55	_	ys Thr Ser 0	Leu Ala	

Val Ser Gly Leu Ile Thr Gly Ile Ala Phe Trp His Tyr Leu Tyr Met - 70 75. Arg Gly Val Trp Ile Asp Thr Gly Asp Thr Pro Thr Val Phe Arg Tyr 85 90 Ile Asp Trp Leu Leu Thr Val Pro Leu Gln Met Val Glu Phe Tyr Leu 100 105 Ile Leu Ala Ala Cys Thr Ser Val Ala Ala Ser Leu Phe Lys Lys Leu 115 120 125 Leu Ala Gly Ser Leu Val Met Leu Gly Ala Gly Phe Ala Gly Glu Ala Gly Leu Ala Pro Val Leu Pro Ala Phe Ile Ile Gly Met Ala Gly Trp 145 150 155 Leu Tyr Met Ile Tyr Glu Leu Tyr Met Gly Glu Gly Lys Ala Ala Val 165 170 175 Ser Thr Ala Ser Pro Ala Val Asn Ser Ala Tyr Asn Ala Met Met Met 180 185 Ile Ile Val Val Gly Trp Ala Ile Tyr Pro Ala Gly Tyr Ala Ala Gly 195 200 Tyr Leu Met Gly Gly Glu Gly Val Tyr Ala Ser Asn Leu Asn Leu Ile 210 215 220 Tyr Asn Leu Ala Asp Leu Val Asn Lys Ile Leu Phe Gly Leu Ile Ile 230 225 235 240

Trp Asn Val Ala Val Lys Glu Ser Ser Asn Ala

245

<210> 18

<211> 753

<212> DNA

<213> Naturally occurring gamma proteobacterium
<220> <221> CDS <222> (1)(753) <223> Proteorhodopsin variant from pcr clone HOT75m3; GenBank#AF349980
<pre>&lt;400&gt; 18 atg ggt aaa tta tta ctg ata tta ggt agt gct att gca ctt cca tca</pre>
ttt gct gct ggt ggc gat cta gat ata agt gat act gtt ggt gtt 96 Phe Ala Ala Gly Gly Asp Leu Asp Ile Ser Asp Thr Val Gly Val 20 25 30
tca ttc tgg ctg gtt aca gct ggt atg tta gcg gca act gta ttc ttt  Ser Phe Trp Leu Val Thr Ala Gly Met Leu Ala Ala Thr Val Phe Phe  35  40  45
ttt gta gaa aga gac caa gtc agc gct aag tgg aaa act tca ctt act 192 Phe Val Glu Arg Asp Gln Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 50 55 60
gta tct ggt tta att act ggt ata gct ttt tgg cat tat ctc tac atg Val Ser Gly Leu Ile Thr Gly Ile Ala Phe Trp His Tyr Leu Tyr Met 65 70 75 80
aga ggt gtt tgg ata gat act ggt gat aca cca aca gta ttt aga tat 288 Arg Gly Val Trp Ile Asp Thr Gly Asp Thr Pro Thr Val Phe Arg Tyr 85 90 95
att gat tgg tta tta act gtt cca tta caa atg gtt gag ttc tat cta 336 Ile Asp Trp Leu Leu Thr Val Pro Leu Gln Met Val Glu Phe Tyr Leu 100 105 110
att ctt gct gct tgt aca agt gtt gct gct tca tta ttt aag aag ctt 384  Ile Leu Ala Ala Cys Thr Ser Val Ala Ala Ser Leu Phe Lys Lys Leu 115 120 125
cta gct ggt tca tta gta atg tta ggt gct gga ttt gca ggc gaa gct Leu Ala Gly Ser Leu Val Met Leu Gly Ala Gly Phe Ala Gly Glu Ala 130 135 140
ggt tta gct cct gta tta cct gct ttc att att ggt atg gct gga tgg Gly Leu Ala Pro Val Leu Pro Ala Phe Ile Ile Gly Met Ala Gly Tro 145 150 155 160
tta tac atg att tat gag cta cat atg ggt gaa ggt aag gct gct gta 528 Leu Tyr Met Ile Tyr Glu Leu His Met Gly Glu Gly Lys Ala Ala Val

		•	
	165	170	175
	Pro Ala Val Asn Ser	gca tac aac gca atg Ala Tyr Asn Ala Met 190	
		cct gct gga tat gct Pro Ala Gly Tyr Ala 205	
		gct tca aac tta aac Ala Ser Asn Leu Asn 220	
		att cta ttt ggt ttg Ile Leu Phe Gly Leu 235	
	gtt aaa gaa tct tct Val Lys Glu Ser Ser 245		753
<210> 19 <211> 251 <212> PRT			•
•	y occurring gamma pr	oteobacterium	·
•	y occurring gamma pr	oteobacterium	
<213> Naturall <400> 19		oteobacterium Ser Ala Ile Ala Leu 10	Pro Ser 15
<213> Naturall <400> 19  Met Gly Lys Leu 1	Leu Leu Ile Leu Gly 5	Ser Ala Ile Ala Leu	15
<213> Naturall <400> 19  Met Gly Lys Leu 1  Phe Ala Ala Ala 20	Leu Leu Ile Leu Gly 5 Gly Gly Asp Leu Asp 25	Ser Ala Ile Ala Leu 10 Ile Ser Asp Thr Val	15 Gly Val
<213> Naturall <400> 19  Met Gly Lys Leu 1  Phe Ala Ala Ala 20  Ser Phe Trp Leu 35	Leu Leu Ile Leu Gly 5  Gly Gly Asp Leu Asp 25  Val Thr Ala Gly Met	Ser Ala Ile Ala Leu 10  Ile Ser Asp Thr Val 30  Leu Ala Ala Thr Val	15 Gly Val Phe Phe
<213> Naturall <400> 19  Met Gly Lys Leu 1  Phe Ala Ala Ala 20  Ser Phe Trp Leu 35  Phe Val Glu Arg 50	Leu Leu Ile Leu Gly 5  Gly Gly Asp Leu Asp 25  Val Thr Ala Gly Met 40  Asp Gln Val Ser Ala 55	Ser Ala Ile Ala Leu 10  Ile Ser Asp Thr Val 30  Leu Ala Ala Thr Val 45  Lys Trp Lys Thr Ser	Gly Val  Phe Phe  Leu Thr

100

110

Ile Leu Ala Ala Cys Thr Ser Val Ala Ala Ser Leu Phe Lys Lys Leu 115 120 Leu Ala Gly Ser Leu Val Met Leu Gly Ala Gly Phe Ala Gly Glu Ala 135 Gly Leu Ala Pro Val Leu Pro Ala Phe Ile Ile Gly Met Ala Gly Trp 145 150 155 Leu Tyr Met Ile Tyr Glu Leu His Met Gly Glu Gly Lys Ala Ala Val 165 170 Ser Thr Ala Ser Pro Ala Val Asn Ser Ala Tyr Asn Ala Met Met Lys 180 Ile Ile Val Ile Gly Trp Ala Ile Tyr Pro Ala Gly Tyr Ala Ala Gly 195 200 205 Tyr Leu Met Ser Gly Asp Gly Val Tyr Ala Ser Asn Leu Asn Leu Ile 210 215 220 Tyr Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile 225 230 235 Trp Asn Val Ala Val Lys Glu Ser Ser Asn Ala <210> 20 <211> 753 <212> DNA <213> Naturally occurring gamma proteobacterium <220> <221> CDS <222> (1)..(753)<223> Proteorhodopsin variant from pcr clone HOT75m4; GenBank #AF349981

Ile Asp Trp Leu Leu Thr Val Pro Leu Gln Met Val Glu Phe Tyr Leu

105

atg	0> 2 ggt Gly	20 aaa Lys	tta Leu	tta Leu 5	ctg Leu	ata Ile	tta Leu	ggt Gly	agt Ser 10	gct Ala	att Ile	gca Ala	ctt Leu	cca Pro 15	tca Ser		48
		gct Ala															96
tca Ser	ttc Phe	tgg Trp 35	ctg Leu	gtt Val	aca Thr	gct Ala	ggt Gly 40	atg Met	tta Leu	gcg Ala	gca Ala	act Thr 45	gtg Val	ttc Phe	ttt Phe	·	144
ttt Phe	gta Val 50	gaa Glu	aga Arg	gac Asp	caa Gln	gtc Val 55	agc Ser	gct Ala	aag Lys	tgg Trp	aaa Lys 60	act Thr	tca Ser	ctt Leu	act Thr		192
gta Val 65	tct Ser	ggt Gly	tta Leu	att Ile	act Thr 70	ggt Gly	ata Ile	gct Ala	ttt Phe	tgg Trp 75	cat His	tat Tyr	ctc Leu	tat Tyr	atg Met 80		240
		gtt Val													tat Tyr		288
att Ile	gat Asp	tgg Trp	tta Leu 100	tta Leu	act Thr	gtt Val	cca Pro	tta Leu 105	caa Gln	gtg Val	gtt Val	gag Glu	ttc Phe 110	tat Tyr	cta Leu		336
		gct Ala 115															384
cta Leu	gct Ala 130	ggt Gly	tca Ser	tťa Leu	gta Val	atg Met 135	tta Leu	ggt Gly	gct Ala	gga Gly	ttt Phe 140	gca Ala	ggc	gaa Glu	gct Ala	·	432
gga Gly 145	tta Leu	gct Ala	cct Pro	gta Val	tta Leu 150	cct Pro	gct Ala	ttc Phe	att Ile	att Ile 155	ggt Gly	atg Met	gct Ala	gga Gly	tgg Trp 160		480
		atg Met														•	528
		gca Ala															576
att Ile	att Ile	gtt Val	gtt Val	gga Gly	tgg Trp	gca Ala	att Ile	tat Tyr	cct Pro	gct Ala	gga Gly	tat Tyr	gct Ala	gct Ala	ggt Gly	ı	624

195		200	205		
	Gly Gly Glu (		gct tca aac tta Ma Ser Asn Leu 220		
			att cta ttt ggt Ile Leu Phe Gly 235		
	gct gtt aaa g Ala Val Lys G 245	Glu Ser Ser A		⁷ 753	
<210> 21 <211> 251 <212> PRT <213> Natu	rally occurrin	ng gamma prot	ceobacterium		
<400> 21		· ·	•		
Met Gly Lys 1	Leu Leu Leu 1 5		Ser Ala Ile Ala .0	Leu Pro Ser 15	
Phe Ala Ala	Ala Gly Gly A	Asp Leu Asp I 25	le Ser Asp Thr	Val Gly Val	
Ser Phe Trp	Leu Val Thr A	Ala Gly Met L 40	eu Ala Ala Thr 45	Val Phe Phe	
Phe Val Glu 50		Mal Ser Ala L	ys Trp Lys Thr 60	Ser Leu Thr	
Val Ser Gly 65	Leu Ile Thr 0 70	Sly Ile Ala P	the Trp His Tyr 75	Leu Tyr Met 80	
Arg Gly Val	Trp Ile Asp 7		hr Pro Thr Val	Phe Arg Tyr 95	
Ile Asp Trp	Leu Leu Thr V	al Pro Leu G 105	ln Val Val Glu	Phe Tyr Leu 110	
Ile Leu Ala 115	Ala Cys Thr S	Ser Val Ala A 120	la Ser Leu Phe 125	Lys Lys Leu	

Leu	Ala 130	Gly	Ser	Leu	Val	Met 135	Leu	Gly	Ala	Gly	Phe 140	Ala	Gly	Glu	Ala	•
Gly 145	Leu	Ala	Pro	Val	Leu 150	Pro	Ala	Phe	Ile	Ile 155	Gly	Met	Ala	Gly	Trp 160	
Leu	Tyr	Met	Ile	Туг 165	Glu	Leu	Tyr	Met	Gly 170	Glu	Gly	Lys	Ala	Ala 175	Val	
Ser	Thr	Ala	Ser 180	Pro	Ala	Val	Asn	Ser 185	Ala	Tyr	Asn	Ala	Met 190	Met	Met	-
Ile	Ile	Val 195	Val	Gly	Trp	Ala	Ile 200	Tyr	Pro	Ala	Gly	Tyr 205	Ala	Ala	Gly	
Tyr	Leu 210		Gly	Gly	Glu	Gly 215		Tyr	Ala	Ser	Asn 220	Leu	Asn	Leu	Ile	
Tyr 225	Asn	Leu	Ala	Asp	Phe 230	Val	Asn	Lys	Ile	Leu 235	Phe	Gly	Leu	Ile	Ile 240	
Trp	Asn	Val	Ala	Val 245	Lys	Glu	Ser	Ser	Asn 250	Ala						
<210 <211 <212 <213	L> 7 2> I	22 753 ONA Natur	cally	7 000	curri	ing g	yamma	a pro	teol	oacte	eriun	n				
<220 <221 <222 <223	L> ( ?> (	CDS (1) Prote	•	•	sin v	varia	int f	rom	pcr	clor	ıe HC	) <b>T</b> 75n	n8: (	enBa	nk#AF3499	82
- 4 2 -	\				-				•			•			•	
<400 atg		22 aaa	tta	tta	ctg	ata	tta	ggt	agt	gct	att	gca	ctt	cca	tca -	48
				Leu 5												
ttt	gct	gct	gct	ggt	ggc	gat	cta	gat	ata	agt	gat	act	gtt	ggt	gtt	96

	Phe	Ala	Ala	Ala 20	Gly	Gly	Asp	Leu	Asp 25	Ile	Ser	Asp	Thr	Val 30	Gly	Val		
									atg Met									144
									gct Ala							act Thr		192
									gct Ala							atg Met 80		240
									gat Asp									288
									tta Leu 105		_	_						336
									gct Ala								•	384
									ggt Gly									432
									ttc Phe									480
,									atg Met									528
									tct Ser 185	Ala								576
									tat Tyr									624
									tac Tyr									672
	tat	aac	ctt	gcc	gac	ctt	gtt	aac	aag	att	cta	ttt	ggt	ttg	atc	att		720

Tyr Asn Leu Ala Asp Leu Val Asn Lys Ile Leu Phe Gly Leu Ile Ile 230 235 240 tgg aat gtt gct gtt aaa gaa tct tct aat gct 753 Trp Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245 250 <210> 23 <211> 251 <212> PRT <213> Naturally occurring gamma proteobacterium <400> 23 Met Gly Lys Leu Leu Ile Leu Gly Ser Ala Ile Ala Leu Pro Ser Phe Ala Ala Gly Gly Asp Leu Asp Ile Ser Asp Thr Val Gly Val 20 . 25 30 Ser Phe Trp Leu Val Thr Ala Gly Met Leu Ala Ala Thr Val Phe Phe 35 40 45 Phe Val Glu Arg Asp Gln Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 50 60 Val Ser Gly Leu Ile Thr Gly Ile Ala Phe Trp His Tyr Leu Tyr Met 70 Arg Gly Val Trp Ile Asp Thr Gly Asp Thr Pro Thr Val Phe Arg Tyr 85 90 95 Ile Asp Trp Leu Leu Thr Val Pro Leu Gln Met Val Glu Phe Tyr Leu 100 105 Ile Leu Ala Ala Cys Thr Asn Val Ala Ala Ser Leu Phe Lys Lys Leu 115 Leu Ala Gly Ser Leu Val Met Leu Gly Ala Gly Phe Ala Gly Glu Ala 130 135 140 Gly Leu Ala Pro Val Trp Pro Ala Phe Ile Ile Gly Met Ala Gly Trp

145 150 155 160 Leu Tyr Met Ile Tyr Glu Leu Tyr Met Gly Glu Gly Lys Ala Ala Val 165 170 Ser Thr Ala Ser Pro Ala Val Asn Ser Ala Tyr Asn Ala Met Met Val 180 185 Ile Ile Val Val Gly Trp Ala Ile Tyr Pro Ala Gly Tyr Ala Ala Gly 195 200 205 Tyr Leu Met Gly Gly Glu Gly Val Tyr Ala Ser Asn Leu Asn Leu Ile 215 Tyr Asn Leu Ala Asp Leu Val Asn Lys Ile Leu Phe Gly Leu Ile Ile 230 235 Trp Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245 250 <210> 24 <211> 750 <212> <213> Naturally occurring gamma proteobacterium <220> <221> CDS <222> (1)..(750)<223> Proteorhodopsin variant from pcr clone MBOml: GenBank#AF349983 <400> 24 atg ggt aaa tta tta ctg ata tta ggt agt gtt att gca ctt cct aca 48 Met Gly Lys Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr ttt gct gca ggt ggt ggt gac ctt gat gct agt gat tac act ggt gtt 96 Phe Ala Ala Gly Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val 20 25 tet ttt tgg tta gtt act get get eta tta gea tet act gta ttt tte 144 Ser Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe 35 40 45 ttt gtt gaa aga gat aga gtt tct gca aaa tgg aaa aca tca tta act 192

Phe	Val 50	Glu	Arg	Asp	Arg	Val 55	Ser	Ala	Lys	Trp	Lys 60	Thr	Ser	Leu	Thr		
					act Thr 70												240
					gag Glu												288
					aca Thr												336
					aca Thr												384
					gtt Val												432
					tgg Trp 150												480
-		_			gaa Glu			_		_				_	-		528
					tcg Ser												576
					tgg Trp										ggt Gly	•	62 <b>4</b>
					ggt Gly										tat Tyr		672
					gtt Val 230						Gly					·	720
	_				gaa Glu				-		•						750

<210> 25 <211> 250 <212> PRT <213> Naturally occurring gamma proteobacterium <400> 25 Met Gly Lys Leu Leu Leu Gly Ser Val Ile Ala Leu Pro Thr 10 Phe Ala Ala Gly Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val 20 25 Ser Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe 40 Phe Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 60 Val Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met 75 Arg Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr 85 90 Ile Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu 100 105 Ile Leu Ala Ala Ala Thr Asn Val Ala Ala Gly Leu Phe Lys Lys Leu 115 120 125 Leu Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 130 135 140 Gly Ile Met Asn Ala Trp Pro Ala Phe Ile Ile Gly Cys Leu Ala Trp 150 145

Asn Thr Ala Ser Pro Ser Val Gln Ser Ala Tyr Asn Thr Met Met Ala

Val Tyr Met Ile Tyr Glu Leu Tyr Ala Gly Glu Gly Lys Ser Ala Cys

165

170

180 185 190

Ile Ile Val Phe Gly Trp Ala Ile Tyr Pro Val Gly Tyr Phe Thr Gly
195 200 205

PCT/US01/14394

Tyr Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr 210 215 220

Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp 225 230 235 240

Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245 250

<210> 26 <211> 750

<212> DNA

<213> Naturally ocurring gamma proteobacterium

<220>

<221> CDS

<222> (1)..(750)

<223> Proteorhodopsin variant from pcr clone MB0m2

<400> 26

atg ggt aaa tta tta ctg ata tta ggt agt gtt att gca ctt cct aca 48
Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr
1 5 10 15

ttt gct gca ggt ggt ggc ctt gat gct agt gat tac act ggt gtt 96
Phe Ala Ala Gly Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val
20 25 30

tct ttt tgg tta gtt act gct gct tta tta gca tct act gta ttt ttc

144
Ser Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe

ttt gtt gaa aga gat aga gtt tct gca aaa tgg aaa aca tca tta act

Phe Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr

50 55 60

gta tct ggt ctt gtt act ggt att gct ttc tgg cat tac atg tac atg
Val Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met
65 70 75 80

aga ggg gta tgg att gaa act ggt gat tcg cca act gta ttt aga tac 288

Arg	Gly	Val	Trp	I1e 85	Glu	Thr	G1y	_	Ser 90	Pro	Thr	Val	Phe	Arg 95	Tyr		
	_											gaa Glu			tta Leu		336
												ttt Phe 125			tta Leu	-	384
												atg Met					432
												tgt Cys					480
												aaa Lys					528
aat Asn	aca Thr	gca Ala	agt Ser 180	cct Pro	gct Ala	gtt Val	cag Gln	tca Ser 185	gct Ala	tac Tyr	aac Asn	aca Thr	atg Met 190	atg Met	atg Met		576
												tat Tyr 205				· .	624
												aac Asn					672
												tta Leu					720
				aaa Lys 245											-		750
																•	(4)

<210> 27

<211> 250

<212> PRT

<213> Naturally ocurring gamma proteobacterium

<400> 27

Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr

1 5 10 15

Phe Ala Ala Gly Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val 20 25 30

Ser Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe 35 40 45

Phe Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 50 55 60

Val Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met 65 70 75 80

Arg Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr 85 90 95

Ile Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu 100 105 110

Ile Leu Ala Ala Ala Thr Asn Val Ala Ala Gly Leu Phe Lys Lys Leu 115 120 125

Leu Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 130 135 140

Gly Ile Met Asn Ala Trp Gly Ala Phe Val Ile Gly Cys Leu Ala Trp 145 150 155 160

Val Tyr Met Ile Tyr Glu Leu Trp Leu Gly Glu Gly Lys Ala Ala Cys 165 170 175

Asn Thr Ala Ser Pro Ala Val Gln Ser Ala Tyr Asn Thr Met Met Met 180 185 190

Ile Ile Ile Phe Gly Trp Ala Ile Tyr Pro Val Gly Tyr Phe Thr Gly
195 200 205

Tyr Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr

288

210 215 . 220

Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp 225 230 235 240

Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245 250

<210> 28 <211> 750 <212> DNA

85

<213> Naturally occuring gamma proteobacterium

<220>

<221> CDS

<222> (1)..(750)

<223> Proteorhodopsin variant from pcr clone MB20m2; GenBank #AF349985

<400> 28 atg ggt aaa tta tta ctg ata tta ggt agt gtt att gca ctt cct aca 48 Met Gly Lys Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr ttt get gea ggt ggt ggt gac ett gat get agt gat tac aet ggt gtt 96 Phe Ala Ala Gly Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val 20 25 tot ttt tgg tta gtt act gct gct tta tta gca tct act gta ttt ttc 144 Ser Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe 40 ttt gtt gaa aga gat aga gtt tct gca aaa tgg aaa aca tca tta act 192 Phe Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 50 55 60 gta tot ggt ott gtt act ggt att gct ttc tgg cat tac atg tac atg 240 Val Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met 65 70 75

att gat tgg tta cta aca gtt cct cta tta ata tgt gaa ttc tac tta 336
Ile Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu
100 105 110

90

aga ggg gta tgg att gaa act ggt gat tcg cca act gta ttt aga tac

Arg Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr

•														
att ctt Ile Leu														384
ttg gtt Leu Val 130														432
gga att Gly Ile 145														480
gta tac Val Tyr						-				_	-	-	_	528
aat act Asn Thr		Pro												576
ata atc Ile Ile														624
tac cta Tyr Leu 210		-				_								672
aac ctt Asn Leu 225			_		_									720
aat gtt Asn Val			_				-							750
<211> 2 <212> E	9 250 PRT Taturall	у осс	curir	ng ga	amma	prot	:eoba	icter	cium					<i>,</i>
<400> 2	!9	·												,
Met Gly	Lys Leu	Leu 5	Leu	Ile	Leu	Gly	Ser 10	Val	Ile	Ala	Leu	Pro 15	Thr	
Phe Ala	Ala Gly 20	Gly	Gly ·	Asp	Leu	Asp 25	Ala	Ser	Asp	Tyr	Thr 30	Gly	Val	



<21: <21: <21: <22: <22: <22: <22:	1> 2> 3> 0> 1> 2>	30 750 DNA Natur CDS (1).	. (750	0)				_				· .	5; G	enBar	nk#AI	r349986
<40	, ) <b>&gt;</b>	30						·				-				
atg	ggt	aaa Lys														48
		gca Ala														96
		tgg Trp 35		_		_	_			_			_			144
		gaa Glu														192
		ggt Gly														240
		gta Val														288
		tgg Trp												Tyr		336
		gct Ala 115														384
cta Leu	gtt Val 130	ggt Gly	tct Ser	ctt Leu	gtt Val	atg Met 135	ctt Leu	gtg Val	ttt Phe	ggt Gly	tac Tyr 140	atg Met	ggt Gly	gaa Glu	gca Ala	432

caa att ato Gln Ile Met 145			-					480
gta tac ato Val Tyr Met		Glu Leu				Ser A		528
aat act gca Asn Thr Ala						_		576
atc ata gto Ile Ile Val 195	. Phe Gly							624
tac cta ato Tyr Leu Met 210			_					672
aac ctt gct Asn Leu Ala 225	_	_						720
aat gtt gct Asn Val Ala	_	Glu Ser		_	-			750
<210> 31 <211> 250 <212> PRT <213> Nati	rally oc	curring (	gamma pro	oteobact	erium			
<400> 31								
Met Gly Lys	Leu Leu 5	Leu Ile	Leu Gly	Ser Val	Ile Ala	Leu P		
Phe Ala Ala	Gly Gly 20	Gly Asp	Leu Asp 25	Ala Ser	Asp Tyr	Thr G	ly Val	
Ser Phe Trp 35	Leu Val	Thr Ala	Ala Leu 40	Leu Ala	Ser Thr 45	Val P	he Phe	
Phe Val Glu					•			

Val Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met 70 75 Arg Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr 85 90 Ile Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu Ile Leu Ala Ala Ala Thr Asn Val Ala Gly Ser Leu Phe Lys Lys Leu 120 125 Leu Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 130 135 Gln Ile Met Ala Ala Trp Pro Ala Phe Ile Ile Gly Cys Leu Ala Trp 145 150 155 Val Tyr Met Ile Tyr Glu Leu Tyr Ala Gly Glu Gly Lys Ser Ala Cys 165 170 Asn Thr Ala Ser Pro Ser Val Gln Ser Ala Tyr Asn Thr Met Met Ala 180 185 190 Ile Ile Val Phe Gly Trp Ala Ile Tyr Pro Val Gly Tyr Phe Thr Gly 195 200 205 Tyr Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr 210 215 Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Leu Gly Leu Ile Ile Trp 230 235

Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245 250

<210> 32

<211> 750

<212> DNA

<213> Naturally occurring gamma proteobacterium

<220 <220 <220 <220	1> 2>	CDS (1). Prote			sin v	varia	ant :	from	per	clo	ne M	B20m.	12; (	GenBa	ank	#AF3499	987
atg		32 aaa Lys			_					-		-					48
		gca Ala															96
		tgg Trp 35		-		_	_			_			_				L44
	_	gaa Glu	_	_	_	_		_									Ĺ92
-		ggt Gly		_				_					_		_	. 2	240
		gta Val						-	_			_					. 88
	-	tgg Trp				_					_	_					36
		gct Ala 115					-						_			3	884
Leu		ggt Gly														4	132
		atg Met														4	180
		atg Met														5	28

Ile Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu 100 105 Ile Leu Ala Ala Ala Asn Val Ala Gly Ser Leu Phe Lys Lys Leu 115 Leu Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 135 Gly Ile Met Ala Ala Trp Pro Ala Phe Ile Ile Gly Cys Leu Ala Trp 145 150 155 Val Tyr Met Ile Tyr Glu Leu Trp Ala Gly Glu Gly Lys Ser Ala Cys 165 170 Asn Thr Ala Ser Pro Ala Val Gln Ser Ala Tyr Asn Thr Met Met Tyr 180 185 Ile Ile Ile Phe Gly Trp Ala Ile Tyr Pro Val Gly Tyr Phe Thr Gly 200 Tyr Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr 210 215 220

Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp 225 230 235 240

Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245 250

<210> 34 <211> 750 <212> DNA <213> Naturally occurring gamma proteobacterium

<220> <221> CDS

<222> (1)..(750)

<223> Proteorhodopsin variant from pcr clone MB40m1; GenBank #AF349988

<400	)> :	3 <b>4</b>									
				ctg Leu							48
				ggt Gly							96
				aca Thr						1	144
				aga Arg						3	192
				act Thr 70						2	240
				gaa Glu						2	288
				aca Thr						3	336
				act Thr						3	384
				gtt Val						4	132
				tgg Trp 150						· <b>4</b>	180
				gaa Glu						5	528
				gct Ala						5	576
				tgg Trp						6	24

										ctt Leu							672	
			_	_		-				cta Leu							720	۱.
							tct Ser										750	•
	<210 <211 <212 <213	L> 2 2> 1		cally	/ occ	curri	ing g	gamma	a pro	oteok	Dacte	eriu	n					
	<400	)> 3	35				·				,							
	Met 1	Gly	Lys	Leu	Leu 5	Leu	Ile	Ile	Gly	Ser 10	Val	Ile	Ala	Leu	Pro 15	Thr		
,	Phe	Ala	Ala	Gly 20	Gly	Gly	Asp	Leu	Asp 25	Ala	Ser	Asp	Tyr	Thr 30	Gly	Val		
	Ser	Phe	Trp 35	Leu	Val	Thr	Ala	Ala 40	Leu	Leu	Ala	Ser	Thr 45	Val	Phe	Phe	,	
	Phe	Val 50	Glu	Arg	Asp	Arg	Va1 55	Ser	Ala	Lys	Trp	Lys 60	Thr	Ser	Leu	Thr		•
	Val 65	Ser	Gly	Leu	Val	Thr 70	Gly	Ile	Ala	Phe	Trp 75		-	Met	_	Met 80		
	Arg	Gly	Val	Trp	Ile 85	Glu	Thr	Gly	Asp	Ser 90	Pro	Thr	Val	Phe	Arg 95	Tyr		
	Ile	Asp	Trp	Leu 100	Leu	Thr	Val	Pro	Leu 105	Leu	Ile	Cys	Glu	Phe 110	Tyr	Leu		
	Ile	Leu	Ala 115	Ala	Ala	Thr	Asn	Val 120	Ala	Gly	Ser	Leu	Phe 125	Lys	Lys	Leu		

Leu	Val 130	Gly	Ser	Leu	Val	Met 135	Leu	Val	Phe	Gly	Tyr 140	Met	Gly	Glu	Ala		
Gly 145	Ile	Met	Ala	Ala	Trp 150	Pro	Ala	Phe	Ile	11e 155	Gly	Сув	Leu	Ala	Trp 160	•	
Val	Tyr	Met	Ile	Tyr 165	Glu	Leu	Tyr	Ala	Gly 170	Glu	Gly	Lys	Ser	Ala 175	Cys		_
Asn	Thr	Ala	Ser 180	Pro	Ala	Val	Gln	Ser 185	Ala	Tyr	Asn	Thr	Met 190	Met	Tyr		
Ile	Ile	Val 195	Phe	Gly	Trp	Ala	Ile 200	Tyr	Pro	Val	Gly	Tyr 205		Thr	Gly	·	
Tyr	Leu 210	Met	Gly	Asp	Gly	Gly 215	Ser	Ala	Leu	Asn	Leu 220	Asn	Leu	Ile	Tyr		٠.
Asn 225	Leu	Ala	Asp	Phe	Val 230	Asn	Lys	Ile	Leu	Phe 235	Gly	Leu	Ile	Ile	Trp 240		
Asn	Val	Ala	Val	Lys 245	Glu	Ser	Ser	Asn	Ala 250	,							
<21 <21 <21 <21	1> 7 2> I	36 750 ONA Natui	rally	y occ	curri	ing g	gamma	a pro	oteol	pacte	eriur	n ·					
<22: <22: <22: <22:	1> ( 2>		. (75) eorh		sin v	varia	ant i	Erom	pcr	clor	ne Mi	340ms	, q;ō	GenBa	ank #	AF34	19989
<40	0> 3	36															
atg	ggt	aaa								_	att Ile	_					48
											gat Asp						96

			•														
					act Thr												144
					aga Arg												192
					act Thr 70												240
					gag Glu												288
					aca Thr						_	_					336
					aca Thr								Lys		Leu		384 ⁻
					gtt Val												432
	Ile				tgg Trp 150												480
					gaa Glu												528
					gct Ala	_			_			Thr					576
					tgg Trp												624
					ggt Gly												672
aac Asn 225	ctt Leu	gct Ala	gac Asp	ttt Phe	gtt Val 230	aac Asn	aag Lys	aat Asn	cta Leu	ttt Phe 235	ggt Gly	tta Leu	att Ile	ata Ile	tgg Trp 240	•	720

aat gtt gct gtt aaa gaa tct tct aat gct

750

Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245 <210> 37 <211> 250 <212> PRT Naturally occurring gamma proteobacterium <400> 37 Met Gly Lys Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr 5 Phe Ala Ala Gly Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val 20 Ser Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe 35 40 45 Phe Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 50 55 Val Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met 75 Arg Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr 85 90 Ile Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu 100 105 110 Ile Leu Ala Ala Ala Thr Asn Val Ala Ala Gly Leu Phe Lys Lys Leu 115 120 Leu Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala ·· 130 135 Gly Ile Met Asn Ala Trp Gly Ala Phe Val Ile Gly Cys Leu Ala Trp 150 155

Va1	Tyr	Met	Ile	Туг 165	Glu	Leu	Trp	Ala	Gly 170	Ģlu	Gly	Lys	Ala	Ala 175	Cys	
Asn	Thr	Ala	Ser 180	Pro	Ala	Val	G1n	Ser 185	Ala	Tyr	Asn	Thr	Met 190	Met	Tyr	
Ile	Ile	Ile 195	Phe	Gly	Trp	Ala	Ile 200	Tyr	Pro	Val	Gly	<b>Tyr</b> 205	Phe	Thr	Gly	•
Tyr	Leu 210	Met	Gly	Asp	Gly	Gly 215	Ser	Ala	Leu	Asn	Leu 220	Asn	Leu	Ile	Tyr	
Asn 225	Leu.	Ala	Asp	Phe	Val 230	Asn	Lys	Asn	Leu	Phe 235	Gly	Leu	Ile	Ile	Trp 240	
Asn	Val	Ala	Val.	Lys 245	Glu	Ser	Ser	Asn	Ala 250		. <del>-</del>					
<210 <211 <212 <213	L> [ 2> [	38 750 DNA Natur	ally	, occ	urri	ng g	yamma	a pro	oteok	pacte	erium	ı.				
<220 <221 <222 <223	L> ( }>	CDS (1) Prote			sin v	varia	int f	rom	pcr	clor	ne ME	340m]	L2; (	SenBa	nnk #	AF34999
<400	)> 3	38											•			
		aaa Lys														48
		gca Ala										Tyr				96
		tgg Trp 35														144
		gaa														192

	50					5,5				60				
_				gtt Val				_			_		-	240
_		_		att Ile 85	-				-					288
	_			cta Leu		_				_				336
			_	gca Ala			_	_						384
	-			ctt Leu										432
		_	_	gca Ala			_							480
-		_		tat Tyr 165	_									528
		_	_	cct Pro	_				_					576
				ggt Gly										624
				gac Asp										672
		_	_	ttt Phe	_		-							720
	_	_	_	aaa Lys 245	_				-			٠		750

<210> 39

<211> 250 <212> PRT

<213> Naturally occurring gamma proteobacterium

<400> 39

Met Gly Lys Leu Leu Arg Ile Leu Gly Ser Val Ile Ala Leu Pro Thr 1 5 10 15

Phe Ala Ala Gly Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val 20 25 30

Ser Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe 35 40 45

Phe Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 50 55 60

Val Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met 65 70 75 80

Arg Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr 85 90 95

Ile Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu
100 105 110

Ile Leu Ala Ala Ala Thr Asn Val Ala Gly Ser Leu Phe Lys Lys Leu 115 120 125

Leu Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 130 135 140

Gly Ile Met Ala Ala Trp Pro Ala Phe Ile Ile Gly Cys Leu Ala Trp 145 150 155 160

Val Tyr Met Ile Tyr Glu Leu Trp Ala Gly Glu Gly Lys Ser Ala Cys 165 170 175

Asn Thr Ala Ser Pro Ala Val Gln Ser Ala Tyr Asn Thr Met Met Tyr 180 185 190

														•			
	lle	Ile	Ile 195	Val	Gly	Trp	Ala	11e 200	Tyr	Pro	Val	Gly	Tyr 205	Phe	Thr	Gly	
	Tyr	Leu 210	Met	Gly	Asp	Gly	Gly 215	Ser	Ala	Leu	Asn	Leu 220	Asn	Leu	Ile	Tyr	
	Asn 225	Leu	Ala	Asp	Phe	Val 230	Asn	Lys	Ile	Leu	Phe 235	Gly	Leu	Ile	Ile	Trp 240	
	Asn	Val	Ala	Val	Lys 245	Glu	Ser	Ser	Asn	Ala 250					f	,	
	<210 <211 <212 <213	L> 7 2> I	10 750 ONA	calls	z oce	nirri	ina a	ramma	nro	oteol	oact.	eriur	n				
	<220 <221 <222	)> L> ( 2> ·	CDS	. (75(	) )				<del>-</del>					n5; (	GenBa	ank #AF3	349991
	<b>-</b> 400	)> 4	10									•					
	atg	ggt	aaa									att Ile					48
												gat Asp					96
		Phe										tct Ser					144
												aaa Lys 60				act Thr	192
-												cat His					240
												act Thr					288

WO 01/83701 PCT/US01/14394

				85					90					95			
		tgg Trp		Leu													336
		gct Ala 115	_	_			_	_									384
	_	ggt Gly			_	-										. •	432
		atg Met															480
		atg Met														•	528
		gca Ala			_												576
		gtc Val 195															624
		atg Met															672
		gct Ala	_	Phe	_	Asn	-	Ile		Phe	Gly						720
		gct Ala															750
-014																	
<210 <211 <212 <213	l> 2 2> 1	41 250 PRT Natur	rally	y oc	urri	ing g	-	a pro	oteol	pacte	eriur	n. ··					
<400	)> 4	41													• -		
Met 1	Gly	Lys	Leu	Leu 5	Leu	Ile	Leu	Gly	Ser 10	Val	Ile	Ala	Leu	Pro 15	Thr		
				-													

Phe Ala Ala Gly Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val 20 25 30

Ser Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe 35 40 45

Phe Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 50 55 60

Val Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met 65 70 75 80

Arg Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr 85 90 95

Ile Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu 100 105 110

Ile Leu Ala Ala Ala Thr Asn Val Ala Gly Ser Leu Phe Lys Lys Leu 115 120 125

Leu Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 130 135 140

Gly Ile Met Ala Ala Trp Pro Ala Phe Ile Ile Gly Cys Leu Ala Trp 145 150 155 160

Val Tyr Met Ile Tyr Glu Leu Tyr Ala Gly Glu Gly Lys Ser Ala Cys 165 170 175

Asn Thr Ala Ser Pro Ser Val Gln Ser Ala Tyr Asn Thr Met Met Ala 180 185 190

Ile Ile Val Phe Gly Trp Ala Ile Tyr Pro Val Gly Tyr Phe Thr Gly
195 200 205

Tyr Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr 210 215 220

225			2110	230		<b>-</b> 1.2		204	235		204		110	240	
Asn Val	Ala		Lys 245	Glu	Ser	Ser	Asn	A1a 250		,					
<211> '<212> 1	42 750 DNA Natura	ally	occ	urri	ing (	gamma	a pro	oteol	pacte	eriu	n				
<222>	CDS (1) Prote			sin v	varia	ant i	Erom	pcr	clo	ne M	B <b>1</b> 001	n7; (	GenB	ank	#AF349992 _.
<400> 4 atg ggt Met Gly 1				_				_	_		_				
ttt gct Phe Ala	Ala						-	_	-	-				_	96
tct ttt Ser Phe					_	_						_			144
ttt gtt Phe Val 50															192
gta tct Val Ser 65							_								240
aga ggg Arg Gly	_	ľrp		_			_	_			_				288
att gat Ile Asp	Trp I				_						_				
att ctt Ile Leu															384

Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp

115	1	120	125	
		ett gtg ttt ggt t Leu Val Phe Gly T 1	-	
		gca ttc att att g Ala Phe Ile Ile G 155		
_	<del>-</del>	tat gct gga gaa g Tyr Ala Gly Glu G 170	-,	
	Pro Ser Val G	caa tca gct tac a Gln Ser Ala Tyr A 185		
	Gly Trp Ala I	att tat cct gta g Ile Tyr Pro Val G 200		
		cca gct ctt aac t Ser Ala Leu Asn L 2		
		aag att cta ttt g Lys Ile Leu Phe G 235		
aat gct gct gtt Asn Ala Ala Val	_			750
<210> 43 <211> 250 <212> PRT <213> Naturall	y occurring ga	amma proteobacter	ium	
<400> 43				
Met Gly Lys Leu 1	Leu Leu Ile L 5	Leu Gly Ser Val I 10	le Ala Leu Pro 15	Thr
Phe Ala Ala Gly	Gly Gly Asp L	Leu Asp Ala Ser A 25	sp Tyr Thr Gly 30	Val
Ser Phe Trp Leu 35		Ala Leu Leu Ala S 10	er Thr Val Phe 45	Phe

Phe Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 50 55 60

Val Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met 65 70 75 80

Arg Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr 85 90 95

Ile Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu 100 105 110

Ile Leu Ala Ala Ala Thr Asn Val Ala Gly Ser Leu Phe Lys Lys Leu 115 120 125

Leu Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 130 135 140

Gly Ile Met Ala Ala Trp Pro Ala Phe Ile Ile Gly Cys Leu Ala Trp 145 150 155 160

Val Tyr Met Ile Tyr Glu Leu Tyr Ala Gly Glu Gly Lys Ser Ala Cys 165 170 175

Asn Thr Ala Ser Pro Ser Val Gln Ser Ala Tyr Asn Thr Met Met Ala 180 185 190

Ile Ile Val Phe Gly Trp Ala Ile Tyr Pro Val Gly Tyr Phe Thr Gly
195 200 205

Tyr Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr 210 215 220

Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp 225 230 235 240-

Asn Ala Ala Val Lys Glu Ser Ser Asn Ala 245 250

<210> 44 <211> 750 <212> DNA <213> Naturally occurring gamma proteobacterium																	
<22	1> ( 2>	CDS (1). Prot	•	•	sin ¬	varia	ant :	from	pcr	clo	ne M	B1001	m9; (	GenB	ank #	AF349	993
atg		aaa										gca Ala					48
									-	_	_	tac Tyr		-	gtt. Val		96
						_	_			_		act Thr 45	_				144
												aca Thr					192
								_				tac Tyr	_		_	:	240
												gta Val					288
												gaa Glu				;	336
			Ala									ttt Phe 125				;	384
												atg Met					432
												tgt Cys				,	480

145	150	<b>)</b> ·	155		160
			t gga gaa gga a Gly Glu Gly 170		
			a gct tac.aac er Ala Tyr Asn 5		
			t cct gta ggt r Pro Val Gly		
_			a ctt aac tta a Leu Asn Leu 220		
		. Asn Lys Il	et cta ttt ggt e Leu Phe Gly 235		
	gtt aaa gaa Val Lys Glu 245				750
<210> 45 <211> 250 <212> PRT <213> Natu:	rally occuri	ing gamma p	proteobacterium	n	
<400> 45					•
Met Gly Lys 1	Leu Leu Leu 5	lle Leu Gl	y Ser Val Ile 10	Ala Leu Pro 15	Thr
Phe Ala Ala	Gly Gly Gly 20	Asp Leu As 25	p Ala Ser Asp	Tyr Thr Gly	Val
Ser Phe Trp 35	Leu Val Thr	Ala Ala Len 40	u Leu Ala Ser	Thr Val Phe 45	Phe
Phe Val Glu 50	Arg Asp Arg	Val Ser Ala 55	a Lys Trp Lys 60	Thr Ser Leu	Thr
Val Ser Gly 65	Leu Val Thr 70	Gly Ile Ala	a Phe Trp His 75	Tyr Met Tyr	Met 80

WO 01/83701 PCT/US01/14394

Arg Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr 85 90 95

Ile Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu 100 105 110

Ile Leu Ala Ala Ala Thr Asn Val Ala Gly Ser Leu Phe Lys Lys Leu 115 120 125

Leu Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 130 135 140

Gly Ile Met Ala Ala Trp Pro Ala Phe Ile Ile Gly Cys Leu Ala Trp 145 150 155 160

Val Tyr Met Ile Tyr Glu Leu Trp Ala Gly Glu Gly Lys Ser Ala Cys 165 170 175

Asn Thr Ala Ser Pro Ala Val Gln Ser Ala Tyr Asn Thr Met Met Tyr 180 185 190

Ile Ile Ile Phe Gly Trp Ala Ile Tyr Pro Val Gly Tyr Phe Thr Gly
195 200 205

Tyr Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr 210 215 220

Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp 225 230 235 240

Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245 250

<210> 46

<211> 750

<212> DNA

<213> Naturally occurring gamma proteobacterium

<220>

<221> CDS <222> (1)(75 <223> Proteorh		from pcr clo	one MB100m10;	GenBank #AF34999
	tta ctg ata tta Leu.Leu Ile Leu 5		_	
	ggc ggt gac ctt Gly Gly Asp Leu	-	=	
	gtt aca gct gct Val Thr Ala Ala 40			
	gat aga gtt tct Asp Arg Val Ser 55			
	gtt act ggt att Val Thr Gly Ile 70		-	_
	att gaa act ggt Ile Glu Thr Gly 85	-		
	cta aca gtt cct Leu Thr Val Pro			
	gca act aat gtt Ala Thr Asn Val 120	l Ala Gly Ser		
	ctt gtt atg ctt Leu Val Met Leu 135			
	gct tgg cct gca Ala Trp Pro Ala 150		Gly Cys Leu	
	tat gaa cta tgg Tyr Glu Leu Trg 165			
aat act gca agt	cct gct gta cag	g tca gct tac	e aac aca atg	atg tat 576

									•								
Asn	Thr	Ala	Ser 180	Pro	Ala	Val	Gln	Ser 185	Ala	Tyr	Asn	Thr	Met 190	Met	Tyr		
			_			_				_	ggt Gly					6	24
											cta Leu 220						72
			_		_		_				ggt Gly					7	20
	_	_	_	aaa Lys 245	_				_						٠.	7	50

<210> 47

<211> 250

<212> PRT

<213> Naturally occurring gamma proteobacterium

<400> 47

Met Gly Lys Leu Leu Leu Gly Ser Val Ile Ala Leu Pro Thr
1 5 15

Phe Ala Ala Gly Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val 20 25 30

Ser Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe 35 40 45

Phe Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 50 55 60

Val Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met 65 70 75 80

Arg Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr-85 90 95

Ile Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu

110

Ile Leu Ala Ala Ala Thr Asn Val Ala Gly Ser Leu Phe Lys Lys Leu 115 120 125

Leu Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 130 135 140

Gly Ile Met Ala Ala Trp Pro Ala Phe Ile Val Gly Cys Leu Ala Trp 145 150 155 160

Val Tyr Met Ile Tyr Glu Leu Trp Ala Gly Glu Gly Lys Ser Ala Cys 165 170 175

Asn Thr Ala Ser Pro Ala Val Gln Ser Ala Tyr Asn Thr Met Met Tyr 180 185 190

Ile Ile Ile Val Gly Trp Ala Ile Tyr Pro Val Gly Tyr Phe Thr Gly
195 200 205

Tyr Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr 210 215 220

Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp 225 230 235 240

Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245 250

<210> 48

<211> 753

<212> DNA

<213> Naturally occurring gamma proteobacterium

<220>

<221> CDS

<222> (1)..(753)

<223> Proteorhodopsin variant from pcr clone PALB1; GenBank #AF349995

<400> 48

atg ggt aaa tta tta ctg ata tta ggt agt gct att gca ctt cca tca

Met 1	Gly	Lys	Leu	Leu 5	Leu	Ile	Leu	Gly	Ser 10	Ala	Ile	Ala	Leu	Pro 15	Ser	
								gat Asp 25								96
								atg Met								144
								gct Ala								192
								gct Ala								240
aga Arg	ggt Gly	gtt Val	tgg Trp	ata Ile 85	gat Asp	act Thr	ggt Gly	gat Asp	aca Thr 90	cca Pro	aca Thr	gta Val	ttt Phe	aga Arg 95	tat Tyr	288
								tta Leu 105								336
								gct Ala								384
cta Leu	gct Ala 130	ggt Gly	tca Ser	tta Leu	gta Val	atg Met 135	tta Leu	ggt Gly	gct Ala	gga Gly	ttt Phe 140	gca Ala	ggc Gly	gaa Glu	gct Ala	432
								ttc Phe								480
								atg Met								528
								tct Ser 185								576
								tat Tyr							ggt- Gly	624
tac	cta	atg	agt	ggt	gac	ggt	gta	tac	gct	tca	aac	tta	aac	ctt	ata	672

Tyr Leu Met	Ser Gly Asp	Gly Val Tyr 215	Ala Ser Asn 220		u Ile
		gtt aac aag Val Asn Lys			
		gaa tct tct Glu Ser Ser			753
<210> 49 <211> 251 <212> PRT <213> Natur	rally occurr	ing gamma pro	oteobacteriu	m	•
<400> 49					
Met Gly Lys 1	Leu Leu Leu 5	Ile Leu Gly	Ser Ala Ile 10	Ala Leu Pr 15	
Phe Ala Ala	Ala Gly Gly 20	Asp Leu Asp 25	Ile Ser Asp	Thr Val Gl	y Val
Ser Phe Trp 35	Leu Val Thr	Ala Gly Met	Leu Ala Ala	Thr Val Ph 45	e Phe
Phe Val Glu 50	Arg Asp Gln	Val Ser Ala 55	Lys Trp Lys 60	Thr Ser Le	u Thr
Val Ser Gly 65	Leu Ile Thr 70	Gly Ile Ala	Phe Trp His	Tyr Leu Ty	r Met 80
Arg Gly Val	Trp Ile Asp 85	Thr Gly Asp	Thr Pro Thr	Val Phe Ar	g Tyr
Ile Asp Trp	Leu Leu Thr	Val Pro Leu 105	Gln Met Val	Glu Phe Ty	r Leu
Ile Leu Ala 115	Ala Cys Thr	Ser Val Ala 120	Ala Ser Leu	Phe Lys Ly 125	s Leú [.]

Leu Ala Gly Ser Leu Val Met Leu Gly Ala Gly Phe Ala Gly Glu Ala

135 140 130 Gly Leu Ala Pro Val Leu Pro Ala Phe Ile Leu Gly Met Ala Gly Trp 150 155 Leu Tyr Met Ile Tyr Glu Leu His Met Gly Glu Gly Lys Ala Ala Val 165 170 Ser Thr Ala Ser Pro Ala Val Asn Ser Ala Tyr Asn Ala Met Met Lys 185 190 ... 180 Ile Ile Val Ile Gly Trp Ala Ile Tyr Pro Ala Gly Tyr Ala Ala Gly 200 205 195 Tyr Leu Met Ser Gly Asp Gly Val Tyr Ala Ser Asn Leu Asn Leu Ile 210 215 Tyr Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile 225 230 235 Trp Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245 <210> 50 <211> 753 <212> DNA <213> Naturally occurring gamma proteobacterium <220> <221> CDS <222> (1)..(753) <223> Proteorhodopsin variant from pcr clone PALB2; GenBank #AF349996 <400> 50 atg ggt aaa tta tta ctg ata tta ggt agt gct att gca ctt cca tca 48 Met Gly Lys Leu Leu Ele Leu Gly Ser Ala Ile Ala Leu Pro Ser 10 96 ttt get get get ggt gge gat eta gat ata agt gat act gtt ggt gtt Phe Ala Ala Ala Gly Gly Asp Leu Asp Ile Ser Asp Thr Val Gly Val 20 25 30 144 tca ttc tgg ctg gtt aca gct ggt atg tta gcg gca act gtg ttc ttt

Ser	Phe	Trp 35	Leu	Val	Thr	Ala	Gly 40	Met	Leu	Ala	Ala	Thr 45	Val	Phe	Phe	
					caa Gln											192
					act Thr 70											240
_		_			gat Asp			_				-				288
					act Thr											336
					aca Thr											384
					gta Val		Leu									432
					tta Leu 150											480
					gag Glu											528
					gct Ala											576
					tgg Trp											624
					gaa Glu							Leu				672
					ttt Phe 230											720
tgg	aat	gtt	gct	gtt	aaa	gaa	tct	tct	aat	gct						753

Trp Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245 250

<210> 51

<211> 251

<212> PRT

<213> Naturally occurring gamma proteobacterium

<400> 51

Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Ala Ile Ala Leu Pro Ser 1 5 10 15

Phe Ala Ala Gly Gly Asp Leu Asp Ile Ser Asp Thr Val Gly Val 20 25 30

Ser Phe Trp Leu Val Thr Ala Gly Met Leu Ala Ala Thr Val Phe Phe 35 40 45

Phe Val Glu Arg Asp Gln Val Ser Ala Glu Trp Lys Thr Ser Leu Thr 50 55 60

Val Ser Gly Leu Ile Thr Gly Ile Ala Phe Trp His Tyr Leu Tyr Met 65 70 75 80

Arg Gly Val Trp Ile Asp Thr Gly Asp Thr Pro Thr Val Phe Arg Tyr 85 90 95

Ile Asp Trp Leu Leu Thr Val Pro Leu Gln Met Val Glu Phe Tyr Leu 100 105 110

Ile Leu Ala Ala Cys Thr Ser Val Ala Ala Ser Leu Phe Lys Lys Leu 115 120 125

Leu Ala Gly Ser Leu Val Met Leu Gly Ala Gly Phe Ala Gly Glu Ala 130 135 140

Gly Leu Ala Pro Val Leu Pro Ala Phe Ile Ile Gly Met Ala Gly Trp-145 150 155 160

Leu Tyr Met Ile Tyr Glu Leu Tyr Met Gly Glu Gly Lys Ala Ala Val

165 170 175

Ser Thr Ala Ser Pro Ala Val Asn Ser Ala Tyr Asn Ala Met Met Met 180 185 190

Ile Ile Val Val Gly Trp Ala Ile Tyr Pro Ala Gly Tyr Ala Ala Gly
195 200 205

Tyr Leu Met Gly Gly Glu Gly Val Tyr Ala Ser Asn Leu Asn Leu Ile 210 215 220

Tyr Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile 225 230 235. 240

Trp Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245 250

. . . . . .

<210> 52

<211> 753

<212> DNA

<213> Naturally occurring gamma proteobacterium

<220>

<221> CDS

<222> (1)..(753)

<223> Proteorhodopsin variant from pcr clone PALB5; GenBank#AF349997

<400> 52

atg ggt aaa tta tta ctg ata tta ggt agt gct att gca ctt cca tca 48
Met Gly Lys Leu Leu Ile Leu Gly Ser Ala Ile Ala Leu Pro Ser
1 5 10 15

ttt gct gct gct ggt ggc gat cta gat ata agt gat act gtt ggt gtt

Phe Ala Ala Gly Gly Asp Leu Asp Ile Ser Asp Thr Val Gly Val

20 25 30

tca ttc tgg ctg gtt aca gct ggt atg tta gcg gca act gtg ttc ttt

Ser Phe Trp Leu Val Thr Ala Gly Met Leu Ala Ala Thr Val Phe Phe

35 40 45

ttt gta gaa aga gac caa gtc agc gct aag tgg aaa act tca ctt act

192
Phe Val Glu Arg Asp Gln Val Ser Ala Lys Trp Lys Thr Ser Leu Thr

50

55

60

gta tct ggt tta att act ggt ata gcc ttt tgg cat tat ctc tat atg 240

Val 65	Ser	Gly	Leu	Ile	Thr 70	Gly	Ile	Ala	Phe	Trp 75	His	Tyr	Leu	Tyr	Met 80		
				ata Ile 85													288
				tta Leu													336
att Ile	ctt Leu	gct Ala 115	gct Ala	tgt Cys	aca Thr	aat Asn	gtt Val 120	gct Ala	gct Ala	tca Ser	tta Leu	ttt Phe 125	aag Lys	aag Lys	ctt Leu	•	384
cta Leu	gct Ala 130	ggt Gly	tca Ser	tta Leu	gta Val	atg Met 135	tta Leu	ggt Gly	gct Ala	gga Gly	ttt Phe 140	gca Ala	ggc Gly	gaa Glu	gct Ala		432
				gta Val											tgg Trp 160		480
				tat Tyr 165													528
				cct Pro													576
att Ile	att Ile	gtt Val 195	gtt Val	gga Gly	tgg Trp	gca Ala	att Ile 200	tat Tyr	cct Pro	gct Ala	gga Gly	tat Tyr 205	gct Ala	gct Ala	ggt Gly		624
				ggc Gly													672
				gac Asp													720
				gtt Val 245								<b>≠</b> aust — vari				•.	753

<210> 53

<211> 251 <212> PRT

<213> Naturally occurring gamma proteobacterium

<400> 53

Met Gly Lys Leu Leu Leu Gly Ser Ala Ile Ala Leu Pro Ser 1 5 10 15

Phe Ala Ala Gly Gly Asp Leu Asp Ile Ser Asp Thr Val Gly Val 20 25 30

Ser Phe Trp Leu Val Thr Ala Gly Met Leu Ala Ala Thr Val Phe Phe 35 40 45

Phe Val Glu Arg Asp Gln Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 50 55 60

Val Ser Gly Leu Ile Thr Gly Ile Ala Phe Trp His Tyr Leu Tyr Met 65 70 75 80

Arg Gly Val Trp Ile Asp Thr Gly Asp Thr Pro Thr Val Phe Arg Tyr 85 90 95

Ile Asp Trp Leu Leu Thr Val Pro Leu Gln Met Val Glu Phe Tyr Leu 100 105 110

Ile Leu Ala Ala Cys Thr Asn Val Ala Ala Ser Leu Phe Lys Lys Leu 115 120 125

Leu Ala Gly Ser Leu Val Met Leu Gly Ala Gly Phe Ala Gly Glu Ala 130 135 140

Gly Leu Ala Pro Val Trp Pro Ala Phe Ile Ile Gly Met Ala Gly Trp 145 150 155 160

Leu Tyr Met Ile Tyr Glu Leu Tyr Met Gly Glu Gly Lys Ala Ala Val 165 170 175

Ser Thr Ala Ser Pro Ala Val Asn Ser Ala Tyr Asn Ala Met Met Met 180 185 190

Ile Ile Val Val Gly Trp Ala Ile Tyr Pro Ala Gly Tyr Ala Ala Gly

•		
195	200	205

Tyr Leu Met Gly Gly Glu Gly Val Tyr Ala Ser Asn Leu Asn Leu Ile 210 215 220

Tyr Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile 225 230 235 240

Trp Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245 250

<210> 54 <211> 753 <212> DNA

<213> Naturally occurring gamma proteobacterium

<220>

<221> CDS

<222> (1)..(753)

<223> Proteorhodopsin variant from pcr clone PalB7; GenBank #AF349999

ttt gct gct ggt ggc gat cta gat ata agt gat act gtt ggt gtt

Phe Ala Ala Gly Gly Asp Leu Asp Ile Ser Asp Thr Val Gly Val

20 25 30

tca ttc tgg ctg gtt acg gct ggt atg tta gcg gca act gta ttc ttt

Ser Phe Trp Leu Val Thr Ala Gly Met Leu Ala Ala Thr Val Phe Phe

35

40

45

ttt gta gaa aga gac caa gtc agc gct aag tgg aaa act tca ctt act

Phe Val Glu Arg Asp Gln Val Ser Ala Lys Trp Lys Thr Ser Leu Thr

50 55 60

gta tct ggt tta att act ggt ata gct ttt tgg cat tat ctc tac atg
Val Ser Gly Leu Ile Thr Gly Ile Ala Phe Trp His Tyr Leu Tyr Met
65 70 75 80

aga ggt gtt tgg ata gat act ggt gat aca cca aca gta ttt aga tat

288
Arg Gly Val Trp Ile Asp Thr Gly Asp Thr Pro Thr Val Phe Arg Tyr

85
90
95

att gat tgg tta tta act gtt cca tta caa atg gtt gag ttc tat cta 336

The Leu Ala Ala Cys Thr Ser Val Ala Ala Ser Leu Phe Lys Lys Leu 115    cta gct ggt tca ttg gta atg tta ggt gct gga tct gca ggc gaa gct Leu Ala Gly Ser Leu Val Met Leu Gly Ala Gly Ser Ala Gly Glu Ala 130    gga tta gct cct gta tta cct gct ttc att att ggt atg gct gga tgg Gly Leu Ala Pro Val Leu Pro Ala Phe IIe IIe Gly Met Ala Gly Trp 160    tta tac atg att tat gag cta tat atg ggt gaa ggt agg gct gct gct gta Leu Tyr Met IIe Tyr Glu Leu Tyr Met Gly Glu Gly Lys Ala Ala Val 175    agt act gca agt cct gct gtt aac tct gca tac aac gca atg atg atg Ser Thr Ala Ser Pro Ala Val Asn Ser Ala Tyr Asn Ala Met Met Met 185    att att gtt gtt gga tgg gca att tat cct gct gga tac gct gct ggt 186    att att gtt gtt gga tgg gca att tat cct gct gga tac gct gct ggt IIe IIe Val Val Gly Trp Ala IIe Tyr Pro Ala Gly Tyr Ala Ala Gly 195    tac cta atg ggt ggc gaa ggt gta tac gct tca aac tta aac ctc ata Tyr Leu Met Gly Glu Gly Val Tyr Ala Ser Asn Leu Asn Leu IIe 210    tat aac ctt gct gac ttt gtt aac aag att cta ttt ggt ttg atc att Tyr Asn Leu Asn Leu IIe 220    tat aac ctt gct gac ttt gtt aac aag att cta ttt ggt ttg atc att Tyr Asn Leu Ala Asp Phe Val Asn Lys IIe Leu Phe Gly Leu IIe IIe 220    125    126    127    128    129    120    121    122    123    124    125    126    127    128    128    129    125    126    127    128    128    129    120    121    122    123    124    125    125    126    127    128    128    129    120    121    122    123    124    125    125    126    127    128    128    129    120    120    121    122    123    124    125    126    127    128    129    120    120    121    122    123    124    125    126    127    128    129    120    120    121    122    123    124    125    126    127    128    129    120    121    122    123    124    125    126    127    128    129    120    121    122    123    124    125    126    127    128    129    120    120    121    122    123    124    125    126    127    128    129    120    120    121    122    123    124    125    126    127    128    129    120    120    120																		
The Leu Ala Ala Cys Thr Ser Val Ala Ala Ser Leu Phe Lys Lys Leu 115    cta gct ggt tca ttg gta atg tta ggt gct gga tct gca ggc gaa gct Leu Ala Gly Ser Leu Val Met Leu Gly Ala Gly Ser Ala Gly Glu Ala 130    gga tta gct cct gta tta cct gct ttc att att ggt atg gct gga tgg Gly Leu Ala Pro Val Leu Pro Ala Phe Ile Ile Gly Met Ala Gly Trp 160    tta tac atg att tat gag cta tat atg ggt gaa ggt aag gct gct gta Leu Tyr Met Ile Tyr Glu Leu Tyr Met Gly Glu Gly Lys Ala Ala Val 175    agt act gca agt cct gct gtt aac tct gca tac aac gca atg atg atg Ser Thr Ala Ser Pro Ala Val Asn Ser Ala Tyr Asn Ala Met Met Met 180    att att gtt gtt gga tgg gca att tat cct gct gga tat gct gct gtf Ile Ile Val Val Gly Trp Ala Ile Tyr Pro Ala Gly Tyr Ala Ala Gly 195    tac cta atg ggt ggc gaa ggt gta tac gct tca aac tta ac ctc ata Tyr Leu Met Gly Glu Gly Val Tyr Ala Ser Asn Leu Asn Leu Ile 210    220    tac act gct gac ttt gtt aac aag att cta ttt ggt ttg atc att Tyr Asn Leu Asn Leu Ile 225    230      **Zet gaat gtt gct gtt aac gaa tct tct aat gct tra ac ctr gct gat tra acc ctr gct gac ttt gtt aac aag att cta ttt ggt ttg atc att Tyr Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile 240    240    *Zet gaat gtt gct gtt aac gaa tct tct aat gct Tyr Asn Leu Ala Val Val Lys Glu Ser Ser Asn Ala 250    *Zet gaat gtt gct gtt aac gaa tct tct aat gct Tyr Asn Val Ala Val Val Lys Glu Ser Ser Asn Ala 250    *Zet Tyr Asn Val Ala Val Val Lys Glu Ser Ser Asn Ala 250    *Zet Ser Ala Gly Ser Leu Phe Gly Leu Ile Ile 240    *Zet Ser Ala Gly Ser Ser Asn Ala 250    *Zet Ser Ala Gly Ser Ser Asn Ala 250    *Zet Ser Ala Gly Ser Ser Asn Ala 250    *Zet Ser Ala Gly Ser Ser Asn Ala 250    *Zet Ser Ala Gly Ser Ser Asn Ala 250    *Zet Ser Ala Gly Ser Ser Asn Ala 250    *Zet Ser Ala Gly Ser Ser Asn Ala 250    *Zet Ser Ala Gly Ser Ser Asn Ala 250    *Zet Ser Ala Gly Ser Ser Asn Ala 250    *Zet Ser Ala Gly Ser Ser Asn Ala 250    *Zet Ser Ala Gly Ser Ser Asn Ala 250    *Zet Ser Ala Gly Ser Ser Asn Ala 250    *Zet Ser Ala Gly Ser Ser Asn Ala 250    *Zet Ser Ala	Ile	Asp	Trp		Leu	Thr	Val	Pro		Gln	Met	Va1	Glu		Tyr	Leu		
Leu Ala Gly Ser Leu Val Met Leu Gly Ala Gly Ser Ala Gly Glu Ala 130  gga tta gct cct gta tta cct gct ttc att att ggt atg gct gga tgg Gly Leu Ala Pro Val Leu Pro Ala Phe Ile Ile Gly Met Ala Gly Trp 145  tta tac atg att tat gag cta tat atg ggt gaa ggt aag gct gct gta Leu Tyr Met Ile Tyr Glu Leu Tyr Met Gly Glu Gly Lys Ala Ala Val 165  agt act gca agt cct gct gtt aac tct gca tac aac gca atg atg atg Ser Thr Ala Ser Pro Ala Val Asn Ser Ala Tyr Asn Ala Met Met Met 185  att att gtt gtt gga tgg gca att tat cct gct gga tat gct gct gt Ile Ile Val Val Gly Trp Ala Ile Tyr Pro Ala Gly Tyr Ala Ala Gly 195  tac cta atg ggt ggc gaa ggt tac gct cta acc tta acc gct ca acc tta acc ctc ata Tyr Leu Met Gly Gly Glu Gly Val Tyr Ala Ser Asn Leu Asn Leu Ile 210  tat aac ctt gct gac ttt gtt aac aag att cta ttt ggt tg atc att Tyr Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile 225  4210			Āla					Val					Phe					384
GIY Leu Ala Pro Val Leu Pro Ala Phe Ile Ile Gly Met Ala Gly Trp 150    tta tac atg att tat gag cta tat atg ggt gaa ggt aag gct gct gta Leu Tyr Met Ile Tyr Glu Leu Tyr Met Gly Glu Gly Lys Ala Ala Val 175    agt act gca agt cct gct gtt aac tct gca tac aac gca atg atg atg Ser Thr Ala Ser Pro Ala Val Asn Ser Ala Tyr Asn Ala Met Met Met 180    att att gtt gtt gga tgg gca att tat cct gct gga tat gct gct ggt Ile Ile Val Val Gly Trp Ala Ile Tyr Pro Ala Gly Tyr Ala Ala Ala Gly 195    tac cta atg ggt ggc gaa ggt gta tac gct tca aac tta aac ctc ata Tyr Leu Met Gly Gly Glu Gly Val Tyr Ala Ser Asn Leu Asn Leu Ile 210    tat aac ctt gct gct gac ttt gtt aac aag att cta ttt ggt ttg atc att Tyr Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile 225    **210		Ala					Met					Ser						432
Leu Tyr Met Ile Tyr Glu Leu Tyr Met Gly Glu Gly Lys Ala Ala Val 175  agt act gca agt cct gct gtt aac tct gca tac aac gca atg atg atg Ser Thr Ala Ser Pro Ala Val Asn Ser Ala Tyr Asn Ala Met Met Met 180  att att gtt gtt gga tgg gca att tat cct gct gga tat gct ggt ggt Ile Ile Val Val Gly Trp Ala Ile Tyr Pro Ala Gly Tyr Ala Ala Ala Gly 195  tac cta atg ggt ggc gaa ggt gta tac gct tca aac tta aac ctc ata Tyr Leu Met Gly Gly Glu Gly Val Tyr Ala Ser Asn Leu Asn Leu Ile 210  tat aac ctt gct gac ttt gtt aac aag att cta ttt ggt ttg atc att Tyr Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile 225  tgg aat gtt gct gtt aaa gaa tct tct aat gct Trp Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245																		

<212> PRT

<213> Naturally occurring gamma proteobacterium

<400> 55

Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Ala Ile Ala Leu Pro Ser 1 10 15

Phe Ala Ala Gly Gly Asp Leu Asp Ile Ser Asp Thr Val Gly Val

25

30

Ser Phe Trp Leu Val Thr Ala Gly Met Leu Ala Ala Thr Val Phe Phe 35 40 45

Phe Val Glu Arg Asp Gln Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 50 55 60

Val Ser Gly Leu Ile Thr Gly Ile Ala Phe Trp His Tyr Leu Tyr Met 65 70 75 80

Arg Gly Val Trp Ile Asp Thr Gly Asp Thr Pro Thr Val Phe Arg Tyr 85 90 95

Ile Asp Trp Leu Leu Thr Val Pro Leu Gln Met Val Glu Phe Tyr Leu 100 105 110

Ile Leu Ala Ala Cys Thr Ser Val Ala Ala Ser Leu Phe Lys Lys Leu 115 120 125

Leu Ala Gly Ser Leu Val Met Leu Gly Ala Gly Ser Ala Gly Glu Ala: 130 135 140

Gly Leu Ala Pro Val Leu Pro Ala Phe Ile Ile Gly Met Ala Gly Trp 145 150 155 160

Leu Tyr Met Ile Tyr Glu Leù Tyr Met Gly Glu Gly Lys Ala Ala Val 165 170 175

Ser Thr Ala Ser Pro Ala Val Asn Ser Ala Tyr Asn Ala Met Met Met 180 185 190

Ile Ile Val Val Gly Trp Ala Ile Tyr Pro Ala Gly Tyr Ala Ala Gly
195 200 205

Tyr Leu Met Gly Gly Glu Gly Val Tyr Ala Ser Asn Leu Asn Leu Ile 210 215 220

Tyr Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile

225 230 235 240

Trp Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245 250

<210> <211> <212> <213>	56 753 DNA Natu	rally	y oc	curri	ing g	gamma	a pro	oteol	oacte	eriu	n				, , , , , , , , , , , , , , , , , , ,
<220> <221> <222> <223>	CDS (1). Prot			sin v	varia	ant d	Erom	pcr	clor	ne Pa	a1B6	; Gei	nBanl	c # 29	F349998
<400> atg gg Met Gl	t aaa														48
ttt gc Phe Al															96
tca tt Ser Ph	c tgg e Trp 35	ctg Leu	gtt Val	aca Thr	gct Ala	ggt Gly 40	atg Met	tta Leu	gcg Ala	gca Ala	act Thr 45	gtg Val	ttc Phe	ttt Phe	144
ttt gt Phe Va 50															192
gta tc Val Se 65	t ggt r Gly	tta Leu	att Ile	act Thr 70	ggt Gly	ata Ile	gct Ala	ttt Phe	tgg Trp 75	cat His	tat Tyr	ctc Leu	tat Tyr	atg Met 80	240
aga gg Arg Gl	_			-			_								288
att ga Ile As															336
att ct Ile Le					Asn		Ala			Leu		Lys			384

125

120

•									
				tta Leu					432
				gct Ala					480
				tat Tyr					528
				aac Asn					576
				att Ile 200					624
				gta Val					672
				aac Asn					720
				tct Ser			-	,	753

<210> 57

<211> 251

<212> PRT

<213> Naturally occurring gamma proteobacterium

<400> 57

Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Ala Ile Ala Leu Pro Ser 1 5 10 15

Phe Ala Ala Gly Gly Asp Leu Asp Ile Ser Asp Thr Val Gly Val 20 25 30

Ser Phe Trp Leu Val Thr Ala Gly Met Leu Ala Ala Thr Val Phe Phe 35 40 45



Val Ser Gly Leu Ile Thr Gly Ile Ala Phe Trp His Tyr Leu Tyr Met 65 70 75 80

Arg Gly Val Trp Ile Asp Thr Gly Asp Thr Pro Thr Val Phe Arg Tyr 85 90 95

Ile Asp Trp Leu Leu Thr Val Pro Leu Gln Met Val Glu Phe Tyr Leu 100 105 110

Ile Leu Ala Ala Cys Thr Asn Val Ala Ala Ser Leu Phe Lys Lys Leu 115 120 125

Leu Ala Gly Ser Leu Val Met Leu Gly Ala Gly Phe Ala Gly Glu Ala 130 135 140

Gly Leu Ala Pro Val Trp Pro Ala Phe Ile Ile Gly Met Ala Gly Trp 145 150 155 160

Leu Tyr Met Ile Tyr Glu Leu Tyr Met Gly Glu Gly Lys Ala Ala Val 165 170 175

Ser Thr Ala Ser Pro Ala Val Asn Ser Ala Tyr Asn Ala Met Met Val 180 185 190

Ile Ile Val Val Gly Trp Ala Ile Tyr Pro Ala Gly Tyr Ala Ala Gly
195 200 205

Tyr Leu Met Gly Gly Glu Gly Val Tyr Ala Ser Asn Leu Asn Leu Ile 210 215 220

Tyr Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile 225 230 235 240

Trp Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245 250

<210> <211> <212> <213>	58 753 DNA Natu	rally	y oc	curr:	ing (	gamma	a pro	oteol	pacto	eria						
<220> <221> <222> <223>	CDS (1). Prot			sin v	varia	ant :	from	pcr	clo	ne Pa	alB8	; Gei	nBanl	c #AF	350000	 I
<400> atg gg Met Gl 1	t aaa															48
ttt gc Phe Al	-	_	-				_					-				96
tca tt Ser Ph															1	44
ttt gt Phe Va 50	1 Ğlu	_	_		-	_	_								1	92.
gta tc Val Se 65															2	40
aga gg Arg Gl	_			_			_				_				2	88
att ga Ile As									_						3	36
att ct Ile Le															3	84
cta gc Leu Al 13	a Gly														4	32
gga tt Gly Le 145															4	80

50

						cta Leu										528	
						gtt Val										576	
						gca Ala										624	
						ggt Gly 215										672	
			_	_		gtt Val		_								720	
		_	_	_		gaa Glu				_			s.			~; <b>753</b>	•
<210 <211 <212 <213	L> 2 2> 1		rally	, oc	curr	ing g	yanma	a pro	oteok	pacte	eria						
<400	)> !	59															
Met 1	Gly	Lys	Leu	Leu 5	Leu	Ile	Leu	G1y	Ser 10	Ala	Ile	Ala	Leu	Pro 15	Ser		
Phe	Ala	Ala	Ala 20	Gly	Gly	Asp	Leu	Asp 25	Ile	Ser	Asp	Thr	Val 30	Gly	Val		
Ser	Phe	Trp	Leu	Val	Thr	Ala	Gly	Met	Leu	Ala	Ala	Thr	Va1	Phe	Phe		

. 45

60

40

55

Phe Val Glu Arg Asp Gln Val Ser Ala Lys Trp Lys Thr Ser Leu Thr

Val Ser Gly Leu Ile Thr Gly Ile Ala Phe Trp His Tyr Leu Tyr Met 65 70 75 80

Arg Gly Val Trp Ile Asp Thr Gly Asp Thr Pro Thr Val Phe Arg Tyr 90 85 Ile Asp Trp Leu Leu Thr Val Pro Leu Gln Met Val Glu Phe Tyr Leu 100 105 Ile Leu Ala Ala Cys Thr Ser Val Ala Ala Ser Leu Phe Lys Lys Leu Leu Ala Gly Ser Leu Val Met Leu Gly Ala Gly Phe Ala Gly Glu Ala 130 135 140 Gly Leu Ala Pro Val Leu Pro Ala Phe Ile Ile Gly Met Ala Gly Trp 145 150 155 160 Leu Tyr Met Ile Tyr Glu Leu Tyr Met Gly Glu Gly Lys Ala Ala Val 165 170 Ser Thr Ala Ser Pro Ala Val Asn Ser Ala Tyr Asn Ala Met Met Met 180 185 190 Ile Ile Val Val Gly Trp Ala Ile Tyr Pro Ala Gly Tyr Ala Ala Gly 195 200 205 Tyr Leu Met Gly Gly Glu Gly Val Tyr Ala Ser Asn Leu Asn Leu Ile 210 215 Tyr Asn Leu Ala Asp Leu Val Asn Lys Ile Leu Phe Gly Leu Ile Ile 225 230 235

Trp Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245 250

<210> 60

<211> 753

<212> DNA

<213> Naturally occurring gamma proteobacteria

<220>

<221> CDS

<222> (1)..(753)

PCT/US01/14394

<223> Proteorhodopsin variant from pcr clone PalE1;GenBank# AF350001

atg		aaa			_				_	-		_	ctt Leu			48
	_	_				-		_			_		gtt Val 30		-	96
		_		_			-	_			_		gtg Val			144
	_	-	_	_		-	_	_	_				tca Ser			192
-								_					ctc Leu		_	240
		_			_			_				-	ttc Phe	Arg		288
													ttc Phe 110		cta Leu	336
		_	_	-		_	_	_	_				aag Lys	_		384
													ggc Gly			432
													gct Ala			480
													gct Ala			528
													atg Met 190			576

		_	t eet get gg r Pro Ala Gl		
			c gct tca aa r Ala Ser As 22	n Leu Asn	
		Val Asn Ly	g att cta tt s Ile Leu Ph 235		
tgg aat gtt Trp Asn Val		gaa tot to Glu Ser Se	-		753
<210> 61 <211> 251 <212> PRT <213> Natur	rally occur	ring gamma p	roteobacteri	a `	
<400> 61					
Met Gly Lys 1	Leu Leu Leu 5	ı Ile Leu Gl	y Ser Ala Il 10		Pro Ser 15
Phe Ala Ala	Ala Gly Gly 20	Asp Leu As 25	o Ile Ser As	p Thr Val	Gly Val
Ser Phe Trp 35	Leu Val Th	: Alà Gly Me 40	t Leu Ala Al	a Thr Val 45	Phe Phe
Phe Val Glu 50	Arg Asp Gli	ı Val Ser Ala 55	a Lys Trp Ly 60		Leu Thr
Val Ser Gly 65	Leu Ile Th	Gly Ile Al	a Phe Trp Hi 75	s Tyr Leu	Tyr Met 80
Arg Gly Val	Trp Ile Ası	Thr Gly As	o Thr Pro Th 90	r Val Phe	Arg Tyr 95
Ile Asp Trp	Leu Leu Th	Val Pro Le	u Gln Val Va 5	l Glu Phe 110	Tyr Leu

Ile Leu Ala Ala Cys Thr Ser Val Ala Ala Ser Leu Phe Lys Lys Leu 115 120 125 Leu Ala Gly Ser Leu Val Met Leu Gly Ala Gly Phe Ala Gly Glu Ala 130 135 Gly Leu Ala Pro Val Leu Pro Ala Phe Ile Ile Gly Met Ala Gly Trp 145 Leu Tyr Met Ile Tyr Glu Leu Tyr Met Gly Glu Gly Lys Ala Ala Val 165 170 Ser Thr Ala Ser Pro Ala Val Asn Pro Ala Tyr Asn Ala Met Met 180 185 Ile Ile Val Val Gly Trp Ala Ile Tyr Pro Ala Gly Tyr Ala Ala Gly 195 200 205 Tyr Leu Met Gly Gly Glu Gly Val Tyr Ala Ser Asn Leu Asn Leu Ile 210 215 Tyr Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile 230 225 235 Trp Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245 <210> 62 <211> 753 <212> DNA <213> Naturally occurring gamma proteobacterium <220> <221> CDS <222> (1)..(753) <223> Proteorhodopsin variant from pcr clone PalE6; GenBank#AF350002 <400> 62 atg ggt aaa tta tta ctg ata tta ggt agt gct att gca ctt cca tca 48 Met Gly Lys Leu Leu Ile Leu Gly Ser Ala Ile Ala Leu Pro Ser 10

		_			_	_	gtt Val 30		_	96
							gta Val			144
							tca Ser			192
							ctc Leu		atg Met 80	240
							ttt Phe			288
			_		_	_	 ttc Phe 110			336
							aag Lys			384
							ggc			432
							gct Ala			480
							gct Ala			528
							atg Met 190			576
			_		_		gct Ala	-		624
							aac Asn			672

			ctt Leu														72	0
			gtt Val				-	•			_						75	3
	<210 <211 <212 <213	L> 2 2> 1	63 251 PRT Natur	cally	/ occ	curri	ing (	gamma	a pro	oteok	Dacte	erium	n					
	<400	)> (	53															
	Met 1	Gly	Lys	Leu	Leu 5	Leu	Ile	Leu	Gly	Ser 10	Ala	Ile	Ala	Leu	Pro 15	Ser		
	Phe	Ala	Ala	Äla 20	Gly	Gly	Asp	Leu	Asp 25	Ile	Ser	Asp	Thr	Val 30	Gly	Val		
	Ser	Phe	Trp 35	Leu	Val	Thr	Ala	Gly 40	Met	Leu	Ala	Ala	Thr 45	Val	Phe	Phe		
	Phe	Val	Glu	Arg	Asp	Gln	Val 55	Ser	Ala	Lys	Trp	Lys 60	Thr	Ser	Leu	Thr		
	Val 65	Ser	Gly	Leu	Ile	Thr 70	Gly	Ile	Ala	Phe	Trp 75	His	Tyr	Leu	Tyr	Met 80		
	Arg	Gly	Val	Trp	Ile 85	Asp	Thr	Gly	Asp	Thr 90	Pro	Thr	Val	Phe	Arg 95	тут	-	
	Ile	Asp	Trp	Leu 100	Leu	Thr	Val	Pro	Leu 105	Gln	Met	Val	Glu	Phe 110	Tyr	Leu		
	Ile	Leu	Ala 115	Ala	Cys	Thr	Ser	Val 120	Ala	Ala	Ser	Leu	Phe 125	Lys	Lys	Leu		
-	Leu	Ala 130	Gly	Ser	Leu	Val	Met 135	Leu	Gly	Ala	Gly	Phe 140	Ala	Gly	G1u	Ala		

Gly Leu Ala Pro Val Leu Pro Ala Phe Ile Ile Gly Met Ala Gly Trp 150 145 155 160 Leu Tyr Met Ile Tyr Glu Leu His Met Gly Glu Gly Lys Ala Ala Val 165 170 Ser Thr Ala Ser Pro Ala Val Asn Ser Ala Tyr Asn Ala Met Met Lys 180 185 Ile Ile Val Ile Gly Trp Ala Ile Tyr Pro Ala Gly Tyr Ala Ala Gly 200. Tyr Leu Met Ser Gly Asp Gly Val Tyr Ala Ser Asn Leu Asn Leu Ile 210 215 220 Tyr Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile 230 235 225 Trp Asn Val Ala Val Lys Glu Ser Ser Asn Ala <210> 64 <211> 753 <212> DNA <213> Naturally occurring gamma proteobacterium <220> <221> CDS <222> (1)..(753) <223> Proteorhodopsin variant from pcr clone PalE7; GenBank# AF350003 <400> 64 48 atg ggt aaa tta tta ctg ata tta ggt agt gct att gca ctt cca tca Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Ala Ile Ala Leu Pro Ser 1 ttt get get get ggt gge gat eta gat ata agt gat aet gtt ggt gtt 96 Phe Ala Ala Gly Gly Asp Leu Asp Ile Ser Asp Thr Val Gly Val 20 25 144 tca ttc tgg ctg gtt aca gct ggt atg tta gcg gca act gtg ttc ttt Ser Phe Trp Leu Val Thr Ala Gly Met Leu Ala Ala Thr Val Phe Phe 35 40 45



<210> 65. <211> 251 <212> PRT <213> Naturally occurring gamma proteobacterium <400> Met Gly Lys Leu Leu Ile Leu Gly Ser Ala Ile Ala Leu Pro Ser Phe Ala Ala Gly Gly Asp Leu Asp Ile Ser Asp Thr Val Gly Val ·- . Ser Phe Trp Leu Val Thr Ala Gly Met Leu Ala Ala Thr Val Phe Phe 40 Phe Val Glu Arg Asp Gln Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 50 55 60 Val Ser Gly Leu Ile Thr Gly Ile Ala Phe Trp His Tyr Leu Tyr Met Arg Gly Val Trp Ile Asp Thr Gly Asp Thr Pro Thr Val Phe Arg Tyr 85 90 Ile Asp Trp Leu Leu Thr Val Pro Leu Gln Met Val Glu Phe Tyr Leu 100 105 110 Ile Leu Ala Ala Cys Thr Ser Val Ala Ala Ser Leu Phe Lys Lys Leu 115 120 Leu Ala Gly Ser Leu Val Met Leu Gly Ala Gly Phe Ala Gly Glu Ala 135 Gly Leu Ala Pro Val Leu Pro Ala Phe Ile Ile Gly Met Ala Gly Trp 145 150 160 155 Leu Tyr Met Ile Tyr Glu Leu Tyr Met Gly Glu Gly Lys Ala Ala Val

175

170

165

Ser	Thr	Ala	Ser	Pro	Ala	Val	Asn	Ser	Ala	Tyr	Asn	Ala	Met	Met	Met
			180					185		•			190		

Ile Ile Val Val Gly Trp Ala Ile Tyr Pro Ala Gly Tyr Ala Ala Gly 195 200 205

Tyr Leu Met Gly Gly Glu Gly Val Tyr Ala Ser Asn Leu Asn Leu Ile 210 215 220

Tyr Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile 225 230 235 240