Prime Numbers Advanced

TABLE OF CONTENTS

- 1. Prime Numbers
- 2. Get all prime numbers from 1 to N
- 3. Count of factors for all numbers from 1 to N
- 4. Smallest prime factor
- 5. Optimization Count of factors for all numbers from 1 to N

Prime Numbers

A natural number having 2 factors 12 itself.

< **Question** >: Given a number N. Check if it is prime or not.

$$N = 46 \rightarrow Ans = false$$

N = a * b, a < = b

$$1 - \sqrt{N} \qquad \qquad a <= N/a$$

$$\Rightarrow a^2 <= N$$

for
$$i \rightarrow 2$$
 to \sqrt{N} (1×10)

$$if (N'/. i == 0)$$

return false

$$TC = O(\sqrt{N})$$
 $SC = O(1)$

< **Question** >: Given an integer N. Check every number from 1 to N if it is a prime number or not.

$$1 \le N \le 10^{-6}$$

$$TC = O(N * \sqrt{N})$$
 $SC = O(1)$

<u>Sieve of Eratosthenes</u> → chocolates for all except priene no.

TC

_<u>i</u>

 $2 \rightarrow 4, 6, \dots N \rightarrow \sim N/2$

 $3 \rightarrow 9, 12, 15 \dots \rightarrow \sim N/3$

4 -> _____

 $5 \rightarrow 25, 30, 35 \dots \rightarrow \sim N/S$

= $N\left(\frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} \dots\right) <= N\left(\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} \dots\right)$ reciperocal of

E $1 \rightarrow \int 1 dx = log(x)$ Vi i

prime numbers log(N) log(log(N)) O(N log(log(N))) O(N log(N))

 $\log_{2}(\log_{2}(2^{32})) = \log_{2}(32) = 5$

< **Question** >: Find the count of divisors for every integer from 1 to N.

Vi, and [i] = 0

for
$$i \rightarrow 1$$
 to N {

for $(j=i; j \leftarrow N; j + = i)$ {

and $(j) + +$
 $(j = i; j \leftarrow N; j + = i)$ {

 $(j = i; j \leftarrow N; j + = i)$ {

 $(j = i; j \leftarrow N; j + = i)$ {

 $(j = i; j \leftarrow N; j + = i)$ {

 $(j = i; j \leftarrow N; j + = i)$ {

 $(j = i; j \leftarrow N; j + = i)$ {

 $(j = i; j \leftarrow N; j + = i)$ {

 $(j = i; j \leftarrow N; j + = i)$ {

 $(j = i; j \leftarrow N; j + = i)$ {

 $(j = i; j \leftarrow N; j + = i)$ {

 $(j = i; j \leftarrow N; j + = i)$ {

 $(j = i; j \leftarrow N; j + = i)$ {

 $(j = i; j \leftarrow N; j + = i)$ {

 $(j = i; j \leftarrow N; j + = i)$ {

 $(j = i; j \leftarrow N; j + = i)$ {

 $(j = i; j \leftarrow N; j + = i)$ {

 $(j = i; j \leftarrow N; j + = i)$ {

 $(j = i; j \leftarrow N; j + = i)$ {

 $(j = i; j \leftarrow N; j + = i)$ {

 $(j = i; j \leftarrow N; j + = i)$ {

 $(j = i; j \leftarrow N; j + = i)$ {

 $(j = i; j \leftarrow N; j + = i)$ {

 $(j = i; j \leftarrow N; j + = i)$ {

 $(j = i; j \leftarrow N; j + = i)$ {

 $(j = i; j \leftarrow N; j + = i)$ {

 $(j = i; j \leftarrow N; j + = i)$ {

 $(j = i; j \leftarrow N; j + = i)$ {

 $(j = i; j \leftarrow N; j + = i)$ {

 $(j = i; j \leftarrow N; j + = i)$ {

 $(j = i; j \leftarrow N; j + = i)$ {

 $(j = i; j \leftarrow N; j + = i)$ {

 $(j = i; j \leftarrow N; j + = i)$ {

 $(j = i; j \leftarrow N; j + = i)$ {

 $(j = i; j \leftarrow N; j + = i)$ {

 $(j = i; j \leftarrow N; j + = i)$ {

 $(j = i; j \leftarrow N; j + = i)$ {

 $(j = i; j \leftarrow N; j + = i)$ {

 $(j = i; j \leftarrow N; j + = i)$ {

 $(j = i; j \leftarrow N; j + = i)$ {

 $(j = i; j \leftarrow N; j + = i)$ {

 $(j = i; j \leftarrow N; j + = i)$ {

 $(j = i; j \leftarrow N; j + = i)$ {

 $(j = i; j \leftarrow N; j \leftarrow N; j + = i)$ {

 $(j = i; j \leftarrow N; j \leftarrow$

Sorted Permutation Rank

< **Question** >: You are given a string A containing distinct characters (no characters are repeated). The task is to find the rank of this string among all its permutations when sorted in lexicographical (dictionary) order.

$$a - - \rightarrow 3! = 6$$

$$l - - \rightarrow 3! = 6$$

$$date \rightarrow 1$$

for
$$i \rightarrow 0$$
 to $(N-1)$ {

for
$$j \rightarrow (i+1)$$
 to $(N-1)$?

if $(sLi) < ch$ ent++

?

$$TC = O(N^2)$$
 $SC = O(N)$ fact []

