

3. Machine Learning Basics

Prof. Jimeng Sun

Outline

Supervised learning

Unsupervised learning

Evaluation metrics

Supervised learning

Predictive Modeling Pipeline

Gradient and Stochastic gradient descent

Predictive Modeling Pipeline

Predictive Modeling Pipeline

Prediction Target

How do you know the target is interesting?

Talk to domain experts

Read domain publications

- General common sense metrics
 - High cost
 - Long time
 - Bad quality

How do you know the target is possible?

Human performance

Experience from similar projects

Results from prior publications ?

Prediction Target

Heart Failure Quiz

How many <u>new</u> cases of heart failure occur each year in

A. 17,000

B. 260,000

✓ C. 550,000

D. 1,250,000

Motivations For Early Detection Of Heart Failure

Predictive Modeling Pipeline

Why do we need cohort construction?

- General ML practice:
 - Give a dataset => build a model
 - Healthcare predictive modeling
 - Create a dataset (cohort, feature) => build a model

- Reasons:
 - Avoid obvious models: e.g., age predicts mortality
 - Focus on the population of interests
 - Data acquisition cost

COHORT CONSTRUCTION - STUDY DESIGN

DEFINE

PROSPECTIVE VS. RETROSPECTIVE

QUIZ: PROSPECTIVE VS. RETROSPECTIVE

Property	Prospective Study	Retrospective Study
More noise in the data		
More expensive		
Takes a longer time		
Common on large dataset		

Cohort Study

Select a group of patients who are exposed to the risk

TARGET: Heart Failure Readmission

- COHORT: all HF patients discharged from hospital
- KEY: define the right inclusion/exclusion criteria

Case-control Study

CASES: patients with positive outcome (have the disease)

CONTROLS: patients with negative outcome (healthy) but otherwise similar

KEY: matching criteria between cases and controls

Example Of Case-control Study

- Goal: Predict Heart Failure cases against control patients
- Population: 50,625 Patients
 - Case Patients: 4,644
 - Controls: 45,981 (matched on age, gender and clinic)

Predictive Modeling Pipeline

Feature Construction

Feature Construction Quiz 1

Which one of these timelines is the easiest for modeling?

FEATURE CONSTRUCTION QUIZ 2

Which one of these timelines is the most useful model?

Prediction Performance On Different Prediction Windows

Prediction Window Quiz

Which of these options is the most desirable prediction curve?

Prediction Performance On Different Observation Windows

Observation Window Quiz

What is the optimal observation window?

Predictive Modeling Pipeline

Feature Types

- Demographics
- Diagnosis
- Lab result
- Symptoms
- Medications
 - Vitals

Cruz, Andrea

Age	34
Sex	F
Race	White
Blood Pressure	114/72
Diabetes, Type II	YES
Hypertension	NO

Davis, John

Predictive Modeling Pipeline

Predictive Models

Target

Error

$$\mathcal{Y} = f(x) + e$$
Features

REGRESSION

- Target y is continuous
- Popular Methods
 - Linear Regression
 - Generalized Additive Models

CLASSIFICATION

- Target y is categorical
- Popular Methods
 - Logistic regression
 - Support vector machine (SVM)
 - Decision tree, random forest
 - Neural networks

REGRESSION

Predictive Modeling Pipeline

EVALUATION

- Training error is NOT very useful
- Testing error is the key metric
- Approach:
 - Cross-validation (CV)

Cross-validation (Cv)

- Leave-1-out CV
- K-fold CV
- Randomized CV

Leave-1-out Cv

K-fold Cv

Randomized Cv

Best practice of predictive modeling evaluation

- Validation and test sets can be small,
 - but should be similar to each other
- Training data can be flexible
 - High volume is preferred
 - Some low quality data can be allowed

Predictive Modeling Pipeline

