Registration

Joey Wilson, Maani Ghaffari March 22, 2024

Overview

- 1. Why registration
- 2. Iterative Closest Point
- 3. Registration notebook (icp.ipynb-niosus/notebooks-GitHub)

Motivation

Registration in Practice

- Exteroceptive and proprioceptive cues to motion
 - Example: Balancing on one foot with eyes closed, or watching moving object
 - <u>Vestibulo–ocular reflex Wikipedia</u>

World Models through Registration

Combine localization cues to aggregate exteroceptive data

Compared to Odometry

 Proprioception provides clues to static motion, but what about dynamic objects?

J. Wilson et al, "MotionSC: Data Set and Network for Real-Time Semantic Mapping in Dynamic Environments," IEEE Robot. Autom. Letter., vol. 7, no. 3, pp. 8439–8446, 2022.

Overview

Iterative Closest Point

Associate Target and Source

Find nearest neighbor between target and source points

$$i_k = \underset{k}{\operatorname{arg\,min}} \|x_k^t - T \cdot x_i^s\|$$

$$\mathcal{I} := \{i_k\}$$

Update Transformation Matrix

Minimize the residual of the correspondences... then repeat!

$$r_k(T) := x_k^t - T \cdot x_k^s$$

$$T^{\mathsf{OPT}} = \argmin_{T \in \mathsf{SE}(3)} \sum_{k \in \mathcal{I}} \lVert r_k(T) \rVert^2$$

Implementation

Associate Target and Source

Find nearest neighbor between target and source points

$$i_k = \underset{k}{\operatorname{arg\,min}} \|x_k^t - T \cdot x_i^s\|$$

 $\mathcal{I} := \{i_k\}$


```
def get correspondence indices(P, Q):
    """For each point in P find closest one in Q."""
    p_size = P.shape[1]
    q size = Q.shape[1]
    correspondences = []
    for i in range(p size):
        p point = P[:, i]
        min_dist = sys.maxsize
        chosen idx = -1
        for j in range(q_size):
            q point = Q[:, j]
            dist = np.linalg.norm(q_point - p_point)
            if dist < min_dist:</pre>
                min dist = dist
                chosen idx = i
        correspondences.append((i, chosen idx))
    return correspondences
```

Define the Error

Minimize the distance between associated points

$$e_n = \mathbf{R}\mathbf{p}_n + \mathbf{t} - \mathbf{q}_n$$
$$\mathbf{E} = \sum_n ||e_n||^2$$

```
def error(x, p_point, q_point):
    rotation = R(x[2])
    translation = x[0:2]
    prediction = rotation.dot(p_point) + translation
    return prediction - q_point
```


Gauss Newton's Method

Minimize the distance between associated points

$$\mathbf{e}_n = \mathbf{R}\mathbf{p}_n + \mathbf{t} - \mathbf{q}_n$$

$$\mathbf{E} = \sum_{n} ||e_n||^2$$

$$\mathbf{x} = [x, y, \theta]^T$$

Second order expansion

$$\mathbf{E}(\mathbf{x} + \Delta \mathbf{x}) \approx \mathbf{E}(\mathbf{x}) + \mathbf{E}'(\mathbf{x})\Delta \mathbf{x} + \frac{1}{2}\mathbf{E}''(\mathbf{x})\Delta \mathbf{x}^{2}$$

$$0 = \frac{d}{d\Delta \mathbf{x}} \left(\mathbf{E}(\mathbf{x}) + \mathbf{E}'(\mathbf{x})\Delta \mathbf{x} + \frac{1}{2}\mathbf{E}''(\mathbf{x})\Delta \mathbf{x}^{2} \right) \longrightarrow \mathbf{H}\Delta \mathbf{x} = -\mathbf{E}'(\mathbf{x})$$

$$0 = \mathbf{E}'(\mathbf{x}) + \mathbf{E}''(\mathbf{x})\Delta \mathbf{x}$$

Gauss Newton's Method

Minimize the distance between associated points

$$\mathbf{e}_n = \mathbf{R}\mathbf{p}_n + \mathbf{t} - \mathbf{q}_n$$

$$\mathbf{E} = \sum_{n} ||e_n||^2$$

$$\mathbf{x} = [x, y, \theta]^T$$

• Second order expansion $\mathbf{H}\Delta\mathbf{x} = -\mathbf{E}'(\mathbf{x})$

$$^{\circ}$$
 $\mathbf{E}'(\mathbf{x}) = 2\mathbf{J}(\mathbf{x})\mathbf{e}(\mathbf{x})$

 \circ **H** $\approx 2\mathbf{J}(\mathbf{x})^T\mathbf{J}(\mathbf{x})$

We just need to compute the Jacobian!

Minimization

Gauss Newton Method (generalization of Newton's method)

$$e_n = \mathbf{R}\mathbf{p}_n + \mathbf{t} - \mathbf{q}_n$$

$$\mathbf{E} = \sum_{n} ||e_n||^2$$

$$\mathbf{H}\Delta \mathbf{x} = -\mathbf{E}'(\mathbf{x})$$

$$\mathbf{x} = [x, y, \theta]^T$$

Solve system of equations where H is Hessian of E

Jacobian

• For point-pair n, Jacobian can be written as:

$$\mathbf{J_n} = \frac{\partial \mathbf{e}_n}{\partial \mathbf{x}}$$

$$= \begin{bmatrix} \frac{\partial \mathbf{e}_n^x}{\partial t_x} & \frac{\partial \mathbf{e}_n^x}{\partial t_y} & \frac{\partial \mathbf{e}_n^x}{\partial \theta} \\ \frac{\partial \mathbf{e}_n^y}{\partial t_x} & \frac{\partial \mathbf{e}_n^y}{\partial t_y} & \frac{\partial \mathbf{e}_n^y}{\partial \theta} \end{bmatrix}$$

$$\mathbf{e}_n = \mathbf{R}\mathbf{p}_n + \mathbf{t} - \mathbf{q}_n \qquad \mathbf{x} = [x, y, \theta]^T$$

Jacobian of Translation

For point-pair n, Jacobian can be written as:

$$\mathbf{J_n} = \frac{\partial \mathbf{e}_n}{\partial \mathbf{x}}$$

$$= \begin{bmatrix} \frac{\partial \mathbf{e}_n^x}{\partial t_x} & \frac{\partial \mathbf{e}_n^x}{\partial t_y} & \frac{\partial \mathbf{e}_n^x}{\partial \theta} \\ \frac{\partial \mathbf{e}_n^y}{\partial t_x} & \frac{\partial \mathbf{e}_n^y}{\partial t_y} & \frac{\partial \mathbf{e}_n^y}{\partial \theta} \end{bmatrix}$$

$$\mathbf{e}_n = \mathbf{R}\mathbf{p}_n + \mathbf{t} - \mathbf{q}_n \qquad \mathbf{x} = [x, y, \theta]^T$$

• Only t term -> identity matrix $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Jacobian of Rotation

• For point-pair n, Jacobian can be written as:

$$\mathbf{J_n} = \frac{\partial \mathbf{e}_n}{\partial \mathbf{x}}$$

$$= \begin{bmatrix} \frac{\partial \mathbf{e}_n^x}{\partial t_x} & \frac{\partial \mathbf{e}_n^x}{\partial t_y} & \frac{\partial \mathbf{e}_n^x}{\partial \theta} \\ \frac{\partial \mathbf{e}_n^y}{\partial t_x} & \frac{\partial \mathbf{e}_n^y}{\partial t_y} & \frac{\partial \mathbf{e}_n^y}{\partial \theta} \end{bmatrix}$$

$$e_n = \mathbf{R}\mathbf{p}_n + \mathbf{t} - \mathbf{q}_n \qquad \mathbf{x} = [x, y, \theta]^T$$

Derivative of rotation matrix multiplied by p

$$\frac{\partial}{\partial \theta} \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} = \begin{bmatrix} -\sin \theta & -\cos \theta \\ \cos \theta & -\sin \theta \end{bmatrix} \longrightarrow \begin{bmatrix} -\sin \theta & p_i^x - \cos \theta \\ \cos \theta & -\sin \theta \end{bmatrix}$$

Jacobian

• For point-pair n, Jacobian can be written as:

$$\mathbf{J_n} = \frac{\partial \mathbf{e}_n}{\partial \mathbf{x}}$$

$$= \begin{bmatrix} \frac{\partial \mathbf{e}_n^x}{\partial t_x} & \frac{\partial \mathbf{e}_n^x}{\partial t_y} & \frac{\partial \mathbf{e}_n^x}{\partial \theta} \\ \frac{\partial \mathbf{e}_n^y}{\partial t_x} & \frac{\partial \mathbf{e}_n^y}{\partial t_y} & \frac{\partial \mathbf{e}_n^y}{\partial \theta} \end{bmatrix}$$

$$\mathbf{e}_n = \mathbf{R}\mathbf{p}_n + \mathbf{t} - \mathbf{q}_n \qquad \mathbf{x} = [x, y, \theta]^T$$

• Full Jacobian:

$$\begin{bmatrix} 1 & 0 & -\sin\theta \ p_i^x - \cos\theta \ p_i^y \\ 0 & 1 & \cos\theta \ p_i^x - \sin\theta \ p_i^y \end{bmatrix}$$

Jacobian Implementation

• Full Jacobian: $\begin{bmatrix} 1 & 0 & -\sin\theta \ p_i^x - \cos\theta \ p_i^y \\ 0 & 1 & \cos\theta \ p_i^x - \sin\theta \ p_i^y \end{bmatrix}$

```
def jacobian(x, p_point):
    theta = x[2]
    J = np.zeros((2, 3))
    J[0:2, 0:2] = np.identity(2)
    J[0:2, [2]] = dR(theta).dot(p_point)
    return J
```

Optimization

- Compute system of equations
 - Initialize Hessian H and gradient g to zeroes
 - For each pair of points, increment g and H

$$\mathbf{H} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \ \mathbf{g} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
$$\mathbf{H} \to \mathbf{H} + \mathbf{J}_n^T \mathbf{J}_n$$

 $\mathbf{g} \to \mathbf{g} + \mathbf{J}_n^T \mathbf{e}_n$

```
def prepare_system(x, P, Q, correspondences
    H = np.zeros((3, 3))
    g = np.zeros((3, 1))
    for i, j in correspondences:
        p_point = P[:, [i]]
        q_point = Q[:, [j]]
        e = error(x, p_point, q_point)
        J = jacobian(x, p_point)
        H += J.T.dot(J)
        g += J.T.dot(e)
    return H, g
```

Solve System of Equations

$$\mathbf{H}\Delta\mathbf{x} = -\mathbf{g} \Longrightarrow \Delta\mathbf{x} = -\mathbf{H}^{-1}\mathbf{g}$$

```
H, g, chi = prepare_system(x, P, Q, correspondences, kernel) dx = np.linalg.lstsq(H, -g, rcond=None)[0]
```

All Together: Iterate Matching and Update

```
def icp_least_squares(P, Q, iterations=30, kernel=lambda distance: 1.0):
    x = np.zeros((3, 1))
    chi_values = []
   x_values = [x.copy()] # Initial value for transformation.
    P values = [P.copv()]
    P_{copy} = P_{copy}()
    corresp_values = []
    for i in range(iterations):
        rot = R(x[2])
        t = x[0:2]
        correspondences = get_correspondence_indices(P_copy, Q)
        corresp_values.append(correspondences)
        H, q, chi = prepare_system(x, P, Q, correspondences, kernel)
        dx = np.linalg.lstsq(H, -q, rcond=None)[0]
        x += dx
        x[2] = atan2(sin(x[2]), cos(x[2])) # normalize angle
        chi values.append(chi.item(0))
        x values.append(x.copy())
        rot = R(x[2])
        t = x[0:2]
        P copy = rot.dot(P.copy()) + t
        P_values.append(P_copy)
    corresp_values.append(corresp_values[-1])
    return P values, chi values, corresp values
```

Notebook

Want to learn more?

- Check out Open3D: <u>ICP registration Open3D 0.18.0 documentation</u>
- Try the full notebook: icp.ipynb-niosus/notebooks-GitHub