Homework 4

- 1. REACH \in NLog-complete, i.e., REACH \in NLog and for every $L \in$ NLog, $L \leq_{log}$ REACH. Also, NLog = coNLog.
 - REACH ∈ NLog = coNLog. Hence, REACH ∈ coNLog.
 - For every $L \in \text{NLog} = \text{coNLog}$, $L \leq_{\text{log}} \text{REACH}$. Hence, for every $L \in \text{coNLog}$, $L \leq_{\text{log}} \text{REACH}$.
 - **Conclusion**: REACH ∈ coNLog-complete.
- 2. 1. Let $L_1, L_2 \in \text{NP}$. Then, for i = 1, 2, there exists an NTM M_i that decides L_i in polynomial time. An NTM M that decides $L_1 \cup L_2$ is constructed as follows: "On input w: Run M_1 and M_2 on w. Accept if M_1 accepts or M_2 accepts. Reject, otherwise." Since, M_1 and M_2 decides in polynomial time, M also decides in polynomial time. Conclusion: $L_1 \cup L_2 \in \text{NP}$.
 - 2. Let $L_1, L_2 \in \text{NP}$. Then, for i = 1, 2, there exists an NTM M_i that decides L_i in polynomial time. An NTM M that decides $L_1 \cap L_2$ is constructed as follows: "On input w: Run M_1 and M_2 on w. Accept if M_1 accepts and M_2 accepts. Reject, otherwise." Since, M_1 and M_2 decides in polynomial time, M also decides in polynomial time. Conclusion: $L_1 \cap L_2 \in \text{NP}$.
- 3. 1. Let $L_1, L_2 \in \text{coNP}$. Then, for i = 1, 2, there exists an NTM M_i that decides $\Sigma^* L_i$ in polynomial time. An NTM M that decides $\Sigma^* L_1 \cup L_2 = (\Sigma^* L_1) \cap (\Sigma^* L_2)$ is constructed as follows: "On input w: Run M_1 and M_2 on w. Accept if M_1 accepts and M_2 accepts. Reject, otherwise." Since, M_1 and M_2 decides in polynomial time, M also decides in polynomial time. Hence, $\Sigma^* L_1 \cup L_2 \in \text{NP}$. Conclusion: $L_1 \cup L_2 \in \text{coNP}$.
 - 2. Let $L_1, L_2 \in \text{coNP}$. Then, for i = 1, 2, there exists an NTM M_i that decides $\Sigma^* L_i$ in polynomial time. An NTM M that decides $\Sigma^* L_1 \cap L_2 = (\Sigma^* L_1) \cup (\Sigma^* L_2)$ is constructed as follows: "On input w: Run M_1 and M_2 on w. Accept if M_1 accepts or M_2 accepts. Reject, otherwise." Since, M_1 and M_2 decides in polynomial time, M also decides in polynomial time. Hence, $\Sigma^* L_1 \cap L_2 \in \text{NP}$. Conclusion: $L_1 \cap L_2 \in \text{coNP}$.
- 4. Suppose SAT \in coNP. Then, Σ^* SAT \in NP. Since SAT is NP-hard, Σ^* SAT \leq_p SAT.
 - Claim 1: If $A \leq_p B$, then $\Sigma^* A \leq_p \Sigma^* B$. Proof: If $A \leq_p B$, then there exists a function f such that $w \in A$ iff $f(w) \in B$. Hence, $w \notin A$ iff $f(w) \notin B$, i.e., $w \in \Sigma^* A$ iff $f(w) \in \Sigma^* B$. Hence, $\Sigma^* A \leq_p \Sigma^* B$.
 - By Claim 1 and Σ^* SAT \leq_p SAT, we have SAT $\leq_p \Sigma^*$ SAT. Hence, Σ^* SAT is NP-hard, i.e., for every $L \in \text{NP}$, $L \leq_p \Sigma^*$ SAT. By Claim 1 again, we have Σ^* $L \leq_p$ SAT. Since SAT \in NP, Σ^* $L \in \text{NP}$, i.e., $L \in \text{coNP}$. Hence, NP $\subseteq \text{coNP}$. Conclusion: If SAT $\in \text{coNP}$, then NP $\subseteq \text{coNP}$.
 - Suppose NP \subseteq coNP. Let $L \in$ coNP. By definition, $\Sigma^* L \in$ NP \subseteq coNP. Hence, $\Sigma^* L \in$ coNP and $L \in$ NP. Hence, coNP \subseteq NP. Hence, NP = coNP. Conclusion: If NP \subseteq coNP, then NP = coNP.