Velocity Kinematics

EE366/CE366/CS380: Introduction to Robotics

Dr. Basit Memon

Electrical and Computer Engineering Habib University

February 28, March 4, 6, 2024

Table of Contents

- 1 Differential Kinematics Problem
- 2 Angular Velocity in 3D space
- 2.1 Fixed-axis rotation
- 2.2 Arbitrary rotation only
- 2.3 Any kind of rigid motion
- 3 Geometric Jacobian
- 3.1 Proof of claim about adding angular velocities
- 4 Analytical Jacobian
- 5 Summary
- 6 References

Table of Contents

- 1 Differential Kinematics Problem
- 2 Angular Velocity in 3D space
- 2.1 Fixed-axis rotatio
- 2.2 Arbitrary rotation only
- 2.3 Any kind of rigid motion
- 3 Geometric Jacobian
- 3.1 Proof of claim about adding angular velocities
- 4 Analytical Jacobian
- 5 Summary
- 6 Reference

Velocity Kinematics

- We know how to relate end-effector position and orientation to joint variables.
- What about velocity and acceleration?
- If a particle follows a curve $q(t) \in \mathbb{R}^3$, then it is easy to find its velocity, $v_q = \frac{dq(t)}{dt}$.

- What about a rigid body moving and described by homogeneous transformation $T(t) \in SE(3)$?
- $\dot{T}(t)$ doesn't work!
 - For one, $\dot{T}(t) \notin SE(3)$
 - We want some connection to our prior understanding of rotational and translational velocity.

How to express velocity of rigid body in motion?

■ Trajectory of a rigid body in motion:

$$\mathcal{T}_e(q(t)) = egin{bmatrix} {}^0R_e(q(t)) & {}^0p_e(q(t)) \ \mathbf{0}^{ au} & 1 \end{bmatrix}$$

where q is vector of joint variables.

• $v_e(t) = \dot{p}_e(t)$ is linear velocity, capturing the velocity of origin of the frame.

What about the change in orientation?

- Two ways to describe the evolution of orientation of frame:
 - lacktriangledown w related to the derivative of $R \in SO(3)$

$$egin{bmatrix} v_e \ \omega_e \end{bmatrix} = \mathbf{J} \dot{q}$$

J: Geometric Jacobian or Jacobian

lacktriangle $\dot{\alpha}$ related to the derivative of Euler angles

$$\begin{bmatrix} v_e \\ \dot{\alpha} \end{bmatrix} = J_a \dot{q}$$

J_a : Analytical Jacobian

Questions

- What is this ω ? How is this related to R?
- Are v and ω a good description of velocity?
- How do we find velocity of any point on the rigid body?

The Jacobian haunts robotics! [2]

- Jacobian is used in:
 - Planning and execution of smooth trajectories
 - Determination of singular configurations
 - Transformation of forces and torques from end-effector to manipulator joints
 - Dynamic equations of motion
 - Manipulability

Table of Contents

- 1 Differential Kinematics Problem
- 2 Angular Velocity in 3D space
- 2.1 Fixed-axis rotation
- 2.2 Arbitrary rotation only
- 2.3 Any kind of rigid motion
- 3 Geometric Jacobian
- 3.1 Proof of claim about adding angular velocities
- 4 Analytical Jacobian
- 5 Summary
- 6 References

1. Interpretation of Angular Velocity: Fixed axis

- Rigid body rotates about fixed axis, \hat{k} at constant speed. What is angular velocity of each point?
- Each point moves in a circle with center on axis of rotation.
- lacktriangleright Perpendicular from the point to axis sweeps same angle heta
- All points rotate with the same angular velocity.

1. Interpretation of Angular Velocity: Fixed axis [3, Section 4.1]

- What about linear velocity of each point?
 - Consider the point q:

$$\dot{q}(t) = \omega \times q(t) = \dot{\theta}\hat{k} \times q(t)$$

■ Linear velocity is different for each point.

1. Interpretation of Angular Velocity: Fixed axis [3, Section 4.1]

- In fixed axis case, rotation is captured by rotation matrix $R_k(\theta)$. Rotation of every point is planar, and so $\omega = \dot{\theta}$.
- Angular velocity is the same, and so a property of attached coordinate frame or body and not of individual points.
- How to write ω when axis of rotation changes as rigid body moves?

Digression: Cross-product can be written as matrix product.

■ For two vectors, $a, b \in \mathbb{R}^3$,

$$a \times b = \begin{bmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{bmatrix}$$

■ Cross-product by *a* can be written as a linear operator:

$$a \times b = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$
$$= S(a) b$$

 \blacksquare S(a) is a skew-symmetric matrix.

Digression: Every vector is related to a skew-symmetric matrix [3,

• An $n \times n$ matrix S is called skew symmetric iff $S^T + S = O$.

$$s_{ij} + s_{ji} = 0$$

 $\Rightarrow s_{ii} = 0$ Diagonal entries will be zero.
 $s_{ij} = -s_{ij}$ Off-diagonal entries will be negative of each other.

 \blacksquare 3 \times 3 case:

$$S = \begin{bmatrix} 0 & -s_3 & s_2 \\ s_3 & 0 & -s_1 \\ -s_2 & s_1 & 0 \end{bmatrix}$$

2. Velocity for pure rotational motion [1, Section 4.1], [3, Section 4.1]

Figure: Rotational motion of a rigid body

- Attach frame *b* to the rigid-body, which moves along with it.
- ${}^{a}R_{b}(t) \in SO(3)$ is curve representing motion of body with respect to fixed frame a.
- \blacksquare Any point q of rigid-body follows a path:

$${}^{a}p_{q}^{a}(t) = {}^{a}R_{b}(t) {}^{a}p_{q}^{a}(0)$$

= ${}^{a}R_{b}(t) {}^{b}p_{q}^{b}$

Coordinates ${}^bp_a^b$ are fixed in the body frame.

2. Velocity for pure rotational motion [1, Section 4.1]

Lemma-1

Given $R(t) \in SO(3)$, the matrices $\dot{R}(t)R^{-1}(t) \in \mathbb{R}^{3\times3}$ and $R^{-1}(t)\dot{R}(t) \in \mathbb{R}^{3\times3}$ are skew-symmetric.

■ Velocity of point in fixed-frame coordinates is:

$$^{a}v_{q}=rac{d}{dt}^{a}p_{q}(t)=^{a}\dot{R}_{b}(t)^{b}p_{q}.$$

■ Deriving a more compact representation:

$${}^{a}v_{q} = \underbrace{{}^{a}\dot{R}_{b}{}^{a}R_{b}^{-1}}_{S({}^{a}\omega_{b}^{a})} {}^{a}R_{b}{}^{b}p_{q}$$

$$= \underbrace{S({}^{a}\omega_{b}^{a})}_{S({}^{a}\omega_{b}^{a})} {}^{a}R_{b}{}^{b}p_{q}$$

$$= \underbrace{S({}^{a}\omega_{b}^{a})}_{A} {}^{a}p_{q}$$

$${}^{a}v_{q}(t) = {}^{a}\omega_{b}^{a}(t) \times {}^{a}p_{q}(t)$$

Proof of Lemma-1

■ $R(t) \in SO(3)$ depends on one parameter θ .

$$R(t)R(t)^T = I$$

Differentiating both sides wrt t:

$$\left[\frac{d}{dt}R\right]R(t)^{T} + R(t)\left[\frac{d}{dt}R^{T}\right] = O$$

Define

$$S := \left[\frac{d}{dt} R \right] R(t)^T$$

- We have that, $S + S^T = O$, so S is a skew-symmetric matrix.
- Derivative of rotation matrix

$$SR(t) = \left[\frac{d}{dt}R\right]R(t)^TR(t) = \frac{d}{dt}R(t)$$

Angular velocity of a rigid body can generally be defined as:

■ The vector in \mathbb{R}^3 equivalent to the skew-symmetric matrix $\dot{R}(t)R^{-1}(t)$.

Example-1: Rotating about x-axis by an angle θ

$$R = R_{\mathsf{x}}(\theta(t)) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta(t) & -\sin\theta(t) \\ 0 & \sin\theta(t) & \cos\theta(t) \end{bmatrix}.$$

$$S = \begin{bmatrix} \frac{d}{d\theta} R \end{bmatrix} R(\theta)^T = \begin{bmatrix} 0 & 0 & 0 \\ 0 & -\sin\theta(t)\dot{\theta} & -\cos\theta(t)\dot{\theta} \\ 0 & \cos\theta(t)\dot{\theta} & -\sin\theta(t)\dot{\theta} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & \sin\theta \\ 0 & -\sin\theta & \cos\theta \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -\dot{\theta} \\ 0 & \dot{\theta} & 0 \end{bmatrix}$$

$$\blacksquare \omega = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Example: Rotating about \hat{k} -axis by an angle θ

■ If $R = R_k(\theta)$, then

$$\frac{d}{d\theta}R_k(\theta) = S(k)R_k(\theta).$$

■ HW: Verify this to be true using:

$$R_k(\theta) = I + S(k)\sin\theta + S^2(k)(1 - \cos\theta)$$

$$S^3(k) = -S(k)$$

Body viewed as rotating about an instantaneous velocity vector.

Figure: Instantaneous angular velocity

- Change in orientation at $t + \Delta t$ can be described as rotation about some \hat{w} through the origin by $\Delta \theta$.
- In the limit, $\Delta\theta/\Delta t \rightarrow \dot{\theta}$ and angular velocity can be defined as:

$$\omega = \hat{w}\dot{\theta}$$

Definition of ω coincides with instantaneous angular velocity.

Figure:
$$\dot{\hat{x}} = \omega \times \hat{x}$$

$$\dot{R} = \begin{bmatrix} \omega \times \hat{x} & \omega \times \hat{y} & \omega \times \hat{z} \end{bmatrix}
= \begin{bmatrix} S(\omega)\hat{x} & S(\omega)\hat{y} & S(\omega)\hat{z} \end{bmatrix}
= S(\omega) \begin{bmatrix} \hat{x} & \hat{y} & \hat{z} \end{bmatrix}
= S(\omega)R
\Rightarrow S(\omega) = \dot{R}R^{-1}$$

3. Velocity for rigid-body motion [1, Section 4.2]

Figure: Motion of a rigid body

- Attach frame *b* to the rigid-body, which moves along with it.
- ${}^{a}T_{b}(t) \in SE(3)$ is curve representing motion of body with respect to fixed frame a.
- \blacksquare Any point q of rigid-body follows a path:

$${}^{a}p_{q}^{a}(t) = {}^{a}T_{b}(t) {}^{b}p_{q}^{b}$$

= ${}^{a}R_{b}(t) {}^{b}p_{q} + {}^{a}p_{b}^{a}(t)$

3. Velocity for rigid-body motion [3, Section 4.5]

Spatial Velocity

The vector $\begin{bmatrix} a v_{ab} \\ a \omega_{ab} \end{bmatrix} \in \mathbb{R}^6$ is a good choice for representation of spatial velocity.

$$\stackrel{a}{p}_{q}(t) = \stackrel{a}{R}_{b}(t) \stackrel{b}{p}_{q} + \stackrel{a}{p}_{b}(t)$$

$$\stackrel{a}{v}_{q}(t) = \underbrace{\stackrel{a}{R}_{b} \stackrel{a}{R}_{b}^{T} \stackrel{a}{R}_{b} \stackrel{b}{p}_{q} + \underbrace{\stackrel{a}{p}_{b}(t)}_{\stackrel{a}{v}_{ab}}$$

$$= \stackrel{a}{\omega}_{b} \times \stackrel{a}{p}_{q} + \stackrel{a}{v}_{b}$$

Defining velocities for any point on rigid body in rigid motion

Linear velocity

Different for all points of body.

$${}^{a}v_{q}(t) = {}^{a}\omega_{b} \times {}^{a}p_{q} + {}^{a}v_{b}$$

■ Distance ${}^ap_q^b$ is measured from the origin of $\{b\}$, but expressed in frame $\{a\}$.

Angular velocity

- lacktriangledown ω is same for all points.
- R(t) is rotation of body with respect to fixed frame $\{a\}$, expressed in frame $\{a\}$, i.e. ${}^aR^a_b$.
- S is the skew symmetric matrix $S = \dot{R} R^T$.
- The 3×1 vector associated with the matrix S is the angular velocity of body with respect to fixed frame $\{a\}$, expressed in frame $\{a\}$, i.e. ${}^{a}\omega_{b}^{a}$.

Change of reference for velocities

- Recall that the velocities are free vectors.
- We can express any velocity vector in the coordinates of any other frame by making use of rotation matrices. So, ${}^k\omega_{ab}$ is the angular velocity for the changing aR_b expressed relative to the frame k.

$$^{k}\omega_{ab}={}^{k}R_{a}{}^{a}\omega_{ab}.$$

Table of Contents

- 1 Differential Kinematics Problem
- 2 Angular Velocity in 3D space
- 2.1 Fixed-axis rotation
- 2.2 Arbitrary rotation only
- 2.3 Any kind of rigid motion
- 3 Geometric Jacobian
- 3.1 Proof of claim about adding angular velocities
- 4 Analytical Jacobian
- 5 Summary
- 6 Reference

The Geometric Jacobian [3, Section 4.6]

- **n**-link manipulator with joint variables, q_1, \dots, q_n
- Angular velocity of end-effector frame, ${}^0\omega_{0n}$ be defined by

$$S\left({}^{0}\omega_{0,n}\right) = {}^{0}\dot{R}_{n}{}^{0}R_{n}^{T}$$

and linear velocity by

$$^{0}v_{n}=^{0}\dot{p}_{n}$$

■ Need expressions of the form:

$$^{0}v_{n}=J_{v}\dot{q}$$

and

$$^{0}\omega_{0n}=J_{\omega}\dot{q}$$

 \blacksquare Combining the two: $\xi = J\dot{q}$, where J is a 6 \times n matrix

Claim: Addition of angular velocities

The angular velocity ${}^{0}\omega_{0,n}$ can be expressed as:

$${}^{0}\omega_{0,n} = {}^{0}\omega_{0,1} + {}^{0}\omega_{1,2} + {}^{0}\omega_{2,3} + \dots + {}^{0}\omega_{n-1,n}$$
$$= {}^{0}\omega_{0,1} + {}^{0}R_{1} {}^{1}\omega_{1,2} + {}^{0}R_{2} {}^{2}\omega_{2,3} + \dots + {}^{0}R_{n-1} {}^{n-1}\omega_{n-1,n}$$

where ${}^0\omega_{i,j}$ represents angular velocity corresponding to derivative of iR_j expressed in coordinates of 0 frame.

What is $^{i-1}\omega_{i-1,i}$?

- Frame *i* moves, when joint *i* moves.
- If joint *i* is revolute, then
 - \blacksquare joint variable $q_i = \theta_i$
 - \blacksquare axis of rotation is z_{i-1}
 - frame i rotates about the fixed axis, z_{i-1}

$$\begin{aligned}
\stackrel{i-1}{\omega_{i-1,i}} &= \dot{q}_i &\stackrel{i-1}{z_{i-1}} \\
&= \dot{q}_i & \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} &= \dot{q}_i \hat{k}
\end{aligned}$$

- If joint *i* is prismatic, then
 - lacksquare motion of frame i relative to i-1 is translation only

$$^{i-1}\omega_{i-1,i}=0$$

■ Given that $\rho_i = 1$ if joint is revolute, and $\rho_i = 0$ if prismatic.

$${}^{0}\omega_{0,n} = {}^{0}\omega_{0,1} + {}^{0}R_{1} {}^{1}\omega_{1,2} + {}^{0}R_{2} {}^{2}\omega_{2,3} + \dots + {}^{0}R_{n-1} {}^{n-1}\omega_{n-1,n}$$

$$= \rho_{1}\dot{q}_{1}\hat{k} + \rho_{2}\dot{q}_{2} {}^{0}R_{1}\hat{k} + \rho_{3}\dot{q}_{3} {}^{0}R_{2}\hat{k} + \dots + \rho_{n}\dot{q}_{n} {}^{0}R_{n-1}\hat{k}$$

$$= \sum_{i=1}^{n} \rho_{i}\dot{q}_{i} {}^{0}R_{i-1}\hat{k}$$

$${}^{0}\omega_{0,n} = \rho_{1}\hat{k} \,\dot{q}_{1} + \rho_{2} \,{}^{0}R_{1}\hat{k} \,\dot{q}_{2} + \rho_{3} \,{}^{0}R_{2}\hat{k} \,\dot{q}_{3} + \dots + \rho_{n} \,{}^{0}R_{n-1}\hat{k} \,\dot{q}_{n}$$

$$= \left[\rho_{1} \,{}^{0}R_{0}\hat{k} \,\rho_{2} \,{}^{0}R_{1}\hat{k} \,\cdots \,\rho_{n} \,{}^{0}R_{n-1}\hat{k}\right] \begin{bmatrix} \dot{q}_{1} \\ \dot{q}_{2} \\ \dot{q}_{3} \\ \vdots \\ \dot{q}_{n} \end{bmatrix}$$

$$= \left[\rho_{1} \,{}^{0}z_{0} \,\rho_{2} \,{}^{0}z_{1} \,\cdots \,\rho_{n} \,{}^{0}z_{n-1}\right] \,\dot{q}$$

$$= J_{\omega} \,\dot{q}$$

■ Each column is 3×1 vector and J_{ω} is $3 \times n$.

Deriving J_{ν}

By chain rule,

$${}^{0}\dot{p}_{n} = \sum_{i=1}^{n} \frac{\partial {}^{0}p_{n}}{\partial q_{i}} \dot{q}_{i}$$

- Thus, *i*th column of J_v is $\frac{\partial^0 p_n}{\partial q_i}$.
- Notice that this is the end-effector velocity, if all joints were fixed except i, and the joint i is actuated at unit velocity ($\dot{q}_i = 1$)
- Let's look at case of prismatic and revolute joint separately.

Deriving linear velocity for prismatic joint

- Assume all joints fixed except Prismatic Joint, i
- lacktriangleright Joint imparts pure translation to end-effector parallel to axis z_{i-1}

$${}^{0}\dot{p}_{n}=\dot{q}_{i}{}^{0}z_{i-1}$$

■ So, *i*th column of J_v is ${}^0z_{i-1}$

Deriving linear velocity for revolute joint

- Assume all joints fixed except revolute Joint, *i*
- Linear velocity of end-effector is of form $\omega \times r$
- $\omega = \dot{\theta}_i z_{i-1}$ and $r = o_n o_{i-1}$. So, the *i*th column of J_V is:

$$^{0}z_{i-1}\times(^{0}o_{n}-^{0}o_{i-1})$$

 \blacksquare ith column of J is:

$$J_i = \begin{cases} \begin{bmatrix} {}^0Z_{i-1} \times ({}^0p_n - {}^0p_{i-1}) \\ {}^0Z_{i-1} \end{bmatrix}, & \text{if joint i is revolute,} \\ \begin{bmatrix} {}^0Z_{i-1} \\ 0 \end{bmatrix}, & \text{if joint i is prismatic.} \end{cases}$$

- Last three axes are intersecting. $o_3 = o_4 = o_5 = o$, which makes life easier for us.
- The *i*th column of Jacobian is J_i . Then,

$$J_{i} = \begin{bmatrix} {}^{0}z_{i-1} \times (o_{6} - o_{i-1}) \\ {}^{0}z_{i-1} \end{bmatrix}, \quad i = 1, 2$$

$$J_{3} = \begin{bmatrix} {}^{0}z_{2} \\ {}^{0} \end{bmatrix}$$

$$J_{i} = \begin{bmatrix} {}^{0}z_{i-1} \times (o_{6} - o) \\ {}^{0}z_{i-1} \end{bmatrix}, \quad i = 4, 5, 6$$

$$A_{1} = \begin{bmatrix} c_{1} & 0 & -s_{1} & 0 \\ s_{1} & 0 & c_{1} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{2} = \begin{bmatrix} c_{2} & 0 & s_{2} & 0 \\ s_{2} & 0 & -c_{2} & 0 \\ 0 & 1 & 0 & d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_2 = \begin{bmatrix} c_2 & 0 & s_2 & 0 \\ s_2 & 0 & -c_2 & 0 \\ 0 & 1 & 0 & d_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_3 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_4 = \begin{bmatrix} c_4 & 0 & -s_4 & 0 \\ s_4 & 0 & c_4 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_5 = \begin{bmatrix} c_5 & 0 & s_5 & 0 \\ s_5 & 0 & -c_5 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_6 = \begin{bmatrix} c_6 & -s_6 & 0 & 0 \\ s_6 & c_6 & 0 & 0 \\ 0 & 0 & 1 & d_6 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$^{0}Z_{i-1} = ^{'}$$

- Determine ${}^{0}T_{i-1} = A_1A_2 \cdots A_{i-1}$.
 - \bullet $^{0}Z_{i-1}$ is first three elements of third column of $^{0}T_{i-1}$.

$$^{0}o_{0} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

- Determine ${}^{0}T_{i}$.
 - ${}^{0}o_{j}$ is first three elements of fourth column of ${}^{0}T_{j}$.

Example: Two-link planar manipulator

■
$$J(q) = \begin{bmatrix} z_0 \times (o_2 - o_0) & z_1 \times (o_2 - o_1) \\ z_0 & z_1 \end{bmatrix}$$

$$z_0 = z_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Example: Two-link planar manipulator

Skew Symmetric Matrices-More Properties

lacksquare S is linear operator, i.e.

$$S(\alpha a + \beta b) = \alpha S(a) + \beta S(b)$$

for vectors $a, b \in \mathbb{R}^3$ and scalars $\alpha, \beta \in \mathbb{R}$

 \blacksquare $R \in SO(3)$ and $a, b \in \mathbb{R}^3$:

$$R(a \times b) = R(a) \times R(b)$$

 \blacksquare $R \in SO(3)$ and $a \in \mathbb{R}^3$:

$$R S(a) R^T = S(Ra)$$

Matrix representation of S(a) in a coordinate frame rotated by R is the same as the skew-symmetric matrix S(Ra) corresponding to the vector a rotated by R.

Proof of claim: addition of angular velocities

$${}^{0}R_{2}(t) = {}^{0}R_{1}(t) {}^{1}R_{2}(t)$$

$${}^{0}\dot{R}_{2} = {}^{0}\dot{R}_{1} {}^{1}R_{2} + {}^{0}R_{1} {}^{1}\dot{R}_{2}$$

$$S({}^{0}\omega_{0,2}){}^{0}R_{2} = S({}^{0}\omega_{0,1}){}^{0}R_{1} {}^{1}R_{2} + {}^{0}R_{1} {}^{1}\dot{R}_{2}$$

$$S({}^{0}\omega_{0,2}){}^{0}R_{2} = S({}^{0}\omega_{0,1}){}^{0}R_{2} + {}^{0}R_{1} {}^{1}S({}^{1}\omega_{1,2}){}^{0}R_{1} {}^{T} {}^{0}R_{1} {}^{1}R_{2}$$

$$\Rightarrow S({}^{0}\omega_{0,2}) = S({}^{0}\omega_{0,1}) + S({}^{0}R_{1} {}^{1}\omega_{1,2}) = S({}^{0}\omega_{0,1} + {}^{0}\omega_{1,2})$$

$${}^{0}\omega_{0,2} = {}^{0}\omega_{0,1} + {}^{0}\omega_{1,2}$$

■ This can be extended to the case of ${}^0\omega_{0,n}$ as well

Table of Contents

- 1 Differential Kinematics Problem
- 2 Angular Velocity in 3D space
- 2.1 Fixed-axis rotation
- 2.2 Arbitrary rotation only
- 2.3 Any kind of rigid motion
- 3 Geometric Jacobian
- 3.1 Proof of claim about adding angular velocities
- 4 Analytical Jacobian
- 5 Summary
- 6 Reference

Analytical Jacobian

- End-effector pose $X = \begin{bmatrix} p(q) \\ \alpha(q) \end{bmatrix}$, where d is the usual vector for position, but orientation α is in minimal coordinates. E.g., $\alpha = (\phi, \theta, \psi)^T$, the Euler angles.
- We want: $\dot{X} = J_{\alpha}(q) \dot{q}$. J_{α} is analytical jacobian.

Claim:

If $R = R_z(\psi)R_y(\theta)R_z(\phi)$, then $\dot{R}R^T = S(\omega)$ and

$$\omega = \begin{bmatrix} c_{\phi} s_{\theta} \dot{\psi} - s_{\phi} \dot{\theta} \\ s_{\phi} s_{\theta} \dot{\psi} + c_{\phi} \dot{\theta} \\ \dot{\phi} + c_{\theta} \dot{\psi} \end{bmatrix}^{a}$$

^aTypo in Spong's book - ϕ and ψ are interchanged. See AnalyticalJacobian.mlx

Angular velocity in Euler angles [2, Section 3.6]

Figure: Composition of rotational velocities in ZYZ.

Source: [2]

Angular velocity in Euler angles [2, Section 3.6]

Angular velocity due to first rotation:

$$^{0}\omega_{01}=\dot{\phi}egin{bmatrix}0\\0\\1\end{bmatrix}$$

Angular velocity due to second rotation:

$${}^{0}\omega_{12} = \dot{\theta} \underbrace{{}^{0}R_{1}}_{R_{2}(\phi)} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

Angular velocity due to third rotation:

$${}^{0}\omega_{23} = \dot{\psi} {}^{0}R_{1} \underbrace{{}^{1}R_{2}}_{R_{y}(\theta)} \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$

■ Total velocity:

$$^{0}\omega = ^{0}\omega_{01} + ^{0}\omega_{12} + ^{0}\omega_{23}$$

Analytical Jacobian

$$\omega = \begin{bmatrix} c_{\phi} s_{\theta} \dot{\psi} - s_{\phi} \dot{\theta} \\ s_{\phi} s_{\theta} \dot{\psi} + c_{\phi} \dot{\theta} \\ \dot{\phi} + c_{\theta} \dot{\psi} \end{bmatrix} = \begin{bmatrix} 0 & -s_{\phi} & c_{\phi} s_{\theta} \\ 0 & c_{\phi} & s_{\phi} s_{\theta} \\ 1 & 0 & c_{\theta} \end{bmatrix} \begin{bmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{bmatrix} = B(\alpha) \dot{\alpha}$$

$$J(q)\dot{q} = \begin{bmatrix} v \\ \omega \end{bmatrix} = \begin{bmatrix} \dot{p} \\ B(\alpha)\dot{\alpha} \end{bmatrix} = \begin{bmatrix} I & O \\ O & B(\alpha) \end{bmatrix} \begin{bmatrix} \dot{p} \\ \dot{\alpha} \end{bmatrix} = \begin{bmatrix} I & O \\ O & B(\alpha) \end{bmatrix} J_{\alpha}(q)\dot{q}$$

$$J_{\alpha}(q) = \begin{bmatrix} I & O \\ O & B^{-1}(\alpha) \end{bmatrix} J(q)$$

if det $B(\alpha) \neq 0$

 α at which det $B(\alpha) = 0$: Representational singularities

Table of Contents

- 1 Differential Kinematics Problem
- 2 Angular Velocity in 3D spac
- 2.1 Fixed-axis rotation
- 2.2 Arbitrary rotation only
- 2.3 Any kind of rigid motion
- 3 Geometric Jacobia
- 3.1 Proof of claim about adding angular velocities
- 4 Analytical Jacobian
- 5 Summary
- 6 References

Summary – Relation between joint and end-effector positions

The position and orientation of the end-effector are related to the joint variables through

$${}^{0}T_{n}(q) = \begin{bmatrix} {}^{0}R_{n}(q) & {}^{0}p_{n}(q) \\ O & 1 \end{bmatrix}$$

- First three columns of transformation matrix, ${}^{0}R_{n}(q)$, relate orientation of end-effector to joint variables.
- Fourth column of transformation matrix, ${}^{0}p_{n}(q)$, relates position of end-effector to joint variables.

Summary – Relation between joint and end-effector velocities

$$\begin{bmatrix} {}^{0}V_{n} \\ {}^{0}\omega_{n} \end{bmatrix} = \begin{bmatrix} J_{v} \\ J_{\omega} \end{bmatrix} \dot{q}$$

$$J_{\omega} = \begin{bmatrix} \rho_{1} {}^{0}Z_{0} & \rho_{2} {}^{0}Z_{1} & \cdots & \rho_{n} {}^{0}Z_{n-1} \end{bmatrix}$$

$$J_{v} = \begin{bmatrix} c_{1} & c_{2} & \cdots & c_{i} & \cdots & c_{n} \end{bmatrix}$$

- $^{\circ}v_n$ and $^{\circ}\omega_n$ are linear and angular velocities of end-effector in 0-frame coordinates.
- $^{0}z_{i}$ is joint axis of joint i+1 in 0-frame coordinates.
- $\rho = 1$ for revolute joint and $\rho = 0$ for prismatic.

Summary – Relation between joint and end-effector velocities

$$\begin{bmatrix} {}^{0}V_{n} \\ {}^{0}\omega_{n} \end{bmatrix} = \begin{bmatrix} J_{v} \\ J_{\omega} \end{bmatrix} \dot{q}$$

$$J_{\omega} = \begin{bmatrix} \rho_{1} {}^{0}Z_{0} & \rho_{2} {}^{0}Z_{1} & \cdots & \rho_{n} {}^{0}Z_{n-1} \end{bmatrix}$$

$$J_{v} = \begin{bmatrix} c_{1} & c_{2} & \cdots & c_{i} & \cdots & c_{n} \end{bmatrix}$$

- $c_i = {}^0 z_{i-1}$ if joint i is prismatic.
- $c_i = {}^0 z_{i-1} \times ({}^0 o_n {}^0 o_{i-1})$ if joint *i* is revolute.

Table of Contents

- 1 Differential Kinematics Problem
- 2 Angular Velocity in 3D space
- 2.1 Fixed-axis rotatio
- 2.2 Arbitrary rotation only
- 2.3 Any kind of rigid motion
- 3 Geometric Jacobia
- 3.1 Proof of claim about adding angular velocities
- 4 Analytical Jacobian
- 5 Summary
- 6 References

- [1] Richard M Murray, Zexiang Li, and S Shankar Sastry. A mathematical introduction to robotic manipulation. CRC press, 2017.
- [2] Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, and Giuseppe Oriolo. Robotics: modelling, planning and control. Springer Science & Business Media, 2010.
- [3] Mark W Spong, Seth Hutchinson, and Mathukumalli Vidyasagar.

 Robot modeling and control.

 John Wiley & Sons. 2020.