# 밑바닥부터 시작하는 딥러닝

**CONTENTS** 

오차역전파법

학습 관련 기술들

합성곱 신경망

계산 그래프, Affine 계층, 오차 역전파법



#### 계산 그래프

# 계산 그래프에서 순전파(foward propagation) 와 역전파(backword propagation)

**순전파**: '계산을 왼쪽에서 오른쪽으로 진행'하는 단계를 의미합니다. 순전파는 계산 그래프의 출 발점부터 종착점으로의 전파입니다.

역전파: '오른쪽에서 왼쪽으로 진행'하는 것을 의미합니다. 역전파는 이후에 미분을 계산할 때 중요한 역할을 합니다.

계산 그래프, Affine 계층, 오차 역전파법



#### 계산 그래프

#### 계산 그래프의 이점

- 1. 국소적 계산 전체가 아무리 복잡해도 각 노드에서는 단순한 계산에 집중하여 문제를 단순화 할 수 있습니다.
- 2. 중간 계산 결과를 모두 보관할 수 있습니다. 예를 들어 사과 2개까지 계산했을 때의 200원, 소비세를 더하기 전의 금액은 650원인 식으로 중간 결과를 보관합니다.
- 3. 역전파를 통해 '미분'을 효율적으로 계산할 수 있습니다.

계산 그래프, Affine 계층, 오차 역전파법



#### 연쇄법칙이란?

연쇄법칙을 설명하려면 우선 합성 함수 이야기 부터 시작해야 합니다. **합성 함수**란 여러 함수로 구성된 함수입니다. 예를 들어 zz = (x+y)2(x+y) 2라는 식은 다음의 식처럼 두 개의 식으로 구성 됩니다.

계산 그래프, Affine 계층, 오차 역전파법

# 덧셈 노드와 곱셈 노드의 역전파





계산 그래프, Affine 계층, 오차 역전파법

# 시그모이드 역전파





# Affine 계층, Afiine계층 역전파



$$\frac{\partial L}{\partial \mathbf{X}} = \frac{\partial L}{\partial \mathbf{Y}} \cdot \mathbf{W}^{\mathrm{T}}$$
(N, 2) (N, 3) (3, 2)





$$\frac{\partial L}{\partial \mathbf{B}} = \frac{\partial L}{\partial \mathbf{Y}}$$
 의 첫 번째 축(0축, 열방향)의 합 (3) (N, 3)

계산 그래프, Affine 계층, 오차 역전파법

# Softmax-with-Loss 계층과 역전파



#### 계산 그래프, Affine 계층, 오차 역전파법

```
# x : 입력 데이터, t : 정답 레이블

def numerical_gradient(self, x, t):
    loss_W = lambda W: self.loss(x, t)

grads = {}
    grads['W1'] = numerical_gradient(loss_W, self.params['W1'])
    grads['b1'] = numerical_gradient(loss_W, self.params['b1'])
    grads['W2'] = numerical_gradient(loss_W, self.params['W2'])
    grads['b2'] = numerical_gradient(loss_W, self.params['b2'])

return grads
```

#### 속도 향상된 기울기 계산

```
def gradient(self, x, t):
    # forward
    self.loss(x, t)
    # backward
    dout = 1
    dout = self.lastLayer.backward(dout)
    layers = list(self.layers.values())
    layers.reverse()
    for layer in layers:
       dout = layer.backward(dout)
    # 결과 저장
    grads = {}
   grads['W1'], grads['b1'] = self.layers['Affine1'].dW, self.layers['Affine1'].db
    grads['W2'], grads['b2'] = self.layers['Affine2'].dW, self.layers['Affine2'].db
    return grads
```

# 산 내려오는 작은 오솔길 잘찿기(Optimizer)의 발달 계보



2. 학습 관련 기술들



# 계산 그래프



2. 학습 관련 기술들



계산 그래프



2. 학습 관련 기술들



계산 그래프



2. 학습 관련 기술들



계산 그래프



2. 학습 관련 기술들



#### 초기값 그대로

```
for i in range(hidden_layer_size):
   if i != 0:
       x = activations[i-1]
   # 초깃값을 다양하게 바꿔가며 실험해보자!
   w = np.random.randn(node_num, node_num) * 1
   # w = np.random.randn(node_num, node_num) * 0.01
   #w = np.random.randn(node_num, node_num) * np.sqrt(1.0 / node_num)
   # w = np.random.randn(node_num, node_num) * np.sqrt(2.0 / node_num)
   a = np.dot(x, w)
   # 활성화 함수도 바꿔가며 실험해보자!
   z = sigmoid(a)
   activations[i] = z
```



#### 초기값 \* 0.01

```
for i in range(hidden_layer_size):
   if i != 0:
       x = activations[i-1]
   # 초깃값을 다양하게 바꿔가며 실험해보자!
   #w = np.random.randn(node_num, node_num) * 1
   w = np.random.randn(node_num, node_num) * 0.01
   #w = np.random.randn(node_num, node_num) * np.sqrt(1.0 / node_num)
   # w = np.random.randn(node_num, node_num) * np.sqrt(2.0 / node_num)
   a = np.dot(x, w)
   # 활성화 함수도 바꿔가며 실험해보자!
   z = sigmoid(a)
   activations[i] = z
```



#### Xavier 초기값

```
for i in range(hidden_layer_size):
   if i != 0:
       x = activations[i-1]
   # 초깃값을 다양하게 바꿔가며 실험해보자!
   # w = np.random.randn(node_num, node_num) * 1
   # w = np.random.randn(node_num, node_num) * 0.01
   w = np.random.randn(node_num, node_num) * np.sqrt(1.0 / node_num)
   # w = np.random.randn(node_num, node_num) * np.sqrt(2.0 / node_num)
   a = np.dot(x, w)
   # 활성화 함수도 바꿔가며 실험해보자!
   z = sigmoid(a)
   activations[i] = z
```



#### He 초기값

```
for i in range(hidden_layer_size):
   if i != 0:
       x = activations[i-1]
   # 초깃값을 다양하게 바꿔가며 실험해보자!
   # w = np.random.randn(node_num, node_num) * 1
   # w = np.random.randn(node_num, node_num) * 0.01
   # w = np.random.randn(node_num, node_num) * np.sqrt(1.0 / node_num)
   w = np.random.randn(node_num, node_num) * np.sqrt(2.0 / node_num)
   a = np.dot(x, w)
   # 활성화 함수도 바꿔가며 실험해보자!
   z = sigmoid(a)
   activations[i] = z
```



#### Relu + Xavier 초기값

```
for i in range(hidden_layer_size):
   if i != 0:
      x = activations[i-1]
   # 초깃값을 다양하게 바꿔가며 실험해보자!
   # w = np.random.randn(node_num, node_num) * 1
   # w = np.random.randn(node_num, node_num) * 0.01
   w = np.random.randn(node_num, node_num) * np.sqrt(1.0 / node_num)
   # w = np.random.randn(node_num, node_num) * np.sqrt(2.0 / node_num)
   a = np.dot(x, w)
   # 활성화 함수도 바꿔가며 실험해보자!
   z = relu(a)
   activations[i] = z
```

2. 학습 관련 기술들



# Relu + He 초기값

```
for i in range(hidden_layer_size):
   if i != 0:
       x = activations[i-1]
   # 초깃값을 다양하게 바꿔가며 실험해보자!
   # w = np.random.randn(node_num, node_num) * 1
   # w = np.random.randn(node_num, node_num) * 0.01
   # w = np.random.randn(node_num, node_num) * np.sqrt(1.0 / node_num)
   w = np.random.randn(node_num, node_num) * np.sqrt(2.0 / node_num)
   a = np.dot(x, w)
   # 활성화 함수도 바꿔가며 실험해보자!
   z = relu(a)
   activations[i] = z
```

```
train acc, test acc | 1.0, 0.7448
 train acc, test acc | 1.0, 0.7431
 train acc, test acc | 1.0, 0.7435
 train acc, test acc | 1.0, 0.7441
     1.0
     0.8
accuracy
     0.2
                                                    train acc
                                                    test acc
     0.0
                25
                      50
                                100
                                       125
                                             150
                                                  175
                                                        200
                                epochs
```

과적합

$$L(W) + \frac{1}{2}\lambda W^2$$



# 드롭아웃



# Convolutional Neural Network



| 1 | 2 | 3 | 0 |
|---|---|---|---|
| 0 | 1 | 2 | 3 |
| 3 | 0 | 1 | 2 |
| 2 | 3 | 0 | 1 |

입력 데이터



필터

#### 합성곱 계산

$$1*2+0*2+3*1+0*0+1*1+2*2+3*1+0*0+1*2 = 15$$

$$2*2+3*0+0*1+1*0+2*1+3*2+0*1+1*0+2*2 = 16$$

$$0*2+1*0+2*1+3*0+0*1+1*2+2*1+3*0+0*2 = 6$$

$$1*2+2*0+3*1+0*0+1*1+2*2+3*1+0*0+1*2 = 15$$

# 패딩

| 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 0 | 0 |
| 0 | 0 | 1 | 2 | 3 | 0 |
| 0 | 3 | 0 | 1 | 2 | 0 |
| 0 | 2 | 3 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 |





출처 : https://blog.naver.com/fbfbf1/222426802114



| 1 | 2 | 3 | 0 | 1 | 2 | 3 |
|---|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 0 | 1 | 2 |
| 3 | 0 | 1 | 2 | 3 | 0 | 1 |
| 2 | 3 | 0 | 1 | 2 | 3 | 0 |
| 1 | 2 | 3 | 0 | 1 | 2 | 3 |
| 0 | 1 | 2 | 3 | 0 | 1 | 2 |
| 3 | 0 | 1 | 2 | 3 | 0 | 1 |



#### 스트라이드: 2

| 1 | 2 | 3 | 0 | 1 | 2 | 3 |
|---|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 0 | 1 | 2 |
| 3 | 0 | 1 | 2 | 3 | 0 | 1 |
| 2 | 3 | 0 | 1 | 2 | 3 | 0 |
| 1 | 2 | 3 | 0 | 1 | 2 | 3 |
| 0 | 1 | 2 | 3 | 0 | 1 | 2 |
| 3 | 0 | 1 | 2 | 3 | 0 | 1 |



# 스트라이드



# → 스트라이드, stride

명사 체육

육상 경기 등에서, 보폭(步幅)을 일컫는 말.





# 계산 그래프

- 1. 특징 찾기
- 2. 데이터 크기 줄여주기
- 3. 오버피팅 억제



# A Convolution Layer



# Convolutional Neural Network



# Thank you