cisco

Traffic Engineering with Segment Routing

Leonir Hoxha — Senior Consulting Engineer BRKSPG-2021

Agenda

- Segment Routing Overview
- Control & Data Plane
- Segment Routing Traffic Engineering
- Automated Steering
- On-Demand Next-Hop
- SR-PCE
- Flexible Algorithm (Flex-Algo)

Segment... what?

Problem Statement: Today's Service Creation

Segment Routing Unified Fabric Vision

Segment Routing: Value Proposition

Multi-vendor consensus - Designed and built with network operators

Segment Routing Overview

You make networking possible

Segment Routing

- Source Routing
 - the source chooses a path and encodes it in the packet header as an ordered list of segments
 - the rest of the network executes the encoded instructions
- Segment: an identifier for any type of instruction
 - forwarding or service

Segment Routing – Forwarding Plane

- MPLS: an ordered list of segments is represented as a stack of labels
- IPv6: an ordered list of segments is encoded in a routing extension header
- This session: MPLS data plane

Segment Routing – IGP Segments

- Two basic building blocks distributed by IGP
 - Prefix Segments
 - Adjacency Segments

IGP Prefix Segment

- Shortest-path to the IGP prefix
 - Equal Cost Multipath (ECMP) Aware
- Global Segment
- Label = 16000 + Index
 - Advertised as index
- Distributed by ISIS/OSPF
- Manually assigned

All nodes use default SRGB 16,000 – 23,999

IGP Prefix Segment

- Shortest-path to the IGP prefix
 - Equal Cost Multipath (ECMP) Aware
- Global Segment
- Label = 16000 + Index
 - Advertised as index
- Distributed by ISIS/OSPF
- Manually assigned

IGP Adjacency Segment

- Forward on the IGP adjacency
- Local Segment
 - Dynamically Allocated
- Distributed by ISIS/OSPF
- Advertised as a label value

Combining IGP Segments

- Steer traffic on any path through the network
- Path is specified by a stack of labels
- No path is signaled
- No per-flow state is created
- Single protocol: IS-IS or OSPF

Control & Data Plane

You make security possible

MPLS Control and Forwarding Operation with Segment Routing

Services

No changes to control or forwarding plane

Packet Transport

IGP or BGP label distribution for IPv4 and IPv6. Forwarding plane remains the same (MPLS)

SID Encoding

- Prefix SID
 - Label form SR Global Block (SRGB)
 - SRGB advertised within IGP via TLV
 - In the configuration, Prefix-SID can be configured as an absolute value or an index
 - In the protocol advertisement, Prefix-SID is always encoded as a globally unique index Index represents an offset from SRGB base, zero-based numbering, i.e. 0 is 1st index E.g. index 1 → SID is 16,000 + 1 = 16,001
- Adjacency SID
 - Locally significant
 - Automatically allocated by the IGP for each adjacency
 - Always encoded as an absolute (i.e. not indexed) value

SRGB = [16,000 - 23,999] - Advertised as base = 16,000, range = 8,000 Prefix SID = 16,001 - Advertised as Prefix SID Index = 1 Adjacency SID = 24000 - Advertised as Adjacency SID = 24000

SR IS-IS Control Plane Summary

- IPv4 and IPv6 control plane
- Level 1, level 2 and multi-level routing
- Prefix Segment ID (Prefix-SID) for host prefixes on loopback interfaces
- Adjacency Segment IDs (Adj-SIDs) for adjacencies
- Prefix-to-SID mapping advertisements (mapping server)
- MPLS penultimate hop popping (PHP) and explicit-null signaling

SR OSPF Control Plane Summary

- OSPFv2 control plane
- Multi-area
- IPv4 Prefix Segment ID (Prefix-SID) for host prefixes on loopback interfaces
- Adjacency Segment ID (Adj-SIDs) for adjacencies
- Prefix-to-SID mapping advertisements (mapping server)
- MPLS penultimate hop popping (PHP) and explicit-null signaling

MPLS Data Plane Operation (Labeled)

- Packet forwarded along IGP shortest path (ECMP)
- Swap operation performed on input label
- Same top label if same/similar SRGB
- PHP if signaled by egress LSR

cisco live!

- Packet forwarded along IGP adjacency
- Pop operation performed on input label
- Top labels will likely differ

BRKSPG-2021

Penultimate hop always pops last adjacency SID

MPLS Data Plane Operation (Prefix SID)

BRKSPG-2021

MPLS Data Plane Operation (Adjacency SID)

Segment Routing
Traffic Engineering

You make the power of data possible

Traffic Engineering with SR

- Source based routing
 - State only at the Ingress PE
 - Supports constraint-based routing
- Uses existing ISIS / OSPF extensions
 - To advertise link attributes
- No RSVP-TE to establish LSPs
- ECMP Aware

SR Policy

- SR-Policy is a Traffic Engineering intent by means of a solution SID-list.
- An SR-Policy is uniquely identified by a tuple:
 - Head-end: where the SR Policy has been instantiated (configured)
 - End-point: the destination of the SR Policy
 - Color: a numerical value to differentiate multiple SRTE Policies between the same pair of nodes

SR Policy Color

- Each SR Policy has a color
 - Color can be used to indicate a certain treatment (SLA, policy) provided by an SR Policy
- Only one SR Policy with a given color C can exist between a given node pair (head-end (H), end-point (E))
 - In other words: each SR Policy triplet (H, C, E) is unique
- Example:
 - · Low-cost="blue", Low-delay="green"
 - steer traffic to 1.1.1.0/24 via Node4 into Low-cost SR Policy (1, blue, 4)
 - steer traffic to 2.2.2.0/24 via Node4 into Low-delay SR Policy (1, green, 4)

SR Policy on IOS-XR

SR Policy Configuration on IOS-XR

```
segment-routing
traffic-eng
  policy POLICY1
   color 20 end-point ipv4 1.1.1.4
   candidate-paths
    preference 100
     dynamic
      metric
       type igp
```


Binding SID

- The Binding SID is a fundamental building block of SR-TE solution
- Explicitly configured or dynamically allocated
- A Binding SID identifies a SRTE Policy
 - Packet received with Binding-SID as Top Label is steered into the SRTE Policy associated with the Binding-SID
 - Binding-SID label is popped, SRTE Policy's SID list is pushed

BRKSPG-2021

Binding SID Allocation

Explicit allocation

```
segment-routing
 traffic-eng
  policy POLICY1
   color 20 end-point ipv4 1.1.1.6
   binding-sid mpls 50100
   candidate-paths
    preference 100
     dynamic
      metric
       type igp
```

• Dynamic allocation is the default

Practical Use-Cases (Optimization Based SR-TE Path)

- TE Affinity-bit (coloring)
- SRLG
- Delay
- Disjoint Path

High Bandwidth Path:

Madrid - London - Amsterdam - Warsaw

Secure / Encrypted Path (MacSec enabled):

Madrid - Paris - Frankfurt - Warsaw

Low Delay Path:

Madrid - Rome - Warsaw

Disjoint Path:

- I. MAD PAR FFM WAW
- 2. MAD-RME-WAW
- 3. MAD LON AMS WAW

Practical Use-Cases (SR Policy Configuration)

MacSec enabled Path

```
segment-routing
traffic-eng
 affinity-map
  !! 32-bit maps
  name macsec bit-position 0
 interface HundredGig0/0/0/0
  affinity name macsec
 policy POLICY1
     color 20 end-point ipv4 1.1.1.4
     candidate-paths
       preference 100
         dynamic
           metric type igp
         constraints
           affinity
             include-all name macsec
```

Low Delay Path

```
segment-routing
traffic-eng
 policy POLICY2
     color 30 end-point ipv4 1.1.1.4
      candidate-paths
       preference 110
          dynamic
           metric
            type delay
```

Disjoint Path

```
segment-routing
traffic-eng
 policy POLICY3
   color 10 end-point 1.1.1.4
   candidate-paths
   preference 120
     dynamic
      pcep
     metric type te
     constraints
       disjoint-path group-id 1 type node
```


Delay Measurement

Link Delay (using Probes) Measurement feature

- One Way Delay = (T2 T1)
- Timestamps added in hardware
- PM Query format: RFC 6374 (MPLS/GAL) or RFC 5357 (IP/UDP/TWAMP)

BRKSPG-2021

Default: every 3 sec

Per SR-Policy Delay Measurement

BRKSPG-2021

Probe Measurement

- One Way Delay = (T2 T1)
 - Requires clock synchronization
- Default: Send Query every 3 sec

Automated Steering

You make customer experience possible

Automated Steering

- Consists of:
 - Prefix / Customer routes (L2/L3 VPN)
 - Color (BGP extended community attribute)

Automated Steering

- BGP can automatically steer traffic into an SR Policy based on BGP next-hop and color of a route
 - Color of a route is specified by its color extended community attribute
- When a BGP next-hop and color of a route match the end-point and color of an SR Policy, then BGP installs the route resolving on the BSID of the SR Policy

Automated Steering – Setting Color of a Route

- The color extended community is specified in RFC 5512 and updated in draft-previdi-idr-segment-routing-te-policy
- The color of a BGP route is typically set at the egress PE by adding a color extended community to the route
 - The color extended community is propagated to the ingress PE
 - Traffic steering on the ingress PE is then done automatically based on the color

Automated Steering – Color Assignment on PE

- Node1 has two SR Policies with end-point Node3:
 - POL10 with color 10 (blue) via Node2
 - POL20 with color 20 (red) via Node4
- Node3 advertises two prefixes with next-hop 1.1.1.3 in BGP:
 - 10.10.10.0/24 with color 10 (blue)
 - 10.20.20.0/24 with color 20 (red)

Automated Steering – Color Assignment Egress PE


```
extcommunity-set opaque BLUE
 10
end-set
extcommunity-set opaque RED
  20
end-set
route-policy SET COLOR
  if destination in (10.10.10.0/24) then
    set extcommunity color BLUE
  endif
 if destination in (10.20.20.0/24) then
    set extcommunity color RED
 endif
end-policy
router bgp 1
 neighbor 1.1.1.1
  remote-as 1
 update-source Loopback0
  address-family ipv4 unicast
   route-policy SET COLOR out
```

On-Demand Next-Hop (ODN)

You make multi-cloud possible

On-Demand Next-Hop (ODN)

- A head-end router automatically instantiates an SR Policy to a BGP next-hop when required (on-demand)
- Color community is used as SLA indicator
- Reminder: an SR Policy is defined (color, end-point)

 Automated Steering (AS) automatically steers the BGP traffic into this SR Policy, also based on next-hop and color.

On-Demand SR Policy

- Configure an SR Policy template for each color for which on-demand SR Policy instantiation is desired
- An example with two color templates configured:
 - color 10 for high bandwidth (optimize IGP metric)
 - color 20 for low-delay (optimize link-delay metric)

```
segment-routing
traffic-eng
on-demand color 10
dynamic
metric type igp
SR Policy template High-
BW (color 10)

on-demand color 20
dynamic
metric type delay
SR Policy template Low-
Delay (color 20)
```


ODN Benefits

- SLA-aware BGP service
- No a-priori full-mesh of SR Policy configuration
 - 3 to 4 common optimization templates are used throughout the network
 - color → optimization objective
- No complex steering configuration
 - Automated Steering of BGP routes on the right SLA path
 - Data plane performant
 - BGP PIC FRR data plane protection is preserved
 - BGP NHT fast control plane convergence is preserved

ODN Summary

The ODN functionality is only triggered when receiving a service route with an authorized color. A color is authorized when an on-demand template is configured for that color.

SR-PCE

You make customer experience possible

What about inter-domain path calculation?

- SR-PCE is an IOS XR multi-domain stateful SR Path Computation Element (PCE)
 - IOS XR: XTC functionality is available on any physical or virtual IOS XR node, activated with a single configuration command
 - Multi-domain: Real-time reactive feed via BGP-LS/ISIS/OSPF from multiple domains; computes inter-area/domain/AS paths
 - Stateful: takes control of SRTE Policies, updates them when required

SR-PCE Building Blocks

SR-PCE Controller

SR PCE collects via BGP-LS

- IGP segments
- BGP segments
- Topology

An End-to-end Path as a List of Segments (1)

 SR PCE computes that the green path can be encoded as

- 16001
- 16002
- 16004
- 16007
- SR PCE programs a single per-flow state to create an applicationengineered end-to-end policy

Flexible Algorithm (Flex-Algo)

You make networking possible

Flex-Algo

- Complements the SRTE solution by adding new Prefix-Segments with specific optimization objective and constraints
 - Minimize igp-metric or delay or te-metric
 - Avoid SRLG or affinity
- Leverages the SRTE benefits of simplicity and automation:
 - Automated sub-50msec FRR (TILFA)
 - On-Demand Policy (ODN)
 - Automated Steering (AS)

Flex-Algo Definition

- The definition of an "Algorithm" is defined by the operator, on a perdeployment basis
- Flex-Algo 'K' is defined as
 - The specification of minimal metric: IGP, delay, ...
 - The exclusion of certain link properties: link-affinity, SRLG, ...
- Each node MUST advertise Flex-Algo(s) that it is participating in

Currently Defined Algorithms

- 0: Shortest Path First (SPF) algorithm based on link metric.
 - This is the well-known shortest path algorithm as computed by the IS-IS Decision process. Consistent with the deployed practice for link-state protocols, algorithm 0 permits any node to overwrite the SPF path with a different path based on local policy
- 1: Strict Shortest Path First (SPF) algorithm based on link metric.
 - The algorithm is identical to algorithm 0 but algorithm 1 requires that all nodes along the path will honor the SPF routing decision. Local policy MUST NOT alter the forwarding decision computed by algorithm 1 at the node claiming to support algorithm

Flex-Algo Definition

Example:

- Operator-1 defines Flex-Algo 128 as "minimize IGP metric and avoid link-affinity 'green'"
- Operator-2 defines Flex-Algo 128 as "minimize delay metric"

Use Case: Multi-Plane Networks

- All the nodes support Algo 0: minimize IGP metric
- Green nodes also support 128: minimize IGP metric
- Red nodes also support 129: minimize Delay

58

Use Case: Multi-Plane Networks (cont)

BRKSPG-2021

- Path to Node 9 across Algo 0
- ECMP based forwarding across all Planes

Use Case: Multi-Plane Networks (cont)

BRKSPG-2021

- Path to Node 9 across Flex-Algo 128
- ECMP based forwarding WITHIN green Plane

Use Case: Multi-Plane Networks (cont)

- Path to Node 9 across Flex-Algo 129
- ECMP based forwarding WITHIN red Plane

Use Case: Delay vs Cost of Transport

- All nodes support Algo 0 & 128
- ISIS link metric 10
- Algo 128: minimize delay metric
- Per-link measurement of delay and advertisement as delay metric via ISIS
- Delay metric at that time shown in green

Use Case: SRTE for Secure Paths

- ISIS link metric 10
- Link colors shown Unencrypted / Encrypted
- All nodes support Algo 0 & 128
- Algo 128: minimize IGP while traversing links with encryption enabled (exclude brown)
- · Per-link colors flooded in IGP

BRKSPG-2021

Flex-Algo Benefits

- Minimize label stack, and maximize ECMP at midpoints:
 - Single SID needed to enforce traffic towards a specific Path/Plane
 - ECMP if possible (cost related) on that specific Path/Plane
- Slicing of the network on a per:
 - Latency
 - Bandwidth
 - Secure links MACSec
- TI-LFA aware
 - Protected path stays in Flex-Algo virtual topology

Conclusion

You make networking possible

SR Unified Fabric Attributes

Industry at Large Backs up SR

Strong customer adoption WEB, SP, DC, Metro, Enterprise

De-facto SDN Architecture

Standardization IETF

Multi-vendor Consensus

Open Source Linux, VPP

a|a|bCISCO

Thank you

BRKSPG-2021

CISCO

You make **possible**