

Sep 06, 2022

Thawing of hPSCs grown on MEFs

In 1 collection

Hanqin Li¹, Oriol Busquets², Steven Poser², Dirk Hockemeyer¹, Frank Soldner²

¹University of California, Berkeley; ²Albert Einstein College of Medicine

dx.doi.org/10.17504/protocols.io.b4mnqu5e

ABSTRACT

This protocol describes the standard procedure of thawing human pluripotent stem cells (hPSCs) on inactivated mouse embryonic fibroblasts (MEFs).

General notes

- 1. Throughout this protocol, the term hPSC is used to collectively refer to both hiPSCs and hESCs. All described procedures have been tested and work equally well for hiPSCs and hESCs.
- 2. Until otherwise indicated, hPSCs are routinely grown in a humidified cell culture incubator under "low" oxygen conditions. We have successfully maintained hPSCs using either 3% O2 (3% O2, 5% CO2) or 5% O2 (5% O2, 5% CO2) conditions.
- 3. While freezing hPSCs as single cell solution (using Rock Inhibitor) results in better cell recovery, some laboratories prefer freezing of hPSCs as cell clusters. We have used both approaches and do not observe obvious differences.

DOI

dx.doi.org/10.17504/protocols.io.b4mnqu5e

PROTOCOL CITATION

Hanqin Li, Oriol Busquets, Steven Poser, Dirk Hockemeyer, Frank Soldner 2022. Thawing of hPSCs grown on MEFs. **protocols.io**

https://dx.doi.org/10.17504/protocols.io.b4mnqu5e

FUNDERS ACKNOWLEDGEMENT

Aligning Science Across Parkinson's

Grant ID: ASAP-000486

COLLECTIONS (i)

Thawing, Passaging and Freezing of hPSCs on MEFs

1

KEYWORDS

ASAPCRN

LICENSE

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

CREATED

Feb 03, 2022

LAST MODIFIED

Sep 06, 2022

PROTOCOL INTEGER ID

57742

PARENT PROTOCOLS

Part of collection

Thawing, Passaging and Freezing of hPSCs on MEFs

MATERIALS TEXT

Α	В	С
Item	Vendor	Catalog #
DMEM/F12	Thermo	11320082
	Fisher	
DPBS w/o	Corning	MT21031CV
Calcium and magnesium (DPBS)		
Fetal Bovine	Corning	35-011-CV
Serum (FBS)		
Knockout Serum Replacement	Thermo	10828-028
	Fisher	
L-Glutamine	Sigma	G8540
Penicillin & Streptomycin (100X)	Thermo	15140163
	Fisher	
MEM Non-Essential Amino Acids	Thermo	11140050
(100X)	Fisher	
Heat Stable Recombinant Human	Thermo	PHG0360
FGF2	Fisher	
DMSO	Fisher	BP231-100
	Scientific	
BSA	Sigma	A4503
Y-27632	Chemdea	CD0141
2-Mercaptoethanol	Sigma	M3148
0.25% Trypsin with EDTA	Thermo	25200114
(Trypsin)	Fisher	

- 1 Prepare one 6-well MEFs plate for each vial of frozen hPSCs
- 2 Place vial of frozen hPSCs in § 37 °C water bath with constant agitation.
- 3 Pipette thawed cell suspension into 10 ml pre-warmed hPSCs medium.

3.1 hPSCs Medium

Α	В
DMEM/F12	385 ml
Fetal Bovine	75 ml
Serum (FBS)	
Knockout Serum Replacement	25 ml
L-Glutamine (100X)	5 ml
Penicillin & Streptomycin (100X)	5 ml
MEM Non-Essential Amino Acids (100X)	5 ml
2-Mercaptoethanol (10,000X)	50 μΙ
Heat Stable Recombinant Human FGF2 (25µg/ml)*	80 μΙ

^{*}While we prefer Heat Stable Recombinant Human FGF2, we also have used regular FGF2. Final volume: 500ml

L-Glutamine (100X)

L-Glutamine,	14.6 g
powder	
MilliQ H2O	500 ml

2-Mercaptoethanol (10,000X)

2-Mercaptoethanol	0.78 ml
MilliQ H20	9.22 ml

Heat Stable Recombinant Human FGF2 (25µg/ml)

Α	В
Heat Stable Recombinant Human	500 μg
FGF2	
0.1% BSA	20 ml

Final volume: 20ml

4 Centrifuge **3200-300** x g, 00:05:00

5m

While cells are spinning, aspirate the MEFs medium from the MEFs plates and add 2 ml prewarmed hPSCs medium + Rock inhibitor to each well.

While it is necessary to use Rock-Inhibitor to thaw hPSCs frozen as single cell solution, it is

4

possible to omit Rock-Inhibitor at this stage to thaw hPSC lines frozen as cell aggregates (see general notes).

5.1 hPSCs Medium + Rock inhibitor

Α	В
hPSCs medium	500 ml
Y-27632 (1,000X)	500 μΙ

Final volume: 500ml

Y-27632 (1,000X)

Y-27632	5 mg
DMSO	1.56 ml

- 6 Aspirate most of the medium on the centrifuged hPSCs, being careful not to disturb the pellet
- 7 Add 1 ml hPSCs medium with or without Rock inhibitor (dependent on choice made above).
- 8 Resuspend the cells using a P1000 tip.
- 9 Pipette the cells onto the 2 ml already on the MEFs.
- 10 Check the cells under the microscope to get an idea of the resulting cell density.
- 11 Spread the cells by moving the plate in left-right, then backward-forward motion.
- 12 Place the plate in the low oxygen incubator

protocols.io

5

13	From day 3, change 2-3 ml pre-warmed hPSCs medium for each well daily.	

14 When large colonies emerge or hPSCs density reaches 50-70%, passage using collagenase. It usually takes 7-10 days for the thawed cells to grow to this point.