Algorithms

Lecture 1: Dynamic Programming

Anxiao (Andrew) Jiang

CH 15. Dynamic Programming

But first, let's recall "Divide and Conquer"

Divide and Conquer

smaller problems

CH 15. Dynamic Programming

But first, let's recall "Divide and Conquer"

Divide and Conquer

smaller problems

Dynamic Programming

Difference: the solution to a smaller problem can be used more than once by bigger problems. As a result, dynamic programming can be more efficient than "divide and conquer".

smaller problems

Input: A rod of length n.

For i = 1,2,3,...,n, a rod of length i has price $p_i \ge 0$

Output: How to cut the rod to maximize the total price?

15.1 Rod Cutting Problem (Example)

15.1 Rod Cutting Problem (Example)

Should we use exhaustive search?

Time complexity is too high: 2^{n-1}

For
$$i = 0, 1, 2, \dots, n$$

define $\ensuremath{\emph{r}}_i$ as the maximum price for cutting a rod of length $\ensuremath{\emph{i}}$

For
$$i = 0, 1, 2, \dots, n$$

define $\,\mathcal{V}_i\,$ as the maximum price for cutting a rod of length $\,i\,$

For
$$i = 0, 1, 2, \dots, n$$

define $\ensuremath{ec{r}}_i$ as the maximum price for cutting a rod of length \ensuremath{i}

define $\ensuremath{\mathit{I}}_i$ as the maximum price for cutting a rod of length $\ensuremath{\mathit{i}}$

define \mathcal{V}_i as the maximum price for cutting a rod of length i

$$r_n = p_i + r_{n-i}$$

define \mathcal{V}_i as the maximum price for cutting a rod of length i

Recursive Function:

$$r_n = \max_{1 \le i \le n} \{ p_i + r_{n-i} \}$$

define \mathcal{V}_i as the maximum price for cutting a rod of length i

Recursive Function:

Bigger problem
$$r_n = \max_{1 \leq i \leq n} \{p_i + r_{n-i}\}$$
 Smaller problem the "smaller solution" will be re-used multiple times

Rod Cutting Problem: Length
$$i$$
 1 2 3 4 n

Price p_i p_1 p_2 p_3 p_4 p_n

Recursive Function:
$$r_n = \max_{1 \le i \le n} \{p_i + r_{n-i}\}$$

Rod Cutting Problem: Length
$$i$$
 1 2 3 4 n Price p_i p_1 p_2 p_3 p_4 p_n

Recursive Function:
$$r_n = \max_{1 \le i \le n} \{p_i + r_{n-i}\}$$

$$r_{0} = 0$$

$$r_{1} = p_{1}$$

$$r_{2} = \max\{p_{1} + r_{1}, p_{2} + r_{0}\}$$

$$r_{3} = \max\{p_{1} + r_{2}, p_{2} + r_{1}, p_{3} + r_{0}\}$$

$$r_{4} = \max\{p_{1} + r_{3}, p_{2} + r_{2}, p_{3} + r_{1}, p_{4} + r_{0}\}$$

$$\vdots$$

$$\vdots$$

$$r_{n} = \max\{p_{1} + r_{n-1}, p_{2} + r_{n-2}, p_{3} + r_{n-3}, \dots, p_{n} + r_{0}\}$$

Rod Cutting Problem: Length
$$i$$
 1 2 3 4 n
Price p_i p_1 p_2 p_3 p_4 p_n

Recursive Function:
$$r_n = \max_{1 \le i \le n} \{p_i + r_{n-i}\}$$

$$r_{0} = 0$$

$$r_{1} = p_{1}$$

$$r_{2} = \max\{p_{1} + r_{1}, p_{2} + r_{0}\}$$

$$r_{3} = \max\{p_{1} + r_{2}, p_{2} + r_{1}, p_{3} + r_{0}\}$$

$$r_{4} = \max\{p_{1} + r_{3}, p_{2} + r_{2}, p_{3} + r_{1}, p_{4} + r_{0}\}$$

$$\vdots$$

$$r_{n} = \max\{p_{1} + r_{n-1}, p_{2} + r_{n-2}, p_{3} + r_{n-3}, \dots, p_{n} + r_{0}\}$$

Memorize solutions

Re-use solutions

Rod Cutting Problem: Length
$$i$$
 1 2 3 4 n Price p_i p_1 p_2 p_3 p_4 p_n

Recursive Function:
$$r_n = \max_{1 \le i \le n} \{p_i + r_{n-i}\}$$

$$r_{0} = 0$$

$$r_{1} = p_{1}$$

$$r_{2} = \max\{p_{1} + r_{1}, p_{2} + r_{1}\}$$

$$r_{3} = \max\{p_{1} + r_{2}, p_{2} + r_{1}, p_{3} + r_{1}\}$$

$$r_{4} = \max\{p_{1} + r_{3}, p_{2} + r_{2}, p_{3} + r_{1}, p_{4} + r_{0}\}$$

$$\vdots$$

$$\vdots$$

$$r_{n} = \max\{p_{1} + r_{n-1}, p_{2} + r_{n-2}, p_{3} + r_{n-3}, \dots, p_{n} + r_{0}\}$$

Memorize solutions

Re-use solutions

Rod Cutting Problem: Length
$$i$$
 1 2 3 4 n
Price p_i p_1 p_2 p_3 p_4 p_n

Recursive Function:
$$r_n = \max_{1 \le i \le n} \{p_i + r_{n-i}\}$$

$$r_{0} = 0$$

$$r_{1} = p_{1}$$

$$r_{2} = \max\{p_{1} + r_{2}, p_{2} + r_{0}\}$$

$$r_{3} = \max\{p_{1} + r_{2}, p_{2} + r_{2}, p_{3} + r_{0}\}$$

$$r_{4} = \max\{p_{1} + r_{3}, p_{2} + r_{2}, p_{3} + r_{1}, p_{4} + r_{0}\}$$

$$\vdots$$

$$\vdots$$

$$r_{n} = \max\{p_{1} + r_{n-1}, p_{2} + r_{n-2}, p_{3} + r_{n-3}, \dots, p_{n} + r_{0}\}$$

Memorize solutions

Re-use solutions

Rod Cutting Problem: Length
$$i$$
 1 2 3 4 n
Price p_i p_1 p_2 p_3 p_4 p_n

Recursive Function:
$$r_n = \max_{1 < i < n} \{p_i + r_{n-i}\}$$
 Find out where to make optimal cuts

$$\begin{split} r_0 &= 0 \\ r_1 &= p_1 \\ r_2 &= \max\{p_1 + r_1, \, p_2 + r_0\} \\ r_3 &= \max\{p_1 + r_2, \, p_2 + r_1, \, p_3 + r_0\} \\ r_4 &= \max\{p_1 + r_3, \, p_2 + r_2, \, p_3 + r_1, \, p_4 + r_0\} \\ &\vdots \\ r_n &= \max\{p_1 + r_{n-1}, \, p_2 + r_{n-2}, \, p_3 + r_{n-3}, \, \, \cdots, \, p_n + r_0\} \end{split}$$

Rod Cutting Problem: Length i 1 2 3 4 nPrice p_i p_1 p_2 p_3 p_4 p_n

 $r_n = \max\{p_1 + r_{n-1}, p_2 + r_{n-2}, p_3 + r_{n-3}, \dots, p_n + r_0\}$

Recursive Function:
$$r_n = \max_{1 \leq i \leq n} \; \{p_i + r_{n-i}\} = p_{i^*} + r_{n-i^*}$$
 First optimal cut is at length i^*

Compute solutions bottom-up (from smaller to bigger) using the recursive function:

$$\begin{array}{l} r_0 = 0 \\ r_1 = p_1 \\ r_2 = \max\{p_1 + r_1, \, p_2 + r_0\} \\ r_3 = \max\{p_1 + r_2, \, p_2 + r_1, \, p_3 + r_0\} \\ r_4 = \max\{p_1 + r_3, \, p_2 + r_2, \, p_3 + r_1, \, p_4 + r_0\} \\ \vdots \\ \vdots \\ \end{array}$$

Time Complexity of an Algorithm

How long it takes to run the algorithm.....

How long it takes to run the algorithm as a function of the input size n

How long it takes to run the algorithm as a function of the input size n in the worst case.

How long it takes to run the algorithm as a function of the input size n in the worst case.

Simplification:

- 1) Every basic operation has complexity 1.
- 2) We consider only the order of the total number of basic operations.

How long it takes to run the algorithm as a function of the input size n in the worst case.

Simplification:

- 1) Every basic operation has complexity 1.
- 2) We consider only the order of the total number of basic operations.

$$n + 3n^{2} \longrightarrow O(n^{2})$$

$$n \lg n + n^{3} \longrightarrow O(n^{3})$$

$$2^{n} + 100^{99} \cdot n^{2} \longrightarrow O(2^{n})$$

Time Complexity of the Dynamic-Programming Algorithm for Rod Cutting Problem:

Recursive Function:
$$r_n = \max_{1 \le i \le n} \{p_i + r_{n-i}\}$$

Compute solutions bottom-up (from smaller to bigger) using the recursive function:

```
r_{0} = 0
r_{1} = p_{1}
r_{2} = \max\{p_{1} + r_{1}, p_{2} + r_{0}\}
r_{3} = \max\{p_{1} + r_{2}, p_{2} + r_{1}, p_{3} + r_{0}\}
r_{4} = \max\{p_{1} + r_{3}, p_{2} + r_{2}, p_{3} + r_{1}, p_{4} + r_{0}\}
\vdots
\vdots
r_{n} = \max\{p_{1} + r_{n-1}, p_{2} + r_{n-2}, p_{3} + r_{n-3}, \dots, p_{n} + r_{0}\}
```

Time Complexity of the Dynamic-Programming Algorithm for Rod Cutting Problem:

Recursive Function:
$$r_n = \max_{1 \le i \le n} \{p_i + r_{n-i}\}$$

Compute solutions bottom-up (from smaller to bigger) using the recursive function:

$$r_0 = 0$$

$$r_1 = p_1$$

$$r_2 = \max\{p_1 + r_1, p_2 + r_0\}$$

$$r_3 = \max\{p_1 + r_2, p_2 + r_1, p_3 + r_0\}$$

$$r_4 = \max\{p_1 + r_3, p_2 + r_2, p_3 + r_1, p_4 + r_0\}$$

$$\vdots$$

$$\vdots$$

$$r_n = \max\{p_1 + r_{n-1}, p_2 + r_{n-2}, p_3 + r_{n-3}, \dots, p_n + r_0\}$$

$$\leq O(n)$$

$$\leq O(n)$$

Time Complexity: $O(n^2)$

4 Essential Steps for Presenting an Algorithm (Required for all homework and tests)

4 Essential Steps for Presenting an Algorithm (Required for all homework and tests)

- 1. Explain the idea of your algorithm (help us understand the main idea)
- 2. Pseudo-code of algorithm (show us exactly how computing is done)
- 3. Prove correctness of your algorithm (prove rigorously it always finds the right solution)
 - 4. Analyze time complexity of algorithm (show us it is efficient)