Package 'GxEprs'

July 26, 2023
Title Genotype-by- environment (GxE) Interaction in Polygenic Risk Score Models for Quantitative and Binary Traits
Version 1.0
A novel PRS model is introduced to enhance the prediction accuracy by utilising GxE effects. This package performs Genome Wide Association Studies (GWAS) and Genome Wide Environment Interaction Studies (GWEIS) using a discovery dataset. The package has the ability to obtain polygenic risk scores (PRSs) for a target sample. Finally it predicts the risk values of each individual in the target sample. Users have the choice of using existing models (Li et al., 2015) <doi.org 10.1093="" annonc="" mdu565="">, (Pandis et al., 2013)<doi.org 10.1093="" cjt054="" ejo="">, (Peyrot et al., 2018)<doi.org 10.1016="" j.biopsych.2017.09.009=""> and (Song et al., 2022)<doi.org 10.1038="" s41467.022-32407-9="">, as well as newly proposed models for genomic risk prediction (refer to the URL for more details).</doi.org></doi.org></doi.org></doi.org>
<pre>URL https://github.com/DoviniJ/GxEprs</pre>
License GPL (>=3)
Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.2.3
Depends R (>= 2.10)
LazyData true
R topics documented:
Bcov_discovery 2 Bcov_target 3 Bphe_discovery 4 Bphe_target 4 DummyData.bim 5 DummyData.fam 5 DummyData.map 6 DummyData.ped 6

2 Bcov_discovery

	GWEIS_binary								 		 	 	9
	GWEIS_quantitative								 		 	 	10
	PRS_binary								 		 	 	12
	PRS_quantitative												
	Qcov_discovery								 		 	 	14
	Qcov_target												
	Qphe_discovery												
Qphe_target													
	summary_permuted_binary												
	summary_permuted_quantitativ	e							 		 	 	18
	summary_regular_binary												
	summary_regular_quantitative												
Index													24
Bcov	v_discovery Covariate This conta dataset for	ins co	vari	ate i	nfo	rma	-						-

Description

Covariate data file of the discovery dataset when the outcome is binary This contains covariate information of the individuals in the discovery dataset following confounders

Usage

Bcov_discovery

Format

A dataframe with 7916 rows and 18 columns

Column 1 Family ID

Column 2 Individual ID

Column 3 Standardized covariate

Column 4 Square of the standardized covariate

Column 5 Confounder 1

Column 6 Confounder 2

Column 7 Confounder 3

Column 8 Confounder 4

Column 9 Confounder 5

Column 10 Confounder 6

Column 11 Confounder 7

Column 12 Confounder 8

Column 13 Confounder 9

Column 14 Confounder 10

Column 15 Confounder 11

Bcov_target 3

Column 16 Confounder 12

Column 17 Confounder 13

Column 18 Confounder 14

Bcov_target

Covariate data file of the target dataset when the outcome is binary This contains covariate information of the individuals in the target dataset following confounders

Description

Covariate data file of the target dataset when the outcome is binary This contains covariate information of the individuals in the target dataset following confounders

Usage

Bcov_target

Format

A dataframe with 1939 rows and 18 columns

Column 1 Family ID

Column 2 Individual ID

Column 3 Standardized covariate

Column 4 Square of the standardized covariate

Column 5 Confounder 1

Column 6 Confounder 2

Column 7 Confounder 3

Column 8 Confounder 4

Column 9 Confounder 5

Column 10 Confounder 6

Column 11 Confounder 7

Column 12 Confounder 8

Column 13 Confounder 9

Column 14 Confounder 10

Column 15 Confounder 11

Column 16 Confounder 12

Column 17 Confounder 13

Column 18 Confounder 14

4 Bphe_target

Bphe_discovery	Phenotype data file of the discovery dataset when the outcome is binary This contains phenotype information of the individuals in the dis-					
	covery dataset					

Description

Phenotype data file of the discovery dataset when the outcome is binary This contains phenotype information of the individuals in the discovery dataset

Usage

```
Bphe_discovery
```

Format

A dataframe with 7916 rows and 3 columns

Column 1 Family ID

Column 2 Individual ID

Column 3 Phenotype (1=controls, 2=cases)

Bphe_target Phenotype data file of the target dataset when the outcome is binary
This contains phenotype information of the individuals in the target
dataset

Description

Phenotype data file of the target dataset when the outcome is binary This contains phenotype information of the individuals in the target dataset

Usage

```
Bphe_target
```

Format

A dataframe with 1939 rows and 3 columns

Column 1 Family ID

Column 2 Individual ID

Column 3 Phenotype (0=controls, 1=cases)

DummyData.bim 5

DummyData.bim

PLINK .bim file

Description

PLINK .bim file

Usage

DummyData.bim

Format

This follows PLINK general format

Column 1 Chromosome ID

Column 2 SNP ID

Column 3 Position of centimorgans

Column 4 Base-pair coordinate

Column 5 Minor Allele

Column 6 Reference Allele

DummyData.fam

PLINK .fam file

Description

PLINK .fam file

Usage

DummyData.fam

Format

This follows PLINK general format

Column 1 Family ID

Column 2 Individual ID

Column 3 Father's ID

Column 4 Mother's ID

Column 5 Sex

Column 6 Phenotype value

6 GWAS_binary

DummyData.map

PLINK .map file

Description

PLINK .map file

Usage

DummyData.map

Format

This follows PLINK general format

DummyData.ped

PLINK .ped file

Description

PLINK .ped file

Usage

DummyData.ped

Format

This follows PLINK general format

GWAS_binary

GWAS_binary function This function performs GWAS using plink2 and outputs the GWAS summary statistics with additive SNP effects. Users may save the output in a user-specified file (see example).

Description

GWAS_binary function This function performs GWAS using plink2 and outputs the GWAS summary statistics with additive SNP effects. Users may save the output in a user-specified file (see example).

Usage

```
GWAS_binary(plink_path, b_file, Bphe_discovery, Bcov_discovery, thread = 20)
```

GWAS_quantitative 7

Arguments

plink_path Path to the PLINK executable application
b_file Prefix of the binary files, where all .fam, .bed and .bim files have a common

prefix

Bphe_discovery

Name (with file extension) of the phenotype file containing family ID, individual ID and phenotype of the discovery dataset as columns, without heading

Bcov discovery

Name (with file extension) of the covariate file containing family ID, individual ID, standardized covariate, square of standardized covariate, and/or confounders of the discovery dataset as columns, without heading

thread Number of threads used

Value

This function will perform GWAS and output

B_out.trd.sum

GWAS summary statistics with additive SNP effects

Examples

```
## Not run:
x <- GWAS_binary(plink_path, DummyData, Bphe_discovery, Bcov_discovery,
thread = 20)
sink("B_out.trd.sum") #to create a file in the working directory
write.table(x, sep = " ", row.names = FALSE, quote = FALSE) #to write the output
sink() #to save the output
head(x) #to obtain the head of GWAS summary statistics of additive SNP effects
x$V1 #to extract the chromosome number (CHROM)
x$V2 #to extract the base pair position (POS)
x$V3 $\#to extract the SNP ID (ID)
x$V4 #to extract the reference allele (REF)
x$V5 #to extract the alternate allele (ALT)
x$V6 #to extract the minor allele (A1)
x$V7 #to extract whether firth regression is used (FIRTH?)
x$V8 #to extract the type of test performed (TEST)
x$V9 #to extract the number of allele observations (OBS_CT)
x$V10 #to extract the odds ration of the SNP effect (OR)
x$V11 #to extract the standard error of log odds (LOG(OR)_SE)
x$V12 #to extract the test statistic (Z_STAT)
x$V13 #to extract the p value (P)
x$V14 #to extract the error code (ERRCODE)
## End(Not run)
```

GWAS_quantitative

GWAS_quantitative function This function performs GWAS using plink2 and outputs the GWAS summary statistics with additive SNP effects. Users may save the output in a user-specified file (see example).

8 GWAS_quantitative

Description

GWAS_quantitative function This function performs GWAS using plink2 and outputs the GWAS summary statistics with additive SNP effects. Users may save the output in a user-specified file (see example).

Usage

```
GWAS_quantitative(
  plink_path,
  b_file,
  Qphe_discovery,
  Qcov_discovery,
  thread = 20
)
```

Arguments

plink_path Path to the PLINK executable application

b_file Prefix of the binary files, where all .fam, .bed and .bim files have a common prefix

Qphe_discovery

Name (with file extension) of the phenotype file containing family ID, individual ID and phenotype of the discovery dataset as columns, without heading

Qcov discovery

Name (with file extension) of the covariate file containing family ID, individual ID, standardized covariate, square of standardized covariate, and/or confounders of the discovery dataset as columns, without heading

thread Number of threads used

Value

This function will perform GWAS and output

```
Q_out.trd.sum
```

GWAS summary statistics with additive SNP effects

```
## Not run:
x <- GWAS_quantitative(plink_path, DummyData, Qphe_discovery, Qcov_discovery,
thread = 20)
sink("Q_out.trd.sum") #to create a file in the working directory
write.table(x, sep = " ", row.names = FALSE, quote = FALSE) #to write the output
sink() #to save the output
head(x) #to obtain the head of GWAS summary statistics of additive SNP effects
x$V1 #to extract the chromosome number (CHROM)
x$V2 #to extract the base pair position (POS)
x$V3 $\#to extract the SNP ID (ID)
x$V4 #to extract the reference allele (REF)
x$V5 #to extract the alternate allele (ALT)
x$V6 #to extract the minor allele (A1)
x$V7 #to extract whether firth regression is used (FIRTH?)
x$V8 #to extract the type of test performed (TEST)
x$V9 #to extract the number of allele observations (OQS_CT)
```

GWEIS_binary 9

```
x$V10 #to extract the odds ration of the SNP effect (OR)
x$V11 #to extract the standard error of log odds (LOG(OR)_SE)
x$V12 #to extract the test statistic (Z_STAT)
x$V13 #to extract the p value (P)
x$V14 #to extract the error code (ERRCODE)
## End(Not run)
```

GWEIS_binary

GWEIS_binary function This function performs GWEIS using plink2 and outputs the GWEIS summary statistics with additive SNP effects and interaction SNP effects separately. It is recommended to save the outputs in separate user-specified files (see examples).

Description

GWEIS_binary function This function performs GWEIS using plink2 and outputs the GWEIS summary statistics with additive SNP effects and interaction SNP effects separately. It is recommended to save the outputs in separate user-specified files (see examples).

Usage

```
GWEIS_binary(plink_path, b_file, Bphe_discovery, Bcov_discovery, thread = 20)
```

Arguments

plink_path Path to the PLINK executable application

b_file Prefix of the binary files, where all .fam, .bed and .bim files have a common prefix

Bphe_discovery

Phenotype file containing family ID, individual ID and phenotype of the discovery dataset as columns, without heading

Bcov_discovery

Covariate file containing family ID, individual ID, standardized covariate, square of standardized covariate, and/or confounders of the discovery dataset as columns, without heading

thread Number of threads used

Value

This function will perform GWEIS and output

B_out.add.sum

GWEIS summary statistics with additive SNP effects

B_out.gxe.sum

GWEIS summary statistics with interaction SNP effects

10 GWEIS_quantitative

Examples

```
## Not run:
x <- GWEIS_binary(plink_path, DummyData, Bphe_discovery, Bcov_discovery,
thread = 20)
sink("B_out.add.sum") #to create a file in the working directory
write.table(x[[1]], sep = " ", row.names = FALSE, quote = FALSE) #to write the output
sink() #to save the output
sink("B_out.gxe.sum") #to create a file in the working directory
write.table(x[[2]], sep = " ", row.names = FALSE, quote = FALSE) #to write the output
sink() #to save the output
head(x[[1]]) #to extract the head of all columns in GWEIS summary statistics of
additive SNP effects
x[[1]] $V1 #to extract the chromosome number (CHROM)
x[[1]] $V2 #to extract the base pair position (POS)
x[[1]]$V3 #to extract the SNP ID (ID)
x[[1]] $V4 #to extract the reference allele (REF)
x[[1]]$V5 #to extract the alternate allele (ALT)
x[[1]] $V6 #to extract the minor allele (A1)
x[[1]]$V7 #to extract whether firth regression is used (FIRTH?)
x[[1]] $V8 #to extract the type of test performed (TEST)
x[[1]] $V9 #to extract the nmber of allele observations (OBS_CT)
x[[1]] $V10 #to extract the odds ration of the SNP effect (OR)
x[[1]] $V11 #to extract the standard error of log odds (LOG(OR)_SE)
x[[1]]$V12 #to extract the test statistic (Z_STAT)
x[[1]]$V13 #to extract the p value (P)
x[[1]]$V14 #to extract the error code (ERRCODE)
head(x[[2]]) #to extract the head of all columns in GWEIS summary statistics of
interaction SNP effects
x[[2]] $V1 #to extract the chromosome number (CHROM)
x[[2]] $V2 #to extract the base pair position (POS)
x[[2]]$V3 #to extract the SNP ID (ID)
x[[2]] $V4 #to extract the reference allele (REF)
x[[2]] $V5 #to extract the alternate allele (ALT)
x[[2]] $V6 #to extract the minor allele (A1)
x[[2]]$V7 #to extract whether firth regression is used (FIRTH?)
x[[2]]$V8 #to extract the type of test performed (TEST)
x[[2]] $V9 #to extract the number of allele observations (OBS_CT)
x[[2]] $V10 #to extract the odds ration of the SNP effect (OR)
x[[2]] $V11 #to extract the standard error of log odds (LOG(OR)_SE)
x[[2]]$V12 #to extract the test statistic (Z_STAT)
x[[2]]$V13 #to extract the p value (P)
x[[2]]$V14 #to extract the error code (ERRCODE)
## End(Not run)
```

GWEIS_quantitative GWEIS_quantitative function This function performs GWEIS using plink2 and outputs the GWEIS summary statistics with additive SNP effects and interaction SNP effects separately. It is recommended to save the outputs in separate user-specified files (see examples).

GWEIS_quantitative 11

Description

GWEIS_quantitative function This function performs GWEIS using plink2 and outputs the GWEIS summary statistics with additive SNP effects and interaction SNP effects separately. It is recommended to save the outputs in separate user-specified files (see examples).

Usage

```
GWEIS_quantitative(
  plink_path,
  b file,
  Qphe_discovery,
  Qcov_discovery,
  thread = 20
)
```

Arguments

Path to the PLINK executable application plink_path b_file Prefix of the binary files, where all .fam, .bed and .bim files have a common prefix Qphe_discovery Phenotype file containing family ID, individual ID and phenotype of the discovery dataset as columns, without heading Qcov_discovery Covariate file containing family ID, individual ID, standardized covariate, square

of standardized covariate, and/or confounders of the discovery dataset as columns, without heading

Number of threads used thread

Value

This function will perform GWEIS and output

```
Q out.add.sum
                GWEIS summary statistics with additive SNP effects
Q_out.gxe.sum
                GWEIS summary statistics with interaction SNP effects
```

```
## Not run:
x <- GWEIS_quantitative(plink_path, DummyData, Qphe_discovery, Qcov_discovery,
thread = 20)
sink("Q_out.add.sum") #to create a file in the working directory
write.table(x[[1]], sep = " ", row.names = FALSE, quote = FALSE) #to write the output
sink() #to save the output
sink("Q_out.gxe.sum") #to create a file in the working directory
write.table(x[[2]], sep = " ", row.names = FALSE, quote = FALSE) #to write the output
sink() #to save the output
head(x[[1]]) #to read the head of all columns in GWEIS summary statistics of
additive SNP effects
x[[1]] $V1 #to extract the chromosome number (CHROM)
x[[1]] $V2 #to extract the base pair position (POS)
```

12 PRS_binary

```
x[[1]]$V3 #to extract the SNP ID (ID)
x[[1]] $V4 #to extract the reference allele (REF)
x[[1]]$V5 #to extract the alternate allele (ALT)
x[[1]] $V6 #to extract the minor allele (A1)
x[[1]]$V7 #to extract the type of test performed (TEST)
x[[1]] $V8 #to extract the nmber of allele observations (OBS_CT)
x[[1]]$V9 #to extract the SNP effect (BETA)
x[[1]] $V10 #to extract the standard error of each SNP effect (SE)
x[[1]]$V11 #to extract the test statistic (T_STAT)
x[[1]]$V12 #to extract the p value (P)
x[[1]]$V13 #to extract the error code (ERRCODE)
head(x[[2]]) #to read the head of all columns in GWEIS summary statistics of
interaction SNP effects
x[[2]] $V1 #to extract the chromosome number (CHROM)
x[[2]] $V2 #to extract the base pair position (POS)
x[[2]]$V3 #to extract the SNP ID (ID)
x[[2]] $V4 #to extract the reference allele (REF)
x[[2]] $V5 #to extract the alternate allele (ALT)
x[[2]] $V6 #to extract the minor allele (A1)
x[[2]]$V7 #to extract the type of test performed (TEST)
x[[2]] $V8 #to extract the number of allele observations (OBS_CT)
x[[2]]$V9 #to extract the SNP effect (BETA)
x[[2]] $V10 #to extract the standard error of each SNP effect (SE)
x[[2]]$V11 #to extract the test statistic (T_STAT)
x[[2]]$V12 #to extract the p value (P)
x[[2]]$V13 #to extract the error code (ERRCODE)
## End(Not run)
```

PRS_binary

PRS_binary function This function uses plink2 and outputs Polygenic Risk Scores (PRSs) of all the individuals, using pre-generated GWAS and/or GWEIS summary statistics. Note that the input used in this function can be generated by using GWAS_binary and/or GWEIS_binary functions. Users may save the output in a user-specified file (see examples).

Description

PRS_binary function This function uses plink2 and outputs Polygenic Risk Scores (PRSs) of all the individuals, using pre-generated GWAS and/or GWEIS summary statistics. Note that the input used in this function can be generated by using GWAS_binary and/or GWEIS_binary functions. Users may save the output in a user-specified file (see examples).

Usage

```
PRS_binary(plink_path, b_file, summary_input)
```

Arguments

plink_path Path to the PLINK executable application

b_file Prefix of the binary files, where all .fam, .bed and .bim files have a common prefix

summary_input

Pre-generated GWAS and/or GWEIS summary statistics

PRS_quantitative 13

Value

This function will output

B_trd.sscore PRSs for each individual

Examples

```
## Not run:
a <- GWAS_binary(plink_path, DummyData, Bphe_discovery, Bcov_discovery)
b <- GWEIS_binary(plink_path, DummyData, Bphe_discovery, Bcov_discovery)
x <- PRS_binary(plink_path, DummyData, summary_input = a)</pre>
sink("B_trd.sscore") #to create a file in the working directory
write.table(x, sep = " ", row.names = FALSE, quote = FALSE) #to write the output
sink() #to save the output
\text{head}(x) #to read the head of all columns in the output
x$V1 $\#$to extract the family ID's of target dataset (FID)
x$V2 #to extract the individual ID's of target dataset (IID)
x$V3 #to extract the number of alleles across scored variants (ALLELE_CT)
x$V4 #to extract the sum of named allele dosages (NAMED_ALLELE_DOSAGE_SUM)
x$V5 #to extract the polygenic risk scores (SCORE1_AVG)
y <- PRS_binary(plink_path, DummyData, summary_input = b[[1]])</pre>
sink("B_add.sscore") #to create a file in the working directory
write.table(y, sep = " ", row.names = FALSE, quote = FALSE) #to write the output
sink() #to save the output
z <- PRS_binary(plink_path, DummyData, summary_input = b[[2]])</pre>
sink("B_gxe.sscore") #to create a file in the working directory
write.table(z, sep = " ", row.names = FALSE, quote = FALSE) #to write the output
sink() #to save the output
## End(Not run)
```

PRS_quantitative

PRS_quantitative function This function uses plink2 and outputs Polygenic Risk Scores (PRSs) of all the individuals, using pre-generated GWAS and/or GWEIS summary statistics. Note that the input used in this function can be generated by using GWAS_quantitative and/or GWEIS_quantitative functions. Users may save the output in a user-specified file (see examples).

Description

PRS_quantitative function This function uses plink2 and outputs Polygenic Risk Scores (PRSs) of all the individuals, using pre-generated GWAS and/or GWEIS summary statistics. Note that the input used in this function can be generated by using GWAS_quantitative and/or GWEIS_quantitative functions. Users may save the output in a user-specified file (see examples).

Usage

```
PRS_quantitative(plink_path, b_file, summary_input)
```

14 Qcov_discovery

Arguments

```
plink_path Path to the PLINK executable application

b_file Prefix of the binary files, where all .fam, .bed and .bim files have a common prefix

summary_input
```

Pre-generated GWAS and/or GWEIS summary statistics

Value

This function will output

Q_trd.sscore PRSs for each individual

Examples

```
## Not run:
 a <- GWAS_quantitative(plink_path, DummyData, Qphe_discovery, Qcov_discovery)
 b <- GWEIS_quantitative(plink_path, DummyData, Qphe_discovery, Qcov_discovery)
 x <- PRS_quantitative(plink_path, DummyData, summary_input = a)
 sink("Q_trd.sscore") #to create a file in the working directory
 write.table(x, sep = " ", row.names = FALSE, quote = FALSE) #to write the output
 sink() #to save the output
 head(x) #to read the head of all columns in the output
 x$V1 #to extract the family ID's of target dataset (FID)
 x$V2 #to extract the individual ID's of target dataset (IID)
 x$V3 #to extract the number of alleles across scored variants (ALLELE_CT)
 x$V4 #to extract the sum of named allele dosages (NAMED_ALLELE_DOSAGE_SUM)
 x$V5 #to extract the polygenic risk scores (SCORE1_AVG)
 y <- PRS_quantitative(plink_path, DummyData, summary_input = b[[1]])
 sink("Q_add.sscore") #to create a file in the working directory
 write.table(y, sep = " ", row.names = FALSE, quote = FALSE) #to write the output
 sink() #to save the output
 z <- PRS_quantitative(plink_path, DummyData, summary_input = b[[2]])</pre>
 sink("Q_gxe.sscore") #to create a file in the working directory
 write.table(z, sep = " ", row.names = FALSE, quote = FALSE) #to write the output
 sink() #to save the output
 ## End(Not run)
Qcov_discovery
                      Covariate data file of the discovery dataset when the outcome is quan-
                     titative This contains covariate information of the individuals in the
                     discovery dataset following confounders
```

Description

Covariate data file of the discovery dataset when the outcome is quantitative This contains covariate information of the individuals in the discovery dataset following confounders

Usage

```
Qcov_discovery
```

Qcov_target 15

Format

A dataframe with 6426 rows and 18 columns

Column 1 Family ID

Column 2 Individual ID

Column 3 Standardized covariate

Column 4 Square of the standardized covariate

Column 5 Confounder 1

Column 6 Confounder 2

Column 7 Confounder 3

Column 8 Confounder 4

Column 9 Confounder 5

Column 10 Confounder 6

Column 11 Confounder 7

Column 12 Confounder 8

Column 13 Confounder 9

Column 14 Confounder 10

Column 15 Confounder 11

Column 16 Confounder 12

Column 17 Confounder 13

Column 18 Confounder 14

Qcov_target

Covariate data file of the target dataset when the outcome is quantitative This contains covariate information of the individuals in the target dataset following confounders

Description

Covariate data file of the target dataset when the outcome is quantitative This contains covariate information of the individuals in the target dataset following confounders

Usage

Qcov_target

Format

A dataframe with 1579 rows and 18 columns

Column 1 Family ID

Column 2 Individual ID

Column 3 Standardized covariate

Column 4 Square of the standardized covariate

Column 5 Confounder 1

16 Qphe_discovery

Column 6 Confounder 2

Column 7 Confounder 3

Column 8 Confounder 4

Column 9 Confounder 5

Column 10 Confounder 6

Column 11 Confounder 7

Column 12 Confounder 8

Column 13 Confounder 9

Column 14 Confounder 10

Column 15 Confounder 11

Column 16 Confounder 12

Column 17 Confounder 13

Column 18 Confounder 14

Qphe_discovery

Phenotype data file of the discovery dataset when the outcome is quantitative This contains phenotype information of the individuals in the discovery dataset

Description

Phenotype data file of the discovery dataset when the outcome is quantitative This contains phenotype information of the individuals in the discovery dataset

Usage

Qphe_discovery

Format

A dataframe with 6426 rows and 3 columns

Column 1 Family ID

Column 2 Individual ID

Column 3 Phenotype

Qphe_target 17

Qphe_target

Phenotype data file of the target dataset when the outcome is quantitative This contains phenotype information of the individuals in the target dataset

Description

Phenotype data file of the target dataset when the outcome is quantitative This contains phenotype information of the individuals in the target dataset

Usage

Qphe_target

Format

A dataframe with 1579 rows and 3 columns

Column 1 Family IDColumn 2 Individual IDColumn 3 Phenotype

summary_permuted_binary

summary_permuted_binary function This function outputs the p value of permuted model in the target dataset, using pre-generated Polygenic Risk Scores (PRSs) of all the individuals. Note that the input used in this function can be generated by using PRS_quantitative function. It is recommended to run this function, if you choose to fit 'PRS_gxe x E' interaction component (i.e. novel proposed model, Model 5) when generating risk scores. If the 'PRS_gxe x E' term is significant in Model 5, and insignificant in Model 5* (permuted p value), consider that the 'PRS_gxe x E' interaction component is actually insignificant (always give priority to the p value obtained from the permuted model).

Description

summary_permuted_binary function This function outputs the p value of permuted model in the target dataset, using pre-generated Polygenic Risk Scores (PRSs) of all the individuals. Note that the input used in this function can be generated by using PRS_quantitative function. It is recommended to run this function, if you choose to fit 'PRS_gxe x E' interaction component (i.e. novel proposed model, Model 5) when generating risk scores. If the 'PRS_gxe x E' term is significant in Model 5, and insignificant in Model 5* (permuted p value), consider that the 'PRS_gxe x E' interaction component is actually insignificant (always give priority to the p value obtained from the permuted model).

Usage

```
summary_permuted_binary(
   Bphe_target,
   Bcov_target,
   iterations = 1000,
   add_score,
   gxe_score
)
```

Arguments

Bphe_target Phenotype file containing family ID, individual ID and phenotype of the target dataset as columns, without heading

Bcov_target Covariate file containing family ID, individual ID, standardized covariate, square of standardized covariate, and/or confounders of the target dataset as columns, without heading

iterations Number of iterations used in permutation

pRSs generated using additive SNP effects of GWEIS summary statistics

gxe_score PRSs generated using interaction SNP effects of GWEIS summary statistics

Value

This function will output

```
B_permuted_p.txt
```

the p value of the permuted model

Examples

```
## Not run:
a <- GWEIS_binary(plink_path, DummyData, Bphe_discovery, Bcov_discovery)
p <- PRS_binary(plink_path, DummyData, summary_input = a[[1]])
q <- PRS_binary(plink_path, DummyData, summary_input = a[[2]])
x <- summary_permuted_binary(Bphe_target, Bcov_target, iterations = 1000, add_score = p, gxe_score = q)
x
## End(Not run)</pre>
```

summary_permuted_quantitative

summary_permuted_quantitative function This function outputs the p value of permuted model in the target dataset, using pre-generated Polygenic Risk Scores (PRSs) of all the individuals. Note that the input used in this function can be generated by using PRS_quantitative functions. It is recommended to run this function, if you choose to fit 'PRS_gxe x E' interaction component (i.e. novel proposed model, Model 4) when generating risk scores. If the 'PRS_gxe x E' term is significant in Model 4, and insignificant in Model 4* (permuted p value), consider that the 'PRS_gxe x E' interaction component is actually insignificant (always give priority to the p value obtained from the permuted model).

Description

summary_permuted_quantitative function This function outputs the p value of permuted model in the target dataset, using pre-generated Polygenic Risk Scores (PRSs) of all the individuals. Note that the input used in this function can be generated by using PRS_quantitative functions. It is recommended to run this function, if you choose to fit 'PRS_gxe x E' interaction component (i.e. novel proposed model, Model 4) when generating risk scores. If the 'PRS_gxe x E' term is significant in Model 4, and insignificant in Model 4* (permuted p value), consider that the 'PRS_gxe x E' interaction component is actually insignificant (always give priority to the p value obtained from the permuted model).

Usage

```
summary_permuted_quantitative(
    Qphe_target,
    Qcov_target,
    iterations = 1000,
    add_score,
    gxe_score
)
```

Arguments

Qphe_target	Phenotype file containing family ID, individual ID and phenotype of the target dataset as columns, without heading
Qcov_target	Covariate file containing family ID, individual ID, standardized covariate, square of standardized covariate, and/or confounders of the target dataset as columns, without heading
iterations	Number of iterations used in permutation
add_score	PRSs generated using additive SNP effects of GWEIS summary statistics
gxe_score	PRSs generated using interaction SNP effects of GWEIS summary statistics

Value

This function will output

```
Q_permuted_p.txt
```

the p value of the permuted model

```
## Not run:
a <- GWEIS_quantitative(plink_path, DummyData, Qphe_discovery, Qcov_discovery)
p <- PRS_quantitative(plink_path, DummyData, summary_input = a[[1]])
q <- PRS_quantitative(plink_path, DummyData, summary_input = a[[2]])
x <- summary_permuted_quantitative(Qphe_target, Qcov_target, iterations = 1000, add_score = p, gxe_score = q)
x
## End(Not run)</pre>
```

```
summary_regular_binary
```

summary_regular_binary function This function outputs the summary of regular model and final risk score values of each individual in the target dataset using pre-generated Polygenic Risk Scores (PRSs) of all the individuals. Note that the input used in this function can be generated by using PRS_binary function.

Description

summary_regular_binary function This function outputs the summary of regular model and final risk score values of each individual in the target dataset using pre-generated Polygenic Risk Scores (PRSs) of all the individuals. Note that the input used in this function can be generated by using PRS_binary function.

Usage

```
summary_regular_binary(
   Bphe_target,
   Bcov_target,
   trd_score = NULL,
   add_score = NULL,
   gxe_score = NULL,
   Model
)
```

Arguments

Model

Bphe_target Phenotype file containing family ID, individual ID and phenotype of the target

dataset as columns, without heading

Bcov_target Covariate file containing family ID, individual ID, standardized covariate, square

of standardized covariate, and/or confounders of the target dataset as columns,

without heading

trd_score PRSs generated using additive SNP effects of GWAS summary statistics

add_score PRSs generated using additive SNP effects of GWEIS summary statistics

gxe_score PRSs generated using interaction SNP effects of GWEIS summary statistics

Specify the model number (1: $y = PRS_{trd} + E + PRS_{trd} \times E + confounders$,

2: y = PRS_add + E + PRS_add x E + confounders, 3: y = PRS_add + E + PRS_gxe x E + confounders, 4: y = PRS_add + E + PRS_gxe + PRS_gxe x E + confounders, 5: y = PRS_add + E + E^2 + PRS_gxe + PRS_gxe x E + confounders, where y is the outcome variable, E is the covariate of interest, PRS_trd and PRS_add are the polygenic risk scores computed using additive SNP effects of GWAS and GWEIS summary statistics respectively, and PRS_gxe is the polygenic risk scores computed using GxE interaction SNP effects of GWEIS

summary statistics.)

Value

This function will output

```
Bsummary.txt the summary of the fitted model
Individual_risk_values.txt
the estimated risk values of individuals in the target sample
```

```
## Not run:
a <- GWAS_binary(plink_path, DummyData, Bphe_discovery, Bcov_discovery)</pre>
b <- GWEIS_binary(plink_path, DummyData, Bphe_discovery, Bcov_discovery)
p <- PRS_binary(plink_path, DummyData, summary_input = a)</pre>
q <- PRS_binary(plink_path, DummyData, summary_input = b[[1]])</pre>
r <- PRS_binary(plink_path, DummyData, summary_input = b[[2]])
summary_regular_binary(Bphe_target, Bcov_target,
                            trd_score = p,
                            Model = 1)
summary_regular_binary(Bphe_target, Bcov_target,
                            add\_score = q,
                            Model = 2)
summary_regular_binary(Bphe_target, Bcov_target,
                            add\_score = q,
                            gxe\_score = r,
                            Model = 3)
summary_regular_binary(Bphe_target, Bcov_target,
                            add\_score = q,
                            gxe\_score = r,
                            Model = 4)
x <- summary_regular_binary(Bphe_target, Bcov_target,
                            add\_score = q,
                             gxe\_score = r,
                            Model = 5)
sink("Bsummary.txt") #to create a file in the working directory
print(x[[1]][[1]]) #to write the output
sink() #to save the output
sink("Individual_risk_values.txt") #to create a file in the working directory
write.table(x[[2]], sep = " ", row.names = FALSE, col.names = FALSE,
quote = FALSE) #to write the output
sink() #to save the output
x[[1]][[1]] #to obtain the model summary output
x[[1]][[2]] #to extract "Call" of the model summary
x[[1]][[3]] #to extract terms of the model summary
x[[1]][[4]] #to extract family information of the model summary
x[[1]][[5]] #to extract deviance information of the model summary
x[[1]][[6]] #to extract AIC information of the model summary
x[[1]][[7]] #to extract contrasts of the model summary
x[[1]][[8]] #to extract degrees of freedom (df) of residuals of
            #the model summary
x[[1]][[9]] #to extract "Null deviance" of the model summary
\mathbf{x}[[1]][[10]] #to extract degrees of freedom (df) of null deviance
             #of the model summary
x[[1]][[11]] #to extract "iter" of the model summary
x[[1]][[12]] #to extract deviance residuals
x[[1]][[13]] #to extract regression coefficients of the model summary
x[[1]][[14]] #to extract aliesed information of the model summary
x[[1]][[15]] #to extract dispersion information of the model summary
x[[1]][[16]] #to extract degrees of freedom of the model summary
x[[1]][[17]] #to extract unscaled variance covariance matrix of all variables
x[[1]][[18]] #to extract scaled variance covariance matrix of all variables
```

```
head(x[[2]]) #to view the head of the predicted risk values of target individuals x[[2]][,1] #to extract the column containing family ID's x[[2]][,2] #to extract the column containing individual ID's x[[2]][,3] #to extract the column containing predicted risk scores ## End(Not run)
```

```
summary_regular_quantitative
```

summary_regular_quantitative function This function outputs the summary of regular model and final risk score values of each individual in the target dataset using pre-generated Polygenic Risk Scores (PRSs) of all the individuals. Note that the input used in this function can be generated by using PRS_quantitative function.

Description

summary_regular_quantitative function This function outputs the summary of regular model and final risk score values of each individual in the target dataset using pre-generated Polygenic Risk Scores (PRSs) of all the individuals. Note that the input used in this function can be generated by using PRS_quantitative function.

Usage

```
summary_regular_quantitative(
    Qphe_target,
    Qcov_target,
    trd_score = NULL,
    add_score = NULL,
    gxe_score = NULL,
    Model
)
```

Arguments

add_score

Model

Qphe_target Phenotype file containing family ID, individual ID and phenotype of the target dataset as columns, without heading

Qcov_target Covariate file containing family ID, individual ID, standardized covariate, square of standardized covariate, and/or confounders of the target dataset as columns,

without heading

trd_score PRSs generated using additive SNP effects of GWAS summary statistics

gxe_score PRSs generated using interaction SNP effects of GWEIS summary statistics

Specify the model number (1: y = PRS_trd + E + PRS_trd x E + confounders, 2: y = PRS_add + E + PRS_add x E + confounders, 3: y = PRS_add + E + PRS_gxe x E + confounders, 4: y = PRS_add + E + PRS_gxe + PRS_gxe x E + confounders, where y is the outcome variable, E is the covariate of interest, PRS_trd and PRS_add are the polygenic risk scores computed using additive SNP effects of GWAS and GWEIS summary statistics respectively, and PRS_gxe is the polygenic risk scores computed using GxE interaction SNP effects of GWEIS

PRSs generated using additive SNP effects of GWEIS summary statistics

fects of GWEIS summary statistics.)

Value

This function will output

```
Qsummary.txt the summary of the fitted model Individual_risk_values.txt
```

the estimated risk values of individuals in the target sample

```
## Not run:
a <- GWAS_quantitative(plink_path, DummyData, Qphe_discovery, Qcov_discovery)
b <- GWEIS_quantitative(plink_path, DummyData, Qphe_discovery, Qcov_discovery)
p <- PRS_quantitative(plink_path, DummyData, summary_input = a)</pre>
q <- PRS_quantitative(plink_path, DummyData, summary_input = b[[1]])</pre>
r <- PRS_quantitative(plink_path, DummyData, summary_input = b[[2]])
summary_regular_quantitative(Qphe_target, Qcov_target,
                            trd_score = p,
                            Model = 1)
summary_regular_quantitative(Qphe_target, Qcov_target,
                            add_score = q,
                            Model = 2)
summary_regular_quantitative(Qphe_target, Qcov_target,
                            add_score = q_i
                            gxe\_score = r,
                            Model = 3)
x <- summary_regular_quantitative(Qphe_target, Qcov_target,
                            add\_score = q,
                            qxe\_score = r,
                            Model = 4)
sink("Qsummary.txt") #to create a file in the working directory
print(x[[1]][[1]]) #to write the output
sink() #to save the output
sink("Individual_risk_values.txt") #to create a file in the working directory
write.table(x[[2]], sep = " ", row.names = FALSE, col.names = FALSE,
quote = FALSE) #to write the output
sink() #to save the output
x[[1]][[1]] #to obtain the model summary output
x[[1]][[2]] #to extract "Call" of the model summary
x[[1]][[3]] #to extract terms of the model summary
x[[1]][[4]] #to extract the residuals
x[[1]][[5]] #to extract regression coefficients of the model summary
x[[1]][[6]] #to extract aliesed information of the model summary
x[[1]][[7]] #to extract "sigma" (residual standard error) information
            #of the model summary
x[[1]][[8]] #to extract degrees of freedom of the model summary
x[[1]][[9]] #to extract the R squared value of the model summary
x[[1]][[10]] #to extract the adjusted R squared value of the model summary
x[[1]][[11]] #to extract the test statistic values of the model summary
x[[1]][[12]] #to extract unscaled variance covariance matrix of all variables
head(x[[2]]) #to view the head of the predicted risk values of target individuals
x[[2]][,1] #to extract the column containing family ID's
x[[2]][,2] #to extract the column containing individual ID's
x[[2]][,3] #to extract the column containing predicted risk scores
## End(Not run)
```

Index

* datasets	* regression					
Bcov_discovery, 2	summary_regular_binary,20					
Bcov_target, 3	summary_regular_quantitative,					
Bphe_discovery,4	22					
Bphe_target,4	* risk					
DummyData.bim, 5	summary_regular_binary,20					
DummyData.fam,5	summary_regular_quantitative,					
DummyData.map, 6	22					
DummyData.ped, 6	* scores					
Qcov_discovery, 14	PRS_binary,12					
Qcov_target, 15	PRS_quantitative, 13					
Qphe_discovery, 16	summary_regular_binary,20					
Qphe_target, 17	summary_regular_quantitative,					
* gwas	22					
GWAS_binary, 6	* summary					
GWAS_quantitative, 7	summary_regular_binary,20					
* gwies	summary_regular_quantitative,					
GWEIS_binary, 9	22					
GWEIS_quantitative, 10	Bcov_discovery, 2					
* gxe	Bcov_target, 3					
GWEIS_binary, 9	Bphe_discovery,4					
GWEIS_quantitative, 10	Bphe_target, 4					
* interaction	2pmo_0a1900, .					
GWEIS_binary, 9	DummyData.bim,5					
GWEIS_quantitative, 10	DummyData.fam,5					
* model	DummyData.map, 6					
<pre>summary_permuted_binary, 17</pre>	DummyData.ped, 6					
summary_permuted_quantitative,	GWAS_binary, 6					
18	GWAS_primary, 0 GWAS_quantitative, 7					
* permuted	GWEIS_binary, 9					
summary_permuted_binary, 17	GWEIS_quantitative, 10					
summary_permuted_quantitative,	ownib_quantitutive, iv					
18	PRS_binary, 12					
* profile	PRS_quantitative, 13					
PRS_binary, 12	0					
PRS_quantitative, 13	Qcov_discovery, 14					
* prs	Qcov_target, 15					
PRS_binary, 12	Qphe_discovery, 16					
PRS_quantitative, 13	Qphe_target, 17					
* pvalue	summary_permuted_binary, 17					
summary_permuted_binary, 17	summary_permuted_quantitative, 18					
summary_permuted_quantitative,	summary_regular_binary,20					
18	${\tt summary_regular_quantitative}, {\tt 22}$					