

Computer Science and Applied Mathematics

APPM2007 Lagrangian Mechanics

Tutorial 1

Question 1 (10 Points)

Methane is a chemical compound with the chemical formula CH_4 (one atom of carbon and four atoms of hydrogen). Methane is a tetrahedral molecule with four equivalent C-H bonds. Show that the angle subtended at the central Carbon atom by any two Hydrogen atoms in a methane molecule is 109.5°. (Hint: use the symmetry of the tetrahedron structure of the CH_4 molecule to aid your computations.)

Question 2 (5 Points)

Consider the space \mathbb{R}^2 . Compare the area element of the Rectilinear and Polar Co-ordinate systems on \mathbb{R}^2 . Do the Rectilinear and Polar Co-ordinate area elements co-incide?

Question 3 (10 Points)

Consider the plane \mathbb{R}^2 and the unit Sphere S^2 with north pole marked p. Construct the following co-ordinate mappings

- 1. $f: U \to S^2 \setminus \{p\}$ with $U \subset \mathbb{R}^2$ is finite. (Hint: use Riemann Normal Co-ordinates)
- 2. $f: \mathbb{R}^2 \to S^2 \setminus \{p\}$. (Hint: use a co-ordinate projection where points in $c = \{z \in \mathbb{R}^2 : \|z\| \le 1\}$ are mapped to the southern hemisphere of S^2 and points outside c are mapped to the northern hemisphere of S^2 .)

Compare the qualitative differences and similarities of these two co-ordinatisation maps.

Question 4 (10 Points)

Consider a marked point in $p \in \mathbb{R}^3$. Let α , β and γ denote the angles subtended at the origin by the vector \vec{p} and each of the co-ordinate axes \hat{x} , \hat{y} and \hat{z} . Show that

$$\cos^{2}(\alpha) + \cos^{2}(\beta) + \cos^{2}(\gamma) = 1.$$