

- OCB : שם הפרויקט
- מספר הפרויקט: 22-1-1-2494
 - שמות הסטודנטים
 - 208204859 : באסל מנצור, ת.ז
 - 206525396 : עדן חיאלד, ת.ז
 - שם מנחה: אורן גנון •
- מקום ביצוע: אוניברסיטת תל אביב

:תקציר

- .Xilinx של חברת Microblaze פרויקט חומרתי למערכות משובצות שבו נממש מצפין חומרה על מעבד
 - היכרות לעולם ההצפנה.
 - OCB, CBC, ECB חקירת אלגוריתמי הצפנה שונים
- קוד הצפנה שמבוסס על תקן ההצפנה המתקדם AES (Advanced Encryption Standard) שאומץ על ידי המכון הלאומי לתקנים וטכנולוגיה (NIST).
 - המאיץ בנוי בשפת TIE , שמאפשרת בניה של רכיבים שיכולים לעבוד בצורה מקבילית מה שמאפשר ביצוע כמה פעולות במחזור שעון בודד.
 - העמקה בתכנות שבבי FPGA ובמיוחד שבב Kintex-7
 - .Xilinx של חברת Kintex-7 שבודה עם שבב Vivado, שכוללת כתיבת קטעי קוד שונים, ולתקשר עם שבב Vivado, שכוללת

2/13/2023 2

: אופן מימוש הפרויקט

- סריאה עמוקה בעניין ההצפנות ובמיוחד צופן בלוקים שעובד לפי אלגוריתם OCB Block cipher) OCB.
 - . AES ותקן ההצפנה המתקדם OCB חקירת אלגוריתם
- כתיבת קוד בשפת C, שמבצע ההצפנה לפי אלגוריתם OCB ותקן ההצפנה המתקדם AES, שצורה <u>הכי יעילה שאפשר</u>.
 - . Lookup Tables -ו (Test Vectors) TV בדיקת האלגוריתם הסופי לפי
- נשתמש בכלי XTENSA של חברת CANDENCE כדי לחקור את הקוד ולסמן שורות קוד חשודות (במשמעות כמות מחזורי השעון).
 - כתיבת רכיב חדש בשפת TIE שיכול לבצע את שורות הקוד החשודות או חלק מהן במחזור שעון בודד.
 - .Xilinx של חברת Microblaze נחבר את המאיץ למעבד
 - . נבצע בדיקות בעזרת סימולציות (Test Benches) ונבדוק סינתזה
 - עבור על הדוחות שמתקבלות מבדיקת הסינתזה ונסיק מסקנות.
 - . Xilinx של חברת Kintex-7 במידה והכל עובד בצורה טובה נמשיך ונריץ את המעגל הסופי על שבב
 - נחקור את התוצאות הסופיות, נסיק מסקנות ונסכם את העבודה.

<u>דרישות הפרויקט:</u>

- אחרי שלבי הכתיבה והתכנון נגיע לשלב בדיקת התוצאות ונשאף לקיים 3 דרישות חשובות:
- דרישה ראשונה הינה דרישה על זמן הריצה: נצפה לראות שיפור של לפחות 10% בין הזמן שלוקח לקוד להצפין קוד בלי המאיץ לבין זמן הריצה של המעבד עם המאיץ.
 - דרישה שניה הינה על ההספק שמתבזבז: נצפה לקבל בזבוז הספק מינימלי ובמקרה הכי גרוע שלא יעבור על 25% מההספק שמתבזבז על ידי המעבד עצמו.
- דרישה שלישית ואחרונה הינה דרישה של השטח: נצפה לקבל שטח לממש את המצפין בשטח הכי מינימלי שאפשר ובמקרה הכי גרוע שלא יעבור את סף ה40% משטח המעבד עצמו.

• דיאגרמת בלוקים מפורטת:

: דיאגרמת בלוקים שמתארת את שלבי העבודה.

: הסבר

- בלוק (#1): בלוק זה יכיל את אלגוריתם OCB שייכתב בשפת C בתוכנת (Visual Studio Code) .
 - בלוק (42): בלוק זה יכיל מימוש המאיץ בשפת TIE בכלי סייל או חברת Xilinx.
- בלוק (##): בלוק זה יכיל חיבור של המאיץ למעבד Microblaze של חברת Xilinx בעזרת תוכנת Vivado של חברת א
 - בלוק (44): בלוק זה מהווה שלב הבדיקות שגם מבוצע בעזרת תוכנת Vivado של חברת Xilinx

• דיאגרמת בלוקים מפורטת:

. דיאגרמת בלוקים שמתארת את צורת עבודת המאיץ:

: הסבר

- הבלוק השמאלי מהווה את אלגוריתם ההצפנה OCB שרץ על מעבד Microblaze של חברת Xilinx , הבלוק הירוק שמהווה את המעבד עצמו היה ממומש מההתחלה ולא היה צורך ליישמו מאפס.
 - . הבלוק הימני מתאר את אופן פעולת המצפין הסופי וחלקיו השונים

2/13/2023 6

- תוצרי הפרויקט שהופקו עד כה: •
- . ASE שמבוסס על תקן ההצפנה OCB נלמד ונחקר אלגוריתם ההצפנה
 - .TIE נאסף ונחקר מידע על שפת
 - . Xilinx של חברת Vivado נלמד ונחקר מידע על עבודה עם תוכנת •
- נכתבו כל הפונקציות הנדרשות לכתיבת קוד ההצפנה והתחיל שלב הרכבת הכל ובדיקת הריצה על ידי Test Vectors

2/13/2023 7

• לוח זמנים מעודכן

הערות	תאריך ביצוע בפועל	<u>תאריך יעד לביצוע</u>	<u>אבן דרך</u>
	26/11/2022	25/11/2022	לפירת האלגוריתם להצפנה
	30/11/2022	10/12/2022	למירת מעבד NORDER - אין עוברת הנפנה שנעשית בתוכנה
	23/12/2022	24/12/2022	למידת כלי פיתוח חומרה ולמידת FFGA
	07/01/2023	07/01/2023	ניתוח האלגוריתם וביצון PROFIUNG לקד
	15/01/2023	14.01/2023	כתיבת הענה לשיפור החומרה על מנת להאין את הביצועים
		20/01/2023	הגשת מצגת האמצע
		15/02/2023	כתיבת תוק חומרתי של המאיץ
		01/03/2023	שילוב של המאיץ(מבחינה חומרתית) עם הקוד של האלגוריתם
		15/03/2023	שילוב של הרכיב שמתקבל לתוך אינטגרציה של המעבד
		19/04/2023	אחרי הוספת המאיץ (PROFILING) אחרי הוספת המאיץ
		01/05/2023	ניתוח הביצועים והשואה בין קוד שרך בלי מאין לקוד שרץ עם מאין
		19/05/2023	מעבר ל-FGA ובדייקת בינטעים על חומרה אמיתית והשוואת רצה על FFGA לטימולציה
		28/05/2023	הגשת הפוסטר וסיום העבודה בפרויקט
		29/06/2023	הגשת ספר הפרויקט ומצגת הסיום

