Package 'rwavelet'

October 14, 2022

Type Package
Title Wavelet Analysis
Version 0.4.1
Date 2020-12-12
Author F. Navarro and C. Chesneau
Maintainer Navarro Fabien <fnavarro@math.cnrs.fr></fnavarro@math.cnrs.fr>
Description Perform wavelet analysis (orthogonal,translation invariant, tensorial, 1-2-3d transforms, thresholding, block thresholding, linear,) with applications to data compression or denoising/regression. The core of the code is a port of 'MATLAB' Wavelab toolbox written by D. Donoho, A. Maleki and M. Shahram (https://statweb.stanford.edu/~wavelab/).
<pre>URL https://github.com/fabnavarro/rwavelet</pre>
<pre>BugReports https://github.com/fabnavarro/rwavelet/issues</pre>
License LGPL (>= 2)
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
Imports signal
Suggests knitr, rmarkdown, misc3d, imager
VignetteBuilder knitr
NeedsCompilation no
Repository CRAN
Date/Publication 2020-12-12 15:00:03 UTC
R topics documented:
aconv

block_partition2d		. 5
CircularShift		. 6
cubelength		. 7
CVlinear		. 7
DownDyadHi		
DownDyadLo		
dyad		
dyadlength		
FTWT2_PO		
FWT2 PO		
FWT2 TI		
FWT3 PO		
FWT PO		
FWT_TI		
GWN		
HardThresh		
iconv		
invblock_partition		
-		
invblock_partition2d		
ITWT2_PO		
IWT2_PO		
IWT2_TI		
IWT3_PO		
IWT_PO		
IWT_TI		
JSThresh		
lshift		
MAD		
MakeONFilter		
MakeSignal		. 26
MakeSignalNewb		. 27
MinMaxThresh		. 27
MirrorFilt		. 28
MultiMAD		. 29
MultiSURE		. 29
MultiVisu		. 30
packet		. 30
PlotSpikes		. 31
PlotWaveCoeff		. 31
quadlength		. 32
RaphNMR		. 33
repmat		. 33
rshift		. 34
ShapeAsRow	•	. 34
SLphantom	• •	. 35
SNR	• •	. 35
SoftThresh	• •	. 36
SUREThresh		. 36
DUILLIIIVIII		. 50

aconv 3

UpDyadHi .																		
UpDyadLo							 											
UpSampleN							 											
ValSURETh	esh.						 											
VisuThresh							 			 								

Index 40

aconv

 $Convolution\ tool\ for\ two-scale\ transform$

Description

Filtering by periodic convolution of x with the time-reverse of f.

Usage

```
aconv(f, x)
```

Arguments

f filter.
x 1-d signal.

Value

y filtered result.

See Also

iconvv, UpDyadHi, UpDyadLo, DownDyadHi, DownDyadLo.

```
qmf <- MakeONFilter('Haar')
x <- MakeSignal('HeaviSine',2^3)
aconv(qmf,x)</pre>
```

4 BlockThresh

D I	ناحا	TL	-
B1	lock	ınr	resn

1d wavelet Block Thresholding

Description

This function is used for thresholding coefficients by group (or block) according to the hard or soft thresholding rule.

Usage

```
BlockThresh(wc, j0, hatsigma, L, qmf, thresh = "hard")
```

Arguments

WC	wavelet coefficients.
j0	coarsest decomposition scale.
hatsigma	estimator of noise variance.
L	Block size (n mod L must be 0).
qmf	Orthonormal quadrature mirror filter.
thresh	'hard' or 'soft'.

Value

wcb wavelet coefficient estimators.

See Also

 $invblock_partition, invblock_partition.$

```
n <- 64
x <- MakeSignal('Ramp', n)
sig <- 0.01
y <- x + rnorm(n, sd=sig)
j0 <- 1
qmf <- MakeONFilter('Daubechies',8)
wc <- FWT_PO(y, j0, qmf)
L <- 2
wcb <- BlockThresh(wc, j0, sig, L, qmf, "hard")</pre>
```

block_partition 5

 $block_partition$

Construct 1d block partition

Description

This function is used to group the coefficients into blocks (or groups) of size L.

Usage

```
block_partition(x, L)
```

Arguments

x (noisy) we at a given scale.

L block size.

Value

out partition of coefficients by block.

See Also

invblock_partition, BlockThresh.

Examples

```
x <- MakeSignal('Ramp', 8)
j0 <- 0
qmf <- MakeONFilter('Haar')
wc <- FWT_PO(x, j0, qmf)
L <- 2
wcb <- block_partition(wc, L)</pre>
```

block_partition2d

Construct 2d block partition

Description

Group the coefficients into blocks (or groups) of size L.

```
block_partition2d(x, L)
```

6 CircularShift

Arguments

x (noisy) we at a given scale.

L block size.

Value

out partition of coefficients by block.

See Also

```
invblock_partition2d
```

Examples

```
x <- matrix(rnorm(2^2), ncol=2)
j0 <- 0
qmf <- MakeONFilter('Haar')
wc <- FWT2_PO(x, j0, qmf)
L <- 2
wcb <- block_partition2d(wc, L)</pre>
```

CircularShift

Circular Shifting of a matrix/image

Description

Pixels that get shifted off one side of the image are put back on the other side.

Usage

```
CircularShift(matrix, colshift = 0, rowshift = 0)
```

Arguments

matrix 2-d signal (matrix).

colshift column shift index (integer).
rowshift row shift index (integer).

Value

result 2-d shifted signal.

See Also

```
FWT2_TI, IWT2_TI.
```

cubelength

Examples

```
A <- matrix(1:4, ncol=2, byrow=TRUE)
CircularShift(A, 0, -1)
```

cubelength

Find length and dyadic length of square array

Description

3d counterpart of Donoho's quadlength utilized by the 2d pair. Original matlab code Vicki Yang and Brani Vidakovic.

Usage

```
cubelength(x)
```

Arguments

Х

3-d array; dim(n,n,n), $n = 2^J$ (hopefully).

Value

```
n length(x).
```

J least power of two greater than n.

See Also

```
FWT3_PO, IWT3_PO.
```

Examples

```
cubelength(array(1:3, c(2,2,2)))
```

CVlinear

2-Fold Cross Validation for linear estimator

Description

Selection of the number of wavelet coefficients to be maintained by the cross validation method proposed by Nason in the case of threshold selection. This method is adapted here to select among linear estimators.

```
CVlinear(Y, L, qmf, D, wc)
```

8 DownDyadHi

Arguments

Y Noisy observations.L Level of coarsest scale.

qmf Orthonormal quadrature mirror filter.

D Dimension vector of the models considered.

wc 1-d wavelet coefficients.

Value

```
CritCV Cross validation criteria. hat_f_m_2FCV
```

References

Nason, G. P. (1996). Wavelet shrinkage using cross-validation. *Journal of the Royal Statistical Society: Series B*, 58(2), 463–479.

Navarro, F. and Saumard, A. (2017). Slope heuristics and V-Fold model selection in heteroscedastic regression using strongly localized bases. *ESAIM: Probability and Statistics*, 21, 412–451.

DownDyadHi

Hi-Pass Downsampling operator (periodized)

Description

Hi-Pass Downsampling operator (periodized)

Usage

```
DownDyadHi(x, qmf)
```

Arguments

```
x 1-d signal at fine scale.
qmf filter.
```

Value

y 1-d signal at coarse scale.

See Also

DownDyadLo, UpDyadHi, UpDyadLo, FWT_PO, iconvv.

```
qmf <- MakeONFilter('Haar')
x <- MakeSignal('HeaviSine',2^3)
DownDyadHi(x, qmf)</pre>
```

DownDyadLo 9

DownDyadLo

Lo-Pass Downsampling operator (periodized)

Description

Lo-Pass Downsampling operator (periodized)

Usage

```
DownDyadLo(x, qmf)
```

Arguments

```
x 1-d signal at fine scale.
qmf filter.
```

Value

d 1-d signal at coarse scale.

See Also

```
DownDyadHi, UpDyadHi, UpDyadLo, FWT_PO, aconv.
```

Examples

```
qmf <- MakeONFilter('Haar')
x <- MakeSignal('HeaviSine',2^3)
DownDyadLo(x,qmf)</pre>
```

dyad

Index entire j-th dyad of 1-d wavelet xform

Description

Index entire j-th dyad of 1-d wavelet xform

Usage

```
dyad(j)
```

Arguments

j integer.

10 dyadlength

Value

ix list of all indices of wavelet coeffts at j-th level.

Examples

```
dyad(0)
```

 $\\ \hbox{dyadlength}$

Find length and dyadic length of array

Description

Find length and dyadic length of array

Usage

```
dyadlength(x)
```

Arguments

```
x array of length n = 2^J (hopefully).
```

Value

```
n length(x).
```

J least power of two greater than n.

See Also

```
quadlength, dyad
```

```
x <- MakeSignal('Ramp', 8)
dyadlength(x)</pre>
```

FTWT2_PO

FTWT2_PO

2-d tensor wavelet transform (periodized, orthogonal).

Description

A two-dimensional Wavelet Transform is computed for the array x. qmf filter may be obtained from MakeONFilter. To reconstruct, use ITWT2_P0.

Usage

```
FTWT2_PO(x, L, qmf)
```

Arguments

x 2-d image (n by n array, n dyadic).

L coarse level.

qmf quadrature mirror filter.

Value

wc 2-d wavelet transform.

See Also

```
ITWT2_PO, MakeONFilter.
```

Examples

```
qmf <- MakeONFilter('Daubechies', 10)
L <- 0
x <- matrix(rnorm(2^2), ncol=2)
wc <- FTWT2_PO(x, L, qmf)</pre>
```

FWT2_PO

2-d MRA Forwad Wavelet Transform (periodized, orthogonal)

Description

A two-dimensional wavelet transform is computed for the array x. qmf filter may be obtained from MakeONFilter. To reconstruct, use IWT2_P0.

```
FWT2_PO(x, L, qmf)
```

12 FWT2_TI

Arguments

```
    x 2-d image (n by n array, n dyadic).
    L coarse level.
    qmf quadrature mirror filter.
```

Value

wc 2-d wavelet transform.

See Also

```
IWT2_PO, MakeONFilter.
```

Examples

```
qmf <- MakeONFilter('Daubechies', 10)
L <- 3
x <- matrix(rnorm(128^2),ncol=128)
wc <- FWT2_PO(x, L, qmf)</pre>
```

FWT2_TI

2-d Translation Invariant Forward Wavelet Transform

Description

1. qmf filter may be obtained from MakeONFilter. 2. usually, length(qmf) $< 2^(L+1)$. 3. To reconstruct use IWT_TI.

Usage

```
FWT2_TI(x, L, qmf)
```

Arguments

x 2-d image (n by n real array, n dyadic).

L degree of coarsest scale.

qmf orthonormal quadrature mirror filter.

Value

TIWT translation-invariant wavelet transform table, (3(J-L)+1)n by n.

```
x <- matrix(rnorm(2^2), ncol=2)
L <- 0
qmf <- MakeONFilter('Haar')
TIWT <- FWT2_TI(x, L, qmf)</pre>
```

FWT3_PO 13

FWT3_P0

3-d MRA Forward Wavelet Transform (periodized, orthogonal)

Description

A three-dimensional wavelet transform is computed for the array x. qmf filter may be obtained from MakeONFilter. To reconstruct, use IWT3_P0.

Usage

```
FWT3_PO(x, L, qmf)
```

Arguments

qmf

```
x 3-d array (n by n by n array, n dyadic).
L coarse level.
```

quadrature mirror filter.

Details

3-D counterpart of Donoho's FWT2_PO, original matlab code Vicki Yang and Brani Vidakovic.

Value

```
wc 3-d wavelet transform.
```

See Also

```
IWT3_PO, MakeONFilter.
```

```
qmf <- MakeONFilter('Daubechies', 10) L <- 3 x <- array(rnorm(32^3), c(32,32,32)) wc <- FWT3_PO(x, L, qmf)
```

14 FWT_TI

FWT_PO

Forward Wavelet Transform (periodized, orthogonal)

Description

1. qmf filter may be obtained from MakeONFilter. 2. usually, length(qmf) $< 2^(L+1)$. 3. To reconstruct use IWT_PO.

Usage

```
FWT_PO(x, L, qmf)
```

Arguments

```
x 1-d signal; length(x) = 2^{J}.

L Coarsest Level of V_0; L « J. quadrature mirror filter (orthonormal).
```

Value

wc 1-d wavelet transform of x.

See Also

```
IWT_PO, MakeONFilter.
```

Examples

```
x <- MakeSignal('Ramp', 8)
L <- 0
qmf <- MakeONFilter('Haar')
wc <- FWT_PO(x, L, qmf)</pre>
```

FWT_TI

Translation Invariant Forward Wavelet Transform

Description

1. qmf filter may be obtained from MakeONFilter. 2. usually, length(qmf) $< 2^(L+1)$. 3. To reconstruct use IWT_TI.

```
FWT_TI(x, L, qmf)
```

GWN 15

Arguments

x array of dyadic length n=2^J.

L degree of coarsest scale.

qmf orthonormal quadrature mirror filter.

Value

TIWT stationary wavelet transform table.

See Also

```
IWT_TI, MakeONFilter.
```

Examples

```
x <- MakeSignal('Ramp', 8)
L <- 0
qmf <- MakeONFilter('Haar')
TIWT <- FWT_TI(x, L, qmf)</pre>
```

GWN

Generation of Gaussian White Noise

Description

Generation of Gaussian White Noise

Usage

```
GWN(n, sigma)
```

Arguments

n sample size.

sigma standard deviation.

Value

epsilon resulting noise.

```
GWN(10, 0.1)
```

16 iconvv

HardThresh

Apply Hard Threshold

Description

Apply Hard Threshold

Usage

```
HardThresh(y, t)
```

Arguments

y Noisy Data. t Threshold.

Value

```
x filtered result (y 1_lyl>t).
```

See Also

SoftThresh.

Examples

```
f <- MakeSignal('HeaviSine',2^3)
qmf <- MakeONFilter('Daubechies', 10)
L <- 0
wc <- FWT_PO(f, L, qmf)
thr <- 2
wct <- HardThresh(wc, thr)
fhard <- IWT_PO(wct, L, qmf)</pre>
```

iconvv

Convolution tool for two-scale transform

Description

Filtering by periodic convolution of x with f.

```
iconvv(f, x)
```

invblock_partition 17

Arguments

```
f filter.
x 1-d signal.
```

Value

y filtered result.

See Also

```
aconv, UpDyadHi, UpDyadLo, DownDyadHi, DownDyadLo.
```

Examples

```
qmf <- MakeONFilter('Haar')
x <- MakeSignal('HeaviSine',2^3)
iconvv(qmf,x)</pre>
```

invblock_partition

Inversion of the 1d block partition

Description

Inversion of the 1d block partition

Usage

```
invblock_partition(x, n, L)
```

Arguments

x partition of coefficients by block.

n scale. L block size.

See Also

block_partition, BlockThresh.

```
n <- 8
x <- MakeSignal('Ramp', n)
j0 <- 1
qmf <- MakeONFilter('Haar')
wc <- FWT_PO(x, j0, qmf)
L <- 2
wcb <- block_partition(wc, L)
wcib <- invblock_partition(wcb, n, L)</pre>
```

18 ITWT2_PO

invblock_partition2d Inversion of the 2d block partition

Description

Inversion of the 2d block partition

Usage

```
invblock_partition2d(x, n, L)
```

Arguments

```
x partition of coefficients by block.n scale.
```

L block size.

Value

out coefficients.

See Also

```
block_partition2d
```

Examples

```
n <- 2
x <- matrix(rnorm(n^2), ncol=2)
j0 <- 0
qmf <- MakeONFilter('Haar')
wc <- FWT2_PO(x, j0, qmf)
L <- 2
wcb <- block_partition2d(wc, L)
wcib <- invblock_partition2d(wcb, n, L)</pre>
```

ITWT2_P0

Inverse 2-d Tensor Wavelet Transform (periodized, orthogonal)

Description

If wc is the result of a forward 2d wavelet transform, with wc <- FTWT2_PO(x,L,qmf), then x <- ITWT2_PO(wc,L,qmf) reconstructs x exactly. qmf is a nice qmf, e.g. one made by MakeONFilter.

```
ITWT2_PO(wc, L, qmf)
```

IWT2_PO 19

Arguments

wc 2-d wavelet transform (n by n array, n dyadic).

L coarse level.

qmf quadrature mirror filter.

Value

x 2-d signal reconstructed from wc.

See Also

```
FTWT2_PO, MakeONFilter.
```

Examples

```
qmf <- MakeONFilter('Daubechies', 10)
L <- 0
x <- matrix(rnorm(2^2), ncol=2)
wc <- FTWT2_PO(x, L, qmf)
xr <- ITWT2_PO(wc,L,qmf)</pre>
```

IWT2_PO

Inverse 2-d MRA Wavelet Transform (periodized, orthogonal)

Description

If wc is the result of a forward 2d wavelet transform, with wc <- FWT2_PO(x,L,qmf). then x <- IWT2_PO(wc,L,qmf) reconstructs x exactly qmf is a nice qmf, e.g. one made by MakeONFilter.

Usage

```
IWT2_PO(wc, L, qmf)
```

Arguments

wc 2-d wavelet transform (n by n array, n dyadic).

L coarse level.

qmf quadrature mirror filter.

Value

x 2-d signal reconstructed from wc.

See Also

```
FWT2_PO, MakeONFilter.
```

20 IWT2_TI

Examples

```
qmf <- MakeONFilter('Daubechies', 10)
L <- 3
x <- matrix(rnorm(128^2),ncol=128)
wc <- FWT2_PO(x, L, qmf)
xr <- IWT2_PO(wc,L,qmf)</pre>
```

IWT2_TI

Invert 2-d Translation Invariant Wavelet Transform

Description

Invert 2-d Translation Invariant Wavelet Transform

Usage

```
IWT2_TI(tiwt, L, qmf)
```

Arguments

tiwt translation-invariant wavelet transform table, (3(J-L)+1)n by n.

L degree of coarsest scale.

qmf orthonormal quadrature mirror filter.

Value

x 2-d image reconstructed from translation-invariant transform TIWT.

```
x <- matrix(rnorm(2^2), ncol=2)
L <- 0
qmf <- MakeONFilter('Haar')
TIWT <- FWT2_TI(x, L, qmf)
xr <- IWT2_TI(TIWT,L,qmf)</pre>
```

IWT3_PO 21

IWT3_P0

Inverse 3-d MRA Wavelet Transform (periodized, orthogonal)

Description

If wc is the result of a forward 3-d wavelet transform, with wc <- FWT3_PO(x, L, qmf). then x <- IWT3_PO(wc, L, qmf) reconstructs x exactly qmf is a nice qmf, e.g. one made by MakeONFilter.

Usage

```
IWT3_PO(wc, L, qmf)
```

Arguments

wc 3-d wavelet transform (n by n by n array, n dyadic).
L coarse level.

qmf quadrature mirror filter.

Details

3-d counterpart of Donoho's IWT2_PO, original matlab code by Vicki Yang and Brani Vidakovic.

Value

x 3-d signal reconstructed from wc.

See Also

```
FWT3_PO, MakeONFilter.
```

```
qmf <- MakeONFilter('Daubechies', 10) 
 L <- 3 
 x <- array(rnorm(32^3), c(32, 32, 32)) 
 wc <- FWT3_PO(x, L, qmf) 
 xr <- IWT3_PO(wc, L, qmf)
```

ZZ IWT_TI

IWT_PO

Inverse Wavelet Transform (periodized, orthogonal)

Description

Suppose $wc \leftarrow FWT_PO(x,L,qmf)$ where qmf is an orthonormal quad. mirror filter, e.g. one made by MakeONFilter. Then x can be reconstructed by $x \leftarrow IWT_PO(wc,L,qmf)$.

Usage

```
IWT_PO(wc, L, qmf)
```

Arguments

```
wc 1-d wavelet transform: length(wc) = 2^J.

L Coarsest scale (2^(-L) = scale of V_0); L « J. qmf quadrature mirror filter (orthonormal).
```

Value

x 1-d signal reconstructed from wc.

See Also

```
FWT_PO, MakeONFilter.
```

Examples

```
x <- MakeSignal('Ramp', 8)
L <- 0
qmf <- MakeONFilter('Haar')
wc <- FWT_PO(x, L, qmf)
xr <- IWT_PO(wc,L,qmf)</pre>
```

IWT_TI

Invert Translation Invariant Wavelet Transform

Description

Invert Translation Invariant Wavelet Transform

```
IWT_TI(pkt, qmf)
```

JSThresh 23

Arguments

pkt translation-invariant wavelet transform table (TIWT).

qmf orthonormal quadrature mirror filter.

Value

x 1-d signal reconstructed from translation-invariant transform TIWT.

See Also

```
FWT_TI, MakeONFilter.
```

Examples

```
x <- MakeSignal('Ramp', 8)
L <- 0
qmf <- MakeONFilter('Haar')
TIWT <- FWT_TI(x, L, qmf)
xr <- IWT_TI(TIWT,qmf)</pre>
```

JSThresh

Apply James-Stein Threshold

Description

(also called the nonnegative garrote)

Usage

```
JSThresh(y, t)
```

Arguments

y Noisy Data. t Threshold.

Value

x filtered result.

See Also

```
HardThresh, SoftThresh
```

24 *MAD*

Examples

```
f <- MakeSignal('HeaviSine', 2^3)
qmf <- MakeONFilter('Daubechies', 10)
L <- 0
wc <- FWT_PO(f, L, qmf)
thr <- 2
wct <- JSThresh(wc, thr)
fsoft <- IWT_PO(wct, L, qmf)</pre>
```

lshift

Circular left shift of 1-d signal

Description

Circular left shift of 1-d signal

Usage

```
lshift(a)
```

Arguments

а

1-d signal.

Value

```
1 1-d signal l(i) = x(i+1) except l(n) = x(1).
```

Examples

```
x <- MakeSignal('HeaviSine',2^3)
lshift(x)</pre>
```

MAD

Median Absolute Deviation

Description

Compute the median absolute deviation.

Usage

MAD(x)

Arguments

Х

1-d signal.

MakeONFilter 25

Examples

```
x <- c(1, 1, 2, 2, 4, 6, 9)
MAD(x)
```

MakeONFilter

Generate Orthonormal QMF Filter for Wavelet Transform

Description

The Haar filter (which could be considered a Daubechies-2) was the first wavelet, though not called as such, and is discontinuous.

Usage

```
MakeONFilter(Type, Par)
```

Arguments

Type string, 'Haar', 'Beylkin', 'Coiflet', 'Daubechies' 'Symmlet', 'Vaidyanathan', 'Battle'.

Par integer, it is a parameter related to the support and vanishing moments of the

wavelets, explained below for each wavelet.

Details

The Beylkin filter places roots for the frequency response function close to the Nyquist frequency on the real axis.

The Coiflet filters are designed to give both the mother and father wavelets 2*Par vanishing moments; here Par may be one of 1,2,3,4 or 5.

The Daubechies filters are minimal phase filters that generate wavelets which have a minimal support for a given number of vanishing moments. They are indexed by their length, Par, which may be one of 4,6,8,10,12,14,16,18 or 20. The number of vanishing moments is par/2.

Symmlets are also wavelets within a minimum size support for a given number of vanishing moments, but they are as symmetrical as possible, as opposed to the Daubechies filters which are highly asymmetrical. They are indexed by Par, which specifies the number of vanishing moments and is equal to half the size of the support. It ranges from 4 to 10.

The Vaidyanathan filter gives an exact reconstruction, but does not satisfy any moment condition. The filter has been optimized for speech coding.

The Battle-Lemarie filter generate spline orthogonal wavelet basis. The parameter Par gives the degree of the spline. The number of vanishing moments is Par+1.

Value

qmf quadrature mirror filter.

26 MakeSignal

See Also

```
FWT_PO, IWT_PO, FWT2_PO, IWT2_PO.
```

Examples

```
Type <- 'Coiflet'
Par <- 1
qmf <- MakeONFilter(Type, Par)</pre>
```

MakeSignal

Make artificial signal

Description

Make artificial signal

Usage

```
MakeSignal(name, n)
```

Arguments

name

string, 'HeaviSine', 'Bumps', 'Blocks', 'Doppler', 'Ramp', 'Cusp', 'Sing', 'Hi-Sine', 'LoSine', 'LinChirp', 'TwoChirp', 'QuadChirp', 'MishMash', 'Werner-Sorrows' (Heisenberg), 'Leopold' (Kronecker), 'Riemann', 'HypChirps', 'LinChirps', 'Chirps', 'Gabor', 'sineoneoverx', 'Cusp2', 'SmoothCusp', 'Piece-Regular' (Piece-Wise Smooth), 'Piece-Polynomial' (Piece-Wise 3rd degree polynomial).

n

desired signal length.

Value

```
sig 1-d signal.
```

See Also

```
FWT_PO, IWT_PO, FWT2_PO, IWT2_PO.
```

```
name <- 'Cusp'
n <- 2^5
sig <- MakeSignal(name,n)</pre>
```

MakeSignalNewb 27

MakeSignalNewb

Make artificial 1-d signal

Description

Make artificial 1-d signal

Usage

```
MakeSignalNewb(name, n)
```

Arguments

name string, 'Cusp', 'Step', 'Wave', 'Blip', 'Blocks', 'Bumps', 'HeaviSine', 'Doppler', 'Angles',

'Parabolas','Time Shifted Sine','Spikes','Corner'

n desired signal length.

Value

```
sig 1-d signal.
```

See Also

```
FWT_PO, IWT_PO, FWT2_PO, IWT2_PO.
```

Examples

```
name <- 'Cusp'
n <- 2^5
sig <- MakeSignalNewb(name,n)</pre>
```

MinMaxThresh

Minimax Thresholding

Description

Minimax Thresholding

Usage

```
MinMaxThresh(y)
```

Arguments

У

signal upon which to perform thresholding.

28 MirrorFilt

Value

x result.

References

D.L. Donoho and I.M. Johnstone (1994). Ideal spatial adaptation by wavelet shrinkage. *Biometrika*, 81(3), 425–455.

MirrorFilt

Apply (-1)^t modulation

Description

```
h(t) = (-1)^{h}(t-1) * x(t), 1 \le t \le length(x)
```

Usage

```
MirrorFilt(x)
```

Arguments

Х

1-d signal.

Value

h 1-d signal with DC frequency content shifted to Nyquist frequency

See Also

DownDyadHi.

```
x <- MakeSignal('HeaviSine',2^3)
h <- MirrorFilt(x)</pre>
```

MultiMAD 29

MultiMAD

Apply Shrinkage with level-dependent Noise level estimation

Description

Apply Shrinkage with level-dependent Noise level estimation

Usage

```
MultiMAD(wc, L)
```

Arguments

wc Wavelet Transform of noisy sequence.

L low-resolution cutoff for Wavelet Transform.

Value

ws result of applying VisuThresh to each wavelet level, after scaling so MAD of coefficiens at each level = .6745

MultiSURE

Apply Shrinkage to Wavelet Coefficients

Description

SURE referes to Stein's Unbiased Risk Estimate.

Usage

```
MultiSURE(wc, L)
```

Arguments

wc Wavelet Transform of noisy sequence with N(0,1) noise.

L low-frequency cutoff for Wavelet Transform.

Value

ws result of applying SUREThresh to each dyadic block.

30 packet

MultiVisu

Apply Universal Thresholding to Wavelet Coefficients

Description

Apply Universal Thresholding to Wavelet Coefficients

Usage

```
MultiVisu(wc, L)
```

Arguments

wc Wavelet Transform of noisy sequence with N(0,1) noise.

L low-frequency cutoff for Wavelet Transform

Value

x result of applying VisuThresh to each High Frequency Dyadic Block.

packet

Packet table indexing

Description

Packet table indexing

Usage

```
packet(d, b, n)
```

Arguments

d depth of splitting in packet decomposition.

b block index among 2^d possibilities at depth d.

n length of signal.

Value

p linear indices of all coeff's in that block.

```
packet(1, 1, 8)
```

PlotSpikes 31

דח		· C	٠.:	kes
PI	OΤ	\sim n	ווו	KPS

Plot 1-d signal as baseline with series of spikes

Description

Plot 1-d signal as baseline with series of spikes

Usage

```
PlotSpikes(base, t, x, L, J)
```

Arguments

base	number, baseline level.
t	ordinate values.
Х	1-d signal, specifies spike deflections from baseline.
L	level of coarsest scale.
J	least power of two greater than n.

Value

A plot of spikes on a baseline.

See Also

```
PlotWaveCoeff.
```

Examples

```
## Not run:
PlotSpikes(base, t, x, L, J)
## End(Not run)
```

PlotWaveCoeff

Spike-plot display of wavelet coefficients

Description

Spike-plot display of wavelet coefficients

```
PlotWaveCoeff(wc, L, scal)
```

32 quadlength

Arguments

wc 1-d wavelet transform.

L level of coarsest scale.

scal scale factor (0 ==> autoscale).

Value

A display of wavelet coefficients (coarsest level NOT included) by level and position.

See Also

```
FWT_PO, IWT_PO, PlotSpikes.
```

Examples

```
x <- MakeSignal('Ramp', 128)
qmf <- MakeONFilter('Daubechies', 10)
L <- 3
scal <- 1
wc <- FWT_PO(x, L, qmf)
PlotWaveCoeff(wc,L,scal)</pre>
```

quadlength

Find length and dyadic length of square matrix

Description

```
h(t) = (-1)^{t} (t-1) * x(t), 1 \le t \le length(x)
```

Usage

```
quadlength(x)
```

Arguments

```
x 2-d image; dim(n,n), n = 2^J (hopefully).
```

Value

```
n length(x).
```

J least power of two greater than n.

```
quadlength(matrix(1:16,ncol=4))
```

RaphNMR 33

RaphNMR

Nuclear magnetic resonance (NMR) signal

Description

A dataset containing a NMR signal.

Usage

```
data(RaphNMR)
```

Format

A numeric vector of length 1024.

Source

MRS Unit, VA Medical Center, San Francisco. Adrain Maudsley, Ph.D., Professor of Radiology. This NMR signal was obtained from Chris Raphael, then a postdoctoral fellow in the Department of Statistics at Stanford University who was working on Hidden Markov Models for restoring NMR Spectra.

repmat

Replicate and tile an array

Description

Repeat copies of array (equivalent of the repmat matlab function).

Usage

```
repmat(a, n, m)
```

Arguments

a input array (scalar, vector, matrix).

n number of time to repeat input array in row and column dimensions.

m repetition factor.

```
repmat(10,3,2)
```

34 ShapeAsRow

rshift

Circular right shift of 1-d signal

Description

Circular right shift of 1-d signal

Usage

```
rshift(a)
```

Arguments

а

1-d signal.

Value

```
r 1-d signal r(i) = x(i-1) except r(1) = x(n).
```

Examples

```
x <- MakeSignal('HeaviSine', 2^3)
rshift(x)</pre>
```

ShapeAsRow

Make signal a row vector

Description

Make signal a row vector

Usage

```
ShapeAsRow(sig)
```

Arguments

sig

a row or column vector.

Value

row a row vector.

```
sig <- matrix(1:4)
row <- ShapeAsRow(sig)</pre>
```

SLphantom 35

SLphantom

3-d Shepp-Logan phantom

Description

A dataset containing a 3d head phantom that can be used to test 3-d reconstruction algorithms. Shepp-Logan phantom is well-known imitation of human cerebral.

Usage

```
data(SLphantom)
```

Format

A numeric array of size 64x64x64.

SNR

Signal/Noise ratio

Description

Signal/Noise ratio

Usage

```
SNR(x, y)
```

Arguments

x Original reference signal.

y Restored or noisy signal.

Value

Signal/Noise ratio.

```
n <- 2^4
x <- MakeSignal('HeaviSine', n)
y <- x + rnorm(n, mean=0, sd=1)
SNR(x, y)</pre>
```

36 SUREThresh

SoftThresh

Apply Soft Threshold

Description

Apply Soft Threshold

Usage

```
SoftThresh(y, t)
```

Arguments

y Noisy Data. t Threshold.

Value

```
x filtered result (y 1_lyl>t).
```

See Also

HardThresh

Examples

```
f <- MakeSignal('HeaviSine', 2^3)
qmf <- MakeONFilter('Daubechies', 10)
L <- 0
wc <- FWT_PO(f, L, qmf)
thr <- 2
wct <- SoftThresh(wc, thr)
fsoft <- IWT_PO(wct, L, qmf)</pre>
```

 ${\tt SUREThresh}$

Adaptive Threshold Selection Using Principle of SURE

Description

SURE referes to Stein's Unbiased Risk Estimate.

```
SUREThresh(y)
```

UpDyadHi 37

Arguments

У

Noisy Data with Std. Deviation = 1.

Value

x Estimate of mean vector

thresh Threshold used.

UpDyadHi

Hi-Pass Upsampling operator; periodized

Description

Hi-Pass Upsampling operator; periodized

Usage

```
UpDyadHi(x, qmf)
```

Arguments

```
x 1-d signal at coarser scale.
```

qmf filter.

Value

u 1-d signal at finer scale.

See Also

```
DownDyadLo, DownDyadHi, UpDyadLo, IWT_PO, aconv.
```

```
qmf <- MakeONFilter('Haar')
x <- MakeSignal('HeaviSine',2^3)
UpDyadHi(x,qmf)</pre>
```

38 UpSampleN

UpDyadLo

Lo-Pass Upsampling operator; periodized

Description

Lo-Pass Upsampling operator; periodized

Usage

```
UpDyadLo(x, qmf)
```

Arguments

x 1-d signal at coarser scale.

qmf filter.

Value

y 1-d signal at finer scale.

See Also

```
DownDyadLo, DownDyadHi, UpDyadHi, IWT_PO, iconvv.
```

Examples

```
qmf <- MakeONFilter('Haar')
x <- MakeSignal('HeaviSine',2^3)
UpDyadLo(x,qmf)</pre>
```

UpSampleN

Upsampling operator

Description

Upsampling operator

Usage

```
UpSampleN(x, s)
```

Arguments

x 1-d signal, of length n.

s upsampling scale, default = 2.

ValSUREThresh 39

Value

y 1-d signal, of length s*n with zeros interpolating alternate samples y(s*i-1) = x(i), i=1,...,n

ValSUREThresh

Adaptive Threshold Selection Using Principle of SURE

Description

SURE referes to Stein's Unbiased Risk Estimate.

Usage

ValSUREThresh(x)

Arguments

Χ

Noisy Data with Std. Deviation = 1.

Value

thresh Value of Threshold.

VisuThresh

Visually calibrated Adaptive Smoothing

Description

Visually calibrated Adaptive Smoothing

Usage

```
VisuThresh(y, thresh = "soft")
```

Arguments

y Signal upon which to perform visually calibrated Adaptive Smoothing.

thresh 'hard' or 'soft'.

Value

x result of applying VisuThresh.

References

D.L. Donoho and I.M. Johnstone (1994). Ideal spatial adaptation by wavelet shrinkage. *Biometrika*, 81(3), 425–455.

Index

* datasets	lshift, 24
RaphNMR, 33	
SLphantom, 35	MAD, 24
	MakeONFilter, 11-15, 18, 19, 21-23, 25
aconv, 3, 9, 17, 37	MakeSignal, 26
	MakeSignalNewb, 27
block_partition, 5, 17	MinMaxThresh, 27
block_partition2d, 5, 18	MirrorFilt, 28
BlockThresh, 4, 5, 17	MultiMAD, 29
	MultiSURE, 29
CircularShift, 6	MultiVisu, 30
cubelength, 7	
CVlinear, 7	packet, 30
	PlotSpikes, 31, 32
DownDyadHi, 3, 8, 9, 17, 28, 37, 38	PlotWaveCoeff, 31, 31
DownDyadLo, 3, 8, 9, 17, 37, 38	
dyad, 9, <i>10</i>	quadlength, 10 , 32
dyadlength, 10	D. LAND 22
	RaphNMR, 33
FTWT2_P0, 11, 19	repmat, 33
FWT2_P0, 11, <i>19</i> , <i>26</i> , <i>27</i>	rshift, 34
FWT2_TI, 6, 12	ShapeAsRow, 34
FWT3_P0, 7, 13, 21	SLphantom, 35
FWT_PO, 8, 9, 14, 22, 26, 27, 32	SNR, 35
FWT_TI, 14, 23	SoftThresh, 16, 23, 36
CUAL 15	SUREThresh, 36
GWN, 15	SURETHI ESH, 30
HardThresh, 16, 23, 36	UpDyadHi, 3, 8, 9, 17, 37, 38
101 0111 0311, 10, 23, 30	UpDyadLo, 3, 8, 9, 17, 37, 38
iconvv, 3, 8, 16, 38	UpSampleN, 38
invblock_partition, 4, 5, 17	
invblock_partition2d, 6, 18	ValSUREThresh, 39
ITWT2_PO, <i>11</i> , 18	VisuThresh, 39
IWT2_PO, 11, 12, 19, 26, 27	
IWT2_TI, 6, 20	
IWT3_P0, 7, 13, 21	
IWT_PO, 14, 22, 26, 27, 32, 37, 38	
IWT_TI, 12, 14, 15, 22	
111 - 12, 12, 11, 12, 22	
JSThresh, 23	