

Variant calling and filtering

SNPs and indels

Learning outcomes

- Calling single nucleotide polymorphisms (SNPs) and insertions/deletions (indels)
 - tools
 - considerations
- Understanding vcf format
- Why we need to filter variants
- How to filter variants
 - obtain high-confidence SNPs
 - commands
- Quality control of filtered SNPs
- Mapping SNPs to genes

Identifying variation within genomes

- Identifying variants is important for evolution studies, interring resistance mutations and in population genomics studies
 - Reads aligned to a reference genome enables identification of differences between individuals
- SNPs are the most abundant variants, along with insertion/deletions
- Widely used software for variant calling includes GATK and Freebayes
 - Can call variants individually or across multiple samples
 - Determine genotypes e.g. at each position, determine whether variant is homozygous reference, heterozygous or homozygous alternate
- Creates variant call format (vcf) file

Variant call format (VCF)

The details

```
##fileformat=VCFv4.3
##fileDate=20090805
##source=myImputationProgramV3.1
##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta
##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens",taxonomy=x>
##phasing=partial
##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With Data">
##INFO=<ID=DP, Number=1, Type=Integer, Description="Total Depth">
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele Frequency">
##INFO=<ID=AA, Number=1, Type=String, Description="Ancestral Allele">
##INFO=<ID=DB, Number=0, Type=Flag, Description="dbSNP membership, build 129">
##INFO=<ID=H2, Number=0, Type=Flag, Description="HapMap2 membership">
##FILTER=<ID=q10, Description="Quality below 10">
##FILTER=<ID=s50, Description="Less than 50% of samples have data">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=GQ, Number=1, Type=Integer, Description="Genotype Quality">
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read Depth">
##FORMAT=<ID=HQ, Number=2, Type=Integer, Description="Haplotype Quality">
                                       QUAL FILTER INFO
#CHROM POS
                                                                                        FORMAT
                               ALT
                                                                                                     NA00001
                                                                                                                     NA00002
NA00003
                                                                                        GT:GQ:DP:HQ 0|0:48:1:51,51
       14370
                rs6054257 G
                                                     NS=3;DP=14;AF=0.5;DB;H2
                                        29
                                             PASS
                1/1:43:5:.,.
1|0:48:8:51,51
                                                     NS=3;DP=11;AF=0.017
                                                                                        GT:GQ:DP:HQ 0|0:49:3:58,50
       17330
                                             q10
                                        3
0|1:3:5:65,3
                0/0:41:3
                                                     NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ 1|2:21:6:23,27
       1110696 rs6040355 A
                                 G,T
                                        67
                                              PASS
2|1:2:0:18,2
                 2/2:35:4
                                                                                        GT:GQ:DP:HQ 0|0:54:7:56,60
    1230237 . T
                                                     NS=3;DP=13;AA=T
0|0:48:4:51,51 0/0:61:2
20 1234567 microsat1 GTC G,GTCT 50
                                                                                        GT:GQ:DP
                                                                                                                     0/2:17:2
                                             PASS
                                                     NS=3;DP=9;AA=G
                                                                                                     0/1:35:4
1/1:40:3
```

Calling high-quality variants Commands using GATK

```
gatk HaplotypeCaller -R reference.fa -I isolate_name.post_recal_reads.bam -O isolate_name.raw_variants_recal.vcf -ERC GVCF --pcr-indel-model NONE -ploidy 1 -stand-call-conf 30 -mbq 20 -A QualByDepth
```

gatk GenotypeGVCFs -R reference.fa -V isolate_name.raw_variants_recal.vcf -0
isolate_name.genotyped_variants_recal.vcf

Calling variants

Considerations

- Repetitive regions
 - Most fungi have 1-25% repetitive DNA content and genome size is correlated with number of transposon families hosted within the genome
 - Difficult to call SNPs in repetitive regions
 - lower quality scores in repetitive regions, so variant calls may be false positives
 - RepeatMasker to mask regions of repeats in the reference genome
 - Include in HaplotypeCaller using the -XL parameter
 - Covered tomorrow

Variant filtering

Filtering variants

What is the need?

- Initial variant calling is generally a very rough approximation, and will incorrectly identify many loci as SNPs or indels
- The INFO and FORMAT fields in the vcf contains a lot of information about each site in the genome, the reads aligned there, and the quality of variant calls.
- The variant filtration algorithm will use this information to filter out uninformative positions.

Filtering variants

Commands in GATK

 First, we separate the vcf into SNPs and indels (you can merge them back together after filtering if preferred)

```
gatk SelectVariants -R reference.fa -V isolate_name.genotyped_variants_recal.vcf -0 isolate_name.raw_snps_recal.vcf -- select-type-to-include SNP -select 'vc.getGenotype("WGS").getAD().1*1.0 / vc.getGenotype("WGS").getDP() > 0.90'
```

gatk SelectVariants -R reference.fa -V isolate_name.raw_variants_recal.vcf -O isolate_name.raw_indels_recal.vcf --select-type-to-include INDEL

Filtering variants

Commands in GATK

- •To gain a list of high confidence SNPs we filter on mapping quality, depth of coverage, Fisher strand bias and balance of alleles.
- •Any SNP that fulfils any one of these criteria is labelled as 'LowConf'. It is not removed
- We also include an additional filter on genotype quality
 - •Note that we sort of did a filtering step earlier when selecting SNPs, where we filtered out SNPs that weren't present in at least 90% of mapped reads.

```
gatk VariantFiltration -R reference.fa -V isolate_name.raw_snps_recal.vcf -0 isolate_name.filtered_snps_final.vcf -filter "QD < 2.0" --filter-name "LowConf" -filter "FS > 60.0" --filter-name "LowConf" -filter "MQ < 40.0" --filter-name "LowConf" -filter "MQRankSum < -12.5" --filter-name "LowConf" -filter "ReadPosRankSum < -8.0" --filter-name "LowConf" -filter "DP < 5" --filter-name "LowConf" -filter "DP < 5" --filter-name "LowConf" -G-filter "GQ < 50" -G-filter-name "FILTER_GQ-50"
```

Quality control

- Using the two files, 'isolate_name.genotyped_variants_recal.vcf' and 'isolate_name.filtered_snps_final.vcf', you want to count the number of lines in each, excluding the header
- grep -v "#" isolate_name.genotyped_variants_recal.vcf | wc -l
- grep -v "#" isolate_name.filtered_snps_final.vcf | grep -v "LowConf" | grep -v "FILTER_GQ-50" | wc -l
- The difference between these two numbers will give you an idea of quality
 - High % filtered out indicates something weird is going on cross-check with coverage and mapping statistics
 - Hybrid/diploid
 - Not the same species as reference
 - Poor quality sequencing
 - Usually range can be 1-10% filtered out

Other considerations

Making pipelines

- Running these analyses (from raw read QC to filtering SNPs) one command at a time/one isolate at a time is inefficient
 - Time-consuming
 - Could receive many isolates in one go to analyse
- Automating the process as a 'pipeline'
 - All commands in a script
 - High Performance Computing (HPC)
 - job submission —> running pipeline in parallel
 - may have more processing power available than standard laptop/computer, which is useful for big/highly complex genomes
 - consider how to transfer your data clients such as Cyberduck provide a user friendly GUI to scp

Mapping SNPs to genes

Nucleotide changes

Transitions and transversions

- Nucleotide substitutions can take two forms:
 - transitions
 - purine-purine or pyrimidine-pyrimidine interchanges
 - transversions
 - purine-pyrimidine interchanges
- Transitions (G>A|C>T or A>G|T>C) occur more frequently in Ascomycota fungi
- Transition:transversion ratio indicative of certain biological processes

Mutations In coding regions

- Synonymous (sSNP)
 - A SNP is described as synonymous if there is no change in the AA encoded
 - 'silent'/evolutionary neutral
- Non-synonymous (nsSNP)
 - Change in the AA encoded
 - sometimes called 'missense'
- Stop mutation (STP)
 - AA change encodes an AA that is a stop codon, resulting in premature truncation of protein
 - sometimes called 'nonsense'
- Read-through mutation (RTH)
 - AA change results in stop codon changing to other AA and protein extended

Mutations In non-coding regions

Mutations in UTR regions and intergenic regions

Mapping SNPs to genes snpEff

- Cingolani et al. 2012 PMID: 22728672
- Genomic variant annotations and functions effect prediction
- Has ~38k genomes pre-loaded, or can make custom database for new species/genomes
- Annotate the final vcf
- java -jar snpEff.jar genome_ref isolate_name.final_SNPs.vcf > isolate_name.snps.annotated
- Produces an annotated vcf with an additional 'INFO' column, and a html report

Mapping SNPs to genes snpEff

html results report

Number of effects by functional class

Type (alphabetical order)	Count	Percent
MISSENSE	7,115	34.968%
NONSENSE	46	0.226%
SILENT	13,186	64.806%

Missense / Silent ratio: 0.5396

Number of effects by type and region

Туре			Region		
Type (alphabetical order)	Count	Percent			
downstream_gene_variant	103,013	38.927%			
intergenic_region	27,313	10.321%			
intron_variant	247	0.093%	Type (alphabetical order)	Count	Percen
missense_variant	7,105	2.685%	DOWNSTREAM	103,013	38.9349
non_coding_transcript_exon_variant	1	0%	EXON	20,325	7.6829
splice_acceptor_variant	1	0%	INTERGENIC	27,313	10.3239
splice_donor_variant	1	0%	INTRON	231	0.0879
splice_region_variant	47	0.018%	SPLICE_SITE_ACCEPTOR	1	0,
start_lost	2	0.001%	SPLICE_SITE_DONOR	1	0,
stop_gained	46	0.017%	SPLICE_SITE_REGION	37	0.014
stop_lost	8	0.003%	UPSTREAM	113,663	42.959
stop_retained_variant	21	0.008%			
synonymous_variant	13,165	4.975%			
upstream_gene_variant	113,663	42.951%			

Mapping SNPs to genes Annotated vcf

- Lots of information
- Perhaps searching for AA that results in drug resistance?
 - Search for gene of interest on FungiDB/NCBI and use ID to search:

```
ook-Pro-4 Annotated % grep AFUA_4G06890 C101.snps.annotated| grep "missense"
                                                             615.04 PASS AC=1;AF=1.00;AN=1;DP=20;FS=0.000;MLEAC=1;MLEAF=1.00;MQ=60.00;QD=32.37;SOR=1.292;ANN=C|missense_variant|MODERATE|AFUA_4G06890|AFUA_4G06890|transcript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|proteinscript|XM_747044.1|p
n_coding|2/2|c.1279A>G|p.Lys427Glu|1279/1548|1279/1548|427/515||,C|upstream_gene_variant|MODIFIER|AFUA_4G06900|AFUA_4G06900|transcript|XM_747043.1|protein_coding||c.-3022T>C|||||3022| GT:AD:DP:GQ:PL 1:0,19:19:99:625,0
                                                             632.04 PASS AC=1;AF=1.00;AN=1;DP=23;FS=0.000;MLEAC=1;MLEAF=1.00;MQ=60.00;QD=27.48;SOR=1.179;ANN=G|missense_variant|MODERATE|AFUA_4G06890|AFUA_4G06890|transcript|XM_747044.1|protei
n_coding|2/2|c.765G>C|p.Glu255Asp|765/1548|765/1548|255/515||,Glupstream_gene_variant|MODIFIER|AFUA_4G06900|AFUA_4G06900|transcript|XM_747043.1|protein_coding||c.-2508C>G|||||2508| GT:AD:DP:GQ:PL 1:0,23:23:99:642,0
                                                             675.04 PASS AC=1;AF=1.00;AN=1;DP=23;FS=0.000;MLEAC=1;MLEAF=1.00;MQ=60.00;QD=29.35;SOR=0.963;ANN=T|missense_variant|MODERATE|AFUA_4G06890|AFUA_4G06890|transcript|XM_747044.1|protei
n_coding|2/2|c.743C>A|p.Thr248Asn|743/1548|743/1548|248/515||,T|upstream_gene_variant|MODIFIER|AFUA_4G06900|transcript|XM_747043.1|protein_coding||c.-2486G>T||||2486| GT:AD:DP:GQ:PL 1:0,23:23:99:685,0/
                                                                                AC=1;AF=1.00;AN=1;DP=26;FS=0.000;MLEAC=1;MLEAF=1.00;MQ=60.00;QD=29.96;SOR=0.963;ANN=T|missense_variant|MODERATE|AFUA_4G06890|AFUA_4G06890|transcript|XM_747044.1|protei
n_coding|2/2|c.514G>A|p.Val172Met|514/1548|514/1548|172/515||,T|upstream_gene_variant|MODIFIER|AFUA_4G06900|transcript|XM_747043.1|protein=coding||c.-2257C>T||||||2257| GT:AD:DP:GQ:PL 1:0,23:23:99:699,0
                                                             966.04 PASS AC=1;AF=1.00;AN=1;DP=31;FS=0.000;MLEAC=1;MLEAF=1.00;MQ=60.00;QD=32.20;SOR=0.693;ANN=T/missense_variant|MODERATENAFUA_4G06890|AFUA_4G06890|transcript|XM_747<mark>044.1|</mark>protei
n_coding|2/2|c.293T>A|p.Leu98His|293/1548|293/1548|98/515||,T|upstream_gene_variant|MODIFIER|AFUA_4G06900|AFUA_4G06900|transcript|XM_747043.1|protein_coding||c.=2036A>T|||+2036|
                                                                                                                                                                                                                                           GT:AD:DP:GQ:PL 1:0,30:30:99:976,0
                                                                                AC=1;AF=1.00;AN=1;DP=28;FS=0.000;MLEAC=1;MLEAF=1.00;MQ=60.00;QD=31.57;SOR=0.836;ANN=A|missense_variant|MODERATE|AFUA_4G06890|AFUA_4G06890|transcript|XM_747044.1|prote
06910|transcript|XM_747042.1|protein_coding||c.-4872T>A||||4872|
                                                                                           GT:AD:DP:GQ:PL 1:0,28:28:99:894,0
                                                             553.04 PASS AC=1;AF=1.00;AN=1;DP=18;FS=0.000;MLEAC=1;MLEAF=1.00;MQ=60.00;QD=32.53;SOR=0.804;ANN=C|missense_variant|MODERATE|AFUA_4G06900|AFUA_4G06900|transcript|XM_747043.1|protei
 4G06910|transcript|XM_747042.1|protein_coding||c.-2208T>C|||||2208|,C|downstream_gene_variant|MODIFIER|AFUA_4G06920|AFUA_4G06920|transcript|XM_747041.1|protein_coding||c.*4075A>G||||4075| GT:AD:DP:GQ:PL 1:0,17:17:99:563,0
NC_007197.1 1784694 .
                                                            945.04 PASS AC=1;AF=1.00;AN=1;DP=28;FS=0.000;MLEAC=1;MLEAF=1.00;MQ=60.00;QD=33.75;SOR=1.382;ANN=G|missense_variant|MODERATE|AFUA_4G06900|AFUA_4G06900|transcript|XM_747043.1|protei
n_coding|6/7|c.910A>G|p.Thr304Ala|910/1920|910/1920|304/639||,G|upstream_gene_variant|MODIFIER|AFUA_4G06890|transcript|XM_747044.1|protein_coding||c.-2872T>C||||2872|,G|upstream_gene_variant|MODIFIER|AFUA_4G06910|AFUA
 4G06910|transcript|XM_747042.1|protein_coding||c.-1864A>G||||1864|,G|downstream_gene_variant|MODIFIER|AFUA_4G06920|AFUA_4G06920|transcript|XM_747041.1|protein_coding||c.*3731T>C||||3731| GT:AD:DP:GO:PL 1:0,28:28:99:955,0
                                                             1385.04 PASS AC=1;AF=1.00;AN=1;DP=31;FS=0.000;MLEAC=1;MLEAF=1.00;MQ=60.00;QD=29.60;SOR=0.756;ANN=C|missense_variant|MODERATE|AFUA_4G06900|AFUA_4G06900|transcript|XM_747043.1|protei
                   1785669 .
n_coding|7/7|c.1826T>C|p.Leu609Pro|1826/1920|1826/1920|609/639||,C|upstream_gene_variant|MODIFIER|AFUA_4G06890|AFUA_4G06890|transcript|XM_747044.1|protein_coding||c.-3847A>G||||3847|,C|upstream_gene_variant|MODIFIER|AFUA_4G06910|A
FUA_4G06910|transcript|XM_747042.1|protein_coding||c.-889T>C||||889|,Clupstream_gene_variant|MODIFIER|AFUA_4G06930|transcript|XM_747040.1|protein_coding||c.-4457T>C||||4457|,Cldownstream_gene_variant|MODIFIER|AFUA_4G
 06920|AFUA_4G06920|transcript|XM_747041.1|protein_coding||c.*2756A>G||||2756| GT:AD:DP:G0:PL 1:0,31:31:99:1395,0
Jo Rhodes@MacBook-Pro-4 Annotated %
```