Water Pump Functionality Prediction

This project develops machine learning models to predict the functionality status of water pumps across Tanzania based on a variety of features including location, water quality, management structure, and technical specifications.

This project addresses a critical infrastructure challenge: identifying which water pumps are functional, which need repairs, and which are non-functional to improve maintenance operations and ensure communities have access to clean water

- Training data set contains 59400 rows and 40 columns.
- After analyse longitude (-12,0) and latitude (29,41) for region Tanzania remained 57588 rows.
- Simple analyse of columns showed that we can gezt rid of columns:
 - √ waterpoint_type_group(=waterpoint_type)
 - √ source_class(=source_type)
 - ✓ source (=source_type, but without unknown)
 - ✓ quantity_group(=quantity)
 - √ quality_group (=water_quality)
 - ✓ payment_type(=payment)
 - √ management_group(=management)
 - ✓ extraction_type_group
 - ✓ extraction_type_class
 - ✓ scheme_name(because 48,5% are NULL)
 - ✓ recorded_by (because only one value)
 - ✓ public_meeting (92% the same value)
 - ✓ num_private(98,3% unique value)
 - ✓ wpt_name?(because its only name, no information)
 - √ date_recorded

• Total row: 57588

Column: funder
 Null values: 3624
 Empty strings: 0
 Unique values: 1857

Top 10 most frequent values:

value	count	percent	
Government Of Tanzania	8842	15.35	
NaN	3624	6.29	
Danida	3114	5.41	
Hesawa	1914	3.32	
World Bank	1345	2.34	
Kkkt	1287	2.23	
World Vision	1224	2.13	
Rwssp	1187	2.06	
Unicef	1035	1.80	
District Council	843	1.46	

Questions:

why region <> region_code (should be equal):

Analyse shows mistakes and it possible to change region code with most common value:

Out[58]:		region	region_code	count
	0	Arusha	2	3024
	1	Arusha	24	326
	2	Dar es Salaam	7	805
	3	Dodoma	1	2201
	4	Iringa	11	5294
	5	Kagera	18	3316
	6	Kigoma	16	2816
	7	Kilimanjaro	3	4379
	8	Lindi	8	300
	9	Lindi	18	8
	10	Lindi	80	1238

Questions:

What is the ideal row?

Out[69]:		Most common value	% within functional
	status_group	functional	100.00
	water_quality	soft	89.15
	permit	True	71.36
	quantity	enough	67.29
	management	vwc	64.01
	scheme_management	VWC	63.11
	waterpoint_type	communal standpipe	56.22
	extraction_type	gravity	51.04
	payment	never pay	34.93
	source_type	spring	33.71
	installer	DWE	30.31
	basin	Pangani	17.11
	region	Iringa	13.19
	funder	Government Of Tanzania	12.39
	lga	Njombe	6.39

```
df func =
pump data merged[pump data merged["status group"] ==
"functional"]
# choose only categorical/object columns
cat cols = df func
select dtypes(include=["object"]).columns
ideal values = {}
for col in cat cols:
    top value = df func [col].mode(dropna=True)
    if not top value.empty:
       percent = df func
[col].value counts (normalize=True,
dropna=True).iloc[0] * 100
       ideal values[col] = (top value.iloc[0],
round(percent, 2))
# show nicely
import pandas as pd
ideal df = pd.DataFrame.from dict(ideal values,
orient="index", columns=["Most common value", "%
within functional"])
ideal df.sort values ("% within functional",
ascending=False).head(15)
```

Analyse numeric columns

Analyse categorical columns

	n_unique
subvillage	18567
installer	2113
ward	2033
funder	1857
lga	124
region	21
extraction_type	18
management	12
scheme_management	11
basin	9
water_quality	8
source_type	7
payment	7
waterpoint_type	7
quantity	5
status_group	3
permit	2

Analyse NULL and "" and 0 values

- Construction_year has a lot of 0 values

```
column summary(pump data, "construction year")
₹
     Total rows: 57588
     Column: construction year
    Null values: 0
    Empty strings: 0
    Numeric 0 values: 18897
    String '0' values: 0
    'Unknown' values (any case): 0
    Unique values: 55
    Top 10 most frequent values:
     value count percent
         0 18897
                     32.81
             2645
                      4.59
      2010
      2008
             2613
                      4.54
      2009
             2533
                      4.40
      2000
             2091
                      3.63
      2007
             1587
                      2.76
             1471
                      2.55
      2006
      2003
             1286
                      2.23
      2011
             1256
                      2.18
      2004
             1123
                      1.95
```

