CESM Usage Metrics and Machine Learning

Regis University

National Center for Atmospheric Research (NCAR)

Summer Internships in Parallel Computational Science (SIParCS)

NCAR December 18, 2019

Goal

Demonstrate what we can do with CESM performance metadata

- □ Track versions over time
- ☐ Track performance over time
- □ Predict performance

Method


```
----- TIMING PROFILE -----
                : b.e21.BHIST.f09 g17.CMIP6-historical.001
2
     Case
     LID
                : 2979765.chadmin1.181015-050236
4
     Machine
                : cheyenne
     Caseroot : /gpfs/fs1/work/cmip6/cases/b.e21.BHIST.f09 g17.CMIP6-historical.001
                : /gpfs/fs1/work/cmip6/cases/b.e21.BHIST.f09 g17.CMIP6-historical.001/Tools
6
     Timeroot
      User
                : cmip6
8
      Curr Date : Mon Oct 15 10:01:22 2018
                : a%0.9x1.25 1%0.9x1.25 oi%gx1v7 r%r05 g%gland4 w%ww3a m%gx1v7
9
     grid
10
                : HIST_CAM60_CLM50%BGC-CROP_CICE_POP2%EC0%ABIO-DIC_MOSART_CISM2%NOEVOLVE_WW3_BGC%BDRD
      compset
     run_type : hybrid, continue_run = TRUE (inittype = FALSE)
11
     stop_option : nyears, stop_n = 5
12
13
     run_length : 1825 days (1825.0 for ocean)
14
                   comp_pes root_pe tasks x threads instances (stride)
15
      component
17
     cpl = cpl
                 3456
                             0
                                       1152 x 3
                                                     1
                                                            (1
18
     atm = cam
                3456 0
                                       1152 x 3
     lnd = clm
                 2592
                               0
                                       864
                                            x 3
                                                     1
                                                            (1
20
     ice = cice
                    864
                               864
                                                      1
                                                            (1
                                       288
                                            x 3
21
      ocn = pop
                    768
                               1152
                                       256
                                             x 3
                                                      1
                                                            (1
```

Component string = compset

Component string = compset

'1850_CAM60_CLM50%BGC-CROP_CICE_POP2%ECO_MOSART_CISM2%NOEVOLVE_WW3_SIAC_SESP_BGC%BDRD'

Problems: Manual inspection

Components not in the same order

OBGC = Ocean Bio-geo-chemistry

Component string = compset

Grid string has prefixes

Component string = compset

Grid string has prefixes

Component string = compset

Grid string has prefixes

Random location:

Component string = compset

Grid string has prefixes

Random location:

a%1x1_vancouverCAN_l%1x1_vancouverCAN_oi%null_r%null_g%null_w%null_m%null'

Component string = compset

Grid string has prefixes

Random location:

'a%1x1_vancouverCAN_l%1x1_vancouverCAN_oi%null_r%null_g%null_w%null_m%null'

'a%ne0np4colorado.ne30x16'

Analysis: CMIP Totals

416 Days

948
Unique
Cases

21,785
Simulated
Years

137,112,802 CPU Hours

Power Equivalence

137,112,802 CPU Hours

Oľ

218 trips around the equator in a Nissan Leaf Annual power for 180 Colorado homes

Analysis: Monthly Totals - CMIP

CPU Hours by Month and Atm Component Group

Year and Month

- Cheyenne Supercomputer: 145,152 processors
- Upgrade: June 25-July 5, 2019
- Install SUSE Linux Enterprise Server Service Pack 4 to update security and support

Subset by ensemble (like cases) (1206 data points, 4271 sim years, 14 bases)

Ensembles that span the upgrade

% Difference in Mean Model Cost

Base ID

Ensembles that span the upgrade

% Difference in Mean Model Cost

Base ID

Ensembles that span the upgrade

% Difference in Mean Model Cost

Base ID

Machine Learning

Logistic Regression Random Forest

compset_init + compset_atm + compset_ocn
+ comp_pes_atm + RandNum ~ Performance (1, 2, or 3)

Machine Learning

Logistic Regression Random Forest


```
compset_init + compset_atm + compset_ocn
+ comp_pes_atm + RandNum ~ Performance (1, 2, or 3)
```

Machine Learning

Random Forest

Feature Importance

Feature Importance

Final Report

	BaseNum		Change (%)	Prefix	ATM	OCN
Improved	101	b.e21.B1850G.f09_g17_gl4.CMIP6-piControl-withism	-10.94	1850	CAM60	POP2%ECO
	105	b.e21.BWSSP585cmip6.f09_g17.CMIP6-SSP5-8.5-WACCM	-3.8	SSP585	CAM60%WCTS	POP2%ECO%NDEP
	112	b.e21.B1850G.f09_g17_gl4.CMIP6-1pctCO2to4x-withism	-19.73	1850	CAM60%1PCT	POP2%ECO
Degraded	102	f.e21.FHIST_BGC.f09_f09_mg17.CMIP6-GMMIP	1.3	HIST	CAM60	DOCN%DOM
	104	b.e21.BWSSP370cmip6.f09_g17.CMIP6-SSP3-7.0-WACCM	11.86	SSP370	CAM60%WCTS	POP2%ECO%NDEP
	106	b.e21.BWCO2x4.f09_g17.CMIP6-G1-WACCM	11.7	1850	CAM60%WCTS%4XCO2	POP2%ECO%NDEP
	108	b.e21.B1850.f09_g17.CMIP6-DAMIP-hist-nat	27.87	1850	CAM60	POP2%ECO%ABIO_DIC
	111	b.e21.BSSP585_BPRPcmip6.f09_g17.CMIP6-esm-ssp585-ssp126-Lu	15.46	SSP585	CAM60	POP2%ECO%ABIO_DIC
	113	b.e21.BSSP245cmip6.f09_g17.CMIP6-SSP2-4.5	4.3	SSP245	CAM60	POP2%ECO%ABIO_DIC
	114	b.e21.B1850cmip6.f09_g17.DAMIP-hist-ghg	7.27	1850	CAM60	POP2%ECO%ABIO_DIC
Stayed the Same	103	f.e21.FWaerchem-piCH4.f09_g17.CMIP6-histSST-piCH4-WACCM	0.51	HIST	CAM60%WCTS%AERCHEM-piCH4	DOCN%DOM
	107	f.e21.F1850_BGC.f09_f09_mg17.CFMIP-piSST	1.59	1850	CAM60	DOCN%DOM

9 years + 3 months 483,003 runs

38,062 Unique Cases

1,406,545
Simulated
Years

1,054,615,678 CPU Hours

9 years + 3 months 483,003 runs

1,054,615,678 CPU Hours

Predictive Modeling – Linear Regression

- Compset (parsed out)
- Grid (parsed out)
- Run type
- Simulated years

For each component:

- Instances
- Tasks
- Threads
- Root

Can I predict total run time?

Predictive Modeling – Linear Regression

Mira (202 runs)

Predictive Modeling – Linear Regression

Bluewaters (305 runs)

Bluewaters - Actual vs. Predicted Run Time

Predictive Modeling – Linear Regression

Cheyenne (48,313 runs)

Cheyenne - Actual vs. Predicted Run Time (Log)

Predictive Modeling – Linear Regression

compset_init + compset_atm + compset_ocn +
grid_atm + grid_ocn + run_length_years ~ Run Time

Cheyenne (6 Features) - Actual vs. Predicted Run Time

Conclusion

Why do we care about predicting performance?

CPU hours are expensive and limited

If scientists can enter their configuration into a form and see the expected run time, they could:

- Plan their computing allocation
- Eliminate the need for some performance test runs

Conclusion

Why do we care about predicting performance?

CPU hours are expensive and limited

If scientists can enter their configuration into a form and see the expected run time, they could:

- Plan their computing allocation
- Eliminate the need for some performance test runs

Example: Cheyenne had 276,000 total runs;

103,000+ runs were less than 10 simulated days

= 4.4M CPU hours

Future Work

Ongoing analytics

- Model tuning on feature importance
- Track performance over time
- Track new version adoption rates

Automated tool that learns from performance data:

- Help inform scientist computing budgets
- Detect issues that reduce performance, such as misconfiguration, bad hardware, etc.

Acknowledgements

John Dennis

Brian Dobbins

NCAR mentors

Alice Bertini

NCAR SQL Training

AJ Lauer

Virginia Do

NCAR intern managers

Christy Pearson

Michael Busch

Nate George

Professors at Regis University

References

Balaji, et. al. CPMIP: Measurements of Real Computational Performance of Earth System Models in CMIP6. Geoscience Model Development Issue 10. January 02, 2017. https://www.geosci-model-dev.net/10/19/2017/

Images

Unless otherwise noted, graphics are from www.vecteezy.com

Questions?

NCAR UCAR