Chapter III Fenchel Duality

March 11, 2023

1 Subgradients and Convex Functions

3.1.1

A function $f: \mathbb{E} \to (+\infty, +\infty]$ is sublinear if and only if it is positively homogeneous and subadditive. For a sublinear function f, the lineality space $\lim f$ is the largest subspace of \mathbb{E} on which f is linear. Recall that

$$\lim f = \{x \in \mathbb{E} : -f(x) = f(-x)\}.$$

Proof: First suppose that f is sublinear. Then $f(\lambda x + \mu y) \leq \lambda f(x) + \mu f(y)$ for all $x, y \in \mathbb{E}$ and $\lambda, \mu \in \mathbb{R}_+$. Now let x = y = 0, then

$$f(0) \le f(0) + f(0) \Rightarrow 0 \le f(0).$$

Now let $\lambda = \mu = 0$ and so

$$f(0) \le 0.$$

So, we have f(0) = 0. Now let y = 0 and conclude that

$$f(\lambda x) \le \lambda f(x) \ \forall \lambda \in \mathbb{R}_+.$$

Let $\lambda > 0$ and thus

$$f(x) \le \frac{1}{\lambda} f(\lambda x) \Rightarrow \lambda f(x) \le f(\lambda x).$$

So $f(x) = \lambda f(x)$ for all $\lambda \in \mathbb{R}_+$ and thus f is positively homogeneous. Finally let $\lambda = \mu = 1$ and thus $f(x+y) \leq f(x) + f(y)$ and thus f is subadditive.

Conversely, suppose f is subadditive and positively homogeneous. Then $f(\lambda x + \mu y) \le f(\lambda x) + f(\mu y) = \lambda f(x) + \mu f(y)$. Thus f is sublinear.

Now let $x, y \in \text{lin } f$, then if $\lambda, \mu \in \mathbb{R}_{-}$, then

$$f(\lambda x + \mu y) = f(-\lambda(-x) - \mu(-y)) \le -\lambda f(-x) - \mu f(-y) = \lambda f(x) + \mu f(y)$$

3.1.6.

If the function $f: \mathbb{E} \to (+\infty, +\infty]$ is convex and the point \bar{x} lies in dom f, then an element ϕ of \mathbb{E} is a subgradient of f at \bar{x} if and only if it satisfies $\langle \phi, . \rangle \leq f'(\bar{x}; .)$.

Proof:

" \Rightarrow ".

For $d \in \mathbb{E}$ let $\epsilon > 0$ be small enough such that $x_t := \bar{x} + td \in \text{dom } f$ for all $t \in [0, \epsilon]$. Then,

$$\langle \phi, x_t - \bar{x} \rangle \le f(x_t) - f(\bar{x}) \Rightarrow \langle \phi, d \rangle \le \frac{f(x + td) - f(\bar{x})}{t} \quad \forall t \in (0, \epsilon].$$

Now, taking $t \downarrow 0$ completes the proof.

Conversely, suppose that $\langle \phi, . \rangle \leq f'(\bar{x}; .)$ and let $x \in \mathbb{E}$. Then since $t \mapsto \frac{f(\bar{x} + t(x - \bar{x})) - f(\bar{x})}{t}$ is nondecreasing we have $f'(x, x - \bar{x}) \leq f(x) - f(\bar{x})$

$$\langle \phi, x - \bar{x} \rangle \le f'(x; x - \bar{x}) \le f(x) - f(\bar{x}).$$

This completes the proof.

3.1.7.

Suppose that the function $p: \mathbb{E} \to (+\infty, +\infty]$ is sublinear and that the point \bar{x} lies in core(dom p). Then the function $q(.) = p'(\bar{x}; .)$ satisfies the conditions

- $q(\lambda \bar{x}) = p(\lambda \bar{x}).$
- \bullet $q \leq p$.
- $\lim p + span\{\bar{x}\} \subseteq \lim q$.

Proof:

•

$$q(\lambda \bar{x}) = \lim_{t\downarrow 0} \frac{p(\bar{x} + t\lambda \bar{x}) - p(\bar{x})}{t} = \lim_{t\downarrow 0} \frac{(1 + t\lambda)p(\bar{x}) - p(\bar{x})}{t} = \lambda p(\bar{x}).$$

Note that for small enough t, $1 + t\lambda > 0$.

• For $d \in \mathbb{E}$,

$$q(d) = \lim_{t \downarrow 0} \frac{p(\bar{x} + td) - p(\bar{x})}{t} \le \lim_{t \downarrow 0} \frac{p(\bar{x}) + p(td) - p(\bar{x})}{t} = \lim_{t \downarrow 0} \frac{p(td)}{t} = p(d).$$

• Note that $\lim q$ is a linear subspace and thus due to part 1, it suffices to prove $\lim p \subseteq \lim q$. Suppose $d \in \lim p$ and hence p(-d) + p(d) = 0. Now we have

$$q(d) \leq p(d) \Rightarrow -q(d) \geq -p(d) = p(-d) \geq q(-d) \Rightarrow q(-d) \leq -q(d) \leq q(-d) \Rightarrow q(d) + q(-d) = 0.$$

Note that $-q(d) \le q(-d)$ holds true since q is sublinear.

3.1.9. Subgradients of maximum eigenvalue

Prove

$$\partial \lambda_1(0) = \{ Y \in \mathbb{S}^n_+ : \text{Tr}(Y) = 1 \}.$$

Proof: $Y \in \partial \lambda_1(0)$ if and only if $\text{Tr}(XY) \leq \lambda_1(X)$ for all $X \in \mathbb{S}^n$. Let X = I and X = -I respectively to conclude that Tr(Y) = 1. Now from Fan inequality we know

$$\operatorname{Tr}(XY) \leq \lambda(X)^T \lambda(Y) = \sum \lambda_i(X) \lambda_i(Y) \leq \lambda_1(X) \sum \lambda_i(Y) = \lambda_1(X).$$

3.1.6. (Bregman distances)

For a function $\phi : \mathbb{E} \to (\infty, +\infty]$ that is strictly convex and differentiable on $int(\operatorname{dom} \phi)$, define the Bregman distance $d_{\phi} : \operatorname{dom} \phi \times int(\operatorname{dom} \phi) \to \mathbb{R}$ by

$$d_{\phi}(x,y) = \phi(x) - \phi(y) - \phi'(y)(x-y).$$

• Prove $d_{\phi}(x,y) \geq 0$ with equality if and only if x = y.

- Compute d_{ϕ} when $\phi(t) = \frac{t^2}{2}$ and when ϕ is the function p defined in Exercise 27.
- Suppose ϕ is three times differentiable. Prove d_{ϕ} is convex if and only if $-1/\phi''$ is convex on $int(\text{dom }\phi)$.

Proof:

- By definition of strictly convex.
- Let $\phi = t^2/2$, then $d_{\phi}(x,y) = \frac{(x-y)^2}{2}$. Also for the function p from Exercise 27, if u, v > 0, then

$$u \log u - u - v \log v + v - \log v (u - v) = u(\log u - \log v) - (u - v).$$

Note that

$$u(\log u - \log v) - (u - v) \ge 0 \iff u/v \ge e^{1 - \frac{v}{u}}.$$

On the other hand, $e^x - xe$ is a convex function with minimum occurs at x = 1, and so $e^x - xe \ge 0$.

However, if u = 0, then

$$d_{\phi}(0, v) = -v \log v + v - \log v(-v) = v.$$

• Note that the second derivative of d_{ϕ} can be calculated as the following:

$$\nabla^2 d_{\phi}(x,y) = \begin{bmatrix} \phi''(x) & -\phi''(y) \\ -\phi''(y) & \phi''(y) + \phi'''(y)(y-x) \end{bmatrix}$$

Now, due to Schur complement criterion, $\nabla^2 d_{\phi}(x,y)$ is positive semi-definite if and only if

$$\phi''(x) > 0$$
, $\phi''(y) + \phi'''(y)(y-x) - \phi''(y)^2/\phi''(x) > 0$

3.1.20. Monotonicity of gradients

Suppose that $S \subseteq \mathbb{R}^n$ is open and convex and the function $f: S \subseteq \mathbb{R}$ is differentiable. Prove f is convex if and only if

$$\langle \nabla f(y) - \nabla f(x), y - x \rangle \ge 0$$
 for all $x, y \in S$,

and f is strictly convex if and only if the above inequality holds strictly whenever $x \neq y$.

Proof: First suppose that f is convex and let $x, y \in S$, then

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle,$$

 $f(x) \ge f(y) + \langle \nabla f(y), x - y \rangle.$

Summing the above two inequalities we obtain

$$\langle \nabla f(y) - \nabla f(x), y - x \rangle \ge 0,$$

as desired.

Conversely, suppose that for all $x, y \in S$, $\langle \nabla f(y) - \nabla f(x), y - x \rangle \geq 0$ holds true. We wish to show that f is convex. It suffices to show that $g: t \in [0,1] \to f((1-t)x+ty)$ is convex. For that, we just need to show that g'(t) is non-decreasing. But, $g'(t) = \langle \nabla f((1-t)x+ty), y-t \rangle$. Now let $0 \leq t_1 < t_2 \leq 1$ and notice

$$(t_2 - t_1)(g'(t_2) - g'(t_1)) = \langle \nabla f((1 - t_2)x + t_2y) - \nabla f((1 - t_1)x + t_1y), y - x \rangle$$

= $\langle \nabla f((1 - t_2)x + t_2y) - \nabla f((1 - t_1)x + t_1y), ((1 - t_2)x + t_2y) - ((1 - t_1)x + t_1y) \rangle \ge 0,$

thus g'(t) is non-decreasing as desired.

Now suppose f is strictly convex and then

$$f(y) > f(x) + \langle \nabla f(x), y - x \rangle,$$

 $f(x) > f(y) + \langle \nabla f(y), x - y \rangle.$

Summing the above two inequalities we obtain

$$\langle \nabla f(y) - \nabla f(x), y - x \rangle > 0,$$

as desired.

Conversely, suppose that for all $x, y \in S$, $\langle \nabla f(y) - \nabla f(x), y - x \rangle > 0$ holds true. We wish to show that f is strictly convex. It suffices to show that $g: t \in [0,1] \to f((1-t)x+ty)$ is strictly convex. For that, we just need to show that g'(t) strictly increasing. But, $g'(t) = \langle \nabla f((1-t)x+ty), y-x \rangle$. Now let $0 \le t_1 < t_2 \le 1$ and notice

$$(t_2 - t_1)(g'(t_2) - g'(t_1)) = \langle \nabla f((1 - t_2)x + t_2y) - \nabla f((1 - t_1)x + t_1y), y - x \rangle$$

= $\langle \nabla f((1 - t_2)x + t_2y) - \nabla f((1 - t_1)x + t_1y), ((1 - t_2)x + t_2y) - ((1 - t_1)x + t_1y) \rangle > 0,$

thus q'(t) is strictly increasing as desired.

3.1.21. The log barrier

Use Exercise 20 (Monotonicity of gradients), Exercise 10 in Section 2.1. and Exercise 8 in Section 1.2 to prove that the function $f: \mathbb{S}^n_{++} \to \mathbb{R}$ defined by $f(X) = -\log \det(X)$ is strictly convex. Deduce the uniqueness of the minimum volume ellipsoid in Section 2.3, Exercise 8, and the matrix completion in Section 2.1, Exercise 12.

Proof: Recall that $\nabla f(X) = -X^{-1}$ and so we should prove for all $X, Y \in \mathbb{S}_{++}^n$ we have

$$\langle -X^{-1} + Y^{-1}, X - Y \rangle \ge 0 \iff \operatorname{Tr}(XY^{-1}) + \operatorname{Tr}(YX^{-1}) \ge 2n \iff \sum \lambda_i(A) + \sum \frac{1}{\lambda_i(A)} \ge 2n,$$

where $A = XY^{-1}$ and $\lambda_i(A)$ are eigenvalues of A. Note that eigenvalues of A and the positive definite matrix $Y^{-\frac{1}{2}}XY^{-\frac{1}{2}}$ are identical. So since for any x > 0 one has $x + \frac{1}{x} \ge 2$, the proof of convexity of f is complete.

Also, note that $X \mapsto ||Xy||^2 - 1$ is convex for any fixed $y \in \mathbb{R}^n$. In fact, we know that $\nabla g(X) = Xyy^T + yy^TX$. So we need to show that for $X, Y \in \mathbb{S}^n_{++}$ we have

$$\langle \nabla g(X) - \nabla g(Y), X - Y \rangle \ge 0 \iff \langle (X - Y)yy^T + yy^T(X - Y), X - Y \rangle \ge 0.$$

So, we need to prove for $Z \in \mathbb{S}^n$ one has for the positive semi-definite $A = yy^T$

$$\langle ZA + AZ, Z \rangle \ge 0 \iff 2\operatorname{Tr}(ZAZ) \ge 0 \iff 2\operatorname{Tr}((ZA^{\frac{1}{2}})(A^{\frac{1}{2}}Z)) \ge 0,$$

which is immediate as $(ZA^{\frac{1}{2}})(A^{\frac{1}{2}}Z)$ is positive semi-definite.

3.1.22.

Let $f: \mathbb{R}^n \to \mathbb{R}$ with

$$f(x) = \log(\sum_{i=1}^{m} \exp\langle a^i, x \rangle),$$

where a^1, \dots, a^m are vectors in \mathbb{R}^n . Compute the Hessian of f and prove it is positive semi-definite matrix.

Proof: Note that $e^{f(x)} = \sum_{i=1}^{m} \exp\langle a^i, x \rangle$ and thus

$$e^{f(x)}\nabla f(x) = \sum_{i=1}^{m} \exp(\langle a^i, x \rangle) a^i.$$

So,

$$e^{f(x)}\nabla^2 f(x) + e^{f(x)}\nabla f(x)\nabla^T f(x) = \sum_{i=1}^m \exp(\langle a^i, x \rangle) a^i a^{iT},$$

and hence,

$$e^{f(x)}\nabla^2 f(x) = \sum_{i=1}^m \exp(\langle a^i, x \rangle) a^i a^{i^T} - e^{f(x)} \nabla f(x) \nabla^T f(x).$$

Let $t_i = \exp\langle a^i, x \rangle$, then

$$e^{2f(x)}\nabla^2 f(x) = \left(\sum_{k=1}^m t_k\right) \left(\sum_{i=1}^m t_i a^i a^{iT}\right) - \left(\sum_{i=1}^m t_i a^i\right) \left(\sum_{i=1}^m t_i a^i\right)^T.$$

Now let $\lambda_i = \frac{t_i}{\sum_{i=1}^m t_i}$, then $\lambda_i > 0$ and $\sum_{i=1}^m \lambda_i = 1$. Then

$$\nabla^2 f(x) = \left(\sum_{i=1}^m \lambda_i a^i a^{iT}\right) - \left(\sum_{i=1}^m \lambda_i a^i\right) \left(\sum_{i=1}^m \lambda_i a^i\right)^T.$$

Now $\nabla^2 f(x) \succeq 0$ if and only if

$$\begin{bmatrix} 1 & \sum_{i=1}^{m} \lambda_i a^{i^T} \\ \sum_{i=1}^{m} \lambda_i a^i & \sum_{i=1}^{m} \lambda_i a^i a^{i^T} \end{bmatrix} \succeq 0.$$

But the above matrix equals to

$$\sum_{i=1}^{m} \lambda_i \begin{bmatrix} 1 & a^{iT} \\ a^i & a^i a^{iT} \end{bmatrix}$$

which is clearly positive semi-definite.

3.1.23

Suppose $f : \mathbb{E} \to (\infty, +\infty]$ is essentially strictly convex, prove all distinct points x and y satisfy $\partial f(x) \cap \partial f(y) = \emptyset$. Deduce that f has at most one minimizer.

Proof: Let $s \in \partial f(x) \cap \partial f(y)$ for some $x, y \in \text{dom } \partial f$. Then $g := f + \langle s, . \rangle$ is an essentially strictly convex that satisfies $0 \in \partial g(x) \cap \partial g(y)$. Thus, without loss of generality, suppose s = 0 and thus x and y are minimizer to f. However, since f is convex all the points lying on the line segment [x, y] are also minimizers of f. Thus, $[x, y] \in \text{dom } \partial f$ and this is a contradiction as f is essentially strictly convex on $\text{dom } \partial f$.

3.1.25. Convex matrix functions

Consider a matrix C in \mathbb{S}^n_+ .

• For matrices $X \in \mathbb{S}_{++}^n$ and D in \mathbb{S}^n , use a power series expansion to prove

$$\frac{d^2}{dt^2} \operatorname{Tr}(C(X+tD)^{-1})|_{t=0} \ge 0.$$

- Deduce $X \in \mathbb{S}_{++}^n \mapsto \operatorname{Tr}(CX^{-1})$ is convex.
- Prove similarly the function $X \in \mathbb{S}^n \to \operatorname{Tr}(CX^2)$ and the function $X \in \mathbb{S}^n_+ \to -\operatorname{Tr}(CX^{\frac{1}{2}})$ are convex.
- One version of Hölder inequality states, for real p, q > 1 satisfying $p^{-1} + q^{-1} = 1$ and functions $u, v : \mathbb{R}_+ \to \mathbb{R}$,

$$\int uv \le \left(\int |u|^p\right)^{\frac{1}{p}} \left(\int |v|^q\right)^{\frac{1}{q}}$$

when the right hand side is well-defined. Use this to prove the gamma function Γ : $\mathbb{R}_{++} \to \mathbb{R}$ given by

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$$

is log-convex.

• Note that

$$(X+tD)^{-1} = X^{-\frac{1}{2}}(I+tX^{-\frac{1}{2}}DX^{-\frac{1}{2}})^{-1}X^{-\frac{1}{2}} = X^{-\frac{1}{2}}(I-tX^{-\frac{1}{2}}DX^{-\frac{1}{2}}+t^2(X^{-\frac{1}{2}}DX^{-\frac{1}{2}})^2 + O(t^3))X^{-\frac{1}{2}}.$$
 Thus,

$$\mathrm{Tr}(C(X+tD)^{-1}) = \mathrm{Tr}(CX^{-1}) - t\,\mathrm{Tr}(X^{-1}CX^{-1}D) + t^2\,\mathrm{Tr}(CX^{-1}DX^{-1}DX^{-1}) + O(t^3).$$

However,

$$\operatorname{Tr}(CX^{-1}DX^{-1}X^{-1}DX^{-1}) = \operatorname{Tr}(C^{\frac{1}{2}}X^{-1}DX^{-\frac{1}{2}}X^{-\frac{1}{2}}DX^{-1}C^{\frac{1}{2}}) = \operatorname{Tr}(AA^{T}) \ge 0,$$

where $A := C^{\frac{1}{2}}X^{-1}DX^{-\frac{1}{2}}$. Note that AA^T is positive semidefinite and thus has non-negative trace.

- Let $Y \in \mathbb{S}^n_{++}$ and let $g: t \in [0,1] \to \text{Tr}(C(X+t(Y-X))^{-1})$. Then due to part 1, g is convex and thus so is the function $X \in \mathbb{S}^n_{++} \mapsto \text{Tr}(CX^{-1})$.
- Note that

$$Tr(C(X+tD)^{2}) = Tr(C(X^{2}+t(DX+XD)+t^{2}D^{2})).$$

Thus,

$$\frac{d^2}{dt^2} \operatorname{Tr}(C(X+tD)^2)|_{t=0} = 2 \operatorname{Tr}(CD^2) = 2 \operatorname{Tr}(C^{\frac{1}{2}}DDC^{\frac{1}{2}}) \ge 0.$$

Also, for $X \in \mathbb{S}^n_{++}$,

$$Tr(C(X+tY)^{\frac{1}{2}}) =$$

3.1.26. Log-convexity

Given a convex set $C \subseteq \mathbb{E}$, we say that a function $f: C \to \mathbb{R}_{++}$ is log-convex if $\log f(.)$ is convex.

- Prove any log-convex function is convex.
- If a polynomial $p: \mathbb{R} \to \mathbb{R}$ has all real roots, prove 1/p is log-convex on any interval on which p is strictly positive.

Proof:

• Suppose that $f: C \to \mathbb{R}_{++}$ is log-convex. Then let $x, y \in C$ and $\lambda \in (0, 1)$, we need to show

$$f(\lambda x + (1-\lambda)y) \le \lambda f(x) + (1-\lambda)f(y)$$
 or equivalently $\log(f(\lambda x + (1-\lambda)y)) \le \log(\lambda f(x) + (1-\lambda)f(y))$.

However, since f is log-convex, $\log(f(\lambda x + (1 - \lambda)y)) \le \lambda \log f(x) + (1 - \lambda) \log f(y)$. Now notice that log is concave and so

$$\lambda \log f(x) + (1 - \lambda) \log f(y) \le \log(\lambda f(x) + (1 - \lambda)f(y)).$$

Thus the proof is complete.

• We show first that $p^{\frac{1}{n}}$ is concave. Let a, a_1, \dots, a_n be such that $p(x) = a \prod_{i=1}^n (x - a_i)$ and let $I = (\alpha, \beta)$ be any interval on which p is positive. Note that

$$\frac{d}{dt}p(t)^{\frac{1}{n}} = \frac{1}{n}p(t)^{\frac{1}{n}-1}p'(t),$$

and so,

$$\frac{d^2}{dt^2}p(t)^{\frac{1}{n}} = \frac{1}{n}(\frac{1}{n}-1)p(t)^{\frac{1}{n}-2}p'(t)^2 + \frac{1}{n}p(t)^{\frac{1}{n}-1}p''(t)$$
$$= \frac{1}{n^2}p(t)^{\frac{1}{n}-2}\left[(1-n)p'(t)^2 + np''(t)p(t)\right].$$

On the other hand, for $t \neq a_i$,

$$p'(t) = a\left(\sum_{i=1}^{n} \frac{1}{t - a_i}\right) p(t),$$

and.

$$p''(t) = a\left(-\sum_{i=1}^{n} \frac{1}{(t-a_i)^2}\right)p(t) + a\left(\sum_{i=1}^{n} \frac{1}{t-a_i}\right)^2 p(t).$$

Let $r_i := (t - a_i)^{-1}$ and thus we have

$$\frac{n^2}{p(t)^{2-\frac{1}{n}}}\frac{d^2}{dt^2}p(t)^{\frac{1}{n}} = a^2\left[(1-n)(\sum_{i=1}^n r_i)^2 + n(-\sum_{i=1}^n r_i^2 + (\sum_{i=1}^n r_i)^2)\right]p(t)^2.$$

However,

$$(1-n)(\sum_{i=1}^{n} r_i)^2 + n(-\sum_{i=1}^{n} r_i^2 + (\sum_{i=1}^{n} r_i)^2) = (\sum_{i=1}^{n} r_i)^2 - n\sum_{i=1}^{n} r_i^2 \le 0,$$

due to Cauchy-Schwartz inequality. Thus $p^{\frac{1}{n}}$ is concave and so is $\log p^{\frac{1}{n}}$ since \log is non-decreasing and concave. Thus $\log p$ is concave,

• Note that we have the following as a special case of *Hölder inequality*

$$\log \int_0^\infty u^{\lambda} v^{1-\lambda} dt \le \lambda \log \int_0^\infty u dt + (1-\lambda) \log \int_0^\infty v dt,$$

where $u, v : \mathbb{R}_{++} \to \mathbb{R}_{++}$ and $\lambda \in (0, 1)$. Now suppose $x, y \in \mathbb{R}_{++}$ and let

$$u(t) = t^x e^{-t}, v(t) = t^y e^{-t}.$$

Then the convexity of the Gamma function follows immediately.

2 The Value Function

3.2.1 Lagrangian sufficient conditions.

Prove the Lagrangian sufficient conditions:

Suppose λ is a Lagrangian multiplier for a feasible solution \bar{x} such that \bar{x} minimizes $L(.,\bar{\lambda})$ over \mathbb{E} . Then \bar{x} is an optimal solution.

Proof: Note that since $\bar{\lambda}$ is a Lagrangian multiplier we have $L(\bar{x}, \bar{\lambda}) = f(\bar{x})$. However,

$$f(\bar{x}) = L(\bar{x}, \bar{\lambda}) \le L(y, \bar{\lambda}) \le f(y) \quad \forall \text{ feasible solution } y.$$

Thus \bar{x} is an optimal solution.

3.2.2.

Use the Lagrangian sufficient conditions to the following problem s.

• a)

inf
$$x_1^2 + x_2^2 - 6x_1 - 2x_2 + 10$$

subject to $2x_1 + x_2 - 2 \le 0$
 $x_2 - 1 \le 0$
 $x \in \mathbb{R}^2$.

Proof: Let $y_1 = x_1 - 3$, $y_2 = x_2 - 1$ then

$$\inf y_1^2 + y_2^2$$
subject to
$$2y_1 + y_2 + 5 \le 0$$

$$y_2 \le 0$$

$$y \in \mathbb{R}^2.$$

If $y_2 = 0$, then the obvious minimum will be 25/4. So suppose that $y_2 < 0$ and so $\bar{\lambda}_2 = 0$. Now let $\bar{\lambda}_1 = 2$, then

$$L(y, \bar{\lambda}) = y_1^2 + y_2^2 + 4y_1 + 2y_2 + 10 = (y_1 + 2)^2 + (y_2 + 1)^2 + 5.$$

So, y = -(2, 1) minimizes $L(., \bar{\lambda})$. Since y is feasible and its objective value is 5 < 25/4, the optimal value is 5 with the optimal solution (1, 0).

 $\inf -2x_1 + x_2$ subject to $x_1^2 - x_2 \le 0$ $x_2 - 4 \le 0$ $x \in \mathbb{R}^2.$

Proof: If $x_2 = 4$ then the obvious minimum will be 0. So suppose that $x_2 < 4$ and then $\bar{\lambda}_2 = 0$,

$$L(x, \bar{\lambda}) = -2x_1 + x_2 + \bar{\lambda}_1(x_1^2 - x_2).$$

Now let $\bar{\lambda}_1 = 1$ and let $\bar{x} = (1, 1)$. Note that since

$$L(x, \bar{\lambda}) = x_1^2 - 2x_1 \ge -1,$$

and since $L(\bar{x}, \bar{\lambda}) = -1$. Thus $\bar{\lambda}$ is a Lagrangian multiplier \bar{x} and since \bar{x} minimizes $L(., \bar{\lambda})$, we conclude the optimum value is -1.

 $\inf x_1 + \frac{2}{x_2}$ subject to $-x_2 + \frac{1}{2} \le 0$ $-x_1 + x_2^2 \le 0.$

Proof: If $x_2 = \frac{1}{2}$ then the obvious inf will be $4 + \frac{1}{4}$. Now suppose that $x_2 > \frac{1}{2}$. Then $\bar{\lambda}_1 = 0$ and

$$L(x,\bar{\lambda}) = x_1 + \frac{2}{x_2} + \bar{\lambda}_2(-x_1 + x_2^2).$$

Now let $\bar{\lambda}_2 = 1$ then

$$L(x,\bar{\lambda}) = x_1 + \frac{2}{x_2} + \bar{\lambda}_2(-x_1 + x_2^2) = \frac{2}{x_2} + x_2^2 \ge 3.$$

Note that $\frac{2}{x_2} + x_2^2 = \frac{1}{x_2} + \frac{1}{x_2} + x_2^2 \ge 3$. Now let $\bar{x} = (1,1)$, then the objective value equals to 3 and thus the optimum value is 3.

3 The Fenchel Conjugate

3.1.7. Quadratics

For all matrices A in \mathbb{S}^n_{++} , prove the function $x \in \mathbb{R}^n \to x^T Ax/2$ is convex and calculate its conjugate. Use the order preserving property to the conjugacy operation to prove

$$A \succeq B \iff B^{-1} \succeq A^{-1} \text{ for all } A \text{ and } B \text{ in } \mathbb{S}^n_{++}.$$

Proof: Note that for $f(x) = \frac{1}{2}x^TAx$ we have $\nabla^2 f = A$ and thus f is convex. However, $\nabla f(x) = Ax$ and hence $\sup_x \langle x, y \rangle - f(x)$ is realized at $x = A^{-1}y$. Thus, $f^*(x) = \frac{1}{2}x^TA^{-1}x$. Now if $A \succeq B$ then $f_A \geq f_B$ and hence $f_B^* \geq f_A^*$.

3.1.3.

Verify the conjugates of the log barrier Ib and Id claimed in the text.

Proof: Let $f(x) = -\log x$, then

$$f^*(y) = \sup_{x \in \mathbb{E}} \langle x, y \rangle + \log x.$$

However, $(\langle x,y\rangle + \log x)'' = \frac{-1}{x^2} < 0$. Now since $y + \frac{1}{x}$. Hence, $f^*(x) = -1 + f(-x)$. Now since $Id^*(X) = \sup_{Y \succ 0} \langle X, Y \rangle + \log \det Y$. Then if $X \not\prec 0$ then $\langle X, Y \rangle + \log \det Y$

Now since $Id^*(X) = \sup_{Y \succ 0} \langle X, Y \rangle + \log \det Y$. Then if $X \not\prec 0$ then $\langle X, Y \rangle + \log \det Y$ is unbounded above as for $Xx = \lambda x$ with $\lambda \ge 0$ we have $\langle X, xx^T + I \rangle + \log \det(xx^T + I) = \lambda ||x||^2 + 1 + ||x||^2 + \text{Tr}(X)$. Now let $||x|| \to +\infty$. Hence, $Id^*(X) = \infty$. So suppose that $X \prec 0$. Then since $\langle X, Y \rangle + \log \det(Y)$ is concave with gradient $Y^{-1} + X$ or $Y = -X^{-1}$. Now

$$\langle -X^{-1}, X \rangle + \log \det(-X^{-1}) = -n - \log \det(-X).$$

3.3.4 Self Conjugacy

Consider functions $f: \mathbb{E} \to (\infty, \infty]$.

- Prove $f^* = f$ if and only if $f(x) = ||x||^2/2$ for all points x in \mathbb{E} .
- Find two distinct functions f satisfying $f(-x) = f^*(x)$ for all x in \mathbb{E} .

Proof:

- Suppose that $f(x) = \frac{1}{2}||x||^2$. Then $f^*(x) = \sup\langle y, x \rangle \frac{1}{2}||x||^2$. Now note that $\langle y, x \rangle \frac{1}{2}||x||^2$ is strictly concave and $\nabla(\langle y, x \rangle \frac{1}{2}||x||^2) = y x$. Thus, $f^*(y) = \frac{1}{2}||y||^2$. Conversely, suppose that $f = f^*$. Then since f^* is convex, f is convex as well. If dom $f = \emptyset$, then $f^* \equiv -\infty$ which is a contradiction as $f = f^*$ and f never takes the value $-\infty$. So dom $f \neq \emptyset$. Let $x \in \text{dom } f$, then $f(x) + f(y) \geq \langle x, y \rangle$ for all $y \in \text{dom } f$. Also, if $y \in \partial f(x)$, then $f(x) + f(y) = \langle x, y \rangle$ and hence $y \in \partial f^*(x)$ and thus $y \in \partial f(x)$. Now since $f(x) + f(y) \geq \langle x, y \rangle$ we obtain $f(x) \geq \frac{1}{2}\langle x, x \rangle$. Now let $x \in \mathbb{E}$ and $y \in \partial f(x)$ then $\langle x, y \rangle \geq \frac{1}{2}(||x||^2 + ||y||^2)$. Hence, $f(x) = \frac{1}{2}||x||^2$. This completes the proof.
- Let $f(x) = -\log x$. Note that $f^*(y) = -1\log(-y) = -1 + f(-y)$. Thus, $f^*(x) = -1 + f(-x)$. Let $g(x) = f(x) \frac{1}{2}$. Then $g^*(x) = g(-x)$.

Question 7. Maximum entropy example

• Prove the function g defined by

$$g(z) = \inf_{x \in \mathbb{R}^{m+1}} \left\{ \sum_{i} \exp^*(x_i) : \sum_{i} x_i = 1, \sum_{i} x_i a^i = z \right\}$$

is convex.

• For any point $y \in \mathbb{R}^{m+1}$, prove

$$g^*(y) = \sup_{x \in \mathbb{R}^{m+1}} \left\{ \sum_i (x_i \langle a^i, y \rangle - \exp^*(x_i)) : \sum_i x_i = 1 \right\}.$$

- Apply Exercise 27 in Section 3.1 to deduce the conjugacy formula 3.3.2.
- Compute the conjugate of the function of $x \in \mathbb{R}^{m+1}$,

$$\begin{cases} \sum_{i} \exp^*(x_i) & \text{if } \sum_{i} x_i = 1 \\ +\infty & \text{otherwise.} \end{cases}$$

Proof:

• Let $\epsilon > 0$ be arbitrary and fix $\lambda \in [0,1]$. We show for all $z, z' \in \mathbb{R}^m$

$$g(\lambda z + (1 - \lambda)z') \le \lambda g(z) + (1 - \lambda)g(z') + 2\epsilon.$$

Let $\tilde{x_i}$ be such that

$$\sum \exp^*(\tilde{x}_i) \le g(z) + \epsilon.$$

Similarly, let \tilde{y}_i be such that

$$\sum \exp^*(\tilde{y_i}) \le g(z') + \epsilon.$$

Let $\tilde{z}_i = \lambda \tilde{x}_i + (1 - \lambda)\tilde{y}_i$, so

$$g(\tilde{z}_i) \le \sum \exp^*(\tilde{z}_i) \le \lambda g(z) + (1 - \lambda)g(z') + 2\epsilon.$$

3.3.20. Pointed cones and bases

Consider a closed convex cone K in \mathbb{E} . A base for K is a convex set C with $0 \notin cl(C)$ and $K = \mathbb{R}_+C$. Prove the following properties are equivalent

- (a) K is pointed, i.e. $K \cap -K = \{0\}$.
- (b) $cl(K^{\circ} K^{\circ}) = \mathbb{E}$.
- (c) $K^{\circ} K^{\circ} = \mathbb{E}$.
- (d) K° has non-empty interior.
- (e) There exists a vector y in \mathbb{E} and real $\epsilon > 0$ with $\langle y, x \rangle \geq \epsilon ||x||$ for all points x in K.
- (f) K has a bounded base.

Proof:

• $(a) \Rightarrow (b)$. Suppose $cl(K^{\circ} - K^{\circ}) \neq \mathbb{E}$ and let $x \in \mathbb{E} \setminus cl(K^{\circ} - K^{\circ})$. Then due to Hyperplane separation theorem, there exists $0 \neq \phi \in \mathbb{E}$ and $\alpha \in \mathbb{R}$ such that

$$\langle x, \phi \rangle > \alpha \ge \langle z_1 - z_2, \phi \rangle \quad \forall z_1, z_2 \in K^{\circ}.$$

Thus for all $z \in K^{\circ}$, $\langle z, \phi \rangle$ is bounded above and thus $\langle z, \phi \rangle \leq 0$ as K° is a cone. On the other hand, due to the above equation, $\langle -z, \phi \rangle$ is bounded as well for all $z \in K^{\circ}$ and so $\langle z, -\phi \rangle \leq 0$ for all $z \in K^{\circ}$. So, ϕ and $-\phi$ both belongs to $K^{\circ\circ}$ which equals to K. Thus, since K is pointed we conclude that $\phi = 0$. This contradiction completes the proof.

- $(b) \Rightarrow (c)$. Note that $K^{\circ} K^{\circ}$ is a subspace. In fact, it is clearly a convex cone and since $-(K^{\circ} K^{\circ}) = K^{\circ} K^{\circ}$ and it contains 0, it is also a subspace. Thus, since every subspace is closed, $K^{\circ} K^{\circ} = cl(K^{\circ} K^{\circ})$.
- $(c) \Rightarrow (d)$. We already now that every nonempty convex set in \mathbb{E} has a nontrivial relative interior. Now note that

$$\operatorname{aff}(K^{\circ}) = \operatorname{aff}(-K^{\circ}) = \operatorname{aff}(K^{\circ} - K^{\circ}).$$

Thus, since K° has a nonempty interior and its affine hull is \mathbb{E} , we conclude that K° has a nonempty interior.

• $(d) \Rightarrow (e)$. Let $y \in (K^{\circ})$, and $\epsilon > 0$ such that $y + td \in K^{\circ}$ for all $t \in [-\epsilon, \epsilon]$ and any $d \in \mathbb{E}$ with ||d|| = 1. So, we have

$$\langle y + td, x \rangle \le 0 \ \forall t \in [-\epsilon, \epsilon], \forall ||d|| = 1, \forall x \in K,$$

or equivalently for $0 \neq x \in K$,

$$|t\langle d, x\rangle| \le \langle -y, x\rangle \Rightarrow |t\langle d, \frac{x}{||x||}\rangle| \le \langle -y, \frac{x}{||x||}\rangle.$$

Now let $d = \frac{x}{||x||}$ in above, and let $t = \epsilon$ we realize that

$$\epsilon \le \langle -y, \frac{x}{||x||} \rangle.$$

Thus, $\epsilon||x|| \leq \langle -y, x \rangle$ holds true for all $x \in K$.

• $(e) \Rightarrow (f)$. Now suppose $y \in \mathbb{E}$ and $\epsilon > 0$ are such that

$$\langle y, x \rangle \ge \epsilon ||x|| \ \forall x \in K.$$

Define

$$C = \{x \in K : \langle x, y \rangle = 1\}.$$

First note that C is bounded, as if $x \in C$, then $\epsilon ||x|| \leq 1$ and so $||x|| \leq \frac{1}{\epsilon}$. Also, note that clearly C is closed and also $0 \notin C$. Last, note that $\mathbb{R}_+C = K$ as in fact for $0 \neq x \in K$, $\langle y, x \rangle \geq \epsilon ||x|| > 0$ and thus $\langle y, x \rangle > 0$ and so there exists $\lambda > 0$ such that $\langle y, \lambda x \rangle = 1$. Thus, $\lambda x \in C$.

• $(f) \Rightarrow (a)$. Let C be a bounded base for K and suppose $a \in K \cap -K$. Then there exists $\lambda, \mu \in \mathbb{R}_+$ such that $a = \lambda c_1 = -\mu c_2$ for some $c_1, c_2 \in C$. Now, if $a \neq 0$ then λ and μ are both nonzero and thus $0 = \frac{\lambda}{\lambda + \mu} c_1 + \frac{\mu}{\mu + \lambda} c_2 \in C$ as C is convex. But this contradicts the fact that $0 \notin cl(C)$. So, K is pointed.