

Introduction > Methods > Results > Conclusions

- Introduction
 - CARB and EPA
 - Greenhouse Emission
- Methods
 - Real-World Vehicle
 - Component Analysis
- Results
 - Component Modeling
 - FastSim Modeling
 - Real-World Data
- Conclusions
 - Next Phase Planning

Regulations

Introduction Methods Results Conclusions

- California Air Resources Board (CARB)
 - Established in 1967

- Environmental Protection Agency (EPA)
 - Established in 1970

Greenhouse Emissions

Introduction Methods Results Conclusions

- ICE emissions
 - ∘ HC, CO, NO_x
 - ° CO₂ majority
- Emission by sector
 - Transportations

Total U.S. Greenhouse Gas Emissions by Economic Sector in 2019

Greenhouse Emissions

Introduction Methods Results **Conclusions ICE** emissions Total U.S. Greenhouse Gas Emissions HC, CO, NO_v mic Sector in 2019 CO₂ - majority Emission by sector Remember that tree need **Transportations Greenhouse Gas Emis** CO₂ and we need O₂ **Transportation** 29% Industry 23%

5

Real-World Vehicle

Introduction Methods Results **Conclusions**

6

- Porsche Taycan
 - Innovative Features.
 - 800 Volt Battery System
 - Front axle and rear axle motors.
 - Two speed transmission
 - Major Specifications
 - Curb Mass: 4567 lb
 - Cv Value: 0.22
 - City Range: 460 512 km
 - Highway Range: 385 km
 - Gross Battery Capacity: 93.4 kWh
 - Net Battery Capacity: 83.7 kWh
 - Performance Specifications
 - 0 60 mph: 5.1 s
 - Power Output: 402 hp
 - Top Speed: 143 mph

Component Analysis: Battery

Introduction Methods Results Conclusions

Battery Voltage

$$V_b = N_{cells, s} \times V_{cell, max}$$

$$V_b = 198 \times 4.2V = 831.6V$$

Coulometric Capacity

$$C_c = N_{packs,p} \times E_{charge}$$

$$C_c = 2 \times 64.5Ah = 129Ah$$

Battery Capacity

$$E_b = C_c \times V_{nom} \times N_{cells,s}$$

$$E_h = 129Ah \times 3.7V \times 198 = 94.5kWh$$

Current Draw (Ah)

$$\Delta C_c = \int_{t_0}^{t_f} i(t) dt$$
, where $i(t) = 0.295 \times velocity$

Component Analysis: Motor

Introduction Methods Results **Conclusions**

2 PSM

Power: 420 kW

Torque: 650 Nm

$$T_m = X_{\theta_m} \times \frac{P_m}{w_m}$$

$$P_{m} = X_{\theta_{m}} \times P_{m}^{*}$$

Component Analysis: Power Electronics

Introduction Methods Results Conclusions

- Electrical Vehicle Manager
 - Driving range calculations
 - High-voltage battery charging management
 - Energy flow management
 - Brake booster control

Interaction between Driver and ECU

Component Analysis: Drivetrain

Introduction Methods Results Conclusions

- Transmission: 2-speed
 - 1st == 15:1
 - ∘ 2nd == 8:1

$$\frac{W_{out, 1}}{W_{in, 1}} = 15:1$$

$$\frac{W_{out, 2}}{W_{in, 2}} = 8:1$$

$$W_{rad} = \frac{v}{r}$$

Component Modeling: Battery

Introduction Methods Results Conclusions

- Data found during research¹
- DC Fast Charging

1. https://insideevs.com/news/512344/porsche-taycan-fast-charging-analysis/

Component Modeling: Battery

Introduction Methods Results Conclusions

- HWFET Drive cycle used to get the change in current
 - Current is proportional to velocity at a given point in time

$$i(t) = 0.295 \times velocity$$

Component Modeling: Battery

Introduction Methods Results Conclusions

- HWFET Drive-cycle used to model current vs. time
- Integrated to get cumulative sum of current used
- Used to calculate the SOC over the Drive-cycle
- Assume:
 - **Constant Voltage**

$$\Delta C_c = \int_{t_0}^{t_f} i(t) dt$$
, where $i(t) = 0.295 \times velocity$

Component Modeling: Motor

Introduction Methods Results **Conclusions**

Assumptions:

$$\cdot$$
 $X_{\theta} = 100\%$

$$\circ$$
 P_m= 401 kW

$$^{\circ}$$
 W^{*} = 6,500 RPM

$$T_m = X_{\theta_m} \times \frac{P_m}{w_m}$$

$$P_m = X_{\theta_m} \times P_m^*$$

Component Modeling: Drivetrain

Introduction Methods Results Conclusions

Transmission Modeling using Python

Using the top speed of the transmission and the gear ratios to derive gear

speed

Component Modeling: One Cohesive Vehicle

Methods Results Conclusions Introduction Battery Electric Motor Differential Front Wheels Forward Looking ω_m, T_g T_w, ω_w T_m, I_m **Battery to Wheels** E_b Front Axle **Backward Looking** Wheels to Battery Rear Axle E_b T_m, I_m Electric

Motor

Battery

Component Modeling: FastSim

Introduction Methods Results Conclusions

- Tesla Model S60 2WD
 - HWFET drive cycle
 - SOC vs Time
 - Most closely represents Taycan

D.	atte	P1/	20	4 6	ha	rais	20
0	3116	···	all	u	-110	ıuıı	ıu

Range EPA	210 miles (338 km)
Range NEDC	233 miles (375 km)
Range WLTP	N/A
Battery pack capacity	60 kWh
Max charging power (AC)	22 kW
Max charging power (DC)	105 kW
Avg. charging speed (DC)	~257 mph

Powertrain

Accel. 0-60 mph	5.5 s
Top speed	130 mph (210 km/h)
Engine power	302 hp (225 kW)
Engine torque	317 lb-ft (430 Nm)
Efficiency	29 kWh/100 miles
Drive type	RWD
Motor type	AC-induction

2016 TESLA Model S60 2WD

Real-World Data

Introduction Methods Results Conclusions

Electrical Consumption at various scenarios.

- Low = non-aggressive
- Med = normal
- High = aggressive
- Extra-high = aggressive load
 - Towing, hills

Consumption/Emissions WLTP				
CO2-Emission Combined	0-0 g/km			
Electrical Consumption low	22.6 - 19.7 kWh/100km			
Electrical Consumption medium	22.0 - 19.1 kWh/100km			
Electrical Consumption high	21.6 - 18.2 kWh/100km			
Electrical Consumption extra-high	21.3 - 22.1 kWh/100km			
Electrical Consumption combined	25.4 - 20.4 kWh/100km			
Electrical Consumption city	22.3 - 19.3 kWh/100km			

Real-World Data

Introduction Methods Results Conclusions

- Vehicle's Ability to be charged from up to 80% in under 25 minutes.
- Range at given State of Charge.

Real-World Data

Introduction Methods Results Conclusions

 A plot of Power and Torque vs Speed shows a maximum power of 420 kW and maximum Torque of 650 Nm.

 Base Speed shows to be around 6500 RPM.

Next Phase Planning

Introduction Methods Results Conclusions

Battery Electric Motor ω_m, T_g Differential T_w, ω_w Front Wheels T_m, I_m $I_{\frac{d}{2}}$ Need more information

- Real-world data
 - Simulated date
 - make wild assumptions
- Backward Looking
 - Complete comprehensive

