Exercise 1.

1. The function $t \mapsto \frac{t^2}{(t-1)(1+t^5)}$ is continuous on $(1,+\infty)$ hence I is improper at 1^+ and at $+\infty$. We show that I diverges at 1^+ :

$$\frac{t^2}{(t-1)(1+t^5)} \underset{t\to 1^+}{\sim} \frac{1}{2(t-1)} > 0$$

We know that

$$\int_{1}^{42} \frac{\mathrm{d}t}{t-1}$$

diverges (Riemann at a finite point with $\alpha = 1$) hence by the equivalent test, I diverges at 1^+ . Hence I diverges.

2. The function $t \mapsto \frac{t^2}{\left(1+t^4\right)\ln(2+t)}$ is continuous on $[0,+\infty)$, hence J is improper at $+\infty$ only. Notice that:

$$\forall t \in \mathbb{R}_+, \ 0 \le \frac{t^2}{(1+t^4)\ln(2+t)} \le \frac{t^2}{t^4\ln(2+t)} \le \frac{1}{t^2\ln(2+t)} \le \frac{1}{t^2\ln(2)}.$$

We know that $\int_{42}^{+\infty} \frac{dt}{t^2}$ (Riemann at $+\infty$ with $\alpha=2>1$) hence, by the Comparison Test, J converges.

3. The function $t \mapsto \sin(1/t^2)$ is continuous on $(0, +\infty)$ hence K is improper at 0^+ and $+\infty$.

• Convergence at $+\infty$:

$$\sin\left(\frac{1}{t^2}\right) \underset{t \to +\infty}{\sim} \frac{1}{t^2} > 0$$

and since $\int_{42} +\infty \frac{\mathrm{d}t}{t^2}$ converges at $+\infty$ (Riemann at $+\infty$ with $\alpha=2>1$) we conclude, by the Equivalent Test, that K converges at $+\infty$.

• Convergence at 0⁺: observe that

$$\forall t \in \mathbb{R}_+^*, \ 0 \le \left| \sin \left(\frac{1}{t^2} \right) \right| \le 1$$

and since the integral $\int_0^{42} 1 dt$ converges at 0^+ we conclude, by the Comparison Test, that K converges absolutely at 0^+ , hence K converges at 0^+ .

We conclude that K converges.

Exercise 2.

1. Define

$$\varphi: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
$$(x,y) \longmapsto (x+\alpha y,y).$$

Clearly φ is a linear map, with matrix

$$[\varphi]_{\text{std}} = \begin{pmatrix} 1 & \alpha \\ 0 & 1 \end{pmatrix}$$

and we have

$$\forall (x,y) \in \mathbb{R}^2, \ N(x,y) = \|\varphi(x,y)\|_{\infty}.$$

Moreover, φ is invertible since $\det \varphi = 1 \neq 0$. We hence conclude that N is a norm on \mathbb{R}^2 . Let B_N be the closed unit ball of N and B_∞ be the closed unit ball of $\|\cdot\|_{\infty}$. We know that

$$B_N = \varphi^{-1}(B_\infty)$$

and we'll use this relation to plot B_N :

$$\left[\varphi^{-1}\right]_{\mathrm{std}} = \begin{pmatrix} 1 & -\alpha \\ 0 & 1 \end{pmatrix}$$

We need the image of two non-collinear vertices of B_{∞} by φ^{-1} to recover B_N :

$$\varphi^{-1}(1,1) = (1-\alpha,1),$$
 $\varphi^{-1}(1,-1) = (1+\alpha,-1),$

See Figure 1 for the representation B_N in the three cases $\alpha < 0$, $\alpha = 0$ and $\alpha > 0$.

Figure 1. Representation of the closed unit ball of the norm N of Exercise 2 ($\alpha > 0$ on the left, $\alpha = 0$ in the middle, and $\alpha < 0$ on the right)

2. a) The norm $\|\cdot\|_1$ is defined by:

$$\|\cdot\|_1 : E \longrightarrow \mathbb{R}_+$$

$$f \longmapsto \int_0^{\pi/2} |f(t)| \, \mathrm{d}t.$$

b) The distance between f and s is given by:

$$d = \|f - s\|_1$$

and we compute it as follows:

$$d = \int_0^{\pi/2} |t - \sin(t)| dt$$
$$= \int_0^{\pi/2} t - \sin(t) dt$$
$$= \frac{\pi^2}{8} - 1.$$

since $\forall t \in \mathbb{R}_+, \sin(t) \le t$

3. The correct statement is:

$$\forall r > 0, \ \overline{B'_r} \subset \overline{B_{2r}}.$$

Proof. Let r > 0.

Let $u \in \overline{B'_r}$, i.e., $u \in E$ and $\|u\|' \le r$. Hence $2\|u\|' \le 2r$, and since $\|u\| \le 2\|u\|'$ we conclude that $\|u\| \le 2r$, hence $u \in \overline{B'_{2r}}$. Hence $\overline{B'_r} \subset \overline{B_{2r}}$.

Exercise 3.

Part I

1. The function $x \mapsto xe^{-\lambda x}$ is continuous on \mathbb{R}_+ hence I is improper at $+\infty$. Let $A \in \mathbb{R}_+^*$. Then:

$$\int_0^A x e^{-\lambda x} dx = \left[-\frac{1}{\lambda} x e^{-\lambda x} \right]_{x=0}^{x=A} + \frac{1}{\lambda} \int_0^A e^{-\lambda x} dx \qquad by \text{ an integration by parts}$$

$$= -\frac{A}{\lambda} e^{-\lambda A} + \frac{1}{\lambda} \left[-\frac{1}{\lambda} e^{-\lambda x} \right]_{x=0}^{x=A}$$

$$= -\frac{A}{\lambda} e^{-\lambda A} - \frac{1}{\lambda^2} e^{-\lambda A} + \frac{1}{\lambda^2} \underset{A \to +\infty}{\longrightarrow} 0 + 0 + \frac{1}{\lambda^2}$$

Hence I converges and $I = 1/\lambda^2$.

2. a) For $x \ge 1$ one has $x^2 \ge x$ hence $-x^2 \le -x$ and we hence conclude:

$$\forall x \in [1, +\infty), \ 0 \le e^{-x^2} \le e^{-x}$$

We know that $\int_0^{+\infty} e^{-x} dx$ converges at $+\infty$ hence we conclude, by the Comparison Test, that G converges.

b) The integral J is only improper at $+\infty$. Let $A \in \mathbb{R}_+^*$. Then, using the substitution $u = \frac{x}{\sqrt{2}\sigma}$ yields:

$$\int_0^A \exp\left(-\frac{x^2}{2\sigma^2}\right) dx = \int_0^{A/\sqrt{2}\sigma} e^{-u^2} \sqrt{2}\sigma du$$

$$\xrightarrow[A \to +\infty]{} \sqrt{2}\sigma G = \frac{\sqrt{2\pi}\sigma}{2}$$

c) The improper integral is only improper at $+\infty$. Now for $X \in \mathbb{R}_+^*$,

$$\begin{split} \int_0^X x^2 \exp\left(-\frac{x^2}{2\sigma^2}\right) \, \mathrm{d}x &= \int_0^X x \times x \exp\left(-\frac{x^2}{2\sigma^2}\right) \, \mathrm{d}x \\ &= \left[-x\sigma^2 \exp\left(-\frac{x^2}{2\sigma^2}\right)\right]_{x=0}^{x=X} + \sigma^2 \int_0^X \exp\left(-\frac{x^2}{2\sigma^2}\right) \\ &= -X\sigma^2 \exp\left(-\frac{X^2}{2\sigma^2}\right) + \sigma^2 \int_0^X \exp\left(-\frac{x^2}{2\sigma^2}\right) \\ &\overset{\longrightarrow}{\longrightarrow} \sigma^2 \int_0^{+\infty} \exp\left(-\frac{x^2}{2\sigma^2}\right) &= \frac{\sigma^3 \sqrt{2\pi}}{2} \end{split}$$

d) The improper integral K is improper at $+\infty$ and at $-\infty$. We already showed that K is convergent at $+\infty$. Since the function $x \mapsto x^2 \exp\left(-\frac{x^2}{2\sigma^2}\right)$ is even, we conclude that K is also convergent at $-\infty$ and that

$$K = 2 \int_0^{+\infty} x^2 \exp\left(-\frac{x^2}{2\sigma^2}\right) dx = \sigma^3 \sqrt{2\pi}.$$

Part II

1. Since ϕ is continuous and positive on \mathbb{R}_+ , the function $x \mapsto \phi(x) \ln(\phi(x))$ is well-defined and continuous on \mathbb{R}_+ , hence the improper integral H_1 is improper at $+\infty$. For $x \in \mathbb{R}_+$,

$$\phi(x)\ln(\phi(x)) = \lambda e^{-\lambda x}(\ln(\lambda) - \lambda x) = \lambda \ln(\lambda)e^{-\lambda x} - \lambda^2 x e^{-\lambda x}.$$

We know that the following improper integrals converge (and we even know their values):

$$\int_0^{+\infty} \lambda \ln(\lambda) e^{-\lambda x} dx = \ln(\lambda) \quad \text{and} \quad \int_0^{+\infty} \lambda^2 x e^{-\lambda x} = \lambda^2 I = 1.$$

Hence H_1 is convergent and

$$H_1 = 1 - \ln(\lambda).$$

2. Since ϕ is continuous and positive on \mathbb{R} , the function $x \mapsto \phi(x) \ln(\phi(x))$ is well-defined and continuous on \mathbb{R} , hence the improper integral H_2 is improper at $-\infty$ and $+\infty$. For $x \in \mathbb{R}$,

$$\phi(x)\ln\bigl(\phi(x)\bigr) = \frac{1}{\sqrt{2\pi\sigma^2}}\exp\left(-\frac{x^2}{2\sigma^2}\right)\left(-\frac{1}{2}\ln\bigl(2\pi\sigma^2\bigr) - \frac{x^2}{2\sigma^2}\right)$$

We know that the following improper integrals converge (and we even know their values):

$$J = \int_0^{+\infty} \exp\left(-\frac{x^2}{2\sigma^2}\right) dx = \frac{\sqrt{2\pi}\sigma}{2} \quad \text{and} \quad K = \int_0^{+\infty} x^2 \exp\left(-\frac{x^2}{2\sigma^2}\right) dx = \frac{\sigma^3\sqrt{2\pi}\sigma}{2}$$

hence K converges at $+\infty$. Since the function we're integrating is even, K is also convergent at $-\infty$ and:

$$H_2 = \frac{\ln(2\pi\sigma^2)}{2\sqrt{2\pi\sigma^2}} 2J \frac{1}{2\sigma^2\sqrt{2\pi\sigma^2}} K = \frac{1}{2}\ln(2\pi\sigma^2) + \frac{1}{2} = \frac{\ln(2\pi\sigma^2) + 1}{2}.$$