Uma Introdução aos Sistemas Dinâmicos Discretos

Agenor Gonçalves Neto *

São Paulo, 2020

Sumário

1	Cor	aceitos Elementares	1
2	2 Família Quadrática		2
	2.1	Estudo Inicial	3
	2.2	Conjuntos de Cantor	3
	2.3	Caos	5
	2.4	Conjugação Topológica	6
	2.5	Dinâmica Simbólica	8
	2.6	Matriz de Transição	10
	2.7	Bifurcação	12
3	3 Teorema de Sharkovsky		16
4	4 Teorema de Singer		19
\mathbf{R}_{i}	Referêncies		

1 Conceitos Elementares

De maneira suficiente para os nossos objetivos, definimos um sistema dinâmico como uma função $f:X\to X$, onde X é um espaço métrico. Usualmente, X será um subconjunto de $\mathbb R$ com a distância usual. Dado $x\in X$, nosso objetivo é estudar as propriedades da sequência definida recursivamente por

$$f^{0}(x) = x$$
 e $f^{k}(x) = f(f^{k-1}(x))$

para todo $k \ge 1$. Para isso, vamos iniciar com algumas definições que estarão presentes durante todo o texto.

Se $p \in X$ e f(p) = p, então p é um ponto fixo de f. Se $f^n(p) = p$ para algum $n \ge 1$, então p é um ponto periódico de f de período n. Se $f^n(p) = p$ para algum $n \ge 1$ e $f^k(p) \ne p$ para todo $1 \le k < n$, então p é um ponto periódico f de período primo n. O conjunto dos pontos

^{*}Graduando em Bacharelado em Matemática (IME-USP) orientado pelo Prof. Salvador Addas Zanata (IME-USP).

periódicos de f será denotado por Per(f) e o conjunto dos pontos periódicos de f de período primo n será denotado por $Per_n(f)$.

Se $x \in X$, então $\mathcal{O}(x) = \{f^k(x) : k \geq 0\}$ é a órbita de x. Se $p \in \operatorname{Per}_n(f)$, então $\mathcal{B}(p) = \{x \in X : \lim_{k \to \infty} f^{kn}(x) = p\}$ é o conjunto estável de p. Por fim, o conjunto $\mathcal{B}(\infty) = \{x \in X : \lim_{k \to \infty} |f^k(x)| = \infty\}$ é o conjunto estável do infinito.

A Proposição 1.1 nos fornece uma maneira útil para verificar se uma função contínua definida num intervalo compacto possui ponto fixo.

Proposição 1.1. Seja $f:[a,b] \to \mathbb{R}$ uma função contínua. Se $f([a,b]) \subset [a,b]$ ou $f([a,b]) \supset [a,b]$, então f possui ponto fixo.

Demonstração. Considere a função contínua $g:[a,b]\to\mathbb{R}$ dada por g(x)=f(x)-x. Em ambos os casos é possível verificar, pelo Teorema do Valor Intermediário (TVI), que existe $p\in[a,b]$ tal que g(p)=0.

Se a função for de classe C^1 , podemos conhecer o comportamento dos pontos numa vizinhança de um ponto fixo cuja derivada em módulo é diferente de 1.

Teorema 1.2. Sejam $f: \mathbb{R} \to \mathbb{R}$ uma função de classe C^1 e $p \in Per_n(f)$.

- 1. Se $|Df^n(p)| < 1$, então existe uma vizinhança de p contida em $\mathcal{B}(p)$.
- 2. Se $|Df^n(p)| > 1$, então existe uma vizinhança V de p com a seguinte propriedade: se $x \in V \setminus \{p\}$, então $f^{kn}(x) \notin V$ para algum $k \geq 1$.

Demonstração.

1. Sendo Df^n contínua, existe uma vizinhança V de p tal que $|Df^n(V)| < \lambda$ para algum $\lambda < 1$. Pelo Teorema do Valor Médio (TVM), se $x \in V$, então $|f^n(x) - p| < \lambda |x - p|$. Por indução, $|f^{kn}(x) - p| < \lambda^k |x - p|$ para todo $k \ge 1$ e, portanto, $\lim_{k \to \infty} f^{kn}(x) = p$.

2. Exercício.

Definição 1.3. Sejam $f: \mathbb{R} \to \mathbb{R}$ uma função de classe \mathcal{C}^1 e $p \in \operatorname{Per}_n(f)$.

- i. Se $|Df^n(p)| < 1$, então p é um ponto atrator.
- ii. Se $|Df^n(p)| > 1$, então p é um ponto repulsor.

A Definição 1.3, que segue naturalmente do Teorema 1.2, pode ser estendida para órbitas de pontos periódicos. De fato, pela Regra da Cadeia, é possível verificar que se um ponto é atrator/repulsor, então todos os pontos de sua órbita também são atratores/repulsores e, nesse caso, dizemos que ela é uma órbita periódica atratora/repulsora.

2 Família Quadrática

Nessa seção, consideraremos a família de funções $h_{\mu}: \mathbb{R} \to \mathbb{R}$ dadas por $h_{\mu}(x) = \mu x(1-x)$, onde $\mu > 1$ é um parâmetro real. Essa família de funções é conhecia como família quadrática. Denotaremos a função h_{μ} simplesmente por h. Vamos estudar alguns dos principais fenômenos de sistemas dinâmicos através da família quadrática.

2.1 Estudo Inicial

Iniciamos o estudo da família quadrática observando que h possui dois pontos fixos.

Proposição 2.1. Se
$$\mu > 1$$
, então $h(0) = 0$ e $h(p_{\mu}) = p_{\mu}$, onde $p_{\mu} = \frac{\mu - 1}{\mu}$.

Demonstração. Exercício.

Podemos restringir o estudo da dinâmica de h ao intervalo [0,1], pois conhecemos o comportamento dos pontos que não pertencem à ele.

Proposição 2.2. Se $\mu > 1$, então $\lim_{k\to\infty} h^k(x) = -\infty$ para todo $x \in (-\infty,0) \cup (1,\infty)$.

Demonstração. Basta observar que a sequência x, h(x), $h^2(x)$, ... é estritamente decrescente e ilimitada quando $x \in (-\infty, 0)$.

A Proposição 2.3, que pode visualizada graficamente, nos mostra que a dinâmica de h é simples para valores baixos de μ .

Proposição 2.3. Se $\mu \in (1,3)$, então

- 1. $0 \text{ \'e} \text{ um ponto repulsor } e p_{\mu} \text{ \'e} \text{ um ponto atrator.}$
- 2. $\lim_{k\to\infty} h^k(x) = p_\mu \text{ para todo } x \in (0,1).$

Demonstração. Exercício.

Desse modo, a dinâmica de h está completamente determinada quando $\mu \in (1,3)$. De fato, $\mathcal{B}(0) = \{0,1\}, \, \mathcal{B}(p_{\mu}) = (0,1) \, e \, \mathcal{B}(\infty) = (-\infty,0) \cup (1,\infty)$.

2.2 Conjuntos de Cantor

Vamos estudar a dinâmica de h para $\mu > 4$. Inicialmente, observe que $h(\frac{1}{2}) > 1$ e, portanto, existem pontos em [0,1] que não permanecem em [0,1] após uma iteração de h. Pela Proposição 2.2, tais pontos pertencem ao conjunto estável do infinito. De modo mais geral, se um ponto de [0,1] não permanece em [0,1] após um número finito de iterações, então ele pertence ao conjunto estável do infinito.

Desse modo, considere o conjunto $\Lambda_n = \{x \in [0,1] : h^n(x) \in [0,1]\}$ formado pelos pontos que permanecem em [0,1] após n iterações de h e o conjunto $\Lambda = \bigcap_{n=1}^{\infty} \Lambda_n$ formado pelos pontos de [0,1] cuja órbita está contida em [0,1]. Assim, vamos estudar a dinâmica de h restrita ao conjunto Λ .

Observe que $\Lambda_1 = [0, x_1] \cup [x_2, 1]$, onde $x_1 = \frac{1}{2} - \frac{\sqrt{\mu^2 - 4\mu}}{2\mu}$ e $x_2 = \frac{1}{2} + \frac{\sqrt{\mu^2 - 4\mu}}{2\mu}$. De modo mais geral, temos o seguinte resultado:

Proposição 2.4. Se $\mu > 4$, então

- 1. Λ_n é a união de 2^n intervalos fechados disjuntos.
- 2. $h^n: [a,b] \to [0,1]$ é bijetora, onde [a,b] é um dos intervalos que formam Λ_n .

Demonstração. Se $k \geq 1$, suponha que Λ_{k-1} é a união de 2^{k-1} intervalos fechados disjuntos e que $h^{k-1}: [a,b] \to [0,1]$ é bijetora, onde [a,b] é um dos intervalos que formam Λ_{k-1} . Suponha que h^{k-1} é estritamente crescente; se h^{k-1} é estritamente decrescente, a demonstração é análoga.

Inicialmente, observe que existem $x_1' < x_2'$ tais que $h^{k-1}([a,x_1']) = [0,x_1], h^{k-1}((x_1',x_2')) = (x_1,x_2)$ e $h^{k-1}([x_2',b]) = [x_2,1]$ e, portanto, $h^k([a,x_1']) = [0,1], h^k((x_1',x_2')) > 1$ e $h^k([x_2',b]) = [0,1]$. Além disso, pela Regra da Cadeia, temos que $Dh^k([a,x_1']) > 0$ e $Dh^k([x_2',b]) < 0$.

Desse modo, é imediato concluir que Λ_k é a união de 2^k intervalos fechados disjuntos e que $h^k: [a,b] \to [0,1]$ é bijetora, onde [a,b] é um dos intervalos formam Λ_k .

Com isso, podemos mostrar que Λ é um conjunto de Cantor para μ suficientemente grande.

Definição 2.5. Seja $\Gamma \subset \mathbb{R}$ um conjunto não vazio. Dizemos que Γ é um conjunto de Cantor se as seguintes condições são válidas:

- i. Γ é limitado.
- ii. Γ é totalmente desconexo.
- iii. Γ é perfeito.

 Γ é totalmente desconexo se não contém intervalos. Γ é perfeito se é fechado e todos os seus pontos são pontos de acumulação dele próprio. Para facilitar as próximas demonstrações, vamos considerar μ suficientemente grande tal que a derivada em módulo de h em Λ_1 seja maior que 1.

Lema 2.6. Se $\mu > 2 + \sqrt{5}$, então

- 1. $|Dh(\Lambda_1)| > \lambda > 1$.
- 2. $b-a<\frac{1}{\lambda^n}$, onde [a,b] é um dos intervalos que formam Λ_n .

Demonstração.

- 1. Basta observar que $Dh(x_1) = \sqrt{\mu^2 4\mu} > 1$ e $Dh(x_2) = -\sqrt{\mu^2 4\mu} < -1$.
- 2. Se $x\in [a,b],$ então $|Dh^n(x)|=\prod_{k=0}^{n-1}|Dh(h^k(x))|>\lambda^n$ e, pelo TVM,

$$1 = |h^{n}(b) - h^{n}(a)| > \lambda^{n}|b - a|.$$

Pelo Lema 2.6, dado $\varepsilon > 0$, existe $k \geq 1$ tal que os intervalos que formam Λ_k possuem tamanho menor que ε .

Teorema 2.7. Se $\mu > 2 + \sqrt{5}$, então Λ é um conjunto de Cantor.

Demonstração.

a) Λ é totalmente desconexo.

Se existe $[a,b] \subset \Lambda$, seja k tal que $\frac{1}{\lambda^k} < |a-b|$. Em particular, $[a,b] \subset \Lambda_k$, o que é um absurdo pois os intervalos que formam Λ_k possuem tamanho menor que $\frac{1}{\lambda^k}$.

b) Λ é perfeito.

Sejam $x \in \Lambda$, $\varepsilon > 0$ e $k \ge 1$ tal que $\frac{1}{\lambda^k} < \varepsilon$. Se $x \in [a, b]$, onde [a, b] é um dos intervalos que formam Λ_k , então $a \in \Lambda$ e $|x - a| < \varepsilon$ e, portanto, x é ponto de acumulação de Λ .

O Teorema 2.7 é válido para $\mu \in (4, 2 + \sqrt{5}]$, porém a demonstração é mais complicada.

2.3 Caos

Vamos estudar um fenômeno que a família quadrática exibe para μ suficientemente grande: o comportamento caótico de suas órbitas. Para isso, iniciamos com a seguinte definição:

Definição 2.8. Seja $f: X \to X$ uma função. Dizemos que f é topologicamente transitiva se dados $x, y \in X$ e $\varepsilon > 0$, existem $z \in X$ e $k \ge 0$ tais que $|x - z| < \varepsilon$ e $|y - f^k(z)| < \varepsilon$.

Intuitivamente, um sistema dinâmico é topologicamente transitivo quando é possível ir de uma vizinhança para qualquer outra através de iterações de f. A família quadrática possui essa propriedade para $\mu > 2 + \sqrt{5}$.

Proposição 2.9. Se $\mu > 2 + \sqrt{5}$, então $h|_{\Lambda}$ é topologicamente transitiva.

Demonstração. Sejam $x, y \in \Lambda$, $\varepsilon > 0$ e $k \ge 1$ tal que $\frac{1}{\lambda^k} < \varepsilon$. Temos que $h^k : [a, b] \to [0, 1]$ é bijetora, onde $x \in [a, b]$ e [a, b] é um dos intervalos que formam Λ_k . Pelo TVI, existe $z \in [a, b]$ tal que $h^k(z) = y$. Observando que $z \in \Lambda$ e $|x - z| < \varepsilon$, concluímos que $h \mid_{\Lambda}$ é topologicamente transitiva.

Outra definição importante para o estudo dos sistemas dinâmicos caóticos é a seguinte:

Definição 2.10. Seja $f: X \to X$ uma função. Dizemos que f depende sensivelmente das condições iniciais se existe $\delta > 0$ com a seguinte propriedade: dados $x \in X$ e $\varepsilon > 0$, existem $y \in X$ e $k \ge 0$ tais que $|x - y| < \varepsilon$ e $|f^k(x) - f^k(y)| > \delta$.

Intuitivamente, um sistema dinâmico possui dependência sensível das condições iniciais quando existem pontos arbitrariamente próximos de x cujas iteradas eventualmente se distanciam das iteradas de x em pelo menos δ . Novamente, a família quadrática possui essa propriedade para $\mu > 2 + \sqrt{5}$.

Proposição 2.11. Se $\mu > 2 + \sqrt{5}$, então $h|_{\Lambda}$ depende sensivelmente das condições iniciais.

Demonstração. Sejam $x \in \Lambda$, $\varepsilon > 0$ e $k \ge 1$ tal que $\frac{1}{\lambda^k} < \varepsilon$. Temos que $h^k : [a, b] \to [0, 1]$ é bijetora, onde $x \in [a, b]$ e [a, b] é um dos intervalos que formam Λ_k . Suponha que $h^k(a) = 0$ e $h^k(b) = 1$; se $h^k(a) = 1$ e $h^k(b) = 0$, a demonstração é análoga.

Como $h(\frac{1}{2}) > 1$ e $x \in \Lambda$, temos que $h^k(x) \in [0, \frac{1}{2}) \cup (\frac{1}{2}, 1]$. Se $h^k(x) \in [0, \frac{1}{2})$, então $|h^k(x) - h^k(b)| = |h^k(x) - 1| > \frac{1}{2}$ e se $h^k(x) \in (\frac{1}{2}, 1]$, então $|h^k(x) - h^k(a)| = |h^k(x)| > \frac{1}{2}$. Observando que $|x - a| < \varepsilon$ e $|x - b| < \varepsilon$, concluímos que $h|_{\Lambda}$ depende sensivelmente das condições iniciais.

Um sistema dinâmico é caótico se, além de possuir as duas propriedades definidas anteriormente, seu conjunto de pontos periódicos é denso.

Definição 2.12. Seja $f: X \to X$ uma função. Dizemos que f é caótica se as seguintes condições são válidas:

- i. Per(f) é denso em X.
- ii. f é topologicamente transitiva.
- iii. f depende sensivelmente das condições iniciais.

Desse modo, basta mostrar que $\operatorname{Per}(h|_{\Lambda})$ é denso em Λ para concluir que $h|_{\Lambda}$ é caótica para $\mu > 2 + \sqrt{5}$.

Teorema 2.13. Se $\mu > 2 + \sqrt{5}$, então $h|_{\Lambda}$ é caótica.

Demonstração. Sejam $x \in \Lambda$, $\varepsilon > 0$ e $k \ge 1$ tal que $\frac{1}{\lambda^k} < \varepsilon$. Temos que $h^k : [a,b] \to [0,1]$ é bijetora, onde $x \in [a,b]$ é um dos intervalos que formam Λ_k . Como $h^k([a,b]) \supset [a,b]$, existe $y \in [a,b]$ tal que $h^k(y) = y$. Observando que $y \in \Lambda$ e $|x-y| < \varepsilon$, concluímos que $\operatorname{Per}(h|_{\Lambda})$ é denso em Λ .

Novamente, o Teorema 2.13 é válido para $\mu \in (4, 2 + \sqrt{5}]$, porém a demonstração é mais complicada.

Por fim, enunciamos o Teorema 2.14 que nos permite, sob algumas hipóteses, concluir um sistema dinâmico é caótico apenas verificando se ele é topologicamente transitivo e se o conjunto de pontos periódicos é denso.

Teorema 2.14. Seja $f: X \to X$ é uma função contínua, onde X é um conjunto infinito. Se Per(f) é denso em X e f é topologicamente transitiva, então f é caótica.

Demonstração. Ver [Holmgren, 1996].

2.4 Conjugação Topológica

Vamos estudar um conceito em sistemas dinâmicos que nos permite considerar iguais dois sistemas dinâmicos que inicialmente são distintos.

Definição 2.15. Sejam $f: X \to X$, $g: Y \to Y$ e $\tau: X \to Y$ funções. Dizemos que f e g são topologicamente conjugadas por τ se as seguintes condições são válidas:

i. τ é um homeomorfismo.

ii. $\tau \circ f = q \circ \tau$.

Intuitivamente, o primeiro item afirma que os conjuntos X e Y são iguais e o segundo, que os sistemas dinâmicos f e g são iguais. Por exemplo, é imediato verificar que $p \in \operatorname{Per}_n(f)$ se, e somente se, $\tau(p) \in \operatorname{Per}_n(g)$. A Proposição 2.16 nos mostra que sistemas dinâmicos topologicamente conjugados compartilham outras propriedades.

Proposição 2.16. Sejam $f: X \to X$, $g: Y \to Y$ e $\tau: X \to Y$ funções. Se f e g são topologicamente conjugadas por τ , então

1. Per(f) é denso em X se, e somente se, Per(g) é denso em Y.

2. f é topologicamente transitiva se, e somente se, g é topologicamente transitiva.

Demonstração.

- 1. Se $\operatorname{Per}(f)$ denso em X, então $\tau(\operatorname{Per}(f))$ é denso em Y, pois τ é contínua. Observando que $\tau(\operatorname{Per}(f)) = \operatorname{Per}(g)$, concluímos que $\operatorname{Per}(g)$ é denso em Y. A outra implicação é demonstrada de maneira análoga.
- 2. Pela continuidade de τ , dados $\varepsilon > 0$ e $k \ge 1$, existe $\delta > 0$ tal que se $x,y,z \in X$, $|x-z| < \delta$ e $|y-f^k(z)| < \delta$, então $|\tau(x)-\tau(z)| < \varepsilon$ e $|\tau(y)-\tau(f^k(z))| < \varepsilon$.

Se $x',y'\in Y$, existem $x,y\in X$ tais que $\tau(x)=x'$ e $\tau(y)=y'$. Sendo f topologicamente transitiva, existem $z\in X$ e $k\geq 1$ tais que $|x-z|<\delta$ e $|y-f^k(z)|<\delta$. Desse modo, $|\tau(x)-\tau(z)|<\varepsilon$ e $|\tau(y)-\tau(f^k(z))|<\varepsilon$. Se $\tau(z)=z'$, então $|x'-z'|<\varepsilon$ e $|y'-g^k(z')|<\varepsilon$. A outra implicação é demonstrada de maneira análoga.

Em geral, a dependência sensível das condições inicias não é preservada por conjugação topológica. De fato, considere as funções $f:(0,1)\to (0,1)$ e $g:(1,\infty)\to (1,\infty)$ dadas por $f(x)=g(x)=x^2$. É possível mostrar que f e g são topologicamente conjugadas pelo homeomorfismo $\tau:(0,1)\to (1,\infty)$ dado por $\tau(x)=\frac{1}{x}$ e que apenas g possui dependência sensível das condições iniciais.

Na sequência, utilizaremos a conjugação topológica para demostrar que h é caótica para $\mu=4.$

Lema 2.17. A função $T:[0,1] \rightarrow [0,1]$ dada por

$$T(x) = \begin{cases} 2x, & x \in [0, \frac{1}{2}] \\ 2 - 2x, & x \in [\frac{1}{2}, 1] \end{cases}$$

é caótica.

Demonstração. Inicialmente, é possível provar por indução que $T^n: \left[\frac{k}{2^n}, \frac{k+1}{2^n}\right] \to [0, 1]$ é uma função bijetora linear para todo $0 \le k < 2^n$ e para todo $n \ge 1$. Ver Figura 1. Desse modo, dados $x \in [0, 1]$ e $\varepsilon > 0$, sejam $n \ge 1$ e $0 \le k < 2^n$ tais que $\frac{1}{2^n} < \varepsilon$ e $x \in I = \left[\frac{k}{2^n}, \frac{k+1}{2^n}\right]$.

- a) $\operatorname{Per}(T)$ é denso em [0,1]. $\operatorname{Como} T(I) \supset I$, existe $p \in I$ tal que $T^n(p) = p$. Observando que $|x-p| \leq \frac{1}{2^n}$, concluímos que $\operatorname{Per}(T)$ é denso em [0,1].
- b) T é topologicamente transitiva. Sendo $T^n: I \to [0,1]$ bijetora, se $y \in [0,1]$, então existe $z \in I$ tal que $T^n(z) = y$. Observando que $|x-z| \leq \frac{1}{2^n}$, concluímos que T é topologicamente transitiva.
- c) T depende sensivelmente das condições iniciais. Sendo $T^n: I \to [0,1]$ bijetora, existem $a,b \in I$ tais que $T^n(a) = 0$ e $T^n(b) = 1$. Se $T^n(x) \in [0,\frac{1}{2}]$, então $|T^n(x) - T^n(b)| = |T^n(x) - 1| \ge \frac{1}{2}$ e se $T^n(x) \in [\frac{1}{2},1]$, então

 $|T^n(x)-T^n(a)|=|T^n(x)|\geq \frac{1}{2}$. Observando que $|x-a|\leq \frac{1}{2^n}$ e $|x-b|\leq \frac{1}{2^n}$, concluímos que T depende sensivelmente das condições iniciais.

1.0 0.8 0.6 0.4 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0

Figura 1: Gráficos de T, T^2 e T^3 .

Teorema 2.18. Se $\mu = 4$, então h é caótica.

Demonstração. Basta observar que $\tau \circ T = h \circ \tau$, onde $\tau : [0,1] \to [0,1]$ é o homeomorfismo dado por $\tau(x) = \text{sen}^2(\frac{\pi x}{2})$.

2.5 Dinâmica Simbólica

Dado $N \geq 2$, seja Σ_N o conjunto das sequências de números naturais limitados entre 1 e N, isto é, $\Sigma_N = \{(x_0 \, x_1 \, x_2 \, \dots) : 1 \leq x_n \leq N \text{ para todo } n \geq 0\}$. Seja também $d_N : \Sigma_N \times \Sigma_N \to \mathbb{R}$ a função dada por

$$d_N(x,y) = \sum_{k=0}^{\infty} \frac{|x_k - y_k|}{N^k},$$

onde $x=(x_0\,x_1\,x_2\,\dots)$ e $y=(y_0\,y_1\,y_2\,\dots)$. É imediato verificar que (Σ_N,d_N) é um espaço métrico. Por fim, seja $\sigma:\Sigma_N\to\Sigma_N$ a função dada por $\sigma(x_0\,x_1\,x_2\,\dots)=(x_1\,x_2\,x_3\,\dots)$.

Proposição 2.19. Sejam $x = (x_0 x_1 x_2 \dots)$ e $y = (y_0 y_1 y_2 \dots)$ elementos de Σ_N .

- 1. Se $x_k = y_k$ para todo $0 \le k \le n$, então $d_N(x, y) \le \frac{1}{N^n}$.
- 2. Se $d_N(x,y) < \frac{1}{N^n}$, então $x_k = y_k$ para todo $0 \le k \le n$.

Demonstração. Exercício.

Proposição 2.20. σ é contínua.

Demonstração. Sejam $x=(x_0\,x_1\,x_2\,\dots)\in\Sigma_N,\, \varepsilon>0$ e $n\geq 1$ tal que $\frac{1}{2^n}<\varepsilon$. Se $d_N(x,y)<\frac{1}{2^{n+1}}$, onde $y=(y_0\,y_1\,y_2\,\dots)\in\Sigma_N$, então $x_k=y_k$ para todo $0\leq k\leq n+1$. Como $\sigma(x)=(x_1\,x_2\,x_3\,\dots)$ e $\sigma(y)=(y_1\,y_2\,y_3\,\dots)$, temos que as primeiras n+1 entradas de $\sigma(x)$ e $\sigma(y)$ são iguais. Desse modo, $d_N(\sigma(x),\sigma(y))\leq\frac{1}{2^n}<\varepsilon$ e, portanto, σ é contínua.

Para a demonstração do próximo resultado, vamos considerar N=2. Se $\Lambda_1=[0,x_1]\cup[x_2,1]$, sejam $I_1=[0,x_1]$ e $I_2=[x_2,1]$. Como $\Lambda\subset I_1\cup I_2$, podemos definir a função $S:\Lambda\to\Sigma_2$ dada por $S(x)=(x_0\,x_1\,x_2\,\ldots)$, onde $x_k=1$ se $h^k(x)\in I_1$ e $x_k=2$ se $h^k(x)\in I_2$ para todo $k\geq 0$.

Teorema 2.21. Se $\mu > 2 + \sqrt{5}$, então $h|_{\Lambda}$ e σ são topologicamente conjugadas por S.

Demonstração.

a) S é injetora.

Sejam $x, y \in \Lambda$, x < y. Se S(x) = S(y), então $h^k(x)$ e $h^k(y)$ está no mesmo lado em relação ao ponto crítico para todo $k \ge 0$ e, portanto, h é monótona em cada intervalo J_k cujos extremos são $h^k(x)$ e $h^k(y)$. Desse modo, se $z \in [x, y]$, então $h^k(z) \in J_k \subset I_1 \cup I_2$ para todo $k \ge 0$ e, portanto, $z \in \Lambda$, o que é um absurdo pois Λ é totalmente desconexo.

b) S é sobrejetora.

Seja $(x_0 x_1 x_2 \dots) \in \Sigma_2$. Inicialmente, para cada $n \geq 0$, considere

$$I_{x_0...x_n} = \{x \in [0,1] : x \in I_{x_0}, ..., h^n(x) \in I_{x_n}\}.$$

Escrevendo $I_{x_0...x_n}=I_{x_0}\cap h^{-1}(I_{x_1...x_n})$, é possível concluir por indução que $I_{x_0...x_n}$ é um intervalo fechado não vazio. Além disso, $I_{x_0...x_n}=I_{x_0...x_{n-1}}\cap h^{-n}(I_{x_n})\subset I_{x_0...x_{n-1}}$. Desse modo, $I_{x_0},\,I_{x_0x_1},\,I_{x_0x_1x_2},\,\ldots$ é uma sequência de intervalos encaixantes fechados não vazios e, portanto, existe $x\in \cap_{n=0}^{\infty}I_{x_0...x_n}$. Como $h^k(x)\in I_{x_k}$ para todo $k\geq 0$, concluímos que $S(x)=(x_0\,x_1\,x_2\,\ldots)$. Observe que x é único, pois S é injetora.

c) S é continua.

Sejam $x \in \Lambda$, $\varepsilon > 0$ e $k \ge 0$ tal que $\frac{1}{2^k} < \varepsilon$. Se $S(x) = (x_0 \, x_1 \, x_2 \, \dots)$, então $x \in I_{x_0 \, \dots \, x_k}$. Sendo $I_{x_0 \, \dots \, x_k}$ um intervalo fechado, existe $\delta > 0$ tal que se $y \in \Lambda$ e $|x - y| < \delta$, então $y \in I_{x_0 \, \dots \, x_k}$. Desse modo, S(x) e S(y) são iguais nas primeiras k + 1 entradas e, portanto, $d_2(S(x), S(y)) \le \frac{1}{2^k} < \varepsilon$.

d) S^{-1} é contínua.

Exercício.

e) $S \circ h|_{\Lambda} = \sigma \circ S$.

Se $x \in \Lambda$ e $S(x) = (x_0 x_1 x_2 \dots)$, então $\bigcap_{n=0}^{\infty} I_{x_0 \dots x_n} = \{x\}$. Desse modo, é imediato que

$$S \circ h|_{\Lambda}(x) = S(h(\cap_{n=0}^{\infty} I_{x_0 \dots x_n})) = S(\cap_{n=1}^{\infty} I_{x_1 \dots x_n}) = (x_1 x_2 x_3 \dots) = \sigma \circ S(x).$$

O teorema anterior nos permite saber, por exemplo, a quantidade de pontos periódicos de $h|_{\Lambda}$ de período n para todo $n \geq 1$.

Corolário 2.22. Se $\mu > 2 + \sqrt{5}$, então $h|_{\Lambda}$ possui 2^n pontos periódicos de período n para todo $n \ge 1$.

Demonstração. Basta observar que os pontos periódicos de σ de período n são determinados pelas primeiras n entradas e, portanto, σ possui 2^n pontos periódicos de período n para todo $n \ge 1$.

2.6 Matriz de Transição

Dado $N \geq 2$, dizemos que A é uma matriz de transição se $A = (a_{ij})_{1 \leq i,j \leq N}$ é uma matriz quadrada de ordem N tal que $a_{ij} = 0$ ou $a_{ij} = 1$ para todo $1 \leq i,j \leq N$. Se A é uma matriz de transição, definimos o conjunto Σ_A por

$$\Sigma_A = \{(x_0 \, x_1 \, x_2 \, \dots) \in \Sigma_N : a_{x_k x_{k+1}} = 1 \text{ para todo } k \ge 0\}.$$

Observe que se $x \in \Sigma_A$, então $\sigma(x) \in \Sigma_A$. Desse modo, podemos definir a função $\sigma_A : \Sigma_A \to \Sigma_A$ como sendo a restrição de σ em Σ_A .

Vamos estudar a dinâmica da família quadrática para $\mu = 3.839$. Se a = 0.149888, $\varepsilon = 10^{-3}$ e $I = (a - \varepsilon, a + \varepsilon)$, então é possível mostrar que $h^3(I) \subset I$ e $|Dh^3(I)| < 1$ e, portanto, o intervalo I possui um ponto periódico atrator de h de período primo 3. Se a_1 , a_2 e a_3 são os elementos dessa órbita em ordem crescente, então

$$a_1 \simeq 0.149888$$
, $a_2 \simeq 0.489149$ e $a_3 \simeq 0.959299$.

Com auxílio do Teorema de Sharkovsky e do Teorema de Singer, que estudaremos na sequência, podemos concluir que h possui infinitos pontos periódicos e essa é a única órbita atratora de h.

Figura 2: Gráfico de h^3 para $\mu = 3.839$.

De modo análogo, concluímos que h possui outra órbita de tamanho 3. Se b_1 , b_2 e b_3 são os elementos dessa órbita em ordem crescente, então

$$b_1 \simeq 0.169040$$
, $b_2 \simeq 0.539247$ e $b_3 \simeq 0.953837$.

Observando o gráfico de h^3 , vemos que para cada b_i , existe b'_i no lado oposto de b_i em relação ao ponto a_i tal que $h^3(b'_i) = b_i$. Defina $A_1 = (b'_1, b_1)$, $A_2 = (b'_2, b_2)$ e $A_3 = (b_3, b'_3)$.

Sendo h^3 simétrica em relação ao ponto $\frac{1}{2}$, temos que $h(b_2') = h(b_2) = b_3$. Além disso,

Figura 3: Gráfico de h^3 numa vizinhança de a_3 para $\mu = 3.839$.

podemos observar que $h(b'_1) = b'_2$ e $h(b'_3) = b'_1$ e, portanto, h mapeia de forma monótona A_1 em A_2 e A_3 em A_1 . Observando que o máximo de h em A_2 é $h(\frac{1}{2}) = 0.95975 < b'_3$, concluímos que $h(A_2) \subset A_3$.

Sabemos que se $x \notin [0, 1]$, então $\lim_{n\to\infty} h^n(x) = -\infty$. Além disso, o único ponto periódico em A_i é a_i e todos os pontos em A_i tendem para a órbita de a_i . Desse modo, todos os outros pontos periódicos de h residem no complemento de $A_1 \cup A_2 \cup A_3$ em [0, 1], que é formado por quatro intervalos fechados. Sejam $I_0 = [0, b'_1]$, $I_1 = [b_1, b'_2]$, $I_2 = [b_2, b_3]$ e $I_3 = [b'_3, 1]$ tais intervalos.

Proposição 2.23. Se $x \notin \{0, a_1, a_2, a_3\}$ é um ponto periódico de h, então $x \in I_1 \cup I_2$.

Demonstração. Observando que h é monótona em cada I_k , temos que $h(I_0) = I_0 \cup A_1 \cup I_1$, $h(I_1) = I_2$, $h(I_2) = I_1 \cup A_2 \cup I_2$ e $h(I_3) = I_0$. Desse modo, se $x \in I_1 \cup I_2$ é periódico, então órbita de x está contida em $I_1 \cup I_2$.

Por outro lado, se $x \in I_0 \setminus \{0\}$, existe um menor $n \ge 1$ tal que $h^n(x) \notin I_0$. Se $h^n(x) \in A_1$, então x não pode ser periódico, pois o único ponto periódico de A_1 é a_1 . Se $h^n(x) \in I_1$, então x não pode ser periódico, pois caso contrário a órbita de x estaria contida em $I_1 \cup I_2$ e nunca retornaria para I_0 . Finalmente, se $x \in I_3$, então $h(x) \in I_0$ e a análise é análoga.

Considere o conjunto $\Lambda = \{x \in I_1 \cup I_2 : h^n(x) \in I_1 \cup I_2 \text{ para todo } n \geq 1\}$. Pela proposição anterior, todos os pontos periódicos de h estão em Λ , com exceção dos pontos $0, a_1, a_2$ e a_3 .

Para a demonstração do próximo teorema, vamos considerar a matriz de transição

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}.$$

Seja $S: \Lambda \to \Sigma_A$ a função dada por $S(x) = (x_0 \, x_1 \, x_2 \, \dots)$, onde $x_k = 1$ se $h^k(x) \in I_1$ e $x_k = 2$ se $h^k(x) \in I_2$ para todo $k \geq 0$. Observe que S está bem definida, pois $h(I_1) = I_2$ e $h(I_2) \subset I_1 \cup I_2$ e, portanto, $a_{x_k x_{k+1}} = 1$ para todo $k \geq 0$.

Lema 2.24. Existe $n_0 \ge 1$ tal que $|Dh^n(\Lambda)| > 1$ para todo $n \ge n_0$.

Demonstração. Inicialmente, podemos observar graficamente que $|Dh(I_1 \cup I_2)| \ge \nu$ para algum $\nu \in (0,1)$. Podemos observar também que o subconjunto de $I_1 \cup I_2$ no qual a derivada em

módulo de h^3 é menor que ou igual à 1 é formado por três intervalos fechados e que cada um desses intervalos possui intersecção vazia com Λ e, portanto, $|Dh^3(\Lambda)| \ge \lambda$ para algum $\lambda > 1$.

Por fim, sejam $x \in \Lambda$ e $K \ge 1$ tal que $\nu^2 \lambda^K > 1$. Se $n_0 = 3K$ e $n \ge n_0$, podemos escrever n = 3L + m, onde $L \ge K$ e $0 \le m \le 2$. Desse modo, se m = 0, então $|Dh^n(x)| = |Dh^{3L}(x)| \ge \lambda^L > 1$; se m = 1, então $|Dh^n(x)| = |Dh(h^{3L}(x))||Dh^{3L}(x)| \ge \nu \lambda^L > 1$; e se m = 2, então $|Dh^n(x)| = |Dh(h^{3L+1}(x))||Dh(h^{3L}(x))||Dh^{3L}(x)| \ge \nu^2 \lambda^L > 1$.

Com isso, enunciamos o teorema cuja demonstração é análoga à do Teorema 2.21.

Teorema 2.25. $h|_{\Lambda}$ e σ_A são topologicamente conjugadas por S.

Demonstração. Exercício.

Sabendo que $h|_{\Lambda}$ e σ_A são topologicamente conjugadas, a proposição a seguir nos permite saber a quantidade de pontos periódicos de $h|_{\Lambda}$ de período n para todo $n \geq 1$.

Proposição 2.26. Se A uma matriz de transição de ordem N, então σ_A possui $\text{Tr}(A^n)$ pontos periódicos de período n para todo $n \geq 1$.

Demonstração. Inicialmente, observe que se $(x_0 x_1 x_2 \dots) \in \Sigma_N$ é um ponto periódico de σ de período n, então $x_k = x_{k+n}$ para todo $k \geq 0$. Desse modo, $(x_0 x_1 x_2 \dots) \in \Sigma_A$ se, e somente se, $a_{x_0x_1} = a_{x_1x_2} = \dots = a_{x_{n-1}x_0} = 1$ e, portanto, a quantidade de pontos periódicos de σ_A de período n é dada por

$$\sum_{1 \le x_0, \dots, x_{n-1} \le N} a_{x_0 x_1} a_{x_1 x_2} \dots a_{x_{n-1} x_0}.$$

Por outro lado, é imediato verificar que essa soma é $Tr(A^n)$.

2.7 Bifurcação

A família quadrática exibe outro fenômeno que ocorre em sistemas dinâmicos: a bifurcação. Através desse fenômeno, vamos explicar gráfica e intuitivamente como a dinâmica de h, que é simples para μ pequeno, se torna caótica para μ suficientemente grande.

Seja f_{λ} uma família parametrizada de funções no parâmetro λ de modo que a função

$$G(x,\lambda) = f_{\lambda}(x),$$

definida num aberto de \mathbb{R}^2 , seja de classe \mathcal{C}^{∞} nas variáveis x e λ . Dizemos que f_{λ} sofre uma bifurcação em λ_0 se existe $\varepsilon > 0$ com a seguinte propriedade: se $\lambda_1 \in (\lambda_0 - \varepsilon, \lambda_0)$ e $\lambda_2 \in (\lambda_0, \lambda_0 + \varepsilon)$, então f_{λ_1} e f_{λ_2} não são topologicamente conjugadas. Por exemplo, uma bifurcação ocorre quando há alteração na estrutura dos pontos periódicos.

Exemplo 2.27.

a) A família E_{λ} de funções dadas por $E_{\lambda}(x) = e^{x+\lambda}$ sofre uma bifurcação em $\lambda_0 = -1$. Conforme o parâmetro cresce, os dois pontos fixos vão se aproximando até se tornarem um único ponto fixo que, após isso, desaparece. Uma bifurcação com essas características é chamada de bifurcação tangente. Ver Figura 4.

Figura 4: Gráficos de E_{λ} numa vizinhança de 1 para $\lambda=-1.1,\,\lambda=-1$ e $\lambda=-0.9.$

b) A família quadrática sofre uma bifurcação em $\mu_0 = 3$.

Conforme o parâmetro cresce, o ponto fixo, que inicialmente é atrator, se torna repulsor e, além disso, nasce uma órbita periódica de período 2 numa vizinhança do ponto fixo. Uma bifurcação com essas características é chamada de bifurcação com duplicação de período. Ver Figura 5.

Figura 5: Gráficos de h^2 numa vizinhança de p_μ para $\mu=2.9,\,\mu=3$ e $\mu=3.1.$

Observe, nos exemplos, que as bifurcações ocorreram quando a derivada em módulo no ponto fixo se tornou igual à 1. O teorema a seguir nos mostra que isso não é coincidência.

Teorema 2.28. Seja f_{λ} uma família parametrizada de funções. Suponha que

1.
$$f_{\lambda_0}(x_0) = x_0$$
,

2.
$$f'_{\lambda_0}(x_0) \neq 1$$
.

Então existem vizinhanças I e J de λ_0 e x_0 , respectivamente, e uma função $p: I \to J$ de classe C^{∞} tais que

1.
$$p(\lambda_0) = x_0$$
,

2.
$$f_{\lambda}(p(\lambda)) = p(\lambda)$$
 para todo $\lambda \in I$.

Além disso, f_{λ} não possui outros pontos fixos em J.

Demonstração. Basta aplicar o Teorema da Função Implícita para a função $G(x,\lambda) = f_{\lambda}(x) - x$ no ponto (x_0, λ_0) .

Vamos estudar com um pouco mais de detalhes a bifurcação com duplicação de período que ocorre na família quadrática. Inicialmente, observe que se $\mu > 2$, então existe $p'_{\mu} < p_{\mu}$ tal que $h(p'_{\mu}) = p_{\mu}$. Na Figura 6, observe o gráfico de h^2 para alguns valores de μ , juntamente com um quadrado de vértices $(p'_{\mu}, p_{\mu}), (p_{\mu}, p_{\mu}), (p_{\mu}, p'_{\mu})$ e (p'_{μ}, p'_{μ}) .

Figura 6: Gráficos de h^2 para $\mu = 2.75$, $\mu = 3$, $\mu = 3.25$, $\mu = 3.5$, $\mu = 3.75$ e $\mu = 4$.

Restringindo o gráfico de h^2 ao quadrado e rotacionando em π radianos, vemos que ele se assemelha ao gráfico da própria h no intervalo [0,1] para um valor de μ diferente. Vamos deixar essa ideia mais precisa através do operador de renormalização, que nos permite analisar a segunda iterada de uma função na mesma escala que a original.

Se $\mu > 2$, considere a função $L: [p'_{\mu}, p_{\mu}] \to [0, 1]$ linear bijetora tal que $L(p'_{\mu}) = 1$ e $L(p_{\mu}) = 0$. Desse modo, definimos a renormalização de h como a função $Rh: [0, 1] \to [0, 1]$ dada por $Rh(x) = L \circ h^2 \circ L^{-1}(x)$. Observe que cada ponto fixo de Rh está relacionado com um ponto periódico de h de período 2. Além disso, o gráfico de Rh não está contido em [0, 1] para algum $\mu < 4$. Ver Figura 7.

Desse modo, esperamos que Rh sofra uma bifurcação com duplicação de período conforme o parâmetro cresce e, de maneira análoga, que h^2 sofra uma bifurcação com duplicação de período. Continuando esse processo, temos uma sucessão de bifurcações com duplicação de período na família quadrática.

O computador nos permite observar esse fato experimentalmente. Para isso, vamos computar o digrama de órbita do ponto crítico da família quadrática para $\mu > 2$. Nesse diagrama, veremos o comportamento assintótico de órbita de $\frac{1}{2}$ em função de μ . Escolhemos a órbita de $\frac{1}{2}$ para

Figura 7: Gráfico de Rh para $\mu = 3.75$.

desenhar o diagrama pois, como veremos no Teorema de Singer, se h possui uma órbita periódica atratora, então essa órbita atrai o ponto crítico.

Para construir o diagrama de órbita, escolhemos 10000 valores de μ igualmente espaçados em [2,4] e, para cada um desses valores, plotamos $h^k(\frac{1}{2})$ na abscissa μ para todo $100 \le k \le 300$.

Figura 8: Diagrama de órbita de h para $\mu \in [2, 4]$.

Na Figura 8 vemos alguns fatos que já estudamos: se $\mu \in [2,3]$, então as órbitas são atraídas para o ponto fixo p_{μ} ; quando μ passa de 3, nasce uma órbita periódica de período 2; e se $\mu = 3.839$, então existe uma órbita atratora de período 3.

Figura 9: Ampliação das regiões retangulares marcadas na Figura 8.

Por fim, ampliando algumas regiões do diagrama, percebemos um fato interessante: elas são semelhantes ao próprio diagrama, como está sugerido na Figura 9.

3 Teorema de Sharkovsky

Nessa seção, consideraremos $f: \mathbb{R} \to \mathbb{R}$ uma função contínua. Além disso, escreveremos $I_0 \longrightarrow I_1 \longrightarrow \cdots \longrightarrow I_n$ quando I_0, I_1, \ldots, I_n são intervalos compactos e $f(I_k) \supset I_{k+1}$ para todo $0 \le k < n$.

Proposição 3.1. Se $I_0 \longrightarrow I_1$, então existe um intervalo fechado $I'_0 \subset I_0$ tal que $f(I'_0) = I_1$.

Demonstração. Se $I_0 = [a, b]$ e $I_1 = [c, d]$, sejam $p, q \in [a, b]$ tais que f(p) = c e f(q) = d. Suponha que $p \le q$; se $q \le p$, a demostração é análoga.

Definindo $b' = \inf\{x \in [p,q] : f(x) = d\}$ e $a' = \sup\{x \in [p,b'] : f(x) = c\}$ e observando que f é contínua, podemos concluir que $f(I'_0) = I_1$, onde $I'_0 = [a',b']$.

Lema 3.2. Se $I_0 \longrightarrow I_1 \longrightarrow \cdots \longrightarrow I_{n-1} \longrightarrow I_0$, então existe $p \in I_0$ tal que as seguintes condições são válidas:

- 1. $f^k(p) \in I_k$ para todo $1 \le k < n$.
- 2. $f^n(p) = p$.

Demonstração. Pela Proposição 3.1, podemos construir uma sequência de intervalos fechados $I'_0, I'_1, \ldots, I'_{n-1}$ com as seguintes propriedades:

- a) $I_0 \supset I_0' \supset I_1' \supset \cdots \supset I_{n-1}'$.
- b) $f^{k}(I'_{k-1}) = I_{k} \text{ para todo } 1 \le k < n.$
- c) $f^n(I'_{n-1}) = I_0$.

Desse modo, existe $p \in I'_{n-1}$ tal que $f^n(p) = p$. Em particular, $p \in I_0$ e $f^k(p) \in I_k$ para todo $1 \le k < n$.

Teorema 3.3. Se $\operatorname{Per}_3(f) \neq \emptyset$, então $\operatorname{Per}_n(f) \neq \emptyset$ para todo $n \geq 1$.

Demonstração. Sejam $p_1 < p_2 < p_3$ os pontos da órbita de um elemento de $Per_3(f)$. Suponha que $f(p_1) = p_2$ e $f(p_2) = p_3$; se $f(p_1) = p_3$ e $f(p_3) = p_2$, a demonstração é análoga. Definindo $I_0 = [p_1, p_2]$ e $I_1 = [p_2, p_3]$, temos que $I_0 \longrightarrow I_1$, $I_1 \longrightarrow I_0$ e $I_1 \longrightarrow I_1$. Desse modo, podemos demonstrar as seguintes afirmações:

- a) $\operatorname{Per}_1(f) \neq \emptyset$. De fato, $I_1 \longrightarrow I_1$ implica que existe $p \in I_1$ tal que f(p) = p.
- b) $\operatorname{Per}_2(f) \neq \emptyset$. De fato, $I_0 \longrightarrow I_1 \longrightarrow I_0$ implica que existe $p \in I_0$ tal que $f(p) \in I_1$ e $f^2(p) = p$. Se f(p) = p, então $p \in I_0 \cap I_1$, o que é um absurdo pois $I_0 \cap I_1 = \{p_2\}$ e $p_2 \in \operatorname{Per}_3(f)$.

c) $\operatorname{Per}_4(f) \neq \emptyset$.

De fato, $I_1 \longrightarrow I_1 \longrightarrow I_1 \longrightarrow I_0 \longrightarrow I_1$ implica que existe $p \in I_1$ tal que $f^k(p) \in I_1$ para todo $1 \le k < 3$, $f^3(p) \in I_0$ e $f^4(p) = p$. Se $f^3(p) = p$, então $p \in I_0 \cap I_1$, o que é um absurdo pois $I_0 \cap I_1 = \{p_2\}$ e $f^2(p_2) = p_1 \notin I_1$. Se $f^k(p) = p$ para algum $1 \le k < 3$, então $f^k(p) \in I_1$ para todo $k \ge 1$. Em particular, $f^3(p) \in I_0 \cap I_1 = \{p_2\}$ e, portanto, $f^4(p) = p = p_3$, o que é um absurdo pois $f(p_3) = p_1 \notin I_1$.

Por fim, podemos demonstrar de maneira análoga à última afirmação que $\operatorname{Per}_n(f) \neq \emptyset$ para todo $n \geq 4$.

O Teorema 3.3 é um caso especial do Teorema de Sharkovsky que será enunciado na sequência. Inicialmente, considere a seguinte ordenação dos números naturais:

Definição 3.4 (Ordenação de Sharkovsky).

$$3 \triangleright 5 \triangleright \cdots \triangleright 2 \cdot 3 \triangleright 2 \cdot 5 \triangleright \cdots \triangleright 2^2 \cdot 3 \triangleright 2^2 \cdot 5 \triangleright \cdots \triangleright 2^k \cdot 3 \triangleright 2^k \cdot 5 \triangleright \cdots \triangleright 2^2 \triangleright 2 \triangleright 1$$

A ordenação de Sharkovsky lista todos os ímpares diferentes de 1; depois, todos os ímpares diferentes de 1 multiplicados por 2; depois, todos os ímpares diferentes de 1 multiplicados por 4; e assim sucessivamente. Por fim, lista todas as potências de 2 em ordem decrescente.

Desse modo, podemos enunciar o Teorema de Sharkovsky cuja demostração, apesar de não usar nenhuma ferramenta além daquelas usadas para demonstrar o Teorema 3.3, é consideravelmente maior.

Teorema 3.5 (Sharkovsky). Se $\operatorname{Per}_n(f) \neq \emptyset$, então $\operatorname{Per}_m(f) \neq \emptyset$ para todo $n \triangleright m$.

Demonstração. Ver [Burns e Hasselblatt, 2011].

O Teorema de Sharkovsky pode ser usado para provar que órbitas periódicas de certos tamanhos não existem. Por exemplo, observando os gráficos de h, h^2 e h^4 para $\mu = 3.2$ vemos que $\operatorname{Per}_4(h) = \emptyset$ e, portanto, $\operatorname{Per}_n(h) = \emptyset$ para todo $n \geq 3$. Ver Figura 10.

Figura 10: Gráficos de h, h^2 e h^4 para $\mu = 3.2.$

Por fim, a ordenação de Sharkovsky é a melhor possível. Se, por exemplo, $\operatorname{Per}_5(f) \neq \emptyset$ implicasse que $\operatorname{Per}_3(f) \neq \emptyset$, então os números 3 e 5 poderiam trocar de lugar nessa ordenação. O seguinte teorema mostra que isso não é possível.

Teorema 3.6. Se $n \ge 1$, então existe uma função f com as seguintes propriedades:

- 1. $\operatorname{Per}_n(f) \neq \emptyset$.
- 2. $\operatorname{Per}_m(f) = \emptyset$ para todo $m \triangleright n$.

Demonstração. Seja $T:[0,1] \rightarrow [0,1]$ a função dada por

$$T(x) = \begin{cases} 2x, & x \in [0, \frac{1}{2}] \\ 2 - 2x, & x \in [\frac{1}{2}, 1] \end{cases}$$

e considere a família de funções $T_{\lambda}(x) = \min\{\lambda, T(x)\}$ definidas em [0, 1], onde o parâmetro λ varia em [0, 1].

Inicialmente, observe que $T(x) \le 1$ para todo $x \in [0, 1]$ implica que que $T_1 = T$. Além disso, T_1 possui 2^k pontos periódicos de período k para todo $k \ge 1$. Desse modo, podemos definir

$$\lambda(k) = \min\{\max\{\mathcal{O} : \mathcal{O} \text{ \'e uma \'orbita de tamanho } k \text{ de } T_1\}\}$$

para todo $k \ge 1$. A ideia principal da prova consiste no fato de que $\lambda(k)$ desempenha os papéis de parâmetro, máximo e ponto de uma órbita de $T_{\lambda(k)}$. As seguintes afirmações tornam esse fato preciso:

- a) Se $\mathcal{O} \subset [0, \lambda)$ é uma órbita de T_{λ} , então \mathcal{O} é uma órbita de T_1 . Se $p \in \mathcal{O}$, então $T_{\lambda}(p) \in [0, \lambda)$. Desse modo, $T_{\lambda}(p) = \min\{\lambda, T(p)\} = T(p) = T_1(p)$. Assim, T_{λ} e T_1 coincidem em \mathcal{O} e, portanto, \mathcal{O} é uma órbita de T_1 .
- b) Se O ⊂ [0, λ] é uma órbita de T₁, então O é uma órbita de T_λ.
 Se p ∈ O, então T₁(p) ∈ [0, λ]. Desse modo, T_λ(p) = min{λ, T₁(p)} = T₁(p). Assim, T_λ e T₁ coincidem em O e, portanto, O é uma órbita de T_λ.
- c) $T_{\lambda(k)}$ possui uma órbita $\mathcal{O} \subset [0, \lambda(k))$ de tamanho j se, e somente, se $\lambda(k) > \lambda(j)$. Se $T_{\lambda(k)}$ possui uma órbita $\mathcal{O} \subset [0, \lambda(k))$ de tamanho j, então \mathcal{O} é uma órbita de T_1 e, pela definição de $\lambda(j)$, concluímos que $\lambda(k) > \lambda(j)$. Por outro lado, se $\lambda(k) > \lambda(j)$, então T_1 possui uma órbita $\mathcal{O} \subset [0, \lambda(j)] \subset [0, \lambda(k)]$ de tamanho j e, desse modo, \mathcal{O} é uma órbita de $T_{\lambda(k)}$.
- d) A órbita de T_1 que contém $\lambda(k)$ é uma órbita de tamanho k de $T_{\lambda(k)}$. Além disso, todas as outras órbitas de $T_{\lambda(k)}$ estão em $[0,\lambda(k))$.

Pela definição de $\lambda(k)$, T_1 possui uma órbita $\mathcal{O} \subset [0, \lambda(k)]$ de tamanho k e, portanto, \mathcal{O} é uma órbita de $T_{\lambda(k)}$.

Na segunda parte, basta observar que $\lambda(k)$ é o valor máximo de $T_{\lambda(k)}$ e, desse modo, toda órbita de $T_{\lambda(k)}$ está contida em $[0, \lambda(k)]$. Em particular, se a órbita não contém $\lambda(k)$, então ela está contida em $[0, \lambda(k))$.

e) $k \triangleright j$ se, e somente se, $\lambda(k) > \lambda(j)$.

Suponha que $k \triangleright j$. Sabemos que $T_{\lambda(k)}$ possui uma órbita de tamanho k e, pelo Teorema de Sharkovsky, $T_{\lambda(k)}$ admite uma órbita de tamanho j. Em particular, essa órbita está contida em $[0, \lambda(k))$ e, portanto, $\lambda(k) > \lambda(j)$.

Suponha que $\lambda(k) > \lambda(j)$. Se j > k, então $\lambda(k) < \lambda(j)$ pela demonstração no parágrafo anterior e, portanto, k > j.

Desse modo, $T_{\lambda(n)}$ possui órbita de tamanho n para cada $n \geq 1$. Além disso, se $m \triangleright n$ então $\lambda(m) > \lambda(n)$ e, portanto, $T_{\lambda(n)}$ não possui órbita de tamanho m.

4 Teorema de Singer

Ao longo dessa seção, consideraremos $f: \mathbb{R} \to \mathbb{R}$ uma função de classe \mathcal{C}^3 . Iniciamos com a seguinte definição:

Definição 4.1 (Derivada de Schwarz). A derivada de Schwarz de f é a função $\mathcal{S}f: \mathbb{R}\backslash C_f \to \mathbb{R}$ dada por

$$\mathcal{S}f(x) = \frac{D^3 f(x)}{Df(x)} - \frac{3}{2} \left(\frac{D^2 f(x)}{Df(x)}\right)^2,$$

onde $C_f = \{ x \in \mathbb{R} : Df(x) = 0 \}.$

Vamos estudar funções que possuem a derivada de Schwarz negativa. Por exemplo, $Sh(x) = -6(1-2x)^{-2} < 0$ para todo $x \neq \frac{1}{2}$. A característica fundamental dessa propriedade é ser preservada em composição de funções.

Proposição 4.2. Se Sf < 0 e Sg < 0, então $S(f \circ g) < 0$.

Demonstração. Basta observar que
$$S(f \circ g)(x) = Sf(g(x))(Dg(x))^2 + Sg(x)$$
.

Corolário 4.3. Se Sf < 0, então $Sf^n < 0$ para todo $n \ge 1$.

Vamos mostrar que se uma função possui derivada de Schwarz negativa e um número finito de pontos críticos, então existe um limite para a quantidade de órbitas periódicas atratoras. Para isso, provaremos uma série de lemas.

Lema 4.4. Se Sf < 0 e x_0 é um ponto de mínimo local de Df, então $Df(x_0) \le 0$.

Demonstração. Se $Df(x_0) \neq 0$, então

$$Sf(x_0) = \frac{D^3 f(x_0)}{D f(x_0)} - \frac{3}{2} \left(\frac{D^2 f(x_0)}{D f(x_0)} \right)^2 < 0.$$

Sendo x_0 ponto de mínimo local de Df, temos que $D^2f(x_0)=0$ e $D^3f(x_0)\geq 0$ e, portanto, $Df(x_0)<0$.

Lema 4.5. Se Sf < 0 e a < b < c são pontos fixos de f com $Df(b) \le 1$, então f possui ponto crítico em (a, c).

Demonstração. Pelo TVM, existem $r \in (a,b)$ e $s \in (b,c)$ tais que Df(r) = Df(s) = 1. Sendo Df contínua, Df restrita ao intervalo [r,s] possui mínimo global. Como $b \in (r,s)$ e $Df(b) \leq 1$, temos que Df possui mínimo local em (r,s). Utilizando Lema anterior e o TVI, a demonstração está concluída.

Lema 4.6. Se Sf < 0 e a < b < c < d são pontos fixos de f, então f possui ponto crítico em (a,d).

Demonstração. Se $Df(b) \leq 1$ ou $Df(c) \leq 1$, o resultado é verdadeiro pelo Lema anterior. Se Df(b) > 1 e Df(c) > 1, existem $r, t \in (b, c)$ tais que r < t, f(r) > r e f(t) < t. Pelo TVM, existe $s \in (r, t)$ tal que Df(s) < 1. Portanto, Df possui mínimo local em (b, c). Utilizando Lema 4.4 e o TVI, a demonstração está concluída.

Lema 4.7. Se f possui finitos pontos críticos, então f^n possui finitos pontos críticos para todo $n \ge 1$.

Demonstração. Pelo TVM, se $c \in \mathbb{R}$, então f possui ponto crítico entre dois elementos de $f^{-1}(c)$ e, portanto, $f^{-1}(c)$ é finito. De modo mais geral, é possível provar por indução que $f^{-n}(c)$ é finito para todo $n \ge 1$.

Se $n \ge 1$, então $Df^n(x) = \prod_{k=0}^{n-1} Df(f^k(x)) = 0$ se, e somente se, $f^k(x)$ é ponto crítico de f para algum $1 \le k < n$. Portanto, o conjunto de pontos críticos de f^n é finito.

Lema 4.8. Se Sf < 0 e f possui finitos pontos críticos, então f^n possui finitos pontos fixos para todo $n \ge 1$.

Demonstração. Pelo Lema 4.6, se f^n possui infinitos pontos fixos para algum $n \ge 1$, então f^n possui infinitos pontos críticos, o que é um absurdo pelo Lema 4.7.

Com isso, temos as ferramentas necessárias para demonstrar o Teorema de Singer.

Teorema 4.9 (Singer). Se Sf < 0 e f possui n pontos críticos, então f possui n máximo n+2 órbitas periódicas não repulsoras.

Demonstração. Seja p um ponto periódico não repulsor de f de período m. Se $g = f^m$, então g(p) = p e $|Dg(p)| \le 1$. Seja K a componente conexa de $\mathcal{B}(p) = \{x : \lim_{k \to \infty} g^k(x) = p\}$ que contém p. Inicialmente, suponha que K é limitado.

Se |Dg(p)| < 1, então é possível mostrar que K é aberto, $g(K) \subset K$ e g preserva os pontos extremos de K.

Escrevendo K = (a, b), se g(a) = a e g(b) = b, então g possui ponto crítico em K pelo Lema 4.5; se g(a) = b e g(b) = a, então g^2 possui ponto crítico em K pelo Lema 4.5; se g(a) = g(b), então g possui ponto crítico em K pelo TVM.

Se |Dg(p)| = 1, então os pontos fixos de g são isolados pelo Lema anterior e, portanto, existe uma vizinhança de p que não contém outros pontos fixos de g.

Suponha que Dg(p) = 1; se Dg(p) = -1, a demonstração é análoga considerando g^2 . Se p possui o comportamento de um ponto repulsor, então, para x numa vizinhança de p, g(x) > x quando x > p e g(x) < x quando x < p. Desse modo, 1 é um mínimo local de Dg, o que é um absurdo pelo Lema 4.4 e, portanto, p é atrator em pelo menos um dos lados. Desse modo, K é

um intervalo, $g(K) \subset K$ e g preserva os pontos extremos de K. Assim, é possível concluir de maneira análoga que g possui ponto crítico em K.

Assim, cada intervalo K limitado está associado à algum ponto crítico de f e, portanto, existem no máximo n desses intervalos. Não é possível obter a mesma conclusão se K não é limitado, mas observando que existem no máximo dois intervalos desse tipo, a demonstração está concluída.

Corolário 4.10. Se $\mu > 1$, então h possui no máximo 1 órbita periódica não repulsora.

Referências

[Burns e Hasselblatt, 2011] Burns, K. e Hasselblatt, B. (2011). The Sharkovsky Theorem: a Natural Direct Proof. *The American Mathematical Monthly*, 118(3):229–244.

[Devaney, 1989] Devaney, R. L. (1989). An Introduction to Chaotic Dynamical Systems. Perseus Books.

[Holmgren, 1996] Holmgren, R. A. (1996). A First Course in Discrete Dynamical Systems. Springer-Verlag New York.