GRAMMAR

Beulah A. AP/CSE

 The theory of formal languages is used in the field of Linguistics- to define valid sentences and give structural descriptions of sentences.

```
S \rightarrow < noun > < verb > < adverb >
S \rightarrow < \text{noun} > < \text{verb} >
<noun>→ Ram
<noun> \rightarrow San
\langle \text{verb} \rangle \rightarrow \text{ran}
\langle \text{verb} \rangle \rightarrow \text{ate}
< adverb > \rightarrow slowly
< adverb > \rightarrow quickly
   Beulah A.
```

June 17, 2017

- □ S variable to denote a sentence
- □ → represents a rule meaning that the word on the right side of the arrow can replace the word on the left side of the arrow.
- □ P collection of rules (or) productions.
- □ The sentences are derived from the above mentioned productions by:
 - Starting with S
 - Replacing words using the productions
 - Terminating when a string of terminals is obtained.

- \square S \rightarrow <noun><verb><adverb>
- \square S \rightarrow Ram ate slowly

- \square S \rightarrow <noun><verb>
- \square S \rightarrow Sam ran

Beulah A.

Backus-Naur Form

- □ Backus-Naur Form or Backus Normal Form → BNF
- □ BNF is formal and precise
 - BNF is a notation for context-free grammars
- □ BNF is essential in compiler construction
- Example

```
<number> ::= <digit> | <number> <digit> | <digit> | <digit> | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
```

Formal Grammar - Definition

- A formal grammar $G = (N, \Sigma, P, S)$ consists of:
- \square A finite set N of non terminal symbols.
- \square A finite set Σ of terminal symbols that is disjoint from N.
- \square A finite set P of production rules where a rule is of the form
 - □ string in (Σ U N)* → string in (Σ U N)*
 - the left-hand side of a rule must contain at least one non terminal symbol.
- \square A symbol S in N that is indicated as the start symbol.

- \square G = (N, Σ , P, S)
- \square N = {<sentence>,<noun>,<verb>,<adverb>}
- $\square \Sigma = \{\text{Ram, Sam, ate, ran, slowly, quickly}\}\$
- \square S = <sentence>
- □ P

The grammar G with $N = \{S, B\}, \Sigma = \{a, b, c\}, P$ consisting of the following production rules

- \square S \rightarrow aBSc
- $S \rightarrow abc$
- \blacksquare Ba \rightarrow aB
- \blacksquare Bb \rightarrow bb

Notations

Names Beginning with	Represent Symbols In	Examples
Uppercase	N	A, B, C, Prefix
Lowercase and punctuation	Σ	a, b, c, if, then, (,;
<i>X</i> , <i>Y</i>	$N \cup \Sigma$	X_i, Y_3
Other Greek letters	$(N \cup \Sigma)^*$	α, β, γ

Beulah A.

June 17, 2017

Derivation

- □ If $\alpha \rightarrow \beta$ is a production in a grammar G and γ, δ are any two strings on NUΣ, then we say γαδ directly derives γβδ in G.
 - □ (i.e.) γαδ ⇒ γβδ
- □ This process is called *one-step derivation*.
- \square In particular, if $\alpha \rightarrow \beta$ is a production, then $\alpha \ G \Rightarrow \beta$

Beulah A.

Derivation

- □ The purpose of a grammar is to derive strings in the language defined by the grammar
- $\square \alpha \Rightarrow \beta$, β can be derived from α in one step
- $\square \Rightarrow^+$ derived in one or more steps
- $\square \Rightarrow^*$ derived in any number of steps
- $\square \Rightarrow_{lm}$ leftmost derivation
 - Always substitute the leftmost non-terminal
- $\square \Rightarrow_{rm}$ rightmost derivation
 - Always substitute the rightmost non-terminal

Beulah A.

- □ $G = (\{S\}, \{0,1\}, \{S \rightarrow 0S1, S \rightarrow 01\}, S)$ then the derivation is:

is a one step derivation, where S is replaced by 01.

$$S \to AB$$
$$B \to b$$

$$A \rightarrow aA \mid c$$

□ Derivation

 $S \Rightarrow AB$

⇒ aAB

 \Rightarrow aAb

 \Rightarrow aaAb

 \Rightarrow aacb

Language

- □ The language generated by a grammar G, L(G) is defined as $\{w \in \Sigma^* \mid S \Rightarrow^* w\}$.
- \square The elements of L(G) are called sentences.
- □ Stated in simple way, L(G) is the set of all terminal strings derived from the start symbol S.

Language

- \square G_1 and G_2 are equivalent if $L(G_1) = L(G_2)$
- □ A → α_1 , A → α_2 A → α_m said to be A-productions, rewritten as

$$A \rightarrow \alpha_1 |\alpha_2|....\alpha_m$$

Summary

- Definition of Grammar
- □ Notations followed in grammar
- □ Different types of grammar
- Language of a grammar

Beulah A. 2 July 2013

Test Your Knowledge

- □ The entity which generate Language is termed as:
 - a) Automata
 - b) Tokens
 - c) Grammar
 - d) Data
- □ The minimum number of productions required to produce a language consisting of palindrome strings over $\Sigma = \{a,b\}$ is
 - a) 3
 - b) 7

- c) 5 d) 6

Test Your Knowledge

- □ The Grammar can be defined as: $G=(V, \Sigma, p, S)$ In the given definition, what does S represents?
 - a) Accepting State
 - b) Starting Variable
 - c) Sensitive Grammar
 - d) None of these

Reference

Hopcroft J.E., Motwani R. and Ullman J.D, "Introduction to Automata Theory, Languages and Computations", Second Edition, Pearson Education, 2008

Beulah A. 2 July 2013