Bioinformatics Wrap-Up

Dr. Garrett Dancik

What is bioinformatics

• Bioinformatics:

- Biology + information
- the study and utilization of methods for storing, retrieving and analyzing biological data
- Falls under the category of Big Data

- How much information:
 - Human genome: 3 billion nucleotides
 - ~20,000 genes
 - many more when considering "junk DNA" and alternative splicing
 - >10 million sites of DNA variation
 - Countless possible interactions between DNA, RNA, and proteins

What is this?

print('hello world!')

- Computer code is a set of instructions that tells a computer how to process data and output results
- The genetic code is also a set of instructions, that tells a cell how to produce a molecule (such as a protein)
 - Information flows from DNA → RNA → protein
 - This information determines the structure/function of RNA and protein

Central Dogma of Molecular Biology

- The function of a protein can be predicted from its DNA or protein sequence
- Just like Java (or Python) is a language for computers, genetics is the language of life (DNA is the alphabet)
 - This is fundamental concept in bioinformatics

Bioinformatics example

- Let's look briefly at the gene *BRCA1* (breast cancer type 1 susceptibility protein)
 - http://www.ncbi.nlm.nih.gov
 - Search Nucleotide for BRCA1
 - Click on the Transcript reference sequence
- Hopefully this now makes sense!

Why do we need bioinformatics?

- To identify genetic mechanisms of diseases and other inherited (or acquired) conditions
 - Nature via nurture
- For personalized treatment of disease

Why do we need bioinformatics?

PLOS ONE

Publish

About

Browse

pios.org

BLAST

Bioinformatics Analysis of the Complete Genome Sequence of the Mango Tree Pathogen *Pseudomonas syringae* pv. syringae UMAF0158 Reveals Traits Relevant to Virulence and Epiphytic Lifestyle

Sequence Alignment

Pedro Manuel Martínez-García , Pablo Rodríguez-Palenzuela , Eva Arrebola, Víctor J. Carrión, José Antonio Gutiérrez-Barranquero, Alejandro Pérez-García, Cayo Ramos, Francisco M. Cazorla, Antonio de Vicente

Published: August 27, 2015 http://dx.doi.org/10.1371/journal.pone.0136101

Genome Res. 2014 Jul; 24(7): 1180–1192. doi: 10.1101/gr.171934.113 PMCID: PMC4079973

A cloud-compatible bioinformatics pipeline for ultrarapid pathogen identification from next-generation sequencing of clinical samples

Samia N. Naccache, ^{1,2} Scot Federman, ^{1,2} Narayanan Veeraraghavan, ^{1,2} Matei Zaharia, ³ Deanna Lee, ^{1,2} Erik Samayoa, ^{1,2} Jerome Bouquet, ^{1,2} Alexander L. Greninger, ⁴ Ka-Cheung Luk, ⁵ Barryett Enge, ⁶ Debra A. Wadford, ⁶ Sharon L. Messenger, ⁶ Gillian L. Genrich, ¹ Kristen Pellegrino, ⁷ Gilda Grard, ⁸ Eric Leroy, ⁸ Bradley S. Schneider, ⁹ Joseph N. Fair, ⁹ Miguel A. Martínez, ¹⁰ Pavel Isa, ¹⁰ John A. Crump, ^{11,12,13} Joseph L. DeRisi, ⁴ Taylor Sittler, ¹ John Hackett, Jr., ⁵ Steve Miller, ^{1,2} and Charles Y. Chiu^{1,2,14,15}

Author information ► Article notes ► Copyright and License information ►

Regulation of developmental rate and germ cell proliferation in *Caenorhabditis elegans* by the p53 gene network

WB Derry*,1,2,3, R Bierings¹, M van Iersel¹, T Satkunendran^{2,3}, V Reinke⁴ and JH Rothman*,1

p53 consensus binding sites in CEP-1-regulated genes. In an effort to identify putative direct targets of CEP-1, we analyzed CEP-1-activated genes for p53 consensus DNA-binding sites. Vertebrate p53 binds two copies of the palindromic DNA consensus sequence RRRCWWGYYY, and CEP-1 binds an oligonucleotide containing the human p53 consensus motif *in vivo* and *in vitro*. We searched the *C. elegans* genome for pairs of p53 consensus binding sites and found that ~25% of CEP-1-activated genes contain potential p53-binding sites in their promoters and introns (Table S2). These sites were

The genomic landscape of bladder cancer

The Cancer Genome Atlas Research Network Nature 507, 315-322 (2014) doi:10.1038/nature12965

Bioinformatics and coronavirus

- Coronavirus genomic analysis suggests early spread in the United States
 - https://www.the-scientist.com/news-opinion/coronaviruss-genetics-hint-at-its-cryptic-spread-in-communities-67233
- Advanced bioinformatics rapidly identifies existing therapeutics for patients with coronavirus disease-2019 (COVID-19)
 - https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-020-02430-9
- Combination of Biodata Mining and Computational Modelling in Identification and Characterization of ORF1ab Polyprotein of SARS-CoV-2 Isolated from Oronasopharynx of an Iranian Patient
 - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7171442/
- Computational Strategies to Combat COVID-19
 - https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbaa232/5955939

Additional Databases and Tools

- The Cancer Genome Atlas
 - http://cancergenome.nih.gov
 - Comprehensive genomic characterization of tumors
- cBioPortal for Cancer Genomics
 - http://www.cbioportal.org/
- Genomics of Drug Sensitivity in Cancer
 - http://www.cancerrxgene.org
 - Screen > 1000 cell lines with drug
 - Genomic characterization of cell lines
- And many more (current research)
 - http://bioinformatics.oxfordjournals.org
 - http://www.biomedcentral.com/bmcbioinformatics