Homework-6 Solutions

Question 1

The result of detecting the template $\boxed{1}$ $\boxed{2}$ $\boxed{1}$ in the image

	4	4	4		
	1	2	1		

a. with non-normalized cross correlation matching. Cross correlation of the template with the image gives: Therefore, the best match is found for cross correlation value of 16, at the coordinate x = 4, y = 1.

	4	12	16	12	4		
	1	4	6	4	1		

b. with normalized cross correlations matching. First square the original image values

ſ						
ĺ		16	16	16		
ĺ		1	4	1		
ſ						

Next compute the cross correlation with 1 1 1

ſ		16	32	48	32	16		
		1	5	6	5	1		
Ī								

Next divide the values found in Part a by the square root of the above values giving:

		$3/\sqrt{2}$			1		
	1	$4/\sqrt{5}$	$6/\sqrt{6}$	$4/\sqrt{5}$	1		

The best match is found at coordinate x = 4, y = 2.

If desired the results can be normalize to a (0,1) range by dividing each element by $\sqrt{1^2+2^2+1^2}$

	$1/\sqrt{6}$	$\sqrt{3}/2$	$2\sqrt{2}/3$	$\sqrt{3}/2$	$1/\sqrt{6}$		
	$1/\sqrt{6}$	$4/\sqrt{30}$	1	$4/\sqrt{30}$	$1/\sqrt{6}$		

1	2	2	2		8	9		11	20	100	100
7	3	2	2		11	10		40	30	100	100
	1	T	3	-	(7	-	I)	F	4)

Question 2

A,B,C,D,E above are 5 small windows in an image. Our goal is to use template matching to detect the following pattern:

1	2
4	3

I

If the technique of non-normalized cross correlation is used, which pattern gives the best match value?

Answer: E.

II

If the technique of normalized cross correlation is used, which pattern gives the best match value?

Answer: D.

	A	B	C	D	E
match value	$42/\sqrt{63} = 5.291$	$20/\sqrt{16} = 5$	$100/\sqrt{366} = 5.227$	$301/\sqrt{3021} = 5.476$	$1000/\sqrt{40000} = 5$

Question 3

Consider the following image:

	x = 0	x = 1	x = 2	x = 3	x = 4
y = 0	1	0	0	0	0
y=1	0	0	0	0	0
y=2	0	1	1	1	0
y = 3	0	2	2	2	0
y=4	0	0	0	0	0
y=5	0	0	0	0	0

1.

Compute its integral image.

Answer:

		x = 0	x = 1	x = 2	x = 3	x = 4
•	y = 0	1	1	1	1	1
	y = 1	0	0	0	0	0
Integral image on each row:	y = 2	0	1	2	3	3
•	y = 3	0	2	4	6	6
	y = 4	0	0	0	0	0
	y = 5	0	0	0	0	0

	x = 0	x = 1	x=2	x = 3	x = 4
y = 0	1	1	1	1	1
y = 1	1	1	1	1	1
y=2	1	2	3	4	4
y=3	1	4	7	10	10
y=4	1	4	7	10	10
y=5	1	4	7	10	10

Integral image on each column:

2.

Use the integral image calculated in 1 to compute the sum of pixels in the following rectangles:

Rectangle 1: $x_1 = 1, y_1 = 1, x_2 = 4, y_2 = 2.$

Rectangle 2: $x_1 = 1, y_1 = 1, x_2 = 2, y_2 = 2.$

Rectangle 3: $x_1 = 3, y_1 = 1, x_2 = 4, y_2 = 2.$

Show your computations.

Answer:

Rectangle 1: $x_1 = 1, y_1 = 1, x_2 = 4, y_2 = 2$. sum = 4 - 1 - 1 + 1 = 3.

Rectangle 2: $x_1 = 1, y_1 = 1, x_2 = 2, y_2 = 2$. sum = 3 - 1 - 1 + 1 = 2.

Rectangle 3: $x_1 = 3, y_1 = 1, x_2 = 4, y_2 = 2$. sum = 4 - 1 - 3 + 1 = 1.

3.

How many rectangles inside the image have even width?

Answer:

126 rectangles.

height 1: 6*6

height 2: 5*6

height 3: 4*6

height 4: 3*6

height 5: 2*6

height 6: 1*6

Total: 6*6*(1+6)/2 = 126

4.

Suppose the given image is the only positive example in a learning task, and there is only one negative example, an image with all zero pixels. Consider the Haar feature computed over the Rectangle 1 above, where the left values (Rectangle 2) are all -1, and the right values (Rectangle 3) are all 1. What is the threshold associated with this feature?

Answer:

Applying the Haar feature to the given postive example will give the value -1. For the negative example, applying the Haar feature gives 0. Therefore, we can use a threshold of -0.5.