CRYPTOGRAPHY

MADE BY:

FATIMA EZZAHRA ACHAIT MOHAMMED KHALDOUNE

X PLAN

- 1. WHAT IS CRYPTOGRAPY
- 2. KEY TERMS
- 2. CIA TRIAD
- 3. ENCODING VS ENCRYPTION VS HASHING
- 4. DECODING/ENCODING
 - 4.1 BASE32 & BASE64
 - 4.2 CAESAR CIPHER
 - 4.3 OTHERS
- 5. DECRYPTION/ENCRYPTION
 - 5.1 SYMMETRIC ENCRYPTION
 - 5.2 ASYMMETRIC ENCRYPTION: RSA
- 6. HASHING
 - 6.1 HASHCAT/JOHN THE RIPPER

Cryptography is transformation of data into another format in such a way that only specific individual(s) can reverse the transformation

X KEY TERMS

- Ciphertext The result of encrypting a plaintext, encrypted data
- Cipher A method of encrypting or decrypting data. Modern ciphers are cryptographic, but there are many non cryptographic ciphers like Caesar.
- Plaintext Data before encryption, often text but not always. Could be a photograph or other file
- **Key** Some information that is needed to correctly decrypt the ciphertext and obtain the plaintext.
- Passphrase Separate to the key, a passphrase is similar to a password and used to protect a key.
- Brute force Attacking cryptography by trying every different password or every different key
- Cryptanalysis Attacking cryptography by finding a weakness in the underlying maths

X CIA TRIAD

X CIA TRIAD

The CIA Triad

What Is the CIA?

Confidentiality	Integrity	Availability
I send you a message, and no	I send you a message,	I send you a message, and you
one else knows what that	and you receive exactly	receive it
message is.	what I sent you	

What's The Purpose of the CIA?

Data is not disclosed	Data is not tampered	Data is available

X ENCODING VS ENCRYPTION VS HASHING

Encoding NOT a form of encryption, just a form of data representation like base64. Immediately reversible, i.e. no key is used.

Encryption is for maintaining data confidentiality and requires the use of a key (kept secret) in order to return to plaintext.

Hashing is for validating the integrity of content by detecting all modification thereof via obvious changes to the hash output.

How Do You Achieve the CIA?					
e.g., Encryption	e.g., Hashing, Digital signatures	e.g., Backups, redundant systems			
	<u>, </u>				

X DECODING/ENCODING

X BASE32 & BASE64

Base32

32-printable characters, It uses uppercase letters A-Z, followed by 2-7 (0 and 1 are skipped due to their similarity with the letters O and I) and the equal sight.

Base64

In Base64, as the name suggests, there are 64 characters used to encode binary data. These characters are:

- 26 Capital letters [A-Z]
- 26 lower letters [a-z]
- 10 digits [0-9]
- 2 special characters [+ , /] and of course '='

There are so many different ways of encoding and decoding information nowadays... One of them will work! Q1RGe0ZsYWdneVdhZ2d5UmFnZ3l9

This CTF is from CTFlearn platform

X CAESAR CIPHER

It is a type of substitution cipher in which each letter in the plaintext is replaced by a letter some fixed number of positions down the alphabet.

For example, with a **left shift of 3**, D would be replaced by A, E would become B, and so on.

X CAESAR CIPHER

ROT13 "rotate by 13 places", is a special case of the Caesar cipher, that replaces a letter with the 13th letter after it in the alphabet.

Cryptography doesn't have to be complicated, cvpbPGS{guvf_vf_pelcgb!}

Hint : This CTF is from picoCTF platform

This is one of the older ciphers in the books, can you decrypt the message? picoCTF{yjhipvddsdasrpthpgrxewtgdqnjytto}

Hint : Brute Force Is Your Friend

× OTHERS

Ascii

067 073 084 123 073 115 084 104 101 077 111 111 111 111 111 111 110 033 125

base2

• <u>base16</u>

4349547b49735468654d6f6f6f6f6f6f6e217d

<u>link</u>

Disclaimer: If you find the flag, Raise your hand and say Done without Spoiling

X OTHERS

Morse code

SequencesOfTwoDifferentSignalDurationCalledDotsAndDashes

• BrainF**k

using six symbols +,-,<,>,[,],

It is That 34sy

I can be anything

<u>link</u>

X CTF-8

The vignere cipher is a method of encrypting alphabetic text by using a series of interwoven Caesar ciphers based on the letters of a keyword.

I'm not sure what this means, but it was left lying around: blorpy

gwox{RgqssihYspOntqpxs}

X RESOURCES

- https://gchq.github.io/CyberChef/
- https://www.dcode.fr/
- https://rot13.com/
- https://morsedecoder.com/
- http://www.unit-conversion.info/texttools/
- https://www.online-toolz.com/
- https://cryptii.com/
- https://mothereff.in/bacon

X DECRYPTION/ENCRYPTION

Symmetric Encryption

Asymmetric Encryption

Hybrid Encryption

X SYMMETRIC ENCRYPTION ALGORITHMS

- AES (Advanced Encryption Standard)
- DES (Data Encryption Standard)
- IDEA (International Data Encryption Algorithm)
- Blowfish (Drop-in replacement for DES or IDEA)
- RC4 (Rivest Cipher 4)
- RC5 (Rivest Cipher 5)
- RC6 (Rivest Cipher 6)

X VIGENERE CYPHER: ENCRYPTION

msg: HELLO WORLD

key: TEST

Encryption:

X VIGENERE CYPHER: DECRYPTION

msg: HELLO WORLD

key: TEST

if cypher - key >= 0:
msg = cypher - key
if cypher - key < 0:
msg = cypher - key +26</pre>

Decryption:

X VIGENERE CYPHER: BRUTE FORCE

If the key length is small:

Length = 1	==>	26 possibility (caesar cipher)
Length = 2	==>	26**2 = 676 possibility

Length = 3 ==>
$$26**3 = 17576$$
 possibility

X ASYMMETRIC ENCRYPTION ALGORITHMES

- Rivest Shamir Adleman (RSA)
- the Digital Signature Standard (DSS), which incorporates the Digital Signature Algorithm (DSA)
- Elliptical Curve Cryptography (ECC)
- the Diffie-Hellman exchange method.
- TLS/SSL protocol.

Components:

p,q: two large primes

n = p.q : modulus

e: exponent, 1 < e < euler(n), e and euler(n) are coprime

$$euler(n) = (p - 1)(q - 1)$$

Public key: n, e

message: m

X ASYMMETRIC ENCRYPTION: RSA

Generating m from clear text:

ASCII table

```
65 41 101 6#65; A 97 61 141 6#97; a 66 42 102 6#66; B 98 62 142 6#98; b 67 43 103 6#67; C 99 63 143 6#99; c 68 44 104 6#68; D 100 64 144 6#100; d 69 45 105 6#70; F 102 66 146 6#102; f 71 47 107 6#71; G 103 67 147 6#103; g 72 48 110 6#72; H 104 68 150 6#104; h 73 49 111 6#73; I 105 69 151 6#105; i 74 44 112 6#74; J 106 64 152 6#106; j 75 4B 113 6#75; K 107 6B 153 6#107; k 76 4C 114 6#76; L 108 6C 154 6#108; I 77 4D 115 6#77; M 109 6D 155 6#109; M
```

```
"HAI" -> m = 72*256**2 + 65*256**1 + 73*256**0 = 4735305
```

"HAI" ->
$$m = 0x484149 = 4669768$$

Convert this to decimal:

Testing RSA!!

```
In Python:

chr(65) == "A"

ord("A") == 65
```


Convert this to text:

7085800897314030661239523516449

In Python: chr(65) == "A" ord("A") == 65

X ASYMMETRIC ENCRYPTION: RSA

Based on:

Modular Exponentiation:

m**e mod n

In Python:

pow(base, exponent, modulus)

X ASYMMETRIC ENCRYPTION: RSA

Encryption:

$$c = (m ** e) % n$$

Python: c = pow(m,e,n)

Example:

Encrypt this text:

Testing RSA!!

Values:

n = 882564595536224140639625987659416029426239230804614613279163

e = 65537

X ASYMMETRIC ENCRYPTION: RSA

Private key: d, n

$$euler(n) = (p - 1)*(q - 1)$$

$$e.d = 1 \% euler(n)$$

Python: d = pow(e,-1,euler_n)

d called the modular multiplicative inverse of e

Decryption:

$$m = (c ** d) % n$$

Python: m = pow(c,d,n)

Example:

$$p = 3$$
, $q = 11$

$$n = 33$$

$$e = 7$$

$$c = 29$$

euler(n) =
$$(3 - 1)(11 - 1) = 20$$

$$==> d = 3$$

X TEST - TEST

Decrypt this:

325334761016336946446596805334601 271861143244958664513525228

Values:

n = 882564595536224140639625987659416029426239230804614613279163

p = 1029224947942998075080348647219

e = 65537

List of RSA attacks:

- Factoring the Public Key
- Guessing d
- Common Modulus
- Low Exponent

•••

X CRYPTANALYSIS: RSA ATTACKS

- Factoring the Public Key

using factordb.com we can find the primes that construct n

Decrypt this:

7924810773420314833701625009486068556704349976231666737232 804311092

Values:

n = 32269109513264378873151120068074444086989044741418671122338798116969 e = 65537

HASHING

Definition:

The process of converting any data into same lenght random strings depending on the hash algorithm used

MD5: F82E5C00EFEE8D85A47F7D42853B73DB

SHA256:

12BDF9B98E7C15BF6E4361AD4663E7D9EDD13D330C8E70AA860F7C8559A28099

SHA512:

4160E7D420B927C65A97F2ACD3ED157E7BFDCA5830547473158F42DD4C431A80737 C86F9FC93B338CE7816E2E9CC3411BA02F44337233D088AE406141E8DE960

Why hashing ??

Collisions:

two keys can generate the same hash

X CRACKING HASHES

Concept:

hashing strings and comparing the hashes with the hashed strings

Tools:

- Hash-identifier
- Hashcat
- John The Ripper

Crack this hash:

392115d3537e79ed7ac6f5f35b13283c1e8b918d8b93af68f37bd6f19f7d4448

Algorithm used: Keccak-XXX

× SOURCES

```
https://cryptohack.org/
https://cryptopals.com/
https://overthewire.org/wargames/krypton/
https://picoctf.org/
```

https://github.com/Ganapati/RsaCtfTool