

Author: Vivek Kulkarni (vivek_kulkarni@yahoo.com)

Chapter-1: Preliminaries

Solutions for Review Questions

- **Q.1** Define the following and give suitable examples.
 - i) Cardinality of a set
 - ii) Closure of a set
 - iii) Alphabet
 - iv) Symbol
 - v) Language
 - vi) Word

Solution:

- i) Cardinality of a set Refer to the section 1.3.2.
- ii) Closure of a set Refer to the section 1.3.1.9.
- iii) Alphabet Refer to the section 1.2.2.
- iv) Symbol Refer to the section 1.2.1.
- v) Language Refer to the section 1.6.
- vi) Word Refer to the section 1.2.3.
- **Q.2** If $R = \{(a, b), (b, c), (c, a)\}$ is a relation over $\{a, b, c\}$, find R^+ and R^* .

Solution:

Let, $S = \{a, b, c\}$ and $R = \{(a, b), (b, c), (c, a)\}.$

The transitive closure of a relation R, which is denoted by R^+ , is defined as follows:

- If $(a, b) \in R$, then (a, b) is in R^+
- If $(a, b) \in R^+$ and $(b, c) \in R^+$, then (a, c) is in R^+

Hence, for given set S and relation R,

$$R^+ = \{(a, b), (b, c), (c, a), (a, c), (b, a), (c, b)\}$$

Reflexive and transitive closure of a relation R, which is denoted by R^* , is defined as follows:

 $R^* = R^+ \cup \{(a, a) \mid \forall a \in S\}$, where R is a relation defined over set S.

Hence, for given set S and relation R,

$$R^* = \{(a, b), (b, c), (c, a), (a, c), (b, a), (c, b), (a, a), (b, b), (c, c)\}$$

Q.3 Differentiate between natural and formal languages.

Solution:

Refer to the section 1.6.1.

Q.4 Find the transitive closure and the symmetric closure of the relation:

$$R = \{(1, 2), (2, 3), (3, 4), (5, 4)\}$$

Solution:

Transitive closure for the given relation R (R^+) is

$$R^+ = \{(1, 2), (2, 3), (3, 4), (5, 4), (1, 3), (2, 4)\}$$

Symmetric closure of a relation R is defined as follows:

If $(a, b) \in R$ then (a, b) and (b, a) are in the symmetric closure of R

Thus, symmetric closure of $R = \underline{R} \cup \{(b, a) \mid (a, b) \in R\}$

Hence, symmetric closure of R is given as

Symmetric closure of
$$R = \{(1, 2), (2, 1), (2, 3), (3, 2), (3, 4), (4, 3), (5, 4), (4, 5)\}$$

Q.5 Show that 'the set of real numbers *R* is not countable'.

Solution:

Refer to the section 1.3.3.

Q.6 Let L be a language. It is clear from its definition that $L^+ \subseteq L^*$. Under what circumstances are they equal?

Solution:

Closure of a set is defined as:

$$S^* = S^0 \cup S^1 \cup S^2 \dots,$$

where,
$$S^0 = \{ \in \}$$
,

and,
$$S^{i} = S^{i-1} \cdot S$$
; for $i > 0$.

Closure of a set is thus a repetitive concatenation of the set to itself.

Positive closure of a set S does not include $S^0 = \{ \in \}$ and thus can be defined as,

$$S^+ = S^1 \cup S^2 \dots$$

Language being the set, L^* here mean the set closure and L^+ means positive closure. L^+ does not include an empty string. Hence, typically $L^+ \subseteq L^*$. But, if L already contains an empty string \in then these two could be equal.

Q.7 Show that if S uncountable and T is countable, then 'S - T' is uncountable.

Solution:

Refer to the example 1.1 from the book.

Q.8 Show that any equivalence relation R on a set S partitions S into disjoint equivalent classes.

Solution:

Refer to the section 1.4.1.

Q.9 Find transitive closure and reflexive and transitive closure for the following relation set:

$$R = \{(a, b), (a, c), (c, d), (a, a), (b, a)\}$$

Solution:

Let,
$$S = \{a, b, c, d\}.$$

Transitive closure of given relation set R can be given as,

$$R^+ = \{(a, b), (a, c), (c, d), (a, a), (b, a), (a, d), (a, a), (b, b)\}$$

Reflexive and Transitive closure of given relation set R can be given as,

$$R^* = \{(a, b), (a, c), (c, d), (a, a), (b, a), (a, d), (a, a), (b, b), (c, c), (d, d)\}$$

Q.10 For the sets $A = \{a, b, c, d\}$ and $B = \{c, d, e\}$, find the following:

(i)
$$A - B$$

(ii)
$$A \times B$$

(iii)
$$2^B$$
 (power set)

Solution:

i) The difference of two sets is defined as:

$$\underline{A} - \underline{B} = \{\underline{x} \mid \underline{x} \in \underline{A} \text{ and } \underline{x} \notin \underline{B}\}, \text{ or, } \underline{A} - \underline{B} = \underline{A} - (\underline{A} \cap \underline{B})$$

Hence,
$$A - B = \{a, b\}$$

ii) The Cartesian product of two sets is defined as:

$$A \times B = \{(a, b) \mid a \in A \text{ and } b \in B, \forall a \& \forall b\}$$

It defines the association of every element of set *A* with each element of set *B*.

Hence,
$$A \times B = \{(a, c), (a, d), (a, e), (b, c), (b, d), (b, e), (c, c), (c, d), (c, e), (d, c), (d, d), (d, e)\}$$

i) The power set of a set B, i.e., 2^B is the set of all subsets of B, including itself, and the empty set, ϕ .

$$2^{B} = \{\phi, \{c\}, \{d\}, \{e\}, \{c, d\}, \{c, e\}, \{d, e\}, \{c, d, e\}\}$$