

PATENT ABSTRACTS OF JAPAN

(11) Publication number:

05025636 A

(43) Date of publication of application: 02 . 02 . 93

(51) Int. CI

C23C 14/58

C23C 14/06

// C21D 6/00

C22C 38/00

C22C 38/22

(21) Application number: 03091857

(22) Date of filing: 23 . 04 . 91

(71) Applicant:

SUMITOMO METAL IND LTD

(72) Inventor:

HATTORI KENJI TARUYA YOSHIO

(54) MANUFACTURE OF DRY TIN PLATED STAINLESS STEEL FOR DECORATION

(57) Abstract:

PURPOSE: To manufacture a dry TiN plated stainless steel excellent in adhesion of films and corrosion resistance and having a beautiful gold color on the surface by a vapor phase deposition method.

CONSTITUTION: An austenitic stainless steel contg., by weight, 12.0 to 35.0% Cr, 7.0 to 50.0% Ni, 0.01 to 0.03% C, 0.01 to 2.00% Ti and 0.1 to 5.0% Si and furthermore contg., at need, ≤0.3% N is used as a base metal. The

surface of the above stainless steel is vapor deposited with a TiN film having 0.1 to $5.0 \mu m$ thickness, and it is subjected to heat treatment of holding in the temp. range of 500 to 1150°C for ≈0.5min in a nonoxidizing atmosphere with -15 to -55°C dew point. The space between the stainless steel and the TiN film may be vapor-deposited with a Ti film as well as the content of N may gradually be increased in the TiN film from the side of the Ti film to the surface and the thickness of the Ti film is regulated to 0.03 to $2.0 \mu m$.

COPYRIGHT: (C)1993,JPO&Japio

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-25636

(43)公開日 平成5年(1993)2月2日

C 2 3 C 14/58 14/06 // C 2 1 D 6/00 C 2 2 C 38/00 38/22	識別記号 102 A 302 Z	庁内整理番号 8414-4K 8414-4K 9269-4K 7217-4K	F I			技術表示箇所
				審査請求	未請求	請求項の数3(全 12 頁)
(21)出願番号(22)出願日	特願平3-91857 平成3年(1991)4月	I23 FI	(71)出願人	住友金属	國工業株式	式会社 央区北浜 4 丁目 5 番33号
	1,340 1 (1001) 17.		(72)発明者	服部 暑大阪府力	懸治	中区北浜 4丁目 5番33号
		٠	(72)発明者	大阪府大		·区北浜4丁目5番33号 C会社内
			(74)代理人	弁理士	穂上 照	烈忠 (外 1 名)

(54)【発明の名称】 装飾用乾式TiNめつきステンレス鋼材の製造方法

(57) 【要約】

【目的】気相蒸着法で皮膜の密着性および耐食性に優れた表面が美麗な黄金色を有する乾式TINめっきステンレス鋼材を製造する。

【構成】母材に、重量%で、Cr:12.0~35.0%、Ni: 7.0~50.0%、C:0.01~0.03%、Ti:0.01~2.00%、Si:0.1~5.0%を含有し、更に、必要によりN:0.3%以下を含有するオーステナイトナイトステンレス鋼材を用いる。これらのステンレス鋼材の表面に厚さ 0.1~5.0 μm のTiN皮膜を蒸着し、露点−15~−55℃の非酸化性雰囲気の炉内で、500~1150℃の温度域で0.5min以上保持する熱処理を施す。ステンレス鋼材とTiN皮膜との間にTi皮膜を蒸着してもよい。また、TiN皮膜はTi皮膜側から表面に向かいTiN皮膜中のN量を漸増させてもよい。

20

【特許請求の範囲】

【請求項1】重量%で、 $Cr:12.0\sim35.0\%$ 、 $Ni:7.0\sim50.0\%$ 、 $C:0.01\sim0.03\%$ 、 $Ti:0.01\sim2.00\%$ 、 $Si:0.1\sim5.0\%$ を含有するオーステナイト系ステンレス鋼材またはこれらの成分に加えて更に、0.3%以下のNを含有するオーステナイト系ステンレス鋼材の表面に、厚さ $0.1\sim5.0~\mu$ m のTiN皮膜を蒸着した後、露点 $-15\sim-55$ Cの非酸化性雰囲気の炉内で、500~1150 Cの温度域で0.5min以上保持する熱処理を施すことを特徴とする装飾用乾式TiN的っきステンレス鋼材の製造方法。

【請求項 2】重量%で、Cr:12.0~35.0%、Ni: 7.0~50.0%、C:0.01~0.03%、Ti:0.01~2.00%、Si: 0.1~5.0%を含有するオーステナイト系ステンレス鋼材またはこれらの成分に加えて更に、0.3%以下のNを含有するオーステナイト系ステンレス鋼材の表面に、厚さ0.03~2.0μmのTi皮膜を蒸着し、更にこのTi皮膜の上に厚さ 0.1~5.0μmのTiN皮膜を蒸着した後、露点−15~−55℃の非酸化性雰囲気の炉内で、500~1150℃の温度域で0.5min以上保持する熱処理を施すことを特徴とする装飾用乾式TiNめっきステンレス鋼材の製造方法。

【請求項3】重量%で、 $Cr:12.0\sim35.0\%$ 、 $Ni:7.0\sim50.0\%$ 、 $C:0.01\sim0.03\%$ 、 $Ti:0.01\sim2.00\%$ 、 $Si:0.1\sim5.0\%$ を含有するオーステナイト系ステンレス鋼材またはこれらの成分に加えて更に、0.3%以下のNを含有するオーステナイト系ステンレス鋼材の表面に、厚さ $0.03\sim2.0\mu$ mのTi皮膜を蒸着し、更に、このTi皮膜の上に厚さ $0.1\sim5.0\mu$ mのTiN皮膜を、Ti皮膜側から表面に向かいTiN皮膜中のN量を漸増させながら蒸着した後、露点 $-15\sim-55$ ℃の非酸化性雰囲気の炉内で、 $50\sim1150$ ℃の温度域で0.5min以上保持する熱処理を施すことを特徴とする装飾用乾式TiNめっきステンレス鋼材の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、蒸着皮膜の密着性に優れ、蒸着皮膜表面が美麗な黄金色を有し、装飾用の材料として好適な高耐食性の乾式TiNめっきステンレス鋼材の製造方法に関するものである。

[0002]

【従来の技術】ステンレス鋼材はその表面に防食機能をもつ緻密な酸化物の不働態皮膜が存在するために耐食性材料として幅広く利用されている。また近年では嗜好の多様化および高級化が顕著となっており、ステンレス鋼材が高価格のために従来はあまり用いられていなかったような分野にまでその需要が拡がりつつある。

【0003】ステンレス鋼材は意匠性に富んだ美麗な金属光沢をもっていることから、通常はそのままで利用されることが多いが、近年ではイオンプレーティング法、真空蒸着法などのPVD法および化学気相蒸着法(CV

D法)といったいわゆる気相蒸着法によってステンレス 鋼材の表面に他の物質を蒸着することで、付加価値を高 めることが検討され始めている。

【0004】蒸着物質のなかでもTiNは美麗な黄金色を有し、耐食性の他に高硬度で耐摩耗性に優れた特性をもっていることから、20年以上前からドリル等の切削工具、時計、置物等の装飾材料へのコーティングが行われており、気相蒸着法によってコーティングされる代表的な物質である。ところが、TiNのようなセラミック皮膜を材料に蒸着しても、コーティングを施した材料の耐食性はさほど向上しないという問題がある。

【0005】PVD法やCVD法などの気相蒸着法で作 成したセラミック皮膜には通常多数の欠陥が存在してお り、特に真空蒸着法、イオンプレーティング法といった PVD法は粒子がほぼ直線的に基板まで到達するために チャンバー内の微細な塵、基板の凹凸、非金属介在物の 露出、基板表面の汚れなどによってピンホール (ポア) が発生しやすく、このピンホールの存在のために、耐食 性のあるTiNを蒸着しても、コーティングされた材料の 耐食性は向上しにくい。また、基板材料がステンレス鋼 材の場合には、その表面に存在する不働態皮膜により良 好な蒸着皮膜の密着性が得られないという問題もある。 このため、ステンレス鋼材の表面に保護皮膜を蒸着する 場合は、蒸着に先立ち、イオンボンバード処理等の前処 理を行うのが普通であるが、工業的に利用される1×10 -5 Torr程度の真空炉はその残留ガスの主成分が Hz Oであ り、酸化性雰囲気であるため、イオンボンバード処理を 行っても蒸着開始までの間に再度ステンレス鋼材の表面 に不働態皮膜が生成する。

【0006】TiNをステンレス鋼材の表面に蒸着する場合には、Ti金属の薄膜をステンレス鋼材とTiNの間に蒸着してその密着性を向上させることがしばしば行われている

【0007】しかし、蒸着したTi金属の薄膜にもピンホールが存在するため、蒸着皮膜とステンレス鋼材との界面の密着性が十分に得られていないのが現状がある。

[0008]

【発明が解決しようとする課題】本発明の課題は、上記したステンレス鋼材の付加価値を高めるためにその表面に耐食性のある保護皮膜を蒸着したときの、ピンホールの存在により蒸着皮膜の耐食性が充分に発揮されないという問題点と、蒸着皮膜の密着性に劣るという問題点を解消することにある。即ち、本発明の目的は蒸着皮膜の密着性に優れ、蒸着皮膜表面が美麗な黄金色を有し、装飾用の材料として好適な高耐食性の乾式TiNめっきステンレス鋼材を製造することができる方法を提供することにある。

[0009]

【課題を解決するための手段】IINを蒸着したステンレ 50 ス鋼材の耐食性を高めるためには、ピンホールの発生を 抑えるとともに蒸着皮膜の密着性を改善する必要がある。しかし、真空蒸着法、イオンプレーティング法といったPVD法によって作成した蒸着皮膜にピンホールが生じるのは如何ともしがたく、現在の技術ではこれを克服することは困難である。また、ステンレス鋼材の表面に存在する酸化膜に由来する部分的な蒸着皮膜の密着不良についても前処理の改善のみでは克服は困難である。ところが、本発明者らは、鋼中の含有成分、特にGr、SiおよびIiの含有量を適正に調整したオーステナイト系ステンレス鋼材を母材に使用し、この表面にTiN被膜または下層にTi皮膜、上層にTiN皮膜を蒸着した後、露点を制御した炉内で特定の条件で熱処理を行うと、蒸着皮膜の密着性が著しく向上するとともに蒸着皮膜にピンホールが存在していても耐食性が損なわれることがないことを見出した。

【0010】上記知見に基づく本発明は、下記(I) ~(III) の装飾用乾式TiNめっきステンレス鋼材の製造方法を要旨とする。

【0011】(I)重量%で、Cr:12.0~35.0%、Ni:7.0~50.0%、C:0.01~0.03%、Ti:0.01~2.00%、Si:0.1~5.0%を含有するオーステナイト系ステンレス鋼材またはこれらの成分に加えて更に、0.3%以下のNを含有するオーステナイト系ステンレス鋼材の表面に、厚さ0.1~5.0 μm のTiN皮膜を蒸着した後、露点-15~-55℃の非酸化性雰囲気の炉内で、500~1150℃の温度域で0.5min以上保持する熱処理を施すことを特徴とする装飾用乾式TiNめっきステンレス鋼材の製造方法。

【0012】(II) 重量%で、Cr:12.0~35.0%、Ni:7.0~50.0%、C:0.01~0.03%、Ti:0.01~2.00%、Si:0.1~5.0%を含有するオーステナイト系ステンレス鋼材またはこれらの成分に加えて更に、0.3%以下のNを含有するオーステナイト系ステンレス鋼材の表面に、厚さ0.03~2.0μmのTi皮膜を蒸着し、更にこのTi皮膜の上に厚さ0.1~5.0μmのTiN皮膜を蒸着した後、露点-15~-55℃の非酸化性雰囲気の炉内で、500~1150℃の温度域で0.5min以土保持する熱処理を施すことを特徴とする装飾用乾式TiNめっきステンレス鋼材の製造方法。

【0013】(III) 重量%で、 $Cr:12.0\sim35.0\%$ 、 $Ni:7.0\sim50.0\%$ 、 $C:0.01\sim0.03\%$ 、 $Ti:0.01\sim2.00\%$ 、 $Si:0.1\sim5.0\%$ を含有するオーステナイト系ステンレス網材またはこれらの成分に加えて更に、0.3%以下のNを含有するオーステナイト系ステンレス網材の表面に、厚さ $0.03\sim2.0\mu$ mのTi皮膜を蒸着し、更に、このTi皮膜の上に厚さ $0.1\sim5.0\mu$ mのTiN皮膜を、Ti皮膜側から表面に向かいTiN皮膜中のN量を漸増させながら蒸着した後、露点 $-15\sim-55$ ℃の非酸化性雰囲気の炉内で、 $500\sim1150$ ℃の温度域で0.5min以上保持する熱処理を施すことを特徴とする装飾用乾式TiNめっきステンレ

ス鋼材の製造方法。

[0014]

【作用】上記のように、鋼中のCr、SiおよびTiの含有量 を適正に調整したオーステナイト系ステンレス鋼材を母 材に用い、この表面にTiN皮膜を蒸着した後、露点を制 御した炉内で熱処理すると、ステンレス鋼材とLIN皮膜 の界面でステンレス鋼中に存在するCr、SiおよびTiの拡 散が起こる。また、下層にTi皮膜、上層にTiN皮膜を蒸 着した2層ステンレス鋼材の場合には、ステンレス鋼中 に存在する金属Ti、CrおよびSiの拡散に加えて、蒸着Ti の拡散も起こる。このようにステンレス鋼材と蒸着皮膜 の界面でCr、SiおよびTiの拡散が起こり、界面にこれら の拡散層が生成されると密着性が改善されるとともに異 種物質を蒸着したステンレス鋼材にしばしば発生する隙 間腐食も抑制される。また、ピンホール部の露出したス テンレス鋼材表面にもTi、CrおよびSiが拡散し、これら の元素が濃化した酸化物層が生成されると、その露出し た部分の耐食性も改善される。

【0015】以下に、本発明の構成要件とその限定理由を説明する。

【0016】まず、母材のオーステナイト系ステンレス 鋼材における含有成分を上記のように限定する理由を説 明する。

【0017】(A)ステンレス鋼材における含有成分(a) Cr:Crは母材の耐食性を確保する上で重要な成分である。前記したように蒸着したTiN皮膜またはTi皮膜とTiN皮膜にはピンホールが存在するために、母材部は部分的に露出している。この露出した部分の耐食性を確保するためには、母材のオーステナイト系ステンレス鋼材が十分な耐食性を備えている必要がある。Cr含有量が12.0%未満では蒸着を行わない一般の鋼材においても耐食性の改善効果が発揮されず十分な耐食性が得られない。一方、35.0%を超えてCrを含有すると、鋼材が脆くなり、製造が困難となる。よって、その含有量を12.0~35.0%と定めた。

【0018】(b) Ni:Niはオーステナイト相を安定化させて耐食性を高める作用があり、Crの場合と同様に母材の耐食性を確保するために必要な成分である。その最適な含有量はCr量およびN量との関係により変化するが、少なくとも 7.0%以上含んでいれば母材の耐食性を確保することができる。しかし、Niは高価な成分であり、また必要以上に添加量を増加してもより一層の耐食性の向上が見られないため、上限含有量を50.0%と定めた。

【0019】(c) C: Cは強力なオーステナイト安定化成分であり、少なくとも0.01%以上含ませるのが望ましいが、0.03%を超えて含有すると、熱処理中に粒界へのクロム酸化物の析出に伴う鋭敏化が生じやすくなるため、その含有量を0.01~0.03%と定めた。

50 【0020】(d) Ti:Tiは鋼中のCを安定化し、熱処

理時の鋭敏化を防止する作用がある。また、母材中に存在するIIが適切な熱処理を施すことによってステンレス 鋼材と蒸着皮膜の界面に拡散し、蒸着皮膜の密着性を改善する効果がある。しかし、その含有量が0.01%未満では所望の効果が得られず、2.00%を超えてもより一層の 改善効果がみられないため、その含有量を0.01~2.00% と定めた。

【0021】(e) Si:Siは脱酸作用のほかに、低い露点で熱処理を施したときに母材表面に濃化し、母材の耐食性を向上させる作用をもった成分である。しかし、そ 10の含有量が 0.1%未満では脱酸作用が十分に得られず、5.0%を超えると鋼材の加工性が著しく劣化するため、その含有量を 0.1~ 5.0%とした。

【0022】(f) N: Nも強力なオーステナイト生成成分であり、耐食性を高める作用があるので、より高い耐食性が求められる場合には上記成分に加えてNを含有するオーステナイト系ステンレス鋼材を母材に使用してもよい。しかし、Nの含有量が 0.3%を超えるとGr窒化物が生成し、耐食性を劣化させるので、その含有量は 0.3%以下とするのがよい。

【0023】母材のオーステナイト系ステンレス鋼材には、上記成分の他に一般のオーステナイト系ステンレス鋼材に含有するMo、Cu、Mn等の成分を含んでいてもよい。これらの成分が含まれていても蒸着皮膜の密着性に何ら影響を及ぼさない。なお、不純物のSは耐食性を劣化させるばかりでなく、熱処理中に母材と蒸着皮膜との間に偏析し、蒸着皮膜の密着性を低下させるため、その含有量は0.03%以下に抑えるのが望ましい。

【0024】本発明では、上記オーステナイト系ステン レス鋼材を母材に使用し、この表面にTiN皮膜または下 30 層にTi皮膜および上層にTiN皮膜をそれぞれイオンプレ ーティング法、真空蒸着法などの気相蒸着法によって蒸 着し、次いで、露点を制御した炉内で熱処理を行い、蒸 着皮膜の密着性を改善して母材ステンレス鋼材の耐食性 を高める。下層にTi皮膜、上層にTiN皮膜を蒸着する場 合は、上層のTiN皮膜を下層のTi皮膜側から表面に向か いTiN皮膜中のN量が漸増するように蒸着してもよい。 TiN皮膜中のN量を漸増させると、TiN皮膜の内部応力 が緩和され、より密着性が向上するとともに、皮膜に割 れが発生しにくくなるので耐食性が更に改善される。こ のようなTi皮膜側から表面に向かいN量が漸増するTiN 皮膜は、例えば、TiN皮膜の蒸着中に、チャンバ内に導 入するNzガス鼂を漸増させ、チャンバー内の窒素分圧 を増大させることにより形成することができる。

【0025】本発明において、これらの蒸着皮膜の厚みおよび熱処理条件を一定の範囲に限定した理由は下記のとおりである。

【0026】(B) 蒸着皮膜の厚み

(a) Ti皮膜

Ti皮膜はステンレス鋼材とTiN皮膜の密着性を高める効

果がある。従って、より高い密着性を確保しようとするならば、ステンレス鋼材とTiN皮膜との間に中間層としてTi皮膜を蒸着するのがよい。しかし、そのTi皮膜の厚みが0.03 μm より薄いと均一な蒸着面が得られず、蒸着欠陥が多数存在することになり、 TiN膜の密着性不良が生じるため、Ti皮膜を蒸着する場合はその厚みは0.03

 μ m 以上とする必要がある。一方、Ti皮膜は 0.03μ m 厚以上であればいくら厚くてもよいが、コストを考慮して上限e2.0 μ m 厚とした。

10 【0027】(b) TiN皮膜

TiN皮膜は母材のステンレス鋼材に付加価値を付与するために蒸着するものであって、美麗な黄金色を有している。このTiN皮膜はTiN単層めっきステンレス鋼材、下層がTi皮膜で上層がTiN皮膜の2層めっきステンレス鋼材および上層のTiN皮膜を下層のTi皮膜側から表面に向かい皮膜中のN量を漸増させた2層めっき鋼材のいずれであっても、その厚みが0.1μmより薄いと均一な蒸着面が得られず、TiN皮膜に色むらが生じやすくなり、5.0μmを超えると熱処理後の冷却時において、熱応力によりTiN皮膜に割れが生じやすくなるので、TiN皮膜

【0028】(C) 熱処理条件

の厚みは 0.1~5.0 μm 厚とする必要がある。

(a) 炉内雰囲気

20

表面のTiN皮膜の黄金色を損なうことなく、蒸着皮膜とステンレス鋼材との界面およびミクロポア欠陥部にTi、SiおよびCrの拡散を促進させ、密着性とミクロポア欠陥部の耐食性を改善するためには、炉内雰囲気を低酸素ポテンシャルとする必要があるので、炉内雰囲気を非酸化性雰囲気とした。炉内を非酸化性雰囲気とする場合、アンモニア分解ガス(AX ガス)、 H_2 $-N_2$ 混合ガス、水素ガス、CO ガス、Ar ガス等を用いて行ってもよく、炉内を真空引きしてもよい。真空引きして炉内を非酸化性雰囲気とする場合は、 1×10^{-7} torr以上の高真空度とするのがよい。

【0029】(b) 炉内露点: 炉内露点はミクロポア欠陥部の露出したステンレス鋼材の表面に有害な酸化スケールが生成されるのを防止するために極力下げる必要がある。鋼中成分の酸化ポテンシャルを計算し、炉内露点を決定することは容易であるが実炉においては必ずしも計算と一致しないのが実状である。本発明者らは実炉における検討を行い、炉内露点を一15~-55℃としたときにTiN単層めっきステンレス鋼材およびTiとTiNの2層めっきステンレス鋼材の耐食性が向上することを見いだした。即ち、炉内露点が-15℃より高い場合には、有害な酸化スケールがミクロポア欠陥部の露出したステンレス鋼材の表面に生成してその部分の耐食性が著しく劣化し、-55℃よりも炉内露点が低い場合には耐食性の改善に効果のある酸化膜が露出したステンレス鋼材の表面に生成しない。

7 【0030】(c) 処理温度および時間

熱処理の処理温度が 500℃より低いと、Ti、CrおよびSi の拡散が非常に遅く、1150℃を超えると熱処理後の冷却 過程で生じる熱応力によるTiN皮膜の剥離が顕在化するため、処理温度を500~1150℃とした。一方、Ti、CrおよびSiの拡散量とステンレス鋼材の表面に生成する酸化 膜の厚さは処理時間により決まるが、0.5min未満ではTi、CrおよびSiの拡散が十分に得られないため、処理時間を0.5min 以上とした。本発明では処理時間の上限は特に限定する必要はない。しかし、1500分を超えて処理しても耐食性および密着性の更なる改善が望めないので、1500分以内に止めるのが好ましい。

[0031]

【実施例1】表1(1)および(2)に示す成分組成のオーステナイト系ステンレス鋼板(いずれも板厚0.8mm)を母材に使用し、イオンプレーティング法で鋼種J \sim Rを除く他のステンレス鋼板の表面には厚さ1 μ m の π 0.2 μ mのTi皮膜を蒸着した後、更に、この上に厚さ1 μ m の π 1iN皮膜を蒸着した。蒸着後はアンモニア分解ガス雰囲気の炉内で、炉内露点、処理温度および処理時間を種々変えて熱処理を施した。

【0032】こうして得られたTiN単層めっきステンレス鋼板およびTiとTiNの2層めっきステンレス鋼板から

試験片を切り出し、耐食性および皮膜の密着性を調べた。これらの評価結果を表2(1)および(2)に炉内 露点、処理温度および処理時間とともに示す。

【0033】耐食性は、それぞれのめっきステンレス鋼板から試験片を5枚づつ採取し、これらの試験片に対して塩水噴霧試験(10%NaCI水溶液、35℃、3ヵ月)を実施し、その後、25倍の拡大鏡を用いて腐食の程度を調べ、表3に示す塩水噴霧試験の評価ランクにより判定した。

【0034】密着性はスクラッチ試験および密着曲げ試験を行って調べた。スクラッチ試験では直径 0.8mmのダイヤモンド針を 5.0N/sec で荷重をかけながら試験片の蒸着面を5mm/min で移動させ、蒸着皮膜が剥離する際に生じるアコースティク・エミッションが現れたときの荷重を臨界荷重として測定した。密着曲げ試験では曲げ側に同厚の板を5枚挟んで 180度折り曲げ、曲げ部を100倍の光学顕微鏡により観察し、蒸着皮膜の表面状態を観察して評価した。表2中、「◎」は皮膜に割れ発生なし、「○」は皮膜の一部分に割れ発生、「△」は皮膜の全面に割れ発生、「×」は皮膜に割れおよび剥離発生、を意味する。

[0035]

【表1(1)】

		τ	T 9	1	1	1	T		, -		т			-	10		
	bal: Fe	Z	0.003	0.003	0.003	0.003	0.003	0.14	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
	ř	Ti	0.66	0.67	0.66	0.66	0.65	0.66	1.46	0.81	0.66	0.65	0.66	0.67	0.68	0.81	0.71
	(wt%)			1	ı	,	1	ı	1		ı	1.99	2.01	2.00	2.00	2.01	1.99
	3)	Ni	10.1	10.1	9.8	10.0	9.6	10.1	9.6	10.0	10.1	12.1	12.0	11.9	12.0	25.1	24.8
1 (1)	超 成	Cr	17.9	18.0	18.0	18.1	18.0	17.9	18.0	18.1	18.0	18.1	17.9	18.0	18.1	20.0	20.1
嵌	₩.	S	0.005	0.003	0.015	0.008	0.006	0.004	0.003	0.003	0.003	0.003	0, 003	0.006	0.002	0.002	0.004
	材成	Ъ	0.028	0.028	0.027	0.027	0.027	0.028	0.027	0.026	0.027	0.028	0.028	0.026	0.026	0.027	0.027
	母	Mn	1.66	1.98	1.52	1. 70	1.58	1.55	1.83	1.54	1.70	1.66	1. 71	1.64	1.58	1.98	1.55
		Si	0.54	0.47	0.51	0.54	0.52	0.49	0.66	0.49	0.52	1.98	0.49	0.51	0.55	0.58	0.71
		S	0.014	0.010	0.019	0.018	0.024	0.026	0.019	0.019	0.024	0.017	0.022	07.050	0.025	0.018	0.021
	悪	瀴	⋖	ш	ပ	Ω	យ	ĹĿ,	Ü	エ	-	ה	ㅈ	-7	Σ	z	0

[0036]

【表1 (2)】

		E			##				
		#	1	成分		څ	(wt%)	ра	bal: Fe
ပ	Si	Mn	Ь	S	Cr	ï	Mo	Ti	z
0.025	0.91	1.71	0.027	0.004	19.8	24.9	1.99	0.92	0.12
0.021	0.55	1.81	0.028	0.004	25.0	50.0	6.02	1.40	0.02
0.021	0.72	1.50	0.028	0.004	24.9	49.8	6.01	0.72	0.04
0.019	0.71	1.49	0.026	0.004	* 4.99	* 3.41	1	0.60	0.003
0.021	0.58	1.81	0.027	0.006	* 8.10	* 2.33	1	0.49	0.004
0.024	0.99	1.70	0.028	0.007	12.2	* 5.4	ı	0.98	0.006
* 0.050	0.71	1.20	0.027	0.018	18.1	10.1	1	0.71	0.007
0.018	*0.05	2.01	0.027	0.008	18.1	10.4	1.81	0.04	0.007
* 0.007	0.60	1.80	0.027	0.003	18.2	10.3	0.91	0.72	0.006
0.018	0.60	1.55	0.027	0.012	18.1	10.2	0.44	* 3.30	0.005
	0. 025 0. 021 0. 021 0. 024 0. 050 0. 050 0. 018	 	0. 91 0. 55 0. 72 0. 73 0. 99 0. 60 0. 60	0.91 1.71 0.55 1.81 0.72 1.50 0.71 1.49 0.99 1.70 0.99 1.70 0.09 1.80 0.60 1.85	0.91 1.71 0.027 0.55 1.81 0.028 0.72 1.50 0.028 0.58 1.81 0.027 0.99 1.70 0.027 *0.05 2.01 0.027 0.60 1.80 0.027	0.91 NII P S 0.92 1.71 0.027 0.004 0.55 1.81 0.028 0.004 * 0.72 1.50 0.026 0.004 * 0.71 1.49 0.026 0.004 * 0.99 1.70 0.028 0.007 0.018 *0.05 2.01 0.027 0.008 1 *0.60 1.80 0.027 0.009 1 0.60 1.55 0.027 0.012 1	31 MII P S Cr 0.91 1.71 0.027 0.004 19.8 0.55 1.81 0.028 0.004 25.0 0.72 1.50 0.028 0.004 24.9 0.71 1.49 0.026 0.004 * 4.99 0.58 1.81 0.027 0.006 * 8.10 0.99 1.70 0.028 0.007 12.2 0.71 1.20 0.027 0.018 18.1 *0.05 2.01 0.027 0.008 18.1 0.60 1.80 0.027 0.009 18.2 0.60 1.55 0.027 0.012 18.1	51 MI P S Cr Ni 0.91 1.71 0.027 0.004 19.8 24.9 0.55 1.81 0.028 0.004 25.0 50.0 0.72 1.50 0.028 0.004 24.9 49.8 0.71 1.49 0.026 0.004 * 4.99 * 3.41 0.58 1.81 0.027 0.006 * 8.10 * 2.33 0.99 1.70 0.028 0.007 12.2 * 5.4 0.71 1.20 0.027 0.018 18.1 10.1 **0.05 2.01 0.027 0.008 18.1 10.4 0.60 1.80 0.027 0.009 18.2 10.3 0.60 1.55 0.027 0.012 10.03 18.1 10.2	31 MIT P S Cr Ni Mo 0.91 1.71 0.027 0.004 19.8 24.9 1.99 0.55 1.81 0.028 0.004 25.0 50.0 6.02 0.72 1.50 0.028 0.004 * 4.99 * 3.41 - 0.71 1.49 0.026 0.007 * 8.10 * 2.33 - 0.58 1.81 0.027 0.007 12.2 * 5.4 - 0.99 1.70 0.028 0.007 12.2 * 5.4 - *0.99 1.70 0.028 0.007 12.2 * 5.4 - *0.05 2.01 0.027 0.018 18.1 10.1 - *0.60 1.80 0.027 0.009 18.1 10.4 * *0.60 1.55 0.027 0.012 10.1 0.04 0.04 18.1 10.2 0.44 *

(注) *印は本発明で規定する範囲外を意味する。

[0037]

【表2(1)】

草牙

₩

太

魏田

to 10

岂

製

明る

緥

 \mathfrak{H}

14

壑 窆 室 窎 壑 窎 ₽ 室 圂 乭 塞 भ 點 出 明 黑 黑 獸 珊 田 田 数 靐 数 数 緥 郷 恕 絮 恕 恕 器 繏 龝 発 繏 緥 谼 Ħ ₩ 式 ₩ ₩ 14 Ħ 厾 ₩ ₩ ₩ ₩ 丑 戎 ₩ # ₩ 式 벞 繿 တ က ဖ 2 8 9 凇 田 拡 Οl 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 × 铟 ₽ 囲 摇 梅 (Z) * 쐝 64 83 8 61 සි 8 5 F8 67 67 88 88 29 63 සි සි 64 默 ١Ņ 承 盤 靈 事间 ည යු 22 22 23 20 20 8 8 8 1700 8 100 8 S 井 洹 度 の重の 処 99 8 8 38 700 28 8 8 8 5 5 5 8 엻 8 8 900 1200 덩 **K** (C) (C) (M) 12 జ 8 21 53 45 10 49 2 30 41 23 61 51 S | 88 ı 1 膜 兼 無つ 無っ 無つ 無し 無つ 無し Ti皮 雑雑り 無つ 無つ 無つ 搟 無 # # # # 0 羅 旟 ≺ \Box O Ω Ö エ 乏 03 တ (c) 9 Ξ 12 13 15

[0038]

【表2(2)】

	施が	本発明例	本発明例	本発明例	本器明例	本発明例	本発明例	本発明例	本発明例	比数窗	无数多	无数多	元 数 窎	元 数 多	比較 例	比較多	无数多	比較例
新食件	鑑	က	63	3	89	8	3	8	ဆ	7	7	9	9	9	9	9	80	8
密备曲	识额	0	0	0	0	0	0	0	0	0	0	0	0	△	0	0	◁	٥
スクラッチ試験	臨界荷 (N)	89	89	89	69	89	89	69	89	- 09	09	62	19	57	62	63	58	57
理	保持時間 (min)	. 50	20	20	20	10	1000	20	20	30	100	200	200	400	200	20	2	
熟	処理 温度 (°C)	700	650	800	800	1000	820	800	700	700	800	700	1000	006	006	006	い理な	*
HALE	(C)	- 48	- 39	- 51	- 54	- 48	- 39	- 42	- 49	- 44	- 41	- 38	- 50	- 49	- 54	- 52	4	
Ti皮膜	の有無	有力	有り	無つ	無つ	無つ	無つ	無し	無し	無し	無い	無し						
3	類	Ж	L	Σ	z	0	ď	o	ĸ	*S	# T	#IJ	^	*W	×*	*Y	A	m
	Z	19	8	21	83	23	24	25	92	22	83	83	8	3	83	88	34	35

(注) #印は本発明で規定する範囲外を意味する。

[0039]

裳

40 【表3】

T	
**	
4X	U

ランク		評価
1	良好	
2		軽度の"しみ"状腐食が認められる
3		
4		
5		" しみ "状腐食とともに点状赤さびが発生
6		
7		
8		赤さび化の傾向が大であり、大型化が目立つ
9		
10	不 良	激しい赤さび発生

【0040】表2から本発明方法により得られたTiN単層めっきステンレス鋼板およびTiとTiNの2層めっきステンレス鋼板はいずれも蒸着皮膜の密着性に優れているとともに高耐食性を有していることがわかる。これに対して、母材の組成および熱処理条件が本発明で規定する範囲外の比較例および熱処理を施していない比較例のめっきステンレス鋼板は、蒸着皮膜の密着性および耐食性のいずれか一方または両方が劣っている。

[0041]

【実施例2】表1(1)に示す鋼種Aおよび表1(2)に示す鋼種Pと同じ成分組成のオーステナイト系ステンレス鋼板(いずれも板厚0.8mm)を母材に用い、これらの母材表面にTi皮膜を蒸着した後、この上に、チャンバー内に導入するN2ガス量を漸増させ、チャンバー内の窒

20 素分圧を増大させてTi皮膜側から上方に向かい皮膜中の N量が漸増したTiN皮膜を蒸着した。次いで、TiN皮膜 を蒸着した後のステンレス鋼板を所定の大きさに切断 し、これらをアンモニア分解ガス雰囲気の炉内で表4に 示すように条件を変えて熱処理を施した。しかる後、試 験片を切り出し、実施例1と同じ密着曲げ試験および塩 水噴霧試験を行い、皮膜の密着性と耐食性を調べた。こ れらの評価結果を同じく表4に示す。また、図1に鋼種 Aのオーステナイト系ステンレス鋼板にTiN皮膜を蒸着 したものを、二次イオン質量分析(SIMS)で母材表 30 層部からTiN皮膜表面までのTi、NおよびFe濃度を分析 した結果を示す。

[0042]

【表4】

20
/()

【0043】表4から、本発明方法で得られためっきステンレス鋼板は、いずれも密着性および耐食性に優れている。特に、耐食性はTiN皮膜中のN量を漸増させていない、実施例1の表2におけるNo.19~26の本発明例よりも向上している。これに対して、本発明で規定する条件外で熱処理した比較例は密着性および耐食性に劣っている。

[0044]

【発明の効果】以上説明したように、本発明方法によれば蒸着皮膜の密着性に優れた高耐食性の乾式IiNめっきステンレス鋼材を製造することができる。この乾式IiNめっきステンレス鋼材は表面が美麗な黄金色をしているので、装飾材料に適している。

[0045]

【図面の簡単な説明】

50 【図1】本発明方法で製造しためっきステンレス鋼材の

母材表層部からTiN皮膜表面までのTi、NおよびFe濃度 をSIMSで分析した結果を示したグラフである。

【図1】

