Aufgabenblatt 3

Aufgabe 9

Geben Sie für jeden regulären Ausdruck E jeweils drei Wörter an, die in L(E) liegen, und drei Wörter, die in nicht L(E) liegen.

a) (11)*010

c) $(1(00)^*1)^*$

b) 1(001)*

d) $(0|10|11)^+$

Aufgabe 10

Seien $\Sigma = \{0, 1\}$ und $E_1 = (0|1)^*11$. Geben Sie einen

- a) NFA M_1 an mit möglichst wenig Übergängen und $L(M_1) = L(E_1)$.
- b) DFA M_2 an mit $L(M_2) = L(M_1)$.
- c) DFA M_3 an mit $L(M_3) = \overline{L(M_2)}$.
- d) regulären Ausdruck E_2 an mit $L(E_2) = L(M_3)$.
- e) NFA M_4 an mit möglichst wenig Übergängen und $L(M_4) = L(E_2)$.

Aufgabe 11

Zeigen Sie:

- a) Aus L regulär folgt \bar{L} regulär.
- b) Aus L regulär folgt L^* regulär.
- c) Aus L_1, L_2 regulär folgt L_1L_2 regulär.
- d) Aus L_1, L_2 regulär folgt $L_1 \cup L_2$ regulär.
- e) Aus L_1, L_2 regulär folgt $L_1 \cap L_2$ regulär.

Aufgabe 12

Zeigen oder widerlegen Sie folgende Behauptung: Seien M_1 , M_2 minimale DFAs mit k_1 bzw. k_2 Zuständen. Dann gilt: $L(M_1) \subseteq L(M_2) \Rightarrow k_1 \leq k_2$.

Hinweis: Das war eine Prüfungsaufgabe.