PATENT ABSTRACTS OF JAPAN

(11) Publication number:

2004-307528

(43) Date of publication of application: 04.11.2004

(51)Int.CI.

CO8L 67/04 B29B 7/88 C08J 5/00 **CO8K** 9/02 CO8L101/16 B29K 67:00

(21)Application number: 2003-098736

(71)Applicant: MITSUBISHI PLASTICS IND LTD

(22)Date of filing:

02.04.2003

(72)Inventor: OHASHI AKIHIRO

TANAKA KAZUYA KATO YUKIO TAKAGI JUN

(54) INJECTION MOLDED PRODUCT

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an injection molded product having biodegradability, excellent flame retardance and mechanical strength.

SOLUTION: The injection molded product comprises a lactic acid resin and 5-40 pts.mass, based on 100 pts.mass lactic acid resin, metal hydroxide, and this metal oxide is surface treated, and the amount of Na2O (w-Na2O) present on the surface of this metal hydroxide is ≤0.1 mass%. Furthermore, the injection molded product preferably comprises 20-80 pts.mass, based on 100 pts.mass lactic acid resin, aliphatic polyester or aromatic polyester other than the lactic acid resin.

LEGAL STATUS

[Date of request for examination]

06.03.2006

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19) 日本国特許庁(JP)

, , , ,

(12) 公 開 特 許 公 報(A)

(11)特許出顧公開番号

特開2004-307528 (P2004-307528A)

(43) 公開日 平成16年11月4日 (2004.11.4)

			(10) = 10	1 44 14 1 1 1 1 2 3	4H (E04. 11.4)
(51) Int.C1. ⁷	Fı			テーマコー	ド(参考)
CO8L 67/04	CO8L	67/04		4F071	
B29B 7/88	B29B	7/88	ZBP	4F201	
CO8J 5/00	C081	5/00	CFD	4 J 0 0 2	
CO8K 9/02	C08K	9/02		4 J 2 O O	
// CO8L 101/16	COSL	101/16			
	審査請求 オ	請求請求	花項の数 4 OL	(全 20 頁)	最終頁に続く
(21) 出願番号 (22) 出願日	特願2003-98736 (P2003-98736) 平成15年4月2日 (2003.4.2)	(71) 出願。	三菱樹脂株式 東京都千代田	《会社 日区丸の内2丁月	15番2号
			弁理士 大島	由美子	
		(74) 代理	人 100100413		
			弁理士 渡部	3 温	
		(72) 発明者	針 大橋 暁弘		
			滋賀県長浜市	ラッタ町 5番8 三菱樹脂株式会	3号 会社長浜工場内
		(72) 発明者	皆田中 一也		
			滋賀県長浜市	ララス 三ツ矢町 5番8	3号
				三菱樹脂株式名	会社長浜工場内
					最終頁に続く

(54) 【発明の名称】射出成形体

(57)【要約】

【課題】生分解性を有し、かつ、優れた難燃性及び機械的強度を有する射出成形体を提供すること。

【解決手段】射出成形体は、乳酸系樹脂と、乳酸系樹脂 100 質量部に対して $5\sim40$ 質量部の割合で配合した金属水酸化物とを有し、この金属水酸化物が表面処理されており、この金属水酸化物の粒子表面に存在する Na_2O ($w-Na_2O$)が 0.1 質量%以下である。ここで、さらに、乳酸系樹脂以外の脂肪族ポリエステル、あるいは芳香族脂肪族ポリエステルを、乳酸系樹脂 100 質量部に対して $20\sim80$ 質量部の割合で配合することが好ましい。

【選択図】

なし

【特許請求の範囲】

【請求項1】

乳酸系樹脂と、該乳酸系樹脂100質量部に対して5~40質量部の割合で配合した金属 水酸化物とを有し、該金属水酸化物が表面処理されており、該金属水酸化物の粒子表面に 存在するNa2〇(w-Na2〇)が0.1質量%以下であることを特徴とする射出成形 体。

【請求項2】

さらに、乳酸系樹脂以外の脂肪族ポリエステル、あるいは芳香族脂肪族ポリエステルを、 前記乳酸系樹脂100質量部に対して20~80質量部の割合で配合することを特徴とす る請求項1記載の射出成形体。

【請求項3】

さらに、無機フィラーを、前記乳酸系樹脂100質量部に対して1~20質量部の割合で 配合することを特徴とする請求項1又は2記載の射出成形体。

【請求項4】

前記金属水酸化物が、高級脂肪酸を用いたコーティング、シランカップリング剤を用いた コーティング、チタネートカップリング剤を用いたコーティング、硝酸塩を用いたコーテ ィング、ゾルーゲルコーティング、シリコーンポリマーコーティング、および、樹脂コー ティングからなる群から選ばれた少なくとも1つにより表面処理されていることを特徴と する請求項1から3のいずれか1項記載の射出成形体。

【発明の詳細な説明】

[00001]

【発明の属する技術分野】

本発明は、生分解性及び難燃性を有する射出成形体に関する。

 $[0 \ 0 \ 0 \ 2]$

【従来の技術】

従来のプラスチックは、自然環境中で長期にわたって安定であり、しかも嵩比重が小さい ため、廃棄物埋め立て処理地の短命化を促進したり、自然の景観や野生動植物の生活環境 を損なったりという問題点が指摘されていた。そのため、自然環境中で、経時的に分解、 消失し、自然環境に悪影響を及ぼさない材料が求められている。このような材料として今 日注目を集めているのは、生分解性樹脂である。生分解性樹脂は、土壌中や水中で、加水 30 分解や微生物の作用によって生分解され、最終的には無害な分解物となることが知られて いる。また、コンポスト(堆肥化)処理された生分解性樹脂は、容易に廃棄されることが 知られている。実用化され始めている生分解性樹脂としては、脂肪族ポリエステル、変性 PVA、セルロースエステル化合物、デンプン変性体、及びこれらのブレンド体等がある 。 幅 広 い 特 性 と 汎 用 樹 脂 に 近 い 加 工 性 を 有 す る 脂 肪 族 ポ リ エ ス テ ル は 、 広 く 使 わ れ 始 め て おり、例えば、乳酸系樹脂に、他の脂肪族ポリエステルを併用したものは、透明性、剛性 、耐熱性等に優れていることから、ポリスチレンやABS樹脂等の代替材料として、家電 、〇A機器等の射出成形分野において注目されている。

家 電 、 O A 機 器 等 に 使 用 さ れ る 材 料 に は 、 火 災 防 止 の た め 難 燃 性 が 要 求 さ れ 、 ポ リ ス チ レ ン、ABS樹脂等には、主としてハロゲン系、特に臭素系難燃剤が添加されてきた。しか 40 し 、ハ ロ ゲ ン 系 難 燃 剤 は 、 燃 焼 時 に ダ イ オ キ シ ン 等 の 有 害 ガ ス が 発 生 す る 可 能 性 が 指 摘 さ れており、廃棄物の焼却処理やサーマルリサイクルの際の安全性には問題がある。ハロゲ ン 系 難 燃 剤 の 代 替 と し て リ ン 系 難 燃 剤 が 開 発 さ れ た が 、 埋 め 立 て 処 理 後 、 リ ン が 廃 棄 物 か ら溶出して土壌や水質を汚染する可能性があり、人体に対する安全性や環境調和性が不十 分である。また、リン系難燃剤を添加した樹脂は、成形性、耐熱性等の実用面に悪影響を 与えることがある。このため、ハロゲン及びリンを含有しない難燃剤の開発が進められて いる。例えば、金属水酸化物は、廃棄処分時に有害ガスを発生することがなく、環境調和 型の難燃剤であるとして注目されている。

しかしながら、乳酸系樹脂に金属酸化物を添加すると、水等の存在によって乳酸系樹脂の 分解が進み、乳酸系樹脂等の分子量低下及び機械的強度の低下を引き起こす。樹脂に充分 50

10

な難燃性を付与するためには多量の金属水酸化物(例えば、樹脂100質量部に対して約150質量部以上)を添加しなければならず、金属水酸化物の使用量の増加に伴って樹脂の機械的強度の低下が増大する。特開平8-252823号公報には、生分解性プラスチックに難燃性を付与するために、水酸化アルミニウム又は水酸化マグネシウムを添加することが開示されているが、十分な難燃性を得るためには多量の水酸化マグネシウム等を添加する必要があり、機械的強度の低下をきたす(例えば、特許文献1参照)。

また、特開 2 0 0 0 - 3 1 9 5 3 2 号公報には、非ハロゲン系及び非リン系難燃剤としてケイ素酸化物を用い、これを樹脂に相溶化させた難燃性樹脂組成物が開示されているが、高い難燃性能を満たすものではないため、家電、OA機器等の用途に使用することができず、機械物性も充分でない。

[00003]

【特許文献1】

特開平8-252823号公報

【特許文献2】

特開2000-319532号公報

[0004]

【発明が解決しようとする課題】

本発明は上記問題点を解決すべくなされたものであり、本発明の目的は、生分解性を有し、かつ、優れた難燃性及び機械的強度を有する射出成形体を提供することにある。

[00005]

【課題を解決するための手段】

本発明者らは、このような現状に鑑み、鋭意検討を重ねた結果、本発明を完成するに至った。

本発明の射出成形体は、乳酸系樹脂と、該乳酸系樹脂100質量部に対して5~40質量部の割合で配合した金属水酸化物とを有し、該金属水酸化物が表面処理されており、該金属水酸化物の粒子表面に存在するNa₂〇(w-Na₂〇)が0.1質量%以下であることを特徴とする。

ここで、さらに、乳酸系樹脂以外の脂肪族ポリエステル、あるいは芳香族脂肪族ポリエステルを、前記乳酸系樹脂100質量部に対して20~80質量部の割合で配合することができる。

また、さらに、無機フィラーを、前記乳酸系樹脂100質量部に対して1~20質量部の割合で配合してもよい。

また、前記金属水酸化物は、高級脂肪酸を用いたコーティング、シランカップリング剤を 用いたコーティング、チタネートカップリング剤を用いたコーティング、硝酸塩を用いた コーティング、ゾルーゲルコーティング、シリコーンポリマーコーティング、および、樹 脂コーティングからなる群から選ばれた少なくとも1つにより表面処理されていることが 好ましい。

[0006]

【発明の実施の形態】

以下に、本発明を詳細に説明する。

本発明の射出成形体は、乳酸系樹脂と、この乳酸系樹脂100質量部に対して5~40質量部の割合で配合した金属水酸化物とを含む樹脂組成物から形成されたものである。ただし、この金属水酸化物は、表面処理が施されており、粒子表面に存在するNa2O(w-Na2O)が0.1質量%以下である。金属水酸化物の配合量が、乳酸系樹脂100質量部に対して5質量部より少ない場合には、難燃性の付与効果が得られず、40質量部より多い場合には、乳酸系樹脂等の分子量低下、成形体の機械的強度の低下等が起こる。

[0007]

Na2Oは、下記式に示すように、H2Oと反応し、乳酸系樹脂、乳酸系樹脂以外の脂肪族ポリエステル、および、芳香族脂肪族ポリエステルの加水分解を進行させる。

 $Na_2O + H_2O \rightarrow 2NaOH \rightarrow 2Na^+ + 2OH^-$

10

20

30

乳酸系樹脂等の加水分解が進行すると、乳酸系樹脂等の分子量の低下、成形体の機械的強度の低下を引き起こすことになる。従って、充分な難燃性を付与することができる量の金属水酸化物を配合するためには、w-Na₂Oが 0. 1質量%以下であることが必要である。

[0008]

,

本発明において $w-Na_2O$ の量は、以下の方法により求めた。すなわち、まず、100mLのピーカーに水酸化アルミニウム 5g(1mgの単位まで秤量)を入れ、そこに温度 $50\% \sim 60\%$ の水 50mLを加える。これを加熱し、内容物の温度を $80\% \sim 90\%$ に保ちつつ 2時間保持する。次に、内容物を5Bの濾紙を用いて濾過し、 $50\sim 60\%$ の水 5mLで 4回洗浄する。この濾液を20%に冷却した後、0.2mg/mLのLi内部標 10 準溶液を10mL加え、更に蒸留水を加えて全量が100mLとなるようにする。これを、日本工業規格 JISH 1901-197 に基づいて、原子吸光光度計で Na量を測定した。得られた Na200量に換算し、この換算値をW-Na2000量とする。

[0009]

本発明の射出成形体は、特定の金属水酸化物を含有することによって、高い難燃性を実現している。本発明において難燃性とは、燃焼部分の拡大が遅くなる効果、及び類焼が起こり難い効果を起こすことを意味する。

本発明に好適に用いられる金属水酸化物としては、水酸化アルミニウム、水酸化マグネシウム、カルシウム・アルミネート水和物、酸化スズ水和物、プロゴバイト、硝酸亜鉛六水和物、硝酸ニッケル六水和物等が挙げられる。これらの中では、コスト及び難燃性向上機 20能の観点から、水酸化アルミニウム又は水酸化マグネシウムを用いることが好ましい。

[0010]

金属水酸化物の表面処理方法としては、高級脂肪酸、シランカップリング剤、チタネートカップリング剤、硝酸塩等を用いてコーティングする方法、ゾルーゲルコーティング、シリコーンポリマーコーティング、樹脂コーティング等が挙げられる。本発明に係る金属水酸化物は、これらの表面処理方法の一つもしくは二つ以上の表面処理を行うことが好ましい。金属水酸化物にこのような表面処理を施すことにより、W-Na2Oの量を低減することができるので、高い難燃性能を発揮しうる量の金属酸化物を配合しても、乳酸系樹脂等と金属酸化物とを混練する際に、あるいは射出成形する際等に、樹脂の分子量を低下させることもなく、成形体の機械的強度が低下することもない。

[0011]

本発明においては、さらに難燃助剤を配合することが好ましい。 難燃助剤を配合すること により、成形体の難燃性をさらに向上させることができる。

難燃助剤の具体的な例としては、無水ホウ酸、スズ酸亜鉛、ホウ酸亜鉛、硝酸鉄、硝酸銅、硝酸亜鉛、硝酸ニッケル、硝酸アンモニウム、スルフォン酸金属塩等の金属化合物、赤リン、高分子量リン酸エステル、フォスファゼン化合物等のリン化合物、メラミン、メラミンシアヌレート、メレム、メロン等の窒素化合物ポリエチレンナフタレート(PAN)、シリコーン化合物等が挙げられる。これらの中では、環境等へ及ぼす影響を考慮すると、メラミンシアヌレート、硝酸亜鉛、硝酸ニッケル、又はホウ酸亜鉛を用いることが好ましい。

[0012]

本発明に用いられる乳酸系樹脂は、構造単位がL-乳酸であるポリ(L-乳酸)、構造単位がD-乳酸であるポリ(D-乳酸)、構造単位がL-乳酸及びD-乳酸であるポリ(DL-乳酸)や、これらの混合体である。この時、乳酸系樹脂のD体とL体の構成比は、L体:D体=100:0~90:10、もしくは、L体:D体=0:100~10:90であることが好ましく、L体:D体=100~6:94であることがより好ましい。L体とD体の構成比がかかる範囲外では、成形体の耐熱性が得られにくく、用途が制限されることがある。なお、L体とD体との共重合比が異なる乳酸系樹脂をブレンドしてもよく、この場合には、複数の乳酸系樹脂のL体とD体との共重合比の平均値が上記範囲内に入るようにすれば良い。

40

[0013]

. . . .

乳酸系樹脂の重合法としては、縮合重合法、開環重合法等の公知の方法を採用することが できる。例えば、縮合重合法では、L-乳酸またはD-乳酸、あるいはこれらの混合物を 直接脱水縮合重合して任意の組成を有する乳酸系樹脂を得ることができる。

また、開環重合法では、適当な触媒を選択し、必要に応じて重合調整剤等も用いて、乳酸 の環状二量体であるラクチドから乳酸系樹脂を合成することができる。ラクチドには、L - 乳酸の二量体であるL - ラクチド、D - 乳酸の二量体であるD - ラクチド、さらにL -乳酸とD-乳酸からなるDL-ラクチドがあり、これらを必要に応じて混合して重合する ことにより、任意の組成、結晶性を有する乳酸系樹脂を得ることができる。

[0014]

さらに、耐熱性を向上させる等の必要に応じて、少量の共重合成分を添加することができ 、 例 え ば 、 テ レ フ タ ル 酸 の よ う な 非 脂 肪 族 ジ カ ル ポ ン 酸 及 び / 又 は ピ ス フ ェ ノ ー ル A の エ チレンオキサイド付加物のような非脂肪族ジオールを使用することができる。

さらにまた、分子量増大を目的として、少量の鎖延長剤、例えば、ジイソシアネート化合 物、 エ ポ キ シ 化 合 物 、 酸 無 水 物 等 を 使 用 す る こ と も で き る 。

[0015]

乳酸系樹脂は、さらに、乳酸および/又は乳酸以外のα-ヒドロキシカルボン酸等の他の ヒドロキシカルボン酸単位との共重合体であっても、脂肪族ジオール及び/又は脂肪族ジ カルポン酸との共重合体であってもよい。

他のヒドロキシカルボン酸単位としては、乳酸の光学異性体(L-乳酸に対してはD-乳 20 酸、D-乳酸に対してはL-乳酸)、グリコール酸、3-ヒドロキシ酪酸、4-ヒドロキ シ酪酸、2-ヒドロキシ-n-酪酸、2-ヒドロキシ-3,3-ジメチル酪酸、2-ヒド ロキシー3ーメチル酪酸、2ーメチル乳酸、2ーヒドロキシカプロン酸等の2官能脂肪族 ヒドロキシカルボン酸やカプロラクトン、プチロラクトン、バレロラクトン等のラクトン 類が挙げられる。

乳酸系樹脂に共重合される脂肪族ジオールとしては、エチレングリコール、1,4-プタ ン ジ オ ー ル 、 1 , 4 - シ ク ロ ヘ キ サ ン ジ メ タ ノ ー ル 等 が 挙 げ ら れ る 。 ま た 、 脂 肪 族 ジ カ ル ボン酸としては、コハク酸、アジピン酸、スベリン酸、セバシン酸及びドデカン二酸等が 挙げられる。

[0016]

本発明に使用される乳酸系樹脂は、重量平均分子量が5万~40万の範囲であることが好 ましく、 1 0 万 ~ 2 5 万 の 範 囲 で あ る こ と が 更 に 好 ま し い 。 乳 酸 系 樹 脂 の 重 量 平 均 分 子 量 が 5 万 よ り 小 さ い 場 合 に は 、 機 械 物 性 や 耐 熱 性 等 の 実 用 物 性 が ほ と ん ど 発 現 さ れ ず 、 4 0 万より大きい場合には、溶融粘度が高すぎて成形加工性に劣ることがある。

[0017]

本発明に好ましく使用される乳酸系樹脂としては、(株)島津製作所製の「ラクティ」シ リーズ、三井化学(株)製の「レイシア」シリーズ、カーギル・ダウ社製の「Natur e Works」シリーズ等が挙げられる。

[0018]

本発明においては、成形体の耐衝撃性を向上させるために、乳酸系樹脂以外の脂肪族ポリ 40 エステル、あるいは、芳香族脂肪族ポリエステルを配合することができる。この脂肪族ポ リエステル、および、芳香族脂肪族ポリエステルは、結晶融解熱量(ΔΗm)が30J/ g 未満であることが好ましい。 Δ H m が 3 0 J / g 未満であれば、 結晶部分が多くなって その分ゴム部分が少なくなるというようなことはなく、したがって、衝撃吸収効果が得ら れないという問題が生じることはない。乳酸系樹脂以外の脂肪族ポリエステルまたは芳香 族脂肪族ポリエステルの配合量は、乳酸系樹脂100質量部に対して20~80質量部の 範 囲内 で あ る こ と が 好 ま し い 。 乳 酸 系 樹 脂 以 外 の 脂 肪 族 ポ リ エ ス テ ル 等 の 配 合 量 が 2 0 質 量部~80質量部であれば、耐衝撃性の改良効果が得られ、また、成形体が過剰に軟質化 することがないので、熱処理の際に問題が生じたり、実際に使用する際に問題が生じるこ ともない。

10

[0019]

. . . .

乳酸系樹脂以外の脂肪族ポリエステルとしては、例えば、脂肪族ジオールと脂肪族ジカルポン酸とを縮合重合して得られる脂肪族ポリエステル、環状ラクトン類を開環重合して得られる脂肪族ポリエステル等が挙げられる。

脂肪族ジオールとしては、エチレングリコール、1、4-ブタンジオール、1、4-シクロヘキサンジメタノール等が挙げられ、脂肪族ジカルボン酸としては、コハク酸、アジピン酸、スペリン酸、セバシン酸、ドデカン二酸等が挙げられる。脂肪族ジオールと脂肪族ジカルボン酸とを縮合重合して得られる脂肪族ポリエステルは、上記脂肪族ジオールと、上記脂肪族ジカルボン酸の中から、それぞれ1種類以上を選んで縮合重合することにより得られる。また、必要に応じて、イソシアネート化合物等で分子量をジャンプアップして10所望のポリマーを得ることができる。脂肪族ジオールと脂肪族ジカルボン酸とを縮合重合して得られる脂肪族ポリエステルとしては、例えば、昭和高分子(株)製の「ビオノーレ」シリーズ、イレケミカル社製の「Enpole」等が商業的に入手可能なものとして挙げられる。

環状ラクトン類を開環重合して得られる脂肪族ポリエステルとしては、 ε ーカプロラクトン、 δ ー バレロラクトン、 β ー メチルー δ ー バレロラクトン等の環状モノマーの中から、 1 種類以上を選んで重合して得られるものが挙げられる。例えば、ダイセル化学工業(株)製の「セルグリーン」シリーズが商業的に入手可能なものとして挙げられる。 合成系脂肪族ポリエステルとしては、例えば、環状酸無水物とオキシラン類、具体的には

台放糸脂肪族ホリエステルとしては、例えは、現状酸無水物とオキション類、具体的には、無水コハク酸と、エチレンオキサイド、プロピレンオキサイド等との共重合体等が挙げ 20られる。

[0020]

芳香族脂肪族ポリエステルとしては、例えば、芳香族ジカルボン酸成分、脂肪族ジカルボン酸成分、及び脂肪族ジオール成分を縮合重合して得られる、生分解性を有する芳香族脂肪族ポリエステルが挙げられる。

芳香族ジカルボン酸成分としては、例えば、イソフタル酸、テレフタル酸、 2 , 6 ーナフタレンジカルボン酸等が挙げられ、脂肪族ジカルボン酸成分としては、例えば、コハク酸、アジピン酸、スペリン酸、セバシン酸、ドデカン二酸等が挙げられ、脂肪族ジオールとしては、例えば、エチレングリコール、 1 , 4 ー ブタンジオール、 1 , 4 ー シクロヘキサンジメタノール等が挙げられる。なお、芳香族ジカルボン酸成分、脂肪族ジカルボン酸成分、及び脂肪族ジオール成分は、それぞれ 2 種類以上を用いることもできる。

本発明において、最も好適に用いられる芳香族ジカルボン酸成分はテレフタル酸であり、 脂肪族ジカルボン酸成分はアジピン酸であり、脂肪族ジオール成分は 1 , 4 - ブタンジオールである。

脂肪族ジカルボン酸及び脂肪族ジオールからなる脂肪族ポリエステルは生分解性を有することが知られているが、芳香族脂肪族ポリエステルにおいて生分解性を発現させるためには、芳香環と芳香環との間に脂肪族鎖が存在することが必要である。そのため、芳香族ジカルボン酸成分は50モル%以下であることが好ましい。

芳香族脂肪族ポリエステルの代表的なものとしては、ポリプチレンアジペートとテレフタレートとの共重合体、テトラメチレンアジペートとテレフタレートとの共重合体等が挙げ 40られる。ポリプチレンアジペートとテレフタレートとの共重合体として、BASF社製の「Ecoflex」を商業的に入手することができ、また、テトラメチレンアジペートとテレフタレートとの共重合体として、EastmanChemicals社製の「Eastar Bio」を商業的に入手することができる。

[0021]

本発明においては、さらに無機フィラーを配合することができる。無機フィラーを配合することにより、加熱や経時変化による収縮を抑制することができ、成形体の寸法安定性を向上させることができる。無機フィラーを配合する場合、その配合量は、乳酸系樹脂 1 0 0 質量部に対して 1 ~ 2 0 質量部の範囲内であることが好ましく、 5 ~ 1 5 質量部の範囲内であることが更に好ましい。無機フィラーの配合量が 1 質量部未満では、加熱や経時変 50

化による収縮を抑制することができず、成形体の寸法安定性を向上させることができない。また、無機フィラーの配合量が20質量部より多いと、成形体の機械的強度を維持することができない。

[0022]

· · · · ·

本発明に用いることができる無機フィラーの具体例としては、タルク、カオリン、炭酸カルシウム、ベントナイト、マイカ、セリサイト、ガラスフレーク、黒鉛、三酸化アンチモン、硫酸パリウム、ホウ酸亜鉛、含水ホウ酸カルシウム、硝酸鉄、硝酸銅、硝酸亜鉛、硝酸ニッケル、アルミナ、マグネシア、ウォラストナイト、ゾノトライト、セピオライト、ウィスカー、ガラス繊維、金属粉末、ビーズ、シリカバルーン、シラスパルーン等が挙げられる。また、上記無機フィラーの表面を、チタン酸、脂肪酸、シランカップリング剤等 10で処理することにより、樹脂との接着性を向上させ、無機フィラーの効果を向上させることができる。

[0023]

本発明においては、乳酸系樹脂等の生分解性樹脂に耐加水分解性を付与するために、さらにカルボジイミド化合物を添加することができる。用いられるカルボジイミド化合物としては、下記一般式 (1) に示す基本構造を有するものが挙げられる。

 $- (N = C = N - R -)_{n} - (1)$

ただし、式中、 R は、 脂肪族基、 脂環族基、 又は芳香族基である。 n は、 1 以上の整数であり、 通常は 1 ~ 5 0 の間で適宜、決定される。

具体的には、例えば、ピス(プロピルフェニル)カルボジイミド、ポリ(4, 4' -ジフ 20 エニルメタンカルボジイミド)、ポリ(p-フェニレンカルボジイミド)、ポリ(m-フェニレンカルボジイミド)、ポリ(トリルカルボジイミド)、ポリ(ジイソプロピルフェニレンカルボジイミド)、ポリ(メチルージイソプロピルフェニレンカルボジイミド)、ポリ(トリイソプロピルフェニレンカルボジイミド)等、及びこれらの単量体が挙げられる。本発明においては、これらカルボジイミド化合物を、単独で、又は2種以上組み合わせて用いることができる。

[0024]

カルボジイミド化合物は、射出成形体を構成する樹脂組成物100質量部に対して0.5~10質量部の範囲内で添加することが好ましい。かかる範囲を下回る場合には、耐加水分解性の効果が発現しないことがあり、上回る場合には、カルボジイミド化合物のブリー 30ドアウトが起こることがあり、そのため成形体の外観不良や、可塑化による機械物性の低下が起こることがある。また、生分解性やコンポスト分解性が損なわれることがある。

[0025]

本発明の効果を損なわない範囲で、熱安定剤、抗酸化剤、UV吸収剤、光安定剤、顔料、 着色剤、滑剤、核剤、可塑剤等の添加剤を添加することができる。

[0026]

次に、本発明の射出成形体の成形方法について説明する。

本発明の射出成形体は、乳酸系樹脂及び金属水酸化物と、必要に応じて、乳酸系樹脂以外の脂肪族ポリエステル、芳香族脂肪族ポリエステル、無機フィラー、その他添加剤等との各原料を、同一の射出成形機に投入し、直接混合して射出成形することにより得ることが 40 できる。あるいは、ドライブレンドした各原料を、二軸押出機を用いてストランド形状に押出してペレットを作製しておき、このペレットから、再度、射出成形機を用いて射出成形体を得ることができる。

いずれの方法においても、原料の分解による分子量の低下を考慮する必要があるが、各原料を均一に混合させるためには後者を選択することが好ましい。

[0027]

具体的には、例えば、乳酸系樹脂、金属水酸化物等を十分に乾燥して水分を除去した後、二軸押出機を用いて溶融混合し、ストランド形状に押出してペレットを作製する。ただし、乳酸系樹脂はL-乳酸構造とD-乳酸構造の組成比によって融点が変化すること、また、乳酸系樹脂以外の脂肪族ポリエステル、芳香族脂肪族ポリエステル等を混合する場合に 50

は、それらの混合の割合によって混合樹脂の融点が変化すること等を考慮して、溶融押出 温度を適宜選択することが好ましい。通常、100℃~250℃の温度範囲内で選択され る。

[0028]

作製したペレットを十分に乾燥し、水分を除去した後、例えば熱可塑性樹脂を成形する場 合に一般的に採用される射出成形方法等を用いて射出成形を行う。例えば、ガスアシスト 成形法、射出圧縮成形法等の射出成形法によって射出成形体を得ることができる。また、 その他目的に応じて、上記の方法以外でもインモールド成形法、ガスプレス成形法、2色 成形法、サンドイッチ成形法、PUSH-PULL、SCORIM等を採用することもで きる。、ただし、射出成形方法は、これらに限定されるものではない。

本発明に用いられる射出成形装置は、一般的な射出成形機、ガスアシスト成形機及、射出 圧縮成形機等と、これらの成形機に用いられる成形用金型及び付帯機器、金型温度制御装 置、原料乾燥装置等とを備えている。

成形条件は、射出シリンダー内での樹脂の熱分解を避けるために、溶融樹脂温度が170 ℃~210℃の範囲で成形することが好ましい。

[0029]

射 出 成 形 体 を 非 晶 状 態 で 得 る 場 合 に は 、 成 形 サ イ ク ル (型 閉 ~ 射 出 ~ 保 圧 ~ 冷 却 ~ 型 開 ~ 取出)の冷却時間を短くするために、金型温度は可能な限り低温であることが好ましい。 金型 温 度 は 、 一 般 的 に は 1 5 ℃ ~ 5 5 ℃ で あ る こ と が 好 ま し く 、 チ ラ ー を 用 い る こ と も 望 ましい。ただし、後結晶化時の成形体の収縮、反り、変形等を抑制するためには、金型温 20 度を15℃~55℃の範囲内でも低温側に設定することが好ましく、例えば、15~30 ℃であることが好ましい。

[0030]

ま た 、 無 機 フ ィ ラ ー を 添 加 し た 成 形 体 で は 、 添 加 量 が 多 い ほ ど 成 形 体 の 表 面 に フ ロ ー マ ー ク が 発 生 し 易 く な る の で 、 射 出 速 度 を 、 無 機 フ ィ ラ ー を 添 加 し な い 場 合 よ り 低 速 に す る こ とが好ましい。具体例を示すと、例えば、タルク15質量%を含む乳酸系樹脂等を、肉厚 2 mmのプレート金型を備えたスクリュー径 2 5 mmの射出成形機を用いて射出成形する 場合には、射出速度が30mm/秒以下であればフローマークの発生しない成形体が得ら れる。一方、無機フィラーを添加しない場合には、射出速度が50mm/秒でもフローマ ークは発生しない。

ヒケが発生しやすい場合には、保持圧力及び保持時間を充分に取ることが好ましい。例え ば、保持圧力は 3 0 M P a ~ 1 0 0 M P a の範囲で設定されることが好ましく、保持時間 は成形体の形状や肉厚によって1秒~15秒の範囲で適宜設定されることが好ましい。例 えば、上記の肉厚2mmプレート金型を備えた射出成形機を用いて成形する場合には、保 持時間は3秒前後である。

[0031]

本発明においては、射出成形によって得られた成形体に、熱処理を行い結晶化させること が好ましい。このように成形体を結晶化させることにより、成形体の耐熱性をさらに向上 させることができる。熱処理温度は、60 $^\circ$ ~130 $^\circ$ の範囲が好ましく、70 $^\circ$ ~90 ℃の範囲であることがより好ましい。熱処理温度が60℃より低い場合には、成形体の結 40 晶化が進行せず、熱処理温度が130℃より高い場合には、形成された成形体を冷却する 際に、成形体に変形や収縮が生じる。

熱 処 理 時 間 は 、 材 料 の 組 成 、 熱 処 理 装 置 、 及 び 熱 処 理 温 度 に 応 じ て 適 宜 設 定 さ れ る が 、 例 えば、 熱処 理 温 度 が 7 0 ℃ の 場 合 に は 1 5 分 ~ 5 時 間 熱 処 理 を 行 う こ と が 好 ま し く 、 ま た 、 熱 処 理 温 度 が 1 3 0 ℃ の 場 合 に は 1 0 秒 ~ 3 0 分 間 熱 処 理 を 行 う こ と が 好 ま し い 。 成 形 体を結晶化させる方法としては、射出成形後に金型の温度を上げて金型内で結晶化させる 方法や、射出成形体を非晶状態で金型から取り出した後、熱風、蒸気、温水、遠赤外線ヒ ーター、IHヒーター等で結晶化させる方法等が挙げられる。熱処理の際には、射出成形 体を固定しなくてもよいが、成形体の変形を防止するためには、金型、樹脂型等で固定す ることが好ましい。また、生産性を考慮に入れると、梱包した状態で熱処理を行うことが 50

好ましい。

[0032]

例えば、金型内で結晶化させる場合には、加熱した金型内に溶融樹脂を充填した後、一定時間金型内で保持する。金型温度は60 $\mathbb{C} \sim 130$ \mathbb{C} であることが好ましく、さらに好ましくは90 $\mathbb{C} \sim 110$ \mathbb{C} である。金型温度が60 \mathbb{C} より低いと結晶化に長時間を要し、サイクルが長くなり過ぎる。一方、金型温度が130 \mathbb{C} より高いと、成形体のリリース時に変形が生じることがある。

[0033]

本発明の射出成形体は優れた難燃性を備えているので、家電製品、OA機器、その他一般的な成形品として使用することができる。また、本発明の射出成形体は土中等で生分解す 10 ることができるので、環境対応型の成形体である。

本発明の実施形態の一例として、電卓型成形体を図1に示す。図1 (a) は、電卓型成形体の平面図であり、(b) はその正面図である。1~6 は貫通孔の穴あき部であり、1 は計算結果を表示する窓部となる部分、2、3 は数字等のキー部分となる部分、4、5、6 は爪を掛ける部分である。

[0034]

【実施例】

以下に、実施例を示して本発明を具体的に説明するが、これらにより本発明は何ら制限を受けるものではなく、本発明の技術的範囲を逸脱しない範囲内で種々の応用が可能である。なお、実施例中に示す測定値は次に示すような条件で測定を行い、算出した。

[0035]

(1)難燃性

Underwriters Laboratories社の安全標準UL94Vに基づいて燃焼試験を行った。試験片は、長さ 125 ± 5 mm×幅 13 ± 0 . 5mm×厚さ 3 ± 0 . 5mm×厚さ 3 ± 0 . 5mmのものを、1組5枚として用いた。ただし、燃焼性の評価は、下記に示す判定基準に基づいて行った。ここで、t1とは、第1回の接炎後の残炎時間をいい、t2とは、第2回の接炎後の残炎時間をいい、t3とは、第2回接炎後の残じん時間をいう。また、残炎時間とは、着火源を取去った後、継続して有炎燃焼する時間であり、残じん時間とは、着火源を取去った後、及び/又は、有炎燃焼しなくなった後、継続して赤熱する時間である。なお、記号「〇」、「△」は実用基準を満たすものである。

[0036]

【表 1 】

判定基準

判定	0	Δ	×
試験片の残炎時間、t 1 または t 2	≦10秒	≦30秒	いずれか1点 でも実用基準
各組の残炎時間の合計(1組5 枚の試験片の残炎時間の合計 t1+t2)	≦50秒	≦250秒	を満たさない もの
第2回の接炎後の各試験片の 残炎時間と残じん時間の合計、 t2+t3	≦30秒	≦60秒	
保持クランプまでの残炎又は 残じん	無し	無し	

40

20

30

[0037]

30

(2)分解性

.

金属水酸化物と混練する前の乳酸系樹脂の重量平均分子量(Mw)、及び、射出成形後の乳酸系樹脂の重量平均分子量(Mw)を測定し、下記式により分解率を算出した。分解率が10%以下であれば、実用基準を満たす。

(混練前のMw) - (射出成形後のMw)

分解率 (%) = ·

 $-- \times 100$

(混錬前のMw)

[0038]

(3)耐衝擊性

日本工業規格 J I S K - 7 1 1 0 に基づいて、 1 号 A 試験片(長さ 6 4 m m × 幅 1 2 . 7 m m × 厚 さ 4 m m)を作製し、衝撃試験機((株)東洋精機製作所製の「J I S L - D 」)を用いて、 2 3 $^{\circ}$ におけるアイゾット衝撃強度の測定を行った。アイゾット衝撃強度は 20 、 5 k J / m 2 以上を実用基準とした。

[0039]

(4) 耐熱性

日本工業規格JISK-7191に基づいて、試験片(長さ120mm×幅11mm×厚さ3mm)を作製し、荷重たわみ温度試験装置((株)東洋精機製作所製の「S-3M」)を用いて、荷重たわみ温度の測定を行った。ただし、測定は、エッジワイズ方向、試験片に加える曲げ応力は1.80MPaの条件で行った。荷重たわみ温度は、50℃以上を実用基準とした。

[0040]

(5) 寸法安定性

東芝機械(株)製の射出成形機「IS50E」を用いて、図1に示す形状の電卓型非晶性成形体を得た(X=約7.6cm、Y=約12.2cm)。この時の成形条件は、シリンダー温度195℃、金型温度25℃、射出圧力110MPa、射出時間1.5秒、保持圧力80MPa、保持時間3.0秒、背圧10MPa、スクリュー回転数110rpmであった。

成形後に、測定室内(温度23℃、相対湿度50%)で成形体を24時間静置し、図1に示すXとYの寸法を測定した。その後、温度70℃で3.5時間加熱処理(アニール処理)を行った。ただし、アニール処理は、恒温恒湿オープンを用い、成形体に負荷のかからない状態で静置させて行った。アニール処理後、直ちに成形体を取り出し、測定室内で24時間静置した後、再度、XとYの寸法を測定し、アニール処理による収縮率を算出した40。ただし、XとYの寸法の測定には三次元測定機を用いた。評価は、下記評価基準に基づいて行った。記号「○」、「△」は実用基準を満たすものである。

評 価 基 準 :

「〇」… XとYの収縮率が、共に1.0%未満であるもの

「 △」 ··· X または Y の 収 縮 率 の い ず れ か 一 方 が 1. 0 % 以 上 で あ る か 、 又 は 、 共 に 1.

0%以上、2.0%未満であるもの

「×」… XとYの収縮率が、共に2.0%以上であるもの

[0041]

(6) 金属水酸化物のw-Na₂Oの測定

100mLのピーカーに水酸化アルミニウム5g(1mgの単位まで秤量)を入れ、そこ 50

に温度 50 \mathbb{C} \sim 60 \mathbb{C} の水 50 m L を加えた。これを加熱し、内容物の温度が 80 \mathbb{C} \sim 90 \mathbb{C} を保つように 2 時間保持した。次に、内容物を 5 B の濾紙を用いて濾過した後、 50 \mathbb{C} \sim 60 \mathbb{C} の水 5 m L \mathbb{C} 4 回洗浄した。この濾液を 20 \mathbb{C} に冷却し、 0 . 2 m g / m L の L i 内部標準溶液を 10 m L 加え、更に蒸留水を加えて全量が 100 m L となるようにした。これを、日本工業規格 J I S H 1901 – 1977 に基づいて、原子吸光光度計で N a 量を測定した。得られた N a 量を N a $_2$ O 量に換算し、この換算値を w $_2$ N a $_2$ O の量とした。

[0042]

.

(7)水分率の測定

測定対象用試料の約0.5g(但し、0.1mgの単位まで秤量しておく)を、カールフ 10 ィッシャー水分計(京都電子工業(株)製、「MKC-510N」)を用いて、180 にて水分量を測定し、水分率を算出した。

[0043]

(実施例1)

1) 温度条件:シリンダー温度(195℃)、金型温度(20℃)

2) 射出条件:射出圧力 (1 1 5 M P a)、保持圧力 (5 5 M P a)

3) 計量条件: スクリュー回転数 (65 r p m) 、背圧 (15 M P a)

次に、射出成形体をベーキング試験装置((株)大栄科学精器製作所製の「D K S − 5 S」)内に静置し、70℃で3.5時間熱処理を行った。この板材について、難燃性、分解性、耐衝撃性、及び耐熱性の評価を行った。その結果を表2に示す。

[0044]

(実施例2)

実施例 1 において、金属水酸化物として日本軽金属(株)製の「BW 1 0 3 ST」(シランカップリング剤によって表面処理された水酸化アルミニウム、w-N $a_2O=0$. 0 5)を用い、「Nature Works 6 0 0 0 D」と「BW 1 0 3 ST」との配合量を、質量比で 1 0 0 : 1 0 に変更した以外は実施例 1 と同様にして、射出成形体を作製し 40 た。

得られた射出成形体について、実施例1と同様の評価を行った。その結果を表2に示す。

[0045]

(実施例3)

実施例 2 において、「Nature Works 6000D」と「BW103ST」との配合量を、質量比で100:25に変更した以外は実施例 2 と同様にして、射出成形体を作製した。

得られた射出成形体について、実施例1と同様の評価を行った。その結果を表2に示す。

[0046]

(実施例4)

50

実施例 2 において、「Nature Works 6000D」と「BW103ST」との配合量を、質量比で100:40に変更した以外は実施例 2 と同様にして、射出成形体を作製した。

得られた射出成形体について、実施例1と同様の評価を行った。その結果を表2に示す。 【0047】

(実施例5)

実施例1において、金属水酸化物の種類を協和化学工業(株)製の「キスマ5A」(高級脂肪酸によって表面処理された水酸化マグネシウム、w-Na₂〇=0.001)に変更した以外は実施例1と同様にして、射出成形体を作製した。

得られた射出成形体について、実施例1と同様の評価を行った。その結果を表2に示す。 10 【0048】

(実施例6)

得られた射出成形体について、実施例1と同様の評価を行った。その結果を表2に示す。

[0049]

(実施例7)

実施例 6 において、さらに、無機フィラーとして日本タルク(株)製のタルク「SG-95」を用いた以外は実施例 6 と同様にして、射出成形体を作製した。すなわち、「Nature Works 6000D」と「Ecoflex」と「SG-95」と「BW103ST」との配合量は、質量比で100:20:10:40の割合である。

得られた射出成形体について、実施例1と同様の評価を行った。その結果を表2に示す。 【0050】

【表2】

			安施例	夹施例	実施例	実施例	東施例	安施例	実施例
			1	2	3	4	5	9	7
		Nature Works 6000D	100	100	100	100	100	100	100
	整語	Ecoflex (AHm=20J/g)						20	20
		ピオノーレ 1003 (ΔHm=40J/g)							
	無後	86-95							10
	フィラー								
P		パイロライザーHG	2.5						
₹40		(ステアリン酸、シランカップリング剤、							
1		硝酸塩処理、w−Na2O=0.05)							
(\$		BW103ST		10	25	4 0		4 0	4 0
	金属水酸	(ツランカップリング剤処理、							
制	代物	w-N a 2 O = 0.05)							
)		4775A					2 2		
		(高級脂肪酸処理、W-Na2O=0.001)							
		B103							
•,		(無処理、w−N a 2 O == 0.2)							
		H-43S							
		(ステアリン酸処理、₩−N a 2O=0.13)							
		難燃性 (UL94)	0	0	0	0	0	0	0
		分解率 (%)	2	-	3	3	6	က	4
	軍	アイゾット衝撃強度(k J/m²)	7	8	6	9	6	15	12
		荷重たわみ温度(で)	. 68	6.7	68	6 9	89	09	6.2

10

20

30

40

[0051]

表 2 から明らかなように、実施例 $1 \sim 7$ の射出成形体は、難燃性の評価が「〇」、分解率が 1 0 %以下、アイゾット衝撃強度が 5 k J / m 2 以上、荷重たわみ温度が 5 0 $^{\circ}$ 以上であり、難燃性、耐衝撃性、及び耐熱性のすべてにおいて優れていることが分かった。 【 0 0 5 2】

(実施例8)

. .

得られた射出成形体について、実施例 6 と同様の評価を行った。その結果を表 3 に示す。なお、表 3 には、比較のため、実施例 6 のデータも併せて再表記した。

[0053]

【表 3】

			実施例 6	実施例
		Nature Works 6000D	100	100
1 1	樹脂	Ecoflex (AHm=20J/g)	20	
		ビオノーレ 1003 (ΔHm=40J/g)		20
	無機	SG-95		
1	フィラー			
		パイロライザーHG		
配合		(ステアリン酸、シランカップリング剤、		
		硝酸塩処理、w-Na₂O=0.05)		
(質量部)		BW103ST	4 0	40
盖	金属水酸	(シランカップリング剤処理、		
빨	化物	w-N a ₂ O = 0.05)		
		キスマ5 A		
		(高級脂肪酸処理、w-Na ₂ O=0.001)		
		B103		
		(無処理、w-Na₂O=0.2)		
		H-43S		
		(ステアリン酸処理、w-N a ₂ O = 0.13)		
		難燃性(UL94)	0	0
	評価	アイゾット衝撃強度(k J/m²)	15	9

20

10

30

[0054]

表 2 から、乳酸 系樹脂以外に芳香族脂肪族ポリエステルを使用した実施例 6 及び実施例 7 は、アイゾット衝撃強度が 1 0 k J / m²以上であり、芳香族脂肪族ポリエステルを含まない実施例 1 ~ 5 と比べて耐衝撃性が向上していることが分かった。また、表 3 から、芳香族脂肪族ポリエステルの替わりに脂肪族ポリエステルを使用した実施例 8 も同様の効果が得られることが分かった。

40

[0055]

実施例 6 及び実施例 7 については、寸法安定性の評価も行った。その結果を表 4 に示す。なお、表 4 には、比較のため、実施例 6 のデータも併せて再表記した。

[0056]

【表4】

			実施例 6	実施例 7
		Nature Works 6000D	100	100
	樹脂	Ecoflex (AHm=20J/g)	20	20
		ピオノーレ 1003 (ΔHm=40J/g)		
	無機 フィラー	SG-95		1 0
配合(質量部)	金属水酸化物	パイロライザーHG (ステアリン酸、シランカップリング剤、 硝酸塩処理、w−Na₂〇=0.05)		
		BW103ST (シランカップリング剤処理、 w−Na₂O=0.05)	4 0	4 0
		キスマ5A (高級脂肪酸処理、w-Na ₂ O=0.001) B103		
		(無処理、w-Na₂O=0.2)		
		H − 4 3 S (ステアリン酸処理、w−N a ₂ O = 0. 13)	-	-
	評価	寸法安定性	Δ	0

10

[0057]

表4から明らかなように、無機フィラーを含有する実施例7の射出成形体は非常に優れた 寸法安定性を示していた。すなわち、無機フィラーを含有させることにより、寸法安定性 が向上することも確認された。

[0058]

(比較例1)

実施例 2 において、金属水酸化物を配合しなかった以外は実施例 2 と同様にして、射出成形体を作製した。

30

得られた射出成形体について、実施例 1 と同様の評価を行った。その結果を表 5 に示す。なお、表 5 には、比較のため、実施例 2 ~ 4 のデータも併せて再表記した。

[0059]

(比較例2)

実施例2において、金属水酸化物の配合量を乳酸系樹脂100質量部に対して3質量部に変更した以外は実施例2と同様にして、射出成形体を作製した。すなわち、「Nature Works 6000D」と「BW103ST」との配合量は、質量比で100:3の割合である。

得られた射出成形体について、実施例1と同様の評価を行った。その結果を表5に示す。

[0060]

40

(比較例3)

実施例2において、金属酸化物の配合量を乳酸系樹脂100質量部に対して50質量部に変更した以外は実施例2と同様にして、射出成形体を作製した。すなわち、「Nature Works 6000D」と「BW103ST」との配合量は、質量比で100:50の割合である。

得られた射出成形体について、実施例1と同様の評価を行った。その結果を表5に示す。

[0061]

【表 5】

[0062]

表 5 から明らかなように、金属水酸化物を配合しなかった比較例 1 、及び、金属水酸化物の含有量が 5 質量部より少ない比較例 2 の射出成形体は、難燃性の評価が「×」であり難燃性に劣っていることが分かった。金属水酸化物の配合量が乳酸系樹脂 1 0 0 質量部に対して 4 0 質量部より多い比較例 3 では、アイゾット衝撃強度が 5 k J / m²以下となり、耐衝撃性が劣っていることが分かった。

[0063]

(比較例4)

金属水酸化物として日本軽金属(株)製の「B 1 0 3」(表面処理が施されていない無処理の水酸化アルミニウム、 $w-Na_2O=0$. 2 を用い、「N a t u r e Works 6 0 0 0 D」と「B 1 0 3」とを、質量比で 1 0 0 : 2 5 の割合でドライブレンドした以外は実施例 1 と同様にして、射出成形体を作製した。得られた射出成形体について、実施例 1 と同様の評価を行った。その結果を表 6 に示す。なお、表 6 には、比較のため、実施例 1 、 3 、 5 のデータも併せて再表記した。

[0064]

.

(比較例5)

金属水酸化物として昭和電工(株)製の「H-43S」(ステアリン酸によって表面処理された水酸化アルミニウム、 $w-Na_2O=0$. 13)を用い、「Nature Wor 10ks 6000D」と「H-43S」とを、質量比で100:25の割合でドライブレンドした以外は実施例1と同様にして、射出成形体を作製した。得られた射出成形体について、実施例1と同様の評価を行った。その結果を表6に示す。

[0065]

【表 6】

10

20

30

[0066]

表6から明らかなように、w-Na₂Oが0.1質量%以上である金属水酸化物を含有し 40 た比較例4及び比較例5では、乳酸系樹脂の分解率が10%以上であり、機械的強度の低下をもたらすことが分かった。

[0067]

【発明の効果】

以上、詳しく説明したように、本発明によれば、生分解性を有し、かつ、優れた難燃性及び機械的強度を有する射出成形体を提供することができる。また、さらに、耐熱性および寸法安定性を有する射出成形体を提供することができる。

【図面の簡単な説明】

【図1】 (a) は、本発明の第1の実施形態にかかる射出成形体の平面図であり、(b) は正面図である。

【符号の説明】 1~6 穴あき部

【図1】

フロントページの続き

(51) Int. Cl. 7

FΙ

テーマコード(参考)

B 2 9 K 67:00

B 2 9 K 67:00

(72)発明者 加藤 幸男

神奈川県平塚市西真土2丁目1番35号

三菱樹脂株式会社平塚工場内

(72)発明者 髙木 潤

滋賀県長浜市三ツ矢町5番8号

三菱樹脂株式会社長浜工場内

Fターム(参考) 4F071 AA43 AB18 AE07 AF47 AF52 AF54 BA01 BB05

4F201 AA24 AB05 AB11 AB16 AB28 AC04 BA01 BC02 BC12 BC37

BD04 BK01 BK02 BK12 BK13

4J002 CF181 DE076 DE086 DE096 DE146 FB086 FB096 FD136

4J200 AA04 AA06 AA16 BA14 DA17 DA28