Appunti di Calcolo delle Probabilità e Statistica

Lezioni della prima parte di Marco Ghimenti Lezioni della seconda parte di Maaurizio Pratelli A cura di Alessandro Cheli

A.A 2019-2020

Indice

		ariabili Aleatorie con Densità e Introduzione alla Statistica ni di Maurizio Pratelli	1					
1	Var	Variabili Aleatorie con densità (continue)						
	1.1	Svolgere integrali multipli	3					
	1.2	Introduzione alle Variabili Aleatorie con Densità	5					
	1.3	Proprietà principali delle variabili aleatorie con densità	6					
	1.4	Tipologie principali di densità	9					
	1.5	Esercizi	15					

iv INDICE

Parte I

Variabili Aleatorie con Densità e Introduzione alla Statistica Lezioni di Maurizio Pratelli

Capitolo 1

Variabili Aleatorie con densità (continue)

1.1 Svolgere integrali multipli

Definizione 1.1.1. Integrale Multiplo

Un integrale multiplo è un integrale definito di una funzione a più di una variabile reale. Gli integrali di una funzione f(x, y) su una regione di \mathbb{R}^2 sono detti **integrali doppi**, quelli di una funzione f(x, y, z) su una regione di \mathbb{R}^3 sono detti **integrali tripli**.

Proprio come l'integrale definito di una funzione positiva ad una variabile rappresenta l'area della regione sottostante al grafico della funzione, l'integrale doppio di una funzione positiva a due variabili reali rappresenta il volume della regione fra la superfice definita dalla funzione (sul piano cartesiano tridimensionale dove z = f(x, y)) e il piano che contiene il dominio dell'integrale. Se sono presenti più variabili, un integrale multiplo produrrà ipervolumi di funzioni multidimensionali. L'integrazione multipla di una funzione ad n variabili $f(x_1, x_2, ..., x_n)$ su un dominio D è rappresentata da segni di integrale nidificati, nell'ordine inverso di esecuzione (l'integrale più a sinistra è calcolato per ultimo), seguita dalla funzione e i differenziali nell'ordine proprio (il segno di integrale più a sinistra corrisponde al differenziale più a destra). Il dominio di integrazione è rappresentato su ogni integrale, o simbolicamente abbreviato attraverso un simbolo di variabile sull'integrale più interno.

Definizione 1.1.2. Regola pratica per gli integrali doppi

Esempio 1.1.1. Svolgiamo l'integrale doppio sul triangolo $T=0 \le y \le x \le 1$ di f(x,y)=x

$$\iint_{T} x dy dx = \int_{0}^{1} \int_{0}^{x} x dy dx = \int_{0}^{1} dx \int_{0}^{x} x dy = \int_{0}^{1} x^{2} dx = \frac{1}{3}$$

Che coincide, scambiando l'ordine di integrazione con

$$\int_0^1 dy \int_0^1 x dx = \frac{1}{2} \int_0^1 (1 - y^2) dy = \frac{1}{2} - \frac{1}{6} = \frac{1}{3}$$

Esempio 1.1.2. Svolgiamo l'integrale doppio $\iint_R 2x - 3y^2 dx dy$ sul rettangolo $R: -1 \le x \le 1, 0 \le y \le 2$.

Figura 1.1: Grafico della funzione y=x su \mathbb{R}^2

$$2x - 3y^2$$

Figura 1.2: Grafico della funzione reale a due variabili $2x-3y^2\,$

$$\iint_{R} 2x - 3y^{2} dx dy = \int_{0}^{2} \left(\int_{-1}^{1} 2x - 3y^{2} dx \right) dy =$$
$$\int_{0}^{2} -6y^{2} dy = \left(-6 * \frac{8}{3} \right) = -16$$

1.2 Introduzione alle Variabili Aleatorie con Densità

Definizione 1.2.1. Variabile Aleatoria Abbiamo visto nella parte precedente del corso le variabili aleatorie. Una variabile aleatoria è una funzione definita come

$$X:(\Omega,\mathbb{F},P)\to\mathbb{R}$$

Permette di trasportare le probabilità dai sottoinsiemi di Ω ai sottoinsiemi di \mathbb{R} , ovvero

$$P_X(A) = P(X^{-1}(A))$$

 $A \subseteq \mathbb{R}$
 $X^{-1}(A) \subseteq \Omega$

Le variabili aleatorie possono essere di discrete, con densità o più generali. Una variabile aleatoria è discreta se la sua immagine è finita o numerabile, ovvero

$$p(x_i) = P(X = x_i)$$

Definizione 1.2.2. Variabile Aleatoria con Densità

X ha densità se esiste una funzione $f: \mathbb{R} \to [0, +\infty)$ (la densità) integrabile, tale che

$$P(X \in A) = \int_{A} f(x)dx$$
$$P(a \le X \le b) = \int_{a}^{b} f(x)dx$$

Perché f sia densità una condizione necessaria è che $\int_{\Omega} f(x)dx = 1$, dove in generale, $\Omega = \mathbb{R}$ se la funzione di densità è ad una variabile.

Definizione 1.2.3. Funzione di ripartizione (cumulative distribution function)

È una funzione definita come $F: \mathbb{R} \to [0,1]$ È definita come

$$F_X(x) = P(X \le x)$$

Se ne inferisce che la probabilità che la variabile aleatoria con densità X risieda nell'intervallo semichiuso (a, b] con $a \le b$ è quindi

$$P(a < X < b) = P(X < x)$$

Sulle variabili discrete è tipicamente discontinua, definita come

$$F_x(t) = \sum_{x_i < t} P(X = x_i) = \sum_{x_i < t} p(x_i)$$

Funzione di ripartizione su variabili con densità Sulle variabili con densità è tipicamente continua e può essere espressa come l'integrale della funzione di densità di probabilità della variabile come segue:

$$F_X(t) = \int_{-\infty}^{t} f(x)dx$$

Definizione 1.2.4. Proprietà di una funzione di ripartizione

- $s < t \implies F_X(1) \le F_X(t)$
- $\lim_{x \to -\infty} F(x) = 0$ $\lim_{x \to +\infty} F(x) = 1$
- $F(x) = \lim_{y \to x^+} F(y)$

1.3 Proprietà principali delle variabili aleatorie con densità

Definizione 1.3.1. Indipendenza di variabili con densità

La definizione di indipendenza di due variabili con densità è identica al caso in cui le variabili siano discrete, ma dev'essere data parlando solo di sottoinsiemi misurabili di \mathbb{R} . Due variabili aleatorie con densità si dicono tra loro indipendenti se, \forall coppia A, B di sottoinsiemi misurabili di \mathbb{R} , risulta:

$$P(X \in A, Y \in B) = P(X \in A) P(Y \in B)$$

Si osserva facilmente che due variabili aleatorie X,Y sono indipendenti $\iff \forall$ coppia di numeri reali s,t, risulta

$$P(X \le s, Y \le T) = F_X(s)F_Y(t)$$

Dove F_X e F_Y sono le rispettive funzioni di ripartizione di X e Y.

Definizione 1.3.2. Assenza di memoria delle variabili aleatorie con densità esponenziale

$$P(X > 1 + t \mid X > 1) = P(X > t)$$

Dimostrazione.

$$\begin{split} \mathbf{P}\left(X>t\right) &= \mathbf{P}\left(X \in [t,+\infty]\right) = \int_{t}^{+\infty} \lambda e^{-\lambda x} dx \\ &= -e^{-\lambda x} \Big|_{t}^{+\infty} = e^{-\lambda t} \\ &\frac{\mathbf{P}\left(X>t+1\cap X>1\right)}{\mathbf{P}\left(X>1\right)} = \frac{e^{-\lambda(t+1)}}{e^{-\lambda}} = e^{-\lambda t} \end{split}$$

Definizione 1.3.3. Formula della convoluzione

La **convoluzione** è un'operazione fra due funzioni ad una variabile che consiste nell'integrare il prodotto tra la prima e la seconda traslata un certo valore.

$$(f \star g)(x) = \int_{\mathbb{R}} f(x - y)g(y)dy$$

Siano date due variabili aleatorie: X con densità f(x) e Y con densità g(x). Sia data la coppia di v.a. (X,Y) con densità g(x). ne ottiene che:

$$X$$
 ha densità $f(x) = \int_{-\infty}^{+\infty} h(x,y)dy$; Y ha densità $g(x) = \int_{-\infty}^{+\infty} h(x,y)dx$

Se X e Y sono indipendenti e Z=X+Y allora, la densità di Z detta a(z) sarà data dalla formula di convoluzione:

$$a(z) = (g \star f)(z) = \int_{-\infty}^{+\infty} f(x)g(z - x)dx = (f \star g)(z) = \int_{-\infty}^{+\infty} g(y)f(z - y)dy$$

Viene rispettata la commutatività della somma.

Dimostrazione.

$$P(X \le x) = P(X \le x, -\infty \le Y \le +\infty)$$

La variabile Y è libera mentre la X è limitata dal valore di x. Ne segue che:

$$P(X \le x, -\infty \le Y \le +\infty) = \int_{-\infty}^{x} \int h(t, y) dy dt$$
$$f(x) = \frac{d}{dx} \int_{-\infty}^{x} \int h(t, y) dy dt = \int_{-\infty}^{+\infty} h(x, y) dy$$

Per quanto riguarda Z = X + Y si ha che:

$$P(X+Y\leq Z) = \int_{-\infty}^{+\infty} f(x) \left(\int_{-\infty}^{z-x} g(y) dy \right) dx = A(z)$$

$$a(z) = \int_{-\infty}^{+\infty} f(x) g(z-x) dx$$

Definizione 1.3.4. Prodotto di variabili aleatorie con densità a valori positivi

Siano date X e Y variabili aleatorie con corrispondenti densità f(x) e g(y) a valori positivi e sia Z = XY il prodotto di esse. Per calcolare la densità a(z) di Z, si calcola prima la funzione di ripartizione A(z).

$$f(x) = \begin{cases} 0 & x \le 0 \\ \text{qualche valore} & x > 0 \end{cases}$$

$$g(y) = \begin{cases} 0 & y \le 0 \\ \text{qualche valore} & y > 0 \end{cases}$$

$$A(z) = P(Z \le z) = \begin{cases} 0 & z \le 0 \\ \text{qualche valore} & z > 0 \end{cases}$$

La definizione precedente di A(z) ha senso perché X e Y assumono valori positivi. Altrimenti, avrei dovuto distinguere il caso $z \le 0 \implies \mathrm{P}(Z \ge z) = 1 - A(z)$. Si ha quindi che (per z > 0)

$$A(z) = P(XY \le z) = \int_0^{+\infty} dx \int_0^{\frac{z}{x}} f(x)g(y)dx$$

Si nota che z compare in questo integrale. Deriviamo adesso G(z)

$$g(z) = \frac{dG(z)}{dz} = \int_0^{+\infty} \frac{1}{x} f(x) g(\frac{z}{x}) dy$$

Definizione 1.3.5. Speranza di variabili aleatorie con densità

Si dice che X ha speranza matematica finita (o valore atteso) se

$$\int_{-\infty}^{+\infty} |x| f(x) dx < +\infty$$

E si dice **speranza matematica** di X il numero

$$\mathbb{E}\left[X\right] = \int_{-\infty}^{+\infty} x f(x) dx$$

Definizione 1.3.6. Momenti di una variabile aleatoria con densità

Il momento k-esimo di una v.a. con densità, se finito, è dato da

$$\mathbb{E}\left[X^{k}\right] = \int_{-\infty}^{+\infty} x^{k} f(x) dx$$

$$\exists \mathbb{E}\left[X^{k}\right] \implies \exists \mathbb{E}\left[X^{m}\right] 1 \leq m < k$$

Definizione 1.3.7. Proprietà della speranza

• Regola della somma (linearità):

$$\mathbb{E}\left[X+Y\right] = \mathbb{E}\left[X\right] + \mathbb{E}\left[Y\right]$$
$$\mathbb{E}\left[\alpha X\right] = \alpha \mathbb{E}\left[X\right]$$

• Regola del prodotto: Se X e Y sono indipendenti allora

$$\mathbb{E}\left[XY\right] = \mathbb{E}\left[X\right]\mathbb{E}\left[Y\right]$$

• Monotonia:

$$X \ge 0 \land \mathbb{E}[X] \ge 0 \land X \le Y \implies \mathbb{E}[X] < \mathbb{E}[Y]$$

Dimostrazione. Dimostriamo la monotonia del valore atteso di una variabile aleatoria con densità che assume solo valori positivi:

$$X \ge 0 \implies f(x) = \begin{cases} 0 & x \le 0 \\ \text{qualche valore} & x > 0 \end{cases} \implies \exists \mathbb{E}[X]$$
$$\mathbb{E}[X] = \int_{-\infty}^{0} x f(x) dx + t_{0}^{+\infty} x f(x) dx \ge 0$$

Definizione 1.3.8. Varianza di una variabile aleatoria con densità

Se X ha momento secondo ($\mathbb{E}[X^2]$) finito, allora si definisce, come nel caso discreto, la varianza

$$\operatorname{Var}(X) = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right] = \int_{-\infty}^{+\infty} (x - \mathbb{E}[X])^2 f(x) dx = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \int_{-\infty}^{+\infty} x^2 f(x) dx - \left(\int_{-\infty}^{+\infty} x(x) dx \right)^2$$

Definizione 1.3.9. Covarianza

La covarianza è un numero che fornisce una misura di quanto due variabili aleatorie varino insieme, ovvero della loro dipendenza:

$$Covar(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

Due variabili aleatorie hanno covarianza = 0 se sono indipendenti. Si nota anche che

$$\operatorname{Covar}\left(X,X\right) = \operatorname{Var}\left(X\right)$$

$$\operatorname{Var}\left(X+Y\right) = \operatorname{Var}\left(X\right) + \operatorname{Var}\left(Y\right) + 2\operatorname{Covar}\left(X,Y\right)$$

Definizione 1.3.10. Disuguaglianze di Markov e Chebishev

Le disuguaglianze di Markov e Chebishev sono identiche nel caso due variabili aleatorie siano discrete o con densità. Dimostriamo la disuguaglianza di Markov.

Proposizione 1.3.1.

$$P(X > a) \le \frac{\mathbb{E}[X]}{a}$$

 $\mathbb{E}[X] \ge aP(X > a)$

Dimostrazione.

$$X \ge 0 \land a > 0 \implies \mathrm{P}\left(X > a\right) a < \mathbb{E}\left[X\right]$$

$$X \ge 0 \implies f(x) = \begin{cases} 0 & x \le 0 \\ \text{qualche valore} & x > 0 \end{cases} \implies \exists \mathbb{E}\left[X\right]$$

$$\mathbb{E}\left[X\right] = \int_{0}^{+\infty} x f(x) dx = \int_{0}^{a} x f(x) dx + \int_{a}^{+\infty} x f(x) dx$$

$$\ge \int_{a}^{+\infty} x f(x) dx \ge \int_{a}^{+\infty} a f(x) dx$$

Nell'integrale, x varia fra $a \in +\infty$, se al posto di x sostituisco a, se ne ottiene una quantità minore poiché a è il minimo valore che la variabile x sulla quale integriamo assume.

$$= a \int_{a}^{+\infty} f(x)dx = aP(X > a)$$

1.4 Tipologie principali di densità

Definizione 1.4.1. Densità uniforme su [a, b]

Sia data X con densità f(x)

$$f(x; a, b) = \begin{cases} \frac{1}{b-a} & a \le x \le b\\ 0 & \text{altrimenti} \end{cases}$$

Il valore atteso è $\frac{a+b}{2}$. La varianza è $\frac{(b-a)^2}{12}$ La funzione di ripartizione F è definita come

$$F(x) = \int_{-\infty}^{x} f(t)dt = \begin{cases} 0 & x \le a \\ \frac{x-a}{b-a} & a < x < b \\ 1 & x \ge b \end{cases}$$

Figura 1.3: Densità di probabilità uniforme di parametri a=-3 e b=5

F è la funzione di ripartizione in tutti i punti in cui f è continua

$$f(x) = \frac{dF(x)}{dx}$$

Definizione 1.4.2. Densità esponenziale di parametro $\lambda > 0$

Sia data la densità

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$$

Il valore atteso è $\frac{1}{\lambda}$. La speranza è $\frac{1}{\lambda^2}$ La funzione di ripartizione F è

$$F(x) = \int_{-\infty}^{x} f(t)dt = \begin{cases} 0 & x \le 0\\ 1 - e^{-\lambda x} & x > 0 \end{cases}$$

Nota. Se X ha densità

$$P(X = x) = \int_{x} f(t)dt = 0$$

Definizione 1.4.3. Densità di Cauchy

La densità di Cauchy (detta anche distribuzione di Cauchy o distribuzione di Lorentz) è una particolare funzione di densità che descrive nel piano euclideo l'intersezione tra l'asse delle ascisse ed una retta passante per un punto fissato ed inclinata ad un angolo che segue la distribuzione continua uniforme. I momenti di una distribuzione di Cauchy non sono definiti.

$$f(x) = \frac{1}{\pi(1+x)^2}$$

Figura 1.4: Funzione di ripartizione della densità di probabilità uniforme di parametri a=-3 e b=5

Figura 1.5: Densità di probabilità esponenziale di parametro $\lambda=0.5$ (blu) e $\lambda=1$ (rosso)

Figura 1.6: $P(X \le x)$ (funzione di ripartizione) di un'esponenziale di parametro $\lambda = 0.5$ (blu) e $\lambda = 1$ (rosso)

Figura 1.7: Densità di probabilità di Cauchy

Proposizione 1.4.1. La distribuzione di Cauchy è una densità di probabilità.

Dimostrazione.

$$\frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{1}{1+x^2} dx = \frac{1}{\pi} \lim_{M \to +\infty} \int_{-M}^{M} \frac{dx}{1+x^2}$$
$$= \frac{1}{\pi} \lim_{M \to +\infty} \left(\arctan(M) - \arctan(-M) \right) = \frac{1}{\pi} \left(\frac{\pi}{2} + \frac{\pi}{2} \right) = 1$$

Proposizione 1.4.2. La densità di Cauchy non ha momenti.

Dimostrazione.

$$\frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{|x|}{1+x^2} dx = \frac{1}{\pi} \int_{0}^{+\infty} \frac{2x}{1+x^2} dx = \frac{1}{\pi} \left[\log(1+x^2) \right]_{0}^{+\infty} = -\frac{1}{\pi} \cdot 0 + \frac{1}{\pi} \cdot +\infty = +\infty$$

$$\implies \nexists \mathbb{E}[X]$$

Definizione 1.4.4. Distribuzione normale (Gaussiana)

La distribuzione Gaussiana ha una funzione di densità a forma di campana. È utilizzata per rappresentare variabili aleatorie a valori reali che sono prodotte dalla somma di tanti piccoli risultati. Ad esempio, la distribuzione normale viene utilizzata per modellare l'altezza della popolazione, perché l'altezza può essere il risultato di tanti piccoli fattori genetici e ambientali.

Sia data la densità $f(x; \mu, \sigma^2)$ dove μ è il parametro che rappresenta il valore atteso e σ^2 rappresenta la varianza. Si indica comunemente con $N(\mu, \sigma^2)$. La densità Gaussiana N(0, 1) di parametri $\mu = 0$ e $\sigma^2 = 1$ viene detta **densità Gaussiana standard**. Dal grafico si nota che la campana si sposta orizzontalmente al variare di μ , mentre al variare della varianza σ^2 la campana "cambia forma".

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Figura 1.8: Distribuzione di probabilità Gaussiana con parametri $\mu=0,\sigma^2=1.44$ (blu); $\mu=0.66,\sigma^2=0.22$ (rosso); $\mu=1.44,\sigma^2=3.68$ (verde)

1.5. ESERCIZI 15

1.5 Esercizi

Esercizio 1.5.1. Consideriamo una variabile (X, Y) avente densità

$$f(x,y) = \begin{cases} e^{-x} & \text{sull'insieme } 0 < y < x \\ 0 & \text{altrove} \end{cases}$$

1. Provare che la funzione sopra scritta è effettivamente una densità e calcolare le densità marginali delle variabili X, Y. Proseguiamo controllando che valgano le condizioni della definizione 1.2.2, controllando che $\int_{\mathbb{R}^2} f(x,y) dx dy = 1$.

$$\int_{0}^{+\infty} \int_{0}^{x} e^{-x} dx dy = \int_{0}^{+\infty} dx \int_{0}^{x} e^{-x} dy$$
$$= \int_{0}^{+\infty} e^{-x} \cdot y \mid_{0}^{x} dx = \int_{0}^{+\infty} x e^{-x} dx = 1$$

- 2. Le variabili X e Y sono indipendenti? Controlliamo verificando che valgano le condizioni nella definizione 1.3.1. Si verifica facilmente osservando che $f(x,y) \neq f(x)f(y)$.
- 3. Calcolare la densità di Z=(X+Y). Calcoliamo $G(z)=\mathrm{P}\left(Z\leq z\right)$

$$G(z) = \int_0^{z/2} \left(\int_y^{z-y} e^{-x} dx \right) dy = \int_0^{z/2} -\left(e^{-z+y} - e^{-y} \right) dy$$

E deriviamo

$$g(z) = \begin{cases} 0 & z \le 0 \equiv (x + y \le 0) \\ \frac{dG(z)}{dz} = e^{-z/2} - e^{-z} & z > \equiv (x + y > 0) \end{cases}$$

Esercizio 1.5.2. Siano X, Y due numeri scelti a caso e in modo indipendente fra 0 e 1, e sia Z = XY il loro prodotto, calcolare la densità di Z. Abbiamo che $Z \in [0,1]$ e $G(z) = P(Z \le z) = P(XY \le z)$.

$$P(XY \le z) = \int_{z}^{1} \left(\int_{0}^{z/x} dy \right) dx + z =$$

$$z + \int_{z}^{1} \frac{z}{x} dx = z(1 - \log(x))$$

Ne otteniamo che

$$G(x) = \begin{cases} 0 & z \le 0 \\ 1 & z \ge 1 \\ z(1 - \log z) & 0 < z < 1 \end{cases} \implies g(z) = \begin{cases} 0 & z \le 0 \lor z \ge 1 \\ -\log z & 0 < z < 1 \end{cases}$$