Teoria di Galois 1 - Tutorato V

Esercizi di ricapitolazione

Venerdì 19 Maggio 2005

Esercizio 1. In ciascuno dei seguenti casi si calcoli il numero di elementi nel campo di spezzamento del polinomio

a.
$$(x^4 + x + 1)(x^4 + x^3 + x + 1)(x^3 + x + 1)(x^2 + x + 1) \in \mathbb{F}_2[x]$$
;

b.
$$(x^3 + x + 1)(x^3 + x^2 + 1)(x^9 + x^6 + 1)(x^{27} + x^9 + 1) \in \mathbb{F}_3[x];$$

c.
$$(x^3 + x^2 + 1)(x^3 + x + 1)(x^{15} + x^{10} + 1)(x^{25} + x^3 + 1) \in \mathbb{F}_5[x];$$

Esercizio 2. Calcolare quanti sono i polinomi irriducibili si grado 8 su $\mathbb{F}_2[x]$ e quanti sono quelli monici ed irriducibili di grado 6 su $\mathbb{F}_7[x]$.

Esercizio 3. Quali sono le radici di $x^{16} + x^{12} + 1$ in $\mathbb{F}_2[\alpha]$ dove $\alpha^4 = \alpha + 1$. (provare con $\alpha^3 + 1$)

Esercizio 4. Determinare il Gruppo di Galois del polinomio $x^4 + 8x^2 + 2$.

Esercizio 5. Sia F un campo con 16 elementi. Determinare quante radici hanno in F ciascuno dei seguenti polinomi: $x^3 - 1$; $x^4 - 1$; $x^{15} - 1$; $x^{17} - 1$.

Esercizio 6. Trovare un elemento primitivo per il campo $\mathbb{Q}(\sqrt{7}, \sqrt{3})$.

Esercizio 7. Sia E il campo di spezzamento di $(x^2-2)(x^2-5)(x^2-7)$ su \mathbb{Q} ; trovare un elemento $\alpha \in E$ tale che $E = \mathbb{Q}[\alpha]$.

Esercizio 8. Trovare il gruppo di Galois del polinomio $x^6 - 5$ sia su \mathbb{Q} che su \mathbb{R} .

Esercizio 9. Sia G il gruppo di Galois del polinomio $(x^4 - 2)(x^3 - 5)$ su \mathbb{Q} :

- a. indicare un insieme di generatori per G;
- b. individuare la struttura di G come gruppo astratto.

Esercizio 10. Quanti campi sono strettamente contenuti tra $\mathbb{Q}[\zeta_{12}]$ e $\mathbb{Q}[\zeta_{12}^3]$?

Esercizio 11. Determinare il gruppo di Galois del campo di spezzamento K del polinomio x^4-3 su $\mathbb Q$ e il numero dei sottocampi quadratici contenuti in esso.

Esercizio 12. Descrivere il gruppo di Galois del polinomio x^6-7 su \mathbb{Q} .