

# Estatística descritiva com aplicação em Saúde usando R

Apresentando a linguagem R

Profa Carolina e Prof Gilberto Parte 1

# Sobre o curso

# Preparando o ambiente

- · Use, pelo menos, a versão 4.1 da linguagem R: cran.r-project.org
- · IDE recomendadas: Rstudio e VSCode
  - Caso você queria usar o VSCode, instale a extensão da linguagem R: r-pack
- · Neste curso usaremos o framework tidyverse
  - Instale usando o seguinte comando install.packages('tidyverse')
- · Outras linguagens populares para análise de dados:
  - <a href="mailto:python">python</a>: linguagem interpretada de próposito geral, contemporânea do R, simples e fácil de aprender. Podemos realizar análise de dados usando os pacotes pandas e numpy, mas, ao contrário do R, python não foi projetada e criada para análise de dados
  - julia: linguagem interpretada para análise de dados projeto pelo MIT, lançada em 2012, promete simplicidade e velocidade. Comunidade de usuários pequena, mas crescente.



# A linguagem R

Uma introdução breve

# O começo de tudo

#### S, o precursor da linguagem R:

- · R é uma linguagem derivada do S
- · S foi desenvolvido em fortran for John Chambers em 1976 no Bell Labs
- · S foi desenvolvido para a análise de dados
- Filosofia do S: permitir que usuários possam analisar dados usando estatística com pouco conhecimento de programação

#### Origem da linguagem R

- · Em 1991, Ross Ihaka e Robert Gentleman criaram o R na Nova Zelândia
- · Em 1996, Ross e Robert liberam o R sob a licença GNU General License
- · Em 1997, The Core Group é criado para melhorar e controlar o código fonte do R



# Motivos para usar R

- · Constante melhoramento e atualização.
- · Portabilidade (roda em praticamente todos os sistemas operacionais).
- Grande comunidade de desenvolvedores que adicionam novas capacidades ao R através de pacotes.
- · Gráficos de maneira relativamente simples.
- Interatividade.
- Um grande comunidade de usuários (especialmente útil para resolução de problemas).



### Onde estudar fora de aula?

#### Livros

- · Nível cheguei agora aqui: zen do R
- Nível Iniciante: R Tutorial na W3Schools
- Nível Iniciante: Hands-On Programming with R
- Nível Intermediário: R for Data Science
- Nível Avançado: Advanced R

#### Em pt-br

Curso-R: material.curso-r.com



# O que você pode fazer quando estiver em apuros?

· check a documentação do R:

help(mean)
?mean

- · Peça ajuda a um programador mais experiente
- · Consulte o pt.stackoverflow.com
- · Use ferramentas de busca como o google e duckduckgo.com

log("G")

## Error in log("G"): non-numeric argument to mathematical function

 Na ferramenta de busca, pesquise por Error in log("G"): non-numeric argument to mathematical function



# Operações básicas

Soma

1 + 1

## [1] 2

Substração

2 - 1

## [1] 1

Divisão

3 / 2

## [1] 1.5



# Operações básicas

#### Potenciação

2^3

## [1] 8

Resto da divisão

5 %% 3

## [1] 2

Parte inteira da divisão

5 %/% 3

## [1] 1



5 
$$3$$
 $-3 = 5 \%/\% 3$ 
 $2 = 5 \% 3$ 



### Estrutura de dados em R

- Estrutura de dados: atomic vector (a estrutura de dados mais básico no R), matrix, array, list e data.frame (tibble no tidyverse)
- Tipo de dados: caracter (character), número real (double), número inteiro (integer), número complexo (complex) e lógico (logical)
- · Estrutura de dados homogênea: vector, matrix e array
- Estrutura de dados heterôgenea: list e data.frame (tibble no tidyverse)



# Tipo de dados em R

# Valores numéricos

#### Número inteiro

## [1] "complex"

```
class(1L)

## [1] "integer"

Número real

class(1.2)

## [1] "numeric"

Número complexo

class(1 + 1i)
```



# Valores lógicos

#### Valor lógico

```
class(TRUE)
```

```
## [1] "logical"
```



# Valoes de texto (caracter ou string)

```
class("Gilberto")
```

```
## [1] "character"
```



# Estrutura de dados homogênea

#### Vetor

- · Agrupamento de valores de mesmo tipo em um único objeto
- Criação de vetores: c(...) e vector('<tipo de dados>', <comprimento do vetor>), vector() é bastante usado em laços de repetição, que veremos na semana 4, o operador: e seq(from = a, to = b, by = c)

#### Vetor de caracteres

```
a <- c("Gilberto", "Sassi")
a

## [1] "Gilberto" "Sassi"

b <- vector("character", 3)
b

## [1] "" "" ""</pre>
```



## Vetor de números reais

```
a <- c(0.2, 1.35)
a
## [1] 0.20 1.35
b <- vector("double", 3)</pre>
b
## [1] 0 0 0
d < - seq(from = 1, to = 3.5, by = 0.5)
d
## [1] 1.0 1.5 2.0 2.5 3.0 3.5
```



# Vetor de números inteiros

```
a <- c(1L, 2L)
a

## [1] 1 2

b <- vector("integer", 3)
b
```



## [1] 0 0 0

# Vetor de valores lógicos

```
a <- c(TRUE, FALSE)
a

## [1] TRUE FALSE

b <- vector("logical", 3)
b

## [1] FALSE FALSE FALSE</pre>
```



### Matriz

- · Agrupamento de valores de mesmo tipo em um único objeto de dimensão 2
- Criação de vetores: matrix(..., nrow = <integer>, ncol = <integer>) ou diag(<vector>)

#### Matriz de caracteres

```
a <- matrix(c("a", "b", "c", "d"), nrow = 2)
a

## [,1] [,2]
## [1,] "a" "c"
## [2,] "b" "d"</pre>
```

#### Matriz de números reais

```
a <- matrix(seq(from = 0, to = 1.5, by = 0.5), nrow = 2)
a

## [,1] [,2]
## [1,] 0.0 1.0
## [2,] 0.5 1.5</pre>
```



### Matriz

#### Matriz de inteiros

```
a <- matrix(1L:4L, nrow = 2)
a

## [,1] [,2]
## [1,] 1 3
## [2,] 2 4</pre>
```

#### Matriz de valores lógicos

```
(a <- matrix(c(TRUE, F, F, T), nrow = 2))

## [,1] [,2]
## [1,] TRUE FALSE
## [2,] FALSE TRUE</pre>
```



# Operações com vetores

- Operações básicas (operação, substração, multiplicação e divisão) realizada em cada elemento do vetor
- · Slicing: extrai parte de um vetor (não precisa ser vetor numérico)

#### slicing

```
a <- c("a", "b", "c", "d", "e", "f", "g", "h", "i")
a[1:5] # selecionado todos os elementos entre o primeiro e o quinta

## [1] "a" "b" "c" "d" "e"</pre>
```

#### adição

```
a <- 1:5
b <- 6:10
a + b
```

```
## [1] 7 9 11 13 15
```



# Operações com vetores

#### subtração

```
a <- 1:5
b <- 6:10
b - a
```

## [1] 5 5 5 5 5

#### multiplicação

```
b * a
## [1] 6 14 24 36 50
```

#### divisão

b / a

## [1] 6.000000 3.500000 2.666667 2.250000 2.000000



- Operações básicas (operação, substração, multiplicação e divisão) realizada em cada elemento das matrizes
- Multiplicação de matrizes (vide <u>multiplicação de matrizes</u>), inversão de matrizes (vide <u>inversão de matrizes</u>), matriz transposta (vide <u>matriz transposta</u>), determinante (vide <u>determinante de uma matriz</u>) e solução de sistema de equações lineares (vide <u>sistema de equações lineares</u>)

#### soma

```
matriz_a <- matrix(c(1, 2, 3, 4), nrow = 2)
matriz_b <- matrix_a + matriz_b
matriz_c</pre>
matriz_c <- matriz_a + matriz_b
```

```
## [,1] [,2]
## [1,] 6 10
## [2,] 8 12
```



#### subtração

```
matriz_a <- matrix(c(1, 2, 3, 4), nrow = 2)
matriz_b <- matrix(5:8, ncol = 2)
matriz_c <- matriz_a - matriz_b
matriz_c</pre>
## [,1] [,2]
## [1,] -4 -4
## [2,] -4 -4
```

#### produto de Hadamard

· Para detalhes vide produto de Hadamard

```
matriz_c <- matriz_a * matriz_b
matriz_c

## [,1] [,2]
## [1,] 5 21
## [2,] 12 32</pre>
```



#### multiplicação de matrizes

· Para detalhes vide multiplicação de matrizes

```
matriz_c <- matriz_a %*% matriz_b
matriz_c
```

```
## [,1] [,2]
## [1,] 23 31
## [2,] 34 46
```



#### matriz inversa

· Para detalhes vide matriz inversa

```
matriz_a <- matrix(1:4, nrow = 2)
matriz_b <- solve(matriz_a)
matriz_b

## [,1] [,2]
## [1,] -2 1.5
## [2,] 1 -0.5</pre>
matriz_a %*% matriz_b
```

```
## [,1] [,2]
## [1,] 1 0
## [2,] 0 1
```



#### matriz transposta

· Para detalhes vide matriz transposta

```
matriz_a <- matrix(1:4, ncol = 2)
matriz_b <- t(matriz_a)
matriz_b

## [,1] [,2]
## [1,] 1 2
## [2,] 3 4</pre>
```

#### determinante

```
matriz_a <- matrix(1:4, ncol = 2)
det(matriz_a)
## [1] -2</pre>
```



#### solução de sistema de equações lineares

· Para detalhes vide sistema de equações lineares

```
b <- c(1, 2)
matriz_a <- matrix(1:4, nrow = 2)
solve(matriz_a, b)</pre>
```

```
## [1] 1 0
```

#### matriz inversa generalizada

· G é a matriz inversa generalizada de A se  $A \cdot G \cdot A = A$  . Para detalhes vide <u>matriz inversa generalizada</u>

```
library(MASS) # ginv é uma função do pacote MASS ginv(matriz_a)
```

```
## [,1] [,2]
## [1,] -2 1.5
## [2,] 1 -0.5
```



#### outras operações com matrizes

| Operador ou função | Descrição                                                                  |
|--------------------|----------------------------------------------------------------------------|
| A %o% B            | produto diádico $A \cdot B^T$                                              |
| crossprod(A, B)    | $\underline{A\cdot B^T}$                                                   |
| crossprod(A)       | $\underline{A\cdot A^T}$                                                   |
| diag(x)            | retorna uma matrix diagonal com diagonal igual a x (class(x) == 'numeric') |
| diag(A)            | retorna um vetor com a diagona de $A$ (class(A) == 'matrix')               |
| diag(k)            | retorna uma matriz diagona de ordem $k$ (class(k) == 'numeric')            |



#### lista

- · Agrupamento de valores de tipos diversos e estrutura de dados
- Criação de listas: list(...) e vector("list", <comprimento da lista>)



#### Tidy data

- · Agrupamento de dados em tabela em que cada coluna é uma variável e cada linha é uma observação
- Criação de tibble: tibble(...) e tribble(...)

## \$ variavel\_1 [3m [38;5;246m<dbl> [39m [23m 1, 2

## \$ variavel\_2 [3m [38;5;246m<chr> [39m [23m "a", "b"

#### tibble (data frame)

```
library(tidyverse) # carregando o framework tidyverse
a <- tibble(variavel_1 = c(1, 2), variavel_2 = c("a", "b"))
glimpse(a)

## Rows: 2
## Columns: 2</pre>
```

```
X 88
```

#### operações básicas em um tibble

Vamos ver o uso dessas funções depois de aprender a carregar os dados no R.

| Função                  | Descrição                                  |
|-------------------------|--------------------------------------------|
| head()                  | Mostra as primeiras linhas de um tibble    |
| tail()                  | Mostra as últimas linhas de um tibble      |
| glimpse()               | Impressão de informações básicas dos dados |
| add_case() ou add_row() | Adiciona uma nova observação               |



#### concatenação de listas

```
a <- list("a", "b")
b <- list(1, 2)
d <- c(a, b)
d

## [[1]]
## [1] "a"
##
## [[2]]
## [1] "b"
##
## [[3]]
## [1] 1</pre>
```



##

## [[4]] ## [1] 2

#### Slicing a lista

```
d[1:2]
```

```
## [[1]]
## [1] "a"
##
## [[2]]
## [1] "b"
```



acessando o valor de um elemento de uma lista

```
d[[2]] # acessando o segundo elemento da lista d
## [1] "b"
```

acessando o valor de elmento em uma lista pela chave

```
d <- list(chave_1 = 1, chave_2 = "docente")
d$chave_2 # retorna o valor</pre>
```

```
## [1] "docente"
```



#### slicing uma lista usando chaves

```
d <- list(chave_1 = 1, chave_2 = "docente", chave_3 = list("olá"))
d[c("chave_2", "chave_3")] # funciona como slicing

## $chave_2
## [1] "docente"
##
## $chave_3
## $chave_3
## $chave_3[[1]]
## [1] "olá"</pre>
```



#### Enumerando chaves em um lista



## Valores especiais em R

| Valores especiais  | Descrição                                                           | Função para identificar |
|--------------------|---------------------------------------------------------------------|-------------------------|
| NA (Not Available) | Valor faltante.                                                     | is.na()                 |
| NaN (Not a Number) | Resultado do cálculo indefinido.                                    | is.nan()                |
| Inf (Infinito)     | Valor que excede o valor máximo que sua<br>máquina aguenta.         | is.inf()                |
| NULL (Nulo)        | Valor indefinido de expressões e funções<br>(diferente de NaN e NA) | is.null()               |



## Parênteses 1: guia de estilo no R

- · Nome de um objeto precisa ter um *significado* (precisa falar imediatamente o que este objeto é ou faz)
- · Use a convenção do RStudio:
  - Use apenas letras minúsculas, números e *underscore* (comece sempre com letras minúsculas)
  - Nomes de objetos precisam ser substantivos
  - Evite ao máximo os nomes que são usados por objetos que são buit-in do R
  - Coloque espaço depois da vírgula
- · Use a convenção do **RStudio**:
  - Não coloque espaço antes nem depois de parênteses. Exceções:
    - Coloque um espaço () antes e depois de if, for ou while
    - Coloque um espaço depois de ( ) para funções.
  - Coloque espaço entre operadores básicos: +, -, \*, == e outros. Exceção: ^.

Para mais detalhes, consulte: guia de estilo do tidyverse.



Existem outros estilos (padrões) de codificação para a linguagem R, por exemplo guia de estilo do google. Mas o estilo mais usado e famoso é o estilo de codificação do RStudio.

Esolha um estilo e seja consistente! <del>Use apenas um estilo no se código</del>



#### Parênteses 2: estrutura de diretórios

- · data: diretório para armazenar seus conjuntos de dados
  - raw: dados brutos
  - processed: dados processados
- · scripts: código fonte do seu projeto
- · figures: figuras criadas no seu projeto
- output: outros arquivos que não são figuras
- previous: arquivos da versão anterior do projeto
- notes: notas de reuniões e afins
- · relatorio (ou artigos): documento final de seu projeto
- · documents: livros, artigos e qualquer coisa que são referências em seu projeto

Para mais detalhes, consulte esse guia do curso-r: diretórios e .Rproj



Dados externos no R Arquivos .xlsx, .csv, .ods e .txt

#### Arquivos .xlsx no R

- Pacote: readxl do tidyverse (instale com o comando install.packages('readxl'))
- · Parêmetros das funções read\_xls (para ler arquivos .xls) e read\_xlsx (para ler arquivos .xlsx):
  - path: caminho até o arquivo
  - sheet: especifica a planilha do arquivo que será lida
  - range: especifica uma área de uma planilha para leitura. Por exemplo: B3:E15
  - col\_names: Argumento lógico com valor padrão igual a TRUE. Indica se a primeira linha tem o nome das variáveis
- · Para mais detalhes, consulte a documentação oficial do tidyverse: documentação de read\_xl



## Arquivos .xlsx

```
library(readxl)
library(tidyverse)

df_has <- read_xlsx("data/raw/base_has.xlsx", na = "NA")

glimpse(df_has)</pre>
```



```
## Rows: 225
## Columns: 12
## $ id
              [3m [38;5;246m<dbl> [39m [23m 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
              [3m [38;5;246m<dbl> [39m [23m 1, 1, 1, 2, 1, 1, 1, NA, 1, 1, 1, 1, 1, 1, 1, 1, 1,
## $ sex
## $ ida
              [3m [38;5;246m<dbl> [39m [23m 39, 41, 58, 59, 57, 27, 55, 33, 38, 30, 41, 54, 57]
## $ idacat
              [3m [38;5;246m<dbl> [39m [23m 2, 2, 3, 3, 1, 3, 2, 2, 2, 2, 3, 3, 1, 1, 1, 2,
## $ racacor
              [3m [38;5;246m<dbl> [39m [23m 4, 2, 1, 1, 1, 2, NA, 2, 4, 1, 2, 2, 1, 2, 1, 4, 2]
## $ esc
              [3m [38;5;246m<dbl> [39m [23m 4, 4, 3, NA, 4, 4, 4, NA, 2, NA, NA, 4, 3, NA, 3, 4]
## $ fum
              [3m [38;5;246m<dbl> [39m [23m 1, 3, 2, 2, 1, 1, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1,
## $ func
              [3m [38;5;246m<dbl> [39m [23m 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2,
## $ pes
              [3m [38;5;246m<dbl> [39m [23m 95, 88, 75, 67, 83, 65, 82, 95, 88, 66, 75, 62, 65,
## $ alt
              [3m [38;5;246m<dbl> [39m [23m 1.75, 1.80, 1.66, 1.75, 1.68, 1.62, 1.65, 1.76, 1.6
## $ imc
              [3m [38;5;246m<dbl> [39m [23m 31.02041, 27.16049, 27.21730, 21.87755, 29.40760, 2
## $ has
              [3m [38;5;246m<dbl> [39m [23m 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 2, 2,
```



#### Arquivos .csv

- Pacote: readr do tidyverse
- · Parêmetros das funções read\_csv e read\_csv2: path caminho até o arquivo

#### Padrão métrico versus padrão imperial inglês

- · Se você mora ou está em um país que usa padrão imperial inglês:
  - colunas separadas por , e casa decimal indicada por .
- · Se você mora ou está em um país que usa o sistema métrico:
  - colunas separadas por ; e casa decimal por ,

#### Preste atenção em como o seus dados estão armazenados!

Para mais detalhes, consulte a documentação oficial do tidyverse: documentação de read\_r



#### Arquivos .csv

```
library(tidyverse)
dados_mtcars <- read_csv2("data/raw/mtcarros.csv")</pre>
glimpse(dados_mtcars)
## Rows: 32
## Columns: 11
## $ milhas_por_galao
                      [3m [38;5;246m<dbl> [39m [23m 21.0, 21.0, 22.8, 21.4, 18.7, 18.1, 14.3, 24.4, 22.8, 19.2, ...
## $ cilindros
                      [3m [38;5;246m<dbl> [39m [23m 6, 6, 4, 6, 8, 6, 8, 4, 4, 6, 6, 8, 8, 8, 8, 8, 8, 8, 4, 4, 4, ...
                      [3m [38;5;246m<dbl> [39m [23m 160.0, 160.0, 108.0, 258.0, 360.0, 225.0, 360.0, 146.7, 140....
## $ cilindrada
## $ cavalos_forca
                      [3m [38;5;246m<dbl> [39m [23m 110, 110, 93, 110, 175, 105, 245, 62, 95, 123, 123, 180, 180...
                      [3m [38;5;246m<dbl> [39m [23m 3.90, 3.90, 3.85, 3.08, 3.15, 2.76, 3.21, 3.69, 3.92, 3.92, ...
## $ eixo
                      [3m [38;5;246m<dbl> [39m [23m 2.620, 2.875, 2.320, 3.215, 3.440, 3.460, 3.570, 3.190, 3.15...
## $ peso
## $ velocidade
                      [3m [38;5;246m<dbl> [39m [23m 16.46, 17.02, 18.61, 19.44, 17.02, 20.22, 15.84, 20.00, 22.9...
## $ forma
                      [3m [38;5;246m<dbl> [39m [23m 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, ...
## $ transmissao
                      [3m [38;5;246m<dbl> [39m [23m 4, 4, 4, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, ...
## $ marchas
## $ carburadores
                      [3m [38;5;246m<dbl> [39m [23m 4, 4, 1, 1, 2, 1, 4, 2, 2, 4, 4, 3, 3, 3, 4, 4, 4, 1, 2, 1, ...
```



# Arquivos formato com comprimento fixo (fixed width format: fwf)

- · Pacote: readr do tidyverse
- Parêmetros das funções read\_fwf:
  - file: caminho até o arquivo
  - col\_positions: use a função fwf\_widths() fornece as delimitações e os nomes das colunas
  - col\_types: texto especificando o tipo de cada coluna: c para caracter, d para número real, i para inteiro, l para lógico, D para data e T para data e horário.



- · Variáveis: ano, id\_equipe, id\_liga, id\_jogador e salario
- · Larguras das variáveis: 4, 3, 2, 9 e 8
- · Tipo de dados de cada variáveL: i, c, c, c e d

```
df_salarios <- read_fwf(
  "data/raw/salarios.txt",
  col_positions = fwf_widths(
     c(4, 3, 2, 9, 8),
     col_names = c("ano", "id_equipe", "id_liga", "id_jogador", "salario")
),
  col_types = "icccd"
)
glimpse(df_salarios)</pre>
```



#### Arquivos .ods

- Pacote: readODS
- · Parêmetros das funções read\_ods:
- · path: caminho até o arquivo
  - sheet: especifica a planilha do arquivo que será lida
  - range: especifica uma área de uma planilha para leitura. Por exemplo: B3:E15
  - col\_names: Argumento lógico com valor padrão igual a TRUE. Indica se a primeira linha tem o nome das variáveis
- · Para mais detalhes, consulte a documentação do readODS: documentação de readODS



#### Arquivos .ods

```
library(readODS)
library(tidyverse)
df_star_wars <- read_ods("data/raw/dados_star_wars.ods")</pre>
glimpse(df_star_wars)
## Rows: 87
## Columns: 14
## $ nome
                      [3m [38;5;246m<chr> [39m [23m "Luke Skywalker", "C-3PO", "R2-D2", "Darth Vader", "Leia Orga...
                      [3m [38;5;246m<dbl> [39m [23m 172, 167, 96, 202, 150, 178, 165, 97, 183, 182, 188, 180, 228...
## $ altura
                      [3m [38;5;246m<dbl> [39m [23m 77.0, 75.0, 32.0, 136.0, 49.0, 120.0, 75.0, 32.0, 84.0, 77.0,...
## $ massa
                      [3m [38;5;246m<chr> [39m [23m "Loiro", NA, NA, "Nenhum", "Castanho", "Castanho, Cinza", "Ca...
## $ cor_do_cabelo
                      [3m [38;5;246m<chr> [39m [23m "Branca clara", "Ouro", "Branca, Azul", "Branca", "Clara", "C...
## $ cor da pele
## $ cor_dos_olhos
                      [3m [38;5;246m<chr> [39m [23m "Azul", "Amarelo", "Vermelho", "Amarelo", "Castanho", "Azul",...
## $ ano_nascimento
                      [3m [38;5;246m<dbl> [39m [23m 19.0, 112.0, 33.0, 41.9, 19.0, 52.0, 47.0, NA, 24.0, 57.0, 41...
                      [3m [38;5;246m<chr> [39m [23m "Macho", "Nenhum", "Nenhum", "Macho", "Fêmea", "Macho", "Fême...
## $ sexo_biologico
                      [3m [38;5;246m<chr> [39m [23m "Masculino", "Masculino", "Masculino", "Masculino", "Feminino...
## $ genero
## $ planeta natal
                      [3m [38;5;246m<chr> [39m [23m "Tatooine", "Tatooine", "Naboo", "Tatooine", "Alderaan", "Tat...
                      [3m [38;5;246m<chr> [39m [23m "Humano", "Droide", "Droide", "Humano", "Humano", "Humano", "...
## $ especie
                      [3m [38;5;246m<chr> [39m [23m "c(\"The Empire Strikes Back\", \"Revenge of the Sith\", \"Re...
## $ filmes
## $ veiculos
                      [3m [38;5;246m<chr> [39m [23m "c(\"Snowspeeder\", \"Imperial Speeder Bike\")", "character(0...
## $ naves_espaciais [3m [38;5;246m<chr> [39m [23m "c(\"X-wing\", \"Imperial shuttle\")", "character(0)", "chara...
```



## Salvando dados no R

# Salvar no formato .csv sistema métrico

Pacotes: readr

```
library(readr)
df_guerra_estrelas <- dados_starwars |>
   select(nome, altura, massa, genero)
write_csv2(df_guerra_estrelas, file = "data/processed/df_guerra_estrelas.csv")
```



#### Salvar no formato .xlsx

Pacotes: writexl

```
library(writexl)
df_guerra_estrelas <- dados_starwars |>
    select(nome, altura, massa, genero)
write_xlsx(
    df_guerra_estrelas,
    path = "data/processed/df_guerra_estrelas.xlsx",
)
```



#### Salvar no formato .xlsx

Pacote: readODS

```
library(readODS)
df_guerra_estrelas <- dados_starwars |>
    select(nome, altura, massa, genero)

write_ods(
    df_guerra_estrelas,
    path = "data/processed/df_guerra_estrelas.ods"
)
```

