

NORMALITY TEST

HYPOTHESIS TESTING

prepared by:

Gyro A. Madrona

Electronics Engineer

TOPIC OUTLINE

Shapiro-Wilk

Anderson-Darling

SHAPIRO-WILK

SHAPIRO-WILK

The <u>Shapiro-Wilk</u> normality test calculates a statistic based on the correlation between the data and the corresponding normal distribution; effective for sample size ($n \le 50$).

Hypothesis

 H_o : Normal data

 H_a : Non-normal data (p-value $< \alpha$)

Assumption

Continuous data

<u>syntax</u>

from scipy import stats
w_stat, p_value = stats.shapiro(data)

EXERCISE

Perform <u>Shapiro-Wilk</u> normality test for the given dataset.

dataset

defects-30-sample.csv

solution

from scipy import stats
w_stat, p_value =
stats.shapiro(df['Defects'])

Let $\alpha = 0.05$

Null Hypothesis

 H_o : Normal data

 H_a : Non-normal data (p-value < 0.05)

ANDERSON-DARLING

ANDERSON-DARLING

The <u>Anderson-Darling</u> normality test provides a more sensitive test by giving weight to the tails of the distribution; effective for larger sample size (n > 50).

Hypothesis

 H_o : $A^2 \le \text{critical value}$ (Normal data)

 H_a : $A^2 >$ critical value (Non-normal data)

Assumption

Continuous data

<u>syntax</u>

```
from scipy import stats
a2_stat, critical, alpha =
    stats.anderson(data)
```


EXERCISE

Perform **Anderson-Darling** normality test for the given dataset.

dataset

defects-count.csv

solution

```
from scipy import stats
a2_stat, critical, alpha =
    stats.anderson(df['Defects'])
```

Let $\alpha = 0.05$

Null Hypothesis

 H_o : $A^2 \le \text{critical value}$ (Normal data)

Alternative Hypothesis

 H_a : $A^2 >$ critical value (Non-normal data)

LABORATORY

