Small Victories: The Effect of Female Leaders on School Enrollment*

Archita Harathi and Arjun Srinivasan[†]

December 2020

Abstract

A growing literature demonstrates that female political representation in India has had lasting impacts on district economic growth, spending on health and children, and education outcomes. We use school-level education data to estimate the effect of female leadership on constituency school enrollment with a close elections regression discontinuity design. We find that female leadership is associated with no significant change in girls school enrollment at the constituency level. Finally, we explore potential mechanisms and find that school entry and exit cannot explain our results.

^{*}We thank Professors Douglas Staiger and Paul Novosad for helpful suggestions. We thank Professor Novosad for providing District Information System for Education (DISE) data.

[†]archita.harathi.22@dartmouth.edu and arjun.srinivasan.22@dartmouth.edu.

1 Introduction

In the last thirty years, over one hundred countries instituted requirements for female representation in their government (Baskaran et al., 2018). This wave of policy adoption prompted academic investigation into what, if any, effect female politicians have on the well-being of the people they represent. The resulting literature appears to speak in unison about the large, positive effects of female leadership; women improve economic growth and are less likely to be corrupt (Baskaran et al., 2018), increase documentation of crimes against women (Iyer et al., 2012), and improve girls' education outcomes (Clots-Figueras, 2012).

One unresolved question in this literature is what mechanism explains these large effects; female leaders may have distinct policy priorities (Clots-Figueras, 2011) or might act as role models raising the aspirations of their constituents (Serneels and Dercon, 2020; Ross, 2019; Yao and You, 2018). In India, Beaman et al. (2012) provide evidence of a role model effect at the village level; prior work at the district level has yet to disentangle how female leadership influences district education outcomes.

We use school-level data to study whether a female leader reduces gender disparities in education in her constituency—the specific region she was elected by and represents. We identify the effect of female leadership through a close elections regression discontinuity design. By exploiting quasirandom variation in the sex of the winning candidate in close elections between a male and female candidate, we obtain estimates of the causal effect of a female leader on school enrollment in her constituency.

We find that female leadership has no significant effect on education at the constituency level. This null result suggests that female legislative assembly representatives do not have a role model effect on their constituents. Additionally, we rule out effects above a 4 percent increase in school enrollment at the district level. The precisely estimated constituency-level result suggests direct representation is unlikely to be the mechanism behind the positive effects of female leadership.

2 Background

2.1 Structure of Indian Government and Education System

Indian governance occurs at three main levels (federal, state, and local). India is composed of 28 states and 8 union territories, each governed by State Legislative Assemblies. Legally, these state governments share control over education policy with the federal government, but in practice, states play a large role in the implementation of primary and secondary education policy (Clots-Figueras, 2012).

State assemblies are composed of members, each of whom is elected by a unique constituency in first-past-the-post elections. These constituencies were drawn (and are periodically redrawn) to ensure rough population equivalence across constituencies. States are split into groups of constituencies termed districts, which may contain between 1 and 37 constituencies, with the median district composed of 9 constituencies (Clots-Figueras, 2012).

2.2 Female Leaders and Education

Due to a scarcity of constituency-level data, most empirical work on the impact of female political representation in India estimates the effect of female leadership at the village (Beaman et al., 2012; O'Connell, 2018) or district (Clots-Figueras, 2012) level.

In 1993, India instituted a gender quota for elected leaders of village councils; in

some states, villages were randomly selected to reserve positions for women. Beaman et al. (2012) study 495 villages and find that female leaders erase the 6 percentage point gender gap in educational attainment during their four year terms; using the same variation, O'Connell (2018) finds that an additional year of exposure to gender quotas causes girls' school enrollment to rise 1.6 percentage points.

In contrast to village-level investigations, few papers estimate the effects of female state representatives on education outcomes; to our knowledge, only Clots-Figueras (2012) obtains an estimate of the effect of female state representatives on educational attainment or enrollment outcomes. Clots-Figueras finds that a 10 percentage point increase in the share of female politicians in a district (one more female leader) raises the chance of an individual in that district receiving primary school education by 7.3 percentage points.

3 Data

To study the effect of female leaders on education, we connect open access elections data from the Socioeconomic High-resolution Rural-Urban Geographic Dataset on India (Asher et al., 2019) (SHRUG), with administrative data on school enrollment and facilities from the District Information System for Education (DISE). For constituency covariates, we link these datasets to SHRUG's night lights (Henderson et al., 2011), forest cover (Dimiceli et al., 2015), and population census data aggregated to the constituency level (Asher et al., 2019).

Elections data comes from the Trivedi Center for Political Analysis at Ashoka University (Jensenius and Verniers, 2017) and spans the universe of State Legislative Assembly elections in India from 1974 to 2018, with a couple minor exceptions.¹

¹According to the SHRUG codebook, this elections dataset excludes constituencies in the Trivedi

In this time frame, we observe 384,705 candidates participating in 40,188 elections; 4,109 of these elections are between a man and a woman, and 1,893 of the male-female elections are "close," which we qualify as within a vote share margin of \pm 10%, or a bandwidth of 5%.²

Our education data, DISE, is a school-level panel dataset covering primary and middle school enrollment disaggregated by gender, caste, and grade along with school facilities information from the 2005-2006 school year to the 2015-2016 school year; we treat these as years 2005 to 2015 when linking DISE to elections data. DISE is administrative data and enables us to observe 2,079,845 distinct schools across 2,015 constituencies prior to the 2008 delimitation and 1,860 post-delimitation. Since schools' provision of data is not legally enforced, schools drop in and out of the panel year-to-year. Additionally, in linking DISE to the constituency SHRUG, our sample takes on a substantial rural bias; unfortunately, this is a characteristic of most constituency-level analysis in India due to a lack of disaggregated census data (Asher et al., 2019). Table 1 presents descriptive statistics for the all of our main outcomes.

4 Empirical Design

4.1 Elections Regression Discontinuity Design

To identify the causal effect of female leadership, we estimate a regression discontinuity model with the vote share margin³ as the running variable. The treatment—a

Center's dataset which only had election results in early years, by-elections that appeared before the first election in Jharkhand and Telangana, Uttar Pradesh constituencies that ended up in Uttarakhand after 2001, and constituencies with redundant names and changing Election Commission of India identifiers which could not be easily matched to time-invariant identifiers.

²The bandwidth can also be referred to as the margin of victory, both of which are half of the vote share margin.

³We define vote share margin as the female candidate's vote share minus the male candidate's vote share.

female candidate winning the election—jumps discontinuously at zero since the female candidate wins exactly as the vote share margin becomes positive. This elections regression discontinuity design is captured by the following estimation equation:

$$y_{ict} = \beta_0 + \beta_1 * FemaleWon_{ct} + \beta_2 VoteShareMargin_{ct} + \beta_3 FemaleWon_{ct} * VoteShareMargin_{ct} + e_t + u_{ict}$$

where y_{ict} is a measure of enrollment in school i in constituency c after the most recent election in constituency c occurs in election year t. $FemaleWon_{ct}$ is a dummy variable equal to 1 if a female won the close election in constituency c and year t, and $VoteShareMargin_{ct}$ is the vote share margin in the election in constituency c and year t. Finally, e_t represents election year fixed effects and u_{ict} represents the error term.

In addition to estimating the effects of female leaders at the school-level, we aggregate our education data up to the constituency level and estimate the following equation:

$$y_{ct} = \beta_0 + \beta_1 * FemaleWon_{ct} + \beta_2 VoteShareMargin_{ct} + \beta_3 FemaleWon_{ct} * VoteShareMargin_{ct} + e_t + u_{ct}$$

where y_{ct} is an enrollment outcome in constituency c in election year t. All other variables are defined just as they were in the prior estimation equation.

For our estimates to represent the causal effect of female leadership in constituencies with close elections, the following identifying assumptions must hold: (1) third factors associated with girls' education outcomes are smooth in the running variable, vote share margin, and (2) there is no sorting at threshold, meaning no manipulation of vote share margin near the cutoff for winning the election.

Previous empirical investigations of the effects of female leaders using the same identification strategy (an elections RD) and elections data (Indian State Legislative Assembly elections) over similar time periods provide evidence that both of these assumptions likely hold (Bhalotra et al., 2018; Clots-Figueras, 2011, 2012). We provide additional evidence in favor of both assumptions in the following subsection.

4.2 Validity of Regression Discontinuity Design

To test the first assumption—that third factors associated with the education outcomes or a female candidate winning an election do not jump discontinuously at a vote share margin of zero, we estimate the main specifications replacing education outcomes with observable third factors that may be correlated with the treatment and outcome. The results of this test at the school-level, presented in Table 2, suggest that no third factor is robustly correlated with a female winning. Two variables — representing whether constituencies are reserved for scheduled castes and an election's turnout percentage — jump significantly at a bandwidth of 1.5, but these variables do not jump significantly at bandwidths of 5 or 2.5 or the optimal bandwidth as per the bandwidth selection strategy presented in Calonico et al. (2019). The comparable constituency-level balance-test table can be found in Appendix Table 1. To visualize the balance tests conducted in Table 2, we also present binned scatterplots of these covariates as a function of the running variable, fitting linear functions of the vote share margin on either side of threshold at which a female candidate wins (Appendix Figures 1 and 2).

A violation of the second identification assumption, that there is no sorting at the vote share margin threshold, would imply female and male candidates have different chances of winning in close elections; we find no evidence to this effect. Figure 1

shows a set of histograms of the running variable vote share margin with between 20 and 50 bins revealing no apparent jump at the threshold; additionally, Figure 2 shows a formal test for density discontinuities at the threshold and finds no significant discontinuity at the threshold (McCrary, 2008).

4.3 Close Elections Instrumental Variables Design

To compare our constituency-level estimates to previous district-level estimates, we obtain instrumental variables estimates as well.⁴ We follow the design of Clots-Figueras (2012), using the fraction of constituencies in a district won by a female candidate in close elections against a male candidate as an instrument for the portion of constituencies in a district held by female candidates.

Unlike Clots-Figueras (2012), we leave out controls for the vote share margin in each close male-female election in the district.⁵ Our identification strategy, mirroring that of Rehavi (2007), can be estimated with the following estimation equations:

$$y_{dt} = \beta_0 + \beta_1 * FC_{dt} + TC_{dt} + a_d + t_t + u_{idt}$$
$$F_{dt} = \beta_0 + \beta_1 * FC_{dt} + TC_{dt} + a_d + t_t + u_{idt}$$

where y_{idt} is an enrollment outcome in school i in district d and year t. F_{dt} represents the share of constituencies held by female candidates after elections in district dand year t, and is instrumented by FC_{dt} , the share of constituencies won by female

⁴We switch to instrumental variables because a district-level RD can only be estimated in districts for which there was only 1 close male-female election (Clots-Figueras, 2012), and there are too few of these districts in our sample to obtain precise estimates.

⁵Since multiple close male-female elections occur in the majority of the district-years with at least one close male-female election, including a control for each would require *arbitrarily* assigning an order to the close elections in each district-year, as is done in Clots-Figueras (2012). We exclude these controls because we believe they reduce model interpretability without improving our design's interval validity.

candidates in close elections in district d and year t against a male candidate. While the winner of close male-female elections may be considered as good as random, the presence of these close male-female elections in a given district likely is not (Clots-Figueras, 2012); to handle this potential omitted variable, we include TC_{dt} , a control for the total number of close elections in district d and year t. We also include a_d and t_t , representing district and year fixed effects, to control for time-constant omitted variables within districts and aggregate time-series trends.

4.4 Validity of Instrumental Variables Design

For our IV estimates to be unbiased and causal, two key assumptions must hold. The fraction of constituencies in a district won by a female candidate in a close male-female election must (1) be strongly related to the fraction of constituencies in a district won by a female candidate, and (2) only affect school enrollment in the candidate's district through her victory's effect on the fraction of constituencies in a district won by a female candidate. Previous work provides evidence that both assumptions hold (Clots-Figueras, 2011, 2012).⁶ Additionally, evidence in favor of the credibility of our RD design also supports the credibility of this IV, since the underlying intuition for handling endogeneity is the same.

We present estimates of the first stage in Appendix Table 2, which show that holding constant district, year, and the share of elections in the district which are close male-female elections, a 10% increase in the share of constituencies won by female candidates in close male-female elections is associated with a 13.79 percentage point increase in the share of constituencies won by female candidates in the district.

⁶We also replicate checks similar to those performed by Clots-Figueras (2012) on our own data. In Appendix Table 3, we provide evidence that the winner of these close elections is random insofar as they cannot be predicted by district-level election observables. The RD balance table also shows that female candidates who won close elections against the opposite gender are observably similar to their male counterparts.

This result is robust to clustering at the district level and is comparable to but slightly larger than that of Clots-Figueras (2012) (10.68 percentage points).

5 Results

5.1 Baseline Estimates

Our primary outcome is the share of girls enrolled. Additionally, we estimate effects of female leadership on the change in share of girls enrolled from the baseline year and average yearly growth in girls, boys, and total enrollment. Figure 3a shows estimates of how female leadership affects girls' share of total enrollment. Compared to their male counterparts, female leaders have a small (<1.5 percentage point in magnitude) effect on the share of girls enrolled five years after their election. Figure 3b shows the effect of female leadership on total, boys, and girls' average yearly growth rates in enrollment one through five years after an election. Nearly all estimates are statistically indistinguishable from zero. Figure 3c tells the a similar story with the enrollment outcome in levels. Together, these estimates (shown in Table 3) suggest that effect of female leadership on the girls enrollment is negligible. We obtain similarly null but less precise estimates of the effect of female leaders on constituency-wide enrollment (Appendix Table 4). Appendix Table 5 shows the school-level null result is robust to selection of bandwidth.

One concern with using school-level data may be that our analysis treats small and large schools as equally weighted observations; since our main measure of school size, enrollment, is our outcome variable, we use village population as measured by

⁷Average yearly growth is approximated through an exponentiated log difference; for example, the average yearly growth rate in girls enrollment at 5 years after the election is approximated by: $(\ln(girls_enr_5yr_after_elec) - \ln(girls_enr_1yr_before_elec))^{(1/5)}$.

the 2011 census as weights to test this explanation. Appendix Table 6 presents estimates from population weighted regressions of our main outcomes and shows our main results remain largely unchanged after population weighting.

Since our enrollment data is not validated when collected by the Indian government, some reported implausible jumps in enrollment from year to year. To reduce the impact of implausible enrollment reports, we re-estimate our main results with quantile regressions and after winsorizing at the 5th and 95th percentiles. Appendix Tables 7 and 8 show our main results are robust to both procedures. Additionally, our main results are robust to clustering on bins of the running variable (vote share margin, see Appendix Table 9), which suggests that a linear control for the running variable sufficiently controls for third factors smooth in the running variable. In nearly all specifications, the confidence interval on the coefficient of interest is tightly and contains zero.

Taken together, our school-level estimates run contrary to the large effect sizes found by prior papers studying the *district*-level effects of female candidates in state legislative assembly elections; we attempt to reconcile our results with prior work in the following section.

5.2 District Level Effects

The discrepancy between our main results and prior literature estimates could be due to a variety of differences between our data and empirical design and past investigations. The recency of our elections and education data could indicate that the female leadership today has a smaller effect than in the 1990s. Our results could also be indicative of a true difference in the effect of female leaders on their own constituency versus their district.

To test this last explanation, we obtain instrumental variables estimates for the effect of female leadership on our five main enrollment outcomes. Figure 4 shows the instrumental variables estimates of the effect of female leadership; holding constant district and election year, a ten percent increase in the share of female leaders in a district is associated with roughly a 4 percentage point increase in boys' and girls' average yearly growth rates in enrollment in the five years following the elections (Table 4). Although the effect is imprecisely estimated, we can rule out effects sizes above 10 percentage points found in prior work (Clots-Figueras, 2012).

5.3 Heterogeneous Effects

To investigate whether the small effects at the school-level mask any heterogeneous effects, we estimate equation 1 on a number of sub-populations: primary school enrollment, and upper primary (middle) school enrollment, rural schools, and urban schools.

Since rural areas are traditionally more conservative than their urban counterparts, we might expect the most significant benefits in enrollment to lie within rural schools. We find similar null effects of female leaders in rural schools (Appendix Table 10). Unfortunately, due to the severe rural bias in the constituency SHRUG, we are unable to obtain precise estimates of the effect of female leaders in urban schools (Appendix Table 11).

We also test whether or not this null estimate occurs for older students, as intuitively there may be fewer girls enrolled at higher levels of education. Even at higher levels of education, we find no significant positive impact of female leadership (Appendix Tables 12 and 13).

5.4 External Validity

In order to assess the external validity of our results, we compare the sample of constituencies with close male-female elections to the entire sample of constituencies (Table 5). Since candidate age, caste, tribe, and party are statistically significantly different in these two samples, our results may only generalize to the effects of a female candidate, who may more likely be younger, of Scheduled Cast or Tribe, and from parties other than the INC.

5.5 Placebo Tests

To check the validity of our estimates, we perform "placebo tests" by looking at whether female leaders "cause" changes in enrollment outcomes before their election (Appendix Tables 14 and 15). In Figure 5, we plots the effect of female leadership of enrollment in years before and after their election. We see no significant jump in measures of school enrollment when a female candidate is elected. Once a female is elected, the trends continue linearly between one year prior and one year after the election.

5.6 School Inputs

Given the data on girls' toilets, boys' toilets, and classrooms, we measure school inputs before and after close elections to characterize the effect of female leadership on school inputs. Table 6 and Figure 6 show there is no statistically significant effect of female leadership on the the number of boys' or girls' toilets and the number of classrooms.

6 Discussion

Our results reveal that a female candidates who win in close male-female elections on average have little to no impact on a variety of measures of school enrollment and school inputs in their constituencies. This counter-intuitive constituency-level null result runs contrary to consistent positive estimates of the effect of female leadership at the district and village levels.

A simple explanation for our null results at the school level could be unmeasured school entry and exit. If female politicians did cause an increase in girls enrollment at the school level, but this was offset by a new school opening and decreasing enrollment at pre-existing schools, we could see similar small positive, null, or even negative estimates. We test for this explanation by estimating our main equation with the number of schools and log number of schools as the outcome variables. Appendix Table 16 shows results from estimating traditional mean-based regressions and quantile regressions for each of these outcomes. The traditional mean-based regressions finds that constituencies in which a female wins the close election have a greater number of schools, though no significant effect on the log number of schools. Quantile regressions show there female leaderhsip does not significantly affect the number of schools in a constituency. Since the conventional mean regressions are more susceptible to certain types of outliers than the quantile regressions and our main enrollment results are not changed by estimation with quantile regressions, we conclude that our main null results are likely not products of school entry and exit.

7 Conclusion

We find that female leadership is associated with little to no effect on constituency school enrollment. In contrast to previous findings, we rule out effects larger than a 10 percentage point increase in district enrollment. With granular data, we show the district-wide benefits of female leadership may not flow directly to a female politician's constituency. Further studies with constituency-level data should test whether previously identified district-level impacts of female leadership carry over to the constituency-level. By using higher-resolution data, our results cast doubt on representation as the mechanism for improvements in girls' education outcomes.

References

- Asher, S., T. Lunt, R. Matsuura, and P. Novosad (2019). The Socioeconomic High-resolution Rural-Urban Geographic Dataset on India (SHRUG). Working paper.
- Baskaran, T., S. R. Bhalotra, and Y. Min, Brian K.and Uppal (2018). Women Legislators and Economic Performance. IZA Discussion Paper.
- Beaman, L., E. Duflo, R. Pande, and P. Topalova (2012, January). Female leadership raises aspirations and educational attainment for girls: A policy experiment in india. *Science* 335 (6068), 582–586.
- Bhalotra, S., I. Clots-Figueras, and L. Iyer (2018). Pathbreakers? Women's Electoral Success and Future Political Participation. *The Economic Journal* 128 (613), 1844–1878.
- Calonico, S., M. D. Cattaneo, and M. H. Farrell (2019, November). Optimal bandwidth choice for robust bias-corrected inference in regression discontinuity designs. *The Econometrics Journal* 23(2), 192–210.
- Clots-Figueras, I. (2011, August). Women in politics. *Journal of Public Economics* 95(7-8), 664–690.
- Clots-Figueras, I. (2012). Are female leaders good for education? evidence from india. American Economic Journal: Applied Economics 4(1), 212–244.
- Dimiceli, C., M. Carroll, R. Sohlberg, D. Kim, M. Kelly, and J. Townshend (2015). Mod44b modis/terra vegetation continuous fields yearly l3 global 250 m sin grid v006 [data set]. NASA EOSDIS Land Process.
- Henderson, J. V., A. Storeygard, and D. N. Weil (2011). A Bright Idea for Mesuring Economic Growth. *American Economic Review*.
- Iyer, L., A. Mani, P. Mishra, and P. Topalova (2012, October). The power of political voice: Women's political representation and crime in india. American Economic Journal: Applied Economics 4(4), 165–193.
- Jensenius, F. R. and G. Verniers (2017). Studying indian politics with large-scale data: Indian election data 1961–today. *Studies in Indian Politics*.
- McCrary, J. (2008, February). Manipulation of the running variable in the regression discontinuity design: A density test. *Journal of Econometrics* 142(2), 698–714.
- O'Connell, S. D. (2018, November). Political inclusion and educational investment: Estimates from a national policy experiment in india. *Journal of Development Economics* 135, 478–487.

- Rehavi, M. M. (2007). Sex and politics: Do female legislators affect state spending.
- Ross, P. H. (2019, November). Occupation aspirations, education investment, and cognitive outcomes: Evidence from indian adolescents. *World Development 123*, 104613.
- Serneels, P. and S. Dercon (2020, October). Aspirations, poverty and education: Evidence from india. Technical report.
- Yao, Y. and W. You (2018, June). Women's political participation and gender gaps of education in china: 1950–1990. World Development 106, 220–237.

8 Tables

	(1)	(2)	(3)	(4)	(5)
VARIABLES	N	mean	sd	\min	max
5-Yr Log Total Enrollment	25,913	4.391	1.034	0	7.799
5-Yr Log Girls Enrollment	$25,\!446$	3.691	1.056	0	7.279
5-Yr Log Boys Enrollment	$25,\!372$	3.694	1.084	0	7.141
5-Yr Share Girls Enrolled	25,913	0.499	0.134	0	1
5-Yr \triangle Share Girls Enrolled	17,433	0.0118	0.119	-1	1
Total Enrollment Growth	17,433	-0.0325	0.108	-0.682	1.129
Girls Enrollment Growth	17,137	-0.0276	0.120	-0.782	0.963
Boys Enrollment Growth	17,093	-0.0379	0.119	-0.801	0.987
Vote Share Margin	$75,\!432$	0.288	5.260	-9.970	9.940

(a) School Level Outcomes, 5 Years Post-Election

	(1)	(2)	(3)	(4)	(5)
VARIABLES	N	mean	sd	\min	max
5-Yr Log Total Enrollment	96	9.600	1.830	2.881	11.48
5-Yr Log Girls Enrollment	96	8.888	1.807	2.534	10.78
5-Yr Log Boys Enrollment	96	8.921	1.866	1.647	10.78
5-Yr Share Girls Enrolled	96	0.492	0.0327	0.410	0.707
5-Yr \triangle Share Girls Enrolled	96	0.0127	0.0389	-0.0330	0.267
Total Enrollment Growth	96	-0.0361	0.111	-0.639	0.0990
Girls Enrollment Growth	96	-0.0310	0.111	-0.640	0.135
Boys Enrollment Growth	96	-0.0414	0.114	-0.637	0.0897
Vote Share Margin	356	0.119	5.518	-9.970	9.940

(b) Constituency Level Outcomes, 5 Years Post-Election

Table 1: Descriptive Statistics

	(1)	(2)	(3)	(4)	(5)
VARIABLES	N	mean	sd	\min	max
Vote Share Margin	75,432	0.288	5.260	-9.970	9.940
5-Yr Log Num Classrooms	24,334	1.207	0.627	0	3.584
5-Yr Log Girls Toilets	23,559	0.126	0.359	0	4.094
5-Yr Log Boys Toilets	19,740	0.119	0.351	0	3.871
5-Yr Share Girls Toilets	24,235	0.582	0.221	0	1
5-Yr \triangle Share Girls Toilets	3,151	0.347	0.244	-0.667	1
Num Classrooms Growth	15,270	0.0344	0.102	-0.461	0.618
Girls Toilets Growth	14,672	-0.0402	0.112	-0.439	0.819
Boys Toilets Growth	3,083	-0.0815	0.0884	-0.139	0.322

(a) Facilities School Level Outcomes, 5 Years Post-Election

	(1)	(2)	(3)	(4)	(5)
VARIABLES	N	mean	sd	\min	max
2-Yr Placebo Log Total Enrollment	52,631	4.531	0.928	0	8.102
2-Yr Placebo Log Girls Enrollment	51,798	3.814	0.946	0	7.335
2-Yr Placebo Log Boys Enrollment	$51,\!594$	3.847	0.979	0	7.477
2-Yr Placebo Share Girls Enrolled	52,631	0.493	0.130	0	1
2-Yr Placebo \triangle Share Girls Enrolled	52,392	0.00178	0.0763	-1	1
2-Yr Placebo Total Enrollment Growth	52,392	-0.00783	0.398	-5.273	4.787
2-Yr Placebo Girls Enrollment Growth	51,503	-0.00434	0.425	-4.489	4.241
2-Yr Placebo Boys Enrollment Growth	51,304	-0.0121	0.430	-4.419	5.063
Vote Share Margin	75,432	0.288	5.260	-9.970	9.940

(b) Placebo School Level Outcomes, 2 Years Pre-Election

Table 1: Descriptive Statistics (cont'd)

	bw=5	n	bw=2.5	n	bw=1.5	n	bw=rdrbst	n
Candidate: Age	-0.0321	75432	-0.0263	44554	-0.1067	23967	-0.027	78279
	(0.046)		(0.066)		(0.090)		(0.047)	bw = 5.19
Candidate: SC	0.0549	75432	0.0202	44554	0.0218	23967	0.077*	90851
	(0.037)		(0.055)		(0.078)		(0.045)	bw = 6.11
Candidate: ST	0.0407	75432	-0.0198	44554	0.1353	23967	0.034	87791
	(0.042)		(0.057)		(0.085)		(0.047)	bw = 5.91
Candidate: BJP	0.0044	75432	-0.0196	44554	-0.1332	23967	-0.015	69615
	(0.053)		(0.074)		(0.106)		(0.063)	bw = 4.38
Candidate: INC	-0.0451	75432	0.0393	44554	-0.0021	23967	-0.025	72397
	(0.056)		(0.079)		(0.123)		(0.067)	bw = 4.74
Candidate: Other Party	-0.0342	75432	-0.0379	44554	-0.1067	23967	-0.033	74598
	(0.046)		(0.064)		(0.090)		(0.048)	bw = 4.95
Constituency Type: ST	0.0549	75432	0.0200	44554	0.0214	23967	0.077*	86540
	(0.037)		(0.055)		(0.078)		(0.047)	bw = 5.80
Constituency Type: SC	0.2474	75432	0.7818	44554	5.4444***	23967	1.354	84952
	(1.242)		(1.467)		(1.586)		(1.228)	bw = 5.62
Number of Candidates	2.1849	75432	3.4456	44554	-2.0244	23967	3.038	78958
	(2.336)		(3.205)		(4.689)		(3.560)	bw = 5.24
Effective Number of Parties	-0.0025	75432	0.1014	44554	0.0056	23967	0.071	82691
	(0.075)		(0.108)		(0.166)		(0.091)	bw = 5.40
Turnout Percentage	3.5e + 04	75432	-3.9e + 03	44554	6.8e + 04**	23967	3.0e + 04	71230
	(2.2e+04)		(3.1e+04)		(3.4e+04)		(4.0e+04)	bw = 4.68
2011 Population	0.0165	75432	0.0479	44554	0.0573	23967	0.010	85092
	(0.023)		(0.032)		(0.046)		(0.027)	bw = 5.64
2011 Population: Share SC	0.0277	75432	-0.0394	44554	-0.1581	23967	0.051	94305
	(0.073)		(0.105)		(0.156)		(0.086)	bw = 6.55
2011 Population: Share ST	-0.0093	75432	-0.0022	44554	0.0419	23967	0.002	86540
	(0.024)		(0.036)		(0.050)		(0.028)	bw = 5.79
2011 Population: Share Literate	1.0e + 04	75432	657.0040	44554	4.3e + 04	23967	1.6e + 04	84221
	(1.2e+04)		(1.9e+04)		(3.1e+04)		(1.4e+04)	bw = 5.56
2011 Population: Urban	2.5e + 04	75432	-4.6e + 03	44554	2.5e + 04	23967	1.4e + 04	71058
	(2.1e+04)		(2.8e+04)		(2.9e+04)		(3.6e+04)	bw = 4.63
2011 Population: Rural	4.0e + 04	75348	-6.3e + 03	44525	1.4e + 03	23942	1.1e+04	66294
	(6.4e+04)		(7.5e+04)		(1.1e+05)		(8.7e+04)	bw = 4.13
Forest Cover: Total	1.7e + 04*	75348	1.0e + 03	44525	3.1e + 03	23942	1737.961	48952
	(9600.000)		(8500.000)		(6000.000)		(7796.786)	bw = 2.74
Forest Cover: Loss	-2.7e+02	75186	877.8530	44405	3.5e + 03	23870	558.692	77671
	(1100.000)		(1800.000)		(2600.000)		(1362.501)	bw = 5.17
Forest Cover: Share Lost	152.4045	75186	370.8020	44405	2.1e+03	23870	1120.021	66217
	(893.878)		(1300.000)		(1600.000)		(1152.448)	bw = 4.13
Night Lights: Total	0.0844	75432	-0.2186	44554	0.1914	23967	0.258	77821
	(0.310)		(0.393)		(0.534)		(0.343)	bw = 5.14
Night Lights: Calibrated	0.0473	75432	0.0433	44554	0.0915	23967	0.036	76964
	(0.050)		(0.070)		(0.096)		(0.061)	bw = 5.06
2011 Accessibility by Paved Road	5.7e + 03	75432	3.1e+03	44554	5.7e + 03	23967	2.4e+04	69733
	(1.1e+04)		(1.6e+04)		(2.0e+04)		(1.6e+04)	bw = 4.39
2011 Power Supply	0.0336	75348	0.0986**	44525	0.0572	23942	0.109**	62982
	(0.036)		(0.048)		(0.068)		(0.049)	bw = 3.87
2011 Village Area	1.2e+03	69536	2.4e+03	40765	5.7e+03	21098	869.013	69536
	(2900.000)		(5300.000)		(9400.000)		(4429.949)	bw = 5.01

Table 2: School Level Continuity Checks

	Female Won	Std. Err.	n	r-squared
Share Girls Enrolled	0.00733	0.005	25913	0.00
\triangle Share Girls Enrolled	-0.00472	0.005	17433	0.01
Total Enrollment Growth	-0.01713	0.011	17433	0.07
Girls Enrollment Growth	-0.01707	0.012	17137	0.07
Boys Enrollment Growth	-0.01510	0.011	17093	0.05

Table 3: School Enrollment at 5 Years Post-Election, $\mathrm{BW}=5$

	Female Share	Std. Err.	n	r-squared
Share Girls Enrolled	-0.77776***	0.252	8964	0.01
\triangle Share Girls Enrolled	-0.08549	0.074	8692	0.02
Total Enrollment Growth	0.33930	0.294	8692	0.09
Girls Enrollment Growth	0.41225	0.322	8496	0.09
Boys Enrollment Growth	0.42061	0.290	8493	0.07

Table 4: District IV School Enrollment at 5 Years, $\mathrm{BW}=5$

	Mean (All Constituencies)	N	Mean (Analysis Constituencies)	N	Difference	p-value
Candidate: Age	45.21	11487	44.87	8623	0.34	0.03
	(11.20)		(11.15)		(0.16)	
Candidate: SC	0.06	39824	0.21	9129	-0.15	0.00
	(0.25)		(0.41)		(0.00)	
Candidate: ST	0.04	39824	0.14	9129	-0.09	0.00
	(0.20)		(0.34)		(0.00)	
Candidate: BJP	0.07	39824	0.08	9129	-0.01	0.00
	(0.26)		(0.28)		(0.00)	
Candidate: INC	0.12	39824	0.10	9129	0.03	0.00
	(0.33)		(0.30)		(0.00)	
Candidate: Other Party	0.80	39824	0.82	9129	-0.02	0.00
	(0.40)		(0.38)		(0.00)	
Constituency Type: ST	0.14	39824	0.15	9129	-0.00	0.40
sonstituency Type. ST	(0.35)	30021	(0.35)	0120	(0.00)	0.10
Constituency Type: SC	0.12	39824	0.13	9129	-0.01	0.14
onstituency Type. 50	(0.33)	03024	(0.33)	3123	(0.00)	0.14
Number of Candidates	9.45	39824	10.93	9129	-1.48	0.00
Number of Candidates	(6.35)	39024	(5.75)	9129	(0.07)	0.00
Effective Number of Parties	(0.35) 2.95	39734	3.15	9123	-0.20	0.00
Lifective Number of Parties		39734		9123		0.00
D	(1.01)	20757	(1.07)	0101	(0.01)	0.00
Curnout Percentage	64.68	39757	69.35	9121	-4.67	0.00
044 D 1 1	(14.35)	05101	(13.54)	* 000	(0.16)	0.00
011 Population	3.2e+05	25104	3.1e+05	5999	10974.65	0.00
	(1.6e+05)		(1.4e+05)		(2233.66)	
011 Population: Share SC	0.17	25104	0.17	5999	0.01	0.00
	(0.10)		(0.10)		(0.00)	
011 Population: Share ST	0.13	25104	0.14	5999	-0.00	0.31
	(0.23)		(0.24)		(0.00)	
011 Population: Share Literate	0.60	25104	0.61	5999	-0.00	0.10
	(0.10)		(0.11)		(0.00)	
011 Population: Urban	57995.69	25104	54579.97	5999	3415.72	0.02
	(1.0e+05)		(84206.55)		(1413.40)	
011 Population: Rural	2.6e + 05	25104	2.5e+05	5999	7558.93	0.00
•	(1.3e+05)		(1.3e+05)		(1887.81)	
orest Cover: Total	1.4e + 05	13013	1.5e+05	8514	-3243.93	0.41
	(2.9e+05)		(2.8e+05)		(3972.66)	
orest Cover: Loss	18474.67	13013	18838.73	8514	-364.06	0.54
01000 00101. 1000	(41597.99)	10010	(43541.95)	0011	(590.71)	0.01
orest Cover: Share Lost	0.19	13010	0.18	8513	0.01	0.00
orest cover. Share Lost	(0.24)	10010	(0.20)	0010	(0.00)	0.00
light Lights: Total	3577.13	17322	4091.72	7519	-514.59	0.00
ight lights. Total	(3772.28)	11022	(4275.73)	1015	(54.30)	0.00
light Lights: Calibrated	4410.84	17322	4830.14	7519	-419.30	0.00
agnt Lights. Camprated	(4444.54)	11322	(4843.63)	1019	(63.10)	0.00
011 A : h: l: t h D d D d	()	0.4070	,	F010	\	0.00
011 Accessibility by Paved Road	0.77	24972	0.78	5918	-0.01	0.00
011 D G 1	(0.22)	0.4000	(0.23)	5014	(0.00)	0.00
011 Power Supply	0.65	24966	0.64	5914	0.01	0.09
	(0.35)		(0.37)		(0.01)	
011 Village Area	77709.78	24972	74812.60	5918	2897.18	0.02
	(88615.64)		(81892.58)		(1263.12)	
005 Non-farm Employment	17421.75	22770	16977.98	5402	443.77	0.05
	(15446.34)		(13839.03)		(229.30)	

Table 5: Descriptive Statistics for External Validity

	Female Won	Std. Err.	n	r-squared
Number of Classrooms Growth	-0.00365	0.010	15270	0.11
Girls Toilets Growth	0.03057*	0.018	14672	0.05
Boys Toilets Growth	-0.01361	0.022	3083	0.03
Share Girls Toilets	0.03823	0.028	24235	0.12
\triangle Share Girls Toilets	0.02609	0.057	3151	0.00

Table 6: School Level Facilities at 5 Years, $\mathrm{BW}=5$

9 Figures

Figure 1: Vote Share Margin Histograms

Figure 2: Manipulation Test

Figure 3: Time-Varying Effects of Female Leadership on School Enrollment

Figure 4: Time-Varying District-Level Effects of Female Leadership on School Enrollment

Figure 5: Time-Varying Effects of Female Leadership on Placebo School Enrollment

Figure 6: Time-Varying Effects of Female Leadership on School Facilities

A Appendix Figures

Figure 1: School Level Continuity Checks

Figure 1: School Level Continuity Checks (cont'd)

Figure 1: School Level Continuity Checks (cont'd)

Figure 1: School Level Continuity Checks (cont'd)

Figure 2: Constituency Level Continuity Checks

Figure 2: Constituency Level Continuity Checks (cont'd)

Figure 2: Constituency Level Continuity Checks (cont'd)

Figure 2: Constituency Level Continuity Checks (cont'd)

Figure 3: Time-Varying Constituency-Level Effects of Female Leadership on School Enrollment

B Appendix Tables

	bw=5	n	bw=2.5	n	bw=1.5	n	bw=rdrbst	n
Candidate: Age	-0.0127	356	0.0173	193	-0.0438	100	-0.017	331
<u> </u>	(0.046)		(0.064)		(0.095)		(0.050)	bw = 4.58
Candidate: SC	0.0381	356	0.0174	193	0.0160	100	0.055*	390
	(0.025)		(0.035)		(0.048)		(0.029)	bw = 5.61
Candidate: ST	0.0572	356	0.0048	193	0.1358	100	0.011	329
	(0.043)		(0.064)		(0.085)		(0.050)	bw = 4.47
Candidate: BJP	0.0424	356	0.0068	193	-0.0608	100	0.034	331
	(0.042)		(0.059)		(0.094)		(0.050)	bw = 4.57
Candidate: INC	-0.0996*	356	-0.0116	193	-0.0750	100	-0.033	300
	(0.051)		(0.074)		(0.109)		(0.067)	bw = 4.10
Candidate: Other Party	-0.0156	356	0.0017	193	-0.0438	100	-0.022	331
	(0.045)		(0.061)		(0.095)		(0.051)	bw = 4.53
Constituency Type: ST	0.0350	356	0.0086	193	0.0046	100	0.051*	392
J.F.	(0.025)		(0.035)		(0.047)		(0.029)	bw = 5.66
Constituency Type: SC	0.0748	356	1.6563	193	3.6033**	100	1.822	268
constituency Type: 20	(0.964)	330	(1.291)	100	(1.644)	100	(1.251)	bw = 3.50
Number of Candidates	-0.5282	356	-0.0198	193	-1.9950	100	3.469	368
Trains of of Canadawes	(1.883)	330	(2.757)	100	(4.046)	100	(3.303)	bw = 5.22
Effective Number of Parties	0.0130	356	0.1114	193	0.0325	100	0.116	393
Effective realiser of rations	(0.067)	550	(0.101)	100	(0.143)	100	(0.082)	bw = 5.69
Turnout Percentage	2.9e+04	356	2.0e+04	193	6.0e+04	100	-1.3e+04	363
Turnout Tercentage	(2.3e+04)	550	(3.5e+04)	150	(4.4e+04)	100	(3.5e+04)	bw = 5.12
2011 Population	0.0024	356	0.0363	193	0.0724*	100	0.010	338
2011 I oparation	(0.022)	550	(0.030)	100	(0.040)	100	(0.027)	bw = 4.71
2011 Population: Share SC	0.0495	356	-0.0278	193	-0.1001	100	0.075	347
2011 1 opulation. Share 50	(0.044)	550	(0.068)	150	(0.093)	100	(0.056)	bw = 4.88
2011 Population: Share ST	-0.0085	356	-0.0176	193	0.0186	100	0.009	386
2011 I opulation. Share 51	(0.020)	550	(0.028)	150	(0.036)	100	(0.024)	bw = 5.49
2011 Population: Share Literate	1.5e+04	356	1.2e+03	193	3.1e+04	100	1.5e+04	323
2011 I opulation. Share Enterate	(1.1e+04)	990	(1.6e+04)	100	(2.6e+04)	100	(1.4e+04)	bw = 4.37
2011 Population: Urban	1.5e+04	356	1.8e+04	193	2.9e+04	100	-3.0e+04	385
2011 I opulation. Orban	(2.1e+04)	550	(3.0e+04)	150	(3.7e+04)	100	(3.1e+04)	bw = 5.43
2011 Population: Rural	5.8e + 04	356	-1.8e+04	193	1.5e+04	100	6.2e+04	331
2011 i oparation. Italian	(3.6e+04)	550	(6.1e+04)	100	(7.5e+04)	100	(4.7e+04)	bw = 4.62
Forest Cover: Total	9.5e+03**	356	-3.8e+03	193	2.6e+03	100	4108.315	245
Torest Cover. Total	(4000.000)	550	(6500.000)	150	(4300.000)	100	(4212.880)	bw = 3.17
Forest Cover: Loss	-7.1e+02	356	300.1102	193	1.8e + 03	100	675.824	387
Torost Cover. Eoss	(814.915)	550	(1300.000)	100	(2100.000)	100	(1000.370)	bw=5.52
Forest Cover: Share Lost	-5.6e + 02	356	550.9984	193	1.1e+03	100	1273.883	312
Torest Cover. Share Lost	(749.668)	550	(1300.000)	150	(1400.000)	100	(969.325)	bw = 4.23
Night Lights: Total	0.3001	356	0.3258	193	0.3619	100	0.421*	333
Night Lights. 10tal	(0.219)	330	(0.279)	133	(0.390)	100	(0.249)	bw = 4.67
Night Lights: Calibrated	-0.0242	356	-0.0207	193	-0.0396	100	0.000	303
rught Eights. Canbrated	(0.042)	550	(0.063)	150	(0.083)	100	(0.055)	bw = 4.12
2011 Accessibility by Paved Road	-1.6e+04	356	(0.003) 2.3e+04	193	-3.9e+03	100	(0.055) 2.0e+04	299
2011 Accessionity by I aved Road	(1.5e+04)	550	(2.9e+04)	130	(2.1e+04)	100	(1.5e+04)	bw = 4.06
2011 Power Supply	-0.0033	356	0.0258	193	-0.0200	100	0.012	444
2011 I Ower Duppry	(0.035)	550	(0.0238)	130	(0.071)	100	(0.012)	bw = 6.73
2011 Village Area	3.0e+03	336	(0.043) 3.6e+03	184	7.5e+03	93	4974.233	311
2011 village Area	(2800.000)	550	(4600.000)	104	(8100.000)	90	(3929.908)	bw=4.44
	(2000.000)		(4000.000)		(0100.000)		(5545.500)	DW-4.44

Table 1: Constituency Level Continuity Checks

	(1)	(2)
VARIABLES	Female Share	Female Share
Female Share from Close Elections	1.379***	1.379***
	(0.135)	(0.201)
Share of Close Male-Female Elections	-0.421***	-0.421***
	(0.101)	(0.126)
Constant	0.0554***	0.0554***
	(0.0111)	(0.0165)
Observations	30,828	30,828
R-squared	0.956	0.956

Table 2: District IV First Stage, BW = 5

	(1)
VARIABLES	Female Share from Close Elections
SC Proportion	-0.114**
	(0.0530)
ST Proportion	-0.112**
_	(0.0498)
SC/ST Reservation	0.128**
,	(0.0519)
BJP Proportion	0.0642**
•	(0.0314)
INC Proportion	0.132***
•	(0.0359)
Constant	0.0664***
	(0.0177)
Observations	30,828
Adjusted R-squared	0.932

Table 3: District IV Prediction

	Female Won	Std. Err.	n	r-squared
Share Girls Enrolled	-0.00983	0.015	96	0.04
\triangle Share Girls Enrolled	-0.02828	0.018	96	0.09
Total Enrollment Growth	0.03376	0.048	96	0.20
Girls Enrollment Growth	0.02304	0.048	96	0.21
Boys Enrollment Growth	0.04662	0.050	96	0.19

Table 4: Constituency Level Enrollment at 5 Years, $\mathrm{BW}=5$

	bw = 7.5	n	bw=5	n	bw=2.5	n	bw=rdrbst	n
Share Girls Enrolled	0.00512	34846	0.00733	25913	0.02227***	14328	0.024***	14278
	(0.005)		(0.005)		(0.007)		(0.007)	bw = 2.35
\triangle Share Girls Enrolled	-0.00424	24193	-0.00472	17433	-0.00286	9964	0.004	15362
	(0.004)		(0.005)		(0.006)		(0.007)	bw = 4.30
Log Total Enrollment	0.14847	34846	0.18007	25913	0.06825	14328	0.086	27221
	(0.101)		(0.120)		(0.191)		(0.250)	bw = 5.69
Total Enrollment Growth	-0.00726	24193	-0.01713	17433	-0.03303**	9964	-0.032**	14331
	(0.010)		(0.011)		(0.015)		(0.016)	bw = 3.92
Log Girls Enrollment	0.17220*	34290	0.21365*	25446	0.14496	14085	0.123	31150
	(0.101)		(0.121)		(0.190)		(0.231)	bw = 6.62
Girls Enrollment Growth	-0.00840	23812	-0.01707	17137	-0.03093*	9797	-0.024	15756
	(0.011)		(0.012)		(0.017)		(0.016)	bw = 4.64
Log Boys Enrollment	0.14567	34178	0.17953	25372	0.03491	14040	0.080	26211
	(0.108)		(0.127)		(0.204)		(0.268)	bw = 5.50
Boys Enrollment Growth	-0.00481	23760	-0.01510	17093	-0.03179**	9769	-0.034**	13598
	(0.010)		(0.011)		(0.016)		(0.017)	bw = 3.75

Table 5: School Enrollment at 5 Years Post-Election, Varied Bandwidth

	Female Won	Std. Err.	n	r-squared
Share Girls Enrolled	0.00759	0.005	25913	0.00
\triangle Share Girls Enrolled	-0.00548	0.005	17433	0.01
Total Enrollment Growth	-0.02010*	0.012	17433	0.08
Girls Enrollment Growth	-0.02101	0.014	17137	0.08
Boys Enrollment Growth	-0.01829	0.012	17093	0.06

Table 6: School Enrollment Weighted by 2011 Population at 5 Years, BW = 5

	Female Won	Std. Err.	n	r-squared
Share Girls Enrolled	0.00766**	0.004	25913	0.00
\triangle Share Girls Enrolled	-0.00462	0.005	17433	0.01
Total Enrollment Growth	-0.01530	0.011	17433	0.06
Girls Enrollment Growth	-0.01346	0.012	17137	0.06
Boys Enrollment Growth	-0.01007	0.010	17093	0.05

Table 7: Quantile School Enrollment at 5 Years, BW = 5

	Female Won	Std. Err.	n	r-squared
Share Girls Enrolled	0.00587	0.005	25913	0.01
\triangle Share Girls Enrolled	-0.00389	0.004	17433	0.01
Total Enrollment Growth	-0.01273	0.009	17433	0.07
Girls Enrollment Growth	-0.01370	0.011	17137	0.07
Boys Enrollment Growth	-0.01130	0.009	17093	0.05

Table 8: Windsorized School Enrollment at 5 Years, BW=5

	Female Won	Std. Err.	n	r-squared
Share Girls Enrolled	0.00733	0.005	25913	0.00
\triangle Share Girls Enrolled	-0.00472	0.005	17433	0.01
Total Enrollment Growth	-0.01713	0.012	17433	0.07
Girls Enrollment Growth	-0.01707	0.013	17137	0.07
Boys Enrollment Growth	-0.01510	0.012	17093	0.05

Table 9: School Enrollment Clustered by VSM at 5 Years, $\mathrm{BW}=5$

	Female Won	Std. Err.	n	r-squared
Share Girls Enrolled	0.00790	0.005	25217	0.00
\triangle Share Girls Enrolled	-0.00452	0.005	17093	0.01
Total Enrollment Growth	-0.01726	0.011	17093	0.07
Girls Enrollment Growth	-0.01707	0.012	16808	0.07
Boys Enrollment Growth	-0.01529	0.011	16766	0.05

Table 10: School Level Rural Enrollment at 5 Years, BW=5

	Female Won	Std. Err.	n	r-squared
Share Girls Enrolled	0.01714	0.031	216	0.02
\triangle Share Girls Enrolled	-0.06792***	0.018	55	0.14
Total Enrollment Growth	0.16599***	0.043	55	0.11
Girls Enrollment Growth	0.14384**	0.050	52	0.08
Boys Enrollment Growth	0.19979***	0.040	49	0.10

Table 11: School Level Urban Enrollment at 5 Years, BW = 5

	Female Won	Std. Err.	n	r-squared
Share Girls Enrolled	0.00631	0.005	22856	0.00
\triangle Share Girls Enrolled	-0.00547	0.005	15514	0.01
Total Enrollment Growth	-0.01240	0.012	15514	0.05
Girls Enrollment Growth	-0.01201	0.013	15307	0.05
Boys Enrollment Growth	-0.00981	0.012	15291	0.03

Table 12: School Level Primary Enrollment at 5 Years, BW = 5

	Female Won	Std. Err.	n	r-squared
Share Girls Enrolled	0.01131	0.012	9123	0.01
\triangle Share Girls Enrolled	-0.00886	0.013	5221	0.01
Total Enrollment Growth	-0.04522***	0.015	5221	0.18
Girls Enrollment Growth	-0.04900**	0.020	5040	0.18
Boys Enrollment Growth	-0.04770***	0.015	4985	0.15

Table 13: School Level Upper Primary Enrollment at 5 Years, BW = 5

	Female Won	Std. Err.	n	r-squared
Share Girls Enrolled	0.00039	0.004	52631	0.01
\triangle Share Girls Enrolled	-0.00047	0.002	52392	0.00
Total Enrollment Growth	-0.00239	0.012	52392	0.00
Girls Enrollment Growth	-0.00501	0.014	51503	0.01
Boys Enrollment Growth	-0.00192	0.013	51304	0.00

Table 14: Placebo School Level Enrollment at 2 Years Pre-Election, $\mathrm{BW}=5$

	Female Won	Std. Err.	n	r-squared
Share Girls Enrolled	-0.01168*	0.006	23781	0.01
\triangle Share Girls Enrolled	0.00449	0.006	23698	0.01
Total Enrollment Growth	0.01182	0.013	23698	0.02
Girls Enrollment Growth	0.01436	0.013	23236	0.03
Boys Enrollment Growth	0.01013	0.014	23160	0.01

Table 15: Placebo School Level Enrollment at 5 Years Pre-Election, $\mathrm{BW}=5$

	Female Won	Std. Err.	n	r-squared
Number of Schools	4.97176**	2.483	355	1.00
Log Number of Schools	0.02396	0.023	355	1.00
Quantile Number of Schools	1.56272	1.230	355	1.00
Quantile Log Number of Schools	0.00529	0.006	355	1.00

Table 16: Normal and Quantile Number of Schools, $\mathrm{BW}=5$