CS 228 : Logic in Computer Science

Krishna. S

Derived Operators

- $true = \varphi \lor \neg \varphi$
- ▶ false = ¬true
- $\diamond \varphi = true \ U \varphi \ (Eventually \ \varphi)$

Precedence

- Unary Operators bind stronger than Binary
- ▶ and ¬ equally strong
- ▶ U takes precedence over \land, \lor, \rightarrow
 - \bullet $a \lor b \cup c \equiv a \lor (b \cup c)$

► Whenever the traffic light is red, it cannot become green immediately:

3/2

► Whenever the traffic light is red, it cannot become green immediately:

 \Box (red $\rightarrow \neg \bigcirc$ green)

Whenever the traffic light is red, it cannot become green immediately:

```
\Box(red \rightarrow \neg \bigcirc green)
```

Eventually the traffic light will become yellow

► Whenever the traffic light is red, it cannot become green immediately:

```
\Box (red \rightarrow \neg \bigcirc green)
```

Eventually the traffic light will become yellow \(\frac{\psi ellow}{\text{yellow}}\)

- Whenever the traffic light is red, it cannot become green immediately:
 - \Box (red $\rightarrow \neg \bigcirc$ green)
- Eventually the traffic light will become yellow \(\frac{yellow}{\text{}} \)
- Once the traffic light becomes yellow, it will eventually become green

Whenever the traffic light is red, it cannot become green immediately:

```
\Box(red \rightarrow \neg \bigcirc green)
```

- Eventually the traffic light will become yellow \(\frac{yellow}{\text{}} \)
- Once the traffic light becomes yellow, it will eventually become green

```
\Box(yellow \rightarrow \Diamond green)
```

Semantics over Infinite Words

Given LTL formula φ over AP,

$$L(\varphi) = \{ \sigma \in (2^{AP})^{\omega} \mid \sigma \models \varphi \}$$

Let $\sigma = A_0 A_1 A_2 \dots$, with $A_i \subseteq AP$.

Semantics over Infinite Words

Given LTL formula φ over AP,

$$L(\varphi) = \{ \sigma \in (2^{AP})^{\omega} \mid \sigma \models \varphi \}$$

Let $\sigma = A_0 A_1 A_2 \dots$, with $A_i \subseteq AP$.

- $ightharpoonup \sigma \models a \text{ iff } a \in A_0$
- \bullet $\sigma \models \varphi_1 \land \varphi_2 \text{ iff } \sigma \models \varphi_1 \text{ and } \sigma \models \varphi_2$
- $\triangleright \ \sigma \models \bigcirc \varphi \text{ iff } A_1 A_2 \ldots \models \varphi$
- $\begin{array}{c} \bullet \quad \sigma \models \varphi \ \mathsf{U} \psi \ \mathsf{iff} \\ \exists j \geqslant 0 \ \mathsf{such that} \ A_j A_{j+1} \ldots \models \psi \wedge \forall 0 \leqslant i < j, A_i A_{i+1} \ldots \models \varphi \end{array}$

Semantics over Infinite Words

Given LTL formula φ over AP,

$$L(\varphi) = \{ \sigma \in (2^{AP})^{\omega} \mid \sigma \models \varphi \}$$

Let $\sigma = A_0 A_1 A_2 \dots$, with $A_i \subseteq AP$.

- \bullet $\sigma \models \Diamond \varphi \text{ iff } \exists j \geqslant 0, A_i A_{i+1} \ldots \models \varphi$

If $\sigma = A_0 A_1 A_2 \ldots$, $\sigma \models \varphi$ is also written as $\sigma, 0 \models \varphi$. This simply means $A_0 A_1 A_2 \ldots \models \varphi$. One can also define $\sigma, i \models \varphi$ to mean $A_i A_{i+1} A_{i+2} \ldots \models \varphi$ to talk about a suffix of the word σ satisfying a property.

Let $TS = (S, S_0, \rightarrow, AP, L)$ be a transition system, and φ an LTL formula over AP

▶ For an infinite path fragment π of TS,

$$\pi \models \varphi \text{ iff } trace(\pi) \models \varphi$$

Let $TS = (S, S_0, \rightarrow, AP, L)$ be a transition system, and φ an LTL formula over AP

▶ For an infinite path fragment π of TS,

$$\pi \models \varphi \text{ iff } trace(\pi) \models \varphi$$

▶ For $s \in S$,

$$s \models \varphi \text{ iff } \forall \pi \in \textit{Paths}(s), \pi \models \varphi$$

Let $TS = (S, S_0, \rightarrow, AP, L)$ be a transition system, and φ an LTL formula over AP

▶ For an infinite path fragment π of TS,

$$\pi \models \varphi \text{ iff } trace(\pi) \models \varphi$$

▶ For $s \in S$, $s \models \varphi$ iff $\forall \pi \in Paths(s), \pi \models \varphi$

▶
$$TS \models \varphi$$
 iff $Traces(TS) \subseteq L(\varphi)$

Assume all states in TS are reachable from S_0 .

- ▶ $TS \models \varphi \text{ iff } TS \models L(\varphi) \text{ iff } Traces(TS) \subseteq L(\varphi)$
- ▶ $TS \models L(\varphi)$ iff $\pi \models \varphi \ \forall \pi \in Paths(TS)$
- $\pi \models \varphi \ \forall \pi \in Paths(TS) \ \text{iff} \ s_0 \models \varphi \ \forall s_0 \in S_0$

TS |= □a,

- *TS* |= □*a*,
- ▶ $TS \nvDash \bigcirc (a \land b)$

- TS |= □a,
- ▶ $TS \nvDash \bigcirc (a \land b)$
- ▶ $TS \nvDash (b \cup (a \land \neg b))$

- TS |= □a,
- ▶ $TS \nvDash \bigcirc (a \land b)$
- ▶ $TS \nvDash (b \cup (a \land \neg b))$
- $TS \models \Box (\neg b \rightarrow \Box (a \land \neg b))$

More Semantics

▶ For paths π , $\pi \models \varphi$ iff $\pi \nvDash \neg \varphi$

More Semantics

- ► For paths π , $\pi \models \varphi$ iff $\pi \nvDash \neg \varphi$ trace(π) $\in L(\varphi)$ iff trace(π) $\notin L(\neg \varphi) = \overline{L(\varphi)}$
- ▶ $TS \nvDash \varphi$ iff $TS \models \neg \varphi$?

More Semantics

- ► For paths π , $\pi \models \varphi$ iff $\pi \nvDash \neg \varphi$ trace(π) $\in L(\varphi)$ iff trace(π) $\notin L(\neg \varphi) = \overline{L(\varphi)}$
- ▶ $TS \nvDash \varphi$ iff $TS \models \neg \varphi$?
 - ▶ $TS \models \neg \varphi \rightarrow \forall$ paths π of TS, $\pi \models \neg \varphi$
 - ▶ Thus, $\forall \pi$, $\pi \nvDash \varphi$. Hence, $TS \nvDash \varphi$
 - ▶ Now assume $TS \nvDash \varphi$
 - ▶ Then \exists some path π in *TS* such that $\pi \models \neg \varphi$
 - ▶ However, there could be another path π' such that $\pi' \models \varphi$
 - ▶ Then $TS \nvDash \neg \varphi$ as well
- ▶ Thus, $TS \nvDash \varphi \not\equiv TS \models \neg \varphi$.

An Example

 $TS \nvDash \Diamond a$ and $TS \nvDash \Box \neg a$

10/20

Equivalence

 φ and ψ are equivalent $(\varphi \equiv \psi)$ iff $L(\varphi) = L(\psi)$.

Expansion Laws

 φ and ψ are equivalent iff $L(\varphi) = L(\psi)$.

 φ and ψ are equivalent iff $L(\varphi) = L(\psi)$.

Distribution

$$\bigcirc(\varphi \lor \psi) \equiv \bigcirc\varphi \lor \bigcirc\psi,
\bigcirc(\varphi \land \psi) \equiv \bigcirc\varphi \land \bigcirc\psi,
\bigcirc(\varphi U\psi) \equiv (\bigcirc\varphi) U(\bigcirc\psi),
\diamondsuit(\varphi \lor \psi) \equiv \diamondsuit\varphi \lor \diamondsuit\psi,
\Box(\varphi \land \psi) \equiv \Box\varphi \land \Box\psi$$

$$TS \models \Diamond a \land \Diamond b, TS \nvDash \Diamond (a \land b)$$

$$TS \models \Box (a \lor b), TS \nvDash \Box a \lor \Box b$$

13/20

Satisfiability, Model Checking of LTL

Two Questions

Given transition system TS, and an LTL formula φ . Does $TS \models \varphi$? Given an LTL formula φ , is $L(\varphi) = \emptyset$?

ω -automata

An ω -automaton is a tuple $\mathcal{A} = (Q, \Sigma, \delta, q_0, Acc)$ where

- Q is a finite set of states
- \triangleright Σ is a finite alphabet
- ▶ $\delta: Q \times \Sigma \to 2^Q$ is a state transition function (if non-deterministic, otherwise, $\delta: Q \times \Sigma \to Q$)
- $q_0 \in Q$ is an initial state and Acc is an acceptance condition

15/20

ω -automata

An ω -automaton is a tuple $\mathcal{A} = (Q, \Sigma, \delta, q_0, Acc)$ where

- Q is a finite set of states
- Σ is a finite alphabet
- ▶ $\delta: Q \times \Sigma \to 2^Q$ is a state transition function (if non-deterministic, otherwise, $\delta: Q \times \Sigma \to Q$)
- ▶ $q_0 \in Q$ is an initial state and Acc is an acceptance condition

Run

A run ρ of \mathcal{A} on an ω -word $\alpha = a_1 a_2 \cdots \in \Sigma^{\omega}$ is an infinite state sequence $\rho(0)\rho(1)\rho(2)\ldots$ such that

- $\rho(i) = \delta(\rho(i-1), a_i)$ if A is deterministic,
- ▶ $\rho(i) \in \delta(\rho(i-1), a_i)$ if A is non-deterministic,

ω -automata

An ω -automaton is a tuple $\mathcal{A} = (Q, \Sigma, \delta, q_0, Acc)$ where

- Q is a finite set of states
- Σ is a finite alphabet
- ▶ $\delta: Q \times \Sigma \to 2^Q$ is a state transition function (if non-deterministic, otherwise, $\delta: Q \times \Sigma \to Q$)
- ▶ $q_0 \in Q$ is an initial state and Acc is an acceptance condition

Run

A run ρ of \mathcal{A} on an ω -word $\alpha=a_1a_2\cdots\in\Sigma^\omega$ is an infinite state sequence $\rho(0)\rho(1)\rho(2)\ldots$ such that

- ▶ $\rho(0) = q_0$,
- $\rho(i) = \delta(\rho(i-1), a_i)$ if A is deterministic,
- ▶ $\rho(i) \in \delta(\rho(i-1), a_i)$ if A is non-deterministic,

Büchi Acceptance

For Büchi Acceptance, *Acc* is specified as a set of states, $G \subseteq Q$. The ω -word α is accepted if there is a run ρ of α such that $Inf(\rho) \cap G \neq \emptyset$.

ω -Automata with Büchi Acceptance

$$L(A) = \{ \alpha \in \Sigma^{\omega} \mid \alpha \text{ has a run } \rho \text{ such that } Inf(\rho) \cap G \neq \emptyset \}$$

Language accepted=Infinitely many b's.

Comparing NFA and NBA

Comparing NFA and NBA

ω -Automata with Büchi Acceptance

- ▶ Left (T-B): Inf many b's, Inf many a's
- ▶ Right (T-B): Finitely many b's, $(a + b)^{\omega}$

- Is every DBA as expressible as a NBA, like in the case of DFA and NFA?
- ▶ Can we do subset construction on NBA and obtain DBA?

- Is every DBA as expressible as a NBA, like in the case of DFA and NFA?
- ▶ Can we do subset construction on NBA and obtain DBA?

There does not exist a deterministic Büchi automata capturing the language finitely many *a*'s.

20/20

There does not exist a deterministic Büchi automata capturing the language finitely many *a*'s.

20/20