1. Anells. Anell dels enters

Definició Un anell commutatiu amb unitat és una terna $(A, +, \cdot)$ on $+ i \cdot$ són operacions binàries del conjunt A satisfent:

```
- (A, +) \text{ t\'e les propietats:} \qquad \qquad [\text{estructura de grup commutatiu}] associativa: \forall a, b, c \in A, \quad (a+b)+c=a+(b+c) commutativa: \forall a, b \in A, \quad a+b=b+a existència d'element neutre 0: \forall a \in A, \quad a+0=a existència d'element simètric: \forall a \in A, \quad a+a'=0 - (A, \cdot) \text{ t\'e les propietats} associativa: \forall a, b, c \in A, \quad (a \cdot b) \cdot c = a \cdot (b \cdot c) distributiva respecte de la suma: \forall a, b, c \in A, \quad (a+b) \cdot c = a \cdot c + b \cdot c commutativa: \forall a, b \in A, \quad a \cdot b = b \cdot a (anell commutatiu) existència d'element neutre 1: \forall a \in A, \quad a \cdot 1 = a (anell amb unitat)
```

Conjunt dels nombres enters: $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, 3, \dots\}$ $(\mathbb{Z}, +, \cdot)$ és un anell commutatiu amb unitat.

```
- Typeset by FoilTEX -
```

Definició Sigui $(A, +, \cdot)$ un anell amb unitat, $a \in A$ és invertible si existeix $a' \in A$ tal que $a \cdot a' = a' \cdot a = 1$.

```
Notació a^{-1} = a', s'anomena invers de a
A^* = \{a \in A : a \text{ és invertible}\}
```

Remarca $-\mathbb{Z}^* = \{1, -1\}.$ - Si un element té invers, aquest invers és únic.

Definició $(A, +, \cdot)$ és un cos si $A^* = A \setminus \{0\}$.

Definició Sigui $(A, +, \cdot)$ un anell, $a \in A$, $a \neq 0$, és divisor de zero si existeix $b \in A$, $b \neq 0$, tal que $a \cdot b = b \cdot a = 0$.

```
Remarca -(\mathbb{Z},+,\cdot) no té divisors de zero.

- Els elements invertibles de l'anell no són divisors de zero
```

1

3. Polinomis

Definició Sigui $(\mathbb{K},+,\cdot)$ un cos. Un polinomi amb coeficients en \mathbb{K} i indeterminada x és una expressió $a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$ amb $a_n,\ldots,a_1,a_0\in\mathbb{K}$.

Notació
$$\mathbb{K}[x] = \{a_n x^n + \dots + a_1 x + a_0 : a_n, \dots, a_1, a_0 \in \mathbb{K}\}.$$

Dos polinomis $a(x) = a_n x^n + \dots + a_1 x + a_0$ i $b(x) = b_m x^m + \dots + b_1 x + b_0$ són iguals si, i només si, $a_i = b_i$, $0 \le i \le n$.

Sigui $a(x) = a_n x^n + \cdots + a_1 x + a_0 \in \mathbb{K}[x]$ un polinomi, anomenem

Polinomi constant: si $a_i = 0$ per a tot $i \ge 1$.

Grau: si a(x) és diferent de zero, el grau és el màxim n tal que $a_n \neq 0$.

Notació
$$\deg(a(x))$$
, $\operatorname{gr}(a(x))$. $\deg(0) = -\infty$.

Coeficient principal: a_n , si a(x) té grau n.

Polinomi mònic: si el coeficient principal és 1.

- Typeset by FoilTEX -

Operacions entre polinomis

Siguin $a(x) = a_n x^n + \cdots + a_1 x + a_0$ i $b(x) = b_n x^n + \cdots + b_1 x + b_0$ polinomis de $\mathbb{K}[x]$.

Suma a(x) + b(x): coeficient de $x^i = a_i + b_i$ Producte a(x)b(x): coeficient de $x^i = a_0b_i + a_1b_{i-1} + \cdots + a_{i-1}b_1 + a_ib_0$.

 $(\mathbb{K}[x],+,\cdot)$ és un anell commutatiu amb unitat.

Proposició Siguin $a(x), b(x) \in \mathbb{K}[x]$. Aleshores

- 1. $deg(a(x)) = 0 \Leftrightarrow a(x) = a_0 i a_0 \neq 0$.
- 2. $\deg(a(x) + b(x)) \le \max\{\deg(a(x)), \deg(b(x))\}\$
- 3. $\deg(a(x)b(x)) = \deg(a(x)) + \deg(b(x))$.

Corol.lari Els elements invertibles de $\mathbb{K}[x]$ són els polinomis constants no nuls:

$$\mathbb{K}[x]^* = \mathbb{K}^*$$

.

3

4. Anell de polinomis $\mathbb{K}[x]$

 \mathbb{K} serà un cos, per exemple, \mathbb{F}_p , \mathbb{Q} , o \mathbb{R} .

Recordem que $(\mathbb{K}[x], +, \cdot)$ és un anell amb unitat, i $\mathbb{K}[x]^* = \mathbb{K}^*$.

Teorema de la divisió Siguin $a(x), b(x) \in \mathbb{K}[x]$, amb $b(x) \neq 0$. Aleshores existeixen dos únics polinomis q(x) (quocient) i r(x) (residu) tals que

```
a(x) = b(x)q(x) + r(x), on r(x) = 0 o \deg(r(x)) < \deg(b(x)).
```

Definicions Siguin $a(x), b(x) \in \mathbb{K}[x]$,

b(x) és divisor de a(x) o bé a(x) és múltiple de b(x) si el residu de la divisió de a(x) entre b(x) és r(x) = 0.

Notació b(x)|a(x)

Remarca $\forall b(x) \in \mathbb{K}[x], \ b(x)|0.$

- Typeset by FoilT_EX -

5

Divisors impropis de a(x): són els polinomis $\lambda a(x)$ i λ , per a tot $\lambda \in \mathbb{K}^*$.

Divisors propis de a(x) en $\mathbb{K}[x]$: els divisors diferents dels impropis.

Polinomi irreductible a $\mathbb{K}[x]$: polinomi de grau ≥ 1 que no té divisors propis a $\mathbb{K}[x]$, és a dir, que no es pot escriure com a producte de polinomis de grau estrictament menor a $\mathbb{K}[x]$.

Definició Siguin $a(x), b(x) \in \mathbb{K}[x]$.

Un màxim comú divisor de a(x) i b(x) és un polinomi de $\mathbb{K}[x]$ de grau màxim que divideix a a(x) i a b(x).

Notació mcd(a(x), b(x)).

- Hi ha un únic màxim comú divisor mònic.
- Si c(x)|a(x) i c(x)|b(x), aleshores $c(x)|\operatorname{mcd}(a(x),b(x))$.
- Si d(x) i k(x) són mcd de a(x), b(x), aleshores $\exists \lambda \in \mathbb{K}^*$ tal que $d(x) = \lambda k(x)$.
- Si a(x) és irreductible: mcd(a(x), b(x)) = 1 si, i només si, b(x) no és un múltiple de a(x).

- Typeset by FoilTeX -

Lema

Siguin $a(x), b(x), k(x) \in \mathbb{K}[x]$. Aleshores

$$mcd(a(x), b(x)) = mcd(a(x) + b(x)k(x), b(x)).$$

Teorema (Algorisme d'Euclides)

Siguin $a(x), b(x) \in \mathbb{K}[x]$, $b(x) \neq 0$. Definim $r_0(x) = a(x)$ i $r_1(x) = b(x)$.

Considerem les divisions enteres.

$$r_0(x) = r_1(x)q_1(x) + r_2(x), 0 \le \deg(r_2(x)) < \deg(r_1(x))$$

$$r_1(x) = r_2(x)q_2(x) + r_3(x), 0 \le \deg(r_3(x)) < \deg(r_2(x))$$

$$\cdots$$

$$r_{n-2}(x) = r_{n-1}(x)q_{n-1}(x) + r_n(x), 0 \le \deg(r_n(x)) < \deg(r_{n-1}(x))$$

$$r_{n-1}(x) = r_n(x)q_n(x)$$

Aleshores, $\operatorname{mcd}(a(x),b(x)) = \left\{ \begin{array}{ll} b(x), & \text{si } n=1, \text{ \'es a dir , } r_2(x)=0; \\ r_n(x), & \text{altrament.} \end{array} \right.$

Teorema (Identitat de Bezout)

Per a tot $a(x), b(x) \in \mathbb{K}[x]$ existeixen $s(x), t(x) \in \mathbb{K}[x]$ tals que

$$a(x)s(x) + b(x)t(x) = mcd(a(x), b(x)).$$

- Typeset by FoilT_EX -

Remarca

$$\operatorname{mcd}(a(x),b(x))=1 \iff \exists\, s(x),t(x)\in\mathbb{K} \text{ tals que } a(x)s(x)+b(x)t(x)=1$$

Cálculs: Algoritme d'Euclides estès

$$\begin{aligned} s_0(x) &= 1, & t_0(x) &= 0, \\ s_1(x) &= 0, & t_1(x) &= 1, \\ s_k(x) &= s_{k-2}(x) - q_{k-1}(x)s_{k-1}(x), & 2 \leq k \leq n, \\ t_k(x) &= t_{k-2}(x) - q_{k-1}(x)t_{k-1}(x), & 2 \leq k \leq n. \end{aligned}$$

k	0	1	2	3	 n-1	n
$s_k(x)$	1	0	$s_2(x)$	$s_3(x)$	 $s_{n-1}(x)$	$s_n(x)$
$t_k(x)$	0	1	$t_2(x)$	$t_3(x)$	 $t_{n-1}(x)$	$t_n(x)$
$q_k(x)$		$q_1(x)$	$q_2(x)$	$q_3(x)$	 $q_{n-1}(x)$	$q_n(x)$
$r_k(x)$	$r_0(x) = a(x)$	$r_1(x) = b(x)$	$r_2(x)$	$r_3(x)$	 $r_{n-1}(x)$	$r_n(x)$

8

Es té: $a(x)s_k(x) + b(x)t_k(x) = r_k(x)$, per a tot k, $0 \le k \le n$.

En particular, $a(x)s_n(x) + b(x)t_n(x) = r_n(x) = \text{mcd}(a(x), b(x)).$

– Typeset by FoilTEX –

Divisors impropis de a(x): són els polinomis $\lambda a(x)$ i λ , per a tot $\lambda \in \mathbb{K}^*$

Divisors propis de a(x): els divisors diferents dels impropis

Polinomi irreductible: polinomi de grau ≥ 1 que no té divisors propis, és a dir, que no es pot escriure com a producte de polinomis de grau estrictament menor

Arrel d'un polinomi: α és arrel de a(x) si $a(\alpha) = 0$

Teorema del residu Siguin $\alpha \in \mathbb{K}$ i $a(x) \in \mathbb{K}[x]$. Aleshores,

- 1. $a(\alpha) = 0 \iff (x \alpha)|a(x)$.
- 2. El nombre d'arrels de a(x) és $\leq \deg(a(x))$.

Proposició Sigui $a(x) \in \mathbb{K}[x]$.

- 1. Els polinomis de grau 1 són irrreductibles i tenen exactament una arrel.
- 2. Si un polinomi de grau ≥ 2 té una arrel, llavors no és irreductible.
- 3. Els polinomis de grau 2 o 3 són irreductibles \iff no tenen cap arrel.

- Typeset by FoilTEX -

Teorema Per a tot polinomi $a(x) \in \mathbb{K}[x] - \mathbb{K}$ existeixen $\lambda \in \mathbb{K}$, enters positius n_1, n_2, \ldots, n_k i polinomis mònics irreductibles $f_1(x), f_2(x), \ldots, f_k(x)$, únics llevat l'ordre, tals que

$$a(x) = \lambda f_1(x)^{n_1} f_2(x)^{n_2} \dots f_k(x)^{n_k}.$$

Aquesta igualtat s'anomena factorització de a(x) en producte de factors irreductibles.

5. Anell quocient de polinomis

Fixem $f(x) \in \mathbb{K}[x]$, amb $f(x) \neq 0$ i sigui n = deg(f).

Definició Siguin $a(x), b(x) \in \mathbb{K}[x]$. Direm que

$$a(x)$$
 és congru amb $b(x)$ mòdul $f(x)$ si $f(x)|(a(x)-b(x))$

Notac<u>ió</u> $a(x) \equiv b(x) \pmod{f(x)}$

Formulació equivalent

 $\overline{a(x) \equiv b(x) \pmod{f(x)}}$ si, i només si, la divisió entera de a(x) i b(x) per f(x) dóna el mateix residu.

Ser congru mòdul f(x) és una relació d'equivalència, és a dir, compleix:

1.-
$$a(x) \equiv a(x) \pmod{f(x)}$$
 (P. reflexiva)

2.-
$$a(x) \equiv b(x) \pmod{f(x)} \Rightarrow b(x) \equiv a(x) \pmod{f(x)}$$
 (P. simètrica)

3.-
$$a(x) \equiv b(x) \pmod{f(x)}$$
 i $b(x) \equiv c(x) \pmod{f(x)} \Rightarrow$

$$a(x) \equiv c(x) \pmod{f(x)}$$
 (P. transitiva)

Sigui $P_n(\mathbb{K}) = \{a_0 + a_1x + \dots + a_{n-1}x^{n-1} | a_i \in \mathbb{K}, i \in \{0, \dots, n-1\}\}$. Per a tot $a(x) \in \mathbb{K}[x]$ existeix un únic polinomi $r(x) \in P_n(\mathbb{K})$ tal que $a(x) \equiv r(x) \pmod{f(x)}$.

- Typeset by FoilTEX -

Definició Classe de a(x) mòdul f(x): conjunt dels polinomis congrus amb a(x) mòdul f(x). Es denota:

$$\overline{a(x)} = \{b(x) \in \mathbb{K}[x] : a(x) \equiv b(x) \mod f(x)\}$$
$$= \{a(x) + f(x)g(x) : g(x) \in \mathbb{K}[x]\}$$

Observem:

- $-a(x) \neq \emptyset$, ja que $a(x) \in a(x)$.
- $-\overline{a(x)} = \overline{b(x)} \iff a(x) \equiv b(x) \pmod{f(x)}.$
- $-\overline{a(x)} \cap \overline{b(x)} = \emptyset \iff a(x) \not\equiv b(x) \pmod{f(x)}.$

Definició Conjunt quocient de $\mathbb{K}[x]$ mòdul f(x)

$$\mathbb{K}[x]/(f(x)) = \{ \overline{a(x)} : a(x) \in \mathbb{K}[x] \}$$

$$= \{ \overline{a_0 + a_1 x + \dots + a_{n-1} x^{n-1}} | a_i \in \mathbb{K}, i \in \{0, \dots, n-1\} \}$$

Compatibilitat de la relació d'equivalència amb les operacions a $\mathbb{K}[x]$

Siguin $a(x), b(x), c(x), d(x) \in \mathbb{K}[x]$ polinomis tals que $a(x) \equiv b(x) \pmod{f(x)}$ i $c(x) \equiv d(x) \pmod{f(x)}$, aleshores:

$$a(x) + c(x) \equiv b(x) + d(x) \pmod{f(x)}$$
, i $a(x)c(x) \equiv b(x)d(x) \pmod{f(x)}$.

Definició Es defineixen les operacions següents a $\mathbb{K}[x]$,

suma:
$$\overline{a(x)} + \overline{b(x)} := \overline{a(x) + b(b)}$$
, producte: $\overline{a(x)} \cdot \overline{b(x)} := \overline{a(x) \cdot b(x)}$.

Proposició $(\mathbb{K}[x]/(f(x)),+,\cdot)$ és un anell commutatiu amb unitat.

Elements invertibles a $\mathbb{K}[x]$

 $\begin{array}{l} \textbf{Proposici\'o} \ \mathsf{Siguin} \ f(x), a(x) \in \mathbb{K}[x], \ \mathsf{amb} \ \mathsf{deg}(f) \geq 1. \\ \hline a(x) \ \mathsf{invertible} \ \mathsf{a} \ \mathbb{K}[x]/(f(x)) \ \mathsf{si}, \ \mathsf{i} \ \mathsf{nom\'es} \ \mathsf{si}, \ \frac{\mathsf{mcd}(a(x), f(x)) = 1}{\mathsf{deg}(a(x), f(x))} = 1. \\ \mathsf{\acute{E}s} \ \mathsf{a} \ \mathsf{dir}, \ (\mathbb{K}[x]/(f(x)))^* = \Big\{\overline{a(x)} : \mathsf{mcd}(a(x), f(x)) = 1\Big\}. \end{array}$

Remarca: Si f(x) és irreductible, aleshores

$$(\mathbb{K}[x]/(f(x)))^* = \left\{ \overline{a_0 + a_1 x + \dots + a_{n-1} x^{n-1}} | a_i \in \mathbb{K} \right\} - \{\overline{0}\}.$$

Proposició $\mathbb{K}[x]/(f(x))$ és un cos si, i només si, f(x) és un polinomi irreductible.

En particular: Si $\mathbb{K} = \mathbb{F}_p$ i $f(x) \in \mathbb{F}_p[x]$ irreductible de grau n, aleshores el cos $\overline{\mathbb{F}_p[x]/(f(x))}$ té cardinal p^n .

- Typeset by FoilT_EX -

6. Cossos finits

Teorema

1. Els cossos finits són de la forma \mathbb{Z}_p o $\mathbb{Z}_p[x]/(f(x))$, on $f(x) \in \mathbb{Z}_p[x]$ és un polinomi irreductible, p nombre primer.

Notació:
$$\mathbb{F}_p = \mathbb{Z}_p$$
, $\mathbb{F}_q = \mathbb{Z}_p[x]/(f(x))$, on $q = p^{deg(f)}$.

- 2. Per cada enter $r \geq 1$ i per cada primer p existeix un cos finit de p^r elements.
- 3. Dos cossos finits del mateix ordre són isomorfs.

Característica d'un cos finit. Donat una cos finit de p^r elements, direm el cos té característica p.

Observem que p és l'enter positiu més petit tal que

$$1 + \stackrel{p}{\dots} + 1 = 0$$
 i $1 + \stackrel{s}{\dots} + 1 \neq 0, \forall s, 1 \leq s < p$.

Sigui p primer i $r \geq 1$ enter. El cos finit \mathbb{F}_q té $q = p^r$ i el conjunt dels invertibles $\mathbb{F}_q^* = \mathbb{F}_q - \{0\}$ té q-1 elements

Proposició (\mathbb{F}_q^*, \cdot) té estructura de grup multiplicatiu (cíclic).

Definicions

Ordre de $\beta \in \mathbb{F}_q^*$, ord (β) : l'enter $m \geq 1$ més petit tal que $\beta^m = 1$. Element primitiu: l'element $\alpha \in \mathbb{F}_q$ tal que ord $(\alpha) = q - 1$.

Propietats de l'ordre Sigui $\beta \in \mathbb{F}_q$ i $m = \operatorname{ord}(\beta)$. Aleshores

- 1. m|(q-1), és a dir, l'ordre d'un element divideix el cardinal de \mathbb{F}_q^* .
- 2. $s \in \mathbb{Z}$: $\beta^s = 1 \Leftrightarrow m|s$.
- 3. $\beta^{q-1} = 1$.
- 4. $\operatorname{ord}(\beta^d) = \frac{m}{\operatorname{mcd}(m,d)}$, per a tot $d \in \mathbb{Z}$, $d \geq 1$.
- 5. L'únic element d'ordre 1 és l'1.

 $\textbf{Proposici\'o} \text{ El nombre d'elements d'ordre } d \text{ a } \mathbb{F}_q^* \text{ \'es } \left\{ \begin{array}{l} \phi(d), & \text{si } d | (q-1); \\ 0, & \text{altrament.} \end{array} \right.$

- Typeset by FoilT_EX -

Corol.lari 1 Tot cos finit té un element primitiu.

Corol.lari 2 El nombre d'elements primitius a \mathbb{F}_q és $\phi(q-1)$.

Definició Fixat $\beta \in \mathbb{F}_q^*$ un element primitiu es defineix logaritme discret en base β a l'aplicació

L'aplicació està ben definida i és bijectiva.

Definició Un polinomi $f(x) \in \mathbb{F}_p[x]$ és diu primitiu si és irreductible i $\alpha = \bar{x} \in \mathbb{F}_p[x]/(f(x))$ és un element primitiu del cos.