Derivate di funzioni:		Integrali notevoli immediati ed integrali con la prin	na formula di sostituzione	Limiti notevoli es	sponenziali	Limiti notevoli trigonometrici	Proprietà delle potenze:
D : costante $k \to 0$	$D: \arccos x \rightarrow -\frac{1}{2}$	$\int \int x^k dx = \frac{x^{k+1}}{k+1} + C$	$7) \int \frac{f'(x)}{\sqrt{1 - f^2(x)}} dx = arcsenf(x) + C$	1) $\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x$	$= e \lim_{n \to +\infty} n^2 sen \frac{1}{n^2}$	=1 sony y	$1) \ a^{n+m} = a^n \cdot a^m$
D. Costante k -> 0	$D:\arccos x \to -\frac{1}{\sqrt{1-x^2}}$	$1)\int x \ dx = \frac{1}{k+1} + C$	$\sqrt{1-f^2(x)}$ and already (b) $x \in \mathbb{R}$			$x \to 0$ x senx	$(a^n)^m = a^{n \cdot m}$
$D: x^n \to nx^{n-1}$	$D: arctg \ x \to \frac{1}{1+x^2}$	$2) \int e^x dx = e^x + C$	$8) \int \frac{f'(x)}{1 + f^2(x)} dx = arctgf(x) + C$	$2) \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)$	$= e \qquad \lim_{x \to 0} \sqrt[x]{1+x} = e$	$2)\lim_{x\to 0} \frac{senax}{bx} = \frac{a}{b}$	3) $a^0 = 1$ 4) $a^{-n} = \left(\frac{1}{a}\right)^n = \frac{1}{a^n}$
$D: \sqrt{x} \to \frac{1}{2\sqrt{x}}$	$D: \operatorname{arccotg} x \to -\frac{1}{1+x^2}$	$3)\int_{-\infty}^{\infty} dx = \log x + C$	$9) \int \frac{f'(x)}{\sqrt{1+f^2(x)}} dx = \log(f(x) + \sqrt{1+f^2(x)}) + C$	3) $\lim_{x \to +\infty} \left(1 + \frac{a}{x}\right)$	$\int_{n}^{\infty} = e^{a} \lim_{n \to \infty} \left(\frac{n}{n+1} \right)^{n} =$		()
$D: \sqrt[n]{x^m} \to \frac{m}{n^n \sqrt[n]{x^{n-m}}}$	$D: a^x \to a^x \log_e a$	$4) \int \cos x dx = senx + C$	$10) \int \frac{f'(x)}{\sqrt{f^2(x) - 1}} dx = \log(f(x) + \sqrt{f^2(x) - 1}) + C$	4) $\lim_{x \to +\infty} \left(1 + \frac{a}{r}\right)$		$4)\lim_{x\to 0} \frac{tgax}{bx} = \frac{a}{b}$	5) $a^{\frac{m}{n}} = \left(a^{\frac{1}{n}}\right)^m = \left(a^m\right)^{\frac{1}{n}} = \sqrt[n]{a^m}$ $Es.: 4^x - 2^{2x+1} \to 2^{2x} - 2^{2x} \cdot 2$
$D: sen x \to \cos x$	$D: e^x \to e^x$	$5) \int senx dx = -\cos x + C$	$11) \int \frac{f'(x)-1}{1-f^2(x)} dx = \frac{1}{2} \log \frac{1+f(x)}{1-f(x)} + C$			$\int \lim_{x \to 0} \frac{1 - \cos x}{x} = 0$	$2^{2x} \cdot 4 - 2 \rightarrow 2^{2x} \cdot 2 \rightarrow 2^{2x} \cdot 1 - 2$ Proprietà dei logaritmi:
$D: \cos x \to -senx$	$D: \log_a x \to \frac{1}{x} \log_a e$	-	Casi notevoli dell'applicazione della prima regola di	i ' '	•	6) $\lim_{x \to 0} \frac{1 - \cos x}{1 - \cos x} = \frac{1}{1 - \cos x}$	1) $\log_a x \cdot y = \log_a x + \log_a y$
$D: tgx \to \frac{1}{\cos^2 x}$	$D: \ln x \to \frac{1}{x}$	$6)\int \frac{1}{\cos^2 x} dx = tgx + C$	sostituzione	2	$\lim_{n \to +\infty} \frac{\ln n}{\sqrt{n}} = 0$	$7)\lim_{x\to 0}\frac{arcsenx}{x}=1$	$2) \log_a \frac{x}{y} = \log_a x - \log_a y$
$D: \cot gx \to -\frac{1}{sen^2x}$	$D: x^x \to x^x (\log x + 1)$	$7)\int \frac{1}{sen^2x} dx = -\frac{1}{tgx} + C$		$-7\lim_{x\to 0}\frac{\log_a(1-x)}{x}$		$8)\lim_{x\to 0} \frac{arcsen\ ax}{bx} = \frac{a}{b}$	3) $\log_a(x)^k = k \log_a x$ $\log_b x$
$D: \arcsin x \to \frac{1}{\sqrt{1-x^2}}$	$D: \operatorname{arctg} f(x) \to \frac{1}{1 + f(x) ^2} \cdot f'(x)$	$8) \int \frac{1}{\sqrt{1-x^2}} dx = arcsenx + C$	$2)\int \frac{1}{senx} dx = \log \left \operatorname{tg} \frac{x}{2} \right + C$	$8)\lim_{x\to 0}\frac{\lg_e(1+x)}{x}$	<u>x)</u> = 1	$9)\lim_{x\to 0} \frac{arctg\ x}{x} = 1$	4) $\log_a x = \frac{\log_b x}{\log_b a}$ 5) $a^{\log_a x} = x$
$\frac{\sqrt{1-x^2}}{D:[f(x)]^m \to m[f(x)]^{m-1} \cdot f'(x)}$	$D:\operatorname{arccotg} f(x) \to -\frac{1}{1+[f(x)^2]}.$		$3) \int \frac{1}{\cos x} dx = \log \left \frac{1 + \operatorname{tg} \frac{x}{2}}{1 - \operatorname{tg} \frac{x}{2}} \right + C$	$9)\lim_{x\to 0}\frac{a^x-1}{x}=$	$= \ln a \qquad \lim_{x \to 0} \frac{e^x - 1}{x} = \frac{1}{x}$	$10 \lim_{x \to 0} \frac{x}{bx} = \frac{a}{b}$	$Es.3^x \ge 2 \to x \ge \log_3 2$
	160606060606060606060606060606060606060	000000000000000000000000000000000000000	1 21	10) $\lim_{x\to 0} \frac{(1+x)}{x}$	$\frac{a-1}{a} = a$	$11) \lim_{x \to 0} \frac{bx}{bx} = \frac{b}{6}$	Esemp.3 ^x = 2 \rightarrow log ₃ 3 ^x = log ₃ 2 \rightarrow \rightarrow x log ₃ 3 = log ₃ 2 \rightarrow x = log ₃ 2
$D: \sqrt{f(x)} \to \frac{1}{2\sqrt{f(x)}} \cdot f'(x)$	$D: e^{f(x)} \to e^{f(x)} \cdot f'(x)$	$10) \int \frac{1}{\sqrt{1+x^2}} dx = \log(x + \sqrt{1+x^2}) + C$	$4) \int tg \times dx = -\log \cos x + C$	11) $\lim_{x \to \infty} \frac{(1+x)}{1}$	$\frac{\int_{0}^{a}-1}{x}=1 \lim_{n\to+\infty} \sqrt[n]{n} =$	$= 1 \begin{cases} x \to 0 & x^3 = 6 \\ 12 \lim_{x \to 0} \frac{x - arctgx}{x^3} = \frac{1}{3} \end{cases}$	operazioni con i radicali: $\sqrt[9]{64} = \sqrt[9]{2^6} \rightarrow \sqrt[3]{2^2}$
$D: \sqrt[n]{[f(x)]^m} \to \frac{mf'(x)}{n\sqrt[n]{[f(x)]^{n-m}}}$	$D: \mathbf{a}^{f(x)} \to a^{f(x)} \cdot f'(x) \cdot \log_a e$	$11) \int \frac{1}{\sqrt{x^2 - 1}} dx = \log(x + \sqrt{x^2 - 1}) + C$	$5)\int \frac{1}{x^2 - 1} = \frac{1}{2}\log \frac{x - 1}{x + 1} + C$	$12)\lim_{x\to 0} x^{\alpha} \lg x = 0$	$0 \alpha > 0$	$ \begin{array}{ccc} 12 & & & & \\ x \to 0 & & x^3 & & 3 \end{array} $ Altri limiti notevoli	$\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{a \cdot b}$
$D: sen f(x) \to [\cos f(x)] \cdot f'(x)$	$D: \log f(x) \to \frac{1}{f(x)} \cdot f'(x)$	$12)\int \frac{1}{1-x^2} dx = \frac{1}{2} \log \frac{1+x}{1-x} + C$	$\int sen^{n}x dx = -\frac{sen^{n-1}x \cos x}{n} + \frac{n-1}{n} \int sen^{n-2}x dx$	2		$\lim_{n \to +\infty} \frac{n^{\alpha}}{a^n} = 0 \lim_{n \to +\infty} \frac{n! \cdot a^n}{n^n} = 0$	$ \frac{\sqrt[3]{5} \cdot \sqrt{2} = \sqrt[6]{5^2} \cdot \sqrt[6]{2^3} = \sqrt[6]{25 \cdot 8}}{\sqrt[2]{3} \cdot \sqrt[2]{3} = 3} $
$D: \cos f(x) \to -[senf(x)] \cdot f'(x)$	$D: \log_a f(x) \to \frac{1}{f(x)} \cdot f'(x) \cdot \log_a$	$\frac{1)\int f(x)^{\alpha} \cdot f'(x) \ dx = \frac{1}{\alpha + 1} [f(x)]^{\alpha + 1} + C$		$\lim_{x \to +\infty} \frac{a}{x^{\alpha}} =$	=+∞α>1	$\lim_{n \to +\infty} \frac{a^n}{n!} = 0 \lim_{n \to +\infty} \frac{a^n}{n^n} = 0$	Scomposizione di un'eq. di 2° grado. $ax^2 + bx + c = x_1, x_2$
$D: [f(x)]^{g(x)} \to [f(x)]^{g(x)}$		$2) \int \frac{f'(x)}{f(x)} dx = \log f(x) + C$	$7) \int sen^2 x dx = \frac{x - senx \cdot \cos x}{2} + C$	se: lim $\underline{x^n + bx^{n-1}}$	$\frac{1+c}{n} > a = \pm \infty$		$a(x-x_1)(x-x_2)$ Scomposizione con se n
$D: tg \ f(x) \to \frac{1}{\cos^2 f(x)} \cdot f'(x)$	$\left[g'(x)\log f(x) + g(x)\frac{f'(x)}{f(x)} \right]$	$3) \int e^{f(x)} \cdot f'(x) dx = e^{f(x)} + C$	$8) \int \cos^2 x dx = \frac{x + senx + \cos x}{2} + C$	x→±∞ x ^a +bx ^c FORME INDE	n = a = rapp.coeff. n < a = 0 TERMINATE	$\lim_{n\to+\infty} \left(1 + \frac{3}{n^2 + n^4}\right)^{\frac{n-\tau n^2}{3}} = e^{-\frac{\pi n^2}{3}}$	$x^{2} - sx + p : (x^{2} - 5x + 6)$ $x^{2} - sx + p : (x^{2} - 5x + 6)$ $x^{2} - sx + p : (x^{2} - 5x + 6)$ $x^{2} - sx + p : (x^{2} - 5x + 6)$ $x^{2} - sx + p : (x^{2} - 5x + 6)$
$D: \cot f(x) \to -\frac{1}{sen^2 f(x)} \cdot f'(x)$	$D: [f(g(x))] \to f'[g(x)] \cdot g'(x)$	$4) \int \cos f(x) \cdot f'(x) dx = senf(x) + C$		0/0 mettere in ev ∞/∞ mettere in e + ∞ - ∞ razz, o t		iterio del rapporto:	$(a^{2}-b^{2}) = (a+b)(a-b)$ $(a^{3}-b^{3}) = (a-b)(a^{2}+ab+b^{2})$
$D: arcsen f(x) \to \frac{1}{\sqrt{1 - [f(x)]^2}} \cdot f'(x)$	- [a() ()]() () ()	$5)\int senf(x) \cdot f'(x) dx = -\cos f(x) + C$		$0 \cdot \infty$ transforms in ∞ 0^0 ; ∞^0 ; $1^{\pm \infty}$	/∞ o in 0/0 capovolgendo li n-	$ \underset{\rightarrow \infty}{\text{m}} \frac{a_n + 1}{a_n} = \underset{\rightarrow}{\to} \begin{cases} 1 & a_n \to 0 \\ \rightarrow & 1 & a_n \to \infty \end{cases} $	$(a^4 - b^4) = (a^2 - b^2)(a^2 + b^2)$
$\sqrt{1-[f(x)]^2}$	$D: [f(x)\cdot g(x)] \to f'(x)\cdot g(x) + f(x)\cdot$	$6) \int \frac{f'(x)}{\cos^2 f(x)} dx = tgf(x) + C$		$\lim_{x \to x_0} f(x)^{g(x)}$	$= e^{\lim_{x \to x_0} g(x) \cdot \log_e f(x)} $ $= e^{\lim_{x \to x_0} g(x) \cdot \log_e f(x)} $ $= e^{\lim_{x \to x_0} g(x) \cdot \log_e f(x)} $	orema della media aritmetica: la successione an ammette limite allora:	$(a\pm b) = a \pm 3a \ b + 3ab \pm b$
$D:\arccos f(x) \to -\frac{1}{\sqrt{1-[f(x)]^2}} \cdot f'(x)$	$D: \left[\frac{f(x)}{f(x)}\right] \to \frac{f'(x) \cdot g(x) - f(x) \cdot g}{f'(x) \cdot g(x) - f(x) \cdot g}$	Se abbiamo: $\int \sqrt{1-\left(\frac{x}{k}\right)^2} dx$ per risolverlo bisogna ope	rare la	esempi $n/\infty = 0$ $n/0 = \infty$	$\infty/n = \infty$ $0/n = 0$	$ \frac{a_1 + a_2 + \dots a_n}{n} = \lim_{n \to \infty} a_n $ orema della media geometrica:	$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $\frac{ax^2 + bx + c > 0}{a}$
	2-1/2	sostituzione (dopo con le formule trigon. uscirà un seno	PER SOSTITUZIONE o un coseno Nell'applicare la formula di sostituzione	$\infty/0 = \infty$ $\infty^3/\infty^3 =$		$\frac{1}{m} \sqrt[n]{a_1 + a_2 \dots + a_n} = \lim_{n \to \infty} a_n$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
FUNZIONI FRATTE: $N \ge D$: divido il num $\frac{f(x)}{g(x)} = +quindi \int \frac{f(x)}{g(x)} = \int Q(x) dx + \int \frac{R(x)}{g(x)} dx$	eratore per il denominatore	$\frac{x}{k} = \operatorname{sen} t \to x = k \operatorname{sen} t \in \operatorname{d} x = (k \operatorname{cos} x)$	ta x con ψ(t) nett integrando e ax con ψ	, D1	EGOLA DE L'HOPITAL:	→ v 1 2 n n→ ∞ n	$ \Delta < 0 \forall x \in R ax^2 + bx + c = 0 $
f(x) G(x)	Inte	grazione per parti: $f'(x) = f(x) =$	sostituire la x con $f(x) = t$	la	regola de l'Hopital si app	lica nelle forme ∞/∞ o 0/0	$\Delta > 0 \qquad x1 ; x2 con x1 < x2$ $\Delta = 0 \qquad x1 = x2$
$\mathbb{R}(x) \mathcal{Q}(x)$ $\mathbb{Q}(x) = \text{quoziente} \mathbb{R}(x) = \text{resto} g(x) = \text{divisor}$					·∞ capovolgere ·∞-∞ MCD o razi	onalizzazione	$\Delta < 0$ N.S. reale $ax^2 + bx + c < 0$
N <mark><</mark> D∶	· · · · · · · · · · · · · · · · · · ·	$g(x) = g'(x) = g'(x) = f'(x) \cdot g(x) \cdot dx = f(x) \cdot g(x) - \int f(x) \cdot g(x) dx$	$dx \rightarrow (g(t)) dt$		alvolta può essere utile ric		$\begin{array}{ll} \Delta > 0 & xI < x < x2 \\ \Delta = 0 & N.S. \ reale \end{array}$
l° caso $\Delta > 0$ Bisogna scomporre il denominatore parametri A e B e separare l'integrale	come proaotio, trovare il valore dei	$f(x) \cdot g(x) \ ax = f(x) \cdot g(x) - \int f(x) \cdot g(x)$	g(x)ux	f	$f - g = f\left(1 - \frac{g}{f}\right) = g\left(\frac{f}{g} - 1\right)$		$\Delta = 0$ N.S. reale $\Delta < 0$ N.S. reale
2° caso $\Delta = 0$ 1) Scompongo il denominatore facer e lo elevo ad una potenza negativa (-2)	ndolo diventare quadrato di binomio Reg	ola di decomposizione in somma: $f(x) \pm b \cdot g(x)$ $dx = a \int f(x) dx \pm b \int g(x) dx$	INTERGRALE DEFINITO		(- / (0	/	$-\frac{b}{a} + \sqrt{\left(\frac{b}{a}\right)^2 - ac}$
2) Se il numeratore contiene la x uso 3° caso $\Delta < 0$ 1) Riconduco l'integrale alla Formu	la n° 1. Pris	na formula di sostituzione:	Sia f(x) una funzione continua in (a , integrale definito della funzione e si	indica con ·	e il limite si presenta nel corre all' identità: ƒ g =	e forme $0^0; \infty^0; 1^{\pm \infty}$ si $e^{g \cdot \log_e f}$	$x_{1,2} = \frac{2^{-1}\sqrt{(2)^{-4ac}}}{a}$
2) Se il numeratore contiene la x (e trasformo per farlo diventare come $f'(x)/f(x)$		$f(\phi(x)) \cdot \phi'(x) dx = \left[\int f(t) dt \right]_{t=\phi(x)}$ grazione per parti 2° modo:	$\int_{a}^{b} f(x)dx = F(b) - F(a)$ L' integrale rappresenta l'area della	ı parte di piano	,		Formulario Analisi Matematica II
$\left \frac{px + q}{ax^2 + bx + c} \right = \frac{\frac{p}{2a} \left(2ax + \frac{2aq}{p} \right)}{ax^2 + bx + c} = \frac{p}{2a} \left \frac{2ax + b + \frac{2aq}{p} - b}{ax^2 + bx + c} \right $		$F(x) \cdot g(x)dx = F(x) \cdot g(x) - \int F(x) \cdot g'(x)dx$	racchiusa tra la curva e l'intervallo (l'area sta sopra l'asse delle x è posit				Pag. 1/2
$\frac{1}{ax^2 + bx + c} = \frac{1}{ax^2 + bx + c} = \frac{1}{2a} \frac{1}{ax^2 + bx + c}$		re F(x) è una primitiva immediata di f(x)	sotto è negativa.				by <u>www.qiuseppechierchia.it</u>

gradi	rad	Sen	Cos	Tg (sen/cos)	Cota (1/ta)			Tini di disa	vontinuità:]
0	0					$\int uispuri \int (-x) = -\int (x)$		La funzione fa un salto		
0	U	0	1	0	±∞ 	y'= 0 Ma	ssimi e minimi	$\lim_{x \to x_{0^{-}}} = l_1$	$\neq \lim_{x \to x_{0^+}} = l_2$	
18	$\pi/10$ 0.314	$\frac{1}{4}\left(\sqrt{5-1}\right)$	$\frac{1}{4} \left(\sqrt{10 + 2\sqrt{5}} \right)$	$\sqrt{1-\frac{2}{5}\sqrt{5}}$	$\sqrt{5+2\sqrt{5}}$	y'> 0 Intervalli crescenti (crescenza) 2ª specie: uno		no dei due limiti va all'infinito o non esiste liscontinuità di tipo eliminabile: se esiste ed è nite		
30	$\pi/6$ 0.523	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$	""= 0 Punti di flanco		ed x0 non appartiene al dominio della funzione = l		
45	$\pi/4$ 0.785	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1	Retta tangente in un punto		qui: $\mathbf{y} = \mathbf{m} \mathbf{x} + \mathbf{q}$ Quando il limite $\lim_{x \to \pm \infty} f(x) = \pm \infty$	Scala delle velocità: $ \rightarrow x^{x} $	
60	$\pi/3$ 1.047	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$	$y = f(x_0) + f'(x_0)(x - x_0)$ $m = \lim_{x \to \pm \infty} \frac{1}{x_0}$		ssario trovare gli eventuali asintotoi obliqui $\frac{f(x)}{x} q = \lim_{x \to \pm \infty} [f(x) - mx]$		
72	$2\pi/5$ 1.256	$\frac{2}{1}\left(\sqrt{10+2\sqrt{5}}\right)$	$\sqrt{5}-1$	$\sqrt{5+2\sqrt{5}}$	$\sqrt{1-\frac{2}{5}\sqrt{5}}$			ambi i limiti esistano e siano finiti con m ≠ 0 , allora la + q è un asintoto obliquo della funzione	$\rightarrow x^{\alpha}$	
	$\pi/2$	4()	4							$\rightarrow \log_e x$
90	1.57	1	0	±∞	0		SERIE Consideriamo una successione a _n di	numeri	SERIE GEOMETRICA (potenze di un numero	Sia an una successione a termini positivi e supponiamo che esista
180	π 3.1415	0	-1	0	±∞		reali La somma dei primi n termini della : detta somma parziale si indica con:	uccessione	$\sum_{k=0}^{\infty} x^k = 1 + h + h^2 + + h^n$ I numero h si dice ragione della serie geometrica. Per conoscere il carattere della serie vediamo la soma par	$l = \lim_{l \to \infty} \frac{a_{n+1}}{l}$ $l < 1 \implies \sum_{k=1}^{\infty} a_k < +\infty \text{ converge}$
270	$3\pi/2$ 4.712	-1	0	±∞	0		$s_n = a_1 + a_2 + \dots + a_n = \sum_{k=1}^{n} a_k$		$s_n = 1 + h + h^2 + + h^{n-1} = \frac{1 - h^n}{1 - h}$ per la regola di ru	fini $l > 1 \implies \sum_{n=1}^{\infty} a_n = +\infty$ diverge
360	2π	0	1	0	±∞				1-h si ha ciò moltiplicando e dividendo per (1-h)	nel caso il limite è = 1 non possiamo dire nulla riguardo al
	6.283	0	,	Ü	Σ		termine generale a_n $-\sum_{k=1}^{\infty} a_k = \lim_{n \to +\infty} s_n = \lim_{n \to +\infty} \sum_{k=1}^{n} a_k$		Il carattere della serie è quindi dato dal limite: $\lim_{n\to\infty} s_n = \lim_{n\to\infty} \frac{1-h^n}{1-h} = \begin{cases} \text{la serie converge a per } -1 < h \\ \text{s erie diverge per } h \geq 1 \\ \text{la serie è indeterminata per h} \end{cases}$	
Angoli as sen(- x):		(-)	(-)	((_	+x) = $-senx$	$K=1$ $N \to +\infty$ $N \to $	o serie per k	$\lim_{n\to\infty} \int_{n}^{\infty} \frac{1}{n} dt = 1$ la serie è indeterminata per h	≤ −1 CRITERIO DELLA RADICE
cos(-x):		$sen\left(\frac{\pi}{2} - x\right) = cc$	$ \cos x \left sen\left(\frac{\pi}{2} + x\right) \right = $	$cos x$ $sen(\pi - x)$ $cos(\pi - x)$		(+x) = -senx (+x) = -cos x	che va da 1 a $+\infty$, di ak 1) se il limite per $n \rightarrow +\infty$ di an esiste ed è u	-		solo per le succ. a termini positivi Sia an una successione a termini non negativi e
tg(-x)=	-tgx	$\cos\left(\frac{\pi}{x} - x\right) = se$	$cos\left(\frac{\pi}{2} + x\right) =$			x) = tgx	finito si dice che la serie è convergente 2) se il limite di sn vale $+\infty$ oppure $-\infty$, si d	ice che la	SERIE ARMONICA (diverge positivamente)	supponiamo che esista il limite:
		(2 ,)					serie è divergente. Una serie divergente o convergente si dice i		$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots$	$l = \lim_{n \to +\infty} \sqrt[n]{a_n}$ allora $l < 1 \implies \sum_{k=1}^{\infty} a_k < +\infty \text{ converge}$
		$tg\left(\frac{\pi}{2} - x\right) = ctg$	$tg\left(\frac{\pi}{2} + x\right) = -$	-ctgx			 Se non esiste il limite per n→+∞ di sn si serie è indeterminata. 		SERIE ARMONICA GENERALIZZATA: 1 (converge se $\alpha > 1$)	$l > 1 \implies \sum_{k=0}^{\infty} a_k = +\infty$ diverge
Formule	Formule goniometriche Formule di sottrazione Formule di triplicazione			Il carattere di una serie è la sua proprietà di essere convergente o divergente oppure indeterminata.		$1 + \frac{1}{2^{\alpha}} + \dots + \frac{1}{n^{\alpha}} + \dots \begin{cases} \text{converge se } \alpha > 1 \\ \text{diverge se } \alpha \le 1 \end{cases}$	nel caso il limite è = 1 non possiamo dire nulla riguardo al			
Formule			sen(x - y) = senx cos(x - y) = cos x			$2nx - 4sen^3x$	Condizione necessaria ma non suffic	iente ner la		carattere della serie CRITERI DI CONFRONTO
1 1	1	$\cos y + senx \cos y$ $\cos y - senx seny$, .,		$\cos 3x = 4\cos 3tex -$		convergenza di una serie:		CRITERIO DI LEIBENIZ (si usa per le serie	
tg(x+y)	$=\frac{tgx+t}{}$	tgy_	$tg(x-y) = \frac{tgx - 1}{1 + tgx}$	·tgy	$tgx = \frac{3tgx - 1}{1 - 3t}$	$\frac{1}{2}g^2x$	se la serie $\sum_{n=0}^{\infty} a_n$ è convergente allo	ra la	segni alterni) ∞	Se
		•					K=1 successione a₁tende a zero per n→+		$\sum_{n=1}^{\infty} (-1)^n \cdot a_n \qquad a_n \ge 0$	$a_n \le b_n$ e $\sum_{n=0}^{\infty} b_n$ conv. $\Rightarrow \sum_{n=0}^{\infty} a_n$ conv.
Formule sen2x =	~ *			Formule di prosta			Riassumendo:			$a_n \leq b_n \in \sum_{n=1}^{\infty} b_n \text{ conv.} \implies \sum_{n=1}^{\infty} a_n \text{ conv.}$
cos(2x)	$=\cos^2 x$	$x - sen^2 x = 1 - 2se$	$n^2x = 2\cos^2 x - 1$	senx + seny = 2	$sen\frac{x+y}{2}\cos\frac{x}{2}$	<u>- y</u> 2.	se il limite della successione è divers → allora la serie necessariamente d		$\lim_{n \to \infty} a_n = 0 \qquad a_n \ge a_n + 1 \qquad \forall n$	
()	son2	$-\frac{1-\cos 2x}{\cos 2x}$	$s^2 x = \frac{1 + \cos 2x}{2}$	sany - sany - 2	$\frac{z}{x+y} = x$	- - <u>y</u>			n→∞ quindi la serie converge	
		2 ,00	2						CRITERIO DEGLI INFINITESIMI	$a_n \le b_n$ e $\sum_{n=1}^{\infty} a_n$ diverg. $\Rightarrow \sum_{n=1}^{\infty} b_n$ diverg.
tg 2x =	$\frac{2tgx}{1 + x^2}$			$\cos x + \cos y = 1$	$2\cos\frac{x+y}{2}\cos\frac{x}{x}$	$\frac{x-y}{2}$	Proprietà sulle serie:		$\lim_{n \to \infty} \mathbf{n}^{\alpha} \cdot \mathbf{a}_{n} = l$	da ciò si deduce che:
	1-1g-x				2	2	PROPOSIZIONE 1) se le serie di ter generale a _k e b _k sono regolari allora a	mine nche la	n→∞ "	
				$\cos x - \cos y = 0$	-2sen sen	2	serie di termine generale (a _k + b _k) è r	egolare.	$l = [0 + \infty] \text{a. } \alpha > 1 \rightarrow \sum_{n=1}^{\infty} \alpha_{n} \text{ converges}$	ente $\lim_{n\to\infty} \frac{a_n}{b_n} = l \in [0, \infty[\Rightarrow \begin{cases} \text{la serie } \sum_{n=1}^{\infty} a_n \text{ e } \sum_{n=1}^{\infty} b_n \\ \text{hanno lo stesso carattere} \end{cases}$
Formule			Formule di bisezio	one:			$\sum_{k=1}^{\infty} (a_k + b_k) = \sum_{k=1}^{\infty} a_k + \sum_{k=1}^{\infty} b_k$		$i \in [0, +\infty[$ $\in \alpha > 1 \to \sum_{n=1}^{\infty} a_n$ converge	hanno lo stesso carattere
	_		$sen\frac{x}{2} = \pm \sqrt{\frac{1-\cos x}{2}}$		$\frac{sen^2\alpha + \cos^2\alpha}{sen^2\alpha = 1 - \cos^2\alpha}$		PROPOSIZIONE 2) se la serie di ten generale as è regolare, anche la serie		l .	
cos x · cos	$s y = \frac{1}{2} \left[c c \right]$	cos(x+y)+cos(x-y)	$\left \cos\frac{x}{2} = \pm\sqrt{\frac{1+\cos^2 x}{2}}\right $	<u> </u>	$\cos^2 \alpha = 1$		generale c • ak è regolare per ogni c	app. a R.	$l \in [0,+\infty]$ e $\alpha \le 1 \Rightarrow \sum_{n=0}^{\infty} a_n$ diverge	$\frac{\sum_{n=1}^{\infty} b_n \text{ convergente}}{\sum_{n=1}^{\infty} a_n \text{ convergente}}$
		n(x+y)+sen(x-y)		_	os x	sen u	$\sum_{k=1}^{\infty} c \cdot a_k = c \cdot \sum_{k=1}^{\infty} a_k$		$l \in]0,+\infty]$ e $\alpha \le 1 \Rightarrow \sum_{n=1}^{\infty} a_n$ diverge	$\lim_{n \to \infty} \frac{a_n}{b_n} = 0$
Funz.	Dor	n. interv. Gra		Monotonia			_			(")
Sen	-oo; +o			oscillante			Una serie è a termini non negat	ivi se ner		$\int_{n=1}^{\infty} b_n \text{ divergente}$
Cos Tg	-oo; +o		-1;+1 -∞;+∞	oscillante monotona			ogni n ∈ N risulta a₁ ≥ 0.			$\begin{cases} \frac{1}{n-1} \\ \lim_{n \to \infty} \frac{a_n}{b_n} = +\infty \end{cases} \Rightarrow \sum_{n=1}^{\infty} a_n \text{ divergente}$
Cotg	-oo; +o		-∞;+∞	decrescente			Una serie è a termini positivi se ogni n.	a₁ >0 per		$\left(\stackrel{n\to\infty}{\longrightarrow} b_n \right)$
Arcsen	-1;+1	-1;+1	-π/2;+ π/2				Teorema sulle serie a termini non ne serie a termini non negativi non può			
Arcto	-1;+1		0; π	decrescente			indeterminata. È quindi convergente			
Arctg	-∞;+0	∞ ; +∞	$-\pi/2;+\pi$	/2 monotona			divergente positivamente.			

Formulario Analisi Matematica II Pag. 2/2

by www.giuseppechierchia.it

> 6 18 0 -3 2 6 0 -1 0