PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

E21B 33/138, 43/25

(11) International Publication Number:

WO 96/19637

A1

(43) International Publication Date:

27 June 1996 (27.06.96)

(21) International Application Number:

PCT/US95/15664

(22) International Filing Date:

4 December 1995 (04.12.95)

(30) Priority Data:

361,431

21 December 1994 (21.12.94) US

(71) Applicant: UNION OIL COMPANY OF CALIFORNIA [US/US]; Suite 4000, 2141 Rosecrans Avenue, El Segundo, CA 90245 (US).

(72) Inv nt rs: DOVAN, Hoai, T.; 4622 Caladium Drive, Sugar Land, TX 77479 (US). SANDIFORD, Burton, B.; P.O. Box 5029, Balboa Island, CA 92662 (US). HUTCHINS, Richard, D.; 17507 Sunny Trail Lane, Sugar Land, TX 77479 (US).

(74) Agents: ABRAHAMS, Colin, P. et al.; Ladas & Parry, Suite 2100, 5670 Wilshire Boulevard, Los Angeles, CA 90036 (US).

(81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LT, LU, LV, MD, MG, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TT, UA, UG, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, LS, MW, SD, SZ, UG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: METHOD FOR MODIFYING GELATION TIME OF ORGANICALLY CROSSLINKED, AQUEOUS GELS

(57) Abstract

Enhanced gel properties (e.g., faster gel time, higher attainable gel strengths) are achieved by reducing the pH and/or increasing the salt of a monovalent and/or divalent cation concentration of an aqueous reaction medium in which a polymer is reacted with an organic crosslinking agent. In addition, the gelation time of an aqueous composition comprising a polymer and an organic crosslinking agent is reduced by heating the composition above about 48.9 °C (120 °F) prior to injecting the composition into a subterranean formation. Alternatively, the gelation time of the aqueous composition is increased by incorporating a pH increasing agent into the composition.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	ŪA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ.	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gabon		. •		

METHOD FOR MODIFYING GELATION TIME OF ORGANICALLY CROSSLINKED, AQUEOUS GELS

BACKGROUND

The present invention relates to (a) methods for modifying the gelation time of organically crosslinked, aqueous gels, (b) gels formed by the foregoing methods, (c) compositions for forming the gels, and (d) subterranean formations containing the gels.

Gels are used for several purposes in

connection with the production of a natural resource (e.g., oil, natural gas, and geothermal fluids) from subterranean formations. For example, gels are employed (a) to reduce the water/natural gas production ratio, (b) to reduce the water/oil production ratio, (c) to plug off water producing zones within a subterranean formation, and (d) to conform the fluid permeability across the face of a subterranean formation.

In addition, gels can be used to contain migrating, hazardous wastes in the subsurface.

An important factor in forming these gels is the time it takes for a gelable, polymer-containing composition to gel. In some environments (e.g., low temperature oil-producing reservoirs), the gelation time is too long, requiring extended shut in periods to allow complete gelation of the composition and to prevent the flow of uncrosslinked polymer back into a wellbore.

In other environments, the gelation time is too short. In this latter case, the rapid formation of the gel impedes the satisfactory distribution of the gelable composition prior to gelation.

Accordingly, there is a n d to modify the gelation time f a gelable composition in order to form a gel in a satisfactory time frame.

SUMMARY OF THE INVENTION

The present invention satisfies this need by 5 providing compositions having variable gelation times. More specifically, the compositions of the present invention comprise (A) an ingredient selected from the group consisting of water soluble, crosslinkable polymers and polymerizable monomers capable of forming a 10 crosslinkable polymer; (B) an organic crosslinking agent; (C) water; and (D) a gelation time modifying agent selected from the group consisting of salts of monovalent and divalent cations, pH modifying agents, and mixtures thereof. pH modifying agents which reduce the pH of the 15 composition (hereinafter referred to as "pH reducing agents") as well as salts of monovalent and divalent cations shorten the gelation time of the composition, while pH modifying agents which increase the pH of the 20 composition (hereinafter referred to as "pH increasing agents") lengthen the gelation time of the composition.

The present invention also provides methods for forming a gel in a subterranean formation and recovery systems formed thereby. In one version, the gel is formed 25 in a subterranean formation by injecting one of the foregoing compositions into at least a portion of the subterranean formation. In another version, the ingredients which form the composition are distributed between two slugs (e.g., one slug comprising (A) water, (B) 30 the water soluble, crosslinkable polymers and/or polymerizable monomers, and (C) the gelation time modifying agent and th other slug comprising th cr sslinking agent), with each slug being inject d, simultaneously or sequentially, into at least a portion of the subterranean formation. In an alternative version, a 35 composition comprising (A) water, (B) the water soluble,

crosslinkable polymers and/or polymerizable monomers, and (C) th crosslinking agent (but substantially devoid of any gelation time modifying agent) is heat d at the surfac to at least about 48.9°C (120°F) and then injected into the subterranean formation.

The recovery system comprises a subterranean formation, a well penetrating at least a portion of the subterranean formation, and a gel present in at least a portion of the subterranean formation, the gel being formed by any of the methods described in the preceding paragraph.

DETAILED DESCRIPTION OF THE INVENTION

The gelation time of an organically crosslinked, aqueous gel is modified by incorporating a gelation time modifying agent into a composition used to 15 form the gel. The gelation time modifying agent is selected from the group consisting of pH modifying agents (more specifically, pH reducing agents and pH increasing agents), salts of monovalent and divalent cations, and mixtures thereof. The pH reducing agents are selected from 20 the group consisting of acids, acid precursors, buffers having a buffering capacity at or below about pH 6.5, and mixtures thereof. Acids include, but are not limited to the organic and inorganic acids listed in the Handbook of Chemistry and Physics, 65th Edition, Weast, Editor-in-25 Chief, CRC Press, Inc. Boca Raton, Florida (1984) on pages D-165 to D-167 (hereinafter referred to as the "Handbook"), the Handbook being incorporated herein in its entirety by reference. Preferred acids are sulfuric acid, hydrochloric acid, acetic acid, citric acid, and carbonic acid.

Typical classes of acid precursors include hydrolyzable esters, acid anhydrides, sulfonat s, organic halides, acid salts (.g., ammonium citrat and ammonium acetate), acid gases (e.g., carbon dioxide, hydrogen sulfide, and sulfur dioxide), and salts of a strong acid and a w ak base (e.g., ammonium chloride, ammonium sulfate,

4

ammonium nitrate, and amm nium phosphate). Exemplary specific acid precursors are ethyl formate, propyl formate, ethyl acetate, glycerol monoacetate, acetin, glycerol diacetate, diacetin, xanthanes, thiocyanates, polyethylene esters, ethyl acetate esters, acrylate copolymers, and dimethyl esters. Ethyl formate, propyl formate, ethyl acetate, dibasic esters, ammonium acetate, ammonium citrate, carbon dioxide, and their mixtures are the preferred acid precursors.

Buffers having a buffering capacity at or below about pH 6.5 include, but are not limited to, potassium tartrate, potassium tetroxalate, and potassium phthalates.

All other things being equal, the lower the 15 pH of a gel-forming composition of the present invention, the shorter the gelation time. Accordingly, in those instances where it is desired to obtain short gelation times, the pH of the gel-forming composition is typically about 6.5 or less, more typically about 6 or less, even more typically about 5.5 or less, and most typically about 20 5 or less. Preferably, in such instances, the gel-forming composition has a pH of about 4.5 or less, more preferably about 4 or less, even more preferably about 3.5 or less, and most preferably about 3 or less. Even lower pH's 25 (e.g., about 2.5, 2, 1.5, 1 or less) are also very desirable.

Regarding salts of monovalent and divalent cations, when all other parameters are held constant, the higher the cation concentration in the gel-forming

30 composition, the shorter the gelation time for a given gelforming composition. In addition, when all other paramet rs ar held constant, an incremental increase in the concentration of a divalent cation is more effective for decreasing the gelation time of a gel-forming

35 composition than a corresponding incremental increase in the concentration of a monovalent cation in the gel-forming

```
cation is used the amount added into the amonovalent
                                                                                                   cation.

Cation is used, the amount added (up to the saturation about 1 or more.
                                                                                                point of the composition) is typically about 1 or more,
                                                                                             more typically about 2 or more, preferably about 1 or more, and most breferably about

More of the composition) is typically about 1 or more, and most breferably about 3 or more, about
                                                                                          More typically about 2 or more, preferably about 3 or more, and most preferably about 4 or more, and most preferably about 4 or more the amount of
                                                                                                                                                                                                                                 PCT/US95/15664
                                                                                        5 or More, Weight Percent.
                                                                                     salt to add to Percent.

Multiply the desired weight percent of salt to be added by
                                                                                  salt to add to form a composition of the weight of all ingredients in the final composition. As
                                                                                the weight desired weight percent or sair to be added and claims. the term mis added.
                                                                             Used in the of all ingredients in the final composition.

Or Madding Specification and claims, the term wis addedness in rafarance to meins addedness in the final composition.
                                                                          or madding me specification and claims, the term mis added in the specification and claims, the term mis added in reference to using a cation in formulation
                                                                        or "adding" or similar language in reference to using a compositions of the present invention in formulating
                                                                     the compositions and/or divalent cation in solid salt or a salt-containing first liquid
                                                                   either a solid salt or a salt containing first liquid

acount into a salt containing first liquid

where the right
                                                                 either a solid sait or a sait-containing first liquid where the first timid.
                                                             (usually a solution)

Ifquid has a higher into a second liquid where the amount of salt of a monovalent cation added

(usually a solution)

Ifquid has solution as second liquid where the second liquid.
                                                           Commonly, the nigner lonic strength than the second liquid of a monovalent cation added
                                                        is about 10 or less, more commonly about 9 or less, even
                                                     is about 10 or less, more commonly about 9 or less, even described about 7 or
                                                   less, Weight Percent.
                                           cation used concerning the amount or sair or a gival or a more frequently about 0.5
                                        cation used in formulating the gel-forming composition, and most
                                                                                      Concerning the amount of salt of a divalent
                                      Trequently about 0.15 or more requently about 0.75 or more, and most weight nercent is added into 1.
                                   frequently about 0.75 or more added most the composition). Preferably. the
                                the saturation point more, weight percent is added (up to a divalent cation added in formulating
                              the saturation point of the composition).

the commosition is a divalent cation added in formulating

more preferably, the composition of the comp
                           the composition is advalent cation added in formulating or more. even more preferably about 2.5 or more and more. and most
                        the composition is about 1.5 or more, more, even more preferably about 2.5 or more. Weight bercent. Typically, the
                     preferably about 3 or more, weight percent.
                   preservably about 3 or more, weight percent.

more twningly about 3 or more, weight percent.

The about 9 or more about 9 or more about 9 or more about 9 or more twningly.
                amount or sait or a divalent cation added is about a or less, even more typically about a sor less, even more typically or less, even more typically
             less, more typically about 8 or less, even more typically about 6 or less, weight
            percent.
   exemplary With respect to pH increasing agents, buffering agents having a buffering capacity
hydroxide), buffering agents include bases (e.g., sould buffering capacity
                                                                                                                                              Typically, the
```

XID: 4WO 9619697A1.(3

above about pH 7, and base pr cursors (e.g., quaternary ammonium salts, ur a, substituted ureas, coordinated compounds, salts of a strong base and a weak acid, and basic gases (e.g., ammonia, methylamine, and ethylamine), with the preferred base precursors being urea, thiourea, and mixtures thereof).

All other things being equal, the higher the pH of a gel-forming composition of the present invention, the longer the gelation time. Thus, in those instances

10 where it is desired to obtain longer gelation times, the amount of pH increasing agent used is commonly sufficient for the composition to have a pH of at least about 7, mor commonly at least about 7.5, even more commonly at least about 8, and most commonly at least about 8.5. Preferably, the composition comprises a sufficient amount of the pH increasing agent for the composition to have a pH of at least about 9, more preferably at least about 9.5, even more preferably at least about 10.5.

20 Other gel-forming ingredients include organic crosslinking agents and crosslinkable polymers and/or monomers capable of polymerizing to form a crosslinkable polymer. The organic crosslinking agents are well known to those skilled in the art. Exemplary organic 25 crosslinking agents include, but are not limited to, aldehydes, dialdehydes, phenols, substituted phenols, and ethers. Phenol, resorcinol, catechol, phloroglucinol, gallic acid, pyrogallol, 4,4'-diphenol, 1,3dihydroxynaphthalene, 1,4-benzoquinone, hydroquinone, quinhydrone, tannin, phenyl acetate, phenyl benzoate, 1-30 naphthyl acetate, 2-naphthyl acetate, phenyl chloroacetate, hydroxyphenylalkanols, formaldehyde, paraformaldehyde, acetaldehyde, propionaldehyde, butyraldehyd, isobutyraldehyde, valeraldehyde, heptald hyde, decanal, 35 glyoxal, glutaraldehyde, ter phthaldehyd, hexamethylenetetramine, trioxane, t tra xan,

polyoxym thylene, and divinyleth r ar some of the more

typical organic crosslinking agents. Individual or mixtures of crosslinking agents are used in the present invention.

With respect to the crosslinkable polymers, these polymers are typically water soluble. Common classes of water soluble, crosslinkable polymers include polyvinyl polymers, polyacrylic polymers, polyoxide polymers, polymethacrylamides, cellulose ethers, polysaccharides, lignosulfonates, ammonium salts thereof, alkali metal salts 10 thereof, as well as alkaline earth salts of lignosulfonates. Specific examples of typical water soluble polymers are acrylic acid-acrylamide copolymers, acrylic acid-methacrylamide copolymers, polyacrylamides, partially hydrolyzed polyacrylamides, partially hydrolyzed 15 polymethacrylamides, polyvinyl alcohol, polyvinyl acetate, partially hydrolyzed polyvinyl acetate, polyalkyleneoxides, carboxycelluloses, carboxyalkylhydroxyethyl celluloses, hydroxyethylcellulose, galactomannans (e.g., guar gum), substituted galactomannans (e.g., hydroxypropyl guar), 20 heteropolysaccharides obtained by the fermentation of starch-derived sugar (e.g., xanthan gum), and ammonium and alkali metal salts thereof. Preferred water soluble, crosslinkable polymers include hydroxypropyl guar, copolymers of acrylic acid and acrylamide, unhydrolyzed 25 polyacrylamides, partially hydrolyzed polyacrylamides, cationic polyacrylamides, cationic denaturated polyacrylamides, xanthan gum, polyvinyl alcohol, partially hydrolyzed polyvinyl acetate, and the ammonium and alkali metal salts thereof.

One class of cationic polyacrylamides useful as the crosslinkable polymer comprises an (i) acrylamide unit having the formula I

35

and (ii) a cationic unit having the formula II

where Z is an anion and R1 and R2 are independently selected from the group consisting of hydrogen and alkyl groups containing 1 to 10 carbon atoms. In this exemplary cationic polyacrylamide, the mole fraction of acrylamide 10 units of formula I is typically less than about 0.5, more typically about 0.4 or less, and preferably about 0.3 or less, more preferably about 0.2 or less, and even more preferably about 0.1 or less, and most preferably 0, and 15 the mole fraction of cationic units of formula II present in the polymer is commonly at least 0.5, more commonly about 0.6 or more, and preferably about 0.7 or more, more preferably about 0.8 or more, even more preferably about 0.9 or more, and most preferably about 1, provided that the 20 total sum of these mole fractions is 1. (When the mole fraction of cationic units of formula II in the polymer is 1, the polymer is a cationic denatured polyacrylamide.) Preferably, the number of carbon atoms in the alkyl group is 1 to about 5, more preferably 1 to about 3, even more preferably 1 to about 2, and most preferably 1. In 25 addition, the polymer can be a random, block, or alternating polymer.

The crosslinkable polymers are generally available in several forms such as a water solution or broth, a gel log solution, a dried powder, and a hydrocarbon emulsion or dispersion. As is well known to those skilled in the art, different types of equipment are employ d to handl thes different forms of crosslinkable polymers.

Monomers capable of polymerizing to form a crosslinkable polymer include, but are not limited to,

```
acrylamide, vinyl acetate, acrylic acid, methacrylamide, acrylic acid, methacrylamide, monomers and cationic monomers
                                                                                                                                                       acrylamide, vinyl acetate, acrylic acid, methacrylamide oxide, propylene vield the cationic units of atthylene oxide, propylene vield the cationic units of atthylene oxide, propylene vield the cationic units of atthylene oxide, when polymerized.
                                                                                                                                                               ethylene oxide, propylene oxide, and cationic units of above which, when polymerized, yield the cationic units of above which, to complete the cationic units of above and cationic units of above the cationic units of above the cationic units of above and cationic units of above the cationic units of above the
                                                                                                                                                                                                                                                                                                                                                                                                                      optionally, chelating agents and or
WO 9613637
                                                                                                                                                                                                                                       Surfactants are employed in practicing the present include, endium agents are employed in practicing agents endium endium invention.
                                                                                                                                                                                                                           opelonally chelating agents and or chelating the present in gracticing the employed in practicing agents and or chelating agents are chelating agents.
                                                                                                                                                                                                                                                               but are not limited to, polyphosphates (e.g., aminocarboxylic acid), aminocarboxylic tripolyphosphate, hexametaphosphoric acid (EDTA), we tripolyphosphate, ethylenediaminetetraacetic acid (e.g., acids (e.g., polyphosphates acids), aminocarboxylic
                                                                                                                                                                                                                                                  invention. Exemplary types of chelating agents included to polyphosphates acid and not are not limited haxametanhoric acid.
                                                                                                                                                                                                                                                                            tripolypnospnate, nexametaphosphoric acid, aninocarboxy, N-
acids (e.g., athylanadiaminatatraacatic acid, (wenna)
acids (hydroxyathyl)
                                                                                                                                                                                         formula II.
                                                                                                                                                                                                                                                                                                 acids (e.g., ethylenediaminetetraacetic acid (HEDTA), acid
                                                                                                                                                                                                                                                                                                       (hydroxyethyl) ethylenediaminetetraacetic acid (HEDTA);
(hydroxyethyl) ethylenediaminetetraacetic acid (hTA);
(hTA);
(hydroxyethyl) acid (hTA);
(hTA)
                                                                                                                                                                                                                                                                                                                                     acid (DTPA) | N-dinydroxyetnylglycine | 1,3-diketones (e.g. | e.g. | ethylenebis (hydroxyphenylglycine) | e.g. | 
                                                                                                                                                                                                                                                                                                                                                                 acetylacetone, trifiuoroacetylacetone, hydroxycarboxylic senifogaliov hydroxycarboxylic senifogaliov thenoyltrifiuoroacetone, acid. gluconic acid. gluconic acid. tartaric acid.
                                                                                                                                                                                                                                                                                                                          acid (DTPA)) | N-dihydroxyethylglycine |
                                                                                                                                                                                                                                                                                                                                                                           thenoyltrifluoroacetone), hydroxycarboxylic acids (e.g., hydroxycarboxylic acid, s-sulfosalicylic acid, distric acid, ethylenediamine.

tartaric acid, le.g., ethylenediamine, acid), acid, bolyamines (e.g., ethylenediamine)
                                                                                                                                                                                                                                                                                                                                                    acetylacetone!
                                                                                                                                                                                                                                                                                                                                                                                                   acid) polyamines (e.g., ethylenediamine, aminoalcohols triaminotriethylamine), honoacid) polyamines triaminotriethylethylethylenediamine, honoacid) triethylenetetramine, honoacid) triethylenetetramine, honoacid) triethamolamine, honoacid) triethamolamine, honoacid) triethamolamine, honoacid) triethylenediamine, honoacid, hon
                                                                                                                                                                                                                                                                                                                                                                                                                      triethylenetetramine, triaminotriethylethylenediamine),

(e.g., heterocyclic hases (a.g. dinyridylenediamine),

aromatic heterocyclic hases
                                                                                                                                                                                                                                                                                                                                                                                            Carraric actus contains actus gracionité actus ethylenediamines ethylenediamines actus gracion actus actual actua
                                                                                                                                                                                                                                                                                                                                                                                                                                     (e.g., trietuanoramine, Nenyaroxyetuaridal, oe alieuriaridal, oe aromatic heterocyclic pases (e.g., ealieuriaridanuma aromatic heterocyclic phanole (e.g., ealieuriaridanuma aromatic phanole (e.g
                                                                                                                                                                                                                                                                                                                                                                                                                                                  phenanthroline), phenols (e.g., sallcylaldenyde, aminophenols oxinesulfonic acid)
disulfopyrocatechol, genydroxyduinoline, oxinesulfonic acid)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             disulfopyrocatecnol, chromotropic acid), aminophenois
oxinesulfonic acid),
oxinesulfonic acid
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        (e.g., oxine, dimethylaldenyde 1.2-propylenedimine) oxines (e.g., disalicylaldenyde 1.2-propylenedimine) bases
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Oximes (e.g., disalicylaldenyde 1,2-propylenedilmine), hates (e.g., disalicylaldenyde 1,2-propylenedil
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    pases (e.g., (e.g., toluenedithio), tetraphenylporphin, tetraphenylporphin, tetraphenylporphin tetraphenylporphin dimercaptopropare tetrapyrroles (e.g., toluenedithio).
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                tetrapyrroles (e.g., tetraphenylporphin, dimercaptopropanol, toluenedithiol, dimercaptopropanol, toluenedithiol, anthate, sodium ethyl xanthate, sodium ethyl xanthate, sodium ethyl xanthate, sodium thioglycolic acid, potassium ethyl xanthate, sodium ethioglycolic acid, potassium ethyl xanthate, sodium ethyl xanthate, so
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        thioglycolic acid, potassium ethyl kanthate, sodium diethyl dithiophosphoric dithizone, bolvethylenimine.

thioglycolic acid, potassium ethyl diethylenimine.

diethyldithiocarbamate, ce.a..

diethyldithiourea, polymeric (e.a..
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               sultur compounds (e.g., toluenedithio), diathyl dithionho thioglycolic acid, potassium dithizone. diathyl diathyl dithiocarbamate. dithizone diathyl diathyl diathyl diathyl diathyl diathyldithiocarbamate.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         dietnylaitniocarpamate, altnizone, polyetnylenimine, polymeric (e.g., polymerzyliminodia acid, thiourea), acetone, polymeric polymeric polymeratore, polymer
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        acidil
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              nitrilometnylenepnospnonic acid)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         acid)), and phosphonic acids (e.g.,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   nitrilomethylenephosphonic acid
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               hydroxyethylidenediphosphonic acid).
```

Regarding surfactants, preferred surfactants are water-soluble and have sufficient foaming ability to enable the composition, when traversed by a gas, to foam and, upon curing, form a foamed gel. Non-limiting exampl s 5 of the preferred surfactants are those which, when incorporated into water in a concentration of about 5 weight percent (based on the total weight of water and surfactant), meet the following described test. surfactant is dissolved in water and about 500 ml of the resulting solution is placed in a graduated cylinder to form a column having a height of about 50 cm. Natural gas is passed into the bottom of the column through a fritt d glass disc at substantially atmospheric pressure so that the gas bubbles through the column of liquid and passes out the top of the cylinder. The gas rate is maintained at 15 about 500 ml gas per minute per square inch of column cross-sectional area, and the flow of the gas is continu d for a period of about 15 minutes. The preferred surfactants produce a column of foam at least about 180 cm in height under these conditions at the top of the column 20 of water.

Exemplary surfactants include, but are not limited to, alkyl polyethylene oxide sulfates (e.g., Alipal CD 128 brand surfactant), alkyl alkylolamine sulfates, modified ether alcohol sulfate sodium salt, sodium lauryl 25 sulfate, perfluoroalkanoic acids and salts having about 3 to about 24 carbon atoms per molecule (e.g., perfluorooctanoic acid, perfluoropropanoic acid, and perfluorononanoic acid), modified fatty alkylolamides, polyoxyethylene alkyl aryl ethers, octylphenoxyethanol, 30 ethanolated alkyl guanidine-amine complexes, condensation of hydrogenated tallow amide and ethylene oxide, ethylene cyclomido 1-lauryl, 2-hydroxy, ethylene sodium alcoholate, methylene sodium carboxylate, alkyl arylsulfonat s, sodium alkyl naphthalene sulfonate, sodium hydrocarbon sulfonat s, 35 petroleum sulfonates, sodium linear alkyl aryl sulfonates, alpha olefin sulfonates, condensation product of propylene oxide with ethylene oxide, sodium salt of sulfated fatty

alcohols, octylphenoxy polyethoxy ethanol, orbitan monolaurat, sorbitan monopalmitate, sorbitan trioleate, polyoxyethylene sorbitan tristearat, poly xyethylen sorbitan tristearate, polyoxyethylene sorbitan monooleate, dioctyl sodium sulfosuccinate, modified phthalic glycerol alkyl resin, octylphenoxy polyethoxy ethanol, acetylphenoxy polyethoxy ethanol, dimethyl didodecenyl ammonium chloride, methyl trioctenyl ammonium iodide, trimethyl decenyl ammonium chloride, dibutyl dihexadecenyl ammonium chloride, and water-soluble salts of esters of C3 to C6 sulfodicarboxylic acids having the general formula III

$$\begin{array}{c}
0 \\
C - 0 - R_{3} \\
C - 0 - R_{3}
\end{array}$$

$$\begin{array}{c}
0 \\
C - 0 - R_{3}
\end{array}$$

$$\begin{array}{c}
C - 0 - R_{4}
\end{array}$$

$$\begin{array}{c}
C - 0 - R_{4}
\end{array}$$

where M is selected from the group consisting of alkali metals, ammonium, and substituted ammonium; R_3 and R_4 are each independently an alkyl group containing about 3 to about 16 carbon atoms, and n is an integer from 1 to about 4.

In general, the gel-forming compositions are formed by mixing the polymer, the crosslinking agent, the gelation time modifying agent, and, optionally, the chelating agent and/or the surfactant. As known to those skilled in the art, the exact polymer and crosslinking agent concentrations are selected to assure (a) gel stability at reservoir (i.e., subterranean) conditions and (b) a suitable time frame for injecting the composition prior to gelation. The polymer is generally employed in a concentration of about 0.05 to about 50 weight percent, with polymer concentrations of about 0.1 to about 10 weight percent being pr ferred, about 0.2 to about 5 weight percent being more preferred, and about 0.25 to about 2.5 wight percent being most preferred. (Unless oth rwise

25

12

indicat d, as us d in the specificati n and claims, the term "w ight percent" m ans th weight of a particular ingredient (e.g., polymer, crosslinking agent, gelation time modify agent, chelating agent, or surfactant) divid d by the total weight of all ingredients present in the gelforming composition.) Typically, the crosslinking agent is employed in a concentration of about 0.001 to about 5, preferably about 0.005 to about 2, more preferably about 0.0075 to about 1, and most preferably about 0.01 to about 10.05, weight percent.

With respect to the chelating agent, the chelating agent is generally employed in the composition in a concentration of at least about 0.75 mole per mole of dissolved divalent cations dissolved in either the aqueous 15 phase of the composition or in the water located in the subterranean formation where the gel will be formed, whichever is greater. Preferably, the ratio of the moles of the chelating agent employed in the gel-forming composition to the moles of the dissolved divalent cation 20 is about 0.75:1 to about 10:1, more preferably about 0.8:1 to about 5:1, even more preferably about 0.9:1 to about 2:1, and most preferably about 0.9:1 to about 1.5:1. a ratio of about 10 moles chelating agent per mole dissolved divalent cation can be employed in the invention, 25 there does not appear to be any significant advantage to employing a ratio greater than about 1:1.

In some cases (e.g., when phenolic chelating agents are employed), the chelating agent is capable of also functioning as a crosslinking agent. If no other crosslinking agent is present, the concentration of the dual acting substance falls within a range equal to the sum of the above-stated concentration ranges for the crosslinking agent and chelating agent. How ver, when a crosslinking agent is present that is not a chelating agent, the crosslinking agent is preferably present in the above-d scribed crosslinking agent concentration ranges, and the dual acting chelating agent is preferably present

in the above-noted chelating agent concentration ranges. In those instances where a crosslinking ag nt is present in a concentration less than about 0.001 weight percent, then the concentration of the dual acting chelating agent in the 5 gel-forming composition is preferably at least about 1 mole per mole of divalent cations dissolved in the water employed in making the composition.

When employed, the surfactant is typically used in a concentration up to about 10, preferably about 10 0.01 to about 5, more preferably about 0.05 to about 3, and most preferably about 0.1 to about 2 weight percent.

When separate slugs of the crosslinkable polymer, the crosslinking agent, the chelating agent, the gelation time modifying agent, and/or the surfactant are 15 injected into the subterranean formation, the amount of each of these injected ingredients is generally sufficient for their respective concentrations in the combined weight of the injected slugs (including the weight of any intervening spacer slugs) to fall within the above-stated concentration ranges.

While the separate slugs are injectable in any order, it is preferred that a slug containing the polymer, the gelation time modifying agent, and water (and, optionally, the chelating agent and/or the surfactant) be 25 injected prior to injecting a crosslinking agent-containing slug. In addition, each slug is injectable as a single unit or injectable as a plurality of miniunits having substantially the same make-up.

Furthermore, it is preferred to inject a 30 preflush fluid prior to injecting the slug or slugs that constitute the gel-forming composition. The volum preflush fluid injected is generally about 5 to about 10 volume p rcent of the total volume of injected material constituting the gel-forming composition. The preflush fluid typically comprises a crosslinking agent and water, 35

20

14

the concentration of the crosslinking agent in the preflush fluid being roughly about double the concentration of the crosslinking agent in the gel-forming composition. Optionally, the preflush fluid also contains a chelating agent. When employed, the concentration of the chelating agent in the preflush fluid is approximately the same as the concentration of the chelating agent in the gel-forming (The preflush fluid is not considered part of composition. the gel-forming composition and is, therefore, not included in calculating the volume of material which constitutes the 10 gel-forming composition. Similarly, the amount of each ingredient (e.g., crosslinking agent and chelating agent) present in the preflush fluid is not included in calculating the concentration of the respective ingredient in the gel-forming composition.) 15

When a surfactant is employed in the process of the present invention, one or more slugs of a gas are usually also injected into the subterranean formation. While the gas slugs are injectable before, during, or aft r the injection of the gel-forming composition or separate slugs constituting the gel-forming composition, it is preferred to inject at least some, and more preferentially all, of the gas slugs after or simultaneously during the injection of the composition. Also preferred is the 25 alternate, sequential injection of one or more slugs of the gel-forming composition and one or more slugs of the gas. The gas slugs are injected into the composition during the gelation period and before the composition has formed a gel incapable of being penetrated by the gas at normal gas 30 injection pressures. (Normal gas injection pressures ar injection pressures less than the formation fracturing pressure.) The gas slugs foam the surfactant-containing composition so that a foamed gel is produced.

The amount of gas inject d (wh n m asur d at the temperatur and pressure conditions in the subterranean formation being treated) is generally about 1 to about 99 volume perc nt based upon the total volume of tr atment

fluids inj ct d into the subterran an formation (i.e., the sum of the volume of injected gas plus the volume of injected, foamabl, gel-forming compositin). Preferably, the amount of gas injected is about 20 to about 98, and more preferably about 40 to about 95, volume percent based upon the total volume of injected treatment fluids.

The injected gas is usually a noncondensable gas. Exemplary noncondensable gases include air, oxygen, hydrogen, noble gases (helium, neon, argon, krypton, xenon, and radon), natural gas, hydrocarbon gases (e.g., methane, ethane), nitrogen, and carbon dioxide. Air, nitrogen, and carbon dioxide are the more preferred noncondensable gases, with nitrogen being the most preferred.

One exemplary process for practicing the

15 present invention is as follows. Before mixing any
chemicals into the water employed in making the gel-forming
composition, the water is generally filtered to prevent any
suspended solids from damaging the formation by plugging
the wellbore. Typically, the first chemicals added to the

20 water are any required salts such as monovalent cations
(e.g., potassium chloride), divalent cations (e.g., calcium
chloride), and/or the chelating agent (e.g., EDTA). The
potassium chloride is generally employed to prevent clay
problems in the formation. Potassium chloride also helps

25 to (a) stabilize the gel at low temperatures (e.g., at a
temperature less than about 65.6°C (150°F)) and (b) reduce
gelation time.

In order for the polymer to experience a high degree of turbulence during the initial mixing stage, solid polymers and liquid-based polymers are usually added to the water through an eductor or a positive displacement pump, respectively. The polymer and water are typically mix d in a mixing tank in small 1589.9 l (10 barrel) to 3974.7 l (25 barrel) batches. When desired, furth r mixing is achieved using either centrifugal pumps or other forms of agitation.

16

Frequently, the last chemicals added to the mixing tank are the crosslinking ag nt and the pH modifying agent. When used in a solid form, the crosslinking agent and the pH modifying agent are normally first dissolved in water in order for them to more readily mix with the contents of the mixing tank. This is especially important when the contents of the mixing tank are very viscous.

The gel-forming composition is obtained when all the desired ingredients have been mixed in the 10 mixing tank. The resulting gel-forming composition is then often injected into the subterranean formation through either a production well or an injection well at a pressure below the fracture pressure of the formation. Depending on the injection capabilities of the well, the first slug of 15 the gel-forming composition generally varies from about 7949.4 l (50 barrels) to about 79494.1 l (500 barrels).

The manner in which a non-foaming, gelforming composition is injected into a well typically

20 depends on whether the well penetrates a gas-producing
formation or an oil-producing formation. In the case of an
oil well, a single slug of the non-foaming, gel-forming
composition is generally injected. In contrast, alternate
slugs of the non-foaming, gel-forming composition are

25 usually injected into a gas well, with the alternating slug
commonly being a noncondensable gas.

When a foamed gel is desired, the surfactant is preferably added to the gel-forming composition "on the fly," i.e., as the composition is being injected into the subterranean formation. (Introducing the surfactant into the composition "on the fly" avoids foaming the composition in the mixing tank.) Next, the injection f the foamable gel-f rming comp sition is stopped, and a n ncondensable gas such as nitrog n is inject d into the production well to foam the gel-forming composition. The volume of the nitrogen slug (based upon the temperature and pressure

30

35

conditions within th formation being treated) is typically about 100 to about 1,000 perc nt of the volume previously injected slug of foamable gel-forming composition volume. The alternating slugs of foamable gel-5 forming composition and nitrogen are then repeated to achieve the desired penetration depth into the formation as well as the desired degree of foam quality. (The resulting foamed gel usually has a foam quality of at least about 50, preferably about 70 to about 99, more preferably about 80 10 to about 99, and most preferably about 90 to about 98, volume percent. As used in the specification and claims, the term "foam quality" means the volume of gas bubbles present in the foamed gel divided by the entire volume of the foamed gel.) The volume of the final nitrogen slug is 15 preferably large enough to over-displace the wellbore of any foamable, gel-forming composition.

The gel-forming composition is displaced into the formation a sufficient distance so that at least a portion of the pore space in the formation, typically at 20 least about 0.91 m (3 feet) from the production well or point of injection, is occupied by the composition. an oil well is being treated with a non-foaming, gelforming composition, the composition is preferably displaced with an oil (e.g., crude oil, mineral oil, diesel oil, as well as oil produced from the subterranean 25 formation being treated). When a water injection well is being treated, the composition is preferably displaced with In those instances where a gas well is being treated or where a foaming, gel-forming composition is 30 being used, the composition is typically displaced into the formation with a noncondensable gas.) Preferably, the gelforming composition occupies at least a portion of the pores located at least about 4.57 m (15 feet) from the well. More preferably, at least some of th pores located 35 at least about 9.17 m (30 feet) from the production well contain the composition.

18

The well is then shut in for a sufficient period of time t allow th gel-forming compositi n within the pores of the subterranean formation to gel. Next, the well is slowly put back into service following the shut in period.

Accordingly, a gel or crosslinked polymer is generally formed by reacting or contacting proper proportions of (a) an organic crosslinking agent and (b) a crosslinkable polymer and/or polymerizable monomers capable 10 of forming a crosslinkable polymer in the presence of (c) a gelation time modifying agent. As indicated above, the crosslinkable polymer or monomers capable of polymerizing to form a crosslinkable polymer and the crosslinking agent need not both be present in the gel-forming composition. 15 When the crosslinkable polymer or crosslinking agent is omitted from the composition, the omitted material is usually introduced into the subterranean formation as a separate slug, either before, after, or simultaneously with the introduction of the gel-forming composition. 20 Preferably, the composition comprises both (a) the crosslinking agent and (b) either (i) the crosslinkable polymer or (ii) the polymerizable monomers capable of forming a crosslinkable polymer.

Because of their stability in an acidic
25 environment, the gels of this invention are especially w 11
suited for use in a subterranean formation subjected to a
carbon dioxide flooding operation. The gel can be formed
in the subterranean formation either prior to or after the
commencement of the carbon dioxide flood. When the gel is
30 formed prior to the commencement of the carbon dioxide
flood, a gelation time modifying agent which reduces the
gelation time (i.e., a salt of a monovalent and/or dival nt
cation, a pH reducing agent, or mixtur s thereof) is
selected.

When formed aft r the commencement of the carbon dioxide flood, a gelation time modifying agent which

incr ases the gelation time (i.e., a pH increasing agent) is mployed to prevent premature gelling. (Th pH increasing ag nt can eith r be incorporated into the composition or introduced into the subterranean formation in a separate slug injected ahead of the composition.) The reason for using a pH increasing agent is that a carbon dioxide flooded formation tends to be quite acidic and acidic environments tend to reduce the gelation time of the composition. However, even when the composition is intended for use in an acidic environment, the addition of a salt of a monovalent and/or divalent cation to the composition may still be desirable for the gels to exhibit increased gel strengths.

The compositions of the present invention

are also useful for inhibiting the migration of a hazardous
acid plume through a subterranean stratum of a landfill or
natural subterranean formation. In one version, a pH
increasing agent-containing composition is injected through
one or more wellbores, e.g., observation wells, into the

acid plume. Once in the acid plume, the pH increasing
agent-containing composition commingles with the plume,
with the resulting composition gelling as the pH of the
composition falls. The migration of the acid plume is
inhibited by the presence of the gel in the formation or
stratum.

In another version, a composition of the present invention is injected through one or more wellbores into a subterranean region or stratum outside the acid plume but in the migration path of the plume. (Several wells can be used to construct a continuous gel barrier in the formation to prevent the migration of the acid plume.) In this instance, the composition generally comprises a gelation time reducing agent selected from the group consisting of salts of monovalent and divalent cations, pH reducing agents, and mixtures thereof.

20

R gardless wheth r th composition is inj cted into or outside the acid plume, the volume of the composition injected per wellbore depends on the number of wells and the volume and cross-sectional area of the plume intersecting the wellbore. In rough terms, about 15898.8 1 (100 barrels) to about 1589882 1 (10,000 barrels) of the composition are injected per well.

In another version, a composition comprising (A) water, (B) the water soluble, crosslinkable polymers and/or polymerizable monomers, and (C) the crosslinking 10 agent (but substantially devoid of any gelation time modifying agent) is initially heated at the surface to between about 48.9°C (120°F) and about 100°C (212°F) and then injected into the subterranean formation. 15 embodiment, the composition is commonly heated to at least about 54.4°C (130°F), more commonly to at least about 60°C (140°F), even more commonly to at least about 65.6°C (150°F), and most commonly to about 71.1°C (160°F). Preferably, the composition is heated to at least about 76.6°C (170°F), more preferably to at least about 82.2°C 20 (180°F), even more preferably to at least about 87.8°C (190°F), and most preferably to about 93.3°C (200°F). an alternative embodiment of this version, all ingredients except for the polymer and/or crosslinking agent are heated 25 to the desired temperature and the omitted ingredient(s) is(are) added just prior to injecting the composition into the subterranean formation.

EXAMPLES

The following examples, which are intended to illustrate and not limit the invention, demonstrate the preparation of exemplary compositions and gels within the scope f inv ntion, the stability of th gels when aged at pr selected temperatures, and a comparison of such gels with other gels.

EXAMPLES 1-14

Stock solutions were prepar d using the following protocol.

Allied Colloids 935 Brand Polymer Stock Solution

Sodium bicarbonate (about 6 g) and Allied Colloids 935 brand medium molecular weight, partially hydrolyzed (about 10 percent) polyacrylamide polymer (about 4.5 g) were added to seawater (about 289.5 g).

Hydroguinone Stock Solution

Hydroquinone was mixed with distilled water to form a 10 weight percent hydroquinone stock solution.

Hexamethylenetetramine Stock Solution

Hexamethylenetetramine was mixed with distilled water to form a 10 weight percent 15 hexamethylenetetramine stock solution.

Mix Water Stock Solution

Calcium chloride (about 20 g) and sodium bicarbonate (about 2 g) were added to distilled water (about 78 g).

20 Bic Water Stock Solution

Sodium bicarbonate (about 2 g) was added to distilled water (about 98 g).

Using the above stock solutions, test samples w re prepared and evaluated using the following protocol.

Test Sample

22

For each sample, the polymer and bic water st ck solutions were added to a vial to achieve th concentrations shown below in Table A. Next, the mix water stock solution, when employed, was added to the vial in the amounts listed in Table A. Finally, the hydroquinone and hexamethylenetetramine stock solutions were added (using a micropipette) to the vial in amounts indicated in Table A. The vial was then capped and shaken.

BW denotes bic water.

HMT denotes hexamethylenetetramine.

TABLE A
Gel Formulations

			Stock	Stock Solutions	Suc			Gel	
		Polymer	HO	HMT ²	FEW.	BW	Polymer	æ	HIMT
ហ	Example	Б	ηľ	TH	Ы	ᅵ	MMCC	wmdd	MEGG
	н	8.33	150	150	0	1.6	12,500	1,500	1,500
	7	8.33	300	300	0	1.6	12,500	3,000	3,000
	m	8.33	350	350	0	1.6	12,500	3,500	3,500
	4	8.33	400	400	0	1.6	12,500	4,000	4,000
10	ស	6.67	150	150	0	3.3	10,000	1,500	1,500
	9	3.33	150	150	0	9.9	5,000	1,500	1,500
	7	3.33	200	200	0	9.9	5,000	2,000	2,000
	ω	8.33	150	150	0.5	1.1	12,500	1,500	1,500
	ல்	8.33	300	300	0.5	1.1	12,500	3,000	3,000
15	10	8.33	350	350	0.5	1.1	12,500	3,500	3.500
	11	8.33	400	400	0.5	1.1	12,500	4,000	4.000
	12	6.67	150	150	0.5	2.8	10,000	1,500	1.500
	13	3.33	150	150	0.5	6.1	2,000	1,500	1,500
	14	3.33	200	200	0.5	6.1	5,000	2,000	2.000
20	1. HQ de	denotes hydroquinone.	odninon	le.		E)	3. MW denot	MW denotes mix water.	ater.
		•	•						•

Test Procedure

Each of samples 1 to 14 were aged in an oven at a temperature of about 110°C (230°F). Each of the aged samples were rated using the gel rating key shown below in 5 Table B.

TABLE B

Gel Rating Key

1 No Gel 2 Slight Gel 10 Weak Gel 3 4 Elastic Gel 5 Strong Gel % Syneresed (Separated) nŧ Water 15 T Trace of Water

The results of the aging tests are set forth in the following Table C.

25

TABLE C

					Ge]	Rati	ngs			
			·	Hours				Day	5	
	<u>Ex</u>	_1_	_2_	_3_	_4_	_5_	_1_	_2_	_3_	_7_
5	1	2-	2-	2-	2-	2	4++	5-	5/T	5+/T
	2	2-	2-	2-	2	2+	5++	5++	5++	5++/T
	3	2-	2-	2-	2	3-	5++	5++	5++	5++
	4	2-	2-	2-	2	3-	5++	5++	5++	5++/ T
	5	2-	2-	2-	2	2-	4++	5-	4++	5-
10	6	1+	1+	1+	1+	2-	4	4+	4+	4+
	7	1+	1+	1+	2-	2-	4+	4++	4++	4++
	8	2-	2-	2	2	2	5+/T	5+/T	5++/T	5++/ T
	9	2-	2-	2	3-	3	5++/T	5++/T	5+/T	5+/T
	10	2-	2-	2	3+	4 –	5++	5+/T	5+/T	5+/T
15	11	2-	2-	2	3+	4-	5+/T	5++/ T	5+/T	5+/T
	12	2-	2-	2-	2-	2-	5-	5+	5+/T	5+/T
	13	1+	1+	1+	1+	1+	4+	4++	5-	5-/T
	14	1+	1+	1+	1+	1+	4+	4++	5-	5-/T

The results listed above in Table C indicate 20 that gels prepared with divalent calcium tend to gel faster.

EXAMPLES 15-22

Stock solutions were prepared using the following protocol.

25 Allied Colloid 935 Brand Polymer Stock Solution

Sodium bicarbonate (about 6 g) and Allied Colloids 935 brand medium molecular weight, partially hydrolyzed (about 10 percent) polyacrylamide polymer (about 4.5 g) wer added to seawater (about 289.5 g).

SNF AN 905 BPM Brand Polymer Stock Solution 30

Sodium bicarbonate (about 6 g) and SNF AN 905 BPM brand partially hydrolyzed p lyacrylamide p lymer (about 4.5 g) were added to seawater (about 289.5 g).

Hydroguinone Stock Solution

5 Hydroquinone was mixed with distilled water to form a 10 weight percent hydroquinone stock solution.

Hexamethylenetetramine Stock Solution

Hexamethylenetetramine was mixed with distilled water to form a 10 weight percent

10 hexamethylenetetramine stock solution.

Mix Water Stock Solution

Calcium chloride (about 20 g) and sodium bicarbonate (about 2 g) were added to distilled water (about 78 g).

15 Bic Water Stock Solution

Sodium bicarbonate (about 2 g) was added to distilled water (about 98 g).

Using the above stock solutions, test samples were prepared and evaluated using the following 20 protocol.

Test Sample

For each sample, appropriate amounts of the polymer, bic water, and mix water stock solutions were added to a vial to achi v th concentrati ns shown b low in Table D. Next, using a micropipette, the hydroquinone and h xam thylenetetramine stock soluti ns were added to the vial to achieve the concentrations indicat d in Table

D. Each vial (which contained about 10 g) was then capped and shaken.

Test Procedure

Each sample was aged in an oven at a

5 temperature of about 54.4°C (130°F) and rated using the gel
rating key set forth above in Table B. The results of the
aging tests are set forth in the following Table D.

TABLE D

Gels Prepared In Seawater Containing 2 wt\$ Sodium Bicarbonate, Aged At 54.5°C (130°F)

				1d	MMCC		[S	el R	Gel Ratings, days	da	VS		
	EX	2	Pollymer	HOI	CaC1,	HMT ²	- -	2	3	4	9	7 8	ا		47	28
ស	15	A3	7,500	2,500	-	5,000	2-	7	3-	4	5-	5+	NT	NT		2+/2\$
	16	æ	7,500	2,500	0	5,000	2-	8	8	5+	5+	2+	m	4-	5-	5+/T
	17	ູຮ	7,500	2,500	H	5,000	7	7	ო	++	4+	ស	NT	N	5+/T	2+/T
	18	ຜ	7,500	2,500	0	5,000	2-	8	5+	5+	3-	3.	4-	4	4++	5+/T
	19	Ø	10,000	2,500	H	5,000	2-	7	3+	4++	5-	5/T	NT	NT	5+/5\$	2+/2\$
10	20	Ø	10,000	2,500	0	5,000	8	7	8	8	3-	ო	4	4	2	2+/2\$
	21	တ	10,000	2,500	-	2,000	2-	7	4	4++	သ	5+/T	INT	IN	5+/T	5+/T
	22	S	10,000 2,500	2,500	0	5,000	2	2	2+	3+	4-	4	4	4+	5+	5+/5%
	-	C	The state of the control of the cont	his de constant	4 2000											

1. HQ denotes hydroquinone.

, HMT denotes hexamethylenetetramine.

3. "A" denotes Allied Colloids 935 brand polymer.

15

. NT denotes not taken.

5. "S" denotes SNF AN 905 BPM brand polymer.

The results noted in the foregoing Tabl D also indicate that gels prepared with divalent calcium tend to exhibit faster gel times.

EXAMPLES 23-28

5 Stock solutions were prepared using the following protocol.

ORP-750 Brand Polymer Stock Solution

Sodium bicarbonate (about 6 g) and ORP-750 brand very high molecular weight, polyacrylamide 10 polymer (about 4.5 g; available from Dai-Ichi Kogyo Seiyaku Co., Ltd. of Japan) were added to seawater (about 289.5 g).

Hydroquinone Stock Solution

Hydroquinone was mixed with distilled water to form a 10 weight percent hydroquinone stock solution.

15 <u>Hexamethylenetetramine Stock Solution</u>

Hexamethylenetetramine was mixed with distilled water to form a 10 weight percent hexamethylenetetramine stock solution.

Calcium Chloride Stock Solution

20 Calcium chloride (about 20 g) and sodium bicarbonate (about 2 g) were added to distilled water (about 78 g).

30

Magnesium Chloride Stock Solution

Magnesium chloride (about 20 g) and sodium bicarbonate (about 2 g) were added to distilled water (about 78 g).

5 Bic Water Stock Solution

Sodium bicarbonate (about 2 g) was added to distilled water (about 98 g).

Using the above stock solutions, test samples were prepared and evaluated using the following protocol.

10 <u>Test Sample</u>

For each sample, appropriate amounts of the polymer and the bic water stock solutions were added to a vial to achieve the concentrations shown below in Table E. Next, using a micropipette, the hydroquinone,

15 hexamethylenetetramine, and calcium or magnesium chloride stock solutions were added to the vial in amounts indicated in Table E. Each vial was then capped and shaken.

Test Procedure

Each sample was aged in an oven at a temperatur 20 of about 87.8°C (190°F) and rated using the gel rating k y shown above in Table B. The results of the aging tests are set forth in the following Table E.

TABLE E

	ଧା	els Pre	spared	In Sea	Gels Prepared In Seawater Containing 2 wt% Sodium Bicarbonate and 1 wt % ORP-750 Polymer. and Aged At 87.8°C (190°F)	itaining and A	Ining 2 wt% Sodium Bicarbon and Aged At 87.8°C (190°F)	Sodium 87.8	Bicar C (190	rbonat	e and	wt &	ORP-750	Polymer.
									Gel Ratings	tings				
ß				мшаа		Hours		Days	ys			Weeks		
	凶	HO	CaCl, MgCl,	MgC1,	HMT2	4	4	2 3		4	4	7	75	
	23	0	0	0	2,000	5+	4	4++	4++	5-	++	4 +	4+	
	24	0	-	0	2,000	5+	S	ທ	5+	2+	5+	2+	2+	
	25	0	0	7	2,000	5+	4++	5-	5+	2+	5+/T	5+/T	5+	
10	56	200	0	0	2,000	2+	4++	5-	2	ß	ស	ស	2-	
	27	200	1	0	2,000	2+	2-	5-	ស	Ŋ	ທ	2+	5+/T	
	28	500	0		2,000	7+	4+	5-	വ	ហ	ស	5-	5-	

2. HMT denotes hexamethylenetetramine.

1. HQ denotes hydroquinone.

The r sults set forth above in Table E indicate that gels prepared with divalent calcium or divalent magnesium exhibit both shorter gel times and higher gel ratings than gels prepared without these added cations.

5 EXAMPLES 29-40

Stock solutions were prepared using the following protocol.

ORP-750 Brand Polymer Stock Solution

Sodium bicarbonate (about 6 g) and Dai-Ichi Kogyo 10 Seiyaku Co., Ltd. ORP-750 brand very high molecular weight, polyacrylamide polymer (about 3 g) were added to seawat r or tapwater (about 291 g) and stirred at about 200 rpm until the polymer fully hydrated.

E-10 Polymer Stock Solution

Sodium bicarbonate (about 6 g) and Allied Colloids Percol E-10 brand high molecular weight, polyacrylamide polymer (about 3 g) were added to seawat r or tapwater (about 291 g) and stirred at about 200 rpm until the polymer fully hydrated.

20 Hydroquinone Stock Solution

Hydroquinone was mixed with distilled water to form a 10 weight percent hydroquinone stock solution.

Hexamethylenetetramine Stock Solution

Hexamethylenetetramine was mix d with distilled 25 water to form a 10 weight percent hexamethylenetetramine st ck soluti n.

Sulfuric Acid Stock Solution

The sulfuric acid stock solution consisted of concentrated sulfuric acid, i.e., 100% H₂SO₄.

Hydrochloric Acid Stock Solution

The hydrochloric acid stock solution consisted of concentrated hydrochloric acid, i.e., 36 weight percent HCl.

Ammonium Citrate Stock Solution

The ammonium citrate stock solution consisted of 10 10 weight percent ammonium citrate in distilled water.

Using the above stock solutions, test samples were prepared and evaluated using the following protocol.

Test Sample

About 10 g of one of the polymer stock solutions

were added to each vial. Next, sufficient volumes of the
hydroquinone, hexamethylenetetramine, sulfuric acid,
hydrochloric acid, and/or ammonium citrate stock solutions
were added using a micropipette so that each vial contained
the hydroquinone, hexamethylenetetramine, sulfuric acid,
hydrochloric acid, and ammonium citrate concentrations
noted below in Tables F-H. Each vial was then capped and
shaken.

Test Procedure

Each sample was aged in an oven at the

25 temp ratures indicated in the following Tabl s F-H and,
using the gel rating key shown above in Table B,
periodically rated. The results of the aging tests are set
forth in the following Tables F-H.

34

TABLE F

Gels Prepared In Tapwater Containing About 0.5 wt% Hydroquinone, About 1 wt% Hexamethylenetetramine, About 1 wt% ORP-750 Polymer and Aged at Room Temperature

5						Gel Ra	tings	
		H ₂ SO ₄ ,	HCl,		<u>Hours</u>		Days	
	<u>Ex</u>	wt8	wtł_	_pH_	5	_2_	_5_	_7_
	29	0	0	7.5	1+	1+	1+	1+
	30	0.5	0	4.0	4-	4++	5-	5/T
10	31	0	0.5	1.4	5-	5	5+	5+

The results set forth above in Table F indicate that gelation time decreases as the pH of the gel-forming composition decreases.

TABLE G

Gels Prepared In Water Containing About 0.2 wt% Hexamethylenetetramine and About 1 wt% ORP-750 Polymer and Aged at 43.3°C (110°F)

5	5				Gel Ratings					
		H ₂ SO ₄ ,	HCl,			<u>Hours</u>	Days	s Weeks		
	<u>Ex</u>	wt8	wt8	<u>Hq</u>	Water	4	2	_1_	16	
10	32	0	0	7.5	TapH ₂ O	1+	2-	2-	5-	
	33	0.2	0	1.4	TapH ₂ O	2+	4+	5-/T	5-/T	
	34	0	0.2	1.3	TapH ₂ O	2	4+	5-/T	5/5%	
	35	0	0	8.3	SeaH ₂ O	2-	2	4-	5-/5%	
	36	0.2	0	1.8	SeaH ₂ O	2+	4++	5-/T	5+/5%	
	37	0	0.2	1.6	SeaH ₂ O	2+	5-	5	5/5%	

The results listed above in Table G also

15 demonstrate that gelation time decreases as the pH of the gel-forming composition decreases.

TABLE H

Gels Prepared In Seawater Containing About 0.5 wt% Hexamethylenetetramine and About 1 wt% E-10 Polymer and Aged at 43.3°C (110°F)

					Gel Ratings			
		Bubble	NH ₄ Citrate		Days		<u>Weeks</u>	
	Ex	CO ₂ ?1	wt%	<u>Hq</u>	_3_	_5_	_2_	_11_
25	38	No	0	7.3	2+	2+	2+	2+
	39	No	0.4	5.9	3-	4-	4+	5-
	40	Yes	0	5.8	3-	4	4++	5/5%

1. When employed, carbon dioxide was bubbled for about 1 minute at a rate of about 0.17 standard cubic meters (scm) per day (6 scf/day).

The results noted in above Table H further demonstrat that gelation time decreases as the pH of the gel-forming composition decreases.

30

Although the pres nt inv ntion has be n described in considerable detail with reference to some preferred versions, other versions are possible. Therefore, the spirit and scope of the appended claims should not necessarily be limited to the description of the preferred versions contained herein.

CLAIMS

- 1. A method for forming a gel in at least a portion of a subterranean formation, the method comprising the steps of:
- (I) injecting a composition into at least a portion of a subterranean formation, the composition comprising (A) water, (B) an ingredient selected from the group consisting of water soluble, crosslinkable polymers and polymerizable monomers capable of forming a crosslinkable polymer, and (C) a gelation time modifying agent; and
- (II) injecting an organic crosslinking agent into at least a portion of the subterranean formation,

where the gelation time modifying agent is selected from the group consisting of salts of monovalent and divalent cations, pH reducing agents, pH increasing agents, and mixtures thereof, provided that

- (i) when the gelation time modifying agent comprises the salt of a monovalent cation, at least about 1 weight percent of the monovalent cation salt is added in formulating the composition,
- (ii) when the gelation time modifying agent comprises the salt of a divalent cation, at least about 0.15 weight percent of the divalent cation salt is added in formulating the composition,
- (iii) when the gelation time modifying agent comprises a pH reducing agent, a sufficient amount of the pH reducing agent is present for the composition to have a pH of about 6.5 or less; and
- (iv) when the gelation time modifying agent comprises a pH increasing agent, a sufficient amount of the pH increasing agent is present for the composition to hav a pH of about 7 or more.
- 2. Th m thod of claim 1 further comprising the step (III) of inj cting a stabilizing amount of a chelating

agent into at least a portion of the subterranean formation.

- 3. The method of claim 2 where at least a portion of steps (I) and (III) are performed prior to step (II).
- 4. A method for forming a gel in at least a portion of a subterranean formation, the method comprising the step of injecting a composition into at least a portion of a subterranean formation, the composition comprising:
- (A) an ingredient selected from the group consisting of water soluble, crosslinkable polymers and polymerizable monomers capable of forming a crosslinkable polymer;
 - (B) an organic crosslinking agent;
 - (C) water; and
- (D) a gelation time modifying agent, where the gelation time modifying agent is selected from the group consisting of salts of monovalent and divalent cations, pH reducing agents, pH increasing agents, and mixtures thereof, provided that
- (i) when the gelation time modifying agent comprises the salt of a monovalent cation, at least about 1 weight percent of the monovalent cation salt is added in formulating the composition,
- (ii) when the gelation time modifying agent comprises the salt of a divalent cation, at least about 0.15 weight percent of the divalent cation salt is added in formulating the composition,
- (iii) when the gelation time modifying agent comprises a pH reducing agent, a sufficient amount of the pH reducing agent is present for the composition to have a pH of about 6.5 or less; and
- (iv) when the gelation time modifying agent comprises a pH incr asing agent, a sufficient amount of the pH increasing agent is present for the composition to have a pH of about 7 or more.

- 5. The method of any on of claims 1-4 where the gelation tim modifying agent comprises the pH reducing ag nt and the pH reducing agent is s lected from the group consisting of acids, acid precursors, buffers having a buffering capacity at or below about pH 6.5, and mixtures thereof.
- 6. The method of any one of claims 1-5 where the gelation time modifying agent comprises the pH reducing agent and the pH reducing agent is present in the composition in a sufficient concentration for the composition to have a pH of less than about 6.
- 7. The method of any one of claims 1-4 where the gelation time modifying agent comprises the salt of a monovalent cation and at least about 2 weight percent of the monovalent cation salt is added in formulating the composition.
- 8. The method of any one of claims 1-4 where the gelation time modifying agent comprises the salt of a divalent cation and at least about 0.5 weight percent of the divalent cation salt is added in formulating the composition.
- 9. The method of any one of claims 1-4 where the gelation time modifying agent comprises the pH increasing agent and the pH increasing agent is selected from the group consisting of bases, base precursors, buffers having a buffering capacity at or above about pH 7, and mixtures thereof.
- 10. The method of any one of claims 1-4 and 9 where the gelation time modifying agent comprises the pH increasing agent and the pH increasing agent is present in the composition in a sufficient concentration for the composition to have a pH of at least about 7.5.

- 11. The method of any on of claims 1-10 further comprising the steps of injecting a gas into at 1 ast a portion of the subterranean formation and injecting one or more ingredients capable of foaming the composition into at least a portion of the subterranean formation.
- 12. The method of any one of claims 1-10 further comprising the step of injecting a gas into at least a portion of the subterranean formation, where the composition further comprises one or more ingredients capable of foaming the composition.
- a gel formed by reacting, in an aqueous reaction medium, an organic crosslinking agent and an ingredient selected from the group consisting of water soluble, crosslinkable polymers and polymerizable monomers capable of forming a crosslinkable polymer, the method comprising the step of performing the reaction in the presence of a gelation time modifying agent, where the gelation time modifying agent is selected from the group consisting of salts of monovalent and divalent cations, pH modifying agents, and mixtures thereof, provided that
- (i) when the gelation time modifying agent comprises the salt of a monovalent cation, at least about 1 weight percent of the monovalent cation salt is added in formulating the aqueous medium,
- (ii) when the gelation time modifying agent comprises the salt of a divalent cation, at least about 0.15 weight percent of the divalent cation salt is added in formulating the aqueous medium,
- (iii) when the gelation time modifying agent comprises a pH reducing agent, a sufficient amount of the pH reducing agent is present for the aqueous medium to hav a pH of about 6.5 or less; and
- (iv) wh n the g lation time modifying ag nt compris s a pH increasing agent, a sufficient amount of the pH incr asing agent is pres nt for the aqueous m dium to have a pH of about 7 or more.

- 14. A method for forming a gel comprising the steps of:
- (I) decreasing the pH of an aqu ous medium to less than 6.5; and
- (II) reacting, in the aqueous medium of step (I), an organic crosslinking agent and an ingredient selected from the group consisting of water soluble, crosslinkable polymers and polymerizable monomers capable of forming a crosslinkable polymer.
- 15. The method of claim 14 further comprising the step (III) of increasing the salinity of the aqueous medium, step (III) being performed no later than step (II).
- 16. A method for forming a gel comprising the steps of:
- (I) increasing the divalent cation concentration of an aqueous medium; and
- (II) reacting, in the aqueous medium of step (I), an organic crosslinking agent and an ingredient selected from the group consisting of water soluble, crosslinkable polymers and polymerizable monomers capable of forming a crosslinkable polymer.
- 17. The method of claim 16 further comprising the step (III) of decreasing the pH of the aqueous medium to less than 6.5, step (III) being performed no later than step (II).
- 18. A method for inhibiting the migration of a hazardous acid plume through a subterranean stratum, the method comprising the step of injecting into at least a portion of the acid plume a slug of a composition capable of forming a gel, the composition comprising:
- (A) an ingredi nt selected from the group consisting of wat r soluble, crosslinkable polymers and polymerizable monomers capable of forming a crosslinkable polymer;
 - (B) an organic crosslinking agent;

- (C) water; and
- (D) a pH increasing agent, provided that a sufficient amount of the pH increasing agent is present for the composition to have a pH of about 7 or more.
- 19. A method for forming a gel in an acidic subterranean formation, the method comprising the step of injecting into at least a portion of the acidic subterranean formation a slug of a composition capable of forming a gel, the composition comprising:
- (A) an ingredient selected from the group consisting of water soluble, crosslinkable polymers and polymerizable monomers capable of forming a crosslinkable polymer;
 - (B) an organic crosslinking agent;
 - (C) water; and
- (D) a pH increasing agent, provided that a sufficient amount of the pH increasing agent is present for the composition to have a pH of about 7 or more.
- 20. The method of claim 19 where, prior to injecting the slug of the composition, at least a portion of the subterranean formation is subjected to a carbon dioxide flood.

21. A composition comprising:

- (A) an ingredient selected from the group consisting of water soluble, crosslinkable polymers and polymerizable monomers capable of forming a crosslinkable polymer;
 - (B) an organic crosslinking agent;
 - (C) water; and
- (D) a gelation time modifying agent, where the gelation time modifying agent is selected from th group c nsisting of salts of monoval nt and divalent cations, pH reducing agents, pH increasing agents, and mixtures thereof, provided that
- (i) when the gelation time modifying agent comprises the salt of a mon valent cation,

at least about 1 weight percent of the monovalent cation salt is added in formulating the composition,

(ii) wh n the gelation tim modifying agent comprises the salt of a divalent cation, at least about 0.15 weight percent of the divalent cation salt is added in formulating the composition,

(iii) when the gelation time modifying agent comprises a pH reducing agent, a sufficient amount of the pH reducing agent is present for the composition to have a pH of about 6.5 or less; and

(iv) when the gelation time modifying agent comprises a pH increasing agent, a sufficient amount of the pH increasing agent is present for the composition to have a pH of about 7 or more.

22. The composition of claim 22 further comprising a chelating agent.

INTERNATIONAL SEARCH REPORT

Inter nal Application No PCT/US 95/15664

PCT/US 95/15664 A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 E21B33/138 E21B43/25 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 6 E21B Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claum No. X US,A,5 246 073 (B.B.SANDIFORD) 21 1-4. September 1993 7-13,16. 21,22 see the whole document Y 18 X EP,A,0 544 377 (ENIRICERCHE S.P.A.) 2 June 1-6,8, 1993 13,16, 17,21,22 see page 2, line 1 - line 13 see page 1, line 49 - page 6, line 47 X US,A,4 903 767 (P.SHU) 27 February 1990 4.13. 19-21 see column 3, line 7 - column 6, line 14 18 X Further documents are listed in the continuation of box C. X Patent family members are listed in annex. Special categories of cited documents: "I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance **IDACUSOU** "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or other means ments, such combination being obvious to a person skilled document published prior to the international filing date but later than the priority date claimed in the art. "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 2 2. 04. 96 12 April 1996 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo ni, Rotsaert, L Fax: (+31-70) 340-3016

Form PCT-ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Inter vial Application No PC1/US 95/15664

C.(Continuati	ion) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US,A,4 366 194 (R.P.PILNY) 28 December 1982 see column 1, line 54 - column 64 see column 5, line 35 - line 56 see column 6, line 30 - line 46	1,4,9, 10, 13-15, 19,21
x	US,A,4 291 069 (R.J.PILNY) 22 September 1981 see column 1, line 50 - column 2, line 14	1,4,9, 10, 13-15, 19,21
	see column 5, line 36 - line 43	
X	US,A,4 498 540 (M.L.MARROCCO) 12 February 1985 see column 5, line 40 - line 51 see column 7, line 36 - column 8, line 16 see column 3, line 17 - column 5, line 9	1,4-6, 13,15,19
x	US,A,5 061 387 (C.VICTORIUS) 29 October 1991 see column 6, line 1 - line 18 see column 2, line 50 - column 5, line 45	1-10
P,X	US,A,5 423 380 (E.L.JOHNSTON) 13 June 1995 see column 1, line 52 - column 4, line 16 see column 4, line 38 - line 60	4,5,13, 21,22
P,X	WO,A,95 00742 (UNION OIL COMPANY OF CALIFORNIA) 5 January 1995 see the whole document	1-4.7. 9-13.21, 22

Form PCT/ISA/218 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Inter vital Application No PCT/US 95/15664

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US-A-5246073	21-09-93	US-A- 5335 US-A- 5486	
EP-A-544377	02-06-93	IT-B- 1252 IT-B- 1254 BR-A- 9204 CA-A- 2083 JP-A- 5271	1200 14-09-95 1567 01-06-93 3784 27-05-93
US-A-4903767	27-02-90	NONE	
US-A-4366194	28-12-82	US-A- 4199 CA-A- 1148 EP-A,B 0009 JP-A- 54163 JP-B- 62034	5835 12-12-79 3994 27-12-79
US-A-4291069	22-09-81	CA-A- 109	1913 23-12-80
US-A-4498540	12-02-85	CA-A- 1226 GB-A,B 2149 US-A- 4939 US-A- 4666	7584 24-01-85 8227 20-10-87 5420 27-03-85 9203 03-07-90 5957 19-05-87 4194 12-05-87
US-A-5061387	29-10-91	NONE	
US-A-5423380	13-06-95	BR-A- 940 CA-A- 213 EP-A- 066	2272 24-08-95 5330 24-10-95 5226 23-08-95 8432 23-08-95 0656 23-08-95
WO-A-9500742	05-01-95	US-A- 533: AU-B- 706:	5733 09-08-94 2294 17-01-95

Form PCT/ISA/210 (patent family annex) (July 1992)