16 June 2023

Crash wurse on Brobability

Jordata suence

1st Session -> Basic Terms

2hours

2nd Session -> Advanual topics

Naive Bayer

Logishiteg

Random Experiment

An experiment is called random experiment if it satisfies the following two

- (i) It has more than one possible outcome. \checkmark
- (ii) It is not possible to predict the outcome in advance

. Trial →

Trial refers to a single execution of a random experiment. Each trial produces an outcome.

Outcome refers to a single possible result of a trial.

Sample Space

Sample Space of a random experiment is the set of all possible outcomes that can occur. Generally, one random experiment will have one set of sample space.

Event

Event is a <u>specific set of outcomes</u> from a random experiment or <u>process</u>. Essentially, it's a subset of the sample space. An event can include a single outcome, or it can include multiple outcomes. One random experiments can have multiple events.

tossing a coin -> RE

H, TE

≥1) RE -> volling a dic 2) tring the die on a 3> 0 whome -> of 3 by

9) SS 5) Event Squting a $3 \rightarrow \{3\}$ Squting anumber >4 $\rightarrow \{5,6\}$ Squing anumber >4 $\rightarrow \{5,6\}$ Squing anumber >4 $\rightarrow \{5,6\}$ Squing anumber >4 $\rightarrow \{5,6\}$

RE - tossing the win the le trial - tossing the win twice (once) <u>(</u> outcome - of H, Ty →SS → { (H,H), (H,T), (T,H), (T,T)}

Event -> getting 2 heads { (H,H)}

getting at least 1 head of (H,H, (H,D), (+,H))?

1,2,3

Titanic -> 891 passengus -> Puass

RE -> Trandomly drawing out a passingu

trian = and finding its Plass
ontome = d19

55 -> {1,2,3?

Event-) A > the passengulis from Pdass=L

B-> not from Pugn=2 & 1,33

2,4,6

(2) (2 fl) (1) (2 fl)

1. <u>Simple Event</u>: Also known as an <u>elementary event</u>, a simple event is an event that consists of <u>exactly</u> one outcome.

For example, when rolling a fair six-sided die, getting a 3 is a simple event.

2. Compound Event: A compound event consists of two or more simple events.

For example, when rolling a die, the event "rolling an odd number" is a compound event because it consists of three simple events: rolling a 1, rolling a 3, or rolling a 5.

3. Independent Events: Two events are independent if the occurrence of one event does not affect the probability of the occurrence of the other event.

For example, if you flip a coin and roll a die, the outcome of the coin flip does not affect the outcome of the die roll.

4. Dependent Events: Events are dependent if the occurrence of one vent does affect the probability of the occurrence of the other event.

For example, if you draw two cards from a deck without replacement, the outcome of the first draw affects the outcome of the second draw because there are fewer cards left in the deck.

Mutually Exclusive Events: Two events are mutually exclusive (or disjoint) if they cannot both occur at the same time.

For example, when rolling a die, the events " $\underline{\text{roll a 2}}$ " and " $\underline{\text{roll a 4}}$ " are mutually exclusive because a single roll of the die cannot result in both a 2 and a 4.

6. <u>Exhaustive Events</u>: A set of events is exhaustive if at least one of the events must occur when the experiment is performed.

For example, when rolling a die, the events "roll an even number" and "roll an odd number" are exhaustive because one or the other must occur on any roll.

7. Impossible event and Certain Event

D D Spad

In simplest terms, probability is a measure of the likelihood that a particular event will occur. It is a fundamental concept in statistics and is used to make predictions and informed decisions in a wide range of disciplines, including science, engineering, medicine, economics, and social sciences.

Probability is usually expressed as a number between 0 and 1, inclusive:

- A probability of 0 means that an event will not happen.
- A probability of 1 means that an event will certainly happen.
- A probability of 0.5 means that an event will happen half the time (or that it is as likely to happen as not to happen).

statistics-a lecture-03 an on the Probability Distribution of a Random Variable (Discort)

A probability distribution is a list of all of the possible outcomes of a random variable along with their corresponding probability values. Probability dist of a random var

Tass a coin
$$\begin{cases}
+1, -2 \\
+1 & \text{PV} \rightarrow \underline{X} = \{1,0\}
\end{cases}$$

$$\frac{X}{P(X)} \frac{1}{1/2} \frac{0}{1/2}$$

$$\frac{X}{1/2} \frac{1}{1/2} \frac$$

Jolijng a die S(= of 1, 2, 3, 4, 5, 1 } L, RV → {1,2,3,4,5,1}

X		_2_	3	<u>Ч</u>	5	6
f(x)	1/6	1/1	1/4	/ _b	1/6	6

Probabilly dist of rendom variable (Input)

ſ

2

(a,b)	1	2	3	4	5	6
1	(1,1)	(2,1)	(3,1)	(4,1)	(5,1)	(6,1)
2	(1,2)	(2,2)	(3,2)	(4,2)	(5,2)	(6,2)
3	(1,3)	(2,3)	(3,3)	(4,3)	(5,3)	(6,3)
4	(1,4)	(2,4)	(3,4)	(4,4)	(5,4)	(6,4)
5	(1,5)	(2,5)	(3,5)	(4,5)	(5,5)	(6,5)
6	(1,6)	(2,6)	(3,6)	(4,6)	(5,6)	(6,6)

Sample spar

	1000 p						
	+	1	2	3	4	5	6
1)	1	2	3	4	5	6	7
2)	2	(3)	4	5	6	7	8
3)	3	4	5	6	7	8	9
4)	4	5	6	7	8	9	10
5)	5	6	7	8	9	10	11
5)	6	7	8	9	10	11	12

 $X = \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$

Function Probasity Dist

$$X \to L(X)$$

100 dize 7011

Variance of a Random Variable

The variance of a random variable is a statistical measurement that describes how much individual observations in a group differ from the mean (expected value).

$$= E[x^2] + (E[x])^2 - 2(E[x])^2$$

$$= E[x^2] + (E[x])^2 - 2(E[x])^2$$

$$= Var(x) = E[x^2] - (E[x])^2$$

$$= Var(x) = E[(x^2) + (E[x])^2]$$

$$= Var(x) = E[(x^2) + (E[x])^2]$$