Step-1

Suppose A is an upper triangular matrix

Then

Step-2

Suppose A is orthogonal

That is;

$$A^{-1} = A^{T} \hat{\mathbf{a}} \boldsymbol{\in} |\hat{\mathbf{a}} \boldsymbol{\in}| (1)$$

Observe that if A is an upper triangular matrix, then A^{-1} is also upper triangular.

Further, A is upper triangular gives A^{T} is lower triangular.

In view of (1), obtain that A^T is both upper triangular and a lower triangular matrix.

In other words, A is a diagonal matrix

ÂÂÂÂ