IMPROVING TIME SERIES CLASSIFICATION ACCURACY USING SELF-SUPERVISED LEARNING

Presentation by Saurav Raj

BACKGROUND AND MOTIVATION

Why Self-Supervised Learning

- Traditional supervised learning relies on labeled data, which is limited and costly to acquire.
- Self-supervised learning (SSL) uses unlabeled data, extracting valuable features that can enhance model performance in downstream tasks.
- Gesture recognition in time series data can benefit from SSL by extracting richer feature representations, improving accuracy on the UWaveGestureLibrary dataset.

OBJECTIVE

Goal: To improve the classification accuracy of the UWaveGestureLibrary dataset using self-supervised learning.

Specific Objectives:

- 1. Implement SSL on an external dataset (HAR dataset) to learn feature representations.
- 2. Fine-tune a classification model on UWaveGestureLibrary using these learned features.
- 3. Quantitatively compare the performance with conventional classification methods.

DATA PREPARATION

Datasets Used:

- HAR Dataset (for SSL pre-training): [HAR.zip]
- UWaveGestureLibrary Dataset (for classification): [Gesture.zip]

Preprocessing Steps:

- Missing Values: No missing values detected in both datasets.
- Scaling: StandardScaler used for feature normalization.

Dataset	Shape (Train)	Shape (Validati on)	Shape (Test)
HAR	(5881, 618)	(1471, 618)	(2947, 618)
UWaveG estureLi brary	(320, 618)	(120, 618)	(120, 618)

FEATURE EXTRACTION RESULTS

Embeddings: Extracted features from the UWaveGestureLibrary dataset using the trained

Siamese Network.

Embeddings Shape:

Train: (320, 64)

Validation: (120, 64)

Test: (120, 64)

SELF-SUPERVISED LEARNING IMPLEMENTATION

Model: Siamese Network with contrastive loss (NT-Xent Loss).

Hyperparameters:

• Hidden Dim: 128

• Output Dim: 64

• Temperature: 0.5

• Batch Size: 32

• Epochs: 10

Epoch	Loss	
1	1.1088	
2	0.5333	
3	0.5331	
••••	••••	
10	0.3257	

CLASSIFICATION MODEL SELECTION AND RATIONALE

Models Tested:

- Tuned Classifier (Dense Neural Network with dropout)
- LSTM-based Classifier (with Early Stopping)

Why LSTM?

• LSTM captures sequential dependencies in time series, which improves model interpretability and classification accuracy.

Model	Train Accuracy	Validation Accuracy	Test Accuracy	
Tuned Classifier	68.75%	66.67%	66.67%	
LSTM Classifier	75.62%	74.17%	74.17%	

Table :Accuracy Comparison:

CLASSIFICATION MODEL SELECTION AND RATIONALE

LSTM Performance Improvement:

Test accuracy improved by 7.5% using LSTM over Tuned Classifier.

Early Stopping Triggered

Helps avoid overfitting by halting training early.

EVALUATION METRICS AND RESULTS

Metrics Used:

- Accuracy
- Confusion Matrix
- Classification Report

(Precision, Recall, F1-score)

Classification	Report:			
	precision	recall	f1-score	support
Class 0	0.88	0.93	0.00	15
Class 0	0.00	0.93	0.90	15
Class 1	0.92	0.80	0.86	15
Class 2	0.88	0.93	0.90	15
Class 3	0.64	0.60	0.62	15
Class 4	0.50	0.27	0.35	15
Class 5	0.44	0.53	0.48	15
Class 6	0.82	0.93	0.88	15
Class 7	0.78	0.93	0.85	15
accuracy			0.74	120
macro avg	0.73	0.74	0.73	120
weighted avg	0.73	0.74	0.73	120

MODEL INTERPRETABILITY AND ERROR ANALYSIS

Error Analysis:

- Class 4 and 5 show lower F1 scores, likely due to overlap in feature space or limited distinctive features.
- Potential Solution: Investigate additional feature extraction methods or different augmentations for better class separability

SUMMARY AND CONCLUSION

Summary:

- Successfully implemented self-supervised learning on HAR data.
- LSTM-based classifier yielded higher accuracy and interpretability on UWaveGestureLibrary.

Key Improvements:

- 7.5% increase in accuracy using self-supervised learned features.
- Efficient feature extraction using contrastive learning and augmentation.

Future Work:

• Experiment with advanced SSL techniques like masked autoencoders or multi-task learning for further improvements.

THANK YOU! Presentation by Saurav Raj