

Ad ogni composto il suo nome e formula

NOMENCLATURA

S. De Santis

1

Nomenclatura

Classificazione sostanze pure

sostanze pure

Composti organici

Formati da catene di C con H, O, N

- Indrocarburi C_xH_y (alifatici o aromatici)
- Alcooli R–OH
- Eteri R –O –R
- Aldeidi e chetoni
- Esteri
- Acidi carbossilici
- ...

Composti inorganici

Formati da combinazioni di tutti gli altri elementi

La classificazione dei composti inorganici si basa sulle loro proprietà chimiche, in particolare sulla natura metallica o non metallica degli elementi costituenti e sulla reattività con acqua e ossigeno

Nomenclatura

IUPAC*

Trae origine dalla distinzione degli elementi in metalli e non metalli; indica con suffissi e prefissi i diversi stati di ossidazione degli elementi; permette di distinguere facilmente gli acidi dalle basi e tra ossidi, perossidi e superossidi.

Si "compone" il nome della specie chimica esplicitando la formula ovvero mettendo in evidenza il numero di atomi ed il numero di ossidazione degli elementi -> corrispondenza logica dal punto di vista letterale e numerico.

* International Union of Pure and Applied Chemistry

Sostanze pure

Classificazione di elementi e composti

Ioni monoatomici

Elemento acquista elettroni \rightarrow anione (carica negativa)

Nomeclatura: nome elemento-uro

Cl⁻ cloruro

S² solfuro

Elemento perde elettroni \rightarrow catione (carica positiva)

Nomenclatura: ione nome elemento

Ag⁺ ione argento

Na⁺ ione sodio

Alcuni metalli possono avere due stati di ossidazione. Si può distingue fra essi in diversi modi:

	Tradizionale	Stock*	
Cu+	Ione rameoso	Ione rame (I)	* Ufficializzata dalla IUPAC
Cu^{2+}	Ione rameico	Ione rame (II)	

Classificazione dei composti inorganici

Classe		Tipo di elementi	Struttura della formula	Esempio
Ossidi ba	sici	metallo, ossigeno	Me O	CaO
Ossidi ac	idi	non metallo, ossigeno	nonMe O	SO ₂
Idruri	Metallici	metallo, idrogeno	Me H	LiH
	covalenti	non metallo (esclusi idrogeno e zolfo), idrogeno	nonMe H	NH ₃
Idrossidi		metallo, ossigeno, idrogeno	Me OH	NaOH
Acidi	Binari (o idracidi)	Idrogeno, non metallo (solo alogeni e zolfo)	H nonMe	HCI
	Ternari (o ossiacidi)	Idrogeno, non metallo, ossigeno	H noMe O	KNO ₃
Sali	Binari (da idracidi)	Metallo, non metallo	Me nonMe	KBr
	Ternari (da ossiacidi)	Metallo, non metallo, ossigeno	Me nonMe O	CaSO ₄

Composti inorganici

Composti binari

IDRURI IDRACIDI OSSIDI BASICI OSSIDI ACIDI

Composti ternari

IDROSSIDI OSSIACIDI SALI

Proprietà dei composti binari

I composti binari si possono distinguere in ionici e molecolari.

Proprietà dei composti ternari

I composti binari si possono distinguere in ionici e molecolari.

Composti dell'ossigeno

Ossidi basici Ossigeno + Me

Formula: si scrive prima il metallo poi l'ossigeno

CaO Al_2O_3

Nomenclatura: ossido di metallo

CaO ossido di calcio

Se sono presenti più atomi di metallo o di ossigeno (accade quando la carica del metallo è diversa da quella dello ione ossido -2)

IUPAC: mono/bi/tri/tetra ossido di mono/bi/tri/tetra metallo

STOCK: numero di ossidazione fra parentesi indicato in numeri romani **Ossido di** metallo (n°)

Tradizionale: ossido ipo metallooso - ossido metallooso - ossido permetalloico - ossido metalloico

Al₂O₃ Triossido di dialluminio – ossido di alluminio (III) – allumina

Ossidi basici

n.o.	Formula	Nome Tradizionale	Nome IUPAC
+2	SnO	Ossido Stannoso	Ossido di stagno
+4	SnO ₂	Ossido Stannico	Diossido di stagno
+3	Al ₂ O ₃	Allumina	Triossido di dialluminio

Il nome IUPAC non distingue fra ossidi, perossidi e superossidi!

n.o.	Formula	Nome Tradizionale	Nome IUPAC
+1	Li ₂ O	Ossido di Litio	Ossido di dilitio
+1	Na ₂ O ₂	Perossido di sodio	Diossido di disodio
+1	KO ₂	Superossido di potassio	Diossido di potassio

Ossidi acidi (Anidridi) Ossigeno + nonMe

Formula: si scrive prima il non-metallo poi l'ossigeno

 CO_2 Cl_2O_3

Nomenclatura:

La IUPAC non distingue fra ossidi acidi e ossidi basici

IUPAC: mono/bi/tri/tetra ossido di mono/bi/tri/tetra non metallo

STOCK: Ossido di non metallo (n°)

Nella nomenclatura tradizionale, gli ossidi acidi si chiamano "anidridi"

Tradizionale: anidride ipo non-metalloosa - anidride non-metalloosa - anidride pernon-metalloica - anidride non-metalloica

Esempi ed eccezioni

N azoto (+1, +2, +3, +4, +5)

Può formare vari tipi di ossido: è preferibile usare la nomenclatura sistematica

+1	Protossido di azoto	N_2O
+2	Ossido di azoto	NO
+3	Anidride nitrosa	N_2O_3
+4	Diossido di azoto	NO_2
+5	Anidride nitrica	N_2O_5

Ossidi

Negli ossidi l'ossigeno ha n.o. -2 e si trova a destra nella formula (CO₂, MgO).

Un modo rapido per ricavare il numero di ossidazione di un elemento in un ossido è quello di utilizzare la "regola dell'incrocio"

La regola dell'incrocio è efficace anche per ricavare la formula noto il numero di ossidazione dell'elemento.

Idrossidi

Ossido basico + H₂O

Composti ternari formalmente ottenuti per addizione fra un ossido basico e acqua.

$$CaO + H_2O \rightarrow Ca(OH)_2$$

Formula: metallo + gruppo/i OH – (in numero pari al n° ox del metallo)

Nomenclatura: idrossido di nome metallo

Tradizionale: uso di prefissi e suffissi (... oso, ... ico etc)

IUPAC: mono/bi/tri/tetra idrossido di mono/bi/tri/tetra metallo

STOCK: Idrossido di metallo (n°)

Composto	Nome Comune	IUPAC
NaOH	Soda caustica	Idrossido di sodio
$Mg(OH)_2$	Magnesio idrato	Diidrossido di magnesio
Al(OH)₃	Idrossido di alluminio	Tridrossido di allumnio
Fe(OH)2	Idrossido ferroso	Diidrossido di ferro
Fe(OH)₃	Idrossido ferrico	Triidrossido di ferro

Ossiacidi Ossido acido + H₂O

Composti ternari formalmente ottenuti per addizione fra una anidride e acqua.

$$SO_3 + H_2O \rightarrow H_2SO_4$$

$$SO_2 + H_2O \rightarrow H_2SO_3$$

$$Cl_5O_2 + H_2O \rightarrow 2 \ HClO_3$$

Ossiacidi

Formula: idrogeno + non-metallo + ossigeno

Nomenclatura: la IUPAC riconosce l'uso del nome comune per gli ossiacidi ma raccomanda di usare la forma acido-mono/bi/tri osso non metallo ico

Acido (prefisso) non-metallo (suffisso)

-Acido ... ico per elementi che formano un solo ossiacido

```
 \text{Acido} \quad \begin{cases} \text{per} & \dots & \text{ico} \\ & \dots & \text{ico} \\ & \dots & \text{oso} \\ & \text{ipo} & \dots & \text{oso} \end{cases} \quad \begin{cases} \text{Percloricico} \left( \text{HClO}_4 \right) \\ \text{cloricico} \left( \text{HClO}_3 \right) \\ \text{cloroso} \left( \text{HClO}_2 \right) \\ \text{Ipocloroso} \left( \text{HClO} \right) \end{cases}
```

Ossiacidi Orto- Meta- Piro-

Le anidridi di alcuni Non Metalli (P, As, Sb, B, Si) possono reagire con acqua in diverse proporzioni, formando acidi diversi; nella **nomenclatura tradizionale** degli acidi ossigenati vengono usati i prefissi *orto, meta e piro* per indicare i diversi gradi di idratazione di acidi aventi l'atomo centrale nello stesso stato di ossidazione.

Anidride +
$$1H_2O \rightarrow$$
 acido **meta**
Anidride + $2H_2O \rightarrow$ acido **piro**
Anidride + $3H_2O \rightarrow$ acido **orto**

 $P_2O_5 + H_2O \rightarrow HPO_3$ acido metafosforico $P_2O_5 + 2H_2O \rightarrow H_4P_2O_7$ acido pirofosforico $P_2O_5 + 3H_2O \rightarrow H_3PO_4$ acido (orto)fosforico o fosforico In genere il prefisso "orto" è sottinteso.

Composti dell'idrogeno

Es. NaH L'idrogeno ha n.o. –1 Es. NH₃, SiH₄ L'idrogeno ha n.o. +1

Sali

Composti ottenuti formalmente mediante sostituzione di uno o più idrogeni in un acido (idracido o ossiacido) con un catione metallico o un catione poliatomico.

La reazione fra un idrossido e un acido (neutralizzazione) è la più diffusa reazione di formazione di un sale:

Nomenclatura: prima il nome del catione poi quello dell'anione

Sali

I nomi dei Sali, nella nomenclatura tradizionale, derivano da quelli degli acidi corrispondenti:

- Se il sale deriva da un IDRACIDO → (BINARIO)
- acido ... idrico diventa uro di nome metallo

```
Es. NaOH + HCl acido cloridrico → NaCl cloruro di sodio

CaCl₂ = cloruro di calcio; Fe₂S₃ solfuro di ferro (III); FeCl₂ cloruro ferroso; FeCl₃ cloruro ferrico.
```

• Se il sale deriva da un OSSIACIDO → (TERNARIO)

```
Acido ipononmetallOSOdiventaipononmetallITO di metalloAcido nonmetallOSOdiventanonmetallITO di metalloAcido nonmetallICOdiventanonmetallATO di metalloAcido pernonmetallICOdiventapernonmetallATO di metallo
```

```
Ac. \mathsf{Ipo}\mathsf{cloroso}\left(\mathsf{HCIO}\right) \to \mathsf{ipo}\mathsf{clorito} di sodio \mathsf{NaCIO}_3 Ac. \mathsf{Clorico}\left(\mathsf{HCIO}_3\right) \to \mathsf{clorito} di sodio \mathsf{NaCIO}_3 Ac. \mathsf{Cloroso}\left(\mathsf{HCIO}_2\right) \to \mathsf{clorito} di sodio \mathsf{NaCIO}_2 Ac. \mathsf{Per}\mathsf{clorico}\left(\mathsf{HCIO}_4\right) \to \mathsf{per}\mathsf{clorato} di sodio \mathsf{NaCIO}_4
```

Sali Acidi e Sali idrati

Quando gli atomi di idrogeno di un acido vengono sostituiti solo parzialmente il sale che ne deriva viene detto sale acido

Formula	Nome tradizionale	Nome IUPAC
H ₂ CO ₃	Aido carbonico	Acido triossocarbonico
NaHCO ₃	Carbonato acido di sodio (bicarbonato di sodio)	Idrogeno triossocarbonato di sodio
Na ₂ CO ₃	Carbonato di sodio	Triossocarbonato di disodio

A volte un sale è intimamente legato ad alcune molecole d'acqua che entrano a far parte della sua struttura chimica (e contribuiscono al peso molecolare). Si parla in questo caso di **sali idrati**

CaCl₂·6H₂O cloruro di calcio esaidrato

Sali

Diversi tipi di reazione portano alla formazione si sali:

Metallo + acido
$$\rightarrow$$
 sale + H₂;
Ca +2HNO₃ \rightarrow Ca (NO₃)₂ + H₂
Ossido acido + ossido basico \rightarrow sale;
CaO + CO₂ \rightarrow CaCO₃
Idrossido + acido \rightarrow sale + acqua;
2NaOH + H₂CO₃ \rightarrow Na₂CO₃ + 2H₂O
Ossido basico + acido \rightarrow sale + acqua;
Na₂O + H₂CO₃ \rightarrow Na₂CO₃ + H₂O
Idrossido + ossido acido \rightarrow sale + acqua;
2NaOH + CO₂ \rightarrow Na₂CO₃ + H₂O

Dissociazione di sali

In acqua i sali si dissociano 'liberando' gli anioni e i cationi da cui sono costituiti.

Sale
$$\rightarrow$$
 catione + anione

Alcune regole pratiche per scrivere correttamente l'equazione di dissociazione:

- Lo ione positivo è sempre il metallo; lo ione negativo è costituito dalla parte restante della formula.
- Se il sale è binario, come per esempio NaCl, lo ione negativo corrisponde all'atomo del non metallo (Cl); se il sale è ternario, come per esempio NaClO, lo ione negativo contiene sia il non metallo che l'ossigeno (ClO).
- o il numero di atomi o gruppi atomici che diventeranno ioni è indicato dall'indice posto in basso e a destra del corrispondente simbolo.
- La carica da attribuire allo ione (o al gruppo di ioni) è data dal suo n.o.
- o La somma delle cariche di anione e catione deve essere zero

Es. Na₂S (solfuro di sodio)

Metallo: Na → catione Na⁺

anione S²⁻

Eq. Dissociazione: Na₂S → 2Na⁺ + S²⁻

Dissociazione di sali

$$Al_{2}(SO_{4})_{3} \rightarrow 2Al^{3+} + 3SO_{4}^{2-}$$
 $K_{2}CO_{3} \rightarrow 2K^{+} + CO_{3}^{2-}$
 $CaCl_{2} \rightarrow Ca^{2+} + 2Cl^{-}$
 $Ba(NO_{3})_{2} \rightarrow Ba^{2+} + 2NO_{3}^{-}$
 $NaF \rightarrow Na^{+} + F^{-}$
 $MgSO_{4} \rightarrow Mg^{2+} + SO_{4}^{2-}$
 $Na_{3}PO_{4} \rightarrow 3Na^{+} + PO_{4}^{3-}$
 $NaHCO_{3} \rightarrow Na^{+} + HCO_{3}^{-}$
 $KBr \rightarrow K^{+} + Br^{-}$
 $(NH_{4})_{2}SO_{4} \rightarrow 2NH_{4}^{+} + SO_{4}^{-}$
 $LiCl \rightarrow Li^{+} + Cl^{-}$
 $KCN \rightarrow K^{+} + CN^{-}$
 $NaNO_{3} \rightarrow Na^{+} + NO_{3}^{-}$
 $CH_{3}COONa \rightarrow CH_{3}COO^{-} + Na^{+}$

Nomenclatura

Diagramma della nomenclatura dei composti inorganici

