THE WALK-IN FORECAST

LET'S PREDICT... LET'S FORECAST...!!!

INTRODUCTION

Given is a daily walk-in data of a medical store from second quarter of year 2015 to the first quarter of year 2019. The task is to forecast or predict the number of walk-in patients in the first week on April 2019 each day. By using forecasting methods like Moving Average, Naïve Byes Classifier, ARIMA and Holt-Winters, we will plot the forecast, determine error statistics, plot seasonality, trend and residuals.

DESCRIPTIVE ANALYSIS AND GRAPHICAL SUMMARY

FORECAST GRAPH

General time plot, day wise plot, month wise plot, weekday wise time plot and yearly plot have been displayed to determine walk-in of patients.

TIME AND DECOMPOSITION PLOT
(Trend, seasonality and Residual plots)

FORECAST GRAPH 01-04-2019----->55 02-04-2019---->44 04-04-2019---->47 05-04-2019---->55 07-04-2019--->55

SUMMARY OF FORECAST

By applying the formula:
Forecast = Seasonality Index * Trend Component
We have used methods like Moving Average and
double moving average of order 7. We have also used
forecasting methods like Baseline (Naïve Classifier),
extrapolation (Holtz Winter), ARIMA and
autocorrelation.

Dep. Variable:	D.Number o	of patients	No. Ob	servations:	1167
Model:	ARI	1A(7, 1, 1)	Log Li	kelihood	-4166.852
Method:		css-mle	S.D. o	f innovations	8.592
Date:	Thu, (09 Apr 2020	AIC		8353.704
Time:		11:29:55	BIC		8404.326
Sample:		04-02-2015	HQIC		8372.799
	-	06-11-2018			
		Po	ots		
	Real	Imagin	ary	Modulus	Frequency
AR.1	0.7338	-0.9132j		1.1715	-0.1423
AR.2	0.7338	+0.9132j		1.1715	0.1423
AR.3	-0.2628	-1.09	70j	1.1280	-0.2874
AR.4	-0.2628	+1.09	70j	1.1280	0.2874
AR.5	-1.0746	-0.60	25j	1.2320	-0.4187

ACTAT TATART	$\pi \pi \tau \tau$		#TINTT	$\pi \square T \cap T T$
CONCLUSION	ΔNII	$\mathbf{KF}(\cdot, \mathbf{C}) \otimes \mathbf{M} \otimes \mathbf{M}$	\l \l	$\Delta \cdot \mathbf{I} \cdot \mathbf{I} \cdot \mathbf{I} \cdot \Delta \cdot \mathbf{I}$
COMODIOM	Δ	T/T/C/CIATIA		TION

1.2320

1.2385

1.4111

0.4187

-0.5000

0.5000

We considered three time series models for forecasting the time series. Since ARIMA or SARIMA model fits in better as it has less value of Mean Square Error and Root Mean Square Error. Thus, for better results ARIMA model or Naïve Classifier Model can be recommended.

+0.6025

+0.0000

Please Note: For better view, please zoom the poster to 300%.

AR.6

MA.1

-1.0746

-1.2385

-1,4111

FORECASTING METHODS

ERROR ANALYSIS OF FORECASTING METHODS USED							
	MODEL	ARIMA	NAÏVE CLASSIFIER	Holt Winters			
ERROR							
MSE		145.11	173.9761	294.4656			
MAE		23.88	10.34	12.9			
RMSE		12.04616121	13.19	17.16			
MAPE		22.49	20.43	25.49			

MAT005 COURSEWORK SUBMISSION DETAILS

Student Name: Siddharth Mathur

Student Id: C1988493