Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania

sierpień 2013

Poziom Podstawowy

Klucz punktowania zadań zamkniętych

Nr zadania	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Odpowiedź	D	A	В	D	С	В	В	C	C	В	A	С	D	D	C	В	С	A	D	D	C	В	D	В	В

Zadanie 26. (2 pkt)

Rozwiąż nierówność $3x - x^2 \ge 0$.

Rozwiązanie

Rozwiązanie nierówności kwadratowej składa się z dwóch etapów.

Pierwszy etap rozwiązania:

Znajdujemy pierwiastki trójmianu kwadratowego $-x^2 + 3x$:

• podajemy je bezpośrednio, np. zapisując pierwiastki trójmianu lub postać iloczynową trójmianu lub zaznaczając na wykresie

$$x_1 = 3$$
, $x_2 = 0$ lub $-x(x-3)$

albo

• obliczamy wyróżnik tego trójmianu:

$$\Delta = 9 - 4 \cdot (-1) \cdot 0 = 9$$
. Stąd $x_1 = \frac{-3 - 3}{-2} = 3$ oraz $x_2 = \frac{-3 + 3}{-2} = 0$.

Drugi etap rozwiązania:

Podajemy zbiór rozwiązań nierówności: $0 \le x \le 3$ lub $\langle 0, 3 \rangle$ lub $x \in \langle 0, 3 \rangle$ np. odczytując go ze szkicu wykresu funkcji $f(x) = -x^2 + 3x$.

Schemat oceniania

Zdający otrzymuje1 pkt gdy:

- zrealizuje pierwszy etap rozwiązania i na tym poprzestanie lub błędnie zapisze zbiór rozwiązań nierówności, np.
 - o rozłoży trójmian kwadratowy na czynniki liniowe, np. -x(x-3) i na tym poprzestanie lub błędnie zapisze zbiór rozwiązań nierówności,
 - o obliczy lub poda pierwiastki trójmianu kwadratowego $x_1 = 3$, $x_2 = 0$ i na tym poprzestanie lub błędnie zapisze zbiór rozwiązań nierówności,
 - o zaznaczy na wykresie miejsca zerowe funkcji $f(x) = -x^2 + 3x$ i na tym poprzestanie lub błędnie zapisze zbiór rozwiązań nierówności,

albo

• realizując pierwszy etap popełni błąd (ale otrzyma dwa różne pierwiastki) i konsekwentnie do tego rozwiąże nierówność, np. popełni błąd rachunkowy przy obliczaniu wyróżnika lub pierwiastków trójmianu kwadratowego i konsekwentnie do popełnionego błędu rozwiąże nierówność.

- poda zbiór rozwiązań nierówności : $\langle 0, 3 \rangle$ lub $x \in \langle 0, 3 \rangle$ lub $x \ge 0$ i $x \le 3$
- sporządzi ilustrację geometryczną (oś liczbowa, wykres) i zapisze zbiór rozwiązań nierówności w postaci: $x \ge 0$, $x \le 3$

albo

albo

 poda zbiór rozwiązań nierówności w postaci graficznej z poprawnie zaznaczonymi końcami przedziałów.

Kryteria

oceniania uwzględniające specyficzne trudności w uczeniu się matematyki

- 1. Akceptujemy sytuację, gdy zdający poprawnie obliczy pierwiastki trójmianu $x_1 = 0$, $x_2 = 3$ i zapisze, np. $x \in \langle 0, -3 \rangle$, popełniając tym samym błąd przy przepisywaniu jednego z pierwiastków, to za takie rozwiązanie otrzymuje **2 punkty**.
- 2. Jeśli zdający pomyli porządek liczb na osi liczbowej, np. zapisze zbiór rozwiązań nierówności w postaci $x \in \langle 3, 0 \rangle$, to otrzymuje **2 punkty**.

Zadanie 27. (2 pkt)

Rozwiąż równanie $x^3 - 6x^2 - 12x + 72 = 0$.

<u>I sposób rozwiązania</u> (metoda grupowania)

Przedstawiamy lewą stronę równania w postaci iloczynowej stosując metodę grupowania wyrazów:

$$x(x^2-12)-6(x^2-12)=0$$
 lub $x^2(x-6)-12(x-6)=0$
 $(x-6)(x^2-12)=0$.

Stąd x = 6 lub $x = -2\sqrt{3}$ lub $x = 2\sqrt{3}$.

Schemat oceniania I sposobu rozwiązania

II sposób rozwiązania (metoda dzielenia)

Stwierdzamy, że liczba 6 jest pierwiastkiem wielomianu $x^3 - 6x^2 - 12x + 72$. Dzielimy wielomian $x^3 - 6x^2 - 12x + 72$ przez dwumian (x-6). Otrzymujemy iloraz $(x^2 - 12)$. Zapisujemy równanie w postaci $(x-6)(x^2-12)=0$. Stąd $(x-6)(x+2\sqrt{3})(x-2\sqrt{3})=0$ zatem x=6 lub $x=-\sqrt{12}$ lub $x=\sqrt{12}$.

Schemat oceniania II sposobu rozwiązania

Zadanie 28. (2 *pkt*)

Kat α jest ostry i $tg\alpha = 2$. Oblicz $\frac{\sin \alpha - \cos \alpha}{\sin \alpha + \cos \alpha}$

I sposób rozwiązania

Dzieląc licznik i mianownik ułamka $\frac{\sin \alpha - \cos \alpha}{\sin \alpha + \cos \alpha}$ przez $\cos \alpha$ i wykorzystując zależność

$$tg\alpha = \frac{\sin\alpha}{\cos\alpha} \text{ otrzymujemy } \frac{\sin\alpha - \cos\alpha}{\sin\alpha + \cos\alpha} = \frac{\frac{\sin\alpha}{\cos\alpha} - \frac{\cos\alpha}{\cos\alpha}}{\frac{\sin\alpha}{\cos\alpha} + \frac{\cos\alpha}{\cos\alpha}} = \frac{tg\alpha - 1}{tg\alpha + 1} = \frac{2 - 1}{2 + 1} = \frac{1}{3}.$$

II sposób rozwiązania

Wykorzystując zależność $tg\alpha = \frac{\sin \alpha}{\cos \alpha}$ zapisujemy $\frac{\sin \alpha}{\cos \alpha} = 2$.

Przekształcamy $\sin \alpha = 2\cos \alpha$, podstawiamy do wyrażenia $\frac{\sin \alpha - \cos \alpha}{\sin \alpha + \cos \alpha}$ i wyznaczamy jego wartość:

$$\frac{\sin \alpha - \cos \alpha}{\sin \alpha + \cos \alpha} = \frac{2\cos \alpha - \cos \alpha}{2\cos \alpha + \cos \alpha} = \frac{\cos \alpha}{3\cos \alpha} = \frac{1}{3}.$$

III sposób rozwiązania

Wykorzystując zależność $tg\alpha = \frac{\sin \alpha}{\cos \alpha}$ zapisujemy $\frac{\sin \alpha}{\cos \alpha} = 2$.

Przekształcamy $\cos \alpha = \frac{\sin \alpha}{2}$, podstawiamy do wyrażenia $\frac{\sin \alpha - \cos \alpha}{\sin \alpha + \cos \alpha}$ i wyznaczamy jego wartość:

$$\frac{\sin\alpha - \cos\alpha}{\sin\alpha + \cos\alpha} = \frac{\sin\alpha - \frac{\sin\alpha}{2}}{\sin\alpha + \frac{\sin\alpha}{2}} = \frac{\frac{2\sin\alpha - \sin\alpha}{2}}{\frac{2\sin\alpha + \sin\alpha}{2}} = \frac{2\sin\alpha - \sin\alpha}{2} \cdot \frac{2}{2\sin\alpha + \sin\alpha} = \frac{\sin\alpha}{3\sin\alpha} = \frac{1}{3}.$$

IV sposób rozwiązania

Rysujemy trójkąt prostokątny, zaznaczamy kąt α i wprowadzamy oznaczenia.

Korzystając z definicji funkcji trygonometrycznych kąta ostrego w trójkącie prostokątnym, zapisujemy

$$\sin \alpha = \frac{2}{c}, \cos \alpha = \frac{1}{c}.$$

Podstawiając $\sin \alpha$ i $\cos \alpha$, wyznaczamy wartość wyrażenia $\frac{\sin \alpha - \cos \alpha}{\sin \alpha + \cos \alpha}$:

$$\frac{\sin\alpha - \cos\alpha}{\sin\alpha + \cos\alpha} = \frac{\frac{2}{c} - \frac{1}{c}}{\frac{2}{c} + \frac{1}{c}} = \frac{\frac{2-1}{c}}{\frac{2+1}{c}} = \frac{1}{3}.$$

Schemat oceniania I, II, III i IV sposobu rozwiązania

• podzieli licznik i mianownik ułamka $\frac{\sin \alpha - \cos \alpha}{\sin \alpha + \cos \alpha}$ przez $\cos \alpha$, zapisze ten ułamek w postaci $\frac{\operatorname{tg} \alpha - 1}{\operatorname{tg} \alpha + 1}$ i na tym poprzestanie lub dalej popełnia błędy

albo

• zapisze zależność $\sin \alpha = 2\cos \alpha$, doprowadzi ułamek do postaci $\frac{2\cos \alpha - \cos \alpha}{2\cos \alpha + \cos \alpha}$ i na tym poprzestanie lub dalej popełnia błędy

albo

• zapisze zależność $\cos \alpha = \frac{\sin \alpha}{2}$, doprowadzi ułamek do postaci $\frac{\sin \alpha - \frac{\sin \alpha}{2}}{\sin \alpha + \frac{\sin \alpha}{2}}$ i na tym poprzestanie lub dalej popełnia błędy

albo

• obliczy długość przeciwprostokątnej trójkąta prostokątnego o przyprostokątnych długości 1 i 2 (nawet z błędem rachunkowym) oraz zapisze $\sin \alpha = \frac{2}{c}$ i na tym poprzestanie lub dalej popełnia błędy

albo

• obliczy długość przeciwprostokątnej trójkąta prostokątnego o przyprostokątnych długości 1 i 2 (nawet z błędem rachunkowym) oraz zapisze $\cos \alpha = \frac{1}{c}$ i na tym poprzestanie lub dalej popełnia błędy

albo

• narysuje trójkąt prostokątny o przyprostokątnych długości 1 i 2, obliczy długość przeciwprostokątnej, zaznaczy w tym trójkącie poprawnie kąt α i obliczy sinus lub cosinus tego kąta, i na tym poprzestanie lub dalej popełnia błędy.

Uwagi

- 1. Jeśli zdający przyjmie, że $\sin \alpha = 2$ i $\cos \alpha = 1$, to otrzymuje **0 punktów**.
- 2. Wszystkie rozwiązania, w których zdający błędnie zaznaczy kąt α na przedstawionym przez siebie rysunku i z tego korzysta oceniamy na **0 punktów**.
- 3. Jeśli zdający odczyta z tablic wartość kąta, dla którego $tg\alpha = 2$: $\alpha = 63^{\circ}$ oraz zapisze $\sin 63^{\circ} = 0,8910$ lub $\cos 63^{\circ} = 0,4540$ i na tym poprzestanie lub dalej popełnia błędy, to otrzymuje **1 punkt**.
- 4. Jeśli zdający odczyta z tablic wartość kąta, dla którego $tg\alpha = 2$: $\alpha = 63^{\circ}$ oraz zapisze $\sin 63^{\circ} = 0,8910$ lub $\cos 63^{\circ} = 0,4540$ i obliczy wartość wyrażenia $\frac{\sin \alpha \cos \alpha}{\sin \alpha + \cos \alpha} \approx 0,3249$, to otrzymuje **2 punkty**.
- 5. Jeśli zdający odczyta z tablic wartość kąta, dla którego $tg \alpha = 2$: $\alpha = 64^{\circ}$ oraz zapisze $\sin 64^{\circ} = 0,8988$ lub $\cos 64^{\circ} = 0,4384$ i obliczy wartość wyrażenia $\frac{\sin \alpha \cos \alpha}{\sin \alpha + \cos \alpha} \approx 0,3443$, to otrzymuje **2 punkty**.

Zadanie 29. (2 *pkt*)

W tabeli zestawiono oceny z matematyki uczniów klasy 3A na koniec semestru.

Ocena	1	2	3	4	5	6
Liczba ocen	0	4	9	13	х	1

Średnia arytmetyczna tych ocen jest równa 3,6. Oblicz liczbę x ocen bardzo dobrych (5) z matematyki wystawionych na koniec semestru w tej klasie.

Rozwiazanie:

Obliczamy średnią arytmetyczną ocen zestawionych w tabeli

$$0 \cdot 1 + 4 \cdot 2 + 9 \cdot 3 + 13 \cdot 4 + x \cdot 5 + 1 \cdot 6$$

$$0+4+9+13+x+1$$

Ponieważ ta średnia arytmetyczna jest równa 3,6. Zatem otrzymujemy równanie

$$\frac{0.1 + 4.2 + 9.3 + 13.4 + x.5 + 1.6}{0 + 4 + 9 + 13 + x + 1} = 3,6.$$

$$\frac{5x + 93}{x + 27} = \frac{18}{5}$$

Stąd otrzymujemy

$$5(5x+93)=18(x+27),$$

 $25x+465=18x+486,$
 $7x=21.$

x=3.

Schemat oceniania

Zdający otrzymuje1 pkt gdy:

 zapisze równanie pozwalające obliczyć liczbę ocen bardzo dobrych i na tym poprzestanie lub dalej popełni błąd, np.:

$$\frac{0.1 + 4.2 + 9.3 + 13.4 + x.5 + 1.6}{0 + 4 + 9 + 13 + x + 1} = 3,6 \text{ lub } \frac{4.2 + 9.3 + 13.4 + x.5 + 1.6}{0 + 4 + 9 + 13 + x + 1} = 3,6$$

albo

• zapisze równanie pozwalające obliczyć liczbę ocen bardzo dobrych, ale popełni błąd przy

przy przepisywaniu danych.

Zdający otrzymuje2 pkt gdy obliczy liczbę ocen bardzo dobrych: 3.

<u>Uwaga</u>

Jeśli zdający odgadnie, że liczba ocen bardzo dobrych jest równa 3, i sprawdzi to, wykonując odpowiednie obliczenia, to otrzymuje **2 punkty**.

Zadanie 30. (2 *pkt*)

Uzasadnij, że jeżeli a jest liczbą rzeczywistą różna od zera i $a + \frac{1}{a} = 3$ to $a^2 + \frac{1}{a^2} = 7$.

I sposób rozwiązania

Równość $a + \frac{1}{a} = 3$ podnosimy obustronnie do kwadratu i przekształcamy równoważnie

$$a^2 + 2 \cdot a \cdot \frac{1}{a} + \frac{1}{a^2} = 9$$
,

$$a^2 + \frac{1}{a^2} = 9 - 2$$
.

Stad
$$a^2 + \frac{1}{a^2} = 7$$
.

Schemat oceniania I sposobu rozwiązania

Zdający otrzymuje1 pkt

gdy podniesie równość obustronnie do kwadratu: $a + \frac{1}{a} = 3$ i na tym zakończy lub dalej popełni błędy.

Zdający otrzymuje2 pkt gdy obliczy wartość wyrażenia $a^2 + \frac{1}{a^2}$: 7.

II sposób rozwiązania

Wyrażenie $a^2 + \frac{1}{a^2}$ zapisujemy w postaci $a^2 + \frac{1}{a^2} = \left(a + \frac{1}{a}\right)^2 - 2 \cdot a \cdot \frac{1}{a}$.

Zatem $a^2 + \frac{1}{a^2} = 9 - 2 = 7$.

<u>Schemat oceniania II sposobu rozwiązania</u> Zdający otrzymuje1 pkt

gdy zapisze zależność między sumą $a^2 + \frac{1}{a^2}$, a kwadratem sumy $\left(a + \frac{1}{a}\right)^2$ i na tym zakończy lub dalej popełni błędy.

Zdający otrzymuje2 pkt

gdy obliczy wartość wyrażenia $a^2 + \frac{1}{a^2}$: 7.

Zadanie 31. (2 *pkt*)

Długość krawędzi sześcianu jest o 2 krótsza od długości jego przekątnej. Oblicz długość przekątnej tego sześcianu.

I sposób rozwiązania

Sporządzamy rysunek pomocniczy i wprowadzamy oznaczenia:

a – długość krawędzi sześcianu,

 d_1 – długość przekątnej podstawy sześcianu,

d – długość przekatnej sześcianu.

Stosując twierdzenie Pitagorasa otrzymujemy: $a^2 + a^2 = d_1^2$ oraz $a^2 + d_1^2 = d^2$.

Stąd $d = a\sqrt{3}$ lub $a = \frac{\sqrt{3}}{3}d$.

Ponieważ d = a + 2 rozwiązujemy równanie:

•
$$d = \frac{\sqrt{3}}{3}d + 2$$
 i otrzymujemy $d = \frac{6}{3 - \sqrt{3}}$ lub $d = 3 + \sqrt{3}$

albo

• $a\sqrt{3} = a + 2$ i otrzymujemy $a = \frac{2}{\sqrt{3} - 1}$ lub $a = 1 + \sqrt{3}$.

Wyznaczamy długość przekątnej sześcianu: $d = 3 + \sqrt{3}$.

Schemat oceniania I sposobu rozwiązania

Zdający otrzymuje 1 pkt gdy zapisze równanie pozwalające obliczyć długość przekątnej $d=\frac{\sqrt{3}}{3}d+2$ lub $a\sqrt{3}=a+2$ i na tym poprzestanie lub dalej popełnia błędy.

Zdający otrzymuje 2 pkt gdy obliczy długość przekątnej: $d=\frac{6}{3-\sqrt{3}}$ lub $d=3+\sqrt{3}$.

II sposób rozwiązania

Sporządzamy rysunek pomocniczy i wprowadzamy oznaczenia: *a* – długość krawędzi sześcianu,

d – długość przekątnej sześcianu.

Korzystamy z zależności $d = a\sqrt{3}$.

Ponieważ a = d - 2 rozwiązujemy równanie:

• $d = (d-2)\sqrt{3}$ i otrzymujemy $d\sqrt{3} - d = 2\sqrt{3}$ lub $d(\sqrt{3}-1) = 2\sqrt{3}$.

Wyznaczamy długość przekątnej sześcianu: $d=\frac{2\sqrt{3}}{\sqrt{3}-1}=\frac{2\sqrt{3}\left(\sqrt{3}+1\right)}{3-1}=\sqrt{3}\left(\sqrt{3}+1\right)$ lub $d=3+\sqrt{3}$.

Schemat oceniania II sposobu rozwiązania

$$d = \sqrt{3}(\sqrt{3} + 1)$$
 lub $d = \frac{12 + \sqrt{48}}{4}$.

Zadanie 32. (5 pkt)

Dane są dwie prostokątne działki. Działka pierwsza ma powierzchnię równą 6000 m². Działka druga ma wymiary większe od wymiarów pierwszej działki o 10 m i 15 m oraz powierzchnię większą o 2250 m². Oblicz wymiary pierwszej działki.

I sposób rozwiązania

Niech x oznacza długość jednego z boków pierwszej działki, a y – długość drugiego boku działki pierwszej, wtedy pole powierzchnia działki pierwszej jest równe $x \cdot y$. Stąd mamy równanie $x \cdot y = 6000$.

Wtedy x+10 oznacza długość jednego z boków działki drugiej, a y+15 długość drugiego boku działki drugiej, zaś pole powierzchni tej działki jest równe 6000+2250=8250. Otrzymujemy zatem równanie $(x+10)\cdot(y+15)=8250$.

6000

Zapisujemy układ równań $\begin{cases} x \cdot y = 6000 \\ (x+10) \cdot (y+15) = 8250 \end{cases}$

Z pierwszego równania wyznaczamy

$y = \frac{6000}{x}$	$x = \frac{6000}{y}$						
podstawiamy do drugiego równania i rozwiązujemy							
$(x+10)\left(\frac{6000}{x}+15\right) = 8250$	$\left(\frac{6000}{y} + 10\right)(y+15) = 8250$						
Przekształcamy to równanie do równania	Przekształcamy to równanie do równania						
kwadratowego, np. $x^2 - 140x + 4000 = 0$.	kwadratowego, np. $y^2 - 210y + 9000 = 0$.						
$\Delta = 19600 - 16000 = 3600 = 60^2$	$\Delta = 44100 - 36000 = 8100 = 90^{2}$						
$x_1 = \frac{140 - 60}{2} = 40$ lub $x_2 = \frac{140 + 60}{2} = 100$	$y_1 = \frac{210 - 90}{2} = 60$ lub $y_2 = \frac{210 + 90}{2} = 150$						
Obliczamy y:	Obliczamy <i>x</i> :						

$y_1 = \frac{6000}{40} = 150 \text{ lub } y_2 = \frac{60}{10}$	$\frac{000}{00} = 60 . x_1 = \frac{600}{60}$	$\frac{00}{0} = 100 \text{ lub } x_2 = \frac{6000}{150} = 40.$
O.1. D' 1_'-11'-1-	150 1	-1. 100 (0

Odp. Pierwsza działka miała wymiary 40 m na 150 m lub 100 m na 60 m.

II sposób rozwiazania

Niech x oznacza długość jednego z boków pierwszej działki, a y – długość drugiego boku działki pierwszej, wtedy pole powierzchni działki pierwszej jest równe $x \cdot y$. Stąd mamy równanie $x \cdot y = 6000$

Wtedy x+10 oznacza długość jednego z boków działki drugiej, a y+15 długość drugiego boku działki drugiej, zaś pole powierzchni tej działki jest równe 6000+2250=8250. Otrzymujemy zatem równanie $(x+10)\cdot(y+15)=8250$

Zapisujemy układ równań
$$\begin{cases} x \cdot y = 6000 \\ (x+10) \cdot (y+15) = 8250 \end{cases}$$
 Stąd otrzymujemy kolejno
$$\begin{cases} x \cdot y = 6000 \\ x \cdot y + 15x + 10y + 150 = 8250 \end{cases}$$

$$\begin{cases} x \cdot y = 6000 \\ 6000 + 15x + 10y + 150 = 8250 \end{cases}$$

$$\begin{cases} x \cdot y = 6000 \\ 15x + 10y - 2100 = 0 \end{cases}$$

Równanie 15x+10y-2100=0 dzielimy obustronnie przez 5.

Otrzymujemy 3x + 2y - 420 = 0, stąd wyznaczamy

$$y = -\frac{3}{2}x + 210$$

$$podstawiamy do pierwszego równania i rozwiązujemy$$

$$x \cdot \left(-\frac{3}{2}x + 210\right) = 6000$$

$$-\frac{3}{2}x^2 + 210x - 6000 = 0$$

$$x^2 - 140x + 4000 = 0$$

$$\Delta = 19600 - 16000 = 3600 = 60^2$$

$$x_1 = \frac{140 - 60}{2} = 40 \text{ lub } x_2 = \frac{140 + 60}{2} = 100$$

$$Obliczamy y:$$

$$y_1 = \frac{6000}{40} = 150 \text{ lub } y_2 = \frac{6000}{100} = 60$$

$$x = \frac{140 - 60}{2} = 40 \text{ lub } x_2 = \frac{6000}{100} = 60$$

$$x_1 = \frac{6000}{2} = 150 \text{ lub } x_2 = \frac{6000}{100} = 60$$

$$x_1 = \frac{6000}{2} = 100 \text{ lub } x_2 = \frac{6000}{150} = 40$$
Odp. Pierwsza działka miała wymiary 40 m na 150 m lub 100 m na 60 m.

Schemat oceniania I i II sposobu rozwiązania

Zapisanie jednego z równań: $x \cdot y = 6000$ albo $(x+10) \cdot (y+15) = 8250$, gdzie x, y oznaczają długości boków pierwszej działki.

Uwaga

Nie wymagamy opisania wprowadzonych oznaczeń, jeżeli z rozwiązania można wywnioskować, że zdający poprawnie je stosuje.

Rozwiązanie, w którym jest istotny postęp2 pkt

Zapisanie układu równań z niewiadomymi x i y $\begin{cases} x \cdot y = 6000 \\ (x+10) \cdot (y+15) = 8250 \end{cases}$

Pokonanie zasadniczych trudności zadania...... pkt

Zapisanie równania z jedną niewiadomą x lub y, np:

$$(x+10) \left(\frac{6000}{x} + 15 \right) = 8250 \text{ lub} \left(\frac{6000}{y} + 10 \right) (y+15) = 8250 \text{ lub } x \cdot \left(-\frac{3}{2}x + 210 \right) = 6000 \text{ lub}$$

$$\left(-\frac{2}{3}y + 140 \right) \cdot y = 6000 \text{ lub } x^2 - 140x + 4000 = 0 \text{ lub } y^2 - 210y + 9000 = 0 .$$

<u>Uwaga</u>

Zdający nie musi zapisywać układu równań, może bezpośrednio zapisać równanie z jedną niewiadomą i wówczas jego rozwiązanie zostanie zakwalifikowane co najmniej do kategorii *Pokonanie zasadniczych trudności*.

Rozwiązanie zadania do końca lecz z usterkami, które jednak nie przekreślają poprawności rozwiązania (np. błędy rachunkowe)......4 pkt

• rozwiązanie równania z niewiadomą x i nieobliczenie drugiego boku działki,

albo

rozwiązanie równania z niewiadomą y i nieobliczenie pierwszego boku działki,

albo

• popełnienie błędu rachunkowego w rozwiązaniu równania z jedną niewidomą (ale otrzymanie dwóch rozwiązań) i konsekwentne do popełnionego błędu obliczenie wymiarów działek.

albo

• obliczenie wymiarów działki tylko w jednym przypadku.

Rozwiązanie pełne5 pkt

Obliczenie wymiarów działki pierwszej: działka pierwsza ma wymiary 40 m na 150 m lub 100 m na 60 m.

Uwaga

Jeżeli zdający odgadnie wymiary działki w co najmniej jednym przypadku, to otrzymuje **1 punkt**, nawet w sytuacji, gdy dokonuje systematycznego "przeszukiwania" rozwiązań całkowitych.

Zadanie 33. (4 pkt)

Punkty A = (-1, -5), B = (3, -1) i C = (2, 4) są kolejnymi wierzchołkami równoległoboku ABCD. Oblicz pole tego równoległoboku.

I sposób rozwiązania

Wyznaczamy równanie prostej AB: y = x - 4.

Wyznaczamy równanie prostej CE prostopadłej do prostej AB i przechodzącej przez punkt C: y = -x + 6

Obliczamy współrzędne punktu E (przecięcia prostych AB i CE) rozwiązując układ równań: $\begin{cases} y = x - 4 \\ y = -x + 6 \end{cases}$

Rozwiązaniem układu jest: x = 5, y = 1. Stąd E = (5, 1).

Obliczamy długość odcinka *AB*: $|AB| = \sqrt{4^2 + 4^2} = 4\sqrt{2}$.

Obliczamy długość odcinka *CE*: $|CE| = \sqrt{(5-2)^2 + (1-4)^2} = \sqrt{18} = 3\sqrt{2}$.

Zatem pole równoległoboku jest równe: $P_{ABCD} = |AB| \cdot |CE| = 4\sqrt{2} \cdot 3\sqrt{2} = 24$.

Schemat oceniania I sposobu rozwiązania

Rozwiązanie, w którym jest istotny postęp2 pkt

Obliczenie współrzędnych punktu E: E = (5, 1).

Pokonanie zasadniczych trudności zadania.....3 pkt

Obliczenie wysokości równoległoboku: $|CE| = 3\sqrt{2}$.

Uwaga

Zdający może obliczyć wysokość równoległoboku wykorzystując wzór na odległość wierzchołka C od prostej AB.

Rozwiązanie pełne4 pkt

Obliczenie pola równoległoboku: $P_{ABCD} = 24$.

II sposób rozwiązania

Zauważamy, że pole równoległoboku ABCD jest równe podwojonemu polu trójkąta ABC.

Pole trójkąta *ABC* obliczamy ze wzoru:
$$P_{ABC} = \frac{1}{2} |(x_B - x_A)(y_C - y_A) - (y_B - y_A)(x_C - x_A)|$$
.

Obliczamy pole równoległoboku:

$$P_{ABCD} = 2 \cdot P_{ABC} = 2 \cdot \frac{1}{2} |(x_B - x_A)(y_C - y_A) - (y_B - y_A)(x_C - x_A)| =$$

$$= 2 \cdot \frac{1}{2} |(3 - (-1))(4 - (-5)) - (-1 - (-5))(2 - (-1))| = |4 \cdot 9 - 4 \cdot 3| = |24| = 24.$$

Schemat oceniania II sposobu rozwiązania

Zauważenie, że $P_{ABCD} = 2 \cdot P_{ABC}$.

Rozwiązanie, w którym jest istotny postęp2 pkt

Zastosowanie wzoru na pole trójkąta: $P_{ABC} = \frac{1}{2} |(x_B - x_A)(y_C - y_A) - (y_B - y_A)(x_C - x_A)|$

Pokonanie zasadniczych trudności zadania......3 pkt

Obliczenie pola trójkąta: 12

Rozwiązanie pełne4 pkt

Obliczenie pola równoległoboku: $P_{ABCD} = 24$.

Zadanie 34. (*4 pkt*)

Objętość ostrosłupa prawidłowego trójkątnego *ABCS* (tak jak na rysunku) jest równa 72, a promień okręgu wpisanego w podstawę *ABC* tego ostrosłupa jest równy 2. Oblicz tangens kata między wysokością tego ostrosłupa i jego ścianą boczną.

Rozwiązanie

Oznaczmy:

a – długość boku trójkąta równobocznego ABC, w który wpisano okręg o promieniu r=2, H – wysokość tego ostrosłupa,

 α – miara kąta między wysokością ostrosłupa i jego ścianą boczną.

Ponieważ
$$r = \frac{a\sqrt{3}}{6}$$
, to $a = 4\sqrt{3}$.

Objętość ostrosłupa prawidłowego trójkątnego ABCS jest równa 72 , zatem

$$\frac{1}{3} \cdot \frac{\left(4\sqrt{3}\right)^2 \sqrt{3}}{4} \cdot H = 72.$$

Obliczamy wysokość ostrosłupa H: $\frac{48\sqrt{3}}{12} \cdot H = 72$, stąd $H = \frac{72}{4\sqrt{3}} = 6\sqrt{3}$.

Zauważamy, że
$$\operatorname{tg}\alpha = \frac{r}{H}$$
, stąd $\operatorname{tg}\alpha = \frac{2}{6\sqrt{3}} = \frac{\sqrt{3}}{9}$.

Schemat oceniania

Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do prozwiązania	_
Zaznaczenie kąta α między wysokością ostrosłupa i jego ścianą boczną lub właściwego kąta do dalszych obliczeń.	wybór
Rozwiązanie, w którym jest istotny postęp	2 pkt
Obliczenie długości boku trójkąta ABC : $a = 4\sqrt{3}$.	
Pokonanie zasadniczych trudności zadania	3 pkt
Obliczenie wysokości ostrosłupa <i>ABCS</i> : $H = 6\sqrt{3}$.	
Rozwiązanie pełne	4 pkt
Obliczenie tangensa kata między wysokościa ostrosłuna i jego ściana boczna: $t \alpha \alpha = \frac{\sqrt{2}}{2}$	3