Contents	8 Polynomial
1 Basic 1.1 Default Code 1.2 .vimrc 1.3 Fast IO 1.4 Random 1.5 Checker 1.6 PBDS Tree	2 8.4 Polynomial Operation 2 8.5 Generating Function 2 8.5.1 Ordinary Generating Function 2 8.5.2 Exponential Generating Function
2 Data Structure 2.1 Heavy-Light Decomposition 2.2 Link Cut Tree	2 9.1 KMP Algorithm 2 9.2 Manacher Algorithm 2 9.3 MCP
3 Flow & Matching 3.1 Dinic	4 9.8 AC Automaton
3.4 Hungarian Algorithm 3.5 ISAP Algorithm 3.6 Bipartite Matching 3.7 Max Simple Graph Matching 3.8 MCMF 3.9 Min Cost Circulation 3.10 SW Mincut 3.11 Stable Marriage	5 10.1 Recurrences 5 10.2 Geometry 6 10.2.1 Rotation Matrix 6 10.2.2 Triangles 7 10.2.3 Quadrilaterals 7 10.2.4 Spherical coordinates
4 Geometry 4.1 Geometry Template 4.2 Convex Hull 4.3 Minimum Enclosing Circle 4.4 Minkowski Sum 4.5 Polar Angle Comparator 4.6 Half Plane Intersection 4.7 Dynamic Convex Hull	8
4.8 3D Point 4.9 ConvexHull3D 4.10 Circle Operations 4.11 Delaunay Triangulation 4.12 Voronoi Diagram 4.13 Polygon Union 4.14 Tangent Point to Convex Hull	1.1 Default Code
5 Graph 5.1 Block Cut Tree 5.2 2-SAT 5.3 Dominator Tree 5.4 Virtual Tree 5.5 Directed Minimum Spanning Tree 5.6 Vizing 5.7 Maximum Clique 5.8 Minimum Mean Cycle 5.9 Minimum Steiner Tree	<pre>#define iter(v) v.begin(),v.end() #define SZ(v) (int)v.size() #define pb emplace_back #define ff first #define ss second #define ss second #define iter(v) v.begin(),v.end() #define sZ(v) (int)v.size() #define sz szecond #define iter(v) v.begin(),v.end() #define sz szecond #define iter(v) v.begin(),v.end() #define iter(v) v.begin() #define iter(v) v.begin(),v.end() #define iter(v) v.begin(),v.end() #define iter(v) v.begin(),v.end() #define iter(v) v.begin() #define</pre>
6 Math 6.1 Extended Euclidean Algorithm 6.2 Floor & Ceil 6.3 Legendre 6.4 Simplex 6.5 Floor Sum 6.6 DiscreteLog 6.7 Miller Rabin & Pollard Rho 6.8 XOR Basis 6.9 Linear Equation 6.10 Chinese Remainder Theorem 6.11 Sqrt Decomposition	<pre>void debug(){cerr << "\n";} template<class class="" t,="" u=""> void debug(T a, U b){cerr << a << " ", debug(b);} template<class t=""> void pary(T l, T r){ while (1 != r) cerr << *1 << " ", l++; cerr << "\n"; } **** *** *** *** *** *** *** ** ** **</class></class></pre>
7 Misc 7.1 Cyclic Ternary Search 7.2 Matroid	I USTITEATING ODELATOR COLUMNIA OF DATICATOR DI
	} `

1.2 .vimrc

1.3 Fast IO

```
// from JAW
inline int my_getchar() {
  const int N = 1<<20;</pre>
  static char buf[N];
  static char *p = buf , *end = buf;
  if(p == end) {
    if((end = buf + fread(buf , 1 , N , stdin)) == buf)
        return EOF;
    p = buf;
  return *p++;
inline int readint(int &x) {
  static char c , neg;
  while((c = my_getchar()) < '-') {</pre>
    if(c == EOF) return 0;
  neg = (c == '-') ? -1 : 1;
  x = (neg == 1) ? c - '0' : 0;
  while((c = my_getchar()) >= '0') x = (x << 3) + (x << 1)
     + (c - '0');
  x *= neg;
  return 1;
const int kBufSize = 524288;
char inbuf[kBufSize];
char buf_[kBufSize]; size_t size_;
inline void Flush_() { write(1, buf_, size_); size_ = 0; }
inline void CheckFlush_(size_t sz) { if (sz + size_ >
    kBufSize) Flush_(); }
inline void PutInt(int a) {
  static char tmp[22] = "01234567890123456789\n";
  CheckFlush_(10);
  if(a < 0){
    *(buf_ + size_) = '-';
    a = ~a + 1;
    size_++;
  int tail = 20;
  if (!a) {
    tmp[--tail] = '0';
  } else {
    for (; a; a /= 10) tmp[--tail] = (a % 10) ^ '0';
  memcpy(buf_ + size_, tmp + tail, 21 - tail);
  size_ += 21 - tail;
int main(){
  Flush_();
  return 0;
```

1.4 Random

1.5 Checker

```
#!/usr/bin/env bash
set -e
while :; do
    python3 gen.py > test.txt
    diff <(./a.exe < test.txt) <(./b.exe < test.txt)
done</pre>
```

1.6 PBDS Tree

2 Data Structure

2.1 Heavy-Light Decomposition

```
struct Heavy_light_Decomposition { // 1-base
  int n, up[maxn], dep[maxn], to[maxn], siz[maxn], pa[maxn
  int C, ti[maxn], ord[maxn], wdown[maxn], edge[maxn], et =
       0;
  vector<pii> G[maxn];
  void init(int _n) {
    n = n, C = 0, et = 1;
    for (int i = 1;i <= n;i++)</pre>
      G[i].clear(), to[i] = 0;
  void add_edge(int a, int b, int w) {
    G[a].push_back(pii(b, et)), G[b].push_back(pii(a, et));
    edge[et++] = w;
  void dfs(int u, int f, int d) {
    siz[u] = 1, pa[u] = f, dep[u] = d;
    for (auto &v: G[u])
      if (v.ff != f)
        dfs(v.ff, u, d+1), siz[u] += siz[v];
        if (siz[to[u]] < siz[v]) to[u] = v;
  void cut(int u, int link) {
    ti[u] = C;
    ord[C++] = u, up[u] = link;
    if (!to[u]) return;
    cut(to[u], link);
    for (auto v:G[u]) {
      if (v.ff != pa[u] && v.ff != to[u]) cut(v.ff, v.ff);
  void build() { dfs(1, 1, 1), cut(1, 1); }
  int query(int a, int b) {
    int ta = up[a], tb = up[b], re = 0;
    while (ta != tb)
      if (dep[ta] < dep[tb])</pre>
        /*query*/, tb = up[b = pa[tb]];
      else /*query*/, ta = up[a = pa[ta]];
    if (a == b) return re;
    if (ti[a] > ti[b]) swap(a, b);
    /*query*/
    return re;
};
```

2.2 Link Cut Tree

```
struct Splay { // subtree-sum, path-max
static Splay nil;
```

```
Splay *ch[2], *f;
  int val, rev, size, vir, id, type;
  pii ma:
  Splay(int _val = 0, int _id = 0)
    : val(_val), rev(0), size(0), vir(0), id(_id) {
      ma = make_pair(val, id);
      f = ch[0] = ch[1] = &nil;
      type = 0;
  bool isr() { //is root
    return f->ch[0] != this && f->ch[1] != this;
  int dir() { return f->ch[0] == this ? 0 : 1; }
  void setCh(Splay *c, int d) {
    ch[d] = c;
    if (c != &nil) c->f = this;
    pull();
  void push() {
    if (!rev) return;
    swap(ch[0], ch[1]);
    if (ch[0] != &nil) ch[0]->rev ^= 1;
    if (ch[1] != &nil) ch[1]->rev ^= 1;
    rev = 0:
  void pull() {
    // take care of the nil!
    size = ch[0]->size + ch[1]->size + vir + type;
    ma = max(make_pair(val, id), max(ch[0]->ma, ch[1]->ma))
    if (ch[0] != &nil) ch[0]->f = this;
    if (ch[1] != &nil) ch[1]->f = this;
} Splay::nil;
Splay *nil = &Splay::nil;
void rotate(Splay *x) {
  Splay *p = x->f;
  int d = x->dir();
  if (!p->isr()) p->f->setCh(x, p->dir());
  else x->f = p->f;
  p->setCh(x->ch[!d], d);
  x->setCh(p, !d);
  p->pull(), x->pull();
void splay(Splay *x) {
  vector<Splay *> splayVec;
  for (Splay *q = x;; q = q \rightarrow f) {
    splayVec.pb(q);
    if (q->isr()) break;
  reverse(iter(splayVec));
  for (auto it : splayVec) it->push();
  while (!x->isr()) {
    if (x->f->isr()) rotate(x);
    else if (x->dir() == x->f->dir())
      rotate(x->f), rotate(x);
    else rotate(x), rotate(x);
  }
Splay *access(Splay *x) {
  Splay *q = nil;
  for (; x != nil; x = x->f){
    splay(x);
    x\rightarrow vir -= q\rightarrow size; x\rightarrow vir += x\rightarrow ch[1]\rightarrow size;
    x->setCh(q, 1); x->pull();
    q = x;
  }
  return q;
void root_path(Splay *x) { access(x), splay(x); }
void chroot(Splay *x) {
  root_path(x), x->rev ^= 1;
  x->push(), x->pull();
void split(Splay *x, Splay *y) {
  chroot(x), root_path(y);
```

```
void link(Splay *x, Splay *y) {
  chroot(x), root_path(y);
  x->f = y; y->vir += x->size;
void cut(Splay *x, Splay *y) {
  split(x, y);
  y->push();
  y - ch[0] = y - ch[0] - f = nil;
  y->pull();
Splay *get_root(Splay *x) {
  for (root_path(x); x\rightarrow ch[0] != nil; x = x\rightarrow ch[0])
    x->push();
  splay(x);
  return x;
bool conn(Splay *x, Splay *y) {
  return get_root(x) == get_root(y);
Splay *lca(Splay *x, Splay *y) {
  access(x), root_path(y);
  if (y->f == nil) return y;
  return y->f;
void change(Splay *x, int val) {
  splay(x), x->val = val, x->pull();
pii query(Splay *x, Splay *y) {
  split(x, y);
  return y->ma;
      Treap
struct node {
  int data, sz;
  node *1, *r;
  node(int k) : data(k), sz(1), l(0), r(0) {}
  void up() {
    sz = 1;
    if (1) sz += 1->sz;
    if (r) sz += r->sz;
  void down() {}
int sz(node *a) { return a ? a->sz : 0; }
node *merge(node *a, node *b) {
  if (!a || !b) return a ? a : b;
  if (rand() % (sz(a) + sz(b)) < sz(a))
    return a \rightarrow down(), a \rightarrow r = merge(a \rightarrow r, b), a \rightarrow up(),
  return b \rightarrow down(), b \rightarrow 1 = merge(a, b \rightarrow 1), b \rightarrow up(), b;
void split(node *o, node *&a, node *&b, int k) {
  if (!o) return a = b = 0, void();
  o->down();
  if (o->data <= k)
    a = o, split(o->r, a->r, b, k), a->up();
  else b = o, split(o->1, a, b->1, k), b->up();
void split2(node *o, node *&a, node *&b, int k) {
  if (sz(o) <= k) return a = o, b = 0, void();
  o->down();
  if (sz(o->1) + 1 <= k)
    a = o, split2(o->r, a->r, b, k - <math>sz(o->l) - 1);
  else b = o, split2(o->1, a, b->1, k);
  o->up();
node *kth(node *o, int k) {
  if (k <= sz(o->1)) return kth(o->1, k);
  if (k == sz(o\rightarrow 1) + 1) return o;
  return kth(o\rightarrow r, k - sz(o\rightarrow 1) - 1);
int Rank(node *o, int key) {
  if (!o) return 0;
  if (o->data < key)</pre>
```

```
return sz(o->1) + 1 + Rank(o->r, key);
 else return Rank(o->1, key);
bool erase(node *&o, int k) {
 if (!o) return 0;
 if (o->data == k) {
   node *t = o;
   o->down(), o = merge(o->1, o->r);
   delete t;
   return 1:
 node *&t = k < o->data ? o->l : o->r;
 return erase(t, k) ? o->up(), 1 : 0;
void insert(node *&o, int k) {
 node *a, *b;
 split(o, a, b, k),
   o = merge(a, merge(new node(k), b));
void interval(node *&o, int 1, int r) {
 node *a, *b, *c;
 split2(o, a, b, l - 1), split2(b, b, c, r);
 // operate
 o = merge(a, merge(b, c));
```

3 Flow & Matching

3.1 Dinic

```
struct MaxFlow { // 1-base
  struct edge {
   int to, cap, flow, rev;
 vector<edge> g[maxn];
 int s, t, dis[maxn], ind[maxn], n;
 void init(int _n) {
   n = _n + 2;
   s = _n + 1, t = _n + 2;
   for (int i = 0; i <= n; ++i) g[i].clear();</pre>
 void reset() {
   for (int i = 0; i <= n; ++i)</pre>
      for (auto &j : g[i]) j.flow = 0;
 void add_edge(int u, int v, int cap) {
   g[u].pb(edge{v, cap, 0, (int)g[v].size()});
   g[v].pb(edge{u, 0, 0, (int)g[u].size() - 1});
   //change g[v] to cap for undirected graphs
 bool bfs() {
   fill(dis, dis+n+1, -1);
   queue<int> q;
    q.push(s), dis[s] = 0;
   while (!q.empty()) {
      int cur = q.front(); q.pop();
      for (auto &e : g[cur]) {
        if (dis[e.to] == -1 && e.flow != e.cap) {
          q.push(e.to);
          dis[e.to] = dis[cur] + 1;
     }
   return dis[t] != -1;
 int dfs(int u, int cap) {
   if (u == t || !cap) return cap;
    for (int &i = ind[u]; i < (int)g[u].size(); ++i) {</pre>
      edge &e = g[u][i];
      if (dis[e.to] == dis[u] + 1 && e.flow != e.cap) {
        int df = dfs(e.to, min(e.cap - e.flow, cap));
        if (df) {
          e.flow += df;
          g[e.to][e.rev].flow -= df;
```

```
return df;
        }
      }
    dis[u] = -1;
    return 0;
  int maxflow() {
    int flow = 0, df;
    while (bfs()) {
      fill(ind, ind+n+1, 0);
      while ((df = dfs(s, inf))) flow += df;
    return flow;
}flow;
     Bounded Flow
struct Dinic { // 1-base
  struct edge {
    int to, cap, flow, rev;
  vector<edge> g[maxn];
  int n, s, t, dis[maxn], ind[maxn], cnt[maxn];
  const int inf = 1e9;
  void init(int _n) {
    n = _n + 2;
    s = _n + 1, t = _n + 2;
for (int i = 0; i <= n; ++i) g[i].clear(), cnt[i] = 0;
  //reset, bfs, dfs same as Dinic
  void add_edge(int u, int v, int lcap, int rcap) {
    cnt[u] -= lcap, cnt[v] += lcap;
    g[u].pb(edge{v, rcap, lcap, (int)g[v].size()});
    g[v].pb(edge{u, 0, 0, (int)g[u].size() - 1});
  int maxflow(int _s, int _t) {
    s = _s, t = _t;
    int flow = 0, df;
    while (bfs()) {
      fill(ind, ind+n+1, 0);
      while ((df = dfs(s, inf))) flow += df;
    return flow;
  bool feasible() {
    int sum = 0;
    for (int i = 1; i <= n - 2; ++i)
      if (cnt[i] > 0)
        add_edge(n - 1, i, cnt[i]), sum += cnt[i];
      else if (cnt[i] < 0) add_edge(i, n, -cnt[i]);</pre>
    if (sum != maxflow(n - 1, n)) sum = -1;
    for (int i = 1; i <= n - 2; ++i)
      if (cnt[i] > 0)
        g[n - 1].pop_back(), g[i].pop_back();
      else if (cnt[i] < 0)</pre>
        g[i].pop_back(), g[n].pop_back();
    return sum != -1;
  int boundedflow(int _s, int _t) {
    add_edge(_t, _s, inf);
    if (!feasible()) return -1; // infeasible flow
    int x = g[_t].back().flow;
    g[_t].pop_back(), g[_s].pop_back();
    int y = maxflow(_t, _s);
    return x-y;
  }
};
```

3.3 Gomory Hu

};

3.5

```
MaxFlow Dinic;
int g[MAXN];
void GomoryHu(int n) { // 0-base
  fill_n(g, n, 0);
 for (int i = 1; i < n; ++i) {
    Dinic.reset();
    add_edge(i, g[i], Dinic.maxflow(i, g[i]));
    for (int j = i + 1; j <= n; ++j)
      if (g[j] == g[i] \&\& ~Dinic.dis[j])
        g[j] = i;
 }
}
```

```
Hungarian Algorithm
struct KM\{ //1-base, max perfect matching in <math>O(n^3)
  int n;
  int c[maxn][maxn];
  int lx[maxn], ly[maxn], mx[maxn], my[maxn], slack[maxn];
 bool vx[maxn], vy[maxn];
  bool dfs(int p, bool ch) {
    if (vx[p]) return 0;
    vx[p] = 1;
    for (int v = 1; v <= n; v++) {
      slack[v] = min(slack[v], lx[p] + ly[v] - c[p][v]);
      if (lx[p] + ly[v] - c[p][v] > 0) continue;
      vy[v] = 1;
      if (!my[v] || dfs(my[v], ch)) {
        if (ch) mx[p] = v, my[v] = p;
        return 1:
      }
    }
    return 0;
  11 solve() {
    for (int i = 1; i <= n; i++){
      lx[i] = -inf;
      for (int j = 1; j <= n; j++) lx[i] = max(lx[i], a[i][j]
          1);
    for (int i = 1;i <= n;i++) {
      for (int j = 1; j <= n; j++) vx[j] = vy[j] = 0;
      for (int j = 1; j <= n; j++) slack[j] = inf;</pre>
      if (dfs(i, 1)) continue;
      bool aug = 0;
      while (!aug) {
        for (int j = 1; j <= n; j++) {
          if (!vy[j] && slack[j] == 0) {
            vy[j] = 1;
            if (dfs(my[j], 0)) {
              aug = 1;
              break;
            }
          }
        if (aug) break;
        int delta = inf;
        for (int j = 1; j <= n; j++) {</pre>
          if (!vy[j]) delta = min(delta, slack[j]);
        for (int j = 1; j <= n; j++) {
          if (vx[j]) lx[j] -= delta;
          if (vy[j]) ly[j] += delta;
          else {
            slack[j] -= delta;
            if (slack[j] == 0 && !my[j]) aug = 1;
        }
      for (int j = 1; j <= n; j++) vx[j] = vy[j] = 0;
      dfs(i, 1);
    11 \text{ ans} = 0;
    for (int i = 1;i <= n;i++) ans += lx[i] + ly[i];</pre>
    return ans;
```

ISAP Algorithm

```
struct Maxflow { //to be modified
  static const int MAXV = 20010;
  static const int INF = 1000000;
  struct Edge {
    int v, c, r;
    Edge(int _v, int _c, int _r)
      : v(_v), c(_c), r(_r) {}
  int s, t;
  vector<Edge> G[MAXV * 2];
  int iter[MAXV * 2], d[MAXV * 2], gap[MAXV * 2], tot;
  void init(int x) {
    tot = x + 2;
    s = x + 1, t = x + 2;
    for (int i = 0; i <= tot; i++) {</pre>
      G[i].clear();
      iter[i] = d[i] = gap[i] = 0;
    }
  void addEdge(int u, int v, int c) {
    G[u].push_back(Edge(v, c, SZ(G[v])));
    G[v].push_back(Edge(u, 0, SZ(G[u]) - 1));
  int dfs(int p, int flow) {
    if (p == t) return flow;
    for (int &i = iter[p]; i < SZ(G[p]); i++) {</pre>
      Edge &e = G[p][i];
      if (e.c > 0 \&\& d[p] == d[e.v] + 1) {
        int f = dfs(e.v, min(flow, e.c));
        if (f) {
          e.c -= f;
          G[e.v][e.r].c += f;
          return f;
      }
    if ((--gap[d[p]]) == 0) d[s] = tot;
    else {
      d[p]++;
      iter[p] = 0;
      ++gap[d[p]];
    }
    return 0;
  int solve() {
    int res = 0:
    gap[0] = tot;
    for (res = 0; d[s] < tot; res += dfs(s, INF))
    return res;
} flow;
```

3.6 Bipartite Matching

```
//min vertex cover: take unmatched vertex in L and find
    alternating tree,
//ans is not reached in L + reached in R
// O(VE)
int n; //1-base, max matching
int mx[maxn], my[maxn];
bool adj[maxn][maxn], vis[maxn];
bool dfs(int u) {
  if (vis[u]) return 0;
  vis[u] = 1;
  for (int v = 1; v <= n; v++) {
    if (!adj[u][v]) continue;
    if (!my[v] || (my[v] && dfs(my[v]))) {
      mx[u] = v, my[v] = u;
      return 1;
```

```
}
  return 0;
// O(E sqrt(V)), O(E log V) for random sparse graphs
struct Bipartite_Matching { // 0-base
  int 1, r;
  int mp[maxn], mq[maxn];
  int dis[maxn], cur[maxn];
  vector<int> G[maxn];
  bool dfs(int u) {
    for (int &i = cur[u]; i < SZ(G[u]); ++i) {</pre>
      int e = G[u][i];
      if (!\sim mq[e] || (dis[mq[e]] == dis[u] + 1 && dfs(mq[e])
        return mp[mq[e] = u] = e, 1;
    dis[u] = -1;
    return 0;
  bool bfs() {
    int rt = 0;
    queue<int> q;
    fill_n(dis, 1, -1);
for (int i = 0; i < 1; ++i)
      if (!~mp[i])
        q.push(i), dis[i] = 0;
    while (!q.empty()) {
      int u = q.front();
      q.pop();
      for (int e : G[u])
        if (!~mq[e])
          rt = 1;
        else if (!~dis[mq[e]]) {
          q.push(mq[e]);
           dis[mq[e]] = dis[u] + 1;
        }
    }
    return rt;
  int matching() {
    int rt = 0;
    fill_n(mp, l, -1);
    fill_n(mq, r, -1);
    while (bfs()) {
      fill_n(cur, 1, 0);
      for (int i = 0; i < 1; ++i)
        if (!~mp[i] && dfs(i))
          ++rt;
    }
    return rt;
  void add_edge(int s, int t) {
    G[s].pb(t);
  void init(int _l, int _r) {
    l = _l, r = _r;
for (int i = 0; i < 1; ++i)</pre>
      G[i].clear();
} match;
```

3.7 Max Simple Graph Matching

```
struct GenMatch { // 1-base
   int V, pr[N];
bool el[N][N], inq[N], inp[N], inb[N];
int st, ed, nb, bk[N], djs[N], ans;
void init(int _V) {
   V = _V;
   for (int i = 0; i <= V; ++i) {
      for (int j = 0; j <= V; ++j) el[i][j] = 0;
      pr[i] = bk[i] = djs[i] = 0;
      inq[i] = inp[i] = inb[i] = 0;
   }
}
void add_edge(int u, int v) {</pre>
```

```
el[u][v] = el[v][u] = 1;
  int lca(int u, int v) {
    fill_n(inp, V + 1, 0);
    while (1)
      if (u = djs[u], inp[u] = true, u == st) break;
      else u = bk[pr[u]];
    while (1)
      if (v = djs[v], inp[v]) return v;
      else v = bk[pr[v]];
    return v;
  void upd(int u) {
    for (int v; djs[u] != nb;) {
      v = pr[u], inb[djs[u]] = inb[djs[v]] = true;
      u = bk[v];
      if (djs[u] != nb) bk[u] = v;
    }
  }
  void blo(int u, int v, queue<int> &qe) {
    nb = lca(u, v), fill_n(inb, V + 1, 0);
    upd(u), upd(v);
    if (djs[u] != nb) bk[u] = v;
    if (djs[v] != nb) bk[v] = u;
    for (int tu = 1; tu <= V; ++tu)
      if (inb[djs[tu]])
        if (djs[tu] = nb, !inq[tu])
          qe.push(tu), inq[tu] = 1;
  void flow() {
    fill_n(inq + 1, V, 0), fill_n(bk + 1, V, 0);
    iota(djs + 1, djs + V + 1, 1);
    queue<int> qe;
    qe.push(st), inq[st] = 1, ed = 0;
    while (!qe.empty()) {
      int u = qe.front();
      qe.pop();
      for (int v = 1; v <= V; ++v)
        if (el[u][v] && djs[u] != djs[v] &&
            pr[u] != v) {
          if ((v == st) ||
              (pr[v] > 0 \&\& bk[pr[v]] > 0)) {
            blo(u, v, qe);
          } else if (!bk[v]) {
            if (bk[v] = u, pr[v] > 0) {
              if (!inq[pr[v]]) qe.push(pr[v]);
            } else {
              return ed = v, void();
         }
        }
    }
  void aug() {
    for (int u = ed, v, w; u > 0;)
      v = bk[u], w = pr[v], pr[v] = u, pr[u] = v,
        u = w;
  int solve() {
    fill_n(pr, V + 1, 0), ans = 0;
    for (int u = 1; u <= V; ++u)
      if (!pr[u])
        if (st = u, flow(), ed > 0) aug(), ++ans;
    return ans:
  }
};
     MCMF
3.8
struct MCMF { // 0-base
  struct edge {
    11 from, to, cap, flow, cost, rev;
  } * past[maxn];
```

vector <edge> G[maxn];
bitset <maxn> inq;

11 dis[maxn], up[maxn], s, t, mx, n;

```
bool BellmanFord(ll &flow, ll &cost) {
  fill(dis, dis + n, inf);
  queue<11> q;
  q.push(s), inq.reset(), inq[s] = 1;
  up[s] = mx - flow, past[s] = 0, dis[s] = 0;
  while (!q.empty()) {
    11 u = q.front();
    q.pop(), inq[u] = 0;
    if (!up[u]) continue;
    for (auto &e : G[u])
      if (e.flow != e.cap &&
          dis[e.to] > dis[u] + e.cost) {
        dis[e.to] = dis[u] + e.cost, past[e.to] = &e;
        up[e.to] = min(up[u], e.cap - e.flow);
        if (!inq[e.to]) inq[e.to] = 1, q.push(e.to);
  if (dis[t] == inf) return 0;
  flow += up[t], cost += up[t] * dis[t];
  for (ll i = t; past[i]; i = past[i]->from) {
    auto &e = *past[i];
    e.flow += up[t], G[e.to][e.rev].flow -= up[t];
  return 1:
11 MinCostMaxFlow(11 _s, 11 _t, 11 &cost) {
  s = _s, t = _t, cost = 0;
  11 \text{ flow} = 0;
  while (BellmanFord(flow, cost));
  return flow;
void init(ll _n, ll _mx) {
  n = _n, mx = _mx;
  for (int i = 0; i < n; ++i) G[i].clear();</pre>
void add_edge(ll a, ll b, ll cap, ll cost) {
  G[a].pb(edge{a, b, cap, 0, cost, G[b].size()});
  G[b].pb(edge{b, a, 0, 0, -cost, G[a].size() - 1});
```

3.9 Min Cost Circulation

```
//to be modified
struct Edge { int to, cap, rev, cost; };
vector<Edge> g[kN];
int dist[kN], pv[kN], ed[kN];
bool mark[kN];
int NegativeCycle(int n) {
 memset(mark, false, sizeof(mark));
  memset(dist, 0, sizeof(dist));
  int upd = -1;
  for (int i = 0; i <= n; ++i) {
    for (int j = 0; j < n; ++j) {
      int idx = 0;
      for (auto &e : g[j]) {
        if (e.cap > 0 && dist[e.to] > dist[j] + e.cost) {
          dist[e.to] = dist[j] + e.cost;
          pv[e.to] = j, ed[e.to] = idx;
          if (i == n) {
            upd = j;
            while (!mark[upd]) mark[upd] = true, upd = pv[
                upd];
            return upd;
          }
        idx++;
     }
   }
 }
 return -1;
int Solve(int n) {
 int rt = -1, ans = 0;
 while ((rt = NegativeCycle(n)) >= 0) {
    memset(mark, false, sizeof(mark));
```

```
vector<pair<int, int>> cyc;
  while (!mark[rt]) {
    cyc.emplace_back(pv[rt], ed[rt]);
    mark[rt] = true;
    rt = pv[rt];
  reverse(cyc.begin(), cyc.end());
  int cap = kInf;
  for (auto &i : cyc) {
    auto &e = g[i.first][i.second];
    cap = min(cap, e.cap);
  for (auto &i : cyc) {
    auto &e = g[i.first][i.second];
    e.cap -= cap;
    g[e.to][e.rev].cap += cap;
    ans += e.cost * cap;
 }
}
return ans;
```

3.10 SW Mincut

```
// stoer wagner algorithm: global min cut
const int maxn = 505;
struct SW \{ // O(V^3) \text{ } 0\text{-}based \}
  int n, vis[maxn], del[maxn];
  int edge[maxn][maxn], wei[maxn];
  void init(int _n) {
    n = _n;
    fill(del, del+n, 0);
    for (int i = 0;i < n;i++) fill(edge[i], edge[i] + n, 0)</pre>
  void addEdge(int u, int v, int w) {
    edge[u][v] += w, edge[v][u] += w;
  void search(int &s, int &t) {
    fill(vis, vis+n, 0);
fill(wei, wei+n, 0);
    s = t = -1;
    while (1) {
      int ma = -1, cur = 0;
      for (int i = 0; i < n; ++i)
        if (!del[i] && !vis[i] && ma < wei[i])</pre>
          cur = i, ma = wei[i];
      if (mx == -1) break;
      vis[cur] = 1, s = t, t = cur;
      for (int i = 0; i < n; ++i)
        if (!vis[i] && !del[i]) wei[i] += edge[cur][i];
    }
  int solve() {
    int ret = INF;
    for (int i = 0, x=0, y=0; i < n-1; ++i) {
      search(x, y), ret = min(res, wei[y]), del[y] = 1;
      for (int j = 0; j < n; ++j)
        edge[x][j] = (edge[j][x] += edge[y][j]);
    return ret;
  }
};
```

3.11 Stable Marriage

```
1: Initialize m \in M and w \in W to free
2: while \exists free man m who has a woman w to propose to do
3: w \leftarrow first woman on m's list to whom m has not yet proposed
4: if \exists some pair (m', w) then
5: if w prefers m to m' then
6: m' \leftarrow free
7: (m, w) \leftarrow engaged
8: end if
9: else
```

```
(m, w) \leftarrow engaged
        end if
11:
12: end while
```

Geometry

4.1 Geometry Template

```
using ld = ll;
using pdd = pair<ld, ld>;
using Line = pair<pdd, pdd>;
#define X first
#define Y second
// ld eps = 1e-7;
pdd operator+(pdd a, pdd b)
{ return {a.X + b.X, a.Y + b.Y}; }
pdd operator-(pdd a, pdd b)
{ return {a.X - b.X, a.Y - b.Y}; }
pdd operator*(ld i, pdd v)
{ return {i * v.X, i * v.Y}; }
pdd operator*(pdd v, ld i)
{ return {i * v.X, i * v.Y}; }
pdd operator/(pdd v, ld i)
{ return {v.X / i, v.Y / i}; }
ld dot(pdd a, pdd b)
{ return a.X * b.X + a.Y * b.Y; }
ld cross(pdd a, pdd b)
{ return a.X * b.Y - a.Y * b.X; }
ld abs2(pdd v)
{ return v.X * v.X + v.Y * v.Y; };
ld abs(pdd v)
{ return sqrt(abs2(v)); };
int sgn(ld v)
{ return v > 0 ? 1 : (v < 0 ? -1 : 0); }
// int sgn(ld v){    return v > eps ? 1 : ( v < -eps ? -1 : 0)
    ; }
int ori(pdd a, pdd b, pdd c)
{ return sgn(cross(b - a, c - a)); }
bool collinearity(pdd a, pdd b, pdd c)
{ return ori(a, b, c) == 0; }
bool btw(pdd p, pdd a, pdd b)
{ return collinearity(p, a, b) && sgn(dot(a - p, b - p)) <=
     0; }
bool seg_intersect(Line a, Line b){
  pdd p1, p2, p3, p4;
 tie(p1, p2) = a; tie(p3, p4) = b;
 if(btw(p1, p3, p4) || btw(p2, p3, p4) || btw(p3, p1, p2)
      || btw(p4, p1, p2))
    return true;
  return ori(p1, p2, p3) * ori(p1, p2, p4) < 0 &&</pre>
    ori(p3, p4, p1) * ori(p3, p4, p2) < 0;
pdd intersect(Line a, Line b){
 pdd p1, p2, p3, p4;
  tie(p1, p2) = a; tie(p3, p4) = b;
 ld a123 = cross(p2 - p1, p3 - p1);
 1d \ a124 = cross(p2 - p1, p4 - p1);
 return (p4 * a123 - p3 * a124) / (a123 - a124);
pdd perp(pdd p1)
{ return pdd(-p1.Y, p1.X); }
pdd projection(pdd p1, pdd p2, pdd p3)
{ return p1 + (p2 - p1) * dot(p3 - p1, p2 - p1) / abs2(p2 -
     p1); }
pdd reflection(pdd p1, pdd p2, pdd p3)
{ return p3 + perp(p2 - p1) * cross(p3 - p1, p2 - p1) /
    abs2(p2 - p1) * 2; }
pdd linearTransformation(pdd p0, pdd p1, pdd q0, pdd q1,
    pdd r) {
  pdd dp = p1 - p0, dq = q1 - q0, num(cross(dp, dq), dot(dp
      , dq));
 return q0 + pdd(cross(r - p0, num), dot(r - p0, num)) /
      abs2(dp);
\} // from line p0--p1 to q0--q1, apply to r
```

```
4.2 Convex Hull
vector<int> getConvexHull(vector<pdd>& pts){
  vector<int> id(SZ(pts));
  iota(iter(id), 0);
  sort(iter(id), [&](int x, int y){ return pts[x] < pts[y];</pre>
       });
  vector<int> hull;
  for(int tt = 0; tt < 2; tt++){</pre>
    int sz = SZ(hull);
    for(int j : id){
      pdd p = pts[j];
      while(SZ(hull) - sz >= 2 &&
          cross(pts[hull.back()] - pts[hull[SZ(hull) - 2]],
   p - pts[hull[SZ(hull) - 2]]) <= 0)</pre>
        hull.pop_back();
      hull.pb(j);
    hull.pop_back();
    reverse(iter(id));
  return hull;
4.3 Minimum Enclosing Circle
using ld = long double;
pair<pdd, ld> circumcenter(pdd a, pdd b, pdd c);
pair<pdd, ld> MinimumEnclosingCircle(vector<pdd> &pts){
  random_shuffle(iter(pts));
  pdd c = pts[0];
  ld r = 0;
  for(int i = 1; i < SZ(pts); i++){</pre>
    if(abs(pts[i] - c) <= r) continue;</pre>
    c = pts[i]; r = 0;
    for(int j = 0; j < i; j++){
      if(abs(pts[j] - c) <= r) continue;</pre>
      c = (pts[i] + pts[j]) / 2;
      r = abs(pts[i] - c);
      for(int k = 0; k < j; k++){
        if(abs(pts[k] - c) > r)
          tie(c, r) = circumcenter(pts[i], pts[j], pts[k]);
    }
  return {c, r};
4.4 Minkowski Sum
void reorder poly(vector<pdd>& pnts){
  int mn = 0;
  for(int i = 1; i < (int)pnts.size(); i++)</pre>
    if(pnts[i].Y < pnts[mn].Y || (pnts[i].Y == pnts[mn].Y</pre>
        && pnts[i].X < pnts[mn].X))
  rotate(pnts.begin(), pnts.begin() + mn, pnts.end());
vector<pdd> minkowski(vector<pdd> P, vector<pdd> Q){
```

```
reorder_poly(P);
reorder_poly(Q);
int psz = P.size();
int qsz = Q.size();
P.pb(P[0]); P.pb(P[1]); Q.pb(Q[0]); Q.pb(Q[1]);
vector<pdd> ans;
int i = 0, j = 0;
while(i < psz || j < qsz){
  ans.pb(P[i] + Q[j]);
  int t = sgn(cross(P[i + 1] - P[i], Q[j + 1] - Q[j]));
  if(t >= 0) i++;
 if(t <= 0) j++;
return ans;
```

4.5 Polar Angle Comparator

4.6 Half Plane Intersection

```
// from 8BQube
pll area_pair(Line a, Line b)
{ return pll(cross(a.Y - a.X, b.X - a.X), cross(a.Y - a.X,
    b.Y - a.X)); }
bool isin(Line 10, Line 11, Line 12) {
 // Check inter(l1, l2) strictly in l0
  auto [a02X, a02Y] = area_pair(10, 12);
 auto [a12X, a12Y] = area_pair(l1, l2);
  if (a12X - a12Y < 0) a12X *= -1, a12Y *= -1;</pre>
 return (__int128) a02Y * a12X - (__int128) a02X * a12Y >
      0; // C^4
/* Having solution, check size > 2 */
/* --^-- Line.X --^-- Line.Y --^-- */
vector<Line> halfPlaneInter(vector<Line> arr) {
  sort(iter(arr), [&](Line a, Line b) -> int {
    if (cmp(a.Y - a.X, b.Y - b.X, 0) != -1)
      return cmp(a.Y - a.X, b.Y - b.X, 0);
    return ori(a.X, a.Y, b.Y) < 0;</pre>
  });
  deque<Line> dq(1, arr[0]);
 for (auto p : arr) {
    if (cmp(dq.back().Y - dq.back().X, p.Y - p.X, 0) == -1)
      continue;
    while (SZ(dq) \ge 2 \&\& !isin(p, dq[SZ(dq) - 2], dq.back
        ()))
      dq.pop_back();
    while (SZ(dq) \ge 2 \&\& !isin(p, dq[0], dq[1]))
      dq.pop_front();
    dq.pb(p);
 while (SZ(dq) >= 3 \&\& !isin(dq[0], dq[SZ(dq) - 2], dq.
      back()))
    dq.pop_back();
 while (SZ(dq) >= 3 \&\& !isin(dq.back(), dq[0], dq[1]))
    dq.pop_front();
  return vector<Line>(iter(dq));
```

4.7 Dynamic Convex Hull

```
struct Line{
    ll a, b, l = MIN, r = MAX;
    Line(ll a, ll b): a(a), b(b) {}
    ll operator()(ll x) const{
        return a * x + b;
    }
    bool operator<(Line b) const{
        return a < b.a;
    }
    bool operator<(ll b) const{
        return r < b;
    }
};

ll iceil(ll a, ll b){
    if(b < 0) a *= -1, b *= -1;
    if(a > 0) return (a + b - 1) / b;
```

```
else return a / b;
11 intersect(Line a, Line b){
  return iceil(a.b - b.b, b.a - a.a);
struct DynamicConvexHull{
  multiset<Line, less<>> ch;
  void add(Line ln){
    auto it = ch.lower_bound(ln);
    while(it != ch.end()){
      Line tl = *it;
      if(tl(tl.r) <= ln(tl.r)){
        it = ch.erase(it);
      else break;
    }
    auto it2 = ch.lower_bound(ln);
    while(it2 != ch.begin()){
      Line tl = *prev(it2);
      if(tl(tl.1) <= ln(tl.1)){</pre>
        it2 = ch.erase(prev(it2));
      else break;
    }
    it = ch.lower_bound(ln);
    if(it != ch.end()){
      Line tl = *it;
      if(tl(tl.1) >= ln(tl.1)) ln.r = tl.1 - 1;
      else{
        11 pos = intersect(ln, tl);
        t1.1 = pos;
        ln.r = pos - 1;
        ch.erase(it);
        ch.insert(t1);
      }
    it2 = ch.lower_bound(ln);
    if(it2 != ch.begin()){
      Line tl = *prev(it2);
      if(tl(tl.r) >= ln(tl.r)) ln.l = tl.r + 1;
      else{
        11 pos = intersect(t1, ln);
        tl.r = pos - 1;
        ln.l = pos;
        ch.erase(prev(it2));
        ch.insert(t1);
      }
    if(ln.1 <= ln.r) ch.insert(ln);</pre>
  11 query(11 pos){
    auto it = ch.lower_bound(pos);
    if(it == ch.end()) return 0;
    return (*it)(pos);
  }
};
      3D Point
// Copy from 8BQube
struct Point {
  double x, y, z;
  Point(double _x = 0, double _y = 0, double _z = 0): x(_x)
       , y(_y), z(_z){}
  Point(pdd p) { x = p.X, y = p.Y, z = abs2(p); }
Point operator-(const Point &p1, const Point &p2)
{ return Point(p1.x - p2.x, p1.y - p2.y, p1.z - p2.z); }
Point cross(const Point &p1, const Point &p2)
{ return Point(p1.y * p2.z - p1.z * p2.y, p1.z * p2.x - p1.
    x * p2.z, p1.x * p2.y - p1.y * p2.x); }
double dot(const Point &p1, const Point &p2)
```

```
{ return p1.x * p2.x + p1.y * p2.y + p1.z * p2.z; }
double abs(const Point &a)
{ return sqrt(dot(a, a)); }
Point cross3(const Point &a, const Point &b, const Point &c
{ return cross(b - a, c - a); }
double area(Point a, Point b, Point c)
{ return abs(cross3(a, b, c)); }
double volume(Point a, Point b, Point c, Point d)
{ return dot(cross3(a, b, c), d - a); }
pdd proj(Point a, Point b, Point c, Point u) {
// proj. u to the plane of a, b, and c
 Point e1 = b - a;
Point e2 = c - a;
 e1 = e1 / abs(e1);
  e2 = e2 - e1 * dot(e2, e1);
 e2 = e2 / abs(e2);
 Point p = u - a;
 return pdd(dot(p, e1), dot(p, e2));
      ConvexHull3D
4.9
// Copy from 8BQube
struct CH3D {
  struct face{int a, b, c; bool ok;} F[8 * N];
 double dblcmp(Point &p,face &f)
 {return dot(cross3(P[f.a], P[f.b], P[f.c]), p - P[f.a]);}
```

```
int g[N][N], num, n;
Point P[N]:
void deal(int p,int a,int b) {
  int f = g[a][b];
  face add;
  if (F[f].ok) {
    if (dblcmp(P[p],F[f]) > eps) dfs(p,f);
    else
      add.a = b, add.b = a, add.c = p, add.ok = 1, g[p][b]
          ] = g[a][p] = g[b][a] = num, F[num++]=add;
  }
void dfs(int p, int now) {
  F[now].ok = 0;
  deal(p, F[now].b, F[now].a), deal(p, F[now].c, F[now].b
      ), deal(p, F[now].a, F[now].c);
bool same(int s,int t){
  Point &a = P[F[s].a];
  Point \&b = P[F[s].b];
  Point &c = P[F[s].c];
  return fabs(volume(a, b, c, P[F[t].a])) < eps && fabs(</pre>
      volume(a, b, c, P[F[t].b])) < eps && fabs(volume(a,</pre>
       b, c, P[F[t].c])) < eps;
void init(int _n){n = _n, num = 0;}
void solve() {
  face add;
  num = 0;
  if(n < 4) return;</pre>
  if([&](){
      for (int i = 1; i < n; ++i)
      if (abs(P[0] - P[i]) > eps)
      return swap(P[1], P[i]), 0;
      return 1;
      }() || [&](){
      for (int i = 2; i < n; ++i)
      if (abs(cross3(P[i], P[0], P[1])) > eps)
      return swap(P[2], P[i]), 0;
      return 1;
      }() || [&](){
      for (int i = 3; i < n; ++i)
      if (fabs(dot(cross(P[0] - P[1], P[1] - P[2]), P[0]
           - P[i])) > eps)
      return swap(P[3], P[i]), 0;
      return 1;
      }())return;
  for (int i = 0; i < 4; ++i) {
```

```
add.a = (i + 1) \% 4, add.b = (i + 2) \% 4, add.c = (i
          + 3) % 4, add.ok = true;
      if (dblcmp(P[i],add) > 0) swap(add.b, add.c);
      g[add.a][add.b] = g[add.b][add.c] = g[add.c][add.a] =
           num:
      F[num++] = add;
    for (int i = 4; i < n; ++i)</pre>
      for (int j = 0; j < num; ++j)
        if (F[j].ok \&\& dblcmp(P[i],F[j]) > eps) {
          dfs(i, j);
          break;
    for (int tmp = num, i = (num = 0); i < tmp; ++i)</pre>
      if (F[i].ok) F[num++] = F[i];
  double get_area() {
    double res = 0.0;
    if (n == 3)
      return abs(cross3(P[0], P[1], P[2])) / 2.0;
    for (int i = 0; i < num; ++i)</pre>
      res += area(P[F[i].a], P[F[i].b], P[F[i].c]);
    return res / 2.0;
  double get_volume() {
    double res = 0.0;
    for (int i = 0; i < num; ++i)</pre>
      res += volume(Point(0, 0, 0), P[F[i].a], P[F[i].b], P
          [F[i].c]);
    return fabs(res / 6.0);
  int triangle() {return num;}
  int polygon() {
    int res = 0;
    for (int i = 0, flag = 1; i < num; ++i, res += flag,</pre>
        flag = 1)
      for (int j = 0; j < i && flag; ++j)</pre>
        flag &= !same(i,j);
    return res;
  Point getcent(){
    Point ans(0, 0, 0), temp = P[F[0].a];
    double v = 0.0, t2;
    for (int i = 0; i < num; ++i)</pre>
      if (F[i].ok == true) {
        Point p1 = P[F[i].a], p2 = P[F[i].b], p3 = P[F[i].c
            ];
        t2 = volume(temp, p1, p2, p3) / 6.0;
        if (t2>0)
          ans.x += (p1.x + p2.x + p3.x + temp.x) * t2, ans.
              y += (p1.y + p2.y + p3.y + temp.y) * t2, ans.
               z += (p1.z + p2.z + p3.z + temp.z) * t2, v +=
    ans.x /= (4 * v), ans.y /= (4 * v), ans.z /= (4 * v);
    return ans;
  double pointmindis(Point p) {
    double rt = 99999999;
    for(int i = 0; i < num; ++i)</pre>
      if(F[i].ok == true) {
        Point p1 = P[F[i].a], p2 = P[F[i].b], p3 = P[F[i].c
        double a = (p2.y - p1.y) * (p3.z - p1.z) - (p2.z - p1.z)
            p1.z) * (p3.y - p1.y);
        double b = (p2.z - p1.z) * (p3.x - p1.x) - (p2.x - p1.x)
            p1.x) * (p3.z - p1.z);
        double c = (p2.x - p1.x) * (p3.y - p1.y) - (p2.y - p1.y)
            p1.y) * (p3.x - p1.x);
        double d = 0 - (a * p1.x + b * p1.y + c * p1.z);
        double temp = fabs(a * p.x + b * p.y + c * p.z + d)
              / sqrt(a * a + b * b + c * c);
        rt = min(rt, temp);
      }
    return rt;
 }
};
```

// from 8BQube

}

4.10 Circle Operations

```
const double PI=acos(-1);
vector<pdd> circleLineIntersection(pdd c, double r, pdd a,
 pdd p = a + (b - a) * dot(c - a, b - a) / abs2(b - a);
 double s = cross(b - a, c - a), h2 = r * r - s * s / abs2
      (b - a);
  if (h2 < 0) return {};</pre>
 if (h2 == 0) return {p};
 pdd h = (b - a) / abs(b - a) * sqrt(h2);
 return {p - h, p + h};
double _area(pdd pa, pdd pb, double r){
 if(abs(pa)<abs(pb)) swap(pa, pb);</pre>
  if(abs(pb)<eps) return 0;</pre>
 double S, h, theta;
 double a=abs(pb),b=abs(pa),c=abs(pb-pa);
 double cosB = dot(pb,pb-pa) / a / c, B = acos(cosB);
 double cosC = dot(pa,pb) / a / b, C = acos(cosC);
  if(a > r){
    S = (C/2)*r*r;
    h = a*b*sin(C)/c;
    if (h < r \&\& B < PI/2) S -= (acos(h/r)*r*r - h*sqrt(r*r)
        -h*h));
 else if(b > r){
    theta = PI - B - asin(sin(B)/r*a);
    S = .5*a*r*sin(theta) + (C-theta)/2*r*r;
 else S = .5*sin(C)*a*b;
 return S;
double areaPolyCircle(const vector<pdd> poly,const pdd &O,
    const double r){
  double S=0;
 for(int i=0;i<SZ(poly);++i)</pre>
    S+=\_area(poly[i]-0,poly[(i+1)\%SZ(poly)]-0,r)*ori(0,poly)
        [i],poly[(i+1)%SZ(poly)]);
 return fabs(S);
bool CCinter(Cir &a, Cir &b, pdd &p1, pdd &p2) {
 pdd o1 = a.0, o2 = b.0;
 double r1 = a.R, r2 = b.R, d2 = abs2(o1 - o2), d = sqrt(
 if(d < max(r1, r2) - min(r1, r2) | | d > r1 + r2) return
      0;
 pdd u = (o1 + o2) * 0.5 + (o1 - o2) * ((r2 * r2 - r1 * r1))
      ) / (2 * d2));
  double A = sqrt((r1 + r2 + d) * (r1 - r2 + d) * (r1 + r2)
      - d) * (-r1 + r2 + d));
  pdd v = pdd(o1.Y - o2.Y, -o1.X + o2.X) * A / (2 * d2);
 p1 = u + v, p2 = u - v;
 return 1;
vector<Line> CCtang( const Cir& c1 , const Cir& c2 , int
    sign1 ){
  vector<Line> ret;
 double d_sq = abs2( c1.0 - c2.0 );
  if (sgn(d_sq) == 0) return ret;
 double d = sqrt(d_sq);
 pdd v = (c2.0 - c1.0) / d;
 double c = (c1.R - sign1 * c2.R) / d; // cos t
 if (c * c > 1) return ret;
 double h = sqrt(max( 0.0, 1.0 - c * c)); // sin t
 for (int sign2 = 1; sign2 >= -1; sign2 -= 2) {
  pdd n = pdd(v.X * c - sign2 * h * v.Y,
        v.Y * c + sign2 * h * v.X);
    pdd p1 = c1.0 + n * c1.R;
    pdd p2 = c2.0 + n * (c2.R * sign1);
    if (sgn(p1.X - p2.X) == 0 and
        sgn(p1.Y - p2.Y) == 0)
      p2 = p1 + perp(c2.0 - c1.0);
    ret.pb(Line(p1, p2));
  return ret;
```

4.11 Delaunay Triangulation

```
// from 8BQube
/* Delaunay Triangulation:
Given a sets of points on 2D plane, find a
triangulation such that no points will strictly
inside circumcircle of any triangle.
find : return a triangle contain given point
add_point : add a point into triangulation
A Triangle is in triangulation iff. its has_chd is 0.
Region of triangle u: iterate each u.edge[i].tri,
each points are u.p[(i+1)\%3], u.p[(i+2)\%3]
Voronoi diagram: for each triangle in triangulation,
the bisector of all its edges will split the region.
nearest point will belong to the triangle containing it
const ll inf = MAXC * MAXC * 100; // Lower_bound unknown
struct Tri:
struct Edge {
 Tri* tri; int side;
  Edge(): tri(0), side(0){}
  Edge(Tri* _tri, int _side): tri(_tri), side(_side){}
struct Tri {
  pll p[3];
  Edge edge[3];
  Tri* chd[3];
  Tri() {}
  Tri(const pll& p0, const pll& p1, const pll& p2) {
    p[0] = p0; p[1] = p1; p[2] = p2;
    chd[0] = chd[1] = chd[2] = 0;
  bool has_chd() const { return chd[0] != 0; }
  int num_chd() const {
    return !!chd[0] + !!chd[1] + !!chd[2];
  bool contains(pll const& q) const {
    for (int i = 0; i < 3; ++i)
      if (ori(p[i], p[(i + 1) % 3], q) < 0)</pre>
        return 0:
    return 1;
} pool[N * 10], *tris;
void edge(Edge a, Edge b) {
  if(a.tri) a.tri->edge[a.side] = b;
  if(b.tri) b.tri->edge[b.side] = a;
struct Trig { // Triangulation
  Trig() {
    the root = // Tri should at least contain all points
      new(tris++) Tri(pll(-inf, -inf), pll(inf + inf, -inf)
          , pll(-inf, inf + inf));
  Tri* find(pll p) { return find(the_root, p); }
  void add_point(const pll &p) { add_point(find(the_root, p
      ), p); }
  Tri* the root;
  static Tri* find(Tri* root, const pll &p) {
    while (1) {
      if (!root->has_chd())
        return root;
      for (int i = 0; i < 3 && root->chd[i]; ++i)
        if (root->chd[i]->contains(p)) {
          root = root->chd[i];
          break;
        }
    assert(0); // "point not found"
  void add_point(Tri* root, pll const& p) {
    Tri* t[3];
     /* split it into three triangles */
    for (int i = 0; i < 3; ++i)
```

};

return pii(gao(1), gao(-1));

```
t[i] = new(tris++) Tri(root->p[i], root->p[(i + 1) %
    for (int i = 0; i < 3; ++i)
      edge(Edge(t[i], 0), Edge(t[(i + 1) % 3], 1));
    for (int i = 0; i < 3; ++i)
      edge(Edge(t[i], 2), root->edge[(i + 2) % 3]);
    for (int i = 0; i < 3; ++i)
      root->chd[i] = t[i];
    for (int i = 0; i < 3; ++i)
      flip(t[i], 2);
 void flip(Tri* tri, int pi) {
    Tri* trj = tri->edge[pi].tri;
    int pj = tri->edge[pi].side;
    if (!trj) return;
    if (!in_cc(tri->p[0], tri->p[1], tri->p[2], trj->p[pj])
        ) return;
    /* flip edge between tri,trj */
    Tri* trk = new(tris++) Tri(tri->p[(pi + 1) % 3], trj->p
        [pj], tri->p[pi]);
    Tri* trl = new(tris++) Tri(trj->p[(pj + 1) % 3], tri->p
        [pi], trj->p[pj]);
    edge(Edge(trk, 0), Edge(trl, 0));
edge(Edge(trk, 1), tri->edge[(pi + 2) % 3]);
    edge(Edge(trk, 2), trj->edge[(pj + 1) % 3]);
    edge(Edge(trl, 1), trj->edge[(pj + 2) % 3]);
    edge(Edge(trl, 2), tri->edge[(pi + 1) % 3]);
    tri->chd[0] = trk; tri->chd[1] = trl; tri->chd[2] = 0;
    trj->chd[0] = trk; trj->chd[1] = trl; trj->chd[2] = 0;
    flip(trk, 1); flip(trk, 2);
    flip(trl, 1); flip(trl, 2);
 }
};
vector<Tri*> triang; // vector of all triangle
set<Tri*> vst;
void go(Tri* now) { // store all tri into triang
 if (vst.find(now) != vst.end())
    return;
  vst.insert(now);
  if (!now->has_chd())
    return triang.pb(now);
  for (int i = 0; i < now->num_chd(); ++i)
    go(now->chd[i]);
void build(int n, pll* ps) { // build triangulation
 tris = pool; triang.clear(); vst.clear();
  random_shuffle(ps, ps + n);
 Trig tri; // the triangulation structure
  for (int i = 0; i < n; ++i)
    tri.add_point(ps[i]);
  go(tri.the_root);
4.12 Voronoi Diagram
```

```
// from 8BQube
vector<Line> ls[N];
pll arr[N];
Line make_line(pdd p, Line l) {
 pdd d = 1.Y - 1.X; d = perp(d);
 pdd m = (1.X + 1.Y) / 2;
 l = Line(m, m + d);
 if (ori(1.X, 1.Y, p) < 0)
   l = Line(m + d, m);
 return 1;
double calc_area(int id) {
 // use to calculate the area of point "strictly in the
      convex hull"
 vector<Line> hpi = halfPlaneInter(ls[id]);
 vector<pdd> ps;
 for (int i = 0; i < SZ(hpi); ++i)</pre>
   ps.pb(intersect(hpi[i].X, hpi[i].Y, hpi[(i + 1) % SZ(
        hpi)].X, hpi[(i + 1) % SZ(hpi)].Y));
 double rt = 0;
 for (int i = 0; i < SZ(ps); ++i)</pre>
```

```
rt += cross(ps[i], ps[(i + 1) % SZ(ps)]);
  return fabs(rt) / 2;
void solve(int n, pii *oarr) {
  map<pll, int> mp;
  for (int i = 0; i < n; ++i)
    arr[i] = pll(oarr[i].X, oarr[i].Y), mp[arr[i]] = i;
  build(n, arr); // Triangulation
  for (auto *t : triang) {
    vector<int> p;
    for (int i = 0; i < 3; ++i)
      if (mp.find(t->p[i]) != mp.end())
        p.pb(mp[t->p[i]]);
    for (int i = 0; i < SZ(p); ++i)
      for (int j = i + 1; j < SZ(p); ++j) {
        Line l(oarr[p[i]], oarr[p[j]]);
        ls[p[i]].pb(make_line(oarr[p[i]], 1));
        ls[p[j]].pb(make_line(oarr[p[j]], 1));
  }
}
4.13 Polygon Union
// from 8BQube
ld rat(pll a, pll b) {
  return sgn(b.X) ? (ld)a.X / b.X : (ld)a.Y / b.Y;
 // all poly. should be ccw
ld polyUnion(vector<vector<pll>>> &poly) {
  1d res = 0;
  for (auto &p : poly)
    for (int a = 0; a < SZ(p); ++a) {
      pll A = p[a], B = p[(a + 1) \% SZ(p)];
      vector<pair<ld, int>> segs = {{0, 0}, {1, 0}};
      for (auto &q : poly) {
        if (&p == &q) continue;
        for (int b = 0; b < SZ(q); ++b) {
          pll C = q[b], D = q[(b + 1) \% SZ(q)];
          int sc = ori(A, B, C), sd = ori(A, B, D);
          if (sc != sd && min(sc, sd) < 0) {</pre>
            1d sa = cross(D - C, A - C), sb = cross(D - C,
                B - C);
            segs.pb(sa / (sa - sb), sgn(sc - sd));
          if (!sc && !sd && &q < &p && sgn(dot(B - A, D - C
              )) > 0) {
            segs.pb(rat(C - A, B - A), 1);
            segs.pb(rat(D - A, B - A), -1);
        }
      }
      sort(iter(segs));
      for (auto &s : segs) s.X = clamp(s.X, 0.0, 1.0);
      1d sum = 0;
      int cnt = segs[0].second;
      for (int j = 1; j < SZ(segs); ++j) {</pre>
        if (!cnt) sum += segs[j].X - segs[j - 1].X;
        cnt += segs[j].Y;
      res += cross(A, B) * sum;
  return res / 2;
       Tangent Point to Convex Hull
// from 8BQube
/* The point should be strictly out of hull
 return arbitrary point on the tangent line */
pii get_tangent(vector<pll> &C, pll p) {
  auto gao = [&](int s) {
    return cyc_tsearch(SZ(C), [&](int x, int y)
    { return ori(p, C[x], C[y]) == s; });
```

```
} // return (a, b), ori(p, C[a], C[b]) >= 0
```

5 Graph

5.1 Block Cut Tree

```
struct BCC{
 vector<int> v, e, cut;
struct BlockCutTree{ // 0-based, allow multi edges but not
   allow loops
 int n, m, cnt = 0;
// n:|V|, m:|E|, cnt:|bcc|
 vector<BCC> bcc;
 vector<vector<pii>>> g; // original graph
 vector<pii> edges; // 0-based
 vector<vector<int>> vbcc;
 // vbcc[i] = BCCs containing vertex i, vbcc[i].size()>1
      iff i is an articulation
 vector<int> ebcc;
 // edge i is a bridge iff bcc[ebcc[i]].e.size() == 1
 // block cut tree:
 // adj[bcc i]: bcc[i].cut
 // adj[cut i]: vbcc[i]
 BlockCutTree(int _n, vector<pii> _edges):
      n(_n), m(SZ(_edges)), g(_n), edges(_edges), vbcc(_n),
           ebcc(SZ(_edges)){
   for(int i = 0; i < m; i++){
      auto [u, v] = edges[i];
      g[u].pb(pii(v, i)); g[v].pb(pii(u, i));
 void build(){
   vector<int> in(n, -1), low(n, -1);
   vector<vector<int>> up(n);
   vector<int> stk;
   int ts = 0;
    auto _dfs = [&](auto dfs, int now, int par, int pe) ->
      if(pe != -1) up[now].pb(pe);
      in[now] = low[now] = ts++;
      stk.pb(now);
      for(auto [v, e] : g[now]){
        if(e == pe) continue;
        if(in[v] != -1){
          if(in[v] < in[now]) up[now].pb(e);</pre>
          low[now] = min(low[now], in[v]);
          continue;
        dfs(dfs, v, now, e);
        low[now] = min(low[now], low[v]);
      if((now != par \&\& low[now] >= in[par]) || (now == par
           && SZ(g[now]) == 0)){
        bcc.pb();
        while(true){
          int v = stk.back();
          stk.pop_back();
          vbcc[v].pb(cnt);
          bcc[cnt].v.pb(v);
          for(int e : up[v]){
            ebcc[e] = cnt;
            bcc[cnt].e.pb(e);
          if(v == now) break;
        if(now != par){
          vbcc[par].pb(cnt);
          bcc[cnt].v.pb(par);
        cnt++;
     }
   };
```

```
for(int i = 0; i < n; i++){</pre>
      if(in[i] == -1) _dfs(_dfs, i, i, -1);
    for(int i = 0; i < cnt; i++)</pre>
      for(int j : bcc[i].v)
        if(SZ(vbcc[j]) > 1) bcc[i].cut.pb(j);
  }
};
5.2 2-SAT
struct SAT{ // 0-based, [n, 2n) is neg of [0, n)
  vector<vector<int>> g, rg;
  bool ok = true;
  vector<bool> ans;
  void init(int _n){
    g.resize(2 * n);
    rg.resize(2 * n);
    ans.resize(n);
  int neg(int v){
    return v < n ? v + n : v - n;
  void addEdge(int u, int v){
    g[u].pb(v);
    rg[v].pb(u);
  void addClause(int a, int b){
    addEdge(neg(a), b);
    addEdge(neg(b), a);
  void build(){
    vector<bool> vst(2 * n, false);
    vector<int> tmp, scc(2 * n, -1);
    int cnt = 1;
    function < void(int) > dfs = [&](int now){
      vst[now] = true;
      for(int i : rg[now]){
        if(vst[i]) continue;
        dfs(i);
      tmp.pb(now);
    for(int i = 0; i < 2 * n; i++){
      if(!vst[i]) dfs(i);
    }
    reverse(all(tmp));
    function < void(int, int) > dfs2 = [&](int now, int id){
      scc[now] = id;
      for(int i : g[now]){
        if(scc[i] != -1) continue;
        dfs2(i, id);
    };
    for(int i : tmp){
      if(scc[i] == -1) dfs2(i, cnt++);
    debug(scc);
    for(int i = 0; i < n; i++){</pre>
      if(scc[i] == scc[neg(i)]){
        ok = false;
      if(scc[i] < scc[neg(i)]) ans[i] = true;</pre>
      else ans[i] = false;
  }
};
```

.3 Dominator Tree

```
// copy from 8BQube
struct dominator_tree { // 1-base
  vector<int> G[N], rG[N];
  int n, pa[N], dfn[N], id[N], Time;
 int semi[N], idom[N], best[N];
  vector<int> tree[N]; // dominator_tree
 void init(int _n) {
   n = _n;
for (int i = 1; i <= n; ++i)</pre>
      G[i].clear(), rG[i].clear();
 void add_edge(int u, int v) {
    G[u].pb(v), rG[v].pb(u);
 void dfs(int u) {
    id[dfn[u] = ++Time] = u;
    for (auto v : G[u])
      if (!dfn[v]) dfs(v), pa[dfn[v]] = dfn[u];
 int find(int y, int x) {
    if (y <= x) return y;</pre>
    int tmp = find(pa[y], x);
    if (semi[best[y]] > semi[best[pa[y]]])
      best[y] = best[pa[y]];
    return pa[y] = tmp;
 void tarjan(int root) {
    Time = 0;
    for (int i = 1; i <= n; ++i) {
      dfn[i] = idom[i] = 0;
      tree[i].clear();
      best[i] = semi[i] = i;
    dfs(root);
    for (int i = Time; i > 1; --i) {
      int u = id[i];
      for (auto v : rG[u])
        if (v = dfn[v]) {
          find(v, i);
          semi[i] = min(semi[i], semi[best[v]]);
      tree[semi[i]].pb(i);
      for (auto v : tree[pa[i]]) {
        find(v, pa[i]);
        idom[v] =
          semi[best[v]] == pa[i] ? pa[i] : best[v];
      tree[pa[i]].clear();
    for (int i = 2; i <= Time; ++i) {</pre>
      if (idom[i] != semi[i]) idom[i] = idom[idom[i]];
      tree[id[idom[i]]].pb(id[i]);
 }
};
     Virtual Tree
// copy from 8BQube
vector<int> vG[N];
int top, st[N];
void insert(int u) {
  if (top == -1) return st[++top] = u, void();
 int p = LCA(st[top], u);
 if (p == st[top]) return st[++top] = u, void();
 while (top >= 1 \&\& dep[st[top - 1]] >= dep[p])
    vG[st[top - 1]].pb(st[top]), --top;
  if (st[top] != p)
    vG[p].pb(st[top]), --top, st[++top] = p;
  st[++top] = u;
void reset(int u) {
 for (int i : vG[u]) reset(i);
 vG[u].clear();
```

```
}
void solve(vector<int> &v) {
  top = -1;
  sort(ALL(v),
      [&](int a, int b) { return dfn[a] < dfn[b]; });</pre>
  for (int i : v) insert(i);
  while (top > 0) vG[st[top - 1]].pb(st[top]), --top;
  // do something
  reset(v[0]);
      Directed Minimum Spanning Tree
const 11 INF = LLONG_MAX;
struct edge{
  int u = -1, v = -1;
  11 w = INF;
 int id = -1;
};
// 0-based, E[i].id = i
bool DMST(int n, vector<edge> &E, int root, vector<edge> &
    sol){
  vector<int> id(n), vis(n);
  vector<edge> in(n);
  for(edge e : E)
    if(e.u != e.v && e.w < in[e.v].w && e.v != root)</pre>
      in[e.v] = e;
  for(int i = 0; i < n; i++)</pre>
    if(i != root && in[i].u == -1) return false; // no sol
  int cnt = 0;
  fill(iter(id), -1); fill(iter(vis), -1);
  for(int u = 0; u < n; u++){
    int v = u;
    while(vis[v] != u && id[v] == -1 && in[v].u != -1)
      vis[v] = u, v = in[v].u;
    if(v != root \&\& id[v] == -1){
      for(int x = in[v].u; x != v; x = in[x].u)
        id[x] = cnt;
      id[v] = cnt++;
    }
  if(!cnt) return sol = in, true; // no cycle
  for(int u = 0; u < n; u++)</pre>
    if(id[u] == -1) id[u] = cnt++;
  vector<edge> nE;
  for(int i = 0; i < SZ(E); i++){</pre>
    edge tmp = E[i];
    tmp.u = id[tmp.u], tmp.v = id[tmp.v];
    if(in[E[i].v].w != INF) tmp.w -= in[E[i].v].w;
    nE.pb(tmp);
  vector<edge> tsol;
  if(!DMST(cnt, nE, id[root], tsol)) return false;
  sol.resize(n);
  for(int i = 0; i < cnt; i++){</pre>
    if(i == id[root]) continue;
    int t = tsol[i].id;
    sol[E[t].v] = E[t];
  for(int i = 0; i < n; i++)</pre>
    if(sol[i].id == -1) sol[i] = in[i];
  return true;
}
5.6
     Vizing
// find D+1 edge coloring of a graph with max deg D
struct vizing { // returns edge coloring in adjacent matrix
     G. 1 - based
  const int N = 105;
  int C[N][N], G[N][N], X[N], vst[N], n; // ans: G[i][j]
  void init(int _n) { n = _n; // n = _v+1
```

for (int i = 0; i <= n; ++i)</pre>

```
for (int j = 0; j <= n; ++j)
        C[i][j] = G[i][j] = 0;
 void solve(vector<pii> &E) {
    auto update = [&](int u)
    { for (X[u] = 1; C[u][X[u]]; ++X[u]); };
    auto color = [&](int u, int v, int c) {
      int p = G[u][v];
      G[u][v] = G[v][u] = c;
      C[u][c] = v, C[v][c] = u;
      C[u][p] = C[v][p] = 0;
      if (p) X[u] = X[v] = p;
      else update(u), update(v);
      return p;
    };
    auto flip = [&](int u, int c1, int c2) {
     int p = C[u][c1];
      swap(C[u][c1], C[u][c2]);
      if (p) G[u][p] = G[p][u] = c2;
      if (!C[u][c1]) X[u] = c1;
      if (!C[u][c2]) X[u] = c2;
     return p;
    fill_n(X + 1, n, 1);
    for (int t = 0; t < SZ(E); ++t) {
      int u = E[t].X, v0 = E[t].Y, v = v0, c0 = X[u], c =
          c0, d;
      vector<pii> L;
      fill_n(vst + 1, n, 0);
      while (!G[u][v0]) {
        L.emplace_back(v, d = X[v]);
        if (!C[v][c]) for (int a = SZ(L) - 1; a >= 0; --a)
            c = color(u, L[a].X, c);
        else if (!C[u][d]) for (int a = SZ(L) - 1; a >= 0;
            --a) color(u, L[a].X, L[a].Y);
        else if (vst[d]) break;
        else vst[d] = 1, v = C[u][d];
      if (!G[u][v0]) {
        for (; v; v = flip(v, c, d), swap(c, d));
        if (int a; C[u][c0]) {
          for (a = SZ(L) - 2; a >= 0 && L[a].Y != c; --a);
          for (; a >= 0; --a) color(u, L[a].X, L[a].Y);
        else --t;
     }
   }
 }
};
```

5.7 Maximum Clique

```
const int MAXN = 40;
typedef bitset<MAXN> bst;
struct Maximum_Clique {
 bst N[MAXN], empty;
  int p[MAXN], n;
 bst ans;
 // find all maximal clique
 void BronKerbosch2(bst R, bst P, bst X) {
    if (P == empty && X == empty){
      if(ans.count() < R.count()) ans = R;</pre>
      return;
    bst tmp = P \mid X;
    if ((R | P | X).count() <= ans.count()) return;</pre>
    for (int uu = 0; uu < n; ++uu) {</pre>
      u = p[uu];
      if (tmp[u] == 1) break;
    // if (double(clock())/CLOCKS_PER_SEC > .999)
    // return;
    bst now2 = P \& \sim N[u];
    for (int vv = 0; vv < n; ++vv) {</pre>
      int v = p[vv];
```

```
if (now2[v] == 1) {
        R[v] = 1;
        BronKerbosch2(R, P & N[v], X & N[v]);
        R[v] = 0, P[v] = 0, X[v] = 1;
    }
  void init(int _n) {
    n = n;
    for (int i = 0; i < n; ++i) N[i].reset();</pre>
  void add_edge(int u, int v) {
    N[u][v] = N[v][u] = 1;
  void complement(){
    for(int i = 0; i < n; i++)</pre>
      for(int j = 0; j < n; j++)
        if(i != j) N[i][j] = !N[i][j];
  void solve() {
    bst R, P, X;
    ans = 0, P.flip();
    for (int i = 0; i < n; ++i) p[i] = i;</pre>
    mt19937 rng(123123);
    shuffle(p, p + n, rng), BronKerbosch2(R, P, X);
  }
};
```

5.8 Minimum Mean Cycle

```
// from 8BQube
11 road[N][N]; // input here
struct MinimumMeanCycle {
  11 dp[N + 5][N], n;
  pll solve() {
    ll a = -1, b = -1, L = n + 1;
    for (int i = 2; i <= L; ++i)
      for (int k = 0; k < n; ++k)
        for (int j = 0; j < n; ++j)
          dp[i][j] =
            min(dp[i - 1][k] + road[k][j], dp[i][j]);
    for (int i = 0; i < n; ++i) {</pre>
      if (dp[L][i] >= INF) continue;
      11 ta = 0, tb = 1;
      for (int j = 1; j < n; ++j)
        if (dp[j][i] < INF \&\&
          ta * (L - j) < (dp[L][i] - dp[j][i]) * tb)
          ta = dp[L][i] - dp[j][i], tb = L - j;
      if (ta == 0) continue;
      if (a == -1 || a * tb > ta * b) a = ta, b = tb;
    if (a != -1) {
      ll g = \_gcd(a, b);
      return pll(a / g, b / g);
    return pll(-1LL, -1LL);
  void init(int _n) {
    for (int i = 0; i < n; ++i)
      for (int j = 0; j < n; ++j) dp[i + 2][j] = INF;
  }
};
```

5.9 Minimum Steiner Tree

```
// from 8BQube
// O(V 3^T + V^2 2^T)
struct SteinerTree { // O-base
    static const int T = 10, N = 105, INF = 1e9;
    int n, dst[N][N], dp[1 << T][N], tdst[N];
    int vcost[N]; // the cost of vertexs
    void init(int _n) {
        n = _n;
        for (int i = 0; i < n; ++i) {</pre>
```

```
for (int j = 0; j < n; ++j) dst[i][j] = INF;</pre>
      dst[i][i] = vcost[i] = 0;
  void add_edge(int ui, int vi, int wi) {
    dst[ui][vi] = min(dst[ui][vi], wi);
  void shortest_path() {
    for (int k = 0; k < n; ++k)
      for (int i = 0; i < n; ++i)</pre>
        for (int j = 0; j < n; ++j)</pre>
          dst[i][j] =
             min(dst[i][j], dst[i][k] + dst[k][j]);
  int solve(const vector<int> &ter) {
    shortest_path();
    int t = SZ(ter);
    for (int i = 0; i < (1 << t); ++i)
      for (int j = 0; j < n; ++j) dp[i][j] = INF;</pre>
    for (int i = 0; i < n; ++i) dp[0][i] = vcost[i];</pre>
    for (int msk = 1; msk < (1 << t); ++msk) {</pre>
      if (!(msk & (msk - 1))) {
        int who = __lg(msk);
for (int i = 0; i < n; ++i)</pre>
          dp[msk][i] =
             vcost[ter[who]] + dst[ter[who]][i];
      for (int i = 0; i < n; ++i)
        for (int submsk = (msk - 1) & msk; submsk;
              submsk = (submsk - 1) \& msk)
           dp[msk][i] = min(dp[msk][i],
             dp[submsk][i] + dp[msk ^ submsk][i] -
               vcost[i]);
      for (int i = 0; i < n; ++i) {</pre>
        tdst[i] = INF;
        for (int j = 0; j < n; ++j)</pre>
          tdst[i] =
             min(tdst[i], dp[msk][j] + dst[j][i]);
      for (int i = 0; i < n; ++i) dp[msk][i] = tdst[i];</pre>
    int ans = INF;
    for (int i = 0; i < n; ++i)</pre>
      ans = min(ans, dp[(1 << t) - 1][i]);
    return ans;
  }
};
```

6 Math

6.1 Extended Euclidean Algorithm

```
// ax+ny = 1, ax+ny == ax == 1 (mod n)
void extgcd(11 x,11 y,11 &g,11 &a,11 &b) {
  if (y == 0) g=x,a=1,b=0;
  else extgcd(y,x%y,g,b,a),b==(x/y)*a;
}
```

6.2 Floor & Ceil

```
int ifloor(int a,int b){
  return a / b - (a % b && (a < 0) ^ (b < 0));
}
int iceil(int a,int b){
  return a / b + (a % b && (a < 0) ^ (b > 0));
}
```

6.3 Legendre

```
// the Jacobi symbol is a generalization of the Legendre
    symbol,
// such that the bottom doesn't need to be prime.
```

```
// (n|p) -> same as Legendre
// (n|ab) = (n|a)(n|b)
// work with long long
int Jacobi(int a, int m) {
  int s = 1;
  for (; m > 1; ) {
    a \% = m;
    if (a == 0) return 0;
    const int r = __builtin_ctz(a);
    if ((r \& 1) \&\& ((m + 2) \& 4)) s = -s;
    a >>= r;
    if (a \& m \& 2) s = -s;
    swap(a, m);
  }
  return s;
// 0: a == 0
// -1: a isn't a quad res of p
// else: return X with X^2 \% p == a
// doesn't work with long long
int QuadraticResidue(int a, int p) {
  if (p == 2) return a & 1;
  const int jc = Jacobi(a, p);
  if (jc == 0) return 0;
  if (jc == -1) return -1;
  int b, d;
  for (;;) {
    b = rand() % p;
    d = (1LL * b * b + p - a) % p;
    if (Jacobi(d, p) == -1) break;
  int f0 = b, f1 = 1, g0 = 1, g1 = 0, tmp;
  for (int e = (1LL + p) >> 1; e; e >>= 1) {
    if (e & 1) {
      tmp = (1LL * g0 * f0 + 1LL * d * (1LL * g1 * f1 % p))
           % p;
      g1 = (1LL * g0 * f1 + 1LL * g1 * f0) % p;
      g0 = tmp;
    tmp = (1LL * f0 * f0 + 1LL * d * (1LL * f1 * f1 % p)) %
    f1 = (2LL * f0 * f1) % p;
    f0 = tmp;
  return g0;
```

6.4 Simplex

```
#pragma once
typedef double T; // long double, Rational, double + mod<P</pre>
typedef vector<T> vd;
typedef vector<vd> vvd;
const T eps = 1e-8, inf = 1/.0;
#define MP make pair
#define ltj(X) if(s == -1 || MP(X[j],N[j]) < MP(X[s],N[s]))
     s=i
struct LPSolver {
 int m, n;
  vi N, B;
 vvd D;
  LPSolver(const vvd& A, const vd& b, const vd& c) :
   m(sz(b)), n(sz(c)), N(n+1), B(m), D(m+2, vd(n+2)) {
      rep(i,0,m) \ rep(j,0,n) \ D[i][j] = A[i][j];
      rep(i,0,m) { B[i] = n+i; D[i][n] = -1; D[i][n+1] = b[
          i];}
      rep(j,0,n) \{ N[j] = j; D[m][j] = -c[j]; \}
      N[n] = -1; D[m+1][n] = 1;
```

```
void pivot(int r, int s) {
    T *a = D[r].data(), inv = 1 / a[s];
    rep(i,0,m+2) if (i != r && abs(D[i][s]) > eps) {
      T *b = D[i].data(), inv2 = b[s] * inv;
      rep(j,0,n+2) b[j] -= a[j] * inv2;
      b[s] = a[s] * inv2;
    rep(j,0,n+2) if (j != s) D[r][j] *= inv;
    rep(i,0,m+2) if (i != r) D[i][s] *= -inv;
    D[r][s] = inv;
    swap(B[r], N[s]);
 bool simplex(int phase) {
    int x = m + phase - 1;
    for (;;) {
      int s = -1;
      rep(j,0,n+1) if (N[j] != -phase) ltj(D[x]);
      if (D[x][s] >= -eps) return true;
      int r = -1:
      rep(i,0,m) {
        if (D[i][s] <= eps) continue;</pre>
        if (r == -1 || MP(D[i][n+1] / D[i][s], B[i])
            < MP(D[r][n+1] / D[r][s], B[r])) r = i;
      if (r == -1) return false;
      pivot(r, s);
 T solve(vd &x) {
    int r = 0;
    rep(i,1,m) if (D[i][n+1] < D[r][n+1]) r = i;
    if (D[r][n+1] < -eps) {
      pivot(r, n);
      if (!simplex(2) || D[m+1][n+1] < -eps) return -inf;</pre>
      rep(i,0,m) if (B[i] == -1) {
        int s = 0;
        rep(j,1,n+1) ltj(D[i]);
        pivot(i, s);
      }
    bool ok = simplex(1); x = vd(n);
    rep(i,0,m) if (B[i] < n) x[B[i]] = D[i][n+1];
    return ok ? D[m][n+1] : inf;
};
    Floor Sum
// from 8BQube
11 floor_sum(ll n, ll m, ll a, ll b) {
 11 \text{ ans} = 0:
  if (a >= m)
   ans += (n - 1) * n * (a / m) / 2, a %= m;
  if (b >= m)
   ans += n * (b / m), b %= m;
  11 y_max = (a * n + b) / m, x_max = (y_max * m - b);
 if (y_max == 0) return ans;
 ans += (n - (x_max + a - 1) / a) * y_max;
  ans += floor_sum(y_max, a, m, (a - x_max % a) % a);
 return ans;
// sum^{n-1}_0 floor((a * i + b) / m) in log(n + m + a + b)
  constexpr int kStep = 32000;
```

6.6 DiscreteLog int DiscreteLog(int s, int x, int y, int m) { unordered_map<int, int> p; int b = 1;for (int i = 0; i < kStep; ++i) {</pre> p[y] = i;y = 1LL * y * x % m;b = 1LL * b * x % m;

```
for (int i = 0; i < m + 10; i += kStep) {</pre>
   s = 1LL * s * b % m;
   if (p.find(s) != p.end()) return i + kStep - p[s];
  return -1:
int DiscreteLog(int x, int y, int m) {
  if (m == 1) return 0;
  int s = 1;
  for (int i = 0; i < 100; ++i) {
   if (s == y) return i;
    s = 1LL * s * x % m;
  if (s == y) return 100;
  int p = 100 + DiscreteLog(s, x, y, m);
  if (fpow(x, p, m) != y) return -1;
  return p; //returns: x^p = y \pmod{m}
      Miller Rabin & Pollard Rho
6.7
// n < 4,759,123,141
                         3 : 2, 7, 61
// n < 1,122,004,669,633 4 : 2, 13, 23, 1662803
// n < 3,474,749,660,383 6 : primes <= 13
// n < 2^64
// 2, 325, 9375, 28178, 450775, 9780504, 1795265022
11 mul(ll a, ll b, ll n){
  return (__int128)a * b % n;
bool Miller_Rabin(ll a, ll n) {
  if ((a = a % n) == 0) return 1;
  if (n % 2 == 0) return n == 2;
  for (; tmp; tmp >>= 1, a = mul(a, a, n))
    if (tmp \& 1) x = mul(x, a, n);
  if (x == 1 | | x == n - 1) return 1;
  while (--t)
   if ((x = mul(x, x, n)) == n - 1) return 1;
  return 0;
bool prime(ll n){
  vector<ll> tmp = {2, 325, 9375, 28178, 450775, 9780504,
      1795265022};
  for(ll i : tmp)
   if(!Miller_Rabin(i, n)) return false;
  return true;
map<ll, int> cnt;
void PollardRho(ll n) {
  if (n == 1) return;
  if (prime(n)) return ++cnt[n], void();
  if (n \% 2 == 0) return PollardRho(n / 2), ++cnt[2], void
  11 x = 2, y = 2, d = 1, p = 1;
#define f(x, n, p) ((mul(x, x, n) + p) % n)
  while (true) {
    if (d != n && d != 1) {
     PollardRho(n / d);
     PollardRho(d);
     return;
   if (d == n) ++p;
   x = f(x, n, p), y = f(f(y, n, p), n, p);
    d = gcd(abs(x - y), n);
  }
}
     XOR Basis
const int digit = 60; // [0, 2^digit)
```

struct Basis{

vector<ll> b;

int total = 0, rank = 0;

```
Basis(): b(digit) {}
  bool add(ll v){ // Gauss Jordan Elimination
    total++:
    for(int i = digit - 1; i >= 0; i--){
      if(!(1LL << i & v)) continue;</pre>
      if(b[i] != 0){
        v ^= b[i];
         continue;
      for(int j = 0; j < i; j++)
         if(1LL << j & v) v ^= b[j];</pre>
      for(int j = i + 1; j < digit; j++)</pre>
         if(1LL << i & b[j]) b[j] ^= v;</pre>
      b[i] = v;
      rank++;
      return true;
    return false;
  11 \text{ getmax}(11 \text{ x} = 0)
    for(ll i : b) x = max(x, x ^ i);
    return x;
  11 \text{ getmin}(11 \times = 0){
    for(11 i : b) x = min(x, x ^ i);
    return x;
  bool can(ll x){
    return getmin(x) == 0;
  11 kth(11 k){ // kth smallest, 0-indexed
    vector<11> tmp;
    for(ll i : b) if(i) tmp.pb(i);
    11 \text{ ans} = 0;
    for(int i = 0; i < SZ(tmp); i++)</pre>
      if(1LL << i & k) ans ^= tmp[i];</pre>
    return ans;
};
```

6.9 Linear Equation

```
vector<int> RREF(vector<vector<ll>> &mat){
 int N = mat.size(), M = mat[0].size();
  int rk = 0;
 vector<int> cols;
 for (int i = 0; i < M; i++) {
   int cnt = -1;
   for (int j = N-1; j >= rk; j--)
      if(mat[j][i] != 0) cnt = j;
   if(cnt == -1) continue;
   swap(mat[rk], mat[cnt]);
   ll lead = mat[rk][i];
   for (int j = 0; j < M; j++) mat[rk][j] /= lead;
   for (int j = 0; j < N; j++) {
      if(j == rk) continue;
      11 tmp = mat[j][i];
      for (int k = 0; k < M; k++)
       mat[j][k] -= mat[rk][k] * tmp;
   cols.pb(i);
   rk++;
 return cols;
struct LinearEquation{
 vector<11> par; //particular solution (Ax = b)
 vector<vector<ll>> homo; //homogenous (Ax = 0)
 vector<vector<ll>> rref;
 //first M columns are matrix A
 //last column of eq is vector b
 void solve(const vector<vector<11>>> &eq){
   int M = (int)eq[0].size() - 1;
   rref = eq;
   auto piv = RREF(rref);
```

```
int rk = piv.size();
    if(piv.size() && piv.back() == M){
      ok = 0; return;
    ok = 1;
    par.resize(M);
    vector<bool> ispiv(M);
    for (int i = 0;i < rk;i++) {</pre>
      par[piv[i]] = rref[i][M];
      ispiv[piv[i]] = 1;
    for (int i = 0;i < M;i++) {</pre>
      if (ispiv[i]) continue;
      vector<ll> h(M);
      h[i] = 1;
      for (int j = 0;j < rk;j++) h[piv[j]] = -rref[j][i];</pre>
      homo.pb(h);
    }
  }
}
```

6.10 Chinese Remainder Theorem

6.11 Sqrt Decomposition

```
// for all i in [l, r], floor(n / i) = x
for(int l = 1, r; l <= n; l = r + 1){
   int x = ifloor(n, l);
   r = ifloor(n, x);
}
// for all i in [l, r], ceil(n / i) = x
for(int l, r = n; r >= 1; r = l - 1){
   int x = iceil(n, r);
   l = iceil(n, x);
}
```

7 Misc

7.1 Cyclic Ternary Search

```
/* bool pred(int a, int b);
f(0) ~ f(n - 1) is a cyclic-shift U-function
return idx s.t. pred(x, idx) is false forall x*/
int cyc_tsearch(int n, auto pred) {
   if (n == 1) return 0;
   int l = 0, r = n; bool rv = pred(1, 0);
   while (r - 1 > 1) {
      int m = (1 + r) / 2;
      if (pred(0, m) ? rv: pred(m, (m + 1) % n)) r = m;
      else l = m;
   }
   return pred(l, r % n) ? l : r % n;
}
```

7.2 Matroid

我們稱一個二元組 $M=(E,\mathcal{I})$ 為一個擬陣,其中 $\mathcal{I}\subseteq 2^E$ 為 E 的子集所形成的 **非空**集合,若:

- 若 $S \in \mathcal{I}$ 以及 $S' \subsetneq S$,則 $S' \in \mathcal{I}$
- 對於 $S_1, S_2 \in \mathcal{I}$ 滿足 $|S_1| < |S_2|$,存在 $e \in S_2 \setminus S_1$ 使得 $S_1 \cup \{e\} \in \mathcal{I}$

除此之外,我們有以下的定義:

- 位於 \mathcal{I} 中的集合我們稱之為獨立集(independent set),反之不在 \mathcal{I} 中的 我們稱為相依集(dependent set)
- 極大的獨立集為基底(base)、極小的相依集為廻路(circuit)
- 一個集合 Y 的秩 (rank) r(Y) 為該集合中最大的獨立子集,也就是 $r(Y) = \max\{|X| \mid X \subseteq Y \ \exists X \in \mathcal{I}\}$

性質:

- 1. $X \subseteq Y \land Y \in \mathcal{I} \implies X \in \mathcal{I}$
- 2. $X \subseteq Y \land X \notin \mathcal{I} \implies Y \notin \mathcal{I}$
- 3. 若 B 與 B' 皆是基底且 $B \subseteq B'$,則 B = B' 若 C 與 C' 皆是迴路且 $C \subseteq C'$,則 C = C'
- 4. $e \in E \land X \subseteq E \implies r(X) \le r(X \cup \{e\}) \le r(X) + 1$ i.e. 加入一個元素 後秩不會降底,最多增加 1
- 5. $\forall Y \subseteq E, \exists X \subseteq Y, r(X) = |X| = r(Y)$

一些等價的性質:

- 1. 對於所有 $X \subseteq E$, X 的極大獨立子集都有相同的大小
- 2. 對於 $B_1, B_2 \in \mathcal{B} \wedge B_1 \neq B_2$,對於所有 $e_1 \in B_1 \setminus B_2$,存在 $e_2 \in B_2 \setminus B_1$ 使得 $(B_1 \setminus \{e_1\}) \cup \{e_2\} \in \mathcal{B}$
- 3. 對於 $X,Y \in \mathcal{I}$ 且 |X| < |Y|,存在 $e \in Y \setminus X$ 使得 $X \cup \{e\} \in \mathcal{B}$
- 4. 如果 $r(X \cup \{e_1\}) = r(X \cup \{e_2\}) = r(X)$,則 $r(X \cup \{e_1, e_2\}) = r(X)$ 。 如果 $r(X \cup \{e\}) = r(X)$ 對於所有 $e \in E'$ 都成立,則 $r(X \cup E') = r(X)$ 。

擬陣交

```
Data: 兩個擬陣 M_1 = (E, \mathcal{I}_1) 以及 M_2 = (E, \mathcal{I}_2) Result: I 為最大的位於 \mathcal{I}_1 \cap \mathcal{I}_2 中的獨立集 I \leftarrow \emptyset X_1 \leftarrow \{e \in E \setminus I \mid I \cup \{e\} \in \mathcal{I}_1\} X_2 \leftarrow \{e \in E \setminus I \mid I \cup \{e\} \in \mathcal{I}_2\} while X_1 \neq \emptyset 且 X_2 \neq \emptyset do if e \in X_1 \cap X_2 then I \leftarrow I \cup \{e\} else 構造交換圖 \mathcal{D}_{M_1,M_2}(I) 在交換圖上找到一條 X_1 到 X_2 且沒有捷徑的路徑 P I \leftarrow I \triangle P end if X_1 \leftarrow \{e \in E \setminus I \mid I \cup \{e\} \in \mathcal{I}_1\} X_2 \leftarrow \{e \in E \setminus I \mid I \cup \{e\} \in \mathcal{I}_2\} end while
```

8 Polynomial

8.1 FWHT

```
/* x: a[j], y: a[j + (L >> 1)]
or: (y += x * op), and: (x += y * op)
xor: (x, y = (x + y) * op, (x - y) * op)
invop: or, and, xor = -1, -1, 1/2 */
void fwt(int *a, int n, int op) { //or
  for (int L = 2; L <= n; L <<= 1)
    for (int i = 0; i < n; i += L)</pre>
      for (int j = i; j < i + (L >> 1); ++j)
        a[j + (L >> 1)] += a[j] * op;
const int N = 21;
int f[N][1 << N], g[N][1 << N], h[N][1 << N], ct[1 << N];</pre>
void subset_convolution(int *a, int *b, int *c, int L) {
  // c_k = \sum_{i=0}^{n} \{i \mid j = k, i \& j = 0\} \ a_i * b_j
  int n = 1 << L;
  for (int i = 1; i < n; ++i)
    ct[i] = ct[i & (i - 1)] + 1;
  for (int i = 0; i < n; ++i)
    f[ct[i]][i] = a[i], g[ct[i]][i] = b[i];
  for (int i = 0; i <= L; ++i)
    fwt(f[i], n, 1), fwt(g[i], n, 1);
  for (int i = 0; i <= L; ++i)
    for (int j = 0; j <= i; ++j)</pre>
      for (int x = 0; x < n; ++x)
```

```
h[i][x] += f[j][x] * g[i - j][x];
  for (int i = 0; i <= L; ++i) fwt(h[i], n, -1);</pre>
  for (int i = 0; i < n; ++i) c[i] = h[ct[i]][i];</pre>
8.2
     \mathbf{FFT}
using val_t = complex<double>;
template<int MAXN>
struct FFT {
  const double PI = acos(-1);
  val_t w[MAXN];
  FFT() {
    for (int i = 0; i < MAXN; ++i) {
      double arg = 2 * PI * i / MAXN;
      w[i] = val_t(cos(arg), sin(arg));
    }
  void bitrev(vector<val_t> &a, int n) //same as NTT
  void trans(vector<val_t> &a, int n, bool inv = false) {
    bitrev(a, n);
    for (int L = 2; L <= n; L <<= 1) {
      int dx = MAXN / L, dl = L >> 1;
      for (int i = 0; i < n; i += L) {</pre>
        for (int j = i, x = 0; j < i + dl; ++j, x += dx) {
          val_t = a[j + dl] * (inv ? conj(w[x]) : w[x])
          a[j + dl] = a[j] - tmp;
          a[j] += tmp;
      }
    if (inv) {
      for (int i = 0; i < n; ++i) a[i] /= n;</pre>
  //multiplying two polynomials A * B:
  //fft.trans(A, siz, 0), fft.trans(B, siz, 0):
  //A[i] *= B[i], fft.trans(A, siz, 1);
8.3 NTT
//(2^16)+1, 65537, 3
//7*17*(2^23)+1, 998244353, 3
//1255*(2^20)+1, 1315962881, 3
//51*(2^25)+1, 1711276033, 29
template < int MAXN, 11 P, 11 RT> //MAXN must be 2^k
struct NTT {
  11 w[MAXN];
  11 mpow(ll a, ll n);
  11 minv(ll a) { return mpow(a, P - 2); }
  NTT() {
    11 dw = mpow(RT, (P - 1) / MAXN);
    w[0] = 1;
    for (int i = 1; i < MAXN; ++i) w[i] = w[i - 1] * dw % P
  void bitrev(vector<ll> &a, int n) {
    int i = 0;
    for (int j = 1; j < n - 1; ++j) {
      for (int k = n >> 1; (i ^{-} = k) < k; k >>= 1);
      if (j < i) swap(a[i], a[j]);</pre>
    }
  void operator()(vector<ll> &a, int n, bool inv = false) {
       //0 <= a[i] < P
    bitrev(a, n);
    for (int L = 2; L <= n; L <<= 1) {</pre>
      int dx = MAXN / L, dl = L >> 1;
      for (int i = 0; i < n; i += L) {</pre>
        for (int j = i, x = 0; j < i + dl; ++j, x += dx) {
          ll tmp = a[j + dl] * w[x] % P;
```

if ((a[j + dl] = a[j] - tmp) < 0) a[j + dl] += P;

if ((a[j] += tmp) >= P) a[j] -= P;

```
}
}
if (inv) {
    reverse(a.begin()+1, a.begin()+n);
    ll invn = minv(n);
    for (int i = 0; i < n; ++i) a[i] = a[i] * invn % P;
}
}
}
</pre>
```

8.4 Polynomial Operation

```
// Copy from 8BQube
#define fi(s, n) for (int i = (int)(s); i < (int)(n); ++i)
template<int MAXN, 11 P, 11 RT> // MAXN = 2^k
struct Poly : vector<ll> { // coefficients in [0, P)
  using vector<11>::vector;
  static NTT<MAXN, P, RT> ntt;
  int n() const { return (int)size(); } // n() >= 1
 Poly(const Poly &p, int m) : vector<ll>(m) {
    copy_n(p.data(), min(p.n(), m), data());
 Poly& irev() { return reverse(data(), data() + n()), *
      this; }
  Poly& isz(int m) { return resize(m), *this; }
  Poly& iadd(const Poly &rhs) { // n() == rhs.n()
    fi(0, n()) if (((*this)[i] += rhs[i]) >= P) (*this)[i]
        -= P;
    return *this;
 Poly& imul(ll k) {
    fi(0, n()) (*this)[i] = (*this)[i] * k % P;
    return *this;
 Poly Mul(const Poly &rhs) const {
    int m = 1;
    while (m < n() + rhs.n() - 1) m <<= 1;
    Poly X(*this, m), Y(rhs, m);
    ntt(X, m), ntt(Y, m);
    fi(0, m) X[i] = X[i] * Y[i] % P;
    ntt(X, m, true);
    return X.isz(n() + rhs.n() - 1);
  Poly Inv() const { // (*this)[0] != 0, 1e5/95ms
    if (n() == 1) return {ntt.minv((*this)[0])};
    int m = 1;
    while (m < n() * 2) m <<= 1;
    Poly Xi = Poly(*this, (n() + 1) / 2).Inv().isz(m);
    Poly Y(*this, m);
    ntt(Xi, m), ntt(Y, m);
    fi(0, m) {
      Xi[i] *= (2 - Xi[i] * Y[i]) % P;
      if ((Xi[i] %= P) < 0) Xi[i] += P;</pre>
    ntt(Xi, m, true);
    return Xi.isz(n());
  Poly& shift_inplace(const 11 &c) { //to be tested
    int n = this->n();
    vector<ll> fc(n), ifc(n);
    fc[0] = ifc[0] = 1;
    for (int i = 1; i < n; i++){
      fc[i] = fc[i-1] * i % P;
      ifc[i] = minv(fc[i]);
    for (int i = 0; i < n; i++) (*this)[i] = (*this)[i] *
       fc[i] % P;
    Poly g(n);
    11 cp = 1;
    for (int i = 0; i < n; i++) g[i] = cp * ifc[i] % P, cp</pre>
        = cp * c % P;
    *this = (*this).irev().Mul(g).isz(n).irev();
    for (int i = 0; i < n; i++) (*this)[i] = (*this)[i] *
        ifc[i] % P;
    return *this;
```

```
Poly shift(const 11 &c) const { return Poly(*this).
    shift_inplace(c); }
Poly Sqrt() const { // Jacobi((*this)[0], P) = 1, 1e5/235}
  if (n() == 1) return {QuadraticResidue((*this)[0], P)};
  Poly X = Poly(*this, (n() + 1) / 2).Sqrt().isz(n());
  return X.iadd(Mul(X.Inv()).isz(n())).imul(P / 2 + 1);
pair<Poly, Poly> DivMod(const Poly &rhs) const { // (rhs
    .)back() != 0
  if (n() < rhs.n()) return {{0}, *this};</pre>
  const int m = n() - rhs.n() + 1;
  Poly X(rhs); X.irev().isz(m);
  Poly Y(*this); Y.irev().isz(m);
  Poly Q = Y.Mul(X.Inv()).isz(m).irev();
  X = rhs.Mul(Q), Y = *this;
  fi(0, n()) if ((Y[i] -= X[i]) < 0) Y[i] += P;
  return {Q, Y.isz(max(1, rhs.n() - 1))};
Poly Dx() const {
  Poly ret(n() - 1);
  fi(0, ret.n()) ret[i] = (i + 1) * (*this)[i + 1] % P;
  return ret.isz(max(1, ret.n()));
Poly Sx() const {
  Poly ret(n() + 1);
  fi(0, n()) ret[i + 1] = ntt.minv(i + 1) * (*this)[i] %
  return ret;
Poly _tmul(int nn, const Poly &rhs) const {
  Poly Y = Mul(rhs).isz(n() + nn - 1);
  return Poly(Y.data() + n() - 1, Y.data() + Y.n());
vector<ll> _eval(const vector<ll> &x, const vector<Poly>
    &up) const {
  const int m = (int)x.size();
  if (!m) return {};
  vector<Poly> down(m * 2);
  // down[1] = DivMod(up[1]).second;
  // fi(2, m * 2) down[i] = down[i / 2].DivMod(up[i]).
      second;
  down[1] = Poly(up[1]).irev().isz(n()).Inv().irev().
      _tmul(m, *this);
  fi(2, m * 2) down[i] = up[i ^ 1]._tmul(up[i].n() - 1,
      down[i / 2]);
  vector<ll> y(m);
  fi(0, m) y[i] = down[m + i][0];
  return y;
static vector<Poly> _tree1(const vector<ll> &x) {
  const int m = (int)x.size();
  vector<Poly> up(m * 2);
  fi(0, m) up[m + i] = \{(x[i] ? P - x[i] : 0), 1\};
  for (int i = m - 1; i > 0; --i) up[i] = up[i * 2].Mul(
      up[i * 2 + 1]);
  return up;
}
vector<ll> Eval(const vector<ll> &x) const { // 1e5, 1s
  auto up = _tree1(x); return _eval(x, up);
static Poly Interpolate(const vector<11> &x, const vector
    <ll> &y) { // 1e5, 1.4s
  const int m = (int)x.size();
  vector<Poly> up = _{tree1(x), down(m * 2);}
  vector<ll> z = up[1].Dx()._eval(x, up);
  fi(0, m) z[i] = y[i] * ntt.minv(z[i]) % P;
  fi(0, m) down[m + i] = {z[i]};
  for (int i = m - 1; i > 0; --i) down[i] = down[i * 2].
      Mul(up[i * 2 + 1]).iadd(down[i * 2 + 1].Mul(up[i *
      2]));
  return down[1];
Poly Ln() const { // (*this)[0] == 1, 1e5/170ms
  return Dx().Mul(Inv()).Sx().isz(n());
```

```
Poly Exp() const { // (*this)[0] == 0, 1e5/360ms
    if (n() == 1) return {1};
    Poly X = Poly(*this, (n() + 1) / 2).Exp().isz(n());
    Poly Y = X.Ln(); Y[0] = P - 1;
    fi(0, n()) if ((Y[i] = (*this)[i] - Y[i]) < 0) Y[i] +=
    return X.Mul(Y).isz(n());
  // M := P(P - 1). If k >= M, k := k % M + M.
 Poly Pow(ll k) const {
    while (nz < n() && !(*this)[nz]) ++nz;</pre>
    if (nz * min(k, (ll)n()) >= n()) return Poly(n());
if (!k) return Poly(Poly {1}, n());
    Poly X(data() + nz, data() + nz + n() - nz * k);
    const ll c = ntt.mpow(X[0], k % (P - 1));
    return X.Ln().imul(k % P).Exp().imul(c).irev().isz(n())
        .irev();
 static 11 LinearRecursion(const vector<11> &a, const
      vector<11> &coef, 11 n) { // a_n = \sum_{j=1}^{n} a_{n-j}
    const int k = (int)a.size();
    assert((int)coef.size() == k + 1);
    Poly C(k + 1), W(Poly \{1\}, k), M = \{0, 1\};
    fi(1, k + 1) C[k - i] = coef[i] ? P - coef[i] : 0;
    C[k] = 1;
    while (n) {
      if (n % 2) W = W.Mul(M).DivMod(C).second;
      n /= 2, M = M.Mul(M).DivMod(C).second;
    11 \text{ ret} = 0;
    fi(0, k) ret = (ret + W[i] * a[i]) % P;
    return ret;
#undef fi
using Poly_t = Poly<131072 * 2, 998244353, 3>;
template<> decltype(Poly_t::ntt) Poly_t::ntt = {};
```

8.5 Generating Function

8.5.1 Ordinary Generating Function

- C(x) = A(rx): $c_n = r^n a_n$ 的一般生成函數。
- C(x) = A(x) + B(x): $c_n = a_n + b_n$ 的一般生成函數。
- C(x) = A(x)B(x): $c_n = \sum_{i=0}^n a_i b_{n-i}$ 的一般生成函數。
- $C(x)=A(x)^k$: $c_n=\sum\limits_{i_1+i_2+\ldots+i_k=n}a_{i_1}a_{i_2}\ldots a_{i_k}$ 的一般生成函數。
- C(x) = xA(x)': $c_n = na_n$ 的一般生成函數。
- $C(x) = \frac{A(x)}{1-x}$: $c_n = \sum_{i=0}^n a_i$ 的一般生成函數。
- $C(x) = A(1) + x \frac{A(1) A(x)}{1 x}$: $c_n = \sum_{i=n}^{\infty} a_i$ 的一般生成函數。

常用展開式

- $\frac{1}{1-x} = 1 + x + x^2 + \ldots + x^n + \ldots$
- $(1+x)^a = \sum_{n=0}^{\infty} {a \choose n} x^n$, ${a \choose n} = \frac{a(a-1)(a-2)...(a-n+1)}{n!}$.

常見生函

• 卡特蘭數: $f(x) = \frac{1-\sqrt{1-4x}}{2x}$

8.5.2 Exponential Generating Function

 a_0, a_1, \ldots 的指數生成函數:

$$\hat{A}(x) = \sum_{i=0}^{\infty} \frac{a_i}{i!} = a_0 + a_1 x + \frac{a_2}{2!} x^2 + \frac{a_3}{3!} x^3 + \dots$$

- $\hat{C}(x) = \hat{A}(x) + \hat{B}(x)$: $c_n = a_n + b_n$ 的指數生成函數
- $\hat{C}(x) = \hat{A}^{(k)}(x)$: $c_n = a_{n+k}$ 的指數生成函數
- $\hat{C}(x) = x\hat{A}(x)$: $c_n = na_n$ 的指數生成函數

- $\hat{C}(x) = \hat{A}(x)\hat{B}(x)$: $c_n = \sum_{k=0}^n \binom{n}{i} a_k b_{n-k}$ 的指數生成函數
- $\hat{C}(x)=\hat{A}(x)^k$: $\sum_{i_1+i_2+\cdots+i_k=n}\binom{n}{i_1,i_2,\ldots,i_k}a_ia_{i_2}\ldots a_{i_k}$ 的指數生成函數
- $\hat{C}(x) = \exp(A(x))$: 假設 A(x) 是一個分量 (component) 的生成函數,那 $\hat{C}(x)$ 是將 n 個有編號的東西分成若干個分量的指數生成函數

9 String

9.1 KMP Algorithm

```
void kmp(string s){
  int siz = s.size();
  vector<int> f(siz, 0);
  f[0] = 0;
  for (int i = 1;i < siz;i++) {
    f[i] = f[i-1];
    bool zero = 0;
    while (s[f[i]] != s[i]) {
      if (f[i] == 0) {
         zero = 1;
         break;
    }
    f[i] = f[f[i]-1];
    }
  if (!zero) f[i]++;
  }
}</pre>
```

9.2 Manacher Algorithm

9.3 MCP

```
string mcp(string s) { //Duval algorithm for Lyndon
    factorization
s += s;
int n = s.size(), i = 0, ans = 0;
while (i < n/2) {
    ans = i;
    int j = i+1, k=i;
    while (j < n && s[k] <= s[j]) {
        if (s[k] < s[j]) k = i;
        else k++;
        j++;
    }
    while (i <= k) i += j - k;
}
return s.substr(ans, n/2);
}</pre>
```

9.4 Suffix Array

```
struct SuffixArray { //tested
  vector<int> sa, lcp, rank; //lcp[i] is lcp of sa[i] and
        sa[i-1]
SuffixArray(string& s, int lim=256) { // or basic_string<
        int>
```

```
int n = s.size() + 1, k = 0, a, b;
    vector<int> x(n, 0), y(n), ws(max(n, lim));
    rank.resize(n):
    for (int i = 0; i < n-1; i++) x[i] = (int)s[i];
    sa = lcp = y, iota(sa.begin(), sa.end(), 0);
    for (int j = 0, p = 0; p < n; j = max(1, j * 2), lim =
      p = j, iota(y.begin(), y.end(), n - j);
      for (int i = 0; i < n; i++) if (sa[i] >= j) y[p++] = sa
          [i] - j;
      for (int &i : ws) i = 0;
      for (int i = 0;i < n;i++) ws[x[i]]++;</pre>
      for (int i = 1; i < lim; i++) ws[i] += ws[i - 1];
      for (int i = n; i--;) sa[--ws[x[y[i]]]] = y[i];
      swap(x, y), p = 1, x[sa[0]] = 0;
      for(int i = 1; i < n; i++) a = sa[i - 1], b = sa[i], x[
          b] =
        (y[a] == y[b] \&\& y[a + j] == y[b + j]) ? p - 1 : p
            ++;
    for (int i = 1;i < n;i++) rank[sa[i]] = i;</pre>
    for (int i = 0, j; i < n - 1; lcp[rank[i++]] = k)</pre>
      for (k \&\& k--, j = sa[rank[i] - 1];
          s[i + k] == s[j + k]; k++);
};
```

9.5 Suffix Automaton

```
// from 8BQube
// at most 2n-1 states, 3n-4 edges
// to find longest common substring for multiple strings
    S_1, ..., S_k
  assign a special (distinct) character D_i to each string
// let T = S_1 D_1 ... S_k D_k, then build SAM of T
// answer is state with max length reachable to all D_i
const int maxn = 1000010;
struct SAM { //1 base
 vector<int> adj[maxn];
 int tot, root, lst, par[maxn], mx[maxn], fi[maxn], iter;
 //mx:maxlen of node, mx[par[i]]+1:minlen of node
 //fi: first endpos
 //corresponding substring of node can be found by fi and
  int nxt[maxn][33];
  int newNode() {
    int res = ++tot;
    fill(nxt[res], nxt[res] + 33, 0);
    par[res] = mx[res] = 0;
    fi[res] = iter;
    return res;
  void init() {
    tot = 0;
    iter = 0;
    root = newNode();
    par[root] = 0, mx[root] = 0;
    lst = root;
 void push(int c) {
    int p = lst;
    int np = newNode();
    mx[np] = mx[p] + 1;
    for (; p && nxt[p][c] == 0; p = par[p])
     nxt[p][c] = np;
    if (p == 0) par[np] = root;
    else {
      int q = nxt[p][c];
      if (mx[p] + 1 == mx[q]) par[np] = q;
        int nq = newNode();
        mx[nq] = mx[p] + 1;
        for (int i = 0; i < 33; i++)
          nxt[nq][i] = nxt[q][i];
        par[nq] = par[q];
```

```
fi[nq] = fi[q];
        par[q] = nq;
        par[np] = nq;
        for (; p && nxt[p][c] == q; p = par[p])
          nxt[p][c] = nq;
    lst = np;
  void push(string str) {
    for (int i = 0; str[i]; i++) {
      push(str[i] - 'a' + 1);
  11 get_diff_strings(){
    11 \text{ tot} = 0;
    for(int i = 1; i \leftarrow tot; i++) tot += mx[i] - mx[par[i]
        ]];
    return tot;
  bool in[maxn];
  int cnt[maxn]; //cnt is number of occurences of node
  void count() {
    for (int i = 1; i <= tot; ++i)</pre>
      ++in[par[i]];
    queue<int> q;
    for (int i = 1; i <= tot; ++i)</pre>
      if (!in[i]) q.push(i);
    while (!q.empty()) {
      int u = q.front();
      q.pop();
      cnt[par[u]] += cnt[u];
      if (!--in[par[u]])
        q.push(par[u]);
    }
  }
} sam;
```

9.6 Z-value Algorithm

```
vector<int> z_function(string const& s) {
  int n = s.size();
  vector<int> z(n);
  for (int i = 1, l = 0, r = 0; i < n; i++) {
    if (i <= r) z[i] = min(r-i+1, z[i-l]);
    while (i + z[i] < n && s[z[i]] == s[i+z[i]])
    z[i]++;
  if (i + z[i] - 1 > r)
    l = i, r = i + z[i] - 1;
  }
  return z;
```

9.7 Main Lorentz

//left endpoint: [minl, maxl], length: 2*l

```
}
void find rep(string s, int shift = 0) {
  int n = s.size();
 if (n == 1) return;
 int nu = n / 2;
 int nv = n - nu;
  string u = s.substr(0, nu);
  string v = s.substr(nu);
  string ru(u.rbegin(), u.rend());
  string rv(v.rbegin(), v.rend());
 find_rep(u, shift);
 find_rep(v, shift + nu);
 vector<int> z1 = z_function(ru);
  vector<int> z2 = z_function(v + '#' + u);
  vector<int> z3 = z_function(ru + '#' + rv);
  vector<int> z4 = z_function(v);
 for (int cntr = 0; cntr < n; cntr++) {</pre>
    int 1, k1, k2;
    if (cntr < nu) {</pre>
      1 = nu - cntr;
      k1 = get_z(z1, nu - cntr);
      k2 = get_z(z2, nv + 1 + cntr);
    } else {
      l = cntr - nu + 1;
      k1 = get_z(z3, nu + 1 + nv - 1 - (cntr - nu));
      k2 = get_z(z4, (cntr - nu) + 1);
    if (k1 + k2 >= 1)
      convert_to_rep(shift, cntr < nu, cntr, 1, k1, k2);</pre>
}
```

AC Automaton

```
const int maxn = 300005, maxc = 26;
struct AC_Automaton { //1-base
 int nx[maxn][maxc], fl[maxn], cnt[maxn], pri[maxn], tot;
 //pri: bfs order of trie (0-base)
 int newnode() {
   tot++;
   fill(nx[tot], nx[tot] + maxc, -1);
   return tot:
 void init() { tot = 0, newnode(); }
 int input(string &s) { // return the end_node of string
   int X = 1;
   for (char c : s) {
  if (!~nx[X][c - 'a']) nx[X][c - 'a'] = newnode();
      X = nx[X][c - 'a'];
   return X;
 void make_fl() { //fail link
   queue<int> q;
    q.push(1), fl[1] = 0;
    for (int t = 0; !q.empty();) {
      int R = q.front();
      q.pop(), pri[t++] = R;
      for (int i = 0; i < maxc; ++i)</pre>
        if (~nx[R][i]) {
          int X = nx[R][i], Z = fl[R];
          for (; Z && !~nx[Z][i];) Z = fl[Z];
          fl[X] = Z ? nx[Z][i] : 1, q.push(X);
   }
 void get_v(string &s) {
   //number of times prefix appears in strings
    int X = 1;
   fill(cnt, cnt + tot+1, 0);
   for (char c : s) {
```

```
while (X \&\& !\sim nx[X][c - 'a']) X = fl[X];
      X = X ? nx[X][c - 'a'] : 1, ++cnt[X];
    for (int i = tot-1; i > 0; --i)
      cnt[fl[pri[i]]] += cnt[pri[i]];
} ac;
```

10 Formula

10.1 Recurrences

If $a_n = c_1 a_{n-1} + \dots + c_k a_{n-k}$, and r_1, \dots, r_k are distinct roots of $x^k + c_1 x^{k-1} + \cdots + c_k a_{n-k}$ $\cdots + c_k$, there are d_1, \ldots, d_k s.t.

$$a_n = d_1 r_1^n + \dots + d_k r_k^n.$$

Non-distinct roots r become polynomial factors, e.g. $a_n = (d_1 n + d_2) r^n$.

10.2Geometry

10.2.1 Rotation Matrix

$$\begin{pmatrix}
\cos\theta & -\sin\theta \\
\sin\theta & \cos\theta
\end{pmatrix}$$

- rotate 90°: $(x,y) \rightarrow (-y,x)$
- rotate -90° : $(x,y) \rightarrow (y,-x)$

10.2.2 Triangles

Side lengths: a, b, c

Semiperimeter: $p = \frac{a+b+c}{}$

Area: $A = \sqrt{p(p-a)(p-b)(p-c)}$

Circumradius: R =

Inradius: $r = \frac{A}{}$

Length of median (divides triangle into two equal-area triangles): $m_a =$ $\frac{1}{2}\sqrt{2b^2+2c^2-a^2}$

Length of bisector (divides angles in two): $s_a = \sqrt{bc \left(1 - \left(\frac{a}{b+c}\right)^2\right)}$

 $P_1 = (x_1, y_1), P_2 = (x_2, y_2), P_3 = (x_3, y_3)$ $s_1 = \overline{P_2 P_3}, s_2 = \overline{P_1 P_3}, s_3 = \overline{P_1 P_2}$ $s_1 P_1 + s_2 P_2 + s_3 P_3$

 $s_1 + s_2 + s_3$

Circumcenter:

 $P_0 = (0,0), P_1 = (x_1, y_1), P_2 = (x_2, y_2)$

 $x_c = \frac{1}{2} \times \frac{y_2(x_1^2 + y_1^2) - y_1(x_2^2 + y_2^2)}{y_1^2(x_2^2 + y_2^2)}$

 $-x_2y_1 + x_1y_2$ $y_c = \frac{1}{2} \times \frac{x_2(x_1^2 + y_1^2) - x_1(x_2^2 + y_2^2)}{x_1^2 + x_2^2}$ $-x_1y_2 + x_2y_1$

Check if (x_0, y_0) is in the circumcircle:

$$\begin{vmatrix} x_1 - x_0 & y_1 - y_0 & (x_1^2 + y_1^2) - (x_0^2 + y_0^2) \\ x_2 - x_0 & y_2 - y_0 & (x_2^2 + y_2^2) - (x_0^2 + y_0^2) \\ x_3 - x_0 & y_3 - y_0 & (x_3^2 + y_3^2) - (x_0^2 + y_0^2) \end{vmatrix}$$

0: on edge, > 0: inside, < 0: outside

10.2.3 Quadrilaterals

With side lengths a, b, c, d, diagonals e, f, diagonals angle θ , area A and magic flux $F = b^2 + d^2 - a^2 - c^2$:

$$4A = 2ef \cdot \sin \theta = F \tan \theta = \sqrt{4e^2 f^2 - F^2}$$

For cyclic quadrilaterals the sum of opposite angles is 180° , ef = ac + bd, and $A = \sqrt{(p-a)(p-b)(p-c)(p-d)}.$

10.2.4 Spherical coordinates

$$\begin{array}{ll} x = r \sin \theta \cos \phi & r = \sqrt{x^2 + y^2 + z^2} \\ y = r \sin \theta \sin \phi & \theta = \operatorname{acos}(z/\sqrt{x^2 + y^2 + z^2}) \\ z = r \cos \theta & \phi = \operatorname{atan2}(y, x) \end{array}$$

10.2.5 Green's Theorem

$$\iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \oint_{L^{+}} (Pdx + Qdy)$$

$$Area = \frac{1}{2} \oint_{L} x \ dy - y \ dx$$

Circular sector:

$$x = x_0 + r \cos \theta$$

$$y = y_0 + r \sin \theta$$

$$A = r \int_{\alpha}^{\beta} (x_0 + \cos \theta) \cos \theta + (y_0 + \sin \theta) \sin \theta \ d\theta$$

$$= r(r\theta + x_0 \sin \theta - y_0 \cos \theta)|_{\alpha}^{\beta}$$

10.2.6 Point-Line Duality

$$p = (a, b) \leftrightarrow p^* : y = ax - b$$

- $p \in l \iff l^* \in p^*$
- p_1, p_2, p_3 are collinear $\iff p_1^*, p_2^*, p_3^*$ intersect at a point
- p lies above $l \iff l^*$ lies above p^*
- lower convex hull \leftrightarrow upper envelope

10.3 Trigonometry

where $r = \sqrt{a^2 + b^2}$, $\phi = \operatorname{atan2}(b, a)$.

$$\sinh x = \frac{1}{2}(e^x - e^{-x}) \qquad \cosh x = \frac{1}{2}(e^x + e^{-x})$$

$$\sin n\pi = 0 \qquad \cos n\pi = (-1)^n$$

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$

$$\sin(2\alpha) = 2\cos \alpha \sin \alpha$$

$$\cos(2\alpha) = \cos^2 \alpha - \sin^2 \alpha$$

$$= 2\cos^2 \alpha - 1$$

$$= 1 - 2\sin^2 \alpha$$

$$\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$$

$$\sin \alpha + \sin \beta = 2\sin \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}$$

$$\cos \alpha + \cos \beta = 2\cos \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}$$

$$\sin \alpha \sin \beta = \frac{1}{2}(\cos(\alpha - \beta) - \cos(\alpha + \beta))$$

$$\sin \alpha \cos \beta = \frac{1}{2}(\sin(\alpha + \beta) + \sin(\alpha - \beta))$$

$$\cos \alpha \sin \beta = \frac{1}{2}(\sin(\alpha + \beta) - \sin(\alpha - \beta))$$

$$\cos \alpha \cos \beta = \frac{1}{2}(\cos(\alpha - \beta) + \cos(\alpha + \beta))$$

$$\cos \alpha \cos \beta = \frac{1}{2}(\cos(\alpha - \beta) + \cos(\alpha + \beta))$$

$$(V + W) \tan(\alpha - \beta)/2 = (V - W) \tan(\alpha + \beta)/2$$
where V, W are lengths of sides opposite angles α, β .

 $a\cos x + b\sin x = r\cos(x - \phi)$ $a\sin x + b\cos x = r\sin(x + \phi)$

10.4 Derivatives/Integrals

Integration by parts:

$$\int_{a}^{b} f(x)g(x)dx = [F(x)g(x)]_{a}^{b} - \int_{a}^{b} F(x)g'(x)dx$$

$$\frac{d}{dx} \arcsin x = \frac{1}{\sqrt{1 - x^{2}}} \qquad \frac{d}{dx} \arccos x = -\frac{1}{\sqrt{1 - x^{2}}}$$

$$\frac{d}{dx} \tan x = 1 + \tan^{2} x \qquad \frac{d}{dx} \arctan x = \frac{1}{1 + x^{2}}$$

$$\int \tan ax = -\frac{\ln|\cos ax|}{a} \qquad \int x \sin ax = \frac{\sin ax - ax \cos ax}{a^{2}}$$

$$\int e^{-x^{2}} = \frac{\sqrt{\pi}}{2} \operatorname{erf}(x) \qquad \int xe^{ax} = \frac{e^{ax}}{a^{2}} (ax - 1)$$

$$\int \sin^{2}(x) = \frac{x}{2} - \frac{1}{4} \sin 2x \qquad \int \sin^{3} x = \frac{1}{12} \cos 3x - \frac{3}{4} \cos x$$

$$\int \cos^{2}(x) = \frac{x}{2} + \frac{1}{4} \sin 2x \qquad \int \cos^{3} x = \frac{1}{12} \sin 3x + \frac{3}{4} \sin x$$

$$\int x \sin x = \sin x - x \cos x \qquad \int x \cos x = \cos x + x \sin x$$

$$\int xe^{x} = e^{x}(x - 1) \qquad \int x^{2}e^{x} = e^{x}(x^{2} - 2x + 2)$$

$$\int x^2 \sin x = 2x \sin x - (x^2 - 2) \cos x$$

$$\int x^2 \cos x = 2x \cos x + (x^2 - 2) \sin x$$

$$\int e^x \sin x = \frac{1}{2} e^x (\sin x - \cos x)$$

$$\int e^x \cos x = \frac{1}{2} e^x (\sin x + \cos x)$$

$$\int x e^x \sin x = \frac{1}{2} e^x (x \sin x - x \cos x + \cos x)$$

$$\int x e^x \cos x = \frac{1}{2} e^x (x \sin x + x \cos x - \sin x)$$

10.5 Sums

$$c^{a} + c^{a+1} + \dots + c^{b} = \frac{c^{b+1} - c^{a}}{c - 1}, c \neq 1$$

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(2n+1)(n+1)}{6}$$

$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

$$1^{4} + 2^{4} + 3^{4} + \dots + n^{4} = \frac{n(n+1)(2n+1)(3n^{2} + 3n - 1)}{30}$$

10.6 Series

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots, (-\infty < x < \infty)$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots, (-1 < x \le 1)$$

$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^{2}}{8} + \frac{2x^{3}}{32} - \frac{5x^{4}}{128} + \dots, (-1 \le x \le 1)$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \dots, (-\infty < x < \infty)$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \dots, (-\infty < x < \infty)$$

		ı		ı	ı	ı	ı		ı		1	1	
	1	1	1	1		1	1						