

Hands on introduction to ancient microbiome analysis

Maxime Borry - August 18th 2021

MPI-SHH
SUMMER SCHOOL Doorway
2021 to Human History

Teaching material

tinyurl.com/ancientmicrobiome

Who am I?

Maxime Borry - Doctoral researcher at MPI-SHH - MPI-EVA

Ancient DNA microbiome bioinformatics 🚕 🛡

@notmaxib

@maxibor

<u>maximeborry.com</u>

How do we analyze microbiomes?

sam	ples

	microbe_1	microbe_2	 microbe_n
sample_1			
sample_2			
sample_n			

taxonomic profile

How do we analyze ancient microbiomes?

ancient samples

	microbe_1	microbe_2	 microbe_n
sample_1			
sample_2			
sample_n			

taxonomic profile

How do we analyze ancient microbiomes?

More in details

Liu Y-X, Qin Y, Chen T, Lu M, Qian X, Guo X, Bai Y. 2021. A practical guide to amplicon and metagenomic analysis of microbiome data. Protein & Cell 12:315–330. DOI: 10.1007/s13238-020-00724-8.

Ambiguity in taxonomic assignation

sequence 1 ATGGTCGGGCAGGACGTTGCGAGT sequence 2 CGAGAAGGGCAGGACGCCACGTAC

ATGGTCGGGCAGGACGTTGCGAGT

CGAGAAGGCAGGACGCCACGTAC

Taxonomy and LCA to the rescue

- Species level assignation is not always possible.
- Possibility of hits in different species
- Ambiguities solved by LCA (Lowest Common Ancestor) algorithm.

Different taxonomic profilers

maximeborry.com/courses: "Taxonomic classifiers and sequence alignment algorithms"

(most common) taxonomic profilers used in aDNA

Kraken2

- No alignment
- Fast
- Lower specificity (more false positives)

MetaPhlAn

- Custom curated marker database
- Reasonably fast Good balance between specificity and sensitivity

MALT

- Alignments
- Slower and resource hungry (if using a big whole genome database) Best balance between specificity and sensitivity

Taxonomic profilers benchmark (and more): <u>CAMI challenge</u>

Reference databases

NCBI databases

- NCBI nr/nt
 - the largest database
- NCBI RefSeq
 - A curated subset

Custom databases

Metaphlan: clade specific markers

How is aDNA microbiome different from "modern" microbiome analysis?

- We have to show our sample is what we claim it to be:
 - time period
 - Is it actually ancient?
 - Isotopic dating
 - source
 - Is it from the correct host?
 - microbiome profile, host DNA
 - Is it from the correct ecological niche?
 - microbiome profile
 - contamination
 - How much of the sample is endogenous?
 - taxonomic composition of bacteria carrying deamination damage
 - Is there a lot of modern contamination (excavation, lab, ...)?
 - taxonomic composition of non deamination damaged bacteria

How does aDNA damage affect taxonomic profiling?

Damage isn't really an issue

PCoA of simulated community composition with Weighted-Unifrac Distance

Velsko, Irina M., et al. "Selection of appropriate metagenome taxonomic classifiers for ancient microbiome research." *Msystems* 3.4 (2018): e00080-18.

But very short sequences are more problematic

The problem with short sequences

- 16s rRNA amplification/sequencing is not very good
- Protein alignment is not good enough for very short sequences

Velsko, Irina M., et al. "Selection of appropriate metagenome taxonomic classifiers for ancient microbiome research." *Msystems* 3.4 (2018): e00080-18. Orlando, Ludovic, et al. "Ancient DNA analysis." *Nature Reviews Methods Primers* 1.1 (2021): 1-26.

aDNA vs modern microbiome

Liu Y-X, Qin Y, Chen T, Lu M, Qian X, Guo X, Bai Y. 2021. A practical guide to amplicon and metagenomic analysis of microbiome data. Protein & Cell 12:315–330. DOI: 10.1007/s13238-020-00724-8.

What will we get today?

Liu Y-X, Qin Y, Chen T, Lu M, Qian X, Guo X, Bai Y. 2021. A practical guide to amplicon and metagenomic analysis of microbiome data. Protein & Cell 12:315–330. DOI: 10.1007/s13238-020-00724-8.

Questions and tutorial!

tinyurl.com/microbiometutorial

