Networking 101

Switches, VLAN's, Subnets and more...

Typical Data Center

Virtualization in DC brings in more layers

Security Security Security...

Good old days - remember token ring?

Single broadcast domain (ff:ff:ff:ff:ff:ff)

Then comes the switch

- Managed vsUnmanaged
- Collision domain -Transmit packets a little intelligently.

Two LAN's connected by switches.

VLAN's.. (port based - Access)

Ethernet Switch

Types

1. Layer 1 VLAN: Membership by Port

2. Layer 2 VLAN: Membership by MAC Address

3. Layer 2 VLAN: Membership by Protocol Type

4. Layer 3 VLAN: Membership by IP Subnet Address

5. Higher Layer VLAN's

Most common deployments: 1 & 4

Switch A

Now, we go virtual...

compute server - 1

compute server - 2

Tagged/Untagged/Access/Native/Trunk

< Whiteboarding >

Example with OVS

Where should the tags go?

Use ovs-vsctl to add tags to the tap interfaces that sit inside OVS.

ovs-vsctl add-br br0
ovs-vsctl add-port br0 eth0
ovs-vsctl add-port br0 tap0 tag=100

VM1 VM₂ VM3 VM4 tap0 tap1 tap0 tap1 **OVS** br0 **OVS** br0 eth0 eth1 eth1 eth0 Data Management Network Network

Host 2

Host 1

http://openvswitch.org/support/config-cookbooks/vlan-configuration-cookbook/

Other networking types? (Why VXLAN)

Communicate from one VLAN network to another?

Lets go up (Layer 3 - Use a router)...

But what if you want the two VM's to be on the same domain? (similar to a VLAN)

Lets use VXLAN!

VXLAN Encapsulated Frame ← Inner Ethernet Frame → 14 bytes 20 bytes 8 bytes 8 bytes Optional Optional Original Outer Outer **VXLAN** Outer IP EtherType Ethernet UDP Dest 802.1Q Ethernet **FCS** Header Header MAC EtherType 802.1Q e MAC Payload Header Header *IP Header Data = Version, IHL, TOS, Length, ID IP Outer IP Header Outer Source Dest Port UDP UDP Header Protoco Checksum Source Dest Port Length Checksum Data* IP. IP. Outer Outer Optional Optional **VXLAN** EtherType **VXLAN** 802.1Q **RSVD RSVD** Dest Source Outer NI Flags MAC MAC EtherType 802.1Q (VNI)

VXLAN Use Cases

Natively supports multicasting

What's GRE and why?

Both VXLAN & GRE are encap methods.

VXLAN uses UDP -> 5 tuple routing (UDP source and dest ports)

GRE -> needs specific hardware to achieve routing performance.

Docker/Openstack setup?

GRE Use Case - Protocol encap?

Setting up a GRE Tunnel on linux

192.168.233.204 ttl 255
sudo ip link set gre0 up
sudo ip addr add 10.10.10.1/24 dev gre0

Other protocols

SSH Tunnel

```
ssh -f <user>@<host> -L <local_port>:<host>:<remote_port>
Eg: for our rabbit database:
ssh -i ~/Downloads/id_rsa -L :15672:localhost:15672 root@pf9.platform9.net
```

VPN

HTTP

ICMP Tunnels

Troubleshooting

route -n

wireshark & tcpdump (tcpdump -i <interface> -vv vlan <vlan_id>)

ping & traceroute

iptables

ovs-vsctl show

ip netns

ovs-ofctl dump-flows

arp -n

brctl show / brctl showmacs

ebtables

/sys/class/net/*

Linux bonds

6 modes. Most common:

HA - Active Passive

LACP - Port aggregation

ALB (Adaptive load balancing)

ifconfig bond0 <ip> up ifenslave bond0 eth0 ifenslave bond0 eth1

Linux kernel documentation is a great place to look -

https://www.kernel.org/pub/linux/kernel/people/marcelo/linux-2.4/Documentation/networking/bonding.txt