Congruencias

ALANLG

15 de Febrero 2024

§1 Lectura

Vamos a presentar el concepto de módulo en teoría de números, decimos que

$$a \equiv b \pmod{c} \iff c \mid a - b$$

y se lee "a" congruente a "b" módulo c, lo cuál es equivalente a decir que a y b dejan el mismo residuo al dividirse entre c. Por ejemplo tenemos que

$$13 \equiv 5 \pmod{4}$$

$$101 \equiv 13 \pmod{9}$$

$$25 \equiv 0 \pmod{5}$$

$$11 \equiv 3 \pmod{8}$$

Algo importante es que nos da igual si los números son positivos o no, por ejemplo

$$10 \equiv -1 \pmod{11}$$
$$19 \equiv -2 \pmod{11}$$

Esto es útil pues a veces puede ser más facil trabajar con residuos negativos.

Ejemplo 1.1

Si hoy es martes, ¿Qué día será en 2024 días?

La semana tiene 7 días, como $2024 \equiv 1 \pmod{7}$ entonces basta añadirle un día a martes y entonces es 2024 días será miércoles.

Esta nueva notación (módulos) nos permite trabajar más fácil con divisibilidades, es más práctica que la notación de $x \mid y$ (x divide a y), nos da una opción de trabajar una divisibilidad como algo que sería similar a una ecuación, y además es útil pues conserva muchas propiedas intuitivas.

§1.1 Propiedades

Transitividad

Si
$$a \equiv b \pmod{k}$$
 y $b \equiv c \pmod{k} \Rightarrow a \equiv c \pmod{k}$

Suma

Si
$$a \equiv b \pmod{k}$$
 y $x \equiv y \pmod{k} \Rightarrow a + x \equiv b + y \pmod{k}$

Multiplicación

Si
$$a \equiv b \pmod{k}$$
 y $x \equiv y \pmod{k} \Rightarrow ax \equiv by \pmod{k}$

Potencia

Si
$$a \equiv b \pmod{k} \Rightarrow a^n \equiv b^n \pmod{k}$$

División

¿Si $ax \equiv bx \pmod{k}$ podemos dividir por x y asegurar que $a \equiv b \pmod{k}$? no se puede, pongamos el ejemplo de la congruencia $3a \equiv 6 \pmod{12}$ no podemos dividir entre 3 y asegurar $a \equiv 2 \pmod{12}$, pues nota que $a \equiv 2, 6$ y 10 (mod 12) también cumplen, es claro que no podemos dividir pues

 $ax \equiv bx \pmod{k} \Rightarrow k \mid x(a-b)$ y puede suceder que k y x tengan factores en común

En realidad si se puede dividir pero hay que tener cuidado, la regla es que si

$$ax \equiv bx \pmod{k} \Rightarrow a \equiv b \pmod{\frac{k}{\operatorname{mcd}(x,k)}}$$

Note que si mcd(x, k) = 1 entonces isi podemos dividir sin problemas!

§1.2 Ejercicios

Ejercicio 1.2 (Importante). Trata de demostrar o de convercerte de que todas estas propiedades son verdad y que no estoy engañandote, puedes usar que cualquier número a se puede escribir como $a=k\cdot m+r$ donde r es el residuo de a al dividirse por k

Ejercicio 1.3. Demuestra que si $a \equiv b \pmod{n}$ y d es un divisor del número n entonces $a \equiv b \pmod{d}$

Ejercicio 1.4. Encuentra el residuo de 123×29 al dividirse por 13

Ejercicio 1.5. Encuentra el residuo de 13^{2023} al dividirse entre 12

Ejercicio 1.6. Encuentra todos los enteros k tales que $2024 \equiv 17 \pmod{k}$

Ejercicio 1.7. Encuentra el residuo de 2^{2023} al dividirse entre 7

Ejercicio 1.8. ¿Cuál es el dígito de las unidades de $1! + 2! + 3! + \cdots + 2024!$?

Ejercicio 1.9. Demuestra que si $3 \mid x^2 + y^2$ entonces $3 \mid x \mid y \mid y$

Ejercicio 1.10. Demuestra que ningún cuadrado perfecto es de la forma $\underbrace{11\cdots 1}_{\text{Solo 1's}}$

Ejercicio 1.11. Demuestra que $a - b \mid a^n - b^n$ para todo entero n

Ejercicio 1.12. Demuestra que $a + b \mid a^n + b^n$ para todo entero n impar

Ejemplo 1.13 (Regional del Sureste Mexico 2014/4)

Encuentra todas las pareja de enteros positivos m y n tales que

$$n! + 5 = m^3$$

Tutorial.

- (a) Si $n \ge 6$ entoces $9 \mid n!$
- (b) Entonces si analizamos la ecuación (mod 9) debe suceder que

$$m^3 \equiv 5 \pmod{9}$$

- (c) Analiza las congruencias de los primos (mod 6)
- (d) Puedes hacer una tabla como la siguiente y darte cuenta que no existe m tal que m^3 deje residuo 5 al dividirse por 9

m	m^3
0	0
1	1
2	8
3	0
4	1
5	8
6	0
7	1
8	8

Ejemplo 1.14 (OMM 1990/3)

Prueba que $n^{n-1}-1$ es divisible por $(n-1)^2$ para toda n>2

Tutorial.

(a) Escribe a

$$n^{n-1} - 1 = (n-1)((n^{n-2} + n^{n-3} + \dots + 1))$$

- (b) El primer término es n-1 entonces basta probar que n-1 divide a la suma larga
- (c) Nota que $n \equiv 1 \pmod{n} 1$

§2 Problemas

Problema 2.1. Demuestra que la ecuación $x^2 - 7 = 45y$ no tiene soluciones con $x, y \in \mathbb{Z}$

Problema 2.2. Encuentra el último dígito de los siguiente números

a)
$$2^{2023}$$

b)
$$13^{13^{13}}$$

$$c)117^{117}$$

Problema 2.3. Demuestra que para toda $n \in \mathbb{N}$

$$7 \mid 3^{2n+1} + 2^{n+2}$$

Problema 2.4. Se sabe que 2²⁹ tiene 9 dígitos distintos, ¿Cuál es el dígito que no tiene?

Problema 2.5. Demuestra que para todo n el número $n^5 + 4n$ es divisible por 5

Problema 2.6. Demuestra que para todo primo p > 3 se cumple que $24 \mid p^2 - 1$

Problema 2.7. Demuestra que 2023 divide a la suma

$$1^{2023} + 2^{2023} + 3^{2023} + \cdots + 2021^{2023} + 2022^{2023}$$

Problema 2.8. Demuestra los criterios de divisibilidad de 1 al 11 sin inculuir el del 7

Problema 2.9 (USAJMO 2011/1). Encuentre, con prueba, todos los números enteros positivos n para los cuales $2^n + 12^n + 2011^n$ es un cuadrado perfecto.

Problema 2.10. ¿Qué números se pueden ver como diferencia de dos cuadrados perfectos?

Problema 2.11 (Freshman's dream). Demuestra que para todos $a, b \in \mathbb{Z}$, y p un primo se cumple que

$$(a+b)^p \equiv a^p + b^p$$

Problema 2.12 (IMO 1964/1).

- (a) Encuentre todos los números enteros positivos n para los cuales $2^n 1$ es divisible por 7.
- (b) Demuestre que no existe un entero positivo n para el cual $2^n + 1$ sea divisible por 7.

Problema 2.13 (IMO 1986/1). Sea d cualquier entero no igual a 2,5 o 13. Prueba que podemos escoger dos enteros distintos a y b en el conjunto $\{2,5,13,d\}$ tal que ab-1 no es un cuadrado perfecto

Problema 2.14. Demuestra que $n \mid 2^{n!} - 1$ para todo n impar

Problema 2.15 (1 IMO SL/2002). ¿Cuál es el entero positivo más pequeño t tal que existan enteros x_1, x_2, \ldots, x_t con

$$x_1^3 + x_2^3 + \ldots + x_t^3 = 2002^{2002}$$
?

§3 Hints

- 2.1. analiza los residuos de los cuadrados (mod 5) y (mod 9)
- 2.2. Simplificalo módulo 10
- **2.3.** $3^{2n+1} \equiv 3 \cdot (3^2)^n \equiv 3 \cdot 2^n \pmod{7}$
- **2.4.** $2^29 \equiv (1+2+\cdots 9) x \pmod{9}$ dónde x es el dígito que falta
- **2.5.** Analiza cada residuo de n y evaluálo en $n^5 + 4n$
- **2.6.** Puedes analizar los residuos que dejan los primos al dividirse entre 8 y 3 y luego analizar a p^2-1 en esos residuos.
- **2.7.** Junta el último sumando con el primero, el segundo con el penúltimo y así sucesivamente
- **2.8.** un número $n=\overline{a_ka_{k-1}a_{k-2}\cdots a_2a_1a_0}$ se puede escribir como $n=10^ka_k+10^{k-1}a_{k-1}+\cdots 10a_1+10^0a_0$
- **2.9.** analiza $\pmod{3}$ y luego $\pmod{4}$
- **2.10.** Usa (mod 4) y da un ejemplo para los demás
- 2.11. Binomio de Newton
- **2.12.** Analiza a $n \pmod 3$ y mira que residuos que dejan las potencias de 2 al dividirse por 7
- **2.13.** Asume que 2d-1, 5d-1, 13d-1 son todos cuadrados, analízalos módulo 4 y luegó mod 5
- **2.14.** Demuestra que existe un entero d tal que $2^d \equiv 1 \pmod{n}$ y $d \leq n$
- **2.15.** La respuesta es t = 4 usa (mod 9) para demostrar que $t \le 4$ no es alcanzable