

Interpretabilidad de Modelos de Machine Learning con Python

Antonio Soto
Director Unidad Data & Al Verne Tech
@antoniosql
asoto@solidq.com

Agenda

- ¿Por qué necesitamos interpretar los modelos?
- ¿Qué técnicas tenemos para interpretar?
- Algunos Frameworks Python para interpretabilidad
- Demostración

La Importancia del ML Interpretable

- ¿Cómo sé que puedo confiar en el modelo?
- ¿Cómo toma sus decisiones?
- Balance entre rendimiento e interpretabilidad
- Interpretaciones
 - Global ¿Cómo hace las predicciones? ¿Cómo influyen los subconjuntos de datos?
 - Local ¿Por qué ha tomado una decisión en concreto para un caso en concreto?

Motivaciones

- Legales
- Éticas
 - Sesgo
- De Negocio

Beneficios

- Dar confiabilidad en los resultados.
- Ayudar en la Depuración.
- Informar a la Ingeniería de Características (Feature Engineer).
- Detectar necesidad de recoger nuevas muestras.
- Ayudar a una persona en la toma de decisiones.
- Mayor seguridad/robustez en el modelo obtenido.

Las Explicaciones

Una explicación relaciona los valores de las características de una instancia, con sus predicciones de un modo entendible por las personas.

- Propiedades del Método de Explicación
 - Poder de expresividad
 - Translucidez
 - Portabilidad
 - Complejidad algorítmica

¿Qué técnicas Tenemos?

Técnicas Tradicionales

- Técnicas EDA
 - Reducción de Dimensionalidad (PCA)
 - ¿Qué debemos de "buscar"?
 - Balanceo
 - Escalado
- Métricas de Evaluación de rendimiento de nuestro modelo
 - Aprendizaje Supervisado Clasificación
 - Matriz de Confusión
 - Accuracy, Precision, Recall, F1-Score
 - ROC y AUOC score
 - Aprendizaje Supervisado Regresión
 - Coeficiente de determinación (R-square)
 - RMSE (root mean-square error)
 - MAE (Mean absolute error)

Limitaciones Técnicas Tradicionales

Medimos el rendimiento

- ¿Cumple con parámetros de rendimiento válidos?
- Con estas técnicas, ¿cómo aseguramos?
 - JUSTICIA
 - RESPONSABILIDAD
 - TRANSPARENCIA

• Balance entre Rendimiento e Interpretabilidad

Técnicas Adicionales

- 1. Uso de Modelos interpretables
- 2. Importancia de Características
- 3. Plots de dependencia parcial (PDP)
- 4. Modelos Subrrogados Globales

Algunos Frameworks de Interpretabilidad

LIME

- Explicaciones para una predicción individual de un modelo de caja negra
- Concepto
 - Nos olvidamos de datos de entrenamiento
 - Tenemos una caja negra a la que podemos pasarle las instancias que queramos las veces que queramos para ver que predicciones genera
 - Objetivo: Entender porque hace cada una de esas predicciones
 - LIME prueba que ocurre con las predicciones cuando se varían los datos de entrada
 - Genera un conjunto de datos compuesto de muestras permutadas y su correspondiente predicción por parte del modelo de Caja Negra
 - Entrena un modelo interpretable con ese conjunto de datos

SHAP

- Aplicación de Teoría de Juegos
- Intenta explicar una predicción asumiendo que cada característica es un "jugador" en un juego donde la predicción es el "premio"
 - Nos indica como distribuir el "premio" entre los "jugadores"
 - Juego → Tarea de predicción para una instancia
 - Ganancia→ predicción real menos la predicción promedio para todas las instancias
- Valor de Shapley
 - Contribución marginal promedio de un valor de característica entre todas las posibles relaciones

Demostración

El Framework definitivo: Interpret

Interpretabilidad de Modelos de Machine Learning con Python

Antonio Soto
Director Unidad Data & Al Verne Tech
@antoniosql
asoto@solidq.com

