TD 24. Géométrie dans l'espace.

Le plan E est muni d'un repère orthonormé direct $(O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$.

Exercice 1. Calculer l'aire du triangle défini par A(-1,2,1), B(-1,1,0), C(0,1,2).

Exercice 2. Soient $\overrightarrow{e_1} = \left(-\frac{2}{3}, \frac{2}{3}, -\frac{1}{3}\right)$, $\overrightarrow{e_2} = \left(-\frac{2}{3}, -\frac{1}{3}, \frac{2}{3}\right)$, et $\overrightarrow{e_3} = \left(-\frac{1}{3}, -\frac{2}{3}, -\frac{2}{3}\right)$. Montrer avec le minimum de calculs que $(\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3})$ est une base orthonormée. Est-elle directe?

Exercice 3.

a) Donner un système d'équations cartésiennes de la droite \mathcal{D} définie paramétriquement par :

 $\begin{cases} x = 1 + 2\lambda \\ y = 2 - \lambda \\ z = 2 + 2\lambda \end{cases}, \lambda \in \mathbb{R}.$

b) Déterminer une équation cartésienne du plan ${\mathcal P}$ contenant le point A(3,-3,3) et la droite ${\mathcal D}$

définie par : $\begin{cases} x + y = 1 \\ y + z = -1 \end{cases}$.

définie par : $\begin{cases} y+z=-1 \\ y=-1 \end{cases}$ et $\mathcal{D}': \begin{cases} x=2+z \\ y=-1-3z \end{cases}$ et $\mathcal{D}': \begin{cases} x+2y+z=4 \\ 3x+3y+2z-7=0 \end{cases}$ sont concourantes

Exercice 4. Soit \mathcal{P} le plan d'équation x + y + z = 1.

Déterminer un repère orthonormé direct $\mathcal{R}' = (\Omega, \overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ tel que $\Omega = \mathcal{P} \cap (Oz)$ et \overrightarrow{u} et \overrightarrow{v} forment une base de \mathcal{P} .

Exercice 5. Déterminer la droite dirigée par $\overrightarrow{u}(1,2,3)$ et rencontrant les droites :

$$D : \begin{cases} z - 1 = 0 \\ x = 0 \end{cases}$$
 et $D' : \begin{cases} x - 1 = 0 \\ y = 0 \end{cases}$

Exercice 6. Soit *D* la droite d'équations $\begin{cases} x+y+z=4\\ x-y+z=6 \end{cases}$ et B(0,1,-3).

Déterminer le projeté orthogonal de B sur D

Exercice 7. Soit P le plan d'équation x + 2y + z + 1 = 0.

- a) Déterminer le projeté orthogonal du point $A(-\frac{1}{4},\frac{1}{2},\frac{5}{4})$ sur le plan P. b) Soit D la droite d'équation $\left\{ \begin{array}{l} 3x-y+z=0\\ x+y-z+1=0 \end{array} \right..$

Déterminer la droite D' symétrique de D par rapport à P.

Exercice 8. Soit la famille de plans, pour $m \in \mathbb{R}$:

$$\mathcal{P}_m: 2mx + (m+1)y - 3(m-1)z + 2m + 4 = 0$$

- a) Montrer que ces plans passent par une droite fixe que l'on déterminera.
- b) Préciser le(s) plan(s) passant par A(1, -1, 2).

Exercice 9. On considère les deux plans de paramétrages :

$$\mathcal{P}: \begin{cases} x = 1 + a + 2b \\ y = 4 - 2a + 5b \\ z = -1 + a - 6b \end{cases}, (a, b) \in \mathbb{R}^2, \qquad \mathcal{P}': \begin{cases} x = -4 + 4a + b \\ y = -1 + 4a - 2b \\ z = 4 - 4a + 3b \end{cases}, (a, b) \in \mathbb{R}^2$$

Justifier rapidement que ces deux plans ne sont pas parallèles.

Exercice 10. Soient les deux plans définis paramétriquement par :

$$\mathcal{P}: \begin{cases} x = 2 + \lambda + 2\mu \\ y = 2 + 2\lambda + \mu \\ z = 1 - \lambda - \mu \end{cases}, (\lambda, \mu) \in \mathbb{R}^2, \qquad \mathcal{P}': \begin{cases} x = 1 + 3u - v \\ y = 3 + 3u + v \\ z = 1 - 2u \end{cases}, (u, v) \in \mathbb{R}^2$$

Montrer que $\mathcal{P} = \mathcal{P}'$.

Exercice 11. Soit la droite \mathcal{D} : $\begin{cases} 2x - y + 2z + 4 = 0 \\ x - y - z + 1 = 0 \end{cases}$.

- a) Soit $\lambda \in \mathbb{R}$. Que peut-on dire de l'ensemble $\mathcal{P}_{\lambda}: 2x-y+2z+4+\lambda(x-y-z+1)=0$?
- b) En déduire le plan contenant \mathcal{D} tel que le vecteur $\overrightarrow{u}(1,-1,1)$ soit dans la direction du plan.

Exercice 12. Soit S la sphère de centre $\Omega(1,0,0)$ et de rayon R=2.

Soit \mathcal{D} la droite définie par : $\begin{cases} x + y + z = 0 \\ x - y = 1 \end{cases}$.

Étudier l'intersection de S et de D.