Master IPS1: Contrôle final du module << Sécurité informatique>>

Vous devez entrer votre mail institutionnel

zakaria.elhajoui1@gmail.com Changer de compte

*Obligatoire

Adresse e-mail *

Votre adresse e-mail

Une quinzaine Personnes désirent communiquer de façon confidentielle en utilisant un chiffrement symétrique. Combien de clé privées auront -elles besoin ?

105 clés

15 clés

Quelle est la parité des exposants « e » et « d » du système RSA ?

Les deux sont pairs

Les deux sont impairs

« e » est pair, « d » est impair

« d » est pair, « e » est impair

Une fonction de hachage assure : La confidentialité L'intégrité La non répudiation
L'échange de clés par Diffie-Hellman est vulnérable à : L'attaque par force brute L'attaque de « Man in the Middle » L'attaque par dictionnaire L'attaque par indice de coïncidence
Deux certificats différents peuvent ils contenir la même clé publique. Vrai Faux
Comment utilise t-on les clés symétriques et asymétriques ensemble ? On utilise la clé asymétrique pour chiffrer la clé symétrique Le message est chiffré d'abord par la clé symétrique puis par la clé asymétrique. Le message est chiffré d'abord par la clé asymétrique puis par la clé symétrique.

Lequel des modes opératoires suivants est à ne jamais utiliser :
□ CBC
☐ OFB
☐ CFB
CTR
En parlant de la cryptographie asymétrique, lesquelles des phrases suivantes sont fausses ?
Elle n'assure pas la non-répudiation
La gestion des clés n'est pas simple
Ses algorithmes sont moins rapide que ceux de la cryptographie symétrique
Les clés utilisées pour chiffrement et déchiffrement sont les mêmes.
Le chiffrement de César est :
Un chiffrement affine
Une substitution mono-alphabétique
Une permutation

Etant donné le système RSA with padding avec un modulo « n » et un bourrage de taille « r », quelle est la taille maximale d'un message en clair ?
n-r
log(n)-log(r)
2^(n)-2^(r)
log(n)-r
n+r
A l'arrivée quelle clef, Bob doit-il utiliser pour déchiffrer le message ?
sa clé privée.
Ca clé privée d'Alice
A l'arrivée quelle clef, Bob doit-il utiliser pour vérifier le signature ?
Sa clé privée
Ca clé publique d'Alice
Quels types d'algorithmes peut-on utiliser pour garantir la confidentialité dans des communications par GSM ?
algorithmes asymétriques
algorithmes de chiffrement par flux
algorithmes de chiffrement par blocs

Deux certificats différents peuvent ils avoir une même signature.
○ Vrai
X Faux
Un chiffrement affine est :
Une substitution mono-alphabétique
Une substitution poly-alphabétique
Une transposition
Quelle est la différence entre les deux techniques de certification des clés publiques S/MIME et PGP ?
Les clés sont certifiées par chaque utilisateur dans le cas de S/MIME et par une autorité de certification dans le cas de PGP
S/MIME est préférable dans un contexte Linux et PGP est plus adaptée à un environnement Windows ou Mac
Les clés sont certifiées par chaque utilisateur dans le cas de PGP et par une autorité de certification dans le cas de S/MIME
Pas de différence, les deux sont dédiées à la sécurité de messagerie électronique
La biométrie est un outil pour garantir
La confidentialité
L'intégrité
L'authentification

Alice veut envoyer un message chiffré et signé à Bob, avec quelle clef doit-elle le chiffrer et ensuite le signer ?
Chiffrer avec la clé publique de Bob et signer avec sa clé privée
Chiffrer avec sa clé privée et signer avec la clé publique d'Alice
Lesquels des modes de chiffrement par bloc se comportent comme des chiffrements par flux :
ECB
СВС
◯ OFB
CFB
CTR
Une recherche exhaustive sur les 56 bits d'une clef DES nécessite environ 48 heures. Combien de temps faudrait-il approximativement sur une clé de 64 bits ? 56 heures
Alice chiffre un message avec sa clé privée et l'envoie à Bob. Quelle information obtient Bob à la réception du message ?
Aucune
O Une clé

Bob veut envoyer un message à Alice
Alice a besoin de la clé privée de Bob
Alice a besoin de la clé publique de Bob
Bob a besoin de la clé privée d'Alice
Bob a besoin de la clé publique d'Alice.
La non répudiation est garantie par :`
une clé publique
une signature numérique
un certificat
Chiffrement des données avec sa propre clé privée sert à assurer La non répudiation L'intégrité La Confidentialité L'authentification
Lequel des inconvénients des systèmes de chiffrement symétriques existe aussi dans les systèmes de chiffrement asymétriques ?
Les correspondants doivent se connaître au préalable
On a besoin de stocker de façon sécurisée les clés privées pour chaque partie avec qui on communique
Il est nécessaire de générer des nombres aléatoires de façon sécurisée
Les correspondants doivent partager un secret avant d'entrer en communication.

Un certificat X.509 crée un lien entre
L'identité de l'utilisateur et sa clé publique
L'identité de l'utilisateur et sa clé privée
Les clés publique et privée de l'utilisateur
La clé publique de l'utilisateur et celle de l'autorité de certification
Lorsqu'on utilise un petit exposant publique pour RSA
Le chiffrement devient rapide
Le déchiffrement devient rapide
La signature devient rapide
La vérification de la signature devient rapide
Pour un même message clair M, peut-il y avoir deux signatures différentes par le même crypto-système El Gamal ?
○ Vrai
Faux
Une vingtaine de personnes désirent communiquer de façon confidentielle en utilisant un chiffrement asymétrique. De combien de clés privées auront –elles besoin ?
20 clés
40 clés

Peut-on avoir pour un même message clair plusieurs messages chiffrés en utilisant EL Gamal ?
○ Vrai
Faux
Quel est le rôle d'un GPA dans un chiffrement par flux ?
Créer un flux de clé
Chiffrer le flux d'entrée
Alice a utilisé le chiffrement de Vernam pour envoyer un message $m \in \{0, 1\}^100$ à Bob. Ils partageaient tous les deux une clé aléatoire $k \in \{0, 1\}^100$. Oscar intercepte le chiffré $c = m \oplus k$. Quel est le temps nécessaire pour retrouver m ?
100 secondes
100 essais
2^100 essais
Quelles sont les trois propriétés de base dans la sécurité informatique qui étaient et sont omniprésentes au fil des années
Auditabilité
Authentification
Non répudiation
Confidentialité
Disponibilit é
Intégrité

H

Envoyer

Les certificats délivrés par l'AC sont signés par:
Les utilisateurs L'autorité de certification
Le destinataire
Un certificat devrait être révoqué avant sa date d'expiration si :
La clé privée de l'autorité est compromise
La clé privée de l'utilisateur est compromise
Le DN de l'utilisateur est changé
Page 1 sur 1

Effacer le formulaire

Ce formulaire a été créé dans UM5R. <u>Signaler un cas d'utilisation abusive</u>

Google Forms