

II. REMARKS

Claims 1, 4, 5, 7, 8, 12, 19, 20, 22, 23 and 25-28 are pending in this application. Claims 1, 4, 5, 7, 8, 19, 20, 22, 25 and 26 are withdrawn from examination as a result of a requirement for restriction. Claims 12, 23, 27 and 28 were examined. By this Amendment, claim 28 has been amended. Support for the amendment to claim 28 is found on page 4, lines 32 to 36. Accordingly, an issue of new matter is not raised by this Amendment and entry thereof is respectfully requested.

In view of the preceding amendment and the remarks that follow, reconsideration and withdrawal of the grounds for rejection is respectfully requested.

35 U.S.C. § 102

Claims 12 and 27 stand rejected under 35 U.S.C. § 102(b) as allegedly anticipated by Cox et al. (1988), for the reasons of record. The Office maintained that Cox et al discloses a vaccine comprising an influenza A viral reassortant comprising nucleotides encoding the HA (wild-type), NA (wild-type), PB1 (cold-adapted), PA (cold-adapted), M (cold-adapted), and PB2 (including SEQ ID NO.: 15) polypeptides. These nucleotide sequences were linked in such a manner as to allow packaging of the reassorted polynucleotides into the virion.

In maintaining the rejection, the Office argued on page 6 of Paper No. 11 that:

“Applicant asserts that the PB2 encoding sequence of Cox et al is not represented by sequence ID No. 15. However Figure 6 of said reference clearly indicates the nucleotides of seq ID No. 15 at positions 141 and 821, which are designated above the wild type sequence (denoted “mt”). The nucleotide at position 1933 is denoted as “x” in said mutant category, presumably indicating a sequence variation. In addition the substitution of cytosine at position 1933 changes the codon from TTG (encoding leucine) to CTG (also encoding leucine), therefore seq ID No. 15 encodes the same amino acid at this position as that in Figure 6. Accordingly Cox et al does anticipate the claimed invention.” (emphasis added).

Applicants respectfully traverse. Applicants reiterate that Cox et al. fails to anticipate because it does not “contain all of the elements of the claim.” See *Hybritech Inc. v. Monoclonal Antibodies, Inc.*, 802 F.2d 1367, 1379, 231 U.S.P.Q. 81, 90 (Fed. cir.

1986); *Atlas Powder Co. v. E.I. du Pont De Nemours & Co.*, 750 F.2d 1569, 1574, 224 U.S.P.Q. 409, 411 (Fed. Cir. 1984); *In re Marshall*, 578 F.2d 301, 304, 198 U.S.P.Q. 344, 346 (C.C.P.A. 1978). Missing elements may not be supplied by the knowledge of one skilled in the art or the disclosure of another reference. See *Structural Rubber Prods. co. v. Park Rubber Co.*, 749 F.2d 707, 716, 223 U.S.P.Q. 1264, 1271 (Fed. Cir. 1984).

The amended claims under consideration all require the presence of mutated PB2 of the progenitor virus, the sequence of which is provided in Seq. ID No. 15. Mutated PB2 has critical differences at nucleotide positions 141, 821 and 1933 as compared to prior art sequences. In comparison to Cox et al., the base at position 1933 is thymidine while Applicants claim cytosine at position 1933 of the PB2 polynucleotide. The Office relies on an apparent printing error in the publication for maintaining the rejection stating that “[t]he nucleotide at position 1933 is denoted as “x” in said mutant category, presumably indicating a sequence variation.” (emphasis added).

Applicants point out that the reference does not define this marking (“x”) as a site for mutation in the cold-adapted (ca) virus. At best and without confirmation, the “x” in Figure 6 could be an asterisk, which Cox et al. describes in column 1 of page 556 (Under the RESULTS heading) to indicate that bands in two lanes of the sequencing reaction were observed at a single nucleotide position but that the darkest was read as the correct nucleotide. The legend to Figure 6 neither defines nor makes mention of it. The authors’ description of the PB2 sequence makes no mention of nucleotide 1933. The authors do not list it as a mutation in Table 1 (see page 564 of Cox et al.). The authors do not identify it as a mutation that may be responsible for the cold adapted phenotype (see column 1, page 565 of Cox et al.). Additionally, an “x” would not indicate to one of skill in the art that any nucleotide may be present at that position. “X” is not a recognized abbreviation for any nucleotide (“N” is the art recognized abbreviation for any nucleotide).

Moreover, the fact that the substitution of cytosine at position 1933 changes the codon from TTG (encoding leucine) to CTG (also encoding leucine) is irrelevant in this situation. Indeed, Applicants discovered that this single change unexpectedly caused a

cascade of 163 pairing differences, from base 1888 to base 2151. Specifically, the specification notes that:

"To assess the potential functional significance of the two nucleotide sequence differences between the *ca* and the *wt* 2(3) viruses [in the PB2 sequence], the Zuker RNA-fold algorithm and computer modeling techniques were used to predict RNA secondary structures. As shown in Figure 2, the difference at base 141 does not impinge on the predicted structure of RNA1 because it is part of an unpaired loop in both molecules; however, the change at nucleotide 1933, T in *wt* 2(3) to C in *ca* (shown by arrows in Figure 2), does affect the predicted fold of RNA1. The RNA fold of the *ca* virus has greater stability than the analogous fold of *wt* 2(3), as judged by its lower free energy of -736.2 compared to -733.6 for the *wt* 2(3) molecule. Both folds were pivoted -25° at pair 1068/1381 and 180° at pair 1675/1861 to better visualize the area of difference between the two molecules. The single base change at 1933 causes a cascade of 163 pairing differences, from based 1888 to base 2151, and thus might constitute at true cold adaptation. Similar RNA1 sequencing results were obtained for *wt* a/AA/6/60 e3(4) passage virus."

See page 15, line 33 to page 16 line 11 of Applicants' specification.

Accordingly, Cox et al. does not anticipate the claimed invention. Applicants respectfully request reconsideration and withdrawal of the rejection of the claims under 35 U.S.C. § 102.

35 U.S.C. § 103

Claims 23 and 28, stand rejected under 35 U.S.C. § 103(a) as allegedly unpatentable over Cox et al. (1988) in view of Maassab et al. (1982). The Office stated that Cox et al. (1988) provides methods for the production of live attenuated influenza A vaccines by genetic reassortment with a cold-adapted mutant, and that reassortant viruses containing HA and NA genes from strains H1N1 and H3N2 were disclosed. The Office opined that this teaching additionally discloses that five or six internal genes were derived from the *ca* A/Ann Arbor/6/60 parental strain.

Maassab et al. (1982) is cited by the Office for teaching that reassortants comprising six genes derived from one strain and two surface proteins derived from the wild-type parental strain were generated and that these viruses were attenuated and genetically stable (see abstract). The Office also argued that intranasal inoculation of the

A vaccine composition comprising this strain was described and that this reassortant was unable to replicate in lung tissue and grew to low titers in the nasal turbinates as compared to wild-type. The Office maintained that therefore, it would have been *prima facie* obvious to one having ordinary skill in the art at the time the invention was made to produce a live Influenza A vaccine using cold-adapted parental strains and to incorporated these properties into a clinically relevant strain by mating and reassortant technology. The Office further maintained that one of ordinary skill in the art would have a reasonable expectation of succeeding because Cox and colleagues provide those mutations that are responsible for the cold-adapted phenotype.

Applicants respectfully traverse. The Cox et al. reference does not teach as suggested by the Office and nothing in Maassab et al. shores up the deficiencies in Cox et al. Additionally, the motivation to combine or modify the sequence of Cox et al. is missing from either Cox et al. or Maassab et al. Cox et al. clearly identified the mutations which were believed at the time the application was filed to provide the cold-adapted phenotype. Thus, a skilled artisan would not be motivated to further refine and modify the sequence.

As set forth in the response to the rejection of the claims under 35 U.S.C. § 102, the single nucleotide change at position 1933 (SEQ ID NO 15) (which does not change the coded amino acid) results in 163 pairing differences which ultimately changes the three-dimensional structure of the virion. (See Figure 2 of the application papers). As noted in *In re Papesch*, 315 F.2d 381, 137 U.S.P.Q. 43 (C.C.P.A. 1963):

“From the standpoint of patent law, a compound and all of its properties are inseparable; they are one and the same thing. The graphic formulae, the chemical nomenclature, the systems of classification and study such as the concepts of homology, isomerism, etc., are mere symbols by which compounds can be identified, classified, and compared. But a formula is not a compound and while it may serve in a claim to identify what is being patented, as the metes and bounds of a deed identify a plot of land, the thing that is patented is not the formula but the compound identified by it. And the patentability of the thing does not depend on the similarity of its formula to that of another compound but of the similarity of the former compound to the latter. There is no basis in law for ignoring any property in making such a comparison.”

Id.

For these reasons, the rejection under 35 U.S.C. § 103 is improper and therefore should be removed.

Change of Firm Name

The undersigned agent's firm name has been changed to Bingham McCutchen LLP. Applicants' agent respectfully requests the Office to change its records to reflect this change in name.

III. CONCLUSION

No fee is deemed necessary in connection with the filing of this Response. However, if the Patent Office determines that an extension and/or other relief is required, Applicants petition for any required relief including extensions of time and authorize the Commissioner to charge the cost of such petitions and/or other fees due in connection with the filing of this document to **Deposit Account No. 50-2518**, referencing billing number 7009813001.

However, the Commissioner is not authorized to charge the cost of the issue fee to the Deposit Account. Should a telephone interview advance prosecution of the subject application, the Examiner is invited to contact the undersigned at (650) 849-4950.

DATE: Sept. 12, 2003

Respectfully submitted,

By:

Antoinette F. Konski

Registration No.: 34,202

Bingham McCutchen LLP
Formerly McCutchen, Doyle, Brown & Enersen, LLP
Three Embarcadero Center, Suite 1800
San Francisco, California 94111
Telephone: (650) 849-4950
Telefax: (650) 849-4800

(x) PUBLICATION INFORMATION:

- (A) AUTHORS: Herlocher, M L
Maassab, H F
Webster, R G
- (B) TITLE: Molecular and biological changes in the cold adapted master strain A/AA/6/60 (H2N2) influenza virus
- (C) JOURNAL: Proceedings of the National Academy of Sciences of the USA
- (G) DATE: 1993
- (K) RELEVANT RESIDUES IN SEQ ID NO:15: FROM 1 TO 2341

(x) PUBLICATION INFORMATION:

- (A) AUTHORS: Cox, N J
Kitame, F
Kendal, A P
Maassab, H F
Naeve, C
- (B) TITLE: Identification of sequence changes in the cold-adapted live attenuated influenza vaccine strain, A/Ann Arbor/6/60(H2N2)
- (C) JOURNAL: Virology
- (D) VOLUME: 167
- (F) PAGES: 554-567
- (G) DATE: 1988
- (K) RELEVANT RESIDUES IN SEQ ID NO:15: FROM 1 TO 2341

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

AGCGAAAGCA GGUCAAUUAU AUUCAAU AUG GAA AGA AUA AAA GAA CUA CGG Met Glu Arg Ile Lys Glu Leu Arg	51
1 5	
AAU CUG AUG UCG CAG UCU CGC ACU CGC GAG AUA CUA ACA AAA ACC ACA Asn Leu Met Ser Gln Ser Arg Thr Arg Glu Ile Leu Thr Lys Thr Thr	99
10 15 20	
GUG GAC CAU AUG GCC AUA AUU AAG AAG UAC ACA UCA GGG AGG CAG GAA Val Asp His Met Ala Ile Ile Lys Lys Tyr Thr Ser Gly Arg Gln Glu	147
25 30 35 40	

AAG AAC CCG UCA CUU AGG AUG AAA UGG AUG AUG GCA AUG AAA UAU CCG Lys Asn Pro Ser Leu Arg Met Lys Trp Met Met Ala Met Lys Tyr Pro 45 50 55	195
AUU ACA GCC GAC AAG AGG AUA ACA GAA AUG AUU CCU GAG AGA AAU GAG Ile Thr Ala Asp Lys Arg Ile Thr Glu Met Ile Pro Glu Arg Asn Glu 60 65 70	243
CAA GGG CAA ACU CUA UGG AGU AAA AUG AGU GAU GCC GGA UCG GAU CGU Gln Gly Gln Thr Leu Trp Ser Lys Met Ser Asp Ala Gly Ser Asp Arg 75 80 85	291
GUG AUG GUA UCA CCU CUG GCU GUG ACA UGG UGG AAU AGA AAU GGA CCA Val Met Val Ser Pro Leu Ala Val Thr Trp Trp Asn Arg Asn Gly Pro 90 95 100	339
AUG ACA AGU ACG GUU CAU UAU CCA AAA AUC UAC AAA ACU UAU UUU GAG Met Thr Ser Thr Val His Tyr Pro Lys Ile Tyr Lys Thr Tyr Phe Glu 105 110 115 120	387
AAA GUC GAA AGG UUA AAA CAU GGA ACC UUU GGC CCU GUC CAU UUU AGA Lys Val Glu Arg Leu Lys His Thr Phe Gly Pro Val His Phe Arg 125 130 135	435
AAC CAA GUC AAA AUA CGC CGA AGA GUU GAC AUA AAU CCU GGU CAU GCA Asn Gln Val Lys Ile Arg Arg Val Asp Ile Asn Pro Gly His Ala 140 145 150	483
GAC CUC AGU GCC AAG GAG GCA CAG GAU GUA AUC AUG GAA GUU GUU UUC Asp Leu Ser Ala Lys Glu Ala Gln Asp Val Ile Met Glu Val Val Phe 155 160 165	531
CCU AAC GAA GUG GGG GCC AGG AUA CUA ACG UCG GAA UCG CAA UUA ACA Pro Asn Glu Val Gly Ala Arg Ile Leu Thr Ser Glu Ser Gln Leu Thr 170 175 180	579
AUA ACC AAA GAG AAA AAA GAA GAA CUC CAG GAU UGC AAA AUU UCA CCU Ile Thr Lys Glu Lys Glu Glu Leu Gln Asp Cys Lys Ile Ser Pro 185 190 195 200	627
UUG AUG GUU GCG UAC AUG UUA GAG AGA GAA CUU GUC CGA AAA ACG AGA Leu Met Val Ala Tyr Met Leu Glu Arg Glu Leu Val Arg Lys Thr Arg 205 210 215	675
UUU CUC CCA GUU GCU GGU GGA ACA AGC AGU GUG UAC AUU GAA GUG UUG Phe Leu Pro Val Ala Gly Gly Thr Ser Ser Val Tyr Ile Glu Val Leu 220 225 230	723
CAC UUG ACU CAA GGA ACA UGC UGG GAA CAG AUG UAC ACU CCA GGU GGA His Leu Thr Gln Gly Thr Cys Trp Glu Gln Met Tyr Thr Pro Gly Gly 235 240 245	771
GAA GUG AGG AAU GAU GAU GUU GAU CAA AGU CUA AUU AUU GCA GCC AGG Glu Val Arg Asn Asp Asp Val Asp Gln Ser Leu Ile Ile Ala Ala Arg 250 255 260	819

AGC AUA GUG AGA AGA GCA GCA GUA UCA GCA GAU CCA CUA GCA UCU UUA Ser Ile Val Arg Arg Ala Ala Val Ser Ala Asp Pro Leu Ala Ser Leu 265 270 275 280	867
UUG GAG AUG UGC CAC AGC ACA CAG AUU GGC GGG ACA AGG AUG GUG GAC Leu Glu Met Cys His Ser Thr Gln Ile Gly Gly Thr Arg Met Val Asp 285 290 295	915
AUU CUU AGG CAG AAC CCA ACA GAA GAG CAA GCU GUG GAA AUA UGC AAG Ile Leu Arg Gln Asn Pro Thr Glu Glu Gln Ala Val Glu Ile Cys Lys 300 305 310	963
GCU GCA AUG GGA CUG AGG AUC AGC UCA UCC UUC AGU UUU GGC GGG UUC Ala Ala Met Gly Leu Arg Ile Ser Ser Phe Ser Phe Gly Gly Phe 315 320 325	1011
ACA UUU AAG AGA ACA AGC GGA UCA UCA GUC AAG AGA GAG GAA GAA GUG Thr Phe Lys Arg Thr Ser Gly Ser Ser Val Lys Arg Glu Glu Glu Val 330 335 340	1059
CUU ACG GGC AAU CUU CAA ACA UUG AAA AUA AGG GUG CAU GAG GGA UAC Leu Thr Gly Asn Leu Gln Thr Leu Lys Ile Arg Val His Glu Gly Tyr 345 350 355 360	1107
GAG GAG UUC ACA AUG GUU GGG AAA AGG GCA ACA GCU AUA CUC AGA AAA Glu Glu Phe Thr Met Val Gly Lys Arg Ala Thr Ala Ile Leu Arg Lys 365 370 375	1155
GCA ACC AGG AGA UUG AUU CAG CUG AUU GUG AGU GGA AGA GAC GAA CAG Ala Thr Arg Arg Leu Ile Gln Leu Ile Val Ser Gly Arg Asp Glu Gln 380 385 390	1203
UCG AUA GCU GAA GCA AUA AUU GUG GCC AUG GUA UUU UCA CAA GAA GAU Ser Ile Ala Glu Ala Ile Ile Val Ala Met Val Phe Ser Gln Glu Asp 395 400 405	1251
UGU AUG AUA AAA GCA GUU AGA GGU GAU CUG AAU UUC GUU AAU AGG GCA Cys Met Ile Lys Ala Val Arg Gly Asp Leu Asn Phe Val Asn Arg Ala 410 415 420	1299
AAU CAG CGA UUG AAU CCC AUG CAU CAA CUU UUA AGA CAU UUU CAG AAG Asn Gln Arg Leu Asn Pro Met His Gln Leu Leu Arg His Phe Gln Lys 425 430 435 440	1347
GAU GCG AAA GUG CUU UUU CAA AAU UGG GGA AUU GAA CAU AUC GAC AAU Asp Ala Lys Val Leu Phe Gln Asn Trp Gly Ile Glu His Ile Asp Asn 445 450 455	1395
GUG AUG GGA AUG AUU GGG GUA UUA CCA GAC AUG ACU CCA AGC ACA GAG Val Met Gly Met Ile Gly Val Leu Pro Asp Met Thr Pro Ser Thr Glu 460 465 470	1443
AUG UCA AUG AGA GGG GUA AGA GUC AGC AAA AUG GGC GUA GAU GAA UAC Met Ser Met Arg Gly Val Arg Val Ser Lys Met Gly Val Asp Glu Tyr 475 480 485	1491

UCC	AGC	GCG	GAG	AGA	GUA	GUG	GUG	AGC	AUU	GAC	CGG	UUU	UUG	AGA	GUU	1539
Ser	Ser	Ala	Glu	Arg	Val	Val	Val	Ser	Ile	Asp	Arg	Phe	Leu	Arg	Val	
490					495					500						
CGA	GAC	CAA	CGA	GGA	AAU	GUA	CUA	CUA	UCU	CCU	GAG	GAG	GUC	AGU	GAA	1587
Arg	Asp	Gln	Arg	Gly	Asn	Val	Leu	Leu	Ser	Pro	Glu	Glu	Val	Ser	Glu	
505					510				515						520	
ACA	CAG	GGA	ACA	GAG	AAA	CUG	ACA	AUA	ACU	UAC	UCA	UCG	UCA	AUG	AUG	1635
Thr	Gln	Gly	Thr	Glu	Lys	Leu	Thr	Ile	Thr	Tyr	Ser	Ser	Ser	Met	Met	
525						530								535		
UGG	GAG	AUU	AAU	GGC	CCU	GAG	UCA	GUG	UUG	GUC	AAU	ACC	UAU	CAG	UGG	1683
Trp	Glu	Ile	Asn	Gly	Pro	Glu	Ser	Val	Leu	Val	Asn	Thr	Tyr	Gln	Trp	
540					545					550						
AUC	AUC	AGA	AAC	UGG	GAA	ACU	GUU	AAA	AUU	CAG	UGG	UCU	CAG	AAU	CCU	1731
Ile	Ile	Arg	Asn	Trp	Glu	Thr	Val	Lys	Ile	Gln	Trp	Ser	Gln	Asn	Pro	
555					560					565						
ACA	AUG	CUA	UAC	AAU	AAA	AUG	GAA	UUU	GAG	CCA	UUU	CAG	UCU	UUA	GUU	1779
Thr	Met	Leu	Tyr	Asn	Lys	Met	Glu	Phe	Glu	Pro	Phe	Gln	Ser	Leu	Val	
570					575				580							
CCU	AAG	GCC	AUU	AGA	GGC	CAA	UAC	AGU	GGG	UUU	GUU	AGG	ACU	CUA	UUC	1827
Pro	Lys	Ala	Ile	Arg	Gly	Gln	Tyr	Ser	Gly	Phe	Val	Arg	Thr	Leu	Phe	
585					590				595						600	
CAA	CAA	AUG	AGG	GAU	GUU	GGG	ACA	UUU	GAU	ACC	ACC	CAG	AUA	AUA	1875	
Gln	Gln	Met	Arg	Asp	Val	Leu	Gly	Thr	Phe	Asp	Thr	Thr	Gln	Ile	Ile	
605						610							615			
AAA	CUU	CUU	CCC	UUU	GCA	GCC	GCC	CCA	CCA	AAG	CAA	AGU	AGA	AUG	CAG	1923
Lys	Leu	Leu	Pro	Phe	Ala	Ala	Ala	Pro	Pro	Lys	Gln	Ser	Arg	Met	Gln	
620					625					630						
UUC	UCU	UCA	CUG	ACU	GUG	AAU	GUG	AGG	GGA	UCA	GGA	AUG	AGA	AUA	CUU	1971
Phe	Ser	Ser	Leu	Thr	Val	Asn	Val	Arg	Gly	Ser	Gly	Met	Arg	Ile	Leu	
635					640					645						
GUU	AGG	GGC	AAU	UCU	CCU	AUA	UUC	AAC	UAC	AAC	AAG	ACC	ACU	AAG	AGA	2019
Val	Arg	Gly	Asn	Ser	Pro	Ile	Phe	Asn	Tyr	Asn	Lys	Thr	Thr	Lys	Arg	
650					655					660						
CUA	ACA	AUU	CUC	GGA	AAG	GAU	GCU	GGC	ACU	UUU	ACU	GAA	GAC	CCA	GAU	2067
Leu	Thr	Ile	Leu	Gly	Lys	Asp	Ala	Gly	Thr	Leu	Thr	Glu	Asp	Pro	Asp	
665					670				675						680	
GAA	GGC	ACA	UCU	GGA	GUG	GAG	UCC	GCU	GUU	CUG	AGA	GGA	UUC	CUC	AUU	2115
Glu	Gly	Thr	Ser	Gly	Val	Glu	Ser	Ala	Val	Leu	Arg	Gly	Phe	Leu	Ile	
685						690								695		
CUG	GGC	AAA	GAA	GAU	AGG	AGA	UAU	GGA	CCA	GCA	UUA	AGC	AUC	AAU	GAA	2163
Leu	Gly	Lys	Glu	Asp	Arg	Arg	Tyr	Gly	Pro	Ala	Leu	Ser	Ile	Asn	Glu	
700						705							710			

CUG AGU AAC CUU GCG AAA GGA GAA AAG GCU AAU GUA CUA AUU GGG CAA Leu Ser Asn Leu Ala Lys Gly Glu Lys Ala Asn Val Leu Ile Gly Gln 715 720 725	2211
GGA GAC GUG GUG UUG GUA AUG AAA CGA AAA CGG AAC UCU AGC AUA CUU Gly Asp Val Val Leu Val Met Lys Arg Lys Arg Asn Ser Ser Ile Leu 730 735 740	2259
ACU GAC AGC CAG ACA GCG ACC AAA AGG AUU CGG AUG GCC AUC AAU Thr Asp Ser Gln Thr Ala Thr Lys Arg Ile Arg Met Ala Ile Asn 745 750 755	2304
UAUAUGUUGAA UAGUUUAAAAA ACGACCUUGU UUCUACU	2341

(2) INFORMATION FOR SEQ ID NO:16:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 759 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

Met Glu Arg Ile Lys Glu Leu Arg Asn Leu Met Ser Gln Ser Arg Thr
1 5 10 15

Arg Glu Ile Leu Thr Lys Thr Thr Val Asp His Met Ala Ile Ile Lys
20 25 30

Lys Tyr Thr Ser Gly Arg Gln Glu Lys Asn Pro Ser Leu Arg Met Lys
35 40 45

Trp Met Met Ala Met Lys Tyr Pro Ile Thr Ala Asp Lys Arg Ile Thr
50 55 60

Glu Met Ile Pro Glu Arg Asn Glu Gln Gly Gln Thr Leu Trp Ser Lys
65 70 75 80

Met Ser Asp Ala Gly Ser Asp Arg Val Met Val Ser Pro Leu Ala Val
85 90 95

Thr Trp Trp Asn Arg Asn Gly Pro Met Thr Ser Thr Val His Tyr Pro
100 105 110

Lys Ile Tyr Lys Thr Tyr Phe Glu Lys Val Glu Arg Leu Lys His Gly
115 120 125