ML C	anfor	TOTO	AC
	NTITET	CILU	

Date_____

A Place to Network and Exchange Ideas

www.siam.org/meetings/
On obtaint $\begin{cases} \partial_{t}u & (x,t) - b(t) \partial_{x}u & (x,t) - \varepsilon \partial_{x}u & (x,t) = 0 \\ \partial_{x}u & (0,t) + K^{-1}u & (0,t) = K^{-1}Vb & u \\ & & & & & & & & & & & & & & & & &$
Démarche à confirmer. prisque y vinju la contrainte alon. d u = A. H. M
done avec $y = y - y_k$ on a $d y = A_k y_k$
j jedenoit ni Ax est dimipatif. n'on part d'une emeur nulle ça semble marcher mais ça me paraît louche.
d'autant que ga semble indépendent de K. 32) On n (- Axy, y) > (- Ay, y) donc on a la propriété. propriété de V-Yeocrainté

		mfa:		200	
	CO.	LLLC.	Ltl	してろ	
(8)					1

A Place to Network and Exchange Ideas www.siam.org/meetings/

Date__

Rappel. On a diffini (A(t), D(A(t)) op D(A(t)) = of Holo, l) x R u(0) = V bm
$\frac{et}{(-A(t)y_1,y_2)_y=-\int_0^1 b(t)(\partial_x u_1)u_2+\xi\int_0^1 (\partial_x u_1)(\partial_x u_2)+\xi \frac{b}{b} m_1 m_2}$
Approche per pénalisation Soit (Ax (+), D(Ax (+1)) to D(Ax (+1)) = HR(Orl) x R et (-Ax (+), y = - b(+) (drun) M2 + 5 (drun) (druz) + 5 mrmz
$+ \kappa^{-1} (M_1(0) - Vb M_1) (M_2(0) - Vb M_2)$
Todo * Retrouver le plo font associé. * Démontrer que yk to dyk - AKIHYK converge vers y to dy - Alt)y
Le Démontin que Ax ext variationnel
1) Pb fort On fait une "remontie" depris la forme variationnelle AKITY, y2) = [-5(t) Dx 4 - 2 Dx 4] 42 dn + (20x4, (0,t) + K-(4, 10,t) - 15m, X 42 9t
+ \(\frac{1}{5}\mathred{m_1}\mathred{m_2} + \(\frac{1}{5}\mathred{m_1} - \mathred{m_1}\left[\left]\) \(\frac{1}{5}\mathred{m_1}\respectives and videous from SIAM Conferences available at www.sigm.org/meetings/presents plan.