- 1. The number of positive terms in the canonical form is called
 - A. Signature of the quadratic form
 - B. Index of the quadratic form
 - C. Quadratic form
 - D. Positive form

ANSWER: B

The matrix of the quadratic form $3x_1^2 + 3x_2^2 - 5x_3^2 - 2x_1x_2 6x_2x_3 - 6x_3x_1$ is

A.
$$\begin{pmatrix} 3 & -1 & -3 \\ -3 & -3 & 5 \\ -1 & 3 & -3 \end{pmatrix}$$

$$B. \begin{pmatrix} -3 & -3 & -5 \\ 3 & -1 & -3 \\ -1 & 3 & -3 \end{pmatrix}$$

A.
$$\begin{pmatrix} 3 & -1 & -3 \\ -3 & -3 & 5 \\ -1 & 3 & -3 \end{pmatrix}$$
B.
$$\begin{pmatrix} -3 & -3 & -5 \\ 3 & -1 & -3 \\ -1 & 3 & -3 \end{pmatrix}$$
C.
$$\begin{pmatrix} 3 & -1 & -3 \\ -1 & 3 & -3 \\ -3 & -3 & -5 \end{pmatrix}$$
D.
$$\begin{pmatrix} 3 & 3 & -5 \\ -1 & -1 & -3 \\ -3 & -3 & -3 \end{pmatrix}$$

$$D. \begin{pmatrix} 3 & 3 & -5 \\ -1 & -1 & -3 \\ -3 & -3 & -3 \end{pmatrix}$$

ANSWER: C

- 3. The eigen values of A^2 , if $A = \begin{pmatrix} -1 & 0 & 0 \\ 2 & -3 & 0 \\ 1 & 4 & 2 \end{pmatrix}$ are
 - A. 1, 4, 9
 - B. 1, 9, 16
 - C. 2, 4, 6
 - D. 4, 9, 16

ANSWER: A

- 4. If two of the eigen values of a 3×3 matrix, whose determinant equals 4 are -1 and 2, then the third eigen value is
 - A. -8
 - B. -6
 - C. -4
 - D. -2

ANSWER: D

- 5. The nature of quadratic form $6x^2 + 3y^2 + 3z^2 4xy 2yz + 4zx$ is
 - A. Positive Semidefinite
 - B. Indefinite
 - C. Positive definite
 - D. Negative definite

ANSWER: C

6. If 2 and 3 are the eigen values of
$$A = \begin{pmatrix} 3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7 \end{pmatrix}$$
, then the

eigen values of A^{-1} are

- A. $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{3}$ B. $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{4}$ C. $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{3}$ D. $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{6}$

ANSWER: C

- 7. The characteristic equation of the matrix $A = \begin{pmatrix} 1 & 2 \\ 5 & 4 \end{pmatrix}$ is
 - A. $\lambda^2 + 5\lambda + 6 = 0$
 - B. $\lambda^2 5\lambda 5 = 0$
 - C. $\lambda^2 5\lambda 6 = 0$
 - $D. \lambda^2 6\lambda + 5 = 0$

ANSWER: C

- 8. The sum and the product of the eigen values of $A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ are are
 - A. 3 and 2
 - B. 2 and 1
 - C. 5 and 2
 - D. 5 and 3

- 9. Every square matrix satisfies its own
 - A. bilinear form
 - B. inverse of the equation
 - C. characteristic equation
 - D. quadratic equation

ANSWER: C

10. Let X_1 and X_2 be two column matrices, then X_1 and X_2 are orthogonal if

A.
$$X_1 + X_2 = 0$$

B.
$$X_2 = 0$$

C.
$$X_1 = 0$$

D.
$$X_1^T X_2 = 0$$

ANSWER: D

11. If $u = (x - y)^4 + (y - z)^4 + (z - x)^4$, then $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} =$

A.
$$4(y-z)^3 - 4(z-x)^3$$

B.
$$3(y-z)^4 - 3(z-x)^4$$

C.
$$4(x-y)^3 - 4(x-z)^3$$

D.
$$3(y-z)^4 - 3(z-x)^4$$

12. If $u = x^3y^4$ where $x = t^3$ and $y = t^2$ then $\frac{du}{dt} =$

- A. 17t
- B. $17t^{16}$
- C. $16t^{17}$
- D. 16t

ANSWER: B

13. If f(x,y) = 0 is an implicit function then $\frac{dy}{dx} =$

- A. $\frac{-\partial f/\partial x}{\partial f/\partial y}$ B. $\frac{-\partial f/\partial y}{\partial f/\partial x}$ C. $\frac{\partial f/\partial x}{\partial f/\partial y}$ D. $\frac{\partial f/\partial y}{\partial f/\partial x}$

ANSWER: A

14. If $f(x,y) = \tan^{-1}(\frac{y}{x})$, then $f_y(1,1)$ is

- A. $\frac{-1}{2}$ B. $\frac{1}{2}$
- C. -1
- D. 1

- 15. If $rt s^2 < 0$ at (a, b) where $r = \frac{\partial^2 f}{\partial x^2}$, $s = \frac{\partial^2 f}{\partial x \partial y}$ and $t = \frac{\partial^2 f}{\partial y^2}$ then the point is a
 - A. maximum point
 - B. minimum point
 - C. saddle point
 - D. doubtful point

ANSWER: C

- 16. If $x = r \cos \theta$ and $y = r \sin \theta$ then $\frac{\partial(x,y)}{\partial(r,\theta)} =$
 - A. r
 - B. r^2
 - C. 0
 - D. 2r

ANSWER: A

- 17. The stationary points of $f(x,y) = x^3 + y^3 3axy$ are
 - A. (0, a) and (0, a)
 - B. (0, 0) and (a, a)
 - C. (a, 0) and (a, 0)
 - D. (0, a) and (a, 0)

- 18. If $r^2 = x^2 + y^2$ then $\frac{\partial r}{\partial x} =$

 - A. $\frac{y^2}{r}$ B. $\frac{y}{r}$ C. $\frac{x^2}{r}$

D. $\frac{x}{r}$

ANSWER: D

- 19. If $f(x,y) = x^2y + \sin y + e^x$ then $f_{xy}(1,\pi) =$
 - A. $\pi + e$
 - B. πe
 - C. 2
 - D. -2

ANSWER: C

- 20. If u, v and w are functionally dependent functions of three independent variables x, y and z then $\frac{\partial(u,v,w)}{\partial(x,y,z)} =$
 - A. 1
 - B. -1
 - C. neither 1 nor -1
 - D. 0

ANSWER: D

- 21. The particular integral of $(D^2 + 9)y = e^{-2x}$ is
 - A. $\frac{e^{-2x}}{13}$
 - B. $\frac{e^{-\frac{3}{2}x}}{14}$
 - C. $\frac{e^{2x}}{13}$
 - D. $\frac{e^{2x}}{14}$

22. The complete solution of $\frac{d^2y}{dx^2} - 7\frac{dy}{dx} + 12y = 0$ is

A.
$$y = c_1 e^{-3x} + c_2 e^{-4x}$$

B.
$$y = c_1 e^{3x} + c_2 e^{4x}$$

C.
$$y = ce^{3x}$$

D.
$$y = ce^{4x}$$

ANSWER: B

23. An equation of the form $x^n \frac{d^n y}{dx^n} + a_1 x^{n-1} \frac{d^{n-1} y}{dx^{n-1}} + \ldots + a_n y = F(x)$ can be transformed to a linear differential equation with constant coefficients by the transformation

A.
$$x = e^{2z}$$

B.
$$ax + b = e^z$$

C.
$$x = e^z$$

D.
$$ax^2 + b = e^z$$

ANSWER: C

24. The equation of the form $(ax + b)^n \frac{d^n y}{dx^n} + p_1(ax + b)^{n-1} \frac{d^{n-1} y}{dx^{n-1}} + \dots + p_n y = F(x)$ is known as

- A. Maclaurin's saeries
- B. Taylor's series
- C. Cauchy homogeneous linear equation
- D. Legendre linear differential equation

- 25. If 3i and -3i are the roots of the differential equation $(D^2 + 9)y = 0$ then the complementary function is given by
 - A. $c_1 e^{3x} + c_2 e^{-3x}$
 - B. $c \sin 2x$
 - $C. c_1 \cos 3x + c_2 \sin 3x$
 - D. $c\cos 2x$

ANSWER: C

- 26. If $f_1 = \cos x$ and $f_2 = \sin x$, then the value of $f_1 f_2' f_2 f_1'$ is
 - A. 1
 - B. -1
 - C. 2
 - D. -2

ANSWER: A

- 27. The solution of $(D^2 + 2D + 1)y = 8$ is
 - A. $y = (Ax + B)e^{-x} 8$
 - B. $y = Ae^x + 8$
 - C. $y = Ae^{-x} + 8$
 - D. $y = (Ax + B)e^{-x} + 8$

28. The expansion of $(1-\frac{D}{2})^{-1}$ is

A.
$$(1 + \frac{D}{2!} + \frac{D^2}{3!} + \frac{D^3}{4!} + \dots)$$

B. $(1 + \frac{D}{2} + \frac{D^2}{4} + \frac{D^3}{8} + \dots)$
C. $(1 - \frac{D}{2} - \frac{D^2}{4} - \frac{D^3}{8} - \dots)$
D. $(1 + \frac{D}{2} + \frac{D^2}{3} + \frac{D^3}{4} + \dots)$

B.
$$\left(1 + \frac{D}{2} + \frac{D^2}{4} + \frac{D^3}{8} + \ldots\right)$$

C.
$$\left(1 - \frac{D}{2} - \frac{D^2}{4} - \frac{D^3}{8} - \ldots\right)$$

D.
$$(1 + \frac{D}{2} + \frac{D^2}{3} + \frac{D^3}{4} + \dots)$$

ANSWER: B

29. The auxiliary equation for $(x^2D^2 + 4xD + 2)y = x \log x$ is

A.
$$m^2 + 2m + 3 = 0$$

B.
$$m^2 + 3m - 2 = 0$$

C.
$$m^2 + 3m + 2 = 0$$

D.
$$m^2 - 3m + 2 = 0$$

ANSWER: C

30. Using the transformation $z = \log x$, the differential equation $\frac{d^2y}{dx^2} + \frac{1}{x}\frac{dy}{dx} = \frac{12logx}{x^2}$ is transformed to a linear differential equation with constant coefficients as

A.
$$(D'^2 - 1)y = 12z$$

B.
$$(D'^2 + D' + 1)y = 12z$$

C.
$$(D'^2 + 1)y = 12z$$

D.
$$D'^2y = 12z$$

- 31. The curvature of a straight line is
 - A. 0
 - B. 1
 - C. -1
 - D. 2

ANSWER: A

32. The equation of the envelope of the family of curves $A\alpha^2 + B\alpha +$ C = 0, where α being a parameter is

A.
$$B^2 + 4AC = 0$$

$$B. B^2 - AC = 0$$

$$C. B^2 + AC = 0$$

$$D. B^2 - 4AC = 0$$

ANSWER: D

33. The radius of curvature in polar coordinates is

A.
$$\frac{(r^2 - r_1^2)^{3/2}}{r^2 + 2r_1^2 - rr_2}$$
B.
$$\frac{(r^2 + 2r_1^2)^{3/2}}{r^2 + 2r_1^2 - rr_2}$$
C.
$$\frac{(r^2 - 2r_1^2)^{3/2}}{r^2 + 2r_1^2 - rr_2}$$
D.
$$\frac{(r^2 + r_1^2)^{3/2}}{r^2 + 2r_1^2 - rr_2}$$

B.
$$\frac{(r^2+2r_1^2)^{3/2}}{r^2+2r_1^2-rr_2}$$

C.
$$\frac{(r^2-2r_1^2)^{3/2}}{r^2+2r_1^2-rr_2}$$

D.
$$\frac{(r^2 + r_1^2)^{3/2}}{r^2 + 2r_1^2 - rr_2}$$

- 34. The equation of circle of curvature at any point (x, y) with center of curvature (\bar{x}, \bar{y}) and radius of curvature ρ is
 - A. $(x + \bar{x})^2 + (y + \bar{y})^2 = \rho^2$
 - B. $(x \bar{x})^2 + (y \bar{y})^2 = \rho^2$
 - C. $(x \bar{x})^2 + (y + \bar{y})^2 = \rho^2$
 - D. $(x + \bar{x})^2 + (y \bar{y})^2 = \rho^2$

ANSWER: B

- 35. Evolute of a curve is the envelope of the _____ to that curve
 - A. tangent
 - B. locus
 - C. parallel
 - D. normals

ANSWER: D

- 36. The curvature of a circle is the reciprocal of its
 - A. radius
 - B. diameter
 - C. locus
 - D. tangent

- 37. The locus of centre of curvature is called
 - A. involute
 - B. evolute
 - C. envelope
 - D. space

ANSWER: B

- 38. The radius of curvature for $y = e^x$ at x = 0 is
 - A. $2\sqrt{2}$
 - B. 2
 - C. $\sqrt{2}$
 - D. $\frac{1}{\sqrt{2}}$

ANSWER: A

- 39. The value of $\Gamma^{\frac{1}{2}}$ is
 - A. $-\pi$
 - B. 2π
 - C. π
 - D. $\sqrt{\pi}$

40. The relation between Beta function and Gamma function is

A.
$$\beta(m,n) = \frac{\Gamma m}{\Gamma m + n}$$

B.
$$\beta(m,n) = \frac{\Gamma m \Gamma n}{\Gamma(m+n)}$$

C.
$$\beta(m,n) = \frac{\Gamma n}{\Gamma(m+n)}$$

D.
$$\beta(m,n) = \Gamma m \Gamma n$$

ANSWER: B

41. The sequence $a_n = 2^n$ is

- A. convergent
- B. divergent
- C. oscillating
- D. bounded

ANSWER: B

42. In the positive term series $\sum u_n$, if $\lim_{n\to\infty} n(\frac{u_n}{u_{n+1}}-1)=k$, then the series converges for

A.
$$k < 1$$

B.
$$k > 1$$

C.
$$k = 1$$

$$D. \ k \ge 1$$

43. $\lim_{n \to \infty} \frac{2^n - 2}{2^n + 1} =$

A. ∞

B. 0

C. 1

D. 2

ANSWER: C

- 44. In a positive series $\sum u_n$, if $\lim_{n\to\infty} (u_n)^{\frac{1}{n}} = \lambda$, then the series diverges for
 - A. $\lambda < 1$
 - B. $\lambda \ge 1$
 - C. $\lambda = 1$
 - D. $\lambda > 1$

ANSWER: D

- 45. An alternating series $u_1 u_2 + u_3 u_4 + \dots$ converges if $\lim_{n \to \infty} u_n = 0$ and
 - A. each term is numerically less than its preceding term
 - B. each term is numerically greater than its preceding term
 - C. conditionally Convergent
 - D. absolutely Convergent

ANSWER: A

- 46. The series $1 \frac{1}{2^2} + \frac{1}{3^2} \frac{1}{4^2} + \frac{1}{5^2} \dots$ is
 - A. divergent
 - B. convergent
 - C. absolutely divergent
 - D. absolutely convergent

47. $\lim_{n \to \infty} \frac{n^2}{3^n} \times \frac{3^{n+1}}{(n+1)^2} =$

- A. 3
- B. 4
- C. 5
- D. 6

ANSWER: A

48. The series $\frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \dots$ converges for

- A. p < 1
- B. p = 1
- C. p > 1
- D. $p \ge 1$

ANSWER: C

49. The series $1 + \frac{2!}{2^2} + \frac{3!}{3^3} + \frac{4!}{4^4} + \dots$ is

- A. convergent
- B. absolutely convergent
- C. divergent
- D. conditionally convergent

50. If $u_n = (\log n)^{-2n}$, then $\lim_{n \to \infty} (u_n)^{\frac{1}{n}} =$

- A. ∞
- B. 0
- C. 1
- D. 2