Gerichtete Graphen

Nico Pistel

Diskrete Mathematik und Stochastik, 2019

Fachbereich Wirtschaft und Informationstechnik Westfälische Hochschule Bocholt

Outline

Begriffe & Definitionen

Topologisches Sortieren

Kahn's Algorithmus

Wege in Digraphen

Wege als transitiver Abschluss der Kantenrelation

Warshall's Algorithmus

Kürzeste Wege

Dijkstra's Algorithmus

 Ein gerichteter Graph (Directed Graph - Digraph) ist ein Graph, wobei die Kanten mit einer Richtung ausgezeichnet sind

- Ein gerichteter Graph (**Di**rected **Graph** *Digraph*) ist ein Graph, wobei die Kanten mit einer Richtung ausgezeichnet sind
- Unterschied zum ungerichteten Graphen: Kantenrelation E von G=(V,E) ist nicht zwingend symmetrisch

- Ein gerichteter Graph (Directed Graph Digraph) ist ein Graph, wobei die Kanten mit einer Richtung ausgezeichnet sind
- Unterschied zum ungerichteten Graphen: Kantenrelation E von G=(V,E) ist nicht zwingend symmetrisch
 - ullet Adjazenzmatrix ${f M}$ von G ist nicht zwingend symmetrisch

- Ein gerichteter Graph (Directed Graph Digraph) ist ein Graph, wobei die Kanten mit einer Richtung ausgezeichnet sind
- Unterschied zum ungerichteten Graphen: Kantenrelation E von G=(V,E) ist nicht zwingend symmetrisch
 - ullet Adjazenzmatrix ${f M}$ von G ist nicht zwingend symmetrisch
- Die Richtung der gerichtete Kanten werden durch Pfeile gekennzeichnet

• Ein schlichter (Di-)Graph hat keine Schlingen und keine mehrfachen gerichteten Kanten

- Ein schlichter (Di-)Graph hat keine Schlingen und keine mehrfachen gerichteten Kanten
- Anzahl der ausgehenden Kanten von einem Knoten v ist der Ausgangsgrad (Outdegree) von v: $\deg^+(v)$

Schlichte (und natürlich ENDLICHE) Digraphen werden betrachtet

- Ein schlichter (Di-)Graph hat keine Schlingen und keine mehrfachen gerichteten Kanten
- Anzahl der ausgehenden Kanten von einem Knoten v ist der Ausgangsgrad (*Outdegree*) von v: $\deg^+(v)$
- Anzahl der eingehenden Kanten an einem Knoten v ist der Eingangsgrad (Indegree) von v: $\deg^-(v)$

- Ein schlichter (Di-)Graph hat keine Schlingen und keine mehrfachen gerichteten Kanten
- Anzahl der ausgehenden Kanten von einem Knoten v ist der Ausgangsgrad (*Outdegree*) von v: $\deg^+(v)$
- Anzahl der eingehenden Kanten an einem Knoten v ist der Eingangsgrad (*Indegree*) von v: $\deg^-(v)$

Lemma

$$\sum_{v \in V} \deg^+(v) = \sum_{v \in V} \deg^-(v) = |E|$$

• Ein Digraph ist (schwach) zusammenhängend, wenn der zugrunde liegende (ungerichtete) Graph zusammenhängend ist

- Ein Digraph ist (schwach) zusammenhängend, wenn der zugrunde liegende (ungerichtete) Graph zusammenhängend ist
 - \bullet Er ist stark zusammenhängend, wenn es zu jeden Knotenpaar (u,v) einen Weg von u nach v gibt und einen Weg von v nach u

 $\bullet \ (u,v) \in E \Longrightarrow u \text{ ist ein Vorgänger von } v$

- $(u, v) \in E \Longrightarrow u$ ist ein Vorgänger von v
- Ein Digraph ohne Zyklen heißt azyklischer Digraph

- $(u, v) \in E \Longrightarrow u$ ist ein Vorgänger von v
- Ein Digraph ohne Zyklen heißt azyklischer Digraph
 - Directed Acyclic Graph (DAG)

- $(u, v) \in E \Longrightarrow u$ ist ein Vorgänger von v
- Ein Digraph ohne Zyklen heißt azyklischer Digraph
 - Directed Acyclic Graph (DAG)
 - Bei Problemen der Aufgabenplanung heißt ein DAG auch ein PERT-Chart
 - Program Evaluation and Review Technique

• Beispiel: Aufgaben sollen abgearbeitet werden

- Beispiel: Aufgaben sollen abgearbeitet werden
 - Problem: Aufgaben setzen ggf. voraus, dass andere Aufgaben bereits erledigt wurden

- Beispiel: Aufgaben sollen abgearbeitet werden
 - Problem: Aufgaben setzen ggf. voraus, dass andere Aufgaben bereits erledigt wurden
 - Motivation: Scheduling, Build-Prozesse

- Beispiel: Aufgaben sollen abgearbeitet werden
 - Problem: Aufgaben setzen ggf. voraus, dass andere Aufgaben bereits erledigt wurden
 - Motivation: Scheduling, Build-Prozesse
- Problemstellung lässt sich als DAG modellieren

- Beispiel: Aufgaben sollen abgearbeitet werden
 - Problem: Aufgaben setzen ggf. voraus, dass andere Aufgaben bereits erledigt wurden
 - Motivation: Scheduling, Build-Prozesse
- Problemstellung lässt sich als DAG modellieren
 - Warum azyklisch und nicht als allgemeiner (gerichteter) Graph?

- Beispiel: Aufgaben sollen abgearbeitet werden
 - Problem: Aufgaben setzen ggf. voraus, dass andere Aufgaben bereits erledigt wurden
 - Motivation: Scheduling, Build-Prozesse
- Problemstellung lässt sich als DAG modellieren
 - Warum azyklisch und nicht als allgemeiner (gerichteter) Graph?
 - Zyklen deuten auf Aufgaben hin, welche sich selber zur Abarbeitung voraussetzen
 - Solche Aufgaben könnten nie abgearbeitet werden

- Gesucht ist eine Anordnung, die eine Reihenfolge vorgibt, in welcher die Aufgaben abgearbeitet werden können
 - So, dass jede Aufgabe direkt bearbeitet werden kann (alle nötigen Vorausetzungen wurden zuvor erfüllt)

- Gesucht ist eine Anordnung, die eine Reihenfolge vorgibt, in welcher die Aufgaben abgearbeitet werden können
 - So, dass jede Aufgabe direkt bearbeitet werden kann (alle nötigen Vorausetzungen wurden zuvor erfüllt)
- Eine topologische Sortierung liefert eine solche *konsistente*Anordnung der Knoten

- Gesucht ist eine Anordnung, die eine Reihenfolge vorgibt, in welcher die Aufgaben abgearbeitet werden können
 - So, dass jede Aufgabe direkt bearbeitet werden kann (alle nötigen Vorausetzungen wurden zuvor erfüllt)
- Eine topologische Sortierung liefert eine solche *konsistente*Anordnung der Knoten
- ullet Für alle Kanten $(u,v)\in E$ gilt, dass u in der Anordnung stets vor v kommt

Beispiel: Topologisches Sortieren

Beispiel: Topologisches Sortieren

• Ein möglicher Algorithmus zur topologischen Sortierung ist Kahn's Algorithmus

- Ein möglicher Algorithmus zur topologischen Sortierung ist Kahn's Algorithmus
- ullet Wechsel der Datenstruktur: Für jeden Knoten v wird die Menge seiner Vorgänger A(v) betrachtet

- Ein möglicher Algorithmus zur topologischen Sortierung ist Kahn's Algorithmus
- Wechsel der Datenstruktur: Für jeden Knoten v wird die Menge seiner Vorgänger A(v) betrachtet
- Anordnung wird intuitiv erzeugt: In jedem Schritt wird ein Knoten ausgewählt, welcher direkt abgearbeitet werden kann (mögliche Vorgänger sind bereits in der Anordnung vorhanden)

- Ein möglicher Algorithmus zur topologischen Sortierung ist Kahn's Algorithmus
- Wechsel der Datenstruktur: Für jeden Knoten v wird die Menge seiner Vorgänger A(v) betrachtet
- Anordnung wird intuitiv erzeugt: In jedem Schritt wird ein Knoten ausgewählt, welcher direkt abgearbeitet werden kann (mögliche Vorgänger sind bereits in der Anordnung vorhanden)
- Wiederholung bis alle Knoten in der Anordnung vorhanden sind

- Ein möglicher Algorithmus zur topologischen Sortierung ist Kahn's Algorithmus
- Wechsel der Datenstruktur: Für jeden Knoten v wird die Menge seiner Vorgänger A(v) betrachtet
- Anordnung wird intuitiv erzeugt: In jedem Schritt wird ein Knoten ausgewählt, welcher direkt abgearbeitet werden kann (mögliche Vorgänger sind bereits in der Anordnung vorhanden)
- Wiederholung bis alle Knoten in der Anordnung vorhanden sind
- Es lässt sich immer (mindestens) ein solch ein Knoten auswählen
 - Sonst ist ein Zyklus im Graph vorhanden

- Ein möglicher Algorithmus zur topologischen Sortierung ist Kahn's Algorithmus
- Wechsel der Datenstruktur: Für jeden Knoten v wird die Menge seiner Vorgänger A(v) betrachtet
- Anordnung wird intuitiv erzeugt: In jedem Schritt wird ein Knoten ausgewählt, welcher direkt abgearbeitet werden kann (mögliche Vorgänger sind bereits in der Anordnung vorhanden)
- Wiederholung bis alle Knoten in der Anordnung vorhanden sind
- Es lässt sich immer (mindestens) ein solch ein Knoten auswählen
 - Sonst ist ein Zyklus im Graph vorhanden
- Anordnung muss nicht eindeutig sein
 - Es können in einem Schritt mehrere Knoten zur Auswahl stehen

Beispiel: Kahn's Algorithmus

i	v	A(v)
	Α	
	В	
	С	
	D	
	Ε	
	F	
	G	
	Н	

i	v	A(v)
	Α	{H}
	В	Ø
	С	Ø
	D	Ø
	Ε	$\{B,D\}$
	F	$\{E,H\}$
	G	$\{B,H\}$
	Н	$\{C,D\}$

i	v	A(v)
	Α	{H}
	В	Ø
	C	Ø
	D	Ø
	Ε	$\{B,D\}$
	F	$\{E,H\}$
	G	$\{B,H\}$
	Н	$\{C,D\}$

i	v	A(v)
	Α	{H}
1	В	Ø
	C	Ø
	D	Ø
	Ε	$\{B,D\}$
	F	$\{E,H\}$
	G	$\{B,H\}$
	Н	$\{C,D\}$

i	v	A(v)
	Α	{H}
1	В	Ø
	C	Ø
	D	Ø
	Ε	{Ø, D}
	F	{E, H}
	G	{Ø, H}
	Н	{C, D}

A(v) $\{H\}$ Ø $\{\not\! B,D\}$ $\{E,H\}$ $\{\mathcal{B}, \mathsf{H}\}$ $\{\mathsf{C},\mathsf{D}\}$

BC

R	

i	v	A(v)
	Α	{H}
1	В	Ø
2	C	Ø
3	D	Ø
	Ε	$\{ \not\! B, \not\!\! D' \}$
	F	$\{E,H\}$
	G	$\{\not\! B,H\}$
	Н	$\{\mathcal{C},\mathcal{D}\}$

		4()
\underline{i}	v	A(v)
	Α	{H}
1	В	Ø
2	C	Ø
3	D	Ø
4	Е	$\{\mathcal{B},\mathcal{D}\}$
	F	$\{E,H\}$
	G	$\{\not\! B,H\}$
	Н	$\{\mathscr{C}, \not\!\!D'\}$

i	v	A(v)
	Α	{H}
1	В	Ø
2	C	Ø
3	D	Ø
4	Ε	$\{ \not\! B, \not\!\! D' \}$
	F	$\{\cancel{E}, H\}$
	G	$\{ \not \! B, H \}$
	Н	$\{\mathcal{L},\mathcal{D}'\}$

i	v	A(v)
	Α	{H}
1	В	Ø
2	C	Ø
3	D	Ø
4	Ε	$\{\not\! B,\not\!\! D'\}$
	F	$\{\cancel{E}, H\}$
	G	$\{\not\! B,H\}$
5	Н	$\{\mathcal{L},\mathcal{D}\}$

		1
i	v	A(v)
	Α	{ M }
1	В	Ø
2	C	Ø
3	D	Ø
4	Ε	$\{ \not\! B, \not\!\! D' \}$
	F	$\{ \cancel{E}, \cancel{H} \}$
	G	$\{\mathcal{B},\mathcal{H}\}$
5	Н	$\{\mathcal{C}, \not \!\!\! D\}$

		4.7
i	v	A(v)
	Α	{ M }
1	В	Ø
2	C	Ø
3	D	Ø
4	Ε	$\{\not\! B,\not\!\! D'\}$
	F	$\{\cancel{E},\cancel{H}\}$
	G	$\{\mathbb{B},\mathbb{H}\}$
5	Н	$\{\mathscr{C}, \not\!\!D'\}$

i	v	A(v)
6	Α	{M}
1	В	Ø
2	C	Ø
3	D	Ø
4	Ε	$\{ \not\! B, \not\!\! D \}$
	F	$\{ \cancel{E}, \cancel{H} \}$
	G	$\{\mathcal{B},\mathcal{H}\}$
5	Н	$\{\mathcal{L},\mathcal{D}\}$

i	v	A(v)
6	Α	{ M }
1	В	Ø
2	C	Ø
3	D	Ø
4	Ε	$\{ \not\! B, \not\!\! D \}$
	F	$\{E, H\}$
	G	$\{\mathbb{B},\mathbb{H}\}$
5	Н	$\{\mathcal{C},\mathcal{D}'\}$

i	v	A(v)
6	Α	{ M }
1	В	Ø
2	C	Ø
3	D	Ø
4	Ε	$\{\cancel{B},\cancel{D}'\}$
7	F	$\{ \cancel{E}, \cancel{H} \}$
	G	$\{ \cancel{B}, \cancel{H} \}$
5	Н	$\{\mathcal{C}, \not \!\!\! D\}$

i	v	A(v)
6	Α	{ M }
1	В	Ø
2	C	Ø
3	D	Ø
4	Ε	$\{ \not\! B, \not\!\! D \}$
7	F	$\{\mathcal{E},\mathcal{H}\}$
	G	$\{\mathcal{B},\mathcal{H}\}$
5	Н	$\{\mathcal{C},\mathcal{D}'\}$

i	v	A(v)
6	Α	$\{\mathcal{H}\}$
1	В	Ø
2	С	Ø
3	D	Ø
4	Ε	$\{ \not\! B, \not\!\! D \}$
7	F	$\{ \cancel{E}, \cancel{H} \}$
8	G	$\{\mathcal{B},\mathcal{H}\}$
5	Н	$\{\mathscr{C}, \not \!\!\! D'\}$

• Existenz von Wegen zwischen beliebigen Knoten

- Existenz von Wegen zwischen beliebigen Knoten
- $\bullet \ \mathsf{Adjazenzmatrix} \ \mathbf{M} \longrightarrow \mathsf{Erreichbarkeitsmatrix} \ \mathbf{M}^*$

- Existenz von Wegen zwischen beliebigen Knoten
- ullet Adjazenzmatrix $\mathbf{M} \longrightarrow \mathsf{Erreichbarkeitsmatrix} \ \mathbf{M}^*$
- Kantenrelation $E \longrightarrow \text{transitiver Abschluss } E^*$

Nicht Path sondern Walk!

ullet Kantenrelation E: Menge von Wegen der Länge 1 zwischen Knoten

- \bullet Kantenrelation $E \colon$ Menge von Wegen der Länge 1zwischen Knoten
- Menge von Wegen der Länge 2 als Komposition von E mit sich selber:

Sich seiber.
$$E \circ E = \{(v_1, v_2) \in V^2 | \exists u \in V : (v_1, u) \in E \land (u, v_2) \in E \}$$

- \bullet Kantenrelation $E \colon$ Menge von Wegen der Länge 1zwischen Knoten
- \bullet Menge von Wegen der Länge 2 als Komposition von E mit sich selber:

$$E \circ E = \{ (v_1, v_2) \in V^2 | \exists u \in V : (v_1, u) \in E \land (u, v_2) \in E \}$$

ullet Menge von Wegen einer Länge k: $\underbrace{E \circ \cdots \circ E}_{k \text{ mal}}$

- \bullet Kantenrelation $E\colon$ Menge von Wegen der Länge 1zwischen Knoten
- \bullet Menge von Wegen der Länge 2 als Komposition von E mit sich selber:

$$E \circ E = \{(v_1, v_2) \in V^2 | \exists u \in V : (v_1, u) \in E \land (u, v_2) \in E\}$$

- Menge von Wegen einer Länge k: $\underbrace{E \circ \cdots \circ E}_{k \text{ mal}}$
- Transitiver Abschluss als Vereinigung dieser Mengen:

$$E^* = E \cup E \circ E \cup \dots \cup \underbrace{E \circ \dots \circ E}_{? \text{ mal}}$$

- \bullet Kantenrelation $E \colon$ Menge von Wegen der Länge 1zwischen Knoten
- ullet Menge von Wegen der Länge 2 als Komposition von E mit sich selber:

$$E \circ E = \{(v_1, v_2) \in V^2 | \exists u \in V : (v_1, u) \in E \land (u, v_2) \in E\}$$

- ullet Menge von Wegen einer Länge $k \colon \underbrace{E \circ \cdots \circ E}_{k \text{ mal}}$
- Transitiver Abschluss als Vereinigung dieser Mengen:

$$E^* = E \cup E \circ E \cup \dots \cup \underbrace{E \circ \dots \circ E}_{n \text{ mal}}$$

ullet Komposition von E als logisches Matrixprodukt der Adjazenzmatrix ${f M}$

- ullet Komposition von E als logisches Matrixprodukt der Adjazenzmatrix ${f M}$
- ullet Weitere Komposition durch das Potenzieren von ${f M}$

- Komposition von E als logisches Matrixprodukt der Adjazenzmatrix ${\bf M}$
- Weitere Komposition durch das Potenzieren von M
- Vereinigen der Mengen durch das logische **oder** der Matrizen
- Logisches **oder** zweier Matrizen wird komponentenweise gebildet
 - $\bullet \ (\mathbf{A} \vee \mathbf{B})_{ij} = \mathbf{A}_{ij} \vee \mathbf{B}_{ij}$

- Komposition von E als logisches Matrixprodukt der Adjazenzmatrix ${\bf M}$
- Weitere Komposition durch das Potenzieren von M
- Vereinigen der Mengen durch das logische **oder** der Matrizen
- Logisches **oder** zweier Matrizen wird komponentenweise gebildet
 - $\bullet \ (\mathbf{A} \vee \mathbf{B})_{ij} = \mathbf{A}_{ij} \vee \mathbf{B}_{ij}$

Berechnung der Erreichbarkeitsmatrix M*

$$\mathbf{M}^* = \mathbf{M} \vee \mathbf{M}^2 \vee \dots \vee \mathbf{M}^n$$

Beispiel: Potenzieren der Adjazenzmatrix

$$\begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 0 & 0 \\ 1 & 0 \end{bmatrix} \quad \mathbf{M}^2 = \begin{bmatrix} A & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{array}{c} A \\ B \\ C \\ D \end{array} \left[\begin{array}{cccccc} 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right.$$

$$\mathbf{M}^* = \begin{bmatrix} A & B & C & D \\ A & 1 & 0 & 1 & 1 \\ B & 1 & 0 & 1 & 1 \\ C & 1 & 0 & 1 & 1 \end{bmatrix}$$

- Matrixmultiplikation ist aufwändig
 - Berechnen der Potenzen bei Graphen mit vielen Knoten ist problematisch

- Matrixmultiplikation ist aufwändig
 - Berechnen der Potenzen bei Graphen mit vielen Knoten ist problematisch
- ullet Warshall ermittelt ${f M}^*$ in Worst-Case $\Theta(n^3)$ Zeit
- Warshall's Algorithmus arbeitet *In-Place*
 - ullet \mathbf{M} wird iterativ in \mathbf{M}^* überführt

- Matrixmultiplikation ist aufwändig
 - Berechnen der Potenzen bei Graphen mit vielen Knoten ist problematisch
- ullet Warshall ermittelt ${f M}^*$ in Worst-Case $\Theta(n^3)$ Zeit
- Warshall's Algorithmus arbeitet In-Place
 - ullet M wird iterativ in \mathbf{M}^* überführt
- Warshall erzeugt Matrizen $\mathbf{W}_0, \mathbf{W}_1, \dots, \mathbf{W}_n$
 - ullet Wobei $\mathbf{W}_0 = \mathbf{M}$ und $\mathbf{W}_n = \mathbf{M}^*$
- $\mathbf{W}_k[i,j] = 1 \iff$ Es existiert ein Weg von v_i nach v_j , wobei alle Zwischenknoten $\in \{v_1, v_2, \dots, v_k\}$ sind

Pseudocode: Warshall's Algorithmus

```
Algorithm 1 Warshall's Algorithmus
```

```
1: function Warshall(M)
       W \leftarrow M
       for k = 1 to n do
          for i = 1 to n do
             if W[i,k] then
5:
                 for j = 1 to n do
                    W[i,j] \leftarrow W[i,j] \lor W[k,j]
                 end for
              end if
          end for
10:
       end for
11:
       return W
12:
13: end function
```

Wa

$$\mathbf{W}_4 = egin{pmatrix} \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{B} & \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{C} & \mathsf{D} & \mathsf{D} & \mathsf{D} \\ \mathsf{D} & \mathsf{D} & \mathsf{D} & \mathsf{D} \\ \end{smallmatrix}$$

$$\mathbf{W}_{0} = \begin{bmatrix} A & B & C & D \\ B & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{W}_{1} = \begin{bmatrix} A & B & C & D \\ B & C & D \\ D & D \end{bmatrix}$$

$$\mathbf{W}_{2} = \begin{bmatrix} A & B & C & D \\ B & C & D \\ D & D & D \end{bmatrix} \quad \mathbf{W}_{3} = \begin{bmatrix} A & B & C & D \\ B & C & D \\ D & D & D \end{bmatrix}$$

$$\mathbf{W}_4 = egin{pmatrix} \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{B} & \mathsf{C} & \mathsf{C} \\ \mathsf{C} & \mathsf{D} & \mathsf{C} & \mathsf{C} \\ \mathsf{D} & \mathsf{C} & \mathsf{C} & \mathsf{C} \\ \mathsf{C} \mathsf{C} & \mathsf{C} \\ \mathsf{C} & \mathsf{C} & \mathsf{C} \\ \mathsf{C} & \mathsf{C} & \mathsf{C} \\ \mathsf{C} & \mathsf{C} \\ \mathsf{C} & \mathsf{C} & \mathsf{C} \\ \mathsf{C} & \mathsf{C} & \mathsf{C} \\ \mathsf{C} \\ \mathsf{C} & \mathsf{C} \\ \mathsf{C} & \mathsf{C} \\ \mathsf{C} \\ \mathsf{C} & \mathsf{C} \\ \mathsf{C} \\ \mathsf{C} & \mathsf{C} \\ \mathsf{C} \\ \mathsf{C} \\ \mathsf{C} \\ \mathsf{C} & \mathsf{C} \\ \mathsf{C}$$

$$\mathbf{W}_4 = egin{pmatrix} \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{C} & \mathsf{D} & \mathsf{C} & \mathsf{D} \\ \mathsf{D} & \mathsf{C} & \mathsf{D} & \mathsf{D} \\ \mathsf{D} & \mathsf{C} & \mathsf{D} & \mathsf{D} \\ \mathsf{D} & \mathsf{D} \mathsf{D} & \mathsf{D} \\ \mathsf{D} & \mathsf{D} & \mathsf{D} \\ \mathsf{D} \\ \mathsf{D} & \mathsf{D} \\ \mathsf{D} & \mathsf{D} \\ \mathsf{D}$$

$$\mathbf{W}_4 = egin{bmatrix} \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{C} & \mathsf{D} & \mathsf{C} \end{bmatrix}$$

$$\mathbf{W}_4 = egin{bmatrix} \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{C} & \mathsf{D} & \mathsf{D} \end{bmatrix}$$

$$\mathbf{W}_4 = egin{pmatrix} \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{C} & \mathsf{D} & \mathsf{C} & \mathsf{D} \\ \mathsf{D} & \mathsf{C} & \mathsf{D} & \mathsf{D} \\ \mathsf{D} & \mathsf{C} & \mathsf{D} & \mathsf{D} \\ \mathsf{D} & \mathsf{D} \mathsf{D} & \mathsf{D} \\ \mathsf{D} & \mathsf{D} & \mathsf{D} \\ \mathsf{D} \\ \mathsf{D} & \mathsf{D} \\ \mathsf{D} & \mathsf{D} \\ \mathsf{D}$$

$$\mathbf{W}_{0} = \begin{bmatrix} A & B & C & D \\ A & \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{W}_{1} = \begin{bmatrix} A & B & C & D \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{W}_{2} = \begin{bmatrix} A & B & C & D \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{W}_{3} = \begin{bmatrix} A & A & B & C & D \\ A & B & C & D \\ B & C & D \end{bmatrix}$$

$$\mathbf{W}_4 = egin{pmatrix} \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{B} & \mathsf{C} & \mathsf{C} \\ \mathsf{C} & \mathsf{D} & \mathsf{C} \end{bmatrix}$$

$$\mathbf{W}_0 = \begin{bmatrix} A & B & C & D \\ B & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{W}_1 = \begin{bmatrix} A & B & C & D \\ A & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{W}_2 = \begin{bmatrix} A & A & B & C & D \\ B & C & D & A & B & C & D \\ B & C & D & A & B & C & D \end{bmatrix} \quad \mathbf{W}_3 = \begin{bmatrix} A & A & B & C & D \\ B & C & D & A & B & C & D \\ B & C & D & B & C & D \end{bmatrix}$$

$$\mathbf{W}_4 = egin{pmatrix} \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \ \mathsf{B} & \mathsf{C} & \mathsf{D} \ \mathsf{C} & \mathsf{D} \ \mathsf{D} & \mathsf{C} & \mathsf{D} \ \mathsf{D} & \mathsf{C} & \mathsf{D} \ \mathsf{D} \mathsf{D}$$

$$\mathbf{W}_{0} = \begin{bmatrix} A & B & C & D \\ B & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{W}_{1} = \begin{bmatrix} A & B & C & D \\ A & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{W}_{2} = \begin{bmatrix} A & B & C & D \\ B & C & D & A & B & C & D \\ C & D & A & B & C & D \end{bmatrix} \quad \mathbf{W}_{3} = \begin{bmatrix} A & B & C & D \\ B & C & D & A & B & C & D \\ A & B & C & D & A & B & C & D \end{bmatrix}$$

$$\mathbf{W}_4 = egin{pmatrix} \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \ \mathsf{B} & \mathsf{C} & \mathsf{D} \ \mathsf{C} & \mathsf{D} \ \mathsf{C} & \mathsf{D} \ \mathsf{C} & \mathsf{C} \ \mathsf{D} \ \mathsf{C} & \mathsf{C} \ \mathsf{D} \ \mathsf{C} \ \mathsf{D} \ \mathsf{C} \ \mathsf{D} \ \mathsf{C} \ \mathsf{C} \ \mathsf{C} \ \mathsf{D} \ \mathsf{C} \ \mathsf{C} \ \mathsf{D} \ \mathsf{C} \ \mathsf{C} \ \mathsf{D} \ \mathsf{C} \ \mathsf{C}$$

$$\mathbf{W}_{0} = \begin{bmatrix} A & B & C & D \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ D & D & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{W}_{1} = \begin{bmatrix} A & B & C & D \\ 0 & \mathbf{0} & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ D & 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{W}_{2} = \begin{bmatrix} A & B & C & D \\ B & 1 & 0 & 1 & 1 \\ A & B & C & D \\ A & 0 & 0 & 0 & 1 \\ C & D & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{W}_{3} = \begin{bmatrix} A & B & C & D \\ B & 1 & 0 & 1 & 1 \\ D & 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{W}_{3} = \begin{bmatrix} A & B & C & D \\ B & 1 & 0 & 1 & 1 \\ D & 0 & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{W}_{3} = \begin{bmatrix} A & B & C & D \\ B & 1 & 0 & 1 & 0 \\ D & 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{W}_4 = egin{pmatrix} \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{C} & \mathsf{D} & \mathsf{C} \end{bmatrix}$$

$$\mathbf{W}_{0} = \begin{bmatrix} A & B & C & D \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ D & D & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{W}_{1} = \begin{bmatrix} A & B & C & D \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ D & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{W}_{2} = \begin{bmatrix} A & B & C & D \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{W}_{3} = \begin{bmatrix} A & B & C & D \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$W_4=egin{array}{c} \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \ \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \ \mathsf{C} & \mathsf{D} \ \mathsf{D} & \mathsf{C} & \mathsf{D} \ \mathsf{D} & \mathsf{D} \end{array}$$

$$\mathbf{W}_{0} = \begin{bmatrix} A & B & C & D \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{W}_{1} = \begin{bmatrix} A & B & C & D \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{W}_{2} = \begin{bmatrix} A & B & C & D \\ B & 1 & 0 & 0 & 1 \\ A & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ D & 0 & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{W}_{3} = \begin{bmatrix} A & B & C & D \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$W_4=egin{pmatrix} \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \ \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \ \mathsf{C} & \mathsf{C} & \mathsf{D} \ \mathsf{D} & \mathsf{D} \ \end{smallmatrix}$$

$$\mathbf{W}_{0} = \begin{bmatrix} A & B & C & D \\ A & 0 & 0 & 0 & 1 \\ B & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ D & 0 & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{W}_{1} = \begin{bmatrix} A & B & C & D \\ A & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ D & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{W}_{2} = \begin{bmatrix} A & B & C & D \\ B & 1 & 0 & 1 & 1 \\ A & 0 & 0 & 1 & 0 \\ C & D & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{W}_{3} = \begin{bmatrix} A & B & C & D \\ B & 1 & 0 & 1 & 1 \\ A & 0 & 0 & 1 & 0 \\ C & D & 0 & 0 & 1 \\ D & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$N_4=egin{array}{c} \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \ \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \ \mathsf{C} & \mathsf{C} & \mathsf{D} \ \mathsf{D} & \mathsf{C} & \mathsf{D} \ \mathsf{D} & \mathsf{D} \ \end{smallmatrix}$$

$$\mathbf{W}_{0} = \begin{bmatrix} A & B & C & D \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{W}_{1} = \begin{bmatrix} A & B & C & D \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{W}_{2} = \begin{bmatrix} A & B & C & D \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{W}_{3} = \begin{bmatrix} A & B & C & D \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{W}_{3} = \begin{bmatrix} A & B & C & D \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{W}_4 = egin{pmatrix} \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{C} & \mathsf{D} & \mathsf{C} \end{pmatrix}$$

$$\mathbf{W}_{0} = \begin{bmatrix} A & B & C & D \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ D & D & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{W}_{1} = \begin{bmatrix} A & B & C & D \\ A & B & C & D \\ B & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ D & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{W}_{3} = \begin{bmatrix} A & B & C & D \\ A & D & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ D & D & D & D \end{bmatrix}$$

$$\mathbf{W}_4 = egin{pmatrix} \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{C} & \mathsf{D} & \mathsf{D} \end{bmatrix}$$

$$\mathbf{W}_4 = egin{pmatrix} \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{C} & \mathsf{D} & \mathsf{D} \end{bmatrix}$$

$$\mathbf{W}_{0} = \begin{bmatrix} A & B & C & D \\ B & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ D & D & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{W}_{1} = \begin{bmatrix} A & B & C & D \\ A & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ D & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{W}_{2} = \begin{bmatrix} A & B & C & D \\ A & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{W}_{3} = \begin{bmatrix} A & B & C & D \\ B & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ D & 0 & 1 & 1 \end{bmatrix}$$

$$\mathbf{W}_4 = egin{pmatrix} \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \ \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \ \mathsf{C} & \mathsf{C} & \mathsf{C} \ \mathsf{D} & \mathsf{C} & \mathsf{D} \ \mathsf{C}$$

$$\mathbf{W}_4 = egin{pmatrix} \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{A} & \mathsf{B} & \mathsf{C} \\ \mathsf{C} & \mathsf{D} & \mathsf{C} \end{bmatrix}$$

$$\mathbf{W}_0 = \begin{bmatrix} A & B & C & D \\ A & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ D & D & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{W}_1 = \begin{bmatrix} A & B & C & D \\ A & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ D & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{W}_2 = \begin{bmatrix} A & B & C & D \\ A & 0 & 0 & 0 & 1 \\ A & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ D & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{W}_3 = \begin{bmatrix} A & B & C & D \\ A & 0 & 0 & 0 & 1 \\ A & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ D & 0 & 1 & 1 \end{bmatrix}$$

$$\mathbf{W}_4 = egin{pmatrix} \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{C} & \mathsf{D} & \mathsf{D} \end{bmatrix}$$

$$\mathbf{W}_4 = \begin{bmatrix} A & B & C & D \\ A & B & C & D \end{bmatrix}$$

$$\mathbf{W}_{0} = \begin{bmatrix} A & B & C & D \\ A & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{W}_{1} = \begin{bmatrix} A & B & C \\ A & 0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{W}_{2} = \begin{bmatrix} A & B & C & D \\ B & 1 & 0 & 1 \\ A & B & C & D \\ A & B & C \\ A & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{W}_{3} = \begin{bmatrix} A & B & C \\ A & 0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{W}_{4} = \begin{bmatrix} A & B & C & D \\ A & 1 & 0 & 1 & 1 \\ C & D & D \end{bmatrix}$$

$$\mathbf{W}_{0} = \begin{bmatrix} A & B & C & D \\ A & 0 & 0 & 0 & 1 \\ B & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{W}_{1} = \begin{bmatrix} A & B & C & D \\ B & C & D & D \\ D & D & D & D \end{bmatrix}$$

$$\mathbf{W}_{2} = \begin{bmatrix} A & B & C & D \\ A & B & C & D \\ A & 0 & 0 & 1 & 1 \\ C & D & D & D \end{bmatrix} \quad \mathbf{W}_{3} = \begin{bmatrix} A & A & B & C & D \\ B & C & D & D \\ D & D & D & D \end{bmatrix}$$

$$W_4 = egin{array}{c} \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{A} & \mathsf{D} & \mathsf{D} & \mathsf{D} \end{array}$$

$$\mathbf{W}_{0} = \begin{bmatrix} A & B & C & D \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{W}_{1} = \begin{bmatrix} A & B & C & D \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{W}_{3} = \begin{bmatrix} A & B & C & D \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ D & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$W_4 = egin{array}{c|cccc} \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{A} & 1 & 0 & 1 & 1 \\ \mathsf{C} & 1 & 0 & 1 & 1 \\ \mathsf{C} & \mathsf{C} & \mathsf{C} & \mathsf{C} \end{array}$$

$$\mathbf{W}_{0} = \begin{bmatrix} A & B & C & D \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{W}_{1} = \begin{bmatrix} A \\ B \\ C \\ D \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

$$\mathbf{W}_{2} = \begin{bmatrix} A & B & C & D \\ C & 0 & 0 & 1 \end{bmatrix} \quad \mathbf{W}_{3} = \begin{bmatrix} A \\ B \\ C \\ D \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \\ D \end{bmatrix}$$

$$V_4 = egin{pmatrix} \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{A} & \mathsf{I} & 0 & 1 & 1 \\ \mathsf{C} & \mathsf{D} & \mathsf{I} & 0 & 1 & 1 \\ \mathsf{C} & \mathsf{D} & \mathsf{D} & \mathsf{D} & \mathsf{D} \\ \mathsf{C} & \mathsf{D} & \mathsf{D} & \mathsf{D} & \mathsf{D} \\ \mathsf{C} & \mathsf{D} & \mathsf{D} & \mathsf{D} & \mathsf{D} \\ \mathsf{C} & \mathsf{D} & \mathsf{D} & \mathsf{D} & \mathsf{D} \\ \mathsf{C} & \mathsf{D} & \mathsf{D} & \mathsf{D} & \mathsf{D} \\ \mathsf{C} & \mathsf{D} & \mathsf{D} & \mathsf{D} & \mathsf{D} \\ \mathsf{C} & \mathsf{D} & \mathsf{D} & \mathsf{D} & \mathsf{D} \\ \mathsf{C} & \mathsf{D} & \mathsf{D} & \mathsf{D} & \mathsf{D} \\ \mathsf{C} & \mathsf{D} & \mathsf{D} & \mathsf{D} & \mathsf{D} \\ \mathsf{C} & \mathsf{D} & \mathsf{D} & \mathsf{D} & \mathsf{D} \\ \mathsf{C} & \mathsf{D} & \mathsf{D} & \mathsf{D} & \mathsf{D} \\ \mathsf{C} & \mathsf{D} & \mathsf{D} & \mathsf{D} & \mathsf{D} \\ \mathsf{C} & \mathsf{D} & \mathsf{D} & \mathsf{D} & \mathsf{D} \\ \mathsf{C} & \mathsf{D} & \mathsf{D} & \mathsf{D} & \mathsf{D} \\ \mathsf{C} & \mathsf{D} & \mathsf{D} & \mathsf{D} & \mathsf{D} \\ \mathsf{C} & \mathsf{D} & \mathsf{D} & \mathsf{D} & \mathsf{D} \\ \mathsf{C} & \mathsf{D} & \mathsf{D} & \mathsf{D} & \mathsf{D} \\ \mathsf{C} & \mathsf{D} & \mathsf{D} & \mathsf{D} & \mathsf{D} \\ \mathsf{C} & \mathsf{D} & \mathsf{D} & \mathsf{D} & \mathsf{D} \\ \mathsf{C} & \mathsf{D} & \mathsf{D} & \mathsf{D} & \mathsf{D} \\ \mathsf{C} & \mathsf{D} & \mathsf{D} & \mathsf{D} & \mathsf{D} \\ \mathsf{C} & \mathsf{D} & \mathsf{D} & \mathsf{D} & \mathsf{D} \\ \mathsf{C} & \mathsf{D} \\ \mathsf{C} & \mathsf{D} & \mathsf{D} \\ \mathsf{C} & \mathsf{D} \\ \mathsf{C} & \mathsf{D} \\ \mathsf{C} & \mathsf{D} & \mathsf{D} \\ \mathsf{C} & \mathsf{D} \\ \mathsf{C}$$

$$\mathbf{W}_{0} = \begin{bmatrix} A & B & C & D \\ A & 0 & 0 & 0 & 1 \\ B & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ D & 0 & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{W}_{1} = \begin{bmatrix} A & B & C & D \\ B & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ D & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{W}_{3} = \begin{bmatrix} A & A & B & C & D \\ B & C & D & D \\ B & C & D & D \end{bmatrix}$$

19

$$\mathbf{W}_{0} = \begin{bmatrix} A & B & C & D \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{W}_{1} = \begin{bmatrix} A \\ B \\ C \\ D \end{bmatrix}$$

$$\mathbf{W}_{2} = \begin{bmatrix} A & B & C & D \\ B & C & D \\ A & B & C & D \\ A & C & D & D \\ C & D & D & D \end{bmatrix} \quad \mathbf{W}_{3} = \begin{bmatrix} A \\ B \\ C \\ D & D \end{bmatrix}$$

$$W_4 = egin{array}{cccccc} {\sf A} & {\sf B} & {\sf C} & {\sf D} \\ {\sf A} & {\sf I} & 0 & 1 & 1 \\ {\sf I} & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ \end{array}$$

19

$$\mathbf{W}_{0} = \begin{bmatrix} A & B & C & D \\ A & 0 & 0 & 0 & 1 \\ B & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{W}_{1} = \begin{bmatrix} A \\ B \\ C \\ D \end{bmatrix}$$

$$\mathbf{W}_{2} = \begin{bmatrix} A & B & C & D \\ B & C & D \\ A & B & C & D \\ A & 0 & 0 & 1 & 1 \\ C & 0 & 1 & 1 & 1 \\ D & 0 & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{W}_{3} = \begin{bmatrix} A \\ B \\ C \\ D \end{bmatrix}$$

$$W_4 = egin{array}{c|cccc} & \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{A} & 1 & 0 & 1 & 1 \\ \mathsf{B} & 1 & 0 & 1 & 1 \\ \mathsf{C} & 1 & 0 & 1 & 1 \\ \mathsf{D} & 1 & 0 & 1 & 1 \\ \end{array}$$

$$\mathbf{W}_{0} = \begin{bmatrix} A & B & C & D \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{W}_{1} = \begin{bmatrix} A \\ B \\ C \\ D \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

$$\mathbf{W}_{2} = \begin{bmatrix} A & B & C & D \\ C & 0 & 0 & 1 \\ C & 0 & 0 & 0 & 1 \\ C & 0 & 0 & 1 & 1 \\ C & 0 & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{W}_{3} = \begin{bmatrix} A & B & C & D \\ B & C & D & A \\ A & C & D & A \\ C & D & C & D \end{bmatrix}$$

$$\mathbf{W}_{4} = \begin{bmatrix} A & B & C & D \\ A & 1 & 0 & 1 & 1 \\ B & 1 & 0 & 1 & 1 \\ C & 1 & 0 & 1 & 1 \\ D & 1 & 0 & 1 & 1 \end{bmatrix}$$

- Gewichteter Digraph: Jede Kante bekommt ein reelle Zahl zugeordnet
 - Gewicht, Kosten, Distanz, ... dieser Kante

- Gewichteter Digraph: Jede Kante bekommt ein reelle Zahl zugeordnet
 - Gewicht, Kosten, Distanz, ... dieser Kante
- Auffindung von Wegen minimaler Gesamtdistanz

- Gewichteter Digraph: Jede Kante bekommt ein reelle Zahl zugeordnet
 - Gewicht, Kosten, Distanz, ... dieser Kante
- Auffindung von Wegen minimaler Gesamtdistanz
- Motivation: Routingprotokolle (OSPF), Routenplanung, Basis für Suchalgorithmen aus der künstlichen Intelligenz

- Gewichteter Digraph: Jede Kante bekommt ein reelle Zahl zugeordnet
 - Gewicht, Kosten, Distanz, ... dieser Kante
- Auffindung von Wegen minimaler Gesamtdistanz
- Motivation: Routingprotokolle (OSPF), Routenplanung, Basis für Suchalgorithmen aus der künstlichen Intelligenz
- Gewichteter Digraph lässt sich durch Gewichtsmatrix W repräsentieren, wobei

$$\mathbf{W}_{ij} = \begin{cases} 0, & i = j \\ \infty, & (v_i, v_j) \notin E \\ d(v_i, v_j), & sonst \end{cases}$$

• Dijkstra's Algorithmus löst das *Single-Source Shortest-Path Problem*

- Dijkstra's Algorithmus löst das *Single-Source Shortest-Path Problem*
 - Findet zu einem gegebenen Startknoten einen kürzesten Weg zu jedem anderen Knoten des Digraphen

- Dijkstra's Algorithmus löst das *Single-Source Shortest-Path Problem*
 - Findet zu einem gegebenen Startknoten einen kürzesten Weg zu jedem anderen Knoten des Digraphen
 - Eine Modifikation des Algorithmus von Warshall (Floyd-Warshall-Algorithmus) löst das All-Nodes Shortest-Path Problem

- Dijkstra's Algorithmus löst das *Single-Source Shortest-Path Problem*
 - Findet zu einem gegebenen Startknoten einen kürzesten Weg zu jedem anderen Knoten des Digraphen
 - Eine Modifikation des Algorithmus von Warshall (Floyd-Warshall-Algorithmus) löst das All-Nodes Shortest-Path Problem
- Vorausetzung für Dijkstra's Algorithmus sind nicht negative Kantengewichte für alle Kanten

- Dijkstra's Algorithmus löst das *Single-Source Shortest-Path Problem*
 - Findet zu einem gegebenen Startknoten einen kürzesten Weg zu jedem anderen Knoten des Digraphen
 - Eine Modifikation des Algorithmus von Warshall (Floyd-Warshall-Algorithmus) löst das All-Nodes Shortest-Path Problem
- Vorausetzung für Dijkstra's Algorithmus sind nicht negative Kantengewichte für alle Kanten
 - Ein alternativer Algorithmus (Bellman-Ford-Algorithmus) löst das Problem auch für negative Kantengewichte (jedoch generell langsamer)

- Dijkstra's Algorithmus löst das *Single-Source Shortest-Path Problem*
 - Findet zu einem gegebenen Startknoten einen kürzesten Weg zu jedem anderen Knoten des Digraphen
 - Eine Modifikation des Algorithmus von Warshall (Floyd-Warshall-Algorithmus) löst das All-Nodes Shortest-Path Problem
- Vorausetzung für Dijkstra's Algorithmus sind nicht negative Kantengewichte für alle Kanten
 - Ein alternativer Algorithmus (Bellman-Ford-Algorithmus) löst das Problem auch für negative Kantengewichte (jedoch generell langsamer)
 - Gilt jedoch nur, sofern keine negative Zyklen (Zyklen mit negativem Gesamtgewicht) existieren
 - Sonst gibt es keinen eindeutigen Shortest-Path

 \bullet Dijkstra betrachtet im Algorithmus die (aktuelle) Distanz d(v) eines Knotens v vom Startknoten A

- ullet Dijkstra betrachtet im Algorithmus die (aktuelle) Distanz d(v) eines Knotens v vom Startknoten A
- ullet Trivialerweise ist d(A)=0, alle anderen Knoten bekommen zunächst eine Distanz von ∞ zugewiesen (sind also noch nicht erreichbar)

- \bullet Dijkstra betrachtet im Algorithmus die (aktuelle) Distanz d(v) eines Knotens v vom Startknoten A
- ullet Trivialerweise ist d(A)=0, alle anderen Knoten bekommen zunächst eine Distanz von ∞ zugewiesen (sind also noch nicht erreichbar)
- In jedem Schritt des Algorithmus wird ein Knoten betrachtet, abgearbeitet und *markiert*
 - Markierte Knoten gelten als abgearbeitet und werden nicht weiter betrachtet oder verändert

ullet Es wird stets der von A am nächsten liegende Knoten u (welcher nicht markiert ist) ausgewählt und markiert

- Es wird stets der von A am nächsten liegende Knoten u (welcher nicht markiert ist) ausgewählt und markiert
- \bullet Von diesem Knoten aus werden alle benachbarte Knoten v (welche nicht markiert sind) betrachtet

- Es wird stets der von A am nächsten liegende Knoten u (welcher nicht markiert ist) ausgewählt und markiert
- ullet Von diesem Knoten aus werden alle benachbarte Knoten v (welche nicht markiert sind) betrachtet
 - Es wird die Distanz von A nach v als d(u) + d(u, v) berechnet (die Distanz von A nach u und von u nach v)
 - \bullet Ist diese Summe kleiner als die aktuelle Distanz von A nach v, wird d(v) mit der zuvor berechneten Summe aktualisiert

- Es wird stets der von A am nächsten liegende Knoten u (welcher nicht markiert ist) ausgewählt und markiert
- \bullet Von diesem Knoten aus werden alle benachbarte Knoten v (welche nicht markiert sind) betrachtet
 - Es wird die Distanz von A nach v als d(u) + d(u, v) berechnet (die Distanz von A nach u und von u nach v)
 - ullet Ist diese Summe kleiner als die aktuelle Distanz von A nach v, wird d(v) mit der zuvor berechneten Summe aktualisiert
- Dies wird solange wiederholt, bis alle Knoten einmal betrachtet (und markiert) wurden

- Um später auch den kürzesten Weg von A zu einem beliebigen Knoten v rekonstruieren zu können, wird üblicherweise auch ein Parent-Attribut p(v) mitgeführt
 - \bullet Dieses enthält den Vorgänger von v im aktuell kürzesten Weg von A nach v
 - $\bullet\,$ Dieses Feld wird im Laufe des Algorithmus zusammen mit d(v) aktualisiert

v	d(v)	p(v)
Α	0	Ø
В	∞	Ø
C	∞	Ø
D	∞	Ø
Ε	∞	Ø
F	∞	Ø

v	d(v)	p(v)
Α	0	Ø
В	∞	Ø
C	∞	Ø
D	∞	Ø
Е	∞	Ø
F	∞	Ø

v	d(v)	p(v)
Α	0	Ø
В	∞	Ø
C	∞	Ø
D	∞	Ø
Е	∞	Ø
F	∞	Ø

v	d(v)	p(v)
Α	0	Ø
В	5	Α
C	∞	Ø
D	4	Α
Е	3	Α
F	∞	Ø

v	d(v)	p(v)
Α	0	Ø
В	5	Α
C	∞	Ø
D	4	Α
E	3	Α
F	∞	Ø

v	d(v)	p(v)
Α	0	Ø
В	5	Α
C	∞	Ø
D	4	Α
E	3	Α
F	11	Е

v	d(v)	p(v)
Α	0	Ø
В	5	Α
C	∞	Ø
D	4	Α
E	3	Α
F	11	Е

v	d(v)	p(v)
Α	0	Ø
В	5	Α
C	∞	Ø
D	4	Α
Е	3	Α
F	11	Е

v	d(v)	p(v)
Α	0	Ø
В	5	Α
C	6	D
D	4	Α
E	3	Α
F	11	Е

v	d(v)	p(v)
Α	0	Ø
В	5	Α
C	6	D
D	4	Α
E	3	Α
F	9	D

v	d(v)	p(v)
Α	0	Ø
В	5	Α
C	6	D
D	4	Α
E	3	Α
F	9	D

v	d(v)	p(v)
Α	0	Ø
В	5	Α
C	6	D
D	4	Α
E	3	Α
F	9	D

v	d(v)	p(v)
Α	0	Ø
В	5	Α
C	6	D
D	4	Α
E	3	Α
F	9	D

v	d(v)	p(v)
Α	0	Ø
В	5	Α
C	6	D
D	4	Α
E	3	А
F	9	D

v	d(v)	p(v)
Α	0	Ø
В	5	Α
C	6	D
D	4	Α
Е	3	А
F	9	D

v	d(v)	p(v)
Α	0	Ø
В	5	Α
C	6	D
D	4	Α
E	3	Α
F	8	C

v	d(v)	p(v)
Α	0	Ø
В	5	Α
C	6	D
D	4	Α
E	3	Α
F	8	С

Shortest-Path Baum

v	d(v)	p(v)
Α	0	Ø
В	5	Α
C	6	D
D	4	Α
Ε	3	Α
F	8	С

Shortest-Path Baum

v	d(v)	p(v)
Α	0	Ø
В	5	Α
C	6	D
D	4	Α
Ε	3	Α
F	8	С
	'	

