1일차 정리

전체 Process(CRISP-DM)

알고리즘 한판 정리

	선형회귀	로지스틱회귀	KNN	SVM	Decision Tree	Random Forest	Gradient Boost (GBM, XGB, LGBM)
개념	✔오차를 최소화 하는 직선, 평면	✓오차를 최소화 하는 직선, 평면 ✓직선을 로지스틱 함수로 변환 (0~1 사이 값으로)	✔예측할 데이터와 train set과의 거리 계산 ✔가까운 [k개 이웃의 y] 의 평균으로 예측	✓마진을 최대화 하는 초평면 찾기 ✓데이터 커널 변환	✓정보전달량 = 부모 불순도 - 자식 불순도 ✓정보 전달량이 가장 큰 변수를 기준으로 split	✔여러 개의 트리 ✔각각 예측 값의 평균 ✔행과 열에 대한 랜덤 : 조금씩 다른 트리들 생성	✓ 여러 개의 트리 ✓ 트리를 더해서 하나의 모델로 생성 ✓ 더해지는 트리는 오차를 줄이는 모델
전제 조건	✓ NaN조치 ✓ 가변수화 ✓ x들 간 독립	✓ NaN조치 ✓ 가변수화 ✓ x들 간 독립	✓NaN조치 ✓가변수화 ✓스케일링	✓NaN조치 ✓가변수화 ✓스케일링	✓NaN조치 ✓가변수화	✔NaN조치 ✔가변수화	✓NaN조치 ✓가변수화
성	✓변수 선택 중요 ✓x가 많을 수록 복잡	✓ 변수 선택 중요 ✓x가 많을 수록 복잡	✓주요 hyper-parameter - n_neighbors : k 작을수록 복잡 - metric : 거리계산법	✔주요 hyper-parameter - C : 클수록 복잡 - gamma : 클수록 복잡	✓주요 hp - max_depth : 클수록 복잡 - min_samples_leaf 작을수록 복잡	✓주요 hp 기본값으로도 충분! - n_estimators - max_features ✓기본값으로 생성된 모델 ==> 과적합 회피	✓주요 hp - n_estimators - learning_rate ✓ XGB, LGBM : 과적합 회피를 위한 규제
							3

회귀모델 평가

오차의 크기

	ŷ : 예측값	오차	제곱 오차	절대값 오차	오차율
y	$\hat{\mathcal{Y}}$	$y-\hat{y}$	$(y-\hat{y})^2$	$ y-\hat{y} $	$\left \frac{y - \hat{y}}{y} \right $
6	4				
5	6				
12	9				
2	2				
		평균	MSE RMSE	MAE	MAPE

딥러닝 개념 - 학습 절차

✓ model.fit(x_train, y_train) 하는 순간…

단계①: 가중치에 (초기)값을 할당한다.

■ 초기값은 랜덤으로 지정

단계② : (예측) 결과를 뽑는다.

단계③ : 오차를 계산한다.

단계④: 오차를 줄이는 방향으로 가중치를 조정

Optimizer: GD, Adam…

단계⑤: 다시 단계①로 올라가 반복한다.

- max iteration에 도달.(오차의 변동이 (거의) 없으면 끝.)
 - 가중치(weight)의 다른 용어 **파라미터(parameter)**

$$medv = 1 \cdot lstat + 3$$

medv	Istat	\widehat{y}
20	10	13
10	11	14
8	15	18

$$mse = \frac{\sum (y - \hat{y})^2}{n} = \frac{7^2 + 6^2 + 8^2}{3}$$

 $w_1: 1 \to 0.8$ $w_0: 3 \to 3.3$

$$medv = w_1 \cdot lstat + w_0$$

forward propagation

back propagation

딥러닝 개념 - 학습 절차

✓ 30번 조정하며 최적의 Weight를 찾아가는 과정

모델의 오차가 줄어드는 과정

딥러닝 구조

딥러닝 코드 - Dense

- ✓ Input:Input(shape = (,))
 - 분석단위에 대한 shape
 - 1차원 : (feature 수,)
 - 2차원: (rows, columns)
- ✓ Output:Dense()
 - 예측 결과가 1개 변수(y가 1개 변수)

Model: "sequential"

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 1)	4

Total params: 4 (16.00 B)
Trainable params: 4 (16.00 B)
Non-trainable params: 0 (0.00 B)

Compile

✓ 컴파일(Compile)

- 선언된 모델에 대해 몇 가지 설정을 한 후
- 컴퓨터가 이해할 수 있는 형태로 변환하는 작업

```
model.compile
( optimizer = Adam(learning_rate = 0.1)
    , loss='mse')
```

✓ loss function(오차함수)

- Cost Function, Objective Function 과 같은(유사한) 의미
- 오차 계산을 무엇으로 할지 결정
- mse : mean squared error
 - 회귀모델 : mse
 - 분류모델: cross entropy

학습 곡선

✓ 학습 곡선이란

- **모델 학습이 잘 되었는지 파악**하기 위한 그래프 500 1 1 1
 - 정답은 아니지만, 학습 경향을 파악하는데 유용.
- 각 Epoch 마다 train error와 val error가 어떻게 줄어들고 있는지 확인
 - Train error, Val error 해석은 어떻게?

딥러닝 구조 - Hidden Layer

- ✓ layer 여러 개 : 리스트[]로 입력
- √ hidden layer
 ①
 - Activation : 활성함수는 보통 'relu'를 사용
- ✓ output layer ②
 - 예측 결과가 1개

```
# Sequential 타입 모델 선언(입력은 리스트로!)
model3 = Sequential([Input(shape = (nfeatures,)),
                      Dense(2, activation = 'relu'),
                      2 Dense(1) ])
Model: "sequential"
 Laver (type)
dense (Dense)
                      (None, 2)
dense 1 (Dense)
                      (None, 1)
Total params: 29
Trainable params: 29
Non-trainable params: 0
```

활성화 함수 Activation Function

✓ 그래서 활성화 함수는…

- Hidden Layer에서는 : 선형함수를 비선형 함수로 변환
- Output Layer에서는 : 결과값을 다른 값으로 변환해 주는 역할
 - 주로 분류Classification 모델에서 필요

요약:회귀모델링

✓ 딥러닝 전처리

■ NaN 조치, 가변수화, 스케일링

✓ Layer

- 첫번째 Layer는 input_shape를 받는다.(분석단위의 shape)
 - 2차원 데이터셋의 분석단위 1차원 → shape는 (feature수,)
- Output layer의 node 수:1
- Activation Function
 - Hidden layer에 필요 :
 - 비선형 모델로 만들려고 → hidden layer를 여럿 쌓아서 성능을 높이려고.
 - 회귀 모델링에서 Output Layer에는 활성화 함수 필요하지 않음!

구분	Hidden Layer Output Layer		Compile		
千世	Activation	Activation	Node수	optimizer	loss
Regression	Regression relu		1	adam	mse

2일차 정리

Hidden Layer에서 무슨 일이 일어나는가?

√ 연결

- 모든 노드 간에 연결을 할 수도 있지만(Fully Connected)
- 아래처럼 연결을 제어할 수도 있습니다.(Locally Connected)

Hidden Layer에서 무슨 일이 일어나는가?

- ✓ Tensorflow Playground https://playground.tensorflow.org/
- √ https://bit.ly/487HdL1

딥러닝 구조 - 이진분류

✓ Node의 결과를 변환해주는 함수가 필요

■ 그것을 **활성 함수**Activation Function 라고 합니다.

딥러닝 구조 - 활성 함수Activation Function

✓ node의 결과를 변환시켜 주는 역할

Layer	Activation Function		기능	
Hidden Layer	ReLU		좀 더 깊이 있는 학습(Deep Learning)을 시키려고. (Hidden Layer를 여러 층 쌓으려고) (선형 모델을 비선형 모델로 바꾸려고)	
	회귀	X	X	
Output Layer	이진분류	sigmoid	결과를 0, 1로 변환하기 위해	
Layer	다중분류	softmax	각 범주에 대한 결과를 범주별 확률 값으로 변환	

딥러닝 구조 – Loss Function : binary_crossentropy

✓실제 값과 예측 값이 다음과 같다고 합시다.

■ 우리는 이를 하나의 숫자(오차)로 평가해야 합니다.

y	\widehat{y}
1	0.9
0	0.3
0	0.4
1	0.7
0	0.5
0	0.7
1	0.5

✔이진 분류 모델에서 사용되는 loss function

→ binary_crossentropy

	$\widehat{\mathbf{y}} pprox 1$	$\widehat{\mathbf{y}} \approx 0$
y = 1	err 작게 ($pprox 0$)	<i>err</i> 크게 (≈ ∞)
y = 0	<i>err</i> 크게 (≈ ∞)	err 작게 ($pprox 0$)

딥러닝 구조 – Loss Function: binary_crossentropy

✓이 오차들의 평균

■ Binary_crossentropy (log loss) $-\frac{1}{n}\sum_{y}(y \cdot \log \hat{y} + (1-y) \cdot \log(1-\hat{y}))$

이 오차들의 평균 계산

0.90.30.4		0.11	0.36 0.51
0.4			0 E1
			0.51
0.7		0.36	
0.5	7		0.69
0.7			1.2
0.5		0.69	
	0.5 0.7	0.5	0.5

분류 모델 평가 : 예측 값 후속 처리

✓ 회귀와 다른 점

- 분류 모델 출력 층의 활성화 함수(시그모이드)
 - 예측 결과: 0~1 사이 확률 값

✓ 예측 결과에 대한 후속 처리

- 결과를 .5 기준으로 잘라서 1, 0으로 변환
 - np.where(조건문, 참일 때 값, 거짓일 때 값)

```
1 pred = model.predict(x val)
 2 print(pred[:5])
                 — 0s 4ms/step
[[0.65503603]
[0.17545699]
[0.22257133]
[0.1949883]
[0.66214496]]
 1# activation이 sigmoid --> 0 ~ 1 사이의 확률값.
 2 # 그러므로 cut-off value(보통 0.5)를 기준으로 잘라서 0과 1로 만들어 준다.
 3 pred = np.where(pred >= .5, 1, 0)
 4 print(pred[:5])
[[1]
[0]
[0]
[0]
[1]]
```

딥러닝 구조 - Output Layer

✓ 다중 분류 오차 계산 : Cross Entropy

■ (다른 건 모르겠고) 실제 값 1인 Class와 예측 확률 비교

다중 분류 모델링을 위한 전처리

- ✓ 다중 분류: Y가 범주이고, 범주가 3개 이상
 - Y 값에 대한 전처리와 Loss Function
 - 우리는 방법1을 이용하겠습니다.

➤ 두 loss function은 수학적으로 동일

[방법1]정수 인코딩 + sparse_categorical_crossentropy

√ y : Integer Encoding

- loss='sparse_categorical_crossentropy'
- Y는 인덱스로 사용됨 : 해당 인덱스의 예측 확률로 계산. Loss = $-\log \hat{y}$

y	$\widehat{\mathbf{y}}$
1	[0.1, 0.6, 0.3]
0	[0.3, 0.2, 0.5]
2	[0.2, 0.4, 0.4]
1	[0.1, <mark>0.9</mark> , 0.0]
0	[0.7, 0.1, 0.2]
0	[0.5, 0.3, 0.2]
2	[0.1, 0.1, 0.8]

err
-log(0.6) = 0.51
-log(0.3) = 1.20
-log(0.4) = 0.91
-log(0.9) = 0.10
-log(0.7) = 0.36
-log(0.5) = 0.69
-log(0.8) = 0.22

다중 분류 모델의 평가

✓ 이진 분류와 다른 점

- 다중 분류 모델 **출력 층**
 - 노드 수: 다중 분류 클래스의 수와 동일
 - 활성화 함수 : softmax

✓ 예측결과에 대한 후속 처리

- ① 예측결과 : 각 클래스별 확률값
- ② 그 중 가장 큰 값의 인덱스로 변환
 - np.argmax()

```
1 pred = model.predict(x val)
   2 pred[:5]
 2/2 [=== 0 ===== 1 =] - 2
 array([[9.6893382e-01], 3.0914659e-02, 1.5143632e-04],
        [1.7674142e-02, <mark>7.9808110e-01</mark>, 1.8424478e-01],
        [2.1283615e-02, 7.2939050e-01, 2.4932583e-01],
        [1.0448594e-03, 3.7526634e-01, 6.2368864e-01],
        [4.4328466e-02, 8.7283564e-01, 8.2836017e-02]], dtype=float32)
2 1 pred_1 = pred.argmax(axis=1)
   2 pred 1
 array([0, 1, 1, 2, 1, 1, 2, 0, 2, 0, 2, 1, 1, 0, 0, 2, 0, 1, 2, 1, 1, 2,
        2, 0, 1, 1, 1, 0, 2, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 2, 1, 1, 0, 1,
        21)
```

요약:모델링

구분	Hidden Layer	Output Layer Compile 예측		측			
, =	Activation	Activation	Node 수	optimizer	loss	결과	후속조치
Regression	relu	X	1	adam	mse	숫자	X
2-Class	relu	sigmoid	1	adam	binary_crossentropy	0~1 확률값	np.where()
Multi-Class	relu	softmax	Class수	adam	sparse_categorical_crossentropy categorical_crossentropy	각 클래스에 대한 확률값	np.argmax()

3일차 정리

이미지를 Dense Layer에 연결하여 모델링

- ✓ 2차원 이미지 데이터를 1차원으로 펼치는 Flatten함수가 필요합니다.
 - Flatten은 다음과 같은 작업을 수행합니다.
 - (Dense Layer = Fully Connected Layer)

모델링의 목적

✓모델링의 목적

- 학습용 데이터에 있는 패턴으로,그 외 데이터(모집단 전체)를 적절히 예측
- 학습한 패턴(모델)은,
 - 학습용 데이터를 잘 설명할 뿐만 아니라,
 - 모집단의 **다른 데이터(val, test)도 잘 예측**해야 함

✓모델의 복잡도

- **너무 단순한** 모델 : train, val 성능이 떨어짐
- **적절히 복잡한** 모델 : 적절한 예측력
- 너무 복잡한 모델 : train 성능 높고, val 성능 떨어짐

Underfitting과 Overfitting

✓ 모델(알고리즘)마다 복잡도를 결정하는 요인이 있음.

성능 최적화와 과적합의 관계

✓모델의 복잡도 : 학습용 데이터의 패턴을 반영하는 정도

딥러닝의 복잡도: hidden layer 수, node 수

Layer가 많을 수록 복잡

최근 딥러닝 모델링 추세

✓ 가능한한 복잡한 구조의 모델 설계

- 성능을 높이기 위해.
- 그러나 과적합 문제는?
 - 규제 기법(Regularization)을 통해 해결
 - Early Stopping 미리 멈춤
 - Dropout 뉴런 비활성화
 - 가중치 규제

미리 멈춤 Early Stopping

√ 반복 횟수(epoch)가 많으면 과적합 될 수 있음

■ 항상 과적합이 발생되는 것은 아닙니다.

■ 반복횟수가 증가할 수록 val error가 줄어들다.

어느 순간부터 다시 증가할 수 있습니다.

■ val error가 더 이상 줄지 않으면 멈춰라

→ Early Stopping

■ 일반적으로 train error는 계속 줄어듦

연결을 임의로 끊기 Dropout

Dropout 적용 전

Dropout 적용 후

모델 저장하기 : 최종 모델 저장하기

✓모델 저장하기

- model.save('파일이름.keras')
 - 딥러닝 모델의 메소드로 .save가 제공됩니다.
 - **파일이름.keras** 파일 저장(keras 2.11 이상 버전에서 지원)
 - 이전 버전인 .h5도 지원, 그러나 .keras 권장

model1.save('hanky.keras')

✓모델 로딩하기

- load_model 함수는 별도로 불러와야 합니다.
- 경로를 맞춰주고 .keras 파일을 읽어오면 그대로 사용 가능합니다.

from keras.models import load_model model2 = load_model('hanky.keras')

모델 저장하기: 중간 체크포인트 저장하기

✓ 파일 저장 ModelCheckpoint

- 성능이 개선되는 구간 epoch 1 ~ 10 까지 파일 저장
- epoch11 부터는, 성능이 가장 좋은 epoch10 보다 성능이 개선되지 않음

Function API 코드 연습

Sequential

• Sequential 함수 안에 리스트로 레이어 입력

Functional

- 레이어 : 앞 레이어 연결 지정
- Model 함수로 시작과 끝 연결해서 선언

```
clear_session()

il = Input(shape=(nfeatures, ))
hl1 = Dense(18, activation='relu')(il)
hl2 = Dense(4, activation='relu')(hl1)
ol = Dense(1)(hl2)

model = Model(inputs = il, outputs = ol)
model.summary()
```

설문 질문들

√ 평가 지표 해석

- 평가지표 해석 및 비즈니스의미 도출
- MAE, MSE, MAPE, Classification Report

✓모델 구조

- 히든 레이어의 노드 수 정하기
- 히든 레이어의 활성화 함수

✓모델 후속조치

- np.where
- np.argmax

설문 질문들

✓그외

- resampling 알려주셔서 와인실습에서 4번 샘플이너무 적어서 와인실습에 적용해봤는데 그래프가 이상한데 시간이 된다면 한번 해봐주실수 있나요
 - → 콜랩파일 저에게 공유해주세요.^^