$$|z_0z_0|$$
 = $\frac{10(5+7)}{(5+10)(5+20)}$ = roles + roots of the denomination

· Unit step Response:

$$R(6) = \frac{1}{5} = \frac{10(5+7)}{5(5+10)(5+20)}$$

· Expend into the partial practions:

$$6(s) = \frac{10(s+7)}{(s+10)(s+20)} = \frac{10(s+10-3)}{(s+10)(s+20)}$$

$$(5) = \frac{10(5+10-5)}{(5+10)(5+20)} = \frac{10(5+10-5)}{(5+10)(5+20)}$$

$$= 10. \frac{(s+10)-3}{(s+10)(s+20)} = 10 \left[\frac{(s+10)}{(s+20)} - \frac{3}{(s+10)(s+20)} \right]$$
10 30 10 7 A

$$= \frac{10}{5+20} - \frac{30}{(5+10)(5+20)} = \frac{10}{5+20} - \left[\frac{A}{5+10} + \frac{B}{5+20} \right]$$

A:
$$(5+16) = \frac{30}{(5+16)(5+20)} = \frac{30}{10} = 3$$

$$B: [3+20] = 30 = -3$$
 $(5+10)(5+20) = -3$

$$G(s) = \frac{10}{5+20} - \frac{3}{5+10} + \frac{3}{5+20} = \frac{13}{5+20} - \frac{3}{5+10}$$

$$Y(s) = \frac{1}{s} \cdot \left[\frac{13}{s+z0} - \frac{3}{s+10} \right] = \frac{13}{s(s+z0)} - \frac{3}{s(s+z0)}$$

$$z = \frac{A}{S} + \frac{B}{S+20} - \left[\frac{C}{S} + \frac{S}{S+10} \right]$$

A:
$$[4.\frac{13}{4(s+20)}] = \frac{13}{20}$$

$$C \circ \left[4 \cdot \frac{3}{\cancel{5}(5+10)} \right] = \frac{3}{10}$$

D:
$$[(5+10)] \frac{3}{5(5+16)} = -\frac{3}{10}$$

$$\frac{1}{20} = \frac{13}{20} \cdot \frac{1}{5} - \frac{13}{20} \cdot \frac{1}{5+20} - \frac{3}{10} \cdot \frac{1}{5+10}$$

$$= \frac{7}{20} \cdot \frac{1}{5} - \frac{13}{20} \cdot \frac{1}{5+20} + \frac{3}{10} \cdot \frac{1}{5+10}$$

$$y(t) = \frac{7}{20} \cdot 1 - \frac{13}{20} \cdot e + \frac{3}{10} \cdot e^{-10t} + \frac{7}{10} \cdot e^{-10t}$$

3b)

G(S) = 10 (S+7) & Zeros & Roots of the numerator

(S+10)(S+20) & Poles & Roots of the Denominator

· Zeros:

· Poles:

X X . D Recal

· Response type

Two pistinet Real Poles = E 7 1

(over damped)

· Unit step Response:

$$R_{(S)} = \frac{1}{5} \Rightarrow V_{(S)} = \frac{10(5+7)}{5(5+10)(5+20)}$$

· Exprend into porticel frestions:

$$G(S) = 10(S+7) = 10(S+70-3)$$

 $(S+10)(S+20) = (S+10)(S+20)$
 $= 10.(S+10)-3 = 10[S+10] = 3$
 $(S+10)(S+20) = (S+10)(S+20)$

$$= 10 - 30 = 10 - A + B$$

$$(5+20) (5+20) (5+20) (5+20) (5+20)$$

B:
$$(5+70)$$
. 30 = 30 = -3
 $(5+10)(5+70)$ = 5=20

1/4/2020 TP tesis 36) continua G(G) = 10 _ 3 + 3 = 13 3 5+20 5+10 5+20 5+10Y(s) = 1. 13 3 S 5+20 S+10. S(5+20) S(5+10) = A + B = C + D = S + S+10 =A: \$. 13 z 13 \$(s+zo) z zo B: (6+20). 13 = 13 = 13 s(st/0) -20 20 D: (5+/6), 3 z 3 z - 3 5(5+/6) 5z-10 Y(s) = 13.1 - 13.1 - 3.1 + 3.120 5 10 Stz0 10 5 10 St10 = 7.1.13.1. + 3.1 20 S 20 S+Z0 10 S+10 $Y_{(t)} = \frac{7}{7} \quad \begin{cases} \frac{1}{2} & \frac{1}{3} & \frac{$ 20 20

3 b) continuação

$$Y(S) = 10(S+7)$$

 $S(S+10)(S+26)$

$$Q = 10(s+7)$$
 (3) $Q = 7$ (5+10)(5+20) $= 20$.

$$b = 10(s+7)$$
 $\Rightarrow b = 3$
 $s(s+20)$ $s=-10$ 10

$$(z 10(5+7) (5) (5 - 13)$$

 $5(5+10) (5z-20) 20$

$$Y_{(3)} = \frac{7}{20} \cdot \frac{1}{5} + \frac{3}{10} \cdot \frac{1}{5+10} - \frac{13}{20} \cdot \frac{1}{5+20}$$

b)
$$G(s) = \frac{10(s+7)}{(s+20)}$$

two methods.

Zenos: -7

rolos: -10) -20

$$5^{2}+105+105+200 = 5^{2}+305+200$$

 $5^{2}+105+105+200 = 5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$
 $5^{2}+305+200$

$$Q = \frac{10(5+7)}{(5+10)(5+20)} \Big|_{0} = \frac{7}{20}$$

$$b = \frac{10(6+7)}{5(5+20)} = \frac{3}{-10}$$

$$C = \frac{10(S+7)}{5(5+10)} = -\frac{13}{20}$$

$$y_{(G)} = \frac{7}{20} + \frac{3}{10} + \frac{13}{20}$$

 $5 + 5 + 10 + 5 + 20$

No Z L Ewn S+ W Z

K

E

Wn

Mp = Vpico - Vfinal

Townel

tp = TT

Wn VI-E²¹

0149 6 510243)101481

5 1 2 1 2 2 2 2 2

1.5

tesis PL ODC 30/3/2020
good.
teorence conónico dos sistemos de 2º gran
$\frac{2}{5^{2}+2} \times \omega_{n} + \omega_{n}^{2}$
52 + 2 & W. S + W.
e Se € > 1 = Sistence sobrecementecido => polos receis distindos
o se & = 1 = sistema criticamente amortecios o polos receis duplos (iguecio)
o so 0 (E < 1 2) Sistema Subamorteeich 2) polo complexes conjugados
- 600 companies congregacións
/
36)
G(S) = 10 (S+7)
(5+10) (5+20) 5+305+200
$(5+10)(5+20)$ $5^{2}+305+200$ $5^{2}+305+200$ $5^{2}+305+200$ $5^{2}+305+200$
polos: -10 · -20
E71
Y(s) = 1 x 10 (S+7)
5 (5+10)(5+20)
= 9 + 6 + 6
S 5+10 S+20
procèce frectional equations.
-10t -20t
$\frac{7(t)^2}{20} = \frac{7}{10} + \frac{3}{20} = \frac{-10t}{20} = \frac{-20t}{20}$
4. Formulas
10 mylds
Mp = Y(ty) - Y(00)
Y(00)
= e-118/11-82

tpz TT Wn JI-Ez Dwn = lim K 5-00 S2+2EW,5+W, all well explained. Proximo semana Rescores.