Power	iteration	S	inverse	iteration
10wer	iveranon	4	inverse	victamon

(I) Power iteration - this method finds the abs. value of the largest e-value of A 2 its corr. e-vector.

Algorithm: choose 20 (initial vector) i=0 to convergence

$$y_1 = A \pi_0$$

$$\pi_1 = \frac{A \pi_0}{\|A \pi_0\|}$$

$$y_{i+1} = A \pi_i$$

$$y_2 = A \left(\frac{A \times Q}{||A \times Q||} \right)$$
 $x_{i+1} = f_{i+1} / ||y_{i+1}||_2$ (approx. e-vector)

2 = A2 20/11 A2x011

• Consider the simplest case where $A = diag(\lambda_1, ..., \lambda_n)$ with $|\lambda_1| \ge |\lambda_2| \ge ... \ge |\lambda_n|$

In this case the e-vectors are columns e. of the identity matrix.

Note that x_i can be written as $x_i = \frac{A^i x_0}{l A_i x_0 l l}$

Let
$$x_0 = \begin{pmatrix} \xi_1 \\ \vdots \\ \xi_n \end{pmatrix}$$
, $\xi_1 \neq 0$.

Then
$$A^{i}x_{0} = A^{i}\begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} x_{1}\lambda_{1} \\ x_{2} \end{pmatrix} = \begin{cases} x_{1}\lambda_{1} \\ x_{3} \end{pmatrix} = \begin{cases} x_{1}\lambda_{1} \\ x_{2} \\ x_{3} \end{cases} \begin{pmatrix} x_{2}\lambda_{1} \\ x_{3} \end{pmatrix}$$

Since each Itil & Itil, Atro >+ 3, 2, e,

 $x_i = \frac{A^i x_0}{\|A^i x_0\|}$ $\rightarrow \frac{t}{e_1} = e^{-vector} corr. to$ largest e-value λ largest e-value 21.

nite, = ni Ari H 21 = largest e-value.

•	Now let A be a diagonalizable matrix i.e. \exists invertible matrix P such that $A = P \wedge P^{-1}$, $\Lambda = diag(\lambda_1,, \lambda_n)$ $ \lambda_1 \geq \geq \lambda_n .$
	matrix P such that $A = P \Lambda P^{-1}$, $\Lambda = diag(\lambda_1,, \lambda_n)$
	21 > > 2n
	Let $P = [p_1] [p_n]$, where p_1, p_n are evectors with
	$ p_i _2 = 1$
	Let $x_0 \neq 0$; $z_1 \neq 0$.
	Then $A^{\dagger} = (P \wedge P^{-1})^{\dagger} = P \wedge^{\dagger} P^{-1}$ So $A^{\dagger} x_0 = P \wedge^{\dagger} P^{-1} P \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = P \wedge^{\dagger} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = P \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \begin{pmatrix} x_2 \\ x_3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_3 \end{pmatrix}$
	A'xo 5, Ai Pe, (Pe,=Pi)
	$ \begin{array}{ccc} $
	$2 A_i = x_i^T A x_i \longrightarrow p_1^T A p_1 = p_1^T A p_1 = A_1.$
Remark	cs: 1) We need to choose no such that its first
	cs: 1) We need to choose no such that its first component is non-zero. This is mostly okay if no is chosen at random.
	% is chosen at random!
	2) The rate of convergence is completely dependent on the gap between 2, & 2, (the eigengap).
	The gap between of & 1/2 (the eigengap).
	If $\lambda_1 >> \lambda_2$, then convergence is fast;
	on the other hand, if he is close to 1, the
	on the other hand, if $\frac{\lambda_2}{\lambda_1}$ is close to 1, the
	convergence is very slow.
	V V

Then
$$(A-\sigma I)^{-i} x_0 = P(A-\sigma I)^{-i} P^{-1} P \begin{pmatrix} \frac{\pi}{4}, \\ \frac{\pi}{4}, \\ \frac{\pi}{4}, -\sigma \end{pmatrix}^{-i}$$

$$= P \begin{pmatrix} \frac{\pi}{4}, (A_k-\sigma)^{-i} \\ \frac{\pi}{4}, (A_k-\sigma)^{-i} \end{pmatrix}$$

$$= \frac{\pi}{3} k (A_k-\sigma)^{-i} P \begin{pmatrix} \frac{\pi}{4}, \frac{\pi}{4}, -\sigma \\ \frac{\pi}{4}, -\sigma \end{pmatrix}^{-i}$$

$$= \frac{\pi}{3} k (A_k-\sigma)^{-i} P \begin{pmatrix} \frac{\pi}{4}, -\sigma \\ \frac{\pi}{4}, -\sigma \end{pmatrix}^{-i}$$

$$= \frac{\pi}{3} k (A_k-\sigma)^{-i} P \begin{pmatrix} \frac{\pi}{4}, -\sigma \\ \frac{\pi}{4}, -\sigma \end{pmatrix}^{-i}$$

$$= \frac{\pi}{3} k (A_k-\sigma)^{-i} P \begin{pmatrix} \frac{\pi}{4}, -\sigma \\ \frac{\pi}{4}, -\sigma \end{pmatrix}^{-i}$$

$$= \frac{\pi}{3} k (A_k-\sigma)^{-i} P \begin{pmatrix} \frac{\pi}{4}, -\sigma \\ \frac{\pi}{4}, -\sigma \end{pmatrix}^{-i}$$

$$= \frac{\pi}{3} k (A_k-\sigma)^{-i} P \begin{pmatrix} \frac{\pi}{4}, -\sigma \\ \frac{\pi}{4}, -\sigma \end{pmatrix}^{-i}$$

$$= \frac{\pi}{3} k (A_k-\sigma)^{-i} P \begin{pmatrix} \frac{\pi}{4}, -\sigma \\ \frac{\pi}{4}, -\sigma \end{pmatrix}^{-i}$$

$$= \frac{\pi}{3} k (A_k-\sigma)^{-i} P \begin{pmatrix} \frac{\pi}{4}, -\sigma \\ \frac{\pi}{4}, -\sigma \end{pmatrix}^{-i}$$

$$= \frac{\pi}{3} k (A_k-\sigma)^{-i} P \begin{pmatrix} \frac{\pi}{4}, -\sigma \\ \frac{\pi}{4}, -\sigma \end{pmatrix}^{-i}$$

$$= \frac{\pi}{3} k (A_k-\sigma)^{-i} P \begin{pmatrix} \frac{\pi}{4}, -\sigma \\ \frac{\pi}{4}, -\sigma \end{pmatrix}^{-i}$$

$$= \frac{\pi}{3} k (A_k-\sigma)^{-i} P \begin{pmatrix} \frac{\pi}{4}, -\sigma \\ \frac{\pi}{4}, -\sigma \end{pmatrix}^{-i}$$

$$= \frac{\pi}{3} k (A_k-\sigma)^{-i} P \begin{pmatrix} \frac{\pi}{4}, -\sigma \\ \frac{\pi}{4}, -\sigma \end{pmatrix}^{-i}$$

$$= \frac{\pi}{3} k (A_k-\sigma)^{-i} P \begin{pmatrix} \frac{\pi}{4}, -\sigma \\ \frac{\pi}{4}, -\sigma \end{pmatrix}^{-i}$$

$$= \frac{\pi}{3} k (A_k-\sigma)^{-i} P \begin{pmatrix} \frac{\pi}{4}, -\sigma \\ \frac{\pi}{4}, -\sigma \end{pmatrix}^{-i}$$

$$= \frac{\pi}{3} k (A_k-\sigma)^{-i} P \begin{pmatrix} \frac{\pi}{4}, -\sigma \\ \frac{\pi}{4}, -\sigma \end{pmatrix}^{-i}$$

$$= \frac{\pi}{3} k (A_k-\sigma)^{-i} P \begin{pmatrix} \frac{\pi}{4}, -\sigma \\ \frac{\pi}{4}, -\sigma \end{pmatrix}^{-i}$$

$$= \frac{\pi}{3} k (A_k-\sigma)^{-i} P \begin{pmatrix} \frac{\pi}{4}, -\sigma \\ \frac{\pi}{4}, -\sigma \end{pmatrix}^{-i}$$

$$= \frac{\pi}{3} k (A_k-\sigma)^{-i} P \begin{pmatrix} \frac{\pi}{4}, -\sigma \\ \frac{\pi}{4}, -\sigma \end{pmatrix}^{-i}$$

$$= \frac{\pi}{3} k (A_k-\sigma)^{-i} P \begin{pmatrix} \frac{\pi}{4}, -\sigma \\ \frac{\pi}{4}, -\sigma \end{pmatrix}^{-i}$$

$$= \frac{\pi}{3} k (A_k-\sigma)^{-i} P \begin{pmatrix} \frac{\pi}{4}, -\sigma \\ \frac{\pi}{4}, -\sigma \end{pmatrix}^{-i}$$

$$= \frac{\pi}{3} k (A_k-\sigma)^{-i} P \begin{pmatrix} \frac{\pi}{4}, -\sigma \\ \frac{\pi}{4}, -\sigma \end{pmatrix}^{-i}$$

$$= \frac{\pi}{3} k (A_k-\sigma)^{-i} P \begin{pmatrix} \frac{\pi}{4}, -\sigma \\ \frac{\pi}{4}, -\sigma \end{pmatrix}^{-i}$$

$$= \frac{\pi}{3} k (A_k-\sigma)^{-i} P \begin{pmatrix} \frac{\pi}{4}, -\sigma \\ \frac{\pi}{4}, -\sigma \end{pmatrix}^{-i}$$

$$= \frac{\pi}{3} k (A_k-\sigma)^{-i} P \begin{pmatrix} \frac{\pi}{4}, -\sigma \\ \frac{\pi}{4}, -\sigma \end{pmatrix}^{-i}$$

$$= \frac{\pi}{3} k (A_k-\sigma)^{-i} P \begin{pmatrix} \frac{\pi}{4}, -\sigma \\ \frac{\pi}{4}, -\sigma \end{pmatrix}^{-i}$$

$$= \frac{\pi}{3} k (A_k-\sigma)^{-i} P \begin{pmatrix} \frac{\pi}{4}, -\sigma \\ \frac{\pi}{4}, -\sigma \end{pmatrix}^{-i}$$

$$= \frac{\pi}{3} k (A_k-\sigma)^{-i} P \begin{pmatrix} \frac{\pi}{4}, -\sigma \\ \frac{\pi}{4}, -\sigma \end{pmatrix}^{-i}$$

$$= \frac{\pi}{3} k (A_k-\sigma)^{-i} P \begin{pmatrix} \frac{\pi}{4}, -\sigma \\ \frac{\pi}{4}, -\sigma \end{pmatrix}^{-i}$$

$$= \frac{\pi}{3} k (A_k-\sigma)^{-i} P \begin{pmatrix} \frac{\pi}{4}, -\sigma \\ \frac{\pi}{4}, -\sigma \end{pmatrix}^{-i}$$

$$= \frac{\pi}{3} k (A_k-\sigma)^{-i} P \begin{pmatrix} \frac{$$