$\begin{array}{c} {\rm Linear~Quadratic~Regulator(LQR)~for} \\ {\rm Discrete-Time~System} \end{array}$

Baboo J. Cui

June 12, 2019

Contents

1	Pro	blem Formulation	3		
2	Examples of Implementations				
	2.1	Energy Efficient Stabilization	3		
	2.2	Minimum Energy Steering	4		
	2.3	LQR for Tracking(VIP TOPIC)	4		
	2.4	LQR for System with Perturbation	5		
3	Dire	ect Approach to Solve LQR	5		
	3.1	Reconstruct the Problem	6		
	3.2	Limitations of Direct Approach	6		
	3.3	Movitating Example	6		
	3.4	Formulated as an Optimal Control Problem	7		
	3.5	Direct Solution	7		
	3.6	Value Function	7		
	3.7	Value Function Property	7		
	3.8	Value Function Iteration	8		
	3.9	Value Function Iteration	8		
	3.10	Value Function Iteration	8		
		Recover the Optimal Control	8		
		Advantages of Dynamic Programming	8		
		Back to LQR Problem	8		
		Value Function of LQR Problem	9		
		Solution of LQR Problem via Value Functions	9		
		How are Value Functions Related?	9		
	3.17	t = N case	9		
		t = N - 1 case	9		
			10		
			10		
		•	10		
			10		
			11		
			11		
			11		
			11		

4 Extra			12
	4.1	Matlab Functions	12
	4.2	Quadratic Expansion	12

LQR is related to optimal control problem, many problems can be formulated into it. It's one of the fundamental way to achieve optimal control.

1 Problem Formulation

Given a discrete LTI system:

$$x[k+1] = Ax[k] + Bu[k], x[0] = x_0$$

given a time horizon $k \in \{0, 1, ..., N\}$, where N may be infinity, find the optimal input sequence $U = \{u[0], u[1], ..., u[N-1]\}$ that minimize the **cost function**:

$$J(U) = \sum_{k=0}^{N-1} (x^T[k]Qx[k] + u^T[k]Ru[k]) + x^T[N]Q_fx[N]$$

- state weight matrix: $Q = Q^T \succeq 0$
- control weight matrix: $R = R^T \succ 0$, indicate that there is no free control input
- final state weight matrix: $Q_f = Q_f^T \succeq 0$
- running cost: the value of the first term in J(u)
- **terminal cost**: the value of the second term in J(u)
- infinite case: N is infinity, in this case, $Q_f = 0$

Note that all these case can be generalized into time-varying cases.

2 Examples of Implementations

Many problem can be formulated into LQR form, and here are some examples, though they look differently.

2.1 Energy Efficient Stabilization

Starting from $x[0] = x_0$, find control sequence U that minimize

$$J(U) = \alpha \sum_{k=0}^{n-1} ||u[k]||^2 + \beta \sum_{k=0}^{N} ||x[k]||^2$$

to make it into LQR form, choose:

- $Q = \beta I$
- $R = \alpha I$
- $Q_f = \beta I$

Note that:

- cost function try to make state trajectory stay close to zero and use the least control energy simultaneously
- α and β determine the emphasis

Sometime state cannot be obtained directly, in this case, system output y can be used for evaluating running cost. Suppose output equation (Du part can be eliminate) is

$$y = Cx$$

in this case choose $Q = \beta C^T C$. Here is the proof:

$$\begin{split} \beta \sum_{k=0}^{N} ||y[k]||^2 &= \sum_{k=0}^{N} y^T[k] \beta I y[k] \\ &= \sum_{k=0}^{N} (Cx[k])^T \beta I Cx[k] \\ &= \sum_{k=0}^{N} x^T[k] C^T \beta I Cx[k] = \sum_{k=0}^{N} x^T[k] (\beta C^T C) x[k] \end{split}$$

this is a very import conclusion.

2.2 Minimum Energy Steering

Starting from $x[0] = x_0$, find control sequence U to use least energy to steer the final state to x[N] = 0 without lost generosity, the cost is:

$$J(U) = \sum_{k=0}^{N-1} ||u[k]||^2$$

to make it into LQR form, choose:

- Q = 0
- \bullet R = I
- $Q_f = \infty I$

By setting $Q_f \to \infty I$, there is a big penalty if X[N] is far from 0, note that this won't lead to a analytic solution, but the **approximation** is good enough.

2.3 LQR for Tracking(VIP TOPIC)

Find efficient sequence U for the state to track a given **reference trajectory** x_k^* (may be time-varying):

$$J(U) = \alpha \sum_{k=0}^{N-1} ||u[k]||^2 + \beta \sum_{k=0}^{N} ||x[k] - x_k^*||^2$$

note that $||x[k] - x_k^*||^2$ is not homogeneous quadratic, it should be formulate. It can be expanded(refer math proof in last part):

$$\begin{split} ||x[k] - x_k^*||^2 &= x^T[k]x[k] - 2x^T[k]x_k^* + (x_k^*)^T x_k^* \\ &= \begin{bmatrix} x[k] & 1 \end{bmatrix} \begin{bmatrix} I & x_k^* \\ (x_k^*)^T & (x_k^*)^T x_k^* \end{bmatrix} \begin{bmatrix} x[k] \\ 1 \end{bmatrix} \quad \text{dimension augmentation} \end{split}$$

construct new state variable $\tilde{x}[k] = [x[k] \quad 1]^T$, new system dynamic will be:

$$\tilde{x}[k+1] = \begin{bmatrix} A & 0 \\ 0 & 1 \end{bmatrix} \tilde{x}[k] + \begin{bmatrix} B \\ 0 \end{bmatrix} u[k]$$

and the origin cost can be reformed as:

$$J(U) = \alpha \sum_{k=0}^{N-1} ||u[k]||^2 + \beta \sum_{k=0}^{N} \tilde{x}^T[k] \tilde{Q}_k \tilde{x}[k]$$

where

$$\tilde{Q}_k = \begin{bmatrix} I & x_k^* \\ (x_k^*)^T & (x_k^*)^T x_k^* \end{bmatrix}$$

clearly, the system is LTI and the cost function is LTV.

2.4 LQR for System with Perturbation

Suppose system is:

$$x[k+1] = Ax[k] + Bu[k] + w[k]$$

To achieve LQR formulation, new state vector is constructed as:

$$\tilde{x}[k] = [x[k] \quad z[k]]$$
 dimension augmentation

recall that $x \in \mathbb{R}^n$, and $z[k] \in \mathbb{R}$, set z[k] = z[k+1] = 1, new system dynamic will be:

$$\tilde{x}[k+1] = \begin{bmatrix} A & w[k] \\ 0 & 1 \end{bmatrix} \tilde{x}[k] + \begin{bmatrix} B \\ 0 \end{bmatrix} u[k]$$

and system initial condition is $\tilde{x}[0] = [x[0] \quad 1].$ R will be the original one and \tilde{Q} is:

$$\tilde{Q}_k = \begin{bmatrix} Q & 0 \\ 0 & 0 \end{bmatrix}$$

clearly, the system is LTV and the cost function is LTI. In this case, u is not changed, x is augmented.

3 Direct Approach to Solve LQR

LQR problem can directly be formulated as a least square problem, though it won't solved this way, however it offers us very import conclusions.

3.1 Reconstruct the Problem

The system dynamics can be augmented to a big linear equation as follow:

$$\underbrace{\left[\begin{array}{c}x[1]\\x[2]\\\vdots\\x[N]\end{array}\right]}_{\tilde{X}} = \underbrace{\left[\begin{array}{cccc}B&0&\cdots&\cdots\\AB&B&0&\cdots\\\vdots&\vdots&\ddots&\dots\\A^{N-1}B&A^{N-2}B&\cdots&B\end{array}\right]}_{\tilde{G}} \underbrace{\left[\begin{array}{c}u[0]\\u[1]\\\vdots\\u[N-1]\end{array}\right]}_{\tilde{U}} + \underbrace{\left[\begin{array}{c}A\\A^2\\\vdots\\A^N\end{array}\right]}_{\tilde{H}}x_0$$

Recall that $G\tilde{U}$ is the zero-state response and $\tilde{H}x_0$ is the zero-input response and the cost function can be rewrite as:

$$J(U) = X^T \underbrace{\left[\begin{array}{ccc} Q & & & \\ & Q & & \\ & & \ddots & \\ & & & Q_f \end{array} \right]}_{\tilde{Q}} X + U^T \underbrace{\left[\begin{array}{ccc} R & & & \\ & R & & \\ & & \ddots & \\ & & & R \end{array} \right]}_{\tilde{R}} U$$

3.2 Limitations of Direct Approach

- Matrix inversion needed to find optimal control
- \bullet Problem(matrices) dimension increases with time horizon N
- \bullet Imprarical for large N let alone infinite horizon case
- Sensitivity of solutions to numerical errors

Observations:

- \bullet Problem easier to solve for shorter time horizon N
- (N+1)-horizon solution related to N-horizon solution
- Explpoit this relation to design an iterative solution procedure

Dynamic programming approach

- \bullet Reuse results for smaller N to solve for large N case
- In each iteration only need to deal with a problem of fixed size

3.3 Movitating Example

- Start from point A
- Try to reach point B
- Each step only move right
- Cost labeled on each edge

Problem: The least costly path from A to B?

3.4 Formulated as an Optimal Control Problem

- A = (0,0), B = (3,3)
- State x[k] with

$$x[0] = A, \ x[6] = B$$

- Control $u[k] = \pm 1$
- Dynamics:

$$x[k+1] = \left\{ \begin{array}{ll} x[k] + (0,1) & u[k] = 1 \\ x[k] + (1,0) & u[k] = -1 \end{array} \right.$$

• Cost to be minimized:

$$\sum_{k=0}^{5} \underbrace{w(x[k], u[k])}_{\text{edge weight}}$$

3.5 Direct Solution

Enumerate all possible legal from A to B and compare their costs to find the one with the least cost.

• A total of 20 possible paths

For $\ell\text{-by-}\ell$ grid, the total number of legal paths is

$$\frac{(2\ell)!}{(\ell!)^2}$$

- Grows extremely fast as problem size ℓ increases
- Solution impractical for large ℓ

3.6 Value Function

Definition: At any point z, the value function (optimal cast-to-go) V(z) is the least possible cost to reach B from z.

• Obtained by solve shorter time horizon problems

Original problem is to find V(A)

3.7 Value Function Property

Principle of Optimality: If a least-cost path from A to B is

$$x_0^* = A \to x_1^* \to x_2^* \to \cdots \to x_6^* = B,$$

Then any truncation of it at the end:

$$x_t^* \to x_{t+1}^* \to \cdots \to x_6^* = B$$

is also a least-cost path from x_t^* to B.

As a result, value function at any point z satisfies

$$V(z) = \min \{w_u + V(z'_u), w_d + V(z'_d)\}\$$

= $\min_{u \in \pm 1} [w(z, u) + V(z')]$

• V(z): Cost-to-go from current position

• w(z, u): Running cost of current step

• V(z'): Cost-to-go from next state position

3.8 Value Function Iteration

Idea: Use above to iteratively evaluate V(z) from right to left

3.9 Value Function Iteration

Idea: Use above to iteratively evaluate V(z) from right to left

3.10 Value Function Iteration

Conclusion: The least cost from A to B is 40

3.11 Recover the Optimal Control

Optimal control u[0] is recovered from $V(A) = \min\{5 + 35, 7 + 36\}$

3.12 Advantages of Dynamic Programming

Reduced computational complexity: for ℓ -by- ℓ grid

• Only need to compute ℓ^2 value functions

• No need to enumerate $\frac{(2\ell)!}{(\ell!)^2}$ paths

• Solve an optimization problem of fixed size in each iteration

Provide solutions to a family of optimal control problems

• Even if starting from a different initial position (e.g. due to perturbation), there is no need for re-computation

3.13 Back to LQR Problem

A discrete-time LTI system

$$x[k+1] = Ax[k] + Bu[k], \quad x[0] = x_0$$

Problem: Given a time horizon $k \in \{0, 1, ..., N\}$, find the optimal input sequence $U = \{u[0], ..., u[N-1]\}$ that minimizes the cost function

$$J(U) = \sum_{k=0}^{N-1} \underbrace{(x[k]^T Q x[k] + u[k]^T R u[k])}_{\text{running cost}} + \underbrace{x[N]^T Q_f x[N]}_{\text{terminal cost}}$$

Quenstions: Can we apply dynamic programming method to LQR problem?

3.14 Value Function of LQR Problem

The value function at time $t \in \{0, 1, ..., N\}$ and state $x \in \mathbb{R}^n$ is

$$V_t(x) = \min_{u[t], \dots, u[N-1]} \sum_{k=t}^{N-1} (x[k]^T Q x[k] + u[k]^T R u[k]) + x[N]^T Q_f x[N]$$

with the initial condtion x[t] = x

• Cost-to-go, namely, optimal cost of the LQR problem over the time horizon $\{t, t+1, ..., N\}$, starting from x[t] = x.

3.15 Solution of LQR Problem via Value Functions

Preview of results:

- The value function at the final time is quadratic: $V_N(x) = x^T Q_f x$
- We will see that the value function at any time t is also quadratic: $V_t(x) = x^T P_t x$ for some $P_t \ge 0$
- P_t can be obtained from P_{t+1}

Solution algorithm:

- (1) Start from $P_N = Q_f$ at time t = N
- (2) For t = N 1 : 0 do
 - Compute P_t from P_{t+1} by the above recursion
- (3) Recover optimal control sequence from value functions

3.16 How are Value Functions Related?

(Hamilton-Jacobi-)Bellman equation:

$$V_t(x) = \min_{u[t]=v} [x^T Q x + v^T R v + V_{t+1} (Ax + Bv)]$$

= $x^T Q x + \min_{u[t]=v} [v^T R v + V_{t+1} (Ax + Bv)]$

Optimality principle: For optimal case, cost-to-go form next state x[t+1] should also be optimal, i.e., $V_{t+1}(x[t+1])$.

3.17 t = N case

Value function at time N is quadratic:

$$V_N(x) = x^T P_N x, \ \forall x \in \mathbb{R}^n, \ \text{where } P_N = Q_f$$

3.18 t = N - 1 case

Value function at time N-1 is:

$$V_{N-1}(x) = x^{T}Qx + \min_{v} [v^{T}Rv + V_{N}(Ax + Bv)]$$

= $x^{T}Qx + \min_{v} [v^{T}Rv + (Ax + Bv)^{T}P_{N}(Ax + Bv)]$

3.19 General Case

Suppose value function at time t+1 is quadratic: $V_{t+1}(x) = x^T P_{t+1} x$

• Value function at time t is also quadratic:

$$V_t(x) = x^T P_t x, \quad \forall x \in \mathbb{R}^n$$

• P_t obtained from P_{t+1} according to the **Riccati recursion**:

$$P_{t} = Q + A^{T} P_{t+1} A - A^{T} P_{t+1} B (R + B^{T} P_{t+1} B)^{-1} B^{T} P_{t+1} A$$

• Optimal control at time t for the given state x[t] = x is:

$$u^*[t] = -(R + B^T P_{t+1} B)^{-1} B^T P_{t+1} A x = -K_t x$$

which is a linear state feedback control!

3.20 LQR Solution Algorithm

Set $P_N = Q_f$ for t = N-1, N-2, ..., 0 do Compute the value functions backward in time: $P_t = Q + A^T P_{t+1} A - A^T P_{t+1} B (R + B^T P_{t+1} B)^{-1} B^T P_{t+1} A$ end for Return $V_0(x_0)$ as the optimal cost Set $x^*[0] = x_0$ for t = 0, 1, ..., N-1 do Recover the optimal control and state trajectory forward in time: $u^*[t] = -(R + B^T P_{t+1} B)^{-1} B^T P_{t+1} A x^*[t]$ $x^*[t+1] = A x^*[t] + B u^*[t]$ end for Return u^* and x^* as the optimal control and state sequences

3.21 Remarks

- Value function at any time is quadratic (easy numeric representation)
- Optimal control strategy is of the state feedback form (though with time-varying gains)
- Yield the optimal solutions for all initial conditions x_0 and all initial times $t_0 \in \{0, 1, ..., N\}$ simultaneously
- Easily extended to time-varying dynamics and costs cases

3.22 Example

$$x[k+1] = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} x[k] + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u[k], \quad x[0] = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
$$y[k] = \begin{bmatrix} 1 & 0 \end{bmatrix} \times [k]$$

Cost function to be minimized

$$J(U) = \sum_{k=0}^{N-1} \|u[k]\|^2 + \rho \sum_{k=0}^{N} \|y[k]\|^2$$

- Time horizon N = 20
- State weights $Q = Q_f = \rho C^T C$
- Control weight R=1
- Optimal control is of the form $u^*[t] = [a_t \ b_t] \ x^*[t]$

3.23 Optimal Solution of Example

3.24 Steady State Optimal Control

Plot of the Kalman gain $K(k) = [K_1(k) \ K_2(k)]$ for $\rho = 0.1$: After sufficient number of iterations in the example

• The value function converages to the solution of the matrix equation:

$$P_{ss} = Q + A^{T} P_{ss} A - A^{T} P_{ss} B (R + B^{T} P_{ss} B)^{-1} B^{T} P_{ss} A$$

• The Kalman gain converges to

$$K_{ss} = (R + B^T P_{ss} B)^{-1} B^T P_{ss} A$$

3.25 Convergence of Riccati Recursion

Theorem: If (A, B) is stabilizable, then Riccati recursion starting from any P_N :

$$P_t = Q + A^T P_{t+1} A - A^T P_{t+1} B (R + B^T P_{t+1} B)^{-1} B^T P_{t+1} A$$

will converge to a solution P_{ss} of the Algebraic Riccati Equation (ARE)

$$P_{ss} = Q + A^{T} P_{ss} A - A^{T} P_{ss} B (R + B^{T} P_{ss} B)^{-1} B^{T} P_{ss} A$$

If further $Q = C^T C$ for some C such that (C, A) is detectable, then the ARE has a unique positive semidefinite P_{ss} . Also, in this case by applying the steady-state optimal control with gain

$$K_{ss} = (R + B^T P_{ss} B)^{-1} B^T P_{ss} A$$

the closed-loop system $A_{cl} = A - BK_{ss}$ is stable.

3.26 Infinite Horizon LQR Problem

Problem: Find optimal $U = \{u[0], u[1], ...\}$ to minimize

$$J(U) = \sum_{k=0}^{\infty} (x[k]^{T} Q x[k] + u[k]^{T} R u[k])$$

• Problem invariant to time-shift: same problem faced again and again

• Thus, value function is indepedent of time. with Bellman equation:

$$V(x) = x^{T}Qx + \min_{v} \left[v^{T}Rv + V(Ax + Bv) \right]$$

• Infinite value function possible

Theorem: If (A, B) is stabilizable and (C, A) is detectable where $Q = C^T C$, then the value function V(x) of the infinite horizon problem is $V(x) = x^T P_{ss} x$ where P_{ss} is the unique positive semidefinite solution to the discrete-time ARE and the optimal control is stationary $u^*(t) = -K_{ss} x^*(t)$.

4 Extra

4.1 Matlab Functions

• lqrd(): for discrete-time system

• lqr(): for continuous-time system

4.2 Quadratic Expansion

The general length of a vector $x \in \mathbb{R}^n$ is also called the L_2 norm. It is defined as:

$$||x||^2 = x^T x = \sum_{i=1}^n x_i^2$$
, where $x_i \in \mathbb{R}$

if another vector $y \in \mathbb{R}^n$, the norm of the difference is:

$$||x-y||^2 = ||y-x||^2$$
 identity property
= $(x-y)^T(x-y)$ definition
= $x^Tx - x^Ty - y^Tx + y^Ty$ distributive property
= $||x||^2 - 2x^Ty + ||y||^2$

recall that:

$$x^T y = y^T x$$
 property of inner product