CIEPŁO WŁAŚCIWE – INSTRUKCJA WYKONANIA PROJEKTU

Nr	Numer indeksu	Pierwiastek chemiczny
1	292814	W
2	400872	Mn
3	405021	Fe (α)
4	405024	Ni
5	405667	Pd
6	405926	Pt
7	406264	Rh
8	406720	Zn
9	406792	Al
10	406806	Ti
11	407295	Pb
12	407316	Sn
13	407607	Nb
14	407696	Ta
15	408118	Cr
16	408464	Mo

Wstęp:

Ciepło właściwe w modelu Debye'a (fononowe) wyraża się wzorem:

$$C_{fonon} = 9N_A k_B \left(\frac{T}{T_D}\right)^3 \int_0^{T_D/T} \frac{x^4 e^x}{(e^x - 1)^2} dx$$
.

W temperaturach znacznie niższych od temperatury Debye'a (T_D) powyższe wyrażenie można przybliżyć w następujący sposób:

$$C_{fonon} = 3N_A k_B \frac{4\pi^4}{5} \left(\frac{T}{T_D}\right)^3.$$

Jeśli weźmiemy pod uwagę, że ciepło właściwe elektronów przewodnictwa zależy liniowo od temperatury:

$$C_{elektron} = \gamma T$$
,

gdzie γ jest czynnikiem Sommerfelda, to możemy zapisać, że ciepło właściwe fononowe i elektronowe jest w przybliżeniu równe sumie obu wyrażeń:

$$C_{fonon+elektron} = \gamma T + 3N_A k_B \frac{4\pi^4}{5} \left(\frac{T}{T_D}\right)^3.$$

Oznacza to, że do danych doświadczalnych w niskich temperaturach można dopasować powyższe wyrażenie, uzyskując oszacowanie wartości γ oraz T_D . Dla typowych metali wartość współczynnika

Sommerfelda jest rzędu 0.001 - 0.020 J·mol⁻¹·K⁻². Wartość temperatury Debye'a można sprawdzić na stronie: http://www.knowledgedoor.com/2/elements handbook/debye temperature.html.

Lista zadań:

- 1. Proszę narysować wykres ciepła właściwego w funkcji temperatury.
- 2. Do danych proszę dopasować wyrażenie na ciepło właściwe fononowe i elektronowe, wyznaczając tym sposobem wartości czynnika Sommerfelda oraz temperatury Debye'a.
- 3. Proszę porównać uzyskane wynik dopasowania dla temperatury Debye'a z wartością literaturową.

Wskazówka:

W załączonych zestawach danych znajduje się ciepło właściwe masowe $(J \cdot g^{-1} \cdot K^1)$ w funkcji temperatury wyrażonej w K. Aby przeliczyć je na ciepło molowe (w takiej formie są podane wzory), należy przemnożyć drugą kolumnę przez masę molową danego pierwiastka.

Termin przesłania sprawozdania: środa 4 stycznia 2023.