Practical Subnetting 4

Based on the information in the graphic shown, design a network addressing scheme that will supply the minimum number of subnets, and allow enough extra subnets and hosts for 70% growth in all areas. Circle each subnet on the graphic and answer the questions below.

Start with the first subnet and arrange your sub-networks from the largest group to the smallest.

				10	
	IP address range for New York	135.126.0.0	To	135.126 21.2	25
IP:	address range for Washington D. C.	135.126.3260	to	135.12636	31 6 253 95 255
	IP address range for Dallas	135.126.64320	To	135.26.95.	255
	IP address range for Router A to Router B serial connection	135.126.96.0	to	135.126.05	255
64	IP address range for Router A to Router C serial connection	135.126.128.0	to	BS. 126. V	75
0.4				- 6	

Practical Subnetting 6

ased on the information in the graphic shown, design a network addressing scheme that will upply the minimum number of subnets, and allow enough extra subnets and hosts for 20% owth in all areas. Circle each subnet on the graphic and answer the questions below.

