Motoration for factor groups and normal Subgroups

Fredor groups are a way getting a surplified view of a patricular group with reference to one of its subgroups.

1. Reall the concept of a set partition. View this as a way to emplify a large set.

2. Can also patition a group very cosets of a certain subsgroup. eg. a group of with a subsgroup H

ab H. Initially a set patrition of the underlying This would be improved/be more group smumre related to the Smehre of G. ls there a "nultiplication"/product ve can perform on the tosets Houselves? Well flore is a strong candiale for onl, ie the natural moduit of sets animy from the product in tr.

gren two subjects X, 4 = Gr we can multiply them to give another subset. by XY= {nyeG: nex, yey} product of elements of Ca But whon those subsets are coset, ic. X=aH, Y=bH Say) - morder to make everything work and "hang together" we would require that (a 4) (b 4) = ab 4. Q? When night this be true? il. What property does It have to have? $(\alpha H)(b H) = (ab) H.$ ⇒ Yhi, hzetl∃hzetl ahibhz = abhz

the original group to, It's de	unded by
G/H.	
Section 10.1.	
Def d nomed subgroup.	
Eg 10.1 If Ct is abelian then Subscroups are normal shee.	all its
Subgroups are normal she.	
gH= {gh; heH}	
= { hg; he H} siv	e ghzhg
= Hg	
So the geniunely interests are where G'u non abolton	ng cases
are where I u non abolton	~
£9.10,2	
$G = S_3$ $J = \{(i), (12)\}$	(122)(12)
U'n not nomal in S3	(123)(12) $=(13)$
(123) H = \{ (123), (13)\{	
H(123)={(123),(12)}	(13)(123) =(12)

and 10 (123) H + H(123) But N={(1), (123), (132)} is a normal subgroup of Sz and S3/N congrets of the cosets N_{j} (12) N_{j} S3/N has the Factor group Caryley table N (12)N N N (12)N (12) N (12) N N Which is the only possible group Shruture for a group of order 2, ie.

Thoorem 10.3 gives us alknative riews of concept of Normality.

1. N nomal in G YgeG gN=Ng

(=) YgeG gNg-1=N.

The conjugate of N by g

Theorem 10.4 Prove all these claving. nanely, if N is a normal subproep of G then set of cosels, G/N, is a group under the operation. an bn=abn with identify eN = N and inerse elements which satisfy. $(aN)^{3} = \underline{a^{-1}}N$ Eg 10.6 G=(Z)+)

 $E_{3}^{10.6}$ $G_{5}^{10.7}$ G_{5

100 Jacob 9104) 12/37/ 10
exactly the group Z3 of meggs
modulo 3 under addition.
Factor groups are simplifications
of the original group.
Which leads to the concept of
a "Shiple group"
A simple group CT is one that
las no propos nontratal normal
subgroups. So it cannot he snuplified
uening this concept of factor groups.
Nomenher, every langroup Gras the two subgroups G, ZeZ
the two subgroups (T) Zes
Ent the factor groups arriving from
Ent the factor groups anising from there are not interesting simplifications.
as. G/G = EES, the trivial group

and G/zez = G S G2.] $D_{+} = \langle \Gamma, S \rangle$ Where $\Gamma^{4} = e, S^{2} = e, S^{2} = e$ $S\Gamma = \Gamma^{1}S$ Mationa $\mathcal{D}_{4} = \{e, \Gamma, \Gamma^{2}, \Gamma^{3}, \Gamma^{$ $S, \Gamma S, \Gamma^2 S, \Gamma^3 S$ Dy has subgroups EEZ, Dy $R = \langle r \rangle = \{e_1 r_1 r_2, r_3\} = \langle r^3 \rangle$ R2=<12>= {e, 12} 2 elovers Subgroups $S_1 = \langle s \rangle = \{e, s\}$ $S_2 = \langle r s \rangle = \{e, r s\}$

 $S_3 = \langle r^2 s \rangle = \{e, r^2 s\}$ (reflectional $S_{4} = (1^{3}5) = \{e_{1}^{3}5\}$ flore is one note subgroup $\#A = \langle \Gamma^2, S \rangle =$ $\{e, \Gamma^2, S, \Gamma^2 S\}$ miked $B = \langle r^2, rs \rangle$ $= \langle r^2, rs \rangle$ $= \langle r^2, rs \rangle$ $C = \langle C^2, C^2 \rangle$ $= \{e, r^2, r^2, s\} = A.$ ひ= (パパラ)= 一男. So we how proper non-trivial Subsproups R, Rz, S, Sz, Sz, Sy,
AB not normal.
Which are normal? normal. |A|=124|

R1 Note [R1]=4=[D4] un souch cases (IHI=1GI)2. always for those the only weeks are RI, Dy RI, ie. the couplement So factor group exists and Riski 3 xR2=R2x forall x in D4? well $x = x^2 S^3$ (=1,2,3,0) j=0,1we just need to chech we just need to check

If $\chi = \Gamma^i$ than $\chi = \Gamma^i = \Gamma^2 = \Gamma^2 \chi$ but $4 \times = 1$ 'S

Hen $\times 1^2 = 1^2 \times 1^2 =$

and $\Gamma^2 X = \Gamma^2 \Gamma^1 S = \Gamma^1 T^2 S$ So X(2 and 62x not recessarily the same. eg When $\gamma=5$ $R_2=\{e_1r^2\}$ $SR_2 = \{5, Sr^2 = r^{-2}S = r^2S\}$ $R_{2}S = \{S, r^{2}S\} = SR_{2}.$ try.
rsR2=\{\sigma\} \(\sigma\) \(\sigma\) = \{\sigma\} = \{\sigma\} \\ = \{\sigma\}. P2rs= { rs, r2rs=r3s}. Soitseems Rzin normal in 19 also. and so there is the feelor grown. 1 D4/22 = 4. 55 55

Rz, rRz, sRz, rsRz
Rz rRz sRz rsRz
rRz rRz rsRz. sRz.
sRz rsRz rsRz rRz.
rsRz rsRz rsRz.

 $\sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{j=1}^{2} \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{j=1}^{2} \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{j=1}^{2} \sum_{j=1}^{2} \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{j=1}^{2} \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{j$