## RÉCAPITULATIF page 384

Loi binomiale

# Modèle de la succession d'épreuves indépendantes

La probabilité d'une issue  $(x_1, x_2, \dots, x_n)$  est égale au produit des probabilités des composantes  $x_i$ , pour i entier allant de 1 à n.

La succession de deux épreuves indépendantes d'univers respectifs  $\Omega_1$  et  $\Omega_2$  a pour univers  $\Omega_1 \times \Omega_2$ .

## Loi binomiale de paramètres n et p

Soit X une variable aléatoire qui, à chaque issue d'un schéma de Bernoulli de paramètres n et p, associe le nombre de succès au cours de ces n épreuves.

- La loi de probabilité de X est appelée loi binomiale de paramètres n et p. On la note  $\mathfrak{B}(n,p)$ .
- Pour tout entier k compris entre 0 et n,

$$P(X=k) = \binom{n}{k} p^k q^{n-k}, \text{ où } q = 1 - p.$$

Loi binomiale

## Schéma de Bernoulli

Succession de n épreuves de Bernoulli de paramètre p, identiques et indépendantes.





répétitions sur l'arbre associé à un schéma de Bernoulli.

### Épreuve de Bernoulli de paramètre p

Expérience aléatoire présentant deux issues dont l'une, nommée « succès », a pour probabilité p et l'autre, nommée « échec » a pour probabilité 1-p.

- La variable aléatoire X qui prend la valeur 1 en cas de succès et 0 en cas d'échec est appelée variable aléatoire de Bernoulli.
- La loi de probabilité de X est appelée loi de Bernoulli de paramètre p.

| $x_i$      | 0     | 1 |
|------------|-------|---|
| $P(X=x_i)$ | 1 - p | p |

$$E(X) = p$$
,  $V(X) = p(1-p)$  et  $\sigma(X) = \sqrt{p(1-p)}$ .