Computational Thinking in Middle School: Design Thinking Outline

- Conversation about the typical delivery of CT across grades 6-8
- Open discussion of pain points in teaching CS in middle school
- Learning progressions: palette and block restrictions
 - Specific computational thinking concepts and sequences
 - Instructors can check and uncheck in design mode
 - Instructors can still use these
 - Instructors can put blocks in the game interface, but the students can't add any new ones.
 - Students can't do anything to the blocks already there
 - Left click exclude is allowed for simple ones: individual blocks
 - Quest: several games, increasing amount of freedom allowed as you're learning concepts
 - Different difficulty levels for different games
- Focusing on CT concepts via points
 - Emphasizing looping: the loop has a higher point value than doing it individually
 - Explain the concept of the points; preset configurations
 - Explain scoring system options for Parson's Puzzles and Constructionist Video Games
 - o Parson's operates on a specific gaming rubric
 - Wrong spot decrements score
 - Constructionist: set your own goals for learning objectives, based on instructor preferences.
 - Record the number of points that students get in their games, translate into leaderboards.
 - Teacher gets to weight various ways that students can get incentivized.
 - Several ways of assessing mastery: actual mastery plugin with the Hairball analysis, and PECT analysis.
 - Pictures as a login as a student: spider graph is the mastery of results
 - Automated results from CT concepts
 - Deep dive on principals of Constructionist Video Games
- Gameful Direct Instruction: create a Parson's Puzzle
 - Create sprites and put them in the stage
 - o Game templates under construction
 - Might be a calculation, maze, etc.
 - o Enter question, enter hint
 - Find a number: have you tried a loop? Canned vs. dynamic hints.
 - Saving/loading Parson's Puzzles in Design and Play modes

- Load from a student view:
 - Automatically take care of which palettes are available
 - Experiment from a selective Parson's palette.
- When you load as a student, the student doesn't see any scripts in the scripts pane. The goal is to match what the teacher has created.
- Discuss which elements of CT concepts teachers might want to deliver via Parson's Puzzles
- Gameful Constructionism: game-objective editor and feedback system
 - Beginning quest: once upon a programmer
 - Capability to create game objectives using block-based software testing grammar: teacher task
 - Expect to have games pre-built and have templates and games customizable with content relevant for your school.
 - Make copies of your own games. Borrow games and objectives from the affinity space.
 - Blocks will have a drop own: don't have to know underlying names of a block
 - o Explore options for student view of feedback in real-time
 - Explore teacher capability, time, and willingness to engage in this activity
- Gameful Intelligent Tutoring: recommender and auto-hinting
 - Outer loop next-task guidance via Mission/Quest/Game recommendations
 - Ordered vs. unordered access to games in the quest
 - Guidance toward additional practice games when automated evaluation of mastery low.
 - Describe inner loop and opportunities for problem-solving support through individualized just-in-time and on-demand hinting
 - Explore teacher interest in throttling hinting at the class and individual levels
- Infusing CT across the curriculum
 - Demonstrate Mission/Quest/Game creation, and elicit requirements that would enable teachers from CS and other subjects to fuse learning goals
 - o Discuss game-based learning that facilitates game-based assessment
 - Review CS/CT standards and means of incorporation, tracking, and reporting
 - o Identify teacher wish-list for Scratch and CT in middle school