# Использование математики для семантического анализа текста

Хафизов Ф.Т. 2021.10.16



http://projector.tensorflow.org/

#### Наша цель:

Показать, что <u>школьная математика</u> может быть хорошим инструментом для решения сложных задач

#### Математика, которая нам понадобится

- 1. Косинус, вектор, скалярное произведение, матричное умножение
- 2. Максимизация функции (многих переменных) путём итераций.

## Вектор, скалярное произведение, матричное умножение



Косинусное расстояние между векторами :=  $\cos heta$ 

$$\vec{a} \cdot \vec{b} := |\vec{a}| |\vec{b}| \cos \theta$$

$$\vec{a} \cdot \vec{b} = (a_1, a_2) \cdot (b_1, b_2) = a_1 b_1 + a_2 b_2$$

$$\begin{bmatrix} 6 & 9 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = (6,9) \cdot (-1,1) = 6(-1) + 9(1) = 3$$

$$\begin{bmatrix} 6 & 9 \end{bmatrix} \begin{bmatrix} -1 & 1 & -2 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 6 & -3 \end{bmatrix}$$

#### Содержание

- 1. Вводная часть
  - Какой смысл у слова "смысл"?
  - Как мы узнаём смысл слов?
- 2. Постановка задачи
- 3. Алгоритм Skip-gram (базовая версия) [1,2]
- 4. Демонстрация кода
- 5. Инженерные решения
- 6. Любопытные примеры

#### Пример «вычисления» смысла слов [1,2]

 $v(\text{king}) - v(\text{man}) + v(\text{woman}) \approx v(\text{queen})$ 





Вопрос-1: Может ли компьютер распознать смысл слов?

А что мы подразумеваем под «смыслом» слов?

#### Как определить смысл слова они?

- Представители власти отказались дать разрешение демонстрантам, т.к., они боялись беспорядков.
- •Представители власти отказались дать разрешение демонстрантам, т.к., они призывали к беспорядкам.

[Терри Виноград]

#### Как мы распознаём значения слов?

- Рифек получают из молока путём брожения.
- 2. Чтобы разнообразить привычный способ приготовления блинов попробуем испечь тонкие блины на рифеке с дырочками.
- 3. Рифек обладает уникальным набором бактерий и грибков, входящих в его состав.
- 4. «Заплатите за рифек, Шура, сказал Паниковский, потом сочтемся».
- 5. Благодаря своему сложному составу, рифек может препятствовать развитию в кишечнике патогенной флоры.
- 6. Известным популяризатором рифека в России был ялтинский врач и климатолог В. Н. Дмитриев.
- 7. Рифек оказывает пробиотическое воздействие, то есть благоприятно влияет на микрофлору кишечника и обмен веществ в целом.

### Ответ на Вопрос-1

• Компьютеры (пока) не могут распознавать смысл слов так, как люди.

• Однако, компьютеры могут оценить близость слов по анализу контекста.

## Постановка задачи:

Разделить слова в соответствии с их контекстом

Замечание: задачу будем решать, представляя слова в виде векторов на плоскости

## Векторное вложение слов, отражающее сематнику слов в заданном контексте.



## Что происходит с косинусом угла между векторами одного цвета?





## Метод (алгоритм *skip-gram* [1,2])

#### Контекстные пары (0/3)

|   | center | context |
|---|--------|---------|
| 0 | рыба   | плавает |



- Рыба плавает глубоко в воде.
- Дно океана очень глубоко.
- Рыба плавает в темноте.
- Птицы улетели в небо.
- Птицы летают очень высоко.
- В солнечный день небо чистое.

#### Контекстные пары (1/3)



| center | context |
|--------|---------|
| กมกิล  | ппавает |

1 рыба глубоко

- Рыба плавает глубоко в воде.
- Дно океана очень глубоко.
- Рыба плавает в темноте.
- Птицы улетели в небо.
- Птицы летают очень высоко.
- В солнечный день небо чистое.

#### Контекстные пары (2/3)

|   | center  | context |
|---|---------|---------|
| 0 | рыба    | плавает |
| 1 | рыба    | глубоко |
| 2 | плавает | рыба    |



- Рыба плавает глубоко в воде.
- Дно океана очень глубоко.
- Рыба плавает в темноте.
- Птицы улетели в небо.
- Птицы летают очень высоко.
- В солнечный день небо чистое.

#### Контекстные пары (3/3)

|     | center  | context   |
|-----|---------|-----------|
| 0   | рыба    | плавает   |
| 1   | рыба    | глубоко   |
| 2   | плавает | рыба      |
| 3   | плавает | глубоко   |
| 4   | плавает | воде      |
| ••• |         |           |
| 39  | небо    | солнечный |
| 40  | небо    | день      |
| 41  | небо    | чистое    |
| 42  | чистое  | день      |
| 43  | чистое  | небо      |
|     |         |           |

- Рыба плавает глубоко в воде.
- Дно океана очень глубоко.
- Рыба плавает в темноте.
- Птицы улетели в небо.
- Птицы летают очень высоко.
- В солнечный день небо чистое.

### Случайное вложение $\mathbf{W}_0$

|          | vocab                        | init_embedding                                  |
|----------|------------------------------|-------------------------------------------------|
| 0        | воде                         | [1.94, -0.7]                                    |
| 1        | высоко                       | [-1.64, -0.99]                                  |
| 2        | глубоко                      | [-1.12, -0.04]                                  |
| 3        | день                         | [-0.36, 0.17]                                   |
| 4        | дно                          | [-1.24, -0.96]                                  |
| 5        | летают                       | [-0.9, -0.17]                                   |
| 6        | небо                         | [-1.06, -0.43]                                  |
| 7        | океана                       | [-1.49, 1.4]                                    |
| 8        | плавает                      | [-0.15, -0.97]                                  |
| 9        |                              |                                                 |
|          | птицы                        | [-0.47, -1.29]                                  |
| 10       | рыба                         | [-0.47, -1.29]<br>[-0.79, 0.35]                 |
| 10<br>11 |                              |                                                 |
|          | рыба                         | [-0.79, 0.35]                                   |
| 11       | рыба<br>солнечный            | [-0.79, 0.35]<br>[0.52, -1.07]                  |
| 11       | рыба<br>солнечный            | [-0.79, 0.35]<br>[0.52, -1.07]                  |
| 11       | рыба<br>солнечный<br>темноте | [-0.79, 0.35]<br>[0.52, -1.07]<br>[-0.38, 0.68] |

#### Обучение

```
Для пары ( 'плавает', 'глубоко' )
плавает: x \longrightarrow x = W_0[8,:] = (-0.1, -1.0)
```

```
[-0.9, -0.2]
      глубоко: y ---> y' = W_1[:,2] = (-0.8, 1.6)^t
                                                                                                   [-1.1, -0.4]
                                                                                                     [-0.5, -1.3]
                                                                                                    [-0.8, 0.4]
                                                                                                    [0.5, -1.1]
                                                                                                   [-0.4, 0.7]
                                                                                                   [ 0.1, -0.2]
                                                                                                    [ 0.7, -0.8]
W_1 = \begin{bmatrix} 0.2 & -1.4 & -0.8 & 1.3 & -1.5 & -1.4 & 0.6 & -1.5 & 0.4 & -0.9 & 0.3 & 1.1 & 0.5 & -0.3 & 1.1 \\ [1.3 & -1.2 & 1.6 & -1.4 & 0.9 & -1.2 & -1.9 & 0.9 & 1.8 & -1.8 & 1.7 & -1.3 & 1.4 & -1.7 & -1.3 \end{bmatrix}
```



 $X.W_1 = \begin{bmatrix} -1.32, & 1.34, & -1.52, & 1.27, & -0.75, & 1.34, & 1.84, & -0.75, & -1.84, & 1.89, & -1.73, & 1.19, & -1.45, & 1.73, & 1.19 \end{bmatrix}$  $\exp(x.W_1) = [0.27, 3.82, 0.22, 3.56, 0.47, 3.82, 6.3, 0.47, 0.16, 6.62, 0.18, 3.29, 0.23, 5.64, 3.29]$ 

 $W_0 = \begin{bmatrix} 1.9, -0.7 \\ [-1.6, -1. \end{bmatrix}$ 

[-1.1, -0.][-0.4, 0.2]

[-1.2, -1.]

#### Целевая функция

exp(x.W<sub>1</sub>) [0.27, 3.82, 0.22, 3.56, 0.47, 3.82, 6.3, 0.47, 0.16, 6.62, 0.18, 3.29, 0.23, 5.64, 3.29]

$$P(\overset{'}{w_{context}},\overset{'}{w_{center}}) = P(w_y,w_x) := rac{\exp(x\cdot y')}{\sum_{v=1}^{|V|} \exp(x\cdot y'_v)}$$

$$U(W_0, W_1) := \frac{1}{T} \sum_{t=1}^{T} \ln P(y_{t+j}, x_t)$$

Алгоритм Skip-Gram пытается максимизировать целевую функцию  $U(W_0,W_1)$ , которая зависит от векторного вложения наших слов  $w_1,w_2,w_3,\ldots,w_T$  выбранных из текста.

$$\max_{\boldsymbol{W_0},\boldsymbol{W_1}} U(\boldsymbol{W_0},\boldsymbol{W_1})$$

#### Итерационная максимизация функций

$$f(2+\epsilon)\approx f(2)+\epsilon f'(2)$$
 если  $f'(2)>0$ , то  $f(2.1)\approx f(2)+0.1f'(2)>f(2)$ 



В случае  $U(a_1, a_2)$  роль положительной производной играет **градиент** 

$$\nabla U(a_1, a_2) := \left(\frac{\partial U}{\partial a_1}, \frac{\partial U}{\partial a_2}\right)$$



#### Итерационная максимизация функции многих переменных

$$\vec{x} = [t_1, t_2]$$

$$\nabla U := \left(\frac{\partial U}{\partial t_1} \,,\, \frac{\partial U}{\partial t_2}\right)$$



$$\vec{x}_{n+1} = \vec{x}_n + \epsilon \Big( \nabla U(\vec{x}_n) \Big)$$

$$U(\vec{x}_{n+1}) > U(\vec{x}_n)$$

Если  $\vec{x}=(t_1,t_2)=(\pi/2,1)$ , то  $U(\vec{x})=6$  и вектор  $\nabla U(t_1,t_2)=(0,5)$  указывает направление наибольшего возрастания функции U из точки  $(\pi/2,1,6)$ .





Вопрос-2: Можно ли упростить алгоритм?

#### $W_1 = W_0^t$

```
Для пары ( 'плавает', 'глубоко' ) плавает : x ---> x = W_0[8,:] = (-0.1, -1.0) глубоко : y ---> y' = W_1[:,1] = (-1.4, -1.2)^t
```





#### Демонстрация кода







#### Поиск в сети слов "Word Embedding"



## Интересные примеры применения векторного представления слов

 $v(\text{king}) - v(\text{man}) + v(\text{woman}) \approx v(\text{queen})$ 





```
v(Russia) + v(river) \approx v(Volga River)

v(Germany) + v(capital) \approx v(Berlin)
```

Ref: [1,2]

#### Алгебраические уравнения из слов

```
France + (Moscow - Russia) = X
```

$$X =$$
?

#### Нахождение новых зависимостей



#### PCA projection of the 1000-dimensional Skip-gram vectors



#### Ссылки

- [0] Mikolov et al, 2013, Linguistic Regularities in Continuous Space Word Representations, <a href="https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/rvecs.pdf">https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/rvecs.pdf</a>
- [1] Mikolov et al 2013.09 <a href="https://arxiv.org/pdf/1301.3781.pdf">https://arxiv.org/pdf/1301.3781.pdf</a>
- [2] Mikolov et al 2013.10 <a href="https://arxiv.org/pdf/1310.4546.pdf">https://arxiv.org/pdf/1310.4546.pdf</a>

# Инженерные решения (или как алгоритм становится технологией)

# Вопрос-3: Как использовать этот подход на всём тексте Вики?

#### Сложности

- Огромное количество слов и предложений
- Вычислительная сложность
- Не все слова вносят одинаковый вклад в поиск решения

#### Инженерные решения

- 1. Распределённая система вычислений
- 2. Оптимизация словаря
- 3. Начинаем выбрасывать, с вероятностью *P(w<sub>i</sub>),* часто повторяющиеся слова

$$P(w_i) = \begin{cases} \sqrt{1 - \frac{t}{f(w_i)}} &, & \text{if } f(w_i) > t \\ 0 &, & \text{otherwise} \end{cases}$$

4. Дополняем целевую функцию отрицательными примерами

#### Word Embedding Demo

#### https://turbomaze.github.io/word2vecjson/

#### Similar Words

Enter a word and see words with similar vectors.

| doctor      |                | List words |
|-------------|----------------|------------|
| doctor      | 1.00000000000  | 000002     |
| physician   | 0.7806019127   | 031032     |
| doctors     | 0.7476568731   | 527384     |
| surgeon     | 0.6793393714   | 387082     |
| dentist     | 0.67854421178  | 848048     |
| nurse       | 0.6319524227   | 288814     |
| psychiatris | t 0.6147038503 | 61634      |
| medical     | 0.5671389130   | 686404     |
| clinic      | 0.5499804910   | 039348     |
| therapist   | 0.5283346636   | 619084     |

#### Word Algebra

Enter all three words, the first two, or the last two and see the words that result.



#### Word Algebra

Enter all three words, the first two, or the last two and see the words that result.

| china   | +                | (moscow | - | russia | ) = [ | Get result |
|---------|------------------|---------|---|--------|-------|------------|
| shangha | 0.77914768622554 | 9       |   |        |       |            |
| china   | 0.76911208878313 | 15      |   |        |       |            |
| chinese | 0.67206597261864 | 36      |   |        |       |            |
| hu      | 0.59641891639734 | 39      |   |        |       |            |
| yuan    | 0.59468761915180 | 002     |   |        |       |            |