(Ingegneria dell'Energia, seconda squadra)

Prof. F. Bottacin

2^a Prova di accertamento — 9 maggio 2009

Esercizio 1. Utilizzando il metodo di eliminazione di Gauss, si trasformi la seguente matrice in una matrice triangolare superiore (o inferiore).

$$A = \begin{pmatrix} 2 & -4 & 6 & -2 \\ 1 & -1 & b+3 & -2 \\ -3 & 3a+6 & 3a-6 & 3 \\ 1 & a-b-1 & a-b+4 & 0 \end{pmatrix}$$

Utilizzando il risultato così ottenuto, si calcoli il determinante di A e si dica per quali valori dei parametri reali a e b la matrice A ha rango 3.

Esercizio 2. Si determini $t \in \mathbb{R}$ in modo tale che la matrice

$$A = \begin{pmatrix} -1 & 3 & 2\\ 0 & -5 & -4\\ 0 & t-1 & -3 \end{pmatrix}$$

abbia -7 come autovalore. Per tale valore di t si determinino gli autovalori e gli autovettori di A e si stabilisca se A è diagonalizzabile.

Esercizio 3. Si determini l'intersezione degli insiemi delle soluzioni dei seguenti sistemi lineari:

$$\begin{cases} 2x - y = 1 \\ x + y - z + w = 0 \end{cases} \begin{cases} 2y + z - w = -1 \\ x + 2z - 2w = 0 \end{cases}$$

Esercizio 4. Sia A una matrice quadrata di ordine n a coefficienti reali.

V F Se rango(A) < n allora A ha un autovalore uguale a 0;

 \overline{V} \overline{F} Se A ha un autovalore nullo allora essa non è invertibile;

|V||F| Se det(A) = 0 allora A non ha autovalori reali.

Esercizio 5. Siano A e B due matrici quadrate e P una matrice invertibile tale che $B = PAP^{-1}$. Allora:

 $V | F | A \in B$ hanno gli stessi autovalori;

 \overline{V} \overline{F} $A \in B$ hanno gli stessi autovettori;

 $\overline{V} \overline{F}$ A e B hanno lo stesso determinante.

Esercizio 6. Sia A una matrice quadrata di ordine 4, con autovalori $\lambda_1 = 2$ e $\lambda_2 = -3$. Supponiamo inoltre che $U_1 = \langle (1,0,-1,0), (-1,1,0,1) \rangle$ sia l'autospazio relativo all'autovalore λ_1 e $U_2 = \langle (0,0,1,1), (0,1,-1,2) \rangle$ sia l'autospazio relativo all'autovalore λ_2 . Allora:

V F A ha rango ≤ 3 ;

 $|V||F| \det(A) = 36;$

 \overline{V} \overline{F} il vettore (1,0,-1,0)+(0,1,-1,2) è un autovettore di A.

(Ingegneria dell'Energia, seconda squadra)

Prof. F. Bottacin

2^a Prova di accertamento — 9 maggio 2009

Esercizio 1. Si determini $t \in \mathbb{R}$ in modo tale che la matrice

$$A = \begin{pmatrix} -3 & 0 & 0 \\ -2 & 1 & t+1 \\ 3 & 2 & 1 \end{pmatrix}$$

abbia 5 come autovalore. Per tale valore di t si determinino gli autovalori e gli autovettori di A e si stabilisca se A è diagonalizzabile.

Esercizio 2. Si determini l'intersezione degli insiemi delle soluzioni dei seguenti sistemi lineari:

$$\begin{cases} x - 3z = 2 \\ 2x + y - z + w = 0 \end{cases} \begin{cases} -2y + z - w = 1 \\ x + 3y + z + 2w = -3 \end{cases}$$

Esercizio 3. Utilizzando il metodo di eliminazione di Gauss, si trasformi la seguente matrice in una matrice triangolare superiore (o inferiore).

$$A = \begin{pmatrix} 2 & -2 & 0 & 4 \\ 1 & 1 & a & 3 \\ -3 & 3b+3 & 3b+9 & -6 \\ 1 & b-a-3 & b-a+3 & 1 \end{pmatrix}$$

Utilizzando il risultato così ottenuto, si calcoli il determinante di A e si dica per quali valori dei parametri reali a e b la matrice A ha rango 3.

Esercizio 4. Siano A e B due matrici quadrate e P una matrice invertibile tale che $B = PAP^{-1}$. Allora:

 \overline{V} \overline{F} A e B hanno lo stesso determinante.

 $V | F | A \in B$ hanno gli stessi autovalori;

 $V \mid F \mid A \in B$ hanno gli stessi autovettori;

Esercizio 5. Sia A una matrice quadrata di ordine 4, con autovalori $\lambda_1 = 1$ e $\lambda_2 = -4$. Supponiamo inoltre che $U_1 = \langle (1,0,-1,0), (-1,1,0,1) \rangle$ sia l'autospazio relativo all'autovalore λ_1 e $U_2 = \langle (0,0,1,1), (0,1,-1,2) \rangle$ sia l'autospazio relativo all'autovalore λ_2 . Allora:

 \overline{V} F il vettore (1,0,-1,0)+(0,1,-1,2) è un autovettore di A.

 $V F A ha rango \le 2;$

 $\boxed{\mathbf{V} \mid \mathbf{F}} \quad \det(A) = 16;$

Esercizio 6. Sia A una matrice quadrata di ordine n a coefficienti reali.

 \overline{V} \overline{F} Se A ha un autovalore nullo allora essa non è invertibile;

V F Se det(A) = 0 allora A non ha autovalori reali.

 $\lceil \mathbf{V} \rceil \lceil \mathbf{F} \rceil$ Se rango(A) < n allora A ha un autovalore uguale a 0;

(Ingegneria dell'Energia, seconda squadra)

Prof. F. Bottacin

2^a Prova di accertamento — 9 maggio 2009

Esercizio 1. Si determini l'intersezione degli insiemi delle soluzioni dei seguenti sistemi lineari:

$$\begin{cases} y - z = -1 \\ 2x - y + 2z - w = 0 \end{cases} \begin{cases} x - 2y + 2w = 3 \\ -x - 3z + 3w = 2 \end{cases}$$

Esercizio 2. Utilizzando il metodo di eliminazione di Gauss, si trasformi la seguente matrice in una matrice triangolare superiore (o inferiore).

$$A = \begin{pmatrix} 2 & 0 & -4 & 2 \\ 1 & -2 & 2b - 2 & 2 \\ -3 & 3a & 3a + 3 & -3 \\ 1 & a - b - 1 & a - 2b - 3 & 0 \end{pmatrix}$$

Utilizzando il risultato così ottenuto, si calcoli il determinante di A e si dica per quali valori dei parametri reali a e b la matrice A ha rango 3.

Esercizio 3. Si determini $t \in \mathbb{R}$ in modo tale che la matrice

$$A = \begin{pmatrix} 2 & 0 & 3 \\ -2 & -4 & 1 \\ t - 2 & 0 & 2 \end{pmatrix}$$

abbia 2 come autovalore. Per tale valore di t si determinino gli autovalori e gli autovettori di A e si stabilisca se A è diagonalizzabile.

Esercizio 4. Sia A una matrice quadrata di ordine 4, con autovalori $\lambda_1 = -2$ e $\lambda_2 = 4$. Supponiamo inoltre che $U_1 = \langle (1,0,-1,0), (-1,1,0,1) \rangle$ sia l'autospazio relativo all'autovalore λ_1 e $U_2 = \langle (0,0,1,1), (0,1,-1,2) \rangle$ sia l'autospazio relativo all'autovalore λ_2 . Allora:

V F $\det(A) = 64;$

 $\overline{\mathbf{V}}$ $\overline{\mathbf{F}}$ il vettore (1,0,-1,0)+(0,1,-1,2) è un autovettore di A.

V F A ha rango ≤ 3 ;

Esercizio 5. Siano A e B due matrici quadrate e P una matrice invertibile tale che $B = PAP^{-1}$. Allora:

 \overline{V} \overline{F} A e B hanno lo stesso determinante.

 $oxed{V} oxed{F} \quad A$ e B hanno gli stessi autovettori;

 $oxed{V} oxed{F} A$ e B hanno gli stessi autovalori;

Esercizio 6. Sia A una matrice quadrata di ordine n a coefficienti reali.

 $\overline{|V|}F$ Se $\det(A) = 0$ allora A non ha autovalori reali.

V F Se rango(A) < n allora A ha un autovalore uguale a 0;

 $oxed{V}$ $oxed{F}$ Se A ha un autovalore nullo allora essa non è invertibile;

(Ingegneria dell'Energia, seconda squadra)

Prof. F. Bottacin

2^a Prova di accertamento — 9 maggio 2009

Esercizio 1. Si determini $t \in \mathbb{R}$ in modo tale che la matrice

$$A = \begin{pmatrix} 2 & -3 & 0 \\ t - 1 & -4 & 0 \\ 1 & -5 & 2 \end{pmatrix}$$

abbia -1 come autovalore. Per tale valore di t si determinino gli autovalori e gli autovettori di A e si stabilisca se A è diagonalizzabile.

Esercizio 2. Si determini l'intersezione degli insiemi delle soluzioni dei seguenti sistemi lineari:

$$\begin{cases} 2y + w = -2 \\ x - y + 2z - w = 0 \end{cases} \begin{cases} 3x + y - z = 1 \\ 2x + 4y - 3z + 2w = -1 \end{cases}$$

Esercizio 3. Utilizzando il metodo di eliminazione di Gauss, si trasformi la seguente matrice in una matrice triangolare superiore (o inferiore).

$$A = \begin{pmatrix} 2 & 2 & 6 & -4 \\ 1 & -1 & 3-a & -1 \\ -3 & 3b & 3b-12 & 6 \\ 1 & b-a+2 & a+b+2 & -3 \end{pmatrix}$$

Utilizzando il risultato così ottenuto, si calcoli il determinante di A e si dica per quali valori dei parametri reali a e b la matrice A ha rango 3.

Esercizio 4. Siano A e B due matrici quadrate e P una matrice invertibile tale che $B = PAP^{-1}$. Allora:

V F A e B hanno gli stessi autovettori;

V F A e B hanno gli stessi autovalori;

 $oxed{V} oxed{F}$ A e B hanno lo stesso determinante.

Esercizio 5. Sia A una matrice quadrata di ordine n a coefficienti reali.

V F Se det(A) = 0 allora A non ha autovalori reali.

|V| |F| Se rango(A) < n allora A ha un autovalore uguale a 0;

Esercizio 6. Sia A una matrice quadrata di ordine 4, con autovalori $\lambda_1 = -5$ e $\lambda_2 = -1$. Supponiamo inoltre che $U_1 = \langle (1,0,-1,0), (-1,1,0,1) \rangle$ sia l'autospazio relativo all'autovalore λ_1 e $U_2 = \langle (0,0,1,1), (0,1,-1,2) \rangle$ sia l'autospazio relativo all'autovalore λ_2 . Allora:

 $\overline{\mathbf{V}}$ $\overline{\mathbf{F}}$ il vettore (1,0,-1,0)+(0,1,-1,2) è un autovettore di A.

V F A ha rango ≤ 2 ;

 $\boxed{V | F} \quad \det(A) = 25;$