

FIG.3A

FIG.3B

FIG.3C

FIG.4A

FIG.4B

	Part of Hexagonal Code along a 3-Row Strip					
	u	\boldsymbol{x}	α	d	g	j
/		/	/	/	1	/
v	y	ь		e	h	\boldsymbol{k}
\		\	\	\	\	\
	w	. z	С	f	i	l

FIG.5A

One Strip of Fish-Bone Code

FIG.5B

Coherent Stack of Two Strips of Fish-Bone Code, with 3 Rows each					
	x_1	\ddot{a}_1	\dot{d}_1	91	 j ₁
	/	1	/	./	. /
Strip 1	¥1	b ₁	e ₁	h_1 k	1
	λ	\	\	\	\
	^z 1		f_1	<u> 1</u>	<i>l</i> ₁
	./	./	<i>!</i>	/	<i>'</i>
• • •	x_2	$a_{\mathcal{Z}}$	$d_{\mathcal{Z}}$	92	<i>i2</i>
,	/ /	1	/	1	
Strip 2 92	$b_{\mathcal{Z}}$	^e 2	$h_{\mathcal{Z}}$	$k_{\mathcal{Z}}$	
,	\ \	\	\	\	
	z_2	c ₂	$f_{\mathcal{Z}_{\dots}}$	$i_{\mathcal{Z}}$	$l_{\mathcal{Z}}$

FIG.6A

Stack of Two Strips of Fish-Bone Code	
{{{ }}	
((((((

FIG.6B

Isolated Bit in Boundary Row					
Isolat Surrou	Forbidden Next Triplets				
x_s	\overline{x}_i	$x_{\mathcal{S}}$			
/	/	/			
•	$x_{\mathcal{S}}$	x_{s}			
\	\	١			
	•	•			

FIG.7A

Isolated Bit in Central Row					
Isolated Surrounde	Forbidden Next Triplets				
$x_{\scriptscriptstyle S}$	$x_{\mathtt{S}}$	•			
1	1	1			
$ig _{x_{\mathcal{S}}} \overline{x}$	\dot{i}	$x_{\mathcal{S}}$			
١	\	\			
x_{S}	x_{S}	•			

FIG.7B

PCT/IB03/01255

STD-State without Isolated Bits						
STD-State σ_1	STD-State σ_2	STD-State σ_3	STD-State σ_4			
x _s	x _s	X _S	x _s			
/	/	1	/			
x _s	y _s	УS	X _S			
١	\	\	١			
x _s	Уs	$x_{\mathcal{S}}$	Уs			

FIG.8

STD-States with a Single Isolated Bit						
(related to σ_2)		(related to og) (related to o				
STD-State σ_5	STD-State σ_6	STD-State o7	STD-State og	STD-State σ ₉		
x _i	Χj	X _S	X _S	x _s		
/	/	1	/	/		
Уs	y _S	Уį	y _s	x _s		
\	\	\	\	\		
УS	x _s	x _s	xį	. У _І		

FIG.9

FIG.10

M = 8-ary NRZ Channel Symbol [i] = (ijk), with $\mathbf{i} = \mathbf{i} + 2\mathbf{j} + 4\mathbf{k}$, $0 \le \mathbf{i} \le 7$							
Current NRZI Triplet	Channel Symbol [l]	Next NRZI Triplet					
х ₁	→i→	*2= x ₁ (=1) ^l /					
Уј	⇒j→	^y 2 = y ₁ (−1) ^j					
, z ₁	→ k →	, z ₁ (= ₁)k					

FIG.11

M = 8-ary NRZ Channel Symbol Example for I = 6						
Current NRZI Triplets	Channel Symbol [I], I = 6	Next NRZI Triplet				
1	$\rightarrow 0 \rightarrow$	1				
/		/				
0	→1→	1				
\	→1→	\ 				
1	717					

FIG.12

	Flow of Channel Symbols in STD: Next States							
Starting State	Symbol [0]	Symbol [1]	Symbol [2]	Symbol [3]	Symbol [4]	Symbol [5]	Symbol [6]	Symbol [7]
σ1	σ1	σ5	97	σ4	σg	· O10	σ2	σ1
σ_2	σ2	σ1	σ4	σ6	σ8	თე	σ1	σ5
σ3	σ3	σ4	σ ₁	σ ₅	σ2	σ ₁	σ9.	σ10
σ ₄	σ4	σ ₆	σ2	σ ₁	σ1	σ5	σ8	<u> </u>
σ ₅	σ_2		σ4	σ ₆	σ8		σ ₁	σ5
σ ₆	σ3		σ ₁	σ5	σ2	-	თე	σ10
07	σ3	σ ₄		_	σ2	σ ₁	-	-
- σ8	σ3	σ ₄	σ1	σ ₅	_	_	σg	σ10
σ9	σ ₄	σ ₆	σ2	σ ₁			σ8	σg
σ ₁₀	<u>03</u>		σ1	σ ₅			<u>დ</u> მ	σ ₁₀

FIG.13

2D Code with N _{nn} = 1 and N _{row} = 3							
Code Mapping $m \rightarrow 3n$	Code Rate	Efficiency $\eta = \frac{R}{C}$					
$ \begin{array}{c} 1 \rightarrow 3 \\ 2 \rightarrow 3 \\ 5 \rightarrow 6 \\ 8 \rightarrow 9 \\ 11 \rightarrow 12 \\ 25 \rightarrow 27 \end{array} $	0.333333 0.666667 0.833333 0.888889 0.916667 0.925926	0.3592 0.7184 0.8979 0.9578 0.9877 0.9977					

FIG.14

Permutation of Channel Symbols related to Mirror Symmetry						
[0] [1]	\leftrightarrow \leftrightarrow	[0] [4] [2]				
[2] [3] [4]	↔ ↔	[2] [6] [1]				
[5] [6]	\leftrightarrow	[5] [3] [7]				
[7]	\leftrightarrow	[7]				

Permutation of Next States related to Mirror Symmetry									
σ1	\leftrightarrow	σ1							
σ2	\leftrightarrow	σ4							
თ ვ	\leftrightarrow	σვ							
σ4	. ↔	σ_2							
σ5	\leftrightarrow	σ9							
σ6	\leftrightarrow	თ გ							
σ7	\leftrightarrow	σ7							
σ8	\leftrightarrow	σ6							
σ9	\leftrightarrow	σ5							
σ ₁₀	\leftrightarrow	σ ₁₀							

FIG.15A

FIG.15B

-	6-State FSM Fish-Bone Main Code	16-State FSM Fish-Bone Main Code with 11 - to - 12 Mapping ($N_{\rm BH}=1$ and $N_{\rm row}=3$)	
FSM-State	Related STD-State(s)	Remark, or Limitations on Word abcd	Fan-Out
Δ	σ ₁ (A)	αbc≤172	2057
Σ_2	σ ₁ (B)	$172 \le \alpha bc \le 377$	2078
Σ3	σ ₁ (C)	$400 \le \alpha b c \le 617$	2054
Σ4	ما (D)	$\alpha b c \ge 620$	2119
Σ_5	σ2 (A), σ5 (A)	$\alpha = 0$ or $200 \le \alpha bc \le 260$	2233
Σ_6	σ ₂ (B), σ ₅ (B)	$260 \le \alpha b c \le 477$	2137
Σ_7	σ ₂ (C), σ ₅ (C)	$\alpha = 6 \text{ or } \alpha = 7$	2160
Σ_8	o2 (D)	$\alpha = 1 \text{ or } \alpha = 5$	2160
Σ9	σ ₄ (A), σ ₉ (A)	via mirroring from Σ_5	2233
Σ10	σ ₄ (B), σ ₉ (B)	via mirroring from Σ_6	2137
Σ11	σ ₄ (C), σ ₉ (C)	via mirroring from Σ_7	2160
Σ_{12}	σ4 (D)	via mirroring from Σ_8	2160
Σ13	σ3 (A), σ6 (A), σ8 (A), σ10 (A)	$a = 2$ (abc $\neq 275$, abc $\neq 277$), or $a = 3$	2121
214	σ ₃ (B), σ ₆ (B), σ ₈ (B)	g=10rg=6	2217
215	თვ (C), თგ (C), თ₁0 (B)	a = 0 or $a = 7$ or $abc = 275$ or $abc = 277$	2053
216	σ ₆ (C)	via mirroring from Σ_{15}	2053

FIG. 16

11/28

****	****	**:	****	***	**** 11	*** - to	-12 Fi	sh-l	3one M	ain	Code					
****	****** Σ ₁ / Σ ₉	**	Σ ₂ / Σ ₁ (/	***Σ3/ Σ ₁₁		×*** Σ ₁	/	****** Σ ₅ / Σ ₁ (/	Σ_6	4	Σ_{7} Σ_{1}	/	$\Sigma_8 \Sigma_1$	/
**** user Word	Channi Word	el	Chann Word	ěľ	Chann Word	ēľ	Chann Word	el	Chann Word	el	Chann Word	ěľ	Chann Word	l	Chann Word	ı
	/ *****	ĮŞ.	****	VS I	, *****	VS I	****	NS.	****	VS.	*****	VS.	****	ŽŽ Į	****	
0	0010	5	1730				6200	9	0010	1	2600	13	6001		1001	5
	0040	1	2300	13	3004	9	4004	9	2001	-			0040	_	0040	5
1	0010	6	1730	14	4001		6200		0010	2	2600			-	1001	6
	0040	2	2300	14	3004		4004	10	2001	6			0040	_	0040	. 6
2	0010	7	1730	15	4001	16	6200	11	0010	3		15	6001	7	1001	7
	0040	3	2300	15	3004	11		11	2001	7	1001	16	0040	7	0040	7
3	0010	8	1732	1	4002	5	6200	12	0010	4	2601	9	6003	9	1003	9
	0040	4	2304	5	3006	5	4006	5	2003	9	1002	5	0040	8	0040	8
4	0012	9	1732	2	4002	6	6201	13	0011	4	2601	10	6003		1003	
	0044	9	2304	6	3006	6	4006	6	2003	10	1002	6	0044	13	0044	
5	0012	10	1732	3	4002	7	6201	14	0011	6	2601	11	6003	11	1003	
	0044	10	2304	7	3006	7	4006	7	2003	11	1002	7	0044		0044	
6	0012	11	1732	4	4002	8	6201	16	0011	7	2601	12	6003	12	1003	
	0044		2304	8	3006	8	4006	8	2003	12	1002	8	0044	15	0044	15
7	0012	12	1733	5	4003	1	6202	5	0013	9	2602	1	6004	9	1004	9
	0046	5	2302	1	3001	5	4001	5	2004	9	1003	1	0042	9	0042	9
8	0013	13	1733	6	4003	2	6202	6	0013	10	2602	2			1004	
	0046	6	2302	2	3001	6	4001	6	2004	10	1003	2	0042	10	0042	10
2039	 1722	8		 14	6173	 11	7742	 6	2456	<u>ii</u>	4702	 4	7705	 9	5704	4
2000	2153	7		4	7705		5701	4	3730	14	6637	5	7770	14	7770	14
2040		1	3760		6173		7742	7	2457	13	4703	5	7705	10	5705	5
2010	2157	13		9	7705		5705		3730	15	6637	6	7770	15	7770	15
2041		2		9	6174	-	7742		2457	15	4703	6	7705	11	5705	6
2071	2157						5705				6637	7	7772	1	7772	. 1
2042		3		10		-	7743			5			7706	1	5705	7
2072	2130	9			7703		5705	-					7772	2	7772	2
2043		4		11	6174		7743		2460	6	4704	5	7706	2	5706	13
2040	2130	•			7703				3732		6660	10	7772	3	7772	3
2044	1724		3761						2460		4704				5706	
2077			1701						3732		6660				7772	
2045	1724		3762		6175				2460		4704		7706		5706	15
2040			1701						3733		6660		7776	9	7776	9
2046	1724		3762		6176				2461		4704		7707		5707	9
2070	2134		1701		7707		5707		3733		6661					
20/17	7 1724				6176				2461						5707	7 10
2041			1705						3733							
***			*****	,	****	,, ***	****	***	****	**	****	**	****	***	***	***

FIG.21

Row-Based RDS for a Fish-Bone Code (with bipolar NRZI channel bits
$$u_j$$
 $\stackrel{(l)}{\downarrow}$ u_{i-2} u_{i-1} $u_{i-1}^{(1)}$ $u_{i}^{(1)} \rightarrow \text{RDS}_i^{(1)} = \Sigma_j^i = -\infty u_j^{(1)}$ $u_{i-2}^{(2)}$ $u_{i-1}^{(2)}$ $u_{i}^{(2)}$ $u_{i}^{(2)}$ $u_{i-1}^{(3)}$ $u_{i}^{(3)}$ $u_{i}^{(3)}$

FIG.24

Parity-Vector p for a Channel Word of 3 8-ary Symbols (with NRZ channel bits
$$\alpha_{j}$$
) $\alpha_{1}^{(1)}$ $\alpha_{2}^{(1)}$ $\alpha_{3}^{(1)}$ $\alpha_{3}^{(1)}$ $\alpha_{3}^{(1)}$ $\alpha_{3}^{(1)}$ $\alpha_{3}^{(1)}$ $\alpha_{3}^{(2)}$ $\alpha_{3}^{(3)}$ $\alpha_{3}^{(3)}$

FIG.25

18/28

Overall DC-Control 4 Pairs of Parity-Vectors for N _{row} = 3								
0 0 0 0 p=0	\longleftrightarrow	1 1 1 p = 7						
(1 0 0 p=1	\longleftrightarrow	0 1 1 p=6						

0 1 0 p=2	\longleftrightarrow	(1 0 1 p = 5
() () () () () () () () () ()	·	0 0 1 p = 4

FIG.26

Alternation Scheme of Codes C ₁ and C ₂ for the Fish-Bone Combi-Code												
 C ₁	C ₁	လ	C ₁	C ₁	C ₁	C ₂	C ₁					
 11 - 12	11 - 12	7-9	11 - 12	11 - 12	11 - 12	7-9	11 - 12					
 <u> </u>	~~~	(((~	~	.		<u> </u>					

FIG.27

	16-State FSM 7 - to - 9 Fish-Bo	16-State FSM 7 - to - 9 Fish-Bone Substitution Code (Nnn = 1 and Nrow = 3)	
FSM-State	Related STD-State(s)	Remark, or Limitations on Word abod	Fan-Out
Σ1	α ₁ (A)	abc≤177	138
$\frac{52}{2}$	σ ₁ (B)	177 ≤ dbc ≤ 372	130
ς,	α ₁ (C)	372 ≤ abc ≤ 617	132
74	σ ₁ (D)	abc ≥ 620	132
Σ_5	σ ₂ (A), σ ₅ (A)	$a = 0$ or $200 \le abc \le 260$	145
Σ_{6}	σ ₂ (B), σ ₅ (B)	260 ≤ dbc ≤ 477	142
Σ_7	σ ₂ (C), σ ₅ (C)	Q=60ra=7	142
Σ8	αΣ (D)	a=10ra=5	141
Σ_9	σ4 (A), σ9 (A)	via mirroring from ∑5	145
Σ_{10}	σ4 (B), σg (B)	via mirroring from Σ ₆	142
Σ11	o4 (C), og (C)	via mirroring from Σ_7	141
Σ_{12}	α4 (D)	via mlrroring from Σ_8	142
Σ13	σ3 (A), σ6 (A), σ8 (A), σ10 (A)	$a = 2 (abc \neq 275, abc \neq 277), or a = 3$	138
Σ14	σ_{3} (B), σ_{6} (B), σ_{8} (B)	G=10rG=6	155
2,15	σ₃ (C), σፄ (C), σ₁0 (B)	a = 0 or $a = 7$ or $abc = 275$ or $abc = 277$	145
216	α ₆ (C)	via mIrroring from ∑ ₁₅	145

FIG.28

***	**************************************																	
***	****	e skosk sk	;** **	***	****	. 7 ***	· to -	9 Fi:					on Co		****			***
			Σ	1/		2/	I	3/	Σ	4/	Σ	5/	Σ	გ/	Σ	7/	Σ	8/
***	*****	****	×**	9**	ይ ****	10	Σ***	11 ***	Σ***	12 ***	Σ ****	13	Σ	14	Σ	15	Σ	16
Syn	n-	Par-		nnel	Cha	nnel	Cha	nnel	Cha	nnel	Cha	nnel			Cha	nnel	Cha	nnel
bol		ity	Wor		Wor	-	Wor		Woi		Wo	•	Wor		Wor		Wor	ď
***	****	***	 '***	NS !	****	NS.	***	NS ***	****	NS.	 :***	NS ***	****	NS.	 '***	NS.	***	NS
0	Σ_1 - Σ_8			5			373		620		001		260		600	1	100	1
	<i>D D</i>		006				404		627		006		267	13	607	1	107	1
	Σ_9 - Σ_{16}		004				300		400		200		100	9	004	5	004	_
1	Σ ₁ -Σ ₈		003	1 7			307 373		407 620		207		107	9	003	5	003	5
,	21-28	p_1 p 2	006				404		627		001 006	3	260 267		600 607	3	100 107	. 3
	Σ9-Σ16	• —	004	3			300		400		200		100	11	004	7	004	3 7
	5 10		003	3			307		407		207		107	11	003	7	003	7
2	Σ_1 - Σ_8	. —			201		376		621		002		261	10	601	5	101	5
		p_2	004	10	206	10	401	13	626	13	005	9	266	10	606	5	106	5
	Σ_9 - Σ_{16}		002	5	234	6	304	9	404	9	201	5	101	13	002	1	002	1
_		p_2	005	5	233		303		403	9	206		106	13	005	1	005	1
3	Σ_1 - Σ_8		003	12	201		376		621	16	002		261	12	601	7	101	7
	v . v	· —	040	12	242		410		651	16	005		301	12		7	106	7
	Σ_9 - Σ_{16}	βΡ_ι p 2	002 005	7	234 604		304		404	11	201	7	101	16	002	3	002	3
Δ	Σ1-Σ8	• —		7 11	202		303 377		403 622	11 6	206	7	153		005	3	005	3
7	21-28		003		205		400		625		003		262 302		603 604	10 10	103 104	10
	Σ9-Σ16				232		306		406		203		102		006	9	006	10 9
	3 10	p_2	001	13	602	2	301		401	6	204	10	105		001	9	001	9
		•••	•••	·•.	•••	••	•••	••	•••	••	•••	••	•••	••	•••		•••	••
124	Σ_1 - Σ_8	p_1 p 2	056 163	11 11	357 350		536 610		756 762	11	226 230	1	363 463		737	15	153	6
	Σ_9 - Σ_{16}		242	3	672		720		542	1	343	5			730 762	15 7	572 762	6 7
	-9 - 10		223	3	172		736		532	i	377	5	625		703	7	702	7
125	Σ_1 - Σ_8		142	2	360		602		750		205	5	430			14	147	10
		p_2		2	354	13	425	9	757		231	5	462		703	14	577	10
	Σ_9 - Σ_{16}				672		760		560		346	9	626	1	725	15	725	15
400			264		136	4	710	14	576	1	363	9	630	1	700	15	700	15
126	Σ_1 - Σ_8					15	602	11	762	10	227	5	432	9	702	10	530	3
	Σο-Σιο	p_2				15	701	11	/65	10	246	5	406	9	741	10	573	3
	Σ_9 - Σ_{16}	ν_, n 2	213	10	132	a	773	1	576	4	340	11	610	3	723 760	12 10	723	12
127	Σ1-Σο	p p_1	146	9	350	8	602	'n	763	13	227	7	422	ა 11	700 740	12 12	7 DU	12
	- 10	p 2	172	9	346	8	605	10	764	13	257	7	460	11	747	13	536 536	5 5
	Σ_9 - Σ_{16}	p_1	260	1	160	11	714	6	564	10	340	13	627	5	166	14	766	14
	Σ_{1} - Σ_{8} Σ_{9} - Σ_{16}	p_2	267	1	176	11	713	6	572	10	347	13	613	5	770	14	770	14
***	*****	***	***	***	****	***	****	***	***	***	***	***	***	***	***	***	****	·**

FIG.30

10/5/2117

Begin	Sync Σ_1 Top-	Strip	Begin Sync Σ_2 Top-Strip				
	NRZ S 0	Symbol 4		NRZ S	Symbol 7		
1	1	. 1	1	0	1		
/	1	/	/	/	/		
1	1	1	1	0	1		
\	١	\	\	\	\		
1	1	0	1	1	0		

Begin	Sync Σ_3 Top-	Strip	Begin Sync ∑ ₄ Top-Strip					
	NRZ S 4	Symbol 7		NRZ 7	Symbol 4			
1	1	0	1	0	0			
/	/	/	/	/	/			
1	1	0	1	0	0			
\	١	\	١	١	\			
1	0	1	1	0	1			

FIG.31A

Begin	Sync Σ_5 Top-	Strip	Begin Sync ∑6 Top-Strip				
	NRZ S	Symbol 5	·	NRZ 3	Symbol 6		
1	1	0	1	0	0		
/	/	1	/	/	/		
0	0	0	0	1	0		
\	١	\	\	\	\		
0	0	1	0	Ó	1		

Begin	Sync Σ_7 Top	-Strip	Begin Sync ∑ ₈ Top-Strip				
	NRZ : 7	Symbol 5			Symbol 7		
. 1	0	1	1	0	1		
/	/	/	/	/	/		
0	1	1	0	0	1		
١	١	\	\	١	\		
0	1	0	0	1	0		

Begin	Sync Σ_9 Top	-Strip	Begin	Sync Σ_{10} To	op-Strip
	NRZ Symbol 0 7			NRZ 6	Symbol 6
1	7	0	1	1	1
/	/	/	/	1	/
1	1	0	1	0	ר
\	١	. \	\	١	\
0	0	1	0	1	0

FIG.31B

WO 03/092004 PCT/IB03/01255

Begin	Sync Σ_{11} Top	o-Strip	Begin Sync ∑ ₁₂ Top-Strip		
	NRZ Symbol 7 7				Symbol 5
1	0	1	1	0	1
/	/	/	/	/	· /
1	0	1	1	1	1
\	١	\	\	\	\
0	1	0	0	1	0

Begin	Begin Sync ∑ ₁₃ Top-Strip			Begin Sync ∑ ₁₄ Top-Strip		
	NRZ Symbol 3 5				Symbol 6	
1	o	1	1	1	1	
/	/	/	/	/	/	
0	1	1	0	0	1	
\	١	\	\	\	\	
1	1	0	1	1	0	

Begin	Begin Sync ∑ ₁₅ Top-Strip			Begin Sync ∑ ₁₆ Top-Strip		
	NRZ Symbol 7 6			NRZ 7	Symbol 6	
1	0	0	1	0	0	
/	1	/	/	/	/	
0	1	0	0	1	0	
\	١	Ň	\	١	\	
1	0	1	1	o	1	

FIG.31C

101512117

Begin Sync ∑ ₁ Bottom-Strip					
	NRZ Symbol 0 0 1 (7) (5)				
1	1	1	0		
1	1	/	/		
1	1	1	1		
\ .	١	`	\		
1	1	1	1		

Begin Sync Σ_2 Bottom-Strip					
	NRZ Symbol 3 0 (7)			5 (1)	
1	()	0	1	
/	/	/	/	,	
1	0	0	0		
١	١	\	\		
1	;	1	1	0	

Begin Sync ∑ ₃ Bottom-Strip						
	4	NRZ Symbol 4 0 5				
	7	(7)	(1)			
1	1	1	0			
/	/	/	/			
1	1	1	1			
١	١	\	\			
1	0	0	1			

Begin Sync ∑4 Bottom-Strip					

FIG.32A

PCT/IB03/01255

(7)

0

5 (1)

					_				
	В	egin Sync∑	5 Bottom	-Strip		В	egin Syn	c Σ_6 Botto	m-Strip
		0 0	RZ Symb 0 (7)	ol 7 (3)			3	NRZ Sym 0 (7)	abol 3 (7)
	1	1	1	0		1	(0 0	7
/		/	/	/		1	/	/	. /
0		0	0	1		0	1	1	0
\		١	\	\		١	١	\	\
	0	0	0	1		0	(0	(
	В	egin Sync∑	C ₇ Bottom	-Strip		В	egin Syn	c ∑ ₈ Botto	m-Strip
		7 7	RZ Symb 0 (7)	ol 7 (3)			5	NRZ Sym 0 (7)	nbol 5 (1)
	1	0	0	1		1	(0	7
1 ,		Ι,	,	,		,	Ι,	,	,

FIG.32B

	27/28					
Be	egin Sync∑ ₉ Bottom-Strip	Begin Sync ∑ ₁₀ Bottom-Strip				
	NRZ Symbol 0 0 5 (7) (1)	NRZ Symbol 6 0 3 (7) (7)				
1	1 1 0	1 1 1 0				
/	/ / /					
1	1 1 1	1 0 0 i				
\	\ \ \	\ \ \ \ \				
0	0 0 1	0 1 1 1				
Be	gin Sync ∑ ₁₁ Bottom-Strip	Begin Sync ∑ ₁₂ Bottom-Strip				
	_ NRZ Symbol	NRZ Symbol				
	7 0 5 (7) (1)	5 0 7 (7) (3)				
1	0 0 1	1 0 0 1				
1	1 1 1					
1	0 0 0	1 1 1 0				
\	\ \ \	\ \ \ \ \				
0	1 1 0	0 1 1 0				
Be	gin Sync ∑ ₁₃ Bottom-Strip	Begin Sync ∑ ₁₄ Bottom-Strip				
	NRZ Symbol	NRZ Symbol				
	3 0 7 (7) (3)	0 0 3 7)				
1	0 0 1	1 1 1 0				
/	/ / /					
0	1 1 0	0 0 1				
١	\ \ \	\ \ \ \ \				
1	1 1 0	1 1 1 1				

FIG.32C

Begin Sync ∑ ₁₅ Bottom-Strip					
	NRZ Symbol 7 0 3 (7) (7)				
1	0	0	1		
/	/	/	/		
0	1	1	0		
١	١	\	\		
1	0	0	0		

Begin Sync ∑ ₁₆ Bottom-Strip					
	NRZ Symbol 7 0 3 (7) (7)				
1	0	0	1		
/	/	/	/		
0	1	1	0		
١	١	\	\		
1	0	0	0		

FIG.32D

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.