AIDI 1000: AI Algorithms and Mathematics – Assignment - 2

Due Date: October 24, 2022, 11:59 PM

Note: Submit only one pdf file showing all your work. (File name: Assignment_2_firstname_lastname.pdf)

- 1. (25 points) There are three types of coins which have different probabilities of landing heads when tossed:
 - Type A coins are fair, with probability 0.5 of heads
 - Type B coins are bent and have probability 0.6 of heads
 - Type C coins are bent and have probability 0.9 of heads

Suppose I have a drawer containing 5 coins: 2 of type A, 2 of type B, and 1 of type C. I reach into the drawer and pick a coin at random. Without showing you the coin I flip it once and get heads (i.e. event D). What is the probability it is type A (i.e. P(H = A|D))? Type B (i.e. P(H = B|D))? Type C (i.e. P(H = C|D))? Fill out table below with your answers.

hypothesis	prior	likelihood	posterior
Н	P(H)	P(D H)	P(H D)
A			
В			
\mathbf{C}			

2. (25 points - Written) Consider the following dataset of four rows and three features (Malicious, Viagara, Meet) with class labels (ham and spam). Suppose we see a message having these features $M_5 = (Malicious = `yes', Viagara = `no', Meet = `yes')$, What is the probability that it is a spam or ham? Using Naive Bayes algorithm.

S.No	Malicious	Viagara	Meet	class
M_1	yes	yes	yes	spam
M_2	no	no	yes	ham
M_3	yes	no	yes	spam
M_4	no	yes	no	ham

3. (30 points - Written) Use the below gradient descent algorithm to find the **x** value that minimizes the function $f(\mathbf{x}) = 6x_1^2 - 3x_1x_2 + 2x_2^2$. Choose the starting point as $(x_1^{(0)}, x_2^{(0)}) = (2,3)$ and use the η_k as 0.1 ans ε as 0.0001 Consider the following gradient descent algorithm (which is a variant of the directional search algorithm) that aims to find the x value that minimizes the function f(x).

- Guess $x^{(0)}$, set $k \leftarrow 0$
- while $\|\nabla f(x^{(k)})\| \ge \varepsilon$ do

$$x^{(k+1)} = x^{(k)} - \eta_k \nabla f(x^{(k)})$$

$$k \leftarrow k+1$$

- end while
- return $\boldsymbol{x}^{(k)}$

Perform only 3 iterations of this algorithm and report the values of (x_1,x_2) after performing gradient descent each time

Hint : since the f(x) is in two variable you need to apply partial differentiation

4. (20 points - Written) Find the eigen values and eigen vectors for the following matrix.
$$\begin{bmatrix} 2 & 5 \\ -1 & 2 \end{bmatrix}$$