TEST OUTPUT

SCHEMATIC OUTPUT

SCHEMATIC OUTPUT

SCHEMATIC OUTPUT

TEST OUTPUT

TEST OUTPUT

ASSIGNMENT 4.1

Implement Single Source shortest Path for a graph (Dijkstra Algorithm) problem to find out the shortest path from the source vertex '1', using the Dijkstra's algorithm, using the dynamic programming technique.

ASSIGNMENT 8.1

Consider the following knapsack problem where n = 3, W = 20Kgs, (v1, v2, v3) = (25, 24, 15), and (w1, w2, w3) = (18, 15, 10). WAP to find the optimal solution by fractional knapsack (greedy method) as well as 0 / 1 knapsack (Dynamic programming method).

ASSIGNMENT 8.2

Given a set of '10' jobs with their si and fi, find the optimal sequence of mutually compatible jobs using the greedy method: $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, si = $\{3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$ and fi = $\{5, 7, 8, 10, 11, 12, 13, 14, 15, 16\}$.

ASSIGNMENT 10.1

WAP to implement the N-Queen's problem using the method of backtracking.

