Given x and y, suppose

$$p = \sigma(x) = \frac{1}{1 + e^{-x}}$$

and

$$p$$
, if $y = 1$

$$p_t =$$

$$1 - p$$
, otherwise (e.g. $y = -1$)

so
$$p_t = \frac{1}{1+e^{yx}}$$

$$\frac{\partial p_t}{\partial x} = \frac{-1}{(1+e^{yx})^2} * y * e^{yx} = y * p_t * (1-p_t) = -y * p_t * (p_t-1) ,$$

because of $\partial \frac{1}{x} = \frac{-1}{x^2}$

===========

Suppose Cross-Entropy loss $CE(p_t) = -\log(p_t)$,

given $\partial lnx = \frac{1}{x}$,

$$\frac{\partial CE(p_t)}{\partial x} = \frac{\partial CE(p_t)}{\partial p_t} * \frac{\partial p_t}{\partial x} = \left(-\frac{1}{p_t}\right) * \left(-y * p_t * (p_t - 1)\right) = y * (p_t - 1)$$

===============

Suppose Focal Loss $FL(p_t) = -(1-p_t)^{\gamma} * \log(p_t)$, where γ is const.

$$\frac{\partial FL(p_t)}{\partial x} = \frac{\partial (1 - p_t)^{\gamma}}{\partial x} * (-\log(p_t)) + (1 - p_t)^{\gamma} * \frac{\partial CE(p_t)}{\partial x}$$

$$= \gamma * (1 - p_t)^{\gamma - 1} * \frac{\partial p_t}{\partial x} * (-\log(p_t)) + (1 - p_t)^{\gamma} * y * (p_t - 1)$$

$$= \gamma * (1 - p_t)^{\gamma - 1} * (-y * p_t * (p_t - 1)) * (-\log(p_t)) + y * (1 - p_t)^{\gamma} * (p_t - 1)$$

$$= -\gamma * (1 - p_t)^{\gamma} * y * p_t * \log(p_t) + y * (1 - p_t)^{\gamma} * (p_t - 1)$$

$$= y * (1 - p_t)^{\gamma} * (-\gamma * p_t * \log(p_t) + (p_t - 1))$$

=============

Suppose $\mathbf{z}=\gamma*x+\beta$, and $p_t^*=\sigma(z)$, so $FL^*(p_t^*)=-\log(p_t^*)/\gamma$, where γ is const

$$\frac{\partial FL^*(p_t^*)}{\partial x} = -\frac{1}{p_t^*} * \frac{1}{\gamma} * \frac{\partial p_t^*}{\partial z} * \frac{\partial z}{\partial x} = -\frac{1}{p_t^*} * \frac{1}{\gamma} * (-y * p_t^* * (p_t^* - 1)) * \gamma$$

$$= y * (p_t^* - 1)$$