Arquitectura de computadores I

Memoria interna

Tipos de memoria semiconductora

Tipo de memoria	Categoria	¿Borrable?	Mecanismo de escritura	Volatibilidad
Memoria de acceso aleatorio (RAM)	Memoria de lectura y escritorua	Electricamente, a nivel de byte	Electricamente	Volatil
Memoria de solo lectura (ROM) ROM Programable (PROM)	Memoria de solo lectura	No es posible	Mascaras 1	
Borrable PROM (EPROM)		Luz UV, nivel de chip		No volatil
Electricamente borrable PROM (EEPROM)	Principalmente memoria de lectura	Electricamente a nivel de byte	Electricamente	
Flash memory		Electricamente a nivel de bloque		

Memoria semiconductora

- RAM
 - Acceso aleatorio
 - Lectura/Escritura
 - Volatil
 - Almacenamiento temporal
 - Estática o dinámica

SRAM

IIIII KIENORY

Operación de celda de memoria

Ram dinámica (DRAM)

- Bits almacenados como carga en capacitores
- Necesita refrescarse mientras se encuentra encendida
- Construcción simple
- Más pequeña por bit
- Menos costosa
 - Más lenta
- Escencialmente análoga
 - Nivel de carga determina valor

Estructura RAM dinámica

Operación de la DRAM

- La linea de direcciones está activa cuando un bit es leido o escrito
- Lectura
 - Linea de direcciones es elegida
 - Se enciende el transistor
 - Envia carga desde el capacitor a un amplificador
 - Compara con valores de referencia de 0 y 1
 - La carga del capacitor debe ser restaurada
- Escritura

Voltaje por bit de linea

Alto para un 1 y bajo para un 0

Entonces la señal de direcciones

Transfiere la carga al capacitor

RAM estática

- Bits almacenados en switches
- No requiere refresco
- Construcción más compleja
- Más grande por bit
- Más costosa
- No necesita refrescar circuitos
- Más rápida
- Es el modelo de memoria Cache

Estructura RAM estática

Operación RAM estática

- Arreglo de transistores establece estado lógico
- Estado 1
 - −C₁ alto, C₂ bajo
 - $-T_1 T_4$ off, $T_2 T_3$ on
- Estado 0
 - C_2 alto, C_1 bajo T_2 T_3 off, T_1 T_4 on
- Lineas de direcciones van conectadas a T_5 y T_6 que actuan como switches
- Escritura: Aplica valor de B y B
- Lectura valor está en B

SRAM vs DRAM

- Ambas volátiles
 - Requieren estar encendidas para preservar datos
- Celda dinámica
 - —Simple de construir y más pequeña
 - -Más densa
 - Menos costosa
 - Necesita refresco
 - Unidades de memorias más grandes
- Estática
 - Más rápida
 - Memoria Cache

Memoria de sólo lectura (ROM)

- Almacenamiento permanente
 - No volátil
- Microprogramado
- Programas del sistema (BIOS)
- Tablas de funciones

Tipos de ROM

- Escrita en fábrica
 - Más costosa
- Programable (Una vez)
 - PROM
 - Se requiere hardware especializado
- Mayormente de lectura
 - Proglamable borrable (EPROM)
 - Borrable por UV
 - Electricamente borrable (EEPROM)
 - Toma más tiempo escribir que leer
 - Memoria flash
 - Borrable electricamente

Organización

- Un chip de 16MB puede ser organizado como
 1MB de palabras de 16 bits
- Un chip tiene 16 lotes de 1MB
- Un chip de 16MB puede ser organizado como un arreglo de 2048 x 2048 x 4bi€ 6 y + €
 - Reduce el número de pines de direcciones
 - Multiplexa las direcciones de filas y columnas
 - 11 pins para direcciones (211=2048)
 - Agregar un pin para manejar la capacidad x4

Refresco

- El circuito de refresco está incluido en el chip
- Deshabilita el chip
- Toma tiempo
- Reduce el rendimiento de la memoria

16 Mb DRAM (4M x 4)

Chips

Corrección de errores

- Error de hardware
 - Defecto permanente
- Error de software
 - Aleatorio, no destructivo
- Se detecta utilizando codificación Hamming

Corrección de errores

- Paridad
 - Se agrega un bit de paridad al final, si es 1 el número de 1s es impar y si es 0 es par
 - Ejemplo: Dirección 010101, el número de 1's es 5, por lo que el dato se codifica así:
 0101011
- Dos entre cinco
 - Cada bloque de 5 bits, tiene exactamente 2 unos
 - Ejemplo: Dirección 01110..., se codifica como 0110010...
 - Repetición
 - Se repite cada bit n veces on 11111100

Codificación Hamming

- Se añaden bits para detección de error
- Por ejemplo, en un código de 7 bits hay 7 posibles bits de error, por lo que se necesita 3 bits de control ya que 23 permite evaluar 7 posibilidades
- Permite saber cual es el bit del error.

Función de corrección de errores

Organización avanzada de DRAM

- Grandes memorias
 - Contienen estructuras más pequeñas
 - Las direcciones de memoria son estructuradas para cada una de las estructuras
 - Se conectan las señales de reloj y las de control de la memoria a todas las estructuras

SDRAM

Gracias

¿Preguntas?

Próximo tema: Memoria externa