Συσχέτιση και Παλινδρόμηση

Δημήτρης Κουγιουμτζής

10 Μαΐου 2011

Εισαγωγικά

Συσχέτιση: γραμμική / μη-γραμμική, μηδενική / ασθενής / ισχυρή Παλινδρόμηση: γραμμική / μη-γραμμική, απλή / πολλαπλή

Συσχέτιση

 Δ ύο τ.μ. X και Y συσχετίζονται:

- Η μία επηρεάζει την άλλη
- Επηρεάζονται και οι δύο από κάποια άλλη

X: χρόνος ως την αποτυχία ενός στοιχείου κάποιας μηχανής Y: ταχύτητα του κινητήρα της μηχανής

X: χρόνος ως την αποτυχία ενός στοιχείου κάποιας μηχανής Y: θερμοκρασία του στοιχείου της μηχανής

$$\sigma_X^2$$
, σ_Y^2 : διασπορά συνδιασπορά των X και Y $\sigma_{XY} = \text{Cov}(X,Y) = \text{E}(X,Y) - \text{E}(X)\text{E}(Y)$,

Συντελεστής συσχέτισης

συνετελεστής συσχέτισης Pearson ρ

$$\rho \equiv \mathsf{Corr}(X, Y) = \frac{\sigma_{XY}}{\sigma_X \, \sigma_Y}$$

- ▶ $\rho \in [-1, 1]$
- ho = 1: τέλεια θετική συσχέτιση
- ho = 0: καμιά (γραμμική) συσχέτιση
- ho = -1: τέλεια αρνητική συσχέτιση
- ightharpoonup ho 'κοντά' στο -1 ή 1 ightharpoonup ισχυρή συσχέτιση
- lacktriangleright
 ho 'κοντά' στο $0 \
 ightarrow$ οι τ.μ. είναι πρακτικά ασυσχέτιστες
- ρ δεν εξαρτάται από τη μονάδα μέτρησης των X και Y
- ightharpoonup
 ho είναι συμμετρικός ως προς τις X και Y.

Δειγματικός συντελεστής συσχέτισης

Παρατηρήσεις των δύο τ.μ. X και Y: $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$ διάγραμμα διασποράς

Σ ημειακή εκτίμηση του ρ

Εκτίμηση διασποράς

$$s_X^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2 = \frac{1}{n-1} \left(\sum_{i=1}^n x_i^2 - n\bar{x}^2 \right)$$

Εκτίμηση συνδιασποράς

$$s_{XY} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = \frac{1}{n-1} \left(\sum_{i=1}^{n} x_i y_i - n \bar{x} \bar{y} \right)$$

δειγματικός συντελεστής συσχέτισης (Pearson)

$$\rho = \frac{\sigma_{XY}}{\sigma_X \, \sigma_Y} \rightarrow \hat{\rho} \equiv r = \frac{s_{XY}}{s_X \, s_Y}$$

$$r = \frac{\sum_{i=1}^n x_i y_i - n\bar{x}\bar{y}}{\sqrt{\left(\sum_{i=1}^n x_i^2 - n\bar{x}^2\right)\left(\sum_{i=1}^n y_i^2 - n\bar{y}^2\right)}}$$

Συντελεστής προσδιορισμού r^2

Συντελεστής προσδιορισμού r^2

(ή σε ποσοστά 100r²%):

Δηλώνει το ποσοστό μεταβλητότητας που

μπορούμε να ερμηνεύσουμε για τη μια τ.μ. όταν γνωρίζουμε την άλλη.

Κατανομή του εκτιμητή r

Η κατανομή του εκτιμητή r εξαρτάται από:

- Την τιμή του ρ
- Το μέγεθος του δείγματος n
- Την κατανομή των τ.μ. X και Y.

 $(X,Y) \sim$ διμεταβλητή κανονική κατανομή n=20

 $(X,Y)\sim$ διμεταβλητή κανονική κατανομή n=100

$$X' = X^2$$
 και $Y' = Y^2$
 $\rho' = \text{Corr}(X', Y') = \rho^2$
 $\rho = 20$

Fisher μετασχηματισμός του r

Fisher μετασχηματισμός

$$z = \tanh^{-1}(r) = 0.5 \ln \frac{1+r}{1-r}$$

Όταν το δείγμα είναι μεγάλο και από διμεταβλητή κανονική κατανομή $\Longrightarrow z \sim \mathsf{N}(\mu_z,\sigma_z^2)$

$$\mu_z \equiv \mathsf{E}(z) = \mathsf{tanh}^{-1}(\rho)$$

$$\sigma_z^2 \equiv \operatorname{Var}(z) = 1/(n-3).$$

Μπορούμε λοιπόν να υπολογίσουμε διάστημα εμπιστοσύνης και να κάνουμε έλεγχο υπόθεσης χρησιμοποιώντας την κανονική κατανομή του z.

Διάστημα εμπιστοσύνης για το συντελεστή συσχέτισης

(1-lpha)% διάστημα εμπιστοσύνης για το ho

- 1. Μετασχηματισμός του r στο z (tanh $^{-1}$)
- 2. $z \pm z_{1-\alpha/2} \sqrt{1/(n-3)}$ είναι το $(1-\alpha)\%$ διάστημα εμπιστοσύνης για ζ , $[\zeta_I, \zeta_u]$
- 3. Αντίστροφος μετασχηματισμός για τα άκρα του διαστήματος ζ_I και ζ_U

$$r_I = \tanh(\zeta_I) = \frac{\exp(2\zeta_I) - 1}{\exp(2\zeta_I) + 1}, \quad r_u = \frac{\exp(2\zeta_u) - 1}{\exp(2\zeta_u) + 1}$$

Έλεγχος μηδενικής συσχέτισης

Έλεγχος από το διάστημα εμπιστοσύνης του ρ Αν $[r_l, r_{ul}]$ δεν περιέχει το $0 \Longrightarrow$ οι δύο τ.μ. συσχετίζονται.

Έλεγχος υπόθεσης H_0 : $\rho = 0$ κατανομή του r κάτω από την H_0

$$t=r\sqrt{\frac{n-2}{1-r^2}} \sim t_{n-2},$$

Απόφαση ελέγχου από το t p=2*(1-F(t))

	<u> </u>	11/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/
A/A (i)	Αντίσταση χ; (ohm)	Χρόνος αποτυχίας <i>y_i</i> (min)
1	28	26
2	29	20
3	31	26
4	33	22
5	33	25
6	33	35
7	34	28
8	34	33
9	36	21
10	36	36
11	37	30
12	39	33
13	40	45
14	42	39
15	43	32
16	44	45
17	46	47
18	47	44
19	47	46
20	48	37

$$\bar{x} = 38$$
 $\bar{y} = 33.5$

$$\sum_{i=1}^{20} x_i^2 = 29634 \qquad \sum_{i=1}^{20} y_i^2 = 23910 \qquad \sum_{i=1}^{20} x_i y_i = 26305.$$

$$r = \frac{26305 - 20 \cdot 38 \cdot 33.5}{\sqrt{(29634 - 20 \cdot 38^2) \cdot (23910 - 20 \cdot 33.5^2)}} = 0.804.$$

Η μεταβλητότητα της μιας τ.μ. (αντίσταση ή χρόνος αποτυχίας) μπορεί να εξηγηθεί από τη συσχέτιση της με την άλλη κατά ποσοστό

$$r^2 \cdot 100 = 0.804^2 \cdot 100 = 64.64 \rightarrow \simeq 65\%.$$

(1-lpha)% διάστημα εμπιστοσύνης για το ho

- 1. Μετασχηματισμός του r στο z, z=1.110
- 2. 95% διαστήματος εμπιστοσύνης του z: $\zeta_{\it l} = 0.634$, $\zeta_{\it u} = 1.585$
- 3. Αντίστροφος μετασχηματισμός

$$r_I = 0.561, \quad r_u = 0.919$$

- ho $r_I > 0, \implies$ η αντίσταση και ο χρόνος αποτυχίας συσχετίζονται
- ightharpoonup Έλεγχος υπόθεσης $m H_0$: ho=0 στατιστικό $m t=5.736 \implies
 ho=2*(1-F(t))=0.0000194$

Συσχέτιση και γραμμικότητα

 ρ και r κατάλληλα για γραμμική συσχέτιση και κανονικότητα Τρία δείγματα των (X,Y) με r=0.84.

- $(\alpha)(X,Y)$ από διμεταβλητή κανονική κατανομή
- (β) Y = X για όλα εκτός από ένα ζευγάρι

$$(\gamma) Y = 2 - 0.6(X - 0.585)^2$$

Απλή Γραμμική Παλινδρόμηση

Συντελεστής συσχέτισης: γραμμική σχέση δύο τ.μ. X και Y παλινδρόμηση: εξάρτηση της τ.μ. Y από τη X

Y: εξαρτημένη μεταβλητή \leftarrow είναι τ.μ.

X: ανεξάρτητη μεταβλητή \iff δεν είναι τ.μ.

Μια μόνο ανεξάρτητη μεταβλητή: απλή παλινδρόμηση

Παράδειγμα: σε μια μονάδα παραγωγής ηλεκτρικής ενέργειας από λιγνίτη, για να προσδιορίσουμε το κόστος της παραγωγής ενέργειας, μελετάμε την εξάρτηση του από το κόστος του λιγνίτη. X; Y

Εξάρτηση είναι γραμμική: απλή γραμμική παλινδρόμηση

Το πρόβλημα της απλής γραμμικής παλινδρόμησης

Γενικά: $F_Y(y|X=x)$ για κάθε τιμή x της X

Περιορίζουμε το πρόβλημα σε $\mathsf{E}(Y|X=x)$

Υπόθεση εργασίας:

$$\mathsf{E}(Y|X=x)=\beta_0+\beta_1x$$

απλή γραμμική παλινδρόμηση της Y στη X

$$\beta_0 = ?, \ \beta_1 = ?$$

 β_0 : y για x=0, διαφορά ύψους

 β_1 : συντελεστής του x, κλίση της ευθείας παλινδρόμησης ή συντελεστής παλινδρόμησης

Το πρόβλημα της απλής γραμμικής παλινδρόμησης

Δείγμα: $\{(x_1, y_1), \ldots, (x_n, y_n)\}$

Πολλές ευθείες που προσαρμόζονται σε αυτό

Για x_i της X αντιστοιχούν διαφορετικές τιμές y_i της Y

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

σφάλμα παλινδρόμησης: $\epsilon_i = y_i - \mathsf{E}(Y|X=x_i)$

Υποθέσεις

- Η μεταβλητή X είναι ελεγχόμενη.
- Η σχέση είναι πράγματι γραμμική.
- ightharpoonup $\mathrm{E}(\epsilon_i)=0$ και $\mathrm{Var}(\epsilon_i)=\sigma_\epsilon^2$ για κάθε τιμή x_i της X ή ισοδύναμα

$$Var(Y|X=x) \equiv \sigma_{Y|X}^2 = \sigma_{\epsilon}^2$$

Υποθέτουμε κανονική κατανομή

$$Y|X = x \sim N(\beta_0 + \beta_1 x, \sigma_{\epsilon}^2).$$

όχι απαραίτητο για σημειακή εκτίμηση των παραμέτρων.

Σημειακή εκτίμηση παραμέτρων της απλής γραμμικής παλινδρόμησης

Το πρόβλημα: εκτίμηση των τριών παραμέτρων παλινδρόμησης:

- 1. β_0 ,
- 2. β_1 ,
- 3. σ_{ϵ}^2 .

Εκτίμηση των β_0 , β_1 με τη μέθοδο των **ελαχίστων τετραγώνων**:

το άθροισμα των τετραγώνων των κατακόρυφων αποστάσεων των σημείων από την ευθεία να είναι το ελάχιστο.

Εκτίμηση των παραμέτρων της ευθείας παλινδρόμησης

Ελαχιστοποίηση του αθροίσματος των τετραγώνων των σφαλμάτων:

$$\min_{\beta_0,\beta_1} \sum_{i=1}^n \epsilon_i^2 \qquad \acute{\eta} \qquad \min_{\beta_0,\beta_1} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2.$$

Λύση:

$$\frac{\partial \sum (y_{i} - \beta_{0} - \beta_{1} x_{i})^{2}}{\partial \beta_{0}} = 0
\frac{\partial \sum (y_{i} - \beta_{0} - \beta_{1} x_{i})^{2}}{\partial \beta_{1}} = 0$$

$$\sum_{i=1}^{n} y_{i} = n\beta_{0} + \beta_{1} \sum_{i=1}^{n} x_{i}
\sum_{i=1}^{n} x_{i} y_{i} = \beta_{0} \sum_{i=1}^{n} x_{i} + \beta_{1} \sum_{i=1}^{n} x_{i}^{2}$$

Εκτίμηση για την κλίση

$$\hat{\beta}_1 \equiv b_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2} = \frac{S_{xy}}{S_{xx}}.$$

$$s_{XY} = \frac{s_{xy}}{n-1}$$
 kai $s_X^2 = \frac{s_{xx}}{n-1}$

Εκτίμηση των παραμέτρων της ευθείας παλινδρόμησης

Εκτίμηση του σταθερού όρου ως

$$\hat{\beta}_0 \equiv b_0 = \frac{\sum_{i=1}^n y_i - b_1 \sum_{i=1}^n x_i}{n}$$

$$b_1 = \frac{s_{XY}}{s_X^2}, \qquad b_0 = \bar{y} - b_1 \bar{x}.$$

ευθεία ελαχίστων τετραγώνων

$$\hat{y} = b_0 + b_1 x$$

Εκτίμηση της διασποράς των σφαλμάτων παλινδρόμησης

 y_i : παρατηρούμενη τιμή για x_i

 \hat{y}_i : εκτιμούμενη τιμή από την ευθεία ελαχίστων τετραγώνων για x_i .

σφάλμα ελαχίστων τετραγώνων ή υπόλοιπο

$$e_{i} = y_{i} - \hat{y}_{i} = y_{i} - b_{0} - b_{1}x_{i}$$

$$y_{i}$$

$$y_{i} = y_{i} - \hat{y}_{i}$$

$$y_{i} = y_{i} - \hat{y}_{i}$$

$$y_{i} = y_{i} - \hat{y}_{i}$$

$$x_{i}$$

$$x$$

Εκτίμηση της διασποράς των σφαλμάτων παλινδρόμησης

 e_i : εκτίμηση του σφάλματος παλινδρόμησης $\epsilon_i = y_i - \beta_0 - \beta_1 x_i$.

Εκτίμηση της διασποράς του ε:

$$s_{\epsilon}^2 \equiv \hat{\sigma_{\epsilon}^2} = \frac{1}{n-2} \sum_{i=1}^n (y_i - \hat{y}_i)^2,$$

n-2: βαθμοί ελευθερίας

$$s_{\epsilon}^2 = \frac{n-1}{n-2} \left(s_Y^2 - \frac{s_{XY}^2}{s_X^2} \right) = \frac{n-1}{n-2} (s_Y^2 - b_1^2 s_X^2)$$

Παρατηρήσεις

1. Η ευθεία ελαχίστων τετραγώνων περνάει από το σημείο (\bar{x}, \bar{y})

$$b_0 + b_1 \bar{x} = \bar{y} - b_1 \bar{x} + b_1 \bar{x} = \bar{y}.$$

Η ευθεία ελαχίστων τετραγώνων μπορεί να οριστεί ως

$$y_i - \bar{y} = b_1(x_i - \bar{x}).$$

- 2. Η σημειακή εκτίμηση των β_0 και β_1 με τη μέθοδο των ελαχίστων τετραγώνων δεν προϋποθέτει σταθερή διασπορά και κανονική κατανομή της Y|X.
- 3. Για κάθε x της X η πρόβλεψη της y της Y:

$$\hat{y} = b_0 + b_1 x$$

x πρέπει να ανήκει στο εύρος τιμών της X από το δείγμα.

Θέλουμε να μελετήσουμε σε ένα ολοκληρωμένο κύκλωμα την εξάρτηση της απολαβής ρεύματος κρυσταλλολυχνίας από την αντίσταση του στρώματος της κρυσταλλολυχνίας.

A/A(i)	Αντίσταση στρώματος x_i (ohm/cm)	Απολαβή ρεύματος <i>y</i> ;
1	66	5.3
2	66	6.5
3	69	7.4
4	78	7.2
5	87	7.8
6	93	10.8
7	105	9.1
8	111	8.1
9	123	12.6
10	141	9.8

$$\bar{x} = 93.9$$
 $\bar{y} = 8.46$

$$\sum_{i=1}^{10} x_i^2 = 94131$$
 $\sum_{i=1}^{10} y_i^2 = 757.64$ $\sum_{i=1}^{10} x_i y_i = 8320.2$

$$s_{XY} = 41.81 \quad s_X^2 = 662.1 \quad s_Y^2 = 4.66.$$

$$b_1 = \frac{41.81}{662.1} = 0.063$$

$$b_0 = 8.46 - 0.063 \cdot 93.9 = 2.53.$$

$$s_{\epsilon}^2 = \frac{9}{8} (4.66 - 0.063^2 \cdot 41.81) = 2.271.$$

- 1. $b_1 = 0.063$: απολαβή ρεύματος για αύξηση της αντίστασης στρώματος κατά $1 \, \mathrm{ohm/cm}$
- 2. $b_0 = 2.53$: απολαβή ρεύματος όταν δεν υπάρχει αντίσταση στρώματος (x=0)
- 3. $s_\epsilon^2=2.271\Longrightarrow s_\epsilon=1.507$: το τυπικό σφάλμα της εκτίμησης της παλινδρόμησης .

Πρόβλεψη απολαβή ρεύματος μπορεί να γίνει για κάθε αντίσταση στρώματος κρυσταλλολυχνίας στο διάστημα [66, 141] ohm/cm.

Για αντίσταση στρώματος $x=120\,\mathrm{ohm/cm}$

$$\hat{y} = 2.53 + 0.063 \cdot 120 = 10.11.$$

Σχέση του συντελεστή συσχέτισης και παλινδρόμησης

Παλινδρόμηση: Χ ελεγχόμενη και Υ τυχαία

Συσχέτιση: X και Y τυχαίες, αλλά υπολογίζουμε το r και για X ελεγχόμενη.

$$r=rac{s_{XY}}{s_X s_Y}$$
 και $b_1=rac{s_{XY}}{s_X^2}\Longrightarrow$ $r=b_1rac{s_X}{s_Y}$ ή $b_1=rrac{s_Y}{s_X}$.

r και b_1 εκφράζουν ποσοτικά τη γραμμική συσχέτιση των X και Y

 b_1 εξαρτάται από τη μονάδα μέτρησης των X και Y Σχέση των r και b_1

- $ightharpoonup r > 0 \Leftrightarrow b_1 > 0$
- $ightharpoonup r < 0 \Leftrightarrow b_1 < 0$
- $ightharpoonup r = 0 \Leftrightarrow b_1 = 0$

Σχέση του συντελεστή συσχέτισης και παλινδρόμησης

Σχέση r^2 και s_ϵ^2

$$s_{\epsilon}^2 = \frac{n-1}{n-2} s_Y^2 (1-r^2)$$
 $\acute{\eta}$ $r^2 = 1 - \frac{n-2}{n-1} \frac{s_{\epsilon}^2}{s_Y^2}$.

Όσο μεγαλύτερο είναι το r^2 (ή το |r|) τόσο μειώνεται το s_ϵ^2

Συντελεστής συσχέτισης της απολαβής ρεύματος και της αντίστασης στρώματος

$$r = \frac{s_{XY}}{s_X s_Y} = \frac{41.81}{\sqrt{662.1 \cdot 4.66}} = 0.753$$

Το r δηλώνει την σχετικά ασθενή θετική συσχέτιση

 $b_1 = 0.063$ εξηγεί το βαθμό εξάρτησης;

 $s_{\epsilon}^2=2.249$ εξηγεί το βαθμό εξάρτησης;

Διάστημα εμπιστοσύνης των παραμέτρων της απλής γραμμικής παλινδρόμησης

 b_1 και b_0 είναι εκτιμητές των β_1 και β_0 κατανομή των b_1 και b_0 ;

 b_1 γραμμικός συνδυασμός των τ.μ. y_1, \ldots, y_n

$$\mu_{b_1} \equiv \mathsf{E}(b_1) = \beta_1$$

$$\sigma_{b_1}^2 \equiv \mathsf{Var}(b_1) = \frac{\sigma_{\epsilon}^2}{S_{\mathsf{xx}}} \implies \sigma_{b_1} = \sigma_{\epsilon}/\sqrt{S_{\mathsf{xx}}}$$

Εκτίμηση:

$$s_{b_1} = rac{s_{\epsilon}}{\sqrt{S_{xx}}}.$$

Διάστημα εμπιστοσύνης των παραμέτρων της απλής γραμμικής παλινδρόμησης

Y ακολουθεί κανονική κατανομή $\Longrightarrow b_1$ ακολουθεί κανονική κατανομή

 $(1-\alpha)$ % διάστημα εμπιστοσύνης του β_1 :

$$b_1 \pm t_{n-2,1-\alpha/2} s_{b_1} \quad \acute{\eta} \quad b_1 \pm t_{n-2,1-\alpha/2} rac{s_\epsilon}{\sqrt{S_{xx}}}.$$

Αντίστοιχα για b_0

$$\sigma_{b_0} = s_{\epsilon} \sqrt{\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}}}$$

 $(1-\alpha)$ % διάστημα εμπιστοσύνης του β_0 :

$$b_0 \pm t_{n-2,1-\alpha/2} s_\epsilon \sqrt{\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}}}.$$

Έλεγχος ύπόθεσης για τις παραμέτρους της απλής γραμμικής παλινδρόμησης

 $H_0: \beta_1 = \beta_1^0$

Στατιστικό παραμετρικού ελέγχου

$$t = rac{b_1 - eta_1^0}{s_b} = rac{(b_1 - eta_1^0)\sqrt{S_{xx}}}{s_\epsilon}, \;\; t \sim t_{n-2}$$

Ιδιαίτερο ενδιαφέρον έχει H_0 : $\beta_1=0$ ή η Y δεν εξαρτάται από την X.

 H_0 : $\beta_0 = \beta_0^0$

Στατιστικό παραμετρικού ελέγχου

$$t=rac{b_0-eta_0^0}{s_\epsilon\sqrt{rac{1}{n}+rac{ar{x}^2}{S_{xx}}}},\;\;t\sim t_{n-2}$$

Διαστήματα πρόβλεψης

 $\hat{y}=b_0+b_1x$: εκτιμητής της $\mathsf{E}(Y|X=x)=eta_0+eta_1x$ για κάποιο x

 \hat{y} : γραμμικός συνδυασμός των τ.μ. y_1,\ldots,y_n , των x_1,\ldots,x_n και x.

$$\mu_{\hat{y}} \equiv \mathsf{E}(\hat{y}) = \mathsf{E}(Y|X=x) = \beta_0 + \beta_1 x.$$

$$\sigma_{\hat{y}}^2 \equiv \mathsf{Var}(\hat{y}) = \sigma_{\epsilon}^2 \left(\frac{1}{n} + \frac{(x - \bar{x})^2}{S_{xx}} \right)$$

Εκτίμηση της τυπικής απόκλισης του \hat{y}

$$s_{\hat{y}} = s_{\epsilon} \sqrt{\frac{1}{n} + \frac{(x - \bar{x})^2}{S_{xx}}}.$$

Διαστήματα πρόβλεψης

 \hat{y} για κάποιο x ακολουθεί κανονική κατανομή

 $(1-\alpha)\%$ διάστημα εμπιστοσύνης της μέσης τιμής του Y για κάποιο x

$$\hat{y} \pm t_{n-2,1-\alpha/2} s_{\hat{y}} \quad \acute{\eta} \quad (b_0 + b_1 x) \pm t_{n-2,1-\alpha/2} s_{\epsilon} \sqrt{\frac{1}{n} + \frac{(x - \bar{x})^2}{S_{xx}}}.$$

Λέγεται και διάστημα της μέσης πρόβλεψης: τα όρια της πρόβλεψης για τη μέση (αναμενόμενη) τιμή της Y για κάποιο x

 $(1-\alpha)\%$ διάστημα πρόβλεψης για μια παρατήρηση y της Y για κάποιο x

$$\hat{y} \pm t_{n-2,1-\alpha/2} \sqrt{s_{\epsilon}^2 + s_{\hat{y}}^2} \quad \acute{\eta} \quad (b_0 + b_1 x) \pm t_{n-2,1-\alpha/2} s_{\epsilon} \sqrt{1 + \frac{1}{n} + \frac{(x - \bar{x})^2}{S_{xx}}}$$

Υπολογίσαμε $b_1=0.063$, $b_0=2.53$, $s_\epsilon=1.507$

Ακρίβεια / σημαντικότητα εκτιμήσεων και πρόβλεψης;

 β_1 : $s_{b_1} = 0.0195$

95% διάστημα εμπιστοσύνης για β_1

$$0.063 \pm 2.306 \cdot 0.0195 \Rightarrow [0.018, 0.108].$$

 β_1 σημαντικά διάφορο του 0

Στατιστικό ελέγχου για H_0 : $\beta_1=0$

$$t = \frac{0.063}{0.0195} = 3.235$$

 $t > t_{0.975.8} = 2.306 \Longrightarrow H_0$ απορρίπτεται.

Η τιμή t = 3.235 αντιστοιχεί σε p = 0.012

 β_0 : $s_{b_0} = 1.894$

95% διάστημα εμπιστοσύνης για β_0

$$2.53 \pm 2.306 \cdot 1.894 \quad \Rightarrow \quad [-1.837, 6.898]$$

 β_0 μπορεί να είναι 0

Στατιστικό ελέγχου για H_0 : $eta_1=0$

$$t = \frac{2.53}{1.894} = 1.336$$

 $t < t_{0.975,8} = 2.306 \Longrightarrow H_0$ δεν απορρίπτεται.

Η τιμή t = 1.336 αντιστοιχεί σε p = 0.218

διάστημα πρόβλεψης για αντίσταση στρώματος $x=120\,\mathrm{ohm/cm}$ $\hat{\mathbf{y}}$:

$$s_{\hat{y}} = 1.507\sqrt{\frac{1}{10} + \frac{(120 - 93.9)^2}{9 \cdot 662.1}} = 0.698$$

95% διάστημα πρόβλεψης της \hat{y} για x=120

$$10.108 \pm 2.306 \cdot 0.698 \Rightarrow [8.499, 11.717]$$

παρατήρηση γ:

95% διάστημα πρόβλεψης για μια (μελλοντική) παρατήρηση y για x=120

$$10.108 \pm 2.306 \cdot 1.507 \sqrt{1 + \frac{1}{10} + \frac{(120 - 93.9)^2}{9 \cdot 662.1}} \quad \Rightarrow \quad [6.279, 13.937]$$

