

Этикетка

КСНЛ.431271.023 ЭТ

Микросхема 1564ЛЛ1УЭП

Микросхема интегральная 1564ЛЛ1УЭП Функциональное назначение: Четыре логических элемента «2ИЛИ»

Условное графическое обозначение

Схема расположения выводов Номера выводов показаны условно

Логическая функция одной ячейки ИС: Y=X1 + X2

Таблица назначения выводов

$N_{\underline{0}}$	Обозначение	Назначение вывода	№	Обозначение	Назначение
вывода	вывода		вывода	вывода	вывода
1	X1	Вход ячейки 1	11	Y3	Выход ячейки 3
2	NC	Не подключен	12	NC	Не подключен
3	X2	Вход ячейки 1	13	X5	Вход ячейки 3
4	Y1	Выход ячейки 1	14	X6	Вход ячейки 3
5	Х3	Вход ячейки 2	15	Y4	Выход ячейки 4
6	X4	Вход ячейки 2	16	X7	Вход ячейки 4
7	Y2	Выход ячейки 2	17	X8	Вход ячейки 4
8	0V	Общий	18	V_{cc}	Питание

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = 25\pm10$ °C)

	Буквенное	Но	рма
Наименование параметра, единица измерения, режим измерения	обозначение	не менее	не более
1	2	3	4
1. Максимальное выходное напряжение низкого уровня, В, при:			
$U_{CC}=2.0 \text{ B}, U_{IL}=0.3 \text{ B}, U_{IH}=1.5 \text{ B} I_{O}=20 \text{ MKA}$	$U_{OL\;max}$	-	0,10
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B I_{O} = 20 мкА		-	0,10
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 20 MKA		-	0,10
при:			
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B, I_{O} = 4,0 mA		-	0,26
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 5,2 MA		-	0,26
2. Минимальное выходное напряжение высокого уровня, В, при:			
$U_{CC}=2,0 \text{ B}, U_{IL}=0,3 \text{ B}, U_{IH}=1,5 \text{ B} I_{O}=20 \text{ MKA}$	$U_{ m OHmin}$	1,9	-
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B I_{O} = 20 MKA		4,4	-
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 20 MKA		5,9	-
при:			
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B, I_{O} = 4,0 mA		3,98	-
$U_{CC}=6.0 \text{ B}, U_{IL}=1.2 \text{ B}, U_{IH}=4.2 \text{ B}, I_{O}=5.2 \text{ mA}$		5,48	-
3. Входной ток низкого уровня, мкА, при:			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{IL}	-	/-0,1/
4. Входной ток высокого уровня, мкА, при:			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{IH}	-	0,1
5. Ток потребления, мкА, при			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{CC}	-	2,0

6. Динамический ток потребления, мА, при:	T		1.5
$U_{CC} = 5.0 \text{ B, f} = 1.0 \text{ M} \Gamma \text{ц}$	l _{OCC}	-	1,5
7. Время задержки распространения при включении и выключении, нс,			
при:	$t_{ m PHL}$		
$U_{CC} = 2.0 \text{ B}, C_L = 50 \text{ m}\Phi$	t_{PLH}	-	100
$U_{CC} = 4.5 \text{ B}, C_L = 50 \Pi\Phi$		-	20
$U_{CC} = 6.0 \text{ B}, C_L = 50 \text{ m}\Phi$		-	17
8. Входная емкость, пФ	C_{I}	-	10

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

золото г. серебро г.

2 НАДЕЖНОСТЬ

2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых

ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5) °C не менее 100000ч., а в облегченном режиме: при $U_{CC} = 5B \pm 10\%$ - не менее 120000ч.

2.2 Гамма – процентный срок сохраняемости ($T_{C\gamma}$) при γ = 99% при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных, - в соответствии с разделом 4 ОСТ В 11 0998.

3 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям АЕЯР.431200.424-32ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие. Срок гарантии исчисляется с даты изготовления, нанесенной на микросхему.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 1564ЛЛ1УЭП соответствуют техническим условиям АЕЯР.431200.424-32ТУ и признаны годными для эксплуатации.

Приняты по	OT			_
(извещение, акт и др.)		(дата)	
Место для ш	тампа ОТК			Место для штампа ПЗ
Место для ш	тампа « Перепроверка	произве,	дена	» (дата)
Приняты по	(извещение, акт и др	.) от	(дата)	_
Место для ш	тампа ОТК			Место для штампа ПЗ

5. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 200 В.

Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общая точка, вход-выход.

Остальные указания по эксплуатации – в соответствии с АЕЯР.431200.424 ТУ