Graphical Economics Kakade, Kearns, Ortiz

Carlos Lezama

Instituto Tecnológico Autónomo de México General Equilibrium Fall 2022

- 1 Introduction
- 2 Setting and Background
- 3 The Arrow–Debreu (AD) Exchange Model
- 4 The Kakade, Kearns, Ortiz (KKO) Exchange Model
- 5 Graphical Equilibrium Existence
- 6 Challenging Learning Problems and Issues

Introduction

General Equilibrium Theory

- Long history and deep mathematical grounding
- We attempt to explain supply, demand, and prices
- Arrow-Debreu Model is central

Setting and Background

We consider economies consisting of:

- A set $[\ell] := \{1, \dots, \ell\}$ of divisible goods
- A set $[m] := \{1, ..., m\}$ of **agents embedded as nodes** in some graph G = ([m], E), whose edges E describe who may trade with whom
- A **bundle of goods** $\mathbf{e}^i \in \mathbb{R}_+^{\ell}$ that agent $i \in [m]$ enters the market with
- A **utility function** $u_i : \mathbb{R}_+^{\ell} \to \mathbb{R}_+$ that encodes agent *i*'s preferences over bundles of goods

Graphical Economy

A **graphical economy** is an undirected graph G over agents [m] with neighbor relation \simeq , utilities $\{u_i: \mathbb{R}_+^\ell \to \mathbb{R}_+\}_{i \in [m]}$, and endowments $\{\mathbf{e}^i \in \mathbb{R}_+^\ell\}_{i \in [m]}$, where ℓ is an integer denoting the number of goods being traded.

For ease of exposition, G is assumed undirected — all results can be easily extended to directed graphs.

To discuss equilibria in a graphical economy, we also need:

- Local price vectors $\mathbf{p}^i \in \mathbb{R}_+^{\ell}$ for each agent $i \in [m]$
- The bundle of goods $\mathbf{x}^{ij} \in \mathbb{R}_+^\ell$ agent i purchases from agent j for consumption
 - To enforce the condition that trade must traverse edges, $\mathbf{x}^{ij} = \mathbf{0}$ for $i \not\simeq i$

Agent i buys an amount x_k^{ij} of good k from agent j for consumption

$$i \neq j \in [m]$$
$$k \in [\ell]$$

The Arrow-Debreu (AD) Exchange Model

AD Equilibrium

An **AD Equilibrium** is a pair (\mathbf{p}, \mathbf{x}) of a set of price vectors \mathbf{p} and set of consumption plans \mathbf{x} such that, if the underlying graph is complete, we have $\mathbf{p}^i = \mathbf{p}^j$ for all $i, j \in [m]$, and the following conditions are satisfied:

Market Clearing.

$$\sum_{i,j\in[m]}\mathbf{x}^{ij}=\sum_{i\in[m]}\mathbf{e}^i$$

• Individual Rationality. For all agents $i \in [m]$, setting $\hat{\mathbf{x}}^i = \mathbf{x}^i$ maximizes their utility $u_i\left(\sum_{j\simeq i}\hat{\mathbf{x}}^{ij}\right)$ over all $\hat{\mathbf{x}}^i\in\mathbb{R}_+^\ell$ satisfying

$$\sum_{j \simeq i} \mathbf{p}^j \cdot \hat{\mathbf{x}}^{ij} \le \mathbf{p}^i \cdot \mathbf{e}^i$$

- Agents sell endowments at market prices
- They spend profits on goods maximizing their utility
- There is a single global market
 - Single price for each good
 - Every pair of agents can trade
 - Markets are cleared when the demand of all agents is equal to the supply of all agents

We would like something more local

The Kakade, Kearns, Ortiz (KKO) Exchange Model

KKO Equilibrium

An **KKO Equilibrium** is a pair (\mathbf{p}, \mathbf{x}) of prices $\mathbf{p} \in \mathbb{R}^{m \times \ell}$ and consumption plans $\mathbf{x} \in \mathbb{R}^{m \times m \times \ell}$ such that the following conditions are satisfied for all $i \in [m]$:

Local Clearing.

$$\sum_{j\simeq i} \mathbf{x}^{ji} = \mathbf{e}^i$$

• Individual Rationality. Setting $\hat{\mathbf{x}}^i = \mathbf{x}^i$ maximizes their utility $u_i \left(\sum_{j \simeq i} \hat{\mathbf{x}}^{ij} \right)$ over all $\hat{\mathbf{x}}^i \in \mathbb{R}_+^{m \times \ell}$ satisfying

$$\sum_{j \simeq i} \mathbf{p}^j \cdot \hat{\mathbf{x}}^{ij} \leq \mathbf{p}^i \cdot \mathbf{e}^i$$

- Network of local markets
 - Each agent sets its own price for each good
 - Pairs of agents can trade if connected by an edge
 - Markets are cleared when the demand of each agent is equal to the supply of each agent
- Captures underlying trade structures of economies
- Can be too local in some cases

Local prices

$$\mathbf{e}^1 = (1,2)$$
 $\mathbf{e}^2 = (1,1)$ $\mathbf{e}^3 = (2,1)$ $\mathbf{u}^1 = (1,0)$ $\mathbf{u}^2 = (1,1)$ $\mathbf{u}^3 = (0,1)$ $\mathbf{p}^1 = (2,1)$ $\mathbf{p}^2 = (2,2)$ $\mathbf{p}^3 = (1,2)$

There is **no** graphical equilibrium in which the prices for both goods is the same from all consumers, so price variations are essential for equilibrium

Graphical Equilibrium Existence

Assumptions

- **A-1.** For all consumers i, the utility function u_i satisfies the following three properties:
 - continuity
 - strict monotonicity
 - quasi-concavity
- **A-2.** (Non-Zero Endowments) For each consumer i and good k, $e_{\nu}^{i}>0$

Graphical Quasi-Equilibrium

An **graphical quasi-equilibrium** is a set of globally normalized prices (i.e., $\sum_{i,k} p^{ik} = 1$) and a set of consumption plans in which the local markets clear for each consumer i, with wealth $\mathbf{w}^i = \mathbf{p}^i \cdot \mathbf{e}^i$, one of the following conditions is met

- Individual Rationality. If consumer i has positive wealth, then i is utility-maximizing
- Individual Quasi-Rationality. If i has no wealth, then the plan \mathbf{x}^i is budget constrained (and does not necessarily maximize utility).

Results

Lemma 1

In any graphical economy in which A-1 holds, there exists a graphical quasi-equilibrium.

Lemma 2

If the graph of a graphical economy is connected and if A-1 and A-2 hold, then for any quasi-equilibrium set of prices $\{\mathbf{p}^i\}$, it holds that every consumer has non-zero wealth.

Theorem 1

For any graphical economy in which **A-1** and **A-2** hold, there exists a graphical equilibrium.

Limitations

$$\mathbf{e}^1 = (1,0)$$
 $\mathbf{e}^2 = (0,0)$ $\mathbf{e}^3 = (0,1)$ $\mathbf{u}^1 = (0,1)$ $\mathbf{u}^2 = (1,1)$ $\mathbf{u}^3 = (1,0)$

- Agent 2 has no endowment, thus no profit
- If agent 1 or 3 profit, they try to spend profit on unavailable goods
- If agent 1 or 3 do not profit:
 - They must have 0 prices
 - Agent 2 consumes an infinite amount of their good

Challenging Learning Problems and Issues

- Rational Learning in Graphical Games
- No-Regret Learning in Graphical Games
- Learning in Traditional AD Economies
- Learning in Graphical Economics