

THE KARNAUGH MAP

LOGIC MINIMIZATION

........

prepared by:

Gyro A. Madrona

Electronics Engineer

TOPIC OUTLINE

SOP Minimization

POS Minimization

SOP_MINIMIZATION_

KARNAUGH MAP

A <u>Karnaugh map</u> is an array of cells in which each cell represents a binary value of the input variables. It provides a systematic method for simplifying Boolean expressions.

AB C	0	1
00	ĀĒĒ	ĀĒC
01	ĀBĒ	ĀBC
11	$ABar{C}$	ABC
10	$Aar{B}ar{C}$	АĒС

KARNAUGH MAP

A Karnaugh map is an array of cells in which each cell represents a binary value of the input variables. It provides a systematic method for simplifying Boolean expressions.

AB CD	00	01	11	10
00	$ar{A}ar{B}ar{C}ar{D}$	ĀĒĈD	ĀĒCD	$ar{A}ar{B}Car{D}$
01	$ar{A}Bar{C}ar{D}$	ĀBĒD	ĀBCD	$ar{A}BCar{D}$
11	$ABar{C}ar{D}$	ABĈD	ABCD	$ABC\overline{D}$
10	$Aar{B}ar{C}ar{D}$	ΑĒĈD	AĒCD	$Aar{B}Car{D}$

MAPPING A STANDARD SOP EXPRESSION

A $\underline{\mathbf{1}}$ is placed on the K-map cell that corresponds to the value of a <u>product term</u> in the expression.

$$f = \bar{A}\bar{B}\bar{C} + \bar{A}BC + AB\bar{C} + ABC$$

$$000 \quad 011 \quad 110 \quad 111$$

AB	0	1
00	1	
01		1
11	1	1
10		

GROUPING 1s

A group must contain either 1, 2, 4, 8, or 16 cells, which are all **powers of two**.

AB C	0	1
00	1	1
01	1	
11		1
10	1	1

AB CD	00	01	11	10
00	1	1		
01	1	1	1	1
11				
10		1	1	

AB CD	00	01	11	10
00	1			1
01	1	1		1
11	1	1		1
10	1		1	1

SOP MINIMIZATION

The process that results in an expression containing the fewest possible terms with the fewest possible variables is called **minimization**.

$$f = \bar{B} + \bar{A}\bar{C} + AC$$

$$f = \bar{A}\bar{C} + \bar{A}B + A\bar{B}D$$

AB	00	01	11	10
00	1			1
01	1	1		1
11	1	1		1
10	1		1	1

$$f = \bar{D} + B\bar{C} + A\bar{B}C$$

Variables that occur both <u>complemented</u> and <u>uncomplemented</u> within the group are eliminated. These are called <u>contradictory variables</u>.

Use a Karnaugh map to minimize the given standard Solution SOP expression.

$$f = \sum m(2,4,6)$$

Use a Karnaugh map to minimize the given standard Solution SOP expression.

$$f = \sum m(13, 14, 15)$$

Use a Karnaugh map to minimize the given standard SOP expression.

$$f = \sum m(5, 6, 7, 12, 13, 14, 15)$$

Map the given table to a Karnaugh map and generate the minimized expression.

A	В	С	D	f
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1

A	В	С	D	f
1	0	0	0	1
1	0	0	1	1
1	0	1	0	X
1	0	1	1	X
1	1	0	0	X
1	1	0	1	X
1	1	1	0	X
1	1	1	1	X

<u>note</u>

X represents "don't care" term – it can be treated as either 1 or 0.

Solution

POS_MINIMIZATION_

KARNAUGH MAP

3-variable K-map

AB C	0	1
00	A + B + C	$A+B+\bar{C}$
01	$A + \bar{B} + C$	$A + \bar{B} + \bar{C}$
11	$\bar{A} + \bar{B} + C$	$\bar{A} + \bar{B} + \bar{C}$
10	$\bar{A} + B + C$	$\bar{A} + B + \bar{C}$

AB CD	00	01	11	10
00	A + B + C + D	$A + B + C + \overline{D}$	$A+B+\bar{C}+\bar{D}$	$A+B+\bar{C}+D$
01	$A + \bar{B} + C + D$	$A + \bar{B} + C + \bar{D}$	$A + \bar{B} + \bar{C} + \bar{D}$	$A + \bar{B} + \bar{C} + D$
11	$\bar{A} + \bar{B} + C + D$	$\bar{A} + \bar{B} + C + \bar{D}$	$\bar{A} + \bar{B} + \bar{C} + \bar{D}$	$\bar{A} + \bar{B} + \bar{C} + D$
10	$\bar{A} + B + C + D$	$\bar{A} + B + C + \bar{D}$	$\bar{A} + B + \bar{C} + \bar{D}$	$\bar{A} + B + \bar{C} + D$

MAPPING A STANDARD POS EXPRESSION

A $\underline{0}$ is placed on the K-map cell that corresponds to the value of a <u>sum term</u> in the expression.

$$f = (A + B + C)(A + \bar{B} + \bar{C})(\bar{A} + \bar{B} + C)(\bar{A} + \bar{B} + \bar{C})$$
000 011 110 111

AB C	0	1
00	0	
01		0
11	0	0
10		

GROUPING 0s

A group must contain either 1, 2, 4, 8, or 16 cells, which are all **powers of two**.

AB CD	00	01	11	10
00	0	0		
01	0	0	0	0
11				
10		0	0	

AB	00	01	11	10
00	0			0
01	0	0		0
11	0	0		0
10	0		0	0

POS MINIMIZATION

The process that results in an expression containing the fewest possible terms with the fewest possible variables is called minimization.

 $(\bar{B} + \bar{C})$

$f = (A + C)(A + \overline{B})(\overline{A} + B + \overline{D})$	j)
--	----

$$f = (D)(\bar{B} + C)(\bar{A} + B + \bar{C})$$

Variables that occur both **complemented** and **uncomplemented** within the group are eliminated. These are called **contradictory variables**.

Use a Karnaugh map to minimize the given standard POS expression.

$$f = \prod M(0, 1, 3, 5, 7)$$

Solution

Use a Karnaugh map to minimize the given standard POS expression.

$$f = \prod M(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)$$

Use a Karnaugh map to minimize the given standard SOP expression.

$$f = \prod M(0, 1, 2, 3, 4, 8, 9, 10, 11)$$

Solution

Map the given table to a Karnaugh map and generate the minimized expression.

A	В	С	D	f
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1

A	В	С	D	f
1	0	0	0	1
1	0	0	1	1
1	0	1	0	X
1	0	1	1	X
1	1	0	0	X
1	1	0	1	X
1	1	1	0	X
1	1	1	1	X

<u>note</u>

X represents "don't care" term – it can be treated as either 1 or 0.

Solution

LABORATORY

