Data Structures **Graph Traversal**

COMP128 Data Structures

Graph Traversal

A traversal is efficient if it visits all the vertices and edges in time proportional to their number (V+E), that is in linear time.

Graph traversal algorithms are key to answering many fundamental questions about graphs involving the notion of reachability.

- Computing a path from vertex u to vertex v, or reporting that no such path exists.
- Identifying a cycle in G, or reporting that G has no cycles.

- (level 0) BFS starts at vertex s
- (level 1) In the first round, we paint as "visited", all vertices adjacent to the start vertex s; these vertices are on step away from the beginning;
- (level 2) In the second round, we go two steps (i.e., edges) away from the starting vertex. These new vertices, which are adjacent to level 1 vertices and not previously assigned to a level, are marked as visited.
- This process continues in similar

Queue:

0

Adjacency List:

0 -> 1 4 5

Queue:

0 1

Adjacency List:

0 -> 1 4 5

Queue:

4 5

Adjacency List:

0 -> 1 4 5

Queue:

4

Queue:

1 4 5 2

Queue:

1 4 5 2 3

Queue:

4 5 2 3

$$0 \rightarrow 1$$
 4 5
 $1 \rightarrow 0$ 2 3
 $4 \rightarrow 0$ 2

Queue:

5 2 3

$$0 \Rightarrow 1 \quad 4 \quad 5$$
 $1 \Rightarrow 0 \quad 2 \quad 3$
 $4 \Rightarrow 0 \quad 2$
 $5 \Rightarrow 0$

Queue:

2 3

$$0 \Rightarrow 1 \quad 4 \quad 5$$
 $1 \Rightarrow 0 \quad 2 \quad 3$
 $4 \Rightarrow 0 \quad 2$
 $5 \Rightarrow 0$
 $2 \Rightarrow 1 \quad 4$

Queue:

3

Queue:

BFS Performance

- Let G be a graph with V vertices and E edges represented with the adjacency list structure. A BFS traversal of G takes O(V+E) time.
- Both DFS and BFS can be used to efficiently find the set of vertices that are reachable from a given source, and to determine paths to those vertices. However, BFS guarantees that those paths use as few edges as possible.

- DFS starts at vertex s
- Mark vertex s as visited.
- Recursively visit each unvisited vertex attached to vertex s.
- This process continues until all vertices are visited.

Stack:

0 1

Adjacency List:

 $0 \rightarrow 4$ 4 5

Stack:

Adjacency List:

$$0 \rightarrow 4$$
 4 5 $1 \rightarrow 0$ 2 3

Stack:

1

Adjacency List:

$$0 \rightarrow 4$$
 4 5
 $1 \rightarrow 0$ $\frac{2}{3}$ 3
 $2 \rightarrow 4$

Тор

Stack:

) 1 2 3

Adjacency List:

$$0 \rightarrow 1$$
 4 5
 $1 \rightarrow 0$ 2 3
 $2 \rightarrow 1$ 3
 $3 \rightarrow 1$ 2

Stack:

1 1

Adjacency List:

$$0 \rightarrow 1$$
 4 5
 $1 \rightarrow 0$ 2 3
 $2 \rightarrow 1$ 3
 $3 \rightarrow 1$ 2

Stack:

0 1 2 4

Adjacency List:

$$0 \rightarrow 1$$
 4 5
 $1 \rightarrow 0$ 2 3
 $2 \rightarrow 1$ 3
 $4 \rightarrow 0$ 2

Тор

Stack:

1 2

Adjacency List:

$$0 \rightarrow 1$$
 4 5
 $1 \rightarrow 0$ 2 3
 $2 \rightarrow 1$ 3
 $4 \rightarrow 0$ 2

Stack:

0 1

Adjacency List:

$$0 \rightarrow 1$$
 4 5
 $1 \rightarrow 0$ 2 3
 $2 \rightarrow 1$ 3 4
 $3 \rightarrow 1$ 2
 $4 \rightarrow 0$ 2

Stack:

0

Adjacency List:

$$0 \rightarrow 1$$
 4 5
 $1 \rightarrow 0$ 2 3
 $2 \rightarrow 1$ 3 4
 $3 \rightarrow 1$ 2
 $4 \rightarrow 0$ 2

Stack:

0

Adjacency List:

$$0 \rightarrow 1$$
 4 5 $\frac{1 \rightarrow 0}{2 \rightarrow 1}$ 3 4 $\frac{2 \rightarrow 1}{2 \rightarrow 0}$ 2

Stack:

0 5

Adjacency List:

$$0 \rightarrow 1$$
 4 5
 $1 \rightarrow 0$ 2 3
 $2 \rightarrow 1$ 3 4
 $3 \rightarrow 1$ 2
 $4 \rightarrow 0$ 2
 $5 \rightarrow 0$

Stack:

0

Adjacency List:

$$0 \rightarrow 1$$
 4 5
 $1 \rightarrow 0$ 2 3
 $2 \rightarrow 1$ 3 4
 $3 \rightarrow 1$ 2
 $4 \rightarrow 0$ 2
 $5 \rightarrow 0$

Stack:

Top

DFS Performance

- Let G be an undirected graph with V vertices and E edges. A DFS traversal of G can be performed in O(V+E) time, and can be used to solve the following problems in O(V+E) time:
 - Computing a path between two given vertices of G, if one exists
 - Testing whether G is connected
 - Computing a spanning tree of G, if G is connected

In-class Activity **Graph Maze Activity**

