Department of Mathematical Sciences

Rajiv Gandhi Institute Of Petroleum Technology, Jais

REAL ANALYSIS & CALCULUS (MA 111)

Week 4 / August 2023

Problem Set 2

GR

Real Analysis

Real sequences

Tutorial Problems

- 1. Using the definition of limit, show that $\lim_{n\to\infty} \left(\sqrt{n^2+1}-n\right)=0$.
- 2. Find $\lim_{n\to\infty} \sqrt{n} \left(\sqrt{n+1} \sqrt{n}\right)$.
- 3. Use Sandwich theorem to prove that
 - (i) $\lim_{n \to \infty} (2^n + 3^n)^{\frac{1}{n}} = 3$,
 - (ii) $\lim (\sqrt{n+1} \sqrt{n}) = 0$.
- 4. Show that
 - (i) $\lim \sqrt[n]{n+1} = 1$,
 - (ii) $\lim_{n \to 1} \sqrt{n} = 1$,
 - (iii) $\lim \frac{(n+1)^{2n}}{(n^2+1)^n} = e^2$,
 - (iv) $\lim_{n \to \infty} \left\{ \left(1 + \frac{1}{n^2} \right) \left(1 + \frac{2}{n^2} \right) \left(1 + \frac{3}{n^2} \right) \right\}^{n^2} = e^6.$

[Hint. Use $\lim n^{\frac{1}{n}} = 1$, $\lim \left(1 + \frac{1}{n}\right)^n = e$. If $x_n > 0$ and $\lim x_n = x > 0$ for all $n \in \mathbb{N}$ and $\lim y_n = y$, then $\lim (x_n)^{y_n} = x^y$.]

- 5. A sequence $\{u_n\}$ is defined by $u_1 > 0$ and $u_{n+1} = \sqrt{6 + u_n}$ for $n \ge 1$. Show that
 - (i) the sequence $\{u_n\}$ is monotone increasing if $0 < u_1 < 3$;
 - (ii) the sequence $\{u_n\}$ is monotone decreasing if $0 < u_1 > 3$.

Find $\lim u_n$.

6. Prove that the sequence $\{x_n\}$ defined by $x_1 = \sqrt{7}$ and $x_{n+1} = \sqrt{7 + x_n}$ for all $n \ge 1$ converges to the positive root of the equation $x^2 - x - 7 = 0$.

[Hint. Monotone increasing and bounded above implies convergent.]

7. If $x_1 > 0$ and $x_{n+1} = \frac{1}{2} \left(x_n + \frac{9}{x_n} \right)$ for all $n \ge 1$. Prove that the sequence $\{x_n\}$ converges to 3.

[Hint. Monotone decreasing and bounded below implies convergent.]

- 8. A sequence $\{u_n\}$ is defined by $u_n > 0$ and $u_{n+1} = \frac{6}{1+u_n}$ for all $n \in \mathbb{N}$.
 - (i) Prove that the sub-sequences $\{u_{2n+1}\}$ and $\{u_{2n}\}$ converges to a common limit.
 - (ii) Find $\lim u_n$.
- 9. Establish the convergence and find the limits of the following sequences

(i)
$$\left(1 + \frac{1}{3n+1}\right)^n$$
,

(ii)
$$\left(1 + \frac{1}{n^2 + 2}\right)^{n^2}$$
.

[Hint. Approach through sub-sequence.]

10. Let $\{u_n\}$ be a bounded sequence and $\lim v_n = 0$. Prove that $\lim u_n v_n = 0$. Utilise this to prove that

(i)
$$\lim \frac{\sin n}{n} = 0$$
.

(ii)
$$\lim \frac{(-1)^n n}{n^2 + 1} = 0$$
.

11. Prove that

(i)
$$\lim n^{\frac{1}{n}} = 1$$
.

(ii)
$$\lim \frac{(n!)^{\frac{1}{n}}}{n} = \frac{1}{e}$$
.

[Hint. Use the **Theorem**: Let $\{u_n\} > 0$ for all $n \in \mathbb{N}$ and $\lim \frac{u_{n+1}}{u_n} = \ell$ (finite or infinite). Then $\lim \sqrt[n]{u_n} = \ell$]

12. Establish from definition that $\{u_n\}$ is a Cauchy sequence, where

(i)
$$u_n = \frac{n}{n+1}$$
,

(ii)
$$u_n = 1 + \frac{1}{2!} + \frac{1}{3!} + \cdots + \frac{1}{n!}$$
,

(iii)
$$|u_{n+2} - u_{n+1}| \le \frac{1}{2} |u_{n+1} - u_n|$$
 for all $n \in \mathbb{N}$.

[Hint. (ii)
$$(n+1)! \ge 2^n$$
 for $n \ge 2$. (iii) $|u_{n+2} - u_{n+1}| \le \left(\frac{1}{2}\right)^n |u_2 - u_1|$.]

Assignment Problems

- 1. Prove that the sequence $\{u_n\}$ defined by
 - (i) $0 < u_1 < u_2$ and $u_{n+2} = \frac{2u_{n+1} + u_n}{3}$ for $n \ge 1$, converges to $\frac{u_1 + 3u_2}{4}$,
 - (ii) $0 < u_1 < u_2$ and $u_{n+2} = \frac{u_{n+1} + 2u_n}{3}$ for $n \ge 1$, converges to $\frac{2u_1 + 3u_2}{5}$

[**Hint.** Observe that $u_3 - u_2 = \left(-\frac{1}{3}\right)(u_2 - u_1), \dots, u_n - u_{n-1} = \left(-\frac{1}{3}\right)^{n-2}(u_2 - u_1)$. Add all these equations and get $u_n - u_1 = \frac{3}{4}(u_2 - u_1)\left[1 - \left(-\frac{1}{3}\right)^{n-1}\right]$]

- 2. Prove that the sequence $\{u_n\}$ defined by
 - (i) $0 < u_1 < u_2$ and $u_{n+2} = \sqrt{u_{n+1}u_n}$ for $n \ge 1$, converges to the limit $\sqrt[3]{u_1u_2^2}$,
 - (ii) $0 < u_1 < u_2$ and $\frac{2}{u_{n+2}} = \frac{1}{u_{n+1}} + \frac{1}{u_n}$ for $n \ge 1$, converges to the limit $\frac{3}{\left(\frac{1}{u_1} + \frac{2}{u_2}\right)}$.

Department of Mathematical Sciences

Rajiv Gandhi Institute Of Petroleum Technology, Jais

August

Real Analysis and Calculus (MA 111)

Week & / November 2023

Problem Set 2

Solutions

Real Analysis

Real Sequences

1. To show $\lim_{n\to\infty} \left(\sqrt{n^2+1}-n\right)=0$.

Let $\varepsilon > 0$ be given. Now

$$\left| \left(\sqrt{n^2 + 1} - n \right) - 0 \right| = \frac{1}{\sqrt{n^2 + 1} + n} < \frac{1}{2n}.$$

Note that $\frac{1}{2n} < \varepsilon$ if $n > \frac{1}{2\varepsilon}$. Choose $k_0 = \left[\frac{1}{2\varepsilon}\right] + 1$. Then

$$\left| \left(\sqrt{n^2 + 1} - n \right) - 0 \right| < \varepsilon$$
, for all $n \ge k_0$.

Since ε is arbitrary, 0 is the limit of $\left\{\sqrt{n^2+1}-n\right\}$.

2. To find $\lim_{n\to\infty} \sqrt{n} \left(\sqrt{n+1} - \sqrt{n} \right)$.

Note that

$$\sqrt{n}\left(\sqrt{n+1}-\sqrt{n}\right) = \frac{\sqrt{n}}{\sqrt{n+1}+\sqrt{n}} = \frac{1}{\sqrt{1+\frac{1}{n}+1}}.$$

Let $u_n = 1$ and $v_n = \sqrt{1 + \frac{1}{n}} + 1$ for all $n \in \mathbb{N}$. Since $\lim v_n = 2$, $\lim \frac{u_n}{v_n} = \frac{1}{2}$.

3. Use Sandwich Theorem to prove that

Sandwich/Squeeze Theorem

Suppose $\{u_n\}, \{v_n\}$ and $\{w_n\}$ be three sequences of real numbers and there exists $m \in \mathbb{N}$ such that

$$u_n \le v_n \le w_n$$
, for all $n \ge m$.

If $\lim_{n\to\infty} u_n = \lim_{n\to\infty} w_n = l$, then the sequence $\{v_n\}$ is convergent and $\lim_{n\to\infty} v_n = l$.

(i) $\lim_{n \to \infty} (2^n + 3^n)^{\frac{1}{n}} = 3$,

Solution. Let $v_n = (2^n + 3^n)^{\frac{1}{n}}$, for all $n \in \mathbb{N}$.

$$3^n < 2^n + 3^n < 2 \cdot 3^n, \quad \forall n \in \mathbb{N}$$

$$\Rightarrow (3^n)^{\frac{1}{n}} < (2^n + 3^n)^{\frac{1}{n}} < (2 \cdot 3^n)^{\frac{1}{n}}, \quad \forall n \in \mathbb{N}$$
$$\Rightarrow 3 < (2^n + 3^n)^{\frac{1}{n}} < (2^{\frac{1}{n}} \cdot 3), \quad \forall n \in \mathbb{N}$$

Hence, take $u_n = 3$, $v_n = (2^n + 3^n)^{\frac{1}{n}}$ and $w_n = 3 \cdot 2^{1/n}$ for all $n \in \mathbb{N}$. Clearly,

$$\lim_{n\to\infty} u_n = 3, \quad \lim_{n\to\infty} w_n = \lim_{n\to\infty} (3\cdot 2^{\frac{1}{n}}) = 3, \quad \left[\text{since } \lim_{n\to\infty} 2^{\frac{1}{n}} = 0\right]$$

i.e.

$$\lim_{n\to\infty}u_n=\lim_{n\to\infty}w_n=3.$$

Hence, by Sandwich Theorem,

$$\lim_{n \to \infty} v_n = 3,$$

$$\Rightarrow \lim_{n \to \infty} (2^n + 3^n)^{\frac{1}{n}} = 3.$$

(ii) $\lim(\sqrt{n+1} - \sqrt{n}) = 0.$

Solution. For all $n \in \mathbb{N}$,

$$\sqrt{n+1} - \sqrt{n} = \frac{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n})}{(\sqrt{n+1} + \sqrt{n})}$$
$$= \frac{1}{(\sqrt{n+1} + \sqrt{n})}$$

Note that

$$\frac{1}{2\sqrt{n+1}} < \frac{1}{(\sqrt{n+1} + \sqrt{n})} < \frac{1}{2\sqrt{n}}, \quad \forall n \ge 1$$

i.e.

$$\frac{1}{2\sqrt{n+1}} < (\sqrt{n+1} - \sqrt{n}) < \frac{1}{2\sqrt{n}}, \quad \forall n \ge 1$$

Take

$$u_n = \frac{1}{2\sqrt{n+1}}, \ v_n = \sqrt{n+1} - \sqrt{n}, \ w_n = \frac{1}{2\sqrt{n}} \ \text{for all } n \in \mathbb{N}.$$

Then $u_n < v_n < w_n$, $\forall n \in \mathbb{N}$. [OR one can take $u_n = 0$, $\forall n$. In that case also $u_n < v_n < w_n$ holds and the followings are true.] Clearly,

$$\lim_{n\to\infty}u_n=\lim_{n\to\infty}w_n=0.$$

Hence, by Sandwich Theorem,

$$\lim_{n\to\infty} v_n = \lim_{n\to\infty} (\sqrt{n+1} - \sqrt{n}) = 0.$$

4. Show that

(i)
$$\lim_{n\to\infty} \sqrt[n]{n+1} = 1.$$

Use $\lim_{n\to\infty} n^{\frac{1}{n}} = 1$.

Theorem. If $x_n > 0$ and $\lim_{n \to \infty} x_n = x > 0$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} y_n = y$, then

$$\lim_{n\to\infty}(x_n)^{y_n}=x^y.$$

Solution. Note that

$$\sqrt[n]{n+1} = n^{\frac{1}{n}} \left(1 + \frac{1}{n}\right)^{\frac{1}{n}}$$

We have

$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{\frac{1}{n}} = 1 \quad \text{and} \quad \lim_{n\to\infty} n^{\frac{1}{n}} = 1.$$

Therefore,

$$\lim_{n\to\infty} \sqrt[n]{n+1} = \lim_{n\to\infty} n^{\frac{1}{n}} \cdot \lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{\frac{1}{n}} = 1.$$

(ii) $\lim_{n \to 1} \sqrt{n} = 1$.

Solution.Write

$$(n)^{\frac{1}{n+1}} = (n^{\frac{1}{n}})^{\frac{1}{1+\frac{1}{n}}} = (x_n)^{y_n},$$

where $x_n = n^{\frac{1}{n}}$ and $y_n = \frac{1}{1 + \frac{1}{n}}$ for all $n \in \mathbb{N}$. Clearly, $\{x_n\}$ and $\{y_n\}$ are sequences of positive real numbers. We also have $\lim_{n \to \infty} x_n = \lim_{n \to \infty} n^{\frac{1}{n}} = 1 > 0$, and $\lim_{n \to \infty} y_n = \lim_{n \to \infty} \frac{1}{1 + \frac{1}{n}} = 1$.

Therefore,

$$\lim_{n\to\infty} (n)^{\frac{1}{n+1}} = \left(\lim_{n\to\infty} n^{\frac{1}{n}}\right)^{\lim_{n\to\infty} \frac{1}{1+\frac{1}{n}}} = 1.$$

(iii) $\lim_{n\to\infty} \frac{(n+1)^{2n}}{(n^2+1)^n} = e^2$.

Solution. Observe that,

$$\frac{(n+1)^{2n}}{(n^2+1)^n} = \frac{\left\{ \left(1 + \frac{1}{n}\right)^n \right\}^2}{\left\{ \left(1 + \frac{1}{n^2}\right)^{n^2} \right\}^{\frac{1}{n}}}.$$

If $x_n = \left(1 + \frac{1}{n}\right)^n$, then $\left(1 + \frac{1}{n^2}\right)^{n^2} = x_{n^2}$. We know that, if a sequence $\{x_n\}$ converges to ℓ , then all its subsequences converge to ℓ . Since

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e, \quad \lim_{n \to \infty} \left(1 + \frac{1}{n^2} \right)^{n^2} = e,$$

$$\implies \lim_{n \to \infty} \left\{ \left(1 + \frac{1}{n^2} \right)^{n^2} \right\}^{\frac{1}{n}} = e^0 = 1.$$

Therefore,

$$\lim_{n \to \infty} \frac{(n+1)^{2n}}{(n^2+1)^n} = \frac{e^2}{e^0} = e^2.$$

(iv)
$$\lim_{n \to \infty} \left\{ \left(1 + \frac{1}{n^2} \right) \left(1 + \frac{2}{n^2} \right) \left(1 + \frac{3}{n^2} \right) \right\}^{n^2} = e^6.$$

Solution. Observe that,

$$\left\{ \left(1 + \frac{1}{n^2} \right) \left(1 + \frac{2}{n^2} \right) \left(1 + \frac{3}{n^2} \right) \right\}^{n^2} = \left(1 + \frac{1}{n^2} \right)^{n^2} \left(1 + \frac{1}{\frac{n^2}{2}} \right)^{n^2} \left(1 + \frac{1}{\frac{n^2}{3}} \right)^{n^2} \\
= \left(1 + \frac{1}{n^2} \right)^{n^2} \left\{ \left(1 + \frac{1}{\frac{n^2}{2}} \right)^{\frac{n^2}{2}} \right\}^2 \left\{ \left(1 + \frac{1}{\frac{n^2}{3}} \right)^{\frac{n^2}{3}} \right\}^3$$

We know that

$$\lim_{n \to \infty} \left(1 + \frac{1}{n^2} \right)^{n^2} = e, \quad \lim_{n \to \infty} \left(1 + \frac{1}{\frac{n^2}{2}} \right)^{\frac{n^2}{2}} = e, \quad \lim_{n \to \infty} \left(1 + \frac{1}{\frac{n^2}{3}} \right)^{\frac{n^2}{3}} = e.$$

Therefore,

$$\lim_{n \to \infty} \left\{ \left(1 + \frac{1}{n^2} \right) \left(1 + \frac{2}{n^2} \right) \left(1 + \frac{3}{n^2} \right) \right\}^{n^2} = e \cdot e^2 \cdot e^3 = e^6.$$

5. Prove that the sequence $\{u_n\}$ defined by

(i)
$$0 < u_1 < u_2$$
 and $u_{n+2} = \frac{2u_{n+1} + u_n}{3}$ for $n \ge 1$, converges to $\frac{u_1 + 3u_2}{4}$.

Solution. Given sequence $\{u_n\}$ is defined by,

$$u_{n+2} = \frac{2u_{n+1} + u_n}{3};$$
 $0 < u_1 < u_2,$ $\forall n \ge 1$

To show that $\lim_{n\to\infty} u_n = \frac{u_1+3u_2}{4}$.

$$0 < u_{1} < u_{2}$$

$$u_{2} - u_{1} > 0$$

$$u_{3} - u_{2} = \frac{2u_{2} + u_{1}}{3} - u_{2} = \frac{u_{1} - u_{2}}{3} = -\frac{1}{3}(u_{2} - u_{1})$$

$$u_{4} - u_{3} = \frac{2u_{3} + u_{2}}{3} - u_{3} = \frac{u_{2} - u_{3}}{3} = \left(-\frac{1}{3}\right)^{2}(u_{2} - u_{1})$$

$$\vdots$$

$$u_{n} - u_{n-1} = \left(-\frac{1}{3}\right)^{n-2}(u_{2} - u_{1}).$$

This implies (adding all the above equations)

$$u_{n} - u_{1} = (u_{2} - u_{1}) \left[1 - \frac{1}{3} + \left(-\frac{1}{3} \right)^{2} + \dots + \left(-\frac{1}{3} \right)^{n-2} \right]$$

$$= (u_{2} - u_{1}) \left[\frac{1 - \left(-\frac{1}{3} \right)^{n-1}}{1 + \frac{1}{3}} \right]$$

$$= \frac{3(u_{2} - u_{1})}{4} \left[1 - \left(-\frac{1}{3} \right)^{n-1} \right]$$

$$\lim_{n \to \infty} (u_{n} - u_{1}) = \frac{3}{4} (u_{2} - u_{1})$$

$$\lim_{n \to \infty} u_{n} = u_{1} + \frac{3}{4} (u_{2} - u_{1})$$

$$\lim_{n \to \infty} u_{n} = \frac{u_{1} + 3u_{2}}{4}.$$

(ii) $0 < u_1 < u_2$ and $u_{n+2} = \frac{u_{n+1} + 2u_n}{3}$ for $n \ge 1$, converges to $\frac{2u_1 + 3u_2}{5}$.

Solution. Given sequence $\{u_n\}$ is defined by

$$u_{n+2} = \frac{u_{n+1} + 2u_n}{3};$$
 $0 < u_1 < u_2,$ $\forall n \ge 1$

To show: $\lim_{n\to\infty} u_n = \frac{2u_1 + 3u_2}{5}$. Here,

$$\Rightarrow \qquad 0 < u_{1} < u_{2}$$

$$u_{2} - u_{1} > 0$$

$$u_{3} - u_{2} = \frac{u_{2} + 2u_{1}}{3} - u_{2} = \frac{2u_{1} - 2u_{2}}{3} = -\frac{2}{3}(u_{2} - u_{1})$$

$$u_{4} - u_{3} = \frac{u_{3} + 2u_{2}}{3} - u_{3} = \frac{2u_{2} - 2u_{3}}{3} = \left(-\frac{2}{3}\right)^{2}(u_{2} - u_{1})$$

$$\vdots$$

$$u_{n} - u_{n-1} = \left(-\frac{2}{3}\right)^{n-2}(u_{2} - u_{1}).$$
Therefore,
$$u_{n} - u_{1} = (u_{2} - u_{1}) \left[1 - \frac{2}{3} + \left(-\frac{2}{3}\right)^{2} + \dots + \left(-\frac{2}{3}\right)^{n-2}\right]$$

$$= (u_{2} - u_{1}) \left[\frac{1 - \left(-\frac{2}{3}\right)^{n-1}}{1 + \frac{2}{3}}\right]$$

$$= \frac{3(u_{2} - u_{1})}{5} \left[1 - \left(-\frac{2}{3}\right)^{n-1}\right]$$

Hence,
$$\lim (u_n - u_1) = \frac{3}{5}(u_2 - u_1)$$
 $[\because \lim \left(-\frac{2}{3}\right)^{n-1} = 0]$
 $\Rightarrow \lim u_n = u_1 + \frac{3}{5}(u_2 - u_1)$
 $\Rightarrow \lim u_n = \frac{2u_1 + 3u_2}{5}.$

- 6. A sequence $\{u_n\}$ is defined by $u_1 > 0$ and $u_{n+1} = \sqrt{6 + u_n}$ for $n \ge 1$. Show that
 - (i) the sequence $\{u_n\}$ is monotone increasing if $0 < u_1 < 3$;
 - (ii) the sequence $\{u_n\}$ is monotone decreasing if $u_1 > 3$. Find $\lim_{n \to \infty} u_n$.

Solution. Note that

$$u_{n+1}^2 - u_n^2 = 6 + u_n - u_n^2$$

$$\implies (u_{n+1} + u_n)(u_{n+1} - u_n) = (2 + u_n)(3 - u_n), \quad \text{for all } n = 1, 2, 3, \dots$$
 (1)

From the above equation, we obtain $(u_2 + u_1)(u_2 - u_1) = (2 + u_1)(3 - u_1)$. Since $u_1 > 0$, it is clear that

$$u_2 > u_1$$
 if $u_1 < 3$ and $u_2 < u_1$ if $u_1 > 3$ (2)

As $u_1 > 0$, it is easy to see that $u_n > 0$ for all n. Since $u_{n+1} = \sqrt{6 + u_n}$,

$$u_{n+1}^2 - u_n^2 = u_n + 6 - u_{n-1} - 6 \implies (u_{n+1} + u_n)(u_{n+1} - u_n) = (u_n - u_{n-1}) \quad \forall n \ge 1.$$

Since $u_n > 0$ for all n, $u_{n+1} > \text{or} < u_n$ according as $u_n > \text{or} < u_{n-1}$.

- (i) From (2), $0 < \mathbf{u}_1 < 3$ implies $u_2 > u_1$, consequently $u_3 > u_2$, $u_4 > u_3$, ..., and therefore $\{u_n\}$ is monotonic increasing sequence in this case. Now from (1), $\{u_n\}$ monotonic increasing, that is $u_{n+1} > u_n$ implies $u_n < 3$ for all $n \in \mathbb{N}$. This shows that, when $0 < u_1 < 3$, $\{u_n\}$ is monotonic increasing and bounded above by 3. Therefore $\{u_n\}$ is convergent.
- (ii) On the other hand, if $\mathbf{u}_1 > 3$, then $u_2 < u_1$. Consequently $u_3 < u_2$, $u_4 < u_3$, ..., and therefore $\{u_n\}$ is monotonic decreasing sequence in this case. Now from (1), $\{u_n\}$ monotonic decreasing, that is $u_{n+1} < u_n$ implies $u_n > 3$ for all $n \in \mathbb{N}$. This shows that, when $u_1 > 3$, $\{u_n\}$ is monotonic decreasing and bounded below by 3. Therefore $\{u_n\}$ is convergent.

In both the cases (i) and (ii), the sequence $\{u_n\}$ is convergent. Let $\lim_{n\to\infty} u_n = \ell$. Since, $u_{n+1}^2 = u_n + 6$, taking limit $n\to\infty$ both side, we obtain

$$\ell^2 = 6 + \ell \implies \ell = -2 \text{ or } 3.$$

Since $\{u_n\}$ is a sequence of positive real numbers, $\lim_{n\to\infty} u_n$ can not be negative real number. Therefore $\ell \neq -2$, but $\ell = 3$.

7. Prove that the sequence $\{x_n\}$ defined by $x_1 = \sqrt{7}$ and $x_{n+1} = \sqrt{7 + x_n}$ for all $n \ge 1$ converges to the positive root of the equation $x^2 - x - 7 = 0$.

Monotone Convergence Theorem

A monotone increasing sequence, if bounded above, is convergent and it converges to the least upper bound (supremum).

A monotone decreasing sequence, if bounded below, is convergent and it converges to the greatest lower bound (infimum).

Solution. The sequence is $(\sqrt{7}, \sqrt{7+\sqrt{7}}, \sqrt{7+\sqrt{7}+\sqrt{7}}, \dots)$

$$u_{n+1}^2 - u_n^2 = u_n - u_{n-1}$$
.

or,
$$(u_{n+1} + u_n)(u_{n+1} - u_n) = u_n - u_{n-1}$$
.

Since, $u_n > 0$ for all $n \in \mathbb{N}$, $u_{n+1} > \text{or} < u_n$ according as $u_n > \text{or} < u_{n-1}$.

But $u_2 > u_1$. Consequently, $u_3 > u_2$, $u_4 > u_3$,... and therefore $\{u_n\}$ is a monotone increasing sequence.

We have $u_n^2 < u_{n+1}^2 = 7 + u_n \ \forall \ n \in \mathbb{N}$

or,
$$u_n^2 - u_n - 7 < 0$$

or, $(u_n - \alpha)(u_n - \beta) < 0$, where α, β are the roots of the equation $x^2 - x - 7 = 0$. One of the roots is negative and the other is positive.

Let $\alpha > 0$.

Since $u_n > 0 \ \forall \ n \in \mathbb{N}, u_n - \alpha > 0$. Consequently, $u_n < \beta \ \forall \ n \in \mathbb{N}$.

This proves that the sequence (u_n) is bounded above and therefore this sequence is $\{u_n\}$ is convergent.

Let $\lim u_n = l$. By definition, $u_{n+1}^2 = 7 + u_n, \forall n \in \mathbb{N}$.

Taking limit as $n \to \infty$, we have $l^2 = 7 + l$.

Therefore, $(l - \alpha)(l - \beta) = 0$.

But $l \neq \alpha$, since each element of the sequence is positive and $\alpha < 0$. Therefore, $l = \beta$. That is, the sequence converges to the positive root of the equation $x^2 - x - 7 = 0$.

8. If $x_1 > 0$ and $x_{n+1} = \frac{1}{2} \left(x_n + \frac{9}{x_n} \right)$ for all $n \ge 1$. Prove that the sequence $\{x_n\}$ converges to 3.

Solution. Given $x_1 > 0$ and $x_{n+1} = \frac{1}{2} \left(x_n + \frac{9}{x_n} \right)$ for all $n \ge 1$.

Then, we have

$$x_n^2 - 2x_{n+1}x_n + 9 = 0.$$

This is quadratic equation in x_n having real roots. Therefore

$$4x_{n+1}^2 - 36 \ge 0$$

 $\Rightarrow x_{n+1} \ge 3$, for all $n \ge 1$ [since $x_{n+1} > 0$; for all $n \ge 1$.] Now

$$x_n - x_{n+1} = x_n - \frac{1}{2} \left(x_n + \frac{9}{x_n} \right) = \frac{1}{2} \left(x_n - \frac{9}{x_n} \right)$$
$$= \frac{1}{2} \left(\frac{x_n^2 - 9}{x_n} \right) \ge 0, \quad \text{for all } n \ge 2.$$

Therefore

$$x_{n+1} \leq x_n$$
, for all $n \geq 2$.

That is, $\{x_n\}_{n=2}^{\infty}$ is monotonic decreasing sequence which is bounded below. Therefore $\{x_n\}_{n=2}^{\infty}$ is convergent.

Let $\lim_{n\to\infty} x_n = l$. Note that l cannot be 0, because $x_n \ge 3$ for all $n \ge 2$. Then

$$\lim_{n \to \infty} x_{n+1} = \frac{1}{2} \left(\lim_{n \to \infty} x_n + \frac{9}{\lim_{n \to \infty} x_n} \right)$$

$$\implies l = \frac{1}{2} \left(l + \frac{9}{l} \right)$$

$$\implies l^2 = 2l^2 + 9$$

$$\implies l = \pm 3 \quad [\because x_n > 0, \text{ for all } n \ge 1]$$

$$\implies l = 3.$$

Therefore, $\lim_{n\to\infty} x_n = 3$.

- 9. A sequence $\{u_n\}$ is defined by $u_n > 0$ and $u_{n+1} = \frac{6}{1+u_n}$ for all $n \in \mathbb{N}$.
 - (i) Prove that the sub-sequences $\{u_{2n+1}\}$ and $\{u_{2n}\}$ converges to a common limit.
 - (ii) Find $\lim_{n\to\infty} u_n$.

Theorem

If the subsequences $\{u_{2n}\}$ and $\{u_{2n-1}\}$ of a sequence $\{u_n\}$ converge to the same limit l then the sequence $\{u_n\}$ is convergent and $\lim u_n = l$. The converse is also true.

Solution. (i) Consider

$$u_{n+1} - u_n = \frac{6}{1 + u_n} - u_n = \frac{6 - u_n - u_n^2}{1 + u_n} = \frac{(2 - u_n)(3 + u_n)}{1 + u_n}; \ \forall n \in \mathbb{N}$$

Therefore,

$$u_n < 2 \implies u_{n+1} > u_n$$

 $u_n > 2 \implies u_{n+1} < u_n$.

Thus

$$u_n < 2 \implies u_{n+1} = \frac{6}{1 + u_n} > 2$$
$$u_n > 2 \implies u_{n+1} = \frac{6}{1 + u_n} < 2.$$

It follows that,

$$u_n < 2 \implies u_n < 2 < u_{n+1}, \quad u_n > 2 \implies u_{n+1} < 2 < u_n$$
 (3)

Now

$$u_{n+2} - u_n = \frac{6(1+u_n)}{7+u_n} - u_n = \frac{6-u_n - u_n^2}{7+u_n} = \frac{(2-u_n)(3+u_n)}{7+u_n}.$$

Therefore,

$$u_n < 2 \implies u_n < u_{n+2}, \quad u_n > 2 \implies u_n > u_{n+2}.$$
 (4)

Case (1). When $u_1 < 2$. Then $u_2 > 2$. From (1);

$$u_1 < 2 \implies u_1 < 2 < u_2$$

 $u_2 > 2 \implies u_3 < 2 < u_2$
 $u_3 < 2 \implies u_3 < 2 < u_4$
 $u_4 > 2 \implies u_5 < 2 < u_4$
 \vdots

From (2);

$$u_1 < 2 \implies u_1 < u_3$$

 $u_3 < 2 \implies u_3 < u_5$
 $u_2 > 2 \implies u_2 > u_4$
 $u_4 > 2 \implies u_4 > u_6$
:

Therefore,

$$u_1 < u_3 < u_5 < \cdots < u_6 < u_4 < u_2.$$

This shows that the subsequence $\{u_{2n+1}\}$ is monotonic increasing, bounded above and the subsequence $\{u_{2n}\}$ is monotonic decreasing, bounded below. Hence, both the subsequences $\{u_{2n+1}\}$ and $\{u_{2n}\}$ are convergent. Now check whether both the subsequence limits are same.

Let

$$\lim_{n\to\infty} u_{2n+1} = l \text{ and } \lim_{n\to\infty} u_{2n} = m.$$

Note that

$$u_{2n} = \frac{6}{1 + u_{2n-1}}, \ u_{2n+1} = \frac{6}{1 + u_{2n}} \quad \forall n \in \mathbb{N}.$$

Taking $n \to \infty$, we have

$$m = \frac{6}{1+l}$$
 and $l = \frac{6}{1+m}$.

Therefore, l=m and hence the subsequences $\{u_{2n+1}\}$ and $\{u_{2n}\}$ converge to a common limit. Therefore the sequence $\{u_n\}$ is convergent.

Case (II). When $u_1 > 2$.

From (1) and (2) it follows that

$$u_2 < u_4 < u_6 < \cdots < u_5 < u_3 < u_1$$
.

The subsequence $\{u_{2n}\}$ is monotonic increasing, bounded above and the subsequence $\{u_{2n+1}\}$ is monotonic decreasing, bounded below. Hence, both the subsequences are convergent.

Proceeding similarly to Case (I), it can be shown that they converge to a common limit.

(ii) To find, $\lim_{n\to\infty} u_n$ Let $\lim_{n\to\infty} u_n = l$. We have

$$u_{n+1} = \frac{6}{1+u_n}, \quad \forall n \in \mathbb{N}$$

$$\implies \lim_{n \to \infty} u_{n+1} = \lim_{n \to \infty} \left(\frac{6}{1+u_n}\right)$$

$$\implies l = \frac{6}{1+l}$$

$$\implies l^2 + l - 6 = 0$$

$$\implies l = 2 \text{ or } l = -3$$

As $u_n > 0$ for all $n \in \mathbb{N}$, $l \neq -3$.

Therefore, l = 2.

Hence,
$$\lim_{n\to\infty} u_n = 2$$
.

- 10. Establish the convergence and find the limits of the following sequences [Hint. Approach through sub-sequences.]
- (i) $\left(1 + \frac{1}{3n+1}\right)^n$,

Solution. Let the sequence $\{u_n\}$ be defined by,

$$u_n = \left(1 + \frac{1}{3n+1}\right)^n, \ \forall n \in \mathbb{N}.$$

Let

$$v_n = \left(1 + \frac{1}{n}\right)^n$$
 and $w_n = \left(1 + \frac{1}{3n+1}\right)^{3n+1}$ for all $n \in \mathbb{N}$.

Then we know that

$$\lim_{n\to\infty}v_n=e$$

Note that

$$w_n = v_{3n+1}$$
 for all $n \in \mathbb{N}$.

Since the sequence $\{v_n\}$ converges to e, all its subsequences are convergent and converge to *e*. Therefore $\lim_{n\to\infty} w_n = e$. Now

$$w_n = u_n^3 \cdot \left(1 + \frac{1}{3n+1}\right)$$
 for all $n \in \mathbb{N}$.

This implies, $u_n = w_n^{\frac{1}{3}} \cdot \left(1 + \frac{1}{3n+1}\right)^{-\frac{1}{3}}$. Since $\{w_n\}$ and $\left\{\left(1 + \frac{1}{3n+1}\right)^{-\frac{1}{3}}\right\}$ both are convergent, $\{u_n\}$ is convergent.

Taking limit $n \to \infty$ both side of the above equation, we get

$$\lim_{n\to\infty}u_n=e^{\frac{1}{3}}.$$

(ii) $\left(1+\frac{1}{n^2+2}\right)^{n^2}$.

Solution. The same way as the above problem, it can be shown that the sequence $\left\{ \left(1 + \frac{1}{n^2 + 2}\right)^{n^2} \right\} \text{ is convergent and } \lim_{n \to \infty} \left(1 + \frac{1}{n^2 + 2}\right)^{n^2} = e.$ 11. Let $\{u_n\}$ be a bounded sequence and $\lim_{n\to\infty} v_n = 0$. Prove that $\lim_{n\to\infty} u_n v_n = 0$. Utilise this to prove that

(i)
$$\lim_{n\to\infty}\frac{\sin n}{n}.$$

(ii)
$$\lim_{n\to\infty} \frac{(-1)^n n}{n^2+1}$$
.

Solution. To show, if $\{u_n\}$ be a bounded sequence and $\lim_{n\to\infty} v_n = 0$ then $\lim_{n\to\infty} u_n v_n = 0$. Given $\{u_n\}$ is bounded \implies there exists M > 0 such that $|u_n| \le M$ for all $n \in \mathbb{N}$.

Let $\varepsilon > 0$ be arbitrary. Since $\lim_{n \to \infty} v_n = 0 \implies$ there exists $k \in \mathbb{N}$ such that

$$|v_n - 0| < \frac{\varepsilon}{M}$$
, for all $k \ge n$

or,
$$|v_n| < \frac{\varepsilon}{M}$$
, for all $k \ge n$.

Now

$$|u_n v_n - 0| = |u_n v_n| = |u_n||v_n| < M \cdot \frac{\varepsilon}{M} = \varepsilon$$
, for all $k \ge n$.

That is

$$|u_n v_n - 0| < \varepsilon$$
 for all $k \ge n$.

Hence, $\lim_{n\to\infty} u_n v_n = 0$.

- (i) Consider $\{u_n\} = \{\sin n\}$, which is a bounded sequence as $|\sin n| \le 1, \forall n \in \mathbb{N}$ and, $\{v_n\} = \{\frac{1}{n}\}$, which is converging to 0. This implies from the above, $\lim_{n \to \infty} u_n v_n = 0$. That is $\lim_{n \to \infty} \frac{\sin n}{n} = 0$.
- (ii) Consider $\{u_n\} = \{(-1)^n\}$, which is a bounded sequence by 1. Also, $\{v_n\} = \{\frac{n}{n^2+1}\}$, which is convergent with $\lim_{n\to\infty} v_n = 0$. Then by above result, we get $\lim_{n\to\infty} u_n v_n = 0$ or $\lim_{n\to\infty} \frac{(-1)^n n}{n^2+1} = 0$.
- 12. Prove that
- (i) $\lim_{n\to\infty} n^{\frac{1}{n}} = 1.$
- (ii) $\lim_{n\to\infty}\frac{(n!)^{\frac{1}{n}}}{n}=\frac{1}{e}.$

Theorem

Let $\{u_n\} > 0$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = l$ (finite or infinite). Then $\lim_{n \to \infty} (u_n)^{\frac{1}{n}} = l$.

Solution.

(i) Take $u_n = n$ for all $n \in \mathbb{N}$. Observe that,

$$\lim_{n\to\infty}\frac{u_{n+1}}{u_n}=\lim_{n\to\infty}\frac{n+1}{n}=1,$$

which is finite. Hence, by given theorem

$$\lim_{n \to \infty} (u_n)^{\frac{1}{n}} = \lim_{n \to \infty} (n)^{\frac{1}{n}} = 1.$$

(ii) Take $u_n = \frac{n!}{n^n}$ for all $n \in \mathbb{N}$. Observe that

$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{\frac{(n+1)!}{(n+1)^{n+1}}}{\frac{n!}{n^n}} = \lim_{n \to \infty} \frac{1}{\left(1 + \frac{1}{n}\right)^n} = \frac{1}{e},$$

which is finite. Hence, by given theorem

$$\lim_{n\to\infty} (u_n)^{\frac{1}{n}} = \lim_{n\to\infty} \left(\frac{n!}{n^n}\right)^{\frac{1}{n}} = \lim_{n\to\infty} \frac{(n!)^{\frac{1}{n}}}{n} = \frac{1}{e}.$$

- 13. Establish from definition that $\{u_n\}$ is a Cauchy sequence, where
- (i) $u_n = \frac{n}{n+1}$,
- (ii) $u_n = 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$
- (iii) $|u_{n+2} u_{n+1}| \le \frac{1}{2} |u_{n+1} u_n|$ for all $n \in \mathbb{N}$.

Cauchy Sequence

A sequence $\{u_n\}$ is said to be a *Cauchy sequence* if for any pre-assigned $\varepsilon > 0$ there exists $k \in \mathbb{N}$ such that

$$|u_n-u_m|<\varepsilon,$$
 $\forall m,n\geq k$

Cauchy's General Principle of Convergence. A necessary and sufficient condition for the convergence of a sequence $\{u_n\}$ is that for a pre-assigned $\varepsilon > 0$ there exists $k \in \mathbb{N}$ such that,

$$|u_{n+p}-u_n|<\varepsilon;$$
 $\forall n\geq k \& p=1,2,3,\ldots$

A sequence satisfying above Cauchy's General Principle of Convergence is a Cauchy sequence.

Solution.

(i) To show, $\{u_n\} = \{\frac{n}{n+1}\}$ is a Cauchy sequence. Let $\varepsilon > 0$ be arbitrary. Choose a natural number k such that $\frac{2}{k} < \varepsilon$ (such k exist by Archimedean Property). Then

$$|u_n - u_m| = \left| \frac{n}{n+1} - \frac{m}{m+1} \right|$$

$$= \left| \frac{mn + n - mn - m}{(m+1)(n+1)} \right|$$

$$= \left| \frac{n - m}{(m+1)(n+1)} \right|$$

Since $nm < (n+1)(m+1) \implies \frac{1}{(n+1)(m+1)} < \frac{1}{nm}$, for all $m, n \in \mathbb{N}$. Thus,

$$|u_n - u_m| < \left| \frac{n-m}{mn} \right| < \frac{1}{m} + \frac{1}{n}$$
 which is $< \varepsilon$ for all $m, n \ge k$

Hence, $\left\{\frac{n}{n+1}\right\}$ is a Cauchy sequence.

(ii) To show, $\{u_n\}$ is a Cauchy sequence, where $u_n = 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$. Let $\varepsilon > 0$ be arbitrary. Let p be a natural number. Then

$$|u_{n+p} - u_n| = \left| \frac{1}{(n+1)!} + \frac{1}{(n+2)!} + \dots + \frac{1}{(n+p)!} \right|$$

$$\leq \frac{1}{2^n} + \frac{1}{2^{n+1}} + \dots + \frac{1}{2^{n+p-1}} \quad [\text{ since } (n+1)! \geq 2^n \text{ for all } n \geq 2]$$

$$= \frac{1}{2^n} \left[1 + \frac{1}{2} + \dots + \frac{1}{2^{p-1}} \right]$$

$$= \frac{1}{2^n} \left[\frac{1 - \left(\frac{1}{2}\right)^p}{1 - \frac{1}{2}} \right] = \frac{1}{2^{n-1}} \left[1 - \left(\frac{1}{2}\right)^p \right]$$

$$\leq \frac{1}{2^{n-1}} \quad \text{for all } p \in \mathbb{N}.$$

Now $\frac{1}{2^{n-1}} < \varepsilon$ if $n > 1 - \frac{\ln \varepsilon}{\ln 2}$. Choose

$$k = \left[1 - \frac{\ln \varepsilon}{\ln 2}\right] + 1.$$

Then

$$|u_{n+p}-u_n| \leq \frac{1}{2^{n-1}} < \varepsilon$$
 for all $n \geq k$ and for all $p \in \mathbb{N}$.

Hence,
$$\left\{1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}\right\}$$
 is a Cauchy sequence.

(iii) To show, $\{u_n\}$ is a Cauchy sequence, where

$$|u_{n+2} - u_{n+1}| \le \frac{1}{2} |u_{n+1} - u_n| \quad \text{for all } n \in \mathbb{N}.$$
 (5)

Note that

$$|u_{n+2} - u_{n+1}| \leq \frac{1}{2} |u_{n+1} - u_n|$$

$$\leq \left(\frac{1}{2}\right)^2 |u_n - u_{n-1}|$$

$$\leq \dots$$

$$\leq \left(\frac{1}{2}\right)^n |u_2 - u_1|$$