

Packet Tracer - Изменение OSPFv2 для одной области

Таблица адресации

Устройство	Интерфейс	IPv4-адрес	Маска подсети	Шлюз по умолчанию
R1	G0/0	172.16.1.1	255.255.255.0	_
	S0/0/0	172.16.3.1	255.255.255.252	
	S0/0/1	192.168.10.5	255.255.255.252	
R2	G0/0	172.16.2.1	255.255.255.0	
	S0/0/0	172.16.3.2	255.255.255.252	
	S0/0/1	192.168.10.9	255.255.255.252	
	S0/1/0	209.165.200.225	255.255.255.224	
R3	G0/0	192.168.1.1	255.255.255.0	_
	S0/0/0	192.168.10.6	255.255.255.252	
	S0/0/1	192.168.10.10	255.255.255.252	
PC1	NIC	172.16.1.2	255.255.255.0	172.16.1.1
PC2	NIC	172.16.2.2	255.255.255.0	172.16.2.1
PC3	NIC	192.168.1.2	255.255.255.0	192.168.1.1
Веб-сервер	NIC	64.100.1.2	255.255.255.0	64.100.1.1

Цели

Часть 1. Изменение настроек OSPF по умолчанию

Часть 2. Проверка связи

Сценарий

В этом задании OSPF уже настроен, и все конечные устройства полностью подключены. Вы будете модифицировать конфигурации маршрутизации OSPF по умолчанию путем изменения таймеров приветствия (hello) и простоя (dead), а также регулировки пропускной способности канала. Затем вам нужно убедиться в восстановлении полного подключения для всех конечных устройств.

Инструкции

Часть 1. Изменение настроек OSPF по умолчанию

Шаг 1. Протестируйте возможность соединения между всеми конечными устройствами.

Перед изменением настроек OSPF убедитесь, что все ПК могут успешно отправлять эхо-запросы на веб-сервер и друг другу.

Шаг 2. Настройте таймеры приветствия (hello) и простоя (dead) между маршрутизаторами R1 и R2.

а. Введите следующие команды на маршрутизаторе R1:

```
R1(config) # interface s0/0/0
R1(config-if) # ip ospf hello-interval 15
R1(config-if) # ip ospf dead-interval 60
```

b. Через небольшой интервал времени произойдет сбой подключения OSPF к маршрутизатору **R2**, как показанно в выводе маршрутизатора.

```
00:02:40: %OSPF-5-ADJCHG: Process 1, Nbr 209.165.200.225 on Serial0/0/0 from FULL to DOWN, Neighbor Down: Dead timer expired
```

00:02:40: %OSPF-5-ADJCHG: Process 1, Nbr 209.165.200.225 on Serial0/0/0 from FULL to DOWN, Neighbor Down: Interface down or detached

Для поддержки отношений смежности на обеих сторонах соединения таймеры должны быть настроены одинаково. Определите интерфейс на R2, который подключен к R1. Отрегулируйте таймеры на интерфейсе R2 в соответствии с настройками на R1.

По истечении короткого периода времени вы увидите сообщение о состоянии, указывающее, что смежность OSPF была восстановлена.

```
00:21:52: \$OSPF-5-ADJCHG: Process 1, Nbr 192.168.10.5 on Serial0/0/0 from LOADING to FULL, Loading Done
```

Шаг 3. Настройте пропускную способность маршрутизатора R1.

а. Выполните трассировку маршрута между **PC1** и веб-сервером, расположенным по адресу 64.100.1.2. Обратите внимание, что путь от **PC1** к 64.100.1.2 маршрутизируется через **R2**. OSPF предпочитает более низкую стоимость пути.

```
C:\ > tracert 64.100.1.2
```

Tracing route to 64.100.1.2 over a maximum of 30 hops:

```
1 1 ms 0 ms 8 ms 172.16.1.1
2 0 ms 1 ms 0 ms 172.16.3.2
3 1 ms 9 ms 2 ms 209.165.200.226
4 * 1 ms 0 ms 64.100.1.2
```

Trace complete.

b. Для последовательного интерфейса 0/0/0 маршрутизатора **R1** установите пропускную способность равной 64 Кбит/с. Это изменит не фактическую скорость порта, а метрику, которую процесс OSPF будет использовать на маршрутизаторе **R1** для расчёта оптимальных маршрутов.

```
R1(config-if)# bandwidth 64
```

с. Выполните трассировку маршрута между **PC1** и веб-сервером, расположенным по адресу 64.100.1.2. Обратите внимание, что путь от **PC1** к 64.100.1.2 перенаправляется через маршрутизатор **R3**. OSPF предпочитает более низкую стоимость пути.

```
C:\ > tracert 64.100.1.2

Tracing route to 64.100.1.2 over a maximum of 30 hops:

1 1 ms 0 ms 3 ms 172.16.1.1
2 8 ms 1 ms 1 ms 192.168.10.6
3 2 ms 0 ms 2 ms 172.16.3.2
4 2 ms 3 ms 1 ms 209.165.200.226
5 2 ms 11 ms 11 ms 64.100.1.2
Trace complete.
```

Часть 2. Проверка подключения

Убедитесь, что все ПК могут успешно отправлять эхо-запросы на веб-сервер и друг другу.