CS271 Computer Graphics II

Lecture 4

Computational Geometry – Delaunay

Overview

- Triangulation
- Delaunay Triangulation
- Constrained Delaunay Triangulation
- 3D Delaunay Triangulation

Triangulation

Triangulation for a point set $P = \{p_1, p_2, ..., p_n\}$ is a division for the area ω , which contains P. ω can be any polygon area. If not given, the convex hull of P is ω .

.3

Triangulation

Triangulation for a point set $P = \{p_1, p_2, ..., p_n\}$ is a division for the area ω , which contains P. ω can be any polygon area. If not given, the convex hull of P is ω .

Requirements

- Divide ω into triangles.
- All the vertices of triangles belong to P and the boundary of ω , and all the points of P and vertices of the boundary of ω are the vertices of triangles.
- All the triangles only share edges and vertices.
- Each point in the triangle must belong to ω and each point in ω must belong to a triangle.

Properties of Triangulation

For the triangulation of the point set $P = \{p_1, p_2, ..., p_n\}$, the number of triangles t, vertices v, and edges e have the following relationship.

- t = e v + 1
- $e \le 3v 6$
- $t \le 2v 5$

According to the Euler's formula of the planar graph

Construction of Triangulation

- *Input*: point set $P = \{p_1, p_2, ..., p_n\}$
- *Output:* triangulation of P: T(P)
- 1. compute the convex hull CH(P);
- 2. compute a triangulation of CH(P);
- 3. for (point $p_i \in P \cap p_i \in CH(P)$) {
- 4. find the located triangle $\Delta p_l p_j p_k \in T$;
- 5. if p_i is inside $\Delta p_l p_j p_k$, link p_i to p_l , p_j , p_k and get new T;
- 6. if p_i is on the edge $p_l p_j$ of $\Delta p_l p_j p_k$, link p_i to p_k and link p_i to p_m if $\Delta p_l p_j p_m$ exists, and get new T;
- 7.

Triangulation

The result depends on the triangulation methods and the sequence of adding points.

Example

Delaunay Triangulation

For a point set $P = \{p_1, p_2, ..., p_n\}$, construct the VD(P). If we link each two seeds, which have shared Voronoi edge, we can get the dual diagram – **Delaunay diagram**.

If there is no degenerate case, we get Delaunay Triangulation DT(P).

Voronoi and Delaunay Triangulation

The vertices of DT(P) \Longrightarrow The facets of VD(P)

The triangles of DT(P) \Longrightarrow The vertices of VD(P)

The edges of DT(P) \Longrightarrow The edges of VD(P)

The boundary of DT(P) \Longrightarrow The convex hull of P \Longrightarrow The seeds of VD(P) with open area

Properties of Delaunay Triangulation

- 1. DT(P) has $\leq 3n 6$ edges and $\leq 2n 5$ Delaunay triangles.
- 2. For two points p_i and p_j of P, $p_i p_j$ is one edge of DT(P) if and only if there exists an empty circle only passing p_i and p_j .

The trajectory of the center of the empty circle only passing p_i and p_i form the Voronoi edge. $B(p_i,p_j)$

Properties of Delaunay Triangulation

- 1. DT(P) has $\leq 3n 6$ edges and $\leq 2n 5$ Delaunay triangles.
- 2. For two points p_i and p_j of P, $p_i p_j$ is one edge of DT(P) if and only if there exists an empty circle only passing p_i and p_j .
- 3. For the point p_i , there must be a DT(P) edge between p_i and its nearest point in P.
- 4. The point p_i , p_j and p_k is the vertices of a Delaunay triangle if and only if there exists an empty circle only passing p_i , p_j and p_k .
- 5. There is no other points inside a Delaunay triangle.
- 6. For any four points, compared with other triangulation methods, the two Delaunay triangles have the property the minimum angle is the maximum.

Properties of Delaunay Triangulation

For any four points, compared with other triangulation methods, the two Delaunay triangles have the property – the minimum angle is the maximum.

Prove by the relation between the angle of circumference and the arc.

Theorem of Delaunay Triangulation

If no four points in P are co-circular, the Delaunay diagram of P is the Delaunay Triangulation DT(P).

Edge flipping algorithm

Legal edge: the diagonal $p_i p_k$ of a convex tetragon meets the minimum angle is the maximum.

Legal triangulation: all the edges of the triangulation are legal edges.

Theorem

T(P) is a legal triangulation if and only if it is a Delaunay Triangulation.

Edge flipping algorithm

- *Input*: point set $P = \{p_1, p_2, ..., p_n\}$
- *Output: DT(P)*
- 1. compute any a triangulation T(P);
- 2. While (there exists illegal edge $p_i p_j$) {
- 3. assume there are two neighbor triangles $\Delta p_i p_j p_k$ and $\Delta p_i p_j p_l$,
- 4. replace $p_i p_j$ by $p_k p_l$
- **5.** }
- 6. return T

It is bound to converge because every flip operation will increase the lower bound of six angles.

Incremental algorithm

- *Input*: point set $P = \{p_1, p_2, ..., p_n\}$
- *Output: DT(P)*
- 1. compute an initial triangle α which is large enough to cover P.
- 2. For (each point in P){
- 3. find the located triangle $\Delta p_l p_j p_k \in T$;
- 4. compute new T;
- 5. flip illegal edge to make T become DT.
- 6.
- 7. delete related edges of α ;
- 8. return T

Incremental algorithm

O(nlogn)

For the new added point p_i

- All the new triangles has the vertex p_i .
- All the temporary illegal edges must exist in the opposite edges of p_i of new added triangles.
- Recursively check and flip.

Use a directed acyclic graph to store the triangle division for fast location query.

Constrained Delaunay Triangulation (CDT)

For a point set P and line segment set $LSS(P_1, L)$, where L is line segments and P_1 is vertices, P and P_1 should become vertices and L should become edges in CDT.

 $\Delta p_i p_j p_k$ is legal if $p_i p_j$ is constrained edge.

Constrained Delaunay Triangulation (CDT)

- Compute DT for $P \cap P_1$
- Insert *L*
- Flip edges for DT

Example of the process

Example of the process

Example of the process

Constrained Delaunay Triangulation

3D Delaunay Triangulation

- The dual of 3D Voronoi
- Consists of tetrahedron

Delaunay Triangulation MAT

Connect centers of circumcircles of Delaunay Triangles according to the neighborhood. **Dense sampling** has better accuracy.

Chordal Axis Transform (CAT) approximated MAT

Case 1: One edge on the boundary

Case 2: No edge on the boundary

DT

Case 1 process

Case 1&2 process

Compared with the method using centers of circumcircles

Skeleton extraction by CAT

3D CAT

