Persistence: Flash-based Solid State Disks

OSTEP Chapter 44:

http://pages.cs.wisc.edu/~remzi/OSTEP/file-ssd.pdf

Slides based on Youjip Won's (https://oslab.kaist.ac.kr/people/) material.

Jan Reineke Universität des Saarlandes

Solid-state storage devices

- No mechanical or moving parts like HDD
- Built out of transistors (like memory and processors)
- Retain information despite power loss unlike typical RAM

Memory cells: Floating gate transistors

p-type transistor:

gate controls the conductivity between source and sink

floating-gate transistor:

floating gate controls the conductivity between source and sink

Floating Gate Transistor

- electrons can be **placed in** and **removed from** the floating gate
- electrons do not escape otherwise \rightarrow persistent memory

Types of cells

- Single-level cell (SLC): a single bit per cell
- Multi-level cell (MLC): two bits per cell
- Triple-level cell (TLC): three-bits per cell
- ... Penta-level cells (PLC) currently under development

Structure of Flash

Hierarchical organization:

Array of memory cells:

Structure of Flash SSDs

Basic operations

- Read: at page granularity
- Write ("program"): $1 \rightarrow 0$: at page granularity
- Erase: $0 \rightarrow 1$: only at block granularity

Reliability of Flash

- Wear out
 - Flash cell "wears out" as we program/erase it
 - Eventually, the block becomes unusable
 - Typical erase/wear out cycle
 - MLC-based block: 10,000 P/E (Program/Erase)
 - SLC-based block: 100,000 P/E

Out-of-place update in Flash memory

- Need to erase block before writing to page
- Implication:

Flash SSD uses "out-of-place" update for writes

Flash Translation Layer (FTL)

A software layer that makes SSDs look like HDDs

- Address translation (yet another level!)
 - program pages within an erased block in order
- Wear leveling
 - tries to spread writes evenly across all blocks (locality is "bad")
- Garbage collection

Comparison with Hard disks

	Hard disk	Flash-based SSD
Sequential access performance (throughput)	250 MB/s	several GB/s 15 GB/s (demonstrated) 7 GB/s (available commerica
Random access latency	3-12 ms	< 0.1 ms
Cost	~20 Euro/TB	~80 Euro/TB
Density	1.2 TB/sq. inch	2.8 TB/
Lowest operating temperature	Most modern HDDs can operate at 0 °C	SSDs can operate at -55 °C
Highest altitude	HDDs will fail to operate at altitudes above 12,000 meters	no constraint

Summary

- Flash-based SSD is much faster than disk, but ...
- It is more expensive
- It is not a drop-in replacement for a disk beneath a file system without a complex emulation layer