

Storage – SQL Databases

Hoe zou je de data in een SQL-database definieren?

https://www.menti.com/mvazch9s9m

Hoe zou je de data in een SQL-database definieren?

- Gestructureerde data
- Relationele data-structuren

- Niet-gestructureerde data moeilijker bij te houden
 - Tekstbestanden
 - Beelden
 - Audio

DATA WAREHOUSE

1110001101110 011011000110 111111000110

Data is processed and organized into a single schema before being put into the warehouse

Raw and unstructured data goes into a data lake

1110001101110 011011000110 11111000110

DATA WAREHOUSE	vs.	DATA LAKE
structured, processed	DATA	structured / semi-structured / unstructured, raw
schema-on-write	PROCESSING	schema-on-read
expensive for large data volumes	STORAGE	designed for low-cost storage
less agile, fixed configuration	AGILITY	highly agile, configure and reconfigure as needed
mature	SECURITY	maturing
business professionals	USERS	data scientists et. al.

Hadoop vs SQL?

#1. Data Size

Hadoop

Petabytes.

Traditional SQL

Gigabytes.

#2. Access

Hadoop

Traditional SQL

Interactive & Batch.

#3. Updates

Hadoop

Write once, read Multiple times.

Traditional SQL

Read and Write – Multiple times.

#6. Scaling

Hadoop

Traditional SQL

Hadoop vs SQL

Comparison Chart

Hadoop	SQL
Hadoop is an open-source distributed processing software framework for storing and processing massive influx of data across clusters.	SQL has been the ubiquitous tool to access, manipulate and store data in a database.
Hadoop is designed to work with any data type, structured, semi-structured or unstructured.	SQL can only process structured data and cannot be used for unstructured data.
Hadoop supports batch processing of data.	SQL supports real-time data processing.
Hadoop does not have the same end-user capabilities and ecosystem that SQL has.	SQL handles enforcing data quality and consistency much better than Hadoop
Hadoop is ideal for processing and storing massive amounts of data.	SQL is best for processing less amounts of data and has problems dealing with large volumes of data. D3 Difference Between.net

Hoe zou SQL op Hadoop eruit zien?

https://www.menti.com/mvazch9s9m

Welke software systemen kunnen hiervoor gebruikt worden?

Welke software systemen kunnen hiervoor gebruikt worden?

■ Sqoop – import SQL data als text file (of een aantal andere formaten)

■ Interessant artikel: https://www.integrate.io/blog/integrating-relational-databases-with-apache-hadoop/

Welke software systemen kunnen hiervoor gebruikt worden?

- Sqoop import SQL data als text file (of een aantal andere formaten)
- Hive Query data on hdfs with SQL
 - Data stored in plain text (csv/tsv, ...)

Tools voor datawarehouses on Hadoop cluster

Sqoop

- Import de resultaten van een SQL-query in een database in Hadoop
- Kan ook terug exporteren
- Resultaten op een Hadoop cluster kunnen gequeried worden met Hive

Tools voor datawarehouses on Hadoop cluster

- Sqoop
- Hive
 - HQL (SQL-like met map-reduce, spark, ...)
 - Batch processing, niet interactief
 - Metadata bewaart in relationele database
 - Schema voor datastructuur moet bijgehouden worden

Tools voor datawarehouses on Hadoop cluster

- Sqoop (end of life)
- Hive
- Apache Spark Sql
 - Helpt om structured data te bevragen/querying
 - DataFrames
 - Objecten in Memory bijgehouden
 - Resultaten kunnen bewaard worden in plain-texts/externe sql-databases

Hive

Hive

- Datawarehouse framework en ETL tool
- Ontwikkeld door Facebook, later ook door Netflix
- Kan ook gebruikt worden bij Amazon Web Services
- SQL queries uitgevoerd via Map-reduce of Spark jobs

https://www.tutorialspoint.com/hive/index.htm

Hive - Kenmerken

- Databases en tabellen eerst gemaakt, data wordt hierin ingeladen
- Gebruikt voor gestructureerde data
 - Optimalisatie en usability features zoals UDF (user defined functions)
- Verbergt complexiteit van MapReduce Programming
 - Door SQL-like dialect HQL, queries
- Maakt gebruik van HDFS partities om tabellen te splitsen voor optimalisatie
- Metastore voor database schema
 - Opgeslagen in relationele database
 - Derby voor single user
 - MySQL voor multi user

Hive - Kenmerken

- Vooral interactie mogelijk via Command Line
 - Python packages om queries te sturen bestaan
- Ondersteunde fileformats
 - Textfile
 - Sequence file
 - ORC (Optimized Row Columnar)
 - RCFILE (Record Columnar File).

Verschillen met tradiationele databases

- Traditionele databases: Schema on Read and Write
 - Maakt het mogelijk om aanpassingen te doen (insertions, updates, ...)
- Hive maakt gebruik van Schema on Read
 - Omdat data op verschillende nodes bewaard wordt
 - Maakt updates onmogelijk
 - Nieuwere versies hebben wel deze functionaliteit

Verschillen met MapReduce

Feature	Hive	Map Reduce
Language	It Supports SQL like query language for interaction and for Data modeling	 It compiles language with two main tasks present in it. One is map task, and another one is a reducer. We can define these task using Java or Python
Level of abstraction	Higher level of Abstraction on top of HDFS	Lower level of abstraction
Efficiency in Code	Comparatively lesser than Map reduce	Provides High efficiency
Extent of code	Less number of lines code required for execution	More number of lines of codes to be defined
Type of Development work required	Less Development work required	More development work needed

Hive Architectuur

Hive Architectuur

Hive Services

- Elke uit te voeren query wordt hierdoor gecommuniceerd
- CLI is de interface voor Data Definition Language
- Driver verwerkt alle requests en communiceert met de metastore

Componenten

- Metastore:
 - Schema en locatie van alle tabellen
 - Opgeslagen in rdbms format
- Driver: create sessions, check life-cycle, ...
- Compiler: Zet query om naar stappenplan map-reduce
- Optimizer: Optimaliseer het stappenplan
- Executor: Voert het stappenplan uit
- Command-Line interface

Hive – workflow

- Send Query from UI
- Driver vraagt een plan en metadata aan de compiler
- Compiler maakt plan vraagt metadata op
- Metadata teruggestuurt naar compiler
- Compiler bouwt stappenplan en stuurt het naar de driver
- Driver stuurt plan naar Execution Engine 6)
- Execution Engine is brug tussen Hadoop en Hive
 - Communiceert met name- en datanodes
 - Vraag indien nodig extra data op of bewaart extra informatie in de metastore (bvb in het geval van een create table)
- Fetch results from driver
- Sending Results to execution engine
- 10) Stuurt het terug naar Driver en Ul

Internal vs External Tables

Internal vs External Tables: Wanneer gebruiken

■ Internal

- Tijdelijke tabellen
- Hive moet de lifecycle van de data beheren
- Data moet verwijderd zijn na een drop

External

- Tabel niet aanmaken op basis van bestaande data
- Data moet buien hive beschikbaar zijn
- Data behouden na Drop
- Data moet niet beheerd worden door Hive

Partitioning

- Bij het aanmaken van een table kan je ook een kolom kiezen waarop gepartitioned wordt.
 - Alle elementen met dezelfde waarde in deze kolom worden bewaard in een aparte file
 - Versneld het opzoeken
 - Maakt het mogelijk om niet alle data te moeten laden

Bucketing

- Een tweede-niveau partitioning om de data in nog gedetailleerder onder te verdelen in groepen/aparte files
 - Op basis van 1 of meerdere kolommen
 - Resultaat wordt gehashed
 - Deze hash bepaald in welke bucket het komt
- Niet standaard enabled
 - set.hive.enforce.bucketing=true; in hive-site.xml

Oefening

■ Ga naar de notebook en oefen het gebruik van Hive in

