Universität Potsdam

Institut für Informatik Lehrstuhl Maschinelles Lernen

Decision Trees

Tobias Scheffer

Decision Trees

Positive One of many credit report? applications: no yes credit risk **Employed longer** than 3 months Rejected no yes Unemployed? Collateral > 5x disposable income no yes yes no Collateral > 2x Student? disposable Rejected Rejected income yes yes no no Rejected Accepted Accepted Rejected

Overview

- Decision trees.
- Classification with categorical features: ID3.
- Classification with continuous features: C4.5.
- Regression: CART, model trees.
- Bagging.
- Random forests.

Decision Trees – Why?

- Simple to interpret.
 - Provides a classification plus a justification for it.
 - "Rejected, because subject has been employed less than 3 months and has collateral < 2 x disposable income".
- Fast inference:
 - For each instance, only one branch has to be traversed.
 - Frequently used in image processing.
- Simple, efficient, scalable learning algorithm.
- Numeric and categorical features, no preprocessing
- Works for classification and regression problems.

Classification

- Input: instance $x \in X$.
 - Instances are represented as a vector of attributes.
 - An instance is an assignment to the attributes.
 - Instances will also be called feature vectors.

$$\mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix}$$
 e.g. features like color, test results,...

- Output: class $y \in Y$; finite set Y.
 - e.g., {accepted, rejected}; {spam, not spam}.
 - The class is also referred to as the target attribute.

Classifier learning

Input: training data.

$$L = \langle (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n) \rangle$$

Output: Classifier.

$$f: X \to Y$$

e.g. a decision tree:

path along the edges to a leaf
provides the classification

Regression

- Input: instance $x \in X$.
 - e.g., feature vector

$$\mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix}$$

- Output: continuous (real) value, $y \in \mathbb{R}$
- Learning problem: training data with continuous target value
 - $L = \langle (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n) \rangle$
 - e.g. $\langle (\mathbf{x}_1, 3.5), ..., (\mathbf{x}_n, -2.8) \rangle$

Decision Trees

- Test nodes:
 - Discrete attributes: node contains an attribute, branches are labeled with values.
 - Continuous attributes; nodes contain "≤" comparisons, branches are labeled "yes" and "no".

 Terminal nodes contain a value of the target attribute

Decision Trees

- Decision trees can be represented as decision rules, each terminal node corresponds to a rule.
 - E.g., Rejected ← positive credit report ∧ employment duration ≤ 3 months ∧ unemployed.

Application of Decision Trees

- Recursively descent along branch.
- In each test node, conduct test, choose the appropriate branch.
- In a terminal node, return the value.

Loan	Credit report	Employment last 3 months	Collateral > 50% Ioan	Payed back in full
1	Positive	Yes	No	Yes
2	Positive	No	Yes	Yes
3	Positive	No	No	No
4	Negative	No	Yes	No
5	Negative	Yes	No	No

- Find a decision tree that predicts the correct class for the training data.
- Trivial way: create a tree that merely reproduces the training data.

Loan	Credit report	Employment last 3 months	Collateral > 50% loan	Payed back in full
1	Positive	Yes	No	Yes
2	Positive	No	Yes	Yes
3	Positive	No	No	No
4	Negative	No	Yes	No
5	Negative	Yes	No	No

Loan	Credit report	Employment last 3 months	Collateral > 50% loan	Payed back in full
1	Positive	Yes	No	Yes
2	Positive	No	Yes	Yes
3	Positive	No	No	No
4	Negative	No	Yes	No
5	Negative	Yes	No	No

Loan	Credit report	Employment last 3 months	Collateral > 50% loan	Payed back in full
1	Positive	Yes	No	Yes
2	Positive	No	Yes	Yes
3	Positive	No	No	No
4	Negative	No	Yes	No
5	Negative	Yes	No	No

Loan	Credit report	Employment last 3 months	Collateral > 50% loan	Payed back in full
1	Positive	Yes	No	Yes
2	Positive	No	Yes	Yes
3	Positive	No	No	No
4	Negative	No	Yes	No
5	Negative	Yes	No	No

- Perhaps more elegant: From the trees that are consistent with the training data, choose the smallest (as few nodes as possible).
- Small trees can be good because:
 - they are easier to interpret;
 - There are more training instances per leaf node.
 Hence, the class decision in each leaf is better substantiated.

Complete Search for the Smallest Tree

- How many functionally different decision trees are there?
 - Assume m binary attributes and two classes.

What is the complexity of a complete search for the smallest tree?

Complete Search for the Smallest Tree

- How many functionally different decision trees are there?
 - Assume m binary attributes and two classes.
 - ◆ Tree has m layers of test nodes $\rightarrow 2^m 1$ test nodes.
 - ◆ 2^(2^m) assignments of classes to leaf nodes.
- What is the complexity of a complete search for the smallest tree?
 - Assignments of m attributes (or node can be missing) to $2^m 1$ test nodes: $O\left((m+1)^{2^m-1}\right)$.
 - Assignments of class labels to leaf nodes: $O(2^{(2^m)})$

Overview

- Decision trees.
- Classification with categorical features: ID3.
- Classification with continuous features: C4.5.
- Regression: CART, model trees.
- Bagging.
- Random forests.

- Greedy algorithm that finds a small tree (instead of the smallest tree) but is polynomial in the number of attributes.
- Idea for Algorithm?

Greedy Algorithm – Top-Down Construction

- 1. ID3(L)
 - If all data in L have same class y, then return leaf node with class y.

TD2	Loan	Credit report	Employment last 3 months	Collateral > 50% loan	Payed back in full	1	
TD3 (1	Positive	Yes	No	Yes) =	yes
	2	Positive	No	Yes	Yes		

Greedy Algorithm – Top-Down Construction

- 1. ID3(L)
 - 1. If all data in L have same class y, then return leaf node with class y.
 - 2. Else
 - 1. Choose attribute x_j that separates L into subsets $L_1, ..., L_k$ with most homogenous class distributions.
 - 2. Let $L_i = \{(x, y) \in L: x_i = i\}$.
 - Return test node with attribute x_j and children ID3(L₁,), ..., ID3(L_k).

Greedy Algorithm – Top-Down Construction

ID3 (L)

- 1. If all data in L have same class y, then return leaf node with class y.
- 2. Else
 - 1. Choose attribute x_j that separates L into subsets $L_1, ..., L_k$ with most homogenous class distributions.
 - 2. Let $L_i = \{(x, y) \in L: x_i = i\}$.
 - 3. Return test node with attribute x_j and children ID3(L₁,), ..., ID3(L_k).

What does it mean that an attribute splits the sample into subsets with homogenous class distributions?

Information

- Information theory uses models that involve a sender, a channel, a receiver, and a probability distribution over messages.
- Information is a property of messages, measured in units of bit.
- Information in a message (rounded) = number of bits needed to code that message in an optimal code.

Sender
$$\longrightarrow$$
 Receiver $p(y)$ Message y

Information

- Information theory uses models that involve a sender, a channel, a receiver, and a probability distribution over messages.
- The information in a message y that is sent with probability p(y) is $-\log_2 p(y)$.

Sender
$$p(0) = \frac{1}{2}$$
 Message 0 $I(0) = -\log_2 \frac{1}{2}$ $p(2) = \frac{1}{4}$ $p(2) = \frac{1}{4}$ $p(3) = -\log_2 \frac{1}{2}$ $p(4) = -\log_2 \frac{1}{2}$

Information

- Information theory uses models that involve a sender, a channel, a receiver, and a probability distribution over messages.
- The information in a message y that is sent with probability p(y) is $-\log_2 p(y)$.

Sender
$$p(0) = \frac{1}{2}$$
 Message 1 $I(1) = -\log_2 \frac{1}{4}$ $p(2) = \frac{1}{4}$ $p(3) = 2bit$

Entropy

Entropy is the expected information of a message.

•
$$H(y) = -\sum_{v=1}^{k} p(y=v) \log_2 p(y=v)$$

- Entropy quantifies the receiver's uncertainty regarding the message
- Empirical entropy H_L : use frequencies observed in data L instead of probabilities.

Sender
$$p(0) = \frac{1}{2}$$
 Message y $p(1) = \frac{1}{4}$ $p(2) = \frac{1}{4}$ $p(2) = \frac{1}{4}$ Receiver $y = 1.5bit$

Entropy of Class Labels in Training Data

 Information / uncertainty of the class labels = expected number of bits needed to send message about class label of an instance to a receiver.

Loan	x ₁ (Credit report)	x_2 (Employment last 3 months)	x_3 (Collateral > 50% loan)	y (Payed back in full)
1	Positive	Yes	No	Yes
2	Positive	No	Yes	Yes
3	Positive	No	No	No
4	Negative	No	Yes	No
5	Negative	Yes	No	No

$$H_L(y) = -\frac{2}{5}\log_2\frac{2}{5} - \frac{3}{5}\log_2\frac{3}{5} = 0.97bit$$

Conditional Entropy

 Information / uncertainty of the class labels under some condition on the features.

Loan	x_1 (Credit report)	x_2 (Employment last 3 months)	x_3 (Collateral > 50% loan)	y (Payed back in full)
1	Positive	Yes	No	Yes
2	Positive	No	Yes	Yes
3	Positive	No	No	No
4	Negative	No	Yes	No
5	Negative	Yes	No	No

$$H_L(y|x_1 = n) = -\frac{2}{2}\log_2\frac{2}{2} - \frac{0}{2}\log_2\frac{0}{2} = 0bit$$

Conditional Entropy

 Information / uncertainty of the class labels under some condition on the features.

Loan	x_1 (Credit report)	x_2 (Employment last 3 months)	x_3 (Collateral > 50% loan)	y (Payed back in full)
1	Positive	Yes	No	Yes
2	Positive	No	Yes	Yes
3	Positive	No	No	No
4	Negative	No	Yes	No
5	Negative	Yes	No	No

$$H_L(y|x_1 = n) = -\frac{2}{2}\log_2\frac{2}{2} - \frac{0}{2}\log_2\frac{0}{2} = 0bit$$

$$H_L(y|x_1 = p) = -\frac{2}{3}\log_2\frac{2}{3} - \frac{1}{3}\log_2\frac{1}{3} = 0.91bit$$

Information Gain of an Attribute

Reduction of entropy by splitting the data along an attribute

•
$$G_L(x_j) = H_L(y) - \sum_{v=1}^k p_L(x_j = v) H_L(y | x_j = v)$$

Loan	x_1 (Credit report)	x_2 (Employment last 3 months)	x_3 (Collateral > 50% loan)	y (Payed back in full)
1	Positive	Yes	No	Yes
2	Positive	No	Yes	Yes
3	Positive	No	No	No
4	Negative	No	Yes	No
5	Negative	Yes	No	No

•
$$G_L(x_1) = H_L(y) - p_L(x_1 = p)H_L(y|x_1 = p) - p_L(x_1 = n)H_L(y|x_1 = n)$$

= $0.97 - \frac{3}{5}0.91 - \frac{2}{5}0 = 0.42bit$

• Splitting along x_1 reduces the uncertainty regarding the class label y by 0.42 bit.

Information Gain Ratio

- Motivation:
 - Predicting whether a student will pass an exam.
 - How high is the information gain of the attribute "Matriculation number"?
- Information gain favors attributes with many values.
- Not necessarily an indicator of good generalization.
- Idea: factor the information that is contained in the attribute values into the decision

•
$$H_L(x_j) = -\sum_{v=1}^k p_L(x_j = v) \log_2 p_L(x_j = v)$$

Information Gain Ratio

 Idea: factor the information that is contained in the attribute values into the decision

•
$$H_L(x_j) = -\sum_{v=1}^k p_L(x_j = v) \log_2 p_L(x_j = v)$$

Information gain ratio:

$$GR_L(x_j) = \frac{G_L(x_j)}{H_L(x_j)}$$

Example: Info Gain Ratio

Which split is better?

Example: Info Gain Ratio

Which split is better?

$$IG_L(x_4) = 1 - 4\frac{1}{4}0 = 1$$

$$H_L(x_4) = -4\left(\frac{1}{4}\log_2\frac{1}{4}\right) = 2$$

$$GR_L(x_4) = \frac{IG_L(x_4)}{H_L(x_4)} = \frac{1}{2}$$

$$IG_L(x_5) = 1 - \frac{1}{2}0 - \frac{1}{2}0 = 1$$

$$H_L(x_5) = -2\left(\frac{1}{2}\log_2\frac{1}{2}\right) = 1$$

$$GR_L(x_5) = \frac{IG_L(x_5)}{H_L(x_5)} = 1$$

Algorithm ID3

- Preconditions:
 - Classification problems
 - All attributes have fixed, discrete ranges of values.
- Idea: recursive algorithm.
 - Choose attribute that conveys highest information regarding the class label (Use information gain, gain ratio, or Gini index).
 - Split the training data according to the attribute.
 - Recursively call algorithm for branches.
 - In each branch, use each attribute only once; if all attributes have been used, return leaf node.

Learning Decision Trees with ID3

```
ID3(L, X)
```

- 1. If all data in L have same class y or X={}, then return leaf node with majority class y.
- 2. Else
 - 1. For all attributes $x_j \in X$, calculate split criterion $G_L(x_j)$ or $GR_L(x_j)$.
 - 2. Choose attribute $x_j \in X$ with highest $G_L(x_j)$ or $GR_L(x_j)$.
 - Let $L_i = \{(x, y) \in L: x_j = i\}$.
 - Return test node with attribute x_j and children ID3(L₁, X\x_j), ..., ID3(L_k, X\x_j).

Loan	x ₁ (Credit report)	x_2 (Employment last 3 months)	x ₃ (Collateral > 50% loan)	y (Payed back in full)
1	Positive	Yes	No	Yes
2	Positive	No	Yes	Yes
3	Positive	No	No	No
4	Negative	No	Yes	No
5	Negative	Yes	No	No

- If all data in L have same class y or X={}, then return leaf node with majority class y.
- 2. Else
 - 1. For all $x_i \in X$, calculate $G_L(x_i)$.
 - 2. Choose attribute $x_j \in X$ with highest $G_L(x_j)$.
 - Let $L_i = \{(x, y) \in L: x_j = i\}$.
 - Return test node with attribute x_j and children ID3(L₁, X\x_j), ..., ID3(L_k, X\x_j).

Loan	x_1 (Credit report)	x_2 (Employment last 3 months)	x ₃ (Collateral > 50% loan)	y (Payed back in full)
1	Positive	Yes	No	Yes
2	Positive	No	Yes	Yes
3	Positive	No	No	No
4	Negative	No	Yes	No
5	Negative	Yes	No	No

```
ID3(L, X)
```

- If all data in L have same class y or X={}, then return leaf node with majority class y.
- 2. Else
 - 1. For all $x_i \in X$, calculate $G_L(x_i)$.
 - 2. Choose attribute $x_i \in X$ with highest $G_L(x_i)$.
 - Let $L_i = \{(x, y) \in L: x_i = i\}$.
 - Return test node with attribute x_j and children ID3(L₁, X\x_j), ..., ID3(L_k, X\x_j).

Loan	x_1 (Credit report)	x_2 (Employment last 3 months)	x ₃ (Collateral > 50% loan)	y (Payed back in full)
1	Positive	Yes	No	Yes
2	Positive	No	Yes	Yes
3	Positive	No	No	No
4	Negative	No	Yes	No
5	Negative	Yes	No	No

```
ID3(L, X)
```

- If all data in L have same class y or X={}, then return leaf node with majority class y.
- 2. Else
 - 1. For all $x_i \in X$, calculate $G_L(x_i)$.
 - 2. Choose attribute $x_j \in X$ with highest $G_L(x_j)$.
 - Let $L_i = \{(x, y) \in L: x_i = i\}$.
 - Return test node with attribute x_j and children ID3(L₁, X\x_j), ..., ID3(L_k, X\x_j).

Loan	x ₁ (Credit report)	x_2 (Employment last 3 months)	x ₃ (Collateral > 50% loan)	y (Payed back in full)
1	Positive	Yes	No	Yes
2	Positive	No	Yes	Yes
3	Positive	No	No	No
4	Negative	No	Yes	No
5	Negative	Yes	No	No

```
ID3(L, X)
```

- If all data in L have same class y or X={}, then return leaf node with majority class y.
- 2. Else
 - 1. For all $x_i \in X$, calculate $G_L(x_i)$.
 - 2. Choose attribute $x_j \in X$ with highest $G_L(x_j)$.
 - Let $L_i = \{(x, y) \in L: x_i = i\}$.
 - Return test node with attribute x_j and children ID3(L₁, X\x_j), ..., ID3(L_k, X\x_j).

Loan	x_1 (Credit report)	x_2 (Employment last 3 months)	x ₃ (Collateral > 50% loan)	y (Payed back in full)
1	Positive	Yes	No	Yes
2		No	Yes	Yes
3	Positive	No	No	No
5	Negative	Yes	No	No

- If all data in L have same class y or X={}, then return leaf node with majority class y.
- 2. Else
 - 1. For all $x_i \in X$, calculate $G_L(x_i)$.
 - 2. Choose attribute $x_j \in X$ with highest $G_L(x_j)$.
 - Let $L_i = \{(x, y) \in L: x_j = i\}$.
 - Return test node with attribute x_j and children ID3(L₁, X\x_j), ..., ID3(L_k, X\x_j).

Loan	x_1 (Credit report)	x_2 (Employment last 3 months)	x ₃ (Collateral > 50% loan)	y (Payed back in full)
1	Positive	Yes	No	Yes
2		No	Yes	Yes
3	Positive	No	No	No
5	Negative	Yes	No	No

```
ID3(L, X)
```

- If all data in L have same class y or X={}, then return leaf node with majority class y.
- 2. Else
 - 1. For all $x_i \in X$, calculate $G_L(x_i)$.
 - 2. Choose attribute $x_i \in X$ with highest $G_L(x_i)$.
 - Let $L_i = \{(x, y) \in L: x_j = i\}$.
 - Return test node with attribute x_j and children ID3(L₁, X\x_j), ..., ID3(L_k, X\x_j).

Loan	x_1 (Credit report)	x_2 (Employment last 3 months)	x ₃ (Collateral > 50% loan)	y (Payed back in full)
1	Positive	Yes	No	Yes
3	Positive	No	No	No
5	Negative	Yes	No	No

- If all data in L have same class y or X={}, then return leaf node with majority class y.
- 2. Else
 - 1. For all $x_i \in X$, calculate $G_L(x_i)$.
 - 2. Choose attribute $x_j \in X$ with highest $G_L(x_j)$.
 - Let $L_i = \{(x, y) \in L: x_i = i\}$.
 - Return test node with attribute x_j and children ID3(L₁, X\x_j), ..., ID3(L_k, X\x_j).

Loan	x_1 (Credit report)	x_2 (Employment last 3 months)	x ₃ (Collateral > 50% loan)	y (Payed back in full)
1	Positive	Yes	No	Yes
3	Positive	No	No	No
5	Negative	Yes	No	No

- 1. If all data in L have same class y or X={},
 then return leaf node with majority class y.
- 2. Else
 - 1. For all $x_i \in X$, calculate $G_L(x_i)$.
 - Choose attribute $x_j \in X$ with highest $G_L(x_j)$.
 - Let $L_i = \{(x, y) \in L: x_j = i\}$.
 - Return test node with attribute x_j and children ID3(L₁, X\x_j), ..., ID3(L_k, X\x_j).

Loan	x_1 (Credit report)	x_2 (Employment last 3 months)	x ₃ (Collateral > 50% loan)	y (Payed back in full)
1	Positive	Yes	No	Yes
2		No	Yes	Yes
3	Positive	No	No	No
5	Negative	Yes		No

- If all data in L have same class y or X={}, then return leaf node with majority class y.
- 2. Else
 - 1. For all $x_i \in X$, calculate $G_L(x_i)$.
 - 2. Choose attribute $x_j \in X$ with highest $G_L(x_j)$.
 - Let $L_i = \{(x, y) \in L: x_i = i\}$.
 - Return test node with attribute x_j and children ID3(L₁, X\x_j), ..., ID3(L_k, X\x_j).

Loan	x_1 (Credit report)	x_2 (Employment last 3 months)	x ₃ (Collateral > 50% loan)	y (Payed back in full)
1	Positive	Yes	No	Yes
2			Yes	Yes
3	Positive	No	No	No
5	Negative	Yes		No

- 1. If all data in L have same class y or X={}, then return leaf node with majority class y.
- 2. Else
 - 1. For all $x_i \in X$, calculate $G_L(x_i)$.
 - Choose attribute $x_j \in X$ with highest $G_L(x_j)$.
 - Let $L_i = \{(x, y) \in L: x_j = i\}$.
 - Return test node with attribute x_j and children ID3(L₁, X\x_j), ..., ID3(L_k, X\x_j).

Loan	x_1 (Credit report)	x_2 (Employment last 3 months)	x ₃ (Collateral > 50% loan)	y (Payed back in full)
1	Positive	Yes	No	Yes
2			Yes	Yes
3	Positive	No	No	No
5	Negative	Yes	No	No

- 1. If all data in L have same class y or X={}, then return leaf node with majority class y.
- 2. Else
 - 1. For all $x_i \in X$, calculate $G_L(x_i)$.
 - 2. Choose attribute $x_j \in X$ with highest $G_L(x_j)$.
 - Let $L_i = \{(x, y) \in L: x_j = i\}$.
 - Return test node with attribute x_j and children ID3(L₁, X\x_j), ..., ID3(L_k, X\x_j).

Loan	x_1 (Credit report)	x_2 (Employment last 3 months)	x ₃ (Collateral > 50% loan)	y (Payed back in full)
1	Positive	Yes	No	Yes
2				Yes
3	Positive	No	No	No
5	Negative	Yes	No	No

- 1. If all data in L have same class y or X={},
 then return leaf node with majority class y.
- 2. Else
 - 1. For all $x_i \in X$, calculate $G_L(x_i)$.
 - 2. Choose attribute $x_i \in X$ with highest $G_L(x_i)$.
 - Let $L_i = \{(x, y) \in L: x_j = i\}$.
 - Return test node with attribute x_j and children ID3(L₁, X\x_j), ..., ID3(L_k, X\x_j).

Loan	x_1 (Credit report)	x_2 (Employment last 3 months)	x ₃ (Collateral > 50% loan)	y (Payed back in full)
1	Positive	Yes	No	Yes
2				
3	Positive	No	No	No
5	Negative	Yes	No	No

- 1. If all data in L have same class y or X={},
 then return leaf node with majority class y.
- 2. Else
 - 1. For all $x_i \in X$, calculate $G_L(x_i)$.
 - 2. Choose attribute $x_j \in X$ with highest $G_L(x_j)$.
 - Let $L_i = \{(x, y) \in L: x_j = i\}$.
 - Return test node with attribute x_j and children ID3(L₁, X\x_j), ..., ID3(L_k, X\x_j).

Loan	x ₁ (Credit report)	x_2 (Employment last 3 months)	x ₃ (Collateral > 50% loan)	y (Payed back in full)
1	Positive	Yes	No	Yes
2	Positive	No	Yes	Yes
3	Positive	No	No	No
4	Negative	No	Yes	No
5	Negative	Yes	No	No

```
ID3(L, X)
```

- 1. If all data in L have same class y or X={}, then return leaf node with majority class y.
- 2. Else
 - 1. For all $x_i \in X$, calculate $G_L(x_i)$.
 - 2. Choose attribute $x_j \in X$ with highest $G_L(x_j)$.
 - Let $L_i = \{(x, y) \in L: x_i = i\}$.
 - Return test node with attribute x_j and children ID3(L₁, X\x_j), ..., ID3(L_k, X\x_j).

Loan	x_1 (Credit report)	x_2 (Employment last 3 months)	x ₃ (Collateral > 50% loan)	y (Payed back in full)
1	Positive	Yes	No	Yes
3	Positive	No	No	No
4		No	Yes	No
5	Negative	Yes	No	No

- 1. If all data in L have same class y or X={},
 then return leaf node with majority class y.
- 2. Else
 - 1. For all $x_i \in X$, calculate $G_L(x_i)$.
 - 2. Choose attribute $x_j \in X$ with highest $G_L(x_j)$.
 - Let $L_i = \{(x, y) \in L: x_j = i\}$.
 - Return test node with attribute x_j and children ID3(L₁, X\x_j), ..., ID3(L_k, X\x_j).

Loan	x_1 (Credit report)	x_2 (Employment last 3 months)	x ₃ (Collateral > 50% loan)	y (Payed back in full)
1	Positive	Yes	No	Yes
2	Positive	No	Yes	Yes
3	Positive	No	No	No
4	Negative	No	Yes	No
5	Negative	Yes	No	No

- 1. If all data in L have same class y or X={}, then return leaf node with majority class y.
- 2. Else
 - 1. For all $x_i \in X$, calculate $G_L(x_i)$.
 - 2. Choose attribute $x_j \in X$ with highest $G_L(x_j)$.
 - Let $L_i = \{(x, y) \in L: x_j = i\}$.
 - Return test node with attribute x_j and children ID3(L₁, X\x_j), ..., ID3(L_k, X\x_j).

Overview

- Decision trees.
- Classification with categorical features: ID3.
- Classification with continuous features: C4.5.
- Regression: CART, model trees.
- Bagging.
- Random forests.

Continuous Attributes

- ID3 constructs a branch for every value of the selected attribute.
- This only works for discrete attributes.
- Idea: Choose attribute value pair, use test $x_i \le v$.

•
$$G_L(x_j \le v)$$

= $H_L(y) - p_L(x_j \le v)H_L(y|x_j \le v) - p_L(x_j > v)H_L(y|x_j > v)$

- Problem: there are infinitely many values.
- Idea: use only values that occur for that attribute in the training data.

Learning Decision Trees with C4.5

```
C4.5(L)
```

- 1. If all data in L have same class y or are identical, then return leaf node with majority class y.
- 2. Else
 - For all discrete attributes $x_i \in X$: calculate $G_L(x_i)$.
 - For all continuous attributes $x_j \in X$ and all values v that occur for x_i in L: calculate $G_L(x_i \le v)$.
 - If discrete attribute has highest $G_L(x_j)$:
 - 1. Let $L_i = \{(x, y) \in L: x_i = i\}$.
 - 2. Return test node with attribute x_j and children $C4.5(L_1)$, ..., $C4.5(L_k)$.
 - If continuous attribute has highest $G_L(x_j \le v)$:
 - 1. Let $L \le \{(x,y) \in L: x_j \le v\}, L = \{(x,y) \in L: x_j > v\}$
 - 2. Return test node with test $x_j \le v$ and children $C4.5(L_{\le})$, $C4.5(L_{>})$.

Pruning

- Leaf nodes that only are supported by a single (or very few) instances, often do not provide a good classification.
- Pruning:
 - Remove test nodes whose leaves have less than τ instances.
 - Collect in new leaf node that is labeled with the majority class
- Pruning parameter τ is a regularization parameter that has to be tuned (e.g., by cross validation).

Pruning with Threshold 5: Example

Pruning with Threshold 5: Example

Pruning with Threshold 5: Example

Reduced Error Pruning

- Split training data into a training set and a pruning validation set.
- Construct a decision tree using the training set (for instance, with C4.5).
- Starting from the bottom layer, iterate over all test nodes whose children are leaf nodes.
 - If removing the test node and replacing it with a leaf node that predicts the majority class reduces the error rate on the pruning set, then do it!

Overview

- Decision trees.
- Classification with categorical features: ID3.
- Classification with continuous features: C4.5.
- Regression: CART, model trees.
- Bagging.
- Random forests.

Regression

- Input: instance $x \in X$.
 - e.g., feature vector

$$\mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix}$$

- Output: continuous (real) value, $y \in \mathbb{R}$
- Learning problem: training data with continuous target value
 - $L = \langle (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n) \rangle$
 - e.g. $\langle (\mathbf{x}_1, 3.5), ..., (\mathbf{x}_n, -2.8) \rangle$

Regression

- Input: instance $x \in X$.
 - e.g., feature vector

$$\mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix}$$

- Output: continuous (real) value, $y \in \mathbb{R}$
- Learning goal:
 - Low quadratic error rate + simple model.

•
$$SSE = \sum_{i=1}^{n} (y_i - f(x_i))^2$$
; $MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$

Split criterion for regression?

Regression Trees

- Variance of the target attribute on sample L:
 - $Var(L) = \frac{1}{n} \sum_{i=1}^{n} (y_i \bar{y})^2$
- Variance = MSE of predicting the mean value.
- Splitting criterion: variance reduction of $[x_i \le v]$:

- Stopping criterion:
 - Do not create a new test node if $nVar(L) \le \tau$.

Learning Regression Trees with CART

CART $(L_{<})$, CART $(L_{>})$.

```
CART (L)
    If \sum_{i=1}^{n}(y_i-\bar{y})^2<\tau, then return leaf node with prediction \bar{y}.
   Else
2.
        For all discrete attributes x_i \in X: calculate R_L(x_i).
        For all continuous attributes x_i \in X and all values v
        that occur for x_i in L: calculate R_L(x_i \le v).
    If discrete attribute has highest R_{L}(x_{i}):
        1. Let L_i = \{(x, y) \in L: x_i = i\}.
           Return test node with attribute x_i and children
             CART(L_1), ..., CART(L_k).
    4. If continuous attribute has highest R_{I_i}(x_i \le v):
            Let L_{\leq} = \{(x, y) \in L: x_j \leq v\}, L_{>} = \{(x, y) \in L: x_j > v\}
```

Return test node with test $x_i \leq v$ and children

CART- Example

Loan	x ₁ (Credit report)	x_2 (Employment last 3 months)	y (recovery rate)
1	Positive	Yes	0.8
2	Positive	No	0.9
3	Positive	No	0.4
4	Negative	No	0.1
5	Negative	Yes	0.2

- Which split is better?
- $Var(L) = \frac{1}{5} ((0.8 0.48)^2 + \dots + (0.2 0.48)^2) = 0.1148$

positive	negative
	A Company of the Comp

v (recovery rate)

0.8

0.9

0.4

y (recovery

0.1

0.2

$$Var_{pos} = \frac{1}{3} \left((0.8 - 0.7)^2 + (0.9 - 0.7)^2 + (0.4 - 0.7)^2 \right) = 0.0466$$

$$Var_{neg} = \frac{1}{2} \left((0.1 - 0.15)^2 + (0.2 - 0.15)^2 \right) = 0.0025$$

$$0.1148 - \frac{3}{5} \times 0.0466 - \frac{2}{5} \times 0.0025 = \mathbf{0}.\mathbf{085}$$

y (recovery rate)

0.8 0.2 rate) 0.9 0.4

0.1

y (recovery

$$Var_{neg} = \frac{1}{3} \left((0.8 - 0.7)^2 + (0.9 - 0.7)^2 + (0.4 - 0.7)^2 \right) = 0.0466$$

$$Var_{yes} = \frac{1}{2} \left((0.8 - 0.5)^2 + (0.2 - 0.5)^2 \right) = 0.0466$$

$$Var_{neg} = \frac{1}{2} \left((0.1 - 0.15)^2 + (0.2 - 0.15)^2 \right) = 0.0025$$

$$Var_{no} = \frac{1}{3} \left((0.9 - 0.46)^2 + (0.4 - 0.46)^2 + (0.1 - 0.46)^2 \right) = 0.1148 - \frac{3}{5} \times 0.0466 - \frac{2}{5} \times 0.0025 = \mathbf{0.085}$$

$$0.1148 - \frac{2}{5} \times 0.0466 - \frac{3}{5} \times 0.0025 = \mathbf{0.085}$$

Model Trees

- Nodes in regression trees are labeled with the mean value of their training instances.
- Idea: Instead train local linear regression model using the instances that fall into the leaf.

Linear Regression

- Input: $L = \langle (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n) \rangle$
- Linear regression model $f(\mathbf{x}) = \mathbf{\theta}^{\mathrm{T}}\mathbf{x} + \theta_0$
- Will be discussed in later lectue.

Points along the Regression plane are perpendicular to the normal vector.

Model Trees

 Decision trees but with a linear regression model at each leaf node.

Model Trees

 Decision trees but with a linear regression model at each leaf node.

Overview

- Decision trees.
- Classification with categorical features: ID3.
- Classification with continuous features: C4.5.
- Regression: CART, model trees.
- Bagging.
- Random forests.

- Assume that we have 3 models $f_i(\mathbf{x})$.
- Each model has an error probability of 0.1.
- Let $f(\mathbf{x})$ be the majority vote among the $f_i(\mathbf{x})$:
 - $f(\mathbf{x}) = \arg \max_{y} |\{i: f_i(\mathbf{x}) = y\}|.$
- What is the error probability of $f(\mathbf{x})$?

- Assume that we have 3 models $f_i(\mathbf{x})$.
- Each model has an error probability of 0.1.
- Let $f(\mathbf{x})$ be the majority vote among the $f_i(\mathbf{x})$:
 - $f(\mathbf{x}) = \arg \max_{y} |\{i: f_i(\mathbf{x}) = y\}|.$
- What is the error probability of $f(\mathbf{x})$?
 - Depends on how correlated the models are.
 - If they always make identical prediction, the error rate of the ensemble is 0.1 as well.

- Assume that we have 3 models $f_i(\mathbf{x})$.
- Each model has an error probability of 0.1.
- Let $f(\mathbf{x})$ be the majority vote among the $f_i(\mathbf{x})$:
 - $f(\mathbf{x}) = \arg \max_{y} |\{i: f_i(\mathbf{x}) = y\}|.$
- What is the error probability of $f(\mathbf{x})$ if the models are independent?
 - 2 out of 3 models have to err.
 - There are 3 subsets of 2 models.
 - $R \le 3 \times 0.1^2 = 0.03.$
- Ensemble is much better than individual models.

- Assume that we have n models $f_i(\mathbf{x})$.
- Each model has an error probability of 0.5ε .
- Let $f(\mathbf{x})$ be the majority vote among the $f_i(\mathbf{x})$:
 - $f(\mathbf{x}) = \arg \max_{y} |\{i: f_i(\mathbf{x}) = y\}|.$
- Ensemble f(x) may be much better than individual models if
 - Each model's error probability is below 0.5

The models are sufficiently uncorrelated.

- Ensemble methods differ in how they try to obtain uncorrelated classifiers from given training data.
- Bagging: sample random subsets of training instances.
- Random forests: sample random subsets of training instances and random subsets of features.
- Boosting: iteratively draw subsets of the training instances such that instances that are misclassified by the current ensemble receive a higher weight.

Bootstrapping

- The bootstrapping procedure draws *n* instances from a set of *n* instances with replacement.
- Instances can be drawn multiple times.
- 1. Input: sample L of size n.
- 2. For i=1...k
 - 1. Draw n instances uniformly with replacement from L into set L_i .
 - 2. Learn model f_i on sample L $_i$.
- 3. Return models $(f_1, ..., f_k)$.

Bagging – Bootstrap Aggregating

- Input: sample L of size n.
- 1. For i=1...k
 - 1. Draw n instances uniformly with replacement from L into set L_i .
 - 2. Learn model f_i on sample \mathtt{L}_i .
- 2. For classification:
 - 1. Let $f(\mathbf{x})$ be the majority vote among $(f_1(\mathbf{x}), \dots, f_k(\mathbf{x}))$.
- 3. For regression:
 - 1. Let $f(\mathbf{x}) = \frac{1}{k} \sum_{i=1}^{k} f_i(\mathbf{x})$.

Bagging – Bootstrap Aggregating

- Models are somewhat uncorrelated because they have been trained on different subsets of the data.
- But all models use the same attributes and share a good part of the training data.
- Idea: also vary the attributes.

Random Forests

- Input: sample L of size n, attributes X.
- 1. For i=1...k
 - Draw n instances uniformly with replacement from L into set L_i .
 - 2. Draw m attributes from all attributes X into X_i .
 - 3. Learn model f_i on sample \mathbf{L}_i using attributes \mathbf{X}_i .
- 2. For classification:
 - Let $f(\mathbf{x})$ be the majority vote among $(f_1(\mathbf{x}), ..., f_k(\mathbf{x}))$.
- 3. For regression:
 - 1. Let $f(\mathbf{x}) = \frac{1}{k} \sum_{i=1}^{k} f_i(\mathbf{x})$.

Random Forests

- Number of sampled attributes is a hyperparameter.
- Decision trees are sometimes trained with depthbound.
- Decision trees are usually trained without pruning.
- The number of trees is a hyperparameter; often, large, fixed values are used (e.g., 1000 trees).

Random Forests

- Require little to no preprocessing—decision tree algorithm can handle combinations of numeric, categorical, string attributes.
- Powerful non-linear classifiers.
- Quick and easy to apply.
- Perform well in practice for many problems when training data is not large enough to effectively apply neural networks.
- Downside: random forests are not interpretable.

Summary of Decision Trees

- Classification
 - Discrete attributes: ID3.
 - Continuous attributes: C4.5.
- Regression:
 - CART: mean value in each leaf.
 - Model trees: linear regression model in each leaf.
- Applying a decision tree is fast, requires no preprocessing; popular for many applications.
- Random forests are easy to apply, powerful, nonlinear prediction models.