

# Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

## «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Информатика и системы управления

КАФЕДРА Программное обеспечение ЭВМ и информационные технологии

## ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1 «ДЛИННАЯ АРИФМЕТИКА»

Студент Ланкин Дмитрий Леонидович

Группа ИУ7 – 34Б

## Содержание

| ОПИСАНИЕ УСЛОВИЯ ЗАДАЧИ                                         | <u>2</u> |
|-----------------------------------------------------------------|----------|
| ТЕХНИЧЕСКОЕ ЗАДАНИЕ                                             | <u>2</u> |
| Входные данные                                                  | 2        |
| Выходные данные                                                 | 2        |
| Описание задачи                                                 | 3        |
| Способ обращения к программе                                    | 3        |
| Описание возможных аварийных ситуаций и ошибок пользователя     |          |
| ВНУТРЕННЯЯ СТРУКТУРА ДАННЫХ<br>ОСОБЕННОСТИ РЕАЛИЗАЦИИ АЛГОРИТМА |          |
| ОПИСАНИЕ ФУНКЦИЙ                                                | <u>5</u> |
| НАБОР ТЕСТОВЫХ СЛУЧАЕВ                                          | <u>7</u> |
| Выводы                                                          | 9        |
| КОНТРОЛЬНЫЕ ВОПРОСЫ                                             | <u>9</u> |

## Описание условия задачи

Смоделировать операцию деления целого числа длиной до 30 десятичных цифр на действительное число в форме +\-m.n E +\-K, где суммарная длина мантиссы (m+n) - до 30 значащих цифр, а величина порядка К - до 5 цифр. Результат выдать в форме +\-0.m E +\-K, где m1 - до 30 значащих цифр, а К1 - до 5 цифр.

## ТЕХНИЧЕСКОЕ ЗАДАНИЕ

#### Входные данные

**Целое число**: строка, первым символом которой является знак (+\-), состоящая из не более, чем 30 цифр. Формат: +\-m, где m – мантисса числа.

**Действительное число**: строка, первым символом которой является знак (+\-), состоящая из не более, чем 30 цифр. Формат: +\-m[.n][E+\-K], где m — целая часть действительного числа, n — дробная часть (опционально), K — порядок числа (опционально) — число, принадлежащее отрезку [-99999; 99999].

#### Выходные данные

Программа возвращает **действительное число** формата +\-m.n E +\-K, где m – целая часть действительного числа, n – дробная часть действительного числа, K – порядок действительного числа. Суммарная длина мантиссы m.n должна быть не менее 2 и не более 30 цифр. Порядок числа К принадлежит отрезку [-99999; 99999].

#### Описание задачи

Программа получает от пользователя целое и действительное число и производит деление целого на действительное. По окончании работы выводит на экран результат деления.

#### Способ обращения к программе

Программа вызывается из консоли.

## Описание возможных аварийных ситуаций и ошибок пользователя

- 1. Некорректный ввод: введен буквенный символ.
  - Сообщение об ошибке: «Еггог: введены некорректные символы.»
- 2. Некорректный ввод: ввод точки при записи целого числа.
  - Сообщение об ошибке: «Еггог: введены некорректные символы.»
- 3. Некорректный ввод: отсутствие знака (+\-) в начале строки.
  - Сообщение об ошибке: «Еrror: число должно начинаться со знака '+' или '-'.»

4. Некорректный ввод: пустая строка.

Сообщение об ошибке: «Еrror: Вы ввели пустую строку.»

5. Некорректный ввод: излишне длинная запись.

Сообщение об ошибке: «Еггог: слишком длинная строка.»

6. Некорректный ввод: наличие пробелов в записи.

Сообщение об ошибке: «Еrror: число не может содержать пробелы.»

7. Некорректный ввод: точка в записи порядка действительного числа.

Сообщение об ошибке: «Еггог: точка не может находиться в записи порядка.»

8. Некорректный ввод: более 1 буквы Е в записи действительного числа.

Сообщение об ошибке: «Error: по правилам записи не должно быть более одной буквы E!»

9. Некорректный ввод: более 1 точки в записи действительного числа.

Сообщение об ошибке: «Error: по правилам записи не должно быть более одной точки!»

10. Некорректный ввод: более 2 арифметических знаков в записи.

Сообщение об ошибке: «Еггог: по правилам записи должно быть 2 знака (мантисса и порядок)!»

11. Переполнение порядка.

Сообщение об ошибке: «Еrror: переполнение порядка.»

12. Деление на ноль.

Сообщение об ошибке: «Error: деление на 0.»

## Внутренняя структура данных

От пользователя программа получается массив символов (строку), затем происходит её валидация и разделение на элементы, которые в дальнейшем записываются в структуру следующего вида:

```
typedef struct
{
char sign_mantissa;
char mantissa[MAX_MANTISSA_LEN - 1];
size_t point_pos;
size_t E_pos;
char sign_power;
int power_int;
} number_t;
```

— sign\_mantissa — переменная типа char, хранящая в себе знак мантиссы (+\-).

- mantissa массив элементов типа char, состоящий из 31 элемента (1 запасной для округления), для хранения мантиссы числа.
- point\_pos переменная типа size\_t, хранящая в себе индекс позиции точки в мантиссе.
- E\_pos переменная, типа size\_t, хранящая в себе индекс позиции буквы E.
- sign\_power переменная типа char, хранящая в себе знак порядка (+\-).
- power\_int переменная типа int, хранящая в себе числовое значение порядка числа.

Таким образом, целое число и действительное число разбиваются на элементы и записываются в структуру для дальнейшего хранения.

Такие типы данных были выбраны в связи с особенностями хранения «длинных» чисел в памяти компьютера и с целью облегчения обработки данных.

## Особенности реализации алгоритма

- 1. Программа считывает 2 строки: первая представляет целое число, вторая действительное (функция str\_input).
- 2. Программа производит валидацию каждого из чисел (для целого проверяет наличие знаков + или -, для действительного наличие знаков + или -, наличие буквы E, количество букв E, наличие и количество точек).
- 3. Программа разделяет строки и помещает элементы в поля структуры.
- 4. Программа нормализует целое и действительное числа (приводится к виду, при котором число начинается с 0, и дополняется нулями до длины 30 символов).
- 5. Программа производит деление каждой цифры целого числа на действительное число и записывает результат в структуру result\_number.
- 6. Программа удаляет лидирующие незначащие нули.
- 7. Программа удаляет нули в конце числа и преобразует порядок числа.
- 8. Программа выводит результат на экран.

## Описание функций

– void number\_normalization(number\_t \*number);

Описание: функция приводит число к нормализованному виду.

Входные данные: экземпляр структуры number\_t.

Выходные данные: нормализованный экземпляр структуры number\_t.

- int str\_to\_number\_t(char str[], number\_t \*number);

Описание: функция преобразует массив символов в экземпляр структуры number\_t.

Входные данные: массив символов, экземпляр структуры number\_t.

Выходные данные: код возврата, заполненный экземпляр структуры number\_t.

- int is\_left\_greater(number\_t \*l\_num, number\_t \*r\_num);

Описание: функция проверяет, является ли «левое» число большим, чем правое.

Входные данные: два экземпляра структуры number\_t.

Выходные данные: TRUE — левое число больше, FALSE — правое число больше, EQUAL — числа одинаковые.

- int digits\_subtraction(number\_t \*int\_number, number\_t \*real\_number);

Описание: функция производит поразрядное вычитание действительного числа из целого числа.

Входные данные: два экземпляра структуры number t.

Выходные данные: 1 в случае успеха, 0 в случае неудачи.

- int is\_zero(number\_t \*number);

Описание: функция определяет, равно ли 0 число.

Входные данные: экземпляр структуры number\_t.

Выходные данные: 1 в случае равенства, 0 — иначе.

– void push\_back\_zero(number\_t \*number);

Описание: функция сдвигает число на 1 разряд влево и вставляет 0 в конец.

Входные данные: экземпляр структуры number t.

Выходные данные: -.

Описание: функция производит поразрядное деление целого числа на действительное и записывает результат в экземпляр структуры number\_t result\_number.

Bходные данные: экземпляры структуры number\_t int\_number, real\_number и result\_number.

Выходные данные: код возврата и экземпляр структуры result\_number.

- int str\_input(char str[], const size\_t max\_len, size\_t \*len);

Описание: функция выполняет ввод массива символов из стандартного потока ввода.

Входные данные: массив символов, максимальная длина.

Выходные данные: код возврата и длина введенного массива символов.

- int str\_real\_validation(char str[], const size\_t len);
int str\_int\_validation(char str[], const size\_t len);

Описание: функция производит валидацию строки по соответствующим правилам.

Входные данные: массив символов, длина массива символов.

Выходные данные: код возврата.

- void symbol\_shift(char str[], size\_t start, size\_t end);

Описание: функция сдвигает символ влево в массиве символов.

Входные данные: массив символов, начальный индекс символа, конечный индекс символа.

– void num\_shift(char str[], size\_t start);

Описание: функция сдвигает число, начиная с позиции start, на 1 разряд влево в массиве символов.

Входные данные: массив символов, индекс первого символа.

Выходные данные: измененный массив символов.

- void throw\_out\_digit(char str[], size\_t start);

Описание: функция удаляет элемент с позиции start.

Входные данные: массив символов, индекс элемента для удаления.

Выходные данные: измененный массив символов.

– void delete\_leading\_zeros(char str[]);

Описание: функция удаляет лидирующие нули из массива символов.

Входные данные: массив символов.

Выходные данные: измененный массив символов.

- size\_t fill\_ending\_with\_zeros(char str[], size\_t start, size\_t end);

Описание: функция дополняет массив символов с конца нулями.

Входные данные: массив символов, индекс начального элемента, индекс конечного элемента для дополнения.

Выходные данные: количество дополненных нулей, измененный массив символов.

### - void delete\_last\_zeros(char str[]);

Описание: функция удаляет лишние нули, изменяя при этом порядок числа.

Входные данные: массив символов.

Выходные данные: измененный массив символов.

### НАБОР ТЕСТОВЫХ СЛУЧАЕВ

| Nº | Ситуация                                        | Целое число                             | Действительное<br>число | Результат                                                               |
|----|-------------------------------------------------|-----------------------------------------|-------------------------|-------------------------------------------------------------------------|
| 1  | Введен буквенный символ                         | a                                       | _                       | Error: введены некорректные символы.                                    |
| 2  | Введена точка при записи целого числа.          | +34.43                                  | _                       | Error: введены некорректные символы.                                    |
| 3  | Отсутствует знак +\                             | 432                                     | _                       | Error: число<br>должно<br>начинаться со<br>знака '+' или '-'.           |
| 4  | Пустая строка.                                  |                                         | _                       | Error: Вы ввели пустую строку.                                          |
| 5  | Излишне длинное число.                          | +1234567890123456<br>789012345678901234 | _                       | Error: слишком длинная строка.                                          |
| 6  | Наличие пробелов в<br>записи числа.             | +4324 53245                             | _                       | Error: число не может содержать пробелы.                                |
| 7  | Точка в записи порядка.                         | +324                                    | -543576.123E-<br>43.3   | Error: точка не может находиться в записи порядка.                      |
| 8  | Более 1 буквы E в записи действительного числа. | +12345                                  | +4343.654EE-4           | Error: по правилам записи не должно быть более одной буквы Е!           |
| 9  | Более 1 точки в записи действительного числа.   | +12345                                  | +432.576.78E-3          | Error: по<br>правилам записи<br>не должно быть<br>более одной<br>точки! |
| 10 | Более 2 арифметических знаков в записи          | +12345                                  | +432.432E-43E3          | Error: по<br>правилам записи<br>должно быть 2                           |

|    |                                                                                     |                                         |                                  | знака (мантисса<br>и порядок)!                      |
|----|-------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------|-----------------------------------------------------|
| 11 | Переполнение порядка.                                                               | +123456                                 | +1223.43E-99999                  | Error:<br>переполнение<br>порядка.                  |
| 12 | Деление на 0.                                                                       | +34324                                  | +0                               | Error: деление на 0.                                |
| 13 | Деление нуля.                                                                       | +0                                      | -213.432E-5                      | +0.0E+0                                             |
| 14 | Деление целого на целое одного знака.                                               | +144                                    | +12                              | +0.12E2                                             |
| 15 | Деление целого на целое противоположных знаков.                                     | +144                                    | -12                              | -0.12E2                                             |
| 16 | Деление целого на действительное одного знака.                                      | +144                                    | +1.2E+1                          | +0.12E2                                             |
| 17 | Деление целого на действительное противоположных знаков.                            | +144                                    | -1.2E+1                          | -0.12E2                                             |
| 18 | Деление целого на целое противоположных знаков.                                     | +200000                                 | -100                             | -0.2E4                                              |
| 19 | Деление максимального целого числа на единицу.                                      | +99999999999999999999999999999999999999 | +1                               | +0.999999999999999999999999999999999999             |
| 20 | Деление максимального целого числа на отрицательное число с отрицательным порядком. | +9999999999999999999999999999999999999  | -0.1E-30                         | -<br>0.999999999999999999999999999999999999         |
| 21 | Деление целого числа максимальной длины на большое действительное число.            | +1234567890123456<br>78901234567890     | -<br>1234567.8901234<br>5E+99321 | -<br>0.1000000000000<br>005499100049491<br>8E-99297 |
| 22 | Деление положительного числа на отрицательное малое число.                          | +100000000000                           | -1.0E-2314                       | -0.1E2325                                           |

### Выводы

Проделав данную лабораторную работу, я научился делить большие целые числа на действительные числа, длина мантиссы которых не превышает 30 разрядов, а порядок находится в диапазоне от -99999 до +99999 (т.е. не более 5 разрядов). Я узнал, как можно хранить подобные числа в памяти компьютера и оперировать ими с целью деления.

#### Контрольные вопросы

#### 1. Каков возможный диапазон чисел, представляемых в ПК?

Диапазон чисел напрямую зависит от выбранного типа данных. В случае, если выбран беззнаковый целочисленный тип размером 64 бита, то его диапазон — [0; 18 446 744 073 709 551 615]. В случае знакового целочисленного типа размером 64 бита — [-9 223 372 036 854 775 808; 9 223 372 036 854 775 807].

#### 2. Какова возможная точность представления чисел, чем она определяется?

Точность действительных чисел зависит от того размера памяти, который выделяется на хранение мантиссы этого числа.

Согласно стандарту 754-1985, определяется четыре формата представления чисел с плавающей точкой (т.н. ЧПТ):

- с одинарной точностью (single-precision) 32 бита;
- с двойной точностью (double-precision) 64 бита;
- с одинарной расширенной точностью (single-extended precision) >= 43 бита (редко используемый);
- с двойной расширенной точностью (double-extended precision) >= 79 бит (обычно используют 80 бит).

#### 3. Какие стандартные операции возможны над числами?

Над числами можно производить процедуры сравнения, вычитания, сложения, умножения, деления и взятия остатка.

## 4. Какой тип данных может выбрать программист, если обрабатываемые числа превышают возможный диапазон представления чисел в ПК?

Программист может воспользоваться такими агрегированными типами данных, как массив, структура.

## 5. Как можно осуществить операции над числами, выходящими за рамки машинного представления?

Возможно написать свои собственные функции, реализующие необходимые программисту операции, используя простейшие математические операции.