Introduction to Machine Learning

Evaluation: Simple Measures for Classification

Learning goals

- Know the definitions of misclassification error rate (MCE) and accuracy (ACC)
- Understand the entries of a confusion matrix
- Understand the idea of costs
- Know definitions of Brier score and log loss

LABELS VS PROBABILITIES

In classification we predict:

- Class labels $\rightarrow \hat{h}(\mathbf{x}) = \hat{y}$
- **2** Class probabilities $\rightarrow \hat{\pi}_k(\mathbf{x})$
- \rightarrow We evaluate based on those

LABELS: MCE

The misclassification error rate (MCE) counts the number of incorrect predictions and presents them as a rate:

$$MCE = \frac{1}{n} \sum_{i=1}^{n} [y^{(i)} \neq \hat{y}^{(i)}] \in [0; 1]$$

Accuracy is defined in a similar fashion for correct classifications:

$$ACC = \frac{1}{n} \sum_{i=1}^{n} [y^{(i)} = \hat{y}^{(i)}] \in [0; 1]$$

- If the data set is small this can be brittle
- The MCE says nothing about how good/skewed predicted probabilities are
- Errors on all classes are weighed equally (often inappropriate)

LABELS: CONFUSION MATRIX

True classes in columns.

Predicted classes in rows.

	setosa	versicolor	virginica	-err	-n-
setosa	50	0	0	0	50
versicolor	0	46	4	4	50
virginica	0	4	46	4	50
-err	0	4	4	8	NA
-n-	50	50	50	NA	150

We can see class sizes (predicted and true) and where errors occur.

LABELS: CONFUSION MATRIX

In binary classification

		True Class y				
		+	_			
Pred.	+	True Positive	False Positive			
		(TP)	(FP)			
ŷ	_	False Negative	True Negative			
		(FN)	(TN)			

LABELS: COSTS

We can also assign different costs to different errors via a cost matrix.

Costs =
$$\frac{1}{n} \sum_{i=1}^{n} C[y^{(i)}, \hat{y}^{(i)}]$$

Example:

Predict if person has a ticket (yes / no).

Should train conductor check ticket of a person?

Costs:

Ticket checking: 3 EUR
Fee for fare-dodging: 40 EUR

LABELS: COSTS

Predict if person has a ticket (yes / no).

Cost matrix C predicted true no yes no -37 0 yes 3 0

Confusion matrix
predicted
true no yes
no 7 0
yes 93 0

Costs:

Ticket checking: 3 EUR Fee for fare-dodging: 40 EUR

Our model says that we should not trust anyone and check the tickets of all passengers.

Costs =
$$\frac{1}{n} \sum_{i=1}^{n} C[y^{(i)}, \hat{y}^{(i)}]$$

= $\frac{1}{100} (-37 \cdot 7 + 0 \cdot 0 + 3 \cdot 93 + 0 \cdot 0)$
= $\frac{20}{100} = 0.2$

PROBABILITIES: BRIER SCORE

Measures squared distances of probabilities from the true class labels:

$$BS1 = \frac{1}{n} \sum_{i=1}^{n} \left(\hat{\pi}(\mathbf{x}^{(i)}) - y^{(i)} \right)^{2}$$

- Fancy name for MSE on probabilities
- Usual definition for binary case, $y^{(i)}$ must be coded as 0 and 1.

PROBABILITIES: BRIER SCORE

$$BS2 = \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{g} \left(\hat{\pi}_{k}(\mathbf{x}^{(i)}) - o_{k}^{(i)} \right)^{2}$$

- Original by Brier, works also for multiple classes
- $o_k^{(i)} = [y^{(i)} = k]$ is a 0-1-one-hot coding for labels
- For the binary case, BS2 is twice as large as BS1, because in BS2 we sum the squared difference for each observation regarding class 0 **and** class 1, not only the true class.

PROBABILITIES: LOG-LOSS

Logistic regression loss function, a.k.a. Bernoulli or binomial loss, $y^{(i)}$ coded as 0 and 1.

$$LL = \frac{1}{n} \sum_{i=1}^{n} \left(-y^{(i)} \log(\hat{\pi}(\mathbf{x}^{(i)})) - (1 - y^{(i)}) \log(1 - \hat{\pi}(\mathbf{x}^{(i)})) \right)$$

- Optimal value is 0, "confidently wrong" is penalized heavily
- Multiclass version: $LL = -\frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{g} o_k^{(i)} \log(\hat{\pi}_k(\mathbf{x}^{(i)}))$