## Introduction to Machine Learning

# Supervised Regression: Linear Models with *L*2 Loss



#### Learning goals

- Grasp the overall concept of linear regression
- Understand how L2 loss optimization results in SSE-minimal model
- Understand this as a general template for ERM in ML

#### LINEAR REGRESSION

• Idea: predict  $y \in \mathbb{R}$  as **linear** combination of features<sup>1</sup>:

$$\hat{\mathbf{y}} = f(\mathbf{x}) = \boldsymbol{\theta}^{\top} \mathbf{x} = \theta_0 + \theta_1 x_1 + \dots + \theta_p x_p$$

 $\rightarrow$  find loss-optimal params to describe relation  $y | \mathbf{x}$ 

• Hypothesis space:  $\mathcal{H} = \{ f(\mathbf{x}) = \boldsymbol{\theta}^{\top} \mathbf{x} \mid \boldsymbol{\theta} \in \mathbb{R}^{p+1} \}$ 





<sup>&</sup>lt;sup>1</sup> Actually, special case of linear model, which is linear combo of *basis functions* of features → Polynomial Regression Models

#### **DESIGN MATRIX**

- ullet Mismatch:  $oldsymbol{ heta} \in \mathbb{R}^{p+1}$  vs  $\mathbf{x} \in \mathbb{R}^p$  due to intercept term
- Trick: pad feature vectors with leading 1, s.t.

• 
$$\mathbf{x} \mapsto \mathbf{x} = (1, x_1, \dots, x_p)^{\top}$$
, and  
•  $\boldsymbol{\theta}^{\top} \mathbf{x} = \theta_0 \cdot 1 + \theta_1 x_1 + \dots + \theta_p x_p$ 

- Collect all observations in **design matrix X**  $\in \mathbb{R}^{n \times (p+1)}$   $\leadsto$  more compact: single param vector incl. intercept
- Resulting linear model:

$$\hat{\mathbf{y}} = \mathbf{X}\boldsymbol{\theta} = \begin{pmatrix} 1 & x_1^{(1)} & \dots & x_p^{(1)} \\ 1 & x_1^{(2)} & \dots & x_p^{(2)} \\ \vdots & \vdots & & \vdots \\ 1 & x_1^{(n)} & \dots & x_p^{(n)} \end{pmatrix} \begin{pmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_p \end{pmatrix} = \begin{pmatrix} \theta_0 + \theta_1 x_1^{(1)} + \dots + \theta_p x_p^{(1)} \\ \theta_0 + \theta_1 x_1^{(2)} + \dots + \theta_p x_p^{(2)} \\ \vdots \\ \theta_0 + \theta_1 x_1^{(n)} + \dots + \theta_p x_p^{(n)} \end{pmatrix}$$

We will make use of this notation in other contexts

#### **EFFECT INTERPRETATION**

- Big plus of LM: immediately **interpretable** feature effects
- Marginally increasing x<sub>j</sub> by 1 unit increases y by θ<sub>j</sub> units"

   ∼ ceteris paribus assumption: x<sub>1</sub>,..., x<sub>j-1</sub>, x<sub>j+1</sub>,..., x<sub>p</sub> fixed



```
Call:
lm(formula = y \sim x 1, data = dt univ)
Residuals:
     Min
              10 Median
-1.10346 -0.34727 -0.00766 0.31500 1.04284
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
                       0.11360 9.131 4.55e-12 ***
(Intercept) 1.03727
x 1
            0.53521
                       0.08219 6.512 4.13e-08 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.5327 on 48 degrees of freedom
Multiple R-squared: 0.469, Adjusted R-squared: 0.458
```

F-statistic: 42.4 on 1 and 48 DF. p-value: 4.129e-08

#### **MODEL FIT**

- How to determine LM fit? → define risk & optimize
- Popular: L2 loss / quadratic loss / squared error

$$L(y, f(\mathbf{x})) = (y - f(\mathbf{x}))^2 \text{ or } L(y, f(\mathbf{x})) = 0.5 \cdot (y - f(\mathbf{x}))^2$$



- Why penalize **residuals**  $r = y f(\mathbf{x})$  quadratically?
  - Easy to optimize (convex, differentiable)
  - Theoretically appealing (connection to classical stats LM)

#### **LOSS PLOTS**

We will often visualize loss effects like this:





- Data as y ~ x<sub>1</sub>
- ◆ Prediction hypersurface
   → here: line
- Residuals r = y f(x)

   ⇒ squares to illustrate loss

- Loss as function of residuals
   → strength of penalty?
   → symmetric?
- Highlighted: loss for residuals shown on LHS

Resulting risk equivalent to sum of squared errors (SSE):

$$\mathcal{R}_{\mathsf{emp}}(oldsymbol{ heta}) = \sum_{i=1}^n \left( y^{(i)} - oldsymbol{ heta}^{ op} \mathbf{x}^{(i)} 
ight)^2$$

Resulting risk equivalent to sum of squared errors (SSE):

$$\mathcal{R}_{\mathsf{emp}}(oldsymbol{ heta}) = \sum_{i=1}^n \left( y^{(i)} - oldsymbol{ heta}^{ op} \mathbf{x}^{(i)} 
ight)^2$$



Resulting risk equivalent to sum of squared errors (SSE):

$$\mathcal{R}_{\mathsf{emp}}(oldsymbol{ heta}) = \sum_{i=1}^n \left( y^{(i)} - oldsymbol{ heta}^{ op} \mathbf{x}^{(i)} 
ight)^2$$



Resulting risk equivalent to sum of squared errors (SSE):

$$\mathcal{R}_{\mathsf{emp}}(oldsymbol{ heta}) = \sum_{i=1}^n \left( y^{(i)} - oldsymbol{ heta}^ op \mathbf{x}^{(i)} 
ight)^2$$





| Intercept $\theta_0$ | Slope $\theta_1$ | SSE   |
|----------------------|------------------|-------|
| 1.80                 | 0.30             | 16.86 |
| 1.00                 | 0.10             | 24.29 |
| 0.50                 | 0.80             | 10.61 |
|                      |                  |       |





| Intercept $\theta_0$ | Slope $\theta_1$ | SSE   |
|----------------------|------------------|-------|
| 1.80                 | 0.30             | 16.86 |
| 1.00                 | 0.10             | 24.29 |
| 0.50                 | 0.80             | 10.61 |
| -1.65                | 1.29             | 5.88  |



Instead of guessing, of course, use optimization!

#### **ANALYTICAL OPTIMIZATION**

Special property of LM with L2 loss: analytical solution available

$$\hat{m{ heta}} \in \mathop{\mathrm{arg\,min}}_{m{ heta}} \mathcal{R}_{\mathsf{emp}}(m{ heta}) = \mathop{\mathrm{arg\,min}}_{m{ heta}} \sum_{i=1}^n \left( y^{(i)} - m{ heta}^{ op} \mathbf{x}^{(i)} 
ight)^2$$

$$= \mathop{\mathrm{arg\,min}}_{m{ heta}} \| \mathbf{y} - \mathbf{X} m{ heta} \|_2^2$$

Find via normal equations

$$rac{\partial \mathcal{R}_{\mathsf{emp}}(oldsymbol{ heta})}{\partial oldsymbol{ heta}} = \mathbf{0}$$

• Solution: ordinary-least-squares (OLS) estimator

$$\hat{\boldsymbol{\theta}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$$

#### STATISTICAL PROPERTIES

- LM with L2 loss intimately related to classical stats LM
- Assumptions
  - $\mathbf{x}^{(i)}$  iid for  $i \in \{1, ..., n\}$
  - Homoskedastic (equivariant) Gaussian errors

$$\mathbf{y} = \mathbf{X}\boldsymbol{\theta} + \boldsymbol{\epsilon}, \ \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \boldsymbol{I})$$

- $\rightsquigarrow y_i$  conditionally independent & normal:  $\mathbf{y}|\mathbf{X} \sim \mathcal{N}(\mathbf{X}\boldsymbol{\theta}, \sigma^2 \mathbf{I})$
- Uncorrelated features
  - → multicollinearity destabilizes effect estimation
- If assumptions hold: statistical inference applicable
  - Hypothesis tests on significance of effects, incl. p-values
  - Confidence & prediction intervals via student-t distribution
  - ullet Goodness-of-fit measure  $R^2=1-{\sf SSE}\ /\ \underbrace{{\sf SST}}_{\sum\limits_i (y^{(i)}-ar{y})^2}$

→ SSE = part of data variance not explained by model