Website-Analyse-Plattform

Bachelor-Arbeit

Inhalt

- Einführung in das Thema
- Interaktionskonzept
- Technisches Konzept
- Tech-Stack
- Fazit und Ausblick

- Erfolgsmessung durch Website-Analyse-Tools
- anhand wichtigster Indikatoren können Ziele überprüft werden
- Bedürfnisse der Nutzer kennenlernen
- Datenschutz schränkt das Tracking ein

ZIEL DER BACHELOR-ARBEIT

- Datenschutzfreundliche und dynamische Website-Analyse-Plattform entwickeln
- Tracking des Website-Nutzers ohne Einwilligung
- Übersichtlichkeit und einfache Nutzung gewährleisten

Durchschnittliche Verweildauer

Ziel mit passenden Key Performance Indikatoren

- Analyse-Tools enthalten viele verschiedene Performance Indikatoren
- Key Performance Indikator tragen zur Zielerreichung bei
- kontinuierliche Erfolgskontrolle

PERFORMANCE INDIKATOREN

	Aktive Nutzer	Absprungrate				
<u>Seitenaufrufe</u>			Geräteinformationen			
		Traffic-Quellen				
Nutzerpfade Unterschiedliche Nutzer						
		Standorte				

/04

Einschränkungen durch den Datenschutz

- DSGVO schützt die personenbezogenen Daten
- TTDSG legt die Einwilligungspflicht fest
- DSGVO & TTDSG erschweren flächendeckendes Tracking
- weitverbreitetste Variante Nutzerdaten in Cookies speichern
- ohne Einwilligung findet kein Tracking statt
- viele Browser & Adblocker blockieren Third-Party-Cookies
- Datenschutz ist kein Problem, sondern Grundrecht der Nutzer

Ab wann kann auf die Einwilligung verzichtet werden?

DSGVO & TTDSG

- Einsatz von ausschließlich essentiellen Cookies
- kein Zugriff auf das Endgerät, um Identifikatoren auszulesen
- Nutzer darf nicht über längeren Zeitraum wieder erkannt werden
- keine Identifikation über personenbezogene Daten -> 2a02:810b:f3f:0:0:0:0:0
- keine zu extremen Tracking-Methoden
- Datenverarbeitung und -transfer nur in Ländern mit angemessenem Datenschutzniveau
- keine Weitergabe oder Kombination der Daten

Tracking ohne Einwilligung

- Vermeidung von 86 % Datenverlust
- ca. doppelt so viele akzeptieren das Tracking bei rechtswidrigen Nudging Techniken

PAGE-TAGGING-METHODE

- JavaScript Code, welcher beim Aufruf der Website ausgeführt wird
- Verzicht auf Cookies oder sonstiges Speichern auf dem Gerät
- Kein expliziter Zugriff auf das Gerät des Nutzers

Tracking ohne Einwilligung – weiteres Problem mit den Adblockern

- Desktop 290 Mio. Menschen
- mobile Endgeräte 560 Mio. Menschen
- blockieren standardmäßig namhafte URLs und Skript-Namen
- unabhängig von First- oder Third-Party-Request
- First-Party-Requests sollten bevorzugt werden
- Hosting auf Subdomain

Sitemap

Übersicht der Websites

Dashboard

Kacheltypen

- Präsentation der Analysedaten
- beinhalten Texte, Zahlen, Diagramme/Grafiken
- Kacheltypen sind für bestimmte Performance Indikatoren geeignet
- Analyse-Daten in bestimmten Format
 - number
 - {number: 15, diff: -10}
 - [{name: "text", value: 10}, {name: "text", value: 5}]

Kacheltypen

LIVEDATA-KACHEL

MULTIDATA-KACHEL

BIGCHART-KACHEL

SMALLTEXT-/SMALLCHART-KACHEL

GOALPROGRESS-KACHEL

consideration			
Environment	54-15444	*******	****
anages arrays year	721	721	100%
1974/19 1974/19 (1981)	178	246	xx%
make make sema ana sesara semasik asaaba sikaransimi	80	152	xx%
ender ender terres tittere eine ender eine terrestende deter	20	80	xx%
make make terms are terres terretor	15	79	xx%
1974/19 1974/19 1919/1919	8	67	xx%

Technische Konzept

Universal Kachel

- < Tile website_id={id} user_id={id} tile="smalltext" indicator="country" i18n="true" />
- jede Kachel stellt eigene Berechnungsanfrage an API
 - 1 \(\rightarrow\)/api/data/\(\frac{1}{\props.website_id\)/\(\frac{1}{\props.user_id\)/\(\frac{1}{\props.tile\)/\(\frac{1}{\props.indicator\)/\(\calculate\)}\)
- anhand des Kacheltypen wird passende Funktion im Backend aufgerufen
- schnell erweiterbar durch neue Kacheltypen

Technisches Konzept

vom Skript zur Datenbank

- Nutzer, Backend, Datenbank
 - 1 <script defer data-identifier="yMtoDNtgSJ" src="http://example.de/wapplytics.js"></script>
- TrackingData-Skript startet bei Aufruf der Website
- Do-Not-Track Überprüfung
- Browserdaten werden extrahiert
- Daten werden an API des VerifyData-Services gesendet

Technisches Konzept

vom Skript zur Datenbank

Verifizierung folgender Daten mit Funktionen des VerifyData-Services

```
"userAgent": "Mozilla/5.0 (Macintosh; Intel Mac OS ...",
"touchpoints": { "maxTouchPoints": 0 },
"os": "MacIntel",
"screen": { "width": 2560, "height": 1440 },
"language": "en-GB",
"referrer ": "https://duckduckgo.com/",
"website": "example.de",
"path": "/",
"identifier ": "yMtoDNtgSJ"
]
```

- SessionUUID Generierung
 - WebsiteID, anonymisierter IP, Referrer, UserAgent, Timestamp und Salt
- anhand der SessionUUID, wird neue Session & View oder nur eine View erstellt

Technisches Konzept

von Datenbank zur Kachel im Frontend

- Analysedaten befinden sich in der Session- und View-Tabelle
- Universal Kachel ruft getData(props)-Funktion auf
- Request-Query sorgt f
 ür passenden Funktionsaufruf
 - \frac{\api/data/\${props.website_id}/\${props.user_id}/\${props.tile}/\${props.indicator}/calculate}
- Ermittlung der richtigen Datenbanktabelle
- Datenbankabfrage unter Berücksichtigung der Zeitspanne und WebsiteID
- einfache Berechnungen finden innerhalb der Abfrage statt
- andernfalls wird zusätzlich JavaScript verwendet
- Rückgabewert passenden Format

Tech-Stack

Fazit und Ausblick

GUTER PROTOTYP FÜR WEITERE ENTWICKLUNGEN

- Datenschutzkonforme Website-Analyse-Plattform
- Tracking ohne Einwilligung des Nutzers
- beliebig viele Websites in anpassbaren Zeitspannen und Zeitzonen
- Universal Kachel-Komponente für alle Performance Indikatoren

AUSBLICK

- Erweiterung der Kacheltypen und Gruppierung der Kacheln
- Kacheleinstellungen zum Anpassen der Darstellung
- Individualisierung der Plattform erweitern
- Hybride Trackingvariante

Live-Demo

