# **ZTM RAG: Generative AI Fundamentos**

quinta-feira, 26 de junho de 2025 13:22

# **Fine Tuning**

Fine-tuning (ou ajuste fino) é o processo de pegar um modelo pré-treinado (como GPT, BERT, T5, etc.) e treiná-lo mais um pouco em uma tarefa específica, com seus próprios dados.

# **Arquitetura Transformers**

É uma arquitetura de rede neural. A ideia principal é usar mecanismos de atenção para entender relações entre palavras, sem depender de RNNs ou CNNs.

O transformers inclui um encoder e um decoder, transformando input sequences em representações detalhas e outputs.



A esquerda é o encoder e a direita é o decoder. Obs:

- Em alguns casos, o modelo pula os processos "Multi Head Attention" e "Feed Forward" para melhorar o desempenho e preservar dados chaves sem processamento desnecessário.
- Nx = A sequencia é repetida para criar representações profundas dos dados

## **Componentes Principais / Camadas**

Input / Output embedding

Adiciona informação de posição aos embeddings, ajudando o modelo a entender a ordem das palavras em uma sequencia.

#### Multi-Head Attention

É o core component. Permite o modelo focar em diferentes partes do input simultaneamente usando multiple "heads" que captura varios aspectos dos dados

### Exemplo:

Input = "gato sentou no tapete"

head 1 = gato + tapete

head 2 = sentou + tapete

head 3 = gato + sentou

#### Add & Norm

Balanceia tudo. Adiciona atalhos de conexão e normaliza os outputs, garantindo estabilidade no aprendizado.

#### Feed Forward

Pega a informação e faz uma série de transformações para torna-los mais precisos e uteis. Os dados passam por uma refinação linear e depois não linear. Ajuda a entender parametros mais complexos.

#### Masked Multi-Head Attention

Similar ao Multi-Head Attention. Mas o Masked significa que o modelo não pode ver tokens futuros na sequencia, apenas tokens que já foram processados. Garantindo que as predições são baseadas apenas nos tokens passados e presentes.

#### Linear

Transforma o output em um formato onde cada dimensão corresponde a um potencial output token.

#### Softmax

Converte os outputs lineares em probabilidades, destacando os tokens mais prováveis na sequencia predita.

# **Attention Mechanisms**

Multi-Head Attention dentro da arquitetura transformers





V K Q = Values, Keys, Queries h = número de attention heads.

# Inputs > Linear

Faz uma transformação linear nos inputs para vectors que podem interagir efetivamente entre eles.

### Scaled Dot-Product Attention

Calcula o attention score (mede a relevância de cada palavra em uma querie), escala eles (previne que os valores fiquem grandes demais), e depois aplica Softmax para converter os scores em probabilidades, focando nas partes do input mais relevantes. Gera um attention score.

Todo esse processo é executato em paralelo multiplas vezes. Cada vez foca em uma parte diferente da sequencia de input.

#### Concat

Combina todos os attention heads em um vetor calcatenado, providenciando uma comprehensive view integrando multiplas perspectivas.

# Concat > Linear

Transformação do output contatenado em uma representação coesa.