Estimación y Predicción en Series Temporales

Procesos Estocásticos

Departamento de Procesamiento de Señales

Instituto de Ingeniería Eléctrica Facultad de Ingeniería

2022

Biblio: Haykin, *Adaptive Filter Theory*, 4ta./5ta. edición. Capítulo 1 y Apéndice E.

Intro y Agenda

Veremos dos aspectos básicos:

- 1 Propiedades de la matriz de correlación y de la densidad espectral de potencia.
- 2 Modelización de un proceso de este tipo como la salida de un filtro lineal discreto excitado por ruido blanco.
 - Un proceso estocástico no es tan solo una única función del tiempo, sino que representa un número infinito de realizaciones diferentes del proceso.
- A una realización particular del proceso le llamamos serie temporal.
- **Def:** Un proceso estocástico es estrictamente estacionario (SSS) si sus propiedades estadísticas son invariantes en el tiempo. Específicamente, para que un proceso estocástico representado por la serie

$$\mathbf{u}(n) = (u(n), u(n-1), \dots, u(n-M+1))$$
 sea SS, la

Caracterización parcial de un proceso

En la práctica no es posible determinar la función de probabilidad conjunta con muchas variables y debemos recurrir a una caracterización parcial del proceso con el primer y segundo momento.

Consideremos un proceso

$$\mathbf{u}(n) = [u(n), u(n-1), \dots, u(n-M+1)].$$

- Función valor medio: $\mu(n) = \mathbb{E}[u(n)]$
- Función de autocorrelación: $r(n, n-k) = \mathbb{E}[u(n)u^*(n-k)], k \in \mathbb{Z}$
- Función de autocovarianza:

$$c(n, n-k) = \mathbb{E}[(u(n) - \mu(n))(u(n-k) - \mu(n-k))^*], k \in \mathbb{Z}$$

• Obs: $c(n, n - k) = r(n, n - k) - \mu(n)\mu^*(n - k)$.

Le llamamos a este conjunto de funciones *carcterización parcial* del proceso.

Ventajas de la caracterización parcial:

 Es posible medir o estimar estas cantidades (e.g. mediante procedimientos de Monte Carlo).

Caracterización parcial de un proceso

Si el proceso es SSS, las ecuaciones se reducen a, \forall n:

$$\mu(n) = \mu \text{ constante}$$

$$r(n,n-k) = r(k)$$

$$c(n,n-k) = c(k)$$

Obs.: en el caso k=0, tenemos $r(0)=\mathbb{E}[|u(n)|^2]$ y $c(0)=\sigma_u^2$.

Def: Un proceso se dice *estacionario en sentido amplio (WSS)* si $\mu(n) = \mu$ constante, y $r(n, n-k) = r(k) \ \forall \ n$.

Thm (Doob): Un proceso $\{u(n)\}$ SS es WSS \Leftrightarrow $\mathbb{E}[|u(n)|^2] < +\infty \ \forall \ n.$ Obs.: Si un proceso Gaussiano es WSS

⇒ también es SS

Ergodicidad: Teorema ergódico en la media

- Las esperanzas son medias sobre los ensambles o realizaciones.
- También podemos definir medias en el tiempo.
- Si el proceso es ergódico en la media, podemos intercambiar ambos promedios. Para esto, debemos probar que los promedios temporales convergen a los promedios sobre realizaciones, en algún sentido estadístico. Un criterio de convergencia muy utilizado es es el error cuadrático medio.

Sea u(n) WSS, con $\mu=\mathbb{E}[u(n)]$ y $c(k)=E[(u(n)-\mu)(u(n-k)-\mu)^*].$ Consideremos el promedio temporal $\hat{\mu}(N)=\frac{1}{N}\sum_{n=0}^{N-1}u(n).$

- $\hat{\mu}(N)$ es un estimador insesgado de μ para todo N.
- Decimos que u(n) es ergódico en la media en el sentido del MSE si

$$\lim_{N \to +\infty} \mathbb{E}[|\hat{\mu}(N) - \mu|^2] = 0$$

Ergodicidad en media

$$\mathbb{E}[|\hat{\mu}(N) - \mu|^2] = \stackrel{operando}{=} \frac{1}{N^2} \sum_{n=0}^{N-1} \sum_{k=0}^{N-1} c(n-k)$$

$$\stackrel{l=n-k}{=} \frac{1}{N} \sum_{n=-N+1}^{N-1} (1-|l|/N)c(l).$$

Tenemos entonces una CNS para la ergodicidad en media:

$$\lim_{N \to +\infty} \frac{1}{N} \sum_{n=-N+1}^{N-1} (1 - |l|/N)c(l) = 0$$

(Teorema de ergodicidad en la media)

Ergodicidad en correlación

El teorema de ergodicidad en la media puede ser utilizado para otros promedios temporales del proceso. Por ejemplo, aplicándolo a

$$\hat{r}(k,N) = \frac{1}{N} \sum_{n=0}^{N-1} u(n)u^*(n-k), \quad k = 0, 1, \dots, N-1,$$

diremos que u(n) es ergódico en correlación en el sentido del MSE si $_$

$$\lim_{N \to +\infty} \mathbb{E}[|\hat{r}(k,N) - r(k)|^2] = 0, \quad \forall \ k$$

Matriz de correlación

Consideramos el proceso estocástico

$$\mathbf{u}^{T}(n) = [u(n), u(n-1), \dots, u(n-M+1)].$$

Su matriz de (auto)correlación es $\mathbf{R} = \mathbb{E}[\mathbf{u}(n)\mathbf{u}^H(n)].$

Matriz de correlación de un proceso WSS

• Si el proceso es WSS desaparece la dependencia en n:

$$\mathbf{R} = \begin{bmatrix} r(0) & r(1) & \dots & r(M-1) \\ r(-1) & r(0) & \dots & r(M-2) \\ \vdots & \ddots & \ddots & \vdots \\ r(-M+1) & \dots & r(-1) & r(0) \end{bmatrix}$$

• Obs: $r(0) \in \mathbb{R}$, $r(k) \in \mathbb{C} \ \forall \ k \neq 0$.

Propiedades de la matriz de correlación de un proceso WSS

Prop. 1: R es Hermítica

Esto es $\mathbf{R} = \mathbf{R}^H$. Esto surge inmediatamente de la definición de r(k), que verifica $r(-k) = r^*(k)$. Entonces:

- Para definir \mathbf{R} , sólo necesitamos r(k) para $k = 0, 1, \dots, M-1$.
- Si el proceso es real, entonces R es real y simétrica.

Prop. 2: R es Toeplitz

Esto quiere decir que dentro de cada diagonal, sus elementos son iguales.

- Es consecuencia del carácter WSS del proceso.
- Hay algoritmos específicos para inversión y descomposiciones de matrices que aprovechan la estructura Toeplitz para bajar el costo computacional

Propiedades de la matriz de correlación de un proceso WSS

Prop. 3: R es semi-definida positiva

- Si bien puede ser singular, rara vez ocurre (casos patológicos)
- Dem: Sea \mathbf{x} un vector complejo, consideremos $y = \mathbf{x}^H \mathbf{u}(n)$. Tenemos: $0 \leq \mathbb{E}[|y^2|] = \mathbb{E}[yy^*] = \mathbb{E}[\mathbf{x}^H \mathbf{u}(n)\mathbf{u}^H(n)\mathbf{x}] = \mathbf{x}^H \mathbf{R} \mathbf{x}$. Para que valga la igualdad, debe haber una dependencia lineal entre las variables aleatorias que constituyen $\mathbf{u}(n)$ (cosa que ocurre esencialmente sólo cuando $\mathbf{u}(n)$ es el muestreo de $K \leq M$ sinusioides).
- Podemos considerar en la práctica que R es definida positiva.

Prop. 4: Relación entre las matrices R_M y R_{M+1}

- Queremos encontrar $\mathbf{q} \neq \mathbf{0}$ tal que $\mathbf{R}\mathbf{q} = \lambda \mathbf{q}$ para cierto λ .
- De forma equivalente, $(\mathbf{R} \lambda \mathbf{I})\mathbf{q} = \mathbf{0} \Leftrightarrow \det(\mathbf{R} \lambda \mathbf{I}) = 0$.
- Veremos propiedades de los valores y vectores propios de R, muchas de ellas son consecuencia de que R es hermítica y semi-definida positiva.

Prop. 1: Los v. p. de \mathbf{R} , $\lambda_1, \lambda_2, \dots, \lambda_M$ son reales positivos.

Dem.:

$$\mathbf{R}\mathbf{q}_i = \lambda_i \mathbf{q}_i \Rightarrow \mathbf{q}_i^H \mathbf{R} \mathbf{q}_i = \lambda_i \mathbf{q}_i^H \mathbf{q}_i \Leftrightarrow \lambda_i = \underbrace{\frac{\mathbf{q}_i^H \mathbf{R} \mathbf{q}_i}{\mathbf{q}_i^H \mathbf{q}_i}}_{\text{coef. de Rayleigh de } \mathbf{q}_i} \geq 0.$$

Prop. 2: Sea k>0 entero. Si λ es v.p de \mathbf{R} , λ^k es v.p de \mathbf{R}^k . Si además $\lambda>0$, λ^{-k} es v.p de \mathbf{R}^{-k} .

Dem.: basta con multiplicar recursivamente por ${\bf R}$ la igualdad ${\bf R}{\bf q}=\lambda{\bf q}.$

Prop. 3: Los q_i asociados a los v. p. λ_i , $i=1,\ldots,M$ son ortogonales entre sí.

$$\mathbf{R}\mathbf{q}_{i} = \lambda_{i}\mathbf{q}_{i} \Rightarrow \mathbf{q}_{j}^{H}\mathbf{R}\mathbf{q}_{i} = \lambda_{i}\mathbf{q}_{j}^{H}\mathbf{q}_{i},$$

$$\mathbf{R}\mathbf{q}_{j} = \lambda_{j}\mathbf{q}_{j} \Rightarrow \mathbf{q}_{j}^{H}\underbrace{\mathbf{R}^{H}}_{\mathbf{R}} = \lambda_{j}\mathbf{q}_{j}^{H} \Rightarrow \mathbf{q}_{j}^{H}\mathbf{R}\mathbf{q}_{i} = \lambda_{j}\mathbf{q}_{j}^{H}\mathbf{q}_{i}.$$

Restando las ecuaciones en azul, $0 = (\lambda_i - \lambda_j) \mathbf{q}_j^H \mathbf{q}_i$, por lo que $\forall i \neq j, \ \mathbf{q}_i^H \mathbf{q}_i = 0$.

Prop. 4: Teorema Espectral

Sea $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_M)$.

Sean $\mathbf{q}_1, \dots, \mathbf{q}_M$ correspondientes a $\lambda_1, \dots, \lambda_M$ distintos.

Sea
$$\mathbf{Q} = [\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_M]$$
, con $\mathbf{q}_i^H \mathbf{q}_j = \left\{ egin{array}{ll} 1 & ext{si } i = j, \\ 0 & ext{si } i
eq j. \end{array} \right.$

Entonces:

- \mathbf{Q} es unitaria i.e. $\mathbf{Q}^H \mathbf{Q} = \mathbf{I}$, o de forma equivalente $\mathbf{Q}^{-1} = \mathbf{Q}^H$.
- $\Lambda = \mathbf{Q}^H \mathbf{R} \mathbf{Q}$.
- $\mathbf{R} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^H = \sum_{i=1}^M \lambda_i \mathbf{q}_i \mathbf{q}_i^H$ (descomposición espectral).

Prop. 5

$$\operatorname{Tr}(\mathbf{R}) = \sum_{i=1}^{M} \lambda_i.$$

Prop. 6 (surge del Teorema de los círculos de Gershgorin)

$$\lambda_{max} \le \sum_{k=0}^{M-1} |r(k)|, \quad \lambda_{min} \ge r(0) - \sum_{k=1}^{M-1} |r(k)|.$$

Prop. 7: sobre el número de condición

La matriz de correlación ${\bf R}$ es mal condicionada si el cociente $\lambda_{max}/\lambda_{min}$ es grande. Definiciones:

- Número de condición: $\chi(\mathbf{A}) = \|\mathbf{A}\| \|\mathbf{A}^{-1}\|$.
- De forma general la norma de una matriz \mathbf{A} inducida por una norma vectorial dada se define como se define como $\|\mathbf{A}\| = \max \frac{\|\mathbf{A}\mathbf{x}\|}{\|\mathbf{x}\|}$.
- La norma espectral se define como la norma inducida por la norma 2,

$$\|A\|_S^2 = \max \frac{\|\mathbf{A}\mathbf{x}\|_2^2}{\|\mathbf{x}\|_2^2} = \max \frac{\mathbf{x}^H \mathbf{A}^H \mathbf{A}\mathbf{x}}{\mathbf{x}^H \mathbf{x}} = \lambda_{max}(\mathbf{A}^H \mathbf{A})$$
. Como $\mathbf{A}^H \mathbf{A}$ es hermítica y definida positiva, sus v.p. son positivos, $\Rightarrow \|A\|_S = \sqrt{\lambda_{max}(\mathbf{A}^H \mathbf{A})}$.

Prop. 7 (número de condición, continuación)

Aplicación de la norma espectral a R:

 ${f R}^H={f R}\Rightarrow {\sf Si}\; \lambda_{max}$ es el mayor v.p. de ${f R},\,\lambda_{max}^2$ mayor v.p de

 $\mathbf{R}^H \mathbf{R} \Rightarrow \|\mathbf{R}\|_S = \lambda_{max}.$

De la misma forma, $\|\mathbf{R}^{-1}\|_S = 1/\lambda_{min}$.

Finalmente,

$$\chi(\mathbf{R}) = \frac{\lambda_{max}}{\lambda_{min}}.$$

Si $\chi(\mathbf{R})$ es grande, se dice que \mathbf{R} está mal condicionada.

Resolver problemas inversos con matrices de número de condición grande conduce a fuertes inestabilidades, amplificación del ruido, etc. ¿Porqué? Justificar y discutir posibles soluciones al problema.

Descomposición de Karhunen-Loève

Sea $\mathbf{u}(n) = [u(n), u(n-1), \dots, u(n-M+1)]$ una realización de un proceso WSS, de media nula y matriz de correlación \mathbf{R} . Sean $\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_M$ los vectores propios asociados a los valores propios de \mathbf{R} . Entonces vale la expansión

$$\mathbf{u}(n) = \sum_{i=1}^{M} c_i(n) \mathbf{q}_i$$
, con $c_i(n) = \mathbf{q}_i^H \mathbf{u}(n)$.

¿Cuánto valen media y correlación de los $c_i(n)$?

$$\mathbb{E}[c_i(n)] = \mathbf{q}_i^H \mathbb{E}[\mathbf{u}(n)] = 0, \quad \mathbb{E}[c_i(n)c_j^*(n)] = \begin{cases} \lambda_i & i = j, \\ 0 & i \neq j \end{cases}$$

Además, $\sum_{i=1}^{M} |c_i(n)|^2 = \|\mathbf{u}(n)\|^2$.

Supongamos $\lambda_1>\lambda_2>\cdots>\lambda_M$, y que tenemos información a priori que para p< M, los $\lambda_{p+1},\ldots,\lambda_M$ son muy pequeños. Consideramos la aproximación:

$$\hat{\mathbf{u}} = \sum_{i=1}^{p} c_i(n) \mathbf{q}_i$$

$$\mathbf{c}(n) = [c_1(n), c_2(n), \dots, c_p(n)]$$
 representación de rango bajo de $\mathbf{u}(n)$.

¿Cuánto vale el error cuadrático medio de aproximación? $\mathbf{e}(n) = \mathbf{u}(n) - \hat{\mathbf{u}}(n) = \sum_{i=n+1}^{M} c_i(n) \mathbf{q}_i$.

$$\epsilon = \mathbb{E}[\|\mathbf{e}(n)\|^2] = \mathbb{E}[\mathbf{e}(n)^H \mathbf{e}(n)]$$

$$= \mathbb{E}\left[\sum_{i=p+1}^M \sum_{j=p+1}^M c_i^*(n)c_j(n)\mathbf{q}_i^H \mathbf{q}_j\right]$$

$$= \sum_{i=p+1}^M \sum_{j=p+1}^M \mathbb{E}[c_i^*(n)c_j(n)]\mathbf{q}_i^H \mathbf{q}_j = \sum_{i=p+1}^M \lambda_i.$$

Aplicación: Transmisión de $\mathbf{u}(n)$ por un canal ruidoso

Suponemos ruido del canal $\mathbf{v}(n)$ aditivo, WGN, independiente de la señal. Tenemos

- $\mathbb{E}[\mathbf{u}(n)\mathbf{v}^H(n)] = \mathbf{0}$
- $\mathbb{E}[\mathbf{v}(n)\mathbf{v}^H(n)] = \sigma^2\mathbf{I}$

Transmisión:

Directa:

Indirecta:

Aplicación: Transmisión de $\mathbf{u}(n)$ por un canal ruidoso

Transmisión directa:

$$y_D(n) = u(n) + v(n)$$

$$\epsilon_D = \mathbb{E}[\|\mathbf{y}_D(n) - \mathbf{u}(n)\|^2] = \mathbb{E}[\|\mathbf{v}(n)\|^2]$$

$$= \sum_{i=1}^M \mathbb{E}[|v_i(n)|^2] = M\sigma^2.$$

Transmisión indirecta:

$$\begin{cases} \mathbf{c}(n) = \underbrace{[\mathbf{q}_1, \dots, \mathbf{q}_p, \mathbf{0}, \dots, \mathbf{0}]^H}_{\tilde{\mathbf{Q}}^H} \mathbf{u}(n) \\ \mathbf{r}(n) = \mathbf{c}(n) + \mathbf{v}(n) \end{cases}$$

$$\Rightarrow \mathbf{y}_I = \tilde{\mathbf{Q}}^H[c_1(n), \dots, c_p(n), 0, \dots, 0]^T + \tilde{\mathbf{Q}}^H[v_1(n), \dots, v_p(n), 0, \dots, 0]^T$$

Aplicación: Transmisión de $\mathbf{u}(n)$ por un canal ruidoso

Transmisión indirecta (cont):

$$\Rightarrow \epsilon_I = \mathbb{E}[\|\mathbf{y}_I(n) - \mathbf{u}(n)\|^2] = \mathbb{E}\left[\|\underbrace{\mathbf{u}(n) - \mathbf{u}(n)}_{-\sum_{i=p+1}^M \sqrt{\lambda_i} \mathbf{q}_i} + \sum_{i=1}^p v_i(n) \mathbf{q}_i\|^2\right]$$
$$= \sum_{i=p+1}^M \lambda_i + p\sigma^2 \ (= \text{ error de aprox. señal + ruido filtrado}).$$

Ejercicio: establecer en qué condiciones es mejor la transmisión indirecta a la directa.

$$\epsilon_I < \epsilon_D \Leftrightarrow \sum_{i=p+1}^M \lambda_i + p\sigma^2 < M\sigma^2 \Leftrightarrow \sum_{i=p+1}^M \lambda_i < (M-p)\sigma^2.$$

Filtros propios (Eigenfilters)

- u(n) WSS, media cero, mat. de correlación ${\bf R},\ v(n)$ WGN, σ^2
- u(n) y v(n) no correlacionados: $\mathbb{E}[u(n)v^*(m)] = 0 \ \forall \ m, n.$

Objetivo: encontrar el filtro óptimo \mathbf{w} que maximice la SNR a la salida.

Ejercicio: Calcular la potencia media a la salida, y sus contribuciones debido a la señal y al ruido $y(n) = w * (u + w)(n) = \sum_{k=0}^{M-1} w(k)(u(n-k) + v(n-k))$

$$\mathbb{E}[|y(n)|^2] = \sum_{k,k'} w(k) \mathbb{E}\left[(u(n-k) + v(n-k))(u(n-k') + v(n-k'))^* \right]$$

Filtros propios (Eigenfilters)

Ejercicio: encontrar \mathbf{w} que maximice $SNR = \frac{\mathbf{w}^H \mathbf{R} \mathbf{w}}{\sigma^2 \mathbf{w}^H \mathbf{w}}$.

Filtro óptimo:

$$\left\{ \begin{array}{l} \max_{\mathbf{w}} SNR \\ \text{sujeto a } \mathbf{w}^H \mathbf{w} = 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \max_{\mathbf{w}} \mathbf{w}^H \mathbf{R} \mathbf{w} \\ \text{sujeto a } \mathbf{w}^H \mathbf{w} = 1 \end{array} \right.$$

 \Leftrightarrow

 ${f w}$ vector propio asociado al mayor valor propio de ${f R}$ $(\lambda_{max},{f q}_{max})$

$$\left\{ egin{array}{l} \mathbf{w}_{opt} = \mathbf{q}_{max} \ \mathsf{SNR}_{opt} = rac{\lambda_{max}}{\sigma^2} \end{array}
ight.$$

Densidad Espectral de Potencia

La matriz de correlación es una descripción temporal de las propiedades estadísticas de segundo orden del proceso.

Aplicándo la DTFT a la secuencia de autocorrelaciones $\{r(k)\}$ obtenemos la densidad espectral de potencia (o espectro de potencia) del proceso.

Def.:

$$S(\omega) = \sum_{k=-M+1}^{M+1} r(k) \exp(-i\omega k), \quad -\pi \le \omega < \pi.$$

Tenemos además la fórmula de inversión

$$r(k) = \frac{1}{2\pi} \int_{\pi}^{\pi} S(\omega) \exp(i\omega k) d\omega, \quad k = 0, \pm 1, \pm 2, \dots, \pm M - 1.$$

Densidad Espectral de Potencia: Filtrado de un proceso

$$\mathbf{u}(n), S_u(\omega) \longrightarrow \overline{\{h(l)\}, H(\omega)} \longrightarrow \mathbf{y}(n), S_y(\omega)$$

¿Cuánto vale $S_u(\omega)$?

Para cada realización de $\mathbf{u}(n)$, tenemos $y(n) = \sum_{l=0}^{M-1} h(l)u(n-l)$.

$$r_y(k) = \mathbb{E}[y(n)y^*(n-k)] = \sum_{l=0}^{M-1} \sum_{l'=0}^{M-1} h(l)h^*(l')\mathbb{E}[u(n-l)u^*(n-k-l')]$$

$$= \sum_{l=0}^{M-1} \sum_{l'=0}^{M-1} h(l)h^*(l')r_u(k+l'-l) = \sum_{l=0}^{M-1} h(l) \sum_{l'=0}^{M-1} h^*(l')r_u(k+l'-l)$$

Entonces

Densidad Espectral de Potencia: Propiedades

Prop.1: La DEP de un proceso WSS discreto es 2π -periódica

$$S(\omega + 2n\pi) = \sum_{k=-M+1}^{M-1} r(k) \exp(-i(\omega + 2n\pi)k))$$
$$= \sum_{k=-M+1}^{M-1} r(k) \exp(-i2n\pi) \exp(-i\omega k) = S(\omega)$$

Prop.2: La DEP de un proceso WSS discreto es real

$$S(\omega) = r(0) + \sum_{k=1}^{M-1} r(k) \exp(-i\omega k) + \sum_{k=-M+1}^{-1} r(k) \exp(-i\omega k)$$

Prop.3: La DEP de un proceso WSS discreto real es par

$$S(-\omega) = \sum_{k=-M+1}^{M-1} r(k) \exp(i\omega k)^{l=-k} \sum_{l=-M+1}^{M-1} r(-l) \exp(-i\omega l)^{l=-k}$$

$$= \sum_{l=-M+1}^{M-1} r^*(l) \exp(-i\omega l)^{r^*(l)=r(l)} \sum_{l=-M+1}^{M-1} r(l) \exp(-i\omega l)^{l=-k}$$

Prop.4: El área bajo la curva $\omega \mapsto S(\omega)/2\pi$ es el valor cuadrático medio del proceso, o su potencia

Si k = 0, de la fórmula de inversión

$$r(0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} S(\omega) d\omega.$$

Prop.5: La DEP es positiva

Definimos el filtro $H(\omega):=1\!\!1_{\{|\omega-\omega_c|\leq\Delta\omega\}}.$ La salida y de filtrar $\mathbf{u}(n)$ por H conduce a $S_u(\omega) = S_u(\omega)|H(\omega)|^2$. Luego,

$$0 \le \mathbb{E}[y^2(n)] = r_y(0) = \frac{1}{2\pi} \int_{\omega_c - \Delta\omega}^{\omega_c + \Delta\omega} S_u(\omega)$$

$$0 \le \mathbb{E}[y^{2}(n)] = r_{y}(0) = \frac{1}{2\pi} \int_{\omega_{c} - \Delta\omega}^{\omega_{c} - \Delta\omega} S_{u}(\omega)$$
$$\sim_{\Delta\omega \to 0} \frac{1}{2\pi} \int_{\omega_{c} - \Delta\omega}^{\omega_{c} + \Delta\omega} \left(S_{u}(\omega_{c}) + \frac{dS}{d\omega}(\omega_{c})(\omega - \omega_{c}) \right) d\omega = \frac{1}{2\pi} 2\Delta\omega S_{u}(\omega_{c})$$

$$\Rightarrow S(\omega_c) > 0 \ \forall \in [-\pi, \pi).$$

Prop.6: Si λ_m , $m=1,\ldots,M$ son los v.p de R, entonces

 $\min_{\omega} S(\omega) \leq \lambda_m \leq \max_{\omega} S(\omega)$. Además, $\chi(\mathbf{R}) = \frac{\lambda_{max}}{\lambda_{min}} \leq \frac{S_{max}}{S_{min}}$.

Sabemos que
$$\lambda_m = \frac{\mathbf{q}_m^H \mathbf{R} \mathbf{q}_m}{\mathbf{q}_m^H \mathbf{q}_m}$$
, con $\mathbf{q}_m = [q_m(1), q_m(1), \dots, q_m(M)]^T$.

$$\mathbf{q}_m^H \mathbf{R} \mathbf{q}_m = \sum_{k=1}^m \sum_{l=1}^m q_m(k)^* r(l-k) q_m(l)$$
$$= \frac{1}{2\pi} \sum_{l=1}^m \sum_{l=1}^m q_m(k)^* q_m(l) \int_0^\pi S(\omega) \exp(i\omega(l-k)) d\omega$$

Prop. 6 (cont.)

Si llamamos $Q'(\omega)$ a la DTFT de \mathbf{q}_m^* , i.e.

$$Q'(\omega) = \sum_{k=1}^{M} \mathbf{q}_{m}^{*}(k) \exp(-i\omega k)$$
, tenemos que

$$\mathbf{q}_m^H \mathbf{R} \mathbf{q}_m = \frac{1}{2\pi} \int_{-\pi}^{\pi} S(\omega) |Q'(\omega)|^2 d\omega.$$

De la misma forma,

$$\mathbf{q}_m^H \mathbf{q}_m = \frac{1}{2\pi} \int_{-\pi}^{\pi} |Q'(\omega)|^2 d\omega.$$

Luego,

$$\lambda_m = \frac{\int_{-\pi}^{\pi} S(\omega) |Q'(\omega)|^2 d\omega}{\int_{-\pi}^{\pi} |Q'(\omega)|^2 d\omega},$$

por lo que

$$\min S(\omega) \le \lambda_m \le \max S(\omega).$$