INTERACÇÃO PESSOA MÁQUINA

AULA 10

AVALIAÇÃO

©2012-...LÍGIA FERREIRA BASEADO EM MATERIAL ©ALAN DIX ©SALVADOR ABREU @INTRODUÇÃO DESIGN DE INTERFACES

AVALIAÇÃO

- Três objectivos principais:
 - → As funcionalidades do sistema:
 - Funcionalidades disponíveis de acordo com a análise
 - → Impacto da interface no utilizador
 - Capacidade de aprendizagem, capacidade de utilização, atitude do utilizador
 - → Identificação dos problemas específicos do sistema

AVALIAÇÃO

- Desenho: possivelmente sem envolver directamente o utilizador.
- Implementação: estuda a utilização real do sistema.
- Algumas técnicas são aplicadas em ambos os casos

- Criada por J. Nielsen, que fez vários estudos para avaliar a sua eficiência (taxa favorável de custo/benefício).
- Executada por um perito
- Com base em análise e julgamento
- Processo:
 - → O avaliador inspecciona exaustivamente a interface
 - → Compara a interface com a heurística
 - ⇒Elaboraruma lista de problemas de usabilidade
 - ⇒Explica e justifica cada problema encontrado de acordo com a heurística

DIRECTRIZES DE USABILIDADE

- Muito por onde escolher
 - → Princípios Nielsen
 - http://www.useit.com/papers/heuristic/heuristic_list.html)
 - → Princípios Tognazzini
 - http://www.asktog.com/basics/firstPrinciples.html
 - →Norman: Desenho de Coisas do Quotidiano
 - → Mac, Windows, ... directrizes
- Ajuda para seleccionar alternativas de desenho
- Ajuda para identificar problemas em interfaces (avaliação heurística).

- 1. Match the real world(correspondência com o mundo real)
 - → "Falar a língua do utilizador"
 - → Usar palavras comuns
 - → Não impor limites aos nomes definidos pelo utilizador
 - → Permitir sinónimos em línguas de comando
 - → As metáforas são úteis, mas...tenham cuidado.

- Consistency & Standards(Consistência & Standards)
 - → "Princípio da menor surpresa"
 - → Coisas semelhantes devem parecer e comportar-se de forma semelhante
 - → Coisas diferentes devem parecer diferentes
 - → Palavras, cor, posição, tamanho, ordem
 - → Seguir as normas da plataforma

- 3. Help & Documentation(Ajuda & Documentação)
 - ⇒em geral, os utilizadores não lêem os manuais do utilizador
 - ... excepto quando não têm outra hipótese
 - → Mas os manuais do utilizador e a ajuda on-line são essenciais
 - → A ajuda deve ser:
 - Contextual
 - Pesquisável
 - Orientada para as tarefas
 - Concreta
 - Concisa

- 5. Visibility of system status(Visibilidade do estado do Sistema)
 - → "Feedback"
 - → Manter o utilizador informado sobre o estado do sistema
 - Apresentar destaque de selecção
 - Mudanças de cursor
 - Barra de estado, barra de progresso
 - → Tempo de resposta
 - < 0,1s: parece instantâneo
 - 0,1-1s: informar o utilizador, mas não há necessidade de feedback
 - 1-5s: exibir cursor ocupado
 - > 5s: mostrar uma barra de progresso

https://medium.com/nyc-design/1-visibility-of-system-status-with-examples-5e3bc9adfe7b

- Flexibility & Efficiency of use(Flexibilidade & Eficiência de utilização)
 - → Atalhos para operações frequentes
 - Aceleradores de teclados
 - Abreviaturas de comando
 - Favoritos
 - História
 - → Macro para acções repetitivas

- 7. Error prevention (Prevenção de erros)
 - →Não dar aos utilizadores a oportunidade de cometerem erros
 - →A selecção é menos dada ao erro que a dactilografia
 - → Desactivar operações ilegais
 - ⇒Evitar modos.

- 8. Recognition, Not Recall ("Reconhecer é melhor que recordar")
 - → "Minimizar o uso da memória(MCD)"
 - →Norman: "Conhecimento na cabeça" vs. "conhecimento no mundo".
 - → Menus vs. comandos
 - → Caixas de Combo vs. caixas de texto
 - → Toda a informação necessária deve estar visível

- Error reporting, diagnosis, and Recovery "Relatório de erros, diagnóstico e recuperação".
 - → As boas mensagens de erro devem:
 - ser precisas: "Can't open file" vs. "Can't open file nnn.doc"
 - ser construtivas: por que razão ocorreu o erro e como corrigi-lo
 - ser educadas: devendo evitar que o utilizador se sinta culpado
 - Ocultar detalhes técnicos até que tal seja solicitado

- Aesthetic and Minimalist Design(Estética e Desenho Minimalista)
 - → "Simplicidade"
 - → Menos é mais
 - omitir tudo o que é supérfluo
 - →Bom desenho gráfico
 - poucas cores, bem escolhidas
 - agrupar com espaços brancos
 - alinhamento de controlos
 - → Usar linguagem concisa
 - escolher cuidadosamente os rótulos

NEILSON

- Satisfazer as expectativas do utilizador
 - 1. Match the real world
 - 2. Consistency & standards
 - 3. Help & documentation
- O utilizador é quem manda
 - 4. User control & freedom
 - 5. Visibility of system status
 - 6. Flexibility & efficiency
- Suporte ao erro
 - 7. Error prevention
 - 8. Recognition, not recall
 - 9. Error reporting, diagnosis, and recovery
- Simplificar
 - 10. Aesthetic & Minimalist design

- Justificar cada problema com uma heurística
 - ⇒"Permite colocar artigos fora de stock no carrinho de compras" "Prevenção de erros"
 - → "Eu não gosto da fonte" subjectivo
- Enumerar todos os problemas encontrados
 - →o mesmo elemento de interface pode ter vários problemas
- Inspeccionar a interface duas vezes
 - ⇒Uma vez, para obter uma visão geral "entrar na onda!"
 - →À segunda, para se concentrar em determinados elementos de interface
- Ir além dos 10 princípios da Nielsen
 - →Affordances, visibilidade, lei de Fitt, princípios da cor
 - mas as 10 heurísticas são fáceis de comparar com

- Avaliação heurística ≠ testes com o utilizador
- O avaliador não é um utilizador
- Analogia: Inspecção de código vs. testes
- Permite descobrir problemas não detectados nos testes com utilizadores(ex: inconsistência da fonte)
- Aplica-se tanto a esboços como a protótipos funcionais

- Utilizar vários avaliadores
 - → Diferentes avaliadores encontram problemas diferentes
 - → Cada novo avaliador encontra poucos problemas novos
 - → Nielsen recomenda 3-5 avaliadores
 - → Os bons avaliadores encontram os problemas simples
 - e os complexos

- Um avaliador resultados pouco fiáveis
 - →detecta 35% dos problemas de usabilidade
- 5 avaliadores
 - →detectar 75% dos problemas de usabilidade
- Porque não mais? 10? 20?
- Custo(\$)
 - → Cada novo avaliador encontra poucos problemas novos

• Rácio Custo/benefício

Nilsen, 1994

Processo formal

1.Formação/treino

- Reunião para a equipa de desenho e os avaliadores
- aborda a aplicação, utilizadores alvo, cenários,...

2. Avaliação

- Os avaliadores trabalham separadamente
- Produzir um relatório escrito ou comentários orais registados por um observador
- Identificam os problemas, mas não a sua gravidade

3. Classificação de severidade

- Todos os problemas identificados por todos os avaliadores são compilados numa lista
- Os avaliadores classificam cada um dos problemas
- Calcular a média das classificações dos avaliadores.

4. Discussão dos resultados

- Equipa de design e avaliadores
- Brainstorm -> soluções

• Severidade

→ Factores:

- Frequência (comum ou raro)
- Impacto (fácil ou difícil de superar)
- Persistência (demora muito a recuperação?)

⇒Escala:

- Cosmética: a correcção não é obrigatória
- Menor: corrigir com baixa prioridade
- Maior: corrigir com alta prioridade
- Catastrófico: a correcção é obrigatória

- Aplica-se a:
 - ⇒Esboços
 - →Protótipos de papel
 - → Protótipos instáveis
- Prós e contras
 - ✓ Mais barato
 - ✓ Rápido
 - ✓ Identifica uma série de problemas: menores e maiores.
 - Mais difícil de identificar elementos em falta num esboço.
 - Mais difícil de identificar os problemas relacionados com o domínio do problema.

- Alternar avaliação heurística com testes de utilizador
 - → Identificam diferentes problemas
 - → Avaliação heurística menos dispendiosa
- O observador pode ajudar o avaliador
 - → Desde que os problemas sejam identificados.

1. Anticipation

9. Human-interface Objects

2. Autonomy

- 10. Latency-reduction
- 3. Colour Blindness
- 11. Learnability

4. Consistency

12. Limit tradeoffs

5. Defaults

- 13. Metaphors
- 6. Eficiency of the user 14. Protect the user's work
- Explorable interfaces 15. Readability

8. Fitt's law

- 16. Track state
- 17. Visible Interfaces

- 1. Antecipação (Anticipation)
 - →antecipar as necessidades do utilizador
- 2. Autonomia(Autonomy)
 - → Dar o controlo ao utilizador
 - →Providenciar a informação necessária para tal
- 3. Daltonismo(Colour Blindness)
 - ⇒não usar exclusivamente a cor para codificar informação (ser redundante)
- 4. Consistência(Consistency)
 - → Sobretudo, ser consistente com as expectativas do utilizador

5. Defaults

- ⇒os valores que vêm por defeito, devem poder ser substituídos facilmente. Os conteúdos por omissão devem ser inteligentes e reactivos
- 6. Eficiência do utilizador(Efficiency of the user)
 - ⇒Enfoque na produtividade do utilizador, não na do computador
 - →Mais rápido? Ferver água no micro-ondas em 1m:10s ou 1m:11s???
 - →A palavra chave deve ocorrer em primeiro lugar, nas etiquetas ou menus:

Wrong	Right
 Insert page break Add Footnote Update Table of Contents 	 Insert: Page break Footnote Table of contents
	2.7

- 7. Interfaces exploráveis(Explorable Interfaces)
 - → "Dar aos utilizadores pontos de referência e estradas bem assinaladas, e depois permitir que passem para todo o terreno".
 - →Ações reversíveis, permitindo sempre o desfazer -> UNDO
- 8. Lei de Fitts(Fitt's Law)
 - → Usar objectos grandes para acções importantes
 - →Quanto maior o botão, maior a rapidez com que o alcançamos
- 9. Objectos típicos da interface com o Humano(Human-interface Objects)
 - →directorias, ficheiro, reciclagem
 - ⇒ consistentes, estáveis, e de significado standartizado

- 10.Redução da latência(Latency reduction)
 - →Multi-tasking, sempre que possível, "empurrando" a latência para os bastidores
 - →Dar uma resposta visual ou auditiva no espaço de tempo de 50 ms
 - →Mostrar uma ampulheta por cada acção que demore mais de 1/2 a 2 s
 - →Comunicar o tempo de demora efectiva através de um indicador de progresso.
 - ⇒Enviar mensagens que indiquem as acções do sistema
 - →Impedir o pressionar múltiplo do mesmo botão ou objecto.

11. Capacidade de ser aprendido(Learnability)

- →O ideal é não existir curva de aprendizagem: isto é aquando da 1ª utilização dum produto os utilizadores deveriam transformar-se em peritos.
- → O ideal não existe.

12. Limitar compromissos (Limit Tradeoffs)

→ Usabilidade e capacidade de ser aprendido, não são mutuamente exclusivos. Decida-se qual o mais importante e ataquem-se ambos.

13. Metáforas (Metaphors)

- ⇒escolher metáforas correctamente, metáforas que permitam que os utilizadores, instintivamente vislumbrem os detalhes mais requintados do modelo conceptual.
- ⇒Boas metáforas são historias, criam retratos visuais na mente.

14. Proteger o trabalho dos utilizadores (Protect the user's work)

⇒Garantir que em caso de erro da sua parte, o trabalho dos utilizadores nunca se perde

15.Legibilidade(Readability)

- →O texto que deve ser lido, deve ter alto contraste. Favorecer texto preto em fundos brancos ou amarelo pálido. Evitar fundos cinzentos.
- →Utilizar tamanhos de fonte que sejam suficientemente grandes por forma a serem legíveis nos monitores standard.
- ⇒Prestar uma atenção particular às necessidades das pessoas mais idosas.

16. Monitorar o estado(track state)

- →Onde estava o utilizador aquando da última sessão?
- → Cookies

17. Navegação visível (Visible Interfaces)

- ⇒Evitar navegação invisível:A maioria dos utilizadores não pode e não vai construir mapas mentais
- → A World Wide Web, para todos é composta de bonitos ecrãs e botões, é, de facto, um espaço de navegação invisível. É um facto que se consegue ver sempre a página onde estamos, mas não se consegue ver nada do vasto espaço entre páginas. Uma vez que os utilizadores chegam às nossas aplicações, temos que providenciar a redução da navegação ao mínimo e da navegação que resta torna-la clara e natural. Apresentar a ilusão de que os utilizadores estão sempre no mesmo local, com o trabalho a ser trazido até si. Isto não só elimina a necessidade de mapas ou outras ajudas de navegação, como oferece ao utilizador um maior sentido de domínio e autonomia.

PASSAGEM COGNITIVA PASSEIO...CAMINHADA....

- Foco na capacidade de aprendizagem: os utilizadores preferem aprender enquanto exploram.
- Passagem de código(code walkthrough) na engenharia de software.
- Os avaliadores executam uma sequência de acções para atingir um objectivo, procurando potenciais problemas de usabilidade.

PASSAGEM COGNITIVA

- Para a passagem, é necessário:
 - 1.Descrição do protótipo (não tem de ser completa, mas tem de ser detalhada).
 - 2. Descrição da tarefa (tarefa frequente).
 - 3. Lista completa das acções necessárias para completar a tarefa com o protótipo dado.
 - 4. Indicações sobre os utilizadores e a sua experiência.

PASSAGEM COGNITIVA

- Os avaliadores passam pela sequência de acções (passo 3) e, para cada acção, tentam perceber se:
 - ⇒os utilizadores tentam executar a acção para executar a tarefa
 - ⇒os utilizadores notam que a acção correcta está disponível (visibilidade)
 - ⇒os utilizadores identificam a acção que devem fazer (ver o botão e saber que esse é o botão certo)
 - → Compreendem o feedback da acção.

PASSAGEM COGNITIVA

• Resultados:

- ⇒Formulário com informações 1,2 e 4, data, hora, avaliador.
- ⇒Formulário separado para cada acção (a partir de 3) para responder às perguntas anteriores.