Generování matic bez zakázaných vzorů

Stanislav Kučera

Informatický ústav Univerzity Karlovy

8. 9. 2016

Zadání

Cílem bakálářské práce bylo navrhnout a implementovat postup, jak vytvořit aproximaci rovnoměrně náhodné binární matice neobsahující daný zakázaný vzor.

Zakázaný vzor

Definice

Binární matice $M \in \{0,1\}^{m \times n}$ obsahuje binární matici $P \in \{0,1\}^{k \times l}$ jako podmatici, pokud lze z M vynecháním některých řádků a sloupečků získat matici M' velikosti $k \times l$ takovou, že pokud má P jedničku na nějaké pozici, má na téže pozici jedničku i M'. Jinak řekneme, že M neobsahuje (vyhýbá se) P jako podmatici.

$$P = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} M_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} M_2 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

Zakázaný vzor

Definice

Binární matice $M \in \{0,1\}^{m \times n}$ obsahuje binární matici $P \in \{0,1\}^{k \times l}$ jako podmatici, pokud lze z M vynecháním některých řádků a sloupečků získat matici M' velikosti $k \times l$ takovou, že pokud má P jedničku na nějaké pozici, má na téže pozici jedničku i M'. Jinak řekneme, že M neobsahuje (vyhýbá se) P jako podmatici.

$$P = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} M_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} M_2 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

Příklady použití

- Za pomoci matic bez zakázaných vzorů se dokázal horní odhad časové složitosti algoritmu Efrata a Sharira na "Segment-center problem".
- Existuje korelace mezi některými třídami matic bez zakázených vzorů a Davenport-Schinzelovým posloupnostmi, které souvisí se složitostí dolní (horní) obálky arrangementů v rovině.

4 / 13

Markovovy řetězce

Definice (neformální)

Pro předepsané pravděpodobnosti $p_{i,j}$ je Markovův řetězec posloupnost X_0, X_1, \ldots prvků ze stavové množiny \mathcal{X} dodržující $P[X_{t+1} = j | X_t = i] = p_{i,j}$.

Markovovy řetězce

Definice (neformální)

Pro předepsané pravděpodobnosti $p_{i,j}$ je Markovův řetězec posloupnost X_0, X_1, \ldots prvků ze stavové množiny \mathcal{X} dodržující $P[X_{t+1} = j | X_t = i] = p_{i,j}$.

Věta (neformální)

Pokud je Markovův řetězec aperiodický, nerozložitelný a symetrický, potom je jeho limita uniformně náhodně rozložena na stavové množině \mathcal{X} .

Markovův řetězec pro matice

Pokud chceme generovat matici neobsahující vzor P, postupujeme takto:

- 2 Zvolíme libovolnou matici M neobahující P.
- 2 Změníme uniformně náhodně vybraný bit M, čímž dostaneme M'.
- **3** Pokud M' neobsahuje P jako podmatici, nastavíme M:=M'.
- Goto 2.

Markovův řetězec pro matice

Pokud chceme generovat matici neobsahující vzor P, postupujeme takto:

- 2 Zvolíme libovolnou matici M neobahující P.
- 2 Změníme uniformně náhodně vybraný bit M, čímž dostaneme M'.
- **3** Pokud M' neobsahuje P jako podmatici, nastavíme M := M'.
- Goto 2.

Protože definovaný Markovův řetězec splňuje předpoklady věty z minulého slidu, je jeho limita náhodná matice neobsahující vzor P jako podmatici. Bohužel zmíněná věta ani žádná jiná (pro obecné Markovovy řetězce) nedává odhad na dostačující počet iterací (mixing time), proto volbu počtu iterací necháme na uživateli.

Markovův řetězec pro matice

Pokud chceme generovat matici neobsahující vzor P, postupujeme takto:

- 2 Zvolíme libovolnou matici M neobahující P.
- 2 Změníme uniformně náhodně vybraný bit M, čímž dostaneme M'.
- **3** Pokud M' neobsahuje P jako podmatici, nastavíme M := M'.
- Goto 2.

Protože definovaný Markovův řetězec splňuje předpoklady věty z minulého slidu, je jeho limita náhodná matice neobsahující vzor P jako podmatici. Bohužel zmíněná věta ani žádná jiná (pro obecné Markovovy řetězce) nedává odhad na dostačující počet iterací (mixing time), proto volbu počtu iterací necháme na uživateli.

Definice

$$\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)$$

Definice

$$\begin{bmatrix}
1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

Definice

$$\begin{bmatrix}
1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
w_1 \\
w_2 & w_3 & w_4 \\
w_5 & w_6 \\
w_7
\end{bmatrix}$$

Definice

Rozhodnout, zda daná matice obsahuje daný vzor je NP-úplné (dokonce i pro permutační matice).

9 / 13

Rozhodnout, zda daná matice obsahuje daný vzor je NP-úplné (dokonce i pro permutační matice).

Při testování obsahování vzoru postupně mapujeme všechny linie (řádky a sloupce) vzoru na všechny možné linie testované matice.

9 / 13

Rozhodnout, zda daná matice obsahuje daný vzor je NP-úplné (dokonce i pro permutační matice).

Při testování obsahování vzoru postupně mapujeme všechny linie (řádky a sloupce) vzoru na všechny možné linie testované matice.

Optimalizace:

Některá částečná mapování můžeme sloučit a tím ušetřit čas i prostor.

Rozhodnout, zda daná matice obsahuje daný vzor je NP-úplné (dokonce i pro permutační matice).

Při testování obsahování vzoru postupně mapujeme všechny linie (řádky a sloupce) vzoru na všechny možné linie testované matice.

Optimalizace:

- Některá částečná mapování můžeme sloučit a tím ušetřit čas i prostor.
- Program poskytuje mnoho různých způsobů jak zvolit pořadí, ve kterém se budou linie mapovat.

Rozhodnout, zda daná matice obsahuje daný vzor je NP-úplné (dokonce i pro permutační matice).

Při testování obsahování vzoru postupně mapujeme všechny linie (řádky a sloupce) vzoru na všechny možné linie testované matice.

Optimalizace:

- Některá částečná mapování můžeme sloučit a tím ušetřit čas i prostor.
- Program poskytuje mnoho různých způsobů jak zvolit pořadí, ve kterém se budou linie mapovat.
- Volitelně program při mapování linie testuje, jestli je dost jedniček tam, kam se budou později mapovat dosud nenamapované linie.

Rozhodnout, zda daná matice obsahuje daný vzor je NP-úplné (dokonce i pro permutační matice).

Při testování obsahování vzoru postupně mapujeme všechny linie (řádky a sloupce) vzoru na všechny možné linie testované matice.

Optimalizace:

- Některá částečná mapování můžeme sloučit a tím ušetřit čas i prostor.
- Program poskytuje mnoho různých způsobů jak zvolit pořadí, ve kterém se budou linie mapovat.
- Volitelně program při mapování linie testuje, jestli je dost jedniček tam, kam se budou později mapovat dosud nenamapované linie.
- Protože známe generující proces a již víme, že matice před změnou bitu vzor neobsahovala, víme také, že pokud ho po změně obsahuje, tak jedině proto, že právě změněný bit je součástí mapování vzoru.

1	Vzor		n	#iterací	pořadí	one	rek	ort	čas (s)
			100	100 000	MAX	ano	ano	ano	121,85
			100	100 000	MAX	ano	ano	ne	120,80
			100	100 000	MAX	ne	ne	ne	263,71
			500	10 000	MAX	ano	ano	ano	1 053,18
1	0	0	500	10 000	MAX	ano	ano	ne	1 051,97
1	1	1	500	10 000	MAX	ne	ne	ne	2 695,26
0	0	1	100	100 000	DESC	ano	ano	ano	82,39
			100	100 000	DESC	ano	ano	ne	92,72
			100	100 000	DESC	ne	ne	ne	113,34
			500	10 000	DESC	ano	ano	ano	430,01
			500	10 000	DESC	ano	ano	ne	446,21
			500	10 000	DESC	ne	ne	ne	195,15

	Vzo	r	n	#iterací	pořadí	one	rek	ort	čas (s)
			100	100 000	MAX	ano	ano	ano	121,85
			100	100 000	MAX	ano	ano	ne	120,80
			100	100 000	MAX	ne	ne	ne	263,71
			500	10 000	MAX	ano	ano	ano	1 053,18
1	0	0	500	10 000	MAX	ano	ano	ne	1 051,97
1	1	1	500	10 000	MAX	ne	ne	ne	2 695,26
0	0	1	100	100 000	DESC	ano	ano	ano	82,39
			100	100 000	DESC	ano	ano	ne	92,72
			100	100 000	DESC	ne	ne	ne	113,34
			500	10 000	DESC	ano	ano	ano	430,01
			500	10 000	DESC	ano	ano	ne	446,21
			500	10 000	DESC	ne	ne	ne	195,15

•	Vzor		n	#iterací	pořadí	one	rek	ort	čas (s)
			100	100 000	MAX	ano	ano	ano	121,85
			100	100 000	MAX	ano	ano	ne	120,80
			100	100 000	MAX	ne	ne	ne	263,71
			500	10 000	MAX	ano	ano	ano	1 053,18
1	0	0	500	10 000	MAX	ano	ano	ne	1 051,97
1	1	1	500	10 000	MAX	ne	ne	ne	2 695,26
0	0	1	100	100 000	DESC	ano	ano	ano	82,39
			100	100 000	DESC	ano	ano	ne	92,72
			100	100 000	DESC	ne	ne	ne	113,34
			500	10 000	DESC	ano	ano	ano	430,01
			500	10 000	DESC	ano	ano	ne	446,21
			500	10 000	DESC	ne	ne	ne	195,15

Vícevláknové generování

Pokud generujeme dostatečně velkou matici a už je dostatečně zahuštěná, potom pravděpodobnost, že nějaká změna bitu uspěje, je malá, a tedy většina iterací neuspěje (matice zůstane taková, jaká byla před iterací).

Vícevláknové generování

Pokud generujeme dostatečně velkou matici a už je dostatečně zahuštěná, potom pravděpodobnost, že nějaká změna bitu uspěje, je malá, a tedy většina iterací neuspěje (matice zůstane taková, jaká byla před iterací).

ldea: pro generovanou matici M si místo jedné vybere p pozic, pro každou samostatně změníme určených bit M, čímž dostaneme p matic M'. Pro každou z nich otestujeme obsahování vzoru, a podle výsledků vybereme, které změny na matici M provedeme.

Vícevláknové generování

Pokud generujeme dostatečně velkou matici a už je dostatečně zahuštěná, potom pravděpodobnost, že nějaká změna bitu uspěje, je malá, a tedy většina iterací neuspěje (matice zůstane taková, jaká byla před iterací).

ldea: pro generovanou matici M si místo jedné vybere p pozic, pro každou samostatně změníme určených bit M, čímž dostaneme p matic M'. Pro každou z nich otestujeme obsahování vzoru, a podle výsledků vybereme, které změny na matici M provedeme.

Výběr změn, které ovlivní generovanou matici musíme dělat opatrně, aby stále neobsahovala zakázaný vzor, a zároveň se proces držel definovaného Markovova řetězce, a tedy konvergoval k náhodné matici.

'	Vzor		n	#iterací	#workerů	spekulace	čas (s)
			100	100 000	1	-	82,39
			100	100 000	4	ano	24,37
			100	100 000	4	ne	26,68
1	0	0	100	100 000	8	ano	14,74
1	1	1	100	100 000	8	ne	16,70
0	0	1	500	10 000	1	-	430,01
			500	10 000	4	ano	152,11
			500	10 000	4	ne	162,65
	500		10 000	8	ano	92,10	
			500	10 000	8	ne	121,26

'	Vzor n		n	#iterací	#workerů	spekulace	čas (s)
			100	100 000	1	-	82,39
			100	100 000	4	ano	24,37
			100	100 000	4	ne	26,68
1	0	0	100	100 000	8	ano	14,74
1	1	1	100	100 000	8	ne	16,70
0	0	1	500	10 000	1	-	430,01
			500	10 000	4	ano	152,11
			500	10 000	4	ne	162,65
			500	10 000	8	ano	92,10
			500	10 000	8	ne	121,26

'	Vzor n		n	#iterací	#workerů	spekulace	čas (s)
			100	100 000	1	-	82,39
			100	100 000	4	ano	24,37
			100	100 000	4	ne	26,68
1	0	0	100	100 000	8	ano	14,74
1	1	1	100	100 000	8	ne	16,70
0	0	1	500	10 000	1	-	430,01
			500	10 000	4	ano	152,11
			500	10 000	4	ne	162,65
			500	10 000	8	ano	92,10
			500	10 000	8	ne	121,26

Děkuji za pozornost.

Pravděpodobnost úspěchu iterace

Pokud se dívám na vzor, kde každá vygenerovaná matice velikosti $N\times N$ má nejvýš cN jedniček, potom v dlouhodobém průměru s pravděpodobností nejvýš $cN/N^2=c/N$ program jedničku změní na nulu, a tedy v průměru také s pravděpodobností nejvýš c/N program úspěšně změní nulu na jedničku, protože počet jedniček bude zhruba konstantní. Pravděpodobnost neúspěšné změny by měla být aspoň 1-2c/N, čímž podíl neúspěšných kroků poroste s N.