Aditya Saraf

as2777@cornell.edu | (425) 697 – 0256 https://adityasaraf.github.io/

RESEARCH INTERESTS

Blockchain Incentive Problems, Decentralized Finance, Behavioral Economics, Mechanism Design for Social Good

EDUCATION

CORNELL UNIVERSITY, Ithaca, NY

August 2021-current

Doctor of Philosophy in Computer Science (expected)

UNIVERSITY OF WASHINGTON, Seattle, WA

June 2020

Master of Science in Computer Science, GPA: 3.98

UNIVERSITY OF WASHINGTON, Seattle, WA

June 2019

Bachelor of Science in Computer Engineering, Magna cum laude, GPA: 3.86

- Minor: Philosophy
- Phi Beta Kappa (ΦΒΚ) member

PAPERS

Published/Forthcoming:

- 1. Joseph Halpern, Aditya Saraf. Chunking Tasks for Present-Biased Agents. EC'23.
- 2. Conor Mayo-Wilson, Aditya Saraf. Collectivist Foundations for Bayesian Statistics. Forthcoming in Philosophers' Imprint.
- 3. Darshan Chakrabarti, Jie Gao, Aditya Saraf, Grant Schoenebeck, Fang-Yi Yu. *Optimal Local Bayesian Differential Privacy over Markov Chains*. AAMAS'22.
- 4. Aditya Saraf, Anna Karlin, Jamie Morgenstern. Competition Alleviates Present Bias in Task Completion. WINE 2020.
- 5. Emily McReynolds, Sarah Hubbard, Timothy Lau, Aditya Saraf, Maya Cakmak, and Franziska Roesner. 2017. *Toys that Listen: A Study of Parents, Children, and Internet-Connected Toys.* CHI '17

In submission/preprints:

- 6. Joseph Halpern, Rafael Pass, Aditya Saraf. Pricing Lending Pools via Option Replication. Preprint on Arxiv.
- 7. Conor Mayo-Wilson, Aditya Saraf. Scientific Evidence and the Duty to Disclose. In submission at Philosophy of Science.
- 8. Conor Mayo-Wilson, Aditya Saraf. *Robust Bayesianism and Likelihoodism*. Early draft presented at FEW 2019. In submission at *Statistical Science*.

Drafts of these papers (and more) can be found on my website: https://adityasaraf.github.io/

RESEARCH PROJECTS

PRICE OF ANARCHY FOR TRANSACTION FEE MECHANISMS

July 2024-current

With Rafael Pass, Joe Halpern, and Benjamin Chan (Cornell)

- Investigating how much social welfare must be eschewed to ensure incentive compatibility
- Proved the optimality of the price of anarchy of an existing incentive compatible mechanism in limited settings

PRICING LENDING POOLS WITH OPTIONS

July 2022-Feb 2024

With Rafael Pass and Joe Halpern (Cornell)

- Created models to price interest rate, collateralization, and liquidation parameters for lending pools, borrowing ideas from options pricing
- Proved that fair interest rate pricing is impossible in several simplified models
- Used recursive barrier options to model the ability of borrowers to "top-up" their loans to prevent liquidation
- Investigated lending pools in practice, showing what discount rates are implied by the existing pool parameters

TIME-INCONSISTENCY IN PLANNING PROBLEMS

December 2019-November 2020; October 2021-December 2022

With Anna Karlin and Jamie Morgenstern (UW); With Joe Halpern (Cornell)

- Analyzed a model of present bias (e.g., procrastination) in graph-based planning problems introduced by Jon
 Kleinberg and Sigal Oren. Existing work shows that present bias can result in exponentially higher cost compared to
 optimal behavior
- Thrust 1: Competition between multiple biased agents
 - Showed that competition alleviates some of the harms of present bias, and can naturally guide agents towards optimal behavior

Aditya Saraf

 $as 2777 @cornell.edu \mid (425) \ 697 - 0256$

https://adityasaraf.github.io/

- o Canonical applications include businesses competing to get to market first, incentivizing students to complete assignments, incentivizing customers to join and use gym facilities, etc.
- Thrust 2: Chunking tasks for biased agents
 - Showed how to optimally chunk a task for different types of agents simultaneously; a relatively small number of chunks suffices to guarantee optimal behavior
 - Canonical applications include chunking assignments for students and algorithmically chunking to-do list

QUALITATIVE PROBABILITY FOR STATISTICAL PRINCIPLES

January 2019–current

With Conor Mayo-Wilson (UW)

- Worked within a formal system of qualitative conditional probability to prove statistical principles
- Showed that Bayesian foundations (of algorithms, decision theory, etc.) apply even when agents might lack quantitative degrees of belief
- Introduced a new theory of evidence based on widespread agreement that generalizes existing theories of evidence to broader settings
- Connected ethical definitions of evidence to the common statistical definitions, show how existing statistical theories can determine when one ought to disclose evidence

BAYESIAN DIFFERENTIAL PRIVACY FOR CORRELATED DATA

October 2019–June 2020

With Grant Schoenebeck (UMich), Fang-Yi Yu (UMich), and Jie Gao (Rutgers)

- Worked with a recent generalization of differential privacy called Bayesian differential privacy, which protects against a wider class of adversaries than standard differential privacy
- Analyzed highly correlated data sets, where traditional differential privacy falls short
- Created sanitized datasets for offline analysis, to enable "local" privacy that works even in distributed settings.
- Proved the near optimality of our mechanism.

RESEARCH MENTORSHIP

POLYGENCE June 2022-present

- Mentored over 10 promising high school students on research projects in computer science, economics, and philosophy
- Helped a student create a quantum cryptography project that won 1st place at the 2023 ISEF science fair
- Several students published their work in high school journals

COLLEGE IMPACT

June 2024—present

Mentored 8 promising high school students on research projects in machine learning, cryptocurrencies, and economics
 LUMIERE

June 2023—present

• Mentored 9 promising high school students on research projects in machine learning, cryptocurrencies, and law

TEACHING EXPERIENCE

FOUNDATIONS OF COMPUTING I, UW (CSE 311), Instructors: Kevin Zatloukal, Emina Torlak

Fall '18

The first class in the major, teaching the basics of logic, discrete math, and formal languages.

INTRODUCTION TO ALGORITHMS, UW (CSE 421), Instructors: Various; Cornell (CS 4820), Instructor: Anke Van Zuylen

Spring '18, Winter '19, Spring '19, Fall '22

An upper division algorithms class taught primarily to juniors/seniors.

CRYPTOGRAPHY, UW (CSE 490C), Instructor: Huijia (Rachel) Lin; Cornell (CS 4830), Instructor: Noah Stephens-Davidowitz

Fall '19, Spring '22

An upper division class on formal cryptography.

INCENTIVES IN COMPUTER SCIENCE, UW (CSE 590/490Z), Instructor: Anna Karlin

Winter '20, Spring '20

A class for master's students and advanced undergraduates that surveys topics between economics and computation.

INDUSTRY EXPERIENCE

DONUTS INC., Seattle, WA

June 2020-August 2021

Software Engineer

- Worked on a registry system that handles over 200 Top Level Domains (TLDs)
- Built a TLD import service, which is the technology that allows Donuts to acquire and merge TLDs from competing registrars

Aditya Saraf

as2777@cornell.edu | (425) 697 – 0256 https://adityasaraf.github.io/

AMAZON, Seattle, WA

Exports and Expansion Technology - Customer Experience

Software Development Engineer Intern

- Created a full stack application with Spring MVC (Java), including a web-based frontend server and a RESTful backend service.
- Had end-to-end ownership discovered (internal) customer requirements; planned and designed the application; developed, tested and deployed the application to production.
- Reduced deployment cycle from 2-4 weeks to instant changes to production.

June 2017–September 2017