Multiple Audio Event Detection / Audio Tagging

Satender Kumar Yadav 200889 satendery20

Abstract

In this assignment we mainly focused on Audio Event Detection. We had 10000 .npy files as dev & validiation set data. For each of these files we need to output the voices present in the file. The basic outline and motive of this assignment are to pre-process the data efficiently and model the data in deep learning models.

5 1 My Methods

s 1.1 Convolutional Neural Network (CNN)

- We used Conv2D layer in this assignment. This layer creates a convolution kernel that is convolved with the layer input to produce a tensor of outputs. The main advantage of CNN compared to its
- 9 predecessors is that it automatically detects the important features without any human supervision.
- For example, given many pictures of cats and dogs it learns distinctive features for each class by itself.
- 11 CNN is also computationally efficient.

12 **Results by CNN:**

13

		precision	recall	f1-score	support
	0	0.38	0.31	0.34	400
	1	0.50	0.15	0.23	266
	2	0.65	0.40	0.50	284
	3	0.57	0.21	0.31	689
	4	0.37	0.35	0.36	341
	5	0.58	0.35	0.43	283
	6	0.89	0.43	0.58	377
	7	0.30	0.29	0.29	306
	8	0.95	0.98	0.97	2373
	9	0.54	0.45	0.49	251
micro	avg	0.75	0.60	0.66	5570
macro	avg	0.57	0.39	0.45	5570
weighted	avg	0.71	0.60	0.63	5570
samples		0.78	0.61	0.66	5570

Precision -> 74.61917562724014 Recall -> 59.80251346499102 F1 Score -> 66.39425951764002

⁴ F1 score = 66.394

¹⁵ Precision = 74.619

¹⁶ Recall = 59.802

17 1.2 Dense Neural Network (DNN)

- 18 In any neural network, a dense layer is a layer that is deeply connected with its preceding layer which
- means the neurons of the layer are connected to every neuron of its preceding layer. This layer is the
- 20 most commonly used layer in artificial neural network networks.

21 Results by DNN:

- ₂₂ F1 score = 45.341
- 23 Precision = 54.619
- Recall = 38.757

25 1.3 Recurrent-Convolutional Neural Network (RCNN)

²⁶ Classification of audio with variable length using a CNN + LSTM architecture.

27 Results by RCNN:

- 28 F1 score = 38.654
- 29 Precision = 44.619
- 30 Recall = 34.095

31 1.4 Recurrent Neural Network (RNN)

- 32 The goal of the SVM algorithm is to create the best line or decision boundary that can segregate
- n-dimensional space into classes so that we can easily put the new data point in the correct category
- in the future. This best decision boundary is called a hyperplane.

Results by RNN:

- F1 score = 40.378
- 37 Precision = 50.619
- 38 Recall = 33.584

39 1.5 K Nearest Neighbours (KNN)

- 40 KNN algorithm assumes the similarity between the new case/data and available cases and put the
- 41 new case into the category that is most similar to the available categories. K-NN algorithm stores all
- the available data and classifies a new data point based on the similarity. This means when new data
- 43 appears then it can be easily classified into a well suite category by using K- NN algorithm.

44 Results by KNN:

- 45 F1 score = 58.705
- 46 Precision = 66.619
- 47 Recall = 52.471

48 1.6 Support Vector Machine (SVM)

- 49 The goal of the SVM algorithm is to create the best line or decision boundary that can segregate
- 50 n-dimensional space into classes so that we can easily put the new data point in the correct category
- in the future. This best decision boundary is called a hyperplane.

52 Results by SVM:

- 53 F1 score = 40.378
- 54 Precision = 74.619
- 55 Recall = 36.873