4. 正則言語の性質(1): (テキスト4.1,4.2)

- 4.1. 言語が正則でないことの証明
 - 有限オートマトンは状態が有限個しかない。
 - →「有限個の状態しかないと区別できないもの」は区別できない。

(典型的な)鳩ノ巣原理(Pigeon Hole Principle): n+1羽(以上)の鳩がn個の巣に入っている。このとき、どこかの巣には鳩が2羽以上入っている。

4. 正則言語の性質(1): (テキスト4.1,4.2)

4.1. 言語が正則でないことの証明

例: 言語 $L=\{0^n1^n \mid n\geq 1\}$

- n はどんなに大きくてもよい
- DFA A が m 状態なら、n>m のときに 0ⁿ1ⁿ に関して A のふるまいは...?

例: 言語 $L=\{0^n1^n \mid n\geq 1\}$ は正則ではない。

証明: L が正則であったと仮定して、矛盾を導く。

L は正則なので、L を受理する DFA A が存在する。A の状態集合を q_1,q_2,\ldots,q_m とする(mは有限)。 n=m+1 のとき、鳩ノ巣原理から、

$$0,00,0^3,0^4,\ldots,0^n$$

の中には、「Aが遷移したときに同じ状態になる、長さの異なるペア」が存在する。これらを $0^i,0^j$ とおく。つまり A は $0^i,0^j$ のどちらを読み込んだときも同じ状態 q になる。

ここで入力 $0^{i}1^{j}$ を考える。 $i\neq j$ なので、これはLの要素ではない。しかしAは入力 $0^{i}1^{j}$ と入力 $0^{j}1^{j}$ を区別できない。したがって、両方とも受理するか、両方とも受理しないか、どちらかしかできない。これはAがLを受理する、という仮定に反する。したがってLは正則ではない。

4. 正則言語の性質(1) 則でないことを (テキスト4.1,4.2)

ある言語が正 示すのに使う 標準的な補題

- 4.1. 言語が正則でないことの証明
- 正則言語に対する反復補題(Pumping Lemma):
 - 正則言語 L に対し、以下の条件を満たす定数 n が存 在する: $|w| \ge n$ を満たす任意の文字列 $w \in L$ は、次の 条件を満たす3個の部分列 w=xyz に分解できる。
 - 1. $y \neq \varepsilon$
 - $2. |xy| \leq n$
 - 3. すべての $k \ge 0$ に対し、 $xy^kz \in L$

4.1. 言語が正則でないことの証明

反復補題(Pumping Lemma):

• 正則言語 L に対し、以下の条件を満たす定数 n が存在する: $|w| \ge n$ を満たす任意の文字列 $w \in L$ は、次の条件を満たす3個の部分列 w = xyz に分解できる。

(1)
$$y \neq \epsilon(2) |xy| \leq n$$
 (3) $xy^k z \in L$ ($k \geq 0$)

[証明] Lは正則言語なので、L(A)=LであるDFA Aが存在する。A の状態数を n とする。

長さn 以上のLに属する任意の文字列 $w=a_1a_2...a_m$ を考える。 $(m \ge n)$

A は文字列 $a_1a_2...a_i$ を処理したあと、状態 p_i になるとする。(初期状態を q_0 とすると $p_0=q_0$)

4.1. 言語が正則でないことの証明

反復補題(Pumping Lemma):

正則言語 L に対し、以下の条件を満たす定数 n が存在 する: $|w| \ge n$ を満たす任意の文字列 $w \in L$ は、次の条件 を満たす3個の部分列 w=xyz に分解できる。

$$(1) y \neq \varepsilon(2) |xy| \leq n (3) xy^k z \leq L (k \geq 0)$$

[証明] A は文字列 $a_1a_2...a_i$ を処理したあと、状態 p_i になるとする。(初期状態を q_0 とすると $p_0=q_0$) 鳩ノ巣原理により、 p_0,p_1,\ldots,p_m の中には同じ状

態 p_i, p_i が存在する。(i < j としてよい)

•
$$x = a_1, a_2, ..., a_i$$

• $y = a_{i+1}, \dots, a_j$

• $z = a_{i+1}, \dots, a_m$

ありえるがy≠ε

x=eやz=eは

と定義するとA は xy^kz ($k \ge 0$)を受理する。

例: 言語 $L=\{0^n1^n \mid n\geq 1\}$ は正則ではない。

反復補題による証明: L が正則であると仮定して、矛盾を導く。

L は正則なので、反復補題より、以下の条件を満たす定数 m が存在する: $|w| \ge m$ を満たす任意の文字列 $w \in L$ は、次の条件を満たす3個の部分列 w = xyz に分解できる。

 $(1)y \neq \varepsilon(2) |xy| \leq m (3) xy^k z \in L (k \geq 0)$

ここで文字列 $w=0^m1^m$ を考える。wを上記の条件を満たすような部分列xyzに分解する。 $y\neq\varepsilon$ かつ $|xy|\leq m$ なので、 $y=0^i$ $(i\geq 1)$ となる。

すると、 $xyz = 0^m 1^m$ なので $xyyz = 0^{m+i} 1^m$ である。反復補題から、 $xyyz \in L$ となるが、実際には $xyyz \notin L$ であるので矛盾。したがって L は正則ではない。

4. 正則言語の性質(1): (テキスト4.1,4.2)

- 4.2. 正則言語に関する閉包性
 - 閉包性…集合/言語が演算に関して閉じていること。
 - 正則言語にある操作/演算を加えて、新しい言語を作ったとき、それがまた正則になっているなら、
 - 正則言語はその操作/演算に関して閉じているという。この性質を閉包性という。

- 正則言語は以下の閉包性を持つ。
 - ① 正則言語 L_1, L_2 について $L_1 \cup L_2$ は正則
 - ② L_1, L_2 について $L_1 \cap L_2$ は正則
 - ③ 正則言語の補集合は正則
 - ④ L_1 , L_2 について L_1 - L_2 は正則
 - ⑤ 正則言語の反転は正則
 - ⑥ *L*₁ について *L*₁* は正則
 - ⑦ L_1, L_2 の連接は正則
 - ⑧正則言語の準同型の像は正則
 - ⑨ 正則言語の逆準同型の像は正則

正則言語に おける4つの 証明手法

この授業では
範囲外

① 正則言語 L_1, L_2 について $L_1 \cup L_2$ は正則

[証明手法1] 正則表現を使ったもの

 L_1, L_2 は正則言語なので、 $L(E_1)=L_1, L(E_2)=L_2$ を満たす正則表現が存在する。 $((E_1)+(E_2))$ は正則表現で、かつ明らかに $L(((E_1)+(E_2)))=L_1 \cup L_2$ が成立する。

③ 正則言語の補集合は正則

[補集合とは] 言語 L の補集合 $\overline{L} = \{ w \mid w \notin L \}$

[証明手法2] オートマトンを使ったもの言語 L が正則なら、L を受理するDFA $A=(Q,\Sigma,\delta,q,F)$ が存在する。このとき、A の受理状態とそれ以外を入れ替えた DFA $\overline{A}=(Q,\Sigma,\delta,q,Q-F)$ は L を受理する。

② L_1, L_2 について $L_1 \cap L_2$ は正則

[証明手法3]

ド・モルガンの定理より、

$$L_1 \cap L_2 = \overline{L_1 \cup L_2}$$

したがって L_1, L_2 が正則なら①,③より、 $L_1 \cap L_2$ も正則

④ L_1 , L_2 について L_1 - L_2 は正則 $(L_1-L_2=L_1\cap L_2$ なので手法3でもOK)

[証明手法4(直積構成法)]

- ① L_1, L_2 を受理する DFA を M_1, M_2 とする。
- ② L_1 - L_2 を受理するDFA Mは、入力を読みながら、
 - ightharpoonup その入力に対する M_1 の状態遷移
 - ightharpoonup その入力に対する M_2 の状態遷移 を同時に模倣する。
- ③ 入力を読み終えた時点で M_1 が受理かつ M_2 が 受理でないならMは受理。

⑤ 正則言語の反転は正則

[反転とは]

文字列 $w=x_1x_2...x_k$ の反転(Reverse) $w^R=x_k...x_2x_1$

言語 L の反転 $L^R=\{w \mid w^R \in L\}$

[証明]

Lを受理するDFAAに対し、

- ①Aの受理状態を一つにし、
- ②Aの遷移をすべて逆転し、
- ③受理状態と初期状態を入れ替えた ϵ -NFA A^R は L^R を受理する。

- ⑥ L_1 について L_1 * は正則
- $② L_1, L_2$ の連接は正則

 L_1, L_2 を表現する正則表現 E_1, E_2 に対し、

- **6** $(E_1)^*$
- $(\overline{C}_1)(E_2)$

でOK.

- 4.3. 正則言語に関する決定問題 言語に関する基本的な問題
 - 1. 与えられた言語 L が $L=\Phi$ か?または $L=\Sigma^*$ か? 例) $L_1=\{w \mid w \text{ に含まれる}0$ の数は偶数} $L_1\cap L_2=\Phi$? $L_2=\{w \mid w \text{ に含まれる}0$ の数は奇数} $L_1\cup L_2=\Phi$?
 - 2. 与えられた語 w が言語 L に属するか。 例) $0000111101011000 \in L_1$? $0 \ge 1$ が交互に現れる文字列

3. 二つの言語 L_1, L_2 は同じか。

例) $(01)^* + (10)^* + 1(01)^* + 0(10)^* = (1+\epsilon)(01)^*(0+\epsilon)$?

4.3. 正則言語に関する決定問題

4.3.1. 異なる表現の間の変換

- 1. NFA→DFAのコスト(時間): O(n³2ⁿ) <
- 2. DFA \rightarrow NFAのコスト: O(n)
- 3. オートマトン→正則表現: O(n³4ⁿ)
- 4. 正則表現→ε-NFA: O(*n*)

多項式/指数関数かどうかはシビアな問題

[余談] 現実的には NFA→DFAで 指数関数的に 状態数が増える ことはあまりない。 ただし人工的に そうした例を構成 することはできる。

最悪の場合は (指数関数的(-爆発的) < に増加

4.4. オートマトンの等価性と最小性

3. 二つの言語 L_1, L_2 は同じか。

例) (01)* + (10)* + 1(01)* + 0(10)* と (1+ε)(01)*(0+ε) は同じ言語か?

[目標]

- ➤ DFA には「最小」のものがある
- 最小のDFAは本質的に1つしかない
- 最小のDFAは計算によって求めることができる
- 二つの正則言語の同値性を効率よく判定できる。

4.4. オートマトンの等価性と最小性

4.4.1. 状態の同値性の判定

DFA における状態 p, q が同値(equivalent)

すべての文字列 wに対して、

 $\delta(p,w)$ が受理状態 $\Leftrightarrow \delta(q,w)$ が受理状態

が成立する

4.4. オートマトンの等価性と最小性

4.4.1. 状態の同値性の判定

DFA における状態 p, q が区別可能(distinguishable)

ある文字列wが存在して、以下が成立: $\delta(p,w)$, $\delta(q,w)$ の一方は受理状態で、 他方はそうでない

- 4.4. オートマトンの等価性と最小性
 - 4.4.1. 状態の同値性の判定
 - 例) 受理状態の集合を $X=\{C\}$ と書く。 $\hat{\delta}(C,\varepsilon)\in X$

4.4. オートマトンの等価性と最小性

- 4.4.1. 状態の同値性の判定
- 例) 受理状態の集合を*X*={*C*}と書く。

$$\hat{\delta}(A,\varepsilon) \notin X, \hat{\delta}(G,\varepsilon) \notin X$$

$$\hat{\delta}(A,0) \notin X, \hat{\delta}(G,0) \notin X$$

$$\hat{\delta}(A,1) \notin X, \hat{\delta}(G,1) \notin X$$

$$\hat{\delta}(A,01) \in X, \hat{\delta}(G,01) \notin X$$

AとGは区別可能

4.4. オートマトンの等価性と最小性

- 4.4.1. 状態の同値性の判定
- 例) 受理状態の集合を*X*={*C*}と書く。

$$\hat{\delta}(A, \varepsilon) \notin X, \hat{\delta}(E, \varepsilon) \notin X$$

$$\hat{\delta}(A, 1) = \hat{\delta}(E, 1) = F$$

$$\hat{\delta}(A, 0) \notin X, \hat{\delta}(E, 0) \notin X$$

$$\hat{\delta}(A, 00) = \hat{\delta}(E, 00) = G$$

$$\hat{\delta}(A, 01) = \hat{\delta}(E, 01) = C$$

4. 正則言語の性質(2):

(テキスト4.3,4.4)

4.4. オートマトンの等価性と最小性

4.4.1. 状態の同値性の判定

同値な状態のペアを求める穴埋めアルゴリズム (Table-filling algorithm)

- 1. 状態pが受理状態で、qが受理状態ではないとき、 $\{p,q\}$ は区別可能 。
- 2. 状態 p, q と、ある入力文字 a に対して、 $r=\delta(p,a)$, $s=\delta(q,a)$ としたとき、 $\{r,s\}$ が区別可能なら $\{p,q\}$ も区別可能
- 3. ステップ2を繰り返し適用し、それ以上変化しなくなったら終了

実装上の工夫:

区別可能なペ

アから逆に構

- 4.4. オートマトンの等価性と最小性
 - 4.4.1. 状態の同値性の判定 穴埋めアルゴリズム(Table-filling algorithm)
 - 2. 状態 p, q と、ある入力文字 a に対して、 $r=\delta(p,a)$, $s=\delta(q,a)$ としたとき、 $\{r,s\}$ が区別可能なら $\{p,q\}$ も区別可能
 - • $\{r,s\}$ が区別可能 \Rightarrow ある文字列 w があって、 $\delta(r,w)$ と $\delta(s,w)$ が一方は受理状態で、他方はそうではない •文字列 aw が状態 p と q を区別可能にする。
 - ⇒「区別可能」と判断されたものは、区別可能。

- 4.4. オートマトンの等価性と最小性
 - 4.4.1. 状態の同値性の判定 穴埋めアルゴリズム(Table-filling algorithm)の正当性
 - ▶ 区別可能なものは必ず区別可能と判断される
 - 同値なペアは最後まで何も判断されず、空白となる

[定理] 穴埋めアルゴリズムによって区別されない二つの状態 p, q は同値である。

[証明] 背理法による。詳細はテキストを参照のこと。

- 4.4. オートマトンの等価性と最小性
- 4.4.2 正則言語の等価性の判定

与えられた正則言語 L_1, L_2 の等価性は次の手順で判定できる。

- 1. L_1, L_2 に対する DFA A_1, A_2 を構成する
- 2. 二つの DFA A₁, A₂ を全体として一つの DFA A とみなす。
- 3. A について穴埋めアルゴリズムを実行
- A_1 の初期状態と A_2 の初期状態が同値なら L_1 = L_2 。そうでないなら $L_1 \neq L_2$ 。

- 4.4. オートマトンの等価性と最小性
- 4.4.3. DFA の最小化

[定理] 与えられた正則言語に対して、その言語を受理 する DFA の中で、状態数が最小のDFAを一意的 に構成することができる。

[証明] 省略。テキスト参照のこと。