ŘÍZENÍ VNĚJŠÍ PAMĚTI

- K čemu slouží vnější pamět?
- Charakteristika HDD
- Metody přidělování místa na disku
 - o Spojité
 - Spojitý seznam
 - o Indexová alokace
- Plánovací metody přístupu na disk
 - o FCFS
 - o SSTF
 - o SCAN
 - o C-SCAN
 - o LOOK
 - o C-LOOK
- HDD vs. SSD
 - o defragmentace

Účel vnější paměti

- vnější paměť slouží k trvalému ukládání informací (programy a data)
- Obsah ve vnější paměti se po vypnutí počítače neztratí (jako u RAM paměti)
- Procesor nemá přímý přístup k disku
- OS používá k přístupu do vnější paměti ovladače zařízení
- Data jsou organizována do souboru na základě souborového systému, který je použit
- Výhody
 - Nízké náklady
 - Energetická nezávislost
 - Nedestruktivní čtení
 - přečtení informace žádným negativním způsobem tuto informaci neovlivní.
- Stálá paměť: HDD, SSD
- Výměnná paměť: disketa, CD, DVD, USB flash disk

Charakteristika pevného disku – HDD

- Hard Disk Drive
- Pevný disk je zařízení, které slouží k trvalému nebo dočasnému ukládání dat (nainstalované programy, data, OS)
- Data se uchovávají pomocí magnetické indukce
- Výhodou je rychlé čtení dat, nízká cena a velká kapacita
- Nevýhoda je mechanické řešení -> snadné poškození
- Samotný disk je vyroben z nemagnetického materiálu
- Jeho povrch je pokryt vrstvou feromagnetického materiálu (oxid železa)
- Zápis a čtení dat, geometrie disku viz otázka č. 14. (kecání navíc)
 - Změnou polarity napětí na cívce se změní směr toku proudu v záznamové cívce magnetické hlavy, která způsobí změnu magnetického toku jedním nebo druhým směrem, který vnutí záznamové vrstvě orientaci -> 1 a 0
 - Jádrem MR hlavy je magnetorezistivní prvek, který je nad pohybující se záznamovou vrstvou, kde jsou různě orientované magnety, které změnou magnetického pole změní odpor, střída se 1 a 0
 - o Stopa
 - soustředná kružnice na povrchu plotny sloužící k záznamu dat
 - Číslování od 0 od obvodu dovnitř
 - Sektor
 - Kruhová výseč jedné stopy
 - Čísluje se proti směru otáčení disku na jednotlivých stopách od 1
 - Skládá se z:
 - Identifikační části adresa sektoru CHS, 512B dat, CRC zabezpečení dat
 - o Cylindr
 - Tvoří stopy se stejným průměrem na jednotlivých površích ploten nacházející se
 v zákrytu za sebou
 - Čísluje se od obvodu dovnitř
- Organizace pevného disku viz otázka č. 15 (kecání navíc)

Metody přidělování místa na disku – spojité přidělování

- Nejjednodušší způsob přidělování místa na disku
- Souvislá alokace, kde každá soubor zabírá množinu sousedních bloků na disku
 - o Přesně vím, kde soubor začíná a kolik místa v paměti zabere
- Pokud se najde moc velký soubor, který se nevleze, je nutná defragmentace, aby vznikl souvislý prostor pro uložení tohoto souboru
- Pokud se soubor v průběhu zvětší, musí se přeuspořádat soubory na disku
- Přístup na disk je přímý i sekvenční
 - Sekvenční přístup
 - před zpřístupněním informace z paměti je nutné přečíst všechny předcházející informace
 - postupně prochází od začátku místo v paměti
 - Přímý přístup
 - je možné zpřístupnit přímo požadovanou informaci
 - vím, kde soubor začíná a kolik zabere -> uloží rovnou na dané místo v paměti
- Výhodou je malý pohyb hlaviček (vystavovacího mechanismu), neboť na sebe bloky navazují
- Problém vzniká při vzniku nových souborů, protože dopředu nevíme, kolik zaberou místa
- Při přidělování volného místa se řídí alokační strategií (algoritmy)
 - FIRST FIT
 - Obsadí 1. volný blok, do kterého se proces vejde
 - Nejčastější a nejjednodušší na implementaci
 - o BEST FIT
 - Obsadí nejvhodnější blok -> zůstane málo volného prostoru
 - LAST FIT
 - Obsadí poslední volný blok
 - WORST FIT
 - Neřeší nic, umístí se do největšího vyhovujícího volného místa

Directory

file	start	length
count	0	2
tr	14	3
mail	19	6
list	28	4
f	6	2

Metody přidělování místa na disku – spojitá alokace (seznam)

- Odstraňuje nutnost souvislého prostoru na disku
 - Stačí nám znát začátek souboru a konec (EOF)
- Soubor je uložen do volných bloků tak, aby byly jednotlivé části souboru co nejblíže u sebe
 - Minimalizace pohybu hlaviček
 - Prázdné bloky se zbytečně nepřidělují (nic dopředu)
- Přístup je pouze sekvenční, neboť při ukládání není nutné znát jeho velikost -> potlačení vnější fragmentace
 - Po přidáním FAT tabulky je umožněn i přístup přímý -> nalezneme informace o nezávaznosti a konci souboru
- Velikost alokačního bloku je dána v závislosti na použitém systému a kapacitě disku
 - Alokační blok je cluster
- Čím menší bude alokační blok (cluster), tím jich bude více a tím vznikne i větší fragmentace
- Příliš velké alokační bloky způsobí, že část posledního bloku bude nevyužitá a tím vzniká vnitřní fragmentace
- Bez použití FAT tabulky se na konci souboru nachází ukazatel na blok, kde pokračuje
 - Po upgradu FAT tabulky ukazuje soubor do tabulky, ve které se nachází číslo, které odkazuje na další blok
 - o Pokud je blok poslední, je ve FAT tabulce uloženo EOF (end of file)
- Využití v MS DOS a WIN 95/98

adresář

Metody přidělování místa na disku – indexová alokace

- Indexy všech bloků souborů jsou umístěny pohromadě v indexovém bloku
 - Každý soubor má svůj indexový blok
- Z počátku jsou samé -1, které jsou postupně nahrazovány čísly, jak jdou bloky za sebou
- Vhodné pro přímý i sekvenční přístup
- Při práci ze souborem je indexový blok nahrán do operační paměti
- Je složitější na realizaci oproti ostatním, ale rychlejší
- Využití v UNIXu
- Vzniká vnitřní fragmentace (blok není využitý celý)
- Potlačená vnější fragmentace
- Snaha mít soubory co nejblíž k sobě z důvodu minimalizace pohybu hlaviček
- Snaha o co nejmenší indexový blok
 - Spojová struktura
 - Jeden, nebo více bloků za sebou, aby se pokryl celý soubor
 - Příklad, když má blok velikost 2048B a každý ukazatel v něm by zabral 4 B -> 512 ukazatelů (2048/4) => 512 * 2 = 1024B jsme schopni pokrýt
 - Víceúrovňový index
 - Hlavní indexový blok je pouze odkazem na další indexové bloky -> ty ukazují na konkrétní část souboru
 - Kombinovaný přístup
 - Kombinace předchozích dvou metod
 - Malé soubory nepotřebují indexový blok, použijí místo odkazu

adresář

Plánovací metody přístupu na disk

- Tři části
 - o SEEK
 - Přesun hlavy nad požadovanou stopu (cylindr)
 - Způsobuje největší zpoždění
 - LATENCY
 - Otočení disku na začátek požadovaného sektoru
 - o TRANSFER
 - Přesun dat z disku nebo na disk

Plánovací metody přístupu na disk - FCFS

- First Came, first serve
- První, který přijde, bude nejdříve obsloužený
- Nejpomalejší
- Jednoduchý na programování
- Vhodný pro lehčí zátěž

Pořadí	Pozice hl.	cesta
1	53	0
2	98	45
3	189	85
4	37	146
5	122	85
6	14	108
7	124	110
8	65	59
9	67	2

Plánovací metody přístupu na disk - SSTF

- Shortest Seek Time First
- Požadavek, který je nejblíže k hlavičkám má přednost a bude obsloužen jako první
- Hrozí hladovění požadavků, které budou daleko od hlavy
- Není ideální
- Je to rychlá metoda pro krátké vzdálenosti

Pořadí	Pozice hl.	cesta
1	53	0
2	65	12
3	67	2
4	37	30
5	14	23
6	98	84
7	122	24
8	124	2
9	183	59

Plánovací metody přístupu na disk – SCAN

- Hlava jezdí ze strany na stranu (od kraje, ke kraji) a postupně obsluhuje požadavky
- Hlavička disku začíná na začátku a přesunuje se na konec, zatímco zpracovává požadavky, které jsou po cestě, pak se vrací zpět

Pořadí	Pozice hl.	cesta
1	53	0
2	37	16
3	14	23
4	65	14 + 65
5	67	2
6	98	31
7	122	24
8	124	2
9	183	59

Plánovací metody přístupu na disk – CSCAN

- Varianta SCAN, která se liší v tom, že když hlavička dojede na konec, nevrací se zpět, ale přesune se opět na začátek (tam kde začal) a pokračuje ve zpracovávání

Pořadí	Pozice hl.	cesta
1	53	0
2	65	12
3	67	2
4	98	31
5	122	24
6	124	2
7	183	59
8	14	30 (229)
9	37	23

Plánovací metody přístupu na disk – LOOK

- Upravená metoda SCAN
- Hlava začíná na jedné straně disku (na začátku) u prvního požadavku a jde směrem k poslednímu požadavku na druhý konec a zpracovává požadavky, které jsou po cestě
- Jakmile obslouží poslední požadavek, otočí se a jede zpět a vrací se tam, kde začal

Pořadí	Pozice hl.	cesta
1	53	0
2	65	12
3	67	2
4	98	31
5	122	24
6	124	2
7	183	59
8	37	146
9	14	23

Plánovací metody přístupu na disk – CLOOK

- Vylepšená metoda LOOK
- Hlava začíná na jedné straně u prvního požadavku a pohybuje se na konec k druhému požadavku, zatímco postupně zpracovává požadavky, které jsou po cestě
- Jakmile dorazí na poslední požadavek, přesune se opět na začátek disku (na další první požadavek) a proces se opakuje

Pořadí	Pozice hl.	cesta
1	53	0
2	65	12
3	67	2
4	98	31
5	122	24
6	124	2
7	183	59
8	14	169
9	37	23

Hard Disk Drive / Solid State Drive

- HDD
 - Větší přístupový čas -> pomalejší
 - Větší spotřeba elektřiny kvůli pohyblivým součástkám
 - O Dochází k fragmentaci dat -> zhoršení výkonu
 - Hrozí poruchy z důvodu mechanických součástí disku plotny, hlavy, vystavovací mechanismus
 - Magnetická vrstva, která je na plotnách disku se může při vibracích nebo nárazech poškodit
 - o Hlučnější
- SSD
 - Kratší přístupový čas -> rychlejší
 - o Žádné pohyblivé mechanické součástky -> odolnější proti poškození
 - Nedochází k fragmentaci dat
 - Jedná se o integrovaný obvod
 - Je dražší

Fragmentace

- Fragmentovaný soubor je takový, který není uložený do řetězce clusterů následujících za sebou je rozházený po disku (leží na několika různých cylindrech)
- Takový soubor bude z disku načítán pomaleji
- Program pro záchranu dat má menší šanci opravit případné chyby vznikající při zápisu správně
- Fragmentace vzniká častým mazáním a zápisem nových souborů, které jsou delší než uvolněné místo po těch vymazaných

Defragmentace

- Defragmentace znamená, že program spojí jednotlivé fragmenty souboru do jednoho celku tím, že jej přesune na místo, kam se soubor vleze celý
- Defragmentační programy:
 - o V OS je to defragmentace
 - o O&O Defrag
 - o Diskeeper

