In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

EDA

In [2]: df_train= pd.read_csv('train.csv')

In [3]: df_train.head()

Out[3]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabi
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	Na
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C8
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	Na
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C12
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	Na
4											•

Questions to ask: 1. Who were the passengers(Age,Sex,Pclass) - Demography analysis (2) 2. Attribute wise survival Probability (3) 3. Survival Probability Distribution (1)

```
In [4]: df_train.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
```

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object
dtype	es: float64(2), int64(5), obj	ect(5)

memory usage: 83.7+ KB

```
In [5]: df_train.isna().sum()/df_train.shape[0]
```

Percentage of Null Values in each column ## While modelling if any column has greater than 25-30% null values you need to

```
Out[5]: PassengerId 0.000000
Survived 0.000000
```

Pclass 0.000000 Name 0.000000 Sex 0.000000 0.198653 Age SibSp 0.000000 Parch 0.000000 Ticket 0.000000 Fare 0.000000 Cabin 0.771044 Embarked 0.002245

dtype: float64

```
In [6]: sns.countplot(x='Survived',data=df_train)
```

Out[6]: <AxesSubplot:xlabel='Survived', ylabel='count'>


```
In [7]: 100*df_train['Survived'].value_counts()[1]/df_train.shape[0]
## total percentage of people who survived
```

Out[7]: 38.38383838383838

Demography Analysis

In [8]: df_train.head()

Out[8]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabi
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	Na
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C8
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	Na
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C12
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	Na

In [9]: sns.countplot(x='Sex',data=df_train)

Out[9]: <AxesSubplot:xlabel='Sex', ylabel='count'>

In [10]: 100*df_train['Sex'].value_counts()['female']/df_train.shape[0]
total percentage of people who survived

Out[10]: 35.24130190796858

```
In [11]: sns.countplot(x='Pclass',data=df_train)
```

Out[11]: <AxesSubplot:xlabel='Pclass', ylabel='count'>


```
In [12]: for i in df_train['Pclass'].unique():
    print(f"For Pclass{i}:{100*df_train['Pclass'].value_counts()[i]/df_train.shap
```

For Pclass3:55.10662177328844 For Pclass1:24.2424242424242 For Pclass2:20.650953984287316

```
In [13]: sns.countplot(x='Embarked',data=df_train)
```

Out[13]: <AxesSubplot:xlabel='Embarked', ylabel='count'>

For EmbarkedS:72.27833894500561 For EmbarkedC:18.855218855218855 For EmbarkedQ:8.641975308641975

```
In [15]: df_train['Embarked'].unique()
Out[15]: array(['S', 'C', 'Q', nan], dtype=object)
```

```
out[13]. array([ 3 , c , Q , nan], utype=object,
```

```
In [16]: df_train['Age'].hist()
```

Out[16]: <AxesSubplot:>


```
In [17]: df_train['Fare'].hist()
```

Out[17]: <AxesSubplot:>

Age and Sex -> New Variable

```
In [19]: df_train['Person']=df_train[['Sex','Age']].apply(Person,axis=1)
In [20]: sns.countplot(x='Person',data=df_train)
```

[1]

For a Person beingmale:60.26936026936027 For a Person beingfemale:30.41526374859708 For a Person beingChild:9.31537598204265

```
In [22]: ## data cleaning to analyse cabin
x=list(df_train['Cabin'].dropna())
```

In [24]: sns.countplot(pd.Series(cabin))

C:\Users\HP\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarnin
g: Pass the following variable as a keyword arg: x. From version 0.12, the only
valid positional argument will be `data`, and passing other arguments without a
n explicit keyword will result in an error or misinterpretation.
warnings.warn(

Out[24]: <AxesSubplot:ylabel='count'>

Bivariate Analytics

```
In [25]: sns.countplot(x='Pclass', data=df_train,hue='Person')
```

Out[25]: <AxesSubplot:xlabel='Pclass', ylabel='count'>


```
In [26]: sns.countplot(x='Pclass', data=df_train,hue='Survived')
```

Out[26]: <AxesSubplot:xlabel='Pclass', ylabel='count'>


```
In [27]: sns.countplot(x = 'Person',data = df_train,hue = 'Survived')
```

Out[27]: <AxesSubplot:xlabel='Person', ylabel='count'>


```
In [28]: fig = sns.FacetGrid(df_train,aspect = 3,hue = "Survived")
    fig.map(sns.kdeplot,'Age',shade = True)
    oldest=df_train['Age'].max()
    fig.set(xlim=(0, oldest))
    fig.add_legend()
```

Out[28]: <seaborn.axisgrid.FacetGrid at 0x21d4234ee20>


```
In [29]: fig = sns.FacetGrid(df_train,aspect = 3,hue = "Person")
    fig.map(sns.kdeplot,'Age',shade = True)
    oldest=df_train['Age'].max()
    fig.set(xlim=(0, oldest))
    fig.add_legend()
```

Out[29]: <seaborn.axisgrid.FacetGrid at 0x21d42348bb0>


```
In [30]: fig = sns.FacetGrid(df_train,aspect = 3,hue = "Pclass")
    fig.map(sns.kdeplot,'Age',shade = True)
    oldest=df_train['Age'].max()
    fig.set(xlim=(0, oldest))
    fig.add_legend()
```

Out[30]: <seaborn.axisgrid.FacetGrid at 0x21d4234e6a0>

In [31]: df_train.head()

Out[31]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabi
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	Na
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C8
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	Na
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C12
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	Na
- ◀											•

```
In [33]: df_train['alone']
Out[33]: 0
                 1
                 1
          1
          2
                 0
          3
                 1
                 0
          4
                . .
          886
                 0
          887
                 0
          888
                 3
                 0
          889
          890
          Name: alone, Length: 891, dtype: int64
In [34]: | df train['alone'].loc[df train['alone']>0] = "With Family"
         df_train['alone'].loc[df_train['alone']==0] = "Alone"
```

C:\Users\HP\anaconda3\lib\site-packages\pandas\core\indexing.py:1732: SettingWi
thCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

self._setitem_single_block(indexer, value, name)

In [35]: df_train

Out[35]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Ci
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	

891 rows × 14 columns

4

In [36]: sns.countplot('alone',data = df_train)

C:\Users\HP\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarnin
g: Pass the following variable as a keyword arg: x. From version 0.12, the only
valid positional argument will be `data`, and passing other arguments without a
n explicit keyword will result in an error or misinterpretation.
 warnings.warn(

Out[36]: <AxesSubplot:xlabel='alone', ylabel='count'>

In [37]: sns.countplot('alone',data = df_train,hue = 'Survived')

C:\Users\HP\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarnin
g: Pass the following variable as a keyword arg: x. From version 0.12, the only
valid positional argument will be `data`, and passing other arguments without a
n explicit keyword will result in an error or misinterpretation.
warnings.warn(

Out[37]: <AxesSubplot:xlabel='alone', ylabel='count'>

In [38]: sns.factorplot(x = 'Pclass',y = 'Survived',data = df_train)

C:\Users\HP\anaconda3\lib\site-packages\seaborn\categorical.py:3717: UserWarnin
g: The `factorplot` function has been renamed to `catplot`. The original name w
ill be removed in a future release. Please update your code. Note that the defa
ult `kind` in `factorplot` (`'point'`) has changed `'strip'` in `catplot`.
 warnings.warn(msg)

Out[38]: <seaborn.axisgrid.FacetGrid at 0x21d423f4d90>

In [39]: sns.factorplot(x = 'Pclass',y = 'Survived',data = df_train,hue = 'Person')

C:\Users\HP\anaconda3\lib\site-packages\seaborn\categorical.py:3717: UserWarnin
g: The `factorplot` function has been renamed to `catplot`. The original name w
ill be removed in a future release. Please update your code. Note that the defa
ult `kind` in `factorplot` (`'point'`) has changed `'strip'` in `catplot`.
 warnings.warn(msg)

Out[39]: <seaborn.axisgrid.FacetGrid at 0x21d435a4160>

In [40]: sns.lmplot(x = 'Fare',y = 'Survived',data = df_train)

Out[40]: <seaborn.axisgrid.FacetGrid at 0x21d436fd1f0>

In [41]: sns.lmplot(x = 'Fare',y = 'Age',data = df_train)

Out[41]: <seaborn.axisgrid.FacetGrid at 0x21d4375e820>

In [42]: df_train.head()

Out[42]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabi
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	Na
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C8
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	Na
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C12
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	Na

Steps to be followed:

- 1. Drop pid, Name, Ticket and cabin
- 2. Impute all other na value with mean or most occuring category
- 3. Perform categorical encoding to convert categories into number
- 4. Do a train test split with test size = 0.25 and random state = 123
- 5. Train and test the knn classifier and paste the f1 score in chat

```
In [43]: df_train.drop(['PassengerId','Name','Ticket','Cabin'], axis=1,inplace=True) ## Dr
```

In [44]: df_train

Out[44]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	Person	alone
0	0	3	male	22.0	1	0	7.2500	S	male	With Family
1	1	1	female	38.0	1	0	71.2833	С	female	With Family
2	1	3	female	26.0	0	0	7.9250	S	female	Alone
3	1	1	female	35.0	1	0	53.1000	S	female	With Family
4	0	3	male	35.0	0	0	8.0500	S	male	Alone
886	0	2	male	27.0	0	0	13.0000	S	male	Alone
887	1	1	female	19.0	0	0	30.0000	S	female	Alone
888	0	3	female	NaN	1	2	23.4500	S	female	With Family
889	1	1	male	26.0	0	0	30.0000	С	male	Alone
890	0	3	male	32.0	0	0	7.7500	Q	male	Alone

891 rows × 10 columns

In [45]: #Impute all other na value with mean or most occuring category
df_train.isnull().sum()

Out[45]: Survived

0 Pclass 0 Sex 0 177 Age SibSp 0 Parch 0 Fare 0 Embarked 2 Person 0 alone 0 dtype: int64

In [46]: df_train

Out[46]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	Person	alone
0	0	3	male	22.0	1	0	7.2500	S	male	With Family
1	1	1	female	38.0	1	0	71.2833	С	female	With Family
2	1	3	female	26.0	0	0	7.9250	S	female	Alone
3	1	1	female	35.0	1	0	53.1000	S	female	With Family
4	0	3	male	35.0	0	0	8.0500	S	male	Alone
886	0	2	male	27.0	0	0	13.0000	S	male	Alone
887	1	1	female	19.0	0	0	30.0000	S	female	Alone
888	0	3	female	NaN	1	2	23.4500	S	female	With Family
889	1	1	male	26.0	0	0	30.0000	С	male	Alone
890	0	3	male	32.0	0	0	7.7500	Q	male	Alone

891 rows × 10 columns

In [47]: clean1_df_train=df_train.interpolate() #Impute NaN value with mean

In [48]: clean1_df_train

Out[48]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	Person	alone
0	0	3	male	22.0	1	0	7.2500	S	male	With Family
1	1	1	female	38.0	1	0	71.2833	С	female	With Family
2	1	3	female	26.0	0	0	7.9250	S	female	Alone
3	1	1	female	35.0	1	0	53.1000	S	female	With Family
4	0	3	male	35.0	0	0	8.0500	S	male	Alone
886	0	2	male	27.0	0	0	13.0000	S	male	Alone
887	1	1	female	19.0	0	0	30.0000	S	female	Alone
888	0	3	female	22.5	1	2	23.4500	S	female	With Family
889	1	1	male	26.0	0	0	30.0000	С	male	Alone
890	0	3	male	32.0	0	0	7.7500	Q	male	Alone

891 rows × 10 columns

In [49]: df_train = df_train. fillna(df_train['Age']. value_counts(). index[0])#Impute all

In [50]: df_train

Out[50]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	Person	alone
0	0	3	male	22.0	1	0	7.2500	S	male	With Family
1	1	1	female	38.0	1	0	71.2833	С	female	With Family
2	1	3	female	26.0	0	0	7.9250	S	female	Alone
3	1	1	female	35.0	1	0	53.1000	S	female	With Family
4	0	3	male	35.0	0	0	8.0500	S	male	Alone
886	0	2	male	27.0	0	0	13.0000	S	male	Alone
887	1	1	female	19.0	0	0	30.0000	S	female	Alone
888	0	3	female	24.0	1	2	23.4500	S	female	With Family
889	1	1	male	26.0	0	0	30.0000	С	male	Alone
890	0	3	male	32.0	0	0	7.7500	Q	male	Alone

891 rows × 10 columns

```
In [51]: df_train = df_train. fillna(df_train['Embarked']. value_counts(). index[0])
```

In [52]: ##Perform categorical encoding to convert categories into number
df_train.dtypes

```
Out[52]: Survived
                        int64
         Pclass
                        int64
         Sex
                       object
         Age
                      float64
         SibSp
                        int64
         Parch
                        int64
                      float64
         Fare
         Embarked
                       object
         Person
                       object
         alone
                       object
         dtype: object
```

```
In [53]: from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
```

```
In [54]: df_train['Sex']=le.fit_transform(df_train['Sex'])
```

In [55]: df_train

Out[55]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	Person	alone
0	0	3	1	22.0	1	0	7.2500	S	male	With Family
1	1	1	0	38.0	1	0	71.2833	С	female	With Family
2	1	3	0	26.0	0	0	7.9250	S	female	Alone
3	1	1	0	35.0	1	0	53.1000	S	female	With Family
4	0	3	1	35.0	0	0	8.0500	S	male	Alone
886	0	2	1	27.0	0	0	13.0000	S	male	Alone
887	1	1	0	19.0	0	0	30.0000	S	female	Alone
888	0	3	0	24.0	1	2	23.4500	S	female	With Family
889	1	1	1	26.0	0	0	30.0000	С	male	Alone
890	0	3	1	32.0	0	0	7.7500	Q	male	Alone

891 rows × 10 columns

In [56]: df_train['Person']=le.fit_transform(df_train['Person'])

In [57]: df_train

Out[57]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	Person	alone
0	0	3	1	22.0	1	0	7.2500	S	2	With Family
1	1	1	0	38.0	1	0	71.2833	С	1	With Family
2	1	3	0	26.0	0	0	7.9250	S	1	Alone
3	1	1	0	35.0	1	0	53.1000	S	1	With Family
4	0	3	1	35.0	0	0	8.0500	S	2	Alone
886	0	2	1	27.0	0	0	13.0000	S	2	Alone
887	1	1	0	19.0	0	0	30.0000	S	1	Alone
888	0	3	0	24.0	1	2	23.4500	S	1	With Family
889	1	1	1	26.0	0	0	30.0000	С	2	Alone
890	0	3	1	32.0	0	0	7.7500	Q	2	Alone

891 rows × 10 columns

In [58]: df_train['alone']=le.fit_transform(df_train['alone'])

In [59]: df_train

Out[59]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	Person	alone
0	0	3	1	22.0	1	0	7.2500	S	2	1
1	1	1	0	38.0	1	0	71.2833	С	1	1
2	1	3	0	26.0	0	0	7.9250	S	1	0
3	1	1	0	35.0	1	0	53.1000	S	1	1
4	0	3	1	35.0	0	0	8.0500	S	2	0
886	0	2	1	27.0	0	0	13.0000	S	2	0
887	1	1	0	19.0	0	0	30.0000	S	1	0
888	0	3	0	24.0	1	2	23.4500	S	1	1
889	1	1	1	26.0	0	0	30.0000	С	2	0
890	0	3	1	32.0	0	0	7.7500	Q	2	0

891 rows × 10 columns

```
In [60]: df_train.Embarked
Out[60]: 0
                 S
                 C
                 S
                 S
          3
                 S
                S
         886
         887
                 S
                 S
         888
         889
                 C
         890
         Name: Embarked, Length: 891, dtype: object
In [61]: df_train['Embarked'] = pd.to_numeric(df_train['Embarked'],errors = 'coerce')
```

```
In [62]: df_train.dtypes
Out[62]: Survived
                          int64
          Pclass
                          int64
          Sex
                          int32
          Age
                        float64
                          int64
          SibSp
          Parch
                          int64
          Fare
                        float64
                        float64
          Embarked
          Person
                          int32
          alone
                          int32
          dtype: object
In [63]: df train. drop(['Embarked'], axis=1, inplace=True)
In [64]: df_train
Out[64]:
                Survived Pclass
                                Sex Age SibSp Parch
                                                            Fare Person alone
             0
                       0
                              3
                                   1
                                      22.0
                                                1
                                                       0
                                                          7.2500
                                                                       2
                                                                              1
              1
                              1
                                      38.0
                                                         71.2833
                                                                       1
                                                                              1
                       1
                                   0
                                                1
             2
                       1
                              3
                                      26.0
                                                          7.9250
                                                                             0
             3
                       1
                              1
                                   0
                                      35.0
                                                1
                                                         53.1000
                                                                       1
                                                                             1
                       0
                              3
                                   1
                                      35.0
                                                0
                                                       0
                                                          8.0500
                                                                       2
                                                                             0
              4
            886
                       0
                                      27.0
                                                         13.0000
                                                                       2
                              2
                                                                             0
                                   1
                                                0
            887
                              1
                                      19.0
                                                         30.0000
                                                                             0
                       0
                              3
                                     24.0
            888
                                   0
                                                1
                                                         23.4500
                                                                       1
                                                                             1
            889
                                                         30.0000
                                                                       2
                                                                             0
                       1
                              1
                                   1
                                      26.0
                                                0
                                                       0
                              3
                                                                       2
            890
                       0
                                   1
                                      32.0
                                                0
                                                          7.7500
                                                                             0
          891 rows × 9 columns
In [65]: df_train.isnull().sum()
Out[65]: Survived
                        0
          Pclass
                        0
          Sex
                        0
          Age
                        0
          SibSp
          Parch
                        0
                        0
          Fare
          Person
                        0
          alone
```

dtype: int64

```
In [66]: #Do a train test split with test size = 0.25 and random state = 123

from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report,roc_auc_score

df_train.describe()
```

Out[66]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Pe
count	891.000000	891.000000	891.000000	891.000000	891.000000	891.000000	891.000000	891.00
mean	0.383838	2.308642	0.647587	28.566970	0.523008	0.381594	32.204208	1.50
std	0.486592	0.836071	0.477990	13.199572	1.102743	0.806057	49.693429	0.66
min	0.000000	1.000000	0.000000	0.420000	0.000000	0.000000	0.000000	0.00
25%	0.000000	2.000000	0.000000	22.000000	0.000000	0.000000	7.910400	1.00
50%	0.000000	3.000000	1.000000	24.000000	0.000000	0.000000	14.454200	2.00
75%	1.000000	3.000000	1.000000	35.000000	1.000000	0.000000	31.000000	2.00
max	1.000000	3.000000	1.000000	80.000000	8.000000	6.000000	512.329200	2.00

```
In [70]: x = df_train.drop(['Survived'], axis=1)
y = df_train['Survived']
```

```
In [71]: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25,random_state=12
```

```
In [72]: y_train.value_counts()
```

Out[72]: 0 410 1 258

Name: Survived, dtype: int64

- In [74]: | clf.fit(x_train,y_train)
- Out[74]: KNeighborsClassifier()
- In [75]: y pred=clf.predict(x test)

	precision	recall	f1-score	support	
0	0.73	0.74	0.74	137	
1	0.58	0.57	0.58	86	
accuracy			0.68	223	
macro avg	0.66	0.66	0.66	223	
weighted avg	0.68	0.68	0.68	223	