Projekt układu kombinacyjnego na bramkach NAND

Szymon Borusiewicz, Jakub Zając, Dawid Szłapa, Radosław Szepielak Marzec 2025

1 Wstęp

Celem niniejszego zadania jest zaprojektowanie układu kombinacyjnego, który realizuje transkoder trzybitowej liczby binarnej na graficzną reprezentację emotikon. Układ ten powinien być oparty wyłącznie na bramkach logicznych **NAND**.

Projektowany układ będzie przekształcał 3-bitowe wejście na 16-punktowy wyświetlacz, odwzorowując wzory przedstawione na poniższym rysunku:

W dalszej części opracowania zostanie przedstawiona szczegółowa analiza działania układu, jego tabela prawdy oraz sposób implementacji przy użyciu bramek **NAND**.

2 Reprezentacja bitowa matrycy LED

Każda emotikona jest wyświetlana na matrycy 4×4 , której piksele oznaczono jako p_0 do p_{15} . Oto układ tych pikseli:

p_0	p_1	p_2	p_3
p_4	p_5	p_6	p_7
p_8	p_9	p_{10}	p_{11}
p_{12}	p_{13}	p_{14}	p_{15}

3 Tabela prawdy dla transkodera

Poniższa tabela przedstawia zależność pomiędzy wejściami A, B, C a stanami pikseli p_0 do p_{15} odpowiedzialnymi za wyświetlanie emotikon na matrycy 4×4 .

\mathbf{C}	В	A	p_0	p_1	p_2	p_3	p_4	p_5	p_6	p_7	p_8	p_9	p_{10}	p_{11}	p_{12}	p_{13}	p_{14}	p_{15}
0	0	0	1	0	0	1	0	0	0	0	0	1	1	0	1	1	1	1
0	0	1	1	0	0	1	0	0	0	0	0	1	1	0	1	0	0	1
0	1	0	1	0	0	1	0	0	0	0	1	1	1	1	0	0	0	0
0	1	1	1	0	0	1	0	0	0	0	0	1	1	0	0	0	0	0
1	0	0	1	0	0	1	0	0	0	0	0	1	1	0	0	1	1	0
1	0	1	1	0	0	1	0	0	0	0	0	0	0	0	0	1	1	0
1	1	0	1	0	0	1	0	0	0	0	1	0	0	1	0	1	1	0
1	1	1	1	0	0	1	0	0	0	0	1	1	1	1	0	1	1	0

Tabela 1: Tabela prawdy dla transkodera 3-bitowego na matrycę LED 4x4

$$p_0 = p_3$$

$$p_1 = p_2 = p_4 = p_5 = p_6 = p_7$$

$$p_8 = p_{11}$$

$$p_9 = p_{10}$$

$$p_{12} = p_{15}$$

$$p_{13} = p_{14}$$

Rysunek 1: Tabela Karnaugh dla $p_0,\,p_3$ funkcji logicznej 3 zmiennych $(A,\,B,\,C)$

$$p_o = p_3 = 1$$

Rysunek 2: Tabela Karnaugh dla $p_1,\,p_2,\,p_4,\,p_5,\,p_6,\,p_7$ funkcji logicznej 3 zmiennych $(A,\,B,\,C)$

$$p_1 = p_2 = p_4 = p_5 = p_6 = p_7 = 0$$

		BA								
		00	01	11	10					
C	0	0	0	0	1					
	1	0	0	1	1					

Rysunek 3: Tabela Karnaugh dla $p_8,\,p_{11}$ funkcji logicznej 3 zmiennych $(A,\,B,\,C)$

$$CB + B\overline{A} = \overline{\overline{CB} \cdot \overline{B} \overline{A} \overline{A}}$$

Rysunek 4: Tabela Karnaugh dla $p_9,\,p_{10}$ funkcji logicznej 3 zmiennych $(A,\,B,\,C)$

$$\overline{C} + \overline{B} \cdot \overline{A} + BA = \overline{C} \cdot \overline{\overline{B} \cdot \overline{A}} \cdot \overline{BA} = \overline{C} \cdot \overline{\overline{BB} \cdot \overline{AA}} \cdot \overline{BA} = \overline{\overline{C} \cdot \overline{\overline{BB}} \cdot \overline{AA}} \cdot \overline{BA}$$

Rysunek 5: Tabela Karnaugh dla $p_{12},\,p_{15}$ funkcji logicznej 3 zmiennych $(A,\,B,\,C)$

$$\overline{C} \cdot \overline{B} = \overline{\overline{\overline{CC} \cdot \overline{BB}}}$$

Rysunek 6: Tabela Karnaugh dla $p_{13},\,p_{14}$ funkcji logicznej 3 zmiennych $(A,\,B,\,C)$

$$C + \overline{B} \cdot \overline{A} = \overline{\overline{CC} \cdot \overline{\overline{BB} \cdot \overline{AA}}} = \overline{\overline{CC} \cdot \overline{\overline{BB} \cdot \overline{AA}}}$$

4 Implementacja układów

4.1 Układ transkodera

Rysunek 7: Układ transkodera

Rysunek 8: Podukład B1

Rysunek 9: Podukład B2

Rysunek 10: Podukład B3

Rysunek 11: Podukład B4

4.2 Układ testujący

Układ testujący został wykonany przy użyciu przerzutnika typu D i generatora słów. Tester porównuje wyjścia transkodera z wyjściem generatora słów. W przypadku, gdy wyjścia różnią się, zapala się dioda informująca o awarii układu, po czym świeci się do momentu podania stanu wysokiego na wejście RESET. Wyjścia testera TESTOUT podają stan wysoki w przypadku, gdy odpowiednie wejścia IO i TEST różnią się stanem. Użyliśmy dwóch analizatorów stanów logicznych do przedstawienia na każdym z nich bitów wejściowych i bitów wyjścia testera ze względu na ograniczoną liczbę pinów.

Rysunek 12: Układ testujący

Rysunek 13: Układ tester

Rysunek 14: Przerzutnik typu D

Rysunek 15: Wskazaia analizatora XLA1 oraz XLA2

Wskazania analizatorów potwierdzają poprawność działania zaprojektowanego przez nas transkodera

Rysunek 16: Tester

5 Zastosowania

• Proste wyświetlacze emocji:
Taki układ może być użyty w zabawkach lub gadżetach, które wyświetlają emocje (np. uśmiech, smutek)
na matrycy LED w zależności od ustawienia przełączników lub sygnałów wejściowych.

Rysunek 17: Przykład wykorzystania wyświetlacza w robocie zabawce

Pogoda na zewnątrz:
 Mając 3 czujniki: wilgotności, fotodiodę mierzącą natężenie światła oraz termometr, możemy na wyświetlaczu przedstawiać różne emotki odpowiadające aktualnej pogodzie na zewnątrz.

Rysunek 18: Wyświetlanie aktualnej pogody

6 Wnioski

Zastosowanie w ten sposób bramek NAND potwierdza że są one uniwersalnym elementem logicznym. Za ich pomocą przedstawiliśmy wszystkie niezbędne operatory logiczne, co pomogło zrealizować złożoną logikę wyświetlacza emotikon.