

(11) Numéro de publication : 0 516 567 A1

(12)

DEMANDE DE BREVET EUROPEEN

(21) Numéro de dépôt : 92420179.1

(51) Int. CI.5: A61B 17/58

(22) Date de dépôt : 27.05.92

30) Priorité: 30.05.91 FR 9106695

(43) Date de publication de la demande : 02.12.92 Bulletin 92/49

(84) Etats contractants désignés : AT BE CH DE DK ES FR GB GR IT LI LU MC NL PT SE

① Demandeur : Société dite: "PSI"
Le Parc de Charbonnières
F-69260 Charbonnières-les-Bains (FR)

(72) Inventeur : Navas, Fernand Le Parc de Charbonnières F-69260 Charbonnières-les-Bains (FR)

(4) Mandataire: Karmin, Roger et al Cabinet MONNIER 150, Cours Lafayette F-69003 Lyon (FR)

(54) Dispositif de stabilisation intervertébrale à amortisseurs.

(57) Il est réalisé sous la forme d'un amortisseur (1) propre à résister élastiquement d'une part à un allongement et d'autre part à une compression axiale sans flambage, ainsi que d'au moins deux implants (2) ancrés à deux vertèbres voisines (4, 5).

10

15

20

25

30

35

40

45

50

55

La présente invention se réfère aux dispositifs de stabilisation intervertébrale destinés au maintien en position relative convenable d'au moins deux vertèbres dont le disque commun est dégradé.

On sait qu'au cours du vieillissement, les disques inter-vertébraux risquent de se dégrader, de telle sorte que les mouvements de l'articulation intervertébrale se modifient, si bien qu'ils deviennent anormalement plus amples. Les vertèbres peuvent alors se déplacer de manière excessive les unes par rapport aux autres, jusqu'à entraîner des déplacements permanents du fait que les vertèbres se positionnent mal.

Le disque intervertébral se comporte plus comme un répartiteur de pression ou un coupleur tridimensionnel de mouvements que comme un simple amortisseur de charges longitudinales.

Le mouvement intervertébral est guidé par le jeu des articulaires postérieures. Ces dernières n'ont qu'un seul degré de liberté ; les deux facettes ne pouvant que glisser l'une sur l'autre.

Lors de ce mouvement, le disque se laisse déformer d'une façon élastique en freinant progressivement le mouvement pour l'amortir complètement en fin d'amplitude.

Le disque possède une qualité visco-élastique. Il s'adapte progressivement par viscosité à un nouveau rapport anatomique. De ce fait, le mouvement de retour est alors pris en charge par un amortisseur progressif similaire et ceci rapidement dès son origine.

Le jeu des facettes articulaires peut être asymétrique, et de ce fait, créer un mouvement tridimensionnel couplant flexion latérale et rotation horizontale.

Ce mouvement complexe est lui-même couplé au grand mouvement de flexion-extension. En flexion complète comme en extension complète l'amplitude du mouvement combiné (flexion-rotation) devient nulle alors qu'il obtient un maximum d'amplitude en position anatomique, c'est-à-dire dans le rapport anatomique naturel des vertèbres lorsque l'on se tient debout ou lorsque l'on marche (en fait dans une position intermédiaire entre flexion et extension maximale).

La dégradation biologique du disque vient perturber cette mécanique de mouvements couplés et amortis.

Cette évolution est source d'inconfort et de douleur.

On a déjà proposé, par exemple dans le brevet américain 4 743 260, de placer entre au moins deux vertèbres voisines un dispositif de stabilisation flexible réalisé au moyen de deux éléments fixés aux vertèbres considérées. Les éléments de stabilisation sont réalisés en une matière non métallique résistante mais suffisamment flexible pour permettre au moins un mouvement normal de la colonne vertébra-

Les éléments de stabilisation considérés sont prévus en une matière plastique renforcée de fibres de carbone, de telle sorte qu'ils comportent une certaine flexibilité. Toutefois, cette dernière est limitée à de très faibles amplitudes dans le sens de leurs courbures, mais ils ne comportent aucune élasticité en traction ou en compression.

On a ainsi proposé de placer un lien souple, non élastique, entre deux vertèbres, et qui limite comme un frein brutal le mouvement dans son amplitude en flexion. A ce stade, il se comporte comme un système rigide, reportant les contraintes mécaniques sur les articulations intervertébrales adjacentes.

Ceci ramène aux complications de surcharge mécanique comme pour les arthrodèses ou les montages métalliques rigides.

D'autre part, le mouvement pathologique dégénératif entre deux vertèbres n'est pas seulement un mouvement d'amplitude exagérée mais aussi une subtile désorganisation du couplage tridimensionnel de différents degrés de liberté.

Un simple lien souple ne peut aider que dans la mesure où il positionne les deux vertèbres dans une amplitude extrême et donc en extension.

Les micro-mouvements résiduels alors possibles grâce au fluage du lien sont susceptibles d'apporter une adaptation élémentaire et grossière par rapport aux besoins fonctionnels. Mais leur existence différencie nettement cette fixation par rapport au système rigide (arthrodèse ou fixation métallique).

Les perfectionnements qui font l'objet de la présente invention visent à permettre la réalisation de dispositifs susceptibles d'accompagner le vieillissement des disques et qui constituent donc des prothèses évitant les inconvénients mentionnés en tête des présentes.

On comprend que le but du système proposé est de suppléer le plus physiologiquement possible aux insuffisances du disque créées par les conditions biologiques et pathologiques.

Le système proposé vise à obtenir une nouvelle stabilité à partir d'une position intervertébrale se rapprochant de la position neutre (entre flexionextension).

Dans cette position, la possibilité de mouvements des facettes articulaires postérieures est plus grand en particulier dans le sens de l'extension.

D'autre part, le travail asymétrique des deux facettes postérieures est possible.

La stabilité de l'articulation intervertébrale est alors obtenue grâce à la qualité d'amortisseur du dispositif suivant l'invention.

Ce dernier a pour rôle d'accompagner le mouvement de l'articulation en le limitant légèrement en flexion et en évitant les déplacements anormaux. Parallèlement, tout en maintenant les vertèbres en extension l'une par rapport à l'autre, il évite un trop grand appui des facettes articulaires l'une sur l'autre. Le système suivant l'invention limite également la fermeture du recessus latéral en empêchant de ce fait la compression éventuelle de la racine nerveuse.

10

15

20

25

30

35

45

50

A cet effet, le dispositif suivant l'invention comprend un amortisseur propre à résister élastiquement d'une part à un allongement et d'autre part à une compression axiale, ledit amortisseur étant associé à au moins deux implants ancrés à deux vertèbres voisines

L'amortisseur affecte la forme d'un corps allongé pourvu d'une partie centrale ventrue reliée par deux cols à deux extrémités renflées coopérant avec les implants.

Ainsi, l'amortisseur suivant l'invention peut exercer une force distractante ou compressive, ce qui lui permet d'agir de façon permanente sur la mauvaise position intervertébrale.

Autrement dit, le dispositif de stabilisation suivant l'invention guide et limite le mouvement de l'articulation intervertébrale, tout en étant susceptible d'exercer des forces permanentes modifiant la position des vertèbres entre elles.

Le dispositif de stabilisation suivant l'invention est capable d'amortir le mouvement en flexion comme celui en extension et de ce fait d'autoriser un travail asymétrique des facettes des vertèbres tout en autorisant le mouvement couplé tridimensionnel qui en naît

On se rapproche ainsi d'un mouvement physiologique complexe et amorti.

Bien entendu, on peut utiliser un seul dispositif suivant l'invention ou plusieurs pour relier deux vertèbres voisines.

Le dessin annexé, donné à titre d'exemple, permettra de mieux comprendre l'invention, les caractéristiques qu'elle présente et les avantages qu'elle est susceptible de procurer :

Fig. 1 est une vue en perspective des différents éléments constituant un dispositif de stabilisation suivant l'invention.

Fig. 2 est une vue par derrière de trois vertèbres associées à des dispositifs de stabilisation suivant l'invention.

Fig. 3 est une coupe suivant III-III (fig. 2).

Fig. 4 est une vue en perspective de deux manchons destinés à coopérer avec les cols de l'amortisseur d'un dispositif conforme à l'invention.

Fig. 5 est une vue semblable à celle de fig. 3, mais illustrant le montage d'un dispositif suivant l'invention en position antérieure.

Fig. 6 est une vue en coupe très schématique du principe d'un amortisseur réalisé suivant une variante de l'invention.

Fig. 7 montre en coupe à l'état libre les deux éléments de l'amortisseur de fig. 1.

Fig. 8, 9 et 10, sont des coupes longitudinales de deux modes différents de réalisation pratique de l'amortisseur illustré en fig. 6.

Le dispositif suivant l'invention, qui a été illustré en fig. 1, comprend essentiellement un amortisseur 1 réalisé en une matière bio-compatible et élastique et deux implants 2 vissés dans deux vertèbres voisines et dont les extrémités libres sont associées aux deux extrémités de l'amortisseur 1.

4

On observe que l'amortisseur 1 est réalisé sous la forme d'un corps allongé pourvu d'une partie centrale ventrue 1a reliée par deux cols 1b, 1c à deux extrémités renflées 1d, 1e. Dans un mode d'exécution avantageux de la disposition qui précède, la partie ventrue 1a peut être prévue de section longitudinale elliptique, tandis que les deux extrémités 1d et 1c affectent chacune la forme d'une sphère. Bien entendu, la forme de la partie ventrue 1a peut être de section cylindrique avec deux embouts tronconiques être réalisée sous la forme de deux troncs de cône ou encore être asymétrique dans des applications particulières.

Chaque implant 1 comporte tout d'abord une vis 2a propre à se visser dans le pédicule d'une vertèbre ou dans tout autre endroit de celle-ci. La vis 2a se prolonge par un corps cylindrique 2b qui se termine par une cuvette 2c de forme cylindrique creuse pourvue d'une paroi intérieure taraudée 2d et d'un fond 2e concave présentant une forme complémentaire à celle de la moitié de l'extrémité 1d, 1e de l'amortisseur. On observe que la cuvette 2c est pourvue d'une encoche latérale 2f destinée à permettre le passage du col 1b, 1c de l'amortisseur 1 pour la mise en place de celui-ci par rapport aux implants. Le verrouillage des extrémités de l'amortisseur 1 s'effectue après leur mise en place dans les cuvettes 2c en vissant un embout fileté 3 à l'intérieur de la cuvette correspondante par rapport à la paroi taraudée 2d. Bien entendu, la base 3a de l'embout 3 est prévue concave et hémisphérique, de manière à coopérer exactement avec les extrémités sphériques 1d, 1e de l'amortisseur. On a illustré en fig. 2 et 3 le montage d'un dispositif suivant l'invention par rapport à deux vertèbres voisines 4 et 5 d'un rachis.

Sur la droite de fig. 2, on a illustré un dispositif comportant un seul amortisseur 1 associé à deux implants 2 assujettis chacun à une vertèbre 4, 5. On peut prévoir le même montage sur la partie gauche. En outre, il est possible que trois vertèbres successives 4, 5, 6 aient besoin d'une stabilisation. Dans ce cas, l'un des implants 2' comporte deux encoches diamétralement opposées 2'f, tandis que les extrémités des deux amortisseurs 1' comportent chacun une extrémité 1'd, 1'e, tronquée suivant un plan diamétral de la sphère perpendiculaire à l'axe longitudinal de l'amortisseur afin que les deux extrémités tronquées 1'd, 1'e puissent être retenues dans la cuvette de l'implant 2' (voir la partie gauche de fig. 2).

Fig. 3 illustre de manière très détaillée la structure de l'assemblage des extrémités de l'amortisseur avec deux implants. On retrouve la cuvette creuse 2c à fond concave bombé 2e ainsi que l'embout 3 à base bombée concave 3a afin que les deux extrémités sphériques 1d, 1e de l'amortisseur 1 soient convenablement verrouillées par rapport aux implants 2. Ce

55

10

15

20

25

30

35

40

45

50

verrouillage permet de créer une sorte d'articulation à rotule facilitant les mouvements du rachis.

5

Comme illustré en fig. 4, les cols 1b, 1c de l'amortisseur 1 sont avantageusement protégés par un manchon en diabolo 7 réalisé en un métal ou en toute autre matière rigide et qui assure la qualité mécanique de la relation entre l'amortisseur et les implants. Les diabolos 7 peuvent comprendre sur leurs faces intérieures des crans qui interviennent de manière active en diminuant des efforts mécaniques au niveau du col correspondant.

Comme illustré en fig. 2 et 3, le dispositif de stabilisation suivant l'invention est positionné soit sur la face postérieure, soit sur celle latérale des vertèbres. Il peut être aussi utilisé en avant sur le corps vertébral, tel qu'illustré en fig. 5.

Dans ce mode de mise en place, il va de soi que les implants 2 devront être disposés latéralement en dehors des vaisseaux ou le dispositif sera posé comme illustré en fig. 5, c'est-à-dire noyé dans les vertèbres.

Dans ce cas, on effectue une légère résection du disque intervertébral 8 pour constituer une dépression 8a dans celui-ci. Les implants 2 sont enfoncés profondément dans la vertèbre, de manière que leur cuvette 2c soit noyée dans la vertèbre qui est ellemême entaillée en 4a, 5a afin de permettre le passage des deux cols de l'amortisseur. On est ainsi assuré que le dispositif n'interfère pas avec les vaisseaux disposés le long de la face antérieure du rachis.

Les amortisseurs peuvent être prévus de différentes longueurs variant de quelques millimètres les unes par rapport aux autres, de manière que l'on puisse ajuster la longueur de l'amortisseur à la pathologie du patient.

On a ainsi réalisé un système de stabilisation permettant d'obtenir un jeu des mouvements résiduels intervertébraux nécessaires à la physiologie élémentaire du rachis, tout en éliminant les mauvaises positions des vertèbres et leurs mouvements anormaux.

Toute matière appropriée peut être adoptée pour la réalisation de l'amortisseur 1, en particulier un élastomère bio-compatible. On pourrait encore adopter une matière composite répondant au mieux aux deux exigences mécaniques de l'amortisseur, soit la résistance à une traction longitudinale et à une compression sans flambage. Les matériaux choisis peuvent être de la même famille ou totalement différents.

Le principe de l'amortisseur réalisé en une matière composite est illustré en fig. 6 et 7. L'amortisseur référencé 10 comprend deux éléments 11 et 12 réalisés tous les deux en des matières élastiques biocompatibles. Le premier élément 11 est réalisé sous la forme d'une bobine dont la distance entre les joues est référencée L à l'état libre. Le second élément référencé 12 affecte la forme d'un manchon tubulaire de hauteur H à l'état libre. Le montage de l'amortisseur consiste à placer l'élément 12 entre les joues de l'élé-

ment 11 après que celui-ci ait été allongé. Donc, l'élément 11 comprime par ses joues l'élément 12 dans le sens de la compression, tandis que ce dernier maintient l'élément 11 dans une position pré-tendue. Ainsi, la longueur I du manchon après montage et qui correspond à la distance entre les joues de l'élément 12 se définit par la relation L<I<H.

Dans une première réalisation pratique illustrée en fig. 8, l'élément 11' ou âme affecte la forme d'une haltère, tandis que l'élément 12 est réalisé sous la forme d'un corps 12' dont la forme générale est celle du centre de l'amortisseur 1 de fig. 1, 2 et 3.

Pour réaliser un tel amortisseur, on fabrique tout d'abord l'âme 11'. La tige de celle-ci est allongée élastiquement dans le sens axial, puis le corps 12' est surmoulé sur cette âme. Après la fabrication, l'âme 11'a est pré-tendue, tandis que le corps 12' est pré-comprimé. On note que la liaison entre l'âme 11' et le corps 12' s'effectue au moyen des deux manchons 7 en forme de diabolos, les extrémités de l'âme 11' dépassant au delà des bouts du corps 12', tandis que les deux têtes sphériques 11'a, 11'b de ladite âme correspondent aux boules 1d, 1e de l'amortisseur 1.

Dans un second mode d'exécution illustré en fig. 9, l'amortisseur référencé 10" comprend une enveloppe élastique 11" dont la forme extérieure correspond à celle de l'amortisseur 1, ainsi qu'un bloc de matière élastique 12". Après fabrication, l'enveloppe 11" qui comporte une cavité intérieure creuse, est allongée de manière à augmenter la hauteur de sa cavité dans laquelle le bloc 12" est introduit par une ouverture latérale 11"a ou autrement. L'enveloppe 11" est en conséquence pré-tendue dans le sens de l'allongement, tandis que le bloc 12" est pré-comprimé par l'action de l'enveloppe.

Dans une dernière réalisation pratique illustrée en fig. 10, l'amortisseur 100 comprend un corps 120 qui est monté sur un élément 110 en forme d'haltère comme déjà représenté en fig. 8. La liaison entre l'élément 110 et le corps 120 s'effectue au moyen de deux manchons 70 en forme de diabolos dont l'une de leurs extrémités est en appui contre les têtes sphériques 110a et 110b de l'élément 110 correspondant aux boules 1d, 1e de l'amortisseur 1. Les autres extrémités des manchons 70 sont respectivement recourbées en direction de l'extérieur de l'amortisseur 100 afin de former un espace libre circulaire à l'intérieur duquel est introduit un joint torique 130. Ce dernier permet de compenser les efforts de compression de l'amortisseur 100.

On constate que le joint torique 130 peut être réalisé en une matière bio-compatible semblable à celle du corps 120 de manière à pouvoir résister aux efforts de compression. Le joint 130 et l'élément 110 en forme d'haltère peuvent être utilisés ensemble sur le même amortisseur ou indépendamment l'un de l'autre suivant les contraintes à réguler.

La dureté des éléments composants l'amortis-

55

10

15

20

25

30

35

45

50

seur 10', 10" sera choisie de manière que sous l'effet des forces appliquées par les vertèbres, aucun des éléments ne reprenne ses dimensions à l'état libre.

Ainsi, que l'amortisseur soit soumis à une force de traction ou à une force de compression, il demeure toujours pré-contraint, si bien que la force qui lui est appliquée est toujours amortie à quel qu'endroit que l'on se situe dans l'amplitude du mouvement imposé à l'amortisseur composite.

Revendications

- 1. Dispositif de stabilisation intervertébrale du genre constitué par un élément flexible mis en place entre au moins deux vertèbres par l'intermédiaire de deux implants respectivement associés à chaque vertèbre, caractérisé en ce qu'il est réalisé sous la forme d'un amortisseur (1, 10, 10', 10", 100) propre à résister élastiquement d'une part à un allongement et d'autre part à une compression axiale ainsi qu'au moins deux implants (2) ancrés à deux vertèbres voisines (4, 5).
- 2. Dispositif suivant la revendication 1, caractérisé en ce que l'amortisseur (1) affecte la forme d'un corps allongé pourvu d'une partie centrale (1a) ventrue reliée par deux cols (1b, 1c) à deux extrémités renflées (1d, 1e).
- 3. Dispositif suivant la revendication 1, caractérisé en ce que les bouts des implants (2) qui reçoivent les extrémités renflées (1d, 1e) de l'amortisseur (1) sont chacun réalisés sous la forme d'une cuvette (2c) dont le fond (2e) comporte un profil concave de forme appropriée à sa coopération étroite avec l'extrémité correspondante (1d, 1e) de l'amortisseur (1), ladite cuvette comportant des moyens (2d) de fixation d'un embout (3) destiné à appliquer ladite extrémité contre le fond (2e) de la cuvette (2c) de l'implant (2).
- 4. Dispositif suivant la revendication 3, caractérisé en ce que la cuvette (2c) de chaque implant (2) comporte un trou taraudé (2d) dont le fond (2e) est hémisphérique, cette cuvette étant munie d'une encoche (2f) afin qu'elle débouche latéralement vers l'extérieur, la fixation de l'extrémité de l'amortisseur s'effectuant au moyen d'un embout fileté (3) à base (3a) hémisphérique qui se visse dans la cuvette (2c).
- 5. Dispositif suivant la revendication 4, caractérisé en ce qu'il comprend des implants médians (2') comportant deux encoches (2'f) se faisant face pour le maintien des extrémités de deux amortisseurs adjacents (1') dont au moins l'une des extrémités (1'd, 1'e) est une demi-sphère.
- **6.** Dispositif suivant l'une quelconque des revendications 1 à 5, caractérisé en ce que des manchons rigides ou diabolos (7) sont placés au niveau des deux cols (1b, 1c) de l'amortisseur (1).

7 Dispositif suivant la revendication 6, caractérisé en ce que l'amortisseur (1, 10, 10', 10", 100) est réa-

lisé en une matière élastique bio-compatible telle qu'un élastomère.

- 8. Dispositif suivant la revendication 6, caractérisé en ce que l'amortisseur (1, 10, 10', 10",100) est réalisé en une matière bio-compatible à deux composants
- 9. Dispositif suivant la revendication 2, carcatérisé en ce que la partie ventrue (1a) de l'amortisseur (1) présente en section longitudinale une forme elliptique.
- **10.** Dispositif suivant la revendication 2, caractérisé en ce que la partie ventrue (1<u>a</u>) de l'amortisseur (1) est asymétrique.
- 11. Dispositif suivant la revendication 8, caractérisé en ce que l'un des deux éléments de l'amortisseur (10, 10', 10", 100) est pré-contraint dans le sens de l'extension et le second élément dans le sens de la compression.
- 12. Dispositif suivant la revendication 11, caractérisé en ce que son amortisseur (10') comprend une âme élastique (11') réalisée sous la forme d'une haltère dont la tige est élastiquement allongée ainsi qu'un corps (12') pré-contraint dans le sens de la compression par l'élasticité de l'âme (11').
- 13. Dispositif suivant la revendication 11, caractérisé en ce que son amortisseur (10") est réalisé sous la forme d'une enveloppe élastique (11") prétendue élastiquement dans le sens axial en vue de l'allonger et qui comporte une cavité renfermant un bloc de matière élastique (12") que l'enveloppe précontraint par compression.
- 14. Dispositif suivant la revendication 11, caractérisé en ce que son amortisseur (100) comprend un élément (110) et un corps (120) reliés par deux manchons (70) en forme de diabolos dont l'une de leurs extrémités est recourbée en direction de l'extérieur pour former un espace libre circulaire à l'intérieur duquel est introduit un joint torique (130).
- 15. Dispositif suivant la revendication 14, caractérisé en ce que le joint torique (130) est réalisé en une matière bio-compatible suffisamment résistante pour pouvoir compenser les efforts de compression.

5

55

Fig. 2

RAPPORT DE RECHERCHE EUROPEENNE Numero de la demande

92 42 0179 EP

atégorie	Citation du document avec in des parties pert		Revendication concernée	CLASSEMENT DE LA DEMANDE (Int. Cl.5)
x	EP-A-0 346 269 (MECRON N	MEDIZINISCHE PRODUKTE)	1	A61B17/58
A	* abrégé *	,	6-9	
	* colonne 2, ligne 17 - ligne 23; figure 2 *			
A	EP-A-0 381 588 (F.H.BRE	ARD & H. GRAF)	1,5-7	
	* abrégé * * colonne 8, ligne 6 - 1	igne 12; figures 1-2,2A		
	EP-A-0 322 334 (COTE)	•	1-2,7-8	
^	* colonne 2, ligne 12 -	ligne 36; figure 1 *		
A	JOURNAL OF BONE AND JOIN vol. 63-A, no. 8, Octob		1,10	
	pages 1289 - 1291; M.PRITSCH ET AL,: 'Mani	nulation and External		
	Fixation of Metacarpal	•		
	* page 1289, colonne 2, figure 2 *			
A	GB-A-2 168 255 (ORTHOFI)	()	3-4	DOMAINES TECHNIQUES
n	* figures 1-2 *	·)		RECHERCHES (Int. Cl.5)
P, X	EP-A-0 478 470 (J.COMMA	RMOND ET IMPACT)	1,6-7	A61B
A	* abrégé * * colonne 2, ligne 26 -	ligne 34; figures 1,5 *	4	A61F
Le p	résent rapport a été établi pour tou	ates les revendications		
	Lieu de la recherche	Date d'achévement de la recherche		Examinateur
	LA HAYE	30 JUILLET 1992	NICE	. P.
Y: pa	CATEGORIE DES DOCUMENTS O ticulièrement pertinent à lui seul riculièrement pertinent en combinaison tre document de la même catégorie	E : document d date de dép		
O : dir	lère-plan technologique rulgation non-écrite rument intercalaire		la même famille, docu	ment correspondant