Série 7 (Corrigé)

L'exercise 1 sera discuté pendant le cours le lundi 7 novembre. L'exercice 3 (*) peut être rendu le jeudi 10 novembre aux assistants jusqu'à 15h.

Exercice 1 - QCM

(a)

Déterminer si les énoncés proposés sont vrais ou faux.
• Soit V un K -espace vectoriel muni de l'addition $+$ et de la multiplication par un scalaire \cdot . Alors $(V, +, \cdot)$ est un anneau.
○ vrai ○ faux
• Soit V un K -espace vectoriel muni de l'addition $+$ et de la multiplication par un scalaire \cdot . Alors tout sous-espace vectoriel de V muni de $+$ est un sous-groupe de $(V,+)$.
○ vrai ○ faux
• Dans un espace vectoriel, tout multiple scalaire d'un vecteur non nul est un vecteur non nul.
○ vrai ○ faux
• Soient l'espace vectoriel K et les suites $z_i = (0, 0, \dots, \underbrace{1}_{i}, 0, 0, \dots), i \in \mathbb{N} \setminus \{0\},$
dans K . Les suites $z_i, i \in \mathbb{N} \setminus \{0\}$, engendrent le sous-espace des suites convergentes sur K .
○ vrai ○ faux
Sol.:
• Soit V un K -espace vectoriel muni de l'addition $+$ et de la multiplication par un scalaire \cdot . Alors $(V, +, \cdot)$ est un anneau.
$\bigcirc vrai lacktriangledown faux$
• Soit V un K -espace vectoriel muni de l'addition $+$ et de la multiplication \cdot par un scalaire. Alors tout sous-espace vectoriel de V muni de $+$ est un sous-groupe de $(V,+)$.
lacktriangleq vrai igcup faux
• Dans un espace vectoriel, tout multiple scalaire d'un vecteur non nul est un vecteur non nul.
$\bigcirc \ vrai igoplus faux$

• Soient l'espace vectoriel K et les suites $z_i = (0, 0, \ldots, \underbrace{1}_i, 0, 0, \ldots), i \in \mathbb{N} \setminus \{0\}$, dans K. Donc les suites $z_i, i \in \mathbb{N} \setminus \{0\}$, engendrent le sous-espace des suites convergentes sur K.

○ vrai • faux

- (b) Determiner les énoncés corrects.
 - 1. Soient $A, C \in M_{n \times n}(\mathbb{R})$ et $b, d \in \mathbb{R}^n$. Supposons que les systèmes Ax = b et Cx = d ont une infinité de solutions. Que peut-on dire sur le nombre de solutions du système (A + C)x = b + d?
 - O Le système a une infinité de solutions.
 - On ne peut rien dire sur l'ensemble des solutions.
 - O Le système a soit une infinité de solutions soit une seule solution.

Sol.:

- 1. Soient $A, C \in M_{n \times n}(\mathbb{R})$ et $b, d \in M_{n \times 1}(\mathbb{R})$. Supposons que les systèmes Ax = b et Cx = d ont une infinité de solutions. Que peut-on dire sur le nombre de solutions du système (A + C)x = b + d?
 - O Le système a une infinité de solutions.
 - On ne peut rien dire sue l'ensemble de solutions.
 - C Le système a soit une infinité de solutions soit une seule solution.
- 2. Soit l'ensemble des matrices $S = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_{2\times 2}(\mathbb{R}) | a+d=0 \right\}$. Laquelle des assertions suivantes est correcte?
 - \bigcirc S n'est pas un sous-espace vectoriel de $M_{2\times 2}(\mathbb{R})$.
 - $\bigcirc \operatorname{span}\left(\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}\right) = S.$
 - Aucun des énoncés ci-dessus n'est correct.

Sol.:

- 2. Soit l'ensemble des matrices $S = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_{2\times 2}(\mathbb{R}) | a+d=0 \right\}$. Laquelle des assertions suivantes est correcte?
 - \bigcirc S n'est pas un sous-espace vectoriel de $M_{2\times 2}(\mathbb{R})$.

 - Aucun des énoncés ci-dessus n'est correct.

Exercice 2

Pour chacun des systèmes linéaires suivants :

1) Calculer l'ensemble des solutions.

2) Si on écrit ce système sous la forme Ax = b, $A \in M_{n \times n}(\mathbb{R})$, indiquer le rang de la matrice A.

a)
$$x_1 + 2x_2 = 1$$

 $x_3 = 2$
 $x_4 = -1$.

Sol.: La matrice augmentée (A|b):

$$\left(\begin{array}{ccc|ccc|c}
1 & 2 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 2 \\
0 & 0 & 0 & 1 & -1
\end{array}\right)$$

est déjà sous forme échelonnée réduite et on voit que rang(A) = 3. On voit que $x_3 = 2, x_4 = -1$ et $x_1 = 1 - 2x_2$. Donc, on a une variable libre. Si $s := x_2$, l'ensemble

de solutions est la droite $\left\{ \begin{pmatrix} 1-2s \\ s \\ 2 \\ -1 \end{pmatrix} : s \in \mathbb{R} \right\} \subset \mathbb{R}^4.$

b)
$$x_1 + 2x_2 + x_3 = 1$$

 $2x_1 + 4x_2 + 2x_3 = 3$.

Sol.: La matrice augmentée (A|b) est donnée par :

$$\left(\begin{array}{cc|c}1&2&1&1\\2&4&2&3\end{array}\right)$$

Forme échelonnée réduite :

$$\left(\begin{array}{ccc|c}1&2&1&0\\0&0&0&1\end{array}\right)$$

Comme $rang(A|b) = 2 \neq 1 = rang(A)$, le système n'a pas de solution.

Exercice 3 (\star)

Soit C = BA la forme échelonnée réduite d'une matrice $A \in M_{4\times 5}(\mathbb{R})$, où

$$C = \begin{pmatrix} 1 & 0 & 3 & 0 & 0 \\ 0 & 1 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 2 & 0 \\ 1 & 0 & -1 & 1 \end{pmatrix}.$$

Donner l'ensemble des solutions du système $Ax(\alpha) = b(\alpha)$ en fonction de la valeur α , où le vecteur

$$b(\alpha) = \begin{pmatrix} 1 & \alpha - 4 & 2 & (\alpha - 1)(\alpha + 1) + 1 \end{pmatrix}^{\mathsf{T}}$$

est paramétré par $\alpha \in \mathbb{R}$.

Sol.: Vu que la matrice de transformation B est inversible, on peut multiplier les deux côtés de l'équation par B et obtenir

$$\underbrace{BA}_{C} x(\alpha) = \underbrace{Bb(\alpha)}_{=:d(\alpha)}.$$

On calcule

$$d(\alpha) = Bb(\alpha) = \begin{pmatrix} 1 & 2 & \alpha & (\alpha - 1)(\alpha + 1) \end{pmatrix}^{\mathsf{T}}.$$

Le système Cx = d devient ainsi

$$\begin{pmatrix} 1 & 0 & 3 & 0 & 0 \\ 0 & 1 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ \alpha \\ (\alpha - 1)(\alpha + 1) \end{pmatrix}.$$

La lecture de la dernière ligne établit que le système est résoluble seulement si $\alpha = \pm 1$, autrement l'ensemble de solutions est vide. Pour $\alpha = \pm 1$, la dernière ligne 0 = 0 est satisfaite trivialement, donc on peut l'ignorer. On voit que les variables libres sont x_3 et x_4 . En posant $s := x_3$ et $t := x_4$, l'ensemble de solutions est

$$\left\{ \begin{pmatrix} 1\\2\\0\\0\\\alpha \end{pmatrix} + s \begin{pmatrix} -3\\-2\\1\\0\\0 \end{pmatrix} + t \begin{pmatrix} 0\\-1\\0\\1\\0 \end{pmatrix} : t, s \in \mathbb{R} \right\} \qquad si \ \alpha = \pm 1,$$

$$\emptyset \qquad autrement.$$

L'ensemble des solutions pour $\alpha = \pm 1$ correspond à deux plans parallèles dans un espace à 5 dimensions.

Exercice 4

Résoudre dans \mathbb{R} et dans \mathbb{F}_5 le système suivant.

$$x + 3y + 2t = 1$$
$$y + 3z + t = 0$$
$$3x + z + t = 0$$
$$x + 2y + 4z + 2t = 4.$$

Sol.: Ramenons la matrice du système à une forme échelonnée dans $\mathbb R$:

$$(A \mid b) = \begin{pmatrix} 1 & 3 & 0 & 2 \mid 1 \\ 0 & 1 & 3 & 1 \mid 0 \\ 3 & 0 & 1 & 1 \mid 0 \\ 1 & 2 & 4 & 2 \mid 4 \end{pmatrix} \xrightarrow{G_{13}(-3)} \begin{pmatrix} 1 & 3 & 0 & 2 \mid 1 \\ 0 & 1 & 3 & 1 \mid 0 \\ G_{14}(-1) & 0 & -9 & 1 & -5 \mid -3 \\ 0 & -1 & 4 & 0 \mid 3 \end{pmatrix} \xrightarrow{G_{23}(9)} \begin{pmatrix} 1 & 3 & 0 & 2 \mid 1 \\ 0 & 1 & 3 & 1 \mid 0 \\ G_{24}(1) & 0 & 0 & 28 & 4 \mid -3 \\ 0 & 0 & 7 & 1 \mid 3 \end{pmatrix}$$

Comme rang($(A \mid b)$) = $4 \neq 3 = \text{rang}(A)$, il n'y a aucun solution dans \mathbb{R} . Si on travail dans \mathbb{F}_5 on obtient

$$(A \mid b) = \begin{pmatrix} 1 & 3 & 0 & 2 \mid 1 \\ 0 & 1 & 3 & 1 \mid 0 \\ 3 & 0 & 1 & 1 \mid 0 \\ 1 & 2 & 4 & 2 \mid 4 \end{pmatrix} \xrightarrow{G_{13}(2)} \begin{pmatrix} 1 & 3 & 0 & 2 \mid 1 \\ 0 & 1 & 3 & 1 \mid 0 \\ 0 & 1 & 1 & 0 \mid 2 \\ 0 & 4 & 4 & 0 \mid 3 \end{pmatrix} \xrightarrow{G_{21}(2)} \begin{pmatrix} 1 & 0 & 1 & 4 \mid 1 \\ 0 & 1 & 3 & 1 \mid 0 \\ 0 & 0 & 3 & 4 \mid 2 \\ 0 & 0 & 2 & 1 \mid 3 \end{pmatrix}$$

$$\stackrel{G_{34}(1)}{\sim} \left(\begin{array}{ccc|c} 1 & 0 & 1 & 4 & 1 \\ 0 & 1 & 3 & 1 & 0 \\ 0 & 0 & 1 & 3 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right).$$

Alors, on a une variable libre $t \in \mathbb{F}_5$ et l'ensemble de solutions est donnée par $\left\{ \begin{pmatrix} 2+4t\\3+3t\\4+2t\\t \end{pmatrix} : t \in \mathbb{F}_5 \right\}$.

Exercice 5

Un carré magique d'ordre n est composé de n^2 entiers strictement positifs, écrits dans une matrice carrée. Ces nombres sont disposés de sorte à ce que leurs sommes sur chaque ligne, sur chaque colonne, sur la diagonale et l'anti-diagonale soient égales, et vaille une valeur fixe $c \in \mathbb{R}$.

- (a) Soit $A \in M_{3\times 3}(\mathbb{R})$ un carré magique d'ordre 3. Déterminer la relation entre a_{22} et c. **Indication :** Convertir la définition de carré magique en un système d'équations, et en déterminer l'ensemble des solutions correspondant.
- (b) Remplir cette matrice, pour en faire un carré magique.

$$\left(\begin{array}{ccc}
a_{11} & 16 & a_{13} \\
24 & 30 & 36 \\
a_{31} & a_{32} & a_{33}
\end{array}\right).$$

Sol.: On cherche une matrice

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

avec $a_{11} + a_{21} + a_{31} = a_{12} + a_{22} + a_{32} = a_{13} + a_{23} + a_{33} = a_{11} + a_{12} + a_{13} = a_{21} + a_{22} + a_{23} = a_{31} + a_{32} + a_{33} = a_{11} + a_{22} + a_{33} = a_{13} + a_{22} + a_{31} = c$. Cela correspond à un système de 8 équations sur les 9 variables $a_{11}, a_{12}, a_{13}, a_{21}, a_{22}, a_{23}, a_{31}, a_{32}, a_{33}$. Nous les écrivons dans la

notation matricielle usuelle :

On a calculé la forme échelonnée réduite de la matrice augmentée. Il y a 2 variables libres, $a_{3,2}$ et $a_{3,3}$, et si on définit $\lambda := a_{3,2}$ et $\mu := a_{3,3}$, alors

$$a_{31} = -a_{32} - a_{33} + c = -\lambda - \mu + c$$

$$a_{23} = a_{31} - a_{33} + \frac{1}{3}c = \frac{4}{3}c - 2\mu - \lambda$$

$$a_{22} = a_{23} - a_{31} + a_{33} = \frac{1}{3}c$$

$$a_{21} = -a_{22} - a_{23} + c = -\frac{2}{3}c + \lambda + 2\mu$$

$$a_{13} = -a_{23} - a_{33} + c = -\frac{1}{3}c + \lambda + \mu$$

$$a_{12} = -a_{22} - a_{32} + c = \frac{2}{3}c - \lambda$$

$$a_{11} = -a_{21} - a_{31} + c = \frac{2}{3}c - \mu$$

Ainsi nous obtenons

$$A = \frac{c}{3} \begin{pmatrix} 2 & 2 & -1 \\ -2 & 1 & 4 \\ 3 & 0 & 0 \end{pmatrix} + \lambda \begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{pmatrix} + \mu \begin{pmatrix} -1 & 0 & 1 \\ 2 & 0 & -2 \\ -1 & 0 & 1 \end{pmatrix}.$$

Nous voyons en particulier que $a_{22} = \frac{1}{3}c$ est uniquement déterminé par c. Pour notre exemple, c = 90 et donc $16 = 60 - \lambda, 24 = -60 + \lambda + 2\mu$. Il s'ensuit que $\lambda = 44, \mu = 20$, et finalement

$$A = \left(\begin{array}{ccc} 40 & 16 & 34 \\ 24 & 30 & 36 \\ 26 & 44 & 20 \end{array}\right)$$

Exercice 6

Dans chacun des cas suivants, l'ensemble V est-il un K-espace vectoriel pour la loi d'addition classique et la multiplication scalaire \cdot donnée?

- a) $K = \mathbb{R}$, $V = \mathbb{R}^2$ et $\lambda \cdot (x, y) = (\lambda x, 0)$ pour tous $\lambda \in K$ et $(x, y) \in V$.
- b) $K = \mathbb{R}$, $V = \mathbb{R}^2$ et $\lambda \cdot (x, y) = (\lambda^3 x, \lambda^3 y)$ pour tous $\lambda \in K$ et $(x, y) \in V$.
- c) $K = \mathbb{F}_3$, $V = K^2$ et $\lambda \cdot (x, y) = (\lambda^3 x, \lambda^3 y)$ pour tous $\lambda \in K$ et $(x, y) \in V$.

- d) $K = \mathbb{R}$, $V = \{p \in \mathbb{R}[t] : p(0) = a\}$ pour $a \in \mathbb{R}$ fixé, et la multiplication scalaire est la même que pour les polynômes (et restreinte à V).
- e) $K = \mathbb{R}$, $V = \{p \in \mathbb{R}[t] : \deg p = 4\}$ et la multiplication scalaire est la même que pour les polynômes (restreinte à V).
- f) $K = \mathbb{C}, V = \{(z_1, z_2) \in \mathbb{C}^2 : |z_1| = |z_2|\}, \text{ et } \lambda \cdot (z_1, z_2) = (\lambda z_1, \lambda z_2) \text{ pour tous } \lambda \in K \text{ et } (z_1, z_2) \in V.$

Sol.: Si la réponse est oui, on doit vérifier tous les axiomes de la définition d'un espace vectoriel. Si la réponse est non, il suffit de trouver un contre-exemple pour l'un des axiomes.

- a) Non, car, par exemple, $v = (1,1) \in V$ et $1 \cdot v = (1,0) \neq v$. Donc l'axiome $1 \cdot v = v$ n'est pas satisfait.
- b) Non, car, par exemple, $(2+1) \cdot (1,1) = 3 \cdot (1,1) = (27,27)$, mais $2 \cdot (1,1) + 1 \cdot (1,1) = (8,8) + (1,1) = (9,9) \neq (27,27)$.
- c) Oui. Constatons que pour tout élément $\lambda \in \mathbb{F}_3$, $\lambda^3 = \lambda$, puisque $0^3 = 0$, $1^3 = 1$, $2^3 = 8 = 2 \in \mathbb{F}_3$. Donc $\lambda \cdot (x,y) = (\lambda^3 x, \lambda^3 y) = (\lambda x, \lambda y)$. Il s'agit donc de l'espace vectoriel usuel $(\mathbb{F}_3)^2$ (pour lequel les axiomes d'espace vectoriel sont faciles à verifier).
- d) Si $a \neq 0$ alors ce n'est pas un espace vectoriel, car, pour $f(t) \in V$, le polynôme $0 \cdot f(t)$ est le polynôme nul, qui vaut 0 en 0, donc n'appartient pas à V. Si a = 0, c'est un espace vectoriel. En effet, pour $f(t), g(t) \in V$ et $\lambda \in \mathbb{R}$ alors f(t) + g(t) et $\lambda \cdot f(t)$ valent 0 en 0, donc V est stable pour les deux lois interne et externe. Tous les axiomes d'espace vectoriel sont faciles à verifier, car ils sont vrais pour les polynômes, donc en particulier aussi pour les éléments de V. En fait, V est un sous-espace vectoriel de l'espace vectoriel $\mathbb{R}[t]$.
- e) Ce n'est pas un espace vectoriel V parce qu'il n'a pas d'élément zéro. Il devrait y avoir l'élément $o \in V$ de la forme $o = \alpha_4 x^4 + \alpha_3 x^3 + \alpha_2 x^2 + \alpha_1 x^1 + \alpha_0$ ainsi fait o + p = p est satisfaite pour tout $p \in V$. Ceci est équivalent à $\alpha_4 x^4 + \alpha_3 x^3 + \alpha_2 x^2 + \alpha_1 x^1 + \alpha_0 = 0$ pour tout $x \in \mathbb{R}$. Un tel polynôme $o \in V$ ne peut pas exister parce que polynômes de degré 4 ont un maximum de 4 zéros.
- f) Non, car, par exemple, $(1,-1) \in V$, $(i,1) \in V$, mais $(1,-1) + (i,1) = (1+i,0) \notin V$. Donc V n'est pas stable pour l'addition.

Exercice 7

Parmi les sous-ensembles suivants, lesquels sont des sous-espaces vectoriels de l'espace vectoriel indiqué?

- a) $\{(0, x, 2x, 3x)^{\mathsf{T}} : x \in \mathbb{R}\} \subseteq \mathbb{R}^4$,
- b) $\{(x^3, x^2, x)^{\mathsf{T}} : x \in \mathbb{R}\} \subseteq \mathbb{R}^3,$
- c) $\{(x, x+y, x-y)^{\mathsf{T}} : x, y \in \mathbb{R}\} \subseteq \mathbb{R}^3,$
- d) $\{(x,0,0)^{\mathsf{T}}: x \in \mathbb{R}\} \cup \{(0,y,0)^{\mathsf{T}}: y \in \mathbb{R}\} \subseteq \mathbb{R}^3,$
- e) $\{(a, b, a, b)^{\mathsf{T}} : a, b \in \mathbb{R}, a^2 = b^2, ab \le 0\} \subseteq \mathbb{R}^4,$
- f) $\{(x,y,z)^{\mathsf{T}}: x,y,z \in \mathbb{R}, x^2 y^2 + z^2 = 0, x y + z = 0, x + y = 0\} \subseteq \mathbb{R}^3,$
- g) $\{\ln\left(\frac{p}{q}\right) \mid p, q \in \mathbb{Z}_{\geq 1}\} \subseteq \mathbb{R}.$

Sol.:

a) On note par $E = \{(0, x, 2x, 3x)^{\mathsf{T}} : x \in \mathbb{R}\}$. D'abord, on voit que $E \neq \emptyset$, parce-que $0 \in E$. Soit $v = (0, x, 2x, 3x), w = (0, y, 2y, 3y) \in E$. Comme

$$v + w = (0, x + y, 2x + 2y, 3x + 3y) = (0, z, 2z, 3z)$$

avec z = x + y, donc $v + w \in E$. Soit $\lambda \in \mathbb{R}$. Donc, $\lambda v = \lambda(0, x, 2x, 3x) = (0, \lambda x, 2(\lambda x), 3(\lambda x)) \in E$. Donc, E est un sous-espace vectoriel de \mathbb{R}^4 .

- b) On note par $E = \{(x^3, x^2, x)^{\mathsf{T}} : x \in \mathbb{R}\}$. On montre que E n'est pas un sous-espace vectoriel de \mathbb{R}^3 : soit $v = (1, 1, 1) \in E$, et $\lambda = 2$. Le vecteur $\lambda v = (2, 2, 2)$ n'est pas dans E, parce-que il n'existe pas $x \in \mathbb{R}$ avec $(2, 2, 2) = (x^3, x^2, x)$.
- c) On note par $E = \{(x, x + y, x y)^{\mathsf{T}} : x, y \in \mathbb{R}\}$. On montre que E est un sousespace vectoriel de \mathbb{R}^3 . D'abord, on voit que $E \neq \emptyset$, parce-que $0 \in E$. Soit $v = (x_1, x_1 + y_1, x_1 y_1)$ et $w = (x_2, x_2 + y_2, x_2 y_2)$ dans E. Donc,

$$v + w = (x_1 + x_2, x_1 + x_2 + y_1 + y_2, x_1 + x_2 - y_1 - y_2).$$

Ce vecteur est dans E (avec $x := x_1 + x_2$, $y := y_1 + y_2$). De manière analogue, on montre que $\lambda x \in E$, pour $\lambda \in \mathbb{R}$ et $x \in E$.

- d) L'ensemble $E = \{(x,0,0)^{\mathsf{T}} : x \in \mathbb{R}\} \cup \{(0,y,0)^{\mathsf{T}} : y \in \mathbb{R}\}$ n'est pas un sous-espace vectoriel de \mathbb{R}^3 . Par exemple, les vecteurs (1,0,0) et (0,1,0) sont les éléments de E, mais leur somme (1,1,0) n'est pas dans E.
- e) L'ensemble $E = \{(a, b, a, b)^{\mathsf{T}} : a, b \in \mathbb{R}, a^2 = b^2, a \cdot b \leq 0\}$ est un sous-espace vectoriel de \mathbb{R}^4 . D'abord, $E \neq \emptyset$, car $0 \in E$. L'équation $a^2 = b^2$ est équivalente à $a = \pm b$, et la condition $ab \leq 0$ dit qu'exactement un de a, b est négatif, si elles ne sont pas 0. Donc b = -a, et l'ensemble peut s'écrire comme $E = \{(a, -a, a, -a) \mid a \in \mathbb{R}\}$. En vérifiant les conditions, il suit facilement que E un sous-espace de \mathbb{R}^4 .
- f) L'ensemble $E = \{(x,y,z)^{\mathsf{T}}: x,y,z \in \mathbb{R}, x^2-y^2+z^2=0, x-y+z=0, x+y=0\}$ est un sous-espace vectoriel de \mathbb{R}^3 . $E \neq \emptyset$, car $0 \in E$. De x+y=0, on obtient y=-x, ce qui donne dans la première équation $x^2-(-x)^2+z^2=z^0=0$, soit z=0. Dans la deuxième équation on obtient x-y=0, dont y=-x immédiatement x=y=0. Donc, le seul élément de cet ensemble est le vecteur 0. Alors, l'ensemble E forme un sous-espace de \mathbb{R}^3 .
- g) L'ensemble $E = \{\ln \binom{p}{q} \mid p, q \in \mathbb{Z}_{\geq 1}\}$ n'est pas un sous-espace vectoriel de \mathbb{R} . Pour la multiplication scalaire on obtient, par exemple,

$$\frac{1}{2} \cdot \ln 2 = \ln \sqrt{2}.$$

Mais $\sqrt{2}$ n'est pas un nombre rationnel, donc il ne peut pas être représenté par p/q, où $p, q \in \mathbb{Z}_{>1}$.