Linear Regression

Guowei Wei Department of Mathematics Michigan State University

References:
Duc D. Nguyen's lecture notes
Wikipedia

Data sets

Labeled data sets for supervised learning:

Regression (R):

Data set (R):
$$\mathcal{D} = \{(x^{(i)}, y^{(i)}) | x^{(i)} \in \mathbb{R}^n, y^{(i)} \in \mathbb{R}^n\}_{i=1}^M$$

Classification (C):

Data set (C):
$$\mathcal{D} = \{(x^{(i)}, y^{(i)}) | x^{(i)} \in \mathbb{R}^n, y^{(i)} \in \{-1, 1\}\}_{i=1}^M$$

Correlations

Linear Regression

In statistics, linear regression is a linear approach to modelling the relationship between a scalar response (or dependent variable) and one or more explanatory variables (or independent variables).

One Variable Linear Regression: Example

Assume we have a dataset giving the living areas and prices of 47 houses from Portland, Oregon:

Price (1000\$s)
400
330
369
232
540
:

One Variable Linear Regression: Example

Training/Test Sets

- In each house, we have living area (feature) and price (label)
- The previous dataset has given labels, thus we call it training set.
- If the dataset does not have labels, we call it test set

Living area (feet ²)	Price (1000\$s)
2104	400
1600	330
2400	369
1416	232
3000	540
÷	÷

Test set

If we are given a size of living area in a house, What is the estimated price of that house?

Living area	Estimated Price
1300	?
4000	?
2200	?
2000	?

Model Representation

Predictor and Loss Function

• We assume a predictor that is linear in model parameter (c_0, c_1) :

$$p(x) = c_0 + c_1 x$$

• We choose c_0 , c_1 such that they minimize the following loss function

$$L(c_0, c_1) = \sum_{i=1}^{M} (p(x^{(i)}) - y^{(i)})^2 = ||\mathbf{P} - \mathbf{Y}||_2^2$$

where:
$$\mathbf{P} = (p(x^{(1)}), p(x^{(2)}), ..., p(x^{(M)}))^T$$

 $\mathbf{Y} = (y^{(1)}, y^{(2)}, ..., y^{(M)})^T$

Minimizing Loss Function

• In the dataset, $x^{(i)}$ and $y^{(i)}$ are, respectively, the living area and price of the i^{th} house. And M=45

$$\min_{c_0, c_1} : L(c_0, c_1) = \sum_{i=1}^{M} (p(x^{(i)}) - y^{(i)})^2$$

is known as the least-square linear regression problem.

The optimal values of c_0 , c_1 are:

$$\frac{\partial L}{\partial c_j} = 0, j = 0, 1 =>$$

$$\widehat{c_1} = \frac{\sum_{i=1}^{M} x^{(i)} y^{(i)} - \frac{1}{M} \sum_{i=1}^{M} x^{(i)} \sum_{i=1}^{M} y^{(i)}}{\sum_{i=1}^{M} (x^{(i)})^2 - \frac{1}{M} \left(\sum_{i=1}^{M} x^{(i)}\right)^2}$$

$$\widehat{c_0} = \frac{1}{M} \sum_{i=1}^{M} y^{(i)} - \widehat{c_1} \frac{1}{M} \sum_{i=1}^{M} x^{(i)}$$

Result

For real number $p \ge 1$, the L^p — norm of x is:

$$\|x\|_p = \left(\sum_{j=1}^n |x_j|^p\right)^{\frac{1}{p}}$$
The L^∞ requires

The L^{∞} – norm is:

$$||x||_{\infty} = \max\{|x_1|, |x_2|, \dots, |x_n|\}$$

Figure: Illustration of L^p – norm. Every vector from the origin to the unit circle has a length of one.

Multiple Variables Linear Regression: Example

- Used when having multiple features
- In the housing example, consider a richer dataset with knowing the number of bedrooms in each house

x_1	χ_2	${oldsymbol {\mathcal V}}$
Living area (feet ²)		Price (1000\$s)
2104	3	400
1600	3	330
2400	3	369
1416	2	232
3000	4	540
÷ ·	÷	÷

Predictor and Loss Function

We assume our predictor:

$$p(\mathbf{x}) = c_0 + c_1 x_1 + c_2 x_2$$

• Find c_0 , c_1 , c_2 to optimize the loss function:

$$L(c_0, c_1, c_2) = \sum_{i=1}^{M} \left(p\left(x_1^{(i)}, x_2^{(i)}\right) - y^{(i)} \right)^2$$

$$\frac{\partial L}{\partial c_j} = 0, j = 0, 1, 2 = >$$

$$\begin{bmatrix} c_0 \\ c_1 \\ c_2 \end{bmatrix} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$

Minimizing the Loss Function

■ Solution of the optimization problem is $\begin{bmatrix} c_0 \\ c_1 \\ c_2 \end{bmatrix} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$

where
$$\mathbf{X} = \begin{bmatrix} 1 & x_1^{(1)} & x_2^{(1)} \\ 1 & x_1^{(2)} & x_2^{(2)} \\ & \cdots & \\ 1 & x_1^{(M)} & x_2^{(M)} \end{bmatrix}$$
, and $\mathbf{Y} = (y^{(1)}, y^{(2)}, \dots, y^{(M)})$

General linear regression model

In general, we assume our predictor:

$$p(\mathbf{x}) = c_0 + c_1 x_1 + \dots + c_n x_n$$

Find c_0, c_1, \dots, c_n to optimize the loss function:

$$L(c_0, c_1, \dots, c_n) = \sum_{i=1}^{M} \left(p\left(x_1^{(i)}, \dots, x_n^{(i)}\right) \right)$$

General linear regression model

Solution of the optimization problem is:

$$\begin{bmatrix} c_0 \\ c_1 \\ \dots \\ c_n \end{bmatrix} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$

where
$$\mathbf{X} = \begin{bmatrix} 1 & x_1^{(1)} \dots & x_n^{(1)} \\ 1 & x_1^{(2)} \dots & x_n^{(2)} \\ & \dots & & \\ 1 & x_1^{(M)} \dots & x_2^{(M)} \end{bmatrix}$$
, and $\mathbf{Y} = (y^{(1)}, y^{(2)}, \dots, y^{(M)})$

Discussions: Overfitting & linearity

 A model leads to overfitting when it perfectly fits the training data but poorly fits the test data

 Linear regression is about the linearity with respect to c not X

Discussions: Loss Function minimization

Least-square linear regression problem

$$\min_{c_0, c_1, \dots} : L(c_0, c_1, \dots) = \sum_{i=1}^{M} (p(\mathbf{x}^{(i)}) - y^{(i)})^2$$

- Gauss–Markov theorem: The above is the best linear unbiased estimator if the errors have expectation zero, are uncorrelated and have equal variances.
- Quantile regression: aims at estimating either the conditional median or other quantiles of the response variable
- Least absolute shrinkage and selection operator (Lasso)

Discussions: Loss Function minimization with L1 and L2 norms

$$L_1: \min_{c_0, c_1, \dots} : L(c_0, c_1, \dots) = \sum_{i=1}^{M} |p(\mathbf{x}^{(i)}) - y^{(i)}|$$

$$L_2: \min_{c_0, c_1, \dots} : L(c_0, c_1, \dots) = \sum_{i=1}^{n} (p(\mathbf{x}^{(i)}) - y^{(i)})^2$$

Least Squares Regression	Least Absolute Deviations Regression
Not very robust	Robust
Stable solution	Unstable solution
Always one solution	Possibly multiple solutions
No feature selection	Built-in feature selection
Non-sparse outputs	Sparse outputs
Computational efficient due to having analytical solutions	Computational inefficient on non-sparse cases