Altér gyakorló feladatok

R⁴-ben az alábbi feltételek által kijelölt részhalmazok közül melyek alkotnak alteret?
A műveletek a szokásosak.

Ha valamelyik alteret alkot, add meg egy bázisát és az altér dimenzióját.

a)
$$4x_1 - 3x_2 + x_4 = 0$$

b)
$$x_1 x_2 = x_4 x_3$$

c)
$$x_1 \ge x_2$$

d)
$$x_1 + 4x_4 = 2$$

2. **R**³-ben az alábbi feltételek által kijelölt részhalmazok közül melyek alkotnak alteret? A műveletek a szokásosak.

Ha valamelyik alteret alkot, add meg egy bázisát és az altér dimenzióját.

a)
$$x_1 + 2x_2 - x_3 = 0$$

b)
$$x_1 = 0 \text{ vagy } x_2 = 0$$

c)
$$x_1 = 0$$
 és $x_2 = 0$

d)
$$x_1^2 + x_3^2 = 0$$

- 3. $V=\mathbf{R}^{2\times 2}$, $\mathbf{W}=\left\{\begin{bmatrix} a & b \\ 0 & d \end{bmatrix}:\ a,b,d\in R\right\}$ A műveletek a szokásosak.
- 4. $V=\mathbf{R}^{2x^2}$, $\mathbf{W}=\left\{A\in R^{2x^2}:A=A^T\right\}$ A műveletek a szokásosak.
- 5. . $V = P_2$ (legfeljebb másodfokú polinomok) $W = \{p(x) \in P_2 : p''(x) = 0\}$ A műveletek a szokásosak.
- 6. $V=\mathbf{R}^{2x^2}$, $\mathbf{W}=\left\{\begin{bmatrix}3a & b\\ 0 & a+b\end{bmatrix}: a,b\in R\right\}$ A műveletek a szokásosak.
- 7. $V=\mathbf{R}^{2x^2}$, $\mathbf{W}=\left\{\begin{bmatrix}0&b\\0&-4b\end{bmatrix}:b\in R\right\}$ A műveletek a szokásosak.

A műveletek a továbbiakban is a szokásosak ©

8.
$$V = R^3$$
 $A = \left\{ \begin{pmatrix} 0 \\ y^2 \\ 0 \end{pmatrix} : y \in R \right\}$

9.
$$V = R^4 \quad A = \left\{ \begin{pmatrix} 2x \\ 3y - x \\ 0 \\ x + y \end{pmatrix} : x, y \in R \right\}$$

10. V = R^{2×2} A=
$$\left\{ \begin{bmatrix} a & a \\ a & a \end{bmatrix} : a,b,d \in R \right\}$$

11. V =
$$\mathbb{R}^{2\times 2}$$
 A = $\{A \in \mathbb{R}^{2\times 2} : \det A = 0\}$

12.
$$V = P_3$$
 $A = \{a + ax : a \in R\}$

13. V = P₆ A =
$$\{ax^2 + bx^4 + cx^6 : a, b, c \in R\}$$

Megoldások

Altér egy részhalmaz, ha zárt az összeadásra és számmal való szorzásra:

- Ha $\underline{a}_1 \in A$ és $\underline{a}_2 \in A$, akkor ebből következik, hogy $\underline{a}_1 + \underline{a}_2 \in A$
- Ha $\underline{a} \in A$ és $\lambda \in R$ tetszőleges, akkor ebből következik, hogy $\lambda \cdot \underline{a} \in A$
- 1. a) igen, b) nem, c) nem, d) nem
- 3. Igen, 3D
- 4. Igen, 3D
- 5. Igen, 2D
- 6. Igen, 2D
- 7. Igen, 1D
- 8. Nem
- 9. Igen, 2D
- 10. Igen, 1D
- 11. Nem
- 12. Igen, 1D
- 13. Igen, 3D