Instituto de Computação

MATA50 – Linguagens Formais e Autômatos – 2023.1 Professor: Roberto Freitas Parente

Gabarito – Prova 01

Questão 1 (3 pontos). Construa automatos finitos para as seguintes linguagens:

1. $L_1 = \{w \in \{0,1\}^* : a \text{ soma dos dígitos de } w \text{ \'e par}\}.$

Resposta.

2. $L_2 = \{w \in \{0, 1, 2, 3, 4\}^* : o \text{ último digito em } w \text{ já apareceu em } w\}.$

Resposta.

	0	1	2	3	4
\rightarrow I	{0}	{1}	$\{2\}$	{3}	{4}
0	$\{0,F\}$	$\{0,1\}$	$\{0,\!2\}$	$\{0,3\}$	$\{0,\!4\}$
1	{0,1}	$\{1,F\}$	{1,2}	$\{1,3\}$	{1,4}
2	{0,2}	$\{1,\!2\}$	$\{2,F\}$	$\{2,3\}$	$\{2,\!4\}$
3	{0,3}	$\{1,3\}$	$\{2,3\}$	${3,F}$	$\{3,\!4\}$
4	{0,4}	{1,4}	$\{2,4\}$	${\{3,4\}}$	$\{4,F\}$
*F	Ø	Ø	Ø	Ø	Ø

Quando o autômato ler um simbolo ele irá para o estado que o representa e vai ficar nesse estado até o fim da "computação" para que ao ler um simbolo que já foi lido ele ir para o estado final.

3. $L_3 = \{ab^mba(ab)^n : m, n \ge 0\}$

Resposta.

Questão 2 (2 pontos). Por razões desconhecidas, um homem viaja com um lobo, uma cabra e um enorme repolho. Ele enfrenta dificuldades imprevistas quando encontra seu caminho bloqueado por um rio, que só pode ser atravessado usando um pequeno barco ligado à costa. De fato, o barco é tão pequeno que ele só pode ter uma de suas possessões nele por vez. Além disso, seus companheiros animais estão se mostrando menos cooperativos e é evidente que nem o lobo e a cabra nem a cabra e o repolho podem ser deixados em terra juntos sem supervisão, para que não haja um evento de consumo indesejável. Construa um autômato finito que modele o problema utilizando um alfabeto adequado para representar todas as ações que o viajante pode tomar. Projete seu AFND de forma que o viajante atravessar o rio com todas as suas posses significa partir do estado inicial e chegar a um estado final.

Obs: O autômato projetado deve permitir todas os possíveis movimentos de travessia do viajante e não apenas o mais curto.

Resposta. Seja $\Sigma = \{l, c, r, s\}$ que representa o lobo, cabra, repolho e o homem viajando sozinho respectivamente.

$\to h$ representa o homem.

Questão 3 (3 pontos). Apresente um ε -AFND com quatro estados que reconheça a linguagem $\{a\}^*\{b\} \cup \{b\}^*\{a\}$. Posteriormente aplique o algoritmo visto em sala para transformar no AFD equivalente e, por fim, aplique a minimização ao AFD encontrado. **Obs:** não esqueça de apresentar os ε -fechamento.

Resposta. Um dos $\varepsilon - AFND$ com quatro estados é:

Os ε – fechamento são:

- $\varepsilon fechamento(1) = \{1, 2, 3\}$
- $\varepsilon fechamento(2) = \{2\}$
- $\varepsilon fechamento(3) = \{3\}$
- $\varepsilon fechamento(4) = \{4\}$

Criando o AFD equivalente utilizando somente os estados alcançáveis:

A tabela de minimização

2	X	-	-	-	_	_
3	X	X	-	-	-	-
4	X	X	X	-	-	-
24	X	X	X	X	-	-
34	X	X	X	X	X	-
Ø	X	X	X	X	X	X
	123	2	3	4	24	34

Logo o AFD minimizado é ele mesmo

Questão 4 (2 pontos). Seja $L \subseteq \Sigma^*$ uma linguagem aceita pelo autômato finito $A = (\mathcal{Q}, \Sigma, \delta, q_0, F)$, i.e., L = L(A). Mostre que $L^R = \{w^R \in \Sigma^* : w \in L\}$ é aceita por um autômato finito.

Resposta. Informalmente desejamos criar um ε-AFND onde "invertemos" as setas no diagrama de transição, o estado inicial será estado final e criaremos um novo estado inicial que terá ε-transição para cada um do antigos estados finais. Formalizando, seja um autômato finito $B = (Q', \Sigma, \delta', q'_0, \{q_0\})$, sendo $Q' = Q \cup \{q'_0\}$. δ' captura a noção de "inversão" das setas, ou seja, $\forall_{q \in Q} \forall_{a \in \Sigma}$ temos $\delta'(q, a) = \{p \in Q' : \delta(p, a) = q\}$ Por fim, as ε-transições podem ser definidas como $\forall_{q \in F}$ temos $\delta'(q'_0, \varepsilon) = \{q\}$.

Questão 5 (1 ponto). Mostre que a equivalência de estados de um AFD é uma relação transitiva.

Resposta. Denotando a relação de equivalencia de estados por E. Suponha que aEb e bEc. Seja w uma palavra se $\hat{\delta}(a,w)$ é final temos que como aEb então $\hat{\delta}(b,w)$ também é final, como bEc temos que $\hat{\delta}(c,w)$ também é final. Logo para toda palavra que é aceita a partir de a também vai ser aceita c. O caso de que w não é aceita a partir de a é análogo. Então aEc.

Questão 6 (2 pontos). Vimos que transformar um AFD em um AFND equivalente bastaria utilizar o "equivalente" (no sentido do digrama de estados), mas precisamos provar tal afirmação. Seja $A = (\mathcal{Q}, \Sigma, \delta_D, q_0, F)$ um AFD. Mostre como devemos construir o AFND $N = (\mathcal{Q}, \Sigma, \delta_N, q_0, F)$ e prove que L(A) = L(N).

Resposta. Para $q \in \mathcal{Q}$ e $a \in \Sigma$, definimos δ_N da seguinte forma: $\delta_D(q, a) = p$ se, e somente se, $\delta_N(q, a) = \{p\}$. Vamos provar por indução no comprimento da palavra de entrada que $\hat{\delta}_D(q_0, w) \in F \iff \hat{\delta}_D(q_0, w) \cap F \neq \emptyset$.

Base: Seja |w|=0, o mesmo que $w=\varepsilon$. Por definição da função de transição de um AFD e de um AFND, $\hat{\delta}_D(q_0,\varepsilon)=\{q_0\}$ e $\delta_N(q_0,\varepsilon)=q_0$

Hipótese indutiva: Agora suponha que vale para |w| = n - 1.

Passo indutivo: Seja |w| = n e w = w'a com $a \in \Sigma$. Por H.I. temos que $\hat{\delta}_D(q_0, w') = p$ e $\hat{\delta}_N(q_0, w') = \{p\}$. Se perda de generalidade, suponha que $\delta_D(p, a) = q$;

Pela definição de função de transição extendidade temos

$$\hat{\delta}_D(w, a) = \delta_D(\hat{\delta}_D(q_0, w'), a) = \delta_D(p, a) = q.$$

Por outro lado, pela definição de δ_N temos que $\delta_N(p,a)=\{q\}$ e assim

$$\hat{\delta}_N(q_0, w) = \bigcup_{r \in \delta_N(q_0, w')} \delta_N(r, a) = \delta_N(p, a) = \{q\}.$$

Assim, temos que $\hat{\delta}_D(q_0, w) = p \iff \hat{\delta}_N(q_0, w) = \{p\}$. Por fim, pela definição de L(A) e L(N) temos que uma palavra w só será aceita em A se, e somente se, $\hat{\delta}_N(q_0, w) \cap F \neq \emptyset$ que é a definição de aceitação em L(N).