SSD1339

Advance Information

132RGB x 132 with 2 smart Icon lines Dot Matrix **OLED/PLED Segment/Common Driver with Controller**

This document contains information on a new product. Specifications and information herein are subject to change without notice.

TABLE OF CONTENTS

1. GERENAL DESCRIPTION	5
2. FEATURES	5
3. ORDERING INFORMATION	
4. BLOCK DIAGRAM	
5. DIE PAD FLOOR PLAN	
6. PIN DESCRIPTION	15
7. FUNCTIONAL BLOCK DISCRIPTIONS	19
OSCILLATOR CIRCUIT AND DISPLAY TIME GENERATOR	19
RESET CIRCUIT	
COMMAND DECODER AND COMMAND INTERFACE	20
MPU PARALLEL 6800-SERIES INTERFACE	
MPU PARALLEL 8080-SERIES INTERFACE	
MPU SERIAL INTERFACE	21
GRAPHIC DISPLAY DATA RAM (GDDRAM)	
GRAY SCALE AND GRAY SCALE TABLE	
CURRENT CONTROL AND VOLTAGE CONTROL	
SEGMENT DRIVERS/COMMON DRIVERS	
DC-DC VOLTAGE CONVERTER	28
8. COMMAND TABLE	29
9. COMMAND DESCRIPTIONS	34
10. MAXIMUM RATINGS	47
11. DC CHARACTERISTICS	48
12. AC CHARACTERISTICS	49
13. APPLICATION EXAMPLE	53
14. PACKAGE INFORMATION	54
SSD1339U3 PIN ASSIGNMENT	54
SSD1339U3 COF DETAILS DIMENSIONS	

TABLE OF FIGURES

FIGURE 1 – BLOCK DIAGRAM	
FIGURE 2 – SSD1339Z PIN ASSIGNMENT	
FIGURE 3 – SSD1339Z ALIGNMENT MARK DIMENSIONS	13
FIGURE 4 – DIE TRAY INFORMATION	14
FIGURE 5 – OSCILLATOR CIRCUIT	19
FIGURE 6 – DISPLAY DATA READ BACK PROCEDURE - INSERTION OF DUMMY READ	20
FIGURE 7 – DISPLAY DATA WRITE PROCEDURE IN SPI MODE	21
FIGURE 8 – GRAPHIC DISPLAY DATA RAM STRUCTURE	22
FIGURE 9 – 262K COLOR DEPTH DATA WRITING SEQUENCE IN 18-BIT MCU INTERFACE	
FIGURE 10 – 262K COLOR DEPTH DATA WRITING SEQUENCE IN 16-BIT MCU INTERFACE IN OPTION 1	23
FIGURE 11 – 262K COLOR DEPTH DATA WRITING SEQUENCE IN 16-BIT MCU INTERFACE IN OPTION 2	
FIGURE 12 – 262K COLOR DEPTH GRAPHIC DISPLAY DATA WRITING SEQUENCE IN 9-BIT MCU INTERFACE	23
FIGURE 13 – 262K COLOR DEPTH GRAPHIC DISPLAY DATA WRITING SEQUENCE IN 8-BIT MCU INTERFACE	23
FIGURE 14 – 65K COLOR DEPTH GRAPHIC DISPLAY DATA WRITING SEQUENCE IN 16-BIT MCU INTERFACE	23
FIGURE 15 – 65K COLOR DEPTH GRAPHIC DISPLAY DATA WRITING SEQUENCE IN 8-BIT MCU INTERFACE	24
FIGURE 16 – DISPLAY DATA RAM WRITING POSITION FOR COLOR A, B AND C DATA INPUT IN 65K COLOR MODE	24
FIGURE 17 – DISPLAY DATA RAM WRITING POSITION FOR COLOR A, B AND C DATA INPUT IN 256 COLOR MODE	
Figure 18 – Relation between graphic data RAM value and gray scale table entry for three colors	s 26
Figure 19 – Illustration of relation between graphic display RAM value and gray scale control	27
FIGURE 20 – EXAMPLE OF COLUMN AND ROW ADDRESS POINTER MOVEMENT	
FIGURE 21 – ADDRESS POINTER MOVEMENT OF HORIZONTAL ADDRESS INCREMENT MODE	
FIGURE 22 – ADDRESS POINTER MOVEMENT OF VERTICAL ADDRESS INCREMENT MODE	
FIGURE 23 – EXAMPLE OF SET DISPLAY START LINE WITH NO REMAP	
FIGURE 24 – EXAMPLE OF SET DISPLAY OFFSET WITH NO REMAP	
FIGURE 25 – EXAMPLE OF GAMMA CORRECTION BY GRAY SCALE TABLE SETTING	
Figure 26 – Segment output current for different contrast control and master current setting	
FIGURE 27 – EXAMPLE OF DRAW LINE COMMAND.	
FIGURE 28 – EXAMPLE OF DRAW RECTANGLE COMMAND	
FIGURE 29 – EXAMPLE OF DRAW CIRCLE COMMAND	
FIGURE 30 – EXAMPLE OF COPY COMMAND	
FIGURE 31 – EXAMPLE OF COPY + CLEAR = MOVE COMMAND	
FIGURE 32 – 6800-SERIES MPU PARALLEL INTERFACE CHARACTERISTICS	
FIGURE 33 – 8080-SERIES MPU PARALLEL INTERFACE CHARACTERISTICS	
FIGURE 34 – SERIAL INTERFACE CHARACTERISTICS	
FIGURE 35 – APPLICATION EXAMPLE FOR 8-BIT 6800-PARALLEL INTERFACE MODE	
FIGURE 36 - SSD1339U3 PIN ASSIGNMENT	
FIGURE 37 - SSD1339U3 DETAIL DIMENSIONS	56

SSD1339 Rev 1.1 P 3/59 Jul 2005 **Solomon Systech**

LIST OF TABLES

6
9
29
32
44
47
48
49
50
51
52
55

1. GERENAL DESCRIPTION

The SSD1339 is a single-chip CMOS OLED/PLED driver with controller for organic/polymer light emitting diode dot-matrix graphic display system. It consists of 396 segments (132RGB), 132 commons and 2 smart icon lines. This IC is designed for Common Cathode type OLED panel.

The SSD1339 displays data directly from its internal 132x133x18 bits Graphic Data RAM (GDDRAM). Data/Commands are sent from general MCU through the hardware selectable 6800/8000 series compatible Parallel Interface or Serial Peripheral Interface. It has a 256 steps contrast control and 262k color control

2. FEATURES

- Support max. 132RGB x 132 matrix panel + icon line
- Power supply: VDD=2.4-3.5V
 VDDIO=1.5V 3.5V
 VCC=7.0V 18.0V
- OLED driving output voltage, 16V maximum
- DC-DC voltage booster controller
- Segment maximum source current: 200uA
- Common maximum sink current: 80mA
- Embedded 132x133x18 bit SRAM display buffer
- 16 step master current control, and 256 step current control for the three color components
- Smart Icon mode
- Programmable color mode of 256, 65k, 262k
- Programmable Frame Rate
- Graphic Acceleration Command Set (GAC)
- 8/9/16/18-bit 6800-series Parallel Interface, 8/9/16/18-bit 8080-series Parallel Interface and Serial Peripheral Interface.
- Wide range of operating temperature: -40 to 90 °C

SSD1339 | Rev 1.1 | P 5/59 | Jul 2005 | **Solomon Systech**

3. ORDERING INFORMATION

Table 1 – Ordering Information

Ordering Part Number	SEG	COM	Package Form	Reference	Remark
SSD1339Z	132RGB	132	COG	Page 8	 Min SEG pad pitch: 41.2 μm Min COM pad pitch: 41.2 μm
SSD1339U3	128RGB	128	COF	Page 54	Punched COF

 Solomon Systech
 Jul 2005
 P 6/59
 Rev 1.1
 SSD1339

4. BLOCK DIAGRAM

Figure 1 – Block Diagram

SSD1339 | Rev 1.1 | P 7/59 | Jul 2005 | **Solomon Systech**

5. DIE PAD FLOOR PLAN

Pad #1 →

+ represents the centre of the alignment mark

	X-pos (µm)	Y-pos (µm)
<u> </u>	-8176.0	307.0
	8176.0	307.0
(o)	-9140.0	-941.0
	9140.0	-941.0

All alignment keys have size 75 $\mu m \times 75 \mu m$

Die Size: 20989um x 2250um Die Thickness: 457um +/- 25um Min I/O pad pitch: 76.2 μ m Min SEG pad pitch: 41.2 μ m Min COM pad pitch: 41.2 μ m Bump Height: Nominal 15 μ m

Figure 2 – SSD1339Z pin assignment

 Solomon Systech
 Jul 2005
 P 8/59
 Rev 1.1
 SSD1339

Table 2 – SSD1339Z Die Pad Coordinates

Pad #	Pad Name	X-Axis	Y-Axis	Pad #	Pad Name	X-Axis	Y-Axis	Pad #	Pad Name	X-Axis	Y-Axis
1	NC NC	-10160.275	-1043	81	TR0	-3886.2	-1043	161	VSS	2209.8	-1043
2	NC	-10084.075	-1043	82	VSS	-3810	-1043	162	R/W#(WR#)	2286	-1043
3	NC	-10007.875	-1043	83	VSSB	-3733.8	-1043	163	E(RD#)	2362.2	-1043
<u>4</u> 5	NC NC	-9931.675 -9737.3	-1043 -1043	84	VSSB VSSB	-3657.6	-1043 -1043	164 165	VDDIO	2438.4 2514.6	-1043 -1043
6	NC NC	-9737.3 -9661.1	-1043	85 86	VSSB	-3581.4 -3505.2	-1043	166	D0 D1	2590.8	-1043
7	NC	-9584.9	-1043	87	GDR	-3429	-1043	167	D2	2667	-1043
8	NC	-9508.7	-1043	88	GDR	-3352.8	-1043	168	D3	2743.2	-1043
9	NC	-9432.5	-1043	89	GDR	-3276.6	-1043	169	D4	2819.4	-1043
10	NC	-9356.3	-1043	90	GDR	-3200.4	-1043	170	D5	2895.6	-1043
11 12	NC NC	-9280.1 -9203.9	-1043 -1043	91 92	GDR GDR	-3124.2 -3048	-1043 -1043	171 172	D6 D7	2971.8 3048	-1043 -1043
13	NC	-9127.7	-1043	93	GDR	-2971.8	-1043	173	D8	3124.2	-1043
14	NC	-9051.5	-1043	94	GDR	-2895.6	-1043	174	D9	3200.4	-1043
15	NC	-8975.3	-1043	95	GDR	-2819.4	-1043	175	D10	3276.6	-1043
16	NC	-8899.1	-1043	96	GDR	-2743.2	-1043	176	D11	3352.8	-1043
17 18	NC NC	-8822.9 -8746.7	-1043 -1043	97 98	GDR GDR	-2667 -2590.8	-1043 -1043	177 178	D12 D13	3429 3505.2	-1043 -1043
19	NC NC	-8670.5	-1043	99	GDR	-2590.6	-1043	179	D13	3581.4	-1043
20	NC	-8594.3	-1043	100	GDR	-2438.4	-1043	180	D15	3657.6	-1043
21	NC	-8518.1	-1043	101	GDR	-2362.2	-1043	181	VDDIO	3733.8	-1043
22	NC	-8441.9	-1043	102	GDR	-2286	-1043	182	MS	3810	-1043
23	NC	-8305.8	-1043	103	GDR	-2209.8	-1043	183	CLS	3886.2	-1043
24 25	NC NC	-8229.6 -8153.4	-1043 -1043	104 105	GDR GDR	-2133.6 -2057.4	-1043 -1043	184 185	D16 D17	3962.4 4038.6	-1043 -1043
26	VCC	-8077.2	-1043	106	GDR	-1981.2	-1043	186	VSS	4114.8	-1043
27	VCC	-8001	-1043	107	VDDB	-1905	-1043	187	VSS	4191	-1043
28	VCC	-7924.8	-1043	108	VDDB	-1828.8	-1043	188	VSS	4267.2	-1043
29	VCC	-7848.6	-1043	109	VDDB	-1752.6	-1043	189	VSS	4343.4	-1043
30	VCC	-7772.4	-1043	110	VDDB	-1676.4	-1043	190	VSS	4419.6	-1043
31 32	VCC	-7696.2 -7620	-1043 -1043	111 112	VDD VDD	-1600.2 -1524	-1043 -1043	191 192	VSS VCL	4495.8 4572	-1043 -1043
33	VCC	-7543.8	-1043	113	VDD	-1447.8	-1043	193	VCL	4648.2	-1043
34	VCOMH	-7467.6	-1043	114	VDD	-1371.6	-1043	194	VCL	4724.4	-1043
35	VCOMH	-7391.4	-1043	115	FB	-1295.4	-1043	195	VCL	4800.6	-1043
36	VCOMH	-7315.2	-1043	116	VSS	-1219.2	-1043	196	VCL	4876.8	-1043
37	VSL	-7239	-1043	117	RESE	-1143	-1043 -1043	197	VCL	4953	-1043
38 39	VSL VSL	-7162.8 -7086.6	-1043 -1043	118 119	VBREF VSS	-1066.8 -990.6	-1043	198 199	VCL VCL	5029.2 5105.4	-1043 -1043
40	VSL	-7010.4	-1043	120	BGGND	-914.4	-1043	200	VCL	5181.6	-1043
41	VSL	-6934.2	-1043	121	NC	-838.2	-1043	201	VCL	5257.8	-1043
42	VSL	-6858	-1043	122	VPA	-762	-1043	202	VCL	5334	-1043
43	VSL	-6781.8	-1043	123	VPB	-685.8	-1043	203	VCL	5410.2	-1043
44 45	VSL VSL	-6705.6	-1043 -1043	124 125	VPC VSS	-609.6	-1043 -1043	204	VDD VDD	5486.4	-1043 -1043
46	VDD	-6629.4 -6553.2	-1043	125	NC	-533.4 -457.2	-1043	206	VDD	5562.6 5638.8	-1043
47	VDD	-6477	-1043	127	VSS	-381	-1043	207	VDD	5715	-1043
48	VDD	-6400.8	-1043	128	GPI00	-304.8	-1043	208	VDD	5791.2	-1043
49	VDD	-6324.6	-1043	129	GPIO1	-228.6	-1043	209	VDD	5867.4	-1043
50	VDD	-6248.4	-1043	130	VDDIO	-152.4	-1043	210	VDD	5943.6	-1043
51 52	VDD VDD	-6172.2	-1043 -1043	131 132	ICASC ICASB	-76.2	-1043 -1043	211	VDD VSL	6019.8 6096	-1043 -1043
53	VDD	-6096 -6019.8	-1043	133	ICASB	0 76.2	-1043	212 213	VSL	6172.2	-1043
54	VCL	-5943.6	-1043	134	VSS	152.4	-1043	214	VSL	6248.4	-1043
55	VCL	-5867.4	-1043	135	VREF	228.6	-1043	215	VSL	6324.6	-1043
56	VCL	-5791.2	-1043	136	VCC	304.8	-1043	216	VSL	6400.8	-1043
57	VCL	-5715	-1043	137	VMONA	381	-1043	217	VSL	6477	-1043
58 59	VCL VCL	-5638.8 5562.6	-1043 -1043	138 139	VMONA VCC	457.2 533.4	-1043 -1043	218 219	VSL VSL	6553.2 6629.4	-1043 -1043
60	VCL	-5562.6 -5486.4	-1043	139	VCC	609.6	-1043	219	VSL	6705.6	-1043
61	VCL	-5410.2	-1043	141	VCC	685.8	-1043	221	VSL	6781.8	-1043
62	VCL	-5334	-1043	142	VCC	762	-1043	222	VSL	6858	-1043
63	VSS	-5257.8	-1043	143	VCC	838.2	-1043	223	VSL	6934.2	-1043
64	VSS	-5181.6	-1043	144	VSS	914.4	-1043	224	VDDIO	7010.4	-1043
65	VSS	-5105.4	-1043	145	IREF	990.6	-1043	225	VDDIO	7086.6	-1043
66	VSS	-5029.2	-1043	146	M	1066.8	-1043	226	VCOMH	7162.8	-1043
67	VSS	-4953	-1043	147	CL	1143	-1043	227	VCOMH	7239	-1043
68	VSS	-4876.8	-1043	148	DOF#	1219.2	-1043	228	VCOMH	7315.2	-1043
69	VSSB	-4800.6	-1043	149	RES#	1295.4	-1043	229	VCOMH	7391.4	-1043
70	VSSB	-4724.4	-1043	150	VSS	1371.6	-1043	230	VCOMH	7467.6	-1043
71	VSSB	-4648.2	-1043	151	D/C#	1447.8	-1043	231	VCC	7543.8	-1043
72	VSSB	-4572	-1043	152	VDDIO	1524	-1043	232	VCC	7620	-1043
73	TR8	-4495.8	-1043	153	CS#	1600.2	-1043	233	VCC	7696.2	-1043
74	TR7	-4419.6	-1043	154	VSS	1676.4	-1043	234	VCC	7772.4	-1043
75 76	TR6	-4343.4 4267.2	-1043 1043	155 156	BS2	1752.6	-1043	235	VCC	7848.6	-1043 1043
76 77	TR5 TR4	-4267.2 -4191	-1043 -1043	156 157	VDDIO BS1	1828.8 1905	-1043 -1043	236 237	VCC	7924.8 8001	-1043 -1043
78	TR3	-4114.8	-1043	158	VSS	1981.2	-1043	238	VCC	8077.2	-1043
79	TR2	-4038.6	-1043	159	BS0	2057.4	-1043	239	NC	8153.4	-1043
80	TR1	-3962.4	-1043	160	VDDIO	2133.6	-1043	240	NC	8229.6	-1043

SSD1339 Rev 1.1 P 9/59 Jul 2005 **Solomon Systech**

Pad #	Pad Name	X-Axis	Y-Axis	Pad #	Pad Name	X-Axis	Y-Axis	Pad #	Pad Name	X-Axis	Y-Axis
241	NC	8305.8	-1043	321	COM30	9723.2	1030	401	SA15	6344.8	1030
242	NC	8441.9	-1043	322	COM29	9682	1030	402	SB15	6303.6	1030
243	NC	8518.1	-1043	323	COM28	9640.8	1030	403	SC15	6262.4	1030
244	NC	8594.3	-1043	324	COM27	9599.6	1030	404	SA16	6221.2	1030
245	NC	8670.5	-1043	325	COM26	9558.4	1030	405	SB16	6180	1030
246	NC	8746.7	-1043	326	COM25	9517.2	1030	406	SC16	6138.8	1030
247	NC	8822.9	-1043	327	COM24	9476	1030	407	SA17	6097.6	1030
248	NC NC	8899.1	-1043	328	COM23	9434.8	1030	408	SB17	6056.4	1030
249 250	NC NC	8975.3 9051.5	-1043 -1043	329 330	COM22 COM21	9393.6 9352.4	1030 1030	409 410	SC17 SA18	6015.2 5974	1030 1030
251	NC NC	9127.7	-1043	331	COM20	9311.2	1030	411	SB18	5932.8	1030
252	NC	9203.9	-1043	332	COM19	9270	1030	412	SC18	5891.6	1030
253	NC	9280.1	-1043	333	COM18	9228.8	1030	413	SA19	5850.4	1030
254	NC	9356.3	-1043	334	COM17	9187.6	1030	414	SB19	5809.2	1030
255	NC	9432.5	-1043	335	COM16	9146.4	1030	415	SC19	5768	1030
256	NC	9508.7	-1043	336	COM15	9105.2	1030	416	SA20	5726.8	1030
257	NC	9584.9	-1043	337	COM14	9064	1030	417	SB20	5685.6	1030
258	NC	9661.1	-1043	338	COM13	9022.8	1030	418	SC20	5644.4	1030
259 260	NC NC	9737.3 9931.675	-1043 -1043	339 340	COM12 COM11	8981.6 8940.4	1030 1030	419 420	SA21	5603.2 5562	1030 1030
261	NC NC	10007.875	-1043	341	COM11	8899.2	1030	421	SB21 SC21	5520.8	1030
262	NC	10007.075	-1043	342	COM9	8858	1030	422	SA22	5479.6	1030
263	NC	10160.275	-1043	343	COM8	8816.8	1030	423	SB22	5438.4	1030
264	NC	10359.7	-1060	344	COM7	8775.6	1030	424	SC22	5397.2	1030
265	COM65	10359.7	-967	345	COM6	8734.4	1030	425	SA23	5356	1030
266	COM64	10359.7	-925.8	346	COM5	8693.2	1030	426	SB23	5314.8	1030
267	COM63	10359.7	-884.6	347	COM4	8652	1030	427	SC23	5273.6	1030
268	COM62	10359.7	-843.4	348	COM3	8610.8	1030	428	SA24	5232.4	1030
269	COM61	10359.7	-802.2	349	COM2	8569.6	1030	429	SB24	5191.2	1030
270 271	COM60 COM59	10359.7 10359.7	-761 -719.8	350 351	COM1 COM0	8528.4 8487.2	1030 1030	430 431	SC24 SA25	5150 5108.8	1030 1030
272	COM58	10359.7	-678.6	352	COMX	8446	1030	432	SB25	5067.6	1030
273	COM57	10359.7	-637.4	353	NC	8404.8	1030	433	SC25	5026.4	1030
274	COM56	10359.7	-596.2	354	NC NC	8363.6	1030	434	SA26	4985.2	1030
275	COM55	10359.7	-555	355	NC	8240	1030	435	SB26	4944	1030
276	COM54	10359.7	-513.8	356	SA0	8198.8	1030	436	SC26	4902.8	1030
277	COM53	10359.7	-472.6	357	SB0	8157.6	1030	437	SA27	4861.6	1030
278	COM52	10359.7	-431.4	358	SC0	8116.4	1030	438	SB27	4820.4	1030
279	COM51	10359.7	-390.2	359	SA1	8075.2	1030	439	SC27	4779.2	1030
280 281	COM50 COM49	10359.7	-349 -307.8	360 361	SB1 SC1	8034 7992.8	1030 1030	440 441	SA28 SB28	4738 4696.8	1030 1030
282	COM48	10359.7 10359.7	-266.6	362	SA2	7951.6	1030	442	SC28	4655.6	1030
283	COM47	10359.7	-225.4	363	SB2	7910.4	1030	443	SA29	4614.4	1030
284	COM46	10359.7	-184.2	364	SC2	7869.2	1030	444	SB29	4573.2	1030
285	COM45	10359.7	-143	365	SA3	7828	1030	445	SC29	4532	1030
286	COM44	10359.7	-101.8	366	SB3	7786.8	1030	446	SA30	4490.8	1030
287	NC	10359.7	-60.6	367	SC3	7745.6	1030	447	SB30	4449.6	1030
288	NC	10359.7	-19.4	368	SA4	7704.4	1030	448	SC30	4408.4	1030
289	NC	10359.7	21.8	369	SB4	7663.2	1030	449	SA31	4367.2	1030
290	NC	10359.7	63	370	SC4	7622	1030	450	SB31	4326	1030
291 292	NC NC	10359.7 10359.7	104.2	371 372	SA5	7580.8 7539.6	1030 1030	451 452	SC31 SA32	4284.8 4243.6	1030 1030
293	NC NC	10359.7	145.4 186.6	373	SB5 SC5	7498.4	1030	452	SB32	4243.6	1030
293	NC NC	10359.7	227.8	374	SA6	7457.2	1030	454	SC32	4161.2	1030
295	NC	10359.7	269	375	SB6	7416	1030	455	SA33	4120	1030
296	NC	10359.7	310.2	376	SC6	7374.8	1030	456	SB33	4078.8	1030
297	NC	10359.7	351.4	377	SA7	7333.6	1030	457	SC33	4037.6	1030
298	NC	10359.7	404.1	378	SB7	7292.4	1030	458	SA34	3996.4	1030
299	NC	10359.7	562.95	379	SC7	7251.2	1030	459	SB34	3955.2	1030
300	NC	10359.7	615.65	380	SA8	7210	1030	460	SC34	3914	1030
301	NC NC	10359.7	656.85	381	SB8	7168.8	1030	461	SA35	3872.8	1030
302 303	NC NC	10359.7 10359.7	698.05 739.25	382 383	SC8 SA9	7127.6 7086.4	1030 1030	462 463	SB35 SC35	3831.6 3790.4	1030 1030
303	NC NC	10359.7	780.45	383	SA9 SB9	7086.4	1030	464	SC35 SA36	3790.4	1030
305	NC	10359.7	833.15	385	SC9	7004	1030	465	SB36	3708	1030
306	NC	10389.7	1030	386	SA10	6962.8	1030	466	SC36	3666.8	1030
307	NC	10318.5	1030	387	SB10	6921.6	1030	467	SA37	3625.6	1030
308	COM43	10258.8	1030	388	SC10	6880.4	1030	468	SB37	3584.4	1030
309	COM42	10217.6	1030	389	SA11	6839.2	1030	469	SC37	3543.2	1030
310	COM41	10176.4	1030	390	SB11	6798	1030	470	SA38	3502	1030
311	COM40	10135.2	1030	391	SC11	6756.8	1030	471	SB38	3460.8	1030
312	COM39	10094	1030	392	SA12	6715.6	1030	472	SC38	3419.6	1030
313	COM38	10052.8	1030	393	SB12	6674.4	1030	473	SA39	3378.4	1030
314	COM37	10011.6	1030	394	SC12	6633.2	1030	474	SB39	3337.2	1030
315	COM36	9970.4	1030	395	SA13	6592	1030	475	SC39	3296	1030
316	COM35	9929.2	1030	396	SB13	6550.8	1030	476	SA40	3254.8	1030
317	COM34	9888	1030	397	SC13	6509.6	1030	477	SB40	3213.6	1030
318 319	COM33 COM32	9846.8 9805.6	1030 1030	398 399	SA14 SB14	6468.4 6427.2	1030 1030	478 479	SC40 SA41	3172.4 3131.2	1030 1030
320	COM31	9764.4	1030	400	SC14	6386	1030	480	SB41	3090	1030
J2U	COIVIOI	J10 1.4	1000	700	3014	0000	1000	700	الجون	0090	1000

 Solomon Systech
 Jul 2005
 P 10/59
 Rev 1.1
 SSD1339

Pad #	Pad Name	X-Axis	Y-Axis	Pad #	Pad Name	X-Axis	Y-Axis	Pad #	Pad Name	X-Axis	Y-Axis
481	SC41	3048.8	1030	561	SB68	-247.2	1030	641	SA95	-3666.8	1030
482	SA42	3007.6	1030	562	SC68	-288.4	1030	642	SB95	-3708	1030
483	SB42	2966.4	1030	563	SA69	-329.6	1030	643	SC95	-3749.2	1030
484	SC42	2925.2	1030	564	SB69	-370.8	1030	644	SA96	-3790.4	1030
485	SA43	2884	1030	565	SC69	-412	1030	645	SB96	-3831.6	1030
486	SB43	2842.8	1030	566	SA70	-453.2	1030	646	SC96	-3872.8	1030
487	SC43	2801.6	1030	567	SB70	-494.4	1030	647	SA97	-3914	1030
488	SA44	2760.4	1030	568	SC70	-535.6	1030	648	SB97	-3955.2	1030
489	SB44	2719.2	1030	569	SA71	-576.8	1030	649	SC97	-3996.4	1030
490	SC44	2678	1030	570	SB71	-618	1030	650	SA98	-4037.6	1030
491	SA45	2636.8	1030	571	SC71	-659.2	1030	651	SB98	-4078.8	1030
492 493	SB45 SC45	2595.6 2554.4	1030 1030	572 573	SA72 SB72	-824 -865.2	1030 1030	652 653	SC98 SA99	-4120 -4161.2	1030 1030
494	SA46	2513.2	1030	574	SC72	-906.4	1030	654	SB99	-4202.4	1030
495	SB46	2472	1030	575	SA73	-947.6	1030	655	SC99	-4243.6	1030
496	SC46	2430.8	1030	576	SB73	-988.8	1030	656	SA100	-4284.8	1030
497	SA47	2389.6	1030	577	SC73	-1030	1030	657	SB100	-4326	1030
498	SB47	2348.4	1030	578	SA74	-1071.2	1030	658	SC100	-4367.2	1030
499	SC47	2307.2	1030	579	SB74	-1112.4	1030	659	SA101	-4408.4	1030
500	SA48	2266	1030	580	SC74	-1153.6	1030	660	SB101	-4449.6	1030
501	SB48	2224.8	1030	581	SA75	-1194.8	1030	661	SC101	-4490.8	1030
502	SC48	2183.6	1030	582	SB75	-1236	1030	662	SA102	-4532	1030
503	SA49	2142.4	1030	583	SC75	-1277.2	1030	663	SB102	-4573.2	1030
504	SB49	2101.2	1030	584	SA76	-1318.4	1030	664	SC102	-4614.4	1030
505	SC49	2060	1030	585	SB76	-1359.6	1030	665	SA103	-4655.6	1030
506 507	SA50	2018.8	1030 1030	586 587	SC76	-1400.8 -1442	1030	666	SB103	-4696.8 -4738	1030 1030
507	SB50 SC50	1977.6 1936.4	1030	587 588	SA77 SB77	-1442 -1483.2	1030 1030	667 668	SC103 SA104	-4738 -4779.2	1030
509	SA51	1895.2	1030	589	SC77	-1403.2	1030	669	SB104	-4779.2 -4820.4	1030
510	SB51	1854	1030	590	SA78	-1565.6	1030	670	SC104	-4861.6	1030
511	SC51	1812.8	1030	591	SB78	-1606.8	1030	671	SA105	-4902.8	1030
512	SA52	1771.6	1030	592	SC78	-1648	1030	672	SB105	-4944	1030
513	SB52	1730.4	1030	593	SA79	-1689.2	1030	673	SC105	-4985.2	1030
514	SC52	1689.2	1030	594	SB79	-1730.4	1030	674	SA106	-5026.4	1030
515	SA53	1648	1030	595	SC79	-1771.6	1030	675	SB106	-5067.6	1030
516	SB53	1606.8	1030	596	SA80	-1812.8	1030	676	SC106	-5108.8	1030
517	SC53	1565.6	1030	597	SB80	-1854	1030	677	SA107	-5150	1030
518	SA54	1524.4	1030	598	SC80	-1895.2	1030	678	SB107	-5191.2	1030
519	SB54	1483.2	1030	599	SA81	-1936.4	1030	679	SC107	-5232.4	1030
520 521	SC54	1442 1400.8	1030 1030	600	SB81 SC81	-1977.6	1030 1030	680 681	SA108 SB108	-5273.6 -5314.8	1030 1030
521	SA55 SB55	1359.6	1030	602	SA82	-2018.8 -2060	1030	682	SC108	-5356	1030
523	SC55	1318.4	1030	603	SB82	-2101.2	1030	683	SA109	-5397.2	1030
524	SA56	1277.2	1030	604	SC82	-2142.4	1030	684	SB109	-5438.4	1030
525	SB56	1236	1030	605	SA83	-2183.6	1030	685	SC109	-5479.6	1030
526	SC56	1194.8	1030	606	SB83	-2224.8	1030	686	SA110	-5520.8	1030
527	SA57	1153.6	1030	607	SC83	-2266	1030	687	SB110	-5562	1030
528	SB57	1112.4	1030	608	SA84	-2307.2	1030	688	SC110	-5603.2	1030
529	SC57	1071.2	1030	609	SB84	-2348.4	1030	689	SA111	-5644.4	1030
530	SA58	1030	1030	610	SC84	-2389.6	1030	690	SB111	-5685.6	1030
531	SB58	988.8	1030	611	SA85	-2430.8	1030	691	SC111	-5726.8	1030
532	SC58	947.6	1030	612	SB85	-2472	1030	692	SA112	-5768	1030
533	SA59	906.4	1030	613	SC85	-2513.2	1030	693	SB112	-5809.2	1030
534	SB59	865.2	1030	614	SA86	-2554.4	1030	694	SC112	-5850.4	1030
535	SC59	824	1030	615	SB86	-2595.6	1030	695	SA113	-5891.6	1030
536	SA60	782.8	1030	616	SC86	-2636.8	1030	696	SB113	-5932.8	1030
537	SB60	741.6 700.4	1030 1030	617 618	SA87 SB87	-2678	1030	697	SC113 SA114	-5974	1030
538 539	SC60 SA61	659.2	1030	619	SC87	-2719.2 -2760.4	1030 1030	698 699	SB114 SB114	-6015.2 -6056.4	1030 1030
540	SB61	618	1030	620	SA88	-2801.6	1030	700	SC114	-6097.6	1030
541	SC61	576.8	1030	621	SB88	-2842.8	1030	700	SA115	-6138.8	1030
542	SA62	535.6	1030	622	SC88	-2884	1030	701	SB115	-6180	1030
543	SB62	494.4	1030	623	SA89	-2925.2	1030	703	SC115	-6221.2	1030
544	SC62	453.2	1030	624	SB89	-2966.4	1030	704	SA116	-6262.4	1030
545	SA63	412	1030	625	SC89	-3007.6	1030	705	SB116	-6303.6	1030
546	SB63	370.8	1030	626	SA90	-3048.8	1030	706	SC116	-6344.8	1030
547	SC63	329.6	1030	627	SB90	-3090	1030	707	SA117	-6386	1030
548	SA64	288.4	1030	628	SC90	-3131.2	1030	708	SB117	-6427.2	1030
549	SB64	247.2	1030	629	SA91	-3172.4	1030	709	SC117	-6468.4	1030
550	SC64	206	1030	630	SB91	-3213.6	1030	710	SA118	-6509.6	1030
551	SA65	164.8	1030	631	SC91	-3254.8	1030	711	SB118	-6550.8	1030
552	SB65	123.6	1030	632	SA92	-3296	1030	712	SC118	-6592	1030
553	SC65	82.4	1030	633	SB92	-3337.2	1030	713	SA119	-6633.2	1030
554	SA66	41.2	1030	634	SC92	-3378.4	1030	714	SB119	-6674.4	1030
555	SB66	0	1030	635	SA93	-3419.6	1030	715	SC119	-6715.6	1030
556	SC66	-41.2	1030	636	SB93	-3460.8	1030	716	SA120	-6756.8	1030
557	SA67	-82.4	1030	637	SC93	-3502	1030	717	SB120	-6798	1030
558	SB67	-123.6	1030	638	SA94	-3543.2	1030	718	SC120	-6839.2	1030
559	SC67	-164.8	1030	639	SB94	-3584.4	1030	719	SA121	-6880.4	1030
560	SA68	-206	1030	640	SC94	-3625.6	1030	720	SB121	-6921.6	1030

SSD1339 Rev 1.1 P 11/59 Jul 2005 **Solomon Systech**

- · ·			
Pad # 721	Pad Name SC121	X-Axis -6962.8	Y-Axis 1030
722	SA122	-7004	1030
723	SB122	-7045.2	1030
724	SC122	-7086.4	1030
725	SA123	-7127.6	1030
726 727	SB123 SC123	-7168.8 -7210	1030 1030
728	SA124	-7251.2	1030
729	SB124	-7292.4	1030
730	SC124	-7333.6	1030
731	SA125	-7374.8 -7416	1030
732 733	SB125 SC125	-7416 -7457.2	1030 1030
734	SA126	-7498.4	1030
735	SB126	-7539.6	1030
736	SC126	-7580.8	1030
737	SA127	-7622	1030
738 739	SB127 SC127	-7663.2 -7704.4	1030 1030
740	SA128	-7745.6	1030
741	SB128	-7786.8	1030
742	SC128	-7828	1030
743	SA129	-7869.2	1030
744 745	SB129 SC129	-7910.4 -7951.6	1030 1030
745	SA130	-7951.6	1030
747	SB130	-8034	1030
748	SC130	-8075.2	1030
749	SA131	-8116.4	1030
750 751	SB131 SC131	-8157.6 -8198.8	1030 1030
751	NC	-8240	1030
753	NC	-8363.6	1030
754	NC	-8404.8	1030
755	COM66	-8446	1030
756 757	COM67 COM68	-8487.2 -8528.4	1030 1030
758	COM69	-8569.6	1030
759	COM70	-8610.8	1030
760	COM71	-8652	1030
761	COM72	-8693.2	1030
762 763	COM73 COM74	-8734.4 -8775.6	1030 1030
764	COM75	-8816.8	1030
765	COM76	-8858	1030
766	COM77	-8899.2	1030
767	COM78	-8940.4	1030
768 769	COM79 COM80	-8981.6 -9022.8	1030 1030
770	COM81	-9022.8	1030
771	COM82	-9105.2	1030
772	COM83	-9146.4	1030
773	COM84	-9187.6	1030
774 775	COM85	-9228.8	1030
776	COM86 COM87	-9270 -9311.2	1030 1030
777	COM88	-9352.4	1030
778	COM89	-9393.6	1030
779	COM90	-9434.8	1030
780	COM91	-9476 -9517.2	1030
781 782	COM92 COM93	-9517.2 -9558.4	1030 1030
783	COM94	-9599.6	1030
784	COM95	-9640.8	1030
785	COM96	-9682	1030
786	COM97	-9723.2	1030
787	COM98	-9764.4	1030
788	COM99	-9805.6	1030
789	COM100	-9846.8	1030
790	COM101	-9888	1030
791	COM102	-9929.2	1030
792	COM103	-9970.4 10011.6	1030
793 794	COM104 COM105	-10011.6 -10052.8	1030 1030
795	COM105	-10032.8	1030
796	COM107	-10135.2	1030
797	COM108	-10176.4	1030
798 799	COM109 COM110	-10217.6 -10258.8	1030 1030
800	NC	-10256.6	1030
	-		

Pad #	Pad Name	X-Axis	Y-Axis
801	NC	-10389.7	1030
802	NC	-10359.7	833.15
803	NC	-10359.7	780.45
804	NC	-10359.7	739.25
805	NC	-10359.7	698.05
806	NC	-10359.7	656.85
807	NC	-10359.7	615.65
808	NC NC	-10359.7	562.95
809	NC	-10359.7	404.1
810	NC	-10359.7	351.4
811	NC	-10359.7	310.2
812	NC	-10359.7	269
813	NC	-10359.7	227.8
814	NC	-10359.7	186.6
815	NC	-10359.7	145.4
816	NC	-10359.7	104.2
817	NC	-10359.7	63
818	NC	-10359.7	21.8
819	NC	-10359.7	-19.4
820	NC	-10359.7	-60.6
821	COM111	-10359.7	-101.8
822	COM112	-10359.7	-143
823	COM113	-10359.7	-184.2
824	COM114	-10359.7	-225.4
825	COM115	-10359.7	-266.6
826	COM116	-10359.7	-307.8
827	COM117	-10359.7	-349
828	COM118	-10359.7	-390.2
829	COM119	-10359.7	-431.4
830	COM120	-10359.7	-472.6
831	COM121	-10359.7	-513.8
832	COM122	-10359.7	-555
833	COM123	-10359.7	-596.2
834	COM124	-10359.7	-637.4
835	COM125	-10359.7	-678.6
836	COM126	-10359.7	-719.8
837	COM127	-10359.7	-761
838	COM128	-10359.7	-802.2
839	COM129	-10359.7	-843.4
840	COM130	-10359.7	-884.6
841	COM131	-10359.7	-925.8
842	COMX	-10359.7	-967
843	NC	-10359.7	-1060

Die Size:

20989um x 2250um

Gold Bump Face Up

Pad 1, 2 ,3, ... -->

Pad #	X-Dimension	Y-Dimension
1 - 263	54um	84um
264, 298-299, 305, 802, 808-809, 843	110um	50um
265-297, 300-304, 803-807, 810-842	110um	27um
306-307, 800-801	50um	110um
308-799	27um	110um

Marks	X-Axis	Y-Axis		
KEY_O	9140.000	-941.000		
KEY_O	-9140.000	-941.000		
KEY_T	-8176.000	307.000		
KEY_X	8176.000	307.000		

 Solomon Systech
 Jul 2005
 P 12/59
 Rev 1.1
 SSD1339

Figure 3 – SSD1339Z alignment mark dimensions

SSD1339 Rev 1.1 P 13/59 Jul 2005 **Solomon Systech**

	Spec	
	mm	(mil)
W1	76.00 +/-0.1	(2992)
W2	68.00 +/-0.1	(2677)
W3	68.30 +/-0.1	(2689)
X 1	4.00 +/-0.1	(157)
Y 1	1.55 +/-0.1	(61)
Рх	22.30 +/-0.05	(878)
Ру	4.20 +/-0.1	(165)
Х	21.14 +/-0.05	(832)
Υ	2.40 +/-0.05	(94)
Ζ	0.61 +/-0.05	(24)
N	45	

Remark

- 1. Depth of text is 0.1mm
- 2. Tray material: ABS
- 3. Tray color code: Black
- 4. Surface resistance $10^9 \sim 10^{11} \Omega$ cm
- 5. Tray warpage: Max 0.15mm
- 6. Unspecifier dim's tolerance: +/- 0.15mm
- 7. Pocket size: 21.14 x 2.40 x 0.61mm

Figure 4 – Die tray information

 Solomon Systech
 Jul 2005
 P 14/59
 Rev 1.1
 SSD1339

6. PIN DESCRIPTION

RES#

This pin is reset signal input. When the pin is low, initialization of the chip is executed.

CS#

This pin is the chip select input. The chip is enabled for MCU communication only when CS# is pulled low.

D/C#

This pin is Data/Command control pin. When the pin is pulled high, the data at D_7 - D_0 is treated as display data. When the pin is pulled low, the data at D_7 - D_0 will be transferred to the command register. For detail relationship to MCU interface signals, please refer to the Timing Characteristics Diagrams.

E (RD#)

This pin is MCU interface input. When interfacing to a 6800-series microprocessor, this pin will be used as the Enable (E) signal. Read/write operation is initiated when this pin is pulled high and the chip is selected.

When connecting to an 8080-microprocessor, this pin receives the Read (RD#) signal. Data read operation is initiated when this pin is pulled low and the chip is selected.

R/W# (WR#)

This pin is MCU interface input. When interfacing to a 6800-series microprocessor, this pin will be used as Read/Write (R/W#) selection input. Read mode will be carried out when this pin is pulled high and write mode will be carried out when this pin is pulled low. When 8080 interface mode is selected, this pin will be the Write (WR#) input. Data write operation is initiated when this pin is pulled low and the chip is selected.

BS0, **BS1**, **BS2**These pins are MCU interface selection input. See the following table:

	6800-parallel interface (8 bit)	8080-parallel interface (8 bit)	6800-parallel interface (16 bit)	8080-parallel interface (16 bit)	Serial interface
BS0	0	0	1	1	0
BS1	0	1	0	1	0
BS2	1	1	1	1	0
BS3	0	0	0	0	0

	6800-parallel interface (9 bit)	8080-parallel interface (9 bit)	6800-parallel interface (18 bit)	8080-parallel interface (18 bit)
BS0	0	0	1	1
BS1	0	1	0	1
BS2	1	1	1	1
BS3	1	1	1	1

Note: Unlike BS0, BS1 and BS2 are controlled by hardware connection, BS3 is controlled by software command, A0.

SSD1339 | Rev 1.1 | P 15/59 | Jul 2005 | **Solomon Systech**

$D_{17}-D_0$

These pins are 18-bit bi-directional data bus to be connected to the microprocessor's data bus.

VDDIC

This pin is a power supply pin of I/O buffer. It should be connected to V_{DD} or external source. All I/O signal should have VIH reference to VDDIO. When I/O signal pins (BS012, M/S, CLS, D0-D17, control signals...) pull high, they should be connected to VDDIO.

V_{DD}

Power Supply pin. It must be connected to external source.

V_{SS}

Ground. It also acts as a reference for the logic pins. It must be connected to external ground.

CL

This pin is the system clock input. When internal clock is enabled, this pin should be left open. Nothing should be connected to this pin. When internal oscillator is disabled, this pin receives display clock signal from external clock source.

MS

This pin must be connected to V_{DD} to enable the chip.

CLS

This pin is internal clock enable. When this pin is pulled high, internal oscillator is selected.

The internal clock will be disabled when it is pulled low, an external clock source must be connected to CL pin for normal operation.

VDDB

This is the power supply pin for the internal buffer of the DC-DC voltage converter. It must be connected to V_{DD} when the converter is used. It is also recommended to connect this pin to V_{DD} when the converter is not used to avoid floating node.

VSSB

This is the GND pin for the internal buffer of the DC-DC voltage converter. It must be connected to $V_{\rm SS}$ when the converter is used. It is also recommended to connect this pin to $V_{\rm SS}$ when the converter is not used to avoid floating node.

GDR

This output pin drives the gate of the external NMOS of the booster circuit. This pin can be left open when the converter is not used.

RESE

This pin connects to the source current pin of the external NMOS of the booster circuit. This pin can be left open when the converter is not used.

 Solomon Systech
 Jul 2005
 P 16/59
 Rev 1.1
 SSD1339

FB

This pin is the feedback resistor input of the booster circuit. It is used to adjust the booster output voltage level (Vcc). This pin can be left open when the converter is not used.

BGGND

This is a ground pin for analog circuits. It must be connected to external ground.

VB_{REF}

This pin is the internal voltage reference of booster circuit. A stabilization capacitor, typ. 1uF, should be connected to Vss. This pin can be left open when the converter is not used.

V_{CC}

This is the most positive voltage supply pin of the chip. It is supplied either by external high voltage source or internal booster

V_{COMH}

This pin is the input pin for the voltage output high level for COM signals. It can be supplied externally or internally. When V_{COMH} is generated internally, a capacitor should be connected between this pin and V_{SS} .

V_{REF}

This pin is the reference for OLED driving voltages like V_{PA} , V_{PB} , V_{PC} and V_{COMH} . It can be either supplied externally or connected to V_{CC} ($V_{REF} \le V_{CC}$).

V_{PA} , V_{PB} , V_{PC}

These pins are the driving voltages for OLED driving segment pins SA0-SA131, SB0-SB131 and SC0-SC131 respectively. They can be supplied externally or internally generated by VP circuit. When internal VP is used, V_{PA} , V_{PB} , V_{PC} pins should be left open.

REF

This pin is the segment output current reference pin. I_{SEG} of each color is derived from I_{REF}

 I_{SEG} = (Contrast / 256) * I_{REF} * scale factor

Contrast is set by command C1h

Scale factor = master current control register setting (C7h) + 1, i.e., with value from 1~16.

A resistor should be connected between this pin and V_{SS} to maintain the current around 10uA.

VSL

This is segment voltage reference pin. This pin should be left open.

VCL

This is common voltage reference pin. This pin should be connected to V_{SS} externally.

COM0-COM131

These pins provide the Common switch signals to the OLED panel. These pins are in high impedance state when display is off.

SSD1339 | Rev 1.1 | P 17/59 | Jul 2005 | Solomon Systech

SA0-SA131, SB0-SB131, SC0-SC131

These pins provide the OLED segment driving signals. These pins are in high impedance state when display is off.

The 396 segment pins are divided into 3 groups, SA, SB and SC. Each group can have different color settings for color A, B and C.

COMX

These two pins provide the Common switch signals for soft icon line to the OLED panel. These pins are in high impedance state when display is off.

TR0 - TR8, VMONA, ICASA, ICASB, ICASC, GPIO0, GPIO1, M, DOF#

These are reserved pins. No connection is necessary and should be left open individually.

NC

No connection pins. They should be left open individually.

 Solomon Systech
 Jul 2005
 P 18/59
 Rev 1.1
 SSD1339

7. FUNCTIONAL BLOCK DISCRIPTIONS

Oscillator Circuit and Display Time Generator

Figure 5 – Oscillator Circuit

This module is an On-Chip low power RC oscillator circuitry. The operation clock (CLK) can be generated either from internal oscillator or external source CL pin. This selection is done by CLS pin. If CLS pin is pulled high, internal oscillator is chosen. Pulling CLS pin low disables internal oscillator and external clock must be connected to CL pins for proper operation. When the internal oscillator is selected, its output frequency Fosc can be changed by command B3h.

In some COF packages of SSD1339, CLS pin is tied to high internally and the internal oscillator is selected in these packages.

The display clock (DCLK) for the Display Timing Generator is derived from CLK. The division factor can be programmed from 1 to 16 by command B3h.

Reset Circuit

When RES# input is low, the chip is initialized with the following status:

- 1. Display is OFF
- 2. 132x132 Display Mode
- 3. Normal segment and display data column address and row address mapping (SEG0 mapped to address 00H and COM0 mapped to address 00H)
- 4. Shift register data clear in serial interface
- 5. Display start line is set at display RAM address 0
- 6. Column address counter is set at 0
- 7. Normal scan direction of the COM outputs
- 8. Contrast control register is set at 80H

SSD1339 | Rev 1.1 | P 19/59 | Jul 2005 | Solomon Systech

Command Decoder and Command Interface

This module determines whether the input data is interpreted as data or command. Data is interpreted based upon the input of the D/C# pin.

If D/C# pin is high, data is written to Graphic Display Data RAM (GDDRAM). If it is low, the input at D_7 - D_0 is interpreted as a Command and it will be decoded and be written to the corresponding command register.

MPU Parallel 6800-series Interface

The parallel interface consists of 18 bi-directional data pins $(D_{17}-D_0)$ or 8 bi-directional data pins $(D_{7}-D_0)$, R/W#(WR#), D/C#, E (RD#) and CS#. R/W#(WR#) input High indicates a read operation from the Graphic Display Data RAM (GDDRAM) or the status register. RW#/(WR#) input Low indicates a write operation to Display Data RAM or Internal Command Registers depending on the status of D/C# input. The E(RD#) input serves as data latch signal (clock) when high provided that CS# is low and high respectively. Refer to

Figure 32 of parallel timing characteristics for Parallel Interface Timing Diagram of 6800-series microprocessors.

In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline processing is internally performed which requires the insertion of a dummy read before the first actual display data read. This is shown in Figure 6 below.

Figure 6 - Display data read back procedure - insertion of dummy read

MPU Parallel 8080-series Interface

The parallel interface consists of 18 bi-directional data pins (D_{17} - D_0) or 8 bi-directional data pins (D_{7} - D_0), E (RD#), R/W#(WR#), D/C# and CS#. The E(RD#) input serves as data read latch signal (clock) when low, provided that CS# is low and high respectively. Display data or status register read is controlled by D/C#. R/W#(WR#) input serves as data write latch signal (clock) when high provided that CS# is low and high respectively. Display data or command register write is controlled by D/C#. Refer to * when 8 bit used: $D_0 \sim D_7$ instead; when 9 bit used: $D_0 \sim D_8$ instead; when 16 bit used: $D_0 \sim D_{15}$ instead; when 18 bit used: $D_0 \sim D_{17}$ instead.

Figure 33 of parallel timing characteristics for Parallel Interface Timing Diagram of 8080-series microprocessor. Similar to 6800-series interface, a dummy read is also required before the first actual display data read.

 Solomon Systech
 Jul 2005
 P 20/59
 Rev 1.1
 SSD1339

MPU Serial Interface

The serial interface consists of serial clock SCLK, serial data SDIN, D/C#, CS#. In this mode, D0 acts as SCLK, D1 acts as SDIN. For the unused data pins, D2 should be left open. D3 to D7, E and R/W pins can be connected to external ground.

SDIN is shifted into an 8-bit shift register on every rising edge of SCLK in the order of D_7 , D_6 , ... D_0 . D/C is sampled on every eighth clock and the data byte in the shift register is written to the Display Data RAM or command register in the same clock.

During data writing, an additional NOP command should be inserted before the CS# goes high (Refer to Figure 7.

Figure 7 – Display data write procedure in SPI mode

SSD1339 | Rev 1.1 | P 21/59 | Jul 2005 | **Solomon Systech**

Graphic Display Data RAM (GDDRAM)

The GDDRAM is a bit mapped static RAM holding the bit pattern to be displayed. The size of the RAM is 132 x 133 x 18bits.

For mechanical flexibility, re-mapping on both Segment and Common outputs can be selected by software.

For vertical scrolling of the display, an internal register storing display start line can be set to control the portion of the RAM data to be mapped to the display.

Each pixel has 18-bit data. Each sub-pixels for color A, B and C have 6 bits. The arrangement of data pixel in graphic display data RAM is shown below.

Figure 8 - Graphic Display Data RAM Structure

Data access in 262k colors mode

In 262k colors depth mode, there are different MCU interface communication modes to access graphic display data RAM in OLED driver.

For 18 bits mode, the communication is made up of one session of 18 data bits. MCU transmits all bits to write **one** 18-bit pixel data into OLED driver. This 18-bit mode can be selected by setting the A[3] bit in command A0 to 1.

Bit	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Data bits	C_5	C_4	C_3	C_2	C_1	C_0	B_5	B_4	B ₃	B ₂	B ₁	B_0	A_5	A_4	A_3	A_2	A ₁	A_0

Figure 9 – 262k color depth data writing sequence in 18-bit MCU interface

For the 1st option of the two 16-bit modes, the communication is divided into two sessions of 16 data bits. MCU transmits two 16-bit words to write **one** 18-bit pixel data into OLED driver. Mode 1 is selected by setting A0h register A[7:6] bits to 10b. In below, A1, B1, C1 are pixel bits for color A, B and C, and "X" stands for don't care value.

 Solomon Systech
 Jul 2005
 P 22/59
 Rev 1.1
 SSD1339

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1 st word	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	C1 ₅	C1 ₄	C1 ₃	C1 ₂	C1 ₁	C1 ₀
2 nd word	Х	Х	B1 ₅	B1 ₄	B1 ₃	B1 ₂	B1 ₁	B1 ₀	Х	Х	A1 ₅	A1 ₄	A1 ₃	A1 ₂	A1 ₁	A1 ₀

Figure 10 - 262k color depth data writing sequence in 16-bit MCU interface in Option 1

For the 2nd option of the 16-bit modes, the communication is divided into three sessions of 16 data bits. MCU transmits three 16-bit words to write *two* 18-bit pixels data into OLED driver. Option 2 is selected by setting A0h register A[7:6] bits to 11b. In below, A1, B1, C1 are first data pixel bits, and A2, B2, C2 are second data pixel bits.

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1 st word	Х	Х	C1 ₅	C1 ₄	C1 ₃	C1 ₂	C1 ₁	C1 ₀	Х	Х	B1 ₅	B1 ₄	B1 ₃	B1 ₂	B1 ₁	B1 ₀
2 nd word	Х	Х	A1 ₅	A1 ₄	A1 ₃	A1 ₂	A1 ₁	A1 ₀	Х	Х	C2 ₅	C2 ₄	C2 ₃	C2 ₂	C2 ₁	C2 ₀
3 th word	Χ	Χ	B2 ₅	B2 ₄	B2 ₃	B2 ₂	B2 ₁	B2 ₀	Х	Х	A2 ₅	A2 ₄	A2 ₃	A2 ₂	A2 ₁	A2 ₀

Figure 11 – 262k color depth data writing sequence in 16-bit MCU interface in Option 2

For 9-bit modes, the communication is divided into two sessions of 9 data bits. MCU transmits two 9 data bits to write **one** 18-bit pixel data into OLED driver. This 9-bit mode can be selected by setting the A[3] bit in command A0 to 1.

Bit	8	7	6	5	4	3	2	1	0
1 st 9 Data bits	C_5	C_4	C ₃	C_2	C ₁	C_0	B ₅	B ₄	B_3
2 nd 9 Data bits	B_2	B₁	B₀	A ₅	A₄	A_3	A_2	A ₁	A_0

Figure 12 - 262k color depth graphic display data writing sequence in 9-bit MCU interface

In 8-bit MCU interface, the communication session is divided into three times. MCU transmit three 8-bit bytes to write one 18-bit pixel data into OLED driver.

Bit	7	6	5	4	3	2	1	0
1 st byte	Χ	Χ	C1 ₅	C1 ₄	C1 ₃	C1 ₂	C1 ₁	C1 ₀
2 nd byte	Χ	Х	B1 ₅	B1 ₄	B1 ₃	B1 ₂	B1 ₁	B1 ₀
3 rd byte	Χ	Χ	A1 ₅	A1 ₄	A1 ₃	A1 ₂	A1 ₁	A1 ₀

Figure 13 – 262k color depth graphic display data writing sequence in 8-bit MCU interface

Data access in 65k colors mode

Writing a 65K pixel in 16-bit MCU interface involves one session as follows.

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1 st word	C1 ₄	C1 ₃	C1 ₂	C1 ₁	C1 ₀	B1 ₅	B1₄	B1 ₃	B1 ₂	B1 ₁	B1 ₀	A1 ₄	A1 ₃	A1 ₂	A1 ₁	A1 ₀

Figure 14 - 65k color depth graphic display data writing sequence in 16-bit MCU interface

SSD1339 | Rev 1.1 | P 23/59 | Jul 2005 | Solomon Systech

The sequence of sending 65K color depth pixel in 8-bit MCU interface is divided into two 8-bit sessions as shown below.

Bit	7	6	5	4	3	2	1	0
1 st byte	C1 ₄	C1 ₃	C1 ₂	C1 ₁	C1 ₀	B1 ₅	B1 ₄	B1 ₃
2 nd byte	B1 ₂	B1 ₁	B1 ₀	A1 ₄	A1 ₃	A1 ₂	A1 ₁	A1 ₀

Figure 15 - 65k color depth graphic display data writing sequence in 8-bit MCU interface

With reference to Figure 8 conventions, in writing the data into graphic display data RAM, the bit positions filled by the input data for each color is shown below.

Color A						
Bit Position	A5	A4	A3	A2	A1	A0
Input Data	A1 ₄	A1 ₃	A1 ₂	A1 ₁	A1 ₀	A1 ₄
Color B						
Bit Position	B5	B4	В3	B2	B1	B0
Input Data	B1 ₅	B1 ₄	B1 ₃	B1 ₂	B1 ₁	B1 ₀
Color C						
Bit Position	C5	C4	C3	C2	C1	C0
Input Data	C1₄	C1 ₃	C1 ₂	C1 ₁	C1 ₀	C1₄

Figure 16 - Display data RAM writing position for color A, B and C data input in 65k color mode

In data RAM, each data occupies 6-bit. However, color A and C have 5-bit length only in 65k color mode. Therefore, RAM positions A0 and C0 are empty originally. These emptied positions are filled as shown above to increase color A and C to 6-bit length in display data RAM.

Data access in 256 colors mode

In 256-color mode, each pixel is composed of 8-bit. Only 8-bit MCU interface is available to access display data RAM. The communication session is done in 1 time by writing 8-bit data into RAM.

Bit	7	6	5	4	3	2	1	0
1 st byte	C1 ₂	C1 ₁	C1 ₀	B1 ₂	B1 ₁	B1 ₀	A1 ₁	A1 ₀

Figure 11 – 256 Color Depth Graphic Display Data Writing Sequence in 8-bit MCU Interface

With reference to Figure 8 conventions, in writing the data into graphic display data RAM, the bit positions filled by the input data for each color is shown below.

Color A						
Bit Position	A5	A4	A3	A2	A1	A0
Input Data	A1 ₁	A1 ₀	A1 ₁	A1 ₁	A1 ₁	A1 ₁

 Solomon Systech
 Jul 2005
 P 24/59
 Rev 1.1
 SSD1339

Color B						
Bit Position	B5	B4	В3	B2	B1	B0
Input Data	B1 ₂	B1 ₁	B1 ₀	B1 ₂	B1 ₂	B1 ₂
Color C						
Bit Position	C5	C4	C3	C2	C1	C0
Input Data	C1 ₂	C1 ₁	C1 ₀	C1 ₂	C1 ₂	C1 ₂

Figure 17 - Display data RAM writing position for color A, B and C data input in 256 color mode

In data RAM, each data occupies 6-bit. However, color B and C have 3-bit length and color A has 2-bit only in 256 color mode. Therefore, RAM positions B2~B0, C2~C0 and A3~A0 are empty originally. These emptied positions are filled as shown above to increase color A, B and C to 6-bit length in display data RAM.

SSD1339 | Rev 1.1 | P 25/59 | Jul 2005 | **Solomon Systech**

Gray Scale and Gray Scale Table

Controlling the current pulse widths from the segment driver in the current drive phase produces the gray scale display. The gray scale table stores the corresponding pulse widths (PW0 \sim PW63) of the 64 gray scale levels (GS0 \sim GS63). The wider the pulse width, the brighter the pixel will be. Therefore, the brightness of each pixel is defined in the graphic display data RAM in term of pulse width in gray scale table.

This single gray scale table supports all the three colors A, B and C. The pulse widths are entered by software commands.

In graphic display data RAM, each color occupies 6-bit length. So color A, B and C each has 64 gray scale levels.

Color A, B, C RAM data (6 bits)	Gray Scale
0	GS 0
1	GS 1
2	GS 2
3	GS 3
4	GS 4
:	:
:	:
:	:
60	GS 60
61	GS 61
62	GS 62
63	GS 63

Figure 18 - Relation between graphic data RAM value and gray scale table entry for three colors

In 65k and 256 color modes, the length color data are less than 6 bits. They are expanded to 6-bit length as shown in Figure 16 and Figure 17 respectively.

 Solomon Systech
 Jul 2005
 P 26/59
 Rev 1.1
 SSD1339

The meaning of values inside data RAM with respect to the gray scale level is best to be illustrated in an example below.

Gray Scale (Pulse Width)	Value/DCLKs	
PW0	0	0
PW1	2	Gray Scale
PW2	5	Table
:	:	
PW62	120	
PW63	125	

Figure 19 – Illustration of relation between graphic display RAM value and gray scale control

Current Control and Voltage Control

This block is used to derive the incoming power sources into the different levels of internal use voltage and current. V_{CC} and V_{DD} are external power supplies. V_{REF} is reference voltage, which is used to derive driving voltage for segments and commons. I_{REF} is a reference current source for segment current drivers.

Segment Drivers/Common Drivers

Segment drivers deliver 396 current sources to drive OLED panel. The driving current can be adjusted from 0 to 200uA with 256 steps. Common drivers generate voltage scanning pulse.

SSD1339 | Rev 1.1 | P 27/59 | Jul 2005 | Solomon Systech

DC-DC Voltage Converter

It is a switching voltage generator circuit, designed for handheld applications. In SSD1339, internal DC-DC voltage converter accompanying with an external application circuit (shown in below figure) can generate a high voltage supply V_{CC} from a low voltage supply input V_{DD} . V_{CC} is the voltage supply to the OLED driver block. Below application circuit is an example for the input voltage of 3V VDD to generate V_{CC} of 12V @20mA ~ 30mA application.

*ALL PATHS TO AGND SHOULD BE CONNECTED AS SHORT AS POSSIBLE

Passive components selection:

Components	Typical Value	Remark
L1	Inductor, 22µH	2A
D1	Schottky diode	2A, 25V e.g. 1N5822
Q1	MOSFET	N-FET with low R _{DS} (on) and low Vth voltage. e.g. MGSF1N02LT1 [ON SEMICONDUCTOR]
R1, R2	Resistor	1%,1/10W
R3	Resistor, 1.5Ω	1%, 1/2W
C1	Capacitor, 1µF	16V
C2	Capacitor, 22µF	Low ESR, 25V
C3	Capacitor, 1µF	16V
C4	Capacitor, 10nF	16V
C5	Capacitor, 1 ~ 10 μF	16V
C6	Capacitor, 0.1 ~ 1µF	16V
C7	Capacitor, 15nF	16V

The VCC output voltage level can be adjusted by changing the R1 and R2 resistor values, the reference formula is:

VCC = 1.2 x (R1+R2) / R2

 Solomon Systech
 Jul 2005
 P 28/59
 Rev 1.1
 SSD1339

8. COMMAND TABLE

Table 3 - Command table

 $(D/\overline{C} = 0, R/\overline{W} (\overline{WR}) = 0, E(\overline{RD}) = 1)$ unless specific setting is stated Single byte command $(D/\overline{C} = 0)$, Multiple byte command $(D/\overline{C} = 0)$ for first byte, $D/\overline{C} = 1$ for other bytes)

D/C	Hex	D7	D6	D5	D4	D3	D2	D2	D0	Command	Description
0	15	0	0	0	1	0	1	0	1		A[7:0]: Start Address, reset=0d
1	A[7:0]	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A_0	Set Column Address	B[7:0]: End Address, reset=131d
1	B[7:0]	B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀		Range from 0d to 131d
0	75	0	1	1	1	0	1	0	1		A[7:0]: Start Address, reset=0d
1	A[7:0]	A ₇	A_6	A_5	A ₄	A_3	A ₂	A ₁	A_0	Set Row Address	B[7:0]: End Address, reset=131d
1	B[7:0]	B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀		Range from 0d to 131d
0	5C	0	1	0	1	1	1	0	0	Write RAM Command	Enable MCU to write Data into RAM
0	5D	0	1	0	1	1	1	0	1	Read RAM Command	Enable MCU to read Data from RAM
0	A0	1	0	1	0	0	0	0	0		A[0]=0, Horizontal address increment (POR)
1	A[7:0]	A ₇	A_6	A_5	A ₄	A ₃	A ₂	A ₁	A_0		A[0]=1, Vertical address increment
										Set Re-map / Color Depth(Display RAM to Panel)	 A[1]=0, Column address 0 is mapped to SEG0 (POR) A[1]=1, Column address 131 is mapped to SEG0 A[2]=0, Color sequence: A → B → C (POR) A[2]=1, Color sequence is swapped: C → B → A A[3]=0, Disable 9/18-bit bus interface (POR) A[3]=1, Enable 9/18-bit bus interface A[4]=0, Scan from COM 0 to COM [N -1] (POR) A[4]=1, Scan from COM [N-1] to COM0. Where N is the Multiplex ratio.
											A[5]=0, Disable COM Split Odd Even (POR) A[5]=1, Enable COM Split Odd Even A[7:6] Set Color Depth, 00 256 color 01 65K color, (POR) 10 262k color, 8/9/18-bit,16 bit (1st option) MCU interface 11 262k color, 16 - bit MCU interface (2nd option)
0	A1	1	0	1	0	0	0	0	1	Set Display Start	Set vertical scroll by RAM from 0~131
1	A[7:0]	A ₇	A_6	A_5	A ₄	A_3	A_2	A ₁	A_0	Line	[reset=00d]

SSD1339 Rev 1.1 P 29/59 Jul 2005 **Solomon Systech**

D/C	Hex	D7	D6	D5	D4	D3	D2	D2	D0	Command	Description
0	A2	1	0	1	0	0	0	1	0		Set vertical scroll by Row from 0-131. [reset=00b]
1	A[7:0]	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Set Display Offset	, , , , , , , , , , , , , , , , , , , ,
	[]		- •0	1.5		3	2	- • 1	0		
0	A4~A7	1	0	1	0	0	1	X ₁	X ₀		A4: All Off
	, , , , ,						ľ	Λ,	7.0		A5: All On (All pixels have GS15)
											A6 : Reset to normal display (POR)
											A7: Inverse Display (GS0 -> GS63, GS1 -> GS62,)
0	AD	1	0	1	0	1	1	0	1		A[7:0] should be set as 100011A[1]A[0]b
1	A[7:0]	1	0	0	0	1	A ₂	A ₁	A ₀		A[0]= 0 Select external VCC supply at master ON
						-	2	,	0		A[0] = 1 Select internal booster at master ON [reset]
											A[1]= 0 Select external VCOMH voltage supply at master
										Master Configuration	ON
										_	A[1] = 1 Select internal VCOMH regulator at master ON [reset]
											A[2] = 0 Select external pre-charge voltage source
											A[2] = 1 Select internal pre-charge voltage source [reset]
0	AE~AF	1	0	1	0	1	1	1	X ₀	Set Sleep mode	AE = Sleep mode On (Display off)
										On/Off	AF = Sleep mode Off (Display on)
0	В0	1	0	1	1	0	0	0	0		A[4:0]:
		0	0	0	A_4	A_3	A ₂	A ₁	A ₀	Power Saving	00000b = Normal
										Mode	10010b = Power Saving
											00101b = Reserved
0	B1	1	0	1	1	0	0	0	1	Set Reset (Phase	A[3:0] Phase 1 period of 1~16 dclk clocks [reset=4h]
1	A[7:0]	A ₇	A_6	A ₅	A_4	A_3	A_2	A ₁	A_0	1) /Pre-charge (Phase 2) period	A[7:4] Phase 2 period of 1~16 dclk clocks [reset=7h]
										(Filase 2) pellou	
0	В3	1	0	1	1	0	0	1	1		A[3:0] [reset=0], divide by DIVSET+1 (i.e. 1 to 16)
1	A[7:0]	A ₇	A_6	A ₅	A ₄	A_3	A ₂	A ₁	A_0	Front Clock Divider (DivSet)/ Oscillator	A[7:4] Osc frequency, frequency increase as level
										Frequency	increase [reset=1001b]
											The next 32 bytes of command set the current drive pulse width of gray scale level GS1, GS3, GS5GS63 as below in unit of DCLK.
0	В8	1	0	1	1	1	0	0	0	Look Up Table for	A[7:0] : PW1, POR =1 DCLK
1	A[7:0]	A ₇	A_6	A ₅	A ₄	A_3	A ₂	A ₁	A_0	Grav Scale Pulse	B[7:0] : PW3, POR = 5 DCLK
1	B[7:0]	B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀	width	C[7:0] : PW5, POR = 9 DCLK
1	.										
1	.		-								
1	.										AE[7:0] : PW61, POR = 121 DCLK
1	.AE[7:0]										AF[7:0] : PW63, POR = 123 DCLK
1	AF[7:0]	AF ₇	AF ₆	AF ₅	AF ₄	AF ₃	AF ₂	AF ₁	AF ₀		
											where
											PW1 must > 0
											PW3 must > PW1+1

 Solomon Systech
 Jul 2005
 P 30/59
 Rev 1.1
 SSD1339

D/C	Hex	D7	D6	D5	D4	D3	D2	D2	D0	Command	Description
											PW5 must > PW3+1 Note: GS0 has no pre-charge and current drive stages.
											For GS2 GS4GS62, they are derived by driver itself with: PWn = (PWn ₋₁ +PWn ₊₁)/2
											Max pulse width is 125
0	В9	1	0	1	1	1	0	0	1		Reset to default Look Up Table:
											PW1 = 1 PW2 = 3
										Use Built-in Linear	PW3 = 5
										LUT (reset= linear)	PW4 = 7
											PW62 = 123 PW63 = 125
0	BB	1	0	1	1	1	0	1	1		A[7:0] Pre-charge Color A [reset = 00011100]
1	A[7:0]	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		B[7:0] Pre-charge Color B [reset = 00011100]
1	B[7:0]										C[7:0] Pre-charge Color C [reset = 00011100]
1	C[7:0]									Set Pre-charge voltage of Color A	00000000 0.51*Vref
										B C	
											00011111 0.84*Vref
											Avanages, connects to VCOMU
0	BE	1	0	1	1	1	1	1	0		1xxxxxxx connects to VCOMH A[6:0] 0000000 0.51*Vref
1	A[6:0]	*	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		
	[]		Ü		·	0	-		Ü	Set VCOMH	0011111 0.84*Vref [VCOMHSET, reset]
0	C1	1	1	0	0	0	0	0	1		
1	A[7:0]	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		A[7:0] Contrast Value Color A [reset=1000000b]
1	B[7:0]	B ₇	B_6	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀	Contrast Current	B[7:0] Contrast Value Color B [reset=1000000b]
1	C[7:0]	C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀	for Color A,B,C	
											C[7:0] Contrast Value Color C [reset=1000000b]
0	C7	1	1	0	0	0	1	1	1		A[3:0]: 0000 reduce output currents for all colors to 1/16
1	A[3:0]	*	*	*	*	A_3	A_2	A_1	A_0		
											0001 reduce output currents for all colors to 2/16
										Master Contrast	 1110 reduce output currents for all colors to 15/16
										Current Control	1111 no change [reset = 1111b]
											3. (3. (3.)

SSD1339 Rev 1.1 P 31/59 Jul 2005 **Solomon Systech**

D/C	Hex	D7	D6	D5	D4	D3	D2	D2	D0	Command	Description
0	CA	1	1	0	0	1	0	1	0	Set Mux Ratio	A[7:0] mux ratio 16MUX ~ 132MUX, [reset=131d], (Range from 15d to 131d)
1	A[7:0]	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Set Mux Natio	from 15d to 131d)
0	E3	1	1	1	0	0	0	1	1	NOP	Command for No Operation

Table 4 – Graphic acceleration command

Set (GAC) ($D/\overline{C} = 0$, R/\overline{W} (\overline{WR}) = 0, $E(\overline{RD}) = 1$) unless specific setting is stated Single byte command ($D/\overline{C} = 0$), Multiple byte command ($D/\overline{C} = 0$ for first byte, $D/\overline{C} = 1$ for other bytes)

D/C	Hex	D7	D6	D5	D4	D3	D2	D2	D0	Command	Description
0	83	1	0	0	0	0	0	1	1		A[7:0]: Column Address of Start
1	A[7:0]	A ₇	A_6	A ₅	A_4	A_3	A_2	A ₁	A ₀		B[7:0]: Row Address of Start
1	B[7:0]	B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀		C[7:0]: Column Address of End
1	C[7:0]	C ₇	C_6	C ₅	C ₄	C ₃	C_2	C ₁	C_0	Draw Line	D[7:0]: Row Address of End
1	D[7:0]	D ₇	D_6	D ₅	D ₄	D ₃	D_2	D_1	D_0	Draw Line	E[7:0]: Line Color - CCCCCBBB
1	E[7:0]	E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀		F[7:0]: Line Color - BBBAAAAA
1	F[7:0]	F ₇	F_6	F ₅	F ₄	F ₃	F ₂	F ₁	F_0		* A < C < 132
											* B < D < 132
0	84	1	0	0	0	0	1	0	0		A[7:0] : Column Address of Start
1	A[7:0]	A ₇	A_6	A_5	A_4	A_3	A_2	A_1	A_0		B[7:0]: Row Address of Start
1	B[7:0]	B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀		C[7:0]: Column Address of End
1	C[7:0]	C ₇	C_6	C_5	C ₄	C ₃	C_2	C_1	C_0		D[7:0]: Row Address of End
1	D[7:0]	D ₇	D_6	D ₅	D_4	D_3	D_2	D_1	D_0		E[7:0]: Line Color - CCCCCBBB
1	E[7:0]	E ₇	E_6	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀	Draw Rectangle	F[7:0]: Line Color - BBBAAAAA
1	F[7:0]	F ₇	F_6	F ₅	F ₄	F ₃	F ₂	F ₁	F_0		G[7:0]: Fill Color - CCCCCBBB
1	G[7:0]	G ₇	G_6	G ₅	G ₄	G ₃	G_2	G ₁	G_0		H[7:0]: Fill Color - BBBAAAAA
1	H[7:0]	H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	H ₀		
											* A < C < 132
											* B < D < 132
0	86	1	0	0	0	0	1	1	0		A[7:0]: Column Address of Centre
1	A[7:0]	A ₇	A_6	A_5	A_4	A_3	A_2	A_1	A_0		B[7:0]: Row Address of Centre
1	B[7:0]	B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀		C[7:0] : Radius
1	C[7:0]	C ₇	C_6	C ₅	C ₄	C ₃	C_2	C_1	C_0	Draw Circle	D[7:0]: Line Color - CCCCCBBB
1	D[7:0]	D ₇	D_6	D_5	D ₄	D ₃	D_2	D_1	D_0	Braw Onoic	E[7:0]: Line Color - BBBAAAAA
1	E[7:0]	E ₇	E ₆	E ₅	E₄	E ₃	E ₂	E ₁	E ₀		F[7:0]: Fill Color - CCCCCBBB
1	F[7:0]	F ₇	F_6	F ₅	F ₄	F ₃	F ₂	F ₁	F_0		G[7:0]: Fill Color – BBBAAAAA
1	G[7:0]	G ₇	G_6	G ₅	G ₄	G₃	G ₂	G ₁	G_0		
0	8A	1	0	0	0	1	0	1	0	Сору	A[7:0]: Column Address of Start
1	A[7:0]	A ₇	A_6	A_5	A_4	A_3	A_2	A_1	A_0		B[7:0]:Row Address of Start
1	B[7:0]	B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀		C[7:0]: Column Address of End
1	C[7:0]	C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀		D[7:0]: Row Address of End
1	D[7:0]	D ₇	D ₆	D ₅	D ₄	D ₃	D_2	D_1	D_0		E[7:0]: Column Address of New Start

 Solomon Systech
 Jul 2005
 P 32/59
 Rev 1.1
 SSD1339

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
0 8C 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
1 B[7:0] B ₇ B ₆ B ₅ B ₄ B ₃ B ₂ B ₁ B ₀ Dim Window C[7:0]: Column Address of End 1 D[7:0] D ₇ D ₆ D ₅ D ₄ D ₃ D ₂ D ₁ D ₀ Dim Window C[7:0]: Row Address of End 0 8E 1 0 0 0 1 1 1 0 A ₇ A ₆ A ₅ A ₄ A ₃ A ₂ A ₁ A ₀ A ₁ A ₁ A ₂ A ₁ A ₀ A ₁ A ₁ A ₁ A ₂ A ₁ A ₀ A ₁ A ₁ A ₂ A ₁ A ₀ A ₁ A ₁ A ₁ A ₂ A ₁ A ₂ A ₁ A ₀ A ₁ A ₁ A ₁ A ₂ A ₁ <td< td=""><td></td></td<>	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
0 8E 1 0 0 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 1 0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
0 92 1 0 0 1 0 0 1 0 0 1 0 Command [reset] 1 A[5:0] * * * A ₅ A ₄ A ₃ A ₂ A ₁ A ₀ Fill Enable / Disable Fill for Draw Rectang Command A0 0 : Disable Fill for Draw Rectang Command A4 0 : Disable reverse copy, reseted to the command of th	
1 A[5:0] * * A ₅ A ₄ A ₃ A ₂ A ₁ A ₀ Command [reset] 1 : Enable Fill for Draw Rectang Command Fill Enable / Disable A4 0 : Disable reverse copy, reseted to the companion of the compani	
1 : Enable Fill for Draw Rectang Command Fill Enable / Disable A4 0 : Disable reverse copy, rese 1 : Enable reverse during cop	gle/Circle
Fill Enable / Disable Command A4 0 : Disable reverse copy, rese 1 : Enable reverse during cop	
Fill Enable / Disable A4 0 : Disable reverse copy, rese 1 : Enable reverse during cop	gle/Circle
Disable A4 0 : Disable reverse copy, rese 1 : Enable reverse during cop	
	•
	ying.
A5 0 : Disable x-wrap, [reset]	
1 : Enable wrap around in x-d	lirection during
Δ[7:0]: 1~124 horizontal offset in num	nher of Column
0 96 1 0 0 1 0 1 1 0 1 1 Nalid entry for value larger th	
1 A[7:0] A ₇ A ₆ A ₅ A ₄ A ₃ A ₂ A ₁ A ₀ 0 no horizontal scroll	
1 B[7:0] B ₇ B ₆ B ₅ B ₄ B ₃ B ₂ B ₁ B ₀ B[7:0]: start row address	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $:d
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
1 E[1:0] * * * * * * E ₁ E ₀ D[7:0] : Reserved	
Horizontal Scroll D[7.0] : Neserved	
E[1:0]: scrolling time interval	
0 test mode	
1 normal	
2 slow	
3 slowest	
Note : operates during display on.	
0 9E 1 0 0 1 1 1 0 Stop Moving	
0 9F 1 0 0 1 1 1 1 Start Moving	

SSD1339 Rev 1.1 P 33/59 Jul 2005 **Solomon Systech**

9. COMMAND DESCRIPTIONS

Set Column Address (15h)

This command specifies column start address and end address of the display data RAM. This command also sets the column address pointer to column start address. This pointer is used to define the current read/write column address in graphic display data RAM. If horizontal address increment mode is enabled by command A0h, after finishing read/write one column data, it is incremented automatically to the next column address. Whenever the column address pointer finishes accessing the end column address, it is reset back to start column address.

Set Row Address (75h)

This command specifies row start address and end address of the display data RAM. This command also sets the row address pointer to row start address. This pointer is used to define the current read/write row address in graphic display data RAM. If vertical address increment mode is enabled by command A0h, after finishing read/write one row data, it is incremented automatically to the next row address. Whenever the row address pointer finishes accessing the end row address, it is reset back to start row address.

For example, column start address is set to 2 and column end address is set to 129, row start address is set to 1 and row end address is set to 130. Horizontal address increment mode is enabled by command A0h. In this case, the graphic display data RAM column accessible range is from column 2 to column 129 and from row 1 to row 130 only. In addition, the column address pointer is set to 2 and row address pointer is set to 1. After finishing read/write one pixel of data, the column address is increased automatically by 1 to access the next RAM location for next read/write operation. Whenever the column address pointer finishes accessing the end column 129, it is reset back to column 2 and row address is automatically increased by 1. While the end row 130 and end column 129 RAM location is accessed, the row address is reset back to 1. The diagram below shows the way of column and row address pointer movement for this example.

Figure 20 – Example of column and row address pointer movement

 Solomon Systech
 Jul 2005
 P 34/59
 Rev 1.1
 SSD1339

Write RAM Command (5Ch)

After this single byte command, data entries will be written into the display RAM until another command is written. Address pointer is increased accordingly. This command must be sent before write data into RAM.

Read RAM Command (5Dh)

After this single byte command, data is read from display RAM until another command is written. Address pointer is increased accordingly. This command must be sent before read data from RAM.

Set Re-map & Color Depth (A0h)

This command has multiple configurations and each bit setting is described as follows.

• Address increment mode (A[0])

When it is set to 0, the driver is set as horizontal address increment mode. After the display RAM is read/written, the column address pointer is increased automatically by 1. If the column address pointer reaches column end address, the column address pointer is reset to column start address and row address pointer is increased by 1. The sequence of movement of the row and column address point for horizontal address increment mode is shown in Figure 21.

	Col 0	Col 1	 Col 130	Col 131
Row 0				1
Row 1	1			1
:	4:-	:		 :
Row 130	-			1
Row 131	-			

Figure 21 – Address pointer movement of horizontal address increment mode

When A[0] is set to 1, the driver is set to vertical address increment mode. After the display RAM is read/written, the row address pointer is increased automatically by 1. if the row address pointer reaches the row end address, the row address pointer is reset to row start address and column address pointer is increased by 1. The sequence of movement of the row and column address point for vertical address increment mode is shown in Figure 22.

Figure 22 - Address pointer movement of vertical address increment mode

- Column Address Mapping (A[1])
 This command bit is made for flexible layout of segment signals in OLED module with segment arranged from left to right or vice versa.
- Color Remap (A[2])
 This command bit is made for flexible layout of color sequence A → B → C or C → B → and A.

SSD1339 | Rev 1.1 | P 35/59 | Jul 2005 | Solomon Systech

• MCU interface selection (A[3])

This command bit is made for setting the 6800 or 8080 parallel bus interface for to either 8/16-bit or 9/18-bit.

COM Remap (A[4])

This bit determines the scanning direction of the common for flexible layout of common signals in OLED module either from up to down or vice versa.

• Odd even split of COM pins (A[5])

This bit can set the odd even arrangement of COM pins.

A[5] = 0: Disable COM split odd even, pin assignment of common is in sequential as COM131 COM129 COM 33 COM32..SC131..SA0..COM0 COM1.... COM30 COM31

A[5] = 1: Enable COM split odd even, pin assignment of common is in odd even split as COM131 COM129.... COM3 COM1..SC131..SA0..COM0 COM2.... COM60 COM62

Display color mode (A[7:6])

Select either 262k, 65k or 256 color mode.

In 262k colors mode, if 16-bit MCU interface is selected, there are two communication modes. In mode 1, one pixel data in transmitted in two 16-bit words. In mode 2, one communication session is consisted of three 16-bit words to transmit two pixel data. Please refer to section "Data access in 262k colors mode" for details. In all other 8/9/18-bit parallel or SPI MCU interfaces, there is no difference between mode 1 and mode 2 selections.

The display RAM data format in different mode is described in section "Graphic Display Data RAM (GDDRAM)".

 Solomon Systech
 Jul 2005
 P 36/59
 Rev 1.1
 SSD1339

Set Display Start Line (A1h)

This command is to set Display Start Line register to determine starting address of display RAM to be displayed by selecting a value from 0 to 131. The figure below shows an example of this command. In there, "Row" means the graphic display data RAM row.

	132	132	130	130	Mux ratio
COM Pin	0	4	0	4	Display start line
COM0	Row0	Row4	Row0	Row4	
COM1	Row1	Row5	Row1	Row5	
COM2	Row2	Row6	Row2	Row6	
COM3	Row3	Row7	Row3	Row7	
:	:	:	:	:	
:	:	:	:	:	
COM125	Row125	Row129	Row125	Row129	
COM126	Row126	Row130	Row126	Row130	
COM127	Row127	Row131	Row127	Row131	
COM128	Row128	Row0	Row128	Row0	
COM129	Row129	Row1	Row129	Row1	
COM130	Row130	Row2	-	-	
COM131	Row131	Row3	-	-	

Figure 23 – Example of set display start line with no remap

Set Display Offset (A2h)

This command specifies the mapping of display start line (it is assumed that COM0 is the display start line, display start line register equals to 0) to one of COM0-131. The figure below shows an example of this command. In there, "Row" means the graphic display data RAM row.

	132	132	130	130	Mux ratio
COM Pin	0	4	0	4	Display offset
COM0	Row0	Row4	Row0	Row4	
COM1	Row1	Row5	Row1	Row5	
COM2	Row2	Row6	Row2	Row6	
COM3	Row3	Row7	Row3	Row7	
:	:	:	:	:	
:		:	:	:	
COM125	Row125	Row129	Row125	Row129	
COM126	Row126	Row130	Row126	-	
COM127	Row127	Row131	Row127	-	
COM128	Row128	Row0	Row128	Row0	
COM129	Row129	Row1	Row129	Row1	
COM130	Row130	Row2	-	Row2	
COM131	Row131	Row3	-	Row3	

Figure 24 – Example of set display offset with no remap

SSD1339 | Rev 1.1 | P 37/59 | Jul 2005 | **Solomon Systech**

Set Display Mode (A4h ~ A7h)

These are single byte command and they are used to set Normal Display, Entire Display On, Entire Display Off and Inverse Display.

- Set Entire Display On (A5h)
 - Forces the entire display to be at "GS63" regardless of the contents of the display data RAM.
- Set Entire Display Off (A4h)
 Forces the entire display to be at gray level "GS0" regardless of the contents of the display data RAM.
- Inverse Display (A7h)
 - The gray level of display data are swapped such that "GS0" <-> "GS63", "GS1" <-> "GS62",
- Normal Display (A6h)
 - Reset the above effect and turn the data to ON at the corresponding gray level.

Master Configuration (ADh)

This command contains multiple bits to control several functionalities of the driver.

- Select DC-DC converter (A[0])
 - 0 = Disable selection of DC-DC converter and VCC is supplied externally.
 - 1 (POR) = Enable selection of DC-DC converter to supply high voltage to VCC. The output voltage of the converter is set by values of external resistors. Please refer to section "DC-DC Voltage Converter" for details.
- Select V_{COMH} supply (A[1])
 - 0 = Select external V_{COMH} voltage from V_{COMH} pin for the common waveform high voltage level supply. It is recommended to set the voltage of V_{COMH} such that the OLED pixel diode is not turned on (prefer in reverse bias state) when the segment pin is either driven to V_{PA} , V_{PB} or V_{PC} level.
 - 1 = Select internal V_{COMH} voltage generated by regulator from V_{REF} . The level of V_{COMH} can be programmed by command BEh.
- Select pre-charge voltage supply (A[2])
 - 0 = Select pre-charge voltage sources from external pins V_{PA} , V_{PB} , V_{PC} for color A, B and C respectively.
 - 1 = Select pre-charge voltage supply internally. The level of V_{PA} , V_{PB} , V_{PC} can be set by command BBh for color A, B and C respectively.

Set Sleep mode On/Off (AEh/AFh)

These single byte commands are used to turn the OLED panel display on or off. When the display is on, the selected circuits by Set Master Configuration command will be turned on. When the display is off, those circuits will be turned off and the segment and common output are in high impedance state.

Power Saving Mode (B0h)

This command sets the driver IC either in normal power mode and power saving mode.

Set Reset (Phase 1)/ Pre-charge (Phase 2) period (B1h)

This command sets the length of phase 1 and 2 of segment waveform of the driver.

- Phase 1 (A[3:0]): Set the period from 1 to 16 in the unit of DCLKs. A larger capacitance of the OLED pixel may require longer period to discharge the previous data charge completely.
- Phase 2 (A[7:4]): Set the period from 1 to 16 in the unit of DCLKs. A longer period is needed to charge up a larger capacitance of the OLED pixel to the target voltage V_{PA}, V_{PB}, V_{PC} for color A, B and C respectively.

Solomon Systech Jul 2005 | P 38/59 | Rev 1.1 | **SSD1339**

Front Clock Divider (DivSet)/ Oscillator Frequency (B3h)

This command consists of two functions:

- Display Clock Divide Ratio (A[3:0])
 Set the divide ratio to generate DCLK (Display Clock) from CLK. The divide ratio is from 1 to 16,
 with power on reset value = 1. Please refer to section "Oscillator Circuit and Display Time
 Generator" for the details of DCLK and CLK.
- Oscillator Frequency (A[7:4])
 Program the oscillator frequency Fosc which is the source of CLK if CLS pin is pulled high. The 4-bit value results in 16 different frequency setting available as shown below. The default value is 1101b.

Look Up Table for Gray Scale Pulse width (B8h)

This command is used to set the gray scale table for the display. Except gray scale entry 0, which is zero as it has no pre-charge and current drive, each odd entry gray scale level is programmed in the length of current drive stage pulse width with unit of DCLK. The longer the length of the pulse width, the brighter is the OLED pixel when it's turned on. Please refer to section "Graphic Display Data RAM (GDDRAM)" for more detailed explanation of relation of display data RAM, gray scale table and the pixel brightness.

Following the command B8h, the user has to set the pulse width from PW1, PW3, PW5, ..., PW59, PW61, PW63 one by one in sequence and complies the following conditions.

Afterwards, the driver automatically derives the pulse width of even entry of gray scale table PW2, PW4, ..., PW62 with the formula like below.

$$PWn = (PWn-1 + PWn+1)/2$$

For example, if PW1 = 3 DCLKs and PW3 = 7 DCLKs, PW2 = (3+7)/2 = 5 DCLKs

The setting of gray scale table entry can perform gamma correction on OLED panel display. Normally, it is desired that the brightness response of the panel is linearly proportional to the image data value in display data RAM. However, the OLED panel is somehow responded in non-linear way. Appropriate gray scale table setting like example below can compensate this effect.

Figure 25 – Example of gamma correction by gray scale table setting

Use Built-in Linear LUT (B9h)

This command reloads the preset linear gray scale table as PW1 = 1, PW2 = 3, PW3 = 5,, PW62 = 123, PW63 = 125 DCLKs.

SSD1339 | Rev 1.1 | P 39/59 | Jul 2005 | Solomon Systech

Set Pre-charge voltage of Color A, B and C (BBh)

This command is used to set V_{PA} , V_{PB} and V_{PC} phase 2 voltage level for color A, B and C respectively. The command is valid in condition that these voltages are selected to generate internally by command ADh. It can be programmed to set the pre-charge voltage reference to V_{REF} or V_{COMH} . Voltage level increases linearly when set value increases.

Set V_{COMH} (BEh)

This command sets the high voltage level of common pins, V_{COMH} , when it is selected to generate internally by command ADh. The level of V_{COMH} is programmed with reference to V_{REF} . Voltage level increases linearly when set value increases.

Contrast Current for Color A, B, C (C1h)

This command is to set Contrast Current of each color A, B and C. The chip has three contrast control circuits for color A, B and C. Each contrast circuit has 256 contrast steps from 00h to FFh. The segment output current I_{SEG} increases linearly with the contrast step, which results in brighter of the color. This relation is shown in Figure 26. In many situations, the output brightness of color A, B and C pixels are different under the same segment current condition. The contrasts of color A, B and C are set such that the brightness of each color are the same on the OLED panel

 Solomon Systech
 Jul 2005
 P 40/59
 Rev 1.1
 SSD1339

Master Contrast Current Control (C7h)

This command is to control the segment output current by a scale factor. This factor is common to color A, B and C. The chip has 16 master control steps. The factor is ranged from 1 [0000] to 16 [1111]. POR is 16 [1111]. The smaller the master current value, the dimmer the OLED panel display is set. For example, if original segment output current of a color is 160uA at scale factor = 16, setting scale factor to 8 to reduce the current to 80uA. Please see Figure 26.

Figure 26 – Segment output current for different contrast control and master current setting

Set Multiplex Ratio (CAh)

This command switches default 1:132 multiplex mode to any multiplex mode from 16 to 132. For example, when multiplex ratio is set to 16, only 16 common pins are enabled. The starting and the ending of the enabled common pins are depended on the setting of "Display Offset" register programmed by command A2h.

SSD1339 | Rev 1.1 | P 41/59 | Jul 2005 | Solomon Systech

Graphic Acceleration command set description

Draw Line (83h)

This command draws a line by the given start, end column and row coordinates and the color of the line.

Figure 27 – Example of draw line command

For example, the line above can be drawn by the following command sequence.

- 1. Enter into draw line mode by command 21h
- 2. Send column start address of line, column1, for example = 1h
- 3. Send row start address of line, row 1, for example = 10h
- 4. Send column end address of line, column 2, for example = 28h
- 5. Send row end address of line, row 2, for example = 4h
- 6. Send color C, B and A of line, for example = 35d, 0d, 0d for blue color

Draw Rectangle (84h)

Given the starting point (Row 1, Column 1) and the ending point (Row 2, Column 2), specify the outline and fill area colors, a rectangle that will be drawn with the color specified. Remarks: If fill color option is disabled, the enclosed area will not be filled.

Figure 28 - Example of draw rectangle command

The following example illustrates the rectangle drawing command sequence.

- 1. Enter the "draw rectangle mode" by execute the command 22h
- 2. Set the starting column coordinates, Column 1. e.g., 03h.
- 3. Set the starting row coordinates, Row 1. e.g., 02h.
- 4. Set the finishing column coordinates, Column 2. e.g., 12h
- 5. Set the finishing row coordinates, Row 2. e.g., 15h
- 6. Set the outline color C, B and A. e.g., (28d, 0d, 0d) for blue color
- 7. Set the filled color C, B and A. e.g., (0d, 0d, 40d) for red color

 Solomon Systech
 Jul 2005
 P 42/59
 Rev 1.1
 SSD1339

Draw Circle (86h)

By providing the center coordination (column and row address) and radius length, specify the outline and fill area colors, a circle will be drawn with the colors specified.

Figure 29 – Example of draw circle command

The following example illustrates the circle drawing command sequence.

- 1. Enter the "draw circle mode" by execute the command 86h
- 2. Set the circle center column coordinates, e.g., 03h.
- 3. Set the circle center row coordinates. e.g., 10h.
- 4. Set the radius of circle. e.g., 12h
- 5. Set the outline color C, B and A. e.g., (0d, 0d, 40d) for red color
- 6. Set the filled color C, B and A. e.g., (28d, 0d, 0d) for blue color

SSD1339 | Rev 1.1 | P 43/59 | Jul 2005 | **Solomon Systech**

Copy (8Ah)

Copy the rectangular region defined by the starting point (Row 1, Column 1) and the ending point (Row 2, Column 2) to location (Row 3, Column 3). If the new coordinates are smaller than the ending points, the new image will overlap the original one.

The following example illustrates the copy procedure.

- 1. Enter the "copy mode" by execute the command 23h
- 2. Set the starting column coordinates, Column 1. E.g., 00h.
- 3. Set the starting row coordinates, Row 1. E.g., 00h.
- 4. Set the finishing column coordinates, Column 2. E.g., 05h
- 5. Set the finishing row coordinates, Row 2. E.g., 05h
- 6. Set the new column coordinates, Column 3. E.g., 03h
- 7. Set the new row coordinates, Row 3. E.g., 03h

Figure 30 – Example of copy command

Dim Window (8Ch)

This command will dim the window area specify by starting point (Row 1, Column 1) and the ending point (Row 2, Column 2). After the execution of this command, the selected window area will become darker as follow.

Table 5 – Result of change of brightness by dim window command

Original gray scale	New gray scale after dim window command
GS0 ~ GS15	No change
GS16 ~ GS19	GS4
GS20 ~ GS23	GS5
:	:
GS60 ~ GS63	GS15

Additional execution of this command over the same window area will not change the data content.

 Solomon Systech
 Jul 2005
 P 44/59
 Rev 1.1
 SSD1339

Clear Window (8Eh)

This command sets the window area specify by starting point (Row 1, Column 1) and the ending point (Row 2, Column 2) to clear the window display. The graphic display data RAM content of the specified window area will be set to zero.

This command can be combined with Copy command to make as a "move" result. The following example illustrates the copy plus clear procedure and results in moving the window object.

- 1. Enter the "copy mode" by execute the command 23h
- 2. Set the starting column coordinates, Column 1. E.g., 00h.
- 3. Set the starting row coordinates, Row 1. E.g., 00h.
- 4. Set the finishing column coordinates, Column 2. E.g., 05h
- 5. Set the finishing row coordinates, Row 2. E.g., 05h
- 6. Set the new column coordinates, Column 3. E.g., 06h
- 7. Set the new row coordinates, Row 3. E.g., 06h
- 8. Enter the "clear mode" by execute the command 24h
- 9. Set the starting column coordinates, Column 1. E.g., 00h.
- 10. Set the starting row coordinates, Row 1. E.g., 00h.
- 11. Set the finishing column coordinates, Column 2. E.g., 05h
- 12. Set the finishing row coordinates, Row 2. E.g., 05h

Figure 31 - Example of copy + clear = Move command

Fill Enable/Disable (92h)

This command has two functions.

- Enable/Disable fill (A[0])
 - 0 = Disable filling of color into rectangle in draw rectangle command. (POR)
 - 1 = Enable filling of color into rectangle in draw rectangle command.
- Enable/Disable reverse copy (A[4])
 - 0 = Disable reverse copy (POR)
 - 1 = During copy command, the new image colors are swapped such that "GS0" <-> "GS63", "GS1" <-> "GS62", \dots

SSD1339 | Rev 1.1 | P 45/59 | Jul 2005 | Solomon Systech

Horizontal Scroll (96h)

This command consists of 5 consecutive bytes to set up the horizontal scroll parameters. It determined the scrolling start page, end page and the scrolling speed.

Before issuing this command, the horizontal scroll must be deactivated (9Eh). Otherwise, RAM content may be corrupted.

Stop Moving (9Eh)

Stop motion of horizontal scrolling.

Start Moving (9Fh)

Start motion of horizontal scrolling. This command should only be issued after Horizontal scroll setup parameters are defined.

The following actions are prohibited after the horizontal scroll is activated

- 1. RAM access (Data write or read)
- 2. Changing horizontal scroll setup parameters

The SSD1339 horizontal scroll is designed for 132 columns scrolling

 Solomon Systech
 Jul 2005
 P 46/59
 Rev 1.1
 SSD1339

10. MAXIMUM RATINGS

Table 6 - Maximum ratings

(Voltage Reference to V_{SS})

Symbol	Parameter	Value	Unit
V_{DD}		-0.3 to +4	V
V_{CC}	Supply Voltage	0 to 18	V
V_{REF}		0 to 18	V
V_{COMH}	Supply Voltage/Output voltage	0 to 16	V
-	SEG/COM output voltage	0 to 16	V
V_{in}	Input voltage	Vss-0.3 to Vdd+0.3	V
T _A	Operating Temperature	-40 to +90	°C
T_{stg}	Storage Temperature Range	-65 to +150	°C

^{*}Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description.

SSD1339 Rev 1.1 P 47/59 Jul 2005 **Solomon Systech**

11. DC CHARACTERISTICS

Table 7 – DC characteristics

(Unless otherwise specified, Voltage Referenced to V_{SS} , V_{DD} = 2.4 to 3.5V, T_A = 25°C)

Symbol	Parameter Parameter	Test Condition	Min	Тур	Max	Unit
V _{cc}	Operating Voltage		7	11	18	V
V_{DD}	Logic Supply Voltage		2.4	2.7	3.5	V
V_{DDIO}	Power Supply for I/O pins		1.5	2.7	3.5	V
V_{OH}	High Logic Output Level	lout =100uA, 3.3MHz	0.9*V _{DDIO}	-	V_{DDIO}	V
V_{OL}	Low Logic Output Level	lout =100uA, 3.3MHz	0	-	0.1*V _{DDI}	V
V _{IH}	High Logic Input Level	lout =100uA, 3.3MHz	$0.8*V_{DDIO}$	-	V_{DDIO}	V
V_{IL}	Low Logic Input Level	lout =100uA, 3.3MHz	0	-	0.2*V _{DDI}	V
I _{SLEEP}	Sleep mode Current	VDD=2.7V, Display OFF, No panel attached	-	-	5	uA
I _{cc}	V _{CC} Supply Current	VDD=3.0V, VCC=18V, Display ON Contrast =FF, No panel attached	-	1.3	-	mA
I _{DD}	V _{DD} Supply Current	VDD=3.0V, VCC=18V, Display ON Contrast =FF, No panel attached	-	0.4	-	mA
	Segment Output Current Setting	Contrast = FF	-	160	-	uA
I _{SEG}	VDD=2.7V, VCC=11V, IREF=10uA, All one pattern, Display on,	Contrast = AF		110		uA
ISEG	Segment pin under test is connected with a 20KΩ resistive	Contrast = 5F	-	60	-	uA
	load to Vcc.	Contrast = 00	-	0	-	uA
	Segment output current uniformity	Dev = (I _{SEG} – I _{MID})/I _{MID}				
Dev	Cogmon catput carron armonity	$I_{MID} = (I_{MAX} + I_{MIN})/2$	-	-	3	%
		I _{SEG} [0:395] = Segment current at contrast = FF				
Adj. Dev	Adjacent pin output current uniformity (contrast = FF)	Adj Dev = (I[n]-I[n+1]) / (I[n]+I[n+1])	-	±2.0		%
V _{CC}	Booster output voltage (Vcc)	Vin=3V, L=22uH; R1=450Kohm; R2=50Kohm; Icc = 30mA(soaking)	-	12	-	V

 Solomon Systech
 Jul 2005
 P 48/59
 Rev 1.1
 SSD1339

12. AC CHARACTERISTICS

Table 8 - AC characteristics

(Unless otherwise specified, Voltage Referenced to V_{SS} , V_{DD} = 2.4 to 3.5V, T_A = 25°C.)

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
Fosc	Oscillation Frequency of Display Timing Generator	Vdd = 2.7V	-	2.0	-	MHz
F _{FRM}	Frame Frequency for 132 MUX Mode	132RGB x 132 Graphic Display Mode, Display ON, Internal Oscillator Enabled	1	F _{OSC} X 1/(D*K*132)	ı	Hz

D: divide ratio (POR =1)

K: number of display clocks (POR=136, i.e. phase1 dclk+phase2 dclk+ phase3 dclk=4+7+125)
Refer to command table for detail description

SSD1339 Rev 1.1 P 49/59 Jul 2005 Solomon Systech

Table 9 – 6800-Series MPU parallel interface timing characteristics

 $(V_{DD} - V_{SS} = 2.4 \text{ to } 3.5 \text{V}, T_A = 25^{\circ}\text{C})$

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	300	-	•	ns
t _{AS}	Address Setup Time	0	-	ı	ns
t _{AH}	Address Hold Time	0	-	ı	ns
t _{DSW}	Write Data Setup Time	40	-	ı	ns
t_{DHW}	Write Data Hold Time	15	-	ı	ns
t _{DHR}	Read Data Hold Time	20	-	ı	ns
t _{OH}	Output Disable Time	-	-	70	ns
t _{ACC}	Access Time	-	-	140	ns
PW _{CSL}	Chip Select Low Pulse Width (read)	120			ns
I VVCSL	Chip Select Low Pulse Width (write)	60	_	•	113
PW _{CSH}	Chip Select High Pulse Width (read)	60			ns
FVVCSH	Chip Select High Pulse Width (write)	60	-	-	115
t_R	Rise Time	-	-	15	ns
t _F	Fall Time	-	-	15	ns

^{*} when 9 bit used: $D_0 \sim D_8$ instead; when 16 bit used: $D_0 \sim D_{15}$ instead; when 18 bit used: $D_0 \sim D_{17}$ instead.

Figure 32 - 6800-series MPU parallel interface characteristics

 Solomon Systech
 Jul 2005
 P 50/59
 Rev 1.1
 SSD1339

Table 10 - 8080-Series MPU parallel interface timing characteristics

 $(V_{DD} - V_{SS} = 2.4 \text{ to } 3.5 \text{V}, T_A = 25^{\circ}\text{C})$

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	300	-	-	ns
t _{AS}	Address Setup Time	0	-	-	ns
t _{AH}	Address Hold Time	0	-	-	ns
t _{DSW}	Write Data Setup Time	40	-	-	ns
t _{DHW}	Write Data Hold Time	15	-	-	ns
t _{DHR}	Read Data Hold Time	20	-	-	ns
t _{OH}	Output Disable Time	-	-	70	ns
t _{ACC}	Access Time	-	-	140	ns
PW _{CSL}	Chip Select Low Pulse Width (read)	120	-	-	ns
	Chip Select Low Pulse Width (write)	60			
PW_{CSH}	Chip Select High Pulse Width (read)	60	-	-	ns
	Chip Select High Pulse Width (write)	60			
t_R	Rise Time	-	-	15	ns
t _F	Fall Time	-	-	15	ns

^{*} when 8 bit used: $D_0 \sim D_7$ instead; when 9 bit used: $D_0 \sim D_8$ instead; when 16 bit used: $D_0 \sim D_{15}$ instead; when 18 bit used: $D_0 \sim D_{17}$ instead.

Figure 33 - 8080-series MPU parallel interface characteristics

SSD1339 | Rev 1.1 | P 51/59 | Jul 2005 | **Solomon Systech**

Table 11 – Serial interface timing characteristics

 $(V_{DD} - V_{SS} = 2.4 \text{ to } 3.5 \text{V}, T_A = 25^{\circ}\text{C})$

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	250	-	-	ns
t _{AS}	Address Setup Time	150	-		ns
t _{AH}	Address Hold Time	150	-	1	ns
tcss	Chip Select Setup Time	120	-	1	ns
t _{CSH}	Chip Select Hold Time	60	-	ı	ns
t _{DSW}	Write Data Setup Time	100	-	ı	ns
t _{DHW}	Write Data Hold Time	100	-	-	ns
t _{CLKL}	Clock Low Time	100	-	-	ns
t _{CLKH}	Clock High Time	100	-	-	ns
t_R	Rise Time	-	-	15	ns
t _F	Fall Time	-	-	15	ns

Figure 34 - Serial interface characteristics

 Solomon Systech
 Jul 2005
 P 52/59
 Rev 1.1
 SSD1339

13. APPLICATION EXAMPLE

Figure 35 - Application example for 8-bit 6800-parallel interface mode

SSD1339 | Rev 1.1 | P 53/59 | Jul 2005 | **Solomon Systech**

14. PACKAGE INFORMATION

SSD1339U3 Pin Assignment

Figure 36 - SSD1339U3 pin assignment

 Solomon Systech
 Jul 2005
 P 54/59
 Rev 1.1
 SSD1339

Table 12 - SSD1339U3 pin assignment

iable	12 -	S	יטנו ענ		וווכ	assiyi	
Name	Pin #		Name	Pin #		Name	Pir #
NC	1		NC	40		NC	121
VCC	2		NC	41		NC	122
COMH	3		NC	42		NC	123
VDDIO	4		NC	43		SA127	124
VSL D17	5 6		COM129 COM128	44 45		SC126 SB126	125
D16	7		COM127	46		SA126	127
D15	8		COM126	47		SC125	128
D14	9		COM125	48		SB125	129
D13	10 11		COM124	49		SA125	130
D12 D11	12		COM123 COM122	50 51		SC124 SB124	132
D10	13		COM121	52		SA124	133
D9	14		COM120	53		SC123	134
D8 D7	15 16		COM119	54 55		SB123	135
D6	17		COM118 COM117	56		SA123 SC122	136
D5	18		COM116	57		SB122	138
D4	19		COM115	58		SA122	139
D3 D2	20 21		COM114 COM113	59 60		SC121 SB121	140
D2	22		COM113	61		SA121	141 142
D0	23		COM111	62		SC120	143
Е	24		COM110	63		SB120	144
R/W#	25		COM109	64		SA120	145
BS0 BS1	26 27		COM108 COM107	65 66		SC119 SB119	146
BS2	28		COM106	67		SA119	148
CS#	29		COM105	68		SC118	149
D/C# RES#	30 31		COM104 COM103	69 70		SB118	150
IREF	32		COM103	71		SA118 SC117	
VBREF	33		COM101	72		SB117	152 153
RESE	34		COM100	73		SA117	154
FB VDDIO	35 36		COM99 COM98	74 75		SC116 SB116	156
GDR	37		COM97	76		SA116	157
VSS	38		COM96	77		SC115	158
NC	39		COM95	78		SB115	159
			COM94 COM93	79 80		SA115 SC114	160
			COM92	81		SB114	162
			COM91	82		SA114	163
			COM90 COM89	83 84		SC113 SB113	164
			COM88	85		SA113	166
			COM87	86		SC112	167
			COM86	87		SB112	168
			COM85 COM84	88 89		SA112 SC111	169
			COM83	90		SB111	171
			COM82	91		SA111	172
			COM81	92		SC110	173
			COM80 COM79	93 94		SB110 SA110	174
			COM78	95		SC109	176
			COM77	96		SB109	177
			COM76 COM75	97 98		SA109 SC108	178
			COM75	99		SB108	179
			COM73	100		SA108	181
			COM72	101		SC107	182
			COM71 COM70	102 103		SB107 SA107	183 184
			COM69	104		SC106	
			COM68	105		SB106	185 186
			COM67	106		SA106	187
			COM66 NC	107 108		SC105 SB105	189
			NC	109		SA105	190
			NC	110		SC104	191
			NC NC	111		SB104	192 193
			NC NC	112 113		SA104 SC103	193
			NC	114		SB103	195
			NC	115		SA103	196
			NC NC	116 117		SC102 SB102	197
			NC	118		SA102	199
			NC	119		SC101	200
		L	NC	120		SB101	201

	nment			Pin
Name	#		Name	#
NC	121		SA101	202
NC	122	I.	SC100	203
NC	123	⊩	SB100	204
SA127	124	⊩	SA100	205
SC126	125 126	H	SC99 SB99	206
SB126 SA126	120	╟	SA99	207
SC125	128	╟	SC98	209
SB125	129	l	SB98	210
SA125	130	l	SA98	211
SC124	131	ı	SC97	212
SB124	132	I	SB97	213
SA124	133		SA97	214
SC123	134	I	SC96	215
SB123	135		SB96	216
SA123	136	L	SA96	217
SC122	137	I.	SC95	218
SB122	138	IL	SB95	219
SA122	139	⊩	SA95	220
SC121	140	⊩	SC94	221
SB121	141	⊩	SB94	222
SA121	142	⊩	SA94	223
SC120 SB120	143 144	⊩	SC93 SB93	224 225
SA120	144	⊩	SA93	225
SC119	146	⊩	SC92	227
SB119	147	⊩	SB92	228
SA119	148	╟	SA92	229
SC118	149		SC91	230
SB118	150	I	SB91	231
SA118	151		SA91	232
SC117 SB117	152		SC90	233
	153		SB90	234
SA117	154	L	SA90	235
SC116	155	I.	SC89	236
SB116	156	IL	SB89	237
SA116	157	⊩	SA89	238
SC115	158 159	⊩	SC88	239
SB115 SA115		╟	SB88 SA88	240 241
SC114	160 161	╟	SC87	241
SB114	162	╟	SB87	242
SA114	163	l	SA87	244
SC113 SB113	164		SC86	245
SB113	165		SB86	246
SA113	166		SA86	247
SC112	167		SC85	248
SB112	168		SB85	249
SA112	169	L	SA85	250
SC111	170	IL	SC84	251
SB111	171	⊩	SB84	252
SA111	172	⊩	SA84	253
SC110 SB110	173 174	⊩	SC83 SB83	254 255
SA110	174	⊩	SA83	256
	176	⊩	SC82	257
SC109 SB109	177	╟	SB82	258
SA109	178	I	SA82	259
SC108	179		SC81	260
SB108	180		SB81	261
SA108	181		SA81	262
SC107	182		SC80	263
SB107	183	IL	SB80	264
SA107	184	⊩	SA80	265
SC106	185	⊩	SC79	266
SB106	186	⊩	SB79	267
SA106	187 188	⊩	SA79 SC78	268 269
SC105 SB105	189	⊩	SB78	269
SA105	190	⊩	SA78	271
SC104	191	⊩	SC77	272
SB104	192	╟	SB77	273
SA104	193	╟	SA77	274
SC103	194	I	SC76	275
SC103 SB103	195	I	SB76	276
SA103	196		SA76	277
SC102	197		SC75	278
SB102	198		SB75	279
SA102	199		SA75	280
SC101 SB101	200	IL.	SC74	281
	201		SB74	282

Name	Pin #	Name	Pin #
SA74	283	SB47	364
SC73	284	SA47	365
B73	285	SC46	366
A73	286	SB46	367
C72	287	SA46	368
372	288	SC45	369
A72	289	SB45	370
271	290	SA45	371
B71	291	SC44	372
A71	292	SB44	373
C70	293	SA44	374
SB70	294	SC43	375
SA70	295	SB43	376
SC69	296 297	SA43 SC42	377 378
B69 A69	298	SB42	
		SA42	379 380
6C68 6B68	299 300	SC41	381
A68	301	SB41	382
C67	302	SA41	383
B67	303	SC40	384
A67	304	SB40	385
C66	305	SA40	386
SB66	306	SC39	387
SA66	307	SB39	388
SC65	308	SA39	389
SB65	309	SC38	390
SA65	310	SB38	391
SC64	311	SA38	392
SB64	312	SC37	393
SA64	313	SB37	394
NC	314	SA37	395
SC63	315	SC36	396
B63	316	SB36	397
A63	317	SA36	398
C62	318	SC35	399
B62	319	SB35	400
A62	320	SA35	401
C61	321	SC34	402
B61	322	SB34	403
SA61	323	SA34	404
C60	324	SC33	405
B60	325	SB33	406
6A60	326	SA33	407
SC59	327	SC32	408
SB59	328	SB32	409
SA59	329	SA32	410
SC58	330	SC31	411
SB58	331	SB31	412
SA58	332	SA31	413
SC57	333	SC30	414
SB57	334	SB30	415
SA57	335	SA30	416
SC56	336	SC29	417
SB56	337	SB29	418
SA56	338	SA29	419
SC55	339	SC28	420
SB55	340	SB28	421
SA55 SC54	341 342	SA28 SC27	422
SB54	342	SB27	423
SA54	344	SA27	425
SC53	345	SC26	426
SB53	346	SB26	427
SA53	347	SA26	428
SC52	348	SC25	429
SB52	349	SB25	430
SA52	350	SA25	431
SC51	351	SC24	432
SB51	352	SB24	433
SA51	353	SA24	434
SC50	354	SC23	435
SB50	355	SB23	436
SA50	356	SA23	437
C49	357	SC22	438
B49	358	SB22	439
A49	359	SA22	440
C48	360	SC21	441
SB48	361	SB21	442
SA48	362	SA21	443

Name	Pin #
SB20	445
SA20	446
SC19	447
3018	448
SA19	449
SC18	450
SB18	451
SA18	452
SC17	453
SB17	454
SA17	455
SC16	456
SB16	457
SA16	458
SC15	459
3013	460
SAIS	461
SC14	462
SB14	463
SA14	464
SC13 SB13	465
SB13	466
SA13	467
SC12	468
SB12	469
SA12	470
SC11	471
SB11	472
	473
SC10	474
SB10	475
SA10	476
SC9	477
SB9	478
SA9	479
SC8	480
SB8	481
SA8	482
SC7	483
SB7	484
SA7	485
SAI	486
SC6	486
ODO	
SAU	488
SC5	489
SB5	490
SA5	491
SC4	492
SB4	493
SA4	494
SC3	495
SB3	496
SA3	497
SC2	498
SB2 SA2	499
0,12	500
SC1	501
SB1	502
SA1	503
SC0	504
SB0	505
SA0	506

	Pin
Name NC	# 506
NC NC	507
NC	508
NC NC	509 510
NC	511
NC NC	512 513
NC NC	513 514
NC	515
NC NC	516 517
NC	518
NC NC	519 520
NC	521
COM0 COM1	522 523
COM1 COM2	523 524
COM3	525
COM4 COM5	526 527
COM6	528
COM7	529
COM8 COM9	530 531
COM10	532
COM11	533
COM12 COM13	534 535
COM14	536
COM15 COM16	537 538
COM17	539
COM18 COM19	540 541
COM20	541
COM21	543
COM22 COM23	544 545
COM24	546
COM25 COM26	547 548
COM27	549
COM28	550
COM29 COM30	551 552
COM31	553
COM32 COM33	554 555
COM34	556
COM35	557
COM36 COM37	558 559
COM38	560
COM39 COM40	561
COM40 COM41	562 563
COM42	564
COM43 COM44	565 566
COM45	567
COM46 COM47	568 569
COM47 COM48	570
COM49	571
COM50 COM51	572 573
COM52	574
COM53	575
COM54 COM55	576 577
COM56	578
COM57 COM58	579 580
COM59	581
COM60 COM61	582 583
COM61 COM62	583 584
COM63	585
NC NC	586 587
NC	588
NC	589

SSD1339 Rev 1.1 P 55/59 Jul 2005 Solomon Systech

SSD1339U3 COF details dimensions

Figure 37 - SSD1339U3 detail dimensions

 Solomon Systech
 Jul 2005
 P 56/59
 Rev 1.1
 SSD1339

SSD1339 | Rev 1.1 | P 57/59 | Jul 2005 | **Solomon Systech**

Scale: 5:1 Detail C

Scale: 5:1 Detail D

Scale: 5:1 Detail F

 Solomon Systech
 Jul 2005
 P 58/59
 Rev 1.1
 SSD1339

Solomon Systech reserves the right to make changes without further notice to any products herein. Solomon Systech makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Solomon Systech assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Solomon Systech does not convey any license under its patent rights nor the rights of others. Solomon Systech products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Solomon Systech products or could create a situation where personal injury or death may occur. Should Buyer purchase or use Solomon Systech products for any such unintended or unauthorized application, Buyer shall indemnify and hold Solomon Systech and its offices, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Solomon Systech was negligent regarding the design or manufacture of the part. http://www.solomon-systech.com

SSD1339 | Rev 1.1 | P 59/59 | Jul 2005 | **Solomon Systech**