Algoritmos em Grafos: Fluxo Máximo e Fluxo de Custo Mínimo em Redes de Transporte

R. Rossetti, A.P. Rocha, J. Pascoal Faria FEUP, MIEIC, CAL, 2013/2014

FEUP Universidade do Porto

oritmos em Grafos: Fluxo máximo em redes de transporte - CAL, 2013/14

Índice

- Conceito de rede de transporte
- Fluxo máximo numa rede de transporte
- Fluxo de custo mínimo numa rede de transporte

FEUP Universidade do Porto Faculdade de Engenharia

goritmos em Grafos: Fluxo máximo em redes de transporte - CAL, 2013/14

<#>

Conceito de rede de transporte

FEUP Universidade do Porto Faculdade de Engenharia

zoritmos em Grafos: Fluxo máximo em redes de transporte - CAL, 2013/1

Rede de transporte

- Modelar fluxos conservativos entre dois pontos através de canais com capacidade limitada
 - s: fonte (produtor)
 - t: poço (consumidor)
 - Fluxo não pode ultrapassar a capacidade da aresta
 - Soma dos fluxos de entrada num vértice intermédio igual à soma dos fluxos de saída
- Exemplos:
 - Rede de abastecimento de líquido ponto a ponto
 - Tráfego entre dois pontos
- Em alguns casos, as arestas podem ter custos associados (custo de transportar uma unidade de fluxo)

FEUP Universidade do Porto Faculdade de Engenharia

Algoritmos em Grafos: Fluxo máximo em redes de transporte - CAL, 2013/1

Redes com múltiplas fontes e poços

 Caso de múltiplas fontes e poços (ou mesmo de vértices que podem ser simultaneamente fontes, poços e vértices intermédios) é facilmente redutível ao caso base (uma fonte e um poço)

 Se a rede tiver custos nas arestas, as arestas adicionadas têm custo 0

FEUP Universidade do Porto Faculdade de Engenharia

lgoritmos em Grafos: Fluxo máximo em redes de transporte - CAL, 2013/14

4

Fluxo máximo numa rede de transporte

FEUP Universidade do Porto Faculdade de Engenharia

goritmos em Grafos: Fluxo máximo em redes de transporte - CAL, 2013/1

‹#>

Problema

■ Encontrar um fluxo de valor máximo (fluxo total que parte de s / chega a t)

Formalização

Dados de entrada:

 c_{ij} - capacidade da aresta que vai do nó i a j (0 se não existir)

Dados de saída (variáveis a calcular):

 f_{ij} - fluxo que atravessa a aresta que vai do nó i para o nó j $(0\,{\rm se}$ não existir)

Restrições:

$$0 \le f_{ij} \le c_{ij}, \forall_{ij}$$

$$\sum_{j} f_{ij} = \sum_{j} f_{ji}, \forall_{i \ne s, t}$$
Objectivo:

$$\max \sum_{i} f_{sj}$$

Algoritmo de Ford-Fulkerson (1955)

- Estruturas de dados:
 - G grafo base de capacidades c(v,w)
 - Gf grafo auxiliar de fluxos f(v,w)
 - inicialmente fluxos iguais a 0
 - no fim, tem o fluxo máximo
 - Gr grafo residual (auxiliar)
 - para cada arco (v, w) em G com c(v,w) > f(v,w), cria-se um arco no mesmo sentido em Gr de capacidade igual a c(v,w) - f(v,w) (capacidade disponível)
 - para cada arco (v, w) em G com f(v, w) > 0, cria-se um arco em sentido inverso em Gr de capacidade igual a f(v, w)
 - arcos necessários para garantir que o algoritmo encontra a solução óptima (ver exemplo)!
- Método (dos caminhos de aumento):
 - Enquanto existirem caminhos entre s e t em Gr
 - Seleccionar um caminho qualquer em Gr entre s e t (caminho de aumento)
 - Determinar o valor mínimo (f) nos arcos desse caminho
 - Aumentar esse valor de fluxo (f) a cada um dos arcos respectivos em Gf
 - Recalcular Gr

Igoritmos em Grafos: Fluxo máximo em redes de transporte - CAL, 2013/14

<#

Análise do algoritmo de Ford-Fulkerson

- Se as capacidades forem números racionais, o algoritmo termina com o fluxo máximo
- Se as capacidades forem inteiros e o fluxo máximo M
 - Algoritmo tem a propriedade de integralidade: os fluxos finais são também inteiros
 - Bastam M iterações (fluxo aumenta pelo menos 1 por iteração)
 - Cada iteração pode ser feita em tempo O(|E|)
 - Tempo de execução total: O(M |E|) mau

FEUP Universidade do Porto Faculdade de Engenharia

lgoritmos em Grafos: Fluxo máximo em redes de transporte - CAL, 2013/14

ш

Algoritmo de Edmonds-Karp (1969) *

- Em cada iteração do algoritmo de Ford-Fulkerson escolhe-se um caminho de aumento de comprimento mínimo
 - O exemplo apresentado anteriormente já obedece a este critério!
 - N° máximo de aumentos é |E|.|V| (ver explicação nas referências)
 - Um caminho de aumento mais curto pode ser encontrado em tempo O(| E|) através de pesquisa em largura (ver explicação nas referências)
 - Tempo de execução: O(|E|² |V|)
- Interessa apenas como preparação para o algoritmo de Dinic

FEUP Universidade do Porto Faculdade de Engenharia

lgoritmos em Grafos: Fluxo máximo em redes de transporte - CAL, 2013/14

«#>

Algoritmo de Dinic (1970)

- Refina algoritmo de Edmonds-Karp, evitando trabalho repetido a achar sucessivos caminhos de aumento de igual comprimento mínimo:
 - 1. Inicializar os grafos de fluxos (Gf) e de resíduos (Gr) como antes
 - 2. Calcular o nível de cada vértice, igual à distância mínima a s em Gr
 - 3. Se nível(t) = ∞ , terminar
 - 4. "Esconder" as arestas (u,v) de Gr em que $nivel(v) \neq nivel(u) + 1$
 - Não podem fazer parte de um caminho mais curto de s para t em Gr!
 - Sem elas, qualquer caminho de s para t em Gr tem comprimento mínimo!
 - 5. Enquanto existirem caminhos de aumento em *Gr* (ignorando as arestas escondidas), seleccionar e aplicar um caminho de aumento qualquer
 - Se forem adicionadas a Gr arestas de sentido inverso ao fluxo, ficam também escondidas, pois apenas servem para encontrar caminhos mais compridos
 - 6. Se nível(t) = |V|-1, terminar; senão saltar para o passo 2 para recalcular os níveis (voltando a considerar todas as arestas de Gr)

FEUP Universidade do Porto Faculdade de Engenharia

lgoritmos em Grafos: Fluxo máximo em redes de transporte - CAL, 2013/14

<#

Eficiência do algoritmo de Dinic *

- Passo 2
 - Cada execução pode ser feita em tempo O(|E|) (assumindo |E|>|V|) por uma simples pesquisa em largura (ver explicação das referências)
 - O nº máximo de execuções é |V|, pois cada nova execução só acontece quando se esgotaram os caminhos de aumento de um dado comprimento, e o comprimento dos caminho de aumento só pode crescer até |V|
- Passo 5
 - O nº máximo de execuções (selecção e aplicação de um caminho de aumento) é o nº máximo de caminhos de aumento, que é o mesmo que no algoritmo de Edmonds-Karp, ou seja, O(|E|.|V|) (O(|E|) para cada comprimento, multiplicado por |V| comprimentos possíveis)
 - Cada caminho de aumento pode ser encontrado em tempo O(|V|) no grafo Gr (ignorando as arestas escondidas) por simples pesquisa em profundidade, pois já não há que ter a preocupação de encontrar um caminho mais curto
- Total: O(|V|² |E|) (melhoria significativa para grafos densos)

lgoritmos em Grafos: Fluxo máximo em redes de transporte - CAL, 2013/14

ш

Algoritmo de Dinic em redes unitárias *

- Rede unitária:
 - Capacidades unitárias
 - Todos os vértices excepto s e t têm no máximo uma aresta a entrar ou uma aresta a sair
- Surge em problemas de emparelhamento em grafos bipartidos
- Nesse caso o nº máximo de "renivelamentos" é |V|1/2
- Para cada nível/comprimento, os vários caminhos de aumento podem ser seleccionados e aplicados em tempo O(|E|), numa única passagem de visita em profundidade pelo grafo nivelado
 - Uma vez que as capacidades são unitárias, as arestas usadas num caminho não têm de voltar a ser consideradas
- Total: O(|V|^{1/2} |E|)

FEUP Universidade do Porto Faculdade de Engenharia

lgoritmos em Grafos: Fluxo máximo em redes de transporte - CAL, 2013/14

<#>

year	authors	complexity	
1955	Ford-Fulkerson [19]	O(mnU)	
1970	Dinic [15]	$O(mn^2)$	
1969	Edmonds-Karp [17]	$O(m^2n)$	
1972	Dinic [15], Edmonds-Karp [17]	$O(m^2 \log U)$	
1973	Dinic [16], Gabow [20]	$O(mn\log U)$	
1974	Karzanov [37]	$O(n^3)$ $O(n^2m^{1/2})$	
1977	Cherkassky [11]		
1980	Galil-Naamad [21]	$O(mn(\log n)^2)$	
1983	Sleator-Tarjan [44]	$O(mn \log n)$ $O(mn \log(n^2/m))$ $O(mn + n^2 \log U)$ $O(mn \log(2 + n\sqrt{\log U/m}))$ $O(n^3/\log n)$ $O(mn + n^{8/3} \log n)$ $O(mn + n^{2+\epsilon})$	
1986	Goldberg-Tarjan [26]		
1987	Ahuja-Orlin [3]		
1987	Ahuja-Orlin-Tarjan [4]		
1990	Cheriyan-Hagerup-Mehlhorn [9]		
1990	Alon [5]		
1992	King-Rao-Tarjan [38]		
1993	Phillips-Westbrook [42]	$O(mn\log_{m/n}n + n^2(\log n)^{2+\epsilon})$	
1994	King-Rao-Tarjan [39]	$O(mn\log_{m/(n\log n)}n)$	
1997	Goldberg-Rao [23]	$O(\min\{m^{1/2}, n^{2/3}\}m \log(n^2/m) \log U$	

Dualidade entre fluxo máximo e corte mínimo *

- Teorema: O valor do fluxo máximo numa rede de transporte é igual à capacidade do corte mínimo
 - Um corte (S,T) numa rede de transporte G=(V,E) com fonte s e poço t é uma partição de V em conjuntos S e T=V-S tal que s∈S e t∈T
 - A capacidade de um corte (S,T) é a soma das capacidades das arestas cortadas dirigidas de S para T
 - Um corte mínimo é um corte cuja capacidade é mínima

Cortes mínimos na rede do exemplo:

FEUP Universidade do Porto Faculdade de Engenharia

Algoritmos em Grafos: Fluxo máximo em redes de transporte - CAL, 2013/1

<#>