```
In [1]: 1 import pandas as pd
2 import numpy as np
3 import re
4 import warnings
5 warnings.filterwarnings("ignore", category=FutureWarning)
```

C:\Users\Vignesh\anaconda3\lib\site-packages\pandas\core\computation\expre
ssions.py:21: UserWarning: Pandas requires version '2.8.0' or newer of 'nu
mexpr' (version '2.7.3' currently installed).

from pandas.core.computation.check import NUMEXPR_INSTALLED
C:\Users\Vignesh\anaconda3\lib\site-packages\pandas\core\arrays\masked.py:
62: UserWarning: Pandas requires version '1.3.4' or newer of 'bottleneck'
(version '1.3.2' currently installed).
 from pandas.core import (

In [2]: 1 # pip install --upgrade scikit-learn

					.,			
Out[3]:	Unnamed (Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	(
-	0 (Maruti) Wagon R LXI CNG	Mumbai	2010	72000	CNG	Manual	
	1 1	Hyundai Creta 1.6 CRDi SX Option	Pune	2015	41000	Diesel	Manual	
	2 2	Honda Jazz V	Chennai	2011	46000	Petrol	Manual	
	3 3	Maruti Ertiga VDI	Chennai	2012	87000	Diesel	Manual	
	4 4	Audi A4 New 2.0 TDI Multitronic	Coimbatore	2013	40670	Diesel	Automatic	
	5 5	Hyundai EON LPG Era Plus Option	Hyderabad	2012	75000	LPG	Manual	
	6	Nissan Micra Diesel XV	Jaipur	2013	86999	Diesel	Manual	
	7 7	Toyota Innova Crysta 2.8 GX AT 8S	Mumbai	2016	36000	Diesel	Automatic	
	8 8	Volkswagen Vento Diesel Comfortline	Pune	2013	64430	Diesel	Manual	
	9 9	Tata Indica Vista Quadrajet LS	Chennai	2012	65932	Diesel	Manual	
	10 10) Maruti Ciaz Zeta	Kochi	2018	25692	Petrol	Manual	
	11 11	Honda City 1 1.5 V AT Sunroof	Kolkata	2012	60000	Petrol	Automatic	
	12 12	Maruti Swift VDI BSIV	Jaipur	2015	64424	Diesel	Manual	
	13 13	Land Rover Range Rover 2.2L Pure	Delhi	2014	72000	Diesel	Automatic	
	14 14	Land Rover Freelander 2 TD4 SE	Pune	2012	85000	Diesel	Automatic	
	15 15	Mitsubishi Pajero Sport 4X4	Delhi	2014	110000	Diesel	Manual	
	16 16	Honda 6 Amaze S i- Dtech	Kochi	2016	58950	Diesel	Manual	
	17 17	Maruti Swift DDiS VDI	Jaipur	2017	25000	Diesel	Manual	

0

	Unnamed: 0	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	0
18	18	Renault Duster 85PS Diesel RxL Plus	Kochi	2014	77469	Diesel	Manual	
19	19	Mercedes- Benz New C-Class C 220 CDI BE Avantgare	Bangalore	2014	78500	Diesel	Automatic	

Out[4]:	Un	named: 0	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Ow
•	0	0	Maruti Alto K10 LXI CNG	Delhi	2014	40929	CNG	Manual	
	1	1	Maruti Alto 800 2016- 2019 LXI	Coimbatore	2013	54493	Petrol	Manual	
	2	2	Toyota Innova Crysta Touring Sport 2.4 MT	Mumbai	2017	34000	Diesel	Manual	
	3	3	Toyota Etios Liva GD	Hyderabad	2012	139000	Diesel	Manual	
	4	4	Hyundai i20 Magna	Mumbai	2014	29000	Petrol	Manual	
	5	5	Mahindra XUV500 W8 2WD	Coimbatore	2016	85609	Diesel	Manual	
	6	6	Toyota Fortuner 4x2 AT TRD Sportivo	Pune	2015	59000	Diesel	Automatic	
	7	7	Hyundai EON Era Plus	Jaipur	2013	65000	Petrol	Manual	
	8	8	Honda City 1.5 S MT	Mumbai	2011	66000	Petrol	Manual	
	9	9	Mahindra XUV500 W6 2WD	Coimbatore	2015	54684	Diesel	Manual	
	10	10	Audi Q5 2008- 2012 2.0 TDI	Mumbai	2012	78000	Diesel	Automatic	
	11	11	Hyundai Grand i10 Magna	Jaipur	2016	21000	Petrol	Manual	
	12	12	Toyota Corolla H5	Chennai	2007	90000	Petrol	Manual	
	13	13	Maruti Swift Vdi BSIII	Coimbatore	2008	87628	Diesel	Manual	
	14	14	Nissan Terrano XL	Mumbai	2014	45000	Petrol	Manual	
	15	15	BMW X1 sDrive20d	Coimbatore	2013	30788	Diesel	Automatic	

		Unnamed: 0	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Ow	
	16	16	BMW 3 Series GT 320d Luxury Line	Hyderabad	2015	39524	Diesel	Automatic		
	17	17	Ford Ikon 1.4 TDCi DuraTorq	Chennai	2009	140000	Diesel	Manual		
	18	18	Maruti Swift AMT ZXI	Kochi	2019	15409	Petrol	Automatic		
	19	19	Maruti Swift Dzire VXi	Jaipur	2015	36502	Petrol	Manual		
In [5]:	1	df_train	.columns							
Out[5]:	<pre>Index(['Unnamed: 0', 'Name', 'Location', 'Year', 'Kilometers_Driven',</pre>									
In [6]:	1	df_test.	columns							
Out[6]:	<pre>Index(['Unnamed: 0', 'Name', 'Location', 'Year', 'Kilometers_Driven',</pre>									
In [7]:	1	df_train	.shape							
Out[7]:	(60:	19, 14)								
In [8]:	1	df_test.	shape							
Out[8]:	(12	34, 13)								

```
In [9]:
              df_train.isnull().sum()
 Out[9]: Unnamed: 0
         Name
                                  0
         Location
                                  0
         Year
                                  0
         Kilometers_Driven
                                  0
                                  0
         Fuel_Type
         Transmission
                                  0
                                  0
         Owner_Type
                                  2
         Mileage
                                 36
         Engine
         Power
                                 36
                                 42
         Seats
         New_Price
                               5195
         Price
                                  0
         dtype: int64
In [10]:
              df_test.isnull().sum()
Out[10]: Unnamed: 0
                                  0
         Name
                                  0
         Location
                                  0
         Year
                                  0
         Kilometers_Driven
                                  0
         Fuel_Type
                                  0
         Transmission
                                  0
                                  0
         Owner_Type
                                  0
         Mileage
         Engine
                                 10
         Power
                                 10
                                 11
         Seats
         New Price
                               1052
         dtype: int64
In [11]:
              df_train.drop(['New_Price','Unnamed: 0'],axis = 1, inplace= True)
              df_test.drop(['New_Price','Unnamed: 0'],axis= 1,inplace =True)
In [12]:
           1
              # null_valued_rows = df_train['Mileage'].isnull()
           2
              # rows_with_null = df_train[null_valued_rows]
           3
           4
              # df train.drop([4446,4904],inplace = True)
           5
              # df train.isnull().sum()
In [13]:
              df_train['Engine'] = df_train['Engine'].str.replace(r'\s*CC', '', regex
           1
              df_train['Power'] = df_train['Power'].str.replace(r'\s*bhp', '', regex=
           2
           3
              df_train['Mileage'] = df_train['Mileage'].str.replace(r'\s*(km/kg|kmpl)
           5 df_test['Engine'] = df_test['Engine'].str.replace(r'\s*CC', '', regex=
             df_test['Power'] = df_test['Power'].str.replace(r'\s*bhp', '', regex=Tr
              df_test['Mileage'] = df_test['Mileage'].str.replace(r'\s*(km/kg|kmpl)',
```

```
1 | df_train['Engine'] = pd.to_numeric(df_train['Engine'], errors='coerce'
In [14]:
                                2 df_train['Mileage'] = pd.to_numeric(df_train['Mileage'], errors='coerce
                                       df_train['Power'] = pd.to_numeric(df_train['Power'], errors='coerce', or a state of the contract of the c
                                4 df_train['Seats'] = pd.to_numeric(df_train['Seats'], errors='coerce', of
                                6 df_test['Engine'] = pd.to_numeric(df_test['Engine'], errors='coerce', of
                                7 df_test['Mileage'] = pd.to_numeric(df_test['Mileage'], errors='coerce',
                                8 df_test['Power'] = pd.to_numeric(df_test['Power'], errors='coerce', dow
9 df_test['Seats'] = pd.to_numeric(df_test['Seats'], errors='coerce', dow
In [15]:
                                1 df_train['Engine'].fillna(df_train['Engine'].mean(),inplace = True)
                                       df train['Mileage'].fillna(df train['Mileage'].mean(),inplace = True)
                                      df_train['Power'].fillna(df_train['Power'].mean(),inplace = True)
                                     df_train['Seats'].fillna(df_train['Seats'].mean(), inplace=True)
                                5
                                6 | df_test['Engine'].fillna(df_test['Engine'].mean(),inplace = True)
                                7 df test['Mileage'].fillna(df_test['Mileage'].mean(),inplace = True)
                                8 df_test['Power'].fillna(df_test['Power'].mean(),inplace = True)
                                9 df_test['Seats'].fillna(df_test['Seats'].mean(), inplace=True)
```

In [16]: 1 df_train.head(10)

Out[16]:

	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_Type I
0	Maruti Wagon R LXI CNG	Mumbai	2010	72000	CNG	Manual	First
1	Hyundai Creta 1.6 CRDi SX Option	Pune	2015	41000	Diesel	Manual	First
2	Honda Jazz V	Chennai	2011	46000	Petrol	Manual	First
3	Maruti Ertiga VDI	Chennai	2012	87000	Diesel	Manual	First
4	Audi A4 New 2.0 TDI Multitronic	Coimbatore	2013	40670	Diesel	Automatic	Second
5	Hyundai EON LPG Era Plus Option	Hyderabad	2012	75000	LPG	Manual	First
6	Nissan Micra Diesel XV	Jaipur	2013	86999	Diesel	Manual	First
7	Toyota Innova Crysta 2.8 GX AT 8S	Mumbai	2016	36000	Diesel	Automatic	First
8	Volkswagen Vento Diesel Comfortline	Pune	2013	64430	Diesel	Manual	First
9	Tata Indica Vista Quadrajet LS	Chennai	2012	65932	Diesel	Manual	Second
4							•

In [17]: 1 df_test.head(10)

_			
\sim	. 4- 1	177	
0	<i>^</i>		

	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_Type	Mil
0	Maruti Alto K10 LXI CNG	Delhi	2014	40929	CNG	Manual	First	:
1	Maruti Alto 800 2016- 2019 LXI	Coimbatore	2013	54493	Petrol	Manual	Second	2
2	Toyota Innova Crysta Touring Sport 2.4 MT	Mumbai	2017	34000	Diesel	Manual	First	1
3	Toyota Etios Liva GD	Hyderabad	2012	139000	Diesel	Manual	First	2
4	Hyundai i20 Magna	Mumbai	2014	29000	Petrol	Manual	First	1
5	Mahindra XUV500 W8 2WD	Coimbatore	2016	85609	Diesel	Manual	Second	1
6	Toyota Fortuner 4x2 AT TRD Sportivo	Pune	2015	59000	Diesel	Automatic	First	1
7	Hyundai EON Era Plus	Jaipur	2013	65000	Petrol	Manual	First	2
8	Honda City 1.5 S MT	Mumbai	2011	66000	Petrol	Manual	Second	1
9	Mahindra XUV500 W6 2WD	Coimbatore	2015	54684	Diesel	Manual	First	1

In [18]: 1 df_train.isnull().sum()

Out[18]: Name

0 0 Location 0 Year Kilometers_Driven 0 0 Fuel_Type Transmission 0 0 Owner_Type Mileage 0 0 Engine Power 0 Seats 0 Price

dtype: int64

```
In [19]:
             df_test.isnull().sum()
Out[19]: Name
                               0
         Location
                               0
                               0
         Year
         Kilometers_Driven
                               0
         Fuel_Type
                               0
                               0
         Transmission
         Owner_Type
                               0
                               0
         Mileage
         Engine
         Power
                               0
         Seats
         dtype: int64
In [20]:
              print(df_train['Name'][0].split()[0])
         Maruti
             df_train['Brands'] = df_train['Name'].apply(lambda x: x.split()[0])
In [21]:
           3 df_test['Brands'] = df_test['Name'].apply(lambda x: x.split()[0])
```

In [22]: 1 df_train.head(20)

Out[22]:

	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_Type
0	Maruti Wagon R LXI CNG	Mumbai	2010	72000	CNG	Manual	First
1	Hyundai Creta 1.6 CRDi SX Option	Pune	2015	41000	Diesel	Manual	First
2	Honda Jazz V	Chennai	2011	46000	Petrol	Manual	First
3	Maruti Ertiga VDI	Chennai	2012	87000	Diesel	Manual	First
4	Audi A4 New 2.0 TDI Multitronic	Coimbatore	2013	40670	Diesel	Automatic	Second
5	Hyundai EON LPG Era Plus Option	Hyderabad	2012	75000	LPG	Manual	First
6	Nissan Micra Diesel XV	Jaipur	2013	86999	Diesel	Manual	First
7	Toyota Innova Crysta 2.8 GX AT 8S	Mumbai	2016	36000	Diesel	Automatic	First
8	Volkswagen Vento Diesel Comfortline	Pune	2013	64430	Diesel	Manual	First
9	Tata Indica Vista Quadrajet LS	Chennai	2012	65932	Diesel	Manual	Second
10	Maruti Ciaz Zeta	Kochi	2018	25692	Petrol	Manual	First
11	Honda City 1.5 V AT Sunroof	Kolkata	2012	60000	Petrol	Automatic	First
12	Maruti Swift VDI BSIV	Jaipur	2015	64424	Diesel	Manual	First
13	Land Rover Range Rover 2.2L Pure	Delhi	2014	72000	Diesel	Automatic	First
14	Land Rover Freelander 2 TD4 SE	Pune	2012	85000	Diesel	Automatic	Second
15	Mitsubishi Pajero Sport 4X4	Delhi	2014	110000	Diesel	Manual	First
16	Honda Amaze S i- Dtech	Kochi	2016	58950	Diesel	Manual	First
17	Maruti Swift DDiS VDI	Jaipur	2017	25000	Diesel	Manual	First

	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_Type
18	Renault Duster 85PS Diesel RxL Plus	Kochi	2014	77469	Diesel	Manual	First
19	Mercedes- Benz New C-Class C 220 CDI BE Avantgare	Bangalore	2014	78500	Diesel	Automatic	First

Out[23]: Brands

Brands	
Maruti	1211
Hyundai	1107
Honda	608
Toyota	411
Mercedes-Benz	z 318
Volkswagen	315
Ford	300
Mahindra	272
BMW	267
Audi	236
Tata	186
Skoda	173
Renault	145
Chevrolet	121
Nissan	91
Land	60
Jaguar	40
Fiat	28
Mitsubishi	27
Mini	26
Volvo	21
Porsche	18
Јеер	15
Datsun	13
Force	3
ISUZU	2
Smart	1
Ambassador	1
Isuzu	1
Bentley	1
Lamborghini	1
Name: count,	dtype: int64

Name: court, acype: into-

In [24]: 1 df_test.head(20)

Out[24]:

	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_Type
0	Maruti Alto K10 LXI CNG	Delhi	2014	40929	CNG	Manual	First
1	Maruti Alto 800 2016- 2019 LXI	Coimbatore	2013	54493	Petrol	Manual	Second
2	Toyota Innova Crysta Touring Sport 2.4 MT	Mumbai	2017	34000	Diesel	Manual	First
3	Toyota Etios Liva GD	Hyderabad	2012	139000	Diesel	Manual	First
4	Hyundai i20 Magna	Mumbai	2014	29000	Petrol	Manual	First
5	Mahindra XUV500 W8 2WD	Coimbatore	2016	85609	Diesel	Manual	Second
6	Toyota Fortuner 4x2 AT TRD Sportivo	Pune	2015	59000	Diesel	Automatic	First
7	Hyundai EON Era Plus	Jaipur	2013	65000	Petrol	Manual	First
8	Honda City 1.5 S MT	Mumbai	2011	66000	Petrol	Manual	Second
9	Mahindra XUV500 W6 2WD	Coimbatore	2015	54684	Diesel	Manual	First
10	Audi Q5 2008- 2012 2.0 TDI	Mumbai	2012	78000	Diesel	Automatic	Second
11	Hyundai Grand i10 Magna	Jaipur	2016	21000	Petrol	Manual	First
12	Toyota Corolla H5	Chennai	2007	90000	Petrol	Manual	Third
13	Maruti Swift Vdi BSIII	Coimbatore	2008	87628	Diesel	Manual	First
14	Nissan Terrano XL	Mumbai	2014	45000	Petrol	Manual	First
15	BMW X1 sDrive20d	Coimbatore	2013	30788	Diesel	Automatic	First

	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_Type	N
1	BMW 3 Series GT 6 320d Luxury Line	Hyderabad	2015	39524	Diesel	Automatic	First	
1	Ford Ikon 7 1.4 TDCi DuraTorq	Chennai	2009	140000	Diesel	Manual	First	
1	Maruti 8 Swift AMT ZXI	Kochi	2019	15409	Petrol	Automatic	First	
1	Maruti Swift Dzire VXi	Jaipur	2015	36502	Petrol	Manual	First	

In [25]: 1 df_train['Engine'].value_counts().count()

Out[25]: 147

In [26]: 1 df_test.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1234 entries, 0 to 1233
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype	
0	Name	1234 non-null	object	
1	Location	1234 non-null	object	
2	Year	1234 non-null	int64	
3	Kilometers_Driven	1234 non-null	int64	
4	Fuel_Type	1234 non-null	object	
5	Transmission	1234 non-null	object	
6	Owner_Type	1234 non-null	object	
7	Mileage	1234 non-null	float64	
8	Engine	1234 non-null	float64	
9	Power	1234 non-null	float32	
10	Seats	1234 non-null	float32	
11	Brands	1234 non-null	object	
	67 (0) 67			

dtypes: float32(2), float64(2), int64(2), object(6)

memory usage: 106.2+ KB

```
In [27]:
           1 df_train.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 6019 entries, 0 to 6018
         Data columns (total 13 columns):
          #
              Column
                                  Non-Null Count
                                                  Dtype
               -----
                                  -----
                                                  ----
          0
                                  6019 non-null
              Name
                                                  object
          1
              Location
                                  6019 non-null
                                                  object
                                                  int64
          2
              Year
                                  6019 non-null
          3
              Kilometers_Driven 6019 non-null
                                                  int64
          4
              Fuel_Type
                                  6019 non-null
                                                  object
          5
              Transmission
                                  6019 non-null
                                                  object
          6
              Owner_Type
                                  6019 non-null
                                                  object
          7
              Mileage
                                  6019 non-null
                                                  float64
                                                  float64
          8
              Engine
                                  6019 non-null
          9
              Power
                                  6019 non-null
                                                  float32
                                                  float32
          10
              Seats
                                  6019 non-null
          11 Price
                                  6019 non-null
                                                  float64
          12 Brands
                                  6019 non-null
                                                  object
         dtypes: float32(2), float64(3), int64(2), object(6)
         memory usage: 564.4+ KB
             df_train['Owner_Type'].value_counts()
In [28]:
Out[28]: Owner_Type
         First
                            4929
         Second
                             968
         Third
                             113
         Fourth & Above
                               9
         Name: count, dtype: int64
In [29]:
           1
             def owner_in_INT(x):
                  if x == 'First':
           2
           3
                      return 1
           4
                  elif x == 'Second':
           5
                      return 2
           6
                  elif x == 'Third':
           7
                      return 3
           8
                  else:
           9
                      return 4
              df_train['Owner_Type'] = df_train['Owner_Type'].apply(lambda x: owner_i
In [30]:
           1
              df_test['Owner_Type'] = df_test['Owner_Type'].apply(lambda x: owner_in]
In [31]:
              df_train['Transmission'].value_counts()
Out[31]: Transmission
         Manual
                       4299
         Automatic
                       1720
         Name: count, dtype: int64
```

```
In [32]:
             df_train['Fuel_Type'].value_counts()
Out[32]: Fuel_Type
         Diesel
                      3205
         Petrol
                      2746
         CNG
                        56
         LPG
                        10
         Electric
                         2
         Name: count, dtype: int64
In [33]:
              import matplotlib.pyplot as plt
              grouped = df_train.groupby('Fuel_Type')['Price'].mean().reset_index()
In [34]:
In [35]:
              plt.figure(figsize=(8, 6))
           2
             plt.bar(grouped['Fuel_Type'], grouped['Price'])
             plt.xlabel('Fuel Type')
           4 plt.ylabel('Mean Price in LAKH')
             plt.title('Mean Price by Fuel Type')
             plt.show()
```



```
In [36]: 1 grouped = df_train.groupby('Owner_Type')['Price'].mean().reset_index()
```



```
grouped = df_train.groupby('Brands')['Price'].mean().reset_index()
In [39]:
           2
             plt.figure(figsize=(50, 15))
             plt.bar(grouped['Brands'], grouped['Price'])
             plt.xlabel('Brands', fontsize=50)
             plt.ylabel('Mean Price in LAKH', fontsize=50)
             plt.title('Mean Price by Brands',fontsize=50)
           7
             plt.xticks(rotation=90)
           8
             plt.xticks(fontsize=28)
           9
              plt.yticks(fontsize=28)
          10
          11
             plt.show()
```



```
In [41]:
             # serties of brand acording to its popullarity
           2
             # ['Maruti', 'Hyundai', 'Honda', 'Toyota', 'Mahindra', 'Tata', 'Renault', 'For
           3
             brands_list = ['Maruti','Hyundai','Honda','Toyota','Mahindra','Tata','F
           6
              series0f_34 = np.arange(34)
           7
              brands2 = {
                  'Popularity':series0f_34,
           8
                  'Brands':brands_list
           9
          10
             }
          11
          12 brands2 = pd.DataFrame(brands2)
              brands2['Brands'] = brands2['Brands'].str.lower()
          13
          14 brands2
```

Out	[41]	:

	Popularity	Brands
0	0	maruti
1	1	hyundai
2	2	honda
3	3	toyota
4	4	mahindra
5	5	tata
6	6	renault
7	7	ford
8	8	nissan
9	9	volkswagen
10	10	skoda
11	11	fiat
12	12	mercedes-benz
13	13	bmw
14	14	audi
15	15	kia
16	16	mg motors
17	17	јеер
18	18	datsun
19	19	land
20	20	jaguar
21	21	mitsubishi
22	22	mini
23	23	volvo
24	24	porsche
25	25	force
26	26	chevrolet
27	27	isuzu
28	28	smart
29	29	bentley
30	30	lamborghini
31	31	ambassador
32	32	hindustan
33	33	opelcorsa

	4	df_train						
ut[42]:		Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_Type
	0	Maruti Wagon R LXI CNG	Mumbai	2010	72000	CNG	Manual	
	1	Hyundai Creta 1.6 CRDi SX Option	Pune	2015	41000	Diesel	Manual	
	2	Honda Jazz V	Chennai	2011	46000	Petrol	Manual	
	3	Maruti Ertiga VDI	Chennai	2012	87000	Diesel	Manual	
	4	Audi A4 New 2.0 TDI Multitronic	Coimbatore	2013	40670	Diesel	Automatic	
	6014	Maruti Swift VDI	Delhi	2014	27365	Diesel	Manual	
	6015	Hyundai Xcent 1.1 CRDi S	Jaipur	2015	100000	Diesel	Manual	
	6016	Mahindra Xylo D4 BSIV	Jaipur	2012	55000	Diesel	Manual	
	6017	Maruti Wagon R VXI	Kolkata	2013	46000	Petrol	Manual	
	6018	Chevrolet Beat Diesel	Hyderabad	2011	47000	Diesel	Manual	
	6019	rows × 14 c	columns					
	4							
n [43]:	1	len(df_tr	ain['Name'].val	ue_counts())			
ut[43]:	1876							
n [44]:	1	df_test[d	f_test['Po	pular	ity'].isnull()]			
ut[44]:	Na	me Locatio	n Year Kil	ometer	s_Driven Fuel_Type	e Transmiss	sion Owner_Ty	pe Mileage
	4)

```
In [46]:
           1 # bin size = 20000
             # df['Driven_Class'] = pd.cut(df['Kilometers_Driven'], bins=range(0, md
           2
           3
             # grouped_data = df['Driven_Class'].value_counts().sort_index()
           4
           5
             # grouped data.plot(kind='bar')
           6
           7 # plt.xlabel('Driven Class')
           8 # plt.ylabel('Count')
           9 # plt.title('Bar Graph of Continuous Numbers Grouped by Bins')
          10 # plt.xticks(rotation=45) # Rotate x-axis labels for better readabilit
          11 # plt.xticks(rotation=90)
          12 | # plt.show()
 In [ ]:
           1
In [47]:
              # print('MIN:',df['Kilometers_Driven'].min())
              # print('MAX:',df['Kilometers_Driven'].max())
In [48]:
           1 \#cov_mat = df.cov()
           2
             #cov mat
In [49]:
           1 df_train.columns
Out[49]: Index(['Name', 'Location', 'Year', 'Kilometers_Driven', 'Fuel_Type',
                 'Transmission', 'Owner_Type', 'Mileage', 'Engine', 'Power', 'Seat
         s',
                'Price', 'Brands', 'Popularity'],
               dtype='object')
In [50]:
           1 df_test.columns
Out[50]: Index(['Name', 'Location', 'Year', 'Kilometers_Driven', 'Fuel_Type',
                 'Transmission', 'Owner_Type', 'Mileage', 'Engine', 'Power', 'Seat
         s',
                 'Brands', 'Popularity'],
               dtype='object')
         Label Encoding
In [51]:
             # Import necessary libraries
           2 import seaborn as sns
           3 import matplotlib.pyplot as plt
           4 from sklearn.model_selection import train_test_split
           5 from sklearn.ensemble import RandomForestRegressor
           6 from sklearn.metrics import mean squared error, r2 score
           7 import matplotlib.pyplot as plt
           8 from sklearn.preprocessing import LabelEncoder
In [52]:
              label_encoder = LabelEncoder()
```

```
In [53]:
               columns_to_label_encode_for_df_train = ['Name',
            1
            2
                                             'Location',
            3
                                             'Year',
            4
                                             'Kilometers_Driven',
            5
                                             'Fuel_Type',
            6
                                             'Transmission',
            7
                                             'Owner_Type',
            8
                                             'Mileage',
                                             'Engine',
            9
                                             'Power',
           10
           11
                                             'Seats',
                                             'Brands',
           12
                                             'Popularity',
           13
           14
                                             'Price'
           15
               columns_to_label_encode_for_df_test = ['Name',
           16
           17
                                                          'Location',
                                                          'Year',
           18
           19
                                                          'Kilometers_Driven',
                                                          'Fuel_Type',
           20
           21
                                                          'Transmission',
           22
                                                          'Owner_Type',
                                                          'Mileage',
           23
           24
                                                          'Engine',
           25
                                                          'Power',
                                                          'Seats',
           26
                                                          'Brands',
           27
           28
                                                          'Popularity'
           29
                                                        ]
In [54]:
              # Label_encoders = {}
            1
              # Label_encoders2 = {}
            2
            3
               ENCODED_df_train = pd.DataFrame()
               ENCODED_df_test = pd.DataFrame()
```

```
for column in columns_to_label_encode_for_df_train:
 6
 7
        label encoder = LabelEncoder()
 8
        ENCODED_df_train[column] = label_encoder.fit_transform(df_train[col
          label_encoders[column] = label_encoder
 9
10
   for column in columns_to_label_encode_for_df_test:
11
        label encoder = LabelEncoder()
12
13
        ENCODED df test[column] = label encoder.fit transform(df test[column])
          label_encoders2[column] = label_encoder
14
   #
```

In [55]:	1	ENCODED_df_train
----------	---	------------------

Out[55]:

	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_Type	Milea
0	1200	9	12	2362	0	1	0	4
1	512	10	17	1128	1	1	0	2
2	486	2	13	1356	4	1	0	2
3	1059	2	14	2693	1	1	0	3
4	23	3	15	1120	1	0	1	1
6014	1159	4	16	596	1	1	0	4
6015	668	6	17	2828	1	1	0	3
6016	932	6	14	1709	1	1	1	1
6017	1207	8	15	1356	4	1	0	2
6018	165	5	13	1401	1	1	0	4

6019 rows × 14 columns

In [56]: 1 ENCODED_df_test

Out[56]:

	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_Type	Milea
0	413	4	14	274	0	1	0	2
1	408	3	13	384	3	1	1	2
2	723	9	17	211	1	1	0	
3	689	5	12	723	1	1	0	2
4	333	9	14	161	3	1	0	1
1229	758	5	11	640	1	1	0	2
1230	745	9	15	430	3	0	0	1
1231	582	8	12	155	1	1	0	2
1232	745	10	13	366	3	0	2	1
1233	536	7	14	549	1	0	0	

1234 rows × 13 columns

```
In [57]: 1 ENCODED_df_train.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6019 entries, 0 to 6018
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	Name	6019 non-null	int32
1	Location	6019 non-null	int32
2	Year	6019 non-null	int64
3	Kilometers_Driven	6019 non-null	int64
4	Fuel_Type	6019 non-null	int32
5	Transmission	6019 non-null	int32
6	Owner_Type	6019 non-null	int64
7	Mileage	6019 non-null	int64
8	Engine	6019 non-null	int64
9	Power	6019 non-null	int64
10	Seats	6019 non-null	int64
11	Brands	6019 non-null	int32
12	Popularity	6019 non-null	int64
13	Price	6019 non-null	int64

dtypes: int32(5), int64(9) memory usage: 540.9 KB

In [58]:

1 ENCODED_df_test.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1234 entries, 0 to 1233
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	Name	1234 non-null	int32
1	Location	1234 non-null	int32
2	Year	1234 non-null	int64
3	Kilometers_Driven	1234 non-null	int64
4	Fuel_Type	1234 non-null	int32
5	Transmission	1234 non-null	int32
6	Owner_Type	1234 non-null	int64
7	Mileage	1234 non-null	int64
8	Engine	1234 non-null	int64
9	Power	1234 non-null	int64
10	Seats	1234 non-null	int64
11	Brands	1234 non-null	int32
12	Popularity	1234 non-null	int64

dtypes: int32(5), int64(8)
memory usage: 101.4 KB

```
In [59]:
              # columns_to_include = ['Mileage', 'Power', 'Price', 'ENCODED_Location'
           1
           2
           3
              # Create a DataFrame with only the selected columns
           4
              selected_columns_df = ENCODED_df_train[columns_to_label_encode_for_df_t
           5
              # Calculate the correlation matrix
           6
           7
              correlation_matrix = selected_columns_df.corr()
           8
           9
              # Create a heatmap using Seaborn
              plt.figure(figsize=(12, 10)) # Set the figure size
          10
              sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', linewidths
          11
          12
          13
              # Set a title
             plt.title('Correlation Heatmap for Selected Columns')
          14
          15
          16 # Display the heatmap
          17
             plt.show()
```



```
1 ENCODED_df_test.columns
In [61]:
Out[61]: Index(['Name', 'Location', 'Year', 'Kilometers_Driven', 'Fuel_Type',
                  'Transmission', 'Owner_Type', 'Mileage', 'Engine', 'Power', 'Seat
          s',
                  'Brands', 'Popularity'],
                dtype='object')
In [62]:
              # Split the data into features (X) and the target variable (y)
              X = ENCODED_df_train[['Name', 'Location', 'Year', 'Kilometers_Driven',
           2
                      'Transmission', 'Owner_Type', 'Mileage', 'Engine', 'Power', 'Sea
           3
                      'Brands', 'Popularity']]
           4
           5
              y = ENCODED_df_train['Price']
           6
           7
              # for test dataset
              XT =ENCODED_df_test[['Name', 'Location', 'Year', 'Kilometers_Driven',
           8
           9
                      'Transmission', 'Owner_Type', 'Mileage', 'Engine', 'Power', 'Sea
           10
                      'Brands', 'Popularity']]
In [63]:
              Х
           1
Out[63]:
                Name Location Year Kilometers_Driven Fuel_Type Transmission Owner_Type Milea
                 1200
             0
                            9
                                 12
                                               2362
                                                            n
                                                                                    n
                  512
             1
                            10
                                 17
                                               1128
                                                            1
                                                                        1
                                                                                    0
             2
                  486
                                                            4
                            2
                                 13
                                               1356
                                                                                    0
                                                                        1
             3
                 1059
                            2
                                 14
                                               2693
                                                            1
                                                                        1
                                                                                    0
             4
                   23
                            3
                                 15
                                               1120
                                                                        0
                                                            1
                                                                                    1
           6014
                 1159
                            4
                                 16
                                                596
                                                            1
                                                                        1
                                                                                    0
           6015
                  668
                                 17
                                               2828
                            6
                                                            1
                                                                                    0
           6016
                  932
                            6
                                 14
                                               1709
                                                            1
           6017
                 1207
                            8
                                 15
                                               1356
           6018
                                               1401
                  165
                                 13
                                                            1
          6019 rows × 13 columns
In [64]:
              #encoded_train_dataset = df[['Kilometers_Driven', 'ENCODED_Location','M
           1
            2
              #
                         'ENCODED_Year', 'ENCODED_Fuel_Type', 'ENCODED_Transmission',
           3
              #
                         'ENCODED_Owner_Type', 'ENCODED_Engine', 'ENCODED_Seats',
           4
                        'ENCODED Brands', 'Price']]
            5
              #encoded_test_dataset = df_test[['Kilometers_Driven', 'ENCODED_Location
                         'ENCODED_Year', 'ENCODED_Fuel_Type', 'ENCODED_Transmission',
           6
            7
              #
                        'ENCODED_Owner_Type', 'ENCODED_Engine', 'ENCODED_Seats',
            8
                         'ENCODED_Brands','Price']]
              # ENCODED_df_train.to_csv('ENCODED_DATASET/ENCODED_df_train.csv')
In [65]:
```

Δ

```
In [66]:
           1 # ENCODED_df_test.to_csv('ENCODED_DATASET/ENCODED_df_test.csv')
In [67]:
           1 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1
In [68]:
           1 # Create a Random Forest Regressor model
           2 rf_model = RandomForestRegressor(n_estimators=300, random_state=59)
In [69]:
           1 # Train the model on the training data
              rf_model.fit(X_train, y_train)
Out[69]: RandomForestRegressor(n_estimators=300, random_state=59)
         In a Jupyter environment, please rerun this cell to show the HTML representation or
         trust the notebook.
         On GitHub, the HTML representation is unable to render, please try loading this page
         with nbviewer.org.
In [70]:
           1 # Make predictions on the test data
             y_pred = rf_model.predict(X_test)
In [71]:
           1 # Evaluate the model
              print(f'mean_squared_error:\t{mean_squared_error(y_test, y_pred)}')
              print(f'r2_score:\t {r2_score(y_test, y_pred)}')
         mean_squared_error:
                                  5816.906048340954
                           0.9518512132046182
         r2 score:
In [72]:
             # df_test_preprocessed = preprocessor.transform(df_test)
           2 # log_price = model.predict(df_test_preprocessed) # in log scale
           3
             # price = np.expm1(log_price) # in original scale
           5
             y_test_price = rf_model.predict(XT)
           6
           7
           8
           9 # Price In dollars
          10  # price_usd = price[0] * 1219
          11 # print('Price in USD:', price_usd)
In [73]:
           1 ##Price Lakh
           2 # print('Price : ', price)
           1 len(y_test_price)
In [74]:
Out[74]: 1234
In [75]:
              # df_test['Price'] = price
In [76]:
              # df_test
```

```
1 # yT = df_test['Price']
In [77]:
           2 yT = y_test_price
In [78]:
           1 X_train = X
           2
             y_train = y
           3 x_test = XT
           4 y_test = yT
In [79]:
           1 X_train.shape
Out[79]: (6019, 13)
In [80]:
           1 y_train.shape
Out[80]: (6019,)
In [81]:
           1 x_test.shape
Out[81]: (1234, 13)
In [82]:
           1 y_test.shape
Out[82]: (1234,)
In [83]:
             # from sklearn.svm import SVR
In [84]:
           1 | # X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0
In [85]:
             rf_model = RandomForestRegressor(n_estimators=300, random_state=59)
In [86]:
             rf_model.fit(X_train, y_train)
Out[86]: RandomForestRegressor(n_estimators=300, random_state=59)
          In a Jupyter environment, please rerun this cell to show the HTML representation or
          trust the notebook.
          On GitHub, the HTML representation is unable to render, please try loading this page
          with nbviewer.org.
In [87]:
              y_pred = rf_model.predict(x_test)
In [88]:
             len(y pred)
Out[88]: 1234
```

```
In [89]:
           1 # Evaluate the model
           2 mse = mean_squared_error(y_test, y_pred)
           3 r2 = r2_score(y_test, y_pred)
           5 print(f"Mean Squared Error: {mse}")
           6 print(f"R-squared: {r2}")
         Mean Squared Error: 833.1576971262322
         R-squared: 0.9871682187180083
In [90]:
           1 # Feature importance
           2 feature_importances = rf_model.feature_importances_
             feature_names = X.columns
In [91]:
           1 r2 = r2_score(y_test, y_pred)
             print(f"R-squared: {r2}")
         R-squared: 0.9871682187180083
In [92]:
             # SVR(kernel='rbf', C=100, epsilon=0.1)
           2
             # R-squared: 0.281805700964871
           3
           4
 In [ ]:
           1
 In [ ]:
 In [ ]:
           1
In [93]:
             # X = df[['Kilometers_Driven', 'ENCODED_Location', 'Mileage', 'ENCODED_
           1
             # y = df['Price']
In [94]:
              # X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0
In [95]:
             # import numpy as np
           2 # import pandas as pd
           3 # from sklearn.model_selection import train_test_split
           4 | # from sklearn.preprocessing import StandardScaler
           5 # from sklearn.svm import SVR
             # from sklearn.metrics import mean squared error, r2 score
           7
             # from sklearn.model_selection import GridSearchCV
In [96]:
           1 # scaler = StandardScaler()
           2 # X train = scaler.fit transform(X train)
           3 |# X_test = scaler.transform(X_test)
```

```
1 | # svr = SVR()
In [97]:
In [98]:
            1
               # param_grid = {
            2
                      'C': [0.1, 1, 10],
                      'kernel': ['linear', 'rbf', 'poly'],
            3
                      'gamma': ['scale', 'auto'] + [0.001, 0.01, 0.1, 1], 'epsilon': [0.01, 0.1, 1],
            4
            5
            6
               # }
In [99]:
               # grid_search = GridSearchCV(svr, param_grid, cv=5, scoring='r2', n_job
               # grid_search.fit(X_train, y_train)
In [100]:
               # best_svr = grid_search.best_estimator_
In [101]:
              # best_svr.fit(X_train, y_train)
In [102]:
              # y_pred = best_svr.predict(X_test)
In [103]:
               # mse = mean_squared_error(y_test, y_pred)
               # r2 = r2_score(y_test, y_pred)
            1 # print(f"Mean Squared Error: {mse}")
In [104]:
               # print(f"R-squared: {r2}")
  In [ ]:
            1
  In [ ]:
            1
 In [ ]:
            1
  In [ ]:
```

```
1 # 300 **************** 10%
In [ ]:
        2 # Mean Squared Error: 0.7012467287979528
        3 #R-squared: 0.9785732740875935
        5 # 300 ************ 15%
        6 # Mean Squared Error: 0.870868331813521
        7 #R-squared: 0.9748220299187007
          _____
        9 # 500 ********* 15%
       10 # Mean Squared Error: 0.6259481733495921
       11 #R-squared: 0.9817243918662796
       12
       13 # 1000 ******* 15%
       14 # Mean Squared Error: 0.561442539478491
       15 #R-squared: 0.9835857151869357
       16
          -----
       17 # 2000 ****** 15%
       18 # Mean Squared Error: 0.5782290706143449
       19 #R-squared: 0.9831744894732686
       20 -----
       21 # 3000 ****** 15%
       22 # Mean Squared Error: 0.5713350853500679
       23 #R-squared: 0.9833754012450003
       24 -----
       25 # 10000 ***** 15%
       26 # Mean Squared Error: 0.5438541424724417
       27 #R-squared: 0.984096368565446
       28 -----
       29 # 9500 * 25%
       30 # Mean Squared Error: 1.9506152371726249
       31 #R-squared: 0.95150844330424
       32 -----
       33 # 8800 * 25%
       34 # Mean Squared Error: 1.9681587827521663
       35 #R-squared: 0.9510333953334813
       37 # 8200 * 25%
       38 # Mean Squared Error: 1.9862523679636237
       39 #R-squared: 0.9506367771136948
       40 -----
       41 # 1200 * 25%
       42 # Mean Squared Error: 2.018974274723978
       43 #R-squared: 0.949753767806515
       44 -----
       45 # 1000 ** 25%
       46 # Mean Squared Error: 2.089248999998699
       47 #R-squared: 0.9480803688109836
       48 -----
       49 # 20000
       50 # Mean Squared Error: 11.472260994326327
       51 #R-squared: 0.888171352023855
       52
          -----
       53 # 10000 *
       54 # Mean Squared Error: 13.486594282088824
       55 # R-squared: 0.8925860841336213
       56 -----
       57 # 2000
       58 # Mean Squared Error: 17.67241745870815
       59 # R-squared: 0.856391269077879
       60
       61 # 1000
```

```
62 # Mean Squared Error: 17.760826942912427
63 # R-squared: 0.8556728402688198
64 -----
65 # 200
66 # Mean Squared Error: 17.974536491107553
67 # R-squared: 0.8539362042328077
68
69 # 125 - 25%
70 # Mean Squared Error: 18.41418326057995
71 # R-squared: 0.8503635682442418
72
  # 150 - 25%
73
74 # Mean Squared Error: 18.158129222254857
75 # R-squared: 0.8524443019965577
76 -----
77
  # 100 - 25%
78 # Mean Squared Error: 18.416525185418656
79 # R-squared: 0.8503445374096212
```

In []: 1