It Karl Pravion's p and 8 co-efficients.

Karl Pearsan defined following 4 co-efficients hased upon the firest four moments about mean.

$$\beta_1 = \frac{H_3^{\vee}}{H_2^3}, \quad \lambda_1 = \sqrt{\beta_1}$$

$$P_2 = \frac{H_4}{H_2^{\prime\prime}}$$
, $8_2 = \beta_2 - 3$

Note: How, \$1 50 also gives measures of sea skewners.

Then the variables are symmetrically distributed.

Kurtoris:

The relative blatmers of the top of a curve is called Kurtose's and it is measured by P2.

Normal, or Merakurtic Curue:

Curve which are neither flot nor shorply peaked are called normal curve "merolimeter curves". (As is the figure curve A). For such curve, $\beta = 3$ and hence $Y_{\lambda} = 0$.

Platyhurdie auri. Currus which are flater than normal curve (as is the figure rurne B) are called Platyhurtic curre. For such curus, B2 <3 and 20 82 <0

Leptekurtie curue:

pealed than the normal rurne (as
the curve c in the figure) are called Leptokurtie curre. For meh curu, p>3 and 82>0.

the property of the first of the first

Largery productions of the first services

Exis E Calculate &, and & a fee the following distributions and oletain the nature of kneetalis.

f: 1 8 28 56 70 56 28 8 1

Sem. > Let us calcutate the first four moments about x = 4. (i mament about mean).

$$H_{H} = \frac{1}{N} \sum_{i=1}^{N} f(x-x)^{H}$$

$$= \frac{1}{N} \sum_{i=1}^{N} f(x-x)^{H}$$

W, d= 7-4.

Now, me make ter following table

7	+	d=2-4	fd	td,	fd3	dffd9
O	7	-4	-4.	16	-64	256
1	8	-3	-24	7-2	-216	648
2	28	-2	-56	112	-224	448
3	56	-1	-56	56	-56	56
4	70	0	U	4 0	0	D
5	56		56	56	56	56
6	28	-2	56	112	224	448
7	8	3	24	72	216	648
8	1.	4.	4	16	64	256
•	N=236	2	$\int dd = 0$	Zfd=512		2-1d=2816

- .
$$H_{\perp} = \frac{1}{N} \sum f d = 0$$
 (always)

$$M_2 = \frac{1}{N} \sum_{i=1}^{N} fd^i = \frac{512}{256} = 2$$
 [or is the nationary

$$H_3 = \frac{1}{N} \sum_{i=1}^{n} f d^3$$

$$= \frac{1}{256} \times 0 = 0$$

$$M_4 = \frac{1}{N} \sum_{x} f d^4 = \frac{1}{256} \times 2816$$

and
$$\beta_{2} = \frac{M_{4}}{4_{2}^{N}} = \frac{11}{4}$$

$$= 2.75 \angle 3$$
and $\delta_{2} = \beta_{2} - 3 = -25 \angle 0$