Gradient Descent

- Now we know how to evaluate a model, using a cost function, how do we make the model *learn* the optimal parameters?
- In other words, how do we minimize the cost function without testing all the different possible models?
- The algorithm used to do this is called Gradient Descent, and is essential to most machine learning algorithms, not just linear regression!
- In DL libraries this type of algorithm is called an 'optimizer' and other variants exist.

Gradient Descent

• We have some function $J(\theta_1, \theta_2)$ which we want to minimize...

Outline:

- Start with some inital guess, some random values for θ_1 , θ_2
- Keep **updating** θ_1 , θ_2 a little bit to reduce $J(\theta_1, \theta_2)$ until we end up at a **minimum** (global or local)

GD intuition

- This is your cost function in 3D
- Imagine you start somewhere near the top
 of one of the « hills » and your goal is to
 walk in the direction which will take you
 down to the bottom the fastest.

GD formula

```
repeat until convergence { \theta_j := \theta_j - \bigcirc \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)  (for j = 0 and j = 1) }
```

- This is the update formula for each of the parameters
- := signifies assignment
- α is a number called the *learning rate*. If α is very *large*, then it corresponds to an **aggressive** learning procedure and big steps being taken « downhill » and vice versa.
- $\frac{\partial}{\partial \theta_i} J(\theta_0, \theta_1)$ is a derivative term, which requires a bit of calculus

GD Intuition

- Why does this update make sense?
- Why are we putting those 2 terms together?

 Let's try and get a basic understanding of derivatives before we go any further.

• The derivative describes **how the output of a function varies** with regard to a very very **tiny positive nudge** to the **input**, to the point where we consider *almost* no variation in input....

• Informally, the deriviative tells you how a function behaves at a particular « instant », i.e. for a given input value.

 The derivative is commonly referred to as « instantaneous rate of change »

- Here is a linear function as an example. What happens when we shift the input by a 'small' value like 0.001
- when a=2?
- when a=5?

• With this function, we expect a small positive nudge in the input to make the ouput increase by 3 times the value of that nudge.

$$f(5.001) = 15.003$$

• In other words the **ratio** between the change in output and the change in input is 3:

$$\frac{change\ in\ f(a)}{change\ in\ a} = \frac{df(a)}{da} = \frac{0.003}{0.001} = 3$$

- This is just an example, but formally, the derivative considers this ratio when the input is increased by a **much tinier** amount!
- In this previous example, whatever input value we pick, the derivative will be the same.
- This makes sense since the function is a line and the output increases at a constant rate
- Question : What if the derivative was negative everywhere ? What would the function look like ?

• What if our function isn't a line?

• The derivative at a=2 is ...

$$0.2$$
 $f(a)=4$
 $a=2.001$ $f(a)=4.004$
 (4.004001)
slope (derivation) of $f(a)$ at
 $a=2$ is 4.

 $a=2$ is 4.

• The derivative at a=5 is ...

$$a = 2 \cdot 001$$
 $f(a) \approx 4.004$
 $a = 2.001$ $f(a) \approx 4.004$
 $a = 2$ is 4.
 $a = 2$ is 4.
 $a = 4$ when $a = 2$.
 $a = 5$ $f(a) = 25$
 $a = 5$ $f(a) \approx 25.010$
 $a = 4$ when $a = 5$.

- Rules exist to compute derivatives
- For example, the function

$$f(a) = a^2$$

$$f'(a) = \frac{d}{da}f(a) = 2a$$

(The notations are called Lagrange and Leibniz notations and are both common)

- If we look at the derivatives/slopes/ratios we calculated previously, this
 does indeed seem to work!
- Note: the derivative is equal to the slope of the tangent line on the graph at our input value.

Derivatives: (optional)

$$f'(x) = \frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Example 2: $f(x) = x^2$

$$\frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{x^2 + 2x\Delta x + (\Delta x)^2 - x^2}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{2x\Delta x + (\Delta x)^2}{\Delta x}$$

$$= \lim_{\Delta x \to 0} 2x + \Delta x.$$
• As

- As Δx approaches 0, the derivative
- Approaches 2x.

GD Intuition

 Now we have a basic understanding of derivatives, let's apply this understanding to the gradient descent algorithm by using a simpler example, with a cost function of only 1 single parameter.

• We use $J(\theta_1)$ instead of $J(\theta_0, \theta_1)$

• Let's look at a couple scenarios to see how Gradient Descent updates our parameter θ_1 .

When the derivative is positive...

- Remember, our cost function looks like a parabola.
- When θ_1 is too high, we want our optimizer to **reduce** this parameter and bring it closer to the « **sweet spot** », where the cost is minimized.
- Let's see if it does the right thing:

When the derivative is negative...

• When θ_1 is too low, let's see if Gradient Descent increases it and brings it closer to the « sweet spot », where tht cost is minimized :

Recap

 When the parameter value is too high, the derivative is positive and the update rule decreases the value for the parameter.

$$\theta_1 \coloneqq \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

 Conversely, when the parameter value is too low, the parameter value will be increased by the update rule.

$$\theta_1 \coloneqq \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

Okay so now what about α ?

Remember the update rule :

$$\theta_1 \coloneqq \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

- How does α influence the update of our parameter θ_1 ?
- If α is too small:

If α is too small

 Many small steps will be taken, which makes Gradient Descent very slow

If α is too large...

 Gradient descent may « overshoot », go past the minimum. It may even never converge (never find the minimum) and keep jumping around.

If alpha too large

Question

- 1. Change θ_1 in a random direction?
- 2. Move θ_1 in the direction of the global minimum of $J(\theta_1)$?
- 3. Leave θ_1 unchanged?
- 4. Decrease θ_1 ?

Suppose θ_1 is at a local optimum of $J(\theta_1)$, such as shown in the figure.

What will one step of gradient descent $heta_1:= heta_1-lpharac{d}{d heta_1}J(heta_1)$ do?

Recap

- To update our parameter with the Gradient Descent algorithm, we perform 2 essential steps :
- 1. Compute the derivative of the parameter with respect to the value we want to minimize (ie. our cost: a score to express how good our model is doing)
- 2. Take an optimization step/update the parameter. This update will be proportional to the derivative and the learning rate.

Large derivative (steep tangent line) + large learning rate = big update

Piecing everything together

- This is all we need:
 - A hypothesis function (our model)
 - A cost function (to tell us how well/bad our model is doing)
 - **Gradient Descent or variant** (to update our parameters and get closer to a better model)

Gradient descent algorithm

repeat until convergence {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

(for
$$j = 1$$
 and $j = 0$)

Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$

Derivatives vs. Partial derivatives

- Except, instead of having a cost function with a single input, we are back to 2 inputs, our 2 parameters θ_0 and θ_1 .
- When we have functions with multiple inputs (known as multivariate functions), computing 1 single derivative is no longer enough!
- The function's « **instantaneous rate of change** » for a given combination of parameters is now determined by 2 values :
 - How does a tiny change in θ_0 change $J(\theta_0, \theta_1)$?
- => Packed together into a vector, these 2 derivatives make up what is referred to as the **gradient**
- How does a tiny change in θ_1 change $J(\theta_0, \theta_1)$?
- Each derivative is a partial derivative. (you need both together to get the whole picture!)

Derivatives vs. Partial derivatives

Partial Derivative :

This comes down to calculating the derivative at each input value, treating the other input as a constant

 We pretend for a second that the other input value has basically no effect on the function

- ullet when looking at $heta_0$, we treat $heta_1$ as a constant
- when looking at θ_1 , we treat θ_0 as a constant

Partial derivatives visually

 To help illustrate things and relate them to our simple Gradient Descent intuition:

https://www.youtube.com/watch?v=dfvnCHqzK54&t=1s

Gradient Descent

- Each partial derivative tells us how the function behaves
 (increases/decreases quickly/slowly, or stays constant...) with respect
 to a single input
- We can then use this information to know if we should increase or decrease each input to get closer to our minimum cost value.
- Gradient: the partial derivatives packed together in a vector
- **Descent**: go the opposite direction. If **gradient** values are **positive**, this means a positive nudge applied to the weights **increases** the cost: so we need to decrease the weights. And vice-versa.

Partial derivatives of $J(\theta_1, \theta_2)$

 You can treat these results as being given, in order not to go into the details of the derivation.

General formula

$$\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) = \frac{\partial}{\partial \theta_j} \frac{1}{2m} \sum_{i=1}^m \left(h_{\theta}(x^i) - y^i \right)^2$$

$$\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) = \frac{\partial}{\partial \theta_j} \frac{1}{2m} \sum_{i=1}^m \left(\theta_0 + \theta_1 x^i - y^i\right)^2$$

Partial derivatives of $J(\theta_1, \theta_2)$

• Here are the partial derivatives obtained (take these at face value for now):

$$j = 0: \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m (h_\theta(x^i) - y^i)$$

$$j = 1: \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^i) - y^i) x^i$$

 These formulas allow us to compute the partial derivatives for each of the parameters, which we can then plug into our Gradient Descent algorithm.

Gradient Descent

We now know how to update our parameters!

```
repeat until convergence {
\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left( h_{\theta}(x^{(i)}) - y^{(i)} \right)
\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left( h_{\theta}(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}
}
```

Quick recap to put things into perspective

- We have:
- a model, which is a line:

$$h(x) = \theta_0 + \theta_1 x$$

• a cost function, to tell us how good/bad our model fits the data:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^2$$

• **Gradient Descent,** a method to update our parameters so as to minimize the cost function:

$$\theta_j \coloneqq \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

• For linear regression, the cost function will always be bowl-

shaped

Say we initialize our parameters randomly, this is the model and cost:

As we take Gradient Descent steps, the model (line) seems to be fitting the data better

Until we reach the global minimum

Multivariate Linear Regression

But what if we have **several features** vs. only 1?

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

Notation

Features will be denoted by

$$x_1, x_2, \ldots, x_n,$$

Where:

Notation:

n = number of features $x^{(i)}$ = input (features) of i^{th} training example. $x_i^{(i)}$ = value of feature j in i^{th} training example.

Notation

• With this notation, the example $\pmb{x}^{(1)}$ is a 4-D vector :

	[1416]
• $x^{(1)} =$	3
• X · > _	2
	40

•	$x_3^{(1)}$	=	2
---	-------------	---	---

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

The model

• Previously $h_{\theta}(x) = \theta_0 + \theta_1 x$

Now,

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

• We can no longer represent the model using a 2D graph...

Gathering features and parameters into vectors

 For convenience, let's group up features and parameters into vectors:

$$\bullet \ x = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} \qquad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \dots \\ \theta_n \end{bmatrix}$$
Size = n

Size = n+1

• To avoid this size mismatch we can add a « dummy » feature, $x_0 = 1$

The model formula simplified

$$h_{\theta}(x) = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

Instead of using a loop, which is slow, we can **vectorize** both the inputs and the parameters and compute their **dot product**!

$$h_{\theta}(x) = \theta^{T} x$$

Multivariate Gradient Descent

• The intuitions and formulas we saw previously are the same, there are just more partial derivatives to compute (1 per param.)!

```
New algorithm (n \geq 1): \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)} \theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} \theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_1^{(i)} (simultaneously update \theta_j for j = 0, \dots, n) \theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_2^{(i)}
```

Derivative rules (optional)

```
Function f(x)
                        Derivative with respect to x
                        0
     a
     \boldsymbol{x}
3
     ax
                        a
     x^2
                        2x
                       ax^{a-1}
5
     x^a
                        \log(a)a^x
     a^x
6
                        1/x
     \log(x)
     \log_a(x)
                        1/(x\log(a))
     \sin(x)
                        \cos(x)
9
                        -\sin(x)
10
     \cos(x)
                        \sec^2(x)
11
     tan(x)
```

Derivative rules (optional)

• More useful rules

	Function	Derivative
Sum Rule	f(x) + g(x)	f'(x) + g'(x)
Difference Rule	f(x) - g(x)	f'(x) - g'(x)
Product Rule	f(x)g(x)	f'(x)g(x) + f(x)g'(x)
Quotient Rule	f(x)/g(x)	$[g(x)f'(x) - f(x)g'(x)]/[g(x)]^2$
Reciprocal Rule	1/f(x)	$-[f'(x)]/[f(x)]^2$
Chain Rule	f(g(x))	f'(g(x))g'(x)