

deeplearning.ai

One hidden layer Neural Network

Derivatives of activation functions

Sigmoid activation function

When you do back prop, $\frac{\partial J}{\partial a}$, you need to compute derivative of Adivations "a", ie, g(Z)

Andrew Ng

Tanh activation function

$$g(z) = \tanh(z) (-1) (1 + e^{-2z})^{-\frac{1}{2}} e^{-2z} (-2)$$

$$= 2 (1 + e^{-2z})^{-\frac{1}{2}} e^{-2z}$$

$$= 2 (1 + e^{-2z})^{-\frac{1}{2}} e^{-2z}$$

$$= 2 (1 + e^{-2z})^{-\frac{1}{2}} e^{-2z}$$

$$= 2 (1 + e^{-2z})^{-\frac{1}{2}} e^{2z}$$

ReLU and Leaky ReLU

ReLU

Leaky ReLU

$$g(z) = \max(0.01. z, z)$$

 $g'(z) = \begin{cases} 0.01 & y \ z < 0 \end{cases}$
 $y = \frac{1}{2}$
 $y = \frac{1}{2}$
 $y = \frac{1}{2}$
 $y = \frac{1}{2}$

whenever Z = 0, then By default make g'(Z) = 1(Its fine, no big deal)

Andrew Ng