CS 207: Discrete Structures

Instructor: S. Akshay

Aug 11, 2015

Lecture 11 – Basic mathematical structures: lattices and on to counting

Quiz tomorrow (Wednesday, 12^{th} August)

- ▶ Venue: F.C. Kohli auditorium, Kresit
- ▶ Duration: 55min.
- ► Time: 08:30am to 09:25am.
- ▶ Syllabus: Till whatever was covered last Thursday.
- Closed book, closed notes.

Minimal and maximal elements

Let (S, \preceq) be a poset.

- ▶ An element $a \in S$ is called minimal if, $b \leq a$ implies b = a.
- ▶ An element $a \in S$ is called maximal if, $a \leq b$ implies a = b.

Minimal and maximal elements

Let (S, \preceq) be a poset.

- ▶ An element $a \in S$ is called minimal if, $b \leq a$ implies b = a.
- ▶ An element $a \in S$ is called maximal if, $a \leq b$ implies a = b.
- ▶ An element $a \in S$ is called the least element of S if $a \leq b$ for all $b \in S$.
- ▶ An element $a \in S$ is called the greatest element of S if $b \prec a$ for all $b \in S$.

Minimal and maximal elements

Let (S, \preceq) be a poset.

- ▶ An element $a \in S$ is called minimal if, $b \leq a$ implies b = a.
- ▶ An element $a \in S$ is called maximal if, $a \leq b$ implies a = b.
- ▶ An element $a \in S$ is called the least element of S if $a \leq b$ for all $b \in S$.
- An element $a \in S$ is called the greatest element of S if $b \leq a$ for all $b \in S$.

Let (S, \preceq) be a poset and $A \subseteq S$.

▶ $u \in S$ (resp. $l \in S$) is called an upper bound (resp. lower bound) of A iff $a \leq u$ (resp. $l \leq a$) for all $a \in A$.

Let (S, \preceq) be a poset and $A \subseteq S$.

- ▶ $u \in S$ (resp. $l \in S$) is called an upper bound (resp. lower bound) of A iff $a \leq u$ (resp. $l \leq a$) for all $a \in A$.
- ▶ $u \in S$ is called the least upper bound of A if it is an upper bound of A and is less than every other upper bound.
- ▶ $l \in S$ is called the greatest lower bound of A if it is an lower bound of A and is greater than every other lower bound.

Let (S, \preceq) be a poset and $A \subseteq S$.

- ▶ $u \in S$ (resp. $l \in S$) is called an upper bound (resp. lower bound) of A iff $a \leq u$ (resp. $l \leq a$) for all $a \in A$.
- ▶ $u \in S$ is called the least upper bound of A if it is an upper bound of A and is less than every other upper bound.
- ▶ $l \in S$ is called the greatest lower bound of A if it is an lower bound of A and is greater than every other lower bound.

Let (S, \preceq) be a poset and $A \subseteq S$.

- ▶ $u \in S$ (resp. $l \in S$) is called an upper bound (resp. lower bound) of A iff $a \leq u$ (resp. $l \leq a$) for all $a \in A$.
- ▶ $u \in S$ is called the least upper bound of A if it is an upper bound of A and is less than every other upper bound.
- ▶ $l \in S$ is called the greatest lower bound of A if it is an lower bound of A and is greater than every other lower bound.

Some properties:

- ightharpoonup The lub/glb of a subset A in S, if it exists, is unique.
- ▶ If the lub/glb of $A \subseteq S$ belongs to A, then it is the greatest/least element of A.
- ightharpoonup Every nonempty subset A of a totally ordered set S has a glb/lub.

Let (S, \preceq) be a poset and $A \subseteq S$.

- ▶ $u \in S$ (resp. $l \in S$) is called an upper bound (resp. lower bound) of A iff $a \leq u$ (resp. $l \leq a$) for all $a \in A$.
- ▶ $u \in S$ is called the least upper bound of A if it is an upper bound of A and is less than every other upper bound.
- ▶ $l \in S$ is called the greatest lower bound of A if it is an lower bound of A and is greater than every other lower bound.

Some properties:

- ightharpoonup The lub/glb of a subset A in S, if it exists, is unique.
- ▶ If the lub/glb of $A \subseteq S$ belongs to A, then it is the greatest/least element of A.
- \triangleright Every nonempty subset A of a finite totally ordered set S has a glb/lub.

Let (S, \preceq) be a poset and $A \subseteq S$.

▶ $u \in S$ (resp. $l \in S$) is called an upper bound (resp. lower bound) of A iff $a \leq u$ (resp. $l \leq a$) for all $a \in A$.

An aside: Theorem (Zorn's lemma)

Given a poset (S, \leq) , if every non-empty chain in S has an upper-bound in S, then S has some maximal element.

Lattices and complete lattices

- ▶ A lattice is a poset in which every pair of elements has both a lub and a glb (in the set), i.e., $\forall x, y \in S$, there exists $l, u \in S$ such that l is the glb and u is the lub of $\{x, y\}$.
- ▶ A complete lattice is a poset in which any subset of elements has both a lub and a glb (in the set), i.e., $\forall S' \subseteq S$, there exists $l, u \in S$ such that l is the glb and u is the lub of S'.

Some exercises:

- 1. Which totally ordered sets are lattices?
- 2. Does a subset of a finite lattice always have a lub/glb?
- 3. Does a finite subset of any lattice always have a lub/glb? What about infinite subsets?
- 4. Is every lattice is complete?
- 5. Does a complete lattice always have greatest/least elements?

▶ Given two posets (S, \leq_s) and (T, \leq_T) , $f: S \to T$ is order-preserving or monotonic if for all $a, b \in S$, $a \leq_S b$ implies $f(a) \leq_T f(b)$.

- ▶ Given two posets (S, \leq_s) and (T, \leq_T) , $f: S \to T$ is order-preserving or monotonic if for all $a, b \in S$, $a \leq_S b$ implies $f(a) \leq_T f(b)$.
- For $f: S \to S$, $x \in S$ is a fixed point of f if f(x) = x.

- ▶ Given two posets (S, \leq_s) and (T, \leq_T) , $f: S \to T$ is order-preserving or monotonic if for all $a, b \in S$, $a \leq_S b$ implies $f(a) \leq_T f(b)$.
- For $f: S \to S$, $x \in S$ is a fixed point of f if f(x) = x.

Theorem (Tarski's fixed point theorem)

Let (S, \preceq) be a complete lattice and $f: S \to S$ be a monotonic function. Then the set of fixed points of f is a (non-empty) complete lattice.

- ▶ Given two posets (S, \leq_s) and (T, \leq_T) , $f: S \to T$ is order-preserving or monotonic if for all $a, b \in S$, $a \leq_S b$ implies $f(a) \leq_T f(b)$.
- For $f: S \to S$, $x \in S$ is a fixed point of f if f(x) = x.

Theorem (Tarski's fixed point theorem)

Let (S, \preceq) be a complete lattice and $f: S \to S$ be a monotonic function. Then the set of fixed points of f is a (non-empty) complete lattice. Thus, there exists a least fixed point of f in S.

- ▶ Given two posets (S, \leq_s) and (T, \leq_T) , $f: S \to T$ is order-preserving or monotonic if for all $a, b \in S$, $a \leq_S b$ implies $f(a) \leq_T f(b)$.
- For $f: S \to S$, $x \in S$ is a fixed point of f if f(x) = x.

Theorem (Tarski's fixed point theorem)

Let (S, \preceq) be a complete lattice and $f: S \to S$ be a monotonic function. Then the set of fixed points of f is a (non-empty) complete lattice. Thus, there exists a least fixed point of f in S.

▶ Important result with several applications in many domains of mathematics and CS, including formal semantics of programming languages, program verification.

- ▶ Given two posets (S, \leq_s) and (T, \leq_T) , $f: S \to T$ is order-preserving or monotonic if for all $a, b \in S$, $a \leq_S b$ implies $f(a) \leq_T f(b)$.
- For $f: S \to S$, $x \in S$ is a fixed point of f if f(x) = x.

Theorem (Tarski's fixed point theorem)

Let (S, \preceq) be a complete lattice and $f: S \to S$ be a monotonic function. Then the set of fixed points of f is a (non-empty) complete lattice. Thus, there exists a least fixed point of f in S.

- ► Important result with several applications in many domains of mathematics and CS, including formal semantics of programming languages, program verification.
- ► Finite lattices and boolean algebra have a strong link.

Course Outline

- 1. Proofs and structures
- 2. Counting and combinatorics
- 3. Introduction to graph theory
- 4. Elements of number theory
- 5. Elements of group theory and abstract algebra

Course Outline

- 1. Proofs and structures
 - ▶ Propositions, predicates
 - ▶ Proofs and proof techniques: contradiction, contrapositive, (strong) induction, well-ordering principle, diagonalization.
 - ▶ Basic mathematical structures: (finite and infinite) sets, functions, relations.
 - ▶ Relations: equivalence relations, partial orders, lattices
 - Some applications
- 2. Counting and combinatorics
- 3. Introduction to graph theory
- 4. Elements of number theory
- 5. Elements of group theory and abstract algebra

Course Outline

- 1. Proofs and structures
 - ▶ Propositions, predicates
 - ▶ Proofs and proof techniques: contradiction, contrapositive, (strong) induction, well-ordering principle, diagonalization.
 - ▶ Basic mathematical structures: (finite and infinite) sets, functions, relations.
 - ▶ Relations: equivalence relations, partial orders, lattices
 - ▶ Some applications
 - ► Functions: To compare infinite sets
 - Using diagonalization to prove impossibility results.
 - ► Equivalences: Defining "like" partitions.
 - Posets: Topological sort, (parallel) task scheduling,
 - Lattices: Knaster-Tarski fixed point theorem.
- 2. Counting and combinatorics
- 3. Introduction to graph theory
- 4. Elements of number theory
- 5. Elements of group theory and abstract algebra

Course Outline

- 1. Proofs and structures
 - ▶ Propositions, predicates
 - ▶ Proofs and proof techniques: contradiction, contrapositive, (strong) induction, well-ordering principle, diagonalization.
 - ▶ Basic mathematical structures: (finite and infinite) sets, functions, relations.
 - ▶ Relations: equivalence relations, partial orders, lattices
 - ▶ Some applications

2. Counting and combinatorics

- 3. Introduction to graph theory
- 4. Elements of number theory
- 5. Elements of group theory and abstract algebra

Next chapter: Counting and Combinatorics

Topics to be covered

- ▶ Basics of counting
- ▶ Subsets, partitions, Permutations and combinations
- ▶ Pigeonhole Principle and its extensions
- ▶ Recurrence relations and generating functions
- Principle of Inclusion and Exclusion and its applications

Introduction to combinatorics

Does it really need an introduction

Introduction to combinatorics

Does it really need an introduction

- ► Enumerative combinatorics: counting combinatorial/discrete objects e.g., sets, numbers, structures...
- ► Existential combinatorics: show that there exist some combinatorial "configurations".
- ► Constructive combinatorics: construct interesting configurations...

▶ How many reflexive relations are there on a set A of size n?

 \blacktriangleright How many subsets does a set A of n elements have?

- ▶ How many reflexive relations are there on a set A of size n?
 - Reflexive relations are ordered pairs of which there are n^2 .

 \blacktriangleright How many subsets does a set A of n elements have?

- ▶ How many reflexive relations are there on a set A of size n?
 - Reflexive relations are ordered pairs of which there are n^2 .
 - ightharpoonup Of these, all pairs (a, a) have be present.
 - ▶ Of the remaining, we can choose any of them to be in or out.
 - ▶ there are $n^2 n$ of them, so how many choices?
 - ▶ We use the so-called "product principle"...
- \blacktriangleright How many subsets does a set A of n elements have?

▶ How many reflexive relations are there on a set A of size n?

- \blacktriangleright How many subsets does a set A of n elements have?
 - ▶ Product principle: two choices for each element, hence $2 \cdot 2 \cdot \cdot \cdot 2 \cdot 2$ (*n*-times).
 - ▶ Bijection: between $\mathcal{P}(X)$ and $\{0,1\}$ (characteristic vector).
 - ▶ Induction: Since we already know the answer!
 - ▶ Recurrence: $F(n) = 2 \cdot F(n-1)$, F(0) = 1. But how to solve this recursion?
 - Sum principle: Subsets of size 0 + subsets of size $1 + \ldots + \text{subsets}$ of size n = Total number of subsets.
 - ▶ others?

▶ How many reflexive relations are there on a set A of size n?

- \blacktriangleright How many subsets does a set A of n elements have?
 - ▶ Product principle: two choices for each element, hence $2 \cdot 2 \cdot \cdot \cdot 2 \cdot 2$ (*n*-times).
 - ▶ Bijection: between $\mathcal{P}(X)$ and $\{0,1\}$ (characteristic vector).
 - ▶ Induction: Since we already know the answer!
 - Recurrence: $F(n) = 2 \cdot F(n-1)$, F(0) = 1. But how to solve this recursion?
 - Sum principle: Subsets of size 0 + subsets of size $1 + \ldots + \text{subsets}$ of size n = Total number of subsets.
 - ▶ others?
- \blacktriangleright How many subsets of size k does a set of n elements have?