Классическое исчисление высказываний L.

1. Алфавит.

Алфавит исчисления L состоит из *пропозициональных букв* (символов переменных) A,B,C,..., знаков *погических связок* \neg , \rightarrow и скобок (,).

2. Формулы.

- а) Каждый символ переменной есть формула.
- б) Если A и $B \phi o p м y л ы$, то $\neg A$ и $(A \rightarrow B)$ также $\phi o p м y л ы$.
- в) Других формул нет.

Для упрощения записи договариваются внешние скобки опускать.

Пример 1. Записи $\neg (A \to (A \to B))$ и $B \to (A \to C)$ являются формулами, а $\neg A \neg B$ и $B \to A \to C$ - нет.

3. Аксиомы.

Следующие формулы называются схемами аксиом:

- Al) $A \rightarrow (B \rightarrow A)$ nepsas cxema аксиом;
- $A2) (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$ вторая схема аксиом;
- A3) ($B \rightarrow A$) \rightarrow (($B \rightarrow A$) $\rightarrow B$) третья схема аксиом.

Аксиомой по данной схеме аксиом называется формула, полученная из данной схемы аксиом подстановкой вместо всех вхождений некоторой переменной другой формулы.

Пример 2. $A \rightarrow (\neg \neg A \rightarrow A)$ - аксиома по 1 схеме аксиом A1, полученная в результате подстановки $\begin{pmatrix} A & \neg \neg A \\ A & B \end{pmatrix}$;

Пример 3. ($B \rightarrow A$) \rightarrow (($B \rightarrow A$) \rightarrow в) - аксиома по 3 схеме аксиом

A3, полученная в результате подстановки $\begin{pmatrix} \neg A & B \\ A & B \end{pmatrix}$;

4. Правило вывода.

Единственным *правилом вывода* в исчислении L является *правило отделения* или *Modus Ponens* (сокращённо MP): $\frac{A, A \to B}{D}_{MP}$

Пример 4. Применяя правило MP к формулам $\neg B \to \neg A$ и $(\neg B \to \neg A) \to ((\neg B \to \neg A) \to B)$, получим формулу $(\neg B \to \neg A) \to B$.

Пример 5. Рассмотрим пример доказательства теоремы.

$$\vdash A \rightarrow A$$

 F_1 : $(A \to ((A \to A) \to A)) \to ((A \to (A \to A)) \to (A \to A))$ - это аксиома по 2 схеме аксиом A2, полученная в результате подстановки

$$\begin{pmatrix} A & A \to A & A \ A & B & C \end{pmatrix}$$
; F_2 : $A \to ((A \to A) \to A)$ - это аксиома по 1 схеме аксиом $A1$, полу-

ченная в результате подстановки $\begin{pmatrix} A & A \to A \\ A & B \end{pmatrix}$; F_3 : $(A \to (A \to A)) \to (A \to A)$ - это результат применения правила

MP к формулам F_1 и F_2 ; F_4 : $A \to (A \to A)$ - это аксиома по 1 схеме аксиом A1, полученная

 F_4 : $A \to (A \to A)$ - это аксиома по 1 схеме аксиом A1, полученная в результате подстановки $\begin{pmatrix} A & A \\ A & R \end{pmatrix}$;

 F_5 : $A \rightarrow A$ - это результат применения правила MP к формулам F_4 и F_3 .

Итак, построена последовательность F_1 , F_2 , F_3 , F_4 , $A \rightarrow A$, каждый член которой — или аксиома, либо формула, полученная по правилу вывода MP из некоторых предыдущих членов этой последовательности. Следовательно, построено доказательство теоремы $A \rightarrow A$.

Теорема дедукции.

Если из списка гипотез Γ , A выводима B, то из списка Γ выводима $A{\to}B$.

Запишем теорему в виде формулы: $\Gamma, A \vdash B \Rightarrow \Gamma \vdash A \rightarrow B$ Доказательство.

Докажем важное утверждение – теорему дедукции.

Так как $\Gamma, A \models B$, то существует последовательность $B_1, ..., B_n$ такая, что $B_n = B$, каждый член которой B_i (i = 1, 2, ..., n) или является аксиомой, или формулой из списка Γ, A , или получен по некоторому пра-

вилу вывода из некоторых предыдущих членов последовательности

 $B_{1},...,B_{n}$. Доказательство проведём методом математической индукции по n -

Доказательство проведём методом математической индукции по n - длине вывода формулы B.

- 1. Проверим справедливость утверждения при n=1. Рассмотрим случаи:
- а) B_1 аксиома или гипотеза из Γ . Рассмотрим последовательность $B_1, B_1 \to (A \to B_1), A \to B_1$. Второй член этой последователь-
- ность $B_1, B_1 \to (A \to B_1), A \to B_1$. Второй член этой последовательности, формула $B_1 \to (A \to B_1)$, является аксиомой по 1 схеме аксиом A1, полученная в результате подстановки $\begin{pmatrix} A & B_1 \\ A & B \end{pmatrix}$, а третий член –
- формула $A \to B_1$ получена в результате применения правила MP к двум предыдущим формулам. б) $B_1 = A$. В этом случае перед формулой $A \to A$ сделаем
- вставку в виде последовательности формул F_1 , F_2 , F_3 , F_4 , взятых из примера 5.
- Итак, при n=1 возможность построения вывода формулы $A \to B_1$ доказана.
- 2. Допустим, что $\Gamma \vdash A \rightarrow B_n$ при $n \le k-1$.
- 3. Докажем, что $\Gamma \longmapsto A \rightarrow B_k$.
- Рассмотрим случаи:
- а) B_k аксиома или гипотеза из Γ . Рассмотрим последовательность $B_k, B_k \to (A \to B_k), A \to B_k$. Второй член этой последователь-

ности, формула $B_k \to (A \to B_k)$, является аксиомой по 1 схеме ак-

сиом A1, полученная в результате подстановки $\begin{pmatrix} A & B_k \\ A & R \end{pmatrix}$, а третий

член – формула $A \rightarrow B_k$ получена в результате применения правила МР к двум предыдущим формулам. По допущению, существует вы-

формулы $A \rightarrow B_{k-1}$ из гипотез Γ . Записав $B_k, B_k \to (A \to B_k), A \to B_k$ после этого вывода, получим вывод $A \rightarrow B_{\iota}$ из множества гипотез Γ .

б) $B_{k} = A$. В этом случае после вывода формулы $A \to B_{k-1}$ из гипотез Γ запишем последовательность формул F_1 , F_2 , F_3 , F_4 , $A \rightarrow A$, взятых из примера 5, получим вывод $A \longrightarrow B_k$ из множества гипотез Γ .

в) Формула B_k получена в результате применения правила вывода МР к некоторым предыдущим членам последовательности $B_1,...,B_{k-1}$. То есть, найдутся формулы B_i и $B_m=B_i \longrightarrow B_k$ такие, что i < k, m < k.

Запишем формулу $F_1 = (A \rightarrow (B_i \rightarrow B_k)) \rightarrow ((A \rightarrow B_i) \rightarrow (A \rightarrow B_k))$. Это - аксиома по второй схеме аксиом A2, полученная в результате подстановки

По допущению, $\Gamma \models A \to B_m$, то есть $\Gamma \models A \to (B_i \to B_k)$ и $\Gamma \longmapsto A \rightarrow B_m$.

формулу $F_2 = (A \rightarrow B_i) \rightarrow (A \rightarrow B_k)$. Применив к формулам $A \to B_i$ и F_2 правило MP, получим формулу

Применив к формулам $A \to (B_i \to B_k)$ и F_1 правило MP, получим

 $A \rightarrow B_k$.

Итак, имея вывод $C_1, C_2, ..., A \rightarrow B_{k-1}$ формулы $A \rightarrow B_{k-1}$ из множества гипотез Γ и, добавив формулы $F_1, F_2, A \to B_k$, получим последовательность $C_1, C_2, ..., A \rightarrow B_{k-1}, F_1, F_2, A \rightarrow B_k$, которая является выво-

дом $A \rightarrow B_{\nu}$ из множества гипотез Γ . На основании метода математической индукции утверждаем, что теорема доказана для любой длины n последовательности $B_1,...,B_n$.

Следствие. Обобщённая теорема дедукции.

 Φ ормула B выводима из списка гипотез Γ , A тогда и только тогда, когда из списка Γ выводима $A \rightarrow B$.

Запишем теорему в виде формулы: $\Gamma, A \models B \Leftrightarrow \Gamma \models A \rightarrow B$ Доказательство.

Необходимость. Доказательство необходимости является доказа-

тельством теоремы дедукции. <u>Достаточность</u>. Так как $\Gamma \vdash A \rightarrow B$, то существует последова-

тельность $B_1,...,B_n$ такая, что $B_n = A \to B$, каждый член которой B_i (i = 1, 2, ..., n) или является аксиомой, или формулой из списка Γ , или

получена из некоторых предыдущих членов этой последовательности с помощью правила MP. Формула A является одной из гипотез списка Γ , A. Запишем последовательность $B_1,...,A \to B,A$. К двум

последним членам этой последовательности применим правило вы-MP. В результате вода получим последовательность $B_1,...,A \to B,A,B_{-}$ вывод формулы B из списка гипотез Γ,A . До-

статочность доказана, а вместе с ней и всё следствие. В дальнейшем, при ссылке на теорему дедукции, будем использовать аббревиатуру $T\mathcal{A}$.

Рассмотрим примеры применения теоремы дедукции.

Утверждение о связи доказательства теорем с выводом из гипотез.

Формула B выводима из списка гипотез $A_1,A_2,...,A_n$ тогда и только тогда, когда формула $A_1 \to (A_2 \to (...(A_{n-1} \to (A_n \to B))...)$ яв-ляется теоремой.

To есть, $A_1, A_2, ..., A_n \vdash B \Leftrightarrow \vdash A_1 \to (A_2 \to (...(A_{n-1} \to (A_n \to B))...)$

<u>Доказательство.</u>

<u>Необходимость</u>. Пусть $A_1, A_2, ..., A_n \models B$. Тогда, по теореме дедукции, $A_1, A_2, ..., A_{n-1} \models A_n \to B$. Применив ещё раз теорему дедукции, получим, что $A_1, A_2, ..., A_{n-2} \models A_{n-1} \to (A_n \to B)$.

Продолжая, покуда возможно, применять теорему дедукции, получим, что $\models A_1 \to (A_2 \to (...(A_{n-1} \to (A_n \to B))...)$.

<u>Достаточность</u>. Пусть $\vdash A_1 \rightarrow (A_2 \rightarrow (...(A_{n-1} \rightarrow (A_n \rightarrow B))...)$.

По свойству расширения списка гипотез, имеем:

$$A_1, A_2, ..., A_n \vdash A_1 \to (A_2 \to (...(A_{n-1} \to (A_n \to B))...)$$

Применив правило отделения Modus Ponens к паре формул

 $A_1 \to (A_2 \to (...(A_{n-1} \to (A_n \to B))...), \quad A_1$, получим формулу

$$A_2 \rightarrow (A_3 \rightarrow (\dots \rightarrow (A_{n-1} \rightarrow (A_n \rightarrow B))\dots)$$

Применив правило отделения Modus Ponens к паре формул

$$A_2 \to (A_3 \to (... \to (A_{n-1} \to (A_n \to B))...), A_2$$
, получим формулу $A_3 \to (A_4 \to ... (A_{n-1} \to (A_n \to B))...)$

Продолжая применять правило MP, придём к формуле B .

Итак, доказано, что, если $A_1 \rightarrow (A_2 \rightarrow (...(A_{n-1} \rightarrow (A_n \rightarrow B))...)$ - теорема, то $A_1, A_2, ..., A_n \models B$.

Доказана достаточность, а вместе с ней и вся теорема.

Докажем два правила, которые в дальнейшем будем использовать, как новые правили вывода.

1. Транзитивность импликации (ТИ)

Докажем, что из списка $A \rightarrow B$, $B \rightarrow C$ выводима формула $A \rightarrow C$, т.е.

$$A \rightarrow B, B \rightarrow C \mid A \rightarrow C.$$

Выпишем последовательность формул:

$$B_1$$
: $A \rightarrow B$ (гипотеза);

$$B_2$$
: $B \rightarrow C$ (гипотеза);

 B_3 : A (гипотеза);

вилом вывода ТИ:

$$B_4$$
: B (результат применения правила MP к формулам B_1, B_3); B_5 : C (результат применения правила MP к формулам B_4, B_2).

Получили, что из гипотез $A \to B, B \to C, A$ выводима формула C. Тогда, применив теорему дедукции, получим, что из списка гипотез

 $A \rightarrow B, B \rightarrow C$ выводима формула $A \rightarrow C$. Транзитивность импликации можно считать ещё одним, новым пра-

 $\frac{A \to B, B \to C}{A \to C} TU$

2. Правило сечения (ΠC).

Докажем, что из списка $A \rightarrow (B \rightarrow C), B$ выводима формула, $A \rightarrow C$,

T.e. $A \rightarrow (B \rightarrow C), B \vdash A \rightarrow C$.

Выпишем последовательность формул:

 B_1 : $A \rightarrow (B \rightarrow C)$ (гипотеза);

 B_2 : В (гипотеза);

 B_3 : A (гипотеза);

 B_4 : $B \rightarrow C$ (результат применения правила MP к формулам B_3, B_1);

 B_5 : C (результат применения правила MP к формулам B_2, B_4).

Получили, что из гипотез $A \to (B \to C)$, B, A выводима формула C.

Тогда, применив теорему дедукции, получим, что из списка гипотез $A \rightarrow (B \rightarrow C)$,B выводима формула $A \rightarrow C$.

Правило сечения можно считать ещё одним, новым правилом вывода ΠC : $\frac{A \to (B \to C), B}{A \to C} \, \Pi C \, .$