Linear Filters

Introduction

STAT 464 / 864 Fall 2024
Discrete Time Series Analysis
Skyepaphora Griffith, Queen's University

We learned something in Unit 1!

When you have a sequence of data taken over time, that's called a Time Series.

Over time, this kind of data might show a **trend**. We can estimate that trend by fitting a polynomial, or by **smoothing** out the noise to reveal a clearer shape.

The other thing we're interested in is **repetition**. We can model seasonal patterns by fitting harmonic sinusoids, or by examining the average behaviour across cycles.

What's left over should just be residual noise. We can **test** if the residual data is noisy enough by looking at its self-similarities, at different time-scales.

Linear Filters

Definition:

A linear filter is a sequence of coefficients $\{a_j\}_{j\in\mathbb{Z}}$

Satisfying
$$\sum_{j=-\infty}^{\infty} |a_j| < \infty$$
 (absolute summability)

Finite Filter: Finitely many nonzero filter coefficients (in practice, all filters are finite)

Input process Y_t

Output process

$$X_t = \sum_{j=-\infty}^{\infty} a_j Y_{t-j}$$

Convolution

Causality

Causality

The past is far behind us, the future doesn't exist.

Definition: A filter is called **causal** if $a_j = 0$ for j < 0

Its output {Xt} is called a causal process

Depends

Depends only on past/present values of input {Yt}

Linear Filter
$$X_t = \sum_{j=-\infty}^{\infty} a_j Y_{t-j}$$

Linear Processes

Definition:

If input $\{Y_t\}$ is $wn(\sigma^2)$ (Recall μ is zero, WLOG)

the output {Xt} is called a linear process

Notes: We will be considering time-invariant filters

Assume input {Yt} is stationary and zero-mean

Proposition 2.2.1

Proposition 2.2.1 | Statement

 $\{\psi_{\mathsf{j}}\}$: Linear filter

{Yt}: Input

- Stationary
- Zero-mean
- \bullet ACVF: $\gamma_Y(h)$

- {Xt}: Output $\frac{1}{2}$ Stationary $\frac{2}{3}$
 - Zero-mean
 - $igoplus ACVF \gamma_X(h)$

If input $\{Yt\}$ is $wn(\sigma^2)$,

then $\gamma_X(h)$ reduces to

Proposition 2.2.1

Stationarity 1) time-invariant mean

We can bring the E inside the sum because the sum (highlighted) is finite with probability 1

Proposition 2.2.1

ightharpoonup Deriving $\gamma_X(h)$

Stationarity 2) finite variance
Stationarity 3) time-invariant ACVF

- Covariance independent of t
- Yt is stationary $\to \gamma_Y(h)$ finite for all $\mathbf{h} \to \mathrm{Variance} \ \gamma_X(0)$ is finite Absolute summability

Proposition 2.2.1 | Linear Processes

If the input $\{Y_t\}$ is a $wn(\sigma^2)$ process,

For each j:

Therefore:

We learned something Today, in Time Series 🕛

What do we tell quin?