Contents

1	Classes				
	1.1	poly.univar - 一変数多項式			
		1.1.1	PolynomialInterface – 全ての一変数多項式に対する基底ク		
			ラス	3	
			1.1.1.1 differentiate – 形式微分	4	
			1.1.1.2 downshift degree – 多項式の次数を下げる	4	
			1.1.1.3 upshift_degree – 多項式の次数を上げる	4	
			1.1.1.4 ring_mul – 環上の乗法	4	
			1.1.1.5 scalar_mul – スカラーの乗法	4	
			1.1.1.6 term_mul - 項の乗法	4	
			1.1.1.7 square — 自身との乗法	5	
		1.1.2	BasicPolynomial – 多項式の基本的実装	5	
		1.1.3	SortedPolynomial - 項がソートされたままの状態に維持す		
			る多項式	5	
			1.1.3.1 degree – 次数	6	
			1.1.3.2 leading_coefficient – 主係数	6	
			1.1.3.3 leading_term – 主項	6	
			1.1.3.4 †ring_mul_karatsuba – Karatsuba 法による乗算	6	

Chapter 1

Classes

- 1.1 poly.univar 一变数多項式
 - Classes
 - $-\ \dagger \textbf{Polynomial Interface}$
 - †BasicPolynomial
 - SortedPolynomial

この poly.univar は以下の型を使っている:

polynomial:

polynomial はこの文脈では PolynomialInterface のサブクラスのインスタンス.

1.1.1 PolynomialInterface – 全ての一変数多項式に対する基底 クラス

Initialize (Constructor)

抽象クラスなのでインスタンスは作らない. このクラスは FormalSumContainerInterface から派生される.

Operations

operator	explanation
f * g	乗法 ¹
f ** i	べき乗

Methods

1.1.1.1 differentiate - 形式微分

 $ext{differentiate(self)} o ext{polynomial}$

多項式の形式微分を返す

1.1.1.2 downshift degree – 多項式の次数を下げる

 $ext{downshift} \quad ext{degree(self, slide: } integer)
ightarrow polynomial$

次数 slide を持つ全ての項を下にシフトして得られた多項式を返す. 最も次数が小さい項が slide より小さいとき,結果は数学的には多項式でないことに注意. このような場合でも,このメソッドは例外は起こさない.

†f.downshift_degree(slide) はf.upshift_degree(-slide) と同等のものです.

1.1.1.3 upshift degree - 多項式の次数を上げる

 ${
m upshift \ degree(self, slide: integer)
ightarrow polynomial}$

次数 slide を持つ全ての項を上にシフトして得られた多項式を返す.
†f.upshift_degree(slide) は f.term_mul((slide, 1)) と同等のものである.

1.1.1.4 ring mul – 環上の乗法

 $ext{ring} \quad ext{mul(self, other: } polynomial)
ightarrow polynomial$

多項式 other との乗法の結果を返す.

1.1.1.5 scalar mul - スカラーの乗法

scalar mul(self, scale: scalar) o polynomial

スカラー scale による乗法の結果を返す.

1.1.1.6 term mul - 項の乗法

 $ext{term} \quad ext{mul(self, term: } term)
ightarrow polynomial$

与えられた term の乗法の結果を返す. term はタプル (degree, coeff) として与えられるか,polynomial として与えられる.

1.1.1.7 square – 自身との乗法

square(self) → *polynomial* この多項式の平方を返す.

1.1.2 BasicPolynomial – 多項式の基本的実装

基本的な多項式の型、変数名や環のような概念はない。

Initialize (Constructor)

 $\begin{aligned} \textbf{BasicPolynomial}(\texttt{coefficients:} \ \textit{terminit}, \ \texttt{**keywords:} \ \textit{dict}) \\ &\rightarrow \textit{BasicPolynomial} \end{aligned}$

このクラスは PolynomialInterface を継承し実装. coefficients の型は terminit.

1.1.3 SortedPolynomial — 項がソートされたままの状態に維持 する多項式

Initialize (Constructor)

SortedPolynomial(coefficients: terminit, _sorted: bool=False, **keywords: dict)

 $\rightarrow SortedPolynomial$

このクラスは PolynomialInterface から派生される.

coefficients の型は terminit. 任意的に もし係数がすでにソートされた項のリストなら,_sorted は True になり得る.

Methods

1.1.3.1 degree - 次数

 $ext{degree(self)}
ightarrow integer$

この多項式の次数を返す. もし零多項式なら, 次数は -1 となる.

1.1.3.2 leading_coefficient - 主係数

 $ext{leading coefficient(self)} o object$

最も次数が高い項の係数を返す

1.1.3.3 leading term - 主項

 $\text{leading} \quad \text{term(self)} \rightarrow \textit{tuple}$

タプル (degree, coefficient) として主項を返す.

1.1.3.4 †ring mul karatsuba – Karatsuba 法による乗算

 $ext{ring} \quad ext{mul} \quad ext{karatsuba}(ext{self}, \, ext{other:} \; polynomial)
ightarrow polynomial$

同じ環上での二つの多項式の乗法. 計算は Karatsuba 法によって実行される. これはだいたい次数が 100 以上のとき早く動くだろう. 初期設定ではこの方法を用いていないので, これを使う必要があるなら自身で用いる.

Bibliography