1. Introductory Practice

The set of digits in the base-10 (decimal) number system is {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

a) Write out the set of digits in the octal (base-8) number system (__/1)

b) Write out the set of digits in the binary (base-2) number system (__/1)

c) Write out the set of digits in the hexadecimal (base-16) number system (__/1)

2. Digits

For the decimal number 2,368, we can extend this as:

Thousands 10 ³	Hundreds 10 ²	Tens 10 ¹	Ones 10 ⁰
2	3	6	8

And then as the mathematical equation $2 \cdot 10^3 + 3 \cdot 10^2 + 6 \cdot 10^1 + 8 \cdot 10^0$

For the binary number 0100 0001, we can write it as:

2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
0	1	0	0	0	0	0	1

And then as: $1.2^{6} + 1.2^{0}$

Exercise 2.6: Numerical Representation	ıS
CS 210, October 10 th , 2016	

Page 2 of 4

a) Write out the number $(19)_{10}$ (19 base-10) as a mathematical equation

10 ¹	10 ⁰

b) Write out the number $(0101101)_2$ (binary) as a mathematical equation

(__/1)

(__/1)

2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰

c) Write out the number $(FFAA66)_{16}$ (hexadecimal) as a mathematical equation (__/1)

16 ⁵	16 ⁴	16 ³	16 ²	16 ¹	16°

3. Converting

Algorithm for converting a decimal number to *base b*:

- 1. Input a natural number *n*
- 2. While n > 0, do the following:
 - 1. Divide n by b and get a quotient q and remainder r.
 - 2. Write *r* as the next (right-to-left) digit.
 - 3. Replace the value of n with q, and repeat.
- a) Convert $(35)_{10}$ to binary $(\underline{\hspace{0.4cm}}/1)$

b) Convert $(125)_{10}$ to binary (__/1)

c) Convert $(123)_{10}$ to base-5 (__/1)

Hexadecimal to Binary						
Hex	0	1	2	3		
Binary	0000	0001	0010	0011		
Hex	4	5	6	7		
пех	_	_		_		
Binary	0100	0101	0110	0111		
Hex	8	9	A (10)	B (11)		
Binary	1000	1001	1010	1011		
-						
Hex	C (12)	D (13)	E (14)	F (15)		
Binary	1100	1101	1110	1111		
Example: Convert 11001 from binary to hex 1. Write out in chunks of four: 2. Swap out each "nibble" with hex: $ 1 9 (11001)_2 = (19)_{16} $						
Example: Convert DAD from hex to binary 1. Convert each digit to binary: $D = 1101$ $A = 1010$ $D = 1101$ $(DAD)_{16} = (1101 \ 1010 \ 1101)_2$						

a) Convert $(1F0B)_{16}$ to binary

b) Convert $(0100\,0110)_2$ to hexadecimal