Concentration of Measure Inequalities

Yevgeny Seldin
University of Copenhagen

What can be said about L(h) based on $\hat{L}(h, S_{val})$?

- $\widehat{L}(h, S_{val})$ is an unbiased estimate of L(h)
- But consider the case m=1:
 - $\widehat{L}(h, S_{val}) \in \{0,1\}$ never close to L(h)!
- Being unbiased is neither sufficient, nor necessary

We need concentration!

Relation to "coin flips" (Bernoulli random variables)

- $Z_i = \ell(h(X_i), Y_i) \in \{0,1\}$
 - Bernoulli random variable, "a coin flip"
- $\mathbb{E}[Z_i] = \mathbb{E}[\ell(h(X_i), Y_i)] = L(h) = p = \mu$
 - The bias of the coin
 - $\mathbb{E}[Z_i] = 1 \, \mathbb{P}(Z_i = 1) + 0 \, \mathbb{P}(Z_i = 0) = \mathbb{P}(Z_i = 1)$
- $\hat{L}(h, S_{val}) = \frac{1}{n} \sum_{i=1}^{n} Z_i = \hat{p}_n = \hat{\mu}_n$
 - An average of n "coin flips", the empirical bias
- If $(X_1, Y_1), \dots, (X_n, Y_n)$ are independent identically distributed (i.i.d.), then Z_1, \dots, Z_n are also i.i.d.
- How far can $\hat{\mu}_n$ be from μ ?

Frequentist vs. Bayesian reasoning

Bayesian reasoning

- Parameters (such as μ) are sampled from an unknown distribution
- Bayesians start with a prior distribution $\mathbb{P}(\mu=x)$ on the parameters, and, given evidence (Z_1,\ldots,Z_n) , apply the Bayes rule

•
$$\mathbb{P}(\mu = x | Z_1, ..., Z_n) = \frac{\mathbb{P}(Z_1, ..., Z_n | \mu = x) \mathbb{P}(\mu = x)}{\mathbb{P}(Z_1, ..., Z_n)}$$

- The probabilities are over observations and parameters (both are random variables)
- If the prior $\mathbb{P}(\mu = x)$ does not match the reality, the results fall apart

Frequentist reasoning

- The parameters (μ) are unknown, but fixed
- Frequentists bound the probability that the observation $\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n Z_i$ deviates strongly from the true value
 - $\mathbb{P}(\mu \hat{\mu}_n \ge \varepsilon) \le \cdots$ or $\mathbb{P}(\hat{\mu}_n \mu \ge \varepsilon) \le \cdots$ or $\mathbb{P}(|\mu \hat{\mu}_n| \ge \varepsilon) \le \cdots$
- The random variable is $\hat{\mu}_n$, but not μ ; and the probability is over $\hat{\mu}_n$, but not μ

Frequentist vs. Bayesian reasoning

ML-A follows the Frequentist Reasoning

- Frequentist reasoning
 - The parameters (μ) are unknown, but fixed
 - Frequentists bound the probability that the observation $\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n Z_i$ deviates strongly from the true value
 - $\mathbb{P}(\mu \hat{\mu}_n \ge \varepsilon) \le \cdots$ or $\mathbb{P}(\hat{\mu}_n \mu \ge \varepsilon) \le \cdots$ or $\mathbb{P}(|\mu \hat{\mu}_n| \ge \varepsilon) \le \cdots$
 - The random variable is $\hat{\mu}_n$, but not μ ; and the probability is over $\hat{\mu}_n$, but not μ

Concentration of Measure Inequalities

Markov's Inequality

Theorem (Markov's inequality):

For any non-negative random variable Z and $\varepsilon > 0$

$$\mathbb{P}(Z \ge \varepsilon) \le \frac{\mathbb{E}[Z]}{\varepsilon}$$

• Proof

Define
$$W = \mathbb{I}(Z \ge \varepsilon) = \begin{cases} 1, & \text{If } Z \ge \varepsilon \\ 0, & \text{Otherwise'} \end{cases}$$
 then $W \le \frac{Z}{\varepsilon}$

W is a Bernoulli random variable, thus $\mathbb{P}(W=1)=\mathbb{E}[W]$

$$\mathbb{P}(Z \ge \varepsilon) = \mathbb{P}(W = 1) = \mathbb{E}[W] \le \mathbb{E}\left[\frac{Z}{\varepsilon}\right] = \frac{\mathbb{E}[Z]}{\varepsilon}$$

Application Example

• Our general worry is that $\widehat{L}(h,S) \ll L(h)$

• We want to bound $\mathbb{P}(L(h) - \hat{L}(h, S) \ge \varepsilon)$

• Bound the probability that $\hat{L}(h,S) \leq 0.2$ when L(h)=0.6, meaning that $L(h)-\hat{L}(h,S) \geq 0.4$

Application Example

• Let Z_1, \dots, Z_n Bernoulli i.i.d.:

$$\mathbb{P}(\mu - \hat{\mu}_n \ge \varepsilon)$$

$$= \mathbb{P}(-\hat{\mu}_n \ge \varepsilon - \mu)$$

$$= \mathbb{P}(1 - \hat{\mu}_n \ge \varepsilon + (1 - \mu))$$

$$\leq \frac{\mathbb{E}[1 - \hat{\mu}_n]}{\varepsilon + (1 - \mu)}$$

$$= \frac{1 - \mu}{\varepsilon + (1 - \mu)} \le \frac{1}{\varepsilon + 1}$$

- Concentration provided by Markov's inequality does not improve with n
- We used the upper bound $Z_i \leq 1$; we did not use independence

Markov: for $Z \ge 0$ $\mathbb{P}(Z \ge \varepsilon) \le \frac{\mathbb{E}[Z]}{\varepsilon}$

Chebyshev's Inequality

Theorem (Chebyshev's inequality)

For any $\varepsilon > 0$

$$\mathbb{P}(|Z - \mathbb{E}[Z]| \ge \varepsilon) \le \frac{Var[Z]}{\varepsilon^2}$$

Proof

$$\mathbb{P}(|Z - \mathbb{E}[Z]| \ge \varepsilon) = \mathbb{P}((Z - \mathbb{E}[Z])^2 \ge \varepsilon^2)$$

$$\le \frac{\mathbb{E}[(Z - \mathbb{E}[Z])^2]}{\varepsilon^2}$$

$$= \frac{Var[Z]}{\varepsilon^2}$$

Application example

• For $Z_1, ..., Z_n$ i.i.d.: $\mathbb{P}(|\mu - \hat{\mu}_n| \ge \varepsilon)$ $\leq \frac{Var[\hat{\mu}_n]}{\varepsilon^2}$ $= \frac{Var[\frac{1}{n}\sum_{i=1}^n Z_i]}{\varepsilon^2}$ $= \frac{Var[Z_1]}{\varepsilon^2}$

Chebyshev:

$$\mathbb{P}(|Z - \mathbb{E}[Z]| \ge \varepsilon) \le \frac{Var[Z]}{\varepsilon^2}$$

For i.i.d. r.v. Z_1 , ..., Z_n and const. c:

$$Var\left[\sum_{i=1}^{n} Z_i\right] = \sum_{i=1}^{n} Var[Z_i]$$

$$Var[cZ] = c^2 Var[Z]$$

• Concentration provided by Chebyshev's inequality improves at the rate of $\frac{1}{n}$

Hoeffding's inequality

Theorem (Hoeffding's inequality)

Let
$$Z_1,\dots,Z_n$$
 be i.i.d., $Z_i\in[0,1]$, and $\mathbb{E}[Z_i]=\mu$, then for any $\varepsilon>0$:
$$\mathbb{P}(\hat{\mu}_n-\mu\geq\varepsilon)\leq e^{-2n\varepsilon^2} \qquad \text{One-sided} \qquad \text{Hoeffding's} \\ \mathbb{P}(\mu-\hat{\mu}_n\geq\varepsilon)\leq e^{-2n\varepsilon^2} \qquad \text{inequalities}$$

Corollary (two-sided Hoeffding's inequality)

$$\mathbb{P}(|\mu - \hat{\mu}_n| \ge \varepsilon) \le \mathbb{P}(\hat{\mu}_n - \mu \ge \varepsilon) + \mathbb{P}(\mu - \hat{\mu}_n \ge \varepsilon) \le 2e^{-2n\varepsilon^2}$$

$$\uparrow$$
Union bound: $\mathbb{P}(A \cup B) \le \mathbb{P}(A) + \mathbb{P}(B)$

• By Hoeffding, $\hat{\mu}_n$ converges to μ exponentially fast in n!

Understanding the bound

•
$$\mathbb{P}(\mu - \hat{\mu}_n \ge \varepsilon) \le e^{-2n\varepsilon^2} = \delta$$

•
$$\Rightarrow \varepsilon = \sqrt{\frac{\ln \frac{1}{\delta}}{n}}$$
 (For two-sided replace $\frac{1}{\delta}$ by $\frac{2}{\delta}$)

•
$$\mathbb{P}\left(\mu - \hat{\mu}_n \ge \sqrt{\frac{\ln \frac{1}{\delta}}{2n}}\right) \le \delta$$

•
$$\mathbb{P}\left(\mu - \hat{\mu}_n \leq \sqrt{\frac{\ln \frac{1}{\delta}}{2n}}\right) \geq \underbrace{1 - \delta}_{\text{Confidence}}$$

- Probably Approximately Correct (PAC) learning framework
 - With probability at least $1-\delta$, $\hat{\mu}_n$ is approximately equal to μ
- The probability is over $\hat{\mu}_n$ (the random variable), not over μ (deterministic)!

•
$$\delta = 0$$

 $\mu \le \hat{\mu}_n + \infty$
• $\delta = 1$
 $\mu \le \hat{\mu}_n$

Different ways of using the bound

$$\delta=e^{-2n\varepsilon^2}$$
 - confidence $\varepsilon=\sqrt{\frac{\ln \frac{1}{\delta}}{n}}$ - precision $n=\frac{\ln \frac{1}{\delta}}{2\varepsilon^2}$ - sample size

•
$$\mathbb{P}(\mu - \hat{\mu}_n \ge \varepsilon) \le e^{-2n\varepsilon^2} = \delta$$

- We can fix any two parameters and get the value for the third one
 - δ : What is the probability that $\hat{\mu}_n$ underestimates μ by more than ε given that we have n samples? (n and ε are fixed and dictate δ)
 - ε : What is the maximal underestimation of μ by $\hat{\mu}_n$ that can be guaranteed with probability at least 1δ given a sample of size n? (n and δ are fixed and dictate ε)
 - n: How many samples do we need in order to guarantee that $\hat{\mu}_n$ does not underestimate μ by more than ε with probability at least 1δ ? (ε and δ are fixed and dictate n)

Proof of Hoeffding's inequality

- The inequality: $\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n}Z_{i}-\mu\geq\varepsilon\right)\leq e^{-2n\varepsilon^{2}}$
- Hoeffing's Lemma: For r.v. $Z \in [0,1]$ and $\lambda > 0$: $\mathbb{E}\left[e^{\lambda(Z-\mathbb{E}[Z])}\right] \leq e^{\frac{\lambda^2}{8}}$
- Proof of Hoeffding's inequality:

 λ^* is independent of Z_1, \dots, Z_n !

The straining is inequality:
$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n}Z_{i}-\mu\geq\varepsilon\right)=\mathbb{P}(\sum_{i=1}^{n}(Z_{i}-\mathbb{E}[Z_{i}])\geq n\varepsilon)$$
 Chernoff's bounding technique $(\lambda>0)$:
$$=\mathbb{P}\left(e^{\lambda\sum_{i=1}^{n}(Z_{i}-\mathbb{E}[Z_{i}])}\geq e^{\lambda n\varepsilon}\right)$$

$$(x\geq y \Leftrightarrow e^{\lambda x}\geq e^{\lambda y})$$
 Markov's inequality:
$$\leq \frac{\mathbb{E}\left[e^{\lambda\sum_{i=1}^{n}(Z_{i}-\mathbb{E}[Z_{i}])}\right]}{e^{\lambda n\varepsilon}}$$

$$=e^{-\lambda n\varepsilon}\mathbb{E}\left[\prod_{i=1}^{n}e^{\lambda(Z_{i}-\mathbb{E}[Z_{i}])}\right]$$
 Independence $(\mathbb{E}[XY]=\mathbb{E}[X]\mathbb{E}[Y])$:
$$=e^{-\lambda n\varepsilon}\prod_{i}^{n}\mathbb{E}\left[e^{\lambda(Z_{i}-\mathbb{E}[Z_{i}])}\right]$$

$$=e^{-\lambda n\varepsilon}\prod_{i=1}^{n}e^{\lambda^{2}}=e^{-n\left(\lambda\varepsilon-\frac{\lambda^{2}}{8}\right)}$$
 Minimize w.r.t. λ $(\lambda^{*}=4\varepsilon)$:
$$\leq e^{-2n\varepsilon^{2}}$$

$$\mathbb{P}(|\mu - \hat{\mu}_n| \ge \varepsilon) \le 2e^{-2n\varepsilon^2}$$

The importance of independence

 Construct an example of dependent identically distributed random variables $Z_1, ..., Z_n$, such that $Z_i \in \{0,1\}$, and $\mathbb{E}[Z_i] = \mu$, and for any n

$$\mathbb{P}\left(|\hat{\mu}_n - \mu| \ge \frac{1}{2}\right) = 1$$

Summary

- Means of independent random variables converge to their expectation
- Without independence this is not necessarily the case (home assignment)

• Hoeffding:
$$\mathbb{P}\left(\mu - \hat{\mu}_n \geq \sqrt{\frac{\ln\frac{1}{\delta}}{2n}}\right) \leq \delta$$

Probably Approximately Correct (PAC) learning