Fachbereich Informatik und Informationswissenschaft

Universität Konstanz

Skriptum

zur Vorlesung

Mathematik: Diskrete Strukturen

gehalten im Sommersemester 2015

von

Sven Kosub

Inhaltsverzeichnis

1	Kor	nbinatorik	1
	1.1	Grundregeln des Abzählens	1
	1.2	Einfache Urnenmodelle	3
Li	terat	curverzeichnis	F.

vi Inhaltsverzeichnis

Kombinatorik 1

Der Schwerpunkt in diesem einführenden Kapitel über Kombinatorik liegt auf dem Abzählen endlicher Mengen.

1.1 Grundregeln des Abzählens

Lemma 1.1 Es seien A und B endliche Mengen. Es gibt genau dann eine Bijektion $f: A \to B$, wenn ||A|| = ||B|| gilt.

Beweis: Siehe Satz 3.19 (aus dem Kapitel über Funktionen und Abbildungen im Skriptum *Mathematische Grundlagen der Informatik*).

Lemma 1.2 (Summenregel) Es seien A_1, \ldots, A_n endliche, paarweise disjunkte Mengen. Dann gilt:

$$||A_1 \cup \cdots \cup A_n|| = \sum_{j=1}^n ||A_j||$$

Beweis: Wegen der paarweisen Disjunktheit der Mengen kommt jedes Element aus $A_1 \cup \cdots \cup A_n$ in genau einer Menge A_j vor.

Lemma 1.3 (Produktregel) Es seien A_1, \ldots, A_n endliche Mengen. Dann gilt:

$$||A_1 \times \cdots \times A_n|| = \prod_{j=1}^n ||A_j||$$

Beweis: Wir beweisen die Aussage mittels Induktion über die Anzahl n der Mengen.

- Induktionsanfang: Für n=1 ist die Aussage offensichtlich.
- Induktionsschritt: Es sei n > 1. Weiterhin seien A_1, \ldots, A_n endliche Mengen. Wir setzen

$$A^* =_{\operatorname{def}} A_1 \times \dots \times A_{n-1}$$

$$B_y =_{\operatorname{def}} \{ (x_1, \dots, x_{n-1}, y) \mid (x_1, \dots, x_{n-1}) \in A^* \}$$
 für $y \in A_n$

Für die so definierten Mengen gelten folgende Eigenschaften:

- (i) Die Mengenfamilie $\{ B_y \mid y \in A_n \}$ ist eine Partition von $A_1 \times \cdots \times A_n$.
- (ii) Für jedes $y \in A_n$ ist die Funktion

$$f_y: B_y \to A^*: (x_1, \dots, x_{n-1}, y) \mapsto (x_1, \dots, x_{n-1})$$

eine Bijektion, d.h. $||B_y|| = ||A^*||$ für alle $y \in A_n$ (nach Lemma 1.1).

Damit erhalten wir:

$$\|A_1 \times \cdots \times A_n\| = \left\| \bigcup_{y \in A_n} B_y \right\|$$
 (nach Eigenschaft (i))
$$= \sum_{y \in A_n} \|B_y\|$$
 (nach Lemma 1.2 und Eigenschaft (i))
$$= \sum_{y \in A_n} \|A^*\|$$
 (nach Lemma 1.1 und Eigenschaft (ii))
$$= \|A^*\| \cdot \|A_n\|$$

$$= \left(\prod_{j=1}^{n-1} \|A_j\| \right) \cdot \|A_n\|$$
 (nach Induktionsvoraussetzung)
$$= \prod_{j=1}^{n} \|A_j\|$$

Damit ist das Lemma bewiesen.

Lemma 1.4 (Potenzregel) Es seien A und B endliche Mengen mit ||A|| = m und ||B|| = n. Dann existieren genau n^m Funktionen $f: A \to B$.

Beweis: Nach Lemma 1.1 dürfen wir $A = \{1, ..., m\}$ ohne Beeinträchtigung der Allgemeinheit annehmen. Jeder Funktion $f: A \to B$ kann nun eineindeutig (injektiv) ein Tupel $(f(1), ..., f(m)) \in B^m$ zugeordnet werden. Außerdem entspricht jedes Tupel (die Wertetabelle) $(y_1, ..., y_m) \in B^m$ einer Funktion $f: A \to B: j \mapsto y_j$. Damit ist die Zuordnung sowohl injektiv als auch surjektiv, also eine Bijektion. Aus Lemma 1.1 und Produktregel (Lemma 1.3) folgt somit

$$\|\{\ f\mid f:A\to B\ \}\|=\|B^m\|=\|B\|^m=n^m.$$

Damit ist das Lemma bewiesen.

Beispiel: Wie viele boolesche Funktionen mit n Variablen gibt es? Die Antwort lautet $\|\{f \mid f : \{0,1\}^n \to \{0,1\}\}\| = 2^{2^n}$.

Korollar 1.5 Für endliche Mengen A mit ||A|| = n gilt $||\mathcal{P}(A)|| = 2^n$.

Beweis: Wir konstruieren eine Bijektion zwischen $\mathcal{P}(A)$ und der Menge der Funktionen $f: A \to \{0,1\}$. Dazu definieren wir für eine Menge $B \in \mathcal{P}(A)$ die Funktion:

$$c_B: A \to \{0,1\}: x \mapsto \begin{cases} 1 & \text{falls } x \in B \\ 0 & \text{falls } x \notin B \end{cases}$$

Diese Zuordnung ist offensichtlich eine Bijektion zwischen $\mathcal{P}(A)$ und der Menge der Funktionen $f: A \to \{0,1\}$. Nach der Potenzregel (Lemma 1.4) und Lemma 1.1 gilt folglich

$$\|\mathcal{P}(A)\| = \|\{ f \mid f : A \to \{0, 1\} \}\| = 2^n.$$

Damit ist das Korollar bewiesen.

Die im Beweis von Korollar 1.5 angegebenen Funktionen haben einen Namen: Für eine Menge $B \subseteq A$ heißt c_B die *charakteristische Funktion* von B.

1.2 Einfache Urnenmodelle

Urnenmodelle stellen ein typisches Szenario für kombinatorische Problemstellungen dar. Die einfachste Situation ist die folgende: In einer Urne liegen n unterscheidbare Kugeln, von den k Kugel gezogen werden dürfen. Die zu beantwortende Frage ist dann: Wie viele Möglichkeiten gibt es diese k Kugeln zu ziehen? Zur Präzisierung des Szenarios werden Unterschiede danach gemacht, ob

- die Reihenfolge, in der die Kugeln gezogen werden, eine Rolle spielt,
- gezogene Kugeln wieder zurückgelegt werden oder nicht.

Damit ergeben sich vier verschiedene Szenarios.

Theorem 1.6 Die Anzahl der Möglichkeiten, aus einer Urne mit n Kugeln k Kugeln auszuwählen, ist durch folgende Tabelle gegeben:

	mit Zurücklegen	ohne Zurücklegen
mit Reihenfolge	n^k	$n^{\underline{k}} =_{\operatorname{def}} \frac{n!}{(n-k)!}$
ohne Reihenfolge	$\binom{n+k-1}{k}$	$\binom{n}{k} =_{\text{def}} \frac{n!}{k!(n-k)!}$

Die im Theorem mitdefinierten Größen $n^{\underline{k}}$ und $\binom{n}{k}$ heißen fallende Faktorielle von n der Länge k sowie Binomialkoeffizient ("n über k").

Beispiel:	Wir	geben	für	jedes	der	vier	Szenarien	Beispiele an:
-----------	-----	-------	-----	-------	-----	------	-----------	---------------

	mit Zurücklegen	ohne Zurücklegen
	PIN-Codes:	Wettkämpfe:
mit Reihenfolge	• $n = 10$ Ziffern	$\bullet n = 10 \text{ Starter}$
(geordnet)	• $k = 4$ Stellen	• $k = 3$ Medaillen
	• 10.000 Codes	• 720 Siegerehrungen
	Wahlen:	Lotto:
ohne Reihenfolge	• $n = 3$ Kandidaten	• $n = 49 \text{ Kugeln}$
(ungeordnet)	• $k = 100 \text{ Wähler}$	$\bullet k = 6 \text{ Kugeln}$
	• 5.151 Wahlausgänge	• 13.983.816 Ziehungen

Beweis: Wir beweisen alle Fälle einzeln, aber aufeinander aufbauend:

- Ziehen mit Zurücklegen, mit Reihenfolge: Jede Auswahlmöglichkeit entspricht einer Funktion $f: \{1, \ldots, k\} \to \{1, \ldots, n\}$, wobei f(i) genau der Kugel entspricht, die als i-te Kugel gezogen wurde. Nach der Potenzregel (Lemma 1.4) gibt es somit n^k Möglichkeiten.
- Ziehen ohne Zurücklegen, mit Reihenfolge: Für die erste gezogene Kugel gibt es n Möglichkeiten, für die zweite gezogene Kugel gibt es n-1 Möglichkeiten. Für die k-te gezogene Kugel ($k \le n$) gibt es mithin noch n-k+1 Möglichkeiten. Insgesamt gibt es damit

$$n \cdot (n-1) \cdot \dots \cdot (n-k+1) = \frac{n!}{(n-k)!} = n^{\underline{k}}$$

Möglichkeiten.

• Ziehen ohne Zurücklegen, ohne Reihenfolge: Mit Berücksichtigung der Reihenfolge gibt es $\frac{n!}{(n-k)!}$ Auswahlmöglichkeiten. Wenn die Reihenfolge keine Rolle mehr spielt, zählen alle Auswahlfolgen, bei denen die gleichen k Kugeln gezogen wurden, nur noch als eine Auswahlmöglichkeit. Dies sind gerade k! viele. Damit gibt es insgesamt

$$\frac{n!}{(n-k)!} \cdot \frac{1}{k!} = \frac{n!}{k!(n-k)!} = \binom{n}{k}$$

Möglichkeiten.

• Ziehen mit Zurücklegen, ohne Reihenfolge: Da jede Kugel mehrmals gezogen werden kann, die Reihenfolge jedoch keine Rolle spielt, ist nur wichtig, wie oft eine Kugel gezogen wird. Es sei also (a_1, \ldots, a_n) ein Tupel mit den entsprechenden Anzahlen, wobei a_j gerade angibt, wie oft die Kugel j gezogen wird. Für ein Anzahltupel (a_1, \ldots, a_n) muss nun gelten:

(i)
$$a_j \in \{0, \dots, k\}$$
 für alle $j \in \{1, \dots, n\}$

(ii)
$$a_1 + \cdots + a_n = k$$

Wir müssen nun zählen, wie viele derartige Tupel es geben kann. Dazu repäsentieren wir die Tupel in einer anderen Weise, die es uns ermöglicht, das Szenario zu wechseln. Wir verwenden k-mal das Symbol * und (n-1)-mal das Symbol |. Ein Anzahltupel (a_1, \ldots, a_n) wird nun (injektiv) durch die Symbolfolge

$$\underbrace{**\ldots*}_{a_1} |\underbrace{**\ldots*}_{a_2} |\ldots |\underbrace{**\ldots*}_{a_n}$$

repräsentiert. Umgekehrt entspricht auch jede Symbolfolge, die k-mal das Symbol * und (n-1)-mal das Symbol | enthält, einem Anzahltupel mit obigen Eigenschaften. Demzufolge ist die Repräsentierung eine Bijektion zwischen der Menge der Anzahltupel und der Menge der Symbolfolgen. Die Anzahl möglicher Symbolfolgen zu bestimmen, entspricht aber gerade dem Ziehen von k Positionen für das Symbol * aus n+k-1 möglichen Positionen ohne Zurücklegen und ohne Reihenfolge. Mithin gibt es insgesamt

$$\binom{n+k-1}{k}$$

Möglichkeiten.

Damit ist das Theorem bewiesen.

Literaturverzeichnis

- [GKP94] Ronald L. Graham, Donald E. Knuth und Oren Patashnik. Concrete Mathematics: A Foundation for Computer Science. 2. Auflage. Addison-Wesley Longman, Amsterdam, 1994.
- [KP09] Bernd Kreußler und Gerhard Pfister. *Mathematik für Informatiker*. Springer-Verlag, Berlin, 2009.
- [MM06] Christoph Meinel und Martin Mundhenk. Mathematische Grundlagen der Informatik. Mathematisches Denken und Beweisen. Eine Einführung. 3., überarbeitete und erweiterte Auflage. B. G. Teubner Verlag, Wiesbaden, 2006.
- [Ste07] Angelika Steger. Diskrete Strukturen. Band 1: Kombinatorik-Graphentheorie-Algebra. 2. Auflage. Springer-Verlag, Berlin, 2007.
- [SS02] Thomas Schickinger und Angelika Steger. Diskrete Strukturen. Band 2: Wahrscheinlichkeitstheorie und Statistik. Springer-Verlag, Berlin, 2002.
- [Wag03] Klaus W. Wagner. Theoretische Informatik. Eine kompakte Einführung. 2. überarbeitete Auflage. Springer-Verlag, Berlin, 2003.
- [WHK04] Manfred Wolff, Peter Hauck und Wolfgang Küchlin. *Mathematik für Informatik und Bioinformatik*. Springer-Verlag, Berlin, 2004.
- [Wil03] Herbert S. Wilf. generatingfunctionology. 3. Auflage. CRC Press, Boca Raton, FL, 2005.

8 Literaturverzeichnis