Pandas

```
In [1]: import pandas as pd
import numpy as np
```

1. Create any Series and print the output

2. Create any dataframe of 10x5 with few nan values and print the output

Out[3]:

```
Α
        В
           C
               D
                   Ε
                      F
                          G
                              Н
                                       J
  0
      5.0
                  18 24
           6 12
                          6
                             24
                                  6 NaN
0
  1
                     25
     NaN
              13
                  19
                          7
                             25
                                  7
                                    NaN
  2
     NaN
              14
                  20
                     26
                          8
                             26
                                  8 NaN
  3
     NaN
              15
                  21
                     27
                          9
                             27
                                    NaN
          10 16 22 28 10 28
                                 10 NaN
     NaN
```

```
In [4]: df.shape
```

Out[4]: (5, 10)

3.Display top 7 and last 6 rows and print the output

```
In [5]: df1=pd.concat([df,df])
    ind=pd.Series(range(10))
    df1=df1.set_index(ind)
    print(df1.head(7))
    df1.tail(6)
```

```
C
                  D
                      Ε
                                         Ι
                                             J
   Α
         В
                           F
                                G
                                    Н
0
   0
       5.0
             6
                 12
                     18
                          24
                                6
                                   24
                                         6 NaN
                     19
                                7
1
   1
      NaN
             7
                 13
                          25
                                   25
                                         7 NaN
2
                 14
                     20
                          26
                                8
   2
      NaN
             8
                                   26
                                         8 NaN
3
   3
      NaN
             9
                 15
                     21
                          27
                                9
                                   27
                                         9 NaN
4
                 16
                     22
                          28
   4
      NaN
                               10
                                   28
                                        10 NaN
            10
5
   0
       5.0
             6
                 12
                     18
                          24
                                6
                                   24
                                         6 NaN
6
                 13
                     19
                          25
                                7
                                   25
   1
      NaN
             7
                                         7 NaN
```

Out[5]:

	Α	В	С	D	Е	F	G	Н	I	J
4	4	NaN	10	16	22	28	10	28	10	NaN
5	0	5.0	6	12	18	24	6	24	6	NaN
6	1	NaN	7	13	19	25	7	25	7	NaN
7	2	NaN	8	14	20	26	8	26	8	NaN
8	3	NaN	9	15	21	27	9	27	9	NaN
9	4	NaN	10	16	22	28	10	28	10	NaN

4. Fill with a constant value and print the output

```
In [6]: df2=df1.fillna(value=7)
df2
```

Out[6]:

	Α	В	С	D	E	F	G	Н	I	J	
0	0	5.0	6	12	18	24	6	24	6	7.0	
1	1	7.0	7	13	19	25	7	25	7	7.0	
2	2	7.0	8	14	20	26	8	26	8	7.0	
3	3	7.0	9	15	21	27	9	27	9	7.0	
4	4	7.0	10	16	22	28	10	28	10	7.0	
5	0	5.0	6	12	18	24	6	24	6	7.0	
6	1	7.0	7	13	19	25	7	25	7	7.0	
7	2	7.0	8	14	20	26	8	26	8	7.0	
8	3	7.0	9	15	21	27	9	27	9	7.0	
9	4	7.0	10	16	22	28	10	28	10	7.0	

5. Drop the column with missing values and print the output

In [7]: df3=df1.dropna(axis=1)
 df3

Out[7]:

	Α	С	D	E	F	G	Н	I
0	0	6	12	18	24	6	24	6
1	1	7	13	19	25	7	25	7
2	2	8	14	20	26	8	26	8
3	3	9	15	21	27	9	27	9
4	4	10	16	22	28	10	28	10
5	0	6	12	18	24	6	24	6
6	1	7	13	19	25	7	25	7
7	2	8	14	20	26	8	26	8
8	3	9	15	21	27	9	27	9
9	4	10	16	22	28	10	28	10

6. Drop the row with missing values and print the output

```
In [8]: df4=df1.dropna()
df4
```

Out[8]:

ABCDEFGHIJ

7. To check the presence of missing values in your dataframe

In [9]: df1.isna()

Out[9]:

	Α	В	С	D	E	F	G	н	ı	J
0	False	True								
1	False	True	False	True						
2	False	True	False	True						
3	False	True	False	True						
4	False	True	False	True						
5	False	True								
6	False	True	False	True						
7	False	True	False	True						
8	False	True	False	True						
9	False	True	False	True						

8. Use operators and check the condition and print the output

Out[10]:

	Α	В	С	D	Е	F	G	Н	I	J
0	NaN	NaN	NaN	12	18	24	NaN	24	NaN	NaN
1	NaN	NaN	NaN	13	19	25	NaN	25	NaN	NaN
2	NaN	NaN	NaN	14	20	26	NaN	26	NaN	NaN
3	NaN	NaN	9.0	15	21	27	9.0	27	9.0	NaN
4	NaN	NaN	10.0	16	22	28	10.0	28	10.0	NaN
5	NaN	NaN	NaN	12	18	24	NaN	24	NaN	NaN
6	NaN	NaN	NaN	13	19	25	NaN	25	NaN	NaN
7	NaN	NaN	NaN	14	20	26	NaN	26	NaN	NaN
8	NaN	NaN	9.0	15	21	27	9.0	27	9.0	NaN
9	NaN	NaN	10.0	16	22	28	10.0	28	10.0	NaN

```
df6=df1[df2==7]
In [11]:
          df6
Out[11]:
                Α
                     В
                           С
                                D
                                      Ε
                                           F
                                                G
                                                     Н
                                                           ı
              NaN
                   NaN
                        NaN
                              NaN
                                   NaN
                                        NaN
                                              NaN
                                                   NaN
           0
                                                        NaN
                                                              NaN
              NaN
                                        NaN
                                               7.0
                   NaN
                          7.0
                              NaN
                                   NaN
                                                   NaN
                                                         7.0
                                                              NaN
              NaN
                   NaN
                         NaN
                              NaN
                                   NaN
                                        NaN
                                              NaN
                                                   NaN
                                                        NaN
                                                              NaN
              NaN
                   NaN
                         NaN
                              NaN
                                   NaN
                                        NaN
                                              NaN
                                                   NaN
                                                        NaN
                                                              NaN
                   NaN
                        NaN
                              NaN
                                   NaN
                                        NaN
                                              NaN
                                                        NaN
                                                              NaN
              NaN
                                                   NaN
              NaN
                   NaN
                        NaN
                              NaN
                                   NaN
                                        NaN
                                              NaN
                                                   NaN
                                                        NaN
                                                              NaN
              NaN
                   NaN
                          7.0
                              NaN
                                   NaN
                                        NaN
                                               7.0
                                                   NaN
                                                          7.0
                                                              NaN
              NaN
                   NaN
                         NaN
                              NaN
                                   NaN
                                        NaN
                                              NaN
                                                   NaN
                                                        NaN
                                                              NaN
              NaN
                   NaN
                         NaN
                              NaN
                                   NaN
                                        NaN
                                              NaN
                                                   NaN
                                                        NaN
                                                              NaN
              NaN NaN
                        NaN
                              NaN
                                   NaN
                                        NaN
                                              NaN
                                                   NaN
                                                        NaN
                                                              NaN
            9. Display your output using loc and iloc, row and column heading
In [12]:
          df.loc["A":"J"]
Out[12]:
             ABCDEFGHIJ
          df1.loc[0:5]
In [13]:
Out[13]:
                       C
                           D
              Α
                   В
                               Ε
                                  F
                                      G
                                         Н
                                                   J
              0
                  5.0
                          12
                                 24
                                         24
           0
                              18
                                      6
                                              6
                                                NaN
                                 25
                                      7
                                         25
           1
              1
                 NaN
                          13
                              19
                                                NaN
                                              7
              2
                              20
                                 26
                                         26
           2
                 NaN
                          14
                                      8
                                                NaN
              3
                          15
                              21
                                 27
                                         27
           3
                 NaN
                       9
                                      9
                                              9
                                                NaN
                      10
                          16
                              22
                                 28
                                     10
                                         28
                                             10
                 NaN
                                                NaN
           5
              0
                  5.0
                       6
                          12
                              18 24
                                      6
                                         24
                                                NaN
In [14]:
          df1.iloc[6:9]
Out[14]:
              Α
                     C
                              Ε
                                   G
                   В
                          D
                                        Н
                                                 J
```

1

6

7 2

NaN

NaN

NaN

7 13

14

15

19

20

21

25

26

27

8 26 8

9 27

25 7

NaN

NaN

NaN

In [15]: df1.describe()

Out[15]:

	Α	В	С	D	E	F	G	Н	
count	10.000000	2.0	10.000000	10.000000	10.000000	10.000000	10.000000	10.000000	10.000
mean	2.000000	5.0	8.000000	14.000000	20.000000	26.000000	8.000000	26.000000	8.000
std	1.490712	0.0	1.490712	1.490712	1.490712	1.490712	1.490712	1.490712	1.490
min	0.000000	5.0	6.000000	12.000000	18.000000	24.000000	6.000000	24.000000	6.000
25%	1.000000	5.0	7.000000	13.000000	19.000000	25.000000	7.000000	25.000000	7.000
50%	2.000000	5.0	8.000000	14.000000	20.000000	26.000000	8.000000	26.000000	8.000
75%	3.000000	5.0	9.000000	15.000000	21.000000	27.000000	9.000000	27.000000	9.000
max	4.000000	5.0	10.000000	16.000000	22.000000	28.000000	10.000000	28.000000	10.000
-									-

MINI-PROJECT: Analyse the given dataset (refer to the link in whatsapp group description) and perform basic analysis using numpy and pandas

In [16]: dat1=pd.read_csv("2015 - 2015.csv")
 dat1

Out[16]:

	Country	Region	Happiness Rank	Happiness Score	Standard Error	Economy (GDP per Capita)	Family	Health (Life Expectancy)	F
0	Switzerland	Western Europe	1	7.587	0.03411	1.39651	1.34951	0.94143	-
1	Iceland	Western Europe	2	7.561	0.04884	1.30232	1.40223	0.94784	1
2	Denmark	Western Europe	3	7.527	0.03328	1.32548	1.36058	0.87464	ı
3	Norway	Western Europe	4	7.522	0.03880	1.45900	1.33095	0.88521	ı
4	Canada	North America	5	7.427	0.03553	1.32629	1.32261	0.90563	ı
153	Rwanda	Sub- Saharan Africa	154	3.465	0.03464	0.22208	0.77370	0.42864	ı
154	Benin	Sub- Saharan Africa	155	3.340	0.03656	0.28665	0.35386	0.31910	ı
155	Syria	Middle East and Northern Africa	156	3.006	0.05015	0.66320	0.47489	0.72193	1
156	Burundi	Sub- Saharan Africa	157	2.905	0.08658	0.01530	0.41587	0.22396	
157	Togo	Sub- Saharan Africa	158	2.839	0.06727	0.20868	0.13995	0.28443	1

158 rows × 12 columns

In [24]: dat1.head()

Out[24]:

	Country	Region	Happiness Rank	Happiness Score	Standard Error	Economy (GDP per Capita)	Family	Health (Life Expectancy)	Free
0	Switzerland	Western Europe	1	7.587	0.03411	1.39651	1.34951	0.94143	0.6
1	Iceland	Western Europe	2	7.561	0.04884	1.30232	1.40223	0.94784	0.6
2	Denmark	Western Europe	3	7.527	0.03328	1.32548	1.36058	0.87464	0.6
3	Norway	Western Europe	4	7.522	0.03880	1.45900	1.33095	0.88521	0.6
4	Canada	North America	5	7.427	0.03553	1.32629	1.32261	0.90563	0.6
<									>

In [25]: dat1.tail()

Out[25]:

	Country	Region	Happiness Rank	Happiness Score	Standard Error	Economy (GDP per Capita)	Family	Health (Life Expectancy)	Free
153	Rwanda	Sub- Saharan Africa	154	3.465	0.03464	0.22208	0.77370	0.42864	0.5
154	Benin	Sub- Saharan Africa	155	3.340	0.03656	0.28665	0.35386	0.31910	0.4
155	Syria	Middle East and Northern Africa	156	3.006	0.05015	0.66320	0.47489	0.72193	0.1
156	Burundi	Sub- Saharan Africa	157	2.905	0.08658	0.01530	0.41587	0.22396	0.1
157	Togo	Sub- Saharan Africa	158	2.839	0.06727	0.20868	0.13995	0.28443	0.3
<									>

In [26]: dat1.describe()

Out[26]:

	Happiness Rank	Happiness Score	Standard Error	Economy (GDP per Capita)	Family	Health (Life Expectancy)	Freedom	((
count	158.000000	158.000000	158.000000	158.000000	158.000000	158.000000	158.000000	
mean	79.493671	5.375734	0.047885	0.846137	0.991046	0.630259	0.428615	
std	45.754363	1.145010	0.017146	0.403121	0.272369	0.247078	0.150693	
min	1.000000	2.839000	0.018480	0.000000	0.000000	0.000000	0.000000	
25%	40.250000	4.526000	0.037268	0.545808	0.856823	0.439185	0.328330	
50%	79.500000	5.232500	0.043940	0.910245	1.029510	0.696705	0.435515	
75%	118.750000	6.243750	0.052300	1.158448	1.214405	0.811013	0.549092	
max	158.000000	7.587000	0.136930	1.690420	1.402230	1.025250	0.669730	
€								>

In [28]:

dat1.shape

Out[28]: (158, 12)

In [29]: dat1.size

Out[29]: 1896

In [30]: dat1.isna()

Out[30]:

	Country	Region	Happiness Rank	Happiness Score	Standard Error	Economy (GDP per Capita)	Family	Health (Life Expectancy)	Freedo
0	False	False	False	False	False	False	False	False	Fa
1	False	False	False	False	False	False	False	False	Fa
2	False	False	False	False	False	False	False	False	Fa
3	False	False	False	False	False	False	False	False	Fa
4	False	False	False	False	False	False	False	False	Fa
153	False	False	False	False	False	False	False	False	Fa
154	False	False	False	False	False	False	False	False	Fa
155	False	False	False	False	False	False	False	False	Fa
156	False	False	False	False	False	False	False	False	Fa
157	False	False	False	False	False	False	False	False	Fa

158 rows × 12 columns

In [37]: dat1.dropna()

Out[37]:

	Country	Region	Happiness Rank	Happiness Score	Standard Error	Economy (GDP per Capita)	Family	Health (Life Expectancy)	F
0	Switzerland	Western Europe	1	7.587	0.03411	1.39651	1.34951	0.94143	(
1	Iceland	Western Europe	2	7.561	0.04884	1.30232	1.40223	0.94784	(
2	Denmark	Western Europe	3	7.527	0.03328	1.32548	1.36058	0.87464	(
3	Norway	Western Europe	4	7.522	0.03880	1.45900	1.33095	0.88521	(
4	Canada	North America	5	7.427	0.03553	1.32629	1.32261	0.90563	(
153	Rwanda	Sub- Saharan Africa	154	3.465	0.03464	0.22208	0.77370	0.42864	ı
154	Benin	Sub- Saharan Africa	155	3.340	0.03656	0.28665	0.35386	0.31910	ı
155	Syria	Middle East and Northern Africa	156	3.006	0.05015	0.66320	0.47489	0.72193	ı
156	Burundi	Sub- Saharan Africa	157	2.905	0.08658	0.01530	0.41587	0.22396	
157	Togo	Sub- Saharan Africa	158	2.839	0.06727	0.20868	0.13995	0.28443	1

158 rows × 12 columns

In [32]: dat2=pd.read_csv("fiat500_VehicleSelection_Dataset - fiat500_VehicleSelection
dat2

Out[32]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	
0	1.0	lounge	51.0	882.0	25000.0	1.0	44.907242	8.611559
1	2.0	pop	51.0	1186.0	32500.0	1.0	45.666359	12.2418
2	3.0	sport	74.0	4658.0	142228.0	1.0	45.503300	11.4 ⁻
3	4.0	lounge	51.0	2739.0	160000.0	1.0	40.633171	17.63460
4	5.0	pop	73.0	3074.0	106880.0	1.0	41.903221	12.4956
1544	NaN	NaN	NaN	NaN	NaN	NaN	NaN	le
1545	NaN	NaN	NaN	NaN	NaN	NaN	NaN	CC
1546	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Null va
1547	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
1548	NaN	NaN	NaN	NaN	NaN	NaN	NaN	se

1549 rows × 11 columns

In [33]: dat2.head()

Out[33]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon
0	1.0	lounge	51.0	882.0	25000.0	1.0	44.907242	8.611559868
1	2.0	рор	51.0	1186.0	32500.0	1.0	45.666359	12.24188995
2	3.0	sport	74.0	4658.0	142228.0	1.0	45.503300	11.41784
3	4.0	lounge	51.0	2739.0	160000.0	1.0	40.633171	17.63460922
4	5.0	pop	73.0	3074.0	106880.0	1.0	41.903221	12.49565029
<								>

In [34]: dat2.tail() Out[34]: price ID model engine_power age_in_days km previous_owners lat lon 1544 NaN NaN NaN NaN NaN 5 NaN NaN length 1545 NaN NaN NaN NaN NaN NaN NaN concat Ionprice Null 1546 NaN NaN NaN NaN NaN NaN NaN NO values 1 1547 NaN NaN NaN NaN NaN NaN NaN find 1548 NaN search NaN NaN NaN NaN NaN NaN In [35]: dat2.describe() Out[35]: ID engine_power age_in_days previous_owners lat 1538.000000 1538.000000 1538.000000 1538.000000 1538.000000 1538.000000 count 769.500000 51.904421 1650.980494 53396.011704 mean 1.123537 43.541361 std 444.126671 3.988023 1289.522278 40046.830723 0.416423 2.133518 min 1.000000 51.000000 366.000000 1232.000000 1.000000 36.855839 51.000000 25% 385.250000 670.000000 20006.250000 1.000000 41.802990 50% 769.500000 51.000000 1035.000000 39031.000000 1.000000 44.394096 75% 1153.750000 51.000000 2616.000000 79667.750000 1.000000 45.467960 1538.000000 77.000000 4658.000000 235000.000000 4.000000 46.795612 max

In [36]: dat2.shape

Out[36]: (1549, 11)

In [38]: dat2.size

Out[38]: 17039

In [40]: dat2.isna()

Out[40]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price	U
0	False	False	False	False	False	False	False	False	False	
1	False	False	False	False	False	False	False	False	False	
2	False	False	False	False	False	False	False	False	False	
3	False	False	False	False	False	False	False	False	False	
4	False	False	False	False	False	False	False	False	False	
1544	True	True	True	True	True	True	True	False	False	
1545	True	True	True	True	True	True	True	False	False	
1546	True	True	True	True	True	True	True	False	False	
1547	True	True	True	True	True	True	True	False	False	
1548	True	True	True	True	True	True	True	False	False	

1549 rows × 11 columns

In [41]: dat2.fillna(value=4)

Out[41]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	
0	1.0	lounge	51.0	882.0	25000.0	1.0	44.907242	8.6115598
1	2.0	рор	51.0	1186.0	32500.0	1.0	45.666359	12.241889
2	3.0	sport	74.0	4658.0	142228.0	1.0	45.503300	11.417
3	4.0	lounge	51.0	2739.0	160000.0	1.0	40.633171	17.634609
4	5.0	pop	73.0	3074.0	106880.0	1.0	41.903221	12.495650
1544	4.0	4	4.0	4.0	4.0	4.0	4.000000	len
1545	4.0	4	4.0	4.0	4.0	4.0	4.000000	con
1546	4.0	4	4.0	4.0	4.0	4.0	4.000000	Null valı
1547	4.0	4	4.0	4.0	4.0	4.0	4.000000	1
1548	4.0	4	4.0	4.0	4.0	4.0	4.000000	sea

1549 rows × 11 columns

In []:			