CS 2009 – Design an analysis of Algorithm

Week-2

What is the specification of algorithm?

We can specify an algorithm by 3 types:

- Using Natural language
- Pseudocode
- Flowchart.

Analysis of an Algorithm

What is analysis of an algorithm?

- Algorithm analysis is an important part of a computational complexity theory.
- There two types of analysis:
 - 1.priori
 - 2.posteriori
- Priori Analysis is the theoretical estimation of resources required.
- On the other hand posterior Analysis done after implement the algorithm on a target machine. In a posteriori analysis, we analyze actual statistics about the algorithms consumption of time and space, while it is executing.

Strengthening the Informal Definition

Important Features:

- Finiteness: Algorithm should end in finite amount of steps
- Definiteness: each instruction should be clear
- Input: valid input clearly specified
- Output: single/multiple valid output
- Effectiveness: steps are sufficiently simple and basic
- Generality: the algorithm should be applicable to all problems of a similar form

Algorithm analysis

Objective:

- Performance analysis is the criteria for judging the algorithm.
- It have direct relationship to efficiency.
- When we solve a problem ,there may be more then one algorithm to solve a problem, through analysis we find the run time of an algorithms and we choose the best algorithm which takes lesser run time.

Running Time

- Most algorithms transform input objects into output objects.
- The running time of and algorithm typically grows with the input size.
- We focus on the <u>worst case</u> <u>running time</u>.
 - Easier to analyze
 - Crucial to applications such as games, finance and robotics

Experimental Studies

- Write a program implementing the algorithm
- Run the program with inputs of varying size and composition
- Use a method like (tic; toc; in Matlab) to get an accurate measure of the actual running time
- Plot the results

Limitations of Experiments

- It is necessary to implement the algorithm, which may be difficult
- Results may not be indicative of the running time on other inputs not included in the experiment.
- In order to compare two algorithms, the same hardware and software environments must be used

Theoretical Analysis

- A STATE OF THE STA
- Uses a high-level description of the algorithm (Pseudo code) instead of an implementation
- Characterizes running time as a function of the input size, n.
- Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment

Asymptotic Notations

⊕-notation

For function g(n), we define $\Theta(g(n))$, big-Theta of n, as the set:

```
\Theta(g(n)) = \{f(n): \exists positive constants c_1, c_2, and n_0, such that \forall n \geq n_0, we have 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \}
```


Intuitively: Set of all functions that have the same $rate\ of\ growth$ as g(n).

g(n) is an asymptotically tight bound for f(n).

Θ-notation

Math:

```
\Theta(g(n)) = \{ f(n) : \text{there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}
```

Engineering:

- Drop low-order terms; ignore leading constants.
- Example: $3n^3 + 90n^2 5n + 6046 = \Theta(n^3)$

O-notation

For function g(n), we define O(g(n)), big-O of n, as the set:

$$O(g(n)) = \{f(n) :$$

 \exists positive constants c and n_{0} ,
such that $\forall n \geq n_{0}$,
we have $0 \leq f(n) \leq cg(n)$

Intuitively: Set of all functions whose rate of growth is the same as or lower than that of g(n). g(n) is an asymptotic upper bound for f(n).

 $f(n) = \Theta(g(n)) \Rightarrow f(n) = O(g(n)).$ $\Theta(g(n)) \subset O(g(n)).$

Ω -notation

For function g(n), we define $\Omega(g(n))$, big-Omega of n, as the set:

$$\Omega(g(n)) = \{f(n) :$$
 \exists positive constants c and $n_{0,}$ such that $\forall n \geq n_{0}$,
we have $0 \leq cg(n) \leq f(n)\}$

Intuitively: Set of all functions whose rate of growth is the same as or higher than that of g(n).

g(n) is an asymptotic lower bound for f(n).

$$f(n) = \Theta(g(n)) \Rightarrow f(n) = \Omega(g(n)).$$

 $\Theta(g(n)) \subset \Omega(g(n)).$

Relations Between Θ , O, Ω

Relations Between Θ , Ω , O


```
Theorem: For any two functions g(n) and f(n), f(n) = \Theta(g(n)) iff f(n) = O(g(n)) and f(n) = \Omega(g(n)).
```

- I.e., $\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$
- In practice, asymptotically tight bounds are obtained from asymptotic upper and lower bounds.

Θ-notation

Math:

$$\Theta(g(n)) = \{ f(n) : \text{there exist positive constants } c_1, c_2, \text{ and}$$

$$n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n)$$
for all $n \ge n_0 \}$

Engineering:

- Drop low-order terms; ignore leading constants.
- Example: $3n^3 + 90n^2 5n + 6046 = \Theta(n^3)$

Asymptotic Notation

- O notation: asymptotic "less than":
 - f(n)=O(g(n)) implies: $f(n) \le g(n)$
- lacksquare Ω notation: asymptotic "greater than":
 - $f(n) = \Omega(g(n))$ implies: $f(n) \ge g(n)$
- O notation: asymptotic "equality":
 - $f(n) = \Theta(g(n))$ implies: f(n) = g(n)

$$=> (3n+2)=\Omega(n^2)$$
?????

No

$$=> f(n)= \Omega(n)$$

if f(n) is lower bounded by 'n' then it can be lower bounded by any g(n) which is lower bounded by 'n'

i-e
$$(3n+2)=\Omega$$
 (logn)
 $(3n+2)=\Omega$ (log (log (n)))

But we always go for the closest lower bound or tighter lower bound

If
$$(3n+2)=O(n)$$

=> $(3n+2)=O(n^2)$
=> $(3n+2)=O(n^3)$
=> $(3n+2)=O(n^4)$ so on...

But we always go for the least upper bound or tighter upper bound

- $3n+2=\Theta(n)$
- $3n^2+2n+1=\Theta(n^2)$
- $6n^3 + n^2 = \Theta(n^3)$

Asymptotic performance

When *n* gets large enough, a $\Theta(n^2)$ algorithm always beats a $\Theta(n^3)$ algorithm.

- We shouldn't ignore asymptotically slower algorithms, however.
- Real-world design situations often call for a careful balancing of engineering objectives.
- Asymptotic analysis is a useful tool to help to structure our thinking.

Examples of algorithms

- Here is a list of common asymptotic running times:
- Θ(1): Constant time; can't beat it!
- Θ(log n): Inserting into a balanced binary tree; time to find an item in a sorted array of length n using binary search.
- \bullet $\Theta(n)$: About the fastest that an algorithm can run.
- Θ(n log n): Best sorting algorithms.
- $\Theta(n^2)$, $\Theta(n^3)$: Polynomial time. These running times are acceptable when the exponent of n issmall or n is not to large, e.g., n \leq 1000.
- $\Theta(2^n)$, $\Theta(3^n)$: Exponential time. Acceptable only if n is small, e.g., n \leq 50.
- $\Theta(n!)$: Acceptable only for really small n, e.g. $n \le 20$.

Best worst and average time complexity

- Best case: The algorithm take as min time as it can.
 - Searching item in array
 - Found first item as key
- Worst case: The algorithm take max time as it can
 - Searching item in array
 - Found the last item/ did not found item
- Average case: The algorithm takes average time
 - Found in middle of array (Just example)

What is the relationship between Big O, Θ , Ω and best, worst, and average case of an algorithm?

- The O and Ω notations do only describe the bounds of a function that describes the asymptotic behavior of the actual behavior of the algorithm. Here's an example
 - lacksquare Ω describes the **lower bound**:
 - $f(n) \in \Omega(g(n))$ means the asymptotic behavior of f(n) is **not** less than g(n) k for some positive k, so f(n) is always at least as much as g(n) k.
 - O describes the **upper bound**:
 - f(n) ∈ O(g(n)) means the asymptotic behavior of f(n) is not more than g(n) k for some positive k, so f(n) is always at most as much as g(n) k.

We are usually interested in the **worst case** complexity

Best worst average vs Notations

- These two can be applied on both the best case and the worst case for binary search:
- best case: first element you look at is the one you are looking for
 Compare with finding max in array
 - $\Omega(1)$: you need at least one lookup
 - O(1): you need at most one lookup
- worst case: element is not present
 - $\Omega(\log n)$: you need at least log n steps until you can say that the element you are looking for is not present
 - O(log n): you need at most log n steps until you can say that the element you are looking for is not present
- But often we do only want to know the upper bound or tight bound as the lower bound has not much practical information.

Estimating Running Time

For example any Algorithm executes 7n + 1 primitive operations in the worst case. Define:

a = Time taken by the fastest primitive operation

b = Time taken by the slowest primitive operation

- Let T(n) be worst-case time of arrayMax. Then $a (7n + 1) \le T(n) \le b(7n + 1)$
- Hence, the running time T(n) is bounded by two linear functions

Simple Example (1)

```
// Input: int A[N], array of N integers
// Output: Sum of all numbers in array A
int Sum(int A[], int N)
{
    int s=0;
    for (int i=0; i< N; i++)
        s = s + A[i];
    return s;
}
How should we analyse this?</pre>
```


Example of **Basic** Operations:

- Arithmetic operations: *, /, %, +, -
- Assignment statements
- Simple conditional tests: if (x < 12) ...</p>
- method call (Note: the execution time of the method itself may depend on the value of parameter and it may not be constant)
- a method's return statement
- Memory Access
- We consider an operation such as ++ , += , and *= as consisting of two basic operations.
- Note: To simplify complexity analysis we will not consider memory access (fetch or store) operations.

Simple Complexity Analysis: Loops

- We start by considering how to count operations in **for**-loops.
 - We use integer division throughout.
- First of all, we should know the number of iterations of the loop; say it is x.
 - Then the loop condition is executed x + 1 times.
 - Each of the statements in the loop body is executed x times.
 - The loop-index update statement is executed x times.

Simple Example (2)

```
// Input: int A[N], array of N integers
// Output: Sum of all numbers in array A
int Sum(int A[], int N) {
   int [s=0]; ←
   for (int <u>i=0</u>; <u>i< N</u>; <u>i++</u>
                                       1,2,8: Once
   return s;
                                       3: N+1 times
                                       4,5,6,7: Once per each iteration
                                                of for loop, N iteration
                                       Total: 5N + 4
                                       The complexity function of the
                                       algorithm is : f(N) = 5N + 4
```


Example explanation

- Estimated running time for different values of N for 5N+3:
 - N = 10 = 53 steps
 - N = 100 = 503 steps
 - N = 1,000 = 5003 steps
 - \sim N = 1,000,000 => 5,000,003 steps
- As N grows, the number of steps grow in linear proportion to N for this function "Sum"

What Dominates in Previous Example?

- What about the +3 and 5 in 5N+3?
 - As N gets large, the +3 becomes insignificant
 - 5 is inaccurate, as different operations require varying amounts of time and also does not have any significant importance
- Asymptotic Complexity: As N gets large, concentrate on the highest order term:
 - Drop lower order terms such as +3
 - Drop the constant coefficient of the highest order term i.e.
 - The 5N+3 time bound is said to "grow asymptotically" like N

Rate of Growth

- Consider the example of buying elephants and goldfish:
 - Cost: cost_of_elephants + cost_of_goldfish
 Cost ~ cost_of_elephants (approximation)
- The low order terms in a function are relatively insignificant for large n

$$n^4 + 100n^2 + 10n + 50 \sim n^4$$

i.e., we say that $n^4 + 100n^2 + 10n + 50$ and n^4 have the same **rate of growth**

Simple Complexity Analysis: Loops (with <)

In the following for-loop:

```
for (int i = k; i < n; i = i + m) {
    statement1;
    statement2;
}</pre>
```

The number of iterations is: (n - k) / m

- The initialization statement, i = k, is executed **one** time.
- The condition, i < n, is executed (n k) / m + 1 times.
- The update statement, i = i + m, is executed (n k) / m times.
- Each of statement1 and statement2 is executed (n k) / m times.

Simple Complexity Analysis: Loop Example

Find the exact number of basic operations in the following program fragment:

```
double x, y;
x = 2.5 ; y = 3.0;
for(int i = 0; i < n; i++) {
    a[i] = x * y;
    x = 2.5 * x;
    y = y + a[i];
}</pre>
```

- There are 2 assignments outside the loop => 2 operations.
- The **for** loop actually comprises
- an assignment (i = 0) => 1 operation
- a test (i < n) => n + 1 operations
- an increment (i++) => n operations
- the loop body that has three assignments, two multiplications, and an addition => 6 n operations

```
Thus the total number of basic operations is 6 * n + n + (n + 1) + 3 = 8n + 4
```

Running Time Calculations

Simple for loop

int Sum (int N)

```
/* 1 */ int sum = 0;

/* 2 */ for (int i = 1; i <= N; i +++)

/* 3 */ sum = sum + i * i * i;

/* 4 */ return sum ;

Q: What is the running time?

Line 1 & 4 \rightarrow 2 units of time \rightarrow 2

Line 2 \rightarrow 1 unit (initialize) + (N+1) tests + N Increments \rightarrow 2N + 2

Line 3 \rightarrow 4 units (1 add, 2 muls., 1 assign) * N executions \rightarrow 4N
```

A: O(N)

Total

6N + 4

Be careful to differentiate between

- Performance: how much time/memory/disk/... is actually used when a program is run. This depends on the machine, compiler, etc. as well as the code.
- Efficiency: how do the resource requirements of a program or algorithm scale, i.e., what happens as the size of the problem being solved gets larger.

Standard Analysis Techniques

- Constant time statements
- Analyzing Loops
- Analyzing Nested Loops
- Analyzing Conditional Statements

Constant time example

- Simplest case: O(1) time statements
- Assignment statements of simple data types
- int x = y;
- Arithmetic operations:
- x = 5 * y + 4 z;
- Array referencing:
- A[j] = 5;

Analyze Loop

- Any loop has two parts:
- How many iterations are performed?
- How many steps per iteration?
 - int sum = 0,j;
 - for (j=0; j < N; j++)
 - sum = sum +j;
- Loop executes N times (0..N-1)
- -4 = O(1) steps per iteration
- Total time is N * O(1) = O(N*1) = O(N)

Nested and consecutive loops

 For a sequence of statements, compute their complexity functions individually and add them up

- Total cost is $O(N^2) + O(N) + O(1) = O(N^2)$
- Or N square

Nested loop


```
for(i=0;i<n;i++)
                            for(i=0;i<n;i++)
  for(j=0;j< n;j++)
                            for(j=0;j< n;j++)
    for(k=0; k< n; k++) for(k=0; k< n; k++)
      O(n^3)
                                O(n)
```

Control Structures

- if (condition)
 - statement1;
- else
 - statement2;
- where statement1 runs in O(N) time and statement2 runs in O(N^2) time?
- Dominant Term would decide here.

Why it is important

- Suppose a program has run time O(n!) and the run time for
 - n = 10 is 1 second
 - For n = 12, the run time is 2 minutes
 - For n = 14, the run time is 6 hours
 - For n = 16, the run time is 2 months
 - For n = 18, the run time is 50 years
 - For n = 20, the run time is 200 centuries

Task


```
for (i=0; i<n; i++)
{for (j=0; j<n;j++)
{
  Sequence of statements....
}
}</pre>
```

Statements with Function call


```
for(i=0;i<n;i++)
{ g(n); }
```


Function	Name
c	Constant
$\log N$	Logarithmic
$\log^2 N$	Log-squared
N	Linear
$N \log N$	N log N
N^2	Quadratic
N^3	Cubic
2^N	Exponential

Functions in order of increasing growth rate

Classes of Complexities

- Constant: O(c),
- Logarithmic: O(log_c n),
- Linear: O(n),
- Quadratic: O(n²),
- Cubic: O(n³),
- Polynomial: O(n^c)
- Exponential: O(cⁿ)

Home Task

 Write an algorithm to sort the data in array. Bring it handwritten on A4.