CS486/686: Introduction to Artificial Intelligence Lecture 6a - Supervised Machine Learning: Foundations

Jesse Hoey & Victor Zhong

School of Computer Science, University of Waterloo

January 27, 2025

Readings: Poole & Mackworth Chap. 7.1-7.2

Learning

Learning is the ability to improve behavior based on experience

- The range of behaviors is expanded: the agent can do more
- The accuracy on tasks is improved: the agent can do things better
- The speed is improved: the agent can do things faster

Components of a learning problem

The following components are part of any learning problem:

- Task: The behavior or task that's being improved For example: classification, acting in an environment
- Data: The experiences that are being used to improve performance in the task
- Measure of improvement: How can the improvement be measured?
 For example: increasing accuracy in prediction, new skills that were not present initially, improved speed

Common Learning Tasks

- Supervised classification: Given a set of pre-classified training examples, classify a new instance
- Unsupervised learning: Find natural classes for examples
- Reinforcement learning: Determine what to do based on rewards and punishments
- Transfer Learning: Learning from an expert
- Active Learning: Learner actively seeks to learn
- Inductive logic programming: Build richer models in terms of logic programs

Feedback

Learning tasks can be characterized by the feedback given to the learner

- Supervised learning
 What has to be learned is specified for each example
- Unsupervised learning
 No classifications are given; the learner has to discover categories and regularities in the dat
- Reinforcement learning Feedback occurs after a sequence of actions;
 a form of supervised learning

Measuring Success

- The measure of success is not how well the agent performs on the training examples, but how well the agent performs for new (unseen) examples
- Consider two agents solving a binary classification task:
 - P claims the negative examples seen are the only negative examples
 Every other instance is positive
 - N claims the positive examples seen are the only positive examples
 Every other instance is negative
- Both agents correctly classify every training example, but disagree on every other example

Implementing P/N agents

Inputs:

```
e is the test example X(e) are the input variables of example e Y(e) is the output variable of example e (T/F) data [i=1\dots N]: training data, list of examples like e Output: estimated Y value for the test example e
```

```
y \leftarrow P(e, \text{data})
if X(e) is the same as some X(\text{data}[i]) then
return Y(\text{data}[i])
else
return True
```

P/N agents use training data as their model they are "exemplar-based" agents need an exact match

Bias

- The tendency to prefer one hypothesis over another is called a bias
- A bias is necessary to make predictions on unseen data
- Saying a hypothesis is better than N's or P's hypothesis isn't something that's obtained from the data
- To have any inductive process make predictions on unseen data, you need a bias
- What constitutes a good bias is an empirical question about which biases work best in practice

Learning as search

- Given a representation and a bias, the problem of learning can be reduced to one of search
- Learning is search through the space of possible representations looking for the representation or representations that best fits the data, given the bias

Learning as search

- Given a representation and a bias, the problem of learning can be reduced to one of search
- Learning is search through the space of possible representations looking for the representation or representations that best fits the data, given the bias
- These search spaces are typically prohibitively large for systematic search
- A learning algorithm is made of a search space, an evaluation function, and a search method

Supervised Learning

Given:

- a set of input features X_1, \ldots, X_n
- a set of target features Y_1, \ldots, Y_k
- a set of training examples where the values for the input features and the target features are given for each example
- a set of test examples, where only the values for the input features are given

Predict the values for the target features for the test examples

Supervised Learning

Given:

- a set of input features X_1, \ldots, X_n
- a set of target features Y_1, \ldots, Y_k
- a set of training examples where the values for the input features and the target features are given for each example
- a set of test examples, where only the values for the input features are given

Predict the values for the target features for the test examples

- Classification when the Y_i are discrete
- Regression when the Y_i are continuous

Supervised Learning

Given:

- a set of input features X_1, \ldots, X_n
- a set of target features Y_1, \ldots, Y_k
- a set of training examples where the values for the input features and the target features are given for each example
- a set of test examples, where only the values for the input features are given

Predict the values for the target features for the test examples

- Classification when the Y_i are discrete
- Regression when the Y_i are continuous

Very important: keep training and test sets separate! (see "N and P" agents slide)

Noise

- Data isn't perfect:
 - some of the features are assigned the wrong value
 - the features given are **inadequate** to predict the classification
 - there are examples with missing features

Noise

- Data isn't perfect:
 - some of the features are assigned the wrong value
 - the features given are **inadequate** to predict the classification
 - there are examples with missing features
- Overfitting occurs when a distinction appears in the data, but doesn't appear in the unseen examples
 - This happens because of random correlations in the training set

Evaluating Predictions

Suppose Y is a feature and e is an example:

- Y(e) is the value of feature Y for example e
- $\hat{Y}(e)$ is the predicted value of feature Y for example e
- The error of the prediction is a measure of how close $\widehat{Y}(e)$ is to Y(e)
- There are many possible errors that could be measured

E is the set of examples

T is the set of target features

absolute error

$$\sum_{e \in E} \sum_{Y \in T} \left| \mathit{Y}(e) - \widehat{\mathit{Y}}(e) \right|$$

E is the set of examples

T is the set of target features

absolute error

$$\sum_{e \in E} \sum_{Y \in T} \left| Y(e) - \widehat{Y}(e) \right|$$

• sum of squares error

$$\sum_{e \in E} \sum_{Y \in \mathbf{T}} (\mathit{Y}(e) - \widehat{\mathit{Y}}(e))^2$$

E is the set of examples

T is the set of target features

absolute error

$$\sum_{e \in E} \sum_{Y \in \mathbf{T}} \left| Y(e) - \widehat{Y}(e) \right|$$

• sum of squares error

$$\sum_{e \in E} \sum_{Y \in T} (Y(e) - \widehat{Y}(e))^2$$

worst-case error

$$\max_{e \in E} \max_{Y \in \mathbf{T}} \left| Y(e) - \widehat{Y}(e) \right|$$

E is the set of examples

T is the set of target features

absolute error

$$\sum_{e \in E} \sum_{Y \in \mathbf{T}} \left| Y(e) - \widehat{Y}(e) \right|$$

• sum of squares error

$$\sum_{e \in E} \sum_{Y \in T} (Y(e) - \widehat{Y}(e))^2$$

worst-case error

$$\max_{e \in E} \max_{Y \in \mathbf{T}} \left| Y(e) - \widehat{Y}(e) \right|$$

A cost-based error takes into account costs of various errors

Precision and Recall

- Not all errors are equal, e.g. predict:
 - a patient has a disease when they do not
 - a patient doesn't have a disease when they do
- need to map out both kinds of errors to find the best trade-off

		predicted	
		Т	F
actual	Т	true positive (TP)	false negative (FN)
	F	false positive (FP)	true negative (TN)

- recall = sensitivity = TP/(TP+FN)
- specificity = TN/(TN+FP)
- precision = TP/(TP+FP)
- F1-measure =

$$\frac{2 \times Precision \times Recall}{Precision + Recall}$$

gives even weight to precision and recall

Receiver Operating Curve (ROC)

The ROC gives full range of performance of an algorithm across different biases

Basic Models for Supervised Learning

Many learning algorithms can be seen as deriving from:

- decision trees
- linear classifiers (generalizes to neural networks)
- Bayesian classifiers

Next

 Supervised learning: decision trees and learning strategies (Poole & Mackworth chapter 7.1-7.3.1, 7.4-7.4.1)