2021 黑龙江省数学建模竞赛培训

微分方程数值解

哈尔滨工程大学数学科学学院沈继红

2021.08.27

常微分方程数值解

针对

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

若 y = y(x) 满足 Lipschitz 条件:

$$\left| f(x,y) - f(x,\overline{y}) \right| \le L \left| y - \overline{y} \right|$$

则上述初值问题的解 y = y(x) 存在并且唯一。

求解方法:解析方法?

❖解存在但并非用解析方法可以求解,如

$$y'=e^{xy}$$

欧拉方法

$$\begin{cases} y' = f(x, y) & x \in (a, b) \\ y(a) = y_0 \end{cases}$$

对于上述常微分方程我们在x = a 处离散方程 $y'|_{x=a} = f(a, y(x_0))$

剖分

$$y'|_{x=a} = \lim_{\Delta x \to 0} \frac{y(a + \Delta x) - y(a)}{\Delta x}$$

将x的定义域[a,b]n等分,得到节点

$$a = x_0 < x_1 < x_2 < \ldots < x_n = b$$

其中步长
$$h = \frac{b-a}{n}$$
,令 $\Delta x = h$,则有
$$\frac{y(x_0 + h) - y(x_0)}{h} \approx f(x_0, y(x_0))$$

$$y(x_1) \approx y(x_0) + hf(x_0, y(x_0))$$

欧拉格式

故有 $y(x_1) \approx y(x_0) + hf(x_0, y(x_0))$ 同理,对任一满足 x_n ,有 $y(x_{n+1}) = y(x_n) + hf(x_n, y(x_n))$

用 y_n 表示 $y(x_n)$, 即有欧拉格式:

$$y_{n+1} = y_n + hf(x_n, y_n)$$

从而可算出所有的 $y(x_n)$ 的近似值

$$y_0 \rightarrow y_1 \rightarrow y_2 \rightarrow \cdots \rightarrow y_n \doteq y(b)$$

例 1, 求解初值问题

$$\begin{cases} y' = y - \frac{2x}{y} \\ y(0) = 1 \end{cases}$$
 0 < x < 1

解:
$$f(x,y) = y - \frac{2x}{y}$$
, 故欧拉格式为

$$y_{n+1} = y_n + h(y_n - \frac{2x_n}{y_n})$$

计算结果见下表

\mathcal{X}_n	\mathcal{Y}_n	$y(x_n)$	X_n	\mathcal{Y}_n	$y(x_n)$
0.1	1.1000	1.0954	0.6	1.5090	1.4832
0.2	1.1918	1.1832	0.7	1.5803	1.5492
0.3	1.2774	1.2649	0.8	1.6498	1.6125
0.4	1.3582	1.3416	0.9	1.7178	1.6733
0.5	1.4351	1.4142	1.0	1.7848	1.7321

真解:
$$y = \sqrt{1+2x}$$

几何表示

$$y_{n+1} = y_n + hf(x_n, y_n)$$

由于 $f(x_n, y_n) = y'(x_n) = tg\alpha_n$, 故欧拉格式可写成

$$y_{n+1} = y_n + htg\,\alpha_n$$

误差

$$y'|_{x=a} = \lim_{\Delta x \to 0} \frac{y(a + \Delta x) - y(a)}{\Delta x}$$

$$\frac{y(x_{n+1}) - y(x_n)}{h}$$

$$= \frac{y(x_n + h) - y(x_n)}{h}$$

$$= \frac{y(x_n) + hy'(x_n) + \frac{h^2}{2}y''(\xi) - y(x_n)}{h}$$

$$= y'(x_n) + \frac{h}{2}y''(\xi)$$

故

$$y(x_{n+1}) = y(x_n) + hy'(x_n) + \frac{h^2}{2}y''(\xi)$$

 $R = \frac{h^2}{2} y''(\xi)$ 称为局部截断误差,称为 1 阶精度格式。

后退的欧拉格式——隐格式

看

$$y'(x_{n+1}) = f(x_{n+1}, y(x_{n+1}))$$

取 $\Delta x = -h$,则

$$y'(x_{n+1}) = \lim_{\Delta x \to 0} \frac{y(x_{n+1} + \Delta x) - y(x_{n+1})}{\Delta x}$$

$$\approx \frac{y(x_{n+1} - h) - y(x_{n+1})}{-h}$$

故离散格式为

$$y_{n+1} = y_n + hf(x_{n+1}, y_{n+1})$$

亦称为隐式格式。

每步迭代需求解方程

$$y_{n+1} = y_n + hf(x_{n+1}, y_{n+1})$$

$$y_1 = y_0 + hf(x_1, y_1)$$

需求解方程解出 y₁,可用迭代法

$$y_1^{(k+1)} = y_0 + hf(x_1, y_1^{(k)})$$

误差估计

$$\frac{y(x_{n+1} - h) - y(x_{n+1})}{-h}$$

$$= \frac{y(x_{n+1}) - hy'(x_{n+1}) + \frac{h^2}{2}y''(\xi_1) - y(x_{n+1})}{-h}$$

$$= y'(x_{n+1}) - \frac{h}{2}y''(\xi_1)$$

局部截断误差:
$$R_1 = -\frac{h^2}{2}y''(\xi_1)$$

梯形格式

注意到显格式与隐格式的误差的符号一正一负,将其平均

$$y_{n+1} = y_n + hf(x_n, y_n)$$
$$y_{n+1} = y_n + hf(x_{n+1}, y_{n+1})$$

两格式相加

$$y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1})]$$

误差精度为 2 阶, $O(h^2)$

改进的欧拉公式

$$y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1})]$$

梯形格式精度高,但是隐格式。可采用近似的值代替梯形格式中的 y_{n+1} ,

得到新的格式

$$\overline{y}_{n+1} = y_n + hf(x_n, y_n)$$

$$y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1})]$$

欧拉两步格式

注意到

$$y'(x_n) = \lim_{\Delta x \to 0} \frac{y(x_n + \Delta x) - y(x_n - \Delta x)}{2\Delta x}$$

$$y'(x_n) \approx \frac{y(x_n + h) - y(x_n - h)}{2h}$$

则得到离散格式

$$y_{n+1} = y_{n-1} + 2hf(x_n, y_n)$$

称为二步格式。

稳定性不好

稳定性

定义 若一种数值方法在节点值 y_n 上产生大小为 δ 的扰动,在以后各节点值 $y_m(m>n)$ 上产生的偏差均不超过 δ ,则称该方法是稳定的。

举例

针对方程

$$y' = \lambda y \qquad (\lambda < 0)$$

Euler 显格式为

$$y_{n+1} = y_n + hf(x_n, y_n) = y_n + h \cdot \lambda y_n = (1 + h\lambda)y_n$$

若 y_n 有一个小的扰动 ε_n ,则

$$\tilde{y}_{n+1} = (1+h\lambda)(y_n + \varepsilon_n) = (1+h\lambda)y_n + (1+h\lambda)\varepsilon_n$$

稳定性条件

即 y_{n+1} 产生误差为

$$\varepsilon_{n+1} = (1+h\lambda)\varepsilon_n = \dots = (1+h\lambda)^n \varepsilon_1$$

按照定义,格式稳定只要选h充分小,使

$$|1+h\lambda| \leq 1$$

称欧拉显格式为条件稳定,稳定性条件为

$$h \le -\frac{2}{\lambda}$$

考察一下Euler隐格式

$$y_{n+1} = y_n + hf(x_n, y_{n+1}) = y_n + h \cdot \lambda y_{n+1}$$

整理得

$$y_{n+1} = \frac{1}{1 - h\lambda} y_n$$

由于 $\lambda < 0$,故永远有

$$\left|\frac{1}{1-h\lambda}\right| < 1$$

从而有

$$\mid y_{n+1} \mid \leq \mid y_n \mid$$

即后退的 Euler 格式对任何的步长都稳定, 称为绝对稳定(恒稳定或无条件稳定)。

偏微分方程数值解

哈尔滨工程大学数学科学学院沈继红

抛物型方程的有限差分法

考虑一维热传导问题

外力

$$\frac{\partial u}{\partial t} = a \frac{\partial^2 u}{\partial x^2} + f(x),$$

$$0 < t \le T$$

其中a是常数。

第一类边值问题(Cauchy 问题):

$$u(x,0) = \varphi(x) ,$$

$$-\infty < x < \infty$$

第二类初边值问题:

$$u(x,0) = \varphi(x)$$

$$u(0,t) = u(l,t) = 0,$$

$$0 \le t \le T$$

网格剖分

$$\frac{\partial u}{\partial t} = a \frac{\partial^2 u}{\partial x^2} + f(x),$$

空间 N 等分, 步长 $h = \frac{l}{N}$; 和时间 M 等

分,步长 $\tau = \frac{T}{M}$,得到矩形网如图:

$$\overline{G} = \{0 \le x \le l; 0 \le t \le T\}$$

$$u_j^k \approx u(jh , k\tau)$$

1. 向前差分格式
$$u_{j}^{k} \approx u(jh, k\tau)$$

$$\frac{\partial u}{\partial t}\Big|_{x=x_{j}, t=t_{k}} = a \frac{\partial^{2} u}{\partial x^{2}}\Big|_{x=x_{j}, t=t_{k}} + f(x)\Big|_{x=x_{j}, t=t_{k}}$$

$$\frac{u_j^{k+1} - u_j^k}{\tau} = a \frac{u_{j+1}^k - 2u_j^k + u_{j-1}^k}{h^2} + f_j,$$

$$u_{j}^{0} = \varphi_{j} = \varphi(x_{j}), \quad u_{0}^{k} = u_{N}^{k} = 0$$

$$u(x,0) = \varphi(x)$$

$$u(0,t) = u(l,t) = 0, \qquad 0 \le t \le T$$

0 < x < l

$$\frac{\partial^{2} u}{\partial x^{2}}\Big|_{x=x_{j}} \approx \frac{\frac{\partial u}{\partial x}\Big|_{x=x_{j+\frac{1}{2}}} - \frac{\partial u}{\partial x}\Big|_{x=x_{j-\frac{1}{2}}}}{h} \approx \frac{\frac{u_{j+1} - u_{j}}{h} - \frac{u_{j} - u_{j-1}}{h}}{h}$$

$$= \frac{u_{j+1} - 2u_{j} + u_{j-1}}{h^{2}}$$

1. 向前差分格式

$$\frac{u_j^{k+1} - u_j^k}{\tau} = a \frac{u_{j+1}^k - 2u_j^k + u_{j-1}^k}{h^2} + f_j,$$

$$u_j^0 = \varphi_j = \varphi(x_j), \quad u_0^k = u_N^k = 0$$

令
$$r = a \cdot \frac{\tau}{h^2}$$
, 称为网比, 将上式改写成

$$u_j^{k+1} = ru_{j+1}^k + (1-2r)u_j^k + ru_{j-1}^k + \tau f_j, \qquad j = 1, 2, \dots, N-1; k = 0, 1, \dots, M-1$$

此格式为显格式,其截断误差为 $O(\tau + h^2)$ 。

2. 向后差分格式

$$\left| \frac{\partial u}{\partial t} \right|_{x=x_j, t=t_{k+1}} = a \frac{\partial^2 u}{\partial x^2} \Big|_{x=x_j, t=t_{k+1}} + f(x) \Big|_{x=x_j, t=t_{k+1}}$$

即时间采取向后差分,得到离散构

$$\frac{u_j^{k+1} - u_j^k}{\tau} = a \frac{u_{j+1}^{k+1} - 2u_j^{k+1} + u_{j-1}^{k+1}}{h^2} + f_j,$$

$$u_{j}^{0} = \varphi_{j} = \varphi(x_{j}), \quad u_{0}^{k} = u_{N}^{k} = 0$$

同理,可写成

$$-ru_{j+1}^{k+1} + (1-2r)u_j^{k+1} - ru_{j-1}^{k+1} = u_j^k + \tau f_j, \qquad j = 1, 2, \dots, N-1; k = 0, 1, \dots, M-1$$

为隐格式,其截断误差为 $O(\tau + h^2)$ 。

向前差分格式的稳定性

$$u_{j}^{k+1} = ru_{j+1}^{k} + (1-2r)u_{j}^{k} + ru_{j-1}^{k} + \tau f_{j},$$

$$r = \frac{1}{2} : u_{j}^{k+1} = \frac{1}{2}u_{j+1}^{k} + \frac{1}{2}u_{j-1}^{k} + \tau f_{j},$$

$$u_{j}^{k+} + e_{j}^{k+1} = \frac{1}{2} (u_{j+1}^{k} + e_{j+1}^{k}) + \frac{1}{2} (u_{j-1}^{k} + e_{j-1}^{k}) + \tau f_{j},$$

$$e_{j}^{k+1} = \frac{1}{2}e_{j+1}^{k} + \frac{1}{2}e_{j-1}^{k}$$

li	_4	_ 3	_ 2	_1	0	+1	+2	+3	$+\Delta$				
日かり日本かは													
格式走想矩的													
2			0.25ε	0	0.5ε	0	0.25ε	al.	Mr. K				
3		\mathcal{E}	0	0.375ε	0	0.375ε	0	0.125ε					
4	0.0625ε	0	0.25ε	0	0.375ε	0	0.25ε	0	0.0625ε				

祝数模竞赛成功!