Project 2

In this project, you will implement the exploratory analysis plan developed in Project 1. This will lay the groundwork for our our first modeling exercise in Project 3.

Step 1: Load the python libraries you will need for this project

```
In [3]: #imports
    from __future__ import division
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import statsmodels.api as sm
    import pylab as pl
    import numpy as np
    %matplotlib inline
```

C:\Users\elizabeth.xu\AppData\Local\Continuum\Anaconda2\lib\site-packages\statsmodels\compat\pandas.py:56: FutureWarning: The pandas.core.datetools module is deprecated and will be removed in a future version. Please use the pandas.tseries module instead.

from pandas.core import datetools

Step 2: Read in your data set

```
#Read in data from source
In [4]:
        df raw = pd.read csv("../assets/admissions.csv")
        print df_raw.head()
           admit
                          gpa prestige
                    gre
        0
               0 380.0 3.61
                                    3.0
        1
                                    3.0
               1 660.0 3.67
        2
                                   1.0
               1 800.0 4.00
        3
               1 640.0 3.19
                                   4.0
               0 520.0 2.93
                                   4.0
```

Questions

Question 1. How many observations are in our dataset?

```
In [5]: df_raw.count()
```

Out[5]: admit 400 gre 398

gre 398 gpa 398 prestige 399 dtype: int64

In [6]: df_raw.tail()

Out[6]:

		admit	gre	gpa	prestige
39	5	0	620.0	4.00	2.0
396	3	0	560.0	3.04	3.0
397	7	0	460.0	2.63	2.0
398	3	0	700.0	3.65	2.0
399)	0	600.0	3.89	3.0

Answer: 400 Observations, because these tables start counting at 0 (looking at df_raw.head)

Question 2. Create a summary table

In [7]: #function
 df_raw.describe()

Out[7]:

	admit	gre	gpa	prestige
count	400.000000	398.000000	398.00000	399.000000
mean	0.317500	588.040201	3.39093	2.486216
std	0.466087	115.628513	0.38063	0.945333
min	0.000000	220.000000	2.26000	1.000000
25%	0.000000	520.000000	3.13000	2.000000
50%	0.000000	580.000000	3.39500	2.000000
75%	1.000000	660.000000	3.67000	3.000000
max	1.000000	800.000000	4.00000	4.000000

In [8]: df_raw['gpa'].plot(kind='box')

Out[8]: <matplotlib.axes._subplots.AxesSubplot at 0xc95d320>

In [9]: df_raw['gre'].plot(kind='box')

Out[9]: <matplotlib.axes._subplots.AxesSubplot at 0xd4fd208>

Question 3. Why would GRE have a larger STD than GPA?

Answer: Because the range for GRE is much larger than GPA.

Question 4. Drop data points with missing data

In [10]: df_clean = df_raw.dropna()
 df_clean

Out[10]:

	ı	Г	ı	Γ
	admit	gre	gpa	prestige
0	0	380.0	3.61	3.0
1	1	660.0	3.67	3.0
2	1	800.0	4.00	1.0
3	1	640.0	3.19	4.0
4	0	520.0	2.93	4.0
5	1	760.0	3.00	2.0
6	1	560.0	2.98	1.0
7	0	400.0	3.08	2.0
8	1	540.0	3.39	3.0
9	0	700.0	3.92	2.0
10	0	800.0	4.00	4.0
11	0	440.0	3.22	1.0
12	1	760.0	4.00	1.0
13	0	700.0	3.08	2.0
14	1	700.0	4.00	1.0
15	0	480.0	3.44	3.0
16	0	780.0	3.87	4.0
17	0	360.0	2.56	3.0
18	0	800.0	3.75	2.0
19	1	540.0	3.81	1.0
20	0	500.0	3.17	3.0
21	1	660.0	3.63	2.0
22	0	600.0	2.82	4.0
23	0	680.0	3.19	4.0
24	1	760.0	3.35	2.0
25	1	800.0	3.66	1.0
26	1	620.0	3.61	1.0
27	1	520.0	3.74	4.0
28	1	780.0	3.22	2.0
29	0	520.0	3.29	1.0
370	1	540.0	3.77	2.0

	admit	gre	gpa	prestige
371	1	680.0	3.76	3.0
372	1	680.0	2.42	1.0
373	1	620.0	3.37	1.0
374	0	560.0	3.78	2.0
375	0	560.0	3.49	4.0
376	0	620.0	3.63	2.0
377	1	800.0	4.00	2.0
378	0	640.0	3.12	3.0
379	0	540.0	2.70	2.0
380	0	700.0	3.65	2.0
381	1	540.0	3.49	2.0
382	0	540.0	3.51	2.0
383	0	660.0	4.00	1.0
384	1	480.0	2.62	2.0
385	0	420.0	3.02	1.0
386	1	740.0	3.86	2.0
387	0	580.0	3.36	2.0
388	0	640.0	3.17	2.0
389	0	640.0	3.51	2.0
390	1	800.0	3.05	2.0
391	1	660.0	3.88	2.0
392	1	600.0	3.38	3.0
393	1	620.0	3.75	2.0
394	1	460.0	3.99	3.0
395	0	620.0	4.00	2.0
396	0	560.0	3.04	3.0
397	0	460.0	2.63	2.0
398	0	700.0	3.65	2.0
399	0	600.0	3.89	3.0

397 rows × 4 columns

Question 5. Confirm that you dropped the correct data. How can you tell?

Answer: There are now less rows 397 vs. 400 before

Question 6. Create box plots for GRE and GPA

```
In [11]: #boxplot 1
df_clean['gre'].plot(kind='box')
```

Out[11]: <matplotlib.axes._subplots.AxesSubplot at 0xd6e5f98>


```
In [12]: #boxplot 2
df_clean['gpa'].plot(kind='box')
```

Out[12]: <matplotlib.axes._subplots.AxesSubplot at 0xd92d1d0>

Question 7. What do this plots show?

Answer: The plot shows that GRE has 2 outliers on the lower end with the circles. The plot shows GPA has 1 outlier on the lower end, and there is skewness towards higher GPA values.

Question 8. Describe each distribution

```
In [13]: # plot the distribution of each variable
import seaborn as sns
sns.distplot(df_clean['gre'], kde=False)
```

Out[13]: <matplotlib.axes._subplots.AxesSubplot at 0xde5b7f0>


```
In [14]: sns.distplot(df_clean['gpa'], kde=False)
```

Out[14]: <matplotlib.axes._subplots.AxesSubplot at 0xdf7a940>

Question 9. If our model had an assumption of a normal distribution would we meet that requirement?

Answer: Looking at the histograms, both don't look exactly normal, however GRE seems more symmetric compared to GPA, which skews left.

Question 10. Does this distribution need correction? If so, why? How?

Answer: To normalize the distribution, we can take the log.

Question 11. Which of our variables are potentially colinear?

```
In [15]: # create a correlation matrix for the data

cmap = sns.diverging_palette(220, 10, as_cmap =True)

correlations = df_clean[['gre', 'gpa']].corr()
print correlations
print sns.heatmap(correlations, cmap=cmap)
```

```
gre gpa
gre 1.000000 0.382408
gpa 0.382408 1.000000
Axes(0.125,0.125;0.62x0.755)
```


Question 12. What did you find?

Answer: The correlation for the two variables is 0.382408

Question 13. Write an analysis plan for exploring the association between grad school admissions rates and prestige of undergraduate schools.

Answer: To explore the association between grad school admissions rate and prestige of undergraduate schools, we will look at the correlation between grad school admissions acceptance rate and a undergraduate school rankings (prestige).

Question 14. What is your hypothesis?

Answer: Hypothesis is that the two are positively correlated: The higher the prestige of undergraduate schools, the higher the admissions rate for grad school.

Bonus/Advanced

1. Bonus: Explore alternatives to dropping obervations with missing data

In [16]: df_raw.describe()

Out[16]:

	admit	gre	gpa	prestige
count	400.000000	398.000000	398.00000	399.000000
mean	0.317500	588.040201	3.39093	2.486216
std	0.466087	115.628513	0.38063	0.945333
min	0.000000	220.000000	2.26000	1.000000
25%	0.000000	520.000000	3.13000	2.000000
50%	0.000000	580.000000	3.39500	2.000000
75%	1.000000	660.000000	3.67000	3.000000
max	1.000000	800.000000	4.00000	4.000000

In [17]: | df_raw.head(100)

Out[17]:

	admit	gre	gpa	prestige
0	0	380.0	3.61	3.0
1	1	660.0	3.67	3.0
2	1	800.0	4.00	1.0
3	1	640.0	3.19	4.0
4	0	520.0	2.93	4.0
5	1	760.0	3.00	2.0
6	1	560.0	2.98	1.0
7	0	400.0	3.08	2.0
8	1	540.0	3.39	3.0
9	0	700.0	3.92	2.0
10	0	800.0	4.00	4.0
11	0	440.0	3.22	1.0
12	1	760.0	4.00	1.0
13	0	700.0	3.08	2.0
14	1	700.0	4.00	1.0
15	0	480.0	3.44	3.0
16	0	780.0	3.87	4.0
17	0	360.0	2.56	3.0
18	0	800.0	3.75	2.0
19	1	540.0	3.81	1.0
20	0	500.0	3.17	3.0
21	1	660.0	3.63	2.0
22	0	600.0	2.82	4.0
23	0	680.0	3.19	4.0
24	1	760.0	3.35	2.0
25	1	800.0	3.66	1.0
26	1	620.0	3.61	1.0
27	1	520.0	3.74	4.0
28	1	780.0	3.22	2.0
29	0	520.0	3.29	1.0
70	0	640.0	4.00	3.0

	admit	gre	gpa	prestige
71	0	300.0	2.92	4.0
72	0	480.0	3.39	4.0
73	0	580.0	4.00	2.0
74	0	720.0	3.45	4.0
75	0	720.0	4.00	3.0
76	0	560.0	3.36	3.0
77	1	800.0	4.00	3.0
78	0	540.0	3.12	1.0
79	1	620.0	4.00	1.0
80	0	700.0	2.90	4.0
81	0	620.0	3.07	2.0
82	0	500.0	2.71	2.0
83	0	380.0	2.91	4.0
84	1	500.0	3.60	3.0
85	0	520.0	2.98	2.0
86	0	600.0	3.32	2.0
87	0	600.0	3.48	2.0
88	0	700.0	3.28	1.0
89	1	660.0	4.00	2.0
90	0	700.0	3.83	2.0
91	1	720.0	3.64	1.0
92	0	800.0	3.90	2.0
93	0	580.0	2.93	2.0
94	1	660.0	3.44	2.0
95	0	660.0	3.33	2.0
96	0	640.0	3.52	4.0
97	0	480.0	3.57	2.0
98	0	700.0	2.88	2.0
99	0	400.0	3.31	3.0

100 rows × 4 columns

In [18]: #Will fill in missing data with zeros instead of dropping observation.
#Know that this worked because there are still 400 rows left.
df_raw.fillna(0)
print df_raw

	admit	gre	gpa	prestige
0	0	380.0	3.61	3.0
1	1	660.0	3.67	3.0
2	1	800.0	4.00	1.0
3	1	640.0	3.19	4.0
4	0	520.0	2.93	4.0
5	1	760.0	3.00	2.0
6	1	560.0	2.98	1.0
7				
	0	400.0	3.08	2.0
8	1	540.0	3.39	3.0
9	0	700.0	3.92	2.0
10	0	800.0	4.00	4.0
11	0	440.0	3.22	1.0
12	1	760.0	4.00	1.0
1 3	0	700.0	3.08	2.0
14	1	700.0	4.00	1.0
1 5	0	480.0	3.44	3.0
16	0	780.0	3.87	4.0
17	0	360.0	2.56	3.0
18	0	800.0	3.75	2.0
19	1	540.0	3.81	
				1.0
20	0	500.0	3.17	3.0
21	1	660.0	3.63	2.0
22	0	600.0	2.82	4.0
23	0	680.0	3.19	4.0
24	1	760.0	3.35	2.0
25	1	800.0	3.66	1.0
26	1	620.0	3.61	1.0
27	1	520.0	3.74	4.0
28	1	780.0	3.22	2.0
29	0	520.0	3.29	1.0
23	O	320.0	3.23	1.0
370	1	540.0	3.77	2.0
371	1	680.0	3.76	3.0
372				
	1	680.0	2.42	1.0
373	1	620.0	3.37	1.0
374	0	560.0	3.78	2.0
375	0	560.0	3.49	4.0
376	0	620.0	3.63	2.0
377	1	800.0	4.00	2.0
378	0	640.0	3.12	3.0
379	0	540.0	2.70	2.0
380	0	700.0	3.65	2.0
381	1	540.0	3.49	2.0
382	0	540.0	3.51	2.0
383	0	660.0	4.00	1.0
384	1	480.0	2.62	2.0
385	0	420.0	3.02	1.0
386	1	740.0	3.86	2.0
387	0	580.0	3.36	2.0
388	0	640.0	3.17	2.0
389	0	640.0	3.51	2.0
390	1	800.0	3.05	2.0
391	1	660.0	3.88	2.0
392	1	600.0	3.38	3.0
393	1	620.0	3.75	2.0
394	1	460.0	3.99	3.0
- •	_			

395	0	620.0	4.00	2.0	
396	0	560.0	3.04	3.0	
397	0	460.0	2.63	2.0	
398	0	700.0	3.65	2.0	
399	0	600.0	3.89	3.0	

[400 rows x 4 columns]

2. Bonus: Log transform the skewed data

In [32]: #GPA is the column that is clearly skewed left
 df_clean.head()

Out[32]:

9/6/2017

	admit	gre	gpa	prestige
0	0	380.0	3.61	3.0
1	1	660.0	3.67	3.0
2	1	800.0	4.00	1.0
3	1	640.0	3.19	4.0
4	0	520.0	2.93	4.0

```
In [33]: np.log(df_clean['gpa']).plot(kind='box')
```

Out[33]: <matplotlib.axes._subplots.AxesSubplot at 0xe950828>

3. Advanced: Impute missing data

In [31]: #As we did in problem #1, filling in missing data as 0
df_raw.fillna(0)

Out[31]:

	ı	1	ı	
	admit	gre	gpa	prestige
0	0	380.0	3.61	3.0
1	1	660.0	3.67	3.0
2	1	800.0	4.00	1.0
3	1	640.0	3.19	4.0
4	0	520.0	2.93	4.0
5	1	760.0	3.00	2.0
6	1	560.0	2.98	1.0
7	0	400.0	3.08	2.0
8	1	540.0	3.39	3.0
9	0	700.0	3.92	2.0
10	0	800.0	4.00	4.0
11	0	440.0	3.22	1.0
12	1	760.0	4.00	1.0
13	0	700.0	3.08	2.0
14	1	700.0	4.00	1.0
15	0	480.0	3.44	3.0
16	0	780.0	3.87	4.0
17	0	360.0	2.56	3.0
18	0	800.0	3.75	2.0
19	1	540.0	3.81	1.0
20	0	500.0	3.17	3.0
21	1	660.0	3.63	2.0
22	0	600.0	2.82	4.0
23	0	680.0	3.19	4.0
24	1	760.0	3.35	2.0
25	1	800.0	3.66	1.0
26	1	620.0	3.61	1.0
27	1	520.0	3.74	4.0
28	1	780.0	3.22	2.0
29	0	520.0	3.29	1.0
370	1	540.0	3.77	2.0

	admit	gre	gpa	prestige
371	1	680.0	3.76	3.0
372	1	680.0	2.42	1.0
373	1	620.0	3.37	1.0
374	0	560.0	3.78	2.0
375	0	560.0	3.49	4.0
376	0	620.0	3.63	2.0
377	1	800.0	4.00	2.0
378	0	640.0	3.12	3.0
379	0	540.0	2.70	2.0
380	0	700.0	3.65	2.0
381	1	540.0	3.49	2.0
382	0	540.0	3.51	2.0
383	0	660.0	4.00	1.0
384	1	480.0	2.62	2.0
385	0	420.0	3.02	1.0
386	1	740.0	3.86	2.0
387	0	580.0	3.36	2.0
388	0	640.0	3.17	2.0
389	0	640.0	3.51	2.0
390	1	800.0	3.05	2.0
391	1	660.0	3.88	2.0
392	1	600.0	3.38	3.0
393	1	620.0	3.75	2.0
394	1	460.0	3.99	3.0
395	0	620.0	4.00	2.0
396	0	560.0	3.04	3.0
397	0	460.0	2.63	2.0
398	0	700.0	3.65	2.0
399	0	600.0	3.89	3.0

400 rows × 4 columns