Tabla 4.1

Objeto	Definición intuitiva	Expresión en términos de componentes si $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j}, \mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j}, \mathbf{y}$ $\mathbf{u} = (u_1, u_2), \mathbf{v} = (v_1, v_2)$
Vector v	Un objeto que tiene magnitud y dirección	$v_1 \mathbf{i} + v_2 \mathbf{j}$ o (v_1, v_2)
v	Magnitud (o longitud) de v	$\sqrt{v_1^2 + v_2^2}$
αν	$\sqrt[n]{v}$ $\sqrt[n]{\alpha v}$ (en este dibujo $\alpha = 2$)	$\alpha v_1 \mathbf{i} + \alpha v_2 \mathbf{j}$ o $(\alpha v_1, \alpha v_2)$
-v	✓ v	$-v_1\mathbf{i} - v_2\mathbf{j}$ o $(-v_1, -v_2)$ o $-(v_1, v_2)$
$\mathbf{u} + \mathbf{v}$	$u + v \int_{v}$	$(u_1 + v_1)\mathbf{i} + (u_2 + v_2)\mathbf{j}$ o $(u_1 + v_1, u_2 + v_2)$
$\mathbf{u} - \mathbf{v}$	$v \underbrace{ \int_{u}^{u} - v}_{}$	$(u_1 - v_1)\mathbf{i} + (u_2 - v_2)\mathbf{j}$ o $(u_1 - v_1, u_2 - v_2)$

RESUMEN 4.1

- El segmento de recta dirigido que se extiende de P a Q en \mathbb{R}^2 denotado por \overrightarrow{PQ} es el segmento de recta que va de P a Q.
- Dos segmentos de recta dirigidos en \mathbb{R}^2 son equivalentes si tienen la misma magnitud (longitud) y dirección.
- Definición geométrica de un vector

Un vector en \mathbb{R}^2 es el conjunto de todos los segmentos de recta dirigidos en \mathbb{R}^2 equivalentes a un segmento de recta dirigido dado. Una **representación** del vector tiene su punto inicial en el origen y se denota por $\overrightarrow{0R}$.

• Definición algebraica de un vector

Un vector \mathbf{v} en el plano xy (\mathbb{R}^2) es un par ordenado de números reales (a, b). Los números a y b se llaman **elementos** o **componentes** del vector \mathbf{v} . El **vector cero** es el vector (0, 0).

- Las definiciones geométrica y algebraica de un vector en \mathbb{R}^2 se relacionan de la siguiente manera: si $\mathbf{v} = (a, b)$, entonces una representación de \mathbf{v} es 0, donde $\mathbf{R} = (a, b)$.
- Si $\mathbf{v} = (a, b)$, entonces la magnitud de \mathbf{v} , denotada por $|\mathbf{v}|$, está dada por $|\mathbf{v}| = \sqrt{a^2 + b^2}$.
- Si v es un vector en \mathbb{R}^2 , entonces la dirección de v es el ángulo en $[0, 2\pi]$ que forma cualquier representación de v con el lado positivo del eje x.