Simon Kurgan April 22, 2024 1

1 Introduction

Theorem 1.1. For all integers a and b with b > 0, there exist unique integers q and r such that a = bq + r, and $0 \le r < b$.

Proof: Let a = -5 and b = 2. Then,

$$-5 = 2 \times (-3) + 1$$

So, for a=-5 and b=2, there exists a unique q and r belonging to the set of integers such that a=2q+r with $0 \le r < 2$ (i.e., r=0 or 1).

By Theorem 16, every integer is either odd or even.

Corollary 1.1.1. For any integer a, b with b > 1, there exists a unique $r \in \mathbb{Z}$ such that $a = r \pmod{b}$ and $0 \le r < b$.

When b=3, for any $z\in\mathbb{Z}$, there exists a unique integer r such that $a\equiv r\pmod 3$ and $r\in\{0,1,2\}$.

Theorem 1.2. For every integer n, $n^3 \equiv n \pmod{3}$.

Proof: By Corollary 1, we only have one of the three cases: Case 1: $n \equiv 0 \pmod{3}$

$$n^3 \equiv n \pmod{3} \longrightarrow 3 \mid (n^3 - n)$$

$$3 \mid (n^3 - n) \longrightarrow (n)(n-1)(n-1)$$

By Theorem 20, we have $n^3 \equiv 0^3 \pmod{3}$.

Case 2: $n \equiv 1 \pmod{3}$

Similarly, $n = n^3 \pmod{3}$. Case 3: $n \equiv 2 \pmod{3}$

Theorem 1.3. Let $n \in \mathbb{Z}$. Then n is even if and only if n^2 is even. Similarly, n is odd if and only if n^2 is odd.

Proof: \longrightarrow

Suppose n is even. Goal: n^2 is even.

Then n = 2k for some $k \in \mathbb{Z}$.

So, $n^2 = (2k) \times n = 2(kn)$, where $kn \in \mathbb{Z}$ by the closure of \mathbb{Z} .

Hence, n^2 is even.

 \leftarrow

Need to prove: if n^2 is even, then n is even.

Contrapositive: If n is not even, then n^2 is not even.

By Theorem 16, if an integer is not even, then it is odd.

Suppose n is odd. Then n = 2k + 1 for some $k \in \mathbb{Z}$.

So,
$$n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$$
.

Since $2k^2 + 2k \in \mathbb{Z}$, n^2 is odd.

2 Revisit

Let $x \in \mathbb{R}$. We say x is rational if there exist integers p and q with $q \neq 0$ such that $x = \frac{p}{q}$. We say x is irrational if it is not rational.

Theorem 2.1. $\sqrt{2}$ is irrational.

Proof: There exist $p, q \in \mathbb{Z}$ such that $\sqrt{2} = \frac{p}{q}, q \neq 0$. $2 = \frac{p^2}{q^2} \Rightarrow 2q^2 = p^2$ $\Rightarrow p^2 \text{ is even}$ $\Rightarrow p \text{ is even } (p = 2k, \text{ where } k \in \mathbb{Z})$ $\Rightarrow 2q^2 = (2k)^2 = 4k^2.$ $q^2 = 2k^2$ $\Rightarrow q^2 \text{ is even}$ $\Rightarrow q \text{ is even } (q = 2L, \text{ where } L \in \mathbb{Z})$ $\sqrt{2} = \frac{p}{q} \text{ p is negative and } -p \text{ is positive.}$

Remark: We use proof by contradiction, then we prove that the well-ordering property is contradicted.