CSE578: Computer Vision

Feature Learning with Deep Learning

Anoop M. Namboodiri
Center for Visual Information Technology
IIIT Hyderabad, INDIA

[Content Generously Borrowed from CS231n]

Convolutional Neural Networks

- Course on CNN in Computer Vision at Stanford
 - o Fei-Fei Li, Justin Johnson and Serena Yeung
 - 2017 edition on YouTube: https://www.youtube.com/playlist?list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3E08sYv

Convolutional Neural Networks: History

- The Mark 1 Perceptron machine (Frank Rosenblatt, ~1957)
- Connected to a camera that used 20×20 cadmium sulfide photocells to produce a 400pixel image.
- Recognized letters of the alphabet
- Used gradient descent update rule for learning

Convolutional Neural Networks: History

Several other efforts

- Adaline/Madaline: Widrow and Hoff, 1960
- Backpropagation: Rumelhart et al. 1986
- RBMs: Pretraining: Hinton and Salakhutdinov 2006
- The watershed moment: "Imagenet Classification with Deep Convolutional Neural Networks": Alex Krizhevsky, Ilya Sutskever, Geoffrey E Hinton, 2012

ConvNets tops most vision tasks Classification Retrieval Convenience of the property of the party of the p

ConvNets tops most vision tasks

- Person Recognition
- Spoof Detection
- Video Activity Recognition
- Image Captioning
- Image Generation
- Style Transfer
- Image Super-resolution
- Image Coloring

- Lip Reading
- Visual QA
- Video Captioning
- Video Highlight Detection
- Single/few Image 3D Reconstruction
- And many others
 - o Just see Kaggle

Linear Classifier ω_1 ω_2 ω_2

A linear boundary separates two classes.

Linear Classifier $\alpha_1 x_1 + \alpha_2 x_2 + \alpha_0 = 0$

A linear boundary separates two classes.

A linear boundary separates two classes.

Perceptron Learning

- Randomly Initialize the weights
- · For each sample:
 - Feed a sample and find the output (forward pass)

Multi-layer Perceptron

Convolution Layer

Convolve the filter with the image. i.e. "Slide over the image spatially, computing dot products"

Convolution Layer

