Prova 3

Introdução à Computação em Física FIS616 (2024/1)

Prof. Walber Hugo de Brito

1. (8 pontos) Um carro viajando ao longo de uma estrada é cronometrado em vários pontos. Os dados obtidos das observações são fornecidos na Tabela 1, onde o tempo é escrito em segundos e a distância em metros.

Tabela 1: Dados obtidos referentes a questão 1

2000010121 2000		00100	10101011000 0	questas	
Tempo (segundos)	0	3	5	8	13
Distância (metros)	0.0	68.58	116.738	189.89	302.666

- (a) (4 pontos) Implemente um código que usa splines cúbicas naturais para fazer uma estimativa da posição do carro quando t=10 s. Plote o gráfico da distância em função do tempo mostrando as splines obtidas e os pontos da Tabela 1.
- (b) (4 pontos) Implemente o cálculo da derivada da spline obtida (no interior do intervalo de tempo medido) para determinar se o carro excedeu alguma vez o limite de velocidade de $24.5~\mathrm{m/s}$. Em caso afirmativo, quando foi a primeira vez em que o carro excedeu essa velocidade?
 - 2. (9 pontos) Seja o problema do valor inicial

$$y' = y - x^2 + 1, (1)$$

onde y(0) = 0.5.

- (a)(6 pontos) Obtenha a solução do PVI acima para x até 2.0, utilizando o método de Euler melhorado e algum método de Runge-Kutta de quarta ordem.
- (b)(3 pontos) Compare os resultados obtidos em (a) com a solução exata dada por $y(x) = (x+1)^2 0.5e^x$. Faça uso de um gráfico para uma melhor comparação.
- 3. (8 pontos) Considere o lançamento de um projétil com velocidade inicial de módulo v_0 com ângulo θ em relação ao plano horizontal. Considere que o projétil se desloca sob ação de uma força de resistência dada por

$$\vec{F} = -km\frac{d\vec{r}}{dt},\tag{2}$$

onde k é uma constante e m a massa do projétil.

- (a) (5 pontos) Escreva um programa em Python, para encontrar as equações da posição do projétil (x(t),y(t)). Considere que m=0.4 Kg, $v_0=40.0$ m/s, $\theta=60.0^{\circ}$, g=9.8 m/s² e k=0.025, obtenha o deslocamento x e y para o tempo de 7.0 segundos. **Obs.:** Não usar programação simbólica.
- (b) (3 pontos) Faça um gráfico de y(t) e x(t). Plote no mesmo gráfico as curvas de y(t) e x(t) correspondentes ao caso em que não há uma força de resistência.
- 4. (9 pontos) Considere o movimento de um objeto de massa m que está acoplado a uma mola de constante elástica k. Ao realizar um movimento oscilatório o mesmo objeto está também sujeito a uma força de amortecimento dada por $F_{res} = -b \frac{dx}{dt}$, onde b é uma constante.
- (a) (6 pontos) Escreva a equação de movimento para o objeto e implemente um programa em Python, para encontrar a equação da posição x(t). Considere que m=2 Kg, x(0)=1.0 m, v(0)=2.0 m/s, b=0.1 e k=5 N/m. Obs.: Não usar programação simbólica.
- (b) (3 pontos) Faça um gráfico de x(t). Plote no mesmo gráfico a curva de x(t) correspondente ao caso em que não há uma força de amortecimento.