Change Point Detection via Mixed Integer Optimisation

with an application in European carbon emission

Tomoya Ozawa

Supervisor: Dr Jessica Leung

17th April 2023

ETF5550 First Presentation

What are we trying to do?

• We aim to detect when changes in relationship between Y and X happened by finding the changes in coefficients ($\beta_1 \rightarrow \beta_2$).

Figure 1: An example

What is our research?

Our research topic is to propose a new method to Change Point Detection using Mixed Integer Optimisation. Our research questions are:

RQ1 Can our proposed method outperform the existing methods? **RQ2** When does our method perform better than benchmarks?

This study consists of 2 parts.

I. Simulation study

To answer our research questions

II. Empirical study

• To demonstrate how our proposed method performs in the real-world data set, the European CO2 emissions.

What is Change Point Detection?

- Change Point Detection (CPD) is a method to detect abrupt changes in time series data.
- Methods have been developed by the literature in engineering, bioinformatics, and econometrics.
- These methods are widely adopted for real-world applications such as signal processing, medical condition monitoring and climate change detection.
- CPD has many categories in terms of objectives (Online / Offline) and formulations (Supervised / Unsupervised).
- Our proposed method is classified as offline supervised CPD.

Previous studies in offline supervised CPD

[Chow, 1960]

• First study. Hypothesis testing whether the coefficients of the regression model vary before and after the structural break.

[Bai, 1994]

 This model used dynamic programming to detect a single change point. It is extended to multiple change points in [Bai and Perron, 1998, Bai and Perron, 2003]

[Wang and Emerson, 2015]

• A bayesian approach. It generalized the Product Partition Model proposed in [Barry and Hartigan, 1992].

What is Mixed Integer Optimization?

- Mixed Integer Optimization (MIO) is one of the classes of optimization problems.
- MIO is an optimization problem with some decision variables (x) that are restricted to be integers.
- Recently, the application of MIO has flourished due to the advancement of algorithms, solvers and computational resources.

minimise
$$3x_1 + 2x_2 + x_3 - 10$$

subject to $x_1 - 2x_2 + x_3 = 2.5$
 $2x_1 + x_2 = 1.5$
 $x_j \ge 0 (j = 1, 2, 3)$
 x_2, x_3 are integer

Motivation: Why do we do this research?

Three key points are identified through literature review:

- 1. CPD is a problem where MIO can be utilised. [RQ1]
 - MIO can provide optimal solutions for some variables that are restricted to be integers (the number of change points).
- 2. Almost all methods assume distribution assumption. [RQ1]
 - It is significant to re-visit CPD from a Data-driven perspective.
- 3. Few studies discuss when a proposed method outperforms existing methods. [RQ2]
 - Clarifying when our method works better than others is meaningful from an empirical perspective.

Our proposed method

Consider the following regression model:

$$Y_t = X_t^T \beta_t + u_t \quad t = 1, 2, \dots, T \tag{1}$$

- Y_t is the data point of the objective variable and X_t is a p-dimensional column vector of predictors.
- β_t is a *p*-dimensional column vector of coefficients, depending on time *t*.
- u_t is a residual with no distribution assumption.
- Toeplitz matrix and Vandermonde matrix can be applied to the formulation. Lag and polynomial terms of the original variables in X can be expressed.

Our proposed method

$$\sum_{t=1}^{T} (Y_t - X_t^T \beta_t)^2 + \lambda \sum_{t=1}^{T-1} Z_t$$
(2a)

subject to
$$|\beta_{t+1,j} - \beta_{t,j}| \le Mz_t$$
 for $t = 1, 2, ..., T - 1$, and $j = 1, ..., p$ (2b)

$$z_t \in \{0,1\}$$
 for $t = 1, 2, ..., T-1$ (2c)

- \cdot λ is a hyperparameter. M is an arbitrarily large scalar, called Big M.
- z_t is a binary variable that takes 1 if t is detected to be a change point and 0 otherwise.

Simulation study

Objective:

 To evaluate the performance of our proposed method. We can answer our research questions.

How it works

- We simulate the data with change points based on regression models, implement the proposed method and benchmarks to the simulated data and compare how they perform.
- We do multiple simulation settings with different values for the two:
 - Signal to Noise Ratio (SNR), which indicates how much Y is explained by X relative to an error term, and correlation between predictors, X.

Simulation study

What we have done

- Implemented our proposed method and one of the benchmarks from scratch in Python.
- We are doing simulations of our proposed method.

What we are going to do: week 7 - 9

- Complete simulations for all methods
- Compare the results and answer our research questions

Empirical study

Objective:

• To demonstrate how our proposed method works in the real-world data set, we implement our method to the CO2 emission data (caused by transportation) in the EU.

How it works

- We will pick up some countries and formulate a regression form for each country.
- Our method tells us that when changes in the relationships between CO2 emissions, Y, and possible factors, X, such as GDP, population and CO2 emission of the neighbouring countries occur.

Empirical study

Figure 2: CO2 emissions for each country

Empirical study

What we have done

- Collected the latest dataset for CO2 emissions (from JRC EDGAR, [Crippa et al., 2022]), GDP and Population (from World Development Indicators, [The World Bank, 2021a, The World Bank, 2021b]), and merged them into one dataset by country and year.
- Conducted explanatory data analysis.

What we are going to do: week 9 - 10

- · Decide model specification.
- Implement our purposed method to the data set and discuss results from the EU's climate policy perspective.

Conclusion

- Our research topic is to propose a new method to Change Point Detection using Mixed Integer Optimisation.
- To compare our proposed method to benchmark methods, we do Simulation Study.
- To demonstrate how our proposed method works in real-world data, we do Empirical study, implementing our method in the CO2 emissions dataset in the EU.
- In the next presentation and final thesis, we will report:
 - the results of Simulation study and Empirical study and discuss the obtained result.
 - the limitations and potential extensions of this study.

Reference i

- Bai, J. (1994).

 Least squares estimation of a shift in linear processes.

 Journal of Time Series Analysis, 15(5):453–472.
- Bai, J. and Perron, P. (1998).
 Estimating and testing linear models with multiple structural changes.

Econometrica, pages 47-78.

Reference ii

- Bai, J. and Perron, P. (2003).
 Computation and analysis of multiple structural change models.
 Journal of applied econometrics, 18(1):1–22.
- Barry, D. and Hartigan, J. A. (1992).
 Product partition models for change point problems.
 The Annals of Statistics, pages 260–279.
- Chow, G. C. (1960).
 Tests of equality between sets of coefficients in two linear regressions.

Econometrica: Journal of the Econometric Society, pages 591–605.

Reference iii

Crippa, M., Guizzardi, D., Banja, M., Solazzo, E., Muntean, M., Schaaf, E., Pagani, F., Monforti-Ferrario, F., Olivier, J., Quadrelli, R., et al. (2022).

Co2 emissions of all world countries.

Luxembourg: Publications Office of the European Union. doi, 10:730164.

The World Bank (2021a).

World development indicators.

GDP (constant 2015 US\$), Retrieved from https://data.worldbank.org/indicator/NY.GDP.MKTP.KD.

Reference iv

- The World Bank (2021b).

 World development indicators.

 Population, total, Retrieved from

 https://data.worldbank.org/indicator/SP.POP.TOTL.
- Wang, X. and Emerson, J. W. (2015).

 Bayesian change point analysis of linear models on graphs.

 arXiv preprint arXiv:1509.00817.

Appendix: Toeplitz matrix

Toeplitz matrix is a matrix in that any diagonal elements are the same.

When Toeplitz matrix for $X = [x_1, x_2, \dots, x_T]$ is defined as:

$$T(X) = \begin{bmatrix} x_2 & x_1 \\ x_3 & x_2 \\ \vdots & \vdots \\ X_T & X_{T-1} \end{bmatrix}$$

A regression model with the quadratic terms can be expressed as follows:

$$T(X)\beta = \begin{bmatrix} x_2 & x_1 \\ x_3 & x_2 \\ \vdots & \vdots \\ X_T & X_{T-1} \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix}$$

Appendix: Vandermonde matrix

Vandermonde matrix for $X = [x_1, x_2, \dots, x_T]$ with n-1 degree of freedom is defined as:

$$V_{T\times n}(X) = \begin{bmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \ddots & \cdots & x_1^{n-1} \\ 1 & x_T & x_T^2 & \cdots & x_T^{n-1} \end{bmatrix}$$

Appendix: Vandermonde matrix

Multiplying the Vandermonde matrix for X by $\beta = [\beta_1, \beta_2, \cdots, \beta_n]$, the polynomial regression form can be obtained.

$$V_{T \times n}(X) \beta = \begin{bmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \ddots & \cdots & x_1^{n-1} \\ 1 & x_T & x_T^2 & \cdots & x_T^{n-1} \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{bmatrix}$$

Appendix: Signal To Noise (SNR)

• In the context of a regression model $Y = X\beta + \epsilon$, SNR is defined as the follows:

$$SNR = \frac{Var[X\beta]}{Var[\epsilon]}$$

• A higher SNR indicates that the predictors, X, have a greater impact in generating y compared to error terms ϵ .

Appendix: Simulation setting

Data-generating process:

$$t = 1, 2, ..., 500$$

$$Y_t = X_t^T \beta_1 + \epsilon_t$$

$$\beta_1 = [1, 1, 1, 0, 1]$$

$$\epsilon_t \sim N\left(0, \frac{Var[X_{t=1:500}\beta_1]}{SNR}\right)$$

$$X_t \sim MVN(0, \Sigma)$$

$$t = 501, 502, ..., 1000$$

$$Y_t = X_t^T \beta_2 + \epsilon_t$$

$$\beta_2 = [-1, -1, -1, 0, -1]$$

$$\epsilon_t \sim N\left(0, \frac{Var[X_{t=501:1000}\beta_2]}{SNR}\right)$$

,where
$$\Sigma_{i,j} = \rho^{|i-j|}$$