### Logistic Regression

POST 8000 – Foundations of Social Science Research for Public Policy

Steven V. Miller

Department of Political Science



# Goal for Today

 ${\it Discuss \ logistic \ regression, \ perhaps \ the \ most \ common \ form \ of \ regression.}$ 

#### OLS

OLS has a ton of nice properties.

- Best linear unbiased estimator (BLUE)
- Simple to execute and interpret.

It'd be a *shame* if something were to happen to one of your assumptions.

The biggest problem you'll encounter will concern your DV.

• OLS assumes the DV is distributed normally.

You'll most often encounter DVs that are binary.

- Candidate won/lost.
- Citizen voted/did not vote.
- Program succeeded/failed.
- War happened/did not happen.

Most social/political phenomena are typically "there"/"not there."

Observe this simple data frame, D.

Ι

```
## # A tibble: 10,000 x 2
##
          х
##
      <dbl> <int>
##
##
##
##
##
##
##
##
##
## 10
                0
## # ... with 9,990 more rows
```

#### This simple D data frame is simulated where:

- x is a five-item ordered categorical variable [0:4].
- y is a binary variable with only 0s and 1s.
- The effect of a one-unit increase of x on y is 1.4.
- y is estimated to be -2.8 when x is 0.

Importantly: responses are simulated from a binomial distribution.

Seed is set for 100% reproducibility.

Here's what OLS produces.

```
M1 <- lm(y ~ x, D)
broom::tidy(M1) %>%
    mutate_if(is.numeric, ~round(., 2)) %>%
    kable(., "markdown")
```

| term        | estimate | std.error | statistic | p.value |
|-------------|----------|-----------|-----------|---------|
| (Intercept) | 0.02     | 0.01      | 3.62      | 0       |
| X           | 0.24     | 0.00      | 91.02     | 0       |

Not even close.

#### The Fitted-Residual Plot from the OLS Model We Just Ran





#### The Q-Q Plot from the OLS Model We Just Ran

The Q-Q plot thinks you messed up too, pay careful attention to the middle of the plot as well.



### The Right Tool for the Right Job

```
M2 <- glm(y ~ x, D, family=binomial(link = "logit"))
broom::tidy(M2) %>%
    mutate_if(is.numeric, ~round(., 2)) %>%
    kable(., "markdown")
```

| term        | estimate | std.error | statistic | p.value |
|-------------|----------|-----------|-----------|---------|
| (Intercept) | -2.82    | 0.06      | -48.05    | 0       |
| х           | 1.41     | 0.03      | 54.24     | 0       |

#### What We Just Did

This was a logistic regression.

• The coefficient tells us the effect of a unit change in x on the *natural logged odds of y*.

Let's unpack this piece by piece.

#### Odds

You typically hear of **odds** in the world of sports betting.

• It's closely linked with probability.

Given some probability p of an event occurring, the odds of the event equal:

$$\mathrm{Odds} = \frac{p}{1-p}$$

Ever hear of something like "the odds are 4 to 1 against" an event occurring?

- Translation: for every five trials, we expect 1 occurrence to 4 non-occurrences, on average.
- Odds >1 = more "successes" than "failures."

#### Probability and Odds in Our Data

```
D %>%
    group_by(x) %>%
    summarize(sum = sum(y),
        length = length(y),
        p = sum/length,
        # q is often substituted as notation for 1 - p
        q = 1 - p,
        odds = p/q) -> sumD
```

# Probability and Odds in Our Data

| sum  | length                    | р                                             | q                                                                 | odds                                                                                  |
|------|---------------------------|-----------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| 110  | 2000                      | 0.06                                          | 0.94                                                              | 0.06                                                                                  |
| 399  | 2000                      | 0.20                                          | 0.80                                                              | 0.25                                                                                  |
| 989  | 2000                      | 0.49                                          | 0.51                                                              | 0.98                                                                                  |
| 1609 | 2000                      | 0.80                                          | 0.20                                                              | 4.12                                                                                  |
| 1885 | 2000                      | 0.94                                          | 0.06                                                              | 16.39                                                                                 |
|      | 110<br>399<br>989<br>1609 | 110 2000<br>399 2000<br>989 2000<br>1609 2000 | 110 2000 0.06<br>399 2000 0.20<br>989 2000 0.49<br>1609 2000 0.80 | 110 2000 0.06 0.94<br>399 2000 0.20 0.80<br>989 2000 0.49 0.51<br>1609 2000 0.80 0.20 |

Tell me if you see a pattern beginning to emerge.

## Odds Ratio and Percentage Change in Odds

One way of thinking about change in odds is the odds ratio.

• Simply: the odds of *y* in one category over the odds from the previous category.

A percentage change in odds is also a useful way of seeing a consistent pattern emerge.

ullet Simply: the difference in odds for a one-unit increase in  ${\bf x}$  over odds of lower category.

### Odds Ratio and Percentage Change in Odds

# Percentage Change in Odds

| Х | sum  | length | p    | q    | odds  | oddsr | pcodds |
|---|------|--------|------|------|-------|-------|--------|
| 0 | 110  | 2000   | 0.06 | 0.94 | 0.06  | NA    | NA     |
| 1 | 399  | 2000   | 0.20 | 0.80 | 0.25  | 4.28  | 3.28   |
| 2 | 989  | 2000   | 0.49 | 0.51 | 0.98  | 3.93  | 2.93   |
| 3 | 1609 | 2000   | 0.80 | 0.20 | 4.12  | 4.21  | 3.21   |
| 4 | 1885 | 2000   | 0.94 | 0.06 | 16.39 | 3.98  | 2.98   |

## Logit (Natural Logged Odds)

Another more sophisticated/flexible way: logits (i.e. natural logged odds).

ullet These are natural logarithmic transformations (of base e) of the odds.

## Logit (Natural Logged Odds)

```
sumD %>%
  mutate(logit = log(odds)) %>%
  mutate_if(is.numeric, ~round(., 2)) %>%
  kable(.,"markdown")
```

| X | sum  | length | р    | q    | odds  | oddsr | pcodds | logit |
|---|------|--------|------|------|-------|-------|--------|-------|
| 0 | 110  | 2000   | 0.06 | 0.94 | 0.06  | NA    | NA     | -2.84 |
| 1 | 399  | 2000   | 0.20 | 0.80 | 0.25  | 4.28  | 3.28   | -1.39 |
| 2 | 989  | 2000   | 0.49 | 0.51 | 0.98  | 3.93  | 2.93   | -0.02 |
| 3 | 1609 | 2000   | 0.80 | 0.20 | 4.12  | 4.21  | 3.21   | 1.41  |
| 4 | 1885 | 2000   | 0.94 | 0.06 | 16.39 | 3.98  | 2.98   | 2.80  |

Now do you see it?

# Compare M2 with the Previous Table

| term        | estimate | std.error | statistic | p.value |
|-------------|----------|-----------|-----------|---------|
| (Intercept) | -2.82    | 0.06      | -48.05    | 0       |
| X           | 1.41     | 0.03      | 54.24     | 0       |

You can always "backtrack" a logistic regression coefficient.

• Exponentiating a logistic regression coefficient returns an odds ratio. Observe:

```
pull(exp(broom::tidy(M2)[2,2]))
```

```
## [1] 4.0821
```

You can subtract 1 from the exponentiated coefficient, and multiply it by 100.

```
pull(100*(exp(broom::tidy(M2)[2,2]) - 1))
```

```
## [1] 308.21
```

That's the percentage change in odds.

If you internalize the relationship between probability and odds, you can even return a probability estimate from a logistic regression.

$$\operatorname{Probability} = \frac{\operatorname{Odds}}{1 + \operatorname{Odds}}$$

In R, for when x = 0, pr(y=1|x=0):.

```
yintercept <- pull(broom::tidy(M2)[1,2])
exp(yintercept)/(1 + exp(yintercept))</pre>
```

```
## [1] 0.05629715
```

22/30

For larger/more complex models, resist the urge to do this by hand.

But you could if you knew what you were doing.

For example, here's the probability of y=1 for when x=2:

```
yintercept <- pull(broom::tidy(M2)[1,2])
betax <- pull(broom::tidy(M2)[2,2])

exp(yintercept + 2*betax)/(1 + exp(yintercept + 2*betax))</pre>
```

```
## [1] 0.4985139
```

Save this train of thought for when we get to the week on making the most of regression.

The logistic function is still monotonic, if not exactly linear.

• Interestingly, logistic function is close to linear when p is between .2 and .8.

Think of the logistic regression function as a natural logged odds of "success."

• Recall: dummies are a unique case of a categorical variable.

Statistical significance assessments are effectively identical to OLS.

• Caveat: inference is done via *z*-score and not a *t*-statistic.

tl;dr for why: OLS has both a mean and variance to estimate and the variance is independent of the mean.

- $\bullet\,$  In logistic regression, there's really just one parameter p and not two.
- ullet Basically, the variance with binary data is a function of the mean (i.e. p(1-p)).

#### Model Fit for Logistic Regression

**Deviance** is the estimate of model fit, not  $\mathbb{R}^2$ .

- Similar to a chi-square analysis.
- i.e. how well does the fitted value  $(\hat{y})$  "fit" to the observed value of y.

Bigger the difference (or "deviance"), the poorer the fit of the model.

• This will allow you to do some model comparisons with multiple IVs.

#### Maximum Likelihood Estimation (MLE)

#### MLE replaces the OLS principle.

- OLS: draw a line that minimizes the sum of squared residuals.
- MLE: draw a line that results in the smallest possible deviance.

#### This is done iteratively.

• It's one reason why logistic regression models are slower than linear models.

#### The Distribution of Run Times for a Linear Regression and Logistic Regression (on the Same Data)

GLMs (like logistic regression) take discernibly longer to run, and you'll notice it more in more complicated models.



Data: see R Markdown file for underlying data.

#### Conclusion

If your DV is binary, use a logistic regression and not OLS.

- Statistical signifiance may not change, but that's also not the point.
- Binary DVs violate the assumptions of OLS and produce misleading estimates.
  - That's the point.

The process really doesn't change much.

- Inference is done via standard normal distribution, not Student's t-distribution.
- ullet Coefficients communicate changes in the natural logged odds of y for a one-unit change in x.

This may take some time, but you'll get used to it. I promise.

#### **Table of Contents**

#### Logistic Regression

Introduction

The Biggest Practical Obstacle to OLS

**Unpacking Logistic Regression** 

**Properties of Logistic Regression Output** 

Model Fit for Logistic Regression

Conclusion