《数字电子技术基础》复习题

知识点: 基础知识

数制转换

- 1. $(30.25)_{10}$ = $(11110.01)_2$ = $(1E.4)_{16}$
- 2. $(3AB6)_{16} = (0011101010110110)_2 = (35266)_8$
- $(136.27)_{10} = (10001000.0100)_2 = (88.4)_{16}$
- 4. $(432.B7)_{16}$ = $(010000110010.10110111)_2$ = $(2062.556)_8$
- 5. $(100001000)_{BCD} = (108)_{D} = (6C)_{H} = (01101100)_{B}$
- 6. 二进制(1110.101)2转换为十进制数为 14.625 3
- 7.十六进制数 (BE.6) 16 转换为二进制数为 (101111110.011)2 。
- 8. $A \oplus 0 = \underline{A}$, $A \oplus 1 = \underline{A}$

原码、反码与补码 在二进制数的前面增加一位符号位。符号位为 0 表示正数;符号位为 1 表示负数。正数的反码、补码与原码相同,负数的反码即为它的正数原码连同符号位按位取反。负数的补码即为它的反码在最低位加 1 形成。补码再补是原码。

1. 如 $(111011)_2$ 为有符号数,则符号位为<u>1</u>,该数为<u>负数</u>,反码为<u>100100</u>,补码为<u>100101</u>。 如 $(001010)_2$ 为有符号数,则符号位为<u>0</u>,该数为正数,反码<u>001010</u>,补码<u>001010</u>。

卡诺图化简

- $L(A, B, C, D) = \sum_{m=0}^{\infty} m(0,13,14,15) + \sum_{m=0}^{\infty} d(1,2,3,9,10,11)$ = A'B' + AD + AC
- $(2)L(A,B,C,D) = \sum m(0,1,2,5,6,8,9,10,13,14) = C'D + CD' + B'D'$
- 3. $F = \overline{A} BCD + A \overline{B} C + AB \overline{C} + ABC = \sum m(\underline{7, 10, 11, 12, 13, 14, 15})$.
- 4. $F=AC+\overline{B}$ D的最小项表达式为_ Σm (1, 3, 9, 10, 11, 14, 15)_。

知识点:门电路

- (1.)三态门的输出是<u>高电平、低电平</u>和<u>高阻态</u>。
- 2. 已知图中各门电路都是 TTL 系列门电路,指出各门电路的输出是什么状态。

答案: Y₁为高电平; Y₂为低电平; Y₃为低电平; Y₄为低电平。

3.74 系列 TTL 与非门组成如图电路。试求前级门 G_M 能驱动多少个负载门?门 G_M 输出高

电平 $V_{\rm OH}$ \geqslant 3.2V,低电平 $V_{\rm OL}$ \leqslant 0.4V,输出低电平时输出电流最大值 $I_{\rm OLmax}$ =16 mA,输出高电平时输出电流最大值 $I_{\rm OHmax}$ = -0.4mA, 与非门的电流 $I_{\rm IL}$ \leqslant -1.6mA, $I_{\rm IH}$ \leqslant 0.04 mA。

答案:

在满足 $V_{OL} \leq 0.4V$ 的条件下,求得可驱动的负载门数目为:

$$N_1 \le \frac{I_{\text{OL(max)}}}{\left|I_{\text{IL(max)}}\right|} = \frac{16}{1.6} = 10$$

在满足 $V_{OH} \ge 3.2V$ 的条件下,求得可驱动的负载门数目为:

$$N_2 \le \frac{\left|I_{\text{OH(max)}}\right|}{pI_{\text{IH(max)}}} = \frac{0.4}{2 \times 0.04} = 5$$

因此 G_M 最多能驱动 5 个同样的与非门。

- 4. 三个三态门的输出接到数据总线上,如图所示。
- (1) 简述数据传输原理。
- (2) 若门 G₁ 发送数据,各三态门的使能端子应置何种电平?

答案:

- (1) 数据传输原理:工作过程中控制各个反相器的 EN 端轮流等于 1,而且任何时候仅有一个等于 1,便可轮流把传输到各个反相器输出端的信号送到总线上,而互不干扰。
- (2) 若门 G_1 发送数据,各三态门的使能端子应置于 $EN_1=1$, $EN_2=EN_3=0$ 。
- 5. 图 1×2 中电路由 TTL 门电路构成,图 3 由 CMOS 门电路构成,试分别写出 $F1 \times F2 \times F3$ 的表达式。

知识点:组合逻辑电路

- 1. 数字电路分成两大类,一类是 组合逻辑电路 ,另一类是 时序逻辑电路 。
- 2. 组合逻辑电路在逻辑功能上的共同特点是 任意时刻的输出仅仅取决于该时刻的输入,与电路原来的状态无关。
- 3. 组合逻辑电路的分析是指 由给定的逻辑电路,通过分析找出电路的逻辑功能来。
- 4. 组合逻辑电路通常采用的设计方法分为<u>进行逻辑抽象</u>、<u>写出逻辑函数式</u>、<u>选定器件类型</u>、<u>将逻辑函数化</u>简或变换成适当的形式 和 由化简或变换后的逻辑函数式,画出逻辑电路图 五个步骤。
- 5. 逻辑状态赋值是指 以二值逻辑的 0、1 两种状态分别代表输入变量和输出变量的两种不同状态 。
- 6. 编码器的逻辑功能是 将输入的每一个高、低电平信号编成一个对应的二进制代码。
- 7. 译码器的逻辑功能是 将每个输入的二进制代码译成对应的输出高、低电平信号或另外一个代码。
- 8. 用具有*n*位地址输入的数据选择器,可以产生任何形式输入变量数不大于 n+1 的组合逻辑函数。
- 9. 试分析图示(a)和(b)两电路是否具有相同的逻辑功能。如果相同,它们实现的是何逻辑功能。

答案:

根据逻辑电路图写出逻辑表达式:

(a)
$$Y = ((A(AB)' + B(AB)')')' = A(A' + B') + B(A' + B') = AB' + A'B$$

(b)
$$Y = (A+B)(A'+B') = AB' + A'B$$

可见,两电路具有相同的逻辑表达式,因此逻辑功能相同。电路实现的是异或逻辑功能。

10. 用 4 线-16 线译码器 74LS154 和门电路产生如下函数。

$$Y = AC'D + A'B'CD + BC + BCD'$$

答案:

$$Y = AC'D + A'B'CD + BC + BCD' = m_3 + m_6 + m_7 + m_9 + m_{13} + m_{14} + m_{15}$$
$$= (m_3' \cdot m_6' \cdot m_7' \cdot m_9' \cdot m_{13}' \cdot m_{14}' \cdot m_{15}')'$$

令 A_3 =A A_2 =B A_1 =C A_0 =D 则 $Y_0' \sim Y_{15}'$ \longrightarrow $m_0' \sim m_{15}'$

11. 用 3 线-8 线译码器 74HC138 和门电路产生如下函数。用 8 选 1 数据选择器 74HC151 实现函数 Y_2 。

$$Y_1 = AC + B'C$$

$$Y_2 = A'B'C + AB'C' + BC$$

$$Y_3 = B'C' + AB'C$$

答案:

$$\begin{split} Y_1 &= AC + B'C = ABC + AB'C + A'B'C = m_7 + m_5 + m_1 \\ Y_2 &= A'B'C + AB'C' + BC = A'B'C + AB'C' + ABC + A'BC = m_1 + m_4 + m_7 + m_3 \\ Y_3 &= B'C' + AB'C = AB'C' + A'B'C' + AB'C = m_4 + m_0 + m_5 \end{split}$$

$$Y_1 = m_7 + m_5 + m_1 = (m'_1 \cdot m'_5 \cdot m'_7)'$$

$$Y_2 = m_1 + m_4 + m_7 + m_3 = (m'_1 \cdot m'_3 \cdot m'_4 \cdot m'_7)'$$

$$Y_3 = m_4 + m_0 + m_5 = (m'_0 \cdot m'_4 \cdot m'_5)'$$

当用 8 选 1 数据选择器 74HC151 实现函数 Y_2 时,令 A_2 = A_1 = B_1 = A_0 = C_2 0则 D_1 = D_3 = D_4 = D_7 = D_4 = D_5 = D_6 = D_6

12. 用红、黄、绿三个指示灯表示三台设备的工作情况:绿灯亮表示全部正常;红灯亮表示有一台不正常;黄灯亮表示两台不正常;红、黄灯全亮表示三台都不正常。列出控制电路真值表,要求用74LS138和适当的与非门实现此电路。

1) 根据题意,列出真值表

由题意可知,令输入为 $A \times B \times C$ 表示三台设备的工作情况,"1"表示正常,"0"表示不正常,令输出为 R,Y,G 表示红、黄、绿三个批示灯的 状态,"1"表示亮,"0"表示灭。真值表如下:

Α	В	С	RYG
0	0 0		1 1 0
0	0	1	0 1 0
0	1	0	0 1 0
0	1	1	100
1	0	0	0 1 0
1	0	1	100
1	1	0	100
1	1	1	0 0 1

(2)由真值表列出逻辑函数表达式为:

$$R(A,B,C) = \sum m(0,3,5,6)$$

$$Y(A,B,C) = \sum m(0,1,2,4)$$

$$G(A,B,C) = m_7$$

(3)根据逻辑函数表达式,选用译码器和与非门实现,画出逻辑电路图。

13. 分析图 5 所示电路,写出 Z1、Z2 的逻辑表达式,列出真值表,说明电路的逻辑功能。

(1) 表达式

$$Z1 = m_1 + m_2 + m_4 + m_7$$

 $Z2 = m_1 + m_2 + m_3 + m_7$

(2) 真值表

ABCI	Z1	Z2
000	0	0
001	1	1
010	1	1
0 1 1	0	1
100	1	0
101	0	0
110	0	0
1 1 1	1	1

- (3) 逻辑功能为: 全减器
- 14. 设计一位 8421BCD 码的判奇电路, 当输入码含奇数个"1"时,输出为 1, 否则为 0。用一片 8 选 1 数据选择器 74LS151 加若干门电路实现, 画出电路图。
- 解: 首先,根据电路逻辑描述画出卡诺图:

最简 "与一或式"为: $Y = \overline{ABCD} + A\overline{D} + B\overline{CD} + \overline{BCD} + BCD$; 用 74LS151 实现电路图为:

知识点: 触发器

- 1. 触发器是能够记忆一位二值信号的基本逻辑单元。
- 2. 触发器有两个稳定的状态,可用来存储数码 0 和 1 (只要电源不断电)。
- 3. 触发器按其逻辑功能可分为 \underline{RS} 触发器、 \underline{D} 触发器、 \underline{JK} 触发器、 \underline{T} 触发器等四种类型。按触发方式可以分为: 电平触发 、 脉冲触发 、 边沿触发 。
- 4. 画出由与非门组成的 SR 锁存器输出端 $Q \setminus \overline{Q}$ 的电压波形,输入端 $\overline{S} \setminus \overline{R}$ 的电压波形如图中所示。

答案:

5. 画出图中由或非门组成的 SR 锁存器输出端 $Q \setminus Q$ 的电压波形,其中输出入端 S, R 的电压波形如图中所示。

答案:

6. 在下图电路中,若 CP、S、R 的电压波形如图中所示,试画出 Q 的波形,假定触发器的初始状态为 Q=0。

答案:

7. 若主从结构 RS 触发器各输入端的电压波形如图中所示,试画出Q、 \overline{Q} 端对应的电压波形。设触发器的初始状态为 Q=0。

答案:

8. 已知D触发器各输入端的波形如图所示,试画出 $Q \setminus \overline{Q}$ 端的波形。

答案:

- 9. 寄存器分为 基本寄存器 和 移位寄存器 两种。
- 10. 一个 16 选一数据选择器, 其地址输入端有 4 个。
- 11. JK 触发器的特性方程为: $Q^{n+1} = J\overline{Q^n} + \overline{K}Q^n$ ___。
- 12. 单稳态触发器中,两个状态一个为<u>稳态</u>态,另一个为<u>暂稳态</u>态,多谐振荡器两个状态都为 暂稳态 态,施密特触发器两个状态都为 稳态 态。

知识点: 时序逻辑电路

- 1. 时序逻辑电路是指<u>任一时刻得输出信号不仅取决于当时得输入信号,而且还取决于电路原来的状态</u>。 时序逻辑电路具有存储和记忆功能,而组合逻辑电路没有这种功能。
- 2. 按照存储电路中触发器动作特点的不同,时序逻辑电路可分为 <u>同步</u>时序逻辑电路和<u>异步</u>时序逻辑电路,而按照输出信号特点的不同,又可将时序逻辑电路划分为<u>米利</u>型和<u>穆尔</u>型两种。
- 3. 用 4 级触发器组成十进制计数器,其无效状态个数为__6__。
- 4. 寄存器是用于<u>寄存一组二值代码的</u>,移位寄存器除了具有寄存器的功能以外,还具有移位功能,移位功能是指<u>在移位脉冲的作用下依次左移或右移</u>。
- 5. 由D触发器组成的四位数码寄存器,清零后,输出端 $Q_3Q_2Q_1Q_0=_0000_$,若输入端 $D_3D_2D_1D_0=1001$,当 CP有效沿出现时,输出端 $Q_3Q_2Q_1Q_0=_1001_$ 。
- 6. 数字电路按照是否有记忆功能通常可分为两类: 组合逻辑电路、时序逻辑电路。
- 7. 试分析下图所示时序逻辑电路的逻辑功能。

解:属同步时序电路,时钟方程省去。

输出方程: $Y = \overline{XQ_1} = \overline{X} + Q_1$

驱动方程: $\begin{cases} T_1 = X \oplus Q_0 \\ T_0 = 1 \end{cases}$

T触发器的特性方程: $Q^* = T \oplus Q$

将各触发器的驱动方程代入特性方程,即得电路的状态方程:

$$\begin{cases} Q_1^* = T_1 \oplus Q_1 = X \oplus Q_0 \oplus Q_1 \\ Q_0^* = T_0 \oplus Q_0 = 1 \oplus Q_0 = \overline{Q_0} \end{cases}$$

列状态转换表

输入	现	态	次	态	输出
X	Q_1	Q_0	Q_1^*	Q_0^*	Y
0	0	0	0	1	1
0	0	1	1	0	1
0	1	0	1	1	1
0	1	1	0	0	1
1	0	0	1	1	0
1	0	1	0	0	0
1	1	0	0	1	1
1	1	1	1	0	1

画状态转换图和时序波形图

由状态图可以看出,当输入X=0时,在时钟脉冲CP的作用下,电路的 4 个状态按递增规律循环变化,即:

$$00 \rightarrow 01 \rightarrow 10 \rightarrow 11 \rightarrow 00 \rightarrow ...$$

当X=1时,在时钟脉冲CP的作用下,电路的4个状态按递减规律循环变化,即:

$$00 \rightarrow 11 \rightarrow 10 \rightarrow 01 \rightarrow 00 \rightarrow ...$$

可见,该电路既具有递增计数功能,又具有递减计数功能,是一个2位二进制同步可逆计数器。

8. 写出下图电路的驱动方程、特性方程和输出方程。

解:驱动方程

$$\begin{cases} J_1 = \overline{Q_3} & K_1 = 1 \\ J_2 = Q_1 & K_2 = Q_1 \\ J_3 = Q_1 Q_2 & K_3 = 1 \end{cases}$$

状态方程

$$\begin{cases} Q_1^* = \overline{Q_3} \ \overline{Q_1} \\ Q_2^* = Q_1 \overline{Q_2} + \overline{Q_1} Q_2 = Q_1 \oplus Q_2 \\ Q_3^* = Q_1 Q_2 \overline{Q_3} \end{cases}$$

输出方程

$$Y = Q_3$$

9. 试分析下图所示时序逻辑电路的逻辑功能。

- 解: 该电路为异步时序逻辑电路。具体分析如下:
- (1) 写出各逻辑方程式
- ①时钟方程:

CP₀=CP (时钟脉冲源的上升沿触发)

 $CP_1=Q_0$ (当 FF_0 的 Q_0 由 $0\rightarrow 1$ 时, Q_1 才可能改变状态)

②输出方程:

$$Z = \overline{Q_0 + Q_1} = \overline{Q_0} \ \overline{Q_1}$$

 $D_0 = \overline{Q_0} \qquad \overline{D_1} = \overline{Q_1}$

(2) 将各触发器的驱动方程代入 D 触发器的特性方程, 得各触发器的状态方程:

$$Q_0^* = D_0 = \overline{Q_0}$$
 (CP由 0→1 时此式有效)

$$Q_1^* = D_1 = \overline{Q_1}$$
 ($Q_0 \oplus 0 \rightarrow 1$ 时此式有效)

(3) 列状态转换表

现态	次态	输出	时钟脉冲
Q_1 Q_0	Q* Q*	Z	വൗ, വൗം
0 0	1 1	1	† †
1 1	1 0	0	0 ↑
1 0	0 1	0	↑ ↑
0 1	0 0	0	0 ↑

(4) 画状态转换图和时序波形图

(5) 逻辑功能分析

由状态转换图可知:该电路一共有 4 个状态 00、01、10、11,在时钟脉冲作用下,按照减 1 规律循环变化,所以是一个异步 4 进制减法计数器,Z 是借位信号。

10. 试分析下图所示时序逻辑电路的逻辑功能。

解:属同步时序电路,时钟方程省去。

驱动方程:

$$\begin{cases} J_{1} = \overline{Q_{3}} & K_{1} = 1 \\ J_{2} = Q_{1} & K_{2} = Q_{1} \\ J_{3} = Q_{2} & K_{3} = \overline{Q_{2}} \end{cases}$$

将各触发器的驱动方程代入特性方程,即得电路的状态方程:

$$\begin{cases} Q_{1}^{*} = \overline{Q_{3}} \ \overline{Q_{1}} \\ Q_{2}^{*} = Q_{1} \overline{Q_{2}} + \overline{Q_{1}} Q_{2} = Q_{1} \oplus Q_{2} \\ Q_{3}^{*} = Q_{2} \overline{Q_{3}} + Q_{2} Q_{3} = Q_{2} \end{cases}$$

列状态转换表:

CP	Q3	Q2	Q1	Q*	Q_2^*	Q*	
1	0	0	0	0	0	1	
2	0	0	1	0	1	0	
3	0	1	0	1	1	1	
4	1	1	1	1	0	0	
5	1	0	0	0	0	0	
1	0	1	1	1	0	0	
1	1	0	1	0	1	0	
1	1	1	0	1	1	0	

画状态转换图

由状态转换图可知: 该电路属同步五进制计数器,不具备自启动功能。

11.已知计数器的输出端 Q_2 、 Q_1 、 Q_0 的输出波形如图所示,试画出对应的状态图,并分析该计数器为几进制计数器。

由状态转换图可知: 该电路属七进制计数器。

12. 分析图示计数器电路,说明这是多少进制的计数器,并画出对应的状态转换图。十进制计数器 74160 的功能表见教材。

这是一个七进制进制的计数器。

13.下图所示计数器电路为几进制计数器?

图示计数器电路分别为八进制计数器和七进制进制的计数器。

14. 试用两片 4 位二进制加法计数器 74161 采用并行进位方式构成 8 位二进制同步加法计数器。模为 $16\times16=256$ 。

15. 试用 74161 构成九进制计数器。(可采用异步清零法或同步预置数法)

异步清零法

同步预置数法

- 16. 试用 *JK* 触发器设计一个同步五进制加法计数器,要求电路能够自启动。解: 本题是同步计数器的设计,分析步骤如下:
 - (1) 根据设计要求,设定状态,画出状态转换图。该状态图不须化简。

(2) 状态分配,列状态转换编码表。由题意要求 M=5,故应取触发器位数 n=3,因为 $2^2 < 5 < 2^3$

소소소소	现 态			次态			进位输出	
状态转换顺序	\mathcal{Q}_2	Q_1	\mathcal{Q}_0	9	Q*	\mathcal{Q}_1^*	$\mathcal{Q}_0^{igspace{*}}$	Y
\mathcal{S}_{o}	0	0	0		0	0	1	0
S_1	0	0	1		0	1	0	0
S_2	0	1	0		0	1	1	0
S_3	0	1	1		1	0	0	0
S_4	1	0	0		0	0	0	1

(1) 画出电路的次态卡诺图,经化简得到电路的状态方程。

(4) 选择触发器 用 JK 触发器,则可列出有关 JK 触发器驱动方程和进位输出方程。

$$\begin{cases} J_0 = \overline{Q_2 \overline{Q_1}} & K_0 = 1 \\ J_1 = Q_0 & K_1 = Q_0 \\ J_2 = Q_1 Q_0 & K_2 = \overline{Q_1 Q_0} \end{cases} Y = Q_2$$

(5) 画逻辑电路图

17. 中规模同步四位二进制计数器 74LS161 的功能表见附表所示;请用反馈预置回零法设计一个六进制加法计数器。

清零	预置	使能	时钟	预置数据输入	输出	
RD	LD	EP ET	CP	DCBA	$Q_DQ_CQ_BQ_A$	
0	×	× ×	×	××××	0 0 0 0	
1	0	× ×	↑	DCBA	DCBA	
1	1	0 ×	×	××××	保持	
1	1	× 0	×	××××	保持	
1	1	1 1	↑	××××	计 数	

- 18. 触发器按动作特点可分为基本型、 电平触发 、 脉冲触发 和边沿型;
- 19. 三位二进制减法计数器的初始状态为 101, 四个CP脉冲后它的状态为 001 ;

知识点:脉冲产生与整形

- 1.555 定时器不可以组成 多谐振荡器、 单稳态触发器 、施密特触发器 。
- 2. 由 555 定时器构成的三种电路中, 单稳态触发器 和 施密特触发器 是脉冲的整形电路。
- 3. 下图是由 555 定时器构成的施密特触发器电路。
 - (1) 在图(a)中,当 V_{CC} =15V 时,没有外接控制电压,求 V_{T+} 、 V_{T-} 及 $\triangle V_T$ 各为多少?
 - (2) 在图(b)中,当 V_{CC} =9V 时,外接控制电压 V_{CO} =5V,求 V_{T+} 、 V_{T-} 及 $\triangle V_{T}$ 各为多少?

解: (1) 当 V_{DD}=15V 时,

$$V_{\text{T+}} = \frac{2}{3}V_{\text{DD}} = 10\text{ V}$$
 , $V_{\text{T-}} = \frac{1}{3}V_{\text{DD}} = 5\text{ V}$, $\Delta V_{\text{T}} = V_{\text{T+}} - V_{\text{T-}} = 5\text{ V}$

(2) 当 V_{CO}=5V 时,

$$V_{\rm T+} = V_{\rm CO} = 5{
m V}$$
 , $V_{\rm T-} = {1\over 2} V_{\rm CO} = 2.5{
m V}$, $\Delta V_{\rm T} = V_{\rm T+} - V_{\rm T-} = 2.5{
m V}$

4. 下图是用 555 定时器组成的开机延时电路。若给定 C=25 μ F, R=91kΩ, V_{CC}=12V,试计算常闭开关 S 断开以后经过多长的延迟时间 v_O 才跳变为高电平。

解:
$$T_{\rm D} = RC \ln \frac{0 - V_{\rm CC}}{0 - \frac{1}{3}V_{\rm CC}} = RC \ln 3 = 1.1 \times 91 \times 10^3 \times 25 \times 10^{-6} = 2.5 \text{s}$$

5. 在下图所示由 555 定时器构成的多谐振荡器中,若 R_1 = R_2 =5.1 k Ω , C=0.01 μ F, $V_{\rm CC}$ =12V。试求脉 冲宽度 $t_{\rm W}$ 、振荡周期 T、振荡频率 f 、占空比 q 。

44.

$$t_{\rm W} = T_1 = (R_1 + R_2)C\ln 2 = 10.2 \times 10^3 \times 0.01 \times 10^{-6} \times 0.69 \approx 0.07 \,\text{ms}$$

$$T = T_1 + T_2 = (R_1 + 2R_2)C\ln 2 = 15.3 \times 10^3 \times 0.01 \times 10^{-6} \times 0.69 \approx 0.106 \,\text{ms}$$
 $f = \frac{1}{T} = 9.47 \,\text{kHz}$

$$q = \frac{T_1}{T} = \frac{R_1 + R_2}{R_1 + 2R_2} = \frac{2}{3} = 66.7\%$$

- 6. 所示的施密特触发器电路中,已知 R_1 =10kΩ , R_2 =30kΩ 。 G_1 和 G_2 为 CMOS 反相器, V_{DD} =15V 。
- (1) 试计算电路的正向阈值电压 V_{T+} 、负向阈值电压 V_{T} 和回差电压 $\triangle V_{T}$ 。
- (2) 若将图(b)给出的电压信号加到图 P10-6(a)电路的输入端,试画出输出电压的波形。

解: (1)
$$V_{\text{T+}} = \left(1 + \frac{R_1}{R_2}\right) V_{\text{TH}} = \left(1 + \frac{10}{30}\right) \times \frac{15}{2} = 10\text{V}$$

$$V_{\text{T-}} = \left(1 - \frac{R_1}{R_2}\right) V_{\text{TH}} = \left(1 - \frac{10}{30}\right) \times \frac{15}{2} = 5\text{V}$$

$$\Delta V_{\text{T}} = V_{\text{T+}} - V_{\text{T-}} = 10 - 5 = 5\text{V}$$

知识点: A/D 与 D/A 转换

1. 权电阻网络 D/A 转换器中,若取 $V_{REF}=5V$,试求当输入数字量为 $d_3d_2d_1d_0=0101$ 时输出电压的大小。

解:
$$v_{O} = -\frac{V_{REF}}{2^{4}} (d_{3}2^{3} + d_{2}2^{2} + d_{1}2^{1} + d_{0}2^{0})$$
$$= -\frac{5}{2^{4}} (0 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0}) = -1.5625 \text{ V}$$

2. 倒 T 形电阻网络 D/A 转换器中,已知 $V_{\rm REF}$ =-8V,试计算当 d_3 、 d_2 、 d_1 、 d_0 每一位输入代码分别为 1 时在输出端所产生的模拟电压值。

解:
$$d_3 = 1$$
 $v_0 = \frac{8}{2^4} (d_3 2^3) = \frac{1}{2} \times 1 \times 2^3 = 4V$

$$d_2 = 1$$
 $v_0 = \frac{8}{2^4} (d_2 2^2) = \frac{1}{2} \times 1 \times 2^2 = 2V$

$$d_1 = 1$$
 $v_0 = \frac{8}{2^4} (d_1 2^1) = \frac{1}{2} \times 1 \times 2^1 = 1V$

$$d_0 = 1$$
 $v_0 = \frac{8}{2^4} (d_0 2^0) = \frac{1}{2} \times 1 \times 2^0 = 0.5V$

3. 某一倒 T 型电阻网络 D/A 转换器中,若 n=10, $d_9=d_7=1$,其余位为 0,在输出端测得电压 $v_0=3.125$ V,问该 D/A 转换器的基准电压 $V_{\rm REF}=?$

解: $d_9=d_7=1$, 其余位为 0 所对应的数为 10 1000 0000=512+128=640

所以
$$V_{\text{REF}} = -\frac{2^n v_0}{D} = \frac{2^{10} \times 3.125}{640} = -5V$$

4. D/A 转换器,其最小分辨电压 $V_{LSB}=5$ mV,最大满刻度输出模拟电压 $V_{FSR}=10$ V,求该转换器输入二进制数字量的位数。

解: 由分辨率公式
$$\frac{V_{\text{LSB}}}{V_{\text{FSR}}} = \frac{1}{2^n - 1}$$
得出 $2^n = \frac{V_{\text{FSR}}}{V_{\text{LSB}}} + 1 = 2001 \rightarrow n = 11$

5. 在 10 位二进制数 D/A 转换器中,已知其最大满刻度输出模拟电压 $V_{\rm FSR} = 5 {
m V}$,求最小分辨电压 $V_{\rm LSB}$ 和分辨率。

解:由
$$\frac{V_{\text{LSB}}}{V_{\text{FSR}}} = \frac{1}{2^n - 1}$$
 得出 $V_{\text{LSB}} = \frac{V_{\text{FSR}}}{2^n - 1} = \frac{5}{2^{10} - 1} = 4.89 \,\text{mV}$ 分辨率为 $\frac{V_{\text{LSB}}}{V_{\text{FSR}}} = \frac{1}{2^n - 1} = \frac{1}{2^{10} - 1} = \frac{1}{1023} = 0.00098 = 0.098\%$

- 6. 实现A/D转换的四个主要步骤是___<u>采样___、___保持__、__量化__、__编码__</u>
- 7.8 位D/A转换器当输入数字量 10000000 为 5v。若只有最低位为高电平,则输出电压为<u>0.039</u> v; 当输入为 10001000,则输出电压为 5.31 v。
- 8. 已知被转换的信号的上限截止频率为 10kHz,则A/D转换器的采样频率应高于 20KHz;完成一次转换所用的时间应小于 50us。

知识点:存储器

- 1. ROM的存储容量为 2K×16,则地址码为 <u>11</u> 位,数据线为 <u>16</u> 位.
- 2. 若ROM具有 10 条地址线和 8 条数据线,则存储容量为<u>1K×8</u>比特,可以存储<u>1024</u>个字节。
- 3. 半导体存储器的结构主要包含三个部分,分别是 地址译码器、 存储矩阵 、 输出缓冲器。
- 4. 已知Intel2114 是 1K×4 位的RAM集成电路芯片,它有地址线 10 条,数据线 4 条。
- 5. RAM的扩展可分为 字扩展 、 位扩展 扩展两种;