Отчет по Лабораторной Работе №8

Модель конкуренции двух фирм - Вариант 27

Озьяс Стев Икнэль Дани

Содержание

1	Чель работы Задание		3	
2			4	
3	Выполнение лабораторной работы			
	3.1	Теоретические сведения	. 5	
	3.2	Теоретический материал	. 6	
	3.3	Задача		
	3.4	Код программы (Julia)		
	3.5	Код программы (OpenModelica)	. 11	
4	4 Выводы		14	
Сп	Список литературы			

1 Цель работы

Будем рассматривать модель конкуренции для двух фирм, производящих вза-имозаменяемые товары одинакового качества и находящиеся в одной рыночной нише.

2 Задание

- 1. Придумайте свой пример двух конкурирующих фирм с идентичным товаром. Задайте начальные значения и известные составляющие. Постройте графики изменения объемов оборотных средств каждой фирмы. Рассмотрите два случая.
- 2. Проанализируйте полученные результаты.
- 3. Найдите стационарное состояние системы для первого случая.

3 Выполнение лабораторной работы

3.1 Теоретические сведения

1. Модель одной фирмы

Для построения модели конкуренции хотя бы двух фирм необходимо рассмотреть модель одной фирмы. Вначале рассмотрим модель фирмы, производящей продукт долговременного пользования, когда цена его определяется балансом спроса и предложения. Примем, что этот продукт занимает определенную нишу рынка и конкуренты в ней отсутствуют.

Обозначим:

- N число потребителей производимого продукта.
- S доходы потребителей данного продукта. Считаем, что доходы всех потребителей одинаковы. Это предположение справедливо, если речь идет об одной рыночной нише, т.е. производимый продукт ориентирован на определенный слой населения.
- M оборотные средства предприятия
- au длительность производственного цикла
- p рыночная цена товара
- p себестоимость продукта, то есть переменные издержки на производство единицы продукции.
- δ доля оборотных средств, идущая на покрытие переменных издержек.
- κ постоянные издержки, которые не зависят от количества выпускаемой продукции.

Уравнения динамики оборотных средств можно записать в виде:

$$\frac{dM}{dt} = -\frac{M\delta}{\tau} + NQp - \kappa$$

2. Модель двух фирм

Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Последнее означает, что у потребителей в этой нише нет априорных предпочтений, и они приобретут тот или иной товар, не обращая внимания на знак фирмы. В этом случае, на рынке устанавливается единая цена, которая определяется балансом суммарного предложения и спроса. Иными словами, в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей какимлибо иным способом.)

Систему уравнений динамики оборотных средств можно записать в виде:

$$\begin{cases} \frac{dM_1}{dt} = c_1 M_1 - b M_1 M_2 - a_1 M_1^2 - \kappa_1 \\ \frac{dM_2}{dt} = c_2 M_1 - b M_1 M_2 - a_2 M_1^2 - \kappa_2 \end{cases}$$

Где:

$$a_1 = \frac{P_{cr}}{t_1^2 p_1^2 N q}, a_2 = \frac{P_{cr}}{t_2^2 p_2^2 N q}, b = \frac{P_{cr}}{t_1^2 t_2^2 p_1^2 p_2^2 N q}, c_1 = \frac{P_{cr} - p_1}{t_1 p_1}, c_2 = \frac{P_{cr} - p_2}{t_2 p_2}$$

3.2 Теоретический материал

Поскольку постоянные издержки (κ_1,κ_2) пренебрежимо малы и $t=c_1\theta$, задача сводится к решению данной системы уравнений

$$\begin{cases} \frac{dM_1}{d\theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2 \\ \frac{dM_2}{d\theta} = \frac{c_2}{c_1} M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_1^2 \end{cases}$$

3.3 Задача

• Случай 1

Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Считаем, что в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким-либо иным способом.) Будем считать, что постоянные издержки пренебрежимо малы, и в модели учитывать не будем. В этом случае динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\begin{cases} \frac{dM_1}{d\theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2 \\ \frac{dM_2}{d\theta} = \frac{c_2}{c_1} M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_1^2 \end{cases}$$

Рис. 3.1: График изменения оборотных средств №1 (Julia)

Так же построили график с помощью OpenModelica:

Рис. 3.2: График изменения оборотных средств №1 (OpenModelica)

• Случай 2

Рассмотрим модель, когда, помимо экономического фактора влияния (изменение себестоимости, производственного цикла, использование кредита и т.п.), используются еще и социально-психологические факторы – формирование общественного предпочтения одного товара другому, не зависимо от их качества и цены. В этом случае взаимодействие двух фирм будет зависеть друг от друга, соответственно коэффициент перед M_1M_2 будет отличаться. Пусть в рамках рассматриваемой модели динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений

$$\begin{cases} \frac{dM_1}{d\theta} = M_1 - \frac{b + 0.00017}{c_1} M_1 M_2 - \frac{a_1}{c1} M_1^2 \\ \frac{dM_2}{d\theta} = \frac{c_2}{c_1} M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c1} M_1^2 \end{cases}$$

Рис. 3.3: График изменения оборотных средств №2 (Julia)

Так же построили график с помощью OpenModelica:

Рис. 3.4: График изменения оборотных средств №1 (OpenModelica)

В случае №1 очевидно что графики совпадают!

В случае №1 графики похожие но не совсем совпадают!

3.4 Код программы (Julia)

using Plots
using DifferentialEquations

#СЛУЧАЙ №1

```
p_cr = 39; #критическая стоимость продукта
tau1 = 31; #длительность производственного цикла фирмы 1
р1 = 11.2; #себестоимость продукта у фирмы 1
tau2 = 28; #длительность производственного цикла фирмы 2
р2 = 15.5; #себестоимость продукта у фирмы 2
N = 10; #число потребителей производимого продукта
q = 1; #максимальная потребность одного человека в продукте вединицу времени
a1 = p_{cr}/(tau1*tau1*p1*p1*N*q);
a2 = p_{cr}/(tau2*tau2*p2*p2*N*q);
b = p_cr/(tau1*tau1*tau2*tau2*p1*p1*p2*p2*N*q);
c1 = (p_cr-p1)/(tau1*p1);
c2 = (p_cr-p2)/(tau2*p2);
function F(du, u, p, t)
    du[1] = u[1] - (a1/c1)*u[1]*u[1] - (b/c1)*u[1]*u[2];
    du[2] = (c2/c1)*u[2] - (a2/c1)*u[2]*u[2] - (b/c1)*u[1]*u[2];
end
M1_0 = 7.7
M2_0 = 8.8
t = (0,30);
М0 = [M1_0, M2_0]; #вектор начальных значений объема оборотных средств М1 и М2
prob = ODEProblem(F, M0, t)
```

3.5 Код программы (OpenModelica)

```
// СЛУЧАЙ №1

model lab8

Real M1(start = 7.7);

Real M2(start = 8.8);
```

```
parameter Real p_cr = 39; //критическая стоимость продукта
parameter Real tau1 = 31; //длительность производственного цикла фирмы 1
parameter Real p1 = 11.2; //себестоимость продукта у фирмы 1
parameter Real tau2 = 28; //длительность производственного цикла фирмы 2
parameter Real p2 = 15.5; //себестоимость продукта у фирмы 2
parameter Real V = 91; //число потребителей производимого продукта
parameter Real q = 1; //максимальная потребность одного человека в продукте ведин
parameter Real a1 = p_cr/(tau1*tau1*p1*p1*V*q);
parameter Real a2 = p_cr/(tau2*tau2*p2*p2*V*q);
parameter Real b = p_cr/(tau1*tau1*tau2*tau2*p1*p1*p2*p2*V*q);
parameter Real c1 = (p_cr-p1)/(tau1*p1);
parameter Real c2 = (p_cr-p2)/(tau2*p2);
equation
der(M1) = M1 - (a1/c1)*M1*M1 - (b/c1)*M1*M2;
der(M2) = (c2/c1)*M2 - (a2/c1)*M2*M2 - (b/c1)*M1*M2;
end lab8;
// СЛУЧАЙ №2
model lab8
Real M1(start = 7.7);
Real M2(start = 8.8);
```

```
parameter Real p_cr = 39; //критическая стоимость продукта
parameter Real tau1 = 31; //длительность производственного цикла фирмы 1
parameter Real p1 = 11.2; //себестоимость продукта у фирмы 1
parameter Real tau2 = 28; //длительность производственного цикла фирмы 2
parameter Real p2 = 15.5; //себестоимость продукта у фирмы 2
parameter Real V = 91; //число потребителей производимого продукта
parameter Real q = 1; //максимальная потребность одного человека в продукте ведин
parameter Real a1 = p_cr/(tau1*tau1*p1*p1*V*q);
parameter Real a2 = p_cr/(tau2*tau2*p2*p2*V*q);
parameter Real b = p_cr/(tau1*tau1*tau2*tau2*p1*p1*p2*p2*V*q);
parameter Real c1 = (p_cr-p1)/(tau1*p1);
parameter Real c2 = (p_cr-p2)/(tau2*p2);
equation
der(M1) = (c1/c1)*M1 - (a1/c1)*M1*M1 - (b/c1)*M1*M2;
der(M2) = (c2/c1)*M2 - (a2/c1)*M2*M2 - (b/c1)*M1*M2;
end lab8;
```

4 Выводы

В результате проделанной лабораторной работы мы познакомились с моделем двух фирм. Проверили, как работает модель в различных ситуациях, построили графики изменения оборотных средств при данных условиях.

Список литературы

::: {#refs} :::