DRINKING WATER SURVEILLANCE PROGRAM

OHSWEKEN WATER TREATMENT PLANT

REPORT FOR 1991 AND 1992

·\$-. •

1991/1992 District Contacts for West Central Ontario

District contacts

Lee Van Biesbrouck (416) 521-7593

Hamilton District Office

Alison Braith Waite/ Robert Slattery

(905) 732-0816 (Ext 231/234) Welland District Office

Jeff Taylor (519) 622-8121 Cambridge District Office DWSP study

Cayuga Delhi Dunnville

Haldimand-Norfolk

Hamilton Port Dover Port Rowan Simcoe

Fort Erie Grimsby

Niagara Falls Port Colborne St. Catharines

Welland

Brantford Cambridge Elmira Guelph Kitchener

Kitchener Mannheim

Ohsweken Orangeville Waterloo

			. •	

OHSWEKEN WATER TREATMENT PLANT DRINKING WATER SURVEILLANCE PROGRAM REPORT FOR 1991 AND 1992

MAY 1994

Cette publication technique n'est disponible qu'en anglais.

Copyright: Queen's Printer for Ontario, 1994
This publication may be reproduced for non-commercial purposes with appropriate attribution.

PIBS 3048

		*									
				•							
			,								
				•							
									•		
										•	
		•		•							
	*					4-					
						•					
		- 0.									
							•				
,					*						
				•							
								1			
							*				
	•										
•											

EXECUTIVE SUMMARY

DRINKING WATER SURVEILLANCE PROGRAM

OHSWEKEN WATER TREATMENT PLANT 1992 REPORT

The Drinking Water Surveillance Program (DWSP) for Ontario is a monitoring program providing immediate, reliable, current information on drinking water quality. The DWSP officially began in April 1986 and is designed to include all municipal supplies in Ontario. In 1991, 96 supplies and in 1992, 109 supplies were being monitored.

The Ohsweken water treatment plant is a package plant which uses conventional treatment and treats water from the Grand River. The process consists of coagulation, flocculation, sedimentation, filtration and disinfection. This plant has a design capacity of $1.4 \times 1000 \, \text{m}^3/\text{day}$. The Ohsweken water treatment plant serves a population of approximately 2,000.

Water at the plant was sampled for the presence of approximately 180 parameters. Parameters were divided into the following groups: bacteriological, inorganic and physical (laboratory chemistry, chemistry field and organic (chloroaromatics, metals), pesticides chlorophenols, and PCB, phenolics, polyaromatic hydrocarbons and volatiles) and radiological (radionuclides). Most laboratory analyses were conducted at the Ministry Environment and Energy facilities in Rexdale, Radionuclides were analyzed by the Ministry of Labour.

Table A is a summary of all results by group.

No known health related guidelines were exceeded from samples analysed on DWSP.

The Ohsweken water treatment plant, for the sample year 1992, produced acceptable quality water with the exception of N-nitrosodimethylamine (NDMA). NDMA was frequently detected by a monitoring program independent of DWSP, at levels above the Interim Maximum Acceptable Concentration of 9 ng/L (ppt). An interim report providing information on NDMA levels and methods of eliminating NDMA from this water supply has been recently published by the Drinking Water Section (Removal of N-Nitrosodimethylamine (NDMA) from the Ohsweken Water Supply. July, 1993. ISBN 0-7778-1542-7).

No samples were taken in the distribution system during this sample period.

TABLE A DRINKING WATER SURVEILLANCE PROGRAM 1992 OHSWEKEN WIP

SUMMARY TABLE BY SCAN

IFIABLE

A POSITI	A POSITIVE VALUE DENOTES THAT THE RESULT IS GREATER THAN THE STATISTICAL LIMIT OF DETECTION AND IS QUANTIF A ''' INDICATES THAT NO SAMPLE WAS TAKEN	JLT 1S G	REATER THAN THE STATISTICAL LIMIT OF DET A '' INDICATES THAT NO SAMPLE WAS TAKEN	HE STAT ES THAT	ISTICAL NO SAMP	LIMIT OF DETE LE WAS TAKEN	CT10N A	I QN	GUAN	TIF
		TREAT RAW TESTS	TREATMENT PLANT RAW STS POSITIVE %POSITIVE	11 1 VE	TREATME TREATED TESTS PI	TREATMENT PLANT TREATED TESTS POSITIVE %POSITIVE	1 T I VE			
1	SCAN				1					
	BACTERIOLOGICAL	:51	15	71	7	7	25			
	CHEMISTRY (FIELD)	12	12	100	39	34	87			
	CHEMISTRY (LABORATORY)	184	181	98	191	157	82			
	METALS	192	103	53	192	7.2	67			
	CHLOROAROMATICS	112	0	0	112	0	0			
	CHLOROPHENOLS	12	0	0	12	0	0			
	PESTICIDES AND PCB	279	-	0	279	-	0			
	PHENOL I CS	œ	-	12	∞	-	12			
	POLYAROMATIC HYDROCARBONS	17	0	0	17	0	0			
	SPECIFIC PESTICIDES	87	0	0	87	0	0			
	VOLATILES	248	0	0	248	52	10			
TOTAL		1,133	313		1,153	599				

DRINKING WATER SURVEILLANCE PROGRAM

OHSWEKEN WATER TREATMENT PLANT 1992 REPORT

INTRODUCTION

The Drinking Water Surveillance Program (DWSP) for Ontario is a monitoring program providing immediate, reliable, current information on drinking water quality. The DWSP officially began in April 1986 and is designed to include all municipal supplies in Ontario. In 1991, 96 supplies and in 1992, 109 supplies were being monitored.

Appendix A has a full description of the DWSP.

The DWSP was initiated for the Ohsweken water treatment plant in March 1992. This is the first published DWSP report.

PLANT DESCRIPTION

The Ohsweken water treatment plant is a package plant which uses conventional treatment and treats water from the Grand river. The process consists of coagulation, flocculation, sedimentation, filtration and disinfection. This plant has a design capacity of $1.40 \times 1000 \, \text{m}^3/\text{day}$. The Ohsweken water treatment plant serves a population of approximately 2,000.

The sample day flows were not available.

General plant information is presented in Table 1 and a schematic of plant processes, chemical addition points and sampling locations in Figure 1.

SAMPLING AND ANALYSES

Stringent DWSP sampling protocols were followed to ensure that all samples were collected in a uniform manner (see Appendix B).

Sample lines in the plant were flushed prior to sampling to ensure that the water obtained was indicative of its origin and not residual water standing in the sample line.

Attempts were made to capture the same block of water at each sampling point by taking the retention time into consideration. Retention time was calculated by dividing the volume of water between two sampling points by sample day flow. For example, if it

was determined that retention time within the plant was five hours, then there would be a five hour interval between the raw and treated sampling. Similarly, if it was estimated that it took approximately one day for the water to travel from the plant to the distribution system site, this site would be sampled one day after the treated water from the plant.

To obtain a representative raw water sample, free from any added chemicals, at plants which used chlorine for zebra mussel control, the operator was required to turn off the chlorine feed to the mouth of the intake and allow enough time for the chlorinated water to clear from the intake works.

Plant operating personnel routinely analyzed parameters for process control (Table 2).

At all distribution system locations, two types of samples were obtained, a standing and a free flow. The standing sample consisted of water that had been in the household plumbing and service connection for a minimum of six hours. These samples were used to make an assessment of the change in the levels of inorganic compounds and metals due to leaching from, or deposition on, the plumbing system. The only analyses carried out on the standing samples, therefore, were laboratory chemistry and metals. The free flow sample represented fresh water from the distribution system main, since the sample tap was flushed for five minutes prior to sampling.

Water at the plant was sampled for the presence of approximately 180 parameters. Parameters were divided into the following groups: bacteriological, inorganic and physical (laboratory chemistry, chemistry and metals), organic (chloroaromatics, chlorophenols, pesticides and PCB, phenolics, polyaromatic hydrocarbons and volatiles) and radiological (radionuclides). Most laboratory analyses were conducted at the Ministry of the facilities Environment and Energy in Rexdale, Radionuclides were analyzed by the Ministry of Labour. No samples were taken in the distribution during this sample period.

RESULTS

Field measurements were recorded on the day of sampling and were entered onto the DWSP database as submitted by plant personnel.

Table 3 (when data is provided) contains information on delay time between the raw and treated water sampling, flow rate, and treatment chemical dosages.

Table 4 is a summary of all results by parameter and by water type. If a parameter was not detected, the total number of negative

sample results is given. In contrast, if a parameter was detected at any location, the detailed results for all samples are provided.

Positive denotes that the result is greater than the statistical limit of detection established by the Ministry of the Environment and Energy laboratory staff and is quantifiable. Trace (<T) denotes that the level measured is greater than the lowest value detectable by the method but lies so close to the detection limit that it cannot be confidently quantified.

Table 5 lists all parameters analyzed in the DWSP.

Associated guidelines and detection limits are also supplied on Tables 4 and 5. Parameters are listed alphabetically within each scan.

DISCUSSION

GENERAL

Water quality was judged by comparison with the Ontario Drinking Water Objectives publication (ODWOs). When an Ontario Drinking Water Objective (ODWO) was not available, guidelines/limits from other agencies were used. These guidelines were obtained from the Parameter Listing System database.

IN THIS REPORT, DISCUSSION IS LIMITED TO:

- -THE TREATED AND DISTRIBUTED WATER;
- -ONLY THOSE PARAMETERS WITH CONCENTRATIONS ABOVE
- GUIDELINE VALUES; AND
- -POSITIVE ORGANIC PARAMETERS DETECTED.

BACTERIOLOGICAL

Guidelines for bacteriological sampling and testing of a supply are developed to maintain a proper supervision of its bacteriological quality. Routine monitoring programs usually require that multiple samples be collected in a given system. Full interpretation of bacteriological quality cannot be made on the basis of single samples. Standard plate count was the only bacteriological analysis conducted on the treated and distributed water.

Standard plate count is a test used to supplement routine analysis for coliform bacteria. The limit for standard plate count (at 35°C after 48 hours) in the ODWOs is 500 counts/mL (based on a geometric mean of 5 or more samples). DWSP bacteriological analysis of treated and distributed water was limited to standard plate count.

Standard plate count (membrane filtration) exceeded the ODWO Aesthetic Objective of 500 counts/mL in 1 of 7 treated water samples with a maximum reported value of >2,400 counts/mL.

INORGANIC & PHYSICAL

CHEMISTRY (FIELD)

It is desirable that the temperature of drinking water be less than 15°C. The palatability of water is enhanced by its coolness. A temperature below 15°C will tend to reduce the growth of nuisance organisms and hence minimize associated taste, colour, odour and corrosion problems. The temperature of delivered water may increase in the distribution system due to the warming effect of soil in late summer and fall and/or as a result of higher temperatures in the source water.

Field temperature exceeded the ODWO Aesthetic Objective of 15°C in 2 of 5 treated and distributed water samples with a maximum reported value of 20°C .

CHEMISTRY (LABORATORY)

Colour in drinking water may be due to the presence of natural or synthetic substances as well as certain metallic ions. Colour is measured in Hazen units (HZU).

Colour exceeded the ODWO Aesthetic Objective of 5 HZU in 1 of 8 treated water samples with a maximum reported value of 7.0 HZU.

Elevated conductivity is often associated with high hardness levels.

Conductivity exceeded the European Economic Community Aesthetic Guideline Level of 400 umho/cm in all 8 treated water samples with a maximum reported value of 772 umho/cm.

The ODWOs indicate that a hardness level of between 80 and 100 mg/L as calcium carbonate for domestic waters provides an acceptable balance between corrosion and encrustation. Water supplies with a hardness greater than 200 mg/L are considered poor and possess a tendency to form scale deposits and result in excessive soap consumption.

Hardness exceeded the ODWO Recommended Operational Guideline of 80-100 mg/L with values greater than 200 mg/L in all 8 treated water samples with a maximum reported value of 311 mg/L.

Total ammonium exceeded the European Economic Community Aesthetic Guideline Level of 0.05 mg/L in 4 of 8 treated water samples with a maximum reported value of 0.16 mg/L.

PH exceeded the ODWO Recommended Operational Guideline of 6.5-8.5 pH units in 1 of 8 treated water samples with a maximum reported value of 8.53 pH units.

Dissolved solids exceeded the ODWO Aesthetic Objective of 500 mg/L in 1 of 8 treated water samples with a maximum reported value of 502 mg/L.

METALS

At present, there is no evidence that aluminum is physiologically harmful and no health limit for drinking water has been specified. The measure of aluminum in treated water is important to measure the efficiency of the treatment process. The ODWOs indicate that a useful guideline is to maintain a residual below 100 ug/L as aluminum in the water leaving the plant to avoid problems in the distribution system.

Aluminum exceeded the ODWO Recommended Operational Guideline of 100 ug/L in 3 of 8 treated water samples with a maximum reported value of 190 ug/L.

ORGANIC

CHLOROAROMATICS

The results of the chloroaromatic scan showed that none were detected above trace levels.

CHLOROPHENOLS

The results of the chlorophenol scan showed that one parameter was detected at a trace level in one treated water sample.

PESTICIDES AND PCB

Atrazine was found at a positive level in 1 treated water sample and at trace levels in all of the other 7 treated water samples analyzed. The maximum observed level was 1,680 ng/L. This was below the ODWO Interim Maximum Acceptable Concentration of 60,000 ng/L.

Desethyl atrazine was detected at trace levels in the treated water. Other pesticides including ametrine and simazine were detected in one raw water sample.

PHENOLICS

Phenolic compounds are present in the aquatic environment as a result of natural and/or industrial processes. The ODWOs have been revised to replace the phenolic aesthetic objective with objectives for specific phenols.

Phenolics was found at a positive level in 1 of the 8 treated water samples analyzed. The maximum observed level was 1.4 ug/L.

POLYAROMATIC HYDROCARBONS

The results of the polyaromatic hydrocarbon scan showed that none were detected.

SPECIFIC PESTICIDES

The results of the specific pesticide scan showed that one parameter 2,4-D was detected at a trace level in one raw water sample.

VOLATILES

The detection of benzene, ethylbenzene, toluene and xylenes at low, trace levels may be a laboratory artifact derived from the analytical methodology. Trace levels of styrene are considered to be laboratory artifacts resulting from the sample shipping containers.

Trihalomethanes (THMs) are produced during the water treatment process and will always occur in chlorinated waters. THMs are comprised of chloroform, chlorodibromomethane and dichlorobromomethane. Bromoform occurs occasionally. Results are reported for the individual compounds as well as for total THMs. Only total THM results are discussed. Starting in 1991, samples from the distribution system were quenched with sodium thiosulphate to stop the further production of THMs in the sample bottle. This provided a more representative estimation of the THMs consumed in tap water.

Total trihalomethanes were found at positive levels in 6 of 8 treated water samples analyzed. The maximum observed level was 97.4 ug/L. This was below the ODWO Maximum Acceptable Concentration of 350 ug/L.

RADIOLOGICAL

The radionuclide samples were not taken during this sample period.

CONCLUSIONS

The presence of a number of pesticides would indicate that the raw water source is adversely affected by agricultural activity.

No known health related guidelines were exceeded from samples analysed on DWSP.

The Ohsweken water treatment plant, for the sample year 1992, produced acceptable quality water with the exception of N-nitrosodimethylamine (NDMA). NDMA was frequently detected by a monitoring program independent of DWSP, at levels above the Interim Maximum Acceptable Concentration of 9 ng/L (ppt). An interim report providing information on NDMA levels and methods of eliminating NDMA from this water supply has been recently published by the Drinking Water Section (Removal of N-Nitrosodimethylamine (NDMA) from the Ohsweken Water Supply. July, 1993. ISBN 0-7778-1542-7).

No samples were taken in the distribution system during this sample period.

TABLE 1

DRINKING WATER SURVEILLANCE PROGRAM

PLANT GENERAL REPORT

PLANT NAME:

OHSWEKEN WTP

WORKS #:

230000174

UTM #:

DISTRICT:

CAMBRIDGE

REGION:

WEST CENTRAL

DISTRICT OFFICER: J. TAYLOR

SUPERINTENDENT:

M. JOHNSON

ADDRESS:

PUBLIC WORKS DEPT. GEN. DEL.

OHSWEKEN, ONTARIO

NOA 1MO

519-752-4712

MUNICIPALITY:

OHSWEKEN

AUTHORITY:

FEDERAL

PLANT INFORMATION

PLANT VOLUME: (X 1000 M3)

1.400 (X 1000 M3/DAY) DESIGN CAPACITY: RATED CAPACITY: 1.408 (X 1000 M3/DAY)

MUNICIPALITY POPULATION

1,500 OHSWEKEN

500 OHSWEKEN RESERVE

KEY TO TABLE 4 and 5

- A ONTARIO DRINKING WATER OBJECTIVES (ODWO)
 - 1. Maximum Acceptable Concentration (MAC)
 - 1+. MAC for Total Trihalomethanes
 - 2. Interim Maximum Acceptable Concentration (IMAC)
 - 3. Aesthetic Objective (AO)
 - 3*. AO for Total Xylenes
 - 4. Recommended Operational Guideline
 - 5. Health Related Guidance Value
- B HEALTH & WELFARE CANADA (H&W)
 - 1. Maximum Acceptable Concentration (MAC)
 - 2. Proposed MAC
 - 3. Interim MAC
 - 4. Aesthetic Objective (AO)
- C WORLD HEALTH ORGANIZATION (WHO)
 - 1. Guideline Value (GV)
 - 2. Tentative GV
 - 3. Aesthetic GV
- D US ENVIRONMENTAL PROTECTION AGENCY (EPA)
 - 1. Maximum Contaminant Level (MCL)
 - Suggested No-Adverse Effect Level (SNAEL)
 - 3. Lifetime Health Advisory
 - 4. EPA Ambient Water Quality Criteria
- F EUROPEAN ECONOMIC COMMUNITY (EEC)
 - 1. Health Related Guideline Level
 - 2. Aesthetic Guideline Level
 - 3. Maximum Admissable Concentration (MADC)
- G CALIFORNIA STATE DEPARTMENT OF HEALTH-GUIDELINE VALUE
- I NEW YORK STATE AMBIENT WATER GUIDELINE
- N/A NONE AVAILABLE

LABORATORY RESULTS, REMARK DESCRIPTIONS

• ,	No Sample Taken
BDL	Below Minimum Measurement Amount
<t< td=""><td>Greater Than Detection Limit But Not Confident (SEE INTERPRETATION OF RESULTS ABOVE)</td></t<>	Greater Than Detection Limit But Not Confident (SEE INTERPRETATION OF RESULTS ABOVE)
>	Results Are Greater Than The Upper Limit
<=>	Approximate Result
!48	No Data: Sample Age Exceeded 48 Hours
!AR	No Data: No Numeric Results
! AW	No Data: Analysis Withdrawn
!BT	No Data: Sample Broken In Transit
!cs	No Data: Contamination Suspected
!EF	No Data: Laboratory Equipment Failure
!IR	No Data: Insufficient Sample
!IS	No Data: Insufficient Sample
! LA	No Data: Laboratory Accident
!NP	No Data: No Procedure
!NR	No Data: Sample Not Received
!OP	No Data: Obscured Plate
!PE	No Data: Procedure Error: Sample Discarded
!PR	No Data: Preservative Required
!QU	No Data: Quality Control Unacceptable
!RE	No Data: Received Empty
!RO	No Data: No Numeric Results
!SM	No Data: Sample Missing
!ss	No Data: Sample Improperly Preserved
! U	No Data: Sample Unsuitable For Analysis
!UB	No Data: Bottle Broken

No Data: Result Unreliable

! UN

!UR No Data: Unpreserved Sample Required Approximate Value Α Approximate, Total Count Exceeded 300 Colonies A3C A> Approximate Value, Exceeded Normal Range Additional Peak, Less Than, Not Priority Pollutant APS ARO Additional Information In Laboratory Report CRO Calculated Result Only Not All Required Tests Found NAF Ioncal Calculated on Incomplete Data Set RID RMP P and M-Xylene Not Separated RRR Result Obtained by Repeat Analysis RRV Rerun Verification SFA Sample Filtered: Filtrate Analyzed SIL Sample Incorrectly Labelled SPS Several Peaks, Small, Not Priority Pollutant Unreliable: Sample Age Exceeded 48 Hours U48 · UAL Unreliable: Sample Age Exceeded Limit UAU Unreliable: Sample Age Unknown Unreliable: Contamination Suspected UCS WSD ' Wrong Sample Description On Bottle

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 OHSWEKEN WIP

TREATMENT PLANT TREATMENT PLANT RAW TREATED

GUIDELINE = 0 (A1)		GUIDELINE = 500 (A3)	GUIDELINE = 5/100ML (A1)		GUIDELINE = N/A
DET'N LIMIT = 0		DET'N LIMIT = 0 13 6 <=> 2 <=> 2400 >	190 24 1 <=> DET'N LIMIT = 0	·	DET'N LIMIT = 0
BACTERIOLOGICAL F (CT/100ML)	440 30 <=> 70 <=> 60 <=> 1500 >	T MF (CT/ML)	(CT/100ML)	25000 2500 A3C 400 <=> 700 <=> 500 <=> 3000 A3C 7600 A3C	WF (CT/100ML) 48000 34000 A3C 20000 76000 A3C 30000 A3C 75000 A3C
BACTERIOLOG FECAL COLIFORM MF (CT/100ML)	1992 MAR 1992 MAY 1992 JUN 1992 JUL 1992 AUG 1992 SEP	STANDRD PLATE CNT MF (CT/ML 1992 MAY 1992 JUN 1992 JUL	1992 AUG 1992 SEP 1992 OCT TOTAL COLIFORM MF (CT/100ML	1992 MAR 1992 MAY 1992 JUL 1992 JUL 1992 AUG 1992 SEP 1992 OCT	T COLIFORM BCKGRD MF (CT/100ML 1992 MAR 48000 1992 MAY 34000 A3C 1992 JUL 76000 A3C 1992 AUG 30000 A3C 1992 SEP 02000 A3C 1992 OCT 75000 A3C

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 OHSWEKEN WIP

TREATMENT PLANT TREATMENT PLANT RAW TREATED

GUIDELINE = N/A		GUIOELINE = N/A		GUIOELINE = N/A		GUIDELINE = 6.5-8.5 (A4)	
OET'N LIMIT = 0		DET'N LIMIT = 0		DET'N LIMIT = 0		0ET'N LIMIT = N/A	į
ELO)	.800 .300 .400 .100 .200 .300	000.	.500	(.800 .300 .900 .100 .200 .400	7.400 7.300 7.200 7.100 7.300	7.200 7.300
CHEMISTRY (FIELD)		FREE (MG/L)		FLO CHLORINE (TOTAL) (MG/L		ESS) 7.500 7.500 7.700 7.700 7.700	7.700 7.800
CHEMIST FLO CHLORINE (COMB) (MG/L	1992 MAY 1992 MAY 1992 JUN 1992 AUG 1992 SEP 1992 OCT	FLO CHLORINE FREE (MG/L 1992 MAR 1992 MAY	1992 JUN 1992 AUG 1992 SEP 1992 OCT 1992 DEC	FLO CHLORINE	1992 MAR 1992 MAY 1992 JUN 1992 AUG 1992 SEP 1992 OCT	FLO PH (DMNSLESS 1992 MAY 1992 JUN 1992 AUG 1992 SEP	1992 OCT 1992 DEC

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 OHSWEKEN WTP

IREAIMENI PLANI IREAIMENI PLANI RAW IREAIED

CHEMI FLD TEMPERATURE (DEG.C	.CHEMISTRY (FIELD) DEG.C)	2	DET'N LIMIT = N/A	GUIDELINE = 15 (A3)
1992 MAR	3.000	3.000		
1992 JUN	16.000	17.000		
1992 SEP	19.000	20.000		
1992 OCT	1.000	12.000		
FLD TURBIDITY (FTU		1 1 1 1 1 1 1 1 1 1 1 1	DET'N LIMIT = N/A	GUIDELINE = 1.0 (A1)
1992 MAR		.150		,
1992 JUN		700		
1992 AUG		300		
1992 SEP		.300		•
1992 OCT		.200		
1992 DEC	•	700		

TABLE 4 . ORINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 OHSWEKEN WIP

TREATMENT PLANT TREATMENT PLANT RAW

ALKALINITY (MG/L	^		DET'N LIMIT = 0.2	GUIDELINE = 30-500 (A4)
1992 MAR	157.100	149.400		
	190,900	150.700		
1992 JUN	185.600	147.500		
1992 JUL	226.200	183.800		
1992 AUG	195.400	152.200		
1992 SEP	238.500	200.300		
1992 OCT	236.100	179.300		
.1992 DEC	255.100	199.700		
CALCIUM (MG/L	^		DET'N LIMIT = 0.20	GUIDELINE = 100 (F2)
	60,100	65.400		
1992 MAY	96.600	002 79		
	29, 400	83,300		
	90.720	86.880		
	76.100	76 300		
1992 SFP	84.300	85.850		
	81 750	77 600		
1992 DEC	87.800	76.900		
			,	
CYANIDE (MG/L	•		DET*N LIMIT = 0.001	GUIDELINE = 0.2 (A1)
7 SAMPLES	٠	BOL		
CHLORIDE (MG/L	•	. t	DET'N LIMIT = 0.20	GUIDELINE = 250 (A3)
1992 MAR	28,000	46.500		
1002 MAY	28 700	52 100		
1007 IIIN	66.100	10, 000		
1007	53 100	75 000		*
1002 4110	22.100	22.000		
1992 AUG	20.200	93.900		
1992 SEP	29.200	70.100		
	31.900	65.900		
1992 DEC	31.400	59.800		
COLOUR (HZU			DET'N LIMIT = 0.50	GUIDELINE = 5 (A3)
1992 MAR	17.500	2.000		
	25 000	000.7		
	16,000	2000		
	000.00	3.000		
	20.500	0000.		
	15.500	4.500		
1992 SEP	22.500	7.000		
1992 001	39.500	2000		
	000			

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 OHSWEKEN WTP

TREATMENT PLANT TREATMENT PLANT RAW TREATED

GUIDELINE = 400 (F2)		GUIOELINE = 5.0 (A3)	GUIDELINE = 1.5 (A1)	GUIDELINE = 80-100 (A4)
DET'N LIMIT = 1.0		0ET'N LIMIT = 0.10	DET'N LIMIT = 0.01	DET'N LIMIT = 0.5
LABORATORY)	533 528 772 746 721 697 659 659	2.900 2.700 2.700 3.100 2.400 3.200 2.900 2.900	. 080 . 060 . 060 . 100 . 060 . 080	227.000 231.000 304.000 311.000 284.000 304.530 274.000 282.000
CONDUCTIVITY (UMHO/CM)	474 511 706 731 663 683 635 580 616	M (MG/L) 4.900 6.300 4.700 5.500 6.000 6.800 6.800		209.000 233.000 293.000 321.000 282.000 298.910 284.000 308.000
CONDUCTIVITY	1992 MAY 1992 JUN 1992 JUN 1992 JUL 1992 SEP 1992 OCT 1992 DEC	DISS ORG CARBON (MG/L 1992 MAY 1992 JUN 1992 JUL 1992 AUG 1992 SEP 1992 OEC	FLUORIDE (MG/L 1992 MAY 1992 JUN 1992 JUL 1992 JUL 1992 SEP 1992 OCT 1992 DEC	HARDNESS (MG/L 1992 MAR 1992 MAY 1992 JUL 1992 AUG 1992 SEP 1992 OCT 1992 DEC

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 OHSWEKEN WTP

TREATMENT PLANT TREATMENT PLANT RAW

GUIDELINE = N/A		GUIDELINE = 10 (F2)		GUIDELINE = N/A		GUIDELINE = 30.0 (F2)
ORY) DET'N LIMIT = N/A	2.486 NAF 2.100 .071 NAF 1.084 NAF 389 .196	DET'N LIMIT = 0.01	3.650 2.784 3.310 3.770 2.880 3.503 5.328 2.700	DET'N LIMIT = N/A 1.056 RID .765	. 730 . 795 NAF . 738 NAF 1.069 . 641 . 852	15.500 16.920 23.400 22.800 21.900 19.500 21.900
CHEMISTRY (LABORATORY)	MAR 1.650 RID MAY 4.139 NAF JUN .824 JUL 1.421 NAF AUG 2.650 NAF 1.134 OCT .191 DEC .223	I (MG/L)	3.710 MAY 3.000 JUN 3.450 JUL 3.450 AUG 2.940 SEP 3.796 OCT 4.910 DEC 2.762	LANGELIERS INDEX (OMNSLESS) 1992 MAR .867 RID 1992 MAY 1.052	JUN 1.092 JUL 1.184 NAF AUG 1.123 NAF SEP 1.300 OCT 1.105	M (MG/L) MAR 14.300 MAY 16.080 JUN 22.900 JUL 22.920 AUG 22.300 SEP 21.480 OCT 19.700 DEC 21.700
IONCAL (DMNSLESS	1992 N 1992 N 1992 N 1992 N 1992 N 1992 N	POTASSIUM (MG/L	1992 1992 1992 1992 1992 1992 1992 1992	1992 h	1992 1992 1992 1992 1992 1992	MAGNESIUM (MG/L 1992 MAY 1992 MAY 1992 JUL 1992 AUG 1992 SEP 1992 OCT 1992 DEC

TABLE 4 ORINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 OHSWEKEN WTP

TREATMENT PLANT TREATMENT PLANT RAW TREATED

GUIDELINE = 200 (A4)		GUIDELINE = 0.05 (F2)		GUIDELINE = 1.0 (A1)		GUIDELINE = 10.0 (A1)
DET'N LIMIT = 0.20		DET'N LIMIT = 0.002	:	DET'N LIMIT = 0.001		DET'N LIMIT = 0.005
CHEMISTRY (LABORATORY)	18.500 15.290 48.400 29.280 34.900 26.220 22.900 19.300		.160 .052 .030 .030 .070 .014 .008 <1		.009 .004 <t .004 <t .019 .004 <t .006 <t .006 <t< td=""><td>5.720 3.780 2.320 4.190 2.240 2.760 2.870</td></t<></t </t </t </t 	5.720 3.780 2.320 4.190 2.240 2.760 2.870
CHEMISTRY (14,200 15,190 41,200 32,500 32,500 23,220 16,580	(MG/L)	. 002 <1 . 092 . 108 . 036 . 038 . 074 . 030	~	. 010 . 073 . 041 . 035 . 024 . 005	(TOTAL) (MG/L) MAR 5.730 MAY 3.810 JUN 3.770 JUL 3.280 SEP 2.560 OCT 2.950 DEC 2.950
SODIUM (MG/L	1992 MAR 1992 MAY 1992 JUN 1992 JUL 1992 SEP 1992 OCT 1992 DEC	AMMONIUM TOTAL (MG/L	1992 MAR 1992 MAY 1992 JUN 1992 JUL 1992 SEP 1992 OCT 1992 DEC	NITRITE (MG/L	1992 MAR 1992 MAY 1992 JUL 1992 JUL 1992 SEP 1992 SEP 1992 DEC	1992 MAR 1992 MAY 1992 JUN 1992 JUL 1992 AUG 1992 SEP 1992 OCT 1992 DEC

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 OHSWEKEN WTP

TREATMENT PLANT TREATMENT PLANT RAW TREATED

GUIDELINE = N/A		GUIDELINE = 6.5-8.5 (A4)	GUIDELINE = N/A	GUIDELINE = 0.40 (F2)
DET'N LIMIT = 0.02		DET'N LIMIT = N/A	DET'N LIMIT = 0.0005	DET'N LIMIT = 0.002
ABORATORY)	.600 .410 .330 .420 .370 .380 .410	8.530 8.240 8.120 8.070 8.150 8.310 7.970	001 <t< td=""><td>.010 .005 T .003 T .002 T .004 T .003 T</td></t<>	.010 .005 T .003 T .002 T .004 T .003 T
CHEMISTRY (LABORATORY)	1.600 .980 .670 .800 .640 1.110 1.170	8.350 8.410 8.400 8.350 8.430 8.470 8.290	REACT (MG/L .106 .045 .014 .036 .031 .068	AL (MG/L) .390 .178 .071 .111 .059 .260 .161
CHEMIS NITROGEN TOT KJELD (MG/L	1992 MAR 1992 MAY 1992 JUN 1992 JUL 1992 SEP 1992 OCT 1992 DEC	PH (DMNSLESS) 1992 MAR 1992 MAY 1992 JUN 1992 AUC 1992 AUC 1992 AUC 1992 DEC	PHOSPHORUS FIL REACT (MG/L 1992 MAY .045 1992 JUN .014 1992 JUN .014 1992 JUL .004 1992 SEP .031 1992 OCT .068	PHOSPHORUS TOTAL (MG/L 1992 MAY 1992 JUL 1992 JUL 1992 AUG 1992 SEP 1992 DEC

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 OHSWEKEN WTP

TREATMENT PLANT TREATMENT PLANT RAW TREATED

: N/A GUIOELINE = 500 (A3)		: 0.20 GUIDELINE = 500 (A3)		: 0.05 GUIDELINE = 1.0 (A1)	
(ATORY) DET'N LIMIT = N/A	346.000 CRO 343.000 CRO 502.000 CRO 485.000 CRO 469.000 CRO 453.000 CRO 477.000 CRO	DET'N LIMIT = 0.20	36.200 35.620 98.660 71.550 77.650 56.690 47.220	DET'N LIMIT = 0.05	.480 .160 < 1 .230 < 1 .570 USD
CHEMISTRY (LABORATORY) RESIDUE FILTRATE (MG/L)·	308,000 CRO 332,000 CRO 459,000 CRO 475,000 CRO 431,000 CRO 413,000 CRO 413,000 CRO 400,000 CRO		30.200 34.340 92.150 72.880 67.290 45.370 34.540		122.000 94.000 32.000 47.000 31.000 USD 104.000
RESIDUE FILTRATE	1992 MAY 1992 MAY 1992 JUN 1992 AUG 1992 SEP 1992 OCT 1992 DEC	SULPHATE (MG/L	1992 MAR 1992 MAY 1992 JUN 1992 AUG 1992 SEP 1992 OCT 1992 DEC	TURBIOITY (FTU	1992 MAR 1992 MAY 1992 JUN 1992 AUG 1992 SEP

TABLE 4
ORINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 OHSWEKEN WTP

	GUIDELINE = N/A	GUIDELINE = 100 (A4)		GUIDELINE = 25 (A1)	GUIDELINE = 1000 (A2)	GUIDELINE = 5000 (A1)
ات ت	DET'N LIMIT = 0.05	DET'N LIMIT = 0.10		OET'N LIMIT = 0.10	DET'N LIMIT = 0.05	DET'N LIMIT = 2.00
TREATMENT PLANT TREATED			160.000 36.000 41.000 56.000 190.000 71.000 99.000	BDL BDL BDL 750 <7 .750 <1 .370 <1 .370 <1	24.000 22.000 39.000 35.000 33.000 32.000 28.000	17.000 <1 20.000 <1 66.000 <4 41.000 44.000 53.000 48.000 23.000
TREATMENT PLANT RAW	METALS) BDI		1000_000 640_000 240_000 450_000 850_000 550_000 210_000	310 <1 .310 <1 .530 <7 .80L 1.400 .350 <7 1.200 1.300	38.000 34.000 43.000 42.000 37.000 44.000 29.000	16.000 <t 22.000 58.000 45.000 40.000 61.000 24.000</t
	SILVER (UG/L	ALUMINUM (UG/L	1992 MAY 1992 MAY 1992 JUN 1992 JUL 1992 AUG 1992 SEP 1992 OCT	ARSENIC (UG/L 1992 MAR 1992 MAY 1992 JUL 1992 AUG 1992 SEP 1992 OCT	1992 MAR 1992 MAY 1992 JUN 1992 JUL 1992 AUG 1992 SEP 1992 OCT	BORON (UG/L 1992 MAY 1992 JUN 1992 JUL 1992 AUG 1992 SEP 1992 OCT 1992 DEC

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 OHSWEKEN WTP

TREATMENT PLANT TREATMENT PLANT RAW TREATED

GUIDELINE = 6800 (04)		GUIDELINE = 5.0 (A1)		GUIDELINE = N/A		GUIDELINE = 50.0 (A1)
DET'N LIMIT = 0.05	801 .070 <7 .070 <7 .060 <7 .060 <7	DET'N LIMIT = 0.05	BDL .060 <t .130 <t BDL .060 <t BDL .060 <t< td=""><td>DET'N LIMIT = 0.02</td><td>. 250 <1 . 280 <1 . 680 <1 . 560 <1 . 550 <1 . 320 <1 . 260 <1</td><td>BDL BDL .650 <t BDL 3.700 <t 9.000 .960 <t< td=""></t<></t </t </td></t<></t </t </t 	DET'N LIMIT = 0.02	. 250 <1 . 280 <1 . 680 <1 . 560 <1 . 550 <1 . 320 <1 . 260 <1	BDL BDL .650 <t BDL 3.700 <t 9.000 .960 <t< td=""></t<></t </t
METALS)	.060 <t .180 <t .180 <t .120 <t .090 <t .130 <t< td=""><td>^</td><td>.110 <t .110 <t .100 <t .060 <t .120 <t .140 <t .140 <t< td=""><td></td><td>1.200 .770 <1 .910 <1 .960 <1 .800 <1 .770 <1 .350 <1</td><td>1.800 <t 1.800 <t 1.200 <t 1.000 <t 6.600 11.000 <t< td=""></t<></t </t </t </t </td></t<></t </t </t </t </t </t </td></t<></t </t </t </t </t 	^	.110 <t .110 <t .100 <t .060 <t .120 <t .140 <t .140 <t< td=""><td></td><td>1.200 .770 <1 .910 <1 .960 <1 .800 <1 .770 <1 .350 <1</td><td>1.800 <t 1.800 <t 1.200 <t 1.000 <t 6.600 11.000 <t< td=""></t<></t </t </t </t </td></t<></t </t </t </t </t </t 		1.200 .770 <1 .910 <1 .960 <1 .800 <1 .770 <1 .350 <1	1.800 <t 1.800 <t 1.200 <t 1.000 <t 6.600 11.000 <t< td=""></t<></t </t </t </t
BERYLLIUM (UG/L	1992 MAR 1992 MAY 1992 JUN 1992 JUL 1992 SEP 1992 OCT 1992 DEC	CADMIUM (UG/L	1992 MAR 1992 MAY 1992 JUL 1992 JUL 1992 SEP 1992 OCT 1992 DEC	COBALT (UG/L	1992 MAR 1992 MAY 1992 JUN 1992 JUL 1992 SEP 1992 OCT 1992 DEC	CHROMIUM (UG/L 1992 MAY 1992 JUN 1992 JUL 1992 JUL 1992 SEP 1992 DEC

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 OHSWEKEN WTP

TREATMENT PLANT TREATMENT PLANT RAW TREATED

GUIOELINE = 1000 (A3)		GUIDELINE = 300 (A3)	GUIOELINE = 1.0 (A1)	GUIDELINE = 50.0 (A3)	GUIDELINE = N/A	
DET'N LIMIT = 0.50		DET'N LIMIT = 6.00	0ET'N LIMIT = 0.02	0ET'N LIMIT = 0.05	 0ET'N LIMIT = 0.05	
	2.900 <t< td=""><td>24.000 <7 9.400 <7 9.900 <7 12.000 <7 13.000 <7 7.700 <1</td><td>108</td><td>13.000 13.000 6.600 23.000 22.000</td><td>13.000</td><td>. 750 . 550 3.600 1.800 . 900</td></t<>	24.000 <7 9.400 <7 9.900 <7 12.000 <7 13.000 <7 7.700 <1	108	13.000 13.000 6.600 23.000 22.000	13.000	. 750 . 550 3.600 1.800 . 900
METALS	38.000 3.500 <1 3.800 <1 3.500 <1 4.600 <1 3.100 <1	1500.000 640.000 280.000 320.000 320.000 960.000	240.000)	71.000 48.000 66.000	48.000 27.000)	.140 <t .110 <t 2.500 .830 1.400 .300 <t< td=""></t<></t </t
COPPER (UG/L	1992 MAR 1992 MAY 1992 JUL 1992 AUG 1992 SEP 1992 OCT	IRON (UG/L) 1992 MAR 1992 MAY 1992 JUL 1992 JUL 1992 SEP 1992 SEP	MERCURY (UG/L	MANGANESE (UG/L 1992 MAR 1992 MAY 1992 JUN 1992 JUC 1992 SUC	1992 OCT 1992 OCT 1992 DEC MOLYBDENUM (UG/L	1992 MAR 1992 MAY 1992 JUN 1992 JUL 1992 SEP

GUIDELINE = 350 (D3) .		GUIDELINE = 10 (A1)		GUIDELINE = 146 (D4)	GUIDELINE = 10 (A1)
DET'N LIMIT = 0.20	1.600 <t< td=""><td>DET'N LIMIT = 0.05 .280 <t< td=""><td>.540 .570 .540 <1 .530 <1 .240 <1</td><td>0ET'N LIMIT = 0.05 .460 <7 .320 <7 .350 <7 .460 <7 .500 <7 .500 <7 .500 <7 .340 <7</td><td>0ET'N LIMIT = 1.00 BDL BDL 1.600 <t 2.400="" <t="" bol="" bol<="" td=""></t></td></t<></td></t<>	DET'N LIMIT = 0.05 .280 <t< td=""><td>.540 .570 .540 <1 .530 <1 .240 <1</td><td>0ET'N LIMIT = 0.05 .460 <7 .320 <7 .350 <7 .460 <7 .500 <7 .500 <7 .500 <7 .340 <7</td><td>0ET'N LIMIT = 1.00 BDL BDL 1.600 <t 2.400="" <t="" bol="" bol<="" td=""></t></td></t<>	.540 .570 .540 <1 .530 <1 .240 <1	0ET'N LIMIT = 0.05 .460 <7 .320 <7 .350 <7 .460 <7 .500 <7 .500 <7 .500 <7 .340 <7	0ET'N LIMIT = 1.00 BDL BDL 1.600 <t 2.400="" <t="" bol="" bol<="" td=""></t>
METALS)	3.900 <t 1.400="" 2.100<="" 5="" <t="" td=""><td>))) () ()) () ()) () ()) (</td><td>1,300 1,300 1,300 3,000 1,300 540</td><td>.260 <7 .180 <7 .360 <7 .340 <7 .370 <7 .370 <7 .390 <7</td><td>80L 80L 80L 80L 80L 80L 80L 1.400 <7 2</td></t>))) () ()) () ()) () ()) (1,300 1,300 1,300 3,000 1,300 540	.260 <7 .180 <7 .360 <7 .340 <7 .370 <7 .370 <7 .390 <7	80L 80L 80L 80L 80L 80L 80L 1.400 <7 2
NICKEL (UG/L	1992 MAR 1992 MAY 1992 JUL 1992 JUL 1992 AUG 1992 SEP 1992 OCT	1992 MAR	1992 JUN 1992 JUL 1992 JUL 1992 SEP 1992 OCT 1992 OEC	ANTIMONY (UG/L 1992 MAY 1992 MAY 1992 JUL 1992 JUL 1992 SEP 1992 OCT 1992 DEC	SELENIUM (UG/L 1992 MAR 1992 MAY 1992 JUL 1992 AUG 1992 SEP 1992 OCT

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 OHSWEKEN WTP

TREATMENT PLANT TREATMENT PLANT RAW

	•		DET'N LIMIT = 0.10	GUIDELINE = N/A
1992 MAR 1992 MAY	230.000	240.000		
	820.000 600.000	820.000 510.000		
1992 AUG	580.000	000.009		
1992 SEP	450.000	470.000	,	
	330.000	310.000		
TITANIUM (UG/L			DET'N LIMIT = 0.50	GUIDELINE = N/A
1992 MAR	17.000	8.800		
	20.000	13.000		
1992 JUN	17.000	11.000		
	24.000	16.000		
1992 AUG 1992 SEP	15.000	2.700		
	27.000	11.000		
1992 DEC	13.000	8.000		
THALLIUM (UG/L	(* * * * * * * * * * * * *	DET'N LIMIT = 0.05	GUIDELINE = 13 (04)
16 SAMPLES	, 108	108		
URANIUM (UG/L		2	DET'N LIMIT = 0.05	GUIDELINE = 100 (A1)
1992 MAR	.630	150 <1		
1992 MAY	079.	108		
1992 JUN	.650	108		
1992 JUL	.880	1> 0/0.		
1992 AUG 1002 SED	. 600			
1992 OCT	069	1> 020		
1992 DEC	.730			
VANADIUM (UG/L			 DET'N LIMIT = 0.05	GUIDELINE = N/A
1992 MAR	2.700	T> 054.		
	1.500	1> 041.		
1992 JUN	1.100	.550		
1992 JUL	1.900	.710		
1992 AUG	1.300	.550		
1992 SEP	2.200	. 710		

	TREATMENT PLANT TREATMENT PLANT RAW	TREATMENT PLAN TREATED		
ZINC (UG/L	METALS	, , , , , , , , , , , , , , , , , , ,	DET'N LIMIT = 0.20	GUIDELINE = 5000 (A3)
1992 MAR	41.000	3.700		
1992 MAY	15.000	6.500		
1992 JUN	11.000	10.000		
1992 JUL	10.000	7.200		
1992 AUG	9.900	6.300		
1992 SEP	19.000	9.000		
1992 OCT	11.000	15.000		
1002 000	002 0	7 200		

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 OHSWEKEN WTP

TREATMENT PLANT TREATMENT PLANT 'RAW TREATED

GUIDELINE = 450 (04)		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = 10000 (1)		GUIDELINE = 38000 (04)		GUIDELINE = N/A		GUIDELINE = 10 (C1)		GUIDELINE =.1900 (D4)	GUIDELINE = N/A	
DET'N LIMIT = 1.000		DET'N LIMIT = 5.000		DET'N LIMIT = 1.000		DET'N LIMIT = 1.000		DET'N LIMIT = 5.000		DET'N LIMIT = 1.000		DET'N LIMIT = 5.000		DET*N LIMIT = 1.000		DET*N LIMIT = 1.000	DET'N LIMIT = 1.000	;
1 1 1 1 1 1 1 1	BOL	! ! ! ! ! ! !	BOL		BDL		BOL		BOL	• • • • • • • • • • • • • • • • • • •	108		BOL	* * * * * * * * * * * * *	B01	1 1 1 1 1 1 1	80L 80L 80L 1.000 <7 2.000 <7 80L	BDL
AATICS)		^		^		^		^	o .	^		^		~				
CHLOROAROMATICS	BOL	NZENE (NG/L	BOL	NZENE (NG/L	BOL	NZENE (NG/L	BOL	NZENE (NG/L	BDL	NZENE (NG/L	B0L	NZENE (NG/L	BOL	NE (NG/L	B0L	E (NG/L	801 801 801 801 801 801 801 801	BUL
CHLOROAUTADIENE (NG/L	16 SAMPLES	123-TRICHLOROBENZENE (NG/L	16 SAMPLES	1234-TETCLOROBENZENE (NG/L	16 SAMPLES	1235-TETCLOROBENZENE (NG/L	16 SAMPLES	124-TRICHLOROBENZENE (NG/L	16 SAMPLES	1245-TETCLOROBENZENE (NG/L	16 SAMPLES	135-TRICHLOROBENZENE (NG/L	16 SAMPLES	HEXACHLOROBENZENE	16 SAMPLES	HEXACHLOROETHANE (NG/L	1992 MAY 1992 JUN 1992 JUN 1992 AUG 1992 SEP 1992 OCT 1992 DEC	IO SAMPLES

CHLDROAROMATICS PENTACHLOROBENZENE (NG/L) DET'N LIMIT = 1.000 GUIDELINE = 74000 (D4)		236-TRICHLOROTOLUENE (NG/L) DET'N LIMIT = 5.000 GUIDELINE = N/A		245-TRICHLOROTOLUENE (NG/L) DET'N LIMIT = 5.000 GUIDELINE = N/A		26A-TRICHLOROTOLUENE (NG/L) DET'N LIMIT = 5.000 GUIDELINE = N/A	SAMPLES BDL BDL
PENTACHLOROBEN	16 SAMPLES	236-TRICHLOROT	16 SAMPLES	245-TRICHLOROT	16 SAMPLES	26A-TRICHLOROT	16 SAMPLES

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 OHSWEKEN WTP

	GUIOELINE = N/A		GUIOELINE = N/A		GUIDELINE = N/A		GUIDELINE = 2600000 (04)		GUIDELINE = 5000 (A1)		GUIDELINE = 60000 (A1)	
	 DET*N LIMIT = 100.0		DET'N LIMIT = 20.0		DET'N LIMIT = 10.0		DET'N LIMIT = 100.0		DET'N LIMIT = 20.0		DET*N LIMIT = 10.00	
TREATMENT PLANT TREATMENT PLANT RAW TREATED		BOL	1	BOL		BOL	1	108		80L 20.000 <t< th=""><th></th><th>80L 80L</th></t<>		80L 80L
PLANT T	CHLOROPHENOLS	BDL	ソ	Вог	(7	BDL	٠	BDL	· · · · · ·	80L 80L	^	BDL 10.000 <t< td=""></t<>
TREATMENT RAW	CHLORO HENOL (NG/	à	PHENOL (NG	80	PHENOL (NG	8	HENOL (NG/	80	HENOL (NG/	<u> </u>	NOL (NG/L	10.01
	CHLOROPHENOL (NG/L	4 SAMPLES	2345-TETCHLOROPHENOL (NG/L	4 SAMPLES	2356-TETCHLOROPHENOL (NG/L	4 SAMPLES	245-TRICHLOROPHENOL (NG/L	4 SAMPLES	246-TRICHLOROPHENOL (NG/L	1992 MAY 1992 OCT	PENTACHLOROPHENOL (NG/L	1992 MAY 1992 OCT

PESTICIDES AND PCB ALDRIN (NG/L)	ND PCB	DET'N LIMIT = 1.000	GUIDELINE = 700 (A1)
16 SAMPLES BDL	108		
ALPHA BHC (NG/L)		DET'N LIMIT = 1.000	GUIDELINE = 700 (G)
MAR	BDL		
1992 MAY BDL	1.000 <1		
NOS 111	BDL		
AUG BDL	8D1		
SEP 1	3.000 <1		
1 0CT 1	BDL		
1992 DEC BDL	BDL		
BETA BHC (NG/L)	6 6 9 9 9 9 9 9 9 7 7 7 7 8 8	DET'N LIMIT = 1.00	GUIDELINE = 300 (G)
16 SAMPLES BDL	BDL		
LINDANE (GAMMA BHC) (NG/L)		DET'N LIMIT = 1.000	GUIDELINE = 4000 (A1)
4	á		
1992 MAR BDL 1992 MAY BDI	BDL BDI		•
JUN 3.	BDL		
	BDL		
AUG	1.000 <1		
SEP	BDL		
1992 OCT BDL 1992 DEC BDL	80r		
ALPHA CHLORDANE (NG/L)		DET'N LIMIT = 2.000	GUIDELINE = 7000 (A1)
16 SAMPLES BDL	BDL		
GAMMA CHLORDANE (NG/L)	3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	DET'N LIMIT = 2.00	GUIDELINE = 7000 (A1)
16 SAMPLES BDL	BDL		
DIELDRIN (NG/L)		DET'N LIMIT = 2.00	GUIDELINE = 700 (A1)
16 SAMPLES BDL	BDL		
METHOXYCHLOR (NG/L)		DET'N LIMIT = 5.0	GUIDELINE = 900000 (A1)
16 SAMPLES BDL	108	;	

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 OHSWEKEN WTP

GUIDELINE = 74000 (D4)		GUIDELINE = 74000 (D4)		GUIDELINE = 1600 (D3)	•	GUIDELINE = N/A		GUIDELINE = 3000 (A1)		GUIDELINE = 3000 (A1)		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = 30000 (A1)		GUIDELINE = 3000 (A2)		GUIDELINE = 30000 (A1)		GUIDELINE = 30000 (A1)	
DET'N LIMIT = 2.00		DET'N LIMIT = 5,000		DET'N LIMIT = 5.000		DET'N LIMIT = 5.00		DET'N LIMIT = 1.000		DET'N LIMIT = 1.000		DET'N LIMIT = 5.000		DET'N LIMIT = 2.000		DET'N LIMIT = 5.000		DET'N LIMIT = 20.00		DET'N LIMIT = 5.000		DET'N LIMIT = 1.000	
AND PCB	BDL		BDL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	HDF		BOL		BDL		108		108		BDL	1 1 1 1 1 1 1 1 1 1 1 1 1 1	BDL	1 1 5 4 6 6 1 1 1 1 1 2 2 3 3 4 4 5 4 6 6 7 7 7 7 7 8 7 8 7 8 7 8 7 8 7 8 8 8 8	108		108		BDL
PESTICIDES AND PCB ENDOSULFAN 1 (NG/L)	16 SAMPLES BDL	ENDOSULFAN II (NG/L)	16 SAMPLES BDL	ENDRIN (NG/L)	16 SAMPLES BDL	ENDOSULFAN SULPHATE (NG/L	16 SAMPLES BDL	HEPTACHLOR EPOXIDE (NG/L	. 14 SAMPLES BDL	HEPTACHLOR (NG/L)	16 SAMPLES BDL	MIREX (NG/L)	16 SAMPLES BDL	OXYCHLORDANE (NG/L)	16 SAMPLES BDL	0,P-DDT (NG/L)	16 SAMPLES BDL	PCB (NG/L)	16 SAMPLES BDL	P,P-DDD (NG/L)	16 SAMPLES BDL	P,P-DDE (NG/L)	16 SAMPLES BDL

TABLE 4 • DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 OHSWEKEN WTP

80L 80L 80L 80L 80L 80L 80L 80L 80L 80L	801	:	
8DL 8DL 8DL 8DL 8DL 8DL 8DL 8DL 8DL 8DL	BOL		
8DL 8DL 8DL 8DL 8DL 8DL 8DL 8DL 8DL 8DL	BOL	DET'N LIMIT = 500.0	GUIDELINE = 5000 (A1)
80L 80L 80L 80L 80L 60.000 <t .<="" td=""><td></td><td></td><td></td></t>			
80L 80L 80L 80L 80L 60.000 <t .<="" td=""><td></td><td>DET'N LIMIT = 50.0</td><td>GU:DELINE = 300000 (D3)</td></t>		DET'N LIMIT = 50.0	GU:DELINE = 300000 (D3)
80L 80L 80L 80L 80L 80L	BDL		
80L 80L 60.000 <t .<br="">80L 80L</t>	80L 80L	•	
80L 60,000 <t .<br="">80L 80L</t>	10a		
	80 80		
BDL	801 801		
	BDL		
(: : : :	DET'N LIMIT = 50.0	GUIDELINE = 60000 (A2)
∵ '	300.000 <t< td=""><td></td><td></td></t<>		
	000.		
210,000 <1 40,	140.000 <1		
. ₽	360.000 <1		
300.000 <t 220.<="" td=""><td>220.000 <t< td=""><td></td><td></td></t<></td></t>	220.000 <t< td=""><td></td><td></td></t<>		
-	. 000		
(DET'N LIMIT = 50.0	GUIDELINE = N/A
80L	80L	:	
CYANAZINE (BLADEX) (NG/L)		DET'N LIMIT = 100.0	GUIDELINE = 10000 (A2)
BDL	BOL		
DESETHYL ATRAZINE (NG/L)		DET'N LIMIT = 200.0	GUIDELINE = 60000 (A2)
280.000 <t 280.<="" td=""><td>280.000 <t< td=""><td></td><td></td></t<></td></t>	280.000 <t< td=""><td></td><td></td></t<>		
BDL	BDL		
1			
	550.000 <t< td=""><td></td><td></td></t<>		
□ ;	BDL		
340 000 <1 250.	250.000 <1		
,	. 200.		

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 OHSWEKEN WTP

PESTICIDES AND PCB DESETHYL SIMAZINE (NG/L)		DET'N LIMIT = 200.0	GUIDELINE = 10000 (A2)
16 SAMPLES BDL	BDL		
PROMETONE (NG/L)		DET'N LIMIT = 50.000	GUIDELINE = 52500 (D3)
16 SAMPLES BDL	BDL		
PROPAZINE (NG/L)		DET'N LIMIT = 50.000	GUIDELINE = 700000 (03)
16 SAMPLES BDL	BDL		
PROMETRYNE (NG/L)		DET'N LIMIT = 50.000	GUIDELINE = 1000 (A2)
16 SAMPLES BDL	BDL		
METRIBUZIN (SENCOR) (NG/L)		DET'N LIMIT = 100.0	GUIDELINE = 80000 (A1)
16 SAMPLES BDL	BDL		
SIMAZINE (NG/L)		DET'N LIMIT = 50.00	GUIDELINE = 10000 (A2)
MAR	S		
	901		
NON	BDL		
JO.	80r		
AUG Cr	를 1		
1992 OCT RDI	1 G		
1992 DEC 80L	80L		
ALACHLOR (LASSO) (NG/L)		DET'N LIMIT = 500.0	GUIDELINE = 5000 (A2)
16 SAMPLES BDL	BDL		
METOLACHLOR (NG/L)		DET'N LIMIT = 500.0	GUIDELINE = 50000 (A2)
16 SAMPLES BDL	BDL		

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 OHSWEKEN WTP

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 OHSWEKEN WTP

	^		DET'N LIMIT = 10.0	GUIDELINE = N/A
2 SAMPLES	BDL	BDL		
ANTHRACENE (NG/L	(6 6 5 7 1 6	DET'N LIMIT = 1.0	GUIDELINE = N/A
2 SAMPLES	BDL	BDL		
FLUORANTHENE (NG/L	(; ; ;	DET'N LIMIT = 20.0	GUIDELINE = 42000 (04)
2 SAMPLES	BDL	BDL		
PYRENE (NG/L)	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;		DET'N LIMIT = 20.0	GUIDELINE = N/A
2 SAMPLES	BDL	BDL		
BENZO(A)ANTHRACENE (NG/L	16/L)		DET'N LIMIT = 20.0	GUIDELINE = N/A
2 SAMPLES	BDL	BDL		
CHRYSENE (NG/L)			DET'N LIMIT = 50.0	GUIDELINE = N/A
2 SAMPLES	BDL	BDL		
DIMETH. BENZ(A)ANTHR (NG/L	(NG/L)	1	DET'N LIMIT = 5.0	GUIDELINE = N/A
2 SAMPLES	BDL	BDL		
BENZO(E) PYRENE (NG/L	^	1	DET'N LIMIT = 50.0	GUIDELINE = N/A
2 SAMPLES	BDL	BDL		
BENZO(B) FLUORANTHEN (NG/L	(NG/L)		DET'N LIMIT = 10.0	GUIDELINE = N/A
2 SAMPLES	BOL	108		
PERYLENE (NG/L)		1	DET'N LIMIT = 10.0	GUIDELINE = N/A
2 SAMPLES	BDL	BDL		
BENZO(K) FLUORANTHEN (NG/L	(NG/L)		DET'N LIMIT = 1.0	GUIDELINE = N/A
2 SAMPLES	BDL	BDL		
BENZO(A) PYRENE (NG/L	^		DET'N LIMIT = 5.0	GUIDELINE = 10 (A1)
2 SAMPLES	BDL	BDL		

GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = N/A	
DET'N LIMIT = 20.0		DET'N LIMIT = 10.0		DET'N LIMIT = 20.0		DET'N LIMIT = 2.0		DET'N LIMIT = 10.0	
POLYAROMATIC HYDROCARBONS EN (NG/L)		^	BDL.	(BDL	^	TOB		BDL BDL
POLYAROMAI BENZO(G,H,I) PERYLEN (NG/L	2 SAMPLES BDL	ANTHRA	2 SAMPLES . BDL	INDENO(1,2,3-C,D) PY (NG/L	2 SAMPLES BDL	BENZO(B) CHRYSENE (NG/L	2 SAMPLES · BDL	CORONENE (NG/L)	2 SAMPLES BDL

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 OHSWEKEN WTP

	SPECIFIC PESTICIOES		:	
2,4,5-T (NG/L			DET'N LIMIT = 50.0	GUIDELINE = 280000 (A1)
4 SAMPLES	BDL	BDL		
2,4-D (NG/L	^		DET'N LIMIT = 100.0	GUIDELINE = 100000 (A1)
1992 MAY 1992 OCT	8DL 120.000 <t< td=""><td>BDL BDL</td><td></td><td></td></t<>	BDL BDL		
2,4-DB (NG/L	(DET'N LIMIT = 200.0	GUIDELINE = N/A
4 SAMPLES	BDL	BDL		
2,4 D PROPIONIC ACID (NG/L	ACID (NG/L)	1 2 5 1 6 9 1	DET'N LIMIT = 100.0	GUIDELINE = N/A
4 SAMPLES	BDL	BDL		
DICAMBA (NG/L	(! ! ! ! !	DET'N LIMIT = 50.0	GUIDELINE = 120000 (A1)
4 SAMPLES	BDL	BDL		
2,4,5-TP (SILVEX) (NG/L	. (NG/L) (X	; ; ;	DET'N LIMIT = 20.00	GUIDELINE = 10000 (A1)
4 SAMPLES	BDL	BDL		
DIAZINON (NG/L	(* * * * * * * * * * * * * * * * * * *	DET'N LIMIT = 20.0	GUIDELINE = 20000 (A1)
4 SAMPLES	BDL	BDL		
DICHLOROVOS (NG/L	()		DET'N LIMIT = 20.0	GUIDELINE ≈ N/A
2 SAMPLES	BDL	BDL		
CHLORPYRIFOS (NG/L	IG/L)	(() () ()	DET'N LIMIT = 20.0	GUIDELINE = N/A
4 SAMPLES	BDL	BDL		
ETHION (NG/L	(: : : : :	DET'N LIMIT = 20.0	GUIDELINE = 35000 (G)
2 SAMPLES	. BDL .	BDL		
MALATHION (NG/L	(• • • • •	DET'N LIMIT = 20.0	GUIDELINE = 190000 (A1)
2 SAMPLES	BDL	801		
MEVINPHOS (NG/L	•		DET'N LIMIT = 20.0	GUIDELINE = N/A
2 SAMPLES	BDL	BDL		
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

METHYL PARATHION (NG/L)	DET'N LIMIT = 50.0	GUIDELINE = 9000 (D3)
4 SAMPLES BDL	. 108	
METHYLTRITHION (NG/L)	DET'N LIMIT = 20.0	GUIDELINE = N/A
4 SAMPLES BOL	BOL	
PARATHION (NG/L)	DET'N LIMIT = 20.0	GUIDELINE = 50000 (A1)
4 SAMPLES BOL	BDĹ	
PHORATE (NG/L)	DET'N LIMIT = 20.0	GUIDELINE = 2000 (A2)
,4 SAMPLES BOL	, , , , , , , , , , , , , , , , , , ,	
RELDAN (NG/L)	DET'N LIMIT = 20.0	GUIDELINE = N/A
4 SAMPLES BDL	BDL	
RONNEL (NG/L)	DET'N LIMIT = 20.0	GUIDELINE = N/A
4 SAMPLES BDL	. 108	
CARBOFURAN (NG/L)	DET'N LIMIT = 2000.0	GUIDELINE = 90000 (A1)
4 SAMPLES BDL	108	
CHLORPROPHAM (CIPC) (NG/L)	DET'N LIMIT = 2000.0	GUIDELINE = 350000 (G)
4 SAMPLES BDL	BDL	
DIALLATE (NG/L)	DET'N LIMIT = 2000.0	GUIDELINE = N/A
4 SAMPLES BDL	80L	
EPTAM (NG/L)	DET'N LIMIT = 2000.0	GUIDELINE = N/A
4 SAMPLES BDL	BDL	
IPC (NG/L)	DET'N LIMIT = 2000.0	GUIDELINE = N/A
4 SAMPLES BOL	8DL	
PROPOXUR (NG/L)	DET'N LIMIT = 2000.0	GUIDELINE = 140000 (03)
4 SAMPLES BOL	BOL	

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 OHSWEKEN WTP

CARBARYL (NG/L	SPECIFIC PESTICIDES)	S	DET'N LIMIT = 200.0	GUIDELINE = 90000 (A1)
4 SAMPLES	BDL	BDL		
BUTYLATE (NG/L	BUTYLATE (NG/L) D		DET'N LIMIT = 2000.0	GUIDELINE = 245000 (D3)
4 SAMPLES	BDL	BDL		

TREATMENT PLANT TREATMENT PLANT RAW

GUIDELINE = 5 (A1)		GUIDELINE = 24 (A3)		GUIDELINE = 2.4 (A3)	GUIDELINE = 300 (A3*)
DET'N LIMIT = 0.05	801 801 .050 <t 801 801 801 .050 <t< td=""><td>DET'N LIMIT = 0.05</td><td>.100 <t .100="" .200="" .250="" <<="" <t="" td=""><td>BDL .100 <t .150 <t .100 <t .100 <t .100 <t .150 <t .150 <t< td=""><td>BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL</td></t<></t </t </t </t </t </t </td></t></td></t<></t 	DET'N LIMIT = 0.05	.100 <t .100="" .200="" .250="" <<="" <t="" td=""><td>BDL .100 <t .150 <t .100 <t .100 <t .100 <t .150 <t .150 <t< td=""><td>BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL</td></t<></t </t </t </t </t </t </td></t>	BDL .100 <t .150 <t .100 <t .100 <t .100 <t .150 <t .150 <t< td=""><td>BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL</td></t<></t </t </t </t </t </t 	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL
VOLATILES)	108 108 . 108 108 108 108		108 108 108 108 108 108 108	108/L) 108 108 108 108 108 108 108 108 108 108	41) BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL
BENZENE (UG/L	1992 MAY - 1992 JUN 1992 JUN 1992 JUN 1992 AUG 1992 SEP 1992 OCT 1992 DEC	TOLUENE (UG/L	1992 MAR 1992 MAY 1992 JUN 1992 JUN 1992 AUG 1992 SEP 1992 OCT 1992 DEC	ETHYLBENZENE (UG/L 1992 MAY 1992 JUN 1992 JUL 1992 AUG 1992 SEP 1992 OCT 1992 DCT	P-XYLENE (UG/L 1992 MAY 1992 JUN 1992 JUL 1992 JUL 1992 AUG 1992 GCT 1992 DEC

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 OHSWEKEN WTP

PLANT	
TREATMENT	TREATED
PLANT	
TREATMENT	RAW

GUIDELINE = 300 (A3*)		GUIDELINE = 300 (A3*)	GUIDELINE = 100 (01)	GUIDELINE = 7 (01)	GUIDELINE = 50 (A1)
DET'N LIMIT = 0.10		DET'N LIMIT = 0.05	DET'N LIMIT = 0.05	DET'N LIMIT = 0.100	DET'N LIMIT = 0.50
	801 100 - 100 100 - 100 100 - 100 100 - 100 100 - 100 100 - 100 100	. 80L 80L . 050 < 7 . 050 < 7 . 050 < 7 . 050 < 1 . 050 & 1	801 .100 <1 .801 .801 .100 <1 .150 <1 .150 <1		801 801 801 801 801 801 801 801 801 801
VOLATILES)	108 108 108 108 108 108 108 108	108 108 108 108 108 108 108	80L 80L .100 <7 .100 <7 .00 <7 80L 80L 80L 80L	YLENE (UG/L)	BDL
M-XYLENE (UG/L	1992 MAR 1992 MAY 1992 JUN 1992 JUL 1992 SEP 1992 OCT 1992 OCT	0-XYLENE (UG/L 1992 MAY 1992 MU 1992 JUN 1992 JUL 1992 SEP 1992 OCC	STYRENE (UG/L 1992 MAR 1992 JUN 1992 JUL 1992 AUG 1992 SEP 1992 OCT	1,1-DICHLORDETHYLENE (UG/L	METHYLENE CHLORIDE (UG/L 1992 MAY B 1992 JUN B 1992 JUN B 1992 JUL B 1992 SEP B 1992 SEP B 1992 OCT 6

ILOROETHANE (UG/L) NPLES BOL NAM (UG/L) MAR BDL JUL (200 <t 100="" 200="" <t="" <t<="" th=""><th>VOLATILES T12-DICHLOROETHYLENE (UG/L</th><th>VOLATILES NE (UG/L .)</th><th></th><th>DET'N LIMIT = 0.10</th><th>GUIDELINE = 70 (01)</th></t>	VOLATILES T12-DICHLOROETHYLENE (UG/L	VOLATILES NE (UG/L .)		DET'N LIMIT = 0.10	GUIDELINE = 70 (01)
1-DICHLOROETHANE (UG/L) 1-DICHLOROETHANE (UG/L) 1992 MAR	16 SAMPLES	BOL	. BDL		
16 SAMPLES BDL BDL 19 SAMPLES BDL 22 000 19 SQ MAR BDL 15 300 19 SQ JUN 200 <1 71 000 19 SQ JUN 200 200 10 SQ JUN	1,1-DICHLOROETHANE (L	J/9/L)	! ! ! ! ! !	DET'N LIMIT = 0.100	GUIDELINE = N/A
1992 MAR		BOL	BDL		
22.000 15.300 17.300 43.100 12.100 12.100 12.100 BDL BDL BDL BDL BDL BDL BDL BDL	CHLOROFORM (UG/L	•	0 1 0 1 1 1 1 1	0ET'N LIMIT = 0.10	GUIDELINE = 350 (A1+)
15.300		♣ BDL	. 000.22		
T.300		8DL 200 <t< td=""><td>15.300</td><td></td><td></td></t<>	15.300		
<t 12.100="" 3.400="" 43.100="" bdl="" bdl<="" td="" =""><td></td><td>.200 <1</td><td>7.300</td><td></td><td></td></t>		.200 <1	7.300		
\$9.900 \$43.100 \$12.		. 100 <t< td=""><td>3.400</td><td></td><td></td></t<>	3.400		
## 100 ## 12.100 ## 12.100 ## 12.100 ## 12.100 ## 12.100 ## 12.100 ## 1.000 ##		1> 007	29.900		
BDL BDL BDL BDL DET'N LIMIT BDL DET'N LIMIT BDL DET'N LIMIT BDL DET'N LIMIT DET'N LIMIT BDL DET'N LIMIT BDL DET'N LIMIT DET'	1992 OCT 1992 DEC	BOL BOL	43.1 00 12.100		
BDL	111, TRICHLOROETHANE	(תפ/ר)		DET'N LIMIT = 0.02	GUIDELINE = 200 (01)
BDL BDL BDL BDL BDL BDL BDL BDL	16 SAMPLES	BDL	BDL		
BDL BDL BDL BDL BDL BDL CET'N LIMIT BDL CET'N LIMIT BDL 1.400 1.050 1.050 1.050 1.050	1,2 DICHLOROETHANE (L	NG/L)			GUIDELINE = 5 (A1)
BDL BDL DET'N LIMIT BDL BDL BDL DET'N LIMIT BDL DET'N LIMIT DET'N LIMIT DET'N LIMIT BDL DET'N LIMIT DET'N LIM	16 SAMPLES	BDL	BDL		
BDL BDL BDL DET'N LIMIT BDL BDL DET'N LIMIT 2.800 2.800 2.800 2.800 1.400 1.400 1.050 1.050 1.050	CARBON TETRACHLORIDE	(ng/r)	; ; ; ; ;	DET*N LIMIT = 0.20	GUIDELINE = 5 (A1)
BDL BDL BDL DET'N LIMIT BDL BOL 2.800 2.800 2.800 2.800 1.400 1.050 1.050 10.400	16 SAMPLES	BDL	BOL	Ξ.	
BDL BDL BDL 2.800 2.800 2.800 2.800 1.400 1.050 10.400	1,2-DICHLOROPROPANE	(ng/L)			GUIDELINE = 5 (D1)
BDL BDL 2.800 2.800 2.800 2.800 1.000 1.050 10.400	16 SAMPLES	BDL	BDL		
80L 2.800 2.800 22.850 1.400 1.050 10.400	TRICHLOROETHYLENE (UC	g/L)	· · · · · · · · · · · · · · · · · · ·	DET'N LIMIT = 0.10	GUIDELINE = 50 (A1)
2.800 2.800 22.850 1.400 1.050	16 SAMPLES	301	BDL		
MAY BDL JUN BDL JUL BDL AUG BDL) I CHLOROBROMOME THANE	(חפ/ר)	1 1 1 1 5 5 5 6 7	DET'N LIMIT = 0.05	GUIDELINE = 350 (A1+)
MAY BDL JUN BDL JUL BDL AUG BDL SEP BDL	1992 MAR	BDL	2.800		
JUN BDL JUL BDL AUG BDL SEP BDL	1992 MAY	BDL	2.800		
JUL 801 AUG 801 SEP 801	1992 JUN	BDL	22.850		
AUG BDL SEP BDL	1992 JUL	BDL	1.400		
SEP BDL		BDL	1.050		
		BDL	10.400		
1992 OCT BDL 10,150		BOL	10.150		
טבר פטר	1776 055	סטר	2.700		

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 OHSWEKEN WTP

VOLATICH 112-TRICHLOROETHANE (UG/L	VOLATILES E (UG/L			DET'N LIMIT = 0.05	GUIDELINE = 0.6 (D4)
16 SAMPLES	BDL		BDL		
CHLORODIBROMOMETHANE (UG/	1/90)	^	· · · ·	DET'N LIMIT = 0.10	GUIDELINE = 350 (A1+)
1992 MAR	BDL		BDL		
1992 MAY .	BDL		BDL		
. 1992 JUN	BDL	3.	3.600		
	BDL		BDL		
1992 AUG	BOL		BDL		
	B 0L	-	000.		
1992 oct	BDL	<u>-</u>	.100		
1992 DEC	BDL	•	.500 <1		
TETRACHLOROETHYLENE (UG/L	(UG/L		•	 DET'N LIMIT = 0.05	GUIDELINE = 65 (A5)
					-
1992 MAR	80 1		BDL		
1992 MAY	BDL				
1992 JUN	ا ا	•	050 <1		
	BOL		80 F		
1992 AUG			80r		
	BDL		BDL		
1992 DEC	208		BOL		
277 7//		1	פטר		
BROMOFORM (UG/L)				DET'N LIMIT = 0.20	GUIDELINE = 350 (A1+)
16 SAMPLES	BDL		BDL		
1122-TETCHLOROETHANE (UG/L	1/9n)	^		DET'N LIMIT = 0.05	GUIDELINE = 0.17 (04)
16 SAMPLES	BOL		BDL		
VINYL CHLORIDE (UG/L	^	1	•	DET'N LIMIT = 0.100	GUIDELINE = $2 (D1)$
16 SAMPLES	BDL		BDL		
C12-DICHLOROETHYLENE (UG/L	1/90)		! ! ! !	DET'N LIMIT = 0.100	GUIDELINE = 70 (D1)
16 SAMPLES	BDL		BDL		
CHLOROBENZENE (UG/L	^))) (DET'N LIMIT = 0.10	GUIDELINE = 1510 (03)
16 SAMPLES	BDL	•	BDL		
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	

TREATMENT PLANT TREATED TREATMENT PLANT RAW

DET'N LIMIT = 0.10 VOLATILES 1,4-DICHLOROBENZENE (UG/L

GUIDELINE = 3750 (03) GUIDELINE = 200 (A1) GUIDELINE = 5 (A1) DET'N LIMIT = 0.10 DET'N LIMIT = 0.05 贸 BDL **8**0 1,3-DICHLOROBENZENE (UG/L 1,2-DICHLOROBENZENE (UG/L 16 SAMPLES 16 SAMPLES

DET'N LIMIT = 0.05 BDL ETHYLENE DIBROMIDE (UG/L 16 SAMPLES

DET'N LIMIT = 0.50 TOTL TRIHALOMETHANES (UG/L

BOL

BDL

16 SAMPLES

GUIDELINE = 350 (A1)

GUIDELINE = 50 (D1)

24.800 18.100 97.450 8.700 4.450 <1 BDL 54.350 16.300 80L 80L 80L 80L 80L 80L 80L 1992 MAR 1992 JUN 1992 JUL 1992 AUG 1992 SEP 1992 OCT 1992 DEC

TABLE 5 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992

SCAN/PARAMETER	· UNIT	DETECTION LIMIT	GUIDELINE		
BACTERIOLOGICAL					
FECAL COLIFORM MEMBRANE FILTRATION	CT/100ML	0		(A1)	
STANDARD PLATE COUNT MEMBRANE FILT. TOTAL COLIFORM BACKGROUND MF	CT/ML CT/100ML	0 0	500/ML N/A	(A3)	
TOTAL COLIFORM MEMBRANE FILTRATION	CT/100ML	0	5/100ML	(A1)	
CHEMISTRY (FLD)					
FIELD COMBINED CHLORINE RESIDUAL	MG/L	0	N/A		
FIELD TOTAL CHLORINE RESIDUAL	MG/L	Ö	N/A		
FIELD FREE CHLORINE RESIDUAL	MG/L	0	N/A		
FIELD PH	DMNSLESS	. N/A	6.5-8.5	(A4)	
FIELD TEMPERATURE FIELD TURBIDITY	DEG.C FTU	N/A N/A	15.0 1.0	(A3) (A1)	
CHEMISTRY (LAB)		N/A	1.0	(A1)	
·	•				
ALKALINITY AMMONIUM TOTAL	MG/L	0.20	30-500	(A4)	
CALCIUM	MG/L . MG/L	0.002 0.20	100.0	(F2)	
CHLORIDE	MG/L	0.20			
COLOUR	TCU	0.50	5.0	(A3)	
CONDUCTIVITY	UMHO/CM	1.00	400.0		
CYANIDE	MG/L	0.001		(A1)	
DISSOLVED ORGANIC CARBON	MG/L	0.10		(A3)	
FLUORIDE HARDNESS	MG/L	0.01		(A1)	
IONCAL	MG/L DMNSLESS	0.50 N/A	80-100 N/A	(A4)	
LANGELIERS INDEX	DMNSLESS	N/A	N/A		
MAGNESIUM	MG/L	0.10	30.0	(F2)	
NITRATES (TOTAL)	MG/L	0.005	10.0	(A1)	
NITRITE	MG/L	0.001	1.0	(A1)	
NITROGEN TOTAL KJELDAHL	MG/L	0.02	N/A		
PH DEPENDENCE FOR DEACT	DMNSLESS	N/A	6.5-8.5	(A4)	
PHOSPHORUS FIL REACT PHOSPHORUS TOTAL	MG/L MG/L	0.0005 0.002	N/A 0.4	(52)	
POTASSIUM	MG/L	0.002	10.0	(F2) (F2)	
RESIDUE FILTRATE (CALCULATED TDS)	MG/L	N/A	500.0	(A3)	
SODIUM	MG/L	0.20	200.0	(A4)	
SULPHATE	MG/L	0.20	500.0	(A4)	
TURBIDITY	FTU	0.05	1.0	(A1)	
* The Maximum Acceptable Concentration	(MAC) for <u>natu</u>	rally occurring	fluoride in	drinking w	water is 2.4 mg/L.
CHLOROAROMATICS					
1,2,3-TRICHLOROBENZENE	NG/L	5.0	N/A		
1,2,3,4-TETRACHLOROBENZENE	NG/L	1.0	N/A	•	
1,2,3,5-TETRACHLOROBENZENE	NG/L	1.0	N/A		
1,2,4-TRICHLOROBENZENE	NG/L	5.0	10000	(I)	
1,2,4,5-TETRACHLOROBENZENE 1,3,5-TRICHLOROBENZENE	NG/L	1.0	38000	(04)	
2,3,6-TRICHLOROBENZENE	NG/L NG/L	5.0 5.0	N/A		
2,4,5-TRICHLOROTOLUENE	NG/L	5.0	N/A N/A		•
2,6A-TRICHLOROTOLUENE	NG/L	5.0	· N/A		
HEXACHLOROBENZENE (HCB)	NG/L	1.0	. 10	(C1)	
HEXACHLOROBUTAD ENE	NG/L	1.0	450	(D4)	
HEXACHLOROETHANE	NG/L	1.0	1900	(04)	
OCTACHLOROSTYRENE PENTACHLOROBENZENE	NG/L NG/L	1.0 1.0	N/A 74000	(D4)	
CHLOROPHENOLS	NG/ L	1.0	74000	(04)	
2,3,4-TRICHLOROPHENOL 2,3,4,5-TETRACHLOROPHENOL	NG/L	100.0	N/A		
2,3,5,6-TETRACHLOROPHENOL	NG/L NG/L	20.0 10.0	N/A N/A		
E,J,J,O TETRACHEUROFHENOL	NU/L	10.0	Ņ/A		

SCAN/PARAMETER	דואט	DETECTION LIMIT	GUIDELINE	
2,4,5-TRICHLOROPHENOL	NG/L	100.0	2600000	(D4)
2,4,6-TRICHLOROPHENOL	NG/L	20.0	5000	(A1)
PENTACHLOROPHENOL	NG/L	10.0	60000	(A1)
METALS	·			
AT LINES ALL IM	UG/L	0.10	100	(A4)
ALUMINUM ANTIMONY	UG/L	0.05	146	(D4)
ARSENIC	UG/L	0.10	25	(A1)
BARIUM	UG/L	0.05	1000	(A2)
BERYLL IUM	UG/L	0.05	6800	(D4)
BORON	UG/L	2.00	5000	(A1)
CADMIUM	UG/L	0.05	5	(A1)
CHROM1UM	UG/L	0.50	50	(A1)
COBALT	UG/L	0.02	N/A	= .
COPPER "	UG/L	0.50	1000	(A3)
1 RON	UG/L	6.00	300	(A3)
LEAD	UG/L	0.05	10 50	(A1) (A3)
MANGANESE MERCURY	UG/L UG/L	0.05 0.02	1	(A1)
MOLYBDENUM	UG/L	0.05	N/A	(617
NICKEL	UG/L	0.20	350	(D3)
SELENIUM	UG/L	1.00	10	(A1)
SILVER	UG/L	0.05	N/A	•
STRONTIUM	UG/L	0.10	N/A	
THALLIUM	UG/L	0.05	13	(D4)
TITANIUM	UG/L	0.50	N/A	
URANIUM	UG/L	0.05	100	(A1)
VANADIUM	UG/L	0.05	N/A	= .
ZINC	UG/L	0.20	5000	(A3)
POLYNUCLEAR AROMATIC HYDROCARBONS				
ANTHRACENE	NG/L	1.0	N/A	
BENZO(A) ANTHRACENE	NG/L	20.0	N/A	
BENZO(A) PYRENE	NG/L	5.0	10	(A1)
BENZO(B) CHRYSENE	NG/L	2.0	N/A	
BENZO(B) FLUORANTHENE	NG/L	10.0	N/A	
BENZO(E) PYRENE	NG/L NG/L	50.0 20.0	N/A N/A	
BENZO(G,H,1) PERYLENE BENZO(K) FLUORANTHENE	NG/L	1.0	N/A	
CHRYSENE	NG/L	50.0	N/A	
CORONENE	NG/L	10.0	N/A	
DIBENZO(A,H) ANTHRACENE	NG/L	10.0	N/A	
DIMETHYL BENZO(A) ANTHRACENE	NG/L	5.0	N/A	
FLUORANTHENE	NG/L	20.0	42000	(D4)
INDENO(1,2,3-C,D) PYRENE	NG/L	20.0	N/A	
PERYLENE	NG/L	10.0	N/A	
PHENANTHRENE .	NG/L	10.0	N/A	
PYRENĘ	NG/L	20.0	N/A	
PESTICIDES & PCB				
ALACHLOR (LASSO)	NG/L	500.0	5000	(A2)
ALDRIN	NG/L	1.0	700	(A1)
ALPHA HEXACHLOROCYCLOHEXANE (BHC)	NG/L	1.0		(G)
ALPHA CHLORDANE	NG/L	2.0	7000	(A1)
AMETRINE ATRATONE	NG/L	50.0 50.0	300000 N/A	(D3)
ATRAZINE .	NG/L NG/L	50.0	60000	(A2)
DESETHYL ATRAZINE	NG/L NG/L	200.0	60000	(A2)
BETA HEXACHLOROCYCLOHEXANE (BHC)	NG/L	1.0	300	(G)
CYANAZINE (BLADEX)	NG/L	100.0	10000	(A2)
DIELDRIN	NG/L	2.0	700	(A1)
ENDOSULFAN 1 (THIODAN 1)	NG/L	2.0	74000	(D4)
ENDOSULFAN 2 (THIODAN 11)	NG/L	5.0	74000	(D4)
ENDOSULFAN SULPHATE (THIODAN SULPHATE)	NG/L	5.0	N/A	

		DETECTION		
SCAN/PARAMETER	UNIT	LIMIT	GUIDELINE	
ENDRIN	NG/L	5.0	1600	(03)
GAMMA CHLORDANE	NG/L	2.0	7000	(A1)
HEPTACHLOR	NG/L	1.0	3000	(A1)
HEPTACHLOR EPOXIDE	NG/L	1.0	3000	(A1)
HEXACHLOROCYCLOPENTADIENE	NG/L	5.0	206000	(04)
LINDANE (GAMMA BHC)	NG/L	1.0	4000	(A1)
METHOXYCHLOR METOLACHLOR	NG/L NG/L	5,0 500.0	900000 50000	(A1) (A2)
METRIBUZIN (SENCOR)	NG/L	100.0	80000	(A1)
MIREX	NG/L	5.0	N/A	
P,P-DDD	NG/L	5.0	30000	(A1)
O,P-DDT	NG/L	5.0	30000	(A1)
P,P-DDT P,P-DDE	NG/L	5.0	30000	(A1)
OXYCHLORDANE	NG/L NG/L	1.0 · 2.0	-30000 N/A	(A1)
PCB	NG/L	20.0	3000	(A2)
PROMETONE	NG/L	50.0	52500	(D3)
PROMETRYNE	NG/L	50.0	1000	(A2)
PROPAZINE	NG/L	50.0	700000	(D3)
SIMAZINE DESETHYL SIMAZINE	NG/L	50.0	10000 10000	(A2)
TOXAPHENE	NG/L NG/L	200.0 500.0	. 5000	(A2) (A1)
,	110/ 2	300.0	. 3000	(47)
PHENOL ICS				
PHENOLICS (UNFILTERED REACTIVE)	UG/L	0.2	N/A	
SPECIFIC PESTICIDES				
2,4 D PROPIONIC ACID	NG/L	100.0	N/A	
2,4,5-TRICHLOROPHENOXY ACETIC ACID	NG/L	50.0	280000	(A1)
2,4-DICHLOROBUTYRIC ACID (2,4-D)	NG/L	100.0	100000	(A1)
2,4-DICHLORORPHENOXYBUTYRIC ACID (2,4-DB)		200.0	N/A	
2,4,5-TP (SILVEX) BUTYLATE (SUTAN)	NG/L NG/L	20.0 2000.0	10000 245000	(A1) (D3)
CARBARYL (SEVIN)	NG/L	200.0	90000	(A1)
CARBOFURAN	NG/L	2000.0	90000	(A1)
CHLORPROPHAM (CIPC)	NG/L	2000.0	350000	(G)
CHLORPYRIFOS (DURSBAN)	NG/L	20.0	N/A	
DIALLATE DIAZINON	NG/L	2000.0	N/A	
DICAMBA	NG/L NG/L	20.0 50.0	20000 120000	(A1) (A1)
DICHLOROVOS	NG/L	20.0	N/A	(41)
EPTAM	NG/L	2000.0	N/A	
ETHION	NG/L	20.0	35000	(G)
IPC	NG/L	2000.0	N/A	
MALATHION METHYL PARATHION	NG/L	20.0	190000	(A1)
METHYLTRITHION	NG/L NG/L	50.0 20.0	9000 _. N/A	(D3)
MEVINPHOS	NG/L	20.0	N/A	
PARATHION	NG/L	20.0	50000	(A1)
PHORATE (THIMET)	NG/L	20.0	2000	(A2)
PICHLORAM .	NG/L	100.0	190000	(A2)
PROPOXUR (BAYGON) RELDAN	NG/L NG/L	2000.0 20.0	140000 N/A	(D3)
RONNEL	NG/L	20.0	N/A	
VOLATILES .		2000	,	
1,1-DICHLOROETHANE		0.40		
1,1-DICHLOROETHANE 1,1-DICHLOROETHYLENE	UG/L UG/L	0.10 0.10	N/A 7	(01)
1,2-DICHLOROBENZENE	UG/L	0.10	200	(A1)
1,2-DICHLOROETHANE	UG/L	0.05	5	(A1)
1,2-D1CHLOROPROPANE	UG/L	0.05	5	(D1)
1,3-DICHLOROBENZENE	UG/L	0.10	3750	(D3)
1,4-D1CHLOROBENZENE 1,1,1-TRICHLOROETHANE	UG/L	0.10	5	(A1)
1,1,2-TRICHLOROETHANE	UG/L UG/L	0.02 0.05	200 0.6	(D1) 5 (D4)
1,1,2,2-TETRACHLOROETHANE	UG/L	0.05		17 (D4)
• • •				

TABLE 5 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992

SCAN/PARAMETER	TINU	DETECTION LIMIT	GUIDELINE
BENZENE	UG/L	0.05	5 (A1)
BROMOFORM	UG/L	0.20	350 (A1+)
CARBON TETRACHLORIDE	UG/L	0.20	5 (A1)
CHLOROBENZENE	UG/L	0.10	1510 (D3)
CHLOROD I BROMOMETHANE	UG/L	0.10	350 (A1+)
CHLOROFORM	UG/L	0.10	350 (A1+)
CIS 1,2-DICHLOROETHYLENE	UG/L	0.10	70 (D1)
DICHLOROBROMOMETHANE	UG/L	0.05	350 (A1+)
ETHYLENE DIBROMIDE	UG/L	0.05	50 (D1)
ETHYLBENZENE	UG/L	0.05	2,4 (A3)
M-XYLENE	UG/L	0.10	300 (A3*)
METHYLENE CHLORIDE	UG/L	0.50	50 (A1)
O-XYLENE	UG/L	0.05	300 (A3*)
P-XYLENE	UG/L	0.10	300 (A3*)
STYRENE	UG/L	0.05	100 (D1)
TETRACHLOROETHYLENE	UG/L	0.05	65 (A5)
TRANS 1,2-DICHLOROETHYLENE	UG/L	0.10	70 (D1)
TOLUENE	UG/L	0.05	24 (A3)
TOTAL TRIHALOMETHANES	UG/L	0.50	350 (A1)
TRICHLOROETHYLENE	UG/L	0.10	50 (A1)
VINYL CHLORIDE	UG/L	0.10	2 (D1)
RADIONUCLIDES	•		
TRITIUM	BQ/L	7.0	40000 (A1)
GROSS ALPHA COUNT	BQ/L	0.04	0.55# (D1)
GROSS BETA COUNT	BQ/L	0.04	N/A
COBALT 60	BQ/L	0.70	N/A
CESIUM 134	BQ/L	0.70	N/A
CESIUM 137	BQ/L	0.70	50 (A1)
IODINE 131	BQ/L	0.70	10 (A1)

[#] Equal to 15.0 Picocuries/litre

				•	
					•
	·.				
÷ .					
•					
*					
*					
					· 2
* .			•		
		•			
	•				
					•
					*
					•
. *					
	,				
					•
			•		
			•		
				•	•

DRINKING WATER SURVEILLANCE PROGRAM PROGRAM DESCRIPTION

The Drinking Water Surveillance Program (DWSP) for Ontario monitors drinking water quality at municipal water supply systems. The DWSP Database Management System provides a computerized drinking water quality information system for the supplies monitored. The objectives of the program are to provide:

- immediate, reliable, current information on drinking water quality;
- a flagging mechanism for guideline exceedance;
- a definition of contaminant levels and trends;
- a comprehensive background for remedial action;
- a framework for assessment of new contaminants; and
- an indication of treatment efficiency of plant processes.

PROGRAM

The DWSP officially began in April 1986 and is designed to eventually include all municipal water supplies in Ontario. In 1992, 109 systems were being monitored. Water supply locations have been prioritized for surveillance based primarily on criteria such as population density, probability of contamination and geographical location.

An ongoing assessment of future monitoring requirements at each location will be made. Monitoring will continue at the initial locations at an appropriate level and further locations will be phased into the program as resources permit.

A major goal of the program is to collect valid water quality data in context with plant operational characteristics at the time of sampling. As soon as sufficient data have been accumulated and analyzed, both the frequency of sampling and the range of parameters may be adjusted accordingly.

Assessments are carried out at all locations prior to initial sampling, in order to acquire complete plant process and distribution system details and to designate (and retrofit if necessary) all sampling systems and locations. This ensures that the sampled water is a reflection of the water itself.

Samples are taken of raw (ambient water) and treated water at the treatment plant and of consumer's tap water in the distribution system. In order to determine possible effects of distribution on water quality, both standing and free flow water in old and new sections of the distribution system are sampled. Sampling is carried out by operational personnel who have been trained in applicable procedures.

Comprehensive standardized procedures and field test kits are supplied to sampling personnel. This ensures that samples are taken and handled according to standard protocols and that field testing will supply reliable data. All field and laboratory analyses are carried out using "approved documented procedures". Most laboratory analyses are carried out by the Ministry of Environment and Energy (MOEE), Laboratory Services Branch. Radionuclides are analyzed by the Ministry of Labour.

DATA REPORTING MECHANISM

When the analytical results are transferred from the MOEE laboratory into the DWSP system, printouts of the completed analyses are sent to the MOEE District Officer, the appropriate operational staff and are also retained by the DWSP unit.

PROGRAM INPUTS AND OUTPUTS

There are four major inputs and four major outputs in the program.

Program Input - Plant and Distribution System Description

The system description includes plant specific non-analytical information acquired through a questionnaire and an initial plant visit. During the initial assessment of the plant and distribution system, questionnaire content is verified and missing information added. It is intended that all data be kept current with scheduled annual updates.

The Plant and Distribution System Description consists of the following seven components:

1. PROCESS COMPONENT INVENTORY

All physical and chemical processes to which the water is subjected, from the intake pipe to the consumers' tap (where possible), are documented. These include: process type, general description of physical structures, material types, sizes, and retention time for each process within the plant. The processes may be as simple as transmission or as complex as carbon adsorption.

2. TREATMENT CHEMICALS

Chemicals used in the treatment processes, their function, application point, supplier and brand-name are recorded. Chemical dosages applied on the day of sampling are recorded in DWSP.

3. PROCESS CONTROL MEASUREMENTS

Documentation of in-plant monitoring of process parameters (eg. turbidity, chlorine residuals, pH, aluminum residuals) including methods used, monitoring locations and frequency is contained in this section. Except for the recorded Field Data, in-plant monitoring results are not retained in DWSP but are retained by the water treatment plant personnel.

4. DESIGN FLOW AND RETENTION TIME

Hydraulic capacity, designed and actual, is noted here. Retention time (the time that a block of water is retained in the plant) is also noted. Maximum, minimum and average flow, as well as a record of the flow rate on the day of sampling, are recorded in DWSP.

5. DISTRIBUTION SYSTEM DESCRIPTION

This area includes the storage and transmission characteristics of the distribution system after the water leaves the plant.

6. SAMPLING SYSTEM

Each plant is assessed for its adequacy in terms of the sampling of bacteriological, organic and inorganic parameters. Prime considerations in the assessment and design of the sampling system are:

- i/ the sample is an accurate representation of the actual water condition, eg. raw water has had no chemical treatment;
- ii/ the water being sampled is not being modified by the sampling system;
- iii/ the sample tap must be in a clean area of the plant, preferably a lab area; and
- iv/ the sample lines must be organically inert (no plastic, ideally stainless steel).

It is imperative that the sampled water be a reflection not of the sampling system but of the water itself.

The sampling system documentation includes: origin of the water; date sampling was initiated; size, length and material type (intake, discharge and tap); pump characteristics (model, type, capacity); and flow rate.

7. PERSONNEL

This section contains the names, addresses and phone numbers of current plant management and operational staff, distribution system management and operational staff, Medical Officer of Health and appropriate MOEE personnel associated with the plant.

Program Input - Field Data

The second major input to DWSP is field data. Field data is collected at the plant and from the distribution system sites on the day of sampling. Field data consists of general operating conditions and the results of testing for field parameters. General operating conditions include chemicals used, dosages, flow and retention time on the day of sampling, as well as, monthly maximum, minimum and average flows. Field parameters include turbidity, chlorine residuals (free, combined and total), temperature and pH. These parameters are analyzed according to standardized DWSP protocols to allow for interplant comparison.

<u>Program Input - Laboratory Analytical Data</u>

The third major input to DWSP is Laboratory Analytical Data. Samples gathered from the raw, treated and distribution sampling sites are analyzed for the presence of approximately 180 parameters at a frequency of two to twelve times per year. Sixty-five percent of the parameters are organic. Parameters measured may have health or aesthetic implications when present in drinking water. Many of the parameters may be used in the treatment process or may be treatment by-products. Due to the nature of certain analytical instruments, parameters may be measured in a "scan" producing some results for parameters that are not on the DWSP priority list, but which may be of interest. The majority of parameters are measured on a routine basis. Those that are technically more difficult and/or costly to analyze, however, are done less frequently. These include Specific Pesticides and Chlorophenols.

Although the parameter list is extensive, additional parameters with the potential to cause health or aesthetic related problems may be added provided reliable analytical and sampling methods exist.

All laboratory generated data is derived from standardized, documented analytical protocols. The analytical method is an integral part of the data and as methods change, notation will be made and comparison data documented.

Program Input - Parameter Reference Information

The fourth major input to DWSP is Parameter Reference Information. This is a catalogue of information for each substance analyzed on DWSP. It includes parameter name and aliases, physical and chemical properties, basic toxicology, world-wide health limits, treatment methods and uses. The Parameter Reference Information is computerized and can be accessed through the Query function of the DWSP database. An example is shown in figure 1.

Program output - Query

All DWSP information is easily accessed through the Query function, therefore, anything from addresses of plant personnel to complete water quality information for a plant's water supply is instantly available. The DWSP computer system makes relatively complex inquiries manageable. A personal password allowing access into the DWSP query mode in all MOEE offices is being developed by the DWSP group.

Program Output - Action Alerts

Drinking Water quality in Ontario is evaluated against provincial objectives as outlined in the Ontario Drinking Water Objectives publication. Should the reported level of a substance in treated water exceed the Ontario Drinking Water Objective, an "Action Alert" requiring resampling and confirmation is issued. This assures that operational staff, health authorities and the public are notified as soon as possible of the confirmation of an exceedance and remedial action taken. This report supplies a history of the occurrence of past exceedances at the plant plus a historical summary on the parameter of concern.

In the absence of Ontario Drinking Water Objectives, guidelines/limits from other agencies are used. The Parameter Listing System, published by MOEE (ISBN 0-7729-4461-X), catalogues and keeps current guidelines for 650 parameters from agencies throughout the world. If these guidelines are exceeded, the results are flagged and evaluated by DWSP personnel. An "Action Alert" will be issued if warranted.

Program Output - Report Generation

Custom reports can be generated from DWSP to meet MOEE Regional needs and to respond to public requests.

Program Output - Annual Reports

It is the practice of DWSP to produce an annual report containing analytical data along with companion plant information.

PARAMETER REFERENCE INFORMATION

NAME: BENZENE

CAS#: 71-43-2

MOLECULAR FORMULAE: C₆H₆

DETECTION LIMIT: (FOR METHOD POCODO) 0.05 μ g/L

SYNONYMS: BENZOL; BENZOLE; COAL NAPHTHA; CARBON OIL (27)

CYCLOHEXATRIENE (41)

CHARACTERISTICS: COLOURLESS TO LIGHT-YELLOW, MOBILE, NONPOLAR LIQUID, OF

HIGHLY REFRACTIVE NATURE, AROMATIC ODOUR; VAPOURS BURN

WITH SMOKING FLAME (30)

PROPERTIES: SOLUBILITY IN WATER: 1780-1800 mg/L AT 25C (41)

THRESHOLD ODOUR: 0.5 - 10 PPM IN WATER THRESHOLD TASTE: 0.5 mg/L IN WATER (39)

ENVIRONMENTAL FATE: MAY BIOACCUMULATE IN LIVING ORGANISMS AND APPEARS TO ACCUMULATE IN ANIMAL TISSUES THAT EXHIBIT A HIGH LIPID CONTENT OR REPRESENT MAJOR METABOLIC SITES, SUCH AS LIVER OR BRAIN; SMALL QUANTITIES EVAPORATE FROM

SOILS OR ARE DEGRADED RATHER QUICKLY (80)

SOURCES: COMMERCIAL: PETROLEUM REFINING; SOLVENT RECOVERY; COAL TAR

DISTILLATION (39); FOOD PROCESSING AND TANNING INDUSTRIES;

COMBUSTION OF CAR EXHAUST.

ENVIRONMENTAL: POSSIBLE SOURCE IS RUNOFF.

USES: DETERGENTS; NYLON; INTERMEDIATE IN PRODUCTION OF OTHER

COMPOUNDS, SUCH AS PESTICIDES; SOLVENT FOR EXTRACTION AND RECTIFICATION IN RUBBER INDUSTRY; DEGREASING AND CLEANSING

AGENT; GASOLINE.

REMOVAL: THE FOLLOWING PROCESSES HAVE BEEN SUCCESSFUL IN REMOVING

BENZENE FROM WASTEWATER: GAC ADSORPTION, PRECIPITATION WITH ALUM AND SUBSEQUENT REMOVAL VIA SEDIMENTATION, COAGULATION AND FLOCCULATION, SOLVENT EXTRACTION,

OXIDATION

ADDITIONAL PROPERTIES: MOLECULAR WEIGHT: 78.12

MELTING POINT: 5.5°C (27.) BOILING POINT: 80.1°C (27)

SPECIFIC GRAVITY: 0.8790 AT 20°C (27) VAPOUR PRESSURE: 100 MM AT 26.1°C (27)

HENRY'S LAW CONSTANT: 0.00555 ATM-M3/MOLE (41)

LOG OCT./WATER PARTITON COEFFICIENT: 1.95 TO 2.13 (39)
CARBON ADSORPTION: K=1.0; 1/N=1.6; R=0.97; PH=5.3 (41)

SEDIMENT/WATER PARTITION COEFFICIENT: NO DATA

		· · ·	. •	
	·			
.8				
	·			
		•		

DWSP SAMPLING GUIDELINE

i) Raw and Treated at Plant

-500 mL plastic bottle (PET 500) General Chemistry

-rinse bottle and cap with sample water three

times

-fill to 2 cm from top

-220 mL plastic bottle with white seal on cap Bacteriological

-do not rinse bottle, preservative has been added

-avoid touching bottle neck or inside of cap

-fill to top of red label as marked

-500 mL plastic bottle (PET 500) Metals

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid (HNO₃) (Caution: HNO₃ is corrosive)

-45 mL glass vial with septum Volatiles (duplicates)

(OPOPUP)

(teflon side must be in contact with sample)

-do not rinse bottle

-fill bottle completely without bubbles

Organics

-1 L amber glass bottle per scan (OWOC), (OWTRI)

-do not rinse bottle -fill to 2 cm from top

Specific Pesticides (OWCP), (PEOP), (PECAR)

-as per Organics

-three extra bottles must be filled

: Polyaromatic hydrocarbons

(OAPAHX)

-1 L amber glass bottle per scan

-do <u>not</u> rinse bottle -fill to 2 cm from top

-add 25 drops of sodium thiosulphate

Cyanide (Treated only)

-500 mL plastic bottle (PET 500)

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops sodium hydroxide (NaOH)

(Caution: NaOH is corrosive)

-250 mL glass bottle Mercury

-rinse bottle and cap three times

-fill to top of label

-add 20 drops each nitric acid (HNO3) and potassium dichromate (K2Cr2O7) (Caution: HNO₃&K₂Cr₂O₇ are corrosive) Phenols -250 mL glass bottle

-do not rinse bottle, preservative has been added

-fill to top of label

Radionuclides -4 L plastic jug

(as scheduled) -do not rinse, carrier added

-fill to 5 cm from top

Organic Characterization

(GC/MS - once per year)

(PBVOL), (PBEXT)

as per organic -250 mL glass bottle

-do not rinse bottle

-fill completely without bubbles

-1 L amber glass bottle; instructions

Steps:

1. Let sampling water tap run for an adequate time to clear the sample line.

2. Record time of day on submission sheet.

3. Record temperature on submission sheet.

4. Fill up all bottles as per instructions.

5. Record chlorine residuals (free, combined and total for treated water only), turbidity and pH on submission sheet.

6. No smoking in area of sample location.

ii) Distribution Samples (standing water)

General Chemistry -500 mL plastic bottle (PET 500)

-rinse bottle and cap with sample water three

times

-fill to 2 cm from top

-500 mL plastic bottle (PET 500) Metals

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid (HNO₃)

(Caution: HNO₃ is corrosive)

Steps:

1. Record time of day on submission sheet.

2. Place bucket under tap and open cold water.

3. Fill to predetermined volume.

4. After mixing the water, record the temperature on the submission sheet.

- 5. Fill general chemistry and metals bottles.
- 6. Record chlorine residuals (free, combined and total), turbidity and pH on submission sheet.

iii) Distribution Samples (free flow)

General Chemistry -500 mL plastic bottle (PET 500)

-rinse bottle and cap with sample water three

times

-fill to 2 cm from top

Bacteriological -250 mL plastic bottle with white seal on cap

-do <u>not</u> rinse bottle, preservative has been added

-avoid touching bottle neck or inside of cap

-fill to top of red label as marked

Metals -500 mL plastic bottle (PET 500)

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid HNO₃ (Caution: HNO₃ is corrosive)

Volatiles (duplicate) -45 mL glass vial with septum

(OPOPUP) (teflon side must be in contact with sample)

-do not rinse bottle, preservative has been added

-fill bottle completely without bubbles

Organics -1 L amber glass bottle per scan

(OWOC) -do not rinse bottle

-fill to 2 cm from top

Polyaromatic Hydrocarbons

(OAPAHX)

-1 L amber glass bottle per scan

-do not rinse bottle
-fill to 2 cm from top

-add 25 drops of sodium thiosulphate

Steps:

- 1. Record time of day on submission sheet.
- 2. Let cold water flow for five minutes.
- 3. Record temperature on submission sheet.
- 4. Fill all bottles as per instructions.
- 5. Record chlorine residuals (free, combined and total), turbidity and pH on submission sheet.

				•	
•					
				•	
	. 0				
			•		
	•				
	•				
•					
				70	
			•	•	·
		,			
			*		
			*		
			,		
	•				
				. *	
				•	
					,
ϵ	·				
					•
				,	

-		

	-		
		•	
•			
e ·			
		,	
•			
		1	