小车协调编队系统设备文档

一、小车协调编队系统的结构和工作原理

图 1 小车协调编队示意图

小车协调编队系统主要由以下几部分组成,如图 1 所示,该系统主要由 4 辆小车及地面参照系组成。小车的轮的模型参照电机来建立,可简化为一阶系统。通过 Simulink 中建立三种编队效果(距形编队、三角形编队、直线编队)的模型,实现小车系统编队运行及切换的仿真。

二、单个小车的数学模型

若忽略各种摩擦力之后,可将小车模型简化成如下系统,如图 2 所示。

图 2 小车模型简化示意图

其中符号意为:

R_B — 小车后轮的中心

 θ — 小车与水平方向的夹角

2la — 小车轮距

图 3 两轮智能小车运动学模型图

建立如图 3 所示两轮智能小车运动学模型。 R_B 为智能小车中心坐标; C 是智能小车的转动中心; ω 为智能小车转动角速度; V_L 和 V_R 为两轮的平均速度; V 为智能小车的平均速度; $2l_a$ 为智能小车两轮中心距; r_{cp} 为 R_B 和 C 之间的距离,由运动规律可得:

$$v_R = (l_a + r_{cp}) * \omega$$
$$v_L = -(l_a - r_{cp}) * \omega$$

即

$$\omega = \frac{v_R - v_L}{2l_a} = \frac{v_R + v_L}{2r_{cp}}$$

且

$$v = \frac{v_R + v_L}{2}$$

沿 x、y 轴分解为两个分量:

$$\frac{dx}{dt} = v * cos\theta$$
$$\frac{dy}{dt} = v * sin\theta$$
$$\frac{d\theta}{dt} = \omega$$

其中: $x \times y$ 表示智能小车的位置; θ 为智能小车所指方向,即为速度向量 V 和 x 正方向的夹角。

$$\frac{dx}{dt} = \frac{v_R + v_L}{2} * cos\theta$$

$$\frac{dy}{dt} = \frac{v_R + v_L}{2} * sin\theta$$

$$\frac{d\theta}{dt} = \frac{v_R - v_L}{2l_a}$$

整理得:

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} \cos\theta/2 & \cos\theta/2 \\ \sin\theta/2 & \sin\theta/2 \\ (2r_{cp})^{-1} - (2r_{cp})^{-1} \end{bmatrix} \begin{bmatrix} v_R \\ v_L \end{bmatrix}$$

三、仿真模型

仿真的期望效果是让小车的做圆周运动的过程中形成 3 种队形 (三角形、矩形、直线),并能通过开关来切换队形。

图 4 小车编队系统 Simulink 框图

图 5 小车三角形编队图

图 6 小车矩形编队图

图 7 小车直线编队图