Графи

1 част

"Отварят Графа за движение"

Юли 2024

Полезно. Задачите с графи са много ранообразни и често една задача може да се реши по няколко начина (така че експирементирайте). Има обаче няколко основни подхода при решаването, които вече сме виждали, но тук още по-често ще са ни от полза:

- принцип на "крайния елемент" (избор на екстремален елемент)
- индукция
- принцип на Дирихле

Съвет. Доказвайте и лемите наред със задачите, те също са добро упражение;

1 Пътища, цикли, степен на връх

Лема 1. Нека G е граф c n върха, m ребра u степени на върховете $d_1,...,d_n$. Докажете, че $\sum_{i=1}^n d_i = 2m$.

Доказателство. Всяко ребро има два края (инцидентно е с два върха). Затова в сумата то е преброено точно два пъти. \Box

Лема 2 (the hand-shaking lemma). Нека G=(V,E) е (прост) граф с поне 2 върха. Докажете, че съществуват поне два различни върха $u,v\in V$ такива, че d(u)=d(v).

Доказателство. В прост граф максималната степен на връх е n-1 (все пак един връх е свързан най-много с всички останали). Тогава степените d_i на върховете ще са измежду числата $0, 1, \dots n-1$, което са точно n възможности.

Ако допуснем противното, че всички d_i са различни, то трябва да има връх от степен 0, от степен 1 и т.н. до n-1. Добре, но последното е невъзможно, не може едновременно да има връх от степен 0 и такъв от степен n-1 (който хем трябва да е свързан с всички, хем не е свързан с този от степен 0), противоречие.

Забележка. Условието, че графът е прост е важно, при мултиграф горното не е винаги вярно.

Лема 3 (оценка отдолу за броя цикли в свързан граф). В свързан граф с n върха u m ребра uма nоне m-n+1 uикъла.

Доказателство. Разглеждме графа в процес на конструиране. - Първоначално имаме n несвързани върха (съответно толкова компоненти на свързаност) и 0 цикъла, последователно добавяме m-те ребра (редът е без значение). Наблюдение: всяко новодобавено ребро

- или увеличава броя на циклите,
- или свързва две отделни компоненти, т.е намалява компонентите на свързаност с една;

Понеже, ще добавим m peбра, $m \leq cycles + removed \ components$, откъдето $m \leq cycles + (n-components) \Rightarrow m-n+components \leq cycles$, но $components \geq 1 \Rightarrow m-n+1 \leq m-n+components \leq cycles$

Задача 1. Кои от следните редици (и защо) могат да бъдат степени на върховете в прост граф?

- 1, 2, 3, 4, 4, 4;
- 1, 2, 3, 4, 4, 6;
- 0, 2, 2, 3, 3, 5;
- 1, 2, 2, 3, 3, 4;

Решение. Да съществува такъв граф е:

- възможно, направете пример;
- невъзможно, няма как да има връх от степен 6 при също толкова ребра;
- невъзможно, няма как едновременно да има връх от степен 1 и такъв от степен 5;
- невъзможно, броят върхове от нечетна степен тряббва да е четно число.

Задача 2. Нека G е свързан граф. Докажете, че два пътя, които са едновременно най-дълги имат поне един общ връх.

Решение. Нека в графа има два различни най-дълги пътя: p_1-p_n и r_1-r_n . Да допуснем противното, че те нямат общ връх. Тогава $p_n \neq r_1$, а от свързаността на графа между p_n и r_1 има път p_n-r_1 (да го означим с π).

Забелязваме, че ако върховете от π не са част и от p_1-p_n , то можем да удължим пътя p_1-p_n (от страната на p_n), което е противоречие, с това, че той е най-дълъг път. Ето защо всеки връх от π е и в p_1-p_n , включително r_1 , но това е противоречие с допускането, че p_1-p_n и r_1-r_n нямат общ връх. \blacksquare

Нотация. С " $p_1 - p_n$ " за краткост обозначаваме път от връх p_1 до връх p_n

Задача 3 (НОМ2 2020 9.3). В социална мрежа някои потребители са приятели, други не. В мрежата има поне едно приятелство и е известно, че ако двама имат еднакъв брой приятели, то те нямат общ приятел. Да се докаже, че в мрежата има потребител само с един приятел.

Решение. Да уточним, че на езика на графите мрежата може да се гледа като граф, в който приятелствата са ребра, а върховете са потребителите.

Да допуснем, че връх от степен 1 няма. Разглеждаме върха от максимална степен v, нека d(v) = k (k > 1, защо?). Тогава за всички останали върхове $w_i : d(w_i) \le k$. Но връх v има k съседа, всеки от степен между 2 и k (k-1 възможности), по Дирихле има два с еднаква степен, но това е противоречие с условието.

Задача 4. Ако всеки връх в граф е от степен поне k $(\forall u \in V : \delta(u) \geq k)$, da се докаже, че съществува ребро, което участва в поне k-1 цикъла.

Решение. Разглеждаме конкретен най-дълъг път в графа, нека един такъв е u-v. Нека първият връх след u по този път е w_1 . По условие u има още поне k-1 съседа (нека $w_2,...w_k$). Да забележим, че ако за произволно $i \leq k : w_i$ не е част от пътя u-v, то последният би могъл да се продължи, с което бихме намерили нов по-дълъг път, което е противоречие. Ето защо всеки връх w_i е част от пътя u-v.

Сега лесно се вижда (на картинка), че реброто (u, w_1) участва в поне k-1 цикъла: і-ият цикъл включва реброто (u, w_{i+1}) и частта от пътя u-v между върховете u и w_{i+1} .

Следствие 1. Ако всеки връх в граф е от степен поне 2, то в графа има цикъл.

Задача 5. Ако всеки връх в граф е от степен поне k>1 ($\forall u \in V : \delta(u) \geq k, k > 1$), да се докаже, че съществува цикъл с дължина поне k+1.

Решение. Ползваме абсолютно същата идея, като в началото на миналата задача. - Щом всички върхове w_i са част от пътя u-v, то най-отдалеченият от u от тях (б.о.о. това е w_k) е на разстояние поне k. Тогава цикълът, съдържащ реброто (u, w_{i+1}) и частта от пътя u-v между върховете u и w_{i+1} , има дължина поне k+1.

Следствие 2. Ако всеки връх в граф е от степен поне k, то съществува прост път с дължина поне k.

Задача 6 (*). Нека G е свързан граф с четен брой върхове. Докажете, че може да се избере подмножество от ребра $(E' \subseteq E)$ на G така, че всеки връх е инцидентен с нечетен брой от избраните ребра.

Решение (полуконструктивно). Ще покажем нещо като алгоритъм, който да генерира исканото:

Наблюдение 1: Понеже във всеки граф броят на върховете от нечетна степен е четен, то тук и броят на върховете от четна степен ще е четен (2k). □

Ако върхове от четна степен няма, то задачата си е решена, взимаме E'=E.

Нека има поне един (а от четността ще са поне два) върха от четна степен. От свързаността на графа между върховете от четна степен има пътища. Разглеждаме най-краткия път между два върха от четна степен, нека един такъв е $u_0 - u_t$ с междинни върхове $u_1, ... u_{t-1}$.

Наблюдение 2: Върховете $u_1, ... u_{t-1}$ са от нечетна степен, в противен случай (ако някой u_j от тях е от четна) ще съществува по-къс път между върхове от четна степен (например пътят $u_0 - u_j$). \square

Стъпка: Ако премахнем ребрата от пътя u_j , в оставащия граф всички върхове $u_1, ... u_{t-1}$ продължават да са от нечетна степен, но вече и u_0, u_t са от нечетна степен. Така намалихме броя върхове от нечетна степен с две.

Тогава след краен брой такива стъпки (по-конкретно k) няма да има останали върхове от четна степен, т.е. останалото множество от ребра изпълнява условието. ■

Забележка. На практика с това последователно трансформиране на 2 върха от четна в нечетна степен е индуцкия, но изказана пр друг (неявен) начин.

2 Свързаност

Лема 4. Граф е свързан точно тогава, когато има единствена компонента на свързаност.

Лема 5. Ако граф G е свързан и edge е ребро, участващо в цикъл точно когато след премахване на реброто графът остава свързан (т.е. G – edge е свързан).

Лема 6 (*). Ако (неориентиран) граф G с n върха, m ребра има k свързани компоненти, mо $m \leq {n-k+1 \choose 2}$.

Доказателство. Нека в компонентите има съответно по $n_1,...,n_k$ върха, $n_i \geq 1$. Ясно е, че $n_1+...+n_k=n$. Също така в компонента i има не повече от $\frac{n_k(n_k-1)}{2}$ ребра, като равенство се достига, когато съответната компонента е пълен граф. Нека положим $n_i'=n_i-1,\ n_i'\geq 0$. Оттук $n_1'+...+n_k'=n-k$. Тогава:

Тогава:
$$m \leq \sum_{i=1}^k \frac{n_k(n_k-1)}{2} = \frac{1}{2} \sum_{i=1}^k n_k.(n_k-1) = \frac{1}{2} \sum_{i=1}^k (n_k'+1).n_k' = \frac{1}{2} [\sum_{i=1}^k n_k'^2 + \sum_{i=1}^k n_k'.] = \frac{1}{2} [\sum_{i=1}^k n_k'^2 + (n-k)] = \frac{1}{2} \sum_{i=1}^k n_k'^2 + \frac{n-k}{2} \leq \frac{1}{2} (\sum_{i=1}^k n_k')^2 + \frac{n-k}{2} = \frac{1}{2} (n-k)^2 + \frac{n-k}{2} = \frac{1}{2} (n-k)(n-k+1) = \binom{n-k+1}{2}$$

Забележете, че последното неравенство е изпълнено точно когато $n_i = 0$ за всички і с изключение на едно, т.е. във всяка копонента освен една (в която има n - (k - 1) върха) има по един връх. \square

Следствие 3 (точна долна граница). *Ако* $m \ge \binom{n-1}{2} + 1$, *то* G e c = c = p = 2 + 1.

Доказателство. От лемата горе следва, че ако графът има $k \geq 2$ компоненти, то $m \leq \binom{n-k+1}{2} \leq \binom{n-2+1}{2} = \binom{n-1}{2}$. Тогава при $m > \binom{n-1}{2}$, $k < 2 \Rightarrow k = 1$, т.е. графът е свързан (получихме долна граница).

За да докажем, че показаната долна граница е точна, достатъчно е да дадем пример, показващ, че $m \geq \binom{n-1}{2}$ ребра невинаги са достатъчни, за да твърдим, че графът е свързан. При две копмпоненти, едната от които K_{n-1} , а другата изолиран връх тази бройка точно се достига, но графът наистина не е свързан.

Задача 7. Нека G е несвързан граф. Докажете, че \overline{G} е свързан.

Peшение. Нека $u, v \in V(G)$ са произволни.

1 сл.) $(u,v) \notin E(G) \Rightarrow (u,v) \in E(\overline{G})$, т.е. u,v са съседни в \overline{G} , а оттук и свързани. \square

2 сл.) $(u,v) \in E(G)$, значи u,v са били в една свързана компонента в граф G, но от това, че G не е свързан, съществува връх w в друга негова компонента $\Rightarrow (u,w), (v,w) \notin E(G) \Rightarrow (u,w), (v,w) \in E(\overline{G})$, а оттук u,v са свързани (имат път през w). \square

Получаваме, че произволни два върха са свързани в \overline{G} , значи и той е свързан.

Задача 8. Ако G е граф с n връха такъв, че $\delta(u) \ge \lceil \frac{n-1}{2} \rceil$, то докажете, че G е свързан.

Решение. Ето две възможни решения:

1 и.) Допускаме противното, нека графът има поне две свърани копмоненти. Нека най-малката от тях (по брой върхове) има к върха. ⇒ $k \leq \lfloor \frac{n}{2} \rfloor$ ⇒ за всеки връх u от въпросната компонента: $d(u) \leq k-1 \leq \lfloor \frac{n-2}{2} \rfloor < \lceil \frac{n-1}{2} \rceil$, което противоречи на условието. ■

2 н.) Нека u, v са произволни два връха. Имаме, че $d(u) + d(v) \geq 2\lceil \frac{n-1}{2} \rceil \geq n-1$. Ако двата върха не са съседни, то от Дирихле измежду оставащите n-2 върха те имат общ съсед. И в двата случая u и v са свързани (има път помежду им). Понеже те бяха произволни всеки два върха, а оттам и графът са свързани.

Дефиниция 2.1 (мост). Ребро се нарича *мост*, ако неговото разделя графа, т.е. увеличава броя на свързаните компоненти.

Задача 9. Докажете, че ребро не е мост точно тогава, когато е част от цикъл.

Решение. Ребро не е мост точно когато премхването му не увеличава броя компоненти. Това означава, че ако реброто е било в свързана компонента $comp_1$, след махането му $comp_1$ остава свързана. Тогава (от лема 5), $comp_1$ остава свързна тстк реброто е участвало в цикъл. Или по-просто: реброто не е мост ⇔ премахването му запазва свързаността на компонените ⇔ реброто участва в цикъл. ■

3 (Анти)клики

Дефиниция 3.1 (анти-кликово число). Имаме следните дефиниции:

- кликовото число $\omega(G)$ бележи размера на максималната клика;
- антикликовото число $\alpha(G)$ бележи размера на максималната антиклика.

Лема 7. Ако $U \subseteq V$ е клика в G = (V, E), то $U \subseteq V$ е антиклика в \overline{G} .

Следствие 4. $\omega(G) = \alpha(\overline{G})$

Лема 8. G=(V,E) е граф с поне 6 върха. Тогава в G има 3-клика или 3-антиклика.

Доказателство. Нека u е един от шестте върха. Остават 5, с които u е или инцидентен, или не. По Дирихле u е (не)инцидентен с поне 3 от тях (б.о.о приемаме, че са инцидентни), нека това са $v_1,\ v_2,\ v_3$. Ако което и да е (v_i,v_j) от ребрата $(v_1,v_2),\ (v_1,v_3),\ (v_2,v_3)\in E$, то имаме 3-кликата v_i-u-v_j , ако и трите не са в графа, то пък намерихме 3-антиклика $v_1-v_2-v_3$.

Забележета. Забележете, че може да не говорим за ребра, които ги има/няма в графа, а например за такива, оцветени в два цвята. Тогава (анти)кликите са едноцветните триъгълници.

Задача 10 (*). Докажете, че в граф с поне 9 върха има 3-клика или 4-антиклика.

Решение. Допускаме противното, нека няма нито 3-клика, нито 4-антиклика.

- От лемата горе вече знаем, че измежду всеки 6 върха има 3-клика или 3-антиклика. Ако случаят е първият, то веднага получаваме противоречие.

Значи измежду всеки 6 върха има 3-антиклика. Да разгледаме какво става с конкретен връх v, като нека останалите върхове са съответно $u_1,\ u_2,\ ...\ u_8$:

- Според горното измежду 6-те върха $u_1,\ u_2,\ ...\ u_6$ има 3-антиклика (нека $u_1-u_2-u_3$). Ясно е, че ако v не е инцидентен с поне един от $u_1,\ u_2,\ u_3,$ ще има 4-антиклика $v-u_1-u_2-u_3,$ което е противоречие с допускането. Тоест v е инцидентен с някой от тях, б.о.о с u_1 .
- Ако повторим разсъждението, но този път върху върховете $u_2, u_3, \dots u_7$, а после го и потретим за $u_3, u_4, \dots u_8$, ще видим, че връх v има поне 3 върха, $d(v) \ge 3$.
- Да предположим, че е възможно $d(v) \ge 4$ (по-конкренто нека $w_1, ... w_4$ са съседи на v), по допускане в графа няма 4-антиклки \Rightarrow някои два от четирите съседа на v са инцидентни, б.о.о това са w_1 и w_2 . Но тогава получаваме 3-кликата $v-w_1-w_2$, противоречие. Ето защо d(v) < 4, оттук $d(v) = 3 \ \forall v \in V$.

Получихме, че всеки връх трбява да е от степен 3 (нечетно), но имаме 9 върха (нечетно), това е невъзможно, противоречие с допускането. ■

Следствие 5. В граф с поне 9 върха има 4-клика или 3-антиклика.

Решение. Интуитивно е ясно, че при липсата на всякакви допълнителни условия нещата трябва да са симетрични, или по-точно да имат симетрична аналогия. Може да се направи същото решение като по-горе, разбира се, обърнато, но тук предлагаме друго, една идея по-поучително: Нека даденият граф е G. Разглеждаме неговото допълнение \overline{G} , което е отново с 9 върха. Според задачата \overline{G} има 3-клика или 4-антиклика. Добре де, но от лема 7 в G тези върхове образуват съответно 3-антиклика или 4-клика. \blacksquare

Задача 11. Докажете, че в граф с поне 18 върха има 4-клика, или 4-антиклика.

Решение. Съществува връх u, който е (не)инцидентен с поне 9 от останалите, (б.о.о примемаме, че са инцидентни). Тогава измежду тези 9 (според предната задача) винаги има 3-клика или 4-антиклика. Във втория случай задачата е директно решена, в първия посочвсаме кликата от върхове u, v_i , v_j , v_f , където v_i , v_j , v_f са върховете, образуващи 3-кликата. ■

Благодарности

Благодаря на Георги Тончев за предложената лема 3.