

Integración y aplicaciones (I)

Tema 3

Integración y aplicaciones

 El problema del área (concepto de integral definida)

Concepto de integral

Integrar significa acumular pequeños (ínfimos) y consecutivos resultados:

Problema del área

Para que las líneas verticales tuvieran superficie deberíamos considerar que tiene un pequeño grosor, un ancho ínfimo que llamaremos dx

Formalización matemática

Sea f acotada en [a,b], intervalo dividido en n subintervalos de longitud Δx de la forma:

$$a=x_0< x_1< ... < x_n=b$$
 tal que

$$x_{k+1} - x_k = \frac{b - a}{n} = \Delta x$$

V

$$m_k = \inf \{ f(x) : x \in [x_{k+1} - x_k] \}$$

$$M_k = \sup\{f(x) : x \in [x_{k+1} - x_k]\}$$

$$L_1(f) = m_1 \Delta x$$

$$\Delta x = \frac{b - a}{1}$$

$$L_2(f) = m_1 \Delta x + m_2 \Delta x = \sum_{k=1}^{2} m_k \Delta x$$

$$\Delta x = \frac{b - a}{2}$$

$$L_4(f) = m_1 \Delta x + m_2 \Delta x + \dots + m_4 \Delta x = \sum_{k=1}^{4} m_k \Delta x$$
 $\Delta x = \frac{b-a}{4}$

$$\Delta x = \frac{b - a}{4}$$

$$L_8(f) = m_1 \Delta x + m_2 \Delta x + \dots + m_8 \Delta x = \sum_{k=1}^{8} m_k \Delta x$$
 $\Delta x = \frac{b-a}{8}$

$$\Delta x = \frac{b - a}{8}$$

$$L_{16}(f) = m_1 \Delta x + m_2 \Delta x + \dots + m_{16} \Delta x = \sum_{k=1}^{16} m_k \Delta x$$
 $\Delta x = \frac{b-a}{16}$

$$L_n(f) = m_1 \Delta x + m_2 \Delta x + \dots + m_n \Delta x = \sum_{k=1}^n m_k \Delta x \qquad \Delta x = \frac{b - a}{n}$$

$$L_n(f) \xrightarrow[n \to \infty]{} \text{Area inferior de } f \text{ entre } x = a \text{ y } x = b$$

$$U_1(f) = M_1 \Delta x$$

$$\Delta x = \frac{b - a}{1}$$

$$U_2(f) = M_1 \Delta x + M_2 \Delta x = \sum_{k=1}^{2} M_k \Delta x$$

$$\Delta x = \frac{b - a}{2}$$

$$U_4(f) = M_1 \Delta x + M_2 \Delta x + \dots + M_4 \Delta x = \sum_{k=1}^4 M_k \Delta x$$
 $\Delta x = \frac{b-a}{4}$

$$U_8(f) = M_1 \Delta x + M_2 \Delta x + \dots + M_8 \Delta x = \sum_{k=1}^8 M_k \Delta x$$
 $\Delta x = \frac{b-a}{8}$

$$U_{16}(f) = M_1 \Delta x + M_2 \Delta x + \dots + M_{16} \Delta x = \sum_{k=1}^{16} M_k \Delta x \qquad \Delta x = \frac{b - a}{16}$$

$$U_n(f) \xrightarrow[n \to \infty]{} Area superior de f entre x = a y x = b$$

Darboux (particularización Riemann)

Para cualquier n

$$L_n(f) \le \acute{A}rea \le U_n(f)$$

Cuando $n \rightarrow \infty$ entonces $\Delta x \rightarrow 0$, y si entonces L_n y U_n y son el mismo límite, se dice que f es integrable en [a,b] y ese límite se le llama integral definida de f entre a y b y se denota por:

$$\int_a^b f(x)dx$$

INTEGRAL DEFINIDA

$$\acute{A}rea = \int_{a}^{b} f(x) dx = \lim_{n \to \infty} L_{n}(f) = \lim_{n \to \infty} U_{n}(f)$$

Corte con el eje X

Si f(x) es positiva y negativa, la integral

$$\int_a^b f(x)dx$$

representa la diferencia entre las áreas de las regiones que queden por encima y las áreas de las que queden por debajo del eje x:

Integrar $f(x)=x^2$ para $x \in [0,1]$

$$L_n(f) = \sum_{k=1}^{n} \frac{(k-1)^2}{n^2} \frac{1}{n}$$

$$L_n(f) = \frac{1}{n^3} \left[0^2 + \dots + (n-1)^2 \right]$$

$$U_n(f) = \sum_{k=1}^{n} \frac{k^2}{n^2} \frac{1}{n}$$

$$U_n(f) = \frac{1}{n^3} [1^2 + ... + n^2]$$

Usando:
$$1^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}$$

$$L_n(f) = \frac{(n-1)n(2n-1)}{6n^3}$$

$$U_n(f) = \frac{n(n+1)(2n+1)}{6n^3}$$

Universitat d'Alacant
Universidad de Alicante

Integrar $f(x)=x^2$ para $x \in [0,1]$

$$\lim_{n\to\infty} L_n(f) = \lim_{n\to\infty} \frac{(n-1)n(2n-1)}{6n^3}$$

$$\lim_{n\to\infty} L_n(f) = \frac{2}{6}$$

$$\lim_{n\to\infty} U_n(f) = \lim_{n\to\infty} \frac{n(n+1)(2n+1)}{6n^3}$$

$$\lim_{n\to\infty} U_n(f) = \frac{2}{6}$$

$$\int_0^1 f(x)dx = \int_0^1 x^2 dx = \frac{1}{3}$$

Discontinuidad e integrabilidad

$$g(x) = \begin{cases} -1 & \text{si} & x = a \\ 0 & \text{si} & a < x < b \\ 1 & \text{si} & x = b \end{cases}$$

$$L_n(g) = -\frac{b-a}{n} \lim_{n \to \infty} L_n(g) = 0$$

$$U_n(g) = \frac{b-a}{n} \int_a^b g(x) dx = 0$$

Las funciones acotadas con un número finito de discontinuidades son integrables

Función de Dirichlet

$$h(x) = \begin{cases} 1 & \text{si } x & \text{racional} \\ 0 & \text{si } x & \text{iracional} \end{cases}$$

$$\lim_{n\to\infty} L_n(h) = 0 \frac{b-a}{n} = 0$$

$$\lim_{n\to\infty} U_n(h) = n\frac{b-a}{n} = b-a$$

Para definición dada, la función h(x) no es integrable porque los límites no coinciden

Otra definición: Lebesgue

Propiedades

Linealidad
$$\int_{a}^{b} cf(x)dx = c \int_{a}^{b} f(x)dx$$
$$\int_{a}^{b} \left[f(x) + g(x) \right] dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx$$

Desigualdades

Si m≤f(x)≤M para xe[a,b] entonces

$$m(b-a) \le \int_a^b f(x) dx \le M(b-a)$$

$$\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} \left| f(x) \right| dx$$

Propiedades

Desigualdades

- Si f(x)≤g(x) para xε[a,b] entonces
- $\int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx$
- Si f(x)≥0 para xe[a,b] y [c,d]c[a,b] entonces

Otros

Si f(x) es impar

$$\int_{-a}^{a} f(x) dx = 0$$

Si f(x) es par

$$\int_{-a}^{a} f(x)dx = 2\int_{0}^{a} f(x)dx$$

Integrabilidad a trozos

Teoremas:

Sean a<c<b y f(x) integrable en [a,b]
 entonces f(x) es integrable en [a,c] y [c,b],

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$
además
$$\int_{a}^{a} f(x)dx = 0$$
generalizando
$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$

Integrabilidad a trozos

Teoremas:

- Si f(x) es continua en [a,b] entonces integrable en [a,b]
- Si f(x) es continua a trozos en [a,b] entonces integrable en [a,b]

TEOREMA DE LA MEDIA (INTEGRAL)

Si la función f(x) es continua en [a,b] entonces existe un ce[a,b] tal que

$$\int_{a}^{b} f(x)dx = (b-a)f(c)$$

Integración y aplicaciones

- El problema del área (concepto de integral definida)
- Teoremas fundamentales del cálculo (regla de Barrow)

Primer teorema fundamental

Si f(x) es integrable en [a,b] entonces

$$F(x) = \int_{a}^{x} f(t)dt$$

es continua en [a,b].

Si además f(x) es continua en $c\varepsilon(a,b)$ entonces F(x) es derivable en c y

$$F'(x) = f(x)$$

Demostración gráfica

Si

$$F(x) = \int_{a}^{x} f(t)dt$$

$$F(x+h) - F(x) = h \cdot f(c)$$

donde ce[x,x+h] y por definición:

$$F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h} = \lim_{h \to 0} \frac{h \cdot f(c)}{h} = f(x)$$

Segundo teorema fundamental

Si f(x) es continua en [a,b] y f(x)=g'(x) entonces

$$\int_{a}^{b} f(x)dx = g(b) - g(a) = g(x)]_{a}^{b}$$

Demostración:

$$F(x) = \int_a^x f(t)dt \quad F'(x) = f(x) \quad F(x) = g(x) + k$$

$$F(a) = \int_{a}^{a} f(t)dt = g(a) + k = 0$$
 $k = -g(a)$

$$F(b) = \int_{a}^{b} f(t)dt = g(b) + k = g(b) - g(a) = g(t)\Big]_{a}^{b}$$

Regla de Barrow

Se dice que g(x) es una primitiva de f(x) si f(x)=g'(x)

F(x)=g(x)+k nos sirve para representar cualquier elemento el conjunto de todas las primitivas de f(x)

Y el segundo teorema fundamental se conoce como regla de Barrow:

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

Integración y aplicaciones

- El problema del área (concepto de integral definida)
- Teoremas fundamentales del cálculo (regla de Barrow)
- Integral indefinida

Integral indefinida

Es el conjunto de todas las infinitas primitivas de una función y se denota por

$$\int f(x)dx$$

y se resuelve como

$$\int f(x)dx = F(x) + C$$

donde C es la constante de integración.

Integral indefinida

Nos sirven para resolver integrales definidas mediante la regla de Barrow.

El sistema consiste en establecer tablas de primitivas o aplicar reglas para el calculo de las no conocidas, y así poder resolver las integrales.

Elementales:

$$\int 0dx = c \qquad \int adx = ax + c \qquad \int xdx = \frac{x^2}{2} + c$$

Tablas de primitivas

Generalizando:

$$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$

Como
$$\frac{d}{dx}\ln(x) = \frac{1}{x} \qquad \int \frac{dx}{x} = \ln|x| + c$$

$$\int \frac{dx}{x} = \ln|x| + \epsilon$$

Generalizando:

$$\int \frac{dx}{ax+b} = \frac{1}{a} \ln|ax+b| + c$$

Tablas de primitivas

Como

$$\frac{d}{dx}\operatorname{sen}(x) = \cos(x)$$

$$\frac{d}{dx}\cos(x) = -\sin(x)$$

entonces:

$$\int \operatorname{sen}(x)dx = -\cos(x) + c$$

$$\int \cos(x) dx = \sin(x) + c$$

Tablas de primitivas

Como

$$\frac{d}{dx}e^x = e^x$$

entonces:

$$\int e^x dx = e^x + c$$

Y mas ... (ver tablas de primitivas).

Ejercicio 1

$$\int_0^{\pi} f(x)dx \text{ si } f(x) = \begin{cases} \cos(x) & para & 0 \le x \le \pi/2 \\ -1 & para & \pi/2 \le x \le \pi \end{cases}$$

Ejercicio 1

$$\int_0^{\pi} f(x)dx \text{ si } f(x) = \begin{cases} \cos(x) & para & 0 \le x \le \pi/2 \\ -1 & para & \pi/2 < x \le \pi \end{cases}$$

$$\int_0^{\pi} f(x)dx = \int_0^{\pi/2} \cos(x)dx + \int_{\pi/2}^{\pi} (-1)dx =$$

$$= \operatorname{sen}(x) \right]_0^{\pi/2} + (-x) \right]_{\pi/2}^{\pi}$$

$$=1-\pi/2$$

Ejercicio 2

Calcular la recta tangente en x=1 a la función

$$F(x) = \int_{-1}^{x} \frac{t^3}{t^4 - 4} dt$$

Ejercicio 2

Calcular la recta tangente en x=1 a la función

$$F(x) = \int_{-1}^{x} \frac{t^3}{t^4 - 4} dt$$

$$F(x) = \int_{-1}^{x} \frac{t^3}{t^4 - 4} dt$$
 Por ser impar el integrando:
$$F(1) = \int_{-1}^{1} \frac{t^3}{t^4 - 4} dt = 0 \quad x=1 \quad y=0$$

Ejercicio 2

Calcular la recta tangente en x=1 a la función

$$F(x) = \int_{-1}^{x} \frac{t^3}{t^4 - 4} dt$$
 Por ser impar el integrando:
$$F(1) = \int_{-1}^{1} \frac{t^3}{t^4 - 4} dt = 0 \quad x=1 \quad y=0$$

$$F(1) = \int_{-1}^{1} \frac{t^3}{t^4 - 4} dt = 0 \quad x=1 \text{ y=0}$$

Pendiente es la derivada en ese punto x=1:

$$F'(x) = \frac{x^3}{x^4 - 4}$$
 $F'(1) = \frac{1}{-3}$

Ejercicio 2

Calcular la recta tangente en x=1 a la función

$$F(x) = \int_{-1}^{x} \frac{t^3}{t^4 - 4} dt$$

$$F(x) = \int_{-1}^{x} \frac{t^3}{t^4 - 4} dt$$
 Por ser impar el integrando:
$$F(1) = \int_{-1}^{1} \frac{t^3}{t^4 - 4} dt = 0 \quad x=1 \quad y=0$$

Pendiente es la derivada en ese punto x=1:

$$F'(x) = \frac{x^3}{x^4 - 4}$$
 $F'(1) = \frac{1}{-3}$

Entonces la tangente es:

$$\frac{y-0}{x-1} = -\frac{1}{3} \qquad y = -\frac{x-1}{3}$$

Ejercicio 2

Calcular la recta tangente en x=1 a la función

$$F(x) = \int_{-1}^{x} \frac{t^3}{t^4 - 4} dt \qquad F'(x) = f(x) = \frac{x^3}{x^4 - 4}$$

$$y = -\frac{x - 1}{3}$$

$$F(x) = \int_{-1}^{1} \frac{t^3}{t^4 - 4} dt$$

Teorema

Si f(t) es continua en [a(x),b(x)] ó [b(x),a(x)] si a(x)>b(x) y $H(x)=\int_{a(x)}^{b(x)}f(t)dt$

entonces: H'(x) = f[b(x)]b'(x) - f[a(x)]a'(x)

Demostración:

Si suponemos

$$F(x) = \int_0^x f(t)dt$$

entonces

$$H(x) = \int_0^{b(x)} f(t)dt - \int_0^{a(x)} f(t)dt = F[b(x)] - F[a(x)]$$

$$H'(x) = f[b(x)]b'(x) - f[a(x)]a'(x)$$

Ejercicio

Calcular la derivada de la función

$$H(x) = \int_0^{\sqrt{x}} \operatorname{sen}(t^2) dt$$

Ejercicio

Calcular la derivada de la función

$$H(x) = \int_0^{\sqrt{x}} \operatorname{sen}(t^2) dt$$

$$H'(x) = \text{sen}[(\sqrt{x})^2] \frac{1}{2\sqrt{x}} - 0 = \frac{\text{sen}(x)}{2\sqrt{x}}$$

Reglas

Combinación lineal:

$$\int [a \cdot f(x) + b \cdot g(x)] dx = a \int f(x) dx + b \int g(x) dx$$

Como la derivada del logaritmo de una función es

$$\frac{d}{dx}\ln[f(x)] = \frac{f'(x)}{f(x)}$$

entonces:

$$\int \frac{f'(x)}{f(x)} dx = \ln[f(x)] + c$$

Reglas

Como la regla de la cadena deriva

$$\frac{d}{dx}[f(x)]^a = a[f(x)]^{a-1}f'(x)$$

entonces:

$$\int [f(x)]^a f'(x) dx = \frac{[f(x)]^{a+1}}{a+1} + c$$

Integración y aplicaciones

- El problema del área (concepto de integral definida)
- Teoremas fundamentales del cálculo (regla de Barrow)
- Integral indefinida
- Integración por cambio de variable

Integración por cambio de variable

Como la regla de la cadena deriva

$$\frac{d}{dx}f[g(x)] = f'[g(x)]g'(x)$$

entonces:

$$\int f[g(x)]g'(x)dx = F[g(x)] + c$$

Hacemos el cambio de variable u=g(x) para sustituir du por g'(x)dx:

$$\int f(u)du = F(u) + c$$

$$\int x \cos(x^2) dx$$

Ejemplo 1

$$\int x \cos(x^2) dx$$

Cambiaremos $u=x^2$ y du=2xdx en:

$$\int x \cos(x^2) dx = \frac{1}{2} \int 2x \cos(x^2) dx = \frac{1}{2} \int \cos(u) du$$

$$\frac{1}{2} \int \cos(u) du = \frac{1}{2} \sin(u) + c = \frac{\sin(x^2)}{2} + c$$

Ejemplo 2

Al aplicarlo a las definidas ...

$$\int_{e}^{5} \frac{dx}{x \ln(x)}$$

Ejemplo 2

Al aplicarlo a las definidas ...

$$\int_{e}^{5} \frac{dx}{x \ln(x)}$$

Cambio u=ln(x) y du=dx/x, y también e y 5:

$$u(e) = \ln(e) = 1$$

 $u(5) = \ln(5)$

$$\int_{e}^{5} \frac{dx}{x \ln(x)} = \int_{1}^{\ln(5)} \frac{du}{u} = \ln(u) \Big]_{1}^{\ln(5)}$$

$$ln(ln(5)) - ln(1) = ln(ln(5))$$

Integración y aplicaciones

- El problema del área (concepto de integral definida)
- Teoremas fundamentales del cálculo (regla de Barrow)
- Integral indefinida
- Integración por cambio de variable
- Integración por partes

Integración por partes

Si
$$\frac{d}{dx} f(x)g(x) = f'(x)g(x) + f(x)g'(x)$$
 entonces

$$f(x)g(x) = \int f'(x)g(x)dx + \int f(x)g'(x)dx$$

de donde:

$$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$$

Si cambiamos a la nomenclatura df=f'(x)dx, y hacemos u=f(x) y v=g(x), la regla queda:

$$\int u dv = uv - \int v du$$

Integración por partes

Sentado un día vi un valiente Soldado vestido de uniforme

$$\int u dv = uv - \int v du$$

Prioridad para escoger U:

- 1. Inversas: arcsen, arccos, arctag
- 2. Logarítmicas: log
- Aritméticas: xⁿ
- 4. Trigonométricas: sen, cos, tag
- 5. Exponenciales: e^x

$$\int \ln(x) dx$$

$$\int \ln(x) dx$$
Tomamos

$$\int u dv = uv - \int v du$$

$$u = \ln(x) \text{ y } dv = dx$$

Ejemplo 1

$$\int \ln(x) dx$$

Tomamos Calculamos

$$\int u dv = uv - \int v du$$

$$u=ln(x)$$
 y $dv=dx$
 $du=dx/x$ y $v=x$

Ejemplo 1

$$\int \ln(x) dx$$

$$\int u dv = uv - \int v du$$

Tomamos
Calculamos
Sustituimos

$$u=ln(x)$$
 y $dv=dx$
 $du=dx/x$ y $v=x$

$$\int \ln(x) dx = \ln(x) x - \int x \frac{dx}{x} =$$

$$= x \ln(x) - \int dx = x \ln(x) - x + c = x(\ln(x) - 1) + c$$

$$\int e^x \operatorname{sen}(x) dx$$

$$\int e^{x} \operatorname{sen}(x) dx$$

$$\int u dv = uv - \int v du$$
Tomamos
$$u = \operatorname{sen}(x) \quad \text{y} \quad dv = e^{x} dx$$
Calculamos
$$du = \cos(x) dx \quad \text{y} \quad v = e^{x}$$
Sustituimos
$$e^{x} \operatorname{sen}(x) dx = e^{x} \operatorname{sen}(x) - \int e^{x} \cos(x) dx$$

$$\int e^{x} \operatorname{sen}(x) dx$$

$$\int u dv = uv - \int v du$$
Tomamos
$$u = \operatorname{sen}(x) \quad \text{y} \quad dv = e^{x} dx$$
Calculamos
$$du = \cos(x) dx \quad \text{y} \quad v = e^{x}$$
Sustituimos
$$e^{x} \operatorname{sen}(x) dx = e^{x} \operatorname{sen}(x) - \int e^{x} \cos(x) dx$$

Tomamos
$$u=cos(x)$$
 y $dv=e^{x}dx$
Calculamos $du=-sen(x)dx$ y $v=e^{x}$
Sustituimos

$$\int e^x \operatorname{sen}(x) dx = e^x \operatorname{sen}(x) - \left(e^x \cos(x) - \int -e^x \operatorname{sen}(x) dx \right)$$

Ejemplo 2

$$\int e^x \operatorname{sen}(x) dx$$

Integral por partes cíclica

$$\int e^x \operatorname{sen}(x) dx = e^x \operatorname{sen}(x) - \left(e^x \cos(x) - \int -e^x \operatorname{sen}(x) dx\right)$$

$$\int e^x \operatorname{sen}(x) dx = e^x \operatorname{sen}(x) - e^x \cos(x) - \int e^x \operatorname{sen}(x) dx$$

$$2\int e^x \operatorname{sen}(x) dx = e^x \left(\operatorname{sen}(x) - \cos(x)\right)$$

$$\int e^x \operatorname{sen}(x) dx = e^x \left(\frac{\operatorname{sen}(x) - \cos(x)}{2} \right) + c$$