UNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍA DEPARTAMENTO INGENIERIA COMERCIAL SANTIAGO - CHILE

RIESGOS ASOCIADOS A LA CREACIÓN Y USO DE APLICACIONES UTILIZANDO MODELOS GRANDES DE LENGUAJE (LLM)

SANTIAGO JESÚS VASCONCELLO ACUÑA

MEMORIA PARA OPTAR AL TÍTULO DE INGENIERO COMERCIAL

PROFESOR GUÍA : SR. PABLO ISLA

PROFESOR CORREFERENTE : SR. THIERRY DE SAINT PIERRE.

A quienes forman parte de mi vida . . .

(AGRADECIMIENTOS) [Título es opcional]

RESUMEN EJECUTIVO

Este trabajo investiga los riesgos inherentes a la creación y uso de aplicaciones basadas en Modelos Grandes de Lenguaje (LLM) en la industria. Su foco es en Procesamiento del Lenguaje Natural (NLP) específicamente la generación de texto, excluyendo otras formas de inteligencia artificial generativa. El proyecto se basa en la experiencia de desarrollar una aplicación utilizando LLM y analiza los riesgos que pueden afectar tanto al equipo de desarrollo como a los resultados obtenidos. Se determinan los factores de riesgo en la creación y uso de estas aplicaciones, utilizando como caso de estudio un proyecto de búsqueda de jurisprudencia en tribunales ambientales. La metodología empleada incluye la creación del proyecto, un ejemplo práctico de uso y la evaluación de riesgos en cada etapa del proceso. El objetivo es proporcionar una estructura para aplicaciones que usen LLM, analizar los problemas y riesgos asociados con el uso de información para alimentar estos modelos, incluyendo un proceso completo de ETL (Extract, Transform, Load).

Palabras Clave. Modelos Grandes de Lenguaje (LLM), Generación de Texto, Riesgo, Inteligencia Artificial, Proceso de ETL, Jurisprudencia Ambiental

ABSTRACT

This work investigates the inherent risks in the creation and use of applications based on Large Language Models (LLM) in the industry. Its focus is on Natural Language Processing (NLP), specifically text generation, excluding other forms of generative artificial intelligence. The project is based on the experience of developing an application using LLM and analyzes the risks that can affect both the development team and the obtained results. The risk factors in the creation and use of these applications are determined, using as a case study a jurisprudence search project in environmental courts. The methodology employed includes the creation of the project, a practical example of use, and the evaluation of risks at each stage of the process. The goal is to provide a structure for applications that use LLM, analyze the problems and risks associated with the use of information to feed these models, including a complete ETL (Extract, Transform, Load) process.

Keywords. Large Language Models (LLM), Text Generation, Risk, Artificial Intelligence, ETL Process, Environmental Jurisprudence

Índice de Contenidos

1.	Introducci		1
	1.1. Obeje	ivos	2
	1.1.1.	Objetivo General	2
	1.1.2.	Objetivo Específico	2
	1.2. Metod	ologia	2
	1.2.1.	Creación del Proyecto	2
	1.2.2.	Ejemplo de Uso del Proyecto	3
	1.2.3.	Evaluación de Riesgos	3
		Problematica	3
2.	Estado del	Arte	4
2	Creación d	al Drovanto	8
Э.		:: r royecto	9
			9
		Extract	11
	3.1.2.		12
	212	3.1.2.1. Map-Reduce	
	3.1.3.	Load	13
	2.2 (1)	č	14 15
	3.2. Chaib	ot	13
4.	Ejemplo de	Uso del Proyecto	17
	Ejemplo de		17 19
	Evaluación		
	Evaluación	de Riesgos ón del Proyecto	19
	Evaluación 5.1. Creac	de Riesgos ón del Proyecto	19
	Evaluación 5.1. Creac 5.1.1.	de Riesgos ón del Proyecto	19 19
	Evaluación 5.1. Creac 5.1.1. 5.1.2.	de Riesgos ón del Proyecto	19 19 19
	Evaluación 5.1. Creac 5.1.1. 5.1.2. 5.1.3.	de Riesgos ón del Proyecto	19 19 19 19 20
	Evaluación 5.1. Creac 5.1.1. 5.1.2. 5.1.3. 5.1.4.	de Riesgos ón del Proyecto	19 19 19 19 20 20
	Evaluación 5.1. Creac 5.1.1. 5.1.2. 5.1.3. 5.1.4. 5.1.5.	de Riesgos ón del Proyecto	19 19 19 20 20 20
	Evaluación 5.1. Creac 5.1.1. 5.1.2. 5.1.3. 5.1.4. 5.1.5. 5.1.6.	de Riesgos ón del Proyecto	19 19 19 20 20 20 20
	Evaluación 5.1. Creac 5.1.1. 5.1.2. 5.1.3. 5.1.4. 5.1.5. 5.1.6. 5.1.7. 5.1.8.	de Riesgos ón del Proyecto	19 19 19 20 20 20 20 21
	Evaluación 5.1. Creac 5.1.1. 5.1.2. 5.1.3. 5.1.4. 5.1.5. 5.1.6. 5.1.7. 5.1.8.	de Riesgos ón del Proyecto . No tener un análisis previo de que se busca lograr Calidad de los datos Sesgos Elección correcta del modelo Costos Monetarios Funciones de Embedding Conocimiento de Framework Volatilidad del Mercado	19 19 19 20 20 20 20 21 21
	Evaluación 5.1. Creac 5.1.1. 5.1.2. 5.1.3. 5.1.4. 5.1.5. 5.1.6. 5.1.7. 5.1.8. 5.2. Uso d	de Riesgos ón del Proyecto . No tener un análisis previo de que se busca lograr Calidad de los datos Sesgos Elección correcta del modelo Costos Monetarios Funciones de Embedding Conocimiento de Framework Volatilidad del Mercado el la Aplicación Entrega de contexto adecuado	19 19 19 20 20 20 21 21 21
	Evaluación 5.1. Creac 5.1.1. 5.1.2. 5.1.3. 5.1.4. 5.1.5. 5.1.6. 5.1.7. 5.1.8. 5.2. Uso d 5.2.1.	de Riesgos ón del Proyecto . No tener un análisis previo de que se busca lograr Calidad de los datos Sesgos Elección correcta del modelo Costos Monetarios Funciones de Embedding Conocimiento de Framework Volatilidad del Mercado	19 19 19 20 20 20 21 21 22 22
	Evaluación 5.1. Creac 5.1.1. 5.1.2. 5.1.3. 5.1.4. 5.1.5. 5.1.6. 5.1.7. 5.1.8. 5.2. Uso d 5.2.1. 5.2.2.	de Riesgos ón del Proyecto No tener un análisis previo de que se busca lograr Calidad de los datos Sesgos Elección correcta del modelo Costos Monetarios Funciones de Embedding Conocimiento de Framework Volatilidad del Mercado el a Aplicación Entrega de contexto adecuado Limitaciones de la similitud de cosenos Uso de información privada	199 199 199 200 200 200 211 211 222 222 222
	Evaluación 5.1. Creac 5.1.1. 5.1.2. 5.1.3. 5.1.4. 5.1.5. 5.1.6. 5.1.7. 5.1.8. 5.2. Uso d 5.2.1. 5.2.2. 5.2.3.	de Riesgos ón del Proyecto . No tener un análisis previo de que se busca lograr Calidad de los datos Sesgos Elección correcta del modelo . Costos Monetarios Funciones de Embedding . Conocimiento de Framework Volatilidad del Mercado . el a Aplicación . Entrega de contexto adecuado . Limitaciones de la similitud de cosenos	199 199 199 200 200 201 211 222 222 222 222

A. Contexto enviado por el Chatbot

28

ÍNDICE DE FIGURAS ÍNDICE DE FIGURAS

Índice de Figuras

2.1.	Estructura del perceptrón	4
	Screenshot de la pagina de ChatGPT	5
	Línea de tiempo del Transformer	5
	Diagrama de la arquitectura un Transformer	6
	Diagrama del funcionamiento de un Embedding	7
3.1.	Estructura basica de la aplicación	8
3.2.	Estructura del proceso de ETL para el Buscador Ambiental	9
3.3.	Screenshot del Buscador de la pagina del Primer Tribunal Ambiental	10
3.4.	Screenshot de una sola reclamación en la pagina web del buscador ambiental	10
3.5.	Diagrama de secuencia para el proceso de extracción rmación (Extract) de datos	11
3.6.	Estructura de carpetas y datos del proyecto	12
3.7.	Diagrama de funcionamiento de la función mapreduce en un documento	12
3.8.	Diagrama de secuencia para el proceso de transformación (Trasform) de datos	13
3.9.	Diagrama del funcionamiento de un Embedding	14
	Diagrama de secuencia para el proceso de carga (Load) de datos	14
3.11.	Diagrama de funcionamiento del Chatbot	15
3.12.	Diagrama en consulta simple	16
	Diagrama en consulta mediante Retriver augmented generation	16
4.1.	Representación vectorial de un prompt luego de pasar por la funcion de embedding	17
4.2.	Screenshot de un jupyter notebook representando el proceso interno de selección	18
43	Screenshot del funcionamiento del Chathot	18

Introducción

La inteligencia artificial, también conocida como IA, ha experimentado un notable auge en la industria en los últimos tiempos de la mano de la llamada Industria 4.0 [9], especialmente en el ámbito en areas algo reacias como la administración y finanzas[8]. Este incremento no se debe necesariamente a un aumento en la capacidad de cómputo, ya que esta ha ido creciendo gradualmente a lo largo del tiempo (buscar respaldo). Anteriormente, aunque importante, no generaba tanto interés como en la actualidad. No fue sino hasta que OpenAI lanzó ChatGPT el 30 de noviembre de 2022 que el público en general pudo experimentar, probar y comprender de manera más completa la gran revolución llamada inteligencia artificial generativa [29].

De acuerdo con Google, "La inteligencia artificial generativa se refiere al uso de la IA para crear contenido, como texto, imágenes, música, audio y videos"[1]. Gracias a su interfaz amigable, resultó sencillo para personas de diversas industrias descubrir que existía una herramienta capaz de generar texto y responder preguntas de manera comprensible, incluso para aquellos que no eran expertos en tecnología.

La génesis de esta tesis se basa en la experiencia de llevar a cabo un proyecto utilizando estas tecnologías y los riesgos asociados a ellas. En este contexto, entendemos el riesgo como cualquier aspecto que pueda afectar tanto al equipo involucrado en la creación del proyecto como a los resultados obtenidos. El proyecto se centró en el uso de un modelo de lenguaje de gran envergadura, conocido como LLM por sus siglas en inglés, limitándose a la generación de texto. Por lo tanto, no profundizaremos en otros tipos de inteligencia artificial generativa, como la generación de imágenes o audio. El enfoque principal de este trabajo se concentra solo en el area del procesamiento del lenguaje natural aplicados a LLM.

CAPÍTULO 1. INTRODUCCIÓN 1.1. OBEJETIVOS

1.1. Obejetivos

1.1.1. Objetivo General

Determinar los factores de riesgo que pueden llegar a influir, tanto de la creación como del uso de aplicaciones que utilicen modelos grandes de lenguaje (LLM) aplicados a la industria, usando de base el proyecto de búsqueda de jurisprudencia de los tribunales ambientales.

1.1.2. Objetivo Específico

- 1. Determinar una posible estructura de una aplicación usando LLM
- 2. Desarrollar los estados del Arte del uso de LLM y de los modelos generativo en si
- 3. Desarrollar los problemas que conlleva el uso de información para alimentar dichos problemas
- 4. Analizar un proceso de ETL de principio a fin para observar sus posibles riesgos

1.2. Metodologia

La metodología empleada en esta tesis se estructura en torno a tres componentes esenciales: la creación del proyecto, un ejemplo de uso concreto y la evaluación de los riesgos asociados a cada etapa del proceso, tanto en la fase de desarrollo del proyecto como en su aplicación práctica.

1.2.1. Creación del Proyecto

Esta fase inicial comprende el desarrollo del proyecto basado en IA generativa. Incluye los siguientes pasos:

- **Definición de Objetivos y Alcance:** Establecimiento claro de los propósitos y límites del proyecto, identificando las metas a alcanzar.
- Selección de Tecnologías y Herramientas: Evaluación y elección de las tecnologías y herramientas apropiadas para la implementación del proyecto.
- Diseño de la Arquitectura: Desarrollo de la estructura y componentes del proyecto, considerando aspectos de escalabilidad y rendimiento.
- Implementación y Desarrollo: Construcción efectiva del proyecto, incluyendo la programación y configuración de la inteligencia artificial generativa.

CAPÍTULO 1. INTRODUCCIÓN 1.2. METODOLOGIA

1.2.2. Ejemplo de Uso del Proyecto

Esta fase implica la aplicación práctica del proyecto en un contexto específico, demostrando su funcionalidad y utilidad. En este caso nuestro interés mas que en el output que genere la aplicación, es como funciona internamente el proceso cosa que para la siguiente etapa sea más fácil

1.2.3. Evaluación de Riesgos

Se trabajará la identificación y análisis de los riesgos potenciales en cada etapa del proceso, así como los riesgos derivados del caso de uso. Incluye:

- Riesgos en la Creación del Proyecto: Identificación de posibles obstáculos y contratiempos durante la etapa de concepción y desarrollo.
- Riesgos en el Uso de la Aplicación: Consideración de los riesgos asociados a la implementación práctica del proyecto en el contexto definido.

Esta metodología proporciona un enfoque integral para la creación y aplicación de un proyecto utilizando LLM, permitiendo una evaluación de los riesgos en cada etapa del proceso y en el caso de uso específico. Esto facilita la toma de decisiones informadas y la formulación de estrategias para mitigar posibles contratiempos.

1.2.4. Problematica

En Chile, se desarrollan numerosos proyectos en muchos sectores como pueden ser: la minería, inmobiliario, agrícola, salmonero, etc. Sin embargo, se ha observado un incremento en las reclamaciones sobre temas ambientales asociadas a estos proyectos, convirtiendo la "Permisología ambiental" en una problemática significativa para la generación de proyectos de toda índole dentro del país.

Muchos proyectos de inversión están judicializados, con sus causas llevadas ante el tribunal ambiental, debido a ello es crucial para las empresas poder prever estas reclamaciones y demandas potenciales con la mayor precisión posible [44][4][16]. Cada proyecto que se retrasa o cancela incrementa los costos y el riesgo, afectando no solo al proyecto en sí, sino también la percepción del país como destino amistoso para inversiones extranjeras.

La propuesta presentada esta tesis es brindar a los directivos o personal pertinente un acceso inmediato y comprensible a información relevante de estos tribunales ambientales, superando las barreras del lenguaje legal que puede resultar complejo para quienes no son expertos en derecho. Esto les permitirá tener una visión general sobre posibles acciones, consecuencias y problemas que podrían surgir al tomar cualquier tipo dedecisiones.

En conclusión, esta tesis, que se enfoca en estudiar los riesgos asociados a los proyectos, junto con el desarrollo de un chatbot alimentado con datos de las reclamaciones del tribunal ambiental, aborda de manera efectiva la problemática identificada.

Estado del Arte

Actualmente, el desarrollo y uso de la inteligencia artificial está en boca de todos, pero ¿qué es esta famosa inteligencia artificial y por qué ha adquirido tanta relevancia recientemente? A pesar de que ha sido desafiante definir este concepto durante mucho tiempo, podemos decir que la inteligencia artificial, también conocida como inteligencia de máquina (Machine Learning en inglés), es el uso de la inteligencia demostrada por la tecnología y maquinas [21]. En general, la inteligencia artificial, abreviada como AI (del inglés Artificial Intelligence) o IA (de la palabra en español), engloba técnicas como el aprendizaje automático, el aprendizaje profundo y otros aspectos de la inteligencia artificial [21]. Estos temas no son nuevos y han sido objeto de estudio durante muchos años. Por ejemplo, en el caso del aprendizaje profundo (Deep Learning en inglés), este se basa en el perceptrón, descubierto en 1958 [42]. No fue hasta tiempos recientes, cuando el poder de cómputo y las interfaces han sido democratizadas para los usuarios, que hemos podido experimentar y entender realmente lo que la inteligencia artificial puede realizar.

Figura 2.1: Diagrama de un perceptrón, (Fuente: Wikipedia)

Luego de entender lo que es la inteligencia artificial ¿Qué es lo diferente que no puede ofrecer actualmente? El 30 de noviembre de 2022 es abierto al publico la aplicación ChatGPT por la empresa OpenAI [36], deslumbrando a todos con la capacidad de responder las preguntas que le entregaban y con ello elevando aún mas el interés por esta empresa. La base de esta herramienta nace de una rama especifica de la inteligencia artificial llamada procesamiento del lenguaje natural, abreviado NLP, siendo este un subcampo de la Inteligencia Artificial y lingüístico, dedicado a hacer que las computadoras comprendan declaraciones o palabras escritas en lenguajes humanos [11].

El verdaero imparto que provocó ChatGPT en el mundo, fue el conocimiento popular de lo que hoy llamamos inteligencia artificial generativa, que puede ser definida como una técnica de inteligencia artificial que genera artefactos sintéticos analizando ejemplos de entrenamiento; aprendiendo sus patrones y distribución; y luego creando facsímiles realistas. La inteligencia artificial generativa (GAI) utiliza la modelización generativa y los avances en el aprendizaje profundo (DL) para producir contenido diverso a gran escala utilizando medios existentes como texto, gráficos, audio y video [23]. Por lo que, la población general pudo entender que existían herramientas que podían crear y con ello el boom entre la población fue cada vez mas grande.

Figura 2.2: Screenshot de la pagina de ChatGPT (Fuente: ChatGPT)

Cuando hablamos de inteligencia artificial y sus aplicaciones, usualmente nos referimos a la generación de modelos. Sin embargo, en el contexto de la inteligencia artificial generativa, como las herramientas que producen texto o asisten en problemas de Procesamiento de Lenguaje Natural (NLP, por sus siglas en inglés), también estamos hablando de un modelo de inteligencia artificial. La diferencia radica en que estos son considerablemente más grandes en términos del volumen de datos que manejan. Dado que están enfocados en temas de lenguaje, comúnmente los denominamos modelos grandes de lenguaje o LLM, por sus siglas en inglés de "Large Language Models", siendo estos formalmente definidos como herramientas de inteligencia artificial (AI) basadas en redes neuronales recurrentes multicapa que son entrenadas con vastas cantidades de datos para generar texto similar al humano [2].

Figura 2.3: Línea de tiempo del Transformer. En el eje vertical, número de parámetros. Los colores describen la familia Transformer, (Fuente: Transformer models: an introduction and catalog [eb4s])

ChatGPT funciona mediante una arquitectura base llamada Transformer [45], arquitectura creada por Google, que ha generado la gran revolución en la inteligencia artificial como la conocemos hasta la fecha debido a que no necesariamente se centra en NLP, sino en inteligencia artificial generativa en general. Si somos aún más específicos, GPT viene de Transformer generativo pre entrenado, "Generative Pre-trained Transformer" en inglés, siendo esta una arquitectura con habilidad de comprender el lenguaje de mejor manera usando Transformers [41]. Aunque no fue hasta que este modelo creció en la cantidad de parámetros que pudo mostrar sus capacidades en la gran amalgama de tareas de procesamiento natural, incluyendo la generación de texto [6].

Figura 2.4: Diagrama de la arquitectura un Transformer, (Fuente: Attention Is All You Need [45])

Finalmente, es importante entender el funcionamiento de estos modelos ¿Cómo es posible que logren entender lo que escribo? Los modelos GTP funcionan en base a redes neuronales las cuales no entienden ni de letra y palabras, por lo que este texto tiene que pasar por una función de Embedding. Embedding es el proceso en el que representamos un texto, párrafo o documento de manera numérica, siendo esta representación en vector de múltiples dimensiones [34], estos vectores se pueden "grafica" en un espacio multi dimensional y con ello es posible ver la cercanía de cada uno de estos vectores entre ellos, por lo que este vector sirve como punto de entrada para el funcionamiento de los modelos GTP [33]. Ademas, se suelen usar para tareas como busqueda, agrupación, recomendaciones, busqueda de anomalias, etc [40].

Figura 2.5: Diagrama del funcionamiento de un Embedding, (Fuente: OpenAI[35])

Creación del Proyecto

Los Tribunales Ambientales son órganos jurisdiccionales especiales, sujetos a la superintendencia directiva, correccional y económica de la Corte Suprema, cuya función es resolver las controversias medioambientales de su competencia y ocuparse de los demás asuntos que la ley somete a su conocimiento [27]. Estos tribunales generan una cantidad de jurisprudencia que puede ser encontrada en su portal de consulta llamado buscador ambiental [7].

El proyecto consiste en la generación de un chatbot en donde se pueda preguntar sobre la jurisprudencia de estos tribunales, aunque por razones de capacidad el chatbot se vea acotado solamente a las reclamaciones recibidas por el tribunal, con una estructura representada a Figura 3.1.

Por lo que, este proyecto consiste en un proceso de extracción de datos desde el buscador ambiental, transformación de estos datos para su utilización, generación de vectores de estos datos para que puedan interaccionar con la aplicación, carga de estos en una base de datos, para que después la aplicación pueda interactuar con ellos y mandando esa información a el LLM, siendo en este caso gpt-4 perteneciente a OpenAI.

Figura 3.1: Estructura basica de la aplicación (Fuente: Elaboración propia)

A partir de esta estructura mientras se avance en el desarrollo, se explicará parte por parte el proceso y con ello los riesgos de cada uno de ellos.

3.1. ETL

Para realizar el proyecto fue necesario realizar un proceso de ETL. El término ETL se refiere a las técnicas de .^{Es}tracción, Transformación y Carga" (Extract, Transform, Load), que constituyen un proceso clave para los datos necesarios para el proyecto. Este proceso implica la extracción de datos de fuentes heterogéneas, su transformación para ajustarse a las necesidades del negocio y su posterior carga en un destino que, por lo general, es un almacén de datos diseñado para el análisis y la generación de informes[3]. Siendo en este proyecto un estrutura como la Figura 3.2.

Figura 3.2: Estructura del proceso de ETL para el Buscador Ambiental (Fuente: Elaboración propia)

La fase de extracción implica la recolección de datos de múltiples fuentes, que pueden variar desde bases de datos estructuradas hasta información no estructurada en la web. La transformación se refiere al proceso de limpieza, conversión, y consolidación de estos datos en un formato adecuado para el análisis. Finalmente, la carga es el proceso de transferir los datos transformados al sistema de destino, donde se pueden almacenar y utilizar para la toma de decisiones estratégicas [3].

3.1.1. Extract

La información requerida para el desarrollo del Chatbot se obtuvo del "Buscador ambiental" del Tribunal de Protección Ambiental de Chile a través de su sitio web[7]. Este portal aloja todos los documentos públicos disponibles para su consulta en cualquiera de los tres tribunales ambientales. Para acceder a la base de datos necesaria, se llevó a cabo la creación de un bot capaz de recopilar las entradas de este buscador de manera análoga a un usuario convencional.

Para esta tarea, se empleó Selenium, una herramienta originalmente diseñada para generar pruebas, pero que,

Figura 3.3: Buscador de la pagina del Primer Tribunal Ambiental (Fuente: Pagina del Primer Tribunal Ambiental)

debido a la naturaleza reactiva y dinámica de los sitios web, así como a la detección de bots por parte de algunas páginas, resultó ser la elección más apropiada. Este bot, después de explorar todas las páginas del buscador ambiental, como se ilustra en la Figura 3.3, logró recuperar cada uno de los enlaces individuales que conducen a las páginas específicas de cada caso, tal como se muestra en la Figura 3.4.

Figura 3.4: Screenshot de una sola reclamación en la pagina web del buscador ambiental (Fuente: Pagina del Primer Tribunal Ambiental)

Posteriormente, se contemplaba la posibilidad de obtener tanto los enlaces a cada documento en formato PDF como la información detallada de cada uno de estos documentos mediante la creación de un nuevo bot. Sin embargo, durante el proceso de desarrollo de este bot, se logró acceder a la API que permitía obtener directamente todos los datos mencionados anteriormente. Esto suprimió la necesidad de crear otro tipo de bot utilizando Selenium, ya que bastaba con realizar una solicitud a la mencionada API.

Para completar la fase de extracción de datos (Extract), una vez que se había obtenido toda la información mediante las solicitudes a la API, el último paso consistió en generar nuevas solicitudes con el objetivo de descargar todos los archivos PDF de cada una de las entradas. Estos archivos ahora están descargados y listos para la próxima etapa del proyecto, que implica la transformación de los datos con el fin de obtener la información necesaria para construir la

base de datos a partir de los documentos.

Figura 3.5: Diagrama de secuencia para el proceso de extracción rmación (Extract) de datos (Fuente: Elavoración propia)

3.1.2. Transform

En la continuación en el proceso de ETL (Extracción, Transformación y Carga), los PDFs que previamente han sido descargados requieren ser sometidos a modificaciones con el objetivo de convertir la información que inicialmente se presenta en un estado "sucio" en datos "limpios" que puedan ser adecuadamente utilizados en el proyecto. Este proceso se denomina "transformación", o "transform," en inglés.

Entre los datos descargados, nos encontramos con un extenso número de PDFs que presentan dificultades significativas para su manipulación. Esto se debe a que el Tribunal Ambiental no sigue un formato estándar en la estructura de las reclamaciones presentadas. En consecuencia, cada uno de los textos posee un formato propio, lo que complica en gran medida la extracción eficiente de las diversas secciones contenidas en dichos textos. Sin embargo, gracias al funcionamiento del proceso de semejanza semántica, esta diversidad de formatos no representa un problema insuperable para el proyecto.

No obstante, surgen dificultades adicionales cuando se trata de las reclamaciones que son presentadas a los tribunales ambientales en formato digital o, en su defecto, en forma de fotocopias. Esto implica que no todos los documentos están habilitados para su procesamiento. En consecuencia, el primer paso en el proceso de transformación involucra la discriminación de qué PDFs son susceptibles de ser procesados y cuáles no. Para llevar a cabo esta tarea, se ha desarrollado un script capaz de detectar texto dentro de un archivo PDF. Si el texto es legible, se almacena; de lo contrario, se elimina.

Una vez separados los PDFs legibles y adecuados para el trabajo posterior, se procede con la transformación de estos documentos al formato TXT (texto plano). Esta etapa se lleva a cabo considerando la conveniencia de trabajar con archivos en formato de texto en comparación con los archivos en formato PDF puro, dado que el próximo método de transformación, que implica el uso de map-reduce en Langchain, requiere que los datos estén en formato de texto.

Figura 3.6: Estructura de carpetas y datos del proyecto] (Fuente: Elavoración propia)

3.1.2.1. Map-Reduce

El proceso de Map-Reduce es un modelo de programación diseñado para procesar grandes cantidades de datos de manera eficiente, escalable y distribuida a través de clústeres de servidores. En el contexto de un archivo PDF muy grande, por ejemplo, si se quisiera resumir el contenido o analizar la frecuencia de ciertas palabras, Map-Reduce podría ser utilizado para dividir la tarea en partes más pequeñas y manejables. Primero, la función de map tomaría el texto del PDF y lo dividiría en elementos más pequeños, como párrafos o líneas, asignando a cada uno un resumen intermedio [32]. Luego, la función de reduce recogería todos los resumenes intermedios asociados con el documento y los combinaría para producir un resultado agregado, con un resumen de todo el documento.

Figura 3.7: Diagrama de funcionamiento de la función mapreduce en un documento (Fuente: Langchain [10])

Sin embargo, es importante destacar que un archivo .txt puede contener un número de tokens demasiado elevado como para ser reducido de manera inmediata. En situaciones de este tipo, es necesario recurrir a un proceso de subdivisión que fragmente los textos en segmentos con un número de tokens inferior al límite impuesto por la API de OpenAI. Cada archivo .txt puede ser dividido, resumido y exportado a un nuevo archivo .txt una vez que ha sido fragmentado previamente en segmentos.

Los documentos procesados son combinados utilizando otro proceso de Langchain para obtener un resultado final consolidado. Para concluir el proceso de transformación, los resúmenes generados después de haber pasado por el procedimiento de map-reduce se someten a un último paso antes de ser incorporados en la base de datos. Este paso implica la fusión de los resúmenes con la información obtenida a través de la información Extraida por Selenium previamente, presentada en formato de texto. Este proceso resulta en la creación de un único documento que engloba toda la información, al cual nos referiremos como "documentos finales". Con esto, se concluye la fase de transformación y se procede al último procedimiento, conocido como "carga" (Load), que consiste en el almacenamiento estos documentos finales en la base de datos.

Figura 3.8: Diagrama de secuencia para el proceso de transformación (Trasform) de datos (Fuente: Elavoración propia)

3.1.3. Load

Al culminar el proceso de Extracción, Transformación y Carga (ETL), resulta fundamental llevar a cabo la fase de carga, también conocida como "load" en inglés, en la cual se incorporan todos los documentos previamente descargados y transformados en una base de datos. Para este proyecto, en el cual se utiliza LangChain, resulta de vital importancia fragmentar los documentos en secciones más pequeñas, por lo que se deben dividir en chunks todos los documentos.

Esta necesidad surge debido a que los documentos deben ser sometidos a un proceso de Embeddings antes de ser introducidos en la base de datos. Esto se debe principalmente a que las funciones de Embeddings tienen un límite en la extensión de grupos de caracteres, conocidos como "tokens", que pueden ser procesados. En el contexto del modelo de Embeddings "text-embedding-ada-002", este límite se establece en 8191 tokens [35], lo que constituye la longitud máxima de los fragmentos.

3.1.3.1. Embeddings

Por lo tanto, cuando se trabaja con documentos extensos, es imperativo dividirlos en fragmentos más pequeños antes de proceder con su incorporación. Según la información proporcionada en el Blog de OpenAI, los embeddings son "representaciones numéricas de conceptos convertidos en secuencias numéricas, lo que facilita que las computadoras comprendan las relaciones entre los conceptos"[35]. En términos sencillos, los embeddings son representaciones vectoriales de texto que permiten su comprensión por parte del Modelo de Lenguaje de Gran Tamaño (LLM). Dado que los LLM son redes neuronales, el proceso de Embedding resulta esencial para traducir el texto en números, que es el formato comprensible para esta red neuronal.

Figura 3.9: Diagrama del funcionamiento de un Embedding, (Fuente: OpenAI[35])

Los embeddings resultantes se almacenan posteriormente en una base de datos vectorial denominada ChromaDB. Esta base de datos ha sido diseñada para ser compacta, escalable y eficiente, con el propósito de almacenar y recuperar vectores de manera efectiva. ChromaDB genera índices que permiten una recuperación rápida y eficiente de los embeddings en función de las consultas realizadas por los usuarios [43].

Figura 3.10: Diagrama de secuencia para el proceso de carga (Load) de datos (Fuente: Elavoración propia)

3.2. Chatbot

La estructura del chatbot se desarrolló en su totalidad utilizando el lenguaje de programación Python. Esta elección se debió a la experiencia del equipo en Python, lo que facilitó tanto la creación del frontend como del backend de la aplicación.

Para la parte de la interacción del usuario (frontend), se empleó Python junto con el framework Flask para la presentación de contenido en pantalla, incluyendo tanto la estructura de HTML como las hojas de estilo CSS. Además, se aprovechó la potencia del framework Bootstrap para agilizar el proceso de maquetación.

En cuanto al backend, se implementó una API con el objetivo de facilitar la interacción entre el frontend y el backend. Para este propósito, se utilizó FastAPI, un framework que permite la creación rápida de APIs y que ofrece la ventaja de contar con Swagger para la prueba y generación automática de documentación.

Figura 3.11: Diagrama de funcionamiento del Chatbot (Fuente: Elavoración propia)

El funcionamiento interno de la aplicación se basa en el framework Langchain para la interacción con el Modelo de Lenguaje Grande (LLM). LangChain es un framework poderoso que simplifica el desarrollo de aplicaciones utilizando modelos de lenguaje grandes (LLM). Proporciona una interfaz única y personalizable capaz de gestionar diferentes LLM, incluida la gestión rápida, el procesamiento, el aumento de datos, la orquestación de agentes, el almacenamiento y la evaluación. Este marco versátil permite a los desarrolladores integrar perfectamente los LLM con sus flujos de trabajo del mundo real y datos con el mínimo esfuerzo [43].

Para la base de datos se utilizó ChromaDB. ChromaDB es una base de datos vectorial sin esquemas diseñada específicamente para su uso en aplicaciones de inteligencia artificial. Es liviano y muy potente, lo que permite el almacenamiento, la recuperación y la gestión eficiente de datos vectoriales (Embeddings), lo cual es esencial para las aplicaciones de chat de documentos basadas en LangChain y OpenAI [43]. Para que finalmente estas trabajaran en conjunto con los modelos de OpenAI, específicamente el modelo gpt-4 que actualmente es el más potente del mercado.

La función principal del chatbot es generar respuestas utilizando la técnica Retriever-Augmented Generation"(RAG), que implica proporcionar contexto adicional en el prompt enviado a OpenAI. Mientras que una generación simple suele constar de instrucciones y una consulta, en RAG se agrega contexto dentro del prompt con el propósito de reducir la probabilidad de alucinaciones y mejorar la calidad de las respuestas.

En cambio, mediante "Retriever-Augmented Generation" consiste al igual que el proceso anterior en entregar las instrucciones y una consulta, pero junto ello se agrega un contexto de este, cosa de que el modelo largo de lenguaje

tenga menor capacidad de alucinar y generar una mejor respuesta. Podemos decir que "Retriever-Augmented Generatio" (RAG) se refiere a un modelo de generación de lenguaje que se mejora por la capacidad de recuperar información de una base de datos, como un índice de vectores que representan los documentos del buscador ambiental, además de la memoria que ya posee. Este enfoque se utiliza para mejorar la generación de respuestas en tareas de procesamiento de lenguaje natural (NLP) que requieren conocimiento intensivo [26].

Prompt = Instrucciones + Contexto + Consulta

Figura 3.13: Diagrama en consulta mediante Retriver augmented generation (Fuente: Elavoración propia)

Finalmente, este chatbot envía el prompt con las instrucciones y el contexto obtenido mediante el RAG realizado con Langchain a el LLM, siendo en este caso gpt-4 de OpenAI, luego de pasar por una función de Embedding, cosa de que pueda ser leído por el modelo. Por lo que se realiza un request con la información a la API de OpenAI, para que se obtenga el output con la respuesta.

4 | Ejemplo de Uso del Proyecto

Esta tesis se centra tanto en el riesgo como en el desarrollo de un Chatbot, este chatbot funciona en base a la una arquitectura de RAG (Retriever-Augmented Generation) por lo que esta consiste en la recuperación de contexto el cual es enviado junto con el prompt al LLM. El proceso comienza con la obtención de un prompt específico del usuario, tal como "Dame un resumen del documento Dominga" dentro de la barra de búsqueda del frontend. Este prompt actúa como entrada inicial para el sistema de recuperación de información.

El prompt se procesa mediante una función de Embedding, empleando para ello OpenAI, siendo esta la función 'text-embedding-ada-002'. Esta función puede manejar hasta un máximo de 8191 tokens y produce un vector de 1536 dimensiones en forma de lista [35]. Para determinar la similitud entre el vector del prompt y los vectores correspondientes a los documentos almacenados, se utiliza la función de similitud coseno presente en la Ecuación 4.1. Esta mide el coseno del ángulo entre dos vectores, Siendo estos *A* y *B* respectivamente, y este proporciona un valor que refleja su proximidad semántica entre el vector del prompt y los vectores de todos los documentos almacenados en la base de datos ChromaDB.

$$similitud_coseno(\mathbf{A}, \mathbf{B}) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|}$$
(4.1)

El proceso de embedding como se menciono antes lo que realiza en otras palabras es la conversión de un texto a un vector, esto debido a que los modelos de LLM al ser basados en redes neuronales necesitan un presentación grafica de estos texto a un formato el cual pueda ser legible por el modelo, por lo que se convierten en números como muestra la Figura 4.1 a continuación.

Figura 4.1: Representación de un prompt luego de pasar por la funcion de embedding 'text-embedding-ada-002' (Fuente: Elavoración propia)

Una vez calculada la similitud coseno entre el vector asociado al prompt y los vectores que presentan los documentos que se encontraban en la base de datos, se procede a elaborar un ranking de los documentos más relevantes, según la similaridad obtenida del cálculo de similitud de cosenos. Esto se realiza seleccionando los 'n' documentos con los valores de similitud más altos, siendo en el ejemplo proporcionado un total de 3 presente en la Figura 4.2.

Figura 4.2: Screenshot de un jupyter notebook representando el proceso interno de selección (Fuente: Elavoración propia)

Todo este proceso funciona internamente usando Langchain que consulta estos 'n' documentos, siendo en este caso 3, a la base de datos ChormaDB y son enviados como contexto dentro del prompt a OpenAI mediante el uso de su API, junto a la key de autorización, para obtener el resultado del modelo.

Finalmente, se obtiene el resultado por parte del modelo y es procesado por el frontend de la forma que se observa en la Figura 4.3, lo que da fin al proceso que realiza el Chatbot de principio a fin.

El documento R-1-2017 es un expediente relacionado con el proyecto minero-portuario Dominga en Chile. El caso involucra reclamaciones judiciales y recursos de casación presentados por diferentes partes. El Tribunal Ambiental ha revisado y analizado los antecedentes del proyecto, así como los argumentos técnicos utilizados para su rechazo. Se han discutido diversos aspectos, como la evaluación ambiental, la suficiencia de la información, las medidas de compensación, el valor compartido con las comunidades y los impactos ambientales. El Tribunal ha acogido parcialmente algunas alegaciones y ha desestimado otras, emitiendo una sentencia que ordena retrotraer el procedimiento de evaluación ambiental a una etapa posterior y realizar una nueva votación ajustada a derecho. El caso continúa en proceso y se espera una sentencia definitiva.

Figura 4.3: Screenshot del funcionamiento del Chatbot (Fuente: Elavoración propia)

5 | Evaluación de Riesgos

5.1. Creación del Proyecto

5.1.1. No tener un análisis previo de que se busca lograr

La realización de un análisis previo resulta crucial para el inicio de cualquier proyecto basado en datos además del contexto de este. La mayoría de las personas que tienen acceso a herramientas analíticas realmente no entienden lo que sucede dentro de esas herramientas [19], dado ello es crucial que al empezar un proyecto se entienda a la perfección donde se quiere llegar y que realmente necesita.

Además, suele pasar que, en un conjunto de datos muy grandes, cualquier efecto que desee probar aparecerá como significativo [19], de ahí la importancia de un análisis previo. Esto es tan importante porque existen casos en donde un problema que puede resultar complejo en primera instancia puede sugerir el uso de un modelo complejo. Sin embargo, usando un modelo mas simple se llegan a resultados mejores que con el uso de complejo [17], siendo este un ejemplo claro de que un análisis previo adecuado puede mejorar tanto los resultados como la experiencia de trabajo.

5.1.2. Calidad de los datos

Para cualquier tipo de trabajo, aplicación o estudio la calidad de los datos es en extremo importante esto debido a que, la calidad de los datos es crítica para un sistema de Machine Learning, porque los datos deficientes podrían causar problemas graves como predicciones erróneas o baja precisión de clasificación [12]. Ahora si hablamos de LLM que entra en el terreno del Deep learning, simplificamos los atributos de calidad de datos en los tres más importantes para el Deep Learning: la fidelidad, la variedad y la veracidad de un conjunto de datos [12].

Como ejemplo dentro usando el proyecto que acompaña a este análisis de riesgo, se tuvo problemas en ciertas reclamaciones tratadas en el proceso de ETL, debido principalmente a que no existe un estándar para subir las reclamaciones en el buscador ambiental, existían pdf que eran legibles y otros que eran solo fotocopias, lo que imposibilitaba la extracción de información. Incluso dentro de la calidad de los datos, se puede extrapolar a la calidad de la metadata que era anexa en la base de datos.

5.1.3. Sesgos

Los Modelos de Lenguaje Grande (LLM), al ser entrenados con una masiva cantidad de datos, pueden manifestar sesgos debido a la procedencia de los datos utilizados en su entrenamiento. Estos sesgos pueden dar lugar a desafíos cuando se aplican en contextos distintos, ya que las respuestas generadas por el modelo pueden no ser adecuadas ni ajustarse a la realidad de esos nuevos escenarios.

Los modelos preentrenados con corupus generados por humanos contien sesgos sociales hacia ciertos grupos demograficos, estos sesgos son preocupantes, debido a que pueden ser propagados o incluso amplificados en las tareas que estos modelos realizan [18].

Como ejemplo podemos citar el dicho por Bill Gates en su entrevista "Can AI Save the World? Expert Insights with Bill Gates" en donde menciono que: "Los sesgos en los modelos de IA pueden llevar a diagnósticos incorrectos, como se vio en el ejemplo donde Chat GPT diagnosticó erróneamente la tuberculosis como gripe debido a las bajas tasas de tuberculosis en los EE. UU." [31]. Con lo que podemos dimensional el efecto real de estos sesgos en lo correcto que puede llegar a ser una respuesta por parte de estos modelos.

5.1.4. Elección correcta del modelo

Actualmente la oferta de grandes modelos de lenguaje es muy amplia, desde los privados como: ChatGPT, PaLM, Bloom, etc. Como también modelos de código abierto como: Llama 2, OpenLLaMA, Falcon, Dolly, etc. [30] Con sus respectivas variantes, debido a que existen variables del modelo como por ejemplo Llama 2 que se puede encontrar en versión de 7, 13 y 70 billones de parámetros [24].

Elegir un modelo para trabajar es sumamente importante debido a que: la diversidad y calidad de los datos de preentrenamiento influyen sustancialmente en la capacidad del modelo de lenguaje para comprender y proporcionar respuestas precisas, que el tamaño puede tener una gran influencia en el rendimiento, que el soporte lingüistico podría ser crucial dependiendo la necesidad [28].

5.1.5. Costos Monetarios

Los costos relacionados con la creación o el uso de un modelo LLM pueden aumentar de manera exponencial. Por lo tanto, es fundamental tener en cuenta los costos asociados al utilizar un servidor externo, así como el costo de operar un servidor local, incluyendo el consumo de energía eléctrica. Por ejemplo, hay estudios en donde realizando un ajuste al modelo, fine tunning, es consumo de energía es comparable al de pequeñas ciudades y el dióxido de carbono emitido es equivalente a 500 veces la de un vuelo de ida y vuelta entre Nueva York y San Francisco [20].

5.1.6. Funciones de Embedding

Las funciones de Embedding son específicas para cada modelo de lenguaje y no son intercambiables entre modelos. Esto se debe a que los embeddings son representaciones de alto nivel provenientes de los pesos y parámetros de cada modelo, por lo que están diseñadas para captar y almacenar las relaciones semánticas específicas de cada modelo

[25]. Por lo que si quieres usar un modelo es necesario contar con su función de Embedding adema de la apacidad de contar con la posibilidad de usar dicha función.

5.1.7. Conocimiento de Framework

Cuando se desarrolla una aplicación, es esencial comprender el funcionamiento interno de los frameworks o herramientas que se están utilizando. Esta comprensión no solo es valiosa para comprender el proceso en su conjunto, sino que también es necesaria para tener un control los costos asociados al proyecto en caso de llevarse a producción.

Por ejemplo, en el contexto del proyecto, es importante saber que Langchain realiza múltiples llamadas a los modelos [10]. Si no se cuantifican de manera adecuada la cantidad de llamadas y la extensión de ellos, esto puede dar lugar a problemas de cuantificación de costos. Por lo tanto, la capacidad de comprender y medir con precisión el uso de recursos, como las llamadas a los modelos, es esencial para gestionar eficazmente los costos y asegurar el éxito del proyecto si es que quise ser llevado a producción.

5.1.8. Volatilidad del Mercado

Hasta la fecha actual, el 06 de noviembre de 2023, la creación de Chatbots utilizando el método RAG se perfilaba como una de las tendencias más destacadas en el mercado, siendo posiblemente una de las aplicaciones más prometedoras de los LLM. No obstante, en este mismo día, durante la OpenAI DevDay Keynote, se anunciaron novedades significativas, como la entrada en escena de los GPTs, que permite personalizar versiones de ChatGPT con instrucciones, conocimiento extra y cualquier otra combinación de habilidades [38]. Además, se introdujeron otros modelos como gpt-4 turbo, un playground de desarrollo para la herramienta, text-to-speech (TTS), entre otros [39].

En este contexto, comprometerse con cualquier tecnología conlleva riesgos, especialmente en este período caracterizado por una volatilidad extrema y una inversión extremadamente agresiva en inteligencia artificial. La Inteligencia Artificial Generativa continúa evolucionando de manera acelerada, lo que la hace cada vez más disruptiva y más eficiente. Por lo tanto, la investigación y la implementación de soluciones de inteligencia artificial centradas en asistentes o chatbots representan un compromiso de alto riesgo en este entorno en constante cambio.

5.2. Uso de la Aplicación

5.2.1. Entrega de contexto adecuado

Los LLM a menudo presentan alucinaciones, por lo que es esencial reducir la frecuencia de este fenómeno. Para lograrlo, la provisión de contexto dentro del prompt no es simplemente precisa, sino que resulta absolutamente indispensable. De hecho, la entrega de contexto adecuado dentro del prompt ha demostrado ser una medida altamente efectiva para reducir las alucinaciones, logrando una disminución de hasta un 99.88 porciento [13].

Por consiguiente, la correcta entrega de contexto dentro del prompt desempeña un papel fundamental en la generación de respuestas precisas a las consultas. Esto se debe a que, ya sea que el contexto proporcionado sea correcto, incorrecto o incluso irrelevante, el modelo de lenguaje lo utilizará como base para generar sus respuestas.

En el contexto del proyecto, la generación de respuestas se basa por completo en la entrega de contexto dentro del prompt, lo que a veces puede dar lugar a la transmisión de más información de la necesaria debido al funcionamiento del framework de Langchain. Esto puede llevar a situaciones en las que el modelo, influenciado por la información incorrecta o adicional proporcionada, genere respuestas que no reflejan un output con una respuesta en su totalidad correcta.

5.2.2. Limitaciones de la similitud de cosenos

La similitud del coseno, siendo este método más usado en modelos RAG para la extracción de contexto en la base de datos, como medida de similitud semántica en los embeddings, particularmente para palabras de alta frecuencia en tareas de procesamiento de lenguaje natural (NLP) como preguntas y respuestas (QA), recuperación de información (IR) y traducción automática (MT) presenta limitaciones en su uso, esto principalmente sucede debido a que la frecuencia de las palabras en los datos de entrenamiento afecta la geometría representacional de los embeddings contextualizados, siendo las palabras de baja frecuencia más concentradas geométricamente [49].

Por lo tanto, este problema se extrapola a que, en el momento de querer recuperar contexto pertinente de la base de datos, cuando se realiza el proceso de semejanza semántica entre el prompt y los vectores de la base de datos, este pueda recibir información no relacionada con el prompt, por lo que se enviar como contexto y puede dar oportunidad a alucinaciones.

5.2.3. Uso de información privada

Actualmente las empresas que entregan servicios de LLM son muy herméticos con la manera en que entrenan sus modelos, por lo tanto, no sabemos con qué información han sido entrenados la cual no necesariamente es solamente publica, además toda la información que preguntamos por ejemplo a OpenAI va a los servidores y sirve para reentrenar a los modelos.

Se ha probado que los ataques de reconstrucción de datos son posibles, se ha propuesto un ataque de reconstrucción dirigido de caja negra donde el adversario conoce parte de un ejemplo de entrenamiento (es decir, un indicio de texto) e infiere el resto (por ejemplo, un número de tarjeta de crédito), con lo que la posibilidad de extraer datos de entrenamiento de los modelos puede representar un riesgo serio para la privacidad [5].

Actualmente OpenAI esta siendo demandada tanto por violar los derechos de autor [46] como por robo sistemático [22], debido a que quienes demandas alegan que sus obras han sido usadas para entrenar a sus modelos de LLM, por lo que hasta que no tengamos total transparencia del proceso, a pesar de que existen servicios donde tus inputs supuestamente no son usados para reentrenar el modelo [37], es preferible ser cautelosos con la información que se manda a los LLM si estos no están corriendo de manera local.

5.2.4. Alucinaciones

El termino alucinación se refiere a la generación de textos o respuestas que exhiben corrección gramatical, fluidez y autenticidad, pero se desvían de las entradas de fuente proporcionadas (fidelidad) o no se alinean con la precisión factual (factualidad) [48]. Siendo en palabras más simples la entrega de información invetada por el modelo.

Dicho lo anterior, podemos decir que este es un gran factor de riesgo para el uso de una aplicación, porque a pesar de estar usando un sistema RAG, que dificulta la posibilidad de generar alucinaciones, sigue estando la posibilidad de que estas sucedan lo que puede entregar un output con información errónea y si es que no se revisa con criterio, se podría a llevar a cometer graves errores debido al uso de información que es directamente falsa.

5.2.5. Aprendizaje por Refuerzo con Retroalimentación Humana (RLHF)

Los modelos grandes de lenguaje suelen dar respuestas que a veces tanto política como moralmente no son correctas, por lo que las empresas tienen por objetivo alinear los valores humanos con los sistemas de aprendizaje automático y dirigir los algoritmos de aprendizaje hacia los objetivos e intereses de los humanos [50]. A esto se le llama Aprendizaje por Refuerzo con Retroalimentación Humana (RLHF), esto puede llegar a ser un problema si es que se busca realizar una aplicación en un usuario con una cultura diferente al proveedor del modelo o que si el usuario al no expresarse bien el modelo se confunda y no entregue una respuesta satisfactoria.

Conclusiones

Tal como dijo Arthur C. Clarke: "Cualquier tecnología suficientemente avanzada es indistinguible de la magia". Nos encontramos en un periodo donde la Inteligencia Artificial esta alcanzado capacidades que cada vez nos sorprenden y nos asustan por igual, donde posiblemente nos estamos ilusionando al no lograr lo que nos imaginamos en primera instancia, pero nos maravillamos viendo como logra cosas que ni siquiera nos imaginamos en un inicio.

El uso comercial de la inteligencia artificial en espacial de lo LLM, como fue la cobertura de esta tesis, presenta una cantidad muy alta de riesgos, tanto de los que son fáciles de prevenir como pueden ser los cuantitativos como prevenir costos excesivos en servidores como los difíciles de prevenir como las alucinaciones. Es importante para que estas aplicaciones tengan un buen futuro entender tanto como funcionan como de qué manera fueron creadas, los sesgos que presentan estos modelos no dejan de ser un reflejo de lo que somos y que le dimos de alimento a estos modelos para ser entrenados, siendo un gran reflejo de incluso como somos nosotros y la manera en la que actuamos, quedando claro que somos lo que consumimos.

Queda propuesto para quien quiera continuar con esta tesis el entregar resultados más empíricos que pruebas la viabilidad de usar en producción este tipo de chatbot, también queda propuesto el solucionar el problema de traer al contexto información que no era necesaria propia de la similitud de cosenos.

La industria de la Inteligencia Artificial deja expuesto a absolutamente todos los trabajos desde ahora en adelante en mayor o en menor medida, por lo que hay que tener cautela en las decisiones que se toman pues el riesgo es sumamente grande. La volatilidad del mercado posiblemente es y será el riesgo más grande por considerar para cualquier tipo de proyecto en el área, no fue hace mucho que los llamados Prompt engineer serían los profesionales más cotizados incluso mencionados así por el CEO en Nvidia [15]. Sin embargo, estos fueron ya rápidamente reemplazados por los mismos LLM que se supone tenían que domar, debido a la optimización [47] o el auto mejoramiento mediante generación de prompt producidos el mismo LLM [14], dejando de esa manera obsoleto un rol que hace menos de un mes tres meses a la fecha de publicación de esta tesis seria uno de los roles más importantes a futuro.

Finalmente, para cualquier tipo de proyecto sobre o con uso de Inteligencia artificial siempre lo más importante serán los datos y el criterio de científico de datos detrás de ellos, porque existirán datos y herramientas, pero sin un conocimiento de mercado al que se apunta, realizar cualquier tipo de acción es trabajar en la oscuridad porque sin criterio, trabajar con datos es un trabajo en vano y sin sentido.

BIBLIOGRAFÍA BIBLIOGRAFÍA

Bibliografía

- [2] Ian L Alberts y col. "Large language models (LLM) and ChatGPT: what will the impact on nuclear medicine be?" En: European journal of nuclear medicine and molecular imaging 50.6 (2023), págs. 1549-1552.
- [3] Syed Muhammad Fawad Ali y Robert Wrembel. "From conceptual design to performance optimization of ETL workflows: current state of research and open problems". En: *VLDB Journal* 26 (6 dic. de 2017), págs. 777-801. ISSN: 0949877X. DOI: 10.1007/S00778-017-0477-2/FIGURES/18. URL: https://link.springer.com/article/10.1007/s00778-017-0477-2.
- [4] Tribunal Ambiental. *Tribunal escuchó alegatos en 7 reclamaciones que buscan anular la aprobación ambiental del proyecto minero Blanco*. URL: https://tribunalambiental.cl/audiencia-r-333-2022-acumula-6-rca-proyecto-blanco-atacama/.
- [5] Borja Balle, Giovanni Cherubin y Jamie Hayes. "Reconstructing Training Data with Informed Adversaries". En: *Proceedings IEEE Symposium on Security and Privacy* 2022-May (2022), págs. 1138-1156. ISSN: 10816011. DOI: 10.1109/SP46214.2022.9833677.
- [6] Tom Brown y col. "Language models are few-shot learners". En: *Advances in neural information processing systems* 33 (2020), págs. 1877-1901.
- [7] Buscador Ambiental. URL: https://www.buscadorambiental.cl/buscador/#/.
- [8] Yi Cao y Jia Zhai. "Bridging the gap—the impact of ChatGPT on financial research". En: *Journal of Chinese Economic and Business Studies* 21 (2 2023), págs. 177-191. ISSN: 14765292. DOI: 10.1080/14765284.2023. 2212434. URL: https://www.tandfonline.com/action/journalInformation?journalCode=rcea20.
- [9] Armanda Cetrulo y Alessandro Nuvolari. "Industry 4.0: revolution or hype? Reassessing recent technological trends and their impact on labour". En: *Journal of Industrial and Business Economics* 46 (3 sep. de 2019), págs. 391-402. ISSN: 19724977. DOI: 10.1007/S40812-019-00132-Y/TABLES/1. URL: https://link.springer.com/article/10.1007/s40812-019-00132-y.
- [10] Harrison Chase. *Welcome to LangChain*. https://langchain-doc.readthedocs.io/en/latest/index.html. Accessed: 2023-11-06, 2022.
- [11] Abhimanyu Chopra, Abhinav Prashar y Chandresh Sain. "Natural language processing". En: *International journal of technology enhancements and emerging engineering research* 1.4 (2013), págs. 131-134.
- [12] Junhua Ding y col. "A case study of the augmentation and evaluation of training data for deep learning". En: *Journal of Data and Information Quality* 11 (4 ago. de 2019). ISSN: 19361963. DOI: 10.1145/3317573. URL: https://doi.org/10.1145/3317573.
- [13] Philip Feldman, James R. Foulds y Shimei Pan. "Trapping LLM Hallucinations Using Tagged Context Prompts". En: (jun. de 2023). URL: https://arxiv.org/abs/2306.06085v1.
- [14] Chrisantha Fernando y col. Promptbreeder: Self-Referential Self-Improvement via Prompt Evolution. 2023.
- [15] Yahoo Finance. Nvidia's CEO just gave a graduation speech about the future of work and said that A.I. won't steal jobs but 'someone who's an expert with A.I. will'. 2023. URL: https://finance.yahoo.com/news/nvidia-ceo-just-gave-graduation-183507133.html.

BIBLIOGRAFÍA BIBLIOGRAFÍA

[16] Diario Financiero. *PAPEL DIGITAL*. url: https://www.df.cl/empresas/energia/hidroaysen-sufrereves-judicial-en-defensa-de-derechos-de-agua (visitado 19-11-2023).

- [17] Edward J. Gregr y col. "Why less complexity produces better forecasts: an independent data evaluation of kelp habitat models". En: *Ecography* 42 (3 mar. de 2019), págs. 428-443. ISSN: 16000587. DOI: 10.1111/ECOG.03470.
- [18] Yue Guo, Yi Yang y Ahmed Abbasi. "Auto-Debias: Debiasing Masked Language Models with Automated Biased Prompts". En: *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*. Ed. por Smaranda Muresan, Preslav Nakov y Aline Villavicencio. Dublin, Ireland: Association for Computational Linguistics, mayo de 2022, págs. 1012-1023. doi: 10.18653/v1/2022.acl-long.72. URL: https://aclanthology.org/2022.acl-long.72.
- [19] D HAND. "Intelligent data analysis: Issues and opportunities". En: *Intelligent Data Analysis* 2 (1-4 ene. de 1998), págs. 67-79. ISSN: 1088-467X. DOI: 10.1016/S1088-467X(99)80001-8.
- [20] Kai Huang y col. "Towards Green AI in Fine-tuning Large Language Models via Adaptive Backpropagation". En: *arXiv preprint arXiv:2309.13192* (2023).
- [21] Whitney Hunt, Kendal Marshall y Ryan Perry. Artificial Intelligence's Role in Finance and How Financial Companies are Leveraging the Technology to Their Advantage. Disponible en SSRN: https://ssrn.com/abstract=3707908. 2020.
- [22] Infobae. Escritor de Juego de Tronos demanda a OpenAI por "robo sistemático". URL: https://www.infobae.com/tecno/2023/09/23/escritor-de-juego-de-tronos-demanda-a-openai-por-robo-sistematico/.
- [23] Mladan Jovanovic y Mark Campbell. "Generative artificial intelligence: Trends and prospects". En: *Computer* 55.10 (2022), págs. 107-112.
- [24] Lakera. The List of 11 Most Popular Open Source LLMs of 2023 | Lakera Protecting AI teams that disrupt the world. URL: https://www.lakera.ai/blog/open-source-llms.
- [25] Microsoft Learn. LLM AI Embeddings. URL: https://learn.microsoft.com/en-us/semantic-kernel/memories/embeddings.
- [26] Patrick Lewis y col. "Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks". En: *Advances in Neural Information Processing Systems* 33 (2020), págs. 9459-9474. URL: https://github.com/huggingface/transformers/blob/master/.
- [27] Ley Chile Ley 20600 Biblioteca del Congreso Nacional. url: https://www.bcn.cl/leychile/navegar?idNorma=1041361&idParte=9269911.
- [28] Shreekant Mandvikar. "Factors to Consider When Selecting a Large Language Model: A Comparative Analysis". En: *International Journal of Intelligent Automation and Computing* 6 (3 ago. de 2023), págs. 37-40. URL: https://research.tensorgate.org/index.php/IJIAC/article/view/53.
- [29] Puranjay Savar Mattas. "ChatGPT: A Study of AI Language Processing and its Implications". En: *International Journal of Research Publication and Reviews* 04 (02 2023), págs. 435-440. DOI: 10.55248/GENGPI.2023.4218.
- [30] Meta. Llama 2 Meta AI. url: https://ai.meta.com/llama/.
- [31] Mrwhosetheboss. Can AI really save the World? ft. Bill Gates YouTube. URL: https://www.youtube.com/watch?v=19m3IKG8i88&t=16s.
- [32] N. K. Nagwani. "Summarizing large text collection using topic modeling and clustering based on MapReduce framework". En: *Journal of Big Data* 2 (1 dic. de 2015), págs. 1-18. ISSN: 21961115. DOI: 10.1186/S40537-015-0020-5/FIGURES/15. URL: https://link.springer.com/articles/10.1186/s40537-015-0020-5%20https://link.springer.com/article/10.1186/s40537-015-0020-5.
- [33] Arvind Neelakantan y Lilian Weng. *Introducing text and code embeddings*. https://openai.com/blog/introducing-text-and-code-embeddings. Accessed: 2023-11-16. Ene. de 2022.
- [34] Arvind Neelakantan y col. "Text and Code Embeddings by Contrastive Pre-Training". En: *arXiv preprint arXiv*:2201.10005 arXiv:2201.10005 (ene. de 2022). url: https://ar5iv.org/abs/2201.10005.
- [35] OpenAI. Embeddings OpenAI API. URL: https://platform.openai.com/docs/guides/embeddings/what-are-embeddings.

BIBLIOGRAFÍA BIBLIOGRAFÍA

[36] OpenAI. Introducing ChatGPT. https://openai.com/blog/chatgpt. Accessed: 2023-11-16. Nov. de 2022.

- [37] OpenAI. Introducing ChatGPT Enterprise. URL: https://openai.com/blog/introducing-chatgpt-enterprise.
- [38] OpenAI. Introducing GPTs. URL: https://openai.com/blog/introducing-gpts.
- [39] OpenAI. New models and developer products announced at DevDay. URL: https://openai.com/blog/new-models-and-developer-products-announced-at-devday.
- [40] OpenAI. What are Embeddings. https://platform.openai.com/docs/guides/embeddings/what-are-embeddings. Accessed: 2023-11-16. Nov. de 2023.
- [41] Alec Radford y col. "Improving language understanding by generative pre-training". En: (2018).
- [42] Frank Rosenblatt. "The perceptron: a probabilistic model for information storage and organization in the brain." En: *Psychological review* 65.6 (1958), pág. 386.
- [43] Mirela Şorecău y Emil Şorecău. "AN ALTERNATIVE APPLICATION TO CHATGPT THAT USES RELIABLE SOURCES TO ENHANCE THE LEARNING PROCESS". En: XXIX (2023), pág. 2023. doi: 10.2478/kbo-2023-0084.
- [44] La Tercera. SEA pide a Tribunal Ambiental rechazar reclamación de Andes Iron por Dominga. URL: https://www.latercera.com/pulso-pm/noticia/sea-pide-a-tribunal-ambiental-rechazar-reclamacion-de-andes-iron-por-dominga-y-acusa-a-la-minera-de-permanente-victimizacion/ZJ6KKJLV6ZDJFM6YKGAUF6PP7E/.
- [45] Ashish Vaswani y col. "Attention Is All You Need". En: (2023).
- [46] WIRED. Comediante Sarah Silverman demanda a OpenAI y Meta por infringir derechos de autor. URL: https://es.wired.com/articulos/sarah-silverman-demanda-a-openai-y-meta-por-infringir-derechos-de-autor.
- [47] Chengrun Yang y col. Large Language Models as Optimizers. 2023.
- [48] Hongbin Ye y col. "Cognitive Mirage: A Review of Hallucinations in Large Language Models". En: (sep. de 2023). URL: https://arxiv.org/abs/2309.06794v1.
- [49] Kaitlyn Zhou y col. "Problems with Cosine as a Measure of Embedding Similarity for High Frequency Words". En: *Proceedings of the Annual Meeting of the Association for Computational Linguistics* 2 (mayo de 2022), págs. 401-423. ISSN: 0736587X. DOI: 10.18653/v1/2022.acl-short.45. URL: https://arxiv.org/abs/2205.05092v1.
- [50] Banghua Zhu, Jiantao Jiao y Michael I. Jordan. "Principled Reinforcement Learning with Human Feedback from Pairwise or K-wise Comparisons". En: (ene. de 2023). ISSN: 26403498. URL: https://arxiv.org/abs/2301. 11270v4.

A Contexto enviado por el Chatbot

- Elavoración propia - Ejemplo de Contexto enviado por el Chatbot a OpenAI -

'query': 'Dame un resumen del caso Dominga',
'result': 'El caso Dominga se refiere a una reclamación presentada por Andes Iron SpA
contra la Resolución Exenta N° 1146/2017 del Servicio de Evaluación Ambiental y el Comité de Ministros. El reclamo se basa en el rechazo del Estudio de Impacto Ambiental del proyecto Dominga y la acogida parcial de los recursos de reclamación presentados en el marco de la participación ciudadana. El Primer Tribunal Ambiental de la República de Chile admitió la reclamación y convocó a una audiencia de percepción documental. Además, se presentaron informes de Amicus Curiae y se aceptó la participación de terceros coadyuvantes e independientes. El proceso judicial continúa y se espera una sentencia definitiva. En una sentencia anterior, el tribunal había anulado varias resoluciones relacionadas con el proyecto y ordenado retrotraer el procedimiento de evaluación ambiental a una etapa posterior al Informe Consolidado de Evaluación. Sin embargo, esta sentencia fue anulada por la Corte Suprema y el caso fue remitido nuevamente al Primer Tribunal Ambiental para que se pronuncie sobre el fondo del asunto.',

source documents': [

Document(

page_content='El caso Dominga\n\nRol: "R-1-2017", Rol: "R-1-2017", Rol: "R-1-2017", fecha 16-04-2021 de Andes Iron SpA con SEA cuyo proyecto corresponde a Dominga. Este caso tiene como principal materia Evaluación Ambiental y su coponente ambiental es Agua\n\nThe integration ministers are: \n1. Juan Opazo Lagos\n2. Jasna Pavlich Núñez\n3. Fabrizio Queirolo Pellerano\n\nSiendo sus descriptores: Evaluación ambiental, término anticipado, suficiencia de información, medidas de compensación, valor compartido, facultades del Comité de Ministros, suficiencia de la información, línea base de medio marino, medida voluntaria, riesgos ambientales, observación ciudadana, PAC, fauna marina, impacto de ruidos, rutas de navegación, efectos sinérgicos, áreas de exclusión, trato desigual, biodiversidad marina, pingüino Humboldt, barreras eólicas, amicus curiae. \n\nEl First Environmental Court Acoge la causa en esta ocacion. Los hechos controvertidos son: Del supuesto carácter completo de los antecedentes del proyecto y evaluación del mismo. En cuanto al término anticipado del procedimiento de evaluación ambiental. En cuanto al criterio del propio Comité de Ministros respecto de los aspectos relacionados con la actividad de transporte marítimo. De la supuesta información para evaluar las rutas de navegación que habría cumplido con creces el estándar fijado por el Comité de Ministros. En relación a la propuesta de la casa del Mar, luego denominada centro de estudios científicos. En cuanto al "Valor Compartido" con las comunidades. Revisión de los argumentos técnicos que fundaron el rechazo del proyecto. De la supuesta insuficiencia de la línea de base del medio marino en las rutas de navegación. De la supuesta utilización parcial de fragmentos contenidos en los informes de los Servicios, con preguntas inductivas al efecto. Del supuesto tratamiento discriminatorio en lo relativo a la línea de base. De la supuesta suficiencia de los análisis de efectos sinérgicos. De la supuesta ausencia de desequilibrio entre impactos y medidas. De las Reclamaciones PAC. Del supuesto impacto en el recurso hídrico luego del cierre del Sistema de Captación y Devolución de aguas desde el Rajo Sur. De la supuesta claridad de la información para descartar impactos adversos en el mar. De la supuesta insignificancia de impactos por aporte de material particulado sedimentable ("MPS"). De la supuesta insuficiencia de la medida de compensación para el impacto en el proceso de nidificación de pingüino de Humboldt. De la supuesta ilegalidad en la posición sobre la evaluación del impacto de barreras eólicas en la avifauna. De la supuesta suficiencia de las áreas de exclusión. De la supuesta evaluación del impacto acústico de los buques en la fauna marina. Del supuesto plan de monitoreo de aves y cetáceos que no podría supuestamente ser medida.\n\nY el resumen es: El Primer Tribunal Ambiental de la República de Chile recibió una reclamación presentada por Andes Iron SpA contra la Resolución Exenta N° 1146/2017 del Servicio de Evaluación Ambiental y el Comité de Ministros. La reclamación se basa en el rechazo del Estudio de Impacto Ámbiental del proyecto Dominga y la acogida parcial de los recursos de reclamación presentados en el marco de la participación ciudadana. El Tribunal admitió a trámite la reclamación y convocó a una audiencia de percepción documental. Además, se presentaron informes de Amicus Curiae y se aceptó la participación de terceros coadyuvantes e independientes. El proceso judicial continúa y se espera una sentencia definitiva.\nEl Primer Tribunal Ambiental de Chile ha emitido una sentencia en relación al proyecto minero-portuario Dominga. En la sentencia, se rechaza la excepción de extemporaneidad interpuesta por un tercero independiente y se acoge la reclamación presentada por Andes Iron SpA. Se anulan varias resoluciones relacionadas con el proyecto y se ordena retrotraer el procedimiento de evaluación ambiental a una etapa posterior al Informe Consolidado de Evaluación. La Corte Suprema ha anulado la sentencia y ha remitido el caso nuevamente al Primer Tribunal Ambiental para que se pronuncie sobre el fondo del

68

83

84

92

94 95

96 97 98

100

101

102

103

107

108 109

110

114 116

118

119

120

124

125

126

128

129

130

131

134

135

139

140

142 143

144 145

asunto.\nEl documento revisado es una serie de antecedentes procesales de un caso relacionado con el proyecto minero Dominga en Chile. El caso involucra reclamaciones judiciales y recursos de casación presentados por diferentes partes. La Corte Suprema ha ordenado al Tribunal Ambiental que revise y decida sobre el fondo del asunto, incluyendo la evaluación ambiental del proyecto y la refutación de los antecedentes técnicos utilizados para rechazarlo. Los principales hechos controvertidos incluyen el carácter completo de los antecedentes del proyecto, la evaluación del mismo y los argumentos técnicos que fundamentaron su rechazo. El documento también menciona la suspensión de la vista de la causa y la fijación de una nueva fecha para la audiencia de alegatos.\nEl Tribunal Ambiental de Chile revisó una serie de alegaciones relacionadas con la evaluación ambiental del proyecto Dominga. En primer lugar, se discutió si el procedimiento de evaluación se terminó anticipadamente, concluyendo que no existió falta de información relevante. Además, se argumentó que el proyecto cumplió con todas las instancias formales de participación ciudadana. En segundo lugar, se analizó el criterio del Comité de Ministros respecto a la actividad de transporte marítimo del proyecto, concluyendo que el Comité consideró que la línea de base complementaria para las rutas de navegación no fue suficiente para evaluar los efectos del proyecto. Sin embargo, el Tribunal consideró que la línea de base del medio marino presentada por el titular del proyecto fue suficiente y adecuada. Por último, se discutió la propuesta de la Casa del Mar, concluyendo que el proyecto consideró compromisos voluntarios para cumplir con estándares más altos que los establecidos por la legislación ambiental. En resumen, el Tribunal acogió algunas alegaciones del reclamante y desestimó otras, concluyendo que el proyecto Dominga cumplió con los requisitos de evaluación ambiental.\nEl Tribunal Ambiental ha revisado los argumentos técnicos que fundamentaron el rechazo del proyecto Dominga. En cuanto a la medida propuesta de crear un Centro de Estudios Científicos, el tribunal considera que es interesante e innovadora, pero sugiere que debería ser más amplia en su alcance y concepción, abarcando también el estudio de los ecosistemas terrestres y el medio humano en la comuna de La Higuera. Además, se propone que el Centro de Estudios lleve a cabo un programa de investigación y estudios de las especies de interés en la zona, así como un protocolo de acción frente a impactos ambientales no previstos. También se plantea la necesidad de medir los posibles impactos socioeconómicos en las comunidades pesqueras, turísticas y productivas de Los Choros y Chungungo, y elaborar un plan de desarrollo en armonía con el plan de desarrollo regional. El tribunal destaca la importancia de establecer un mecanismo vinculante para las decisiones del Centro de Estudios y la participación de actores relevantes en su diseño y gobierno corporativo. En cuanto al "Valor Compartido" con las comunidades, el tribunal considera que es importante que los proyectos entreguen beneficios compartidos y reconoce la propuesta de Dominga en este sentido. Sin embargo, señala que esta materia no se encuentra discutida en el proceso de evaluación y que el compromiso de compartir el valor del negocio no puede sobreseer las causales por las cuales el proyecto fue rechazado. En relación a la supuesta insuficiencia de la línea de base del medio marino en las rutas de navegación, el tribunal considera que la información presentada por el proyecto es suficiente y que el Comité de Ministros no hizo un análisis adecuado al respecto. Se destaca que el compendio de conocimiento entregado por el proyecto es robusto y que la campaña de terreno realizada en las rutas de navegación complementa adecuadamente la línea de base del medio marino. En conclusión, el tribunal acoge los cuestionamientos del reclamante y mantiene el rechazo del proyecto Dominga.\nEl TribunaĨ Ambiental de Chile revisó una alegación presentada por el Titular del proyecto Dominga, en la que se argumentaba que el Comité de Ministros había aplicado criterios diferentes al evaluar los proyectos Dominga y Cruz Grande en relación a la actividad de navegación. El Titular sostenía que ambos proyectos eran similares y debían ser evaluados de manera análoga para respetar el principio de igualdad ante la ley. Sin embargo, el Tribunal determinó que los proyectos no se encontraban en la misma situación jurídica o material, por lo que era razonable aplicar criterios diferentes. Además, se señaló que el proyecto Dominga no había evaluado adecuadamente los impactos de la navegación, a pesar de haber identificado riesgos y presentado planes de contingencia. En conclusión, el Tribunal rechazó la alegación de trato discriminatorio y confirmó la decisión del Comité de Ministros.\nEl Tribunal Ambiental ha analizado los elémentos de temporalidad, objetivos y ubicación de los proyectos Cruz Grande y Dominga. Ambos proyectos fueron presentados a través de Estudios de Impacto Ambiental y fueron tramitados en forma paralela durante tres años. Ambos proyectos se ubican en la comuna de La Higuera, Región de Coquimbo. Ambos proyectos tienen como objetivo la recepción, acopio y embarque de sustancias minerales, por lo que es necesario evaluar los impactos ambientales asociados a estas actividades. El Comité de Ministros adoptó un actuar distinto respecto al proyecto Dominga, argumentando la insuficiencia de información sobre las rutas de navegación y los impactos que podrían generar. Sin embargo, el Tribunal considera que el Comité de Ministros contaba con la información necesaria para evaluar adecuadamente el proyecto Dominga. En cuanto a los impactos sinérgicos, el Tribunal concluye que se realizó un análisis completo de estos impactos en el proyecto Dominga, considerando la existencia del proyecto Cruz Grande. El Tribunal considera que la información de línea base es suficiente para definir los impactos sinérgicos y que no existe un desequilibrio entre los impactos y las medidas propuestas. NEL Tribunal Ambiental ha revisado las reclamaciones presentadas en relación al proyecto minero Dominga. En cuanto a la insuficiencia de la línea de base del medio marino en las rutas de navegación, el Tribunal concluye que no está debidamente acreditada y que las medidas asociadas son adecuadas. En relación al impacto en el recurso hídrico por el cierre del Sistema de Captación y Devolución de aguas desde el Rajo Sur, el Comité de Ministros consideró que la medida de mitigación era inadecuada, pero el SEA argumenta que la medida es idónea y que se puede financiar a través del Fondo para la Gestión de Faenas Mineras Cerradas. Respecto a los efectos en el mar, el Comité de Ministros concluyó que no se evaluaron adecuadamente los impactos de la planta desalinizadora, pero el SEA argumenta que sí se evaluaron y que no se evidencian cambios significativos en las condiciones físico-químicas ni en la biodiversidad asociada a las Áreas de Manejo y Explotación de Recursos Bentónicos. Además, se establece la necesidad de un monitoreo de la salinidad durante la operación del proyecto. En conclusión, el Tribunal rechaza las reclamaciones presentadas.\nEl Tribunal Ambiental concluye que las preocupaciones presentadas por la empresa Dominga en relación a las preocupaciones PAC (Programa de Adecuación y Compensación) fueron debidamente resueltas. Sin embargo, se determina que hubo una subestimación en la evaluación de los impactos por aporte de material

149

150

154

156

157

162

163 164

165

166

167 168

169

174

176

178 179

180

181

182

189 190 191

204

206 207

208

209

214

216 217 218

219 220

particulado sedimentable (MPS) y se evidencia un desconocimiento de los antecedentes por parte del Comité de Ministros. Además, se señala que la normativa ambiental no se adecúa al contexto del proyecto. En cuanto a la medida de compensación para el impacto en el proceso de nidificación del Pinguino de Humboldt, se determina que la propuesta presentada por la empresa no logra un efecto positivo alternativo y equivalente, por lo que se acoge la reclamación. Se cuestiona la falta de fundamentos del Comité de Ministros y se sugiere la implementación de medidas de mitigación más innovadoras.\nEl Tribunal Ambiental advierte una debilidad en la forma en que se abordó la afectación del Pingüino de Humboldt en el islote Totoralillo Norte durante la evaluación ambiental del proyecto. Se señala que no se consideraron medidas de mitigación innovadoras ni propuestas alternativas de medidas compensatorias. Además, se cuestiona la medida de compensación propuesta, ya que no cumple con los requisitos de equivalencia y adicionalidad. En cuanto al impacto de las barreras eólicas en la avifauna, se argumenta que este tema no fue debidamente considerado ni evaluado durante la evaluación ambiental del proyecto. Se destaca la falta de congruencia y fundamentación en la resolución del Comité de Ministros. Por otro lado, se menciona la importancia de evaluar el efecto atravente de las luminarias de las barreras eólicas y la infraestructura portuaria en la avifauna marina. Se hace referencia a la contaminación lumínica y sus efectos desorientadores en las aves costeras.\nLa revisión del expediente de evaluación ambiental no muestra estudios relacionados con la elaboración de una línea base de la avifauna en los sectores mencionados. lo que dificulta la identificación y abordaje de los impactos potenciales. El uso de luminarias durante la noche en zonas portuarias y la mortalidad de aves marinas, especialmente los petreles, son temas sensibles que deben ser considerados. Se advierte la oportunidad de complementar la información técnica para evaluar adecuadamente estos impactos. Además, se cuestiona la supuesta suficiencia de las áreas de exclusión y la falta de consideración de los impactos sinérgicos. Se destaca la falta de estudios sobre el impacto acústico de los buques en la fauna marina. En conclusión, se considera que no se evaluaron adecuadamente los impactos mencionados y se sugiere la realización de investigaciones científicas para incrementar el conocimiento de los ecosistemas marino costeros \nEl Primer Tribunal Ambiental de Chile ha acogido la reclamación presentada por Andes Iron SpA en contra de la Resolución 1146 del Director Ejecutivo del SEA y el acuerdo Nº 08/2017 del Comité de Ministros. El tribunal ha ordenado retrotraer el procedimiento de evaluación ambiental a la etapa posterior al Informe Consolidado de Evaluación Ambiental y realizar una nueva votación ajustada a derecho por parte de la COEVA de la Región de Coquimbo. No se condena en costas a las partes.\nResumen:\n\nEl 16 de abril de 2021, se notificó en Antofagasta la sentencia anterior a través del estado diario y correo electrónico. La sentencia se encuentra en las fojas 6156.', metadata={ congruencias; igualdad ante la ley; medio marino',
 'fechaSentencia': '27-04-2018',
 'nombreProyecto': 'Dominga', 'page': 0,
'page': 0,
'rol': 'R-1-2017',
'source':
'/home/sjvasconcello/usm-data/ds-senior/cmad-ai-sustentable-01/etl/load/../../data/clean/docs_with_summary/R-1-2017.txt',
'tribunal': '1TA',
''tribunal': '1TA', 'urlSentencia': 'https://www.buscadorambiental.cl/buscador-api/file/view/jurisprudencia/S1TA Rol N° R-1-2017?id=1' Document (page_content='El caso Caserones\n\nRol: "R-41-2021", Rol: "R-41-2021",Rol: "R-41-2021", fecha 31-08-2021 de Asociación de Productores y Exportadores Agrícolas del Valle de Copiapó y otros con Superintendencia de Medio Ambiente cuyo proyecto corresponde a Proyecto Caserones. Este caso tiene como principal materia Programa de cumplimiento SMA y su coponente ambiental es Agua\n\nThe integration ministers are: \n1. Mauricio Oviedo Gutiérrez\n2. Juan Opazo Lagos\n3. Marcelo Hernández Rojas\n\nSiendo sus descriptores: Procedimiento sancionatorio, programa de cumplimiento, SMA, desagregación de cargos, desviación del procedimiento, integridad del programa de cumplimiento, procedencia del PDC, infracciones que han causado daño ambiental, criterio de integridad, plan de reparación ambiental, incentivos al cumplimiento, falta de perjuicio, principio de confianza legitima, calidad de aguas, acuíferos, criterio de eficacia, razonabilidad y motivación de la resolución de la SMA, idoneidad de las medidas, Guía para la presentación de Programas de Cumplimiento por infracciones a instrumentos de carácter ambiental.\n\nEl First Environmental Court Rechaza la causa en esta ocacion. Los hechos controvertidos son: Procedencia del Programa de Cumplimiento para infracciones que han causado daño ambiental, Sobre el criterio de eficacia del Programa de Cumplimiento y la prohibición general de eludir a la responsabilidad.\n\nY el resumen es: En este documento se presenta una revisión de un caso judicial en el que la Asociación de Productores y Exportadores Agrícolas del Valle de Copiapó, la Comunidad de Aguas Subterráneas Sector N° 1 "Aguas Arriba del Embalse Lautaro", la Comunidad de Aguas Subterráneas Sector N°2 "Embalse Lautaro - La Puerta" y la Comunidad de Aguas Subterráneas Sector N° 3 "La Puerta - Mal Paso" presentaron una reclamación contra la Resolución Exenta N° 15/Rol D-018-2019 de la Superintendencia del Medio Ambiente. En la reclamación, solicitan la invalidación de la resolución y el rechazo del programa de cumplimiento presentado por SCM Minera Lumina Copper Chile S.A. Él caso involucra cargos relacionados con el incumplimiento de condiciones ambientales establecidas para el proyecto Caserones. La Superintendencia del Medio Ambiente y SCM Minera Lumina Copper Chile S.A. presentaron sus argumentos en contra de la reclamación. El Tribunal admitió la reclamación a trámite y rechazó la solicitud de medida cautelar presentada

236

238

239

241

249 250

251

252

255

258 259

260 261

262

263

264 265

268

269 270

274

276

278

283

284

285

286 287 288

289 290 291

292

293

295

296

297 298

299 300

301

302

303

desagregar dos de los cargos formulados en la Resolución Exenta Nº 1/D-018-2019, lo cual atenta contra la finalidad de poner término al procedimiento administrativo sancionador a través del programa de cumplimiento. Además, sostiene que la desagregación de los cargos infringe el criterio de integridad y que la resolución reclamada carece de una causal legal que habilite la desagregación del procedimiento administrativo. Por otro lado, la reclamante acusa a la resolución de violar el principio de confianza legítima al desagregar el procedimiento sin causa legal alguna. En cuanto a los argumentos de la reclamada, esta . sostiene que la resolución reclamada es legal y fue dictada conforme a la normativa vigente. Además, argumenta que la empresa ha acreditado la no generación de efectos negativos en relación al recurso hídrico y que las medidas propuestas en el programa de cumplimiento son refactor al recurso fidrico y que las medidas propuestas en el programa de cumplimiento son eficaces para contener la pluma de contaminación. También señala que la empresa ha cumplido con las acciones de difusión y sociabilización del pueblo Colla, pese a no haber sido coordinadas con la COMADI. En relación al cargo N° 9, la reclamada sostiene que la empresa pudo acreditar la no generación de efectos negativos y que el caudal entregado de agua desalada permitió mejorar la calidad del agua entregada a la población. Por último, la reclamada argumenta que la improcedencia del programa de cumplimiento en casos de daño minimiento en casos de daño en la característica de las infracciones y al contente revulatorio. ambiental se debe a las características de las infracciones y al contexto regulatorio ambiental en que se inserten.\nEl Programa de Cumplimiento (PDC) no es un derecho del titular que deba operar en todo momento, ya que solo cumple su objetivo a través de medidas que permitan volver al cumplimiento de la normativa ambiental. La desagregación de los cargos 11 y 12 por parte de la Superintendencia del Medio Ambiente (SMA) cumple con la finalidad del procedimiento sancionatorio de obtener la responsabilidad del infractor y proteger el medio ambiente. La improcedencia del PDC respecto a estos cargos no genera perjuicios a los reclamantes, ya que el derecho a presentar un PDC corresponde únicamente al presunto infractor y no a los interesados del procedimiento. La SMA argumenta que la desagregación de los cargos Resolución Exenta N° 7/Rol D-011-2015 para justificar su actuar y sostiene que ha sido consistente con la práctica del Servicio. Por otro lado, las reclamantes argumentan que la desagregación de los cargos 11 y 12 vulnera el principio de integridad y que no existe una norma legal que justifique esta desagregación. También sostienen que el PDC y los Planes de Reparación Ambiental (PRA) son mecanismos compatibles y que el cumplimiento satisfactorio de un PDC constituye un equivalente procesal al procedimiento sancionatorio. La SMA argumenta que el PDC no es procedente para infracciones que han causado daño ambiental, ya que no existen acciones que puedan recomponer el medio ambiente dañado a través de este instrumento. Además, señala que el PDC no es un derecho que deba operar a todo evento y que la desagregación de los cargos 11 y 12 no genera perjuicios a los reclamantes. En cuanto al principio de confianza legítima, la SMA sostiene que su actuar ha sido consistente con sus propios precedentes. En resumen, las controversias se centran en la procedencia del PDC para infracciones que han causado daño ambiental y en la compatibilidad entre el PDC y los PRA. La SMA argumenta que el PDC no es procedente para este tipo de infracciones, mientras que las reclamantes sostienen lo contrario.\nEl documento revisa la aplicación de un Programa de Cumplimiento (PDC) y un Plan de Reparación Ambiental (PRA) en el contexto de un procedimiento administrativo sancionatorio por infracciones ambientales. Se destaca que el PDC es un instrumento voluntario de incentivo al cumplimiento normativo, mientras que el PRA se aplica en casos de infracciones con daño ambiental. Se argumenta que la desagregación de los cargos 11 y 12, que generó la aprobación de un PDC y la continuación del procedimiento para el PRA, no vulnera el criterio de integridad y no produce perjuicio a los reclamantes. Además, se señala que la decisión de desagregación se ajusta a la ley y no afecta el principio de confianza legítima.\nEl artículo revisa el principio de confianza legítima en la actuación de la administración como límite a la potestad invalidatoria. Se analiza la actuación de la Superintendencia del Medio Ambiente (SMA) en casos similares para determinar si se ha infringido este principio. Se destaca que la SMA ha establecido un criterio expreso para el caso de infracciones con daño ambiental y su incompatibilidad con el Programa de Cumplimiento (PdC). Se mencionan casos en los que la SMA ha aprobado o rechazado PdC de acuerdo a este criterio. Se discute la eficacia de las medidas incluidas en el PdC y se concluye que la SMA ha realizado un análisis razonable y motivado para descartar los efectos negativos de las infracciones. Se rechaza la reclamación presentada por las asociaciones agrícolas y de aguas subterráneas. Se hace un llamado a la SMA para agilizar la revisión de los cargos desagregados y tomar medidas oportunas en el procedimiento administrativo sancionador en trámite.\nEl Primer Tribunal Ambiental de Chile emitió una sentencia en el caso de la Quebrada La Brea y el Río Ramadillas. En la sentencia, se establece que la empresa LOSMA debe presentar un "Plan de Reparación" por los daños ambientales causados y, en caso de no ser posible, los antecedentes serán derivados al Consejo de Defensa del Estado para que ejerza la acción judicial correspondiente. El tribunal destaca la importancia de garantizar el derecho a vivir en un medio ambiente libre de contaminación y el deber del Estado de preservar los recursos hídricos. La sentencia fue redactada por el Ministro Mauricio Oviedo Gutiérrez y firmada por los Ministros Marcelo Hernández Rojas y Juan Opazo Lagos. El Secretario Abogado del Tribunal, Pablo Miranda Nigro, autorizó la notificación de la sentencia.' metadata={ 'caratula': 'Asociación de Productores y Exportadores Agrícolas del Valle de Copiapó y otros con Superintendencia de Medio Ambiente' cumplimiento; procedencia del PDC; infracciones que han causado dano ambiental; criterio de integridad; plan de reparación ambiental; incentivos al cumplimiento; falta de perjuicio; principio de confianza legitima; calidad de aguas; acuíferos; criterio de eficacia; razonabilidad y motivación de la resolución de la SMA; idoneidad de las medidas; Guía para la presentación de Programas de Cumplimiento por infracciones a instrumentos de carácter

por los reclamantes. El caso se encuentra en estado de relación y se llevó a cabo una vista el 5 de mayo de 2021.\nLa reclamante argumenta que la resolución impugnada infringe la ley al

ambiental.',

326

329 330

361

362

376

391

395

```
'fechaSentencia': '31-08-2021', 'nombreProyecto': 'Proyecto Caserones',
                             'page': 0,
'rol': 'R-41-2021',
318
      'source':
'/home/sjvasconcello/usm-data/ds-senior/cmad-ai-sustentable-01/etl/load/../../data/clean/docs_
319
      with_summary/R-41-2021.txt', 'tribunal': '1TA'
                            'urlSentencia
      'https://www.buscadorambiental.cl/buscador-api/file/view/jurisprudencia/S1TA Rol N°
324
325
      R-41-2021?id=28
327
                 Document(
      page_content='El caso Escombrera Palguin bajo\n\nRol: "R-25-2019", Rol: "R-25-2019",Rol: "R-25-2019", fecha 24-03-2020 de Elsa Quirquitripay Antiman y Otros con
      SEREMI de Salud Región de la Araucanía cuyo proyecto corresponde a Escombrera, sitio de disposición de residuos no peligrosos. Este caso tiene como principal materia Invalidación
      administrativa y su coponente ambiental es Agua\n\nThe integration ministers are: \n1. Iván
      Hunter Ampuero\n2. Jorge Retamal Valenzuela\n3. Sibel Villalobos Volpi\n\nSiendo sus
334
      descriptores: Competencia absoluta, instrumento de gestión ambiental, legitimación activa, acción ,invalidación facultad, invalidación impropia \n\nEl Third Environmental Court Rechaza
335
336
      la causa en esta ocacion. Los hechos controvertidos son: Si el Tribunal tendría competencia
      para pronunciarse sobre la reclamación judicial, considerando la naturaleza de las
338
      resoluciones impugnadas, Si los Reclamantes tendrían legitimación activa para ejercer
339
      legalmente la impugnación judicial\n\nY el resumen es: El abogado Marco Antonio Román Cordero,
340
          representación de ACONSER RESIDUOS SPA, interpuso una reclamación contra la
      SUPERINTENDENCIA DEL MEDIO AMBIENTE (SMA) por la Resolución Ex. N° 427, que requería a la empresa el ingreso del proyecto "Vertedero Aconser Mocopulli" al Sistema de Evaluación de Impacto Ambiental (SEIA). La reclamante solicitó al tribunal acoger su reclamación y declarar
343
345
      la ilegalidad de la resolución reclamada. Por su parte, la SMA solicitó al tribunal rechazar
      la reclamación y declarar la legalidad de la resolución. En los antecedentes del acto administrativo reclamado, se mencionan diversos documentos y comunicaciones entre la SEREMI de
346
347
      Salud, la SMA y la Reclamante. En cuanto al procedimiento de reclamación, se detallan las
348
      alegaciones de ambas partes y los argumentos presentados. La Reclamante argumenta que el procedimiento de requerimiento de ingreso se inició de manera irregular y que se violaron
349
350
      plazos establecidos por la ley. Además, cuestiona la competencia de la SMA para dictar la
      resolución reclamada. La SMA, por su parte, argumenta que la documentación relevante está
353
      incluida en el expediente administrativo y que la Reclamante tuvo acceso a la información
354
      necesaria. También se menciona que el desconocimiento de ciertos documentos no supone
     indefensión, ya que la SMA constató los mismos hallazgos comunicados por la SEREMI de Salud. En conclusión, la Reclamante solicita la anulación o modificación de la resolución reclamada, mientras que la SMA pide que se declare su legalidad.\nLa reclamación presentada por ACONSER
356
357
      Residuos SpA no cuestiona el cumplimiento de los supuestos fácticos y jurídicos contenidos en
358
     la resolución impugnada. Sin embargo, se plantean controversias relacionadas con el procedimiento administrativo que precedió a la dictación del acto terminal de requerimiento de
359
360
      ingreso al SEIA. Estas controversias incluyen la falta de conocimiento de la denúncia que
      originó el requerimiento, la demora excesiva en resolver el procedimiento, la omisión en la
      aplicación del Instructivo para la Tramitación de Requerimientos de Ingreso al SEIA y la
      omisión en decretar diligencias probatorias solicitadas por la interesada. Respecto a la falta
     de conocimiento de la denuncia, se determina que el expediente administrativo físico contiene el procedimiento que justifica la dictación del acto, por lo que la tardanza en incorporar la denuncia al sistema electrónico no constituye un vicio de legalidad. En cuanto a la demora en
365
366
367
      resolver el procedimiento, se establece que el plazo de 6 meses establecido por la ley no se
368
      ha superado. Además, se señala que el incumplimiento de este plazo no afecta la validez del
369
      procedimiento, sino que compromete la responsabilidad funcionaria. En relación a la omisión en
370
      la aplicación del Instructivo, se argumenta que este no establece la obligatoriedad de seguir
      el orden de tramitación indicado. Por último, se concluye que las solicitudes de diligencias
      probatorias solicitadas por la interesada no son necesarias para confirmar o rechazar la
      verificación de los hechos que configuran la elusión atribuida en la resolución impugnada. En
      resumen, se determina que las controversias planteadas por la reclamante no afectan la
      legalidad del procedimiento administrativo.\nEn resumen, el caso trata sobre una reclamación
      presentada por un titular de un proyecto contra la Superintendencia del Medio Ambiente (SMA)
      en relación con el requerimiento de ingreso al Sistema de Evaluación de Impacto Ambiental
378
      (SEIA). El reclamante alega que la SMA infringió el Instructivo para la Tramitación de
379
380
      Requerimientos de Ingreso al SEIA al no solicitar previamente el informe del Servicio de
     Evaluación Ambiental (SEA) antes de iniciar el procedimiento. Sin embargo, la SMA argumenta que cumplió con lo establecido en la ley y que el Instructivo no es de carácter obligatorio. El tribunal concluye que la SMA actuó de acuerdo a la ley y que no se produjo indefensión para el reclamante. Además, se analiza la omisión de decretar las diligencias probatorias solicitadas por el interesado y se determina que no causaron indefensión y que eran innecesarias para el caso. En consecuencia, el tribunal considera que la resolución de ingreso
381
382
383
384
385
386
      al SEIA se ajusta a derecho.\nEl Tribunal Ambiental rechazó la reclamación presentada por la impugnante en contra de la Resolución Exenta N° 427 de la Superintendencia del Medio Ambiente
387
388
      (SMA). La impugnante solicitaba la realización de diligencias probatorias, pero no especificó
389
      de manera clara la conexión entre dichas diligencias y los hechos que deseaba probar. Además,
390
      no indicó las consecuencias jurídicas que se derivarían de la falta de pronunciamiento de la
      autoridad sectorial respecto a los recursos administrativos pendientes de resolución. Por lo
      tanto, el Tribunal consideró que la Resolución de la SMA se ajusta a derecho. No se condenó en
      costas a la impugnante por considerar que litigó con motivos plausibles.',
                      metadata={
                             'caratula': 'Asociación Indígena Aymara Salar de Coposa con SMA ', 'competencia': 'Art. 17 N° 3 de Ley N° 20.600', 'componente_ambiental': 'Agua',
396
397
398
```

```
'decision_del_tribunal': 'Acoge'
       'descriptores': 'Procedimiento sancionatorio; programa de cumplimiento; consulta indígena; recurso hídrico; daño ambiental; acuíferos; criterios; integridad;
400
401
       eficacia; verificabilidad; derecho a los recursos naturales; principio de participación;
402
       motivación: reincidencia
403
                                'fechaSentencia': '30-12-2019',
'nombreProyecto': 'Collahuasi',
404
405
                                'page': 0,
'rol': 'R-25-2019',
406
407
       'source':
'/home/sjvasconcello/usm-data/ds-senior/cmad-ai-sustentable-01/etl/load/../../data/clean/docs_
409
       '/home/sjvasconcerro, asm call,
with_summary/R-25-2019.txt',
'tribunal': '1TA',
410
411
       'urlSentencia': 'https://www.buscadorambiental.cl/buscador-api/file/view/jurisprudencia/S1TA Rol N°
412
413
       R-25-2019?id=16
414
415
417
                   Document (
                         page_content='El caso Pascua Lama\n\nRol: "R-5-2018", Rol: "R-5-2018",Rol:
418
                         fecha 17-09-2020 de Compañía Minera Nevada SpA con Superintendencia del Medio
       "R-5-2018".
419
       Ambiente cuyo proyecto corresponde a Pascua Lama. Este caso tiene como principal materia
420
       Sancionatorio ambiental y su coponente ambiental es Agua\n\nThe integration ministers are:
421
       \n1. Cristián Delpiano Líra\n2. Jasna Pavlich Núñez\n3. Fabrizio Queirolo Pellerano\n\nSiendo
422
       sus descriptores: Sancionatorio ambiental, estándar de motivación - proporcionalidad
423
       principio de non bis in ídem - decaimiento - metodología de determinación de sanciones
424
       legitimación activa - tasa de descuento - daño ambiental - impacto ambiental - clasificación de la infracción - circunstancias del art. 40 de la Ley N° 20.417\n\nEl First Environmental
       Court Acoge parcialmente la causa en esta ocacion. Los hechos controvertidos son: Ilegalidad
427
       transversal de las sanciones impuestas por la Res. Ex. N°72/2018. De las supuestas
       ilegalidades respecto de las sanciones de clausura definitiva aplicadas a cinco de los cargos
429
       formulados. De las supuestas ilegalidades cometidas en la Res. Ex. N°72/2018, respecto de las
430
431
       sanciones de multa aplicadas, al resto de los cargos formulados. Del supuesto exceso en las
       competencias que habría incurrido la SMA respecto de la manera en que pretende que se implemente la clausura. Respecto a la falta de legitimación activa alegada por la SMA en contra de Agrícola Dos Hermanos y Agrícola Santa Mónica Limitada. Respecto de la Resolución
432
433
434
       Exenta N°70. Respecto de la Res. Ex. N°72. Legitimación activa de los reclamantes de la Reclamación signada con el rol R-6-2018. Estándar de motivación exigido. Resolución Exenta
435
436
       N°70, de 2018, de la Superintendencia del Medio Ambiente. Decaimiento del procedimiento
437
       administrativo y la falta de oportunidad en el ejercicio de la potestad sancionatorio. De la
438
       supuesta infracción al principio non bis in ídem. En cuanto a la metodología para la
       determinación de sanciones ambientales, la tasa de descuento, y la proporcionalidad de las sanciones, de la Resolución Exenta N°72/2018.2.7 En cuanto al cálculo de la Tasa de Descuento descrita en las "Bases Metodológicas para Determinación de Sanciones Ambientales". El estándar
441
       de proporcionalidad en el ejercício de la potestad sancionatoria de la Superintendencia del
443
       Medio Ambiente. III. DEL ANÁLISIS DE LAS RECLAMACIONES EFECTUADAS PARA CADA CARGO EN
       PARTICULAR ALEGADO RESPECTO DE LA RESOLUCIÓN EXENTA N^{\circ}72, REALIZADO EN CAUSA R-5-2018. 3.1 De las supuestas ilegalidades cometidas en la sanción de clausura definitiva aplicada al cargo
445
446
      23.2. 3.2 De las supuestas ilegalidades cometidas en la sanción de clausura definitiva aplicada al cargo 23.9. 3.3 De las supuestas ilegalidades cometidas en la sanción de clausura definitiva aplicada al cargo 23.11. 3.4 De las supuestas ilegalidades cometidas en la sanción de clausura definitiva aplicada al cargo 2.11. 3.5 De las supuestas ilegalidades cometidas en la sanción de clausura definitiva aplicada al cargo 4. 3.5 De las supuestas ilegalidades cometidas en la
447
448
449
450
       sanción de clausura definitiva aplicada al cargo N°7. 3.6 De las supuestas ilegalidades cometidas en la sanción de multa aplicada al cargo 23.8. 3.7 De las supuestas ilegalidades
451
452
       cometidas en la sanción de multa aplicada al cargo 6.3.8 De las supuestas ilegalidades
453
       cometidas en la definición de todas las sanciones de multa al establecer un criterio de tasa
de descuento que es muy superior al de las empresas similares. 3.9 Del supuesto exceso en las
455
       competencias que habría incurrido la SMA respecto de la manera en que pretende que se
456
       implemente la clausura. IV. DEL ANÁLISIS DE LAS RECLAMACIONES EFECTUADAS PARA CADA CARGO EN
457
       PARTICULAR ALEGADO RESPECTO DE LA RESOLUCIÓN EXENTA N°72, REALIZADO EN CAUSA R-6-2018. 4.1
      Vicio N° 1: Respecto a la omisión de la resolución sancionatoria de ordenar a CMN SPA la construcción definitiva del Sistema de Manejo de Aguas. 4.2 Vicio N°2: Sobre la falta de contenido sancionatorio y disuasivo en la aplicación de 5 sanciones de clausura. 4.3 Vicio N°3: Respecto al descarte ilegal de daño ambiental en las aguas. 4.4 Vicio N°4: De la supuesta
459
460
461
462
       falta de fundamentación de la resolución reclamada en lo que dice relación con la causalidad
463
       en la contaminación de las aguas. 4.5 Vicio N°5. Respecto de la motivación de la SMA para recalificar y absolver a CMN SpA de los cargos 23.13, 24.2 y 25. 4.6 Vicio N°6: Sobre la
464
465
       eventual falta de proporcionalidad en la aplicación de las sanciones. 4.7 Vicio N°7: La
466
       resolución recurrida no pondera ni aplica en concreto las circunstancias que contempla el artículo 40 de la LOSMA para efectos de determinar la sanción a aplicar a cada infracción. 4.8
467
       Del supuesto problema del petitorio de la reclamación.',
                         metadata={
                                caratula': 'Compañía Minera Nevada SpA con Superintendencia del Medio
471
       Ambiente'.
472
                                 competencia': 'Art. 17 N° 3 de Ley N° 20.600',
473
                                'componente_ambiental': 'Agua',
'decision_del_tribunal': 'Acoge parcialmente',
'descriptores': 'Sancionatorio ambiental; estándar de motivación
474
475
476
       proporcionalidad - principio de non bis in ídem - decaimíento - metodología de determinación
477
       de sanciones - legitimación activa - tasa de descuento - daño ambiental - impacto ambiental - clasificación de la infracción - circunstancias del art. 40 de la Ley N° 20.417', 'fechaSentencia': '17-09-2020', 'nombreProyecto': 'Pascua Lama',
478
481
482
                                'page': 0,
```

```
483
484
485
486
487
488
489
490
491
492
493
494
  \end{table}
495
```