1

Fairness

Ethical Data Science

Dr Zak Varty

Fairness and the Data Revolution

Fairness and the Data Revolution

Volume of data created, captured, copied, and consumed worldwide

Data: statistica.com 75

You are your Data

You are Your Data: Clustering

You are Your Data: Prediction

Forbidden Predictors

Protected Characteristics under the Equality Act (2010)

- age
- gender reassignment
- being married or in a civil partnership
- being pregnant or on maternity leave
- disability

- race including colour, nationality, ethnic or national origin
- religion or belief
- sex
- sexual orientation

Measuring Fairness

- Mapping from human to mathematical concept, many measures of fairness.
- Binary outcome $Y \in \{0, 1\}$.
- Binary Prediction $\hat{Y} \in \{0, 1\}$.
- Protected attribute A takes values in $= \{a_1, \dots, a_k\}.$

Demographic Parity

The probability of predicting a 'positive' outcome is the same for all groups.

$$\mathbb{P}(\hat{Y}=1|A=a_i)=\mathbb{P}(\hat{Y}=1|A=a_j), \text{ for all } i,j\in .$$

Equal Opportunity

Among those who have a true 'positive' outcome, the probability of predicting a 'positive' outcome is the same for all groups.

$$\mathbb{P}(\hat{Y} = 1 | A = a_i, Y = 1) = \mathbb{P}(\hat{Y} = 1 | A = a_j, Y = 1), \text{ for all } i, j \in \mathbb{N}$$

Equal Odds

Among those who have a true 'positive' outcome, the probability of predicting a 'positive' outcome is the same for all groups.

AND

Among those who have a true 'negative' outcome, the probability of predicting a 'negative' outcome is the same for all groups.

$$\mathbb{P}(\hat{Y} = y | A = a_i, Y = y) = \mathbb{P}(\hat{Y} = y | A = a_j, Y = y), \text{ for all } y \in \{0, 1\} \text{ and } i,$$

Predictive Parity

The probability of a true 'positive' outcome for people who were predicted a 'positive' outcome is equal across groups.

$$\mathbb{P}(Y = 1 | \hat{Y} = 1, A = a_i) = \mathbb{P}(Y_1 = 1 | \hat{Y} = 1, A = a_j) \text{ for all } i, j \in \mathbb{P}(Y_1 = 1 | \hat{Y} = 1, A = a_j) \text{ for all } i, j \in \mathbb{P}(Y_1 = 1 | \hat{Y} = 1, A = a_j)$$

This is all a bit much

- Even in this simple case there are so many ways you can consider fairness.
- Some metrics rely on knowing the true outcome.
- Sampling issues: inference or tolerance bounds.
- Conditional probability is hard.

Modelling Fairly

• Multi-objective optimisation ill-defined

$$L = w_1 * fit + w_2 * fairness$$

Moving target: how to pick weights?

Other Approaches to Fairness

- Minority Groups: Re-weight in loss function or up-sample.
- Historical Bias: Forgetting factor to down-weight older observations.
- Feedback loops: need direct intervention.
- Meta-modelling one way of doing this.

Wrapping Up

- Optimising for predictive accuracy alone can lead to unjust models.
- Many measures of fairness
- Can implement fairness by constructing appropriate loss functions
- No universal answers, but an exciting area of ongoing research.

