并行与分布式作业

第一次作业

姓名: 陈琮昊

班级: 人工智能与大数据

学号: 18340013

一、问题描述

早期单节点计算系统并行分为: Bit 级并行, 指令级并行和线程级并行。现代处理器如 Intel、ARM、AMD、Power 以及国产 CPU 如华为鲲鹏等,均包含了并行指令集合。

- (1) 请调查这些处理器中的并行指令集,并选择其中一种进行编程练习, 计算两个各包含 10^6 个整数的向量之和。
- (2) 此外,现代操作系统为了发挥多核的优势,支持多线程并行编程模型,请将问题用多线程的方式实现,线程实现的语言不限,可以是 Java,也可以是 C/C++。

二、解决方案

(1) 选用 AVX 指令集,在 Linux+gcc 下运行代码,所写的 C 程序只需包含头文件<immintrin.h>即可,另外编译时需要加参数,编译时用如下指令即可:

gcc -o .out .c -mavx -mavx2 -mfma -msse -msse2 -msse3

(2) 用 C 语言实现多线程,包含<pthread.h>库即可,编译时也要加参数,编译指令如下:

gcc -o .out .c -lpthread

三、实验结果

(1) 代码见 0.c, 可执行文件为 0.out, 进行了 10 次测试, 结果如下: (单位统一)

AVX	3151	2989	2486	2442	2519	2843	2499	3249	3011	2617
for	2674	3457	3195	3545	3819	2713	3268	3601	3397	2898

为观察加速比,取10次数据均值,经计算加速比为1.17。

(2) 代码见 1.c, 可执行文件为 1.out, 与使用单线程的 for 循环(代码为 2.c, 可执行文件为 2.out) 进行 10 次测试比较, 结果如下: (单位统一)

multi	1979	3097	2574	2209	2318	2059	1894	3223	2835	2037
for	4162	3744	3548	3527	3304	3479	3657	4873	3914	4006

为观察加速比,取10次数据均值,经计算加速比为1.58。

四、遇到的问题及解决方法:

根据老师给的链接搞清楚了 AVX 指令怎么用,写好代码之后发现不知道怎么编译,还是根据群里同学给的方法添加相关指令才成功编译;编译后发现数据不是很稳定,所以解决方案就是多取几个数据然后取均值进行比较;还有就是显示二者运行时间的时候一开始显示的都是 0,后来上网参考了一下才选定的时间 return 到一个表达式,最终能够成功显示时间。最后得到的加速比比较低,按照理论来说最高可以达到 4,这可能由于多线程程序有调用函数、分配内存等额外开销,因此加速比较低、当然可能还有编译等其他原因。