Homogeneity analysis of data generated by latent trait models

Jan de Leeuw

Department of Data Theory FSW/RUL

Middelstegracht 4

2312 TW Leiden

march 25, 1984

Homogeniteitsanalyse van latente trek modellen

Het onderstaande is een nadere uitwerking van Gifi (1981, pag 253-254). Het werd geschreven naar aanleiding van een recente notitie van Dato de Gruyter.

Stel we hebben m binaire variabelen $\underline{x}_1,\dots,\underline{x}_m$, en een continue latente variabele \underline{z} . De regressie van \underline{x}_j op \underline{z} is van de vorm $\pi(\alpha_jz+\beta_j)$, met π een of andere cumulatieve verdelingsfunktie. De verdeling van \underline{z} behoort tot de schaal-familie met dichtheid $\varepsilon^{-1}\phi(z/\varepsilon)$. We veronderstellen, zonder verlies van algemeenheid, dat $\int \phi(z)dz=1$, $\int z\phi(z)dz=0$, en $\int z^2\phi(z)dz=1$.

Veronderstel nu dat $_{\epsilon}$ klein is. De waarschijnlijkheid dat \underline{x}_{γ} gelijk aan één is, is

$$\mathbf{p}_{j} = \varepsilon^{-1} \mathbf{f} \ \phi(z/\varepsilon) \pi(\alpha_{j} z_{*} + \beta_{j}) \mathrm{d}z = \mathbf{f} \ \phi(z) \pi(\beta_{j} + \varepsilon \alpha_{j} z) \mathrm{d}z.$$

We spreken af de notatie π_{js} te gebruiken voor de s-de afgeleide van π in het punt β_{j} . Dus ook π_{j0} = $\pi(\beta_{j})$. Dan geldt natuurlijk

$$p_{j} = \pi_{j0} + \frac{1}{2} \epsilon^{2} \alpha_{j}^{2} \pi_{j2} + o(\epsilon^{2}).$$

Lokale onafhankelijkheid impliceert

$$\begin{split} & p_{j} \, \ell \, = \, E \, (\underline{x}_{j} \underline{x}_{\ell}) \, = \, \int \, \varphi \, (z) \, \pi \, (\beta_{j} \, + \, \epsilon \alpha_{j} z) \, \pi \, (\beta_{\ell} \, + \, \epsilon \alpha_{\ell} z) \, dz \, = \\ & = \, \pi_{j0} \pi_{\ell0} \, + \, {}^{1} \underline{z} \epsilon^{2} \alpha_{j}^{2} \pi_{j2} \pi_{\ell0} \, + \, {}^{1} \underline{z} \epsilon^{2} \alpha_{\ell}^{2} \pi_{\ell2} \pi_{j0} \, + \, \epsilon^{2} \alpha_{j} \alpha_{\ell} \pi_{j1} \pi_{\ell1} \, + \, \circ (\epsilon^{2}) \, . \end{split}$$

Wanneer we deze resultaten kombineren vinden we voor de covariantie (j \neq 1)

$$C(\underline{\mathbf{x}}_{j}\underline{\mathbf{x}}_{\ell}) = \mathbf{p}_{j\ell} - \mathbf{p}_{j}\mathbf{p}_{\ell} = \varepsilon^{2}\alpha_{j}\alpha_{\ell}\pi_{j1}\pi_{\ell1} + o(\varepsilon^{2}).$$

Voor de variantie hebben we natuurlijk

$$V(\underline{x}_{j}) = p_{j} - p_{j}^{2} = \pi_{j0}(1 - \pi_{j0}) + O(\epsilon^{2}),$$

en dus geldt voor de korrelatie

$$R(\underline{x}_{j}\underline{x}_{\ell}) = \varepsilon^{2}\theta_{j}\theta_{\ell} + o(\varepsilon^{2}).$$

Of course $j \neq l$, and we have used

$$\theta_{j} = \alpha_{j}^{\pi}_{j1}/\sigma_{j}$$

where

$$\sigma_{j}^{2} = \pi_{j0}(1 - \pi_{j0}).$$

The next step is to determine the eigen-structure of R. We have, in matrix notation,

$$R = I + \varepsilon^{2}(\theta\theta' - \Theta) + o(\varepsilon^{2}),$$

with Θ = diag($\theta\theta$ '). For the eigenvalues of R we find Γ = I + $\epsilon^2\Omega$ + $o(\epsilon^2)$, with Ω the eigenvalues of $\theta\theta$ ' - θ . For the eigenvectors we find K = S + o(1),

where S are the eigenvectors of $\theta\theta^{\,\prime}$ - $\theta.$ Thus

$$(\theta\theta' - \Theta)S = S\Omega$$
.

If we norm S such that $S'\theta$ = u, a vector with all elements equal to one, then

 $S\Omega + \Theta S = \theta u'$.

If s is any eigenvector of R, with eigenvalue 1 + $\epsilon^2\omega$ + o($\epsilon^2)$ then

$$\mathbf{s}_{\mathbf{j}} = \theta_{\mathbf{j}} / (\theta_{\mathbf{j}}^2 + \omega) + o(1).$$

Moreover ω satisfies

$$\sum_{j=1}^{m} \theta_{j}^{2}/(\theta_{j}^{2} + \omega) = 1.$$

The sum on the left of this equation is equal to m if $\omega=0$, and decreases to zero if $\omega\to\infty$. Thus there is only one positive root, giving the largest eigenvalue, say ω_+ . Because θ_j is positive by definition, the matrix $\theta\theta^*=0$ is non-negative, and by the Perron-Frobenius theorem ω_+ is also the largest root in modulus.

We can use the previous results to prove that the elements of the dominant eigenvector are asymptotically monotonic with the θ_j . We have $\mathrm{sign}((\theta_j^2 + \omega_+^2)) - (\theta_{\ell}^2 + \theta_+^2)) = \mathrm{sign}((\omega_+^2 - \theta_j^2))(\theta_j^2 - \theta_{\ell}^2)).$

Now

$$\theta_{j}\theta_{\ell} = e_{j}(\theta\theta' - \Theta)e_{\ell}.$$

By Cauchy-Schwartz

$$\theta_{\mathbf{j}}\theta_{\ell} \leq (e_{\mathbf{j}}^{\mathbf{i}}(\theta\theta^{\mathbf{i}} - \theta)^{2}e_{\mathbf{j}})^{\frac{1}{2}} \leq \omega_{+}.$$

Thus if $\varepsilon \to 0$ then

$$sign(s_j - s_l) \rightarrow sign(\theta_j - \theta_l).$$

In homogeneity analysis we do not use the eigenvectors of R as the basic description of the variables, but we divide this eigenvector first by the standard deviation of the variable. This defines

$$t_{j} = s_{j} / V(\underline{x}_{j}) = \theta_{j} \sigma_{j}^{-1} / (\theta_{j}^{2} + \omega) + o(1).$$

Now suppose, for a second approximation, that ω_{+} is large with respect to the individual $\theta_{\,j}$. This will happen if there are many variables, all with nonvanishing discrimination. Then

$$\theta_{j}\sigma_{j}^{-1}/(\theta_{j}^{2}+\omega_{+})=\theta_{j}\sigma_{j}^{-1}\omega_{+}^{-1}+o(\omega_{+}^{-1}).$$

For the two-parameter logistic we have $\pi_{j1} = \sigma_j^2$. Thus $\theta_j = \alpha_j \sigma_j$, and -1, $\alpha_j = \alpha_j \sigma_j$, and

 $t_j = \alpha_j \omega_+^{-1} + o(\omega_+^{-1}) + o(1).$ Thus for $\epsilon \to 0$ and $\omega_+ \to \infty$ we have

 $sign(t_j - t_l) \rightarrow sign(\alpha_j - \alpha_l).$

Asymptotically the component loadings of homogeneity analysis measure the discrimination of the variables. We conjecture that a similar result remains true if merely $\omega_+ \rightarrow \infty$. The proof of such a result will be more complicated, however. Observe also that homogeneity analysis will behave strangely for the Rasch model, which has all α_- equal.

We then have

 $t_i = \alpha/(\alpha^2\sigma_i^2 + \omega_i) + o(1),$

which will tend to make t_j monotonic with the σ_j . Very easy and very difficult items will get high t_j , average items will have low t_j . Ordinarily, under our assumptions, difficulty factors will appear only for the smaller eigenvalues.

References

Dato N.M. de Gruijter
Homogeneity analysis of test score data: a confrontation with the latent trait approach.

Memorandum 783-84, Educational Research Center RUL.

- A. Gifi: Niet-lineaire multivariate analyse.

 Afd. Datatheorie FSW/RUL, 1980.
- A. Gifi: Nonlinear multivariate analysis.

 Afd. Datatheorie FSW/RUL, 1981
- A. Gifi: Nonlinear multivariate analysis. DSWO-Press, 1984.