Lista 1 Zadanie 3

Marcin Zubrzycki

3 lutego 2025

1 Treść Zadania

Należy skonstruować automaty skończone równoważne z następującymi wyrażeniami regularnymi:

- 10 + (0 + 11)0 * 1
- 01[((10)*+111)*+0]*1
- ((0+1)(0+1))*+((0+1)(0+1)(0+1))*

2 Rozwiązanie

Rysunek 1: DFA dla podpunktu 1

2.1 Język pierwszy

Język składa się ze słów które na początku mają 0 lub 11, potem dowolną ilość 0 i kończą się dokładnie jednym 1. Dodatkowo w skład języka wchodzi również słowo w=10. Słowo w=10 jest akceptowane przez automat M. Pozostałe

Rysunek 2: NFA dla podpunktu 2

słowa muszą zaczynać się od 0 lub 11, obie drogi prowadzą do stanu Q0 w którym w pętli można przetworzyć dowolną liczbę zer i dokładnie jedną jedynką przejść do stanu akceptującego Q3, z którego można jedynie wyjść, odrzucając wszystkie słowa które nie kończą się dokładnie jedną jedynką. L(M) = 10 + (0 + 11)0 * 1

2.2 Język drugi

Język składa się ze słów zaczynających się od znaków 01, potem zawierającą dowolną ilość powtórzeń 10, 111 lub 0 i finalnie kończących się dokładnie jedną jedynką. Automat M przyjmuje do stanu Q2 jedynie słowa z odpowiednim prefiksem, następnie pozwala odbyć odpowiednią pętle po napotkaniu powtarzającego się podsłowa. $10: Q2 \to Q3 \to Q2, 111: Q2 \to Q3 \to Q2$ i $0: Q2 \to Q2$ Każda skuteczna pętla kończy się w stanie Q2 z którego można przetworzyć jedną 1 aby skończyć w stanie akceptującym. L(M) = 01[((10)*+111)*+0]*1

2.3 Język trzeci

Język składa się ze słów długości ℓ spełniającą $\ell=2n \lor \ell=3n$ dla $n\in\mathbb{Z}$. Automat M pozwala wyjść ze stanu Q0 do pętli trójstanowej lub dwustanowej, która kończy w stanie akceptującym po każdej pełnej iteracji. L(M)=((0+1)(0+1))*

Rysunek 3: NFA- ε dla podpunktu 3