учевный центр овщей физики фтф

Группа: Р3209	К работе допущен:
Студент: Степанов А.А.	Работа выполнена:
Преподаватель: Хвастунов Н.Н.	Отчёт принят:

Рабочий протокол и отчёт по лабораторной работе №3.10

ИЗУЧЕНИЕ СВОБОДНЫХ ЗАТУХАЮЩИХ ЭЛЕКТРОМАГНИТНЫХ КОЛЕБАНИЙ

Цель работы:

1. Изучение основных характеристик свободных затухающих электромагнитных колебаний

Задачи, решаемые при выполнении работы:

- 1. Вычисление значения логарифмического декремента λ
- 2. Вычисление значения полного сопротивления R и индуктивности L
- 3. Вычисление добротности контура Q
- 4. Построение графиков зависимостей

Объект исследования:

1. Свободные затухающие электромагнитные колебания

Метод экспериментального исследования:

1. Многократные измерения различных величин

Рабочие формулы и исходные данные:

$$C_1 = 0.022uF \qquad C_2 = 0.033uF \qquad C_3 = 0.047uF \qquad C_4 = 0.47uF$$

$$L = 10mH \qquad \lambda = \frac{1}{n} \cdot \ln \ln \frac{U_i}{U_{i+1}} \qquad R = R_m + R_0 \qquad Q = \frac{2\pi}{1 - e^{-2\lambda}}$$

$$R_0 = -R_m|_{\lambda=0} \qquad \lambda \approx \pi R \cdot \sqrt{\frac{C}{L}} \qquad Q = \frac{1}{R} \cdot \sqrt{\frac{L}{C}} \qquad R_{\rm crit} = 2 \cdot \sqrt{\frac{L}{C}}$$

$$R_{\rm crit} = 2 \cdot \sqrt{\frac{L}{C}}$$

Измерительные приборы:

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1.	Осциллограф	-	-	-

Схема установки:

Результаты измерений и их обработки (таблицы, примеры расчетов):

R_m , Ohm	T, del	T, ms	$2U_i$, del	$2U_{i+n}$, del	n	λ	Q	R, Ohm	L, mH
0	27.6	0.092	37	5	6	0.334	12.906	67	8.759
10	27.6	0.092	37	4	6	0.371	11.999	77	9.365
20	27.6	0.092	36.3	3	6	0.416	11.132	87	9.518
30	23	0.092	35.9	3.5	5	0.466	10.370	97	9.424
40	23	0.092	35.8	2.8	5	0.510	9.830	107	9.570
50	18.4	0.092	35.3	4	4	0.544	9.472	117	10.029
60	18.4	0.092	35	3	4	0.614	8.884	127	9.284
70	13.8	0.092	34.8	4.7	3	0.667	8.528	137	9.151
80	13.8	0.092	34.2	4	3	0.715	8.258	147	9.170
90	9.2	0.092	33.9	7.4	2	0.761	8.038	157	9.243
100	9.2	0.092	33.5	6.7	2	0.805	7.854	167	9.351
200	4.6	0.092	30.8	8.6	1	1.276	6.814	267	9.511
300	4.6	0.092	28.4	4.8	1	1.778	6.468	367	9.253
400	4.6	0.092	26.2	2.4	1	2.390	6.336	467	8.288

Конвертация T, del в T, ms:

 s_1 - число маленьких делений в одном большом, $s_1=5$

n - количество делений

 s_2 - количество секунд в большом делении, $s_2 = 100 \cdot 10^{-6} s$

 10^3 - количество миллисекунд в секунде

$$T_{ms} = \frac{T_{\rm del}}{s_1 \cdot n} \cdot s_2 \cdot 10^3$$

С	$T_{\rm exp}, { m del}$	$T_{\rm exp},{ m ms}$	$T_{ m th},{ m ms}$	δT , %	Thompson, ms	Ω_0 , hz	β
C1	4.8	0.096	0.090	6.523	0.0901	67419.986	
C2	5.8	0.116	0.110	5.096	0.1104	55048.188	3350
С3	6.8	0.136	0.132	3.246	0.1317	46126.560	3330
C4	22	0.44	0.417	5.630	0.4165	14586.499	

Результаты различных величин, полученных в результате обработки данных:

$$L_{\text{avg}} = 9.351 \text{ mH}$$

$$R_{\rm cr} = 1348.4 \; {\rm Ohm}$$

$$R_0 = 67 \text{ Ohm}$$

$$T = 0.093 \text{ ms}, R = R_0 + R_m(0)$$

$$T = 0.093 \text{ ms}, R = R_0 + R_m(200)$$

$$T = 0.093 \text{ ms}, R = R_0 + R_m(400)$$

$$Q = 9.418, R = R_0 + R_m(0)$$

$$Q = 8.473, R = R_0 + R_m(10)$$

Расчет погрешностей:

Среднее квадратичное отклонение: $\sigma = 0.391$

Коэффициент Стьюдента:
$$t_{\alpha} = \frac{\Delta L \cdot \sqrt{N}}{\sigma} = 2.47 \Rightarrow \alpha = 0.99$$

1.
$$T_{\text{exp}} = 0.096, T_{\text{th}} = 0.090, \delta T = 6.53\%$$

2.
$$T_{\text{exp}} = 0.116$$
, $T_{\text{th}} = 0.11$, $\delta T = 5.096\%$

3.
$$T_{\text{exp}} = 0.136$$
, $T_{\text{th}} = 0.132$, $\delta T = 3.246\%$

4.
$$T_{\text{exp}} = 0.44$$
, $T_{\text{th}} = 0.417$, $\delta T = 5.63\%$

Полученные графики:

Зависимость логарифмического декремента от сопротивления:

Зависимость добротности от сопротивления:

Зависимость теоретического и экспериментального периодов от ёмкости конденсатора:

Выводы и анализ результатов работы:

Были изучены основные характеристики свободных затухающих электромагнитных колебаний, а также характер протекания колебаний в контуре. Построены графики взаимных зависимостей. Была доказана достоверность формулы Томпсона.