

Complex System Simulation

Evolution of Artificial Life - Group 6 (Like a G6)

Alicja Grudnowska Dante de Lang Mengli Feng Warwick Louw

Research Question

Exploring the ALiEn project:

Survivability of cell clusters in a novel artificial life environment.

- Analyzing species development
- Active movement toward nutrition

Introduction to evolution of artificial life

Artificial Life
Emergence | Bottom-up

Artificial Intelligence
Design | Top-down

Z

STUDY

Rules

Introduction to evolution of artificial life

- Any live cell with two or three live neighbours survives.
- Any dead cell with three live neighbours becomes a live cell.
- All other live cells die in the next generation. Similarly, all other dead cells stay dead.

Criteria

- no explosive growth.
- small initial patterns with chaotic, unpredictable outcomes.
- 3. potential for von Neumann universal constructors.
- 4. rules as simple as possible,

Game of Life

Still life

1970

Oscillators

Spaceship

Introduction to evolution of artificial life

- Robustness
- The evolution of complexity
- The effect of high-mutation rates
- The evolution of complex organisms
- Mass extinctions
- Ecological networks

ALiEn Project

- Physics based simulation
 - o C++ (75.8%), CUDA (21.9%) and other
- Different cell types with functions
 - Computer
 Constructor
 - o Propulsion o Sensor
 - Scanner
 Communicator
 - Weapon
- Contact with developer

Cluster/Organism Composition Movement

```
if SENSOR_OUT=SENSOR_OUT::CLUSTER_FOUND
mov PROP_IN, PROP_IN::BY_ANGLE
mov PROP_IN_ANGLE, SENSOR_INOUT_ANGLE
sub PROP_IN_ANGLE, 160
mov PROP_IN_POWER, 50
else
mov PROP_IN, PROP_IN::DAMP_ROTATION
mov PROP_IN_POWER, 20
endif
```


Cluster/Organism Composition Replication

```
if CONSTR_OUT = CONSTR_OUT::SUCCESS
   add i, 1
   if i = 4
        mov i, 0
        mov CONSTR_INOUT_ANGLE, 0x2a
   endif
   mov CONSTR_IN_OPTION, CONSTR_IN_OPTION::STANDARD
   endif
   mov j, 0x81
   if CONSTR_OUT = CONSTR_OUT::SUCCESS_ROT
        mov j, CONSTR_INOUT_ANGLE
   endif
   mov SCANNER_INOUT_CELL_NUMBER, i
   if i = 3
   mov CONSTR_IN_OPTION, CONSTR_IN_OPTION::FINISH_WITH_TOKEN_SEP_RED
```


Results

- Set up
 - 500 x 500 grid
 - 10 Small replicators
 - 1250 (4x8) blocks of nutrition
- 150.000 iterations
 - Cached data every 200 msec
 - Pattern data every 5000 iterations

Future research

- More complex cluster composition
- Simulation Setup
 - Presence of nutrition
 - Influence of radiation
 - Probabilities of mutation
- Add extra output
 - Analyse species development

Questions?