RMP_CNTL Ramp Control

Description

This module implements a ramp up and ramp down macro. The output flag variable EqualFlag is set to 7FFFFFFFh when the output variable SetpointValue equals the input variable TargetValue.

Availability This IQ module is available in one interface format:

1) The C interface version

Module Properties Type: Target Independent, Application Independent

Target Devices: 28x Fixed and Floating Point devices

C Version File Names: rmp_cntl.h

IQmath library files for C: IQmathLib.h, IQmath.lib

C Interface

Object Definition

The structure of RMPCNTL object is defined by following structure definition

typedef RMPCNTL *RMPCNTL_handle;

Item	Name	Description	Format [*]	Range(Hex)
Inputs	TargetValue	Target input	GLOBAL_Q	80000000-7FFFFFF
Outputs	SetpointValue	Target output	GLOBAL_Q	80000000-7FFFFFF
	EqualFlag	Flag output	Q0	80000000-7FFFFFF
RMP_CNTL	RampDelayMax	Maximum delay rate	Q0	80000000-7FFFFFF
parameter	RampLowLimit	Minimum limit	GLOBAL_Q	80000000-7FFFFFF
	RampHighLimit	Maximum limit	GLOBAL_Q	80000000-7FFFFFF
Internal	RampDelayCount	Incremental delay	Q0	80000000-7FFFFFF

*GLOBAL_Q valued between 1 and 30 is defined in the IQmathLib.h header file.

Special Constants and Data types

RMPCNTL

The module definition is created as a data type. This makes it convenient to instance an interface to ramp control. To create multiple instances of the module simply declare variables of type RAMPGEN.

RMPCNTL handle

User defined Data type of pointer to RMPCNTL module

RMPCNTL DEFAULTS

Structure symbolic constant to initialize RMPCNTL module. This provides the initial values to the terminal variables as well as method pointers.

Methods

RC_MACRO(RMPCNTL_handle);

This definition implements one method viz., the ramp control computation macro. The input argument to this macro is the module handle.

Module Usage

Instantiation

The following example instances two RMPCNTL objects RMPCNTL rc1, rc2;

Initialization

To Instance pre-initialized objects

RMPCNTL rc1 = RMPCNTL_DEFAULTS;

RMPCNTL rc2 = RMPCNTL_DEFAULTS;

Invoking the computation macro

RC_MACRO(rc1); RC_MACRO(rc2);

Example

The following pseudo code provides the information about the module usage.

```
main()
{
}
void interrupt periodic_interrupt_isr()
        rc1.TargetValue = target1;
                                                // Pass inputs to rc1
        rc2.TargetValue = target2;
                                                // Pass inputs to rc2
        RC_MACRO(rc1);
                                                // Call compute macro for rc1
        RC MACRO(rc2);
                                                // Call compute macro for rc2
        out1 = rc1.SetpointValue;
                                                // Access the outputs of rc1
        out2 = rc2.SetpointValue;
                                                // Access the outputs of rc2
}
```

Technical Background

This software module implements the following equations:

<u>Case 1:</u> When *TargetValue > SetpointValue*

 $SetpointValue = SetpointValue + _IQ(0.0000305), \ for \ t = n \ . \ Td, \ n = 1, 2, 3... \\ and \ (SetpointValue + _IQ(0.0000305)) < RampHighLimit \\ = RampHighLimit \ , \ for \ (SetpointValue + IQ(0.0000305)) > RampHighLimit$

where, Td = RampDelayMax. Ts Ts = Sampling time period

Case 2: When TargetValue < SetpointValue

 $SetpointValue = SetpointValue - _IQ(0.0000305), \ for \ t = n \ . \ Td, \ n = 1, 2, 3.... \\ and \ (SetpointValue - _IQ(0.0000305)) > RampLowLimit \\ = RampLowLimit \ , \ for \ (SetpointValue - _IQ(0.0000305)) < RampLowLimit \\$

where, Td = RampDelayMax . TsTs = Sampling time period

Note that *TargetValue* and *SetpointValue* variables are in iq format.

Example:

SetpointValue=0(initial value), TargetValue=1000(user specified), RampDelayMax=500(user specified), sampling loop time period Ts=0.000025 Sec. This means that the time delay for each ramp step is Td=500x0.000025=0.0125 Sec. Therefore, the total ramp time will be Tramp=1000x0.0125 Sec=12.5 Sec