

Prof. Dr. Dr. Wolfgang Rhode

Generation von Zufallszahlen

Experimentelle Physik Vb

Überblick

- Erzeugung von gleichverteilten Zufallszahlen
 - Linear kongruente Generatoren
 - Multiplikativ kongruente Generatoren
 - XOR-Shift
 - Mersenne-Twister
- Spektraltest
- Weitere Tests
- Erzeugung beliebig verteilter Zufallszahlen
 - Transformation der Gleichverteilung
 - Neumann'sches Rückweisungsverfahren
 - Erzeugung bestimmter Verteilungen

Prof. Dr. Dr. W. Rhode

Generation von Zufallszahlen

Statistische Methoden der Datenanalyse

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Motivation

Vorlesung

Zufallszahlen sind überall...

technische universität dortmund

Experimentelle Physik Vb

Erzeugung von gleichverteilten Zufallszahlen

- Warum keine echten Generatoren? (Atmosphärenrauschen, CCD-Sensorrauschen, ...)
- Reproduzierbarkeit
- Fehlersuche
- Geschwindigkeit

Alle generierten Zufallszahlen sind allerdings vollständig deterministisch!

Linear kongruente Generatoren (LCG)

$$x_0 \in \mathbb{N}_+$$
 (genannt: Seed)
$$x_{j+1} = ((a \cdot x_j + c) \mod m) \Rightarrow u_j = x_j/m$$

Beispiel: c = 3, a = 5, m = 16, $x_0 = 0$

Prof. Dr. Dr. W. Rhode

Generation von Zufallszahlen

Statistische Methoden der Datenanalyse

Statistische Methoden

der Datenanalyse

Experimentelle Physik Vb

Linear kongruente Generatoren (LCG)

$$x_0 \in \mathbb{N}_+$$
 (genannt: Seed)
$$x_{j+1} = ((a \cdot x_j + c) \mod m) \Rightarrow u_j = x_j/m$$

- Wie müssen a, c und m gewählt werden, um die maximale Periodenlänge zu erreichen?
 - 1. $c \neq 0$
 - c und m teilerfremd
 - Jeder Primfaktor von m teilt (a-1)
 - 4. Wenn m durch 4 teilbar ist, dann auch (a-1)

Experimentelle Physik Vb

Linear kongruente Generatoren (LCG)

$$x_0 \in \mathbb{N}_+$$
 (genannt: Seed)
$$x_{j+1} = ((a \cdot x_j + c) \mod m) \ \Rightarrow u_j = x_j/m$$

Beispiel: c = 3, a = 5, m = 16, $x_0 = 0$

- Länge der sich wiederholenden Zahlenfolge wird Periodenlänge genannt
 - LCG: Periodenlänge abhängig a, c und m; mit m als Obergrenze für die Periodenlänge

Prof. Dr. Dr. W. Rhode

Generation von Zufallszahlen

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

XOR-Shift Generator

$$\begin{array}{lll} x_0 \in \mathbb{N}_+ & & & & \\ t_1 = ((x_j \ll a) \oplus x_j) & & & & \\ t_2 = ((t_1 \gg b) \oplus t_1) & & & & \\ x_{j+1} = ((t_2 \ll c) \oplus t_2) & & & & \\ \end{array}$$

- Periodenlänge hängt von der Anzahl k Bits ab die zur Darstellung der Zahlen genutzt wird
 - Periodenlänge: 2^k-1
- Welche Anforderungen werden an a. b und c gestellt?
 - Wahl nicht trivial
 - Wenn (a,b,c) maximale Periodenlänge ergibt, dann auch alle Permutationen der Zahlen

technische universität dortmund

Mersenne-Twister (MT19937)

- Aktuell der wohl meist eingesetzte Zufallszahlengenerator
- Benötigt 624 Variablen, um seinen Zustand zu speichern
- Auch müssen 624 Startwerte festgelegt werden
- Verwendet u.A. XOR-Shift, um bitweise zufällige Zahlen zu erzeugen.
- Erzeugt 624 Zufallszahlen gleichzeitig
- Hat eine Periodendauer von

$$2^{19937} - 1$$

Prof. Dr. Dr. W. Rhode

Generation von Zufallszahlen

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Spektraltest

- 1-dim: Wie häufig sind die erzeugten Zahlen (z.B. 0-5)?
- Problematisch:

Prof. Dr. Dr. W. Rhode

- Reihenfolge der Zahlen wird vernachlässigt
- z.B. 0, 1, 2, 3, 5, 0, 1, 2, 3, 4, 0, 1, 2, 4, 5...

Test auf Zufälligkeit

Prof. Dr. Dr. W. Rhode

Generation von Zufallszahlen

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb Astroteilchenphysik

Spektraltest

2-dim: Wie häufig sind Wertepaare?

Beispiel: LCG (a=5, c=3, m=16, x₀=1)

Prof. Dr. Dr. W. Rhode

0, 3, 2, 13, 4, 7, 6, 1, 8, 11, 10, 5, 12, 15, 14, 9, 0...

technische universität

Spektraltest

- 1. Im Wertebereich $1 \le x \le n$ existieren n^2 mögliche Wertepaare.
- 2. Nur *n* Wertepaare sind realisiert.
- 3. Normiert man die ganzen Zahlen, so ergibt sich ein Gitterabstand von 1/m und die Kantenlänge
- 4. Durch die besetzten Punkte lassen sich endlich viele Familien von Geraden legen.
- 5. Betrachte den Abstand von benachbarten Linien einer Familie (die Steigungen dieser Geraden sind gleich)
- 6. Ist das Gitter gleichbesetzt ist der Abstand der Linienpaare der minimale realisierte Abstand $d_2 = m^{-1/2}$
- 7. Ist das Gitter **ungleichmäßig** besetzt, dann ist der Abstand $d_2\gg m^{-1/2}$

Prof. Dr. Dr. W. Rhode

Generation von Zufallszahlen

der Datenanalyse

Statistische Methoden

der Datenanalyse

Experimentelle Physik Vb

Spektraltest

- 4-dim? n-dim? Schlecht darstellbar!
- (n-1)-dimensionale Hyperebenen
- Beim *n*-dimensionalen Fall ergibt sich:
- Ist das Gitter gleichbesetzt ist der Abstand der Linienpaare der minimale realisierte Abstand $d_n \approx m^{-1/n}$.
- Ist das Gitter **ungleichmäßig** besetzt, dann ist der Abstand $d_n\gg m^{-1/n}$

Spektraltest

- 3-dim: Wie häufig sind Wertepaare?
- Beispiel: MLCG (a=65539,m= 2^{31} , x_0 =1)

Prof. Dr. Dr. W. Rhode

Generation von Zufallszahlen

Statistische Methoder der Datenanalyse

Experimentelle Physik Vb

Weitere Tests

- Birthday Spacing Test:
 - m Geburtstage in einem Jahr mit n Tagen
 - Verteilung der Abstände aller Geburtstage zueinander sollte Poissonverteilt sein
 - Beim tatsächlichen Test: $\,n=2^{24},\,m=2^{10}\,$
- Runs Test:
 - Zähle Anzahl *n* von aufeinander folgenden 0 oder 1 bei den generierten Zahlen
 - Anzahl n sollte Binomialverteilt sein mit B(n,0.5)
- Testbibliotheken:
 - Diehard-Testsuite
 - TestU01 (aktuell)

Hinweise zum praktischen Einsatz

- Portabilität: PRNG sollten auf allen Systemen die gleichen Zahlenfolge
- erzeugen (Meist nicht der Fall!)
- Falsch gewählte Startparameter können die Periodendauer Seed: stark verkürzen.
- "Anlaufzeit": Bei manchen Generatoren müssen einige der ersten erzeugten Zufallszahlen verworfen werden, wenn die Startparameter schlecht gewählt sind (MT19937)
- Kombinieren: Sollte die Periodendauer eines verwendeten PRNG zu kurz sein, so können mehrere Generatoren kombiniert werden.

Prof. Dr. Dr. W. Rhode

Generation von Zufallszahlen

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Transformation der Gleichverteilung

Gesucht: y Zufallsvariable mit der Wahrscheinlichkeitsdichte

$$g(y)$$
 $y \in [y_{\min}, y_{\max}]$

Gegeben: ${\mathcal U}$ gleichverteilte Zufallsvariable mit der Wahrscheinlichkeitsdichte

$$f(u) = U(0,1) = \begin{cases} 1, & 0 \le x < 1 \\ 0, & \text{sonst} \end{cases}$$

Zusammenhang: $g(y) = \left| \frac{\mathrm{d}u}{\mathrm{d}y} \right| \cdot f(u)$

Experimentelle Physik Vb

Erzeugung beliebig verteilter Zufallszahlen

Transformation der Gleichverteilung

Prof. Dr. Dr. W. Rhode

Generation von Zufallszahlen

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Transformation der Gleichverteilung

$$f(u) = U(0,1) \Rightarrow g(y)dy = U(0,1)du$$
$$g(y) = \frac{dG(y)}{dy} \Rightarrow dG(y) = g(y)dy = U(0,1)du$$

Integration liefert:

$$u = \int_{u_{\min}=0}^{u} U(0, 1) du = G(y) = \int_{y_{\min}}^{y} g(y') dy'$$
$$y = G^{-1}(u)$$

Anwendung von G⁻¹ auf gleichverteilte Zufallsvariable liefert Zufallsvariable mit gewünschter Verteilung!

Transformation der Gleichverteilung

- Vorteile:
 - Sehr effizient
 - Kein Verwerfen nötig
 - Keine Verschwendung von Rechenzeit
- Nachteile:
 - Nur anwendbar für integrierbare Zufallsvariablen
 - Umkehrfunktion muss existieren

Prof. Dr. Dr. W. Rhode

Generation von Zufallszahlen

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Transformation der Gleichverteilung

- Beispiel: Generation von Zufallszahlen im Bereich von 0 bis π , die der Funktion $g(x)=\sin(x)$ folgen
 - Funktion in eine Wahrscheinlichkeitsdichte verwandeln
 - → gewünschten Bereich normieren

Normierung (Fläche unter kompletter Kurve): $A = \int_{-\infty}^{\infty} \sin(x) dx = 2$

Integrieren und Invertieren

Fläche bis zur Zufallsvariablen $x: A(x) = \int_0^x \sin(x) dx = 1 - \cos(x)$

Normierte relative Fläche:
$$r(x) = \frac{A(x)}{A} = \frac{1 - \cos(x)}{2}$$

Invertierung: $x(r) = \arccos(1-2r)$

technische universität

Erzeugung beliebig verteilter Zufallszahlen

- Transformation der Gleichverteilung
 - Effizient
 - Bedingung:
 - Verteilungsfunktion muss definiert sein
 - → Wahrscheinlichkeitsdichte muss integrierbar sein
 - Verteilungsfunktion muss invertierbar sein

Prof. Dr. Dr. W. Rhode

Prof. Dr. Dr. W. Rhode

Generation von Zufallszahlen

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Transformation der Gleichverteilung

Beispiel: Generation von Zufallszahlen im Bereich von 0 bis π , die der Funktion $g(x)=\sin(x)$ folgen

Erzeugung beliebig verteilter Zufallszahlen

- Transformation der Gleichverteilung
 - Effizient
 - Bedingung:
 - Verteilungsfunktion muss definiert sein
 - → Wahrscheinlichkeitsdichte muss integrierbar sein
 - Verteilungsfunktion muss invertierbar sein
- Neumann'sches Rückweisungsverfahren

Prof. Dr. Dr. W. Rhode

Generation von Zufallszahlen

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Neumann'sches Rückweisungsverfahren

Vorgehen: Wenn $g(u_1) \leq u_2$ wird u_1 verworfen Wenn $g(u_1) > u_2$ wird u_1 als Zufallszahl akzeptiert

Neumann'sches Rückweisungsverfahren

Gesucht: *y* Zufallsvariable mit der Wahrscheinlichkeitsdichte

$$g(y)$$
 $y \in [y_{\min}, y_{\max}]$

Wahrscheinlichkeitsdichte nicht integrierbar oder Verteilungsfunktion nicht invertierbar

Gegeben: (u_1,u_2) gleichverteilte Zufallszahlen der Wahrscheinlichkeitsdichten

$$f(u_1) = U(y_{\min}, y_{\max}) = \begin{cases} \frac{1}{y_{\min} - y_{\max}}, & y_{\min} \le x < y_{\max} \\ 0, & \text{sonst} \end{cases}$$
$$f(u_2) = U(0, g_{\max}) = \begin{cases} \frac{1}{g_{\max}}, & g_{\max} = \max(g(y)) \\ 0, & \text{sonst} \end{cases}$$

Prof. Dr. Dr. W. Rhode

Prof. Dr. Dr. W. Rhode

Generation von Zufallszahlen

der Datenanalyse

Experimentelle Physik Vb

Neumann'sches Rückweisungsverfahren

- Vorgehen: Wenn $g(u_1) \leq u_2$ wird u_1 verworfen Wenn $g(u_1) > u_2$ wird u_1 als Zufallszahl akzeptiert
- Beispiel: Normalverteilung zwischen -10 und 10

Generation von Zufallszahlen

Statistische Methoden der Datenanalyse

Neumann'sches Rückweisungsverfahren

- Für jede potentielle Zufallszahl müssen zwei gleichverteilte Zufallszahlen erzeugt werden
- Verwerfen vieler Zufallszahlpaare → Ineffizient
 - $E = \int_{a}^{b} g(y)dy$ Effizienz: Ist g(y) normiert $(\int g(y)dy = 1)$, gilt $E = \frac{1}{(b-a)d}$

Generation von Zufallszahlen Prof. Dr. Dr. W. Rhode

Statistische Methoden der Datenanalyse

Statistische Methoden

der Datenanalyse

Experimentelle Physik Vb

Erzeugung normalverteilter Zufallszahlen – Box-Müller-Methode

- Problem bei Transformationsverfahren: Normalverteilung ist nur numerisch integrierbar
- Lösung: Integration der Normalverteilung in 2D

$$I^{2} = \frac{1}{2\pi} \int_{-\infty}^{x} \int_{-\infty}^{y} \exp\left(-\frac{1}{2}(x'^{2} + y'^{2})\right) dx' dy'$$

Transformation in Polarkoordinaten: $x = r \cos \varphi$. $y = r \sin \varphi$

$$I^{2} = \frac{1}{2\pi} \int_{0}^{2\pi} d\varphi \int_{0}^{r} dr' r' \exp\left(-\frac{1}{2}r'^{2}\right) = 1 - \exp\left(-\frac{1}{2}r^{2}\right)$$

 \rightarrow Inversionsmethode für φ und r

Erzeugung beliebig verteilter Zufallszahlen

- Transformation der Gleichverteilung
 - Effizient
 - Bedingung:
 - Verteilungsfunktion muss definiert sein
 - → Wahrscheinlichkeitsdichte muss integrierbar sein
 - Verteilungsfunktion muss invertierbar sein
- Neumann'sches Rückweisungsverfahren
 - Ineffizient
 - Zwei gleichverteilte Zufallszahlen für jede potentielle Zufallszahl
 - Verwerfen vieler Paare
 - Kann für jede Funktion genutzt werden

Prof. Dr. Dr. W. Rhode

Generation von Zufallszahlen

Statistische Methoder der Datenanalyse

Experimentelle Physik Vb

Erzeugung normalverteilter Zufallszahlen – Box-Müller-Methode

1. Inversionsmethode für φ:

$$u_1 = F(\varphi) = \frac{1}{2\pi} \int_0^{\varphi} d\varphi' \int_0^{\infty} dr' r' \exp\left(-\frac{1}{2}r'^2\right) = \frac{\varphi}{2\pi} \Leftrightarrow \varphi = 2\pi u_1$$

2. Inversionsmethode für r:

$$u_2 = F(r) = \frac{1}{2\pi} \int_0^{2\pi} d\varphi' \int_0^r dr' r' \exp\left(-\frac{1}{2}r'^2\right) = 1 - \exp\left(-\frac{1}{2}r^2\right) \Leftrightarrow r = \sqrt{-2\ln(u_2)}$$

Nach Rücktransformation erhält man zwei unabhängige Zufallszahlen x, y:

$$x = r \cos \varphi = \sqrt{-2 \ln(u_2)} \cos(2\pi u_1)$$
$$y = r \sin \varphi = \sqrt{-2 \ln(u_2)} \sin(2\pi u_1)$$

Erzeugung normalverteilter Zufallszahlen - Polarmethode

- Box-Müller-Methode → Polarmethode: Ersetze Auswertung trigonometrischer Funktionen durch Rückweisungsverfahren
- Polarmethode:
 - Erzeuge gleichverteilte u_1, u_2
 - Umformung $v_1 = 2u_1 1, \ v_2 = 2u_2 1$
 - Berechne $s = v_1^2 + v_2^2$
 - Verwerfe, wenn $s \ge 1$
 - $\qquad \qquad \textbf{Berechne} \quad x_1 = v_1 \sqrt{-\frac{2}{s} \ln s}, \ x_2 = v_2 \sqrt{-\frac{2}{s} \ln s}$
- x₁, x₂ sind nun unabhängige, normalverteilte Zufallszahlen

Prof. Dr. Dr. W. Rhode

Generation von Zufallszahlen

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Erzeugung normalverteilter Zufallszahlen

- Begründung:
 - Gemeinsame Verteilungsfunktion:

$$F(x_1, x_2) = P(x_1 \le k_1, x_2 \le k_2)$$

$$= P(r \cos \theta \le k_1, r \sin \theta \le k_2)$$

$$= \frac{1}{2\pi} \int_{x_1 < k_1} \int_{x_2 < k_2} re^{-\frac{r^2}{2}} dr d\varphi$$

$$= \frac{1}{2\pi} \int_{x_1 < k_1} \int_{x_2 < k_2} e^{-\frac{x_1^2 + x_2^2}{2}} dx dy$$

$$= \left(\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{k_1} e^{-\frac{x_1^2}{2}} dx_1\right) \cdot \left(\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{k_2} e^{-\frac{x_2^2}{2}} dx_2\right)$$

→ Produkt von 2 standardisierten Normalverteilungen

Erzeugung normalverteilter Zufallszahlen

- Begründung:
 - Betrachte Polarkoordinaten des Punktes (x₁, x₂)

$$x_1 = \cos\theta\sqrt{-2\ln s}, \ x_2 = \sin\theta\sqrt{-2\ln s}$$

• Verteilungsfunktion für $\sqrt{-2 \ln s} \le r = \sqrt{s}$:

$$F(r) = P(\sqrt{-2\ln s} \le r) = P(-2\ln s \le r^2) = P(s \ge e^{-\frac{r^2}{2}})$$

- s= r^2 gleichverteilt zwischen 0 und 1 \Rightarrow $F(r)=1-e^{-rac{r^2}{2}}$
- Dazugehörige Wahrscheinlichkeitsdichte:

$$f(r) = \frac{dF(r)}{dr} = re^{-\frac{r^2}{2}}$$

Prof. Dr. Dr. W. Rhode

Generation von Zufallszahlen

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Erzeugung Poisson-verteilter Zufallszahlen

Erinnerung:

$$P(r) = \frac{\mu^r e^{-\mu}}{r!}$$

technische universität

Erzeugung Poisson-verteilter Zufallszahlen

- Möglichkeit:
 - Erzeuge exponentialverteilte Zufallszahlen ui
 - Summiere u_i bis Summe größer als Mittelwert μ der Poisson-Verteilung
 - Zufallszahl x um eins kleiner als Anzahl der Summenglieder
- Numerischer Trick: Multiplikation mit Logarithmen
 - Logarithmus exponential-verteilter Zufallszahlen = gleichverteilte Zufallszahlen
 - Vergleich mit e^{-µ}

Prof. Dr. Dr. W. Rhode

Generation von Zufallszahlen

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Erzeugung Poisson-verteilter Zufallszahlen

- 2. Möglichkeit:
 - Für große μ: nähere mit Gauß-Verteilung
 - Groß bedeutet μ > 10
- Für eine normalverteilte Zufallszahl Z:

$$n = \max(0, \inf(\mu + Z\sqrt{\mu} + 0.5))$$

Erzeugung Poisson-verteilter Zufallszahlen

Numerischer Trick:

$$\frac{1}{\tau}e^{-t/\tau} \text{ mit } t = -\tau \ln x$$

$$\implies \sum_{i} t_{i} = -\tau \sum_{i} \ln x_{i}$$

$$\implies \frac{\sum_{i} t_{i}}{\tau} = -\sum_{i} \ln x_{i}$$
Exponentiere: $e^{\frac{\sum_{i} t_{i}}{\tau}} = \prod_{i} x_{i}$

Prof. Dr. Dr. W. Rhode

Generation von Zufallszahlen

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Erzeugung x²-verteilter Zufallszahlen

- n gerade:
 - Bilde Produkt von n/2 gleichverteilten Zahlen

$$x = -2\ln\left(\prod_{i=1}^{n/2} u_i\right)$$

→ x sind x²-verteilte Zufallszahlen

Erzeugung x²-verteilter Zufallszahlen

- n ungerade:
 - Addiere zum Produkt das Quadrat einer normalverteilten Zufallszahl

$$x = -2\ln\left(\prod_{i=1}^{(n-1)/2} u_i\right) + Z^2$$

 $\rightarrow x \text{ sind } \chi^2\text{-verteilte Zufallszahlen}$

Prof. Dr. Dr. W. Rhode

Prof. Dr. Dr. W. Rhode

Generation von Zufallszahlen

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Generation von Wechselwirkungen in der Teilchenphysik

Beispiel: inelastische Myon-Nukleon-Wechselwirkung, π-Produktion, Laborsystem

- Gegeben: Doppelt differenzieller Wirkungsguerschnitt
 - hängt ab von: (Energie E, Energie übertrag v, Streuwinkel θ)

$$\frac{d^2\sigma(E,\nu,\theta)}{d\theta d\nu} = f(E,\nu,\theta)$$

Generation von Zufallszahlen

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Erzeugung x²-verteilter Zufallszahlen

- $n \operatorname{groß} (n > 30)$:
 - Nähere mit Gauß-Verteilung
 - Zufallsvariable y ist angenähert standardisiert normalverteilt

$$y = \sqrt{2\chi^2} - 2\sqrt{2n-1}$$

- Erzeuge Zufallszahl Z der standardisierten Normalverteilung
- Berechne $x = \frac{1}{2}(Z + \sqrt{2n-1})^2$
- Verwerfe, wenn

$$Z < -\sqrt{2n-1}$$

Prof. Dr. Dr. W. Rhode

Generation von Zufallszahlen

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Berechnung (1)

1. Berechne den totalen Wirkungsquerschnitt, Einheiten: [1/cm²]

$$\int_{V}^{V_{\text{max}}} \int_{\theta}^{\theta_{\text{max}}} \frac{d^2 \sigma(E, v, \theta)}{d\theta dv} \cdot dv \cdot d\theta = \sigma_{tot}(E)$$

2. Berechne die (totale) Wechselwirkungs-Wahrscheinlichkeit P_W dafür, dass in einem Medium mit einer Dichte p und einem Atomgewicht A auf einem Weg L eine Wechselwirkung stattfindet. NA sei die Avogadro-Zahl, f(E) sei die Wahrscheinlichkeit dafür, dass das Projektil, die Energie E hat (wann ist das eine Delta-Funktion;)?):

$$P_{W} = \frac{N_{A} \cdot \rho \cdot L}{A} \cdot \int_{E=0}^{E=\infty} \sigma(E) \cdot f(E) \cdot dE$$

Berechnung (2)

- Beachte: Wird die Schrittweite in dem Medium L sehr groß gewählt, wird auch P > 1 (Unsinn!), ist die Schrittweite L sehr klein, müssen sehr viele Operationen ausgeführt werden, bis eine Wechselwirkung stattfindet (Ressourcenverschwendung, numerische Probleme)
- Die Ereignis-Wahrscheinlichkeit P_E, dafür, dass auf der Strecke L in dem Medium n Wechselwirkungen stattfinden, folgt einer Poisson-Verteilung

$$P_E(n, \lambda = P_W) = \frac{\lambda^n}{n!} \cdot e^{-\lambda}$$

Prof. Dr. Dr. W. Rhode

Generation von Zufallszahlen

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Berechnung (4)

Prof. Dr. Dr. W. Rhode

 Bestimme die Wechselwirkungswahrscheinlichkeit als 1 – der Überlebenswahrscheinlichkeit:

$$P_{\text{int}} = 1 - P(x) = 1 - e^{-\frac{x}{l}}$$

- Berechne den Wechselwirkungspunkt mit der Transformationsmethode
- Weitere Schritte wie in Variante (a)

Generation von Zufallszahlen

Statistische Methoden

Berechnung (3)

- Variante (a): Der (Teil-)Detektor sei relativ dünn (P_W klein). Dann berechnet man die Wahrscheinlichkeit dafür, dass mindestens eine Wechselwirkung auftritt als $1 P_E(n=0)$.
 - Nun sind Ort(sintervall) und Energie der Wechselwirkung bekannt. Für feste E kann das Verfahren analog zunächst zur Bestimmung des Energieübertrages genutzt werden, dann bei fester Energie und festem Energieübertrag zur Bestimmung des Streuwinkels.
- Variante (b):

Prof. Dr. Dr. W. Rhode

Berechne die mittlere freie Weglänge

$$l = \frac{\int x \cdot P_{E(n=0)}(x) \cdot dx}{\int P_{E(n=0)}(x) \cdot dx}$$

Generation von Zufallszahlen

Statistische Methoden der Datenanalyse