Linear Algebra Notes

Geoffrey Matthews

Department of Computer Science Western Washington University

Fall 2011

Online Resources

Readings

- ▶ http://chortle.ccsu.edu/vectorlessons/vectorindex.html
- http://mathforum.org/mathimages/index.php/Math_for_ Computer_Graphics_and_Computer_Vision
- http://cs229.stanford.edu/section/cs229-linalg.pdf
- http:
 //ocw.mit.edu/courses/electrical-engineering-and-computer-science/,
 Computer graphics
- http://joshua.smcvt.edu/linearalgebra/

Videos

http://www.khanacademy.org/math/linear-algebra

Points in space

- Points exist in space without a coordinate system.
- We introduce coordinates to make it easier to compute with them.
- But the coordinates are arbitrary, so long as they're consistent.

Vectors

- Subtracting two points results in a vector.
- ▶ Both points and vectors in *n* dimensions are represented by *n* real numbers.

Points vs. Vectors

- A point is a position.
- ► A vector is a magnitude and a direction.

Vector Addition

$$u = r - s$$

$$v = t - r$$

$$w = t - s$$

$$w = u + v$$

$$r = s + u$$

$$t = r + v$$

$$t = s + w$$

You can't add points!

Vectors do not have positions

Vectors multiplied by scalars

 Multiplication is repeated addition.

Lines defined by point and vector

Planes defined by point and two vectors

The plane through p aligned with v and w is the set of all points p + xv + yw for some $x, y \in \mathbb{R}$

Frames

An *orthonormal* frame is one in which all the vectors are unit length and perpendicular to each other.

Affine sums of vectors

Affine sums of vectors

Trigonometry

More Trigonometry

Dot product

In 2D

$$u \cdot v = \cos(\theta)|u||v|$$
$$= u_x v_x + u_y v_y$$

In 3D

$$u \cdot v = \cos(\theta)|u||v|$$

= $u_x v_x + u_y v_y + u_z v_z$

Note:

$$u \cdot u = \cos(\theta)|u||u|$$

$$= u_x u_x + u_y u_y + u_z u_z$$

$$= |u|^2$$

Projection of one vector on another

▶ What is *x*?

Projection of one vector on another

▶ What is *x*?

$$x = \cos(\theta)|v|$$

Projection of one vector on another

▶ What is *x*?

$$x = \cos(\theta)|v|$$

$$v \cdot u = \cos(\theta)|u||v|$$

$$\cos(\theta) = \frac{u \cdot v}{|u||v|}$$

$$x = \frac{u \cdot v}{|u|}$$

Same direction, opposite direction

AMAZING theorem about the dot product.

▶ In any coordinate system whatsoever:

$$u \cdot v = (u_x, u_y, u_z) \cdot (v_x, v_y, v_z)$$

$$= u_x v_x + u_y v_y + u_z v_z$$

$$= [u_x u_y u_z] \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix}$$

$$= u^T v$$

Example use of dot product: reflected ray

► How do we reflect ray a about normal n to get r?

Reflected ray

$$b$$
 c
 c
 $-b$

$$a = b + c$$
$$r = -b + c$$

How do we find b and c?

Reflected ray

$$a = b + c$$
$$r = -b + c$$

How do we find b and c? Assume |n| = 1

$$b = (a \cdot n)n$$

What if
$$|n| \neq 1$$
?

Reflected ray

$$a = b+c$$

 $r = -b+c$

How do we find b and c? Assume |n| = 1

$$b = (a \cdot n)n$$
$$c = a - b$$

What if
$$|n| \neq 1$$
?

$$b = \frac{(a \cdot n)}{(n \cdot n)}n$$

Example use of the dot product

- ► An object at *p* is approaching a wall determined by points *q* and *r*.
- ► How far away is the wall?

How far away is the wall?

▶ Let's get some vectors:

$$v = p - q$$
 $u = r - q$

Now what?

How far away is the wall?

- ► Can we find *y*?
- ▶ Will that give us *x*?

How far away is the wall?

$$y = \frac{u}{|u|} \cdot v$$

$$x = \left| p - y \frac{u}{|u|} \right|$$

$$= \sqrt{|v|^2 - y^2}$$