Pushing Higgs Effective Theory to its Limits

Johann Brehmer

Heidelberg University

based on 1510.03443, 1602.05202 with Anke Biekötter, Ayres Freitas, David Lopez-Val, and Tilman Plehn

Pheno 2016, Pittsburgh

SM effective field theory

• New physics at $\Lambda \gg E_{LHC} \sim m_h$?

[W. Buchmuller, D. Wyler 85; ...]

$$\mathcal{L}_{\mathsf{EFT}} = \mathcal{L}_{\mathsf{SM}} + \sum_{i}^{59} \frac{f_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)} + \mathcal{O}\left(\frac{1}{\Lambda^{4}}\right)$$

$$\mathsf{e.g.} \ \mathcal{O}_{GG} = (\phi^{\dagger}\phi) \ G_{\mu\nu}^{a} \ G^{\mu\nu\,a} \ ,$$

$$\mathcal{O}_{W} = (D^{\mu}\phi)^{\dagger} \sigma^{k} (D^{\nu}\phi) \ W_{\mu\nu}^{k} \ \dots$$

SM effective field theory

[W. Buchmuller, D. Wyler 85; ...]

• New physics at $\Lambda \gg E_{LHC} \sim m_h$?

$$\mathcal{L}_{\mathsf{EFT}} = \mathcal{L}_{\mathsf{SM}} + \sum_{i}^{59} \frac{f_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)} + \mathcal{O}\left(\frac{1}{\Lambda^{4}}\right)$$

$$\text{e.g. } \mathcal{O}_{GG} = (\phi^{\dagger}\phi) \, G_{\mu\nu}^{a} \, G^{\mu\nu\,a} \, ,$$

$$\mathcal{O}_{W} = (D^{\mu}\phi)^{\dagger} \sigma^{k} (D^{\nu}\phi) \, W_{\mu\nu}^{k} \, \dots$$

- Perfect language for indirect signatures at electroweak scale?
 - Model independence?
 - Correlations between LEP, LHC TGV, Higgs, ...
 - Total rates + distributions

Dimension 6 vs LHC accuracy

► LHC new physics reach (based on Higgs rates at 10% accuracy):

$$\left| \frac{\sigma \times \mathsf{BR}}{(\sigma \times \mathsf{BR})_{\mathsf{SM}}} - 1 \right| \sim \frac{g^2 \ m_h^2}{\Lambda^2} > 10\% \qquad \Leftrightarrow \qquad \Lambda < \frac{g \ m_h}{\sqrt{10\%}} \stackrel{g<1}{<} 400 \ \mathsf{GeV}$$

Dimension 6 vs LHC accuracy

► LHC new physics reach (based on Higgs rates at 10% accuracy):

$$\left| \frac{\sigma \times \mathsf{BR}}{(\sigma \times \mathsf{BR})_{\mathsf{SM}}} - 1 \right| \sim \frac{g^2 \, m_h^2}{\Lambda^2} > 10\% \qquad \Leftrightarrow \qquad \Lambda < \frac{g \, m_h}{\sqrt{10\%}} \stackrel{g < 1}{<} 400 \; \mathsf{GeV}$$

Global fit: [T. Corbett, O. Eboli, D. Goncalves, J. Gonzalez-Fraile, T. Plehn, M. Rauch 1505.05516;
 A. Butter, O. Éboli, J. Gonzalez-Fraile, M. Gonzalez-Garcia, T. Plehn 1604.03105 → next talk by A. Butter]

 \Rightarrow Weakly interacting models currently probed in LHC Higgs observables have no clear scale hierarchy $\Lambda \gg E$. Is the dimension-6 model valid?

Testing the dimension-6 approach

- Idea: compare full models vs their dimension-6 approximation explicitly
- Benchmarks:
 - Scalar singlet
 - Two-Higgs-doublet model
 - Scalar top partners
 - Vector triplet

- Observables:
 - Higgs production in gluon fusion, WBF, Higgs-strahlung
 - Representative decays: yy, 4ℓ , $2\ell 2v$, $\tau\tau$
 - Higgs pair production

- ▶ Tools:
 - ► Tree level: MadGraph with FeynRules models [A. Alloul, B. Fuks, V. Sanz 1310.5150]
 - Loop effects: reweighting technique based on LoopTools
 - ► HDecay, HiggsSignals, HiggsBounds, 2HDMC...

[see also A. Biekötter, A. Knochel, M. Krämer, D. Liu, F. Riva 1406.7320; C. Englert, M. Spannowsky 1408.5147; M. de Vries 1409.4657; N. Craig, M. Farina, M. McCullough, M. Perelstein 1411.0676; S. Dawson, I. M. Lewis, M. Zeng 1501.04103; M. Gorbahn, J. M. No, V. Sanz 1502.07352; A. Drozd, J. Ellis, J. Quevillon, T. You 1504.02409; R. Contino, A. Falkowski, F. Goertz, C. Grojean, F. Riva 1604.06444; A. Freitas, J. Gonzalez-Fraile, D. Lopez-Val, T. Plehn 16xx.xxxxxx

► Higgs vev *v* introduces new scales:

$$\underline{m}^2 = \underline{M}^2 \pm \underline{gv}^2$$
physical mass new physics scale in \mathcal{L} mixing with ϕ

EFT matching without a clear scale hierarchy

► Higgs vev *v* introduces new scales:

$$m^2 = M^2 \pm gv^2$$

physical mass new physics scale in \mathcal{L} mixing with ϕ

Standard matching in unbroken phase of electroweak symmetry:

$$\Rightarrow \frac{f^{(6)}}{M} \mathcal{O}^{(6)}$$

$$\Rightarrow \frac{\phi^{\dagger}/\phi}{M} \phi^{\dagger} \phi \mathcal{O}^{(6)} \Rightarrow \mathcal{O}^{(6)} \text{ blind to vev effects}$$

EFT matching without a clear scale hierarchy

• Higgs vev ν introduces new scales:

$$m^2 = M^2 \pm gv^2$$

physical mass new physics scale in \mathcal{L} mixing with ϕ

Standard matching in unbroken phase of electroweak symmetry:

$$\Rightarrow \frac{f^{(6)}}{M} \mathcal{O}^{(6)}$$

$$\Rightarrow \frac{\phi^{\dagger} / \phi}{M^{4}} \Rightarrow \frac{f^{(8)}}{M^{4}} \phi^{\dagger} \phi \mathcal{O}^{(6)} \Rightarrow \mathcal{O}^{(6)} \text{ blind to vev effects}$$

• ν -improved matching absorbs vev effects in $f^{(6)}$:

Vector triplet

Full model:

$$\mathcal{L} \supset -\frac{1}{4} V_{\mu\nu}^{a} V^{\mu\nu\,a} + \frac{M_{V}^{2}}{2} V_{\mu}^{a} V^{\mu\,a}$$

$$+ \frac{g^{2}}{2g_{V}} V_{\mu}^{a} c_{F} \overline{F}_{L} \gamma^{\mu} \sigma^{a} F_{L}$$

$$+ i \frac{g_{V}}{2} c_{H} V_{\mu}^{a} \left[\phi^{\dagger} \sigma^{a} \overleftrightarrow{D}^{\mu} \phi \right]$$

$$+ g_{V}^{2} c_{VVHH} V_{\mu}^{a} V^{\mu a} \phi^{\dagger} \phi$$

New ξ resonance Modification of hxx couplings New structures in WBF and Vh

[D. Pappadopulo, A. Thamm, R. Torre, A. Wulzer 1402.4431; A. Biekötter, A. Knochel, M. Krämer, D. Liu, F. Riva 1406.7320]

Vector triplet

Full model:

$$\mathcal{L} \supset -\frac{1}{4} V_{\mu\nu}^{a} V^{\mu\nu a} + \frac{M_{V}^{2}}{2} V_{\mu}^{a} V^{\mu a}$$

$$+ \frac{g^{2}}{2g_{V}} V_{\mu}^{a} c_{F} \overline{F}_{L} \gamma^{\mu} \sigma^{a} F_{L}$$

$$+ i \frac{g_{V}}{2} c_{H} V_{\mu}^{a} \left[\phi^{\dagger} \sigma^{a} \overleftrightarrow{D}^{\mu} \phi \right]$$

$$+ g_{V}^{2} c_{VVHH} V_{\mu}^{a} V^{\mu a} \phi^{\dagger} \phi$$

Dim-6 approximation:

$$\mathcal{L} \supset -\frac{f_{WW}}{\Lambda^2} \frac{g^2}{4} (\phi^{\dagger} \phi) W_{\mu\nu}^k W^{\mu\nu k}$$
$$-\frac{f_W}{\Lambda^2} \frac{ig}{2} (D^{\mu} \phi^{\dagger}) \sigma^k (D^{\nu} \phi) W_{\mu\nu}^k$$
$$+ \dots$$

New ξ resonance Modification of hxx couplings New structures in WBF and Vh

[D. Pappadopulo, A. Thamm, R. Torre, A. Wulzer 1402.4431; A. Biekötter, A. Knochel, M. Krämer, D. Liu, F. Riva 1406.7320]

WBF Higgs production

Tagging jets probe energy flow through VVh vertex

WBF Higgs production

Tagging jets probe energy flow through *VVh* vertex

EFT breakdown summary

Model	Process	Dimension-6 errors			
		Resonance	Kinematics	Matching	
Singlet	on-shell $h \to 4\ell$, WBF, Vh ,			×	
	off-shell WBF,		(×)	×	
	hh	×	×	×	
2HDM	on-shell $h \to 4\ell$, WBF, Vh ,			×	
	off-shell $h \rightarrow \gamma \gamma$,		(×)	×	
	hh	×	×	×	
Top partners	WBF, Vh			×	
Vector triplet	WBF		(×)	×	
	Vh	×	(×)	×	

Conclusions

(with ν -improved matching)

- LHC precision does not guarantee that dimension-8 (and higher) operators can be neglected
- ► In practice, dimension-6 model performs well...
 - ► Higgs rates
 - ▶ Distributions in WBF, Vh, ...
- ...with exceptions:
 - New light resonances
 - ullet Extreme high-energy tails in WBF, Vh
 - Higgs pair production
 - Naive matching procedure

Conclusions

- LHC precision does not guarantee that dimension-8 (and higher) operators can be neglected
- ► In practice, dimension-6 model performs well...
 - ► Higgs rates (with v-improved matching)

...probably irrelevant

(limits as function of E_{max} ?)

- ► Distributions in WBF, *Vh*, ...
- ...with exceptions:
 - New light resonances ...obvious
 - Extreme high-energy tails in WBF, Vh
 - ► Higgs pair production ...irrelevant for now
 - Naive matching procedure ...irrelevant for fits
- ⇒ Dimension-6 description of LHC Higgs physics works (but handle with care)

Backup

Dimension-6 basis

$$\mathcal{L}_{\text{dim-6}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{f_i}{\Lambda^2} \mathcal{O}_i$$

$$\mathcal{O}_{\phi 1} = (D_{\mu}\phi)^{\dagger}\phi \ \phi^{\dagger}(D^{\mu}\phi) \qquad \qquad \mathcal{O}_{\phi 3} = \frac{1}{3}(\phi^{\dagger}\phi)^{3}$$

$$\mathcal{O}_{\phi 2} = \frac{1}{2}\partial^{\mu}(\phi^{\dagger}\phi)\partial_{\mu}(\phi^{\dagger}\phi) \qquad \qquad \mathcal{O}_{GG} = (\phi^{\dagger}\phi)G_{\mu\nu}^{a}G^{\mu\nu a}$$

$$\mathcal{O}_{BW} = -\frac{g \ g'}{4}(\phi^{\dagger}\sigma^{k}\phi)B_{\mu\nu}W^{\mu\nu k} \qquad \qquad \mathcal{O}_{BB} = -\frac{g'^{2}}{4}(\phi^{\dagger}\phi)B_{\mu\nu}B^{\mu\nu}$$

$$\mathcal{O}_{B} = i\frac{g}{2}(D^{\mu}\phi^{\dagger})(D^{\nu}\phi)B_{\mu\nu} \qquad \qquad \mathcal{O}_{WW} = -\frac{g^{2}}{4}(\phi^{\dagger}\phi)W_{\mu\nu}^{k}W^{\mu\nu k}$$

$$\mathcal{O}_{W} = i\frac{g}{2}(D^{\mu}\phi)^{\dagger}\sigma^{k}(D^{\nu}\phi)W_{\mu\nu}^{k} \qquad \qquad \mathcal{O}_{f} = (\phi^{\dagger}\phi)\bar{F}_{L}\phi f_{R} + \text{h. c.}$$

[K. Hagiwara, S. Ishihara, S. R. Szalapski, D. Zeppenfeld 93]

Singlet

Full model:

$$\mathcal{L} \supset \frac{1}{2} \partial_{\mu} S \partial^{\mu} S - \mu_2^2 S^2 - \lambda_2 S^4 - \lambda_3 |\phi^{\dagger} \phi| S^2$$

New H resonance Universal reduction of hxx couplings hh structures

	$\sigma_{\sf default\;EFT}/\sigma_{\sf full}$			$\sigma_{v ext{-im} }$	$\sigma_{v ext{-improved EFT}}/\sigma_{ ext{full}}$			
	ggF	WBF	Vh	ggF	WBF	Vh		
S ₁	1.01	1.01	1.00	1.00	1.00	1.00		
S2	1.02	1.02	1.02	1.00	1.00	1.00		
S ₃	1.12	1.12	1.12	1.00	1.00	1.00		
S 4	0.98	0.98	0.98	1.00	1.00	1.00		
S ₅	0.93	0.93	0.93	1.00	1.00	1.00		

Dim-6 approximation:

$$\mathcal{L} \supset rac{f_{\phi 2}}{\Lambda^2} \, \partial^{\mu} (\phi^{\dagger} \phi) \, \partial_{\mu} (\phi^{\dagger} \phi)$$

600

800

400

Singlet: matching

$$\begin{split} V(\phi,S) &= \mu_1^2 \left(\phi^\dagger \, \phi\right) + \lambda_1 \, |\phi^\dagger \phi|^2 + \mu_2^2 \, S^2 + \lambda_2 \, S^4 + \lambda_3 \, |\phi^\dagger \, \phi| S^2 \\ m_H^2 &= \lambda_1 \, v^2 + \lambda_2 \, v_s^2 + |\lambda_1 \, v^2 - \lambda_2 \, v_s^2| \, \sqrt{1 + \tan^2(2\alpha)} \\ &= \sqrt{2\lambda_2} \, v_s + \mathcal{O}\left(v^2/v_s^2\right) \\ \frac{f_{\phi 2}}{\Lambda^2} &= \begin{cases} \frac{\lambda_3^2}{4\lambda_2^2 v_s^2} & \text{default matching} \\ \frac{2(1 - \cos\alpha)}{v^2} & v\text{-improved matching} \end{cases} \end{split}$$

with mixing angle α and singlet VEV ν_{s}

Singlet: benchmarks

	Se	etup		R	elative coupli	•
	m_H [GeV]	sin α	v_s/v	$\Delta_x^{singlet}$	$\Delta_x^{ ext{default EFT}}$	$\Delta_{_{\mathcal{X}}}^{ u ext{-improved EFT}}$
S1	500	0.2	10	-0.020	-0.018	-0.020
S2	350	0.3	10	-0.046	-0.037	-0.046
S ₃	200	0.4	10	-0.083	-0.031	-0.083
S4	1000	0.4	10	-0.083	-0.092	-0.083
S ₅	500	0.6	10	-0.200	-0.231	-0.200

Singlet: more results

Vector triplet: matching

$$\mathcal{L} = \mathcal{L}_{\text{SM}} - \frac{1}{4} V_{\mu\nu}^{a} V^{\mu\nu\,a} + \frac{M_{V}^{2}}{2} V_{\mu}^{a} V^{\mu\,a} + \frac{g_{w}^{2}}{2g_{V}} V_{\mu}^{a} c_{F} \overline{F}_{L} \gamma^{\mu} \sigma^{a} F_{L}$$

$$+ \mathrm{i} \frac{g_{V}}{2} c_{H} V_{\mu}^{a} \left[\phi^{\dagger} \sigma^{a} \overleftrightarrow{D}^{\mu} \phi \right] + g_{V}^{2} c_{VVHH} V_{\mu}^{a} V^{\mu a} \phi^{\dagger} \phi + \mathcal{O} \left(V^{2} W, V^{3} \right)$$

$$m_{\xi}^{2} = M_{V}^{2} + \left(g_{V}^{2} c_{VVHH} + \frac{g_{V}^{2} c_{H}^{2}}{4} \right) v^{2} + \mathcal{O} \left(v^{4} / M_{V}^{2} \right)$$

$$\Lambda = \begin{cases} M_{V} & \text{default matching} \\ m_{\xi} & v \text{-improved matching} \end{cases}$$

$$f_{WW} = f_{BW} = -\frac{1}{2} f_{W} = c_{F} c_{H}$$

$$f_{\phi 2} = -\frac{1}{4\lambda} f_{\phi 3} = \frac{3}{4} \left(-2 c_{F} g^{2} + c_{H} g_{V}^{2} \right)$$

$$f_{f} = -\frac{1}{4} y_{f} c_{H} \left(-2 c_{F} g^{2} + c_{H} g_{V}^{2} \right)$$

Vector triplet: benchmarks

	m_{ξ} [GeV]	M_V [GeV]	g_V	c_H	c_F	c_{VVHH}
T ₁	1200	591	3.0	-0.47	-5.00	2.00
T2	1200	946	3.0	-0.47	-5.00	1.00
T ₃	1200	941	3.0	-0.28	3.00	1.00
T4	1200	1246	3.0	-0.50	3.00	-0.20
T5	849	846	1.0	-0.56	-1.32	0.08

	$\sigma_{default}$	$_{EFT}/\sigma_{full}$	$\sigma_{v ext{-improved EFT}}/\sigma_{ ext{full}}$		
	WBF	Vh	WBF	Vh	
T1	1.30	0.30	0.98	0.79	
T2	1.05	0.74	0.99	0.91	
T ₃	0.92	1.07	0.97	1.02	
T4	1.03	0.97	1.01	0.98	
T5	1.00	1.04	1.00	1.04	

Vector triplet: more WBF

Vector triplet: Vh

Vector triplet: to square or not to square

$$|\mathcal{M}|^2 = |\mathcal{M}_{SM}|^2 + 2 \operatorname{Re} \mathcal{M}_{SM}^* \mathcal{M}_{D6} \stackrel{?}{+} |\mathcal{M}_{D6}|^2$$

- We ignore Re $\mathcal{M}_{SM}^* \mathcal{M}_{D8}$ at the same order $1/\Lambda^4$
- But: $|\mathcal{M}_{D6}|^2$ necessary to avoid negative cross sections

Vector triplet: toy limits

• 2-dimensional parameter space (m_{ξ}, c) :

$$g_V = 1$$
, $c_H = c$, $c_F = c/(2g^2)$, $c_{HHVV} = c^2$

- ► "Analysis":
 - Parameter point is excluded if $S/\sqrt{B} > 2$
 - Parton level, no non-Higgs backgrounds
- Limits in the absence of a signal:

Vector triplet: EFT breakdown anatomy

Vector triplet: WBF observables (1)

▶ Momentum transfer for $ud \rightarrow udh$:

$$q = \begin{cases} \max\left(\sqrt{|(p_{u'} - p_d)^2|}, \sqrt{|(p_{d'} - p_u)^2|}\right) \\ \max\left(\sqrt{|(p_{u'} - p_u)^2|}, \sqrt{|(p_{d'} - p_d)^2|}\right) \end{cases}$$

for *W*-like phase-space points for *Z*-like phase-space points

Correlation with observables:

Vector triplet: WBF observables (2)

- ► Looking for phase-space region with...
 - …large sensitivity to new physics

$$S/\sqrt{B} = \sqrt{30 \text{fb}^{-1}} \left| \frac{\sigma_{\text{full}} - \sigma_{\text{SM}}}{\sqrt{\sigma_{\text{SM}}}} \right|$$

...small EFT error

$$\Delta_{\mathsf{theo}} = \left| \frac{\sigma_{\mathsf{EFT}} - \sigma_{\mathsf{full}}}{\sigma_{\mathsf{full}}} \right|$$

 1-dimensional cut windows in different observables:

Only cuts are shown where at least 20 fb (before Higgs decay) survive

2HDM

Full model:

$$\mathcal{L} \supset (D_{\mu}\phi_1)^{\dagger}D^{\mu}\phi_1 + (D_{\mu}\phi_2)^{\dagger}D^{\mu}\phi_2$$
$$-V(\phi_1,\phi_2)$$

Dim-6 approximation:

$$\mathcal{L} \supset -\frac{f_{BB}}{\Lambda^2} \frac{g'^2}{4} (\phi^{\dagger} \phi) B_{\mu\nu} B^{\mu\nu}$$
$$+ \sum_{f} \frac{f_f}{\Lambda^2} (\phi^{\dagger} \phi) \bar{F}_L \phi f_R + \text{h. c.}$$

New H^0 , A^0 , H^\pm resonances hff coupling shifts (Small) hVV coupling shifts H^\pm loop in $h\gamma\gamma$ hh structures

	Type	$\tan \beta$	α/π	m_{12}	m_{H^0}	m_{A^0}	m_{H^\pm}
D1	I	1.5	-0.086	45	230	300	350
D2	II	15	-0.023	116	449	450	457
D3	II	10	0.032	157	500	500	500
D4	1	20	0	45	200	500	500

	$\sigma_{v ext{-improved EFT}}/\sigma_{ ext{full}}$					
	ggF	WBF	Vh			
D1	0.87	1.11	1.11			
D2	1.00	1.00	1.00			
D ₃	1.02	1.04	1.04			
D4	1.00	1.00	1.00			

Scalar top partners

Full model:

$$\mathcal{L} \supset (D_{\mu} \tilde{Q})^{\dagger} (D^{\mu} \tilde{Q}) + (D_{\mu} \tilde{t}_{R})^{*} (D^{\mu} \tilde{t}_{R})$$

$$-\tilde{Q}^{\dagger} M^{2} \tilde{Q} - M^{2} \tilde{t}_{R}^{*} \tilde{t}_{R}$$

$$-\kappa_{LL} (\phi \cdot \tilde{Q})^{\dagger} (\phi \cdot \tilde{Q}) - \kappa_{RR} (\tilde{t}_{R}^{*} \tilde{t}_{R}) (\phi^{\dagger} \phi)$$

$$- [\kappa_{LR} M \tilde{t}_{R}^{*} (\phi \cdot \tilde{Q}) + \text{h.c.}]$$

Dim-6 approximation:

$$\mathcal{L}\supset\sum_i\frac{f_i}{\Lambda^2}\,\mathcal{O}_i$$

Loop effects in hgg, hyy

$$(\checkmark)$$

[S. Dawson, I. M. Lewis, M. Zeng 1501.04103; A. Drozd, J. Ellis, J. Quevillon, T. You 1504.02409]

(x)

(Small) loop effects in WBF, Vh