

AWQ: ACTIVATION-AWARE W EIGHT QUANTIZATION FOR ON-DEVICE LLM COMPRESSION AND ACCELERATION 激活感知权重量化用于设备端大型语言模型的压缩与加速

Ji Lin*1 Jiaming Tang*12 Haotian Tang*1 Shang Yang*1 Wei-Ming Chen3 Wei-Chen Wang1 Guangxuan Xiao1 Xingyu Dang14 Chuang Gan56 Song Han1

The 7th MLSys Conference Location: Santa Clara, California, USA Date: 2024

汇报人姓名: 毛杉文

汇报日期: 2024.11.19

- ・背景----大模型量化背景
- · 动机----实现4比特以下的量化
- 方法----线性量化
- 效果----4比特量化

$$w' = q \times s$$

$$O = W \cdot X$$

动机

AWQ发现,在LLM中,并非所有权重都同等重要。只需保护1%的显著权重,就能大幅降低量化误差。 为了识别显著权重通道,我们应参考激活分布,而非权重。

方法--通过激活感知缩放保护显著权重

(a) RTN quantization (PPL 43.2)

(b) Keep 1% salient weights in FP16 (PPL 13.0)

(c) Scale the weights before quantization (PPL 13.0)

$$Q(w) = \Delta \cdot \operatorname{Round}\left(\frac{w}{\Delta}\right), \Delta = \frac{\max(|w|)}{2^N - 1}$$

$$Q(w \cdot s)(\frac{x}{s}) = \Delta' \cdot \operatorname{Round}\left(\frac{ws}{\Delta'}\right) \cdot x \cdot \frac{1}{s}$$

$$\operatorname{Err}(Q(w)x) = \Delta \cdot \operatorname{RoundErr}\left(\frac{w}{\Delta}\right) \cdot x$$

$$\operatorname{Err}(Q(w \cdot s) \left(\frac{x}{s}\right)) = \Delta' \cdot \operatorname{RoundErr}\left(\frac{ws}{\Delta'}\right) \cdot x \cdot \frac{1}{s}$$

$$\frac{\Delta'}{\Delta} \cdot \frac{1}{s}$$

方法--缩放因子的选择

不同缩放因子时候模型的性能

OPT-6.7B	s = 1	s = 1.25	s = 1.5	s = 2	s = 4
proportion of $\Delta^{'} \neq \Delta$	0%	2.8%	4.4%	8.2%	21.2%
average Δ'/Δ	1	1.005	1.013	1.038	1.213
average $\frac{\Delta'}{\Delta} \cdot \frac{1}{s}$	1	0.804	0.676	0.519	0.303
Wiki-2 PPL	23.54	12.87	12.48	11.92	12.36

$$s^* = \arg\min_s \, L(s)$$

$$L(s) = \|Q(W \cdot \operatorname{diag}(s))(\operatorname{diag}(s)^{-1} \cdot X) - WX\|$$

$$s=s_X^lpha\,, lpha^*=rg\min_lpha\,L(s_X^lpha\,)$$

其中 s_X 是激活的平均幅度(每通道),我们使用单个超参数 α 来平衡显著和非显著通道的保护。我们可以通过快速网格搜索在[0,1]区间内找到最佳 α (0表示不缩放;1对应于搜索空间中最激讲的缩放)。

方法—内核融合加速

我们通过将反量化内核与矩阵乘法内核融合,避免了将反量化后的权重写入DRAM。

TinyChat系统通过将层归一化的所有操作(如乘法、除法和平方根)融合到一个内核中。

针对具有128位SIMD单元的ARM NEON的SIMD感知权重打包。原始权重被重新排序并打包,以便与位宽对齐,从而使权重可以在运行时使用AND运算和位移操作与128位掩码进行解包

PPL↓		Llama-2			LLaMA			
		7B	13B	70B	7B	13B	30B	65B
FP16	-	5.47	4.88	3.32	5.68	5.09	4.10	3.53
	RTN	6.66	5.52	3.98	7.01	5.88	4.88	4.24
INT3	GPTQ	6.43	5.48	3.88	8.81	5.66	4.88	4.17
g128	GPTQ-R	6.42	5.41	3.86	6.53	5.64	4.74	4.21
	AWQ	6.24	5.32	3.74	6.35	5.52	4.61	3.95
INT4 g128	RTN	5.73	4.98	3.46	5.96	5.25	4.23	3.67
	GPTQ	5.69	4.98	3.42	6.22	5.23	4.24	3.66
	GPTQ-R	5.63	4.99	3.43	5.83	5.20	4.22	3.66
	AWQ	5.60	4.97	3.41	5.78	5.19	4.21	3.62

AWQ在不同模型规模和不同位精度下,相较于四舍五入量化(RTN)有所改善。在LLaMA和Llama-2模型上,它始终比GPTQ(包含和不包含重排序)取得更好的困惑度。

TinyChat在NVIDIA Jetson Orin上运行4位量化的Llama模型时,相较于现有系统提供了1.2-3.0倍的速度提升。它还支持多种通用和针对编码的LLM,并在处理这些工作负载时至少比AutoGPTQ快2.6倍。

挑挑大家