■ 06b_timeseries_forecasting_gcloud_execution.md

Timeseries Forecasting using sessions in Serverless Spark through Google Cloud Shell

Following are the lab modules:

- 1. Understanding Data
- 2. Solution Architecture
- 3. Declaring Variables
- 4. Execution
- 5. Logging

1. Understanding Data

Data Files

The datasets used for this project are:

• train.csv: This file contains the date, store, item, sales data.

date - Date of the sale data. There are no holiday effects or store closures

store - Store ID

item - Item ID

sales - Number of items sold at a particular store on a particular date.

• test.csv:

id- Unique identifier

date - Date of the sale data. There are no holiday effects or store closures.

store - Store ID

item - Item ID

2. Solution Architecture

3. Declaring cloud shell variables

23.1 Set the PROJECT_ID in Cloud Shell

Open Cloud shell or navigate to shell.cloud.google.com Run the below gcloud config set project \$PROJECT_ID

23.2 Verify the PROJECT_ID in Cloud Shell

Next, run the following command in cloud shell to ensure that the current project is set correctly:

gcloud config get-value project

3.3 Declare the variables

Based on the preregs and checklist, declare the following variables in cloud shell by replacing with your values:

```
PROJECT_ID=$(gcloud config get-value project)
                                                     #current GCP project where we are building our use case
REGION=
                                                     #GCP region where all our resources will be created
                                                     #subnet which has private google access enabled
SUBNET=
BUCKET_CODE=
                                                     #GCP bucket where our code, data and model files will be stored
BUCKET_PHS=
                                                     #bucket where our application logs created in the history server will be stored
HISTORY_SERVER_NAME=
                                                     #name of the history server which will store our application logs
BQ_DATASET_NAME=
                                                     #BigQuery dataset where all the tables will be stored
SESSION_NAME=
                                                     # Serverless Session name.
UMSA_NAME=
                                                     #user managed service account required for the PySpark job executions
SERVICE_ACCOUNT=$UMSA_NAME@$PROJECT_ID.iam.gserviceaccount.com
NAME=
                                                     #Your unique identifier
```

Note: For all the variables except 'NAME', please ensure to use the values provided by the admin team.

©3.4 Update Cloud Shell SDK version

Run the below on cloud shell-

gcloud components update

4. Execution

℃4.1. Run the Batch by creating sessions.

Run the below on cloud shell to create session. -

```
gcloud beta dataproc sessions create spark $SESSION_NAME \
--project=${PROJECT_ID} \
--location=${REGION} \
--property=spark.jars=gs://spark-lib/bigquery/spark-bigquery-with-dependencies_2.12-0.22.2.jar \
--history-server-cluster=projects/$PROJECT_ID/regions/$REGION/clusters/$HISTORY_SERVER_NAME \
--subnet=$SUBNET \
--property=dataproc:jupyter.notebook.gcs.dir=$BUCKET_CODE
```

• Once the serverless spark session has been created, open the session and click on the jupyter session.

• Select Pyspark Kernel for the execution.

• Copy the code from 00-scripts/timeseries_forecasting.py into the notebook created and edit the variables: project_name,dataset_name,bucket_name and name with your values and hit the **Execute** button to execute the code

%4.2. Check the output table in BigQuery

Navigate to BigQuery Console, and check the timeseries_forecasting dataset.

Once the code has successfully executed, four new tables '<your_name_here>_global_predictions' will be created:

To query the data to find the list of stocks with highest stringency Index, run the following query -

select * from `<GCP-PROJECT-NAME>.<BQ-DATASET-NAME>.<user_name>_global_predictions`

Note: Edit all occurrences of and to match the values of the variables PROJECT_ID,user_name and BQ_DATASET_NAME respectively

∞5. Logging

№5.1 Persistent History Server logs

To view the Persistent History server logs, click the 'View History Server' button on the Sessions monitoring page and the logs will be shown as below: As the session is still in active state, we will be able to find the logs in show incomplete applications.

Search:

Search:

Event log directory: gs://

Last updated: 2022-04-04 16:52:29

Client local time zone: Asia/Calcutta

Version App ID App Name **Driver Host** Started Completed Duration Spark User Last Updated **Event Log** 3.2.1 10.122.15.217 2022-04-04 16:35:43 2022-04-04 16:36:44 1.0 min spark 2022-04-04 16:36:45

Showing 1 to 1 of 1 entries Show incomplete applications

Event log directory: gs://

Last updated: 2022-04-04 16:52:29

Client local time zone: Asia/Calcutta

Version		App Name	Driver Host	≜ Started	Completed	Duration	♦ Spark User	Last Updated	Event Log
3.2.1	app-20220404110546-0000		10.122.15.217	2022-04-04 16:35:43	2022-04-04 16:36:44	1.0 min	spark	2022-04-04 16:36:45	Download

Showing 1 to 1 of 1 entries Show incomplete applications