

Modellreduktion und partielle Differentialgleichungen

Mitschrift der Tafelnotizen

Tobias Wedemeier

23. November 2015 gelesen von Dr. Smetana

1	Einletung und Motivation 1.1 Parameterabhängige PDGL 1.2 Definition (schwache Formulierung in Hilberträumen) 1.3 Definition (hochdimensionales, diskretes Modell) 1.4 Parameterabhängige Lösungsmenge 1.5 Beispiel 1.6 Definition (reduziertes Modell) 1.7 Bermerkung (Begrifflichkeit) 1.8 Organisation der Vorlesung	. 1 . 2 . 2 . 2 . 2
2	Grundlagen	3
_	2.1 Lineare Funktionalanalysis in Hilberträumen	
	2.1.1 Lineare Operatoren	
	2.1 Definition	
	2.2 Beispiele	
	2.3 Lemma	
	2.4 Definition	
	2.5 Definition	
	2.6 Beispiel	
	2.7 Satz	
	2.8 Folgerung	
	2.9 Satz	
	2.10 Folgerung / Beispiel:	
	Definition 2.11	
	2.12 Bemerkung	
	2.13 Satz	
	2.14 Satz	
	2.1.2 Sobolevräume	
	2.15 Bemerkung	
	2.16 Definition	
	2.17 Definition	
	2.18 Lemma	
	2.19 Beispiel	
	2.20 Beispiel	
	2.21 Definition	
	2.22 Bemerkung	
		. 9
	2.23 Beispiel	
	2.25 Definition	
	2.26 Satz	
	2.27 Satz	
	2.28 Satz	
	2.29 Satz	
	2.1.3 Schwache Formulierung elliptischer Randwertprobleme	
	2.30 Defintion	
	2.31 Satz	
	2.32 Bemerkung	. 11
	A.J. Denerante	

2.34 E		
		11
2	1.4 Regularität	11
2.35 S	ıtz	12
	emerkung	12
2.2	itz-Galerkin Verfahren und absrtrakte Fehlerabschätzungen	12
2.37 [efinition	12
2.38 E	emerkung	12
2.39 5	ıtz	12
2.40 E	emerkung	13
2.41 E	eispiel	13
	lgerung	13
	inite Elemente Verfahren	13
	efinition	14
	efinition	14
	emma	14
	efinition	15
	efinition	15
	eispiel	15
	emerkung	15
	efinition	16
		16
		16
	ntz	16
	emerkung	17
2.54 E	emerkung	17
Redu	erte Basis Methoden für lineare, koerzive Probleme	17
		17
		T 1
3 1 1)	inition	17
	inition	17 17
3.2 Be	merkung	17
3.2 Be 3.3 De	merkung	17 17
3.2 Be 3.3 De 3.4 Le	merkung	17 17 18
3.2 Be 3.3 De 3.4 Le 3.5 De	merkung intion	17 17 18 18
3.2 Be 3.3 De 3.4 Le 3.5 De 3.6 Be	merkung iintion nma iintion iintion iintion merkung	17 17 18 18 18
3.2 Be 3.3 De 3.4 Le 3.5 De 3.6 Be 3.7 De	merkung iintion	17 17 18 18 18
3.2 Be 3.3 De 3.4 Le 3.5 De 3.6 Be 3.7 De 3.8 Fe	merkung iintion nma iinition merkung iinition iinition iinition	17 17 18 18 18 18
3.2 Be 3.3 De 3.4 Le 3.5 De 3.6 Be 3.7 De 3.8 Fe 3.9 De	merkung iintion nma iinition merkung iinition gerung iinition	17 17 18 18 18 18 18
3.2 Be 3.3 De 3.4 Le 3.5 De 3.6 Be 3.7 De 3.8 Fe 3.9 De 3.10 E	merkung iintion nma iinition merkung iinition gerung iinition merkung	17 17 18 18 18 18 18 19
3.2 Be 3.3 De 3.4 Le 3.5 De 3.6 Be 3.7 De 3.8 Fe 3.9 De 3.10 E	merkung Fintion Fintion Finition Finiti	17 17 18 18 18 18 19 19
3.2 Be 3.3 De 3.4 Le 3.5 De 3.6 Be 3.7 De 3.8 Fe 3.9 De 3.10 E 3.2	merkung Fintion Fintion Finition	17 18 18 18 18 19 19 19
3.2 Be 3.3 De 3.4 Le 3.5 De 3.6 Be 3.7 De 3.8 Fe 3.9 De 3.10 E 3.11 E 3.12 E	merkung Fintion Fintion Finition Finiti	17 18 18 18 18 19 19 19
3.2 Be 3.3 De 3.4 Le 3.5 De 3.6 Be 3.7 De 3.8 Fe 3.9 De 3.10 E 3.11 E 3.12 E 3.13 [merkung iintion nma . iinition merkung iinition gerung iinition emerkung	17 18 18 18 18 19 19 19 19
3.2 Be 3.3 De 3.4 Le 3.5 De 3.6 Be 3.7 De 3.8 Fe 3.9 De 3.10 E 3.11 E 3.12 E 3.13 E	merkung iintion nma iinition merkung iinition gerung iinition emerkung emerkung emerkung emerkung emerkung emerkung eduzierte Basisverfahren efinition emerkung emerkung emerkung emerkung	17 17 18 18 18 19 19 19 19 19
3.2 Be 3.3 De 3.4 Le 3.5 De 3.6 Be 3.7 De 3.8 Fe 3.9 De 3.10 E 3.11 E 3.12 E 3.13 E 3.14 E 3.15 E	merkung Fintion Fintion Finition Finiti	17 17 18 18 18 19 19 19 19 19 19
3.2 Be 3.3 De 3.4 Le 3.5 De 3.6 Be 3.7 De 3.8 Fe 3.9 De 3.10 E 3.11 E 3.12 E 3.13 E 3.14 E 3.15 E	merkung Fintion Fintion Finition Finiti	17 17 18 18 18 19 19 19 19 19
3.2 Be 3.3 De 3.4 Le 3.5 De 3.6 Be 3.7 De 3.8 Fe 3.9 De 3.10 E 3.11 E 3.12 E 3.13 E 3.14 E 3.15 E 3.16 F 3.17 F	merkung Finition Inma Finition Merkung Finition Merkung Finition Merkung Merekung Me	17 17 18 18 18 19 19 19 19 19 19
3.2 Be 3.3 De 3.4 Le 3.5 De 3.6 Be 3.7 De 3.8 Fe 3.9 De 3.10 E 3.11 E 3.12 E 3.13 E 3.14 E 3.15 E 3.16 F 3.17 F 3.18 F	merkung finition nma finition merkung finition gerung finition emerkung eduzierte Basisverfahren efinition emerkung emerkung eduzierte Basisverfahren efinition emerkung	17 18 18 18 18 19 19 19 19 19 19 20
3.2 Be 3.3 De 3.4 Le 3.5 De 3.6 Be 3.7 De 3.8 Fe 3.9 De 3.10 E 3.11 E 3.12 E 3.13 E 3.14 E 3.15 E 3.16 F 3.17 F 3.18 F	merkung Finition Inma Finition Merkung Finition Merkung Finition Merkung Merekung Me	17 18 18 18 18 19 19 19 19 19 20 20
3.2 Be 3.3 De 3.4 Le 3.5 De 3.6 Be 3.7 De 3.8 Fe 3.9 De 3.10 E 3.11 E 3.12 E 3.13 E 3.14 E 3.15 F 3.16 F 3.17 F 3.18 F 3.19 S	merkung finition nma finition merkung finition gerung finition emerkung eduzierte Basisverfahren efinition emerkung emerkung eduzierte Basisverfahren efinition emerkung	17 18 18 18 19 19 19 19 19 20 20
3.2 Be 3.3 De 3.4 Le 3.5 De 3.6 Be 3.7 De 3.8 Fe 3.9 De 3.10 E 3.11 E 3.12 E 3.13 E 3.14 E 3.15 E 3.16 F 3.17 F 3.18 F 3.19 S 3.20 E	merkung finition nma finition merkung finition gerung finition emerkung eduzierte Basisverfahren efinition emerkung eefinition emerkung enerkung eefinition emerkung enerkung eefinition emerkung enerkung enerkun	17 18 18 18 19 19 19 19 19 20 20 21
3.2 Be 3.3 De 3.4 Le 3.5 De 3.6 Be 3.7 De 3.8 Fe 3.9 De 3.10 E 3.11 E 3.12 E 3.13 E 3.14 E 3.15 E 3.16 F 3.17 F 3.18 F 3.19 S 3.20 E 3.21 F	merkung iintion nma iinition merkung iinition gerung iinition gerung iinition emerkung eduzierte Basisverfahren efinition emerkung emerkung efinition emerkung efinition emerkung efinition emerkung efinition emerkung efinition emerkung	17 18 18 18 19 19 19 19 19 20 20 21 21
3.2 Be 3.3 De 3.4 Le 3.5 De 3.6 Be 3.7 De 3.8 Fe 3.9 De 3.10 E 3.11 E 3.12 E 3.13 E 3.14 E 3.15 E 3.16 F 3.17 F 3.18 F 3.19 S 3.20 E 3.21 R 3.22 E	merkung iintion nma iinition merkung iinition gerung iinition gerung iinition emerkung eduzierte Basisverfahren efinition emerkung	17 18 18 18 19 19 19 19 20 20 21 21 22

3.25 Satz	22
3.26 Satz	23
3.27 Bemerkung	23
3.28 Folgerung	23
3.3 Offline/Online Zerlegung des RB-Modells	24
3.29 Bemerkung	24
3.30 Definition	25
3.31 Folgerung	25
3.32 Bemerkung	25
	25
3.4 A posteriori Fehlerschätzer	26
3.4.1 A posteriori Fehlerschranken und Effektivität	26
3.34 Lemma	26
3.35 Satz	26
3.36 Folgerung	27
3.37 Bemerkung	27
3.38 Bemerkung	27
3.39 Satz	27
3.40 Folgerung	28
3.41 Bemerkung	28
3.42 Folgerung	28
3.34 Satz	29
3.44 Satz	30
3.45 Bemerkung	31
3.4.2 Offline/Online-Zerlegung des Fehlerschätzers	31
3.46 Lemma	31
Abbildungsverzeichnis	Α

/// Inhaltsverzeichnis

1 Einletung und Motivation

1.1 Parameterabhängige PDGL

Sei $\Omega\subseteq\mathbb{R}^d$ ein polygonales Gebiet. Zu einem Parametervektor $\mu\in P\subseteq\mathbb{R}^d$ aus einer Menge von 'erlaubten' Parametern ist eine Funktion, z.B. 'Temperatur'

$$u(\mu):\Omega\to\mathbb{R}$$

gesucht, so dass $-\nabla \left(\kappa(\mu)\nabla u(\mu)\right)=q(\mu)$ in Ω , wobei $u(\mu)=0$ auf $\partial\Omega$, mit $\kappa(\mu):\Omega\to\mathbb{R}$ dem 'Wärmeleitkoeffizient' und $q(\mu)$ eine 'Wärmequelle', z.B. $q(\mu)=1$. Weiter kann eine Augabe erwünscht sein, z.B.

$$s(\mu) = \frac{1}{|\Omega_s|} \int \lim_{\Omega_s} u(x, \mu) dx,$$

die mittlere Temperatur auf Ω_s .

1.2 Definition (schwache Formulierung in Hilberträumen)

Sei X ein reeller Hilbertraum. Zu $\mu \in P$ ist gesucht ein $u(\mu) \in X$ und eine Ausgabe $s(\mu) \in \mathbb{R}$, so dass

$$b(u(\mu), v; \mu) = f(v; \mu), \ s(\mu) = l(u(\mu); \mu) \ \forall v \in X$$

für eine Bilinearform $b(\cdot,\cdot;\mu):X\times X\to\mathbb{R}$ und linearen Funktionalen $f(\cdot;\mu),l(\cdot;\mu):X\to\mathbb{R}$. Die schwache Formulierung für Beispiel 1.1 lautet:

$$X := H_0^1(\Omega) = \left(f \in L^2(\Omega) : + \frac{\mathrm{d}}{\mathrm{d}x_1} f \in L^2(\Omega), \ f|_{\partial\Omega = 0} \right)$$

Dann kann man die Bilinearform über

$$b(u(\mu), v; \mu) := \int_{\Omega} \kappa(\mu) \nabla u(\mu) \nabla v dx; f(v; \mu) := \int_{\Omega} \lim_{\Omega} q(\mu) v dx$$

ausdrücken und

$$s(\mu) = \frac{1}{|\Omega_s|} \int \lim_{\Omega_s} u(x; \mu) dx =: l(u(\mu); \mu)$$

ABER: Für sehr wenige PDGL's können wir die Lösung analytisch bestimmen. Daher sind wir an einer numerische Approximation interessiert. Ein weit verbreitetes Diskretisierungsverfahren ist die Finite Elemente Methode. Diese Methode basiert auf obiger schwacher Formulierung.

1.3 Definition (hochdimensionales, diskretes Modell)

Sei $X_h \subseteq X$ mit $\dim(X_h) = N_h < \infty$. Der Index h bezeichnet hier die Gitterweite. Zu $\mu \in P$ ist gesucht ein $u_h(\mu) \in X_h$ und eine Ausgabe $s_h(\mu) \in \mathbb{R}$, so dass

$$b(u_h(\mu), v_h; \mu) = f(v_h; \mu), \ s_h(\mu) = l_h(v_h(\mu); \mu) \ \forall v_h \in X_h.$$
 (1.1)

Anwendungen für die Standarddiskretisierungsverfahren sehr teuer oder zu teuer sind:

many-query context

- Parameterstudien
- Design
- Parameteridentifikation / inverse Probleme

- _---
 - Optimierung
 - Statistische Analyse

schnelle Simulationsantwort

- Echtzeit-Steuerung technischer Geräte
- interaktive Benutzeroberflächen

1.4 Parameterabhängige Lösungsmenge

Sei $\mu:=\{u(\mu):\mu\in P\}\subseteq P$ für $P\in\mathbb{R}^p$ ist die durch μ parametrisierte Lösungsmenge. X ist die im Allgemeinen unendlichdimensional. \Rightarrow Motivation für die Suche nach einem 'niedrigdimensionalen' Teilraum $X_N\subseteq X$ zur Approximation von M und einer Approximation $u_N(\mu)\approx u(\mu),\ u_N\in X_N$. Eine Möglichkeit eine reduzierte Basis zu generieren besteht darin geschickt Parameterwerte $\mu_1,\ldots,\mu_N\in P$ zu wählen und den Raum als $X_N:=\operatorname{span}\{u(\mu_1),\ldots,u(\mu_N)\}$ zu definieren. Eine Lösung $u(\mu_i)$ für einen Parameterwert $\mu\in P$ wird auch **Snapshot** genannt.

1.5 Beispiel

Gesucht ist $u(\cdot;\mu)\in C^2([0,1])$ mit $(1+\mu)u''=1$ auf (0,1) und u(0)=u(1)=1 für den Parameter $\mu\in P:=[0,1]\subseteq\mathbb{R}.$

Snapshots:

 $\mu_1 = 0 \Rightarrow u_1 := u(\cdot; \mu_1) = \frac{1}{2}x^2 - \frac{1}{2}x + 1$, $\mu_2 = 0 \Rightarrow u_2 := u(\cdot; \mu_2) = \frac{1}{4}x^2 - \frac{1}{4}x + 1$ und $X_N := \text{span}\{u_1, u_2\}$. Dann ist die reduzierte Lösung $u_N(\mu) \in X_N$ gegeben durch

$$u_N(\mu) = \alpha_1(\mu)u_1 + \alpha_2(\mu)u_2,$$

mit $\alpha_1=\frac{2}{\mu+1}-1$ und $\alpha_2=2-\frac{2}{\mu-1}.$ Diese erfüllt folgende Fehleraussage und ist somit exakt:

$$||u_N(\mu) - u(\mu)||_{\infty} = \sup_{\lambda \in [0,1]} |U_N(x;\mu) - u(x;\mu)| = 0$$

Da $\alpha_1 + \alpha_2 = 1$ und $0 \le \alpha_1, \alpha_2 \le 1$ ist M die Menge der Konvexkombinationen von u_1 und u_2 .

1.6 Definition (reduziertes Modell)

Sei $X_N \subseteq X$ ein reduzierter Basisraum mit $\dim(X_N) < \infty$. Zu $\mu \in P$ ist gesucht ein $u_N(\mu) \in X_N$ und eine Ausgabe $s_N(\mu) \in \mathbb{R}$, so dass

$$b(u_N(\mu), v_N; \mu) = f(v_N; \mu), \ s_N(\mu) = l_N(u_N(\mu); \mu) \ \forall v_N \in X_N$$
 (1.2)

1.7 Bermerkung (Begrifflichkeit)

Zusammengefasst unterscheiden wir zwischen den folgenden drei Modellen:

- 1) Eine partielle DGL ist ein **analytisches Modell**, welches die analytische Lösung $u(\mu) \in X$ in einem (typischerweise) ∞ -dimensionalen Funktionenraum charakterisiert ist.
- 2) Ein hochdimensionales, diskretes Modell ist ein Berechnungsverfahren zur Bestimmung einer Näherung $u_h(\mu) \in X_h$, wobei X_h ein hochdimensionaler Funktionenraum ist. Beispiele sind **Finite Elemente** oder **Finite Volumenräume** und typischerweise hat X_h eine Dimension von mindestens 10^5 .

- 3) Ein **reduziertes Modell** ist ein Berechnungsverfahren zur Bestimmung einer Näherung $u_N(\mu) \in X_N$ in einem sehr problemangepassten und daher niedrigdimensionalen Raum von typischerweise $\dim X_N < 100$.
- 4) **Modellreduktion** beschäftigt sich mit Modellen der Erzeugung von reduzierten Modellen aus hochdimensionalen, diskreten (oder auch analytischen) Modellen und Untersuchungen ihrer Eigenschaften.

1.8 Organisation der Vorlesung

Zentrale Fragen:

- Reduzierte Basis: Wie kann ein möglichst kompakter Teilraum konstruiert werden?
- Reduziertes Modell: Existenz von reduzierten Lösungen $u_N(\mu)$? Wie kann eine reduzierte Lösung $u_N(\mu)$ berechnet werden?
- **Effizienz:** Wie kann $u_N(\mu)$ schnell berechnet werden?
- Stabilität: Wie kann die Stabilität des reduzierten Modells für wachsendes N garantiert werden?
- Approximationsgüte: Warum können wir erwarten, dass eine relativ kleine Anzahl von Basisfunktionen ausreicht?
- Fehlerschätzer: Kann der Fehler des reduzierten zum vollen Modell beschränkt werden?
- Effektivität: Kann garantiert werden, dass der Fehlerschätzer den Fehler nicht beliebig überschätzt?

Vorläufige Gliederung (bis Weihnachten)

- 1) Einleitung / Moitavtion
- 2) Grundlagen:
 - Kurze Einführung in lineare Funktionalanalysis
 - Kurze Einführung in Finite Elemente
- 3) Reduzierte Basis Methoden für lineare, koerzive Probleme
 - Reduzierte Basis Verfahren
 - Offline-/ Online-Zerlegung
 - Fehlerschätzer
 - Basisgenerierung

2 Grundlagen

2.1 Lineare Funktionalanalysis in Hilberträumen

2.1.1 Lineare Operatoren

2.1 Definition (Hilbertraum)

Sei X ein reeller Vektorraum mit $(\cdot,\cdot):X\times X\to\mathbb{R}$ ein Skalarprodukt und induzierter Norm $\|x\|:=\sqrt{(x,x)}$. falls X vollständig bzgl. $\|.\|$, ist X ein (reeller) **Hilbertraum** (HR).

2.2 Beispiele (Hilbertraum)

- (1) $X := \mathbb{R}^d \text{ mit } (x,y) := \sum_{i=1}^d x_i y_i \text{ ist ein HR.}$
- (2) $X := L^2(\Omega)$ mit $(x,y) := \int_{\Omega} f(x)g(x)dx$ ist ein HR.
- (3) $X := C^0([0,1])$ mit $(f,g) := \int_0^1 f(x)g(x)dx$ ist kein HR.

2.3 Lemma

Seien X und Y reelle Vektorräume. Ist die Abbildung $T:X\to Y$ linear und $x_0\in X$, so sind äquivalent:

- (1) T ist stetig.
- (2) T ist stetig in x_0 .
- (3) $\sup \lim_{\|x\|_X \le 1} \|Tx\|_Y < \infty.$
- (4) \exists Konstante (mit $||Tx||_Y \le c ||x||_X \forall x \in X$)

2.4 Definition (Lineare Operatoren)

Seinen X und Y reelle Vektorräume. Wir definieren

$$L(X;Y):=(T:X\to Y\ ;\ T\ \text{ist linear und stetig})\,.$$

Abbildungen in L(X;Y) nennen wir **lineare Operatoren**. Nach Lemma 2.3 (3) ist für jeden Operator $T \in L(X;Y)$ die **Operatornorm** von T definiert durch

$$||T||_{L(X;Y)} := \sup_{||x||_Y \le 1} ||Tx||_Y < \infty,$$

oder in kurz ||T||. Es ist L(X) := L(X;X).

2.5 Definition (Spezielle lineare Operatoren)

- (1) $X' := L(X; \mathbb{R})$ ist der **Dualraum** von X. Die Elemente von X' nennen wir auch **lineare Funktionale**
- (2) Die Menge der kompakten (linearen) Operatoren von X nach Y ist definiert durch

$$K(X;Y) := \left(T \in L(X;Y) \ ; \ T(\overline{B_1(0)}) \ \mathsf{kompakt}\right).$$

- (3) Eine lineare Abbildung $P: X \to X$ heißt (lineare) **Projektion**, falls $P^2 = P$.
- (4) Für $T \in L(X;Y)$ ist $\ker(T) := (x \in X \; ; \; Tx = 0)$ der **Nullraum** oder **Kern** von T. Aus der Stetigkeit von T folgt, dass $\ker(T)$ ein abgeschlossener Unterraum ist. Der **Bildraum** von T ist $\operatorname{bild}(T) := (Tx \in Y \; ; \; x \in X)$.
- (5) Ist $T \in L(X;Y)$ bijektiv, so ist $T^{-1} \in L(Y;X)$. Dann heißt T (linear, stetiger) **Isomorphismus**.
- (6) $T \in L(X;Y)$ heißt **Isometrie**, falls

$$||Tx||_Y = ||x||_X \ \forall x \in X$$

2.6 Beispiel

Sei $g \in L^2(\Omega)$. Dann ist nach der Hölderungleichung durch

$$T_g f := \int_{\Omega} f(x)g(x) dx$$

ein Funktional $T_g \in L^2(\Omega)'$ definiert.

2.7 Satz (Projektionssatz)

Sei X ein Hilbertraum und $A\subseteq X$ nicht leer, abgeschlossen und konvex. Dann gibt es genau eine Abbildung $P:X\to A$ mit

$$\|x-Px\|_X=\operatorname{dist}(x,A)=\inf\lim_{y\in A}\|x-y\|_X\ \, \forall x\in X.$$

Die Abbildung $P:X\to A$ heißt orthogonale Projektion von X auf A.

Beweis: [Alt, Satz 2.2, S.96]

2.8 Folgerung

Ist $A\subseteq X$ nicht-leer, abgeschlossen und Unterraum, so ist P linear und $Px\in A$ charakterisiert durch $(x-Px,a)_X=0\ \forall a\in A$. Falls $\dim(A)=n<\infty$ und $(\varphi_i)_{i=1}^h$ Orthonormalbasis von A, gilt

$$Px = \sum_{i=1}^{n} (x, \varphi_i)_X \varphi_i.$$

2.9 Satz (Riesz'scher Darstellungssatz)

Ist X Hilbertraum, so ist $J: X \to X'$ definiert durch

$$J(v)(w) := (v, w)_X \ \forall v, w \in X$$

eine stetige, lineare, bijektive Isometrie. Insbesondere existiert zu $l \in X'$ ein eindeutiger **Riesz Reprä-asentant** $V_l := J^{-1}(l) \in X$ mit $l(.) = (v_l, .)_X$.

Beweis:

C-S-Ungleichung: $|J(v)(w)| \leq \|v\|_X \|w\|_X$. Dann folgt: $J(v) \in X'$ mit

$$||J(v)||_{X'} = \sup_{w \in X \setminus \{0\}} \frac{|J(v)(w)|}{||w||_X} = \sup_{w \in X \setminus \{0\}} \frac{|(v,w)_X|}{||w||_X} \le ||v||_X \Rightarrow J \text{ stetig.}$$

Da $|J(v)(v)| = ||v||_X^2$ folgt:

$$\sup_{w \in X \backslash \{0\}} \frac{|J(v)(w)|}{\|w\|_X} \geq \frac{|J(v)(v)|}{\|v\|_X} = \frac{\|v\|_x^2}{\|v\|_X} = \|v\|_X \,.$$

Also ist J eine Isometrie und insbesondere ist J injektiv.

Zeige J surjektiv: Sei $l \in X', \ l \neq 0$, Kern(l) ist abgeschlossener Teilraum, also existiert $P: X \to \ker(l)$ orthogonale Projektion nach Satz 2.7. Sei $v_0 \in X$ mit $l(v_O) = 1$. Setze $v_1 := v_o - Pv_0 \Rightarrow l(v_1) = l(v_0) = 1$ und $v_1 \neq 0$. Mit Folgerung 2.8:

$$\Rightarrow (w, v)_X = 0 \ \forall x \in \ker(l) \Rightarrow v_1 \perp \ker(l).$$

Für $v \in X$ gilt

$$v \underbrace{v - l(v) \cdot v_1}_{\in \ker(l)} \cdot v_1 + l(v) \cdot v_1$$

und $v - l(v)v_1 \in \ker(l)$ wegen

$$l(v - l(v)v_1) = l(v) - l(v)l(v_1) = 0.$$

Also ist

$$\begin{split} (v_1,v)_X &= \underbrace{(v_1,v-l(v)v_1)_X}_{=0,\text{ da }\ker(l)\perp v_1})_X + (v_1,l(v)v_1)_X \\ &= l(v) \left\|v_1\right\|_X^2 \\ &\Rightarrow l(v) = \left(\frac{v_1}{\left\|v_1\right\|_X^2},v\right)_X = J\left(\frac{v_1}{\left\|v_1\right\|_X^2}\right)(v). \\ &\Rightarrow l \in \operatorname{bild}(J) \Rightarrow J \text{ bijektiv.} \end{split}$$

2.10 Folgerung / Beispiel:

Mit Hilfe des Rieszschen Darstellungssatz können wir damit $L^2(\Omega)$ ' - den Dualraum von $L^2(\Omega)$ - charakterisieren. Wie in 2.6 definieren wir für $g\in L^2(\Omega)$ das Funktional

$$T_g f := \int_{\Omega} f(x)g(x) dx.$$

Definition 2.11 (Bilinearformen)

Seien X_1, X_2 Hilberträume, $b: X_1 \times X_2 \to \mathbb{R}$ eine Bilinearform.

(1) Falls

$$\gamma := \sup \lim_{u \in X_1 \backslash \{0\}} \sup \lim_{v \in X_2 \backslash \{0\}} \frac{b(u,v)}{\|u\|_{X_1} \, \|v\|_{X_2}} < \infty$$

so ist b stetig mit Stetigkeitskonstante $\gamma.$

(2) Falls $X = X_1 = X_2$, definieren

$$b_s(u,v) = \frac{1}{2}b(u,v) + b(v,u), \ b_a = \frac{1}{2}b(u,v) - b(v,u) \ \forall u,v \in X$$

den symmetrischen bzw. antisymmetrischen ANteil von $b=b_s+b_a$.

(3) Falls $X=X_1=X_2$, b stetig und

$$\alpha := \inf_{u \in X \setminus \{0\}} \frac{b(u, u)}{\|u\|_X^2} > 0$$

heißt b Koerziv mit Stetigkeitskonstante α .

6

2.12 Bemerkung

(1) $\alpha \in \mathbb{R}$ ist wohldefiniert, denn mit Stetigkeit folgt

$$\frac{b(u, u)}{\|u\|_X^2} \ge -\gamma \frac{\|u\|_X \|u\|_X}{\|u\|_X^2} = -\gamma.$$

(2) b ist koerziv bzgl. $\alpha \Leftrightarrow b_s$ ist koerziv bzgl. α .

2.13 Satz (Operatoren und Bilinearformen)

Seien X_1, X_2 Hilberträume.

(1) Zu $B \in L(X_1, X_2)$ existiert eine eindeutig definierte stetige Bilinearform $b: X_1 \times X_2 \to \mathbb{R}$ mit

$$b(u,v) = (Bu,v)_{X_2} \ \forall u \in X_1, v \in X_2.$$
(2.1)

(2) Zu $b: X_1 \times X_2 \to \mathbb{R}$ stetige Bilinearform existiert eindeutiges $B \in L(X_1, X_2)$ welches (2.1) erfüllt. **Beweis:**

(1) b definiert durch (2.1) ist bilinear wegen Bilinearität von (.,.) und Linearität von B. Stetigkeit:

$$b(u,v) = (Bu,v)_{X_2} \overset{\text{C.S.}}{\leq} \|B\| \left\|u\right\|_{X_1} \left\|v\right\|_{X_2}$$

daraus folgt $\gamma \leq ||B|| < \infty$.

(2) Sei $u \in X_1$ fest. Dann ist $b(u, .) : X_2 \to \mathbb{R}$ linear und stetig:

$$\sup_{v \in X_2 \backslash \{0\}} \frac{b(u,v)}{\|v\|_{X_2}} \leq \sup_{v \in X_2 \backslash \{0\}} \frac{\|u\|_{X_1 \|v\|_{X_2}}}{\|v\|_{X_2}} \cdot \gamma = \gamma \|u\|_{X_1} < \infty.$$

Daraus folgt $b(u,.) \in X_2'$ und es existiert nach Satz 2.9 ein eindeutiger Riesz-Repräsentant $v_u \in X_2$ mit $b(u,.) = (v_u,.)$. Definiere $B: X_1 \to X_2$ durch $Bu := v_u \in X_2$. Hiermit (2.1) und Eindeutigkeit klar. Linearität damit klar.

Stetigkeit:

$$\begin{split} \left\|bu\right\|^2 &= (Bu, Bu) = (v_u, Bu)_{X_2} = b(u, Bu) \leq \gamma \left\|u\right\|_{X_1} \left\|Bu\right\|_{X_2} \\ &\Rightarrow \left\|Bu\right\|_{X_2} \leq \gamma \left\|u\right\|_{X_1} \Rightarrow \sup_{u \in X_1 \backslash \{0\}} \frac{\left\|Bu\right\|_{X_2}}{\left\|u\right\|_{X_1}} \leq \gamma. \end{split}$$

2.14 Satz von Lax-Milgram

Sei x HR, $b: X \times X \to \mathbb{R}$ koerzive, stetige Bilinearform mit Koerzivitätskonstante α . Dann existiert ein eindeutiger Operator $B \in L(X)$ mit

$$b(u, v) = (Bu, v) \ \forall u, v \in X.$$

Ferner gil: B ist bijektiv, $B^{-1} \in L(X)$ mit

$$\|B\| \leq \gamma \text{ und } \|B^{-1}\| \leq \frac{1}{\alpha}.$$

2.1.2 Sobolevräume

2.15 Bemerkung (Motivation Sobolevräume)

Wie in 1.1 motiviert, eignet sich die sogenannte Schwache Formulierung (s. 1.2) einer PDgl besonders gut um Existenz und Eindeutigkeit von Lösungen zu untersuchen. Die dazu geeigneten Räume sind die **Sobolevräume**.

2.16 Definition $(L_{log}^p(\Omega))$

Sei $\Omega\subset\mathbb{R}^d$ ein Gebiet. Dann ist der Raum $L^p_{log}(\Omega)$ definiter durch

$$L^p_{log}(\Omega) := \left\{ u \in L^p(K) \mid \forall K \subset \Omega, \ K \text{ kompakt} \right\}.$$

2.17 Definition (schwache Ableitung)

Sei $\alpha=(\alpha_1,\ldots,\alpha_d)\in\mathbb{N}^d$ ein Multiindex. Eine Funktion $u\in L^1_{log}(\Omega)$ besitzt eine schwache Ableitung $u_\alpha\in L^1_{log}(\Omega)$, wenn für alle Testfunktionen $\varphi\in C_0^\infty(\Omega)$ gilt

$$\int_{\Omega} u D^{\alpha} \varphi = (-1)^{|\alpha|} \cdot \int_{\Omega} u^{(\alpha)} \varphi,$$

mit $D^{\alpha}=D_1^{\alpha_1}\cdots D_d^{\alpha_d}, \ |\alpha|=\alpha_1+\cdots+\alpha_d.$ Wir schreiben dann auch $u^{(\alpha)}=D^{\alpha}u$ für die schwache Ableitung.

2.18 Lemma

Falls $u\in C^{|\alpha|(\bar\Omega)}$ und $|\alpha|\ge 1$, gilt: $D^\alpha=u^{(\alpha)}$, d.h. klassische und schwache Ableitung stimmen überein.

2.19 Beispiel

Sei $\Omega=(-1,1)$ und u(x)=|x|. Dann ist $u'(x)=-1(x\leq 0), 1(x>0)$ die schwache Ableitung von u.

Beweis:

Esgilt füt beliebige $\varphi \in C_0^{\infty}(\Omega)$:

Foto

2.20 Beispiel

Im Gegensatz zu |x| ist $v(x)=-1 (x \leq 0) 1 (x>0)$ auf $\Omega=(-1,1)$ nicht schwach differenzierbar.

2.21 Definition (Sobolevräume)

Seinen $m\in\mathbb{N}_0,\ p\in[1,\infty]$ und $u\in L^p_{log}(\Omega).$ Wir nehmen an, dass alle schwachen partiellen Ableitungen $D^{\alpha}u$ existieren für $|\alpha|\leq m.$ Dann definieren wir die **Sobolevnormen** $\|u\|_{H^{m,p}(\Omega)}$, durch

$$\|u\|_{H^{m,p}(\Omega)} = \left(\sum_{|\alpha| \leq m} \|D^\alpha u\|_{L^p(\Omega)}^p\right)^{\frac{1}{p}} \text{ falls } 1 \leq p < \infty$$

und für $p=\infty$ als

$$\|u\|_{H^{m,p}(\Omega)}:=\max\lim_{|\alpha|\leq m}\|D^\alpha u\|_{L^\infty(\Omega)}\,.$$

Schließlich definieren wir die **Sobolevräume** $H^{m,p}(\Omega)$ durch

$$H^{m,p}(\Omega) := \left\{ u \in L^p_{log}(\Omega) \mid \|u\|_{H^{m,p}(\Omega)} < \infty \right\}.$$

2.22 Bemerkung

Anstelle von $H^{m,p}(\Omega)$ werden die Sobolevräume in der Literatur auch oft mit $W^{m,p}(\Omega)$ bezeichnet.

2.23 Beispiel

Seien $\Omega = B_{\frac{1}{2}}(0) \subset \mathbb{R}^2$ und $u(x) = \ln |\ln |x||$, $x \in \Omega$. Dann gilt: $u \in H^{1,2}(\Omega)$, aber $u \notin C^0(\Omega)$. D.h. Funktionen in $H^{1,p}(\Omega)$ sind in mehreren Raumdimensionen nicht notwendigerweise stetig.

2.24 Satz (Vollständigkeit von Sobolevräumen)

Sei $\Omega\subset\mathbb{R}^d$ ein Gebiet. Damm ist $H^{m,p}(\Omega)$ $1\leq p\leq\infty,\ m\in\mathbb{N}_0$ mit der in 2.21 definierten Norm ein Banachraum, $H^{m,p}(\Omega)$ ist ein Hilbertraum mit dem Skalarprodukt

$$(u,v)_{H^{m,p}(\Omega)} := \sum_{|\alpha| \le m} (D^{\alpha}u, D^{\alpha}v)_{L^2(\Omega)}.$$

Da wir uns mit Randwertproblemen befassen wollen, ist es notwendig zu klären in welchem Sinne wir bei Sobolevräumen von Randwerten reden können. Da die Funktionen zunächst nur bis auf Nullmengen definiert sind und der Rand eines Gebietes eine Nullmenge darstellt, auf der man L^p -Funktionen beliebig abändern kann. In der folgenden Definition klären wir zunächst was wir unter Nullrandwerten im schwachen Sinne verstehen wollen.

2.25 Definition (schwache Nullrandwerte)

Für $1 \leq p \leq \infty$ und $m \in \mathbb{N}$ definieren wir die Sobolevräume mit Nullrandwerten $H_0^{m,p}(\Omega)$ durch

$$H^{m,p}_0(\Omega):=\overline{C^m_0(\Omega)}^{\|.\|_{H^{m,p}(\Omega)}}.$$

2.26 Satz

Für $1 \leq p < \infty$ ist $H_0^{m,p}(\Omega)$ ein abgeschlossener Teilraum von $H^{m,p}(\Omega)$ und damit ein Banachraum.

Dass aus der Definition von $H^{m,p}_0(\Omega)$ tatsächlich folgt, dass solche Funktionen Randwerte besitzen, drückt der folgende Satz aus.

2.27 Satz (Spursatz)

Sei $\Omega \subset \mathbb{R}^d$ ein Lipschitz-Gebiet und $1 \leq p < \infty$. Dann gibt es einen linearen **Spuroperator** $\tau: H^{1,p}(\Omega) \to L^p(\partial\Omega)$, so dass für $u \in H^{m,p}(\Omega) \cap C^\infty(\bar{\Omega})$ gilt:

$$\tau u = u|_{\partial\Omega}.$$

Insbesondere gilt für $u \in H_0^{1,p}(\Omega) : \tau u = 0.$

Beweis:

Im Buch von Alt oder von Evans.

2.28 Satz (2. Soblev'scher Einbettungssatz)

Sei $1 \le p < \infty$, dann gilt:

$$H^{1,p}((a,b)) \hookrightarrow C^0([a,b]),$$

d.h. dass (möglicherweise nach Änderung von Funktionswerten auf einer Nullmenge) Funktionen in $H^{1,p}((a,b))$ stetig sind.

Sei nun $\Omega \subset \mathbb{R}^d$ ein Gebiet und $1 \leq p < \infty$. Dann gilt

$$H_0^{2,p}(\Omega) \hookrightarrow C^0(\Omega), \text{ falls } 2 - \frac{d}{p} > 0.$$

Ist Ω ein Lipschitz-Gebiet, so gilt diese Aussage auch für Sobolevräume ohne Nullrandwerte.

Beweis:

Im Buch von Alt.

2.29 Satz (Poincaré-Friedrichs Ungleichung)

Sei $\Omega \subset \mathbb{R}^d$ ein Gebiet mit Durchmesser $D := \operatorname{diam}(\Omega)$ und $1 \leq p < \infty$. Dann gibt es eine Konstante $c_p \leq 2D$, so dass für alle $v \in H_0^{1,p}(\Omega)$ gilt:

$$||v||_{L^p(\Omega)} \le c_p ||\nabla v||_{L^p(\Omega)}.$$

Beweis:

Siehe Buch von Dziuk.

2.1.3 Schwache Formulierung elliptischer Randwertprobleme

Wir betrachten zunächst die stationäre Wärmeleitgleichung. Sei $\Omega \subset \mathbb{R}^d$ ein Gebiet mit glattem Rand und seinen $q \in C^0(\Omega)$ und $\kappa \in C^1(\Omega)$ mir $\kappa \geq \kappa_1 > 0$, $\kappa_1 \in \mathbb{R}$ Konstante. Gesucht ist eine Funktion $u \in C^2(\Omega) \cap C^0(\bar{\Omega})$, die sogenannte klassische Lösung, so dass

$$-\nabla(\kappa \nabla u) = q \text{ in } \Omega,$$

$$u = 0 \text{ auf } \partial\Omega.$$
(2.2)

Mit Hilfe von schwachen Ableitungen und den Sobolevräumen können wir nun den klassischen Lösungsbegriff verallgemeinern:

2.30 Defintion (schwache Formulierung der stationären Wärmeleitgleichnung)

Seien $\Omega\subset\mathbb{R}^d$ ein Lipschitz-Gebiet, $q\in L^2(\Omega)$ und $\kappa\in L^\infty(\Omega)$ mit $0<\kappa_1\leq \kappa$ für eine Konstante $\kappa_1\in\mathbb{R}$ gegeben. Dann heißt $u\in H^{1,p}_0(\Omega)$ schwache Lösung des Randwertproblems der stationären Wärmeleitgleichung (2.2), falls für alle Testfunktionen $v\in H^1_0(\Omega)$ gilt

$$\int_{\Omega} \kappa(x) \nabla u(x) \nabla v(x) dx = \int_{\Omega} q(x) v(x) dx.$$

2.31 Satz (Existenz und EIndeutigkeit von Lösungen)

Unter den Voraussetzungen von Def. 2.30 gibt es genau eine schwache Lösung $u \in H_0^1(\Omega)$ des Randwertproblems der stationären Wärmeleitgleichung.

Beweis:

Zunächst wird durch $l(v):=\int_{\Omega}q(x)v(x)\mathrm{d}x$ ein lineares Funktional in $(H_0^1(\Omega))'$ definiert, denn

$$||l(v)||_{(H_0^1(\Omega))'} = \sup_{v \in (H_0^1(\Omega)) \setminus \{0\}} \frac{(q, v)_{L^2(\Omega)}}{||v||_{H^1(\Omega)}} \le ||q||_{L^2(\Omega)} \infty.$$

Ferner wird wegen der Poincaré-Friedrichs Ungleichung durch

$$(w,v)_{H_0^1(\Omega)} := \int_{\Omega} \nabla w(x) \nabla v(x) dx$$

 $10\,$ 2 Grundlagen

ein Skalarprodukt auf dem Hilbertraum $H^1_0(\Omega)$ definiert. Daher existiert nach dem Riesz'schen Darstellungsatz 2.9 ein eindeutiger Riesz-Repräsentant w_l mit $l(.) = (w_l, .)_{H^1_0(\Omega)}$.

Um den Beweis zu schließen, müssen wir noch nachweisen, dassdie Bilinearform $b: H^1_0(\Omega) \times H^1_0(\Omega) \to \mathbb{R}$ definiert durch

$$b(w,v) := \int_{\Omega} \kappa(x) \nabla w(x) \nabla v(x) dx$$

die Voraussetzungen des Satzes von Lax-Milgram erfüllt. Wir müssen also zeigen, dass die Bilinearform b stetig und koerziv ist.

Stetigkeit:

$$b(w,v) \le \|\kappa\|_{L^{\infty}(\Omega)} \|w\|_{H_0^1(\Omega)} \|v\|_{H_0^1(\Omega)}.$$

Koerzivität:

$$b(w,v) = \geq \kappa_1 \|w\|_{H_0^1(\Omega)}^2$$
.

Damit existiert ein bijektiver Operator $B\in L(H^1_0(\Omega))$ mit $b(u,v)=(Bu,v)_{H^1_0(\Omega)}$ und wir definieren die eindeutige Lösung $u\in H_0h\Omega)$ des Randwertproblems als $u:=B^{-1}w_l$, wobei w_l der eindeutige Riesz-Repräsentant mit $l(.)=(w_l,.)_{H^1_0(\Omega)}$ war.

2.32 Bemerkung

Mit der gleichen Beweistechnik lassen sich auch allgemeinere PDgl'en behandeln, wie zum Beispiel das Randwertproblem in Divergenzform

$$-\nabla(A(x)\nabla u) + b(x)\nabla u + c(x)u = q \text{ in } \Omega,$$

$$u = 0 \text{ auf } \partial\Omega.$$

 $A(x) \in C^1(\Omega, \mathbb{R}^{d \times d}), \ b(x) \in C^0(\Omega, \mathbb{R}^d), \ c(x) \in C^1(\Omega)$, wobei die Koeffizienten gewisse Anforderungen erfüllen müssen damit die Koerzivität der entsprechenden Bilinearform nachgewiesen werden können.

2.33 Bemerkung (Reduktion auf Nullrandwerte)

Zur Betrachtung von allgemeinen Dirichletrandwerten, kann man wie folgt vorgehen. Seien $g_D \in H^1(\Omega)$ und $q \in L^2(\Omega), \ \kappa \in L^\infty(\Omega), \ \kappa \geq \kappa_1 > 0$. Dann ist $u \in H^1(\Omega)$ schwache Lösung von $-\nabla(\kappa(x)\nabla u(x)) = q$ in Ω und u = g auf $\partial\Omega$. Wenn gilt $\tilde{u} := u - g_D \in H^1_0(\Omega)$ und für alle $v \in H^1_0(\Omega)$ gilt (2.3). Dabei ist zu bemerken, dass mit der Definition von \tilde{u} (2.3) äquivalent ist zu $\int_{\Omega} \kappa(x)\nabla \tilde{u}\nabla v(x)\mathrm{d}x = \int_{\Omega} q(x)v(x)\mathrm{d}x - \int_{\Omega} \nabla g_D(x)\nabla v(x)\mathrm{d}x$. Die Existenz und Eindeutigkeit einer Lösung folgt dann daraus, dass durch $l(v) := \int_{\Omega} q(x)v(x)\mathrm{d}x - \int_{\Omega} \nabla g_D(x)\nabla v(x)\mathrm{d}x$ ein lin. Funktional in $(H^1_0(\Omega))'$ definiert wird.

2.34 Definition (schwache Formulierung)

Seien X reeller Hilbertraum, $b: X \times X \to \mathbb{R}$ eine stetige und koerzive Bilinearform mit Stetigkeitskonstante γ und Koerzivitätskonstante α und $l \in X'$. Dann bezeichnen wir mit $u \in X$ die eindeutige Lösung des Problems

$$b(u,v) = l(v) \ \forall v \in X. \tag{2.3}$$

2.1.4 Regularität

Zur Motivation betrachte in einer Raumdimension die Dgl. u''(x) = q(x) mit einer stetigen Funktion q(x). Dann folgt mit dem Hauptsatz der Differential- und Integralrechnung, dass bereits $u \in C^2$ gelten muss.

2.35 Satz (H^2 -Regularität)

Sei Ω ein Gebiet mit glattem Rand (es gelte $\partial\Omega$ ist in C^2) oder ein konvexes Lipschitz-Gebiet. Ferner seien $q\in L^2(\Omega)$ und $\kappa\in C^1(\bar\Omega)$. Dann gilt für die eindeutige schwache Lösung $u\in H^1_0(\Omega)$ der stationären Wärmeleitungsgleichung (2.2) dass $u\in H^2(\Omega)$ und dass eine Konstante c>0 existiert, so dass die folgende Abschätzung gilt:

$$||u||_{H^2(\Omega)} \le c ||q||_{L^2(\Omega)}$$

Beweis:

Für glatten Rand: Buch von Evans.

2.36 Bemerkung

Betrachtet man nicht konvexe Lipschitz-Gebiete, so kann man im Allgemeinen keine Lösung $u \in H^2(\Omega)$ erwarten.

2.2 Ritz-Galerkin Verfahren und absrtrakte Fehlerabschätzungen

In diesem Abschnitt wollen wir uns mit der Approximation der Lösung der schwachen Formulierung von (2.4) befassen.

2.37 Definition (Ritz-Galerkin Verfahren)

Seien X,b wie in Definition 2.34 und $X_m\subset X$ mit $\dim(X_m)=m$ ein Unterraum. Dann ist die Ritz-Galerkin Approximation $u_m\in X_m$ definiert durch

$$b(u_m, v_m) = l(v_m) \ \forall v_m \in X_m.$$

2.38 Bemerkung

Die Existenz und Eindeutigkeit von u_m folgt unmittelbar aus dem Satz von Lax-Milgram 2.14, da der Unterraum X_m wieder ein Hilbertraum mit dem aus X geerbten Skalarprodukt ist.

2.39 Satz (Abstrakte Fehlerabschätzung/Lemma von Céa)

Seien X, X_m, b, u und u_m wie in den Definitionen 2.34 und 2.37 definiert. Dann gilt die abstrakte Fehlerabschätzung

$$\|u-u_m\|_X \leq \frac{\gamma}{\alpha} \inf_{v_m \in X_m} \|u-v_m\|_X$$
.

Außerdem gilt die Galerkin-Orthogonalität

$$b(u - u_m, v_m) = 0 \ \forall v_m \in X_m.$$

Beweis:

Wir zeigen zunächst die Galerkin-Orthogonalität: Dazu sei $v_m \in X_m$ und es folgt mit $X_m \subset X$:

$$b(u - u_m, v_m) = b(u, v_m) - b(u_m, v_m) = l(v_m) - l(v_m) = 0.$$

Mit der Stetigkeit und Koerzivität von b folgt weiter

$$\alpha \|u - u_m\|_X^2 \le b(u - u_m, u - u_m) = b(u - u_m, u - v_m)$$

$$\le \gamma \|u - u_m\|_X \|u - v_m\|_X$$

$$\Rightarrow \|u - u_m\|_X \le \frac{\gamma}{\alpha} \|u - v_m\|_X$$

Gehe auf beiden Seiten der Ungleichung zum Infimum über, dann folgt die Behauptung.

2.40 Bemerkung

Die abstrakte Fehlerabschätzung zeigt, dass der Fehler zwischen Ritz-Galerkin Approximationen und exakter Lösung abgeschätzt werden kann durch die Bestapproximation in dem Teilraum X_m . Die weitere numerische Analyse beruht somit allein auf der Approximationstheorie. Insbesondere bestimmt im wesentlichen der Teilraum X_m die Approximationsgüte.

2.41 Beispiel (mögliche Wahl von Teilräumen)

Betrachten wir konkret die Stationäre Wärmeleitungsgleichung (2.2) oder allgemeiner ein elliptisches Problem in Divergenzform mit $X=H^1_0(\Omega)$ auf einem Gebiet $\Omega\subset\mathbb{R}^d$, so sind neben den Finiten Elemente Verfahren, die wir im nächsten Abschnitt betrachten wollen,vor allem folgende Wahlen von Teilräumen gebräuchlich:

- Polynomräume $X_M:=\mathbb{P}^{k(m)}(\Omega)\cap \{v_m\in C^0(\bar\Omega)\mid +v_m=0 \text{ auf }\partial\Omega\}$, wobei $\mathbb{P}^{k(m)}(\Omega)$ der Raum der Polynome mit Grad $\leq k(m)$ über Ω ist. Die zugehörigen Verfahren nennt man **Spektralverfahren**
- $X_m := \operatorname{span} \{u_i \in X \mid Lu_i = \lambda u_i, i = 1, \dots, m\}$ wobei u_i die *i*-te Eigenfunktion des zugrundeliegenden Differentialoperators L ist.
- $X_m := \mathrm{span} \{ u_i \in X \mid \Delta u_i = \lambda u_i, \ i = 1, \dots, m \}$, wobei u_i die i-te Eigenfunktion des Laplace-operators Δ ist.

2.42 Folgerung (Matrix-Vektor von Ritz-Galerkin Verfahren)

Seien X, X_m, b, u un $\mathrm{d} u_m$ wie in den Definitionen 2.34 und 2.37 definiert und sei zudem X_m endlichdimensional, mit Dimension $m := \dim X_m$. Ist dann $\Phi := \{\varphi_1, \dots, \varphi_m\}$ eine Basis von X_m so folgt mit der Darstellung $u_m = \sum_{i=1}^m U_i \varphi_i$ aus der Definition von u_m

$$b\left(\sum_{i=1}^{m} U_i \varphi_i, \varphi_j\right) = l(\varphi_j), \ j = 1, \dots, m.$$

Durch Ausnutzen der Linearität von b im 1. Argument folgt weiter:

$$\sum_{i=1}^{m} b(\varphi_i, \varphi_j) u_i = l(\varphi_j), \ j = 1, \dots, m.$$

Definieren wir also die Matrix $\mathbf{S} \in \mathbb{R}^{m \times m}$ durch $\mathbf{S}_{ji} := b(\varphi_i, \varphi_j), \ i, j = 1, \dots, m$ und die Vektoren $\mathbf{u}, \mathbf{I} \in \mathbb{R}^m$ durch $\mathbf{u}_i := U_i, \ \mathbf{I}_i := l(\varphi_i), \ i = 1, \dots, m$, so ist u_m genau dann Lösung des Ritz-Galerkin Verfahren, wenn u das folgende lineare Gleichungssystem löst: $\mathbf{S}\mathbf{u} = \mathbf{I}$.

2.3 Finite Elemente Verfahren

Finite Elemente Verfahren sind Spezialfälle von Ritz-Galerkin Verfahren für eine bestimmte Klasse von Teilräumen $X_h \subset X$, wobei X_h der **Finite Elemente Raum** ist. Die Konstruktion von x_h im Falle von Finite Elemente (FE) Verfahren beruht auf einer Zerlegung des Gebietes Ω in nicht überlappende Teilgebiete, die selbst wiederum einfache geometrische Objekte sind. Die einfachste Klasse von Finiten Elementen sind Lagrange Elemente, auf welche wir uns in dieser Vorlesung beschränken werden. Ferner betrachten wir nur Teilräume X_h welche auf einer simplizialen Zerlegung des Gebietes Ω beruhen. In zwei Raumdimensionen besteht das Rechengitter aus Dreiecken, in drei Raumdimensionen aus Tetraedern. Eingeschränkt auf einen Simplex wird eine Funktion aus X_h , dann ein Polynom mit Grad $\leq k,\ k \in \mathbb{N}$ sein. Für andere FE siehe z.B. das Buch von Brenner und Scott.

2.43 Definition (Simplex)

Seinen $s \in \{1, \dots, d\}$ und $a_0, \dots, a_s \in \mathbb{R}^d$ Punkte, so dass $(a_j - a_0)_{j=1,\dots,s}$ linear unabhängig sind. Dann heißt

$$T := \left\{ x \in \mathbb{R}^d \mid x = \sum_{i=0}^s \lambda_i a_i, \ 0 \le \lambda_i, \ \sum_{i=0}^s \lambda_i = 1 \right\}$$

nicht-degeneriertes s-dimensionaler Simplex im \mathbb{R}^d . Die Punkte a_0,\ldots,a_s heißen Ecken des Simplex. Ist $r\in\{0,\ldots,s\}$ und $\tilde{a}_0,\ldots,\tilde{a}_r\in\{a_0,\ldots,a_s\}$, so heißt

$$\tilde{T} := \left\{ x \in \mathbb{R}^d \mid x = \sum_{i=0}^s \lambda_i \tilde{a}_i, \ 0 \le \lambda_i, \ \sum_{i=0}^s \lambda_i = 1 \right\}$$

r-dimensionales Seitensimplex von T. Die nulldimensionalen Seitensimplexe heißen Ecken, die eindimensionalen Kanten. Wir bezeichnen mit T_0 den Simplex zu den Punkten $a_0=e_0=(0,\dots,0), a_i=e_i,\ i=1,\dots,d,\ T_0$ heißt d-dimensionaler Einheitssimplex. Der **Durchmesser** von T ist gegeben durch $h(T):=\operatorname{diam}(T)=\max_{i,j=1,\dots,s}|a_i-a_j|$. Mit

$$\rho(T) := 2\sup\{R \mid B_R(x_0) \subset T\}$$

bezeichnen wir den Inkugeldurchmesser von T und mit

$$\delta(T) := \frac{h(T)}{\rho(T)}$$

den Quotienten aus h und ρ .

2.44 Definition (Baryzentrische Koordinaten)

Die baryzentrsichen Koordinaten $\lambda_0,\ldots,\lambda_s\in[0,1]$ eines Punktes $x\in T$ des s-dim. Simplex T sind die Lösung des linearen Gleichungssystems

$$x = \sum_{i=0}^{s} \lambda_i a_i, \ \sum_{i=0}^{s} \lambda_i = 1.$$

Der Schwerpunkt x_s von T ist definiert durch $x_s:=\frac{1}{s+1}\sum_{i=0}^s a_i$ und hat die baryzentrischen Koordinaten $\lambda_i:=\frac{1}{s+1}$. Für die Eckpunkte a_k von T sind die baryzentrischen Koordinaten gegeben durch $\lambda_k=1,\ \lambda_i=0,\ i\neq k.$ Die baryzentrischen Koordinaten sind eindeutig bestimmt.

2.45 Lemma (Referenzabbildung)

Jedes s-dimensionale Simplex T im \mathbb{R}^s ist affin äquivalent zum Einheitssimplex T_0 der gleichen Dimension. Die eindeutige affine Abbildung $F:T_0\to T,\ F(x)=Ax+b,\ A\in\mathbb{R}^{s\times s},\ b\in\mathbb{R}^s,\ \det A\neq 0$ mit $F(e_j)=a_j,\ j=0,\ldots,s$ heißt **Referenzabbildung**. F ist invertierbar und es gelten die Abschätzungen

$$\|\nabla F\| = \|A\| \le \frac{h(T)}{\rho(T_0)}, \ \|\nabla(F^{-1})\| = \|A^{-1}\| \le \frac{h(T_0)}{\rho(T)}$$

sowie

$$c \cdot \rho(T)^s \le |\det(\nabla F)| = |\det A| = \frac{|T|}{|T_0|} \le C \cdot h(T)^s, \ c, C > 0.$$

Beweis:

Im Buch von Dziuk.

2.46 Definition (Zulässige Triangulierung)

Sei $\Omega \subset \mathbb{R}^d$ ein Gebiet und

$$\mathbb{T}_h := \left\{ T_j \mid j = 1, \dots, m, \ T_j \text{ ist } d\text{-dim. Simplex im } \mathbb{R}^d \right\}.$$

 \mathbb{T}_h heißt zulässige Triangulierung der Feinheit h und Gute ρ von Ω , falls gilt:

$$\bar{\Omega} = \bigcup_{j=1}^{m} T_j, \ \partial \Omega = \bigcup_{j=1}^{m} \tilde{T}_j,$$

wobei \tilde{T}_j Flächen der Simplexe T_j sind. Für je zwei $T_1, T_2 \in \mathbb{T}_h$ mit $S := T_1 \cap T_2$ gilt $S = \emptyset$ oder S ist (d-k)-dim. Seitensimplex von T_1 und T_2 für ein $k \in \{1, \ldots, d\}$. Mit $h := \max_{j=1, \ldots, m} h(T_j)$ und $\rho := \min_{j=1, \ldots, m} \rho(T_j)$.

Zur Definition von Finite Elemente Räumen basierend auf einer Triangulierung \mathbb{T}_h müssen wir nun lediglich lokale Funktionenräume auf dem Simplexen $T \in \mathbb{T}_h$ angeben und festlegen wie solche lokalen Funktionen global zusammengesetzt werden. Ein Tripel bestehend aus einem geometrischen Objekt T, einer lokalen Basis Φ und lokalen Freiheitsgraden δ , wollen wir um folgenden **Element** nennen.

2.47 Definition (lineares simpliziales Lagrange Element)

Sei $T\subset\mathbb{R}^d$ ein d-dim. Simplex. Sei $\delta:=\{a_k\mid k=0,\dots,d\}$ die Menge der Ecken von T. Dann ist durch Angabe von Werten in den Punkten $a_k\in\delta$ eindeutig eine lineare Funktion $p\in\mathbb{P}^1(T)$ definiert. Durch $\Phi:=\{\varphi_i\mid \varphi_i(a_k)=\delta_{ik}\ i,k=1,\dots,d\}$ ist eine modale Basis von $\mathbb{P}^1(T)$ gegeben. Wir nennen das Tripel (T,Φ,δ) lineres simpliziales Lagrange Element. Die Basisfunktionen $\varphi_i\in\Phi$ werden Formfunktionen oder im Englischen Shapefunctions genannt und δ ist die Menge der modalen Variablen. Zur Wohldefiniertheit kann man im Buch von Dziuk nachschauen.

2.48 Beispiel (lineares Lagrange Element für d=2)

Wir betrachten das Einheitsdreieck T_0 mit Eckpunkten $a_0^0=(0,0), a_1^0=(1,0), a_2^0=(0,1)$. Die Formfunktionen sind dann gegeben durch

$$\varphi_0^0(x,y) = 1 - x - y, \ \varphi_1^0(x,y) = x, \ \varphi_2^0(x,y) = y.$$

Sind $p(a_0^0), p(a_1^0), p(a_2^0)$ Funktionswerte einer linearen Funktion $p \in \mathbb{P}^1(T_0)$, so ist p gegeben durch

$$p(x,y) = \sum_{i=0}^{2} p(a_i^0) \varphi_i^0(x,y).$$

Für ein beliebiges Dreieck $T\subset\mathbb{R}^2$ erhält man das Lagrange Element mit Hilfe der Referenzabbildung $F:T_0\to T$ aus Lemma 2.45.

2.49 Bemerkung

Das Beispiel 2.48 zeigt, dass es ausreicht ein Finites Element auf einer Referenzgeometrie zu definieren. Durch die Referenzabbildung erhält man dann die entsprechende Klasse von Elementen auf beliebigen Geometrien im Raum.

Ein Finites Element legt lediglich ein lokalen Funktionenraum auf einen Simplex T fest, um zu einem Unterraum von $H^1_0(\Omega)$ zu gelangen, müssen wir zusätzlich festlegen auf welche Weise die lokalen Funktionen global zusammengesetzt werden.

2.50 Definition (linearer Finite Elemente Raum S_b^1)

(1) Sei $\Omega \subset \mathbb{R}^d$ und \mathbb{T}_h eine zulässige Triangulierung von Ω . Wir definieren den Raum der **linearen** Finite Elemente auf simplizialen Gittern S_h^1 durch

$$S_h^1 := \left\{ v_h \in C^0(\Omega) \mid v_h|_T \in \mathbb{P}^1(\Omega), \ T \in \mathbb{T}_h \right\}.$$

(2) Sind $\bar{a}_j,\ j=1,\ldots,N_h$ die Ecken der Triangulierung \mathbb{T}_h , so idt eine Funktion $v_h\in S_h^1$ durch die Vorgabe von Funktionswerten in den Ecken $v_h(\bar{a}_j)$ eindeutig definiert. Insbesondere gilt $\dim(S_h^1)=\mathcal{N}_h$. Eine Basis von S_h^1 ist durch die Funktionen

$$\bar{\varphi}_i \in S_h^1, \ \bar{\varphi}_i(\bar{a}_j) = \delta_{ij}, \ i, j = 1, \dots, \mathcal{N}$$

gegeben. Diese Basis heißt Knotenbasis oder modale Basis.

(3) Ist (T_0,Φ,δ) das lineare Lagrange Element auf dem Einheitssimplex T_0 und $v_h\in S^1_h$ gegeben durch

$$v_h(x) := \sum_{i=1}^{\mathcal{N}_h} v_n(\bar{a}_i) \bar{\varphi}_i(x),$$

so gilt für beliebige Simplexe $T \in \mathbb{T}_h$ mit Ecken a_0, \dots, a_d

$$v_h|_T(x) = \sum_{i=1}^d v_h(a_i)\varphi_i^0(T^{-1}(x)),$$

wobei $F:T_0 \to T$ die referenzabbildung und $\varphi_i^0 \in \Phi$ die Formfunktionen von T_0 sind.

2.51 Definition (lineares Finite Elemente Verfahren)

Sei $\Omega \subset \mathbb{R}^d$ und \mathbb{T}_h zuläassige Triangulierungvon Ω . Seien $X:=H^1_0(\Omega)$ und $X_h:=S^1_{h,0}:=S^1_h\cap\{v\in C^1(\Omega)\mid v=0 \text{ auf }\partial\Omega\}$. Weiter seien eine stetige und koerzive Bilinearform $b:X\times X\to\mathbb{R}$ und ein $l\in X'$ gegeben. Dann ist $X_h\subset X$ ein teilraum und $u_h\in X_h$ heißt Lösung des **linearen Finite Elemente Verfarhens** für das Problem aus 2.34, falls gilt:

$$b(u_h, v_h) = l(v_h) \ \forall v_h \in X_h.$$

2.52 Satz (A priori Fehlerabschätzung)

Sei $\Omega \subset \mathbb{R}^d$, $d \leq 3$ ein Lipschitz-Gebiet und \mathbb{T}_h eine zulässige Triangulierung von Ω mit $\sigma(T) \leq \sigma < \infty$, $\sigma \in \mathbb{R}$, $\forall T \in \mathbb{T}_h$. Seien X, X_h, b, u_h wie in Definition 2.51 und $u \in X$ wie in Definition 2.34. Liegt nun $u \in H_2(\Omega)$ so gibt es eine Konstante $c > 0, c \in \mathbb{R}$, die nur von d, σ, Ω abhängt, so dass gilt:

$$||u - u_h||_{H^1(\Omega)} \le ch |u|_{H^2(\Omega)},$$
 (2.4)

 $\text{wobei } |u|_{H^2(\Omega)} := \left\| D^2 u \right\|_{L^2(\Omega)}.$

Beweis:

Für Poissonproblem siehe Buch von Dziuk.

2.53 Bemerkung (a priori \leftrightarrow a posteriori Fehlerabschätzung)

Satz 2.52 macht eine Aussage über die Konvergenz des linearen FE Verfahrens. Da auf der rechten Seite der Ungleichung (2.4) aber der Term $|u|_{H^2(\Omega)}$ auftaucht, ist (2.4) nicht geeignet um den tatsächlichen Wert des Approximationsfehlers abzuschätzen. Zu diesem Zweck leitet man A posteriori Fehlerabschätzungen her, bei denen der Fehler ausschließlich durch berechenbare Größen abgeschätzt wird. Für eine Übersicht über A posteriori Fehlerabschätzungen für FE Verfahren verweisen wir auf das Buch von Verfürth.

2.54 Bemerkung

Betrachten wir Definition 2.51 des linearen FE Verfahrens, so stellen wir zunächst fest, dass wir in der schwachen Formulierung exakte Integrale bestimmen müssen, was im Allgemeinen nicht realisierbar ist. in der Praxis verwendet man Quadraturformeln. Ferner schränkt uns Definition 2.51 auf polygonal berandete Gebiete ein. Um auch Gebiete mit glattem Rand behandeln zu können , kann man z.B. eine Gebietsapproximation durchführen bei dem alle Ecken auf dem Rand des polygonal berandeten approximierenden Gebiets $\partial\Omega_h$ auch auf $\partial\Omega$ liegen. Hier ist dann X_h nicht Teilraum von X und das Lemma von Céa nicht anwendbar. Allerdings kann man in beiden Fällen unter gewissen Voraussetzungen zeigen, dass die zusätzlichen Approximationsfehler die Konvergenzordnung des FE Verfahrens nicht beeinflussen. Für weitere Details siehe z.B. das Buch von Dziuk oder Brenner und Scott.

3 Reduzierte Basis Methoden für lineare, koerzive Probleme

3.1 Parameterabhängigkeit

3.1 Definition (parametrische Formen)

Sei $\mathcal{P} \subset \mathbb{R}^d$ eine beschränkte Parametermenge. Dann nennen wir

- (1) $f: X \times \mathcal{P} \to \mathbb{R}$ eine parametrische stetige Linearform oder ein parametrisches stetiges lineares Funktional, falls $\forall \mu \in \mathcal{P}: f(.,\mu) \in X$.
- (2) Wir nennen $b: X_1 \times X_2 \times \mathcal{P} \to \mathbb{R}$ eine parametrische stetige koerzive Bilinearform, falls $\forall \mu \in \mathcal{P}: b(.,.,\mu): X_1 \times X_2 \to \mathbb{R}$ bilinear stetig und koerziv ist. Wir bezeichnen die Stetigkeitskonstante mit $\gamma(\mu)$ und die Koerzivitätskonstante mit $\alpha(\mu)$.

3.2 Bemerkung

Eine parametrische stetige Bi-/Linearform ist nicht unbedingt stetig bzgl. μ . Betrachte dazu das Beispiel $X=\mathbb{R}, \mathcal{P}=[0,1], f:X\times\mathcal{P}\to\mathbb{R}$ mit

$$f(x,\mu) := \left\{ \begin{array}{l} x, \text{ falls } \mu < \frac{1}{2} \\ \frac{1}{2}x, \text{ sonst.} \end{array} \right.$$

3.3 Defintion (Parametrische Beschränktheit, Stetigkeit)

(1) Wir nennen eine parametrische stetige Linearform f beschränkt bzw. Bilinearformb gleichmäßig beschränkt bzgl. μ , falls $\gamma_0, \gamma_1 \in \mathbb{R}^+$ existieren so dass

$$\sup_{\mu \in \mathcal{P}} \|f(.,\mu)\|_X \leq \gamma_0 \text{ bzw. } \sup_{\mu \in \mathcal{P}} \gamma(\mu) \leq \gamma_1.$$

(2) Wir nennen b glm. koerziv bzgl. μ , falls ein $\alpha_0 > 0$ existiert so dass

$$\inf_{\mu \in \mathcal{P}} \alpha(\mu) \ge \alpha_0 > 0.$$

(3) Wir nennen f bzw. b Lipschitz-stetig bzgl. μ , falls ein $L_f \in \mathbb{R}^+$ bzw. ein $L_b \in \mathbb{R}^+$ existiert, so dass für alle $\mu_1, \mu_2 \in \mathcal{P}$ gilt

$$|f(u, \mu_1) - f(u, \mu_2)| \le L_f ||u||_X ||\mu_1 - \mu_2|| \forall u \in X,$$

bzw.

$$|b(u, v, \mu_1) - b(u, v, \mu_2)| \le L_b \|u\|_{X_1} \|v\|_{X_2} \|\mu_1 - \mu_2\| \ \forall u \in X_1, v \in X_2.$$

3.4 Lemma (Energienorm)

Sei X HR, $b: X \times X \times \mathcal{P} \to \mathbb{R}$ parametrische , koerzive, stetige Bilinearform. Dann ist für $\mu \in \mathcal{P}$ durch

$$(((u,v)))_{\mu} := b_s(u,v;\mu)$$

ein Skalarprodukt auf X und durch

$$|||u|||_{\mu} := \sqrt{(((u,u)))_{\mu}}$$

die **Energienorm** definiert. Diese ist äquivalent zur X-Norm und es gilt

$$\sqrt{\alpha(mu)} \left\| u \right\|_X \leq |||u|||_{\mu} \leq \sqrt{\gamma(\mu)} \left\| u \right\|_X \ \forall u \in X.$$

Beweis:

Skalarprodukt klar wegen Bilinearität, Stetigkeit und Koerzivität. Normäquivalenz folgt aus Stetigkeit und Koerzivtät von b_s :

$$\alpha(\mu) \|v\|_X^2 \le b_s(v, v; \mu) \le \gamma(\mu) \|v\|_X^2$$
.

3.5 Definition (Parametrische schwache Formulierung; Parametrisches Variationsproblem $(P(\mu))$

Sei X HR, $\mathcal{P} \subset \mathbb{R}^p$ beschränkt, $b: x \times X \times \mathcal{P} \to \mathbb{R}$ parametrische, stetige, koerzive Bilinearform, $f,l: X \times \mathcal{P} \to \mathbb{R}$ parametrische stetige Linearform. Zu $\mu \in \mathcal{P}$ bezeichnet $u(\mu) \in X$ die eindeutige Lösung des parametrischen Variationsproblems

$$b(u(\mu), v; \mu) = f(v, \mu) \ \forall v \in X, \tag{3.1}$$

mit Ausgabe $s(\mu) = l(u(\mu), \mu)$.

3.6 Bemerkung

Existenz und Eindeutigkeit der Lösung $u(\mu)$ folgen mit dem Satz von Lax Milgram.

3.7 Definition (schwache Formulierung der parametrischen, stationären Wärmeleitungsgleichung)

Seien $\Omega \subset \mathbb{R}^d$ Lipschitz-Gebiet, $\mathcal{P} \subset \mathbb{R}^p$ beschränkt, $q(\mu) \in L^2(\Omega)$ und $\kappa(\mu) \in L^\infty(\Omega)$ mit $0 < \kappa_1 \le \kappa(\mu)$ für alle $\mu \in \mathcal{P}$ und Konstante $\kappa_1 \in \mathbb{R}^+$. Dann heißt $u(\mu) \in H^1_0(\Omega)$ schwache Formulierung des RWP der parametrischen, stationären WLG aus 1.1, falls gilt

$$\int_{\Omega} \kappa(x; \mu) \nabla u(x; \mu) \nabla v(x) dx = \int_{\Omega} q(x, \mu) v(x) dx \ \forall v \in H_0^1(\Omega).$$

3.8 Folgerung (Existenz und Eindeutigkeit von Lösungen)

Unter den Voraussetzungen von Definition 3.7 gibt es für jedes $\mu \in \mathcal{P}$ genau eine schwache Lösung $u(\mu) \in H_0^1(\Omega)$ des RWP der parametrischen, stationären WLG aus 1.1.

Beweis:

Analog zum Beweis von Satz 2.31.

3.9 Definition ((lineares) FE Verfahren für parametrsiche Variationsprobleme ($P_h(\mu)$)

Sei X HR, $\mathcal{P} \in \mathbb{R}^p$ beschränkt, $b: X \times X \times \mathcal{P} \to \mathbb{R}$ parametrische, stetige, koerzive Bilinearform, $f,l: X \times \mathcal{P} \to \mathbb{R}$ parametrische, stetige Linearform. Sei ferner \mathbb{T}_h eine zulässige Triangulierung des Rechengebietes $\Omega \subset \mathbb{R}^d$ und $X_h \subset X$ eine zugehöriger (linearer) Finite Elemente Raum, wobei X_h Unterraum von X. Zu $\mu \in \mathcal{P}$ heißt $u_h(\mu) \in X_h$ Lösung des (linearen) FE Verfahrens für das parametrische Variationsproblem, falls gilt

$$b(u_h(\mu), v_h; \mu) = f(v_h; \mu) \ \forall v_h \in X_h, \ s_h(\mu) = l(u_h(\mu); \mu).$$

3.10 Bemerkung

Das Verfahren aus Definition 3.9 ist nach Bemerkung 1.6 ein "hochdimensionales, diskretes" Modell.

3.2 Reduzierte Basisverfahren

3.11 Definition (Reduzierte Basis, Reduzierte Basis Räume)

Sei $S_N:=\left\{\mu^1,\ldots,\mu^N\right\}\subset\mathcal{P}$ eine Menge von Parametern mit (oBdA) linear unabhängigen Lösungen $\left\{u(\mu^i)\right\}_{i=1}^N$ von $(P_h(\mu))$. Dann ist $X_N:=\operatorname{span}\left\{u(\mu^i)\right\}_{i=1}^N$ ein N-dimensionaler **Lagrange Reduzierte Basis-Raum**. Eine Basis $\Phi_N:=\{\phi_1,\ldots,\phi_N\}\subset X_h$ eines Reduzierte Basis-Raumes ist eine Reduzierte Basis (RB).

3.12 Bemerkung

Es existieren weitere Arten von RB-Räumen. Im weiteren Verlauf der Vorlesung werden wir z.B. noch **POD-Räume** kennenlernen. Auch die POD-Räume werden aus sogenannten Snapshots, d.h. Lösungen $u_h(\mu^i), \ 1 \le i \le k \ \text{mit} \ k \gg N$, erzeugt.

3.13 Definition (RB-Modell $(P_N(\mu))$, symmetrischer Fall)

Sei ein Problem $P(\mu)$ und ein diskretes Modell $(P_h(\mu))$ gegeben und zusätzlich gelte b symmetrisch und f=l ("compliant"). Sei $X_h\subset X$ ein RB-Raum. Zu $\mu\in\mathcal{P}$ ist die RB-Lösung $u_N(\mu)\in X_N$ und die RB-Ausgabe $s_N(\mu)\in\mathbb{R}$ gesucht, so dass

$$b(u_N(\mu), v; \mu) = f(v; \mu) \ \forall v \in X_N$$

und

$$s_N(\mu) = l(u_N(\mu); \mu).$$

3.14 Bemerkung

Falls b nicht symmetrisch oder $f \neq l$ ist obiges immer noch sinnvoll, aber es bestehen bessere Möglichkeiten $s_N(\mu)$ mittels eines dualen Problems zu bestimmen.

3.15 Bemerkung

Da $X_N \subset X_h \subset X$, X_N Teilraum von X_h , ist das RB-Modell ein Ritz-Galerkin Verfahren.

3.16 Folgerung (Existenz, Eindeutigkeit, Stabilität, Wohlgestelltheit)

ZU $\mu \in \mathcal{P}$ existiert eine eindeutige RB-Lösung $u_N(\mu) \in X_N$ und RB-Ausgabe $S_N(\mu)$ von $(P_N(\mu))$. Diese sind beschränkt durch $\|u_N(\mu)\|_X \leq \frac{1}{\alpha(\mu)} \|f(.;\mu)\|_X$ und $|s_N(\mu)| \leq \frac{1}{\alpha(\mu)} \|f(.;\mu)\|_{X'} \|l(.;\mu)\|_{X'}$.

Beweis:

Existenz und Eindeutigkeit von $u_N(\mu)$ folgt mit dem Satz von Lax-Milgram, wobei

$$\alpha_N(\mu) := \inf_{u \in X_N} \frac{b(u, u : \mu)}{\|u\|_X^2} \ge \inf_{u \in X} \frac{b(u, u : \mu)}{\|u\|_X^2} = \alpha(\mu) > 0.$$

Dann ist auch $s_N(\mu) = l(u_N(\mu); \mu)$ eindeutig und die Stabilität folgt mit

$$||u_N(\mu)||_X = ||B^{-1}(\mu)v_f(\mu)||_X \le ||B^{-1}(\mu)||_X ||v_f(\mu)||_X \le \frac{1}{\alpha(\mu)} ||f(.;\mu)||_X.$$

Hierbei ist $B(\mu)$ der eindeutige invertierbare Operator aus dem Satz von Lax-Milgram und $v_f(\mu)$ der Riesz-Repräsentant von $f(.;\mu) \in X_N'$.

$$|s_N(\mu)| = |l(u_N(\mu); \mu)| \le ||l(.; \mu)||_{X'} ||u_N(\mu)||_X \le \frac{1}{\alpha(\mu)} ||f(.; \mu)||_{X'} ||l(.; \mu)||_{X'}$$

3.17 Folgerung (Galerkin-Projektion, Galerkin-Orthogonalität)

Zu $\mu \in \mathcal{P}, X_h, X_N$ HR mit Energieskalarprodukt $(((.,.)))_\mu, P_\mu : X_h \to X_N$ die orthogonale Projektion aus Satz 2.7, $u_h(\mu), u_N(\mu)$ Lösungen von $(P_h(\mu))$ bzw. $(P_N(\mu))$ und der Fehler $e_N(\mu) = u_h(\mu) - u_N(\mu)$. Dann gilt

- (1) $u_N(\mu) = P_{\mu}(u_h(\mu))$ "Galerkin-Projektion"
- (2) $(((e_N(\mu), v_N)))_{\mu} = 0 \ \forall v_N \in X_N$ "Galerkin-Orthogonalität"

Beweis:

Lemma 3.4 impliziert $(X_h,(((.,.)))_\mu)$ HR und $X_N=\mathrm{span}\{\Phi_i\}_{i=1}^N$ endlichdimensional, also abgeschlossen ist. Daher ist P_μ nach Satz 2.7 wohldefiniert. Mit Folgerung 2.8 folgt

$$(((P_{\mu}(u_h(\mu) - u_h(\mu), \Phi_i)))_{\mu} = 0, i = 1, \dots, N$$

$$\Leftrightarrow b(P_{\mu}(u_h(\mu)) - u_h(\mu), \Phi_i; \mu) = 0, i = 1, \dots, N$$

$$\Leftrightarrow b(P_{\mu}(u_h(\mu)), \Phi_i; \mu) = b(u_h(\mu), \Phi_i; \mu), i = 1, \dots, N$$

$$\Leftrightarrow b(P_{\mu}(u_h(\mu)), \Phi_i; \mu) = f(\Phi_i; \mu), i = 1, \dots, N$$

Da $u_N(\mu)$ eindeutig folgt $P_\mu(u_n(\mu)) = u_N(\mu)$ daraus folgt (1). (2) folgt entweder aus 2.8 oder Satz 2.39.

3.18 Folgerung

Sei $\mu \in \mathcal{P}, u_h(\mu), u_N(\mu)$ Lösungen von $(P_h(\mu))$ bzw. $(P_N(\mu))$. Falls $u_h(\mu) \in X_N \Rightarrow u_N(\mu) = u_h(\mu)$.

Beweis:

 $\begin{array}{l} \text{Da } u_h(\mu), u_N(\mu) \in X_N \Rightarrow e_N(\mu) := u_h(\mu) - u_N(\mu) \in X_h \text{ und } (((e_N(\mu), v_N)))_\mu = 0 \ \forall v_N \in X_N \text{ nach Folgerung 3.17 (2)}. \ \text{Damit gilt } (((e_N(\mu), l_N(\mu))))_\mu = 0 \Rightarrow e_N(\mu) = 0 \Rightarrow u_N(\mu) = u_h(\mu). \end{array}$

3.19 Satz (abstrakte Fehlerabschätzung; Relation zur Bestapproximation)

Sei $\mu \in \mathcal{P}$ und $u_h(\mu), s_h(\mu)$ bzw. $u_N(\mu), s_N(\mu)$ Lösungen von $(P_h(\mu))$ bzw. $(P_N(\mu))$. Dann gilt:

(1) Der Fehler der (μ -abhängigen Energienorm) erfüllt

$$|||u_h(\mu) - u_N(\mu)|||_{\mu} = \inf_{v \in X_N} |||u_{\ell}(\mu) - v|||_{\mu}.$$

(2) Der Fehler in der (μ -unabhängigen) X-Norm erfüllt

$$||u_h(\mu) - u_N(\mu)||_X \le \sqrt{\frac{\gamma(\mu)}{\alpha(\mu)}} \inf_{v \in X_N} ||u(\mu) - v||_X.$$

mit $\gamma(\mu), \alpha(\mu)$ Stetigkeits- bzw. Koerzivitätskonstante.

(3) Für den Ausgabefehler gilt (wegen f = l)

$$0 \le s_h(\mu) - s_N(\mu) = |||u_h(\mu) - u_N(\mu)|||_{\mu}^2 = \inf_{v \in X_N} |||u_h(\mu) - v|||\mu^2 \le \gamma(\mu) \inf_{v \in X_N} ||u_h(\mu) - v||_X^2.$$

Beweis:

(1) Nach Folgerung 3.17 ist $u_N(\mu)$ orthogonale Projektion, also Bestapproximation

$$|||u_h(\mu) - u_N(\mu)|||_{\mu} \stackrel{3.17(1)}{=} |||u_h(\mu) - P_{\mu}(u_N(\mu))|||_{\mu} \stackrel{2.7}{=} = \inf_{v \in X_h} |||u_h(\mu) - v|||_{\mu}.$$

(2) Mit der Normäquivalenz 3.4 folgt

$$\begin{split} &\sqrt{\alpha_h(\mu)} \, \|u_h(\mu) - u_N(\mu)\|_X \overset{3.4}{\leq} |||u_h(\mu) - u_N(\mu)|||_\mu \overset{(1)}{=} \inf_{v \in X_N} |||u_h(\mu) - v|||_\mu \overset{3.4}{\leq} \sqrt{\gamma_h(\mu)} \inf_{v \in X_h} \|u_h(\mu) - v\|_X \,, \\ &\text{wobei } \alpha_h(\mu) := \inf_{v \in X_h} \frac{b(v,v;\mu)}{\|v\|_X^2} \text{ und } \gamma_h(\mu) := \sup_{u,v \in X_h} \frac{b(u,v;\mu)}{\|u\|_X \|v\|_X}. \text{ Wie in Beweis von Folgerung} \\ &3.16 \text{ folgt } \alpha_h(\mu) \geq \alpha(\mu) \text{ und } \gamma_h(\mu) \leq \gamma(\mu) \; \forall \mu \in \mathcal{P} \text{ und damit die Behauptung}. \end{split}$$

(3)

$$s_h(\mu) - s_N(\mu) \stackrel{Def}{=} l(u_h(\mu); \mu) - l(u_N(\mu); \mu) \stackrel{l=f}{=} f(u_h(\mu)) - f(u_N(\mu)) \stackrel{(P_h(\mu))}{=} b(u_h(\mu), u_h(\mu) - u_N(\mu); \mu) = b(u_h(\mu), u_h(\mu)) - b(u_h(\mu), u_h(\mu)) \stackrel{(P_h(\mu))}{=} b(u_h(\mu), u_h(\mu)) - b(u_h(\mu), u_h(\mu)) \stackrel{(P_h(\mu))}{=} b(u_h(\mu), u_h(\mu)) \stackrel{(P_$$

$$s_h(\mu) - s_N(\mu) = |||u_h(\mu) - u_N(\mu)|||_{\mu}^2 \stackrel{(1)}{=} \inf_{v \in X_h} |||u_h(\mu) - v|||_{\mu}^2 \stackrel{3.4}{\leq} \gamma(\mu) \inf_{v \in X_N} ||u_h(\mu) - v||_X^2$$

Insbesondere gilt auch $s_h(\mu)-s_N(\mu)=|||u_h(\mu)-u_N(\mu)|||^2_\mu\geq 0.$

3.20 Bemerkung

- (1) $s_N(\mu)$ ist also untere Schranke für $s_h(\mu)$.
- (2) Der Ausgabefehler ist im Allgemeinen sehr klein, da das Quadrat des RB-Fehlers eingeht.
- (3) Mit dem Lemmavon Céa (Satz 2.39) erhalten wir für nicht notwendigerweise symmetrische Bilinearformen $\|u_h(\mu)-u_N(\mu)\|_X \leq \frac{\gamma(\mu)}{\alpha(\mu)}\inf_{v\in X_N}\|u_h(\mu)-v\|_X$. Damit ist Satz 3.19 eine Verschärfung für symmetrische Bilinearformen.

3.21 Korollar (Monotoner Fehlerabfall in der Energienorm)

Sei $(X_N)_{N=1}^{N_{\max}}$ Folge von RB-Räumen mit $X_N\subseteq X_{N'}$ für $N\le N'\le N_{\max}$ ("Hierarchische Räume") und $e_N(\mu)=u_h(\mu)-u_N(\mu)$ für $\mu\in\mathcal{P}.$ Dann ist die Folge $(|||e_N(\mu)|||)_{N=1}^{N_{\max}}$ monoton fallend.

Beweis:

$$|||e_N(\mu)|||\mu = \inf_{v \in X_N} |||u_h(\mu) - v|||_{\mu} \ge \inf_{v \in X_{N'}} |||u_h(\mu) - v|||_{\mu} = |||e_{N'}(\mu)|||_{\mu}.$$

3.22 Bemerkung

- (1) "Worst Caseïst eine Stagnation des Fehlers (unrealistisch, da jeder neue Basisvektor orthogonal zu $e_N(\mu)$ sein müsste). In der Praxis ist bei geschickter Basiswahl exponentielle Konvergenz zu beobachten.
- (2) Monotonie gilt nicht notwendigerweise für andere Normen trotz Normenäquivalenz:

$$c|||e_N(\mu)|||_{\mu} \le ||e_N(\mu)|| \le C|||e_N(\mu)|||_{\mu}$$

mit c,C Konstanten unabhängig von N. Fehlernorm $\|e_N(\mu)\|$ kann gelegentlich anwachsen, bleibt aber in einem "Korridorüm $|||e_N(\mu)|||_{\mu}$. "Beweis":

$$||e_{N'}(\mu)|| \le C|||e_{N'}(\mu)|||_{\mu} \le C|||e_{N}(\mu)|||_{\mu} \le \frac{C}{c} ||e_{N}(\mu)||$$

3.23 Folgerung (Fehlerabschätzung für den Fehler zwischen exakter Lösung und RB-Lösung)

Sei $\mu \in \mathcal{P}$ und $u_(\mu), s(\mu), u_h(\mu), s_h(\mu)$ bzw. $u_N(\mu), s_N(\mu)$ Lösung von $(P(\mu)), (P_h(\mu))$ bzw. $(P_N(\mu)), w$ obei X_h linearer Finite Elemente Raum. Zusätzlich gelte b symmetrisch und f = l ("compliant"). Liegt nun $u \in H^2(\Omega)$, so gibt es eine Konstante c > 0 die nur von d, σ und Ω abhängt, so dass gilt:

1. Der Fehler in der (μ -unabhängigen) X-Norm erfüllt

$$||u(\mu) - u_h(\mu)||_X \le \sqrt{\frac{\gamma(\mu)}{\alpha(\mu)}} \left(ch |u(\mu)|_{H^2(\Omega)} + \inf_{v \in X_N} ||u_h(\mu) - v||_X \right)$$

2. Für den Ausgabefehler gilt:

$$0 \le s(\mu) - s_N(\mu) \le \gamma(\mu) \left(c^2 h^2 |u(\mu)|_{H^2(\Omega)} + \inf_{v \in X_N} ||u_h(\mu) - v||_X^2 \right)$$

Beweis: Analog zum Beweis von Satz 3.19 unter Verwendung von Satz 2.52.

3.24 Bemerkung

Den Fehleranteil $\|u(\mu) - u_h(\mu)\|_X$ nennt man **Diskretisierungsfehler** und den Anteil $\|u_h(\mu) - u_N(\mu)\|$ nennt man **Modellfehler**. Um eine gute Approximation der exakten Lösung $u(\mu)$ und der Ausgabe $s(\mu)$ zu erhalten, müssen beide Fehleranteile klein sein.

3.25 Satz (Lipschitzstetigkeit)

Falls b und f gleichmäßig beschränkt und Lipschitz-stetig bzgl. μ und b gleichmäßig koerziv bzgl. μ , so sind auch die Lösungen $u_N(\mu)$ und $s_N(\mu)$ von $(P_N(\mu))$ Lipschitz-stetig bzgl. μ .

3.26 Satz (Gleichungssytem und numersische Stabilität)

Sei $\Phi_N = \{\phi_1, \dots, \phi_N\}$ eine reduzierte Basis von X_N . Für $\mu \in \mathcal{P}$ definieren wir $\mathbb{B}_N(\mu) \in \mathbb{R}^{N \times N}$ und $\mathbb{F}_N(\mu) \in \mathbb{R}^N$ durch

$$(\mathbb{B}_N(\mu))_{nm} := b(\phi_m, \phi_n; \mu), \ (\mathbb{F}_N(\mu)_n := f(\phi_n; \mu)$$

und

$$\mathbb{U}_N(\mu) = (U_1^N(\mu), \dots, U_N^N(\mu)) \in \mathbb{R}^N$$

als Lösung von

$$\mathbb{B}_N(\mu)\mathbb{U}_N(\mu) = \mathbb{F}_N(\mu). \tag{3.2}$$

- (1) Dann ist $u_N(\mu) = \sum_{n=1}^N U_n^N(\mu)\phi_n$ und $s_N(\mu) = \mathbb{F}_N^T(\mu)\mathbb{U}_N(\mu)$ Lösung von $(P_N(\mu))$.
- (2) Falls Φ_N orthogonal, so ist die Kondition von (3.2) unabhängig von beschränkt durch

$$\operatorname{cond}_{2}(\mathbb{B}_{N}(\mu)) = \left\| \mathbb{B}_{N}(\mu) \right\|_{2} \left\| \mathbb{B}_{N}^{-1}(\mu) \right\|_{2} \leq \frac{\gamma(\mu)}{\alpha(\mu)}.$$

Beweis:

- (1) klar.
- (2): Wegen Symmetrie con $\mathbb{B}_N(\mu)$ ist

$$\operatorname{cond}_{2}(\mathbb{B}_{N}(\mu)) = \frac{|\lambda_{\max}|}{|\lambda_{\min}|}$$
(3.3)

mit betragsmäßig größten/kleinstem Eigenwert $\lambda_{\max}, \lambda_{\min}$ von $\mathbb{B}_N(\mu)$. Sei $\mathbb{U}_{\max} = (U_n)_{n=1}^N \in \mathbb{R}^N$ Eigenvektor zu λ_{\max} und $u_{\max} := \sum_{n=1}^N U_n \phi_n$. Dann gilt

$$\begin{split} \lambda_{\max} \left\| \mathbb{U}_{\max} \right\|_2^2 &= \lambda_{\max} \mathbb{U}_{\max}^T \cdot \mathbb{U}_{\max} = \mathbb{U}_{\max}^T \mathbb{B}_N(\mu) \mathbb{U}_{\max} \\ &= \sum_{n,m=1}^N U_n U_m b(\phi_n,\phi_m;\mu) = b(\sum_{n=1}^N U_n \phi_n,\sum_{m=1}^N U_m \phi_m;\mu) \\ &= b(u_{\max},u_{\max};\mu) \end{split}$$

Aus der Orthogonalität folgt

$$||u_{\max}||_X^2 =$$

3.27 Bemerkung

Im Gegensatz zu großen aber dünn besetzten Matrizen bei FEM ist (3.2) klein aber voll besetzt, weil ϕ_i im Allgemeinen keinen disjunkten Träger haben.

3.28 Folgerung

Sei $\bar{\varphi}_i$, $i=1,\ldots,\mathcal{N}_h$ die Knotenbasis von X_h wie in Def. 2.50 definiert. Für $\mu\in\mathcal{P}$ definieren wir $\mathbb{B}_h(\mu)\in\mathbb{R}^{\mathcal{N}_h\times\mathcal{N}_h}$ und $\mathbb{F}_h(\mu)\in\mathbb{R}^{\mathcal{N}_h}$ durch

$$(\mathbb{B}_h(\mu))_{ij} := b(\bar{\varphi}_j, \bar{\varphi}_j; \mu), \ (\mathbb{F}_h(\mu))_i := f(\bar{\varphi}_i; \mu), \ 1 \le i, j \le \mathcal{N}_h. \tag{3.4}$$

Indem wir dnun die RB-Basisfunktionen in der Knotenbasis darstellen

$$\Phi_n = \sum_{i=1}^{N_h} \phi_h^i \bar{\varphi}_i, \quad n = 1, \dots, N$$
(3.5)

können wir eine Transformationsmatrix $V \in \mathbb{R}^{\mathcal{N}_h \times N}$ definieren deren Spalten die Koeffizienten der RB-Basisfunktionen in (3.5) enthalten:

$$V_{in} := \phi_n^i, \ 1 \le i \le \mathcal{N}_h, \ 1 \le n \le N. \tag{3.6}$$

Dann gilt für $\mathbb{B}_N(\mu)$ und $\mathbb{F}_N(\mu)$ aus Satz 3.25:

$$\mathbb{B}_N(\mu) = \mathbb{V}^T \mathbb{B}_h(\mu) \mathbb{V} \text{ und } \mathbb{F}_N(\mu) = \mathbb{V}^T \mathbb{F}_h(\mu).$$

Beweis:

$$\begin{split} (\mathbb{V}^T \mathbb{B}_h(\mu) \mathbb{V})_{mn} &= \sum_{r,s=1}^{\mathcal{N}_h} (\mathbb{V}^T)_{mr} (\mathbb{B}_h(\mu))_r s(\mathbb{V}_{sn}) \\ &= \sum_{r,s=1}^{\mathcal{N}_h} \phi_m^r b(\bar{\varphi}_s, \bar{\varphi}_r; \mu) \phi_n^s \\ &= b \left(\sum_{s=1}^{\mathcal{N}_h} \phi_n^s \bar{\varphi}_s, \sum_{r=1}^{\mathcal{N}_h} \phi_m^r \bar{\varphi}_r; \mu \right) \\ &= b (\phi_n, \phi_m; \mu) = (\mathbb{B}_N(\mu))_{mn}. \end{split}$$

3.3 Offline/Online Zerlegung des RB-Modells

3.29 Bemerkung (Komplexitätsbetrachtungen)

Da $\mathbb{B}_h(\mu)$ aus (3.4) dünn besetzt ist, erfordert die Berechnung von $u_h(\mu)$ $\mathcal{O}(\mathcal{N}_h^2)$ Rechenschritte. Da $\mathbb{B}_N(\mu)$ vollbesetzt ist das lineare Gleichungssystem (LGS) (3.2) in $\mathcal{O}(N^3)$ Rechenschritten lösbar. Daher ist nur für $N \ll \mathcal{N}_h$ da RB-Modell ein Gewinn. Genauere Betrachtung der Berechnung einer reduzierten Lösung $u_N(\mu)$:

- (1) N Snapshots, also N Lösungen $u_h(\mu)$ von $(P_h(\mu))$ berechnen: $\mathcal{O}(N\mathcal{N}_h^2)$. ('Offline')
- (2) N^2 Auswertungen von $b(\phi_m, \phi_n; \mu)$: $\mathcal{O}(N^2 \mathcal{N}_h)$.
- (3) N Auswertungen von $f(\phi_n; \mu)$: $\mathcal{O}(N\mathcal{N}_h)$.
- (4) Die Lösung des LGS (3.2): $\mathcal{O}(N^3)$. ('Online')

Damit lohnt sich das RB-Modell für ein einzelnes $\mu \in \mathcal{P}$ oder wenige $\mu \in \mathcal{P}$ <u>nicht</u>. Wenn wir $(P_N(\mu))$ aber für viele verschiedene Parameter $\mu \in \mathcal{P}$ lösen müssen, wie zum Beispiel in einem *many-query* Kontext lohnt sich das RB-Modell, wenn man eine sogenannte **Offline/Online Zerlegung** durchführt. In der einmalig durchgeführten **Offline-Phase** werden μ -unabhängige, hochdimensionale Größen in $\mathcal{O}(\mathcal{N}_h^m), m \in \mathbb{N}$ Rechenschritten, typischerweise teuer vorberechnet. In der <u>vielfach</u> durchgeführten **Online-Phase** werden die Offline-Daten kombiniert um μ -abhängige Größen wie das reduzierte LGS (3.2) zu assemblieren. Die RB-Lösung $u_N(\mu)$ und $s_N(\mu)$ können dann schnell berechnet werden, wobei die Anzahl der Rechenschritte idealerweise $\mathcal{O}(N^k), k \in \mathbb{N}$ ist, d.h. unabhängig von \mathcal{N}_h .

Vor diesem Hintergrund können wir Schritt 1 klar der Offline-Phase und Schritt 4 der Online-Phase zu ordnen. Schritt 2 und 3 lassen sich direkt keiner der beiden Phasen klar zu ordnen, da sie sowohl teure als auch Parameter-abhängige Operationen benötigen. Um eine klare Trennung auch von Schritt 2 und 3 zu erreichen benötigen wir eine spezielle Struktur der Bilinearform $b(.,.;\mu)$ und Linearform $f(.;\mu)$.

3.30 Definition

Seinen X, X_1, X_2 HR, \mathcal{P} beschränkte Parametermenge.

(1) Eine Funktion $v: \mathcal{P} \to X$ nennen wir **affin parametrisch**, falls Funktionen $v^q \in X$ und Koeffizientenfunktionen $\theta_v^q: \mathcal{P} \to \mathbb{R}$ für $q=1,\ldots,Q_v$ existieren, so dass

$$v(x;\mu) := \sum_{q=1}^{Q_v} \theta_v^q(\mu) v^q(x).$$

(2) Eine parametrische stetige Linearform $f: X \times \mathcal{P} \to \mathbb{R}$ bzw. stetige Bilinearform $b: X_1 \times X_2 \times \mathcal{P} \to \mathbb{R}$ ist **affin parametrisch**, falls $f^q \in X'$ und $\theta^q_f: \mathcal{P} \to \mathbb{R}$ für $q = 1, \dots, Q_f$ bzw. $b^q: X_1 \times X_2 \to \mathbb{R}$ und $\theta^q_B: \mathcal{P} \to \mathbb{R}$ für $q = 1, \dots, Q_b$ existieren, so dass

$$\begin{split} f(v;\mu) &= \sum_{q=1}^{Q_f} \theta_f^q(\mu) f^q(v) \ \forall v \in X \ \text{bzw}. \\ b(u,v;\mu) &= \sum_{q=1}^{Q_b} \theta_b^q(\mu) b^q(u,v) \ \forall u \in X_1, v \in X_2. \end{split}$$

3.31 Folgerung (Offline/Online-Zerlegung von $(P_N(\mu))$)

Sei $(P_N(\mu))$ gegeben und b,f affin parametrisch. Dann erlaubt $(P_N(\mu))$ die folgende Offline/Online-Zerlegung:

Offline-Phase: Nach Berechnung einer reduzierten Basis $\Phi_N := \{\phi_1, \dots, \phi_N\}$ assemblieren wir die parameterunabhägige Matrizen und Vektoren $\mathbb{B}^q_N \in \mathbb{R}^{N \times N}$ und $\mathbb{F}^q_N \in \mathbb{R}^N$, definiert durch

$$(\mathbb{B}_{N}^{q})_{nm} := b^{q}(\phi_{m}, \phi_{n}), \ 1 \le m, n \le N, \ 1 \le q \le Q_{b},$$

 $(\mathbb{F}_{N}^{q})_{n} := f^{q}(\phi_{n}), \ 1 \le n \le N, \ 1 \le q \le Q_{f}.$

Online-Phase Für einen gegebenen Parametervektor $\mu \in \mathcal{P}$ werten wir die parameterabhängigen Koeffizientenfunktionen $\theta_b^q(\mu), \theta_f^q(\mu)$ für $1 \leq q \leq Q_b, Q_f$ aus und assemblieren die Matrix und den Vektor

$$\mathbb{B}_N(\mu) := \sum_{q=1}^{Q_b} \theta_b^q(\mu) \mathbb{B}_N^q \text{ bzw. } \mathbb{F}_N(\mu) := \sum_{q=1}^{Q_f} \theta_f^q(\mu) \mathbb{F}_N^q,$$

welche mit der Matrix und dem Vektor aus dem LGS (3.2) aus Satz 3.26 übereinstimmen. Dieses LGS kann dann nach $u_N(\mu)$ und $s_N(\mu)$ gelöst werden.

3.32 Bemerkung

Die Matrizen $\mathbb{B}_N^q \in \mathbb{R}^{N \times N}$ und die Vektoren $\mathbb{F}_N^q \in \mathbb{R}^N$ können mit dem in Folgerung 3.28 beschriebenen Verfahren einfach aus den entsprechenden FE-Matrizen und den FE-Vektoren mit der in (3.6) definierten Transformationsmatrix assembliert werden.

3.33 Bemerkung (Rechenaufwand/Laufzeit)

(1) Für die Berechnung der Snapshots und der anschließenden Assemblierung von \mathbb{B}^q_N , \mathbb{F}^q_N benötigen wir $\mathcal{O}(N\mathcal{N}_h^2+N^2\mathcal{N}_hQ_b+N\mathcal{N}_hQ_f)$ Rechenschritte. In der Online-Phase kann dann die Assemblierung und das Lösen von LGS (3.2) in $\mathcal{O}(N^2Q_b+NQ_f+N^3)$ Rechenschritten erfolgen. Insbesondere hängt die Komplexität der Online-Phase nicht von \mathcal{N}_h ab.

(2) Die Offline/Online Zerlegung lässt sich auch in einem Laufzeitdiagramm veranschaulichen. $t_{hoch}, t_{offline}, t_{online}$ bezeichnen die Laufzeit dür eine Lösung des hochdimensionalen, diskreten Problems $(P_h(\mu))$, die Offline- und die Online-Phase von $(P_N(\mu))$. Wir nehmen an, dass diese Zeiten für unterschiedliche Parameter jeweils dieselben sind und erhalten dadurch einen linearen Zusammenhang zwischen der gesamten benötigten Laufzeit und der Anzahl k von Berechnungen der Lösungen $u_h(\mu), u_N(\mu)$. Die Gesamtlaufzeit für k hochdimensionale Lösungen ist $t_h(k) = k \cdot t_{hoch}$, während das reduzierte Modell eine Laufzeit von $t_N(k) = t_{offline} + k \cdot t_{online}$ benötigt. Wie bereits in 3.29 erwähnt lohnt sich ein RB-Modell bei mehr als $k* := \frac{t_{offline}}{t_{hoch} - t_{online}}$ benötigten Approximationen von $u(\mu)$.

3.4 A posteriori Fehlerschätzer

3.4.1 A posteriori Fehlerschranken und Effektivität

3.34 Lemma (Fehler-Residuum Beziehung)

Für $\mu \in \mathcal{P}$ definieren wir mittels der RB-Lösung $u_N(\mu)$ das Residuum $r(.; \mu) \in X_h'$ durch

$$r(v;\mu) := f(v;\mu) - b(u_N(\mu), v;\mu) \forall v \in X_h$$
(3.7)

und den zugehörigen Riesz-Repräsentanten $R(\mu) \in X_h$ als Lösung von

$$(R(\mu), v)_X = r(v; \mu) \ \forall v \in X_h. \tag{3.8}$$

Dann erfüllt der Fehler $e_N(\mu) := u_h(\mu) - u_N(\mu)$

$$b(e_N(\mu), v; \mu) = r(v; \mu) \ \forall v \in X_h.$$
(3.9)

Beweis:

$$b(e_N(\mu), v; \mu) = b(u_h(\mu) - u_N(\mu), v; \mu)$$

= $b(u_h(\mu), v; \mu) - b(u_N(\mu), v; \mu)$
= $f(v; \mu) - b(u_N(\mu), v; \mu) = r(v; \mu)$

3.35 Satz (A posteriori Fehlerschätzer)

Für $\mu \in \mathcal{P}$ seinen $u_h(\mu), s_h(\mu)$ Lösungen von $(P_h(\mu))$ und $u_N(\mu), s_N(\mu)$ Lösungen von $(P_N(\mu))$. Ferner sei $\alpha_{LB}(\mu) > 0$ eine berechenbare untere Schranke für die Koerzivitätskonstante $\alpha_h(\mu)$ von $b(.,.;\mu)$ und $R(\mu)$ der Riesz-Repräsentant des Residuums aus Lemma 3.34. Dann erfüllen die A posteriori Fehlerschätzer , definiert durch

$$\Delta_N^{en}(\mu) := \frac{\|R(\mu)\|_X}{\sqrt{\alpha_{LB}(\mu)}} \text{ und } \Delta_N^s(\mu) := \frac{\|R(\mu)\|_X^2}{\alpha_{LB}(\mu)}, \tag{3.10}$$

die folgenden Ungleichungen

$$|||u_h(\mu) - u_N(\mu)|||_{\mu} = |||e_N(\mu)|||_{\mu} \le \Delta_N^{en}(\mu)$$
 (3.11)

$$s_h(\mu) - s_N(\mu) \le \Delta_N^s(\mu). \tag{3.12}$$

26

Beweis:

Testen von Gleichung (3.9) mit $e_N(\mu)$ ergibt:

$$\begin{split} |||e_{N}(\mu)|||_{\mu} &\stackrel{Def}{=} b(e_{N}(\mu), e_{N}(\mu); \mu) \stackrel{(3.9)}{=} r(e_{N}(\mu); \mu) \\ &\stackrel{(3.8)}{=} (R(\mu), e_{N}(\mu))_{X} \stackrel{C.S}{\leq} ||R(\mu)||_{X} ||e_{N}(\mu)||_{X} \\ &\stackrel{3.4}{=} \frac{1}{\sqrt{\alpha_{h}(\mu)}} ||R(\mu)||_{X} |||e_{N}(\mu)|||_{\mu} \leq \frac{1}{\sqrt{\alpha_{LB}(\mu)}} ||R(\mu)||_{X} |||e_{N}(\mu)|||_{\mu} \\ &\Rightarrow |||e_{N}(\mu)|||_{\mu} \leq \Delta_{N}^{en}(\mu) \Rightarrow (3.11) \end{split}$$

Aus Satz 3.19 folgt

$$s_h(\mu) - s_N(\mu) = |||e_n(\mu)|||_{\mu}^2 \le (\Delta_N^{en}(\mu))^2 = \Delta_N^{s}(\mu).$$

3.36 Folgerung

Durch $\hat{s}_N(\mu) := s_N(\mu) + \Delta_N^s(\mu)$ ist eine obere Schranke für $s_h(\mu)$ gegeben, das heißt es gilt

$$s_h(mu) \leq \hat{s}_N(\mu).$$

Beweis:

Folgt direkt aus (3.12).

3.37 Bemerkung

Das Beschränken des Fehlers durch das Residuum ist eine Standardtechnik zum Herleiten von A posteriori Fehlerschätzern für FEM. Da in diesem Fall dein Schätzer für den Fehler $|||u(\mu)-u_h(\mu)|||_{\mu}$ gesucht wird, ist X unendlich-dimensional und die Norm $||r(.;\mu)||_{X'}$ kann nicht berechnet werden. Im Fall von RB Methoden ist $||r(.;\mu)||_{X'_{L}}$ mit Hilfe des Riesz-Repräsentanten berechenbar.

3.38 Bemerkung

Da $\Delta_N^{en}(\mu)$ und $\Delta_N^s(\mu)$ unter den Voraussetzungen von Satz 3.35 obere Schranken für die Fehler sind, werden sie auch als <u>rigorose</u> Fehlerschranken bezeichnet. Bei A posteriori Fehlerschätzern für FEM treten häufig Konstanten in den Abschätzungen auf, welche nicht entsprechend nach oben/unten durch berechenbare Konstanten beschränkt werden können, so dass in diesen Fällen die A posteriori Fehlerschätzer den Fehler auch unterschätzen können; sie also keine rigorose Fehlerschranken zu sein brauchen. Mit Hilfe des Fehlerschätzers können wir die Dimension des RB-Raumes so bestimmen, dass der Approximationsfehler kleiner als eine vorgegebene Toleranz ist. Um ein möglichest effizientes Verfahren zu erhalten ist es daher wünschenswert, dass der Quotient $\frac{\Delta_N^{en}(\mu)}{|||e_N(\mu)||||_\mu}$ möglichst nahe an 1 ist. Er ist ≥ 1 wegen Satz 3.35. Diesen Quotienten werden wir im Folgenden weiter untersuchen.

3.39 Satz (Effektivitäten der Fehlerschätzer)

Wir definieren die Effektivitäten $\eta_N^{en}(\mu)$ und $\eta_N^s(\mu)$ der Fehlerschätzer $\Delta_N^{en}(\mu)$ und $\Delta_N^s(\mu)$, definiert in (3.10), durch

$$\eta_N^{en}(\mu) := \frac{\Delta_N^{en}(\mu)}{|||u_h(\mu) - u_N(\mu)|||_{\mu}} \text{ und } \eta_N^s(\mu) := \frac{\Delta_N^s(\mu)}{s_h(\mu) - s_N(\mu)}. \tag{3.13}$$

Unter den Voraussetzungen von Satz 3.35 gilt dann

$$\eta_N^{en}(\mu) \le \sqrt{\frac{\gamma(\mu)}{\alpha_{LB}(\mu)}}$$
 und (3.14)

$$\eta_N^s(\mu) \le \frac{\gamma(\mu)}{\alpha_{LB}(\mu)}.\tag{3.15}$$

Beweis:

Zunächst folgt aus der Definition de Riesz-Repräsentanten und des Residuums in Lemma 3.34:

$$\begin{split} \|R(\mu)\|_X^2 &= (R(\mu), R(\mu))_X \stackrel{(3.8)}{=} r(R(\mu); \mu) \\ &\stackrel{(3.9)}{=} b(e_N(\mu), R(\mu); \mu \stackrel{C.S}{\leq} |||e_N(\mu)|||_{\mu} |||R(\mu)|||_{\mu} \\ &\stackrel{(3.4)}{\leq} |||e_N(\mu)|||_{\mu} \sqrt{\gamma(\mu)} \, \|R(\mu)\|_X \,. \end{split}$$

$$\Rightarrow ||R(\mu)||_{X} \le |||e_{N}(\mu)|||_{\mu} \sqrt{\gamma(\mu)}$$
(3.16)

$$\begin{split} \eta_N^{en}(\mu) &= \frac{\Delta_N^{en}(\mu)}{|||e_N(\mu)|||_{\mu}} \stackrel{Def}{=} \frac{||R(\mu)||_X}{\sqrt{\alpha_{LB}(\mu)}|||e_N(\mu)|||_{\mu}} \\ &\stackrel{(3.16)}{\leq} \sqrt{\frac{\gamma(\mu)}{\alpha_{LB}(\mu)}} \frac{|||e_N(\mu)|||_{\mu}}{|||e_N(\mu)|||_{\mu}} \\ &\Rightarrow (3.14) \end{split}$$

Aus Satz 3.19 folgt dann:

$$\eta_N^s(\mu) \stackrel{Def}{=} \frac{\Delta_N^s(\mu)}{s_h(\mu)s_N(\mu)} \stackrel{Def/3.19}{=} \frac{(\Delta_N^{en}(\mu))^2}{|||e_N(\mu)|||_{\mu}^2} \stackrel{(3.14)}{\leq} \frac{\gamma(\mu)}{\alpha_{LB}(\mu)} \Rightarrow (3.15).$$

3.40 Folgerung

Falls $u_h(\mu) = u_N(\mu)$ dann gilt automatisch $\Delta_N^{en}(\mu) = \Delta_N^s(\mu) = 0$.

Beweis:

Folgt direkt aus Satz 3.39, kann aber auch unabhängig davon wie folgt eingesehen werden: Da $0=b(0,v;\mu)=b(e_N(\mu),v;\mu)\stackrel{(3.9)}{=}r(v;\mu)\stackrel{(3.8)}{=}(R(\mu),v)_X$ für alle $v\in X$ gilt, folgt $\|R(\mu)\|_X=0$ und damit $\Delta_N^{en}(\mu)=\Delta_N^s(\mu)=0$.

3.41 Bemerkung

Folgerung 3.40 ist insbesondere dann relevant, wenn für einen Fehlerschätzer Schranken für die Effektivität (noch) nicht verfügbar sind.

3.42 Folgerung (Fehlerschätzer für die X-Norm)

Unter den Voraussetzungen von Satz 3.35 gilt für den Fehlerschätzer $\Delta_N(\mu) := \frac{\|R(\mu)\|_X}{\alpha_{LB}(\mu)}$, dass

$$||u_h(\mu) - u_N(\mu)||_X \le \Delta_N(\mu).$$

Ferner gilt für die Effektivität des Fehlerschätzers $\eta_N(\mu) := \frac{\Delta_N(\mu)}{\|u_h(\mu) - u_N(\mu)\|_X}$ die folgende Schranke

$$\eta_N(\mu) \le \frac{\gamma(\mu)}{\alpha_{LB}(\mu)}.$$

Beweis:

Analog zu den Beweisen von Satz 3.35/3.39 unter Verwendung von Lemma 3.4.

Zusätzlich zu absoluten Fehlerschätzern wollen wir schließlich noch relative Fehlerschätzer herleiten und die zugehörigen Effektivitäten untersuchen.

3.34 Satz (Relative Fehlerschätzer)

Wir definieren die relativen Fehlerschätzer

$$\Delta_N^{en,rel}(\mu) := 2 \frac{\|R(\mu)\|_X}{\sqrt{\alpha_{LB}(\mu)}} \cdot \frac{1}{\||u_N(\mu)||_{\mu}}$$

für den relativen Fehler in der Energienorm,

$$\Delta_N^{rel}(\mu) := 2 \frac{\|R(\mu)\|_X}{\alpha_{LB}(\mu)} \cdot \frac{1}{||u_N(\mu)||_X}$$

für den relativen Fehler in der X-Norm und

$$\Delta_N^{s,rel}(\mu) := \frac{\|R(\mu)\|_X^2}{\alpha_{LB}(\mu)s_N(\mu)}$$

für den relativen Ausgabefehler. Dann gilt unter den Voraussetzungen von Satz 3.35 und falls $\Delta_N^{en,rel}(\mu) \leq$ $1, \Delta_N^{rel}(\mu) \leq 1$

$$\frac{|||u_h(\mu) - u_N(\mu)|||_{\mu}}{|||u_h(\mu)|||_{\mu}} \le \Delta_N^{en,rel}(\mu),\tag{3.17}$$

$$\frac{|||u_{h}(\mu) - u_{N}(\mu)|||_{\mu}}{|||u_{h}(\mu)|||_{\mu}} \leq \Delta_{N}^{en,rel}(\mu),$$

$$\frac{||u_{h}(\mu) - u_{N}(\mu)||_{X}}{||u_{h}(\mu)||_{X}} \leq \Delta_{N}^{rel}(\mu),$$

$$\frac{||u_{h}(\mu) - u_{N}(\mu)||_{X}}{||u_{h}(\mu)||_{X}} \leq \Delta_{N}^{rel}(\mu),$$
(3.18)

$$\frac{s_h(\mu) - s_N(\mu)}{s_h(\mu)} \le \Delta_N^{s,rel}(\mu). \tag{3.19}$$

Beweis: Falls $\Delta_N^{en,rel}(\mu) \leq 1$, so gilt

$$\left| \frac{|||u_{h}(\mu)|||_{\mu} - |||u_{N}(\mu)|||_{\mu}}{|||u_{N}(\mu)|||_{\mu}} \right| \leq \frac{|||u_{h}(\mu) - u_{N}(\mu)|||_{\mu}}{|||u_{N}(\mu)|||_{\mu}} \stackrel{(3.11)}{\leq} \frac{||R(\mu)||_{X}}{\alpha_{LB}(\mu)|||u_{N}(\mu)|||_{\mu}} = \frac{\Delta_{N}^{en,rel}(\mu)}{2} \leq \frac{1}{2}. \tag{3.20}$$

Aus (3.20) folgt:

$$|||u_N(\mu)|||_{\mu} - |||u_h(\mu)|||_{\mu} \le \frac{1}{2}|||u_N(\mu)|||_{\mu}$$

$$\Rightarrow \frac{1}{2}|||u_N(\mu)|||_{\mu} \le |||u_h(\mu)|||\mu. \tag{3.21}$$

Damit gilt:

$$\frac{|||e_N(\mu)|||_{\mu}}{|||u_h(\mu)|||_{\mu}} \overset{(3.11)}{\leq} \frac{||R(\mu)||_X}{\sqrt{\alpha_{LB}(\mu)}|||u_h(\mu)|||_{\mu}} \overset{(3.21)}{\leq} \frac{||R(\mu)||_X}{\sqrt{\alpha_{LB}(\mu)}|||u_N(\mu)|||_{\mu}} \cdot 2 = \Delta_N^{en,rel}(\mu).$$

Daraus folgt (3.17). Und (3.18) folgt analog zu (3.17). Schließlich gilt

$$\frac{s_h(\mu) - s_N(\mu)}{s_h(\mu)} \stackrel{(3.12)}{\leq} \frac{\Delta_N^s(\mu)}{s_h(\mu)} \stackrel{3.19}{\leq} \frac{\Delta_N^s(\mu)}{s_N(\mu)} = \Delta_N^{s,rel}(\mu).$$

3.44 Satz (Effektivitäten der relativen Fehlerschätzer)

Wir definieren die Effektivitäten der relativen Fehlerschätzer $\eta_N^{en,rel}(\mu),\eta_N^{rel}(\mu),\eta_N^{s,rel}(\mu)$ wie folgt:

$$\eta_N^{en,rel}(\mu) := \frac{\Delta_N^{en,rel}(\mu)}{|||e_N(\mu)|||_\mu/|||u_h(\mu)|||_\mu}, \ \eta_N^{rel}(\mu) := \frac{\Delta_N^{rel}(\mu)}{||e_N(\mu)||_X/||u_h(\mu)||_X}, \ \eta_N^{s,rel}(\mu) := \frac{\Delta_N^{s,rel}(\mu)}{(s_h(\mu) - s_N(\mu)/s_h(\mu))}.$$

Dann gilt unter den Voraussetzungen von Satz 3.35, falls $\Delta_N^{en,rel}(\mu) \leq 1, \Delta_N^{rel}(\mu) \leq 1, \Delta_N^{s,rel}(\mu) \leq 1$:

$$\Delta_N^{en,rel}(\mu) \le 3\sqrt{\frac{\gamma(\mu)}{\alpha_{LB}(\mu)}},$$
(3.21b)

$$\Delta_N^{rel}(\mu) \le 3 \frac{\gamma(\mu)}{\alpha_{LB}(\mu)} \tag{3.22}$$

$$\eta_N^{s,rel}(\mu) \le 2 \frac{\gamma(\mu)}{\alpha_{LB}(\mu)}.$$
(3.23)

Beweis:

Wie in Beweis von Satz 3.43 impliziert $\Delta_N^{en,rel}(\mu) \leq 1$ dass

$$\left| \frac{|||u_h(\mu)|||_{\mu} - |||u_N(\mu)|||_{\mu}}{|||u_N(\mu)|||_{\mu}} \right| \le \frac{1}{2}.$$

Damit gilt $|||u_h(\mu)|||_{\mu} - |||u_N(\mu)|||_{\mu} \le \frac{1}{2}|||u_N(\mu)|||_{\mu}$ und damit

$$|||u_h(\mu)|||_{\mu} \le \frac{3}{2}|||u_N(\mu)|||_{\mu}.$$
 (3.24)

Damit folgt:

30

$$\begin{split} \eta_{N}^{en,rel}(\mu) &\overset{Def}{=} \frac{2 \, \|R(\mu)\|_{X}}{\sqrt{\alpha_{LB}(\mu)} |||u_{h}(\mu)|||_{\mu}} \frac{|||u_{h}(\mu)|||_{\mu}}{|||e_{N}(\mu)|||_{\mu}} \\ &\overset{(3.16)}{\leq} 2 \frac{\sqrt{\gamma(\mu)} \, \|e_{N}(\mu)\|_{X}}{\sqrt{\alpha_{LB}(\mu)} |||u_{h}(\mu)|||_{\mu}} \frac{|||u_{h}(\mu)|||_{\mu}}{|||e_{N}(\mu)|||_{\mu}} \overset{(3.24)}{\leq} 3 \sqrt{\frac{\gamma(\mu)}{\alpha_{LB}(\mu)}} \Rightarrow (3.21b). \end{split}$$

(3.22) folgt analog zu (3.21b). Schließlich gilt

$$\eta_N^{s,rel}(\mu) = \frac{\Delta_N^s(\mu)/s_N(\mu)}{(s_h(\mu) - s_N(\mu))/s_h(\mu)} = \eta_N^s(\mu) \frac{s_h(\mu)}{s_N(\mu)} \stackrel{(3.15)}{\leq} \frac{\gamma(\mu)}{\alpha_{LB}(\mu)} \frac{s_h(\mu)}{s_N(\mu)}.$$

Der letzte Faktor ist beschränkt, da

$$\frac{s_h(\mu)}{s_N(\mu)} = 1 + \frac{s_h(\mu) - s_N(\mu)}{s_N(\mu)} \overset{(3.19)}{\leq} 1 + \Delta_N^{s,rel}(\mu) \leq 2 \Rightarrow (3.23).$$

3.45 Bemerkung

Durch "Tauschen"des Skalarprodukts/der Norm auf X_h können die Fehlerschätzer und Effektivitäten verbessert werden, ohne die Ausgabe des reduzierten Modells oder die reduzierte Lösung zu verändern. Wähle $\bar{\mu} \in \mathcal{P}$ fest und betrachte auf X_h das Skalarprodukt $(((.,.)))_{\bar{\mu}}$ mit induzierter Norm $|||.|||_{\bar{\mu}}$. Wegen Lemma 3.4 Normäquivalenz folgt aus der Stetigkeit und Koerzivität der Bilinearform b auf X_h bzgl. der X-Norm die Stetigkeit und Koerzivität auf X_h bzgl. der $|||.|||_{\bar{\mu}}$ -Norm und umgekehrt. Gleiches gilt für die Stetigkeit von l und f. Dann gilt $\alpha_h(\bar{\mu}) := \inf_{v \in X_h} \frac{b(v,v;\bar{\mu})}{|||v|||_{\bar{\mu}}} = 1$ und $\gamma_h(\bar{\mu}) := \sup_{u,v \in X_h} \frac{b(u,v;\bar{\mu})}{|||u|||_{\bar{\mu}}|||v|||_{\bar{\mu}}} = \sup_{u,v \in X_h} \frac{(((u,v)))_{\bar{\mu}}}{|||u|||_{\bar{\mu}}|||v|||_{\bar{\mu}}} \le 1$. Für einen Fehlerschätzer welcher auf der $|||.|||_{\bar{\mu}}$ -Norm des Riesz-Repräsentanten $R(\mu)$ basiert gilt also $\eta(\bar{\mu}) = 1$. Er ist in diesem Sinne optimal. Nimmt man an, dass $\alpha_h(\mu)$ und $\gamma_h(\mu)$ stetig von Parameter μ abhängen, kann man erwarten auch in einer Umgebung von $\bar{\mu}$ sehr effektive Fehlerschätzer zu erhalten.

3.4.2 Offline/Online-Zerlegung des Fehlerschätzers

Damit wir in der Online-Phase verifizeren können, dass der Approximationsfehler unter einer vorgegeben Toleranz liegt, ist es wichtig, dass wir auch den Fehlerschätzer Offline/Online zerlegen können. Die Erkenntnis, dass sich die affine Parameterabhängigkeit der Bilinearform b und der Linearform f auf das Residuum und die Norm des Riesz-Repräsentanten überträgt ist hierbei von zentraler Bedeutung. Mit Lemma f 3.34 und der afiinen Parameterabhängigkeit von f und f folgt:

$$(R(\mu), v) = r(v; \mu) = f(v; \mu) - b(u_N(\mu), v; \mu)$$

$$= \sum_{q=1}^{Q_f} \theta_f^q(\mu) f^q(v) - \sum_{q=1}^{Q_b} \sum_{n=1}^N \theta_b^q(\mu) U_n^N(\mu) b^q(\phi_n, v).$$

Nach dem Riesz'schen Darstellungssatz 2.9 existieren $R_f^q \in X - h$ mit

$$(R_f^q, v)_X = f^q(v) \ \forall v \in X_h, \ 1 \le q \le Q_f$$
 (3.25)

und $R_h^{q,n} \in X_h$ mit

$$(R_h^{q,n}, v)_X = b^q(\phi_n, v) \ \forall v \in X_h, \ 1 \le q \le Q_b, \ 1 \le n \le N.$$
 (3.26)

Daher können wir weiter umformen:

$$\begin{split} (R(\mu), v)_X &= \sum_{q=1}^{Q_f} \theta_f^q(\mu) (R_f^q, v)_X - \sum_{q=1}^{Q_b} \sum_{n=1}^N \theta_b^q(\mu) U_n^N(\mu) (R_b^{q,n}, v)_X \\ &= \left(\sum_{q=1}^{Q_f} \theta_f^q(\mu) R_f^q - \sum_{q=1}^{Q_b} \sum_{n=1}^N \theta_b^q(\mu) U_n^N(\mu) R_b^{q,n}, v \right)_X \ \\ &\Rightarrow R(\mu) = \sum_{q=1}^{Q_f} \theta_f^q(\mu) R_f^q - \sum_{q=1}^{Q_b} \sum_{n=1}^N \theta_b^q(\mu) U_n^N(\mu) R_b^{q,n}. \end{split}$$

Wir fassen dieses Resultat im folgenden Lemma zusammen.

3.46 Lemma (Affine Parameterabhängigkeit von $R(\mu)$

Seien b,f affin parametrisch und $R_f^q,R_b^{q,n}\in X_h$ definiert wie in (3.25)/(3.26) . Sei $Q_R:=Q_f+N\cdot Q_b$ und R_R^q für $1\leq q\leq Q_R$ eine Aufzählung von $R_f^q,R_b^{q,n}$:

$$(R_R^1,\dots,R_R^{Q_R}):=(R_f^1,\dots,R_f^{Q_f},R_b^{1,1},\dots,R_b^{Q_b,1},R_b^{1,2},\dots,R_b^{Q_b,2},\dots,R_b^{1,N},\dots,R_b^{N,Q_b}).$$

Für $\mu \in \mathcal{P}$ sei $u_N(\mu) = \sum_{n=1}^N U_n^N(\mu) \phi_n$ die Lösung von $(P_N(\mu))$. Dann definieren wir $\theta_R^q: \mathcal{P} \to \mathbb{R}, \ 1 \leq q \leq Q_R$ durch

$$(\theta_R^1(\mu), \dots, \theta_R^{Q_R}(\mu)) := (\theta_f^1(\mu), \dots, \theta_f^{Q_f}(\mu), -\theta_b^1(\mu)U_1^N(\mu), \dots, -Q_b^{Q_b}(\mu), \dots, -\theta_b^{Q_b}(\mu)U_N^N(\mu)).$$

Dann ist der Riesz-Repräsentant $R(\mu) \in X_h$ des Residuums affin parametrisch:

$$R(\mu) = \sum_{q=1}^{Q_R} \theta_R^q(\mu) R_R^q.$$

Abbildungsverzeichnis

Abbildungsverzeichnis