Rudin-Carleson theorems

Bergur Snorrason

28. maí 2020

Extensions

Definition

If $f \colon A \to X$, $g \colon B \to X$, $A \subset B$ and f = g on A, then we say g extends f.

We will use the following to denote common sets in $\ensuremath{\mathbb{C}}.$

- $\cdot \mathbb{D} = \{ z \in \mathbb{C} \colon |z| < 1 \}$
- $\cdot \ \overline{\mathbb{D}} = \{ z \in \mathbb{C} \colon |z| \leqslant 1 \}$
- $T = \{z \in \mathbb{C} : |z| = 1\}$

Tietze

Theorem (Tietze)

Let X be a normal space and A be a subset of X. For any continuous function $f:A\to\mathbb{R}$ there exists a $g\colon X\to\mathbb{R}$ that extends it.

Theorem (Tietze)

Let X be a normal space and A be a subset of X. For any continuous function $f: A \to [a,b]$ there exists a $g: X \to [a,b]$ that extends it.

An example of a normal space is any metric space.

The Dirichlet problem (on the unit disk in \mathbb{R}^2)

Given a continuous function $f: \{x \in \mathbb{R}^2; \|x\| = 1\} \to \mathbb{R}$ can you find a continuous function u on the closed unit disk that's harmonic on the open unit disk and extends f?

Rudin-Carelson

Theorem (Rudin-Carelson)

Let $E \subset \mathbb{T}$ be a closed set such that m(E) = 0, where m is the Lebesgue-measure on \mathbb{T} , $f \colon E \to \mathbb{C}$ be continuous, and T be a subset of \mathbb{C} homeomorphic to $\overline{\mathbb{D}}$ such that $f(E) \subset T$. There exists a continuous function $g \colon \overline{\mathbb{D}} \to \mathbb{C}$ that extends f, is holomorphic on \mathbb{D} and $g(\overline{\mathbb{D}}) \subset T$.

Bishop

Theorem (Bishop)

Let

- 1. X be a compact Hausdorff space,
- 2. B be a closed subspace of $(C(X), \|\cdot\|_{\infty})$,
- 3. S be a closed subset of X that is B^{\perp} -null,
- 4. f be a continuous function on S,
- 5. $\Xi: X \to [0, +\infty[$ be a continuous function such that $|f| < \Xi$ on S.

Then there exists a function $F \in B$ that extends f and $|F| < \Xi$ on X.

Note that for S to be B^{\perp} -null it has to be a null set with regards to all complex measures μ such that

$$\int f \ d\mu = 0 \qquad \qquad \text{for all } f \text{ in } B.$$

Rudin-Carleson as a corollary of Bishop's theorem

Theorem (F. and M. Riesz)

Let μ be a complex measure on $\mathbb T$ such that

$$\int_{\mathbb{T}} e^{-int} \ d\mu = 0$$

holds for n=-1,-2,... Then $\mu \leqslant m$. That is, if $E \subset \mathbb{T}$ is m-null then E is also μ -null.

Regarding the proof of Bishop's theorem

When proving Bishop's theorem we use that

$$\int_{S} f \ d\mu = 0$$

holds generally for μ in B^{\perp} and

$$\int_{S} (f - F) \ d\mu = 0$$

holds generally for μ in B^{\perp} and F in B.

Alternative version of Bishop

Theorem

Let X and B be as in Bishop's theorem, S be a closed subset of X and f be a continuous function on S. If

$$\int_{S} f \ d\mu = 0$$

holds for all μ in B^{\perp} and

$$\int_{S} G \ d\mu = 0$$

holds for all μ in B^{\perp} and all G in B then there exists a function F in B that extends f.

Blank slide