# Huffman Codes

Given source symbols and their probabilities of occurence, how to design an optimal source code (prefix code and the shortest on average)?

## **Huffman Codes**

- Merge the D symbols with the smallest probabilities, and generate one new symbol whose probability is the summation of the D smallest probabilities.
- Assign the *D* corresponding symbols with digits  $0, 1, \ldots, D-1$ , then go back to Step 1.

Repeat the above process until D probabilities are merged into probability 1.

# Examples

# Example 1

| X | p(x) | C(x) |
|---|------|------|
| 1 | 0.25 | 10   |
| 2 | 0.25 | 01   |
| 3 | 0.2  | 00   |
| 4 | 0.15 | 110  |
| 5 | 0.15 | 111  |



$$\mathsf{L} = \sum \ell(x) p(x) = 2.3 \mathsf{bits}$$

$$H_2(X) = -\sum p(x) \log_2 p(x) = 2.29 \text{bits}$$

$$L \geq H_2(X)$$



1 Canonical form

# Example 2 ( $D \ge 3$ )

| X     | p(x) | C(x) |
|-------|------|------|
| 1     | 0.25 | 1    |
| 2     | 0.25 | 2    |
| 3     | 0.2  | 02   |
| 4     | 0.1  | 01   |
| 5     | 0.1  | 002  |
| 6     | 0.1  | 001  |
| Dummy | 0    | 000  |
|       |      |      |



### Validations:

$$L = \sum \ell(x)p(x) = 1.7$$
 ternary digits  $H_3(X) = -\sum p(x)\log_3 p(x) \approx 1.55$  ternary digits

# Optimality of Huffman Codes

# Lemma 5.8.1

For any distribution, the optimal prefix codes (with minimum expected length) should satisfy the following properties:

- If  $p_i > p_k$ , then  $\ell_i \le \ell_k$ .
- The two longest codewords have the same length.
- 3 There exists an optimal prefix code, such that two of the longest codewords differ only in the last bit and correspond to the two least likely symbols.
- $\Rightarrow$  If  $p_1 \ge p_2 \ge \cdots p_m$ , then there exists an optimal code with  $\ell_1 \leq \ell_2 \leq \cdots \ell_{m-1} = \ell_m$ , and codewords  $C(x_{m-1})$  and  $C(x_m)$  differ only in the last bit. (canonical codes)

# Example 2

| X     | p(x) |
|-------|------|
| 1     | 0.25 |
| 2     | 0.25 |
| 3     | 0.2  |
| 4     | 0.1  |
| 5     | 0.1  |
| 6     | 0.1  |
| Dummy | 0    |

At one time, we merge D symbols, and at each stage of the reduction, the number of symbols is reduced by D-1. We want the total # of symbols to be 1 + k(D - 1). If not, we add dummy symbols with probability 0.

$$\mathcal{D} = \{0, 1, 2\}$$

概率越大,编码长度越短

存在一种最优 prefix code、最长的编码仅在最后一个

两个最长的编码同长

bit不同·

• 1. If  $p_i > p_k$ , then  $\ell_j \leq \ell_k$ . Proof. Suppose that  $C_m$  is an optimal code. Consider  $C'_m$ , with the codewords j and k of  $C_m$  interchanged. Then  $\underbrace{L\left(C_{m}^{\prime}\right)-L\left(C_{m}\right)}_{>0}=\sum p_{i}\ell_{i}^{\prime}-\sum p_{i}\ell_{i}$  $= p_j \ell_k + p_k \ell_j - p_j \ell_j - p_k \ell_k$  $=\underbrace{(p_j-p_k)}_{>0}(\ell_k-\ell_j)$ Thus, we must have  $\ell_k \geq \ell_j$ . 2. The two longest codewords have the same length. 设C191和C16)是最长的 假设了<la. 会m=li. mon=le Pn有: C(9): b. b2...bm C(k) . bib2 ... bm bm+1 ... bm+n 构造 cr. {c(i)=c(i), i+k, 即名的code 放了部分. C'Aprefix code 且 L(c') < L(c), 即 C 是 optimal code. 矛盾 及C Ho optimal prefix code • 3. There exists an optimal prefix code, such that two of the longest codewords differ only in the last bit and correspond to C(j): b1b2...bm the two least likely symbols. C(k): bi bi ... bim Proof If there is a maximal-length codeword without a sibling, we can 全 C((k): b, bz... bm, 即最后-位与C(j)7-1面). delete the last bit of the codeword and still preserve the prefix property. This reduces the average codeword length and 格 c(k)用 C(k) 代替, 得到 C contradicts the optimality of the code. Hence, every 此时保持有上(亡)=上(亡) maximum-length codeword in any optimal code has a sibling. Now we can exchange the longest codewords s.t. the two lowest-probability source symbols are associated with two siblings ①若C(k)€C,则C那为所需 on the tree, without changing the expected length. ②若 c(k) & C, (段水 + i, (ci) 是 c'(k) 的 新级。 到水 (li) 也 同时是(yi的断缀,与choprefix code矛盾 FMW. C'& prefix code

 We prove the optimality of Huffman codes by induction. Assume binary code in the proof.



For  $\mathbf{p}=(p_1,p_2,\ldots,p_m)$  with  $p_1\geq p_2\geq \cdots \geq p_m$ , we define the Huffman reduction  $\mathbf{p}' = (p_1, p_2, \dots, p_{m-1+p_m})$  over an alphabet size of m-1. Let  $C_{m-1}^*(\mathbf{P}')$  be an optimal Huffman code for  $\mathbf{p}'$ , and let  $C_m^*(\mathbf{p})$  be the canonical optimal code for  $\mathbf{p}$ .

# Key idea.

expand 
$$C_{m-1}^*$$
 to  $C_m(\mathbf{p}) \Rightarrow L(C_m) = L(C_m^*)$ 

$$C_{m-1}^*(\mathbf{p}') \qquad C_m(\mathbf{p})$$

$$p_1 \qquad w_1' \qquad l_1' \qquad w_1 = w_1' \qquad l_1 = l_1'$$

$$p_2 \qquad w_2' \qquad l_2' \qquad w_2 = w_2' \qquad l_2 = l_2'$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$p_{m-2} \qquad w_{m-2}' \qquad l_{m-2}' \qquad w_{m-2} = w_{m-2}' \qquad l_{m-2} = l_{m-2}'$$

$$p_{m-1} + p_m \qquad w_{m-1}' \qquad l_{m-1}' \qquad w_{m-1} = w_{m-1}' \qquad l_{m-1} = l_{m-1}' + 1$$

$$C_{m-1}(\mathbf{p}') \qquad \qquad C_m^*(\mathbf{p})$$

$$p_1 \qquad w_1' \qquad l_1' \qquad w_1 = w_1' \qquad l_1 = l_1'$$

$$p_2 \qquad w_2' \qquad l_2' \qquad w_2 = w_2' \qquad l_2 = l_2'$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$p_{m-2} \qquad w_{m-2}' \qquad l_{m-2}' \qquad w_{m-2} = w_{m-2}' \qquad l_{m-2} = l_{m-2}'$$

$$p_{m-1} + p_m \qquad w_{m-1}' \qquad l_{m-1}' = w_{m-1}' \qquad l_{m-1} = l_{m-1}' + 1$$

$$expand \qquad C_{m-1}^*(\mathbf{p}') \text{ to } C_m(\mathbf{p})$$

$$L(\mathbf{p}) = L^*(\mathbf{p}') + p_{m-1} + p_m$$

$$condense \qquad C_m^*(\mathbf{p}) \text{ to } C_{m-1}(\mathbf{p}')$$

$$L^*(\mathbf{p}) = L(\mathbf{p}') + p_{m-1} + p_m$$

$$L(\mathbf{p}) = L^*(\mathbf{p}') + p_{m-1} + p_m$$

$$L^*(\mathbf{p}) = L(\mathbf{p}') + p_{m-1} + p_m$$

Thus,  $L(\mathbf{p}) = L^*(\mathbf{p})$ . Minimizing the expected length  $L(C_m)$  is equivalent to minimizing  $L(C_{m-1})$ . The problem is reduced to one with m-1 symbols and probability masses  $(p_1, p_2, \dots, p_{m-1} + p_m)$ . Proceeding this way, we finally reduce the

problem to two symbols, in which case the optimal code is obvious.



# Theorem 5.8.1 Huffman coding is optimal, that is, if $C^*$ is a Huffman code and C' is any other uniquely decodable code, $L(C^*) \leq L(C')$ . Remark Huffman coding is a greedy algorithm in which it merges the two least likely symbols at each step. ${\color{red}\mathsf{LOCAL}}\;\mathsf{OPT}\to{\color{red}\mathsf{GLOBAL}}\;\mathsf{OPT}$