Ćwiczenie 1: Odczyt i zapis GPIO

Instrukcja laboratorium

Mariusz Chilmon <mariusz.chilmon@ctm.gdynia.pl>

2023-12-19

Nothing is so obvious that it's obvious... The use of the word 'obvious' indicates the absence of a logical argument.

- Errol Morris

Cel ćwiczenia

Celem ćwiczenia jest zapoznanie się z:

- budową cyfrowych portów I/O, czyli GPIO (General-Purpose Input/Output),
- podstawowymi rejestrami sterującymi tymi portami,
- · operatorami bitowymi.

Uruchomienie programu wyjściowego

- 1. Podłącz płytkę WPSH209 do Arduino Uno.
- 2. Zbuduj program i wgraj do mikrokontrolera.
- 3. Zweryfikuj, czy dioda LED D2 zaświeciła się.

Dioda D1 mruga po uruchomieniu urządzenia i w trakcie programowania, gdyż jest używana przez bootloader, który bierze również udział w programowaniu *Arduino Uno*.

Zauważ, że diodę zaświeca stan niski, czyli logiczne 0. Wynika to z tego, że jedna nóżka diody (anoda) podłączona jest na stałe do dodatniej szyny zasilania, a do zaświecenia potrzebne jest jeszcze podłączenie ujemnej szyny zasilania do drugiej nóżki (katody).

Zapoznaj się z opisem portów I/O w nocie katalogowej mikrokontrolera, w szczególności rejestru DDR (*Data Direction Register*), decydującego o kierunku poszczególnych pinów w porcie, tj. konfigurującego piny jako wejścia lub wyjścia.

Po wskazaniu kursorem makra _BV() zobaczysz jego rozwinięcie. Zwróć uwagę na wykorzystanie operatora przesunięcia bitowego << w celu ustawienia bitu o zadanym numerze

Zadanie podstawowe

Konfiguracja sprzętowa

1. Załóż zworkę J2.

Zauważ, że wciśnięcie przycisku zwiera pin mikrokontrolera do ujemnej szyny zasilania, więc znów stanem aktywnym okazuje się 0.

Wymagania funkcjonalne

Zmodyfikuj procedurę inicjalizacji GPIO gpioInitialize() i pętlę główną mainLoop(), by spełnić poniższe wymagania.

- 1. Po uruchomieniu dioda D2 powinna być zgaszona.
- 2. Dioda D2 powinna zaświecać się po wciśnięciu przycisku A1 i gasnąć po jego puszczeniu.

Zapoznaj się z rejestrami PORT (*Data Register*) i PIN (*Input Pins Address*), które pozwalają, odpowiednio, zapisywać stan wyjściowy i odczytywać stan wejściowy z danego portu.

Możesz użyć makra bit_is_clear() do sprawdzenia, czy pin wejściowy jest w stanie 0.

Zadanie rozszerzone

Wymagania funkcjonalne

Zmodyfikuj pętlę główną mainLoop (), by spełnić poniższe wymagania.

- 1. Po uruchomieniu diody D2...D4 powinny być zgaszone.
- 2. Każda z diod powinna zaświecać się po wciśnięciu przypisanego jej przycisku (np. A1 dla diody D2) i gasnąć po jego puszczeniu.
- 3. Wciśnięcie kilku przycisków jednocześnie powinno zaświecać odpowiednie diody.

Z dokumentacji płytki *WPSH209* i *Arduino Uno* odczytaj numerację pinów, do których podłączone są diody i przyciski.

Możesz użyć operatora przesunięcia bitowego >>, aby ominąć kłopotliwą różnicę w numeracji pinów dla przycisków i LED-ów.