

Inspecting state of the art performance and NLP metrics in image-based medical report generation

Pablo Pino¹, Denis Parra¹, Pablo Messina¹, Cecilia Besa², Sergio Uribe² ¹Department of Computer Science, ²School of Medicine, Pontificia Universidad Católica de Chile pdpino@uc.cl

Ground truth:

The cardiac silhouette is enlarged. The cardiac silhouette is normal The lungs are hyperexpanded. No in size. The lungs are clear. No pneumothorax or pleural effusion.

Generated:

pneumothorax or pleural effusion.

Fig 1: IU X-ray dataset [4] example (report extract). The generated report is clinically incorrect, but achieves high scores in NLP metrics: BLEU = 0.68, ROUGE-L = 0.82.

Introduction

- We study the task of automatic medical report generation from images, where many Deep Learning (DL) models have been proposed in the recent years [1,6-9]
- Authors mostly evaluate with NLP metrics [1], although these metrics may not be able to capture medical facts [2,3,6]
- Figure 1 shows an example with 2 out of 3 sentences clinically incorrect, though it achieves high scores: BLEU = 0.68 and ROUGE-L = 0.82

Motivation

- Are NLP metrics able to measure medical correctness?
- Are state of the art models achieving clinically useful results?

We benchmark simple baselines and DL models against SOTA, using the IU X-ray dataset [4]

Models

Simple baselines:

- Constant report
- Random report
- Nearest-neighbor: report from the most similar image
- Top words/sentences: most common words/sentences in a random order

DL models: CNN-LSTM with (and without) an attention mechanism over the image regions

Fig 2: CNN-LSTM with attention model.

Metrics

- NLP metrics: BLEU, ROUGE-L, CIDEr-D
- CheXpert Labeler [5]
 - Attempts to measure clinical correctness
 - Classifies presence of 14 diseases from each report
 - Compute macro average Accuracy and ROC-AUC

Results

Model	В	R-L	C-D	CheXpert Acc	CheXpert AUC
Liu et al. [6]	0.225	0.359	1.490	0.916	-
TieNet [7]	0.182	0.311	1.335	0.902	-
KERP [8]	0.298	0.339	0.280	-	-
Xue et al. [9]	0.310	0.380	-	-	-
Constant	0.289	0.357	0.293	0.915	0.500
Random	0.188	0.264	0.112	0.894	0.508
Nearest Neighbor	0.211	0.288	0.230	0.903	0.518
Top sentences	0.198	0.281	0.166	0.911	0.498
Top words	0.124	0.224	0.075	0.835	0.509
CNN-LSTM	0.225	0.338	0.284	0.912	0.505
CNN-LSTM-att	0.211	0.314	0.187	0.918	0.508

Table 1: Results on the IU X-ray dataset [4]. B: BLEU, R-L: ROUGE-L, C-D: CIDEr-D. All metrics range from 0 to 1, except C-D from 0 to 10. Top-3 results per column are in bold.

Key results:

- Constant model achieves high performance
 - Near SOTA performance on BLEU, ROUGE-L and CheXpert-Accuracy
 - Surpasses some literature methods and our DL models in **NLP** metrics
- CheXpert-AUC is near 0.5 for all implemented methods
 - Thus, generated reports seem to be only slightly better than random, considering the 14 CheXpert diseases
 - Most literature models evaluate only with NLP metrics [1]
- Liu et al. [6] and TieNet [7] surpass baselines in CIDEr-D
- Liu et al. [6] and *Constant* achieve similar Chexpert-Accuracy

Conclusion

Either SOTA do not perform well in a clinical sense and/or NLP metrics are not able to differentiate these methods

Future work:

- Further inspection of SOTA performance in medical accuracy
- Do NLP metrics correlate with expert medical judgement?
- How to measure medical correctness in a generated report? Are CheXpert metrics enough?

References

- [1] P. Messina et al. "A Survey on Deep Learning and Explainability for Automatic Image-based Medical Report Generation". In arXiv:2010.10563 (2020).
- [2] W. Boag et al. "Baselines for Chest X-Ray Report Generation". In: Proc of the Machine Learning for Health NeurIPS Workshop. 2020, pp.
- [3] Y. Zhang et al. "Optimizing the Factual Correctness of a Summary: A Study of Summarizing Radiology Reports". In: Proc of the 58th Annual Meeting of the ACL. 2020, pp. 5108-5120.
- [4] D. Demner-Fushman et al. "Preparing a collection of radiology examinations for distribution and retrieval". In: Journal of the American Medical Informatics Assoc. (2015), pp. 304-310.
- [5] J. Irvin et al. "Chexpert: A large chest radiograph dataset with uncertainty labels and expert comparison". In: Proc of the AAAI Conf. on Artificial Intelligence. 2019, pp. 590-597
- [6] G. Liu et al. "Clinically Accurate Chest X-Ray Report Generation". In: Machine Learning for Healthcare Conf. 2019, pp. 249–269.
- [7] X. Wang et al. "Tienet: Text-image embedding network for common thorax disease classification and reporting in chest x-rays". In: Proc of the IEEE Conf. on CVPR. 2018.
- [8] C. Y. Li et al. "Knowledge-Driven Encode, Retrieve, Paraphrase for Medical Image Report Generation". In: Proc of the AAAI Conf. on Artificial Intelligence. 2019, pp. 6666–6673.
- [9] Y. Xue and X. Huang. "Improved Disease Classification in Chest X-Rays with Transferred Features from Report Generation". In: IPMI. 2019, pp.