UNIVERSITA' DI SALERNO

DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE ED ELETTRICA E MATEMATICA APPLICATA

Laurea Magistrale in Ingegneria Informatica

Project work

Deliverable 1

Sistemi Embedded

Gruppo: 8

Marotta Giuseppe - 0622702302 - g.marotta@studenti.unisa.it

Rea Gaetano - 0622702190 - g.rea7@studenti.unisa.it

Squitieri Giuseppe - 0622702339 - g.squitieri8@studenti.unisa.it

Tramice Davide - 0622702194 - d.tramice@studenti.unisa.it

ANNO ACCADEMICO 2023/2024

Indice

1	\mathbf{Pro}	gettazione del sistema	2	
	1.1	User stories	2	
		1.1.1 US1: Apertura cancello	2	
		1.1.2 US2: Chiusura cancello	3	
		1.1.3 US3: Regolazione tempo di chiusura	3	
		1.1.4 US4: Regolazione tempo di lavoro	3	
		1.1.5 US5: Riapertura ostacolo	4	
		1.1.6 US6: Ingora comando ostacolo	4	
		1.1.7 US7: Stato di errore sensore P2	4	
		1.1.8 US8: Chiusura automatica	4	
2	Use	case diagram	5	
	2.1	Apertura cancello [US1]	5	
	2.2	Chiusura cancello [US2]	5	
	2.3	Regolazione tempo di chiusura [US3]	6	
	2.4	Regolazione tempo di lavoro [US4]	6	
	2.5	Riapertura ostacolo [US5]	6	
	2.6	Ingora comando ostacolo [US6]	7	
	2.7	Stato errore sensore P2 [US7]	7	
	2.8	Chiusura automatica è [US8]	7	
		2.8.1 Use Case generale	8	
3	Act	ivity Diagrams	9	
	3.1	Scenario 1	9	
	3.2	Scenario 2	10	
	3.3	Scenario 3	11	
	3.4	Scenario 4	13	
4	Stat	e diagram	14	
Elenco delle figure				

1 Progettazione del sistema

Questa sezione approfondisce la metodologia di progettazione adottata per sviluppare il sistema, delineando i processi, le strategie e gli approcci utilizzati per garantire un'architettura robusta e un funzionamento ottimale.

In questa fase di progettazione, vengono utilizzati diversi diagrammi UML (Unified Modeling Language) per fornire una rappresentazione visuale dell'architettura e del funzionamento del sistema. Questi diagrammi sono strumenti essenziali per comunicare in modo chiaro e conciso la struttura e le interazioni all'interno del sistema.

Attraverso l'analisi dettagliata della progettazione, si mira a garantire che il sistema soddisfi appieno le esigenze degli utenti e che sia in grado di fornire le funzionalità desiderate in modo efficiente, sicuro e affidabile.

1.1 User stories

Le user stories rappresentano una componente essenziale della fase di progettazione, fornendo una panoramica diretta e comprensibile delle funzionalità richieste dal punto di vista dell'utente.

Queste narrazioni brevi sono strumenti efficaci per catturare le esigenze degli utenti finali e guidare lo sviluppo del sistema in modo centrato sull'utente. Ogni user story è accompagnata da criteri di accettazione chiari e obiettivi, che stabiliscono in modo inequivocabile quando una determinata funzionalità può essere considerata completa e soddisfacente per l'utente.

Questo approccio aiuta a garantire che il processo di progettazione si concentri sulle reali esigenze degli utenti e fornisce un solido punto di riferimento per la fase di testing, consentendo di valutare in modo efficace il grado di conformità del sistema alle aspettative degli utenti finali.

1.1.1 US1: Apertura cancello

Come utente.

voglio essere in grado di aprire il cancello quando è chiuso o in fase di chiusura premendo il pulsante B1,

in modo tale da pote entrare.

• Criterio di accettazione

- 1. Quando l'utente preme il pulsante B1 e il cancello è chiuso quest'ultimo va in fase di apertura.
- 2. Quando l'utente preme il pulsante B1 e il cancello è in fase di chiusura quest'ultimo va in fase di apertura.
- 3. Quando il cancello è in fase di apertura il led giallo lampeggia con una frequenza di 0.5Hz, dopo la fase di apertura tutti i led sono accesi.

1.1.2 US2: Chiusura cancello

Come utente,

voglio essere in grado di chiudere il cancello quando è aperto o in fase di apertura premendo il pulsante B1,

in modo tale da poter chiudere la casa.

• Criterio di accettazione

- 1. Quando l'utente preme il pulsante B1 e il cancello è aperto quest'ultimo va in fase di chiusura.
- 2. Quando l'utente preme il pulsante B1 e il cancello è in fase di apertura quest'ultimo va in fase di chiusura.
- 3. Quando il cancello è in fase di chiusura il led giallo lampeggia con una frequenza di 0.5Hz, dopo la fase di chiusura tutti i led spenti.

1.1.3 US3: Regolazione tempo di chiusura

Come utente.

voglio poter regolare, premendo il pulsante B2, il tempo di chiusura automatica del cancello,

in modo tale che quando passa il tempo che ho scelto il cancello si chiude quando è aperto.

• Criteri di accettazione

- 1. Premere il pulsante B2 aumenta il tempo di chiusura automatica del cancello.
- 2. Il tempo di chiusura automatica varia da 10 a 120 secondi.
- 3. Quando il tempo massimo (120 secondi) è raggiunto e si preme nuovamente il pulsante B2, il tempo ritorna a 10 secondi.

1.1.4 US4: Regolazione tempo di lavoro

Come utente,

voglio poter regolare, premendo il pulsante B3, il tempo di lavoro del cancello, in modo tale da decidere la durata della fase di chiusura e apertura.

• Criteri di accettazione

- 1. Premere il pulsante B3 aumenta il tempo di lavoro del cancello.
- 2. Il tempo di lavoro varia da 10 a 120 secondi.
- 3. Quando il tempo massimo (120 secondi) è raggiunto e si preme nuovamente il pulsante B3, il tempo ritorna a 10 secondi.

1.1.5 US5: Riapertura ostacolo

Come utente,

voglio che il cancello si riapra se viene rilevata la presenza dal sensore P1 di un ostacolo durante la fase di chiusura,

in modo tale da non provocare nessun danno.

- Criteri di accettazione
 - 1. Se il sensore P1 rileva un ostacolo durante la chiusura del cancello, il cancello ritorna in fase di apertura.

1.1.6 US6: Ingora comando ostacolo

Come utente.

voglio che il cancello non si apra o si chiuda se il sensore di presenza P1 rileva la presenza di un ostacolo e premo il pulsante B1,

in modo tale da non provocare nessun danno.

- Criteri di accettazione
 - 1. Se il sensore P1 rileva un ostacolo durante la richiesta di apertura o chiusura del cancello, il comando viene ignorato.
 - 2. Il led verde lampeggia per 30 secondi con frequenza di 1Hz quando il pulsante B1 viene premuto

1.1.7 US7: Stato di errore sensore P2

Come utente,

voglio che il cancello entri in uno stato di errore se il sensore di chiusura P2 non si attiva entro 10 secondi dopo il tempo di lavoro del cancello che è in fase di chiusura, in modo tale da sapere che il cancello non rimanga aperto.

- Criteri di accettazione
 - 1. Il led rosso segnale stato di errore accendendosi se il sensore P2 non si attiva entro 10 secondi dopo il tempo di lavoro durante la fase di chiusura.
 - 2. Lo stato di errore persiste fino a quando il sensore P2 non si attiva.

1.1.8 US8: Chiusura automatica

Come utente,

voglio che quando il cancello è aperto e passa il tempo di chiusura, esso passa nella fase di chiusura

in modo tale da non dover premere il pulsante B1 per richiuderlo.

- Criteri di accettazione
 - 1. Quando il cancello è aperto e il tempo di chiusura è passato il cancello passa alla fase di chiusura.
 - 2. Quando il cancello è aperto e passa il tempo di chiusura il led giallo lampeggia con una frequenza di 0.5Hz segnalando la fase di chiusura.

2 Use case diagram

Nel seguente capitolo esamineremo i vari casi d'uso relativi a ciascuna user story. Ogni caso d'uso rappresenta un'azione compiuta da un attore per interagire con il sistema esterno. All'interno di tali casi d'uso, troveremo l'utente 'Gennaro' che compie le azioni interagendo con il sistema che è il cancello automatico.

2.1 Apertura cancello [US1]

Questo caso d'uso, che modella US1, ha come attori l'utente e il cancello e descrive la situazione in cui l'utente desidera aprire il cancello, sia quando è chiuso che quando si sta chiudendo. L'apertura viene segnalata tramite l'illuminazione del relativo LED giallo. Il cancello aperto vine segnalato dagli appositi LED verde, giallo e rosso tutti accesi.

Figura 1: USE CASE user story 1.

2.2 Chiusura cancello [US2]

Questo caso d'uso, che modella US2, ha come attori l'utente e il cancello e descrive la situazione in cui l'utente desidera chiudere il cancello, sia quando è aperto che quando si sta aprendo. L'apertura viene segnalata tramite l'illuminazione del relativo LED giallo. Il cancello chiuso vine segnalato dagli appositi LED verde, giallo e rosso tutti spenti.

Figura 2: USE CASE user story 2.

2.3 Regolazione tempo di chiusura [US3]

Questo caso d'uso, che modella US3, ha come attore l'utente, che tramite la pressione di un pulsante, può aumentare ciclicamente di 10 secondi, da un minimo di 10 a un massimo di 120, il tempo di chiusura automatica del cancello.

Figura 3: USE CASE user story 3.

2.4 Regolazione tempo di lavoro [US4]

Questo caso d'uso, che modella US4, ha come attore l'utente, che tramite la pressione di un pulsante, può aumentare ciclicamente di 10 secondi, da un minimo di 10 a un massimo di 120, il tempo di lavoro del cancello.

Figura 4: USE CASE user story 4.

2.5 Riapertura ostacolo [US5]

Questo caso d'uso, che modella US5, ha come attori l'utente e il cancello. Descrive la situazione in cui il cancello si sta chiudendo e successivamente arriva un ostacolo davanti a esso (sotto il sensore P1), causando la riapertura del cancello.

Figura 5: USE CASE user story 5.

2.6 Ingora comando ostacolo [US6]

Questo caso d'uso, che modella US6, ha come attore l'utente che richiede l'apertura. Tuttavia, se è presente un ostacolo davanti al sensore P1, il comando viene ignorato. Tale situazione viene segnalata dall'attivazione del relativo LED verde per 30 secondi.

Figura 6: USE CASE user story 6.

2.7 Stato errore sensore P2 [US7]

Questo caso d'uso, che modella US7, ha come attore il cancello, che entra in uno stato di allarme se non si chiude entro il tempo di lavoro più 10 secondi. La situazione di allarme viene segnalata dall'attivazione del relativo LED rosso.

Figura 7: USE CASE user stories 7.

2.8 Chiusura automatica è [US8]

Questo caso d'uso, che modella US8, ha come attore il cancello, il quale chiude automaticamente il cancello dopo che è trascorso il tempo di lavoro.

Figura 8: USE CASE user stories 8.

2.8.1 Use Case generale

In questo diagramma dei casi d'uso generale possiamo vedere tutte le azioni che l'utente può compiere per interagire con il sistema, così come le azioni automatiche del sistema che si attivano anche senza la presenza dell'utente.

Figura 9: Use case diagram

3 Activity Diagrams

Continuiamo con la presentazione di alcuni diagrammi di attività, strumenti visivi che illustrano il flusso di controllo e le operazioni eseguite dal sistema. Questi diagrammi sono fondamentali per comprendere i vari processi interni del sistema e le loro interconnessioni. La modellazione degli activity diagrams è stata realizzata su diversi scenari, ognuno dei quali rappresenta un tipico funzionamento del sistema in base alle varie situazioni possibili. A seguire, saranno presentate le descrizioni di ciascuno scenario insieme ai relativi diagrammi di attività.

3.1 Scenario 1

Viene presentato in Figura ... il flusso di azioni che l'utente compie per l'apertura del cancello elettrico, dalla fase iniziale della pressione del pulsante, all'apertura completa e infine alla chiusura:

- 1. Per avviare il processo di apertura, l'utente preme il pulsante B1.
- 2. Una volta premuto il pulsante, il cancello inizia la fase di apertura e il LED giallo lampeggia.
- 3. Il cancello continua ad aprirsi fino al completamento del tempo di lavoro impostato.
- 4. Una volta che il cancello è completamente aperto, tutti i LED si accendono.
- 5. L'utente può premere di nuovo il pulsante B1 per chiudere il cancello o attendere che passi il tempo di chiusura precedentemente impostato.

Figura 10: Scenario 1: Apertura e Chiusura Cancello.

3.2 Scenario 2

Questo scenario, presentato in Figura ..., descrive le azioni per l'apertura del cancello elettrico, dalla fase iniziale della pressione del pulsante, all'apertura completa e infine alla chiusura, considerando che venga rilevato un ostacolo durante queste fasi:

- 1. Per avviare il processo di apertura, l'utente preme il pulsante B1.
- 2. Una volta premuto il pulsante, il cancello inizia la fase di apertura e il LED giallo lampeggia se non è presente un ostacolo davanti al sensore P1, altrimenti il comando deve essere ripetuto.
- 3. Il cancello continua ad aprirsi fino al completamento del tempo di lavoro.
- 4. Una volta che il cancello è completamente aperto, tutti i LED si accendono.
- 5. L'utente può premere di nuovo il pulsante B1 per chiudere il cancello o attendere che passi il tempo di chiusura precedentemente impostato.

- 6. Il cancello entra in fase di chiusura.
- 7. Se il sensore P1 rileva la presenza di un ostacolo durante la chiusura, il cancello interrompe la chiusura e inizia la fase di apertura.
- 8. L'utente può rimuovere l'ostacolo e il cancello può essere nuovamente chiuso premendo il pulsante B1 o attendendo il tempo di chiusura automatica.

Figura 11: Scenario 2: Apertura e Chiusura con Ostacoli.

3.3 Scenario 3

Lo scenario, presentato in Figura ..., descrive le attività quando il cancello entra in uno stato di errore se non si chiude entro il tempo di lavoro previsto. Nel seguito verrà presentato il flusso di azioni associato allo scenario corrente:

1. Il sistema viene attivato.

- 2. L'utente preme il pulsante di apertura (B1).
- 3. Il cancello inizia la fase di apertura.
- 4. La fase di apertura termina.
- 5. Il cancello passa alla fase di chiusura.
- 6. Il tempo di lavoro impostato viene superato senza che il sensore P2 rilevi la chiusura completa.
- 7. Il LED rosso si accende per notificare lo stato di errore.
- 8. L'utente deve intervenire per risolvere il problema e riportare il sistema in uno stato operativo normale.

Figura 12: Scenario 3: Stato di Errore.

3.4 Scenario 4

Questo scenario, presentato in Figura ..., descrive le azioni che l'utente compie per regolare il tempo di apertura e chiusura (tempo di lavoro) del cancello elettrico utilizzando il pulsante B3:

- 1. L'utente decide di regolare il tempo di apertura e chiusura (tempo di lavoro).
- 2. Per impostare il tempo di apertura e chiusura, l'utente preme ripetutamente il pulsante B3.
- 3. Ogni pressione del pulsante B3 aumenta il tempo di lavoro di 10 secondi.
- 4. Una volta impostato il tempo desiderato, l'utente termina l'operazione e il cancello utilizzerà il tempo impostato per le operazioni di apertura e chiusura.

Figura 13: Scenario 1: Regolazione del Tempo di Lavoro

4 State diagram

Nell'ultima parte di questa relazione si illustra lo State Diagram che ha lo scopo di descrivere quali sono i vari stati in cui il sistema si può trovare. Lo state diagram è utile per chiarire il comportamento del cancello rispetto agli eventi interni ed esterni che possono essere interpretati diversamente a seconda dello stato in cui si trova. I principali stati del cancello automatico descritto nei capitoli precedenti sono:

- CLOSING, è lo stato iniziale del sistema.
- CLOSE, è lo stato che si raggiunge quando la seconda fotocellula (P2) è occupata durante il quale tutti i led sono spenti. Quando il sistema si trova in questo stato è possibile impostare il tempo di lavoro e quello di chiusura da 10 a 120 secondi.
- OPENING, è lo stato di apertura del cancello durante il quale in led giallo lampeggia.
- OPEN, è lo stato in cui il cancello è aperto e tutti i led sono accesi.

In parallelo a questi ci sono gli stati **B1**, **B2** e **B3**, che "ascoltano" i fronti di salita provenienti dai rispettivi bottoni. Si ricorda che B1 permette di richiedere l'apertura o la chiusura, B2 imposta il tempo di chiusura e, infine, B3 imposta il tempo di lavoro.

Gli altri stati che non sono elencati sopra sono importanti in quanto gestiscono situazioni di errore ed emergenza. Sono elencati qui:

- EMERGENCY_P1_CLOSED, è uno stato che viene raggiunto nel caso in sui si richiede l'apertura del cancello, ma il sensore P1 è impegnato. I led verde lampeggia per 30 sec.
- EMERGENCY_P1_OPEN, è corrispettivo dello stato precedente nel caso in cui si richiede la chiusura del cancello mentre P1 è impegnato. Il led verde lampeggia per 30 sec.
- EMERGENCY, viene raggiunto nel caso in cui P2 non viene impegnato entro il tempo di lavoro. Il sistema esce da questo stato dopo 10 secondi oppure quando viene impegnato P2.
- EMERGENCY_LED, viene raggiunto se lo stato **EMERGENCY** permane per più di 10 secondi. In questo stato viene attivato il led rosso.

Di seguito sono illustrati il diagramma di stato di un pulsante che vale anche per gli altri, e successivamente è illustrato lo schema generico del cancello automatico. E' stata inserita un'immagine che rappresenta anche lo stato **CLOSED** in particolare. Questo stato comprende che gli stati per aumentare il tempo di lavoro e quello di chiusura.

Figura 14: State Diagram

Figura 15: State Diagram

Figura 16: State Diagram

Elenco delle figure

1	USE CASE user story 1	5
2	USE CASE user story 2	5
3	USE CASE user story 3	6
4	USE CASE user story 4	6
5	USE CASE user story 5	6
6	USE CASE user story 6	7
7	USE CASE user stories 7	7
8	USE CASE user stories 8	7
9	Use case diagram	8
10	Scenario 1: Apertura e Chiusura Cancello	10
11	Scenario 2: Apertura e Chiusura con Ostacoli	11
12	Scenario 3: Stato di Errore.	12
13	Scenario 1: Regolazione del Tempo di Lavoro	13
14	State Diagram	15
15	State Diagram	16
16	State Diagram	16