```
The house price data of King County was collected from kaggle.
    This dataset contains house sale prices for King County, which includes Seattle. It includes
    homes sold between May 2014 and May 2015.
    It includes 'id', 'date', 'price', 'bedrooms', 'bathrooms', 'sqft_living',
3
               'sqft_lot', 'floors', 'waterfront', 'view', 'condition', 'grade', 'sqft_above', 'sqft_basement', 'yr_built', 'yr_renovated', 'zipcode',
 4
 5
               'lat', 'long', 'sqft_living15', 'sqft_lot15' and other data columns.
 6
 7
    Combined with the python analysis tool learned recently, the possible factors affecting
    house prices were analyzed.
    For example, what is the relationship between house price and house size?
8
9
    What is the relationship between house price and housing rating?
10
    Taking price as dependent variable Y, sqft_living and grade as independent Xs, I will try
11
    to find their direct correlation through data analysis.
12
```

In [61]:

```
1 #read dataset
2 import pandas as pd
3 import numpy as np
4 import matplotlib.pyplot as plt
5 house_price=pd.read_csv('kc_house_data.csv')
6
7 #Show all data columns
8 house_price.columns
9
10
```

Out[61]:

In [31]:

```
#select the price, grade and condition
price_grade_size = house_price.loc[house_price.index[:], ['price', 'sqft_living','grade']]
price_grade_size
```

	price	sqft_living	grade
0	221900.0	1180	7
1	538000.0	2570	7
2	180000.0	770	6
3	604000.0	1960	7
4	510000.0	1680	8
21608	360000.0	1530	8
21609	400000.0	2310	8
21610	402101.0	1020	7
21611	400000.0	1600	8
21612	325000.0	1020	7

In [39]:

```
1 #Judge whether there is missing data
2 price_grade_size.isnull().any(axis=0)
```

Out[39]:

price False
sqft_living False
grade False

dtype: bool

In [33]:

- 1 #Descriptive statistics of the new table
- price_grade_size. describe()

Out[33]:

	price	sqft_living	grade
count	2.161300e+04	21613.000000	21613.000000
mean	5.400881e+05	2079.899736	7.656873
std	3.671272e+05	918.440897	1.175459
min	7.500000e+04	290.000000	1.000000
25%	3.219500e+05	1427.000000	7.000000
50%	4.500000e+05	1910.000000	7.000000
75%	6.450000e+05	2550.000000	8.000000
max	7.700000e+06	13540.000000	13.000000

In [51]:

- 1 #Perform group by descriptive statistics on the new table
- 2 price_grade_size.groupby('grade').describe()

Out[51]:

	price							
	count	mean std		min 25%		50%	75%	max
grade								
1	1.0	1.420000e+05	NaN	142000.0	142000.0	142000.0	142000.0	14200
3	3.0	2.056667e+05	1.135180e+05	75000.0	168500.0	262000.0	271000.0	28000
4	29.0	2.143810e+05	9.430617e+04	80000.0	145000.0	205000.0	265000.0	43500
5	242.0	2.485240e+05	1.181003e+05	78000.0	175000.0	228700.0	295750.0	79500
6	2038.0	3.019196e+05	1.229703e+05	82000.0	215037.5	275276.5	366837.5	1200000
7	8981.0	4.025903e+05	1.558769e+05	90000.0	285000.0	375000.0	485000.0	205000
8	6068.0	5.428528e+05	2.174734e+05	140000.0	390000.0	510000.0	640000.0	307000
9	2615.0	7.735132e+05	3.161201e+05	230000.0	571500.0	720000.0	880000.0	270000
10	1134.0	1.071771e+06	4.835451e+05	316000.0	768087.5	914327.0	1250000.0	360000
11	399.0	1.496842e+06	7.050993e+05	420000.0	1036000.0	1284000.0	1700000.0	706250
12	90.0	2.191222e+06	1.027819e+06	835000.0	1500000.0	1817500.0	2668500.0	535000
13	13.0	3.709615e+06	1.859450e+06	1780000.0	2415000.0	2983000.0	3800000.0	770000
4								•

In [52]:

- #Perform group by descriptive statistics on the new table
- 2 price_grade_size.groupby('sqft_living').describe()

Out[52]:

р	rı	С	е

	count	mean	std min		25% 50%		75%	max
sqft_living								
290	1.0	142000.0	NaN	142000.0	142000.0	142000.0	142000.0	142000
370	1.0	276000.0	NaN	276000.0	276000.0	276000.0	276000.0	276000
380	1.0	245000.0	NaN	245000.0	245000.0	245000.0	245000.0	245000
384	1.0	265000.0	NaN	265000.0	265000.0	265000.0	265000.0	265000
390	2.0	236500.0	12020.81528	228000.0	232250.0	236500.0	240750.0	245000
9640	1.0	4668000.0	NaN	4668000.0	4668000.0	4668000.0	4668000.0	4668000
9890	1.0	6885000.0	NaN	6885000.0	6885000.0	6885000.0	6885000.0	6885000
10040	1.0	7062500.0	NaN	7062500.0	7062500.0	7062500.0	7062500.0	7062500
12050	1.0	7700000.0	NaN	7700000.0	7700000.0	7700000.0	7700000.0	7700000
13540	1.0	2280000.0	NaN	2280000.0	2280000.0	2280000.0	2280000.0	2280000

1038 rows × 16 columns

In [60]:

```
#Group statistics on the relationship between price and grade/sqft_living
price_grade_size.groupby('grade').agg({'price':'mean'})
price_grade_size.groupby('sqft_living').agg({'price':'mean'})
```

Out[60]:

price

sqft_living						
290	142000.0					
370	276000.0					
380	245000.0					
384	265000.0					
390	236500.0					
9640	4668000.0					
9890	6885000.0					
10040	7062500.0					
12050	7700000.0					
13540	2280000.0					

1038 rows × 1 columns

In [69]:

```
sorted_pgc = price_grade_size.sort_values(by='grade', ascending=True)
# sorted_pgc
ax = sorted_pgc['price'].plot(kind='bar')
ax.set_xlabel('grade', fontsize=12)
ax.set_ylabel('price', fontsize=12)
plt.show()
```


In [70]:

```
1  sorted_pgc1 = price_grade_size.sort_values(by='sqft_living', ascending=True)
2  # sorted_pgc1
3  ax = sorted_pgc1['price'].plot(kind='bar')
4  ax.set_xlabel('sqft_living', fontsize=12)
5  ax.set_ylabel('price', fontsize=12)
6  plt.show()
```


In [71]:

```
meanprice_groupbygrade = price_grade_size.groupby('grade').agg({'price':'mean'})
ax = meanprice_groupbygrade['price'].plot(kind='bar')
ax.set_xlabel('grade', fontsize=12)
ax.set_ylabel('meanprice_groupbygrade', fontsize=12)
plt.show()
```


In [68]:

```
meanprice_groupbylivingspace = price_grade_size.groupby('sqft_living').agg({'price':'mean'})
ax = price_grade_size['price'].plot(kind='bar')
ax.set_xlabel('sqft_living', fontsize=12)
ax.set_ylabel('price', fontsize=12)
plt.show()
```


In	[]:					
1						