Grundlagen der Programmierung

Ralf Möller, FH-Wedel

- Vorige Vorlesung:
 - Aussagenlogik (Boole'sche Logik)
- Inhalt dieser Vorlesung
 - Boole'sche Algebra
- Lernziele:
 - Ersetzbarkeitstheorem
 - Äquivalente Transformation von Ausdrücken

Wiederholung Aussagenlogik

- Syntax
 - Induktive Definition von Formeln
- Semantik
 - Bedeutung durch Elemente der Menge {0, 1} bestimmt
 - Belegungsfunktion A: $\{A_1, A_2, A_3, A_4, ...\} \rightarrow \{0, 1\}$
 - Anwendungen der Belegungsfunktion: Interpretation
 - Festlegung der Semantik der "Formelbildungsoperatoren"
 - Operatoren als Funktionen mit Urbild- und Bildbereich {0, 1}
 - | "Wahrheitstabellen"
 - Modellbegriff
 - Entscheidungsprobleme

Begriff der induktiven Definition

- Zunächst einfachste Einheiten (Atome) festlegen
 - Beispiel: atomare Formeln der Aussagenlogik
- Dann erklären wie aus einfachen Einheiten komplexere Einheiten konstruiert werden können
 - Beispiel: Bildung allgemeiner Formeln wie $F \land G$, $F \lor G$, $\neg F$

Noch ein paar Abkürzungen ...

- Sei A eine beliebige atomare Formel (Variable)
- T stehe für $A \vee \neg A$
- \perp stehe für $A \land \neg A$

Eine Formel G heißt eine Folgerung der Formeln F_1, \ldots, F_k falls für jede Belegung, die sowohl zu F_1, \ldots, F_k als auch zu G passend ist, gilt:

Wenn A Modell von $\{F_1, \ldots, F_k\}$ ist, dann ist A auch

Modell von G. Wir schreiben $F_1, \ldots, F_k \models G$, falls G eine Folgerung von

 F_1, \ldots, F_k ist.

Motivation für Wahrheitstabelle von \rightarrow

Wir betrachten folgende Formeln

$$1 \rightarrow 1 = 1$$

Wenn es regnet, scheint die Sonne nicht: $R \rightarrow \neg S$

$$1 \rightarrow 0 = 0$$

 $0 \rightarrow 1 = 1$

Es regnet: R

$$0 \rightarrow 0 = 1$$

Daraus folgt: Die Sonne scheint nicht!

- Also: $\{R \rightarrow \neg S, R\} \models \neg S$
- Wie sehen die Modelle von $\{R \rightarrow \neg S, R\}$ aus?
- R hat den Wert 1,
- Wie wird $R \rightarrow \neg S$ auf 1 abgebildet?
- ¬S muß auf 1 abgebildet werden (qed)

Zweites Beispiel:

- Wenn es regnet, scheint die Sonne nicht: $R \rightarrow \neg S$
- Es regnet nicht: ¬R
- Folgt daraus: Die Sonne scheint nicht?

$$\{R \rightarrow \neg S, \neg R\} \models \neg S$$
?

- Wie sehen die Modelle von $\{R \rightarrow \neg S, \neg R\}$ aus?
- \blacksquare R hat den Wert O, da ¬R auf 1 abgebildet werden soll
- Wenn $R \to \neg S$ auf 1 abgebildet werden soll, dann bleiben die dritte und vierte Zeile, somit kann in den Modellen von $\{R \to \neg S, \neg R\}$ auch $\neg S$ auf 0 abgebildet werden (wir wählen die Variante aus Zeile 4)

$$1 \rightarrow 1 = 1$$

$$1 \rightarrow 0 = 0$$

$$0 \rightarrow 1 = 1$$

$$0 \rightarrow 0 = 1$$

Schlußmuster

- Wir haben gesehen:
 - $\{P, P \rightarrow Q\} \models Q$ (Name für Schlußmuster: Modus Ponens)
- Folgendes können wir auch zeigen:
 - $\{Q, \neg P \rightarrow \neg Q\} \models P$ (Name für Schlußmuster: Modus Tollens)
- Oder auch:
 - $\{\neg Q, P \rightarrow Q\} \models \neg P$ (Name für Schlußmuster: Kontraposition)

Zwei Formeln F und G heißen (semantisch) äquivalent, falls für alle Belegungen A, die sowohl für F als auch für G passend sind, gilt A(F) = A(G). Hierfür schreiben wir $F \equiv G$.

Aufgaben

Gelten die folgenden Äquivalenzen?

$$(A \to B) \to C \equiv A \to (B \to C)$$

 $(A \to B) \to C \equiv (A \land B) \to C$
 $(A \leftrightarrow B) \leftrightarrow C \equiv A \leftrightarrow (B \leftrightarrow C)$

Gelten die folgenden Aussagen?

				J/N	Gegenb.
Wenn	(F o G) gültig	dann	$F \models G$		
Wenn	$F \models G$	dann	(F o G) gültig		
Wenn	$(F \leftrightarrow G)$ gültig	dann	$F \equiv G$		
Wenn	$F \equiv G$	dann	$(F \leftrightarrow G)$ gültig		
		-	-		-

Die Hauptprobleme

- Modellprüfung Sei F eine Formel und sei A eine passende Belegung. Gilt A(F)=1 ?
- ErfüllbarkeitSei F eine Formel. I st F erfüllbar ?
- GültigkeitSei F eine Formel. Ist F gültig ?
- Folgerung Seien F und G Formeln. Gilt $F \models G$?
- Äquivalenz Seien F und G Formeln. Gilt $F \equiv G$?

Aufgabe

Welche Probleme lassen sich auf welche reduzieren?

Gültigkeit ←⇒ (Nicht)Erfüllbarkeit:

$$F$$
 gültig gdw. $\neg F$ nicht erfüllbar F erfüllbar gdw. $\neg F$ nicht gültig

• Gültigkeit \Longrightarrow Folgerung:

$$F$$
 gültig gdw. $T \models F$

Folgerung ⇒ Gültigkeit:

$$F \models G$$
 gdw. $F \rightarrow G$ gültig

Gültigkeit ⇒ Äquivalenz:

$$F$$
 gültig gdw. $F \equiv T$

Äquivalenz ⇒ Gültigkeit:

$$F \equiv G$$
 gdw. $F \leftrightarrow G$ gültig

Lösung des Erfüllbarkeitsproblems

- Gegeben sei eine aussagenlogische Formel F, deren Erfüllbarkeit zu prüfen ist
- In der Formel kommen atomare Formeln (Variablen) vor
- Teste für alle Belegungsmöglichkeiten der atomaren Formeln den Wahrheitswert
- Wenn sich eine Belegung finden läßt, so daß der Wahrheitswert von F sich zu 1 berechnet, ist F erfüllbar (semantische Beweismethoden)
- Man muß bei n Variablen 2ⁿ Möglichkeiten prüfen

Lösung des Äquivalenzproblems

- Es soll gezeigt werden, daß eine Formel Fäquivalent zu einer Formel G ist.
- F = G gdw. (F \leftrightarrow G) gültig gdw. ¬(F \leftrightarrow G) nicht erfüllbar
- Man muß im schlimmsten Fall 2ⁿ verschiedene Belegungsmöglichkeiten testen
- Frage: Geht das nicht direkt durch Umformung der syntaktischen Einheiten für F und G, so daß F syntaktisch in G überführt wird?

Ersetzbarkeitstheorem

Satz (Ersetzbarkeitstheorem)

Seien F und G äquivalente Formeln. Sei H eine Formel mit (mindestens) einem Vorkommen der Teilformel F. Dann ist H äquivalent zu H', wobei H' aus H hervorgeht, indem (irgend) ein Vorkommen von F in H durch G ersetzt wird.

Beweisprinzipien: Induktion

- Behauptung: B(F) gilt für jede Formel F
- Beweis:
 - 1. Man zeige, es gilt $B(A_i)$ für jede atomare Formel A_i .
 - 2. Man zeige unter der (Induktions-)Annahme, daß B(F) und B(G) gelten, folgt, daß $B(F \land G)$, $B(F \lor G)$, $B(\neg F)$ gelten

Beweis: (Ersetzbarkeitstheorem)

Beweis (durch Induktion über den Formelaufbau von H):

Induktionsanfang: Falls H eine atomare Formel ist, dann kann nur H = F sein. Und damit ist klar, daß H äquivalent zu H' ist, denn H' = G.

Induktionsschritt: Falls F gerade H selbst ist, so trifft dieselbe Argumentation wie im Induktionsanfang zu. Sei also angenommen, F ist eine Teilformel von H mit $F \neq H$. Dann müssen wir drei Fälle unterscheiden.

Fall 2: H hat die Bauart $H = (H_1 \vee H_2)$. Dann kommt F entweder in H_1 oder H_2 vor. Nehmen wir den ersteren Fall an (der zweite ist völlig analog). Dann ist nach

Fall 1: H hat die Bauart $H = \neg H_1$.

daß H und H' äquivalent sind.

ersteren Fall an (der zweite ist völlig analog). Dann ist nach Induktionssannahme H_1 wieder äquivalent zu H_1' , wobei H_1' aus H_1 durch Ersetzung von F durch G hervorgeht. Mit der Definition von " \vee " ist dann klar, daß $H \equiv (H_1' \vee H_2) = H'$. Fall 3: H hat die Bauart $H = (H_1 \wedge H_2)$. Diesen Fall beweist man völlig analog zu Fall 2.

Nach Induktionsvoraussetzung ist H_1 äquivalent zu H_1 , wobei H_1

aus H_1 durch Ersetzung von F durch G hervorgeht. Nun ist aber

 $H' = \neg H'_1$. Aus der (semantischen) Definition von "¬" folgt dann,

Äquivalenzen

Satz

Es gelten die folgenden Äquivalenzen:

$$(F \wedge F) \equiv F$$

$$(F \vee F) \equiv F$$

$$F) \equiv F$$

$$(F \wedge G) \equiv (G \wedge F)$$

$$(F \land G) = (G \land F)$$
$$(F \lor G) = (G \lor F)$$

$$(F \wedge G) \equiv (G \wedge F)$$

 $((F \wedge G) \wedge H) \equiv (F \wedge (G \wedge H))$

$$\equiv$$

 $\neg \neg F \equiv F$

$$F \wedge (F \vee G)) \equiv F$$

$$F \wedge (F \vee G)) \equiv F$$
 $F \vee (F \wedge G)) \equiv F$

 $F \wedge (G \vee H)) \equiv ((F \wedge G) \vee (F \wedge H))$

 $F \lor (G \land H)) \equiv ((F \lor G) \land (F \lor H))$

$$((F \lor G) \lor H) \equiv (F \lor (G \lor H))$$
$$F \land (F \lor G)) = F$$

$$G \lor H))$$

(Idempotenz)

(Absorption)

(Distributivität)

(Doppelnegation)

Weitere Äquivalenzen

$$\neg(F \land G) \equiv (\neg F \lor \neg G)$$

$$\neg(F \lor G) \equiv (\neg F \land \neg G) \qquad \text{(deMorgansche Regeln)}$$

$$(F \lor G) \equiv F, \text{ falls } F \text{ Tautologie}$$

$$(F \land G) \equiv G, \text{ falls } F \text{ Tautologie} \qquad \text{(Tautologieregeln)}$$

$$(F \lor G) \equiv G, \text{ falls } F \text{ unerfüllbar}$$

$$(F \land G) \equiv F, \text{ falls } F \text{ unerfüllbar} \qquad \text{(Unerfüllbarkeitsregeln)}$$

Boole'sche Algebra

- Äquivalenzen als "Transformationsgesetze"
 - Ersetzbarkeitstheorem
- Zentrale Frage:
 - Ist das alles Zufall?
 - Hängen die Gesetze irgendwie zusammen?
- Beispiel:
 - Nehmen wir an, die Äquivalenzen "Kommutativität" und "Distributivität" wurden bewiesen.
 - Muß man die anderen dann noch beweisen?
 Der Beweis über die Semantik ist aufwendig!

Boole'sche Algebra: Zentrale Idee

- Man nehme Operatoren, deren Semantik eine Funktion über einer Grundmenge M ist
 - Über die Elemente von M wollen wir nichts sagen!
 - Ein mögliches Beispiel ist nun $M = \{0, 1\}$
- Man nehme an, daß bezüglich der Operatoren gewisse Gesetze (sog. Axiome) gelten
- Nun zeige man, daß unter bestimmten Voraussetzungen andere Gesetze ebenfalls gelten

Boole'sche Algebra: Definition (Huntington)

- Grundmenge M
- Zwei zweistellige Operatoren: φ, ψ
- Zu jedem Operator gibt es in M ein neutrales Element $\{NULL, EINS\} \subseteq M$, so daß gilt:
 - $x \phi NULL \equiv x$
 - $x \psi EINS \equiv x$
- Zu jedem Element gibt es eindeutig ein Inverses: --1
 - Für alle $x \in M$ gilt: $x^{-1} \in M$, $x \varphi x^{-1} = EINS$, $x \psi x^{-1} = NULL$
- Es gelten weiterhin
 das Kommutativgesetz und das Distributivgesetz

Boole'sche Algebra: Gesetze (Axiome)

Kommutativgesetze

- $x \phi y \equiv y \phi x$
- $x \psi y \equiv y \psi x$
- Distributivgesetze

 - $\times \psi (y \phi z) \equiv (x \psi y) \phi (x \psi z)$

Zusammenfassung, Kernpunkte

- Aussagenlogik (Boole'sche Logik)
 - Syntax, Formel
 - Semantik, Belegung, Modell
 - Entscheidungsprobleme
- Semantische und Syntaktische Verfahren zur Lösung von Inferenzproblemen
 - Erfüllbarkeit durch Wahrheitstabellen
 - Transformation von Formeln in äquivalente Formeln
- Einführung Boole'sche Algebra

Was kommt beim nächsten Mal?

- Fortsetzung Boole'sche Algebra
- Weitere syntaktische Verfahren zur Lösung von Entscheidungsproblemen