

Test Plots (GFSK) Dwell Time (High-CH)

Test Plots (8DPSK) Dwell Time (Low-CH)

FCC PT.15.247 TEST REPORT	FCC & IC CERTIFICATION REPORT		www.hct.co.kr	
Test Report No.	Date of Issue:	EUT Type: CAR AUDIO	FCC ID:	IC:
HCTR1209FR04	September 11, 2012		TQ8-AC1A0A7AN	5074A-AC1A0A7KN

Test Plots (8DPSK)
Dwell Time (Mid-CH)

Test Plots (8DPSK)
Dwell Time (High-CH)

FCC PT.15.247 TEST REPORT	FCC & IC CERTIFICATION REPORT		www.hct.co.kr	
Test Report No.	Date of Issue:	EUT Type: CAR AUDIO	FCC ID:	IC:
HCTR1209FR04	September 11, 2012		TQ8-AC1A0A7AN	5074A-AC1A0A7KN

Test Plots (π/4DQPSK) Dwell Time (Low-CH)

Test Plots (π/4DQPSK) Dwell Time (Mid-CH)

FCC PT.15.247 TEST REPORT	FCC & IC CERTIFICATION REPORT		www.hct.co.kr	
Test Report No.	Date of Issue:	EUT Type: CAR AUDIO	FCC ID:	IC:
HCTR1209FR04	September 11, 2012		TQ8-AC1A0A7AN	5074A-AC1A0A7KN

Test Plots ($\pi/4DQPSK$) Dwell Time (High-CH)

8.6 SPURIOUS EMISSIONS

8.6.1 CONDUCTED SPURIOUS EMISSIONS

Test Requirements and limit, §15.247(d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

Limit: 20 dBc
Test Configuration

TEST PROCEDURE

Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

Detector Mode is set to a peak detector Mode.

Measurements are made over the 30 MHz to 26 GHz range with the transmitter set to the lowest, middle, and highest channels.

This test is performed with hopping off.

Note: We applied the offset values at 2.4 GHz for conducted spurious emission test. Because we used the particular cable type that is supported by manufacture. So, we don't know exactly cable loss from 30 MHz to 26 GHz.

TEST RESULTS

No non-compliance noted.

FCC PT.15.247 TEST REPORT	FCC & IC CERTIFICATION REPORT		www.hct.co.kr	
Test Report No.	Date of Issue:	EUT Type: CAR AUDIO	FCC ID:	IC:
HCTR1209FR04	September 11, 2012		TQ8-AC1A0A7AN	5074A-AC1A0A7KN

Test Plots (GFSK) - 30 MHz - 1 GHz (RBW:100 kHz, VBW: 300 kHz) Spurious Emission (Low-CH)

Test Plots (GFSK) - 30 MHz - 1 GHz (RBW:100 kHz, VBW: 300 kHz) Spurious Emission (Mid-CH)

FCC PT.15.247 TEST REPORT	FCC & IC CERTIFICATION REPORT		www.hct.co.kr	
Test Report No.	Date of Issue:	EUT Type: CAR AUDIO	FCC ID:	IC:
HCTR1209FR04	September 11, 2012		TQ8-AC1A0A7AN	5074A-AC1A0A7KN

Test Plots (GFSK) - 30 MHz - 1 GHz (RBW:100 kHz, VBW: 300 kHz) Spurious Emission (High-CH)

Test Plots (8DPSK) - 30 MHz - 1 GHz (RBW:100 kHz, VBW: 300 kHz) Spurious Emission (Low-CH)

FCC PT.15.247 TEST REPORT	FCC & IC CERTIFICATION REPORT		www.hct.co.kr	
Test Report No.	Date of Issue:	EUT Type: CAR AUDIO	FCC ID:	IC:
HCTR1209FR04	September 11, 2012		TQ8-AC1A0A7AN	5074A-AC1A0A7KN

Test Plots (8DPSK) - 30 MHz - 1 GHz (RBW:100 kHz, VBW: 300 kHz) Spurious Emission (Mid-CH)

Test Plots (8DPSK) - 30 MHz - 1 GHz (RBW:100 kHz, VBW: 300 kHz) Spurious Emission (High-CH)

FCC PT.15.247 TEST REPORT	FCC & IC CERTIFICATION REPORT		www.hct.co.kr	
Test Report No.	Date of Issue:	EUT Type: CAR AUDIO	FCC ID:	IC:
HCTR1209FR04	September 11, 2012		TQ8-AC1A0A7AN	5074A-AC1A0A7KN

Test Plots (π /4DQPSK) - 30 MHz - 1 GHz (RBW:100 kHz, VBW: 300 kHz) Spurious Emission (Low-CH)

Test Plots (π /4DQPSK) - 30 MHz - 1 GHz (RBW:100 kHz, VBW: 300 kHz) Spurious Emission (Mid-CH)

FCC PT.15.247 TEST REPORT	FCC & IC CERTIFICATION REPORT		www.hct.co.kr	
Test Report No.	Date of Issue:	EUT Type: CAR AUDIO	FCC ID:	IC:
HCTR1209FR04	September 11, 2012		TQ8-AC1A0A7AN	5074A-AC1A0A7KN

Test Plots (π /4DQPSK) - 30 MHz - 1 GHz (RBW:100 kHz, VBW: 300 kHz) Spurious Emission (High-CH)

Test Plots (GFSK) - 1 GHz - 26 GHz (RBW:1 MHz, VBW: 1 MHz) Spurious Emission (Low-CH)

Test Plots (GFSK) - 1 GHz - 26 GHz (RBW:1 MHz, VBW: 1 MHz) Spurious Emission (Mid-CH)

FCC PT.15.247 TEST REPORT	FCC & IC CERTIFICATION REPORT		www.hct.co.kr	
Test Report No.	Date of Issue:	EUT Type: CAR AUDIO	FCC ID:	IC:
HCTR1209FR04	September 11, 2012		TQ8-AC1A0A7AN	5074A-AC1A0A7KN

Test Plots (GFSK) - 1 GHz - 26 GHz (RBW:1 MHz, VBW: 1 MHz) Spurious Emission (High-CH)

Test Plots (8DPSK) - 1 GHz - 26 GHz (RBW:1 MHz, VBW: 1 MHz) Spurious Emission (Low-CH)

FCC PT.15.247 TEST REPORT	FCC & IC CERTIFICATION REPORT		www.hct.co.kr	
Test Report No.	Date of Issue:	EUT Type: CAR AUDIO	FCC ID:	IC:
HCTR1209FR04	September 11, 2012		TQ8-AC1A0A7AN	5074A-AC1A0A7KN

Test Plots (8DPSK) - 1 GHz - 26 GHz (RBW:1 MHz, VBW: 1 MHz) Spurious Emission (Mid-CH)

Test Plots (8DPSK) - 1 GHz - 26 GHz (RBW:1 MHz, VBW: 1 MHz) Spurious Emission (High-CH)

FCC PT.15.247 TEST REPORT	FCC & IC CERTIFICATION REPORT		www.hct.co.kr	
Test Report No.	Date of Issue:	EUT Type: CAR AUDIO	FCC ID:	IC:
HCTR1209FR04	September 11, 2012		TQ8-AC1A0A7AN	5074A-AC1A0A7KN

Test Plots (π /4DQPSK) - 1 GHz - 26 GHz (RBW:1 MHz, VBW: 1 MHz) Spurious Emission (Low-CH)

Test Plots (π /4DQPSK) - 1 GHz - 26 GHz (RBW:1 MHz, VBW: 1 MHz) Spurious Emission (Mid-CH)

FCC PT.15.247 TEST REPORT	FCC & IC CERTIFICATION REPORT		www.hct.co.kr	
Test Report No.	Date of Issue:	EUT Type: CAR AUDIO	FCC ID:	IC:
HCTR1209FR04	September 11, 2012		TQ8-AC1A0A7AN	5074A-AC1A0A7KN

Test Plots (π /4DQPSK) - 1 GHz - 26 GHz (RBW:1 MHz, VBW: 1 MHz) Spurious Emission (High-CH)

8.6.2 RADIATED SPURIOUS EMISSIONS

LIMIT: §15.247(d), §15.205, §15.209

1. 20dBc in any 100kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

FCC PT.15.247 TEST REPORT	FCC & IC CERTIFICATION REPORT			www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type: CAR AUDIO	FCC ID:	IC:
HCTR1209FR04	September 11, 2012		TQ8-AC1A0A7AN	5074A-AC1A0A7KN

Test Configuration

Below 30 MHz

30 MHz - 1 GHz

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT		
Test Report No.	Date of Issue:	EUT Type: CAR AUDIO	FCC ID:	IC:
HCTR1209FR04	September 11, 2012		TQ8-AC1A0A7AN	5074A-AC1A0A7KN

Above 1 GHz

TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 0.8 m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.

FCC PT.15.247 TEST REPORT	FCC & IC CERTIFICATION REPORT			www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type: CAR AUDIO	FCC ID:	IC:
HCTR1209FR04	September 11, 2012		TQ8-AC1A0A7AN	5074A-AC1A0A7KN

TEST RESULTS

9 kHz - 30MHz

Operation Mode: Normal Mode

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin	
MHz	$dB\mu\!\!\! V$	dB /m	dB	(H/V)	dB <i>μ</i> V/m	dB <i>μ</i> V/m	dB	
	No Critical peaks found							

- 1. Measuring frequencies from 9 kHz to the 30MHz.
- 2. The reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.
- 3. Distance extrapolation factor = 40 log (specific distance / test distance) (dB)
- 4. Limit line = specific Limits (dBuV) + Distance extrapolation factor
- 5. This test is performed with hopping off.
- 6. we have done horizontal and vertical polarization in detecting antenna.

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT		
Test Report No.	Date of Issue:	EUT Type: CAR AUDIO	FCC ID:	IC:
HCTR1209FR04	September 11, 2012		TQ8-AC1A0A7AN	5074A-AC1A0A7KN

TEST RESULTS

Below 1 GHz

Operation Mode: Normal Mode

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin
MHz	$dB\mu \! \! V$	dB /m	dB	(H/V)	dBμV/m	$dB\mu V/m$	dB
37.0	12.30	12.6	0.5	Н	25.45	40.0	14.55
46.1	14.52	13.5	0.6	V	28.63	40.0	11.37
109.2	16.30	9.7	1.1	Н	27.08	43.5	16.42
162.7	16.41	13.2	1.3	V	30.95	43.5	12.55
233.5	15.37	11.2	1.6	Н	28.23	46.0	17.77
476.2	15.64	17.3	2.4	V	35.33	46.0	10.67

- 1. Measuring frequencies from 30 MHz to the 1 GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using Quasi peak detector mode.
- 3. This test is performed with hopping off.
- 4. we have done horizontal and vertical polarization in detecting antenna.

FCC PT.15.247 TEST REPORT	FCC & IC CERTIFICATION REPORT			www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type: CAR AUDIO	FCC ID:	IC:
HCTR1209FR04	September 11, 2012		TQ8-AC1A0A7AN	5074A-AC1A0A7KN

Above 1 GHz

Operation Mode: CH Low(GFSK)

Frequency	Reading	*A.F+CL-AMP GAIN	ANT. POL	Total	Limit	Margin	Detect
[MHz]	dBuV	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Detect
4804	54.05	-0.84	V	53.21	74	20.79	PK
4804	44.75	-0.84	V	43.91	54	10.09	AV
7206	50.06	9.15	V	59.21	74	14.79	PK
7206	38.62	9.15	V	47.77	54	6.23	AV
4804	51.58	-0.84	Н	50.74	74	23.26	PK
4804	39.72	-0.84	Н	38.88	54	15.12	AV
7206	49.42	9.15	Н	58.57	74	15.43	PK
7206	37.99	9.15	Н	47.14	54	6.86	AV

***** A·F: ANTENNA FACTOR

C·L: CABLE LOSS

AMP GAIN: AMPLIFIER GAIN

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain
- 5. Spectrum setting:
 - a. Peak Setting 1 GHz 26 GHz, RBW = 1 MHz, VBW = 1 MHz.
 - b. AV Setting 1 GHz 26 GHz, RBW = 1 MHz, VBW = 1 kHz \geq 1/T Hz, where T = pulse width in seconds.
- 6. We have done Normal Mode and EDR Mode test. Worst case of EUT is Normal Mode.
- 7. This test is performed with hopping off.
- 8. we have done horizontal and vertical polarization in detecting antenna.

FCC PT.15.247 TEST REPORT	FCC & IC CERTIFICATION REPORT			www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type: CAR AUDIO	FCC ID:	IC:
HCTR1209FR04	September 11, 2012		TQ8-AC1A0A7AN	5074A-AC1A0A7KN

Operation Mode: CH Mid(GFSK)

Frequency	Reading	※ A.F+CL-AMP GAIN	ANT. POL	Total	Limit	Margin	Detect
[MHz]	dBuV	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Detect
4882	51.67	-0.37	V	51.30	74	22.70	PK
4882	42.47	-0.37	V	42.10	54	11.90	AV
7323	49.47	8.72	V	58.19	74	15.82	PK
7323	37.64	8.72	V	46.36	54	7.65	AV
4882	50.51	-0.37	Н	50.14	74	23.86	PK
4882	38.53	-0.37	Н	38.16	54	15.84	AV
7323	49.62	8.72	Н	58.34	74	15.67	PK
7323	38.35	8.72	Н	47.07	54	6.94	AV

* A·F: ANTENNA FACTOR

C·L: CABLE LOSS

AMP GAIN: AMPLIFIER GAIN

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain
- 5. Spectrum setting:
 - a. Peak Setting 1 GHz 26 GHz, RBW = 1 MHz, VBW = 1 MHz.
 - b. AV Setting 1 GHz 26 GHz, RBW = 1 MHz, VBW = 1 kHz \geq 1/T Hz, where T = pulse width in seconds.
- 6. We have done Normal Mode and EDR Mode test. Worst case of EUT is Normal Mode.
- 7. This test is performed with hopping off.
- 8. we have done horizontal and vertical polarization in detecting antenna.

FCC PT.15.247 TEST REPORT	FCC & IC CERTIFICATION REPORT			www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type: CAR AUDIO	FCC ID:	IC:
HCTR1209FR04	September 11, 2012		TQ8-AC1A0A7AN	5074A-AC1A0A7KN

Operation Mode: CH High(GFSK)

Frequency	Reading	※ A.F+CL-AMP GAIN	ANT. POL	Total	Limit	Margin	Dotoot
[MHz]	dBuV	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Detect
4960	52.49	0.50	V	52.99	74	21.01	PK
4960	44.12	0.50	V	44.62	54	9.38	AV
7440	51.67	8.95	V	60.62	74	13.38	PK
7440	40.72	8.95	V	49.67	54	4.33	AV
4960	50.87	0.50	Н	51.37	74	22.63	PK
4960	41.10	0.50	Н	41.60	54	12.40	AV
7440	49.54	8.95	Н	58.49	74	15.51	PK
7440	38.14	8.95	Н	47.09	54	6.91	AV

* A·F: ANTENNA FACTOR

C·L: CABLE LOSS

AMP GAIN: AMPLIFIER GAIN

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain
- 5. Spectrum setting:
 - a. Peak Setting 1 GHz 26 GHz, RBW = 1 MHz, VBW = 1 MHz.
 - b. AV Setting 1 GHz 26 GHz, RBW = 1 MHz, VBW = 1 kHz \geq 1/T Hz, where T = pulse width in seconds.
- 6. We have done Normal Mode and EDR Mode test. Worst case of EUT is Normal Mode.
- 7. This test is performed with hopping off.
- 8. we have done horizontal and vertical polarization in detecting antenna.

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT		
Test Report No.	Date of Issue:	EUT Type: CAR AUDIO	FCC ID:	IC:
HCTR1209FR04	September 11, 2012		TQ8-AC1A0A7AN	5074A-AC1A0A7KN

8.6.3 RECEIVER SPURIOUS EMISSIONS

FCC Rule(s) §15.109 (see Table Below)

Test Requirements: Emission Level shall not exceed §15.109 limits

Operating conditions: Under normal test conditions

Method of testing: Radiated

F < 1 GHz: RBW: 120 kHz, VBW: 300 kHz (Quasi Peak)

S/A. Settings:

F > 1 GHz: RBW: 1 MHz, VBW: 1 MHz (Peak)

Mode of operation: Receive

Frequency (MHz)	Field Strength (mV/m)	Measurement Distance (m)
30 – 88	100 (40 dBuV)	3
88 - 216	150 (43.5 dBuV))	3
216 – 960	200 (46 dBuV)	3
Above 960	500 (54 dBuV)	3

Operation Mode: Receive:

30 MHz \sim 1 GHz

Frequency	Reading	Ant. Factor	Cable Loss	ANT POL	Total	Limit	Margin
MHz	dBuV	dB/m	dB	(H/V)	dBuV/m	dBuV/m	dB
36.2	11.90	12.5	0.5	Н	24.90	40.0	15.10
47.3	15.20	13.6	0.6	V	29.38	40.0	10.62
107.6	15.70	9.5	1.0	Н	26.24	43.5	17.26
166.5	15.46	12.9	1.3	V	29.72	43.5	13.78
234.2	13.57	11.3	1.6	Н	26.46	46.0	19.54
475.3	16.70	17.2	2.4	V	36.38	46.0	9.62

Above 1 GHz

Frequency	Reading	Ant. Factor	Cable Loss	ANT POL	Total	Limit	Margin
MHz	dBuV	dB/m	dB	(H/V)	dBuV/m	dBuV/m	dB
			No Critical p	eaks found			

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT		
Test Report No.	Date of Issue:	EUT Type: CAR AUDIO	FCC ID:	IC:
HCTR1209FR04	September 11, 2012		TQ8-AC1A0A7AN	5074A-AC1A0A7KN

8.6.4 RADIATED RESTRICTED BAND EDGES

Test Requirements and limit, §15.247(d), §15.205, §15.209

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in section 15.209(a) (See section 15.205(c).

Operation Mode Normal(GFSK)

Operating Frequency 2402 MHz, 2480 MHz

Channel No CH 0, CH 78

Frequency	*Fund. Reading	፠ A.F.+CL	Ant. Pol.	*Fundamental	Delta Value	Duty Cycle Correction	Total	Limit	Margin	Detect
[MHz]	dBuV	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	Detect
2390.0	56.96	33.90	Н	90.86	37.95	0	52.91	74	21.09	PK
2390.0	56.23	33.90	Н	90.13	37.95	-24.75	27.43	54	26.57	AV
2390.0	65.45	33.90	٧	99.35	46.57	0	52.78	74	21.22	PK
2390.0	65.04	33.90	V	98.94	46.57	-24.75	27.62	54	26.38	AV
2483.5	58.29	33.99	Н	92.28	40.80	0	51.48	74	22.52	PK
2483.5	57.83	33.99	Н	91.82	40.80	-24.75	26.27	54	27.73	AV
2483.5	63.29	33.99	V	97.28	43.63	0	53.65	74	20.35	PK
2483.5	62.75	33.99	V	96.74	43.63	-24.75	28.36	54	25.64	AV

***** A·F: ANTENNA FACTOR

C·L: CABLE LOSS

AMP GAIN: AMPLIFIER GAIN

- 1. Total = Fundamental Reading Value + Antenna Factor + Cable Loss Delta Value + Duty Cycle Correction Factor
- 2. Spectrum setting:
 - a. Peak Setting 1 GHz 26 GHz, RBW = 1 MHz, VBW = 1 MHz.
 - b. AV Setting 1 GHz 26 GHz, RBW = 1 MHz, VBW = 1 kHz \geq 1/ τ Hz, where τ = pulse width in seconds.
- 3. FYI: Duty Cycle Correction Factor (79 channel hopping)
 - a. Time to cycle through all channels= Δ t= τ [ms] x 79 channels = 228.705 ms, where τ = pulse width
 - b. 100 ms/ Δt [ms] = $H \rightarrow$ Round up to next highest integer, H'=1
 - c. Worst Case Dwell Time = τ [ms] x H '= 2.895 ms
 - d. Duty Cycle Correction = 20log (Worst Case Dwell Time/ 100ms) dB = -30.767 dB
 - e. We applied DCCF in the test result which hopping channel number is 79.

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT		
Test Report No.	Date of Issue:	EUT Type: CAR AUDIO	FCC ID:	IC:
HCTR1209FR04	September 11, 2012		TQ8-AC1A0A7AN	5074A-AC1A0A7KN

- 4. Duty Cycle Correction Factor(AFH mode minimum channel number case 20 channels)
 - a. Time to cycle through all channels= Δ t= τ [ms] x 20 channels = 57.90 ms, where τ = pulse width
 - b. 100 ms/ Δt [ms] = $H \rightarrow \text{Round up to next highest integer}$, H'=2
 - c. Worst Case Dwell Time = τ [ms] x H '= 5.79 ms
 - d. Duty Cycle Correction(AFH) = 20log (Worst Case Dwell Time/ 100ms) dB = -24.7464 dB
- 5. Radiated Restricted Band Edge measures by marker-delta method according to ANSI C63.10(version: 2009)
- 6. We have done Normal Mode, EDR Mode. Worst case of EUT is Normla Mode.
- 7. This test is performed with hopping off.
- 8. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 9. Marker-Delta Method

In making radiated band-edge measurements, there can be a problem obtaining meaningful data because a measurement instrument that is tuned to a band-edge frequency may also capture some in-band signals when using the resolution bandwidth (RBW). In an effort to compensate for this problem, the following technique for determining band-edge compliance shall be used.

- a) Perform an in-band field strength measurement of the fundamental emission using the RBW and detector function specified in 6.3 and 6.4, 6.5, or 6.6, as applicable, and the appropriate regulatory requirements for the frequency being measured. and our Rules for the frequency being measured.
 For example, for a device operating in the 902-928 MHz band under 47 CFR 15.249, use a 120 kHz RBW with a CISPR QP detector (a peak detector with 100 kHz RBW may alternatively be used). For unlicensed wireless devices operating above 1 GHz, use a 1 MHz RBW, a 1 MHz VBW, and a peak detector as required by 47 CFR 15.35.
 Repeat the measurement with an average detector (i.e., 1 MHz RBW with 10 Hz VBW). For pulsed emissions, other factors must be included. For example note that radiated measurements of the fundamental emission of a spread spectrum unlicensed wireless device operating under 47 CFR 15.247 are not normally required, but they are necessary in connection with this procedure.
- b) Choose a spectrum analyzer span that encompasses both the peak of the fundamental emission and the band-edge emission under investigation. Set the analyzer RBW to approximately 1% to 5 % of the total span, unless otherwise specified, with a video bandwidth equal to or greater than the RBW. Record the peak levels of the fundamental emission and the relevant band-edge emission (i.e., run several sweeps in peak hold mode). Observe the stored trace and measure the amplitude delta between the peak of the fundamental and the peak of the band-edge emission. This is not an abosolute field strength measurement; it is only a relative measurement to determine the amount by which the emission drops at the band-edge relative to the highest fundamental emission level.
- c) Subtract the delta measured in b) from the field strengths measured in a). The resultant field strengths (CISPR QP, average, or peak, as appropriate) are then used to determine band-edge compliance of the resricted bands, described in 5.9.

FCC PT.15.247 TEST REPORT	FCC & IC CERTIFICATION REPORT			www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type: CAR AUDIO	FCC ID:	IC:
HCTR1209FR04	September 11, 2012		TQ8-AC1A0A7AN	5074A-AC1A0A7KN

Test Plots (GFSK)

Fund. (Peak_Horizontal _CH 0)

Date: 16.AUG.2012 13:17:08

Fund. (Average_Horizontal _CH 0)

Date: 16.AUG.2012 13:17:31

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT		
Test Report No.	Date of Issue:	EUT Type: CAR AUDIO	FCC ID:	IC:
HCTR1209FR04	September 11, 2012		TQ8-AC1A0A7AN	5074A-AC1A0A7KN

Delta (Horizontal _CH 0)

Date: 16.AUG.2012 13:21:43

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT		
Test Report No.	Date of Issue:	EUT Type: CAR AUDIO	FCC ID:	IC:
HCTR1209FR04	September 11, 2012		TQ8-AC1A0A7AN	5074A-AC1A0A7KN

Fund. (Peak_Vertical_CH 0)

Date: 16.AUG.2012 13:05:45

Fund. (Average_Vertical_CH 0)

Date: 16.AUG.2012 13:09:12

FCC PT.15.247 TEST REPORT	FCC & IC CERTIFICATION REPORT			www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type: CAR AUDIO	FCC ID:	IC:
HCTR1209FR04	September 11, 2012		TQ8-AC1A0A7AN	5074A-AC1A0A7KN

Delta (Vertical_CH 0)

Date: 16.AUG.2012 13:10:26

FCC PT.15.247 TEST REPORT	FCC & IC CERTIFICATION REPORT		www.hct.co.kr	
Test Report No.	Date of Issue:	EUT Type: CAR AUDIO	FCC ID:	IC:
HCTR1209FR04	September 11, 2012		TQ8-AC1A0A7AN	5074A-AC1A0A7KN

Fund. (Peak_Horizontal_CH 79)

Date: 16.AUG.2012 12:55:28

Fund. (Average_Horizontal_CH 79)

Date: 16.AUG.2012 12:55:54

FCC PT.15.247 TEST REPORT	FCC & IC CERTIFICATION REPORT		www.hct.co.kr	
Test Report No.	Date of Issue:	EUT Type: CAR AUDIO	FCC ID:	IC:
HCTR1209FR04	September 11, 2012		TQ8-AC1A0A7AN	5074A-AC1A0A7KN

Delta (Horizontal_CH 79)

Date: 16.AUG.2012 12:57:21

FCC PT.15.247 TEST REPORT	FCC & IC CERTIFICATION REPORT		www.hct.co.kr	
Test Report No.	Date of Issue:	EUT Type: CAR AUDIO	FCC ID:	IC:
HCTR1209FR04	September 11, 2012		TQ8-AC1A0A7AN	5074A-AC1A0A7KN

Fund. (Peak_Vertical_CH 79)

Date: 16.AUG.2012 13:00:57

Fund. (Average_Vertical_CH 79)

Date: 16.AUG.2012 13:01:22

FCC PT.15.247 TEST REPORT	FCC & IC CERTIFICATION REPORT		www.hct.co.kr	
Test Report No.	Date of Issue:	EUT Type: CAR AUDIO	FCC ID:	IC:
HCTR1209FR04	September 11, 2012		TQ8-AC1A0A7AN	5074A-AC1A0A7KN

Delta (Vertical_CH 79)

Date: 16.AUG.2012 13:02:27

FCC PT.15.247 TEST REPORT	FCC & IC CERTIFICATION REPORT		www.hct.co.kr	
Test Report No.	Date of Issue:	EUT Type: CAR AUDIO	FCC ID:	IC:
HCTR1209FR04	September 11, 2012		TQ8-AC1A0A7AN	5074A-AC1A0A7KN

8.7 POWERLINE CONDUCTED EMISSIONS

LIMIT

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolt (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Francisco Ponco (MILE)	Limits (dBμV)		
Frequency Range (MHz)	Quasi-peak	Average	
0.15 to 0.50	66 to 56	56 to 46	
0.50 to 5	56	46	
5 to 30	60	50	

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Configuration

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

TEST PROCEDURE

- 1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
- 2. The EUT is connected via LISN to a test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors Quasi Peak and Average Detector.

Note: We don't perform powerline conducted emission test. Because this EUT is used with vehicle.

FCC PT.15.247 TEST REPORT	FCC & IC CERTIFICATION REPORT		www.hct.co.kr	
Test Report No.	Date of Issue:	EUT Type: CAR AUDIO	FCC ID:	IC:
HCTR1209FR04	September 11, 2012		TQ8-AC1A0A7AN	5074A-AC1A0A7KN

9. LIST OF TEST EQUIPMENT

Manufacturer	Model / Equipment	Calibration Interval	Calibration Due	Serial No.
Rohde & Schwarz	ENV216/ LISN	Annual	02/09/2013	100073
Schwarzbeck	VULB 9168/ TRILOG Antenna	Biennial	02/09/2013	200
Rohde & Schwarz	ESI 40 / EMI TEST RECEIVER	Annual	05/03/2013	831564103
Agilent	E4440A/ Spectrum Analyzer	Annual	05/02/2013	US45303008
Agilent	N9020A/ SIGNAL ANALYZER	Annual	07/31/2013	MY51110020
HD	MA240/ Antenna Position Tower	N/A	N/A	556
EMCO	1050/ Turn Table	N/A	N/A	114
HD GmbH	HD 100/ Controller	N/A	N/A	13
HD GmbH	KMS 560/ SlideBar	N/A	N/A	12
Rohde & Schwarz	SCU-18/ Signal Conditioning Unit	Annual	09/11/2013	10094
MITEQ	AMF-6B-180265-35-10P / POWER AMP	Annual	04/16/2013	667624
CERNEX	CBL26405040 / POWER AMP	Annual	04/16/2013	19660
Schwarzbeck	BBHA 9120D/ Horn Antenna	Biennial	10/17/2013	937
Schwarzbeck	BBHA9170 / Horn Antenna(15 GHz ~ 40 GHz)	Biennial	10/26/2012	BBHA9170342
Rohde & Schwarz	FSP / Spectrum Analyzer	Annual	02/09/2013	839117/011
Agilent	E4416A /Power Meter	Annual	11/07/2012	GB41291412
Agilent	E9327A /POWER SENSOR	Annual	05/02/2013	MY4442009
Wainwright Instrument	WHF3.3/18G-10EF / High Pass Filter	Annual	05/02/2013	1
Wainwright Instrument	WRCJ2400/2483.5-2370/2520-60/14SS / Band Reject Filter	Annual	05/02/2013	1
Hewlett Packard	11636B/Power Divider	Annual	11/07/2012	11377
Hewlett Packard	11667B / Power Splitter	Annual	06/05/2013	05001
DIGITAL	EP-3010 /DC POWER SUPPLY	Annual	11/07/2012	3110117
ITECH	IT6720 / DC POWER SUPPLY	Annual	11/07/2012	010002156287001199
TESCOM	TC-3000C / BLUETOOTH TESTER	Annual	11/14/2012	3000C000276
Rohde & Schwarz	CBT / BLUETOOTH TESTER	Annual	05/02/2013	100422
EMCO	6502.LOOP ANTENNA	Biennial	01/11/2014	9009-2536
MITEQ	AMF-6D-001180-35-20P/ POWER AMP	Annual	09/26/2012	990893
CERNEX	CBLU1183540 / POWER AMP	Annual	07/27/2013	21691

FCC PT.15.247 TEST REPORT	FCC & IC CERTIFICATION REPORT		www.hct.co.kr	
Test Report No.	Date of Issue:	EUT Type: CAR AUDIO	FCC ID:	IC:
HCTR1209FR04	September 11, 2012		TQ8-AC1A0A7AN	5074A-AC1A0A7KN