característica de um anel

definição e exemplos

Sejam A um anel e $a \in A$. Considerando os múltiplos de a, i.e., os elementos da forma na com $n \in \mathbb{Z}$, temos duas situações a considerar:

- (i) $(\exists m \in \mathbb{Z} \setminus \{0\})$ $(\forall a \in A)$ $ma = 0_A$;
- (ii) $(\forall m \in \mathbb{Z} \setminus \{0\}) (\exists b \in A) \quad mb \neq 0_A$ (i.e., $nb = 0_A \ (\forall b \in A) \Rightarrow n = 0$).

Exemplo 14. São exemplos da situação (ii) o anel dos reais e o anel dos inteiros.

Exemplo 15. É exemplo da situação (i) o anel $(\mathbb{Z}_4, +, \cdot)$.

Definição. Seja A um anel.

1. Se

$$nb = 0_A, \ \forall b \in A \Rightarrow n = 0,$$

A diz-se um anel de característica 0 e escreve-se c(A) = 0;

2. Se

$$(\exists m \in \mathbb{Z} \setminus \{0\}) (\forall a \in A) \quad ma = 0_A,$$

A diz-se um anel de característica q onde $q = \min\{n \in \mathbb{N} : na = 0_A \ \forall a \in A\}$. Escreve-se c(A) = q.

Observação. A segunda parte da definição faz todo o sentido, pois se A é um anel que satisfaz 2., temos que, sendo

$$M = \{ m \in \mathbb{Z} : ma = 0_A, \quad \forall a \in A \},$$

(M,+) é um subgrupo do grupo cíclico $(\mathbb{Z},+)$ e, portanto, é ele próprio um grupo cíclico e o seu gerador é o menor inteiro positivo de M.

Como (A, +) é grupo, podemos falar da ordem de qualquer elemento de A.

Se A é um anel de característica q e $x \in A$ é tal que a ordem de x no grupo (A, +) é o (x) = p, qual a relação de p com q?

A resposta é obviamente $p \mid q$. De facto, se q é a característica de A, temos que $qa = 0_A$, para todo $a \in A$. Em particular, para a = x temos que $qx = 0_A$. Logo, como p = o(x), vem, como consequência da definição de ordem de um elemento, que $p \mid q$.

Assim, podemos concluir que a característica de um anel finito A é o m.m.c. entre as ordens de todos os elementos de A.

Proposição. Sejam $A \neq \{0_A\}$ um anel com identidade 1_A e $n \in \mathbb{N}$. Então, a característica de A é n se e só se a ordem de 1_A é n.

Exemplo 16. Seja $n \in \mathbb{N}$. Como, em \mathbb{Z}_n , $o(\bar{1}) = n$, concluímos que $c(\mathbb{Z}_n) = n$.

Exemplo 17. O anel dos números inteiros e o anel dos números reais são anéis de característica 0, uma vez que, nestes anéis, o(1) é infinita.

anéis especiais

domínios de integridade

Definição. Um anel comutativo com identidade A diz-se um domínio (ou anel) de integridade se admitir como único divisor de zero o elemento zero do anel.

Exemplo 18. Os anéis $(\mathbb{Z}, +, \times)$ e $(\mathbb{R}, +, \times)$ são domínios de integridade.

Exemplo 19. O anel das matrizes quadradas de ordem 2 não é um domínio de integridade.

Observação. Se A é um domínio de integridade, então, $A \neq \{0_A\}$.

Proposição. Seja A um anel comutativo com identidade. Então, as seguintes afirmações são equivalentes:

- 1. A é domínio de integridade;
- 2. $A \setminus \{0_A\} \neq \emptyset$ e todo o elemento de $A \setminus \{0_A\}$ é simplificável.

Proposição. Seja A um anel comutativo com identidade. Então, as seguintes afirmações são equivalentes:

- 1. A é domínio de integridade;
- 2. $A \setminus \{0_A\} \neq \emptyset$ e $A \setminus \{0_A\}$ é subsemigrupo de A relativamente ao produto.

Proposição. Seja A um anel comutativo com identidade. Então, as seguintes afirmações são equivalentes:

- 1. A é domínio de integridade;
- 2. $A \setminus \{0_A\} \neq \emptyset$ e, se as equações ax = b e xa = b ($a \neq 0_A$) tiverem solução, então, a solução é única.

anéis de divisão e corpos

Definição. Um anel A diz-se um anel de divisão se $(A \setminus \{0_A\}, \cdot)$ é um grupo. Um anel de divisão comutativo diz-se um *corpo*.

Resulta da definição que qualquer corpo é um domínio de integridade, mas o recíproco não é verdadeiro.

Exemplo 20. O domínio de integridade $(\mathbb{Z}, +, \times)$ não é um anel de divisão, pois $(\mathbb{Z} \setminus \{0\}, \times)$ não é grupo.

Exemplo 21. O domínio de integridade $(\mathbb{R}, +, \times)$ é um corpo e, portanto, um anel de divisão.

Exemplo 22. Seja $\mathcal{Q}=\{a+bi+cj+dk: a,b,c,d\in\mathbb{R}\}$, onde $i^2=j^2=k^2=-1$, ij=-ji=k, ki=-ik=j, jk=-kj=i. Considere em \mathcal{Q} as operações + e \times definidas por

$$(a + bi + cj + dk) + (a' + b'i + c'j + d'k)$$

= $a + a' + (b + b')i + (c + c')j + (d + d')k$

е

$$(a + bi + cj + dk) \times (a' + b'i + c'j + d'k) =$$

$$aa' - bb' - cc' - dd' + (ab' + a'b + cd' - c'd)i +$$

$$(ac' - bd' + a'c + b'd)j + (ad' + bc' - b'c + a'd)k.$$

Então, $(Q, +, \times)$ é um anel de divisão não comutativo. Este anel designa-se por *Anel dos Quarteniões*.

