## LSF KNOWLEDGEBASE

| Name:            | Index No               |  |
|------------------|------------------------|--|
| 232/3<br>PHYSICS | Candidate's Signature: |  |
| PRACTICAL        | Date:Class             |  |

## LSF Knowledgebase SERIES

You are provided with

PAPER 3

- A marble with a piece of thread attached.
- Two wooden blocks
- A clamp, stand and boss
- A metre rule
- Half metre rule attached to a wooden block.
- 2 pieces of cello-tape
- A stop watch.
- a) Fix the thread between the two wooden blocks and fasten in the clamp. Adjust the thread so that the length L shown in the figure is 50 cm.
- b) Fix the metre rule horizontally to the bench using the cello-tape provided.
- c) Adjust the clamp so that the marble is next to the end of the metre rule as shown.



i) Displace the marble by a horizontal distance x = 20cm and measure the corresponding vertical displacement

 $h = \dots cm.$  (1 mark)

ii) Repeat the experiment to find h for each of the following values of x and complete the table.

| x (cm) | h (cm) | x² (cm²) | x²/h (cm) |
|--------|--------|----------|-----------|
| 20     |        |          |           |
| 25     |        |          |           |
| 30     |        |          |           |
| 35     |        |          |           |
| 40     |        |          |           |
| 45     |        |          |           |

d) Plot a graph of  $x^2/h$  against h starting the  $x^2/h$  axis from 50 cm and h axis scale from zero.



(5 marks)



e) Determine the slope of the graph.

(3 marks)

f) From the graph find the value of 
$$x^2/h$$
 when  $h = 0$ 

(1 mark)

- g) Rinse the clamp slightly without changing the length L so that the marble is free to swing. Displace the marble through a horizontal distance of about 10 cm and set it free to swing.
- h) Determine the period for one complete oscillation by timing 20 oscillations.

Period  $T = \dots$  (1 mark)

i) Calculate the value of P from the following equation  $T = 2\pi \sqrt{\frac{P}{g}}$  where g = 10 N/kg (3 marks)