Chapter 4: Completeness Axiom

Definition 1 (Max and Min). Let S be a nonempty subset of \mathbb{R} .

- 1. If S contains a largest element s_0 (that is, s_0 belongs to S and $s \leq s_0$ for all $s \in S$, then we call s_0 the maximum of S and write $s_0 = \max S$.
- 2. If S contains a smallest element, then we call the smallest element the minimum of S and write it as $\min S$

Definition 2 (Bounds). Let S be a nonempty subset of \mathbb{R} .

- 1. If a real number M satisfies $s \leq M$ for all $s \in S$, then M is called an upper bound of S and the set S is said to be bounded above
- 2. If a real number m satisfies $m \leq s$ for all $s \in S$, then m is called an lower bound of S and the set S is said to be bounded below
- 3. The set S is said to be bounded if it is bounded above and below. Thus S is bounded if there exist real numbers m and M such that $S \subseteq [m, M]$.

Definition 3 (sup and inf). Let S be a nonempty subset of \mathbb{R} .

- 1. If S is bounded above and S has a least upper bound, then we will call it the *supremum of* S and denote it by $\sup S$.
- 2. if S is bounded below and S has a greatest lower bound, then we will call it the *infimum of* S and denote it by $\inf S$.

Theorem 4 (Completeness Axiom). Every nonempty subset S of \mathbb{R} that is bounded above has a least upper bound. In other words, $\sup S$ exists and is a real number.

Corollary 5. Every nonempty subset S of \mathbb{R} that is bounded below has a greatest lower bound inf S.

Theorem 6 (Archimedean Property). If a > 0 and b > 0, then for some positive integer n, we have na > b

Theorem 7 (Density of \mathbb{Q}). If $a, b \in \mathbb{R}$ and a < b, then there is a rational $r \in \mathbb{Q}$ such that a < r < b.

Chapter 7: Limits of Sequences

Definition 8 (Convergence). A sequence (s_n) of real numbers is said to converge to the real number s provided that for each $\epsilon > 0$ there exists a number N such that n > N implies $|s_n - s| \le \epsilon$. A sequence that does not converge to some real number is said to diverge.

Chapter 8: Proofs

All that you need to know here is the idea of computationally deriving your epsilon to use in your proof.

Chapter 9: Limit Theorems

Theorem 9. Convergent sequences are bounded

Theorem 10. If the sequence (s_n) converges to s and k is in \mathbb{R} , then the sequence (ks_n) converges to ks. That is, $\lim(ks_n) = k \cdot \lim(s_n)$

Theorem 11. If (s_n) converges to s and (t_n) converges to t, then $\lim(s_n + t_n)$ converges to s + t. That is, $\lim(s_n + t_n) = \lim s_n + \lim t_n$

Lemma 12. If (s_n) converges to s, if $s_n \neq 0$ for all n, and if $s \neq 0$, then $(1/s_n)$ converges to 1/s.

Theorem 13. Suppose (s_n) converges to s and (t_n) converges to t. If $s \neq 0$ and $s_n \neq 0$ for all n, then (t_n/s_n) converges to t/s/s

Theorem 14. Basic Examples

(a)
$$\lim_{n\to\infty} \left(\frac{1}{n^p}\right) = 0$$
 for $p > 0$

- (b) $\lim_{n\to\infty} a^n = 0$ if |a| < 1.
- (c) $\lim(n^{1/n}) = 1$.
- (d) $\lim_{n\to\infty} (a^{1/n}) = 1$ for a > 0

Definition 15. For a sequence (s_n) , we write $\lim s_n = +\infty$ provided for each M > 0 there is a number N such that n > N implies $s_n > M$.

Theorem 16. Let (s_n) and (t_n) be sequences such that $\lim s_n = +\infty$ and $\lim t_n > 0$ [$\lim t_n$ can be finite or $+\infty$]. Then $\lim s_n t_n = +\infty$.

Theorem 17. For a sequence (s_n) of positive real numbers, we have $\lim s_n = +\infty$ if and only if $\lim (\frac{1}{s_n} = 0)$

CHAPTER 10: MONOTONIC & CAUCHY SEQUENCES

Definition 18. A sequence (s_n) of real numbers is called an **increasing sequence** if $s_n \leq s_{n+1}$ for all n, and is called a **decreasing sequence** if $s_n \geq s_{n+1}$ for all n

Theorem 19. All bounded monotone sequences converge

Theorem 20. Unbounded increasing sequences have a limit of $s_n = +\infty$, and unbounded decreasing has $\lim s_n = -\infty$

Corollary 21. If (s_n) is a monotone sequence, then the sequence either converges, diverges to $+\infty$, or diverges to $-\infty$. Thus $\lim s_n$ is always meaningful for monotone sequences.

Definition 22. Let (s_n) be any sequence of real numbers. We define

$$\limsup s_n = \lim N \to \infty \sup \{s_n : n > N\} = \sup S$$

and

$$\lim\inf s_n = \lim N \to \infty\inf\{s_n : n > N\} = \inf S$$

Theorem 23. Let (s_n) be a sequence in \mathbb{R} .

- (i) If $\lim s_n$ is defined [as a real number, $+\infty$, or $-\infty$], then $\lim \inf s_n = \lim s_n = \lim \sup s_n$
- (ii) If $\lim \inf s_n = \lim \sup s_n$, then $\lim s_n$ is defined and $\lim s_n = \lim \inf s_n = \lim \sup s_n$

Definition 24. A sequence (s_n) or real numbers is called a Cauchy sequence if for each $\epsilon > 0$ there exists a number N such that m, n > N implies $|s_n - s_m| < \epsilon$

Lemma 25. Convergent sequences are Cauchy sequences.

Lemma 26. Cauchy sequences are bounded

Theorem 27. A sequence is a convergent sequence if and only if it is a Cauchy sequence.

Chapter 11: Subsequences

Definition 28. A sequence (s_n) of real numbers is called an *increasing sequence* if $s_n \leq s_{n+1}$ for all n, and (s_n) is called *decreasing sequence* if $s_n \geq s_{n+1}$ for all n. Note that if (s_n) is increasing, then $s_n \leq s_m$ whenever n < m. A sequence that is increasing or decreasing will be called a *monotone sequence* or a *monotonic sequence*.

Theorem 29. All bounded monotone sequence converge.

Theorem 30. (i) If (s_n) is an unbounded increasing sequence, then $\lim s_n = +\infty$ (ii) If (s_n) is an unbounded decreasing sequence, then $\lim s_n = -\infty$

Corollary 31. If (s_n) is a monotone sequence, then the sequence either converges, diverges to $+\infty$, or diverges to $-\infty$. Thus $\lim s_n$ is always meaningful for monotone sequences.

Definition 32. Let (s_n) be a sequence in \mathbb{R} . We define

$$\limsup s_n = \lim_{N \to \infty} \sup \{ s_n : n > N \}$$

and

$$\lim\inf s_n = \lim_{N \to \infty} \inf\{s_n : n > N\}$$

Theorem 33. Let (s_n) be a sequence in \mathbb{R} .

(i) If $\lim s_n$ is defined [as a real number, $+\infty$ or $-\infty$], then $\lim\inf s_n = \lim s_n = \lim\sup s_n$.

(ii) If $\lim \inf s_n = \lim \sup s_n$, then $\lim s_n$ is defined and $\lim s_n = \lim \inf s_n = \lim \sup s_n$.

Definition 34. A sequence (s_n) of real numbers i called a Cauchy sequence if for each $\epsilon > 0$ there exists a number N such that m, n > N implies $|s_n - s_m| < \epsilon$.

Lemma 35. Convergent sequences are Cauchy sequences.

Lemma 36. Cauchy sequences are bounded.

Theorem 37. A sequence is a convergent sequence if and only if it is a Cauchy sequence.

CHAPTER 12: lim sup and lim inf

Definition 38. Let (s_n) be any sequence of real numbers, and let S be the set of subsequential limits of (s_n) . Recall

$$\limsup s_n = \lim N \to \infty \sup \{s_n : n > N\} = \sup S$$

and

$$\liminf s_n = \lim N \to \infty \inf \{ s_n : n > N \} = \inf S$$

Theorem 39. If (s_n) converges to a positive real number s and (t_n) is any sequence, then

$$\limsup s_n t_n = s \cdot \limsup t_n$$

Here we allow the conventions $s \cdot (+\infty) = +\infty$ and $s \cdot (-\infty) = -\infty$ for s > 0.

Proof sketch: handle the three cases separately using subsequences, doing the inequality left to right, then right to left using $\lim \frac{1}{s_n} = \frac{1}{s}$

Theorem 40. Let (s_n) be any sequence of nonzero real numbers. Then we have $\liminf \left| \frac{s_{n+1}}{s_n} \right| \leq \liminf |s_n|^{1/n} \leq s_n$ $\limsup |s_n|^{1/n} \le \limsup \left| \frac{s_{n+1}}{s_n} \right|$

Middle is obvious, first and third have similar proofs

Corollary 41. If $\lim \left| \frac{s_{n+1}}{s_n} \right|$ exists [and equals L], then $\lim |s_n|^{1/n}$ exists [and equals L].

Chapter 14: Series

Definition 42. We say a series $\sum a_n$ satisfies the Cauchy criterion if its sequence (s_n) of partial sums is a Cauchy sequence.

Theorem 43. A series converges if and only if it satisfies the Cauchy criterion.

Corollary 44. If a series $\sum a_n$ converges, then $\lim a_n = 0$

Definition 45 (Comparison Test). Let $\sum a_n$ be a series where $a_n geq 0$ for all n.

- (i) If $\sum a_n$ converges and $|b_n| \le a_n$ for all n, then $\sum b_n$ converges.
- (ii) If $\sum a_n = +\infty$ and $b_n \ge a_n$ for all n, then $\sum b_n = +\infty$.

Corollary 46. Absolutely convergent series are absolutely convergent

Definition 47 (Ratio Test). A series $\sum a_n$ of nonzero terms

- **Definition 47** (Travio 1927)
 (i) converges absolutely if $\limsup \left| \frac{a_{n+1}}{a_n} \right| < 1$
- (ii) diverges if $\liminf \left| \frac{a_{n+1}}{a_n} \right|$ (iii) Otherwise $\liminf \left| \frac{a_{n+1}}{a_n} \right| \le 1 \le \limsup \left| \frac{a_{n+1}}{a_n} \right|$ and the test gives no information.

Definition 48 (Root Test). Let $\sum a_n$ be a series and let $\alpha = \limsup |a_n|^{1/n}$. The series $\sum a_n$

- (i) converges absolutely if $\alpha < 1$,
- (ii) diverges if $\alpha > 1$.
- (iii) Otherwise $\alpha = 1$ and the test gives no information.

CHAPTER 15: ALTERNATING SERIES AND INTEGRAL TEST

Theorem 49. $\sum \frac{1}{n^p}$ converges if and only if p > 1

Theorem 50 (Alternating Series). If $a_1 \geq a_2 \geq \dots a_n \leq \dots \leq 0$ and $\lim a_n = 0$, then the alternating series $\sum (-1)^n + 1a_n$ converges. Moreoever, the partial sums s_n from k = 1 to n satisfy $|s - s_n| \leq a_n$ for all n.

Chapter 17: Continuity

Definition 51. Let f be a real-valued function whose domain is a subset of \mathbb{R} . The function f is continuous at x_0 if, for every sequence (x_n) in dom(f) converging to x_0 , we have $\lim_n f(x_n) = f(x_0)$. If f is continuous at each point of a set $S \subseteq dom(f)$, then f is said to be continuous on S. Then function f is said to be continuous if it is continuous on dom(f).

Theorem 52. Let f be a real-valued function whose domain is a subset of \mathbb{R} . Then f is continuous at $x_0 \in dom(f)$ if and only if:

for each $\epsilon > 0$ there exists $\delta > 0$ such that $x \in dom(f)$ and $|x - x_0| < \delta$ imply $|f(x) - f(x_0)| < \epsilon$.

Theorem 53. Let f be a real-valued function with dom $(f) \subseteq \mathbb{R}$. If f is continuous at x_0 in dom (f), then |f| and $kf, k \in \mathbb{R}$, are continuous at x_0 .

Theorem 54. Let f and g be real-valued functions that are continuous at x_0 in \mathbb{R} . Then

- (i) f + g is continuous at x_0
- (ii) fg is continouos at x_0
- (iii) f/g is continuous at x_0 if $g(x_0) \neq 0$

Theorem 55. If f is continuous at x_0 and g is continuous at $f(x_0)$, then the composite function $g \circ f$ is continuous at x_0 .

Chapter 20: Limits of Functions

Definition 56. Let S be a subset of \mathbb{R} , let a be a real number or symbol ∞ or $-\infty$ that is the limit of some sequence in S, and let L be a real number or symbol $+\infty$ or $-\infty$. We write $\lim_{x\to a^s} f(x) = L$ if

f is a function defined on S,

and

for every sequence (x_n) in S with limit a, we have $\lim_{n\to\infty} f(x_n) = L$.

Remark 57.

- (a) From the first definition of the continuity chapter, we see that a function f is continuous at a in dom (f) = S if and only if $\lim_{x\to a^S} = f(a)$.
- (b) Observe that limits, when they exist, are unique. This follows from the second statement in the previous definition, since limits of sequences are unique.

Definition 58. .

1. For $a \in \mathbb{R}$ and a function f we write $\lim_{x\to a} f(x) = L$ provided $\lim_{x\to a} s f(x) = L$ for some set $S = J \setminus \{a\}$ where J is an open interval containing a. $\lim_{x\to a} f(x)$ is called the [two-sided] limit of f at a. Note f need not be defined at a and, even if f is defined at a, the value f(a) need not equal $\lim_{x\to a} f(x)$. In fact, $f(a) = \lim_{x\to a} f(x)$ iff f is defined on an open interval containing f and f is continuous at f.

- 2. For $a \in \mathbb{R}$ and a function f we write $\lim_{x\to a^+} f(x) = L$ provided $\lim_{x\to a^S} f(x) = L$ for some open interval S = (a, b). $\lim_{x\to a^+} f(x)$ is the right-hand limit of f at a. Again f need not be defined at a.
- 3. For $a \in \mathbb{R}$ and a function f we write $\lim_{x\to a^-} f(x) = L$ provided $\lim_{x\to a^S} f(x) = L$ for some open interval S = (c, a). $\lim_{x\to a^-} f(x)$ is the right-hand limit of f at a.
- 4. For a function f we write $\lim_{x\to\infty} f(x) = L$ provided $\lim_{x\to\infty} f(x) = L$ for some interval $S = (c,\infty)$. Likewise, we write $\lim_{x\to-\infty} f(x) = L$ provided $\lim_{x\to-\infty} f(x) = L$ for some interval $S = (-\infty,b)$

Theorem 59. Let f_1 and f_2 be functions for which the limits $L_1 = \lim_{x \to a^S} f_1(x)$ and $L_2 = \lim_{x \to a^S} f_2(x)$ exist and are finite. Then

- 1. $\lim_{x\to a^S} (f_1+f_2)(x)$ exists and equals L_1+L_2
- 2. $\lim_{x\to a^S} (f_1f_2)(x)$ exists and equals L_1L_2
- 3. $\lim_{x\to a^S} (f_1/f_2)(x)$ exists and equals L_1/L_2 provided $L_2\neq 0$ and $f_2(x)\neq 0$ for $x\in S$

Theorem 60. Let f be a function for which the limit $L = \lim_{x \to a^S} f(x)$ exists and is finite. If g is a function defined on $\{f(x) : x \in S\} \cup \{L\}$ that is continuous at L, then $\lim_{x \to a^S} g \circ f(x)$ exists and equals g(L).

Corollary 61. Let f be a function defined on $J \setminus \{a\}$ for some open interval J containing a, and let L be a real number. Then $\lim_{x\to a} f(x) = L$ if and only if

for each
$$\epsilon > 0$$
 there exists $\delta > 0$ such that $0 < |x - a| < \delta$ implies $|f(x) - L| < \epsilon$

Corollary 62. Let f be a function defined on some interval (a,b), and let L be a real number. Then $\lim_{x\to a^+} f(x) = L$ if and only if

for each
$$\epsilon > 0$$
 there exists $\delta > 0$ such that $a < x < a + \delta$ implies $|f(x) - L| < \epsilon$

Theorem 63. Let f be a function defined on $J \setminus a$ for some open interval J containing a. Then $\lim_{x\to a} f(x)$ exists if and only if the limits $\lim_{x\to a^+} f(x)$ and $\lim_{x\to a^-} f(x)$ both exist and are equal, in which case all three limits are equal.