```
# Task:
In [1]:
         # Examine 2018 lightning strike data collected by the National Oceanic and Atmospheric Administration (NOAA).
         # Then calculate the total number of strikes for each month and plot this information on a bar graph.
         import pandas as pd
In [2]:
         import numpy as np
         import datetime as dt
         import matplotlib.pyplot as plt
         # Upload dataset
In [3]:
         df = pd.read csv(r"C:\Users\Maj Mortuza\Downloads\eda using basic data functions in python dataset1.csv")
         df.head(10)
In [4]:
                 date number_of_strikes center_point_geom
Out[4]:
         0 2018-01-03
                                   194
                                            POINT(-75 27)
                                           POINT(-78.4 29)
         1 2018-01-03
                                    41
         2 2018-01-03
                                    33
                                           POINT(-73.9 27)
                                           POINT(-73.8 27)
         3 2018-01-03
                                    38
                                            POINT(-79 28)
         4 2018-01-03
                                    92
         5 2018-01-03
                                   119
                                            POINT(-78 28)
         6 2018-01-03
                                    35
                                           POINT(-79.3 28)
                                           POINT(-79.1 28)
         7 2018-01-03
                                    60
         8 2018-01-03
                                    41
                                           POINT(-78.7 28)
                                   119
         9 2018-01-03
                                           POINT(-78.6 28)
         df.shape
In [5]:
         (3401012, 3)
Out[5]:
```

```
In [6]: # Get more information about the data, including data types of each column
        df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 3401012 entries, 0 to 3401011
        Data columns (total 3 columns):
             Column
                                 Dtype
             date
                                 object
         1 number of strikes int64
             center point geom object
        dtypes: int64(1), object(2)
        memory usage: 77.8+ MB
In [7]: # Convert date column to datetime
        df['date'] = pd.to datetime(df['date'])
In [8]: # Calculate days with most lightning strikes
        df.groupby(['date']).sum(numeric only=True).sort values('number of strikes', ascending=False).head(10)
Out[8]:
                   number_of_strikes
              date
         2018-08-29
                            1070457
                            969774
         2018-08-17
         2018-08-28
                            917199
                            824589
         2018-08-27
```

2018-08-30

2018-08-19

2018-08-18

2018-08-16

2018-08-31

2018-08-15

802170

786225

741180

734475

723624

673455

```
In [9]: #Create a new `month` column

df['month'] = df['date'].dt.month

df.head()
```

Out[9]:	date		number_of_strikes	center_point_geom	month
	0	2018-01-03	194	POINT(-75 27)	1
	1	2018-01-03	41	POINT(-78.4 29)	1
	2	2018-01-03	33	POINT(-73.9 27)	1
	3	2018-01-03	38	POINT(-73.8 27)	1
	4	2018-01-03	92	POINT(-79 28)	1

```
In [12]: # Calculate total number of strikes per month
    df.groupby(['month']).sum(numeric_only=True).sort_values('number_of_strikes', ascending=False).head(12)
```

Out[12]:	number_of_strikes
----------	-------------------

month	
8	15525255
7	8320400
6	6445083
5	4166726
9	3018336
2	2071315
4	1524339
10	1093962
1	860045
3	854168
11	409263
12	312097

```
In [13]: # Convert the month number to name
df['month_name'] = df['date'].dt.month_name().str.slice(stop=3)
df.head()
```

Out[13]: date number_of_strikes center_point_geom month month_name **0** 2018-01-03 194 POINT(-75 27) Jan **1** 2018-01-03 41 POINT(-78.4 29) Jan POINT(-73.9 27) **2** 2018-01-03 33 1 Jan **3** 2018-01-03 POINT(-73.8 27) 38 Jan **4** 2018-01-03 92 POINT(-79 28) 1 Jan

```
In [14]: # Create a new helper dataframe for plotting
df_by_month = df.groupby(['month', 'month_name']).sum(numeric_only=True).sort_values('month', ascending = True).head(12).reset_in
```

df_by_month

Out[14]:		month	month_name	number_of_strikes
	0	1	Jan	860045
	1	2	Feb	2071315
	2	3	Mar	854168
	3	4	Apr	1524339
	4	5	May	4166726
	5	6	Jun	6445083
	6	7	Jul	8320400
	7	8	Aug	15525255
	8	9	Sep	3018336
	9	10	Oct	1093962
	10	11	Nov	409263
	11	12	Dec	312097

```
In [15]: # Now create a bar chart for the viz
plt.bar(x=df_by_month['month_name'], height=df_by_month['number_of_strikes'], label="Number of strikes")

plt.xlabel("Months")
plt.ylabel("Number of lightening strikes")
plt.title("Number of lightening strikes in 2018 by months")
plt.legend()
plt.show()
```

