

FIZ1001 FIZIK-1 UYGULAMA-2

İki Boyutta Hareket

- 1) Yerden belli bir açı ile atılan bir topun 3 m yükseklikteki hızı $\vec{v} = 4\hat{i} + 3\hat{j}$ (m/s) ise,
 - a) Topun hızını ve atılış açısını,
 - b) Ulaştığı maksimum yüksekliği,
 - c) Ulaştığı yatay uzaklığı,
 - d) Uçuş süresini

bulunuz.

1) a)
$$\vec{v} = \vec{v} \times \hat{i} + \vec{v} \cdot \hat{j}$$
 $\vec{v} = \vec{u} \cdot \hat{i} + 3\hat{j} \quad (m \mid s)$
 $\vec{v} = \vec{u} \cdot \hat{i} + 3\hat{j} \quad (m \mid s)$
 $\vec{v} = \vec{u} \cdot \hat{i} + 3\hat{j} \quad (m \mid s)$
 $\vec{v} = \vec{v} \cdot \hat{i} + 2\vec{a} \times \quad (\alpha = -9)$
 $\vec{v} = \vec{v} \cdot \hat{i} + 2\vec{a} \times \quad (\alpha = -9)$
 $\vec{v} = \vec{v} \cdot \hat{i} + 2\vec{a} \times \quad (\alpha = -9)$
 $\vec{v} = \vec{v} \cdot \hat{i} + 2\vec{a} \times \quad (\alpha = -9)$
 $\vec{v} = \vec{v} \cdot \hat{i} + 2\vec{a} \times \quad (\alpha = -9)$
 $\vec{v} = \vec{v} \cdot \hat{i} + 2\vec{a} \times \quad (\alpha = -9)$
 $\vec{v} = \vec{v} \cdot \hat{i} + 2\vec{a} \times \quad (\alpha = -9)$
 $\vec{v} = \vec{v} \cdot \hat{i} + 2\vec{a} \times \quad (\alpha = -9)$
 $\vec{v} = \vec{v} \cdot \hat{i} + 2\vec{a} \times \quad (\alpha = -9)$
 $\vec{v} = \vec{v} \cdot \hat{i} + 2\vec{a} \times \quad (\alpha = -9)$
 $\vec{v} = \vec{v} \cdot \hat{i} + 2\vec{a} \times \quad (\alpha = -9)$
 $\vec{v} = \vec{v} \cdot \hat{i} + 2\vec{a} \times \quad (\alpha = -9)$
 $\vec{v} = \vec{v} \cdot \hat{i} + 2\vec{a} \times \quad (\alpha = -9)$
 $\vec{v} = \vec{v} \cdot \hat{i} + 2\vec{a} \times \quad (\alpha = -9)$
 $\vec{v} = \vec{v} \cdot \hat{i} + 2\vec{a} \times \quad (\alpha = -9)$
 $\vec{v} = \vec{v} \cdot \hat{i} + 2\vec{a} \times \quad (\alpha = -9)$
 $\vec{v} = \vec{v} \cdot \hat{i} + 2\vec{a} \times \quad (\alpha = -9)$
 $\vec{v} = \vec{v} \cdot \hat{i} + 2\vec{a} \times \quad (\alpha = -9)$
 $\vec{v} = \vec{v} \cdot \hat{i} + 2\vec{a} \times \quad (\alpha = -9)$
 $\vec{v} = \vec{v} \cdot \hat{i} + 2\vec{a} \times \quad (\alpha = -9)$
 $\vec{v} = \vec{v} \cdot \hat{i} + 2\vec{a} \times \quad (\alpha = -9)$
 $\vec{v} = \vec{v} \cdot \hat{i} + 2\vec{a} \times \quad (\alpha = -9)$
 $\vec{v} = \vec{v} \cdot \hat{i} + 2\vec{a} \times \quad (\alpha = -9)$
 $\vec{v} = \vec{v} \cdot \hat{i} + 2\vec{a} \times \quad (\alpha = -9)$
 $\vec{v} = \vec{v} \cdot \hat{i} + 2\vec{a} \times \quad (\alpha = -9)$
 $\vec{v} = \vec{v} \cdot \hat{i} + 2\vec{a} \times \quad (\alpha = -9)$
 $\vec{v} = \vec{v} \cdot \hat{i} + 2\vec{a} \times \quad (\alpha = -9)$
 $\vec{v} = \vec{v} \cdot \hat{i} + 2\vec{a} \times \quad (\alpha = -9)$
 $\vec{v} = \vec{v} \cdot \hat{i} + 2\vec{a} \times \quad (\alpha = -9)$
 $\vec{v} = \vec{v} \cdot \hat{i} + 2\vec{a} \times \quad (\alpha = -9)$
 $\vec{v} = \vec{v} \cdot \hat{i} + 2\vec{a} \times \quad (\alpha = -9)$
 $\vec{v} = \vec{v} \cdot \hat{i} + 2\vec{a} \times \quad (\alpha = -9)$
 $\vec{v} = \vec{v} \cdot \hat{i} + 2\vec{a} \times \quad (\alpha = -9)$
 $\vec{v} = \vec{v} \cdot \hat{i} + 2\vec{a} \times \quad (\alpha = -9)$
 $\vec{v} = \vec{v} \cdot \hat{i} + 2\vec{a} \times \quad (\alpha = -9)$
 $\vec{v} = \vec{v} \cdot \hat{i} + 2\vec{a} \times \quad (\alpha = -9)$
 $\vec{v} = \vec{v} \cdot \hat{i} + 2\vec{a} \times \quad (\alpha = -9)$
 $\vec{v} = \vec{v} \cdot \hat{i} + 2\vec{a} \times \quad (\alpha = -9)$
 $\vec{v} = \vec{v} \cdot \hat{i} + 2\vec{a} \times \quad (\alpha = -9)$
 $\vec{v} = \vec{v} \cdot \hat{i} + 2\vec{a} \times \quad (\alpha = -9)$
 $\vec{v} = \vec{v} \cdot \hat{i} + 2\vec{a} \times \quad (\alpha = -9)$
 $\vec{v} = \vec{v} \cdot \hat{i} + 2\vec{a} \times \quad (\alpha = -9)$
 $\vec{v} = \vec{v} \cdot \hat{i} + 2\vec{a} \times \quad (\alpha = -9)$
 $\vec{v} = \vec{v} \cdot \hat{i} + 2\vec{a} \times \quad (\alpha$

b)
$$h_{\text{max}} = \frac{v_{iy}^2}{29}$$

$$h_{\text{max}} = \frac{(8,2)^2}{2.9.8}$$

(c)
$$R = \frac{v_i^2 \sin 2\theta}{9}$$

$$R = \frac{(9.2)^2 \sin 128.4^\circ}{9.8}$$

- 2) 20 m yüksekliğindeki bir binanın çatısından, binanın tabanından 50 m uzaklıkta yerde duran bir hedefi vurmak için bir top atılacaktır. Atıcı, binanın hedefe yakın tarafında çatıda durmaktadır.
 - a) Yatay olarak atılan topun, hedefi vurabilmesi için ilk hızı ne kadar olmalıdır?
- b) Top, yatayla 45°'lik açı ile atılırsa, hedefi vurabilmesi için ilk hızı ne kadar olmalıdır?

$$X_{s-X_{\bar{i}}} = N_{ix}t + \frac{1}{3}\alpha_{x}t^{2}$$
 ($\alpha_{x=0}$)

t'yi (1) no.lu esitlikte yerine yazarsak;

$$v_i^2 \cos^2 45^\circ = \frac{4,9.2500}{70}$$
, $v_i^2 = 18,7 \text{ m/s}$

- 3) Bir helikopter 9.5 m sabit yükseklikte 6.2 m/s'lik sabit hızla bir doğru boyunca uçuyor. Helikoptere göre ilk hızı 12 m/s olan bir cisim yatay olarak helikopterin hareketine ters yönde atılıyor.
 - a) Cismin yere göre ilk hızını,
 - b) Cisim yere çarparken, helikopter ile cisim arasındaki yatay uzaklığı,
 - c) Cisim yere çarparken, hız vektörü ile yer arasındaki açıyı

$$\theta = 4an' \left(\frac{-13,7}{-518} \right) = 67,1^{\circ}$$

4) Yarıçapı 200 m olan bir viraja 108 km/saat hızla giren bir otomobil, hızını 150 m içerisinde düzgün olarak 72 km/saat'e düşürüyor. Otomobilin dönemece girdikten 100 m sonraki teğetsel, merkezcil (radyal) ve toplam ivme değerlerini bulunuz.

4)
$$V_1 = 408 \frac{km}{soat} = 408. \frac{40^3}{3600} = 30 \text{ m/s}$$
 $(r = 200 \text{ m})$
 $V_2 = 72 \frac{km}{saat} = 72. \frac{40^2}{3600} = 20 \text{ m/s}$
 $V_3^2 = V_1^2 + 2a(X_3 - X_1) (X_{10})$ (X_{10}) $(X_{10}$

5) Bir uçak güneye doğru, havaya göre 35 m/s hızla yol almaktadır. Uçağın bulunduğu bölgede yere göre 10 m/s hızında güneybatıya doğru esen bir hava akımı (rüzgar) vardır. Vektör diyagramı çizerek, uçağın yere göre hızını ve yönünü bulunuz.

5)
$$V_{UH}: U_{C}ag_{IN}$$
 havaya göre hizi

 $V_{HY}: Hava$ akımının (rüzgarın) yere göre hizi

 $V_{UY}: U_{C}ag_{IN}$ yere göre hizi

 $V_{UY}: U_{UY}: U_{UY}$ yi

 $V_{UY}: U_{UY}: U$

φ = 9,6° (güneybatıya doğru, güneyle 9,6° aqı yapacak zekilde hareket ediyor.)