What is claimed is:

5

10

- 1. A method for making a glass-ceramic, the method comprising heat-treating glass to convert at least a portion of the glass to crystalline ceramic and provide glass-ceramic, the glass comprising at least 35 percent by weight Al₂O₃, based on the total weight of the glass, REO, at least one of ZrO₂ or HfO₂, and at least one of Nb₂O₅ or Ta₂O₅, wherein the glass contains not more than 10 percent by weight collectively As₂O₃, B₂O₃, GeO₂, P₂O₅, SiO₂, TeO₂, and V₂O₅, based on the total weight of the glass, and wherein the at least one of Nb₂O₅ or Ta₂O₅ is present in an amount sufficient to increase the rate of at least one of crystalline ZrO₂ or crystalline HfO₂ formation from the glass as compared to a comparative glass-ceramic made by heat-treating, in the same manner, the same glass free of Nb₂O₅ and Ta₂O₅.
- The method according to claim 1, wherein the glass comprises ZrO₂, and
 wherein the at least one of Nb₂O₅ or Ta₂O₅ is present in an amount sufficient to increase the rate of crystalline ZrO₂ formation from the glass as compared to the comparative glass-ceramic.
- 3. The method according to claim 2, wherein the at least one of Nb₂O₅ or Ta₂O₅
 20 is present in an amount sufficient to increase the rate of crystalline ZrO₂ formation from the glass by at least a factor of 1.5 as compared to the comparative glass-ceramic.
 - 4. The method according to claim 2, wherein the at least one of Nb₂O₅ or Ta₂O₅ is present in an amount sufficient to increase the rate of crystalline ZrO₂ formation from the glass by at least a factor of 2 as compared to the comparative glass-ceramic.
 - 5. The method according to claim 2, wherein the at least one of Nb₂O₅ or Ta₂O₅ is present in an amount sufficient to increase the rate of crystalline ZrO₂ formation from the glass by at least a factor of 3 as compared to the comparative glass-ceramic.

- 6. The method according to claim 2, wherein the glass comprises at least 50 percent by weight Al₂O₃, based on the total weight of the glass.
- 7. The method according to claim 2, wherein the glass comprises at least 15 percent by weight ZrO₂, based on the total weight of the glass.
 - 8. The method according to claim 2, wherein the glass comprises at least 20 percent by weight ZrO₂, based on the total weight of the glass.
- 9. The method according to claim 2, wherein the glass comprises at least 5 percent by weight of at least one of Nb₂O₅ or Ta₂O₅, based on the total weight of the glass.

- 10. The method according to claim 9, wherein the REO is at least one of Gd_2O_3 , La_2O_3 , or Nd_2O_3 .
- 11. The method according to claim 1, wherein the glass comprises at least 50 percent by weight Al₂O₃, at least 30 percent by weight REO, and at least 10 percent by weight ZrO₂.
- 20 12. The method according to claim 1, wherein the REO is at least one of Gd_2O_3 , La_2O_3 , or Nd_2O_3 .
 - 13. The method according to claim 1, wherein the glass comprises at least 15 percent by weight ZrO₂, based on the total weight of the glass.
 - 14. The method according to claim 1, wherein the glass-ceramic has an average hardness of at least 15 GPa.
- 15. The method according to claim 1, further crushing the glass-ceramic to provide abrasive particles.

- 16. The method according to claim 15, further comprises grading the abrasive particles to provide a plurality of particles having a specified nominal grade.
- 17. The method according to claim 15 further comprises incorporating theabrasive particles into an abrasive article.
 - 18. The method according to claim 17, wherein the abrasive article is a bonded abrasive article, a non-woven abrasive article, or a coated abrasive article.
- 10 19. The method according to claim 1, wherein the glass-ceramic has an average hardness of at least 16 GPa.
 - 20. The method according to claim 1, wherein the glass-ceramic has an average hardness of at least 17 GPa.
 - 21. The method according to claim 1, wherein the glass-ceramic has an average hardness of at least 18 GPa.
- 22. The method according to claim 1, wherein the glass-ceramic has an average hardness of at least 19 GPa.

25

30

23. A method for making a glass-ceramic, the method comprising heat-treating ceramic comprising glass to convert at least a portion of the glass to crystalline ceramic and provide glass-ceramic, the glass comprising at least 35 percent by weight Al₂O₃, based on the total weight of the glass, REO, at least one of ZrO₂ or HfO₂, and at least one of Nb₂O₅ or Ta₂O₅, wherein the glass contains not more than 10 percent by weight collectively As₂O₃, B₂O₃, GeO₂, P₂O₅, SiO₂, TeO₂, and V₂O₅, based on the total weight of the glass, and wherein the at least one of Nb₂O₅ or Ta₂O₅ is present in an amount sufficient to increase the rate of at least one of crystalline ZrO₂ or crystalline HfO₂ formation from the glass as compared to a comparative glass-ceramic made by heat-treating, in the same manner, the same glass free of Nb₂O₅ and Ta₂O₅.

24. The method according to claim 23, wherein the glass comprises ZrO_2 , and wherein the at least one of Nb_2O_5 or Ta_2O_5 is present in an amount sufficient to increase the rate of crystalline ZrO_2 formation from the glass as compared to the comparative glass-ceramic.

5

10

25

30

25. The method according to claim 24, wherein the at least one of Nb_2O_5 or Ta_2O_5 is present in an amount sufficient to increase the rate of crystalline ZrO_2 formation from the glass by at least a factor of 2 as compared to the comparative glass-ceramic.

26. The method according to claim 24, wherein the REO is at least one of Gd_2O_3 , La_2O_3 , or Nd_2O_3 .

- 27. The method according to claim 24, further comprising crushing the glass-15 ceramic to provide abrasive particles.
 - 28. The method according to claim 27, further comprises grading the abrasive particles to provide a plurality of particles having a specified nominal grade.
- 20 29. A method for making an abrasive article, wherein the method according to claim 27 further comprises incorporating the abrasive particles into an abrasive article.
 - 30. A method for making abrasive particles, the method comprising heat-treating glass particles to convert at least a portion of the glass to crystalline ceramic and provide glass-ceramic and the abrasive particles, the glass comprising at least 35 percent by weight Al₂O₃, based on the total weight of the glass, REO, at least one of ZrO₂ or HfO₂, and at least one of Nb₂O₅ or Ta₂O₅, wherein the glass contains not more than 10 percent by weight collectively As₂O₃, B₂O₃, GeO₂, P₂O₅, SiO₂, TeO₂, and V₂O₅, based on the total weight of the glass, and wherein the at least one of Nb₂O₅ or Ta₂O₅ is present in an amount sufficient to increase the rate of at least one of crystalline ZrO₂ or crystalline HfO₂ formation from the

glass as compared to a comparative glass-ceramic made by heat-treating, in the same manner, the same glass free of Nb_2O_5 and Ta_2O_5 .

31. The method according to claim 30, wherein the glass comprises ZrO₂, and wherein the at least one of Nb₂O₅ or Ta₂O₅ is present in an amount sufficient to increase the rate of crystalline ZrO₂ formation from the glass as compared to the comparative glass-ceramic.

5

15

- 32. The method according to claim 31, wherein the at least one of Nb₂O₅ or Ta₂O₅
 10 is present in an amount sufficient to increase the rate of crystalline ZrO₂ formation from the glass by at least a factor of 1.5 as compared to the comparative glass-ceramic.
 - 33. The method according to claim 31, wherein the at least one of Nb₂O₅ or Ta₂O₅ is present in an amount sufficient to increase the rate of crystalline ZrO₂ formation from the glass by at least a factor of 2 as compared to the comparative glass-ceramic.
 - 34. The method according to claim 31, wherein the at least one of Nb₂O₅ or Ta₂O₅ is present in an amount sufficient to increase the rate of crystalline ZrO₂ formation from the glass by at least a factor of 3 as compared to the comparative glass-ceramic.
 - 35. The method according to claim 31, wherein the glass comprises at least 50 percent by weight Al₂O₃, based on the total weight of the glass.
- 36. The method according to claim 31, wherein the glass comprises at least 15 percent by weight ZrO₂, based on the total weight of the glass.
 - 37. The method according to claim 31, wherein the glass comprises at least 20 percent by weight ZrO₂, based on the total weight of the glass.
- 38. The method according to claim 31, wherein the glass comprises at least 5 percent by weight of at least one of Nb₂O₅ or Ta₂O₅, based on the total weight of the glass.

- 39. The method according to claim 38, wherein the REO is at least one of Gd_2O_3 , La_2O_3 , or Nd_2O_3 .
- 5 40. The method according to claim 31, wherein the glass comprises at least 50 percent by weight Al₂O₃, at least 30 percent by weight REO, and at least 10 percent by weight ZrO₂.
- 41. The method according to claim 31, wherein the REO is at least one of Gd_2O_3 , 10 La_2O_3 , or Nd_2O_3 .
 - 42. The method according to claim 31, wherein the glass comprises at least 15 percent by weight ZrO₂, based on the total weight of the glass.
- 15 43. The method according to claim 31, further comprises grading the abrasive particles to provide a plurality of particles having a specified nominal grade.
 - 44. The method according to claim 31 further comprises incorporating the abrasive particles into an abrasive article.

- 45. The method according to claim 44, wherein the abrasive article is a bonded abrasive article, a non-woven abrasive article, or a coated abrasive article.
- 46. The method according to claim 31, wherein the glass-ceramic has an average hardness of at least 16 GPa.
 - 47. The method according to claim 31, wherein the glass-ceramic has an average hardness of at least 17 GPa.
- The method according to claim 31, wherein the glass-ceramic has an average hardness of at least 18 GPa.

- 49. The method according to claim 31, wherein the glass-ceramic has an average hardness of at least 19 GPa.
- 50. A method for making abrasive particles, the method comprising heat-treating particles comprising glass to convert at least a portion of the glass to crystalline ceramic and provide glass-ceramic and the abrasive particles, the glass comprising at least 35 percent by weight Al₂O₃, based on the total weight of the glass, REO, at least one of ZrO₂ or HfO₂, and at least one of Nb₂O₅ or Ta₂O₅, wherein the glass contains not more than 10 percent by weight collectively As₂O₃, B₂O₃, GeO₂, P₂O₅, SiO₂, TeO₂, and V₂O₅, based on the total weight of the glass, and wherein the at least one of Nb₂O₅ or Ta₂O₅ is present in an amount sufficient to increase the rate of at least one of crystalline ZrO₂ or crystalline HfO₂ formation from the glass as compared to a comparative glass-ceramic made by heat-treating, in the same manner, the same glass free of Nb₂O₅ and Ta₂O₅.

51. The method according to claim 50, wherein the glass comprises ZrO_2 , and wherein the at least one of Nb_2O_5 or Ta_2O_5 is present in an amount sufficient to increase the rate of crystalline ZrO_2 formation from the glass as compared to the comparative glass-ceramic.

20

- 52. The method according to claim 51, wherein the at least one of Nb_2O_5 or Ta_2O_5 is present in an amount sufficient to increase the rate of crystalline ZrO_2 formation from the glass by at least a factor of 2 as compared to the comparative glass-ceramic.
- 25 53. The method according to claim 51, wherein the REO is at least one of Gd_2O_3 , La_2O_3 , or Nd_2O_3 .
 - 54. The method according to claim 51, further comprises grading the abrasive particles to provide a plurality of particles having a specified nominal grade.

55. A method for making an abrasive article, wherein the method according to claim 51 further comprises incorporating the ceramic abrasive particles into an abrasive article.