Hoja 2: Espacios Vectoriales

Matemáticas

- 1. A partir de los primeros ejemplos de espacios vectoriales vistos en clase, decidir si los siguientes conjuntos son espacios vectoriales sobre los cuerpos especificados:
 - (a) El conjunto de los polinomios con coeficientes en un cuerpo K, $\mathbb{P}_K[x]$, con la suma, sobre K.
 - (b) El conjunto de los polinomios de orden menor o igual que n con coeficientes en un cuerpo K, $\mathbb{P}^n_K[x]$, con la suma, sobre K.
 - (c) Los reales \mathbb{R} sobre \mathbb{Q} .
 - (d) Los complejos \mathbb{C} sobre \mathbb{R} , y sobre \mathbb{Q} .
 - (e) El conjunto $\{f: \mathbb{R} \to \mathbb{R}: f \text{ es una función continua}\}$ con la suma de funciones, sobre \mathbb{R} .
 - (f) El conjunto $\{f: \mathbb{R} \to \mathbb{R}: f \text{ es una función derivable}\}$ con la suma de funciones, sobre \mathbb{R} .
 - (g) El conjunto $\{A \in \mathbb{M}_n(\mathbb{R}) : \det(A) \neq 0\}$ con la suma, sobre \mathbb{R} .
 - (h) El conjunto $\{A \in \mathbb{M}_n(\mathbb{Q}) : \det(A) = 0\}$ con la suma, sobre \mathbb{Q} .
 - (i) El conjunto de las sucesiones de Cauchy de números reales.
 - (j) El conjunto $\{\alpha \sin(x) + \beta \cos(x) : \alpha, \beta \in \mathbb{R}\}\$ con la suma de funciones, sobre \mathbb{R} .
- **2.** Sea V un espacio vectorial sobre un cuerpo K.
 - (a) Demuestra que el elemento neutro de V es único. Lo denotaremos por $\vec{0}$.
 - (b) Demuestra que el opuesto de cada vector $v \in V$ es único. Lo denotaremos por -v.
 - (c) Si denotamos por 0 al elemento neutro de K respecto a la suma, demuestra que para todo $v \in V$ se tiene que $0 \cdot v = \vec{0}$.
 - (d) Si denotamos por 1 al elemento neutro de K respecto al producto, y por -1 a su opuesto respecto a la suma, demuestra que para todo $v \in V$ se tiene que $-1 \cdot v = -v$.
- 3. Sea V un espacio vectorial sobre K y sea $U \subset V$. Entonces U es un subespacio vectorial si y sólo si:
 - (a) $U \neq \emptyset$;
 - (b) Para todos $\alpha, \beta \in K$ y para todos $u, v \in U$, se tiene que $\alpha u + \beta v \in U$.
- **4.** Sea V un espacio vectorial sobre K y sea $\{W_i\}_{i\in I}$ una colección de subespacios vectoriales de V. Demuestra que

$$\bigcap_{i\in I} W_i$$

es de nuevo un subespacio vectorial de V.

- **5.** Decide de manera razonada si los siguientes conjuntos son subespacios vectoriales de \mathbb{R}^3 o no. Da una base cuando lo sean:
 - (a) $V_1 = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}$
 - (b) $V_2 = \{(x, y, z) \in \mathbb{R}^3 : x = y, 2y = z + 7\}$
 - (c) $V_3 = \{(x, y, z) \in \mathbb{R}^3 : x = y, 2y = z\}$

6. A la vista del ejercicio anterior da una condición necesaria y suficiente para que el conjunto de soluciones de un sistema lineal de ecuaciones de la forma

$$\begin{cases} a_{11}x_1 + \dots a_{1n}x_n = b_1 \\ \vdots \\ a_{m1}x_1 + \dots a_{mn}x_n = b_m \end{cases}$$

con $a_{ij} \in K$ sea un subespacio vectorial de K^n .

7. Demuestra si los siguientes conjuntos son subespacios vectoriales de $M_2(\mathbb{R})$ o no, y da una base cuando lo sean:

- (a) $V_1 = \{ A \in \mathbb{M}(\mathbb{R})_2 : A = A^t \}$
- (b) $V_2 = \{ A \in \mathbb{M}(\mathbb{R})_2 : A \text{ es diagonal } \}$
- (c) $V_3 = \{ A = (a_{ij}) \in \mathbb{M}_2(\mathbb{R}) : a_{11} = 1 \}$
- 8. Sea W el subespacio de \mathbb{R}^4 generado por (1,2,-5,3) y (2,-1,4,7). Se pide
 - (a) Determinar si el vector (0,0,-37,-3) pertenece a W.
 - (b) Determinar para qué valores de α y β el vector $(\alpha, \beta, -37, -3) \in W$.
- 9. Determina para qué valor de $\alpha \in \mathbb{R}$ los tres vectores de \mathbb{R}^4

$$v_1 = (3, 1, -4, 6), \quad v_2 = (1, 1, 4, 4), \quad v_3 = (1, 0, -4, \alpha)$$

son linealmente dependientes.

- **10.** Aprovechando los cálculos del ejercicio 1.ix) de la hoja 1 determina si los vectores $u_1 = (10, -4, 4, 10)$ y $u_2 = (-8, -2, 9, -15)$ pertenecen al subespacio vectorial $W \subset \mathbb{R}^4$ generado por $v_1 = (2, 1, 1, 4)$, $v_2 = (-4, -3, 0, -7)$ y $v_3 = (0, 0, -1, -1)$.
- **11.** Sea V un espacio vectorial sobre un cuerpo K. Demuestra que dos vectores v_1 y v_2 en $V \setminus \{\vec{0}\}$ son linealmente dependientes si y sólo si existe $k \in K$ tal que $v_2 = kv_1$.
- 12. Construye una base de \mathbb{R}^4 que contenga a los vectores (2, -2, 3, 1) y (-1, 4, -6, -2).
- 13. Demuestra que si V es un subespacio vectorial de \mathbb{R}^3 , entonces $V = \{\vec{0}\}$, o V es una recta que pasa por el origen, o V es un plano que pasa por el origen o $V = \mathbb{R}^3$.
- 14. Consideremos en \mathbb{R}^4 los subespacios vectoriales $W_1 = \langle v_1, v_2, v_3 \rangle$ y $W_2 = \langle v_4, v_5 \rangle$ con

$$v_1 = (1, -2, -1, 3), \ v_2 = (0, 2, 1, -1), \ v_3 = (-2, 6, 3, -7), \ v_4 = (1, 2, 1, 1), \ v_5 = (2, 0, -1, 1).$$

Halla una base y calcula la dimensión de $W_1, W_2, W_1 + W_2$ y $W_1 \cap W_2$. Comprueba que se verifica la fórmula de Grassmann.

- **15.** Sea $\mathbb{P}^3_{\mathbb{R}} = \{p(x) = a_0 + a_1x + a_2x^2 + a_3x^3 : a_0, a_1, a_2, a_3 \in \mathbb{R}\}.$
 - (a) Demuestra que $B = \{x^3 + 4x, 3x^2 + 4, 6x, 6\}$ es una base de \mathcal{P}_3 y calcular las coordenadas de $p(x) = 2 + 2x x^2 x^3$ en B.
 - (b) Sea $W = \{(a-b) + 2ax + bx^2 + (a+2b)x^3 : a, b \in \mathbb{R}\}$. Demuestra que W es un subespacio vectorial de \mathcal{P}_3 . Calcular una base de W y un subespacio complementario de W en \mathcal{P}_3 .
- **16.** Considera el \mathbb{R} -espacio vectorial de las funciones continuas $f: \mathbb{R} \to \mathbb{R}$. Demuestra que las funciones $f_1(x) = \cos x$ y $f_2(x) = \sin x$ son linealmente independientes.

17. Sea
$$\mathcal{B} = \left\{ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \right\} \subset M_2(\mathbb{R}).$$

(i) Demuestra que \mathcal{B} es una base de $M_2(\mathbb{R})$.

- (ii) Da las coordenadas de la matriz $\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$ en la base \mathcal{B} y en la base canónica de $M_2(\mathbb{R})$.
- 18. Sea K un cuerpo commutativo y V un espacio vectorial sobre K.
 - (i) Demuestra que existe un único homomorfismo de anillos $\phi: \mathbb{Z} \to K$. (Sugerencia: $\phi(1) = 1$).
 - (ii) Demostrar que $Ker\phi = (n)$, donde n es el entero no negativo más pequeño en $Ker\phi$. (Sugerencia: Utilizar el algoritmo de Euclides).
 - (iii) Demostrar que $\phi: \mathbb{Z}/(n) \to K$ induce un homomorfismo inyectivo $\overline{\phi}: \mathbb{Z}/Ker\phi \to K$.
- (iv) Demostrar que $\mathbb{Z}/(n)$ no tiene divisores de cero y deducir que o bien n=0 o bien n=p, con p primo. (Se dice que K es un **cuerpo de catracterística** p).
- (v) Supongamos que K es finito. Demostrar que entonces $p \neq 0$, K es un espacio vectorial sobre $\mathbb{Z}/(p)$ y $card(K) = p^n$.
- (vi) Comprobar que el anillo cociente $\mathbb{Z}/(2)[X]/(X^2+X+1)$ es un cuerpo de característica 2 con 2^2 elementos