Advanced Deep Learning Trainer: Prashant Nair

## facus of the cause

- O computer vision (openCV)
- 2 Revisiting Conv Nets
- 3 CNN anothitectures (Style Transfer,

Single Shot Delectors R-CNN

Object Detection)

- @ Image Segmentation
- 6) Revise Autoencoderss
- 3) Variational Autoencoders
- D Neural Style
- 8 GANS

Competer Vision &

Regenerative models

? Regenerative + CV

g ock

| 10 Parallel Compution 11 Deploying models (MLOps) | 2 Other aspects |
|---------------------------------------------------|-----------------|
| PROJECT                                           |                 |
| Revision on Deep Learning                         |                 |

@ what do the model calculate during the training phase / data convergence/ fitting?

-> Identify and discover Optimal weights.

Loss / Metact

-> Identify and discover Optimal bias.

@ Layers [ Input Layer, Hidden Layers, Output Layer] conse conse conse conse the keroso

O To cocarte an individual layer -> Donce

O To Link these Donse layers to form sequential is s(hidden off layer)

a NN

Model

3 Neurons

- which operation does a typical neuron in a perception or ANN setup does?

- List the activation of for the curpur LAYER in Regression where?

L. Linear (pass through)



- How to overcome Vanishing Graduent Problem ?
  - @ Narrow ANN andhitecture -> Decrease the hidden layer.

or i's +ve -> a

6 use Relu, leaky selu.

DEAD NEURON?

Leaky Relu

$$f(x) = max(0, x)$$
 $x = x = 0$ 

Pavametric Relu

 $x = x = 0$ 
 $x = x = 0$ 

Keggession: mean Squaded Ecoops 2) mean Absolute Ecosos Classification: Binary Classifica binary\_crossenterpy Multi-class classifh erude Label 21 categorical\_crossentropy Ve Se ٧i

| @ Optimizers in ANN                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| optimizers are Back propagation algo implementations that will calc. gradients and update weights and bias.  ( $\Delta w \in \Delta b$ )  ( $\Delta w \in \Delta b$ ) |
| $0 \longrightarrow \otimes Adam$                                                                                                                                      |
| (b) sgd (stochastic gradient descent)                                                                                                                                 |
| 3>© RMSBop                                                                                                                                                            |
| $ \bigcirc \longrightarrow \bigcirc $ Nadam                                                                                                                           |
| e Ada Delta                                                                                                                                                           |
| & Ada Max                                                                                                                                                             |
| f: Epoch: one full cycle of training.  (Forward Pass + Error calc + Back Prop)                                                                                        |
| g. Learning Rate: step size to add PENALTY in the grandients                                                                                                          |
| (Sw * Lr)                                                                                                                                                             |
| Good: find the sweet spot to ensure data is converged euccessfully.                                                                                                   |
| h. How to deal with overfitting in ANN?                                                                                                                               |
| @ Change the weights and bias initializers.  @ Glood Normal  @ Glood Uniform  @ He Normal  B He Uniform                                                               |

- 6 Use Regularization.
  - @ LI regularization
  - 1 L2 regularization
  - © LLL2 regularization
  - @ Propout.
- @ Add momentum in aptimizers.
- @ Batch Normalization
- @ Early Stopping
- (1) Try reducing the complexity of Newrol Network.
- 9 Add / wait for more data (i)



## Evaluation metrics for Supervised Learning

