Homework Assignment #5

Due date: Monday May 4, 2020

Problem 1:

Show that in general, any 2×2 matrix M can be represented in terms of the unit matrix, I, and the Pauli matrices, $\vec{\sigma}$, i.e.,

$$M = \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} = a_0 I + \vec{a} \cdot \vec{\sigma}$$

where the expansion coefficients $a_0 = Tr\{M\}$, $a_x = Tr\{M\sigma_x\}$, $a_y = Tr\{M\sigma_y\}$, and $a_z = Tr\{M\sigma_z\}$.

Problem 2:

Consider the quantum operator H whose matrix representation in the orthonormal basis $\{|u_1\rangle, |u_2\rangle\}$ writes:

$$H = \begin{pmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{pmatrix}$$

where H_{11} and H_{22} are real numbers and $H_{12} = H_{21}^*$. It is thus obvious that H is Hermitian.

1. Show that:

$$H = \frac{1}{2}(H_{11} + H_{22})I + \widetilde{K} \equiv \frac{1}{2}(H_{11} + H_{22})I + \frac{1}{2}(H_{11} - H_{22})K$$
 (1) where *I* is the identity operator, and the operators \widetilde{K} and *K* must be determined in terms of the matrix elements of *H*. Are the operators \widetilde{K} and *K* Hermitian?

- 2. A key result from the decomposition in Eq. (1) is that the operators \widetilde{K} , K and H all have the same eigenvectors $|\psi_{\pm}\rangle$. Let $\widetilde{\kappa}_{\pm}$, κ_{\pm} , E_{\pm} be the eigenvalues of operators \widetilde{K} , K, and H. Use Eq. (1) to establish the relation between E_{\pm} and κ_{\pm} , and the relation between E_{\pm} and $\widetilde{\kappa}_{\pm}$. Show that these relations allow for a change of the eigenvalue origin.
- 3. Directly solve the secular equations for the operators K and H, and determine the corresponding eigenvalues. Check that the relation between E_{\pm} and κ_{\pm} established in query 2) is correct.

- 4. Let us define the angles $0 \le \theta \le \pi$ and $0 \le \varphi \le 2\pi$ be the angles defined as: $\tan \theta = \frac{2|H_{21}|}{H_{11}-H_{22}}$ and $H_{21} = |H_{21}|e^{i\varphi}$, when $H_{11} H_{22} \ne 0$. Express the matrix K as well as the eigenvalues κ_{\pm} in terms of these angles.
- 5. Show that $E_{+} + E_{-} = Tr\{H\}$, and that $E_{+}E_{-} = Det\{H\}$.
- 6. Show that if *H* has a degenerate spectrum, then it is necessarily proportional to the identity operator.
- 7. Use the operator $K(\theta, \varphi)$ to calculate the normalized eigenvectors $|\psi_{\pm}\rangle$ in terms of these angles in the orthonormal basis $\{|u_1\rangle, |u_2\rangle\}$. You must find that the normalized eigenvectors $|\psi_{\pm}\rangle$ are collinear to the normalized eigenvectors $|\pm\rangle_u$ of the ½ spin operator \hat{S}_u , where \hat{u} is an arbitrary unit vector defined by these polar and azimuthal angles.
- 8. Show that $K(\theta = 0, \varphi = 0)$ is proportional to the z-component of the Pauli operator, σ_z . What are the corresponding eigenvalues and eigenvectors?
- 9. When $\theta = \pi/2$, the operator K is not finite and we must now use \widetilde{K} . Show that $\widetilde{K}_x \equiv \widetilde{K}(\theta = \pi/2, \varphi = 0)$ is proportional to the x-component of the Pauli operator, σ_x . What are the corresponding eigenvalues and eigenvectors?
- 10. Show that $\widetilde{K}_y \equiv \widetilde{K}(\theta = \pi/2, \varphi = \pi/2)$ is proportional to the y-component of the Pauli operator, σ_y . What are the corresponding eigenvalues and eigenvectors?
- 11. Calculate the commutator, $[\widetilde{K}_x, \widetilde{K}_y]$, and show that it is proportional to the z-component of the Pauli operator, σ_z .

Problem 3:

The spin operator \vec{S} of an electron is pointing in any direction and is related to the Pauli matrices as $\vec{S} \equiv S = \frac{\hbar}{2} \vec{\sigma}$. In the orthonormal basis $\{|+\rangle, |-\rangle\}$ for S_z :

- 1. Write down the matrix for S_z , S_x , S_y , and S_u . Are they Hermitian?
- 2. Determine the eigenvalues of each component for the spin operator.
- 3. Determine the eigenvectors of each component for the spin operator.
- 4. Show that $[S_x, S_y] = i\hbar S_z$, $[S_y, S_z] = i\hbar S_x$, $[S_z, S_x] = i\hbar S_y$.
- 5. Show that $[S^2, S] = 0$. In query 4), since S_x and S_y do not commute with their commutator S_z , one must never use the commutator formula: [A, F(B)] = [A, B]F'(B).

Problem 4:

Let us consider two Stern-Gerlach experiments where the first one prepares the atoms in a state and the second one measures a spin physical quantity. Here, the state of the $\frac{1}{2}$ spin system is prepared such that the spin is pointing down along \hat{u} in the x-z plane.

- 1. Immediately before measurement, what is the state $|\psi\rangle$ of the system in the basis of eigenvectors of \hat{S}_z .
- 2. What is the probability that a measurement of spin along the z-axis will find $-\hbar/2$? What is the state of the system immediately after the measurement?
- 3. What is the probability that a measurement of spin along the z-axis will find $+\hbar/2$? What is the state of the system immediately after the measurement?
- 4. What is the probability for spin down along the y-axis? What is the state of the system immediately after the measurement?
- 5. What is the probability for spin up along the x-axis? What is the state of the system immediately after the measurement?
- 6. What is the probability that a measurement of spin along the u-axis will find $-\hbar/2$?
- 7. What is the probability that a measurement of spin along the u-axis will find $+\hbar/2$?
- 8. Calculate the mean value $\langle \psi | S_z | \psi \rangle$ by two methods. First by using statistical analysis where the incident beam contains N silver atoms, and the direct calculation of the matrix element. How does this result compare with classical prediction?

Problem 5:

Consider a spin ½ particle placed in a magnetic field $\vec{B} = (B_x, 0, B_z) = \frac{1}{\sqrt{2}}(B_0, 0, B_0)$. In the orthonormal basis $\{|+\rangle, |-\rangle\}$ for S_z :

- 1. Calculate the matrix representing the Hamiltonian H of the system.
- 2. Calculate the eigenvalues and eigenvectors of H.
- 3. The system at time t = 0 is in the state $| \rangle$. What values can be found if the energy is measured, and with what probabilities?
- 4. Calculate the state vector $|\psi(t)\rangle$ at time t. At this instant, S_x is measured; what is the mean value of the results that can be obtained? Give a geometrical interpretation of your results.