

Prodius sad opet kroz sue korake izvoda (ali sad les $\frac{\gamma^2 \Pi + \gamma^2 x}{2} = \frac{\gamma^2 (\Pi + x)}{8 \pi d^2}$ (Fera sight-off): objatybya, referirajte se na dio A): © μπεος τομ × γ² (π+x)

P kvadra, me knale (1-A) × 4π R₀² T₀⁴ G' × $\frac{\tau^2(\pi + x)}{8\pi d^2}$ rad. cross tipla: 4 $\beta p = (r^2 \pi + r^2 \times + \times \pi) \cdot 3 \cdot \tau_p 4$ $\overline{1}_{8} = \left(\frac{(1-B)R_{0}^{2} \overline{1_{0}} \frac{(^{2}(\overline{\Pi}+X))}{2cl^{2}}}{\gamma^{2}\overline{\Pi} + \gamma^{2}X + X\overline{\Pi}}\right)^{\frac{1}{4}}$ $\boxed{X = \overline{\Pi} \quad \overline{\Pi} AX \times 1}$ $T_{B} = \begin{pmatrix} 0.7 \cdot (7.10^{5})^{2} \cdot 5200^{4} & \frac{634100^{2}(\pi_{1}+\pi_{1})}{2(32\cdot100^{2})^{2}} \\ \hline T_{B} = & \frac{0.7 \cdot (7.10^{5})^{2} \cdot 5200^{4} & \frac{6341000^{2}(\pi_{1}+\pi_{1})}{2(32\cdot100^{2})^{2}} \\ \hline T_{B} = & 215.5 \text{ K & 215 K} \\ \end{pmatrix} V_{4} = \frac{20000^{2}}{11000^{2}}$ TB = 215.5 K & 215 K -> Malo je malo

$$\frac{\overline{18}}{TA} = \frac{215}{260} = 0.8269$$

Što je više stakleničkih plinova u atmosferi, to se planet manje hladi. Što se planet manje hladi, to je topliji (očito). I tako se planet zagrijava i zagrijava... I u jednom trenutku s neba počne padati rastaljeni metal na tekuće tlo sumpora i lave. Vidi: Venera.

3 La ouy zadatak, iskoristit c'euro isti izvod iz

$$\frac{2adatka \ \Lambda}{TE} = \frac{1}{To(1-\Omega)^{1/4}} \left(\frac{Po}{2ad}\right)^{1/2}$$
 $\frac{TE}{E_{301}} = \frac{To \cdot kouro}{To_{301} \cdot kouro} = \frac{To}{0.3 \text{ To}}$
 $\frac{TE}{Tc_{901}} = \frac{1}{0.9}$
 $\frac{Te}{Tc_{901}} = \frac{1}{0.9}$

4. ZADATAK

Za misije u svemiru generalno imamo 3 izvora energije – solarna, baterije, atomska. Ako idemo na Neptun, baterije prekratko traju, a solarna energija na tako velioj udaljenosti od Sunca nije efikasna. Dakle, biram energiju nestabilnih atoma, to jest radioizotopni izvor (RTG).

5. ZADATAK

Zašto izotropna antena ne postoji?

- 1) Ne postoje savršen vodič ili savršen izolator
- 2) Struja oscilira i definira smjerove električnog i magnetskog polja pa sferno simetričnim poljem emitiranja ne može postojati
- 3) Impedancija je zeznuta stvat, ne postoji idealan RL

=)
$$g_{RX} = \frac{f_{RX} \cdot 4T}{\Pi^2} = 30481.13$$

JB == 48; !!

James James

Zemaljska stanica može komunicirati sa satelitima samo kada su oni u njenom području vidljivosti. LEO sateliti lete nisko i brzo, i imaju mali footprint, tako da bi ih statična stanica vrlo rijetko viđala i bilo bi poprilično teško komunicirati. Zbog toga trebamo korsititi pokretne stanice, kako bi one mogle pratiti satelit i time znatno povećati vrijeme vidljivosti.

8. ZADATAK

Geostacionarni sateliti se nalaze na lijepoj visini od 36 000 km jer ih svi zakoni fizike tamo čine geostacionarnima. Ophodno vrijeme je tada samo od sebe 24 sata i satelit je geostacionaran. Ako satelit dignemo na 50 000 km, on više nije geostacionaran sam od sebe, nego moramo koristiti nekakav pogon kako bismo ga mogli ubrzavati i kontrolirati mu orbitu da ne odleti negdje u svemir. Ukratko, satelit parkiran geostacionarno na 50 000 km uopće nije *parkiran*.

Ako je satelit geostacionaran, uvijek stoji oonad iste točke nad ekvatorom Zemlje, dakle ne ocrtava nikakvu krivulju.

9. ZADATAK

Glavni razlozi neefikasnosti poluvodičkih fotonaponskih ćelija su:

- 1) Nemogućnost iskorištenja radijacije crnog tijela ćelije, ona se pretvara u toplinu i čini oko 7% ukupne energije
- 2) Rekombinacija postavlja gornju granicu izbijanja elektrona za svaki materijal. Na primjer, kod silikona to smanjuje učinkovitost proizvodnje energije za još 10% u normalnim uvjetima
- 3) Spektralni gubitci. Fotoni dolaze u širokom spektru frekvencija i valnih duljina, i neće svi producirati energiju. Otprilike 19% fotona ne rezultira manje od 1.1 eV energije, što nije dovoljno za ovakve ćelije, a još 33% je na neiskoristivom spektru

Kad se sve to zbroji, poluvodičke fotonaponske ćelije imaju maksimalnu efikasnost od 31% po Shockley-Queisser limitu

10. ZADATAK

A DIO

Na dno ćemo staviti ćeliju 1 (1eV) jer ona ima najmanji napon, a na toj razini je potrebno absorbirati najmanje fotona.

B DIO

DODATAK ZA PREPISIVAČE:

Izvori iz kojih možete prepisati neke stvari po zadatcima:

- 1) https://www.astro.princeton.edu/~strauss/FRS113/writeup3/
- 2) https://climatekids.nasa.gov/greenhouse-effect/

https://www.bgs.ac.uk/discovering-geology/climate-change/how-does-the-greenhouse-effect-work/

https://www.esa.int/Science Exploration/Space Science/Venus Express/Greenhouse effects also on other planets

- 3) samo koristite 1
- 4) https://spaceplace.nasa.gov/what-powers-a-spacecraft/en/
- 6) nemam izvora van spike stvari i preza
- 7) https://en.wikipedia.org/wiki/Low Earth orbit
- 8) nemam ništa pametno, samo permutirajte odgovor
- 9) https://ph.qmul.ac.uk/sites/default/files/u75/Solar%20cells_environmental%20impact.pdf
- 10) nisam školovala, ovaj odgovor nije siguran