Theory of Languages and Automata

Chapter 4- Decidability

Sharif University of Technology

Decidable Languages

- Let
 - $A_{DFA} = \{\langle B, w \rangle | Bis a DFA that accepts input string w\}.$
- Theorem 4.1
 - ✓ A_{DFA} is decidable.

Decidable Languages (Proof Idea)

- We simply need to present a TM M that decides A_{DFA} .
- M= "On input $\langle B, w \rangle$, where B is a DFA and w is a string:
 - 1. Simulate *B* on input *w*.
 - 2. If the simulation ends in an accept state, *accept*. If it ends in a nonaccepting state, *reject*."

- Let $A_{DFA} = \{ \langle B, w \rangle | Bis a NFA that accepts input string w \}.$
- Theorem 4.2
 - \checkmark A_{DFA} is decidable.

Decidable Languages (Proof)

- We design TM N that decides A_{DFA} .
- On input $\langle B, w \rangle$, where B is a NFA and w is a string:
 - 1. Convert NFA *B* to an equivalent DFA *C*, using the procedure for this conversion given in Theorem 1.39.
 - 2. Run TM M from the Theorem 4.1 on input $\langle C, w \rangle$.
 - 3. If *M* accepts, *accept*; otherwise, *reject*."

Let

 $A_{REX} = \{\langle R, w \rangle | Ris a regular expression that generates string w \}.$

- Theorem 4.3
 - \checkmark A_{REX} is decidable.

Decidable Languages (Proof)

- The following TM P decides A_{REX} .
- P= "On input $\langle R, w \rangle$, where R is a regular expression and w is a string:
 - 1. Convert regular expression *R* to an equivalent NFA *A*, using the procedure for this conversion given in Theorem 1.54.
 - 2. Run TM Non input $\langle A, w \rangle$.
 - 3. If Naccepts, accept; in Nrejects, reject."

Let

$$E_{DFA} = \{ \langle A \rangle | A \text{ is a DFA and } L(A) = \emptyset \}.$$

- Theorem 4.3
 - \checkmark E_{DFA} is decidable.

- \circ The following TM T decides E_{DFA} :
- T = "On input $\langle A \rangle$ where A is a DFA:
 - 1. Mark the start state of A.
 - 2. Repeat until no new states get marked:
 - Mark any state has a transition coming into it from any state that is already marked.
 - 4. If no accept state is marked, *accept*; otherwise, *reject*."

- The following TM T decides A_{DFA}:
- T = "On input $\langle A \rangle$ where A is a DFA:
 - 1. Mark the start state of A.
 - 2. Repeat until no new states get marked:
 - 3. Mark any state has a transition coming into it from any state that is already marked.
 - 4. If no accept state is marked, *accept*; otherwise, *reject*."

Let:

$$EQ_{DFA} = \{\langle A, B \rangle | A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}.$$

• Theorem 4.5: EQ_{DFA} is decidable.

Proof

- Construct DFA C such that: $L(C) = \left(L(A) \cap \overline{L(B)}\right) \cup \left(\overline{L(A)} \cap L(B)\right).$
- F = "On input $\langle A, B \rangle$, where A and B are DFAs:
 - 1. Construct DFA C as described.
 - 2. Run TM T from Theorem 4.4 on input $\langle C \rangle$.
 - 3. If T accepts, accept. If T rejects, reject."

Let:

 $A_{CFG} = \{\langle G, w \rangle | G \text{ is a CFG that generates string } w\}.$

• Theorem 4.5: A_{CFG} is decidable.

Proof

- The TM S for A_{CFG} follows.
- S = "On input $\langle G, w \rangle$, where G is a CFG and w is a string:
 - 1. Convert G to an equivalent grammar in Chomsky normal form.
 - 2. List all derivations with 2n 1 steps, where n is the length of w, except if n = 0, then instead list all derivations with 1 step.
 - 3. If any of these derivations generate *w*, *accept*, if not, *reject*."

Let:

$$E_{CFG} = \{\langle G \rangle | G \text{ is a CFG and } L(G) = \emptyset \}.$$

• Theorem 4.5: E_{CFG} is decidable.

Proof

- \circ TM R decides E_{CFG} as follows:
- \circ R = "On input $\langle G \rangle$, where G is a CFG:
 - 1. Mark all terminal symbols in G.
 - 2. Repeat until no new variables get marked:
 - Mark any variable A where G has a rule $A \rightarrow U_1U_2...U_k$ and each symbol $U_1, ..., U_k$ has already been marked.
 - 4. If the start variable is not marked, *accept*; otherwise, *reject*."

• Theorem: Every context-free language is decidable.

PROOF

Let G be a CFG for A and design a TM M_G that decides A. We build a copy of G into M_G . It works as follows.

 M_G = "On input w:

- 1. Run TM S on input (G, w)
- 2. If this machine accepts, accept; if it rejects, reject."

Relationship Between Four Classes of Languages

Undecidable Languages

Let

$$A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}.$$

• Theorem 4.11: ATM is undecidable.

Proof

PROOF Let H be a decider for ATM. Then

$$H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w. \end{cases}$$

Define D as follows $D = \text{"On input } \langle M \rangle$, where M is a TM:

- **1.** Run H on input $\langle M, \langle M \rangle \rangle$.
- 2. Output the opposite of what H outputs; that is, if H accepts, reject and if H rejects, accept."

Then

$$D(\langle M \rangle) = \begin{cases} accept & \text{if } M \text{ does not accept } \langle M \rangle \\ reject & \text{if } M \text{ accepts } \langle M \rangle. \end{cases}$$

$$D(\langle D \rangle) = \begin{cases} accept & \text{if } D \text{ does not accept } \langle D \rangle \\ reject & \text{if } D \text{ accepts } \langle D \rangle. \end{cases}$$

So

No matter what D does, it is forced to do the opposite, which is obviously a contradiction. Thus neither TM D nor TM H can exist.

Turing-Unrecognizable Languages

DEFINITION A language is co-Turing-recognizable if it is the complement of a Turing-recognizable language.

- THEOREM: A language is decidable if it is Turing-recognizable and co-Turing-recognizable.
- **PROOF** We have two directions to prove. First, if A is decidable, then both A and its complement A^C are Turing-recognizable.

For the other direction, let M_1 be the recognizer for A and M_2 be the recognizer for A^C . The following Turing Machine M is a decider for A.

M ="On input w:

- 1. Run both M_1 and M_2 on input w in parallel.
- 2. If M₁ accepts, accept, if M₂ accepts, reject."

Theorem

 $\overline{A_{TM}}$ is not Turing-recognizable.

PROOF We know that ATM is Turing-recognizable. If $\overline{A_{TM}}$ also were Turing-recognizable, ATM would be decidable. Theorem 4.11 tells us that ATM is <u>not</u> decidable, so $\overline{A_{TM}}$ must not be Turing-recognizable.