The basics SciPy The numpy package The scipy package Plotting with matplotlib Symbolic computing with Sympy

Introduction to python 3

Kevin Sturm and Winfried Auzinger

Outline

- 1 The basics
- 2 SciPy
- The numpy package
- The scipy package
- Plotting with matplotlib
- 6 Symbolic computing with Sympy

The basics SciPy The numpy package The scipy package Plotting with matplotlib Symbolic computing with Sympy

The basics

Python references

- Good python book Python 3 (2017 edition) by Johannes Ernesti and Peter Kaiser
- online documentation: https://docs.python.org/3.6/

Historical facts

- developed in the nineties by Guido van Rossum in Amsterdam at Centrum voor Wiskunde en Informatica
- the name "python" comes from the comedy "Monty Python"
- python version 3.0 was released in December 2008
- one of the most popular programming languages
- designed for functional and object oriented programming
- programs that partially use python:
 - ⋆ Google Mail
 - ⋆ Google Maps
 - * YouTube
 - ⋆ Dropbox
 - * reddit
 - * Battlefield 2
 - * BitTorrent

Why python?

What does python offer?

- Interactive
- Interpreted
- Modular
- Object-oriented
- Portable
- High level
- Extensible in C++ & C

Why is python good for scientifc computing?

- open source / free
- many libraries, e.g.,
- scientific computing: numpy, scipy
- symbolic math: sympy
- plotting: matplotlib
- excellent PDE solver software: ngsolve, FEniCs, Firedrake, ...

How to start python?

- Python can either be used interactively: simply type "python3" or "ipython3" (to start IPython) into the shell
- we can also execute python code written in a file "file.py" by typing "python3 file.py" into the shell

Let's start with a hello world example:

Listing 1: hello_world.py

```
""" This is our first program """

print("Hello world!")
```

Float

declaration of floats

987.27

division

>>> x/y

434.92070484581495

floor division

addition and subtraction

>>>
$$x = 987.27$$

>>>
$$y = 2.0$$

985.27

powers

974702.0529

>>> x**3
962294095.766583

>>> x**0.5 # square root

31.4208529483208

multiplication

Integers

calculator

>>> 1+3

4

>>> 3-10

-7

>>> 30*3

90

declaration of integer

>>> x = 987

>>> x

987

>>> z = int(10.0)

>>> z 10

multiplication and division

>>> y = 2 >>> x/y

493.5

>>> 5/3

floor division

>>> x//y

conversion of float to integer

>>> x = 1.4 >>> y = int(x) >>> y

/// y

>>> x + 3

4.4

• remember: float + int = float

Complex number

```
imaginary unit in python is j
  recall (a + ib) * (c + id) := ac - db + i(bc + ad)

>>> z = 1.0 + 5j  # complex number with real 1 and imag 5

>>> z.conjugate()  # conjugate complex number
(1-5j)

>>> z = complex(1,5)  # equivalent to 1+5j

>>> z.imag  # return imaginary part
5.0

>>> z.real  # return real part
1.0
```

Complex number (continued)

```
multiplication of complex numbers
```

```
>>> z1 = 1 + 4j
>>> z2 = 2 - 4j

>>> z1*z2  # multiply z1 and z2
(18+4j)

>>> # Let us verify this is correct

>>> a, b, c, d = z1.real, z1.imag, z2.real, z2.imag
>>> a*c - b*d
18.0
>>> b*c + a*d
4.0
```

Strings

101

```
declaration of strings
>>> a = "hello" # assign hello
>>> a
'hello'
                                      conversion of float and integer to string
addition of strings
                                      >>> x = 987.27
>>> a+a
                                      >>> s1 = str(x)
'hellohello'
                                      >>> s1
>>> a+" cool"
                                       1987.271
'hello cool'
                                      >>> n = 10
                                      >>> s2 = str(n)
referencing letters
                                      >>> s2
                                       1101
>>> fourth = a[3] # 4th letter
>>> fourth
'1'
>>> last = a[-1] # last letter
>>> last
```

Strings (continued)

```
accessing letters
lower and upper case
>>> a = "hello" # assign hello
                                     >>> s = "This is a long sentence!"
>>> a.upper()
                                     >>> s[::3] # every third letter
'HELLO'
                                      'Tss nstc'
                                     >>> g = \|z\|
>>> a = "HELLO"
                                     >>> 10*s
                                      1 ZZZZZZZZZZ
>>> a.lower()
'hello'
>>> a
                                     Splitting and concatenation
'HELLO'
                                     >>> name = "This is a long sentence."
                                     >>> name.split()
>>> a = "Hello"
                                      ['This', 'is', 'a', 'long', 'sentence.']
>>> a.swapcase()
                                     >>> name
'hELLO'
                                      'This is a long sentence.'
>>> a
'Hello'
inserting strings
>>> 'Insert here: {}'.format('Inserted string')
'Insert here: Inserted string'
```

Lists

declaration of list

```
>>> 1 = [] # empty list
>>> 1
[]
>>> 1 = [1, 2, 3] # integers list
>>> 1
[1, 2, 3]
>>> 1 = [1.0, 3.0, 3,0] # float list
```

lists can contain anything

```
>>> 11 = [1,2,3]

>>> 12 = ["hello", [], "new"]

>>> 1 = [11, 12]

>>> 1

[[1, 2, 3], ['hello', [], 'new']]
```

other ways to generate lists

The last command is similar to the mathematical definition $\{k: k=0,1,2,3,4\}$. addition of lists

multiplication of lists is not supported!!

More on lists

>>> 1 The *list* class has the following methods: $\begin{bmatrix} 1, & 2, & 3, & 4, & 4 \end{bmatrix}$

- append
- clear
- сору
- count
- extend
- index
- insert
- pop
- remove
- reverse
- sort

>>> 1 = [1, 2, 3, 4, 4]

>>> # the : operation is called slicing

Tuple

- Tuple are essentially uneditable lists. We use round parenthesis.
- referencing possible, but no assignment
- to be used when list should not be modified

declaration of list

```
>>> 1 = () # empty tuple
>>> 1
()
>>> 1 = (1, 2, 3) # tuple of integers
>>> 1
(1, 2, 3)
>>> 1 = tuple([1.0, 3.0, 3,0]) # conversion of list to tuple
>>> 1
(1.0, 3.0, 3, 0)
```

adding tuples

```
>>> 1+1
(1.0, 3.0, 3, 0, 1.0, 3.0, 3, 0)
>>> 4*1
```

Bool and logical operators

```
bool True or False
>>> t = True
>>> t.
True
>>> f = False
>>> f
False
>>> f == t
False
"and", "or", and "not
>>> t. and f
False
>>> t. or f
True
>>> not f == t
True
```

Possibilities for "or":

×	у	x or y
True	True	True
True	False	True
False	True	True
False	False	False

Possibilities for "and":

×	у	x and y
True	True	True
True	False	False
False	True	False
False	False	False

The basics
SciPy
The numpy package
The scipy package
Plotting with matplotlib
Symbolic computing with Sympy

If-else

simple if-else statement

Listing 2: if_else.py

```
if condition:
command

else:
another command
```

When we have more than one condition we use elif:

Listing 3: if_else2.py

```
if condition1:
    first command
elif condition2:
    second command
else:
    third command
```

If-else example

Listing 4: if_else_ex.py

```
if x == 1:
    print("x has value 1")
elif x == 2:
    print("x has value 2")
```

Listing 5: if_else_ex2.py

```
if x == 1:
    print("x has value 1")
    else:
    print("x has another value")
```

for loop

Listing 6: for_loop.py

```
for n in range(10):
    print(n)
```

- Here *n* ranges from 0 to 9 and is printed after each loop.
- general syntax is range(start, stop, steps)
- start and steps are optional

Listing 7: for_loop2.py

for loop (continued)

• use enumerate to count the element in the loop

Listing 8: for_loop_en.py

While loop

The syntax of a python while loop is as follows.

```
while statement:
do stuff
```

- "do stuff" is executed as long as statement is true.
- notice again the indention!
- use break to leave a while loop
- use continue to go to the next loop

Listing 9: while_loop.py

```
counter = 10

while counter > 0:
    print("counter is", counter)
    counter -= 1
```

Functions

Let's have a look at an example function.

Listing 10: func.py

```
def my_func(x):
    x = x + 1.0
    return x
```

- indention in python replaces brackets!!!
- a function always starts with def
- a return is not mandatory
- without return the function returns None.

Functions (continued)

• anonymous functions can be defined using lambda keyword

```
>>> f = lambda x: x**2 # define lambda function f
>>> f(2)
4
a more complicated example
>>> f = lambda x: x**2 if x < 0 else x**3
>>> f(2)
8
```

Listing 11: lambda_func.py

```
def f(x):
    if x < 0:
        return x**2
    else:
        return x**3</pre>
```

Functions (optional arguments)

• It is possible to give functions optional arguments.

Listing 12: func_opt.py

```
def f(x, y=None):

    if y == None:
        return x**2
    else:
        return x**2 + y**2
    print(f(1))
    print(f(1,2))
```

Dictionaries

• make a dictionary with {} and : to signify a key and a value

```
>>> value1 = 1.0
>>> value2 = 2.0
>>> my_dict = {'key1':value1,'key2':value2}
>>> print(my_dict)
{'key1': 1.0, 'key2': 2.0}
>>> my_dict['key1'] # access value1
1.0
>>> 'key2' in my_dict
True
```

Dictionaries (continued)

Accessing the values and the keys

```
>>> # Make a dictionary with {} and : to signify a key and a value
>>> value1 = 1.0
>>> value2 = 2.0
>>> my_dict = {'key1':value1,'key2':value2}

>>> print(my_dict.values()) # return values of dictionary
dict_values([1.0, 2.0])

>>> print(my_dict.items()) # return items
dict_items([('key1', 1.0), ('key2', 2.0)])

>>> print(my_dict.keys()) # return keys
dict_keys(['key1', 'key2'])
```

Sets

 sets are unordered lists declaration of sets

Sets (continued)

```
alternative definition
>>> S1 = \{2,3.4.5\}
>>> S2 = \{1.2.3.4\}
>>> S1.intersection(S2)
\{2, 3, 4\}
>>> S2.union(S1)
{1, 2, 3, 4, 5}
>>> S1.difference(S2)
{5}
```

```
union \cup and subtraction \setminus of sets
>>> S1 = set([1,2,3])
>>> S2 = set([2,3,4])
>>> S1 - S2 # S1/S2
{1}
>>> S2 - S1 # S2/S1
{4}
>>> S1 | S2 # union of S1 and S2
{1, 2, 3, 4}
adding and deleting elements
>>> S1.add(10) # add 10 to list
>>> S1
{10, 1, 2, 3}
>>> S1.discard(10) # remove element 10
>>> S1
{1, 2, 3}
```

Python key words

- We already know a few python key words.
- The keywords are part of the python programming language.
- you cannot use these names for variables or functions

and	def	finally	in	or	while
as	del	for	is	pass	with
assert	elif	from	lambda	raise	yield
break	else	global	None	return	
class	except	if	nonlocal	True	
continue	False	import	not	trv	

Figure: List of python keywords

Importing modules

- import a module with command import module_name
- a function func in module_name can be accessed by module_name.func
- including with different name use import module_name as mn
- import specific function: from module_name import func
- import everything with from module_name import *

>>> import math # import math module and use name "math"

Math modul

Let us consider as an example the math package.

```
>>> math.pi
3.141592653589793
>>> del(math) # remove math package
>>> import math as m # import math module with name "m"
>>> m.pi
3.141592653589793
>>> del(m)
>>> from math import pi # import constant pi from math
>>> pi
3.141592653589793
>>> from math import pi as pipi # import constant pi from math with name "pipi"
>>> pipi
3.141592653589793
```

Immutable vs mutable datatypes

- Python distinguishes two datatypes: <u>mutable</u> and <u>immutable</u>.
- immutable: float, int, string, tuple
- mutable: set, list, dict

The build-in function id(variable) shows the unique identity of a python object.

```
>>> s1 = "CompMath"
>>> s2 = "CompMath"

>>> id(s1)
140017699196080
>>> id(s2)
140017699196080

>>> s1 is s2 # check if s1 is s2
True

>>> s1 == s2 # check if s1 has same values as s2
True
```

Immutable vs mutable datatypes (continued)

```
Let us now check lists.
```

```
>>> 11 = [0.1, "CompMath"]
>>> 12 = [0.1, "CompMath"]
>>> id(11)
140017702123272
>>> id(12)
140017702152648

>>> 11 is 12 # check if l1 is l2
False
>>> 11 == 12 # check if l1 has same values as l2
True
```

So both lists are different, but have exactly the same values.

Immutable vs mutable datatypes (continued)

```
>>> 11 = [0.1, "CompMath"]
>>> 12 = 11
>>> 11 is 12 # check if s1 is s2
True
>>> 11 == 12 # check if s1 has same values as s2
True
>>> id(11)
140017702570248
>>> id(12)
140017702570248
>>> 11[0] = 0.0
>>> 11
[0.0, 'CompMath']
>>> 12
[0.0, 'CompMath']
```

Immutable vs mutable datatypes (continued)

```
So how can we copy a list?
>>> 11 = [0.1, "CompMath"]
>>> 12 = 11[:] # this generates a copy of l1

>>> 11 is 12 # check if s1 is s2
False
>>> 11 == 12 # check if s1 has same values as s2
True

>>> id(11)
140017702152648
>>> id(12)
140017702123272
```

Immutable vs mutable datatypes (continued)

 if list elements are mutable itself the previous copying does not work as one might expect

```
>>> change = [0, 0, 0]
>>> 11 = [1, 2, change]
>>> 12 = 11[:] # change is not copied here
In this case one can use deepcopy of the module copy.
>>> change = [0, 0, 0]
>>> 11 = [1, 2, change]
>>> import copy
>>> 12 = copy.deepcopy(11)
```

a is b vs a==b

The way python 3 is implemented the integer numbers [-5, 256] are cached.
 For integers in this range python only returns a reference to the same element.

```
>>> a = 1
                                    >>> c = 1000
>>> b = 1
                                    >>> d = 1000
>>> id(a)
                                    >>> id(c)
94324142568192
                                    140017702160560
>>> id(b)
                                    >>> id(d)
94324142568192
                                    140017702161520
>>> a is b ## a and b same
                                    >>> c is d ## two different references
                                    False
True
>>> a == b
                                    >>> c == d
True
                                    True
```

Local vs global variables

How to figure our which variables are defined so far?

- dir() list defined variables in scope
- globals() dict of global variables
- locals() dict of local variables in scope (including values)

Local vs global variables - example

Listing 13: dirs.py

```
b = 0.
2
   def f(x):
       a = 0.0
4
5
       print("local variables in f", locals())
6
       print("local variables f", dir())
8
       return x
9
10
   print("local variables in current scope", locals())
11
12
   print(f(0.1))
13
```

Classes

2

Listing 14: class_ex.py

```
class simple:
```

- keyword class defines a class with name simple
- keyword pass means that the class simple does nothing

Classes

Listing 15: class_ex2.py

```
class simple_two:
    a = 0.1
    s = "hello"

t = simple_two() # define class instance

print(t.a) # print variable a
```

- keyword class defines a class with name simple
- keyword pass means that the class simple does nothing

Classes - constructor

Listing 16: class_construct.py

- a class constructor is defined by __init__, which is called upon initialisation of the class
- \bullet the class test has an optimal argument a, which is by default 0.0

Classes - methods

Listing 17: class_method.py

```
class test:

def __init__(self):
    print("This is the constructor.")

def func(self):
    print("This is the func.")

C = test() # create instance C
C.func() # call func()
```

- the first argument of a method (here func(self)) must be self
- function is accessed via C.func()

Classes - methods

Listing 18: class_method2.py

```
class test:

def __init__(self):
    print("This is the constructor.")

def func2(self, b):
    print("This is func2 with b = {}".format(b))

C = test()
C.func2(0.3) # call func2(0.3)
```

• the first argument of a method (here func(self)) must be self (see next slide)

What is self?

- self is basically a reference to the class instance
- the name does not have to be "self". but it is recommended
- the first argument of a method in a class is always self

Listing 19: self.py

```
class test:
       def __init__(self):
3
           print("This is the constructor.")
4
       def we_call_self(self):
6
           print("This is self", self)
8
   C = test()
   C.we_call_self()
10
      *+ ("This is C"
```

Inheriting classes

As in C++ we can inherit classes. The basic syntax is as follows:

Inheriting classes: example

Listing 20: inherit.py

```
class Base_Class:

def f(self, x):
    return x

class Derived_Class(Base_Class):

def g(self, x, y):
    return x + y
```

- Base_Class() contains the functions f(x)
- Derived_Class extends Base_Class() by g(x, y)

Reading files

```
• we can read a file with open("filename", 'r')
```

We now want to read the file

Listing 21: readme.txt

```
This is CompMath.

We want to read this file.
```

```
>>> file = open("code/code_lec2/readme.txt", 'r')
>>> print(file.readlines())
['This is CompMath.\n', '\n', 'We want to read this file.\n']
>>> file.close()
```

Writing to files

```
• we can write to a file with open("filename", 'w')
```

• if "filename" is not there it will be created

```
file = open("code/code_lec2/writeme.txt", 'w+')
file.write("We write this into writeme.txt")
file.close()
```

Further options of ()

The function open has the following options. (Taken from help(open)).

- 'r' open for reading (default)
- 'w' open for writing, truncating the file first
- 'x' create a new file and open it for writing
- 'a' open for writing, appending to the end of the file if it exists
- 'b' binary mode
- 't' text mode (default)
- '+' open a disk file for updating (reading and writing)
- 'U' universal newline mode (deprecated)

Reading and writing lines

Now suppose we want to add text to the beginning of the file prepend.txt

```
file = open("prepend.txt", 'a+') # open file prepend.txt
file.seek(0) # start at beginning of file
s = ["This text should go at the beginning."]
file.writelines(s)
file.close()
```

Doc-Strings

What is a doc string?

 doc-string is convenient way do describe document modules, functions, classes, and methods.

How do we define a doc string?

• a doc-string has the syntax """ documentation here """

How do we use a doc string?

• The doc string can be accessed with .__doc__.

Doc-String: example

Listing 22: doc_string.py

```
""" This is a doc string.
1
2
   def f(x, y = 0.0):
3
       11 11 11
4
       This function adds numbers x and y.
5
       The variable y is optional. Default is y = 0.0
6
       11 11 11
7
       return x + y
8
9
   #print("call doc string with f.__doc__:", f.__doc__)
10
   print("alternatively use help(f):", help(f))
```

Decorators

The basic decorator code structure is as follows:

```
def decor(func):
    def inner():
        func()
    return inner
Usage:
dec = decor(func)
```

- decor is a wrapper function essentially a function that returns a function
- the decorator gets as argument a function (func()) and returns another function (inner())
- the "actual" coding happens inside the inner function

Decorators - Example 1

Listing 23: decorator_.py

```
from math import exp

def f(x, y):
    return exp(x*y) + y

def deco(func):
    y = 0.0 # define value for y
    def f1(x):
    return func(x, y)
    return f1
```

Decorators - Example 2

Listing 24: decorator2_.py

```
from math import exp
   def f(x, y):
       return exp(x*y) + y
4
5
   def deco(func, y): # decorator has y as argument
6
       def f1(x):
           return func(x, y)
       return f1
9
   de = deco(f, 5)
12
   print(de(0.1))
13
```

Decorators - Example 3

Listing 25: decorator3_.py

```
from math import sin, cos

def func_comp(fun1, fun2):
    def f1(x):
        return fun1(fun2(x))
    return f1

de = func_comp(cos, sin)

print(de(0.1))
```

Suppose we want to implement the factorial n!. A loop approach would be as follows:

Listing 26: factorial_loop.py

```
def fac(n):
    val = 1
    for k in range(1, n+1):
        val = val*k

    return val

print(fac(10))
```

As second approach without loops is

Listing 27: factorial_loop_free.py

```
def fac(n):
    if n == 1:
        return 1
    else:
        return n*fac(n-1) ## function fac called with n-1

print(fac(10))
```

using second approach avoid calling function multiple times!! Consider

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{1}{x_n} \right).$$

Listing 28: babylon_bad.py

```
def babylon(n):
    x0 = 10
    if n == 1:
        return x0
else:
        return (1/2)*(babylon(n-1) + 2/babylon(n-1))
```

problem: if a_n is number of function calls, then $a_n = 2a_{n-1}$ and hence $a_n = 2^n$ function calls are need. In total to compute recursion at stage n we need $\sum_{n=0}^{n} a_n = 2^{n+1} - 1$.

using second approach avoid calling function multiple times!! Consider

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{1}{x_n} \right).$$

Listing 29: babylon_good.py

```
def babylon(n):
      x0 = 10
      if n == 1:
3
          return x0
      else:
5
          xn = babylon(n-1)
6
          return (1/2)*(xn + 2/xn)
7
```

better: here we have $a_n = a_{n-1}$, so $a_n = a_0 = 1$ and hence in total $\sum_{\ell=0}^n a_\ell = n+1$.

*args and * * kwargs

- sometimes the number of arguments a function gets is unknown. Then we can
 use *arg and **kwargs.
- kwargs keyword arguments; args normal arguments
- The actual names args and kwargs are irrelevant, we could also use *va, only the star * matters; same for kwargs.

Basic syntax is as follows:

```
def f(farg, *args, **kwargs):
    # do something with args, farg and kwargs
```

- inside the function f args will be a tuple and kwargs a dictionary.
- the order of farg, args and kwargs matters: positional argument follows keyword argument

*args- example 1

Listing 30: args_ex1.py

```
def f(*args):
    print(type(args))
    print(args)

f(1,2,3)
f([1,],3,4,'hello')
```

*args- example 2

- To illustrate *args, we want implement the polynomial $p(x) = a_n x^n + \cdots + a_1 x + a_0$.
- The number n of coefficients $a_0, \ldots, a_n \in \mathbf{R}$ is variable; hence we can define a python function $\mathtt{polynom}(\mathtt{x}, \mathtt{*args})$.

*args- example 2

Listing 31: args_ex2.py

```
def polynom(x, *args):
       n = len(args)
3
       val = 0.0
4
5
       print(type(args))
6
       for k in range(n):
           val += args[k]*x**k
8
9
       return val
   a = (1, 2, 3, 4)
12
   print(polynom(0.1, *a))
13
   print(polynom(0.1, 1
```

*kwargs - example 1

With kwargs we can give a function an arbitrary number of optional keyword arguments.

Listing 32: kwargs_ex1.py

```
def f(**kwargs):
    print(type(kwargs))
    print(kwargs)

f(a=1, b=2, c=3)
d = {'a':1, 'b':1, 'c':1}
f(**d)
```

Measuring time - in ipython shell

- in the ipython shell one can use time to measure the time a function call takes
- usage: %time sin(1) to find the time it took to eval sin at 1.
- to get more accurate average use %timeit which runs 1000000 loops

Measuring time

• to measure time of code segments we can use the time module

Listing 33: measuring_time.py

```
import time # time module
2
   def tic(): # start measuring time
      global start
4
      start = time.time()
6
   def toc(): # end measuring time
7
       if 'start' in globals():
8
          print("time: {}.".format(str(time.time()-start)))
      else:
10
          print("toc(): start time not set")
```

Measuring time (continued)

Let us now use the functions tic and toc to measure for instance the time to evaluate \sin and \cos .

Listing 34: measuring_time.py

```
from measure_time import tic, toc
from math import sin, cos

tic()
sin(1.0)
cos(1.0)
toc()
```

What is time time()

- The function time.time() return time since epoch in second.
- For Unix system, January 1, 1970, 00:00:00 at UTC is epoch.

We test this:

```
>>> import time
>>> time.time()  # epoch time in second
1556973720.1662114
>>> time.time()/(60*60*24*365.25)  # convert in years
49.33751996876516
>>> T = time.time()/(60*60*24*365.25)
>>> 2019 - T
1969.6624800312309
```

Measuring time of function evals

- we can now combine our knowledge of decorators, *args and **kwargs and the time measurement to write a function which measures the execution time of a function.
- rather than putting tic and toc before and after a function in the code, we want to have a function calculate_time(func) which measures the execution of func.

Measuring time of function evals - example 1

Listing 35: measuring_time.py

```
import time
   def calculate_time(func):
4
       def inner1(*args, **kwargs):
5
6
           begin = time.time()
          func(*args, **kwargs)
          end = time.time()
9
          print("Total time taken in : ", func.__name__, end
               - begin)
12
       return inner1
```

Measuring time of function evals - example 1

Listing 36: measuring_time2.py

```
from measure_time_func import calculate_time
import math

# test how long it takes to eval sin
SIN = calculate_time(math.sin)
SIN(10)
```

Call by reference vs. call by value

- function calls in python are call by reference if the object that is passed is mutable
- for immutable objects (e.g., float, tuple, int) only a copy is passed

Call by value

Listing 37: func_call_by_ref.py

```
1 = [1,2]
   print('id', id(1)) # print identity of 1
   print('l', 1, '\n') # print list 1
4
   def add(l_{-}):
      1 += [1]
6
7
   add(1) # call add()
9
   print('id', id(1))
10
   print('1', 1)
```

Call by reference

Listing 38: func_call_by_val.py

```
a = 1
print('id', id(a))
print('a', a)

def add(a):
    a += 1

print('id', id(a))
print('id', id(a))
print('a', a)
```

Evaluating functions at multiple values

a+=1 vs. a = a+1

- for mutable objects a += b returns the same reference of a
- for mutable objects a = a + b return a new object a

The basics
SciPy
The numpy package
The scipy package
Plotting with matplotlib
Symbolic computing with Sympy

SciPy

Online resources

• SciPy is collection of open source software for scientific computing in Python:

numpy

sympy

scipy

IPython

matplotlib

• and more ...

pandas

Online documentation: https://scipy.org/doc.html

The basics SciPy The numpy package The scipy package Plotting with matplotlib Symbolic computing with Sympy

The numpy package

The numpy package

The numpy module offers the following functionalities:

- a powerful N-dimensional array object
- sophisticated (broadcasting) functions
- basic linear algebra functions
- basic Fourier transforms
- sophisticated random number capabilities
- tools for integrating Fortran code
- tools for integrating C/C++ code

The numpy package is import by

```
import numpy as np
```

Numpy arrays

- arrays are defined by a = np.array([], dtype = datatype)
- dtype is optional
- each entry of an array has to hold same data type (unlike python arrays)
- exampe: a = np.array([1,2], dtype = float) or shorter a = np.array([1,2])

For a thorough intro of operations on arrays we refer to https://scipy-lectures.org/intro/numpy/operations.html.

Accessing arrays

```
>>> # let's define an array
>>> a = np.array([1,2,3])
>>> a
array([1, 2, 3])
>>> type(a)
<class 'numpy.ndarray'>
```

```
>>> # accessing arrays
>>> A = np.array([[1,2,3], [2,2,2]])
>>> A
array([[1, 2, 3],
       [2, 2, 2]])
>>> A[0,1] # element (0,1)
>>> A[0][1] # element (0,1)
2
>>> A[0] # first row
array([1, 2, 3])
>>> A[0][:] # same
array([1, 2, 3])
>>> A[:, 0] # first column
array([1, 2])
```

Accessing arrays (continued)

```
>>> # let's define an array >>> # accessing arrays
>>> a = np.array([[1,2,3], [0,-1,2])>>> A = np.array([[1,2,3], [2,2,2]])
                                   >>> A
>>>  ind = [0, 1]
                                   array([[1, 2, 3],
                                          [2, 2, 2]])
>>> a[:,ind]
                                   >>> A[0,1] # element (0,1)
array([[ 1, 2],
      Γ 0, -1]])
                                   >>> A[0][1] # element (0,1)
                                   2
                                   >>> A[0] # first row
                                   array([1, 2, 3])
                                   >>> A[0][:] # same
                                   array([1, 2, 3])
                                   >>> A[:, 0] # first column
                                   array([1, 2])
```

Array multiplication

- Matrix multiplication between arrays via np.dot(A,B) or A@B
- A*B multiplies A and B elementwise!!!

More standard operations on array

```
    tensor product of array a and b via np.dot(a,b) or
        a[:,np.newaxis]*b[np.newaxis,:]
    sum all elements of array A via A.sum(); sum only first axis A.sum(axis=1)
```

```
>>> A = np.array([[1,2], [2,3]])
                                    >>> a = np.array([1,2,3])
>>> B = np.array([[0,1], [1,1]])
                                    >>> b = np.array([3,4,5])
                                    >>> np.outer(a,b) # tensor product
>>> A@B
                                    array([[ 3, 4, 5],
array([[2, 3],
                                           Γ 6. 8. 10].
       [3, 5]])
                                           [ 9, 12, 15]])
>>> np.dot(A,B)
                                    >>> a[np.newaxis].T*b[np.newaxis] # same --
array([[2, 3],
                                    array([[ 3, 4, 5],
       [3, 5]])
                                          [6, 8, 10],
                                           [ 9, 12, 15]])
>>> A
array([[1, 2],
                                    >>> np.cross(a,b) # vector product of a and
       [2, 3]])
                                    arrav([-2, 4, -2])
```

Standard matrices

numpy implements standard matrices such as the identity

```
>>> I = np.identity(4)
                                            >>> F = np.eye(3)
>>> I
                                            >>> F
arrav([[1.. 0.. 0.. 0.].
                                            arrav([[1.. 0.. 0.].
                                                   [0.. 1.. 0.].
       [0.. 1.. 0.. 0.].
                                                   [0., 0., 1.]])
       [0.. 0.. 1.. 0.].
       [0.. 0.. 0.. 1.]])
                                            >>> F = np.eve(4,2)
>>> I_c = np.identity(4, dtype=complex)
                                            >>> F
                                            arrav([[1., 0.].
>>> I c
                                                 ΓΟ.. 1.].
array([[1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
       [0.+0.i. 1.+0.i. 0.+0.i. 0.+0.i]
                                                   [0.. 0.].
                                                   [0., 0.]])
       [0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j]
       [0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j]
```

Standard matrices (continued)

```
>>> F = np.eve(4,k=2)
                             >>> E = np.ones(3)
>>> F
                             >>> E
array([[0., 0., 1., 0.],
                             array([1., 1., 1.])
       [0., 0., 0., 1.],
       [0., 0., 0., 0.],
                            >>> E = np.ones((2,3))
       [0.. 0.. 0.. 0.1])
                             >>> E
                             array([[1., 1., 1.],
>>> F = np.eye(4,k=-2)
                                     [1...1..1.]
>>> F
array([[0., 0., 0., 0.],
                             >>> F = np.full((3,2),1/3)
       [0., 0., 0., 0.],
                             >>> F
       [1., 0., 0., 0.],
                             array([[0.33333333, 0.33333333],
       [0.. 1.. 0.. 0.]])
                                     [0.33333333, 0.33333333].
                                     [0.333333333 0.333333333]])
```

Concatenating matrices

• We can "glue" matrices together with np.concatentate.

Arrays and functions

- functions can be evaluated at arrays (similarly to map with list)
- return value is of the shape of input array
- this avoids loops and is fast

This code corresponds to

$$f(a) = \begin{pmatrix} f(a_{00}) & f(a_{01}) & f(a_{02}) \\ f(a_{10}) & f(a_{11}) & f(a_{12}) \end{pmatrix}.$$

```
>>> def f(x, y):
...    return x**2 + y**2
...
>>> a = np.array([[1,2,3], [2,3,4]])
>>> b = np.array([[0,5,6], [0,2,4]])
>>> print(f(a,b))
[[ 1 29 45]
    [ 4 13 32]]
```

This code corresponds to

$$f(a,b) = \begin{pmatrix} f(a_{00},b_{00}) & f(a_{01},b_{01}) & f(a_{02},b_{02}) \\ f(a_{00},b_{00}) & f(a_{01},b_{01}) & f(a_{02},b_{02}) \end{pmatrix}.$$

```
>>> def f(x, y):
...     return x[0]**2 + x[1]**2*y[0] + y[1]**2
...
>>> a = np.array([[1,2,3], [2,3,4]])
>>> b = np.array([[0,5,6], [0,2,4]])
>>> f(a,b)
array([ 1, 53, 121])
```

This code corresponds to

$$f(a,b) = \left(f\left(\begin{pmatrix} a_{00} \\ a_{10} \end{pmatrix}, \begin{pmatrix} b_{00} \\ b_{10} \end{pmatrix} \right) \quad f\left(\begin{pmatrix} a_{01} \\ a_{11} \end{pmatrix}, \begin{pmatrix} b_{01} \\ b_{11} \end{pmatrix} \right) \quad f\left(\begin{pmatrix} a_{02} \\ a_{12} \end{pmatrix}, \begin{pmatrix} b_{02} \\ b_{12} \end{pmatrix} \right) \right).$$
>>> [f(a[:,0],b[:,0]), f(a[:,1],b[:,1]), f(a[:,2],b[:,2])]
[1, 53, 121]

- What is the advantage of arrays over python lists? Answer: speed
- Reason: numpy arrays are saved into contiguous blocks in the memory, while
 python lists are scattered over the memory. (Note: this is not true for
 dtype = object)

```
>>> r = np.random.rand(10000) # Random array of length 10000
>>> from time import time

>>> def f(x):
...     return x**2 + np.sin(x**3)
...
>>> a = time()
>>> print(time() - a)
0.0012912750244140625

>>> a = time()
>>> arr2 = np.array(list(map(f,r)))
>>> print(time() - a)
```

some functions need to be rewritten to support evaluation on arrays

For instance the function:

$$\Theta(x) := \left\{ \begin{array}{ll} 1 & x > 0 \\ 0 & x \le 0 \end{array} \right..$$

In this case np.where(cond, val1, val2) is helpful, which returns val1 if cond is True and val2 if cond is False.

Broadcasting arrays

- typically only arrays of the same dimension are added; however it is also possible to add arrays of different dimension
- in this case a new array is created and the dimension missing is "filled up"

What happens is for instance the following:

$$\begin{pmatrix} a_1 & a_2 & a_2 \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_1 & a_2 & a_3 \\ a_1 & a_2 & a_3 \\ a_1 & a_2 & a_3 \end{pmatrix} + \begin{pmatrix} b_1 & b_1 & b_1 \\ b_2 & b_2 & b_2 \\ b_3 & b_3 & b_3 \end{pmatrix}$$

Broadcasting arrays

Now why is this useful? For instance:

```
>>> a = np.array([1,2,3,1])
>>> a = a + 1 # new array is created with each element +1
>>> a
array([2, 3, 4, 2])
>>> a += 1 # each element of a is increased by 1
>>> a
array([3, 4, 5, 3])
```