Introdução à Linguagem C e Práticas de Programação

Compiladores/IDEs (sugestões):

Linguagem de programação adotada na disciplina: C

- https://replit.com/languages/c
- https://www.onlinegdb.com
- Dev-C++
- Code::Blocks
- Visual C++ (Windows)
- GCC (Linux/MAC)

1) https://replit.com/languages/c

2) Dev-C++: Tutoriais de instalação

- http://linguagemc.com.br/tutorial-de-instalacao-dodev-c/
- 2. https://www.inf.pucrs.br/flash/cbp/instala_devc/
- 3. https://www.inf.pucrs.br/~pinho/Laprol/DevC/Dev.html (como manusear projetos/código-fontes no Dev)
- 4. Tutoriais no Youtube

Versões do Dev-C++:

- Instalada no laboratório: Versão 5.11
- Última versão disponível no site: Versão 6.3

Dev-C++: criando um novo projeto

Dev-C++: criando um novo projeto

Dev-C++: criando um novo projeto

3) Visual Studio: Tutoriais de instalação

- https://visualstudio.microsoft.com/pt-br/vs/gettingstarted/
- 2. https://www.youtube.com/watch?v=iq_sBeiN-Qk

3. Tutoriais no Youtube

Versões do Visual Studio Code:

• Instalada no laboratório: 1.66 e 2022 Community

VISÃO GERAL - C

Inventada e implementada por Dennis Ritchie em um sistema UNIX (sistema base do Linux) no início da década de 70.

ANSI (American National Standards Institute)
 estabeleceu, em 1983, um padrão para a linguagem C.

COMPILADOR

 Um compilador faz a conversão do código fonte para o código-objeto.

Código objeto: é uma "tradução" do código fonte do programa, de forma que o computador possa executar o programa diretamente a partir de um código binário (de máquina).

A linguagem C é estruturada e compilada.

DIAGRAMATIZAÇÃO

```
#include <stdio.h>
int main ()
                                       Compilador
 printf("Oi mundo!!\n);
  return 0;
                    000001111111
                    1101010101010
                    1010101010010
                    0101001010110
```

PASSO-A-PASSO PARA PROGRAMAR EM C

- Escrever o algoritmo (programa) usando os comandos da linguagem C.
- 2. Compilar o programa.
- 3. Ligar o programa com as funções necessárias da biblioteca (*linkagem*).
- 4. Gera-se, então, o programa final de computador.

COMPILANDO NO C

- □ Todo compilador C vem com um conjunto padrão de bibliotecas de comandos (funções) que realizam as tarefas necessárias mais comuns.
- Várias funções para utilização já estão nessa biblioteca padrão.
- O compilador que usaremos é o GCC (GNU Compiler Collection).

Meu primeiro programa

- Meu primeiro programa: famoso "Hello World !!!"

APRENDENDO C COM EXEMPLOS

COMANDO MAIN ()

- □ O comando main() define uma função de nome main.
- Todos os programas em C têm que ter uma função main, pois são os comandos que estão nela que serão executados quando o programa for rodado.

Analogia:

int main()

 $\{\leftarrow \text{ abre chave } = \text{"início" do algoritmo}\}$

 $\} \leftarrow$ fecha chave = "fim" do algoritmo

EXEMPLO

```
//Algoritmo Soma de dois Números
#include <stdio.h>
int main()
                                    O conteúdo da
    //Variáveis
                                 função é delimitado
                                      por chaves
    float x, y, soma;
    //Programa principal
    printf("Primeiro numero: ");
    scanf("%f", &x);
    printf("Segundo numero: ");
    scanf("%f", &y);
    soma = x + y;
    printf("Soma dos dois numeros: %.2f\n", soma);
    return 0;
```

RETORNO DA FUNÇÃO MAIN ()

□ Convenção:

- Se o programa retornar zero, significa que ele terminou normalmente.
- Se o programa retornar um valor diferente de zero, significa que ele teve um termino anormal.

Futuramente vamos falar mais sobre funções.

EXEMPLO

```
//Algoritmo Soma de dois Números
#include <stdio.h>
int main()
    //Variáveis
    float x, y, soma;
    //Programa principal
    printf("Primeiro numero: ");
    scanf("%f", &x);
    printf("Segundo numero: ");
    scanf("%f", &y);
    soma = x + y;
    printf("Soma dos dois numeros: %.2f\n", soma);
    return 0;
```

EXEMPLOS

```
//Algoritmo Soma de dois Números
#include <stdio.h>
main()
{
    //Variáveis
    float x, y, soma;
    //Programa principal
    printf("Primeiro numero: ");
    scanf("%f", &x);
    printf("Segundo numero: ");
    scanf("%f", &y);
    soma = x + y;
    printf("Soma dos dois numeros: %.2f\n", soma);
```

Função main (sem retorno)!

Lab ATP I

ESTRUTURA BÁSICA DE UM PROGRAMA

EXEMPLOS

```
//Algoritmo Soma de dois Números
#include <stdio.h>
int main()
                                  Comentários são
    //Variáveis
                                  delimitados por //
                                    ou /* blabla */
    float x, y, soma;
    //Programa principal
    printf("Primeiro numero: ");
    scanf("%f", &x);
    printf("Segundo numero: ");
    scanf("%f", &y);
    soma = x + y;
    printf("Soma dos dois numeros: %.2f\n", soma);
    return 0;
```

ESTRUTURA BÁSICA DE UM PROGRAMA

EXEMPLOS

Observe a indentação

(recuo)!!!

```
//Algoritmo Soma de dois Números
#include <stdio.h>
int main()
                                  Comentários são
    //Variáveis
                                  delimitados por //
                                    ou /* blabla */
    float x, y, soma;
    //Programa principal
    printf("Primeiro numero: ");
    scanf("%f", &x);
    printf("Segundo numero: ");
    scanf("%f", &y);
    soma = x + y;
    printf("Soma dos dois numeros: %.2f\n", soma);
    return 0;
```

TIPOS DE DADOS EM C

Tipo	Bits	Escala
int (inteiro)	32	-2.147.483.648 a 2.147.483.647
short (ou short int)	16	-32.768 a 32.767
long (ou long int)	32	-2.147.483.648 a 2.147.483.647
float (real)	32	3,4×10 ⁻³⁸ a 3,4×10 ³⁸
double (real)	64	1,7×10 ⁻³⁰⁸ a 1,7×10 ³⁰⁸
long double	80	3,4×10 ⁻⁴⁹³² a 3,4×10 ⁴⁹³²
char (caracter)	8	-128 a 127
unsigned char	8	0 a 255
unsigned int	32	0 a 4.294.967.295
unsigned short	16	0 a 65.535
unsigned long	32	0 a 4.294.967.295

DECLARAÇÃO DE VARIÁVEIS

```
int a;
float num;
double n1, n2, n3;
```

Inicialização

```
int a = 10;
char c = 'm';
```

OPERADORES ARITMÉTICOS EM C

+	Adição ou positivo
-	Menos ou negativo
*	Multiplicação
1	Divisão
%	Resto da divisão inteira ou mod
=	Atribuição

OPERADORES ARITMÉTICOS

EXEMPLOS

```
//Algoritmo Soma de dois Números
#include <stdio.h>
main()
    //Variáveis
    float x, y, soma;
    //Programa principal
    printf("Primeiro numero: ");
    scanf("%f", &x);
    printf("Segundo numero: ");
    scanf("%f", &y);
    soma = x + y;
    printf("Soma dos dois numeros: %.2f\n", soma);
```

Operadores Aritméticos

ARQUIVOS-CABEÇALHOS (HEADERS)

- Para usar alguns comandos, precisamos explicitamente incluir suas definições por meio do #include <...>
- Nesta aula, para usarmos os comandos printf e scanf, precisamos colocar no início a declaração:
- #include <stdio.h>
- Conforme precisarmos de novos comandos, vamos aprendendo cada um dos includes.

COMANDO PRINTF

O comando de saída (<u>escreva</u>) de pseudocódigo é, na verdade, o <u>printf</u> em C.

Saída de dados:

```
-no algoritmo: printf("Eu gosto de C!");
```

-na tela: Eu gosto de C!

COMANDO PRINTF

printf("Soma de dois números: %.2f\n", soma);

- Caracteres Especiais:
 - \n: nova linha (enter)
 - \t: tab
 - \\: barra \
 - \": aspas duplas
 - \': aspas simples
 - \(: abre parênteses
 - \): fecha parênteses

COMANDO PRINTF

- printf("Soma de dois números: %.2f\n", soma);
- Exibição de Variáveis:
 - %d : int
 - %f : float
 - %c : char
 - %lf : double
 - %ld : long (ou long int)
 - %.2f : 2 dígitos decimais

COMANDO SCANF

O comando de entrada (<u>leia</u>) de pseudocódigo é, na verdade, o <u>scanf</u> em C.

Entrada de dados:

```
-no algoritmo: scanf ("%f", &x);
```

-na tela: cursor piscando esperando que algum dado seja digitado a partir do teclado

EXERCÍCIO 1

Dados os valores do raio de uma circunferência, e tomando pi = 3.141592, faça um programa em C que calcula o valor da área do círculo.

```
#include <stdio.h> //Biblioteca para uso das funções de entrada/saída

// Programa: Exercício 1
int main()
{
    //Declaracao de variaveis
    //Rotina principal
```

EXERCÍCIO 2

- □ Faça um algoritmo que leia uma temperatura (em Fahrenheit), e a apresente convertida em graus Celsius.
- □ A fórmula de conversão é

$$C = (F - 32) * (5 / 9),$$

em que F é a temperatura em Fahrenheit, e C é a temperatura em Celcius.

EXERCÍCIO 3

- Dado um número de três algarismos N = CDU (em que C é o algarismo das centenas, D é o algarismo das dezenas e U o algarismo das unidades). Considere o número M, constituído pelos algarismos de N em ordem inversa, isto é, M = UDC.
- □ Gerar M a partir de N (ex: $N = 123 \rightarrow M = 321$).
- Dica: Usar operador que calcula o resto de uma divisão inteira: %