











bureau of mines information circular 8407

DUST CONTROL IN MINING, TUNNELING, AND QUARRYING IN THE UNITED STATES, 1961 THROUGH 1967





UNITED STATES DEPARTMENT OF THE INTERIOR

BUREAU OF MINES

March 1969



## DUST CONTROL IN MINING, TUNNELING, AND QUARRYING IN THE UNITED STATES, 1961 THROUGH 1967

By Floyd G. Anderson and Robert L. Beatty

\* \* \* \* \* \* \* \* \* \* information circular 8407



UNITED STATES DEPARTMENT OF THE INTERIOR Walter J. Hickel, Secretary

BUREAU OF MINES,
John F. O'Leary, Director

This publication has been cataloged as follows:

#### Anderson, Floyd Gustoff

Dust control in mining, tunneling, and quarrying in the United States, 1961 through 1967, by Floyd G. Anderson and Robert L. Beatty. [Washington] U. S. Dept. of the Interior, Bureau of Mines [1969]

50 p. (U. S. Bureau of Mines. Information circular 8407) Includes bibliography.

1. Mine dusts. 2. Dust-Removal. 3. Mine ventilation. I. Beatty, Robert L., jt. auth. II. Title. (Series)

TN23.U71 no. 8407 622.06173

U. S. Dept. of the Int. Library

## CONTENTS

m. 9.170069

|                                                            | Page |
|------------------------------------------------------------|------|
| Abstract.                                                  | ,    |
| Introduction.                                              | 1    |
|                                                            | 1    |
| Pneumoconiosis statistics                                  | 1    |
| Medical and environmental studies                          | 2    |
| Federal Government                                         | 2    |
| Metal mining                                               | 2    |
| Coal mining                                                | 6    |
| State government                                           | 7    |
| Dust prevention and suppression practices                  | 8    |
| Control programs                                           | 8    |
| Water and wetting agents                                   | 10   |
| Roof control                                               | 11   |
| Drilling and blasting                                      | 11   |
| Extraction of material                                     | 12   |
| Continuous mining of coal                                  | 12   |
| Longwall mining of coal                                    | 13   |
| Hydraulic mining of coal                                   | 13   |
| Water infusion                                             | 14   |
| Loading, transport, and unloading of mineral and dead rock | 14   |
| Deposited dust                                             | 15   |
| Ventilation                                                | 16   |
| Personal protective equipment                              | 20   |
| Airborne-dust sampling, measurement, and analysis          | 21   |
| Dust sampling                                              | 21   |
| Particle sizing and counting                               | 25   |
| Dust analysis                                              | 28   |
| Legislation                                                | 29   |
| Federal Government                                         | 29   |
| State government                                           | 30   |
| Continuing research                                        | 35   |
| References                                                 | 36   |
|                                                            |      |



# DUST CONTROL IN MINING, TUNNELING, AND QUARRYING IN THE UNITED STATES, 1961 THROUGH 1967

by

Floyd G. Anderson 1 and Robert L. Beatty 2

#### ABSTRACT

This report reviews and summarizes information on prevention and suppression of dust in mining, tunneling, and quarrying published in the United States from 1961 through 1967. Unpublished pertinent data developed or assembled by the Bureau of Mines during this period also are included.

#### INTRODUCTION

Under the auspices of the International Labor Organization, member countries review their own information on prevention and suppression of dust in the mining, tunneling, and quarrying industries. Each country regularly submits a summary report to the International Labor Office, the secretariat designated to collect, assemble, and distribute the data in the form of an international report. Under this arrangement the United States has submitted six reports covering the calendar years 1953 through 1967.

The material reported for the years 1953 through 1960 has already been summarized in three Bureau Information Circulars (9-10, 151). This publication summarizes the subject data for the years 1961 through 1967. The Bureau plans to issue more Information Circulars as material is developed for the International Labor Office reports.

#### PNEUMOCONIOSIS STATISTICS

Available statistics showed that over 27,000 claims for pneumoconiosis have been settled by Workmen's Compensation Agencies in 18 States since 1950 ( $\underline{186}$ ). The claims amounted to approximately \$132 million. The data were accumulated from published reports of State compensating agencies, by correspondence with those agencies and with groups such as insurance companies,

<sup>1</sup>Mining engineer, Health Research.

<sup>&</sup>lt;sup>2</sup>Chemist, Analytical Methods Research.

Both authors are with the Health and Safety Research and Testing Center, Bureau of Mines, Pittsburgh, Pa.

 $<sup>^{3}</sup>$ Underlined numbers in parentheses refer to items in the list of references at the end of this report.

and in part by abstracting case files. It was stated that this is undoubtedly an underestimate of the true situation. The period covered for the 18 States ranged from 8 to 13 years. Data were not obtainable from 30 States having legal provisions for compensation of one or more of the pneumoconioses.

Awards made by the Social Security Administration from 1959 through 1962 (166) for total and permanent disability to men under age 65 were tabulated by occupation, age group, and disease. For miners and mining machine operators, one-third of the disabilities were due to pneumoconiosis of occupational origin, and one-ninth were due to emphysema. High proportions of these diseases were also found in other occupations which included significant numbers of underground workers.

A statistical study of the Vermont granite industry ( $\underline{16}$ ) shows that sustained and improved dust control has been accompanied by a remarkable reduction in the incidence of silicosis. The Vermont granite manufacturing industry employs about 1,700 men. More than 90 percent of these workers are X-rayed annually by the Vermont Department of Health. There has been no occurrence of silicosis in any person whose exposure has been limited to the 26 years since 1937 when industry-wide dust control procedures were started. If the prevalence rates of the precontrol period were applied to the present labor force, at least 146 cases of silicosis might be expected. The data in this report substantiates the use of the new formula of the American Conference of Governmental Industrial Hygienists (ACGIH) ( $\underline{5}$ ) for determining the threshold limit value for Vermont granite dust.

Additional pneumoconiosis statistics are included in the following section, Medical and Environmental Studies.

#### MEDICAL AND ENVIRONMENTAL STUDIES

## Federal Government

### Metal Mining

In 1961 the Bureau of Mines and Public Health Service completed a comprehensive joint medical-environmental survey in the metal mining industry (167). It was conducted to evaluate the magnitude of the industry's silicosis problem. The environmental study was conducted in 67 mines, including eight uranium mines, employing approximately 20,500 persons--14,000 of whom worked underground and 6,500 in surface operations. At the time of the study, this group represented more than 50 percent of the working population of underground metal mines in the United States. The medical study included employees from 50 of the 67 mines in the environmental study and additional uranium mines. The mines included in the joint study represented virtually all metals mined in commercially significant quantities in the United States and every principal mining method.

Medical examinations, including medical histories, occupational histories, and chest roentgenograms, were completed on a total of 14,076 currently employed metal mine workers. Of the 14,076 chest roentgenograms taken, 476 or

3.4 percent were classified as consistent with a diagnosis of silicosis. Of these, 305 were classified as simple silicosis, and 171 were classified as complicated silicosis. Although the overall prevalence rate for the study was 3.4 percent, it varied greatly, ranging from 12.9 percent in one mine to zero in seven mines.

Silicosis, for the most part, was confined to older miners with more than 15 years metal mining experience. Silicosis was not observed in the chest X-ray film of any miner under 35 years of age, and only seven cases, 0.4 percent, were found in the 35-to 39-year age group. Beginning with the 40-to 44-year age group, with a prevalence rate of 2.4 percent, there was a moderate increase in the rate with each succeeding age group which tended to level off at about 12 percent for men from 55 to 64 years of age. Of the 63 men examined who were 65 years of age or older, about one-third were silicotic.

The incidence of silicosis was related to years of work at the mines as follows: No cases occurred with less than 5 years of exposure. Seven cases, or 0.2 percent, occurred in workers with 5 to 9 years of exposure, and 58 cases occurred with 15 to 19 years of exposure. After 20 years of exposure, the prevalence rates rose rapidly: For 20 years exposure, 7.6 percent; for 25 years exposure, 12.1 percent; and for the four exposure groups working 30, 35, 40, and 45 years or more the prevalence rate averaged about 17 percent.

So far as possible, each employee was classified according to his principal occupation. However, all men who had spent 10 years or more at the working face of a mine were classified as faceworkers. Over one-half of all silicosis cases occurred among men classified as faceworkers. With 10 to 19 years of mining employment faceworkers showed a silicosis prevalence of 3 percent which rose to 19 percent among men working 20 years or longer. Smaller but significant silicosis ratios were also found among employees with more than 20 years employment in other underground operations, surface maintenance and construction work, and surface mill operations. Surface transportation and miscellaneous surface operations showed very few cases of silicosis, except among older men who previously spent many years underground.

There was little relationship between the size of a mine and the prevalence of silicosis. The prevalence of silicosis was slightly greater among employees with experience in two or more mines. There was no great difference in the pattern of silicosis prevalence which could be attributed to a difference in the metal that was produced.

A 1939 study ( $\underline{167}$ , p. 31) of nonferrous metal mine workers in Utah presented data which could be contrasted with data from a group of 12 western lead-zinc mines investigated during the 1958-61 study. The overall prevalence of silicosis was found to be 40 percent lower than in the earlier study. Even more striking were the reductions in the silicosis rate of 80 percent among persons employed in the mines less than 10 years and of 73 percent among those employed 10 to 19 years.

A special study was made of the records of a group of metal mine workers from an iron ore mine which has had a silicosis control program underway

continuously since 1933. Among the 1,293 men included in the records, 410 had worked in the mine before 1933 and, thus, had been exposed before the improvement in the mine environment. Silicosis was found in 83 of the men at the time of the first X-ray examinations in 1933, and 16 of them whose X-rays were negative in 1933 later developed silicosis. There has not been a single case of silicosis among the 883 men who were employed after the control program began in 1933. Many of these men have been exposed to the mine environment for more than 20 years.

In the environmental phase of the joint-silicosis study particular emphasis was placed on evaluation of airborne dust in mine working areas. Observations were also made of pertinent factors such as dust control methods, ventilation, working methods, and air quality.

A total of 14,837 midget impinger samples of airborne dust and 234 samples of settled dust were obtained underground for evaluating dust exposures. From these samples, 789 full-shift, weighted average exposures were determined for specific underground operations. Of the weighted averages 13.2 percent were above the 1967 ACGIH threshold limit values ( $\underline{5}$ ). Particle-size characteristics of the airborne dust were determined from 481 membrane filter samples by optical microscopy. All determinations indicated significant numbers of particles in the range of sizes capable of retention in the alveolar spaces of the lungs.

Dust concentrations obtained at a group of lead-zinc mines in the Western States were compared with dust concentrations obtained in the 1939 study of Utah lead-zinc mines. A very substantial improvement in dust control during the intervening years was indicated. Dust concentrations for comparable occupations underground have been reduced at least 80 percent and, in some instances, as much as 90 percent.

The joint study ( $\frac{167}{1}$ ) was designed to determine the prevalence of silicosis among the work force of the industry, to define present-day environmental conditions, and to seek answers to the following questions:

- 1. Are the cases presently occurring the result of precontrol exposure, in view of the long latent period for the development of silicosis?
  - 2. Are they the result of failure to apply dust controls universally?
- 3. Are cases occurring because the standards for acceptable levels of dustiness in use since 1935 are inadequate?

With respect to these questions and to other facets of the problem, the following conclusions were drawn:

1. Considerable progress has been made in the metal mining industry in the prevention of silicosis. The present overall prevalence rate of 3.4 percent is substantially lower than the rates encountered in previous surveys. The range varied among individual mines, however, from 0 to 12.9 percent and shows the prevalence of silicosis is not uniformly distributed throughout the industry.

- 2. The industry has instituted or improved many dust monitoring and dust control systems during the past 25 years; this has resulted in marked reductions in dust exposures. Since the development of silicosis requires a considerable period of exposure, the full benefits of these improved environmental working conditions cannot be fully evaluated at this time.
- 3. There was a substantially higher prevalence of silicosis among men who worked in mining at some time before 1935 than among men who have worked the same number of years since 1935. Two hundred and ninety-eight cases of silicosis were found in workers who began work in mining prior to 1935. One hundred and twenty-eight cases of silicosis were found among men exposed only since 1935.
- 4. The occurrence of silicosis due to exposure after 1935 and the excessive dust exposures found in some of the mines studied, provides evidence that effective dust control has not been universally practiced.
- 5. Data obtained in the study do not permit judgment of the adequacy of present standards. In most of the mines studied, the environmental data needed to define working conditions from 1935 to the time of this study were lacking.
- 6. Combined medical and environmental surveillance and control can prevent the development of clinically significant silicosis among miners.
- 7. With regard to specific environmental situations the following can be concluded:
  - a. In many instances, ventilating currents in the working areas were not being used to best advantage. Recirculation of air particularly posed a problem, and airborne dust was often carried from one working place to another.
  - b. Drilling, slushing, and mucking were the most prolific dustproducing operations to which men at the face were exposed. Workmen engaged in haulage and crusher operations were also exposed, in several instances, to excessive concentrations of dust.
  - c. Water applied to the muck piles assisted materially in reducing dust concentrations during subsequent operations.
  - d. Dust concentrations in shops and mills, except during cleanup operations, presented no particular problems.
  - e. The need for better maintenance and cleanup practices around crusher installations was indicated.
  - f. Concentrate loading and cement mixing were sources of excessive concentrations of dust; however, very few workmen were engaged in such operations.

8. This study has provided extensive, basic data on the current prevalence and characteristics of silicosis among employed metal miners and on the magnitude and nature of current dust exposures in the metal mining industry. It represents an important baseline for continued studies. In view of the long latent period before the development of silicosis, further comprehensive medical and environmental studies over a period of years will be necessary to develop additional essential information on the problem. This will include determining if new cases of silicosis are occurring or known cases are progressing, their relationship to occupational dust exposures, the need for improved or additional dust control measures, and the adequacy of present standards for evaluating siliceous dust exposures.

A summary of environmental and medical findings relating to health hazards in uranium mining and milling was reported by the U.S. Public Health Service (13). Environmental surveys showed many mines with concentrations of radon-daughter products above a recommended working level of 1.3  $\times$   $10^5$  mev of potential alpha energy per liter of air. Preliminary calculations applied to miners with 3 years or more of uranium mining experience showed that five lung cancer deaths have occurred where 1.1 were expected. The radiation exposure of uranium miners was the subject of public hearings (188) initiated by the Joint Committee on Atomic Energy. The record of those hearings constitutes the most comprehensive collection of information ever amassed concerning the exposure of human beings to radiation incident to the mining of uranium. The information was commended to study by Congress and other responsible officials for guidance in establishing standards and operating procedures relative to radiation protection.

#### Coal Mining

The Public Health Service conducted a medical survey of almost 4,000 bituminous coal miners and former coal miners of the Appalachian Area ( $\underline{31}$ ,  $\underline{68}$ ). The study revealed the presence of a job-related chest disease, coal workers pneumoconiosis. About 10 percent of the currently employed miners in the area showed X-ray evidence of pneumoconiosis; roughly 20 percent of the formerly employed miners in the area gave similar indications. Evidence that years of exposure to coal dust is a factor in the disease can be seen in the following table:

| Years       | Percent with pneumoconiosis |          |
|-------------|-----------------------------|----------|
| underground | Currently                   | Formerly |
|             | employed                    | employed |
| 0- 9        | 2.0                         | 1.9      |
| 10-19       | 4.0                         | 6.2      |
| 20-29       | 8.6                         | 21.3     |
| 30-39       | 20.6                        | 21.4     |
| 40 and over | 24.2                        | 23.0     |
| Average     | 9.6                         | 18.6     |

To check the possibility that general living and environmental conditions or other nonoccupational factors might be responsible for chest diseases, the study included medical examinations of miners and nonmine workers living in the

same community. X-ray evidence of pneumoconiosis was found in 15 percent of the coal miners and in less than 1 percent of the nonmining group.

Another significant part of the survey of coal workers' pneumoconiosis was a statistical study of death rates for U.S. coal miners  $(\underline{75})$ . Based on records for the year 1950, the death rate for coal miners was about twice that of the general working male population, and death rates for diseases of the respiratory system were about five times that for the general working male population.

Extensive data on dust concentrations in the mines will be necessary to provide the positive link between dust and disease, and the key to prevention ( $\underline{31}$ ). A joint committee of the Division of Occupational Health of the Public Health Service and the Bureau of Mines is at work planning an environmental survey in bituminous coal mines. Members of the industry, including representatives of mine operators, mining associations, and the United Mine Workers of America are serving this committee in an advisory capacity ( $\underline{101}$ ,  $\underline{193}$ ). The Bureau is conducting laboratory and field investigations to determine the effectiveness of the instruments and techniques to be used for sampling and evaluating airborne dusts during the survey ( $\underline{40}$ ,  $\underline{68}$ ,  $\underline{198}$ ).

#### State Government

Because the extent of the pneumoconiosis problem in the Pennsylvania bituminous coal industry was not known, the Division of Occupational Health, Pennsylvania Department of Health, embarked on medical and environmental studies in 1959 (115-116, 124) to define the problem. The medical study consisted of obtaining occupational and medical histories, vital capacity determinations, and chest roentgenograms. These data were obtained by the examination, on a voluntary basis, of approximately 16,000 working and retired bituminous coal miners. From the study it was learned that approximately 14 percent of western Pennsylvania and 34 percent of central Pennsylvania miners had roentgenographic evidence of pneumoconiosis. As expected, the prevalence of pneumoconiosis increased with age and length of exposure. No correlation was found between subjective symptomatology and roentgenographic diagnosis. On the basis of the work done, it was concluded that Pennsylvania has a pneumoconiosis problem of greater magnitude in its bituminous mining population than was previously believed.

The medical study was extended to include the anthracite industry (125), and data were obtained by examination of 1,430 working and 428 retired anthracite miners. It was shown that incidence of pneumoconiosis increased with age and years of exposure for both working and retired anthracite miners. Approximately 30 percent of the working miners and 75 percent of the retired miners had or were suspected of having pneumoconiosis in some stage of development. Of the working men with less than 20 years of work in the mines, 90 percent had no roentgenographic evidence of pneumoconiosis compared with 50 percent in those with more than 40 years in the mines. Only 20 percent of the retired miners with 40 or more years in the mines were found to be without evidence of pneumoconiosis.

The environmental study was begun by the Division of Occupational Health, which completed a two-year study of dust conditions in Pennsylvania mines (18-20). Dust surveys were conducted in 24 anthracite and 14 bituminous coal mines. More than 1,400 samples of dust were collected for determination of number concentration, free silica content, and particle-size distribution. In general, more airborne dust with greater free silica content and smaller particle size was found in anthracite mines than was found in bituminous coal mines.

Since 1960 the Pennsylvania Department of Mines and Mineral Industries has assumed responsibility for the environmental phase of a continuing pneumoconiosis activity ( $\underline{61}$ ,  $\underline{92}$ ). The Division of Occupational Health has retained responsibility for the medical phase and the compilation of statistics ( $\underline{202}$ ). Periodic surveys are conducted by dust investigators who report results to both departments. Mine inspectors are informed of hazardous dust conditions, and they contact mine management for correction ( $\underline{28}$ ,  $\underline{66}$ ,  $\underline{100}$ ).

The results of the pneumoconiosis studies conducted by the Pennsylvania Departments of Health and Mines and Mineral Industries, and the rising cost of compensation (108, 113-114) for pneumoconiosis among coal miners caused Pennsylvania's Governor, William W. Scranton, to call a conference on pneumoconiosis (159). The purpose of the conference was to review the pneumoconiosis problem of Pennsylvania coal miners and to consider and propose recommendations for prevention, diagnosis, and compensation of the disease. One session of the conference was devoted to the subject of dust control. Presentations included discussion of the Commonwealth's regulatory and research activities, evaluation of dust exposures, dust control practices in use in bituminous and anthracite mines, and research projects being conducted by other government agencies and by equipment manufacturers.

#### DUST PREVENTION AND SUPPRESSION PRACTICES

#### Control Programs

A dust control program resulting in a desirable environment for coppermine workers was described ( $\underline{109}$ ). The program stresses the importance of positive ventilation in working areas for dilution of airborne dust to acceptable concentrations, the use of water for suppressing dust generation, and the use of company-designed dust collection equipment to clean contaminated air for reuse. Compressed-air-and-water blasts are used in all sill headings to minimize dust dispersion during and after blasting and to wet the muck piles uniformly.

The summary report  $(\underline{165})$  of a meeting of the Governors of uranium producing States and their representatives concludes that mounting evidence points to the existence of severe health hazards in uranium mines. The assistance available from Federal agencies and the objectives of State authorities seeking solutions of these serious health problems are outlined. A company program for control of radiation exposure in its underground uranium mines in Colorado is described  $(\underline{23-24})$ . The program includes the determination of exposures by a field method developed by the U.S. Public Health Service and

the annual physical examination of workmen, supplemented by medical studies in cooperation with the Public Health Service. Proper ventilation is emphasized as mandatory for adequate control of dust and radiation exposures.

Recommendations generally applicable to the nation's underground metal mining industry and related to dust prevention and suppression programs were outlined as follows in the report of the environmental and medical study conducted by the Bureau of Mines and U.S. Public Health Service (167):

- "1. Each mining company should maintain a dust monitoring program conducted or supervised by a person competent in the techniques of dust sampling and interpretation of results.
  - a. For determining levels of exposure, dust samples should be taken in the breathing zones of workmen.
  - b. The program should be conducted in such a manner that it will detect changes in environmental conditions and promptly locate conditions in need of correction.
  - c. Accurate and complete records of dust conditions should be kept. These should be tabulated, analyzed, and reported to a responsible level of management at regular intervals.
- "2. Proper methods of dust control should be initiated promptly when the need is discovered.
  - a. Adequate ventilation by mechanical means should be provided at all working places.
  - b. Recirculation of air should be held to a minimum consistent with good mining practice.
  - c. All ore and broken rock should be thoroughly wetted to reduce dust during subsequent handling operations.
  - d. All dust control devices and materials handling equipment, both underground and surface, should be frequently inspected and maintained in proper working conditions to limit to the lowest practicable level the generation or dispersion of dust.
  - e. Men should not be permitted to reenter a workplace after blasting until sufficient time has elapsed for dust and gases to be reduced to a safe level.
- "3. Workers should be informed of the dust hazards associated with their job, the methods employed for the control of dust exposure, and instructed in good work procedures to minimize dust dispersion and in the proper use of equipment. All employees should give their full cooperation in helping to maintain an effective dust control program.

"4. Mining companies should request, whenever necessary, the assistance of the Bureau of Mines or other qualified agencies in instituting and evaluating dust monitoring and dust control programs."

## Water and Wetting Agents

As noted in most of the articles on dust control referenced in this report, water is a most important and convenient agent for suppressing dust ( $\frac{155}{172}$ ). Although not used to any great extent in underground mining, wetting agents can increase the effectiveness of water.

There were few reports of wetting agents being used in coal mines and these reports dealt with the control of dust generated by continuous mining machines, which continues to be a problem. A noticeable reduction in visible airborne dust in face areas resulted from adding a wetting agent to the spray water supplied to machines mining the low volatile coal of the Pocahontas seam (80). The same company found wetting agents ineffective when mining the high volatile coal of the Pittsburgh seam. The ineffectiveness of a wetting agent applied for control of Pittsburgh seam coal dust was verified by a second company ( $\underline{111}$ ). It was noted in a Bureau of Mines study ( $\underline{11}$ ) that the use of wetting agents reduced the dust loading of return air by about 30 percent compared with the use of water alone.

Surface-active agents are used to a greater extent in surface operations such as tipples, coal preparation plants, and loading facilities. A powerplant coal-dust problem ( $\underline{163}$ ) at a truck-hopper house designed for the unloading of trucks and railroad cars simultaneously was solved by installing sprays around the top of the hoppers, over the railroad cars, and at the hopper-tomain conveyor discharge point and by adding a surface-active agent to the spray water. Because the wetting agent caused the water to wet the coal more completely, dust was eliminated at three other transfer points in the conveying system. The use of less than 0.5 percent moisture, by weight, suppressed gypsum-rock dust at quarries and plants when a surface-active agent was added to the water ( $\underline{170}$ ). Control of dust by use of water with a surface-active agent was described for a railroad car-to-lake freighter loading operation, a self-unloading lake freighter dust control system, and a dock crane unloading operation. The cost of chemical treatment was estimated to be between 0.35 and 1 cent per ton of sprayed material.

Though not practical for underground use, steam has been used for a number of years to alleviate dust at transfer points of conveyors in tipples and preparation plants of one coal mining company ( $\underline{80}$ ). The effectiveness of dust suppression by steam is attributed to the reduced surface tension of hot water.

Emulsified asphalt has proven to be a more effective agent than lignin sulphate for reducing dust on haul roads at several open pit operations in the southwestern part of the United States (90).

#### Roof Control

Roof bolting has been so widely accepted that the bituminous coal industry now considers it to be the standard method of roof support (74). The Bureau of Mines estimated that approximately 60 percent of the total underground production of coal for the year 1966 was mined under bolted roof and reported the installation of approximately 50 million bolts (39). The development of successful drilling and dust-collecting equipment for bolt hole drilling of coal mine roof is discussed in the next section under drilling. A special editorial feature (97-99) for coal operators summed up the theory and practice of coal mine roof support and discussed the need for ventilation and dust control.

Industry has also found rock bolts advantageous for supporting ground in metal mines ( $\underline{197}$ ) and tunnels ( $\underline{168}$ ); however, the extent of such use is not known. In metal mines and tunnels adoption of bolting poses no new dust problem as conventional drilling equipment is used for installation.

## Drilling and Blasting

Most of the problems associated with the development of drilling and dust control equipment for roof drilling in coal mines have been resolved (74, 101). Highly satisfactory rotary and rotary percussion roof bolting machines have been developed for drilling coal mine roof. Some hard roofs require the use of pneumatic percussion drills. The rotary or pneumatic percussion drills most commonly used have integral dust-collecting systems which feature collection of the drill cuttings through the drill steel. During the period covered by this report much effort was expended in improving the design of drill steel and bits for through-steel dust collection (81). By the end of 1967, 160 certificates had been issued by the Bureau of Mines approving equipment for use in connection with rock drilling in coal mines (8, 110).

In general, coal drills are not equipped with arrangements for dust control. Suppression of the drill dust has been accomplished by use of a swivel and hollow augers for introduction of water into the drill hole  $(\underline{154})$ . It is believed that eventually coal drills will be built with integral dust-collecting systems similar to those used on roof-bolting drills.

The development of heavier drilling equipment mounted on mechanically controlled jumbos has advanced the practice of longhole drilling for drifting, stoping, and raising in metal mines (84). Longhole drilling eases the dust control problem, because less hole collaring is required, dust generation decreases with the depth of the hole, and ventilation requirements are less critical. Drilling of the blastholes from surface during construction of a coal mine ventilation shaft 230 feet deep, was described in a recent report (180). After drilling was completed, blasting progressed from bottom to top in 12-foot stages.

A method of suppressing dust from dry percussion drilling in quarries, construction sites, and open pit mines was developed and has gained wide acceptance ( $\underline{64}$ ,  $\underline{123}$ ,  $\underline{135}$ ). Water with an added wetting agent is introduced

into the air used for flushing the drill cuttings from the hole. Dilution ratios range from 800 to 3,000 parts of water to one part of surfactant. The amount of water required is considerably less than for wet drilling and is dependent upon the size of the hole being drilled, the drilling rate, and the type of material being drilled. The proper amount of solution, about 7 gallons per hour for a 3-1/2-inch-diameter hole, causes the drill cuttings to be blown from the hole as damp dust-free pellets. It was reported that the method has been used successfully underground and that its use may grow, especially where water is in short supply.

In conventional mining of coal, water-filled plastic bags came into use for stemming blastholes. Their use in conjunction with an air-and-water blast results in a considerable reduction of the dust from blasting ( $\underline{193}$ ).

## Extraction of Material

## Continuous Mining of Coal

The use of continuous-mining machines continued to increase. In 1965, 142 million tons of bituminous coal, representing 43 percent of underground production, was produced in 447 mines using continuous-mining machines, and in 275 of these mines continuous-mining machines were used exclusively (201). Much effort was directed toward the solution of the dust problems created by these machines due to their high production rates. Only partial success was realized. Dust suppression investigations were directed toward the reduction of dust at the face by the use of foam; the direction of water to the cutting edge of the bit; the study of water spray nozzle design, operating pressure, and placement; and the cutting-bit design. To prevent excessive dust exposures of mining crews, ventilation was arranged so as to direct fresh air over the machine and dust-laden air into the return airways. To minimize the explosion hazard of settled dust in the return airways, "trickle dusting" was developed.

The Bureau of Mines, working cooperatively with mining companies, investigated the possibility of confining the dust generated by ripper and boringtype machines under a blanket of foam to prevent its becoming airborne (111). Results were promising, but foam generation at higher expansion rates must be realized before the value of the method can be appraised. Directing spray water to the cutting edge of the bits on the arms of a boring-type miner reduced dust generation significantly. The respirable dust at the machine operator's breathing zone was reduced 78 percent from that observed in baseline measurements (80). Success of the effort led to directing water to the bits on the cutting wheels of ripper-type machines. It was determined that water spray nozzles suppress dust most effectively when operated at pressures ranging from 200 to 300 psi (80, 111). It is common practice to equip machines with full cone spray nozzles for delivery of 5 to 15 gallons of water per minute. The dust from a boring machine was alleviated when supplied with 25 gallons of spray water per minute (142). A self-sharpening, plumb-bobshaped, tungsten-carbide-tipped cutting bit was developed (126). An advantage claimed for the bit was less dust at the face due to the production of coarse cuttings (74). Ventilation procedures and rock-dusting techniques used for

minimizing dust problems created by these machines are discussed under the headings deposited dust and ventilation.

## Longwall Mining of Coal

The growth of longwall mining in the United States was outlined, and a bright future was predicted in a recent publication (47). The first longwall face in a coal mine was established on an experimental basis in a southern West Virginia mine in 1951 (85). After 2 years experimentation, the longwall system was adopted on a production basis, and production has continued to the present time. Other companies have found it to their advantage to adopt the system, and in 1965 about 1.6 million tons of coal were produced from 13 longwall faces being operated in coal mines in four States (179, 201). Ease of ventilating the longwall face for rapid removal of dust and methane gas is an advantage claimed for this method. The development of a water-infusion technique was required in order to solve the dust problem at a longwall face in a southern West Virginia mine (141). Drenching the face area with water by spraying did not suppress the dust raised by the coal planer or by the billowing action of falling roof rock. However, the infusion system has resulted in significant suppression of the dust and has made the coal more planable. Infusion holes 6 inches in diameter, 200 feet deep, and spaced at 200-foot intervals are drilled in the head entry of the longwall panel in advance of and parallel to the face. Water with a wetting agent added is pumped into the holes at a pressure of 600 pounds per square inch and at a rate of 15 gallons per minute. About 10 gallons of infusion water are used per ton of coal produced. The holes are drilled above a shale binder which lies 12 to 18 inches below the top of the coal seam. Water travels through the coal above the binder to the face region where the binder, broken by ground pressure, allows the water to enter the bottom coal.

## Hydraulic Mining of Coal

A Bureau of Mines hydraulic coal mining research program was outlined (33, 195-196), and research results were summed up in a progress report (153). Five field trials of coal extraction by hydraulic mining were described: One in the flatlying Pittsburgh coalbed near West Lebanon, Pa., where the coal was mined and loaded simultaneously by mounting the hydraulic monitor on a conventional loading machine; one in a 13-foot-thick pitching anthracite coalbed where chambers and crosscuts were mined with a specially designed hydraulic mining machine (32); two in the 42° pitching No. 5 coalbed at Roslyn, Wash., where a self-advancing hydraulic roof support system was used for a monitor mounting in development work and pillars were mined using a hand-held monitor (147); and one in the 26° pitching "A" coalbed near Carbondale, Colo., where a post-mounted hydraulic monitor was used to drive raises and crosscuts. It was concluded that this novel method of mining is particularly advantageous for mining pitching coalbeds not amenable to mining with conventional mechanical equipment. The full potential of this extraction method can be realized only when it is made part of an integrated system including roof control, hydraulic transport and hoisting of the coal, and other auxiliary operations.

The adoption of commercial hydraulic mining of bituminous coal has been announced  $(\underline{50},\underline{127})$ . With regard to dust control in hydraulic mining operations, airborne dust at the faces and in the air courses is reduced significantly, and dust is not blown off the top of loaded cars, eliminating the need for costly cleanup and heavy rock dusting of haulageways.

## Water Infusion

Infusion of the coalbed with water was one of several methods investigated by the Bureau of Mines for draining methane from strata in advance of mining the coal. In the first study  $(\underline{132} \cdot \underline{133})$  it was observed that water infusion tended to reduce the amount of dust at the face when the coal was mined. The second study  $(\underline{134})$  included investigation of the affect of dust suppression by the water-infusion method. Dust exposures of crew members and dust loadings of return air from the working face were determined for continuous-mining operations before and after water infusion of the coalbed. In a Bureau of Mines internal report  $(\underline{42})$  the following was concluded:

- 1. Dust generation of the mining operation was reduced by infusion of the coalbed. The reduction rate could not be determined accurately during this study, but does not appear to be great enough to justify infusion solely for control of dust generation.
- 2. No advantage was demonstrated for the use of a wetting agent with the infusion water.
- 3. Dust suppression was adversely affected when mining of the infused coal was delayed.
- 4. High dust loading of the return air resulted when more than 9,200 cfm of air was used for face ventilation.
- 5. Satisfactory mining-crew dust exposures resulted when 5,600 cfm or more of air was used for face ventilation, 9 gpm or more of spray water was used to allay dust, and the coalbed was infused within 48 hours of mining.

## Loading, Transport, and Unloading of Mineral and Dead Rock

Control of coal dust during hand or mechanical loading is accomplished by wetting the coal. The sprays are either hand-held or mounted on the loading machines. When a dry coal-cleaning process restricts the amount of water that can be used at the coal face, wetting agents are sometimes added to the water to increase its effectiveness. At transfer and unloading points of transport systems, properly installed water sprays are used successfully. Experimental use of a high-expansion foaming agent reduced dust counts at belt-conveyor transfer points by 50 percent (112). The superior performance of the foaming agent compared with "water alone" was not great enough to justify the added expense of adopting the system. Coal is not crushed underground, as a general rule; however, at one such unique operation (48), coal-dust control was accomplished by installation of an efficient dust-collection system.

## Deposited Dust

Sprinkling with water or salt solutions is usually resorted to for consolidation of material deposited on roadways. At one metal mine where water gave only temporary relief, roadways are sprinkled with a water-soluble asphaltic material ( $\frac{184}{1}$ ). Treatment consists of Bitumate, with water to make a 5-percent solution, sprayed from a tank car on a 2- to 4-week schedule.

The Bureau of Mines continued the study of float-coal transport, deposition, explosion hazard, and control methods ( $\frac{144}{146}$ ). Initial studies on float-coal transport and deposition indicated the following:

- 1. The air velocity has a marked effect on the quantity of dust deposited on the floor at a given station and consequently on the quantity in suspension.
- 2. For a given air velocity, the quantities of dust deposited per unit area and maintained in suspension at a station vary inversely as the square root of the distance from the dust source.
- 3. For a given air velocity, the quantity of dust deposited at a station is directly proportionate to the quantity of dust dispersed. Deposition at a station was not affected by the rate of dust dispersion in the 0.3 to 2 1b/min discharge range.
  - 4. Dust deposition is relatively uniform across the width of entry.
- 5. The quantity deposited on rib-roof surfaces is a small proportion of the total dust dispersed. Dust deposition on trays decreases approximately linearly with height above the floor.
- 6. The quantity of dust deposited is affected by the shape of the trays. Dust deposition on trays having a 1/4-inch-circumferential lip may be 20 times more than on flat trays when the air velocity is 550 fpm. At an air velocity of 200 fpm, three times more dust was collected than on flat trays. About the same quantity of dust was deposited on glass and plastic sheets as on a flat galvanized sheet-metal surface.
- 7. The relative humidity (50 to 94 percent) does not affect dust deposition.

To determine the quantity of float coal deposited in return airways and belt entries, the Bureau surveyed 50 mines located in the major coalfields of the United States ( $\underline{105}$ ). The mean quantity of deposited dust was found to be 0.02 oz/cu ft of entry volume, of which 73 percent was on the floor and 27 percent was on the ribs and roof. The float coal concentration was more than 0.1 oz/cu ft in 6 percent of the dust samples. Statistical analysis of the samples indicated that the quantity of float coal does not differ significantly between samples collected from mines using conventional or continuous mining equipment, between mines working in coal seams having a low or high

 $<sup>^4\</sup>mathrm{Reference}$  to specific brands is made for identification only and does not imply endorsement by the Bureau of Mines.

volatile ratio, located in Eastern or Western States, or producing less than or more than 5,000 tons of coal per day. Similarly, no significant difference was observed between samples from entries having a low or a high velocity air current and from locations adjacent to or distant from the last open crosscut.

Bureau recommendations  $(\underline{146})$  for alleviating the float coal hazard included (1) using water sprays on mining equipment, (2) using rock dust to maintain a minimum of 80 percent incombustible in the top 1/8-inch layer of dust where float coal is deposited in amounts less than 0.1 oz/cu ft, (3) mixing of the coal and rock dusts on the floor to insure 80 percent incombustible on the floor, if incombustible content of rib-roof surfaces is 80 percent or higher, and (4) dispersing rock dust into the return-air ventilating current during mining operations. Inert-dust dispersers and water jets activated by an explosion are being investigated for supplementing generalized rock dusting.

The handling of rock dust in bulk with newly developed equipment, was advanced as a means for drastically reducing the cost of rock dusting in multishift coal mines ( $\frac{3}{5}$ ). Adoption of a bulk handling system at one mine ( $\frac{46}{5}$ ) resulted in the saving of \$7.40 per ton of rock dust applied and increased mine safety.

Successful use of rock-dust dispensers on auxiliary fans was first reported in  $1963~(\underline{69})$  for minimizing hazards which may result from layer deposition of coal dust in return airways ( $\underline{138}$ ). Rock dust was fed at a rate of 1/2 to 1 pound per minute into the discharge of an auxiliary exhaust fan ventilating the face of a continuous-miner operation. Dust samples were collected from the floor, roof, and ribs of the return airway at intervals of about 100 feet for a distance of 1,140 feet from the face. The floor samples had incombustible contents ranging from 82.8 to 85.5 percent. The composites of floor, roof, and rib samples had incombustible contents ranging from 65.6 to 90.4. The cumulative samples for 1,140 feet outby the face were homogeneous mixtures having incombustible contents of at least 78.7 percent. Others ( $\underline{14}$ ,  $\underline{29}$ ,  $\underline{67}$ ) have reported similar success. This practice has become standard operating procedure, and is now referred to as "trickle dusting" ( $\underline{71}$ ,  $\underline{74}$ ).

## Ventilation

Higher production rates and the mining of coal under deeper cover have increased methane and dust liberation in the mines and consequently the need for greater quantities of fresh air. The circulation of 5 to 10 tons of air for each ton of coal produced is not unusual (22,53) and it is common to have 20,000 or more cfm of air in the last breakthrough within a distance of less than 200 feet from the face (86). Due to leakage, ventilation air losses in operating mines often amount to 70 percent of the induced airflow. The use of a material consisting of an industrial nylon laminated with vinyl was suggested for use in construction of temporary stoppings and line curtains (43). The construction of stoppings with polyurethane foam was also suggested (104). Reduced construction costs and air-leakage losses are advantages claimed for these materials. In a coal mine ventilation guide (51), fundamentals of mine ventilation were reviewed, industry's emphasis on improving ventilation at the immediate face was noted, and the use of the new materials and equipment now available was stressed.

Face ventilation is accomplished with line brattices or auxiliary fans supplemented by diffusion fans when required for the control of methane. brattice is used except when bulky face equipment prevents its proper installation. The efficiency of line brattice systems is dependent upon direction of airflow, method of installation, porosity of fabric, and tight-rib area (62-63). Successful ventilation of faces with line brattices where ripper-type continuous miners are used was described (22). When line brattices of jute material are installed properly 3,000 to 6,000 cubic feet of air per minute are provided to the faces. The intake air is directed over the mining equipment so that the mining crews are not exposed to the coal dust in the return air. If more air is required for methane dilution and removal, the regular jute curtain is backed with plastic material to reduce leakage through the line brattice. The installation of small diffusing fans and air ducts on Jeffrey Colmols for control of methane at faces where line brattice is used was reported (185). The line brattice can be hung on either side of the work place as the ducting allows air to be directed across the face in either direction.

Coal faces being advanced by full face boring machines are ventilated most successfully with auxiliary fans. A permit for the use of auxiliary fans must be obtained from the Joint Industry Safety Committee ( $\underline{118}$ ). A study of methods for ventilating continuous-miner places was made by the Bureau of Mines ( $\underline{175}$ ); the following recommendations were made concerning the use of auxiliary fans:

- 1. Each auxiliary fan should be of the permissible type and maintained in a permissible condition.
- 2. Each auxiliary fan should be installed and operated so that recirculation is avoided.
  - a. Blowing-type fans should be installed on the intake side of the breakthrough.
  - b. Exhausting-type fans should be installed on the return side of the entry or breakthrough.
  - c. In all cases the quantity of intake air available to the auxiliary fan should be greater than the rated capacity of the fan.
- 3. Auxiliary fans should be operated continuously during face operations. If the auxiliary fan fails or is stopped, power to the face equipment should be disconnected until the fan is again in operation. During such stoppage, face ventilation should be maintained by conducting the primary air current into the place in such a manner that accumulations of methane are prevented.
- 4. Auxiliary fans should not be operated during the interruption of the main ventilating current. Any accumulation of methane resulting from such interruption should be removed by conducting the air current into the place with line brattice after the restoration of the main ventilating current and before auxiliary ventilation is resumed.

- 5. In places where auxiliary fans are used, the ventilation during scheduled idle periods (that is, weekends, idle shifts, etc.) should be by means of the primary air currents conducted into the place in such manner that the accumulation of methane is prevented.
- 6. When auxiliary systems incorporate a small blower or diffuser mounted on the machine, such blower or diffuser should be stopped immediately if the auxiliary fan or primary air source fails. This will prevent the recirculation of air-gas mixtures at the face.
- 7. If it is necessary to prevent intermittent operation or operation below capacity, the auxiliary fan should be installed on a separate power source.
- 8. The size of the fan and tubing should be adequate to provide the necessary air volume requirements when using the maximum length of tubing or duct that may be necessary.
- 9. Ducts or tubing should be installed and maintained to prevent excessive leakage and should be suspended from the roof or timbers.
- 10. Machine-mounted auxiliary fans or diffusers should be mounted and maintained so that accumulations of coal or debris do not obstruct the passage of air through the fan or ducting.
- 11. The installation and operation of the auxiliary units should be supervised and controlled by a competent person responsible to the mine foreman.

A hydraulically driven exhaust fan was mounted on a full face boring-type continuous miner to exhaust air from the face (30). Mine personnel believe it provides the best face ventilation for that type of boring miner. Over 5,000 cubic feet of air per minute are discharged from the face into the return at the end of 170 feet of 18-inch tubing. It was claimed that the arrangement provides a movement of fresh air over the mining machine, good face visibility, and better ventilation for methane control at the immediate face. Testing and use of auxiliary fans supplemented by diffusion fans for satisfactory ventilation of boring-type miner faces has also been described (70, 156). At one operation, depending upon methane liberation, up to three auxiliary fans are used to exhaust air from the face through 16-inch noncollapsible tubing. fans are driven by 5 hp electric motors and deliver 4,000 to 5,000 cfm of air at the end of the tubing. If more than one fan is used, one ventilation line is ended at the coal pile at the end of the boom of the continuous miner. The auxiliary exhaust fans were fitted with 200-pound rock dust hoppers for trickle dusting. A small diffuser fan, mounted on the continuous miner, is always used in conjunction with the auxiliary exhaust fan, to provide air movement in the corner of the face opposite to the ventilation tubing.

To assure positive ventilation at the faces of boring machine operations, the Bureau of Mines has included the following condition in its proposed revision of Schedule 2 ( $\underline{38}$ ) under which electric motor-driven mine equipment and accessories are certified for use in gassy coal mines:

§ 18.22 Boring-type machines equipped for auxiliary face ventilation.

Each boring-type continuous-mining machine that is submitted for approval shall be constructed with an unobstructed continuous space(s) of not less than 200 square inches total cross-sectional area on or within the machine to which flexible tubing may be attached to facilitate auxiliary face ventilation.

The Bureau of Mines conducted a study of dust control in connection with continuous mining of coal(11). The effectiveness of dust suppression methods being employed was evaluated for the purpose of establishing operating procedure guides for adequate dust control. Thirty-eight mining machines, operating in 15 mines, were observed. The mines that were visited were working in nine different coal seams and were using five different types of mining machines. Blowing and exhausting line brattices or auxiliary fans, operating exhausting, were used for face ventilation. At all mining operations observed water was being used for allaying dust, and at two mines a wetting agent was being added to the water. Following is a summary of what the investigation revealed regarding conditions for dust exposure control:

- 1. Air unpolluted with dust should be directed over all the men of the mining crew. Here, air unpolluted with dust means air having a dust concentration of 5 million particles per cubic foot, or less.
- 2. Joy Continuous Miner operations need a minimum of 2,500 cfm of air for face ventilation and about 10 gpm of water for allaying dust, or 4,000 cfm of air and 5 gpm of water. If the machine is equipped with roof drills or timbering is concurrent with the machine operation, a minimum of 4,000 cfm of air and 10 gpm of water is needed.
- 3. Lee Norse Miner operations need 3,500 cfm of air for face ventilation and about 10 gpm of water for allaying the dust. When less than 10 gpm of water are used, a minimum of 5,000 cfm of air is needed.
- 4. Judging from limited data, the requirements for Jeffrey Colmol operations are comparable to those for Lee Norse Miner operations.
- 5. Men installing roof supports or extending line brattice or ventilation tubing should wear respirators when working in return air. Return air, here, means air that has left the face after passing over the mining machine.

The first condition for control indicates that the face should be ventilated by an exhaust system. This can be accomplished either by exhausting the air behind line brattice or with an auxiliary fan through noncollapsible tubing. An exhaust system may be used safely for ventilating gassy mine faces if the system provides for diffusion of the gases at the face and has sufficient capacity. The Bureau of Mines studied this problem and outlined safe procedures (175). Dust loadings of the return from the face of each

operation observed were measured and ranged from 0.05 to 26.7 pounds of coal dust per hour of continuous operation. The effectiveness of the use of 5 gpm of spray water was demonstrated in one instance by dust loadings of 2.5 pounds per hour with water to the machine spray nozzles turned off and 0.4 pound per hour with water turned on. The effect of adding a wetting agent to the spray water was demonstrated by dust loadings of 1.4 pounds per hour when water alone was used and 1.0 pound per hour when a wetting agent was added to the water to make a 1-percent and a 2-percent solution. The effect of a wetting agent was demonstrated in a second instance by dust loadings of 4.5 and 4.3 pounds per hour when water was used, and by loadings of 2.9 and 3.0 pounds per hour when water with a wetting agent added was used

The state of the art of face ventilation was summed up (122) as follows:

- l. Normally we have sufficient air available, at the last "open crosscuts."  $\,$
- 2. We can, within limits, control the air available, but more applied research should be done on better checks or doors.
- 3. Using the proper material in well-installed brattices, we can move sufficient air to the face where conventional equipment is operated.
- 4. In the case of continuous miners or other bulky machines, additional research on clearing the face of explosive concentrations of methane is needed.
- 5. Research is needed to reduce friction sparking by the bits of machines.
- $\,$  6. Additional work should be conducted to reduce the dust produced and to allay whatever dust is evolved.

## Personal Protective Equipment

A cryogenic breathing apparatus for continuous-miner operators, an innovation in environmental dust control, was tested and evaluated by one coal mine operator ( $\underline{80}$ ). The prototype consisted of a portable cryogenic storage vessel and heat exchanger mounted on the continuous miner, and a breathing mask for the operator with a demand-type regulator and a gas delivery hose having a quick-disconnect coupling. An improved version of the prototype combined the vessel, heat exchanger, and auxiliaries into one compact unit for mounting on the continuous-mining machine. Other methods of providing dust-free air at comfortable temperatures to the machine operator, such as the use of low-pressure compressors, were being investigated also. In view of the known limitations to the use of respirators ( $\underline{176}$ ), these efforts make evident the difficulty of suppressing the dust generated by continuous-type mining machines.

#### AIRBORNE-DUST SAMPLING, MEASUREMENT, AND ANALYSIS

#### Dust Sampling

A detailed description of about 150 air sampling instruments was included in a manual of instruments ( $\frac{4}{2}$ ). It contains a pertinent and comprehensive technical discussion introducing each instrument grouping and an appendix of tabular data useful to the industrial hygienist. Other published books pertaining to dust sampling, measurement, and analysis are included in the list of references of this paper ( $\frac{1}{2}$ ,  $\frac{44}{2}$ ,  $\frac{65}{2}$ ,  $\frac{89}{2}$ ,  $\frac{107}{2}$ ). Many articles were published on these subjects, but only those describing equipment or procedures thought to be applicable to the mining industry are noted in this circular.

There is general agreement that the midget impinger is useful as a control instrument, but its value for evaluating the health hazard of dusts is questioned. The doubt stems from a growing acceptance of the concepts of respirable dust and selective sampling for assessing the health hazard. The genesis and evolution of these concepts were discussed by Morrow ( $\underline{140}$ ). Hatch and Gross ( $\underline{89}$ ) included descriptions of size-selecting instruments in a treatise on pulmonary deposition and retention of inhaled aerosols. They concluded that "there is no firm and final answer to the question: How to collect aerosol samples and how to express aerosol concentrations and composition."

Studies of size-selective samplers, suitable for fieldwork, were undertaken to resolve some of the problems associated with an accurate assessment of hazards to health from inhaled uranium aerosols. One such study (93) was conducted in uranium mills in New Mexico, using May preimpingers followed by macroimpingers and several models of small cyclones followed by membrane filters. Retention characteristics were determined for the preimpinger and four models of cyclones, and compared with upper respiratory track retention curves. The effects of sampling rate, of agglomeration and density of sampled dust, and of variation of outlet diameter on the collecting efficiency of cyclone collectors were also investigated. Another study (120) consisted of developing and using a family of size-selective air samplers for field survey work. Each sampler consisted of a cyclone collector followed by an efficient filter and operated at a flow rate suitable to a particular suction source. Sampling rates ranged from 0.9 1pm to 40 cfm. With these samplers, relative proportions of "respirable" and "nonrespirable" dusts were determined for various operations in the uranium and beryllium industries.

Following the trend to size-selective dust sampling, the Division of Occupational Health of the Pennsylvania Department of Health reported an investigation of gravimetric dust sampling ( $\underline{157}$ ). The performance characteristics of cyclones and horizontal elutriators were studied.

In the conduct of the environmental phase of the coal miners' pneumoconiosis study, the Bureau of Mines was confronted with the problem of sampling procedure. In reviewing the problem it was stated  $(\underline{178})$  that instrumentation should be based upon the following fundamental concepts:

- 1. This survey is concerned only with hygienically significant dust.
- 2. It should determine, as well as possible, the hygienically significant dust in the breathing zone of coal mine workers.
- 3. It should simultaneously determine the hygienically significant dust in the work area.
- 4. The relationship between data obtained from the breathing zone and corresponding information obtained from the work area must be established.
  - 5. Measurements should be made on a time weighted, full shift basis.
- 6. The survey should separately identify the dustiness exposure of significantly different mining operations.
  - 7. Compositional analysis, especially for silica and ash, should be made.

Guided by these concepts, laboratory and field tests of various dust sampling instruments were undertaken by the Bureau of Mines to determine their utility. A battery-operated midget impinger pump and a battery and pump combination for 8 to 10 hours operation of a personal sampler were developed. Both are intrinsically safe. The personal monitor consists of a 10-mm cyclone separator followed by a membrane filter. It has a flow rate of 2.8 lpm, and the dust collected on the membrane filter is determined by weighing. The tests included simultaneous sampling with the midget impinger apparatus, the personal monitor, and an Isleworth Gravimetric Dust Sampler. An empirical relationship of 5.6 million particles per cubic foot (mppcf) equivalent to 1 mg of respirable dust per m<sup>3</sup>, was derived from the midget impinger and Isleworth sampler data (96). An empirical relationship of 17 mppcf equivalent to 1 mg of respirable dust was derived from additional personal monitor data. The quartz content of the respirable dust samples obtained with the personal monitor and the Isleworth sampler can be determined by infrared spectroscopy. A 0.35 to 0.45 milligram portion of a sample pelletized with potassium bromide is required for analysis.

A preliminary study (25) was made of the composition of the respirable fraction of airborne coal dust. Samples were collected for long periods of time in a powerplant with an elutriator especially designed for fractional recovery. Results indicated that settled dust samples as commonly collected or samples of the parent coal are not representative of the respirable airborne coal dust. The total mineral content (ash) of the airborne coal dust increased as the particle size decreased. The concentration of silica in parent material and airborne particulate matter were also investigated ( $\frac{177}{1}$ ). The data obtained from the study indicated that the free silica content of airborne dust samples collected within 6 feet of the dust-producing operation and the parent material were about the same. For samples collected at distances greater than 6 feet the data were inconclusive.

Two cascade impactors of new design have been described in recent publications. The first instrument ( $\underline{119}$ ) was found to be suitable for the rough estimation of particle size distribution of airborne materials commonly

encountered in industry. Particulates are collected at four impaction stages on two standard 1- by 3-inch glass microscope slides and on a 1-inch-diameter filter following the impaction stages. The second instrument (6) is composed of six collection stages, each having 400 impactor jets, and has a sampling rate of 1 cubic foot of air per minute. Having been calibrated by using unit density spheres, all particles collected with it are classified as aerodynamic equivalents of particles of known lung penetrability. Thus, it was claimed that the health hazard can be assessed on the basis of respiratory tract penetration. For a special study, the multijet sampler was calibrated by use of monodispersed aerosols of methylene blue dye and polystyrene latex (77). Collection efficiency characteristics were determined directly from the mass retained at the deposition sites. This was held valid, because concurrent size-distribution data on each aerosol generated indicated that values for number and mass median diameter were nearly equal. Experimental methods of aerosol generation, sampling, and mass determination were presented with representative data. Collection efficiency curves obtained for the various stages of the sampler were given with computed values of effective cutoff diameters. Simplicity and accuracy were cited as advantages of the calibration method. Another direct method has been devised for measuring cascade impactor stage efficiencies (58). The method makes use of a special two-stage configuration of the sampler being used. To employ the method, it is only necessary to measure the unnormalized density function of the particles collected on the second of two identical impactor stages. With this method an impactor stage can be calibrated in a few hours.

Errors inherent in methods used to interpret cascade impactor data were discussed in a recent publication (130). Two methods of interpretation are commonly used. In one, the stage constants of the impactor are effective cutoff diameters, and it is assumed that a given stage collects all particles greater than its effective cutoff diameter. In the other, the stage constants are mass median diameters, and it is assumed that the sample collected at a given stage always has the same mass median diameter. Errors in interpretation arise, because stage constants of both types are functions of the mass distribution of the aerosol being sampled. The magnitude of these errors was calculated for a Casella impactor, and it was found that effective cutoff diameters are more reliable as stage constants than are mass median diameters.

Limited use has been made of the cascade impactor for sampling in ducts and stacks. A dust probe was designed for a Casella cascade impactor  $(\underline{82})$ . The design includes probe nozzles, an arrangement for preventing deposition of aerosol on the first stage prior to the actual sampling period, and a timing control system which permits reproducible sampling periods as brief as 0.6 second.

A miniaturized midget impinger flask was developed for possible use as a personal monitor ( $\underline{117}$ ). The design is based on a threefold reduction of the midget impinger flask dimensions. Dust collection performance data indicated that, at the proper flow rate, the particle collection characteristics of the microimpinger are comparable to those of the midget impinger.

An improved high-volume air sampler having a weighable support for fibre glass filters was described ( $\underline{173}$ ). Novel features of the equipment include a filter support which permits rapid filter changing and an arrangement for accurate airflow measurement. A light-weight high-volume electrostatic precipitator was announced ( $\underline{121}$ ). Reportedly, it collects airborne particles of all sizes with high efficiency at a sampling rate of 27 cubic feet of air per minute. The sample is collected on a single tube 1-1/3 inches in diameter and 12 inches long. It can be used with a cyclone precollector, simulating upper respiratory retention, for two-state sampling, without a significant reduction in sampling rate.

Two flow rate regulators, each working on a different principle, were developed to maintain constant rates of flow in high-volume air samplers (87). Both a bypass regulator and a series regulator showed satisfactory control by regulating the airflow of approximately 35 cfm within  $\pm 4$  percent over a pressure range of 13 to 16 inches of water. Two filtration-type air samplers were tested in turbulent and positive directional air streams to determine if sampling is dependent on orientation of the sampling instrument (79). In turbulent air no bias due to orientation was found. In a directional air stream, a sampler head facing into the air stream collected more dust by a factor of two.

Aerosol sampling procedures for obtaining electron microscope specimens were outlined and discussed in an article  $(\underline{27})$  which also includes a comprehensive list of references pertaining to sampling methods.

The millipore filter technique used since 1957 by the Tennessee Valley Authority for assessing dusty conditions in handling coal at power generating plants has been developed further ( $\underline{143}$ ). A piece of filter is prepared for counting and sizing by placing it on a microscope slide and subjecting it to acetone vapors which results in an even, clear, glazelike finish to the filter with the dust particles sealed to the slide in a single plane. It has been reported that routine use of membrane filters was simplified by the design of a small inexpensive filter holder which has advantages over commercially available units ( $\underline{174}$ ). Techniques for determining sample collection rates directly from vacuum-gage readings and for preparing samples for use with internal proportional counters were described in the same report.

The reproducibility and the relationship of dust counts determined by a Southern Research Institute Aerosol Photometer, a midget impinger, and a membrane filter sampling procedures have been investigated ( $\underline{26}$ ). Coefficients of variation of concentrations of airborne limestone dust were determined to be 9.4, 15.2, and 22.2 percent for the aerosol photometer, membrane filter, and midget impinger, respectively. Limestone dust concentrations by midget impinger were numerically equivalent to aerosol photometer dust concentrations with its threshold setting at 0.8 micron. Best agreement of membrane filter and aerosol photometer concentrations for coal dust occurred at the 0.3-micron threshold setting. Similar results were obtained with the aerosol photometer when used in an underground metal mine ( $\underline{45}$ ). The results of the field tests indicated that it can give good results, calibration is very important for acquiring accurate count and size distribution data, instrument maintenance is not excessive, and its operation is reliable.

Concern has been expressed over the need for further standardization of the procedure for impinger sampling to assure compliance with the threshold limit values recommended annually by the American Conference of Governmental Industrial Hygienists ( $\underline{169}$ ). The following recommendations have been made:

- 1. The inlet to the impinger should be held between the dust source and the worker's nose and mouth and no more than 2 feet from the worker's nose and mouth.
- 2. The samples should be spaced throughout a shift or complete cycle of operations. The samples should be taken at regular intervals or at times chosen at random beforehand. If samples are taken at regular intervals, care should be taken to see that the interval does not coincide with any other regular cycle of events which might be related to dustiness.
- 3. The environment complies with the threshold limit value document when the estimated average concentration is less than that given by the following formula:

$$C = TLV - k(range),$$

where C = maximum average concentration for compliance,

TLV = threshold limit value,

Range = difference between maximum and minimum results, and k = a constant related to the number of samples taken (refer to the following table).

# k values for the range

| Number of |          |
|-----------|----------|
| samples_  | <u>k</u> |
|           |          |
| 32        | 0        |
| 10-31     | 0.1      |
| 6-9       | 0.2      |
| 5         | 0.3      |
| 4         | 0.4      |
| 3         | 0.8      |
| 2         | 2.9      |

## Particle Sizing and Counting

Centrifugal sedimentation and electron microscopy coupled with electronic counting were compared for measurement of particle-size distributions of calcium phosphate and silica particles below 5 microns (95). Weight-size distributions from the two techniques agreed within experimental error. Excessive time required for determination and inaccuracies due to Brownian motion make the use of the centrifugal sedimentation technique impractical for sizing particles smaller than 0.1 micron in size.

The relative merits of methods of automatically counting and sizing particles were discussed (54). It was noted that (1) light scattering methods are readily amenable to automation and at present offer the only reliable means for directly analyzing aerosols over a range of sizes extending from molecular dimensions to the lowest sieve size; (2) planar field scanning has not fulfilled early expectations, and instruments utilizing this principle need further improvement before they can be regarded as general utility instruments; and (3) the Coulter Counter has the advantages of simplicity, flexibility, and low operating cost, and is an obvious choice for applications within the size range specified for particles dispersed in a liquid electrolyte.

The Bureau of Mines developed a procedure for using the Coulter Counter to determine dust concentrations from midget impinger samples collected in coal mines ( $\underline{12}$ ). The procedure was found to be more precise for dust counting than the Bureau of Mines standard microprojector method ( $\underline{7}$ ). The gain in precision is due primarily to the increase in the number of particles counted. Counting time is reduced and particle-size data can be obtained readily. The problems of instrument calibration ( $\underline{131}$ ) and coincidence phenomenon ( $\underline{164}$ ) were considered in the course of the investigation.

Two basic errors in particle counting by the light-field microscope method have been investigated  $(\overline{73}).$  These were the within-counter and between-counter variability when counting particles contained on a given field. The study indicated that the between-counter variability was about twice that of the within-counter variability. The within-counter variability was about 22 percent and was the standard deviation expressed as percentage of the within-counter mean. Optimum dust density for counting was found to be between 40 to 60 particles per field.

The effect of viscosity of the suspension medium on the settling time of particles in suspension in a counting cell has been investigated ( $\underline{83}$ ). A family of curves was prepared which allows quick approximation of expected settling time in counting cells, as defined by Stokes' law, when minimum detectable diameter, particle density, and medium density and viscosity are known. It was concluded that if consideration of media viscosities and particle densities is neglected, the data yielded by the fixed settling-time counting procedure may not represent the actual concentration of dust on a common basis for comparison with threshold limit values or other data.

A statistical comparison was made of equivalent area counts and dust concentrations determined from microprojector and light-field microscope count data ( $\underline{203}$ ). The equivalent area count of the microprojector deviated significantly from those of the microscope for 55 of the 79 samples, or 69.6 percent. A similar deviation was found for the dust concentrations. In each case it was found that the microprojector produced higher results, and the average ratio was 1.52 for microprojector to microscope equivalent area counts.

Thirty persons of varying experience, determined the particle-size distribution of a prepared set of 18 dust slides for comparative purposes and the results were evaluated statistically ( $\overline{17}$ ). Being in practice rather than having long experience seemed to be the main criterion of accuracy in size

measurement by microscope. Another comparison was made of the aerosol sampling and sizing techniques of nine different laboratories ( $\overline{76}$ ). Most of the work of the study involved submicron aerosols, which were sized by electron microscope techniques. Variations up to  $\pm 10$  percent in count median diameter and geometric standard deviation were found in comparing sizing results. Count median diameters determined on the basis of maximum horizontal diameter (Feret's diameter) were approximately 10 percent higher than those determined on the basis of equivalent area (projected diameter). Variation in count median diameter remained at  $\pm 10$  percent with eight different air sampling instruments, whereas variation in geometric standard deviation increased to  $\pm 15$  percent.

A multistage sizing technique has been described (158) which is applicable to particle sizes ranging from 0.3 to 500 microns. Successive particlesize counts of several hundred particles are made, each at a lower magnification as required by the particle-size range of the sample. With each successive count, the particles below a successively larger size are not counted. The ratio of the number of particles above to those below a specified size, determined from the preceding counts, are used to calculate the number of particles in the omitted size ranges for the successive counts. The size-count data are converted to cumulative size-frequency data, regarding the particles as spheres. The size-frequency data are plotted on log probability graph paper to determine the geometric mean size and geometric standard deviation on a number basis. The reported geometric mean size on a weight basis is determined by using the following equation:

$$\ln X_{vg} = \ln X_{ng} + 3.0 \text{ } 1\text{m}^2 \text{ } \text{o}_g$$

where  $X_{vg}$  = geometric mean by weight,

 $X_{ng}$  = geometric mean by count,

og = standard geometric deviation.

Procedures were recommended for estimating the statistical error associated with presentation of sizing data based on conventional count, area, or weight distributions  $(\underline{56-57})$ . Tabular and graphical forms are suggested for presentation of sizing data. It was recommended that

- 1. The original sizing data be presented, not only the total number of particles sized, but the number per defined class interval.
- 2. The sizing results be presented as a frequency histogram or a cumulative frequency distribution.
- 3. The errors associated with each class interval and estimated as  $f_1^{1/2}$  be superimposed on the frequency polygon or at least indicated in a table in the body of the text.
- 4. If "goodness of fit" techniques are applied to the sizing data and indicate a high probability for adherence to the log-normal distribution, then the use of the characterizing parameters, geometric mean, and standard geometric deviation, is justified.

Some areas in which the electron microscope has been employed for solution of occupational health problems were pointed out in a recent publication ( $\underline{91}$ ). In one instance, under the optical microscope, a large number of very small particles were observed, which lowered the median particle size well. below that found in a similar type sample from a previous study. When the samples were examined under the electron microscope, two types of material were seen. One was the typical mineral dust of concern, and the other was a very small fumelike substance, later identified as primarily coal smoke and only present in the air during the heating season.

A new method was developed for preparation of carbon-coated grids for electron microscope applications ( $\underline{162}$ ). Particularly suited for quantity output, it was claimed to be relatively simpler, faster, more efficient, and less expensive than other commonly used techniques.

#### Dust Analysis

Procedures used routinely in the laboratories of the U.S. Public Health Service, Division of Occupational Health for the X-ray diffraction analysis of industrial dust were presented  $(\underline{183})$  with particular reference to new techniques for the collection and analysis of airborne dust when the total weight of sample is about 1 milligram. The composition is given of a photographic developer for X-ray diffraction films which has low fogging properties and which provides a wide range, linear intensity-density relationship. The use of beryl as an internal standard for the quantitative determination of quartz in industrial dust is discussed, and results obtained by chemical methods are compared with results obtained by X-ray diffraction methods.

Comparison of X-ray diffraction, chemical, and dispersion staining methods for the determination of quartz in dust samples revealed a high degree of correlation among the three analytical methods (72). Dust samples from a variety of sampling instruments were analyzed chemically by a phosphoric acid treatment method, by a phase contrast dispersion staining method, and by X-ray diffraction. The correlation of pairs of sampling methods were consistently good except for analysis of the less than 5-micron fractions. Possible sources of disagreement among the sampling methods used were judged to be the loss of an appreciable mass of quartz during heating of the sample in hot phosphoric acid, the presence of other material having indices of refraction similar to quartz, and a disparity between particle-size distribution of the quartz and nonquartz fractions of the sample. It was concluded that, for the same dust sample, the quartz content yielded by one commonly used analytical method may differ from that yielded by another commonly used method.

A study of the precision of the phosphoric acid method ( $\underline{182}$ ) gave a mean standard deviation of 0.34 in the analysis of typical dust samples containing from 3 to 50 percent quartz. A reduction of digestion time was proposed for minimizing the loss of quartz from the less-than-5-micron fraction of airborne dust. The phosphoric acid method can be extended to samples of airborne dust as small as 2 milligrams by spectrophotometric determination of the quartz as molybdisilicic acid.

A technique has been described for quantitative determination of asbestos in airborne dust samples by X-ray diffraction analysis ( $\underline{59}$ ). Samples of airborne asbestos collected on filters are redeposited on membrane filters to assure uniform distribution over the entire filter. The prepared filters are mounted in a diffractometer for qualitative and quantitative analysis. This procedure, which makes use of external standards prepared from pure asbestos materials, is applicable to quantitative determination in the 1- to 8-milligram range for crocidolite and amosite and in the 1- to 10-milligram range for chrysotile. This procedure may be used for analyzing bulk samples by drygrinding them to proper particle size before preparing the membrane filter mounts. A technique was also described for X-ray diffraction analysis of bulk or settled dust samples for chrysotile ( $\underline{60}$ ). An internal standard, aquamarine, is used in the quantitative determination of the asbestos material. The method can be applied to 1-gram samples of materials containing a minimum of 5 percent chrysotile.

#### LEGISLATION

Except as provided by the Federal laws noted, the regulation dust control in mining, tunneling, and quarrying is under State jurisdiction. A Bureau of Mines report covering 1958 through 1960 summarized the various State administrative organizations (10).

## Federal Government

To promote health and safety in the metal and nonmetallic industries the 89th Congress passed the Federal Metal and Nonmetallic Mine Safety Act (128, 190), which was approved September 16, 1966. The major responsibility for administering the provisions of the act is vested in the Bureau of Mines. With regard to dust control, it authorizes the Secretary of the Interior to inspect and investigate mines, as defined, for the purpose of obtaining, utilizing, and disseminating information relating to the causes of occupational diseases originating in such mines. It also authorizes him to promulgate health and safety standards and to designate as mandatory, standards which deal with conditions or practices of a kind which could reasonably be expected to cause death or serious physical harm. No standards had been promulgated by the end of the year 1967.

Public Law 376, 89th Congress, approved March 26, 1966  $(\underline{37}, \underline{129}, \underline{189})$ , extended the provisions of Title II of the Federal Coal Mine Safety Act to all underground coal mines regardless of the number of persons employed. The provisions of the amended act and the Federal Mine Safety Codes pertaining to control of coal mine dust are as follows:

(1) Where underground mining operations raise an excessive amount of dust into the air; water or water with a wetting agent added to it, or other effective method, shall be used to allay dust at its source. This mandatory provision from which anthracite mines are excepted is intended to control fire and explosion hazards only.

- (2) The dust resulting from drilling in rock shall be controlled by the use of permissible dust collectors or by water or water with a wetting agent, except as provided for short periods of exposure  $(\underline{41})$ . This is an advisory provision applicable to all underground mines.
- (3) Men exposed for short periods to gas-, dust-, fume-, and mist-inhalation hazards shall wear permissible respiratory equipment. When exposure is for prolonged periods, other measures to protect the workmen or to reduce the hazard shall be taken. This is an advisory provision applicable to all underground mines.
- (4) Men exposed to dust-, fume-, and mist-inhalation hazards shall wear permissible respiratory equipment. This is an advisory provision applicable to all strip mines.

Under provisions of the Walsh-Healey Public Contracts Act the Department of Labor issued "Radiation Standards for Mining"  $(\underline{35} - \underline{36})$ , effective December 14, 1967. In it a working level is defined as any combination of radon daughters in one liter of air which will result in the ultimate emission of 1.3  $\times$   $10^5$  mev of potential alpha energy. A working level month is defined as the exposure received by a worker breathing air at one working level concentration for 4-1/3 weeks of 40 hours each. Control of occupational exposure is required so that no individual will receive an exposure of more than 1.8 working level months in any consecutive 3-month period and no more than 3.6 working level months in any 12-month period. Until January 1, 1969, mines will be considered in compliance that have conditions that would result in an exposure of not more than 12 working level months in any 12 consecutive months.

#### State Government

The States of Alaska, Arizona, Idaho, Michigan, Montana, Nevada, New Mexico, Oklahoma, Pennsylvania, South Dakota, Utah, Virginia, West Virginia, and Wyoming made changes in mining laws during the period 1963 through 1967. Regulations pertaining to dust control, included in these laws, are summarized as follows:

#### Alaska

The "Mine Safety Regulations, 1963" (2) of the State of Alaska applicable to mines other than coal, requires that an employer shall provide water or some other effective means to collect or allay dust created by rock drilling or boring machines which create injurious quantities of dust. No employee shall use any drilling machine without the use of water or other dust preventative. Workmen who are exposed to dusts, metal fumes, and smokes, in amounts above established limits, shall be provided with proper protective devices. All underground working places shall be provided with an adequate quantity of fresh healthful air. Operators shall equip chutes from which dusty ore or rock is taken with efficient sprinklers or other devices to prevent the escape of dust into the air. Mills, ore houses, or treatment plants where dry or dusty ore or rock is handled shall be supplied with clean water and suitable sprinkling equipment which shall be used to allay dust, or equivalent

protection shall be provided. Rock drills shall be equipped with an effective means to collect or allay dust. When workmen must be exposed to dust or fume hazards for only short periods of time, they shall wear U.S. Bureau of Mines approved respiratory devices, but when exposure is for prolonged periods, other means of protection must be taken.

Requirements of the Regulations applicable to coal mines include the provisions of the Federal Mine Safety Code for Bituminous-Coal and Lignite Mines of the United States, Parts I and II, and the Code of the Federal Regulations of the United States, Title 30, Parts 211 and 216.

### Arizona

The "Mining Code of the State of Arizona" (15) provides for a State mine dust engineer responsible for inspecting each mine in the State to determine whether or not a hazardous dust condition exists therein and recommending methods of remedying such conditions. A hazardous dust condition, as defined by law, is deemed to exist where the breathing zone of an employee while engaged in the performance of his work contains more than 10 million particles of airborne dust, between 1 and 5 microns in largest dimension, per cubic foot of air. However, if the free-silica or asbestos content of such airborne dust does not exceed 10 percent, a dust hazard shall not be deemed to exist unless such particles exceed 100 million per cubic foot of air. The State's Mine Safety Rules require that all drilling in open pits must be done wet, all holes drilled underground must be collared and drilled wet, muck piles must be wetted down before moving, and sprinkling devices must be installed at loading pockets and chutes to prevent the escape of dust into the air.

## Idaho

The Idaho Safety Code  $(\underline{94})$  recognizes that in all quartz and lode mining there is a silicosis hazard which must be controlled. A dust concentration of 10 million particles or more per cubic foot of air, originating from any rock formation having more than 10 percent by weight free silica (SiO $_2$ ) is deemed prima facie injurious. A dust concentration of 50 million particles or more per cubic foot of air, originating from any rock formation having less than 10 percent by weight free silica also is deemed prima facie injurious. Environmental atmospheres, when not regulated by Idaho statutes, must meet standards set forth by the American Conference of Governmental Industrial Hygienists.

According to the code, every working place where dust in detrimental quantities emanates shall be supplied with water for the purpose of preventing dust from arising. In every mine, mill, rock crushing plant, or any other operation where men are exposed to dust or fumes in harmful quantities, some mechanical or other means or method to control this condition must be used. Operators must furnish rock drilling machinery equipped with a water jet or spray or other means equally efficient to prevent the escape of dust; it is the employee's duty to use said appliance for the prevention of dust. When no other method can be used to prevent exposure to injurious dust, fumes, or gas concentrations, personal respiratory protection equipment, approved by the U.S. Bureau of Mines, shall be used.

#### Michigan

Minimum standards for control of health hazards in mining, tunneling, and other underground operations (137) were prepared by the Division of Occupational Health, Michigan Department of Health, in cooperation with the Division of Industrial Hygiene, City of Detroit, to fill the need of contractors, State and local governments, and others involved in letting contracts for underground operations. The standards require that clean air be supplied to all underground areas in sufficient quantity to prevent the buildup of toxic dusts or gases to concentrations in excess of maximum allowable concentrations, as listed annually by the Michigan Department of Health, that wet drilling equipment be used when drilling holes in rock or concrete, and that, where dry rock or other material is being handled, the muck pile shall be wetted prior to mucking and kept wet during the mucking operation in order to control dust.

Act 264 of the Public Acts of 1967 ( $\underline{136}$ ) provides for the inspection of mines, for the health and safety of persons employed in and about mines, for the appointment of mine inspectors, and creates a mine safety board in the Department of Labor. The act requires that the mine safety board formulate rules for the protection of life, promotion of health and safety, and prevention of accidents in the metallic and nonmetallic mine industry of the State. The board has yet to adopt the said rules.

## Montana

The "Minimum Safety Standards for Mining, Quarrying, Milling, and Smeltering Operations in Montana" (139) requires that every enclosed working place be sufficiently well ventilated and free from harmful quantities of dust or noxious fumes; that the maximum allowable concentrations of alpha emitting decay products of radon should not exceed 300 micromicrocuries per liter of air or other limiting quantity as established by the U.S. Bureau of Mines; that rock drilling in underground mines be prohibited unless the dust is controlled by wet drilling or other approved means and the water flow is maintained continuously whenever the drill is in operation; that no primary blasting be done in a mine during the working shifts unless the ventilation currents are arranged to minimize circulation of dust, smoke, and fumes from the blast in areas where other men are working; that underground muck piles be wet down before mucking begins and be kept wet during the entire mucking operation to control the dust, if dust conditions adverse to health exist; that harmful dusts, fumes, and mists giving rise to harmful exposure of employees be controlled by effective means such as general, local, or pressure ventilation; and that the use of permissible respiratory protective equipment be regarded as emergency protection against occasional and/or relatively brief exposure and if exposure is in excess of 1 hour per shift, other control measures be used.

#### Nevada

"Nevada State Mining Laws, 1966 Edition"  $(\underline{148})$  requires that machinery for drilling holes in any stope or raise in ground that causes dust from drilling be equipped with a water jet or spray or other means equally

efficient to prevent the escape of dust. The drilling machine appliance for the prevention of dust must be used when the machine is operated. All chutes from which dusty ore or rock is taken shall be equipped with a sprinkler or other device with which to effectively dampen such rock or ore to prevent the escape of dust during removal. Every ore house where dust, ore, or rock is sorted shall be supplied with suitable clean water which shall be used for allaying the dust. There shall be a dust control program for enclosed milling, crushing, or mineral processing operations. Permissible concentrations of silica-bearing dusts in any milling, crushing, or mineral processing operations shall be designated within limits as follows:

|                                      | Million particles per<br>cubic foot of air |
|--------------------------------------|--------------------------------------------|
|                                      |                                            |
| Description                          | (0.5 to 5 microns largest dimension)       |
|                                      |                                            |
| High (above 50 percent free silica)  | 5                                          |
| Medium (5 percent to 50 percent free |                                            |
| silica)                              | 20                                         |
| Low (below 5 percent free silica)    | 50                                         |
|                                      |                                            |

## New Mexico

The "New Mexico Mine Safety Code for All Mines, Including Opencut and Open-pit" (149) provides for a dust and mine gas engineer. He performs tasks assigned by the State mine inspector, with special attention being given to testing for gas in mines and excavations and to making dust counts. The code also requires that in underground metal mines, machinery for drilling or boring holes must be equipped with a water jet or spray or other equally effective means for allaying dust, that in the sinking of shafts drilling shall be done wet, and that every plant in which dry or dusty ore or rock is treated shall have water and sprinkling equipment which shall be used for allaying the dust, or equivalent protection shall be provided.

# Oklahoma

Section 8 of Senate Bill No. 166 amended Title 45 of the Oklahoma Statutes 1961, Sec. 528 ( $\underline{150}$ ), and provided that in coal mines, water must be used on cutter bars on all mining machines while cutting rock, and water or an approved dust collector must be used for control of dust from rotary-roof or rock drills.

# Pennsylvania

The revised "Bituminous Coal Mining Laws of Pennsylvania"  $(\underline{160} - \underline{161})$  require that coal dust or other dust in suspension in unusual quantities be allayed by sprinkling or by using other dust allaying or collecting devices, that men exposed to dust for short periods of time shall wear respiratory protective equipment, and that men exposed to dust for prolonged periods shall have protection from dust by use of approved dust collectors or dust allaying methods.

#### South Dakota

The "South Dakota Mine Safety Code for All Mines Including Quarries and Open-Pit"  $(\underline{181})$  requires that underground metal mine drilling machines be equipped with water jets or sprays sufficient to allay dust from drilling or that other equally effective means be used to prevent the inhalation of dust.

#### Utah

"General Safety Orders Covering Metal and Non-Metal Mines, Mills, Smelters, Tunnels, Quarries, Gravel Pits, Etc., In the State of Utah" (191) requires that wherever drilling or other operations cause excessive quantities of dust in the working atmosphere, effective dust allaying or collecting facilities shall be provided to keep the dust content at or below accepted threshold limit values or maximum acceptable concentrations. The TLV or MAC as given in the last report of the American Conference of Governmental Industrial Hygienists, or some other nationally recognized authority, will be used as a guide in establishing acceptable limits of concentrations. When a workman is exposed to toxic or irritating dust, gas, or fume that cannot be controlled by practical means, he shall be provided with and wear U.S. Bureau of Mines approved respiratory equipment. Blasting underground during the shift should be avoided, but when blasting is done before the end of the shift, working places shall be cleared of smoke and dust before men return. The working places of every underground uranium mine shall be provided with sufficient ventilation to maintain radon-daughter concentrations at acceptable levels whenever the mine is being operated. The atmospheric concentration of radon daughters where men work should not exceed 300 micromicrocuries per liter (WL) as determined by the field method detailed in U.S.A. Standards Institute N7.1-1960 (187), and every operator shall make a reasonable effort to attain said standard. In crushing, screening, and processing plants, effective dust control measures shall be taken or personal protective equipment used wherever employees are exposed to dust in excessive quantities.

"General Safety Orders Utah Coal Mines" (192) requires that a pipeline system shall be provided for wetting the rib, roof, and floor surfaces for a distance of at least 40 feet outby the face of each working place. Where underground mining operations raise an excessive amount of dust into the air, water, water with a wetting agent added to it, or other effective method shall be used to allay such dust at its source. Each continuous-miner section shall be ventilated with fresh air so directed that the dust and gas created by continuous-miner operation shall be diverted away from the operator. A coal breaker shall be permitted underground if adequate dust allaying facilities are provided. Where coal is dumped at or near intake openings, provisions shall be made to prevent the dust from entering the mine. Men exposed for short periods to gas, dust, fume, and mist inhalation hazards shall be provided with and wear approved respiratory equipment. When the exposure would be for prolonged periods, other measures to protect or reduce the hazard shall be taken.

## Virginia

The "Mining Laws of Virginia, 1966" (194) requires that where mining operations raise an excessive amount of dust into the air, water or water with a wetting agent added to it, or other effective methods shall be used to allay such dust at its source; and that men exposed for short periods to gas-, dust-, fume-, and mist-inhalation hazards shall wear permissible respiratory equipment, but when exposure is for prolonged periods, other measures to protect the workmen or to reduce the hazard shall be taken.

### West Virginia

The "Mining Laws of West Virginia, 1967" (199) requires that coal dust and other dust in suspension in unusual quantities shall be allayed by sprinkling or using other dust allaying devices. Where coal is dumped at or near air intake openings, reasonable provisions shall be made to prevent dust from entering the mine. Men exposed for short periods to gas-, dust-, fume-, or mist-inhalation hazards shall wear permissible respiratory equipment, but when exposure is for prolonged periods, dust shall be controlled by the use of permissible dust collectors, or water, or other approved methods.

## Wyoming

The "Wyoming Non-Coal Mining Law, 1966" (200) requires the use of some mechanical or other means to alleviate conditions where dust or fumes in harmful quantities result from mining, milling, or processing operations; and the use by personnel of such protective devices as are furnished by the operator. An air velocity of 25 linear feet per minute must be maintained in each working place. The end of ventilation tubing or pipe, when used, must be kept within 40 feet of the face of working places. Operators of underground mines must test the mine atmosphere for dangerous gases and dust at sufficient intervals to warrant safe operation. Each operator of a uranium mine or processing plant shall, as far as is reasonably possible, maintain conditions that conform to the requirements of U.S.A. Standards Institute N7.1-1960 (187) or its amendments, and make radioactivity surveys at intervals recommended by the State inspector of mines.

#### CONTINUING RESEARCH

Federal and State Government agencies ( $\underline{40}$ ,  $\underline{106}$ ,  $\underline{198}$ ), technical societies ( $\underline{102}$ ), universities ( $\underline{152}$ ), and industrial research organizations ( $\underline{34}$ ,  $\underline{78}$ ,  $\underline{88}$ ,  $\underline{171}$ ) conduct, sponsor, or promote research related to dust generation, behavior, and control. Mining companies and equipment manufacturers ( $\underline{21}$ ,  $\underline{103}$ ) conduct research, as required, for resolving dust problems specific to their own operations.

#### REFERENCES

- Adams, Donald F., ed. Air Pollution Instrumentation. Instr. Soc. America, 1966, Pittsburgh, Pa., 75 pp.
- Alaska, Department of Natural Resources, Division of Mines and Minerals. Mine Safety Regulations, 1963, 89 pp.
- Alston, G. L. Advances in Rockdusting Procedures. Mechanization, v. 25, No. 1, January 1961, pp. 46-48.
- 4. American Conference of Governmental Industrial Hygienists. Air Sampling Instruments, Cincinnati, Ohio, 3d ed., 1966, 480 pp.
- 5. \_\_\_\_\_. Threshold Limit Values for 1967, Cincinnati, Ohio, 1967, 26 pp.
- 6. Andersen, A. A. A Sampler for Respiratory Health Hazard Assessment. Am. Ind. Hyg. Assoc. J., v. 27, No. 2, March-April 1966, pp. 160-165.
- 7. Anderson, Floyd G. A Technique for Counting and Sizing Dust Samples With a Microprojector. Am. Ind. Hyg. Assoc. J., v. 23, No. 4, July-August 1962, pp. 330-336.
- Anderson, Floyd G., and R. L. Evans. Drill-Dust Collectors and Drilling Equipment With Integral Dust-Collecting Systems Approved by the Bureau of Mines as of January 31, 1961. BuMines Inf. Circ. 8027, 1961, 28 pp.
- 9. \_\_\_\_. Dust Control in Mining, Tunneling, and Quarrying in the United States, 1955 Through 1957. BuMines Inf. Circ. 8021, 1961, 25 pp.
- Anderson, Floyd G., R. L. Evans, and R. G. Peluso. Dust Control in Mining, Tunneling, and Quarrying in the United States, 1958 Through 1960. BuMines Inf. Circ. 8130, 1962, 23 pp.
- A Study of Dust-Control Methods for Continuous Mining of Coal. BuMines Inf. Circ. 8205, 1963, 14 pp.
- Anderson, Floyd G., Thomas F. Tomb, and Murray Jacobson. Analyzing Midget Impinger Dust Samples With An Electronic Counter. BuMines Rept. of Inv. 7105, 1968, 8 pp.
- Archer, Victor E., Harold J. Magnuson, Duncan A. Holaday, and Pope A. Lawrence. Hazards to Health in Uranium Mining and Milling. J. Occ. Med., v. 4, No. 2, February 1962, pp. 55-60.
- 14. Arentzen, Leif. Float Dust Control. Abs. in Coal Age, v. 70, No. 8, August 1965, pp. 97-99.
- 15. Arizona, State Mine Inspector. Mining Code of the State of Arizona.

  Issued by Verne C. McCutchan, July 1968, 32 pp.

- 16. Ashe, Harry B., and Donald E. Bergstrom. Twenty-Six Years' Experience With Dust Control in the Vermont Granite Industry. Ind. Med., v. 33, February 1964, pp. 73-78.
- 17. Baier, E. J. A Comparison of Particle-Size Measurements. Am. Ind. Hyg. Assoc. J., v. 22, No. 4, August 1961, pp. 307-312.
- 18. Baier, E. J., and R. Diakun. Comparison of Dust Exposures in Pennsylvania Anthracite and Bituminous Coal Mines. Am. Ind. Hyg. Assoc. J., v. 25, No. 5, September-October 1964, pp. 476-480.
- 19. \_\_\_\_. Environmental Dust Study of Anthracite Coal Mines of Eastern
  Pennsylvania. J. Occ. Med., v. 5, No. 8, August 1963, pp. 396-403.
- 20. \_\_\_\_. Pneumoconiosis Study in Central Pennsylvania Coal Mines, II Environmental Phase. J. Occ. Med., v. 3, No. 11, November 1961, pp. 507-521.
- 21. Barrett, A. Lee. Machine Design: Ventilation, Dust Control, and Other Safety Features. Trans. 55th Nat. Safety Cong., Coal Min. Sessions, 1967, pp. 22-25.
- 22. Belton, Arthur E. Ventilating for Continuous Miners in Northern West Virginia. Coal Age, v. 69, No. 3, March 1964, pp. 74-78.
- 23. Beverly, R. G. Radiation Control in Uranium Mines and Mills. Min. Cong. J., v. 47, No. 4, April 1961, pp. 77-82.
- 24. Beverly, Robert G., and Vernon J. Bishop. Air Sampling Limits Radiation Exposure in Colorado Uranium Mines. Min. Eng., v. 13, No. 8, August 1961, pp. 962-965.
- 25. Bianconi, W. O., and E. D. Meyers. Preliminary Studies in the Chemical Composition of the Respirable Fraction of Airborne Coal Dust. Tennessee Ind. Hyg. News, v. 43, No. 4, Fall 1961, pp. 1-5.
- 26. Bianconi, W. O., and F. W. Thomas. Reproducibility of Aerosol Photometer, Midget Impinger and Membrane Filter Counts for Limestone and Coal Dusts. Am. Ind. Hyg. Assoc. J., v. 26, No. 4, July-August 1965, pp. 362-365.
- Billings, Charles E., and Leslie Silverman. Aerosol Sampling for Electron Microscopy. J. Air Pollution Control Assoc., v. 12, No. 12, December 1962, pp. 586-590.
- 28. Blackburn, J. A. Coordination of Dust Conditions Found in Bituminous Coal Mines. Proc. Pennsylvania Governor's Conference on Pneumoconiosis (Anthraco-Silicosis), Harrisburg, Pa., Nov. 30-Dec. 2, 1964, p. 125.
- 29. Boyle, Francis R. Metering Rock Dust. Proc. Coal Min. Inst. America, Pittsburgh, Pa., Dec. 9-10, 1965, pp. 138-148.

- 30. Bronakoski, Adam. High Capacity Fans Mounted on Boring Type Continuous Miners for Ventilation and Dust Control. Pres. at Western Pennsylvania Safety Eng. Conf., Pittsburgh, Pa., Mar. 29, 1967, 7 pp. Available for inspection at the Bureau of Mines Health and Safety Research and Testing Center, Pittsburgh, Pa.
- 31. Brown, Murray C. Pneumoconiosis in Coal Mines. Min. Cong. J., v. 51, No. 8, August 1965, pp. 44-48.
- 32. Buch, John W. Hydraulic Mining of Anthracite: Engineering Development Studies. BuMines Rept. of Inv. 6610, 1965, 24 pp.
- 33. Buch, John W., and Ivor L. Williams. Hydraulic Mining of Anthracite. Min. Cong. J., v. 48, No. 7, July 1962, pp. 22-28.
- 34. Buchanan, William W., ed. Industrial Research Laboratories of the U.S. Bowker Associates, Inc., Washington, D.C., 1965, 12th ed., 746 pp.
- 35. Bureau of Labor Standards, U.S. Department of Labor. Notices. Radiation Standards for Mining. Standard Forms for Recording Radiation Exposure. 32 Fed. Register p. 17693 (Tuesday, Dec. 12, 1967).
- 36. \_\_\_\_\_. Rules and Regulations. Radiation Standards for Mining. 32 Fed. Register p. 15641 (Friday, Nov. 10, 1967); 41 Code Fed. Regulations part 50-204.321.
- 37. Bureau of Mines. Federal Coal Mine Safety Act, as Amended 30 U.S.C. 451. Title I - Advisory Powers Relating to Health and Safety Conditions in Mines. Title II - Prevention of Major Disasters in Mines. January 1967, 63 pp.
- 38. Proposed Rule Making. Electric Motor-Driven Mine Equipment and Accessories (BuMines Schedule 2G) 32 Fed. Register, pp. 18098-18113 (Tuesday, Dec. 19, 1967); 30 Code Fed. Regulations parts 18, 34.
- 39. \_\_\_\_\_. Report on Roof Bolting in Coal Mines for 1966, 1 p. Data compiled from Bureau of Mines records available at the Bureau of Mines Health and Safety Research and Testing Center, Pittsburgh, Pa.
- Bureau of Mines, Coal Research. Review of Bureau of Mines Coal Program, 1966. BuMines Inf. Circ. 8357, 1967, 119 pp.
- 41. Bureau of Mines, Health and Safety Activity. The Federal Coal Mine
  Safety Act and Federal Mine Safety Codes: Interpretations and Applications. BuMines Inf. Circ. 8149, 1963, 26 pp.
- 42. Bureau of Mines, Health and Safety Research and Testing Center, Branch of Health Research. Study of Dust Control by Water Infusion at the Olga No. 1 Mine, Olga Coal Co., Coalwood, W. Va. Internal report, Pittsburgh, Pa., 1965, 55 pp. Available at the Bureau of Mines Health and Safety Research and Testing Center.

- 43. Burgess, James V. New Methods and Materials in Maintaining Continuity in Face Ventilation. Proc. 76th Ann. Meet. Coal Min. Inst. America, Pittsburgh, Pa., Dec. 13-14, 1962, pp. 75-80.
- 44. Cadle, Richard D. Particle Size: Theory and Industrial Applications. Reinhold Publishing Corp., New York, 1965, 390 pp.
- 45. Channel, James K., and Roy J. Hanna. Experience With Light Scattering Particle Counters. Arch. Environ. Health, v. 6, No. 3, March 1963, pp. 92-106.
- Coal Age. Bulk Rockdusting for Efficiency and Economy. V. 69, No. 8, September 1964, pp. 82-86.
- 47. \_\_\_\_. Coal Age Operating Guide, Longwall Mining. V. 70, No. 2, February 1965, pp. 89-104.
- 48. \_\_\_\_. Longest Coal Belt System, Television Controls. V. 68, No. 7, July 1963, pp. 78-83.
- 49. \_\_\_\_. Modern Bulk Rockdust Handling. V. 69, No. 2, February 1964, pp. 107-110.
- 50. \_\_\_\_. Successful Hydraulic Mining on 72 Deg. V. 67, No. 1, January 1962, pp. 80-84.
- 51. \_\_\_\_. Ventilating Today's Coal Mines. V. 66, No. 7, July 1961, pp. 208-210.
- Coal Mining and Processing. Bulk Rock Dusting Promotes Safety. V. 2, No. 4, April 1965, pp. 22-24.
- 53. Connor, C. W., Jr. Separate-Split Ventilation of Continuous-Mining Faces. Coal Age, v. 66, No. 8, August 1961, pp. 79-82.
- 54. Connor, P. Automatic Counting and Sizing of Particles. Ind. Chemist, v. 39, No. 2, February 1963, pp. 69-74.
- 55. Cooley, G. Edward. Bulk Rock Dusting Another Forward Step. Min. Cong. J., v. 49, No. 5, May 1963, pp. 43-46.
- 56. Corn, Morton. The Effect of Dust Particle Orientation on Particle Size Determined by Microscopic Techniques. Am. Ind. Hyg. Assoc. J., v. 25, No. 1, January-February 1964, pp. 1-7.
- 57. \_\_\_\_. Statistical Reliability of Particle-Size Distributions Determined by Microscopic Techniques. Am. Ind. Hyg. Assoc. J., v. 26, No. 1, January-February 1965, pp. 8-16.
- 58. Couchman, J. C., and H. M. Moseley. Simplified Method for Determining Cascade Impactor Stage Efficiencies. Am. Ind. Hyg. Assoc. J., v. 28, No. 1, January-February 1967, pp. 62-67.

- Crable, John V. Quantitative Determination of Chrysotile, Amosite, and Crocidolite by X-Ray Diffraction. Am. Ind. Hyg. Assoc. J., v. 27, No. 3, May-June 1966, pp. 293-298.
- 60. Crable, John V., and Marta J. Knott. Application of X-Ray Diffraction to the Determination of Chrysotile in Bulk or Settled Dust Samples. Am. Ind. Hyg. Assoc. J., v. 27, No. 4, July-August 1966, pp. 383-387.
- 61. Cunningham, W. Roy. Dust Study Program, Pennsylvania Department of Mines and Mineral Industries. Trans. 49th Nat. Safety Cong., Coal Min. Sessions, v. 7, 1961, pp. 24-28.
- 62. Dalzell, Robert W. Face Ventilation in Underground Bituminous Coal Mines.

  Performance Characteristics of Common Jute Line Brattice. BuMines Rept.

  of Inv. 6725, 1966, 30 pp.
- 63. \_\_\_\_. Line Brattice Ventilation. Proc. 54th Conv. Mine Inspectors' Inst. America, Richmond, Va., June 15-17, 1964, pp. 78-85.
- 64. Dannenberg, Joe. No Wonder Detergent Drilling is Making Headway Its Cost Averages Less Than 20 Cents per Drill Shift. Pit and Quarry, v. 58, November 1965, pp. 129-131.
- 65. Davies, C. N. Recent Advances in Aerosol Research, a Bibliographical Review. Pergamon Press, New York, 1964, 80 pp.
- 66. Devens, Willis R. The Role of the Mine Inspector in Dust Control in Anthracite Mines. Proc. Pennsylvania Governor's Conference on Pneumoconiosis (Anthraco-Silicosis), Harrisburg, Pa., Nov. 30-Dec. 2, 1964, pp. 133-135.
- 67. Dimitroff, A. Z., and A. C. Moschetti. Rock-Dust Disseminator Used in Return Air Currents, Koehler Mine, Kaiser Steel Corp., Koehler, N. Mex. BuMines Inf. Circ. 8253, 1965, 7 pp.
- 68. Doyle, Henry N. A Study of Chronic Chest Disease in Bituminous Coal Mines. Proc. 53d Conv. Mine Inspectors' Inst. America, Columbus, Ohio, June 17-19, 1963, pp. 113-119.
- 69. Draper, J. C. Control of Float Dust in Return Airways by Auxiliary Fans. Min. Cong. J., v. 49, No. 6, June 1963, pp. 35-37.
- Dulaney, Roy L. The Use of Auxiliary Fans. Proc. 54th Conv. Mine Inspectors' Inst. America, Richmond, Va., June 15-17, 1964, pp. 73-78.
- 71. Eadie, George R. Trickle-Duster Eliminates Hazard of Float Dust. Coal Min. and Processing, v. 4, No. 3, March 1967, pp. 40-43.
- 72. Edwards, George H. Comparison of X-Ray Diffraction, Chemical (Phosphoric Acid), and Dispersion Staining Methods for the Determination of Quartz in Dust. Am. Ind. Hyg. Assoc. J., v. 26, No. 5, September-October 1965, pp. 532-536.

- 73. Edwards, Ralph E., Charles H. Powell, and Mildred A. Kendrick. Dust Counting Variability. Am. Ind. Hyg. Assoc. J., v. 27, No. 6, November-December 1966, pp. 546-554.
- Elkins, J. E., and J. C. Draper. Underground Mining. Min. Cong. J., v. 52, No. 2, February 1966, pp. 59-63.
- 75. Enterline, Philip E. Mortality Rate Among Coal Miners. Am. J. Pub. Health, v. 54, May 1964, pp. 758-768.
- 76. Ettinger, Harry J., and Samuel Posner. Evaluation of Particle Sizing and Aerosol Sampling Techniques. Am. Ind. Hyg. Assoc. J., v. 26, No. 1, January-February 1965, pp. 17-25.
- 77. Flesch, Jerome P., Charles H. Norris, and Albert E. Nugent, Jr. Calibrating Particulate Air Samplers With Monodisperse Aerosols: Application to the Andersen Cascade Impactors. Am. Ind. Hyg. Assoc. J., v. 28, No. 6, November-December 1967, pp. 507-513.
- 78. Garvey, James R. Summary of Dust Control Activity. Trans. 55th Nat. Safety Cong., Coal Min. Sessions, 1967, pp. 12-15.
- 79. Glauberman, Harold. The Directional Dependence of Air Samplers. Am. Ind. Hyg. Assoc. J., v. 23, No. 3, May-June 1962, pp. 235-239.
- 80. Godard, R. R. Dust Abatement Activities Within United States Steel
  Corporation's Coal Operations. Abs. in Coal Age, v. 72, No. 4, April
  1967, p. 112. Full text available for inspection at the Bureau of
  Mines Health and Safety Research and Testing Center, Pittsburgh, Pa.
- 81. Goodfellow, Robert D., Jr. Recent Advances in Mining Tools. Min. Cong. J., v. 51, June 1965, pp. 79-81.
- 82. Gussman, Robert A., and David Gordon. Notes on the Modification and Use of a Cascade Impactor for Sampling in Ducts. Am. Ind. Hyg. Assoc. J., v. 27, No. 3, May-June 1966, pp. 252-255.
- 83. Hall, Frank E., Richard E. Kupel, and Robert L. Harris, Jr. Particle
  Settling Times in Ethyl Alcohol-Water Mixtures as Affected by Variables
  in Impinger Sampling. Am. Ind. Hyg. Assoc. J., v. 26, No. 5, SeptemberOctober 1965, pp. 537-543.
- 84. Hammond, H. R. Underground Mining Trends. Min. Cong. J., v. 52, No. 2, February 1966, pp. 52-57.
- 85. Harper, D. S., and C. O. Carman. Longwall Mining With a German Coal Planer. Pocahontas No. 3 Coalbed, Keystone, W. Va. BuMines Rept. of Inv. 6291, 1963, 18 pp.
- 86. Harris, E. J. Face Ventilation. Proc. 53d Conv. Mine Inspectors' Inst. America, Columbus, Ohio, June 17-19, 1963, pp. 120-126.

- 87. Harrison, Walter K., Jr., John S. Nader, and Frank S. Fugman. Constant Flow Regulators for the High-Volume Air Sampler. Am. Ind. Hyg. Assoc. J., v. 21, No. 2, April 1960, pp. 115-120.
- 88. Hatch, Theodore F. Perspectives in Industrial Hygiene. Arch. Environ. Health, v. 8, No. 3, March 1964, pp. 393-397.
- 89. Hatch, Theodore F., and Paul Gross. Pulmonary Deposition and Retention of Inhaled Aerosols. Academic Press, New York, 1964, 192 pp.
- 90. Herde, Roy S. Dust Control on Mine Roads. Min. Cong. J., v. 51, No. 7, July 1965, pp. 90-92.
- 91. Hite, Mark. Contributions of Electron Microscopy to Occupational Health. Am. Ind. Hyg. Assoc. J., v. 26, No. 4, July-August 1965, pp. 374-379.
- 92. Howell, Roger J. Dust Study Program by Pennsylvania Department of Mines and Mineral Industries. Proc. 51st Conv. Mine Inspectors' Inst. America, Pittsburgh, Pa., June 19-21, 1961, pp. 89-95.
- 93. Hyatt, E. C., H. F. Schulte, C. R. Jensen, R. N. Mitchell, and G. H. Ferran. A Study of Two-Stage Air Samplers Designed to Simulate the Upper and Lower Respiratory Tract. 13th Internat. Cong. on Occ. Health, 1960, pp. 486-503.
- 94. Idaho, Inspector of Mines and Industrial Accident Board. Minimum Safety Standards and Practices for Mining and Mineral Industry, Safety Code 5, July 1, 1963, 89 pp.
- 95. Irani, R. R., and E. F. Kaelble. Particle-Size Distribution Measurements Below Five Microns. Anal. Chem., v. 33, No. 9, August 1961, pp. 1168-1170.
- Jacobson, Murray, and T. F. Tomb. Relationship Between Gravimetric Respirable Dust Concentration and Midget Impinger Number Concentration. Am. Ind. Hyg. Assoc. J., v. 28, No. 6, November-December 1967, pp. 554-556.
- Jones, Don C. Roof Control. Mechanization, v. 25, No. 1, January 1961, pp. 35-39.
- 98. \_\_\_\_. Roof Control, Part II: Roof Control With Bolts. Mechanization, v. 25, No. 2, February 1961, pp. 52-54.
- 99. \_\_\_\_. Roof Control, Part III: Bolting Equipment. Mechanization, v. 25, No. 3, March 1961, pp. 47-50.
- 100. Jones, Thomas E. The Role of the Mine Inspector in Dust Control in Bituminous Coal Mines. Proc. Pennsylvania Governor's Conference on Pneumoconiosis (Anthraco-Silicosis), Harrisburg, Pa., Nov. 30-Dec. 2, 1964, pp. 127-129.

- 101. Judy, George L. What the Coal Industry is Doing to Control Dust. Trans. 55th Nat. Safety Cong., Coal Min. Sessions, 1967, pp. 6-8.
- 102. Kaplan, Stuart R., ed. A Guide to Information Sources in Mining, Minerals and Geosciences, v. 2. Interscience Publishers, New York, 1965, 599 pp.
- 103. Karlovsky, Jerry. Developments in Cutter Heads on Boring-Type Continuous Miners. Abs. in Coal Age, v. 72, No. 12, December 1967, p. 116.
- 104. Kawenski, Edward M., and Donald W. Mitchell. Rapid and Inexpensive Erection of Stoppings With Rigid Foam. Proc. 76th Ann. Meet. Coal Min. Inst. America, Pittsburgh, Pa., Dec. 13-14, 1962, pp. 80-87.
- 105. Kawenski, Edward M., Edwin M. Murphy, and R. Ward Stahl. Float Dust Deposits in Return Airways in American Coal Mines. BuMines Inf. Circ. 8150, 1963, 20 pp.
- 106. Kingery, D. S. Bureau of Mines Research on Mine Safety. Proc. 55th Conv. Mine Inspectors' Inst. America, Sequoyah State Park, Okla. June 7-9, 1965, pp. 163-167.
- 107. Kuhn, W. E., Headlee Lamprey, and Charles Sheer. Ultrafine Particles. John Wiley & Sons, Inc., New York, 1963, 561 pp.
- 108. Laing, Robert T. Current Problems Facing the Coal Industry in Pennsylvania. Proc. Coal Min. Inst. America, Pittsburgh, Pa., Dec. 9-10, 1965, pp. 94-99.
- 109. Laird, Frank, Jr. Practical Dust Control. Min. Cong. J., v. 47, No. 8, August 1961, pp. 54-57.
- 110. Lee, F. R., and R. L. Evans. Permissible Mine Equipment Approved by the Bureau of Mines During 1953-62. A Supplement to Bulletin 543. BuMines Inf. Circ. 8220, 1964, 39 pp.
- 111. Levo, Nicholas, Jr. Dust Control in Coal Mines. Trans. 53d Nat. Safety Cong., Coal Min. Sessions, 1965, pp. 11-13.
- 112. \_\_\_\_\_. Dust Control on Underground Coal Conveyors. Min. Cong. J., v. 51, No. 12, December 1965, pp. 24-26.
- 113. Lieben, Jan. Coal Miners Pneumoconiosis in Pennsylvania 1967. Pres. Coal Workers Pneumoconiosis Symp., May 18, 1967, 13 pp. Available for inspection at the Bureau of Mines Health and Safety Research and Testing Center, Pittsburgh, Pa.
- 114. \_\_\_\_\_. Pneumoconiosis. A Review of the Present Situation and the Program for Control of a Very Extensive Health Hazard in Our Commonwealth. Pennsylvania Med., v. 70, No. 12, December 1967, pp. 75-78.

- 115. Lieben, Jan, and W. Wayne McBride. Pneumoconiosis in Pennsylvania's Bituminous Mining Industry. J. Am. Med. Assoc., v. 183, No. 3, January 1963, pp. 102-150.
- 116. Lieben, Jan, Eugene Pendergrass, and W. Wayne McBride. Pneumoconiosis Study in Central Pennsylvania Coal Mines. J. Occ. Med., v. 3, No. 11, November 1961, pp. 493-505.
- 117. Linch, A. L., and M. Corn. The Standard Midget Impinger Design Improvement and Miniaturization. Am. Ind. Hyg. Assoc. J., v. 26, No. 6, November-December 1965, pp. 601-610.
- 118. Lingo, Paul C. Methods of Using Auxiliary Fans for Face Ventilation With Continuous Mining Systems. Trans. 49th Nat. Safety Cong., Coal Min. Sessions, v. 7, 1961, pp. 6-10.
- 119. Lippmann, Morton. A Compact Cascade Impactor for Field Survey Sampling. Am. Ind. Hyg. Assoc. J., v. 22, No. 5, October 1961, pp. 348-353.
- 120. Lippmann, Morton, Hugo J. DiGiovanni, Samuel Cravitt, and Pedro Lilienfeld. Lightweight, High-Volume Electrostatic Precipitator Survey Sampler. Am. Ind. Hyg. Assoc. J., v. 26, No. 5, September-October 1965, pp. 485-489.
- 121. Lippmann, M., and W. B. Harris. Size-Selective Samplers for Estimating "Respirable" Dust Concentrations. Health Physics, v. 8, No. 2, April 1962, pp. 155-163.
- 122. Maize, Earl R. The State of the Art of Ventilation, Part A: Coal Faces.
  Proc. 55th Conv. Mine Inspectors' Inst. America, Sequoyah State Park,
  Okla., June 7-9, 1965, pp. 130-135.
- 123. Malmgren, Carl. Dry Percussion Drilling With Detergent Mists. Min. Cong. J., v. 51, No. 1, January 1965, p. 62.
- 124. McBride, W. Wayne, Eugene Pendergrass, and Jan Lieben. Pneumoconiosis Study of Western Pennsylvania Bituminous-Coal Miners. J. Occ. Med., v. 5, No. 8, August 1963, pp. 376-388.
- 125. \_\_\_\_. Pneumoconiosis Study of Pennsylvania Anthracite Miners. J. Occ. Med., v. 8, No. 7, July 1966, pp. 365-376.
- 126. McKenry, R. J. The Development and Application of the U-40 Series (Kennametal's Plumb-Bob Tools). Proc. Coal Min. Inst. America, 1965, pp. 130-138.
- 127. McMillan, Earl R. Hydraulic Jet Mining Shows Potential as a New Tool for Coal Men. Min. Eng., v. 14, No. 6, June 1962, pp. 41-45.
- 128. McPhillamey, Robert H. The New Federal Safety Legislation and Your Operations. Trans. 55th Nat. Safety Cong., Min. Sessions, v. 16, 1967, pp. 17-23.

- 129. Memmott, Frank C. The New Federal Coal-Mine Safety Law. Abs. in Coal Age, v. 71, No. 12, December 1966, p. 107.
- 130. Mercer, T. T. The Interpretation of Cascade Impactor Data. Am. Ind. Hyg. Assoc. J., v. 26, No. 3, May-June 1965, pp. 236-241.
- 131. Mercer, W. B. Calibration of Coulter Counter for Particles About 1
  Micron in Diameter. Rev. Sci. Instr., v. 37, No. 11, November 1966,
  pp. 1515-1520.
- 132. Merritts, W. M. Degasification of Coal Mines. Proc. 54th Conv. Mine Inspectors' Inst. America, Richmond, Va., June 15-17, 1964, pp. 57-66.
- 133. Merritts, W. M., W. N. Poundstone, and B. A. Light. Removing Methane (Degasification) From the Pittsburgh Coalbed in Northern West Virginia. BuMines Rept. of Inv. 5977, 1962, 39 pp.
- 134. Merritts, W. M., C. R. Waine, L. P. Mokwa, and M. J. Ackerman. Removing Methane (Degasification) From the Pocahontas No. 4 Coal Bed in Southern West Virginia. BuMines Rept. of Inv. 6326, 1963, 39 pp.
- 135. Metzger, Charles L. Dust Suppression and Drilling With Foaming Agents. Pit and Quarry, v. 60, No. 3, March 1967, pp. 132-138.
- 136. Michigan, 74th Legislature. Public Acts of 1967, Act 264, approved July 19, 1967.
- 137. Michigan Department of Health. Protecting Health in Mines and Tunnels.
  Michigan's Occ. Health, v. 6, No. 3, Spring 1961, pp. 1-8.
- 138. Mitchell, D. W., W. Ward Stahl, and E. M. Kawenski. Continuous Rock Dusting to Reduce the Float Dust Explosion Hazard. Proc. 54th Conv. Mine Inspectors' Inst. America, Richmond, Va., June 15-17, 1964, pp. 94-100.
- 139. Montana. Minimum Safety Standards for Mining, Quarrying, Milling, and Smeltering Operations in Montana. August 1961, 77 pp.
- 140. Morrow, Paul E. Evaluation of Inhalation Hazards Based Upon the Respirable Dust Concept and the Philosophy and Application of Selective Sampling. Am. Ind. Hyg. Assoc. J., v. 25, No. 3, May-June 1964, pp. 213-236.
- 141. Morton, H. C. Try Water Infusion. Coal Min. and Processing, v. 4, No. 8, August 1967, pp. 48-49.
- 142. Murphy, E. Lewis. Operating Experience With Boring Machines at Humphrey No. 7 Mine. Proc. Coal Min. Inst. America, Pittsburgh, Pa., Dec. 12-13, 1963, pp. 85-91.
- 143. Myers, E. D. Further Developments in the Millipore Filter Technique for Counting Coal Dust. Tennessee Ind. Hyg. News, v. 18, No. 1, Winter 1961, pp. 1-4.

- 144. Nagy, John. Float Dust Hazard in Coal Mines. Proc. Coal Min. Inst. America, Pittsburgh, Pa., Dec. 9-10, 1965, pp. 111-120.
- 145. Nagy, John, and Donald W. Mitchell. Hazards From Float Coal Dust and How They can Be Minimized. Proc. 51st Conv. Mine Inspectors' Inst. America, Pittsburgh, Pa., June 19-21, 1961, pp. 95-101.
- 146. Nagy, John, Donald W. Mitchell, and Edward M. Kawenski. Float Coal Hazard in Mines: A Progress Report. BuMines Rept. of Inv. 6581, 1965, 15 pp.
- 147. Nasiatka, Thomas M., and Frank Badda. Hydraulic Coal Mining Research, Tests in a Steeply Pitching Coalbed, Roslyn, Washington. BuMines Rept. of Inv. 6276, 1963, 16 pp.
- 148. Nevada State Inspector of Mines. Nevada State Mining Laws, 1966 Edition, compiled by Mervin J. Gallager. July 1966, 116 pp.
- 149. New Mexico, State Inspector of Mines. New Mexico Mine Safety Code for All Mines, Including Open-Cut and Open-Pit, compiled by William H. Hays. 1965, 105 pp.
- 150. Oklahoma State Legislature, 30th Regular Session. Enrolled Senate Bill No. 166, signed June 23, 1965.
- 151. Owings, C. W. Dust Control in Mining, Tunneling, and Quarrying in the United States. BuMines Inf. Circ. 7760, 1956, 38 pp.
- 152. Palmer, Archie M., and Anthony T. Kruzas, eds. Research Centers
  Directory. Gale Research Co., Detroit, Mich., 1965, 2d ed., 63 pp.
- 153. Palowitch, E. R., and W. T. Malenka. Hydraulic Mining Research A Progress Report. Min. Cong. J., v. 50, No. 9, September 1964, pp. 66-73.
- 154. Parisi, C. William. Conventional Mining Coal Dust Abatement. Abs. in Coal Age, v. 72, No. 4, April 1967, p. 111.
- 155. \_\_\_\_. Dust Abatement at Pittsburgh Coal Co. Abs. in Coal Age, v. 72, No. 6, June 1967, p. 103.
- 156. Patterson, C. H. Progress in Ventilating Continuous Mining Sections.
  Min. Cong. J., v. 47, No. 3, March 1961, pp. 29-32.
- 157. Pennsylvania Department of Health. New Trend in Dust Sampling. Occ. Health News and Views, v. 4, No. 4, Fall 1966, 1 p.
- 158. Pennsylvania Department of Health, Division of Air Pollution Control. Standard Method for Particle-Size Determinations, Sept. 1, 1966, 9 pp.

- 159. Pennsylvania Department of Health, Department of Labor and Industry, and
  Department of Mines and Mineral Industries. Proc. Pennsylvania
  Governor's Conference on Pneumoconiosis (Anthraco-Silicosis),
  Harrisburg, Pa., Nov. 30-Dec. 2, 1964, 259 pp.
- 160. Pennsylvania Department of Mines and Mineral Industries. Bituminous Coal Mining Laws of Pennsylvania for Underground Mines, 1961, 231 pp.
- 161. \_\_\_\_. Bituminous Coal Mining Laws of Pennsylvania for Strip Mines, Jan. 1, 1962, 55 pp.
- 162. Posner, Samuel, and Eugene Miner. A New Method of Preparing Carbon-Coated Copper Electron Microscope Grids. Am. Ind. Hyg. Assoc. J., v. 24, No. 2, March-April 1963, pp. 188-191.
- 163. Power. Power Special Report. No More Coal-Dust Problem for Georgia Power. V. 105, No. 7, July 1961, pp. 184-185.
- 164. Princen, L. H., and W. F. Kwolek. Coincidence Corrections for Particle-Size Determinations With the Coulter Counter. Rev. Sci. Instr., v. 36, No. 5, May 1965, pp. 646-653.
- 165. Public Health Service, U.S. Department of Health, Education, and Welfare. Governors' Conference on Health Hazards in Uranium Mines. Public Health Service Pub. 843, 1961, 13 pp.
- 166. \_\_\_\_. Occupational Characteristics of Disabled Workers, by Disabling Conditions. Public Health Service Pub. 1531, 1967, 307 pp.
- 167. \_\_\_\_. Silicosis in the Metal Mining Industry A Revaluation 1958-1961. Public Health Service Pub. 1076, 1963, 238 pp.
- 168. Rachunis, William, Arthur A. Sinicrope, and James A.Moore. Safety
  Practices in Shaft Sinking and Tunneling: West Delaware Aqueduct.
  BuMines Inf. Circ. 8114, 1962, 35 pp.
- 169. Roach, S. A., E. J. Baier, H. E. Ayer, and R. L. Harris. Testing Compliance With Threshold Limit Values for Respirable Dusts. Am. Ind. Hyg. Assoc. J., v. 28, No. 6, November-December 1967, pp. 543-553.
- 170. Rock Products. Rock Products Special Report. Chemicals Quell Dust. V. 65, No. 8, August 1962, pp. 92, 95-96.
- 171. Saltzman, Robert D. A Review of Various Aspects of the Float Dust Problem. Trans. 53d Nat. Safety Cong., Coal Min. Sessions, 1965, pp. 13-18.
- 172. \_\_\_\_. What's New is Dust Control. Min. Cong. J., v. 51, No. 8, August 1965, pp. 54-58.

- 173. Sanderson, H. P., A. F. W. Cole, Morris Katz, and S. Baburik. An Improved High-Volume Air Sampler and a Weighable Support for Fibre Glass Filters. Am. Ind. Hyg. Assoc. J., v. 24, No. 4, July-August 1963, pp. 404-410.
- 174. Schiager, K. J., T. M. Allen, S. B. Gerber, G. E. Kinsella, F. J. Krupka, and D. W. Reilly. Improved Membrane-Filter Air-Sampling Methods for Environmental Control. Health Physics, v. 7, No. 314, 1962, pp. 185-190.
- 175. Schlick, Donald P., and Robert W. Dalzell. Ventilation of Continuous-Miner Places in Coal Mines. BuMines Inf. Circ. 8161, 1963, 18 pp.
- 176. Schutz, Robert H. Respirators: Emergency and Nonemergency. Pres. at Safety Symp., Am. Inst. Chem. Eng., Boston, Mass., Dec. 8, 1964, 20 pp. Available for inspection at the Bureau of Mines Health and Safety Research and Testing Center, Pittsburgh, Pa.
- 177. Sheinbaum, Milton. Comparative Concentration of Silica in Parent Material and in Airborne Particulate Matter. Am. Ind. Hyg. Assoc. J., v. 22, No. 4, August 1961, pp. 313-317.
- 178. Shoub, Earle P. Dust Measurement and Standards. Trans. 53d Nat. Safety Cong., Coal Min. Sessions, 1965, pp. 18-26.
- 179. Shupe, D. B. Mechanical Coal Mining. Min. Cong. J., v. 53, No. 2, February 1967, pp. 156-159.
- 180. Smith, Earl P. Shaft Raising in Alabama. Abs. in Coal Age, v. 69, No. 6, June 1964, p. 101.
- 181. South Dakota Inspector of Mines. South Dakota Mine Safety Code for All Mines Including Quarries and Open-Pit, compiled by Philip Graves, 1967, 20 pp.
- 182. Talvitie, N. A. Determination of Free Silica: Gravimetric and Spectrophotometric Procedures Applicable to Air-Borne and Settled Dust. Am. Ind. Hyg. Assoc. J., v. 25, No. 2, March-April 1964, pp. 169-178.
- 183. Talvitie, N. A., and Lial W. Brewer. X-Ray Diffraction Analysis of Industrial Dust. Am. Ind. Hyg. Assoc. J., v. 23, No. 3, May-June 1962, pp. 214-221.
- 184. Tobie, Raymond L. Underground Mining. Min. Cong. J., v. 53, No. 2, February 1967, pp. 143-151.
- 185. Todhunter, John S. Face Ventilation and Dust Control. Min. Cong. J., v. 48, No. 1, January 1962, pp. 38-40, 48.
- 186. Trasko, Victoria M. Socio-Economic Aspects of the Pneumoconioses.

  Arch. Environ. Health, v. 9, No. 4, October 1964, pp. 521-528.

- 187. U.S.A. Standards Institute. Radiation Protection in Uranium Mines and Mills (N7.1-1960), New York, 1960, 29 pp.
- 188. U.S. Congress. Radiation Exposure of Uranium Miners. Hearings Before the Subcommittee on Research, Development, and Radiation of Joint Committee on Atomic Energy, pt. 1-2, 90th Cong. 1st Sess., 1967, 1373 pp.
- 189. U.S. Statutes at Large. Federal Coal Mine Safety Act. Amendments of 1965. Public Law 89-376, Mar. 26, 1966, 80 Stat. 84.
- 190. \_\_\_\_. Federal Metal and Nonmetallic Mine Safety Act. Public Law 89-577, Sept. 16, 1966, 80 Stat. 772.
- 191. Utah Industrial Commission. General Safety Orders Covering Metal and Nonmetal Mines, Mills, Smelters, Tunnels, Quarries, Gravel Pits, Etc., In the State of Utah. July 1, 1963, 97 pp.
- 192. \_\_\_\_. General Safety Orders Utah Coal Mines. Jan. 1, 1967, 137 pp.
- 193. Vines, Robert L. Dust Control. Proc. Coal Min. Inst. America, Pittsburgh, Pa., Dec. 14-15, 1967, pp. 101-109.
- 194. Virginia Department of Labor and Industry. Mining Laws of Virginia, 1966, 167 pp.
- 195. Wallace, J. J. Bureau of Mines Research in Hydraulic Coal Mining. Min. Cong. J., v. 47, No. 1, January 1961, pp. 52-54.
- 196. Wallace, J. J., G. C. Price, and M. J. Ackerman. Hydraulic Coal Mining Research: Equipment and Preliminary Tests. BuMines Rept. of Inv. 5915, 1961, 25 pp.
- 197. Warren, John W. The State of the Art of Ventilation, Part B: Metal Mines. Proc. 55th Conv. Mine Inspectors' Inst. America, Sequoyah State Park, Okla., June 8, 1965, pp. 135-162.
- 198. Westfield, James. Safety in Mining, 1964. Min. Cong. J., v. 51, No. 2, February 1965, pp. 48-55.
- 199. West Virginia, Department of Mines. Mining Laws of West Virginia 1967, p. 199.
- 200. Wyoming, Office of State Inspector of Mines. Non-Coal Mining Laws Including Safety Rules and Regulations, January 1966, 62 pp.
- 201. Young, W. H., and J. J. Gallagher. Coal Bituminous and Lignite. BuMines Minerals Yearbook, 1965 (pub. 1967), v. 2, p. 81.

- 202. Zullo, P. Interpretation of Environmental Data Collected by the Department of Mines and Mineral Industries. Proc. Pennsylvania Governor's Conference on Pneumoconiosis (Anthraco-Silicosis), Harrisburg, Pa., Nov. 30-Dec. 2, 1964, pp. 137-138.
- 203. Zullo, Philip, and Edward Digon. Light-Field Microscope Versus Microprojector in Determining Coal Dust Concentrations. Am. Ind. Hyg. Assoc. J., v. 28, No. 3, May-June 1967, pp. 238-242.





bureau of mines information circular 8408

4 - JUN - 4 Copy \_\_\_\_\_1969

# IMPACT OF PETROLEUM DEVELOPMENT IN THE GULF OF MEXICO



UNITED STATES DEPARTMENT OF THE INTERIOR

BUREAU OF MINES



# IMPACT OF PETROLEUM DEVELOPMENT IN THE GULF OF MEXICO

By L. K. Weaver, C. J. Jirik, and H. F. Pierce

\* \* \* \* \* \* \* \* \* \* information circular 8408



UNITED STATES DEPARTMENT OF THE INTERIOR Walter J. Hickel, Secretary

BUREAU OF MINES John F. O'Leary, Director This publication has been cataloged as follows:

## Weaver, Lewis K

Impact of petroleum development in the Gulf of Mexico, by L. K. Weaver, C. J. Jirik, and H. F. Pierce. [Washington] U.S. Dept. of the Interior, Bureau of Mines [1969]

 $58\,\mathrm{p.}\,$  illus., tables. (U. S. Bureau of Mines. Information circular 8408)

Includes bibliography.

1. Petroleum in submerged lands. 2. Petroleum industry and trade-Mexico, Gulf of. I. Jirik, Charles J., jt. auth. II. Pierce, H. F., jt. auth. III. Tirle. (Series)

TN23.U71 no. 8408 622.06173

U. S. Dept. of the Int. Library

|       |                                                                                                                              | Page |
|-------|------------------------------------------------------------------------------------------------------------------------------|------|
|       |                                                                                                                              |      |
|       | ract                                                                                                                         | 1    |
|       | duction                                                                                                                      | 3    |
|       | wledgments                                                                                                                   |      |
|       | ory and impact of offshore development                                                                                       | 3    |
|       | as of ownership of offshore resources                                                                                        | 10   |
| Feder | ral leasing in the Gulf of Mexico                                                                                            | 15   |
|       | Prices paid for oil and gas leases                                                                                           | 15   |
|       | Retention of leases                                                                                                          | 18   |
|       | Classification of zones 2, 3, and 4 leases by water depth                                                                    | 22   |
| Gulf  | of Mexico hydrocarbon production, reserves, and capacity                                                                     | 26   |
|       | Reserves and productive capacity                                                                                             | 26   |
|       | Gas, crude oil, and condensate production                                                                                    | 27   |
|       | Well count and multiple completion regulation                                                                                | 34   |
|       | Proration of production                                                                                                      | 35   |
|       | Conservation of offshore petroleum                                                                                           | 35   |
|       | Methods of transporting offshore production                                                                                  | 35   |
|       | ology advancements in offshore operations                                                                                    | 39   |
|       | s of completing offshore and onshore wells                                                                                   | 41   |
|       | ry and production outlook                                                                                                    | 42   |
|       | rences                                                                                                                       | 45   |
|       | ndix ACumulative and 1967 oil and gas production, offshore                                                                   |      |
|       | ska (Cook Inlet) and California                                                                                              | 47   |
|       | dix BLeasing procedures and terms described in Section 8 of                                                                  | 4.0  |
|       | olic Law 212                                                                                                                 | 48   |
| Appen | dix CSalient data for Gulf of Mexico oil and gas fields to 1967                                                              | 52   |
|       | ILLUSTRATIONS                                                                                                                |      |
| Fic   | TPF021KVITON2                                                                                                                |      |
| Fig.  |                                                                                                                              |      |
| 1.    | Exploratory wells drilled offshore and onshore, and a comparison                                                             |      |
|       | of the offshore success ratio with the onshore U.S. ratio,                                                                   |      |
|       | 1953-67                                                                                                                      | 4    |
| 2.    | Domestic capital expenditures and expenditures for completing                                                                | -    |
| ۷.    | wells, 1953-65                                                                                                               | 5    |
| 3.    | Geophysical exploration, drilling, and crude oil and condensate                                                              | ,    |
| ٠.    | production histories of onshore United States and Gulf of                                                                    |      |
|       | Mexico, 1954-66                                                                                                              | 7    |
| 4.    | Location of intracoastal canal, the Chapman line, and zones 1, 2,                                                            | ′    |
| ٠.    | 3, and 4, offshore Louisiana                                                                                                 | 12   |
| 5.    | Coastline, 3-league line, and Federal area to Outer Continental                                                              | 12   |
| ٦.    |                                                                                                                              | 12   |
| 6.    | Shelf, offshore Texas                                                                                                        | 13   |
| 0.    | Acreage leased and average price paid per acre for Federal                                                                   | 17   |
| 7.    | offshore Louisiana sales from October 1954 through June 1967 Active Federal and validated State leases seaward of zone 1 and | 17   |
|       | invalidated portion of State Lease 340, offshore Louisiana,                                                                  |      |
|       | October 1967                                                                                                                 | 20   |
|       | OCCOURT 1707                                                                                                                 | 20   |

## ILLUSTRATIONS--Continued

| Fig.         |                                                                                                                                | Page     |
|--------------|--------------------------------------------------------------------------------------------------------------------------------|----------|
| 8.           | Distribution by median water depth of all Federal leases                                                                       |          |
|              | offshore Louisiana, October 1967                                                                                               | 23       |
| 9.           | Distribution by median water depth of all tracts leased at nominated Federal lease sales, 1954-67, offshore Louisiana          | 24       |
| 10.          | Distribution by median water depth of cumulative crude oil and                                                                 |          |
|              | condensate production from fields discovered on Federal tracts leased from October 1954 through March 1962, offshore Louisiana | 25       |
| 11.          | Annual crude oil and lease condensate production from fields by discovery lease vendor, offshore Louisiana, January 1954 to    | 23       |
|              | January 1967                                                                                                                   | 30       |
| 12.          | Location of active Federal and validated State leases seaward of                                                               |          |
| 1.2          | the 3-league line, offshore Texas, October 1967                                                                                | 31       |
| 13.          | State leases, offshore Louisiana, January 1954 to January 1967                                                                 | 32       |
| 14.          | Annual crude oil and condensate production from fields discovered                                                              | 27       |
| 15.          | on Federal leases, offshore Louisiana                                                                                          | 34       |
| 13.          | offshore Texas, March 1968                                                                                                     | 37       |
| 16.          | Approximate location of the proposed and existing pipeline-                                                                    | 00       |
| 17.          | flowline system, offshore Louisiana, March 1968                                                                                | 38<br>40 |
| 18.          | Average cost of completing offshore wells and onshore wells in                                                                 | 70       |
|              | the United States, 1953-65                                                                                                     | 42       |
| 19.          | Annual Gulf of Mexico crude oil and condensate production, 1954-66, and projected through 1975                                 | 44       |
|              | 1954 bo, and projected enrough 1979                                                                                            |          |
|              | TABLES                                                                                                                         |          |
| 1.           | Total U.S. onshore and Gulf of Mexico offshore rig count,                                                                      |          |
| _            | July 1959 to July 1967                                                                                                         | 6        |
| 2.<br>3.     | Domestic crude oil and condensate production, by State                                                                         | 8<br>9   |
| 4.           | Rental, royalty, and bonus paid, to July 1967, for Federal Outer                                                               | 9        |
| 5.           | Continental Shelf leases, Gulf of Mexico Bonus, rental, and royalty payments received from all Federal                         | 16       |
| ٠.           | offshore oil and gas leases, 1953-66, Gulf of Mexico                                                                           | 19       |
| 6.           | Federal Outer Continental Shelf oil and gas leases, Gulf of                                                                    |          |
| 7.           | Mexico, October 1967                                                                                                           | 21       |
| ,.           | from January 1, 1954, to January 1, 1967                                                                                       | 28       |
| 8.           | Gulf of Mexico gas production from January 1, 1954, to                                                                         | 00       |
| 9.           | January 1, 1967 Offshore Louisiana annual crude oil and condensate production                                                  | 29       |
|              | from fields discovered on Federal leases                                                                                       | 33       |
| 10.          | Offshore Louisiana and Texas depth-bracket allowable                                                                           | 36       |
| C-1.<br>C-2. | Louisiana oil and gas field data                                                                                               | 52       |
| U-Z.         | Texas oil and gas field data                                                                                                   | 58       |

#### IMPACT OF PETROLEUM DEVELOPMENT IN THE GULF OF MEXICO

by

L. K. Weaver, 1 C. J. Jirik, 1 and H. F. Pierce 1

#### ABSTRACT

Bureau of Mines investigated the progressive impact that petroleum (crude oil and condensate) operations in the Gulf of Mexico have had on onshore operations and the expected effect of increasing activities in this area on future petroleum supplies from domestic sources. The data analyzed include capital expenditures, number of wells drilled, success ratio for exploratory wells, daily production per completion, annual producing rates, and oil reserves. The report compares offshore and onshore data and ascertains trends in petroleum industry operations.

Observed data and trends indicate that in the near future Gulf of Mexico development and production will continue to increase relative to total U.S. petroleum activity. By 1975 annual oil and condensate production from the Gulf of Mexico is expected to be in the range of 750 million bbl to 1,150 million bbl, and account for approximately 20 to 30 pct of the estimated total domestic production.

#### INTRODUCTION

Because of an apparent decreasing reserve-to-production ratio and declining exploration activity onshore, a current evaluation of petroleum supply potential in the offshore areas of the United States is needed to anticipate the possible magnitude of this new supply and its replacement or displacement of onshore production. This work is part of the Bureau of Mines' overall program of assessing the Nation's petroleum supplies. The purpose of this study is to provide basic and interpretive data for aiding Government officials in making decisions relative to future development of petroleum resources in Federal offshore areas.

<sup>1</sup>Petroleum engineer, Dallas Office of Mineral Resources, Bureau of Mines, Dallas, Tex.

<sup>&</sup>lt;sup>2</sup>Only data for the Gulf of Mexico are analyzed here because, to 1967, development in other offshore areas adjacent to California and Alaska has been in waters chiefly under State jurisdiction. However, oil and gas production data for these areas are included in appendix A, because of the importance of petroleum development in offshore areas owned by the States of California and Alaska.

After ownership and jurisdiction of the natural resources of the seabed of the Outer Continental Shelf (OCS) were defined by the Submerged Lands Act in May 1953 and the Outer Continental Shelf Lands Act in August 1953, leasing and development in the Gulf of Mexico accelerated. There was a shift in petroleum activity from onshore United States to offshore. Since 1956 there has been a trend to smaller total expenditures for drilling and equipping wells in the United States, but the percentage of the total spent offshore has increased from about 7 pct in 1956 to 17 pct in 1965 (2).3 Crude oil and condensate production from the Gulf of Mexico has increased from less than 1 pct of the total domestic production in 1954 to about 8 pct in 1966. Gulf of Mexico production accounted for about 30 pct of the increase in total domestic production during this period. Approximately 50 pct of the cumulative increase in total U.S. liquid hydrocarbon reserves (about 5 billion bbl) from 1955 through 1966 was from offshore Louisiana (14). Water depths of producing tracts have increased progressively to about 350 ft (South Pass Block 62 field) and distances from shore have increased to about 70 miles (Vermilion Block 245 field).

Time lags between leasing, drilling, and significant production operations, attributable to different reasons, make forecasts of offshore petroleum supplies uncertain: for example, periods of nearly 5 years between lease date and discovery date of a field and 10 years between discovery date and the date of first significant commercial production. Despite these variations, however, a definite trend in Gulf of Mexico oil and condensate production has been established (1956-66).

Increased petroleum production from the Gulf of Mexico has changed the traditional supply patterns by displacement of possible onshore production, principally in Texas and Louisiana, which have significant shut-in productive capacity. Oil industry activities, including leasing, geophysical exploration, and drilling, along with the reserves developed as a result of these activities, were considered in estimating future sources of supply. Another factor considered in estimating probable future production is the rate of technology increase necessary to advance into deeper water. The design of drilling and production platforms that can withstand violent weather conditions, underwater completion methods, and the installation and operation of large-diameter pipelines on the sea floor are challenges that are being met by increased technology. On the basis of past offshore experience and opinions of industry management, the depth of water in which drilling and production operations may be performed will be limited by economics rather than technology.

A recent study summarized the relevant data on leasing, drilling, and production operations related to oil and gas in the offshore areas contiguous to the United States from 1953 through 1965, and includes those areas primarily under Federal administration.  $^4$  This report presents additional information

<sup>&</sup>lt;sup>3</sup>Underlined numbers in parentheses refer to items in the list of references preceding the appendixes.

<sup>&</sup>lt;sup>4</sup>U.S. Department of the Interior. Petroleum Production, Drilling and Leasing on the Outer Continental Shelf. May 1966, 20 pp.

and an analysis of the leasing, drilling, and production operations to forecast the source and availability of future supplies of petroleum.

### ACKNOWLEDGMENTS

The authors gratefully acknowledge the cooperation and assistance of the U.S. Geological Survey, U.S. Bureau of Land Management, and Louisiana Department of Conservation. Special acknowledgment is due Robert F. Evans, Oil and Gas Supervisor, and staff, Gulf Coast Region of the U.S. Geological Survey, New Orleans, La.; John L. Rankin, Manager of Land Office, and staff, U.S. Bureau of Land Management, New Orleans, La.; and Thomas M. Winfiele, Chief Engineer, and staff, Louisiana Department of Conservation, Baton Rouge, La.

The data and assistance furnished by Calvin H. Riggs, Petroleum Engineer, Bureau of Mines, San Francisco Office of Mineral Resources, and the data furnished by Donald Blasko, Petroleum Engineer, Bureau of Mines, Alaska Office of Mineral Resources, are appreciated.

#### HISTORY AND IMPACT OF OFFSHORE DEVELOPMENT

The first oil drilled (March 1938) in the open, unprotected water of the Gulf of Mexico was in the area which became known as the Creole field, about  $\mathbf{l}_2^1$  miles from the coastline of Louisiana. Significant development of offshore hydrocarbon deposits, however, did not commence until November 1947 when the Ship Shoal Block 32 field was found about 12 miles from the Louisiana coastline. The first discovery offshore Texas, made in October 1949 on State Lease 245, is still listed as a shut-in gas-condensate well. Widespread development of the hydrocarbon resources in the Gulf of Mexico did not begin until after the Submerged Lands Act and the Outer Continental Shelf Lands Act were passed in 1953. In spite of the costly and difficult problems of operating offshore, such as water depth, adverse weather, and long distances from shore, there has been a rapid movement to offshore provinces. Two reasons for the shift to the Gulf of Mexico are the success ratios, presented in figure 1, and the reserves found (14). Except for 1962, the success ratio for exploratory wells drilled offshore (1) has been higher than the onshore U.S. ratio. From 1953 to 1967, the average success ratio for exploratory wells drilled in the Gulf of Mexico was 26 pct, compared with a ratio for onshore United States of about 18 pct.

From 1955 through 1966, the cumulative production of crude oil and condensate from offshore Louisiana was approximately 1.3 billion bbl. Simultaneously, there was a 2.35-billion-bbl cumulative increase in the liquid hydrocarbon reserve, which amounted to about 50 pct of the total U.S. increase.

In 1967 about 47 pct of all active mobile offshore rigs in the world and 57 pct of all fixed-platform rigs were operating in the Gulf of Mexico ( $\underline{3}$ ). Domestic capital expenditures (fig. 2) ( $\underline{7}$ ) remained around \$6 billion per year from 1956 through 1965 and the amount spent for drilling and production ranged generally from 50 to 60 pct of this amount. The yearly amounts spent on

<sup>5</sup>All money data have been converted to constant dollars using price deflators (1958 = 100) for the gross national product.



FIGURE 1. - Exploratory Wells Drilled Offshore and Onshore, and a Comparison of the Offshore Success Ratio With the Onshore U. S. Ratio, 1953-67.

completing oil and gas wells also are shown in figure 2. Generally, since 1956 industry has trended to smaller annual amounts spent completing oil and gas wells (2), but the percentage of this amount spent offshore has increased steadily from less than 1.0 pct of the total in 1953 to about 17.0 pct in 1965. Capital expenditure categories include drilling and production, refining, petrochemicals, marketing, natural gas pipelines, crude products pipelines, other transportation, and miscellaneous. Completion expenditures include all amounts for platforms, drilling costs, and the cost for casing, tubing, and wellhead fittings, and do not include the cost of artificial lift equipment or any lease facilities.

The rotary rig count for the United States (8) has declined steadily from 2,687 active rotary rigs in 1955 to 1,135 in July 1967. Over 240 rotary rigs were liquidated during 1967, the fifth consecutive year that over 200 rigs (all onshore) had been liquidated by various drilling companies. While the number of land rigs continues to decrease,

that of offshore rigs increased. After the passage of the Submerged Lands Act in 1953, several new companies were incorporated specifically to engage in offshore drilling, and other established companies acquired offshore drilling equipment. For example, the 74 active units in the Gulf of Mexico in 1960 had increased to 97 by 1967 ( $\underline{6}$ ) (table 1). While this increase is not comparable numerically with the large decrease in land rigs, it does represent a substantial capital investment: An offshore drilling unit can cost as much as 10 times that of a comparable land unit.



FIGURE 2. - Domestic Capital Expenditures and Expenditures for Completing Wells, 1953-65.

TABLE 1. - Total U.S. onshore and Gulf of Mexico offshore rig count,

July 1959 to July 1967

|          | N <sub>1</sub> | mbor of  | offshore | e mobile  | rigs    | Number of | Number of     | Total         | Total        |
|----------|----------------|----------|----------|-----------|---------|-----------|---------------|---------------|--------------|
| Date     |                |          |          | epth, fee |         | offshore  | offshore      | number of     | number of    |
| Date     | 0-99           | 100-149  | 150-199  | 200-249   | 250-300 | floating  | drilling      | offshore      | U.S. onshore |
|          | 0 ,,           | 100 1 17 | انتكننا  |           |         | units     | tenders       | rigs          | rotary rigs  |
| 7/1/59   | 31             | 10       |          | 1         | -       | -         | (1/)          | ( <u>1</u> /) | 1,923        |
| 12/31/59 | 31             | 10       | _        | 1         | -       | -         | ( <u>1</u> /) | ( <u>1</u> /) | 2,074        |
| 12/31/60 | 31             | 9        | -        | _         | -       | -         | 34            | 74            | 1,746        |
| 12/31/61 | 27             | 9        | 2        | -         | 4       | -         | (1/)          | ( <u>1</u> /) | 1,763        |
| 12/31/62 | 31             | 9        | 2        | _         | 2       | 5         | 28            | 77            | 1,637        |
| 12/31/63 | 30             | 10       | 2        | _         | 4       | 6         | (1/)          | ( <u>1</u> /) | 1,501        |
| 12/31/64 | 30             | 8        | 3        | -         | 4       | 6         | 42            | 93            | 1,502        |
| 12/31/65 | 31             | 4        | 7        | 2         | 6       | 8         | 47            | 105           | 1,388        |
| 12/31/66 | 31             | 5        | 11       | 2         | 7       | 8         | 29            | 93            | 1,270        |
|          |                | 6        |          | 2         | 7       | 9         | 29            | 97            | 1,135        |
| 7/1/67   | 31             | 6        | 13       | 2         | 1_7     | 9         | 29            | 9/            | 1,133        |

1/ Data not available.

Sources: Louisiana Offshore Oil Scouts Association. Status of the Louisiana Offshore Oil Industry--Statistical Review of Events, 1959-67. The Oil and Gas Journal.

Annual Review--Forecast Issue, 1959-67.

The progressive impact that offshore activity has had on onshore geophysical exploration, drilling, and crude oil and condensate production is shown in figure 3. In this report a well is defined as a hole drilled for the purpose of establishing production (oil and gas and dry). A well may have one or more separate completions, each for the purpose of producing hydrocarbons from a separate reservoir to the surface. During 1956, the record year for the number of wells drilled in the United States, over 57,500 onshore wells, totaling nearly 229 million ft, were drilled. In 1966 the number of onshore wells had decreased to approximately 35,850 with a total footage of 150 million ft. In contrast, in 1955 over 400 wells were drilled offshore in the Gulf of Mexico with a total footage just under 4 million ft. In 1966 the number of offshore wells drilled had increased to over 1,160 with footage totaling over 11 million ft.

Exploratory wells are those that are drilled in an attempt to find new and as yet undisclosed hydrocarbon deposits or that are searching for long extensions of fields already partially developed. To make a comparison between onshore and offshore, the following data are available:

- 1. In 1957, of the onshore wells drilled, 14,540 were exploratory wells having a total footage of approximately 67 million ft; in addition, 165 exploratory wells totaling over 1.8 million ft were drilled in the Gulf of Mexico.
- 2. By 1967 the number of onshore exploratory wells drilled in the United States had decreased to 8,685 and the footage had decreased to 45 million ft. In 1967, in the Gulf of Mexico, 374 exploratory wells totaling over 4 million ft were drilled.
- 3. Onshore crude oil and condensate production had an average growth rate of 1.5 pct per year from 1954 through 1966 while the average offshore rate was 26 pct per year. Approximately 30 pct of the increase in domestic production (onshore plus offshore) in this period was from wells in the Gulf of Mexico. The impact of crude oil and condensate production from the Federal area in the Gulf of Mexico is shown in table 2. This production has increased from about 0.1 pct of the U.S. total in 1954 to over 6.0 pct in 1966. In the same time interval Texas production decreased from 42.1 to 34.9 pct of the U.S. total and Louisiana production (including zone 1 and inside the Chapman line offshore) increased from 10.5 to 16.1 pct of the U.S. total.



FIGURE 3. - Geophysical Exploration, Drilling, and Crude Oil and Condensate Production Histories of Onshore United States and Gulf of Mexico, 1954-66.

TABLE 2. - Domestic crude oil and condensate production; by State, percent

| State        | 1966  | 1965  | 1964  | 1963  | 1962  | 1961       | 1960           | 1959     | 1958  | 1957                | 1956    | 1955  | 1954  |
|--------------|-------|-------|-------|-------|-------|------------|----------------|----------|-------|---------------------|---------|-------|-------|
| Texas        | 34.9  | 35.1  | 35.5  | 35.5  | 35.2  | 35.8       | 36.0           | 37.8     | 38.4  | 41.0                | 42.3    | 45.4  | 42.1  |
| Offshore1/   | 6.2   | 5.2   | 4.4   | 3.7   | 3.1   | 2.4        | 1.8            | 1.3      | 6.    | 9.                  | 4.      | ٠,    | τ.    |
| Louisiana2/  | 16.1  | 15.7  | 15.3  | 15.0  | 14.7  | 13.8       | 13.8           | 12.8     | 11.9  | 12.0                | 11.0    | 10.6  | 10.5  |
| California   | 11.4  | 11.1  | 10.8  | 10.9  | 11.1  | 11.4       | 11.8           | 12.0     | 12.8  | 13.0                | 13.4    | 14.3  | 15.4  |
| Oklahoma     | 7.4   | 7.1   | 7.3   | 7.3   | 7.6   | 7.4        | 7.5            | 7.7      | 8.2   | 8.2                 | 8.2     | 8.2   | 8.0   |
| Wyoming      | 4.4   | 6.4   | 5.0   | 5.2   | 5.1   | 5.4        | 5.2            | 6.4      | 4.7   | 4.2                 | 0.4     | 4.0   | 4.0   |
| New Mexico   | 4.1   | 4.1   | 4.1   | 4.0   | 4.1   | 4.3        | 4.2            | 4.1      | 4.0   | 3.6                 | 3.4     | 4.9   | 5.2   |
| Kansas       | 3.4   | 3.7   | 3.8   | 4.0   | 4.2   | 4.3        | 4.4            | 9.4      | 6.4   | 4.7                 | 4.7     | 3,3   | 3.2   |
| Illinois     | 2.0   | 2.3   | 2.5   | 2.7   | 2.9   | 2.9        | 3.0            | 3.0      | 3.3   | 2.9                 | 3.1     | 3.3   | 2.9   |
| Mississippi  | 1.8   | 1.9   | 2.0   | 2.1   | 2.1   | 2.1        | 2.0            | 1.9      | 1.6   | 1.5                 | 1.6     | 1.5   | 1.5   |
| Colorado     | 1.1   | 1.2   | 1.2   | 1.4   | 1.6   | 1.8        | 1.9            | 1.8      | 2.0   | 2.1                 | 2.2     | 2.1   | 2.0   |
| Montana      | 1.2   | 1.2   | 1.1   | 1.1   | 1.2   | 1.1        | 1.2            | 1.2      | 1.1   | 1.0                 | 8.      | 9.    | 9.    |
| Arkansas     | ∞.    | 6.    | 1.0   | 1.0   | 1.0   | 1.2        | 1.2            | 1.0      | 1.2   | 1.2                 | 1.1     | 1.1   | 1.3   |
| Kentucky     | 9.    | .7    | .7    | .7    | .7    | .7         | ∞.             | 1.1      | .7    | .7                  | .7      | 9.    | 9.    |
| Michigan     | ٠.    | ٠.    | 9.    | 9.    | 9.    | .7         | 9.             | 7.       | 4.    | 4.                  | 7.      | ٠.    | .5    |
| Other States | 4.1   | 4.4   | 4.7   | 4.8   | 4.8   | 4.7        | 9.4            | 4.4      | 3.9   | 2.9                 | 2.7     | 2.3   | 2.1   |
| Total        | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0      | 100.0          | 100.0    | 100.0 | 100.0               | 100.0   | 100.0 | 100.0 |
| 1/ 7:-1:311  | -11   |       |       |       |       | 1-33 / F.L | and Tourseller | for form | 200   | 10001 2 410 2 10000 | £ +12 2 | 10001 | 1420  |

Includes all production from zone 2, 3, and 4 offshore Louisiana, and seaward of the 3-league line Includes all production from zone 1 and Inside Chapman Line offshore Louisiana. 1/ Includes of fshore Texas.

Table 3 shows the interstate refinery receipts of domestic crude from Louisiana to Texas and Mississippi, and the receipts from all States to Texas. Nearly all of the amount shown going from Louisiana to Mississippi is offshore crude. A 20-in line from Ostrica, La., to Pascagoula, Miss., moves offshore crude oil to the 105,000-bbl-per-stream-day capacity refinery completed in 1963. Feedstock for an ammonia plant completed in 1967 at the Pascagoula complex is supplied by a 12-in gas line from offshore Louisiana.

In 1966 approximately 85 pct of the interstate receipts from all States to Texas was from Louisiana, and nearly all of the Louisiana crude was from south and offshore Louisiana. A large percentage of the interstate receipts to Texas from Louisiana is through a 22-in line carrying south and offshore Louisiana crude oil. Most of the interstate crude oil moved to Texas by barge and tanker (shown in table 3) is from south and offshore Louisiana (a breakdown is not available). The destination of offshore crude oil and condensate is flexible and changes as the demand changes. In the future a major portion of the offshore crude oil now moved by tanker and barge to Texas probably will be diverted to the Great Lakes area in the new 40-in crude oil line (Capline) from St. James, La., to Patoka, III.

Pipelines from south and offshore Louisiana also move crude oil to refinery complexes in the Lake Charles, Baton Rouge, and New Orleans areas.

TABLE 3. - Refinery receipts of domestic crude, thousand bb1

|      |                        | Inte    | erstate re | ceipts        |            |
|------|------------------------|---------|------------|---------------|------------|
| Year | From<br>Louisian       | na      | From       | all States to | Texas      |
|      | To ,                   | To      |            | Tank car and  | Tanker and |
|      | Mississippi <u>l</u> / | Texas   | Pipeline   | truck         | barge      |
| 1966 | 45,121                 | 209,915 | 130,490    | 49            | 122,886    |
| 1965 | 42,415                 | 186,078 | 123,257    | -             | 105,779    |
| 1964 | 38,657                 | 171,482 | 125,312    | 1             | 89,865     |
| 1963 | 10,764                 | 168,499 | 129,649    | 12            | 91,988     |
| 1962 | 295                    | 151,675 | 134,841    | 13            | 76,609     |
| 1961 | 311                    | 123,660 | 130,637    | 12            | 59,572     |
| 1960 | 354                    | 124,507 | 120,484    | 12            | 64,789     |
| 1959 | , 319                  | 98,875  | 119,748    | 15            | 44,008     |
| 1958 | 239                    | 85,009  | 105,794    | -             | 55,699     |
| 1957 | 126                    | 71,253  | 96,947     | -             | 40,170     |
| 1956 | -                      | 63,230  | 96,162     | 21            | 41,053     |
| 1955 | 232                    | 56,826  | 94,430     |               | 33,557     |
| 1954 |                        | 61,087  | 84,800     | 25            | 30,877     |

1/ Prior to 1963 Alabama and Mississippi data were combined.

A study of the undeveloped acreage under lease held by the oil industry also shows a movement to the Gulf of Mexico. Onshore holdings have decreased steadily from about 400 million acres in 1960 to about 300 million acres by January 1, 1968. In this time interval, the offshore acreage had increased from a minor amount to about 1 million acres.

Shipyards have ever-increasing orders for offshore mobile and floating rig units, pipe-laying barges, and all types of equipment to transport labor, material, and petroleum to and from offshore areas. The Petroleum Equipment Suppliers Association  $(\frac{4}{2})$  reported that by 1966 over 20 pct of their equipment and service sales was for offshore operations. Less than 10 years ago the offshore segment of their business amounted to less than 10 pct.

#### STATUS OF OWNERSHIP OF OFFSHORE RESOURCES

The controversy over ownership of the natural resources in the submerged lands seaward of State boundaries began in the 1920's. At that time the State of California issued oil and gas leases on certain submerged lands in the Santa Barbara Channel. Subsequent to development of oil production offshore California, the Federal Government received applications for oil and gas rights under the Mineral Leasing Act of 1920. Starting in 1937, unsuccessful attempts were made to pass legislation defining the State and Federal rights in submerged lands. In September 1945 the President issued proclamation No. 2667 stating the Federal Government's jurisdiction and control of the natural resources of the subsoil and seabed of the Continental Shelf. Executive Order No. 9633, issued simultaneously, placed the natural resources of the Continental Shelf under the administrative jurisdiction of the Secretary of the Interior. On June 23, 1947, the U.S. Supreme Court ruled against the State of California holding that California was not the owner of the 3-mile zone of submerged lands adjacent to its coast, and that the Federal Government rather than the State had paramount rights in the submerged lands of the open sea. This decision (332 U.S. 19) meant that the Federal Government owned the resources, including hydrocarbons.

On June 5, 1950, the Supreme Court ruled to the same effect on submerged lands off Texas (339 U.S. 707) and Louisiana (339 U.S. 699).

Following these Supreme Court decisions, the 83d Congress passed H.R. 4198 (identified as the Submerged Lands Act), signed into law as Public Law 31 by the President on May 22, 1953. The purpose of the Act is described in its title as follows:

To confirm and establish the titles of the States to lands beneath navigable waters within State boundaries and to the natural resources within such lands and water, to provide for the use and control of said lands and resources, and to confirm the jurisdiction and control of the United States over the natural resources of the seabed of the Continental Shelf seward of State boundaries.

The Act moved the boundary between Federal and State jurisdiction from the ordinary low-water mark and the seaward limits of inland waters to the seaward boundaries of the States. The seaward boundary of the States was established at a distance of 3 geographic miles from the coastline except offshore Florida and Texas, and there 3 leagues (9 geographical miles or approximately 10.3 statute miles) from the coastline. These were the boundaries of the States at the time the State entered the Union or as approved by Congress prior to the passage of the Act.

On September 26, 1953, the State of Alabama filed suit in the Supreme Court to test the constitutionality of the Submerged Lands Act, and on March 15, 1954, the Court denied the motion. An action was started December 19, 1955, by the United States against the State of Louisiana to establish its right to the minerals underlying the Gulf of Mexico beyond 3 geographical miles from the coastline of Louisiana and extending to the edge of the Outer Continental Shelf. Also, an accounting was requested for any sums of money derived by the State from that area after June 5, 1950. On October 12, 1956, the United States and the State of Louisiana entered into an interim agreement that divided the submerged lands into four zones with reference to the Chapman line as shown in figure 4. The Chapman line, named after a former Secretary of the Interior, was intended to represent the ordinary low-water mark and the seaward limits of inland waters along the coast of Louisiana. Since the Louisiana coastal charts were based mostly on 1933 surveys, the line was not definite and was understood at the time to be subject to modification. Zone 1 was the seaward area within 3 geographic miles of the Chapman line; zone 2 was the area from the seaward limit of zone 1 to 3 marine leagues from the Chapman line; zone 3 was the area from the seaward limit of zone 2 to the seaward boundary line of the State of Louisiana fixed by Act 33 of the 1954 Louisiana Legislature (called the "Coast Guard Line"),6 and, zone 4 was the area extending seaward of zone 3.

Zones 2 and 3 were designated as the areas in dispute and all income from existing and future leases in the zones was to be impounded in an escrow fund until final disposition of the ownership question. The Department of the Interior was authorized to grant leases in zones 2 and 3.

On May 31, 1960, the Supreme Court delivered the opinion that Texas (fig. 5) and Florida are entitled to rights in the submerged lands extending for a distance in the Gulf of Mexico of 3 leagues from their coastlines, and that Louisiana, Mississippi, and Alabama are entitled to rights extending no more than 3 geographic miles from their coastlines. The Court denied a request for rehearing on October 10, 1960, and on December 12, 1960, entered its final decree for all five Gulf States.

<sup>&</sup>lt;sup>6</sup>The Coast Guard Line was established under regulations promulgated by the Commandant of the Coast Guard, pursuant to an 1895 law, to define the limits of inland waters for navigational purposes. In 1954 a Louisiana Statute was enacted establishing the Boundary of the State at 3 leagues seward of this line.



FIGURE 4. - Location of Intracoastal Canal, the Chapman Line, and Zones 1, 2, 3, and 4, Offshore Louisiana.



FIGURE 5. - Coastline, 3-League Line, and Federal Area to Outer Continental Shelf, Offshore Texas.

A supplemental decree rendered by the Court December 13, 1965, awarded certain disputed areas shown in figure 4 to Louisiana by moving parts of the Chapman line seaward. The decree also moved the seaward limit of zone 3 from 3 leagues to 3 geographical miles from Louisiana's claimed coastline. The acres in zones 1, 2, 3, and 4 as of October 12, 1956, and December 13, 1965, are as follows:

|               | Zone 1    | Zone 2    | Zone 3    | Zone 4     |
|---------------|-----------|-----------|-----------|------------|
| Oct. 12, 1956 | 930,640   | 1,833,185 | 2,848,056 | 11,212,568 |
| Dec. 13, 1965 | 1,083,340 | 1,388,153 | 1,465,991 | 12,889,664 |

Impounded funds in the amount of \$34,547,227.42, obtained from bonuses, rentals, royalties, and severance taxes, were released to the State. Also, the decree released to the Federal Government the impounded fund (estimated to be \$190,000,000) for leases in the area beyond 3 geographical miles seaward of the State of Louisiana coastline defined by Act 33 of 1954.

The approximate conventional edge of the OCS is shown by the 600-ft water-depth line in figures 4 and 5. Although the exact limit of the OCS is not defined by the Act, generally it is meant to be the point where the continental slope leading to the ocean bottom assumes a greater angle. This is where the water is 654 ft (200 meters) deep, but leases may be issued for any depth water where exploration and production are possible.

The OCS Lands Act became effective on August 7, 1953, when H.R. 5134 of the 83d Congress was signed into law as Public Law 212. The purpose of the Act is defined in the title as follows:

To provide for the jurisdiction of the United States over the submerged lands of the Outer Continental Shelf and authorizes the Secretary of the Interior to lease such lands for certain purposes.

The Outer Continental Shelf comprises that part of the Continental Shelf which lies seaward of the portion of the submerged lands along the coast of the United States which Congress granted to the adjacent coastal States in 1953.

The responsibility for administering the leasing and operating regulations pertaining to OCS mineral resources was delegated to the Bureau of Land Management (BLM) and the U.S. Geological Survey (USGS). The leasing procedures and terms as outlined in Section 8 of Public Law 212 are summarized in appendix B.

Leases that had been issued seaward of the State boundaries (as defined in the OCS Lands Act) were validated in accordance with Public Law 212, and will be referred to in this report as validated State leases.

### FEDERAL LEASING IN THE GULF OF MEXICO

## Prices Paid for Oil and Gas Leases

To July 1967 a total of 16 oil and gas lease sales, two sulfur sales, and one salt sale had been held for acreage in the Gulf of Mexico. Only the oil and gas sales will be discussed in this report; a summary of the rentals. royalty, and bonus data for the 16 oil and gas leases is shown in table 4. The two types of oil and gas lease sales are the nominated and drainage sales. Nominated lease sales are held because of requests by industry for certain tracts for exploration and possible development. Drainage sales are held to develop certain tracts to prevent movement of hydrocarbons across boundary lines. Leases for tracts in both the nominated and the drainage sales are awarded to the highest qualified bidder complying with all regulations. A minimum bid of \$15 per acre (except \$10 per acre for one offshore Florida sale and \$25 per acre for the May 1968 offshore Texas sale) has been established by the Secretary as a part of the lease terms in the nominated OCS lease sales. All drainage lease sales have had a minimum bid price of \$25 per acre. All minimum bid prices are established only to eliminate nuisance bids, not to indicate the value of the leases. The minimum accepted bid is determined by the BLM on the basis of economic, geologic, and engineering data. On several occasions, bids above the minimum price have been rejected by the BLM because they determined the tracts to be more valuable than the price bid. Annual minimum royalty for leases obtained in nominated lease sales is \$3 per acre, or one-sixth of the gross value of production, whichever is greater, and \$10 per acre or one-sixth of the gross value of production for drainage lease sales. The annual rental for nondrainage leases has been \$3 per acre, and \$10 per acre for drainage lease sales, with the exception of the October 1966 drainage sale, which had both a minimum royalty and rental rate of \$5.

The first Federal lease sale held after the passage of Public Laws 31 and 212 was a nomination oil and gas sale offshore Louisiana on October 13, 1954. Approximately 400,000 acres was leased for an average price of about \$295 per acre. To January 1, 1968, there have been six nominated oil and gas lease sales offshore Louisiana. In each sale, March 1962 (includes March 13 and March 16 sales) being an exception, the average per-acre cash bonus paid increased. The average bonus dropped to \$237 in March 1962 when about 1.9 million acres was leased for over \$445 million. In July 1955 about 250,000 acres was leased for an average of \$396 per acre; in February 1960 about 460,000 acres for an average of \$532 per acre; and in June 1967 about 740,000 acres for an average of \$685 per acre. These average bonuses are shown in both 1958 constant dollars and current dollars in figure 6. An average bonus of \$348 per acre was paid for the first acreage offshore Texas. But, after unsuccessful exploration ventures on those tracts, the average per-acre bonuses were \$56 in 1955, \$149 in 1960, and \$19 in 1962. Owing, at least in part, to increased technology in seismic exploration, the average per-acre bonus increased to about \$1,100 per acre in 1968.

TABLE 4. - Rental, royalty, and bonus paid, to July 1967, for Federal Outer Continental Shelf Leases, Gulf of Mexico

|              | Average bonus, ,, | dollars per acre- |          | \$294.84   | 395.92   | 2,267.78  | 532.07   | 186.23   | 288.63   | 2,712.79  | 1,846.69    | 2,534.43  | 86.946     | 685.17   |       | \$347.84   | 56.34   | 148.59   | 19.37   |         | \$12.92 |
|--------------|-------------------|-------------------|----------|------------|----------|-----------|----------|----------|----------|-----------|-------------|-----------|------------|----------|-------|------------|---------|----------|---------|---------|---------|
| Lowest bid   | accepted,         | dollars per acre  |          | \$17.10    | 15.52    | 76.03     | 24.22    | 15.83    | 15.10    | 166.00    | 104.21      | 243.10    | 33.76      | 21.00    |       | \$16.30    | 17.50   | 16.10    | 16.00   |         | \$10.11 |
| Highest bid  | accepted,         | dollars per acre  |          | \$1,220.00 | 2,076.80 | 10,442.08 | 2,501.51 | 3,201.00 | 3,081.00 | 8,480.00  | 4/10,490.40 | 6,112.20  | 3,128.00   | 6,500.00 |       | \$2,209.00 | 177.00  | 1,026.25 | 26.25   |         | \$16.17 |
| Minimum bid, | dollars           | per acre          | OUISIANA | \$15.00    | 15.00    | 25.00     | 15.00    | 15.00    | 15.00    | 25.00     | 25.00       | 25.00     | 25.00      | 15.00    | TEXAS | \$15.00    | 15.00   | 15.00    | 15.00   | FLORIDA | \$10.00 |
| Royalty,     | dollars,          | per acre-/        | TON      | \$3.00     | 3.00     | 10.00     | 3.00     | 3.00     | 3.00     | 10.00     | 10.00       | 10.00     | 5.00       | 3.00     | I     | \$3.00     | 3.00    | 3.00     | 3.00    | 度       | \$3.00  |
| Rental,      | dollars           | per acre          |          | \$3.00     | 3.00     | 10.00     | 3.00     | 3.00     | 3.00     | 10.00     | 10.00       | 10.00     | 5.00       | 3.00     |       | \$3.00     | 3.00    | 3.00     | 3.00    |         | \$3.00  |
| Number       | jo                | leases            |          | 06         | 56       | 19        | 66       | 506      | 195      | 6         | 23          | 17        | 54         | 158      |       | 19         | 27      | 84       | 10      |         | 23      |
| Bonus value, | million           | dollars           |          | \$116.4    | 100.1    | 88.0      | 246.9    | 177.3    | 267.8    | 43.9      | 60.3        | 88.8      | 99.2       | 510.1    |       | \$23.4     | 8.4     | 35.7     | 9.      |         | \$1.7   |
| Area leased, | thousand          | acres             |          | 394.7      | 252.8    | 38.8      | 0.494    | 951.8    | 927.7    | 16.2      | 32.7        | 35.1      | 104.7      | 744.5    |       | 67.1       | 149.8   | 240.5    | 28.8    |         | 132.5   |
|              | Lease             | Date              |          | 10/13/54   | 7/12/55  | 8/11/593/ | 2/24/60  | 3/13/62  | 3/16/62  | 10/9/623/ | 4/28/643/   | 3/29/663/ | 10/18/665/ | 6/13/67  |       | 11/9/54    | 7/12/55 | 2/26/60  | 3/16/62 |         | 5/26/59 |

3.300 | \$3.00 | \$1.00 | \$10.00 | \$10.00 | \$10.00 | \$10.17 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11 | \$10.11  $\frac{5/26/59....}{1/}$  To July 19  $\frac{2}{2}$  The average  $\frac{3}{4}$  Highest by Includes of Includes of Includes of  $\frac{4}{5}$ 

Highest bid to July 1967. Drainage sale, zone 2.

Includes only zones 3 and 4.

Source: U. S. Bureau of Land Management. Statistical Summary, Outer Continental Shelf Lease Sales.



FIGURE 6. - Acreage Leased and Average Price Paid Per Acre for Federal Offshore Louisiana Sales From October 1954 Through June 1967.

To January 1, 1968, a total of 1,061 tracts covering about 4.6 million acres (including the drainage sales) had been leased by the Federal Government. The overall average bonus per acre has been \$140 for Texas offshore, 7 compared with \$454 for offshore Louisiana (\$380 excluding drainage sales). The only lease sale offshore Florida was in 1959 and the average per-acre bonus bid was under \$13. To 1968 industry had invested about \$1.87 billion as initial bonus for acquisition of leases in the Federal offshore area of Texas, Louisiana, and Florida, for an average of \$408 (\$342 excluding drainage sales) per acre. Including the 1968 Texas sale the total initial bonus paid was \$2.46 billion.

There have been five drainage lease sales in the Gulf of Mexico (all offshore Louisiana) to allow sufficient development of certain fields to prevent movement of hydrocarbons from adjacent unleased parcels to producing tracts. These have been much smaller in acreage than nominated lease sales, but have yielded a much higher average bonus per acre (fig. 6). These tracts understandably bring the highest average bonus per acre because drilling and development usually proves them to be commercially productive. To 1968 only about 10 pct of the leases on these tracts had expired or been relinquished.

The highest bonus per acre for a single tract leased since 1954 was \$10,490.40 for a 1,250-acre parcel that was a southwest extension of the Timbalier Bay field. The five drainage sales represent approximately 6 pct of the total acreage leased offshore Louisiana (Federal OCS), and bonus revenue has been about 20 pct of the total from all offshore leases.

Table 5 presents a summary of Federal oil and gas lease bonuses, minimum royalties, rentals, shut-in gas payments, and royalty value of crude oil, condensate, and gas from 1953 through 1966. Minimum royalties and shut-in gas payments are made when commercial amounts of crude oil or gas have been proven, but are not being produced. Shown also is the royalty value of crude oil, condensate, and gas produced from the Federal area of the Gulf of Mexico. The combined annual royalty value of these hydrocarbons has increased from \$967,892 in 1953 to \$132,849,922 in 1966.

### Retention of Leases

Figure 7 shows the location of all active Federal and validated State leases in zones 2, 3, and 4, offshore Louisiana. From 1953 through 1967 BLM leased approximately 4 million acres in the offshore Federal areas of Louisiana. By October 1967 leases on about  $1\frac{1}{4}$  million acres had expired (table 6). Much of this  $1\frac{1}{4}$  million acres has been explored, to some extent, unsuccessfully. Overall, about 640,000 acres seaward of zone 1 was under active or validated State leases offshore Louisiana in October 1967. A portion (about 300,000 acres) of huge State Lease No. 340 in the South Marsh Island area, leased in 1936, is in litigation. Considering State Lease No. 340, active or validated State leases, and active Federal leases in zones 2, 3, and 4, a little over 12 million acres remains unleased.

<sup>&</sup>lt;sup>7</sup>Does not include the May 1968 sale. Approximately 535,000 acres was leased for an average of about \$1,100 per acre.

TABLE 5 . - Bonus, rental, and royalty payments received from all Federal offshore oil and gas leases, 1953-66, Gulf of Mexico

|                |               |           |             | Shut-in  |               |             | Royalty value |            |
|----------------|---------------|-----------|-------------|----------|---------------|-------------|---------------|------------|
| Year           | Lease         | Minimum   | Rentals     | gas      | Total         | Oil and     | Royalty Value |            |
| Iear           | bonuses       | royalties | Kentara     | payment, | local         | condensate  | Gas           | Total      |
|                | DOMOGES       | 10,41110  |             | FLORIDA  |               | COMMONDATO  | 040           | 10001      |
| 1959           | \$1,711,872   |           | \$397,440   |          | \$2,109,312   |             |               |            |
| 1960           | \$1,711,072   |           | 397,440     | _        | 397,440       | _           |               |            |
| 1961           | -             |           | 397,440     | _        | 397,440       |             | _             |            |
|                | -             | -         | 190,080     | _        | 190,080       | -           | _             |            |
| 1962           | -             | _         | 190,080     | _        | 190,080       | _           | -             |            |
| 1963-66        |               | -         | -           |          |               |             | -             |            |
| Total          | 1,711,872     | -         | 1,382,400   | -        | 3,094,272     | -           | -             |            |
|                |               |           | L           | OUISIANA |               |             |               |            |
| 8/7 - 12/31/53 | _             | -         | \$1,271,790 | \$30,650 | \$1,302,440   | \$719,541   | \$248,351     | \$967,89   |
| 1954           | \$46,935,475  | -         | 2,781,952   | 86,950   | 49,804,377    | 2,043,198   | 705,779       | 2,748,97   |
| 1955           | 169,534,264   | -         | 3,553,322   | 122,000  | 173,209,586   | 4,022,385   | 1,116,642     | 5,139,02   |
| 1956           | ,             | -         | 3,259,704   | 79,950   | 3,339,654     | 6,519,010   | 1,103,698     | 7,622,70   |
| 1957           |               | \$67,201  | 2,930,301   | 110,268  | 3,107,770     | 10,222,571  | 1,165,294     | 11,387,86  |
| 1958           | _             | 184,396   | 2,140,584   | 121,218  | 2,446,198     | 15,110,378  | 2,313,500     | 17,423,8   |
| 1959           | 88,035,121    | 171,036   | 1,780,026   | 84,984   | 90,071,167    | 21,221,318  | 5,318,518     | 26,539,83  |
| 1960           | 246,909,784   | 299,695   | 2,430,290   | 49,350   | 249,689,119   | 29,171,604  | 7,636,074     | 36,807,6   |
| 1961           | 240,303,704   | 294,998   | 1,984,441   | 37,100   | 2,316,539     | 37,250,253  | 9,483,489     | 46,733,74  |
| 1962           | 488,923,391   | 497,202   | 2,068,596   | 62,200   | 491,551,389   | 51,504,973  | 13,748,400    | 65,253,3   |
| 1963           | 400,923,391   | 632,376   | 12,697,917  | 52,950   | 13,383,243    | 59,210,457  | 16,136,781    | 75,347,2   |
| 1964           | 60,340,626    | 784,993   | 6,735,693   | 45,800   | 67,907,112    | 68,645,345  | 17,887,512    | 86,532,85  |
| 1965           | 00,340,020    | 983,059   | 5,604,824   | 38,450   | 6,626,333     | 80,406,508  | 19,248,110    | 99,654,61  |
| 1966           | 188,010,893   | 1,327,830 | 4,736,294   | 41,700   | 194,116,717   | 103,263,580 | 27,989,727    | 131,253,30 |
|                |               |           |             |          |               |             |               |            |
| Total          | 1,288,689,554 | 5,242,786 | 53,975,734  | 963,570  | 1,348,871,644 | 489,311,121 | 124,101,875   | 613,412,99 |
|                |               |           |             | TEXAS    |               |             |               |            |
| 8/7 - 12/31/53 | -             |           | \$87,840    | -        | \$87,840      | -           | -             |            |
| 1954           | -             | -         | 87,840      | -        | 87,840        | -           | -             |            |
| 1955           | \$31,794,491  | -         | 738,570     | -        | 32,533,061    | \$979       | -             | \$ 97      |
| 1956           |               | -         | 696,489     | -        | 696,489       | 6,675       | -             | 6,6        |
| 1957           | -             | \$1,380   | 289,821     | -        | 291,201       | 3,296       | \$84          | 3,38       |
| 1958           |               | ,,        | 236,010     | _        | 236,010       | _           | ' -           | -,-        |
| 1959           | _             | _         | 64,269      | _        | 64,269        | 141         | _             | 1-         |
| 1960           | 35,732,031    | 17,280    | 762,750     | -        | 36,512,061    | 47          | _             |            |
| 1961           | 55,752,052    | 19,123    | 679,320     | _        | 698,443       | <u>''</u>   | _             |            |
| 1962           | 557,720       | 20,520    | 502,200     |          | 1,080,440     | 1,837       |               | 1,8        |
| 1963           | 337,720       | 35,963    | 424,440     |          | 460,403       | 26,627      |               | 26,62      |
| 1964           | _             | 35,350    | 368,820     |          | 404,170       | 2,449       |               | 2,44       |
|                | -             |           |             | _        |               |             | _             | 1,66       |
| 1965           | -             | 89,640    | 337,454     | -        | 427,094       | 1,666       | 1 150 500     |            |
| 1966           |               |           | 2,933       |          | 2,933         | 444,017     | 1,152,598     | 1,596,61   |
| Total          | 68,084,242    | 219,256   | 5,278,756   | -        | 73,582,254    | 487,734     | 1,152,682     | 1,640,41   |
| Grand total    | 1,358,485,668 | 5,462,042 | 60,636,890  | 963,570  | 1,425,548,170 | 489,798,855 | 125,254,557   | 615,053,41 |

Source: U. S. Geological Survey, Conservation Division. Mineral Production, Royalty, Income, and Related Statistics, 1965-66.



FIGURE 7. - Active Federal and Validated State Leases Seaward of Zone 1 and Invalidated Portion of State Lease 340, Offshore Louisiana, October 1967.

| or                           |       | Number                | of                                  | leases                   |
|------------------------------|-------|-----------------------|-------------------------------------|--------------------------|
| ld by royalty cental payment | Bonus | value,                | housand million                     | dollars                  |
| Held b                       | ea    | leased, value, Number | thousand                            | acres   dollars          |
|                              |       | Number                | of                                  | leases                   |
| Expired                      | Bonus | value,                | nillion of thousand million of thou | acres dollars leases     |
|                              | Area  | leased,               | thousand                            | acres                    |
| -1n <sup>1</sup> /           |       | Number                | Jo                                  | leases                   |
| Productive-shut-in1/         | Bonus | value,                | million                             | dollars                  |
| Product                      | Area  | leased, value, Number | thousand                            | acres dollars leases     |
|                              |       | Number                | Jo                                  | leases                   |
| Producing 1/                 | Bonus | value,                | million                             | dollars leases           |
| Pr                           | Area  | leased,               | n of thousand million of thousand   | acres                    |
|                              |       | Number                | Jo                                  | leases                   |
| Totals                       | Bonus | eased, value,         | million                             | acres   dollars   leases |
|                              | Area  | leased,               | thousand million                    | acres                    |
|                              | Lease | date                  |                                     |                          |

|          |          | •         | ٠       | 7       | 23      | 2          | 6          | ∞         | 22         | 156     | 227     |                     | 14    | ‡       |                           | 183             |       |         | ٠       |         |         | ٠     |           |         |                | 227             |
|----------|----------|-----------|---------|---------|---------|------------|------------|-----------|------------|---------|---------|---------------------|-------|---------|---------------------------|-----------------|-------|---------|---------|---------|---------|-------|-----------|---------|----------------|-----------------|
|          |          | •         | -       | \$2.6   | 16.3    | 0.6        | 5.1        | 37.2      | 95.1       | 492.6   | 6.739   |                     | 1,6 4 | 4.044   |                           | 5111.5          |       |         | 1       | 1       | -       | •     |           |         |                | 627.9           |
|          |          |           | ,       | 20.0    | 110.0   | 7.9        | 11,1       | 16.5      | 97.5       | 734.5   | 997.5   |                     | 133.0 | 0.001   |                           | 864.5           |       |         | 1       |         | -       |       |           | ,       |                | 997.5           |
|          | 45       | ? ^       | 35      | 91      | 9       |            | 7          | ,         | •          | •       | 300     |                     | 0     | ,       |                           | 291             |       | 12      | 27      | 32      | 10      | 84    |           | 23      |                | 407             |
|          | \$46.7   | 9.5       | 77.7    | 57.9    | 68.0    | •          | 7.         | ,         | ٠          | •       | 293.4   |                     | 9 0   | 7.0     |                           | 283.8           |       | 10.2    | 8.4     | 16.1    | 9.      | 35.3  |           | 1.7     |                | 330.4           |
|          | 197.5    | 12.1      | 162.6   | 411.0   | 285.5   | •          | ∞.         | •         | 1          | -       | 1,224.5 |                     | 12.0  | 77.5    |                           | 1,211.6         |       | 52.7    | 149.8   | 169.9   | 28.8    | 401.2 |           | 132.5   |                | 1,758.2         |
|          | 2 01     | ; '       | 43      | 88      | 8       | -1         | 2          | 7         | 2          | 2       | 247     |                     | 0     | ,       | S                         | 238             |       | 9       | •       | 1       | -       | 7     |           | -       |                | 254             |
|          | 865.4    | '         | 75.3    | 4.09    | 120.0   | 2.2        | 9.3        | 14.1      | 4.1        | 17.5    | 358.1   | 0                   | 20 7  | 7.67    | IVE SALE                  | 328.4           |       | 8.6     | •       | .1      | -       | 8.7   |           |         | CTCO           | 366.8           |
| LOUISIAN | 25.0     | 1         | 205.0   | 415.2   | 377.8   | 2.0        | 2.2        | 6.1       | 7.2        | 10.0    | 1,107.7 | out to motivate and | 17 5  | C./.    | REGULAR COMPETITIVE SALES | 1,090.2         | TEXAS | 8.6     | 1       | 1.5     | -       | 10.1  | FT.OR TD. | •       | GILF OF MEXICO | 1,117.8         |
|          | 40       | 12        | 21      | 22      | 32      | m          | 10         | 5         | •          | ,       | 160     |                     | 30    | 20      | REGUL                     | 130             |       | -       | '       | 12      | -       | 13    |           |         |                | 173             |
|          | \$59.9   | 78.8      | 93.9    | 56.4    | 63.5    | 32.7       | 45.5       | 37.5      | •          | -       | 4.89.4  |                     | 10% 5 | 774.7   |                           | 6.462           |       | 9.4     | •       | 19.5    | -       | 24.1  |           |         |                | 513.5           |
|          | 172.2    | 26.7      | 96.4    | 105.6   | 154.4   | 6.3        | 18.6       | 12.5      |            | ,       | 633.3   |                     | 66.1  | 04.1    |                           | 569.2           |       | 5.8     |         | 69.1    | -       | 74.9  |           |         |                | 708.2           |
|          | 06       |           |         |         |         |            |            |           |            |         | 934     |                     | 00    | 7,5     |                           | 842             |       | 19      | 27      | 84      | 10      | 104   |           | 23      |                | 1,061           |
|          | \$116.4  | 88.0      | 246.9   | 177.3   | 267.8   | 43.9       | 60.3       | 88.8      | 99.2       | 510.1   | 1,798.8 |                     | 380.2 | 300.5   |                           | 1,418.6         |       | 23.4    | 8.4     | 35.7    | ••      | 68.1  |           | 1.7     |                | 4,581.7 1,868.6 |
|          | 394.7    | 38.8      | 464.0   | 951.8   | 927.7   | 16.2       | 32.7       | 35.1      | 104.7      | 744.5   | 3,963.0 |                     | 2775  | (* / 77 |                           | 3,735.5 1,418.6 |       | 67.1    | 149.8   | 240.5   | 28.8    | 486.2 |           | 132.5   |                | 4,581.7         |
|          | 10/13/54 | 8/11/592/ | 2/24/60 | 3/13/62 | 3/16/62 | 10/9/622/, | 4/28/642/, | 3/29/662/ | 10/18/662/ | 6/13/67 | Total   |                     | Total | Torques |                           | Total           |       | 11/9/54 | 7/12/55 | 2/26/60 | 3/16/62 | Total |           | 5/26/59 |                | Total           |

 $<sup>\</sup>frac{1}{2}$  Lease may be classified producing, or productive-shut in by effect of consignment to a producing or productive-shut-in unit, without actual  $\frac{1}{2}$  Drainage sales.

A summary of all Federal Gulf of Mexico OCS oil and gas leases to October 1967 is shown in table 6. According to an October 1967 Department of the Interior OCS mineral lease summary, 407 of the total 1,061 Federal Gulf of Mexico leases acquired (including the June 1967 lease sale) had expired or had been relinquished; and 427 of the 654 active leases were classified as producing, productive-shut-in, or held by consignment to a producing or shut-in unit. A lease may be consigned to a producing or shut-in unit without having a completed oil or gas well on the tract. Of the 654 active leases, 227 (156 of these were obtained in June 1967) are held by royalty or rental payment for further disposition. Drilling and testing of some tracts leased in June 1967 commenced immediately and significant discoveries, classified as shut-in, were reported shortly thereafter. To October 1967 the average bonus paid for the producing, productive-shut-in, or assigned leases was \$481 per acre compared with \$188 on the leases that eventually expired. The bonus paid appears to reflect the general probability of successful exploration.

The area of the 427 productive leases is about 1.83 million acres, and the area of the 407 expired leases is about 1.76 million acres or 38 pct of the total acreage leased. All leases offshore Florida, 81 pct of the offshore Texas leases, and 32 pct of the offshore Louisiana leases had expired by late 1967.

## Classification of Zones 2, 3, and 4 Leases by Water Depth

The total area of zones 2, 3, and 4 offshore Louisiana is approximately 15.7 million acres since changes made by the December 1965 supplemental decree (15.9 before decree). About 53 pct of the 15.7 million acres is in water 100 ft or deeper, and 20 pct of this area in water 300 to 600 ft deep. In each nominated sale, industry has acquired leases in progressively deeper water. To October 1967, however, only 63,000 acres of the 1.7 million acres platted for the area where water is over 300 ft deep are under lease. Of the 6.5 million acres lying in 100 to 300 ft of water, 22 pct was under active Federal lease. Validated State leases were held on nearly 40,000 acres in the 100 to 300-ft water-depth range. About 1.25 million, or 16 pct of the 7.5 million acres seaward of zone 1, lying in 100 ft or less of water was under active Federal lease in 1967, and about 8 pct was under validated State lease agreements at that date (including validated portion of State Lease 340).

About 92 pct of the acreage leased in the Gulf Coast OCS has been in the waters adjacent to Louisiana. Figure 8 shows the distribution of all offshore Louisiana leases through 1967 by approximate median water depth. The leases are as far as 90 miles from the coast. About one-third of the 934 tracts leased through 1967 are in water over 120 ft deep. Over 250 of these deeper leases are active, and more than 100 are unproductive or untested. The water depth of the active leases ranges up to about 465 ft. Of the 300 leases that have expired or were relinquished, about 80 pct were in water less than 120 ft deep.

Water depth of the 104 tracts leased in the four sales offshore Texas ranged from 40 to 120 ft, with the maximum distance from shore about 65 miles.



FIGURE 8. - Distribution by Median Water Depth of All Federal Leases Offshore Louisiana, October 1967.

Only 12 of the 104 tracts leased offshore Texas were in water over 100 ft in depth. The acreage leased offshore Florida ranged from 70 to 90 miles from the mainland but was within 20 miles of the island group that extends southwest into the Gulf of Mexico. Water depth of more than 50 pct of the tracts was less than 100 ft, and for the remainder was 100 to 600 ft.

Figure 9 shows a comparison of approximate median water depths of tracts in each of the nominated lease sales. The median water depth, determined from Coast and Geodetic Survey maps, is the depth of the approximate center of a tract. The average median depth of the water for all tracts generally increased in each major lease sale (the exception was the July 1955 sale). The 1954 and 1955 sales have been considered as one group in comparing water



FIGURE 9. - Distribution by Median Water Depth of All Tracts Leased at Nominated Federal Lease Sales, 1954-67, Offshore Louisiana.

depth trends because the sales were only 9 months apart. The average water depth of each group was 67 ft for the first two lease sales, 89 ft for the 1960 lease sale, 125 ft for the 1962 lease sale, and 186 ft for the 1967 lease sale.

A study was made to determine if water depths of the producing tracts were increasing simultaneously with leasing depths. To do this, an analysis of each lease sale was made as shown in figure 10. Some of the tracts in figure 10 are shown in productive areas shallower than the depth of leases obtained because their median depth is more than that of the field in which they are included. The range of the median water depths of the producing



FIGURE 10. - Distribution by Median Water Depth of Cumulative Crude Oil and Condensate Production From Fields Discovered on Federal Tracts Leased From October 1954 Through March 1962, Offshore Louisiana.

fields on January 1, 1968, discovered on 1954 leases, is 20 to 138 ft; the range of the 1955 fields is 56 to 96 ft; the range of the 1960 fields is 23 to 228 ft; and the range of the 1962 fields is 57 to 208 ft. Although the trend to productive tracts in deeper water has not been as consistent as the trend in leasing, the distribution of 1962 sales compared with the 1954 sale shows a definite movement toward deeper water. These data indicate that the water depths of the tracts leased as well as the water depths of the producing fields have increased simultaneously.

GULF OF MEXICO HYDROCARBON PRODUCTION, RESERVES, AND CAPACITY

## Reserves and Productive Capacity

According to the American Petroleum Institute (API), offshore crude oil reserves in the Gulf of Mexico were 2,374,576,000 bbl as of December 31, 1967. This number excludes reserves anticipated from reservoirs behind casing. Even with this exclusion, there is approximately 500,000 bbl of reserves per offshore completion compared with an average of about 55,000 bbl per completion for the United States. In summation, at the end of 1967 the Gulf of Mexico had approximately 8 pct of the total U.S. crude oil reserves, 1 pct of the producing oil well completions, and 9 pct of the production (using preliminary 1967 production data).

The importance of the Gulf of Mexico as a future source of liquid hydrocarbons is shown in a 1967 offshore study ( $\underline{14}$ ). The cumulative increase in liquid hydrocarbon reserves for the total United States from 1955 through 1966 was about 5 billion bbl. Of this amount, almost 50 pct was from offshore Louisiana.

In January 1968 there were 41 giant fields  $^8$  in Louisiana including all offshore areas ( $^7$ ). Of these 14 are offshore, and six of the 10 largest are offshore. On January 1, 1967, there were 147 oilfields or gasfields offshore Louisiana and 20 offshore Texas. All of these fields, including location and salient production data, are listed in appendix C.

The API estimated the 90-day crude oil productive capacity offshore Texas and Louisiana to be 1,132,200 bbl per day as of January 1, 1968. The 90-day capacity is defined as the maximum daily crude oil production rate at the point of custody transfer that could be achieved in 90 days with existing wells, well equipment, and surface facilities, plus work and changes that can be reasonably accomplished within the time period using present service capabilities and personnel. Production restrictions preclude rates which would result in a significant reduction in ultimately recoverable oil, prohibit the pollution of potable water sources, and prohibit air pollution with gas or the creation of fire hazards from gas. The January 1968 combined Texas and Louisiana offshore capacity is about 9 pct of the total U.S. capacity.

<sup>&</sup>lt;sup>8</sup>A giant field is defined as having an ultimate recovery of at least 100 million bbl.

### Gas, Crude Oil, and Condensate Production

Annual Gulf of Mexico crude oil and condensate production has increased steadily from less than 1.0 pct of the U.S. total in 1954 to over 8 pct in 1966, with over 99 pct of this production from offshore Louisiana and the remainder from offshore Texas. Gulf of Mexico crude oil and condensate production from 1954 through 1966 is shown by zone in table 7; and gas production from 1954 through 1966 is shown by zone in table 8. Hydrocarbon production statistics for offshore California and Alaska (Cook Inlet) are shown in appendix A. There had been significant exploration on submerged tracts in lakes, bays, and offshore United States and other parts of the world before Federal leasing in offshore areas of the gulf coast began in 1954. As a result of activity in the Gulf of Mexico, production of crude oil and condensate from State leases offshore Texas and Louisiana was about 16 million bbl9 during 1954 (table 7). Development of these leases and subsequent Federal and State leases offshore Louisiana and Texas increased annual production about 15 times to 244 million bbl by 1966. Using 1954 as the base year, the growth rate of Gulf of Mexico crude oil and condensate production through 1966 was about 26 pct per year. The average growth rate of domestic crude oil and condensate production through 1966, using 1954 as the base year, was 1.5 pct per year excluding Gulf of Mexico production, and 2.1 pct including it. Casinghead and natural gas production also increased significantly. The 1954 production of about 80 billion scf increased about 17 times to 1,355 billion scf in 1966. In 1967 all oil well completions in the United States, including offshore, had an average production rate of about 15 bpd, and offshore completions averaged about 150 bpd.

After ownership of offshore areas was defined in 1953, the Federal Government validated all State-leased tracts in Federal areas (zones 2, 3, and 4, fig. 4), with the exception of the major portion of State Lease 340 in the South Marsh Island area. In October 1967 there were 98 active, validated State-leased tracts offshore Louisiana, some many miles offshore. An example is the Eugene Island Block 110 field, discovered on a State-leased tract about 20 miles seaward of the Chapman line. To analyze the effect of Federal offshore lease sales in terms of oil and condensate production from fields discovered on offshore tracts, Louisiana data were divided into three groups: (1) Production from all fields in zone 1 and inside the Chapman line; (2) production from fields discovered on State-leased tracts in zones 2, 3, and 4; and (3) production from fields discovered on tracts in zones 3 and 4 leased by the Federal Government (fig. 11). The sum of these groups is the total production offshore Louisiana. In 1966 there were 60 fields in group 1, 42 fields in group 2, and 45 fields in group 3.

 $<sup>^{9}\</sup>mathrm{Some}$  of the production offshore Louisiana was from tracts under ownership dispute.

TABLE 7. - Annual Gulf of Mexico crude oil and lease condensate production from January 1, 1954, to January 1, 1967, bbl

|                                      | 1966                                   | 1965                                                        | 1964                                   | 1963                                  | 1962                                     | 1961                      | 1960                                      | 1959                                                                                                                       | 1958                                      | 1957                                                    | 1956                              | 1955                  | 1954       |
|--------------------------------------|----------------------------------------|-------------------------------------------------------------|----------------------------------------|---------------------------------------|------------------------------------------|---------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------|-----------------------------------|-----------------------|------------|
|                                      |                                        |                                                             |                                        | LOUI                                  | LOUISIANA OFFSHORE                       | RE CRUDE OIL              | . PRODUCTION                              | 17/                                                                                                                        |                                           |                                                         |                                   |                       |            |
| Inside Chapman<br>line2/<br>Zone 12/ | 11,132,534                             |                                                             |                                        |                                       | 9,024,994                                | 8,580,238                 | 8,390,925                                 | 8,580,238 8,390,925 7,043,274 5,244,486 5,705,486 5,345,566 31,025,375 31,498,920 30,357,637,27,3732 31,542,649 22,576,213 | 5,244,486                                 | 5,705,486                                               | 5,345,566                         | 18,928,000            | 12,802,000 |
|                                      | 95,308,900<br>39,765,675<br>37,424,736 | 84,097,491<br>39,805,366<br>13,796,080                      | 74,726,608<br>27,258,250<br>11,150,490 | 64,633,811<br>21,327,573<br>8,305,410 | 53,598,165<br>16,179,899<br>6,790,407    |                           | 28,306,638 1<br>10,747,989 1<br>4,997,335 | 8,482,755<br>0,154,709<br>3,655,240                                                                                        | 11,834,963<br>8,252,333<br>2,153,698      | 7,881,084 5,150,978 5,668,941 3,521,262 949,063 377,745 | 5,150,978<br>3,521,262<br>377,745 | 5,784,000             | 2,574,000  |
| Total                                | 223,136,770                            | 223,136,770 185,011,370 163,341,082 139,923,316 119,457,989 | 163,341,082                            | 139,923,316                           | 119,457,989                              | 97,647,985                | 97,647,985 83,941,807                     | 69,693,615                                                                                                                 | 55,159,212                                | 69, 693, 615 55, 159, 212 51, 747, 223 40, 071, 764     | 40,071,764                        | 24,712,000 15,376,000 | 15,376,000 |
|                                      |                                        |                                                             |                                        | LOUI                                  | LOUISIANA OFFSHORE CONDENSATE PRODUCTION | RE CONDENSAT              | E PRODUCTIC                               | √1 NC                                                                                                                      |                                           |                                                         |                                   |                       |            |
| Inside Chapman<br>11ne2/<br>Zone 12/ | 213,057                                | 284,528                                                     |                                        |                                       | 476,595                                  | 726,267                   |                                           | 663,129                                                                                                                    | 756,840                                   | 385,917                                                 | 12,081                            | 000'6 {               | 3,000      |
|                                      |                                        |                                                             | -                                      | 4,2,1                                 | e, ∸,                                    | 2,817,295 734,063 544,693 | Ę                                         | 1,272,890<br>496,514<br>220,158                                                                                            |                                           |                                                         | 210,271 604,709                   | ) 1,010,000           | 547,000    |
| Total                                | 20,081,957                             | 14                                                          | -                                      | 9,163,234                             | 7,343,331                                | 5,549,360                 | 5,549,360 4,180,334                       | 3,099,164                                                                                                                  |                                           | 2,221,863 1,086,941                                     | 834,194                           | 1,019,000             | 550,000    |
|                                      |                                        |                                                             |                                        |                                       | TEXAS OFFSHORE                           | RE CRUDE OIL              | . PRODUCTION                              |                                                                                                                            |                                           |                                                         |                                   |                       |            |
| State                                | 111,782                                | 170,846                                                     | 227,786                                | 315,702                               | 434,417                                  | 354,044                   | 312,354                                   | 312,748                                                                                                                    | 322,833                                   | 236,100                                                 | 124,745                           | 153,586               | 10,393     |
| Total                                | 477,570                                | 177,155                                                     | 231,981                                | 368,837                               | 439,721                                  | 354,044                   | 312,354                                   | 312,748                                                                                                                    | 322,833                                   | 236,100                                                 | 124,745                           | 153,586               | 10,393     |
|                                      |                                        |                                                             |                                        | T                                     | TEXAS OFFSHORE                           | E CONDENSATE              | CONDENSATE PRODUCTION                     |                                                                                                                            |                                           |                                                         |                                   |                       |            |
| State                                | 251,025                                | 382,519                                                     | 345,359                                | 300,923                               | 364,872                                  | 238,302                   | 254,234                                   | 185,751                                                                                                                    | 146,887                                   | 14,449                                                  | 1,475                             | 00                    | 00         |
| Total                                | 251,025                                | 382,519                                                     | 345,359                                | 300,923                               | 364,872                                  | 238,302                   | 254,234                                   | 185,751                                                                                                                    | 146,887                                   | 14,449                                                  | 1,475                             | 0                     | 0          |
|                                      |                                        |                                                             |                                        | GULF OF                               | GULF OF MEXICO CRUDE                     |                           | OIL AND CONDENSATE PRODUCTION             | DUCTION                                                                                                                    |                                           |                                                         |                                   |                       |            |
| OilCondensate                        | 223,614,340 20,332,982                 | 185,188,525<br>14,663,808                                   | 163,573,063                            | 140,292,153                           | 119,897,710                              | 98,002,029                | 84,254,161                                | 0,006,363<br>3,284,915                                                                                                     | 55,482,045 51,983,323 2,368,750 1,101,390 | 51,983,323                                              | 40,196,509                        | 24,865,586            | 15,386,393 |
| Total                                | 243,947,322                            | 243,947,322 199,852,333 174,286,788 149,756,310 127,605,913 | 174,286,788                            | 149,756,310                           |                                          | 103,789,691               | 88,688,729                                | 73,291,278 57,850,795 53,084,713 41,032,178                                                                                | 57,850,795                                | 53,084,713                                              | 41,032,178                        | 25,884,586 15,936,393 | 15,936,393 |
|                                      |                                        |                                                             |                                        | UNITED                                | STATES CRUDE                             | OIL AND CON               | OIL AND CONDENSATE PRODUCTION             | DOUCTION                                                                                                                   |                                           |                                                         |                                   |                       |            |
| thousands                            | 3,027,763                              | 2,848,514                                                   | 2,786,822                              | 2,752,723                             | 2,676,189                                | 2,621,758                 | 2,574,933                                 | 2,574,590                                                                                                                  | 2,448,987                                 | 2,616,901                                               | 2,617,283                         | 2,484,428             | 2,357,082  |
|                                      |                                        |                                                             | RA                                     | RATIO OF GULF                         | OF MEXICO PRODUCTION                     | ODUCTION TO               | UNITED                                    | STATES PRODUCTION                                                                                                          | NO                                        |                                                         |                                   |                       |            |
| Percent                              | 8.06                                   | 7.02                                                        | 6.25                                   | 5.44                                  | 4.77                                     | 3.96                      | 3,44                                      | 2.85                                                                                                                       | 2.36                                      | 2,03                                                    | 1.57                              | 1.04                  | 0.68       |
| Data for 1954                        | and 1955 are                           | e rounded.                                                  |                                        |                                       |                                          |                           |                                           |                                                                                                                            |                                           |                                                         |                                   |                       |            |

Data for 1954 and 1955 are rounded.
 Undisputed State area.
 Disputed area.
 Indisputed Rederal area.

Sources: Louisiana Department of Conservation, Annual Oll and Gas Reports, 1954-66.

Texas Railroad Commission, Annual Reports of the Oil and Gas Division, 1954-66.

TABLE 8. - Gulf of Mexico as production from January 1, 1954, to January 1, 1967, Mscf

| Location                                                       | 1966                                                                                                                                               | 1965                                                                  | 1964                                                                 | 1963                                                                   | 1962                                                                 | 1961                                                                                                                    | 1960                                                                 | 1959                                                               | 1958                                                              | 1957                                                           | 1956                                                         | 1955                  | 1954                  |
|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|-----------------------|-----------------------|
|                                                                |                                                                                                                                                    |                                                                       |                                                                      |                                                                        | LOUISIANA O                                                          | LOUISIANA OFFSHORE CASINGHEAD GAS PRODUCTION                                                                            | ACHEAD GAS PR                                                        | ODUCTION                                                           |                                                                   |                                                                |                                                              |                       |                       |
| Inside Chapman<br>line<br>Zone 1<br>Zone 2<br>Zone 3<br>Zone 4 | 8,933,728<br>41,028,927<br>104,691,680<br>52,294,773<br>44,930,578                                                                                 | 9,768,538<br>35,565,868<br>94,613,780<br>48,650,958<br>15,448,216     | 12,904,021<br>38,932,629<br>88,326,198<br>35,256,301<br>10,224,764   | 13,528,892<br>35,699,528<br>74,294,639<br>31,016,477<br>6,264,678      | 11,256,623<br>34,949,087<br>59,902,255<br>22,918,036<br>5,016,425    | 10,158,836<br>31,850,849<br>40,451,812<br>17,301,042<br>4,811,869                                                       | 8,756,235<br>32,303,493<br>28,364,155<br>15,302,749<br>3,955,390     | 5,763,284<br>30,794,247<br>16,721,609<br>11,852,520<br>2,811,337   | 4,402,488<br>25,935,726<br>8,808,923<br>9,592,759<br>1,423,197    | 3,935,455<br>31,650,419<br>6,672,183<br>5,490,015<br>585,554   | 3,451,106<br>23,896,985<br>4,633,740<br>2,962,710<br>188,841 | 1/25,000,000          | 1/14,000,000          |
| Total                                                          | 251,879,686                                                                                                                                        |                                                                       | 204,047,360 185,643,913 160,804,214 134,042,426 104,574,408          | 160,804,214                                                            | 134,042,426                                                          | 104,574,408                                                                                                             |                                                                      | 88,682,022 67,942,997                                              | 50,163,093                                                        | 48,333,626                                                     | 35,133,382                                                   | 1/25,000,000          | 1/14,000,000          |
|                                                                |                                                                                                                                                    |                                                                       |                                                                      |                                                                        | LOUISIAN                                                             | LOUISIANA OFFSHORE NATURAL GAS PRODUCTION                                                                               | TURAL GAS PR                                                         | ODUCTION                                                           |                                                                   |                                                                |                                                              |                       |                       |
| Inside Chapman  1 ine.  2 one 1  2 one 2  2 one 4              | 22,843,827<br>227,704,210<br>429,098,002<br>208,811,392<br>153,505,404                                                                             | 22,273,368<br>157,927,083<br>303,113,750<br>205,070,069<br>84,592,808 | 24,479,132<br>85,426,936<br>232,284,572<br>203,610,639<br>82,690,389 | 24, 354, 101<br>76,033,583<br>198,414,452<br>180,181,967<br>66,757,091 | 23,566,832<br>67,774,152<br>172,145,655<br>137,608,002<br>53,223,694 | 20,300,554<br>57,525,429<br>135,401,283<br>96,318,857<br>44,360,232                                                     | 24,083,757<br>50,506,220<br>101,451,407<br>101,042,699<br>42,621,393 | 24,449,964<br>37,840,347<br>84,598,023<br>91,670,257<br>22,778,920 | 24,813,598<br>33,340,593<br>63,029,003<br>53,654,534<br>8,965,911 | 15,453,421<br>12,587,806<br>42,680,349<br>41,386,119<br>30,822 | 8,428,028<br>6,240,100<br>38,143,561<br>48,581,829           | 1/96,500,000          | 1/66,000,000          |
| Total                                                          | 1,041,962,835                                                                                                                                      |                                                                       | 628,491,668                                                          | 545,741,194                                                            | 454,318,335                                                          | 772,977,078 628,491,668 545,741,194 454,318,335 353,906,355 319,705,476 261,337,511 183,803,639 112,138,517 101,393,518 | 319,705,476                                                          | 261,337,511                                                        | 183,803,639                                                       | 112,138,517                                                    | 101,393,518                                                  | 1/96,500,000          | 1/66,000,000          |
|                                                                |                                                                                                                                                    |                                                                       |                                                                      |                                                                        | TEX                                                                  | TEXAS OFFSHORE GAS PRODUCTION                                                                                           | AS PRODUCTIO                                                         | N                                                                  |                                                                   |                                                                |                                                              |                       |                       |
| State                                                          | 23,439,749                                                                                                                                         | 23,962,212                                                            | 20,456,880                                                           |                                                                        | 18,376,443                                                           | 20,331,664 18,376,443 16,915,599 17,629,638 13,719,006 15,571,187                                                       | 17,629,638                                                           | 13,719,006                                                         | 15,571,187                                                        | 2,250,212                                                      | 613,501                                                      | ( <u>2</u> /)<br>(2/) | ( <u>2</u> /)<br>(2/) |
| Total                                                          | 61,240,938                                                                                                                                         | 23,985,537                                                            | 20,495,283                                                           | 20,331,664                                                             |                                                                      | 18,376,443 16,915,599                                                                                                   | 17,629,638                                                           | 13,719,006                                                         | 13,719,006 15,571,187                                             | 2,250,212                                                      | 613,501                                                      | (2/)                  | (2/)                  |
|                                                                |                                                                                                                                                    |                                                                       |                                                                      |                                                                        | CULF                                                                 | GULF OF MEXICO GAS PRODUCTION                                                                                           | AS PRODUCTIO                                                         | N                                                                  |                                                                   |                                                                |                                                              |                       |                       |
| Total                                                          | Tocal 1. 355 083 459 1,001,009 975 834, 630,864 726,877,072 606,737,204 475,396,362 426,017,136 342,999,514 249,537,919 162, 722, 355 137, 140,401 | 1,001,009,975                                                         | 834,630,864                                                          | 726,877,072                                                            | 606,737,204                                                          | 475,396,362                                                                                                             | 426,017,136                                                          | 342,999,514                                                        | 249,537,919                                                       | 162,722,355                                                    | 137,140,401                                                  | 121,500,000           | 80,000,000            |

1/ All 1954 and 1955 Louisians gas production is from leases sold by the State, except for about 15,000 Mcf of cashaphead gas produced in 1955 from Pederal field, Ship Shoal Block 154. All Efficies are rounded to be negligible.
22 Date and wantishe believed to be negligible. .... 1,325,083,439 1,001,009,9/3 844,630,864 7.26,877,072 606,737,204 4.25,396,362 4.26,017,136 342,999,314 249,337,919 162,722,333 137,140,401

Sources: Louisiana Department of Conservation, Annual Oil and Gas Reports, 1954-66.

Texas Railroad Commission, Annual Reports of the Oil and Gas Division, 1954-66.



FIGURE 11. - Annual Crude Oil and Lease Condensate Production From Fields by Discovery Lease Vendor, Offshore Louisiana, January 1954 to January 1967.

Offshore Texas only one tract seaward of the 3-league line has been leased by the State and this lease has been validated by the Federal Government (fig. 12). The Texas offshore crude oil and condensate production data (table 7) are divided into two groups: (1) Production from fields discovered on State-leased tracts, which are within 3 leagues of the Texas coastline, and, (2) production from fields discovered on Federal tracts, which are seaward of a line 3 leagues from the Texas coastline. Fields discovered on Federal tracts produced less than 100,000 bbl per year until 1966 when about 366,000 bbl was produced (nearly all from the Federal Block 288 field).

To 1967 both the annual and cumulative production from fields discovered on Federal tracts was less than that from State-owned tracts or validated State-leased tracts in Federal areas. An analysis of offshore Louisiana (fig. 11) shows that production from fields discovered on Federal tracts in zones 3 and 4 has increased from 0 pct of total offshore Louisiana production in 1954 to over 20 pct in 1966. The increase from fields discovered on validated State-leased tracts in zones 2, 3, and 4 was from around 20.1 to 56.0 pct, and the decrease from tracts in zone 1 and inside the Chapman line was from over 80 to about 23 pct of total offshore Louisiana production during this time. Over half of the increase from Federal tracts in zones 3 and 4 has occurred since 1963.



FIGURE 12. - Location of Active Federal and Validated
State Leases Seaward of the 3-League
Line, Offshore Texas, October 1967.

To determine the effect of Federal nominated and drainage lease sales in terms of crude oil and condensate production from tracts purchased at each sale, offshore Louisiana data were divided into four groups: (1) From all tracts in zone 1 and inside the Chapman line; (2) from tracts in zones 2, 3, and 4 leased by the State and validated by the Federal Government; (3) from tracts in zones 3 and 4 leased by the Federal Government at nominated lease sales; and, (4) from tracts in zones 2. 3. and 4 leased by the Federal Government at drainage lease sales (fig. 13). Note that in this grouping the production is from tracts, while the preceding grouping (fig. 12) gave production from fields. Production from all tracts leased by the Federal Government has increased from 0 pct of total offshore Louisiana production in 1954 to over 32.0 pct in 1966. Production from Federal areas was comprised of about 24 pct from competitive lease sales and about 8 pct from drainage lease sales. Production from zones 2, 3, and 4 Stateleased tracts validated by the Federal Government

increased from about 20 pct of total offshore Louisiana production in 1954 to about 45 pct in 1966. During this same period, production from tracts inside the Chapman line and in zone 1 continued to increase but represented only about 23 pct of the total in 1966.

The lease date, discovery date, and annual crude oil and condensate production from fields discovered on tracts offered during Federal nominated lease sales in 1954, 1955, 1960, and 1962 are presented in table 9 and in figure 14. The time lag between lease date and discovery date is generally less than 3 years but the time lag between lease date and production date has been up to 12 years as with the Eugene Island Block 77 field. Gasfields and



FIGURE 13. - Annual Crude Oil and Lease Condensate Production From Federal and State Leases, Offshore Louisiana, January 1954 to January 1967.

gas-cap fields generally have a much greater time lag between the lease and production dates than do oilfields. Another factor that can cause disruption of production from the offshore oil and gasfields is hurricane damage. In addition to wind and wave action, severe damage to wells and production equipment is often caused by debris carried by hurricanes. An indication of how the 1964 and 1965 hurricanes (Hilda and Betsy) affected production of some fields discovered on Federal leases is shown in table 9. For example, oil production decreased from 597,032 bbl in 1965 to 0 bbl in 1966 in the West Delta Block 117 field after all platforms were destroyed in September 1965.

Historical production data may be of little value in predicting the time frame of increasing production. For example, figure 14 shows that in 1961 production from the acreage leased in the 1954 sale had started to decline, and apparently had passed its peak. Five years later, however, the annual production had quadrupled. One explanation would be that an increase in demand permits development of productive-shut-in acreage and/or increased rate of production from developed acreage. Time lags from lease dates to exploration dates, coupled with the 1,107,700 acres classified productive-shut-in (October 1967), indicate a potential significant increase in future hydrocarbon production.

Source: Louisiana Department of Conservation, Annual Oil and Gas Reports, 1955-66.

TABLE 9 . - Offshore Louiskana annual crude oil and condensate production from fields discovered on Federal leases, barrels

| Cumilative<br>1/1/67                |               | 14,236,805<br>1,663,581<br>9,343,773<br>26,254,916<br>2,833,751<br>11,850,228<br>4450,189<br>162,817<br>30,578<br>439,396 | 67,457,927 |                | 1,177,510 6,567,969 896,401       | 6,150,946      |                    | 5,370,232     |                    | _       | 117,077               | _         |            | 1,649,395    |            |                    |                  | 1,023,276     | -         |               | 287,355    |           | 3,560             | 1,225        |        | 46.715.812   |                                                                                                                     |
|-------------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------|------------|----------------|-----------------------------------|----------------|--------------------|---------------|--------------------|---------|-----------------------|-----------|------------|--------------|------------|--------------------|------------------|---------------|-----------|---------------|------------|-----------|-------------------|--------------|--------|--------------|---------------------------------------------------------------------------------------------------------------------|
| 1966                                |               | 1,652,144<br>57,605<br>2,203,089<br>9,576,994<br>2,977,218<br>2,923,010<br>40,214<br>51,876<br>17,595<br>439,396          | 17,371,874 |                | 47,079                            | 1,256,822      |                    |               |                    |         | 117,027               | 5,150,391 |            | 3,506,092    |            |                    | 3 620,966        | _             |           |               |            | 37,545    | 3,560             | 1,225        | ' '    | 25.595.972   |                                                                                                                     |
| 1965                                |               | 807,879<br>1,418,339<br>6,753,014<br>2,653,231<br>34,370<br>58,440<br>12,983                                              | 11,932,921 |                | 90,109<br>400,209<br>11,655       |                |                    |               | 1,765,574          |         | 50 50                 | 3,243,458 |            | 467,808      |            |                    |                  |               |           | 156           | 161        | •         | '                 | '            | ' '    | 15 273 232   | ght wells.                                                                                                          |
| 1964                                |               | 2/1,137,026<br>3/197,361<br>1,230,169<br>4,888,226<br>284,635<br>2,300,101<br>31,996<br>52,501                            | 10,124,075 |                | 76,026<br>4/991,395<br>170,966    | 2,034,527      |                    | 655,807       | 1,132,233          | 394,222 |                       | 2,334,022 |            | 436,566      | 1,427,452  | 603,364            | 193,782          | 15,760        | 24,929    | ( <u>''</u> ) | •          |           | ٠                 | •            |        | 5 017 447    | Hilds destroyed three production platforms supporting eight wells. Betsy destroyed 2 platforms supporting 14 wells. |
| 1963                                |               | 1,436,994<br>263,355<br>867,997<br>2,976,583<br>341,707<br>1,738,233<br>60,080                                            | 7,684,949  |                | 73,584<br>1,372,618<br>373,153    | 1,078,239      |                    | 805,851       | 685,188            | 72,098  |                       | 1,731,493 |            | 209,268      | 3,441      |                    | •                | ,             |           |               | •          | ' '       | ,                 | •            |        | 829 161      | three production platforms supp<br>2 platforms supporting 14 wells                                                  |
| 1962                                |               | 1,545,174<br>253,462<br>810,854<br>1,296,245<br>357,931<br>700,127<br>81,416                                              | 5,045,209  |                | 131,861<br>1,527,028<br>339,863   | 996,718        |                    | 1,007,674     |                    | •       |                       | 1,403,928 |            |              | •          | '                  | •                | •             |           | •             |            | •         | •                 |              |        |              | production                                                                                                          |
| 1961                                |               | 1,476,141<br>245,407<br>909,804<br>418,427<br>353,332<br>516,519<br>126,047                                               | 4,045,677  |                | 193,986<br>1,312,804<br>524       | 2              |                    | 1,069,218     |                    | •       |                       | 1,091,169 |            | - '          | •          |                    | •                | •             | -         | •             |            | •         | '                 | •            |        |              | royed three                                                                                                         |
| 1960                                |               | 1,570,359<br>256,832<br>1,030,685<br>71,516<br>379,677<br>692,564<br>73,066                                               | 4,074,699  |                | 113,012<br>308,729<br>175         | 686,715        |                    | 8,697         |                    |         |                       | 8,697     |            |              | •          |                    |                  |               | ' '       | •             |            |           | •                 | 1            |        |              | Hilda destroyed<br>Betsy destroyed                                                                                  |
| 1959                                | 1954, SALE    | 1,802,535<br>248,017<br>739,681<br>107,540<br>438,592<br>318,899                                                          | 3,655,264  | 55, SALE       | 347,640                           | 347,705        | 1960, SALE         | ' '           |                    |         |                       |           | 2 SALE     |              | ï          |                    |                  | •             | ٠.        | •             |            |           | •                 | •            |        | 1            | Hurricane                                                                                                           |
| 1958                                | OCTOBER 13, 1 | 1,520,035<br>140,261<br>109,270<br>111,489<br>235,216<br>37,504                                                           | 2,153,775  | JULY 12, 1955, | 103,445                           | 103,586        | FEBRUARY 24, 1960, | ' '           | ' '                | '       |                       |           | MARCH 1962 | 1 1          | •          | '                  | ' '              | '             | ٠.        | •             |            |           | •                 | •            |        |              | /5/9/                                                                                                               |
| 1957                                | 8             | 868,393<br>759<br>23,986<br>54,822<br>778                                                                                 | 948,738    |                |                                   | 175            | FE                 |               |                    | 1       |                       | •         |            |              | '          | '                  | ' '              | •             | ' '       | '             | ' '        |           |                   | '            |        | 1            |                                                                                                                     |
| 1956                                |               | 377,124                                                                                                                   | 377,745    |                | 206                               | 206            |                    | ' '           |                    | :       |                       |           |            |              | •          |                    |                  | •             | ٠ ،       | ٠             |            |           | •                 | •            |        | 1            |                                                                                                                     |
| 1955                                |               | 43,001                                                                                                                    | 43,001     |                |                                   | , , ,          |                    | 1 1           |                    | •       |                       | •         |            | • •          | •          |                    |                  | '             |           | •             |            | •         | •                 | 1            |        | 1            | 1116.                                                                                                               |
| Approxi-<br>mate water<br>depth, ft |               | 50<br>130<br>140<br>140<br>20<br>20<br>20<br>20                                                                           |            |                | 888                               | 100            |                    | 25            | 5 29               | 55 52   | 5 2 2                 |           |            | 60<br>95     | 170        | 09                 | 140              | 125           | 125       | 160           | 205        | 140       | 200               | 9 6          | 220    | 110          | porting 7 we                                                                                                        |
| Date first<br>production1/          |               | 8/55<br>5/58<br>10/56<br>7/57<br>7/59<br>5/60<br>4/64<br>4/64<br>12/66                                                    | -          |                | 9/58<br>3/60<br>4/62              | 2/60<br>Shutin |                    | 11/60         | 6/62               | 10/63   | 8/65<br>12/65<br>1/66 |           |            | 5/63<br>6/63 | 11/63      | 2/64               | 3/64             | 12/64         | 12/64     | 99/9          | 2/66       | 10/66     | Abandoned<br>5/67 | 10/66        | Shutin | Shutin       | ion.<br>platforms sup                                                                                               |
| Discovery                           |               | 8/55<br>10/56<br>10/56<br>12/56<br>1/57<br>3/58<br>3/58<br>1/57<br>1/57<br>1/57<br>1/58                                   |            |                | 12/56<br>9/58<br>9/57             | 11/56          |                    | 09/8          | 8/60               | 8/60    | 8/64<br>8/61<br>3/61  |           |            | 7/62         | 1/63       | 9/62               | 10/64            | 2/64          | 6/62      | 9/64          | 12/65      | 4/63      | 69/0              | 8/65         | 8/65   | 12/66        | two 6-pile                                                                                                          |
| Block                               |               | 154<br>135<br>135<br>135<br>131<br>131<br>164<br>164<br>164                                                               |            |                | 86<br>208<br>139                  | 176            |                    | 100           | 23                 | 131     | 180                   |           |            | 23           | 73         | 9                  | 176              | 238           | 245       | 276           | 274        | 250       | 70                | 173          | 228    | 224          | f susta                                                                                                             |
| Field                               |               | Ship Shoal Rugene island Do Thaballer, South Verallion Rugene Island Verallion Rugene Island Do                           | Total      |                | Timbalier, South<br>Eugene Island | East Cameron   |                    | Eugene Island | South Marsh Island | Do      | West Delta            | Total     |            | South Pelto  | West Delta | South Marsh Island | Timbalier, South | Eugene Island | Vermilion | Eugene Island | Ship Shoal | Vermilion | Grand Late        | East Cameron | Do     | East Cameron | 1/ Approximate date of sustained production. 2/ Nurrisane Hilds destroyed two 6-pile platforms supporting 7 wells.  |



FIGURE 14. - Annual Crude Oil and Condensate Production From Fields Discovered on Federal Leases, Offshore Louisiana.

Well Count and Multiple Completion Regulation

A November 1967 well count showed that in zones 2, 3, and 4 a total of 6,292 holes had been drilled. Of these, 2,075 had been plugged and abandoned, 2,997 were producing hydrocarbons, and 1,220 were shut-in or temporarily abandoned. The producing wells were comprised of the following completions: 1,739 singles; 1,188 duals; 66 triples; and 4 quadruples.

Effective June 7, 1960, the Louisiana Department of Conservation issued statewide Order 29-C-1, which stated that until further notice no permits would be issued for the multiple completion of oil wells in oil pools not previously approved for multiple completion. The Department of Conservation rescinded the ban of multiple completions because, after hearing additional evidence on August 9, 1960, they concluded unnecessary wells would be drilled. This would place a financial hardship on a substantial segment of the oil and gas industry in Louisiana. On September 1, 1960, the multiple completion rule (29-C-1) was amended by rule 29-C-2, which permitted the dual completion of oil wells. The completion limitation to dual wells was still in effect as of January 1, 1968. Limiting multiple completions (and not changing other regulations) has the effect of reducing the amount of petroleum produced.

### Proration of Production

The allowables for all offshore Louisiana wells are set by the Louisiana Department of Conservation, and offshore Texas allowables are set by the Texas Railroad Commission and the USGS. A comparison of the Louisiana and Texas depth-bracket allowables for a 100 pct market demand factor for onshore and offshore wells is shown in table 10.

## Conservation of Offshore Petroleum

Offshore Louisiana there are 10 fields (85 reservoirs) with active gasinjection projects and eight fields (24 reservoirs) with active water-injection (some have both water and gas injection) projects. In 1966 the combined oil and condensate production from these fields was about 37 million bbl, or approximately 15 pct of the total offshore Louisiana production.

In addition to the active projects, 41 reservoirs have proposed projects. Engineering estimates indicate that from the active secondary recovery projects the ultimate recovery of oil will be increased about 240 million bbl. From proposed projects it has been estimated that the ultimate recovery will be increased by about 37 million bbl  $(\underline{5})$ .

# Methods of Transporting Offshore Production

Offshore Louisiana liquids are transported to shore both by barge and by a system of pipelines and flowlines. Pipelines are common carriers that move clean oil and gas onshore after treatment at offshore facilities, whereas flowlines move untreated fluids to onshore separation facilities. Generally, the fields in deeper water and farthest offshore are not as fully developed, so the pipeline-flowline system does not extend to these fields. Barges are often used in the interim between field discovery and completion of a pipeline or flowline. In zones 2, 3, and 4 the BLM issues pipeline permits and the USGS issues flowline permits. Operators who barge their oil to onshore facilities and apply to the USGS may receive a credit for this expenditure. Barging allowances ranging from 10.5 cents to 45 cents per bbl had been granted as of January 1, 1967. The USGS also may grant a pipeline credit based on the cost of the line and maintenance divided by the number of barrels run. Pipeline allowances have ranged from 1.4 cents to 40 cents per bbl.

TABLE 10. - Offshore Louisiana and Texas depth-bracket allowable, 1/ bpd

|          | acres     | Louisiana3/ | 233      | 262         | 295          | 332         | 376          | 454          | 486          | 536                                    | 009            | 299                                    | 733           | 797           | 884                            |
|----------|-----------|-------------|----------|-------------|--------------|-------------|--------------|--------------|--------------|----------------------------------------|----------------|----------------------------------------|---------------|---------------|--------------------------------|
| Offshore | 80        | /4sexaI     | 330      | 360         | 400          | 445         | 490          | 545          | 605          | 665                                    | 730            | 800                                    | 875           | 950           | 1,030                          |
| 0ffs     | 40 acres  | Louisiana3/ | 193      | 214         | 238          | 265         | 296          | 331          | 379          | 416                                    | 463            | 512                                    | 559           | 605           | 899                            |
|          | 40        | Texas4/     | 200      | 220         | 245          | 275         | 305          | 340          | 380          | 420                                    | 465            | 515                                    | 565           | 620           | 675                            |
|          | acres     | Louisiana3/ | 120      | 143         | 171          | 201         | 239          | 279          | 321          | 359                                    | 411            | ) 465<br>>                             | > 521         | > 575         | > 647                          |
| Onshore  | 80        | Texas2/     | 129      | 135         | 144          | 158         | 171          | 184          | 198          | $\begin{cases} 215 \\ 229 \end{cases}$ | { 250<br>{ 272 | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | { 365<br>401  | {436<br>471   | \( \frac{506}{543} \)          |
| Ons      | 40 acres  | Louisiana3/ | 80       | 95          | 114          | 134         | 159          | 186          | 214          | } 239                                  | } 274          | 310                                    | 347           | } 383         | } 431                          |
|          | 040       | Texas2/     | 74       | 78          | 84           | 93          | 102          | 111          | 121          | 133                                    | 157            | 192<br>212                             | 237           | 287           | 337                            |
| Depth    | interval, | ft          | 0- 2,000 | 2,000-3,000 | 3,000- 4,000 | 4,000-5,000 | 5,000- 6,000 | 6,000- 7,000 | 7,000- 8,000 | 8,000- 8,500                           | _              | 10,000-10,500                          | 11,000-11,500 | 12,000-12,500 | 13,000-13,500<br>13,500-14,000 |

Below 8,000 ft, depth-bracket allowable data in columns 2, 4, 5, 6, 7, and 8 are for 1,000-ft intervals. Effective January 1965.

Effective March 1953. Effective January 1966. Sources: Louisiana Department of Conservation. Texas Railroad Commission.



FIGURE 15. - Approximate Location of the Existing Pipeline-Flowline System, Offshore Texas, March 1968.

Most of the producing oilfields in the Federal area offshore Texas are connected with a pipeline-flowline system as presented in figure 15. The Blue Dolphin pipeline is a 20-in-diameter line about 25 miles long. from Galveston area Block 288 field to shore. The Black Marlin is a 16-indiameter pipeline about the same length, connecting High Island Blocks 140 and 160 fields with shore facilities. In this area there is only one flowline, a 4-in-diameter line from the Federal Block 52 field to shore.

A December 1966 survey (9) indicated that about 5.000 miles of pipelines and flowlines had been constructed offshore Louisiana at that time and new work was adding about 700 miles per year. About 1,350 miles of pipeline offshore Louisiana in zones 2, 3, and 4 were either completed, under construction, or proposed as of March 1968. Figure 16 shows the approximate location of the between-field and the field-to-shore proposed, under construction, and existing pipeline-

flowline system offshore Louisiana as of March 1968. Both proposed and completed lines are shown because operators have 5 years after they obtain a permit to complete a line and give notification of completion. All lines shown depict the location and direction as nearly as possible, but in some of the more congested areas, location and direction are partially schematic. Primary intent of the map is to emphasize the considerable amount of field-to-shore pipeline and flowline installations in operation or planned in zones 2, 3, and 4.

Pipelines range in diameter from 3-in to 20-in. The longest pipeline permit issued by the BLM was for an 80-mile, combination 14- and 16-in system, completed in 1966, connecting several fields in the Eugene Island and Ship Shoal areas to shore. Flowline sizes range from 4- to 30-in-diameter. The







FIGURE 16. - Approximate Location of the Proposed and Existing



eline-Flowline System, Offshore Louisiana, March 1968.



FIGURE 16. - Approximate Location of the Proposed and Existing Pipeline-Flowline System, Offshare Louisiana, March 1968.





longest system is about 45 miles of 22-in-diameter line from South Timbalier Block 135 field, through South Timbalier Block 131 to West Delta Block 41 field. Another large-diameter line carries fluids 20 miles to shore in a 26-in pipe from West Delta Block 41 field via the West Delta Block 30 field.

A March 1967 survey of the methods used to transport offshore Louisiana crude oil and condensate showed that 25 pct was barged and 75 pct was moved by the pipeline-flowline system.

### TECHNOLOGY ADVANCEMENTS IN OFFSHORE OPERATIONS

Thus far, technology has progressed continuously to allow operators to move into deeper water each successive lease sale. Distance from shore, even when the water is comparatively shallow, becomes an important factor in storage and transportation of produced fluids. To explore and develop the thousands of acres leased in the Gulf of Mexico, industry developed the technology, procedures, and equipment necessary to drill in deeper water as shown by the depth rating of rigs working in the Gulf of Mexico from 1959 to July 1, 1967 (table 1). The floating units all have a depth rating of at least 600 ft of water. In the Gulf of Mexico, the 100-ft water-depth contour is up to a maximum 80 miles offshore on the gradually sloping seafloor in the western areas offshore Louisiana, while the 600-ft water mark is less than 20 miles from land near the Mississippi Delta area where the bottom slope is much more abrupt. To date the farthest proved reserve (shut-in) is 90 miles from the Louisiana coastline. The maximum water depth offshore Gulf of Mexico in which a production platform has been installed is approximately 340 ft in the South Pass area offshore Louisiana.

An early method of drilling and completing wells in the Gulf of Mexico was with the use of a small, fixed platform constructed with timber or steel piling to support the derrick and drilling rig, and a floating tender to supply all the support material, including living quarters for workers. Caissons driven into the ocean floor protect the casings of wells completed from these platforms. In the 1950's this method was generally replaced by the method of exploring prospects with mobile or floating rigs, and then designing large, expensive platforms for development drilling and production operations. These platforms consist of steel, tubular piling driven through vertical tubes strengthened by horizontal and diagonal braces. Designers make the decision on the optimum strength of a platform, based on engineering studies of forces created by hurricanes. Platforms, usually designed with eight to 12 piles, are capable of supporting 12 to 24 wells. These structures are self-contained and do not require a tender. In November 1967 there were 40 production platforms, 455 drilling platforms, and 963 caissons in the Gulf of Mexico.

The ultimate water depth in which the present tower-type construction may be used will probably be limited by economics rather than technology. Some experts think the economic limit may occur at about 600 ft water depth. Therefore, completions outside the Continental Shelf (generally where water depth is about 600 ft and begins to increase rapidly) will depend on improved technology. One possible change in the current method of development is to use underwater completion methods. With techniques such as pictured in figure 17 ( $\underline{11}$ - $\underline{12}$ ),



FIGURE 17. - Scheme of Subsea Well Completion Operated From a Distant Platform.

the area for possible development could be extended to deeper water. If the wellhead is on or near the floor of the sea, the fluids can be moved to a platform in more shallow water, as shown in figure 17.

The subsea wellhead completion assembly (12) is operated by a dual flow-line and tubing installation technique, with hydraulic control lines and valves. This system permits fluid reversing; therefore some remedial workover and other special well bore treatment is possible. Paraffin removal, acidizing, squeeze cementing, and perforating have been successfully undertaken in a test well operating offshore in shallow water. The 2-in flowlines extended to a platform about 1 mile from the wellhead and the various operations were remotely performed, using specially designed pump-down tools. A panel on the platform contained hydraulic valve controls and remote valve position indicators; a manifold for tool placement-removal is also part of the necessary equipment. The 5-ft-radius bends in the line at the wellhead were sufficient to allow passage of the various knuckle-jointed tools and tool carriers. Vertical entry into the wellhead is possible for such other type workovers as tubing and packer removal, and Christmas tree maintenance.

#### COSTS OF COMPLETING OFFSHORE AND ONSHORE WELLS

Based on 1965 data  $(\underline{2})$  the average depth of an onshore well was 4,452 ft and the average cost in current dollars (not including artificial lift equipment or lease facilities) was \$51,000. The average depth of an offshore well was 10,500 ft and cost, in current dollars, \$412,000. Offshore well costs include platforms, barges, tenders, and other related services. These costs indicate that an average offshore well costs about 8 times as much as the average well drilled onshore in the United States.

The average cost of completing Gulf of Mexico and U.S. onshore wells from 1953 through 1965 is shown on figure 18 (2). These data were not available for the years 1954, 1957, and 1958. All costs have been converted to constant dollars using price deflators for the gross national product where 1958 = 100. From 1953 to 1956 there was a marked increase in the cost of an average offshore well. From 1959 to 1964, however, there was a decline in the costs for an average offshore well even though operators were continuing to move into deeper water. This cost reduction can be attributed, at least in part, to the increased technology gained from previous operations in this particular type of environment. In contrast, the average cost of an onshore well has remained almost constant from 1953 through 1965. The cost (using constant dollars) to drill and equip an offshore well was about 6 times the cost to drill an onshore well in 1953, 9 times the cost in 1956, and 8 times the cost in 1959 and 1965.

Water depth, distance from shore, nature of foundation sediments, and slopes of the ocean floor near the Continental Shelf margins are all important factors in installation and development costs of some tracts. One offshore operator has stated ( $\frac{14}{2}$ ) that from onshore to offshore in 100 ft of water the capital requirement about doubles, and is estimated to increase another 70 pct in 400 ft of water.



FIGURE 18. - Average Cost of Completing Offshore Wells and Onshore Wells in the United States, 1953-65.

#### SUMMARY AND PRODUCTION OUTLOOK

The Federal Government had leased, as of January 1, 1968, about 4.6 million acres in the Gulf of Mexico for about \$1.87 billion. As of late 1967, about 50 pct of the Federal leases acquired prior to June 1967 (there had been little time to initiate drilling programs on leases acquired in June 1967) were classified producing, productive-shut-in, or held by effect of consignment to unit areas (for future drilling and development). This success has greatly influenced the movement to or interest in offshore areas, not only along the OCS of the United States but also worldwide. Industry's confidence in the possibility of developing prolific hydrocarbon deposits in progressively deeper water is evidenced by the leasing of 38 tracts (200,000 acres) for exploration and development where water is over 600 ft deep off the California coast, and several tracts offshore Louisiana approaching 600 ft in depth.

In the Federal offshore area (including validated State leases) 6,292 holes had been drilled as of November 1967, and 2,997 were producing hydrocarbons. From 1953 to 1967, 47 new fields were discovered in this area. The annual royalty value of crude oil, condensate, and gas produced from the Federal area of the Gulf of Mexico increased from \$967,892 in 1953 to \$132,849,922 in 1966; and the cumulative value to January 1967 is \$615,053,412. In 1967 the average oil production rate from offshore completions was about 150 bpd, while the average for the total United States was about 15 bpd. There is approximately 500,000 bbl of proved oil reserves per offshore completion, and 55,000 bbl per onshore completion. At yearend 1967, the Gulf of Mexico had about 8 pct of the total United States proved crude oil reserves,

 $1\ \mathrm{pct}$  of the producing completions,  $9\ \mathrm{pct}$  of the  $90\mbox{-day}$  producing capacity, and  $9\ \mathrm{pct}$  of the total production.

The attraction of petroleum industry capital to offshore areas may be attributed to several factors. Among the more important are discovery of sizable fields (of the 41 giant fields in Louisiana, 14 are offshore and six of the top 10 are offshore); the average success ratio for exploratory wells drilled in the Gulf of Mexico (26 pct success for offshore and 18 pct success for onshore); the size of the tracts being offered (about 5,000 acres); and the obtaining of acreage from a single owner.

Some industry experts regard the bonus investment as an indicator of future capital expenditure for drilling and production development. An average multiplier (10) for determining ultimate spending from bonus investment is 5. The major factors influencing this multiplier are the individual operator, nature of a prospect, wildcat success, distance from shore, and water depths. About \$2.5 billion (this includes 1968 nominated sales) has been spent on bonuses. By applying the multiplier, an additional \$10 billion outlay will be made eventually for exploration and development of leases acquired to May 1968.

From 1954 through 1966 annual Gulf of Mexico crude oil and condensate production increased steadily from less than 1.0 pct of the total U.S. domestic production to over 8 pct. This increase was at the expense of onshore production which had a growth rate of 1.5 pct per year while offshore had a 26 pct growth rate. The percentage of total annual U.S. expenditures spent for drilling and equipping offshore oil and gas wells increased from less than 1.0 pct of the total in 1953 to about 17.0 pct in 1965. The substantial capital investment in the development and production of Gulf of Mexico fields has reduced the expenditures for the onshore areas. For example, onshore seismic exploration activity has decreased steadily from 35,990 crew weeks in 1953 to 15,731 crew weeks in 1967, and the onshore annual footage drilled by the oil industry decreased from 198 to 133 million ft.

The projection of total Gulf of Mexico production to 1975 assumes the following: (1) Increased technology in both drilling and producing operations will allow operators to produce to the edge of the OCS, or in water depths up to 600 ft; (2) the Federal lease sales will continue at approximately the same rate as they have since 1954; (3) the demand for offshore crude oil, condensate, and gas continues as it has in the past; and, (4) the discovery rate and quality of discoveries continue as in the past. Also, the time lags of up to 5 years from lease to discovery dates and the 1,107,700 acres classified productive-shut-in (October 1967) provides a semiproven reserve of hydrocarbons during the forecast period.

Using the reasoning in these considerations it seems probable that the production from the Gulf of Mexico will continue to 1975 within the range shown in figure 19. The upper value represents a growth rate of 19 pct per year and would result in an annual production of 1,150 million bbl in 1975; the lower value represents a growth rate of 13 pct per year and would result

in an annual production of about 750 million bbl in 1975. Using an estimated domestic production ( $\frac{13}{2}$ ) for oil and condensate in 1975 of 3.9 billion bbl, Gulf of Mexico production would be 20-30 pct of the total.



FIGURE 19. - Annual Gulf of Mexico Crude Oil and Condensate Production, 1954-66, and Projected Through 1975.

#### REFERENCES

- American Association of Petroleum Geologists. Exploratory Drilling, 1953-1965. Frederick H. Lahee, v. 38, No. 6, June 1954, pp. 971-987; Frederick H. Lahee, v. 39, No. 6, June 1955, pp. 787-804; Frederick H. Lahee, v. 40, No. 6, June 1956, pp. 1057-1075; Graham E. Moody, v. 41, No. 6, June 1957, pp. 898-1005; B. W. Blanpied, v. 42, No. 6, June 1958, pp. 1125-1142; B. W. Blanpied, v. 43, No. 6, June 1959, pp. 1117-1138; B. W. Blanpied, v. 44, No. 6, June 1960, pp. 657-682; J. Ben Carsey, v. 45, No. 6, June 1961, pp. 701-727; J. Ben Carsey and Marion S. Roberts, v. 46, No. 6, June 1962, pp. 725-771; J. Ben Carsey and Marion S. Roberts, v. 47, No. 6, June 1963, pp. 889-934; Leo R. Newfarmer and E. L. Dillon, v. 48, No. 6, June 1964, pp. 749-777; Leo R. Newfarmer and E. L. Dillon, v. 48, No. 6, June 1965; pp. 634-660; E. L. Dillon and L. H. Van Dyke, v. 50, No. 6, June 1966, pp. 1114-1138.
- 2. American Petroleum Institute, Independent Petroleum Association of America, and Mid-Continent Oil and Gas Association. Joint Association Survey of Industry Drilling Costs, 1953, 4 pp., table 3; 1955-56, 13 pp.; 1959, 14 pp., tables 36 and 37; 1960, 14 pp., tables 36 and 37; 1961, 15 pp., tables 36 and 37; 1962, 16 pp., tables 36 and 37; 1963, 16 pp., tables 36 and 37; 1964, 8 pp., tables 36 and 37; and 1965, 51 pp., tables 36 and 37.
- 3. Federal Reserve Bank of Dallas. Business Review. June 1968, p. 5.
- 4. Kliewer, Donald E. Editorial. World Oil, v. 163, No. 1, July 1966, p. 7.
- Louisiana Department of Conservation. Secondary Recovery and Pressure Maintenance Operations in Louisiana, 1966 Report, 124 pp.
- Louisiana Offshore Oil Scouts Association. Status of the Louisiana Offshore Oil Industry--Report of Offshore Drilling Units. Statistical Review of Events, 1959-67, 56 pp.
- 7. The Oil and Gas Journal. Annual Review--Forecast Issue, v. 51, No. 37, Jan. 26, 1953, p. 169; v. 52, No. 38, Jan. 25, 1954, p. 150; v. 53, No. 39, Jan. 31, 1955, p. 166; v. 54, No. 39, Jan. 30, 1956, p. 168; v. 55, No. 4, Jan. 28, 1957, p. 192; v. 56, No. 4, Jan. 27, 1958, p. 190; v. 57, No. 4, Jan. 26, 1959, p. 119; v. 58, No. 9, Feb. 29, 1960, p. 39; v. 59, No. 4, Jan. 23, 1961, p. 45; v. 60, No. 4, Jan. 22, 1962, p. 27; v. 61, No. 3, Jan. 21, 1963, p. 55; v. 62, No. 4, Jan. 27, 1964, p. 138; v. 63, No. 4, Jan. 25, 1965, p. 128.
- 8. \_\_\_\_\_ Rotary Rig Activity Dips Again. V. 61, No. 4, Jan. 28, 1963, p. 164; v. 65, No. 5, Jan. 30, 1967, p. 152.
- Move Is On to New Areas, Greater Depths, Larger Sizes. V. 64, No. 50, Dec. 12, 1966, p. 67.

- 10. The Oil and Gas Journal. Offshore Sale Won't Hurt Inland Drilling Much-This Year. V. 60, No. 20, May 14, 1962, p. 75.
- 11. \_\_\_\_. Shell Uses "Blending Shoe" to Install Offshore Riser. V. 15, No. 47, Nov. 20, 1967, p. 200.
- Rigg, A. M., T. W. Childers, and C. B. Corley, Jr. A Subsea Completion System for Deepwater. J. Petrol. Technol., v. 18, No. 10, September 1966, pp. 1049-1055.
- 13. Vogely, William A., and Warren E. Morrison. Pattern of Energy Consumption in the United States. Pres. at World Power Conf., Tokyo, Japan, October 1966, 24 pp. (available for inspection at Dallas Office of Mineral Resources, Bureau of Mines, Dallas, Tex.)
- 14. Wilson, J. E. Economics of Offshore Louisiana. Pres. at Ann. Meet. of the Louisiana-Arkansas Division of Mid-Continent Oil and Gas Association, Sept. 12, 1967, 27 pp. (available for inspection at the Dallas Office of Mineral Resources, Bureau of Mines, Dallas, Tex.)

APPENDIX A.--CUMULATIVE AND 1967 OIL AND GAS PRODUCTION, OFFSHORE ALASKA (COOK INLET) AND CALIFORNIA

|                      |            | 1967 pr    | oduction   | Cumulative, Jan. 1, 1968 |                     |  |  |  |  |  |  |
|----------------------|------------|------------|------------|--------------------------|---------------------|--|--|--|--|--|--|
|                      | Year       | Crude oil, | Gas,       | Crude oil,               | Gas,                |  |  |  |  |  |  |
| Field                | discovered | bb1        | Mscf       | bb1                      | Mscf                |  |  |  |  |  |  |
| ALASKA (Cook Inlet)  |            |            |            |                          |                     |  |  |  |  |  |  |
| Granite Point        | 1954       | 7,016,000  | 4,811,000  | 7,016,000                | 4,811,000           |  |  |  |  |  |  |
| McArthur River       | 1965       | 749,000    | 219,000    | 749,000                  | 219,000             |  |  |  |  |  |  |
| Middle Ground Shoal. | 1962       | 7,654,000  | 3,197,000  | 10,336,000               | 4,406,000           |  |  |  |  |  |  |
| Trading Bay          | 1965       | 727,000    | 705,000    | 729,000                  | 705,000             |  |  |  |  |  |  |
|                      | CALIFORNIA |            |            |                          |                     |  |  |  |  |  |  |
| Algeria              | 1962       | 5,000      | 464,000    | 58,000                   | 1,767,000           |  |  |  |  |  |  |
| Belmont              | 1948       | 4,273,000  | 5,737,000  | 18,203,000               | 23,456,000          |  |  |  |  |  |  |
| Caliente             |            | •          | 4,285,000  | í í -                    | 15,821,000          |  |  |  |  |  |  |
| Carpinteria          | 1966       | 3,404,000  | 2,612,000  | 4,317,000                | 3,079,000           |  |  |  |  |  |  |
| Coal Oil Point       | 1961       | 159,000    | 283,000    | 871,000                  | 2,260,000           |  |  |  |  |  |  |
| Conception           | 1961       | 888,000    | 614,000    | 18,587,000               | 11,943,000          |  |  |  |  |  |  |
| Cuarta               | 1961       | 18,000     | 532,000    | 561,000                  | 16,839,000          |  |  |  |  |  |  |
| Elwood               | 1928       | 225,000    | 354,000    | 75,305,000               | 84,474,000          |  |  |  |  |  |  |
| Elwood, South        | 1966       | 1,520,000  | 1,621,000  | 1,520,000                | 1,621,000           |  |  |  |  |  |  |
| Gaviota              |            | -          | 8,315,000  | -                        | 50,277,000          |  |  |  |  |  |  |
| Huntington Beach     | 1926       | 13,359,000 | 8,204,000  | 335,252,000              | 1/350,268,000       |  |  |  |  |  |  |
| Molino               |            | -          | 30,576,000 | -                        | 1/110,509,000       |  |  |  |  |  |  |
| Montalvo, West       |            | 167,000    | 284,000    | 4,482,000                | 1/5,194,000         |  |  |  |  |  |  |
| Naples               |            | -          | -          | -                        | 20,815,000          |  |  |  |  |  |  |
| Newport, West        | 1953       | 115,000    | 27,000     | 3,057,000                | 1,034,000           |  |  |  |  |  |  |
| Rincon               | 1927       | 787,000    | 783,000    | 24,949,000               | 23,798,000          |  |  |  |  |  |  |
| Seal Beach (Alamitos |            |            |            |                          |                     |  |  |  |  |  |  |
| Area)                | 1926       | 16,000     | 10,000     | 587,000                  | 1/639,000           |  |  |  |  |  |  |
| Summerland           | 1958       | 1,861,000  | 9,453,000  | 19,498,000               | 56,065,000          |  |  |  |  |  |  |
| Torrance West        |            |            |            |                          |                     |  |  |  |  |  |  |
| Area2/               | 1956       | 152,000    | 184,000    | 3,623,000                | <u>1</u> /4,687,000 |  |  |  |  |  |  |
| Venice Beach         | 1966       | 409,000    | 434,000    | 409,000                  | 1/434,000           |  |  |  |  |  |  |
| Wilmington           | 1965       | 37,464,000 | 11,513,000 | 427,376,000              | 1/405,313,000       |  |  |  |  |  |  |
| 1/ Estimated.        |            |            |            | L                        |                     |  |  |  |  |  |  |

<sup>2/</sup> Combined with Torrance Main Area, 1966.

# APPENDIX B.--LEASING PROCEDURES AND TERMS DESCRIBED IN SECTION 8 OF PUBLIC LAW 212

- A. Oil and gas--competitive bidding.
  - 1. Sealed bid.
    - (a) Cash bonus with fixed royalty.
    - (b) Royalty bid with fixed bonus.
  - Royalty not less than 12.5 pct (16-2/3 pct has been the OCS royalty to date).
  - 3. Compact area -- not exceeding 5,760 acres.
  - 4. Term is 5 years and so long thereafter as oil or gas may be produced in paying quantities or drilling or well reworking operations, as approved by the Secretary, are conducted.
  - Rental as prescribed by the Secretary of the Interior at the time of offering the area for lease.
- B. Sulfur--competitive bidding.
  - 1. Sealed bid.
    - (a) Cash bonus.
  - 2. Area as determined by the Secretary.
  - Term is 10 years and so long thereafter as sulfur is produced in paying quantities or drilling conducted.
  - Royalty as determined by the Secretary but not less than 5 pct of the gross production or value at the wellhead.
  - 5. Rental as prescribed by the Secretary.
- C. Other minerals--competitive bidding.
  - 1. Sealed bid.
  - Area as prescribed by the Secretary at the time of offering the area for lease.
  - Term as prescribed by the Secretary at the time of offering the area for lease.
  - Royalty as prescribed by the Secretary at the time of offering the area for lease.

Rental as prescribed by the Secretary at the time of offering the area for lease.

The BLM has been designated to administer leasing regulations on the public lands of the OCS. The Code of Federal Regulations (CFR), Title 43, part 3380, describes the functions of the BLM in regard to these lands. Official maps of the OCS are prepared by the BLM, and normally are made to conform as nearly as possible to the method of tract designation used by the adjoining State. The area of a tract offered for lease may not exceed 5,760 acres.

The Secretary of the Interior was authorized by the OCS Lands Act to issue leases for minerals in submerged lands of the OCS. Helium ownership rights, however, are exclusively for the U.S. Government. Leases are issued at the Secretary's discretion. The USGS and BLM furnish recommendations to the Secretary in the lease sale planning process. Normally, when enough interest has been expressed in leasing any particular offshore area, a call for nominations in a specified area is made. However, from time to time the Director of BLM may issue calls for the submission of requests for mineral lease offerings in specified areas. Requests to bid on specified areas should be made to the Director of BLM, Washington, D.C., with a copy furnished to the appropriate Oil and Gas Supervisor of the USGS. Specific tracts to be offered for lease from within the area opened for nominations are selected by the BLM and USGS. Then a notice of lands for lease is published in the Federal Register and other publications (the Federal Register is the official publication) at least 30 days prior to the sale. The notice establishes the place. date, and the hour for opening of the sealed bids. The notice may also set special conditions applicable, and these may become part of the terms of the leases.

Further, a separate bid must be submitted for each desired tract, and must be accompanied by one-fifth of the bonus. This amount may be in the form of a certified or cashiers check, bank draft, money order, or cash. If an individual is bidding, a statement of citizenship must be included; whereas if the bidder is an association or organization, proof of organization (or appropriate reference to same if already on file with the BLM), and authority for person or persons officiating for the group is required.

Leases are awarded to the highest qualified bidder if it is determined by the BLM that it would be in the public interest to do so. These contracts specify an agreement for a 5-year term, and are maintained in force as long as oil or gas may be produced in paying quantities, or approved drilling or reworking operations are conducted. In the event of a high-bid tie, 15 days are allowed in which to accept the lease jointly or the bid is considered rejected. If the United States does not accept the high bid within 30 days after the date on which the bids were opened, it is considered rejected and the deposit returned. If the lease is awarded, the balance of the bonus (four-fifths), and the stated first year rental are due within 30 days. Failure of the lessee to return the leases, balance of bonus and rental within the prescribed time results in forfeiture of the bonus submitted with the bid. Lessee or operator surety bonds of \$15,000 must be furnished for each lease

acquired; however, this is not necessary on each lease received if a \$100,000 surety bond has been posted with the BLM, or supplied at the time of completion of issuance of lease. As stated in Section A, subpart lb of this appendix, the bid may be on the basis of royalty with fixed bonus. Although this procedure of royalty bidding is permitted under the law, all leasing to date has been by bonus bidding.

Leases normally become effective on the first day of the month following the bid openings. However, upon request, the lease may be made effective retroactive to the first day of the month in which the bid opening was held. Drilling, production, or reworking of a well directionally drilled under a tract from an adjoining tract maintains the lease.

Prescribed rental is due in advance on the first day of the lease-year. Specified minimum royalty is to be paid at the end of the lease-year in which a discovery was made. Royalty on production is paid on a monthly basis. Payments of royalty and rental are made to the United States through the regional Oil and Gas Supervisor of the USGS, and filing charges, bonuses, and first year rental are made to the appropriate BLM field office (unless otherwise directed by the Secretary).

The New Orleans BLM office is the office of record for leases and all assignments and relinquishments effecting record title must be filed there for approval or acceptance. Correspondence should be to: Manager, Outer Continental Shelf Land Office, Bureau of Land Management, P.O. Box 53226, New Orleans, La. 70150. All accrued rental and royalty must be paid; however, and well or other structures abandoned to the satisfaction of the Oil and Gas Supervisor of the USCS.

The USGS administers the regulations pertaining to oil, gas, and sulfur operations in the OCS. These functions include the regulating of drilling and production, rental and royalty collection (an exception is noted earlier), field hearings and rules, well and other structure abandonment, and other duties. Detailed information on the USGS role in the offshore areas may be found in Title 30, part 250, Chapter II, of the CFR. Other functions of the USGS may be found in Title 30, part 3380, Chapter II, of the CFR.

The OCS Lands Act authorizes the Secretary to prescribe rules and regulations applicable to operations conducted under a lease issued or maintained under the provisions of the Act. The USGS is charged with enforcing the prescribed rules and regulations to prevent waste and conserve natural resources of the OCS, including the suspension of production if necessary.

No royalty or rental is due during a suspension of production authorized by the Director of the USGS. However, should the lessee request suspension and approval is given, the lease is effectively held inactive (does not expire), but payment of royalty or rental continues. Regardless of who calls for suspension no expiration occurs, but in fact the lease is extended for a period generally equal to the time of suspension. A lessee may be granted a maximum of 5 years of suspension at any given time when production is from a gas well, shut in for lack of transportation.

Provisions are further specified in the CFR for the Director of the USGS to allow a reduction of specified rental or royalty rates when continued operation under the original terms are shown to be impractical. In such cases detailed statements of expenses and income must be appropriately filed.

Subsurface storage of hydrocarbons to avoid waste and promote conservation is permitted, with approval of the Secretary, when it can be shown that no undue interference with operations under existing leases will result. Any lease of an area used for the storage of oil or gas shall not be deemed to expire during the period of such storage and so long thereafter as oil or gas not previously produced is produced in paying quantities or approved drilling or reworking operations are being conducted.

|                |                                   |            |          |                     |              |                |                  | Approxi-             |                      |                         |                       |                       |
|----------------|-----------------------------------|------------|----------|---------------------|--------------|----------------|------------------|----------------------|----------------------|-------------------------|-----------------------|-----------------------|
| Ref-<br>erence | Field                             | Block      | Zone1/   | District<br>and     | Lease        | Dis-<br>covery | First<br>produc- | mate water<br>depth. | Crude oil.           | 1966 pro<br>Condensate, | duction<br>Casinghead | Natural gas,          |
| No.            |                                   |            |          | number              |              | date           | tion             | ft                   | bbl                  | bbl                     | gas, Mcf              | - Mcf                 |
| 1              | Bay Marchand                      | 2          | ICL, 1-2 | Houma, No. 1        | 3/48         | 3/49           | 3/49             | 35                   | 26,813,484           | 40,612                  | 14,925,143            | 6,068,474             |
| 2              | Breton Sound                      | 1          | ICL      | New Orleans, No. 4  | 3/54         | 5/55           | 5/60             | 5                    | 15,182               | 149                     | -                     | 214,673               |
| 3              | do                                | 12         | 1        | do                  | 8/65         | 10/66          | Shut in          | (2/)<br>15           | 1,046                | -                       |                       | -                     |
| 4<br>5         | do                                | 18<br>20   | ICL      | do                  | 6/63<br>8/51 | 8/63<br>7/53   | 4/65<br>7/53     | 15                   | 136,318              | 798                     | 118,347<br>910,524    | 2,102,818             |
| 6              | do                                | 31         | ICL      | do                  | 10/64        | 8/66           | 11/66            |                      | 6,072                | 790                     | 3,163                 | 2,102,010             |
| 7              | do                                | 32         | ICL      | do                  | 6/47         | 8/49           | 8/49             | ( <u>2</u> /)<br>10  | 30,784               | 663                     | 9,233                 | 843,753               |
| 8              | do                                | 36         | ICL      | do                  | 6/47         | 2/48           | 1/54             | 5                    | -                    | 613                     | -                     | 6,461,209             |
| 9<br>10        | do                                | 49<br>53   | 1        | do                  | 2/60 4/61    | 3/61           | 12/63<br>4/62    | 20<br>10             | 97,817               | 1                       | 95,100                | -                     |
| 11             | Chandeleur Sound                  | 41         | ICL      | do                  | 4/53         | 5/54           | 5/58             | 5                    | 77,027               |                         | 75,100                |                       |
|                |                                   |            |          |                     |              |                | Abandoned        |                      |                      |                         |                       |                       |
| 12             | do                                | 69         | ICL      | do                  | 3/54         | 6/54           | 6/62             | 5                    |                      | -                       |                       | 235,635               |
| 13<br>14       | Creole (Offshore)<br>East Cameron |            | 1        | Lake Charles, No. 3 | 3/48         | 3/38<br>8/55   | 4/38<br>4/58     | 5<br>20              | 221,502              | 147,552                 | 131,344               | 6,507,652             |
| 15             | do                                | 17         | 1-2-3    | do                  | 7/54         | 3/55           | 11/58            | 20                   | 247,615              | 37,479                  | 708,142               | 3,881,092             |
| 16             | do                                | 24         | 2        | do                  | 8/59         | 12/64          | 5/65             | 35                   | -                    | 5,112                   | -                     | 356,286               |
| 17             | do                                | 49         | 3        | do                  | 6/47         | 9/55           | 7/58             | 50                   | -                    | -                       | -                     | -                     |
| 18             | do                                | 62         | 3-4      | do                  | 7/47         | 1/56           | 6/58             | 55                   | -                    | -                       | -                     | 8,556,150             |
|                |                                   |            |          |                     |              |                |                  |                      |                      |                         |                       |                       |
| 19             | do                                | 64         | 2-3      | do                  | 6/47         | 6/57           | 7/58             | 50                   | 74,010               | 1,246,774               | 75,892                | 67,835,139            |
|                |                                   |            |          |                     |              |                |                  |                      |                      |                         | 13,512                |                       |
| 20             | do                                | 71         | 3        | do                  | 7/47         | 10/54          | 7/58             | 50                   | -                    | 21,742                  | -                     | 9,529,598             |
| 21             | do                                | 89         | 4        | do                  | 3/62         | 8/65           | 10/66            | 60                   |                      | 1,225                   | _                     | 810,335               |
| 22             | do                                | 160        | 4        | do                  | 7/55         | 9/56           | Shut in          | 80                   |                      | 1,225                   |                       | 810,335               |
| 23             | do                                | 224        | 4        | do                  | 3/62         | 12/66          | Shut in          | 110                  | -                    | -                       | -                     | 960                   |
| 24             | Eloi Bay                          |            | ICL      | New Orleans, No. 4  | 11/52        | 12/53          | 1/54             | (2/)                 | 856,849              | 4,523                   | 905,656               | 1,137,103             |
| 25             | Eugene Island                     | 8          | 1        | Lafayette, No. 2    | 3/59         | 10/59          | Shut in          | 5                    |                      | -                       |                       | -                     |
| 26             | do                                | 18         | 1        | do                  | 11/48        | 6/54           | 11/54            | .5                   | 2,738,363            | 45,716                  | 4,868,318             | 2,641,777             |
| 27<br>28       | do                                | 32<br>45   | 2-3      | do                  | 8/48         | 12/49          | 8/56<br>1951     | 10<br>20             | 1,284,696<br>618,793 | 3/276,010               | 2,725,409<br>551,880  | 36,726,020<br>484,492 |
| 2.0            |                                   | 75         | ,        |                     | 11740        | 11,40          | 2,52             | 20                   | 010,775              |                         | 331,000               | 404,472               |
| 29             | do                                | 53         | 3        | do                  | 10/54        | 7/57           | 12/64            | 20                   |                      | 17,595                  | -                     | 1,248,674             |
| 30             |                                   | 77         | 3        |                     |              | 5/56           | 2/66             | 20                   | 88,477               | 104,216                 | 129,621               |                       |
| 30             | do                                | 100        | 3        | do                  | 2/60         | 8/60           | 11/60            | 25                   | 871,020              | 23,896                  | 3,440,898             | 6,111,316<br>523,836  |
| 31             |                                   | 100        | ,        |                     | 2,00         | 0,00           | 11/00            |                      | 0,1,020              | 25,050                  | 3,440,070             | 325,050               |
| 32             | do                                | 110        | 3        | do                  | 8/45         | 7/49           | 1952             | 20                   | 222,620              | -                       | 343,441               | 141,593               |
| 33             | do                                | 126        | 3-4      | do                  | 8/45         | 7/49           | 1950             | 35                   | 5,248,065            | 561                     | 4,625,269             | 84,901                |
| 34             | do                                | 128        | 4        | do                  | 8/45         | 6/55           | 8/55             | 55                   | 2,661,834            | 40,558                  | 4,117,492             | 877,073               |
| 34             |                                   | 120        |          |                     | 0,45         | 0/33           | 0/33             | 33                   | 2,001,034            | 40,550                  | 4,117,472             | 077,075               |
|                |                                   |            |          |                     |              |                |                  |                      |                      |                         |                       |                       |
| 35             | do                                | 175        | 4        | do                  |              | 7/56           | 5/58             | 80                   | 57,605               |                         | 17,391                | 0.105                 |
| 36<br>37       | do                                | 184<br>188 | 4        | do                  |              | 3/56<br>10/56  | 5/60<br>10/56    | 70<br>65             | 2,203,089            | 40,214                  | 2,720,676             | 2,185,016<br>2,720    |
| 3/             |                                   | 100        | 4        |                     | 10/54        | 10/30          | 10/50            | .,                   | 2,203,089            |                         | 2,720,676             | 2,720                 |
|                |                                   |            |          |                     |              |                |                  |                      |                      |                         |                       |                       |
| 38             | do                                | 198        | 4        | do                  | 10/54        | 12/58          | 2/66             | 95                   | 85,174               | 354,222                 | 87,422                | 8,005,352             |
| 39             | do                                | 208        | 4        | do                  | 7/55         | 9/58           | 3/60             | 90                   | 654,791              | 254                     | 656,463               |                       |
| 40             | do                                | 238        | 4        | do                  | 3/62         | 2/64           | 12/64            | 125                  | 782,049              | 254                     | 694,492               |                       |
| 41             | do                                | 276        | 4        | do                  | 3/62         | 9/64           | 6/66             | 160                  | 691,335              | -                       | 890,878               | -                     |
| 42             | Grand Isle                        | 16         | 1-2      | Houma, No. 1        | 9/46         | 11/48          | 5/59             | 45                   | 12,781,630           | 7,461                   | 12,237,525            | 616,781               |
| 43             |                                   | 18         | 2        |                     | 9/46         | 8/48           | 8/48             | 45                   | . 722 527            |                         | 750 000               |                       |
| 43             | do                                | 18<br>25   | 1        | do                  | 3/59         | 5/61           | 5/66             | 45<br>35             | 1,733,537            | 7,918                   | 759,282               | 1,541,789             |
| 44             | do                                | 41         | 3        | do                  | 4/47         | 9/64           | 10/65            | 90                   | 584,635              | 7,710                   | 1,017,142             | 1,341,769             |
| 46             | do                                | 43         | 2-3      | do                  | 6/48         | 10/56          | 11/61            | 130                  | 7,078,879            | 23,330                  | 7,040,319             | 1,059,717             |
|                |                                   |            |          |                     |              |                |                  |                      |                      |                         |                       |                       |
| 47             | do                                | 47         | 3        | do                  | 4/47         | 12/55          | 4/56             | 90                   | 3,841,508            | 235,367                 | 8,598,238             | 7,524,189             |
| 48             | do                                | 82         | 4        | do                  | 3/62         | 6/65           | 6/66             | 200                  | 3,560                | _                       | 5,703                 |                       |
| 49             | Half Moon Lake                    |            | ICL      | New Orleans, No. 4  | 11/52        | 5/63           | 9/63             | (2/)                 | 197,195              |                         | 115,169               | -                     |
| 50             | Hog Bayou (Offshore)              |            | 1        | Lake Charles, No. 3 | 7/47         | 10/48          | 1952             | 5                    | 49,166               | 241,917                 | -                     | 9,825,518             |
| 51             | Lake Athanasio                    |            | ICL      | New Orleans, No. 4  | 7/52         | 6/54           | 6/54             | (2/)                 | -                    | -                       | -                     | -1                    |
|                |                                   | _          |          |                     |              |                | Shut in          |                      |                      |                         |                       |                       |

See footnotes at end of table,

# oil and gas field data

| Cumul                   | ative producti     | W                                       | ells, Fe                | bruary 1             | 68                                                   | Production transportation4/                                            |                                                              |                                                                                                                      |    |  |
|-------------------------|--------------------|-----------------------------------------|-------------------------|----------------------|------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----|--|
| bb1                     | bb1                | gas, Mcf                                | Natural gas,<br>Mcf     | 011                  | Gas                                                  | Dry                                                                    | Other                                                        | Production transportation-                                                                                           | ei |  |
| 79,003,728              | 482,073            | 102,692,917                             | 45,452,172              | 244                  | -                                                    | 34                                                                     | 65                                                           | Two 4-in., 6-in., 6-in.(proposed), two 10-in. F/L's to<br>shore; 6-in, 16-in, P/L's to shore.                        |    |  |
| 67,095                  | 1,307              | 54,609                                  | 674,456                 | (5/)                 | (5/)                                                 | ( <u>5/</u> )                                                          | ( <u>5/</u> )                                                | **************************************                                                                               |    |  |
| 1,046                   | -                  | 284,458                                 | -                       | (5/)                 | (5/)<br>(5/)<br>(5/)<br>(5/)<br>(5/)<br>(5/)<br>(5/) | 5)<br>5()<br>5()<br>5()<br>5()<br>5()<br>5()<br>5()<br>5()<br>5()<br>5 | (3/)<br>(3/)<br>(3/)<br>(3/)<br>(3/)<br>(3/)<br>(3/)<br>(3/) | 12-in, P/L to Breton Sound 36; barge.                                                                                |    |  |
| 257,208<br>10,389,655   | 68,957             | 4,742,763                               | 23,569,801              | (5/)                 | 3/3                                                  | (5/)                                                                   | (5/)                                                         | Barge.                                                                                                               |    |  |
| 6,072                   | -                  | 3,163                                   | _                       | (5/)                 | (3/)                                                 | (5/)                                                                   | ( <u>5</u> /)                                                | Do.                                                                                                                  |    |  |
| 499,815                 | 4,760<br>28,353    | 579,122                                 | 4,201,412<br>85,078,536 | [ (2/)               | (5/)                                                 | (5/)                                                                   | (5/)                                                         | Do.<br>12-in. P/L to shore.                                                                                          |    |  |
|                         | 1,692              | 1                                       | 54,613                  | (5/)<br>(5/)<br>(5/) | 3/                                                   | 3/3                                                                    | (5/)                                                         | 12-In. P/L to shore.                                                                                                 |    |  |
| 273,424                 | -                  | 304,885                                 |                         | (5/)                 | (5/)                                                 | (5/)                                                                   | (5/)                                                         | Barge.                                                                                                               |    |  |
| -                       | 2,307              | -                                       | 3,879,419               | ( <u>5</u> /)        | ( <u>5</u> /)                                        | (5/)                                                                   | ( <u>5</u> /)                                                | -                                                                                                                    |    |  |
| _                       | 28                 | -                                       | 940,151                 | (5/)                 | (5/)                                                 | (5/)                                                                   | ( <u>5</u> /)                                                |                                                                                                                      |    |  |
| 5,541,036               | 4,661              | 5,335,734                               | 883,163<br>55,434,251   | ( <u>5</u> /)        | ( <u>5</u> /)                                        | (5/)                                                                   | ( <u>5</u> /)                                                | 12-in, P/L to shore.                                                                                                 |    |  |
| 482,173                 | 1,161,002          | 2,215,156                               |                         | 2                    |                                                      | 3                                                                      | 1                                                            | Two 12-in, P/L to shore; barge,                                                                                      |    |  |
| 402,275                 | 9,859              | -,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 779,449                 | -                    | 1                                                    | 1                                                                      | -                                                            | -                                                                                                                    |    |  |
| -                       | 703                | -                                       | 50,251                  | ( <u>5</u> /)        | (5/)                                                 | ( <u>5</u> /)                                                          | ( <u>5</u> /)                                                | 16 to P/I to platform in Post Company 62 64 64114                                                                    |    |  |
| -                       | 5,070              |                                         | 67,860,017              |                      | 4                                                    | 11                                                                     | 10                                                           | 16-in. P/L to platform in East Cameron 62-64 fields area;<br>26-in. P/L to shore from platform services both fields. |    |  |
|                         |                    |                                         |                         |                      |                                                      |                                                                        |                                                              | and West Cameron 192 field.                                                                                          |    |  |
| 94,644                  | 5,674,224          | 96,931                                  | 292,788,535             | -                    | 36                                                   | 8                                                                      | 4                                                            | Two 12-in., 16-in. P/L's to platform; barge; (26-in. P/L, see East Cameron 62).                                      |    |  |
|                         | 319,909            | -                                       | 92,984,375              | 1 -                  | -                                                    | 4                                                                      | 7                                                            | 12-in. P/L to Vermilion 46 field; 16-in. P/L to platform                                                             |    |  |
|                         |                    |                                         |                         |                      |                                                      |                                                                        |                                                              | in East Cameron 62-64 fields area; barge.                                                                            |    |  |
| 175                     | 1,225              | 224                                     | 810,335<br>2,400        | 1 :                  | 4                                                    | 10<br>4                                                                | 5 7                                                          | 6-in. P/L to East Cameron 71 (proposed); barge.                                                                      |    |  |
| 1/3                     |                    | - 224                                   | 960                     | -                    |                                                      | 5                                                                      | í                                                            |                                                                                                                      |    |  |
| 3,304,679               | 37,338             | 3,749,117                               |                         | (5/)                 | (5/)                                                 | ( <u>5</u> /)                                                          | (5/)                                                         | Barge.                                                                                                               |    |  |
| 22,054,986              | 270,734            | 41,975,955                              | 3,622<br>17,174,281     | (5/)                 | (5/)                                                 | (5/)                                                                   | (3/)                                                         | 10-in. P/L to shore; barse.                                                                                          |    |  |
| 7,935,289               | 6/4,885,248        | 22,432,171                              | 523,798,501             | 17                   | 12                                                   | 12                                                                     | 6                                                            | 20-in. P/L to shore; barge.                                                                                          |    |  |
| 5,110,380               | 47,877             | 4,898,435                               | 14,365,826              | 7                    | -                                                    | 12                                                                     | 3                                                            | 12-in. P/L to shore; 14-in. P/L to Eugene Island 32;                                                                 |    |  |
| _                       | 30,578             | -                                       | 2,244,614               | -                    | 1                                                    | 3                                                                      | 1                                                            | barge.<br>4½-in. P/L to Eugene Island 32 via tie-in to 14-in.                                                        |    |  |
|                         |                    |                                         |                         |                      |                                                      |                                                                        |                                                              | P/L.                                                                                                                 |    |  |
| 88,477<br>5,319,570     | 104,216<br>50,662  | 129,621                                 |                         | 11                   | 3                                                    | 8<br>12                                                                | 1 8                                                          | 4-in, F/L to Eugene Island 45 via tie-in to 12-in, F/L;                                                              |    |  |
|                         |                    |                                         |                         |                      | 1                                                    |                                                                        |                                                              | 6-in. F/L to shore via tie-in to 20-in. F/L; barge.                                                                  |    |  |
| 1,819,470<br>46,031,075 | 381,363<br>101,732 | 3,342,826                               | 16,700,784              | 65                   | 1 1                                                  | 39<br>22                                                               | 22<br>25                                                     | Barge.<br>12-in. F/L to Eugene Island 45; 16-in. P/L to Ship Shoal                                                   |    |  |
| 40,031,073              | 101,732            | 30,544,605                              | 4,100,475               | "                    | -                                                    |                                                                        | 2.5                                                          | 28 (pickup at Ship Shoal 32); barge.                                                                                 |    |  |
| 20,467,846              | 363,976            | 32,205,872                              | 8,129,592               | 40                   | 1                                                    | 27                                                                     | 27                                                           | 10-in. F/L to Eugene Island 126; 16-in. P/L to Eugene                                                                |    |  |
|                         |                    |                                         |                         |                      |                                                      |                                                                        |                                                              | Island 126; 20-in., 24-in. (proposed) P/L's to shore;<br>barge.                                                      |    |  |
| 1,663,363               | 218                | 2,645,857                               | 4,929                   | 2                    | -                                                    | 18                                                                     | 15                                                           | Barge.                                                                                                               |    |  |
| 34,221                  | 414,968            | 84,180                                  |                         | 39                   | -                                                    | 9<br>30                                                                | 6                                                            | 14-in. P/L to Eugene Island 128; barge.                                                                              |    |  |
| 9,343,728               | 245                | 10,723,113                              | 150,074                 | 39                   |                                                      | 30                                                                     | 14                                                           | 12-in. P/L to Eugene Island 175 (proposed); 12-in. P/L<br>to Eugene Island 77 (proposed); 16-in. P/L to Ship Shoal   |    |  |
|                         |                    |                                         |                         |                      |                                                      |                                                                        |                                                              | 28 (proposed); barge.                                                                                                |    |  |
| 85,174                  | 354,222            | 87,422                                  | B,005,352               | 3                    | 7                                                    | 8                                                                      | 3                                                            | 6-in. P/L to Eugene Island 175; 20-in. P/L to shore (proposed); barge.                                               |    |  |
| 6,555,264               | 16,096             | 4,643,996                               | 251,390                 | 22                   | -                                                    | 24                                                                     | 25                                                           | 6-in. P/L to Eugene Island 126; barge.                                                                               |    |  |
| 1,023,276               | -                  | 942,149                                 | -                       | 18                   | -                                                    | 8                                                                      | 10                                                           |                                                                                                                      |    |  |
| 691,491<br>65,761,886   | 95,757             | 890,878<br>4B,007,230                   | 5,206,206               | 48<br>162            | 1                                                    | 23<br>83                                                               | 13<br>77                                                     | 12-in, P/L to Eugene Island 188 (proposed); barge.<br>10-in., 16-in. F/L and 12-in. P/L to shore; 6-in., two         |    |  |
|                         | 33,737             |                                         | 3,200,200               |                      | 1                                                    |                                                                        |                                                              | 10-in. F/L's to Grand Isle 18.                                                                                       |    |  |
| 23,704,321              | 3.55               | 11,515,550                              | 1 556 500               | 23                   | 45.0                                                 | 19                                                                     | 26                                                           | 6-in. F/L to Grand Isle 16; 10-in. P/L to shore.                                                                     |    |  |
| 715,579                 | 7,985              | 1,226,091                               | 1,556,789               | ( <u>5/)</u>         | ( <u>5</u> /)                                        | (5/)                                                                   | ( <u>5</u> /)                                                | Barge.<br>6-5/8-in. F/L to Grand Isle 47; barge.                                                                     |    |  |
| 15,236,266              | 28,657             | 15,180,643                              |                         | 55                   | -                                                    | 17                                                                     | 36                                                           | 10-in. P/L to West Delta 73; 16-in. F/L to shore                                                                     |    |  |
| 2/ /10 100              | 1 /00 250          |                                         | 25 250 250              | 33                   | 2                                                    | 15                                                                     | 8                                                            | (proposed); 20-in. P/L to shore; barge.                                                                              |    |  |
| 34,619,192              | 1,482,359          | 56,556,413                              | 35,359,852              | 33                   | 2                                                    | 15                                                                     | 8                                                            | 12-in. F/L to West Delta-Grand Isle 43; 12-in. F/L to<br>shore; I2-in. P/L to Bay Marchand 2; barge.                 | Ш  |  |
| 3,560                   | -                  | 5,703                                   | -                       |                      | -                                                    | 4                                                                      | 1                                                            |                                                                                                                      |    |  |
| 806,511<br>115,366      | 766,343            | 582,271<br>6,603                        | 52,296,899              | (5/)<br>(5/)<br>(5/) | (5/)<br>(5/)<br>(5/)                                 | (5/)                                                                   | (5/)<br>(5/)                                                 | Barge.                                                                                                               |    |  |
|                         |                    |                                         |                         |                      | 1 (2/)                                               | (5/)                                                                   | 8%                                                           |                                                                                                                      |    |  |

| Ref-     |                              |       |          | District                         | Lease        | Dis-         | First         | Approxi-<br>mate water |                     | 1966 Pro        | duction                                 |                    |
|----------|------------------------------|-------|----------|----------------------------------|--------------|--------------|---------------|------------------------|---------------------|-----------------|-----------------------------------------|--------------------|
| erence   | Field                        | 8lock | Zone1/   | and                              | date         | covery       | produc-       | depth,                 | Crude oil,          | Condensate,     | Casinghead                              | Natural gas,       |
| No.      |                              |       |          | number                           |              | date         | tion          | ft                     | bb1                 | bb1             | gas, Mcf                                | Mof                |
| 52       | Lighthouse Point             |       | 1-2      | Lafayette, No. 2                 | 2/36         | 12/58        | 11/64         | 10                     | 56,698              | 129,999         | 417,545                                 | * 8,120,676        |
| 53       | Main Pass                    | 6     | 1-2      | New Orleans, No. 4               | 4/61         | 1/62         | 11/63         | 30                     | 977,190             |                 | 491,631                                 |                    |
| 54       | do                           | 11    | ICL      | do                               | 4/62         | 9/62         | 9/62          | (2/)                   |                     |                 |                                         |                    |
| 55       | do                           | 12    | ICL      | do                               | 3/59         | 12/59        | 2/61          | (2/)                   | -                   | -               | -                                       |                    |
| 56       | do                           | 23    | ICL      | do                               | 2/54         | 6/54         | Abandoned     | (2/)                   | -                   | -               | -                                       | -                  |
| 57       | do                           | 24    | ICL      | do                               | 10/53        | 12/53        | 1/54          | 5                      | 29,676              | -               | 32,692                                  | -                  |
| 58       | do                           | 25    | ICL      | do                               | 5/54         | 3/55         | 3/55          | 10                     | 41,923              | -               | 6,866                                   | -                  |
| 59       | do                           | 35    | ICL      | do                               | 5/51         | 8/51         | 1952          | 5                      | 4,303,077           | 31,587          | 2,871,749                               | 1,574,781          |
| 60       | do                           | 41    | 2-3      | do                               | 8/47         | 1/57         | 4/57          | 50                     | 8,666,437           | -               | 9,427,243                               | 4,263,001          |
| 61       | do                           | 45    | 2        | do                               | 8/47         | 9/57         | Shut in       | 25                     | _                   | _               |                                         |                    |
| 62       | do                           | 46    | 1-2      | do                               | 5/55         | 9/56         | 10/58         | 25                     | 276,101             | 61,996          | 820,583                                 | 2,471,174          |
| 63       | do                           | 47    | 1        | do                               | 8/47         | 7/55         | 3/58          | 1.5                    | -                   | 128,222         | -                                       | 10,439,286         |
| 64       | do                           | 69    | 1-2-3    | do                               | 8/47         | 8/48         | 8/48          | 35                     | 11,351,482          | 6,222           | 9,227,997                               | 11,365,232         |
| 65       | Mound Point                  |       | 1        | Lafayette, No. 2                 | 2/36         | 8/58         | 12/59         | 5                      | 221,555             | 8,784           | 139,365                                 | 2,183,047          |
|          |                              |       |          |                                  |              |              |               |                        |                     |                 |                                         |                    |
|          | -000                         |       | ***      |                                  | 7/58         | 9/58         | 10/60         |                        | 200 01/             | 10.000          | 100.000                                 | 1 222 (01          |
| 66<br>67 | Pass Wilson<br>Rabbit Island |       | ICL<br>1 | Houma, No. 1<br>Lafayette, No. 2 | 2/36         | 6/42         | 7/63          | 5                      | 208,814<br>866,803  | 18,380          | 185,053<br>705,366                      | 1,231,481          |
| 68       | Ship Shoal                   | 28    | 2        | Houma, No. 1                     | 9/46         | 7/49         | 8/60          | 10                     | 800,803             | 3,377,155       | /05,366                                 | 98,265,864         |
| 00       | Sitip Situation              | 20    | -        | Houssa, No. 1                    | 7,40         | 1145         | 0,00          | 10                     | -                   | 3,377,133       | _                                       | 70,203,004         |
| 69       | do                           | 32    | 2-3      | do                               | 9/46         | 11/47        | 9/59          | 15                     | 58,669              | 86,748          | 14,005                                  | 3,517,521          |
| 70       | do                           | 67    | 1        | do                               | 6/48         | 11/55        | 2/56          | 45                     |                     |                 |                                         | 1 1 -              |
| 71       | do                           | 72    | 2        | do                               | 9/46         | 8/48         | 1951          | 25                     | 174,066             | 25,281          |                                         | 2,145,116          |
| 72       | do                           | 107   | 3        | do                               | 9/46         | 2/57         | 4/61          | 20                     | 3,842,507           | -               | 3,944,127                               | - 1                |
| 73       | do                           | 113   | 3-4      | do                               | 9/46         | 7/55         | 3/58          | 40                     | 763,285             | 5,358           | 876,726                                 | 359,107            |
| 74       | do                           | 139   | 3        | do                               | 7/55         | 9/57         | 4/62          | 60                     |                     | -               |                                         |                    |
| 75<br>76 | do                           | 154   | 4<br>3-4 | do                               | 10/54        | 8/55<br>9/60 | 8/55          | 50<br>45               | 1,652,144           | 7,499           | 1,009,074                               | 165,500            |
| 76<br>77 | do                           | 176   | 3-4      | do                               | 2/60<br>7/55 | 11/56        | 10/61<br>2/60 | 100                    | 74,726<br>1,256,822 | 7,499           | 1,238,023                               | 867,231            |
| 78       | do                           | 208   | 4        | do                               | 3/62         | 7/62         | 6/63          | 95                     | 3,506,092           |                 | 3,153,026                               | -                  |
| 79       | do                           | 274   | 4        | do                               | 3/62         | 5/65         | 2/66          | 205                    | 287,194             |                 | 470,775                                 |                    |
| 80       | South Marsh Island           | 6     | 4        | Lafayette, No. 2                 | 3/62         | 9/62         | 2/64          | 60                     | 1,357,264           |                 | 1,623,121                               |                    |
| 8i       | do                           | 23    | 4        | do                               | 2/60         | 8/60         | 6/62          | 70                     | 889,420             | 964,759         | 4,215,733                               | 35,079,978         |
|          |                              |       |          |                                  |              |              |               |                        | ,                   | ,               | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ,,                 |
| 82       | do                           | 27    | 4        | do                               | 3/62         | 12/65        | 9/66          | 90                     | 53,897              | -               | 35,060                                  | -1                 |
| 83       | do                           | 48    | 4        | do                               | 2/60         | 3/61         | 1/66          | 95                     | -                   | 153,732         | -                                       | 9,768,328          |
| 84       | do                           | 73    | 4        | do                               | 3/62         | 12/63        | 12/64         | 130                    | 1,635,534           | -               | 2,166,347                               | -                  |
|          | l                            |       |          |                                  |              | ļ            |               |                        |                     |                 |                                         |                    |
| 85       | South Pass                   | 5     | 1        | New Orleans, No. 4               | 9/54         | 5/55         | 11/61         | 5                      |                     |                 |                                         |                    |
| 86       | do                           | 6     | i        | do                               | 9/54         | 1/55         | 8/55          | Š                      | 63,711              |                 | 198,729                                 | 1 .                |
| 87       | do                           | 21    | î        | do                               | 2/55         | 5/56         | 9/57          | 5                      | 05,711              |                 | 1 .,,,,,,,                              |                    |
| 88       | do                           | 24    | î        | do                               | 4/47         | 4/50         | 5/50          | Š                      | 11,275,340          | -               | 13,080,885                              | 560,039            |
| 89       | do                           | 26    | î        | do                               | 4/47         | 6/57         | 12/57         | 40                     | -                   | -               | -                                       | 643,084            |
| 90       | do                           | 27    | 1-2      | do                               | 4/47         | 8/54         | 8/54          | 70                     | 20,104,617          | 135,746         | 37,201,342                              | 17,832,473         |
| 91-      | do                           | 30    | 1        | do                               | 2/55         | 6/55         | 10/57         | 40                     | -                   | -               | -                                       | 940,262            |
| 92       | do                           | 42    | 1        | do                               | 7/54         | 4/56         | 5/58          | 70                     | -                   | -               | -                                       | 522,569            |
| 93<br>94 | South Pelto                  | 20    | 2-3      | Houma, No. 1                     | 9/46         | 8/51         | 3/55          | 20<br>60               | 1,295,548           | 33,464          | 2,066,143                               | 1,729,274          |
| 94<br>95 | Tiger Shoal                  |       | 3-4      | do                               | 3/62<br>2/36 | 7/62         | 5/63<br>4/60  | 10                     | 535,753             | 304,152         | 675,678<br>1,378,004                    | 22,829,575         |
| 95       | Tiger Shoal                  |       | 2        | Lafayette, No. 2                 | 2/30         | //58         | 4/60          | 10                     | 1,116,258           | 304,152         | 1,378,004                               | 22,029,575         |
| 96       | Timbalier Sav                |       | 1-2      | Houma, No. 1                     | -            | 1963         | 1/64          | 5                      | 12,700,632          | 18,716          | 17,168,524                              | -                  |
| 97       | Timbalier, South             | 8     | 1        | do                               | 1/64         | 3/65         | 3/65          | 20                     | 4,173               |                 | 5,221                                   |                    |
| 98       | do                           | 34    | 2        | do                               | 4/47         | 3/49         | Shut in       | 50                     | .,1,5               | -               |                                         | -                  |
| 99       | do                           | 52    | 3        | do                               | 5/48         | 9/50         | Shut in       | 60                     |                     | _               | -                                       | -                  |
| 100      | do                           | 54    | 3        | do                               | 4/47         | 5/55         | 4/56          | 65                     | 491,211             | 328,044         | 486,120                                 | 11,386,492         |
| 101      | 4-                           | 86    |          |                                  | 2/07         | 10/6-        | 0.00          | 90                     | 20.000              | 2/ 00*          | 12 620                                  | 419 166            |
| 101      | do                           | 131   | 3 4      | do                               | 7/55         | 12/56        | 9/58<br>7/59  | 90<br>140              | 22,998<br>2,916,737 | 24,081<br>6,313 | 13,810                                  | 418,166<br>967,401 |
| 102      | do                           | 131   | 3-4      | do                               | 10/54        | 12/56        | 7/59          | 130                    | 9,576,994           | 13,315          | 11,577,356                              | 667,434            |
| .05      |                              | 133   | 3-4      |                                  | 20734        | 12/30        | 1131          | 130                    | 9,370,994           | 10,010          | 2,5,7,330                               | 007,434            |
| 104      | do                           | 172   | 4        | do                               | 3/62         | 4/65         | Shut in       | 100                    |                     | -               |                                         | 5,100              |
| 105      | do                           | 176   | 4        | do                               | 3/62         | 4/63         | 3/64          | 140                    | 535,626             | -               | 933,868                                 | -                  |
| 106      | do                           | 228   | 4        | do                               |              |              | Shut in       | 220                    |                     | -               | -                                       | -                  |
|          |                              |       |          |                                  |              |              |               |                        |                     |                 |                                         |                    |

See footnotes at end of table.

#### and gas field data -- Continued

|                      | ative producti |                          | Natural gas,           | We            | lls, Feb                     | ruary 19                       | 58                             | Production transportation4/                                                 |
|----------------------|----------------|--------------------------|------------------------|---------------|------------------------------|--------------------------------|--------------------------------|-----------------------------------------------------------------------------|
| bbl                  | bbl            | gas, Mcf                 | Mcf                    | 011           | Gas                          | Dry                            | Other                          |                                                                             |
| 56,698               | 296,365        | 417,545                  | 20,139,207             | ( <u>5</u> /) | ( <u>5</u> /)                | ( <u>5</u> /)                  | ( <u>5</u> /)                  | 10-in., 30-in. F/L to shore (see Tiger Shoal and Mound<br>Point fields).    |
| 1,306,651            | _              | 629,083                  | _                      | 5             | 2                            | 2                              | 3                              | 24-in. P/L to shore (proposed); barge,                                      |
| 5,663                | _              | 6,051                    | -                      | (5/)          | (5/)<br>(5/)<br>(5/)<br>(5/) | (5/)<br>(5/)<br>(5/)           | (5/)<br>(5/)<br>(5/)           |                                                                             |
| 250,531              | 1,163          | 167,118                  | 1,960,826              | (5/)          | (5/)                         | (5/)                           | (3/)                           |                                                                             |
| 5,474                | -              | 12,806                   |                        | (5/)          | (5/)                         | ( <u>5</u> /)                  | ( <u>5</u> /)                  | •                                                                           |
| 722,916              | 1,676          | 407,358                  | 507,698                | (5/)          | (5/)                         | (5/)                           | (5/)                           | 8arge.                                                                      |
| 715,026              | 010 754        | 166,301                  | 18,395,615             | (3/)          | (5/)                         | (5/)                           | (5/)                           | Do.                                                                         |
| 1,379,271            | 212,756        | 37,404,667<br>14,923,569 | 14,849,015             | (5/)          | (5/)                         | ( <u>5</u> /)                  | (5/)                           | 6-in. F/L to Main Pass 69; 12-in. P/L to Mississippi;                       |
| 14,455,727           |                | 14,525,505               | 14,047,025             | 1             |                              | 1 20                           |                                | 14-in. P/L to shore.                                                        |
| 1,463                | -              | 2,535                    | -                      | ( <u>s/</u> ) | (5/)                         | (5/)                           | ( <u>5</u> /)<br>( <u>5</u> /) |                                                                             |
| 1,921,064            | 761,622        | 3,949,049                | 12,315,738             | (5/)          | ( <u>5</u> /)                | ( <u>5</u> /)                  | ( <u>5</u> /)                  | 8-in. P/L to shore; barge.                                                  |
| 729,978              | 1,089,740      | 3,832,177                | 88,566,955             | (5/)          | ( <u>5</u> /)                | ( <u>5</u> /)                  | ( <u>5</u> /)                  | Sarge.                                                                      |
| 02,057,467           | 89,865         | 87,110,731               | 82,212,106             | 1             | 10.0                         | 2                              |                                | 10-in. F/L to shore.                                                        |
| 1,833,991            | 8,784          | 1,069,241                | 2,183,047              | ( <u>5</u> /) | ( <u>s</u> /)                | ( <u>5</u> /)                  | ( <u>5</u> /)                  | 8-in. liquid F/L to shore via tie-in 10-in. liquid F/L                      |
|                      |                |                          |                        |               |                              |                                |                                | from Tiger Shoal; 16-in. F/L to shore via tie-in<br>30-in. Tiger Shoal F/L. |
| 1,652,199            | 87,903         | 1,343,100                | 5,460,206              | (5/)          | ( <u>5</u> /)                | ( <u>s</u> /)                  | ( <u>5</u> /)                  | 8arge.                                                                      |
| 1,540,277            | 57,505         | 1,027,792                |                        | (3/)          | (5/)                         | (5/)                           | (5/)                           | Do.                                                                         |
| 97                   | 9,203,370      |                          | 268,185,380            | -             | 29                           | 3                              | 15                             | Two 16-in. P/L to shore; 16-in., 20-in. P/L's to shore                      |
|                      |                |                          |                        | 1             |                              |                                |                                | (proposed); barge.                                                          |
| 905,914              | 415,563        | 149,530                  | 11,477,484             | 2             | 6                            | 14                             |                                | 6-in. P/L (see Eugene Island 126); barge,                                   |
| 85,899               | 14,499         | 99,036                   | 264,667                | (5/)          | ( <u>5</u> /)                | ( <u>5</u> /)                  | ( <u>5</u> /)                  | 16 de 17/2 es 20/2 (0-1) 20/2 have                                          |
| 3,478,881            | 230,602        | 2,607,330<br>16,426,503  | 16,134,602             | 35            | 2 .                          | 15                             | 3                              | 14-in. P/L to Ship Shoal 28; barge.<br>8arge.                               |
| 1,689,736            | 74,692         | 2,187,606                | 4,548,256              | 26            |                              | 24                             | 12                             | 6-in. P/L to Ship Shoal 72; barge.                                          |
| 896,336              | 65             | 3,232,316                |                        |               | _                            | 8                              | 8                              |                                                                             |
| 4,236,805            | -              | 6,842,969                |                        | 34            | _                            | 57                             | 27                             | Sarge.                                                                      |
| 520,682              | 50,281         | 326,211                  | 4,077,578              | 1             | 3                            | 13                             | 25                             | 10-in. P/L to Ship Shoal 72.                                                |
| 6,150,946            | -              | 5,303,691                | -                      | 20            | -                            | 12                             | 15                             | 6-in. F/L to Eugene Island 208; barge.                                      |
| 9,405,865            | -              | 8,057,012                | -                      | 41<br>12      | 1                            | 12                             | 16                             | 10-in. P/L to Ship Shoal 169 (proposed); barge.                             |
| 287,355<br>3,252,997 | -              | 470,775<br>3,450,143     | -                      | 12            | 1                            | 16<br>33                       | 14<br>19                       | Barge.<br>12-in. P/L to shore.                                              |
| 2,424,314            | 3,267,631      | 7,924,036                | 128,445,182            | 9             | 13                           | 8                              | 8                              | 16-in. P/L to Eugene Island 128; 20-in. P/L to Eugene                       |
| 2,424,514            | 3,207,031      | 7,524,030                | 120,445,102            | '             | 13                           |                                | °                              | Island 128 (proposed); barge,                                               |
| 53,897               | -              | 35,060                   | -                      | 3             | 1                            | 8                              | 1                              | Sarge.                                                                      |
|                      | 153,732        | -                        | 9,768,328              | -             | 8                            | 18                             | 24                             | 16-in. P/L to South Marsh Island 23 (proposed); barge.                      |
| 2,257,904            | -              | 2,878,381                | -                      | 53            | 4                            | 52                             | 18                             | 10-in. P/L to South Marsh Island 6 (proposed); 12-in. P/L                   |
|                      |                |                          |                        |               |                              |                                |                                | to Eugene Island 175; 20-in. P/L to Eugene Island 198                       |
| 68,618               | 8,560          | 288,614                  | 473,386                | 1015          | 15/5                         | 15/5                           | 15/5                           | (proposed); barge.                                                          |
| 699,772              | 515,839        | 1,750,383                |                        | (5/)          | ( <u>5</u> /)                | ( <u>5</u> /)<br>( <u>5</u> /) | ( <u>5</u> /)                  | Barge.                                                                      |
| -                    | 313,033        | 1,750,505                | 3,310,361              | ( <u>š</u> %  | (5%)                         | (5/)                           | 3%                             | parge.                                                                      |
| 95,510,178           | 787,238        | 225,683,732              | 27,215,705             | (5/)          | (5/)                         | (5/)                           | ( <u>5</u> /)                  | 8arge.                                                                      |
|                      |                | -                        | 3,204,884              | (5/)          | (5/)                         | ( <u>5</u> /)                  | (5/)                           |                                                                             |
| 10,778,020           | 430,954        | 187,841,453              | 68,242,897             | 327           | 23                           | 29                             | 78                             | Three 8-in., two 12-in., 16-in. F/L's to shore.                             |
| -                    | -              | -                        | 12,131,968             | (5/)          | (5/)                         | (5/)                           | ( <u>5</u> /)<br>( <u>5</u> /) | •                                                                           |
| 5,265,383            | 114,981        | 11,866,453               | 6,173,318<br>6,941,398 | (5/)          | (5/)                         | ( <u>5</u> /)<br>28            | ( <u>5</u> /)                  | 8-in, P/L to Ship Shoal 72; barge,                                          |
| 1,649,395            | 114,981        | 1,945,615                | 0,941,398              | 11            | 4                            | 14                             | 8 3                            | o-in, r/L to snip snoai /2; barge.                                          |
| 5,496,906            | 374,533        | 5,556,377                | 28,141,845             | (5/)          | (5/)                         | (5/)                           | (5/)                           | 10-in. liquid F/L, 30-in. F/L to shore (with tie-in from                    |
| ,.,,                 | ,555           |                          |                        | 2.7           | (2.7                         | 12.7                           | (2//                           | Lighthouse Point and Mound Point fields).                                   |
| 40,271,604           | 25,704         | 59,099,454               |                        | 114           | -                            | 11                             | 20                             | Two 6-in, F/L to shore; 10-in, P/L to shore.                                |
| 4,173                | -              | 5,221                    | 614                    | ( <u>5</u> /) | ( <u>5</u> /)                | ( <u>5</u> /)                  | ( <u>5</u> /)                  |                                                                             |
| 172,949              | -              | 89,973                   | -                      | 10.0          | 100                          | 21                             | 5                              |                                                                             |
| 34,340               | 1,700,365      | 40,583                   | 41,556,900             | (5/)          | (5/)                         | ( <u>5</u> /)                  | ( <u>5</u> /)<br>29            | 10 de 10/2 de 00-ed 7-1- 16 (                                               |
| 2,350,400            | 1,700,365      | 2,294,346                | 41,550,900             | _ ′           | 1 9                          | 19                             | 29                             | 10-in. P/L to Grand Isle 16 (proposed); 12-in. P/L<br>to shore.             |
| 1,126,036            | 51,474         | 1,171,319                | 2,102,814              |               |                              | 13                             | 10                             | to allote.                                                                  |
| 11.843.915           | 6,313          | 10,063,992               |                        | 50            | 1                            | 24                             | 9                              | 18-in. F/L to shore; 22-in. F/L to West Delta 41.                           |
| 26,254,916           | 13,315         | 32,466,899               | 667,434                | 94            | 5                            | 15                             | 34                             | 16-in. F/L to Timbalier, South 131; 22-in. F/L (proposed)                   |
|                      |                |                          |                        |               |                              |                                |                                | to Timbalier, South 131.                                                    |
|                      | -              |                          | 8,903                  |               | -                            | 8                              | 6                              |                                                                             |
| 983,523              | -              | 1,733,356                |                        | 27            | -                            | 26                             | 27                             | 14-in. F/L to Timbalier, South 135; barge.                                  |
| -                    | -              |                          | 189                    | -             | -                            |                                |                                |                                                                             |

|        |              |           |        |                     |       | النستان |         | Approxi-     |            |             |            |              |
|--------|--------------|-----------|--------|---------------------|-------|---------|---------|--------------|------------|-------------|------------|--------------|
| Ref-   |              |           | 1/     |                     | Lease | Dis-    | First   | mate water   |            | 1966 Pro-   |            |              |
| erence | Field        | Block     | Zone1/ |                     | date  | covery  | produc- | depth,       | Crude oil, | Condensate, | Casinghead | Natural gas, |
| No.    |              |           |        | number              |       | date    | tion    | ft           | bbl        | bb1         | gas, Mcf   | Mcf          |
| 107    | Vermilion    | 14        | 1-2    | Lafayette, No. 2    | 1/46  | 7/56    | 1/60    | 25           | 77         | 2,004,456   | -          | 92,171,674   |
| 108    | do           | 16        | 1      | do                  |       | 7/61    | 6/64    | 10           | -          | 681,792     | -          | - 4,665,194  |
| 109    | do           | 39        | 2      | do                  |       | 6/49    | 1951    | 40           | -          | 236,553     | -          | 51,167,642   |
| 110    | do           | 46        | 2      | do                  | 11/46 | 12/56   | 12/60   | 30           |            | 123,823     | -          | 9,613,880    |
|        |              |           |        |                     |       |         |         |              |            |             |            |              |
| 111    | do           | 71        | 3      | do                  |       | 11/48   | 10/59   | 15           | -          | 12,249      | -          | 3,105,514    |
| 112    | do           | 76        | 3      | do                  | 6/47  | 4/49    | 11/58   | 25           | -          | 59,414      | -          | 41,837,543   |
|        |              |           |        |                     |       |         |         |              |            |             |            |              |
| 113    | do           | 86        | 4      | do                  | 5/48  | 2/58    | 9/59    | 40           |            | 70,044      |            | 3,289,248    |
| 114    | do           | 120       | 4      | do                  | 10/54 | 7/57    | 4/58    | 70           | 217,218    |             | 146,990    |              |
| 115    | do           | 129       |        | do                  | 2/60  | 5/61    | 7/63    | 65           | •          | 42,054      | -          | 1,638,413    |
| 116    | do           | 131       | 4      | do                  | 2/60  | 8/60    | 10/63   | 55           | -          | 305,215     | -          | 16,368,785   |
|        |              |           |        |                     |       |         |         |              |            |             |            |              |
| 117    | do           | 164       | 4      | do                  | 10/54 | 1/57    | 4/64    | 90           | 51,876     | -           | 25,840     | -            |
| 118    | do           | 245       |        | do                  | 3/62  | 6/62    | 11/65   | 125          | 1,707,370  | -           | 1,316,071  |              |
| 119    | do           | 250       | 4      | do                  | 3/62  | 4/63    | 10/66   | 140          | 37,545     | -           | 28,629     | - 1          |
| 120    | West Cameron | 1         | .1     | Lake Charles, No. 3 | 2/60  | 3/61    | Shut in | 5            | -          |             | -          |              |
| 121    | do           | 17        | 1-2    | do                  | 4/62  | 9/62    | 1/66    | 20           | -          | 250,857     | -          | 36,173,640   |
| 122    | do           | 19        | .1     | do                  | 1/65  | 8/65    | Shut in | 15           | -          |             |            | 41,392       |
| 123    | do           | 33        | 1-2    | do                  | 7/47  | 8/49    | 12/59   | 30           | -          | 39,976      |            | 4,956,799    |
| 124    | do           | 40        | 2      | do                  | 5/48  | 3/55    | 5/59    | 25           | -          | -           | -          | 1,220        |
| 125    | do           | 45        | 2      | do                  | 7/47  | 5/49    | 1950    | 30           | 358,652    | 211,857     | 1,533,269  | 18,048,751   |
| 126    | do           | 67        | 2      | do                  | 3/48  | 5/58    | 5/60    | 30           | -          | 207,174     | -          | 8,499,243    |
| 127    | do           | 71        | 2-3    | do                  | 9/46  | 12/55   | 6/65    | 40           | 37,656     | 237,312     | 130,293    | 16,293,095   |
| 128    | do           | 110       | 4      | do                  | 6/47  | 5/54    | 8/58    | 40           | 36,358     | 62,898      | 402,427    | 6,938,234    |
| 129    | do           | 149       | 4      | do                  | 6/47  | 9/49    | 7/61    | 40           | -          | 29,564      | -          | 19,961,908   |
| 130    | do           | 180       | 4      | do                  | 2/60  | 8/61    | 12/65   | 50           | 40,405     | 76,622      | 23,665     | 7,442,283    |
| 131    | do           | 192       | 4      | do                  | 11/48 | 7/54    | 7/58    | 55           | 195,747    | 238,867     | 317,743    | 34,813,439   |
|        |              |           |        |                     |       |         |         |              |            |             |            |              |
| 132    | West Delta   | 27        | 1-2    | New Orleans, No. 4  | 11/46 | 11/49   | 5/60    | 20           | 1,373,318  | 5,568,302   | 792,215    | 183,213,492  |
|        |              |           |        |                     |       |         |         |              |            |             |            |              |
| 133    | do           | 30        | 1-2    | do                  | 11/46 | 12/54   | 2/63    | 40           | 20,851,186 | 255,558     | 19,030,997 | 12,617,239   |
|        |              |           |        |                     |       |         |         |              |            |             |            |              |
| 134    | do           | 41        | 3      | do                  | 3/62  | 10/64   | 11/64   | 80           | 3,620,966  | -           | 6,080,877  | -            |
|        |              |           |        |                     |       |         |         |              |            |             |            |              |
|        |              |           |        |                     |       |         |         |              |            |             |            |              |
| 135    | do           | 52        | ICL    | do                  | 4/47  | 5/54    | 7/66    | ( <u>2/)</u> | 518,074    | 8,205       | 497,251    | 129,219      |
| 136    | do           | 53        | ICL, 1 | do                  | 4/47  | 7/53    | 8/53    |              | 612,707    | 174,987     | 596,381    | 6,859,834    |
| 137    | do           | 55        | ICL, 1 | do                  | 7/54  | 9/55    | 4/57    | 10           | -          | -           | - 1        | 10,701,836   |
| 138    | do           | 56        | 1      | do                  | 7/54  | 5/55    | 7/58    | 30           | -          |             | -          | 859,954      |
| 139    | do           | 58        | 2      | do                  | 4/47  | 6/55    | 5/58    | 45           | -          | 329,834     | -          | 4,574,622    |
|        |              |           |        |                     |       | 0.455   |         |              |            | 26.026      |            | 1 001 000    |
| 140    | do           | 59        | 2      | do                  | 4/47  | 8/55    | 5/58    | 55           |            | 76,376      |            | 1,304,322    |
| 141    | do           | 73        | 3      | do                  | 3/62  | 1/63    | 11/63   | 170          | 10,840,562 | -           | 10,749,142 | -            |
| 142    |              |           | 707    |                     | 9/54  | 11/56   | 1/57    |              | 0.101.606  | 1 /0*       | 2 016 610  | 00 070       |
|        | do           | 83        | ICL, 1 | do                  |       |         |         | 5            | 2,121,436  | 1,491       | 3,016,059  | 88,278       |
| 143    | do           | 84<br>105 | 3      | do                  | 7/54  | 6/55    | 6/55    | 45<br>235    | 293,546    | 6,272       | 671,897    | 125,309      |
| 144    | do           | 105       | 3      | do                  | 2/60  | 8/64    | 8/65    | 235          | 1,701,043  |             | 2,169,641  | -            |
| 145    | 1.           | 117       |        |                     | 2//2  | 6/63    | 11/62   | 210          |            |             |            |              |
| 145    | do           | 117       | 3      | do                  | 3/62  | 6/63    | 11/63   | 210          |            | -           | -          | -            |
| 146    | 4.           | 122       | 4      |                     | 2162  | 2166    | Shut in | 275          | 120 700    |             | 110 644    |              |
| 146    | do           | 133       | 4      | do                  | 3/62  | 2/66    | 9/66    | 275          | 138,789    |             | 115,666    |              |
| 1/7    |              |           | 1      |                     |       | 1000    |         |              | 238        |             |            |              |
| 147    | Wildcat      |           | 1 1    | Lake Charles, No. 3 |       | 1966    |         | _            | 238        |             |            |              |

<sup>1</sup> Inside Chapman Line denoted by ICL.

2/ Matter depth shallow; not available.

3/ Matter depth shallow; not available.

3/ Matter depth shallow; not available.

3/ Oll and/or gas flowline denoted by F/L. Oll and/or gas pipeline denoted by F/L.

3/ Data not available.

3/ Data not available.

Sources: Louisiana Department of Conservation. Annual Oil and Gas Reports.
U.S. Department of Commerce, Coast and Geodetic Survey,
U.S. Ceological Survey, Guif Coast Region.

# and gas field data -- Continued

| Cumu1       | Cumulative production, Jan. 1, 1967 |             |                    |               | lls, Pet      | ruary 19      | 68                             |                                                          |        |  |  |  |
|-------------|-------------------------------------|-------------|--------------------|---------------|---------------|---------------|--------------------------------|----------------------------------------------------------|--------|--|--|--|
| Crude oil,  |                                     |             | Natural gas,       |               | Gas           |               |                                | Production transportation4                               | erence |  |  |  |
| bb1 316     | bb1                                 | gas, Mcf    | Mcf<br>429,866,007 | Oil           | Gas<br>37     | Dry<br>4      | Other<br>4                     | 14-in., 16-in. P/L's, 20-in. F/L to shore; barge.        | No.    |  |  |  |
| 316         | 9,924,203                           | -           | 10,294,756         | (5/)          | (5/)          | (5/)          | ( <u>5</u> /)                  | Barge.                                                   | 107    |  |  |  |
| •           | 3,275,273                           | -           | 619,563,635        | (2/)          | 17            | (2/)          | (2/)                           | 8-in., 10-in. P/L's to shore.                            | 108    |  |  |  |
| 3,667       | 376,812                             | 3,355       |                    |               | 8             |               | 3                              | 16-in. P/L to shore; 4-in., 6-in. P/L tie-ins (see       | 110    |  |  |  |
| 3,007       | 370,812                             | 3,333       | 20,700,000         | _             |               | -             | 3                              | Vermilion 76 field); barge.                              | 110    |  |  |  |
|             | 108,522                             |             | 22,149,620         |               | 6             | 9             | 1                              | 16-in. P/L to Vermilion 76.                              | 111    |  |  |  |
|             | 657,559                             |             | 315,604,338        | 1 .           | 25            | 10            | 3                              | 16-in., 20-in. P/L's to shore (through Vermilion 46 with | 112    |  |  |  |
| -           | 037,339                             | _           | 313,004,330        | -             | 1 2           | 10            | ,                              | pickups): barge.                                         | 112    |  |  |  |
|             | 408,971                             | _           | 19,329,845         |               | 3             | 3             | _                              | 10-in, P/L to Vermilion 76.                              | 113    |  |  |  |
| 2,833,751   | 400,771                             | 2,421,689   | 17,527,045         | 5             | i i           | 13            | 6                              | Barge.                                                   | 114    |  |  |  |
| 2,033,731   | 185,804                             | 2,421,007   | 6,607,980          | [             | l î           | 6             | ı .                            | 6-in. P/L tie-in (see Vermilion 131); barge.             | 115    |  |  |  |
| - 1         | 1,096,811                           | 1           | 51,099,453         |               |               | 5             | _                              | 16-in. P/L to Vermilion 76 (through Vermilion 129 with   | 116    |  |  |  |
| -           | 1,070,011                           |             | 32,077,433         |               | 1 1           | ,             | -                              | pickup); barge.                                          | 110    |  |  |  |
| 162,817     |                                     | 92,017      | 3,000              | 1             |               | 18            | 3                              | Barge.                                                   | 117    |  |  |  |
| 1,718,835   |                                     | 1,324,459   |                    | 22            |               | 29            | 5                              | Do.                                                      | 118    |  |  |  |
| 37,545      |                                     | 28,629      |                    | 1 1           | 1             | 7             | 2                              | Do.                                                      | 119    |  |  |  |
| 37,343      | 16                                  | 20,029      | 200                |               | 15/5          |               |                                | ь.                                                       | 120    |  |  |  |
| -           | 250,857                             |             | 36,173,640         | (5/)          | ( <u>5</u> /) | ( <u>5</u> /) | ( <u>5</u> /)                  | 6-in., 18-in. F/L's to shore.                            | 120    |  |  |  |
|             | 230,837                             |             | 41,392             | (5/)          | (5/)          | ( <u>5</u> /) | (5/)                           | o-in, io-in, e/L a to anote.                             | 121    |  |  |  |
| 95,382      | 349,076                             | 52,884      | 25,433,725         | (2/)          | (2/)          | (2/)          | (2/)                           | 3-in., 12-in., 20-in. P/L's to shore.                    | 122    |  |  |  |
| 95,382      |                                     | 32,884      | 8,417,064          | -             | -             | 5             | 4                              | 16-in. P/L to shore.                                     | 123    |  |  |  |
|             | 42,912                              | 17,273,665  |                    | 13            | 13            | 13            | 4                              |                                                          |        |  |  |  |
| 4,888,337   | 2,542,017                           | 17,273,665  |                    | 13            |               |               | 2                              | 6-in., 8-in., 16-in. P/L's to shore; barge.              | 125    |  |  |  |
|             | 1,008,780                           |             | 42,405,101         | 1             | 7 8           | 7             | 2                              | 12-in. P/L to shore.                                     | 126    |  |  |  |
| 55,412      | 385,812                             | 203,164     | 26,173,394         |               |               | 1             | 4                              | 16-in. P/L to shore (proposed); barge.                   | 127    |  |  |  |
| 323,070     | 511,002                             | 2,795,074   |                    | 2             | . 8           | 3             |                                | 16-in. P/L to West Cameron 40.                           | 128    |  |  |  |
|             | 42,081                              |             | 24,009,770         | -             | 16            | 9             | 4                              | 12-in. P/L to West Cameron 71 (proposed); barge.         | 129    |  |  |  |
| 40,455      | 76,622                              | 24,172      |                    | 1             | 10            | 2             | 13                             | 12-in. P/L to West Cameron 192 (proposed); barge.        | 130    |  |  |  |
| 985,231     | 2,570,656                           | 1,113,377   | 288,875,530        | 3             | 28            | 15            | 16                             | 20-in. P/L to platform in East Cameron 62-64 fields      | 131    |  |  |  |
|             |                                     |             |                    |               |               |               |                                | area; barge.                                             | 1      |  |  |  |
| 7,447,767   | 9,468,860                           | 4,897,404   | 315,746,099        | 7             | 12            | 8             | 9                              | 6-in. F/L to West Delta 30; 12-in., 20-in., 26-in. F/L's | 132    |  |  |  |
|             |                                     |             |                    |               |               |               |                                | to shore.                                                |        |  |  |  |
| 121,202,771 | 299,628                             | 110,150,155 | 14,713,819         | 275           | 6             | 85            | 103                            | Two 6-in., 10-in. F/L's to shore; three 12-in. P/L's to  | 133    |  |  |  |
|             |                                     |             |                    |               |               |               |                                | shore.                                                   |        |  |  |  |
| 5,884,209   | -                                   | 8,927,060   | -                  | 38            | -             | 8             | 3                              | 8-in. F/L to West Delta-Grand Isle 43; 16-in. F/L to     | 134    |  |  |  |
|             |                                     |             |                    |               |               |               |                                | shore; 26-in. F/L through West Delta 30 to shore;        |        |  |  |  |
|             |                                     |             |                    |               |               |               |                                | barge.                                                   |        |  |  |  |
| 5,981,609   | 52,816                              | 7,171,979   |                    | ( <u>5/</u> ) | ( <u>5</u> /) | (5/)<br>(5/)  | ( <u>5</u> /)<br>( <u>5</u> /) |                                                          | 135    |  |  |  |
| 6,467,418   | 4,102,041                           | 7,021,780   |                    | (5/)          | (5/)          | (5/)          | ( <u>5</u> /)                  | •                                                        | 136    |  |  |  |
| -           | 101,905                             | -           | 51,743,707         | (5/)<br>(5/)  | (5/)          | (5/)          | ( <u>5</u> /)                  |                                                          | 137    |  |  |  |
| -           | 622                                 | -           | 3,796,800          | -             | -             | - 3           | 1                              |                                                          | 138    |  |  |  |
|             | 2,158,976                           |             | 28,832,352         | -             | 6             | 3             | 5                              | 12-in. P/L to platform in West Delta 54 to tie-in with   | 139    |  |  |  |
|             |                                     |             |                    |               |               |               |                                | P/L to shore.                                            |        |  |  |  |
| 157,044     | 1,295,529                           | 1,445,986   |                    | -             | 1             | 2             | 2                              | 12-in. P/L to West Delta 58.                             | 140    |  |  |  |
| 18,738,228  | 100                                 | 17,167,116  | 5,741              | 116           | -             | 8             | 13                             | 12-in. P/L to Grand Isle 18; 16-in. F/L to Grand         | 141    |  |  |  |
|             |                                     |             |                    |               |               |               |                                | Isle 16.                                                 |        |  |  |  |
| 17,711,384  | 245,729                             | 34,911,492  | 7,717,032          | (5/)          | ( <u>5</u> /) | ( <u>5</u> /) | ( <u>5</u> /)                  | -                                                        | 142    |  |  |  |
| 2,980,153   | 6,272                               | 8,026,287   |                    | (5/)          | (5/)          | (5/)          | ( <u>5</u> /)                  | •                                                        | 143    |  |  |  |
| 1,776,594   | -                                   | 2,216,614   | -                  | 39            | 2             | 12            | 13                             | 12-in. P/L to West Delta 30 (through West Delta 64 and   | 144    |  |  |  |
|             |                                     |             |                    |               | 1             |               |                                | 73 fields); 18-in. P/L to shore (proposed).              |        |  |  |  |
| 726,407     | -                                   | 902,041     | -                  | 6             | -             | 12            | 20                             | 4-in. F/L to West Delta 73; 10-in. F/L to West Delta     | 145    |  |  |  |
|             |                                     | ,           |                    |               |               | 100           |                                | 41 (proposed).                                           |        |  |  |  |
| 138,789     | -                                   | 115,666     |                    | 17            | -             | 34            | 12                             | 8-in. P/L to West Delta 105; 18-in. P/L to West          | 146    |  |  |  |
|             |                                     |             |                    |               |               |               |                                | Delta 105 (proposed).                                    |        |  |  |  |
| 238         | 173                                 | -           | 3,122              | (5/)          | (5/)          | (5/)          | (5/)                           |                                                          | 147    |  |  |  |
|             |                                     |             | 1 0,-00            |               | 1 12//        |               | -2//                           |                                                          |        |  |  |  |

TABLE C-2. - Texas oil and gas field data

|                                                                                                                                                                                                                                                                              |                                      |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . 1                                                                                                                       | 1 4                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                    | 1000                                                                                                               |                     |                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------|
|                                                                                                                                                                                                                                                                              | Tract                                | County and R                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s- First                                                                                                                  | Appr                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                    |                                                                                                                    | production          |                                   |
| Field                                                                                                                                                                                                                                                                        | or                                   | Commission D                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ery produc                                                                                                                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Crude                                                                                                              | Conden                                                                                                             |                     | Natural                           |
|                                                                                                                                                                                                                                                                              | block                                | number                                                                                                  | da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ate da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | te tion                                                                                                                   | depth                                            | , ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | oil,                                                                                                               | sate,                                                                                                              |                     | gas, Mcf                          |
|                                                                                                                                                                                                                                                                              |                                      |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                           |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | bb1                                                                                                                | bbl                                                                                                                | gas, Mcf            |                                   |
| Brazos                                                                                                                                                                                                                                                                       | 405                                  | Matagorda, N                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | '66  Shut i                                                                                                               |                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                  |                                                                                                                    | - ( <u>1</u> /)     | -                                 |
| Do                                                                                                                                                                                                                                                                           | 440                                  | do                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2/65 11/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 66 Shut i                                                                                                                 | n 5                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                  |                                                                                                                    | - ( <u>1</u> /)     | -                                 |
| Do                                                                                                                                                                                                                                                                           | 446                                  | do                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 4/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 64 Shut i                                                                                                                 | n 5                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                    |                                                                                                                    | - ( <u>1</u> /)     | -                                 |
| Do                                                                                                                                                                                                                                                                           | 519-S                                | do                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2/65 10/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 66 Shut i                                                                                                                 | n 3                                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                    |                                                                                                                    | - (1/)              | -                                 |
| Caplen (4650 Miocene)                                                                                                                                                                                                                                                        |                                      | Galveston, N                                                                                            | o. 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39 6/65                                                                                                                   | 1                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2/8,239                                                                                                            |                                                                                                                    | - (1/)              | -                                 |
| Chevron                                                                                                                                                                                                                                                                      | -                                    | Kleberg, No.                                                                                            | 4 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2/53 11/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 54 1954                                                                                                                   | 5                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 103,543                                                                                                            | 88,19                                                                                                              | 7 (1/)              | 11,704,448                        |
| Cowtrap (2450 and 2700).                                                                                                                                                                                                                                                     | - 1                                  | Brazoria, No                                                                                            | . 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 2/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 53 1961                                                                                                                   | 1                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                    |                                                                                                                    | - ( <del>1</del> /) | 1 1 -                             |
| Federal                                                                                                                                                                                                                                                                      | 288                                  | Galveston, N                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2/60 2/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 64 1965                                                                                                                   | 6                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 364,903                                                                                                            | 3                                                                                                                  | - (1/)              | 37,801,189                        |
| Galveston                                                                                                                                                                                                                                                                    | 189                                  | do                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 55 4/55                                                                                                                   | 5                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 885                                                                                                                |                                                                                                                    | - (1/)              |                                   |
| GOM                                                                                                                                                                                                                                                                          | ST-83-S                              | do                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 64 Shut i                                                                                                                 |                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                    |                                                                                                                    | - (Î/)              |                                   |
| GOM (Frio 7800 and 8200)                                                                                                                                                                                                                                                     |                                      | Nueces, No.                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 57 1963                                                                                                                   |                                                  | ō                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                    | 40,29                                                                                                              |                     | 1,815,243                         |
| High Island                                                                                                                                                                                                                                                                  | 10-L                                 | Jefferson, N                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 55 1959                                                                                                                   |                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                    | 6,85                                                                                                               |                     | 1,860,580                         |
| Do                                                                                                                                                                                                                                                                           | 52                                   | do                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/54 12/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                           |                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                    | 0,05                                                                                                               | - (1/)              | 1,000,500                         |
|                                                                                                                                                                                                                                                                              | 160                                  | do                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 61 Shut i                                                                                                                 |                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                    |                                                                                                                    | - ( <del>1</del> /) | _                                 |
| Do                                                                                                                                                                                                                                                                           | - 100                                |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 54 1959                                                                                                                   |                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                    |                                                                                                                    | - ( <del>1</del> /) | 2 762 102                         |
| Kain (G-3, G-7, G-12,                                                                                                                                                                                                                                                        | - 1                                  | Matagorda, N                                                                                            | 5. 3 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2/33 //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 34   1939                                                                                                                 | 1                                                | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                  |                                                                                                                    | - (1/)              | 2,763,193                         |
| H-1 Sd, Miocene L, and                                                                                                                                                                                                                                                       |                                      |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                           |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                    | 1                                                                                                                  |                     |                                   |
| L Central).                                                                                                                                                                                                                                                                  |                                      |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (56 8)                                                                                                                    |                                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                    |                                                                                                                    |                     |                                   |
| McFaddin Beach Dome                                                                                                                                                                                                                                                          |                                      | Jefferson, N                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 12/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                           |                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                    |                                                                                                                    | - (1/)              |                                   |
| Mustang Island                                                                                                                                                                                                                                                               | 889                                  | Nueces, No.                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 55 1956                                                                                                                   |                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                  | 113,94                                                                                                             |                     | 4,533,850                         |
| Sabine Pass (K-1                                                                                                                                                                                                                                                             | -                                    | Jefferson, N                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 10/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | '58   1958                                                                                                                |                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                  |                                                                                                                    | - ( <u>1</u> /)     | -                                 |
| Miocene, 7200).                                                                                                                                                                                                                                                              |                                      |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                           |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                    |                                                                                                                    |                     |                                   |
| Sargent, South (Miocene                                                                                                                                                                                                                                                      | -                                    | Matagorda, N                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -   1/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | '56   1956                                                                                                                | 1                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                  |                                                                                                                    | - ( <u>1</u> /)     | 312,344                           |
| 3250 and 4100).                                                                                                                                                                                                                                                              |                                      | 100                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                           |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                    |                                                                                                                    |                     |                                   |
| Sprint (Marg)                                                                                                                                                                                                                                                                |                                      |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 54   1958                                                                                                                 |                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                    | 1,74                                                                                                               | 3 (1/)              | 450,091                           |
| Sprine (Marg)                                                                                                                                                                                                                                                                |                                      | Kleberg, No.                                                                                            | 7 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2/33 111/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 34 2730                                                                                                                   | .1 *                                             | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                    | 1 2,7                                                                                                              | 'S   \±'''          | 1 450,051                         |
| Sprine (Marg)                                                                                                                                                                                                                                                                | 1                                    |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                           | ,                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ruary 1                                                                                                            | 1                                                                                                                  | Produc              | tion                              |
| Sprine (rarg)                                                                                                                                                                                                                                                                | Ct                                   | mulative pro                                                                                            | duction, J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Jan. 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1967                                                                                                                      | Well                                             | s, Fel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | oruary 1                                                                                                           | 968                                                                                                                | Produc              | tion                              |
| Sprine (raig)                                                                                                                                                                                                                                                                | Ct                                   |                                                                                                         | duction, J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Jan. 1,<br>nead Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                           | ,                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dry Dry                                                                                                            | 1                                                                                                                  |                     | tion                              |
|                                                                                                                                                                                                                                                                              | Crude of                             | mulative pro                                                                                            | duction, J<br>e, Casingh<br>gas, M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Jan. 1,<br>nead Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1967<br>tural gas,                                                                                                        | Well<br>Oil                                      | s, Feb<br>Gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dry                                                                                                                | 968<br>Other                                                                                                       | Produc              | tion                              |
| Brazos                                                                                                                                                                                                                                                                       | Crude of                             | mulative pro                                                                                            | duction, J<br>e, Casingh<br>gas, M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Jan. 1,<br>nead Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1967<br>tural gas,                                                                                                        | Well<br>Oil                                      | s, Feb<br>Gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dry (4/)                                                                                                           | 968<br>Other                                                                                                       | Produc              | tion                              |
| Brazos                                                                                                                                                                                                                                                                       | Crude of                             | mulative pro                                                                                            | duction, Je, Casingh gas, M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Jan. 1,<br>nead Na<br>Mcf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1967<br>tural gas,                                                                                                        | Well<br>Oil<br>(4/)<br>(4/)                      | s, Feb<br>Gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (4/)<br>(4/)                                                                                                       | 968<br>Other<br>(4/)<br>(4/)                                                                                       | Produc              | tion                              |
| Brazos                                                                                                                                                                                                                                                                       | Crude of                             | mulative pro                                                                                            | duction, J<br>e, Casingh<br>gas, M<br>- (1/)<br>- (1/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Jan, 1,<br>nead Na<br>Mcf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1967<br>tural gas,                                                                                                        | Well Oil (4/) (4/) (4/)                          | s, Feb<br>Gas<br>(4/)<br>(4/)<br>(4/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (4/)<br>(4/)<br>(4/)                                                                                               | 968<br>Other<br>(4/)<br>(4/)<br>(4/)                                                                               | Produc              | tion                              |
| Brazos                                                                                                                                                                                                                                                                       | Crude of<br>bb1                      | mulative pro ii, Condensat bbl                                                                          | duction, J<br>e, Casingh<br>gas, M<br>- (1/)<br>- (1/)<br>- (1/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Jan. 1,<br>nead Na<br>Mcf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1967<br>tural gas,                                                                                                        | Well 0il (4/) (4/) (4/) (4/) (4/)                | s, Feb<br>Gas<br>(4/)<br>(4/)<br>(4/)<br>(4/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)                                                                               | 968<br>Other<br>(4/)<br>(4/)<br>(4/)<br>(4/)                                                                       | Produc              | tion                              |
| Brazos                                                                                                                                                                                                                                                                       | Crude of bb1                         | mulative pro il, Condensat bbl                                                                          | duction, J<br>e, Casingh<br>gas, M<br>- (1/)<br>- (1/)<br>- (1/)<br>- (1/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Jan. 1, nead Na Mcf ) ) ) ) )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1967<br>itural gas,<br>Mcf                                                                                                | Well 0i1 (4/) (4/) (4/) (4/) (4/) (4/)           | (4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)                                                                       | 968<br>Other<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)                                                               | Produc              | tion                              |
| Brazos Do Do Do Capten (4650 Miocene) Chevron                                                                                                                                                                                                                                | Crude of<br>bb1                      | mulative pro il, Condensat bbl                                                                          | duction, J<br>e, Casingh<br>gas, M<br>- (1/)<br>- (1/)<br>- (1/)<br>- (1/)<br>- (1/)<br>- (1/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Jan. 1,<br>nead Na<br>Mcf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1967<br>itural gas,<br>Mcf                                                                                                | Well 0i1 (4/) (4/) (4/) (4/) (4/) (4/) (4/)      | s, Feb<br>Gas<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)                                                                       | 968<br>Other<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)                                                       | Produc              | tion                              |
| Brazos                                                                                                                                                                                                                                                                       | 13,30<br>2,979,92                    | mulative pro<br>11, Condensat<br>bbl -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | duction, J<br>e, Casingh<br>gas, M<br>- (1/)<br>- (1/)<br>- (1/)<br>- (1/)<br>- (1/)<br>- (1/)<br>- (1/)<br>- (1/)<br>- (1/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Jan. 1, nead Na Mcf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1967<br>stural gas,<br>Mcf                                                                                                | Well Oil (4/) (4/) (4/) (4/) (4/) (4/) (4/) (4/) | (4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)                                                               | 968<br>Other<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)                                               | Produc<br>transpor  | tation3/                          |
| Brazos                                                                                                                                                                                                                                                                       | 13,30<br>2,979,92                    | mulative pro<br>11, Condensat<br>bbl<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-   | duction, J<br>e, Casingh<br>gas, M<br>- (1/)<br>- (1/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Jan. 1, nead Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1967<br>Ltural gas,<br>Mcf -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-    | Well Oil (4/) (4/) (4/) (4/) (4/) (4/) (4/) (4/) | (4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)                                                       | 968<br>Other<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)                                                       | Produc              | tation3/                          |
| Brazos                                                                                                                                                                                                                                                                       | 13,30<br>2,979,92                    | mulative pro<br>11, Condensat<br>bbl<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-   | duction, J<br>e, Casingh<br>gas, M<br>- (1/)<br>- (1/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Jan. 1, nead Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1967<br>stural gas,<br>Mcf                                                                                                | We11 Oi1 (4/) (4/) (4/) (4/) (4/) (4/) (4/) (4/) | s, Fet Gas (4/) (4/) (4/) (4/) (4/) (4/) (4/) (4/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)                                                       | 968<br>Other<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)                                       | Produc<br>transpor  | tation3/                          |
| Brazos Do Do Do Caplen (4650 Miocene). Chevron Cowtrap (2450 and 2700). Federal. Galveston GOM                                                                                                                                                                               | 13,30<br>2,979,92                    | mulative pro<br>11, Condensat<br>bbl                                                                    | duction, J<br>e, Casingh<br>gas, M<br>- (1/)<br>- (1/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jan. 1, nead Na Mcf ) )) )) )) )) ) ) ) ) ) ) ) ) ) ) ) )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1967<br>ttural gas,<br>Mcf<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                               | Well 0il (4/) (4/) (4/) (4/) (4/) (4/) (4/) (4/) | (4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>21<br>1<br>(4/)                                            | 968<br>Other<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)                                       | Produc<br>transpor  | tation3/                          |
| Brazos Do Do Do Capten (4650 Miocene) Chevron. Cowtrap (2450 and 2700). Federal. Galveston. GOM. GOM. (Frio 7800 and 8200)                                                                                                                                                   | 13,30<br>2,979,92                    | mulative pro<br>(1,   Condensat<br>bb1                                                                  | duction, J<br>e, Casingh<br>gas, M<br>- (1/)<br>- (1/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Jan. 1, nead Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1967<br>Itural gas,<br>Mcf<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | Well 0i1 (4/) (4/) (4/) (4/) (4/) (4/) (4/) (4/) | (4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(1/)<br>(1/)<br>(1/)<br>(1/)<br>(1/)<br>(1/)               | 968<br>Other<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(1/2)<br>(1/2)<br>(1/2)<br>(1/2)<br>(1/2)<br>(1/2)         | Productranspor      | tion tation3/  to shore.          |
| Brazos Do Do Do Caplen (4650 Miocene). Chevron. Costrap (2450 and 2700). Federal. Galveston. GOM. GOM (Frio 7800 and 8200) High Island.                                                                                                                                      | 13,30<br>2,979,92<br>364,90<br>28,31 | mulative pro<br>11, Condensat<br>bb1                                                                    | duction, J<br>e, Casingh<br>gas, M<br>- (1/)<br>- | Jan. 1, nead Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1967<br>ttural gas,<br>Mcf<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                               | Well (4/) (4/) (4/) (4/) (4/) (4/) (4/) (4/)     | (4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>21<br>1<br>(4/)<br>(4/)<br>(4/)<br>(4/)                    | 968<br>Other<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)                                       | Produc<br>transpor  | tion tation3/  to shore.          |
| Brazos Do Do Do Caplen (4650 Miocene) Chevron Cowtrap (2450 and 2700). Federal Calveston GOM. (Frio 7800 and 8200) High Island Do                                                                                                                                            | 13,30<br>2,979,92                    | mulative pro<br>11, Condensat<br>bb1                                                                    | duction, J<br>e, Casingh<br>gas, M<br>- (1/)<br>- | Jan. 1, nead Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1967<br>Itural gas,<br>Mcf<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | Well 0i1 (4/) (4/) (4/) (4/) (4/) (4/) (4/) (4/) | (4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(1/)<br>(1/)<br>(1/)<br>(1/)<br>(1/)<br>(1/)<br>(1/)<br>(1 | 968<br>Other<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(1/2)<br>(1/2)<br>(1/2)<br>(1/2)<br>(1/2)<br>(1/2)         | Productransport     | tion tation3/ to shore. to shore. |
| Brazos Do Do Do Caplen (4650 Miocene). Chevron. Costrap (2450 and 2700). Federal. Calveston. COM. GOM (Frio 7800 and 8200) High Island. Do Do                                                                                                                                | 13,30<br>2,979,92<br>364,90<br>28,31 | mulative pro<br>11, Condensat<br>bb1                                                                    | duction, J e, Casingh gas, N - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Jan. 1, nead Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1967<br>ttural gas,<br>Mef<br>                                                                                            | Well (4/) (4/) (4/) (4/) (4/) (4/) (4/) (4/)     | (4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>21<br>1<br>(4/)<br>(4/)<br>(4/)<br>(4/)                    | 968<br>Other<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(1/2)<br>(1/2)<br>(1/2)<br>(1/2)<br>(1/2)<br>(1/2)         | Productranspor      | tion tation3/ to shore. to shore. |
| Brazos  Do  Do  Do  Caplen (4650 Miocene)  Chevron  Cowtrap (2450 and 2700).  Federal  Calveston  GOM. Frio 7800 and 8200)  High Island  Do  Do  Kain (6-3, 6-7, 6-12,                                                                                                       | 13,30<br>2,979,92<br>364,90<br>28,31 | mulative pro<br>11, Condensat<br>bb1                                                                    | duction, J e, Casingh gas, N - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Jan. 1, nead Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1967<br>Itural gas,<br>Mcf<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | Well (4/) (4/) (4/) (4/) (4/) (4/) (4/) (4/)     | (4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(1/)<br>(1/)<br>(1/)<br>(1/)<br>(1/)<br>(1/)<br>(1/)<br>(1 | 968<br>Other<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(1/2)<br>(1/2)<br>(1/2)<br>(1/2)<br>(1/2)<br>(1/2)         | Productransport     | tion tation3/ to shore. to shore. |
| Brazos                                                                                                                                                                                                                                                                       | 13,30<br>2,979,92<br>364,90<br>28,31 | mulative pro<br>11, Condensat<br>bbl<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-   | duction, J e, Casingh gas, N - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Jan. 1, nead Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1967<br>ttural gas,<br>Mef<br>                                                                                            | Well (4/) (4/) (4/) (4/) (4/) (4/) (4/) (4/)     | (4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>21<br>1<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)            | (4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(1/)<br>(1/)<br>(1/)<br>(1/)<br>(1/)<br>(1/)<br>(1/)<br>(1 | Productransport     | tion tation3/ to shore. to shore. |
| Brazos  Do  Do  Do  Caplen (4650 Miocene)  Chevron. (2450 and 2700).  Federal.  Galveston.  GOM. Frio 7800 and 8200)  High Island.  Do  Do  Kain (6-3, 6-7, 6-12,  H-1 Sd, Miocene L, and L. Central).                                                                       | 13,3(2,979,92) 364,94(28,31) 62,63   | mulative pro 11, Condensat bb1                                                                          | duction, J e, Casingh gas, N - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/) - (1/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Jan. 1, nead Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1967<br>ttural gas,<br>Mef<br>                                                                                            | Well (4/) (4/) (4/) (4/) (4/) (4/) (4/) (4/)     | (4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>21<br>1<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)            | (4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(1/)<br>(1/)<br>(1/)<br>(1/)<br>(1/)<br>(1/)<br>(1/)<br>(1 | Productransport     | tion tation3/ to shore. to shore. |
| Brazos Do Do Caplen (4650 Miocene) Chevron Cowtrap (2450 and 2700). Federal. Galveston. GOM. (Frio 7800 and 8200) High Island. Do Do Kain (G-3, G-7, G-12, H-1 Sd, Miocene L, and L Central). McFaddin Beach Dome                                                            | 13,30<br>2,979,92<br>364,90<br>28,31 | mulative pro 11, Condensat bb1                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Jan. 1, nead Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1967<br>ttural gas,<br>Mef<br>                                                                                            | Well (4/) (4/) (4/) (4/) (4/) (4/) (4/) (4/)     | Gas (4/) (4/) (4/) (4/) (4/) (4/) (4/) (4/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Dry   (4/) (4/) (4/) (4/) (4/) (2/) (2/) (2/) (2/) (2/) (3/) (4/) (4/) (4/) (4/) (4/) (4/) (4/) (4                 | (4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(1/)<br>(1/)<br>(1/)<br>(1/)<br>(1/)<br>(1/)<br>(1/)<br>(1 | Productransport     | tion tation3/ to shore. to shore. |
| Brazos  Do  Do  Do  Caplen (4650 Miocene)  Chevron. (2450 and 2700).  Federal.  Galveston.  GOM. Frio 7800 and 8200)  High Island.  Do  Do  Kain (6-3, 6-7, 6-12,  H-1 Sd, Miocene L, and L. Central).                                                                       | 13,3(2,979,92) 364,94(28,31) 62,63   | mulative pro 11, Condensat bb1                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Jan. 1, nead Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1967<br>Ltural gas,<br>Mcf<br>                                                                                            | Well (4/) (4/) (4/) (4/) (4/) (4/) (4/) (4/)     | Gas (4/) (4/) (4/) (4/) (4/) (4/) (4/) (4/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Dry   (4/) (4/) (4/) (4/) (4/) (2/) (2/) (2/) (2/) (2/) (3/) (4/) (4/) (4/) (4/) (4/) (4/) (4/) (4                 | 968<br>Other<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)                                       | Productransport     | tion tation3/ to shore. to shore. |
| Brazos Do Do Caplen (4650 Miocene) Chevron Cowtrap (2450 and 2700). Federal. Galveston. GOM. (Frio 7800 and 8200) High Island. Do Do Kain (G-3, G-7, G-12, H-1 Sd, Miocene L, and L Central). McFaddin Beach Dome                                                            | 13,3(2,979,92) 364,94(28,31) 62,63   | mulative pro 11, Condensat bb1                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Jan. 1, nead Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1967<br>Litural gas,<br>Mcf<br>                                                                                           | Well 0il (4/) (4/) (4/) (4/) (4/) (4/) (4/) (4/) | (4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dry   (4/) (4/) (4/) (4/) (4/) (4/) (4/) (4/)                                                                      | 968<br>Other<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(1/)<br>(1/)<br>(1/)<br>(1/)<br>(1/)<br>(1/)<br>(1/)<br>(1 | Productransport     | tion tation3/ to shore. to shore. |
| Brazos  Do Do Do Caplen (4650 Miocene) Chevron Cowtrap (2450 and 2700). Federal. Galveston GOM. (Frio 7800 and 8200) High Island Do Do Complete (1864). Lentral. Lentral. McPaddin Beach Dome Mustang Island                                                                 | 13,3(2,979,92) 364,94(28,31) 62,63   | mulative pro 11, Condensat bb1                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Jan. 1, nead Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1967<br>Ltural gas,<br>Mcf<br>                                                                                            | Well (4/) (4/) (4/) (4/) (4/) (4/) (4/) (4/)     | Gas (4/) (4/) (4/) (4/) (4/) (4/) (4/) (4/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Dry   (4/) (4/) (4/) (4/) (4/) (2/) (2/) (2/) (2/) (2/) (3/) (4/) (4/) (4/) (4/) (4/) (4/) (4/) (4                 | 968<br>Other<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)                                       | Productransport     | tion tation3/ to shore. to shore. |
| Brazos Do Do Do Caplen (4650 Miocene) Chevron. Cowtrap (2450 and 2700). Federal. Calveston. COM. (Frio 7800 and 8200) High Island. Do Do Learn (G-3, G-7, G-12, H-1 Sd, Miocene L., and L. Central). McFaddin Beach Dome Mustang Island. Sabine Pass (K-1                    | 13,3(2,979,92) 364,94(28,31) 62,63   | mulative pro 11, Condensat bb1                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Jan. 1, nead Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1967<br>Litural gas,<br>Mcf<br>                                                                                           | Well 0il (4/) (4/) (4/) (4/) (4/) (4/) (4/) (4/) | $\begin{array}{c c} s, \ \text{Fet} \\ \hline \text{Gas} \\ \hline \\ (\underline{4/}) $ | Dry  (4/) (4/) (4/) (4/) (4/) (4/) 21 1 (4/) (4/) (4/) (4/) (4/) (4/) (4/) (4/)                                    | 968<br>Other<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)                                       | Productransport     | tion tation3/ to shore. to shore. |
| Brazos  Do Do Do Do Caplen (4650 Miocene). Chevron. Cowtrap (2450 and 2700). Federal. Galveston. GOM. (Frio 7800 and 8200) High Island. Do Do Kain (G-3, G-7, G-12, H-1 Sd, Miocene L, and L Central). McPaddin Beach Dome. Mustang Island. Sabine Pass (K-1 Miocene, 7200). | 13,3(2,979,92) 364,94(28,31) 62,63   | mulative pro 11, Condensat bb1                                                                          | Huction, J.  Huction, J.  Gasingh  gas, F.  (1/)  (1/)  (1/)  (1/)  (1/)  (1/)  (1/)  (1/)  (1/)  (1/)  (1/)  (1/)  (1/)  (1/)  (1/)  (1/)  (1/)  (1/)  (1/)  (1/)  (1/)  (1/)  (1/)  (1/)  (1/)  (1/)  (1/)  (1/)  (1/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jan. 1, nead Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1967<br>Litural gas,<br>Mcf<br>                                                                                           | Well 0il (4/) (4/) (4/) (4/) (4/) (4/) (4/) (4/) | (4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dry   (4/) (4/) (4/) (4/) (4/) (4/) (4/) (4/)                                                                      | 968<br>Other<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(1/)<br>(1/)<br>(1/)<br>(1/)<br>(1/)<br>(1/)<br>(1/)<br>(1 | Productransport     | tion tation3/ to shore. to shore. |
| Brazos  Do  Do  Caplen (4650 Miocene)  Chevron  Cowtrap (2450 and 2700).  Federal.  Galveston.  GOM. (Frio 7800 and 8200)  High Island.  Do  Do  Learnell, and L. Central).  McFaddin Beach Dome  Mustang Island  Sabine Pass (K-1  Miocene, 7200).  Sargent, South (Miocene | 13,3(2,979,92) 364,94(28,31) 62,63   | mulative pro 11, Condensat bb1                                                                          | Huction, J.  Huction, J.  Sp. Casingh  gas, K.  - (1/)  - (1/)  - (1/)  - (1/)  - (1/)  - (1/)  - (1/)  - (1/)  - (1/)  - (1/)  - (1/)  - (1/)  - (1/)  - (1/)  - (1/)  - (1/)  - (1/)  - (1/)  - (1/)  - (1/)  - (1/)  - (1/)  - (1/)  - (1/)  - (1/)  - (1/)  - (1/)  - (1/)  - (1/)  - (1/)  - (1/)  - (1/)  - (1/)  - (1/)  - (1/)  - (1/)  - (1/)  - (1/)  - (1/)  - (1/)  - (1/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Jan. 1, nead Na def   Na def | 1967<br>Litural gas,<br>Mcf<br>                                                                                           | Well 0il (4/) (4/) (4/) (4/) (4/) (4/) (4/) (4/) | $\begin{array}{c c} s, \ \text{Fet} \\ \hline \text{Gas} \\ \hline \\ (\underline{4/}) $ | Dry  (4/) (4/) (4/) (4/) (4/) (4/) 21 1 (4/) (4/) (4/) (4/) (4/) (4/) (4/) (4/)                                    | 968<br>Other<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)<br>(4/)                                       | Productransport     | tion tation3/ to shore. to shore. |

¢U. S. GOVERNMENT PRINTING OFFICE: 1969 O - 336-688

<sup>1/</sup> All gas production included in Natural Gas.
2/ Transferred from Caplen field, June 1965.
3/ Oil and/or gas flowline denoted by F/L. Oil and/or gas pipeline denoted by P/L.
4/ Data not available.

Sources: The Railroad Commission of Texas.
U.S. Department of Commerce, Coast and Geodetic Survey.
U.S. Geological Survey, Gulf Coast Region.









bureau of mines information circular 8410



# DESIGN OF DAMS FOR MILL TAILINGS



UNITED STATES DEPARTMENT OF THE INTERIOR

BUREAU OF MINES



# DESIGN OF DAMS FOR MILL TAILINGS

By C. D. Kealy and R. L. Soderberg

· information circular 8410



UNITED STATES DEPARTMENT OF THE INTERIOR Walter J. Hickel, Secretary

BUREAU OF MINES
John F. O'Leary, Director

This publication has been cataloged as follows:

# Kealy, Charles D

Design of dams for mill tailings, by C. D. Kealy and R. L. Soderberg. [Washington] U. S. Dept. of the Interior, Bureau of Mines [1969]

49 p. illus. (U. S. Bureau of Mines. Information circular 8410) Includes bibliography.

1. Dams. 2. Tailings (Metallurgy). I. Soderberg, Roy L., jt.auth. II. Title. (Series)

TN23.U71 no. 8410 622.06173 U. S. Dept. of the Int. Library

# CONTENTS

Page

| Abstr | act                                                                             | 1  |
|-------|---------------------------------------------------------------------------------|----|
|       | duction                                                                         | 1  |
| Preco | nstruction engineering                                                          | 2  |
| Soil  | sampling and testing for design parameters                                      | 2  |
|       | design methods                                                                  | 8  |
|       | Upstream methoddesign techniques                                                | 8  |
|       | Downstream method                                                               | 12 |
|       | Dams of borrow material                                                         | 14 |
| 1     | Water-dam construction                                                          | 16 |
|       | Rock-fill dams                                                                  | 16 |
|       | water control                                                                   | 16 |
|       | stability                                                                       | 19 |
|       | er design considerations                                                        | 22 |
|       | ge water control                                                                | 24 |
|       | mation                                                                          | 26 |
|       | usions                                                                          | 30 |
|       | ences                                                                           | 32 |
|       | dix ACase I, high phreatic line                                                 | 33 |
|       | dix BCase II, low phreatic line                                                 | 38 |
| Аррен | dix bcase ii, iow phileacic line                                                | 30 |
|       | ILLUSTRATIONS                                                                   |    |
| Fig.  |                                                                                 |    |
|       |                                                                                 |    |
| 1.    | Direct shear apparatus                                                          | 3  |
| 2.    | Triaxial test apparatus                                                         | 4  |
| 3.    | Relative density test apparatus                                                 | 5  |
| 4.    | Consolidation machine                                                           | 6  |
| 5.    | Laboratory model of tailing pond                                                | 7  |
| 6.    | Direct shear diagram                                                            | 8  |
| 7.    | Density as related to permeability                                              | 8  |
| 8.    | Distribution pipes off main line around tailing dam                             | 10 |
| 9.    | Berm built with dragline from beach sand                                        | 11 |
| 10.   | Cyclones on dam                                                                 | 11 |
| 11.   | Slime deposit relative to berm                                                  | 12 |
| 12.   | $ \hbox{{\tt Comparison of downstream versus upstream building techniques.} \\$ | 13 |
| 13.   | Typical slimes dam                                                              | 14 |
| 14.   | Dam stability correlated with zoning                                            | 15 |
| 15.   | Rock fill dam                                                                   | 17 |
| 16.   | Two decant systems                                                              | 18 |
| 17.   | Circular failure arc                                                            | 20 |
| 18.   | Sample of computer analysis                                                     | 21 |
| 19.   | Factor of safety from phreatic water height in dam                              | 23 |
| 20.   | Change of base permeability with time and material                              | 24 |
| 21.   | Location of phreatic line for frozen versus unfrozen face                       | 25 |
| 22.   | Porous-tube piezometer and electric tool for measuring water depth.             | 25 |
| 23.   | Effect of embankment stratification on required width of                        |    |
|       | longitudinal drains in homogeneous dams and levees                              | 27 |
| 24.   | Zoned dam study                                                                 | 28 |
| 25.   | Flow nets for $k_h = k_v$                                                       | 29 |



### DESIGN OF DAMS FOR MILL TAILINGS

by

C. D. Kealy 1 and R. L. Soderberg 1

## ABSTRACT

The Bureau of Mines studied tailings disposal problems at mines throughout the United States to identify design principles that can be applied to all types of dams for mill tailings. Computer programs for stability analysis and phreatic waterline estimation are also reviewed in this circular, which presents the Bureau's recommendations for constructing effective, long-lasting tailings dams.

#### INTRODUCTION

More than ever, public opinion is demanding the design of stable embankments as part of tailings disposal systems to aid in abating air and water pollution. Even though many areas have no restrictions requiring industry to impound its tailings, great interest has been generated through universities, industry, and Government in developing sound engineering principles regarding disposal problems. In some areas, attempts are already being made to prevent mine operations from starting because of the probable damage to local esthetic values. Because abandoned disposal areas are the land owner's liability when the mine has been exhausted, and must be a paramount consideration of planning groups that look 50 years hence at land disposition requirements, disposal costs and methods have become a significant mine operations problem.

The Bureau of Mines initiated a project concerned with the design of a tailings disposal system through its Heavy Metals Program. The information gathered, which includes the best methods for construction of a stable structure, maintenance of water conservation, control of air and water pollution, and provision of adequate land reclamation, applies generally to the disposal of all conventional mill tailings. The solutions offered here are based on theoretical and technical data from field studies made throughout the United States and on the application of various soil mechanics techniques.

Over 30 mines were visited, and studies were made of recent advances in soil mechanics methods and applications. Some of the practices are currently part of the waste disposal technique for one or more of the mines visited.

<sup>&</sup>lt;sup>1</sup>Mining engineer, Spokane Mining Research Laboratory, Bureau of Mines, Spokane, Wash.

Others are modifications of current soils engineering practices. While these construction principles can be applied to all types of mill tailings dams, each area, climate, and subsequent use requires some modification in the various design parameters. Due consideration to the various parameters will result in a stable, functional disposal system, constructed and maintained at reasonable cost.

### PRECONSTRUCTION ENGINEERING

With any type of major dam construction a complete hydrology study, including a determination of the amounts of milling, domestic, and excess water, must be made for design purposes. Often this information is available at no cost from State and Federal water resource agencies. The design of the dam must allow for the total natural and artificial runoff, so that when the area is abandoned the water can pass through or around the dam without soil erosion or undesirable impoundment occurring. Any decant or bypass system required to move the water through or around the abandoned tailing dam should be designed so that maintenance cost is negligible. In this way the disposal system does not become a liability to either the mining company or the public.

Foundation investigation, the next critical area of study, can be accomplished through selective drill-hole soil sampling and testing. From this information, the geologic structure of the substrata can be predicted as well as basic foundation data (permeability, density, and shear strength values). In many cases, when the structure is failing, these substrata design values are needed before effective rectification can be made. Such information is inexpensive to obtain and worth the money expended, since it is applicable both to embankment stability and to the design of decant lines that are to be constructed in the base. Numerous failures that resulted simply because soil conditions under the original structure were not investigated, have led to liability suits. One reported failure caused an estimated loss of between \$13 and \$14 million from claims and damages, owing to either a lack of engineering or, more probably, the failure to follow the engineering design as specified. On the other hand, proper engineering can eliminate costly overdesign and superfluous safety factors.

## SOIL SAMPLING AND TESTING FOR DESIGN PARAMETERS

When developing design data for embankment stability, the existing tailings structure as well as any tailings structure yet to be constructed must be considered. The data needed to determine the factor of safety that an existing structure has or will have with further deposition of tailings is obtained from in-place samples. These readily available, undisturbed samples can be obtained with numerous soil sampling tools  $(4).^2$  It is distinctly advantageous to develop such data while the representative samples are available. After the sample has been extracted it is tested in the laboratory for the required design parameters, which are relative density, moisture, shear strength, consolidation, and permeability. Figures 1 through 4 show the laboratory apparatus.

<sup>&</sup>lt;sup>2</sup>Underlined numbers in parentheses refer to items in the list of references preceding the appendixes.



FIGURE 1. - Direct Shear Apparatus.

Access to an existing structure is also essential to the applicability of in-situ testing. Radioactive probes are being used to obtain density and moisture values in the field. Although in-situ vane shear testing has also been tried, such values have not been completely satisfactory. The standard penetrating test using the split-spoon samples has been used for comparing values and provides good guidelines simply because of the large volume of penetration data available. Necessary field measurements of the phreatic waterline and the general geometry of existing slopes are easily obtained for use in basic stability calculations.

A combination of experience with existing ponds of the same type and/or simulated undisturbed sample testing of the tailings to be impounded can also provide values for the necessary design parameters. Typical void ratios and possible shear strength of emplaced tailings can be approximated in a simple laboratory model, such as that shown in figure 5, in which the tailings are



FIGURE 2. - Triaxial Test Apparatus.



FIGURE 3. - Relative Density Test Apparatus.



FIGURE 4. - Consolidation Machine.



FIGURE 5. - Laboratory Model of Tailing Pond.

poured at the slurry density expected to be used in the proposed pond. Samples are extracted and subjected to standard tests. Consolidation tests performed on the extracted samples can approximate what will happen to the soil as the height of the pond increases, thus changing the three most critical design parameters, density, shear strength, and permeability. Figure 6 is the shear diagram developed in our laboratory for one particular soil. As indicated by the shear diagram, two phi angles  $(\phi)$  are developed from the direct shear test. It is probably more realistic to use the ultimate phi angle for stability calculations, discounting some intergranular friction. Reasonably good stability predictions can be obtained by using these phi values in a slope stability analysis. Figure 7 shows the effect of density and grain structure on the coefficient of permeability.



FIGURE 6. - Direct Shear Diagram.



FIGURE 7. - Density as Related to Permeability. (From Cedergren (2).)

## BASIC DESIGN METHODS

Two basic techniques for constructing tailings dams will be covered in this report: (1) the use of mill tailings themselves as the construction medium and (2) the use of borrow material to construct the retaining structure and impound the tailings.

There are three basic construction methods: (1) the upstream method, (2) the downstream method, and (3) dams from borrow material. Each of these methods has its function depending on locality, climate, type of operation, etc.

# Upstream Method--Design Techniques

One of the biggest problems observed on visitations throughout the United States is that the initial starter dike, which is typically used in upstream disposal systems, is frequently constructed of clay, on the assumption that this is best for the pond. A clay dike, however, which has a water-retaining ability and critical location, will hold water that promotes instability by reducing the cohesive strength and raising the phreatic line (2, 6).

Considerable effort should be made to see that the starter dike is built on a strong base having a scarified surface free of all organic matter. The dike can be con-

structed of coarse rock, gravel with sand mixture, or any pervious material as long as the upstream side has a gradation into sand to prevent the piping of tailings through the rock. This starter dike, which ultimately becomes the toe of an immense structure, should be as structurally sound as the footing under a building.

The most common upstream method, and probably the cheapest and best, is to place the main line around the periphery of the dikes. The line should discharge into the pond every 10 to 50 feet, depending on the size of the installation. Bleed lines, which range in size from 2 to 6 inches, can be used to build up the dike to heights of 20 to 30 feet in 8- to 15-foot increments before the main line must be moved (figs. 8-9). If the density of the discharge is low enough and there is a relatively large size differential between the coarse and fine fraction, a beach of considerable size is the result. Cyclones, if necessary, serve a useful purpose because they (1) keep the coarse material, which is excellent for berm building, at the outside and (2) can discharge the slime fraction far into the pond if desired (fig. 10). Figure 11 shows effective and ineffective relationships of slime deposit to the berm. In large ponds having a wide beach (200 to 300 feet), as the upper panel shows, the dams can be built to a much greater height, with even a 1-1/2 to 1 or a 2 to 1 slope, before any previously deposited slimes lie directly below the newly placed berm.

Probably the most unsafe practice, on the other hand, is to discharge the tailings so that the slimes and water lie against the dike. With this method there will be slimes from bottom to top, as the lower panel shows, held by a relatively thin shell of berm, generally of borrow material. This slime material has a high void ratio, retains vast amounts of water, and has a low bulk density, low phi angle, and consequently lower shear strength than does a sandy material. The phreatic surface (upper limit of water saturation) is high in the dike on both the upstream and downstream sides. Consolidation of the material takes place slowly because of the necessarily slow buildup in the dam's height. Because the horizontal and vertical permeability is very low. water is squeezed out slowly and it takes longer for the slime material to attain any shear strength. The material for some distance back from the berm and for a considerable depth is saturated, has no cohesion and no shear strength, and is held in place by the berm only. The berm itself becomes saturated, reducing the safety factor still further. In general, it is good to pool the water against the uphill side of the area as far away from the periphery of the dike as possible.

When building the berm, whether by dozer or dragline, an effort should be made to obtain compaction either by dynamically dropping the sand load or by running over it a few times with a dozer. As described very well by Hough (3), compaction of a soil produces a tremendous increase in shear strength. The berm should have both good compaction and high permeability in order to transmit a free flow of water to the outside, while being sufficiently compact that, if it is saturated, a sudden load or seismic shock will not cause liquefaction. When liquefaction does occur, the berm loses all shear strength, the water takes the load, and failure is instantaneous. The beneficial effect on stability by compaction of the berm outweighs the decreased permeability produced by the compaction.



FIGURE 8. - Distribution Pipes off Main Line Around Tailing Dam.



FIGURE 9. - Berm Built With Dragline From Beach Sand.



FIGURE 10. - Cyclones on Dam.



FIGURE 11. - Slime Deposit Relative to Berm. *A*, High dam showing slimes directly below berm at great height; *B*, slimes against berm of borrow material.

# Downstream Method

Some foreign mines use a type of berm building that is the reverse of common practice in this country. The coarse material discharged from cyclones around the periphery of the dike is deposited on the outside of the toe; the slimes are deposited on the inside (fig. 12), producing a very pervious, triangular dam, which is very stable and safe but requires much more labor for moving and tending the cyclones. Because the area of the dam increases as it





FIGURE 12. - Comparison of Downstream Versus Upstream Building Techniques.

gets higher, more and more sand is required per foot of elevation rise in the dam, as can be seen by examining figure 12. This method can be safely used in building very high dams because of the bulk and density of the mass of sand; height is limited only by the volume of available sand. The downstream slope must be calculated for each operation and is governed by the shear strength,

etc. Only mines not using their tailings for underground fill would have enough sand available for building dams in this manner. Even then, however, the additional cost is not normally warranted, since a very good dam can be built by previously described conventional methods.

# Dams of Borrow Material

Tailings dams that do not use peripheral discharge, but simply dump the sand at the high side of the tailing area or are impounding slimes only, would normally be the only ones with berms built of borrow material. Occasionally the operators might prefer to make the berm of borrow material even though sand is available. Borrow material is very often 85 percent sand and 15 percent clay, or some mixture of gravel, sand, and clay. A decrease in the clay content from 15 to 10 percent can make a big difference in the permeability (k) of the embankment. As Cedergren has pointed out (2), grain shape, size, and gradation are extremely critical in determining permeability. In localities where the dams are built of from 85 to 90 percent sand and 10 to 15 percent clay, the phreatic waterline assumes a slope of 5 to 1. These dams are designed so that the line will intersect the base well within the toe of the dam (fig. 13). The location of the phreatic line is critical to slope stability. A small addition of clay can change the slope of the phreatic line to a figure as great as 6 or 7 to 1, creating instability. If the pond is filled slowly, the phreatic line in the dam can be carefully monitored with piezometers.

A high clay content in sand and gravel borrow material placed unzoned results in a homogeneous dam that is quite impervious when tightly compacted (10). Although a common practice in some places, this is not desirable because the waterline will be high in the dike even with a wide deposit of sand (beach) along the inside of the dam. The phreatic line will intersect the berm at the same point and emerge high on the downstream face. The outside of the dike will eventually slough and fail. Because the berm is more impervious than the material it is containing, the berm will govern the water level. A loosely compacted berm will fail very soon; a very highly compacted berm will take somewhat longer to fail. Local sloughing and piping will show on the outside of a clay berm and is a warning that failure is imminent.



FIGURE 13. - Typical Slimes Dam.

Stability can only be achieved by proper zoning. Borrow material and/or classified mill tailings can, if properly placed, produce the desired dike section as illustrated in figure 14. Figure  $14\underline{A}$  illustrates a homogeneous mix alone, which does not control the seepage water without the filter and coarse zone downstream. Figure  $14\underline{B}$  illustrates the very unstable condition provoked by improper alinement of the zone section; that is, the downstream zone permeability ( $k_1$ ) is more impervious than those upstream ( $k_2$  and  $k_3$ ). Figure  $14\underline{C}$  shows that the same material as that used in figure  $14\underline{B}$ , when properly placed, can provide excellent seepage control and consequently better stability.



FIGURE 14. - Dam Stability Correlated With Zoning.

# Water-Dam Construction

Cyanidation mills and some iron ore plants which have contaminants that cannot be released into streams without treatment generally use the water-dam type construction. Some phosphate plants also use this type of dam to impound slimes. Water-dam construction is very costly and does not permit the free drainage of slimes for ultimate disposition. The design of these dams, which is well covered in the literature (7), corresponds to the purpose it is to serve and to the terrain and climatic conditions of the geographic area.

# Rock-Fill Dams

Rock-fill dam construction is a unique way of disposing of coarse mine and/or plant waste materials in the process of constructing tailings-disposal ponds (fig. 15). Such a construction method provides excellent stability and can provide a built-in spillway through the "soil weir" to guard against overtopping. The method is best used when the tailings structure must be built in a stream or river channel and provides for the passage of watershed flows through the pond. Ultimate water movement and the dewatering of the slimes can be accomplished by adding adequate drainage, for example, sand drains, when the structure is to be abandoned.

#### FREE-WATER CONTROL

Free-water control is common to all three previously discussed building methods and is one of the most critical features in the disposal system. Return water can be removed from the tailing pond (1) through towers and decant lines, (2) by barge pumps on the surface of the pond, and (3) through siphons off the top of the pond to permanent pump installations. With any of these systems there must be absolute control of the water in the dam, both to regulate the return water needed and to keep the water as far back from the perimeter of the dike as possible.

The tower and decant line system is very good where a firm base is available on which to build. In large installations they must be built to withstand the load without sinking into the base or being crushed. If practicable, it is advisable to build the lines on bedrock using heavily reinforced concrete, with water decant holes every 2 to 6 inches of elevation. The decant line through the dam should have several seep rings to prevent piping along the line and ultimate failure. The towers also must be constructed of reinforced concrete, strong enough to withstand wind as well as other loads. The decant holes must have positive and foolproof cutoff stops, for once they are under 50 feet of slime they are expensive if not impossible to repair. Figure 16 shows a large decant line and tower. In large installations, the decant lines should be built large enough that they can be entered for visual inspection.

In the smaller installations of relatively low height and short life, a solid steel pipe or reinforced concrete pipe on a firm base with several seep rings is adequate. If the pond is built against a hill, the decant line can be run upslope and pipe can be added to regulate pond elevation as the dam height increases.





FIGURE 16. - Two Decant Systems. Left, decant line with drains at 6-inch elevation; right, decant tower with drains at 4-1/2-inch elevation.

The advantages of the decant system include (1) the possibility of planning and construction well in advance of actual tailing deposition, (2) permanent pump installation (that is, no relocation is required), (3) drainage through the area after abandonment, and (4) the simplicity of operation.

The disadvantages of the decant system include (1) possible deterioration of the dam by piping, (2) difficulties of adding on to the top of decant towers, (3) increased cost of pumping water from the bottom of the pond as compared with pumping from the top, and (4) possibilities of failures or leaks occurring along tower or line.

Barge pumps and siphons are used on many dams. Besides eliminating costs for towers and lines, these methods are more advantageous than decant towers in that there are no pipes of any kind which might fail within the dam, and there is less lift of water for return to the mill.

Some of the difficulties involved with barge pipes and siphons follow:

- 1. Raising the pumps as pond level rises, although not difficult, requires care.
- 2. Power outage leaves no place for water to go and could cause overtopping of the  $\operatorname{dam}$ .
- 3. Freezing weather is a nuisance. (Compressed air or circulating water must be used to keep ice from the barge.)
  - 4. There is no way to take care of surface drainage after abandonment.
  - 5. The siphon can lose its prime with subsequent rise of water level.
- 6. In a siphon system, the water must be against the dike unless other arrangements are made.

### SLOPE STABILITY

Slope stability analysis, until recent years, has been a long and tedious calculation. Now, however, computer programs are used to calculate and select the minimum failure circle. There have been numerous programs written for the Fellenius method, the original method of slices, and the Bishop method. The Fellenius method develops a conservative estimate since it completely neglects the side forces on the individual element slices; the Bishop method is the more accurate. A study of all of these programs has resulted in the selection of the modified Bishop program, originally written at M.I.T. and slightly modified at the Bureau of Reclamation, to include both the Bishop and the Fellenius factors of safety (1). The Bureau agrees with R. V. Whitman and W. A. Bailey that this is the best program available today (11).

The factor of safety is defined as the moments about the center  $\bf 0$  for the circular failure are ABCD, as shown in figure  $\bf 17$ , and is described by the equation

$$F = \Sigma \frac{(\vec{C} \ b \ \sec \delta + \vec{N} \ \tan \phi)}{\Sigma \ W \ \sin \delta}, \tag{1}$$

where W = weight of soil and water, 1b,

 $\overline{C}$  = cohesion for soil, 1b/sq ft,

b = width of slice,

 $\delta$  = element angle,

 $\overline{N}$  = effective normal force,

 $\phi$  = friction angle,

and F = safety factor.



FIGURE 17. - Circular Failure Arc.

The denominator of the equation for F is an exact expression for the moment of the weight of the soil in the failure mass. (The radius R cancels since it occurs in both the numerator and denominator.) The numerator is the moment of the shear stress about 0 along the failure surface.

 $\overline{\mathtt{N}}$  is determined for the simplified Bishop method by the sum of forces in a vertical direction, according to the equation

$$\overline{N} = \frac{W - b \sec \delta (\mu \cos \delta + \frac{\overline{C}}{F} \sin \delta)}{\cos \delta + \frac{\tan \phi \sin \delta}{F}},$$
(2)

where  $\mu$  = pore pressure, 1b/sq ft.

Thus

$$\Sigma \left[ \overline{C} \ b + (W-\mu b) \ \tan \phi \right] \frac{\sec \delta}{1 + \frac{\tan \phi \ \tan \delta}{F}}.$$

$$F = \frac{\sum W \sin \delta}{(3)}$$

Since F appears on both sides of the equation it must be solved by successive approximations. This is the equation for which the complete program was written.

The computer will systematically search through the numerous failure circles as outlined in the guidelines of the program. It will select a minimum failure circle (the plane along which failure will normally occur) while also computing the individual circles so that the effects of the geometry, etc., can be studied in each case. At the end of the program the computer will list the minimum of all the circles selected for that particular embankment and conditions.

The simplest way to illustrate the mechanics of the computer program is to present an example. Figure 18 shows the soil properties and the location of minimum failure circles for two different conditions that were analyzed. Case I assumes a high phreatic line, and case 2 assumes the water table at ground level. Although the geometry and soil structures are identical for both analyses, the difference in the location of the phreatic line does alter some of the soil properties, as shown in figure 18. By comparing the computed minimum safety factors (1.14 versus 2.67) one can see that the location of the phreatic line is very critical for determining stability. A factor of safety of less than I is a failure situation, above I is a stable situation, and 1.5 is normally considered a safe design value, particularly if the soils are somewhat coarse and not likely to be subjected to seismic activity.



FIGURE 18. - Sample of Computer Analysis.

Complete computer listings of input and output for cases 1 and 2 have been included as appendixes for those who would like to study the computer searching and analyzing procedures in more detail. All of the failure circles tried are listed, and the factor of safety is computed for both the Fellenius and Bishop methods.

Should the embankment conditions indicate other than a circular arc failure, a second computer program using the Morgenstern and Price procedure can be used (5). With this program any desired geometric failure plane can be described and the factor of safety attained in a few minutes of computer time. Unlike the Bishop program, it does not search for the minimum safety factor but produces only the input failure plane. Since the development of computers, the most difficult part of the slope stability analysis is providing correct input data, a point that cannot be overstressed.

In most cases it is extremely difficult, if not impossible, to obtain soil samples that are truly representative of the zone being studied. Consequently, the soil properties developed from these samples must be interpreted and applied with great care. Assuming that input values developed are representative of the actual case being studied, the computer factors of safety are only general guidelines and are meaningful only if used in conjunction with all of the other design considerations.

### FURTHER DESIGN CONSIDERATIONS

The engineer must anticipate and design for the worst possible condition, that is, ultimate height, maximum phreatic line, saturated soils, and seismic activity, when determining values to place in the computer program. Only then will the safety factor be meaningful.

Grain size distribution, the area of the tailing pond, and the rate of discharge have much to do with the stability of the embankment. A finer grind in the mill combined with the coarse fraction being taken out for use as underground fill has made dike building more difficult. Combine these factors with the small pond area compared with the tons of waste per day and the situation becomes worse. The tailings used underground at some properties do reduce the total that must be impounded on the surface by 40 percent or more, but they also remove the coarse sand, the best material for building the dike, and the coarse sand beach which provides added safety in front of the dike.

An example of rapid building is a situation in which a 500-ton-per-day operation has 300 tons per day impounded in a 5-acre site with a pond rise of 1 foot in 33 days or even a 10-acre site with a 1-foot rise in 66 days. Such situations could cause a rapid increase of pore pressure because the water does not have time to percolate through the fine material, especially if the dam is impervious and there is no peripheral discharge, leaving water and slimes against the dike. Even with the best of conditions, too rapid building is not good, and every effort should be made to keep the annual rise compatible with the seepage ability of the soil.

Piezometers installed in proper places in the embankment will allow monitoring of the pore-water pressure in the dam which can be related directly to the safety factor as shown in figure 19, a typical graph showing the variance of safety factor with phreatic water height in the dam. Through engineering soils mechanics, this type of chart can be developed for any dam and used by the operators as a monitoring device to predict the safety of the embankments. The phreatic surface is related to the rate that material is placed around the periphery of the dike.

If disposal areas must be small, additional areas must be provided when monitoring indicates the approach of an unstable situation. This will allow the area to decant and drain, consolidate, and lower the waterline. By alternating between two or three small areas, each one becomes more useful and will have a greater ultimate capacity. Operations in areas having extreme weather that prohibits berm building in the winter must build sufficient berm during good weather to allow dumping in large ponds during winter months.

In a seismic area safety factors cannot be accepted at face value because of the possibilities of liquefaction from either earthquake, sonic blasts, or sudden load owing to the inherent moisture and density of the material. Soils in the 80- to 280-mesh sizes, saturated, and above the critical void ratio, are very sensitive to liquefaction. Soils finer than that would be too sluggish in their reaction to shock because of low permeability, and those coarser would dissipate the water fast enough to make failure from shock unlikely.



FIGURE 19. - Factor of Safety From Phreatic Water Height in Dam.

All soil testing requires stringent testing conditions and experienced personnel. Since Coulomb's theory and stability equations are approximations, these samples have to be studied thoroughly by experienced soils engineers to insure that true values are obtained for any stability analysis (9). Once these values have been interpreted, it is simple to predict the stability with today's computer usage. Ultimate height, slope, and water movement can only be determined by soil engineering analyses. Before any major construction of this type, these analyses should be made either by the operating firm or by a consulting agency; the cost is only a few percent of the total investment.

#### SEEPAGE WATER CONTROL

The movement (loss) of water in a tailings pond varies considerably between the start of filling and eventual abandonment. Initially, a pervious base has stability advantages because of water movement through the bottom. but as the height increases and the slimes accumulate over large areas, consolidation reduces the permeability of the base. As the height of the dam increases, the effect of the original base becomes negligible, and the tailings themselves have an overriding effect on the downward movement of water. A tailings dam that starts with a permeable gravel base will ultimately develop an almost impervious base owing to the fine tailings percolating downward and the underlying tailings constantly being consolidated (fig. 20). Note that if the sands can be placed near the interior toe of the dike the pervious base remains effective and will function like a longitudinal drain, while the lower phreatic line may be used for stability analysis. If one cannot assure this, the permeability (k) of the entire base approaches zero and the upper line must be used for stability analysis. As this structure increases in height, its condition could change from very stable to very unstable unless the outside is kept free-draining. Frozen conditions can also impair stability (fig. 21).

Instrumentation for measuring pore-water pressure and horizontal and vertical movement in embankments is essential in any tailings structure. The location of the phreatic waterline is most accurate when obtained with piezometers (fig. 22) in the pond and berm itself. Checking the water level in a dam in an uncased hole can produce erroneous results. Excess pore-water pressure will not be observed, as the water can dissipate into a coarse sand layer and thus not rise as high as it would in a cased hole or piezometer.



FIGURE 20. - Change of Base Permeability With Time and Material.



FIGURE 21. - Location of Phreatic Line for Frozen Versus Unfrozen Face.



FIGURE 22. - Porous-Tube Piezometer and Electric Tool for Measuring Water Depth.

Another important instrument, a slope indicator or crossarm settlement device (7), is used for the internal measurement of vertical and horizontal movement. Knowledge of the location and extent of movement is essential to predicting the behavior of the structure and to taking any corrective measures that may be required.

If the dam is to be built in an area for which no in-place information is available, the phreatic surface can be estimated by the solutions of the La Place equations using flow-net construction or the finite element method. Computer programs have been written for the finite element method to predict the location of this phreatic surface line (8). The program used in this study was developed by R. L. Taylor and C. B. Brown of the University of California (Berkeley Campus) and later modified by J. T. Christian and B. J. Watt of M.I.T. This program utilizes the finite element method to determine pressures and flows as governed by Darcy's law. Correct hydrostatic head, geometry, and horizontal and vertical permeability according to the inclination and layering are the only input data required for predicting the phreatic surface. Using these values, the computer will search through the numerous phreatic surface lines and adjust pressures at the finite element nodes so that equal potential lines and the phreatic surface can be obtained in a matter of minutes.

Typical phreatic lines that can be developed are illustrated in figures 23-25. Note the effect of embankment stratification and the corresponding horizontal permeability  $(k_{_{\! H}})$  and vertical permeability  $(k_{_{\! V}})$  on the location of the phreatic line and on the required width of longitudinal drain (fig. 23), the relationship between downstream shell permeability relative to foundation permeability and the saturation level in the shell (fig. 24), and the effects of zoning and stratification on the location of the saturation line (fig. 25).

## RECLAMATION

Reclamation of tailings ponds as practiced in the United States varies with each operation and climatic area, though some problems are basic. In several areas the land is returned to as near the original condition as possible, or even improved upon. Elsewhere the goal is limited to the prevention of air and water pollution. Making reclamation an inherent factor in the design of tailings dams may reduce the ultimate cost which must be borne by the consumer. However, reclamation is a study in itself, and a detailed treatment is not attempted in this report.

Considerable research is concerned with promoting the growth of trees, grass, and native foliage in an attempt to beautify abandoned tailings areas. Some tailings are so toxic that it may be years before plant material will begin to grow. In such cases it may be necessary to place a few inches of soil before planting grass or to place an inch or two of gravel to allay the dust while waiting for oxidation and leaching to be completed sufficiently for native growth to take over. The most economical precautionary dust control measure observed to date is the placing of a 3- to 6-inch layer of coarse material, either gravel or mill slag, on top of the pond. The possibility of placing this material pneumatically is currently being investigated. To date it has not been feasible to prevent dust in an active pond.



FIGURE 23. - Effect of Embankment Stratification on Required Width of Longitudinal Drains in Homogeneous Dams and Levees. (From Cedergren  $(\underline{2})$ .)



FIGURE 24. - Zoned Dam Study. (From Cedergren (2).)



FIGURE 25. - Flow Nets for  $k_h = k_v$ . (From Cedergren (2).)

#### CONCLUSIONS

This survey has resulted in the following recommendations concerning the construction of effective, long-lasting tailings disposal dams:

- l. Test the foundation soil to determine the subsoil design parameters and to remove any incompetent soils.
- 2. Construct a foolproof decant system that permits visual inspection and, if possible, provides for ultimate surface drainage. The decant circuit should be designed so that if one decant fails an alternate is available to prevent topping, etc.
- 3. Never construct homogeneous dams. Zoned-type construction must be used to control seepage water and consequently increase stability. Since compaction of borrow material in a homogeneous dike is of little value, the money expended should be directed toward zoning.
- 4. Starter dikes should not be built of clay. When the outer shell consists of cohesionless soil (as used with the upstream method), some consideration must be given to compaction to avoid possible liquefaction.
- 5. Most critical in the design of a tailings disposal system is the complete control of both free and seepage water. When impounding low-permeability tailings the disposal area should be large enough that the annual rise will be only a few feet or, as an alternative, two or more areas should be available so that proper drainage can be attained. The tailings should be distributed around the periphery of the dike through bleeder pipes off the main line, and the pool should be kept as far from the dike as practical.
- 6. Dams and ponds should be instrumented and monitored at definite time intervals to check the water movements. The factor of safety can be determined from charts constructed for this purpose. Ponds should be checked at regular intervals, and adequate records and maps showing time, tonnage, and elevations should be maintained.
- 7. Keep the soil permeability constantly decreasing upstream. Natural consolidation owing to overlying tails will automatically cause the vertical decrease of downward permeability. These permeability arrangements greatly affect stability and seepage patterns.
- 8. Because a pervious gravel base will be made ineffective by deposition of slimes and subsequent consolidation as the height of the tailings deposit increases, the minimal estimate must be used in designing the ultimate phreatic line. The higher the dike and the finer the material, the greater are the chances for failure.

A structure that will be stable during the life of the property must be designed for any tailings disposal dam. Furthermore, the system should render the company free of all liability upon abandonment and/or provide for reclamation of the area. Not only is the engineering cost small, but it is also an

essential investment since only a few expensive and basically ineffective emergency measures can be taken to avert a developing failure. The development of the associative slope stability and waterflow computer programs have made it possible to design for ultimate conditions of height, slope, etc. The soils engineering and testing methods that have been well developed for mill tailings disposal systems should be applied, as well as geologic and hydrologic studies.

#### REFERENCES

- Bailey, William A. Stability Analysis by Limiting Equilibrium. Civil Eng. Thesis, Massachusetts Institute of Technology, 1966, 68 pp.
- Cedergren, Harry R. Seepage, Drainage, and Flow Nets. John Wiley & Sons, Inc., New York, 1967, 467 pp.
- Hough, B. K. Basic Soils Engineering. Ronald Press Co., New York, 1957, pp. 97-134.
- 4. Karol, R. H. Soils and Soil Engineering. Prentice-Hall Inc., Englewood Cliffs, N. J., 1960, pp. 14-25.
- Morgenstern, N. R., and V. E. Price. The Analysis of the Stability of General Slip Surface. Geotechnique, v. 15, 1965, pp. 79-93.
- 6. Parcher, James, and Raymond Means. Soil Mechanics and Foundations. Charles E. Merrill Publishing Co., Columbus, Ohio, 1968, 543 pp.
- Sherard, J. L., R. J. Woodward, S. F. Giezienski, and W. A. Clevenger. Earth and Rock Fill Dams. John Wiley & Sons, Inc., New York, 1963, 671 pp.
- Taylor, Robert L., and C. B. Brown. Darcy's Flow Solutions With a Free Surface. Am. Soc. Civil Eng., J. Hydraulics Div., v. 93, No. HY2, March 1967, pp. 25-33.
- Terzaghi, Karl. Theoretical Soil Mechanics. John Wiley & Sons, Inc., New York, 1963, pp. 1-182.
- Terzaghi, Karl, and Ralph Peck. Soil Mechanics in Engineering Practice. John Wiley & Sons, Inc., New York, 1967, pp. 46-173.
- Whitman, Robert V., and William A. Bailey. Use of Computers For Slope Stability Analysis. Am. Soc. Civil Eng., Soil Mech. and Foundation Div., v. 93, No. SM4, July 1967, pp. 475-498.

### SLOPE STABILITY ANALYSIS SIMPLIFIED BISHOP METHOD

| GALENA           |             | 3×1     | SL             | NPE    | SA    | T    | С   | >     | n     |        |  |
|------------------|-------------|---------|----------------|--------|-------|------|-----|-------|-------|--------|--|
|                  | POINT       |         |                |        |       |      |     |       |       |        |  |
|                  | POINT       | NO.     | x <del>-</del> | свані  | D     | Υ-   | COO | RU    |       |        |  |
|                  | 1           |         |                | 00.0   |       |      | 00. |       |       |        |  |
|                  | 2           |         |                | 50.0   |       | 2    |     |       |       |        |  |
|                  |             |         |                | 65.0   |       | 4    |     |       |       |        |  |
|                  | 4 5         |         |                | 00.0   |       |      | 75. |       |       |        |  |
|                  | 5           |         | 16             | 00.00  | U     | 5    | 00. | 00    |       |        |  |
|                  | LINE (      | ATA     | -USE           | 100    | LINES | MAX  | IMU | м     |       |        |  |
|                  | POI         | NT.     | PO             | INT    |       | so   | ΙL  |       |       |        |  |
| 1                | 1           |         |                | 2      |       |      | 2   |       |       |        |  |
| 2                | 2           |         |                |        |       |      | 1   |       |       |        |  |
| 1<br>2<br>3<br>4 | 2<br>3<br>2 |         |                | 4<br>5 |       |      | 1   |       |       |        |  |
| 4                | 2           |         |                | 5      |       |      | 2   |       |       |        |  |
| 50               | IL PRO      | PERTI   | ES==U          | SF 1   | 0 501 | is n | Rι  | F S S | ,     |        |  |
| SOIL NO.         |             |         |                |        |       |      |     |       |       | CAPLRY |  |
|                  |             | F       |                |        |       |      |     |       |       |        |  |
| 1                | 141         | 1.0     | 0.0            | 0.70   | 0     | 1.10 | 0   |       | 0.000 | )      |  |
| 2                |             | 5.0     |                |        |       | 1.10 |     |       | 0.000 | ס      |  |
| PHREAT           | IC SUF      | RFACE   | POINT          | sU:    | SF 10 | POI  | NTS | M     | MUMIK |        |  |
|                  | х•          | · COORD |                |        |       | Y-C0 | ORD |       |       |        |  |
|                  |             |         |                |        |       |      |     |       |       |        |  |

THE FOLLOWING IS A PRINTOUT OF THE LINE ARRAY. THE INITIAL 3 LINES MUST BE THE SURFACE OF THE SLOPE GOING FROM LEFT TO RIGHT. THERE MUST BE NO VERTICAL LINES AFTER NO. 3 .

200.000

200.000

300,000

350.000

| NO. | X-LEFT  | Y-LFFT | X-RGHT  | Y-RGHT | SLOPE   | SOIL |
|-----|---------|--------|---------|--------|---------|------|
| 1   | 100.00  | 200.00 | 550.00  | 200.00 | 0.0000  | 2    |
| 2   | 550.00  | 200.00 | 1165.00 | 400.00 | 0.3252  | 1    |
| 3   | 1165.00 | 400.00 | 1600.00 | 375.00 | -0.0575 | 1    |
| 4   | 550.00  | 200.00 | 1600.00 | 200.00 | 0.0000  | 2    |

100.000

550.000

850.000

1350.000

1600.000

2

3

4

NUMBER OF SLICES -- 100 OR LESS

50.

THE LOWEST FLEVATION THAT SHOULD OCCUR ALONG ANY TRIAL FAILURE SURFACE (YMIN.)
50.00

THE MINIMUM VALUE FOR THE GREATEST DEPTH OF THE SLIDING MASS (DMIN).

0.00

1 COMPUTE USING AUTOMATIC SEARCH ROUTINE

# 2 COMPUTE USING PRESCRIPED CONTROL GRED

1

X AND Y COORDINATES OF THE CENTER OF THE INITIAL TRIAL FAILURE SURFACE.

X = 650.00

Y = 725.00

INCREMENTS OF X AND Y USED IN THE COARSE GRID IN SEARCHING FOR THE MINIMUM FACTOR OF SAFETY. THE FINAL GRID IS 4 TIMES FINER.

X = 25.000

625.00

725.00

541.26

18

1.746

1.602

Y = 25.000

| x-coo     | IRD Y≠C.DORE | RADIUS     | NO SLIC  | ES FS BICHOP   | FS FLNIUS |
|-----------|--------------|------------|----------|----------------|-----------|
| 650.0     | 725.00       | 675.00     | 35       | 3.220          | 2.521     |
| 650.0     |              | 673.28     | 35       | 3 • 205        | 2.513     |
| 650.0     | 725.00       | 656.13     | 33       | 3.026          | 2.410     |
| 650.0     | 725.00       | 638.98     | 32       | 2.846          | 2.304     |
| 650.0     |              | 621.83     | 30       | 2.673          | 2.204     |
| 650.0     |              | 604.67     | 28       | 2.503          | 2.106     |
| 650.0     |              | 587.52     | 26       | 2 • 328        | 2 • 0 0 3 |
| 650.0     |              | 570.37     | 24       | 2 · 148        | 1.891     |
| 650.0     |              | 553.21     | 21       | 1.922          | 1 • 7 3 1 |
| 650.0     |              | 536.06     | 18       | 1.704          | 1.564     |
| 650.0     |              | 518.91     | 15       | 1 • 402        | 1 • 315   |
| 650.0     |              | 501.75     | 12       | 1.346          | 1.289     |
| 650.0     | 725.00       | 484.60     | 9        | 1 • 2 4 2      | 1.214     |
| THE LOWES | T SAFETY FA  | CTOR FOUND | WAS 1.24 | 2 AT R= 484.60 | •         |
| 675.0     | 725.00       | 675.00     | 35       | 3 • 190        | 2.507     |
| 675.0     | 725.00       | 673.22     | 15       | 3 • 174        | 2.497     |
| 675.0     | 725.00       | 655.43     | 3.3      | 2.987          | 2 • 388   |
| 675.0     | 725.00       | 637.63     | 31       | 2.802          | 2.280     |
| 675.0     | 725.00       | 619.84     | 30       | 2.620          | 2 • 169   |
| 675.0     |              | 602.04     | 28       | 2 • 4 4 4      | 2 • 065   |
| 675.0     |              | 584.25     | 26       | 2.276          | 1.965     |
| 675.0     |              | 566.45     | 23       | 2 • 075        | 1 • 8 3 2 |
| 675.0     |              | 548.66     | 21       | 1 • 877        | 1 • 692   |
| 675.0     |              | 530.86     | 18       | 1 • 6 9 7      | 1.548     |
| 675.0     |              | 513.07     | 16       | 1 • 4 4 4      | 1 • 356   |
| 675.0     |              | 495.27     | 12       | 1 • 392        | 1.336     |
| 675.0     | 725.00       | 477.48     | 9        | 1 • 308        | 1.283     |
| THE LOWES | ST SAFETY FA | CTOR FOUND | WAS 1.30 | 8 AT R= 477.48 | •         |
| 625.0     | 725.00       | 675.00     | 35       | 3 • 3 1 3      | 2.579     |
| 625.0     | 725.00       | 673.35     | 35       | 3.298          | 2.571     |
| 625.0     | 725.00       | 656.84     | 33       | 3.127          | 2.476     |
| 625.0     | 725.00       | 640.33     | 32       | 2.960          | 2 • 385   |
| 625.0     |              | 623.81     | 30       | 2.797          | 2.297     |
| 625.0     |              | 607.30     | 28       | 2.626          | 2.200     |
| 625.0     |              | 590.79     | 26       | 2 • 445        | 2.093     |
| 625.0     |              | 574.28     | 24       | 2.216          | 1.941     |
| 625.0     | 725.00       | 557.77     | 21       | 2.008          | 1 • 8 0 2 |

|     | 625.00           | 725.00<br>725.00     | 524.75<br>508.24     |     | 15       | 1 + 3:          | 65      | 1.279          |
|-----|------------------|----------------------|----------------------|-----|----------|-----------------|---------|----------------|
|     | 625.00           | 725.00               | 491.72               |     | 9        | 1 • 1           |         | 1 • 150        |
| THE | LOWEST           | SAFETY FACTO         | R FOUND              | WAS | 1.183    | AT R= 4         | 91.72 . |                |
|     | 600.00           | 725.00               | 675.00               |     | 35       | 3 • 4           |         | 2.644          |
|     | 600.00           | 725.00<br>725.00     | 673.41               |     | 35<br>34 | 3+3:            |         | 2.638<br>2.556 |
|     | 600.00           | 725.00               | 641.67               |     | 32       | 3 • 0           |         | 2.477          |
|     | 600.00           | 725.00               | 625.80               |     | 30       | 2 • 9           |         | 2 • 389        |
|     | 600.00           | 725 • 00<br>725 • 00 | 609.93<br>594.07     |     | 28<br>26 | 2.7             |         | 2.290<br>2.181 |
|     | 600.00           | 725.00               | 578.20               |     | 24       | 2.3             |         | 2.058          |
|     | 600.00           | 725.00               | 562.33               |     | 22       | 2.0             |         | 1.868          |
|     | 600.00           | 725.00               | 546.46               |     | 19<br>15 | 1 • 8           |         | 1.691          |
|     | 600.00           | 725.00<br>725.00     | 530.59               |     | 12       | 1 • 4           |         | 1.213          |
|     | 600.00           | 725.00               | 498.85               |     | 9        | 1.1             |         | 1.118          |
| THE | LOWEST           | SAFETY FACTO         | R FOUND              | WAS | 1.152    | AT R= 4         | 98.85 . |                |
|     | 575.00           | 725.00               | 675.00               |     | 36       | 3 • 5           | 42      | 2.748          |
|     | 575.00           | 725.00               | 673.48               |     | 35       | 3.5             |         | 2.743          |
|     | 575.00<br>575.00 | 725.00<br>725.00     | 658.25               |     | 33<br>32 | 3+3:<br>3+2.    |         | 2.674          |
|     | 575.00           | 725.00               | 627.79               |     | 30       | 3 • 0           |         | 2.509          |
|     | 575.00           | 725.00               | 612.57               |     | 28       | 2 • 8           |         | 2.413          |
|     | 575.00           | 725.00               | 597.34               |     | 26       | 2 • 7           |         | 2 • 3 0 5      |
|     | 575.00<br>575.00 | 725.00<br>725.00     | 582 • 11<br>566 • 88 |     | 24       | 2 • 5<br>2 • 2  |         | 2 • 175        |
|     | 575.00           | 725.00               | 551.65               |     | 19       | 1.9             |         | 1.771          |
|     | 575.00           | 725.00               | 536.43               |     | 16       | 1.6             |         | 1.529          |
|     | 575.00<br>575.00 | 725.00<br>725.00     | 521.20<br>505.97     |     | 12       | 1 • 2           |         | 1.177          |
| *   |                  |                      |                      |     |          |                 |         | 10113          |
| THE | LOWEST           | SAFETY FACTO         |                      | WAS |          |                 | n5.97 . |                |
|     | 550.00           | 725.00<br>725.00     | 675.00               |     | 35<br>35 | 3 • 7           |         | 2.893          |
|     | 550.00           | 725.00               | 658.96               |     | 33       | 3.7<br>3.5      |         | 2.823          |
|     | 550.00           | 725.00               | 644.37               |     | 32       | 3 • 4:          |         | 2.748          |
|     | 550.00           | 725.00               | 629.78               |     | 30       | 3 • 3           |         | 2.689          |
|     | 550.00           | 725.00<br>725.00     | 615.20               |     | 28<br>26 | 3 • 1 : 2 • 9 ! |         | 2.601          |
|     | 550.00           | 725.00               | 586.02               |     | 24       | 2.7             |         | 2.371          |
|     | 550.00           | 725.00               | 571.44               |     | 22       | 2.5             |         | 2.218          |
|     | 550.00           | 725.00               | 556.85               |     | 20       | 2.2             |         | 1.976          |
|     | 550.00           | 725.00<br>725.00     | 542.27<br>527.68     |     | 17       | 1 • 8           |         | 1.721          |
|     | 550.00           | 725.00               | 513.09               |     | 8        | 1 • 1           |         | 1.117          |
| THE | LOWEST           | SAFETY FACTO         | R FOUND              | WAS | 1.149    | AT R= 5         | 13.09 . |                |
|     | 575.00           | 750.00               | 700.00               |     | 36       | 3 • 4           | 9.8     | 2.741          |
|     | 575.00           | 750.00               | 698.47               |     | 36       | 3 • 4           |         | 2 • 735        |
|     | 575.00           | 750.00<br>750.00     | 683.14               |     | 34<br>32 | 3•3<br>3•1      |         | 2.659          |
|     | 575.00           | 750.00               | 652.48               |     | 30       | 3.0             |         | 2.519          |
|     | 575.00           | 750.00               | 637.15               |     | 29       | 2 . 8           |         | 2.426          |
|     | 575.00           | 750.00               | 621.82               |     | 27       | 2.7             | 1 4     | 2.316          |

| 575.<br>575. | 00 750<br>00 750 | • 00 60  | 6.49    | 25<br>23  | 2 • 4 7 3    | 2.155     |
|--------------|------------------|----------|---------|-----------|--------------|-----------|
|              |                  |          | 1.16    |           | 2 • 2 4 5    |           |
| 575.         |                  |          | 5.83    | 20        | 1.984        | 1.808     |
| 575.         |                  |          | 0.50    | 17        | 1 • 569      | 1 • 461   |
| 575.         |                  |          | 5.17    | 12        | 1.247        | 1 • 1 9 1 |
| 575.         | 00 750           | .00 52   | 9.84    | 9         | 1 • 1 4 1    | 1 • 1 1 0 |
| THE LOWF     | ST SAFETY        | FACTOR F | OUND WA | S 1.141 / | AT R= 529.84 |           |
| 575.         | 00 775           | 00 72    | 5.00    | 36        | 3.492        | 2.754     |
| 575.         |                  |          |         | 36        |              | 2.729     |
|              |                  |          | 3.46    | 35        | 3 • 4 4 7    | 2.667     |
| 575.         |                  |          | 8.03    | 35        | 3 • 3 2 A    | 2.589     |
| 575.         |                  |          | 2.59    |           | 3+180        |           |
| 575.         |                  |          | 7.16    | 32        | 3.024        | 2.505     |
| 575.         |                  |          | 1.73    | 30        | 2.858        | 2.408     |
| 575.         |                  |          | 6.30    | 28        | 2 • 679      | 2 • 300   |
| 575.         |                  |          | 0.87    | 25        | 2 • 4 4 2    | 2 • 139   |
| 575.         | 00 775           | .00 61   | 5.44    | 23        | 2 • 2 1 8    | 1.984     |
| 575.         | 00 775           | .00 60   | 0.01    | 20        | 1.961        | 1.796     |
| 575.         | 00 775           | .00 58   | 4.57    | 17        | 1 • 555      | 1 • 456   |
| 575.         |                  |          | 9.14    | 1.3       | 1.261        | 1.210     |
| 575.         |                  |          | 3.71    | 9         | 1.144        | 1.114     |
| 3,3.         |                  |          |         |           | 1,14,        |           |
| THE LOWE     | ST SAFETY        | FACTOR F | DUND WA | 15 1.144  | AT R= 553.71 |           |
| 600.         | 00 750           | .00 70   | 0.00    | 36        | 3 • 376      | 2.649     |
| 600.         |                  |          | 8.40    | 36        | 3 • 3 6 3    | 2.642     |
| 600.         |                  |          | 2.43    | 3.4       | 3.202        | 2.554     |
| 600.         |                  |          | 6.46    | 33        | 3.041        | 2.465     |
| 600.         |                  |          | 0.49    | 30        | 2.880        | 2.377     |
|              |                  |          |         | 28        |              | 2.280     |
| 600.         |                  |          | 4.52    |           | 2.711        |           |
| 600.         |                  |          | 8 • 5 5 | 27        | 2.532        | 2.172     |
| 600.         |                  |          | 2.57    | 25        | 2 • 3 3 5    | 2.047     |
| 600.         |                  |          | 6 • 60  | 23        | 2.071        | 1.855     |
| 600.         |                  |          | 0.63    | 20        | 1 • 8 2 7    | 1 • 677   |
| 600.         |                  |          | 4.66    | 15        | 1 • 477      | 1 • 383   |
| 600.         |                  |          | 8.69    | 12        | 1 • 276      | 1.220     |
| 600.         | 00 750           | .00 52   | 2.72    | 9         | 1 • 1 6 4    | 1 • 1 3 2 |
| THE LOWE     | ST SAFETY        | FACTOR F | OUND WA | 1.164     | AT R= 522.72 | •         |
| 550.         | 00 750           | .00 70   | 0.00    | 36        | 3 • 6 6 7    | 2.874     |
| 550.         |                  |          | 8.53    | 36        | 3.657        | 2.870     |
| 550.         |                  |          | 3.84    | 34        | 3.551        | 2.821     |
| 550.         |                  |          | 9.16    | 32        | 3.405        | 2.748     |
| 550.         |                  |          | 4.47    | 30        | 3.252        | 2.670     |
| 550.         |                  |          | 9.78    | 29        |              | 2.577     |
|              |                  |          |         |           | 3.086        | 2.472     |
| 550.         |                  |          | 5.09    | 27        | 2.908        |           |
| 550.         |                  |          | 0.40    | 25        | 2.708        | 2.347     |
| 550.         |                  |          | 5.72    | 23        | 2.483        | 2 • 196   |
| 550.         |                  |          | 1.03    | 21        | 2.163        | 1.952     |
| 550.         |                  |          | 6.34    | 18        | 1.827        | 1.690     |
| 550.         |                  |          | 1.65    | 13        | 1 • 261      | 1 • 199   |
| 550.         | 00 750           | .00 53   | 6.96    | 9         | 1 • 1 4 5    | 1.115     |
| THE LOWE     | ST SAFETY        | FACTOR F | OUND WA | AS 1.145  | AT R= 536.96 | •         |
| 581.         | 25 750           | .00 70   | 0.00    | 36        | 3 • 454      | 2.709     |
| 581.         |                  |          | 8 . 45  | 36        | 3.443        | 2.703     |
| 581.         |                  |          | 2.96    | 35        | 3.323        | 2.643     |
| 581.         |                  |          | 7.47    | 32        | 3 • 1 7 3    | 2.566     |
| 2010         |                  |          |         | 7.        | 3.1.3        |           |

| 581.25        | 750.00       | 651.98         | 31<br>29    | 3 • 016        | 2.482<br>2.385 |
|---------------|--------------|----------------|-------------|----------------|----------------|
| 581.25        | 750.00       | 636.49         |             | 2 • 8 4 6      |                |
| 581.25        |              | 621.00         | 27          | 2.664          | 2.276          |
| 581.25        | 750.00       | 605.51         | 25          | 2.424          | 2.114          |
| 581.25        | 750.00       | 590.02         | 23          | 2 • 198        | 1.959          |
| 581.25        | 750.00       | 574.53         | 20          | 1.940          | 1.772          |
| 581.25        | 750.00       | 559.04         | 17          | 1 • 5 4 0      | 1.437          |
| 581.25        | 750.00       | 543.55         | 12          | 1 • 257        | 1.202          |
| 581.25        | 750.00       | 528.06         | 9           | 1 • 1 4 4      | 1.111          |
| 301.623       | . 2000       | 223,00         | •           | 10142          |                |
| THE LOWEST    | SAFETY FACTO | R FOUND WAS    | S 1.144     | AT R= 528.06 . |                |
| 1172 20111.01 |              | // / U U I I I |             | 32,000         |                |
| 568.75        | 750.00       | 700.00         | 36          | 2 5 4 2        | 2.773          |
|               |              |                |             | 3 • 5 4 2      |                |
| 568.75        | 750.00       | 698.48         | 36          | 3.531          | 2.767          |
| 568.75        | 750.00       | 683.31         | 34          | 3.3A9          | 2.698          |
| 568.75        | 750.00       | 668.14         | 33          | 3 • 2 3 8      | 2.620          |
| 568.75        |              | 652.98         | 31          | 3.080          | 2.534          |
| 568.75        | 750.00       | 637.81         | 29          | 2.912          | 2.439          |
| 568.75        | 750.00       | 622.64         | 27          | 2.732          | 2 • 332        |
| 568.75        | 750.00       | 607.47         | 25          | 2.527          | 2.199          |
| 568.75        | 750.00       | 592.30         | 23          | 2.297          | 2.041          |
| 568.75        | 750.00       | 577.13         | 21          | 1.981          | 1.796          |
| 568.75        | 750.00       | 561.96         | 17          | 1.607          | 1.492          |
|               | 750.00       | 546.79         | 12          |                | 1.182          |
| 568.75        |              |                |             | 1.239          |                |
| 568.75        | 750.00       | 531.62         | 8           | 1 • 1 4 3      | 1+111          |
| THE LOWEST    | SAFETY FACTO | R FOUND WA     | S 1,143     | AT R= 531.62 . |                |
| INC COMEST    | SAFETT FACIL | IN FOOND MM.   | 3 1 1 1 4 3 | A1 N2 531102 0 |                |
| 575.00        | 756.25       | 706.25         | 36          | 3 • 488        | 2.739          |
|               |              |                | 36          |                | 2.734          |
| 575.00        |              | 704.71         |             | 3 • 477        |                |
| 575.00        |              | 689.36         | 35          | 3.326          | 2.654          |
| 575.00        |              | 674.00         | 32          | 3 • 2 1 1      | 2.599          |
| 575.00        | 756.25       | 658.65         | 30          | 3 • 05 4       | 2.515          |
| 575.00        | 756.25       | 643.29         | 29          | 2.887          | 2 • 421        |
| 575.00        | 756.25       | 627.94         | 27          | 2.705          | 2.312          |
| 575.00        | 756.25       | 612.58         | 25          | 2.465          | 2.150          |
| 575.00        |              | 597.23         | 23          | 2.238          | 1.994          |
| 575.00        |              | 581.87         | 20          | 1.978          | 1.805          |
| 575.00        |              | 566.52         | 17          |                | 1.460          |
|               | 756.25       |                |             | 1.566          | 1.195          |
| 575.00        |              | 551.16         | 12          | 1 • 25 0       |                |
| 575.00        | 756.25       | 535.81         | 9           | 1 • 1 4 2      | 1.110          |
| THE LOWEST    | SAFETY FACTO | R FOUND WAS    | S 1.142     | AT R= 535.81 . |                |
|               | *** **       |                |             |                |                |
| 575.00        | 743.75       | 693.75         | 36          | 3+508          | 2.742          |
| 575.00        |              | 692.22         | 36          | 3 • 496        | 2.736          |
| 575.00        | 743.75       | 676.92         | 34          | 3 • 350        | 2.663          |
| 575.00        |              | 661.61         | 32          | 3.198          | 2.584          |
| 575.00        | 743.75       | 646.31         | 30          | 3.039          | 2.497          |
| 575.00        |              | 631.00         | 28          | 2.907          | 2.429          |
| 575.00        |              | 615.70         | 27          | 2.687          | 2.292          |
| 575.00        |              | 600.39         | 25          | 2.482          | 2.159          |
| 575.00        |              | 585.09         | 23          |                | 2.002          |
|               |              |                |             | 2.253          | 1.811          |
| 575.00        |              | 569.79         | 20          | 1.990          |                |
| 575.00        |              | 554.48         | 17          | 1.573          | 1.463          |
| 575.00        |              | 539.18         | 12          | 1.244          | 1.187          |
| 575.00        | 743.75       | 523.87         | 8           | 1 • 1 42       | 1.110          |
|               |              |                |             |                |                |

THE LOWEST SAFETY FACTOR FOUND WAS 1.142 AT R= 523.87 .

THE MINIMUM FACTOR OF SAFETY IS 1.141 FOR X= 575.00 AND Y= 750.00.

#### SLOPE STABILITY ANALYSIS SIMPLIFIED BISHOP METHOD

GALENA 3X1 SLOPF WATER TABLE AT GROUND LEVEL

POINT DATA -- USE 100 POINTS MAXIMUM Y-COORD POINT NO. X-COORD 100.00 200.00 2 550.00 200.00 3 1165.00 400.00 Δ 375.00 1600.00 5 1600.00 200.00

LINE DATA---USE 100 LINES MAXIMUM POINT POINT SOIL

1 1 2 2 2 3 1 1 3 4 1 1 4 2 5 2 2

SOIL PROPERTIES -- USE 10 SOILS OR LESS
SOIL NO. DENSITY COH. TAN PPRATIO PPRATIO CAPLRY
PCF PSI PHI

1 110.0 3.5 0.700 1.100 0.000 2 145.0 0.0 1.000 1.100 0.000

PHREATIC SURFACE POINTS--USF 10 POINTS MAXIMUM X-COORD Y-COORD

1 100.000 200.000 2 1600.000 200.000

THE FOLLOWING IS A PRINTOUT OF THE LINE ARRAY, THE INITIAL 3 LINES MUST BE THE SURFACE OF THE SLOPE GOING FROM LEFT TO RIGHT.
THERE MUST BE NO VERTICAL LINES AFTER NO. 3.

X-RGHT SOIL NO. X-LEFT Y-LFFT Y-RGHT SLOPF 2 1 100.00 200.00 550.00 200,00 0.0000 2 550.00 200.00 1165.00 400.00 0.3252 3 1165.00 400.00 1600.00 375.00 -0.0575 550.00 200.00 1600.00 2 200.00 0.0000

NUMBER OF SLICES -- 100 OR LESS

50.

THE LOWEST FLEVATION THAT SHOULD OCCUR ALONG ANY TRIAL FAILURE SURFACE (YMIN.) 50.00

THE MINIMUM VALUE FOR THE GREATEST DEPTH OF THE SLIDING MASS (DMIN).

0.00

1 COMPUTE USING AUTOMATIC SEARCH ROUTINE 2 COMPUTE USING PRESCRIBED CONTROL GRID

1

X AND Y COORDINATES OF THE CENTER OF THE INITIAL TRIAL FAILURE SURFACE.

X = 650.00 Y = 725.00

INCREMENTS OF X AND Y USED IN THE COARSE GRID IN SEARCHING FOR THE MINIMUM FACTOR OF SAFETY. THE FINAL GRID IS 4 TIMES FINER.

X = 25.000

Y = 25.000

| x-cnor           | RD Y-COOR   | RADIUS     | NO SLICE  | S FS BISHOP    | FS FLNIUS              |
|------------------|-------------|------------|-----------|----------------|------------------------|
| 650.00           | 725.00      | 675.00     | 35        | 4.441          | 3.693                  |
| 650.00           |             | 673.28     | 35        | 4 • 4 • 3      | 3.683                  |
| 650.00           |             | 656.13     | 33        | 4.210          | 3.559                  |
| 650.00           |             | 638.98     | 32        | 4.006          | 3.440                  |
| 650.00           |             | 621.83     | 30        | 3.813          | 3.332                  |
| 650.00           |             | 604.67     | 28        | 3 • 6 3 5      | 3 • 235                |
| 650.00           |             | 587.52     | 26        | 3.464          | 3.143                  |
| 650.00           |             | 570.37     | 24        | 3.303          | 3.055                  |
| 650.00           | 725.00      | 553.21     | 21        | 3.099          | 2.917                  |
| 650.00           | 725.00      | 536.06     | 18        | 2.961          | 2.826                  |
| 650.00           | 725.00      | 518.91     | 15        | 2.824          | 2.726                  |
| 650.00           | 725.00      | 501.75     | 12        | 2.983          | 2.917                  |
| 650.00           |             | 531.77     | 18        | 2.923          | 2.795                  |
| 650.00           |             | 527.48     | 16        | 2.889          | 2.770                  |
| 650.00           |             | 523.20     | 16        | 2.806          | 2.700                  |
| 650.00           |             | 514.62     | 14        | 2.848          | 2.758                  |
| 650.00           |             | 510.33     | 14        | 2.881          | 2.800                  |
| 650.00           |             | 506.04     | 13        | 2.925          | 2.851                  |
| 650.00           | 725.00      | 484.60     | 9         | 3.608          | 3.576                  |
| THE LOWES        | SAFETY FA   | TOR FOUND  | WAS 2.806 | AT R= 523.20   | •                      |
| 675.00           |             | 675.00     | 35        | 4.406          | 3 • 677                |
| 675.00           |             | 673.22     | 35        | 4.388          | 3.666                  |
| 675.00           |             | 655.43     | 33        | 4.164          | 3.534                  |
| 675.00<br>675.00 |             | 637.63     | 31        | 3.949          | 3 • 4 0 5<br>3 • 2 8 5 |
| 675.00           |             | 619.84     | 30<br>28  | 3.746<br>3.561 | 3.178                  |
| 675.00           |             | 584.25     | 26        | 3.462          | 3.094                  |
| 675.0            |             | 566.45     | 23        | 3.205          | 2.968                  |
| 675.00           |             | 548.66     | 21        | 3.044          | 2.862                  |
| 675.00           |             | 530.86     | 18        | 2.969          | 2.824                  |
| 675.00           |             | 513.07     | 16        | 2.818          | 2.716                  |
| 675.00           |             | 495.27     | 12        | 2.947          | 2.899                  |
| 675.00           | 725.00      | 526,41     | 17        | 2.854          | 2.721                  |
| 675.00           | 725.00      | 521.97     | 16        | 2.791          | 2.672                  |
| 675.0            | 725.00      | 517.52     | 16        | 2.803          | 2.692                  |
| 675.0            | 725.00      | 508.62     | 14        | 2.842          | 2.747                  |
| 675.0            |             | 504.17     | 1 4       | 2.871          | 2.785                  |
| 675.0            |             | 499.72     | 1 4       | 2.911          | 2.834                  |
| 675.0            | 0 725.00    | 477.48     | 9         | 3.546          | 3.532                  |
| THE LOWES        | T SAFETY FA | CTOR FOUND | WAS 2.791 | AT R= 521.9    | •                      |
| 700.0            | 725.00      | 675.00     | 36        | 4 • 406        | 3 • 691                |

| 700.     | .00 7   | 25.00     | 673.16           | 36       | 4.387       | 3.680          |
|----------|---------|-----------|------------------|----------|-------------|----------------|
| 700      | 00 7    | 25.00     | 673.16<br>654.72 | 36<br>34 | 4 • 156     | 3.680<br>3.541 |
| 700.     | 00 7    | 25.00     | 636.28           | 31       | 3.935       | 3.407          |
| 700.     |         |           | 617.85           | 29       | 3.727       | 3.280          |
| 700.     |         | 25.00     | 599,41           | 28       | 3.538       | 3 • 169        |
| 700.     |         |           | 580.97           | 26       | 3 • 322     | 3.026          |
| 700.     |         |           | 562.54           | 23       | 3 • 2 0 8   | 2.972 .        |
| 700.     |         |           | 544.10           | 21       | 3.100       | 2.909          |
| 700.     | .00 7   | 25.00     | 525 • 66         | 18       | 2.867       | 2.719          |
| 700.     |         |           | 507.23           | 15       | 2 • 8 1 5   | 2 • 7 0 7      |
| 700      | .00 7   | 25.00     | 488.79           | 13       | 2 • 953     | 2 • 8 8 1      |
| 700.     | 00 7    | 25.00     | 521.06           | 17       | 2.785       | 2 • 651        |
| 700      | 00 7    | 25.00     | 516.45           | 17       | 2.792       | 2 • 666        |
| 700,     | 00 7    | 25.00     | 511.84           | 16       | 2.801       | 2.684          |
| 700.     |         |           | 502.62           | 15       | 2.836       | 2.737          |
| 700.     |         |           | 498.01           | 14       | 2.863       | 2.773          |
| 700      |         | 25.00     | 493.40           | 13       | 2.900       | 2.819          |
| 700.     |         | 25.00     | 470.36           | 9        | 3 • 525     | 3.490          |
| THE LOWE | ST SAFE | TY FACTOR | FOUND WAS        | 2.785 AT | R= 521.06 . |                |
| 725      |         |           | 675,00           | 35       | 4.438       | 3.731          |
| 725.     |         |           | 673.09           | 35       | 4.419       | 3.721          |
| 725.     |         |           | 654.01           | 34       | 4 • 182     | 3.577          |
| 725.     |         |           | 634.94           | 32       | 3 • 958     | 3 • 441        |
| 725      |         |           | 615.86           | 29       | 3.750       | 3.313          |
| 725.     |         |           | 596.78           | 27       | 3.505       | 3 • 148        |
| 725      | 00 7    |           | 577.70           | 26       | 3.348       | 3 • 055        |
| 725.     |         |           | 558.62           | 23       | 3 • 190     | 2.949          |
| 725.     |         |           | 539.54           | 21       | 3.104       | 2.903          |
| 725.     |         |           | 520.47           | 18       | 2.785       | 2.636          |
| 725.     |         |           | 501,39           | 15       | 2 • 8 1 4   | 2.700          |
| 725      |         |           | 534.78           | 19       | 3+053       | 2.859          |
| 725.     |         |           | 530.01           | 19       | 2.990       | 2.808          |
| 725.     |         |           | 525,24           | 19       | 2 • 8 3 0   | 2 • 668        |
| 725.     |         |           | 515.70           | 17       | 2.788       | 2.647          |
| 725.     |         |           | 510,93           | 17       | 2.703       | 2.661          |
| 725      |         |           | 506.16           | 17       | 2.800       | 2 • 678        |
| 725.     |         |           | 482.31           | 13       | 2.940       | 2.864          |
| 725.     | 00 7    | 25.00     | 463.23           | 9        | 3.487       | 3 • 450        |
| THE LOWE | ST SAFE | TY FACTOR | FOUND WAS        | 2.785 AT | R= 520.47 . |                |
| 700.     |         | 50.00     | 700.00           | 36       | 4 • 4 1 4   | 3.726          |
| 700      |         |           | 698 • 15         | 36       | 4 • 3 9 4   | 3.714          |
| 700      |         |           | 679.61           | 34       | 4 • 1 5 9   | 3.569          |
| 700      |         |           | 661.07           | 33       | 3.933       | 3.427          |
| 700      |         |           | 642.53           | 31       | 3.720       | 3.294          |
| 700      |         |           | 623.99           | 28       | 3 • 525     | 3 • 172        |
| 700      |         |           | 605.46           | 26       | 3 • 302     | 3.019          |
| 700      |         |           | 586.92           | 24       | 3 • 177     | 2.951          |
| 700      |         |           | 568.38           | 21       | 3 • 071     | 2.889          |
| 700      |         |           | 549.84           | 18       | 2.766       | 2.630          |
| 700      |         |           | 531.30           | 16       | 2.802       | 2.699          |
| 700      |         |           | 563.74           | 21       | 3.026       | 2.852          |
| 700.     |         |           | 559 • 11         | 20       | 2.977       | 2.812          |
| 700      |         |           | 554.48           | 19       | 2.918       | 2.764          |
| 700      |         |           | 545.21           | 18       | 2.770       | 2.642          |
| 700      |         |           | 540.57           | 17       | 2.776       | 2.656          |
| 700      |         |           | 535.94           | 16       | 2.788       | 2.676          |
| 700.     | .00 7   | '50•00    | 512.76           | 13       | 2.941       | 2.872          |

|     | 700.00 | 750.00           | 494.23           | 10        | 3+511                  | 3 • 477            |
|-----|--------|------------------|------------------|-----------|------------------------|--------------------|
| THE | LOWEST | SAFETY FACTO     | R FOUND          | WAS 2.766 | AT R= 549.84           |                    |
|     |        |                  |                  |           | 34                     |                    |
|     | 700.00 | 775.00           | 725.00           | 37        | 4.470                  | 3.796              |
|     | 700.00 | 775.00           | 723.14           | 36        | 4 • 452                | 3.785              |
|     | 700.00 | 775.00           | 704.50           | 35        | 4.215                  | 3.638              |
|     | 700.00 | 775.00           | 685.86           | 33        | 3.938                  | 3.453              |
|     | 700.00 | 775.00<br>775.00 | 667.22           | 31<br>30  | 3.720                  | 3 • 312<br>3 • 181 |
|     | 700.00 | 775.00           | 629.94           | 27        | 3 • 5 1 8<br>3 • 3 4 4 | 3 • 101            |
|     | 700.00 | 775.00           | 611.30           | 24        | 3.154                  | 2.939              |
|     | 700.00 | 775.00           | 592.66           | 22        | 3 • 0 4 5              | 2.870              |
|     | 700.00 | 775.00           | 574.02           | 19        | 2.751                  | 2.620              |
|     | 700.00 | 775.00           | 555.38           | 16        | 2.790                  | 2 • 691            |
|     | 700.00 | 775.00           | 588.00           | 21        | 3.001                  | 2.834              |
|     | 700.00 | 775.00           | 583.34           | 20        | 2.954                  | 2.796              |
|     | 700.00 | 775.00           | 578 • 68         | 20        | 2.898                  | 2.750              |
|     | 700.00 | 775.00<br>775.00 | 569.36<br>564.70 | 18<br>18  | 2.756                  | 2.633              |
|     | 700.00 | 775.00           | 560.04           | 17        | 2.764                  | 2.667              |
|     | 700.00 | 775.00           | 536.74           | 13        | 2.931                  | 2.865              |
|     | 700.00 | 775.00           | 518.10           | 10        | 3.504                  | 3.471              |
|     |        |                  |                  |           | .,,,,,,                |                    |
| THE | LOWEST | SAFETY FACTO     | R FOUND I        | WAS 2.751 | AT R= 574.02           | •                  |
|     | 700.00 | 800.00           | 750.00           | 37        | 4 • 484                | 3.833              |
|     | 700.00 | 800.00           | 748.13           | 37        | 4.464                  | 3.821              |
|     | 700.00 | 800.00           | 729.38           | 35        | 4 • 225                | 3.669              |
|     | 700.00 | 800.00           | 710.64           | 33        | 3.994                  | 3.520              |
|     | 700.00 | 800.00           | 691.90           | 32        | 3.725                  | 3+333              |
|     | 700.00 | 800.00           | 673.16           | 30        | 3.518                  | 3.195              |
|     | 700.00 | 800.00<br>800.00 | 654.42           | 27<br>24  | 3.337<br>3.139         | 3.077<br>2.932     |
|     | 700.00 | 800.00           | 616.93           | 23        | 3.020                  | 2.852              |
|     | 700.00 | 800.00           | 598.19           | 19        | 2.739                  | 2.613              |
|     | 700.00 | 800.00           | 579.45           | 17        | 2.778                  | 2.683              |
|     | 700.00 | 800.00           | 612.25           | 22        | 2.979                  | 2.818              |
|     | 700.00 | 800.00           | 607.56           | 21        | 2.933                  | 2.780              |
|     | 700.00 | 800.00           | 602.88           | 20        | 2.879                  | 2.737              |
|     | 700.00 | 800.00           | 593.51           | 19        | 2.744                  | 2.625              |
|     | 700.00 | 800.00           | 588.82           | 18        | 2.752                  | 2.641              |
|     | 700.00 | 800.00           | 584.14           | 17        | 2.763                  | 2.660              |
|     | 700.00 | 800.00<br>800.00 | 560.71<br>541.97 | 13        | 2.921<br>3.493         | 2.858<br>3.462     |
|     | 700.00 | 000.00           | 241.91           | ,         | 5 4 4 9 3              | 3 4 4 6 2          |
| THE | LOWEST | SAFETY FACTO     | R FOUND I        | WAS 2.739 | AT R= 598.19           | •                  |
|     | 700.00 | 825.00           | 775.00           | 38        | 4.525                  | 3.890              |
|     | 700.00 | 825.00           | 773.12           | 38        | 4 • 481                | 3.859              |
|     | 700.00 | 825.00           | 754.27           | 37        | 4.238                  | 3.702              |
|     | 700.00 | 825.00           | 735.43           | 34        | 4.005                  | 3.548              |
|     | 700.00 | 825.00<br>825.00 | 716.59           | 32<br>30  | 3.782                  | 3.400<br>3.212     |
|     | 700.00 | 825.00           | 678.90           | 30<br>28  | 3·522<br>3·334         | 3.212              |
|     | 700.00 | 825.00           | 660.06           | 26        | 3+130                  | 2.933              |
|     | 700.00 | 825.00           | 641.21           | 23        | 3.003                  | 2.841              |
|     | 700.00 | 825.00           | 622.37           | 20        | 2.726                  | 2.605              |
|     | 700.00 | 825.00           | 603.53           | 17        | 24768                  | 2.676              |
|     | 700.00 | 825.00           | 636.50           | 23        | 2.959                  | 2.804              |
|     | 700.00 | 825.00           | 631.79           | 5.5       | 2 • 914                | 2.766              |

| 700.00<br>700.00<br>700.00<br>700.00<br>700.00<br>700.00                                                                    | 825.00<br>825.00<br>825.00                                                                                                     | 627.08<br>617.66<br>612.95<br>608.24<br>584.68<br>565.84                                                                                                                                   | 21 2.863<br>19 2.732<br>19 2.741<br>18 2.751<br>14 2.911<br>10 3.480                                                                                                              | 2.724<br>2.618<br>2.634<br>2.652<br>2.850<br>3.450                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| THE LOWEST                                                                                                                  | SAFETY FACTO                                                                                                                   | R FOUND WAS                                                                                                                                                                                | 2.726 AT R= 622.                                                                                                                                                                  | 37 .                                                                                                                                                                             |
| 700.00 700.00 700.00 700.00 700.00 700.00 700.00 700.00 700.00 700.00 700.00 700.00 700.00 700.00                           | 850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00           | 800.00<br>798.11<br>779.16<br>760.22<br>741.27<br>722.33<br>703.38<br>684.44<br>665.49<br>646.54<br>627.60<br>660.75<br>656.02<br>651.28<br>641.81<br>632.34<br>608.65                     | 39 4.544 39 4.524 37 4.256 35 4.019 32 3.792 31 3.582 28 3.337 26 3.127 23 2.992 20 2.715 18 2.758 22 2.946 22 2.999 21 2.780 20 2.721 19 2.730 18 2.7742 14 2.903                | 3.930<br>3.917<br>3.737<br>3.578<br>3.425<br>3.281<br>3.098<br>2.938<br>2.636<br>2.598<br>2.669<br>2.796<br>2.756<br>2.650<br>2.651<br>2.627<br>2.646<br>2.844                   |
| 700.00                                                                                                                      | 850.00                                                                                                                         | 589.71                                                                                                                                                                                     | 10 3.472                                                                                                                                                                          | 3.443                                                                                                                                                                            |
| THE LOWEST  700.00 700.00 700.00 700.00 700.00 700.00 700.00 700.00 700.00 700.00 700.00 700.00 700.00 700.00 700.00 700.00 | 875.00<br>875.00<br>875.00<br>875.00<br>875.00<br>875.00<br>875.00<br>875.00<br>875.00<br>875.00<br>875.00<br>875.00<br>875.00 | 825.00<br>823.10<br>804.05<br>785.00<br>765.95<br>746.91<br>727.86<br>708.81<br>689.77<br>670.72<br>651.67<br>685.01<br>680.24<br>665.48<br>665.96<br>661.20<br>656.44<br>632.63<br>613.58 | 39 4.567 39 4.546 37 4.546 37 4.325 36 4.036 34 3.606 31 3.591 29 3.343 26 3.128 24 2.986 21 2.7705 18 2.749 22 2.939 2.890 21 2.771 21 2.711 19 2.720 18 2.732 14 2.894 10 3.462 | 3.971<br>3.958<br>3.815<br>3.610<br>3.452<br>3.302<br>3.114<br>2.947<br>2.637<br>2.592<br>2.664<br>2.795<br>2.775<br>2.752<br>2.664<br>2.604<br>2.620<br>2.639<br>2.837<br>3.434 |
| THE LOWEST<br>700.00<br>700.00<br>700.00<br>700.00<br>700.00<br>700.00                                                      | 900.00<br>900.00<br>900.00<br>900.00<br>900.00<br>900.00                                                                       | 850.00<br>848.09<br>828.94<br>809.79<br>790.64<br>771.49<br>752.34<br>733.19                                                                                                               | 41 4.639<br>40 4.572<br>38 4.345<br>36 4.105<br>34 3.822<br>31 3.603<br>30 3.352<br>27 3.133                                                                                      | 4.051<br>4.000<br>3.650<br>3.687<br>3.480<br>3.325<br>3.131<br>2.959                                                                                                             |

|     | 700.00 | 900.00       | 714.05  |     | 24<br>21 | 2.987          | 2.843     |
|-----|--------|--------------|---------|-----|----------|----------------|-----------|
|     | 700.00 | 900.00       | 694.90  |     |          | 2.700          |           |
|     | 700.00 | 900.00       | 675.75  |     | 1.8      | 2.740          | 2.657     |
|     | 700.00 | 900.00       | 709.26  |     | 23       | 2.937          | 2.798     |
|     | 700.00 | 900.00       | 704.47  |     | 22       | 2 • 8 8 6      | 2.754     |
|     | 700.00 | 900.00       | 699.68  |     | 21       | 2.703          | 2.587     |
|     | 700.00 | 900.00       | 690.11  |     | 21       | 2.702          | 2.599     |
|     |        | 900.00       | 685.32  |     | 20       |                | 2.614     |
|     | 700.00 |              |         |     |          | 2.710          |           |
|     | 700.00 | 900.00       | 680.54  |     | 19       | 2.723          | 2.634     |
|     | 700.00 | 900.00       | 656.60  |     | 15       | 2 • 886        | 2.831     |
|     | 700.00 | 900.00       | 637.45  |     | 11       | 3 • 452        | 3.425     |
|     |        |              |         |     |          |                |           |
| THE | LOWEST | SAFETY FACTO | K FUOND | WAS | 2.700    | AT R= 694.90 . |           |
|     | 700.00 | 925.00       | 875.00  |     | 41       | 4 • 664        | 4.091     |
|     |        |              |         |     | 41       |                | 4.079     |
|     | 700.00 | 925.00       | 873.07  |     | _        | 4.644          |           |
|     | 700.00 | 925.00       | 853.82  |     | 39       | 4 • 369        | 3.888     |
|     | 700.00 | 925.00       | 834.57  |     | 36       | 4 • 1 2 5      | 3.720     |
|     | 700.00 | 925.00       | 815.32  |     | 35       | 3.840          | 3.509     |
|     | 700.00 | 925.00       | 796.07  |     | 32       | 3 • 618        | 3.349     |
|     | 700.00 | 925.00       | 776.82  |     | 30       | 3.363          | 3 • 151   |
|     | 700.00 | 925.00       | 757.57  |     | 27       | 3.141          | 2.974     |
|     |        |              |         |     | 24       |                | 2.852     |
|     | 700.00 | 925.00       | 738.32  |     |          | 2.991          |           |
|     | 700.00 | 925.00       | 719.07  |     | 21       | 2.700          | 2.595     |
|     | 700.00 | 925.00       | 699.82  |     | 19       | 2 • 7 3 ?      | 2.652     |
|     | 700.00 | 925.00       | 733.51  |     | 23       | 2.940          | 2.806     |
|     | 700.00 | 925.00       | 728.70  |     | 23       | 2.831          | 2.706     |
|     | 700.00 | 925.00       | 723.89  |     | 22       | 2.705          | 2.594     |
|     | 700.00 | 925.00       | 714.26  |     | 21       | 2.700          | 2.600     |
|     | 700.00 | 925.00       | 709.45  |     | 50       |                | 2.610     |
|     |        |              |         |     | 20       | 2.704          | 2.627     |
|     | 700.00 | 925.00       | 704.64  |     |          | 2.714          |           |
|     | 700.00 | 925.00       | 680.57  |     | 15       | 2 • 879        | 2 • 825   |
|     | 700.00 | 925.00       | 661.32  |     | 11       | 3 • 4 4 5      | 3 • 4 1 9 |
| THE | LOWEST | SAFETY FACTO | R FOUND | WAS | 2.700    | AT R= 714.26 . |           |
|     |        |              |         |     |          |                |           |
|     | 700.00 | 950.00       | 900.00  |     | 41       | 4 • 691        | 4.134     |
|     | 700.00 | 950.00       | 898.06  |     | 41       | 4 • 670        | 4 - 120   |
|     | 700.00 | 950.00       | 878.71  |     | 40       | 4.418          | 3.948     |
|     | 700.00 | 950.00       | 859.36  |     | 37       | 4.147          | 3.754     |
|     | 700.00 | 950.00       | 840.01  |     | 35       | 3.911          | 3.586     |
|     | 700.00 | 950.00       | 820.66  |     | 33       |                | 3.375     |
|     |        |              |         |     |          | 3 • 6 3 4      |           |
|     | 700.00 | 950.00       | 801.30  |     | 30       | 3 • 377        | 3 • 173   |
|     | 700.00 | 950.00       | 781.95  |     | 27       | 3 • 1 5 1      | 2.990     |
|     | 700.00 | 950.00       | 762.60  |     | 24       | 2.997          | 2.864     |
|     | 700.00 | 950.00       | 743.25  |     | 22       | 2.704          | 2.602     |
|     | 700.00 | 950.00       | 723.90  |     | 20       | 2.723          | 2.645     |
|     | 700.00 | 950.00       | 757.76  |     | 23       | 2.945          | 2.817     |
|     | 700.00 | 950.00       | 752.93  |     | 23       | 2.837          | 2.717     |
|     | 700.00 | 950.00       | 748.09  |     | 22       | 2.712          | 2.604     |
|     | 700.00 | 950.00       | 738.41  |     | 21       | 2.701          | 2.605     |
|     |        |              |         |     | 20       |                | 2.612     |
|     | 700.00 | 950.00       | 733,57  |     |          | 2.702          |           |
|     | 700.00 | 950.00       | 728.74  |     | 20       | 2.709          | 2.624     |
|     | 700.00 | 950.00       | 704.55  |     | 16       | 2.871          | 2.819     |
|     | 700.00 | 950.00       | 685.19  |     | 11       | 3.436          | 3.410     |
| THE | LOWEST | SAFETY FACTO | R FOUND | WAS | 2.701    | AT R= 738.41 . |           |
|     |        |              |         |     |          |                |           |
|     | 725.00 | 925.00       | 875.00  |     | 41       | 4 • 726        | 4.158     |
|     | 725.00 | 925.00       | 873.01  |     | 41       | 4.706          | 4 • 146   |
|     | 725.00 | 925.00       | 853.12  |     | 39       | 4 • 4 0 6      | 3.935     |
|     |        |              |         |     |          |                |           |

|     | 725.00<br>725.00 | 925.00       | 833.23  | 36<br>34 | 4.187          | 3.788     |
|-----|------------------|--------------|---------|----------|----------------|-----------|
|     | 725.00           | 925.00       | 813.33  |          | 3.900          | 3.576     |
|     | 725.00           | 925.00       | 793.44  | 31       | 3.684          | 3.422     |
|     | 725.00           | 925.00       | 773.55  | 30       | 3.438          | 3.230     |
|     | 725.00           | 925.00       | 753.66  | 27       | 3.236          | 3.068     |
|     | 725.00           | 925.00       | 733.77  | 24       | 3 • 0 4 5      | 2.901     |
|     | 725.00           | 925.00       | 713.88  | 21       | 2.733          | 2 • 625   |
|     |                  | 925.00       | 693.98  | 19       |                | 2.646     |
|     | 725.00           |              |         |          | 2.730          |           |
|     | 725.00           | 925.00       | 674.09  | 15       | 2 • 8 6 5      | 2.809     |
|     | 725.00           | 925.00       | 708.90  | 21       | 2.725          | 2 • 6 2 2 |
|     | 725.00           | 925.00       | 703.93  | 20       | 2.721          | 2.624     |
|     | 725.00           | 925.00       | 698.96  | 19       | 2.722          | 2 • 632   |
|     | 725.00           | 925.00       | 689.01  | 19       | 2.747          | 2.670     |
|     |                  |              |         |          |                |           |
|     | 725.00           | 925.00       | 684.04  | 17       | 2.776          | 2.706     |
|     | 725.00           | 925.00       | 679.06  | 16       | 2 • 8 1 4      | 2.751     |
|     | 725.00           | 925.00       | 654.20  | 11       | 3 • 408        | 3.381     |
|     |                  |              | _ =     |          |                |           |
| THE | LOWEST           | SAFETY FACTO | R FOHND | WAS 2.72 | 1 AT R= 703.93 | •         |
|     | 675.00           | 925.00       | 875.00  | 41       | 4 • 621        | 4.042     |
|     | 675.00           | 925.00       | 873.14  | 41       | 4.601          | 4.029     |
|     | 675.00           | 925.00       | 854.53  | 38       | 4.330          | 3.841     |
|     | 675.00           | 925.00       | 835.92  | 37       |                | 3.674     |
|     |                  |              |         |          | 4 • 089        |           |
|     | 675.00           | 925.00       | 817.31  | 35       | 3 • 856        | 3.511     |
|     | 675.00           | 925.00       | 798.71  | 33       | 3.583          | 3.305     |
|     | 675.00           | 925.00       | 780.10  | 30       | 3.374          | 3 • 154   |
|     | 675.00           | 925.00       | 761.49  | 27       | 3,139          | 2.969     |
|     | 675.00           | 925.00       | 742.88  | 25       | 2.959          | 2.826     |
|     | 675.00           | 925.00       | 724.27  | 22       | 2.687          | 2.585     |
|     |                  | 925.00       |         | 18       |                | 2.662     |
|     | 675.00           |              | 705.66  |          | 2.738          |           |
|     | 675.00           | 925.00       | 738.23  | 23       | 2.902          | 2.775     |
|     | 675.00           | 925.00       | 733.58  | 23       | 2.860          | 2.738     |
|     | 675.00           | 925.00       | 728.92  | 22       | 2.822          | 2.707     |
|     | 675.00           | 925.00       | 719.62  | 21       | 2.694          | 2.598     |
|     | 675.00           | 925.00       | 714.97  | 20       | 2.705          | 2.616     |
|     |                  | 925.00       |         | 19       |                | 2.636     |
|     | 675.00           |              | 710.31  |          | 2.719          |           |
|     | 675.00           | 925.00       | 687.05  | 15       | 2.894          | 2.843     |
|     | 675.00           | 925.00       | 668.45  | 10       | 3.484          | 3.459     |
| THE | LOWEST           | SAFETY FACTO | R FOUND | WAS 2.68 | 7 AT R= 724.27 | •         |
|     | 650.00           | 925.00       | 875.00  | 40       | 4.623          | 4.030     |
|     | 650.00           | 925.00       | 873.20  | 40       | 4.604          | 4.018     |
|     | 650.00           | 925.00       | 855.24  | 39       | 4.316          | 3.816     |
|     |                  |              |         |          |                | 3.652     |
|     | 650.00           | 925.00       | 837,27  | 37       | 4.079          |           |
|     | 650.00           | 925.00       | 819.30  | 35       | 3.849          | 3 • 490   |
|     | 650.00           | 925.00       | 801.34  | 33       | 3.628          | 3.334     |
|     | 650.00           | 925.00       | 783.37  | 31       | 3 • 367        | 3 • 135   |
|     | 650.00           | 925.00       | 765.40  | 28       | 3.180          | 3.001     |
|     | 650.00           | 925.00       | 747.44  | 25       | 2.926          | 2.792     |
|     | 650.00           | 925.00       | 729,47  | 22       |                | 2.686     |
|     |                  |              |         | 18       | 2.789          | 2.672     |
|     | 650.00           | 925.00       | 711.50  |          | 2.746          |           |
|     | 650.00           | 925.00       | 693.54  | 15       | 2.910          | 2.861     |
|     | 650.00           | 925.00       | 724,98  | 20       | 2.697          | 2.606     |
|     | 650.00           | 925.00       | 720.49  | 20       | 2.709          | 2.624     |
|     | 650.00           | 925.00       | 715.99  | 19       | 2.725          | 2 • 6 4 5 |
|     | 650.00           | 925.00       | 707.01  | 18       | 2.772          | 2 . 7 0 5 |
|     | 650.00           | 925.00       | 702.52  | 16       | 2.806          | 2.745     |
|     | 650.00           | 925.00       | 698.03  | 16       | 2.852          | 2.797     |
|     |                  |              |         |          |                |           |
|     | 650.00           | 925.00       | 675.57  | 10       | 3.524          | 3.500     |

| THE LOWEST       | SAFETY FACT      | OR FOUND WA      | S 2.697 A  | T R= 724.98            |                |
|------------------|------------------|------------------|------------|------------------------|----------------|
| 675.00           | 950.00           | 900.00           | 42         | 4 • 6 4 5              | 4.081          |
| 675.00           | 950.00           | 898.13           | 42         | 4.624                  | 4.068          |
| 675.00           | 950.00           | 87942            | 40         | 4.353                  | 3 • 877        |
| 675.00           | 950.00           | 860.71           | 37         | 4.108                  | 3.705          |
| 675.00           | 950.00           | 842.00           | 35         | 3 • 871                | 3.537          |
| 675.00           | 950.00           | 823.29           | 33         | 3.596                  | 3.327          |
| 675.00           | 950.00           | 804.58           | 31         | 3 • 3 8 2              | 3 • 170        |
| 675.00           | 950.00           | 785.87           | 28<br>25   | 3 • 1 4 4              | 2.980          |
| 675.00<br>675.00 | 950.00<br>950.00 | 767.16<br>748.45 | 22         | 2·959<br>2·683         | 2.584          |
| 675.00           | 950.00           | 729.74           | 18         | 2.083                  | 2.656          |
| 675.00           | 950.00           | 762.48           | 24         | 2.901                  | 2.779          |
| 675.00           | 950.00           | 757.80           | 23         | 2.858                  | 2.741          |
| 675.00           | 950.00           | 753.12           | 22         | 2.775                  | 2.664          |
| 675.00           | 950.00           | 743.77           | 21         | 2.687                  | 2.594          |
| 675.00           | 950.00           | 739.09           | 21         | 2.696                  | 2.609          |
| 675.00           | 950.00           | 734.41           | 20         | 2.712                  | 2.631          |
| 675.00           | 950.00           | 711.03           | 16         | 2.887                  | 2.837          |
| 675.00           | 950.00           | 692.32           | 11         | 3.473                  | 3.449          |
| THE LOWEST       | SAFETY FACT      | OR FOUND WA      | S 2.683 A  | T R= 748.45            | •              |
| 675.00           | 975.00           | 925.00           | 42         | 4 • 672                | 4 • 123        |
| 675.00           | 975.00           | 923.12           | 42         | 4 • 651                | 4 • 109        |
| 675.00           | 975.00           | 904.31           | 40         | 4 • 423                | 3.954          |
| 675.00<br>675.00 | 975.00<br>975.00 | 885.49<br>866.68 | 38<br>36   | 4 • 1 2 9              | 3.738<br>3.564 |
| 675.00           | 975.00           | 847.87           | 34         | 3 • 8 8 8<br>3 • 6 6 0 | 3.398          |
| 675.00           | 975.00           | 829.06           | 31         | 3.393                  | 3.188          |
| 675.00           | 975.00           | 810.25           | 28         | 3 • 151                | 2.993          |
| 675.00           | 975.00           | 791.44           | 25         | 2.963                  | 2.839          |
| 675.00           | 975.00           | 772.62           | 22         | 2.683                  | 2.588          |
| 675.00           | 975.00           | 753.81           | 19         | 2.724                  | 2 • 651        |
| 675.00           | 975.00           | 786.73           | 24         | 2.905                  | 2.786          |
| 675.00           | 975.00           | 782.03           | 24         | 2.861                  | 2.748          |
| 675.00           | 975.00           | 777.33           | 23         | 2.775                  | 2.668          |
| 675.00<br>675.00 | 975.00<br>975.00 | 767.92           | 21<br>21   | 2.684                  | 2.594          |
| 675.00           | 975.00           | 763.22<br>758.51 | 21         | 2.690<br>2.703         | 2.625          |
| 675.00           | 975.00           | 735.00           | 15         | 2.880                  | 2.832          |
| 675.00           | 975.00           | 716.19           | 11         | 3.465                  | 3.442          |
| THE LOWEST       | SAFETY FACT      | OR FOUND WA      | AS 2.683 A | T R= 772.62            | •              |
| 700.00           | 950.00           | 900.00           | 41         | 4 • 691                | 4.134          |
| 700.00           | 950.00           | 898.06           | 41         | 4.670                  | 4.120          |
| 700.00           | 950.00           | 878.71           | 40         | 4 • 418                | 3.948          |
| 700.00           | 950.00           | 859.36           | 37         | 4 • 1 4 7              | 3.754          |
| 700.00           | 950.00<br>950.00 | 840.01           | 35<br>33   | 3.911                  | 3.586<br>3.375 |
| 700.00           | 950.00           | 820.66<br>801.30 | 33         | 3 • 6 3 4<br>3 • 3 7 7 | 3.173          |
| 700.00           | 950.00           | 781.95           | 27         | 3 • 377                | 2.990          |
| 700.00           | 950.00           | 762.60           | 24         | 2.997                  | 2.864          |
| 700.00           | 950.00           | 743,25           | 22         | 2.704                  | 2.602          |
| 700.00           | 950.00           | 723.90           | 20         | 2.723                  | 2.645          |
| 700.00           | 950.00           | 757.76           | 23         | 2.945                  | 2.817          |
| 700.00           | 950.00           | 752.93           | 23         | 2.837                  | 2.717          |
| 700.00           | 950.00           | 748,09           | 22         | 2.712                  | 2.604          |
| 700.00           | 950.00           | 738.41           | 21         | 2.701                  | 2.605          |

|     | 700.00 | 950.00           | 733.57<br>728.74 | 20<br>20 | 2.702<br>2.709      | 2.612<br>2.624 |
|-----|--------|------------------|------------------|----------|---------------------|----------------|
|     | 700.00 | 950.00           | 728.74           |          |                     |                |
|     | 700.00 | 950.00<br>950.00 | 704.55<br>685.19 | 16<br>11 | 2.871               | 2.819<br>3.410 |
|     | 700.00 | 730.00           | 003114           | 1.1      | 3 • 436             | 3.410          |
| THE | LOWEST | SAFETY FACTO     | R FOUND W        | 45 2,701 | AT R= 738.41 .      |                |
|     | 650.00 | 950.00           | 900.00           | 42       | 4.642               | 4.065          |
|     | 650.00 | 950.00           | 898.19           | 42       | 4.623               | 4.053          |
|     | 650.00 | 950.00           | 880.12           | 40       | 4 • 380             | 3.887          |
|     | 650.00 | 950.00           | 862.06           | 37       | 4.143               | 3.722          |
|     | 650.00 | 950.00           | 843.99           | 35       | 3.860               | 3.513          |
|     | 650.00 | 950.00           | 825.92           | 34       | 3.634               | 3.351          |
|     | 650.00 | 950.00           | 807.85           | 31       | 3 • 370             | 3 • 1 4 7      |
|     | 650.00 | 950.00<br>950.00 | 789.78<br>771.71 | 28<br>25 | 3.177               | 3.005<br>2.788 |
|     | 650.00 | 950.00           | 753.64           | 23       | 2.917<br>2.780      | 2.680          |
|     | 650.00 | 950.00           | 735.58           | 19       | 2.738               | 2.667          |
|     | 650.00 | 950.00           | 717.51           | 15       | 2.904               | 2.856          |
|     | 650.00 | 950.00           | 749.13           | 21       | 2.689               | 2.600          |
|     | 650.00 | 950.00           | 744.61           | 20       | 2.701               | 2.618          |
|     | 650.00 | 950.00           | 740.09           | 19       | 2.717               | 2.640          |
|     | 650.00 | 950.00           | 731.06           | 17       | 2.765               | 2.700          |
|     | 650.00 | 950.00           | 726.54           | 17       | 2.799               | 2.740          |
|     | 650.00 | 950.00           | 722.02           | 16       | 2.844               | 2.791          |
|     | 650.00 | 950.00           | 699.44           | 11       | 3.515               | 3 • 4 9 2      |
| THE | LOWEST | SAFETY FACT      | R FOUND W        | AS 2.689 | AT R= 749.13 .      |                |
|     | 681.25 | 950.00           | 900.00           | 42       | 4.644               | 4.085          |
|     | 681.25 | 950.00           | 898.11           | 42       | 4.623               | 4.071          |
|     | 681.25 | 950.00           | 879.24           | 39       | 4 • 397             | 3.919          |
|     | 681.25 | 950.00           | 860.37           | 37       | 4 • 104             | 3.705          |
|     | 681.25 | 950.00           | 841.50           | 35       | 3 • 8 6 6           | 3.535          |
|     | 681.25 | 950.00<br>950.00 | 822.63<br>803.76 | 33       | 3 • 6 4 0           | 3·373<br>3·168 |
|     | 681.25 | 950.00           | 784.89           | 31<br>28 | 3 • 378<br>3 • 1 42 | 2.980          |
|     | 681.25 | 950.00           | 766.02           | 24       | 2.964               | 2.835          |
|     | 681.25 | 950.00           | 747.15           | 22       | 2.687               | 2.587          |
|     | 681.25 | 950.00           | 728.28           | 19       | 2.729               | 2.653          |
|     | 681.25 | 950.00           | 761.30           | 24       | 2.910               | 2.786          |
|     | 681.25 | 950.00           | 756.58           | 23       | 2.868               | 2.748          |
|     | 681.25 | 950.00           | 751.87           | 22       | 2.770               | 2 • 659        |
|     | 681.25 | 950.00           | 742.43           | 21       | 2 • 688             | 2.594          |
|     | 681.25 | 950.00           | 737.71           | 21       | 2.696               | 2.608          |
|     | 681.25 | 950.00           | 732.99           | 20       | 2.710               | 2.629          |
|     | 681.25 | 950.00           | 709.41           | 15       | 2 • 8 8 3           | 2.833          |
|     | 681.25 | 950.00           | 690.54           | 11       | 3.464               | 3.439          |
| THE | LOWEST | SAFETY FACT      | OR FOUND W       | AS 2.687 | AT R= 747.15 .      |                |
|     | 668.75 | 950.00           | 900.00           | 41       | 4 • 6 4 8           | 4.080          |
|     | 668.75 | 950.00<br>950.00 | 898.15<br>879.60 | 41       | 4 • 628             | 4.067<br>3.877 |
|     | 668.75 | 950.00           | 861.05           | 38       | 4 • 356<br>4 • 114  | 3.707          |
|     | 668.75 | 950.00           | 842.50           | 35       | 3.878               | 3.540          |
|     | 668.75 | 950.00           | 823.95           | 33       | 3.602               | 3.330          |
|     | 668.75 | 950.00           | 805.40           | 30       | 3.389               | 3 • 174        |
|     | 668.75 | 950.00           | 786,85           | 28       | 3 • 1 48            | 2.983          |
|     | 668.75 | 950.00           | 768.30           | 25       | 2.957               | 2.829          |
|     | 668.75 | 950.00           | 749.75           | 22       | 2.680               | 2.582          |

|       | 668.75  | 950.00       | 731.20    | 18        | 2 • 7 3 3<br>2 • 8 9 7 | 2.659<br>2.775 |
|-------|---------|--------------|-----------|-----------|------------------------|----------------|
|       | 668.75  | 950.00       | 763.66    | 24        |                        |                |
|       | 668.75  | 950.00       | 759.02    | 23        | 2.849                  | 2.733          |
|       | 668.75  | 950.00       | 754.38    | 22        | 2 • 8 1 4              | 2.704          |
|       | 668.75  | 950.00       | 745.11    | 21        | 2 • 6 8 6              | 2.594          |
|       | 668.75  | 950.00       | 740.47    | 20        | 2.698                  | 2.612          |
|       | 668.75  | 950.00       | 735.83    | 20        | 2.713                  | 2 • 633        |
|       | 668.75  | 950.00       | 712.65    | 16        | 2.891                  | 2.841          |
|       | 668.75  | 950.00       | 694.10    | 10        | 3 • 485                | 3.461          |
|       | 00-1.2  |              |           |           | 3040.                  |                |
| THE   | LOWEST  | SAFETY FACTO | R FOUND   | WAS 2.680 | AT R= 749.75           |                |
| ,     | 20      | J            | ,         | WW.0      |                        | •              |
|       | 662.50  | 950.00       | 900.00    | 41        | 4 • 653                | 4.081          |
|       | 662.50  | 950.00       | 898.16    | 41        | 4.609                  | 4.048          |
|       | 662.50  | 950.00       | 879.77    | 39        | 4 • 362                | 3.878          |
|       | 662.50  | 950.00       | 861.38    | 38        |                        | 3.710          |
|       | 662.50  | 950.00       | 842.99    | 36        | 4.121                  | 3.545          |
|       |         |              |           |           | 3.888                  |                |
|       | 662.50  | 950.00       | 824.60    | 33        | 3 • 6 1 1              | 3.335          |
|       | 662.50  | 950.00       | 806.21    | 31        | 3 • 3 9 9              | 3.180          |
|       | 662.50  | 950.00       | 787.82    | 28        | 3 • 1 5 5              | 2.988          |
|       | 662.50  | 950.00       | 769.44    | 25        | 2.906                  | 2 • 7 7 7      |
|       | 662.50  | 950.00       | 751.05    | 22        | 2.739                  | 2.637          |
|       | 662.50  | 950.00       | 732.66    | 19        | 2.735                  | 2.662          |
|       | 662.50  | 950.00       | 714.27    | 15        | 2.895                  | 2.846          |
|       | 662.50  | 950.00       | 746.45    | 22        | 2.687                  | 2.596          |
|       | 662.50  | 950.00       | 741.85    | 20        | 2.699                  | 2.614          |
|       | 662,50  | 950.00       | 737.25    | 19        | 2.714                  | 2.635          |
|       | 662.50  | 950.00       | 728.06    | 1.8       | 2.760                  | 2.693          |
|       | 662.50  | 950.00       | 723.46    | 17        | 2.794                  | 2.733          |
|       | 662.50  | 950.00       | 718.86    | 16        |                        | 2.782          |
|       |         |              |           |           | 2.837                  |                |
|       | 662.50  | 950.00       | 695.88    | 11        | 3 • 495                | 3 • 472        |
| THE   | LOWEST  | SAFETY FACTO | o Equad   | WAS 2.687 | AT R= 746.45           |                |
| Inc   | LUMESI  | SAFEIT PACIL | R FUUND   | MA3 2.007 | AI N= 740.45           | •              |
|       | 668.75  | 956.25       | 906.25    | 41        |                        | 4.090          |
|       |         | 956.25       |           |           | 4.654                  |                |
|       | 668.75  |              | 904.39    | 41        | 4.634                  | 4 • 077        |
|       | 668.75  | 956.25       | 885.82    | 40        | 4 • 362                | 3 • 886        |
|       | 668.75  | 956.25       | 867.24    | 38        | 4 • 1 1 8              | 3.715          |
|       | 668.75  | 956.25       | 848.67    | 35        | 3.882                  | 3.547          |
|       | 668.75  | 956.25       | 830.09    | 33        | 3 • 6 0 5              | 3 • 336        |
|       | 668.75  | 956.25       | 811,52    | 30        | 3 • 391                | 3 • 178        |
|       | 668.75  | 956.25       | 792.94    | 28        | 3 • 150                | 2.986          |
|       | 668.75  | 956.25       | 774.37    | 25        | 2.957                  | 2.831          |
|       | 668.75  | 956.25       | 755.79    | 22        | 2.679                  | 2.582          |
|       | 668.75  | 956.25       | 737,22    | 18        | 2.731                  | 2.657          |
|       | 668.75  | 956.25       | 769.72    | 24        | 2.897                  | 2.776          |
|       | 668.75  | 956.25       | 765.08    | 23        | 2.849                  | 2.734          |
|       | 668.75  | 956.25       | 760.43    | 22        | 2.814                  | 2.704          |
|       | 668.75  | 956.25       | 751.15    | 21        | 2.685                  | 2.593          |
|       | 668.75  | 956.25       | 746.50    | 21        |                        | 2.610          |
|       | 668.75  | 956.25       |           |           | 2.696                  | 2.632          |
|       | 668.75  | 956.25       | 741.86    | 20<br>16  | 2.711                  | 2.840          |
|       |         |              |           |           | 2.889                  |                |
|       | 668.75  | 956.25       | 700.06    | 10        | 3 • 482                | 3 • 458        |
| T 115 | LOWEST  | CAFETY SAGES | 0 5011110 |           | AT D- TOF 70           |                |
| INC   | FOME 21 | SAFETY FACTO | R FUUNU   | WAS 2.679 | AT R= 755.79           | •              |
|       | 668.75  | 962.50       | 912.50    | 42        | h . 4 4 0              | 4 • 100        |
|       | 668.75  | 962.50       | 912.50    | 42        | 4.660                  | 4.086          |
|       |         |              |           |           | 4.640                  |                |
|       | 668.75  | 962.50       | 892.04    | 40        | 4+348                  | 3 . 895        |
|       | 668.75  | 962.50       | 873.44    | 38        | 4 • 1 2 3              | 3.723          |
|       | 668.75  | 962.50       | 854.84    | 35        | 3 • 886                | 3 • 553        |

|     | 668.75 | 962.50       | 836.24    | 33        | 3+609        | 3.341   |
|-----|--------|--------------|-----------|-----------|--------------|---------|
|     | 668.75 | 962.50       | 817.64    | 31        | 3.394        | 3 • 182 |
|     | 668.75 | 962.50       | 799.04    | 29        | 3 • 151      | 2.989   |
|     | 668.75 | 962.50       | 780.44    | 25        | 2.958        | 2.832   |
|     |        | 962.50       | 761.83    | 22        |              | 2.583   |
|     | 668.75 |              |           |           | 2.679        |         |
|     | 668.75 | 962.50       | 743.23    | 18        | 2.729        | 2 • 656 |
|     | 668.75 | 962.50       | 775.78    | 24        | 2 • 8 9 7    | 2.778   |
|     | 668.75 | 962.50       | 771.13    | 23        | 2.849        | 2.735   |
|     | 668.75 | 962.50       | 766.48    | 22        | 2.813        | 2.704   |
|     | 668.75 | 962.50       | 757.18    | 21        |              | 2.593   |
|     |        |              |           |           | 2 • 683      |         |
|     | 668.75 | 962.50       | 752.53    | 21        | 2.693        | 2.609   |
|     | 668.75 | 962.50       | 747.88    | 20        | 2.709        | 2 • 631 |
|     | 668.75 | 962.50       | 724.63    | 16        | 2.887        | 2.839   |
|     | 668.75 | 962.50       | 706.03    | 11        | 3 • 479      | 3 • 455 |
| THE | LOWEST | SAFETY FACTO | R FOUND W | NAS 2.679 | AT R= 761.83 | •       |
|     | 668.75 | 968.75       | 918.75    | 42        | 4.667        | 4.110   |
|     | 668.75 | 968.75       | 916.89    | 42        | 4.646        | 4.096   |
|     | 668.75 | 968.75       | 898.26    | 40        |              | 3.904   |
|     |        |              |           | -         | 4.374        |         |
|     | 668.75 | 968.75       | 879,64    | 38        | 4 • 128      | 3.731   |
|     | 668.75 | 968.75       | 861.01    | 35        | 3 • 8 9 0    | 3.560   |
|     | 668.75 | 968.75       | 842.38    | 33        | 3 • 6 1 2    | 3.347   |
|     | 668.75 | 968.75       | 823.76    | 31        | 3 • 396      | 3.187   |
|     | 668.75 | 968.75       | 805.13    | 29        | 3 • 152      | 2.992   |
|     | 668.75 | 968.75       | 786.50    | 25        | 2.906        | 2.781   |
|     |        |              |           | 22        |              | 2.583   |
|     | 668.75 | 968.75       | 767.88    |           | 2.679        |         |
|     | 668.75 | 968.75       | 749.25    | 19        | 2.797        | 2 • 655 |
|     | 668.75 | 968.75       | 781.85    | 24        | 2.897        | 2.779   |
|     | 668.75 | 968.75       | 777.19    | 24        | 2.849        | 2.736   |
|     | 668.75 | 968.75       | 772.54    | 22        | 2.812        | 2.704   |
|     | 668.75 | 968.75       | 763.22    | 21        | 2.682        | 2.592   |
|     | 668.75 | 968.75       | 758.57    | 21        |              | 2.607   |
|     |        |              |           |           | 2 • 691      |         |
|     | 668.75 | 968.75       | 753.91    | 50        | 2.708        | 2.630   |
|     | 668.75 | 968.75       | 730.63    | 16        | 2 • 8 8 6    | 2.838   |
|     | 668.75 | 968.75       | 712.00    | 11        | 3 • 477      | 3 • 454 |
| THE | LOWEST | SAFETY FACTO | R FOUND W | NAS 2.679 | AT R= 767.88 | •       |
|     | 668.75 | 975.00       | 925.00    | 42        | 4.674        | 4.120   |
|     | 668.75 | 975.00       | 923.13    | 42        | 4 • 652      | 4.106   |
|     | 668.75 | 975.00       | 904.48    | 40        | 4.428        | 3.955   |
|     | 668.75 | 975.00       | 885.83    | 38        |              | 3.739   |
|     |        |              |           |           | 4 • 1 3 3    |         |
|     | 668.75 | 975.00       | 867.18    | 36        | 3 • 8 2 4    | 3.567   |
|     | 668.75 | 975.00       | 848.53    | 34        | 3+616        | 3 • 353 |
|     | 668.75 | 975.00       | 829.88    | 31        | 3 • 399      | 3 • 191 |
|     | 668.75 | 975.00       | 811.23    | 29        | 3 • 154      | 2.995   |
|     | 668.75 | 975.00       | 792.57    | 25        | 2.907        | 2.783   |
|     |        |              |           |           |              |         |
|     | 668.75 | 975.00       | 773.92    | 22        | 2 • 679      | 2.584   |
|     | 668.75 | 975.00       | 755.27    | 19        | 2.725        | 2.654   |
|     | 668.75 | 975.00       | 787.91    | 24        | 2 • 8 9 8    | 2 • 781 |
|     | 668.75 | 975.00       | 783.25    | 24        | 2.850        | 2.738   |
|     | 668.75 | 975.00       | 778.59    | 22        | 2.770        | 2.663   |
|     | 668.75 | 975.00       | 769.26    | 21        | 2.682        | 2.592   |
|     | 668.75 | 975.00       | 764.60    | 21        | 2.690        | 2.606   |
|     |        | 975.00       |           |           |              |         |
|     | 668.75 |              | 759.93    | 21        | 2.706        | 2 • 628 |
|     | 668.75 | 975.00       | 736.62    | 16        | 2.884        | 2.837   |
|     | 668.75 | 975.00       | 717.97    | 11        | 3 • 475      | 3 • 452 |

THE LOWEST SAFETY FACTOR FOUND WAS 2.679 AT R= 773.92 .

|     | 675.00<br>675.00                               | 968.75<br>968.75                               | 918.75<br>916.87                               | 42                         | 4 • 6 6 5                        | 4.113                                     |
|-----|------------------------------------------------|------------------------------------------------|------------------------------------------------|----------------------------|----------------------------------|-------------------------------------------|
|     |                                                | 968.75                                         | 898.08                                         | 40                         | 4.644                            | 3.945                                     |
|     | 675.00                                         | 968.75                                         | 879.30                                         | 38                         | 4.417                            | 3.730                                     |
|     | 675.00                                         | 968.75                                         |                                                | 35                         | 3.884                            | 3.557                                     |
|     | 675.00                                         | 968.75                                         | 860,51<br>841.73                               | 34                         | 3 • 657                          | 3.392                                     |
|     | 675.00                                         | 968.75                                         | 822.94                                         | 31                         | 3.390                            | 3.184                                     |
|     | 675.00                                         | 968.75                                         | 804.15                                         | 28                         | 3.149                            | 2.990                                     |
|     | 675.00                                         | 968.75                                         | 785.37                                         | 25                         | 2.961                            | 2.836                                     |
|     | 675.00                                         | 968.75                                         | 766.58                                         | 22                         | 2.683                            | 2.586                                     |
|     | 675.00                                         | 968.75                                         | 747.79                                         | 19                         | 2.725                            | 2.652                                     |
|     | 675.00                                         | 968.75                                         | 780.67                                         | 24                         | 2.904                            | 2.784                                     |
|     | 675.00                                         | 968.75                                         | 775.97                                         | 24                         | 2.860                            | 2.746                                     |
|     | 675.00                                         | 968.75                                         | 771.28                                         | 22                         | 2.775                            | 2.667                                     |
|     | 675.00                                         | 968.75                                         | 761.88                                         | 21                         | 2.684                            | 2.594                                     |
|     | 675.00                                         | 968.75                                         | 757.19                                         | 21                         | 2.691                            | 2.606                                     |
|     | 675.00                                         | 968.75                                         | 752.49                                         | 21                         | 2.705                            | 2.626                                     |
|     | 675.00                                         | 968.75                                         | 729.01                                         | 15                         | 2.882                            | 2.833                                     |
|     | 675.00                                         | 968.75                                         | 710.22                                         | 11                         | 3.467                            | 3.444                                     |
|     | 0/3.00                                         | 700173                                         | 110.22                                         | • •                        | 3 4 6 7                          | 3444                                      |
| THE | LOWEST                                         | SAFETY FACT                                    | OR FOUND WAS                                   | 2.683 AT                   | R= 766.58 .                      |                                           |
|     | 662.50                                         | 968.75                                         | 918.75                                         | 42                         | 4.670                            | 4.110                                     |
|     | 662.50                                         | 968.75                                         | 916.90                                         | 41                         | 4 • 650                          | 4.096                                     |
|     | 662.50                                         | 968.75                                         | 898.44                                         | 40                         | 4.378                            | 3.905                                     |
|     | 662.50                                         | 968.75                                         | 879.97                                         | 38                         | 4 • 1 3 5                        | 3.733                                     |
|     | 662.50                                         | 968.75                                         | 861.51                                         | 36                         | 3.898                            | 3.564                                     |
|     | 662,50                                         | 968.75                                         | 843.04                                         | 33                         | 3 • 620                          | 3.351                                     |
|     | 662.50                                         | 968.75                                         | 824.58                                         | 31                         | 3.404                            | 3.191                                     |
|     | 662.50                                         | 968.75                                         | 806.11                                         | 29                         | 3+158                            | 2.995                                     |
|     | 662.50                                         | 968.75                                         | 787.64                                         | 25                         | 2.906                            | 2.781                                     |
|     | 662.50                                         | 968.75                                         | 769.18                                         | 22                         | 2.725                            | 2.627                                     |
|     | 662.50                                         | 968.75                                         | 750.71                                         | 18                         | 2.729                            | 2.658                                     |
|     |                                                | 0/0 - 5                                        |                                                | 25                         |                                  | 2.777                                     |
|     | 662.50                                         | 968.75                                         | 783,03                                         |                            | 2.894                            |                                           |
|     | 662.50                                         | 968.75                                         | 778.41                                         | 23                         | 2.894                            | 2.730                                     |
|     |                                                | 968.75<br>968.75                               | 778.41<br>773.79                               |                            |                                  | 2.730<br>2.701                            |
|     | 662.50<br>662.50<br>662.50                     | 968.75<br>968.75<br>968.75                     | 778.41<br>773.79<br>764.56                     | 23<br>23<br>22             | 2.842                            | 2.730<br>2.701<br>2.592                   |
|     | 662.50<br>662.50<br>662.50<br>662.50           | 968.75<br>968.75<br>968.75<br>968.75           | 778.41<br>773.79<br>764.56<br>759.95           | 23<br>23<br>22<br>21       | 2.842<br>2.808<br>2.681<br>2.693 | 2.730<br>2.701<br>2.592<br>2.610          |
|     | 662.50<br>662.50<br>662.50<br>662.50<br>662.50 | 968.75<br>968.75<br>968.75<br>968.75<br>968.75 | 778.41<br>773.79<br>764.56<br>759.95<br>755.33 | 23<br>23<br>22<br>21<br>20 | 2.842<br>2.808<br>2.681          | 2.730<br>2.701<br>2.592<br>2.610<br>2.632 |
|     | 662.50<br>662.50<br>662.50<br>662.50           | 968.75<br>968.75<br>968.75<br>968.75           | 778.41<br>773.79<br>764.56<br>759.95           | 23<br>23<br>22<br>21       | 2.842<br>2.808<br>2.681<br>2.693 | 2.730<br>2.701<br>2.592<br>2.610          |

THE LOWEST SAFETY FACTOR FOUND WAS 2.681 AT R= 764.56 .

THE MINIMUM FACTOR OF SAFETY IS 2.679 FOR X= 668.75 AND Y= 968.75.











bureau of mines information circular 8411

4 - JUN 2 5 Copy \_\_\_\_ 1969

# SUPPLY AND DEMAND FOR ENERGY IN THE UNITED STATES BY STATES AND REGIONS, 1960 AND 1965

(In Four Parts)

4. Petroleum and Natural Gas Liquids



UNITED STATES DEPARTMENT OF THE INTERIOR



# SUPPLY AND DEMAND FOR ENERGY IN THE UNITED STATES BY STATES AND REGIONS, 1960 AND 1965

(In Four Parts)

4. Petroleum and Natural Gas Liquids

By Lulie H. Crump and Phillip N. Yasnowsky

\* \* \* \* \* \* \* \* \* \* \* \* information circular 8411



UNITED STATES DEPARTMENT OF THE INTERIOR Walter J. Hickel, Secretary

BUREAU OF MINES
John F. O'Leary, Director

This publication has been cataloged as follows:

# Crump, Lulie H

Supply and demand for energy in the United States by States and regions, 1960 and 1965. (In four parts.) 4. Petroleum and natural gas liquids, by Lulie H. Crump and Phillip N. Yasnowsky. [Washington] U. S. Dept. of the Interior, Bureau of Mines [1969]

25 p. illus., tables. (U. S. Bureau of Mines. Information circular 8411)

1. Power resources-U.S. 2. Petroleum-U.S. 3. Gas, Natural-U.S. I. Yasnowsky, Phillip N., jt. auth. II. Title. (Series)

TN23.U71 no. 8411 622.06173

U. S. Dept. of the Int. Library

#### FOREWORD

Each year the Bureau of Mines features an annual energy balance by source, form, and end-use in the Minerals Yearbook. It has been suggested that this national balance would be improved if it were prepared within the context of prior State and regional balances, and interregional energy flows.

Unfortunately, supply and demand data on a State-by-State basis for various energy sources, forms, and markets are not readily available. This study attempts to correct this deficiency by constructing an energy model at the State and regional level and quantifying this with available data and information. The study is presented in four parts: (1) Coal, (2) Utility Electricity, (3) Natural Gas, and (4) Petroleum and Natural Gas Liquids. Data are shown for the years 1960 and 1965.

The State and regional commodity balances presented in the four parts of the study are compatible with and additive to the Bureau's national balances for 1960 and 1965 as shown in the Minerals Yearbook. This compatibility was achieved by using the national energy model as a base for the State and regional model; by standard presentation of energy components within a 50-State, three-region, and seven-subregion framework; and by the use of standard units as well as energy equivalents--British thermal units. The separate commodity balances and flows are also designed to serve as inputs for the construction of integrated energy balances at the State, regional, and national levels. These integrated balances will be the subject of a second study to be released at a later date.

WILLIAM A. VOGELY Assistant Director--Mineral Resource Evaluation



# CONTENTS

|             |                      |                                                                                                                                                                                                                                                            | Lage                                                 |
|-------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| A<br>I<br>M | bstr<br>ntro<br>etho | ord                                                                                                                                                                                                                                                        | i<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>3<br>3<br>23 |
|             |                      | ILLUSTRATIONS                                                                                                                                                                                                                                              |                                                      |
| F           | ig.                  |                                                                                                                                                                                                                                                            |                                                      |
|             | 1.<br>2.<br>3.<br>4. | Flow pattern for crude petroleum, by Regions, 1960                                                                                                                                                                                                         | 5<br>5<br>6<br>6                                     |
|             |                      | TABLES                                                                                                                                                                                                                                                     |                                                      |
|             | 1.<br>2.             | Supply of petroleum by States and Regions, 1960  Demand for petroleum products by major consumer sectors, by States and Regions, 1960  Supply of petroleum by States and Regions, 1965  Demand for petroleum products by major consumer sectors, by States | 7<br>8<br>9                                          |
|             | 5.                   | and Regions, 1965                                                                                                                                                                                                                                          | 10                                                   |
|             | 6.                   | by States and Regions, 1960                                                                                                                                                                                                                                | 11                                                   |
|             | 7.                   | by major consumer sector, by States and Regions, 1960<br>Supply and demand for gasoline by major consumer sector, by                                                                                                                                       | 12                                                   |
|             | 8.                   | States and Regions, 1960                                                                                                                                                                                                                                   | 13                                                   |
|             | 9.                   | major consumer sector, by States and Regions, 1960  Supply and demand for distillate fuel oil by major consumer                                                                                                                                            | 14                                                   |
|             | 10.                  | sector, by States and Regions, 1960                                                                                                                                                                                                                        | 15                                                   |
|             | 11.                  | by States and Regions, 1960                                                                                                                                                                                                                                | 16                                                   |
|             | 12.                  | by States and Regions, 1965                                                                                                                                                                                                                                | 17                                                   |
|             | 13.                  | by major consumer sector, by States and Regions, 1965                                                                                                                                                                                                      | 18                                                   |
|             | 14.                  | Supply and demand for gasoline by major consumer sector, by States and Regions, 1965                                                                                                                                                                       | 19                                                   |
|             |                      | major consumer sector, by States and Regions, 1965                                                                                                                                                                                                         | 20                                                   |

#### TABLES--Continued

|      |                                                                   | Page |
|------|-------------------------------------------------------------------|------|
| 15.  | Supply and demand for distillate fuel oil by major consumer       |      |
|      | sector, by States and Regions, 1965                               | 21   |
| 16.  | Supply and demand for residual fuel oil by major consumer sector, |      |
|      | by States and Regions, 1965                                       | 22   |
| A-1. | Outline of computational procedures and source data for supply    |      |
|      | and demand sectors                                                | 23   |

# SUPPLY AND DEMAND FOR ENERGY IN THE UNITED STATES BY STATES AND REGIONS, 1960 AND 1965

(In Four Parts)

4. Petroleum and Natural Gas Liquids

by

Lulie H. Crump<sup>1</sup> and Phillip N. Yasnowsky<sup>2</sup>

#### ABSTRACT

U.S. supply and demand data for petroleum and natural gas liquids, by States and regions, were tabulated for the years 1960 and 1965. Estimates are provided of State-by-State quantitative data for the petroleum and natural gas liquids industry that can be integrated into State, regional, and national energy balances by source, form, and consumer sectors, and used for determination of interstate and interregional energy flows. Tables 1-4 show the estimated total supply of petroleum available for consumption and the supply's distribution among the major consumer demand sectors (household and commercial, industrial, transportation, and electricity generation). To obtain summary figures for the major proportion of refined products by States, individual tables were compiled for the six major products (tables 5-16). To enable comparison of petroleum data with those for other energy forms, conventional volumetric data in barrels were converted to their British thermal unit (Btu) equivalents. Interregional shipments of crude petroleum and theoretical flow patterns for petroleum products are shown in figures 1-4.

#### INTRODUCTION

Supply and demand data on a State-by-State basis for various energy forms and markets have not been readily available for use by those engaged in energy analysis and forecasting. Much of the available major energy resources data is prepared on the basis of regional divisions peculiar to each industry. The primary purpose of this study is to provide, on a State-by-State basis, petroleum and natural gas liquids industry data that can be (1) integrated into State and regional energy balances by source, form, and consumer sectors, and (2) used to determine interstate and interregional energy flows.

Because the complexity of petroleum statistics exceeds that for other energy sources, a table is included (see appendix) describing the basic methodology used to develop the input data, presenting the computational

<sup>&</sup>lt;sup>1</sup>Statistical assistant, Division of Mineral Economics, Bureau of Mines, Washington, D.C.

<sup>&</sup>lt;sup>2</sup>Economist, Division of Mineral Economics, Bureau of Mines, Washington, D.C.

procedures and identifying source material. The primary energy source material is Bureau of Mines' petroleum and natural gas liquids data published annually in the Minerals Yearbook and Mineral Industry Surveys series.

#### METHODOLOGY

#### Regions and States

In this study, the United States was arbitrarily divided into three energy regions:

## Region I Eastern United States:

Sı

| ubregion Ia:  |                      |             | Subregion Ib: |
|---------------|----------------------|-------------|---------------|
| Maine         | Pennsylvania         | Georgia     | Indiana       |
| New Hampshire | Delaware             | Florida     | Illinois      |
| Vermont       | Maryland             | Kentucky    | Michigan      |
| Massachusetts | District of Columbia | Tennessee   | Wisconsin     |
| Rhode Island  | Virginia             | Alabama     |               |
| Connecticut   | West Virginia        | Mississippi |               |
| New York      | North Carolina       | Ohio        |               |
| New Jersev    | South Carolina       |             |               |

## Region II Central United States:

| Subregion IIa: | Subregion IIb: |
|----------------|----------------|
| Minnesota      | Arkansas       |
| Iowa           | Louisiana      |
| Missouri       | Oklahoma       |
| North Dakota   | Texas          |
| South Dakota   | New Mexico     |
| Nebraska       | Kansas         |

#### Region III Western United States:

| Subregion IIIa: | Subregion IIIb: |
|-----------------|-----------------|
| Montana         | Arizona         |
| Idaho           | Nevada          |
| Wyoming         | California      |
| Utah            |                 |
| Colorado        | Subregion IIIc: |
| Washington      | Alaska          |
| Oregon          | Hawaii          |
|                 |                 |

#### Btu Conversions

#### Crude Petroleum

Heat value for U.S. total crude oil for each year shown is based on the average British thermal unit (Btu) value of total output of petroleum products

(including refinery fuel and losses), adjusted to exclude natural gas liquids inputs and their implicitly derived heat values. Heat value for net imports of crude is based on the average Btu value of crude runs to stills.

#### Petroleum Products

The following factors were used to convert the various product volumes to Btu values:

|                         | Factor<br>(Btu per barrel) |
|-------------------------|----------------------------|
| Product:                |                            |
| Gasoline                | 5,248,000                  |
| Kerosine                | 5,670,000                  |
| Distillate fuel oil     | 5,825,000                  |
| Residual fuel oil       | 6,287,000                  |
| Jet fuel (naphtha-type) | 5,248,000                  |
| Liquefied gases         | 4,011,000                  |

Minor adjustments were made in order to balance energy values on a State and regional basis and to meet published national totals.

#### SUMMARY OF DATA

Analysis of crude oil data shows a relatively stable percentage distribution of production, runs to stills, and apparent demand between subregions over the 5-year period 1960-65. Subregion IIb, the major surplus region, accounted for slightly more than two-thirds of the crude oil production and nearly one-half of the crude runs to stills in both years. The distribution and Subregion IIb shipping trends are shown in the following tabulations:

|                 | Crude oil distribution, percent |       |         |        |                |       |  |  |  |  |  |  |  |
|-----------------|---------------------------------|-------|---------|--------|----------------|-------|--|--|--|--|--|--|--|
| Subregion       | Produc                          | tion  | Runs to | stills | Apparent deman |       |  |  |  |  |  |  |  |
|                 | 1960                            | 1965  | 1960    | 1965   | 1960           | 1965  |  |  |  |  |  |  |  |
| Ia              | 3.7                             | 3.8   | 21.2    | 21.0   | 45.8           | 48.1  |  |  |  |  |  |  |  |
| Ib              | 4.1                             | 3.2   | 13.9    | 13.4   | 13.5           | 13.0  |  |  |  |  |  |  |  |
| IIa             | 1.8                             | 1.5   | 2.1     | 2.2    | 6.7            | 6.4   |  |  |  |  |  |  |  |
| IIb             | 68.8                            | 71.9  | 44.8    | 44.7   | 15.4           | 17.2  |  |  |  |  |  |  |  |
| IIIa            | 9.7                             | 8.1   | 5.0     | 5.6    | 5.7            | 5.5   |  |  |  |  |  |  |  |
| IIIb            | 11.9                            | 11.1  | 13.0    | 12.5   | 11.8           | 9.9   |  |  |  |  |  |  |  |
| IIIc            | Neg.                            | .4    | Neg.    | .6     | .5             | .9    |  |  |  |  |  |  |  |
| Unaccounted for | -                               | -     | -       | -      | .6             | -1.0  |  |  |  |  |  |  |  |
| Total           | 100.0                           | 100.0 | 100.0   | 100.0  | 100.0          | 100.0 |  |  |  |  |  |  |  |

Neg. -- Negligible.

| Subregion   | Net crude oil shippe | d from subregion IIb |
|-------------|----------------------|----------------------|
| destination | to other subre       | gions, percent       |
|             | 1960                 | 1965                 |
| Ia          | 47.0                 | 46.4                 |
| Ib          | 50.9                 | 50.6                 |
| IIa         | 3.9                  | 2.5                  |
| IIIa        | -2.8                 | 7                    |
| IIIb        | 1.6                  | 1.2                  |
| IIIc        | -                    | -                    |
| Imports     | 6                    | -                    |
| Total       | 100.0                | 100.0                |

Although total demand for products by districts remained on a fairly stable basis between 1960 and 1965, there were shifts within the various major product outputs and demands by State.



FIGURE 1. - Flow Pattern for Crude Petroleum, by Regions, 1960 (Million Barrels).



FIGURE 2. - Flow Pattern for Crude Petroleum, by Regions, 1965 (Million Barrels).



FIGURE 3. - Theoretical Flow Pattern for Petroleum Products, by Regions, 1960 (Million Barrels).



FIGURE 4. - Theoretical Flow Pattern for Petroleum Products, by Regions, 1965 (Million Barrels).

|                                      |      | 1    | oheara             | Ref                | ined      | produc | IS .             |                  |              |                |                    |       |                      |                |                 |  |  |  |
|--------------------------------------|------|------|--------------------|--------------------|-----------|--------|------------------|------------------|--------------|----------------|--------------------|-------|----------------------|----------------|-----------------|--|--|--|
|                                      | 1    | di   | change<br>ing nati | ITE                | anste     | cs in  | of               | f                |              |                |                    |       |                      |                |                 |  |  |  |
|                                      | -    | S    | liquids            | s)                 | Liqu      | l gas  | No.              | et shi           | pments       | s <sup>2</sup> | Losses,<br>and una | gains |                      | otal           | supply          |  |  |  |
|                                      | L    | nd   | Trilli             | on Th              | ousan     | d Tril | Inot             | sand             | Tril         | llion          | f                  | or    | 8                    | vaila          | ole for         |  |  |  |
| State and Region                     |      | 10 8 | Btu                | ba                 | rrels     | lion   | Vali             | rels             | Bt           | tu             | Thousan            | d Tri | 1- Tho               | consu          | ption           |  |  |  |
|                                      | þ    | 1.0  | +39.               | E 1/0              |           | Btu    |                  |                  | 1            |                | barrels            | lio   | n bar                | rels           | Trillion<br>Btu |  |  |  |
|                                      |      |      |                    | 2 109              | ,542.     | 0 679. | 9 +221           | ,718.0           | +1.4         | 45.5           | 18,200.0           | 1     | - 1                  |                |                 |  |  |  |
| United States total.                 | 2,   | 57   |                    | 1                  |           | 1      |                  |                  |              |                | 10,200.0           | -101  | .1 3,611             | ,246.0         | 20,067.0        |  |  |  |
| Region 1:                            |      | .0   | +                  |                    | -         | 1 -    | 127              | 10/ 0            |              | - 1            |                    |       |                      |                |                 |  |  |  |
| Subregion Ia:                        |      | .0   | +.:                | 3                  | -         | -      | +14              | ,194.0<br>,579.0 | +15          | 53.3           | -                  | 1 -   | 27                   | 294.0          |                 |  |  |  |
| Maine                                |      | 1.0  | +.3<br>+1.8        | 3                  | -         | -      | +7               | ,848.0           | +8           | 81.2<br>43.2   | -                  | 1 -   | 14,                  | 630.0          | 153.8           |  |  |  |
| New Hampshire                        |      | 0.   | -6.3               | 3                  | •         | - 1    | +121             | 347.0            | +70          | 04.6           | -                  | -     | 7.                   | 896.0          | 81.5<br>43.5    |  |  |  |
| Vermont<br>Massachusetts             |      | 0.0  | +.5                |                    |           | -      | +25,             | 334.0            | +14          | 7.4            | -                  | - 1   | 135,                 | 635.0<br>812.0 | 787.1           |  |  |  |
| Rhode Island                         |      | 0.   | +3.2               |                    |           | 1 -    | +62,             | 485.0            | +35          | 6.4            | - 2                | -     | 27,                  | 812.0          | 163.8           |  |  |  |
| Connecticut                          |      | 0.0  | +8.2               | 1 .                |           |        | +254,            | 981.0            | +1,45        | 8.4            |                    |       | 62,                  | 583.0          | 356.9           |  |  |  |
| New York                             |      | .0   | 9                  | } .                |           | -      | -5.              | 711.0            |              | 1.2            | -                  | -     | 161                  | 216.0          | 1,615.0         |  |  |  |
| New Jersey                           |      | .0   | +2.6<br>+7.7       |                    |           | -      | -23.             | 550.0            | -124         | 8.5            | -                  | -     | 200,                 | 350.0          | 937.5           |  |  |  |
| Pennsylvania                         | 1    | الت  | T/./               | 1 -                |           | -      | +53,             | 529.0            | +304         |                | ~                  | -     | 21,                  | 29.0           | 1,165.3         |  |  |  |
| Delaware                             |      | - }  | -                  | 1                  | - 1       |        |                  |                  | ,300         | 4.9            | - 1                | -     | 61,3                 | 68.0           | 353.4           |  |  |  |
| Maryland<br>District of              |      | .0   | +1.8               | ] ]                | - 1       | - 1    | +10,             | 295.0            | +58          | 3.4            | - 1                |       | ł.                   |                | -5514           |  |  |  |
| Columbia                             |      | .0   | +.7                | 7,0                | 08,0      | 28.1   | +59,2            |                  | +336         |                | - 1                |       | 10,2                 | 95.0           | 58.4            |  |  |  |
| Virginia                             | H    | .0   | +2.7               | -                  |           | -      | +15,3<br>+68,3   | 72.0             | +82          | 2.4            | - 1                | ~     | 74,0<br>24,8         | 39.0           | 419.3           |  |  |  |
| West Virginia                        |      | .0   | +1.4<br>+1.7       | -                  |           | -      | +33,7            | 68.0             | +373<br>+184 | .01            | -                  | -     | 68,8                 | 23.0           | 123.0           |  |  |  |
| Norgh Carolina                       |      | 0    | +2.1               | -                  |           | - 1    | +49,8            | 13.0             | +266         | . 9            | -                  | -     | 36,4                 |                | 375.7<br>201.5  |  |  |  |
| South Carolina                       | 1.   | 0    | +1.3               | 3,32               | 26 0      |        | +99,0            | 88.0             | +552         | .1             | - 1                | -     | 51,9                 | 72.0           | 280.8           |  |  |  |
| Georgia<br>Florida                   |      | 0    | +1.3               | -                  | .0.0      | 13.3   | -6               | 26.0             | -5.          | .1             | - 1                | -     | 100,08               | 37.0           | 558.1           |  |  |  |
| Kentucky                             |      | 0    | +.6                | -                  | - 1       | 1      | +34,2            | 85.0             | +181.        | .1             | - 1                | - 1   | 35,28<br>40,11       | 32.0           | 187.1           |  |  |  |
| Tennessee                            | 1:   |      | -1.8               | 22                 | 4.0       | .9     | +36,39           | 17.0             | +194.        |                | -                  | - 1   | 40,11                | 8.0            | 214.3           |  |  |  |
| Alabama                              | I É  |      | +2.8               | 10.55              | _         | -      | +2.18            | 30.0             | +89.         | اه             | -                  | -     | 25,71                | 0.0            | 219.0<br>135.0  |  |  |  |
| Mississippi                          |      |      | 132.3              | 10,55              | 8.0       | 42.3   | +960,42          | 8.0 +            | +10.         | 0              |                    |       | 140,14               | 8.0            | 781.4           |  |  |  |
| Ohio<br>Subtotal Ia<br>Subregion Ib: | H. 1 |      | +1.7               |                    |           |        |                  | -                | 3            | -              |                    |       | 1,651,05             | 4.0 9          | ,341.5          |  |  |  |
| Subregion Ib:                        | ₩.0  |      | +2.7               | -                  |           | - 1    | -46,11           | 8.0              | -268.        | 2              | -                  | -     | 110.44               |                |                 |  |  |  |
| Indiana                              | 1.0  | 4    | +5.1               | -                  | - 1       | -      | -31,02<br>+67,90 | 8.0              | -156.        | 4              | -                  | - 1   | 115,44               |                | 657.1           |  |  |  |
| Illinois                             | 3.0  |      | 9                  |                    | _         | -      | +62,82           | 3.01             | +367.2       |                | - 1                | - 1   | 119,612              | 2.01           | ,036.8          |  |  |  |
| Michigan                             | 2.0  |      | +8.6               | -                  |           | -      | +53.57           | 7.0              | +339.8       |                | -                  |       | 67,673               |                | 659.7<br>369.1  |  |  |  |
| Wisconsin                            |      |      | +41.1 10           |                    | ,558.0 42 |        | ,014,00          | 5.0 +5           | 711 /        | 4              |                    | -     | 487,682              | 487,682.0 2.   |                 |  |  |  |
| Subtotal Ib Subtotal I Region II:    | ł    |      |                    |                    |           |        |                  |                  | 711.4        | -              | -                  | - 2   | ,138,736             | .0 12          | 064.2           |  |  |  |
| Subtotal I Region II:                | \$.0 | 1    | +.9                | -                  |           | - 1    |                  | - 1              |              | 1              |                    | - 1   |                      |                |                 |  |  |  |
| Subregion IIa:                       | 1.0  |      | 3                  | -                  |           | -      | +42,511          |                  | 227.0        |                | -                  | - 1   | 66 000               |                |                 |  |  |  |
| Minnesota                            | 2.0  |      | +1.4               | -                  |           | -      | +48,018          | .0               | 255.3        |                | -                  | - 1   | 66,988<br>47,941     | .01            | 368.1           |  |  |  |
| Iowa                                 | 9 0  |      | 3                  | 781.               | .0        | 3.1    | -2,267           | .01              | 252.4        |                | -                  | -     | 72,254               |                | 255.0<br>388.6  |  |  |  |
| Missouri                             | 6 0  |      | 3                  | 1,039.             |           |        | +14,904          | .0               | +78.7        |                | -                  | -     | 15,613.              | .0             | 83.9            |  |  |  |
| North Dakota                         | 0.0  | -    | 1.1                | 1,820.             |           | -2     | +22,336          | .0 +             | 117.9        |                |                    | -     | 14,845.              | .01            | 78.4            |  |  |  |
| South Dakota<br>Nebraska             |      |      |                    | 1000               | -         | .3     | +173,642         | .0 +             | 919.5        |                |                    | -+-   | 24,227.              |                | 126.9           |  |  |  |
| Subtotal IIa.                        | 3.0  |      | 8                  | 1,445.             | 0 5       | .8     | -1,957.          |                  |              | -              | -                  |       | 241,868.             | 0 1,           | 300.9           |  |  |  |
| Subregion IIb:                       | . 01 |      | 6.1 1              | 9,865.             | 0 79      | .71 -  | 193,555          |                  | 18.0         |                |                    |       | 29,031.              | ر اه           | .56.8           |  |  |  |
| Arkansas                             | .01  |      | 1.6   1            | 7,354.             | 0 69      | -61    | -94,209.         |                  | 046.0        | -              |                    | -     | 103,733.<br>67,362.  | 0              | 90.5            |  |  |  |
| Louisiana                            | 0.1  |      |                    | 3,953.0<br>2,963.0 | 376       | - 10   | 615,755.         | 0 -3.3           | 42.4         | -              | -   -              |       | 67,362.              | 0 3            | 75.3            |  |  |  |
| Oklahoma                             |      |      | +.3                | 3,260.0            | 52        | .01    | -5,687.          | 0 -              | 13.6         |                | -   -              |       | 269,254.             | 0 1,3          | 85.3            |  |  |  |
| Texas                                | .0   | -2:  |                    | 8,840.0            | 597       |        | -57,143.         | 0 -3             | 17.4         |                |                    |       | 21,212.0             |                | 14.6            |  |  |  |
| New Mexico                           | .0   | -22  | 2.0 150            | ,660.0             | 604       | _      | 968, 306.        | 0 -5,2           | 38.6         | -              |                    | 1     | 66,825.0<br>57,417.0 |                | 77.7            |  |  |  |
| Subtotal IIb.                        | 1    |      |                    |                    | <b>†</b>  | -      | 794,664.         | 1-4,3            | 19.1         | -              |                    |       | 99,285.0             |                | 00.2            |  |  |  |
| Subtotal Ib                          | 0    | 11   | .4 1               |                    |           |        |                  |                  |              |                |                    | T     | 1203.0               | 4,30           | 11.1            |  |  |  |
| Region III: 8.                       | 0    |      | .4 1               | ,972.0             | 7.        |        | -7,424.0         |                  | 88.2         |                |                    |       |                      |                |                 |  |  |  |
| Subregion IIIa: 5.                   | 0    | -2   |                    | ,524.0             | 1.0       | . +    | 12,152.0         | +6               | 5.8          | -              | -                  |       | 21,100.0             | 12             | 0.9             |  |  |  |
| Montana                              | 0    | - 1  | .1                 | -                  | 18.       |        | 20,812.0         | -11              | 1.4          |                | 1 :                |       | 12,134.0             | 6              | 5.7             |  |  |  |
| Idaho                                |      |      | .7 1               | ,828.0             | 7.:       | 3 -    | 10,487.0         |                  | 6.5          | -              |                    |       | 20,678.0             | 12             | 3.6             |  |  |  |
| Wyoming7.<br>Utah                    |      | +4   | .8                 | -                  | - '       |        | 23,497.0         |                  | 9.7          | -              | -                  |       | 27,578.0             |                | 8.9             |  |  |  |
| Colorado9.                           | 4    |      |                    | - 1                |           |        | 34,448.0         | +12              |              | -              | -                  | 1 6   | 6,777.0              | 37             | 5.1<br>7.8      |  |  |  |
| wasnington                           | +    | +4.  | 5 8,               | 324.0              | 33.3      | +4     | 44,470.0         | +19              | 1.4          | <u> </u>       |                    |       | 84.297.0             |                | 0.6             |  |  |  |
| Oregon                               | ol . | ٠.   | 4                  |                    |           |        |                  | 724              | 0.9          |                |                    | 20    | 4,889.0              | 1,15           | 3 6             |  |  |  |
| Subtotal IIk of                      |      |      |                    | - 1                | -         | +1     | 9,181.0          | +101             | 1.6          |                |                    |       |                      |                |                 |  |  |  |
| Subregion IIIb: k c                  | _    | +42. | 3                  | -                  |           | +      | 7,294.0          | +38              | 8.8          | -              | 1                  | 1     | 9,105.0              | 101            | .2              |  |  |  |
| Arizona                              | -    | +41. | 8                  | -                  | -         | -9     | 2,680.0          | -527             |              | -              | 1                  | 40    | 7,256.0              | 38             |                 |  |  |  |
| Californiab o                        |      |      |                    | -                  |           | 0      | 6,205.0          | -387             | .0           | -              | -                  | 42    | 0,027.0<br>6,388.0   | 2,335          | .5              |  |  |  |
| Subtotal IIb o                       |      |      |                    | -                  | -         | +.     | 5,613.0          | +31              | 0            |                |                    |       | 1,500.0              | 2,475          | -4              |  |  |  |
| Subregion IIIc: 0                    |      |      |                    |                    |           | +1:    | 2,892.0          | +74              |              |                | 1 -                |       | 5,584.0              | 31             | .7              |  |  |  |
| Alaska                               |      | 45.9 | _                  | 324.0              | -         | +18    | 8,505.0          | +106             | .0           | -              | +                  | 14    | ,135.0               | 82             | . 3             |  |  |  |
|                                      |      | -    | 0,5                | 24.0               | 33.3      |        | 3,230.0          | -32              | 1            |                | +                  |       | ,719.0               | 114            | .0              |  |  |  |
| Subtotal I 8.0                       | -    | 25.5 |                    | .                  |           |        |                  | -                | - 1          | -              |                    | 650   | ,996.0               | 3,743.         | 0               |  |  |  |
| Subtotal<br>Foreign                  |      |      |                    |                    |           | +5     | ,607.0           | +85.             | 3 18,        | 200.0          | -101.1             | 22    | ,229.0               |                | •               |  |  |  |
|                                      |      |      |                    |                    |           |        |                  |                  |              |                |                    |       |                      | -41.           | 2               |  |  |  |

Foreign....... Unaccounted for. Neg.--Negligible

1 Withdrawals fro
2 Net foreign tra



1960

|                                | Crude oil   |                    |           |             |                          |                        |                                             | Runs to stills |                       |                 |                                            |              |                                         |                                         |                    |             | Refined products     |                           |                        |                   |                     |                                |                      |         |                         |                    |           |              |                        |                  |
|--------------------------------|-------------|--------------------|-----------|-------------|--------------------------|------------------------|---------------------------------------------|----------------|-----------------------|-----------------|--------------------------------------------|--------------|-----------------------------------------|-----------------------------------------|--------------------|-------------|----------------------|---------------------------|------------------------|-------------------|---------------------|--------------------------------|----------------------|---------|-------------------------|--------------------|-----------|--------------|------------------------|------------------|
|                                | Produc      | t (an              | Stock c   |             | Net ship                 | ments2                 | Losses and<br>transfers for Total supply of |                |                       |                 | Iransfers in of natural gas Total refinery |              |                                         | Unfinished oils,<br>net Overage or loss |                    |             | - loss               | Stock change <sup>1</sup> |                        |                   |                     | Transfera in of Losses, gains, |                      |         |                         |                    |           | Total supply |                        |                  |
| State and Region               | Thousand    | Trillion           | Thousan   | d Tril-     | Thousand                 | Trillion               | use as c                                    | rude           | crude                 | oil             | liquid                                     | s            | outp                                    | ut                                      | Thousand           |             | Thousand             | Trll-                     | Total sup<br>refined p | ply of<br>roducts | (includir           |                                | nstural<br>liqui     |         | Net ship<br>Thousand    |                    | and unacc |              | availabl<br>consume    | le for           |
|                                | barrels     | 8tu                | barrels   | lion<br>8tu | barrels                  | Btu                    | Thousand                                    | lion           | Thousand<br>barrels   | Trillion<br>8tu | Thousand<br>barrels                        | lion         | Thousand<br>barrels                     | 8tu                                     | barrels            | lion<br>8tu | barrels              | lion<br>Btu               | Thousand<br>barrels    | Trillion<br>Btu   | Thousand<br>barrels | Trillion<br>Stu                | Thousand<br>barrela  | Tril-   | barrels                 |                    | Thousand  |              | Thousand               | Trillion         |
| United States total            | 2 574 933 0 | 14,664.0           | +17.329.  | 0 +98.5     | +368,488.0               | +2,098,6               | -8,216.0                                    | -47.2          | 2,952,534.0           | 16,813.9        | .66,793.0                                  | 769.2        | 3,119,327.0                             | 17,583.1                                | 22,094.0           | 123.1       | +53.282.0            | +297.0                    |                        | 18 003 2          |                     |                                |                      | Btu     | 1001 710 0              |                    |           | lion         | barrels                | 8tu              |
| Vnited States total            | 2,574,555   | ,                  |           |             |                          |                        |                                             |                |                       |                 |                                            |              |                                         |                                         |                    |             |                      |                           | 3,174,703,0            | 10,003.2          | +7,083.0            | +39.3                          | 169,542.0            | 0 6/9.9 | +221,718.0              | +1,445.5           | 18,200.0  | -101.1       | 3,611,246.0            | 20,067.0         |
| Subregion la:                  |             |                    |           |             | -                        | _                      | _                                           | -              | -                     | -               |                                            | -            | -                                       | -                                       |                    | _           |                      | -                         | _                      | _                 | +100.0              | +-5                            |                      | ١       | +27,194,0               | +153.3             |           |              |                        |                  |
| New Hampshire                  | -           | -                  | -         | -           | -                        | -                      | -                                           | -              | -                     | -               |                                            |              | -                                       | -                                       | 1 :                |             |                      | -                         | •                      | -                 | +51.0               | +.3                            | -                    | -       | +14,579.0               | +81.2              | - :       | -            | 27,294.0<br>14,630.0   | 153.8            |
| Vermont<br>Nassachusetts       |             |                    | -         | -           | +13,080.0                | +74.5                  | -                                           | - 1            | 13,080.0              | 74.5            | -                                          |              | 13,080.0                                | 74.5                                    | 394.0              | 2.2         | +511.0               | +4.0                      | 13,985.0               | 80.7              | +48.0<br>+303.0     | +.3<br>+1.8                    | - :                  |         | +7,848.0<br>+121,347.0  | +43.2              |           |              | 7,896.0                | 43.5<br>787.1    |
| Rhode Island                   |             | - 1                | -         | 1 :         | +2,275.0                 | +13.0                  | -                                           | -              | 2,275.0               | 13.0            | -                                          |              | 2,275.0                                 | 13.0                                    | 1,341.0            | 7.5         | -57.0                | +2.2                      | 3,559.0                | 22.7              | +98.0               | -6.3                           | -                    |         | +25,334.0<br>+62,485.0  | +147.4             | -         | -            | 27,812.0               | 163.8            |
| Connecticut<br>New York        | 1,813.0     | 10.3               | +4.       | O Neg.      |                          | +136.4                 | -5.0                                        | .1             | 25,779.0<br>147,446.0 | 146.8<br>839.6  | 310,0                                      | 1.4          | 25,779.0<br>147,756.0                   | 146.8<br>841.0                          | \$25.0<br>12,165.0 | 2.9<br>67.8 | +369.0               | +3.7                      | 26,673.0               | 153.4             | +562.0              | +3.2                           | -                    |         | +254,981.0              | +1,458.4           |           | -            | 62,583.0<br>282,216.0  | 356.9<br>1,615.0 |
| New Jersey<br>Pennsylvania     | 6,009.0     | 34.2               | +306.     | 0 +1.7      | +147,507.0               |                        |                                             | 2              | 194,004.0             | 1,104.7         | 1,616.0                                    | 7.4          | 195,620.0                               | 1,112.1                                 | 9,282.0            | 51.7        | +3,920.0<br>+1,307.0 |                           | 163,841.0<br>206,209.0 | 930.5<br>1,184.7  | +1,330.0            | +8.2                           | -                    | :       | -3,711.0<br>-5,666.0    | -1.2<br>-18.5      |           | : 1          | 161,460.0<br>200,350.0 | 937.5            |
| Delaware                       |             | - 1                | -         | -           | +36,072,0                |                        | -122.0                                      | 5<br>Neg.      | 35,950.0<br>6,625.0   | 204.7<br>37.7   | 13.0                                       | - 1          | 35,963.0<br>6,625.0                     |                                         |                    | 37.1        | +2,238.0             | +10.2                     | 44,857.0<br>6,403.0    | 252 1<br>40.8     | +422_0              | +2.6<br>+7.7                   | :                    | -       | -23,550.0               | -124.6             | -         | -            | 21,729.0               | 130.1            |
| Maryland<br>District of        |             | 1                  | -         | _           | 70,017.0                 | 1 *3/./                | 010                                         | g.             | 0,020                 |                 |                                            |              | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                         |                    |             |                      | .3.0                      | 0,40310                | 40.0              | 71,330.0            | 77.7                           | -                    | 1       | +53,629.0               | +304.9             | -         | -            | 61,368.0               | 353.4            |
| Columbia                       |             | Neg.               | 1         |             | +12,644.0                | +71.9                  | Neg.                                        | - , 1          | 12,646.0              | 72.0            | Ī -                                        |              | 12,646.0                                | 72.0                                    | 996.0              | 5.5         | +843.0               | +3.8                      | 14,485.0               | 81.3              | +320.0              | +1.8                           | -                    |         | +10,295.0<br>+59,234.0  | +58.4<br>+336.2    |           | - 1          | 10,295.0<br>74,039.0   | 58.4             |
| Virginia<br>West Virginia      |             |                    | +10.      | 0 Neg       |                          | +1.1                   | Neg.<br>-7.0                                | Neg.           | 2,493.0               | 14.2            |                                            | - 1          | 2,493.0                                 | 14.2                                    | -7.0               | - 1         | -103.0               | -2.4                      | 2,383.0                | 11.8              | +126.0              | +.7                            | 7,008.0              | 28.1    | +15,338.0               | +82.4              | -         | -            | 24,855.0               | 419.3<br>123.0   |
| Norgh Carolina.                |             | -                  | -         | 1 -         | +3,000.0                 | +17.1                  | 1.0                                         | Neg.           | 3,001.0               | 17.1            | -                                          | - 1          | 3,001.0                                 | 17.1                                    |                    | -3.2        | -11.0                | +1.3                      | 2,424.0                | 15.2              | +451.0<br>+247.0    | +2.7<br>+1.4                   | -                    |         | +68,372.0<br>+33,768.0  | +373.0             |           | - 1          | 68,823.0<br>36,439.0   | 375.7<br>201.5   |
| South Carolina.<br>Georgia     |             |                    |           |             | +1,356.0                 | 0 +7.7<br>0 +1.9       |                                             | Neg.           | 1,356.0               | 7.7             | } :                                        | -            | 1,356.0                                 | 7.7                                     | 495.0              | 2.8         | +34.0                | +1.8                      | 1,885.0                | 12.3<br>3.9       | +274.0<br>+360.0    | +1.7                           | -                    | •       | +49,813.0               |                    | -         | -            | 51,972.0               | 280.8            |
| Florida<br>Kentucky            |             | 2.1                | +1,030.   |             | 9 +12,480.0              | +71.0                  | -59.0                                       |                | 34.598.0              | 197.0           | 146.0                                      | .7           | 34,744.0                                | 197.7                                   |                    | -15.0       | +297.0               | -5.1                      | 32,356.0               | 177.6             | +226.0              | +1.3                           | 3,326.0              | 13.3    | +99,088.0<br>-626.0     | +5\$2.1<br>-5.1    | -         |              | 35,282.0               | 558.1<br>187.1   |
| Tennessee                      | 20.         | .1                 | +129      | -           | 7 -3,625.0               |                        |                                             | 2              | 5,528.0<br>3,806.0    | 31.5            | 26.0<br>14.0                               | .1           | 5,554.0<br>3,820.0                      | 31.6<br>21.8                            | 32.0               | 2           | +21.0                | +.1                       | 5,607.0<br>3,812.0     | 31.9<br>23.6      | +221.0<br>+112.0    | +1.3                           |                      |         | +34,285.0<br>+36,394.0  | +181.1             | -         | - 1          | 40,113.0               | 214.3            |
| Alabama<br>Mississippi         |             | 294.3              | +14.      | .0 +.       | 1 -44,023.               | 0 -250.4               | -149.0                                      | -1.2           | 7,515.0               | 42.8<br>745.8   | 885.0<br>366.0                             | 4.1          | 8,400.0                                 | 46.9<br>747.5                           | -14.0<br>2,155.0   | 12.0        | -275.0<br>+4.040.0   | +9.1                      | 8,111.0                | 46.6<br>768.6     | -442.0              | -1.8                           | 224.0                | 9, 10   | +17,817.0               | +89.3              | -         | -            | 25,710.0               | 135.0            |
| Ohio                           | 5,405.      | 30.8               | +66.      | 0 +8.       | 4 +125,508.              | 0 +714.1<br>0 +3,020.1 |                                             | -1.3           | 130,966.0             | 3,574.4         | 3,376.0                                    | 15.6         | 131,332.0<br>631,084.0                  |                                         |                    |             | +13,025.0            |                           | 137,527.0<br>674,756.0 | 3,837.7           | +441.0              | +2.8                           | 10,558.0             | 42.3    | +2,180.0                | +10.0              | -         | - 1          | 140,148.0              | 9,341.5          |
| Subtotal la<br>Subregion lb:   |             |                    |           |             | 1 +142,133.              | 0 +808.                | 7 -175.0                                    | 3              | 154,023.0             | 877.1           | 5,221.0                                    | 24.1         | 159,244.0                               | 901.2                                   | -234.0             | -1.3        | +2,191,0             | +23.7                     | 161,201.0              | 923.6             | +365.0              | +1.7                           |                      |         | -46,118.0               | -268.2             |           |              | 115,448.0              |                  |
| Indiana                        |             | 68.6               | +1,438    |             | 2 +122,448.              | 0 +696.                | -972.0                                      | -5.1           | 200,255.0             | 1,140.3         | 9,000.0                                    |              | 209,255.0                               | 1,181.9                                 | 1,819.0            | 10.1        | +4,287.0             | -1.5                      | 215,361.0              | 1,190.5           | +616.0              | +2.7                           |                      | -       | -31,028.0               | -156.4             | -         |              | 184,949.0              | 657.1<br>1,036.8 |
| Michigan                       | 15,899.     |                    | -97       | .0          | 6 +34,193.               | 0 +194.6               |                                             | -1.1           | 49,768.0              | 283.4           | ] [                                        |              | 49,768.0<br>5,058.0                     | 283.4<br>28.8                           | 847.0              | 4.7         | +201.0               | +1.4                      | 50,816.0               | 287.4<br>30.2     | +893.0              | +5.1<br>9                      | -                    |         | +67,903.0<br>+62,820.0  | +367.2             |           | - 1          | 119,612.0<br>67,673.0  | 659.7<br>369.1   |
| Wisconsin<br>Subtotal 1b       |             | 0 599.6            | +1,352    | .0 +7.      | 7 4303 833               | 0 +1,728.              | 8 -1,375.0                                  | -6.5           | 409,104.0             | 2,329.6         | 14,221.0                                   |              | 423,325.0                               | 2,395.3                                 | 2,432.0            |             |                      |                           |                        |                   |                     | +8.6                           |                      | -       | +53,577.0               | +282.4             |           | -            | 487,682.0              | 2,722.7          |
| Subtotal I.                    | 201,361.    | 0 1,146.6          | +2,846    | .0 +16.     | 1 +834,597.              | 0 +4,749.              | 11-1,992.0                                  | -/.0           | 1,036,812.0           | 5,904.0         | 117,397.0                                  | 01.3         | 1,054,409.0                             | 3,983.3                                 | 33,0/9.0           | 184.2       | +19,690.0            | +99.9                     | 1,107,178.0            | 6,269,4           | +6,995.0            | +41.1                          | 10,558.0             | 42.3    | +1,014,005.0            | +5,/11.4           |           |              | 2,138,736.0            | 2,064.2          |
| Region 11:<br>Subregion 11a:   |             |                    | 1         |             |                          | .122                   | 4 3.0                                       | ,              | 23,443.0              | 133.5           | 85.0                                       | . 4          | 23,528.0                                | 133.9                                   | 106.0              | .6          | +688.0               | +5.7                      | 24,322.0               | 140.2             | +155.0              | +.9                            | _                    | 1       | +42,511.0               | +227.0             |           |              | 66,988.0               | 368.1            |
| Minnesota                      |             |                    | -         |             | +23,440.                 | -                      | -                                           |                |                       | -               | t -                                        |              | -                                       | -                                       | -                  | -           |                      | -                         | - 1                    | -                 | -77.0               | 3                              | -                    | •       | +48,018.0               | +255.3             | -         |              | 47,941.0               | 255.0            |
| Missouri                       | 75.         |                    | -179      | .0 -1.      | +22,373.                 | 0 +127.                |                                             |                | 22,446.0              | 127.8           | 243.0<br>682.0                             | 1.1<br>3.1   | 22,689.0<br>16,670.0                    | 128.9                                   |                    | 1.2         | +966.0<br>+495.0     | +4.7                      | 23,872.0<br>17,158.0   | 134.8<br>92.9     | +242.0              | +1.4                           | 781.0                | 3.1     | +48,140.0<br>-2,267.0   | +252.4             | -         |              | 72,254.0<br>15,613.0   | 388.6<br>83.9    |
| North Dakota<br>South Dakota   |             | 0 1.6              | +2        | .0 Neg      | -283.                    | 0 -1.                  | 5 Neg.                                      | 1              |                       | 1               | 52.0                                       | - 2          | 954.0                                   | 5.3                                     |                    | -           | - 0.0                | - 2                       | 945.0                  | - 5.1             | -59.0<br>-93.0      | 3<br>3                         | 1,039.0              | - 1     | +14,904.0<br>+22,336.0  | +78.7<br>+117.9    | -         |              | 14,845.0               | 78.4             |
| Nebraska                       | 23,825      |                    |           |             | 8 -23,042.<br>2 +16,682. | 0 -131.                |                                             |                | 62,779                | 357.5           | 1,062.0                                    | 4.8          |                                         | 362.3                                   | 316.0              | 1.8         | +2,140.0             | +8.9                      | 66,297.0               | 373.0             |                     | +1.1                           | 1,820.0              | 7.3     | +173,642.0              |                    | -         |              | 24,227.0               | 1,300.9          |
| Subtotal IIa<br>Subregion 11b: | 40,173      |                    |           |             |                          |                        | 7 -56.6                                     | 0 - 4          | 27,351.               | 155.8           | 995.0                                      | 4.6          | 28,346.0                                | 160.4                                   | 570.0              | 3.2         | +780.0               | +6.2                      | 29,696.0               | 169.8             | -153.0              | 8                              | 1,445.0              | 5.8     | -1,957.0                | -18.0              |           |              | 29,031.0               | 156.8            |
| Arkansas<br>Louisiana          |             |                    | 7 -2,217  | .0 -12.     | .6 -154,627.             | 0 -879.                | 7 -951.0                                    | 0 -6.4         | 243,037.              | 1,384.0         | 23,648.0                                   |              | 266,685.0                               | 1,493.1                                 | 3,973.0            |             | +9,895.0             |                           | 280,553.0              | 1,572.9           |                     | -16.1                          | 19,865.0             | 79.7    | -193,555.0              |                    | - (       |              | 103,733.0              | 590.5            |
| Oklahoma                       | 192,913     | 0 1,098.           | 6 +1,407  | 1.0 +8.     | .0 -62,848.              |                        | 3 -1.874                                    | 0 -2.8         |                       | 746.3           | 10,554.0                                   | 48.8         | 141,596.0<br>802,758.0                  |                                         |                    |             | +2,153.0             | +9.2                      | 144,507.0<br>793,122.0 | 808.5<br>4,356.3  | -290.0<br>-2,066.0  | -1.6<br>-5.4                   | 17,354.0<br>93,953.0 |         | -94,209.0<br>-615,755.0 | -501.2<br>-3,342.4 | - 1       |              | 67,362.0               | 375.3            |
| Texas<br>New Mexico            |             |                    |           | 7.0 +1.     | .5 -98,786.              | 0 -562.                | 0 -371.                                     | 01 -2.6        | 8,490.                | 0 48.4          | 5,573.0                                    | 25.7<br>51.5 | 14,063.0<br>121,086.0                   |                                         |                    | - 1 0       | -244.0<br>-776.0     | +1.6                      | 120,651.0              | 75.7<br>681.7     | +121.0              | +.5                            | 12,963.0             |         | -5,687.0<br>-57,143.0   | -13.6              | 1         |              | 21,212.0<br>66,825.0   | 377.7            |
| Kansas                         | 113,453     | .0 646.            |           | 0 110       | 0 457 176                | 0 2 600                | 6 -3 918.                                   | 01-25.         | 3 1 321 635-          | 0 7.526.6       | 899.0                                      | 244.2        | 1,374,534.0                             | 7,770.8                                 | -17,775.0          |             | +25,585.0            | 6.9                       | 1,382,344.0            | 7,664.9           | -5,461.0            | -23.1                          | 148,840.0            | 597.0   | -968,306.0              | -5,238.6           | · ·       |              | 557,417.0              | 3 000.2          |
| Subtotal 110                   | 1,818,347   | 0 10,355.          | 4 +10,515 | 5.0 +59     | .8 -440,494              | .0 -2,505.             | 3 -3,954.                                   | 0 -25.1        | 8 1,384,414.          | 7,884.1         | ,961.0                                     | 249.0        | 1,438,375.0                             | 8,133.1                                 | -17,459.0          | -97.2       | +27,725.0            | +2.0                      | 1,448,641.0            | 8,037.9           | -5,352.0            | -22.0                          | 150,660.0            | 604.3   | -794,664.0              | -4,319.1           |           |              | 799,285.0              | 4,301.1          |
| Region 1117                    |             |                    | 2         |             |                          |                        |                                             |                |                       |                 | 444.0                                      | 2.0          | 25 660 0                                | 144.4                                   |                    |             | 1361.0               | 12.                       | 05 910 0               | 146.8             | +740.0              |                                | 1 070 0              |         | 7 /2/ 0                 | - 38.2             |           |              | 21,100.0               | 120.9            |
| Subregion 111a:<br>Montana     | 30,240      | .0 172.            | 2 +59     | 9.0         | .3 -5,213                | .0 -29.                | -82.                                        | 0              | 25,004.               |                 | 1-                                         | 2.0          | 25,448.0                                | -                                       | 1                  |             | +364.0               | +2.4                      | 25,812.0               |                   | -18.0               | +4.4                           | 1,972.0              | - 1     | -7,424.0<br>+12,152.0   | +65.8              |           |              | 12,134.0               | 65.7             |
| Idaho                          |             | -0 762.            | 6 +8      | 7.0 +       | .5 -97,669               |                        |                                             |                |                       |                 |                                            | 5.6          | 37,183.0<br>32,564.0                    | 210.4<br>183.9                          |                    | 1           | +122,0<br>+517.0     | +8.6                      | 37,291.0<br>33,008.0   | 218.9<br>186.5    | -325.0<br>-196.0    | -2.0<br>-1.1                   | 4,524.0              | 18.1    | -20,812.0<br>-10,487.0  | -111.4             | - 1       |              | 20,678.0               | 123.6            |
| Utah                           | 37,594      | .0 214.            | 1 -28     |             | .6 -6,079<br>.8 -35,138  |                        | .5 -105.<br>.8 -115.                        |                |                       | 0 70.3          | 131.0                                      | .6           | 12,480.0                                | 70.9                                    | -77.0              | 4           | +349.0               | 7                         | 12,752.0               | 69.8              | -98.0               | 7                              | 1,828.0              | 7.3     | +13,096.0               | +69.7              | - 1       |              | 27,578.0               | 146.1            |
| Colorado<br>Washington         |             | .0 270.<br>.0 Neg. |           | 3.0         |                          |                        |                                             |                | 2 42,523.             | 0 242.2         | -1                                         |              | 42,523.0                                | 242.2                                   | - : -              | -           | Neg.                 | +2.7                      | 42,523.0               | 244.9             | +757.0              | +4.8                           | 1 1                  |         | +23,497.0               | +128.1             | 1         |              | 66,777.0<br>34,297.0   | 377.8<br>190.6   |
| Oregon                         |             |                    |           | 5 0 No      | g101,567                 |                        | .5 -682.                                    | 0 -4.          | 7 146,960             | 0 837.0         | 3,238.0                                    | 14.8         | 150,198.0                               | 851.8                                   | -164.0             | 9           | +1,352.0             | +16.0                     | 151 386.0              | 866.9             | +709.0              | +4.5                           | 8,324.0              | 33.3    | +44,470.0               | +248.9             |           |              | 204,889.0              | 1,153.6          |
| Subtotal 11<br>Subregion 111b; |             | 1,419.             | -         | J. OI RE    |                          | 1                      |                                             |                | 1 -                   |                 |                                            | -            | . 9                                     | - 1                                     | - 7                |             | . 1                  | -                         | -                      |                   | ~76.0               | 4                              |                      | . 9     | +19,181.0               | 1101.6             |           |              | 19,105.0               | 101.2            |
| Arizona                        | 73          |                    | 2 -       | 11:         | -73<br>-27               | .0 -                   | .2 -                                        |                | 1                     | .0 2.181.4      | 91,997.0                                   | 424 1        | 475 050.0                               | 2.605.5                                 | 6,638,0            | 37.0        | +4,515.0             | +178.1                    | 486, 203.0             | 2 920 4           | -38.0               | +42.3                          | - 1                  | -       | +7,294.0                | +38.8              | -         | -            | 7,256.0                | 38.7             |
| Nevada<br>California           | 305.35      | 2.0, 1.739.        | 0 +4,19   | 8.0 +23     | 3.9 +75,079              | .0 +427                | .2 -1,576.                                  | .0 -8.         | 8 383,053             | 01 2,181.       | 91,997.0                                   | 424.1        | 475,050.0                               |                                         |                    |             | +4,515.0             |                           | 486,203.0              | 2,820.6           | 76,390,0            | +42.3                          |                      |         | -66,205.0               | -387.0             |           | - 1          |                        | 2,475.4          |
| Subtotal II<br>Subregion Illo  |             | 2.0 1,739.         | 6 +4,19   | 8.0 +23     |                          |                        |                                             |                |                       |                 | -                                          | -            |                                         | -                                       |                    | _           |                      | -                         |                        |                   | -29.0               | 1                              |                      |         | +5,613.0                | +31.8              | -         |              | 5,584.0                | 31.7             |
| Alaska                         | 55          | 9,0                | 2 -19     | 8.0 -1      | - 361<br>+1,307          |                        | .5 -12                                      | .0             | 1 1,295               |                 |                                            | -            | 1,295.0                                 | 7.4                                     |                    | -           |                      | +1.0<br>+1.0              | 1,295.0                | 8.4               | -52.0               | 3                              |                      |         | +12,892.0               | +74.2              | -         | -            | 14,135.0               | 82.3             |
| Hawari<br>Subtotal 1           |             | 9.0 3              | .2 -19    | 8.0 -1      | 1.1 +946                 | .0 +5                  | .4 -12                                      | .0             |                       |                 |                                            | 438.9        | 1,295.0                                 |                                         | 6,474.0            | 36.1        | +5,867.0             |                           | 1,295.0                |                   | -81.0<br>+7,018.0   | +45.9                          | 8,324.0              | 33.3    | +18,505.0               | -32.1              | -         | -            | 650,996.0              | 3,743.0          |
| Subtotal                       |             | 5.0 3,162          | .0 +3,99  |             | 2.8 -25,642              |                        | . 4 -2,270                                  | .0 -13.        | - 331,300             |                 | -                                          | - 1          | -                                       | -                                       |                    | -           | 1                    |                           |                        | -                 | -1,578.0            | -25.5                          | -                    | - 1     | +5,607.0                | +85.3              | 8,200.0   | 101.1        | 22,229.0               | -41.3            |
| Foreign<br>Unaccounted for.    |             |                    | -2        | 27.0        | - TZ                     |                        |                                             |                |                       |                 |                                            |              |                                         | -                                       | ·                  |             |                      |                           |                        |                   | -1,376.0            | -23.3                          |                      |         | +3,007.0                | .0313[1            |           |              |                        |                  |

Beg.--Negligible

Mithdrawals from etocks add to supply and are indicated by plus signs; additions to stocks reduce supply and are indicated by minus signs.

Methdrawals from etocks add to supply and are indicated by plus signs; additive to horizontal totals.

Methdrawals trade, at the national level, is equal to not shipments, and is not additive to horizontal totals.

insfers itural liquid nousand arrels

6,793.0

-65.3 -27,400.0 -151.3

-10,632.0

-43,908.0

q

Foreign.......76.0 Unaccounted for. Neg. -- Negligible Withdrawals fro 2Net foreign tra

Subtotal

6,361.0

-139.5



|                                 |                        |                 |                   | Crude | oil                      |                    |                      |              | 1                        |                  |                      |                 | Dung h                              |                       |                      |               |                     |              |                        |                  |                                         |               |                       |       |                           |                    |           |         |                        |                    |
|---------------------------------|------------------------|-----------------|-------------------|-------|--------------------------|--------------------|----------------------|--------------|--------------------------|------------------|----------------------|-----------------|-------------------------------------|-----------------------|----------------------|---------------|---------------------|--------------|------------------------|------------------|-----------------------------------------|---------------|-----------------------|-------|---------------------------|--------------------|-----------|---------|------------------------|--------------------|
|                                 | Produc                 |                 | Stock ch          |       | Net ship                 | ments <sup>2</sup> | Losses               |              | Total sup                | ply of           |                      | rs in of        | Runs to s                           |                       | Unfinished           | olls,         |                     |              |                        |                  | Stock c                                 | hange1        | Refined p             |       |                           |                    |           |         |                        |                    |
| State and Region                | Thousand               | Trillion<br>Btu | Thousand          |       | Thousand<br>barrels      | Trillion<br>8tu    | use as               | crude        | crude                    | oil              | natura               | ids             | out                                 | efinery<br>put        | Thousand             | Tril.         | Overage of Thousand |              |                        |                  | (lncludi                                | ng natu-      | natural               | gas   | Net ship                  |                    | Lossea, g | counted | Total s                |                    |
|                                 |                        |                 |                   | Btu   | 0011018                  | ord                | Thousand             | lion         | Thousand<br>barrels      |                  | Thousand             | Trillion<br>Btu | Thousand                            | Trillion<br>Btu       | barrels              | lion<br>Btu   | barrels             | lion         | Thousand               | Trillion         | Thousand                                | Trillion      | 11qu1<br>Thousand     |       | Thousand<br>barrela       | Trilllon<br>Btu    | Thousand  | Tril.   | Consus                 |                    |
| United States total.            | 2,848,514.0            | 15,900.4        | +9,768.0          | +54.7 | +450,944.0               | +2.516.9           | -8.383.0             | Btu<br>Btu   | 3 300 8/3 0              |                  |                      |                 |                                     |                       |                      | DEU           |                     | Btu          | barrels                | Btu              | barrels                                 | Btu           | barrels               | lion  |                           |                    | barrels   | lion    | barrels                | Btu                |
| Region 1:                       | 2,848,514.0            |                 |                   |       |                          |                    | 0,303,0              | 1017         | 2,300,843.0              | 10,423,1 2       | 25,676.0             | 1,042.7         | 3,526,519.0                         | 19,467.8              | 32,111.0             | 201.8         | +80,241.0           | +442.7       | 3,638,871.0            | 20,112.3         | -6,689.0                                | -158.8        | 215,692.0             | 833.8 | +381,950.0                | +2,347.2           | -27,400.0 | -151.3  | 4,202,424.0            | 22,983.2           |
| Subregion 1a:<br>Malne          | -                      | -               | -                 |       | _                        |                    |                      |              |                          |                  |                      |                 |                                     |                       |                      |               |                     |              |                        |                  |                                         |               |                       |       |                           |                    |           |         |                        | - Parkerson        |
| New Hampshire                   | 1                      | -               | -                 | 1 :   | -                        | -                  | -                    | -            | -                        |                  | -                    | -               | -                                   | -                     |                      | - 1           | - 1                 | -            | -                      | :                | +139.0                                  | +0.7          | 1 :                   | - 1   | +31,238.0<br>+16,751.0    | +176.4<br>+93.2    |           | - [     | 31,377.0               | 177.1              |
| Massachusetts                   | -                      | -               | -                 | -     | +2,241.0                 | +12.5              | -3.0                 | Neg.         | 2,238,0                  | 12.5             | -                    |                 | 2,238.0                             | 12.5                  | -77.0                | ٠.            | +4.0                | , -          | 2,165.0                | 12.0             | +54.0                                   | +.3           | -                     | -     | +10,180.0                 | +56.6              |           | -       | 16,814.0               | 93.5<br>56.9       |
| Rhode Island<br>Connecticut     |                        |                 |                   |       | +2,614.0                 | +14.6              | -3.0                 | Neg.         | 2,611.0                  | 14.6             | -                    | -               | 2,611.0                             | 14.6                  | 1,775.0              | 11.1          | -9.0                | Neg.         | 4,377.0                |                  | +867.0                                  | +4.9          | 1 :                   | - 1   | +157,029.0<br>+19,656.0   | +912.9<br>+113.0   | :         | 1 1     | 24,905.0               | 929.8<br>143.7     |
| New York                        | 1,632.0                | 9.1             | -                 | -     | +25,968.0                | +144.9             |                      |              | 27,600.0                 | 154.0            | -                    |                 | 27,600.0                            | 154.0                 | 1,002.0              | 6.3           | +523.0              | +2.9         | 29,125.0               | 163.2            | +96.0                                   | +.5           | :                     | -     | +66,795.0                 | +380.1             | -         |         | 66,891.0               | 380.6              |
| New Jersey<br>Pennsylvania      | ,922.0                 | 27.5            | +334.0            |       | +158,951.0<br>+187,249.0 | +887.4             |                      |              | 158,938.0<br>192,356.0   | 887.3<br>1,074.0 | 1,169.0              | 5.4             | 160,107.0                           | 892.7                 | 19,537.0             | 122.9         | +4,009.0            | +22.1        | 183,653.0              | 1,037.7          | +1,754.0                                | +9.8          | -                     | -     | +334,276.0<br>+9,006.0    | +1,923.7<br>+76.2  | -         |         | 365,262.0<br>194,413.0 | 2,096.2<br>1,123.7 |
| Delaware<br>Maryland            | -                      | -               | -                 |       | +32,494.0<br>+4,170.0    | +181.6             | -50.0                | 3            | 32,444.0                 | 181.3            | -,023.0              |                 | 197,179.0<br>32,444.0               | 1,096.3               | 9,991.0<br>8,306.0   | 62.8<br>52.2  | +5,112.0            | +28.2        |                        |                  | +211.0                                  | +1.2          |                       | -     | +14,224.0                 | +110.5<br>-120.0   | •         |         | 226,717.0<br>19,795.0  | 1,299.0            |
| District of                     |                        |                 |                   |       | 14,170.0                 | 72313              | 32.0                 |              | 4,202.0                  | 23.5             | -                    | -               | 4,202.0                             | 23.5                  | -643.0               | -4.0          | -40.0               | -0.2         |                        | 19.3             | +1,382.0                                | +7.8          |                       | -     | +64,317.0                 | +362.8             |           | -       | 69,218.0               | 389.9              |
| Columbia<br>Virginia            | 4.0                    | Neg.            |                   |       | +11,793.0                | +65.8              | _                    |              | 11,797.0                 | - (5.0)          | -                    | -               |                                     |                       |                      |               |                     | -            | -                      | -                | +7.0                                    | Neg.          |                       | -     | +15,597.0                 | +90,8              |           |         | 15,604.0               | 90.8               |
| West Virginia<br>North Carolina | 3,530.0                | 19.7            | +329.0            | +1.8  | -1,587.0                 | -8.9               | -                    | -            | 2,272.0                  | 65.8<br>12.6     | -                    |                 | 11,797.0<br>2,272.0                 | 65.8<br>12.6          | 1,555.0<br>-15.0     | 9.8           | +1,247.0            | +6.9         |                        | 82.5<br>12.3     | +366.0                                  | +1.8          | 4,756.0               | 18.4  | +72,407.0<br>+21,139.0    | +407.2             |           | •       | 87,372.0               | 491.5              |
| South Carolina                  | -                      | -               | -                 | -     | -                        | -                  | -                    | 1            |                          | - 1              | -                    | - 1             | - 1                                 | - 1                   | •                    | -             | -                   | - '-         | -,                     | -                | +656.0                                  | +3.5          | -                     | -     | +82,969.0                 | +451.1             | :         | -       | 28,231.0<br>83,625.0   | 454.6              |
| Georgia<br>Florida              | 1,464.0                | 8.2             | -228.0            | -1.3  | +2,604.0                 | +14.5              | -                    | -            | 2,604.0                  | 14.5             | -                    | -               | 2,604.0                             | 14.5                  | -20.0                | 1             | +6.0                | Neg.         | 2,590.0                | 14.4             | +367.0                                  | +1.9          |                       |       | +35,919.0<br>+64,591.0    | +194.5             | :         | 1 : 1   | 36,286,0               | 196.4<br>365.3     |
| Kentucky                        | 19,386.0               | 108.2           | +290,0            |       | +13,885.0                | +77.6              | -43.0                | 2            | 919.0<br>33,518.0        | 5.1<br>187.2     | 70.0                 | 3               | 919.0<br>33,588.0                   | 5.1<br>187.5          | 377.0                | 2.4           | -9.0<br>+400.0      | Neg.<br>+2.2 | 910.0<br>34,365.0      | 5.1<br>192.1     | +513.0                                  | +2.5          | 959.0                 | 3.7   | +138,902.0                | +784.0             |           | - 1     | 141,284.0              | 795.3              |
| Tennessee                       | 8,064.0                | 45.0            | +112.0            | +.6   | +10,592.0                | +59.1              | -18,0<br>14,0        | -,1          | 10,585.0<br>4,091.0      | 59.1             | 127.0                | .6              | 10,712.0                            | 59.7                  | -                    |               | -131.0              | 7            | 10,581.0               | 59.0             | +309.0                                  | +2.3          | 3,064.0               | 11.8  | +6,847.0<br>+39,185.0     | +30.5              |           | :       | 44,755.0<br>50,075.0   | 236.7<br>267.8     |
| Mississippi                     | 56,183.0<br>12,908.0   | 313.7           | +175.0            | +1.0  | -4,264.0                 | -23.8              | -114.0               |              | 51,980.0                 | 22.8             | 1,086.0              | 5.0             | 4,091.0<br>53,066.0                 | 22.8<br>295.3         | 4.0                  | Neg.          | +9.0<br>+204.0      | Neg.<br>+1.1 | 4,100.0<br>53,274.0    | 22.8<br>296.4    | +230.0<br>+398.0                        | +1.1          | 914.0                 | 3.5   | +39,454.0<br>+18,866.0    | +207.9<br>+95.0    |           |         | 43,784.0<br>73,452.0   | 231.8              |
| Ohlo<br>Subtotal Ia             | 108, 104.0             | 72.1            | +71.0<br>+1.083.0 |       | +141,874.0               | +792.2<br>+3,261.5 | -239.0               | -3.1         | 154,614.0                |                  | 9,861.0              | 11.9            | 157,200.0<br>702,630.0              | 875.3<br>3,913.5      | 690.0                | 4.3           | +5,701.0            | +31.5        | 163,591.0<br>764,505.0 | 911.1            | -107.0                                  | 2             | -                     | -     | +1,572.0                  | +6.6               |           |         | 165,056.0              | 917.5              |
| Subregion Ib:                   | 11,481.0               | 64.1            | +53.0             | +.3   | +147,955.0               | +826.1             | -247.0               | -1.4         |                          |                  |                      |                 |                                     |                       |                      |               |                     |              |                        | 4,287.7          | 11,094.0                                | +58.9         | 9,693.0               | 37.4  | +1,237,668.0              | +7,016.2           |           |         | 2,022,960.0            | 11,400.2           |
| Illinois                        | 63,708.0               | 355.7           | -136.0            | 8     | +159,318.0               | +889.5             | -337.0               |              | 159,242.0<br>222,553.0   |                  | 9,432.0              | 48.9<br>43.6    | 169,822.0<br>231,985.0              | 938.0<br>1,286.1      | 1,114.0<br>-1,563.0  | 7.0           | +4,136.0            | +22.8        |                        | 967.8            | +548.0                                  | +2.0<br>+2.0  | :                     | -     | -41,078.0                 | ·238.8             |           |         | 134,542.0              | 731.0              |
| Michigan<br>Wisconsin           | 14,728.0               | 82.2            | +262.0            | +1.5  | +37,357.0<br>+7,616.0    | +208.8             | -155.0               | 9            | 52,192.0<br>7,507.0      | 291.6            | 629.0                | 2.9             | 52,821.0                            | 294.5                 | 3,085.0              | -19.4         | +422.0              | +2.3         | 50,158.0               | 277.4            | +1,629.0                                | +8.1          | -                     | -     | -31,306.0<br>+80,652.0    | +436.9             | -         |         | 206,170.0<br>132,439.0 | 1,147.8            |
| Subtotal Ib                     | 89,917.0               | 502.0           | +179.0            | +1.0  | +352,246.0               | +1,967.1           | -848.0               |              | 441,494.0                | 2,465.3          | 182.0                | 96.2            | 7,689.0<br>462,317.0<br>1,164,947.0 | 2,561.5               | 23.0<br>-3,511.0     | -22.1         | -21.0<br>+11,122.0  | +61.4        | 7,691.0                | 2,600.8          | -121.0<br>+2,525.0                      | +11.6         | <u> </u>              | -     | +64,377.0                 | +346.2             | :         |         | 71,947.0               | 388.6<br>2,989.8   |
| Subtotal I<br>Region 11:        | 198,021.0              | 1,105.6         | +1,262.0          | +/.0  | +936,414.0               | +5,228.6           | -1,434.0             | -7.9         | 1,134,263.0              | 6,333.3          | 30,684.0             | 141.7           | 1,164,947.0                         | 6,475.0               | -3,511.0<br>38,971.0 | 245.0         | +30,515.0           | +168.5       | 1,234,433.0            | 6,888.5          | 13,619.0                                | +70.5         | 9,693.0               | 37.4  | +1,310,313.0              | +7,393.6           | -         |         | 2,568,058.0            |                    |
| Subregion IIa:<br>Minnesota     |                        |                 |                   |       | +31,678.0                | +179.9             | -478.0               | -2.7         | 31,200.0                 | 177.2            | 1,068.0              | 4.9             | 22 269 0                            | 100 1                 | 2.0                  | N             | .071 0              | 15.6         | 22 027 0               | 107.6            |                                         |               |                       | ,     |                           |                    |           |         |                        |                    |
| lowa                            |                        | -               | -                 |       | - 1                      | -                  | -                    |              | -                        | - 1              | -                    | - 4.7           | 32,268.0                            | 182.1                 | -2.0                 | Neg.          | +971.0              | +5.4         | 33,237.0               | 187.5            | -17.0<br>+17.0                          | 4             | 45.0                  | .2    | +40,359.0<br>+51,511.0    | +213.1<br>+270.5   | -         | . : II  | 73,579.0<br>51,573.0   | 400.2<br>270.6     |
| Missouri<br>North Dakota        | 73.0                   | 147.1           | -185.0            | -1.0  | +22,908.0                | +128.2             |                      | -1.2         | 22,981.0<br>17,129.0     | 128.6<br>92.5    | 1,283.0              | 5,9             | 24,264.0<br>17,129.0                | 134.5<br>92.5         | 1,608.0              | 10.1          | +704.0<br>+549.0    | +3.9         |                        | 148.5<br>95.2    | +18.0                                   | 4             | 771.0                 | 3.0   | +53,379.0                 | +277.9             | -         |         | 79,910.0               | 426.0<br>95.6      |
| South Dakota<br>Nebraska        | 219.0<br>17,216.0      | 1.2<br>96.1     | +28.0             |       | -219.0<br>-16.286.0      | -1.2               | -                    | ·            | *                        |                  | -                    | -               | -                                   |                       | -                    | - '           | -                   | -            | -                      |                  | -88.0                                   | 5             | -                     |       | +18,820.0                 | +97.0              | -         |         | 18,732.0               | 96.5               |
| Subtotal IIa                    | 43,858.0               | 244.8           |                   | 8     | +29,250.0                | -90.9<br>+163.6    | -683.0               | -3.9         | 72,268.0                 | 403.7            | 2,351.0              | 10,8            | 74,619.0                            | 414.5                 | 1,557.0              | 9.8           | +18.0               | Neg.         | 976.0<br>78,418.0      | 436.6            | -9.0                                    | Neg.          | 183.0<br>999.0        | 3.9   | +24,918.0                 | +129.5             |           |         | 26,068.0               | 1,424.5            |
| Subregion 11b:<br>Arkansas      | 25,930.0               | 144.7           | +235.0            | +1.3  | +2,718.0                 | +15.2              | - 48.0               | - 3          | 28,835.0                 | 160.9            | 906.0                | 4.2             | 29,741.0                            | 165.1                 | 1,005.0              | 6.3           | +921.0              | +5,1         | 31,667.0               | 176.5            | +80.0                                   | +.2           | 1,277.0               |       | +1.465.0                  |                    |           |         | 34,489.0               | 180.8              |
| Louisiana                       | 594,853.0              |                 | -2,508.0          | -13.9 | -297,766.0               | -1,661.9           | -982.0               |              | 293,597.0                | 1,639.5 2        | 26,930.0             | 124.4           | 320,527.0                           | 1,763.9               | -4,180.0             | -26.3         | +10,696.0           | +59.0        | 327,043.0              | 1,796.6          | -2,766.0                                | -15.1         | 34,347.0              | 132.6 | -269,099.0                |                    |           | . 1     | 89,525.0               | 456.7              |
| Oklahoma<br>Texas               | 203,441.0              |                 | +1,709.0          |       | -65,180.0<br>-113,377.0  | -363.7<br>-632.7   | -5.0<br>-2,176.0     | Neg.         | 139,965.0<br>889,679.0   | 781.6 1          | 11,705.0             | 54.1<br>533.5   | 151,670.0                           | 835.7<br>5.498.9      | 355.0<br>-14,954.0   | -94.0         | +3,609.0            | +19.9        | 155,634.0              | 857.8<br>5,525.9 | +612.0                                  | +3.3          | 18,564.0<br>118,715.0 |       | -101,198.0<br>-683,058.0  |                    | : 17      | 1 1     | 73,612.0               | 397.3              |
| New Mexico<br>Kansas            | 119,166.0<br>104,733.0 |                 | +1,164.0          | -6.1  | -106,471.0<br>+7,155.0   | -594.2<br>+39.9    | -53.0                | 3            | 11,559.0                 | 64.71            | 1,074.0              | 5.0             | 12,633.0                            | 69.7                  | -10.0                | 1             | +34.0               | +.2          | 12,657.0               | 69.8             | +71.0                                   | Neg.          | 16,229.0              | 61.7  | -8,579.0                  | -23.9              | - 3       | - 1     | 20,378.0               | 107.6              |
| Subtotal IIb                    | 2,048,872.0            | 11,436.3        | +4,000.0          | +22.5 | -572,921.0               | -3,197.4           | -3,312.0             | -18.5        | 113,004.0<br>1,476,639.0 | 8,242.9 16       | 52,806.0             | 752.2           | 119,713.0<br>1,639,445.0            | 8,995,1               | 601.0                | 3.8<br>-108.1 | +179.0              | +206.2       | 1,659,640,0            | 9.093.2          | +233.0                                  | -10.6         | 9,507.0               | 767.9 | -73,475.0<br>-1,133,944.0 | -389.9<br>-6,106.9 | -         |         | 56,758.0<br>722,454.0  |                    |
| Subtotal II.<br>Region III:     | 2,092,730.0            | 11,681.1        | +3,843.0          | +21.7 | -543,671.0               | -3,033.8           | -3,995.0             | -22.4        | 1,548,907.0              | 8,646.6 16       | 55,157.0             | 763.0           | 1,714,064.0                         | 9,409.6               | -15,626.0            | -98-3         | +39,620.0           | +218.5       | 1,738,058.0            | 9,529.8          | -2,005.0                                | -12.1         | 199,638.0             | 771.8 | -945,635.0                | -5,121.4           |           |         | 990,056.0              | Alle a             |
| Subregion Illa:                 | 20.725.7               | 100             | 104               |       |                          |                    | 1,,,,                |              |                          |                  | -                    |                 |                                     |                       |                      |               |                     |              |                        |                  |                                         | 1             |                       |       |                           |                    |           |         | 00 072 0               | 102.0              |
| MontanaIdaho                    | 32,778.0               | 183.0           | -184.0            | -1.0  | +645.0                   | -                  | -148.0               | 8            | 33,091.0                 | 181.2            | 707.0                | 3.3             | 33,798.0                            | 184.5                 | -284.0               | -1.8          | +56.0               | +.3          | 33,570.0               | 183.0            | +22.0                                   | Neg.          | 1,262.0               | 4,9   | -11,881.0<br>+14,172.0    | -64.9<br>+77.2     | : 1       |         | 22,973.0<br>14,155.0   | 77.0               |
| Wyoming<br>Utah                 | 138,314.0<br>25,298.0  | 772.2<br>141.2  |                   | +19.8 | -100,130.0<br>+7,936.0   | -558.8<br>+44.3    | -218.0<br>-171.0     | -1.2         | 41,509.0                 |                  | 1,744.0              | 8.1<br>11.6     | 43,253.0                            | 240.1                 | -101.0               | 6             | +546.0<br>+614.0    | +3.0         |                        | 242.5            | -193.0<br>-166.0                        | -1.3          | 3,175.0               | 12.3  | -23,576.0                 | -125.5<br>-62.9    |           |         | 23,104.0               | 128.0<br>136.2     |
| Colorado                        | 33,511.0               | 187.1           |                   | +.0   | -20,613.0                | -115.0             | -146.0               | 8            | 33,176.0<br>12,775.0     | 71.4             | 2,511.0<br>58.0      | .3              | 35,687.0<br>12,833.0                | 196. <b>7</b><br>71.7 |                      | - ]           | +316.0              | +1.7         | 13,149.0               | 73.4             | -37.0                                   | 2             | 1,924.0               | 7.4   | -11,483.0<br>+18,460.0    | +98.9              | -         |         | 33,496.0               | 179.5              |
| Washington<br>Oregon            |                        |                 | 1                 | : )   | +61,721.0<br>+2,525.0    | +344.5             | -314.0               | -1.8<br>Neg. | 61,407.0<br>2,524.0      | 342.7<br>14.1    |                      | 1 : 1           | 61,407.0<br>2,524.0                 | 342.7                 |                      | 1)            |                     | -            | 61,407.0<br>2,524.0    | 342.7            | -1,326.0<br>-125.0                      | -8.3          | -                     |       | +13,558.0<br>+37,816.0    | +75.9              | 1         |         | 73,639.0               | 222.8              |
| Subtotal Illa.                  | 229,901.0              | 1,283.5         | +3,495.0          | +19.5 | -47,916.0                | -270.9             | -998.0               | -5.6         | 184,482.0                |                  | 5,020.0              | 23.3            | 189,502.0                           |                       | -385.0               | -2.4          | +1,532.0            | +8.4         |                        | 1,055.8          | -1,842.0                                | -11.8         | 6,361.0               | 24.6  | +37,066.0                 | +208.2             |           | -1      | 232,234.0              |                    |
| Subregion Illb:<br>Arizona      | 97.0                   | .5              | -2.0              | Neg.  | -95.0                    | 5                  | - 1                  | - 1          | 1 7 7                    | - 11             |                      | - 1             |                                     |                       | 7.1                  | - 1           | 7 7 9               | 1 -          |                        | _ 1              | +1.0                                    | Neg.          | - 1                   | -     | +22,951.0                 | +121.7             | -         | 1       | 22,952.0               | 121.7              |
| Nevada<br>California            | 209.0                  | 1.1             | -4.0              | Neg.  | -205.0                   | -1.1               |                      | -10.3        | 412 002 0                | 2 205 0 2        | -<br>26 915 0        | 116.3           | 637 917 0                           | 2,420,5               | 8,748.0              | \$5.0         | +8,196.0            | +45.2        | 454.761.0              | 2 520 7          | -1.0                                    | Neg.<br>-63.7 |                       |       | +10,336.0                 | +55.4              |           | 1       | 10,335.0               |                    |
| Subtotal IIIb.                  | 316,428.0<br>316,734.0 | 1,766.5         | -108.0<br>-114.0  | 6     | +98,515.0<br>+98,215.0   | +550.2<br>+548.6   | -1,833.0<br>-1,833.0 |              | 413,002.0<br>413,002.0   | 2,305.8 2        | 24,815.0<br>24,815.0 | 114.7           | 437,817.0<br>437,817.0              | 2,420.5               |                      | \$5.0         | +8,196.0            | +45.2        | 454,761.0<br>454,761.0 | 2,520.7          |                                         | -63.7         |                       |       | -27,987.0                 | -177.0             |           |         | 416,553.0              | 2,280.0            |
| Subregion IIIc:<br>Alaska       | 11,128.0               | 52.1            | -82.0             | 5     | -3,427.0                 | -19.1              | -48.0                | 3            | 7,571.0                  | 42.2             | - 1                  | 1.              | 7,571.0                             | 42.2                  | 151.0                | .9            | +142.0              | +.8          | 7,864.0                | 43.9             | -122.0                                  | 7             |                       | -     | 16,216.0                  | +34.5              | - 1       | -       | 13,958.0               | 77.8               |
| Hawaii                          |                        | -               | -                 |       | +12,693.0                | +71.1              | -75.0                | 4            | 12,618.0                 | 70.7             |                      |                 | 12,618.0                            | 70.7                  | 252.0<br>403.0       | 2.5           | +236.0              | +1.3         | 13,106.0               | 73.6             | -242.0                                  | -1.5          | - :                   |       | +12,609.0<br>+18,825.0    | +74.5              | -:-       | -       | 39,431.0               | 224.4              |
| Subtotal IIIc.<br>Subtotal III  | 11,128.0<br>557,763.0  | 52.1<br>3,113.7 | -82.0<br>+3,299.0 | +18.4 | +9,266.0                 | +52.0              | -123.0<br>-2,954.0   | 7            | 20,189.0                 |                  | 29,835.0             | 138.0           | 647,508.0                           | 3,583.2               | 8,766.0              | 55.1          | +10,106.0           | +55.7        | 20,970.0               | 3,694.0          | 12,427.0                                | -77.7         | 6,361.0               | 24.6  | +27,904.0                 | +140.3             |           | -       | 688,218.0              | 3,781.2            |
| Unaccounted for                 | -                      | -               | +1,364.0          | +7.6  | -1,364.0                 | -7.6               |                      | -            |                          | -                | •                    |                 |                                     | :                     | -                    | -             |                     |              |                        |                  | -5.876.0                                | -139.5        | -                     |       | -10,632.0                 | -65.3              | -27,400.0 | -151.3  | -43,908.0              | -356.1             |
| Neg Negligible.                 |                        |                 | -                 |       |                          |                    |                      | 1            |                          |                  |                      |                 |                                     |                       |                      |               |                     |              |                        |                  | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |               |                       |       |                           |                    |           |         |                        |                    |

Meg. - Negligible.

Meg. -

nsfers tural liquid ousano trels

793.0

310 1,616

14 3 3.3 3.3 5,2 9,0

|                                   | 1960                |                 |                   |             |                        |                 |                     |             |                    |              |                    |             |                   |        |                  |        |                   |       |                     |             |
|-----------------------------------|---------------------|-----------------|-------------------|-------------|------------------------|-----------------|---------------------|-------------|--------------------|--------------|--------------------|-------------|-------------------|--------|------------------|--------|-------------------|-------|---------------------|-------------|
|                                   |                     |                 |                   |             | Supp                   | 1y              |                     |             |                    |              | I                  |             | 0an               | and by | najor con        | nsupar | sactor1           |       |                     |             |
|                                   | Rafinary            | output and      | Stock ch          | Sanna       | Nat ship               | 3               | Input               |             | Total s            |              | Housahol           |             |                   |        |                  |        | Miscella          |       | Total dom           |             |
| State and Region                  | plant               | product         | Thousand          | Tril-       | Thousand               | Tril-           | Thousand            | Tril-       | consum             |              | Thousand           |             | Industr           |        | Transport        |        | and un<br>counted |       | Thousand            |             |
|                                   | Thousand<br>barrels | Trillion<br>Btu | barrals           | lion        | barrals                | lion<br>8tu     | barrals             | lion<br>8tu | Thousand           |              | barrals            | lion        | barrals           | lion   |                  | lion   | Thousand          | Tril- |                     | lion        |
|                                   |                     |                 |                   |             |                        |                 |                     |             |                    | lion<br>Btu  |                    | 8tu         |                   | 8tu    |                  | 8tu    | barrals           | Ben   |                     | Btu         |
| United States total.              | 278,627.0           | 1,117.2         | -4,822.0          | -19.4       | -2,504.0               | -9.6            | -45,375.0           | -181.7      | 225,926.0          | 906.5        | 100,584.0          | 403.5       | 102,576.0         | 411.5  | 21,379.0         | 85.8   | 1,387.0           | 5.7   | 225,926.0           | 906.5       |
| Ragion I:<br>Subragion Ia:        |                     |                 |                   |             |                        |                 |                     |             |                    |              |                    |             |                   |        |                  |        |                   |       |                     |             |
| Haine                             |                     |                 |                   |             | +431.0                 | +1.7            |                     | -           | 431.0              | 1.7          | 404.0              | 1.6         | 23.0              | .1     | 3.0              | Neg.   | 1.0               | Neg.  | 431.0               | 1.7         |
| New Hampshira<br>Vermont          | -                   | -               | -                 |             | +532.0<br>+403.0       | +2.1            | :                   | -           | 532.0<br>403.0     | 2.1          | 484.0              | 1.9         | 47.0              |        | 1.0              | Nag.   | -                 | -     | 532.0               |             |
| Massachusetts                     | 236.0               | .9              | +1.0              | Neg.        | +902.0                 | +3.7            |                     | 1           | 1,139.0            | 4.6          | 304.0              | 3.5         | 98.0<br>218.0     | .9     | 1.0              | Nag.   | 20.0              | .1    | 403.0<br>1.139.0    |             |
| Rhode Island                      |                     | -               | - 1               | - 1         | +207.0                 | +.8             | -                   | -           | 207.0              | .8           | 175.0              | .7          | 26.0              | .1     | 6.0              | Neg.   | -                 |       | 207.0               | .8          |
| Connecticut<br>New York           | 459.0               | 1.8             | +18.0             | +.1         | +1,044.0               | +4.2            |                     |             | 1,044.0            | 12.4         | 735.0              | 3.0         | 236.0<br>495.0    | 2.0    | 79.0             | Neg.   | 65.0              |       | 1,044.0             |             |
| New Jersey                        | 4,323.0             | 17.3            | -293.0            | -1.2        | -236.0                 | 9               | -178.0              |             | 3,616.0            | 14.5         | 867.0              | 3.5         | 2,721.0           |        | 27.0             | .1     | 1.0               | Neg.  | 3,616.0             | 14.5        |
| Pennsylvania<br>Delaware          | 3,154.0             | 12.6            | +59.0             | +.2         | -384.0<br>-1.378.0     | -1.5<br>-5.6    |                     | -1.8        | 2,370.0            | 9.5          | 1,323.0            | 5.3         | 960.0             |        | 85.0<br>10.0     | .3     | 2.0               | Neg.  | 2,370.0             |             |
| Maryland                          | 1,040,0             |                 |                   | 7.1         | +1,008.0               | +4.1            |                     |             | 1,008.0            | 4.1          | 726.0              | 2.9         | 243.0             | 1.0    | 38.0             | Neg.   | 1.0               | Neg.  | 279.0<br>1.008.0    |             |
| District of                       |                     |                 |                   |             |                        |                 |                     |             | 1                  |              |                    |             |                   |        |                  |        |                   |       |                     |             |
| Columbia<br>Virginia              | 560.0               | 2.2             | -2.0              | Neg.        | Neg.<br>+569.0         | Neg.            |                     | 1           | Nag.<br>1,127.0    | Neg.<br>4.6  | Neg.<br>863.0      | Neg.        | Neg.<br>218.0     | Neg.   | Nag.<br>31.0     | Neg.   | 15.0              | .1    | Nag.<br>1,127.0     | Neg.<br>4.6 |
| West Virginia                     | 7,885.0             | 31.7            | +21.0             | +.1         | +499.0                 | +2.0            |                     | -           | 8,405.0            | 33.8         | 266.0              | 1.1         | 8,131.0           | 32.7   | 8.0              | Neg.   | -                 | -     | 8,405.0             | 33.8        |
| North Carolina<br>South Carolina  |                     | -               |                   |             | +2,342.0               | +9.4            |                     |             | 2,342.0<br>1,357.0 | 9.4<br>5.4   | 1,901.0            | 7.6         | 254.0<br>179.0    | 1.0    | 23.0<br>58.0     | .1     | 164.0             |       | 2,342.0             |             |
| Georgia                           |                     |                 |                   |             | +3,625.0               | +14.4           |                     |             | 3,625.0            |              | 2,681.0            | 10.7        | 571.0             | 2.3    | 286.0            | 1.1    | 87.0              |       | 3,625.0             | 14.4        |
| Florida<br>Kentucky               | 5.701.0             | 22.9            | -23.0             | ٠.          | +4,935.0               | +19.6           |                     |             | 4,935.0            | 19.6         | 1,643.0            | 16.2        | 481.0             | 1.9    | 357.0            | 1.4    | 28.0              |       | 4,935.0             | 19.6        |
| Tannassaa                         | 3,701.0             | - 22.9          | -23.0             | 1           | -2,211.0<br>+1,328.0   | +5.4            |                     |             | 3,467.0            | 5.4          | 1,015.0            | 4.1         | 1,676.0           | 6.7    | 147.0<br>95.0    | .6     | 1.0               |       | 3,467.0<br>1,328.0  | 13.9        |
| Alabama                           | 27.0                | .1              |                   | 7.          | +2.655.0               | +10.6           |                     | -           | 2,682.0            | 10.7         | 2,473.0            | 9.9         | 73.0              | .3     | 133.0            | .5     | 3.0               | Neg.  | 2.682.0             | 10.7        |
| Hississippi<br>Ohio               | 715.0<br>2,753.0    | 2.9             | -357.0<br>+65.0   | -1.4<br>+.3 | +4,238.0<br>+98.0      | +17.0           | -659.0<br>-106.0    | -2.6        | 3,937.0<br>2,810.0 | 15.9<br>11.2 | 2,882.0            | 11.6<br>8.3 | 55.0<br>584.0     | 2.3    | 961.0<br>157.0   | 3.9    | 39.0              | Nag.  | 3,937.0<br>2,810.0  | 15.9        |
| Subtotal Ia                       | 27,453.0            |                 | -494.0            |             | +24,570.0              |                 | -1,402.0            | -5.5        | 50,127.0           | 200.8        | 29,556.0           | 118.5       | 17,561.0          | 70.5   | 2,531.0          | 9.9    | 479.0             | 1.9   | 50,127.0            | 200.8       |
| Subragion Ib:<br>Indiana          | 745.0               | 3.0             | +6.0              | Mon         | +5,928.0               | +23.8           | -1.076.0            | -4.3        | 5,603.0            | 22.5         | 3,987.0            | 16.0        | 1.388.0           | 5.6    | 206.0            | .8     | 22.0              |       | 5,603.0             | 22.5        |
| Illinois                          |                     | 48.4            | -258.0            | Neg.        | +3,736.0               | +15.0           |                     | -8.0        | 13,568.0           | 54.4         | 6,108.0            |             | 6,033.0           | 24.2   |                  | 5.5    |                   | .1    | 13,568.0            | 54.4        |
| Hichigan<br>Wisconsin             | 1,314.0             | 5.3             | -55.0             | 2           | +1,870.0               | +7.5            |                     | -           | 3,129.0            | 12.6         | 2.282.0            | 9.2         | 744.0             | 3.0    | 92.0             | .4     | 11.0              | Neg.  | 3,129.0             | 12.6        |
| Subtotal Ib                       | 14,152,0            | 56.7            | -98.0<br>-405.0   | -1.6        | +4,366.0               | +63.8           | -3.079.0            | -12.3       | 4,268.0            | 17.1         | 3,147.0            | 62.3        | 9,172.0           | 36.8   | 101.0            | 7.1    | 13.0              | .4    | 4,268.0<br>26,568.0 | 106.6       |
| Subtotal I                        | 41,605.0            | 166.5           | -899.0            | -3.5        | +40,470.0              | +162.2          | -4,481.0            | -17.8       | 76,695.0           | 307.4        | 45,080.0           | 180.8       | 26,733.0          | 107.3  | 4,309.0          | 17.0   | 573.0             | 2.3   | 76,695.0            | 307.4       |
| Ragion II:<br>Subregion IIa:      |                     |                 |                   |             | ,                      |                 |                     |             |                    |              |                    |             |                   | -      |                  |        |                   |       |                     |             |
| Minnesota                         | -                   | -               | -19.0             | 1           | +4,702.0               | +18.9           | -85.0               | 3           | 4,598.0            | 18.5         | 3,657.0            |             | 787.0             | 3.2    | 119.0            | .5     | 35.0              | .1    | 4,598.0             |             |
| Iowa                              |                     |                 | -98.0             | 4           | +4,306.0<br>+6,425.0   | +17.3           | -218.0              | - 9         | 4,208.0<br>6,108.0 | 16.9         | 3,896.0<br>5,513.0 | 15.6        | 149.0             | 1.6    | 99.0<br>188.0    | .4     | 64.0<br>13.0      |       | 4,208.0<br>6,108.0  |             |
| North Oskota                      | 2,130.0             | 8.5             | -96.0             | 4           | -398.0                 | -1.6            | -399.0              | -1.6        | 1,237.0            | 4.9          | 926.0              | 3.7         | 184.0             | .7     | 127.0            | .5     | -                 | -     | 1,237.0             | 4.9         |
| South Dakota<br>Nebraske          | 1.078.0             | 4.3             | -99.0             | - 4         | +1,370.0<br>+1,673.0   | +5.5<br>+6.7    | - 1                 |             | 1,370.0<br>2,652.0 | 5.5          | 1,256.0<br>2,106.0 | 5.0         | 15.0<br>52.0      | .1     | 94.0<br>449.0    | 1.8    | 5.0<br>45.0       |       | 1,370.0             | 5.5         |
| Subtotal IIa                      | 3,208.0             | 12.8            | -411.0            | -1.7        | +18,078.0              | +72.7           | -702.0              | -2.8        | 20,173.0           |              | 17,354.0           |             | 1,581.0           | 6.4    | 1,076.0          | 4.4    | 162.0             | .7    | 20,173.0            | 81.0        |
| Subragion IIb:<br>Arkansas        | 2,072.0             | 8.3             | +2.0              | Neg.        | +2,868.0               | +11.6           | -120.0              | - 5         | 4,822.0            | 19.4         | 3,331.0            | 13.4        | 125.0             |        | 1,348.0          | 5.4    | 18.0              | -1    | 4,822.0             | 19.4        |
| Louisiana                         | 30,772.0            | 123.5           | -691.0            | -2.8        | -9,081.0               | -36.4           | -6,451.0            |             | 14.549.0           | 58.4         | 1,843.0            | 7.4         | 11,737.0          | 47.1   | 860,0            | 3.5    | 109.0             | .4    | 14,549,0            | 58.4        |
| Oklahoma                          | 22,406.0            | 89.9            | +106.0            |             | -11,205.0              | -44.9           | -3,976.0            | -15.9       | 7,331.0            | 29.5         | 4,633.0            | 18.6        | 1,361.0           | 5.5    | 1,266.0          | 5.1    | 71.0              |       | 7,331.0             | 29.5        |
| Texas<br>New Mexico               | 15,417.0            | 522.7<br>61.8   | -2,499.0<br>+48.0 | +.2         | -32,574.0<br>-12,748.0 | -130.6<br>-51.1 | -20,340.0<br>-233.0 | -81.5<br>9  | 2,484.0            | 10.0         | 1,695.0            | 6.8         | 53,962.0<br>181.0 | .7     | 8,839.0<br>543.0 | 35.7   | 226.0<br>65.0     | .3    | 74,889.0<br>2,484.0 | 10.0        |
| Kansas                            | 4,692.0             | 18.9            | -313.0            | -1.3        | +2.452.0               | 49.9            | -1.534.0            | -6.1        | 5,297.0            | 21.4         | 4,055.0            | 16.3        | 289.0             | 1.2    | 937.0            | 3.8    | 16.0              | .1    | 5,297.0             | 21.4        |
| Subtotal IIb<br>Subtotal II.      | 208,869.0           | 825.1           | -3,347.0          | -13.5       | -60,288,0<br>-42,210.0 | -241.5          | -32,654.0           | -130.8      | 129.545.0          | 520.3        | 44,773.0           | 179.6       | 69,236.0          | 271.4  | 14,869.0         | 55.7   | 667.0             | 2.8   | 109,372.0           | 520.3       |
| Ragion III:                       |                     | -               |                   |             | The street of          |                 |                     |             |                    |              |                    |             |                   |        |                  |        |                   |       |                     |             |
| Subragion IIIa:                   | 2,522.0             | 10.1            | -4.0              | Neg.        | -1.373.0               | -5.5            | -315.0              | -1.3        | 830.0              | 3.3          | 596.0              | 2.4         | 109.0             | .4     | 125.0            | .5     |                   |       | 830.0               | 3.3         |
| Idaho                             | 1.0                 |                 | -                 | -           | +455.0                 | +1.8            | -                   | -           | 455.0              | 1.8          | 369.0              | 1.5         | 55.0              | .2     | 31.0             | .1     | -                 | -     | 455.0               | 1.8         |
| Wyoming<br>Utah                   | 3,144.0<br>591.0    | 12.6            | +6.0<br>+2.0      | Nag.        | -1,521.0<br>+615.0     | -6.1<br>+2.5    | -546.0<br>-710.0    | -2.2        | 1,083.0            | 4.3<br>2.0   | 660.0<br>292.0     | 2.6         | 117.0<br>53.0     | .5     | 305.0<br>153.0   | 1.2    | 1.0               | Nag.  | 1,083.0             |             |
| Colorado                          | 2,754.0             | 11.0            | +1.0              | Nag.        | +238.0                 | +1.0            | -/10.0              |             | 2,993.0            | 12.0         | 2,467.0            | 9.9         | 99.0              | .4     | 407.0            | 1.6    | 20.0              | .1    | 2,993.0             | 12.0        |
| Washington                        | · ·                 | -               |                   |             | +556.0                 | +2.2            |                     | -           | 556.0              | 2.2          | 408.0              | 1.6         | 122.0             | .5     | 26.0             | .1     | ·                 |       | 556.0               |             |
| Oregon<br>Subtotal IIIa.          | 9,011.0             | 36.1            | +5-0              | Neg.        | +1,185.0               | +4.8            | -1,571.0            | -6.4        | 7,600.0            | 30.4         | 5,388.0            | 2.4         | 1,100.0           | 2.2    | 1,089.0          | 4.3    |                   | Neg.  | 7,600.0             |             |
| Subregion IIIb:                   |                     |                 |                   |             |                        |                 |                     |             |                    |              |                    |             |                   |        |                  |        |                   |       |                     |             |
| Arizona                           |                     |                 |                   |             | +724.0<br>+773.0       | +2.9            | 1                   |             | 724.0<br>773.0     | 2.9          | 467.0<br>323.0     | 1.9         | 104.0<br>429.0    | 1.7    | 151.0            | .6     | 2.0               | Neg.  | 724.0<br>773.0      | 2.9         |
| California                        | 19,142.0            | 76.7            | -170.0            | 7           | -2,574.0               | -10.3           |                     |             | 10,431.0           | 41.8         | 4,444.0            | 17.8        | 4,934.0           | 19.8   | 932.0            | 3.7    | 121.0             | .5    | 10,431.0            | 41.8        |
| Subtotal IIIb.<br>Subregion IIIc: | 19,142.0            | 76.7            | -170.0            | 7           | -1,077.0               | -4.3            | -5,967.0            | -23.9       | 11,928.0           | 47.8         | 5,234.0            | 21.0        | 5,467.0           | 21.9   | 1,104.0          | 4.4    | 123.0             | .5    | 11,928.0            | 47.8        |
| Subregion IIIc:                   |                     | -               | -                 |             | +46.0                  | +.2             | -                   | -           | 46.0               | .2           | 42.0               | .2          | 3.0               | Nag.   | -                | -      | 1.0               | Neg.  | 46.0                | .2          |
| Hawaii                            |                     |                 |                   |             | +112.0                 | +.4             |                     | -           | 112.0              | .4           | 67.0               | .3          | 37.0              | .1     | 8.0              | Neg.   |                   |       | 112.0               | 4           |
| Subtotal IIIc.<br>Subtotal III    | 28,153.0            | 112.8           | -165.0            | 7           | +158.0                 | +.6             | -7.538.0            | -30.3       | 158.0              | 78.8         | 109.0              | 43.1        | 6,607.0           | 26.4   | 2,201.0          | Nag.   | 147.0             | Nag 6 | 158.0               |             |
| Nag                               | 20,133.0            | 112.0           | -103.0            | /           | -,,,4,0                | -910            | 7,555.0             |             | 23100010           |              |                    |             | 2100110           |        | -120210          | U.7    |                   |       |                     | -           |

No.

Signification persentant, willities, sector does not apply to this commodity.

Signification persentant, willities, sector does not apply to this commodity.

Sithidrawals from stocks add to asphy and are indicated by plus signs; additions to stocks reduce supply and are indicated by minus signs.

Sincludes net foreign trade: -1,357.0 thousand berrais; -34.3 trillion No.

| State and Sapon   Control   Contro   |                      |             |            |           |          | Ma for av   | oducts bu      | concent   | eactors   |          |           |             |          | Miscell                                 | aneous I | Apparent    | total    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------|------------|-----------|----------|-------------|----------------|-----------|-----------|----------|-----------|-------------|----------|-----------------------------------------|----------|-------------|----------|
| Direct States team   Spin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      | Househol    | d and      | 1ndus!    | trial    |             | tation         | Electrici | ty gener- | Hiscella | neous and |             |          | product                                 | s unac-  | domestic    | demand   |
| Deficial State Color:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | State and Region     | commerc     | lal        | Thousand  | Trillion | Thousand    | Trillion       | ation, u  | tilities  | unaccou  | nted for  |             |          |                                         |          |             |          |
| Section   Sect   |                      |             |            | barrels   | Btu      | barrels     | Btu            |           |           |          |           | barrers     | ocu      |                                         |          | barreis     | BLU      |
| Region   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | United States total. | B43,673.0   | 4,743.3    | 395,786.0 | 2,111.6  | 2,274,680.0 | 12,1B4.2       | 118,545.0 |           |          |           | 3,710,034.0 | 20,240.0 | 492,390.0                               | 2,743.2  | 4,202,424.0 | 22,983.2 |
| Mersent Dispute State   1,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000  |                      |             |            |           |          |             |                |           |           |          |           |             |          |                                         |          |             |          |
| nes methater. 7,111.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |             |            |           |          | 1/ (0/ 0    | 70.0           |           | 20.6      | 102.0    | 7         | 21 277 0    | 177 1    |                                         |          | 21 277 0    | 177 1    |
| Verment \$4,86.0 32.0 33.0 0 30.0 2.1 3.152.0 20.0 1.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      | 7 119 0     |            |           | 5.9      | 7.215.0     | 37.9           | 1 375 0   |           |          | .6        |             |          |                                         |          |             |          |
| Messachesette                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      | 5,645.0     |            | 530.0     | 3.1      | 3,912.0     | 20.6           | 67.0      | .4        | 80.0     | .5        | 10,232.0    | 56.9     | -                                       | - 25     | 10,232.0    | 56.9     |
| Connecticut   12,572.6   14.2   11,024.6   67.8   27,085.0   14.9   27,711.0   72.1   25.0   15.3   64,981.0   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   30.6   3   |                      | 85,865.0    |            | 10,790.0  | 66.3     |             |                |           |           |          |           | 157,908.0   | 917.9    |                                         |          |             |          |
| ne vol.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |             |            |           |          | 9,919.0     | 167.0          | 1,022.0   | 17.1      |          |           | 66.891.0    | 380.6    |                                         |          | 66.891.0    | 380.6    |
| New June   1967   1968   1868   1868   1868   1868   1868   1868   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   1869   186   |                      |             | 892.5      | 17,086.0  | 103.1    | 168,785.0   | 916.6          | 23,315.0  | 146.6     |          |           | 361,787.0   | 2,074.6  | 3,475.0                                 | 21.6     | 365,262.0   | 2,096.2  |
| Delivers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | New Jersey           | 55,011.0    | 322.2      | 21,125.0  | 125.0    | 72,190.0    | 389.9          | 12,670.0  | 79.6      | 1,849.0  | 11.1      |             | 927.8    | 31,568.0                                | 195.9    |             |          |
| New   Property   19,11-0   11,20   6,00-6   39,2   31,20-0   200.4   667.0   30.8   1,60-6   9.6   6,911.0   317.0   1.6   6,911.0   399.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | 54,349.0    |            | 28,661.0  | 175.0    | 102,298.0   | 547.4          |           | 25.7      | 4,105.0  | 24.6      |             |          |                                         |          |             |          |
| District of      | Maryland             | 19.251.0    |            | 6,404.0   | 39.2     | 38.243.0    | 208. 4         |           |           |          |           |             |          |                                         |          |             |          |
| Virginia   19,810.0   113.7   4,922.0   22.2   58,706.0   322.7   220.0   1.3   1,556.0   9.2   85,110.0   476.1   2,267.0   15.4   87,727.0   191.5   85,006.0   10.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   | District of          |             |            | · ·       |          | ,-          |                | 0.,,,,    |           |          |           | 1           |          | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |          |             |          |
| Mest Virginia. 1, 124-0, 6, 8, 12, 23-0, 95-7, 14, 22-0, 72-6, 77-0, 13 10.0 1.8 28, 23-10 139-4 22, 21.0 139-4 Mesth Karolina. 32, 270-7, 37-7, 5, 5, 60-6, 12, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-7, 50-     | Columbia             |             |            |           |          |             |                |           |           | 329.0    | 2.0       |             |          |                                         |          |             |          |
| Morth Caroline.   26,378.0   134.9   6,447.0   28.1   30,085.0   266.0   74.0   4. 2,688.0   15.2   83,623.0   634.6   -   -   -   8,563.0   634.6   -   -   -   8,563.0   634.6   -   -   -   8,563.0   634.6   -   -   -   8,563.0   634.6   -   -   -   8,563.0   634.6   -   -   -   8,563.0   634.6   -   -   -   8,563.0   634.6   -   -   -   8,563.0   634.6   -   -   -   8,563.0   634.6   -   -   -   8,563.0   634.6   -   -   -   8,563.0   634.6   -   -   -   8,563.0   634.6   -   -   -   8,563.0   634.6   -   -   -   8,563.0   634.6   -   -   -   8,563.0   634.6   -   -   -   8,563.0   -   -   -   8,563.0   -   -   -   -   8,563.0   -   -   -   -   -   8,563.0   -   -   -   -   -   -   -   -   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Virginia             |             |            | 4,822.0   | 29.2     | 58,704.0    | 322.7          |           | 1.3       | 1,554.0  | 9.2       | 28 231 0    | 130 4    | 2,262.0                                 | 15.4     | 87,372.0    | 491.5    |
| Secretian. 7, 627.0 37.9 2,865.0 16.9 24,803.0 132.4 25.0 2 1,999.0 9.0 32,286.0 196.4 -1.2, 5.0 -1.9,266.0 196.4 6.5 -2.5 -1.9,266.0 196.4 6.5 -2.5 -1.9,266.0 196.4 6.5 -2.5 -1.9,266.0 196.4 6.5 -2.5 -1.9,266.0 196.4 6.5 -2.5 -1.9,266.0 196.4 6.5 -2.5 -1.9,266.0 196.4 6.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | North Carolina       |             |            | 6,447.0   | 38.1     | 50,068.0    | 266.0          |           | .4        | 2,658.0  | 15.2      |             |          |                                         |          |             |          |
| Ferrical   1,17.0   61.7   1,813.0   71.6   82,835.0   46.5   26,000   70.2   5,17.0   36.0   14,103.0   79.9   24.0   1.4   14,128.0   79.5   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   25.0   | South Carolina       | 7,087.0     | 37.9       | 2,865.0   | 16.9     | 24,803.0    | 132.4          | 32.0      | .2        | 1,499.0  | 9.0       | 36,286.0    | 196.4    |                                         | - /      | 36,286.0    | 196.4    |
| Tempessee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      | 6,436.0     |            |           |          |             |                |           |           |          |           |             |          | 2,425.0                                 | 13.4     | 67,749.0    |          |
| Temesees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Kentucky             | 5,670.0     |            |           |          | 30,977.0    | 164.4          | 15.0      | 1/6.3     | 821.0    | 4.8       | 41.768.0    | 217.9    | 2,987.0                                 | 18.8     |             |          |
| Alebana (A.) 0.0 (15.) 1,22.0 (10.7) 34,393.0 (124.) 11.2 (1.7) (1.7) 34,393.0 (124.) 11.2 (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) | Tennessee            | 3,785.0     | 19.3       | 2,276.0   | 12.4     | 38,297.0    | 203.4          |           |           | 1,316.0  | 7.8       | 45,676.0    | 242.9    | 4,399.0                                 | 24.9     | 50,075.0    | 267.8    |
| Subsection   11:   Subsection    | Alabama              | 4,306.0     |            | 1,825.0   | 10.7     | 34,595.0    | 184.7          |           |           | 1,113.0  | 6.6       | 41,839.0    | 221.3    | 1,945.0                                 | 10.5     | 43,784.0    |          |
| Subrotal 1a. 34,643.0 3,157,7172,964.0 1,018.0 1,019.58.0 5,425.6 92,662.0 51.0 3,402.0 211.4 1,856.273.0 10.90.9 166,687.0 1,005.0 2,228.0 114.000.2 11.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Obio                 |             | 124.5      | 13 149 0  |          | 21,445.0    | 537 4          |           |           |          |           |             |          |                                         |          |             |          |
| Subregion 1b: Indiana.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Subtotal la          | 544,613.0   | 3,153.7    | 172,964.0 | 1,018.0  | 1,010,586.0 | 5,425.6        | 92,668.0  | 581.9     |          |           |             |          |                                         |          |             |          |
| Hintoss. 46, 102.0   22.8   20,618.0   108.2   103,748.0   552.1   285.0   1.7   2,181.0   12.9   176,634.0   937.7   29,536.0   190.1   206,170.0   1,147.8   Hichigan   33,870.0   186.3   99.90.0   57.6   65,838.0   653.5   410.0   2.4   1,70.0   11.2   139,931.0   71.1   1,506.0   11.4   123,930.0   722.4   Visconsin.   27,104.0   150.4   2,788.0   15.2   39,472.0   200.7   65.0   4.   722.0   5.3   70,355.0   350.3   1,572.0   8.,3   71,977.0   88.6   Subtotal I.   38.03.0   76.6   6.46,859.0   27.2   23,513.0   1,552.5   531.0   53.5   61.17.0   25.8   46.5   13.0   20.0   27.2   2,341,880.0   13.0   20.0   27.2   2,341,880.0   13.0   20.0   27.2   2,341,880.0   13.0   20.0   27.2   2,341,880.0   13.0   20.0   27.2   2,341,880.0   13.0   20.0   27.2   2.361,054.0   13.0   20.0   27.2   2.361,054.0   13.0   20.0   2.361,054.0   13.0   20.0   27.2   2.361,054.0   13.0   20.0   27.2   2.361,054.0   13.0   20.0   27.2   2.361,054.0   13.0   20.0   27.2   2.361,054.0   13.0   20.0   27.2   2.361,054.0   13.0   20.0   27.2   2.361,054.0   13.0   20.0   27.2   2.361,054.0   13.0   20.0   27.2   2.361,054.0   13.0   20.0   27.2   2.361,054.0   13.0   20.0   27.2   2.361,054.0   13.0   20.0   27.2   2.361,054.0   13.0   20.0   27.2   2.361,054.0   13.0   20.0   27.2   2.361,054.0   13.0   20.0   27.2   2.361,054.0   13.0   20.0   27.2   2.361,054.0   13.0   20.0   27.2   2.361,054.0   13.0   20.0   27.2   2.361,054.0   13.0   20.0   27.2   2.361,054.0   13.0   20.0   27.2   2.361,054.0   13.0   20.0   27.2   2.361,054.0   13.0   20.0   27.2   2.361,054.0   13.0   27.2   2.361,054.0   13.0   27.2   2.361,054.0   13.0   27.2   2.361,054.0   13.0   27.2   2.361,054.0   13.0   27.2   2.361,054.0   13.0   27.2   2.361,054.0   13.0   27.2   2.361,054.0   13.0   27.2   2.361,054.0   13.0   27.2   2.361,054.0   13.0   27.2   2.361,054.0   13.0   27.2   2.361,054.0   13.0   27.2   2.361,054.0   13.0   27.2   2.361,054.0   13.0   27.2   2.361,054.0   27.2   2.361,054.0   27.2   2.361,054.0   27.2   2.361,054.0   27.2   2.361, |                      |             |            |           |          |             |                |           |           |          |           |             |          |                                         |          |             |          |
| Historian 32,870.0   186.3   9,909.0   57.6   85,838.6   653.5   41.0   2.4   1,901.0   11.2   130,931.0   711.0   1,106.0   11.4   132,639.0   722.4   1,901.0   11.2   130,931.0   711.0   1,106.0   11.4   132,639.0   722.4   1,901.0   11.5   130,931.0   712.0   130,931.0   1,106.0   11.4   132,639.0   722.4   1,901.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13 |                      |             |            |           |          | 64,575.0    | 345.2          |           |           |          |           | 107,393.0   | 588.4    |                                         |          |             |          |
| Wisconsin   1, 18, 18, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Hichigan.            | 32 870 0    |            |           |          | 103,748.0   | 552.1<br>453.5 |           |           | 2,181.0  | 12.9      | 176,634.0   | 957.7    | 29,536.0                                | 190.1    | 206,170.0   | 722 4    |
| Subtotal 1b. 18,08,0 7,66,6 63,540,0 7272,0 7294,631,0 1,305,5 911,0 5.5 6,117,0 3.5,8 685,131,0 1,02,6374, 59,785,0 332,4 345,080,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1,396,0 1 | Wisconsln            | 27,104.0    | 150.4      |           |          | 39,472.0    | 208.7          |           |           | 922.0    | 5.3       | 70,355.0    | 380.3    | 1.592.0                                 | 8.3      | 71,947.0    |          |
| Region 11:  Mimesota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Subtotal 1b          | 136,083.0   | 764.6      | 48,549.0  | 272.0    | 293,633.0   | 1,559.5        |           |           | 6,117.0  | 35.8      | 485,313.0   | 2,637.4  |                                         |          | 545,098.0   |          |
| Subsequent   1a:   14,417.0   73.8   1,308.0   6.9   34,376.0   181.4   224.0   1.3   1,248.0   7.2   31,573.0   270.6   -   -   -   51,573.0   270.6   181.4   224.0   1.3   1,248.0   7.2   31,573.0   270.6   -   -   -   -   51,573.0   270.6   181.4   224.0   1.3   1,248.0   7.2   31,573.0   270.6   -   -   -   -   -   -   51,573.0   270.6   181.4   224.0   1.3   1,248.0   7.2   31,573.0   270.6   -   -   -   -   -   -   51,573.0   270.6   270.6   181.4   224.0   1.3   1,248.0   7.2   31,573.0   270.6   -   -   -   -   -   -   -   -   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      | 680,696.0   | 3,918.3    | 221,513.0 | 1,290.0  | 1,304,219.0 | 6,985-1        | 93,599.0  | 587.4     | 41,559.0 | _ 247.2   | 2,341,586.0 | 13,028.0 | 226,472.0                               | 1,362.0  | 2,568,058.0 | 14,390.0 |
| Humesota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |             |            |           |          |             |                |           |           |          |           |             |          |                                         |          |             |          |
| Missouri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      | 21,112.0    | 114.6      | 5,418.0   | 31.1     | 41,215.0    | 219.0          | 447.0     | 2.8       | 1,617,0  | 9.4       | 69.809.0    | 376.9    | 3.770.0                                 | 23.3     | 73.579.0    | 400.2    |
| North Dakota 4,555.0 24,9 1,1012.0 5.9 11,529.0 61.0 - 64.00 7.8 0 11,529.0 61.0 - 64.00 7.8 0 11,529.0 61.0 - 64.00 7.8 0 11,529.0 61.0 - 64.00 7.8 0 11,529.0 61.0 11,529.0 61.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Iowa                 | 14,417.0    |            | 1,308.0   | 6.9      | 34,376.0    | 181.4          |           |           | 1,248.0  | 7.2       |             |          | -                                       | - 1      | 51,573.0    | 270.6    |
| Subcrated 116.  Subcrated 116.  Subcrated 116.  Subcrated 116.  Arkanea  Subcrated 116.  Arkanea  Subcrated 116.  Arkanea  Subcrated 116.  Arkanea  A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Missouri             | 15,094.0    |            |           |          | 55,835.0    | 297.9          |           |           |          |           | 74,715.0    | 395.6    |                                         |          | 79,910.0    |          |
| New Hersicon   19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | South Dakota         |             |            |           |          | 11,529.0    | 61.1           |           |           |          |           | 17,740.0    | 95.6     |                                         |          | 17,740.0    |          |
| Subretal IIa. Subretal III. Subretal IIII. Subretal III. S | Nebraska             | 5,153.0     | 24.6       |           | 2.0      |             |                |           |           |          |           | 26,068.0    | 135.6    |                                         |          | 26,068.0    | 135.6    |
| Arkaneas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      | 64,821.0    | 337.1      | 12,405.0  | 67.2     | 174,309.0   | 924.9          | 1,072.0   | 6.5       |          |           | 258,637.0   | 1,370.8  | 8,965.0                                 | 53.7     |             |          |
| Description   Color    | Subregion 11b:       | 4 508 0     | 10 0       | 021 0     | 4.0      | 21 254 0    | 111 2          | 22.0      |           | (12.0    |           |             | 100.0    | 7 150 0                                 | (0.0     | 24 490 0    | 100 0    |
| Oklahoma. 6,747.0 29,3 1,154.0 6.2 36,153.0 189.1 52.0 3 678.0 4.0 44,784.0 228.9 26,828.0 169.4 73,912.0 397.3 Texas. 17,332.0 77.2 90,666.0 377.5 187,621.0 397.3 50.0 3 4,882.0 28.4 300,501.0 1,468.4 147,191.0 188.6 447,692.0 2,238.0 169.4 47,191.0 397.0 188.6 47,692.0 2,238.0 169.4 147,191.0 397.0 188.6 47,191.0 397.0 188.6 47,191.0 188.6 47,191.0 188.6 47,191.0 188.6 47,191.0 188.6 47,191.0 188.6 47,191.0 188.6 47,191.0 188.6 47,191.0 188.6 47,191.0 188.6 47,191.0 188.6 47,191.0 188.6 47,191.0 188.6 47,191.0 188.6 47,191.0 188.6 47,191.0 188.6 47,191.0 188.6 47,191.0 188.6 47,191.0 188.6 47,191.0 188.6 47,191.0 188.6 188.6 47,191.0 188.6 47,191.0 188.6 47,191.0 188.6 47,191.0 188.6 47,191.0 188.6 47,191.0 188.6 47,191.0 188.6 47,191.0 188.6 47,191.0 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 47,191.0 188.6 188.6 48,191.0 188.6 188.6 48,191.0 188.6 188.6 48,191.0 188.6 1 | Louislana            | 3,454.0     |            |           |          |             |                |           |           |          |           |             |          |                                         |          |             |          |
| New Herrico                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Oklahoma             | 6,747.0     | 29.3       | 1,154.0   | 6.2      | 36,153,0    | 189.1          | 52.0      | .3        | 678.0    | 4.0       | 44,784.0    | 228.9    |                                         | 168.4    |             |          |
| Xansaes   7,119,0   32,6   1,602,0   8,2   32,787,0   173.0   311.0   1,9   1,000.0   6,0   42,819,0   221,7   13,999,0   92,5   56,758,0   314,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Texas                | 17,332.0    |            |           |          | 187,621.0   | 989.3          |           |           |          |           | 300,501.0   | 1,468.4  | 147,191.0                               |          | 447,692.0   |          |
| Subtotal III.  Subregion III: Subregion III. Subreg | Kansas               | 7,119.0     | 32.6       |           |          |             |                |           |           |          |           | 20,378.0    | 107.6    |                                         | 92.5     |             |          |
| Subtotal III. Subregion III. Subregi | Subtotal 11b         | 41,558.0    | 180.0      | 116,323.0 | 491.8    |             |                |           |           | 10,360.0 | 61.0      |             |          |                                         |          | 722,454.0   | 3,743.6  |
| Subregion Illia: Subregion Illia: Subtotal Ill |                      | 106,379.0   | 517.1      | 128,728.0 | 559.0    |             |                | 1,626.0   | 9.8       | 16,390.0 |           |             |          |                                         |          | 1,990,056.0 | 5,168.1  |
| Montane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |             |            |           |          |             |                |           |           |          |           |             |          |                                         |          |             |          |
| Adaho   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40   1,40     | Montana              | 2,587.0     | 14.0       | 772.0     | 4.2      | 13 551 0    | 73.0           |           |           | 000.0    |           | 17 071 0    |          | 5 100 0                                 | 26.1     | 22 072 0    | 122.0    |
| Wyosing   1/427.0   7.3   1/708.0   9.8   7/919.0   43.5   36.0   2.2   699.0   4.1   11/789.0   64.5   11/315.0   63.1   22/104.0   128.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Idaho                | 3,696.0     |            |           |          |             |                |           | Nee.      |          |           | 17,871.0    | 77.0     | 3,102.0                                 | 26.1     | 14,155.0    |          |
| Colorado.   4,733.0   22.9   1,141.0   6.8   24,940.0   133.6   37.0   2.1   2,511.0   7.2   22,120.0   170.7   1,394.0   9.5   24,652.0   136.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Wyomlng              | 1,427.0     | 7.3        | 1,708.0   | 9.8      | 7,919.0     | 43.5           | 36.0      | .2        | 699.0    | 4.1       | 11,789.0    | 64.9     | 11,315.0                                |          | 23,104.0    | 128.0    |
| Washington         16,299.0         94,7         4,199.0         25,4         37,735.0         202.6         23.0         1         3,285.0         19,9         61,541.0         362.7         12,098.0         67,6         73,699.0         410.3           Subtotal Illa         Bubbotal Illa         11,031.0         5.1         7,089.0         10,6         9,028.0         53.7         199,810.0         1,099,4         32,234.0         1,276.8           Subtotal Illa         11,133.0         5.1         755.0         4,3         20,327.0         108.1         6.0         Neg         731.0         4,2         22,952.0         121.7         22,952.0         121.7           Revada         1,134.0         6.7         357.0         1,9         8,080.0         45.3         10.0         1         226.0         13.35.0         55.4         -         10,335.0         55.4           Subtoglan Illa         1,134.0         6.7         357.0         1,9         8,080.0         45.3         10.0         1         226.0         11.0         1.0         1         226.0         11.0         1.0         1.0         1.0         1.0         1         226.0         1.0         1.0         1.0         1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Coloredo             | 2,421.0     |            |           |          | 14,521.0    |                |           |           | 500.0    | 3.0       | 22,652.0    | 126.7    | 2,000.0                                 | 9.5      | 24,652.0    |          |
| Oregon. 10,671.0 61.8 2,679.0 16.1 24,666.0 132.6 5.0 Neg. 1,679.0 10.0 39,700.0 220.5 515.0 2.3 40,215.0 222.8 Subtraction 111b:  Arizona. 1,131.0 5.1 755.0 4.3 20,327.0 108.1 66.0 Neg. 731.0 4.2 2,952.0 121.7 - 2 2,952.0 121.7 Nevada. 1,314.0 6.7 337.0 1.9 8,408.0 45.3 10.0 1.1 246.0 1.1 12,103.0 5.7 38,652.0 161.4 30,7,566.0 16,772.7 16,116.0 10.5 48,80.1 111b.  Subtraction 111b:  Subtraction 111b:  Subtraction 111c. 2,384.0 13.9 789.0 4.7 4,865.0 26.7 215.0 1.2,244.0 2.5 8,877.0 49.0 5,281.0 236.4 46,555.0 2,236.0 161.6 16,388.0 90.7 5,950.0 10.6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Washington           | 16,299.0    |            |           |          | 37, 735, 0  | 202.6          |           |           |          |           | 32,102.0    | 170.7    | 1,394.0                                 | 67.6     |             |          |
| Subtedai IIIb: Arizona.    1,13.0   5.1   755.0   4.3   20,327.0   108.1   6.0   8.8, 6   122,441.0   711.8   1,709.0   10.6   9,028.0   53.7   199,810.0   1,099.4   32,424.0   177.4   232,234.0   1,276.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Oregon               | 10,671.0    | 61.8       | 2,679.0   | 16.1     | 24,666.0    | 132.6          | 5.0       | Neg.      |          |           | 39,700.0    | 220.5    | 515.0                                   | 2.3      |             | 222.8    |
| Arizona                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      | 41,834.0    | 234.7      | 14,798.0  | 88.6     | 132,441.0   | 711.8          | 1,709.0   | 10.6      | 9,028.0  |           |             | 1,099.4  | 32,424.0                                | 177.4    |             | 1,276.8  |
| Nevada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Arlzona              | 1 122 0     |            | 755.0     |          | 20 227 0    | 100            |           |           |          |           |             |          |                                         |          | 22 055      | 101.7    |
| Subtotal IIIb. Subregion IIIc: Alaska                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Nevada               | 1,314.0     | 6.7        |           |          | 8 408 0     | 45.3           | 10.0      |           |          |           | 22,952.0    | 121.7    |                                         |          |             |          |
| Subtotal IIIb. Subregion IIIc: Alaska                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | California           | 9,563.0     | 45.5       | 27,540.0  | 155.2    | 278,831.0   | 1,519.3        | 16,500.0  | 103.7     |          |           | 339,849.0   | 1.866.5  | 43,417.0                                | 236,4    |             |          |
| Alaska                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      | 12,010.0    | 57.3       | 28,652.0  | 161.4    | 307,566.0   | 1,672.7        | 16,516.0  | 103.8     | 8,392.0  | 48.4      | 373,136.0   | 2,043.6  | 43,417.0                                | 236.4    | 416,553.0   |          |
| Havali                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Alaska               | 2.386.0     | 12.0       | 780.0     | 1 -      | 4 965 0     | 26 7           | 215.0     | 1.0       | 101      |           |             |          |                                         | 00.0     | 12.056.0    | 77.0     |
| Subtotal 111c 2,754.0 15.9 2,995.0 12.6 16,388.0 90.7 5,095.0 31.6 1,981.0 12.1 26,293.0 163.1 11,138.0 61.3 39,431.0 224,4 Subtotal 111 56,598.0 307.9 45,545.0 262.6 456,375.0 2,475.2 23,320.0 146.2 19,401.0 114.2 601,239.0 3,306.1 86,979.0 475.1 688,218.0 3,781.2 Unaccounted for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hawali               | 370.0       | 2.0        |           |          |             |                |           |           |          |           | 8,677.0     | 49.0     |                                         |          |             |          |
| Subtotal III 56,598.0 307.9 45,545.0 262.6 456,375.0 2,475.2 23,320.0 146.2 19,401.0 114.2 601,239.0 3,306.1 86,979.0 475.1 668,218.0 3,781.2 Unaccounted for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      | 2,754.0     | 15.9       | 2,095.0   | 12.6     | 16,368.0    | 90.7           | 5,095.0   | 31.8      |          |           |             |          |                                         |          | 39,431.0    | 224.4    |
| UNACCOUNTED TOT   -   42 000 01 256 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Subtotal 111         | 56.598.0    | 307.9      | 45,545.0  | 262.6    |             |                | 23,320.0  |           |          |           |             |          | 86,979.0                                | 475.1    | 688,218.0   | 3,781.2  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Neg Negligible.      | <del></del> | <b>└</b> - | 1         | J        |             |                | L         | L         |          |           |             |          |                                         | -356.1   | -43,908.0   | -356.1   |



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Supply    Demand by major consumer sector                                                                                                                     |                                                                                                                                   |                                                                                                                                                                                                                                                                                      |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                           |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                               |                                                                                                                                   |                                                                                                                                                                                                                                                                                      | su                                                                                                                                    | эргу                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                     | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Supply                                                                                                                                                                  | Transpo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ortation                                                                                                                                                                                           | Total do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | omestic                                                                                                                                                                                                                                                   |  |  |
| State and Region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                               |                                                                                                                                   |                                                                                                                                                                                                                                                                                      |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                     | availa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ble for                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Trillion                                                                                                                                                                                           | dema                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | and                                                                                                                                                                                                                                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                               | Trillion                                                                                                                          |                                                                                                                                                                                                                                                                                      |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Trillion                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mption                                                                                                                                                                  | barrels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Btu                                                                                                                                                                                                | Thousand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Trillion                                                                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | barrels                                                                                                                                                       | Btu                                                                                                                               | barrels                                                                                                                                                                                                                                                                              | Btu                                                                                                                                   | barrels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Btu                                                                                                                                                                                                                                                                 | Thousand<br>barrels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Trillion<br>Btu                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                    | barrels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Btu                                                                                                                                                                                                                                                       |  |  |
| United States total.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 88 2/8 D                                                                                                                                                      | 463.1                                                                                                                             | +2,285.0                                                                                                                                                                                                                                                                             | +11.6                                                                                                                                 | +12,001.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +63.3                                                                                                                                                                                                                                                               | 102,534.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                         | 102,534.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 538.0                                                                                                                                                                                              | 102,534.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 538.0                                                                                                                                                                                                                                                     |  |  |
| Region I:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00,240.0                                                                                                                                                      | 403.1                                                                                                                             | 12,203.0                                                                                                                                                                                                                                                                             | T11.0                                                                                                                                 | +12,001.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 103.3                                                                                                                                                                                                                                                               | 102,334.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 330.0                                                                                                                                                                   | 102,334.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 330.0                                                                                                                                                                                              | 102,334.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 330.0                                                                                                                                                                                                                                                     |  |  |
| Subregion Ia:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                               |                                                                                                                                   |                                                                                                                                                                                                                                                                                      |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                           |  |  |
| Maine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                             | -                                                                                                                                 | +8.0                                                                                                                                                                                                                                                                                 | Neg.                                                                                                                                  | +3,162.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +16.6                                                                                                                                                                                                                                                               | 3,170.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16.6                                                                                                                                                                    | 3,170.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16.6                                                                                                                                                                                               | 3,170.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16.6                                                                                                                                                                                                                                                      |  |  |
| New Hampshire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                             | -                                                                                                                                 | +4.0                                                                                                                                                                                                                                                                                 | Neg.                                                                                                                                  | +1,456.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +7.7                                                                                                                                                                                                                                                                | 1,460.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.7                                                                                                                                                                     | 1,460.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.7                                                                                                                                                                                                | 1,460.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.7                                                                                                                                                                                                                                                       |  |  |
| Vermont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                             | -                                                                                                                                 |                                                                                                                                                                                                                                                                                      | -                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                         |  |  |
| Massachusetts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                             | -                                                                                                                                 | +29.0                                                                                                                                                                                                                                                                                | +.2                                                                                                                                   | +208.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +1.0                                                                                                                                                                                                                                                                | 237.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.2                                                                                                                                                                     | 237.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.2                                                                                                                                                                                                | 237.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.2                                                                                                                                                                                                                                                       |  |  |
| Rhode Island<br>Connecticut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                             |                                                                                                                                   | +2.0                                                                                                                                                                                                                                                                                 | Neg.                                                                                                                                  | +557.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +2.9                                                                                                                                                                                                                                                                | 559.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.9                                                                                                                                                                     | 559.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.9                                                                                                                                                                                                | 559.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.9                                                                                                                                                                                                                                                       |  |  |
| New York                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18.0                                                                                                                                                          | .1                                                                                                                                | +6.0<br>+43.0                                                                                                                                                                                                                                                                        | Neg.<br>+.2                                                                                                                           | +2,338.0<br>+2,953.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +12.3<br>+15.5                                                                                                                                                                                                                                                      | 2,344.0<br>3,014.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.3<br>15.8                                                                                                                                                            | 2,344.0<br>3,014.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12.3<br>15.8                                                                                                                                                                                       | 2,344.0<br>3,014.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12.3                                                                                                                                                                                                                                                      |  |  |
| New Jersey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 709.0                                                                                                                                                         | 3.7                                                                                                                               | +171.0                                                                                                                                                                                                                                                                               | +.9                                                                                                                                   | -799.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -4.2                                                                                                                                                                                                                                                                | 81.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .4                                                                                                                                                                      | 81.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .4                                                                                                                                                                                                 | 81.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .4                                                                                                                                                                                                                                                        |  |  |
| Pennsylvania                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,342.0                                                                                                                                                       | 12.3                                                                                                                              | +150.0                                                                                                                                                                                                                                                                               | +.8                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                     | 2,492.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13.1                                                                                                                                                                    | 2,492.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13.1                                                                                                                                                                                               | 2,492.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13.1                                                                                                                                                                                                                                                      |  |  |
| Delaware                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                             | -                                                                                                                                 | +2.0                                                                                                                                                                                                                                                                                 | Neg.                                                                                                                                  | +283.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +1.5                                                                                                                                                                                                                                                                | 285.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.5                                                                                                                                                                     | 285.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.5                                                                                                                                                                                                | 285.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.5                                                                                                                                                                                                                                                       |  |  |
| Maryland                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                             |                                                                                                                                   | +27.0                                                                                                                                                                                                                                                                                | +.1                                                                                                                                   | +434.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +2.3                                                                                                                                                                                                                                                                | 461.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.4                                                                                                                                                                     | 461.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.4                                                                                                                                                                                                | 461.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.4                                                                                                                                                                                                                                                       |  |  |
| District of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                               |                                                                                                                                   |                                                                                                                                                                                                                                                                                      |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                           |  |  |
| Columbia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                             | -                                                                                                                                 |                                                                                                                                                                                                                                                                                      | ·                                                                                                                                     | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.0                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.                                                                                                                                                                                                 | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                                                                                                                                                                                                                                                         |  |  |
| Virginia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                             | -                                                                                                                                 | +23.0                                                                                                                                                                                                                                                                                | +.1                                                                                                                                   | +1,138.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +6.0                                                                                                                                                                                                                                                                | 1,161.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.1                                                                                                                                                                     | 1,161.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.1                                                                                                                                                                                                | 1,161.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.1                                                                                                                                                                                                                                                       |  |  |
| West Virginia<br>North Carolina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                             | _                                                                                                                                 | +7.0<br>+36.0                                                                                                                                                                                                                                                                        | Neg.<br>+.2                                                                                                                           | +37.0<br>+971.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +.2                                                                                                                                                                                                                                                                 | 1,007.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .2<br>5.3                                                                                                                                                               | 1,007.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .2<br>5.3                                                                                                                                                                                          | 1,007.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .2<br>5.3                                                                                                                                                                                                                                                 |  |  |
| South Carolina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                               | 1                                                                                                                                 | +19.0                                                                                                                                                                                                                                                                                | +.1                                                                                                                                   | +1,146.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +6.0                                                                                                                                                                                                                                                                | 1,165.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.1                                                                                                                                                                     | 1,165.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.1                                                                                                                                                                                                | 1,165.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.1                                                                                                                                                                                                                                                       |  |  |
| Georgia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                                                                                                                                                             | -                                                                                                                                 | +31.0                                                                                                                                                                                                                                                                                | +.2                                                                                                                                   | +1,641.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +8.6                                                                                                                                                                                                                                                                | 1,672.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.8                                                                                                                                                                     | 1,672.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.8                                                                                                                                                                                                | 1,672.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.8                                                                                                                                                                                                                                                       |  |  |
| Florida                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 89.0                                                                                                                                                          | .5                                                                                                                                | +30.0                                                                                                                                                                                                                                                                                | +.2                                                                                                                                   | +4,932.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +25.8                                                                                                                                                                                                                                                               | 5,051.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26.5                                                                                                                                                                    | 5,051.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 26.5                                                                                                                                                                                               | 5,051.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 26.5                                                                                                                                                                                                                                                      |  |  |
| Kentucky                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,203.0                                                                                                                                                       | 6.3                                                                                                                               | -21.0                                                                                                                                                                                                                                                                                | 1                                                                                                                                     | -13.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                   | 1,169.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.1                                                                                                                                                                     | 1,169.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.1                                                                                                                                                                                                | 1,169.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.1                                                                                                                                                                                                                                                       |  |  |
| Tennessee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,000.0                                                                                                                                                       | 5.2                                                                                                                               | +27.0                                                                                                                                                                                                                                                                                | +.1                                                                                                                                   | -219.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1.1                                                                                                                                                                                                                                                                | 808.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.2                                                                                                                                                                     | 808.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.2                                                                                                                                                                                                | 808.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.2                                                                                                                                                                                                                                                       |  |  |
| Alabama                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 533.0                                                                                                                                                         | 2.8                                                                                                                               | +63.0                                                                                                                                                                                                                                                                                | +.3                                                                                                                                   | -232.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1.2                                                                                                                                                                                                                                                                | 364.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.9                                                                                                                                                                     | 364.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.9                                                                                                                                                                                                | 364.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.9                                                                                                                                                                                                                                                       |  |  |
| Mississippi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 269.0                                                                                                                                                         | 1.4                                                                                                                               | +27.0                                                                                                                                                                                                                                                                                | +.1                                                                                                                                   | +168.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +.9                                                                                                                                                                                                                                                                 | 464.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.4                                                                                                                                                                     | 464.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.4                                                                                                                                                                                                | 464.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.4                                                                                                                                                                                                                                                       |  |  |
| Ohio<br>Subtotal Ia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8,896.0                                                                                                                                                       | 14.3                                                                                                                              | +95.0                                                                                                                                                                                                                                                                                | +.5                                                                                                                                   | +56.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +.3                                                                                                                                                                                                                                                                 | 2,884.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15.1                                                                                                                                                                    | 2,884.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15.1                                                                                                                                                                                               | 2,884.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15.1                                                                                                                                                                                                                                                      |  |  |
| Subregion Ib:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8,096.0                                                                                                                                                       | 40.0                                                                                                                              | +779.0                                                                                                                                                                                                                                                                               | +3.9                                                                                                                                  | +20,217.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +106.1                                                                                                                                                                                                                                                              | 29,892.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 156.6                                                                                                                                                                   | 29,892.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 156.6                                                                                                                                                                                              | 29,892.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 156.6                                                                                                                                                                                                                                                     |  |  |
| Indiana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,773.0                                                                                                                                                       | 9.4                                                                                                                               | +26.0                                                                                                                                                                                                                                                                                | +.1                                                                                                                                   | -1,043.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -5.5                                                                                                                                                                                                                                                                | 756.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.0                                                                                                                                                                     | 756.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.0                                                                                                                                                                                                | 756.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.0                                                                                                                                                                                                                                                       |  |  |
| Illinois                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 668.0                                                                                                                                                         | 3.5                                                                                                                               | +76.0                                                                                                                                                                                                                                                                                | +.4                                                                                                                                   | -292.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                     | 452.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.4                                                                                                                                                                     | 452.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.4                                                                                                                                                                                                | 452.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.4                                                                                                                                                                                                                                                       |  |  |
| Michigan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 385.0                                                                                                                                                         | 2.0                                                                                                                               | -                                                                                                                                                                                                                                                                                    | -                                                                                                                                     | +489.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +2.6                                                                                                                                                                                                                                                                | 874.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.6                                                                                                                                                                     | 874.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.6                                                                                                                                                                                                | 874.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.6                                                                                                                                                                                                                                                       |  |  |
| Wisconsin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                             |                                                                                                                                   | +3.0                                                                                                                                                                                                                                                                                 | Neg.                                                                                                                                  | +966.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +5.1                                                                                                                                                                                                                                                                | 969.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.1                                                                                                                                                                     | 969.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.1                                                                                                                                                                                                | 969.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.1                                                                                                                                                                                                                                                       |  |  |
| Subtotal Ib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2,826.0                                                                                                                                                       | 14.9                                                                                                                              | +105.0                                                                                                                                                                                                                                                                               | +.5                                                                                                                                   | +120.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +.7                                                                                                                                                                                                                                                                 | 3,051.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16.1                                                                                                                                                                    | 3,051.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16.1                                                                                                                                                                                               | 3,051.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16.1                                                                                                                                                                                                                                                      |  |  |
| Subtotal I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11,722.0                                                                                                                                                      | 61.5                                                                                                                              | +884.0                                                                                                                                                                                                                                                                               | +4.4                                                                                                                                  | +20,337.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +106.8                                                                                                                                                                                                                                                              | 32,943.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 172.7                                                                                                                                                                   | 32,943.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 172.7                                                                                                                                                                                              | 32,943.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 172.7                                                                                                                                                                                                                                                     |  |  |
| Region II:<br>Subregion IIa:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                               |                                                                                                                                   |                                                                                                                                                                                                                                                                                      |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                           |  |  |
| Minnesota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 348.0                                                                                                                                                         | 1.9                                                                                                                               | -34.0                                                                                                                                                                                                                                                                                | 2                                                                                                                                     | -31.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                   | 283.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.5                                                                                                                                                                     | 283.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.5                                                                                                                                                                                                | 283.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.5                                                                                                                                                                                                                                                       |  |  |
| Iowa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                               | 1                                                                                                                                 | -34.0                                                                                                                                                                                                                                                                                |                                                                                                                                       | +131.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +.7                                                                                                                                                                                                                                                                 | 131.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .7                                                                                                                                                                      | 131.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .7                                                                                                                                                                                                 | 131.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .7                                                                                                                                                                                                                                                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                               |                                                                                                                                   |                                                                                                                                                                                                                                                                                      |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                           |  |  |
| Missouri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,350.0                                                                                                                                                       | 7-1                                                                                                                               | ~1.0                                                                                                                                                                                                                                                                                 | Neg.                                                                                                                                  | +319.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +1.7                                                                                                                                                                                                                                                                | 1.668.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.8                                                                                                                                                                     | 1.668.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.8                                                                                                                                                                                                | 1,668.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.8                                                                                                                                                                                                                                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,350.0<br>431.0                                                                                                                                              | 7.1<br>2.3                                                                                                                        | -1.0<br>-30.0                                                                                                                                                                                                                                                                        | Neg.                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +1.7<br>+2.4                                                                                                                                                                                                                                                        | 1,668.0<br>854.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.5                                                                                                                                                                     | 1,668.0<br>854.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                    | 1,668.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                           |  |  |
| Missouri<br>North Dakota<br>South Dakota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                               |                                                                                                                                   |                                                                                                                                                                                                                                                                                      | 2                                                                                                                                     | +319.0<br>+453.0<br>+996.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +2.4<br>+5.2                                                                                                                                                                                                                                                        | 854.0<br>998.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.5<br>5.2                                                                                                                                                              | 854.0<br>998.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.8<br>4.5<br>5.2                                                                                                                                                                                  | 1,668.0<br>854.0<br>998.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.8<br>4.5<br>5.2                                                                                                                                                                                                                                         |  |  |
| Missouri<br>North Dakota<br>South Dakota<br>Nebraska                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 431.0                                                                                                                                                         | 2.3                                                                                                                               | -30.0<br>+2.0                                                                                                                                                                                                                                                                        | 2<br>Neg.                                                                                                                             | +319.0<br>+453.0<br>+996.0<br>+1,337.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +2.4<br>+5.2<br>+7.0                                                                                                                                                                                                                                                | 854.0<br>998.0<br>1,337.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.5<br>5.2<br>7.0                                                                                                                                                       | 854.0<br>998.0<br>1,337.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.8<br>4.5<br>5.2<br>7.0                                                                                                                                                                           | 1,668.0<br>854.0<br>998.0<br>1,337.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.8<br>4.5<br>5.2<br>7.0                                                                                                                                                                                                                                  |  |  |
| Missouri North Dakota South Dakota Nebraska Subtotal IIa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 431.0                                                                                                                                                         |                                                                                                                                   | -30.0                                                                                                                                                                                                                                                                                | 2                                                                                                                                     | +319.0<br>+453.0<br>+996.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +2.4<br>+5.2                                                                                                                                                                                                                                                        | 854.0<br>998.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.5<br>5.2                                                                                                                                                              | 854.0<br>998.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.8<br>4.5<br>5.2                                                                                                                                                                                  | 1,668.0<br>854.0<br>998.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.8<br>4.5<br>5.2                                                                                                                                                                                                                                         |  |  |
| Missouri  North Dakota  South Dakota  Nebraska  Subtotal IIa  Subregion IIb:                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 431.0                                                                                                                                                         | 2.3                                                                                                                               | -30.0<br>+2.0<br>-<br>-63.0                                                                                                                                                                                                                                                          | 2<br>Neg.<br>-                                                                                                                        | +319.0<br>+453.0<br>+996.0<br>+1,337.0<br>+3,205.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +2.4<br>+5.2<br>+7.0<br>+16.8                                                                                                                                                                                                                                       | 854.0<br>998.0<br>1,337.0<br>5,271.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.5<br>5.2<br>7.0<br>27.7                                                                                                                                               | 854.0<br>998.0<br>1,337.0<br>5,271.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.8<br>4.5<br>5.2<br>7.0<br>27.7                                                                                                                                                                   | 1,668.0<br>854.0<br>998.0<br>1,337.0<br>5,271.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.8<br>4.5<br>5.2<br>7.0<br>27.7                                                                                                                                                                                                                          |  |  |
| Missouri North Dakota South Dakota Nebraska Subtotal IIa Subregion IIb: Arkansas                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,129.0                                                                                                                                                       | 2.3                                                                                                                               | -30.0<br>+2.0<br>-63.0                                                                                                                                                                                                                                                               | 2<br>Neg.<br>4                                                                                                                        | +319.0<br>+453.0<br>+996.0<br>+1,337.0<br>+3,205.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +2.4<br>+5.2<br>+7.0<br>+16.8                                                                                                                                                                                                                                       | 854.0<br>998.0<br>1,337.0<br>5,271.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.5<br>5.2<br>7.0<br>27.7                                                                                                                                               | 854.0<br>998.0<br>1,337.0<br>5,271.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.8<br>4.5<br>5.2<br>7.0<br>27.7                                                                                                                                                                   | 1,668.0<br>854.0<br>998.0<br>1,337.0<br>5,271.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.8<br>4.5<br>5.2<br>7.0<br>27.7                                                                                                                                                                                                                          |  |  |
| Missouri. North Dakota South Dakota Nebraska. Subtotal IIa. Subregion IIb: Arkansas. Louisiana                                                                                                                                                                                                                                                                                                                                                                                                                                              | 431.0<br>-<br>-<br>2,129.0<br>54.0<br>8,344.0                                                                                                                 | 2.3<br>-<br>-<br>11.3<br>.3<br>43.7                                                                                               | -30.0<br>+2.0<br>-63.0<br>-10.0<br>+437.0                                                                                                                                                                                                                                            | 2<br>Neg.<br>4<br>1<br>+2.3                                                                                                           | +319.0<br>+453.0<br>+996.0<br>+1,337.0<br>+3,205.0<br>+20.0<br>-1,248.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +2.4<br>+5.2<br>+7.0<br>+16.8<br>+.1<br>-6.5                                                                                                                                                                                                                        | 854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.5<br>5.2<br>7.0<br>27.7                                                                                                                                               | 854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.8<br>4.5<br>5.2<br>7.0<br>27.7                                                                                                                                                                   | 1,668.0<br>854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.8<br>4.5<br>5.2<br>7.0<br>27.7                                                                                                                                                                                                                          |  |  |
| Missouri North Dakota South Dakota Nebraska Subtotal IIa Subregion IIb: Arkansas. Louisiana Oklahoma                                                                                                                                                                                                                                                                                                                                                                                                                                        | 54.0<br>8,344.0<br>10,736.0                                                                                                                                   | 2.3                                                                                                                               | -30.0<br>+2.0<br>-63.0<br>-10.0<br>+437.0<br>+167.0                                                                                                                                                                                                                                  | 2<br>Neg.<br>4<br>1<br>+2.3<br>+.9                                                                                                    | +319.0<br>+453.0<br>+996.0<br>+1,337.0<br>+3,205.0<br>+20.0<br>-1,248.0<br>-4,126.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +2.4<br>+5.2<br>+7.0<br>+16.8<br>+.1<br>-6.5                                                                                                                                                                                                                        | 854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.5<br>5.2<br>7.0<br>27.7<br>.3<br>39.5<br>35.6                                                                                                                         | 854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.8<br>4.5<br>5.2<br>7.0<br>27.7<br>.3<br>39.5<br>35.6                                                                                                                                             | 1,668.0<br>854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.8<br>4.5<br>5.2<br>7.0<br>27.7                                                                                                                                                                                                                          |  |  |
| Missouri. North Dakota South Dakota Nebraska. Subtotal IIa. Subregion IIb: Arkansas. Louisiana                                                                                                                                                                                                                                                                                                                                                                                                                                              | 54.0<br>8,344.0<br>10,736.0                                                                                                                                   | 2.3<br>-<br>-<br>11.3<br>.3<br>43.7<br>56.4                                                                                       | -30.0<br>+2.0<br>-63.0<br>-10.0<br>+437.0                                                                                                                                                                                                                                            | 2<br>Neg.<br>4<br>1<br>+2.3<br>+.9                                                                                                    | +319.0<br>+453.0<br>+996.0<br>+1,337.0<br>+3,205.0<br>+20.0<br>-1,248.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +2.4<br>+5.2<br>+7.0<br>+16.8<br>+.1<br>-6.5<br>-21.7                                                                                                                                                                                                               | 854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,158.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.5<br>5.2<br>7.0<br>27.7                                                                                                                                               | 854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,158.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.8<br>4.5<br>5.2<br>7.0<br>27.7                                                                                                                                                                   | 1,668.0<br>854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,158.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.8<br>4.5<br>5.2<br>7.0<br>27.7<br>.3<br>39.5<br>35.6                                                                                                                                                                                                    |  |  |
| Missouri North Dakota South Dakota Nebraska Subtotal IIa Subregion IIb: Arkansas Louisiana Oklahoma Texas New Mexico Kansas                                                                                                                                                                                                                                                                                                                                                                                                                 | 2,129.0<br>54.0<br>8,344.0<br>10,736.0<br>27,460.0<br>1,368.0<br>4,286.0                                                                                      | 2.3<br>-<br>11.3<br>.3<br>43.7<br>56.4<br>144.0<br>7.2<br>22.6                                                                    | -30.0<br>+2.0<br>-63.0<br>-10.0<br>+437.0<br>+167.0<br>+278.0<br>+18.0<br>-15.0                                                                                                                                                                                                      | 2<br>Neg.<br>4<br>1<br>+2.3<br>+.9<br>+1.5<br>+.1                                                                                     | +319.0<br>+453.0<br>+996.0<br>+1,337.0<br>+3,205.0<br>+20.0<br>-1,248.0<br>-4,126.0<br>-12,580.0<br>+742.0<br>+1,723.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +2.4<br>+5.2<br>+7.0<br>+16.8<br>+.1<br>-6.5<br>-21.7<br>-66.0<br>+3.9<br>+9.0                                                                                                                                                                                      | 854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,158.0<br>2,128.0<br>5,994.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.5<br>5.2<br>7.0<br>27.7<br>.3<br>39.5<br>35.6<br>79.5                                                                                                                 | 854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,158.0<br>2,128.0<br>5,994.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.8<br>4.5<br>5.2<br>7.0<br>27.7<br>3<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5                                                                                                                      | 1,668.0<br>854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,158.0<br>2,128.0<br>5,994.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.8<br>4.5<br>5.2<br>7.0<br>27.7<br>.3<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5                                                                                                                                                                            |  |  |
| Missouri North Dakota South Dakota South Dakota Nobraska Subtotal IIa Subregion IIb: Arkansas Louisiana Oklahoma Texas New Mexico Kansas Subtotal IIb Subtotal IIb                                                                                                                                                                                                                                                                                                                                                                          | 2,129.0<br>54.0<br>8,344.0<br>10,736.0<br>27,460.0<br>1,368.0<br>4,286.0<br>52,248.0                                                                          | 2.3<br>-<br>11.3<br>.3<br>43.7<br>56.4<br>144.0<br>7.2<br>22.6<br>274.2                                                           | -30.0<br>+2.0<br>-63.0<br>-10.0<br>+437.0<br>+167.0<br>+278.0<br>+18.0<br>-15.0<br>+875.0                                                                                                                                                                                            | 2<br>Neg.<br>4<br>1<br>+2.3<br>+.9<br>+1.5<br>+.1<br>1                                                                                | +319.0<br>+453.0<br>+996.0<br>+1,337.0<br>+3,205.0<br>-1,248.0<br>-4,126.0<br>-12,580.0<br>+742.0<br>-1,723.0<br>-15,469.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +2.4<br>+5.2<br>+7.0<br>+16.8<br>+.1<br>-6.5<br>-21.7<br>-66.0<br>+3.9<br>+9.0<br>-81.2                                                                                                                                                                             | 854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,158.0<br>2,128.0<br>5,994.0<br>37,654.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.5<br>5.2<br>7.0<br>27.7<br>.3<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5<br>197.6                                                                                        | 854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,158.0<br>2,128.0<br>5,994.0<br>37,654.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.8<br>4.5<br>5.2<br>7.0<br>27.7<br>.3<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5                                                                                                                     | 1,668.0<br>854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,158.0<br>2,128.0<br>37,654.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.8<br>4.5<br>5.2<br>7.0<br>27.7<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5                                                                                                                                                                                  |  |  |
| Missouri. North Dakota. South Dakota. South Dakota. Subtotal IIa. Subregion Ilb: Arkansas. Louisiana. Oklahoma. Texas. New Mexico. Kansas. Subtotal IIb. Subtotal IIb.                                                                                                                                                                                                                                                                                                                                                                      | 2,129.0<br>54.0<br>8,344.0<br>10,736.0<br>27,460.0<br>1,368.0<br>4,286.0<br>52,248.0                                                                          | 2.3<br>-<br>11.3<br>.3<br>43.7<br>56.4<br>144.0<br>7.2<br>22.6<br>274.2                                                           | -30.0<br>+2.0<br>-63.0<br>-10.0<br>+437.0<br>+167.0<br>+278.0<br>+18.0<br>-15.0                                                                                                                                                                                                      | 2<br>Neg.<br>4<br>1<br>+2.3<br>+.9<br>+1.5<br>+.1<br>1                                                                                | +319.0<br>+453.0<br>+996.0<br>+1,337.0<br>+3,205.0<br>+20.0<br>-1,248.0<br>-4,126.0<br>-12,580.0<br>+742.0<br>+1,723.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +2.4<br>+5.2<br>+7.0<br>+16.8<br>+.1<br>-6.5<br>-21.7<br>-66.0<br>+3.9<br>+9.0<br>-81.2                                                                                                                                                                             | 854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,158.0<br>2,128.0<br>5,994.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.5<br>5.2<br>7.0<br>27.7<br>.3<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5<br>197.6                                                                                        | 854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,158.0<br>2,128.0<br>5,994.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.8<br>4.5<br>5.2<br>7.0<br>27.7<br>.3<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5                                                                                                                     | 1,668.0<br>854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,158.0<br>2,128.0<br>5,994.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.8<br>4.5<br>5.2<br>7.0<br>27.7<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5                                                                                                                                                                                  |  |  |
| Missouri. North Dakota. South Dakota. South Dakota. Subrotal IIa. Subregion IIb: Arkansas. Louisiana. Oklahoma. Texas. New Mexico. Kansas. Subtotal IIA. Region III:                                                                                                                                                                                                                                                                                                                                                                        | 2,129.0<br>54.0<br>8,344.0<br>10,736.0<br>27,460.0<br>1,368.0<br>4,286.0<br>52,248.0                                                                          | 2.3<br>-<br>11.3<br>.3<br>43.7<br>56.4<br>144.0<br>7.2<br>22.6<br>274.2                                                           | -30.0<br>+2.0<br>-63.0<br>-10.0<br>+437.0<br>+167.0<br>+278.0<br>+18.0<br>-15.0<br>+875.0                                                                                                                                                                                            | 2<br>Neg.<br>4<br>1<br>+2.3<br>+.9<br>+1.5<br>+.1<br>1                                                                                | +319.0<br>+453.0<br>+996.0<br>+1,337.0<br>+3,205.0<br>-1,248.0<br>-4,126.0<br>-12,580.0<br>+742.0<br>-1,723.0<br>-15,469.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +2.4<br>+5.2<br>+7.0<br>+16.8<br>+.1<br>-6.5<br>-21.7<br>-66.0<br>+3.9<br>+9.0<br>-81.2                                                                                                                                                                             | 854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,158.0<br>2,128.0<br>5,994.0<br>37,654.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.5<br>5.2<br>7.0<br>27.7<br>.3<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5<br>197.6                                                                                        | 854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,158.0<br>2,128.0<br>5,994.0<br>37,654.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.8<br>4.5<br>5.2<br>7.0<br>27.7<br>.3<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5                                                                                                                     | 1,668.0<br>854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,158.0<br>2,128.0<br>37,654.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.8<br>4.5<br>5.2<br>7.0<br>27.7<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5                                                                                                                                                                                  |  |  |
| Missouri. North Dakota. South Dakota. South Dakota. Nebraska. Subtotal IIa. Subregion Ilb: Arkansas. Louisiana. Oklahoma. Texas. New Mexico. Kansas. Subtotal IIb. Subtotal IIb. Region III: Subregion III:                                                                                                                                                                                                                                                                                                                                 | 2,129.0<br>54.0<br>8,344.0<br>10,736.0<br>27,460.0<br>1,368.0<br>4,286.0<br>52,248.0<br>54,377.0                                                              | 2.3<br>-<br>11.3<br>.3<br>43.7<br>56.4<br>144.0<br>7.2<br>22.6<br>274.2<br>285.5                                                  | -30.0<br>+2.0<br>-63.0<br>-10.0<br>+437.0<br>+167.0<br>+278.0<br>+18.0<br>-15.0<br>+875.0<br>+812.0                                                                                                                                                                                  | 2<br>Neg.<br>4<br>1<br>+2.3<br>+.9<br>+1.5<br>+.1<br>1<br>+4.6<br>+4.2                                                                | +319.0<br>+453.0<br>+996.0<br>+1,337.0<br>+3,205.0<br>-1,248.0<br>-4,126.0<br>-12,580.0<br>+742.0<br>+1,723.0<br>-15,469.0<br>-12,264.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +2.4<br>+5.2<br>+7.0<br>+16.8<br>+.1<br>-6.5<br>-21.7<br>-66.0<br>+3.9<br>+9.0<br>-81.2                                                                                                                                                                             | 854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,158.0<br>2,128.0<br>2,128.0<br>37,654.0<br>42,925.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.5<br>5.2<br>7.0<br>27.7<br>.3<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5<br>197.6<br>225.3                                                                               | 854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,158.0<br>2,128.0<br>37,654.0<br>42,925.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.8<br>4.5<br>5.2<br>7.0<br>27.7<br>.3<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5<br>197.6<br>225.3                                                                                                   | 1,668.0<br>854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,158.0<br>2,128.0<br>37,654.0<br>42,925.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.8<br>4.5<br>5.2<br>7.0<br>27.7<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5<br>197.6<br>225.3                                                                                                                                                                |  |  |
| Missouri. North Dakota. South Dakota. South Dakota. Subrotal IIa. Subregion IIb: Arkansas. Louisiana. Oklahoma. Texas. New Mexico. Kansas. Subtotal IIb. Subtotal III. Region III: Subregion IIIa: Montana.                                                                                                                                                                                                                                                                                                                                 | 2,129.0<br>54.0<br>8,344.0<br>10,736.0<br>27,460.0<br>1,368.0<br>4,286.0<br>52,248.0                                                                          | 2.3<br>-<br>11.3<br>.3<br>43.7<br>56.4<br>144.0<br>7.2<br>22.6<br>274.2                                                           | -30.0<br>+2.0<br>-63.0<br>-10.0<br>+437.0<br>+167.0<br>+278.0<br>+18.0<br>-15.0<br>+875.0<br>+812.0                                                                                                                                                                                  | 2<br>Neg.<br>4<br>1<br>+2.3<br>+.9<br>+1.5<br>+.1<br>1<br>+4.6<br>+4.2                                                                | +319.0<br>+453.0<br>+996.0<br>+1,337.0<br>+3,205.0<br>+20.0<br>-1,248.0<br>-4,126.0<br>+742.0<br>+1,723.0<br>-15,469.0<br>-1,892.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +2.4<br>+5.2<br>+7.0<br>+16.8<br>+.1<br>-6.5<br>-21.7<br>-66.0<br>+3.9<br>+9.0<br>-81.2<br>-64.4                                                                                                                                                                    | 854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,158.0<br>2,128.0<br>5,994.0<br>37,654.0<br>42,925.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.5<br>5.2<br>7.0<br>27.7<br>.3<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5<br>197.6<br>225.3                                                                               | 854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,158.0<br>2,128.0<br>5,994.0<br>37,654.0<br>42,925.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.8<br>4.5<br>5.2<br>7.0<br>27.7<br>.3<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5<br>197.6<br>225.3                                                                                                   | 1,668.0<br>854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,158.0<br>2,128.0<br>5,994.0<br>37,654.0<br>42,925.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.8<br>4.5<br>5.2<br>7.0<br>27.7<br>.3<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5<br>197.6<br>225.3                                                                                                                                                          |  |  |
| Missouri. North Dakota. South Dakota. South Dakota. Nebraska. Subtotal IIa. Subregion Ilb: Arkansas. Louisiana. Oklahoma. Texas. New Mexico. Kansas. Subtotal IIb. Subtotal IIb. Subregion III: Subregion III: Montana. Idaho.                                                                                                                                                                                                                                                                                                              | 2,129.0<br>54.0<br>8,344.0<br>10,736.0<br>27,460.0<br>1,368.0<br>4,286.0<br>52,248.0<br>54,377.0<br>2,468.0                                                   | 2.3<br>-<br>11.3<br>.3<br>43.7<br>56.4<br>144.0<br>7.2<br>22.6<br>274.2<br>285.5                                                  | -30.0<br>+2.0<br>-63.0<br>-10.0<br>+437.0<br>+167.0<br>+278.0<br>-15.0<br>+875.0<br>+812.0<br>+25.0<br>+3.0                                                                                                                                                                          | 2<br>Neg.<br>4<br>1<br>+2.3<br>+.9<br>+1.5<br>+.1<br>1<br>+4.6<br>+4.2                                                                | +319.0<br>+453.0<br>+996.0<br>+1,337.0<br>+3,205.0<br>+20.0<br>-1,248.0<br>-4,126.0<br>-12,580.0<br>+742.0<br>-11,723.0<br>-15,469.0<br>-12,264.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +2.4<br>+5.2<br>+7.0<br>+16.8<br>+.1<br>-6.5<br>-21.7<br>-66.0<br>+3.9<br>+9.0<br>-81.2<br>-64.4                                                                                                                                                                    | 64.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,158.0<br>5,994.0<br>37,654.0<br>42,925.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.5<br>5.2<br>7.0<br>27.7<br>.3<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5<br>197.6<br>225.3                                                                               | 854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,158.0<br>2,128.0<br>5,994.0<br>37,654.0<br>42,925.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.8<br>4.5<br>5.2<br>7.0<br>27.7<br>.3<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5<br>197.6<br>225.3                                                                                                   | 1,668.0<br>854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>2,128.0<br>2,128.0<br>37,654.0<br>42,925.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.8<br>4.5<br>5.2<br>7.0<br>27.7<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5<br>197.6<br>225.3                                                                                                                                                                |  |  |
| Missouri North Dakota South Dakota South Dakota Nebraska Subregion Ilb: Arkansas Louisiana Oklahoma Iexas New Mexico Kansas Subtotal Ilb. Subtotal III. Region III: Subregion IIIa: Montana Idaho Myoming                                                                                                                                                                                                                                                                                                                                   | 2,129.0<br>54.0<br>8,344.0<br>10,736.0<br>1,368.0<br>4,286.0<br>52,248.0<br>54,377.0<br>2,468.0<br>611.0                                                      | 2.3<br>-<br>11.3<br>.3<br>43.7<br>56.4<br>144.0<br>7.2<br>22.6<br>274.2<br>285.5                                                  | -30.0<br>+2.0<br>-63.0<br>-10.0<br>+167.0<br>+187.0<br>+18.0<br>-15.0<br>+875.0<br>+812.0<br>+25.0<br>+25.0                                                                                                                                                                          | 2<br>Neg.<br>4<br>1<br>+2.3<br>+.9<br>+1.5<br>+.1<br>1<br>+4.6<br>+4.2                                                                | +319.0<br>+453.0<br>+996.0<br>+1,337.0<br>+3,205.0<br>-1,248.0<br>-4,126.0<br>-12,580.0<br>+742.0<br>+1,723.0<br>-15,469.0<br>-12,264.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +2.4<br>+5.2<br>+7.0<br>+16.8<br>+.1<br>-6.5<br>-21.7<br>-66.0<br>+3.9<br>-81.2<br>-64.4                                                                                                                                                                            | 854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,158.0<br>2,128.0<br>37,654.0<br>42,925.0<br>601.0<br>517.0<br>34.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.5<br>5.2<br>7.0<br>27.7<br>3<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5<br>197.6<br>225.3                                                                                | 854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,158.0<br>2,128.0<br>37,654.0<br>42,925.0<br>601.0<br>517.0<br>34.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.8<br>4.5<br>5.2<br>7.0<br>27.7<br>.3<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5<br>197.6<br>225.3                                                                                                   | 1,668.0<br>854.0<br>998.0<br>1,337.0<br>5,271.0<br>7,533.0<br>6,777.0<br>15,158.0<br>2,128.0<br>37,654.0<br>42,925.0<br>601.0<br>517.0<br>34.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.8<br>4.5<br>5.2<br>7.0<br>27.7<br>.3<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5<br>197.6<br>225.3                                                                                                                                                          |  |  |
| Missouri. North Dakota. South Dakota. South Dakota. Subtotal IIa. Subregion Ilb: Arkansas. Louisiana. Oklahoma. Texas. New Mexico. Kansas. Subtotal IIb. Subtotal IIb. Subtotal III. Region III: Subregion IIIa: Montana. Idaho. Myoming.                                                                                                                                                                                                                                                                                                   | 431.0<br>-<br>2,129.0<br>54.0<br>8,344.0<br>10,736.0<br>27,460.0<br>52,248.0<br>52,248.0<br>54,377.0<br>2,468.0<br>1,599.0                                    | 2.3<br>-<br>11.3<br>.3<br>43.7<br>56.4<br>144.0<br>7.2<br>22.6<br>274.2<br>285.5                                                  | -30.0<br>+2.0<br>-63.0<br>-10.0<br>+437.0<br>+167.0<br>+278.0<br>-15.0<br>+875.0<br>+812.0<br>+25.0<br>+3.0<br>+25.0<br>+3.0<br>+35.0                                                                                                                                                | 2<br>Neg<br>4<br>1<br>+2.3<br>+.9<br>+1.5<br>+.1<br>1<br>+4.6<br>+4.2<br>+.1<br>Neg.<br>Neg.<br>+.2                                   | +319.0<br>+453.0<br>+996.0<br>+1,337.0<br>+3,205.0<br>-1,248.0<br>-4,126.0<br>-12,580.0<br>+742.0<br>+1,723.0<br>-15,469.0<br>-12,264.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +2.4<br>+5.2<br>+7.0<br>+16.8<br>+.1<br>-6.5<br>-21.7<br>-66.0<br>+3.9<br>+9.0<br>-81.2<br>-64.4                                                                                                                                                                    | 854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>2,128.0<br>2,128.0<br>37,654.0<br>42,925.0<br>601.0<br>517.0<br>34.0<br>371.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.5<br>5.2<br>7.0<br>27.7<br>.3<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5<br>197.6<br>225.3                                                                               | 98.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,158.0<br>2,128.0<br>37,654.0<br>42,925.0<br>601.0<br>517.0<br>34.0<br>371.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.8<br>4.5<br>5.2<br>7.0<br>27.7<br>.3<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5<br>197.6<br>225.3                                                                                                   | 1,668.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,158.0<br>2,128.0<br>37,654.0<br>42,925.0<br>601.0<br>517.0<br>34.0<br>371.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.8<br>4.5<br>5.2<br>7.0<br>27.7<br>.3<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5<br>197.6<br>225.3                                                                                                                                                          |  |  |
| Missouri. North Dakota. South Dakota. South Dakota. Subregion Ilb: Arkansas. Louisiana. Oklahoma. Texas. New Mexico. Kansas. Subtotal Ilb. Subtotal Ilb. Subtotal III. Region III: Subregion III. Montana. Idaho. Wyoming. Utah. Colorado. Washington.                                                                                                                                                                                                                                                                                      | 2,129.0<br>54.0<br>8,344.0<br>10,736.0<br>1,368.0<br>4,286.0<br>52,248.0<br>54,377.0<br>2,468.0<br>611.0                                                      | 2.3<br><br>11.3<br>.3<br>43.7<br>56.4<br>144.0<br>7.2<br>22.6<br>274.2<br>285.5<br>13.0<br><br>3.2<br>8.3<br>3.4                  | -30.0<br>+2.0<br>-63.0<br>-10.0<br>+437.0<br>+167.0<br>+18.0<br>-15.0<br>+875.0<br>+812.0<br>+25.0<br>+35.0<br>+35.0<br>+35.0<br>+43.0                                                                                                                                               | 2<br>Neg.<br>4<br>1<br>+2.3<br>+.9<br>+1.5<br>+.1<br>+4.6<br>+4.2                                                                     | +319.0<br>+493.0<br>+996.0<br>+1,337.0<br>+3,205.0<br>-1,248.0<br>-1,248.0<br>+742.0<br>+1,723.0<br>-12,580.0<br>+742.0<br>+1,723.0<br>-12,264.0<br>-1,892.0<br>+514.0<br>-579.0<br>-1,263.0<br>-272.0<br>+1,964.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +2.4<br>+5.2<br>+7.0<br>+16.8<br>+.1<br>-6.5<br>-21.7<br>-66.0<br>+3.9<br>+9.0<br>-61.2<br>-64.4                                                                                                                                                                    | 854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,158.0<br>2,128.0<br>2,128.0<br>37,654.0<br>42,925.0<br>601.0<br>371.0<br>371.0<br>375.0<br>375.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.5<br>5.2<br>7.0<br>27.7<br>3<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5<br>197.6<br>225.3                                                                                | 954.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,158.0<br>2,128.0<br>2,128.0<br>2,128.0<br>37,654.0<br>42,925.0<br>601.0<br>371.0<br>371.0<br>375.0<br>375.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.8<br>4.5<br>5.2<br>7.0<br>27.7<br>.3<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5<br>197.6<br>225.3                                                                                                   | 1,668.0<br>854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,158.0<br>2,128.0<br>5,5994.0<br>37,654.0<br>601.0<br>517.0<br>34.0<br>371.0<br>375.0<br>3,590.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.8<br>4.5<br>5.2<br>7.0<br>27.7<br>3<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5<br>197.6<br>225.3                                                                                                                                                           |  |  |
| Missouri North Dakota South Dakota South Dakota Nobraska Subregion Ilb: Arkansas Louisiana Oklahoma Texas New Mexico Kansas New Mexico Kansas Ilb Subregion IIIa: Montana Idaho Wyoming Utah Colorado Washington Oregon                                                                                                                                                                                                                                                                                                                     | 431.0<br>2,129.0<br>54.0<br>8,344.0<br>10,736.0<br>27,460.0<br>1,368.0<br>4,286.0<br>52,248.0<br>54,377.0<br>2,468.0<br>-611.0<br>1,599.0<br>644.0<br>1,683.0 | 2.3<br><br>11.3<br>.3<br>43.7<br>56.4<br>144.0<br>7.2<br>22.6<br>274.2<br>285.5                                                   | -30.0<br>+2.0<br>-63.0<br>-10.0<br>+437.0<br>+167.0<br>+278.0<br>+815.0<br>+815.0<br>+25.0<br>+25.0<br>+35.0<br>+35.0<br>+34.0<br>+34.0<br>+43.0                                                                                                                                     | 2<br>Neg.<br>4<br>1<br>+2.3<br>+.9<br>+1.5<br>+1.1<br>+4.6<br>+4.2<br>+1.1<br>Neg.<br>Neg.<br>+.2<br>Neg.<br>+.2                      | +319.0<br>+453.0<br>+495.0<br>+1337.0<br>+3,205.0<br>-1,248.0<br>-1,248.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0                                                                                                                                                                                                                                                                                                                                                                                                     | +2.4<br>+5.2<br>+7.0<br>+16.8<br>+.1<br>-6.5<br>-21.7<br>-66.0<br>+3.9<br>+9.0<br>-51.2<br>-64.4<br>-9.9<br>+2.7<br>-3.0<br>-6.6<br>-1.4<br>+10.4<br>+10.4                                                                                                          | 854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>6,777.0<br>15,158.0<br>2,128.0<br>5,994.0<br>37,654.0<br>42,925.0<br>601.0<br>31.0<br>375.0<br>3,990.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.5<br>5.2<br>7.0<br>27.7<br>.3<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5<br>197.6<br>225.3<br>3.2<br>2.7<br>.2<br>1.9<br>2.0                                             | \$54.0<br>98.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,158.0<br>2,128.0<br>5,994.0<br>37,654.0<br>31,265.0<br>601.0<br>31,0<br>37,50<br>34.0<br>37,50<br>31,0<br>37,50<br>36,0<br>37,50<br>36,0<br>37,50<br>36,0<br>37,0<br>37,0<br>37,0<br>37,0<br>37,0<br>37,0<br>37,0<br>37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.8<br>4.5<br>5.2<br>7.0<br>27.7<br>.3<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5<br>197.6<br>225.3<br>3.2<br>2.7<br>.2<br>1.9                                                                        | 1,668.0<br>854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,128.0<br>2,128.0<br>2,128.0<br>37,654.0<br>42,925.0<br>601.0<br>371.0<br>375.0<br>3,990.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.8<br>4.5<br>5.2<br>7.0<br>27.7<br>.3<br>39.5<br>35.6<br>79.5<br>11.2<br>31.7<br>225.3<br>3.2<br>2.7<br>.2<br>1.9<br>2.0<br>19.4                                                                                                                         |  |  |
| Missouri. North Dakota. South Dakota. South Dakota. Subtotal IIa. Subregion Ilb: Arkansas. Louisiana. Oklahoma. Texas. New Mexico. Kansas. Subtotal IIb. Subtotal III. Region III: Subregion III: Montana. Idaho. Myoming. Utah. Colorado. Washington. Oregon.                                                                                                                                                                                                                                                                              | 431.0<br>                                                                                                                                                     | 2.3<br><br>11.3<br>.3<br>43.7<br>56.4<br>144.0<br>7.2<br>22.6<br>274.2<br>285.5<br>13.0<br><br>3.2<br>8.3<br>3.4                  | -30.0<br>+2.0<br>-63.0<br>-10.0<br>+437.0<br>+167.0<br>+18.0<br>-15.0<br>+875.0<br>+812.0<br>+25.0<br>+35.0<br>+35.0<br>+35.0<br>+43.0                                                                                                                                               | 2<br>Neg.<br>4<br>1<br>+2.3<br>+.9<br>+1.5<br>+.1<br>+4.6<br>+4.2<br>+.1<br>Neg.<br>Neg.<br>+.2                                       | +319.0<br>+493.0<br>+996.0<br>+1,337.0<br>+3,205.0<br>-1,248.0<br>-1,248.0<br>+742.0<br>+1,723.0<br>-12,580.0<br>+742.0<br>+1,723.0<br>-12,264.0<br>-1,892.0<br>+514.0<br>-579.0<br>-1,263.0<br>-272.0<br>+1,964.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +2.4<br>+5.2<br>+7.0<br>+16.8<br>+.1<br>-6.5<br>-21.7<br>-66.0<br>+3.9<br>+9.0<br>-61.2<br>-64.4                                                                                                                                                                    | 854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,158.0<br>2,128.0<br>2,128.0<br>37,654.0<br>42,925.0<br>601.0<br>371.0<br>371.0<br>375.0<br>375.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.5<br>5.2<br>7.0<br>27.7<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5<br>197.6<br>225.3                                                                                     | 954.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,158.0<br>2,128.0<br>2,128.0<br>2,128.0<br>37,654.0<br>42,925.0<br>601.0<br>371.0<br>371.0<br>375.0<br>375.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.8<br>4.5<br>5.2<br>7.0<br>27.7<br>3.3<br>39.5<br>35.6<br>79.5<br>31.5<br>197.6<br>225.3                                                                                                          | 1,668.0<br>854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,158.0<br>2,128.0<br>5,5994.0<br>37,654.0<br>601.0<br>517.0<br>34.0<br>371.0<br>375.0<br>3,590.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.8<br>4.5<br>5.2<br>7.0<br>27.7<br>3<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5<br>197.6<br>225.3                                                                                                                                                           |  |  |
| Missouri North Dakota South Dakota South Dakota Nobraska Subregion Ilb: Arkansas Louisiana Oklahoma Texas New Mexico Kansas New Mexico Kansas New Hexico Kansas New Hexico Kansas Ubectai Ilb Subregion Illa: Mortan Mortan Myoming Utah Colorado Washington Oregon Subtotal Illa Subregion Illa:                                                                                                                                                                                                                                           | 431.0<br>2,129.0<br>54.0<br>8,344.0<br>10,736.0<br>27,460.0<br>1,368.0<br>4,286.0<br>52,248.0<br>54,377.0<br>2,468.0<br>-611.0<br>1,599.0<br>644.0<br>1,683.0 | 2.3<br><br>11.3<br>.3<br>43.7<br>56.4<br>144.0<br>7.2<br>22.6<br>274.2<br>285.5                                                   | -30.0<br>+2.0<br>-63.0<br>-10.0<br>+167.0<br>+167.0<br>-15.0<br>+875.0<br>+812.0<br>+2.0<br>+3.0<br>+3.0<br>+43.0<br>+43.0<br>+43.0<br>+138.0                                                                                                                                        | 2<br>Neg 4<br>1<br>+2.3<br>+.9<br>+1.5<br>-1.1<br>-4.6<br>+4.2<br>+4.2<br>Neg. Neg. +.2<br>2 Neg. +.2<br>+.1 +.6                      | +319.0<br>+493.0<br>+996.0<br>+1,337.0<br>+3,205.0<br>-1,248.0<br>-4,126.0<br>-12,580.0<br>+1,723.0<br>+1,723.0<br>-12,264.0<br>-1,264.0<br>-1,263.0<br>-1,263.0<br>-1,264.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.0<br>-1,263.                                                                                                                                                                                                                                                                                                                                  | +2.4<br>+5.2<br>+7.0<br>+16.8<br>+.1<br>-6.5<br>-21.7<br>-66.0<br>+3.9<br>+9.0<br>-81.2<br>-64.4<br>-9.9<br>+2.7<br>-3.0<br>-6.6<br>-1.4<br>+10.4<br>+5.7                                                                                                           | 854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,158.0<br>2,128.0<br>5,994.0<br>42,925.0<br>601.0<br>371.0<br>375.0<br>3,690.0<br>375.0<br>3,690.0<br>118.0<br>5,706.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.5<br>5.2<br>7.0<br>27.7<br>.3<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5<br>197.6<br>225.3<br>3.2<br>2.7<br>.2<br>1.9<br>9.6<br>30.0                                     | 654.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,158.0<br>2,128.0<br>5,994.0<br>37,654.0<br>42,925.0<br>601.0<br>371.0<br>375.0<br>375.0<br>3,690.0<br>31.0<br>375.0<br>118.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.8<br>4.5<br>5.2<br>7.0<br>27.7<br>.3<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5<br>197.6<br>225.3<br>3.2<br>2.7<br>.2<br>1.9<br>2.0<br>19.4<br>6                                                    | 1,668.0<br>854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,158.0<br>2,128.0<br>2,128.0<br>2,128.0<br>37,654.0<br>42,925.0<br>601.0<br>371.0<br>371.0<br>375.0<br>3,994.0<br>371.0<br>375.0<br>3,994.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.8<br>4.5<br>5.2<br>7.0<br>27.7<br>.3<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5<br>197.6<br>225.3<br>3.2<br>2.7<br>.2<br>1.9<br>2.0<br>19.6<br>30.0                                                                                                        |  |  |
| Missouri. North Dakota. South Dakota. South Dakota. Subtotal IIa. Subregion Ilb: Arkansas. Louisiana. Oklahoma. Texas. New Mexico. Kansas. Subtotal IIb. Subtotal III. Region III: Subregion IIIs: Montana. Idaho. Myoming. Utah. Colorado. Washington. Oregon. Subtotal IIIa. Subregion IIIa:                                                                                                                                                                                                                                              | 431.0<br>2,129.0<br>54.0<br>8,344.0<br>10,736.0<br>27,460.0<br>1,368.0<br>4,286.0<br>52,248.0<br>54,377.0<br>2,468.0<br>-611.0<br>1,599.0<br>644.0<br>1,683.0 | 2.3<br>-<br>11.3<br>.3<br>43.7<br>56.4<br>144.0<br>7.2<br>22.6<br>274.2<br>285.5<br>13.0<br>-<br>3.2<br>8.3<br>3.4<br>8.8         | -30.0 +2.0 +2.0 +2.0 +2.0 +2.0 +2.0 +2.0 +                                                                                                                                                                                                                                           | 2<br>Neg.<br>4<br>1<br>+2.3<br>+.9<br>+1.5<br>+1.1<br>+4.6<br>+4.2<br>+1.1<br>Neg.<br>Neg.<br>+.2<br>Neg.<br>+.2                      | +319.0<br>+453.0<br>+495.0<br>+1337.0<br>+3,205.0<br>-1,248.0<br>-1,248.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0<br>-12,580.0                                                                                                                                                                                                                                                                                                                                                                                                     | +2.4<br>+5.2<br>+7.0<br>+16.8<br>+.1<br>-6.5<br>-21.7<br>-66.0<br>+3.9<br>+9.0<br>-51.2<br>-64.4<br>-9.9<br>+2.7<br>-3.0<br>-6.6<br>-1.4<br>+10.4<br>+10.4                                                                                                          | 854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>6,777.0<br>15,158.0<br>2,128.0<br>5,994.0<br>37,654.0<br>42,925.0<br>601.0<br>31.0<br>375.0<br>3,990.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.5<br>5.2<br>7.0<br>27.7<br>.3<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5<br>197.6<br>225.3<br>3.2<br>2.7<br>.2<br>1.9<br>.6<br>30.0                                      | \$54.0<br>98.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,158.0<br>2,128.0<br>5,994.0<br>37,654.0<br>31,265.0<br>601.0<br>31,0<br>37,50<br>34.0<br>37,50<br>31,0<br>37,50<br>36,0<br>37,50<br>36,0<br>37,50<br>36,0<br>37,0<br>37,0<br>37,0<br>37,0<br>37,0<br>37,0<br>37,0<br>37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.8<br>4.5<br>5.2<br>7.0<br>27.7<br>.3<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5<br>197.6<br>225.3<br>3.2<br>2.7<br>.2<br>1.9<br>2.0<br>19.4<br>6<br>30.0                                            | 1,668.0<br>854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,128.0<br>2,128.0<br>2,128.0<br>37,654.0<br>42,925.0<br>601.0<br>371.0<br>375.0<br>3,990.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.8<br>4.5<br>5.2<br>7.0<br>27.7<br>.3<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5<br>197.6<br>225.3<br>3.2<br>2.7<br>.2<br>1.9<br>2.0<br>19.4<br>.6<br>30.0                                                                                                  |  |  |
| Missouri North Dakota South Dakota South Dakota Nebraska Subregion Ilb: Arkansas Louisiana Oklahoma Texas New Mexico Kansas Subregion Ill: Subregion Ill: Subregion Ill: Subregion Illa Wontana Uyoming Utah Washington Oclorado Washington Subrectal IIIa Subregion Illa:                                                                  | 431.0<br>2,129.0<br>54.0<br>8,344.0<br>10,736.0<br>27,460.0<br>1,368.0<br>4,286.0<br>52,248.0<br>54,377.0<br>2,468.0<br>1,599.0<br>644.0<br>1,683.0           | 2.3<br>-11.3<br>.3<br>43.7<br>56.4<br>144.0<br>7.2<br>22.6<br>274.2<br>285.5<br>13.0<br>-3.2<br>8.3<br>3.4<br>8.8<br>-3.6<br>-7.7 | -30.0<br>+2.0<br>-10.0<br>+437.0<br>+167.0<br>+187.0<br>+875.0<br>+812.0<br>+2.0<br>+35.0<br>+35.0<br>+31.0<br>+43.0<br>+27.0<br>+138.0                                                                                                                                              | 2<br>Neg 4<br>1<br>+2.3<br>+.9<br>+1.5<br>+1.1<br>-4.6<br>+4.2<br>+1.1<br>Neg. Neg.<br>+.2<br>Neg. +.2<br>Neg. +.2                    | +319.0<br>+493.0<br>+996.0<br>+1,337.0<br>+3,205.0<br>-1,248.0<br>-4,126.0<br>-12,580.0<br>+742.0<br>+1,723.0<br>-15,469.0<br>-12,264.0<br>-579.0<br>-1,263.0<br>-272.0<br>+1,964.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91 | +2.4<br>+5.2<br>+7.0<br>+16.8<br>+.1<br>-6.5<br>-21.7<br>-66.0<br>+3.9<br>+9.0<br>-81.2<br>-64.4<br>-9.9<br>+2.7<br>-3.0<br>-1.4<br>+10.4<br>+15.7<br>-7.3                                                                                                          | 854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,158.0<br>2,128.0<br>37,654.0<br>42,925.0<br>601.0<br>371.0<br>375.0<br>3,690.0<br>118.0<br>5,706.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.5<br>5.2<br>7.0<br>27.7<br>.3<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5<br>197.6<br>225.3<br>3.2<br>2.7<br>.2<br>1.9<br>2.0<br>19.4<br>6<br>30.0                        | 654.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,158.0<br>2,128.0<br>37,654.0<br>42,925.0<br>601.0<br>371.0<br>371.0<br>375.0<br>3,994.0<br>118.0<br>5,706.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.8<br>4.5<br>5.2<br>7.0<br>27.7<br>.3<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5<br>197.6<br>225.3<br>3.2<br>2.7<br>.2<br>1.9<br>6<br>30.0                                                           | 1,668.0<br>854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>13,158.0<br>2,128.0<br>2,128.0<br>37,654.0<br>37,654.0<br>37,054.0<br>37,054.0<br>37,054.0<br>37,054.0<br>37,054.0<br>37,054.0<br>37,054.0<br>37,054.0<br>37,054.0<br>37,054.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.8<br>4.5<br>5.2<br>7.0<br>27.7<br>.3<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5<br>197.6<br>225.3<br>3.2<br>2.7<br>.2<br>1.9<br>.6<br>30.0                                                                                                                 |  |  |
| Missouri. North Dakota. South Dakota. South Dakota. Subregion Ilb: Arkansas. Louisiana. Oklahoma. Texas. New Mexico. Kansas. Subtotal IIb. Subtegion III: Subtotal IIb. Subtotal III. Region III: Subregion IIIa: Montana. Idaho. Wyoming. Utah. Colorado. Washington. Oregon. Subtotal IIIa. Subregion IIIb: Arizona. Nevada. California.                                                                                                                                                                                                  | 431.0<br>2,129.0<br>8,344.0<br>10,736.0<br>27,460.0<br>1,368.0<br>4,286.0<br>52,248.0<br>54,377.0<br>2,468.0<br>1,599.0<br>644.0<br>1,683.0<br>7,005.0        | 2.3<br>-<br>11.3<br>.3<br>43.7<br>56.4<br>144.0<br>7.2<br>226.2<br>285.5<br>13.0<br>-<br>3.2<br>8.3<br>3.4<br>8.8<br>-<br>36.7    | -30.0<br>+2.0<br>-10.0<br>+437.0<br>+167.0<br>+18.0<br>+18.0<br>+875.0<br>+875.0<br>+3.0<br>+2.0<br>+3.0<br>+2.0<br>+3.0<br>+2.7<br>+2.0<br>+3.0<br>+3.0<br>+43.0<br>+43.0<br>+43.0<br>+43.0<br>+43.0<br>+43.0<br>+43.0                                                              | 2 Neg41 +2.3 +.9 +1.5 +.11 +4.6 +4.2  +.1 Neg. Neg. +.2 Neg. +.2 +.11 +.6                                                             | +319.0<br>+493.0<br>+996.0<br>+1337.0<br>-12,248.0<br>-4,126.0<br>-12,580.0<br>+1723.0<br>-15,469.0<br>-12,264.0<br>-1,5469.0<br>-1,263.0<br>-272.0<br>+1,964.0<br>-272.0<br>+1,964.0<br>-2,461.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +2.4<br>+5.2<br>+7.0<br>+16.8<br>+.1<br>-6.5<br>-21.7<br>-66.0<br>+3.9<br>-9.9<br>+2.7<br>-3.0<br>-6.6<br>-1.4<br>+10.4<br>+5.7<br>-7.3<br>+14.7<br>-12.9                                                                                                           | 854.0<br>998.0<br>1,337.0<br>5,271.0<br>6,777.0<br>15,158.0<br>2,128.0<br>37,654.0<br>42,925.0<br>601.0<br>371.0<br>375.0<br>3,690.0<br>118.0<br>5,706.0<br>2,816.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.5<br>5.2<br>7.0<br>27.7<br>.3<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5<br>197.6<br>225.3<br>3.2<br>2.7<br>.2<br>1.9<br>2.0<br>19.4<br>6.30.0                           | \$54.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,128.0<br>2,128.0<br>3,994.0<br>42,925.0<br>601.0<br>371.0<br>371.0<br>371.0<br>371.0<br>371.0<br>371.0<br>371.0<br>371.0<br>371.0<br>371.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.8<br>4.5<br>5.2<br>7.0<br>27.7<br>.3<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5<br>197.6<br>225.3<br>3.2<br>2.7<br>2.7<br>2.0<br>19.4<br>6<br>30.0                                                  | 1,668.0<br>854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,158.0<br>2,128.0<br>5,994.0<br>37,554.0<br>42,925.0<br>601.0<br>517.0<br>34.0<br>37.0<br>34.0<br>37.0<br>34.0<br>37.0<br>34.0<br>37.0<br>34.0<br>37.0<br>34.0<br>37.0<br>34.0<br>37.0<br>34.0<br>37.0<br>34.0<br>37.0<br>34.0<br>37.0<br>34.0<br>37.0<br>34.0<br>37.0<br>34.0<br>37.0<br>34.0<br>37.0<br>34.0<br>37.0<br>34.0<br>37.0<br>34.0<br>37.0<br>34.0<br>37.0<br>34.0<br>37.0<br>34.0<br>37.0<br>34.0<br>37.0<br>34.0<br>37.0<br>34.0<br>37.0<br>37.0<br>37.0<br>37.0<br>37.0<br>37.0<br>37.0<br>37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.8<br>4.5<br>5.2<br>7.0<br>27.7<br>.3<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5<br>197.6<br>225.3<br><br>225.3<br><br>2.7<br><br>2.7<br><br>2.0<br>19.4<br><br>30.6                                                                                        |  |  |
| Missouri. North Dakota. South Dakota. South Dakota. Subtotal IIa. Subregion IIb: Arkansas. Louisiana. Oklahoma. Texas. New Mexico. Kansas. Subtotal IIb. Subregion III: Subregion IIII: Pontana. Hyoming. Usah. Colorado. Washington. Oregon. Subtotal IIIa. Subregion IIIa: Arizona. Nevada. California. Subtotal IIIA.                                                                                                                                                                                                                    | 431.0<br>2,129.0<br>8,344.0<br>10,736.0<br>27,460.0<br>1,368.0<br>4,286.0<br>52,248.0<br>54,377.0<br>2,468.0<br>1,599.0<br>644.0<br>1,683.0<br>7,005.0        | 2.3<br>-11.3<br>.3<br>43.7<br>56.4<br>144.0<br>7.2<br>22.6<br>274.2<br>285.5<br>13.0<br>-3.2<br>8.3<br>3.4<br>8.8<br>-3.6<br>-7.7 | -30.0<br>+2.0<br>-10.0<br>+437.0<br>+167.0<br>+187.0<br>+875.0<br>+812.0<br>+2.0<br>+35.0<br>+35.0<br>+31.0<br>+43.0<br>+27.0<br>+138.0                                                                                                                                              | 2 Neg41 +2.3 +.9 +1.5 +.11 +4.6 +4.2  +.1 Neg. Neg. +.2 Neg. +.2 +.11 +.6                                                             | +319.0<br>+493.0<br>+996.0<br>+1,337.0<br>+3,205.0<br>-1,248.0<br>-4,126.0<br>-12,580.0<br>+742.0<br>+1,723.0<br>-15,469.0<br>-12,264.0<br>-579.0<br>-1,263.0<br>-272.0<br>+1,964.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91.0<br>+91 | +2.4<br>+5.2<br>+7.0<br>+16.8<br>+.1<br>-6.5<br>-21.7<br>-66.0<br>+3.9<br>+9.0<br>-81.2<br>-64.4<br>-9.9<br>+2.7<br>-3.0<br>-1.4<br>+10.4<br>+15.7<br>-7.3                                                                                                          | 854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,158.0<br>2,128.0<br>37,654.0<br>42,925.0<br>601.0<br>371.0<br>375.0<br>3,690.0<br>118.0<br>5,706.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.5<br>5.2<br>7.0<br>27.7<br>.3<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5<br>197.6<br>225.3<br>3.2<br>2.7<br>.2<br>1.9<br>2.0<br>19.4<br>6<br>30.0                        | 654.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,158.0<br>2,128.0<br>37,654.0<br>42,925.0<br>601.0<br>371.0<br>371.0<br>375.0<br>3,994.0<br>118.0<br>5,706.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.8<br>4.5<br>5.2<br>7.0<br>27.7<br>.3<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5<br>197.6<br>225.3<br>3.2<br>2.7<br>.2<br>1.9<br>6<br>30.0                                                           | 1,668.0<br>854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>13,158.0<br>2,128.0<br>2,128.0<br>37,654.0<br>37,654.0<br>37,054.0<br>37,054.0<br>37,054.0<br>37,054.0<br>37,054.0<br>37,054.0<br>37,054.0<br>37,054.0<br>37,054.0<br>37,054.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.8<br>4.5<br>5.2<br>7.0<br>27.7<br>.3<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5<br>197.6<br>225.3<br>3.2<br>2.7<br>.2<br>1.9<br>.6<br>30.0                                                                                                                 |  |  |
| Missouri. North Dakota. South Dakota. South Dakota. Subregion Ilb: Arkansas. Louisiana. Oklahoma. Texas. New Mexico. Kansas. Subtotal IIb. Subtegion III: Subtotal IIb. Subtotal III. Region III: Subregion IIIa: Montana. Idaho. Wyoming. Utah. Colorado. Washington. Oregon. Subtotal IIIa. Subregion IIIb: Arizona. Nevada. California.                                                                                                                                                                                                  | 431.0<br>2,129.0<br>8,344.0<br>10,736.0<br>27,460.0<br>1,368.0<br>4,286.0<br>52,248.0<br>54,377.0<br>2,468.0<br>1,599.0<br>644.0<br>1,683.0<br>7,005.0        | 2.3<br>-<br>11.3<br>.3<br>43.7<br>56.4<br>144.0<br>7.2<br>226.2<br>285.5<br>13.0<br>-<br>3.2<br>8.3<br>3.4<br>8.8<br>-<br>36.7    | -30.0<br>+2.0<br>-10.0<br>+437.0<br>+167.0<br>+18.0<br>+18.0<br>+875.0<br>+875.0<br>+3.0<br>+2.0<br>+3.0<br>+2.0<br>+3.0<br>+2.7<br>+2.0<br>+3.0<br>+3.0<br>+43.0<br>+43.0<br>+43.0<br>+43.0<br>+43.0<br>+43.0<br>+43.0                                                              | 2 Neg41 +2.3 +.9 +1.5 +.11 +4.6 +4.2  +.1 Neg. +.2 Neg. +.2 +.1 +.6  +.12 3                                                           | +319.0<br>+493.0<br>+996.0<br>+1337.0<br>-12,248.0<br>-4,126.0<br>-12,580.0<br>+1723.0<br>-15,469.0<br>-12,264.0<br>-1,5469.0<br>-1,263.0<br>-272.0<br>+1,964.0<br>-272.0<br>+1,964.0<br>-2,461.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +2.4<br>+5.2<br>+7.0<br>+16.8<br>+.1<br>-6.5<br>-21.7<br>-66.0<br>+3.9<br>-9.9<br>+2.7<br>-3.0<br>-6.6<br>-1.4<br>+10.4<br>+5.7<br>-7.3<br>+14.7<br>-12.9                                                                                                           | 854.0<br>998.0<br>1,337.0<br>5,271.0<br>6,777.0<br>15,158.0<br>2,128.0<br>37,654.0<br>42,925.0<br>601.0<br>371.0<br>375.0<br>3,690.0<br>118.0<br>5,706.0<br>2,816.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.5<br>5.2<br>7.0<br>27.7<br>.3<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5<br>197.6<br>225.3<br>3.2<br>2.7<br>.2<br>1.9<br>2.0<br>19.4<br>6.30.0                           | \$54.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,128.0<br>2,128.0<br>3,994.0<br>42,925.0<br>601.0<br>371.0<br>371.0<br>371.0<br>371.0<br>371.0<br>371.0<br>371.0<br>371.0<br>371.0<br>371.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.8<br>4.5<br>5.2<br>7.0<br>27.7<br>.3<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5<br>197.6<br>225.3<br>3.2<br>2.7<br>2.7<br>2.0<br>19.4<br>6<br>30.0                                                  | 1,668.0<br>854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,158.0<br>2,128.0<br>5,994.0<br>37,554.0<br>42,925.0<br>601.0<br>517.0<br>34.0<br>37.0<br>34.0<br>37.0<br>34.0<br>37.0<br>34.0<br>37.0<br>34.0<br>37.0<br>34.0<br>37.0<br>34.0<br>37.0<br>34.0<br>37.0<br>34.0<br>37.0<br>34.0<br>37.0<br>34.0<br>37.0<br>34.0<br>37.0<br>34.0<br>37.0<br>34.0<br>37.0<br>34.0<br>37.0<br>34.0<br>37.0<br>34.0<br>37.0<br>34.0<br>37.0<br>34.0<br>37.0<br>34.0<br>37.0<br>34.0<br>37.0<br>34.0<br>37.0<br>34.0<br>37.0<br>37.0<br>37.0<br>37.0<br>37.0<br>37.0<br>37.0<br>37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.8<br>4.5<br>5.2<br>7.0<br>27.7<br>.3<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5<br>197.6<br>225.3<br><br>225.3<br><br>2.7<br>2.1<br>9.2<br>0.0<br>19.4<br><br>30.0<br>19.4<br><br>94.2                                                                     |  |  |
| Missouri. North Dakota. South Dakota. South Dakota. Subregion Ilb: Arkansas. Louisiana. Oklahoma. Texas. New Mexico. Kansas. Subtotal IIb. Subregion III: Region III: Subregion III: Montana. Idaho. Wyoming. Utah. Colorado. Washington. Oregon. Subtotal IIIb. Subregion IIIb: Arizona. Nevada. California. Subtotal IIIb. Arizona. Nevada. Ashawaii. | 431.0  54.0  8,344.0 10,736.0 27,460.0 1,368.0 4,286.0 52,248.0 54,377.0  2,468.0 7,005.0  7,005.0                                                            | 2.3<br>                                                                                                                           | -30.0<br>+22.0<br>-63.0<br>-10.0<br>+437.0<br>+167.0<br>+1278.0<br>+1812.0<br>+8175.0<br>+8175.0<br>+35.0<br>+35.0<br>+35.0<br>+35.0<br>+35.0<br>+35.0<br>+43.0<br>+43.0<br>+43.0<br>+43.0<br>+43.0<br>+43.0<br>+43.0<br>+43.0<br>+43.0<br>+43.0<br>+43.0<br>+43.0<br>+43.0<br>+43.0 | 2<br>Neg4<br>1<br>+2.3<br>+.9<br>+.15<br>+.1<br>1<br>+4.6<br>+4.2<br>                                                                 | +319.0<br>+493.0<br>+996.0<br>+1337.0<br>+3,205.0<br>-4,126.0<br>-12,580.0<br>+1742.0<br>+1,723.0<br>-15,469.0<br>-12,264.0<br>-579.0<br>-1,263.0<br>-272.0<br>+1,964.0<br>-272.0<br>+3,469.0<br>+3,469.0<br>-1,263.0<br>-272.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.                                                                                                                                                                                                                                                                                                                               | +2.4<br>+5.2<br>+7.0<br>+16.8<br>+.1<br>-6.5<br>-21.7<br>-66.0<br>+3.9<br>+9.0<br>-81.2<br>-64.4<br>-9.9<br>+2.7<br>-3.0<br>-6.6<br>-1.4<br>+10.4<br>+2.7<br>-7.3<br>+11.4<br>+2.7<br>+12.9<br>+27.6<br>+12.9<br>+27.6<br>+27.6<br>+27.6<br>+27.6<br>+27.6<br>+27.6 | 854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0,<br>7,533.0<br>6,777.0<br>15,158.0<br>5,994.0<br>37,654.0<br>42,925.0<br>34.0<br>371.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0 | 4.5<br>5.2<br>7.0<br>27.7<br>.3<br>39.5<br>35.6<br>35.6<br>11.2<br>225.3<br>3.2<br>2.7<br>.2<br>2.7<br>.2<br>1.9<br>2.0<br>19.4<br>.6<br>30.0<br>14.8<br>-94.2<br>109.0 | 654.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,158.0<br>2,128.0<br>5,994.0<br>37,654.0<br>42,925.0<br>601.0<br>371.0<br>375.0<br>375.0<br>375.0<br>375.0<br>118.0<br>5,796.0<br>2,766.0<br>2,816.0<br>17,953.0<br>20,769.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.8<br>4.5<br>5.2<br>7.0<br>27.7<br>.3<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5<br>197.6<br>225.3<br><br>22 1.9<br>2.0<br>19.4<br>6.3<br>30.0                                                       | 1,668.0<br>854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,158.0<br>2,128.0<br>37,654.0<br>42,925.0<br>611.0<br>371.0<br>371.0<br>375.0<br>375.0<br>375.0<br>2,946.0<br>118.0<br>2,946.0<br>2,946.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376. | 8.8<br>4.5<br>5.2<br>7.0<br>27.7<br>.3<br>39.5<br>39.5<br>39.5<br>11.2<br>31.5<br>197.6<br>225.3<br>3.2<br>2.7<br>.2<br>1.9<br>2.0<br>19.4<br>.6<br>30.0<br>30.0<br>19.4<br>.6<br>30.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0            |  |  |
| Missouri. North Dakota. South Dakota. South Dakota. Subtotal IIa. Subregion IIb: Arkansas. Louisiana. Oklahoma. Texas. New Mexico. Kansas. Subtotal IIb. Subregion IIIa: Montana. Idaho. Wyoming. Utahing. Utahing. Subtotal III. Subregion IIIIs Arizona. Subtotal IIII. Subregion IIIIs Arizona. California. Subrotal IIII. Subregion IIIII: Subregion IIIII.   | 431.0  54.0  8,344.0 10,736.0 27,460.0 1,368.0 4,286.0 52,248.0 54,377.0  2,468.0 611.0 1,599.0 644.0 1,683.0                                                 | 2.3<br>                                                                                                                           | -30.0<br>+2.0<br>-63.0<br>-10.0<br>+1437.0<br>+167.0<br>+18.0<br>-15.0<br>+875.0<br>+2.0<br>+3.0<br>+2.0<br>+3.0<br>+27.0<br>+13.0<br>+27.0<br>+13.0<br>+27.0<br>+13.0<br>+3.0<br>+3.0<br>+43.0<br>+43.0<br>+44.0<br>+44.0<br>+44.0                                                  | 2 Neg41 +2.3 +.9 +1.5 +.11 +4.6 +4.2 Neg. Neg. +.2 Neg. +.22 Neg. +.1 +.6 +.12 Neg. Neg2 Neg2 Neg. Neg. Neg. Neg. Neg. Neg. Neg. Neg. | +319.0<br>+493.0<br>+996.0<br>+1,337.0<br>+3,205.0<br>-20.0<br>-1,268.0<br>-12,580.0<br>+1742.0<br>-11,269.0<br>-12,264.0<br>-12,264.0<br>-12,264.0<br>-13,269.0<br>-14,269.0<br>-1,669.0<br>-1,669.0<br>-1,669.0<br>-1,669.0<br>-1,437.0<br>+2,461.0<br>+5,265.0<br>+33.0<br>+67.0<br>+67.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +2.4<br>+5.2<br>+7.0<br>+16.8<br>+.1<br>-6.5<br>-21.7<br>-66.0<br>+3.9<br>-91.2<br>-66.4<br>+2.7<br>-3.0<br>-6.6<br>-1.4<br>+10.4<br>+.5<br>-7.3<br>+14.7<br>+2.7<br>+2.7<br>+2.7<br>+2.7<br>+2.7<br>+3.0<br>+3.0<br>+3.0<br>+3.0<br>+3.0<br>+3.0<br>+3.0<br>+3.0   | 854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,158.0<br>2,128.0<br>5,994.0<br>371,654.0<br>371,654.0<br>371,0<br>3,690.0<br>118.0<br>5,706.0<br>2,816.0<br>2,128.0<br>375.0<br>3,690.0<br>118.0<br>2,0<br>2,0<br>3,0<br>3,0<br>3,0<br>3,0<br>3,0<br>3,0<br>3,0<br>3,0<br>3,0<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.5 5.2 7.0 27.7 3 39.5 35.6 79.5 11.2 31.5 197.6 225.3  3.2 2.7 .2 1.9 2.0 19.4 .6 30.0  14.8 -94.2 109.0 .2 .8 1.0                                                    | 654.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,158.0<br>2,128.0<br>5,994.0<br>37,654.0<br>42,925.0<br>601.0<br>31.0<br>37,504.0<br>371.0<br>375.0<br>36.0<br>2,816.0<br>2,188.0<br>375.0<br>36.0<br>375.0<br>36.0<br>375.0<br>36.0<br>375.0<br>36.0<br>375.0<br>36.0<br>375.0<br>36.0<br>375.0<br>36.0<br>375.0<br>36.0<br>375.0<br>36.0<br>375.0<br>36.0<br>375.0<br>36.0<br>375.0<br>36.0<br>375.0<br>36.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0 | 8.8<br>4.5<br>5.2<br>7.0<br>27.7<br>.3<br>39.5<br>31.6<br>79.5<br>31.2<br>31.7<br>225.3<br>.7<br>225.3<br>.7<br>2.7<br>2.7<br>2.0<br>19.6<br>30.0<br>14.8<br>109.0                                 | 1,668.0<br>854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,158.0<br>2,128.0<br>37,554.0<br>42,925.0<br>317.0<br>371.0<br>371.0<br>371.0<br>375.0<br>3,990.0<br>118.0<br>5,706.0<br>2,816.0<br>2,916.0<br>3,715.0<br>3,990.0<br>3,715.0<br>3,990.0<br>3,715.0<br>3,990.0<br>3,715.0<br>3,990.0<br>3,715.0<br>3,715.0<br>3,715.0<br>3,715.0<br>3,715.0<br>3,715.0<br>3,715.0<br>3,715.0<br>3,715.0<br>3,715.0<br>3,715.0<br>3,715.0<br>3,715.0<br>3,715.0<br>3,715.0<br>3,715.0<br>3,715.0<br>3,715.0<br>3,715.0<br>3,715.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.8<br>4.5<br>5.2<br>7.0<br>27.7<br>.3<br>39.5<br>39.5<br>39.5<br>39.5<br>31.5<br>197.6<br>225.3<br>3.2<br>2.7<br>2.2<br>1.9<br>2.0<br>19.6<br>30.0                                                                                                       |  |  |
| Missouri. North Dakota. South Dakota. South Dakota. Subregion Ilb: Arkansas. Louisiana. Oklahoma. Texas. New Mexico. Kansas. Subtotal IIb. Subregion III: Region III: Subregion III: Montana. Idaho. Wyoming. Utah. Colorado. Washington. Oregon. Subtotal IIIb. Subregion IIIb: Arizona. Nevada. California. Subtotal IIIb. Arizona. Nevada. Ashawaii. | 431.0  54.0  8,344.0 10,736.0 27,460.0 1,368.0 4,286.0 52,248.0 54,377.0  2,468.0 611.0 1,599.0 644.0 1,683.0                                                 | 2.3<br>                                                                                                                           | -30.0<br>+22.0<br>-63.0<br>-10.0<br>+437.0<br>+167.0<br>+1278.0<br>+1812.0<br>+8175.0<br>+8175.0<br>+35.0<br>+35.0<br>+35.0<br>+35.0<br>+35.0<br>+35.0<br>+43.0<br>+43.0<br>+43.0<br>+43.0<br>+43.0<br>+43.0<br>+43.0<br>+43.0<br>+43.0<br>+43.0<br>+43.0<br>+43.0<br>+43.0<br>+43.0 | 2 Neg41 +2.3 +.9 +1.5 +.11 +4.6 +4.2 Neg. Neg. +.2 Neg. +.22 Neg. +.1 +.6 +.12 Neg. Neg2 Neg2 Neg. Neg. Neg. Neg. Neg. Neg. Neg. Neg. | +319.0<br>+493.0<br>+996.0<br>+1337.0<br>+3,205.0<br>-4,126.0<br>-12,580.0<br>+1742.0<br>+1,723.0<br>-15,469.0<br>-12,264.0<br>-579.0<br>-1,263.0<br>-272.0<br>+1,964.0<br>-272.0<br>+3,469.0<br>+3,469.0<br>-1,263.0<br>-272.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.0<br>+3,469.                                                                                                                                                                                                                                                                                                                               | +2.4<br>+5.2<br>+7.0<br>+16.8<br>+.1<br>-6.5<br>-21.7<br>-66.0<br>+3.9<br>-91.2<br>-66.4<br>+2.7<br>-3.0<br>-6.6<br>-1.4<br>+10.4<br>+.5<br>-7.3<br>+14.7<br>+2.7<br>+2.7<br>+2.7<br>+2.7<br>+2.7<br>+3.0<br>+3.0<br>+3.0<br>+3.0<br>+3.0<br>+3.0<br>+3.0<br>+3.0   | 854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0,<br>7,533.0<br>6,777.0<br>15,158.0<br>5,994.0<br>37,654.0<br>42,925.0<br>34.0<br>371.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0 | 4.5 5.2 7.0 27.7 3 39.5 35.6 79.5 11.2 31.5 197.6 225.3  3.2 2.7 .2 1.9 2.0 19.4 .6 30.0  14.8 -94.2 109.0 .2 .8 1.0                                                    | 654.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,158.0<br>2,128.0<br>5,994.0<br>37,654.0<br>42,925.0<br>601.0<br>371.0<br>375.0<br>375.0<br>375.0<br>375.0<br>118.0<br>5,796.0<br>2,766.0<br>2,816.0<br>17,953.0<br>20,769.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.8<br>4.5<br>5.2<br>7.0<br>27.7<br>.3<br>39.5<br>39.5<br>39.5<br>39.5<br>11.2<br>31.5<br>117.6<br>225.3<br>3.2<br>2.7<br>2.7<br>2.0<br>19.6<br>30.0<br>14.8<br>2.0<br>19.6<br>2.0<br>19.6<br>30.0 | 1,668.0<br>854.0<br>998.0<br>1,337.0<br>5,271.0<br>64.0<br>7,533.0<br>6,777.0<br>15,158.0<br>2,128.0<br>37,654.0<br>42,925.0<br>611.0<br>371.0<br>371.0<br>375.0<br>375.0<br>375.0<br>2,946.0<br>118.0<br>2,946.0<br>2,946.0<br>375.0<br>375.0<br>375.0<br>375.0<br>375.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376.0<br>376. | 8.8<br>4.5<br>5.2<br>7.0<br>27.7<br>39.5<br>35.6<br>79.5<br>11.2<br>31.5<br>197.6<br>225.3<br>3.2<br>2.7<br><br>2.7<br><br>2.7<br><br>2.9<br>1.9<br>2.0<br>1.9<br>1.6<br>3.0<br>1.0<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6 |  |  |

<sup>\*</sup>Household and commercial; industrial; electricity generation, utilities; and miscellaneous and unaccounted for sectors do not apply

to this commodity.

Withdrawals from stocks add to supply and are indicated by plus signs; additions to stocks reduce supply and are indicated by minus

signs.  $^{\circ}$ Includes net foreign trade: 12,525.0 thousand barrels; 65.8 trillion Btu.

TABLE 7. - Supply and demand for gasoline by major consumer sector, by States and Regions

|                          | P-64         |         | Ca1 -1               | 2           | upply                    |                 |                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | consumer sec           |               |
|--------------------------|--------------|---------|----------------------|-------------|--------------------------|-----------------|----------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------|---------------|
| State and Region         | Refinery     | Tril-   | Stock ch<br>Thousand |             |                          |                 | Total su             | pply    | Transport                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ation         | Total do               |               |
| state and kegion         | barrels      | lion    |                      |             | Net shi                  | ments"          | availabl             |         | Thousand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Tril-         | dema                   |               |
|                          | Darrers      | Btu     | barrels              | lion<br>Btu | Thousand                 | Trillion<br>Btu | Consump<br>Thousand  | Tril-   | barrels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lion          | Thousand               | Tril-         |
|                          |              | Dea     |                      | Bcu         | Darrers                  | Beu             | barrels              | lion    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Btu           | barrels                | lion<br>Btu   |
|                          |              |         |                      |             |                          |                 | Darreis              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | ļ                      | BEU           |
| United States total.     | 1.510.134.0  | 7.925.4 | -5.352.0             | -28.1       | -8,182.0                 | -43 1           | 1 496 600 0          | 8tu     | 1 496 600 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7 85/ 2       | 1,496,600.0            | 7 05/ 2       |
| Region I:                | 1,510,125410 | 7,723,7 | 3,332.0              | -20.1       | -0,102.0                 | -43.1           | 1,490,800.0          | 7,034.2 | 1,490,600.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,034.2       | 1,496,600.0            | 7,834.2       |
| Subregion Ia:            |              |         |                      |             |                          |                 |                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                        |               |
| Maine                    | -            |         | -15.0                | 1           | +8,218.0                 | +43.1           | 8,203.0              | 43.0    | 8,203.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 43.0          | 8,203.0                | 43.0          |
| New Hampshire            | _            | -       | -7.0                 |             | +4,996.0                 | +26.2           | 4,989.0              | 26.2    | 4,989.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                        | 26.2          |
| Vermont                  |              |         | -7.0                 |             | +3,245.0                 | +17.0           | 3,238.0              | 17.0    | 3 238 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17.0          |                        |               |
| Massachusetts            | 5,303.0      | 2,7.8   |                      |             | +29,569.0                | +155.2          | 34,815.0             | 182.7   | 3,238.0<br>34,815.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 182.7         | 34,815.0               |               |
| Rhode Island             |              |         | -3.0                 |             | +5,938.0                 | +31.1           | 5,935.0              | 31.1    | 5,935.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 31.1          | 5,935.0                |               |
| Connecticut              | -            |         | -15.0                | 1           | +18,837.0                | +98.9           | 18,822.0             | 98.8    | 18,822.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 98.8          | 18,822.0               | 98.8          |
| New York                 | 12,259.0     | 64.3    | -14.0                | 1           | +90,678.0                | +476.0          | 102,923.0            | 540.2   | 102,923.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 540.2         |                        |               |
| New Jersey               | 66,508.0     | 349.1   | -22.0                | 1           | -17,636.0                | -92.6           | 48,850.0             | 256.4   | 48,850.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 256.4         | 48,850.0               | 256.4         |
| Pennsylvania             | 90,626.0     | 475.5   | -85.0                | 4           | -11,895.0                | -62.4           | 78,646.0             | 412.7   | 78,646.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 412.7         | 78,646.0               | 412.7         |
| Delaware                 | 20,328.0     | 106.6   | -212.0               | -1.1        | -15,269.0                | -80.1           | 4,847.0              | 25.4    | 4,847.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | 4.847.0                | 25.4          |
| Maryland                 | 244.0        | 1.3     | +61.0                | +.3         | +21,966.0                |                 | 22,271.0             | 116.9   | 22,271.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 116.9         | 22,271.0               | 116.9         |
| District of              |              |         |                      |             |                          |                 | ·                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                        |               |
| Columbia                 | -            | -       |                      | -           | +4,833.0                 | +25.4           | 4,833.0              | 25.4    | 4,833.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25.4          | 4,833.0                | 25.4          |
| Virginia                 | 6,723.0      | 35.3    | -45.0                |             | +25,121.0<br>+11,399.0   | +131.8          | 31,799.0             | 166.9   | 31,799.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 166.9         | 31,799.0               | 166.9         |
| West Virginia            | 817.0        | 4.3     |                      |             | +11,399.0                | +59.8           | 12,201.0             | 64.0    | 12,201.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 64.0          | 12,201.0               | 64.0          |
| North Carolina           |              | - 1     | -66.0                |             | +35,479.0                | +186.1          | 35,413.0             | 185.8   | 35,413.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 185.8         | 35,413.0               | 185.8         |
| South Carolina           | 142.0        | .7      |                      |             | +17,582.0                | +92.3           | 17,687.0             | 92.8    | 17,687.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | 17,687.0               |               |
| Georgia                  | -            |         | -106.0               |             | +31,860.0                | +167.2          | 31,754.0             | 166.6   | 31,754.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 166.6         | 31,754.0               | 166.6         |
| Florida                  |              |         | -51.0                |             | +45,571.0                | +239.2          | 45,520.0             | 238.9   | 45.520.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 238.9         | 45,520.0               | 238.9         |
| Kentucky                 | 15,130.0     | 79.5    |                      |             | +6,773.0<br>+27,424.0    | +35.5           | 21,890.0<br>29,096.0 | 114.9   | 21,890.0<br>29,096.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 114.9         | 21,890.0               | 114.9         |
| Tennessee                | 1,730.0      | 9.1     |                      | 3           | +27,424.0                | +143.9          | 29,096.0             | 152.7   | 29,096.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 152.7         | 29,096.0               | 152.7         |
| Alabama                  | 92.0         | .5      | -4.0                 |             | +24,202.0                | +127.0          | 24,290.0             | 127.5   | 24,290.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 127.5         | 24,290.0               | 127.5         |
| Mississippi              | 4,405.0      | 23.1    | -93.0                |             | +11,612.0                | +61.0           | 15,924.0             | 83.6    | 15,924.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 83.6          | 15,924.0               | 83.6          |
| Ohio                     | 74,135.0     | 389.2   | -498.0               | -2.6        | +4,121.0                 | +21.6           | 77,758.0             | 408.2   | 77,758.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 408.2         | 77,758.0               | 408.2         |
| Subtotal Ia              | 298,442.0    | 1,566.3 | -1,362.0             | -7.1        | +384,624.0               | +2,018.5        | 681,704.0            | 3,577.7 | 681,704.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3,577.7       | 681,704.0              | 3,577.7       |
| Subregion Ib:            |              |         |                      |             |                          |                 |                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                        |               |
| Indiana                  | 70,825.0     | 371.7   | +339.0               | +1.8        | -27,604.0                | -144.9          | 43,560.0             | 228.6   | 43,560.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 228.6         | 43,560.0               | 228.6         |
| Illinois                 | 114,638.0    | 601.6   | +2,155.0             | +11.3       | -43,149.0                | -226.4          | 73,644.0             | 386.5   | 73,644.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 386.5         | 73,644.0               | 386.5         |
| Michigan                 | 21,240.0     | 111.5   |                      |             | +44,152.0                | +231.7          | 65,782.0             | 345.2   | 65,782.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 345.2         | 65,782.0               | 345.2         |
| Wisconsin                | 1,123.0      | 5.9     | -32.0                | 2           | +31,623.0                | +166.0          | 32,714.0             | 171.7   | 32,714.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 171.7         | 32,714.0               | 171.7         |
| Subtotal Ib              | 207,826.0    | 1,090.7 | +2,852.0             | +14.9       | +5,022.0                 | +26.4           | 215,700.0            | 1,132.0 | 215,700.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,132,0       | 215,700.0<br>897,404.0 | 1,132.0       |
| Subtotal I<br>Region II: | 506,268.0    | 2,637.0 | +1,490.0             | +7.8        | +389,646.0               | +2,044.9        | 897,404.0            | 4,709.7 | 897,404,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4, /09. /     | 897,404.0              | 4,709.7       |
| Subregion IIa:           |              |         |                      |             |                          |                 |                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                        |               |
| Minnesota                | 10,693.0     | 56.1    | +1.0                 | Neg.        | +22,246.0                | +116.8          | 32,940.0             | 172.9   | 32,940.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 172.9         | 32,940.0               | 172.9         |
| Iowa                     | 10,093.0     | 30.1    | +4.0                 |             | +28,854.0                | +151.4          | 28,858.0             | 151.4   | 28,858.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 151.4         |                        | 151.4         |
| Missouri                 | 11,759.0     | 61.7    | +352.0               | +1.8        | +29,783.0                | +156.4          | 41,894.0             | 219.9   | 41,894.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 219.9         | 41,894.0               | 219.9         |
| North Dakota             | 9,250.0      | 48.6    | +81.0                | +.4         | -1,384.0                 | -7.3            | 7,947.0              | 41.7    | 7,947.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 41.7          | 7,947.0                | 41.7          |
| South Dakota             |              | -       | -7.0                 | Neg.        | +8,487.0                 | +44.5           | 8,480.0              | 44.5    | 8,480.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 44.5          | 8,480.0                | 44.5          |
| Nebraska                 | 517.0        | 2.7     | +15.0                | +.1         | +14,448.0                | +75.8           | 14,980.0             | 78.6    | 14,980.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 78.6          | 14,980.0               | 78.6          |
| Subtotal IIa             | 32,219.0     |         |                      |             | +102,434.0               | +537.6          | 135,099.0            |         | 135,099.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                        |               |
| Subregion IIb:           | - J-1        |         | 1.1.010              | -           | 12021-0-110              | 133710          | 155,05510            | 70710   | and the same of th | 70770         | 1991-222               |               |
| Arkansas                 | 12,635.0     | 66.3    | +14.0                | +.1         | +1,832.0                 | +9.6            | 14,481.0             | 76.0    | 14,481.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 76.0          | 14,481.0               | 76.0          |
| Louisiana                | 137,222.0    |         | -2,238.0             |             | -112,028.0               | -587.9          | 22,956.0             | 120.5   | 22,956.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.5         | 22,956.0               | 120.5         |
| Oklahoma                 | 72,634.0     | 381.1   | -521.0               | -2.7        | -45,069.0                | -236.5          | 22,956.0<br>27,044.0 | 141.9   | 22,956.0<br>27,044.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 141.9         | 27,044.0               | 141.9         |
| Texas                    | 437,812.0    | 2,297.6 | -3,587.0             |             | -326,208.0               |                 | 108,017.0            | 566.9   | 108,017.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 566.9         | 108,017.0              | 566.9         |
| New Mexico               | 4,536.0      | 23.8    | +9.0                 | Neg.        | +5,098.0                 | +26.8           | 9,643.0              | 50.6    | 9,643.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50.6          | 9,643.0                | 50.6          |
| Kansas                   | 61,669.0     | 323.7   | +554.0               | +2.9        | -36,405.0                | -191.1          | 25,818.0             | 135.5   | 25,818.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 135.5         | 25,818.0               | 135.5         |
| Subtotal IIb             | 726,508.0    | 3,812.6 | -5,769.0             | -30.2       | -512,780.0<br>-410,346.0 | -2,691.0        | 207,959.0            | 1,091.4 | 207,959.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,091.4       | 207,959.0              | 1,091.4       |
| Subtotal II.             | 758,727.0    | 3,981.7 | -5,323.0             | -27.9       | -410,346.0               | -2,153.4        | 343,058.0            | 1,800.4 | 343,058.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,800.4       | 343,058.0              | 1,800.4       |
| Region III:              |              |         |                      |             |                          |                 |                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                        |               |
| Subregion IIIa:          |              |         |                      |             |                          |                 |                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | - 44                   |               |
| Montana                  | 10,539.0     | 55.4    | +25.0                | +.1         | -3,046.0                 | -16.0           | 7,518.0              | 39.5    | 7,518.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 39.5          | 7,518.0                | 39.5          |
| Idaho                    | 17.00        |         | -6.0                 |             | +6,771.0                 | +35.5           | 6,765.0              | 35.5    | 6,765.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 35.5          | 6,765.0                | 35.5          |
| Wyoming                  | 17,356.0     | 91.1    | -165.0               | 9           | -12,783.0                | -67.1           | 4,408.0              | 23.1    | 4,408.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23.1          | 4,408.0                | 23.1<br>44.7  |
| Utah                     | 15,541.0     | 81.5    | -39.0                |             | -6,976.0                 | -36.6           | 8,526.0              | 44.7    | 8,526.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 44.7          | 8,526.0                | 90.4          |
| Colorado                 | 6,205.0      | 32.6    | +80.0                |             | +10,932.0                | +57.4           | 17,217.0             | 90.4    | 17,217.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 90.4          | 17,217.0               |               |
| Washington               | 17,595.0     | 92.4    |                      |             | +10,965.0                | +57.5           | 28,493.0             | 149.5   | 28,493.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 149.5         | 28,493.0               |               |
| Oregon<br>Subtotal IIIa. | 67.22( 0     | 252.0   | -140.0               | 7           | +16,532.0                | +86.7           | 16,392.0             | 86.0    | 16,392.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 86.0<br>468.7 | 16,392.0<br>89,319.0   | 86.0<br>468.7 |
| Subregion IIIb:          | 67,236.0     | 353.0   | -312.0               | -1.7        | +22,395.0                | +117.4          | 89,319.0             | 468.7   | 89,319.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 400.7         | 69,319.0               | 400.7         |
| Arizona                  |              |         | 67.0                 |             | ±12 576 0                | +66.0           | 12,509.0             | 65.6    | 12,509.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 65.6          | 12,509.0               | 65.6          |
| Nevada                   |              | : 1     | -67.0<br>-27.0       | 4           | +12,576.0<br>+3,823.0    | +20.0           |                      | 19.9    | 3,796.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19.9          | 3,796.0                |               |
| California               | 177,903.0    | 022 7   | -1,086.0             |             | -33,459.0                | -175.6          | 3,796.0<br>143,358.0 | 752.4   | 143,358.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 752.4         | 143,358.0              | 752.4         |
| Subtotal IIIb.           | 177,903.0    |         | -1,180.0             |             | -17,060.0                |                 | 159,663.0            | 837.9   | 159,663.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 837.9         | 159,663.0              |               |
| Subregion IIIc:          | 177,903.0    | 733.7   | 1,100.0              | -0.2        | -17,000.0                | -07.0           | 137,003.0            | 037.9   | 137,003.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 037.3         |                        | -             |
| Alaska                   | _            |         | -20.0                | 1           | +1,928.0                 | +10.1           | 1,908.0              | 10.0    | 1,908.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.0          | 1,908.0                | 10.0          |
| Hawsii                   | -            |         | -7.0                 |             | +5,255.0                 | +27.5           | 5,248.0              | 27.5    | 5,248.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27.5          | 5,248.0                | 27.5          |
| Subtotal IIIc.           |              |         | -27.0                | 1           | +7,183.0                 | +37.6           | 7,156.0              | 37.5    | 7,156.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 37.5          | 7,156.0                | 37.5          |
| Subtotal III             | 245,139.0    | 1.286.7 |                      |             |                          |                 |                      | 1,344.1 | 256,138.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                        | 1,344.1       |
| Neg Negligible.          |              |         |                      |             |                          |                 |                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                        |               |

Neg.- Negligible.

\*Household and commercial; industrial; electricity generation, utilities; and miscelleneous and unaccounted for sectors do not apply to this commodity.

\*Multidrawals from stocks add to supply and are indicated by plus signs; additions to stocks reduce supply and are indicated by minus

signs.

SIncludes net foreign trade: -3,678.0 thousand barrels; -19.3 trillion Btu.

| Robert Lained.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total supply Household and Industrial Transportation Total domestic                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                             |                                                                                                                                                                                                                         |                                                                                                                                                                                                                 |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Section of Region   Computer      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | pply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                             | Demand by                                                                                                                                                                                                               | major                                                                                                                                                                                                           | conaumer                                                                                                                              | aecto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Seate and Region   Problem   Parcels   Strong    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rofinery                                                                                                                                                | outout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Stock o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | hange <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Not chin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mont of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Total su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | pply                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                             | Indust                                                                                                                                                                                                                  | rial                                                                                                                                                                                                            |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Delicate   Parcel   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | State and Region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                             |                                                                                                                                                                                                                         |                                                                                                                                                                                                                 |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| United Size Total   133,772.0   779.2   4,350.0   253.5   1,227.0   86,4   132,454.0   762,1   72,0   12,0   467,9   76,1   10,0   114.0   33,300.0   769,2   137,255.0   762,1   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138,0   138, |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | barrels                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Thousand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Tril-                                                                                                                                                                                                                                                    | barrels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                             |                                                                                                                                                                                                                         |                                                                                                                                                                                                                 |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Dilled State Lett.  18,772.0   79.2   4,39.0   25.5   4,127.0   4.6   137.44   78.2   79.2   79.12.0   47.7   20.14.0   11.0   31,390.0   20.7   31,550.0   762.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                         | Btu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Btu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Btu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | barrels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Btu                                                                                                                                                                                                         |                                                                                                                                                                                                                         |                                                                                                                                                                                                                 |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Btu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Regton I:  More Mapphires                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | United States total.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 135.772.0                                                                                                                                               | 779.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -4 S50 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -25 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +1 232 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +8 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 132 454 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                          | 70 012 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 667.0                                                                                                                                                                                                       | 20 1/2 0                                                                                                                                                                                                                | 114 0                                                                                                                                                                                                           | 22 200 0                                                                                                                              | 200 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 122 454 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 760.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Main   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Region I:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1021 10110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 70212                                                                                                                                                                                                                                                    | 77,01210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44717                                                                                                                                                                                                       | 20,142.0                                                                                                                                                                                                                | 11410                                                                                                                                                                                                           | 33,300.0                                                                                                                              | 200.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 132,434.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 702.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Mesembrico                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Subregion Ia:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                             |                                                                                                                                                                                                                         |                                                                                                                                                                                                                 |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Vergent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Naine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Neg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +2,289.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +13.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,292.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                          | 2,218.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12.6                                                                                                                                                                                                        |                                                                                                                                                                                                                         | -4                                                                                                                                                                                                              | 2.0                                                                                                                                   | Neg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Massebuetts 679.0 4.2 -30.0 -72 +75.78-0.0 32.8 6, 430.0 5.8 5, 400.0 50.7 280.0 1.7 723.0 4% 6, 450.0 58.0 68.0 5.0 86.0 5.0 86.0 5.0 86.0 5.0 86.0 5.0 86.0 5.0 86.0 5.0 86.0 5.0 86.0 5.0 86.0 5.0 86.0 5.0 86.0 5.0 86.0 5.0 86.0 5.0 86.0 5.0 86.0 5.0 86.0 5.0 86.0 5.0 86.0 5.0 86.0 5.0 86.0 5.0 86.0 5.0 86.0 5.0 86.0 5.0 86.0 5.0 86.0 5.0 86.0 5.0 86.0 5.0 86.0 5.0 86.0 5.0 86.0 80.0 80.0 80.0 80.0 80.0 80.0 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Neg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                             |                                                                                                                                                                                                                         | -1                                                                                                                                                                                                              | 1.0                                                                                                                                   | Non                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Robert Edward   1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Massachusetts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 679.0                                                                                                                                                   | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -33.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +5,784.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +32.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6,430.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36.8                                                                                                                                                                                                                                                     | 5,409.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30.7                                                                                                                                                                                                        |                                                                                                                                                                                                                         |                                                                                                                                                                                                                 |                                                                                                                                       | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| New Jersey 5, 783, 03.0 - 33.6, -20.0 - 21 +11,090.0 +22.4 +23.0 +23.0   12,098.0   71.0   12,098.0   71.0   12,098.0   71.0   12,098.0   71.0   12,098.0   71.0   12,098.0   71.0   12,098.0   71.0   12,098.0   71.0   12,098.0   71.0   12,098.0   71.0   12,098.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 884.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.0                                                                                                                                                                                                                                                      | 869.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.9                                                                                                                                                                                                         |                                                                                                                                                                                                                         |                                                                                                                                                                                                                 | -                                                                                                                                     | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| New Jursey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 109 0                                                                                                                                                 | 8 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                             |                                                                                                                                                                                                                         |                                                                                                                                                                                                                 |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Females   1, 14.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                          | 2,109.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12.0                                                                                                                                                                                                        |                                                                                                                                                                                                                         |                                                                                                                                                                                                                 |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Delaware                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pennsylvania                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5,228.0                                                                                                                                                 | 30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1,043.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +39.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4,224.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                          | 3,134.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17.8                                                                                                                                                                                                        |                                                                                                                                                                                                                         |                                                                                                                                                                                                                 |                                                                                                                                       | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| District of Columbia.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,314.0                                                                                                                                                 | 7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                          | 922.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.2                                                                                                                                                                                                         |                                                                                                                                                                                                                         | .2                                                                                                                                                                                                              |                                                                                                                                       | Neg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Columbia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +2,987.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +17.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,977.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17.0                                                                                                                                                                                                                                                     | 2,327.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13.2                                                                                                                                                                                                        | 113.0                                                                                                                                                                                                                   | .6                                                                                                                                                                                                              | 537.0                                                                                                                                 | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2,977.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Virginia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +161.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 161.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0                                                                                                                                                                                                                                                      | 134.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . 8                                                                                                                                                                                                         | 27.0                                                                                                                                                                                                                    | .2                                                                                                                                                                                                              |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 161.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Mest Viginia   68.0   3   3-3.0   Neg.   +227.0   41.3   292.0   1.6   153.0   -9   112.0   -6   17.0   1   292.0   1.6   Sorth Carrelina   -   -   +13.0   +1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5   -1.1   12.5    | Virginia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Neg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +5,843.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5,848.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33.3                                                                                                                                                                                                                                                     | 4,844.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27.4                                                                                                                                                                                                        | 185.0                                                                                                                                                                                                                   | 1.0                                                                                                                                                                                                             | 819.0                                                                                                                                 | 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| South Carolina +7.0 Neg4,527.0   25.7   4,534.0   22.7   5,718.0   21.1   767.0   4.3   54.0   3.4   534.0   25.7   6.0   6.0   71.7   71.7   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0   71.0           | West Virginia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 68.0                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Neg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 292.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.6                                                                                                                                                                                                                                                      | 163.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . 9                                                                                                                                                                                                         |                                                                                                                                                                                                                         | .6                                                                                                                                                                                                              | 17.0                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Georgia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +13.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                             |                                                                                                                                                                                                                         |                                                                                                                                                                                                                 |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12,171.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 68.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Florida                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Georgia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +1.698.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.708.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.8                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                             |                                                                                                                                                                                                                         |                                                                                                                                                                                                                 |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.708.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Kentucky                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Florida                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                         | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +6,285.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6,295.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36.5                                                                                                                                                                                                                                                     | 3,360.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19.1                                                                                                                                                                                                        | 595.0                                                                                                                                                                                                                   | 3.4                                                                                                                                                                                                             | 2,340.0                                                                                                                               | 14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6,295.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 36.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Alabama                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Kentucky                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,679.0                                                                                                                                                 | 9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -34.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.676.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.4                                                                                                                                                                                                                                                      | 1,207.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.8                                                                                                                                                                                                         | 375.0                                                                                                                                                                                                                   | 2.1                                                                                                                                                                                                             | 94.0                                                                                                                                  | .5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,676.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Mississippi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 93.0                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2,783.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15.9                                                                                                                                                                                                                                                     | 1,287.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.3                                                                                                                                                                                                         | 1,332.0                                                                                                                                                                                                                 |                                                                                                                                                                                                                 |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,783.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Control of the cont   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30.0                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                             |                                                                                                                                                                                                                         |                                                                                                                                                                                                                 | - 61.0                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 397.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Subregion   15:   Indiana.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ohio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5,225.0                                                                                                                                                 | 29.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -233.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -551.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4,441.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.4                                                                                                                                                                                                                                                     | 2,768.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15.7                                                                                                                                                                                                        |                                                                                                                                                                                                                         |                                                                                                                                                                                                                 |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Table   Tabl   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21,208.0                                                                                                                                                | 123.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1,659.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -9.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +58,999.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +336.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 78,548.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 450.2                                                                                                                                                                                                                                                    | 55,049.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 312.2                                                                                                                                                                                                       | 9,169.0                                                                                                                                                                                                                 | 51.9                                                                                                                                                                                                            | 14,330.0                                                                                                                              | 86.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 78,548.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 450.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Hilmota   12,442.0   71.0   431.0   -2.4   -5,329.0   -30.2   6,682.0   38.4   3,563.0   20.2   1,796.0   10.2   1,792.0   8.0   6,682.0   38.4   3,683.0   20.2   1,796.0   10.2   1,792.0   8.0   6,682.0   38.4   3,683.0   20.2   1,796.0   10.2   1,792.0   8.0   6,682.0   38.4   3,683.0   20.2   1,796.0   10.2   1,792.0   8.0   6,682.0   38.4   3,683.0   20.2   1,796.0   10.2   1,792.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 0/2 0                                                                                                                                                 | 41.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 172.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 460.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6 (01 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27.2                                                                                                                                                                                                                                                     | 2 705 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 01 5                                                                                                                                                                                                        | 107.0                                                                                                                                                                                                                   |                                                                                                                                                                                                                 | 0 500 0                                                                                                                               | 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6 (01 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Misconstant   2,305.0   14.8   544.0   -1.8   2,066.0   -11.8   4,785.0   27.4   2,790.0   15.8   1,274.0   7.2   731.0   4.4   4,795.0   27.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Illinoia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12.442.0                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                             |                                                                                                                                                                                                                         |                                                                                                                                                                                                                 | 1.323.0                                                                                                                               | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.682.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 38.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Subtotal Ib.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Michigan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2,568.0                                                                                                                                                 | 14.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +141.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +2,086,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +11.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4,795.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27.4                                                                                                                                                                                                                                                     | 2,790.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15.8                                                                                                                                                                                                        | 1,274.0                                                                                                                                                                                                                 | 7.2                                                                                                                                                                                                             | 731.0                                                                                                                                 | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4,795.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Subtotal 1. (3,303,0 2/0.15 2,106,0 -1.18 (38,280,0 1331.9 99,477,0 570,6 67,555.0 382,0 13,136.0 74.4 18,986,0 114.2 99,477,0 570,6 883 (11.18 Subregion III: Subregion IIII: Subregion IIII: Subregion III: Subregion IIII: Subregion III: Subregion |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 42.0                                                                                                                                                    | .2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +2,993.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +17.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3,051.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17.3                                                                                                                                                                                                                                                     | 2,168.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12.3                                                                                                                                                                                                        |                                                                                                                                                                                                                         |                                                                                                                                                                                                                 |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Region II:  Minneacta:  409.0 2.5 +23.0 +1.1 +2.366.0 +13.4 2.798.0 16.0 2.320.0 13.2 245.0 1.4 233.0 1.4 2.798.0 16.0 16.0 16.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Subtotal Ib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22,095.0                                                                                                                                                | 127.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -447.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -719.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20,929.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 120.4                                                                                                                                                                                                                                                    | 112.306.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 69.8                                                                                                                                                                                                        | 3,967.0                                                                                                                                                                                                                 | 22.5                                                                                                                                                                                                            | 4.656.0                                                                                                                               | 28.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Subregion IIa:  Minneadta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | //2 202 O                                                                                                                                               | 250 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -2 106 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 150 200 O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T331 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00 427 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 670 6                                                                                                                                                                                                                                                    | 67 266 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 202 0                                                                                                                                                                                                       | 12 126 0                                                                                                                                                                                                                | 7/4 /4                                                                                                                                                                                                          | 10 004 0                                                                                                                              | 11/4 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 99 477 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 570 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Town                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Subtotal I<br>Region II:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 43,303.0                                                                                                                                                | 250.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -2,106.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -11.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +58,280.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +331.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 99,477.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 570.6                                                                                                                                                                                                                                                    | 67,355.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 382.0                                                                                                                                                                                                       | 13,136.0                                                                                                                                                                                                                | 74.4                                                                                                                                                                                                            | 18,986.0                                                                                                                              | 114.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 99,477.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 570.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Missouri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Region II:<br>Subregion IIa:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 43,303.0                                                                                                                                                | 250.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                             |                                                                                                                                                                                                                         |                                                                                                                                                                                                                 | 18,986.0                                                                                                                              | 114.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 99,477.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 570.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| South Bakota.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Region II:<br>Subregion IIa:<br>Minneaota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 43,303.0                                                                                                                                                | 250.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +23.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +2,366.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +13.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,798.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16.0                                                                                                                                                                                                                                                     | 2,320.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13.2                                                                                                                                                                                                        | 245.0                                                                                                                                                                                                                   | 1.4                                                                                                                                                                                                             | 18,986.0                                                                                                                              | 114.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,798.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Mebreaka   S.   O.   Neg.   4-9.0   4-1   660.0   4-3.8   667.0   3.5   647.0   2.7   197.0   1.1   21.0   1   697.0   3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Region II:<br>Subregion IIa:<br>Minnesota<br>Iowa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 43,303.0                                                                                                                                                | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +23.0<br>+17.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +.1<br>+.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +2,366.0<br>+2,565.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +13.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,798.0<br>2,582.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16.0<br>14.7                                                                                                                                                                                                                                             | 2,320.0<br>2,390.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13.2                                                                                                                                                                                                        | 245.0<br>192.0                                                                                                                                                                                                          | 1.4                                                                                                                                                                                                             | 233.0                                                                                                                                 | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2,798.0<br>2,582.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16.0<br>14.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Subtotal IIa. 3,300.0 [97] 1, 19,0 -1, 17,598.0 46.10 10,907.0 62.2 8,750.0 49.7 1,031.0 5.8 1,126.0 6.7 10,907.0 62.2 Subregion IIb: Arksanas 1,955.0 11.1 -141.0 -8 -1,250.0 -7.1 564.0 10,907.0 62.2 209.0 1.2 355.0 2.0 564.0 3.2 Courisina 22,265.0 126.4 -6818.0 -5.9 -20,089.0 -113.9 1,455.0 8.6 23.5 0 1.3 690.0 3.9 570.0 3.4 1,455.0 8.6 Qklabosa 1,325.0 7.5 85.0 Nog824.0 -4.7 506.0 2.8 199.0 1.1 231.0 1.3 760.0 1.4 506.0 2.8 199.0 1.1 231.0 1.3 760.0 1.4 506.0 2.8 199.0 1.1 231.0 1.3 760.0 1.4 506.0 2.8 199.0 1.1 231.0 1.3 760.0 1.4 506.0 2.8 199.0 1.1 231.0 1.3 760.0 1.4 506.0 2.8 199.0 1.1 231.0 1.3 760.0 1.4 506.0 2.8 199.0 1.1 231.0 1.3 760.0 1.4 506.0 2.8 199.0 1.1 231.0 1.3 760.0 1.4 506.0 2.8 199.0 1.1 231.0 1.3 760.0 1.4 506.0 2.8 199.0 1.1 231.0 1.3 760.0 1.4 506.0 2.8 199.0 1.1 231.0 1.3 760.0 1.4 506.0 2.8 199.0 1.1 231.0 1.3 760.0 1.4 506.0 2.8 199.0 1.1 231.0 1.3 760.0 1.4 506.0 2.8 199.0 1.1 231.0 1.3 760.0 1.4 506.0 2.8 199.0 1.1 231.0 1.3 760.0 1.4 506.0 2.8 199.0 1.1 231.0 1.3 760.0 1.4 506.0 2.8 199.0 1.1 231.0 1.3 760.0 1.4 506.0 2.8 199.0 1.1 231.0 1.3 760.0 1.4 506.0 2.8 199.0 1.1 231.0 1.3 760.0 1.4 506.0 2.8 199.0 1.1 231.0 1.3 760.0 1.4 506.0 2.8 199.0 1.1 231.0 1.3 760.0 1.4 506.0 2.8 199.0 1.1 231.0 1.3 760.0 1.4 506.0 2.8 199.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1 231.0 1.1                  | Region II: Subregion IIa: Minneaota Iowa Misaouri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 409.0                                                                                                                                                   | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +23.0<br>+17.0<br>+9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +.1<br>+.1<br>+.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +2,366.0<br>+2,565.0<br>+1,570.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +13.4<br>+14.6<br>+8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2,798.0<br>2,582.0<br>2,955.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16.0<br>14.7<br>17.0                                                                                                                                                                                                                                     | 2,320.0<br>2,390.0<br>1,802.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13.2<br>13.6<br>10.2                                                                                                                                                                                        | 245.0<br>192.0<br>281.0                                                                                                                                                                                                 | 1.4<br>1.1<br>1.6                                                                                                                                                                                               | 233.0                                                                                                                                 | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2,798.0<br>2,582.0<br>2,955.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16.0<br>14.7<br>17.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Subreça III:  Arkanasa   1,955.0   11.1   -141.0   -1.8   -1,250.0   -7.1   564.0   3.2   209.0   1.2   355.0   2.0     564.0   3.2   Louisiana   22,265.0   126.4   -681.0   -1.9   20,089.0   -13.9   1,495.0   8.6   235.0   1.3   690.0   3.9   570.0   3.4   1,495.0   8.6   Cklahona   1,325.0   -7.5   4.5   5.0   8g.   -284.0   -4.7   506.0   2.8   199.0   1.1   231.0   1.3   76.0   -4.   606.0   2.6   Texasa   47,847.0   272.0   -605.0   -3.4   41,933.0   -247.8   5,399.0   30.8   743.0   4.2   2,642.0   15.0   1,924.0   11.6   5,309.0   30.8   Rew Mexico   120.0   7, 240.0   -1.1   4411.0   2.3   551.0   31.2   235.0   1.3   249.0   1.4   67.0   -1.5   530.0   30.8   Rew Mexico   120.0   7, 240.0   -1.1   4411.0   2.3   551.0   31.2   235.0   1.3   249.0   1.4   67.0   -1.5   530.0   30.8   Rew Mexico   120.0   7, 240.0   -1.1   4411.0   2.3   551.0   31.2   235.0   1.3   249.0   1.4   67.0   -1.5   530.0   30.8   Rew Mexico   120.0   7, 240.0   -1.1   4411.0   2.3   551.0   31.2   235.0   1.3   249.0   1.4   67.0   2.5   230.0   30.8   Rew Mexico   120.0   7, 240.0   -1.1   4411.0   2.3   2.3   Rashertal III   15, 958.0   631.5   1,405.0   560.0   57.5   2.0   371.1   9122.0   92.4   2,010.0   11.3   4,67.0   23.9   2,640.0   15.8   9,123.0   32.4   Region III:  Montana   431.0   2.5   +23.0   -1.1   +33.0   +9   446.0   2.8   465.0   2.6   11.0   1.   2.0   0.1   4.96.0   2.8   Reyoning   360.0   1.9   -25.0   -1.1   -237.0   -1.3   38.0   5.5   43.0   2.2   48.0   3.7   0.   -3.0   0.1   4.0   0.   Reyoning   360.0   1.9   -25.0   -1.1   -237.0   -1.3   38.0   5.5   43.0   2.2   48.0   3.7   0.   -3.0   0.   0.   Reyoning   860.0   1.9   -2.5   -1.1   -2.7   0.0   4.0   97.0   8.0   0.0   11.0   0.0   0.0   0.0   0.0   0.0   Reyoning   860.0   1.9   -2.5   -1.1   -2.7   0.0   4.0   97.0   8.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0                                                                | Region II: Subregion IIa: Minneacta Iowa Misacuri North Dakota South Dakota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 409.0<br>-<br>1,376.0<br>1,507.0                                                                                                                        | 2.5<br>-<br>8.0<br>8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +23.0<br>+17.0<br>+9.0<br>-46.0<br>-3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +.1<br>+.1<br>+.1<br>3<br>Neg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +2,366.0<br>+2,565.0<br>+1,570.0<br>-559.0<br>+976.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +13.4<br>+14.6<br>+8.9<br>-3.2<br>+5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2,798.0<br>2,582.0<br>2,955.0<br>902.0<br>973.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16.0<br>14.7<br>17.0<br>5.1<br>5.5                                                                                                                                                                                                                       | 2,320.0<br>2,390.0<br>1,802.0<br>858.0<br>901.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13.2<br>13.6<br>10.2<br>4.9<br>5.1                                                                                                                                                                          | 245.0<br>192.0<br>281.0<br>44.0<br>72.0                                                                                                                                                                                 | 1.4<br>1.1<br>1.6<br>.2                                                                                                                                                                                         | 233.0<br>-<br>872.0                                                                                                                   | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2,798.0<br>2,582.0<br>2,955.0<br>902.0<br>973.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16.0<br>14.7<br>17.0<br>5.1<br>5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Arkansas 1,955.0   1.1   -141.0   -8   -1,250.0   -7.1   564.0   3.2   209.0   1.2   355.0   2.0   -   564.0   3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Region II: Subregion IIa: Minneaota Iowa Misaouri. North Dakota South Dakota Nebraska                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 409.0<br>-<br>1,376.0<br>1,507.0                                                                                                                        | 2.5<br>-<br>8.0<br>8.6<br>-<br>Neg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +23.0<br>+17.0<br>+9.0<br>-46.0<br>-3.0<br>+9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +.1<br>+.1<br>+.1<br>3<br>Neg.<br>+.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +2,366.0<br>+2,565.0<br>+1,570.0<br>-559.0<br>+976.0<br>+680.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +13.4<br>+14.6<br>+8.9<br>-3.2<br>+5.5<br>+3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,798.0<br>2,582.0<br>2,955.0<br>902.0<br>973.0<br>697.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16.0<br>14.7<br>17.0<br>5.1<br>5.5<br>3.9                                                                                                                                                                                                                | 2,320.0<br>2,390.0<br>1,802.0<br>858.0<br>901.0<br>479.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13.2<br>13.6<br>10.2<br>4.9<br>5.1<br>2.7                                                                                                                                                                   | 245.0<br>192.0<br>281.0<br>44.0<br>72.0<br>197.0                                                                                                                                                                        | 1.4<br>1.1<br>1.6<br>.2<br>.4                                                                                                                                                                                   | 233.0<br>-<br>872.0<br>-<br>21.0                                                                                                      | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2,798.0<br>2,582.0<br>2,955.0<br>902.0<br>973.0<br>697.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16.0<br>14.7<br>17.0<br>5.1<br>5.5<br>3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Challedona   1,325.0   7.5   45.0   Neg   -824.0   -4.7   506.0   2.8   199.0   1.1   231.0   1.3   76.0   .4   506.0   2.8   199.0   1.2   231.0   1.3   76.0   .4   506.0   2.8   199.0   1.2   231.0   1.3   76.0   .4   506.0   2.8   199.0   1.3   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.0   1.4   231.   | Region II: Subregion IIa: Minneacta Lowa. Missouri North Dakota South Dakota Nebraska Subtotal IIa.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 409.0<br>-<br>1,376.0<br>1,507.0                                                                                                                        | 2.5<br>-<br>8.0<br>8.6<br>-<br>Neg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +23.0<br>+17.0<br>+9.0<br>-46.0<br>-3.0<br>+9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +.1<br>+.1<br>+.1<br>3<br>Neg.<br>+.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +2,366.0<br>+2,565.0<br>+1,570.0<br>-559.0<br>+976.0<br>+680.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +13.4<br>+14.6<br>+8.9<br>-3.2<br>+5.5<br>+3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,798.0<br>2,582.0<br>2,955.0<br>902.0<br>973.0<br>697.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16.0<br>14.7<br>17.0<br>5.1<br>5.5<br>3.9                                                                                                                                                                                                                | 2,320.0<br>2,390.0<br>1,802.0<br>858.0<br>901.0<br>479.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13.2<br>13.6<br>10.2<br>4.9<br>5.1<br>2.7                                                                                                                                                                   | 245.0<br>192.0<br>281.0<br>44.0<br>72.0<br>197.0                                                                                                                                                                        | 1.4<br>1.1<br>1.6<br>.2<br>.4                                                                                                                                                                                   | 233.0<br>-<br>872.0<br>-<br>21.0                                                                                                      | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2,798.0<br>2,582.0<br>2,955.0<br>902.0<br>973.0<br>697.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16.0<br>14.7<br>17.0<br>5.1<br>5.5<br>3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Texas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Region II: Subregion IIa: Minneaota Iowa. Missouri. North Dakota South Dakota Subrota! IIa Subregion IIb: Arkansas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 409.0<br>1,376.0<br>1,507.0<br>8.0<br>3,300.0                                                                                                           | 2.5<br>8.0<br>8.6<br>Neg.<br>19.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +23.0<br>+17.0<br>+9.0<br>-46.0<br>-3.0<br>+9.0<br>+9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +.1<br>+.1<br>+.1<br>3<br>Neg.<br>+.1<br>+.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +2,366.0<br>+2,565.0<br>+1,570.0<br>-559.0<br>+976.0<br>+680.0<br>+7,598.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +13.4<br>+14.6<br>+8.9<br>-3.2<br>+5.5<br>+3.8<br>+43.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2,798.0<br>2,582.0<br>2,955.0<br>902.0<br>973.0<br>697.0<br>10,907.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.0<br>14.7<br>17.0<br>5.1<br>5.5<br>3.9<br>62.2                                                                                                                                                                                                        | 2,320.0<br>2,390.0<br>1,802.0<br>858.0<br>901.0<br>479.0<br>8,750.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13.2<br>13.6<br>10.2<br>4.9<br>5.1<br>2.7<br>49.7                                                                                                                                                           | 245.0<br>192.0<br>281.0<br>44.0<br>72.0<br>197.0                                                                                                                                                                        | 1.4<br>1.1<br>1.6<br>.2<br>.4<br>1.1<br>5.8                                                                                                                                                                     | 233.0<br>872.0<br>-<br>21.0                                                                                                           | 1.4<br>1.4<br>5.2<br>-<br>.1<br>6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2,798.0<br>2,582.0<br>2,955.0<br>902.0<br>973.0<br>697.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16.0<br>14.7<br>17.0<br>5.1<br>5.5<br>3.9<br>62.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| New Mexico   120.0   7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Region II: Subregion IIa: Minneacta. Lowa. Missouri. North Dakota. South Dakota. Nebraska. Subtotal IIa. Subregion IIb: Arkansas. Louisiana.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 409.0<br>1,376.0<br>1,507.0<br>-8.0<br>3,300.0<br>1,955.0<br>22,265.0                                                                                   | 2.5<br>8.0<br>8.6<br><br>Neg.<br>19.1<br>11.1<br>126.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +23.0<br>+17.0<br>+9.0<br>-46.0<br>-3.0<br>+9.0<br>+9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +.1<br>+.1<br>+.1<br>3<br>Neg.<br>+.1<br>+.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +2,366.0<br>+2,565.0<br>+1,570.0<br>-559.0<br>+976.0<br>+680.0<br>+7,598.0<br>-1,250.0<br>-20,089.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +13.4<br>+14.6<br>+8.9<br>-3.2<br>+5.5<br>+3.8<br>+43.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2,798.0<br>2,582.0<br>2,955.0<br>902.0<br>973.0<br>697.0<br>10,907.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.0<br>14.7<br>17.0<br>5.1<br>5.5<br>3.9<br>62.2                                                                                                                                                                                                        | 2,320.0<br>2,390.0<br>1,802.0<br>858.0<br>901.0<br>479.0<br>8,750.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13.2<br>13.6<br>10.2<br>4.9<br>5.1<br>2.7<br>49.7                                                                                                                                                           | 245.0<br>192.0<br>281.0<br>44.0<br>72.0<br>197.0<br>1,031.0                                                                                                                                                             | 1.4<br>1.1<br>1.6<br>.2<br>.4<br>1.1<br>5.8                                                                                                                                                                     | 233.0<br>872.0<br>-<br>21.0<br>1,126.0                                                                                                | 1.4<br>1.4<br>5.2<br>-<br>.1<br>6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2,798.0<br>2,582.0<br>2,955.0<br>902.0<br>973.0<br>697.0<br>10,907.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16.0<br>14.7<br>17.0<br>5.1<br>5.5<br>3.9<br>62.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Ragion III   Subregion III   Subregion III   Subregion   Substitution   Substit   | Region II: Subregion IIa: Minneacta. Iowa. Misaouri. North Dakota. South Dakota. Subraska. Subraska. Subrotal IIa. Subregion IIb: Arkansas. Louisiana. Ckiahoma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 409.0<br>1,376.0<br>1,507.0<br>8.0<br>3,300.0<br>1,955.0<br>22,265.0<br>1,325.0                                                                         | 2.5<br>-<br>8.0<br>8.6<br>-<br>Neg.<br>19.1<br>11.1<br>126.4<br>7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +23.0<br>+17.0<br>+9.0<br>-46.0<br>-3.0<br>+9.0<br>+9.0<br>-141.0<br>-681.0<br>+5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +.1<br>+.1<br>+.1<br>3<br>Neg.<br>+.1<br>+.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +2,366.0<br>+2,565.0<br>+1,570.0<br>-559.0<br>+976.0<br>+680.0<br>+7,598.0<br>-1,250.0<br>-20,089.0<br>-824.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +13.4<br>+14.6<br>+8.9<br>-3.2<br>+5.5<br>+3.8<br>+43.0<br>-7.1<br>-113.9<br>-4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2,798.0<br>2,582.0<br>2,955.0<br>902.0<br>973.0<br>697.0<br>10,907.0<br>564.0<br>1,495.0<br>506.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16.0<br>14.7<br>17.0<br>5.1<br>5.5<br>3.9<br>62.2<br>3.2<br>8.6<br>2.8                                                                                                                                                                                   | 2,320.0<br>2,390.0<br>1,802.0<br>858.0<br>901.0<br>479.0<br>8,750.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13.2<br>13.6<br>10.2<br>4.9<br>5.1<br>2.7<br>49.7                                                                                                                                                           | 245.0<br>192.0<br>281.0<br>44.0<br>72.0<br>197.0<br>1,031.0<br>355.0<br>690.0<br>231.0                                                                                                                                  | 1.4<br>1.1<br>1.6<br>.2<br>.4<br>1.1<br>5.8<br>2.0<br>3.9<br>1.3                                                                                                                                                | 233.0<br>-<br>872.0<br>-<br>21.0<br>1,126.0                                                                                           | 1.4.2<br>1.4<br>5.2<br>-<br>-<br>1.1<br>6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2,798.0<br>2,582.0<br>2,955.0<br>902.0<br>973.0<br>697.0<br>10,907.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16.0<br>14.7<br>17.0<br>5.1<br>5.5<br>3.9<br>62.2<br>3.2<br>8.6<br>2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Subtotal III.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Region II: Subregion IIa: Minneacta Iowa. Misaouri. North Dakota South Dakota South Dakota. Subrotal IIa. Subregion IIb: Arkansas. Louisiana. Oklahoma. Texas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 409.0<br>1,376.0<br>1,507.0<br>-<br>8.0<br>3,300.0<br>1,955.0<br>22,265.0<br>1,325.0<br>47,847.0                                                        | 2.5<br>-<br>8.0<br>8.6<br>-<br>Neg.<br>19.1<br>11.1<br>126.4<br>7.5<br>272.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +23.0<br>+17.0<br>+9.0<br>-46.0<br>-3.0<br>+9.0<br>+9.0<br>-141.0<br>-681.0<br>-605.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +.1<br>+.1<br>+.1<br>3<br>Neg.<br>+.1<br>+.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +2,366.0<br>+2,565.0<br>+1,570.0<br>-559.0<br>+976.0<br>(680.0<br>+7,598.0<br>-1,250.0<br>-20,089.0<br>-824.0<br>-41,933.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +13.4<br>+14.6<br>+8.9<br>-3.2<br>+5.5<br>+3.8<br>+43.0<br>-7.1<br>-113.9<br>-4.7<br>-237.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,798.0<br>2,582.0<br>2,955.0<br>902.0<br>973.0<br>697.0<br>10,907.0<br>564.0<br>1,495.0<br>5,309.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16.0<br>14.7<br>17.0<br>5.1<br>5.5<br>3.9<br>62.2<br>3.2<br>8.6<br>2.8<br>30.8                                                                                                                                                                           | 2,320.0<br>2,390.0<br>1,802.0<br>858.0<br>901.0<br>479.0<br>8,750.0<br>209.0<br>235.0<br>199.0<br>743.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13.2<br>13.6<br>10.2<br>4.9<br>5.1<br>2.7<br>49.7                                                                                                                                                           | 245.0<br>192.0<br>281.0<br>44.0<br>72.0<br>1,031.0<br>355.0<br>690.0<br>231.0<br>2,642.0                                                                                                                                | 1.4<br>1.1<br>1.6<br>.2<br>.4<br>1.1<br>5.8<br>2.0<br>3.9<br>1.3<br>15.0                                                                                                                                        | 233.0<br>-<br>872.0<br>-<br>21.0<br>1,126.0<br>-<br>570.0<br>76.0<br>1,924.0                                                          | 1.4.2<br>1.4<br>5.2<br>-<br>-<br>1.1<br>6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2,798.0<br>2,582.0<br>2,582.0<br>902.0<br>973.0<br>697.0<br>10,907.0<br>564.0<br>1,495.0<br>506.0<br>5,309.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16.0<br>14.7<br>17.0<br>5.1<br>5.5<br>3.9<br>62.2<br>3.2<br>8.6<br>2.8<br>30.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Region III:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Region II: Minneaota. Lowa. Missouri. North Dekota. South Dekota. Subtotal IIa. Subregion IIb: Arkansas. Louisiana. Oklahoma. Texas. New Mexico. Kansas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 409.0<br>1,376.0<br>1,507.0<br>                                                                                                                         | 2.5<br>8.0<br>8.6<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +23.0<br>+17.0<br>+9.0<br>-46.0<br>-3.0<br>+9.0<br>+9.0<br>-141.0<br>-681.0<br>+5.0<br>-605.0<br>+20.0<br>-3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +.1<br>+.1<br>+.1<br>3<br>Neg.<br>+.1<br>+.1<br>8<br>-3.9<br>Neg.<br>-3.4<br>+.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +2,366.0<br>+2,565.0<br>+1,570.0<br>-559.0<br>+976.0<br>+680.0<br>+7,598.0<br>-1,250.0<br>-20,089.0<br>-824.0<br>-41,933.0<br>+411.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +13.4<br>+14.6<br>+8.9<br>-3.2<br>+5.5<br>+3.8<br>+43.0<br>-7.1<br>-113.9<br>-4.7<br>-237.8<br>+2.33<br>-9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,798.0<br>2,582.0<br>2,955.0<br>902.0<br>973.0<br>697.0<br>10,907.0<br>564.0<br>1,495.0<br>506.0<br>5,309.0<br>551.0<br>698.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16.0<br>14.7<br>17.0<br>5.1<br>5.5<br>3.9<br>62.2<br>8.6<br>2.8<br>30.8<br>3.1<br>3.9                                                                                                                                                                    | 2,320.0<br>2,390.0<br>1,802.0<br>858.0<br>901.0<br>479.0<br>8,750.0<br>209.0<br>235.0<br>199.0<br>743.0<br>235.0<br>395.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13.2<br>13.6<br>10.2<br>4.9<br>5.1<br>2.7<br>49.7<br>1.2<br>1.3<br>1.1<br>4.2<br>1.3<br>2.2                                                                                                                 | 245.0<br>192.0<br>281.0<br>44.0<br>72.0<br>197.0<br>1,031.0<br>355.0<br>690.0<br>231.0<br>2,642.0<br>249.0<br>300.0                                                                                                     | 1.4<br>1.1<br>1.6<br>.2<br>.4<br>1.1<br>5.8<br>2.0<br>3.9<br>1.3<br>15.00<br>1.4                                                                                                                                | 233.0<br>-<br>872.0<br>-<br>-<br>21.0<br>1,126.0<br>-<br>570.0<br>76.0<br>1,924.0<br>67.0<br>3.0                                      | 1.4<br>1.4<br>5.2<br>-<br>.1<br>6.7<br>-<br>3.4<br>11.6<br>.4<br>Neg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,798.0<br>2,582.0<br>2,955.0<br>902.0<br>973.0<br>697.0<br>10,907.0<br>564.0<br>1,495.0<br>506.0<br>5,309.0<br>698.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16.0<br>14.7<br>17.0<br>5.1<br>5.5<br>3.9<br>62.2<br>8.6<br>2.8<br>30.8<br>3.1<br>3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Subregion IIIa:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Region II: Subregion IIa: Minneaota. Lova. Missouri. North Dekota. South Dekota. South Dekota. Subboata IIa. Subboata IIa. Subcotal IIa. Arkansan Texas. New Mexico. Kansas. Subcotal IIb.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 409.0<br>1,376.0<br>1,507.0<br>-<br>8.0<br>3,300.0<br>1,955.0<br>22,265.0<br>1,325.0<br>47,847.0<br>120.0<br>2,446.0<br>75,958.0                        | 2.50.5<br>2.5<br>8.0<br>8.6<br><br>Neg.<br>19.1<br>11.1<br>126.4<br>7.5<br>272.0<br>.7<br>13.8<br>431.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +23.0<br>+17.0<br>+9.0<br>-46.0<br>-3.0<br>+9.0<br>+9.0<br>-141.0<br>-681.0<br>-605.0<br>+20.0<br>-3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +.1<br>+.1<br>+.1<br>3<br>Neg.<br>+.1<br>+.1<br>8<br>-3.9<br>Neg.<br>-3.4<br>+.1<br>Neg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +2,366.0<br>+2,565.0<br>+1,570.0<br>-559.0<br>+976.0<br>+680.0<br>+7,598.0<br>-1,250.0<br>-20,089.0<br>-824.0<br>-41,933.0<br>+411.0<br>-1,745.0<br>-65,430.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +13.4<br>+14.6<br>+8.9<br>-3.2<br>+5.5<br>+3.8<br>+43.0<br>-7.1<br>-113.9<br>-4.7<br>-237.8<br>+2.3<br>-9.9<br>-371.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,798.0<br>2,582.0<br>2,955.0<br>902.0<br>973.0<br>697.0<br>10,907.0<br>564.0<br>1,495.0<br>506.0<br>5,309.0<br>551.0<br>698.0<br>9,123.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16.0<br>14.7<br>17.0<br>5.1<br>5.5<br>3.9<br>62.2<br>8.6<br>2.8<br>30.8<br>3.1<br>3.9                                                                                                                                                                    | 2,320.0<br>2,390.0<br>1,802.0<br>858.0<br>901.0<br>479.0<br>8,750.0<br>209.0<br>235.0<br>199.0<br>743.0<br>235.0<br>395.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13.2<br>13.6<br>10.2<br>4.9<br>5.1<br>2.7<br>49.7<br>1.2<br>1.3<br>1.1<br>4.2<br>1.3<br>2.2<br>2.11.3                                                                                                       | 245.0<br>192.0<br>281.0<br>72.0<br>197.0<br>1,031.0<br>355.0<br>690.0<br>231.0<br>2,642.0<br>249.0<br>300.0<br>4,467.0                                                                                                  | 1.4<br>1.1<br>1.6<br>.2<br>.4<br>1.1<br>5.8<br>2.0<br>3.9<br>1.3<br>15.0<br>1.4<br>1.7                                                                                                                          | 233.0<br>-<br>872.0<br>-<br>-<br>21.0<br>1,126.0<br>-<br>570.0<br>76.0<br>1,924.0<br>67.0<br>3.0<br>0<br>2,640.0                      | 1.4.2<br>1.4<br>5.2<br>-<br>.1<br>6.7<br>-<br>3.4<br>11.6<br>.4<br>11.6<br>.4<br>Neg.<br>15.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2,798.0<br>2,582.0<br>2,955.0<br>902.0<br>973.0<br>697.0<br>10,907.0<br>564.0<br>1,495.0<br>506.0<br>5,309.0<br>9,123.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16.0<br>14.7<br>17.0<br>5.1<br>5.5<br>3.9<br>62.2<br>8.6<br>2.8<br>30.8<br>3.1<br>3.9<br>52.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Montana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Region II: Subregion IIa: Hinneasta Hom. North Dekota. South Dakota. Nebraska. Subtotal IIa. Subregion IIb: Arkansa. Louisiana. Okiahoma. Tomas. Subtotal IIA. Subtotal IIA. Subtotal IIA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 409.0<br>1,376.0<br>1,507.0<br>-<br>8.0<br>3,300.0<br>1,955.0<br>22,265.0<br>1,325.0<br>47,847.0<br>120.0<br>2,446.0<br>75,958.0                        | 2.50.5<br>2.5<br>8.0<br>8.6<br><br>Neg.<br>19.1<br>11.1<br>126.4<br>7.5<br>272.0<br>.7<br>13.8<br>431.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +23.0<br>+17.0<br>+9.0<br>-46.0<br>-3.0<br>+9.0<br>+9.0<br>-141.0<br>-681.0<br>-605.0<br>+20.0<br>-3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +.1<br>+.1<br>+.1<br>3<br>Neg.<br>+.1<br>+.1<br>8<br>-3.9<br>Neg.<br>-3.4<br>+.1<br>Neg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +2,366.0<br>+2,565.0<br>+1,570.0<br>-559.0<br>+976.0<br>+680.0<br>+7,598.0<br>-1,250.0<br>-20,089.0<br>-824.0<br>-41,933.0<br>+411.0<br>-1,745.0<br>-65,430.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +13.4<br>+14.6<br>+8.9<br>-3.2<br>+5.5<br>+3.8<br>+43.0<br>-7.1<br>-113.9<br>-4.7<br>-237.8<br>+2.3<br>-9.9<br>-371.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,798.0<br>2,582.0<br>2,955.0<br>902.0<br>973.0<br>697.0<br>10,907.0<br>564.0<br>1,495.0<br>506.0<br>5,309.0<br>551.0<br>698.0<br>9,123.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16.0<br>14.7<br>17.0<br>5.1<br>5.5<br>3.9<br>62.2<br>8.6<br>2.8<br>30.8<br>3.1<br>3.9                                                                                                                                                                    | 2,320.0<br>2,390.0<br>1,802.0<br>858.0<br>901.0<br>479.0<br>8,750.0<br>209.0<br>235.0<br>199.0<br>743.0<br>235.0<br>395.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13.2<br>13.6<br>10.2<br>4.9<br>5.1<br>2.7<br>49.7<br>1.2<br>1.3<br>1.1<br>4.2<br>1.3<br>2.2<br>2.11.3                                                                                                       | 245.0<br>192.0<br>281.0<br>72.0<br>197.0<br>1,031.0<br>355.0<br>690.0<br>231.0<br>2,642.0<br>249.0<br>300.0<br>4,467.0                                                                                                  | 1.4<br>1.1<br>1.6<br>.2<br>.4<br>1.1<br>5.8<br>2.0<br>3.9<br>1.3<br>15.0<br>1.4<br>1.7                                                                                                                          | 233.0<br>-<br>872.0<br>-<br>-<br>21.0<br>1,126.0<br>-<br>570.0<br>76.0<br>1,924.0<br>67.0<br>3.0<br>0<br>2,640.0                      | 1.4.2<br>1.4<br>5.2<br>-<br>.1<br>6.7<br>-<br>3.4<br>11.6<br>.4<br>11.6<br>.4<br>Neg.<br>15.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2,798.0<br>2,582.0<br>2,955.0<br>902.0<br>973.0<br>697.0<br>10,907.0<br>564.0<br>1,495.0<br>506.0<br>5,309.0<br>9,123.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16.0<br>14.7<br>17.0<br>5.1<br>5.5<br>3.9<br>62.2<br>8.6<br>2.8<br>30.8<br>3.1<br>3.9<br>52.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Idaho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Region II: Subregion IIa: Minneaota Missouri North Dekota South Dekota Subtragi III: Subregion IIb: Koutsiana Cklahoma Texas New Mextco Kansas Subtotal III. Region III.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 409.0<br>1,376.0<br>1,507.0<br>-<br>8.0<br>3,300.0<br>1,955.0<br>22,265.0<br>1,325.0<br>47,847.0<br>120.0<br>2,446.0<br>75,958.0                        | 2.50.5<br>2.5<br>8.0<br>8.6<br><br>Neg.<br>19.1<br>11.1<br>126.4<br>7.5<br>272.0<br>.7<br>13.8<br>431.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +23.0<br>+17.0<br>+9.0<br>-46.0<br>-3.0<br>+9.0<br>+9.0<br>-141.0<br>-681.0<br>-605.0<br>+20.0<br>-3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +.1<br>+.1<br>+.1<br>3<br>Neg.<br>+.1<br>+.1<br>8<br>-3.9<br>Neg.<br>-3.4<br>+.1<br>Neg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +2,366.0<br>+2,565.0<br>+1,570.0<br>-559.0<br>+976.0<br>+680.0<br>+7,598.0<br>-1,250.0<br>-20,089.0<br>-824.0<br>-41,933.0<br>+411.0<br>-1,745.0<br>-65,430.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +13.4<br>+14.6<br>+8.9<br>-3.2<br>+5.5<br>+3.8<br>+43.0<br>-7.1<br>-113.9<br>-4.7<br>-237.8<br>+2.3<br>-9.9<br>-371.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,798.0<br>2,582.0<br>2,955.0<br>902.0<br>973.0<br>697.0<br>10,907.0<br>564.0<br>1,495.0<br>506.0<br>5,309.0<br>551.0<br>698.0<br>9,123.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16.0<br>14.7<br>17.0<br>5.1<br>5.5<br>3.9<br>62.2<br>8.6<br>2.8<br>30.8<br>3.1<br>3.9                                                                                                                                                                    | 2,320.0<br>2,390.0<br>1,802.0<br>858.0<br>901.0<br>479.0<br>8,750.0<br>209.0<br>235.0<br>199.0<br>743.0<br>235.0<br>395.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13.2<br>13.6<br>10.2<br>4.9<br>5.1<br>2.7<br>49.7<br>1.2<br>1.3<br>1.1<br>4.2<br>1.3<br>2.2<br>2.11.3                                                                                                       | 245.0<br>192.0<br>281.0<br>72.0<br>197.0<br>1,031.0<br>355.0<br>690.0<br>231.0<br>2,642.0<br>249.0<br>300.0<br>4,467.0                                                                                                  | 1.4<br>1.1<br>1.6<br>.2<br>.4<br>1.1<br>5.8<br>2.0<br>3.9<br>1.3<br>15.0<br>1.4<br>1.7                                                                                                                          | 233.0<br>-<br>872.0<br>-<br>-<br>21.0<br>1,126.0<br>-<br>570.0<br>76.0<br>1,924.0<br>67.0<br>3.0<br>0<br>2,640.0                      | 1.4.2<br>1.4<br>5.2<br>-<br>.1<br>6.7<br>-<br>3.4<br>11.6<br>.4<br>11.6<br>.4<br>Neg.<br>15.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2,798.0<br>2,582.0<br>2,955.0<br>902.0<br>973.0<br>697.0<br>10,907.0<br>564.0<br>1,495.0<br>506.0<br>5,309.0<br>9,123.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16.0<br>14.7<br>17.0<br>5.1<br>5.5<br>3.9<br>62.2<br>8.6<br>2.8<br>30.8<br>3.1<br>3.9<br>52.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Utah                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Region II: Minneaota Minneaota Misaouri North Dekora. South Dakota. Mebraska. Subtotal IIa. Subregion IIbi Acutstiana. Oklahoma. Texas. New Mexico. Kanasa. New Mexico. III. Subregion III. Subregion III. Subregion III.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 409.0<br>-1,376.0<br>1,376.0<br>1,507.0<br>-8.0<br>3,300.0<br>1,955.0<br>22,265.0<br>1,325.0<br>47,847.0<br>120.0<br>2,446.0<br>79,258.0                | 2.50.5<br>8.0<br>8.6<br>-<br>Neg.<br>19.1<br>11.1<br>126.4<br>7.5<br>272.0<br>.7<br>13.8<br>431.5<br>450.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +23.0<br>+17.0<br>+9.0<br>-46.0<br>-3.0<br>+9.0<br>-141.0<br>-681.0<br>+5.0<br>-605.0<br>+20.0<br>-3.0<br>-1,405.0<br>-1,396.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +.1<br>+.1<br>+.1<br>3<br>Neg.<br>+.1<br>+.1<br>8<br>-3.9<br>Neg.<br>-3.4<br>+.1<br>Neg.<br>-3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +2,366.0<br>+2,365.0<br>+1,570.0<br>-559.0<br>+76.0<br>+680.0<br>+7,598.0<br>-1,250.0<br>-20,089.0<br>-22,089.0<br>-41,933.0<br>+411.0<br>-57,832.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +13.4<br>+14.6<br>+8.9<br>-3.2<br>+5.5<br>+3.8<br>+43.0<br>-7.1<br>-113.9<br>-4.7<br>-237.8<br>+2.3<br>-9.9<br>-371.1<br>-328.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2,798.0<br>2,582.0<br>2,955.0<br>902.0<br>973.0<br>697.0<br>10,907.0<br>564.0<br>5,309.0<br>5,309.0<br>9,123.0<br>20,030.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16.0<br>14.7<br>17.0<br>5.1<br>5.5<br>3.9<br>62.2<br>3.2<br>8.6<br>2.8<br>30.8<br>3.1<br>3.9<br>52.4<br>114.6                                                                                                                                            | 2,320.0<br>2,390.0<br>1,802.0<br>858.0<br>901.0<br>479.0<br>209.0<br>235.0<br>199.0<br>743.0<br>235.0<br>395.0<br>2,016.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13.2<br>13.6<br>10.2<br>4.9<br>5.1<br>2.7<br>49.7<br>1.2<br>1.3<br>1.1<br>4.2<br>1.3<br>2.2<br>11.3<br>61.0                                                                                                 | 245.0<br>192.0<br>281.0<br>44.0<br>72.0<br>1,931.0<br>355.0<br>690.0<br>231.0<br>2,642.0<br>249.0<br>300.0<br>4,467.0<br>5,498.0                                                                                        | 1.4<br>1.1<br>1.6<br>.2<br>.4<br>1.1<br>5.8<br>2.0<br>3.9<br>1.3<br>15.0<br>1.4<br>1.7<br>25.3<br>31.1                                                                                                          | 233.0<br>-<br>872.0<br>-<br>21.0<br>1,126.0<br>-<br>570.0<br>76.0<br>1,924.0<br>67.0<br>2,640.0<br>3,766.0                            | 1.4.2<br>1.4<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 99,477.0<br>2,798.0<br>2,982.0<br>2,955.0<br>902.0<br>973.0<br>697.0<br>1,495.0<br>551.0<br>698.0<br>9,123.0<br>20,030.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16.0<br>14.7<br>17.0<br>5.1<br>5.5<br>3.9<br>62.2<br>8.6<br>2.8<br>30.8<br>3.1<br>3.9<br>52.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Colorado.   267.0   1.7   -40.0   -2   +751.0   -4.3   978.0   5.8   165.0   -9   111.0   6   702.0   4.3   978.0   5.8   165.0   -9   111.0   6   702.0   4.3   978.0   5.8   165.0   -9   110.0   6   702.0   4.3   978.0   5.8   165.0   -9   110.0   6   702.0   4.3   978.0   5.8   165.0   -9   110.0   6   702.0   4.3   978.0   5.8   165.0   -9   110.0   6   702.0   4.3   978.0   5.8   702.0   4.3   978.0   5.8   702.0   4.3   978.0   5.8   702.0   4.3   978.0   5.8   702.0   4.3   978.0   5.8   702.0   4.3   978.0   5.8   702.0   4.3   978.0   5.8   702.0   4.3   978.0   5.8   702.0   4.3   978.0   5.8   702.0   4.3   978.0   5.8   702.0   4.3   978.0   5.8   702.0   4.3   978.0   5.8   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   702.0   | Region II: Subregion IIa: Minneaota. Hissouria. Missouria. Missouria. Missouria. Mekraska. Subtotal IIa. Subregion IIb: Arkanas. Louisiana. Okiahoma. Texas. Rew Mexico. Kanas. Subtotal IIb. Region III: Subregion IIIa: Montana. Idabo.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 409.0<br>1,376.0<br>1,507.0<br>8.0<br>3,300.0<br>1,955.0<br>22,265.0<br>1,225.0<br>47,847.0<br>120.0<br>2,446.0<br>75,958.0                             | 250.5<br>8.0<br>8.6<br>Neg.<br>19.1<br>11.1<br>126.4<br>7.5<br>272.0<br>.7<br>13.8<br>431.5<br>450.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +23.0<br>+17.0<br>+9.0<br>-46.0<br>-3.0<br>+9.0<br>+9.0<br>-141.0<br>-681.0<br>+20.0<br>-2.0<br>-1,405.0<br>-1,396.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +.1<br>+.1<br>+.1<br>3<br>Neg.<br>+.1<br>+.1<br>8<br>-3.9<br>Neg.<br>-3.4<br>+.1<br>Neg.<br>-7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +2,366.0<br>+2,365.0<br>+1,570.0<br>-559.0<br>+759.0<br>+680.0<br>-1,250.0<br>-20,089.0<br>-224.0<br>-41,933.0<br>+411.0<br>-55,430.0<br>-57,832.0<br>+42.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +13.4<br>+14.6<br>+8.9<br>-3.2<br>+5.5<br>+3.8<br>+43.0<br>-7.1<br>-113.9<br>-4.7<br>-237.8<br>+2.3<br>-9.9<br>-371.1<br>-328.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2,798.0<br>2,582.0<br>2,955.0<br>902.0<br>973.0<br>697.0<br>10,507.0<br>564.0<br>1,495.0<br>506.0<br>5,309.0<br>5,309.0<br>698.0<br>9,123.0<br>20,030.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16.0<br>14.7<br>17.0<br>5.1<br>5.5<br>3.9<br>62.2<br>3.2<br>8.6<br>2.8<br>30.8<br>3.1<br>3.9<br>52.4<br>114.6                                                                                                                                            | 2,320.0<br>2,390.0<br>1,802.0<br>858.0<br>901.0<br>479.0<br>235.0<br>199.0<br>235.0<br>235.0<br>235.0<br>2,016.0<br>10,766.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13.2<br>13.6<br>10.2<br>4.9<br>5.1<br>2.7<br>49.7<br>1.2<br>1.3<br>2.2<br>11.3<br>61.0                                                                                                                      | 245.0<br>192.0<br>281.0<br>44.0<br>72.0<br>197.0<br>1,031.0<br>355.0<br>690.0<br>231.0<br>2,642.0<br>249.0<br>300.0<br>4,467.0<br>5,498.0                                                                               | 1.4<br>1.1<br>1.6<br>.2<br>.4<br>1.1<br>5.8<br>2.0<br>3.9<br>1.3<br>15.0<br>1.4<br>1.7<br>25.3<br>31.1                                                                                                          | 233.0<br>-<br>872.0<br>-<br>-<br>1,126.0<br>-<br>570.0<br>76.0<br>1,924.0<br>2,640.0<br>3,766.0                                       | 1.4.2<br>1.4<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 99,477.0 2,798.0 2,582.0 2,955.0 902.0 973.0 697.0 10,907.0 564.0 1,495.0 551.0 698.0 9,123.0 20,030.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16.0<br>14.7<br>17.0<br>5.1<br>5.5<br>3.9<br>62.2<br>8.6<br>2.8<br>30.8<br>3.1<br>3.9<br>52.4<br>114.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Mashington                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Region II: Subregion IIa: Minneaota Minneaota Misaouri North Dekota. South Dakota. Nebraska. Subtotal IIa. Subregion IIb: Arkansa. Oklahoma. Oklahoma. Kansas. New Mextco. Kansas. New Mextco. Kansas. New Mextco.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 409.0<br>1,376.0<br>1,507.0<br>8.0<br>3,300.0<br>1,955.0<br>22,265.0<br>1,255.0<br>47,847.0<br>120.0<br>2,446.0<br>79,258.0<br>431.0                    | 2.50.5<br>8.0<br>8.6<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +23.0<br>+17.0<br>+9.0<br>-46.0<br>-3.0<br>+9.0<br>+9.0<br>-141.0<br>-681.0<br>+5.0<br>-605.0<br>+20.0<br>-3.0<br>-1,495.0<br>-1,396.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +.1<br>+.1<br>+.1<br>3<br>Neg.<br>+.1<br>+.1<br>8<br>-3.9<br>Neg.<br>-3.4<br>+.1<br>Neg.<br>-7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +2,366.0<br>+2,565.0<br>+1,570.0<br>-559.0<br>+976.0<br>-680.0<br>-1,250.0<br>-20,089.0<br>-24,03.0<br>+411.0<br>-57,832.0<br>+42.0<br>+153.0<br>-237.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +13.4<br>+14.6<br>+8.9<br>-3.2<br>+5.5<br>+3.8<br>+43.0<br>-7.1<br>-113.9<br>-4.7<br>-237.8<br>+2.3<br>-9.9<br>-371.1<br>-328.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2,798.0<br>2,582.0<br>2,955.0<br>902.0<br>973.0<br>697.0<br>10,907.0<br>564.0<br>5,309.0<br>5,511.0<br>698.0<br>9,123.0<br>20,030.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16.0<br>14.7<br>17.0<br>5.1<br>5.5<br>3.9<br>62.2<br>3.2<br>8.6<br>2.8<br>30.8<br>3.1<br>3.9<br>52.4<br>114.6                                                                                                                                            | 2,320.0<br>2,390.0<br>1,802.0<br>8,58.0<br>901.0<br>479.0<br>8,750.0<br>235.0<br>199.0<br>743.0<br>2,35.0<br>395.0<br>10,766.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13.2<br>13.6<br>10.2<br>4.9<br>5.1<br>2.7<br>49.7<br>1.2<br>1.3<br>1.1<br>4.2<br>1.3<br>2.2<br>11.3<br>61.0                                                                                                 | 245.0<br>192.0<br>281.0<br>44.0<br>72.0<br>197.0<br>1,031.0<br>355.0<br>690.0<br>2,642.0<br>249.0<br>300.0<br>4,467.0<br>5,498.0                                                                                        | 1.4<br>1.1<br>1.6<br>.2<br>.4<br>1.1<br>5.8<br>2.0<br>3.9<br>1.3<br>15.0<br>1.4<br>1.7<br>25.3<br>31.1                                                                                                          | 233.0<br>-<br>872.0<br>-<br>21.0<br>1,126.0<br>-<br>570.0<br>76.0<br>2,640.0<br>3,766.0<br>20.0<br>34.0                               | 1.4.2<br>1.4<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 99,477.0 2,798.0 2,982.0 2,955.0 902.0 973.0 697.0 1,495.0 551.0 658.0 9,123.0 20,030.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16.0<br>14.7<br>17.0<br>5.1<br>5.5<br>3.9<br>62.2<br>8.6<br>2.8<br>30.8<br>3.1<br>3.9<br>52.4<br>114.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Subtocal IIIa 2,373.0   13.7   -195.0   -1.0   +731.0   -4.2   2,909.0   16.9   792.0   4.4   344.0   1.9   1,773.0   10.6   2,809.0   16.9   18.7    Altriona                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Region II: Subregion IIa: Hinneaota Hom. North Dekota. South Dekota. Nebraska. Subtotal IIa. Subregion IIb: Arkansa. Louisiana. Collabona. To Karpasa. Subtotal IIA. Subtotal IIA. Subtotal IIA. Subtotal IIIA. Colorado.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 43,303.0<br>409.0<br>1,376.0<br>1,507.0<br>8.0<br>3,300.0<br>1,955.0<br>22,265.0<br>1,325.0<br>47,847.0<br>2,446.0<br>75,958.0<br>79,258.0<br>431.0<br> | 2.50.5<br>8.0<br>8.6<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +23.0<br>+17.0<br>+9.0<br>-46.0<br>-3.0<br>+9.0<br>+9.0<br>-141.0<br>-681.0<br>+20.0<br>-3.0<br>-1,405.0<br>-13.96.0<br>+23.0<br>-25.0<br>-25.0<br>-25.0<br>-26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +.1<br>+.1<br>+.1<br>+.1<br>3<br>Neg.<br>+.1<br>+.1<br>8<br>-3.9<br>Neg.<br>-3.4<br>+.1<br>Neg.<br>-8.0<br>-7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +2,366.0<br>+2,565.0<br>+1,570.0<br>-559.0<br>+976.0<br>+680.0<br>-1,250.0<br>-20,089.0<br>-824.0<br>-41,933.0<br>-55,439.0<br>-57,832.0<br>+411.0<br>-57,832.0<br>+42.0<br>+7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +13.4<br>+14.6<br>+8.9<br>-3.2<br>+5.5<br>+3.8<br>+43.0<br>-7.1<br>-113.9<br>-4.7<br>-237.8<br>+2.3<br>-9.9<br>-371.1<br>-328.1<br>+.2<br>+.9<br>-1.3<br>Neg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,798.0<br>2,582.0<br>2,955.0<br>902.0<br>973.0<br>697.0<br>10,907.0<br>564.0<br>1,495.0<br>506.0<br>5,309.0<br>20,030.0<br>496.0<br>141.0<br>98.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16.0<br>14.7<br>17.0<br>5.1<br>3.9<br>62.2<br>8.6<br>2.8<br>30.8<br>3.1<br>3.9<br>52.4<br>114.6                                                                                                                                                          | 2,320.0<br>2,390.0<br>1,802.0<br>858.0<br>901.0<br>479.0<br>8,750.0<br>209.0<br>235.0<br>235.0<br>2,016.0<br>10,766.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13.2<br>13.6<br>10.2<br>4.9<br>5.1<br>2.7<br>49.7<br>1.2<br>1.3<br>1.1<br>4.2<br>1.3<br>2.2<br>2.1<br>1.3<br>61.0                                                                                           | 245.0<br>192.0<br>281.0<br>44.0<br>72.0<br>197.0<br>1,031.0<br>355.0<br>690.0<br>231.0<br>2,642.0<br>4,467.0<br>5,498.0                                                                                                 | 1.4<br>1.1<br>1.6<br>.2<br>.4<br>1.1<br>5.8<br>2.0<br>3.9<br>1.3<br>15.0<br>1.4<br>1.7<br>25.3<br>31.1                                                                                                          | 233.0<br>                                                                                                                             | 1.4.2<br>1.4.3<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 99,477.0  2,798.0 2,582.0 2,555.0 902.0 973.0 697.0 10,907.0 506.0 5,309.0 9,123.0 20,030.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16.0<br>14.7<br>17.0<br>5.1<br>5.5<br>3.9<br>62.2<br>8.6<br>2.8<br>30.8<br>3.1<br>13.9<br>52.4<br>114.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Subregion IIIb: Artzona. 37.0 -2 +224.0 +1.3 187.0 1.1 64.0 4 123.0 .7 187.0 1.1  Nevada.  - 17.0 -1 +74.0 +4 57.0 .3 - 3.0 Neg. 54.0 .3 57.0 .3  California.  10.778.0 63.7 -782.0 -4.1 1,561.0 1.0 6 8.189.0 49.0 76.0 4 93.0 5.3 17.174.0 43.3 8.189.0 49.0  Subtotal IIIb: Alaska. 17.0 -1 +300.0 +1.8 283.0 1.7 - 90.0 5.1 193.0 1.2 283.0 1.7  Hawati.  60.0 .7 -54.0 .3 11,116.0 +7.8 1.3 1.6 2.0 1.6 1.3 1.6 2.0 1.7 1.3 1.3 1.6 2.0 1.7 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Region II: Subregion IIa: Minneaota. Minneaota. Miscouri. Miscouri. Miscouri. Miscouri. Miscouri. Mohraska. Subtotal IIa. Subregion IIbi Arkansa. Louisiana. Oklahoma. Texas. New Mexico. Kansas. Subtotal III. Subrotal III.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 43,303.0<br>409.0<br>1,376.0<br>1,507.0<br>3,300.0<br>1,955.0<br>2,265.0<br>1,225.0<br>47,847.0<br>120.0<br>2,446.0<br>79,258.0<br>431.0<br>            | 2.50.5<br>8.0<br>8.6<br>Neg.<br>19.1<br>11.1<br>126.4<br>7.5<br>272.0<br>.7<br>431.5<br>450.6<br>2.5<br>-1.9<br>.6<br>1.7<br>7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +23.0<br>+17.0<br>+9.0<br>-46.0<br>-3.0<br>+9.0<br>+9.0<br>-141.0<br>-681.0<br>+5.0<br>-605.0<br>-1,396.0<br>-1,20.0<br>-1,20.0<br>-2.0<br>-2.0<br>-2.0<br>-2.0<br>-3.0<br>-3.0<br>-3.0<br>-3.0<br>-3.0<br>-3.0<br>-3.0<br>-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +.1<br>+.1<br>+.1<br>3<br>Neg.<br>+.1<br>8<br>-3.9<br>Neg.<br>-3.4<br>+.1<br>Neg.<br>-8.0<br>-7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +2,366.0<br>+2,565.0<br>+1,570.0<br>-591.0<br>+976.0<br>+976.0<br>-1,250.0<br>-20,089.0<br>-24,933.0<br>+411.0<br>-57,832.0<br>+42.0<br>+4153.0<br>-237.0<br>+75.0<br>+75.0<br>-751.0<br>-751.0<br>-751.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +13.4<br>+14.6<br>+8.9<br>-3.2<br>+5.5<br>+3.8<br>+43.0<br>-7.1<br>-113.9<br>-4.7<br>-237.8<br>+2.3<br>-9.9<br>-371.1<br>-328.1<br>+.2<br>+.9<br>-1.3<br>Neg.<br>+4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,798.0<br>2,582.0<br>2,955.0<br>902.0<br>973.0<br>697.0<br>1,495.0<br>5,309.0<br>5,309.0<br>6,98.0<br>9,123.0<br>20,030.0<br>496.0<br>98.0<br>110.0<br>978.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16.0<br>14.7<br>17.0<br>5.1<br>5.5<br>3.9<br>62.2<br>3.2<br>8.6<br>2.8<br>30.8<br>3.1<br>3.9<br>52.4<br>114.6                                                                                                                                            | 2,320.0<br>2,390.0<br>1,802.0<br>858.0<br>901.0<br>479.0<br>235.0<br>199.0<br>235.0<br>235.0<br>235.0<br>10,766.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13.2<br>13.6<br>10.2<br>4.9<br>5.1<br>2.7<br>49.7<br>1.2<br>1.3<br>1.1<br>4.2<br>1.3<br>2.2<br>11.3<br>61.0                                                                                                 | 245.0<br>192.0<br>281.0<br>44.0<br>72.0<br>197.0<br>1,031.0<br>355.0<br>690.0<br>2,642.0<br>300.0<br>4,467.0<br>5,498.0                                                                                                 | 1.4<br>1.1<br>1.6<br>.2<br>.4<br>1.1<br>5.8<br>2.0<br>3.9<br>1.3<br>15.0<br>1.4<br>1.7<br>25.3<br>31.1<br>Neg.<br>.3<br>.1                                                                                      | 233.0<br>-233.0<br>-72.0<br>-1,126.0<br>-76.0<br>1,924.0<br>-67.0<br>3,766.0<br>3,766.0<br>-20.0<br>-70.0<br>-70.0<br>-70.0           | 1.4.2<br>1.4.5.2<br>1<br>6.7<br>3.44<br>11.6.4<br>Neg.<br>15.8<br>22.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 99,477.0 2,798.0 2,582.0 2,555.0 902.0 973.0 697.0 10,907.0 564.0 1,495.0 658.0 90.0 20,030.0 496.0 141.0 98.0 110.0 978.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16.0<br>14.7<br>17.0<br>5.1<br>5.5,5<br>3.9<br>962.2<br>3.2<br>8.6<br>2.8<br>30.8<br>3.1<br>114.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Artzona                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Region II: Subregion IIa: Minneaota Hom. North Dekota. South Dakota. Nebraska. Subtotal IIa. Subregion IIb: Arkansa. Louisiana. Okiahoma. Texas. Subtotal IIA. Subtotal IIA. Subtotal IIA. Subtotal IIA. Subtotal IIA. Okiahoma. Subtotal IIA. General III. Subregion IIIa: Montana. Idaho Hyoning. Locardo. Washington. Oregon.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 43,303.0<br>409.0<br>1,376.0<br>1,507.0<br>8.0<br>3,300.0<br>1,955.0<br>22,265.0<br>1,325.0<br>47,847.0<br>2,446.0<br>75,958.0<br>79,258.0<br>431.0<br> | 2.50.5<br>8.0<br>8.6<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +23.0<br>+17.0<br>+9.0<br>-46.0<br>-3.0<br>+9.0<br>-141.0<br>-681.0<br>+20.0<br>-2.0<br>-1.495.0<br>-1.396.0<br>-2.0<br>-2.0<br>-2.0<br>-2.0<br>-2.0<br>-2.0<br>-2.0<br>-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +.1<br>+.1<br>+.1<br>3<br>Neg.<br>+.1<br>+.1<br>8<br>-3.9<br>Neg.<br>-3.4<br>+.1<br>Neg.<br>-7.9<br>+.1<br>1<br>Neg.<br>-7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +2,366.0<br>+2,565.0<br>+1,570.0<br>+7,570.0<br>+7976.0<br>+7976.0<br>+7,598.0<br>-1,250.0<br>-20,089.0<br>-824.0<br>-41,933.0<br>+411.0<br>-57,832.0<br>+42.0<br>+55,430.0<br>-77,832.0<br>+751.0<br>-287.0<br>+751.0<br>-287.0<br>+751.0<br>-287.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+3                                                                                                                                              | +13.4<br>+14.6<br>+8.9<br>-3.2<br>+5.5<br>+3.8<br>+43.0<br>-7.1<br>-113.9<br>-4.7<br>-237.8<br>+2.3<br>-9.9<br>-371.1<br>-328.1<br>+.9<br>-1.3<br>Neg.<br>+4.3<br>-1.6<br>+1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,798.0<br>2,582.0<br>902.0<br>903.0<br>903.0<br>907.0<br>10,907.0<br>554.0<br>5,309.0<br>551.0<br>698.0<br>9,123.0<br>20,030.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16.0<br>14.7<br>17.0<br>5.1<br>5.5<br>3.9<br>62.2<br>8.6<br>2.8<br>30.8<br>31.1<br>3.9<br>52.4<br>114.6                                                                                                                                                  | 2,320.0<br>2,390.0<br>1,802.0<br>8,588.0<br>901.0<br>479.0<br>235.0<br>199.0<br>235.0<br>235.0<br>2,016.0<br>465.0<br>102.0<br>43.0<br>165.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13.2<br>13.6<br>10.2<br>4.9<br>5.1<br>2.7<br>49.7<br>1.2<br>1.3<br>1.1<br>4.2<br>1.3<br>61.0<br>2.6<br>6.6<br>.2<br>.2<br>.1<br>.9                                                                          | 245.0<br>192.0<br>281.0<br>44.0<br>72.0<br>1,031.0<br>355.0<br>690.0<br>231.0<br>2,642.0<br>249.0<br>300.0<br>4,467.0<br>5,498.0                                                                                        | 1.4<br>1.1<br>1.6<br>.2<br>.4<br>1.1<br>5.8<br>2.0<br>3.9<br>1.3<br>15.0<br>1.4<br>1.7<br>25.3<br>31.1<br>Neg.                                                                                                  | 233.0<br>-237.0<br>-21.0<br>1,126.0<br>-570.0<br>1,924.0<br>62.640.0<br>3,766.0<br>2,640.0<br>34.0<br>74.0<br>752.0<br>184.0          | 114.2<br>1.4<br>5.2<br>-<br>.1<br>6.7<br>-<br>3.4<br>.4<br>.8<br>.22.5<br>-<br>.4<br>4.3<br>4.3<br>4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 99,477.0  2,798.0 2,582.0 902.0 973.0 697.0 10,907.0 506.0 5,309.0 9,123.0 9,123.0 20,030.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16.00<br>14.7.17.00<br>5.11.5.5.1<br>5.5.3.9.6<br>62.22.8.8.6.6<br>2.8.8.33.1<br>3.9.9<br>52.4.4.6<br>2.8.8<br>5.5.6<br>5.8.8<br>5.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Newsda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Region II: Minneaota Minneaota Minneaota Misaouri North Dekota. South Dakota. Mebraska. Subtotal IIa. Subregion IIb? Acutstana. Ooklahoma. Texas. New Mexico. Kanasa. New Mexico. IIIa. Subregion IIIa. Subrogion IIIa. Hontana. Lidaho Wyoning Utah Oregon Oregon Subtotal IIIa.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 43,303.0<br>409.0<br>1,376.0<br>1,507.0<br>8.0<br>3,300.0<br>1,955.0<br>22,265.0<br>1,325.0<br>47,847.0<br>2,446.0<br>75,958.0<br>79,258.0<br>431.0<br> | 2.50.5<br>8.0<br>8.6<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +23.0<br>+17.0<br>+9.0<br>-46.0<br>-3.0<br>+9.0<br>-141.0<br>-681.0<br>+20.0<br>-2.0<br>-1.495.0<br>-1.396.0<br>-2.0<br>-2.0<br>-2.0<br>-2.0<br>-2.0<br>-2.0<br>-2.0<br>-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +.1<br>+.1<br>+.1<br>3<br>Neg.<br>+.1<br>+.1<br>8<br>-3.9<br>Neg.<br>-3.4<br>+.1<br>Neg.<br>-7.9<br>+.1<br>1<br>Neg.<br>-7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +2,366.0<br>+2,565.0<br>+1,570.0<br>+7,570.0<br>+7976.0<br>+7976.0<br>+7,598.0<br>-1,250.0<br>-20,089.0<br>-824.0<br>-41,933.0<br>+411.0<br>-57,832.0<br>+42.0<br>+55,430.0<br>-77,832.0<br>+751.0<br>-287.0<br>+751.0<br>-287.0<br>+751.0<br>-287.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+302.0<br>+3                                                                                                                                              | +13.4<br>+14.6<br>+8.9<br>-3.2<br>+5.5<br>+3.8<br>+43.0<br>-7.1<br>-113.9<br>-4.7<br>-237.8<br>+2.3<br>-9.9<br>-371.1<br>-328.1<br>+.9<br>-1.3<br>Neg.<br>+4.3<br>-1.6<br>+1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,798.0<br>2,582.0<br>902.0<br>903.0<br>903.0<br>907.0<br>10,907.0<br>554.0<br>5,309.0<br>551.0<br>698.0<br>9,123.0<br>20,030.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16.0<br>14.7<br>17.0<br>5.1<br>5.5<br>3.9<br>62.2<br>8.6<br>2.8<br>30.8<br>31.1<br>3.9<br>52.4<br>114.6                                                                                                                                                  | 2,320.0<br>2,390.0<br>1,802.0<br>8,588.0<br>901.0<br>479.0<br>235.0<br>199.0<br>235.0<br>235.0<br>2,016.0<br>465.0<br>102.0<br>43.0<br>165.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13.2<br>13.6<br>10.2<br>4.9<br>5.1<br>2.7<br>49.7<br>1.2<br>1.3<br>1.1<br>4.2<br>1.3<br>61.0<br>2.6<br>6.6<br>.2<br>.2<br>.1<br>.9                                                                          | 245.0<br>192.0<br>281.0<br>44.0<br>72.0<br>1,031.0<br>355.0<br>690.0<br>231.0<br>2,642.0<br>249.0<br>300.0<br>4,467.0<br>5,498.0                                                                                        | 1.4<br>1.1<br>1.6<br>.2<br>.4<br>1.1<br>5.8<br>2.0<br>3.9<br>1.3<br>15.0<br>1.4<br>1.7<br>25.3<br>31.1<br>Neg.                                                                                                  | 233.0<br>-237.0<br>-21.0<br>1,126.0<br>-570.0<br>1,924.0<br>62.640.0<br>3,766.0<br>2,640.0<br>34.0<br>74.0<br>752.0<br>184.0          | 114.2<br>1.4<br>5.2<br>-<br>.1<br>6.7<br>-<br>3.4<br>.4<br>.8<br>.22.5<br>-<br>.4<br>4.3<br>4.3<br>4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 99,477.0  2,798.0 2,582.0 902.0 973.0 697.0 10,907.0 506.0 5,309.0 9,123.0 9,123.0 20,030.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16.00<br>14.7.17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>1 |
| California                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Region II: Subregion IIa: Minneaota. Lova. North Dekota. North Dekota. Nebraska. Subbotal IIa. Subregion IIb: Arkansa. Louisiana. Okiahoma. Texas. Rew Nexico. Kansas. Louisiana. Subbotal IIA. Subregion IIIa: Montana. Lidaho. Wyoning. Utah. Colorado. Washington. Subtoral IIIA. Subregion IIIa: Subregion IIIa: Montana. Lidaho. Wyoning. Utah. Subtoral IIIA. Subregion IIIa:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 43,303.0<br>409.0<br>1,376.0<br>1,507.0<br>8.0<br>3,300.0<br>1,955.0<br>22,265.0<br>1,325.0<br>47,847.0<br>2,446.0<br>75,958.0<br>79,258.0<br>431.0<br> | 2.55.5<br>8.0 8.6 6.7<br>Neg. 19.1<br>11.1<br>126.4 7.5<br>272.0 7.7<br>13.8 431.5<br>450.6<br>2.5 6.1<br>1.7 7.0<br>Neg. 13.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +23.0<br>+17.0<br>+9.0<br>-46.0<br>-3.0<br>+9.0<br>-141.0<br>-681.0<br>+5.0<br>-605.0<br>-1,495.0<br>-1,396.0<br>-23.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>-25.0<br>- | +.1<br>+.1<br>+.1<br>+.1<br>3<br>Neg.<br>-3.9<br>Neg.<br>-3.4<br>+.1<br>Neg.<br>-7.9<br>+.1<br>-1.1<br>Neg.<br>-2.3<br>-3.4<br>-1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +2,366.0<br>+2,565.0<br>+1,570.0<br>+759.0<br>+976.0<br>+860.0<br>-1,250.0<br>-20,089.0<br>-824.0<br>-41,933.0<br>+411.0<br>-55,430.0<br>-57,832.0<br>+42.0<br>+153.0<br>-237.0<br>+751.0<br>-287.0<br>+731.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +13.4<br>+14.6<br>+8.99<br>-3.2<br>+5.5<br>+3.8<br>+43.0<br>-7.1<br>-113.9<br>-4.7<br>-237.8<br>+2.3<br>-9.9<br>-371.1<br>-328.1<br>+.2<br>+.9<br>-1.3<br>Neg.<br>+4.3<br>-1.6<br>-1.1<br>-1.1<br>-1.1<br>-1.1<br>-1.1<br>-1.1<br>-1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2,798.0<br>2,582.0<br>2,955.0<br>973.0<br>697.0<br>10,907.0<br>564.0<br>5,309.0<br>6,5309.0<br>6,98.0<br>20,030.0<br>496.0<br>141.0<br>98.0<br>98.0<br>98.0<br>20,909.0<br>20,909.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16.0<br>14.7<br>17.0<br>5.1<br>5.5<br>3.9<br>62.2<br>3.2<br>8.6<br>6.2<br>2.8<br>8.3<br>3.1<br>13.9<br>9.5<br>2.4<br>114.6<br>5.6<br>6.5<br>8.6<br>6.5<br>8.6<br>1.1<br>1.3<br>1.5<br>1.3<br>1.3<br>1.3<br>1.3<br>1.3<br>1.3<br>1.3<br>1.3<br>1.3<br>1.3 | 2,320.0<br>2,390.0<br>1,802.0<br>858.0<br>901.0<br>207.0<br>235.0<br>235.0<br>235.0<br>235.0<br>235.0<br>235.0<br>235.0<br>235.0<br>235.0<br>235.0<br>235.0<br>235.0<br>235.0<br>235.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13.2<br>13.6<br>10.2<br>4.9<br>5.1<br>2.7<br>49.7<br>1.2<br>1.3<br>1.1<br>4.2<br>1.3<br>61.0<br>2.6<br>6.6<br>.2<br>.2<br>.1<br>.9                                                                          | 245.0<br>192.0<br>281.0<br>44.0<br>72.0<br>197.0<br>1,031.0<br>255.0<br>690.0<br>231.0<br>2,642.0<br>249.0<br>300.0<br>4,467.0<br>5,498.0                                                                               | 1.4 1.1 1.6 6.2 2.4 4.1 1.1 5.8 8 2.0 3.9 9 1.3 15.0 0 1.4 1.7 25.3 31.1 6.6 6.6 6.2 1.9                                                                                                                        | 233.0<br>872.0<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                       | 11.4.2<br>1.4<br>- 5.2<br>1<br>6.7<br>- 3.4<br>- 4.1<br>11.6<br>- 8.2<br>- 1.5<br>- 8.2<br>- 2.5<br>- 1.1<br>- 1.0<br>- 1.0 | 99,477.0  2,798.0  2,892.0  2,955.0  902.0  973.0  697.0  10,907.0  506.0  530.0  698.0  9,123.0  20,030.0  141.0  98.0  110.0  98.0  98.0  110.0  98.0  229.0  2290.0  2290.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16.00 14.7 17.00 5.1 15.5 5.6 6.5 8.8 6.6 5.1 1.3 16.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Subregion IIIc:         -         -17.0         -1         +300.0         +1.8         283.0         1.7         -         -         90.0         .5         193.0         1.2         283.0         1.7           Hawati         60.0         .7         -34.0        3         +1,316.0         +7.5         1,322.0         7.9         23.0         .1         68.0         .4         1,231.0         7.4         1,322.0         7.9           Subtotal III         60.0         .7         -71.0        4         +1,516.0         +9.3         1,605.0         9.6         23.0         .1         158.0         .9         1,424.0         8.6         1,605.0         9.6           Subtotal IIII         3,12.1         7,48.0         -4.6         7.8         1,474.0         9.0         .1         158.0         .9         1,424.0         8.6         1,605.0         9.0         .9         1,605.0         .8         23.0         .1         158.0         .9         1,424.0         8.0         1,505.0         .8         1,206.0         3,80         1,906.0         .8         1,206.0         8.0         .9         1,806.0         .9         1,806.0         .8         1,906.0         8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Region II: Subregion IIa: Minneaota. Lova. North Dekota. North Dekota. Nebraska. Subbotal IIa. Subregion IIb: Arkansa. Louisiana. Okiahoma. Texas. Rew Mexico. Mandecia IIIa. Subregion IIIa: Montana. Louisiana. Usiahoma. Texas. Subbotal III. Region IIIa: Montana. Louisiana. Usiahoma. Subrotal III. Subregion IIIa: Montana. Lidaho. Wyoning. Utah. Subrotal IIIa: Subregion IIIa: Subregion IIIa: Montana. Lidaho. Subrotal IIIa: Subregion IIIa: Subregion IIIa: Subregion IIIa: Subregion IIIa: Subregion IIIb: Arizona. Subrotal IIIIa.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 43,303.0<br>409.0<br>1,376.0<br>1,507.0<br>8.0<br>3,300.0<br>1,955.0<br>22,265.0<br>1,255.0<br>47,847.0<br>120.0<br>79,258.0<br>431.0<br>               | 2.50.5<br>8.00<br>8.60<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +23.0<br>+17.0<br>+9.0<br>-46.0<br>-3.0<br>+9.0<br>-141.0<br>-681.0<br>-605.0<br>-13.96.0<br>-1.396.0<br>-25.0<br>-80.0<br>-60.0<br>-73.0<br>-73.0<br>-73.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +.1<br>+.1<br>+.1<br>+.1<br>3<br>Negs.<br>+.1<br>+.1<br>8<br>-3.9<br>Negs.<br>-3.4<br>+.1<br>Neg.<br>-37.9<br>-1.1<br>Neg.<br>-23<br>-31<br>-1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +2,366.0<br>+2,565.0<br>+1,570.0<br>+7,570.0<br>+796.0<br>+860.0<br>+7,598.0<br>-1,250.0<br>-20,089.0<br>-41,932.0<br>+411.0<br>-57,832.0<br>+412.0<br>+57,832.0<br>+42.0<br>+57,832.0<br>+731.0<br>+731.0<br>+731.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +13.4<br>+14.6<br>+8.9<br>-3.2<br>+5.5<br>+3.8<br>+43.0<br>-1.13.9<br>-4.7<br>-237.8<br>+2.3<br>-9.9<br>-371.1<br>-1.3<br>+.9<br>-1.3<br>Neg.<br>+4.3<br>-1.6<br>+1.7<br>+4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,798.0<br>2,582.0<br>2,955.0<br>973.0<br>697.0<br>10,907.0<br>564.0<br>1,495.0<br>5,309.0<br>9,123.0<br>20,030.0<br>496.0<br>111.0<br>98.0<br>978.0<br>2,99.0<br>2,99.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16.0 14.7 7 17.0 5.1 15.5 5.3 9 62.2 8.6 6 2.8 8.3 3.1 3.9 52.4 114.6 2.8 8.5 5.1 1.3 3 16.9 9 1.1 1.3                                                                                                                                                   | 2,320.0<br>2,390.0<br>1,802.0<br>858.0<br>901.0<br>8,750.0<br>209.0<br>235.0<br>395.0<br>2,016.0<br>10,766.0<br>465.0<br>165.0<br>-1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13.2<br>13.6<br>10.2<br>4.9<br>5.1<br>2.7<br>49.7<br>1.2<br>1.3<br>1.1<br>4.2<br>1.3<br>61.0<br>2.6<br>6.6<br>.2<br>.2<br>.1<br>.9                                                                          | 245.0<br>192.0<br>281.0<br>44.0<br>72.0<br>197.0<br>1,031.0<br>2,642.0<br>230.0<br>4,467.0<br>5,498.0<br>111.0<br>105.0<br>44.0<br>105.0<br>44.0                                                                        | 1.4 1.1 1.6 2.2 .4 4.1.1 5.8 2.0 3.9 9.1 3.3 15.0 1.4 1.7 7.25.3 31.1 Neg3 .1 6.6 6.2 2.1 9.9 4.8 Neg4                                                                                                          | 233.0<br>                                                                                                                             | 1.14.2<br>1.44<br>- 5.2<br>1<br>6.7<br>- 3.4<br>4.4<br>Neg.<br>11.6<br>- 22.5<br>1.1<br>1.2<br>2.5<br>1.1<br>1.2<br>1.1<br>1.2<br>1.3<br>1.4<br>1.4<br>1.4<br>1.5<br>1.8<br>1.6<br>1.7<br>1.7<br>1.7<br>1.7<br>1.7<br>1.7<br>1.7<br>1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 99,477.0  2,798.0 2,892.0 2,955.0 902.0 973.0 697.0 10,907.0 5,506.0 5,309.0 5,510.0 20,030.0  496.0 110.0 98.0 98.0 98.0 98.0 2,909.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16.00<br>14.7.17.00<br>5.1.17.00<br>5.1.5.5.5.3.9.9<br>62.22<br>3.2.8.6.6<br>2.8.8.6.6<br>2.8.8.6.6<br>5.8.6.6<br>5.8.6.6<br>5.8.6.11.1.3.9<br>11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Alaska                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Region II: Subregion IIa: Hinneaota. Hinneaota. Hisaouri. North Dekota. South Dekota. Nebraska. Subtotal IIa. Subregion IIb: Arkanas. Louisiana. Coussa. New Mexico. Kanasa. New Mexico. Kanasa. Subtotal II. Subtotal III. Subregion IIII: Subregion IIIII: Subregion IIIIII: Subregion IIIII: Subregion IIIII: Subregion IIIIII: Subregion IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 43,303.0  409.0  1,376.0 1,507.0  3,300.0  1,955.0 47,847.0 120.0 79,238.0  431.0 -360.0 111.0 267.0 1,204.0 Neg. 2,373.0                               | 2.5<br>- 8.0<br>8.6<br>- 8.6<br>- 19.1<br>11.1<br>11.1<br>126.4<br>7.5<br>272.0<br>- 7<br>431.5<br>450.6<br>2.5<br>- 1.9<br>- 6<br>1.7<br>7.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +23.0<br>+9.0<br>+9.0<br>-46.0<br>+9.0<br>+9.0<br>-141.0<br>-681.0<br>+5.0<br>-605.0<br>+20.0<br>-1,405.0<br>-1,205.0<br>-1,205.0<br>-2,00<br>-40.0<br>-73.0<br>-37.0<br>-37.0<br>-37.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +.1<br>+.1<br>3<br>Neg.<br>+.1<br>+.1<br>8<br>-3.9<br>-9.0<br>-3.4<br>+.1<br>Neg.<br>-3.4<br>-1.1<br>-1.1<br>-1.1<br>-1.1<br>-1.1<br>-1.2<br>-2<br>-3.4<br>-1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +2,366.0<br>+2,565.0<br>+1,570.0<br>+759.0<br>+7976.0<br>+860.0<br>+77,598.0<br>-1,250.0<br>-20,089.0<br>-41,933.0<br>+411.0<br>-57,832.0<br>+42.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32 | +13.4<br>+14.6, +8.9<br>-3.2, +5.5, +3.8<br>+43.0<br>-7.1, -113.9<br>-4.7, -237.8<br>+2.3, -9.9<br>-371.1, -328.1<br>+2.2<br>+4.3, -1.6, +1.7<br>+4.4, +4.2<br>+1.3, +4.4, +1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2,798.0<br>2,582.0<br>2,955.0<br>902.0<br>973.0<br>697.0<br>10,907.0<br>564.0<br>1,495.0<br>506.0<br>5,309.0<br>9,123.0<br>20,030.0<br>496.0<br>141.0<br>98.0<br>110.0<br>978.0<br>857.0<br>229.0<br>29.0<br>29.0<br>29.0<br>29.0<br>29.0<br>29.0<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16.0 14.7 17.0 5.1 15.5 5.1 15.5 5.1 15.5 16.2 28.6 6.2 28.6 28.8 30.8 3.1 14.6 5.8 5.1 16.9 16.9 16.9 16.9 16.9 16.9 16.9 16                                                                                                                            | 2,320.0<br>2,390.0<br>1,802.0<br>858.0<br>971.0<br>209.0<br>235.0<br>199.0<br>235.0<br>395.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0  | 13.2<br>13.6<br>10.2<br>4.9<br>5.1<br>2.7<br>49.7<br>1.2<br>1.3<br>2.1<br>1.3<br>2.2<br>11.3<br>61.0<br>2.6<br>6.6<br>6.2<br>2.1<br>1.9<br>9.8<br>8.8<br>8.8<br>8.8<br>8.8<br>8.8<br>8.8<br>8.8<br>8.8<br>8 | 245.0<br>192.0<br>281.0<br>44.0<br>72.0<br>1,97.0<br>2,642.0<br>2,642.0<br>300.0<br>4,467.0<br>5,498.0<br>11.0<br>10.0<br>11.0<br>10.0<br>10.0<br>10.0<br>10.0<br>1                                                     | 1.4<br>1.1<br>1.6<br>.2<br>.2<br>.4<br>1.1<br>5.8<br>2.0<br>3.9<br>1,3<br>15.0<br>1.4<br>1.7<br>25.3<br>31.1<br>1.8<br>88.3<br>.1<br>.6<br>.6<br>.6<br>.6<br>.6<br>.6<br>.6<br>.6<br>.6<br>.6<br>.6<br>.6<br>.6 | 18,986.0 233.0 -872.0 -1.126.0 1,126.0 -570.0 1,924.0 3.0 2,640.0 3,766.0 20.0 34.0 70.0 74.0 752.0 1,773.0 1,773.0 123.0 54.0 7,73.0 | 1.4.2<br>1.4<br>- 5.2<br>1<br>6.7<br>4<br>4.3<br>4.3<br>4.5<br>1.1<br>10.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 99,477.0  2,798.0 2,582.0 2,955.0 902.0 973.0 10,907.0 564.0 1,495.0 5,309.0 6,91.23.0 20,030.0  496.0 110.0 978.0 657.0 29,030.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.00<br>14.77<br>17.00<br>5.11<br>5.5.5<br>3.99<br>62.22<br>3.2.8.66<br>2.8.8.3<br>3.1.13<br>3.9.9<br>52.4.4<br>114.6<br>6.5.8.8<br>5.1.6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Hawaii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Region II: Minneaota. Minneaota. Misaouri. North Dekota. South Dekota. Nebraska. Subtotal IIa. Subregion IIbi Karana. Oklahoma. Texas. New Mexico. Kansas. New Mexico. III. Subregion III. Colorado. Uponing. Colorado. California. California. California.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 43,303.0  409.0  1,376.0 1,507.0  3,300.0  1,955.0 47,847.0 120.0 79,238.0  431.0 -360.0 111.0 267.0 1,204.0 Neg. 2,373.0                               | 2.5<br>- 8.0<br>8.6<br>- 8.6<br>- 19.1<br>11.1<br>11.1<br>126.4<br>7.5<br>272.0<br>- 7<br>431.5<br>450.6<br>2.5<br>- 1.9<br>- 6<br>1.7<br>7.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +23.0<br>+9.0<br>+9.0<br>-46.0<br>+9.0<br>+9.0<br>-141.0<br>-681.0<br>+5.0<br>-605.0<br>+20.0<br>-1,405.0<br>-1,205.0<br>-1,205.0<br>-2,00<br>-40.0<br>-73.0<br>-37.0<br>-37.0<br>-37.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +.1<br>+.1<br>3<br>Neg.<br>+.1<br>+.1<br>8<br>-3.9<br>-9.0<br>-3.4<br>+.1<br>Neg.<br>-3.4<br>-1.1<br>-1.1<br>-1.1<br>-1.1<br>-1.1<br>-1.2<br>-2<br>-3.4<br>-1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +2,366.0<br>+2,565.0<br>+1,570.0<br>+759.0<br>+7976.0<br>+860.0<br>+77,598.0<br>-1,250.0<br>-20,089.0<br>-41,933.0<br>+411.0<br>-57,832.0<br>+42.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32.0<br>+32 | +13.4<br>+14.6, +8.9<br>-3.2, +5.5, +3.8<br>+43.0<br>-7.1, -113.9<br>-4.7, -237.8<br>+2.3, -9.9<br>-371.1, -328.1<br>+2.2<br>+4.3, -1.6, +1.7<br>+4.4, +4.2<br>+1.3, +4.4, +1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2,798.0<br>2,582.0<br>2,955.0<br>902.0<br>973.0<br>697.0<br>10,907.0<br>564.0<br>1,495.0<br>506.0<br>5,309.0<br>9,123.0<br>20,030.0<br>496.0<br>141.0<br>98.0<br>110.0<br>978.0<br>857.0<br>229.0<br>29.0<br>29.0<br>29.0<br>29.0<br>29.0<br>29.0<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16.0 14.7 17.0 5.1 15.5 5.1 15.5 5.1 15.5 16.2 28.6 6.2 28.6 28.8 30.8 3.1 14.6 5.8 5.1 16.9 16.9 16.9 16.9 16.9 16.9 16.9 16                                                                                                                            | 2,320.0<br>2,390.0<br>1,802.0<br>858.0<br>971.0<br>209.0<br>235.0<br>199.0<br>235.0<br>395.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0  | 13.2<br>13.6<br>10.2<br>4.9<br>5.1<br>2.7<br>49.7<br>1.2<br>1.3<br>2.1<br>1.3<br>2.2<br>11.3<br>61.0<br>2.6<br>6.6<br>6.2<br>2.1<br>1.9<br>9.8<br>8.8<br>8.8<br>8.8<br>8.8<br>8.8<br>8.8<br>8.8<br>8.8<br>8 | 245.0<br>192.0<br>281.0<br>44.0<br>72.0<br>1,97.0<br>2,642.0<br>2,642.0<br>300.0<br>4,467.0<br>5,498.0<br>11.0<br>10.0<br>11.0<br>10.0<br>10.0<br>10.0<br>10.0<br>1                                                     | 1.4<br>1.1<br>1.6<br>.2<br>.2<br>.4<br>1.1<br>5.8<br>2.0<br>3.9<br>1,3<br>15.0<br>1.4<br>1.7<br>25.3<br>31.1<br>1.8<br>88.3<br>.1<br>.6<br>.6<br>.6<br>.6<br>.6<br>.6<br>.6<br>.6<br>.6<br>.6<br>.6<br>.6<br>.6 | 18,986.0 233.0 -872.0 -1.126.0 1,126.0 -570.0 1,924.0 3.0 2,640.0 3,766.0 20.0 34.0 70.0 74.0 752.0 1,773.0 1,773.0 123.0 54.0 7,73.0 | 1.4.2<br>1.4<br>- 5.2<br>1<br>6.7<br>4<br>4.3<br>4.3<br>4.5<br>1.1<br>10.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 99,477.0  2,798.0 2,582.0 2,955.0 902.0 973.0 10,907.0 564.0 1,495.0 5,309.0 6,91.23.0 20,030.0  496.0 110.0 978.0 657.0 299.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 | 16.00<br>14.77<br>17.00<br>5.11<br>5.5.5<br>3.99<br>62.22<br>3.2.8.66<br>2.8.8.3<br>3.1.13<br>3.9.9<br>52.4.4<br>114.6<br>6.5.8.8<br>5.1.6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Subtotal III 13,211.0 78.1 -1,048.0 -5.8 +784.0 +4.6 12,947.0 76.9 891.0 4.9 1,508.0 8.5 10,548.0 63.5 12,947.0 76.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Region II: Subregion IIa: Hinneaota. Lowa. Howa. | 43,303.0  409.0  1,376.0 1,507.0  3,300.0  1,955.0 47,847.0 120.0 79,238.0  431.0 -360.0 111.0 267.0 1,204.0 Neg. 2,373.0                               | 2.5<br>- 8.0<br>8.6<br>- 8.6<br>- 19.1<br>11.1<br>11.1<br>126.4<br>7.5<br>272.0<br>- 7<br>431.5<br>450.6<br>2.5<br>- 1.9<br>- 6<br>1.7<br>7.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +23.0<br>+17.0<br>+9.0<br>-46.0<br>-3.0<br>+9.0<br>+9.0<br>-141.0<br>-681.0<br>+5.0<br>-20.0<br>-1.495.0<br>-1.396.0<br>-1.396.0<br>-1.20.0<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.10<br>-2.1    | +.1<br>+.1<br>3<br>Negs.<br>-3.4<br>+.1<br>+.1<br>8<br>Neg.<br>-3.4<br>+.1<br>Neg.<br>-3.4<br>-1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +2,366.0<br>+2,565.0<br>+1,570.0<br>+376.0<br>+376.0<br>+376.0<br>+376.0<br>-20,089.0<br>-20,089.0<br>-20,089.0<br>-41,933.0<br>+411.0<br>-57,832.0<br>+42.0<br>+33.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+37.0<br>+3 | +13.4<br>+14.6<br>+8.9<br>-3.2<br>+5.5<br>+3.8<br>+43.0<br>-7.1<br>-113.9<br>-4.7<br>-237.8<br>+2.3<br>-9.9<br>-371.1<br>-328.1<br>+2.9<br>+2.9<br>-1.3<br>Neg.<br>-4.7<br>+4.2<br>+2.9<br>+4.3<br>-1.6<br>+4.9<br>-1.6<br>+4.9<br>-1.6<br>+4.9<br>-1.6<br>+4.9<br>-1.6<br>+4.9<br>-1.6<br>+4.9<br>-1.6<br>+4.9<br>-1.6<br>+4.9<br>-1.6<br>+4.9<br>-1.6<br>+4.9<br>-1.6<br>+4.9<br>-1.6<br>+4.9<br>-1.6<br>+4.9<br>-1.6<br>+4.9<br>-1.6<br>+4.9<br>-1.6<br>+4.9<br>-1.6<br>+4.9<br>-1.6<br>+4.9<br>-1.6<br>+4.9<br>-1.6<br>+4.9<br>-1.6<br>+4.9<br>-1.6<br>+4.9<br>-1.6<br>+4.9<br>-1.6<br>+4.9<br>-1.6<br>+4.9<br>-1.6<br>+4.9<br>-1.6<br>+4.9<br>-1.6<br>+4.9<br>-1.6<br>+4.9<br>-1.6<br>+4.9<br>-1.6<br>+4.9<br>-1.6<br>+4.9<br>-1.6<br>+4.9<br>-1.6<br>+4.9<br>-1.6<br>+4.9<br>-1.6<br>+4.9<br>-1.6<br>+4.9<br>-1.6<br>+4.9<br>-1.6<br>+4.9<br>-1.6<br>+4.9<br>-1.6<br>+4.9<br>-1.6<br>+4.9<br>-1.6<br>+4.9<br>-1.6<br>+4.9<br>-1.6<br>+4.9<br>-1.6<br>+4.9<br>-1.6<br>+4.9<br>-1.6<br>+4.9<br>-1.6<br>+4.9<br>-1.6<br>+4.9<br>-1.6<br>+4.9<br>-1.6<br>-1.6<br>-1.6<br>-1.6<br>-1.6<br>-1.6<br>-1.6<br>-1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2,798.0<br>2,582.0<br>2,955.0<br>902.0<br>973.0<br>657.0<br>1,495.0<br>5,564.0<br>5,306.0<br>5,309.0<br>698.0<br>9,123.0<br>20,030.0<br>496.0<br>141.0<br>98.0<br>978.0<br>229.0<br>2,909.0<br>187.0<br>8.0<br>8.0<br>8.0<br>8.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.0<br>14.7<br>17.0<br>5.1<br>5.5<br>8.6<br>62.2<br>3.2<br>8.6<br>2.8<br>30.8<br>3.1<br>3.9<br>52.4<br>114.6<br>2.8<br>8.5<br>5.6<br>6.5<br>8.8<br>1.1<br>1.3<br>1.3<br>1.3<br>1.3<br>1.3<br>1.3<br>1.3<br>1.3<br>1.3                                   | 2,320.0<br>2,390.0<br>1,802.0<br>858.0<br>971.0<br>209.0<br>235.0<br>199.0<br>235.0<br>395.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0  | 13.2<br>13.6<br>10.2<br>4.9<br>5.1<br>2.7<br>49.7<br>1.2<br>1.3<br>2.1<br>1.3<br>2.2<br>11.3<br>61.0<br>2.6<br>6.6<br>6.2<br>2.1<br>1.9<br>9.8<br>8.8<br>8.8<br>8.8<br>8.8<br>8.8<br>8.8<br>8.8<br>8.8<br>8 | 245.0<br>192.0<br>281.0<br>44.0<br>72.0<br>1,931.0<br>355.0<br>690.0<br>2,642.0<br>2,642.0<br>300.0<br>4,467.0<br>5,498.0<br>11.0<br>64.0<br>344.0<br>344.0<br>344.0<br>344.0                                           | 1.4<br>1.1<br>1.6<br>2.2<br>4.4<br>1.1<br>5.8<br>2.0<br>3.9<br>1.3<br>15.0<br>1.4<br>1.7<br>25.3<br>31.1<br>1.8<br>82<br>.2<br>1.9<br>4.4<br>1.9<br>1.9<br>1.9<br>1.9<br>1.9<br>1.9<br>1.9<br>1.9<br>1.9<br>1.9 | 18,986.0  233.0  872.0                                                                                                                | 1.44.2<br>1.44.3<br>1.6.7<br>1.6.7<br>1.6.7<br>1.6.7<br>1.6.8<br>22.5<br>1.1<br>1.2<br>1.4<br>4.3<br>4.3<br>4.3<br>4.3<br>4.3<br>4.3<br>4.3<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 99,477.0  2,798.0 2,582.0 2,955.0 902.0 973.0 10,907.0 564.0 1,495.0 5,309.0 6,91.0 20,030.0  496.0 110.0 978.0 857.0 299.0 30.0 187.0 857.0 8189.0 8,433.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16.00<br>14.77<br>17.00<br>5.11<br>5.5.5<br>3.99<br>62.22<br>3.2.8.66<br>2.8.8.3<br>3.1.13<br>3.9.9<br>52.4.4<br>114.6<br>6.5.8.8<br>5.1.6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Subjected 111   13,211.0  78.1]-1,048.0  -5.8  +784.0  +4.6  12,947.0  76.9  891.0  4.9  1,508.0  8.5  10,548.0  63.5  12,947.0  76.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Region II: Subregion IIa: Minneaota. Hom. North Dekota. South Dekota. South Dekota. South Dekota. South Dekota. Nebraska. Louisiana. Louisiana. Coklahoma. Texas. Subtotal IIa. Subregion IIIs: Nontana. Subtotal IIa. Nontana. Ladaho. Webotal IIa. Subregion IIIa: Nontana. Ladaho. Subtotal IIIa. Subregion IIIa: Nontana. Ladaho. Subtotal IIIa. Subregion IIIb: Arizona. Nevada. Galifornia. Ladaho. Subtotal IIIa. Alagka. Lalagka.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 43,303.0  409.0 1,376.0 1,376.0 3.300.0 1,955.0 22,265.0 1,325.0 47,847.0 120.0 25,958.0 79,258.0 111.0 267.0 1,204.0 10,778.0 10,778.0                 | 2.55 - 8.00 8.66 - 9.00 - 7.13.8 450.6 - 1.77 - 7.00 - 7.7 - 7.00 - 7.7 - 7.00 - 7.7 - 7.00 - 7.7 - 7.00 - 7.7 - 7.00 - 7.7 - 7.00 - 7.7 - 7.00 - 7.7 - 7.00 - 7.7 - 7.00 - 7.7 - 7.00 - 7.7 - 7.00 - 7.7 - 7.00 - 7.7 - 7.00 - 7.7 - 7.00 - 7.7 - 7.00 - 7.7 - 7.00 - 7.7 - 7.00 - 7.7 - 7.00 - 7.7 - 7.7 - 7.00 - 7.7 - 7.7 - 7.00 - 7.7 - 7.7 - 7.00 - 7.7 - 7.7 - 7.00 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7.7 - 7 | +23.0<br>+17.0<br>+9.0<br>-46.0<br>-3.0<br>+9.0<br>-141.0<br>-681.0<br>+5.0<br>-605.0<br>+20.0<br>-1,495.0<br>-1,396.0<br>-1,396.0<br>-2.0<br>-2.0<br>-2.0<br>-2.0<br>-2.0<br>-2.0<br>-2.0<br>-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +.1 +.1 +.13 Neg. +.1 +.1 +.1 +.1 +.1 +.1 +.1 +.1 +.1 +.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +2,366.0<br>+2,565.0<br>+1,570.0<br>+376.0<br>+376.0<br>+376.0<br>+376.0<br>-20,089.0<br>-20,089.0<br>-41,933.0<br>+411.0<br>-57,832.0<br>+32.0<br>+32.0<br>+33.0<br>+731.0<br>+731.0<br>+731.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+740.0<br>+                                                                                                                                        | +13.4<br>+14.6.6<br>+14.9<br>-3.2.2<br>+15.5<br>+3.8<br>+43.0<br>-7.1<br>-113.9<br>-371.1<br>-328.1<br>+2.3<br>-371.1<br>-328.1<br>+2.3<br>-371.1<br>-1.3<br>+4.3<br>-1.6<br>-1.1<br>-1.3<br>+4.3<br>-1.6<br>-1.1<br>-1.3<br>+4.3<br>-1.6<br>-1.1<br>-1.3<br>+4.3<br>-1.6<br>-1.1<br>-1.1<br>-1.1<br>-1.1<br>-1.1<br>-1.1<br>-1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2,798.0<br>2,582.0<br>2,955.0<br>902.0<br>973.0<br>697.0<br>1,495.0<br>5,564.0<br>5,564.0<br>5,564.0<br>6,96.0<br>5,511.0<br>6,98.0<br>91.123.0<br>20,030.0<br>496.0<br>111.0<br>98.0<br>978.0<br>978.0<br>978.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>8 | 16.0<br>14.7<br>17.0<br>5.1<br>1.5<br>3.9<br>62.2<br>3.2<br>8.6<br>6.2<br>8.8<br>3.1<br>1.3.9<br>9.0<br>1.1<br>1.3<br>1.3<br>1.3<br>1.3<br>1.3<br>1.3<br>1.3<br>1.3<br>1.3                                                                               | 2,320.0<br>2,390.0<br>1,802.0<br>858.0<br>901.0<br>479.0<br>235.0<br>235.0<br>2,016.0<br>10,766.0<br>465.0<br>165.0<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13.2<br>13.6<br>10.2<br>4.9<br>5.1<br>2.7<br>49.7<br>1.2<br>1.3<br>1.1<br>3<br>2.2<br>2.1<br>11.3<br>61.0<br>2.6<br>6.2<br>2.1<br>1.9<br>9.<br>Neg.<br>4.4                                                  | 245.0<br>192.0<br>281.0<br>44.0<br>72.0<br>197.0<br>355.0<br>251.0<br>2,642.0<br>300.0<br>4,467.0<br>5,498.0<br>111.0<br>64.0<br>34.0<br>939.0<br>111.0<br>64.0<br>939.0<br>1,006.0                                     | 1.41<br>1.11<br>1.66<br>2.2.4<br>1.11<br>5.88<br>2.00<br>3.99<br>1.3 15.00<br>1.44<br>1.77<br>25.3 31.1<br>1.66<br>6.6<br>2.2<br>1.9<br>4.8<br>1.9<br>1.9<br>1.9                                                | 18,986.0  233.0  872.0                                                                                                                | 114.2<br>1.4<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 99,477.0  2,798.0  2,582.0  2,595.0  902.0  907.0  564.0  1,495.0  506.0  5,309.0  91.23.0  20.030.0  496.0  110.0  978.0  229.0  2,909.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0  8,189.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16.0<br>14.7<br>17.0<br>5.1<br>15.5<br>3.9<br>62.2<br>3.6<br>62.8<br>8.6<br>6.2<br>8.8<br>6.5<br>6.5<br>8.8<br>6.5<br>11.3<br>16.9<br>11.3<br>16.9<br>11.3<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Region II: Minneaota. Minneaota. Minneaota. Misaouri. North Dekota. South Dakota. Nebraska. Subtotal IIa. Subregion IIb: Arkansa. Oklahoma. Texas. New Mexico. Kansas: New Mexico. III. Subtotal III. Subregion III.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 43,303.0  409.0 1,376.0 1,507.0 8.0 3,300.0 1,955.0 2,2465.0 79,258.0 431.0 20,10,10,10,10,10,10,10,10,10,10,10,10,10                                   | 2.50.5<br>8.0 8.6 8.6 8.6 8.6 8.7 19.1 11.1 126.4 4.7.5 272.0 6.6 1.7.7 13.8 8.6 6.1 7.7 0.0 Neg 13.7 - 63.7 7.0 7.7 63.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +23.0<br>+17.0<br>+9.0<br>-46.0<br>-3.0<br>+9.0<br>-141.0<br>-681.0<br>+5.0<br>-605.0<br>+20.0<br>-1.396.0<br>-1.396.0<br>-2.0<br>-2.0<br>-2.0<br>-2.0<br>-2.0<br>-2.0<br>-2.0<br>-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +.11<br>+.11<br>33<br>Neg., +.11<br>+.11<br>+.11<br>+.11<br>83.9<br>Neg., -3.4<br>+.11<br>Neg., -3.4<br>1.0<br>2<br>1.1<br>1.1<br>1.2<br>2<br>3.3<br>4.4<br>1.1<br>1.2<br>1.2<br>1.3<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1. | +2,366.0<br>+2,565.0<br>+1,570.0<br>+559.0<br>+7,595.0<br>-1,290.0<br>-20,089.0<br>-20,089.0<br>-21,290.0<br>-31,401.0<br>-31,401.0<br>-31,401.0<br>-31,401.0<br>-31,610.0<br>-31,610.0<br>-31,610.0<br>-31,610.0<br>-31,610.0<br>+31,610.0<br>+31,610.0<br>+31,610.0<br>+31,610.0<br>+31,610.0<br>+31,610.0<br>+31,610.0<br>+31,610.0<br>+31,610.0<br>+31,610.0<br>+31,610.0<br>+1,316.0<br>+1,316.0<br>+1,316.0<br>+1,316.0<br>+1,316.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +13.4<br>+14.6.6<br>+14.6.9<br>+25.5<br>+3.8<br>+43.0<br>-7.1<br>-113.9<br>-9.9<br>-371.1<br>-328.1<br>+.2<br>+.9<br>-1.3<br>-3.7<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.2<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>-1.4<br>+4.3<br>+4.3<br>+4.3<br>+4.3<br>+4.3<br>+4.3<br>+4.3<br>+4 | 2,798.0<br>2,582.0<br>2,555.0<br>902.0<br>937.0<br>10,907.0<br>1,495.0<br>5,306.0<br>5,309.0<br>5,511.0<br>20,030.0<br>496.0<br>110.0<br>978.0<br>857.0<br>229.0<br>229.0<br>187.0<br>285.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857.0<br>857. | 16.00<br>14.77<br>5.11<br>17.00<br>5.11<br>17.00<br>5.3.99<br>62.22<br>8.66<br>2.88<br>3.11<br>3.99<br>52.44<br>114.66<br>5.88<br>5.5<br>1.1<br>1.3<br>16.99<br>1.1<br>1.3<br>16.90<br>50.4                                                              | 2,320.0<br>2,390.0<br>1,802.0<br>858.0<br>901.0<br>479.0<br>235.0<br>235.0<br>2,016.0<br>10,762.0<br>465.0<br>102.0<br>465.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>105.0<br>1 | 13.2<br>13.6<br>10.2<br>4.9<br>5.1<br>2.7<br>49.7<br>1.2<br>1.3<br>1.1<br>1.4<br>2.2<br>11.3<br>61.0<br>2.6<br>6.2<br>.2<br>.1<br>9.8<br>8.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8        | 245.0<br>192.0<br>281.0<br>44.0<br>72.0<br>1,031.0<br>355.0<br>690.0<br>249.0<br>300.0<br>4,467.0<br>5,498.0<br>20.0<br>111.0<br>105.0<br>44.0<br>300.0<br>93.0<br>93.0<br>90.0<br>64.0<br>90.0<br>64.0<br>90.0<br>90.0 | 1.44<br>1.11<br>1.66<br>2.24<br>4.1.1<br>5.88<br>2.00<br>1.39<br>15.00<br>1.4<br>1.77<br>25.3<br>31.1<br>1.66<br>6.6<br>2.2<br>2.1<br>9.9<br>4.8eg.<br>5.3<br>5.7                                               | 18,986.0  233.0  872.0                                                                                                                | 1.4.2<br>1.4<br>5.2<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 99,477.0  2,798.0  2,882.0  2,882.0  973.0  10,907.0  564.0  1,495.0  506.0  506.0  506.0  506.0  141.0  98.0  187.0  20,030.0  187.0  20,030.0  187.0  20,030.0  187.0  20,030.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.00<br>14.7.<br>17.00<br>5.1.<br>5.5.<br>9.62.2<br>3.2.<br>8.6.<br>8.30.8<br>3.1.<br>114.6<br>2.8<br>8.8<br>8.8<br>8.8<br>114.6<br>11.1<br>1.3<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Electricity generation, utilities; and miscellaneous and unaccounted for sectors do not apply to this commodity.

\*\*Althdrawals from stocks add to supply and are indicated by plus signs; additions to stocks reduce supply and are indicated by minus signs.

\*\*Includes net shipments: -0:01.0 thousand berrels; -3.4 trilino Bru.

|                                   |                    |               |                      |       |                       |                 |                      |                | 1960                 |                |                  |       |                    |       |               |       |                |       |                    |                |
|-----------------------------------|--------------------|---------------|----------------------|-------|-----------------------|-----------------|----------------------|----------------|----------------------|----------------|------------------|-------|--------------------|-------|---------------|-------|----------------|-------|--------------------|----------------|
|                                   |                    |               |                      | S     | upply                 |                 |                      |                |                      |                |                  |       | Depand by          | naior | consumer      | aecto | ra             |       |                    |                |
|                                   |                    |               |                      |       |                       |                 | Total a              |                | Househo              |                |                  |       |                    |       | Electri       | city  | Miscella       |       | Total d            | lomustic       |
| State and Region                  | Refinery           | Tril-         | Stock ch<br>Thousand |       | Net ship<br>Thousand  | Trillion        | availat              |                | Thousand             |                | Indust           |       | Transport          |       | generat       |       | and ur         |       |                    | and            |
| orace one negron                  | barrels            | lion          | barrels              | lion  | barrels               | Btu             | Thousand             |                | barrels              | lion           | Thousand         | lion  | Thousand           | llon  | Thousand      |       | Thousand       |       | Thousand           | Trll-<br>lion  |
|                                   |                    | Btu           |                      | 8tu   | 0.000                 |                 | barrals              | lion           | Juliero              | Btu            | Darrers          | 8tu   | Pariers            | Btu   | barrels       | llon  | barrels        |       | parrets            | 8tu            |
| United States total.              |                    |               |                      |       |                       |                 |                      | Btu            |                      |                |                  |       |                    |       |               | 8tu   |                | 8tu   |                    |                |
| Region 1:                         | 667,050.0          | 3,885.5       | +12,709.0            | +73.8 | +3,566.0              | +20.9           | 683,325.0            | 3,980.2        | 438,010.0            | 2,551.4        | 46,218.0         | 269.1 | 148,880.0          | 867.3 | 4,742.0       | 27.4  | 45,475.0       | 265.0 | 683,325.0          | 3,980.2        |
| Subregion la:                     |                    |               |                      |       |                       |                 |                      | 1              |                      |                | 1                | ì     | Ì                  | l     |               |       |                |       | i                  | i              |
| Maine                             | -                  | -             | +93.0                |       | ÷7,363.0              | +42.9           | 7,456.0              |                | 5,822.0              | 33.9           | 169.0            |       |                    |       | 110.0         | .6    | 122.0          |       | 7,456.0            | 43.4           |
| New Hampshire<br>Vermont          | -                  |               | +46.0                | +.3   | +4,438.0              | +25.8           | 2,939.0              | 26.1           | 4,181.0              | 24.3           | 49.0<br>67.0     |       | 204.0              | 1.2   | 15.0          | 1     | 35.0           | .2    |                    | 26.1<br>17.1   |
| Massachusetts                     | 3,838.0            | 22.4          | +281.0               |       | +46,903.0             |                 | 51,022.0             |                | 47,441.0             | 276.2          | 800.0            |       | 2,299.0            |       | 273.0         | Neg.  | 209.0          |       |                    |                |
| Rhode 1sland                      | 787.0              |               | -929.0               |       | +8,235.0              | +47.9           | 8,093.0              | 47.1           | 6,933.0              | 40.3           | 303.0            |       | 810.0              | 4.7   | 34.0          | .2    | 13.0           | -1    | 8,093.0            | 47.1           |
| Connecticut<br>New York           |                    | 34.4          | +93.0                | +.5   |                       | +134.8          |                      | 135.3          | 21,130.0             | 123.1          | 921.0            |       |                    | 6.1   | 38.0          | .2    | 101.0          | .6    |                    | 135.3          |
| New Jersey                        | 5,914.0            |               | +571.0               | +3.3  | +75,192.0             | +437.9          | 81,677.0<br>45,542.0 | 475.6<br>265.3 | 67,937.0<br>38,615.0 | 395.5<br>225.0 |                  | 20.8  | 8,445.0<br>4,595.0 | 49.1  | 181.0         | 1.1   |                | 9.1   | 81,677.0           | 475.6<br>265.3 |
| Pennsylvania                      | 53,826.0           | 313.5         |                      | +2.3  | -8,550.0              |                 | 45,668.0             |                | 32,966.0             | 192.2          |                  |       | 7,291.0            |       | 88.0          | .5    | 962.0          | 5.6   |                    | 266.0          |
| Delaware                          | 11,775.0           | 68.6          | +640.0               | +3.7  | -9,692.0              | -56.4           | 2,723.0              | 15.9           | 2,318.0              | 13.5           | 203.0            |       | 149.0              | .9    | 30.0          | .2    | 23.0           | - 1   | 2,723.0            | 15.9           |
| Maryland<br>District of           | 1,026.0            | 6.0           | +1,112.0             | +6.5  | +10,963.0             | +63.8           | 13,101.0             | 76.3           | 9,726.0              | 56.7           | 344.0            | 1.9   | 2,315.0            | 13.5  | 301.0         | 1.8   | 415.0          | 2.4   | 13,101.0           | 76.3           |
| Columbia                          |                    |               |                      |       | +2,914.0              | +17.0           | 2,914.0              | 17.0           | 2,463.0              | 14.4           | 8.0              | Neg.  | 303.0              | 1.8   | 36.0          | .2    | 104.0          | .6    | 2,914.0            | 17.0           |
| Virginis                          | 4,231.0            | 24.6          | +300.0               | +1.7  | +9,653.0              |                 | 14.184.0             | 82.6           | 8,634.0              | 50.3           | 879.0            | 5.1   | 4,014.0            |       | 103.0         | .6    | 554.0          | 3.2   | 14,184.0           | 82.6           |
| West Virginis                     | 554.0              | 3.2           |                      | +.6   | +1,808.0              | +10.5           | 2,462.0              | 14.3           | 405.0                | 2.3            | 275.0            |       | 1,714.0            | 10.0  | -             | -     | 68.0           | .4    | 2,462.0            | 14.3           |
| North Carolina                    | 418.0              |               | +418.0               |       |                       |                 | 13,353.0             | 77.8           | 8,943.0              | 52.1<br>18.1   | 596.0<br>253.0   |       | 3,128.0            | 18.2  | 24.0          | -1    | 662.0          |       |                    | 77.8<br>30.3   |
| South Carolina<br>Georgia         | 127.0              |               | +224.0               |       |                       |                 |                      | 30.3           | 1,205.0              | 7.1            | 468.0            |       | 1,171.0            | 14.8  |               |       | 899.0          |       |                    | 29.8           |
| Florida                           | 213.0              | 1.2           | +332.0               |       |                       |                 |                      | 52.3           | 2,404.0              | 13.8           | 607.0            | 3.6   | 3,795.0            | 22.1  | 576.0         | 3.5   |                |       |                    | 52.3           |
| Kantucky                          | 6,446.0            | 37.6          |                      |       |                       |                 | 4,833.0              | 28.2           | 1,147.0              | 6.7            | 588.0            |       | 2,492.0            | 14.5  | 4.0           | Neg.  | 602.0          | 3.5   | 4,833.0            | 28.2           |
| Tennessee                         | 1,402.0            | 8.2           |                      | +1.4  | +3,620.0<br>+5,037.0  | +21.1           | 5,268.0              |                | 746.0<br>421.0       | 2.5            | 522.0<br>1,380.0 | 8.0   | 2,861.0            | 16.7  | 1             |       | 1,139.0        | 6.6   | 5,268.0            | 30.7           |
| Mississippi                       | 1.145.0            | 6.7           | -58.0                | 3     | +1,277.0              | +7.4            | 2,364.0              | 13.8           | 49.0                 | 1.3            | 385.0            | 2.3   | 848.0              | 4.9   |               |       | 1,082.0        |       | 2,364.0            | 13.8           |
| Ohio                              | 23,890.0           | 139.1         | +879.0               | +5.1  | -933.0                | -5.4            | 23,836.0             | 138.8          | 12,065.0             | 70.3           | 2,550.0          | 14.8  | 7,754.0            | 45.2  | 124.0         | .7    | 1,343.0        | 7.8   | 23,836.0           | 138.8          |
| Subtotal la<br>Subregion lb:      | 161,780.0          | 942.3         | +7,143.0             | +41.3 | +210,887.0            | +1,228.5        | 379,810.0            | 2,212.1        | 281,228.0            | 1,637.9        | 20,981.0         | 122.3 | 61,718.0           | 359.5 | 1,979.0       | 11.6  | 13,904.0       | 80.8  | 379,810.0          | 2,212.1        |
| Indiana                           | 36,499.0           | 212.6         | +464.0               | +2.7  | -11,367.0             | -66.2           | 25,596.0             | 149.1          | 17,460.0             | 101.8          | 3,191.0          | 18.6  | 3,832.0            | 22.3  | 126.0         | 7     | 987.0          | 5.7   | 25,596.0           | 149.1          |
| lllinois                          | 40,234.0           | 234.4         | -566.0               | -3.3  | +2,822.0              | +16.4           | 42,490.0             | 247.5          | 29.987.0             | 174.5          | 1.733.0          | 10.1  | 8,549.0            | 49.8  | 237.0         | 1.4   | 1.984.0        | 11.7  | 42,490.0           | 247.5          |
| Michigen                          | 13,136.0           | 76.5          | +251.0               |       | +17,077.0             | 499.5           | 30,464.0             | 177.5          | 25,409.0             | 147.9          |                  | 6.4   | 2,380.0            | 13.9  | 433.0         | 2.6   | 1,146.0        | 6.7   | 30,464.0           | 177.5          |
| Wisconsin<br>Subtotal Ib          | 1,194.0            | 530.5         | -140.0<br>+9.0       | 8     | +20,657.0             |                 | 21,711.0             | 126.5          | 90,012.0             | 100.0          |                  |       | 1,595.0            | 9.3   | 57.0<br>853.0 | 5.0   | 716.0          | 4.2   | 21,711.0           | 700.6          |
| Subtotsi I                        | 252,843.0          | 1,472.8       | +7,152,0             | +41.4 | +240,076.0            | +1,398.5        | 500,071.0            | 2,912.7        | 371,240.0            | 2,162.1        | 29,188.0         | 170.1 | 78,074.0           | 454.8 | 2,832.0       | 16.6  | 18,737.0       | 109.1 | 500,071.0          | 2,912.7        |
| Region 11:                        |                    |               |                      |       |                       |                 |                      |                |                      |                |                  | ,     |                    |       |               |       |                |       |                    |                |
| Subregion Ila:<br>Minnesota       | 5,232.0            | 30.5          | +37.0                |       | +10,972.0             | +63.9           | 16,241.0             | 94.6           | 10,792.0             | 63.0           | 900.0            | 5.2   | 3,111.0            | 18.1  | 314.0         | 1.8   | 1.124.0        | 6.5   | 16,241.0           | 94.6           |
| lowa                              | 3,232.0            | 30.5          | +37.0                | +.2   | +11,141.0             |                 | 11,141.0             | 64.9           | 8,126.0              | 47.4           | 196.0            |       | 1,689.0            | 9.8   | 283.0         | 1.6   | 847.0          |       |                    | 64.9           |
| Missouri                          | 4,997.0            | 29.1          | +65.0                | +.4   | +7,768.0              | +45.2           | 12,830.0             | 74.7           | 6,271.0              | 36.5           | 607.0            | 3.6   | 4,419.0            | 25.7  | 245.0         | 1.4   | 1,288.0        | 7.5   | 12,830.0           | 74.7           |
| North Dakota<br>South Dakota      | 4,213.0            |               | +32.0                |       | -470.0                | -2.7<br>+17.6   | 3,775.0              | 22.0           | 2,345.0              | 13.8           | 42.0             |       |                    |       | 22.0<br>42.0  | .1    | 779.0          |       | 3,775.0            | 22.0<br>17.3   |
| Nebraska                          | 210.0              | 1.2           | -20.0                | - 3   | +3,012.0              |                 | 2,964.0<br>4,183.0   | 24.4           | 2,095.0              | 12.3           | 25.0             |       | 1.393.0            | 2.1   | 113.0         | -2    | 765.0          |       | 2,964.0            | 24.4           |
| Subtotal Ila                      |                    |               |                      | +.4   | +36,416.0             |                 | 51,134.0             |                |                      |                |                  |       | 11,557.0           |       |               | 5.8   |                |       |                    | 297.9          |
| Subregion 11b:                    |                    |               |                      |       |                       |                 |                      |                |                      |                |                  |       |                    |       |               |       |                |       |                    |                |
| Arkansas<br>Louisiana             | 6,300.0            | 36.7<br>311.7 | -59.0<br>+418.0      | +2.4  | -4,189.0<br>-43,221.0 | -24.4<br>-251.8 | 2,052.0              |                | 1,401.0              | .8<br>8.1      | 124.0            | 11.9  | 912.0              | 32.2  | 41.0<br>51.0  | .2    | 835.0          |       | 2,052.0            | 12.0           |
| Oklahoma                          | 32,870.0           |               | -137.0               | 8     |                       | -175.3          |                      | 15.3           | 375.0                | 2.1            | 205.0            |       | 1,303.0            |       | 50.0          | .3    |                |       | 2,631.0            | 15.3           |
| Texas                             | 185,901.0          | 1,082.8       |                      |       | -166,095.0            | -967.5          | 24,315.0             | 141.6          | 1,925.0              | 11.2           | 4,161.0          | 24.1  | 13,187.0           | 76.8  | 36.0          | .2    | 5,006.0        |       | 24,315.0           | 141.6          |
| New Mexico                        | 1,521.0            | 8.9           | +22.0                | +.1   | +1,522.0              | +8.9            | 3,065.0              | 17.9           | 502.0                | 3.1            | 322.0            | 1.8   | 1,886.0            | 11.0  | 21.0          | -1    | 334.0<br>751.0 | 1.9   | 3,065.0<br>4,751.0 | 17.9           |
| Kansas                            | 307.132.0          | 1,789.1       | +224.0               | +29.0 | -22,516.0             | -131.2          | 4,751.0              | 27.7           | 5,013.0              | 3.9            | 7,028.0          | 40.7  | 25,825.0           | 17.7  | 340.0         | 1.9   | 9,302.0        | 54.4  | 47,508.0           |                |
| Subtots 11.                       |                    |               |                      |       |                       |                 |                      |                |                      |                |                  |       | 37,382.0           |       |               |       |                |       | 98,642.0           |                |
| Region 111:                       |                    |               |                      |       |                       |                 |                      |                |                      |                |                  |       |                    |       |               |       |                |       |                    |                |
| Subregion IIIa:<br>Montana        | 5,218.0            | 30.4          | +344.0               | +2.0  | -685.0                | -4.0            | 4,877.0              | 28.4           | 1,066.0              | 6.2            | 160.0            | . 9   | 2.815.0            | 16.4  |               |       | 836.0          | 4.9   | 4,877.0            | 28.4           |
| Idaho                             |                    |               | -3.0                 | Neg.  | +4,058.0              | +23.6           | 4,055.0              | 23.6           | 2,457.0              | 14.3           | 344.0            | 2.0   |                    | 3.6   |               |       | 636.0          | 3.7   | 4,055.0            | 23.6           |
| Wyoming                           | 7,227.0            |               | +72.0                | +.4   | -4,041.0              | -23.5           | 3,258,0              | 19.0           | 178.0                | 1.0            | 722.0            | 4.3   | 1,737.0            | 10.1  | -             |       | 621.0          | 3.6   | 3,258.0            | 19.0           |
| Utah                              | 8,659.0            | 50.4          |                      | 6     | -4,711.0              | -27.4           | 3,841.0              | 22.4           | 851.0                | 5.0            | 218.0            | 1.3   | 2,285.0            | 13.3  | 93.0          | .5    | 394.0<br>702.0 | 2.3   | 3,841.0<br>4,225.0 | 22.4           |
| Colorado<br>Washington            | 2,774.0<br>6,855.0 | 16.2<br>39.9  |                      |       |                       | +9.1<br>+65.1   |                      | 24.6           | 996.0                | 5.8<br>75.4    | 360.0<br>777.0   | 2.1   | 2,109.0            |       | 58.0          | 3     | 1.816.0        |       | 18,045.0           | 105.1          |
| Oregon                            | Neg.               | Neg.          | -26.0                | 2     | +10,946.0             | +63.8           | 10,920.0             | 63.6           | 5,922.0              | 34.5           | 989.0            | 5.8   | 2,803.0            | 16.3  | -             | -     | 1,206.0        | 7.0   | 10,920.0           | 63.6           |
| Subtotal Ills.                    | 30,733.0           | 179.0         | +180.0               | +1.0  | +18,308.0             | +106.7          | 49,221.0             | 286.7          | 24,419.0             | 142.2          | 3,570.0          | 20.9  | 14,870.0           | 86.6  | 151.0         | . 8   | 6,211.0        | 36.2  | 49,221.0           | 286.7          |
| Subregion 111b:<br>Arizona        |                    |               | -13.0                | - 1   | +2,787.0              | +16.3           | 2,774.0              | 16.2           |                      |                | 534.0            | 3.2   | 1,356.0            | 7.9   | 1.0           | Non   | 654.0          | 3.8   | 2,774.0            | 16.2           |
| Nevads                            |                    |               | -5.0                 |       | +2,787.0              | +14.1           | 2,428.0              |                | 229.0                | 1.3            | 165.0            |       | 1,482.0            | 8.6   | 36.0          | Neg.  | 231.0          |       | 2,428.0            |                |
| California                        |                    |               | +354.0               | +2.1  | -35,005.0             | -203.9          | 26,697.0             | 155.5          | 3,431.0              | 20.0           | 3,678.0          | 21.3  | 14,963.0           | 87.2  | 246.0         | 1.4   | 4,379.0        | 25.6  | 26,697.0           | 155.5          |
| Subtotal IIIb.<br>Subregion IIIc: | 61,348.0           | 357.3         | +336.0               | +2.0  | -29,785.0             | -173.5          | 31,899.0             | 185.8          | 4,174.0              | 24.3           | 4,377.0          | 25.5  | 17,801.0           | 103.7 | 283.0         | 1.6   | 5,264.0        | 30.7  | 31,899.0           | 185.8          |
| Subregion Ille:<br>Alasks         |                    |               | -3.0                 | Neg.  | +2,619.0              | +15.2           | 2,616.0              | 15.2           | 1,588.0              | 9.2            | 169.0            | 1.0   | 513.0              | 3.0   | 86.0          | .5    | 260.0          |       | 2,616.0            | 15.2           |
| Hawaii                            | 342.0              | 2.0           | +1.0                 | Neg.  | +533.0                | +3.1            | 876.0                | 5.1            | 71.0                 | . 5            | 80.0             | .4    | 240.0              | 1.4   | 31.0          | .2    | 454.0          | 2.6   | 8/6.0              | 5.1            |
| Subtotal lilc.                    | 342.0              | 2.0           | -2.0                 | Neg.  | +3,152.0              | +18.3           | 3,492.0              | 20.3           | 1,659.0              | 9.7            | 249.0            | 1.4   | 753.0              | 4.4   | 117.0         | .7    | 714.0          | 4.1   | 3,492.0            | 20.3           |

Saketai IIIc. | \$2(3) | \$2.0 | \$2.0 | \$4.0 | \$4.1 | \$2.0 | \$4.0 | \$2.0 | \$4.0 | \$2.0 | \$4.0 | \$2.0 | \$4.0 | \$2.0 | \$4.0 | \$2.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 | \$4.0 |

|                                   |                 |              |                  |             |                        |          |                    |               | 1960                |              |                  |              |                |              |                   |              |                |             |                     |                |
|-----------------------------------|-----------------|--------------|------------------|-------------|------------------------|----------|--------------------|---------------|---------------------|--------------|------------------|--------------|----------------|--------------|-------------------|--------------|----------------|-------------|---------------------|----------------|
|                                   |                 |              | _                | _           | Supply                 |          | Total s            |               |                     |              |                  |              | enand by a     | ajor c       |                   |              |                |             |                     |                |
|                                   | Refinery        | output       | Stock ch         | ange1       | Net ship               | ments2   | availab            |               | Househol            |              | Indust           | m4+1         | Transport      |              | Electri           |              | Miscella       |             | Total do            |                |
| State and Region                  | Thousand        | Tril-        | Thousand         | Tril-       |                        | Trillion | consum             | ption         | Thousand            |              | Thousand         | Tril-        | Thousand       | Tril-        | generat           |              | and un         |             | Thousand            |                |
|                                   | Darreis         | 8tu          | barrels          | 8tu         | barrels                | 8tu      | Thousand           | Tril-<br>lion | barrels             | lion<br>Stu  | barrels          | lion<br>Stu  | barrels        | lion         | Thousand          |              | Thousand       | Tril-       | barrels             | lion           |
|                                   |                 |              |                  |             |                        |          |                    |               |                     |              |                  |              | ł              | Btu          | barrels           |              |                | lion<br>Btu |                     | 8tu            |
| United States total.<br>Region I: | 332,147.0       | 2,088.1      | +8,391.0         | +52.6       | +209,998.0             | +1,320.3 | 550,536.0          | 3,461.0       | 125,088.0           | 786.5        | 202,331.0        | 1,271.9      | 131,418.0      | 826.1        | 85,408.0          | 536.9        | 6,291.0        |             | 550,536.0           | 3,461.0        |
| Subregion la:                     | 3               |              | ì                |             |                        |          |                    |               |                     |              |                  |              |                |              |                   |              |                |             |                     |                |
| Maine                             |                 | -            | +11.0            |             | +5,731.0               |          | 5,742.0            | 36.1          | 1,179.0             |              |                  | 9.2          | 760.0          | 4.8          | 2,256.0           | 14.2         | 80.0           | .5          | 5,742.0             | 36.1           |
| New Hampshire<br>Vermont          |                 |              | +6.0             | Neg.        | +2,318.0               |          | 2,324.0            | 14.6          | 196.0               | 1.3          |                  | 3.3          | 48.0           | .3           | 1,547.0           | 9.7          | 4.0            | Neg.        | 2,324.0             | 14.6           |
| Massachusetts                     | 879.0           | 5.5          | +6.0             | Neg.        | +492.0                 | +3.1     | 498.0<br>38,942.0  | 3.1           | 141.0               | 101 6        | 326.0            | 69.9         | 1,182.0        | 7-4          | 31.0              | .2           | 44.0           |             | 498.0               | 3.1            |
| Rhode Island                      | 140.0           | . 9          |                  | 9           | +9,513.0               |          | 9,502.0            | 59.7          | 2,524.0             | 15.9         | 2,636.0          | 16.5         | 3,746.0        |              | 10,433.0<br>579.0 | 3.6          | 17.0           |             | 38,942.0<br>9,502.0 | 244.8          |
| Connecticut<br>New York           | 4,079.0         | 25.6         | +11.0            |             | +14,439.0              | +90.7    |                    | 90.8          | 3,981.0             |              |                  | 53.8         | 200.0          | 1.3          | 1,698.0           | 10.7         |                | - 1         | 14,450.0            | 90.8           |
| New Jersey                        | 23,188.0        | 145.8        | +2.0             |             | +72,543.0              | +456.1   | 76,586.0           | 481.5         | 38,084.0<br>4,079.0 | 25.6         |                  | 71.5         |                | 104.9        | 10,291.0          | 64.8<br>74.0 | 129.0<br>54.0  | .8          | 76,586.0            | 481.5          |
| Pennsylvania                      | 27,273.0        | 171.5        | +334.0           | +2.1        | +15,124.0              | +95.0    | 42,731.0           | 268.6         | 9,939.0             | 62.5         |                  | 151.6        | 4,900.0        |              |                   |              | 409.0          | 2.6         | 42,791.0            | 269.0<br>268.6 |
| Delaware<br>Maryland              | 3,252.0<br>73.0 | 20.4         | +50.0            |             | +2,779.0               | +17.5    | 6,081.0            | 38.2          | 726.0               | 4.6          | 3,407.0          | 21.4         | 1,433.0        | 9.0          | 4.0               | Neg.         | 511.0          | 3.2         | 6,081.0             | 38.2           |
| District of                       | /3.0            | .5           | +146.0           | +.9         | +16,271.0              | +102.3   | 16,490.0           | 103.7         | 4,486.0             | 28.1         | 7,992.0          | 50.3         | 3,812.0        | 24.0         | 170.0             | 1.1          | 30.0           | .2          | 16,490.0            | 103.7          |
| Columbia                          |                 | -            | -                | -           | +2,387.0               | +15.0    | 2,387.0            | 15.0          | 2,205.0             | 13.8         | 128.0            | . 8          | 27.0           | .2           | 18.0              | 1            | 9.0            |             | 2,387.0             | 15.0           |
| Virginia<br>West Virginia         | 499.0           | 3.1          | +39.0            | +.2         | +16,910.0              | +106.4   | 17,448.0           | 109.7         | 2,975.0             | 18.8         | 2,688.0          | 16.9         | 11,534.0       | 72.4         | 123.0             | .8           | 128.0          | .8          | 17,448.0            | 109.7          |
| North Caroling                    | 67.0            | 4            | +16.0            | +.1         | +1,368.0<br>+4,487.0   | +8.6     | 1,451.0<br>4,537.0 | 9.1           | 96.0<br>734.0       | 4.6          | 1,319.0          | 8.3<br>19.1  | 3.0            |              | 33.0              | .2           | 1              | 1           | 1,451.0             | 9.1            |
| South Carolina                    | 5.0             | Neg.         | +34.0            | +.2         | +4,595.0               | +28.9    | 4,634.0            | 29.1          | 597.0               | 3.8          |                  | 15.9         | 1.115.0        | 7.0          | 49.0<br>25.0      | .3           | 233.0          |             | 4,537.0<br>4,634.0  | 28.5           |
| Georgia<br>Florida                | 75.0            | .5           | +40.0            |             | +6,298.0               | +39.5    | 6,413.0            | 40.3          | 72.0                | .5           | 4,605.0          | 29.0         | 1,512.0        | 9.4          | 37.0              | .2           | 187.0          | 1.2         | 6,413.0             | 40.3           |
| Kentucky                          | 3,597.0         | 22.6         | +39.0            | +.2<br>Neg. | +28,939.0              | +181.9   | 28,978.0           | 182.1         | 979.0<br>15.0       | 6.3          | 10,849.0         | 68.0         | 3,691.0        | 23.3         | 12,550.0          | 78.9         |                |             | 28,978.0            | 182.1          |
| Tennessee                         | 736.0           | 4.6          | -3.0             | Neg.        | -549.0                 | -3.4     | 184.0              | 1.2           | 24.0                | .2           | 141.0            | 1.9          | 8.0            |              |                   | 1 .          | 2.0<br>11.0    | Neg.        | 321.0               | 1.2            |
| Alabana                           | 509.0           | 3.2          | +59.0            | +.4         | +3,634.0               | +22.8    | 4,202.0            | 26.4          | 142.0               | .9           | 1,758.0          | 11.0         | 2,230.0        | 14.0         | -                 |              | 72.0           | .5          | 4,202.0             | 26.4           |
| Hississippi                       | 145.0           | 74.6         | +30.0<br>+133.0  | +.2         | +164.0                 | +1.0     | 339.0<br>11,382.0  | 71.6          | 4.0<br>642.0        | Neg.         | 223.0            | 64.9         | 304.0          | 1.9          | 97.0              | .6           | 4.0            | Neg.        | 339.0               | 2.1            |
| Subtotal Ia                       |                 |              | 4905.0           |             | +261,131.0             | +1.641.5 | 338,413.0          |               | 90,003.0            |              | 130,671.0        | 821.2        |                |              | 112.0             | 347.0        | 3,193.0        | 20.1        | 11,382.0            | 71.6           |
| Subregion Ib:                     |                 |              |                  |             |                        |          |                    |               |                     |              |                  |              |                |              |                   | 31110        |                | AULA        | 330141310           | 2112/12        |
| Indiana<br>Illinois               | 24,745.0        | 155.6        | -297.0<br>-360.0 | -1.9        | +11,184.0              | -72.7    | 12,885.0           | 81.0<br>162.7 | 1,973.0             | 12.3<br>78.5 | 10,345.0         | 65.0<br>75.7 | 343.0          | 2.2          | 183.0             | 1.2          | 41.0           | 3           | 12,885.0            | 81.0           |
| Michigan                          | 8,847.0         | 55.6         | +166.0           | +1.0        | +2,229.0               |          | 11,242.0           | 70.7          | 2,772.0             | 17.4         | 7,691.0          | 48.4         | 713.0          | 7.2          | 105.0             | Neg.         | 97.0<br>61.0   | .6          | 25,893.0            | 162.7<br>70.7  |
| Wisconsin<br>Subtotal Ib          | 2,000.0         | 12.6         | +60.0            | +.4         | +2,215.0               | +13.9    | 4,275.0            | 26.9          | 1,886.0             | 11.9         | 1,972.0          | 12.4         | 370.0          | 2.3          | 17.0              |              | 30.0           | .2          | 4,275.0             | 26.9           |
| Subtotal I                        | 127.038.0       | 798.6        | +474.0           | +2.8        | +4,065,0<br>+265,196.0 | +25.6    | 54,295.0           | 341.3         | 19,132.0            | 120.1        | 32,054.0         | 201.5        | 2,570.0        | 16.2         | 310.0             | 2.0          | 229.0          | 1.5         |                     |                |
| Region II:                        |                 |              | 127.110          | 1,000       | 1000111000             | 12,00711 | 372,70010          | 2,400.5       | 109,133.0           | 000.1        | 102,723.0        | 1,022.7      | 61,941.0       | 309-1        | 23,483.0          | 349.0        | 3,422.0        | 21.6        | 392,708.0           | 2,468.3        |
| Subregion Ila:                    | 2 0/0 0         |              |                  |             |                        |          |                    |               |                     |              |                  |              |                |              |                   |              |                |             |                     |                |
| Iowa                              | 3,960.0         | 24.9         | +147.0           | +.9         | +2,256.0<br>+1,021.0   | +14.2    | 6,363.0            | 40.0          | 1,311.0             | 8.3          | 4,869.0<br>390.0 | 30.6         | 93.0<br>222.0  | 1.4          | 78.0<br>10.0      | .5           | 12.0<br>16.0   | .1          | 6,363.0             | 40.0           |
| Missouri                          | 835.0           | 5.2          | -84.0            | 5           | +2,275.0               | +14.3    | 3,026.0            | 19.0          | 1,557.0             | 9.7          | 1,254.0          | 7.9          | 33.0           | .2           | 60.0              | .4           | 122.0          | .8          | 3,026.0             | 19.0           |
| North Dakota<br>South Dakota      | 572.0           | 3.6          | -3.0             |             | +91.0                  | +.6      | 663.0              | 4.2           | 76.0                | .5           | 514.0            | 3.3          | 68.0           | .4           | 5.0               | Neg.         | -              | - 1         | 663.0               | 4.2            |
| Nebraska                          | 171.0           | 1.1          | +2.0             | Neg.        | +63.0<br>+205.0        | +.4      | 60.0<br>378.0      | 2.4           | 31.0<br>53.0        | .2           | 15.0             | Neg.         | 11.0           | 1.7          |                   | - ,          | 3.0            | Neg.        | 60.0                | 2.4            |
| Subtotal Ila                      | 5,538.0         | 34.8         | +62.0            | +.4         | +5,911.0               | +37.2    | 11,511.0           | 72.4          | 3,411.0             | 21.4         |                  | 44.3         | 253.0<br>680.0 | 4.3          | 65.0<br>218.0     | 1.4          | 154.0          |             | 378,0               | 72.4           |
| Subregion IIb:<br>Arkansas        | 1,671.0         | 10.5         | +41.0            | +.3         | -1,238.0               | -7.8     | 474.0              | 3.0           |                     | _            | 409.0            | 2.6          | 3.0            | William      | (0.0              |              |                |             | 474.0               |                |
| Louisiana                         | 16.862.0        | 106.0        | -375.0           | -2.4        | -7,888.0               | -49.5    | 8,599.0            | 54.1          | 33.0                | . 2          | 605.0            | 2.6          | 7,778.0        | Neg.<br>49.0 | 62.0<br>49.0      | .3           | 134.0          | . 8         | 8,599.0             | 3.0<br>54.1    |
| Oklahoma                          | 4,189.0         | 26.3         | +90.0            | +.6         | -2,883.0               | -18.1    | 1,396.0            | 8.8           | 16.0                | .1           | 1,367.0          | 8.7          | 8.0            | Neg.         | 5.0               | Neg.         | -              | <b>13</b> 1 | 1,396.0             | 8.8            |
| Texas<br>New Mexico               | 58,629.0        | 368.6<br>5.5 | -162.0<br>+4.0   | -1.0        | -36,365.0<br>-712.0    | -228.6   | 22,102.0           | 139.0         | 321.0<br>17.0       | 2.0          | 3,915.0          | 24.6         | 17,365.0       | 109.3        | 32.0              | . 2          | 469.0          | 2.9         | 22,102.0            | 139.0          |
| Kansas                            | 3,291.0         | 20.7         | -390.0           | Neg.        | -652.0                 | -4.1     | 2,249.0            | 1.1           | 195.0               | 1.3          | 1,733.0          | 10.8         | 186.0          | 1.2          | 91.0<br>133.0     | . 5          | 29.0           | Neg.        | 2.249.0             | 1.1            |
| Subtotal IIb                      | 85,523.0        | 537.6        | -792.0           | -5.0        | -49,738.0              | -312.5   | 34,993.0           | 220.1         | 582.0               | 3.7          | 8,041.0          | 50.6         | 25,364.0       | 139.7        | 372.0             | 2.2          | 634.0          | 3.9         | 34,993.0            | 220,1          |
| Subtotal II.<br>Region III:       | 91,061.0        | 572.4        | -730.0           | -4.6        | -43,827.0              | -275.3   | 46,504.0           | 292.5         | 3,993.0             | 25.1         | 15,089.0         | 94.9         | 26,044.0       | 164.0        | 590.0             | 3.6          | 788.0          | 4.9         | 46,504.0            | 292.5          |
| Subregion Illa:                   |                 |              |                  |             |                        |          |                    |               |                     |              |                  |              |                |              |                   |              | _              |             |                     |                |
| Montana                           | 2,165.0         | 13.6         | +327.0           | +2.1        | -470.0                 | -3.0     | 2,022.0            | 12.7          | 354.0               | 2.2          | 1,256.0          | 7.9          | 369.0          | 2.3          | 2.0               | Neg.         | 41.0           | . 3         | 2,022.0             | 12.7           |
| Idaho                             | 3,604.0         | 22.7         | -215.0           | ÷.,         | +201.0                 | +1.3     | 201.0              | 1.3           | 102.0               | .7           | 41.0             | .3           | 51.0           | .3           | i                 |              | 7.0            | Neg.        | 201.0               | 1.3            |
| Wyoning<br>Utah                   | 3,800.0         | 23.9         | -79.0            | -1.4        | +1,841.0               | +11.6    | 5,562.0            | 35.0          | 454.0               | 2.1          | 2,520.0          | 2.7<br>15.8  | 931.0          | 2.3          | 2,209.0           | 13.9         | 12.0<br>17.0   | 131         | 1,738.0             | 35.0           |
| Colorado                          | 1,936.0         | 12.2         | -30.0            | 2           | -116.0                 | 7        | 1.790.0            | 11.3          | 384.0               | 2.4          | 1,179.0          | 7.5          | 134.0          | .8           | 51.0              | . 3          | 42.0           | . 3         | 1,790.0             | 11.3           |
| Washington                        | 9,229.0         | 58.0         | +829.0           | +5.2        | -879.0                 | -5.5     | 9,179.0            | 57.7          | 3,453.0             | 21.7         | 3,586.0          | 22.6         | 1,671.0        | 10.5         | 88.0              | .5           | 381.0          | 2.4         | 9,179.0             | 57.7           |
| Oregon                            | 20,734.0        | 130.4        | +61.0            | +.4         | +5,392.0               | +33.9    | 25,945.0           | 34.3<br>163.2 | 7,122.0             | 12.9         | 1,855.0          | 68.4         | 4,651.0        | 7.1          | 2,392.0           | 15.0         | 409.0<br>909.0 | 5.8         | 25,945.0            | 163.2          |
| Subregion Illb:                   |                 |              |                  |             |                        |          |                    |               | remain with the     |              |                  |              | -103110        | 273.8        |                   |              |                |             |                     |                |
| Arizona                           | -               | -            | +29.0            | +.2         | +66.0                  | +.4      | 95.0               | .6            | 5.0                 | Neg.         | 58.0             | .4           | 17.0           | .1           | 13.0              | 1            | 2.0            | Neg.        | 95.0                | .6             |
| Nevada<br>California              | 93.314.0        | 586.7        | +11.0            | +48.4       | +191.0                 | +1.2     | 202.0<br>78.774.0  | 1.3<br>495.2  | 158.0<br>4,362.0    | 27.4         | 11.0             | 78.5         | 37,802.0       | 237.7        | 2.0               | Neg.         | 31.0<br>810.0  | 5.1         | 78,774.0            | 495.2          |
| Subtotal Illb.                    | 93,314.0        |              | +7,742.0         |             | -21,985.0              | -138.3   |                    | 497.1         | 4,525,0             | 28.4         | 12,554.0         | 79.0         | 37,819.0       |              |                   |              | 843.0          | 5.3         | 79,071.0            | 497.1          |
| Subregion IIIc:                   |                 |              |                  |             |                        | 1        |                    |               | 410                 |              | 010              |              | 16             |              |                   |              | 916            |             |                     |                |
| Alaska<br>Hawaii                  |                 |              | +8.0             | +.1<br>Neg. | +687.0                 | +4.3     | 695.0<br>5,613.0   | 4.4<br>35.3   | 247.0<br>66.0       | 1.6          | 217.0<br>875.0   | 1.4          | 15.0<br>948.0  | 6.0          | 3,609.0           | Neg.         | 214.0<br>115.0 | 1.3         | 695.0<br>5,613.0    | 35.3           |
| Subtotal Ille.                    |                 |              | +12.0            | 0.1         | +6,296.0               | +39.6    | 6,308.0            | 39.7          | 313.0               | 2.0          | 1,092.0          | 6.9          | 963.0          | 6.1          | 3,611.0           | 22.7         | 329.0          | 2.0         | 6,308.0             | 39.7           |
| Subtotal 111                      | 114,048.0       | 717.1        | 98,647.0         | +54.4       | -11,371.0              | -71.5    | 111,324.0          | 700.0         | 11,960.0            | 75.3         |                  | 154.3        | 43,433.0       | 273.0        | 29,333.0          | 184.3        | 2,081.0        | 13.1        | 111.324.0           | 700.0          |

No. - Megligible.

\*\*Comment of the supply and are indicated by plus signs; additions to stocks reduce supply and are indicated by ninus signs.

\*\*Comment of the supply reads; 3.5,664-0 thousand berrein; 1,355-5 trillion du.

|                                   | _                  |              |                 |                   |                       |        |                      |        |                    |              |                  |            |                    |       |                     |             |              |      |                      |               |
|-----------------------------------|--------------------|--------------|-----------------|-------------------|-----------------------|--------|----------------------|--------|--------------------|--------------|------------------|------------|--------------------|-------|---------------------|-------------|--------------|------|----------------------|---------------|
|                                   | Roffmore .         | output and   |                 |                   | Supp                  | ly     |                      |        |                    |              |                  |            | D                  | emand | by major            | consur      |              |      |                      |               |
|                                   | natural            |              | Stock ch        | ange <sup>2</sup> | Net ship              |        | Input                |        | Total a            |              | Nousehol         |            |                    |       | i                   |             | Miscella     |      | Total do             |               |
| State and Region                  |                    | product      |                 |                   | Thousand              | Tett-  | Thousand             |        | consum             |              | Thousand         | 2-11       | Industr            |       | Transpor            | tation      | and un       |      | dena                 |               |
|                                   | Thousand           |              | barrels         |                   | barrets               | lion   | barrels              | lion   | Thousand           |              | barrels          |            | Thousand           | llon  | Thousand<br>barrels | lion        | Thousand     |      | Thousand<br>barrels  | Tril-<br>lion |
|                                   | barrels            | 8tu          |                 | 8tu               |                       | 8tu    |                      | 8tu    | barrels            | llon         |                  | 8tu        | 2011010            | 8tu   |                     | 8tu         | barrels      | lion | 0811618              | 8tu           |
| United States total.              | 276 966 0          | 1.503.7      | -364.0          |                   | +1.079.0              |        | /                    |        |                    | 8tu          |                  |            |                    |       |                     |             |              | 8tu  |                      |               |
| Region 1:                         | 374,000.0          | 1,203.7      | -304.0          | - 1 To            | +1,079.0              | 14.3   | -68,297.0            | -2/3.9 | 307,284.0          | 1,232.6      | 127,285.0        | 510.5      | 149,625.0          | 600,1 | 28,424.0            | 114.0       | 1,950.0      | 8.0  | 307,284.0            | 1,232.6       |
| Subregion Ia:                     | 1                  |              |                 |                   |                       |        |                      |        |                    |              |                  |            |                    |       |                     |             |              |      |                      |               |
| Maine                             |                    | -            |                 |                   | +534.0                | +2.1   |                      |        | 534.0              | 2.1          | 448.0            | 1.8        | 80.0               | . 3   | 6.0                 | Neg.        |              |      | 534.0                | 2.1           |
| New Nampshire                     |                    |              |                 | -                 | +658.0                | +2.6   | -                    |        | 658.0              | 2.6          | 541.0            | 2.2        |                    | . 4   | 5.0                 | Neg.        | -            |      | 658.0                |               |
| Vernont<br>Massachusetts          | 1 1                |              |                 | 1                 | +451.0                | +1.8   | 1                    |        | 451.0              |              | 372.0            | 1.5        |                    | .3    | 3.0                 | Neg.        | -            | 1 .  | 451.0                |               |
| Rhode Island                      |                    |              |                 |                   | +223.0                | +.9    |                      |        | 1,502.0            | 6.0          | 158.0            | .6         | 52.0               | 1.3   | 76.0<br>13.0        | .3          | 15.0         | -1   | 1,502.0              | 6.0           |
| Connecticut                       |                    | -            |                 |                   | +1,318.0              | +5.3   | -                    |        | 1,318.0            |              | 815.0            | 3.3        |                    | 1.7   |                     | :i          | 54.0         |      | 1,318,0              | 5.3           |
| New York                          | 898.0              | 3.6          | +476.0          |                   |                       |        |                      |        | 3,353.0            | 13.4         | 2,651.0          |            |                    |       |                     | .5          |              | Neg. | 3,353.0              | 13.4          |
| New Jersey<br>Pennsylvania        | 4,504.0            | 18.1<br>18.2 | +106.0<br>+14.0 |                   | +344.0                | +1.4   | -1,169.0<br>-1,673.0 | -4.7   | 3,785.0            | 15.2<br>12.0 | 790.0            | 3.2<br>6.4 | 2,857.0<br>1,177.0 | 4.7   | 138.0               | .6          | Neg.         | Neg. | 3,785.0              |               |
| Delsware                          | 2,827.0            | 11.3         | -4.0            |                   | -2,405.0              | -9.6   | -1,6/3.0             | -6.7   | 418.0              | 12.0         | 339.0            | 1.4        | 68.0               | .3    |                     |             |              | Neg. | 2,986.0<br>418.0     |               |
| Maryland                          | -                  | -            |                 | -                 | +1,410.0              | +5.7   |                      | -      | 1,410.0            | 5.7          | 1,052.0          |            |                    | 1.3   |                     | .1          | 3.0          | Neg. | 1,410.0              |               |
| District of                       |                    |              |                 |                   |                       |        |                      |        |                    |              | ,                |            | 1                  |       |                     |             |              |      | 0,                   |               |
| Columbia                          | 670.0              | 2.3          |                 | W.                |                       | +4.2   |                      | -      |                    | -,-          |                  | 1          |                    |       | 1.                  |             | 1            | -    |                      |               |
| Virginis<br>West Virginia         | 578.0<br>8,120.0   | 32.6         | +1.0<br>+5.0    |                   | +1,053.0              | +4.2   |                      |        | 1,632.0            |              | 1,333.0          |            |                    | 40.2  | 81.0<br>12.0        | .3          | 49.0         | .2   | 1,632.0              |               |
| North Carolina                    | -                  |              | +5.0            |                   | +3,774.0              | +15.1  |                      |        | 3,774.0            | 15.1         | 3,015.0          |            |                    | 1.5   |                     | Neg.        | 335.0        |      | 10,338.0<br>3,774.0  | 41.5          |
| South Carolina                    | -                  | -            |                 | -                 | +2,072.0              | +8.3   |                      | -      | 2,072.0            | 8.3          | 1,670.0          | 6.7        | 324.0              | 1.3   | 43.0                | .2          | 35.0         |      | 2,072.0              | 8.3           |
| Georgia                           |                    |              | +11.0           |                   | +4,496.0              | +18.1  |                      |        | 4,507.0            |              | 3,638.0          | 14.6       | 353.0              | 1.4   | 239.0               | 1.0         | 277.0        | 1.1  | 4,507.0              | 18.1          |
| Florida<br>Kentucky               | 1,120.0<br>3,570.0 | 4.5<br>14.3  | +33.0<br>+144.0 |                   | +4,515.0              |        |                      | -      | 5,668.0            |              | 4,818.0          |            |                    |       | 461.0               |             | 11.0         | Neg. | 5,668.0              |               |
| Tennessee                         | 3,570.0            | 14.3         | 7144.0          | 7.0               | +1,490.0              | +6.0   | -127.0               | 5      | 5,204.0            | 20.9<br>7.8  | 1,876.0          |            |                    |       | 123.0<br>188.0      | .5          | 5.0          | Neg. | 5,204.0              |               |
| Alabama                           | 27.0               | 1            | +154.0          | +.6               | +3,241.0              | +13.0  | -127.0               |        | 3,422.0            | 13.7         | 3,143.0          | 12.6       |                    | 1.7   | 149.0               | .6          | 5.0          | Neg. | 3,422.0              | 13.7          |
| Misslssippi                       | 794.0              | 3.2          | +418.0          | +1.7              | +3,794.0              | +15.1  | -685.0               | -2.7   | 4,321.0            | 17.3         | 3,371.0          | 13.5       |                    | .4    | 802.0               |             | 54.0         | .2   | 4,321.0              | 17-3          |
| Ohio                              | 3,105.0            | 12.5         | -264.0          |                   | +3,866.0              | +15.5  | -2,532.0             | -10.2  | 4,175.0            | 16.7         | 2,698.0          | 10,8       | 1,127.0            | 4.5   | 323.0               | 1.3         | 27.0         | J.   | 4,175.0              | 16.7          |
| Subtotal Is<br>Subregion Ib:      | 30,089.0           | 120.7        | +1,094.0        | +4.3              | +38,701.0             | +155.1 | -6,186.0             | -24.8  | 63,698.0           | 255.3        | 37,070.0         | 148.7      | 22,618.0           | 90.7  | 3,120.0             | 12.4        | 890.0        | 3.5  | 63,698.0             | 255.3         |
| Indiana                           | 1.541.0            | 6.2          | -31.0           | 1                 | +8.057.0              | +32.3  | -3,199.0             | -12.9  | 6,368.0            | 25.5         | 4,697.0          | 18.9       | 1,454.0            | 5.8   | 180.0               | ,           | 37.0         | .1   | 6,368.0              | 25.5          |
| lllinois                          | 15,507.0           | 62.2         | +117.0          | +.5               |                       | +20.1  | -3,985.0             | -16.0  | 16,649.0           | 66.8         | 7,046.0          | 28.3       | 8,464.0            | 33.9  |                     | 4.4         | 41.0         |      | 16,649.0             |               |
| Michigan                          | 3,207.0            | 12.9         | +359.0          |                   | +1,367.0              | +5.5   | -629.0               | -2.5   | 4,304.0            | 17.3         | 2,760.0          | 11.1       | 1,412.0            | 5.6   | 116.0               | .5          | 16.0         |      | 4,304.0              | 17.3          |
| Wisconsin                         | 139.0              | 81.9         | -3.0            |                   | +5,310.0              | +21.2  | -178.0               | 7      | 5,268.0            | 21.1         | 4,343.0          |            | 789.0              | 3.2   | 125.0               | . 5         | 11.0         |      | 5,268.0              | 21.1          |
| Subtotal Ib<br>Subtotal I         |                    |              |                 |                   | +19,744.0             |        |                      |        |                    | 130.7        |                  | 75.7       | 12,119.0           | 48.5  | 1,519.0             | 6.1         | 105.0        | .4   | 32,589.0<br>96,287.0 | 386.0         |
| Region II:                        | 30,463.0           | 202.0        | T1,336.0        | 70.1              | TJ8,443.0             | T234.2 | -14,177.0            | -30.7  | 70,207.0           | 300.0        | 33,916.0         | 224.4      | 34,737.0           | 139.2 | 4,639.0             | 18.5        | 995.0        | 3.9  | 96,287.0             | 386.0         |
| Subregion IIa:                    |                    |              |                 |                   |                       |        |                      |        |                    |              |                  |            |                    |       |                     |             |              |      |                      |               |
| Minnesota                         | 632.0              | 2.5          | +42.0           | +.2               | +6,322.0              | +25.4  | -1,068.0             | -4.3   | 5,928.0            | 23.8         | 4,756.0          | 19.1       | 1,000.0            | 4.0   | 129.0               | .5          | 43.0         |      | 5,928.0              | 23.8          |
| Iowa<br>Missouri                  | 174.0              | 7.           | +48.0<br>+40.0  | +.2               | +6,200.0<br>+8,251.0  | +24.9  | -839.0               | -3.4   | 6,248.0<br>7,626.0 | 25.1<br>30.6 | 5,578.0          |            | 410.0              | 1.6   | 188.0               | .8          | 72.0         |      | 6,248.0              |               |
| North Dakota                      | 2,243.0            | 9.0          | +56.0           | +.2               | -578.0                | -2.3   | -839.0               | -2.1   | 1,195.0            | 4.8          | 7,222.0<br>892.0 | 29.0       | 239.0              | 1.0   | 162.0<br>77.0       | .6          | 13.0         |      | 7,626.0              | 30.6          |
| South Dakota                      | -                  | -            |                 |                   | +3,502.0              |        | - 52010              |        | 3,502.0            | 14.0         | 1.409.0          | 5.7        | 2,006.0            | 8.0   | 84.0                | .3          | 3.0          | Neg. | 3,502.0              | 14.0          |
| Nebraska                          | 403.0              | 1.6          | +24.0           | +.1               | +2,982.0              | +12.0  |                      | - 1    | 3,409.0            | 13.7         | 2,995.0          |            | 72.0               | .3    | 340.0               |             | 2.0          | Neg. | 3,409.0              | 13.7          |
| Subtotal IIa                      | 3,452.0            | 13.8         | +210,0          | +.9               | +26,679.0             | +107.1 | -2,433.0             | -9.8   | 27,908.0           | 112.0        | 22,852.0         | 91.7       | 3,940.0            | 15.8  | 980.0               | 3.9         | 136.0        | .6   | 27,908.0             | 112.0         |
| Subregion IIb:<br>Arkansas        | 2,145.0            | 8.6          | +78.0           | +.3               | +3,731.0              | +15.0  | -305.0               | -1.2   | 5,649.0            | 22.7         | 4,024.0          | 16.1       | 120.0              | . 5   | 1,498.0             | 6.1         | 7.0          | Neg. | 5,649.0              | 22.7          |
| Louisiana                         | 43.891.0           | 176.0        | -735.0          |                   | -13,473.0             |        | -8,045.0             | -32.3  | 21,638.0           | 86.8         | 2,540.0          |            |                    | 74.4  | 548.0               |             | 9.0          | Neg. | 21,638.0             |               |
| Oklahoms                          | 25,838.0           | 103.6        | -73.0           | 3                 | -12,719.0             | -51.0  | -5,469.0             | -21.9  | 7,577.0            | 30.4         | 5,461.0          | 21.9       | 410.0              | 1.6   | 1,687.0             | 6.8         | 19.0         | .1   | 7,577.0              | 30.4          |
| Texas                             | 185,527.0          | 744.1        | -1,705.0        | -6.9              | -43,397.0             | -174.0 | -26,040.0            | -104.4 | 114,385.0          | 458.8        | 15,356.0         |            |                    |       | 15,819.0            |             | 262.0        | 1.1  | 114.385.0            | 458.8         |
| New Mexico                        |                    | 73.4         | +225.0          | +.9               | -15,485.0             | -62.1  | -424.0               | -1.7   | 2,609.0            | 10.5         | 1,786.0          | 7.3        |                    | 3.1   | 702.0               | 2.8         |              | Neg. | 2,609.0              | 10.5          |
| Kansaa                            | 16,383.0           | 1.171.4      | +143.0          | -8.4              | -7,613.0<br>-88,956.0 | -30.6  | -2,419.0             |        | 6,494.0            | 635.2        | 4,696.0          | 18.7       | 767.0              |       | 21,272.0            |             | 320.0        | 1.3  | 6,494.0              | 635.2         |
| Subtotal II.                      |                    |              |                 | -7.5              | -62,277.0             | -249.5 | -45,135.0            | -181.0 | 186,260.0          |              |                  |            | 106,837.0          |       |                     |             |              |      | 186,260.0            |               |
| Region 111:                       |                    |              |                 |                   |                       |        |                      |        |                    |              |                  |            |                    |       |                     |             |              |      |                      |               |
| Subregion IIIa:                   |                    |              |                 |                   |                       |        |                      |        |                    |              |                  |            |                    |       |                     |             |              |      | 999.0                |               |
| Montana                           | 1,320.0            | 5.2          | -33.0           | 1                 | +244.0                | +1.0   | -532.0               | -2.1   | 999.0<br>563.0     | 2.3          | 748.0<br>410.0   | 1.6        | 205.0              | . 8   | 46.0<br>15.0        | -2          | Neg.<br>25.0 | - 31 | 999.0                | 4.0<br>2.3    |
| Wyoning                           | 3,895.0            | 15.7         | +9.0            | Neg.              | -2,093.0              | -8.4   | -743.0               | -3.0   | 1,068.0            | 4.3          | 626.0            | 2.5        | 271.0              | 1.1   | 168.0               | .7          | 3.0          |      | 1,068.0              | 4.3           |
| Utah                              | 942.0              | 3.8          | +77.0           | +.3               | +970.0                | +3.9   | -1,274.0             | -5.1   | 715.0              | 2.9          | 595.0            | 2.3        | 64.0               | .3    | 43.0                | .2          | 13.0         | -1   | 715.0                | 2.9           |
| Colorado                          | 2,483.0            | 10.0         | -28.0           | 1                 | +606.0                | +2.4   |                      | 311    | 3,061.0            | 12.3         | 2,617.0          | 10.5       | 113.0              | . 5   | 279.0               | 1.1         | 52.0         | . 2  | 3,061.0              |               |
| Washington                        | 1,336.0            | 5.4          | -6.0            |                   | +31.0                 | +.1    |                      | -      | 1,361.0            | 5.5          | 1,051.0          | 4.2        | 225.0              | .9    |                     | 3           | 14.0         |      | 1,361.0              | 5.5           |
| Oregon<br>Subtotal IIIa.          | 10 097 0           | 40.6         | +18.0           | Neg.              | +877.0                | +3.5   | -2,549.0             | -10.2  | 997.0              | 35.3         | 924.0            | 27.9       | 1,050.0            | 4.3   | 12.0<br>634.0       | Neg.<br>2.6 | 109.0        |      | 8,764.0              | 35.3          |
| Subregion IIIb:                   | .5,077,0           | 40.6         | 710.0           |                   | 1,170.0               | 74.0   | -21,299,0            | -10.2  | 3,704.0            | 33.3         | 0,771.0          | 21.9       | 1,030.0            | 4.3   | 034.0               | 2.0         | 107,0        | -    | 0,704,0              | 33.3          |
| Arizona                           | -                  |              | -               | -                 | +1,057.0              | +4.2   |                      | -      | 1,057.0            | 4.2          | 855.0            | 3.4        | 63.0               | .3    | 137.0               | .5          | 2.0          |      | 1,057.0              | 4.2           |
| Nevada                            |                    | - 1          | .31             |                   | +720.0                | +2.9   |                      |        | 720.0              | 2.9          | 610.0            | 2.5        | 80.0               | .3    |                     | .1          | Neg.         | Neg. | 720.0                | 2.9           |
| California                        |                    | 73.8         | -58.0           | 2                 | +1,950.0              | +7.8   | -6,436.0             | -25.8  | 13,850.0           | 55.6         | 5,994.0          | 23.9       | 6,749.0            | 27.1  | 719.0               | 3.5         | 388.0        | 1.7  | 13,850.0             | 62.7          |
| Subtotal IIIb.<br>Subregion IIIc: | 10,394.0           | 73.8         | -58.0           | 2                 | +3,727.0              | +14.9  | -6,436.0             | - 25.8 | 15,627.0           | 62.7         | 7,459.0          | 29.8       | 6,892.0            | 21.1  | 0.000               | 3.5         | 390.0        | 1./  | .3,027.0             | 0.6.7         |
| Alaska                            | 121.0              | .5           | -1.0            | Neg.              | -16.0                 | 1      | -                    | -      | 104.0              | .4           | 91.0             | . 4        | 12.0               | Neg.  | 1.0                 | Neg.        |              |      | 104.0                | .4            |
| Hawaii                            | 242.0              | 1.0          | -2.0            | Neg.              | +2.0                  | Neg.   |                      |        | 242.0              | 1.0          | 133.0            | .6         | 97.0               | .4    | 12.0                | Neg.        |              |      | 242.0                | 1.0           |
| Subtotal IIIc.                    | 363.0              | 1.5          | -3.0            | Neg.              | -14.0                 | 4      |                      |        | 346.0              | 1.4          | 224.0            | 1.0        | 109.0              | .4    | 13.0                | Neg.        |              |      | 346.0                | 1.4           |

Solution III.C. 30.0 | 1.52 | -2.0 | Mer. | -14.0 | -11 | - | - | 26.0 | 1.6 | 22.0 | 1.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 1

TABLE 12. - Supply and demand for jet fuel (excludes kerosine-type jet fuel) by major consumer sector, by States and Regions

|                                   |                  |          |                 |                     |                    | 65                  |                  |                   |                           |              |                    |             |
|-----------------------------------|------------------|----------|-----------------|---------------------|--------------------|---------------------|------------------|-------------------|---------------------------|--------------|--------------------|-------------|
|                                   |                  |          |                 | Su                  | pply               |                     | 1                |                   | Demand                    | by major     | consumer s         | ector1      |
| State and Region                  | Refiner          | y output | Stock           | change <sup>2</sup> | Net shi            | nmente <sup>3</sup> | Total            | supply<br>ble for | Twancon                   | ****         | Total d            |             |
| The same magazin                  | Thousand         | Trillion | Thousand        | Trillion            |                    | Trillion            |                  | pption            | Transpo                   | Trillion     | Thousand           | Trillion    |
|                                   | barrels          | 8tu      | barrels         | 8tu                 | barrels            | Btu                 | Thousand         | Trillion          | barrels                   | Btu          | barrels            | 8tu         |
| United Chapman total              | 00 500 0         | /22.0    |                 |                     |                    |                     | barrels          | 8tu               |                           |              |                    |             |
| United States total.<br>Region I: | 82,529.0         | 433.0    | +1,566.0        | +8.2                | +30,026.0          | +157.5              | 114,121.0        | 598.7             | 114,121.0                 | 598.7        | 114,121.0          | 598.7       |
| Subregion Ia:                     |                  |          |                 |                     |                    |                     |                  |                   |                           |              |                    |             |
| Maine                             | -                | -        | +4.0            | Neg.                | +3,850.0           | +20.2               | 3,854.0          | 20.2              | 3,854.0                   | 20.2         | 3,854.0            | 20.2        |
| New Hampshire                     | -                | -        | +2.0            |                     | +1,281.0           | +6.7                | 1,283.0          |                   | 1,283.0                   | 6.7          | 1,283.0            |             |
| Vermont                           | -                | -        | -               | -                   | -                  | -                   | -                | -                 | -                         | -            | -                  | -           |
| Massachusetts                     | -                | ~        | +4.0            |                     | +364.0             |                     | 368.0            | 1.9               | 368.0                     | 1.9          | 368.0              | 1.9         |
| Rhode Island<br>Connecticut       | -                | -        | +1.0            |                     | +439.0             | +2.3                | 440.0            | 2.3               | 440.0                     | 2.3          | 440.0              | 2.3         |
| New York                          | 612.0            | 3.2      | +2.0            | Neg.<br>3           | +2,220.0           |                     | 2,222.0          | 11.7              | 2,222.0                   | 11.7         | 2,222.0            | 11.7        |
| New Jersey                        | 749.0            | 3.9      | -33.0           | 2                   | +2,925.0           |                     | 3,487.0          | 18.3<br>10.9      | 3,487.0<br>2,077.0        | 18.3         | 3,487.0<br>2,077.0 | 18.3        |
| Pennsylvania                      | 1,550.0          | 8.1      | -174.0          | 9                   | -390.0             | -2.0                | 986.0            | 5.2               | 986.0                     | 5.2          | 986.0              | 5.2         |
| Delaware                          | /                |          | +1.0            | Neg.                | +491.0             | +2.6                | 492.0            | 2.6               | 492.0                     | 2.6          | 492.0              | 2.6         |
| Maryland                          |                  |          | +3.0            | Neg.                | +1,277.0           |                     | 1,280.0          | 6.7               | 1,280.0                   | 6.7          | 1,280.0            | 6.7         |
| District of                       |                  |          |                 |                     |                    |                     |                  |                   |                           |              |                    |             |
| Columbia                          | -                | -        |                 |                     | +64.0              | +.3                 | 64.0             | .3                | 64.0                      | .3           | 64.0               | .3          |
| Virginia<br>West Virginia         | -                | -        | +10.0           | +.1                 | +2,784.0           | +14.6               | 2,794.0          | 14.7              | 2,794.0                   | 14.7         | 2,794.0            | 14.7        |
| North Carolina                    |                  |          | -4.0<br>+16.0   | Neg.<br>+.1         | +4.0               | Neg.<br>+7.2        | 1,383.0          | 7.3               | 1,383.0                   |              |                    | 7.3         |
| South Carolina                    | _ 3              |          | +8.0            | Neg.                | +891.0             | +4.7                | 899.0            | 4.7               | 899.0                     | 7.3<br>4.7   | 1,383.0            | 4.7         |
| Georgia                           | - 1              |          | +13.0           | +.1                 | +2,986.0           | +15.6               | 2,999.0          | 15.7              | 2,999.0                   | 15.7         | 2,999.0            | 15.7        |
| Florida                           | 143.0            | .8       | +9.0            | Neg.                | +9,422.0           | +49.4               | 9,574.0          | 50.2              | 9,574.0                   | 50.2         | 9,574.0            | 50.2        |
| Kentucky                          | 1,206.0          | 6.3      | -37.0           | 2                   | +318.0             | +1.7                | 1,487.0          | 7.8               | 1,487.0                   | 7.8          | 1,487.0            | 7.8         |
| Tennessee                         | 1,405.0          | 7.4      | +21.0           | +.1                 | -959.0             | -5.0                | 467.0            | 2.5               | 467.0                     | 2.5          | 467.0              | 2.5         |
| Alabama                           | 583.0            | 3.0      | +6.0            | Neg.                | +162.0             | +.9                 | 751.0            | 3.9               | 751.0                     | 3.9          | 751.0              | 3.9         |
| Mississippi                       | 403.0            | 2.1      | -1.0            | Neg.                | +193.0             | +1.0                | 595.0            | 3.1               | 595.0                     | 3.1          | 595.0              | 3.1<br>13.7 |
| Subtotal Ia                       |                  | 13.3     | +131.0          | +.7                 | -55.0<br>+30,995.0 | +162.8              | 2,616.0          | 13.7              | 2,616.0                   | 210.4        | 2,616.0            | 210.4       |
| Region Ib:                        | 9,191.0          | 40.1     | -00.0           |                     | T30, 993.0         | T102.0              | 40,110.0         | 210.4             | 40,110.0                  | 210.4        | 40,116.0           | 210.4       |
| Indiana                           | 2,815.0          | 14.8     | +220.0          | +1.2                | +931.0             | +4.8                | 3,966.0          | 20.8              | 3,966.0                   | 20.8         | 3,966.0            | 20.8        |
| Illinois                          | 597.0            | 3.1      | +16.0           | +.1                 | -204.0             | -1.1                | 409.0            | 2.1               | 409.0                     | 2.1          | 409.0              | 2.1         |
| Michigan                          | 283.0            | 1.5      | +41.0           | +.2                 | +2,648.0           | +13.9               | 2,972.0          | 15.6              | 2,972.0                   | 15.6         | 2,972.0            | 15.6        |
| Wisconsin                         | -                | -        | +6.0            | Neg.                | +541.0             | +2.9                | 547.0            | 2.9               | 547.0                     | 2.9          | 547.0              | 2.9         |
| Subtotal Ib<br>Subtotal I         | 3,695.0          | 19.4     | +283.0          | +1.5                | +3,916.0           | +20.5               | 7,894.0          | 41.4              | 7,894.0                   | 41.4         | 7,894.0            | 41.4        |
| Region II:                        | 12,000.0         | 67.5     | +215.0          | +1.0                | +34,911.0          | +183.3              | 48,012.0         | 251.8             | 48,012.0                  | 251.8        | 48,012.0           | 251.8       |
| Subregion IIa:                    |                  |          |                 |                     |                    |                     |                  |                   |                           |              |                    |             |
| Minnesota                         | 1,622.0          | 8.5      | -63.0           | 3                   | -1,039.0           | -5.5                | 520.0            | 2.7               | 520.0                     | 2.7          | 520.0              | 2.7         |
| Iowa                              | -                | -        | -16.0           | 1                   | +1,009.0           | +5.3                | 993.0            | 5.2               | 993.0                     | 5.2          | 993.0              | 5.2         |
| Missouri                          | 1,208.0          | 6.3      | -21.0           | 1                   | -784.0             | -4.1                | 403.0            | 2.1               | 403.0                     | 2.1          | 403.0              | 2.1         |
| North Dakota                      | 484.0            | 2.5      | +58.0           | +.3                 | +1,639.0           | +8.6                | 2,181.0          | 11.4              | 2,181.0                   | 11.4         | 2,181.0            | 11.4        |
| South Dakota<br>Nebraska          | -                | -        | +2.0            | Neg.                | +1,614.0           | +8.5<br>+6.3        | 1,616.0          | 8.5<br>6.3        | 1,616.0                   | 8.5<br>6.3   | 1,616.0            | 8.5<br>6.3  |
| Subtotal IIa                      | 3,314.0          | 17.3     | -46.0           | Neg.<br>2           | +1,200.0           | +19.1               | 6,907.0          | 36.2              | 6,907.0                   | 36.2         | 6,907.0            | 36.2        |
| Subregion IIb:                    | 3,51410          |          | -4010           |                     | 13,037.0           | 14711               | 0,30710          | 30.2              | 0,707.0                   | 30.2         | 0,70,10            |             |
| Arkansas                          | 30.0             | . 2      | +4.0            | Neg.                | +61.0              | +.3                 | 95.0             | .5                | 95.0                      | . 5          | 95.0               | .5          |
| Louisiana                         | 10,270.0         | 53.9     | +289.0          | +1.5                | -7,863.0           | -41.3               | 2,696.0          | 14.1              | 2,696.0                   | 14.1         | 2,696.0            | 14.1        |
| Oklahoma                          | 4,896.0          | 25.7     | -74.0           | 4                   | -2,595.0           | -13.6               | 2,227.0          | 11.7              | 2,227.0                   | 11.7         | 2,227.0            | 11.7        |
| Texas                             |                  | 136.4    | +810.0          | +4.4                | -13,733.0          | -72.2               | 13,075.0         | 68.6              | 13,075.0                  | 68.6         | 13,075.0           | 68.6        |
| New Mexico<br>Kansas              | 1,393.0<br>857.0 | 7.4      | -17.0           | 1<br>3              | -486.0<br>+1,106.0 | -2.6<br>+5.8        | 890.0<br>1,910.0 | 10.0              | 890.0<br>1,9 <u>1</u> 0.0 | 4.7<br>IO.0  | 890.0              | 4.7         |
|                                   | 43,444.0         | 228.1    | -53.0<br>+959.0 | +5.1                | -23,510.0          | -123.6              | 20,893.0         | 109.6             | 20,893.0                  | 109.6        | 20,893.0           |             |
| Subtotal II.                      | 46.758.0         | 245.4    | +913.0          | +4.9                | -19,871.0          |                     | 27,800.0         | 145.8             | 27,800.0                  |              | 27,800.0           | 145.8       |
| Region III:                       |                  |          |                 |                     |                    |                     |                  |                   |                           |              |                    |             |
| Subregion IIIa:                   |                  |          |                 |                     |                    |                     |                  |                   |                           |              |                    |             |
| Montana                           | 2,818.0          | 14.8     | +139.0          | +.7                 | -1,686.0           | -8.8                | 1,271.0          | 6.7               | 1,271.0                   | 6.7          | 1,271.0            | 6.7         |
| Idaho                             |                  |          | +4.0            | Neg.                | +332.0             | +1.8                | 336.0            | 1.8               | 336.0                     | 1.8          | 336.0              | 1.8         |
| Wyoming                           | 1,485.0          | 7.8      | +25.0           | +.1                 | -1,502.0           | -7.9                | 8.0<br>848.0     | Neg.<br>4.5       | 8.0<br>848.0              | Neg.<br>4.5  | 848.0              | Neg.<br>4.5 |
| Utah<br>Colorado                  | 1,145.0          | 6.1      | -53.0<br>+15.0  | 3<br>+.1            | -244.0<br>+235.0   | -1.3<br>+1.2        | 381.0            | 2.0               | 381.0                     | 2.0          | 381.0              | 2.0         |
| Washington                        | 1,904.0          | 10.0     | +21.0           | +.1                 | -474.0             | -2.5                | 1,451.0          | 7.6               | 1,451.0                   | 7.6          | 1,451.0            | 7.6         |
| Oregon                            | 173.0            | .9       | -17.0           | 1                   | -156.0             | 8                   | -                | -                 |                           |              | -                  | -           |
| Subtotal IIIa.                    | 7,656.0          | 40.3     | +134.0          | +.6                 | -3,495.0           | -18.3               | 4,295.0          | 22.6              | 4,295.0                   | 22.6         | 4,295.0            | 22.6        |
| Subregion IIIb:                   |                  |          |                 |                     |                    |                     |                  |                   |                           |              | 0.0(0.0)           |             |
| Arizona                           | -                | -        | -8.0            | Neg.                | +2,250.0           | +11.8               | 2,242.0          | 11.8              | 2,242.0                   | 11.8         | 2,242.0<br>452.0   | 11.8        |
| Nevada                            | 14 710 0         | - 1      | -4.0            | Neg.                | +456.0             | +2.4                | 452.0            | 2.4               | 452.0<br>29,735.0         | 2.4<br>156.0 | 29,735.0           | 156.0       |
| California<br>Subtotal IIIb.      | 14,710.0         | 77.1     | +307.0          | +1.7                | +14,718.0          | +77.2               | 29,735.0         | 156.0             | 32,429.0                  | 170.2        | 32,429.0           | 170.2       |
| Subregion IIIc:                   | 14,710.0         | //-1     | TZ73.0          | +1./                |                    | 171.4               | 32,727.0         | 170.2             | 221.22.0                  |              |                    |             |
| Alaska                            | 173.0            | .9       | . +2.0          | Neg.                | +717.0             | +3.8                | 892.0            | 4.7               | 892.0                     | 4.7          | 892.0              | 4.7         |
| Hawaii                            | 346.0            | 1.8      | +7.0            | Neg.                | +340.0             | +1.8                | 693.0            | 3.6               | 693.0                     | 3.6          | 693.0              | 3.6         |
| Subtotal IIIc.                    | 519.0            | 2.7      | +9.0            | Neg.                | +1,057.0           | +5.6                | 1,585.0          | 8.3               | 1,585.0                   | 8.3          | 1,585.0            | 8.3         |
| Subtotal III                      | 22,885.0         | 120.1    | +438.0          | +2.3                | +14,986.0          | +78.7               | 38,309.0         | 201.1             | 38,309.0                  | 201.1        | 38,309.0           | 201.1       |
| Neg Negligible.                   |                  |          |                 |                     |                    |                     |                  |                   |                           |              |                    |             |

Neg:--Negligible.

'Household and commercial; industrial; electricity generation, utilities; and miscellaneous and unaccounted for sectors do not apply to this commodity.

'Withdrawals from stocks add to supply and are indicated by plus signs; additions to stocks reduce supply and are indicated by minure.

signs.  $^{3} \mbox{Includes net foreign trade: } 16,493.0 \mbox{ thousand barrels; } 86.6 \mbox{ trillion Btu.}$ 

|                              |                       |                |                  |              | 1                        | .965             |                        |                |                        |                |                                         |                |
|------------------------------|-----------------------|----------------|------------------|--------------|--------------------------|------------------|------------------------|----------------|------------------------|----------------|-----------------------------------------|----------------|
|                              |                       |                |                  | S            | upply                    |                  |                        |                |                        |                | consumer se                             |                |
|                              | Refinery              | ou tou t       | Stock ch         | 2            | Net ship                 | 3                | Total su<br>availabl   | pply           | Transport              |                | Total dos                               |                |
| State and Region             | Thousand              | Tril-          | Thousand         | Tril-        | Thousand                 | Trillion         | consump                |                | Thousand<br>barrels    | Tril-<br>lion  | Thousand                                |                |
|                              | barrels               | lion           | barrels          | lion         | barrels                  | Btu              | Thousand               | Tril-          | Dalicis                | Btu            | barrels                                 |                |
|                              |                       | Btu            |                  | Btu          |                          |                  | barrels                | lion           |                        |                |                                         |                |
| United States total.         | 1 602 7/1 0           | 0 000 0        | 111 622 0        | 161 0        | +14,826.0                | 177.0            | 1 700 200 0            | Btu            | 1 700 000 0            | 0.007.6        | 1,720,200.0                             |                |
| Region I:                    | 1,093,741.0           | 0,000.0        | T11,033.0        | +61.0        | T14,820.0                | T//.0            | 1,720,200.0            | 9,027.6        | 1,720,200.0            | 9,027.6        | 1,720,200.0                             |                |
| Subregion Ia:                |                       |                |                  | ł            |                          |                  |                        |                |                        |                |                                         |                |
| Maine                        | -                     | -              | +96.0            |              | +8,943.0                 | +46.9            | 9,039.0                | 47.4           | 9,039.0                |                | 9,039.0                                 |                |
| New Hampshire<br>Vermont     | -                     | -              | +44.0<br>+38.0   |              |                          | +30.0            | 5,750.0                | 30.2           | 5,750.0                | 30.2           | 5,750.0                                 |                |
| Massachusetts                | 1 [                   | 1 -            | +372.0           |              |                          | +19.3            | 3,724.0<br>39,513.0    | 19.5<br>207.4  | 3,724.0<br>39,513.0    |                | 3,724.0<br>39,513.0                     |                |
| Rhode Island                 | -                     | -              | +67.0            | +.4          | +6,471.0                 | +33.9            | 6,538.0                | 34.3           | 6,538.0                | 34.3           | 6,538.0                                 | 5              |
| Connecticut                  | -                     | -              | +67.0            | +.4          | +22,519.0                | +118.1           | 22,586.0               | 118.5          | 22,586.0               | 118.5          | 22,586.0                                |                |
| New York                     | 12,849.0              |                | +733.0           |              | +106,682.0               | +559.9           | 120,264.0              | 631.1          | 120,264.0              |                | 120,264.0                               |                |
| New Jersey<br>Pennsylvania   | 74,003.0<br>101,585.0 |                | +375.0<br>+241.0 |              |                          | -100.3<br>-86.5  | 55,273.0<br>85,347.0   | 290.1<br>447.9 | 55,273.0<br>85,347.0   | 290.1<br>447.9 | 55,273.0<br>85,347 0                    |                |
| Delaware                     | 22,174.0              |                | -195.0           |              | -16,591.0                | -87.1            | 5,388.0                |                | 5,388.0                |                | 5,388.0                                 |                |
| Maryland                     | 1 1                   | -              | +307.0           |              |                          | +139.9           | 26,962.0               |                | 26,962.0               | 141.5          | 26,962.0                                |                |
| District of                  |                       |                |                  |              |                          |                  |                        |                |                        |                |                                         |                |
| Columbia<br>Virginia         | 6,887.0               | 36.1           | +5.0<br>+207.0   |              | +5,315.0                 | +27.9<br>+158.6  | 5,320.0<br>37,309.0    | 27.9<br>195.8  | 5,320.0                | 27.9<br>195.8  | 5,320.0                                 |                |
| West Virginia                | 642.0                 |                | +118.0           |              | +30,215.0<br>+11,937.0   | +62.6            | 12,697.0               | 66.6           | 37,309.0<br>12,697.0   | 66.6           | 37,309.0<br>12,697.0                    |                |
| North Carolina               | -                     | -              | +451.0           | +2.4         | +42,747.0                | +224.3           | 43,198.0               | 226.7          | 43,198.0               | 226.7          | 43,198.0                                |                |
| South Carolina               | -                     | -              | +229.0           |              |                          | +109.2           | 21,033.0               | 110.4          | 21,033.0               | 110.4          | 21,033.0                                |                |
| Georgia<br>Florida           |                       | -              | +376.0<br>+327.0 |              | +38,891.0<br>+53,860.0   | +204.1<br>+282.7 | 39,267.0<br>54,187.0   | 206.1<br>284.4 | 39,267.0               | 206.1          | 39,267.0                                |                |
| Kentucky                     | 15,901.0              | 83.4           | +430.0           | +2.3         | +9,715.0                 | +51.0            | 26,046.0               | 136.7          | 54,187.0<br>26,046.0   | 284.4<br>136.7 | 54,187.0<br>26,046.0                    |                |
| Tennessee                    | 2,500.0               | 13.1           | +235.0           | +1.2         | +30,302.0                | +159.1           | 33,037.0               | 173.4          | 33,037.0               | 173.4          | 33,037.0                                | 170            |
| Alabama                      | 100.0                 |                | +86.0            | +.5          | +28,809.0                | +151.2           | 28,995.0               | 152.2          | 28,995.0               | 152.2          | 28,995.0                                |                |
| Mississippi                  | 5,100.0               |                | -43.0            |              | +13,523.0                | +70.9            | 18,580.0               | 97.5           | 18,580.0               | 97.5           | 18,580.0                                | 77 0           |
| Ohio<br>Subtotal Ia          | 92,765.0              | 486.8          | +4.568.0         |              | -6,161.0<br>+447,585.0   | -32.3            | 86,606.0<br>786,659.0  | 454.5          | 86,606.0<br>786,659.0  |                | 86,606.0<br>786,659.0                   | 4.1            |
| Subregion Ib:                |                       |                | 14,300.0         | 124.2        | 1447,303.0               | 12,540.0         | 700,037.0              | 7,120.7        | 700,03310              | 7,120.7        |                                         | 2.200          |
| Indiana                      | 81,841.0              |                | +1,391.0         | +7.2         | -34,887.0                | -183.0           | 48,345.0               | 253.7          | 48,345.0               | 253.7          | 48,345.0                                | 2              |
| Illinois                     | 118,032.0             | 619.4          | +928.0           |              | -32,997.0                | -173.2           | 85,963.0               | 451.1          | 85,963.0               | 451.1          | 85,963.0                                | 4              |
| Michigan<br>Wisconsin        | 25,486.0<br>3,000.0   | 133.8<br>15.7  | +889.0<br>-142.0 |              | +51,459.0<br>+33,371.0   | +270.1<br>+175.1 | 77,834.0<br>36,229.0   | 408.5<br>190.1 | 77,834.0<br>36,229.0   |                | 77,834.0<br>36,229.0                    | 4(11           |
| Subtotal Ib                  | 228,359.0             | 1.198.4        | +3.066.0         | +16.0        | +16,946.0                | +89.0            | 248,371.0              | 1.303.4        | 248,371.0              | 1,303.4        | 248,371.0                               | 1,30 -         |
| Subtotal I                   | 562,865.0             | 2,953.8        | +7,634.0         | +40.2        | +464,531.0               | +2,437.8         | 1,035,030.0            | 5,431.8        | 1,035,030.0            | 5,431.8        | 248,371.0<br>1,035,030.0                | 5,4            |
| Region II:                   |                       |                |                  |              |                          |                  |                        |                |                        |                |                                         |                |
| Subregion IIa:<br>Minnesota  | 15,362.0              | 80.6           | +221.0           | +1.2         | +19,888.0                | +104.4           | 35,471.0               | 186.2          | 35,471.0               | 186.2          | 35,471.0                                | 181 2          |
| Iowa                         |                       |                | +25.0            |              | +31,145.0                |                  | 31,170.0               |                | 31,170.0               |                | 31,170.0                                | 160.           |
| Missouri                     | 12,531.0              |                | +180.0           | +.9          | +33,199.0                | +174.2           | 45,910.0               | 240.9          | 45,910.0               | 240.9          | 45,910.0                                | 200 .          |
| North Dakota                 | 9,982.0               | 52.5           | -70.0            | 4            | -1,631.0                 | -8.6             | 8,281.0                | 43.5           | 8,281.0                | 43.5           | 8,281.0                                 |                |
| South Dakota<br>Nebraska     | 600.0                 |                | -32.0<br>-3.0    |              | +9,272.0<br>+15,924.0    | +48.7<br>+83.6   | 9,240.0<br>16,521.0    | 48.5<br>86.7   | 9,240.0<br>16,521.0    |                | 9,240.0<br>16,521.0                     |                |
| Subtotal IIa                 | 38,475.0              |                | +321.0           |              | +107,797.0               | +565.8           | 146,593.0              | 769.4          | 146,593.0              |                | 146,593.0                               |                |
| Subregion IIb:               |                       |                |                  |              |                          |                  |                        |                |                        |                |                                         |                |
| Arkansas                     | 13,572.0              | 71.2           | +76.0            | +.4          | +4,390.0                 | +23.1            | 18,038.0               |                | 18,038.0               |                | 18,038.0                                |                |
| Louisiana<br>Oklahoma        | 167,649.0<br>78,712.0 | 879.8<br>413.1 | -326.0<br>+815.0 | -1.7<br>+4.3 | -139,305.0<br>-49,541.0  | -731.1<br>-260.0 | 28,018.0<br>29,986.0   | 147.0<br>157.4 | 28,018.0<br>29,986.0   | 147.0<br>157.4 | 28,018.0<br>29,986.0                    | 1 2            |
| Texas                        | 465,567.0             | 2,443.3        | +1,612.0         |              | -341,945.0               | -1,794.6         | 125,234.0              | 657.1          | 125,234.0              | 657.1          | 125,234.0                               | 65             |
| New Mexico                   | 7,069.0               | 37.1           | -90.0            | 5            | +4,001.0                 | +21.0            | 10,980.0               | 57.6           | 10,980.0               | 57.6           | 10,980.0                                |                |
| Kansas<br>Subtotal IIb       | 68,158.0              | 357.8          | +522.0           | +2.7         | -42,485.0                | -223.0           | 26,195.0               | 137.5          | 26,195.0               | 137.5          | 26,195.0                                | 13 3           |
| Subtotal IIb Subtotal II.    | 839,202.0             |                | +2,609.0         | +15.2        | -564,885.0<br>-457,088.0 | -2,398.8         | 238,451.0<br>385,044.0 | 2.020.7        | 238,451.0<br>385,044.0 | 2,020.7        | 238,451.0<br>385,044.0                  | 2.00           |
| Region III:                  | 333,202.0             | ,,,,,,,,       | . 2, 750.0       | .13.2        | -37,000.0                | 2,370.0          | 303,044.0              | 2,020.7        | 303,044,0              | -102017        | 303,014,0                               | endina -       |
| Subregion IIIa:              |                       |                |                  |              |                          |                  |                        |                |                        |                |                                         |                |
| Montana                      | 15,603.0              | 81.8           | +70.0            |              | -6,519.0                 |                  | 9,154.0                |                | 9,154.0                |                | 9,154.0<br>7,585.0                      |                |
| Idaho                        | 18,523.0              | 97.2           | +22.0<br>-1.0    | +.1          | +7,563.0<br>-13,773.0    | +39.7            | 7,585.0<br>4,749.0     | 39.8           | 7,585.0<br>4,749.0     |                | 4,749.0                                 | 2 -            |
| Utah                         | 19,174.0              | 100.6          | +11.0            | Neg.<br>+.1  | -8,665.0                 | -45.5            | 10,520.0               | 55.2           | 10,520.0               | 55.2           | 10,520.0                                |                |
| Colorado                     | 6,302.0               | 33.1           | +97.0            | +.5          | +12,762.0                | +67.0            | 19,161.0               | 100.6          | 19,161.0               | 100.6          | 19,161.0                                | 100            |
| Washington                   | 23,207.0              | 121.8          | +160.0           | +.8          | +5,371.0                 | +28.2            | 28,738.0               | 150.8          | 28,738.0               |                | 28,738.0                                | 150            |
| Oregon<br>Subtotal IIIa.     | 82,809.0              | 434.5          | +102.0<br>+461.0 | +.5          | +19,524.0                | +102.5           | 19,626.0<br>99,533.0   | 103.0<br>522.3 | 19,626.0<br>99,533.0   | 103.0<br>522.3 | 19,626.0<br>99,533.0                    | 5              |
| Subregion IIIb:              | 02,009.0              | 434.3          | T401.0           | TZ.4         | +16,263.0                | 703.4            | 77, 33,0               | 322.3          | 77,75,0                | 322.3          |                                         | Marie Williams |
| Arizona                      | -                     | - 1            | +42.0            | +.2          | +14,993.0                | +78.7            | 15,035.0               | 78.9           | 15,035.0               | 78.9           | 15,035.0                                | 11.4           |
| Nevada                       |                       |                | +19.0            | +.1          | +5,673.0                 | +29.8            | 5,692.0                | 29.9           | 5,692.0                | 29.9           | 5,692.0                                 | 91/10          |
| California<br>Subtotal IIIb. | 206,544.0             |                | +521.0<br>+582.0 | +2.7         | -33,672.0<br>-13,006.0   | -176.7<br>-68.2  | 173,393.0              | 910.0          | 173,393.0              | 910.0          | 173,393.0                               |                |
| Subregion IIIc:              | 200,344.0             | 1,084.0        | +382.0           | T3.0         | -13,006.0                | -00.2            | 194,120.0              | 1,010.0        | 174,120.0              | 101010         | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                |
| Alaska                       | -                     |                | +14.0            | +.1          | +1,844.0                 | +9.7             | 1,858.0                | 9.8            | 1,858.0                | 9.8            | 1,858.0                                 |                |
| Hawaii                       | 2,321.0               | 12.2           | +12.0            | +.1          | +2,282.0                 | +11.9            | 4,615.0                | 24.2           | 4,615.0                | 24.2           | 4,615.0                                 |                |
| Subtotal IIIc.               | 2,321.0               | 12.2           | +26.0            | +.2          | +4,126.0                 | +21.6            | 6,473.0                | 34.0           | 6,473.0                | 34.0           | 6,473.0<br>300,126.0                    | THE            |
| Subtotal III                 | 291,674.0             | 1,530./        | +1,069.0         | +5.6         | +7,383.0                 | +38.8            | 300,120.0              | 1,3/3.1        | 300,120.0              | 493/301        | 300,120,01                              | -              |

Subtotal 111 2,127.0 16.2 + 76.30 + 7.4 + 74.16.0 + 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74.16 - 74

TABLE 14. - Supply and demand for kerosine and kerosine-type jet fuel by major consumer sector, by States and Regions

| Rhode Island +21.0 + -1   +645.0 + 3.7   666.0   3.8   600.0   3.4   62.0   4.7     65.0   66.0   3.8   600.0   3.4   62.0   4.7     65.0   66.0   3.8   600.0   3.4   62.0   4.7   1,125.0   6.7   2,435.0   11.3   1,189.0   6.7   120.0   7.   1,125.0   6.2   2,435.0   13.9   800   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0                   |                      | Т         |         |                | · · · | 1         |        |           |         |          |         |          |        |            |       |           |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------|---------|----------------|-------|-----------|--------|-----------|---------|----------|---------|----------|--------|------------|-------|-----------|---------|
| Section of Register   Company   Co   |                      |           |         |                |       |           |        | Total s   | upply   | Househo  | ld and  | Demand b | y majo | r consumer | secto | Total do  | mestic  |
| Description      | Court on I Post      |           |         |                |       | Net ship  | ments3 |           |         |          |         | Indust   | rial   |            |       |           |         |
| Design   Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | State and Region     |           |         |                |       |           |        |           |         |          |         |          |        |            |       |           |         |
| Dated Bates ordal Surgion 13 (1907) 1,785,0 1,750,0 19,8 2,252,0 11,9 207,966,0 11,74,179,0 10,2 230,0 11,5 120,113,0 250,9 207,964,0 173,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207,0 207, |                      | Juniters  |         | Dacters        |       | Datters   |        |           | lion    | Darreis  |         | Darreis  |        | barrels    |       | barrels   |         |
| Region 1: a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | United States total. | 201,788.0 | 1,150.5 | +1.724.0       | +9.8  | +2,452.0  | +13.9  | 205.964.0 | 8tu     | 79.188.0 | 449.0   | 18.461.0 | 104.3  | 108 315 0  | 620.9 | 205 964 0 | 1 176 2 |
| Manis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Region I:            |           |         |                | -     |           |        |           | 130,000 |          |         | 10,40110 | 10413  | 100,91510  | 02017 | 203,304.0 | 1,1/4.2 |
| Mew Mangahire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |           |         |                |       |           |        |           |         |          |         |          |        |            |       |           |         |
| Version   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | New Hamoshire        | 1 1       |         |                |       | +1,981.0  | +11.3  | 2,053.0   |         | 1,798.0  | 10.2    |          |        | -          | -     |           |         |
| Measchusetts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Vermont              |           | 1 -     |                |       |           |        |           |         | 746.0    | 4.2     |          |        | - 20       | Non   |           | 4.3     |
| Mew Ports                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Massachusetts        | -         | -       | +134.0         | +.8   | +5,962.0  | +34.0  | 6,096.0   | 34.8    | 2,994.0  | 17.0    |          |        |            | 14.9  |           | 34.8    |
| New York                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      | -         | -       |                |       | +645.0    | +3.7   | 666.0     | 3.8     | 604.0    | 3.4     | 62.0     | .4     | -          | -     | 666.0     | 3.8     |
| Memory   M   |                      | 922.0     | 2       |                |       | +2,385.0  | +13.6  |           |         |          |         |          |        |            |       |           |         |
| Pennsylvania.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |           |         |                |       | -2.809.0  | -15.9  |           |         | 1,708.0  | 9.7     |          |        | 2 610 0    | 15.0  | 4 707 0   | 26.0    |
| Deliver   1,126.0   7.6   990.0   7.5   525.0   3-0   890.0   5.1   692.0   3.9   13.4.0   6.6   6.0   4.5   890.0   5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pennsylvania         |           | 36.6    | +14.0          | +, 1  | -41.0     | 2      | 6,425.0   | 36.5    | 3,130.0  | 17.7    |          |        | 2,571.0    | 14.7  | 6,425.0   | 36.5    |
| District of Columbia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Delaware             | 1,326.0   |         |                |       |           |        |           |         | 692.0    | 3.9     |          |        | 64.0       | .4    | 890.0     | 5.1     |
| Columbia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Maryland             | -         | -       | +142.0         | +.8   | +3,627.0  | +20.7  | 3,769.0   | 21.5    | 2,273.0  | 12.9    | 100.0    | -6     | 1,396.0    | 8.0   | 3,769.0   | 21.5    |
| Varieties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      | -         |         | +3.0           | Neg.  | +101.0    | +.6    | 104.0     | 6       | 87.0     |         | 17.0     |        |            |       | 106.0     |         |
| Mest Virginia   38.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Virginia             | -         |         | +211.0         | +1.2  |           |        |           |         |          |         |          |        | 2,739.0    | 15.7  | 8.287.0   | 47.2    |
| Subtrocard Inc.  + 162.0 +-9 + 3,161.0 +17.9 3,222.0 15.8 2,795.0 15.8 504.0 2.9 24.0 1.1 3,222.0 15.8 600.3 2.9 24.0 1.1 3,222.0 15.8 600.3 2.9 24.0 1.1 3,222.0 15.8 600.3 2.9 24.0 1.1 3,222.0 15.8 600.3 2.0 2.9 24.0 1.1 3,222.0 15.8 600.3 2.0 2.9 24.0 1.1 3,222.0 15.8 600.3 2.0 2.9 24.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      | 38.0      | .2      |                |       |           |        | 282.0     | 1.7     | 203.0    | 1.2     |          |        | 29.0       | .2    | 282.0     | 1.7     |
| Georgia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | North Carolina       | -         |         |                |       |           |        |           |         |          |         |          |        |            |       | 13,186.0  | 74.7    |
| Floridam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      | 1 :       | 1 :     |                |       |           |        |           |         |          | 15.8    |          |        |            |       | 3,323.0   | 18.8    |
| Kentucky   2,403.0   13.6   -31.0   -2   +591.0   73.4   2,663.0   16.8   2,231.0   12.6   146.0   8   36.0   3.4   2,963.0   16.9   2,263.0   16.9   3.6   14.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   | Florida              | -         | -       |                |       |           |        | 14,059.0  | 80.3    |          |         |          |        |            |       | 14.059.0  | 80.3    |
| Alabama                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Kentucky             | 2,403.0   |         |                |       | +591.0    | +3.4   | 2,963.0   | 16.8    | 2,231.0  | 12.6    | 146.0    | .8     | 586.0      | 3.4   | 2,963.0   | 16.8    |
| Mississippi.   16.0   .1   11.20   .1   12.70   .2.1   .401.0   .2.3   141.0   .8   205.0   1.2   5.5.0   .3   401.0   .2.3   .2.3   .2.3   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2.5   .2 |                      |           |         |                |       |           |        | 2,828.0   | 16.0    |          |         |          |        |            |       | 2,828.0   | 16.0    |
| Chapter   Chap   |                      |           |         |                |       |           |        | 1,004.0   | 5.6     |          |         |          |        |            |       | 1,004.0   | 5.6     |
| Subtoctal 1a. 23,917.0   136.0 + 2,096.0 + 12.0 + 86,394.0   1480.6   110,355.0   528.6   33,655.0   304.2   10,354.0   58.7   65,346.0   26.5   7,100,355.0   528.6   33.6   32.6   33.0   3.6   6,456.0   37.0   9,002.0   56.5   111inosia.   17,002.0   97.2 - 124.0   7.7   7,137.0   40.5   9,331.0   56.0   4,384.0   24.9   957.0   5.4   4,909.0   25.7   9,831.0   56.0   4,384.0   24.9   957.0   5.4   4,909.0   25.7   9,831.0   56.0   4,384.0   24.9   957.0   5.4   4,909.0   25.7   9,831.0   56.0   4,384.0   24.9   957.0   5.4   4,909.0   25.7   9,831.0   56.0   4,384.0   24.9   25.0   6.8   855.0   4.9   6,739.0   80.5   80.0   4.9   4.0   4.5   4.0   4.0   4.5   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4.0   4 | Ohio                 |           |         |                |       | +2.654.0  | +15.0  |           |         |          |         |          |        |            |       |           |         |
| Indiana   8,295, 0   47.4   113,0   +.8   11,472,0   8-8,3   9,92,0   56,5   2,813,0   15,9   633,0   3.6   6,458,0   37.0   9,902,0   56.5   111inois   17,902,0   97.2   12.40, 0   77,7   7,137,0   40.6   9,931,0   56.6   4,384,0   9,97.0   5.6   6,458,0   37.0   9,902,0   56.5   3,003,0   36.6   4,580,0   37.0   9,902,0   56.5   3,003,0   36.6   4,580,0   37.0   9,902,0   56.5   3,003,0   36.6   4,580,0   37.0   9,902,0   56.5   3,003,0   36.6   4,580,0   37.0   9,902,0   56.5   3,003,0   36.6   4,580,0   37.0   9,902,0   36.5   3,003,0   36.6   4,580,0   37.0   9,902,0   36.5   3,003,0   36.6   4,580,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3   3.6   4,480,0   3.3     |                      | 23,917.0  | 136.0   | +2,096.0       | +12.0 | +84,342.0 | +480.6 | 110,355.0 | 628.6   | 53,655.0 | 304.2   | 10,354.0 | 58.7   | 46,346.0   | 265.7 | 110,355.0 | 628.6   |
| 111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111    | Subregion Ib:        |           |         |                |       |           |        |           |         |          | انتنانا |          |        |            |       |           |         |
| Michigan    | Indiana              | 8,295.0   |         |                |       | +1,472.0  | +8.3   | 9,902.0   | 56.5    | 2,813.0  | 15.9    |          |        | 6,456.0    | 37.0  |           |         |
| Misconsin   -   -   -   -   -   -   -   -   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Michigan             |           |         |                |       | +3.876.0  | +22.0  |           |         | 4,384.0  | 26.5    |          |        |            |       |           | 38.2    |
| Subtockal Ib.   28,214.0   60.6   +45.0   +,3   -454.0   -2.6   27,095.0   153,3   30,45.0   33,9   2,876.0   16.3   11,884.0   68.1   27,095.0   153.2    Region protectal   1.5   33,131.0   395.0   47,14.0   412.3   42.0   42.0   40.0   85.5   67,000   391.3   320.0   23.0   38,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,300   33,30 | Wisconsin            |           |         |                |       | +1,335.0  | +7.6   |           |         |          |         |          |        |            | .5    |           | 7.6     |
| Region II:  Nimesota.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |           |         |                | +.3   | -454.0    | -2.6   | 27,805.0  |         | 13,045.0 | 73.9    |          |        | 11,884.0   |       | 27,805.0  | 158.3   |
| Subregion IIa:    Sales                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Region II:           | 52,131.0  | 296.6   | +2,141.0       | +12.3 | +83,888.0 | +478.0 | 138,160.0 | 786.9   | 66,700.0 | 378.1   | 13,230.0 | 75.0   | 58,230.0   | 333.8 | 138,160.0 | 786.9   |
| Minimenta   384.0   3.3   -27.0   -2   +3,542.0   420.2   4,099.0   23.3   2,071.0   11.7   244.0   1.4   1,784.0   10.2   4,099.0   23.3   1094.   11.7   244.0   1.4   1,784.0   10.2   4,099.0   23.3   2,071.0   11.7   244.0   1.4   1,784.0   10.2   4,099.0   23.3   2,071.0   11.7   244.0   1.4   1,784.0   10.2   4,099.0   23.3   2,071.0   11.7   244.0   1.4   1,784.0   10.2   4,099.0   23.3   2,071.0   11.7   244.0   1.4   1,784.0   1.4   3,785.0   21.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5    |                      |           |         |                |       |           |        |           |         |          |         |          |        |            |       |           |         |
| Missourt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Minnesota            |           |         |                | 2     | +3,542.0  | +20.2  | 4,099.0   | 23.3    | 2,071.0  | 11.7    |          |        |            | 10.2  |           | 23.3    |
| Note      |                      | 1,363.0   | 7.7     |                |       |           |        | 1,566.0   | 8.8     |          |         |          |        |            |       | 1,566.0   | 8.8     |
| South Dakota 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | North Dakota         | 1 463 0   | - 8 2   |                |       |           |        |           |         |          |         |          |        |            |       |           |         |
| September   Sept   | South Dakota         |           |         | -1.0           | Neg.  | +578.0    | +3.3   |           |         |          | 3.0     | 39.0     |        |            |       |           | 3.3     |
| Subreçian IIb: Arkiansa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Nebraska             |           |         | -3.0           | Neg.  | +977.0    | +5.6   | 979.0     | 5.6     | 645.0    | 3.7     | 146.0    | 8      |            |       | 979.0     | 5.6     |
| Arkimass 1,825.0   10.4   -4.0   Neg.   -1,439.0   8.2   390.0   2.2   214.0   1.2   172.0   1.0   4.0   Neg.   390.0   2.2   214.0   1.2   172.0   1.0   4.0   Neg.   390.0   2.2   214.0   1.2   172.0   1.0   4.0   Neg.   390.0   2.2   214.0   1.2   172.0   1.0   3.0   Neg.   34.0   34.0   1.9   3.6   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0       |                      | 3,415.0   | 19.3    | -204.0         | -1.3  | +7,887.0  | +45.1  | 11,098.0  | 63.1    | 5,699.0  | 32.3    | 709.0    | 4.0    | 4,690.0    | 26.8  | 11,098.0  | 63.1    |
| Louisiana. 33,370.0   190,5   +279.0   1.16   -29,214.0, 1-16.6   4,35.0   25.3   66.0   2.6   343.0   2.9   3,631.0   20.8   6,435.0   23.5   6,40.0   3.0   6,40.0   3.0   6,40.0   3.0   6.0   6,24.0   382.0   +725.0   4.4   3.98.2   6,46.0   311.1   1,400.0   7.9   850.0   4.8   96.0   5.6   6,54.0   3.4   9,482.0   7.9   7.9   850.0   4.8   96.0   5.6   6,54.0   3.4   9,482.0   7.9   7.9   850.0   4.8   96.0   5.6   6,54.0   3.4   9,482.0   7.9   7.9   850.0   4.8   96.0   5.6   6,54.0   3.4   9,482.0   7.9   7.9   7.9   850.0   4.8   96.0   5.6   6,54.0   3.4   9,482.0   7.9   7.9   7.9   850.0   4.8   9.6   9.6   7.9   850.0   4.4   5,967.0   34.2   9,482.0   3.7   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   3.9   |                      | 1 825 0   | 10.6    | -40            | Non   | -1 /20 N  | -8 2   | 290.0     | 2 2     | 214.0    | 1 2     | 172.0    | 1.0    | 4.0        | Neo   | 390.0     | 22      |
| Oklahoma: 7,225,0 40,9 -339,0 -1,9 -5,466.0 -31.1 1,400,0 7.9 850,0 4.8 96.0 .5 4,54.0 2.6 1,400.0 7.9 850,0 4.8 96.0 .5 4,54.0 2.6 1,400.0 7.9 850,0 4.8 96.0 .5 4,54.0 2.6 1,400.0 7.9 850,0 4.8 96.0 .5 4,54.0 2.6 1,400.0 7.9 850,0 4.8 96.0 .5 4,54.0 2.6 1,400.0 7.9 850,0 4.8 96.0 .5 4,54.0 2.6 1,400.0 7.9 850,0 4.8 96.0 .5 4,54.0 2.6 1,400.0 7.9 850,0 4.8 96.0 .5 4,54.0 2.6 1,400.0 7.9 850,0 4.8 96.0 .5 4,54.0 2.6 1,400.0 7.9 850,0 4.8 96.0 .5 4,54.0 2.6 1,400.0 7.9 850,0 4.8 96.0 1.2 372.0 4.4 8.9 86.0 1.2 372.0 4.4 8.9 86.0 1.2 372.0 4.4 8.9 86.0 1.2 372.0 4.4 8.9 86.0 1.2 372.0 4.4 8.9 86.0 1.2 372.0 4.4 8.9 86.0 1.2 372.0 4.4 8.9 86.0 1.2 372.0 4.4 8.9 86.0 1.2 372.0 4.4 8.9 86.0 1.2 372.0 4.4 8.9 86.0 1.2 372.0 4.4 8.9 86.0 1.2 372.0 4.4 8.9 86.0 1.2 372.0 4.4 8.9 86.0 1.2 372.0 4.4 8.9 86.0 1.2 372.0 4.4 8.9 86.0 1.2 372.0 4.4 8.9 86.0 1.2 372.0 4.4 8.9 86.0 1.2 372.0 4.4 8.9 86.0 1.2 372.0 4.4 8.9 86.0 1.2 372.0 4.4 8.9 86.0 1.2 372.0 4.4 8.9 86.0 1.2 372.0 4.4 8.9 86.0 1.2 372.0 4.4 8.9 86.0 1.2 372.0 4.4 8.9 86.0 1.2 372.0 4.4 8.9 86.0 1.2 372.0 4.4 8.9 86.0 1.2 372.0 4.4 8.9 86.0 1.2 372.0 4.4 8.9 86.0 1.2 372.0 4.4 8.9 86.0 1.2 372.0 4.4 8.9 86.0 1.2 372.0 4.4 8.9 86.0 1.2 372.0 4.4 8.9 86.0 1.2 372.0 4.4 8.9 86.0 1.2 372.0 4.4 8.9 86.0 1.2 372.0 4.4 8.9 86.0 1.2 372.0 4.4 8.9 86.0 1.2 372.0 4.4 8.9 86.0 1.2 372.0 4.4 8.9 86.0 1.2 372.0 4.4 8.9 86.0 1.2 372.0 4.4 8.9 86.0 1.2 372.0 4.4 8.9 86.0 1.2 372.0 4.4 8.9 86.0 1.2 372.0 4.4 8.9 86.0 1.2 372.0 4.4 8.9 86.0 1.2 372.0 4.4 8.9 86.0 1.2 372.0 4.2 372.0 4.4 8.9 86.0 1.2 372.0 4.2 372.0 4.4 8.9 86.0 1.2 372.0 4.4 8.9 86.0 1.2 372.0 4.2 372.0 4.2 372.0 4.2 372.0 4.2 372.0 4.2 372.0 4.2 372.0 4.2 372.0 4.2 372.0 4.2 372.0 4.2 372.0 4.2 372.0 4.2 372.0 4.2 372.0 4.2 372.0 4.2 372.0 4.2 372.0 4.2 372.0 4.2 372.0 4.2 372.0 4.2 372.0 4.2 372.0 4.2 372.0 4.2 372.0 4.2 372.0 4.2 372.0 4.2 372.0 4.2 372.0 4.2 372.0 4.2 372.0 4.2 372.0 4.2 372.0 4.2 372.0 4.2 372.0 4.2 372.0 4.2 372.0 4.2 372.0 4.2 372.0 4.2 372.0 4.2 372.0 4.2 372.0 4.2 372.0 4.2 372.0 4.2 3 |                      | 33,370.0  |         |                |       |           |        |           |         |          |         |          |        |            | 20.8  |           | 25.3    |
| New Mexico   189.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Oklahoma             | 7,225.0   |         | -339.0         | -1.9  | -5,486.0  | -31.1  | 1,400.0   | 7.9     | 850.0    | 4.8     | 96.0     | -5     | 454.0      | 2.6   | 1,400.0   | 7.9     |
| Subtotal III.   12,226   0   60.04   79.0   6.1   9.11.0   10.9   1,677.0   9.5   137.0   .8   97.0   6.1   1,911.0   10.9   1,672.0   9.5   137.0   .8   97.0   6.1   1,911.0   10.9   1,672.0   9.5   137.0   .8   97.0   6.1   1,911.0   10.9   1,672.0   9.5   137.0   8.0   97.0   6.1   1,911.0   10.9   1,672.0   9.5   137.0   8.0   97.0   6.1   1,911.0   10.9   1,672.0   9.5   137.0   8.0   97.0   6.1   1,911.0   10.9   1,672.0   9.5   137.0   8.0   97.0   6.1   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   10.9   1,911.0   1.9   1,911.0   1.9   1,911.0   1.9   1,911.0   1.9   1,911.0   1.9   1,911.0   1.9   1,911.0   1.9   1,911.0   1.9   1,911.0   1.9   1,911.0   1.9   1,911.0   1.9   1,911.0   1.9   1,911.0   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1   |                      |           |         | +752.0         |       |           |        |           |         |          |         |          |        | 5,967.0    |       |           |         |
| Subtectal III. 112,254 0 640.4 +755.0 44.3 -94.657.0 -540.3 18,346.0 104.4 4,292.0 24.3 3,495.0 19.6 10,559.0 6.0 5 18,346.0 105.4 Subregion III.   Region III.   Subregion III.   Montana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Kenses               |           |         | -13.0<br>+76.0 |       |           |        |           |         |          |         |          | 1.0    |            |       |           |         |
| Subtotal II.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |           |         |                |       |           |        |           |         |          |         |          |        |            |       | 18,346.0  | 104.4   |
| Subreqion IIIa:    709.0   4.0   +50.0   +,3   -390.0   -2.2   369.0   2.1   227.0   1.3   21.0   1   121.0   7   369.0   2.1     1daho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Subtotal II,         | 115,669.0 |         |                |       | -86,780.0 | -495.2 |           |         | 9,991.0  | 56.6    |          | 23.6   |            | 87.3  | 29,444.0  | 167.5   |
| Montana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |           |         |                |       |           |        |           |         |          |         |          |        |            |       |           |         |
| Table   Tabl   |                      | 709.0     | 4.0     | _ ±sn_n        | 1 2   | - 200 N   | -2 2   | 269.0     | 2.1     | 227 0    | 1.3     | 21.0     | - 1    | 121.0      | . 7   | 369.0     | 2.1     |
| Myosing   1,342,0   7-6   4-6,0   Meg.   -1,119.0   6-3,   227.0   1.3   179.0   1.0   27.0   2.2   2.10   1   227.0   1.3   179.0   1.0   27.0   2.2   2.10   1   227.0   1.3   179.0   1.0   27.0   2.2   2.10   1   227.0   1.3   179.0   1.0   27.0   2.2   2.10   1   227.0   1.3   179.0   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10    |                      | 705.0     | - 4.0   |                |       |           |        |           |         |          |         |          |        |            |       |           | 3.3     |
| Colorado                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Wyoming              | 1,342.0   |         | +4.0           | Neg.  | -1,119.0  | -6.3   | 227.0     | 1.3     | 179.0    | 1.0     | 27.0     | .2     | 21.0       | .1    |           | 1.3     |
| Washington.         3,356.0         19.2         -163.0         -9         -60.0         -3         3,513.0         18.0         11.0         11         23.0         1         3,097.0         17.8         3,131.0         18.0           Subtocial IIIa.         7,156.0         40.7         -167.0         -9         +2,836.0         16.6         9,827.0         56.2         2,277.0         13.0         334.0         1.8         7,256.0         44.4         779.0         46.2         2,277.0         13.0         334.0         1.8         7,256.0         44.4         7,927.0         56.2         2,277.0         13.0         334.0         1.8         7,256.0         44.4         9,277.0         56.2         2,277.0         13.0         19.0         1.8         7,256.0         44.4         9,227.0         56.2         2,277.0         13.0         1.9         1.1         1,451.0         4.1         4,927.0         56.2         2,277.0         13.0         1.9         1.1         1,451.0         4.1         4,077.0         4.7         1,174.0         6.8         65.0         3.7         1.0         1.0         1.1         1,451.0         6.1         3.7         1.0         6.0         3.7         1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Utah                 |           |         |                |       |           |        |           |         |          |         |          |        |            |       |           |         |
| Organ. 303.0 1.7 -78.0 -4. 4 5932.0 13.2 779.0 4.5 10.0 1.1 9.0 Nor. 76.0 4.4 779.0 4.5 Subtotal IIIa. 15.6.0 40.7 -16.709 4.78.05.0 14.6 9.827.0 50.2 377.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |           |         |                |       |           |        |           |         |          |         |          |        |            |       | 3,798.0   | 18.0    |
| Subtotal IIIa: 7,156.0 40.7 -167.09 +2,836.0 +16.4 9,827.0 56.2 2,277.0 13.0 334.0 1.8 7,216.0 41.4 9,827.0 56.2 2,277.0 13.0 334.0 1.8 7,216.0 41.4 9,827.0 56.2 2,277.0 13.0 334.0 1.8 7,216.0 41.4 9,827.0 56.2 2,277.0 13.0 134.0 1.8 7,216.0 41.4 9,827.0 56.2 2,277.0 13.0 134.0 1.8 7,216.0 41.4 9,827.0 56.2 2,277.0 13.0 134.0 1.8 7,216.0 41.4 9,827.0 56.2 2,277.0 13.0 13.0 14.0 1.0 1.0 1,143.0 6.6 1,174.0 6.8 8.0 13.0 13.0 134.0 1.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Oregon               | 305.0     |         |                |       |           |        | 779.0     |         |          | .1      | 9.0      |        |            |       | 779.0     | 4.5     |
| Arizona                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Subtotal IIIa.       |           |         |                |       | +2,838.0  | +16.4  |           | 56.2    | 2,277.0  | 13.0    | 334.0    | 1.8    | 7,216.0    | 41.4  | 9,827.0   | 56.2    |
| Nevada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Subregion IIIb:      |           |         |                |       | .1 .00/   | 12.5   |           |         | 10.0     |         |          |        | 1 1/2 0    |       | 1 176 0   | 6.0     |
| California 25,917.0 [48.3] 726.0 4.1 [4.007.0] 22.9 [21,134.0] 121.3 [156.0] 9 660.0 3.7 [20,56.0] 116.7 [21,148.0] 121.3 [156.0] 9 660.0 3.7 [20,56.0] 116.7 [21,148.0] 121.3 [156.0] 9 660.0 3.7 [20,56.0] 116.7 [21,148.0] 121.3 [156.0] 9 660.0 3.8 [21,15.0] 127.0 [23,00.0] 131.8 [21,15.0] 127.0 [23,00.0] 131.8 [21,15.0] 127.0 [23,00.0] 131.8 [21,15.0] 127.0 [23,00.0] 131.8 [21,15.0] 127.0 [23,00.0] 131.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [23,00.0] 121.8 [2     |                      |           |         |                |       |           |        | 650.0     |         |          |         |          |        |            |       |           |         |
| Subtotal IIIb. 25,917.0   148.3   -770.0   -4.4   -2,139.0   -12,1   23,008.0   131.8   171.0   1.0   683.0   3.8   22,154.0   127.0   23,008.0   131.8   18.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19 |                      | 25,917.0  | 148.3   |                |       |           |        |           |         |          | . 9     |          | 3.7    |            |       | 21,184.0  |         |
| Alaska                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Subtotal IIIb.       |           |         |                | -4.4  | -2,139.0  |        | 23,008.0  |         | 171.0    | 1.0     |          | 3.8    |            | 127.0 | 23,008.0  | 131.8   |
| Hausi:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |           |         |                |       |           |        |           |         | 10.5     |         |          |        | 1 270 0    | 7.0   | 1 200 0   | 7.6     |
| Subtotal IIIc. 915.0 5.2 -35.02 +4,645.0 +26.8 5,525.0 31.8 49.0 .3 10.0 .1 5,466.0 31.4 5,525.0 31.8 Subtotal III 33,988.0 194.2 -972.0 -5.5 +5,344.0 +31.1 38,360.0 219.8 2,497.0 14.3 1,027.0 5.7 34,836.0 199.8 38,360.0 219.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |           |         |                |       |           |        |           |         |          |         | 10-0     | .1     |            |       |           | 24.4    |
| Subtotal III 33,988.0 194.2 -972.0 -5.5 +5,344.0 +31.1 38,360.0 219.8 2,497.0 14.3 1,027.0 5.7 34,836.0 199.8 38,360.0 219.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |           |         |                | 2     | +4,645.0  | +26.8  | 5,525.0   |         | 49.0     | .3      | 10.0     |        | 5,466.0    | 31.4  | 5,525.0   | 31.8    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Subtotal III         |           |         |                | -5.5  | +5,344.0  | +31.1  |           |         | 2,497.0  | 14.3    | 1,027.0  | 5.7    |            |       | 38,360.0  | 219.8   |

Number 133, resolv Project Number 134, resolv Project Number 134, resolvent Number 134,

| -                                 | <u> </u>             |              |                 |             |                    |                |                                                                                              |                |                      |             |                |       |                    |              |          |             |                    |             |                      |               |
|-----------------------------------|----------------------|--------------|-----------------|-------------|--------------------|----------------|----------------------------------------------------------------------------------------------|----------------|----------------------|-------------|----------------|-------|--------------------|--------------|----------|-------------|--------------------|-------------|----------------------|---------------|
|                                   | Supply Total supply  |              |                 |             |                    |                | Oemand by major consumer sectors   Household and   Electricity [Miscellaneous Total domestic |                |                      |             |                |       |                    |              |          |             |                    |             |                      |               |
|                                   | Refinery             | output       | Stock ch        |             | Net ship           |                | availab                                                                                      | le for         | conner               |             | Indust         | riel. | Transpor           | ation        | generat  |             | Miscella<br>and un |             | Total do<br>dema     |               |
| State and Region                  | Thousand             | Tril-        | Thousand        |             | Thousand           | Trillion       | consum                                                                                       |                | Thousand             |             | Thousand       | Tril- | Thousand           | Tril-        | utilit   | ies         | counted            | for         | Thousand             |               |
|                                   | barrols              | lion<br>Stu  | barrels         | lion<br>8tu | barrela            | 8tu            | Thousand                                                                                     |                | barrels              | lion<br>Btu | barrels        | lion  | barrels            | lion<br>8tu  | Thousand |             | Thousand           |             | barrels              | lion          |
|                                   |                      | 0.0          |                 | 000         |                    |                | Darrers                                                                                      | Btu            |                      | Deu         |                | BEU   |                    | otu          | barrels  | lion<br>Btu | barrale .          | lion<br>Btu |                      | 8tu           |
| United States total.              | 765,071.0            | 4,456.2      | +439.0          | +2.6        | +10,551.0          | +61.4          | 776,061.0                                                                                    | 4,520.2        | 481,000.0            | 2,801.8     | 52,800.0       | 307.6 | 185,600.0          | 1,081.1      | 3,661.0  |             | 53,000.0           |             | 776,061.0            | 4,520.2       |
| Region 1:<br>Subregion 1a:        |                      |              |                 | į.          |                    |                |                                                                                              |                |                      |             |                |       |                    |              |          |             |                    |             |                      |               |
| Maine                             |                      |              | +32.0           | +.2         | +9,419.0           | +54.9          | 9,451.0                                                                                      | 55.1           | 7,734.0              | 45.1        | 290.0          | 1.7   | 1,185.0            | 6.9          | 147.0    | . 8         | 95.0               | .6          | 9,451.0              | 55.1          |
| New Hampshire                     |                      |              | +14.0           | +-1         | +5,929.0           | +34.5          | 5,943.0                                                                                      | 34.6           | 5,547.0              |             |                | .8    | 176.0              | 1.0          |          | -           | 86.0               | . 5         | 5,943.0              | 34.6          |
| Vermont<br>Massachusetta          | 12.0                 | ٠,           | +13.0<br>+361.0 |             | +4,331.0           | +25.2          |                                                                                              |                | 3,982.0              |             |                | 6.1   | 183.0              | 1.1          | 3.0      | Neg.        | 53.0<br>461.0      | 2.7         | 4,344.0<br>57,075.0  | 25.3<br>332.4 |
| Rhode laland                      | 662.0                |              |                 |             | +5.613.0           |                |                                                                                              |                |                      | 37.1        |                | 0.1   | 388.0              | 2.3          |          | 1.9         | 97.0               | 2.7         | 7,054.0              |               |
| Connecticut                       |                      | -            | +22.0           | +.1         | +21,516.0          | +125.4         | 21,538.0                                                                                     | 125.5          | 19,034.0             | 110.9       | 914.0          | 5.3   | 1,400.0            | 8.2          | 18.0     | - 1         | 172.0              | 1.0         | 21,538.0             | 125.5         |
| New York                          | 6,409.0              |              | +552.0          |             | +98,042.0          |                | 105,003.0                                                                                    |                | 88,792.0<br>44,871.0 |             |                | 32.2  | 8,702.0            | 50.6         | 184.0    | 1.1         |                    | 10.5        |                      | 611.5         |
| New Jersey<br>Pennsylvania        | 53,396.0<br>48,134.0 | 311.0        | +1,068.0        |             | -275.0<br>+6,022.0 | +35.1          | 54,189.0                                                                                     | 315.6<br>317.1 | 38,558.0             | 224.6       |                | 26.3  |                    | 51.2         |          | .2          | 1,168.0            | 6.8         | 54,189.0<br>54,467.0 | 315.6         |
| Oelavare                          | 10,989.0             | 64.0         | +54.0           | +.3         | -7,695.0           | -44.8          | 3,348.0                                                                                      | 19.5           | 2,714.0              | 15.8        | 157.0          | . 9   | 253.0              | 1.5          |          | . 3         | 173.0              | 1.0         | 3,348.0              | 19.5          |
| Maryland                          | 312.0                | 1.8          | +848.0          | +4.9        | +16,028.0          | +93.5          | 17,188.0                                                                                     | 100.2          | 11,581.0             | 67.5        | 786.0          | 4.6   | 3,731.0            | 21.7         | 148.0    | .9          | 942.0              | 5.5         | 17,188.0             | 100.2         |
| Oistrict of<br>Columbia           |                      |              | +2.0            | Neg.        | +3,530.0           | +20.6          | 3,532,0                                                                                      | 20.6           | 2,393.0              | 13.9        | 13.0           |       | 865.0              | 5.0          | 80.0     |             | 181.0              | 1.1         | 3,532.0              | 20.6          |
| Virginia                          | 4,482.0              | 26.1         | +128.0          | +.7         | +14,044.0          |                | 18,654.0                                                                                     | 108.6          | 10,131.0             | 59.0        | 950.0          | 5.5   |                    | 37.8         |          | .2          |                    | 6.1         | 18.654.0             | 106.6         |
| West Virginia                     | 687.0                | 4.0          |                 |             | +2,129.0           | +12.4          |                                                                                              | 16.3           | 629.0                |             |                |       |                    | 8.8          | ÷        |             | 256.0              | 1.5         | 2,797.0              | 16.3          |
| North Carolina<br>South Carolina  |                      |              | +154.0          |             | +16,937.0          |                |                                                                                              |                |                      |             |                |       |                    | 25.7<br>9.0  |          | - 1         | 1,582.0            | 9.2         | 17,091.0<br>4,758.0  | 99.5<br>27.8  |
| Georgia                           | 95.0                 | .6           | +132.0          |             | +8,052.0           |                |                                                                                              |                |                      | 9.1         | 1,159.0        |       |                    | 24.1         |          |             | 1,427.0            | 8.3         | 8,279.0              | 48.3          |
| Florida                           | 357.0                | 2.1          | +120.0          | +.7         | F11,537.0          | +67.2          | 12,014.0                                                                                     | 70.0           | 3,757.0              | 21.9        | 1,676.0        | 9.8   | 4,432.0            | 25.8         | 375.0    |             | 1,774.0            | 10.3        | 12,014.0             | 70.0          |
| Kentucky                          | 8,785.0              | 51.2         | +65.0           |             | -3,398.0           |                |                                                                                              |                | 1,553.0              | 9.0         | 457.0          |       |                    | 15.7         | 3.0      | Neg.        | 744.0              | 7.1         | 5,452.0              | 31.7<br>41.1  |
| Tennesace                         | 2,178.0              | 12.7         | +80.0<br>+26.0  |             | +4,805.0           | +27.9<br>+25.6 |                                                                                              | 29.6           | 1,018.0              | 3.9         | 534.0          | 3.1   | 4,298.0<br>3,056.0 | 25.0<br>17.8 | 2.0      | Neg.        | 1,211.0            |             | 7,063.0              | 29.6          |
| Miasissippi                       |                      | 11.3         |                 | +.2         | +641.0             | +3.7           | 2,616.0                                                                                      | 15.2           | 209.0                | 1.2         | 302.0          | 1.8   |                    | 6.5          |          |             | 982.0              |             | 2,616.0              | 15.2          |
| Oh10                              | 29,038.0             | 169.1        | +98.0           | +.6         | -1,511.0           | -8.8           |                                                                                              | 160.9          | 13,685.0             | 79.7        | 2,278.0        | 13.3  | 9,614.0            | 56.0         |          | .8          | 1,901.0            |             | 27,625.0             | 160.9         |
| Subtotal la<br>Subregion lb:      | 168,127.0            | 979.2        | +4,963.0        | +28.9       | +281,470.0         | +1,639.5       | 454,560.0                                                                                    | 2,647.6        | 329,564.0            | 1,919.4     | 25,604.0       | 149.3 | 77,483.0           | 451.3        | 1,716.0  | 9.9         | 20,193.0           | 117.7       | 454,560.0            | 2,647.6       |
| Indiana                           | 34,283.0             | 199.7        | -491.0          | -2.9        | -7,619.0           | -44.4          | 26,173.0                                                                                     | 152.4          | 17,077.0             | 99.5        | 2,975.0        | 17.3  | 5,066.0            | 29.5         | 57.0     | . 3         | 998.0              | 5.8         | 26,173.0             | 152.4         |
| Illinois                          | 47,544.0             | 276.9        | -393.0          | -2.3        | -5.843.0           | -34.2          | 41,308.0                                                                                     | 240.4          | 24,951.0             | 145.3       | 3,146.0        | 18.3  | 11,381.0           | 66.2         | 162.0    | . 9         | 1,668.0            | 9.7         | 41,308.0             | 240.4         |
| Michigan                          | 12,075.0             | 70.3         | +350.0          | +2.0        | +18,490.0          | +107.8         | 30,915.0                                                                                     |                | 24,109.0             | 140.4       | 1,522.0        | 8.9   |                    | 19.3         |          | 2.2         |                    | 9.3         |                      | 180.1         |
| Wisconsin<br>Subtotal lb          | 95.546.0             | 9.6          | -76.0<br>-610.0 |             | +22,309.0          |                | 23,877.0                                                                                     |                |                      | 118.1       | 572.0          | 47.8  | 2,124.0            | 12.4         | 23.0     | 3.5         | 5.147.0            |             | 23,877.0             | 711.9         |
| Subtotal 1                        | 263,673.0            | 1,535.7      |                 |             | +308,807.0         | +1,798.5       | 576,833.0                                                                                    | 3,359.5        | 415,975.0            | 2,422.7     | 33,819.0       | 197.1 | 99,365.0           | 578.7        |          |             | 25,340.0           | 147.6       | 576,833.0            |               |
| Region 11:                        |                      |              |                 |             |                    |                |                                                                                              |                |                      |             |                |       |                    |              |          |             |                    |             |                      |               |
| Subregion 11a:<br>Minnesota       | 7,515.0              | 43.8         | 190.0           | +.5         | +11,353.0          | 166.2          | 18,958.0                                                                                     | 110.5          | 13,043.0             | 76.0        | 969.0          | 5.6   | 3,239.0            | 18.9         | 149.0    | .9          | 1,558.0            | 9.1         | 18,958.0             | 110.5         |
| lowa                              |                      |              | -17.0           | 1           | +11,068.0          | 464.5          | 11,051.0                                                                                     | 64.4           | 7,154.0              | 41.7        | 614.0          | 3.6   | 1,969.0            | 11.5         | 196.0    |             | 1,118.0            | 6.5         | 11,051.0             | 64.4          |
| Missouri                          | 5,931.0              | 34.5         | -102.0          |             | +7,851.0           |                | 13,680.0                                                                                     | 79.6           | 5,029.0              | 29.3        | 571.0          |       |                    |              |          | .8          | 1,324.0            | 7.7         | 13,680.0             | 79.6          |
| North Oskota<br>South Oskota      | 4,154.0              | 24.2         | -20.0           |             | +1,002.0           | +5.9<br>+22.2  |                                                                                              | 30.0           | 3,403.0              | 19.8        | 198.0<br>73.0  |       | 906.0              |              |          | 1.0         | 629.0              | 3.7         | 5,136.0              | 30.0          |
| Nebraska                          | 241.0                | 1.4          | -16.0           | 1           | +3,429.0           | +20,0          | 3,654.0                                                                                      | 21.3           | 1,455.0              | 8,5         | 110.0          | .6    | 1,423.0            | 8.3          |          | . 7         | 553.0              | 3.2         | 3,654.0              | 21.3          |
| Subtotal lla                      | 17,841.0             | 103.9        |                 | -,7         | +38,505.0          |                | 56,228.0                                                                                     | 327.7          | 32,621.0             |             | 2,535.0        | 14.7  | 14,775.0           |              |          | 3.6         | 5,673.0            | 33.1        | 56,228.0             | 327.7         |
| Subregion IIb:                    | 7,480,0              | 43.6         | +36.0           | +.2         | -4,779.0           | -27.8          | 2,737.0                                                                                      | 16.0           | 270.0                | 1.6         | 192.0          | 1.1   | 1,684.0            | 9.8          | 26.0     | .2          | 565.0              | 3.3         | 2,737.0              | 16.0          |
| Louisiana                         |                      |              |                 |             | -72,703.0          |                |                                                                                              |                | 449.0                | 2,6         | 2,444.0        | 14.2  |                    |              |          |             |                    |             | 8,210.0              | 47.8          |
| Oklahona                          | 32,631.0             | 190.1        | +415.0          | +2.4        | -30,262.0          | -176.2         | 2,784.0                                                                                      | 16.3           | 424.0                |             | 114.0          | .7    | 1,564.0            | 9.1          | 50.0     | .3          |                    |             | 2,784.0              | 16.3          |
|                                   | 226,104.0            |              | +204.0          |             |                    |                | 24,107.0                                                                                     |                | 1,027.0              | 2.3         | 3,680.0        | 21.5  | 15,633.0           |              | 42.0     | .2          | 3,725.0            | 21.6        | 24,107.0             | 140.4         |
| New Mexico<br>Kansas              | 2,006.0              | 11.7         | -36.0<br>-334.0 | -1.9        | +1,799.0           |                |                                                                                              | 22.0<br>30.1   | 617.0                | 3.6         | 166.0          |       |                    | 20.0         |          | .8          | 802.0              |             | 5,156.0              | 30.1          |
| Subtotal 115                      | 380,401.0            | 2,215.7      | -1,470.0        | -8.5        | -332,168.0         | -1,934.6       | 46,763.0                                                                                     | 272.6          | 3,174.0              | 18.6        | 6,698.0        | 39.1  | 29,243.0           | 170.4        | 319.0    | 1.9         | 7,329.0            | 42.6        | 46,763.0             | 272.6         |
| Subtotal 11.                      | 398,242.0            | 2,319.6      | -1,588.0        | -9-2        | -293,663.0         | -1,710.1       | 102,991.0                                                                                    | 600.3          | 35,795.0             | 208.7       | 9,233.0        | 53.8  | 44,018.0           | 256.6        | 943.0    | 5.5         | 13,002.0           | 75.7        | 102,991.0            | 600.3         |
| Region 111:<br>Subregion 111a:    |                      |              |                 |             |                    |                |                                                                                              | 1              |                      |             |                |       |                    |              |          |             |                    |             |                      |               |
| Nontana                           | 7,796.0              | 45.4         | -48.0           | 3           | -2,935.0           | -17.0          | 4,813.0                                                                                      | 28.1           | 1,108.0              | 6.5         | 225.0          | 1.3   |                    |              |          | 1           | 834.0              |             | 4,813.0              | 28.1          |
| ldaho                             | 1.                   |              | -48.0           | 3           | +4,800.0           | +28.0          | 4,752.0                                                                                      | 27.7           | 2,614.0              | 15.2        | 444.0          | 2.6   | 1,067.0            |              | 1        |             | 627.0              |             | 4,752.0              | 27.7          |
| Wyoming                           | 6,790.0              | 39.6         | -113.0          | 7           | -3,102.0           | -18.1          | 3,575.0                                                                                      | 20.8           | 340.0                |             |                |       | 1,843.0            |              | 7.0      | Neg.        | 593.0              |             | 3,575.0<br>4,118.0   |               |
| Utah                              | 9,313.0              | 54.2<br>17.5 |                 |             | -4,999.0<br>+892.0 | -29.1<br>+5.3  |                                                                                              | 24.0           | 826.0                |             | 249.0<br>182.0 | 1.5   | 1.743.0            | 10.2         |          | -1          |                    |             | 3,725.0              | 21.8          |
| Washington                        | 8,222.0              | 47.9         |                 |             | +9,082.0           | +52.9          | 17,109.0                                                                                     | 99.7           | 11,683.0             | 68.1        | 846.0          | 4.9   | 2,988.0            | 17.4         | -        | -           | 1,592.0            | 9.3         | 17,109.0             | 99.7          |
| Oregon                            | 384.0                | 2.2          | -22.0           |             | +12,686.0          |                | 13,048.0                                                                                     | 76.0           | 7,292.0              |             | 1,034.0        | 6.0   |                    |              |          | .2          | 6,396.0            | 6.4         | 13,048.0             | 76.0          |
| Subtotal Illa.<br>Subregion Illb: | 35,512.0             | 206.8        | -796.0          | -4.6        | +16,424.0          | +95.9          | 51,140.0                                                                                     | 298.1          | 24,473.0             | 142.7       | 3,772.0        | 22.0  | 16,451.0           | 95.8         | 48.0     | 2           | 0,396.0            | 37.4        | 31,140.0             |               |
| Arizona                           |                      |              | -1.0            | Neg.        | +3,394.0           | +19.7          | 3,393.0                                                                                      | 19.7           | 240.0                | 1.4         | 672.0          | 3.9   | 1,770.0            | 10.3         | 2.0      | Neg.        | 709.0              | 4.1         | 3,393.0              | 19.7          |
| Nevada                            |                      |              | -1.0            | Neg.        | +2,737.0           |                | 2,736.0                                                                                      | 16.0           | 647.0                |             |                | 1.5   |                    | 9.2          | 10.0     | .1          | 242.0              |             | 2,736.0              | 16.0<br>196.7 |
| California                        | 65,008.0             | 378.7        |                 | -8.6        | -29,732.0          |                |                                                                                              | 232.4          | 1,665.0              |             |                | 27.5  | 20,798.0           | 121.1        | 90.0     | .5          | 6,523.0<br>7,474.0 | 37.9        | 33,800.0             | 232.4         |
| Subtotal 111b.<br>Subregion 111c: | 65,008.0             | 378.7        | -1,478.0        | 8.6         | -23,601.0          | -13/./         | 39,929.0                                                                                     | 232.4          | 2,552_0              | 14.9        | 3,651.0        | 32.9  |                    |              |          |             |                    |             |                      |               |
| Alacka                            | 958.0                | 5.6          |                 |             | +2,716.0           | F15.6          | 3,656.0                                                                                      |                | 2,084.0              | 12.1        | 214.0          | 1.2   |                    |              |          | 1.1         | 381.0              |             | 3,656.0              | 21.1          |
| Hawaii                            | 1,678.0              | 9.8          | -34.0           | 2           | -132.0             | 8              | 1,512.0                                                                                      | 8.8            | 121.0                |             | 111.0          | 6     | 836.0              |              |          | 1.3         | 788.0              |             | 5,168.0              | 29.9          |
| Subtotal Ille.                    | 2,636.0              | 15.4         | -52.0           | 1 3         | +2,584.0           | 114,8          | 5,168.0                                                                                      | 29.9           | 2,205.0              | 12.8        | 325.0          | 1.8   | 1,010.0            | 7.4          | 234.0    | - 113       | 17 (70.0           | 00.7        | 04 227 0             | 550           |

Special III. | 2,550 | 15.4 | 57.0 | -3.1 | 2,550.0 | 14.8 | 5,165.0 | 25.9 | 2,205.0 | 12.8 | 333.0 | 1.8 | 16.6 | 0.9 | 334.0 | 1.3 | 28.0 | 4.8 | 5,165.0 | 26.9 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0

|                                |           |             | Supply           |               |                        |                 |                               |                |                    |       |                    |                 | Oenand by major consumer sect |         |                            |       |                |       |                     |              |
|--------------------------------|-----------|-------------|------------------|---------------|------------------------|-----------------|-------------------------------|----------------|--------------------|-------|--------------------|-----------------|-------------------------------|---------|----------------------------|-------|----------------|-------|---------------------|--------------|
|                                | Refinery  | outour      | Stock change1    |               | Net shipments          |                 | Total supply<br>available for |                |                    |       | Indust             | trial Transport |                               | ation   | Electricity<br>generation, |       |                |       | Total domestic      |              |
| State and Region               | Thousand  |             | Thousand         |               | Thousand               | Trillion        | consum                        |                | Thousand           |       | Thousand           | Tril-           | Thousand                      | 1 T-(1- | generat                    | ion,  | counted        |       | Thousand            | Tril-        |
| mile migrem                    | barrels   | lion        | barrels          |               | barrels                | 8tu             | Thousand                      | Tril-          | barrels            |       | barrels            | lion            | barrels                       |         | Thousand                   | Tril- | Thousand       |       | barrels             | lion         |
|                                |           | 8tu         |                  | Btu           |                        |                 | barrels                       | lion           |                    | 8tu   |                    | 8tu             |                               | 8tu     | barrels                    | lion  | barrela        |       |                     | 8tu          |
| United States total.           | 200 000   | 1 600 6     | -15,811.0        | 00. (         | 333,648.0              | 0.007.4         | 506 (0) 0                     | 8tu            | 156 200 0          | 000.0 | 174,900.0          | 1 000 6         | 110 020 0                     | 763.0   | 114 004 0                  | Btu   | 00 100 0       | 8tu   | 406 101 0           | 2 (0( 0      |
| Region I:                      | 208,387.0 | 1,000.3     | -15,611.0        | -99.4         | 333,590.0              | 2,097.6         | 586,404.0                     | 3,685./        | 130,200.0          | 902.0 | 174,900.0          | 1,099.0         | 118,020.0                     | 741.9   | 114,004.0                  | 164.4 | 22,400.0       | 140.8 | 385,404.0           | 3,686.7      |
| Subregion Ia:                  | 1         |             |                  |               |                        |                 |                               | 1              |                    |       |                    |                 |                               |         |                            |       | 1              |       |                     |              |
| Maine                          | -         | -           | -65.0            | 4             | +6,511.0               | +41.0           |                               |                | 322.0              |       | 967.0              | 6.1             | 602.0                         | 3.8     | 4,547.0                    |       |                | .1    | 6,446.0             | 40.6         |
| New Hampshire                  | 1 -       | -           | -30.0            | 2             | +2,451.0               | +15.3           |                               |                | 294.0              |       | 728.0              | 4.6             | 1.0                           | Neg.    | 1,375.0                    | 8.6   |                | -1    | 2,421.0             | 15.1         |
| Vermont<br>Massachusetts       | 1 :       | 1 1         | -25.0<br>-4.0    | Neg.          | +53,358.0              | +335.4          | 952.0                         |                | 545.0<br>29.143.0  |       | 316.0<br>8,910.0   | 2.0             | 2,381.0                       | 15.0    | 64.0                       | 80.5  | 27.0<br>132.0  | .2    | 952.0<br>53,354.0   | 335.4        |
| Rhode Island                   | 50.0      | .3          | +4.0             | Neg.          | +6,265.0               | +39.4           | 6,319.0                       |                | 1,071.0            |       | 1,489.0            | 9,4             | 2,540.0                       | 16.0    | 978.0                      | 6.1   | 241.0          |       | 6,319.0             | 39.7         |
| Connecticut                    | -         |             | -45.0            | 3             | +16,837.0              | +106.0          | 16,792.0                      | 105.7          | 4,035.0            | 25.4  | 9.560.0            | 60.1            | 454.0                         | 2.9     | 2,703.0                    | 17.0  | 40.0           | .3    | 16,792.0            | 105.7        |
| New York                       | 3,950.0   | 24.8        | -186.0           | -1.2          | 499,654.0              | +626.5          |                               | 650.1          | 53,678.0           |       | 10,200.0           | 64.1            | 15,565.0                      | 97.8    |                            | 145.5 | 844.0          | 5.3   | 103,418.0           | 650.1        |
| New Jersey<br>Pennsylvania     |           | 82.5        | +196.0<br>-195.0 | +1.2          | +29,490.0<br>+27,557.0 | +185.4          |                               | 269.1<br>272.3 | 7,642.0            |       | 15,668.0           | 98.5            | 6,195.0<br>4,387.0            | 38.9    | 12,628.0                   | 79.4  | 681.0          | 10.0  | 42,814.0            |              |
| Delaware                       |           | 13.4        | -56.0            | 4             | +3,474.0               | +21.9           | 5,546.0                       | 34.9           | 505.0              | 3.2   | 3,993.0            | 25.1            | 567.0                         | 3.6     | 63.0                       | 23.2  | 418.0          | 2.6   | 5,546.0             | 34.9         |
| Maryland                       | 100.0     | .6          | +82.0            |               | +15,320.0              |                 |                               |                | 4,345.0            | 27.3  |                    | 32.7            | 4,840.0                       |         | 459.0                      | 2.9   | 661.0          | 4.1   | 15,502.0            | 97.4         |
| Oistrict of                    |           |             |                  |               |                        |                 |                               | ì              |                    | 1     |                    |                 |                               |         |                            |       |                |       |                     |              |
| Columbia<br>Virginia           | 390.0     | 2.5         | →3.0<br>-191.0   | Neg.          | +6,587.0               | +41.4           | 6,584.0                       | 103.3          | 6,229.0<br>3,289.0 | 39.2  | 189.0<br>3,212.0   | 20.2            | 6.0                           | Neg.    | 12.0                       |       | 148.0<br>463.0 | .9    | 6,384.0             | 41.4         |
| West Virginia                  | 390.0     | 2.5         | +5.0             |               | +16,235.0              | +102.0          | 2,117.0                       |                | 3,289.0            | 20.7  | 1,899.0            | 11.9            | 9,291.0                       | 30.4    | 72.0                       | 1.1   | 463.0<br>54.0  | 2.9   | 16,434.0<br>2,117.0 | 103.3        |
| North Carolina                 |           | - "2        | -309.0           |               | +5,302.0               | +33.2           |                               |                | 324.0              | 2.0   | 3,319.0            | 20.9            | 560.0                         | 3.5     | 49.0                       | ,3    | 741.0          | 4.6   | 4,993.0             | 31.3         |
| South Carolina                 |           |             | -118.0           | 7             | +4,319.0               | +27.1           | 4,201.0                       | 26.4           | 340.0              | 2.1   | 1,769.0            | 11.1            | 1,265.0                       | 8.0     | 32.0                       | .2    | 795.0          | 5.0   | 4,201.0             | 26.4         |
| Georgia                        |           | .4          | -232.0           |               | +9,084.0               | +57.2           |                               |                | 505.0              |       | 5,771.0            | 36.3            | 1,119.0                       |         | 52.0                       | 3     | 1,475.0        | 9.3   | 8,922.0             | 56 . 1       |
| Florida<br>Kentucky            | 2,577.0   | 16.3        | -224.0<br>-92.0  |               | +45,757.0              | +287.7<br>-11.7 | 45,533.0<br>616.0             | 286.3          | 342.0<br>10.0      |       | 8,517.0<br>482.0   | 53.5<br>3.0     | 4,577.0                       | 28.8    | 27,685.0                   | 174.1 | 4,412.0        | 27.7  | 45,533.0<br>616.0   | 286.3        |
| Tennessee                      | 188.0     | 16.3        | -47.0            | 8             | +193.0                 | +1.2            | 334.0                         | 2.1            | 5,0                |       | 203.0              | 1.3             | 21.0                          | .1      | 12.0                       |       | 105.0          | .7    | 334.0               | 2.1          |
| Alabana                        | 755.0     | 4.7         | -36.0            | -,2           | +1,869.0               | +11.8           | 2,588.0                       | 16.3           | 80.0               | .5    | 726.0              | 4.6             | 1,549.0                       | 9.7     | -                          | -     | 233.0          | 1.5   | 2,588.0             | 16.3         |
| Mississippi                    | 205.0     | 1.3         | -26.0            | 2             | +343.0                 | +2.2            | 522.0                         | 3.3            | -                  | - 3   | 143.0              |                 | 290.0                         | 1.8     | 17.0                       | -1    | 72.0           | .5    | 522.0               | 3.3          |
| Oh10                           | 8,360.0   | 52.5        | +38.0            | +.2           | +2,779.0               | +17.5           |                               | 70.2           | 454,0              | 2.9   | 8,891.0            | 55.9            | 610.0                         | 3.8     | 98.0                       | .6    | 1,124.0        | 7.0   | 11,177.0            | 70.2         |
| Subtotal la<br>Subregion lb:   | 47,867.0  | 300.9       | -1,559.0         | -10.0         | +354,575.0             | 42,229.4        | 400,883.0                     | 2,520.3        | 124,324.0          | /81.4 | 114,388.0          | 719.3           | \$6,860.0                     | 357.4   | 90,952.0                   | 5/2,0 | 14,359.0       | 90.2  | 400,883.0           | 2,520.3      |
| Indiana                        | 22,347.0  | 140.5       | -676.0           | -4.2          | -9,032.0               | - 56 . 8        | 12,639,0                      | 79.5           | 1,720,0            | 10.8  | 10,172,0           | 64.0            | 562.0                         | 3,5     | 107.0                      | .7    | 78.0           | 5     | 12,639.0            | 79.5         |
| Illinois                       | 12,684.0  | 79.8        | -75.0            | 5             | 19,865.0               | +62.0           | 22,474.0                      |                | 13,421.0           |       | 8,051.0            |                 | 407.0                         | 2.6     | 123.0                      | .8    | 472.0          | 3.0   | 22,474.0            | 141.3        |
| Michigan                       | 5,401.0   | 34.0        | -46.0            | 3             | +2,812.0               | +17.6           | 8,167.0                       |                | 1,322.0            |       | 5,770.0            | 36.3            | 750.0                         | 4.7     | 37.0<br>46.0               | .2    | 288.0          | 1.8   | 8,167.0             | 51.3<br>19.6 |
| Wisconsin<br>Subtotal lb       | 1,494.0   | 9.4         | +96.0<br>-701.0  | +.6           | +1,511.0               | +32.4           | 3,101.0                       | 291.7          | 1,318.0            | 8.3   | 1,346.0            | 8.5             | 364.0                         | 2.3     | 313.0                      | 2.0   | 27.0<br>865.0  | - 2   | 3,101.0             |              |
| Subtotal 1                     |           |             | -2.260.0         | -14.4         | +359,731.0             | 12,261.8        | 447,264.0                     | 2,812.0        | 142,105,0          | 893.1 | 139,727,0          | 878.7           | 58,943.0                      |         |                            |       |                |       |                     |              |
| Region II:                     |           |             |                  | التناقية      |                        | -               | -                             |                |                    |       |                    |                 |                               |         |                            |       |                |       |                     |              |
| Subregion IIa:                 |           |             |                  |               |                        |                 |                               | 20.1           | 1,242.0            | 7.8   | 3,205.0            | 20.1            | 72.0                          | .5      | 298.0                      | 1.9   | 16.0           | ١.,   | 4,833.0             | 30.4         |
| Hinnesota                      | 4,655.0   | 29.3        | -280.0<br>-13.0  | -1.8          | +4\$8.0<br>+5\$8.0     | +2.9            | 4,833.0<br>545.0              | 30.4           | 303.0              |       | 142.0              | 20,1            | 14.0                          | .1      | 28.0                       | 1.7   | 58.0           | 1 .4  | 545.0               | 3.5          |
| Missouri                       | 1,058,0   | 6.7         | +28.0            | +.2           | 12,245.0               | +14.0           | 3,331.0                       |                | 1,806.0            |       |                    | 7.7             | 148.0                         |         | 4.0                        | Neg.  |                | .9    | 3,331.0             | 20.9         |
| North Dakota                   | 600.0     | 3.8         | -13.0            | 1             | +248.0                 | +1.6            | 835.0                         |                | 220.0              |       |                    | 3.7             | 24.0                          |         | -                          | -     | 2.0            | Neg.  | 835.0               | 5.3          |
| South Oakota                   |           |             | -4.0             | Neg.          | +52.0                  | +.3             |                               |                | 20.0               | -1    | 2.0                | Neg.            | 1.0                           | Neg.    | 25.0                       | 1 .2  |                |       | 48.0<br>311.0       | 2.0          |
| Nebraska<br>Subtotal IIa       | 75.0      | 40.3        | -287.0           | Neg.          | +241.0                 | +1.5            | 9,903.0                       | 62.4           | 3,649.0            | 23.0  | 5,221.0            | 32.7            | 105.0                         | 2.4     | 93.0                       | 2,9   | 221.0          | Neg.  |                     | 62.4         |
| Subregion Ilb:                 | 0,300.0   | 40.3        | -207.0           | -11.0         | 13,002.0               | and the same of | 7,3113,0                      | 00.7           |                    |       | - and and a second |                 | -                             | -       |                            |       |                | -     |                     |              |
| Arkansas                       | 1,045.0   | 6.6         | -118.0           | 7             | -499.0                 | -3.2            | 428.0                         | 2.7            |                    | -     | 347.0              | 2.2             | 35.0                          |         | 6.0                        | Neg.  | 40.0           | .3    | 428.0               | 2.7          |
| Louisiana                      | 14,815.0  | 93.1        | -518.0           |               | -6,541.0               | -41.1           | 7,756.0                       |                | 4.0                | Neg.  | 399.0              | 2.5             | 7,029.0                       | 44.2    |                            | -1    | 302.0          | 1.9   | 7,756.0             | 48.7<br>5.2  |
| Oklahoma                       |           | 9.7         | -132.0           | 8             | -595.0                 | -3.7            |                               |                | 12.0               | .1    | 534.0              | 8.9             | 235.0                         |         | 2.0                        | Neg.  | 27.0<br>905.0  | 5.7   | 810.0<br>14,272.0   | 89.8         |
| Texas<br>New Mexico            | 39,590.0  | 248.9       | -1,784.0<br>+2.0 | -11.1<br>Neg. | -23,534.0<br>+986.0    | -148.0<br>+6.1  |                               | 89.8           | 30.0               |       | 9.0                | 0.9             | 35.0                          | 1 ,4.8  | 22.0                       | -1    | 1,252,0        | 7.8   | 1,348.0             | 8.4          |
| Kanses                         | 849.0     | 5.3         | -121.0           | 8             | +425.0                 | 12.7            | 1,153.0                       | 7.2            | 129.0              | .8    | 532.0              | 3.3             | 132.0                         | .8      | 175.0                      | 1.1   | 185.0          | 1.2   | 1,153.0             | 7.2          |
| Subtotal IIb                   | 58,196.0  | 365.9       | -2,671.0         | -16.7         | -29,758.0              |                 | 25,767.0                      | 162.0          | 229.0              | 1.4   | 3,233.0            | 20.4            | 19,359.0                      |         | 235.0                      |       |                |       |                     | 162.0        |
| Subtotal II.                   | 64,584.0  | 405.2       | -2,958.0         | -18.5         | -25,956.0              | -163.3          | 35,670,0                      | 224.4          | 3,878.0            | 24.4  | 8,454.0            | 53.1            | 19,723.0                      | 124.1   | 683.0                      | 4.3   | 2,932.0        | 18.3  | 35,670.0            | 224.4        |
| Region 111:<br>Subregion 111a: |           |             |                  |               |                        |                 |                               |                |                    |       |                    |                 |                               |         | 1                          |       |                | 1     |                     |              |
| Montana                        | 2,016.0   | 12.7        | -156.0           | -1.0          | -595.0                 | -3.7            | 1,265.0                       | 8,0            | 504.0              | 3.2   | 322.0              | 2.0             | 313.0                         | 2.0     | -                          | -     | 126.0          | .8    | 1,265.0             | 8.0          |
| Idaho                          |           |             |                  |               | 1345.0                 | +2.1            | 345.0                         | 2.1            | 172.0              | 1.1   | 117.0              | .7              | 53.0                          | .3      | 1.0                        | Neg.  | 2.0            | Neg.  | 345.0               |              |
| Wyoning                        | 4,266.0   | 26.8        | -117.0           | 7             | -1,987.0               | -12.5           |                               | 13.6           | 282.0<br>597.0     |       | 618.0              | 3.9             | 1,130.0                       |         | 1,584.0                    | 10.0  | 103.0          | -6    | 2,162.0<br>5,502.0  |              |
| Utah                           | 4,164.0   | 26.3<br>7.2 | -14.0<br>+47.0   | +.3           | F1,352.0               |                 |                               |                | 559.0              |       | 3,219.0            | 20.2            | 687.0                         | 4.3     | 1,584.0                    | 10,0  | 27.0           | .1    | 1,976.0             | 12.4         |
| Colorado<br>Washington         |           | 70.8        |                  |               |                        | -2.5            | 9,751.0                       | 61.1           | 3,554.0            |       |                    | 19.5            |                               |         | 23.0                       | .1    | 1,679.0        | 10.5  | 9,751.0             | 61.1         |
| Oregon                         | 1,026.0   | 6.5         | -109.0           | 7             | +4,333.0               | 127.2           | 5,250.0                       | 33.0           | 2,445.0            | 15.4  | 1,577.0            | 9.9             | 645.0                         | 4.1     | 5.0                        | Neg.  | 578.0          | 3.6   | 5,250.0             | 33.0         |
| Subtotal 111a.                 | 23,905,0  | 150.3       | -1,492.0         | -9.4          | 13,838.0               | +24.0           | 26,251.0                      | 164.9          | 8,113.0            | 51.1  | 9,642.0            | 60.5            | 4,312.0                       | 27.1    | 1,661.0                    | 10.4  | 2,523.0        | 15.8  | 26,251.0            | 164.9        |
| Subregion IIIb:                |           |             |                  |               | F53.0                  | +,3             | 51.0                          | .3             | 26.0               | 1 7   | 1.0                | W               |                               |         | 4.0                        | Neg.  | 20.0           | 1 1   | 51.0                | .3           |
| Arizona<br>Nevada              |           | - 1         | -2.0             | Neg.          | 186.0                  | 1.5             |                               |                | 56.0               | .4    | 18.0               | Neg.            | 7.0                           | Neg.    | - 4.0                      | meg.  | 4.0            | Neg.  | 85.0                | .5           |
| California                     | 87,207.0  | 548.2       | -8,789.0         |               | -10,531.0              | -66.1           | 67,887.0                      | 426.9          | 1,746.0            | 11.0  | 15,407.0           | 96.9            | 33,820.0                      | 212.6   |                            | 103.2 | 504.0          | 3.2   | 67,887.0            | 426.9        |
| Subtotal IIIb.                 |           |             |                  |               |                        | -65.3           |                               | 427,7          | 1,828.0            |       | 15,426.0           | 97.0            |                               |         |                            | 103.2 | 528.0          | 3.3   | 68,023.0            | 427.7        |
| Subregion Illc:                |           |             |                  |               | 26.0                   | 2               | 887.0                         | 5,6            | 199.0              | 1 1 2 | 563,0              | 3.5             | 64.0                          | 4       | 18.0                       | -3    | 43.0           | .3    | 887.0               | 5,6          |
| Alaska                         | 1,026.0   | 6.4         | -103.0<br>-206.0 | -1.3          | -36.0                  |                 |                               |                | 77.0               | 1 .5  | 1.088.0            | 6.8             | 1,151.0                       | 7.2     | 4,843.0                    | 30.4  | 1,150.0        | 7.2   | 8,309.0             | 52.1         |
| Mawaii<br>Subtotal lllc.       | 3,078.0   | 12.8        | -309.0           | -1.9          | 16,427.0               |                 |                               | 57.7           | 276.0              | 1.8   | 1,651.0            | 10.3            | 1.215.0                       | 7.6     | 4,861,0                    | 30,5  | 1,193.0        | 7.5   | 9,196.0             | 57.7         |
| Subtotal IIIC.                 | 114 190 0 | 717 7       | -10.593.0        |               |                        |                 | 103,470,0                     |                | 10,217.0           |       | 26,719.0           | 167.8           | 39,354.0                      | 247.3   | 22,936.0                   | 144.1 | 4,244.0        | 26.6  | TOS PEVERO          | 650.3        |

Soletes | Hic. | \$\int\_2 \pi\_2 \pi\_2 \pi\_3 \pi\_4 \pi\_2 \pi\_2 \pi\_4 \pi\_4

#### APPENDIX

#### TABLE A-1. - Outline of computational procedures and source data for supply and demand sectors

(The references in this table are to Bureau of Mines' publications, especially the Minerals Yearbook (MYB), Volume II (Volume I-II after 1966); and to a series of periodic reports, Mineral Industry Surveys (MIS))

| Item, by table boxhead                                                              | Computation                                                                                                                                                                                                                                                                                                      | References                                                                                                                                                                             |
|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                     | TABLES 1 AND 3                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                        |
| Crude oil: Production                                                               | Reported directly from available State data                                                                                                                                                                                                                                                                      | MYB 1961, table 8, pp. 369-370.<br>MYB 1966, table 6, pp. 818-820.                                                                                                                     |
| Stock change                                                                        | Difference between stock on hand Jan. 1 and stock on hand Dec. 31. For purposes of this study, a withdrawal from stock is regarded as adding to the supply available for consumption; additions to stock are considered to decrease the supply available for consumption.                                        | MYB 1960, table 36, p. 407.<br>MYB 1965, table 30, p. 391.                                                                                                                             |
| Net shipments                                                                       | Difference between total supply of crude oil<br>available for consumption (runs to stills) and<br>production plus or minus stock change less<br>losses and transfers for use as crude oil.                                                                                                                       |                                                                                                                                                                                        |
| Net foreign trade                                                                   | Difference between imports and exports. State data included in net shipments. (Shown in footnote to tables.)                                                                                                                                                                                                     | MYB 1960, table 1, p. 362.<br>MYB 1965, table 1, p. 350.                                                                                                                               |
| Losses and transfers<br>for use as crude.                                           | The sum of the following items: refinery fuel use and losses, available by State; estimated State breakdown of transfers to distillate and residual fuel oil, which are published by refinery district and U.S. totals; estimated State breakdown of other fuel in losses shown in supply and demand, MYB table. | MYB 1960, table 32, p. 400; table 61, p. 446; table 65, p. 451. MYB 1961, table 57, p. 431. MYB 1965, table 17, p. 378; table 54, p. 428; table 57, p. 431. MYB 1966, table 4, p. 816. |
| Runs to stills:<br>Total supply of crude<br>oil.                                    | Total crude runs to stills published by major<br>States. Breakdown of combined States<br>estimated.                                                                                                                                                                                                              | MYB 1960, table 32, p. 400.<br>MYB 1965, table 17, p. 378.                                                                                                                             |
| Transfers in of natu-<br>ral gas liquids<br>(component of runs to<br>stills).       | Refinery district and U.S. total data avail-<br>able. State breakdown estimated.                                                                                                                                                                                                                                 | MYB 1960, table 46, p. 442.<br>MYB 1965, table 42, p. 412.                                                                                                                             |
| Total refinery output                                                               | Sums of total supply of crude oil plus trans-<br>fers in of natural gas liquids.                                                                                                                                                                                                                                 |                                                                                                                                                                                        |
| Unfinished oils, net                                                                | Refinery district and U.S. total data available. State breakdown estimated.                                                                                                                                                                                                                                      | MYB 1960, table 46, p. 423.<br>MYB 1965, table 42, p. 412.                                                                                                                             |
| Overage or loss                                                                     | Refinery district and U.S. total data available. State breakdown estimated.                                                                                                                                                                                                                                      | MYB 1960, table 46, p. 423.<br>MYB 1965, table 42, p. 412.                                                                                                                             |
| Refined products:<br>Total supply of refined<br>products.                           | Refinery output, plus unfinished oils, net, plus or minus overage or loss.                                                                                                                                                                                                                                       |                                                                                                                                                                                        |
| Stock change                                                                        | Sum of stock changes of six major products com-<br>puted for tables 5-10 for 1960, tables 11-16<br>for 1965-includes an unaccounted for item to<br>add to published national total.                                                                                                                              |                                                                                                                                                                                        |
| Transfers in of natu-<br>ral gas liquids (com-<br>ponent available to<br>consumer). | Total U.S. shipments of natural gas liquids<br>less deliveries to refineries. No data on<br>shipments by States are available. State fig-<br>ures were estimated.                                                                                                                                                | MYB 1960, table 6, p. 344; table 7,<br>p. 345.<br>MYB 1965, table 1, p. 324.                                                                                                           |

TABLE A-1. - Outline of computational procedures and source data for supply and demand sectors--Continued

| Item, by table boxhead                                                               | Computation                                                                                                                                                                                                                                             | References                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Refined products(Con.): Net shipments (U.S. total is the same as net foreign trade). | TABLES 1 AND 3Continued  State figures are the sum of net shipments of six major products computed for tables 5-10 for 1960, tables 11-16 for 1965. An unaccounted for item is shown to balance the national total.                                     |                                                                                                                                                                                                                                                               |
| Net foreign trade                                                                    | Difference between imports and exports. State data included in net shipments. (Shown in footnote to tables)                                                                                                                                             | MYB 1961, table 1, p. 358.<br>MYB 1965, table 1, p. 350.                                                                                                                                                                                                      |
| Losses, gains, and unaccounted for.                                                  | A balancing item published in the national totals of unknown distribution.                                                                                                                                                                              | IC 8384, table 5, p. 72.1                                                                                                                                                                                                                                     |
| Total supply available for consumption.                                              | Total supply of refined products plus or minus<br>stock change (including natural gas liquids)<br>plus or minus net shipments equals total<br>supply available for consumption.                                                                         |                                                                                                                                                                                                                                                               |
| M-1                                                                                  | TABLES 2 AND 4                                                                                                                                                                                                                                          | Tables 5 16 of this T C                                                                                                                                                                                                                                       |
| Major products Miscellaneous products                                                | The major petroleum products account for 88 percent of the apparent total domestic demand.  This column is needed to account for the addi-                                                                                                              | Tables 5-16 of this I.C.                                                                                                                                                                                                                                      |
| unaccounted for.                                                                     | tional 12 percent of demand. It is the dif-<br>ference between the sum of the major products<br>totals (tables 5-10 for 1960, and 11-16 for<br>1965) and the "Total supply available for con-<br>sumption" of tables 1 (1960) and 3 (1965).             |                                                                                                                                                                                                                                                               |
| Apparent total domestic demand.                                                      | The sum of the major products total and miscellaneous products unaccounted for.                                                                                                                                                                         |                                                                                                                                                                                                                                                               |
|                                                                                      | TABLES 5 THROUGH 16                                                                                                                                                                                                                                     | r                                                                                                                                                                                                                                                             |
| Supply: Refinery output                                                              | Refinery output data by product is published.<br>State breakdown is estimated. Note: Tables 5<br>and 11 also include liquefied gases produced<br>at natural gas processing plants.                                                                      | MYB 1960, table 9, p. 346; table 45, p. 421. MYB 1965, table 9, p. 335; table 41, p. 411.                                                                                                                                                                     |
| Stock change                                                                         | Difference between refinery stock on hand Jan. I and stock on hand Dec. 31 for each product. Published by district for each product. State breakdown estimated with the exception of liquefied petroleum gases. Bulk terminal stock by State estimated. | MYB 1960, table 58, p. 443; table 61, p. 446; table 65, p. 451; table 71, p. 459.  MYB 1965, table 51, p. 425; table 54, p. 428; table 57, p. 431; table 59, p. 433.  MIS NGR-300, Dec. 1959, p. 2.  MIS NGR-312, Dec. 1960, p. 2.  MIS NGL, Dec. 1964, p. 2. |
| Net shipments                                                                        | Difference between refinery output plus or minus stock change and total supply available for consumption. In the case of tables 5 and ll, input at refineries also are involved.                                                                        |                                                                                                                                                                                                                                                               |
| Net foreign trade                                                                    | Discrepancy of supply-demand data results in tables 6, 10, and 14 having net foreign trade figures in excess of the net shipments figures. These figures are shown in footnotes and do not add to total supply.                                         | MYB 1960, table 41, p. 414.<br>MYB 1965, table 38, p. 406.                                                                                                                                                                                                    |
|                                                                                      | Special category (tables 5 and 11) of liquefied gases (estimated) to eliminate duplication of LPG-runs to stills.                                                                                                                                       |                                                                                                                                                                                                                                                               |
| See footnotes at end of t                                                            | aute.                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                               |

TABLE A-1. - Outline of computational procedures and source data for supply and demand sectors -- Continued

| Item, by table boxhead                                  | Computation                                                                                                                                                                                                                                                                                                                | References                                                                                                                                                                                             |
|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                         | TABLES 5 THROUGH 16Continued                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                        |
| Supply(Con.): Total supply available for consumption.   | This column equates to the total domestic demand column.                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                        |
| Demand by major consum-<br>ing sector:<br>Household and | Liquefied gases: Domestic and commerical.                                                                                                                                                                                                                                                                                  | MIS MMS 3297, 1960, p. 3.                                                                                                                                                                              |
| commercial.                                             | Kerosine: Range oil. Distillate fuel oil: Range oil and heating oildistillate. Residual fuel oil: Used as heating oil.                                                                                                                                                                                                     | MIS, ShipLPG and E-1965, p. 4. <sup>1</sup> MIS MMS 3214, 1960, pp. 5-7. MIS, ShipFO and K-1965, pp. 4-6. <sup>2</sup>                                                                                 |
| Industrial                                              | Liquefied gases: Industrial, refinery fuel,<br>gas manufacturing, and chemical use.<br>Kerosine: Tractor fuel and other uses.<br>Distillate fuel oil: Industrial (excluding oil<br>company fuel) plus oil company fuel.                                                                                                    | MIS MMS 3297, 1960, pp. 3-4.<br>MIS, ShipLPC and E-1965, pp. 4, 10. <sup>2</sup><br>MIS MMS 3284, 1960, pp. 4, 6, 8, 10.<br>MIS, ShipFO and K-1965,<br>pp. 4, 7, 8. <sup>2</sup>                       |
| Transportation                                          | Liquefied petroleum gas: Internal combustion. Jet fuel: Demand for jet fuel. Gasoline: Total consumption (adjusted). Kerosine: Commercial jet fuel. Distillate fuel oil: Miscellaneous uses diesel on highways, military vessels bunker- ing, and railroads. Residual fuel: Military use, vessel bunkering, and railroads. | MIS MMS 3297, 1960, p. 3. MIS, ShipLPC and E-1965, p. 4. <sup>2</sup> MIS MMS 3284, 1960, pp. 4, 12-15. MIS, Sales-FO and K-1965, p. 4, 10-13. MYB 1960, table 52, p. 433. MYB 1965, table 48, p. 420. |
| Electricity generation, utilities.                      | Distillate fuel oil.<br>Residual fuel oil.                                                                                                                                                                                                                                                                                 | MIS MMS 3284, 1960, p. 11.<br>MIS, ShipFO and K-1965, p. 9.4                                                                                                                                           |
| Miscellaneous and unaccounted for.                      | Liquefied petroleum gas: all other.<br>Distillate fuel oil.<br>Residual fuel oil.                                                                                                                                                                                                                                          | MIS MMS 3297, 1960, p. 4.<br>MIS, ShipLPG and E-1965, p. 4.2<br>MIS MMS 3284, 1960, p. 15.<br>MIS, ShipFO and K-1965, p. 13.4                                                                          |
| Total domestic demand                                   | Sum of Household and commercial, Industrial,<br>Transportation, Electricity generation,<br>utilities, Miscellaneous and unaccounted for.                                                                                                                                                                                   |                                                                                                                                                                                                        |

<sup>&</sup>lt;sup>1</sup>Morrison, Warren E., and Charles L. Readling. An Energy Model for the United States, Featuring Energy Balances for the Years 1947 to 1965 and Projections and Forecasts to the Years 1980 and 2000. BuMines Inf. Circ. 8384, July 1968, 127 pp.

Shipments of Liquefied Petroleum Gases and Ethane in 1965, Annual.

<sup>&</sup>lt;sup>3</sup>Sales of Fuel Oil and Kerosine in 1965, Annual.

<sup>&</sup>lt;sup>4</sup>Shipments of Fuel Oil and Kerosine in 1965, Annual.











4 - JUN 1 6 Copy \_\_\_\_ 1969

# PREPARATION OF ANHYDROUS ALUMINUM CHLORIDE



UNITED STATES DEPARTMENT OF THE INTERIOR

BUREAU OF MINES

June 1969



# PREPARATION OF ANHYDROUS ALUMINUM CHLORIDE

By Robert L. de Beauchamp

\* \* \* \* \* information circular 8412



UNITED STATES DEPARTMENT OF THE INTERIOR Walter J. Hickel, Secretary

BUREAU OF MINES
John F. O'Leary, Director

This publication has been cataloged as follows:

## de Beauchamp, Robert L

Preparation of anhydrous aluminum chloride. [Washington] U. S. Dept. of the Interior, Bureau of Mines [1969]

 $19~\mathrm{p.}$  illus., tables. (U. S. Bureau of Mines. Information circular 8412)

Includes bibliography.

1. Aluminum chloride. I. Title. II. Title: Anhydrous aluminum chloride. (Series)

TN23.U71 no. 8412 622.06173

U. S. Dept. of the Int. Library

## CONTENTS

|                                                                     | Pag |
|---------------------------------------------------------------------|-----|
| Abstract                                                            | 1   |
| Introduction                                                        | 1   |
| Commercial AlCl <sub>2</sub> processes                              | 2   |
| AlCl <sub>a</sub> from aluminum metal                               | 2   |
| AlClo from oxide materials                                          | 3   |
| Gulf process                                                        | 3   |
| Process improvements                                                | 4   |
| Aluminum chloride product                                           | 5   |
| "Badische Anilin und Soda Fabrick" process                          | 5   |
| Evaluation of the oxide process                                     | 6   |
| Raw materials                                                       | 6   |
| Dehydration of aluminous materials                                  | 7   |
| Chlorination                                                        | 8   |
| Temperatures                                                        | 8   |
| Reductants                                                          | 9   |
| Catalysts                                                           | 9   |
| Reactor design                                                      | 9   |
| Product recovery                                                    | 10  |
| Product purification                                                | 10  |
| Suppression of SiCl <sub>4</sub>                                    | 12  |
| System integration                                                  | 13  |
| Areas for further research                                          | 13  |
| Aluminum chloride from clay                                         | 13  |
| Calcination and chlorination research                               | 14  |
| Product purification research                                       | 15  |
| Conclusions                                                         | 15  |
| References                                                          | 16  |
|                                                                     |     |
| ILLUSTRATION                                                        |     |
| Fig.                                                                |     |
| 1. Schematic drawing of apparatus for preparing AlCl3 from aluminum |     |
| meta1                                                               | 2   |
| meet 1                                                              | _   |
| TABLES                                                              |     |
| 1. Long-time average raw material charge in comparison with the     |     |
|                                                                     | 5   |
| theoretical charges                                                 | 5   |
| 2. Operating costs                                                  | 3   |



### PREPARATION OF ANHYDROUS ALUMINUM CHLORIDE

by

Robert L. de Beauchamp 1

#### ABSTRACT

The Bureau of Mines reviewed aluminum chloride technology to determine the problems associated with its preparation from minerals, and to ascertain the best areas for research to solve these problems. Commercial  $AlCl_3$  production processes are described and the "state of the art" for the preparation of  $AlCl_3$  from aluminous materials is evaluated. Areas for further research are indicated.

#### INTRODUCTION

The Bureau of Mines' aluminum program includes the investigation of alternate processes of producing aluminum from ores. The electrowinning of aluminum by the electrolysis of aluminum chloride (AlCl $_3$ ) in molten salt electrolytes (41) $^2$  has been proposed as a possible alternate to the Bayer-Hall process for producing aluminum.

One phase of this investigation was to survey and evaluate previous research on the preparation of anhydrous  ${\rm AlCl}_3$ , to determine the problems associated with its preparation from minerals, and to ascertain the best areas for research to solve these problems. To accomplish this, a survey of the technical literature was made and a bibliography compiled of journal references and both domestic and foreign patents relating to the preparation of  ${\rm AlCl}_3$ . In addition, visits were made to three commercial manufacturers of  ${\rm AlCl}_3$  to become acquainted with their current manufacturing technology.

Manufacture of AlCl $_3$  from aluminous materials is not a new technology, but has been known and practiced for at least 140 years. The history of the preparation of AlCl $_3$  has been thoroughly and adequately covered by both Ralston (38) and Thomas (47).

<sup>&</sup>lt;sup>1</sup>Research chemist, Boulder City Metallurgy Research Laboratory. Bureau of Mines, Boulder City, Nev.

Underlined numbers in parentheses refer to items in the list of references at the end of this report.

The total U.S. production of anhydrous  ${\rm AlCl}_3$  for 1966 was only about 35,000 tons. Economics in this country favor the preparation of  ${\rm AlCl}_3$  from scrap metal rather than from aluminum oxide  $({\rm Al}_2 {\rm O}_3)$  materials because plant investment and operating costs are much lower for using scrap. A larger annual production of  ${\rm AlCl}_3$  would be needed for the difference in raw material costs to offset the higher plant investment and operating costs of the  ${\rm Al}_2 {\rm O}_3$  process.

The use of oxide materials is more prevalent in Europe because of lower labor costs, unavailability of aluminum scrap, or in some cases, a desire to utilize domestic ores.

#### COMMERCIAL A1C1, PROCESSES

# ${\rm A1C1}_3$ From Aluminum Metal

The preparation of  ${\rm AlCl}_3$  by the chlorination of scrap aluminum metal is accomplished in a relatively simple apparatus (fig. 1). The reactor consists of a bathtub-like structure made of sheet steel with a high-alumina ceramic lining to protect the steel. The reactor-tub is divided across the middle by a ceramic bridge which separates the feed compartment from the reaction



FIGURE 1. - Schematic Drawing of Apparatus for Preparing AICl<sub>3</sub> From Aluminum Metal.

compartment. In starting, molten aluminum is poured into the reactor until the level of the molten metal is above the bottom of the bridge. Chlorine gas is introduced through nickel pipes that pass through the bottom or lower sides of the reaction compartment into the molten aluminum. The top of the reaction compartment is enclosed by a ceramic-lined metal shaft that carries off the  ${\rm AlCl}_3$  vapor which is prevented from passing into the feed compartment by the bridge. The  ${\rm AlCl}_3$  vapor is conducted to a rectangular sheet steel condensing bin where it deposits on the walls which are air-cooled. At intervals the sides of the condenser are jarred with hammers to knock down the deposits into the funnel-shaped bottom where they are conveyed to sizing and packaging equipment.

The reactor temperature is controlled by water-cooling the sides of the reactor, by regulating the chlorine feed rate, or by making small additions of copper or magnesium, to lower the melting point of the aluminum metal. Ingots of feed aluminum are preheated and are then submerged gently in the molten metal. The heat of reaction provides all of the heat necessary to keep the bath molten and to melt fresh feed as it is used up.

The  ${\rm AlCl}_3$  product ranges in color from yellow (excess chlorine) to white or grey (contains condensed aluminum vapor). The purity of the product is controlled by the purity of the feed material. Small amounts of iron are usually present due to corrosion of the equipment. Large amounts (over 1 percent) show up as an orange-colored product.

# A1Cl<sub>3</sub> From Oxide Materials

Processes for manufacturing AlCl $_3$  from oxide materials, developed during the past 10 years, have been reported in journal and patent literature of the United States (12), Great Britain (21), West Germany (22), the U.S.S.R. (8, 20, 36), Rumania (13), and India ( $\frac{3}{3}$ ,  $\frac{39}{3}$ ).

At least two of these processes were used commercially and are described as follows:

### Gulf Process

In 1920 the Gulf Oil Company (34) began manufacture of  ${\rm AlCl_3}$  (under the tradename Alchlor) primarily for captive use in petroleum refining and discontinued its manufacture in 1960 when better catalysts were developed, particularly for use in manufacturing lubricating oils.

The basic process for manufacturing  $\mathrm{AlCl}_3$  consisted of the following steps:

- 1. Bauxite and coke were ground, mixed, and calcined in a rotary kiln at  $830\,^\circ$  to  $870\,^\circ$  C to remove free and combined water and to fully carbonize the coke.
- 2. The hot calcine was stored in a hot bin and fed intermittently at 4-hour intervals to the reaction retorts.

- 3. A mixture of chlorine and oxygen was fed continuously to the bottom of the retorts, except when charging. The gas feed rate was regulated so that no unreacted chlorine left the retort with the  $AlCl_2$  vapor.
- 4. The AlCl<sub>3</sub> vapor from the top of the reactor was led to a condenser where it deposited on the walls and was continuously scraped off into barrels.

## Process Improvements

Over the 40-year period of operation many improvements in the process were made and many patents filed on them. Some of the variations and improvements to the various parts of the process are described as follows:

1. Feed Preparation. The bauxite used contained about 2 to 3 percent free moisture and about 30 percent combined water. Calcination of the bauxite to remove moisture prior to chlorination was done both separately and combined with carbonaceous materials (coke, coal, asphalt, etc.). The calcination temperature was held to 770° C in order to obtain maximum chlorine reactivity of the feed. Calcination at higher temperatures resulted in converting the alumina in the bauxite to  $\alpha\text{-Al}_2 0_3$  which is less reactive to chlorine. The rotary gas-fired kiln used was of brick-lined steel 6 feet OD by 60 feet long, and revolved at 1 rpm.

Earlier practice required mixing calcined bauxite, coke, and wax tailings, pressing the mixture into briquets, and roasting the briquets. Briquetting was later discarded.

2. Reactor Design. Many reactor designs were tried and discarded. Early reactors used a vertical shaft furnace with concurrent flow (gas flow and feed from top to bottom, product vapor discharged at bottom). One reactor was operated at 15 to 30 psi so that the product vapor could be cooled and a liquid AlCl<sub>3</sub> product tapped off. A shelf-type shaft furnace was devised with feed flow downward and gas flow upward. The final design was a cylindrical shaft furnace with a conical taper at both top and bottom. The flow was countercurrent (feed downward, gases upward) and the product vapor was conducted first to a cooler and then to condensers.

One of the main problems encountered with the reactors was the rapid erosion of the furnace lining by the reaction gases at high temperatures. Many methods were tried to slow the erosive action such as cooling the shaft walls and grading the feed bed so that the reaction occurred at the more permeable bed center and as far from the walls as possible. The walls of the reactor were made mainly of firebrick.

A cooler made of steel with a brick lining was air-cooled and placed between the reactor and condenser in order to lower the product vapor temperature from 870° to 650° C. The condenser was made of two vertical water-jacketed 6-inch steel pipes. Each pipe had an internal scraper mechanism which continuously scraped the deposited  ${\rm AlCl}_3$  into steel drums.

## Aluminum Chloride Product

No provision was made for product purification. An average analysis of the product was as follows, in percent:  $AlCl_3$  - 95.0,  $Al_2O_3$  - 2.21,  $FeCl_3$  - 1.34,  $TiCl_4$  - 0.88, and  $SiO_2$  - 0.11.

The net cost for producing 32,000 pounds per day in 1958 (last full year of normal production) was 11.44 cents per pound.

Table 1 shows the long-time average raw material charge used in producing Alchlor in comparison with the theoretical charges. Table 2 shows the operating costs. The labor force included 33 skilled and 25 unskilled men.

TABLE 1. - Long-time average raw material charge in comparison with the theoretical charges, pounds  $^{1}$ 

| Raw material           | Actual | Theoretical |
|------------------------|--------|-------------|
| Bauxite to kiln        | 0.71   | 0.64        |
| Petroleum coke to kiln | .39    | .20         |
| Chlorine to retorts    | 1.01   | .75         |
| Oxygen to retorts      | .14    | .14         |

<sup>&</sup>lt;sup>1</sup> To produce 1 pound of Alchlor.

TABLE 2. - Operating costs, cents per pound Alchlor

| Supervision and operating labor          | 4.25  |
|------------------------------------------|-------|
| Labor                                    | 3.61  |
| Material                                 | 1.55  |
| Fuel (for tail gas incinerator and kiln) | .14   |
| Power (2.5 kwhr/lb Alchlor)              | 1.90  |
| Steam (2 lb/lb Alchlor)                  | .77   |
| Salt                                     | .45   |
| Bauxite                                  | 1.04  |
| Coke                                     | .23   |
| Miscellaneous                            | .86   |
| Total                                    | 14.80 |
| Credit for caustic (2.87 cents/lb)       | 3.36  |
| Net cost                                 | 11.44 |

# "Badische Anilin und Soda Fabrik" Process

This process, described by Hille and Dürrwächter ( $\underline{22}$ ), involved manufacture of AlCl $_3$  from both bauxite and Bayer alumina.

The chlorination of bauxite was accomplished in a shaft furnace according to the method of Carl Wurster (53). Carbon monoxide and chlorine were heated to the reactor temperature  $(900^{\circ}$  C) in a beechwood charcoal contactor which partially converted the gases to phosgene. The hot gases were passed through

the bauxite inside the reactor that converted the  ${\rm Al}_2{\rm O}_3$  to  ${\rm AlCl}_3$ . The heats of reaction shown in the following equations were sufficient to sustain the reaction when the reactor was the proper size and properly insulated:

$$3 \text{ CO} + 3 \text{ Cl}_2 \neq 3 \text{ COCl}_2$$
  $\Delta H_{180 c} = -75.75 \text{ Kcal}$  (1)

$$A1_2O_3 + 3 COC1_2 \neq 2 A1C1_3 + 3 CO_2$$
  $\Delta H_{100} = -80.68 Kca1$  (2)

The iron, alkali, and alkaline earth metals present in bauxites aided the chlorination by acting as catalysts. Part of the impurities in the bauxite carried over into the product as volatile chlorides and required a purification step in order to obtain a pure product.

The chlorination of  $\gamma-Al_2O_3$  was accomplished in a fluosolids reactor using a mixture of CO and chlorine passed through a beechwood-charcoal contactor to form phosgene (400° C). The three-phase fluidized bed operating at 600° C consisted of alumina, gas, and finely dispersed NaAlCl $_4$  catalyst added to the bed. A pumice filter, located above the reactor, trapped the NaAlCl $_4$  in the product vapor and returned it to the reactor by gravity flow. The vapor was cooled in a condenser from which the crystallized product was collected into drums.

At a ratio of 110 g of NaAlCl $_4$  per 100 g of  $\gamma$ -Al $_2$ O $_3$ , a maximum catalytic effect was obtained. The use of this catalyst caused a sharp reactivity increase between 400° and 500° C, but the reactivity remained constant between 550° and 900° C.

To obtain optimum chlorination of the  ${\rm Al}_2{\rm O}_3$ , careful control of the feed material preparation was necessary. Precipitation of the Bayer alumina hydrate and calcination of the hydrate (at 1,000° C) were the two main areas of control necessary for obtaining the required  $\gamma$ -alumina quality.

#### EVALUATION OF THE OXIDE PROCESS

## Raw Materials

The raw materials that may be used for the preparation of  ${\rm AlCl_3}$  include bauxite, clays, shale, anorthosite, coal ash, and many other aluminum-containing materials. Pure Bayer process  ${\rm Al_2O_3}$  may also be used if its higher cost can be justified by processing costs sufficiently lower than those incurred with the impure feed materials. Bauxite or clays are the most logical choices because of their higher  ${\rm Al_2O_3}$  contents and the large reserves of these materials available. Iron is the impurity most deleterious to the process since it uses up chlorine and is difficult to remove from the product. Other chlorine-consuming impurities encountered are silicon, titanium, manganese, magnesium, and calcium.

# Dehydration of Aluminous Materials

Prior to chlorination, aluminous materials, which may contain up to 35 percent free and combined water in the case of bauxite, must be calcined to remove their moisture. Any moisture left in the feed material would carry over with the product and degrade it. If all the water is removed by calcining at 1,200° C, the  $\mathrm{Al_2O_3}$  is converted to  $\alpha$ - $\mathrm{Al_2O_3}$ , which is more resistant to chlorination than  $\mathrm{Al_2O_3}$  dehydrated at lower temperatures.

Thermal decomposition of the monohydrates and trihydrates of  $Al_2O_3$  between 200° and 1,100° C forms a number of metastable aluminas which retain between 0 and 0.5 mole of water per mole of  $Al_2O_3$ . The older terminology referred to these as "\gamma-alumina," whereas today they are referred to as "transition aluminas." Recent investigators (46) have identified seven transition aluminas (six of them crystalline) and labeled them "\rho-, \chi-, \gamma-, \chi-, \gamma-, \ga

When the  $\alpha-$  and  $\beta-$ aluminum trihydrates are dehydrated in air at 300° to 400° C, X and  $\Pi$  forms are obtained which have a surface area of 400 to 500 m²/g, mainly localized in pores with a diameter of less than 40 A. The x- and  $\Pi-$ aluminas are the essential constituents of activated aluminas (26). The specific surface areas of the X-,  $\Pi-$ , and Y-aluminas decrease progressively as the temperature of the treatment increases; the K-,  $\theta-$ , and  $\delta-$ aluminas that are subsequently obtained have surfaces not exceeding some tens of square meters per gram.

It is suspected that the ease of chlorination of the different transition aluminas is proportional to their surface area and to some extent their pore size. One would expect the "activated aluminas" to be the most easily chlorinated.

Much of the technology concerning the calcination of aluminous materials prior to chlorination was developed over the years by empirical methods. Since aluminous ores vary considerably in their composition and frequently carbonaceous reductants were mixed with the ores during calcination, the results obtained by different investigators did not always agree. Detailed mineral, chemical, and physical identification of the starting materials and of the calcine were seldom reported by the investigators. Most descriptions were given only in very general terms. Some examples follow:

1. Adadurov (1) reported that the best temperature for calcining clay (percentages of  $\mathrm{Fe_2\overline{O}_3}$  and kaolinite given) is about 600° to 750° C. At this temperature there is formed at a commercially satisfactory rate kaolinite anhydride, 2  $\mathrm{Sio_2} \cdot \mathrm{Al_2O_3}$ . At 900° C, the free oxides, 2  $\mathrm{Sio_2}$  and  $\mathrm{Al_2O_3}$ , are formed, while at 1,000° C, sillimanite ( $\mathrm{Al_2O_3} \cdot \mathrm{Sio_2}$ ) is formed; these are chlorinated with difficulty and lower the yield.

## 2. McAfee (35) in a patent states:

... crude bauxite is dehydrated in a rotating kiln at a temperature of about 1,800° F (980° C). No preliminary processing of the crude bauxite is required beyond crushing such lumps as may be present to a size which will permit ready calcination. It is difficult to calcine bauxite in a rotating kiln in lumps larger than one-inch cross-section.

# 3. Culberson (12) in a patent states:

Bauxite of the analysis given in our first specific example, when calcined at a maximum temperature of  $1,600^{\circ}$  F (870° C) had a pore surface area of 121 square meters per gram.

Aggregate prepared by the process described and claimed herein (coking bauxite with asphalt), and carbonized at 1,600° F (870° C) had a pore surface area of 206 square meters per gram. This pore surface area is 70 percent greater than that of bauxite calcined alone.

The Culberson patent gave more specific information on the raw and calcined feed material than found in any other reference. Another example from the same patent is as follows:

... identical samples of our aggregates (coked bauxite) were maintained for a period of 16 hours in an atmosphere of nitrogen at temperatures of 1,550° F (842° C), 1,800° F (980° C), 2,100° F (1,148° C), and 2,400° F (1,315° C). X-ray diffraction patterns of these samples indicated the presence of only alpha  $\mathrm{Al_2O_3}$  in the samples which had been maintained at 2,100° F (1,148° C) and at 2,400° F (1,315° C). The sample maintained at 1,800° F (980° C) comprised alpha  $\mathrm{Al_2O_3}$  and some transition form of  $\mathrm{Al_2O_3}$  between the gamma and alpha forms. The sample of  $\mathrm{Al_2O_3}$  heated at 1,550° F (842° C) was principally of the gamma and chi forms. The alpha form of alumina is of very low reactivity, and the reactivity increases sharply through the gamma and chi forms.

# Chlorination

#### Temperatures

Most chlorination of aluminous materials has been done with chlorine. Hydrogen chloride will chlorinate alumina at about 1,200° C; however, the reaction does not go to completion because the byproduct water vapor hydrolyzes some of the AlCl $_3$  back to Al $_2$ O $_3$  until an equilibrium is established (47).

The addition of carbon to the  ${\rm Al_2O_3}$  accelerates its reaction with HCl by combining with the oxygen and preventing the formation of water vapor. With carbon, a 35-percent conversion of the alumina with HCl will occur at 1,000° C in 1 hour at an HCl velocity of 11.5 liters per hour.

According to Spitzin and Gwosdewa ( $\frac{42}{2}$ ) a mixture of HCl and chlorine is more efficient for the production of  $\mathrm{AlCl}_3$  from clay or  $\mathrm{Al}_2\mathrm{O}_3$  than either gas alone. Chlorine and HCl mixtures react appreciably with alumina-carbon mixtures at 500° C and yields are excellent in the range 500° to 600° C. Chlorine, carbon, and  $\mathrm{Al}_2\mathrm{O}_3$  react appreciably at 800° to 900° C, whereas HCl, carbon, and alumina require 1,000° C. The action of chlorine on  $\mathrm{Al}_2\mathrm{O}_3$  without a reductant is negligible until about 1,200° C.

Of the impurities commonly associated with aluminous materials,  ${\rm Fe_2O_3}$  chlorinates at 600° C without carbon, and at 200° C with carbon (54). Without carbon  ${\rm SiO_2}$  chlorinates at 1,200° C (42); however, with carbon the reaction begins at 600° C and is accelerated at about 800° C (43).

#### Reductants

The carbon reductant can be added to the chlorination reaction in several ways. Calcined ore, coke, and a binder (asphalt or wax tailings) can be made into briquets, coked, and chlorinated ( $\underline{34}$ ). This method provided a porous material that chlorinates easily. A method requiring less labor would be to calcine ground ore and coke and feed them hot into the reactor for chlorination ( $\underline{32}$ ).

Another means of providing a reductant is to use CO along with the chlorine. Passing these gases through an activated charcoal contactor at 125° to 150° C converts them to phosgene. Chlorination with  $\mathrm{COCl}_2$  is more rapid than with mixtures of CO and chlorine (48). The reaction of CO with  $\mathrm{Cl}_2$  liberates 75.75 kcal/mole of reactants which helps to make the chlorination of bauxite or alumina self-sustaining in respect to reaction temperature.

Some processes ( $\underline{32}$ ) add air, oxygen, or air-oxygen mixtures to the reacting gases in order to form CO or CO $_2$  with coke in the charge. This provides additional reaction heat with which to maintain the operating temperature.

# Catalysts

Certain impurities in the aluminous ores such as sodium or potassium salts  $(\underline{2}, \underline{40})$  act as catalysts in the chlorination reaction. When using a pure alumina feed, addition of molten NaAlCl $_4$  to the reactants will increase the yield of AlCl $_3$   $(\underline{22})$ .

# Reactor Design

The three main types of reactors that appear applicable to the manufacture of  $AlCl_3$  from aluminous materials are the shaft furnace, the fluosolids reactor, and the horizontal rotary kiln. The shaft furnace would be best with ores using either gaseous or solid reductants. The fluid bed reactor has been used successfully with a carefully prepared and graded  $\gamma$ -alumina. Milled ores

would probably be too variable in their physical properties to be used successfully in the fluid-bed reactor; however, only actual practice could determine this conclusively. The horizontal rotary kiln has many favorable characteristics, but the combination of abrasion with the highly corrosive gases (chlorine plus reductant) would probably require too frequent replacement of the kiln lining and the shell itself.

Many designs and configurations of shaft furnaces have been tried ( $\frac{5}{5}$ ,  $\frac{31-33}{6}$ ,  $\frac{35}{6}$ ). Apparently, the most frequently used design is a raw material feed from the top with an upward countercurrent flow of gases from the bottom. The product vapor would be drawn off the top. The operating temperature of the reactor would be about 900° C. The furnace lining should be a dense, high-temperature, heavy-duty, fire-clay brick. Such brick is used in blast furnaces and in furnaces for the chlorination of rutile. To retain as much reaction heat as possible so that the reaction will be self-sustaining, the furnace lining must be backed up with sufficient insulating brick.

Continuous operation of the reactor requires a valve or gate for adding fresh charge materials at regular intervals and a dump valve on the bottom of the reactor for removing unreactive waste materials periodically. The necessary pipe conduits are provided for delivering the gaseous reactants at the bottom of the shaft and for leading off the waste gases and product vapor at the top of the shaft.

# Product Recovery

The hot product vapor is normally led through a crossover duct (bricklined steel) between the reactor and the cooler. The cooler is a bricklined box which provides a means of partially cooling the vapor by heat radiation to air prior to entering the condensers. The exit temperature of the vapor from the reactor is about  $870^\circ$  C and from the cooler, about  $650^\circ$  C.

Commercially used condensers vary from a simple air-cooled sheet steel chamber from which the product is periodically removed by hammering, to a pair of steel pipes connected in parallel, each containing a revolving scraper which continuously removes the product.

With an integrated system, the gas from the condensers would be cleaned and recycled to the reactor.

# Product Purification

The chief impurities found in  $AlCl_3$  made from aluminous ores are small amounts of  $FeCl_3$ ,  $TiCl_4$ ,  $SiCl_4$ ,  $Al_2O_3$ ,  $SiO_2$ , and  $Fe_2O_3$ . The nonvolatile solids will, in most cases, be negligible; however, resubliming would remove them, if necessary. Both  $TiCl_4$  and  $SiCl_4$  can be separated from the product stream by maintaining the condenser above their boiling points ( $TiCl_4$ ,  $136.4^{\circ}$  C;  $SiCl_4$ ,  $57.6^{\circ}$  C) and below the sublimation point of  $AlCl_3$  ( $177.8^{\circ}$  C). It is more difficult to separate  $FeCl_3$  from  $AlCl_3$  for, although  $AlCl_3$  sublimes below the boiling point of  $FeCl_3$  ( $319^{3}$  C),  $FeCl_3$  is volatile enough at the

sublimation temperature of  ${\rm AlCl_3}$  that appreciable amounts of  ${\rm FeCl_3}$  sublime with  ${\rm AlCl_3}$  (4).

Many methods have been proposed for removing  ${\rm FeCl}_3$  from  ${\rm AlCl}_3$ . Some of the most feasible are listed.

1. According to the Weaver patent  $(\underline{52})$  the product vapor was passed through a bath of molten aluminum which reduced the FeCl<sub>3</sub> to iron, liberating more AlCl<sub>3</sub>:

$$FeCl_3 + Al \xrightarrow{\rightarrow} Fe + AlCl_3$$
. (4)

This method of ferric chloride removal appears to be the most patented and most used.

2. In the Johnson patent (24) the product vapor was passed through molten lead heated to 400° C. FeG1 $_3$  was reduced to FeG1 $_2$  and PbC1 $_2$ :

$$2 \operatorname{FeCl}_{3} + \operatorname{Pb} \xrightarrow{\rightarrow}_{400} \circ {}_{6} 2 \operatorname{FeCl}_{2} + \operatorname{PbCl}_{2}. \tag{5}$$

The iron and lead chlorides formed a dross on the surface of the lead and could be skimmed off. It was claimed that  $\mathrm{CO}_2$  present in the product vapor would form oxides with iron or aluminum, if used for purification, but not with molten lead.

- 3. Two Castner patents  $(\underline{9}\underline{-10})$  utilized molten salt baths to remove iron from the  $\mathrm{AlCl}_3$  product. In one, iron was removed by electrolyzing the product in a molten salt bath. In the other, the product vapor was passed through a bath containing aluminum dust and the iron formed from  $\mathrm{FeCl}_3$  reduction settled out.
- 4. In an Arnold patent (4) sufficient pressure was applied (1.5 to 2.5 atm) to the crude product in a heated container to permit melting the  ${\rm AlCl_3}$  and obtaining a vapor-liquid equilibrium. Thus, it was possible to prevent sublimation of either  ${\rm AlCl_3}$  or  ${\rm FeCl_3}$ , distill off  ${\rm AlCl_3}$ , and leave  ${\rm FeCl_3}$  in the still.
- 5. Krchma (28) patented the separation of  $\mathrm{AlCl_3}$  from anhydrous mixtures of  $\mathrm{AlCl_3}$  and  $\mathrm{FeCl_3}$  by solvent extraction with  $\mathrm{TiCl_4}$ . The solubility of  $\mathrm{AlCl_3}$  in  $\mathrm{TiCl_4}$  is approximately 283 grams per liter at 137° C and 17 grams per liter at 25° C, whereas the solubility of  $\mathrm{FeCl_3}$  in both hot and cold  $\mathrm{TiCl_4}$  is only 0.5 gram per liter. In an example given, recovery of  $\mathrm{AlCl_3}$  containing less than 0.2 percent  $\mathrm{FeCl_3}$  was 94 percent.
- 6. An I.G. Farbenindustrie patent (19) proposed purifying anhydrous  ${\rm AlCl}_3$  containing iron compounds by converting the  ${\rm AlCl}_3$  into a liquid compound with phosgene, separating undissolved  ${\rm FeCl}_3$ , and recovering the  ${\rm AlCl}_3$  by evaporating the phosgene.

Of these methods, the simplest would be to pass the product vapor through molten scrap aluminum. To determine the most economical method would require further investigation.

Since the amount of  $\mathrm{FeCl}_3$  obtained in the product is dependent on the amount of iron contained in the feed material, low-iron aluminous ores should be preferable as feed stock. Large-scale production of  $\mathrm{AlCl}_3$  would require the development of methods for recovering and utilizing the valuable byproducts produced in the process.

Of the byproduct metallic chlorides normally obtained,  ${\rm TiCl}_4$  would be the least troublesome because it is easily separated from the product and may be used for either the production of titanium metal or the preparation of pigment-grade  ${\rm TiO}_2$ .

Silicon tetrachloride has use as a chemical intermediate in making silicones, metal silicides, silanes, silicon organic compounds, and silicon ammoniates. It also has use in electronics for the preparation of transistorgrade, high-purity silicon metal, in the glass industry, in the manufacture of high-purity fused-silica, and in the petroleum industry for preparing oilfield drilling muds.

Byproduct  ${\rm FeCl}_3$ , due to its low value and the larger amounts obtained, is more of a problem. Madigan (30) oxidized byproduct  ${\rm FeCl}_3$  to  ${\rm Fe}_2{\rm O}_3$  and chlorine at elevated temperature as shown in the equation

2 
$$FeCl_3 + 3/2 O_2 \xrightarrow{700^{\circ} - 750^{\circ} C} Fe_2O_3 + 3 Cl_2$$
. (6)

The  $\mathrm{Fe_2O_3}$  product could be reduced to iron powder or sold as a high-grade  $\mathrm{Fe_2O_3}$  .

Peace River Mining and Smelting, Ltd.  $(\underline{11})$ , has developed a process which converts a ferrous chloride crystal made from scrap metal to iron powder and HCl. The iron powder has found a ready market with powder metal fabricators who make it into auto parts such as gears, cams, connecting rods, and pump and transmission parts.

# Suppression of SiCl<sub>4</sub>

Since silica in the presence of a carbon reductant will react readily with chlorine at  $800^{\circ}$  C, it is to be expected that a significant portion of any silica present in aluminous ores will be converted to  $\mathrm{SiCl}_{4}$  and distill off with the  $\mathrm{AlCl}_{3}$ .

A means of suppressing the formation of  $\mathrm{SiCl_4}$  in the production of aluminum chloride from silica containing aluminous ores has been suggested by Spitzin (43) and Staib (44). Spitzin recycled  $\mathrm{SiCl_4}$  to the reactor with chlorine and reported that this suppressed the chlorination of  $\mathrm{SiO_2}$  without appreciable effect on the reactivity of  $\mathrm{Al_2O_3}$ .

Karl Staib in a patent stated, "I have found that when using a mixture of about equal parts of  $\mathrm{SiCl}_4$  and chlorine and carrying out the reaction at about 750° C, there is no surplus formation of  $\mathrm{SiCl}_4$  due to reaction with the said materials, the entire chlorine content of the gas mixture being utilized for the formation of aluminum chloride." He also states that when more than 50 percent  $\mathrm{SiCl}_4$  was used, a corresponding amount of alumina was converted to  $\mathrm{AlCl}_3$ , and when less than 50 percent  $\mathrm{SiCl}_4$  was used, formation of  $\mathrm{SiCl}_4$  from the solid material containing silica and alumina takes place simultaneously with the conversion of part of the latter into aluminum chloride. The means of adding  $\mathrm{SiCl}_4$  to the gas stream is stated by Staib as follows:

The charging of the chlorine gas with the necessary amount of SiCl $_4$  may be effected in a very simple way in view of the fact that SiCl $_4$  boils at 57°C and has a high vapor tension even at ordinary temperature; therefore, by passing the chlorine gas through liquid SiCl $_4$  the chlorine becomes saturated and the amount of silicon chloride, thus taken up by the chlorine, may be easily regulated by adjusting the temperature at which the separation is carried out.

## System Integration

Integration of the system for the production of aluminum by the fused-salt electrolysis of  ${\rm AlCl}_3$  would first require solving the problems associated with the two subsystems--preparation of  ${\rm AlCl}_3$  and electrolysis of  ${\rm AlCl}_3$ .

The purified  ${\rm AlCl_3}$  product could be delivered directly to the electrolysis cell as a cell feed, either in vapor or solid form, whichever would be preferable. The chlorine from the cell, together with reclaimed chlorine from byproducts and the necessary makeup chlorine, would be piped directly to the  ${\rm AlCl_3}$  reactor.

#### AREAS FOR FURTHER RESEARCH

# Aluminum Chloride From Clay

Anorthosite and clay represent the largest potential U.S. aluminum sources (49). Although anorthosite constitutes the bulk of these potential aluminum sources (97.5 percent), its high content of alkaline components  $(Ca0, 11 \text{ percent}; Na_20, 5 \text{ percent})$  makes it unsuitable for direct chlorination to  $AlCl_3$  without prior treatment.

Clays, the next largest source, have a domestic potential of 12,674 million short dry tons which contain 3,719 million short tons of alumina. At the present rate of U.S. alumina consumption (6.4 million tons in 1966) clay reserves could supply domestic aluminum needs for over 500 years.

Fire clay and kaolin represent 65.5 and 26 percent, respectively, of the total potential clay sources. Eleven States possess significant deposits of fire clay with 68 percent in Ohio and West Virginia. Thirteen States possess significant deposits of kaolin with 63.5 percent in Georgia, Arkansas, and Oregon.

A typical analysis of these two clays follows:

| Composition, percent |                                      |                                                                       |                                |                                                        |  |  |  |
|----------------------|--------------------------------------|-----------------------------------------------------------------------|--------------------------------|--------------------------------------------------------|--|--|--|
| A1203                | SiO <sub>2</sub>                     | Fe                                                                    | TiO <sub>2</sub>               | LOI                                                    |  |  |  |
| 27                   | 56                                   | 2.1                                                                   | 2                              | 10                                                     |  |  |  |
| 33                   | 45                                   | 3.5                                                                   | 2                              | 14                                                     |  |  |  |
|                      | A1 <sub>2</sub> 0 <sub>3</sub> 27 33 | $ \begin{array}{c cc} Al_2O_3 & SiO_2 \\ \hline 27 & 56 \end{array} $ | $A1_{2}0_{3}$ $Si0_{2}$ Fe 2.1 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |  |  |  |

Loss on ignition.

The preparation of  ${\rm AlCl}_3$  from fire clay and kaolin should be feasible because, with the exception of silica, only small amounts of chlorine-consuming constituents are present and methods previously described have been proposed to suppress the formation of  ${\rm SiCl}_4$ .

Satisfactory commercial methods have been developed for the preparation of  ${\rm AlCl_3}$  from aluminum metal, Bayer alumina, and high-grade bauxite. Preparation of  ${\rm AlCl_3}$  from clays and other aluminous materials has occurred on a smaller scale where economics or convenience favored the use of locally obtained materials.

For the purpose of a cost evaluation of aluminum via the electrolysis-of-AlCl $_3$  process, no published information is available on the utilization of domestic clays for the preparation of AlCl $_3$ . Sixteen literature references from foreign sources (1-2, 6, 14-18, 25, 27, 36, 40, 45-46, 50, 54) on AlCl $_3$ -from-clay processes have been reported over the past 50 years covering the utilization of foreign clays. In the United States, no journal references and only four patents (23, 29, 37, 51) have been found concerning AlCl $_3$ -from-clay processes during the same period.

The choice of domestic clays for the production of  ${\rm AlCl}_3$  would require investigations to determine the optimum apparatus design and operating parameters for the calcination and chlorination of the clays and purification of the product.

# Calcination and Chlorination Research

Except for scrap aluminum and alunite,  $\mathrm{Al_20_3}$  is the essential component of almost all aluminous raw materials. Although some work has been done on the chlorine reactivity of the transition forms of hydrated  $\mathrm{Al_20_3}$ , much work remains.

The chlorine reactivity of the various transition aluminas and the calcination conditions necessary to obtain them could be obtained by using the following procedure:

- 1. Prepare suitable quantities of the transition aluminas according to Tertian and Pappee (46).
- 2. Measure the pore surface area of each of the prepared aluminas by the BET method  $(\underline{7})$ .

- 3. Devise a standard chlorination procedure.
- 4. Measure the chlorine reactivity of each transition alumina.
- 5. Correlate the results of the tests so that a comparison may be made between the transition aluminas as to their chlorine reactivity, surface area, and pore size.

The results of this investigation could be applied to the treatment of domestic clays to obtain their maximum chlorine reactivity. The calcination of these materials could be followed in the same fashion as for the pure transition aluminas:

- 1. Calcine the ore sample according to the conditions required to prepare the most reactive transition alumina.
  - 2. Measure the pore surface area of the sample.
- 3. Measure the chlorine reactivity of the sample according to the standard chlorination procedure.
- 4. Correlate the results of these tests with the results obtained with the pure compounds.

# Product Purification Research

Further information on product purification is necessary, especially in respect to the products from domestic clays. Since iron is one of the most objectionable impurities, a study of the many proposed iron purification methods listed under "Product Purification" would provide information to determine which is the most effective and the most economically feasible.

#### CONCLUSTONS

Satisfactory commercial methods of producing AlCl<sub>3</sub> from aluminum scrap, high-grade bauxite, and Bayer alumina have been developed in the United States and in other countries. Although the United States possesses large deposits of clays, little work has been done with them to determine their suitability for production of AlCl<sub>3</sub>. The justification for research in producing AlCl<sub>3</sub> from clays lies in the fact that there are no large domestic reserves of high-grade bauxite and that most of the bauxite used for aluminum production in this country is imported. Current demand and technology limit the domestic commercial reserves essentially to bauxite. Both domestically and abroad the ultimate alumina and aluminum resource is the nonbauxitic clays, mainly of the kaolin type. Thus, any technologic advance that promises to improve upon the present technology of winning aluminum from clay deserves a large measure of attention.

Fundamental data for process improvements in the calcination and chlorination of aluminous raw materials and for the purification of the resulting  ${\rm AlC1}_3$  product, also should be gathered.

#### REFERENCES<sup>3</sup>

- Adadurov, I. E. (Apparatus for the Production of Anhydrous Aluminum Chloride From the Clays of Donets Valley.) J. Chem. Ind. (U.S.S.R.), No. 6, 1929, pp. 1527-1530.
- 2. (Manufacture of Aluminum Chloride from Clays.) J. Chem. Ind. (U.S.S.R.), No. 5, 1928, pp. 1288-1292.
- Ahiya, S. P., S. P. Garg, R. T. Thampy, and N. R. Kuloor. Chloride of Aluminum, Iron, or Titanium. Indian Pat. 64,238, Oct. 10, 1959.
- Arnold, P. M. Purifying Anhydrous Aluminum Chloride. U.S. Pat. 2,387,228, Oct. 23, 1945.
- Atherhold, G. M. Aluminum Chloride. U.S. Pat. 2,048,987, July 28, 1936.
- Brode, J., and C. Wurster. Chlorides. German Pat. 524,712, Mar. 24, 1926.
- Brunauer, S. P., P. H. Emmett, and E. Teller. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc., v. 60, No. 2, 1938, pp. 309-319.
- Buntin, A. P., Ya. I. Ivashentsev, and N. M. Trushkin. (Treatment of Nepheline With HCl and CCl<sub>4</sub> Vapor.) Tr. Tomskogo Gos. Univ., Ser. Khim. (U.S.S.R.), v. 154, 1962, pp. 52-55.
- Castner, H. Y. Aluminum Chloride Purification. U.S. Pat. 422,500, Mar. 4, 1890.
- 10. \_\_\_\_\_. Purifying Aluminum Chlorides. U.S. Pat. 409,668, Aug. 27, 1889.
- Chemical and Engineering News. Chemical Process Could Bypass Conventional Steelmaking Steps. V. 46, No. 10, Mar. 4, 1968, pp. 16-17.
- Culberson, O. L., and W. A. Pardee. Aluminum Chloride. U.S. Pat. 2,832,668, Apr. 29, 1958.
- Curcaneanu, D., C. Toderanu, A. Teodoru, and V. Anastasiu. (Recovery and Purification of Silicon Tetrachloride From Waste Gases During the Manufacture of Aluminum Chloride.) Stud. Cercet. Chim. 14 (Rumania), No. 19, 1966, pp. 663-670.
- Dutt, E. E., and P. C. Dutt. Aluminum Chloride; Sodium Aluminum Chloride. British Pat. 123,243, May 10, 1918.

<sup>&</sup>lt;sup>3</sup>Titles enclosed in parentheses are translations from the language in which the item was originally published.

- Electronic Reduction Corp. Aluminum. British Pat. 650,943, Mar. 7, 1951.
- Farbenindustrie, A.-G., I. G. Metallic Chlorides. British Pat. 281,491, Jan. 7, 1927.
- 17. Metallic Chlorides. French Pat. 645,335, Dec. 7, 1927.
- 18. \_\_\_\_. Aluminum Chloride. British Pat. 305,578, Feb. 7, 1928.
- 19. \_\_\_\_\_ Aluminum Chloride Purification. British Pat. 347,510, May 26,
- 20. Groshev, T. L., B. G. Rabovskii, and Sh. S. Shchegol. (Chlorination of the Oxides of the Residue From Anhydrous Aluminum Chloride Production Shaft Furnace Suspended in Molten Chlorides.) Tr. po Khim. i Khim. Technol. (U.S.S.R.), No. 3, 1960, pp. 344-351.
- 21. Gulf Research and Development Company. Impregnating Ore With Liquid Asphalt Which Is Subsequently Carbonized. British Pat. 807,884, Jan. 21, 1959.
- 22. Hille, J., and W. Dürrwächter. Herstellung von wasserfreiem Aluminium-chlorid aus γ-Tonerde in der Wirkslschicht (Manufacturing of Anhydrous Aluminum Chloride From γ-Alumina in a Fluidized Bed.) Angew. Chem., (Germany), v. 72, No. 22, 1960, pp. 850-855.
- 23. Jenness, Leslie G. Aluminum Chloride, etc. From Clay. U.S. Pat. 1,858,272, May 17, 1932.
- 24. Johnson, J. Y. Improvements in the Manufacture and Production of Aluminum Chloride Free From Iron. British Pat. 317,259, Oct. 24, 1928.
- 25. Khozin, A. P. Aluminum Chloride. Soviet Pat. 31,426, Oct. 31, 1933.
- 26. Kirk-Othmer. Encyclopedia of Chemical Technology. Interscience Publishers, New York, 2d ed., 1963, v. 2, pp. 48-50.
- 27. Kaczorowski, A. (Preparation of Anhydrous Aluminum Chloride From Polish Clays.) Przemysl Chem. (Poland), v. 20, 1936, pp. 221-228.
- 28. Krchma, I. J., and H. H. Schauman. Separation of Aluminum Chloride and Ferric Chloride. U.S. Pat. 2,502,327, Mar. 28, 1950.
- 29. Krucoff, Darwin. Aluminum Chloride. U.S. Pat. 2,238,421, Apr. 15, 1941.
- 30. Madigan, D. C., A. W. Nordin, I. B. Ketteridge, and R. E. Wilmshurst. Removal of Iron from Ores. Australian Pat. 242,474, Jan. 9, 1963.

- 31. McAfee, A. M. Aluminum Chloride. U.S. Pat. 1,867,672, July 19, 1932.
- 32. . Aluminum Chloride. U.S. Pat. 1,833,430, Nov. 24, 1931.
- 33. . Aluminum Chloride. U.S. Pat. 1,814,397, July 14, 1931.
- 34. \_\_\_\_. The Manufacture of Commercial Anhydrous Aluminum Chloride. Ind. and Eng. Chem., v. 21, No. 7, 1929, pp. 670-673.
- McAfee, A. M., and G. I. Roberts. Aluminum Chloride. U.S. Pat. 1,690,990, Nov. 6, 1928.
- 36. Orenshtein, E. I. (Mechanism of the Drying and Roasting of Kaolin Briquets in Aluminum Chloride Production.) Khim. Prom. (U.S.S.R.), v. 43, No. 8, 1967, pp. 592-595.
- Peacock, S. Aluminum Chloride and Sodium Silicate. U.S. Pat. 1,507,709, Sept. 9, 1924.
- Ralston, O. C. Anhydrous Aluminum Chloride. BuMines Tech. Paper 321, 1923, 38 pp.
- Rao, C. S. Fluidized-Bed Techniques Using Chlorine in Metallurgical Processes. Chem. Age (India), v. 17, No. 7, 1966, pp. 545-547.
- 40. Seferovich, Ya. E. (The Preparation of Anhydrous Aluminum Chloride by Chlorination of Kaolin in the Presence of a Catalyst.) J. Chem. Ind. (U.S.S.R.), No. 10, 1934, pp. 62-64.
- Singleton, E. L., D. E. Kirby, and T. A. Sullivan. Electrowinning Aluminum From Aluminum Chloride. BuMines Rept. of Inv. 7212, 1968, 15 pp.
- 42. Spitzin, V. I., and O. M. Gwosdewa. Die Gewinnurg von wasserfreiem Aluminiumchlorid aus natürlichen aluminiumhaltigen Rohstoffen (Obtaining Anhydrous Aluminum Chloride From Natural Aluminum-Containing Raw Materials.) Z. Anorg. Allgem. Chem. (Germany), v. 196, 1931, pp. 289-311.
- 43. Spitzin, V. I. Das Chlorieren von Oxyden und ihren Gemischen mit Kohlenstoff. (Chlorination of Oxides; Alone and in Presence of Carbon.) Z. Anorg. Allgem. Chem. (Germany), v. 189, 1930, pp. 337-366.
- 44. Staib, Karl. Process for Producing Anhydrous Aluminum Chloride. U.S. Pat. 1,866,731, July 12, 1932.
- 45. Terekhov, M. I. Aluminum Chloride. Soviet Pat. 47,294, June 30, 1936.

- 46. Tertian, R., and D. Pappee. (Thermal and Hydrothermal Transformations of Alumina.) J. Chim. Phys. (U.S.S.R.), v. 55, 1958, pp. 341-353.
- 47. Thomas, C. A., M. B. Moshier, H. E. Morris, and R. W. Moshier. Anhydrous Aluminum Chloride in Organic Chemistry. ACS Monograph Series 87, Reinhold Publishing Corp., New York, 1941, 972 pp.
- 48. Treadwell, W. D., and L. Terebesi. The Chlorination of Aluminum Oxide by Chlorine and Carbon Monoxide. Helv. Chim. Acta (Switzerland), v. 15, 1932, pp. 1353-1362.
- 49. U.S. Bureau of Mines. Potential Sources of Aluminum. Inf. Circ. 8335, 1967, 148 pp.
- 50. Voronin, N. N., and I. S. Galinker. (The Preparation of Anhydrous Aluminum Chloride From Tschassow-Jar Clay.) J. Chem. Ind. (U.S.S.R.) No. 7, 1930, pp. 143-149.
- Weaver, V. M. Process of Winning Metals. U.S. Pat. 1,238,604, Aug. 28, 1917.
- 52. Process of Purification. U.S. Pat. 1,269,236, July 11, 1918.
- 53. Wurster, C. (Commercial Production of Anhydrous Aluminum Chloride.)
  Z. angew. Chem. (Germany), v. 43, 1930, pp. 877-880.
- 54. Yamamoto, K., H. Ishikawa, and K. Machida. (The Preparation of Anhydrous Aluminum Chloride From the Spent Liquor of Activated Clay.) J. Soc. Chem. Ind. (Japan), v. 39, 1936, supplementary binding, pp. 314-315.











# RADIATION-VENTILATION RELATIONSHIPS IN SIX UNDERGROUND URANIUM MINES



UNITED STATES DEPARTMENT OF THE INTERIOR

BUREAU OF MINES



# RADIATION-VENTILATION RELATIONSHIPS IN SIX UNDERGROUND URANIUM MINES

By R. L. Rock

\* \* \* \* \* \* \* \* \* \* \* information circular 8413



UNITED STATES DEPARTMENT OF THE INTERIOR Walter J. Hickel, Secretary

BUREAU OF MINES John F. O'Leary, Director

# This publication has been cataloged as follows:

# Rock, Robert L

Radiation-ventilation relationships in six underground uranium mines. [Washington] U.S. Dept. of the Interior, Bureau of Mines [1969]

17 p. illus., tables. (U.S. Bureau of Mines. Information Circular 8413)

Includes bibliography.

1. Uranium mines and mining. 2. Mine ventilation. I. Title. (Series)

TN23.U71 no. 8413 622.06173

U.S. Dept. of the Int. Library

# CONTENTS

|                                                                                                       | rage        |
|-------------------------------------------------------------------------------------------------------|-------------|
| Abstract Introduction Acknowledgments.                                                                | 2           |
| Acknowledgments Mining practices                                                                      |             |
| Study procedures                                                                                      | 4           |
| Radiation measurements                                                                                | 6           |
| Mine 1.  Mine 2.  Mine 3.  Mine 4.  Mine 5.  Mine 6                                                   | 7<br>8<br>9 |
| Conclusion                                                                                            |             |
| ILLUSTRATIONS Fig.                                                                                    |             |
| 1. Example of radiation profile showing radiation buildup due to contaminant inflow                   | 5 11        |
| TABLES                                                                                                |             |
| <ol> <li>Summary of all radon-daughter samples and individual employee full-shift exposures</li></ol> |             |



# RADIATION-VENTILATION RELATIONSHIPS IN SIX UNDERGROUND URANIUM MINES

by

R. L. Rock 1

#### ABSTRACT

The Bureau of Mines conducted radiation-ventilation studies in six large underground uranium mines to investigate the extent of radon-daughter exposure experienced by the miners and to analyze the ventilation systems to see what changes were required to achieve recommended radiation standards. The studies entailed tracing and measuring the mines' ventilating air, quantitatively and qualitatively, from its entrance into the mines, through production areas, and back to the surface.

Pressures consumed in creating airflow through mine circuits were determined by altimeter surveys. Air quantities were measured with anemometers or by chemical smoke cloud methods. Air quantities delivered through tubing were determined using U-tube water gages or magnahelic gages to measure velocity pressures.

Radon-daughters were filtered from mine air to measure alpha activity; activity levels were converted to "working levels," the established unit for reporting miner exposure. Attention was given to locating unnecessary contamination influx sources and recirculating air.

The radiation-ventilation surveys showed that where basic principles of good ventilation were not followed, high alpha radiation levels invariably resulted. Some mines required more primary air for controlling radiation levels throughout active areas, but more efficient use of available air was generally possible. Premature contamination of intake air was prevalent where development openings intersected ore or passed by worked-out stopes. Several auxiliary systems were inefficient in secondary distribution, recirculating air already too highly contaminated for ventilation. Many of these common problems can be traced to the lack of mine planning with radiation control in mind.

<sup>&</sup>lt;sup>1</sup>Mining engineer, Health and Safety District E, Bureau of Mines, Denver, Colo.

#### INTRODUCTION

The Bureau of Mines' concern over radiation health hazards in uranium mines is inherent in its responsibility to promote safe health environments in the mining industry. In the years following 1950, as uranium mining grew into a sizable industry, the U.S. Public Health Service warned of a potential health hazard associated with the mining of radioactive ores  $(\underline{5})$ .

The hazard is believed to be from inhalation of the short-lived, airborne, alpha emitting, direct-nuclide descendants of radon gas. These nuclides, commonly called radon-daughters, attach themselves to respirable dust, or other available condensation nuclei, and are breathed into the respiratory system where a portion of them are retained. Their potential alpha energy is released in a relatively short time as they decay to longer lived nuclides. Although alpha particles have little penetrating power, they are highly ionizing.

Studies by the U.S. Public Health Service in cooperation with the U.S. Atomic Energy Commission and State agencies disclose that underground uranium miners are subject to the incidence of lung cancer to a substantially greater degree than the general population. The excess incidence apparently is related to the uranium miner's occupational environment, and is believed to be induced by the radioactive decay of radon-daughters in the respiratory system.

Where serious doubts concerning the health hazard still persist, they pertain to the radiation levels that can be tolerated day after day without noticeably increasing the hazard. During 1967, extensive hearings were held before the Congressional Joint Committee on Atomic Energy (7) to settle contoversy over the setting of a tolerable radiation exposure standard for radon-daughters in underground mines. Also, the Federal Radiation Council (4) recognized that, while mining conditions had improved greatly over those prevailing 10 years previously, more improvement was needed to provide proper control of exposure to radon-daughters. The council then adopted an interim standard of one working level (1 WL) in order to affect immediate improvements; they further recommended that actual exposure should be kept as far below this value as practicable. See the content of the content of the content of the commended that actual exposure should be kept as far below this value

State and Federal agencies have been surveying airborne alpha-particle-emitting contaminant (radon-daughter) levels in the Nation's underground uranium mines for the last 10 years. These surveys, plus industry surveys, allow a fairly accurate appraisal of the general radon-daughter levels existing in the mines during this period. Medical data and exposure levels are continually being correlated by the Public Health Service in an attempt to further define acceptable levels of exposure. The Bureau has, and continues to contribute, much of the exposure level data used in the correlative efforts.

<sup>&</sup>lt;sup>2</sup>Underlined numbers in parentheses refer to items in the list of references at the end of this report.

 $<sup>^3\</sup>text{One}$  working level is 1.3  $\times$   $10^5$  million electron volts of potential alpha energy per liter of air from the daughters Ra, RaB, and RaC.

The Bureau initiated radiation surveys in all the Nation's underground uranium mines in Spring 1967, under the authority of the Federal Metal and Nonmetallic Mine Safety Act (80 Stat. 772), delegated by the Secretary of the Interior. Although the number of active mines changed because of mine closures and reopenings, 180 plus or minus 10 percent was the determined number of mines operating at any one time during the survey period ending May 10, 1968. The mines employed about 2,100 underground workers in New Mexico, Wyoming, Colorado, Utah, Arizona, California, and South Dakota. All of the mines were surveyed for radon-daughter levels; resurveys have been made as the continuity of the operations allowed. Appropriate summaries of exposure level data obtained from these surveys are continually being prepared and distributed (3). The Bureau's quarterly Mineral Industry Survey's health and safety summary is one way the information is disseminated. These surveys are very important in indicating existing radiation levels and progress toward improvement. However, they are not detailed enough to either provide answers as to why high radiation levels persist in some instances or to indicate how improvements can best be implemented.

To provide information for answering these important questions, six of the larger uranium mines, having widely different mining methods, were selected for detailed radiation-ventilation studies. Ventilation patterns are similar at some of the operations, but there is enough diversity to be representative of general practices in the industry. About 300 underground workers, 15 percent of the total U.S. underground uranium work force, are represented by the six operations studied.

This paper summarizes radiation levels found at the six operations studied, basic radiation-ventilation relationships revealed, and major causes of high exposure levels.

### ACKNOWLEDGMENTS

Mining company personnel facilitated sampling and obtaining many of the data upon which this paper is based. Their regard for the problem was demonstrated by their cooperation in conducting these detailed studies. Because information presented is believed to be representative of general industry problems and is not intended as criticism of individual companies or mines, cooperating companies are not identified.

#### MINING PRACTICES

All but one of the ore bodies studied are relatively flat-lying and occur in sandstone. The other deposit occurs in a Precambrian gneiss and fits the general description of a steeply dipping vein deposit, although multiple intersecting veins and ore shoots are involved. Most of the flat-lying deposits occur in more than one stratigraphic horizon and are oriented along bedding planes.

The smaller sandstone ore deposits, consisting of a few hundred to a few thousand tons each, occur as a series of intermittent lenses and pods. These smaller deposits are difficult to define in advance of mining; therefore, planned, systematic extraction is seldom practiced. The usual method is to explore, develop, and extract at the same time. Sometimes single track

entries are driven below the ore, but more often entries are located in the ore.

In the larger deposits, systematic extraction is easier to attain. Most often, sublevel haulageways are driven, and ore on the levels above is mined by room and pillar methods. Cut and fill and square set mining is used in some of the thicker deposits. Caving is successfully applied in large, thick pillar sections by driving raises from below and ring drilling the pillars. Caving is initiated by blasting the drill holes; the raises serve as drawholes for removing the ore.

Shrinkage and open stoping methods are used to mine the single vein deposit studied. Deposits are opened by adits or shafts, depending upon the relationship between the ore and topography. Boreholes are widely used to supplement ventilation and to provide escape openings.

Both track and trackless haulage and loading equipment are used. Slushers are used in scram drifts and with slusher-ramp loading arrangements. Most equipment is electrically or air powered, but a few diesel-powered front-end loaders and ore carriers are employed. Ore and waste are drilled using pneumatic jack-leg drills. The mines studied are well mechanized, and little hand mucking or hand tramming is utilized. Electrical power was available at all the mines.

#### STUDY PROCEDURES

#### General

Each detailed study required tracing and measuring the ventilating air both quantitatively and qualitatively (for alpha radiation from airborne particulates) from the point where fresh air entered the mine to ventilation distribution points in production areas and finally to where return air was exhausted at the surface.

Two to four men participated in each study. Average time requirements to secure field data for each study were about  $30\ \mathrm{man-days}$ .

Company mine maps were first analyzed, then brought up to date to show ventilation patterns and controlling features governing the ventilating system. Active and inactive areas were located, and a line diagram depicting ventilation circuits was constructed for use as a working guide.

#### Ventilation Measurements

Airflow quantity measurements were made using the full-traverse anemometer method wherever possible. The chemical smoke-cloud measurement method was used where air velocities were below anemometer range. Auxiliary vent-tubing quantities were determined with the aid of a pitot tube and water gage. Velocity pressures were corrected for density to allow better quantity calculations of the air passing through tubing. All quantities measured were recorded directly on the working map, and a preliminary quantity balance was

made as work was progressed, making it possible to immediately identify where leakage and recirculation were occurring. Radiation levels from radon-daughters were measured during the quantity survey to assure that alpha radiation levels measured reflected the conditions of air quantities being delivered. Radiation levels were also recorded on the working map where they could easily be examined. To verify data, repeat samples and check air measurements were made.

Finally, absolute system pressures were measured using two 4,000- to 11,000-foot-range precision altimeters ( $\underline{6}$ ). One altimeter was used as a base to record normal pressure changes in the surface atmosphere. The other instrument was used as the roving altimeter to measure static pressures between



FIGURE 1. - Example of Radiation Profile Showing Radiation Buildup Due to Contaminant Inflow.

selected stations in the ventilation system. Magnahelic-gage readings and U-tube water-gage readings were taken to augment altimeter measurements. By correcting roving altimeter readings for elevation differences, surface barometer changes, and velocity pressure differences, the pressure consumed in causing flow between stations was indicated.

#### Radiation Measurements

Radon-daughters were filtered from the mine air, and the alpha activity on the filters was measured using the standard field method (1). Total alpha activity on the filters was converted from disintegrations per minute (dpm) to "working levels," the established unit for reporting potential alpha radiation from radon-daughters, by dividing the dpm count by liters of air filtered, and multiplying this by the appropriate elapsed time factor. Chemical smoke clouds were used liberally to assure that air currents sampled were truly representative of the portion of the mine atmosphere desired for testing. This insured that invisible air interfaces did not mask the relationships being sought.

Special attention was given to locating contamination intake sources. A radiation profile map is sometimes helpful in depicting the contamination buildup that occurs while intake air circulates through the mine. Figure 1 is a generalized example of the form such a profile might take. Main areas of exposure were carefully sampled, and timestudies were obtained to allow full-shift exposure calculations for each man  $(\underline{2})$ . Table 1 summarizes individual samples and full-shift exposures determined from them.

| TABLE 1 |      |        | radon-daughter |         |     |            |       |
|---------|------|--------|----------------|---------|-----|------------|-------|
|         | full | -shift | exposures, b   | y mines | and | working le | evels |

|         | Working level ranges |       |      |       |         |       |         |       |          |       |      | Total |      |       |
|---------|----------------------|-------|------|-------|---------|-------|---------|-------|----------|-------|------|-------|------|-------|
| Mines   | 0-0                  | 0.3   | 0.4- | 1.0   | 1.1-3.0 |       | 3.1-5.0 |       | 5.1-10.0 |       | >10  |       | Sam- | Expo- |
|         | Sam-                 | Expo- | Sam- | Expo- | Sam-    | Expo- | Sam-    | Expo- | Sam-     | Expo- | Sam- | Expo- | ples | sures |
|         | ples                 | sures | ples | sures | ples    | sures | ples    | sures | ples     | sures | ples | sures |      |       |
| 1       | 14                   | 43    | 10   | 10    | 7       | 5     | 2       | 0     | 0        | 0     | 0    | -     | 33   | 58    |
| 2       | 4                    | 1     | 5    | 6     | 7       | 31    | 6       | 17    | 5        | 2     | 0    | 0     | 27   | 57    |
| 3       | 14                   | 36    | 6    | 7     | 6       | 4     | 6       | 4     | 8        | 10    | 6    | 3     | 46   | 64    |
| 4       | 13                   | 0     | 17   | 10    | 27      | 10    | 2       | 0     | 0        | 0     | 0    | 0     | 59   | 20    |
| 5       | 3                    | 7     | 2    | 5     | 1       | 9     | 5       | 3     | 8        | 7     | 3    | 0     | 22   | 33    |
| 6       | 1                    | 0     | 6    | 2     | 7       | 11    | 4       | 12    | 16       | 28    | 4    | 2     | 38   | 53    |
| Total   | 49                   | 87    | 46   | 40    | 55      | 70    | 25      | 36    | 37       | 47    | 13   | 5     | 225  | 285   |
| Percent | 22                   | 30    | 21   | 14    | 24      | 25    | 11      | 13    | 16       | 16    | 6    | 2     | 100  | 100   |

A detailed report was given the operator following each study in which radiation-ventilation conditions were described, and recommendations for improving radiation levels were presented.

#### MAJOR RADIATION-VENTILATION RELATIONSHIPS4

#### Mine 1

Mine 1 is a shaft mine ventilated by four surface fans exhausting air through metal-cased 30- to 36-inch boreholes 600 to 700 feet deep, moving 88,000 cubic feet

<sup>4</sup>Table 1 should be referred to for the number of underground employees and radiation exposure levels, at the respective operations described.

per minute (cfm) of air into the shaft. About 3,000 cfm of additional air entered the mine through another cased borehole open to the surface, but not provided with a fan. Of the total intake air, only about 38,000 cfm was used to ventilate the single major multilevel production section. Most of the remaining intake air was lost through stoppings and ore passes connecting old stoping areas with the main haulageway and intake airway.

Intake air arrived at the primary production area relatively uncontaminated because the intake airway was in barren ground below the ore, and abandoned connecting stoping areas were kept at negative pressure with respect to the airway.

Air was distributed to the various mining levels above the haulage level through manways and ore passes. Air movement on and between the levels was not well controlled, and recirculation was evident. Only some of the small auxiliary fans, used with vent-tubing to spot-ventilate individual working places, were effective; others were not, chiefly because of problems with recirculation at the fan inlets and poor tubing maintenance.

Some of the room and pillar stoping levels were quite large, and the air, following a random path of least resistance, had a tendency to channel through them, leaving fringe areas poorly ventilated. Such fringe areas then became reservoirs for contamination buildup and complicated the general control problem.

More air and better distribution efficiency were needed in the major production area. Without appreciably improving distribution efficiency, the air quantity would have to be nearly doubled to limit the radiation in all work locations to 1 WL. If, however, recirculation was prevented, and more uniform flow was obtained through stoping areas, the available air should have been nearly enough to control radiation levels in existing stoping volumes.

Pressure requirements and attendant power costs for ventilating through small-diameter boreholes are always high. In this case, about 80 percent of the system resistance was in the primary borehole. Also, the main fan was operating at an inefficient location on the fan characteristic curve, and by adjusting the fan blades, it was possible to lower power costs almost 50 percent with only a 3-percent loss in air quantity.

### Mine 2

Ventilation was induced by two tandem-connected surface fans blowing air underground through a 1,430-foot, 36-inch-diameter cased borehole. A booster fan on the lower stoping level added pressure to the primary flow which was coursed through raises and draw holes into the upper mining levels. All the return air was collected on the track level and returned to the surface through the hoisting shaft. Of the 59,000 cfm of air entering the vent shaft, only 36,000 cfm was left for ventilating production areas after leakage and after splits were taken off for ventilating the shop, lunchroom, and transformer station. The booster fan was handling 58,000 cfm of air, but 22,000 cfm of this air was recirculated from the track haulage level and adjacent

tailing-sand-filled stopes. This recirculation in the primary circuit, besides increasing the hazard from smoke or fire originating underground, allowed contamination inflow to raise the radon-daughter concentration in the immediate main intake air to 0.4 WL.

Further contamination of part of this intake air occurred when it passed mill tailing-filled stopes on its way to the production area. This air was already contaminated to 3.4 WL at the intake to the stope fan, and miners were exposed to about  $5.8~\rm WL$  in the stopes.

Auxiliary fans and tubing were used to ventilate individual working places. At least three of these units were recirculating air already highly contaminated.

An estimated 15,000 cfm of additional uncontaminated primary air could be made available by eliminating unnecessary leakage between intake and return airways. The main radiation problem, however, was due to the large acceptance of contamination inflow. Fortunately, mill tailings were no longer being used for filling stopes. A planned 48-inch diameter drill hole should allow altering the ventilating system so contamination inflow from existing tailing-filled stopes will be minimized. Using the new system, tailing-filled stopes along the present sublevel intake air course will be on return air and the track haulage level will become the main intake air course. The system should also minimize series ventilation between working places. The quantity of air required to keep radiation levels in safe ranges in all the mine areas could not be determined accurately for this mine. It should be possible, however, to utilize the planned 75,000 cfm more efficiently with the proposed distribution changes.

Almost 24 inches of water gage pressure was consumed in causing the 59,000 cfm of intake air to enter the mine through the 36-inch-diameter borehole.

#### Mine 3

Mine 3 was ventilated with 267,000 cfm of air exhausted by six fans through five boreholes and a raise. The largest borehole was 60 inches in diameter; average ventilation shaft depth was about 700 feet. Air entered the mine through the hoisting shaft and two additional intake boreholes.

Because the mine was in the very mature stages of development, only the ventilation pattern in the major active production section will be discussed here. In this section, air entered the haulage level from the hoisting shaft and one of the intake boreholes and was then distributed up to the mining level through manways and ore passes. The main mining level was a large room and pillar area with sealed caved areas around the margins. All the workers on this level were exposed to radon-daughter concentrations well in excess of 1 WL. Although the problem was complicated by other factors, the major reason for the high levels was that sealed areas were interconnected with the exhaust shaft in such a way that they were at a positive pressure with respect to active stoping areas. Contamination inflow into the active stoping areas was

excessive to the extent that 35 WL resulted in some localities. Other contributing factors were the lack of control of intake air movement through the pillar area away from the direction of mining and a few poorly installed auxiliary air distribution systems.

Auxiliary spot ventilation systems lose much of their effectiveness if radiation levels in the general stope area are allowed to become too high. Several thousand cubic feet per minute of uncontaminated air discharged into such an area may be effective only within a few feet of the tubing discharge because of the rapid entrainment of the highly contaminated air.

Because modifications of the ventilation system could be expected to greatly reduce the quantities of air necessary to control radiation levels on the main production level, no attempt was made to project future requirements on the basis of existing conditions.

Several mine areas of excessive resistance to airflow were indicated by the pressure survey.

#### Mine 4

Air entered the mine through two adits, each leading to production areas, and a surface fan, installed over a 420-foot shaft, exhausted 74,000 cfm of air. Distribution through the adits was governed by the relative system resistance of each. One dead-end production area was pressure ventilated by about 4,700 cfm through a 15-inch-diameter ventilation borehole.

Single-entry track haulageways formed the intake airways either in or below the ore horizons. Doors, stoppings, and regulators were used to control air movement along active splits. Where face ventilation could not be provided in this way, auxiliary fans with vent-tubing were used.

Filtered-air samples indicated that radon-daughter levels in the active production areas off both adits averaged about twice the recommended maximum. The intake air of both major splits was contaminated as the air circulated by and through old stoping areas on its way toward current production locations. Intake air at the inlets to auxiliary fans was generally already too highly contaminated to effectively control radiation in face areas. In addition, discharge ends of tubing terminated much too far from work locations to allow available air to be effective.

It was found that the air provided through the borehole, and intended to ventilate the dead-end workings off one of the main splits, was being short-circuited so that the auxiliary fan could not pick it up. Instead, the fan was recirculating air at 2.0-4.0 WL within the mine volume surrounding the tubing. A single check curtain was installed which redirected the uncontaminated air from the borehole to the fan inlet and remedied the radiation problem in this particular locality. This was not the end of the problem, however, because the return air later mixed with the intake air to the next stoping area downwind. This is but one example of contamination problems resulting from series ventilation through the overall mine complex.

Because systematic sealing of old stoping areas along intake airways would lessen the quantity of air required to control radiation levels throughout the mine, no attempt was made to estimate the quantity required for ventilation under existing conditions.

The pressure portion of the survey did not reveal any areas of unusually high resistance to airflow, but it did indicate that existing equipment was operating near its maximum capacity. To obtain more primary flow, a higher capacity fan would be needed, or the overall system resistance would have to be significantly reduced.

# Mine 5

Primary air entered the operating adit and was coursed several hundred feet underground (fig. 2), where two auxiliary fans were used to blow part of the primary air through tubing to four active mining levels below the collar of a winze. A 20-inch-diameter tubing was installed in the restricted area of the winze's manway compartment. Total primary air was 22,500 cfm; air arriving on each active mining level through the tubing was 3,100 to 4,500 cfm. Remaining primary air flowed through the hoisting compartment of the winze to the first level and out through old open stopes to the main exhaust fan adit above.

Radon-daughter samples taken on the mining levels and in the steeply dipping stopes indicated that nearly all the miners working below the collar of the winze were being exposed to alpha radiation from airborne radon-daughters in excess of 1  $\rm WL$ .

The prime cause for the high radiation levels was insufficient ventilating capacity. Tubing was extended well into the stopes; but air quantities discharged were only a few hundred cubic feet per minute because of the limited quantity that could be delivered through the tubing in the winze, leakage, and the large number of splits necessary on the levels. Another contributing factor to the high radiation levels was recirculation of contaminated return air from stopes on and between the levels.

The best solution to the problem appeared to be the provision of an adequate capacity exhaust fan operating through a new shaft connecting the mining levels with the surface, near their farthest extension from the winze. Air then would enter levels through the present winze and could be regulated near where the levels intersect the proposed shaft. Auxiliary fans and tubing would be needed to course air from the levels into active stopes, but tubing distances would be minimal. The present exhaust fan could still be used to maintain an upward flow of air through the stoped-out areas above the present mining levels. It was estimated that about 35,000 cfm of air, efficiently distributed between existing mining levels, should be adequate to lower alpha radiation from airborne contaminants to 1 WL.



FIGURE 2. - Isometric Sketch of Radiation-Ventilation Relationships at Mine 5.

#### Mine 6

This mine (fig. 3) is a good example of an operation that originated as a group of small separate mines, but became interconnected. Ore deposits were relatively small and occurred as irregular lenses and pods within a flat-lying sandstone formation. A shaft and two adits were the operating openings. A third adit was used solely as an air course.

Primary ventilation was induced by four surface fans, two blowing through tubing and two blowing through drill holes, and by two underground fans operating in bulkheads. Intake air totaled 43,900 cfm. Five auxiliary fans were used underground to blow air through tubing into active areas off the primary circuits.

 $\,$  All but two of the underground employees were receiving more than 1 WL full-shift exposure to radon-daughters.

Management was in the process of increasing primary flow through the main production section by installing a larger primary fan underground. It was very necessary to increase primary flow in this section of the mine, because auxiliary units were handling 1-3/4 times the primary quantity of air provided. Recirculation was thus inevitable.

Contamination inflow was also a serious problem. Intake air to the section passed through a mined-out area shortly after it entered the portal of the mine and was at nearly 5 WL by the time it arrived at the first auxiliary fan inlet. Masonry seals were being constructed to alleviate this condition, but the mined-out area presented a formidable sealing problem. A number of chutes, in addition to side drifts, required sealing, and it was possible that considerable contamination inflow came from fill and spillage along the adit floor itself.

About half the total 200 horsepower being expended for ventilation was wasted, either because of direct recirculation or because inlet air was already too highly contaminated to be usable. In general, auxiliary units were poorly designed and poorly applied. Besides massive recirculation at the fan inlets, leakage from tubing joints and holes reduced the quantity of air discharged at work locations to ineffectual proportions. Often, discharge ends of tubing were too far back from faces they were intended to ventilate. One auxiliary unit was actually detrimental; it raised the radiation level in the area it served. This fan was picking up highly contaminated air from an inactive area and injecting it into an active location near a fresh air source.

No attempt was made to predict the total quantity of air necessary to control radiation levels throughout the mine. Obviously, enough uncontaminated air must be provided to allow auxiliary units to function without recirculation. The ability to isolate contamination sources from intake air appears to be the factor governing whether the new main fan will achieve the desired results. Another contingency will be the ability to coordinate flow to and from active sections in such a way that return air from one section does not foul the intake air of the next. The latter would be simpler to achieve if



FIGURE 3. - Plan Line Diagram Showing Radiation-Ventilation Relationships at Mine 6.

production areas could be more consolidated; then available air would not be spread so thinly.

The pressure portion of the survey revealed a fine balance between natural draft pressure and mechanically induced pressure which threatened directional control over the air in the vicinity of the shaft. Directional control must be maintained to assure that contaminated air is not periodically coursed in a deleterious manner.

#### CONCLUSION

Radiation hazards in the six mines studies are aggravated by a number of factors, the broadest of which is a lack of mine planning for radon-daughter control. It is recognized, however, that the mines are in the mature stages of development, and that the need for more mine planning to facilitate radiation control cannot be attributed solely to the shortsightedness of the operators. In many cases, the major development work in these mines was done prior to 1960 when there was still some disagreement among authorities as to the severity of radiation hazards and the lack of comprehensive knowledge concerning the relationship of exposure to radon-daughter atmospheres and the incidence of respiratory disease. When developing new stopes in old mines, more attention is being given to the need for mine planning to achieve radiation controls and to keep ventilation costs down. Future mines can be expected to be developed with radiation control in mind.

A major factor found, which is sometimes difficult to correct, was contamination inflow into intake air from nonproductive areas. Contamination influx was so severe in some places that sufficient intake air volumes could not be practically provided to dilute contamination enough to make the air usable for face ventilation.

Sometimes, more primary air was needed, but with few exceptions available air was not being optimally utilized. More fans and more air movement are the first control measures which come to mind, but it is apparent from the studies that, unless the added air is efficiently distributed and integrated with the overall ventilating system, results can be very disappointing and expensive. The interrelationship between ventilation patterns and radiation levels in different mining sections is such that adjustments benefiting one section may adversely affect another.

Table 2 outlines the major causes of high radon-daughter exposure in the six mines studied in order of severity. Table 3 shows a comparison of radiation levels found during the six radiation-ventilation studies and radiation resurveys made a few months later. Although repeat detailed radiation-ventilation studies would be required to allow precise correlation between fulfillment of study report recommendations and radiation level improvements, the comparison is indicative of significant improvement.

The most disturbing revelation of the studies was the frequent violations of good ventilating practices. Recirculation of air in primary and auxiliary circuits was found all too often. Leakage was a problem, especially in

auxiliary systems utilizing tubing. Discharge ends of tubing were sometimes too far from production areas to be effective, and a few fans were found turned off because of someone's discomfort. Although they demand constant attention, conditions such as these should be easy to locate and correct. Only minor changes in the present systems were required to significantly lower radiation levels in a number of instances.

TABLE 2. - Summary of major causes of high radon-daughter exposure levels

|                                                                                                                    |      | Relative cause importance |     |      |    |                  |          |
|--------------------------------------------------------------------------------------------------------------------|------|---------------------------|-----|------|----|------------------|----------|
| Major causes                                                                                                       | At i | ndi                       | vid | lua1 | mi | nes <sup>1</sup> | Overal12 |
|                                                                                                                    | 1    | 2                         | 3   | 4    | 5  | 6                |          |
| Unnecessary acceptance of contamination inflow                                                                     | 2    | 6                         | 6   | 5    | 1  | 6                | 26       |
| Poorly designed auxiliary ventilation systems (recirculation or improper delivery at the face)                     | 5    | 4                         | 4   | 4    | 4  | 4                | 25       |
| Insufficient ventilation quantity (judged on the basis of efficient distribution and utilization of available air) | 4    | 3                         | 3   | 2    | 6  | 5                | 23       |
| Series ventilation between major mining sections                                                                   | 3    | 5                         | 2   | 6    | 2  | 3                | 21       |
| Lack of directional control over available air                                                                     | 6    | 1                         | 5   | 1    | 5  | 1                | 19       |
| Main operating openings in return air                                                                              | 1    | 2                         | 1   | 3    | 3  | 2                | 12       |

<sup>&</sup>lt;sup>1</sup>Cause importance at each mine is indicated by the decreasing range 6-1.
<sup>2</sup>Cause importance for all mines is indicated by the decreasing range 26-12.

TABLE 3. - Comparison of percentages of men in various full-shift exposure ranges during radiation-ventilation studies and radiation surveys1

| Study and survey            | Men      | pesodxe    | to various working level |            | ranges, percent |        |
|-----------------------------|----------|------------|--------------------------|------------|-----------------|--------|
|                             | 0-0.3 WL | 0.4-1.0 WL | 1.1-3.0 WL               | 3.1-5.0 WL | 5.1-10.0 WL     | >10 WL |
|                             |          | MINE 1     |                          |            |                 |        |
| Radiation-ventilation study | 14       | 17         | 6                        | 1          | -               |        |
| Cumulative, percent         | 74       | 91         | 100                      |            | ,               |        |
| Radiation survey            | 29       | 09         | 6                        | 2          |                 | 1      |
| Cumulative, percent         | 29       | 89         | 98                       | 100        |                 | -      |
|                             |          | MINE 2     |                          |            |                 |        |
| Radiation-ventilation study | 2        | 11         | 54                       | 30         | 3               |        |
| Cumulative, percent         | 2        | 13         | 67                       | 97         | 100             | ı      |
| Radiation survey            | 22       | 64         | 14                       |            |                 |        |
| Cumulative, percent         | 22       | 86         | 100                      | -          | -               |        |
|                             |          | MINE 3     |                          |            |                 |        |
| Radiation-ventilation study | 56       | 11         | 9                        | 9          | 16              | 5      |
| Cumulative, percent         | 56       | 67         | 73                       | 79         | 95              | 100    |
| Radiation survey            | 43       | 97         | <b>∞</b>                 | 0          | m               |        |
| Cumulative, percent         | 43       | 89         | 97                       | 97         | 100             | -      |
|                             |          | MINE 42    |                          |            |                 |        |
| Radiation survey            | 0        | 0          | 0                        | 18         | 82              | -      |
| Cumulative, percent         | 0        | 0          | 0                        | 18         | 100             |        |
| Radiation-ventilation study | 0        | 42         | 58                       |            | ,               |        |
| Cumulative, percent         | 0        | 42         | 100                      | -          |                 |        |
|                             |          | MINE 5     |                          |            |                 |        |
| Radiation-ventilation study | 21       | 15         | 27                       | 6          | 21              | 7      |
| Cumulative, percent         | 21       | 36         | 63                       | 72         | 93              | 100    |
| Radiation survey            | 84       | 32         | 20                       |            | ,               |        |
| Cumulative, percent         | . 48     | 80         | 100                      |            | -               | -      |
|                             |          | MINE 6     |                          |            |                 |        |
| Radiation-ventilation study | 0        | 4          | 21                       | 23         | 52              | 0      |
| Cumulative, percent         | 0        | 7          | 25                       | 48         | 100             |        |
| Radiation survey            | 0        | 7          | 88                       | 0          | 7               | 0      |
| Cumulative, percent         | 0        | 4          | 93                       | 93         | 100             |        |
| 101.1.1.1                   |          |            |                          |            |                 |        |

181ightly higher exposure levels obtained during radiation surveys are believed to represent a fluctu- $^2$ Radiation survey made prior to radiation-ventilation study. ation within normal transient conditions.

#### REFERENCES

- American Standards Association (now United States of America Standards Institute). Radiation Protection in Uranium Mines and Mills (Concentrators). American Standard N7.1, 1960, 31 pp.
- Bates, R. C., and R. L. Rock. Estimating Daily Exposures of Underground Uranium Miners to Airborne Radon-Daughter Products. BuMines Rept. of Inv. 6106, 1962, 22 pp.
- 3. Bureau of Mines. Progress Reports to Federal Radiation Council Task Force on Uranium Mining, December 1967, March 1968, and May 1968 (unpublished).
- Federal Radiation Council. Guidance for the Control of Radiation Hazards in Uranium Mining. Rept. 8 (rev.), September 1967, 60 pp.
- Holaday, Duncan A., David E. Rushing, Richard D. Coleman, Paul F. Woolrich, Howard L. Kusnetz, and William F. Bole. Control of Radon and Daughters in Uranium Mines and Calculations on Biological Effects. U.S. Public Health Service, Public Health Pub. 494, 1957, 81 pp.
- 6. McElroy, G. E., and D. S. Kingery. Making Ventilation-Pressure Surveys With Altimeters. BuMines Inf. Circ. 7809, 1957, 20 pp.
- U.S. Congress. Radiation Exposure of Uranium Miners. Hearings before the Subcommittee on Research, Development, and Radiation of the Joint Committee on Atomic Energy. 90th Cong., 1st Sess. 1967, pt. 1, 783 pp.; pt. 2, 1373 pp.

U. S. GOVERNMENT PRINTING OFFICE :. 1969 O - 348-540











# A METHOD OF MEASURING THE COSTS AND BENEFITS OF APPLIED RESEARCH



UNITED STATES DEPARTMENT OF THE INTERIOR

BUREAU OF MINES



# A METHOD OF MEASURING THE COSTS AND BENEFITS OF APPLIED RESEARCH

By John W. Sprague

\* \* \* \* \* \* \* \* \* \* information circular 8414



UNITED STATES DEPARTMENT OF THE INTERIOR Walter J. Hickel, Secretary

BUREAU OF MINES
John F. O'Leary, Director

This publication has been cataloged as follows:

Sprague, John W

A method of measuring the costs and benefits of applied research. [Washington] U.S. Dept. of the Interior, Bureau of Mines [1969]

 $42\ \mathrm{p.}$  illus., tables. (U.S. Bureau of Mines. Information Circular 8414)

Includes bibliography.

1. Cost effectiveness. 2. Research, Industrial-Methodology. I. Title. (Series)

TN23.U71 no. 8414 622.06173

U.S. Dept. of the Int. Library

#### CONTENTS

|                                                                         | Page   |
|-------------------------------------------------------------------------|--------|
| Abstract                                                                | 1<br>1 |
| Conceptual background                                                   | 2      |
| Types of project costs and benefits                                     | 3      |
| Basic assumptions and concepts of cost-benefit analysis                 | 4      |
| · · · · · · · · · · · · · · · · · · ·                                   | 6      |
| The measurement of costs and benefits                                   | 6      |
| Direct benefits and costs                                               | 9      |
| External or "spillover" effects                                         |        |
| Pecuniary spillovers                                                    | 9      |
| Technological spillovers                                                | 10     |
| On other industries                                                     | 11     |
| Other technological spillovers                                          | 12     |
| Changes in pollution levels                                             | 12     |
| Pollution standards                                                     | 14     |
| Changes in existing health and safety conditions                        | 15     |
| Secondary benefits and costs                                            | 15     |
| Secondary national benefits                                             | 16     |
| Secondary regional benefits                                             | 17     |
| Intangible benefits and costs                                           | 17     |
| Prescribed benefits and costs                                           | 18     |
| Cost-benefit calculations                                               | 19     |
| Industry acceptance                                                     | 20     |
| Probability of success allowance                                        | 21     |
| Internal rate of return                                                 | 23     |
| Bibliography                                                            | 26     |
| Government publications                                                 | 26     |
| Books and pamphlets                                                     | 26     |
| Articles                                                                | 27     |
| Appendix APollution costs and benefits methodology and data             |        |
| requirements                                                            | 29     |
| Appendix BThe heavy metals cost-benefit analysisa case study            | 34     |
| ILLUSTRATION                                                            |        |
| Fig.                                                                    |        |
|                                                                         |        |
| B-1. Estimated annual ore production before and after 25 percent cost   |        |
| reduction for Carlin-type and epithermal deposits                       | 37     |
|                                                                         |        |
| TABLES                                                                  |        |
| B-1. Total gold reserves by grade of ore                                | 35     |
| B-2. Estimated annual production per 1.4-million-ounce deposit by grade |        |
| of ore                                                                  | 36     |
| B-3. Estimated annual production rate with 1.4 million ounces of        |        |
| original reserves per deposit                                           | 38     |
| B-4. Project costs and benefits under present technology                | 41     |
| B-5. Project costs and benefits under future technology                 | 42     |



# A METHOD OF MEASURING THE COSTS AND BENEFITS OF APPLIED RESEARCH

by

John W. Sprague 1

#### ABSTRACT

The Bureau of Mines studied the application of the concepts and methods of cost-benefit analysis to the problem of ranking alternative applied research projects. Procedures for measuring the different classes of project costs and benefits, both private and public, are outlined, and cost-benefit calculations are presented, based on the criteria of probability of success and internal rate of return. Because of increasing concern about environmental effects, the methodology and data requirements for estimating project-related pollution costs are discussed. Also, a case study of cost-benefit analysis for a heavy metals program is presented.

#### CONCEPTUAL BACKGROUND

In a market system, such as that of the United States, prices and costs (which are nothing but the prices of inputs) serve as signals to firms and individuals, permitting them to make decisions on grounds of economic efficiency leading to most profitable positions. However, there are many situations for which prices do not exist or cannot be used directly. Cost-benefit analysis has been developed by economists to interpret these situations.

Cost-benefit analysis is a conceptual and empirical technique for determining which of several courses of action will be, in some sense, most profitable. In effect, it can serve the same purposes as a marketplace. Cost-benefit analysis has most often been applied in the public sector where collective goods, like national defense, or indivisible goods, like dams, are being provided. More recently, it has come to be used to evaluate alternative applied research programs. This information circular outlines an approach to cost-benefit study for applied research projects of the type undertaken by the Bureau of Mines.

<sup>&</sup>lt;sup>1</sup>Economist, Bureau of Land Management, Washington, D.C.; formerly with Division of Mineral Economics, Bureau of Mines, Washington, D.C.

#### Cost-Benefit Analysis and Applied Research

The methodology used here for measuring the economic benefits of applied research programs takes the project as the basic unit of analysis, and uses the project's internal rate of return as the means for ranking and the probability-of-success factor as a means of offsetting potential "project myopia."

However, many factors, other than economic benefits, play a role in determining which of the many alternative research possibilities will be undertaken. These noneconomic factors develop the basic parameters within which cost-benefit analysis is used. Some of these factors are (1) the mission and role of the organization, (2) the existing and potential capabilities of scientific and technical personnel, (3) the necessity for maintaining a core program, and (4) the establishment of a balanced program.

In any attempt to develop a coherent and comprehensive research program the overall process of evaluating resources and objectives must be broadly conceived. However, the constraints of a limited budget inevitably necessitate compromises. Cost-benefit analysis can aid in choosing both among various desirable objectives and among various possible routes to those objectives by comparing alternatives in terms of a common denominator.

The methodology presented in this paper is designed to operate within a framework of appropriate criteria provided by the decisionmaker and to respond to changes in such basic parameters as time horizons, input limitations, technological constraints, and assumptions as to reasonable investment alternatives. Although cost-benefit analysis cannot establish these basic parameters, it can measure the likely benefits or costs of projects designed to operate within them. Thus, cost-benefit analysis functions as a tool to assist management in its attempt to optimize the use of available funds.

The cost-benefit methodology developed in this paper is intended for applied research, which normally has a specific goal such as the more efficient utilization of a scarce resource, increased utilization of an abundant resource, or reductions in environmental pollution. The potential benefits of an applied research project can be predicted and evaluated, both because of a reasonable degree of certainty as to its extent and area of impact, and because of the relatively short time span between performance of the research and implementation of its results.

For a more detailed treatment in this area see Vogely (19, pp. 28-38). (Underlined numbers in parentheses refer to items in the Bibliography preceding the appendixes.)

Analysis of pure research, on the other hand, usually involves the consideration of a much longer time span with far less certainty as to the results' area and degree of impact. Theoretically, the techniques of costbenefit measurement are the same for all research, but discussion will be confined to applied research projects owing to the greater degree of uncertainty involved in the analysis of pure research.

Appendixes A and B are included to provide guidelines and examples for measuring a project's costs and benefits.

Appendix A deals with pollution costs and benefits; it provides a methodology of measurement and indicates necessary data inputs. Because of the flexible nature of this type of analysis, the guidelines provided are of a very general nature and may be varied as the specifics of each project analysis require.

Appendix B is an actual case study performed by the Bureau of Mines in 1967 and shows the methodology and data inputs utilized in estimating a project's direct benefits. No attempt was made to quantify external costs in this appendix.

Therefore, appendixes A and B should be viewed as companion documents providing guidelines on overall cost and benefit quantification, appendix A on a project's external effects and appendix B on a project's direct effects.

## Types of Project Costs and Benefits

At least in principle, cost-benefit analysis can take into account all of the costs entailed and all of the benefits created by each alternative. Applied research projects of the type undertaken by the Bureau of Mines entail the following classes of costs and benefits:

- 1. Direct--increases in the production of goods and services. Measured in dollar terms.
  - 2. External (Spillover) --
    - A. Pecuniary -- offsetting effects. Not included in calculations.
    - B. Technological --
      - (1) The adaptation of research results by industries other than the one to which project research is primarily oriented. Represents increases in the production of goods and services by these industries. Measured in dollar terms.
      - (2) Changes in existing levels of air, water, and land pollution. Measured by potential effects in order of magnitude terms, and by dollar and intangible terms where applicable.

- (3) Changes in existing health and safety conditions. Measured by a combination of dollar and intangible terms.
- 3. Secondary --
  - A. National -- offsetting effects. Not included in calculations.
  - B. Regional -- measured in dollar terms to the degree practicable.
- 4. Intangible -- described in qualitative terms, or in "at-least" values.
- 5. Prescribed goals--defined by policymaker; such considerations as balance-of-payments.

More detailed treatment of each of these categories is presented in later sections.

In determining project benefits, the following data are computed:

- 1. Direct net benefits or costs.
- 2. Net benefits or costs from technological spillovers under above category B-1.
- 3. The measurable portion of costs and benefits under above categories B--2 and B--3.
- 4. Any prescribed benefits or costs which are quantifiable. Other project aspects should be subjected to a separate analysis in whatever units of measurement they may be quantifiable, or if quantification is inappropriate, described in qualitative terms. The most important of these aspects include the following:
  - 1. Pollution data relating to pertinent variables and levels of emission.
  - 2. "At-least" values of intangible effects.
- 3. Regional benefits or costs (unless prescribed as a direct project benefit).
  - 4. All other project effects not measurable in any quantitative terms.

# Basic Assumptions and Concepts of Cost-Benefit Analysis

The concept of cost used in this paper is that of "opportunity cost." An opportunity cost is the cost of not using a good or service in its next best use, and may be monetary or otherwise. For example, the "opportunity cost" of a factor of production is monetary, but that of a scenic natural area may be intangible.

A benefit is represented by a direct economic gain, the elimination of a cost, or a prescribed benefit such as a balance-of-payments improvement.

Benefits and costs are measured on an incremental (marginal) basis--the increment is the value of an increase or decrease in the output level of the unit under measurement. For example, benefits result from an increase in the output of a good or service, as well as from a decrease in the level of environmental pollution.<sup>3</sup>

In compiling project costs and benefits, all effects on society as a whole must be considered. Total project benefits and costs represent the sum of costs and benefits to all individuals, or groups of individuals, affected either directly or indirectly by project implementation.

In a full-employment economy, all shifts in the utilization of factors of production that do not contribute to the incremental change, but that occur as a result of this change, are considered offsetting. Such shifts are assumed necessary for the economy to achieve the new point of equilibrium. Nonincremental factor shifts are therefore ignored, since their net impact in terms of overall economic efficiency is zero.

All goods and services produced as a result of any research project and all factors of production have a value only to the extent that there is a need and demand for them. The market price reflects this need and demand most accurately and should be accepted as the value to the degree practicable. Eckstein  $(\underline{8}, \, \text{pp.} \, 24\text{-}25)$  describes this valuation operation as follows:

Costs are determined by factor prices and by the technical conditions of production, where factor prices reflect consumer's willingness to supply the factors as well as the value of the factors in the production of other commodities.... The benefit of a commodity is simply its value to the consumer. But in equilibrium the consumer will spend his income in such a way that the marginal rates of substitution are equal to relative prices, that is, the relative values of commodities at the margin are equal to the relative prices, and if we pick one commodity as a common denominator for the relative prices and benefits, we can say that the resultant absolute benefit of a commodity is equal to the price which the consumer pays. Thus benefit is a measure of value and reflects consumers' willingness to allocate income to the purchase of the commodity. . . .

All specific goods and services should be valued on the basis of market prices expected to prevail at the time costs are incurred and benefits realized. However, a constant average price level should be assumed for each project time horizon. Such an assumption neutralizes the impact of any general inflationary or deflationary trends, trends which increase or decrease

<sup>&</sup>lt;sup>3</sup>For a discussion of increments to the national dividend in terms of marginal social net product and marginal private net product, see Pigou (16), especially pages 131-135.

the monetary value of projects' costs and benefits without affecting their value in relation to other products.

Applied research costs should be determined by the most accurate means available, such as project appropriations, or, when different from appropriated funds, actual disbursements.

Internal rate of return is the objective function to be maximized, and the measure by which projects are to be ranked. These rates are to be calculated for all costs and benefits measurable in dollar terms by reducing the value of future net benefits to a present worth of zero. This is explained in detail in the following section.

#### THE MEASUREMENT OF COSTS AND BENEFITS

#### Direct Benefits and Costs

Bureau of Mines applied research projects are undertaken in response to anticipated needs in mineral supply and demand and are designed to result in a technology which will permit (1) a cost reduction in producing an existing product and/or (2) the development of a new product, a better product, or a new use for an existing product. In such cases, the direct benefits are measured by the estimated incremental output of the associated good or service, less associated costs.

Eckstein describes the calculation of benefits (in a full-employment economy) as follows (8, pp. 24-25):

The term "benefit" has been applied on a per unit basis, corresponding to price. More commonly, it is used for a specific quantity of a commodity, analagous to the concept of total revenue. Thus we speak of the benefit of, say, 10 units of X; if the price of X is \$3, the benefit of the 10 units is \$30. . . . Thus a certain change in design of a dam may add 10,000 units of output which may be worth \$3 each. The benefit of the change will be \$30,000. According to the fundamental rule of profit and welfare maximization, the change should be undertaken if its costs is less than or equal to \$30,000. . . . We can then . . . . say that marginal benefits must equal or exceed marginal costs, and apply it to whatever may be the smallest possible quanta of decision making.

This rule must be applied to all marginal production decisions in the economy, whether they are made by private or by public enterprises. In the former case, profit maximization will drive firms to abide by the rule; for public undertakings, attainment of an efficient allocation of resources requires that the Government agencies devise their project plans and make their project choices on the basis of criteria which produce the same result. (emphasis added)

Under full employment and free market conditions, an increase in national efficiency occurs only with an increase in the output of some good or service; the benefit of the increased output is its value in the marketplace.

An increase in production represents the shift of economic resources to a more efficient use, benefiting both consumers of the output and the factors of production that represent the inputs necessary to obtain the increase in production.

To attract consumers, economic inputs utilized in producing the incremental output must be more efficient in satisfying the consumers' wants and needs than economic inputs employed in the production of present alternative outputs. When this greater efficiency occurs, consumers benefit to the extent that they shift to the new production. The value of this benefit is measured by what consumers are willing to pay--the worth of the incremental output in the marketplace.

Factor income increases to the extent that factor value increases. Producers bid for needed factors of production to attract them from alternative uses by offering a price in excess of what these factors previously obtained in their next best alternative employment; this excess price is the factors' opportunity cost. Producers are able to pay a higher price because increased factor efficiency in the new use (as opposed to the next best alternative use) justifies the increase.

The gross benefit of an increase in production is the sum of the benefit to the consumer plus the benefit to the factors of production. Associated costs (producers' payments to necessary factors of production) must be deducted from the gross benefit to obtain net benefit, the benefit to the consumer of the new output.

If the incremental production is an inefficient alternative, consumers will not purchase the output, and producers, in turn, will not receive an adequate rate of return on their investment. In this case, producers will return to previous levels of production, and factors engaged in producing the inefficient incremental output will return to alternative endeavors.

A recently completed study Department of the Interior  $(\underline{4})$  illustrates the measurement of expected direct benefits. The objective of the study was to evaluate two alternatives (shale oil and crude oil) for meeting the Nation's future oil needs in terms of present value. $^4$  Basically, estimates were made of net benefits added to the economy by each alternative.

<sup>&</sup>lt;sup>4</sup>The concept used in this evaluation is the "with and without" principle--the identification of costs and benefits which result from a change in the path of the economy occasioned by a particular project. Application of this principle forecloses a fallacious use of the "before and after" comparison, a comparison which may credit a project with effects which occur only because of the passage of time or for other reasons irrelevant to project evaluation.

Direct benefits stem from actual production. And since consumers have no preference between shale oil and crude oil at identical prices, shale oil will be produced only when it is as cheap or cheaper than crude oil. Therefore, the direct benefit of shale oil research designed to provide the basis for economic production is the present value of the net returns created by estimated shale oil production. (In no case is the cost difference between alternatives the measure of project benefits.)

An analogy to a problem in dam construction is useful for illustrating the correct procedure for measuring direct benefits. Given that a dam is needed in a specific site (given that more oil should be produced), which is the more efficient alternative, dam A or dam B (crude oil or shale oil)? After determining the costs and benefits of constructing dam A (producing crude oil) and the costs and benefits of constructing dam B (producing shale oil), the two alternatives can be compared in terms of their respective benefits and costs.

Unlike the dam example, however, the oil shale analysis is not a matter of comparing proposed alternatives; rather, a proposed alternative is compared with an existing alternative or alternatives.

Therefore estimating benefits for oil shale requires a judgment of the marketability of products derived from shale oil. It is not necessary, however, to determine production costs of all possible competing goods. All that is required is to determine when technology would permit shale oil to sell at a competitive price--a price which permits market penetration and also provides a competitive rate of return to prospective investors.

In the study described, all costs and benefits were evaluated in terms of the common denominator of dollars. The dollar measure is most convenient, but in some cases direct benefits and costs<sup>5</sup> are only quantifiable in terms other than dollars. For example, measurements of water flow or user-days are available, but the monetary value of such terms is unknown; these terms are called incommensurables. While they are beyond the scope of this paper, methods are available to utilize physical data in cost-benefit analysis.<sup>6</sup> Unless there is no other alternative, incommensurables should not be relegated to the category of "intangible benefits and costs" (which are discussed in a later section).

It is emphasized that direct benefits are the net benefits of the incremental output associated with a specific alternative, not the  $\underline{\text{net}}$  difference in benefits between the superior and the next best alternative.

<sup>&</sup>lt;sup>5</sup>Or spillover effects. See the following section.
<sup>6</sup>Hitch and McKean, (11, p. 182), describe effects not measurable in dollar terms as "incommensurables." and those not measurable in any appropriate

terms as "incommensurables," and those not measurable in <u>any</u> appropriate quantitative terms as both "incommensurable" and "intangible." For another discussion of incommensurables see Devine (23). Alternatively, the "at least" method described in this paper can be utilized.

#### External or "Spillover" Effects

McKean, in his book on benefits and costs ( $\underline{14}$ , pp. 134-135), describes spillover effects as follows:

Spillover effects . . . are impacts of actions by some decision-making units on the activities of others, impacts that are not directly felt by the first group. In economics, such spillovers are often labeled "external economies" and "external diseconomies." These terms sometimes refer to changes in the costs of a firm resulting from an expansion to the rest of that industry. In a more general sense, they refer to uncompensated effects on the costs or receipts of one group of firms caused by the actions of any other set of firms. As explained before, the term "spillover" is used here to embrace all of these types of external effects, whether they are economies or diseconomies, whether the cause is an industry's action or a Government investment, whether the effect is on a branch of the Government or an individual.

McKean distinguishes two types of spillovers, pecuniary and technological.

#### Pecuniary Spillovers

Pecuniary spillovers, the impact of actions by one group on the activities of other groups, are consequences that do not affect the units of output that can be obtained from a firm's physical inputs. McKean classifies pecuniary spillover into four groups (14, pp. 137-141): (1) Bidding up factor rates of hire; (2) cutting down prices of substitute products; (3) raising prices of complementary products; and (4) lowering the price of the output.

Assume that, as industry X implements the results of an applied research project, industry Y (producers of a competitive good) drops the price on its output in an effort to minimize or prevent the loss of markets to industry X. The annual production figures of industry Y, without and with a price decrease of \$0.50 per unit (all figures assumed), are as follows:

|         | Price  | Production,<br>units | Capital costs | Operating costs | Total<br>costs | Revenue | Profit  |
|---------|--------|----------------------|---------------|-----------------|----------------|---------|---------|
| Without | \$3.00 | \$10.00              | \$10.00       | \$10.00         | \$20.00        | \$30.00 | \$10.00 |
| With    | 2.50   | 10.00                | 10.00         | 10.00           | 20.00          | 25.00   | 5.00    |

As shown in these new figures, producers have reduced their profits by \$5 in order to absorb the decline in revenue; the industry cash flow has been

reduced \$5, and in theory the industry now has \$5 less to reinvest in new facilities.

Consumers of product Y may now purchase the output at a lower per-unit cost. The price reduction, therefore, benefits consumers of product Y by 55.

The above situation shows a transfer of income, which favors current consumers at the expense of future investment in industry Y. No increase in economic efficiency has occurred. Through the workings of the marketplace, the lowered rate of return discourages additional investment in product Y because of the new competition from product X. An income transfer of this type is  $\underline{\text{not}}$  a project benefit. To be regarded as a benefit, the explicit assumption must be made that society values a given sum of money in the hands of consumers more highly than in the hands of investors. This in general cannot be assumed, and the transfer must be treated as an offsetting shift in economic resources engendered by the decrease in the price of product X .

The question might be asked, What if the reduction in the price of product Y also leads to an increase in its output; is this not a benefit? The answer is no, for no increase can occur if all firms in the economy are in a least-cost position, which is the position any rational firm would strive to achieve. Therefore, in the absence of a real cost reduction (the case in pecuniary spillovers), any price cut by industry Y reduces cash flow, and hence the rate of return. This, in turn, reduces industry ability to attract new investment funds with which to expand (investment funds would flow to industry X and other industries offering more attractive rates of return). Over the long run, in absence of an offsetting technological advance, industry Y has no choice but to seek a new equilibrium at a point where production levels just reflect the increased competitiveness of product X.

This is classified under McKean's second category--cutting down prices of substitute products (from industry X's point of view). No examples of the other categories are presented, because it is felt the example given adequately illustrates the concept of pecuniary spillovers. It is important to remember that pecuniary spillovers are not included in project cost-benefit calculations.

#### Technological Spillovers

Unlike pecuniary spillovers, there is little doubt that technological spillovers--those which affect the physical outputs that other producers can get from their physical inputs--should be included in all cost-benefit calculations. Several different types of technological spillovers are described in the following sections.<sup>8</sup>

<sup>&</sup>lt;sup>7</sup>In any accounting year, depreciation and profits, when added together, equal cash flow.

<sup>&</sup>lt;sup>8</sup>Only the major technological spillovers are considered. In practice, many technological spillovers are too trivial or nebulous to warrant attention.

#### On Other Industries

The adaptation of research results by industries other than the one to which the research project is primarily oriented is of course, the most obvious technological spillover. Technological spillovers may affect the production possibilities of a variety of industries, both competitive and noncompetitive. The only test is that the resulting costs or benefits be specifically attributable to the project.

Using an industry X-industry Y example, let it be assumed that, as in pecuniary spillovers, the price of product X drops \$0.50 per unit because of research on product X. This time, however, price drops because a technological advance occasioned by industry X research is also adopted by industry Y. The resulting increase in efficiency allows industry Y to pass along a cost savings in the form of a price reduction. Also, unlike the pecuniary spillover example, the real cost reduction allows industry Y to remain competitive in capital markets, thus able to increase output in order to achieve their new least-cost position.<sup>9</sup>

In this case, "without" and "with" production figures of industry Y are as follows (it is assumed that production increases one unit after the price decrease):

|         | Price  | Production,<br>units | Capital<br>costs | Operating costs | Total<br>costs | Revenue | Profit |
|---------|--------|----------------------|------------------|-----------------|----------------|---------|--------|
| Without | \$3.00 | 10                   | \$15.00          | \$10.00         | \$25.00        | \$30.00 | \$5.00 |
| With    | 2.50   | 11                   | 15.00            | 5.50            | 20.50          | 27.50   | 7.00   |

Here, the increased output of industry Y represents a spillover benefit of the industry X research project. The benefit is the value of the incremental output (1 unit) less associated costs. In this case, one unit is worth \$2.50; associated costs are \$0.50 per unit; and the net benefit is \$2.

The \$0.50 increase in operating costs represents the opportunity cost necessary to obtain new goods worth \$2.50. Capital costs are not included in incremental costs, because industry Y production is assumed to be below capacity. In such a case, capital costs represent sunk costs, 10 existing whether or not the extra unit is produced. This example of a firm operating below capacity is not meant to be taken as a typical case, and is used for purposes of simplification only. When additional capital costs are involved (a firm

\*\*PNote the supplementary role that possible technological and pecuniary spillovers play in determining the ability of product X to increase output.
Pecuniary spillovers tend to decrease the reaction ability of industry Y,
and serve to increase the direct benefits flowing from industry X. Technological spillovers, on the other hand, tend to increase the competitive
position of industry Y, decreasing the direct benefits from industry X,
but increasing project spillover benefits as industry Y also expands
production.

10 See Hitch and McKean (11, pp. 172-173) for a brief but penetrating discussion of the treatment of sunk costs in cost-benefit analysis.

operating at capacity), they are, in effect, spread over the total volume of additional production and are reflected in the internal rate of return.

The major distinction between this example and the previous pecuniary spillover example is that real costs of product Y have decreased, and therefore producers of both product X and product Y have gained. The tabulation's total costs column reflects this real gain. In the pecuniary example, the total costs of industry Y are \$20 in both the with and without examples; in the technological example, the total costs of industry Y decline from \$25 to \$20.50.

Without the additional unit of goods, no national benefit would result, only a transfer of income. The factors of production decline in value by \$5, and consumers of product Y benefit by \$5. As in direct benefits, output must increase, and the resulting benefit is the value of this output in the marketplace. less associated costs.

#### Other Technological Spillovers

Production activities not directly related to the output of goods and services, but which affect other economic units or society as a whole must be considered. Although these external effects can be either costs or benefits, they are most often costs. Such external costs are borne by society whenever some private firm (or public agency) is able to avoid paying directly for costs and passes them on to other economic units--either consumers or other private firms.

The objective of cost-benefit analysis in this area is to determine the external impact of applied research projects, and to treat such impacts as project costs or benefits.

From the types of projects undertaken by the Bureau of Mines, such external technological spillovers commonly involve (1) changes in the existing levels of air, water, and land pollution, and (2) changes in existing health and safety conditions.<sup>11</sup>

Changes in Pollution Levels.--If factory X, located on a river, emits industrial waste into this river, the economic inputs of firms and consumers located downstream increase in cost. Other water consumers (such as municipalities, plants, farmers) must now pay more for inputs to clean up their outputs (drinking water, agricultural and manufactured goods), resulting in increased output cost. In this case, then, factory X has inflicted external costs on downstream users.

<sup>11</sup> Project orientation is the prime consideration. When project objectives are oriented towards increases in the production of goods and services, ensuing changes in health and safety conditions represent technological spillovers. When projects are primarily oriented towards improving health and safety conditions, such improvements represent direct benefits. This is mainly a classification problem, however, as the benefits or costs are measured similarly in either case.

Neglect of external costs will cause resource misallocation, a barrier to economic efficiency. For example, if firm X neglects the external costs associated with waste emittants, its decision as to how much to produce and what technology to use is correspondingly affected.

If a firm neglects external costs, it may produce too much or employ a technology that is excessively wasteful. The incremental cost of producing another unit of goods may be greater than the market price of that good. In this case, when all costs of production are considered, society is giving up other products, that could have been produced in return for a unit of goods which is less valuable. The result is resource misallocation.

The use of water, land, and air as natural resources assumes two value dimensions: environmental support and waste disposal, both necessary and useful functions. However, owing to the limited nature of these resources, the increased use of one function can often occur only at the expense of the other. At some point, the benefits to be obtained from the increased use of one function will be exceeded by the costs incurred from the decreased use of the other; from a strictly economic point of view, it is at present difficult to say precisely when this point is reached.

However, recent actions and statements of the Legislative and Executive Branches of the Federal Government, as well as of other public bodies, indicate that the public in this country is opting for more stringent pollution control. Therefore, it is assumed that any action which decreases the need to employ our water, air, and land resources in their waste disposal function can be treated as a benefit, and any action which increases the use of the waste disposal function as a cost, unless specific economic analysis shows otherwise.

The necessity for relying on the political process as a proxy for empirical analysis of pollution's cost-benefit effects is highlighted in a recent study by Ridker on air pollution (17, p. 159):

Admittedly, without an estimate of the pollution costs, the policy-maker must base his decision solely on his assessment of the financial burden the electorate will bear. . . . As an interim solution, reliance on the legislator may not be at all undesirable. Since elected representatives, more than any other segment of our society, are attuned to the attitudes that form psychic costs, and since psychic costs are likely to be a large portion of total costs, their assessment may not be too far from the mark. In any event, given the experience of this study, there may be no other solution available for some time to come.

Not only the field of pollution, but indeed the entire spectrum of technological externalities, is fraught with barriers to meaningful quantification. Brooks comments (21):

We are unfortunately a long way from being able to measure all external costs. Even the effects on other industries, which are relatively easy to get at, have seldom been evaluated. . . We certainly have little idea what most people would be willing to pay to avoid damages to natural terrain, and we are just beginning to get some ideas on how they value recreation resources.

Despite these difficulties, a system of measurement can be devised to provide, at least, an order of magnitude indication for potential benefits and costs and a base of empirical data which may, at a later date, be blended into a more meaningful measurement system. 12 One phase of this measurement system is to establish geographic boundaries within which the pollution sources under analysis are expected to have their major impact. Once the pollution impact boundaries are established, the size and value of certain variables can be determined -- variables such as population, crops, and livestock -- which are believed to be affected by changes in pollution level. Quantification of the variables can then be used to provide some order of magnitude indication for resulting benefits or costs. For example, given that a certain type of air pollutant inflicts damage on cattle, an X amount of increase in this pollutant will result in greater external costs in an area in which 1,000 cattle are located than in an area in which only 500 are located. A detailed discussion of developing the necessary methodology and data for implementing this system is given in appendix A.

<u>Pollution Standards.--Pollution</u> standards establish certain levels of pollution emission in a given area. Economic units located in the affected areas must confine their emission rate to a level specified in the standard.

A variety of public bodies are, or will be, involved in establishing and enforcing standards. For water, each of the 50 States is currently developing standards with the assistance of the Federal Government. For air, many States and lesser jurisdictions are considering, or implementing, a variety of standards. The Federal Government may eventually establish national standards for certain types of air pollutants, and indeed, has already done so in the case of automobile emissions. Efforts to control land pollution (for example, solid waste and strip mining activity) are contemplated or in existence in different areas.

Standards serve to internalize previously external costs, and such costs are quantified and become subject to a firm's profit and loss calculations. Therefore, when standards exist, the entailed costs necessary for compliance are available, and may be included in project operating and capital figures under direct costs. Any proposed projects which contemplate the creation of an emission level of such magnitude as to render either present or future compliance economically or technologically infeasible will, of course, not be acceptable for funding.

The concept of "collective goods" is a major justification for Government actions in our economy. Since the subjects discussed in this report under "Other Technological Spillovers" are "collective goods," it becomes especially important for the Bureau to achieve some degree of quantification in this area. For a brief discussion of "collective goods" and the accom-

panying need for Government initiative, see Dorfman (7, pp. 4-5).

Any given standard should not be treated as a permanent feature. It is expected that pollution standards will be revised from time-to-time as enforcing bodies gain additional knowledge, as pollution abatement technology improves, and as public attitudes towards environmental quality fluctuate.

It is necessary to remain cognizant of these likely changes. As standards are revised they may change previously computed project benefits and costs or involve a time period of some length for emitters to achieve compliance. Care must be taken to allow for any resulting external costs during the period before compliance.

Changes in Existing Health and Safety Conditions.--Improvements in working conditions create benefits by increasing the quality of the working environment.

A primary objective of health and safety research is to reduce the incidence of on-the-job accidents. These accidents create costs in the form of (1) hours lost from work, (2) disability of a severity sufficient to prevent resumption of the same job, and (3) death.

Although a reduction in accident rates creates benefits not fully measurable in monetary terms, a portion of these benefits is measurable--the value of reductions in sick pay, disability pensions, death benefits, widow pensions, and any other payments made as a result of temporary incapacitation, permanent disability, or death.

A system of measurement can be illustrated for benefits from accident reduction. Industry X implements research results. The preproject accident rate caused an average of 100 hours lost from work per year, at an average hourly rate of \$2; postproject rates are expected to average 90 hours per year, at a rate of \$2 per hour. The benefit derived from accident reduction is 10 hours per year at \$2 per hour, or \$20 per year. This annual benefit is to be applied to each year of the project time span, less associated costs—the costs of implementation.

Any intangible (nonquantifiable) benefits of the change, such as avoidance of death and improved worker morale, should be described in qualitative terms under the section on intangible benefits.

# Secondary Benefits and Costs

Secondary benefits and costs are the expansionary effects of project direct benefits. They differ from external costs and benefits in that they are compensated shifts in economic resources; that is, they would occur in any event, regardless of project implementation, though not necessarily in the same locale.

Secondary benefits are the benefits of increased employment, income, and investment, and they occur because of the multiplier effects of money flows. The multiplier effect is the ratio between an increase or decrease in income, and an increase or decrease in new capital formation.

Secondary national benefits are not usually included in applied research cost-benefit calculations. Secondary regional benefits are normally calculated and submitted as supplementary material, and, as such, are not included in project cash flows or final calculations unless specifically identified as a prescribed benefit.

#### Secondary National Benefits

Cost-benefit analysis assumes "full-employment" conditions for the economy. Such an assumption is consistent with the near "full-employment" conditions of much of the postwar period. Under such conditions, secondary projectifects represent only the shift of resources to alternative activities or locations with no corresponding increase in efficiency.

Under conditions of near "full employment," the calculation of secondary benefits is not undertaken for the following reasons:

- 1. As only a few resources will be unemployed or underemployed—and perhaps for only a portion of the project's time span—any resulting benefits will be quite small in relation to total project benefits. Secondary national benefits assume an important role only when a significant portion of all natural resources are projected to be idle over most, or all, of the project's time span, and when the project will employ previously unemployed resources. 14
- 2. Uncertainty creates difficulty in projecting the rates of change in resource utilization attributable solely to the research project. For example, it cannot be a priori assumed that presently unemployed resources will remain so in the absence of a particular research project. Such assumptions require considerable knowledge of other pertinent variables including Federal fiscal policy and other proposed or planned public and private expenditures. This requires analysis of detail on such scale as to render the results not worth the effort in "good times." In addition, the unavoidable uncertainties can raise questions about the accuracy and meaningfulness of any resulting calculations.

Therefore, cost-benefit analysis assumes "full employment." Such an assumption classifies secondary national benefits as offsetting interregional transfers.

14In economic terms, employment of previously unemployed factors of production involves no social cost. Methods have been devised to evaluate projects undertaken in less than full employment conditions, but they are beyond the scope of this paper. For a discussion of these methods see Haveman and Krutilla (24).

<sup>13</sup>Full employment is the condition that exists when all who are able and willing to work can find renumerative employment. Persons laid off or changing jobs cause a certain amount of frictional unemployment at all times. As long as those in this status do not exceed 3 to 4 percent of the labor force, full employment is generally agreed to exist.

#### Secondary Regional Benefits

Regional benefits are not normally included in the summation of a project's benefits unless the regional benefits become prescribed benefits.

Regional benefits, however, represent real gains to the areas involved. To allow for appropriate consideration of these gains in the evaluation of applied research projects, potential regional benefits can be measured as a supplement to a cost-benefit study. Any expansion in local employment and income, as well as any additional local investment, occurring as a result of the project are to be counted. To do this, two types of effects must be distinguished--one-time and continuing. One-time effects consist of increases in employment and wages in the local area due directly to the project (normally the construction period). Continuing effects are the indirect results of the project, and consist of supplementary economic expansion brought on by the existence of the project, including the following items:

- 1. Increases in jobs and payrolls (other than those occurring as a direct result of the project).
  - 2. Present per-capita income.
  - 3. Present unemployment rate.
- 4. Expansions in local business establishments and the creation of new establishments.
- 5. Improvements in, or expansion of, local infrastructure, including highways, railroads, docks, and piers, and also airports.

## Intangible Benefits and Costs

Intangible benefits and costs are those project effects which are unmeasurable in any objective and generally accepted terms.15

Care should be taken in classifying project effects as intangibles. The tendency to overload this category at the expense of measurable-item categories is a common one. In actuality, the number of completely intangible effects may be very limited.

There are many project effects whose absolute values may be in principle unmeasurable. However, in a relatively limited context these effects can be included in tangible benefit categories by treating them as explicit project requirements. Kneese  $(\underline{13})$ , referring to water pollution control programs, states:

This can be done by initially treating . . . goals, expressed in physical terms, as limits or constraints upon the cost minimization objective. . . . Conceivably this would require a very different combination of units with different operating procedures than a

system designed without constraints. Presuming the constrains are effective, i.e., - not automatically met if costs are minimized, they would result in a higher cost system than could otherwise have been achieved. The extra cost represents the limitation which the constraint places upon the objective.

By making intangibles, such as social goals, explicit in this manner, we may calculate their minimum, or "at-least," value. Kneese  $(\underline{13}, pp. 34-35)$  explains "at-least" value by the following:

One useful way of stating the results of variation of constraints which represent goals . . . not valued directly by, or imputable from, the market . . . is in terms of what they must "at least be worth". . . . [By] comparing the optimum system with and without the constraint, it is possible to indicate what the LEAST value is that must be attached to the increment of pleasure in order to make that level of control procedures worthwhile.

In mining, for example, esthetic considerations may require an underground, rather than an open-pit system, the least (private) cost system, for a given operation. The esthetic values so preserved must be worth, in dollar terms, at least the equivalent of the increased mining costs incurred.

The "at-least" system of evaluation, according to Brooks  $(\underline{20}, p. 37)$ , means that,

We are in fact putting a monetary valuation on aesthetic or social goals whether or not we like to think of it that way . . . Any restriction or regulation that is placed on . . . mining . . . implies an evaluation. Each has an economic cost that can be made explicit, and . . . the social benefits to be gained by imposition of the requirements . . [should be] worth AT LEAST this much.

Intangible benefits under improved health and safety conditions might include a decrease in lives lost, the avoidance of discomfort and pain, improved peace of mind on the part of worker families, improved worker morale, increased ability on the part of industry to recruit new workers, improved labor relations, and the accrual of general "good will" to the industry.

All possible incommensurable and intangible effects cannot be neatly categorized. Their scope and impact will vary with the particular project. These effects should be described as fully as possible to allow for their subjective incorporation into the final decision-making process. Incommensurable effects should be quantified by the "at-least" method and submitted in a section along with other qualitative aspects.

#### Prescribed Benefits and Costs

Certain project effects will create costs and benefits only when the effects are explicitly stated as objectives by the appropriate decision makers.

In this category are events which are not normally considered by costbenefit analysis, or in lieu of specific assumptions, not deemed national in scope and are automatically excluded from project calculations. Some of the more common of these prescribed effects are balance-of-payments and national security effects. When these effects are made explicit project goals they must be quantified to the degree practicable.

Another example of a prescribed effect is regional economic improvement. While these effects are normally quantified, they are not reflected in project internal rates of return. Therefore, when such effects become a prescribed goal, the only additional step required is to incorporate regional benefits and costs into the final project calculations.

In some cases, the benefits such as national security may not be measurable, or commonly they will be quantifiable but not commensurable with other project benefits and costs. However, the cost side is normally quantifiable in monetary terms and therefore subject to cost-minimization.

#### COST-BENEFIT CALCULATIONS

Once all benefits and costs are calculated, three additional steps are necessary to obtain final project figures.

The first step is to determine the acceptance of project results by private investors. For this step, the project is assumed to be successful. Seccond, the probability of success allowance is determined. And, finally, the internal rate of return must be calculated. It is assumed in the following discussion that direct benefits will be obtained only through industrial production following Government research; in some cases, benefits may rather require action by another public agency, but this does not alter the principles involved.

The following tabulation will be used throughout for illustrating the necessary calculations:

| Year | Private costs | Project costs | Benefits  |
|------|---------------|---------------|-----------|
| 1    | -             | \$25,000      | _         |
| 2    | \$100,000     | 20,000        | -         |
| 3    | 125,000       | 10,000        | \$100,000 |

100,000

80,000 40,000

445,000

5................

Project X, Implemented by Industry Y1

150,000 200,000

200,000

650,000

5,000

60,000

Tota1..... These figures do not include social costs and benefits. Such figures will be introduced at the appropriate time.

#### Industry Acceptance

Normally, an industry will implement, or accept, the results of an applied research project only when the required investment promises to yield a rate equal to, or greater than, what is considered the normal rate of return available from alternative investment opportunities.

Such factors as the market rate of interest and industry elasticity of demand, when combined with other considerations, have enabled most industries to determine their normal rate of return<sup>16</sup> Industry will avoid investments which yield a rate below this normal rate, unless nonfinancial considerations are involved, such as a new Government regulation. If, when all project benefits and costs are discounted at a rate equivalent to the industry's normal rate of return, the project has a positive present value, it will be implemented.

The industry evaluation will normally involve only private costs and benefits (not Government research costs and not external effects). Also, the evaluation will cover only the time span applicable to potential private investors. This time span will in all cases be shorter than the overall project time span, because industry will begin investing only at some point after culmination of the research effort.

Following is an example of the necessary calculations: Project X, when implemented by industry Y, is expected to create the following direct private costs and benefits over the project time horizon. The total costs of implementing the project are \$445,000 and the benefits are \$650,000. (These figures do <u>not</u> include Government research costs.)

| Private costs and benefits |           |           |  |  |  |  |  |
|----------------------------|-----------|-----------|--|--|--|--|--|
| Year                       | Costs     | Benefits  |  |  |  |  |  |
| 2                          | \$100,000 | -         |  |  |  |  |  |
| 3                          | 125,000   | \$100,000 |  |  |  |  |  |
| 4                          | 100,000   | 150,000   |  |  |  |  |  |
| 5                          | 80,000    | 200,000   |  |  |  |  |  |
| 6                          | 40,000    | 200,000   |  |  |  |  |  |
| Total                      | 445,000   | 650,000   |  |  |  |  |  |

All benefits and costs must now be discounted at industry Y's normal rate of return, assumed to be  $10\ \mathrm{percent}$ .

<sup>16</sup> For a treatment of the normal rate of return in the oil industry, see Solomon (18).

<sup>17</sup>Direct costs and benefits are used exclusively here. Project external costs or benefits do not normally enter into industry calculations. One exception is in the necessity of complying with pollution standards. Even here, however, the costs necessary to achieve compliance will be included in capital costs, and therefore reflected in direct project costs.

Present Value

(Benefits and costs discounted at 10 percent)

|       |          | <del>(</del> |              |
|-------|----------|--------------|--------------|
| Year  | Costs    | Benefits     | Net benefits |
| 2     | \$90,900 | -            | -\$90,900    |
| 3     | 103,250  | \$82,600     | -20,650      |
| 4     | 75,100   | 112,650      | +37,550      |
| 5     | 54,640   | 136,600      | +81,960      |
| 6     | 24,840   | 124,200      | +99,360      |
| Tota1 | 348,730  | 456,050      | +107,320     |

The discounted figures indicate a positive present worth of \$107,320. Therefore, the project offers a rate of return greater than 10 percent and will likely be implemented by industry.

## Probability of Success Allowance

The probability of the success allowance factor, used in evaluation of applied research projects, is not unlike the industry acceptance procedure just described.

At any time there exist alternative applied research opportunities, each with its own probability of achieving success as measured by net returns. It is necessary to make allowance for these varying probabilities if projects are to be evaluated on an equal footing. Therefore, estimated project benefits are reduced by an appropriate factor, in effect converting estimated benefits to mathematical expected values.

An important tool in probability calculation is the agency's target rate of return.  $^{18}$  It must be determined prior to analysis and used as a common parameter for all evaluations undertaken at one time.

To calculate the minimum probability of success figures for a project, subtract the undiscounted private costs from the undiscounted benefits to obtain net private benefits. Next, the probability of success level is determined that renders net benefits exactly equal to costs, when both are discounted at the target rate of return. The probability of success level can then be compared with an expert's judgment of the project's promise of success. If the minimum success level is higher than the expert's judgment, no further analysis of the project is needed; when the expert's judgment is higher, it is used in the subject analysis.

<sup>18</sup>In principle, the target rate of return should equal the agency's marginal internal rate of return. See Vogely (19, p. 31).

The time stream of project net private benefits is reduced by the residual of the promise of success figure--the promise of nonsucess figure. The reduced benefit figures are then used in the internal rate of return calculations.

Using the previous product X-industry Y example again to illustrate these calculations, net private benefits equal the net benefit figure obtained by subtracting undiscounted private costs from undiscounted private benefits, as follows:

| Year  | Private   | Private   | Net private |
|-------|-----------|-----------|-------------|
|       | costs     | benefits  | benefits    |
| 2     | \$100,000 | -         | -\$100,000  |
| 3     | 125,000   | \$100,000 | -25,000     |
| 4     | 100,000   | 150,000   | +50,000     |
| 5     | 80,000    | 200,000   | +120,000    |
| 6     | 40,000    | 200,000   | +160,000    |
| Total | 445,000   | 650,000   | +205,000    |

The next step is to discount the net private benefit stream at the appropriate target rate of return (assumed here at 7 percent), and compare the total to Government costs discounted at the same rate. This calculation follows:

| Year   | Net private<br>benefits | Net private benefits,<br>present value at 7<br>percent discount | Project costs | Project costs,<br>present value<br>at 7 percent |
|--------|-------------------------|-----------------------------------------------------------------|---------------|-------------------------------------------------|
|        |                         |                                                                 |               | discount                                        |
| 1      | -                       | -                                                               | \$25,000      | \$23,375                                        |
| 2      | -\$100,000              | -\$93,500                                                       | 20,000        | 17,460                                          |
| 3      | -25,000                 | -21,825                                                         | 10,000        | 8,160                                           |
| 4      | +50,000                 | +40,800                                                         | 5,000         | 3,815                                           |
| 5      | +120,000                | +91,560                                                         | -             | -                                               |
| 6      | +160,000                | +114,080                                                        |               | -                                               |
| Total. | +205,000                | +131,115                                                        | 60,000        | 52,810                                          |

Once this calculation is completed, it becomes relatively simple to determine the minimum probability of success level, which in this case is the ratio of \$52,810 (Government project costs) to \$131,115 (private benefits), or 0.403. If the expert's judgment of probability of success is higher than 0.403, the sum of the discounted net private benefit flow will be positive for the project. The assumption in this case is that the expert's judgment is 0.833. Now the time stream of undiscounted net private benefits must be reduced by the promise of nonsuccess, assumed to be 0.167.

<sup>&</sup>lt;sup>19</sup>A project's promise of success level consists of two parts, the probability of success, and the probability of nonsuccess. The two when added together must equal 1.00. Thus, a project with a probability of success of 0.667 must, by definition, have a probability of nonsuccess of 0.333.

| Year  | Undiscounted net<br>private benefits | Undiscounted net private<br>benefits after deduction<br>of probability of non-<br>success allowance |
|-------|--------------------------------------|-----------------------------------------------------------------------------------------------------|
| 2     | -\$100,000                           | -\$83,300                                                                                           |
| 3     | -25,000                              | -20,825                                                                                             |
| 4     | +50,000                              | +41,600                                                                                             |
| 5     | +120,000                             | +99,960                                                                                             |
| 6     | +160,000                             | +133,280                                                                                            |
| Total | +205,000                             | +170,765                                                                                            |

The undiscounted net private benefits of project X, after allowances for nonsuccess, are \$170,765. Net private benefits, which includes both private benefits and costs, is the time stream discounted rather than gross private benefits. With this figure, internal rate of return calculations are undertaken.

# Internal Rate of Return20

Applied research projects can be ranked by their internal rate of return. An internal rate of return is that rate of discount which makes the present value of net private benefits (after allowance for nonsuccess) equal to the present value of costs.

It is necessary to calculate three rates of return for each project: One using only direct benefits and costs; a second measuring the benefits and costs of increased output because of the adaption of research results by other industries (technological spillover); and a third, using both calculations, but also including other quantifiable technologic externalities such as land values and reductions in payments for lost work time. The first step is to deduct costs from the time stream of net direct private benefits to obtain net national benefits from the research project, as follows:

|       | (1)                  | (2)        | (3)                |
|-------|----------------------|------------|--------------------|
| Year  | Net private benefits | Government | Net national bene- |
|       | (after probability   | project    | fits from research |
|       | deduction)           | costs      | project            |
| 1     | -                    | \$25,000   | -\$25,000          |
| 2     | -\$83,300            | 20,000     | -103,300           |
| 3     | -20,825              | 10,000     | -30,825            |
| 4     | 41,650               | 5,000      | +36,650            |
| 5     | 99,960               | -          | +99,960            |
| 6     | 133,280              |            | +133,280           |
| Total | +170,765             | -60,000    | +110,765           |

There are a variety of ways for calculating project profitability. However, the internal rate of return was selected for ranking projects because it tends to approximate private market calculations more accurately than do other measurements. For a detailed discussion of time streams and criteria, including a treatment of the problem of interrelated investments and internal rates of return see McKean (14, pp. 74-93).

By subtracting column 2 from column 1 above, net national benefits from the research project are obtained. This time stream must now be reduced to zero to present value at time period 0 to obtain the internal rate of return.

By a process of trial and error, the internal rate of return is approximately 17.3 percent, as follows:

|       | Net national bene- | Discounted n    | iscounted net benefits |  |  |
|-------|--------------------|-----------------|------------------------|--|--|
| Year  | fits from research | 17 percent      | 18 percent             |  |  |
|       | project            |                 |                        |  |  |
| 1     | -\$25,000          | -\$21,375       | -\$21,175              |  |  |
| 2     | -103,300           | <b>-</b> 75,512 | <b>-</b> 74,169        |  |  |
| 3     | <b>-</b> 30,825    | -19,235         | -18,772                |  |  |
| 4     | +36,650            | 19,571          | 18,911                 |  |  |
| 5     | +99,960            | 45,582          | 43,683                 |  |  |
| 6     | +133,280           | 51,979          | 49,314                 |  |  |
| Total | +110,765           | +1,010          | -2,208                 |  |  |

A 17-percent rate of discount yields a value in excess of zero; and an 18-percent rate, a negative present value. By interpolation, the correct rate is approximately 17.3 percent.

For purposes of this example, it is assumed that project X employs a relatively unique technology, and therefore the research results are not adaptable by other industries. If they were, any ensuing benefits and costs would be added to direct benefits and costs to develop a combined internal rate of return. The next step would be to calculate the third internal rate, where quantifiable external costs and benefits are inserted into the appropriate flows.

For illustrative purposes, we assume the following: Project X involves the disposal of waste in a volume sufficient to occupy 100 acres of land per year. The next best use value of this land is \$100 per acre. Therefore, project X creates external costs at the rate of \$10,000 per year, for 5 years.

Project X also creates an external benefit in the form of health and safety improvements. Industry Y, after implementing this project, will experience a reduction of \$3,000 per year in their current death and disability payments.

To prepare external costs and benefits for the internal rate of return calculations, net them out and reduce the remainder by the project probability of nonsuccess factor (0.167). The annual net figure of -\$7,000 (\$10,000 in external costs; \$3,000 in external benefits), when adjusted for the probability of nonsuccess factor, is -\$5,831; this figure is now inserted into the cash flow as follows:

|       | Original net national  | Net external costs   | New net national bene- |
|-------|------------------------|----------------------|------------------------|
| Year  | benefits from research | (adjusted for proba- | fits from research     |
|       | project                | bility of success)1  | project                |
| 1     | -\$25,000              | -                    | -\$25,000              |
| 2     | -103,300               | -\$5,831             | -109,131               |
| 3     | -30,825                | <b>-</b> 5,831       | -36,656                |
| 4     | +36,650                | <b>-</b> 5,831       | +30,819                |
| 5     | +99,960                | <b>-</b> 5,831       | +94,129                |
| 6     | +133,280               | -5,831               | +127,449               |
| Tota1 | +110,765               | -29,155              | +81,610                |

<sup>1</sup>External costs and benefits do not begin until the second year of the project time horizon because this is the year when the project is actually implemented.

With these figures, an internal rate of return can be obtained:

|       | New net national bene- | Discounted net benefits |                 |  |
|-------|------------------------|-------------------------|-----------------|--|
| Year  | fits from research     | 12 percent              | 13 percent      |  |
|       | pro jects              |                         |                 |  |
| 1     | -\$25,000              | -22,325                 | -22,125         |  |
| 2     | -109,131               | <b>-</b> 86,977         | <b>-</b> 85,450 |  |
| 3     | <b>-</b> 36,656        | <b>-</b> 26,099         | <b>-</b> 25,403 |  |
| 4     | +30,819                | +19,601                 | +18,892         |  |
| 5     | +94,129                | 53,371                  | +51,112         |  |
| 6     | +127,449               | 64,616                  | +61,176         |  |
| Total | +81,610                | +2,187                  | -1,798          |  |

A 12-percent rate of discount yields a value at time 0 in excess of zero; a 13-percent rate, a negative present value. By interpolation the correct rate is 12.6 percent. This completes the calculation of all needed rates of returns, which is the basis for ranking alternative projects.

The methodology employed in this report for calculating the costs and benefits of applied research is only one of several alternative approaches available. It was selected because it provides a relatively straightforward means of ranking alternative research projects on the basis of returns to the investment dollar. In the future, as experience is acquired in the evaluation of applied research, it may well be replaced or modified by alternative measurement systems.

#### BIBLIOGRAPHY

### Government Publications

- Johnson, Edward E., and Harold J. Bennett. An Engineering and Economic Study of a Gold Mining Operation. BuMines Inf. Circ. 8374, 1968, 53 pp.
- Public Health Service. Air Quality Criteria for Sulfur Oxides. March 1967, 175 pp.
- U.S. Congress. The Adequacy of Technology for Pollution Abatement. Hearings Before the Subcommittee on Science, Research, and Development of the House Committee on Science and Astronautics. 89th Cong., 2d Sess., July, August, and September 1966, 2 vol., 915 pp.
- U.S. Department of the Interior. Prospects for Oil Shale Development-Colorado, Utah, and Wyoming. Washington, D.C., May 1968, 158 pp. (limited distribution).
- U.S. Federal Inter-Agency River Basin Commission, Subcommittee on Benefits and Costs. Proposed Practices for Economic Analysis of River Basin Projects. Washington, D.C., May 1950, revised 1958, 67 pp.

### Books and Pamphlets

- Brock, Samuel M., and David B. Brooks. The Myles Job Mine--A Study of Benefits and Costs of Surface Mining for Coal in Northern West Virginia. Center for Appalachian Studies, West Virginia University, 1968, 61 pp.
- Dorfman, Robert (ed.) Measuring Benefits of Government Investments, the Brookings Institution, Washington, D.C., 1965, 419 pp.
- 8. Eckstein, Otto. Water Resource Development, the Economics of Project Evaluation, Harvard University Press, Cambridge, Mass., 1965, 300 pp.
- 9. Friedman, Milton. Price Theory--A Provisional Text, Aldine Publishing Co., Chicago, Ill., 1962, 285 pp.
- 10. Herfindahl, Orris C. Three Studies in Mineral Economics, Resources for the Future, Inc., Washington, D.C., 1961, 63 pp.
- 11. Hitch, Charles J., and Roland N. McKean. The Economics of Defense in the Nuclear Age. Atheneum, New York, 1965, 422 pp. (Originally a Rand Corporation Research Study published by Harvard Univ. Press.)
- 12. Jarrett, Henry (ed.). Environmental Quality in a Growing Economy. Resources for the Future, Inc., Johns Hopkins Press, Baltimore, Md., 1966, 173 pp.

- Kneese, A. V. Water Pollution--Economic Aspects and Research Needs. Resources for the Future, Inc., Washington, D.C., 1962, pp. 32-33, 42-44.
- 14. McKean, Roland N. Efficiency in Government Through Systems Analysis.

  John Wiley & Sons, Inc., New York, 1958, 336 pp. (A Rand Corporation Research Study.)
- 15. Novick, David (ed.). Program Budgeting: Program Analysis and the Federal Budget. Harvard Univ. Press, 1965, 382 pp. (A Rand Corporation sponsored research study.)
- 16. Pigou, A. C. The Economics of Welfare. Macmillan and Co., London, 4th ed., 1948, 876 pp.
- 17. Ridker, Roland G. Economic Costs of Air Pollution, Studies in Measurement. Frederick A. Praeger, New York, 1967, 214 pp.
- 18. Solomon, Ezra. The Financial Feasibility of Capital Expenditures for Oil Shale Development 1915-1920, and 1966. A special study for the U.S. Department of the Interior (unpublished), Stanford Univ., 1967, 73 pp. Summarized in Post Hearing Brief, Colorado 359, USA vs. F. W. Winegar, and Colorado 360, USA vs. D. A. Shale, Inc., v. 4, May 20, 1968, pp. A-882-A-905.
- 19. Vogely, William A. Measuring the Benefits of Minerals Research, Proc. Council of Economics, AIME, New York, Feb. 19-23, 1967, 421 pp.

# Articles

- Brooks, David B. Strip Mine Reclamation and Economic Analysis. Nat. Res. J., v. 6, No. 1, January 1966, p. 37.
- 21. \_\_\_\_\_. Strip Mining, Reclamation, and the Public Interest. American Forests, v. 72, No. 3, March 1966, pp. 18-19, 53-57.
- 22. Crutchfield, James A., Robert W. Kates, and W. R. Derrick Sewell. Benefit-Cost Analysis and the National Oceanographic Program. Nat. Res. J., v. 7, No. 3, July 1967, pp. 361-375.
- 23. Devine, E. J. The Treatment of Incommensurables in Cost-Benefit Analysis.

  Land Economics, v. 42, No. 3, August 1966, pp. 383-387.
- 24. Haveman, Robert, and John Krutilla. Unemployment, Excess Capacity, and Benefit-Cost Investment Criteria. The Review of Economics and Statistics, v. 49, No. 3, August 1967, pp. 382-392; v. 49, No. 3, November 1967, pp. 654-655.
- Kneese, A. V. Socio-Economic Aspects of Water Quality Management, J. Water Pollution Control Federation, v. 36, No. 2, 1964, pp. 254-262.

- Krutilla, J. V. Conservation Reconsidered. The American Economic J., v. 57, No. 4, September 1967, pp. 777-786.
- 27. Verner, William J., and Robert F. Schurtz. For Mine Evaluation--A Fresh Model. Min. Eng., v. 18, No. 11, November 1966, pp. 65-71.

### APPENDIX A. -- POLLUTION COSTS AND BENEFITS METHODOLOGY AND DATA REQUIREMENTS

## Geographic Parameters and Susceptible Indigenous Variables

In order to subject pollution to cost-benefit analysis, different geographic boundaries must be established for each type of pollution, since the effects and impact areas of air, water, and land pollution vary significantly.

Air pollution tends to be a fairly localized phenomenon, confined to the airshed within which it occurs. Once an air pollutant is carried any appreciable distance from its source, sufficient dilution occurs to mitigate much of its harmfulness.

Water pollution tends to be a sequential phenomenon, with widespread effects, especially in the case of nondegradable pollutants. Streams of water are like conduits, carrying persistent types of pollution far downstream. As more pollutants are added to the water, the sequential effect takes over, and the level of pollution increases correspondingly.

Land pollution, such as solid waste from strip mining activities, geneerally affects only its immediate environs, because such types of pollution, unlike air and water, are relatively immobile.

Based on these considerations, the following geographic boundaries are suggested as appropriate for measuring potential external costs and benefits.

### Air Pollution

In many urban air pollution studies, the pertinent airshed is considered analogous to the local SMSA (Standard Metropolitan Statistical Area). Therefore, for the purposes of uniformity and statistics gathering, when the source of the air pollution is located within the boundaries of an SMSA, these boundaries shall be considered the pollutants' geographical limits.

In areas where a SMSA does not exist, the county within which the source of pollution is located shall, in most cases, be the applicable boundary of consideration. In cases where it can be shown that commonly prevailing wind patterns will tend to spread the pollutant into neighboring counties on frequent occasions, all affected counties shall be the applicable geographic limits.

#### Water Pollution

In the absence of empirical evidence regarding the normal range of these water-carried pollutant effects (as well as the absence of the convenient statistical gathering parameters which exist for air pollution), a 25-mile limit is considered the appropriate geographic range; that is, 25 miles downstream from the source under consideration. All sources that draw water from the stream within this boundary should be specified as accurately as possible, from whatever sources available. For example, the municipalities using the stream as a source of drinking water can be determined and listed, along with

their population. At the minimum, a general description of the geographic area can be given, such as classifying it as generally urban or rural, and noting the extent of irrigation, existing and potential recreation facilities. In rural areas, it is usually common information if a few manufacturing plants are located along the river; the plants can easily be specified. In addition, manufacturing and agricultural information for the counties or SMSA's that border the river within the 25-mile limit can be presented as general background information.

Beyond the 25-mile limit, the potential effects of pollutants can only be treated in a marginal sense (especially in the case of nondegradable pollutants). The analysis for nondegradable pollutants should include the downstream length of the pertinent water body beyond the cutoff point, as well as other water bodies into which it may flow (if any) and their length. In the case of degradable pollutants, the estimated additional distance the pollutant must travel to be completely degraded, and the bodies of water it will affect, should be included.

#### Land Pollution

As these effects are localized, a description of the immediate environs of the pollution location should be included. If the solid waste gives off noxious odors, or is eventually disposed of by burning, such events should be considered under air pollution. If it is eventually disposed of by dumping into a water body, such events should be considered under water pollution.

Also, unlike air and water pollution, the external costs of land pollution may be partially quantified. This is done by determining the next-best use value of the land to be utilized for waste-disposal. Such quantification requires data on indigenous land values, estimates of the total acreage to be so used, and the annual rate of use. Order of magnitude concepts must, nonetheless, be utilized in treating esthetic costs inflicted on land surrounding, but not directly used in, the waste disposal function. Order of magnitude concepts must also be utilized to deal with esthetic or serendipity values¹ contained in the waste disposal land itself, values which may not be reflected in current market prices.

Serendipity values are predicated on the existence in nature of a balanced ecosystem of which some components may not be presently known or utilized by man because of a combination of inadequate knowledge and technology. Therefore, the disturbance of any previously pristine area may inflict a serendipity cost of unknown proportions on society.

The serendipity value is clearly reflected, for example, in the recent decision of the British Government not to construct a military airbase on the Isle of Aldabra in the Indian Ocean, for fear of destroying a unique indigenous ecology.

For a more detailed treatment of the serendipity concept, see Krutilla (26), especially pages 780-781.

#### Data Needs

The following items are normal data needs for a typical geographic boundary. The data specified herein is tentative in nature, and may be subject to revision or expansion as further experience indicates.

# 1. Population

- A. Number
- B. Type
  - (1) urban--specify the number and size of significant population concentrations
  - (2) rural -- farm
  - (3) rural -- nonfarm
- C. Age composition
- D. Employment compositon (agriculture, industry, mining)
- E. Flow--numerical estimates of nonresidents who enter the geographic area on a workday or other regular basis

#### 2. Economic

- A. Agriculture
  - (1) crops -- type and value
  - (2) livestock--type and value
- B. Industry--number of plants
  - (1) by industry
  - (2) by employment size
- C. Mining--number of concerns
  - (1) by industry
  - (2) by employment size

#### 3. Miscellaneous

- A. Auto registration
- B. Recreational facilities

- (1) boating and swimming
- (2) parks -- national, State, local
- (3) other unique features--scenic and historical areas, unusual wildlife, etc.
- (4) estimated annual tourist flow

In addition, any other data deemed pertinent to the particular project should be included. $^{2}$ 

## Measuring Changes in Pollution Emission

To measure the change in existing pollution levels, the following data should be compiled for all pollutants expected to be released as a result of the project:

- 1. Total volume of emission, by type.
- 2. The time span over which each emission will occur, commonly the project time horizon (except when such effects are expected to be of significance for some longer period).
- 3. Annual rate of emission by type (in some cases, this rate may be different at different points in the project time horizon. If so, they should be noted and explained).
  - 4. The time when each type of emission will first occur.

It can be seen that in comparing alternatives to a project stipulated as the base effort, ensuing changes in pollution emission data could act as an indicator of relative pollution costs or benefits.

Potential receptors would receive benefits as items 1 and 3 decrease from the base effort, as item 2 increases, and as item 4 is moved further into the future.

Item 3 could be a key measurement. As the emission rate decreased, for example, potential pollution costs would also decrease in some amount relative to it. If a linear relation were assumed between emission rates and potential damage, then, of course, the decrease would be proportionate. While it is generally assumed that emission and damage are not linear as they move out from point zero, in the case of marginal analysis (an incremental change from any given point greater than zero), pollution-damage relationships are not presently defined with any great degree of confidence, and in some cases might well be linear.

For a detailed discussion of the development and application of data in measuring pollution costs, see Brock and Brooks (6). (Underlined numbers in parentheses refer to items in the Bibliography preceding the appendixes.)

The data above should be, in most cases, sufficient to provide an acceptable empirical base. However, to the extent that the subject geographic boundaries contain environmental features of a unique or intermittently recurring nature, the data may not be completely satisfactory. Therefore, any meteorological, hydrological, geological, or seasonal features deemed peculiar to the area should be noted and explained; for such features may exacerbate the effects of estimated project emission levels.

In addition, when feasible, the private costs of purchasing and operating equipment to reduce or eliminate anticipated emisions should be included, indicating the degree to which each type of emission might be curtailed.

351 - 435

### APPENDIX B. -- THE HEAVY METALS COST-BENEFIT ANALYSIS -- A CASE STUDY 2

The purpose of this project is to determine if an expenditure of public funds with the objective of increasing the supply of domestic gold is justifiable on economic grounds.

Towards this end, a cost-benefit analysis was undertaken for the project of (1) discovering and delineating new sources of domestic gold and (2) initiating research to improve the present state of gold mining technology.

Project background research indicated that Carlin-type and epithermal deposits were most likely to be discovered in significant quantities; that these deposits were amenable to open-pit mining; and that research oriented towards reducing costs in open-pit mining methods had a high probability of success.

Therefore, cost-benefit data were developed for four likely project outcomes based on the background research. These alternatives were both a minimum and a probable discovery rate for Carlin-type and epithermal deposits, with the amounts of contained commercial grade ore constrained by both present and more advanced technology.

## Carlin-Type and Epithermal Deposits

### Assumptions and Methodology

Throughout the study it was assumed that both epithermal and Carlin-type deposits lend themselves to open-pit mining. The optimum level of production was defined as that which provides the maximum return on investment, and, for a potential deposit of a given size, was derived from a mathematical mine development model. The coefficients of this model incorporate the various costs incurred in the operation of a 32,000-ton-per-day open pit gold mine, the original cost data for which were developed in a Bureau of Mines study by Johnson and Bennett ( $\underline{1}$ ). Variations in costs associated with changes in size and production were derived following the method described by Verner and Shurtz ( $\underline{27}$ ).

On the basis of the mathematical mine model, it is assumed that labor costs vary proportionately to the 0.4 power of capacity; costs of supplies vary directly with capacity; capital costs for the mill vary proportionately to the 0.7 power of capacity; and mine capital costs vary proportionately to the 0.8 power of capacity. The type of metal to be found along with the gold is unknown, and it was estimated that the milling equipment required to process some other metal would increase the mill capital cost by an average of

<sup>&</sup>lt;sup>1</sup>Originally prepared by Robert L. Adams and John W. Sprague, Division of Mineral Economics, Bureau of Mines, Washington, D.C., October 1967.

<sup>&</sup>lt;sup>2</sup>Appendix B was initially prepared as a separate Bureau of Mines document for presentation to the Bureau of the Budget.

<sup>&</sup>lt;sup>3</sup>Underlined numbers in parentheses refer to items in the Bibliography preceding the appendixes.

25 percent for ore with half its value in gold, and 2.5 percent for ore with 0.9 of its value in gold. It was estimated that coproduct or byproduct metals would have little or no effect on the other production costs. With these assumptions, it is possible to estimate the optimum level of production for a deposit of a given size and with a given grade of ore.

The Geological Survey (USGS) provided two sets of estimates, both minimaand probable, of how much gold and other coproduct or byproduct metals they expected could be found in epithermal and Carlin-type deposits; both estimate sets are broken down into four ore grade categories, as shown in table B-1.

While it is more realistic to assume that each target area will contain ore of varying grades, the complexities involved in determining the optimum level of production based on such an assumption suggested another approach. Instead it was assumed that only one of the four grades of ore would be found in any given target area. In this way costs per ton of ore will vary only with production levels rather than with both cost per ton and revenue per ton. With the quantity of gold for each of the four grades of ore in table B-1 considered as one target area, an assumption has been made concerning the size of the deposits which will make up each target area. Each target area will be made up of deposits of 1.4 million ounces, the approximate average deposit size found in the past.

In calculating the optimum level of production and net income for a deposit of this size, a royalty payment of 5 percent of gross value, a 52-percent corporate income tax, and a 15-percent depletion allowance were included. Finally, the assumption was made that a company will not undertake production in a target area unless it is able to earn an investment return of at least 12 percent, which is about the average for all mining. Given that part of the objective of the heavy metal program is reducing the uncertainties in gold exploration and given that there is no uncertainty in prices and markets for the output, it is a reasonable assumption that a 12-percent investment could be realized.

TABLE B-1. - Total gold reserves by grade of ore, million ounces

|                            | Epithermal deposits |                  |      | Carlin-type deposits |                  |       |       |       |
|----------------------------|---------------------|------------------|------|----------------------|------------------|-------|-------|-------|
|                            | (ratio of gold to   |                  |      | (ratio of gold to    |                  |       |       |       |
|                            | tot                 | total value 0.5) |      |                      | total value 0.9) |       |       |       |
| Ore grade category, oz/ton | 0.15                | 0.11             | 0.07 | 0.035                | 0.27             | 0.198 | 0.126 | 0.063 |
| Minimum                    | 1.5                 | 1.7              | 4.3  | 13.7                 | 2.7              | 3.1   | 7.7   | 24.7  |
| Probable                   | 7.0                 | 8.0              | 20.0 | 64.0                 | 12.6             | 14.4  | 36.0  | 115.0 |

### The Economic Analysis

Based on the preceding assumptions, analysis shows that a 1.4-million-ounce-deposit, either epithermal or Carlin-type, would only be economic with present technology if it contained the highest grade of the four grades of ore listed. Both the highest ore grade for Carlin-type and epithermal deposits (27 and 15 ounces of gold per ton, respectively) will provide a gross revenue of \$10.50 per ton of ore. (The grades of ore differ because only 0.9 of the

value of Carlin-type ore and 0.5 of the value of epithermal ore is assumed to come from gold.) The optimum level of production of a Carlin-type deposit of this grade of ore would have an annual production of 270,000 ounces for about 5 years. The optimum level of production for an epithermal deposit is 300,000 ounces per year for 4.5 years. Under the minimum USGS estimate of reserves (table B-1) there would be two Carlin-type and one epithermal deposits with present technology. Under the probable estimate of reserves, there will be nine Carlin-type and five epithermal deposits with present technology.

It is estimated that the Bureau of Mines heavy metal research program will bring about technologic improvements which will result in a 25-percent reduction in overall costs incurred in open-pit gold mining. This 25-percent cost reduction will have a twofold effect upon gold production. First, it will increase the optimum level of production for the 0.27 ore in Carlin-type deposits from 270,000 to 540,000 ounces per year, and for the 0.15 ore in epithermal deposits from 300,000 ounces to 600,000 per year. While the total gold to be mined from these two grades of ore will be the same, it will have a higher present value because it will be mined at a time closer to the present. The second effect of cost reduction is that the gold in the next lower grade of ore in both Carlin-type and epithermal deposits will provide a return in investment greater than 12 percent. The optimum level of production for a 1.4-million-ounce-deposit of 0.198 ounce per ton of Carlin-type ore will be 386,000 ounces for 3.5 years. The optimum level of production for an epithermal deposit of 0.11 ounce per ton ore is 440,000 ounces for 3.5 years. Under USGS minimum estimates of reserves there would be two such Carlin-type deposits and one epithermal deposit; under the probable estimates there would be 10 Carlin-type and six epithermal deposits. (See table B-2.) Figure B-1 shows the optimum level of production and the maximum return on investment for both Carlin-type and epithermal deposits that will come from a 1.4-millionounce deposit at each of the four ore grades. This information is shown for two cases, under present technology and after the introduction of cost reductions induced by Bureau of Mines research. It is estimated that 1976 will be the average year for the estimated deposits to begin production. Table B-3 presents the estimated total annual gold production that will come from new epithermal and Carlin-type deposits.

TABLE B-2. - Estimated annual production per 1.4-million-ounce deposit by grade of ore

|                    | Produc-                                                        | Minimum  | Number of | deposits  | Produc- | Minimum  | Number of | deposits |
|--------------------|----------------------------------------------------------------|----------|-----------|-----------|---------|----------|-----------|----------|
| Grade              | tion,                                                          | life per | Minimum   | Probable  | tion,   | life per | Minimum   | Probable |
| of ore,            | ounces                                                         | deposit, | estimate  | estimate  | ounces  | deposit, | estimate  | estimate |
| oz/ton             |                                                                | years    |           |           |         | years    |           |          |
|                    | Without Bureau of Mines Research With Bureau of Mines Research |          |           |           |         |          |           |          |
|                    |                                                                |          | CARLI     | N-TYPE DE | POSIT   |          |           |          |
| 0.27               | 270,000                                                        | 5        | 2         | 9         | 540,000 |          | 2         | 9        |
| .198               | -                                                              | -        | -         | -         | 396,000 | 3.5      | 2         | 10       |
| EPITHERMAL DEPOSIT |                                                                |          |           |           |         |          |           |          |
| 0.15               | 300,000                                                        | 4.5      | 1         | 5         | 600,000 |          | 1         | 5        |
| .11                | -                                                              |          |           | -         | 440,000 | 3.5      | 1         | 6        |



FIGURE B-1. - Estimated Annual Ore Production Before and After 25 Percent Cost Reduction for Carlin-Type and Epithermal Deposits.

TABLE B-3. - Estimated total annual production rate with 1.4 million ounces of original reserves per deposit

#### (thousand ounces)

|      | Minimum estimat | e of reserves  | Probable estimate of reserves |                |  |
|------|-----------------|----------------|-------------------------------|----------------|--|
| Year | Without         | With           | Without                       | With           |  |
|      | cost reduction  | cost reduction | cost reduction                | cost reduction |  |
| 1970 | 0               | 0              | 0                             | 0              |  |
| 1971 | 0               | 440            | 0                             | 396            |  |
| 1972 | 0               | 440            | 270                           | 1,332          |  |
| 1973 | 270             | 836            | 540                           | 2,268          |  |
| 1974 | 270             | 616            | 1,110                         | 3,776          |  |
| 1975 | 270             | 936            | 1,680                         | 4,816          |  |
| 1976 | 570             | 738            | 2,250                         | 5,556          |  |
| 1977 | 570             | 810            | 2,550                         | 5,776          |  |
| 1978 | 300             | 540            | 2,700                         | 5,776          |  |
| 1979 | 300             | 666            | 2,370                         | 5,176          |  |
| 1980 | 420             | 396            | 2,100                         | 4,136          |  |
| 1981 | 270             | 396            | 1,530                         | 2,460          |  |
| 1982 | 270             | 798            | 960                           | 1,084          |  |
| 1983 | 270             | 600            | 540                           | 198            |  |
| 1984 | 270             | 300            | 270                           | 0              |  |
| 1985 | 0               | 0              | 0                             | 0              |  |

All of the information presented thus far has been based on the assumption that the total reserves in each deposit will be 1.4 million ounces with no more discovered once production begins. (The cost-benefit analysis which follows is also based on this assumption.)

If, however, it is assumed that this is only an original estimate upon which the size of the mill is determined, and that the deposit could actually be larger, the optimum level of production per deposit will remain the same, while the life of each deposit will be extended and the returns increased. Estimates of the added production could have been calculated but, to be conservative, all benefits, costs, and the final internal rates of return assigned to Bureau research were calculated on the basis of the mine lives shown in table B-2.

### Project Cost-Benefit Analysis

# Industry Acceptance

The first step of the project cost-benefit analysis was to determine which of the grades of gold to be discovered as a result of the project would yield, when developed, a rate of return sufficient to attract private investment capital. The minimim satisfactory rate of return was assumed to be 12 percent. Productivity calculations based on the assumption of present technology, showed grades 0.15 epithermal and 0.27 Carlin-type yielding a rate of return in excess of 12 percent; based on the assumption of 25 percent cost reduction, calculations showed grades 0.11 epithermal and 0.198 Carlin-type

becoming commercial grades. The projected production from deposits of these four grades was then used as the basis for calculating private industry cost and benefits for this project. (Those grades of gold yielding less than a 12-percent rate of return were not considered further.)

## Probability of Success Allowance

A 100-percent probability of success was assumed for all aspects of the project, due to time constraints.

### Estimated Government Program Costs

The estimated costs of the Government program for Carlin-type and epithermal deposits are shown below:

| Agency          | FY 1967     | FY 1968     | FY 1969     | FY 1970     | FY 1971     |
|-----------------|-------------|-------------|-------------|-------------|-------------|
| USGS            | \$1,600,000 | \$1,975,000 | \$1,975,000 | \$1,863,000 | \$1,738,000 |
| Bureau of Mines | 1,440,000   | 2,065,000   | 2,200,000   | 6,480,000   | 6,100,000   |

#### Internal Rate of Return and Present Values

Net benefits were calculated, based on the optimum production level under each of the four different assumptions as to size of total reserves. The net benefits under each assumption were then discounted over the applicable time horizon (1966-80 with present technology; 1966-79 with a 25-percent cost reduction with future technology) in order to obtain the internal rates of return. Tables B-4 and B-5, showing the cost and benefit streams under each of the four assumptions, are presented at the end of this section.

The rate of return for each assumption is given below:

| Technology level    | Reserve-size estimate | Internal rate of return, |
|---------------------|-----------------------|--------------------------|
|                     |                       | percent                  |
| Present             | Minimum               | 11                       |
| Do                  | Probable              | 21                       |
| Future <sup>1</sup> | Minimum               | 12                       |
| Do.1                | Probable              | 21                       |

<sup>&</sup>lt;sup>1</sup>It is assumed that future technology will permit a 25-percent cost reduction.

These rates of return cannot be used as a sole criterion of project worth. As ratios they only show relative benefits, not absolute benefits. Hence, while the rates of return are similar with or without the cost reduction expected from Bureau of Mines research, the absolute levels of benefits (that is, increased gold production) are much higher with the cost reductions. These differences are indicated in the following table, which presents the present value of net project benefits with and without the cost reduction.

| Technology level | Reserve-size estimate | Net benefits, present |
|------------------|-----------------------|-----------------------|
|                  |                       | value <sup>1</sup>    |
| Present          | Minimum               | \$4,507,300           |
| Do               | Probable              | 82,604,061            |
|                  | Minimum               |                       |
| Do.s             | Probable              | 190,766,970           |

<sup>1</sup> Present value obtained as follows: (1) Industry benefits and costs discounted at 12 percent over applicable time horizon, (2) Government costs discounted at 6 percent over applicable time horizon, and (3) discounted Government costs subtracted from discounted industry net benefits to obtain present value figures.

<sup>2</sup>It is assumed that future technology will permit a 25-percent cost reduction.

As shown, the present value of project net benefits under the minimum assumption is increased approximately \$15 million with the achievement of a 25-percent cost reduction; under the probable assumption, a 25-percent cost reduction increases the present value by over \$100 million.

All rates of return and present value figures were calculated assuming a net benefit stream based on estimated reserves with a productive life as shown in table B-2. As noted, historically it has been the case that as known reserves are committed to production, additional reserves are discovered and project life extended. To the extent that this occurs, the rate of return and present value figure under all four alternatives would tend to increase, limited primarily by the time horizon and the applicable discount rate.

Another potential source of project benefits would be the increased gold production from presently inoperative mines which would be reopened because of the 25-percent cost reduction.

No sensitivity analysis was employed on the 25-percent cost reduction assumption due to time constraints. However, the rate of return on both cost reduction alternatives was 20 percent or better. Since these rates of return provide a considerable margin of safety over the 12-percent minimum rate of return, it appears that 25 percent is not the minimum cost reduction necessary to bring in additional gold production. Rather, it appears that a cost reduction of something less than 25 percent would bring in sufficient new production to maintain a favorable cost-benefit relationship for these project alternatives.

### Project Optimization

No attempt was made to optimize project expenditure levels because of time constraints. A single level of funding was assumed (and therefore only a single research alternative) for both USGS and the Bureau of Mines. As a result, this study does not represent a comprehensive cost-benefit analysis. Rather, it shows the direct benefits of various increases in the level of gold production, as developed within a framework of assumptions based on information largely provided by USGS and the Bureau of Mines Office of Minerals Research.

No attempt was made to evaluate such factors as (1) possible benefits from a reduction in industry accident rates due to a trade-off between openpit and underground mining of gold; (2) environmental implications, such as the effects of the significant amounts of solid waste expected to occur as a byproduct of the levels of production envisioned in this project; and (3) other potential social effects.

TABLE B-4. - Project costs and benefits under present technology1

|      | Minimum e    | stimate of r  | eserves    | Probable e    | stimate of re | eserves    |
|------|--------------|---------------|------------|---------------|---------------|------------|
|      |              | Capital       | Geological |               | Capital       | Geological |
| Year | Benefits     | costs         | survey     | Benefits      | costs         | survey     |
|      |              |               | costs      |               |               | costs      |
|      | Interna      | al rate of re | turn,      | Interna       | 1 rate of re  | turn,      |
|      | 10.7 percent |               |            | 2             | 21.2 percent  |            |
| 1966 | -            | -             | \$800,000  | -             | -             | \$800,000  |
| 1967 | -            | -             | 1,787,500  | -             | -             | 1,787,500  |
| 1968 | -            | -             | 1,975,000  | -             | -             | 1,975,000  |
| 1969 | -            | -             | 1,919,000  | - '           | -             | 1,919,000  |
| 1970 | -            | -             | 1,800,500  | -             | -             | 1,800,500  |
| 1971 | -            | -             | 869,000    | -             | -             | 869,000    |
| 1972 | -            | -             | -          | -             | -             | -          |
| 1973 | -            | -             | -          | -             | -             | -          |
| 1974 | -            | \$29,530,988  | -          | -             | \$120,839,851 | -          |
| 1975 | -            | 29,530,988    | -          | -             | 120,839,851   | -          |
| 1976 | \$22,473,379 | -             | -          | \$107,086,135 | -             | -          |
| 1977 | 22,473,379   | -             | -          | 107,086,135   | -             | -          |
| 1978 | 22,473,379   | -             | -          | 107,086,135   | -             | -          |
| 1979 | 22,473,379   | -             | -          | 107,086,135   | -             | -          |
| 1980 | 16,517,450   | -             | -          | 77,306,488    | -             | -          |

<sup>1</sup> Industry capital costs are assumed to start in 1974 and run for 2 years, and gold production is assumed to start in 1976. Selecting an average year for these 2 figures does not in any way affect the calculation of the internal rate of return. The benefits in each year equal net profits plus amortization.

TABLE B-5. - Project costs and benefits under future technology allowing a 25-percent cost reduction

| Benefits   Capital   Winerals   Geological   Total   Capital   Minerals   Costs   Internal rate of return, 11.8 percent   Costs   Internal rate of return, 11.8 percent   Internal rate of return, 11.8 percent   Internal rate of 1,520,000   \$4,107,500   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |              | Minin        | mum estimat | Minimum estimate of reserves | res         |               | Probable estimate of reserves | imate of r | eserves             |             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------|--------------|-------------|------------------------------|-------------|---------------|-------------------------------|------------|---------------------|-------------|
| Senefits   Costs   C                                                                                                                                                             |      |              | Capital      | Minerals    | Geological                   | Total       |               |                               | Minerals   | Geological          | Total       |
| Costs   Cost                                                                                                                                                             | Year | Benefits     | costs        | research    |                              | Government  | Benefits      | _                             | research   | survey              | Government  |
| ## Internal rate of return, 11.8 percent   1.752,500   \$800,000   \$1,520,000   \$800,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520,000   \$1,520 | _    |              |              | costs       | costs                        | costs       |               | 1                             | costs      | costs               | costs       |
| \$\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{2}\frac{\}{\                                                                                                                                                          |      | Int          | ternal rate  | of return,  | 11.8 percer                  | ıt          | Int           | ernal rate of                 | return, 2  | 0.9 percent         |             |
| \$88,051,699                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1966 | 1            | 1            | \$720,000   | \$800,000                    | \$1,520,000 |               | 1                             | \$720,000  | \$720,000 \$800,000 | \$1,520,000 |
| \$88,051,699                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1967 | 1            | 1            | 1,752,500   | 1,787,500                    | 3,540,000   |               |                               | 1,752,500  | 1,787,500           | 3,540,000   |
| \$88,051,699   2,270,996   1,919,000   6,259,000   1,919,000   1,919,000   1,919,000   1,919,000   1,919,000   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,800,500   1,80                                                                                                                                                          | 1968 |              |              | 2,132,500   | 1,975,000                    | 4,107,500   |               | 1                             | 2,132,500  | 1,975,000           | 4,107,500   |
| \$88,051,699                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1969 | 1            | 1            | 4,340,000   | 1,919,000                    | 6,259,000   |               |                               | 4,340,000  | 1,919,000           | 6,259,000   |
| \$88,051,699<br>\$88,051,699<br>\$88,051,699<br>\$18,245,146<br>\$18,245,146<br>\$1,000,666,310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1970 |              | 1            | 6,290,000   | 1,800,500                    | 8,090,500   |               |                               | 6,290,000  | 1,800,000           | 8,090,500   |
| \$88,051,699                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1971 | 1            |              | 3,050,000   | 000,698                      | 3,919,000   |               |                               | 3,050,000  | 869,000             | 3,919,000   |
| \$12,048,027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1972 | 1            | 1            | 1           |                              |             |               |                               | ,          |                     |             |
| \$88,051,699                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1973 | 1            |              | ı           | ı                            | 1           | 1             | 1                             | ,          | 1                   | •           |
| \$88,01,699                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1974 |              | \$72,048,027 | 1           | 1                            | 1           | 1             | \$369,034,839                 | 1          | 1                   |             |
| \$88,051,699 \$<br>88,051,699 6<br>62,270,996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1975 | 1            | 72,048,027   | 1           | 1                            | 1           |               | 369,034,839                   | 1          |                     | 1           |
| 88,051,699                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _    | \$88,051,699 | 1            | ,           | ı                            | ,           | \$446,287,538 |                               | 1          | 1                   |             |
| 62,270,996 18,245,146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1977 | 88,051,699   |              | 1           | 1                            | ,           | 446,287,538   | 1                             | 1          | 1                   |             |
| 18,245,146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1978 | 62,270,996   |              | 1           | ı                            | ,           | 323,810,079   |                               | 1          | 1                   | 1           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1979 | 18,245,146   | ı            | 1           | 1                            | ,           | 100,666,310   |                               | 1          |                     | 1           |
| 17980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1980 | 2            | 1            | ı           | ı                            |             | 1             | 1                             | 1          |                     |             |















LIBRARY OF CONGRESS

0 002 948 877 0