NOIP2016 模拟赛 Day2

By C SUNSHINE

题目名称	幻想	告别	现实
可执行文件名	fantasy	goodbye	reality
输入文件名	fantasy.in	goodbye.in	reality.in
输出文件名	fantasy.out	goodbye.out	reality.out
时间限制	2s	2s	4s
内存限制	233MB	233MB	233MB
测试点数目	25	20	8
测试点分值	4	5	3~21
是否有部分分	否	否	否
评测方式	全文比较	全文比较	全文比较
题目类型	传统题	传统题	传统题
附加样例文件	有	有	有

注:

- 1.时限对应配置: 3.00GHz 4.0GB
- 2.若配置有较大差别,时限可更改为标程最慢测试点的 150%
- 3.最终测试时,打开-O2 优化
- 4.最终测试时系统栈的大小会被更改为 233MB
- 5.部分试题可能有大规模的输入输出,请选择合适的输入输出方式。 说明:

萌萌哒 LZZ 良心场来啦。希望大家愉快的玩暴力,水正解,更希望大家不玩暴力,直接 AK 哦。希望大家 AK 之后不要卖萌,说题目好难什么的,觉得题目水可以提前离场哦。

本套试题可能有部分题目低于普及组难度。

NOIplus2016 模拟赛 幻想

幻想

(fantasy.pas/c/cpp)

【问题描述】

高考完不久, Lvra 就飞到欧洲度蜜月去啦······

"奇幻大学,是怎么样的呢?",Lyra一直在想。

临别前,Evan给了她一个问题,传说这是甲虫星星研究院的招生考试题。Lyra看到题目之后一副跃跃欲试的样子,不过第二天她就放弃了,于是解题的任务就落到了你的头上。

• • • • •

给定一个不小于 2 的整数 k ,按照如下方式生成一个无限长的序列 S (下标从 0 开始)。

- 1. 初始时序列只有一个元素 $S_0 = 0$ 。
- 2. 对于 $j=1,2,\cdots k-1$ 分别把当前序列的每个元素都加上 j ,得到新的 k-1 个序列。
- 3. 把新的k-1个序列依次接在当前序列后面,得到一个长度为当前序列长度k倍的序列。
- 4. 把这个序列每一项都变成其除以 k 之后的余数,并把这个序列 作为新的当前序列。
 - 5. 执行无穷次操作 2-4。

例如k=3,每一轮执行之后的序列分别是:

012

012 120 201

NOIplus2016 模拟赛 幻想

012120201 120201012 201012120

• • • • •

例如k=2,则序列是 01101001100101101001011001001011001001 ·······

现在给定整数 L,R,你需要求 $\sum_{i=L}^{R} h(i) \times S_i$ 的值,并输出答案对 2^{32} 取

模的结果,其中
$$h(i) = \left| \frac{[i \mod 20000116]^2 + i + 804}{233} \right|$$
。

【输入格式】

第一行一个正整数表示数据组数 T。

接下来T行每行三个正整数k,L,R表示一组数据,其中k用于生成序列S,L,R意义见所求和式。

【输出格式】

对于每组数据输出一行一个整数表示 $\sum_{i=L}^R h(i) \times S_i$ 的值,为避免高精度,你只需要输出答案对 2^{32} 取模的结果。

【样例输入输出】

fantasy.in	fantasy.out
10	15
2 1 10	36
3 1 10	51
4 1 10	66
5 1 10	89026303
2 1001 5005	599966
10 123 456	84450304
233 1024 6174	2099970147
16 10000 20000	3683804069
20 12345678 23456789	1796954653
987 2333123456789 2333198765432	

NOIplus2016 模拟赛

【数据范围与约定】

#	k	L,R	$\sum R - L$	#	k	L,R	$\sum R - L$	
1		≤1000	≤10 ⁵	14		≤10 ⁸		
2	= 2	≤10 ⁶	≥10	15	= 2	≤10 ¹⁶	≤10 ⁸	
3	= 2	$\leq 10^{8}$		16				
4		$\leq 10^{15}$	≤10 ⁷	17				
5	≤ 20	≤10 ⁶		18	≤ 20	≤10 ⁶		
6	≥ 20	$\leq 10^{15}$	≤10 ⁶	19	≥ 20	$\leq 10^{16}$	$\leq 10^6$	
7		$\leq 5 \times 10^5$	≤10 ⁷	20		$\leq 5 \times 10^5$	$\leq 10^{7}$	
8	= 3	$\leq 10^{8}$	≤10 ⁸	21		≤10 ⁸	≤10 ⁸	
9		$\leq 10^{15}$		22	≤1000	≤10 ¹⁶		
10	≤1000	≤10 ⁸	< 10 ⁷	23				
11	1000 且所有		$\leq 10^7$	24				
12	<u>L</u>	≤10 ¹⁵	≤10 ⁸	25				
13	ん 相守 にん		≥10					

对于全部数据, $T \le 100; 2 \le k \le 1000; 0 \le L \le R \le 10^{16}; \sum R - L \le 10^8$

NOIplus2016 模拟赛 告别

告别

(goodbye.pas/c/cpp)

【问题描述】

"明天,就要走了呢……" Lyra 说道。

"这一年,过得还真是快呢·····不过该说的话,也都说了呢。希望你在奇幻大学有一个愉快的新生活吧——"

"明年,你也该来了呢,加油~"

"嗯……拿着这个吧。这个密码盒每天只能试一次哦。"

• • • • •

密码盒的密码是一个 $1\sim n$ 的排列。第一天,Lyra 输入了排列 A,之后每天,Lyra 从n个数中随机选取三个数组成一个有序三元组,然后在密码盘上轮换这三个数的位置。

例如3,1,4,2,5在选择了三元组(1,2,3)之后,把1移动到2的位置,把2移动到3的位置,把3移动到1的位置,于是序列变成了2,3,4,1,5。

Lyra 有m天的时间来尝试密码,如果某天密码与密码盒预设的密码B符合,密码盒就被打开了。

现在给出A,B,求Lyra在m天内(注意不需要恰好m天)打开密码盒的概率,为了证明你会这个问题,你只需要输出在模M下的概率即可。

显然概率一定是一个有理数 $\frac{p}{q}$,那么你输出 $p \times q^{-1} \mod M$ 的结果即可,其中 q^{-1} 表示q在模M意义下的逆元,若逆元不存在输出 $_{-1}$,其中M=998244353。

NOIplus2016 模拟赛 告别

【输入格式】

第一行两个整数n,m。

第二行 n个整数 4,表示密码盒的初始密码。

第三行n个整数 B_i ,表示密码盒的预设密码。

保证A,B不完全相同。

【输出格式】

输出一行一个整数表示模意义下的概率。

【样例输入输出】

goodbye.in	goodbye.out
3 1 1 2 3 2 3 1	499122177
2 3 1	

【样例解释】

共六种选取三元组的方案,其中(3,2,1)(2,1,3)(1,3,2)可以在第一天打开密码盒,而(1,2,3)(2,3,1)(3,1,2)不能,于是概率是 $\frac{1}{2}$,模 $_{M}$ 是 499122177。

【数据范围与约定】

#	n	m	其他约定	#	n	m	其他约定
1		≤3		11		≤50	$A_i = i$
2		≤ 5		12	≤10	$\leq 10^{5}$	$B_i = i$
3	≤ 5	≤ 50		13		=10	1 — i
4		≤10 ⁵		14		$=10^{5}$	$A_i = i$ $B_i = (i \mod n) + 1$
5		$\leq 10^{8}$	无	15	≤13	$\leq 10^{6}$	$D_i = (i \operatorname{mod} n) + 1$
6		≤ 2		16	≥13	≤10°	
7		≤ 4		17		~ 10 ⁷	
8	≤8	≤ 50		18		$\leq 10^7$	无
9		≤10 ⁵		19	≤14	≤10 ⁸	
10		≤10 ⁸		20		≤10 ⁹	

对于全部数据, $3 \le n \le 14; 0 \le m \le 10^9$ 。

NOIplus2016 模拟赛 现实

现实

(reality.pas/c/cpp)

【问题描述】

Lyra 去奇幻大学之后不久, Evan 就飞到美国旅游去了。出于对地理的热爱, Evan 开始研究美国河流的结构。

Evan 在河道中选取了n个点作为标记,接着对于两个点u,v,若有一条河流直接从u连到v,则连一条从u到v的有向边,这样组成了一个无自环的有向图。

实地考察建出结构图之后,Evan 决定把选取的n个点按照上下游顺序组成一个排列,要求对于所有存在的边u,v,u出现在v之前。可是有些时候 Evan 在进行一番尝试之后发现自己无法得到合法的排列,仔细检查后发现原来是 Faker Yang 入侵了他的电脑并作出了一些修改,他加了一个点,并加了若干条和这个点相关的边(即以这个点作为起点或终点)。

现在 Evan 想知道,哪些点可能是 Faker Yang 入侵后添加的点,即输出所有这样的点x,使得删除x和与x相连的边之后,剩下的n-1个点可以组成一个排列使得对于所有存在且未被删除的边u,v,u出现在v之前。

【输入格式】

第一行两个正整数n,m表示点数和边数。

接下来 m 行,每行两个正整数 u,v 表示一条从 u 到 v 的边。

不保证初始时一定不能将关键点按要求排列。

NOIplus2016 模拟赛 现实

【输出格式】

输出数据第一行一个整数 C表示点数。

第二行C个正整数,按照编号从小到大输出所有可能的x。

注意:

1. 你输出的所有x相互独立,即只删除一个点,而不是同时删除全部C个点。

2. 若不存在任何一个点满足条件,输出一个0。

【样例输入输出】

reality.in	reality.out
4 5	2
1 3	3 4
2 3	
3 4	
4 1	
4 2	

【数据范围与约定】

本题采用捆绑测试,你只有通过一个 Subtask 中的所有数据才能获得该 Subtask 的分数,否则不得分。

Subtask 1[3pts]:

• $n \le 10; m \le 10$

Subtask 2[16pts]:

• $n \le 2000; m \le 2500$

Subtask 3[9pts]:

• *m* = *n* , 第 *k* 条边满足 *u* = *k*

Subtask 4[9pts]:

NOIplus2016 模拟赛 现实

• $m \le n+2$,且若把有向边看成无向边,则所有点互相连通。

Subtask 5[14pts]:

•对于 $1 \le k < n$,存在边 $k \to k+1$;且所有边满足v < u或v = u+1

Subtask 6[13pts]:

• 对于 $1 \le k < n$,存在边 $k \to (k \mod n) + 1$

Subtask 7[15pts]:

• $n \le 2 \times 10^5$; $m \le 3.5 \times 10^5$

Subtask 8[21pts]:

• $n \le 5 \times 10^5$; $m \le 10^6$