CSC 583: Assignment 2

Problem 1

Suggest what tokenization and normalized form(s) should be used for these words (including the word itself as a possibility). Justify your decision.

- 'Cos
 because This should be changed to the correct spelling / real meaning.
- Shi'ite shiite People are likely to leave out the apostrophe when they search.
- cont'd
 continued This should be changed to the complete spelling.
- Hawai'i
 hawaii People usually leave out the apostrophe when they spell Hawai'i.
- O'Rourke orourke Again, people may omit the apostrophe when searching for this name.
- ain't or "be not" is not This should be changed to the proper form of the meaning.
- me@privacy.net
 me@privacy.net This should be left as-is because anyone searching for this probably wants an exact match.
- <html>Some text </html>
 <html>Some text </html> Should also be left as-is because anyone searching for this string is probably a technical user who wants an exact match.

Problem 2

Assume a biword index. Give an example of a document (could be a made up paragraph) which will be returned for a query of "New York University" but is actually a false positive which should not be returned.

"York University (French: Université York) is a public research university in Toronto, Ontario, Canada. York University has approximately 52,300 students, 7,000 faculty and staff, and 295,000 alumni worldwide. Although a large number of alumni live in Ontario, a significant number live in British Columbia, Nova Scotia, Alberta, New York, and Washington, D.C."

Problem 3

Shown below is a portion of a positional index in the format: term: doc1: $\langle position1, position2, ... \rangle$; doc2: $\langle position1, position2, ... \rangle$; etc.

```
angels: 2: \( 36, 174, 252, 651 \); 4: \( 12, 22, 102, 432 \); 7: \( 17 \); fools: 2: \( 1, 17, 74, 222 \); 4: \( 8, 78, 108, 458 \); 7: \( 3, 13, 23, 193 \); fear: 2: \( 87, 704, 722, 901 \); 4: \( 13, 43, 113, 433 \); 7: \( 18, 328, 528 \); in: 2: \( (3, 37, 76, 444, 851 \)); 4: \( (10, 20, 110, 470, 500 \)); 7: \( (5, 15, 25, 195 \)); rush: 2: \( (2, 66, 194, 321, 702 \)); 4: \( (9, 69, 149, 429, 569 \)); 7: \( (4, 14, 404 \)); to: 2: \( (47, 86, 234, 999 \)); 4: \( (14, 24, 774, 944 \)); 7: \( (199, 319, 599, 709 \)); tread: 2: \( (57, 94, 333 \)); 4: \( (15, 35, 155 \)); 7: \( (20, 320 \)); where: 2: \( (67, 124, 393, 1001 \)); 4: \( (11, 41, 101, 421, 431 \)); 7: \( (16, 36, 736 \));
```

Which document(s) if any match each of the following queries, where each expression within quotes is a phrase query?

1. "fools rush in"

```
Document 2: fools [1], rush [2], in[3].
Document 4: fools [8], rush [9], in [10].
Document 7: fools [3], rush [4], in [5]; and fools[13], rush [14], in[15].
So documents 2, 4, and 7 match the query.
```

2. "fools rush in" AND "angels fear to tread"

Since all documents match the first phrase, we just find the documents which match the second phrase.

```
Not document 2, since "angels" and "fear" are not adjacent.

Document 4: angels [12], fear [13], to [14], tread [15].

Not document 7, since "angels" only appears at [17], and there is no "to" at [19].

So only document 4 matches the query.
```

Problem 4

Write down the entries in the permuterm index dictionary that are generated by the term "hope".

Add the terminal symbol and perform all possible rotations:

- hope\$
- \$hope
- e\$hop
- pe\$ho
- ope\$h

Problem 5

Compute the edit distance between "paris" and "arid". What are the N (rows) and M (columns) dimensions of the edit distance matrix? Write down the $N \times M$ array of distances between all prefixes as computed by the edit distance algorithm in Figure 3.5 in IIR. For each cell in the matrix, use the four-number representation to keep track of your intermediate results.

The matrix is 6×5 (including initialization row and column). The edit distance is 2: delete 'p' from "paris", and replace 's' with 'd' from "arid".

		a	r	i	d
	0	1 1	2 2	3 3	4 4
p	1	1 2	2 3	3 4	4 5
	1	2 1	2 2	3 3	4 4
a	2	1 2	2 3	3 4	4 5
	2	3 1	2 2	3 3	4 4
r	3	3 2	1 3	3 4	4 5
	3	4 2	3 1	2 2	3 3
i	4	4 3	3 2	1 3	3 4
	4	5 3	4 2	3 1	2 2
s	5	5 4	4 3	3 2	2 3
	5	6 4	5 3	4 2	3 2

Problem 6

Consider the following fragment of a positional index with the format: word: document: ⟨position, position, ...⟩; document: ⟨position, ...⟩ ...

Gates: 1: ⟨3⟩; 2: ⟨6⟩; 3: ⟨2, 17⟩; 4: ⟨1⟩;

IBM: 4: ⟨3⟩; 7: ⟨14⟩;

Microsoft: 1: ⟨1⟩; 2: ⟨1, 21⟩; 3: ⟨3⟩; 5: ⟨16, 22, 51⟩;

The /k operator, word1 /k word2 finds occurrences of word1 within k words of word2 (on either side), where k is a positive integer argument. Thus k = 1 demands that word1 be adjacent to word2.

- 1. Describe the set of documents that satisfy the query Gates /2 Microsoft.

 The documents which match the query are **1** and **3**, since document 1 has Gates [3] and Microsoft [1], and document 3 has Gates[2] and Microsoft [3].
- 2. Describe each set of values for *k* for which the query Gates /*k* Microsoft returns a different set of documents as the answer.
 - If k = 1, then the set of documents will no longer contain document 1.
 - If $k \ge 5$, then the set of documents will grow to include document 2 (Gates [6] and Microsoft [1]). There are no other documents containing both Gates and Microsoft, so further changes increases to k won't change the results.

