Lab 7: RIPv2 Router Configuration

Topology Diagram

Addressing Table

Device	Interface	IP Address	Subnet Mask	Default Gateway
R1	Fa0/0	172.30.1.1	255.255.255.0	N/A
	Fa0/1	172.30.2.1	255.255.255.0	N/A
	S0/0/0	209.165.200.230	255.255.255.252	N/A
R2	Fa0/0	10.1.0.1	255.255.0.0	N/A
	S0/0/0	209.165.200.229	255.255.255.252	N/A
	S0/0/1	209.165.200.233	255.255.255.252	N/A
R3	Fa0/0	172.30.100.1	255.255.255.0	N/A
	S0/0/1	209.165.200.234	255.255.255.252	N/A
	Lo0	172.30.110.1	255.255.255.0	N/A
	Lo1	172.30.200.17	255.255.255.240	N/A
	Lo2	172.30.200.33	255.255.255.240	N/A
PC1	NIC	172.30.2.10	255.255.255.0	172.30.2.1
PC2	NIC	172.30.1.10	255.255.255.0	172.30.1.1
PC3	NIC	10.1.0.10	255.255.0.0	10.1.0.1

PC4	NIC	172.30.100.10	255.255.255.0	172.30.100.1

Learning Objectives

Upon completion of this lab, you will be able to:

- Cable a network according to the Topology Diagram.
- Load provided scripts onto the routers.
- Examine the current status of the network.
- Configure RIPv2 on all routers.
- Examine the automatic summarization of routes.
- Examine routing updates with debug ip rip.
- Disable automatic summarization.
- Examine the routing tables.
- Verify network connectivity.
- Document the RIPv2 configuration.

Scenario

The network shown in the Topology Diagram contains a discontiguous network, 172.30.0.0. This network has been subnetted using VLSM. The 172.30.0.0 subnets are physically and logically divided by at least one other classful or major network, in this case the two serial networks 209.165.200.228/30 and 209.165.200.232/30. This can be an issue when the routing protocol used does not include enough information to distinguish the individual subnets. RIPv2 is a classless routing protocol that can be used to provide subnet mask information in the routing updates. This will allow VLSM subnet information to be propagated throughout the network.

Task 1: Cable, Erase, and Reload the Routers.

Step 1: Cable a network.

Cable a network that is similar to the one in the Topology Diagram.

Step 2: Clear the configuration on each router.

Clear the configuration on each of routers using the erase startup-config command and then reload the routers. Answer no if asked to save changes.

Task 2: Load Routers with the Supplied Scripts.

Step 1: Load the following script onto R1.

```
!
hostname R1
!
!
!
interface FastEthernet0/0
  ip address 172.30.1.1 255.255.255.0
  duplex auto
  speed auto
  no shutdown
!
interface FastEthernet0/1
  ip address 172.30.2.1 255.255.255.0
  duplex auto
  speed auto
  no shutdown
!
interface Serial0/0/0
  ip address 209.165.200.230 255.255.255.252
```

```
clock rate 64000
no shutdown
!
router rip
passive-interface FastEthernet0/0
passive-interface FastEthernet0/1
network 172.30.0.0
network 209.165.200.0
!
line con 0
line vty 0 4
login
!
end
```

IOS Command Line Interface

```
Router>enable
Router#erase star
Router#erase startup-config
Erasing the nvram filesystem will remove all configuration files! Continue? [confirm]
Erase of nvram: complete 
%SYS-7-NV_BLOCK_INIT: Initialized the geometry of nvram
Router#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router (config) #hostname R1
R1(config) #interface FastEthernet0/0
R1(config-if)#ip address 172.30.1.1 255.255.255.0 R1(config-if)#duplex auto
R1(config-if) #speed auto
R1(config-if)#no shutdown
%LINK-5-CHANGED: Interface FastEthernet0/0, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up
R1(config-if)#exit
R1(config) #interface FastEthernet0/1
R1(config-if)#ip address 172.30.2.1 255.255.255.0
R1(config-if) #duplex auto
R1(config-if)#speed auto
R1(config-if)#no shutdown
R1(config-if)#
%LINK-5-CHANGED: Interface FastEthernet0/1, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1, changed state to up
```

Ctrl+F6 to exit CLI focus

Сору

Paste

```
IOS Command Line Interface
 %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1, changed state to up
 R1(config-if)#exit
 R1(config)#interface Serial 0/0/0
 R1(config-if)#ip address 209.165.200.230 255.255.255.252
 R1(config-if)#clock rate 64000
 R1(config-if) #no shutdown
 %LINK-5-CHANGED: Interface Serial0/0/0, changed state to down
 R1(config-if)#
 R1(config-if)#exit
 R1(config)#
 R1(config)#interface Serial0/0/0
 R1 (config-if) #no shut
 R1(config-if)#exit
 R1(config) #router rip
 R1(config-router) #pass
 R1(config-router) #passive-interface Fas
 R1(config-router) #passive-interface FastEthernet0/0
 R1(config-router) #passive-interface FastEthernet0/1
 R1(config-router) #network 172.30.0.0
R1(config-router)#network 209.165.200.0 R1(config-router)#exit
 R1(config) #line con 0
 R1(config-line) #line vty 0 4
 R1(config-line) #login
% Login disabled on line 194, until 'password' is set
% Login disabled on line 195, until 'password' is set
 % Login disabled on line 196, until 'password' is set
 % Login disabled on line 197, until 'password' is set
 % Login disabled on line 198, until 'password' is set
 R1 (config-line) #end
 %SYS-5-CONFIG_I: Configured from console by console
Ctrl+F6 to exit CLI focus
```

Step 2: Load the following script onto R2.

```
hostname R2
!
!
interface FastEthernet0/0
ip address 10.1.0.1 255.255.0.0
duplex auto
speed auto
no shutdown
interface Serial0/0/0
ip address 209.165.200.229 255.255.255.252
no shutdown
interface Serial0/0/1
 ip address 209.165.200.233 255.255.255.252
clock rate 64000
no shutdown
router rip
passive-interface FastEthernet0/0
network 10.0.0.0
network 209.165.200.0
line con 0
```

```
line vty 0 4
login
!
end
```

```
R2(config)#interface Serial0/0/0
R2(config-if) # ip address 209.165.200.229 255.255.255.252
R2 (config-if) #no shutdown
R2(config-if)#
%LINK-5-CHANGED: Interface Serial0/0/0, changed state to up
R2(config-if)#
%LINEPROTO-5-UPDOWN: Line protocol on Interface Serial0/0/0, changed state to up
interface Serial0/0/1
R2(config-if) # ip address 209.165.200.233 255.255.255.252
R2(config-if) # clock rate 64000
R2(config-if) # no shutdown
%LINK-5-CHANGED: Interface Serial0/0/1, changed state to down
R2(config-if)#
R2 (config-if) #exit
R2(config) #router rip
R2(config-router) # passive-interface FastEthernet0/0
R2(config-router) # network 10.0.0.0
R2(config-router) # network 209.165.200.0
R2 (config-router) #exit
R2(config) #line con 0
R2(config-line) #line vty 0 4
R2 (config-line) #login
% Login disabled on line 194, until 'password' is set
% Login disabled on line 195, until 'password' is set
% Login disabled on line 196, until 'password' is set
% Login disabled on line 197, until 'password' is set
% Login disabled on line 198, until 'password' is set
R2(config-line)#end
%SYS-5-CONFIG_I: Configured from console by console
```

Ctrl+F6 to exit CLI focus Copy Paste

IOS Command Line Interface

```
Router>
Router>enable
Router#erase star
Router#erase startup-config
Erasing the nvram filesystem will remove all configuration files! Continue? [confirm]
Erase of nvram: complete
%SYS-7-NV_BLOCK_INIT: Initialized the geometry of nvram
Router#hostname R2
% Invalid input detected at '^' marker.
Router#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config) #hostname R2
R2(config)#interface FastEthernet0/0
R2(config-if) # ip address 10.1.0.1 255.255.0.0
R2(config-if) # duplex auto
R2(config-if) # speed auto
R2(config-if) # no shutdown
%LINK-5-CHANGED: Interface FastEthernet0/0, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up
R2 (config-if) #exit
R2(config) #interface Serial0/0/0
R2(config-if) # ip address 209.165.200.229 255.255.255.252
R2(config-if) #no shutdown
R2(config-if)#
%LINK-5-CHANGED: Interface Serial0/0/0, changed state to up
R2(config-if)#
```

Ctrl+F6 to exit CLI focus Copy Paste

Step 3: Load the following script onto R3.

```
hostname R3
interface FastEthernet0/0
ip address 172.30.100.1 255.255.255.0
duplex auto
speed auto
no shutdown
interface Serial0/0/1
ip address 209.165.200.234 255.255.255.252
no shutdown
interface Loopback0
ip address 172.30.110.1 255.255.255.0
interface Loopback1
ip address 172.30.200.17 255.255.255.240
!
interface Loopback2
ip address 172.30.200.33 255.255.255.240
1
router rip
passive-interface FastEthernet0/0
network 172.30.0.0
network 209.165.200.0
line con 0
line vty 0 4
login
end
```

```
Router>erase st
Router>erase star
Router>enable
Router#erase
Router#erase startup-config
Erasing the nvram filesystem will remove all configuration files! Continue? [confirm]
Erase of nvram: complete
%SYS-7-NV_BLOCK_INIT: Initialized the geometry of nvram
Router#configure ter
Router#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config) #hostname R3
R3(config) #interface FastEthernet0/0
R3(config-if) # ip address 172.30.100.1 255.255.255.0 R3(config-if) # duplex auto
R3(config-if) #speed auto
R3(config-if) #no shutdown
R3(config-if)#
%LINK-5-CHANGED: Interface FastEthernet0/0, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up
R3(config-if)#interface Serial0/0/1
R3(config-if) # ip address 209.165.200.234 255.255.255.252
R3(config-if) #no shutdown
R3(config-if)#
%LINK-5-CHANGED: Interface Serial0/0/1, changed state to up
R3(config-if) #interface Loopback0
%LINEPROTO-5-UPDOWN: Line protocol on Interface Serial0/0/1, changed state to up
```

Ctrl+F6 to exit CLI focus Copy Paste

```
R3(config-if)#interface Loopback0
 %LINEPROTO-5-UPDOWN: Line protocol on Interface Serial0/0/1, changed state to up
 R3(config-if)#
 LINK-5-CHANGED: Interface Loopback0, changed state to up
 %LINEPROTO-5-UPDOWN: Line protocol on Interface LoopbackO, changed state to up
 interface Loopback0
 R3(config-if) # ip address 172.30.110.1 255.255.255.0
 R3(config-if)#interface Loopback1
 R3(config-if)#
 %LINK-5-CHANGED: Interface Loopback1, changed state to up
 %LINEPROTO-5-UPDOWN: Line protocol on Interface Loopback1, changed state to up
 R3(config-if)# ip address 172.30.200.17 255.255.255.240
R3(config-if)#interface Loopback2
 %LINK-5-CHANGED: Interface Loopback2, changed state to up
 %LINEPROTO-5-UPDOWN: Line protocol on Interface Loopback2, changed state to up
 R3(config-if) # ip address 172.30.200.33 255.255.255.240
 R3(config-if) #exit
R3(config) #router rip
R3(config-router) # passive-interface FastEthernet0/0 R3(config-router) # network 172.30.0.0
R3(config-router) # network 209.165.200.0
R3(config-router) #exit
 R3(config)#line con 0
R3(config-line) #line vty 0 4
Ctrl+F6 to exit CLI focus
                                                                                           Сору
                                                                                                        Paste
```


Task 3: Examine the Current Status of the Network.

Step 1: Verify that both serial links are up.

The two serial links can quickly be verified using the **show** ip **interface brief** command on R2.

R2#show ip interface brief

```
R2#
 R2#show ip interface br
 R2#show ip interface brief
                     IP-Address OK? Method Status
 Interface
                                                                      Protocol
 FastEthernet0/0
                      10.1.0.1
                                      YES manual up
                      unassigned YES unset administratively down down
 FastEthernet0/1
                      209.165.200.229 YES manual up
 Serial0/0/0
 Serial0/0/1
                      209.165.200.233 YES manual up
                                                                      up
 Vlan1
                      unassigned
                                    YES unset administratively down down
 R2#
Ctrl+F6 to exit CLI focus
                                                                                   Copy
                                                                                                Paste
```

Step 2: Check the connectivity from R2 to the hosts on the R1 and R3 LANs.

Note: For the 1841 router, you will need to disable IP CEF to obtain the correct output from the ping command. Although a discussion of IP CEF is beyond the scope of this course, you may disable IP CEF by using the following command in global configuration mode:

R2(config) #no ip cef

```
Enter contiguration commands, one per line. End with CNTL/Z.

R2(config) #no ip cef
R2(config) #exit
R2#
%SYS-5-CONFIG_I: Configured from console by console

R2#ping 172.30.2.10

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 172.30.2.10, timeout is 2 seconds:
.U!.!
Success rate is 40 percent (2/5), round-trip min/avg/max = 1/1/1 ms

R2#

Ctrl+F6 to exit CLI focus

Copy Paste
```

From the R2 router, how many ICMP messages are successful when pinging PC1?

40 percent (2/5)

From the R2 router, how many ICMP messages are successful when pinging PC4?

```
R2#ping 172.30.100.10

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 172.30.100.10, timeout is 2 seconds:
.U!.!
Success rate is 40 percent (2/5), round-trip min/avg/max = 1/1/1 ms

R2#

Ctrl+F6 to exit CLI focus

Copy Paste
```

40 percent (2/5)

Step 3: Check the connectivity between the PCs.

From the PC1, is it possible to ping PC2? YES

What is the success rate? 75%

From the PC1, is it possible to ping PC3? YES

```
C:\>ping 10.1.0.10

Pinging 10.1.0.10 with 32 bytes of data:

Request timed out.

Reply from 10.1.0.10: bytes=32 time=10ms TTL=126

Request timed out.

Reply from 10.1.0.10: bytes=32 time=4ms TTL=126

Ping statistics for 10.1.0.10:

Packets: Sent = 4, Received = 2, Lost = 2 (50% loss),

Approximate round trip times in milli-seconds:

Minimum = 4ms, Maximum = 10ms, Average = 7ms

C:\>
```

What is the success rate? 50%

From the PC1, is it possible to ping PC4? NO

```
C:\>ping 172.30.100.10

Pinging 172.30.100.10 with 32 bytes of data:

Reply from 172.30.2.1: Destination host unreachable.

Ping statistics for 172.30.100.10:
    Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),

C:\>
```

What is the success rate? 0%

From the PC4, is it possible to ping PC2? NO

What is the success rate? 0%

From the PC4, is it possible to ping PC3? YES

```
C:\>ping 10.1.0.10
Pinging 10.1.0.10 with 32 bytes of data:

Reply from 10.1.0.10: bytes=32 time=1ms TTL=126
Request timed out.
Reply from 10.1.0.10: bytes=32 time=11ms TTL=126
Request timed out.

Ping statistics for 10.1.0.10:
    Packets: Sent = 4, Received = 2, Lost = 2 (50% loss),
Approximate round trip times in milli-seconds:
    Minimum = 1ms, Maximum = 11ms, Average = 6ms

C:\>
```

What is the success rate? 50%

Step 4: View the routing table on R2.

Both the R1 and R3 are advertising routes to the 172.30.0.0/16 network; therefore, there are two entries for this network in the R2 routing table. The R2 routing table only shows the major classful network address of 172.30.0.0—it does not show any of the subnets for this network that are used on the LANs attached to R1 and R3. Because the routing metric is the same for both entries, the router alternates the routes that are used when forwarding packets that are destined for the 172.30.0.0/16 network.

R2#show ip route

```
R2>enable
 R2#show ip route
 Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
        i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
        * - candidate default, U - per-user static route, o - ODR
        P - periodic downloaded static route
 Gateway of last resort is not set
      10.0.0.0/16 is subnetted, 1 subnets
        10.1.0.0 is directly connected, FastEthernet0/0
     172.30.0.0/16 [120/1] via 209.165.200.230, 00:00:12, Serial0/0/0
 R
                    [120/1] via 209.165.200.234, 00:00:19, Serial0/0/1
      209.165.200.0/30 is subnetted, 2 subnets
 C
        209.165.200.228 is directly connected, Serial0/0/0
 C
         209.165.200.232 is directly connected, Serial0/0/1
 R2#
Ctrl+F6 to exit CLI focus
                                                                                       Copy
                                                                                                    Paste
```

Step 5: Examine the routing table on the R1 router.

Both R1 and R3 are configured with interfaces on a discontiguous network, 172.30.0.0. The 172.30.0.0 subnets are physically and logically divided by at least one other classful or major network—in this case, the two serial networks 209.165.200.228/30 and 209.165.200.232/30. Classful routing protocols like RIPv1 summarize networks at major network boundaries. Both R1 and R3 will be summarizing 172.30.0.0/24 subnets to 172.30.0.0/16. Because the route to 172.30.0.0/16 is directly connected, and because R1 does not have any specific routes for the 172.30.0.0 subnets on R3, packets destined for the R3 LANs will not be forwarded properly.

R1#show ip route

```
R1>
 R1>enable
 R1#show ip route
 Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
        i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
        * - candidate default, U - per-user static route, o - ODR
        P - periodic downloaded static route
 Gateway of last resort is not set
      10.0.0.0/8 [120/1] via 209.165.200.229, 00:00:21, Serial0/0/0
      172.30.0.0/24 is subnetted, 2 subnets
        172.30.1.0 is directly connected, FastEthernet0/0
 C
         172.30.2.0 is directly connected, FastEthernet0/1
      209.165.200.0/30 is subnetted, 2 subnets
 C
         209.165.200.228 is directly connected, Serial0/0/0
 R
         209.165.200.232 [120/1] via 209.165.200.229, 00:00:21, Serial0/0/0
 R1#
Ctrl+F6 to exit CLI focus
                                                                                       Copy
                                                                                                    Paste
```

Step 6: Examine the routing table on the R3 router.

R3 only shows its own subnets for 172.30.0.0 network: 172.30.100/24, 172.30.110/24, 172.30.200.16/28, and 172.30.200.32/28. R3 does not have any routes for the 172.30.0.0 subnets on R1.

R3#show ip route

```
R3>
 R3>enable
 R3#show ip route
 Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
        * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
 Gateway of last resort is not set
    10.0.0.0/8 [120/1] via 209.165.200.233, 00:00:11, Serial0/0/1
     172.30.0.0/16 is variably subnetted, 4 subnets, 2 masks
        172.30.100.0/24 is directly connected, FastEthernet0/0
        172.30.110.0/24 is directly connected, Loopback0
        172.30.200.16/28 is directly connected, Loopback1
        172.30.200.32/28 is directly connected, Loopback2
     209.165.200.0/30 is subnetted, 2 subnets
 R
        209.165.200.228 [120/1] via 209.165.200.233, 00:00:11, Serial0/0/1
        209.165.200.232 is directly connected, Serial0/0/1
 R3#
Ctrl+F6 to exit CLI focus
                                                                                      Copy
                                                                                                   Paste
```

Step 7: Examine the RIPv1 packets that are being received by R2.

Use the debug ip rip command to display RIP routing updates.

R2 is receiving the route 172.30.0.0, with 1 hop, from both R1 and R3. Because these are equal cost metrics, both routes are added to the R2 routing table. Because RIPv1 is a classful routing protocol, no subnet mask information is sent in the update.

R2#debug ip rip

```
R2>
 R2>enable
 R2#debug ip rip
 RIP protocol debugging is on
 R2#RIP: sending v1 update to 255.255.255.255 via Serial0/0/1 (209.165.200.233)
 RIP: build update entries
      network 10.0.0.0 metric 1
      network 209.165.200.228 metric 1
 RIP: sending v1 update to 255.255.255.255 via Serial0/0/0 (209.165.200.229)
 RIP: build update entries
      network 10.0.0.0 metric 1
      network 209.165.200.232 metric 1
 RIP: received v1 update from 209.165.200.230 on Serial0/0/0
      172.30.0.0 in 1 hops
 RIP: received v1 update from 209.165.200.234 on Serial0/0/1
      172.30.0.0 in 1 hops
 RIP: sending v1 update to 255.255.255.255 via Serial0/0/1 (209.165.200.233)
 RIP: build update entries
      network 10.0.0.0 metric 1
      network 209.165.200.228 metric 1
 RIP: sending v1 update to 255.255.255.255 via Serial0/0/0 (209.165.200.229)
 RIP: build update entries
      network 10.0.0.0 metric 1
      network 209.165.200.232 metric 1
 RIP: received v1 update from 209.165.200.230 on Serial0/0/0
      172.30.0.0 in 1 hops
Ctrl+F6 to exit CLI focus
                                                                                       Copy
                                                                                                    Paste
```

R2 is sending only the routes for the 10.0.0.0 LAN and the two serial connections to R1 and R3. R1 and R3 are not receiving any information about the 172.30.0.0 subnet routes.

When you are finished, turn off the debugging.

R2#undebug all

```
network 209.165.200.232 metric 1

R2#undRIP: received v1 update from 209.165.200.230 on Serial0/0/0

172.30.0.0 in 1 hops
ebug all
All possible debugging has been turned off
R2#undebug all
All possible debugging has been turned off
R2#

Ctrl+F6 to exit CLI focus

Copy

Paste
```

Task 4: Configure RIP Version 2.

Step 1: Use the version 2 command to enable RIP version 2 on each of the routers.

```
R2(config) #router rip
R2(config-router) #version 2
```

```
Enter configuration commands, one per line. End with CNTL/Z.
R2(config) #router rip
R2(config-router) #version 2
R2(config-router) #
```

Ctrl+F6 to exit CLI focus

```
R1(config) #router rip
R1(config-router) #version 2

R1#configure
R1#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
R1(config) #router rip
R1(config-router) #version 2
R1(config-router) #
```

Ctrl+F6 to exit CLI focus

```
R3(config) #router rip
R3(config-router) #version 2

R3#configure
R3#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
R3(config) #router rip
R3(config-router) #version 2
R3(config-router) #
```

Ctrl+F6 to exit CLI focus

RIPv2 messages include the subnet mask in a field in the routing updates. This allows subnets and their masks to be included in the routing updates. However, by default RIPv2 summarizes networks at major network boundaries, just like RIPv1, except that the subnet mask is included in the update.

Step 2: Verify that RIPv2 is running on the routers.

The debug ip rip, show ip protocols, and show run commands can all be used to confirm that RIPv2 is running. The output of the show ip protocols command for R1 is shown below.

```
R1# show ip protocols
```

```
R1#show ip protocols
   Routing Protocol is "rip"
   Sending updates every 30 seconds, next due in 11 seconds
   Invalid after 180 seconds, hold down 180, flushed after 240
   Outgoing update filter list for all interfaces is not set
   Incoming update filter list for all interfaces is not set
   Redistributing: rip
   Default version control: send version 2, receive 2
                Send Recv Triggered RIP Key-chain
    Interface
    Serial0/0/0
                         2
                               2
   Automatic network summarization is in effect
   Maximum path: 4
   Routing for Networks:
                  172.30.0.0
                   209.165.200.0
   Passive Interface(s):
                   FastEthernet0/0
                   FastEthernet0/1
   Routing Information Sources:
                  Gateway
                                              Last Update
                                  Distance
                   209.165.200.229
                                    120
                                              00:00:27
   Distance: (default is 120)
   R1#
  Ctrl+F6 to exit CLI focus
                                                                                      Сору
                                                                                                  Paste
Тор
```

Task 5: Examine the Automatic Summarization of Routes.

The LANs connected to R1 and R3 are still composed of discontiguous networks. R2 still shows two equal cost paths to the 172.30.0.0/16 network in the routing table. R2 still shows only the major classful network address of 172.30.0.0 and does not show any of the subnets for this network.

```
R2#show ip route
 R2#show ip route
 Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
        D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       {\tt N1} - OSPF NSSA external type 1, {\tt N2} - OSPF NSSA external type 2
        E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
        i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
        * - candidate default, U - per-user static route, o - ODR
        P - periodic downloaded static route
 Gateway of last resort is not set
      10.0.0.0/16 is subnetted, 1 subnets
 C
        10.1.0.0 is directly connected, FastEthernet0/0
      172.30.0.0/16 [120/1] via 209.165.200.234, 00:00:17, Serial0/0/1
 R
                    [120/1] via 209.165.200.230, 00:00:02, Serial0/0/0
      209.165.200.0/30 is subnetted, 2 subnets
 C
         209.165.200.228 is directly connected, Serial0/0/0
 C
         209.165.200.232 is directly connected, Serial0/0/1
 R2#
Ctrl+F6 to exit CLI focus
                                                                                        Copy
```

R1 still shows only its own subnets for the 172.30.0.0 network. R1 still does not have any routes for the 172.30.0.0 subnets on R3.

R1#show ip route

```
R1#show ip route
 Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
        D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
        {\tt N1} - OSPF NSSA external type 1, {\tt N2} - OSPF NSSA external type 2
        E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
        i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
        * - candidate default, U - per-user static route, o - ODR
        P - periodic downloaded static route
 Gateway of last resort is not set
      10.0.0.0/8 [120/1] via 209.165.200.229, 00:00:10, Serial0/0/0
      172.30.0.0/24 is subnetted, 2 subnets
         172.30.1.0 is directly connected, FastEthernet0/0
         172.30.2.0 is directly connected, FastEthernet0/1
 C
      209.165.200.0/30 is subnetted, 2 subnets
 C
         209.165.200.228 is directly connected, Serial0/0/0
         209.165.200.232 [120/1] via 209.165.200.229, 00:00:10, Serial0/0/0
 R
 R1#
Ctrl+F6 to exit CLI focus
                                                                                         Сору
                                                                                                      Paste
```

R3 still only shows its own subnets for the 172.30.0.0 network. R3 still does not have any routes for the 172.30.0.0 subnets on R1.

R3#show ip route

Тор

```
R3#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
      D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      {\tt N1} - OSPF NSSA external type 1, {\tt N2} - OSPF NSSA external type 2
      E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
      i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
     10.0.0.0/8 [120/1] via 209.165.200.233, 00:00:04, Serial0/0/1
    172.30.0.0/16 is variably subnetted, 4 subnets, 2 masks
C
       172.30.100.0/24 is directly connected, FastEthernet0/0
C
        172.30.110.0/24 is directly connected, Loopback0
        172.30.200.16/28 is directly connected, Loopback1
       172.30.200.32/28 is directly connected, Loopback2
C
    209.165.200.0/30 is subnetted, 2 subnets
R
        209.165.200.228 [120/1] via 209.165.200.233, 00:00:04, Serial0/0/1
C
        209.165.200.232 is directly connected, Serial0/0/1
R3#
```

Ctrl+F6 to exit CLI focus

Сору

Use the output of the **debug** ip rip command to answer the following questions:

```
R3#debug ip rip
RIP protocol debugging is on
R3#RIP: sending v2 update to 224.0.0.9 via Loopback0 (172.30.110.1)
RIP: build update entries
10.0.0.0/8 via 0.0.0.0, metric 2, tag 0
172.30.100.0/24 via 0.0.0.0, metric 1, tag 0
172.30.200.16/28 via 0.0.0.0, metric 1, tag 0
172.30.200.32/28 via 0.0.0.0, metric 1, tag 0
209.165.200.0/24 via 0.0.0.0, metric 1, tag 0
```

What entries are included in the RIP updates sent out from R3?

10.0.0.0/8 , 172.30.100.0/24 , 172.20.200.16/28 , 172.30.200.32/28 209.165.200.0/24

On R2, what routes are in the RIP updates that are received from R3?

172.30.0.0/16

R3 is not sending any of the 172.30.0.0 subnets—only the summarized route of 172.30.0.0/16, including the subnet mask. This is why R2 and R1 are not seeing the 172.30.0.0 subnets on R3.

Task 6: Disable Automatic Summarization.

The no auto-summary command is used to turn off automatic summarization in RIPv2. Disable auto summarization on all routers. The routers will no longer summarize routes at major network boundaries.

```
R2(config) #router rip
R2(config-router) #no auto-summary

Enter configuration commands, one per line. End with CNTL/Z.
R2(config) #router rip
R2(config-router) #no au
R2(config-router) #no auto-summary
R2(config-router) #
```

Ctrl+F6 to exit CLI focus

```
R1(config) #router rip
R1(config-router) #no auto-summary
```

```
R1 (config) #router rip
  R1(config-router) #no a
  R1(config-router) #no auto-summary
  R1(config-router)#
R3(config) #router rip
R3(config-router) #no auto-summary
    vo#contrader∈
    R3#configure terminal
    Enter configuration commands, one per line. End with CNTL/Z.
    R3 (config) #router r
    R3 (config) #router rip
    R3 (config-router) #no
    R3 (config-router) #no
    % Incomplete command.
    R3 (config-router) #no
    R3(config-router) #no a
    R3(config-router) #no auto-summary
    R3(config-router)#
```

The show ip route and ping commands can be used to verify that automatic summarization is off.

Task 7: Examine the Routing Tables.

arrear vario

The LANs connected to R1 and R3 should now be included in all three routing tables.

R2#show ip route

```
R2>enable
R2#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
     10.0.0.0/16 is subnetted, 1 subnets
C
        10.1.0.0 is directly connected, FastEthernet0/0
     172.30.0.0/16 is variably subnetted, 6 subnets, 2 masks
        172.30.1.0/24 [120/1] via 209.165.200.230, 00:00:17, Serial0/0/0
R
        172.30.2.0/24 [120/1] via 209.165.200.230, 00:00:17, Serial0/0/0
R
        172.30.100.0/24 [120/1] via 209.165.200.234, 00:00:11, Serial0/0/1
R
R
        172.30.110.0/24 [120/1] via 209.165.200.234, 00:00:11, Serial0/0/1
R
        172.30.200.16/28 [120/1] via 209.165.200.234, 00:00:11, Serial0/0/1
R
        172.30.200.32/28 [120/1] via 209.165.200.234, 00:00:11, Serial0/0/1
     209.165.200.0/30 is subnetted, 2 subnets
C
        209.165.200.228 is directly connected, Serial0/0/0
        209.165.200.232 is directly connected, Serial0/0/1
--More--
```

R1#show ip route

```
R1>enable
   R1#show ip route
   Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
         D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
         N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
         E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
         i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
          * - candidate default, U - per-user static route, o - ODR
          P - periodic downloaded static route
   Gateway of last resort is not set
       10.0.0.0/16 is subnetted, 1 subnets
           10.1.0.0 [120/1] via 209.165.200.229, 00:00:16, Serial0/0/0
   R
       172.30.0.0/16 is variably subnetted, 6 subnets, 2 masks
          172.30.1.0/24 is directly connected, FastEthernet0/0
           172.30.2.0/24 is directly connected, FastEthernet0/1
           172.30.100.0/24 [120/2] via 209.165.200.229, 00:00:16, Serial0/0/0
           172.30.110.0/24 [120/2] via 209.165.200.229, 00:00:16, Serial0/0/0
           172.30.200.16/28 [120/2] via 209.165.200.229, 00:00:16, Serial0/0/0
           172.30.200.32/28 [120/2] via 209.165.200.229, 00:00:16, Serial0/0/0
   R
        209.165.200.0/30 is subnetted, 2 subnets
           209.165.200.228 is directly connected, Serial0/0/0
           209.165.200.232 [120/1] via 209.165.200.229, 00:00:16, Serial0/0/0
    --More--
  Ctrl+F6 to exit CLI focus
                                                                                         Copy
                                                                                                     Paste
Тор
```

```
R3>
R3>enable
R3#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
     10.0.0.0/16 is subnetted, 1 subnets
        10.1.0.0 [120/1] via 209.165.200.233, 00:00:15, Serial0/0/1
R
    172.30.0.0/16 is variably subnetted, 6 subnets, 2 masks
R
        172.30.1.0/24 [120/2] via 209.165.200.233, 00:00:15, Serial0/0/1
        172.30.2.0/24 [120/2] via 209.165.200.233, 00:00:15, Serial0/0/1
R
        172.30.100.0/24 is directly connected, FastEthernet0/0
C
        172.30.110.0/24 is directly connected, Loopback0
        172.30.200.16/28 is directly connected, Loopback1
C
        172.30.200.32/28 is directly connected, Loopback2
     209.165.200.0/30 is subnetted, 2 subnets
        209.165.200.228 [120/1] via 209.165.200.233, 00:00:15, Serial0/0/1
R
        209.165.200.232 is directly connected, Serial0/0/1
 --More--
```

Ctrl+F6 to exit CLI focus Copy

Top

Use the output of the debug ip rip command to answer the following questions:

What entries are included in the RIP updates sent out from R1?

```
R2#debug ip rip
RIP protocol debugging is on
R2#RIP: received v2 update from 209.165.200.230 on Serial0/0/0
      172.30.1.0/24 via 0.0.0.0 in 1 hops
      172.30.2.0/24 via 0.0.0.0 in 1 hops
RIP: sending v2 update to 224.0.0.9 via Serial0/0/0 (209.165.200.229)
RIP: build update entries
      10.1.0.0/16 via 0.0.0.0, metric 1, tag 0
      172.30.100.0/24 via 0.0.0.0, metric 2, tag 0
      172.30.110.0/24 via 0.0.0.0, metric 2, tag 0
      172.30.200.16/28 via 0.0.0.0, metric 2, tag 0
      172.30.200.32/28 via 0.0.0.0, metric 2, tag 0
      209.165.200.232/30 via 0.0.0.0, metric 1, tag 0
RIP: sending v2 update to 224.0.0.9 via Serial0/0/1 (209.165.200.233)
RIP: build update entries
      10.1.0.0/16 via 0.0.0.0, metric 1, tag 0
      172.30.1.0/24 via 0.0.0.0, metric 2, tag 0
      172.30.2.0/24 via 0.0.0.0, metric 2, tag 0
      209.165.200.228/30 via 0.0.0.0, metric 1, tag 0
RIP: received v2 update from 209.165.200.234 on Serial0/0/1
      172.30.100.0/24 via 0.0.0.0 in 1 hops
      172.30.110.0/24 via 0.0.0.0 in 1 hops
      172.30.200.16/28 via 0.0.0.0 in 1 hops
      172.30.200.32/28 via 0.0.0.0 in 1 hops
```

172.30.1.0/24 , 172.30.2.0/24

On R2, what routes are in the RIP updates that are received from R1?

```
R2>enable
R2#debug ip rip
RIP protocol debugging is on
R2#RIP: sending v2 update to 224.0.0.9 via Serial0/0/0 (209.165.200.229)
RIP: build update entries
     10.1.0.0/16 via 0.0.0.0, metric 1, tag 0
     172.30.100.0/24 via 0.0.0.0, metric 2, tag 0
      172.30.110.0/24 via 0.0.0.0, metric 2, tag 0
      172.30.200.16/28 via 0.0.0.0, metric 2, tag 0
      172.30.200.32/28 via 0.0.0.0, metric 2, tag 0
     209.165.200.232/30 via 0.0.0.0, metric 1, tag 0
RIP: sending v2 update to 224.0.0.9 via Serial0/0/1 (209.165.200.233)
RIP: build update entries
      10.1.0.0/16 via 0.0.0.0, metric 1, tag 0
      172.30.1.0/24 via 0.0.0.0, metric 2, tag 0
      172.30.2.0/24 via 0.0.0.0, metric 2, tag 0
      209.165.200.228/30 via 0.0.0.0, metric 1, tag 0
```

172.30.1.0/24 172.30.2.0/24

Are the subnet masks now included in the routing updates? YES

Task 8: Verify Network Connectivity.

Step 1: Check connectivity between R2 router and PCs.

From R2, how many ICMP messages are successful when pinging PC1?

```
R2#ping 172.30.2.10

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 172.30.2.10, timeout is 2 seconds:
.!!!!
Success rate is 80 percent (4/5), round-trip min/avg/max = 1/1/2 ms
R2#
```

80%

From R2, how many ICMP messages are successful when pinging PC4?

```
R2#ping 172.30.100.10

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 172.30.100.10, timeout is 2 seconds:
.!!!!
Success rate is 80 percent (4/5), round-trip min/avg/max = 1/1/1 ms

R2#
```

Step 2: Check the connectivity between the PCs.

From PC1, is it possible to ping PC2? YES

```
Packet Tracer PC Command Line 1.0
C:\>ping 172.30.1.10

Pinging 172.30.1.10 with 32 bytes of data:

Request timed out.
Reply from 172.30.1.10: bytes=32 time<1ms TTL=127
Reply from 172.30.1.10: bytes=32 time<1ms TTL=127
Reply from 172.30.1.10: bytes=32 time<1ms TTL=127

Ping statistics for 172.30.1.10:
    Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms

C:\>
```

What is the success rate? 75%

From PC1, is it possible to ping PC3? YES

```
C:\>ping 10.1.0.10

Pinging 10.1.0.10 with 32 bytes of data:

Request timed out.
Reply from 10.1.0.10: bytes=32 time=10ms TTL=126
Reply from 10.1.0.10: bytes=32 time=14ms TTL=126
Reply from 10.1.0.10: bytes=32 time=13ms TTL=126

Ping statistics for 10.1.0.10:
    Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:
    Minimum = 10ms, Maximum = 14ms, Average = 12ms

C:\>
```

What is the success rate? 75%

From PC1, is it possible to ping PC4? YES

```
C:\>ping 172.30.100.10

Pinging 172.30.100.10 with 32 bytes of data:

Reply from 172.30.100.10: bytes=32 time=2ms TTL=125
Reply from 172.30.100.10: bytes=32 time=11ms TTL=125
Reply from 172.30.100.10: bytes=32 time=17ms TTL=125
Reply from 172.30.100.10: bytes=32 time=11ms TTL=125

Ping statistics for 172.30.100.10:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 2ms, Maximum = 17ms, Average = 10ms

C:\>
```

What is the success rate? 100%

From PC4, is it possible to ping PC2? YES

```
Packet Tracer PC Command Line 1.0
C:\>ping 172.30.1.10

Pinging 172.30.1.10 with 32 bytes of data:

Reply from 172.30.1.10: bytes=32 time=14ms TTL=125
Reply from 172.30.1.10: bytes=32 time=13ms TTL=125
Reply from 172.30.1.10: bytes=32 time=5ms TTL=125
Reply from 172.30.1.10: bytes=32 time=13ms TTL=125

Ping statistics for 172.30.1.10:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 5ms, Maximum = 14ms, Average = 11ms

C:\>
```

What is the success rate? 100%

From PC4, is it possible to ping PC3? YES

```
C:\>ping 10.1.0.10

Pinging 10.1.0.10 with 32 bytes of data:

Reply from 10.1.0.10: bytes=32 time=2ms TTL=126
Reply from 10.1.0.10: bytes=32 time=10ms TTL=126
Reply from 10.1.0.10: bytes=32 time=10ms TTL=126
Reply from 10.1.0.10: bytes=32 time=11ms TTL=126

Ping statistics for 10.1.0.10:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 2ms, Maximum = 11ms, Average = 8ms

C:\>
```

What is the success rate? 100%

Task 9: Documentation

On each router, capture the following command output to a text (.txt) file and save for future reference.

Router - R1

show running-config

```
interface FastEthernet0/1
ip address 172.30.2.1 255.255.255.0
duplex auto
speed auto
interface Serial0/0/0
ip address 209.165.200.230 255.255.255.252
interface Serial0/0/1
no ip address
clock rate 2000000
shutdown
interface Vlan1
no ip address
shutdown
router rip
version 2
passive-interface FastEthernet0/0
passive-interface FastEthernet0/1
network 172.30.0.0
network 209.165.200.0
no auto-summary
ip classless
ip flow-export version 9
line con 0
line aux O
line vty 0 4
password cisco
login
1
   end
```

• show ip route

```
R1#sh ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default, U - per-user static route, o - ODR
P - periodic downloaded static route
Gateway of last resort is not set
10.0.0.0/16 is subnetted, 1 subnets
R 10.1.0.0 [120/1] via 209.165.200.229, 00:00:18, Serial0/0/0
172.30.0.0/16 is variably subnetted, 6 subnets, 2 masks
C 172.30.1.0/24 is directly connected, FastEthernet0/0
C 172.30.2.0/24 is directly connected, FastEthernet0/1
R 172.30.100.0/24 [120/2] via 209.165.200.229, 00:00:18, Serial0/0/0
R 172.30.110.0/24 [120/2] via 209.165.200.229, 00:00:18, Serial0/0/0
R 172.30.200.16/28 [120/2] via 209.165.200.229, 00:00:18, Serial0/0/0
R 172.30.200.32/28 [120/2] via 209.165.200.229, 00:00:18, Serial0/0/0
209.165.200.0/30 is subnetted, 2 subnets
C 209.165.200.228 is directly connected, Serial0/0/0
R 209.165.200.232 [120/1] via 209.165.200.229, 00:00:18, Serial0/0/0
```

• show ip interface brief

```
R1#sh ip interface brief
                IP-Address
                                 OK? Method Status
Interface
                                                                   Protocol
                     172.30.1.1 YES manual up
172.30.2.1 YES manual up
FastEthernet0/0
                                                                   uρ
FastEthernet0/1
                                                                   up
Serial0/0/0
                     209.165.200.230YES manual up
                                                                    uρ
Serial0/0/1
                     unassigned YES NVRAM administratively down down
   Vlan1
                            unassigned YES unset administratively down down
```

• show ip protocols

```
R1#sh ip protocols
Routing Protocol is "rip"
Sending updates every 30 seconds, next due in 24 seconds
Invalid after 180 seconds, hold down 180, flushed after 240
Outgoing update filter list for all interfaces is not set
Incoming update filter list for all interfaces is not set
Redistributing: rip
Default version control: send version 2, receive 2
Interface Send Recv Triggered RIP Key-chain
Serial0/0/0 2 2
Automatic network summarization is not in effect
Maximum path: 4
Routing for Networks:
172.30.0.0
209.165.200.0
Passive Interface(s):
FastEthernet0/0
FastEthernet0/1
Routing Information Sources:
Gateway Distance Last Update
209.165.200.229 120 00:00:03
Distance: (default is 120)
```

Router - R2

• show running-config

```
R2#sh running-config
Building configuration...

Current configuration : 867 bytes
!
version 12.4
no service timestamps log datetime msec
no service password-encryption
!
hostname R2
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
spanning-tree mode pvst
```

```
interface FastEthernet0/0
ip address 10.1.0.1 255.255.0.0
duplex auto
speed auto
interface FastEthernet0/1
no ip address
duplex auto
speed auto
shutdown
interface Serial0/0/0
ip address 209.165.200.229 255.255.255.252
clock rate 2000000
interface Serial0/0/1
ip address 209.165.200.233 255.255.255.252
clock rate 64000
interface Vlan1
no ip address
shutdown
router rip
version 2
passive-interface FastEthernet0/0
network 10.0.0.0
network 209.165.200.0
no auto-summary
ip classless
ip flow-export version 9
line con 0
line aux 0
line vty 0 4
password cisco
login
!
   end
```

• show ip route

```
R2#sh ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default, U - per-user static route, o - ODR
P - periodic downloaded static route

Gateway of last resort is not set

10.0.0.0/16 is subnetted, 1 subnets
C 10.1.0.0 is directly connected, FastEthernet0/0
172.30.0.0/16 is variably subnetted, 6 subnets, 2 masks
R 172.30.1.0/24 [120/1] via 209.165.200.230, 00:00:10, Serial0/0/0
R 172.30.2.0/24 [120/1] via 209.165.200.234, 00:00:19, Serial0/0/1
R 172.30.100.0/24 [120/1] via 209.165.200.234, 00:00:19, Serial0/0/1
R 172.30.110.0/24 [120/1] via 209.165.200.234, 00:00:19, Serial0/0/1
```

```
R 172.30.200.16/28 [120/1] via 209.165.200.234, 00:00:19, Serial0/0/1 R 172.30.200.32/28 [120/1] via 209.165.200.234, 00:00:19, Serial0/0/1 209.165.200.0/30 is subnetted, 2 subnets C 209.165.200.228 is directly connected, Serial0/0/0 C 209.165.200.232 is directly connected, Serial0/0/1
```

show ip interface brief

```
R2#sh ip int brief
                                     OK? Method Status
                                                                         Protocol
Interface
                      IP-Address
                                     YES manual up
FastEthernet0/0
                      10.1.0.1
                                   YES manual up
YES NVRAM administratively down
                     unassigned
                                                                         down
FastEthernet0/1
Serial0/0/0
                      209.165.200.229 YES manual up
Serial0/0/1
                      209.165.200.233 YES manual up
                                                                         uр
   Vlan1
                             unassigned
                                          YES unset administratively down
                                                                                  down
```

• show ip protocols

```
R2#sh ip protocols
Routing Protocol is "rip"
Sending updates every 30 seconds, next due in 18 seconds
Invalid after 180 seconds, hold down 180, flushed after 240
Outgoing update filter list for all interfaces is not set
Incoming update filter list for all interfaces is not set
Redistributing: rip
Default version control: send version 2, receive 2
Interface Send Recv Triggered RIP Key-chain
Serial0/0/0 2 2
Serial0/0/1 2 2
Automatic network summarization is not in effect
Maximum path: 4
Routing for Networks:
10.0.0.0
209.165.200.0
Passive Interface(s):
FastEthernet0/0
Routing Information Sources:
Gateway Distance Last Update
209.165.200.230 120 00:00:09
209.165.200.234 120 00:00:13
Distance: (default is 120)
```

Router - R3

• show running-config

```
R3#sh running-config
Building configuration...

Current configuration : 1027 bytes
!
version 12.4
no service timestamps log datetime msec
no service password-encryption
!
hostname R3
!
!
!
no ip cef
no ipv6 cef
!
!
! spanning-tree mode pvst
!
```

```
interface Loopback0
ip address 172.30.110.1 255.255.255.0
interface Loopback1
ip address 172.30.200.17 255.255.255.240
interface Loopback2
ip address 172.30.200.33 255.255.255.240
interface FastEthernet0/0
ip address 172.30.100.1 255.255.255.0
duplex auto
speed auto
interface FastEthernet0/1
no ip address
duplex auto
speed auto
shutdown
interface Serial0/0/0
no ip address
clock rate 2000000
shutdown
interface Serial0/0/1
ip address 209.165.200.234 255.255.255.252
interface Vlan1
no ip address
shutdown
router rip
version 2
passive-interface FastEthernet0/0
network 172.30.0.0
network 209.165.200.0
no auto-summary
ip classless
ip flow-export version 9
line con 0
line aux 0
line vty 0 4
password cisco
login
end
```

• show ip route

```
R3#sh ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area

* - candidate default, U - per-user static route, o - ODR

P - periodic downloaded static route

Gateway of last resort is not set
```

```
10.0.0.0/16 is subnetted, 1 subnets
R 10.1.0.0 [120/1] via 209.165.200.233, 00:00:04, Serial0/0/1
172.30.0.0/16 is variably subnetted, 6 subnets, 2 masks
R 172.30.1.0/24 [120/2] via 209.165.200.233, 00:00:04, Serial0/0/1
R 172.30.2.0/24 [120/2] via 209.165.200.233, 00:00:04, Serial0/0/1
C 172.30.100.0/24 is directly connected, FastEthernet0/0
C 172.30.110.0/24 is directly connected, Loopback0
C 172.30.200.16/28 is directly connected, Loopback1
C 172.30.200.32/28 is directly connected, Loopback2
209.165.200.0/30 is subnetted, 2 subnets
R 209.165.200.228 [120/1] via 209.165.200.233, 00:00:04, Serial0/0/1
C 209.165.200.232 is directly connected, Serial0/0/1
```

show ip interface brief

R3#sh ip interface brief IP-Address Interface OK? Method Status Protocol FastEthernet0/0 172.30.100.1 YES manual up unassigned YES NVRAM administratively down unassigned YES NVRAM administratively down FastEthernet0/1 Serial0/0/0 down 209.165.200.234 YES manual up Serial0/0/1 Loopback1 172.30.110.1 YES manual up 172.30.200.17 YES manual up up up 172.30.200.33 YES manual up Loopback2 uρ Vlan1 unassigned YES unset administratively down down

• show ip protocols

```
R3#sh ip protocols
Routing Protocol is "rip"
Sending updates every 30 seconds, next due in 13 seconds
Invalid after 180 seconds, hold down 180, flushed after 240
Outgoing update filter list for all interfaces is not set
Incoming update filter list for all interfaces is not set
Redistributing: rip
Default version control: send version 2, receive 2
Interface Send Recv Triggered RIP Key-chain
Loopback0 2 2
Loopback1 2 2
Loopback2 2 2
Serial0/0/1 2 2
Automatic network summarization is not in effect
Maximum path: 4
Routing for Networks:
172.30.0.0
209.165.200.0
Passive Interface(s):
FastEthernet0/0
Routing Information Sources:
Gateway Distance Last Update
209.165.200.233 120 00:00:19
Distance: (default is 120)
```

Task 10: Clean Up

Erase the configurations and reload the routers. Disconnect and store the cabling. For PC hosts that are normally connected to other networks (such as the school LAN or to the Internet), reconnect the appropriate cabling and restore the TCP/IP settings.

