

Introdução à Teoria da Computação

Autômatos Finitos Não Determinísticos (NFA)

Professor Luís Carlos Pompeu

- Não-determinismo:
 - Importante generalização dos modelos de máquinas;
 - Fundamental em estudos:
 - Teoria da Computação,
 - Linguagens Formais,
 - Modelo para concorrência, ...

- O não determinismo não aumenta o poder de reconhecimento de linguagens da classe de autômatos.
 - Ou seja, qualquer linguagem reconhecida e aceita pelo autômato não determinístico é também aceita por autômatos determinísticos.
 - Qualquer autômato finito não determinístico pode ser simulado por um autômato finito determinístico.

- Não-determinismo no programa, é uma função parcial:
 - O não-determinismo em um programa, especialmente no contexto de autômatos, significa que, para uma mesma entrada e estado atual, o programa pode ter múltiplos caminhos possíveis. Em outras palavras, a execução não segue um único fluxo pré-definido, mas sim um conjunto de possibilidades.
 - "É uma função parcial" → Isso significa que a função de transição do autômato pode não estar definida para todas as combinações de estado e entrada. Ou seja, pode haver situações em que o programa não sabe exatamente para onde ir.

- "Dependendo do estado corrente e do símbolo lido"
 - O comportamento do programa depende do estado atual e do que ele está processando no momento.
- "Determina um conjunto de estados do autômato"
 - Diferente de um programa determinístico (onde sempre há um único próximo estado), aqui o programa pode escolher entre vários estados possíveis.
 - Um autômato não-determinístico pode escolher entre várias direções sem uma regra única para decidir.
 - O autômato pode, de fato, seguir todas as possibilidades ao mesmo tempo (conceito de computação paralela teórica).

- Exemplo didático: Caixa Eletrônico (Determinístico vs. Não-Determinístico)
- Determinístico: Você insere seu cartão e digita a senha. Se a senha estiver correta, você sempre acessa sua conta. Se errada, sempre dá erro.
- Não-Determinístico: Você insere seu cartão e digita a senha, mas o sistema pode:
 - Acessar sua conta normalmente
 - Solicitar verificação extra por SMS
 - Solicitar que você vá até um atendente
 - Travar o cartão se detectar algo suspeito
- Aqui, a mesma ação pode ter múltiplos resultados possíveis.

O AFN assume um conjunto de estados alternativos:

- Multiplicação da unidade de controle;
- Uma para cada alternativa;
- Unidades de Controle processando independentemente e sem compartilhar recursos

$$M = (\Sigma, Q, \sigma, q_0, F)$$

- Σ: Alfabeto (de símbolos) de entrada;
- Q: Um conjunto de estados possíveis do autômato (finito);
- σ: Programa ou Função de Transição (função parcial);
 - $\sigma: \mathbf{Q} \times \Sigma \to \mathbf{2}^{\mathbf{Q}}$
- Transição: $\sigma(\mathbf{p}, \mathbf{a}) = \{\mathbf{q}_1, \mathbf{q}_2, ..., \mathbf{q}_n\}$
- q₀: Estado inicial (é um elemento distinguido de Q);
- F: Conjunto de estados finais (é um subconjunto de Q).

Autômato como diagrama:

 $\sigma(p,a) = \{q_1, q_2, ..., q_n\} \rightarrow \text{o conjunto de estados pode, inclusive, ser um único estado ou indeterminado.}$

- Computação (Função Programa Estendida) de um autômato finito não-determinístico:
 - Sucessiva aplicação da função programa...
 - para cada símbolo da entrada (da esquerda para a direita)...
 - até ocorrer uma condição de parada.
- Argumentos para computação:
 - Conjunto finito de estados e uma palavra.

• $M = (\Sigma, Q, \sigma, q_0, F)$ autômato finito não-determinístico

$$\sigma^*: 2^Q \times \Sigma^* \to 2^Q$$

- Indutivamente definida
 - σ*(P, ε) = P (o estado p foi substituído por um conjunto de estados P)
 Se estou em um conjunto de estados e leio vazio, permaneço no mesmo conjunto de estados;
 - σ*(P, aw) = σ*(\cup q∈ P σ(q, a), w)

Se estou em um conjunto de estados e leio um símbolo que é prefixo de uma palavra, vou transitar por um conjunto que é a união dos destinos de todos os resultados da função de transição para o símbolo lido

- Transição estendida
 - Para um conjunto de estados {q₁, q₂, ..., q_n} e para o símbolo a:

$$\sigma^*(\{q_1, q_2, ..., q_n\}, a) = \sigma(q_1, a) \cup \sigma(q_2, a) \cup ... \cup \sigma(q_n, a)$$

- Parada do processamento:
 - Aceita a entrada:
 - Após processar o último símbolo da fita, ...
 - existe pelo menos um estado final ...
 - pertencente ao conjunto de estados alternativos atingidos.
- Rejeita a entrada. Duas possibilidades:
 - (1) Após processar o último símbolo da fita, todos os estados alternativos atingidos são não finais;
 - (2) Programa indefinido para o argumento (conjunto de estados e símbolo).
 - Exemplo: suponha que estou em determinado conjunto de estados e leio "a" e não tenho nenhuma transição para esse símbolo.

Linguagem Aceita, Linguagem Rejeitada

• Seja M = $(\Sigma, Q, \sigma, q_0, F)$ um AFN:

- Linguagem Aceita ou Linguagem Reconhecida por M
 - L(M) = ACEITA(M) = { w | $\sigma^*(\{q_0\}, w) \cap F \neq \emptyset$ }

Toda a palavra "w" tal que o processamento da palavra toda, a partir de um estado inicial, a intersecção com um conjunto de estados finais "F" seja diferente de vazio

- Linguagem Rejeitada por M
 - REJEITA(M) = {w | $\sigma^*(\{ q_0 \}, w) \cap F \neq \emptyset$ ou $\sigma^*(\{ q_0 \}, w)$ é indefinida }

Toda a palavra "w" tal que após o computação da palavra toda, a partir de um estado inicial, a intersecção com um conjunto de estados finais seja vazio ou em algum ponto da computação tenha todas as transições para o símbolo lindo como indefinido

 $L_5 = \{ w \mid w \text{ possui aa ou bb como subpalavra } \}$

Autômato finito não-determinístico:

-
$$M_5 = (\{a, b\}, \{q_0, q_1, q_2, q_f\}, \sigma_5, q_0 \{q_f\})$$

Considerando o estado inicial q0, se eu ler "a" vou para o estado q1, mas ao mesmo tempo, continuo em q0.

Isso pode ser comparado a *threads* em processamento paralelo, onde o processamento se divide em 2 partes cada parte segue caminhos independentes.

Se o próximo símbolo for "a", saio de q1 e vou par qf, enquanto q0 continua em q0 e, nesse caso já atingi um estado de aceitação que é "aa" e já estou em um estado final. No entanto, o processamento continuará até o fim da

- O ciclo em q₀ realiza uma varredura em toda a entrada:
- O caminho q⁰/q₁/q_f garante a ocorrência de aa.
- O caminho q₀/q₂/q_f garante a ocorrência de bb.

- Computação da palavra abaa:
- $\sigma^*(\{q_0\}, abaa)$ = %Função estendida sobre **abaa**
- $\sigma^*(\sigma(q_0,a), baa) = \text{%Processa } \underline{a}baa$
- $\sigma^*(\{q_0,q_1\}, baa) = %Função estendida sobre$ **baa**
- $\sigma^*(\sigma(q_0,b) \cup \sigma(q_1,b)$, aa) = %Processa **baa**
- $\sigma^*(\sigma(q_0,q_2) \cup \emptyset$, aa) =
- $\sigma^*(\{q_0,q_2\}, aa)$ = %Função estendida sobre **aa**
- $\sigma^*(\sigma(q_0,a)\cup\sigma(q_2,a), a) = %Processa \underline{a}a$

- Computação da palavra abaa: (continuação)
- $\sigma^*(\sigma(q_0,q_1) \cup \emptyset, a) =$
- $\sigma^*(\{q_0,q_1\}, a)$ = %Função estendida sobre **a**
- $\sigma^*(\sigma(q_0,a)\cup\sigma(q_1,a), \mathcal{E}) = \text{%Processa } \underline{a}$
- $\sigma^*(\sigma(q_0,q_1) \cup \{q_f\}, \mathcal{E}) =$
- $\sigma^*(\{q_0,q_1,q_f\}, \mathcal{E}) = \{q_0,q_1,q_f\}$ %Função estendida sobre \mathcal{E}
- A palavra abaa é aceita pois {q0, q1, qf} ∩ F = {q_f} ≠ Ø

Exemplo: aaa como sufixo

 $L_6 = \{ w \mid w \text{ possui aaa como sufixo } \}$

Autômato finito não-determinístico:

$$M_6 = (\{a, b\}, \{q_0, q_1, q_2, q_f\}, \sigma_6, q_0 \{q_f\})$$

Considere a palavra: abaabaaa

Exemplo: aaa como sufixo

Considere a palavra: abaabaaa

q0 leio $\mathbf{a} \rightarrow q0$, q1

q0 leio $\mathbf{b} \rightarrow q0$

q1 leio **b** → transição indefinida (-) sobra q0 para continuar

q0 leio $\mathbf{a} \rightarrow q0$, q1

q0 leio $\mathbf{a} \rightarrow q0$, q1

q1 leio a → q2 então aqui temos três estados q0, q1 e q2

q0 leio $\mathbf{b} \rightarrow q0$

q1 leio **b** → transição indefinida (-)

q2 leio **b** → transição indefinida (-) só sobrou o q0

q0 leio $\mathbf{a} \rightarrow q0$, q1

q0 leio $\mathbf{a} \rightarrow q0$, q1

q1 leio a → q2 novamente temos três estados q0, q1, q2

Exemplo: aaa como sufixo

Considere a palavra: abaabaaa

q0 leio
$$a \rightarrow q0$$
, q1

q1 leio
$$\mathbf{a} \rightarrow \mathbf{q}2$$

q0 leio
$$\mathbf{E} \rightarrow q0$$

q2 leio
$$\mathbf{E} \rightarrow q2$$

 A palavra é aceita porque temos 4 estados e pelo menos 1 deles é um estado final

Equivalência entre AFD e AFN

- Classe dos Autômatos Finitos Determinísticos:
 - É equivalente à classe dos Autômatos Finitos Não-Determinísticos.

- Não-determinismo:
 - Aparentemente, um significativo acréscimo ao poder computacional do autômato finito;
 - Na realidade n\u00e3o aumenta seu poder computacional.

Equivalência entre AFD e AFN

- Seja $M = (\Sigma, Q, \sigma, q_0, F)$ um AFN qualquer
- E $M_D = (\Sigma, Q_D, \sigma_D, \langle q_0 \rangle, F_D)$ o AFD construído
- Q_D: todas as combinações, sem repetições, de estados de Q
 - Notação <q1 q2 ... qn> é um estado determinístico que equivale as estados não determinísticos q1, q2, ..., qn (separadamente)
 - A ordem n\(\tilde{a}\) distingue combina\(\tilde{c}\) es: <q_uq_v> = <q_vq_u>
- σ_D : $Q_D \times \Sigma \rightarrow Q_D$
- $\sigma_D(\langle q_1...q_n \rangle, a) = \langle p_1...p_m \rangle \text{ se } \sigma^*(\{q_1, ..., q_n\}, a) = \{p_1, ..., p_m\}$
 - <q₀>: Estado inicial
 - F_D: Conjunto de estados <q₁ q₂qn> pertencentes a Q_D:
 - Algum componente q_i pertence a F, para i em {1, 2, ..., n}

Equivalência entre AFD e AFN

- Portanto, linguagem aceita por AFN:
 - É linguagem Regular ou Tipo 3

Determinismo X Não Determinismo

- Muitas vezes é mais fácil desenvolver um AFN do que um AFD.
 - Solução determinista:
 - Não é trivial número grande de estados;
 - Solução não-determinista:
 - Mais simples poucos estados;
- Alternativa para construir um AFD:
 - Desenvolver inicialmente AFN;
 - Converter o AFN em AFD.

• $M_6 = (\{a, b\}, \{q_0, q_1, q_2, q_f\}, \sigma_6, q_0 \{q_f\})$

• $M_6 = (\{a, b\}, \{q_0, q_1, q_2, q_f\}, \sigma_6, q_0 \{q_f\})$

- $M_6 = (\{ a, b \}, Q_D, \sigma_{6D}, <q_0>, F_D)$
- $Q_D = \{ \langle q_0 \rangle, \langle q_1 \rangle, \langle q_2 \rangle, \langle q_f \rangle, \langle q_0 \rangle, \langle q_0 \rangle, \langle q_1 \rangle, \langle q_0 \rangle, \langle q_1 \rangle,$
- Todas as combinações possíveis de estado de Q
- $F_D = \{ \langle q_f \rangle, \langle q_0 q_f \rangle, \langle q_1 q_f \rangle, ..., \langle q_0 q_1 q_2 q_f \rangle \}$
- Subconjunto de Q, que possui pelo menos um qf

AFN

$\sigma_{ m 6D}$	а	b
<q<sub>0></q<sub>	<q<sub>0q₁></q<sub>	<q<sub>0></q<sub>
<q<sub>0q₁></q<sub>	$< q_0 q_1 q_2 >$	<q<sub>0></q<sub>
<q<sub>0q₁q₂></q<sub>	$< q_0 q_1 q_2 q_f >$	<q<sub>0></q<sub>
$< q_0 q_1 q_2 q_f >$	$< q_0 q_1 q_2 q_f >$	<q<sub>0></q<sub>

Quando o estado é indefinido, ignoro e mantenho apenas os definidos Conversão de autômato não é inventar regra é seguir o algoritmo, ou seja, uma sequencia de passos que de um resultado exato

AFD

$\sigma_{ ext{6D}}$	а	b
$p_0 = $	<q<sub>0q₁></q<sub>	<q<sub>0></q<sub>
$p_1 = $	$< q_0 q_1 q_2 >$	<q<sub>0></q<sub>
$p_2 = \langle q_0 q_1 q_2 \rangle$	$< q_0 q_1 q_2 q_f >$	<q<sub>0></q<sub>
$p_f = \langle q_0 q_1 q_2 q_f \rangle$	$< q_0 q_1 q_2 q_f >$	<q<sub>0></q<sub>

