

Institutt for matematiske fag

skal ha flervalgskjema

| Eksamensoppgave i TMA4125                                                   | 5 Matema       | tikk 4N        |                 |
|-----------------------------------------------------------------------------|----------------|----------------|-----------------|
|                                                                             |                |                |                 |
| Faulin kontakt under aksemen. Ause Kus                                      | awaa lawa F    |                | <b>.</b>        |
| Faglig kontakt under eksamen: Anne Kva<br>Tlf: a 92 66 38 24, b 92 31 02 95 | ernø", Louis-F | nilippe i niba | auit            |
| , , , , , , , , , , , , , , , , , , , ,                                     |                |                |                 |
| Eksamensdato: 31 mai, 2018                                                  |                |                |                 |
| Eksamenstid (fra-til): 09:00 - 13:00                                        |                |                |                 |
| <b>Hjelpemiddelkode/Tillatte hjelpemidler:</b> Restemt, enkel kalkulator    | Kode C:        |                |                 |
| Rottmann: Matematisk formelsamling                                          |                |                |                 |
| Annen informasjon:                                                          |                |                |                 |
| <ul> <li>Alle svar må begrunnes og det skal kl</li> </ul>                   | art fremgå hvo | rdan svarene   | e er oppnådd.   |
| <ul> <li>Alle delpunkter teller likt ved karakters</li> </ul>               | etting.        |                |                 |
| Lykke til!                                                                  |                |                |                 |
|                                                                             |                |                |                 |
| Målform/språk: bokmål                                                       |                |                |                 |
| Antall sider: 3                                                             |                |                |                 |
| Antall sider vedlegg: 2                                                     |                |                |                 |
|                                                                             |                |                | Kontrollert av: |
| Informasjon om trykking av eksamensoppgave                                  |                |                |                 |
| Originalen er:<br>1-sidig □ 2-sidig ⊠                                       |                |                |                 |
| sort/hvit ⊠ farger □                                                        |                | Dato           | Sign            |

**Oppgave 1** La f(x) være gitt ved f(x) = x for  $x \in [0, 3]$ .

- a) Finn Fourier sinus-rekka til f(x).
- **b)** Bruk resultatet til å finne verdien av rekka  $\sum_{n=1}^{\infty} \frac{1}{n^2}$ .

Hint: Bruk Parsevals identitet.

Oppgave 2 La

$$f(x) = \frac{4}{x^2 + 2}$$
 og  $g(x) = \frac{2x}{(x^2 + 1)^2}$ , for alle reelle  $x$ .

Vis at foldingen (convolution) er

$$(f * g)(x) = -\pi \sqrt{2}i \int_{-\infty}^{\infty} \omega e^{-(\sqrt{2}+1)|\omega|} e^{i\omega x} d\omega.$$

Oppgave 3 Løs følgende differensialligning ved hjelp av Laplace-transformasjoner:

$$y'' + 3y' + 2y = \begin{cases} 4t & \text{hvis } 0 < t \le 1\\ 4 & \text{hvis } t > 1, \end{cases}$$

med startbetingelser y(0) = 0 og y'(0) = 0.

**Oppgave 4** Betrakt ligningen  $x = \frac{1}{2}\cos(x)$ .

- a) Vis at denne ligningen har en unik løsning i intervallet (0,1).
- **b)** Gjør 2 iterasjoner med Newtons metode for å finne løsningen, start med  $x_0 = 0.5$ .

Bruk 5 siffer i beregningene.

Oppgave 5 Gitt differensialligningen

$$y' = xy^2, \qquad y(1) = 0.5.$$

- a) Beregn en tilnærmet løsning  $y_1^H \approx y(1.1)$  ved et skritt med Heuns metode, med steglengde h = 0.1.
- b) Beregn en tilnærmet løsning  $y_1^E \approx y(1.1)$  ved et skritt med Eulers metode, med steglengde h = 0.1.

Bruk resultatet fra punkt a) til å finne et estimat for feilen  $y(1.1) - y_1^E$ .

Gitt en toleranse Tol =  $10^{-3}$ , vil du da akseptere  $y_1^E$  som en tilstrekkelig nøyaktig tilnærmelse?

Enten du aksepterer tilnærmelsen eller ikke, hva bør steglengden for neste steg være?

Bruk P = 0.8 som pessimistfaktor i algoritmen for valg av steglengde.

Hint: Eulers metode er av orden 1, Heuns metode av orden 2.

## Oppgave 6

a) Gitt en funksjon f(t). Finn et uttrykk for polynomet av lavest mulig grad som interpolerer funksjonen i nodene  $t_0 = -1/3$  og  $t_1 = 1$ .

Bruk resultatet til å finne en kvadraturformel  $Q[-1,1] = w_0 f(t_0) + w_1 f(t_1)$  som en tilnærmelse til integralet  $\int_{-1}^{1} f(t) dt$ .

Bestem presisjonsgraden til kvadraturformelen.

**b)** Overfør kvadraturformelen Q[-1,1] til et tilfeldig intervall [a,b].

Bruk det til å finne en tilnærmelse til integralet  $\int_1^2 x^2 \sin(\pi x/2) dx$ .

**Oppgave 7** La u(x,t) være utslaget ved tidspunkt t og posisjon x av en vibrerende streng av lengde 4. Den oppfyller bølgeligningen

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}, \quad 0 \le x \le 4, \quad t \ge 0,$$

med startverdier

$$u(x,0) = 3\sin(\pi x)$$
 og  $u_t(x,0) = \sin(4\pi x)$ ,  $0 \le x \le 4$ ,

og grensebetingelser

$$u(0,t) = u(4,t) = 0, \quad t \ge 0.$$

- a) Finn alle løsninger av bølgeligningen på formen u(x,t) = F(x)G(t) som oppfyller grensebetingelsene.
- b) Finn løsningen som også oppfyller startbetingelsene.
- c) Sett opp et numerisk differanseskjema for ligningen, etter følgende retningslinjer:

Bruk steglengder  $\Delta t$  og  $\Delta x$  i henholdsvis t- og x-retningen, der  $\Delta x=4/M$ , og M er antall intervaller i x-retningen. Gitterpunktene er da gitt ved  $t_n=n\Delta t,\ n=0,1,2,\ldots$  og  $x_i=i\Delta x,\ i=0,1,\ldots,M$ . La  $U_i^n\approx u(x_i,t_n)$  være den numeriske tilnærmelsen i hvert gitterpunkt.

- Sett opp et endelig differanseskjema for ligningen, basert på sentraldifferanser. Skjemaet blir eksplisitt, det vil si at tilnærmelsen  $U_i^{n+1}$  kan uttrykkes ved hjelp av de numeriske løsningene i tidspunkt  $t_n$  og  $t_{n-1}$  for  $n \geq 1$ .
- Bruk deretter en sentraldifferanse for  $u_t(x,0)$  og ideen med en falsk rand for å finne et skjema for å beregne  $U_i^1$ ,  $i=1,\ldots,M-1$ .
- La  $\Delta x = 0.1$  og  $\Delta t = 0.1$  og bruk disse skjemaene til å beregne  $U_1^2 \approx u(0.1, 0.2)$ .

## Fourier Transform

| $f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(\omega) e^{i\omega x} d\omega$ | $\hat{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-i\omega x} dx$ |
|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| f * g(x)                                                                                     | $\sqrt{2\pi}\hat{f}(\omega)\hat{g}(\omega)$                                             |
| f'(x)                                                                                        | $i\omega \hat{f}(\omega)$                                                               |
| $e^{-ax^2}$                                                                                  | $\frac{1}{\sqrt{2a}}e^{-\omega^2/4a}$                                                   |
| $e^{-a x }$                                                                                  | $\sqrt{\frac{2}{\pi}} \frac{a}{\omega^2 + a^2}$                                         |
| $\frac{1}{x^2 + a^2}$                                                                        | $\sqrt{\frac{\pi}{2}} \frac{e^{-a \omega }}{a}$                                         |
| f(x) = 1 for $ x  < a$ , 0 otherwise                                                         | $\sqrt{\frac{2}{\pi}} \frac{\sin \omega a}{\omega}$                                     |

## Laplace Transform

| f(t)                                           | $F(s) = \int_0^\infty e^{-st} f(t)  dt$ |
|------------------------------------------------|-----------------------------------------|
| f'(t)                                          | sF(s) - f(0)                            |
| $\overline{tf(t)}$                             | -F'(s)                                  |
| $e^{at}f(t)$                                   | F(s-a)                                  |
| $\cos(\omega t)$                               | $\frac{s}{s^2 + \omega^2}$              |
| $\sin(\omega t)$                               | $\frac{\omega}{s^2 + \omega^2}$         |
| $t^n$                                          | $\frac{n!}{s^{n+1}}$                    |
| $e^{at}$                                       | $\frac{1}{s-a}$                         |
| f(t-a)u(t-a)                                   | $e^{-sa}F(s)$                           |
| $\frac{}{\delta(t-a)}$                         | $e^{-as}$                               |
| $\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$ | F(s)G(s)                                |

## **Numerics**

- Newton's method:  $x_{k+1} = x_k \frac{f(x_k)}{f'(x_k)}$ .
- Newton's method for system of equations:  $\vec{x}_{k+1} = \vec{x}_k JF(\vec{x}_k)^{-1}F(\vec{x}_k)$ , with  $JF = (\partial_j f_i)$ .
- Lagrange interpolation:  $p_n(x) = \sum_{k=0}^n \frac{l_k(x)}{l_k(x_k)} f_k$ , with  $l_k(x) = \prod_{j \neq k} (x x_j)$ .
- Interpolation error:  $\epsilon_n(x) = \prod_{k=0}^n (x x_k) \frac{f^{(n+1)}(t)}{(n+1)!}$ .
- Chebyshev points:  $x_k = \cos\left(\frac{2k+1}{2n+2}\pi\right)$ ,  $0 \le k \le n$ .
- Newton's divided difference:  $f(x) \approx f_0 + (x x_0) f[x_0, x_1] + (x x_0)(x x_1) f[x_0, x_1, x_2] + \dots + (x x_0)(x x_1) \dots (x x_{n-1}) f[x_0, \dots, x_n],$  with  $f[x_0, \dots, x_k] = \frac{f[x_1, \dots, x_k] f[x_0, \dots, x_{k-1}]}{x_k x_0}.$
- Trapezoid rule:  $\int_a^b f(x) dx \approx h\left[\frac{1}{2}f(a) + f_1 + f_2 + \dots + f_{n-1} + \frac{1}{2}f(b)\right]$ . Error of the trapezoid rule:  $|\epsilon| \leq \frac{b-a}{12}h^2 \max_{x \in [a,b]} |f''(x)|$ .
- Simpson rule:  $\int_a^b f(x) dx \approx \frac{h}{3} [f_0 + 4f_1 + 2f_2 + 4f_3 + \dots + 2f_{n-2} + 4f_{n-1} + f_n].$ Error of the Simpson rule:  $|\epsilon| \leq \frac{b-a}{180} h^4 \max_{x \in [a,b]} |f^{(4)}(x)|.$
- Gauss–Seidel iteration:  $\mathbf{x}^{(m+1)} = \mathbf{b} \mathbf{L}\mathbf{x}^{(m+1)} \mathbf{U}\mathbf{x}^{(m)}$ , with  $\mathbf{A} = \mathbf{I} + \mathbf{L} + \mathbf{U}$ .
- Jacobi iteration:  $\mathbf{x}^{(m+1)} = \mathbf{b} + (\mathbf{I} \mathbf{A})\mathbf{x}^{(m)}$ .
- Euler method:  $\mathbf{y}_{n+1} = \mathbf{y}_n + h\mathbf{f}(x_n, \mathbf{y}_n)$ .
- Improved Euler (Heun's) method:  $\mathbf{y}_{n+1} = \mathbf{y}_n + \frac{1}{2}h[\mathbf{f}(x_n, \mathbf{y}_n) + \mathbf{f}(x_n + h, \mathbf{y}_{n+1}^*)],$ where  $\mathbf{y}_{n+1}^* = \mathbf{y}_n + h\mathbf{f}(x_n, \mathbf{y}_n).$
- Classical Runge–Kutta method:  $\mathbf{k}_1 = h\mathbf{f}(x_n, \mathbf{y}_n)$ ,  $\mathbf{k}_2 = h\mathbf{f}(x_n + h/2, \mathbf{y}_n + \mathbf{k}_1/2)$ ,  $\mathbf{k}_3 = h\mathbf{f}(x_n + h/2, \mathbf{y}_n + \mathbf{k}_2/2)$ ,  $\mathbf{k}_4 = h\mathbf{f}(x_n + h, \mathbf{y}_n + \mathbf{k}_3)$ ,  $\mathbf{y}_{n+1} = \mathbf{y}_n + \frac{1}{6}\mathbf{k}_1 + \frac{1}{3}\mathbf{k}_2 + \frac{1}{3}\mathbf{k}_3 + \frac{1}{6}\mathbf{k}_4$ .
- Backward Euler method:  $\mathbf{y}_{n+1} = \mathbf{y}_n + h\mathbf{f}(x_{n+1}, \mathbf{y}_{n+1})$ .
- Finite differences:  $\frac{\partial u}{\partial x}(x,y) \approx \frac{u(x+h,y)-u(x-h,y)}{2h}, \frac{\partial^2 u}{\partial x^2}(x,y) \approx \frac{u(x+h,y)-2u(x,y)+u(x-h,y)}{h^2}$ .
- Crank-Nicolson method for the heat equation:  $r = \frac{k}{h^2}$ ,  $(2+2r)u_{i,j+1} r(u_{i+1,j+1} + u_{i-1,j+1}) = (2-2r)u_{i,j} + r(u_{i+1,j} + u_{i-1,j})$ .