Matematika 4 — Logika pre informatikov 3. sada teoretických úloh

Táto sada úloh obsahuje **hodnotenú časť**. Jej riešenie odovzdajte najneskôr v **pondelok 14. marca 2022 o 9:00**.

Čísla úloh v zátvorkách odkazujú do zbierky¹, kde nájdete riešené príklady a ďalšie úlohy na precvičovanie.

Cvičenie 3.1. (3.1.1, 3.1.2, 3.1.3; Def. 3.5, tvrdenia 3.6 a 3.8)

a) Nech $\mathcal L$ je jazyk výrokovologickej časti logiky prvého rádu, kde $\mathcal C_{\mathcal L}=\{\mathsf{Jack},\mathsf{Corona}\}$ a $\mathcal P_{\mathcal L}=\{\mathsf{pivo}^1,\mathsf{pije}^2\}$. Nech $\mathcal M=(D,i)$ je štruktúra pre jazyk $\mathcal L$, kde:

$$D = \{s1, s2, s3, p1, p2\}$$

$$i(\mathsf{Jack}) = s3,$$

$$i(\mathsf{Corona}) = p1,$$

$$i(\mathsf{pivo}) = \{p1, p2\},$$

$$i(\mathsf{pije}) = \{(s1, p1), (s2, p1), (s2, p2)\}$$

Zostrojte výrokovologické ohodnotenie v pre $\mathcal L$ zhodné so štruktúrou $\mathcal M.$

b) Nech $\mathcal L$ je jazyk výrokovologickej časti logiky prvého rádu, kde $\mathcal C_{\mathcal L}=\{$ Andy, Woody $\}$ a $\mathcal P_{\mathcal L}=\{$ hračka 1 , chlapec 1 , hrá_sa $^2\}$. Nech

$$\begin{split} v &= \{\mathsf{hračka}(\mathsf{Woody}) \mapsto t, & \mathsf{hračka}(\mathsf{Andy}) \mapsto f, \\ & \mathsf{chlapec}(\mathsf{Andy}) \mapsto t, & \mathsf{chlapec}(\mathsf{Woody}) \mapsto f, \\ & \mathsf{hrá_sa}(\mathsf{Andy}, \mathsf{Woody}) \mapsto t, & \mathsf{hrá_sa}(\mathsf{Woody}, \mathsf{Andy}) \mapsto f \} \end{split}$$

je čiastočné ohodnotenie predikátových atómov jazyka \mathcal{L} . Zostrojte štruktúru \mathcal{M} zhodnú s v na dom v.

Cvičenie 3.2. (3.2.1, 3.2.2) Majme výrokovologickú teóriu *T*:

$$T = \begin{cases} A_1 \colon \big(\mathsf{tancuje_s}(\mathsf{A}, \mathsf{B}) \to (\mathsf{frajer}(\mathsf{A}) \vee \mathsf{spieva}(\mathsf{A})) \big), \\ A_2 \colon (\neg \mathsf{tancuje_s}(\mathsf{A}, \mathsf{B}) \vee \neg \mathsf{spieva}(\mathsf{A})), \\ A_3 \colon (\neg \mathsf{spieva}(\mathsf{A}) \to \mathsf{frajer}(\mathsf{A})) \end{cases}.$$

O každej z formúl X_1 – X_3 rozhodnite, či a) vyplýva z teórie T, b) je nezávislá od T, alebo c) ani z T nevyplýva, ani od nej nie je nezávislá:

¹ https://fmfi-uk-1-ain-412.github.io/lpi/teoreticke-ain/zbierka.pdf

- (X_1) (tancuje_s(A, B) \rightarrow frajer(A)),
- (X_2) ¬spieva(A),
- (X_3) (¬spieva(A) \land ¬frajer(A)).
- ② Aká formula vyplýva z teórie v prípade c)?

Cvičenie 3.3. (3.2.3, 3.2.2) Inšpektor Scotland Yardu Nick Fishtrawn predviedol troch podozrivých z lúpeže klenotov v obchodnom dome Harrods: Daviesa, Milesa a Parkera. Inšpektor vyšetrovaním zistil nasledovné indície:

- (A_1) Miles nikdy nepracuje sám, teda lúpil, iba ak sa na lúpeži podieľal aspoň jeden zo zvyšných dvoch podozrivých.
- (A_2) Davies vždy pracuje s Parkerom.
- (A_3) Parker sa s Milesom neznáša, preto určite nelúpili spolu.
- (A_4) Z lúpeže môžu byť vinní len títo traja podozriví a nikto iný.

Sformalizujte zistené skutočnosti ako výrokovologickú teóriu T v jazyku výrokovologickej časti logiky prvého rádu s vhodne zvolenými množinami $\mathcal{C}_{\mathcal{L}}$ a $\mathcal{P}_{\mathcal{L}}$.

- a) Využitím splniteľnosti, vyplývania a nezávislosti rozhodnite, koho z podozrivých môže inšpektor s istotou obviniť, koho môže bez obáv prepustiť, lebo sa krádeže určite nezúčastnil, a koho musí prepustiť pre nedostatok dôkazov.
- b) Aké by boli vaše závery, keby inšpektor zistil aj nasledujúcu skutočnosť?
 - (A₅) Milesa videli dvaja spoľahliví svedkovia utekať s lupom z obchodného domu, takže je určite vinný.

Pomôcka. Formalizáciu tentoraz obmedzte na skutočnosti, ktoré sú postačujúce k vyriešeniu úlohy (teda sústreďte sa na vinu podozrivých, ak je to postačujúce).

Hodnotená časť

Riešenie hodnotenej časti tejto úlohy **odovzdajte** najneskôr v pondelok **14. marca 2022 o 9:00** cez odovzdávací formulár pre tu03². Riešenia odovzdané po termíne sa považujú za opravy neodovzdaných riešení s príslušnými dôsledkami podľa pravidiel³.

Odovzdávajte jeden dokument vo formáte PDF s dodatočnými obmedzeniami uvedenými vo formulári. Dokument musí obsahovať celé riešenie v textovej forme. Odovzdané riešenia musia byť čitateľné a mať primerane malý rozsah. Na riešenie sa vzťahujú všeobecné pravidlá³.

Úloha 3.4. (3.2.7, 3.2.2) Sformalizujte nasledujúce výroky ako ucelenú teóriu vo vhodne zvolenom spoločnom jazyku výrokovej časti logiky prvého rádu. Zadefinujte použitý jazyk a vysvetlite význam jeho predikátových symbolov.

- (A_1) Keď Rusko zaútočilo na Ukrajinu, tak porušilo Budapeštianske memorandum alebo Putin klame.
- (A_2) Rusko je agresor, ak porušilo Budapeštianske memorandum a na Ukrajinu zaútočilo.
- (A_3) Rusko neporušilo Budapeštianske memorandum, len ak Putin neklame.
- (A_4) Ak to, že Rusko zaútočilo na Ukrajinu, znamená, že porušilo Budapeštianske memorandum, tak Putin klame.

Pomocou vašej teórie využitím výrokovologickej splniteľnosti, vyplývania a nezávislosti zistite, ktoré z nasledujúcich výrokov (C_1) – (C_3) sú na základe výrokov (A_1) – (A_4) určite pravdivé, určite nepravdivé, a o ktorých to nemožno rozhodnúť:

- (C_1) Putin klame,
- (C2) Rusko Budapeštianske memorandum neporušilo,
- (C_3) Rusko je agresor, iba ak zaútočilo na Ukrajinu.

Úloha 3.5. (2.1.5) Zadefinujte funkciu acnt : $\mathcal{E}_{\mathcal{L}} \to \mathbb{N}$ takú, že acnt(A) je počet výskytov atómov vo výrokovologickej formule A.

Úloha 3.6. (2.1.6) Dokážte alebo vyvráťte: Pre každú výrokovologickú formulu *A* platí:

$$\operatorname{acnt}(A) \leq \deg(A) + 1$$

Prémiová úloha 3.7. (1,5 bodu, 2.2.5) Sformulujte základné definície syntaxe (symboly jazyka, atomická formula, formula, podformula) a sémantiky (pravdivosť formuly v štruktúre) pre výrokovú časť logiky prvého rádu s binárnymi spojkami \rightarrow (a nie) a \vee (exkluzívne alebo, XOR). Formuly nebudú obsahovať *žiadne iné spojky* (teda ani negáciu).

² https://forms.gle/zRZNeVKNWt5xYrnU6

³ https://dai.fmph.uniba.sk/w/Course:Mathematics_4/sk#pravidla-uloh

Neformálny význam $(A \nrightarrow B)$ je "A a nie je pravda, že B". Neformálny význam $(A \lor B)$ je "buď A, alebo B, ale nie obe naraz".

Zadefinujte štandardné spojky (\neg, \land, \lor) ako skratky (teda funkcie nad formulami podobne, ako sme zadefinovali \leftrightarrow v dohode 2.8) tak, aby formuly nimi vytvorené mali štandardný význam. Dokážte, že ho majú.

Účelom tejto úlohy je, aby ste si prečítali a upravili definície 2.4–2.21 z prednášky a pokúsili sa osvojiť si spôsob vyjadrovania, ktorý sa v nich používa. Môže vám pripadať ťažkopádny, je však presný. Ak vám nejaká formulácia pripadá zbytočne komplikovaná, môžete sa ju pokúsiť zjednodušiť, no snažte sa, aby ste nezmenili jej význam.

V definícii pravdivosti formuly v štruktúre vyjadrite význam spojok iba pomocou slovenských spojok *a* a *alebo* a pomocou pravdivosti a nepravdivosti priamych podformúl.