Outliers

1.0 Generazione di Dati e Divisione in Training e Test Set per Predizione di Pesi da Altezze

```
In [4]: import numpy as np
    from sklearn.model_selection import train_test_split
    np.random.seed(0)
    altezze = np.random.normal(0, 5, 100)
    pesi = 0.5 * altezze + np.random.normal(0, 5, 100)
    X_train, X_test, y_train, y_test = train_test_split(altezze, pesi, test_size=0.3, random
    print("Dimensioni del Training Set (altezze e pesi):", X_train.shape, y_train.shape)
    print("Dimensioni del Test Set (altezze e pesi):", X_test.shape, y_test.shape)

Dimensioni del Training Set (altezze e pesi): (70,) (70,)
    Dimensioni del Test Set (altezze e pesi): (30,) (30,)
```

1.1 Analisi della Relazione tra Visite al Sito e Importo delle Vendite: Generazione di Dati Casuali e Suddivisione in Training e Test Set

```
import numpy as np
In [5]:
        import matplotlib.pyplot as plt
        from sklearn.model_selection import train_test_split
        # Creazione di dati casuali per visite al sito web e importo delle vendite
        np.random.seed(0)
        visite_al_sito = np.random.randint(100, 1000, 1000)
        importo_vendite = 50 + 0.2 * visite_al_sito + np.random.normal(0, 10, 1000)
        # Suddivisione del dataset in training set (70%) e test set (30%)
        X_train, X_test, y_train, y_test = train_test_split(visite_al_sito, importo_vendite, tes
        # Creazione di un grafico a dispersione
        plt.figure(figsize=(10, 6))
        plt.scatter(X_train, y_train, label='Training Set', color='blue', alpha=0.7)
        plt.scatter(X_test, y_test, label='Test Set', color='orange', alpha=0.7)
        plt.xlabel('Numero di Visite al Sito')
        plt.ylabel('Importo delle Vendite')
        plt.title('Relazione tra Visite al Sito e Importo delle Vendite')
        plt.legend()
        plt.grid(True)
        plt.show()
        # Stampare le dimensioni dei training set e test set
        print("Dimensioni del Training Set (visite al sito e importo delle vendite):", X_train.s
        print("Dimensioni del Test Set (visite al sito e importo delle vendite):", X_test.shape,
```

Relazione tra Visite al Sito e Importo delle Vendite

Dimensioni del Training Set (visite al sito e importo delle vendite): (700,) (700,) Dimensioni del Test Set (visite al sito e importo delle vendite): (300,) (300,)

1.2 Analisi della Distribuzione di Classi in Training e Test Set: Generazione di Dati Casuali e Suddivisione Equa

```
from sklearn.model_selection import train_test_split
import numpy as np
np.random.seed(1)
X = np.random.rand(100, 2)
y = np.random.choice(['A', 'B'], size=100)
proporzione\_classe\_A = sum(y == 'A') / len(y)
proporzione_classe_B = 1 - proporzione_classe_A
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42
proporzione_classe_A_train = sum(y_train == 'A') / len(y_train)
proporzione_classe_B_train = 1 - proporzione_classe_A_train
proporzione_classe_A_test = sum(y_test == 'A') / len(y_test)
proporzione_classe_B_test = 1 - proporzione_classe_A_test
print("Proporzione Classe A nel data Set completo:", proporzione_classe_A)
print("Proporzione Classe B nel data Set completo:", proporzione_classe_B)
print("Proporzione Classe A nel Training Set:", proporzione_classe_A_train)
print("Proporzione Classe B nel Training Set:", proporzione_classe_B_train)
print("Proporzione Classe A nel Test Set:", proporzione_classe_A_test)
print("Proporzione Classe B nel Test Set:", proporzione_classe_B_test)
```

1.3 Visualizzazione della Proporzione delle Classi nel Set attraverso un Diagramma a Torta

```
In [8]: labels = ['Classe A', 'Classe B']
    colors = ['gold', 'lightcoral']
    plt.pie([proporzione_classe_A, proporzione_classe_B], labels=labels, colors=colors, auto
    plt.title('Proporzione delle Classi nel Set')
    plt.show()
```

Proporzione delle Classi nel Set

1.4 Analisi Statistica: Campione Casuale vs Dataset Completo

```
In [10]: import random
    import numpy as np

dataset=[]
# Creazione di un dataset di 1000 elementi (ad esempio, dati casuali)
for i in range(1000):
        dataset.append(random.randint(1, 100))

# Estrazione di un campione casuale semplice di 50 elementi dal dataset
campione_casuale = random.sample(dataset, 300)

# Calcolo della media e della deviazione standard del campione
media_campione = np.mean(campione_casuale)
deviazione_standard_campione = np.std(campione_casuale)

# Calcolo della media e della deviazione standard del dataset completo
Loading [MathJax]/extensions/Safe.js = np.mean(dataset)
```

```
deviazione_standard_dataset = np.std(dataset)

print(f"Media del campione casuale: {media_campione: .2f}")
print(f"Deviazione standard del campione casuale: {deviazione_standard_campione: .2f}")
print(f"Media del dataset completo: {media_dataset: .2f}")
print(f"Deviazione standard del dataset completo: {deviazione_standard_dataset: .2f}")

Media del campione casuale: 51.32
Deviazione standard del campione casuale: 28.66
Media del dataset completo: 51.23
Deviazione standard del dataset completo: 28.88
```

1.5 Generazione di DataFrame con Distribuzione Controllata: Colonna 'ColonnaAB

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split

# Impostare il seed per la riproducibilità
np.random.seed(42)
# Numero totale di elementi nel DataFrame
num_elementi = 1000
# Percentuale di "A"
percentuale_A = 0.7
# Generare la colonna con distribuzione desiderata
colonna = np.random.choice(['A', 'B'], size=num_elementi, p=[percentuale_A, 1 - percentu
# Creare il DataFrame
df = pd.DataFrame({'ColonnaAB': colonna})
df
```

Out[11]:	(ColonnaAB
	0	А
	1	В
	2	В
	3	Α
	4	Α
	995	А
	996	В
	997	А
	998	В
	999	А

1000 rows × 1 columns

1.6 Creazione di Subset da un DataFrame: Partizione Equa in Tre Gruppi

```
In [12]: # Creare tre subset di dimensioni simili
Loading [MathJax]/extensions/Safe.js sample(frac=1/3)
```

```
df = df.drop(subset1.index)
subset2 = df.sample(frac=1/2)
df = df.drop(subset2.index)
subset3 = df # L'ultimo subset con il rimanente
```

1.7 Analisi delle Percentuali di 'ColonnaAB' nel Subset1

```
In [13]:    percentuali_subset1 = subset1['ColonnaAB'].value_counts(normalize=True)
percentuali_subset1

Out[13]:    ColonnaAB
    A    0.705706
    B    0.294294
    Name: proportion, dtype: float64
```

1.8 Visualizzazione delle Percentuali di 'A' e 'B' nei Subset

```
In [14]: # Calcolare le percentuali di "A" e "B" per ogni subset
         percentuali_subset1 = subset1['ColonnaAB'].value_counts(normalize=True)
         percentuali_subset2 = subset2['ColonnaAB'].value_counts(normalize=True)
         percentuali_subset3 = subset3['ColonnaAB'].value_counts(normalize=True)
         # Creare i grafici a torta
         fig, axs = plt.subplots(3, 1, figsize=(6, 12))
         # Subset 1
         axs[0].pie(percentuali_subset1, labels=percentuali_subset1.index, autopct='%1.1f%%', sta
         axs[0].set_title('Subset 1')
         # Subset 2
         axs[1].pie(percentuali_subset2, labels=percentuali_subset2.index, autopct='%1.1f%%', sta
         axs[1].set_title('Subset 2')
         # Subset 3
         axs[2].pie(percentuali_subset3, labels=percentuali_subset3.index, autopct='%1.1f%%', sta
         axs[2].set_title('Subset 3')
         # Mostrare il grafico
         plt.show()
```

Subset 1

Subset 2

Subset 3

1.9 Divisione dei Subset in Training e Test Sets con Analisi Percentuale di 'A' e 'B'

```
In [15]: # Dividere ciascun subset in training set e test set
         train_subset1, test_subset1 = train_test_split(subset1, test_size=0.2, random_state=42)
         train_subset2, test_subset2 = train_test_split(subset2, test_size=0.2, random_state=42)
         train_subset3, test_subset3 = train_test_split(subset3, test_size=0.2, random_state=42)
         # Creare il grafico con 6 torte
         fig, axs = plt.subplots(3, 2, figsize=(10, 12))
         # Funzione per disegnare una torta con etichette
         def draw_pie(ax, data, title):
             ax.pie(data, labels=data.index, autopct='%1.1f%%', startangle=90)
             ax.set_title(title)
         # Prima riga di torte (Subset 1)
         draw_pie(axs[0, 0], train_subset1['ColonnaAB'].value_counts(normalize=True), 'Train Subs
         draw_pie(axs[0, 1], test_subset1['ColonnaAB'].value_counts(normalize=True), 'Test Subset
         # Seconda riga di torte (Subset 2)
         draw_pie(axs[1, 0], train_subset2['ColonnaAB'].value_counts(normalize=True), 'Train Subs
         draw_pie(axs[1, 1], test_subset2['ColonnaAB'].value_counts(normalize=True), 'Test Subset
         # Terza riga di torte (Subset 3)
         draw_pie(axs[2, 0], train_subset3['ColonnaAB'].value_counts(normalize=True), 'Train Subs
         draw_pie(axs[2, 1], test_subset3['ColonnaAB'].value_counts(normalize=True), 'Test Subset
         # Regolare lo spaziamento tra i subplots
         plt.tight_layout()
         # Mostrare il grafico
         plt.show()
```


2.0 Analisi di Valori: Calcolo della Media e Deviazione Standard

```
import pandas as pd
import matplotlib.pyplot as plt

# Crea un DataFrame di esempio
data = {'Valori': [1, 2, 3, 4, 5, 10, 15, 20, 25, 300, 1000, 100000000, -50000000, -50]}
df = pd.DataFrame(data)
# Lista con outliers da entrambi i lati

# Calcola la media e la deviazione standard
mean_value = df['Valori'].mean()
std_dev = df['Valori'].std()
std_dev
Out[16]:
```

2.1 Rilevamento degli Outliers con Limite a ±3 Deviazioni Standard dalla Media

```
In [17]: # Identifica gli outliers considerando ±3 sigma dalla media
    outliers = df[(df['Valori'] > mean_value + 3 * std_dev) | (df['Valori'] < mean_value - 3
    outliers</pre>
Out[17]: Valori
11 100000000
```

2.2 Visualizzazione dei Dati con Evidenziazione degli Outliers e Statistiche Aggiuntive

```
In [18]: # Crea un grafico a dispersione
    plt.scatter(df.index, df['Valori'], label='Valori')

# Evidenzia gli outliers nel grafico con un colore diverso
    plt.scatter(outliers.index, outliers['Valori'], color='red', label='Outliers')

# Aggiungi la media e la deviazione standard al grafico
    plt.axhline(y=mean_value, color='green', linestyle='--', label='Media')
    plt.axhline(y=mean_value + 3 * std_dev, color='orange', linestyle='--', label='±3 Deviaz
    plt.axhline(y=mean_value - 3 * std_dev, color='orange', linestyle='--')

# Aggiungi etichette e legenda al grafico
    plt.xlabel('Indice')
    plt.ylabel('Valori')
    plt.title('Grafico con Outliers Evidenziati')
    plt.legend()

# Mostra il grafico
    plt.show()
```


2.3 Identificazione degli Outliers in un DataFrame Multivariato con Soglia Minima di Features

```
In [19]:
         import pandas as pd
         import matplotlib.pyplot as plt
         # Crea un DataFrame di esempio con 4 features
         data = {'Feature1': [1, 2000, 3, 4, 50000, 10, 15, 20, 2500000, 300000000, 1000000000],
                  'Feature2': [2, 4, 6, 8, 10, 20, 30, 40, 50000, 60, 200],
                  'Feature3': [5, 10, 15, 20000, 25, 50, 75, 100, 125, 150, 500000],
                  'Feature4': [1, -20000000, 3, 4000000000, 5, 10, 15, 20, 20005, 30, 10000]}
         df = pd.DataFrame(data)
         # Definisci il numero minimo di features che devono superare la soglia per considerare u
         min_features_threshold = 1
         k=2 #intervallo di confidenza
         # Lista per salvare gli indici degli outliers
         outlier_indices = []
         # Itera su ogni feature
         for feature in df.columns:
             mean_value = df[feature].mean()
             std_dev = df[feature].std()
             # Identifica gli outliers per ciascuna feature
             df['Outlier_' + feature] = (df[feature] > mean_value + k * std_dev) | (df[feature]
         df
```

Out[19]:		Feature1	Feature2	Feature3	Feature4	Outlier_Feature1	Outlier_Feature2	Outlier_Feature3	Outlier_Fea
	0	1	2	5	1	False	False	False	
	1	2000	4	10	-20000000	False	False	False	
	2	3	6	15	3	False	False	False	
	3	4	8	20000	4000000000	False	False	False	
	4	50000	10	25	5	False	False	False	
	5	10	20	50	10	False	False	False	
	6	15	30	75	15	False	False	False	
	7	20	40	100	20	False	False	False	
	8	2500000	50000	125	20005	False	True	False	
	9	300000000	60	150	30	True	False	False	
	10	100000000	200	500000	10000	False	False	True	

2.4 Conteggio degli Outliers per Ciascuna Riga nel DataFrame

In [20]:	<pre>df['Num_Outliers'] = df.filter(like='Outlier_').sum(axis=1) df</pre>											
Out[20]:		Feature1	Feature2	Feature3	Feature4	Outlier_Feature1	Outlier_Feature2	Outlier_Feature3	Outlier_Fea			
	0	1	2	5	1	False	False	False				
	1	2000	4	10	-20000000	False	False	False				
	2	3	6	15	3	False	False	False				
	3	4	8	20000	400000000	False	False	False				
	4	50000	10	25	5	False	False	False				
	5	10	20	50	10	False	False	False				
	6	15	30	75	15	False	False	False				
	7	20	40	100	20	False	False	False				
	8	2500000	50000	125	20005	False	True	False				
	9	300000000	60	150	30	True	False	False				
	10	100000000	200	500000	10000	False	False	True				

2.5 Identificazione e Filtraggio di Outliers basati sul Numero Minimo di Features che Superano la Soglia

```
df.drop(df.filter(like='Outlier_').columns, axis=1, inplace=True)
df.drop('Num_Outliers', axis=1, inplace=True)
df
```

Out[23]:		Feature1	Feature2	Feature3	Feature4	Is_Outlier
	0	1	2	5	1	False
	1	2000	4	10	-20000000	False
	2	3	6	15	3	False
	3	4	8	20000	400000000	True
	4	50000	10	25	5	False
	5	10	20	50	10	False
	6	15	30	75	15	False
	7	20	40	100	20	False
	8	2500000	50000	125	20005	True
	9	300000000	60	150	30	True
	10	100000000	200	500000	10000	True

2.6 Organizzazione dei Grafici in una Matrice con 4 Righe e 1 Colonna per ciascuna Feature

```
In [26]: # Organizza i grafici in una matrice, con una colonna e 4 righe
    num_features = len(df.columns) - 1 # Escludi la colonna 'Is_Outlier'
    num_features
Out[26]: 4
```

2.7 Visualizzazione delle Features con Evidenziazione degli Outliers

2.8 Rimozione delle Righe Contenenti Outliers o con almeno una Feature Fuoriscala

In [28]:	d1		ed = df[d]			agli outl. == False]	iers quelli	che	hanno	almeno	una	features	fuo
Out[28]:		Feature1	Feature2	Feature3	Feature4	Is_Outlier							
	0	1	2	5	1	False							
	1	2000	4	10	-20000000	False							
	2	3	6	15	3	False							
	4	50000	10	25	5	False							
	5	10	20	50	10	False							
	6	15	30	75	15	False							
	7	20	40	100	20	False							

2.9 Calcolo Manuale della Deviazione Standard per una Lista di Numeri

```
n = len(lista)

# Calcola la media della lista
media = sum(lista) / n

# Calcola la somma dei quadrati delle differenze dalla media
somma_quadrati_diff = sum((x - media) ** 2 for x in lista)

# Calcola la deviazione standard
deviazione_standard = (somma_quadrati_diff / n) ** 0.5

return deviazione_standard

# Esempio di utilizzo
numero_lista = [1, 2, 3, 4, 50]
deviazione_standard = calcola_deviazione_standard(numero_lista)

# Stampa il risultato
print(f"La deviazione standard della lista è: {deviazione_standard}")
```

La deviazione standard della lista è: 19.026297590440446

In []: