CHAPTER 5 HYDROCARBONS

5.1 Alkanes5.2 Alkenes

Learning Outcomes

- a) Classify hydrocarbons into:
 - i) aliphatic and aromatic
 - ii) saturated and unsaturated
- b) Give the name of alkanes according to the IUPAC nomenclature
- c) Give the structure formulae of the following alkanes:
 - i) straight chain and branched alkanes
 (parent chain ≤ C₁₀)
 - ii) cyclic alkanes (C₃-C₆)
 - iii) alkyl groups

HYDROCARBON

compounds which contain only carbon and hydrogen atoms.

DRAW & NAME IUPAC NOMENCLATURE OF ALKANES

straight chain & branch alkanes (parent chain ≤ alkyl groups cyclic alkanes (C_3-C_6)

ALKANES

- IUPAC names have the -ane suffix.
- General formula for straight chain of alkanes is
 C_nH_{2n+2} where n ≥ 1
- General formula for cycloalkanes is C_nH_{2n}
 where n ≥ 3
- Starting from C₄H₁₀ onwards, the alkanes show the phenomenon of chain isomerism.
- They can exist as linear or branched alkanes.

Example: C₅H₁₂

Linear alkane:

Branched alkanes:

Nomenclature of Alkanes

Alkane	Molecular formula	Structural formula	No. of carbon
Methane	CH ₄	CH ₄	1
Ethane	C ₂ H ₆	CH ₃ CH ₃	2
Propane	C ₃ H ₈	CH ₃ CH ₂ CH ₃	3
Butane	C ₄ H ₁₀	CH ₃ CH ₂ CH ₂ CH ₃	4
Pentane	C_5H_{12}	CH ₃ (CH ₂) ₃ CH ₃	5
Hexane	C_6H_{14}	CH ₃ (CH ₂) ₄ CH ₃	6
Heptane	C ₇ H ₁₆	CH ₃ (CH ₂) ₅ CH ₃	7
Octane	C ₈ H ₁₈	CH ₃ (CH ₂) ₆ CH ₃	8
Nonane	C ₉ H ₂₀	CH ₃ (CH ₂) ₇ CH ₃	9
Decane	C ₁₀ H ₂₂	CH ₃ (CH ₂) ₈ CH ₃	10

IUPAC NOMENCLATURE

Rules in Naming Branched Alkanes

- Naming branched alkanes is slightly more complicated than naming the straight chain ones.
- > So you need to follow a simple set of steps to arrive at a proper name.

Choose the longest continuous chain of carbon atoms; this chain determines the parent name for alkanes.

Example:

Number the longest chain beginning with the end of the chain nearer the substituent.

Example:

The position and the name of the substituent must be written in front of the parent chain.

7 6 5 4 3 CH₂CH₂CH₂CH₂CH₃

Substituent

methyl at C-3

2-methylhexane

3-methylheptane

Some Common Substituent Groups

Alkane	Name	Substituent	
methane	methyl	$-CH_3$	
ethane	ethyl	- CH ₂ CH ₃	
propane	propyl	-CH ₂ CH ₂ CH ₃	
	isopropyl	-CHCH ₃ CH ₃	
butane	butyl	-CH ₂ CH ₂ CH ₂ CH ₃	

isobutyl	CH ₂ CHCH ₃	
sec-butyl	CHCH ₂ CH ₃	
tert-butyl	CH ₃ —CCH ₃ CH ₃	
neopentyl	CH_3 $-CH_2CCH_3$ CH_3	

cyclopropyl cyclobutyl $-C_6H_5$ or phenyl benzyl 16

Name	Substituent
bromo	-Br
chloro	-CI
fluoro	-F
iodo	-1
hydroxyl	-OH
amino	-NH ₂
cyano	-CN
nitro	-NO ₂

If the compound contains more than one identical substituents, use prefixes:

•di-: (2 identical substituents)

•tri- : (3 identical substituents)

•tetra- : (4 identical substituents)

Commas are used to separate numbers from each other.

Example:

2,3-dichlorobutane

2,3,4-trimethylpentane

If two substituents are present on the same carbon atom, use that number twice.

Example:

3,3-dimethylhexane

If two or more substituents are present, give each substituent a number corresponding to its location on the longest chain.

the substituent should be listed alphabetically.

□ In alphabetizing, the prefixes di, tri, tetra, sec-, tert- are ignored except iso and neo.

Example 1:

5-ethyl-3,3-dimethylheptane

Example 2:

5-isopropyl-3,3-dimethyloctane

If there are two chains of equal length as the parent chain, choose the chain with the greater number of substituents.

2,3,5-trimethyl-4-propylheptane (4 substituents)

4-sec-butyl-2,3-dimethylheptane (3 substituents)

If branching occurs at an equal distance from either end of the longest chain, choose the name that gives the lower number at the first point of difference.

Example:

2,3,5-trimethylhexane

2,4,5-trimethylhexane

RULES IN NAMING CYCLIC COMPOUNDS

 Cycloalkanes: alkanes which carbon atoms are joined in rings.

 Cycloalkanes are known as saturated hydrocarbon, because it has the maximum number of bonded hydrogen (only has single bonds).

General formula:

$$C_nH_{2n}$$
 where n = 3, 4, 5,

Prefix cyclo- is used to name cyclic compound with a single ring system.

Example:

 C_3H_6

cyclopropane

 C_4H_8

cyclobutane

C₅H₁₀

cyclopentane

 C_6H_{12}

cyclohexane

If only one substituent is present, it is not necessary to designate its position.

Example:

chlorocyclopropane

➤ If two substituents are present, number carbon in the ring beginning with the substituent according to the alphabetical order.

> Number in the direction that gives the next substituent the lowest number possible.

Example 1:

1-ethyl-2-methylcyclohexane NOT

1-ethyl-6-methylcyclohexane

Example 2:

1,3-dichlorocyclopentane NOT

1,4-dichlorocyclopentane

When three or more substituents are present, begin at the carbon with substituent that leads to the lowest set of locants.

1-chloro-3-ethyl-4-methylcyclohexane

4- chloro-2-ethyl-1-methylcyclohexane

Example 2:

1-ethyl-1,3-dimethylcy@lopentane

NOT

3-ethyl-1,3-dimethylcyclopentane

If....

i) a single ring system is attached to a single chain with a greater number of carbon atoms,

- ii) more than one ring systems are attached to a single chain,
 - Then it is appropriate to name the compound as cycloalkylalkane.

Example:

cyclopentylhexane

1,3-dicyclohexylpropane

Physical Properties of Alkanes

Learning Outcomes

- d) Explain the following physical properties:
 - i) boiling point of:
 - alkanes based on molecular weight/size;
 - isomeric alkanes
 - alkanes and cycloalkanes
 - ii) solubility in water and organic solvents

Boiling point of alkanes increase smoothly with increasing number of C atoms (molecular weight / molar mass)

Alkane	Molecular formula	Structural formula	Boiling point (°C)
Methane	CH ₄	CH ₄	- 162
Ethane	C_2H_6	CH ₃ CH ₃	- 89
Propane	C ₃ H ₈	CH ₃ CH ₂ CH ₃	- 42
Butane	C ₄ H ₁₀	CH ₃ CH ₂ CH ₂ CH ₃	- 0.5
Pentane	C ₅ H ₁₂	CH ₃ (CH ₂) ₃ CH ₃	36
Hexane	C ₆ H ₁₄	CH ₃ (CH ₂) ₄ CH ₃	69
Heptane	C ₇ H ₁₆	CH ₃ (CH ₂) ₅ CH ₃	98
Octane	C ₈ H ₁₈	CH ₃ (CH ₂) ₆ CH ₃	126
Decane	C ₁₀ H ₂₂	CH ₃ (CH ₂) ₈ CH ₃	174 39

Effect of increasing number of C atoms on boiling point...

- The boiling points of alkanes show a regular increase with increasing molecular weight because the number of carbon increase.
- the molecule has bigger surface area in contact.
- the stronger Van der Waals attractive forces.
- more energy required to overcome the attractive forces.
- the higher the boiling point.

Effect of branching on boiling point for isomeric alkanes ...

Alkane	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	CH ₃ CH ₂ CHCH ₃ CH ₃	CH₃ CH₃-C-CH₃ CH₃
Boiling point	35 °C	28 °C	9.5 °C

Effect of branching on boiling point ...

- more branches, molecule become more compact.
- surface area in contact are reduced.
- this causes the branched alkanes to have a weaker Van der Waals attractive forces.
- less energy required to overcome the attractive forces.
- the lower the boiling point.

No. of branches ↑, Surface area ↓, Van der Waals forces ↓, boiling point ↓

Cyclic alkanes have higher boiling point than the corresponding straight chain.

Alkane	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ hexane	cyclohexane
Boiling point	69 °C	81 °C

Why cyclic alkanes have higher boiling point ??

- cyclic alkanes has larger surface area in contact than the corresponding straight chain alkane.
- the stronger Van der Waals attractive forces.
- more energy required to overcome the attractive forces.
- the higher the boiling point.

Solubility in Water and Organic Solvents...

- Alkanes and cycloalkanes are almost totally insoluble in water because they are:
 - (i) non-polar molecules
 - (ii) unable to form hydrogen bond with H₂O.
- Alkanes and cycloalkanes are generally dissolve in non-polar solvents.
- Examples of non-polar solvent: benzene, chloroform, carbon tetrachloride, etc.

Chemical Properties of Alkanes

Learning Outcomes

- e) Write a balance chemical equation for the combustion of alkane in:
 - i) excess oxygen ii) limited oxygen
- f) Explain the halogenation reaction of alkanes *include bromination and chlorination
- g) Explain the monosubstitution of alkane containing equivalent and non-equivalent type of hydrogen atoms
- h) Illustrate the free radical monosubstitution mechanism of alkanes

Combustion – in excess oxygen

- Reactant: alkane and excess O₂
- Product: CO₂ and H₂O

Example: $C_3H_8 + 5 O_2 \longrightarrow 3 CO_2 + 4 H_2O$

Combustion – in limited oxygen

- Reactant: alkane and limited O₂
- Product: CO and H₂O

Example:
$$C_3H_8 + \frac{7}{2}O_2 \longrightarrow 3CO + 4H_2O$$

Combustion – in very limited oxygen

- Reactant: alkane and limited O₂
- Product: C (soot) and H₂O

Example:
$$C_3H_8 + 2O_2 \longrightarrow 3C + 4H_2O$$

Halogenation

Type of reaction: Free radical substitution

Reagent : X_2 ($X = Br_2 @ Cl_2$)

Condition: under uv light @ hv

Product: haloalkane

General equation:

$$R-H + X_2 \xrightarrow{uv} R-X + HX$$
 alkane haloalkane

Example:

i.
$$CH_4 + CI_2 \xrightarrow{uv} CH_3CI + HCI$$

ii.
$$CH_3CH_3 + Br_2 \xrightarrow{uv} CH_3CH_2Br + HBr$$

Example (i) and (ii) have **one haloalkane** product only since the reactants (alkane) contain **identical hydrogen atoms (same types of H)**.

Example:

iii
$$CH_3CH_2CH_3 + CI_2 \xrightarrow{u v} CH_3CH_2CH_2CI +$$
(minor product)

$$CH_3CH(CI)CH_3 + HCI$$
(major product)

Example (iii) has **two haloalkane** products because the reactant (alkane) contains **non-identical hydrogen atoms (different types of H)**.

CH₃CH(CI)CH₃ is the **major** product due to the **stability of free radical.**

ALKANES

$$CH_3CH_2CH_3 + CI_2 \xrightarrow{uv} CH_3CH_2CI_2$$
propane

1-chloropropane (minor)

(45%)

fast and unselective!

(55%)

2-chloropropane (major)

$$CH_3CH_2CH_3 + Br_2 \xrightarrow{uv} CH_3CHCH_3$$
propane

Br

(99%)

2-bromopropane

Slow and selective

Reaction Mechanism of Alkanes

Example 1:

$$CH_4 + CI_2 \xrightarrow{uv} CH_3CI + HCI$$

Steps are ...

- 1. Initiation
- 2. Propagation Most important!
- 3. Termination

Step 1 – Initiation

- -uv light or heat provides the energy needed for homolytic bond cleavage.
- -Free radicals are formed.
- -Reaction begins!

$$CI \xrightarrow{CI} CI \xrightarrow{uv} CI \cdot + \cdot CI$$

Step 2 - Propagation

One radical generates formation of another.

(i)
$$CI \cdot + H \longrightarrow HCI + \cdot CH_3$$

(ii)
$$CH_3 \cdot + CI \longrightarrow CH_3CI + \cdot CI$$

Step 3 - Termination

Recombination of two free radicals:

(i)
$$CH_3 \cdot + CI \cdot \longrightarrow CH_3 CI$$

(ii)
$$CH_3 \cdot + \wedge \cdot CH_3 \longrightarrow CH_3 - CH_3$$

Example 2:

Write a complete mechanism for the halogenation reaction of 2-methylpropane with bromine.

Answer:

Step 1 - Initiation

$$Br \xrightarrow{Br} \xrightarrow{uv} \bullet Br \qquad + \quad \bullet Br$$

Step 2 - Propagation

(i)
$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3

(ii)
$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3

Step 3 - Termination

(ii)
$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3

Example 2:

Bromination reaction of certain alkanes can be used for laboratory preparations, for example in the preparation of bromocyclopentane from cyclopentane.

Give the mechanism for the reaction.

Answer:

Step 1 : Initiation

$$\operatorname{Br} \xrightarrow{uv} \operatorname{Br} \cdot + \cdot \operatorname{Br}$$

Step 2: Propagation

Step 3: Termination

IUPAC

Nomenclature

Physical **Properties**

5.2: **ALKENES**

Chemical Test

Chemical Reaction

- A. Addition reaction of alkenes
- 1. Hydrogenation
- 2. Halogenation In inert solvent(CH₂Cl₂)
- 3. Halogenation In water (halohydrin formation)
- 4. (a) hydrogen halides (Markovnikov's Rule)- *Mechanisme*
- (b) Addition of HBr to alkenes in the presence of peroxide (Anti-Markovnikov)
- 5. Acidified water– *Mechanisme*
- B. Oxidation of alkenes

- 1.Baeyer's test
- 2.Bromine in CH₂Cl₂
- 3. Bromine water

Learning Outcomes

- (a) Give the name of alkenes according to the IUPAC nomenclature
- (b) Give the structural formulae of the following alkenes
 - i) straight chain and branched alkenes (parent chain ≤ C₁₀)
 - ii) Cyclic alkenes (C₃ C₆)
 - iii) Simple dienes (C₄ C₆)
- (c) Explain boiling point of isomeric alkenes.

^{*}limit to cis-trans isomers only

Alkenes

- General formula C_nH_{2n}, n ≥ 2.
- Functional group : C=C double bond
- C=C \square 1 σ bond and 1 π bond
- Restricted rotation of carbon-carbon double bond causes cis-trans isomerism

Cycloalkenes

- General formula C_nH_{2n-2}
- Isomeric to alkynes C_nH_{2n-2}

IUPAC Nomenclature

Determine the **parent name** by selecting the longest chain that **contains the double bond** and change the ending '-ane' in alkane to '-ene'.

When the chain contains more than three carbon atoms, **numbering** is needed to **indicate** the **location of the double bond**.

Make sure position of double bond is the lowest number.

If substituent are present, indicate the **position** of the **substituent** by the number of the carbon atoms to which they are attached.

$$CH_3$$
 $H_3C-C=CH-CH_3$
 1
 2
 3
 4
 1
 2
 3
 4

2-methyl-2-butene

If the alkene contains more than one double bond, change the ending '-ene' to:

- diene if there are two double bonds.
- triene if there are three double bonds.

In Cycloalkenes

Number the carbon atoms with a double bond as 1 and 2, in the direction that gives the **substituent** encountered first with a **small** number.

1-methylcyclopentene

2-methylcyclopentene

3,5-dimethylcyclohexene

4,6-dimethylcyclohexene

When alkenyl groups are perform as a substituent it is known as:

Prefixes **cis-** and **trans-** are used if the alkene shows geometrical isomerism.

$$H_3C$$
 CH_2CH_3 C C

$$C = C$$
 $C = C$
 $C = C$
 $C = C$

trans-2-pentene

cis-1,3-dimethylcyclopentane

trans-1,3-dimethylcyclopentane

Boiling point of Alkenes

Boiling Point of Isomeric Alkenes:

- Cis and trans alkenes have different physical properties
- For example, *cis*-2-butene has a higher boiling point (4 °C) than *trans*-2-butene (1 °C).
- This differences arises because the C-C single bond between an alkyl group and one of the double bond carbons of an alkene is slightly polar.
- In cis isomer, the two C-C bond dipoles reinforce each other, yielding a small net molecular dipoles.

Example

· cis-2-butene

A small net dipole Higher boiling point (3.7 °C)

No net dipole Lower boiling point (0.9 °C)

cis-molecule has higher boiling point because the molecule is polar, therefore the intermolecular forces (van der Waals forces) are relatively stronger.

In a trans isomer, the two bond dipoles cancel each other.

* Boiling point:

cis-isomer > trans- isomer

Table show the boiling point for a few stucture of alkene

Alkene	Structure	Boiling point (°C)
Ethene	CH ₂ =CH ₂	-104.0
Propene	CH ₃ -CH=CH ₂	-47.0
1-Butene	CH ₂ =CH-CH ₂ -CH ₃	-6.5
Isobutene	$CH_2=CH(CH_3)_2$	-7.0
Trans-2-Butene	CH ₃ -CH=CH-CH ₃	0.9
Cis-2-Butene	CH ₃ -CH=CH-CH ₃	3.7
1-Pentene	CH ₂ =CH-CH ₂ -CH ₂ -CH ₃	30.0
Trans-2-Pentene	CH ₃ -CH=CH-CH ₂ -CH ₃	36.0
Cis-2-Pentene	CH ₃ -CH=CH-CH ₂ -CH ₃	37.0
1-Hexene	CH ₂ =CH-CH ₂ -CH ₂ -CH ₃	63.5
1-Heptene	CH ₂ =CH-CH ₂ -CH ₂ -CH ₂ -CH ₃	115.0

Preparation of Alkenes

Learning Outcomes

- (d) Describe the preparation of alkenes through:
 - i) Dehydration of alcohols;
 - ii) Dehydrohalogenation of haloalkanes.
- (e) Illustrate the mechanism of (d) I
- (f) State the Saytzeff's rule.
- (g) Explain major product formed using Saytzeff's rule

1. Dehydration of alcohols

reagent	conc. H ₂ SO ₄ or conc. H ₃ PO ₄
condition	heat
general equation	$\begin{array}{c c} -C - C - \\ \hline H & OH \end{array} \longrightarrow \begin{array}{c} conc. \ H_2SO_4 \\ \hline \Delta \end{array} \longrightarrow \begin{array}{c} -C = C - \\ \hline \Delta \end{array} \longrightarrow \begin{array}{c} H_2O \\ \hline \end{array}$

- The reaction produces a mixture of product.
- The major product obtained can be predicted by using Saytzeff's rule.

Saytzeff's Rule

The major product in elimination reaction is the most stable alkenes which has the most highly substituted double bond.

(greater number of alkyl groups attached to the C=C)

STABILITY INCREASES

Example 1: Determine the major and minor product

$$H_3C)CH=CHCH_3$$

2 alkyl groups (major product)

1 alkyl group (minor product)

Example 2: Determine the major and minor product

3 alkyl groups (major product)

2 alkyl groups (minor product)

Examples:

major product

minor product

(iii)

REARRANGEMENT

1,2-methanide shift

the migration of -CH₃ (methanide ion) from the C atom that adjacent to the carbocation.

1,2-hydride shift

the migration of -H (hydride ion) from the C atom that adjacent to the carbocation.

***Rearrangement step occur to form more stable carbocation

Example:

Example:

Example 1:

Dehydration of 2-butanol gives a mixture of two alkenes. Propose mechanisms to account the formation of major alkene (major product).

Step 1: Protonation of –OH group

$$H_3C - C - C - O - H + H - O - H - H - CH_3H$$
 $H_3C - C - O - H + H - O - H - H - CH_3H$

protonated alcohol

Step 2: Formation of carbocation

Step 3: Formation of alkene

C atom that adjacent to the carbocation loses proton, H+

Example 2:

Write the mechanism for the formation of major product for dehydration of 3,3-dimethyl-2-butanol.

Step 1: Protonation of –OH group

$$CH_{3}$$

$$CH_{4}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{4}$$

$$CH_{3}$$

$$CH_{4}$$

$$CH_{3}$$

$$CH_{4}$$

$$CH_{4}$$

$$CH_{5}$$

$$C$$

101

Step 2: Formation of carbocation

Step 3: Rearrangement

2° carbocation

3° carbocation

Step 4: Formation of alkene

C atom that adjacent to the carbocation loses proton, H+

Example 3:

Show the mechanism for the formation of alkene Y from alcohol X.

Step 1: Protonation of –OH group

Step 2: Formation of carbocation

Step 3: Rearrangement

Step 4: Formation of alkene

2. Dehydrohalogenation of alkyl halide

reagents	Alcoholic OH ⁻ @ OR ⁻ e.g: NaOH, KOH,KOCH ₃ , CH ₃ CH ₂ ONa	
condition	reflux	
general equation	$ \begin{array}{c c} -C - C - & KOH, ethanol \\ -KOH, ethanol \\ \hline reflux \end{array} $ $ -C = C - + HBr $	

- The reaction produces a mixture of product.
- The major product obtained can be predicted by using Saytzeff's rule.

Example 1:

Example 2:

Chemical Properties of Alkenes

Learning Outcomes

- (h) Explain the addition reaction of alkenes with:
 - hydrogen in the presence of catalyst;
 - ii. halogen (Cl₂ or Br₂) in inert solvent (CH₂Cl₂);
 - iii. halogen (Cl₂ or Br₂) in water;
 - iv. hydrogen halides (HCl or HBr);
 - v. acidified water
- (i) State Markovnikov's rule
- (j) Predict the products formed according to the Markovnikov's rule
- (k) Illustrate the mechanism of electrophilic addition of(h) iv and (h) v.
- (I) Predict the product of the reaction between alkene and hydrogen bromide in the presence of hydrogen peroxide/ acid peroxide according to anti-Markovnikov's rule.

Electrophilic Addition

Catalytic Hydrogenation

Reagent	H ₂ , Pt / Pd / Ni / Pd
Product	alkane

Example:

Halogenation in Inert Solvent

Reagent	X_2 , CH_2CI_2 $(X_2 = CI_2, Br_2)$
Product	vicinal dihalide

Example:

Halogenation in Inert Solvent

When the equation below are tested with Br₂ in CH₂Cl₂,

Name of chemical test: Bromine test

Observations : Reddish brown colour of bromine

decolourised

Halogenation in Water

Reagent	X_2 , H_2O ($X_2 = Cl_2$, Br_2)
Product	halohydrin

Example 1:

$$H_3C$$
 H $C = C + B_{\frac{r}{2}} (aq) \xrightarrow{H_2O} H - C - C - H$
 H H OH Br

***Follow Markovnikov's Rule:

-OH attach at carbon with fewer no. of H atoms halogen attach at carbon with greater no. of H atoms

Markovnikov's Rule

In the electrophilic addition of alkenes, the electrophile adds to the C atom of the C=C with greater number of H atoms

Halogenation in Water

Example 2:

Name of chemical test: Bromine test

Observations: Reddish brown colour of bromine decolourised

Hydrohalogenation

Reagent	HX ($X = CI, Br$)
Product	haloalkane
Reactivity	HCI < HBr

Example 1:

Hydrohalogenation

Example 2:

***Follow Markovnikov's Rule:

-OH attach at carbon with fewer no. of H atoms halogen attach at carbon with greater no. of H atoms

Example 1:

Write the mechanism for the hydrohalogenation reaction of propene.

Answer:

Step 1: Formation of carbocation and halide ion

Step 2: Halide ion reacts with the carbocation by donating an electron pair

Example 2:

Write the mechanism for the major product of the following reaction:

$$CH_{3}-CH-CH=CH_{2} + H-CI \longrightarrow CH_{3}-C-CH_{2}-CH_{3}$$

$$CH_{3}$$

$$CH_{3}-CH_{2}-CH_{2}-CH_{3}$$

$$CH_{3}$$

Answer:

Step 1: Formation of carbocation and halide ion

Step 2: Rearrangement

Step 3: Halide ion reacts with the carbocation by donating an electron pair

Hydrohalogenation

Anti-Markovnikov's Rule

In the presence of peroxides, ROOR (eg: H_2O_2) the addition occurs in an anti-Markovnikov rule

Example : Br

$$CH_3-CH=CH_2 + H-Br \xrightarrow{H_2O_2} CH_3-CH_2-CH_2$$

Anti-Markovnikov's Rule:

H atom added to C atom with Less H (MAJOR product)

***only occurred in the addition of HBr to an alkene

Acidified water

Reagent	H ₂ O, dilute H ₂ SO ₄ / H ₃ PO ₄
Product	alcohol

Example 1:

Acidified water

Example 2:

***Follow Markovnikov's Rule:

-OH attach at carbon with fewer no. of H atoms H attach at carbon with greater no. of H atoms

Example 1:

Write the mechanism for the hydration reaction of propene.

Answer:

Step 1: Formation of carbocation

Step 2: Formation of protonated alcohol

Step 3: Deprotonation

130

Example 2:

Write the mechanism for the major product for the following reaction:

$$\begin{array}{c} \mathsf{CH_3} \\ \mathsf{I} \\ \mathsf{CH_3-C-CH=CH_2} \\ \mathsf{CH_3} \\ \mathsf{CH_3} \end{array} + \ \mathsf{H_2O} \xrightarrow{\begin{subarray}{c} \mathsf{dilute} \ \mathsf{H_3PO_4} \\ \mathsf{CH_3} \\ \mathsf{CH_3} \\ \end{subarray}} \ \ \begin{subarray}{c} \mathsf{CH_3} \\ \mathsf{CH_3} \\ \end{subarray}$$

Answer:

Step 1: Formation of carbocation

$$\begin{array}{c} \mathsf{CH_3} \\ \mathsf{CH_3} - \mathsf{C} - \mathsf{CH} = \mathsf{CH_2} \\ \mathsf{CH_3} \end{array} + \begin{array}{c} \mathsf{H} - \overset{\bullet}{\mathsf{O}} - \mathsf{H} & \mathsf{slow} \\ \mathsf{CH_3} - \overset{\bullet}{\mathsf{C}} - \overset{\bullet}{\mathsf{CH}} - \mathsf{CH_3} \\ \mathsf{CH_3} \end{array} + \begin{array}{c} \mathsf{H_2O} \\ \mathsf{CH_3} \end{array}$$

Step 2: Rearrangement

Step 3: Formation of protonated alcohol

Step 3: Deprotonation

Learning Outcomes

- (m) Explain the reaction of alkenes with:
 - i. O₃ followed by Zn,H₂O or O₃ followed by
 - $(CH_3)_2S$ (ozonolysis);
 - ii. hot, acidified KMnO₄
 - (n) Predict the position of double bond through:
 - i. ozonolysis
 - ii. reaction with hot, acidified KMnO₄

Oxidation

Ozonolysis

Reagent	(i) O ₃ (ii) Zn, H ₂ O @ (CH ₃) ₂ S	
Product	aldehyde @ ketone	

Example 1:

$$CH_{3}CH_{2}CH=CHCH_{3} \qquad \frac{\text{(i)} \quad O_{3}}{\text{(ii)} \quad Zn, H_{2}O} \qquad CH_{3}CH_{2}C=O$$

$$+ \qquad \qquad H$$

$$O=CCH_{3}$$

Ozonolysis

Example 2:

$$CH_3 CH_2C = CHCH_3 \qquad \frac{\text{(i)} O_3}{\text{(ii)} (CH_3)_2S} \qquad CH_3CH_2C = O \qquad + \\ H \\ O = CCH_3$$

Example 3:

$$CH_{3} CH_{2}C = CCH_{3}$$

$$CH_{3} CH_{3}$$

$$CH_{3} CH_{3}$$

Ozonolysis

Example 4:

$$CH_3 CH_2C = CH_2 \xrightarrow{\text{(i) } O_3} CH_3CH_2C = O + O = CH_2$$

$$CH_3CH_2C = CH_2 \xrightarrow{\text{(ii) } Zn, H_2O} CH_3CH_2C = O + O = CH_2$$

Example 5:

Reaction with hot, acidified KMnO₄

Reagent	KMnO ₄ / H ⁺
Condition	heat, Δ
Product	ketone & or carboxylic acid or CO ₂ & H ₂ O

Example 1:

$$CH_{3}CH_{2}CH=CHCH_{3} \xrightarrow{KMnO_{4}/H^{+}} CH_{3}CH_{2}C=O$$

$$+$$

$$OH$$

$$CH_{3}CH_{2}CH=CHCH_{3}$$

$$+$$

$$OH$$

$$OH$$

$$O=CCH_{3}$$

Reaction with hot, acidified KMnO₄

Example 2:

$$\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \text{CH}_2\text{C} = \text{CHCH}_3 \end{array} \xrightarrow{\begin{array}{c} \text{KMnO}_4/\text{H}^+ \\ \underline{\Delta} \end{array}} \begin{array}{c} \text{CH}_3 \\ \text{CH}_3\text{CH}_2\text{C} = \text{O} \end{array} \begin{array}{c} \text{+} \\ \text{O} = \text{CCH}_3 \end{array}$$

Example 3:

Reaction with hot, acidified KMnO₄

Example 4:

Example 5:

EXAMPLE 1:

Write the structure of alkene that would produce the following products when treated with ozone followed by water, zinc and acid.

CH₃COCH₃ and CH₃CH(CH₃)CHO

EXAMPLE 2:

Deduce the structural formula of an alkene that gives the following compound when it reacts with ozone in the presence of Zn,H₂O.

Solution

1) $CH_3CH(CH_3)CH=C(CH_3)_2$

2)
$$H_2C$$
 CH_2
 CH
 CH

EXAMPLE 3

An unknown alkene with the formula C₇H₁₄ undergoes oxidation with hot acidic potasium permanganate solution to form propanoic acid and butanoic acid. What is the structure of this alkene?

$$C_7H_{14} \longrightarrow \frac{KMnO_4/H^+}{\Delta}$$

$$H_3^C \subset CH_2^C \subset OH$$
 $H_3^C \subset CH_2^C \subset CH_2^C \subset OH$

Solution

EXAMPLE 4:

 An unknown alkene undergoes oxidation in hot acidic KMnO₄ to give the following product:

Deduce the structural formula for the unknown alkene.

Chemical Test of Alkenes

Learning Outcomes

- o) Explain the unsaturation test for alkenes:
 - i. Baeyer's test using dilute alkaline KMnO₄ solution
 - ii. bromine in CH₂Cl₂
 - iii.bromine water

(Experiment 4: Reactions of Aliphatic and Aromatic Hydrocarbons)

 p) Explain the preparation of synthetic polymers through addition polymerisation (e.g. polyethylene, poly vinyl chloride, polystyrene, Teflon)

Unsaturation test for Alkenes

There are 3 chemical test to differentiate

between an alkanes and alkenes:

i) Baeyer's test using cold, dilute alkaline KMnO₄ solution

Baeyer's test

Unsaturation test for Alkenes

ii) Reaction with bromine in CH₂Cl₂iii)Reaction with bromine water

Bromine test

Baeyer's test using cold, dilute alkaline KMnO₄

Reagent	dilute KMnO ₄ / OH ⁻
Condition	cold
Product	-diols
Name of chemical test	Baeyer's test
Observation	Purple colour of KMnO ₄ decolourised. Brown precipitate formed.

Reaction with Cold, Basic KMnO₄

Example:

(i)
$$H = C + \frac{H}{C} = C + \frac{dilute KMnO_4/OH}{Cold} + H + \frac{H}{C} + \frac{H}{C$$

Reaction with Cold, Basic KMnO₄

When the equation below are tested with cold, basic, dilute KMnO₄

Name of chemical test: Baeyer's test

Observations: Purple colour of KMnO₄ decolourised.

Brown precipitate formed.

Bromine in Inert Solvent

Reagent	Br ₂ , CH ₂ Cl ₂
Product	vicinal dibromo
Name of chemical test	Bromine test
Observation	Reddish brown colour of bromine decolourised

Bromine Test (Bromine in CH₂Cl₂)

$$c=c$$
 + Br_2 CH_2CI_2 room temperature

(colourless) (reddish brown)

(a colourless compound)

 When bromine is used for this reaction, it can serve as a test for the presence of carbon-carbon double bonds.

 If bromine is added to alkene, the reddish brown color of the bromine disappears almost instantly as long as the alkene is present in excess.

Bromine Water

Reagent	Br ₂ , H ₂ O
Product	halohydrin
Name of chemical test	Bromine test
Observation	Reddish brown colour of bromine decolourised

Bromine test (Bromine water)

(a colourless compound)

Example:

$$H_3C-C=CH_2 + Br_2/H_2O$$
 CH_3
 $H_3C-C=CH_2Br$
 CH_2

ADDITION POLYMERISATION

 The addition reaction in which monomers with double bonds are joined together by covalent bonds to form a large molecule without a loss of smaller molecule.

C=C are broken and replaced by C-C single bonds. This
enables chain formation to form the polymer.

Peroxide is used as initiator in additional polymerisation

ADDITION POLYMERISATION: POLYETHYLENE

n
$$H_2C = CH_2$$
 peroxide $CH_2 - CH_2$ ethene polyethylene (homopolymer)

ADDITION
POLYMERISATION:
POLYVINYL CHLORIDE, PVC

n
$$H_2C$$
 CHCI $\xrightarrow{\text{peroxide}}$ $\xrightarrow{\text{CH}_2}$ $\xrightarrow{\text{CH}_2}$ $\xrightarrow{\text{CI}}$ $\xrightarrow{\text{CI}$

ADDITION POLYMERISATION:

POLYSTYRENE

ADDITION POLYMERISATION: TEFLON

EXERCISE:

1. Give the monomer structure for the following compound

a)
$$+ cH_2 - cH = cH - cH_2 + cH_2 - cH_2 -$$

2. Predict the structure of this polymer

ANSWER:

1. a) H₂C=CH-CH=CH₂

Summary chemical reactions of Alkene

LET'S TRY!

BIL	TERM	DEFINITION
1.	Aliphatic	Any chemical compound belonging to the organic class in which the atom are connected by single, double, or triple bonds to form nonaromatic structures.
2.	Identical	similar in every detail; exactly alike.
3.	Substituent	an atom or group of atom taking the place of another atom or group or occupying a specified position in a molecule.
4.	Designate	to give something a specific status.
5.	Monosubstitution	A molecule or functional group in which only one hydrogen has been replaced by another atom or group.
6.	Isomeric alkenes	Alkene with same molecular formula but different structure formula.
7.	Restricted rotation	The inhibition of rotation of groups about a bond due to the presence of a sufficiently large rotational barrier to make the phenomenon observable on the time scale of the experiment

BIL	TERM	DEFINITION
8.	slightly	to a small degree; not considerably.
9.	Saytzeff's Rule	The major product in elimination reaction is the most stable alkenes which has the most highly substituted double bond.
10.	1,2-methanide shift	the migration of -CH ₃ (methanide ion) from the C atom that adjacent to the carbocation.
11.	Markovnikov's Rule	In the electrophilic addition of alkenes, the electrophile adds to the C atom of the C=C with greater number of H atoms
12.	Deduce	arrive at (a fact or a conclusion) by reasoning; draw as a logical conclusion.
13.	monomers	atoms or small molecules that bond together to form more complex structures such as polymers.