示波器实验内容与操作步骤

认识示波器主要功能旋钮

(1对应通道CH1,2对应通道CH2)

A1、A2: 波形幅度调节(量程单位: v/cm、mv/cm)----放大或缩小波形高度(纵向);

B1、B2: 电压幅度微调----校准示波器(电压量程)用;

C1、C2: 位移----上下移动波形;

D: 时间灵敏度调节(量程单位: s/cm、ms/cm)---放大或缩小波形宽度 (横向);

E: 扫描微调----校准示波器(时基)用。

F: 位移----水平方向移动波形;

G: 电平----可以使波形稳定;

H: X-Y控制键----合成李萨如图形。

示波器

本机校准信号为1KHZ、 峰峰值4V方波

一.校准示波器

1.校准CH1通道

用导线连接"校准信号"与CH——调节旋钮A1、D放大波形——若波形不稳定,调节电平G——调节辉度、聚焦旋钮使波形亮而细。

A1选择量程1v/cm, D选择量程0.2ms/cm——调节B1、E使波形横向一个周期占格5格(cm),纵向占4格,即周期为1ms(频率为1KHZ),峰峰值为4V,与本机校准信号一致。

2.校准CH2通道 "方式"由"CH"切换至"CH2",方法同上。 3. <u>自拟表格</u>完成实验内容 (所有内容只需记录实验测量值)

为什么			的周期(时	基分别为0.1,	0.2, 0.5ms/cm)	,哪种时基测出的数据更准确?
	字(<u>平位</u>) [2]	1	2	3		
选择	时基(ms)				a to the second	
方波	厘米数				一个周期	
75.11	周期(ms)					
	频率(Hz)					

测量完毕,断开校准信号与通道连接的导线。

二.用示波器测量信号发生器信号的频率

认识信号发生器

a:信号频率范围调节 ----粗调;

b:信号频率调节 ----细调;

c:信号波形选择;

d: 信号输出幅度调节----改变信号峰峰值(波峰到波谷)电压(v/mv);

e: 波形对称性调节

信号发生器/计数器

1.测对称方波

连接信号发生器和CH2通道,示波器"方式"置"CH2"; 调节a选择"x100HZ"量程,微调b,使信号频率为200.0HZ; 调节c选择方波,调节d使信号峰峰值为3V(或自选); 调节示波器电平G,使波形稳定; 调节示波器D,选择合适的时基,使示波器显示屏显示2-3个周期的波形; 调节A2,使波形高度占屏高1/3以上。改变信号频率,按要求完成实验,表格自拟。

选择信号发生器的对称方波接Y输入(幅度和Y轴量程任选),信号频率为200--2KHz(每隔200Hz测量一次),选择示波器合适的时基,测量对应频率的厘米数、周期和频率(注明X轴的时基)。信号发生器的频率为X,示波器测量的频率为Y轴,作X-Y曲线,求斜率并讨论。

对应频率的厘米数

	序号:	1	2	3	4	5	6	7	8	
	时基(ms)									
	厘米数									
H	周期(ms)									
H	频率(Hz)									
H	信号 频率 (Hz)									

频率无法调节到整 数时,尽量接近要 求值即可。

示波器格数精确到 小数点后一位即可。

示波器 信号发生器 自拟表格(含数据) 实验时长 实验时间日期

2.测非对称方波

○ 调节信号发生器e选择非对称方波; 调节示波器D,选择合适的时基,使示波器显示屏显示2-3个周期的波形; 调节A2,使波形高度占屏高1/3以上。

改变信号频率, 按要求完成实验, 表格自拟。

选择信号发生器的非对称方波接Y输入(幅度和Y轴量程任选),频率分别为200,500,1K,2K,10K,20K (Hz),测量各个频率时的周期和正波的宽度。

信号周期

IH.	フルが							
	序号: 1		2	3	4	5	6	
已	知频率(Hz)				1999.9			
	时基(ms)				0.1			
示	厘米数				5.0			
波								
器	频率(Hz)							
	正波宽度厘	米数			1.5			
	正波时宽(n	ns)						

如图例

3.测三角波

调节信号发生器e选择三角方波; 调节示波器D,选择合适的时基,使示波器显示屏显示2-3个周期的波形; 调节A2,使波形高度占屏高1/3以上。

改变信号频率, 按要求完成实验, 数据填入下表。

间及周期。						
三角信号(单	位HZ)	-6416-		-5/15		
序号	:	1	2	3	4	
已知频率	区(Hz)					
三角信号上升	├时间(ms)					
三角信号下降	鄙问(ms)					
三角信号周	期(ms)					

如图例

三.观察李萨如图形并测待测信号源的频率

1.必须对示波器通道CH和CH2进行重新校准!!

2.观察待测信号源波形

连接待测信号源和CH2通道,示波器"方式"置"CH2";调节示波器电平G,使波形稳定;调节示波器D,选择合适的时基,使示波器显示屏显示2-3个周期的波形;调节A2,使波形高度占屏高1/3以上。数出一个周期的占格数,估算待测信号频率。

3.调节信号发生器信号

连接信号发生器和CH通道,选择与待测信号一样的波形,示波器"方式"置"CH";调节示波器电平G,使波形稳定;

调节信号发生器频率,约等于待测信号估算频率。

示波器"方式"置"双踪",同时显示两列波形。细调信号发生器频率,调节信号发生器的d,使波形与待测信号波形一致,此时信号发生器频率接近待测信号源频率。

4.合成李萨如图形

示波器"方式"置"CH2","触发源"置"CH"(注意:"方式"与"触发源"必须选择不同通道),按下按键X-Y,继续微调信号发生器频率,使示波器显示 $f_X/f_Y=1$ 时的李萨如图形(切点数1:1)。

按要求改变信号发生器的频率,取 $f_X/f_Y=1$ 、 $f_X/f_Y=2$ 、 $f_X/f_Y=1/2$,完成实验。

用两台信号发生器(一台 2、1/2时,画出有关图形 李萨如图形				炫信号输入CH2,信号发生器输入CH1,取fx/fy=1、
序号:	1	2	3	
fx/fy				

改变信号发生器信号的电压幅值,观察李萨如图形的变化。

 $\circ f_X/f_Y$ =2:双踪显示两列波,X-Y显示李萨如图形。

改变信号发生器信号的电压幅值,观察李萨如图形的变化。

 $f_X/f_Y=1/2$: 双踪显示两列波,X-Y 显示李萨如图形。

改变信号发生器信号的电压幅值,观察李萨如图形的变化。

X、Y轴振动的相位差、频率比与合成的李萨如图形

李萨如图实际上是一个质点同时在X 轴和Y轴上作简谐运动形成的。

本实验要求在坐标纸上描绘李萨如图形。