Brustkrebs Indicatoren

Timo Michaelis

3. Januar 2025

Zusammenfassung

Im Folgenden wird versucht anhand verschiedener Indikatoren zur prognostizieren, ob eine Patientin Brustkrebs besitzt. Dieses Model dient lediglich der Hilfestellung, nicht aber dem Ersatz eines fachkundigen Arztes

Inhaltsverzeichnis

1	Einleitung	2
2	Datensatz	2
3		6 8 8
4	Ergebnisse4.1 Random Forest Classifier	8 8 11
5	Diskussion	14
6	Fazit	16
\mathbf{A}	Anhang: Erklärung	17
В	Anhang: Jupyter Notebook	17

1 Einleitung

In der vorliegenden Arbeit wird eine Unterstützung zur Erkennung von Brustkrebs geboten. Dafür werden verschiedene Eigenschaft u.a. durchschnittlicher Radius, durchschnittliche Textur, usw. berücksichtigt und eine wahrscheinliche Prognose geboten.

Das Ziel dieser Arbeit ist es somit ein Modell zu erstellen, welches bei Input der benötigten Parameter eine vorläufige Diagnose stellt, welche etwaig dem Patienten bzw. dem Arzt zu einer genaueren Untersuchen verleiten. Dies verringert somit nicht nur die die Chance von sogenannten false positives, sondern kann auch die Bereitschaft unterstützen häufiger notwendige Untersuchungen durchzuführen, da die Untersuchung weniger komplex wird. Im folgenden wird grundsätzlich der Ursprung und Inhalt des Datensatzes

diskutiert, sowie die darauf angewandten Methoden näher erläutert.

2 Datensatz

Der verwendete Datensatz stammt aus der *Diagnostic Wisconsin Breast Cancer Database*. **breast cancer wisconsin diagnostic 17**, wie erwartet befasst sich dieser Datensatz mit Gesundheitlichen Aspekten und besitzt indes folgende *Features*

- mean radius
- mean texture
- mean perimeter
- mean area
- mean smoothness
- mean compactness
- mean concavity
- mean concave points
- mean symmetry
- mean fractal dimension
- radius error

- texture error
- perimeter error
- area error
- smoothness error
- compactness error
- concavity error
- concave points error
- symmetry error
- fractal dimension error
- worst radius
- worst texture
- worst perimeter
- worst area
- worst smoothness
- worst compactness
- worst concavity
- worst concave points
- worst symmetry
- worst fractal dimension

Hinzu kommt noch der Target-Datensatz, welcher beschreibt ob der Datenpunkt jeweils Malignand oder Benign ist.

Bevor näher auf den Datensatz und seine zusammenhänge eingegangen wird, gilt es zu beurteilen inwieweit dieser aufbereitet ist. Hiefür sei relevant zu testen ob der Datensatz vollständig und inherrent logisch ist, sollte dies nicht der Fall sein, so gilt es diesen zu bereinigen, durch etwaiges löschen bzw. ersetzen.

Insofern wurde u.a. überprüft ob es null oder negative Werte gibt, solche dürfte es nämlich nicht geben. Der Datensatz ist frei von solchen Werten, als

Abbildung 1: Boxplot der worst fractal Dimension

letzes.

Abseits der Integrität dieses Datensatzes sei noch dessen Koheränz zu überprüfen. Dafür wurden mehrere Boxplot-Graphen12 erstellt, welche wie ersichtlich Ausreißer angeben, 74 sind insgesamt mit 3σ Regel zu finden. Nun gilt es die Frage zu stellen, ob diese Ausreißer entfernt werden müssen.

Letzlich zielt diese Frage darauf ab, ob dieser Algorithmus anwendbar sein kann bzw. soll auf Frauen mit Proportionen außerhalb der Norm und ob das auschließen das Modell beeinträchtigt. Die Erste Frage lässt sich nur von einem Forscher in dieser Disziplin beantworten, die Zweite Frage hingegen wird im Fazit wieder betrachtet. Insofern werden die Ausreißer ersteinmal nicht entfernt.

Zur Frage ob es Abhängigkeiten zwischen den Features und dem Target gibt, lässt sich dazu eine Grundidee fassen, indem man verschiedene Features im zwei Dimensionalen gegeneinander aufträgt.3

Ebenfalls lässt sich mittels von Korrellationstabellen ebenfalls Korrellationen4 nachweisen, weswegen nun nur noch die geignete Methode zu Erstel-

Abbildung 2: Boxplot der mean smoothness

Abbildung 3: Mean smoothness und mean compactness

lung eines Prediction-Algorithmus benötigt wird.

3 Methoden

Es existieren zwei Kategorien in welche unsere Features einsortiert werden, insofern seien Algorithmen notwendig welche eine Klassifikation durchführen. Für kleinere Datensätze, wie hier vorliegend, ist RandomForestClassifier gut zu nutzen und da bereits aus Graph eine perfekte lineare separierung nicht möglich ist, ist SVM (Support Vector Machine) ebenfalls ein passender Algorithmus zur Modell erstellung.

3.1 Random Forest Classifier

Der Random Forest Classifier nutzt eine gewisse Anzahl an verschiedenen Entscheidungsbäumen mit dem Ziel die korrekte Entscheidung zu erfüllen, dies führt dazu, dass die Nachteile eines Entscheidungsbaumes verringert (wie z.B. overfitting)

Abbildung 4: Korelation von

3.2 Support Vector Machine

Ein SVM nutzt die Tatsache aus, dass selbst wenn eine Separierbarkeit z.B. im 2-Dimensionalen nicht machbar ist, diese in höheren Dimensionen durchaus möglich ist.

3.2.1 Kernel

- **rbf** Die gängigste Methode
- linear Dies diente mehr zur Überprüfung, ob dieses Problem nicht auch durch eine lineare Separierung teilbar ist.
 Wie aber hier zusehen, ist diese Lösung nicht optimal
- poly

4 Ergebnisse

Um das bestmöglichste Ergebnis zu erzielen, wurde ein Grid angewandt damit die bessere Anzahl an Entscheidungsbäumen bzw. des Wertes der Fehlklassifizierungsstrafe genutzt werden kann. Im folgenden werden die Modelle mitsamt ihrer Güte vorgestellt.

4.1 Random Forest Classifier

Für die Wahl der Anzahl an Bäumen ist laut der Gridanalyse5, 200 am passendsten, weitere Optimierungen seien zwar möglich, nicht aber zielführend, da höhere Genauigkeiten signifikant mehr Rechenzeit benötigen würden. Zur Erstellung des Modells mittels des Random Forest Classifiers wurden die Daten in zwei Teile unterschieden, da 30% der Daten als Testdaten dienen sollen. Da leider nicht übermäßig viele Daten vorliegen, der Datensatz ist kleiner als tausend, sollte der Testdaten Anteil zumindest über 150 liegen. Mit diesen Eigenschaften ergab sich eine Accuracy von 0.9708 und eine Precision von 0.9725. Im Vergleich dazu besaß das Modell mit nur 10 Entscheidungsbäumen eine Accuracy von 0.9532 und eine Precision von 0.9630. Veranschaulicht wird die Güte dieses Modells auch noch mittels einer Confusion Matrix6, welche die Fehlklassifikation von false positives bzw. false negatives zeigt.

Abbildung 5: Jupyter Notebook als Anhang

Abbildung 6: Jupyter Notebook als Anhang

Abbildung 7: Jupyter Notebook als Anhang

4.2 Support Vector Machine

Für die passende Wahl an Parameter der Support Vector Machine gibt es zwei Parameter welche die größte Signifikanz besitzen, zum einen die Fehlklassifizierungsstrafe aber auch die passende Kernelmethode, ersichtlich in der Graphik7 ist die passende Fehlklassifizierungsstrafe 100. Für die passende Wahl der Kernelmethode ist ausprobieren meist die schnellste Methode

- **rbf** Die gängigste Methode sie ergab 0.9708 Accuracy sowie 0.9722 Precision und ebenfalls eine ähnlich confusion Matrix8
- linear Diese Methode ergab 0.9766 Accuracy sowie 0.9905 Precision und ebenfalls eine ähnlich confusion Matrix9.
- poly Diese Methode ergab 0.9649 Accuracy sowie 0.9550 Precision und

Abbildung 8: Jupyter Notebook als Anhang

Abbildung 9: Jupyter Notebook als Anhang

Abbildung 10: Jupyter Notebook als Anhang

ebenfalls eine ähnlich confusion Matrix??.

5 Diskussion

Beide Systeme besitzen zwar ähnliche Akkuratheit, dennoch besitzt das SVM Modell mit linearem Kernel die höchste Akkuratheit, sowie die höchste Precision. Stellt man die beiden Gegenüber11 wird eine kleine Überlegenheit des SVM Modells sichtbar.

Abbildung 11: Vergleich der Accuracy und Precision von SVM und Random Forest Classifier

6 Fazit

Generell erlaubt dieses Modell nun eine recht akkurate Einschätzung von Brustkrebs, mangels allzu umfangreicher Datenmenge sei dies aber nur mit Vorsicht zu genießen. Zusätzlich besitzt trotz der Außreiser

A Anhang: Erklärung

B Anhang: Jupyter Notebook

Im Folgenden ist das erstellte Jupyter Notebook zu finden

BreastCancer

January 3, 2025

```
[62]: from sklearn.datasets import load_breast_cancer
      data = load_breast_cancer()
[63]: #Ersteinmal ein Einblick über den Datensatz mittels Panda und der head()_
      import pandas as pd
     data_features = pd.DataFrame(data = data.data,
                            columns = data.feature_names)
     data_targets = data.target
      print(data_features.shape)
      print(data_targets.shape)
     print(data_features.head().T)
     print(data_targets[0:5])
     (569, 30)
     (569,)
                                                                               3
                                        0
                                              20.570000
                                                                       11.420000
                                17.990000
                                                           19.690000
     mean radius
                                10.380000
                                              17.770000
                                                           21.250000
                                                                       20.380000
     mean texture
                                                                       77.580000
     mean perimeter
                               122.800000
                                            132.900000
                                                          130.000000
     mean area
                              1001.000000
                                            1326.000000
                                                         1203.000000
                                                                      386.100000
     mean smoothness
                                 0.118400
                                               0.084740
                                                            0.109600
                                                                        0.142500
     mean compactness
                                 0.277600
                                               0.078640
                                                            0.159900
                                                                        0.283900
     mean concavity
                                 0.300100
                                               0.086900
                                                            0.197400
                                                                        0.241400
     mean concave points
                                 0.147100
                                               0.070170
                                                            0.127900
                                                                        0.105200
     mean symmetry
                                 0.241900
                                               0.181200
                                                            0.206900
                                                                        0.259700
     mean fractal dimension
                                 0.078710
                                               0.056670
                                                            0.059990
                                                                        0.097440
                                               0.543500
                                                            0.745600
                                                                        0.495600
     radius error
                                 1.095000
     texture error
                                 0.905300
                                              0.733900
                                                            0.786900
                                                                        1.156000
                                 8.589000
                                              3.398000
                                                            4.585000
                                                                        3.445000
     perimeter error
                               153.400000
                                              74.080000
                                                           94.030000
                                                                       27.230000
     area error
                                                                        0.009110
     smoothness error
                                 0.006399
                                              0.005225
                                                           0.006150
                                 0.049040
                                              0.013080
                                                            0.040060
                                                                        0.074580
     compactness error
                                 0.053730
                                                                        0.056610
     concavity error
                                              0.018600
                                                            0.038320
                                 0.015870
     concave points error
                                               0.013400
                                                            0.020580
                                                                        0.018670
     symmetry error
                                 0.030030
                                              0.013890
                                                            0.022500
                                                                        0.059630
     fractal dimension error
                                 0.006193
                                              0.003532
                                                            0.004571
                                                                        0.009208
```

1

Abbildung 12: Jupyter Notebook als Anhang