Álgebra Linear CC

primeiro teste — duração: 2 horas — —

1. Sejam $m, n \in \mathbb{N}$, $A, B \in \mathcal{M}_n(\mathbb{R})$, $C \in \mathcal{M}_{m \times n}(\mathbb{R})$, $D \in \mathcal{M}_{n \times m}(\mathbb{R})$, $E = [a_{ij}] \in \mathcal{M}_{3 \times 3}(\mathbb{R})$, onde $e_{ij} = i \times j - 1$, para $i, j \in \{1, 2, 3\}$, e

$$F = \left[\begin{array}{rrr} 1 & 0 & 1 \\ 1 & -2 & 1 \\ -1 & -2 & 1 \end{array} \right].$$

Diga, justificando, se são verdadeiras ou falsas as seguintes afirmações:

- (a) A expressão matricial $(C^T + D)^T C$ só está definida se C e D são matrizes quadradas.
- (b) As matrizes E e $F^2 2F^T$ são iguais.
- (c) Se A é simétrica e invertível, então A^{-1} é simétrica.
- 2. Para cada $\alpha \in \mathbb{R}$, considere o sistema de equações lineares $A_{\alpha}x = b$, onde:

$$A_{\alpha} = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & \alpha + 1 \\ -2 & -2\alpha & 2 \end{bmatrix} \in \mathcal{M}_{3\times3}(\mathbb{R}), \quad b = \begin{bmatrix} 1 \\ -2 \\ -2 \end{bmatrix} \in \mathcal{M}_{3\times1}(\mathbb{R}) \quad e \quad x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}.$$

- (a) Discuta o sistema $A_{\alpha}x = b$, em função do parâmetro α .
- (b) Para $\alpha = -1$, determine o conjunto de soluções do sistema $A_{\alpha}x = b$.
- (c) Justifique que a matriz A_1 é invertível e, utilizando o algoritmo de Gauss-Jordan, calcule a sua inversa.
- 3. Em \mathbb{R}^4 , considere os vetores $u_1=(1,1,0,0),\ u_2=(0,0,1,0),\ u_3=(0,0,0,1),\ u_4=(-1,-1,0,0)$ e, para cada $\alpha\in\mathbb{R}$, seja U_α o subconjunto de \mathbb{R}^4 a seguir indicado

$$U_{\alpha} = \{(x, x + \alpha^2 - 1, y, z) \in \mathbb{R}^4 : x, y, z \in \mathbb{R}\}.$$

- (a) Determine os valores de α para os quais U_{α} é subespaço vetorial de \mathbb{R}^4 .
- (b) Considere o subespaço vetorial U_1 de \mathbb{R}^4 .
 - i. Mostre que $\{u_1, u_2, u_3, u_4\}$ é um conjunto gerador de U_1 .
 - ii. Diga, justificando, se (u_1, u_2, u_3, u_4) é uma base de U_1 e, em caso negativo, indique uma base de U_1 formada por elementos de $\{u_1, u_2, u_3, u_4\}$.
 - iii. Justifique que existe uma base de U_1 da qual fazem parte os vetores v = (1, 1, 1, 0) e w = (0, 0, 1, 1) e determine uma base de U_1 nessas condições. Indique um suplementar do espaço vetorial $\langle v, w \rangle$ relativamente a U_1 .
- 4. Sejam V um espaço vetorial real e $u, v \in V \setminus \{0_V\}$. Mostre que se $\langle u \rangle \cap \langle v \rangle = \{0_V\}$, então u e v são linearmente independentes.