

Overview of Research

 $f(x) = Sin(x), x \in [0, 2\pi]$

$$g\left(x\right) = Sin(5x), x \in \left[0, 2\pi\right]$$

$$h(x) = \frac{1}{1+x^2}, x \in [-5, 5]$$

Chebyshev Nodes

n Equal Spaced Nodes

Importance and Applications of Polynomial Interpolation

- 1. Create lookup tables for logarithms.
- 2. Typography
- Secret sharing & cryptography
- 4. Numerical Quadrature
- 5. Replace computationally expensive function with simple polynomial
- 6. Computer Graphics
- 7. Engineering

Х	log(x)
2	0.693
2.5	?
3	1.099

Approximation Polynomial Theory

Polynomial Interpolation, what is it?

Interpolation vs. Extrapolation

Weierstrass Approximation Theory

Numerical Methods

The Direct Method

Solve the Vandermonde Matrix for polynomial coefficients.

Lagrange

polynomial of lowest degree that assumes at each value x corresponding value y, so that the functions coincide at each point.

Hermite

Extends the idea of
Lagrange interpolation by
adding derivative
information

Demonstration of Code

https://github.com/nps6-uwf/MethodsOfPolynomialInterpolation

Numerical Experiments

Conclusions

Difference in Error for n=5 Sin(x) vs. Sin(5x)

Overall Best performance

Impact of Chebyshev Nodes

CPU Times

Future Research

เสร็จ

Email: nps6@students.uwf.edu