Summary of 'What is a Toric Variety' by David Cox

Leandro Meier

Contents

Definition 0.1. A *toric variety* is an irreducible variety (in this, usually affine or projective) V such that

- (i) $(\mathbb{C}^*)^n$ is an open subset of V and
- (ii) the action of $(C^*)^n$ on itself extens to an action of $(\mathbb{C}^*)^n$ on V.

Examples are \mathbb{C}^n , $(\mathbb{C}^*)^n$ and \mathbb{P}^n , for the latter, use that $(\mathbb{C}^*)^n$ can be identified with one of the open subsets $U_i = \{(a_0: \ldots: a_{n+1}) \mid a_i \neq 0\}$. Let $\mathbf{a} \in \mathbb{Z}^n$.

The map $(\mathbb{C}^*)^n \to \mathbb{C}^*$ given by $\boldsymbol{t} \mapsto \boldsymbol{t^a}$ is called a *character*. A 1-parameter subgroup $\boldsymbol{\lambda^a} : \mathbb{C}^* \to (\mathbb{C}^*)^n$ is given by $\boldsymbol{\lambda^a} (t) = (t^{a_1}, \dots, t^{a_n})$.

Definition 0.2. A rational polyhedral cone $\sigma \subseteq \mathbb{R}^n$ is something of the form

$$\sigma = \{\lambda_1 \boldsymbol{u}_1 + \dots + \lambda_n \boldsymbol{u}_l \in \mathbb{R}^n \mid \lambda_1, \dots, \lambda_l \geq 0\},\$$

for $u_1, \ldots, u_l \in \mathbb{Z}^n$. We further define:

- σ is strongly convex if $\sigma \cap -\sigma = \{0\}$.
- The dimension of σ is the dimension of the smallest subspace of \mathbb{R}^n that contains σ .
- A face of σ is the intersection of the set $\{\ell=0\}$ with σ where ℓ is a linear form that is nononnegative on σ .
- 1-dimensional faces are called *edges*. For an edge ρ , its *primitive element* is the unique generator \mathbf{n}_{ρ} of $\rho \cap \mathbb{Z}^n$. The cone is generated by the \mathbf{n}_{ρ} for all its edges ρ .
- ullet Codimension-1 faces are called facets.

Definition 0.3. For a cone (strongly convex, rational, polyhedral) σ , define its dual cone as

$$\sigma^{\vee} \{ \boldsymbol{m} \in \mathbb{R}^n \mid \langle \boldsymbol{m}, \boldsymbol{u} \rangle \geq 0 \text{ for all } \boldsymbol{u} \in \sigma \}.$$

Here $\langle \cdot, \cdot \rangle$ is the usual scalar product on \mathbb{R}^n .

Using the dual cone σ^{\vee} , we can construct a variety U_{σ} as follows. Consider the lattice points of σ^{\vee} : $\sigma^{\vee} \cap \mathbb{Z}^n$. The lattice points are finitely generated (Gordan's Lemma). Let m_1, \ldots, m_l be generators, and consider the map

$$\varphi \colon \left(\mathbb{C}^*\right)^n \to \mathbb{C}^l$$

defined by $\varphi(t) = t^{m_1} \dots, t^{m_l}$ and let U_{σ} be the Zariski closure of φ . One can prove that this is a toric variety, and that the t^m are defined everywhere on U_{σ} .

The coordinate ring of U_{σ} is given by $\mathbb{C}[\sigma^{\vee} \cap \mathbb{Z}^n]$, which is a notation for the ring of Laurent polynomials over \mathbb{C} generated by the t^m for $m \in \sigma^{\vee} \cap \mathbb{Z}^n$.