Rigid Body - Cheat Sheet

Philip Trettner, Kersten Schuster November 29, 2017

Everything in "world space" unless noted otherwise.

1 Static Properties

- Point Masses m_i (at points p_i)
- Total Mass $M := \sum m_i$
- Center of Gravity $c_g := \frac{1}{M} \sum m_i p_i$
- Relative positions $r_i := p_i c_g$
- Tensor of Inertia $I_b := \sum m_i \begin{pmatrix} r_y^2 + r_z^2 & -r_x r_y & -r_x r_z \\ -r_y r_x & r_z^2 + r_x^2 & -r_y r_z \\ -r_z r_x & -r_z r_y & r_x^2 + r_y^2 \end{pmatrix}$ (in "body space")

2 Dynamic Properties (Motion State)

linear position $x(t) \in \mathbb{R}^3$ "position" linear momentum $P(t) \in \mathbb{R}^3$ "momentum" angular position $R(t) \in \mathbb{R}^{3 \times 3}$ "rotation" angular momentum $L(t) \in \mathbb{R}^3$

3 Derived Properties

world-space inertia $I_w(t) := R(t) \cdot I_b \cdot R(t)^T \in \mathbb{R}^{3 \times 3}$ $I_w^{-1}(t) := R(t) \cdot I_b^{-1} \cdot R(t)^T \in \mathbb{R}^{3 \times 3}$ linear velocity $v(t) := \frac{1}{M} P(t) \in \mathbb{R}^3$ angular velocity $\omega(t) := I_w^{-1}(t) L(t) \in \mathbb{R}^3$ velocity at point q $v(t,q) := v(t) + \omega(t) \times (q - x(t)) \in \mathbb{R}^3$

4 Forces

linear force $F(t) \in \mathbb{R}^3$ "force" angular force $\tau(t) \in \mathbb{R}^3$ "torque"

5 Differential Equations

linear part:

- $\frac{\partial}{\partial t}x(t) = v(t)$
- $\frac{\partial}{\partial t}P(t) = F(t)$

angular part:

- $\frac{\partial}{\partial t}R_i(t) = \omega(t) \times R_i(t)$ (R_i is the *i*-th column of R)
- $\bullet \ \ \tfrac{\partial}{\partial t}L(t)=\tau(t)$

Note: R(t) must always be orthonormal after an update step.

6 Adding Impulse

Adding an impulse j at world-space point q. (An impulse is a change of momentum.)

2

- linear: P(t) += j
- angular: $L(t) += (q x(t)) \times j$

7 Adding Force

Adding an force \widetilde{F} at world-space point q.

- linear: $F(t) += \widetilde{F}$
- angular: $\tau(t) += (q x(t)) \times \widetilde{F}$