TUTORIAL 3

(1) Consider the function $f:(0,1)\to\mathbb{R}$ defined by

$$f(x) = \begin{cases} \frac{x - (1/2)}{x} & \text{if } x \le 1/2\\ \frac{x - (1/2)}{1 - x} & \text{if } x \ge 1/2 \end{cases}$$

- (a) Sketch a graph of f
- (b) Prove that f gives a bijection from (0,1) to \mathbb{R} .
- (2) Let $\mathbb{I} := \mathbb{R}/\mathbb{Q}$ denote the set of irrational numbers. Prove that \mathbb{I} is uncountable. (Hint: You may find it easier to prove the more general statement that if A is an uncountable set, and $B \subset A$ is a countable subset, then $A \setminus B$ is uncountable.)
- (3) (a) Prove that \mathbb{R}^n has the same cardinality as \mathbb{R} for any $n \geq 1$.
 - (b) Prove that \mathbb{R}^{∞} has the same cardinality as \mathbb{R} . Here we define \mathbb{R}^{∞} to be the set of all infinite sequences of real numbers, i.e.

$$\mathbb{R}^{\infty} = \{(a_1, a_2, a_3, \ldots) : a_i \in \mathbb{R}\}.$$

Just for fun.

(1) Show that it is possible to decompose \mathbb{R} into a disjoint union of uncountably many uncountable subsets.