Parameter Treewidth

Serge Gaspers

UNSW

Outline

- Algorithms for trees
- 2 Tree decompositions
- Monadic Second Order Logic
- 4 Dynamic Programming over Tree Decompositions
 - SAT
 - CSP
- 5 Further Reading

Outline

- Algorithms for trees
- 2 Tree decompositions
- Monadic Second Order Logic
- 4 Dynamic Programming over Tree Decompositions
 - SAT
 - CSP
- 5 Further Reading

Exercise

Recall: An independent set of a graph G = (V, E) is a set of vertices $S \subseteq V$ such that G[S] has no edge.

#Independent Sets on Trees

Input: A tree T = (V, E)

Output: The number of independent sets of T.

Design a polynomial time algorithm for #INDEPENDENT SETS ON TREES

S. Gaspers (UNSW) Treewidth

Solution

- ullet Select an arbitrary root r of T
- ullet Bottom-up dynamic programming (starting at the leaves) to compute, for each subtree T_x rooted at x the values
 - #in(x): the number of independent sets of T_x containing x, and
 - #out(x): the number of independent sets of T_x not containing x.
- If x is a leaf, then #in(x) = #out(x) = 1
- Otherwise,

$$\begin{split} \# \mathrm{in}(x) &= \Pi_{y \in \mathrm{children}(x)} \ \# \mathrm{out}(y) \ \mathrm{and} \\ \# \mathrm{out}(x) &= \Pi_{y \in \mathrm{children}(x)} \ (\# \mathrm{in}(y) + \# \mathrm{out}(y)) \end{split}$$

• The final result is #in(r) + #out(r)

Exercise

Recall: A dominating set of a graph G=(V,E) is a set of vertices $S\subseteq V$ such that $N_G[S]=V$.

#Dominating Sets on Trees

Input: A tree T = (V, E)

Output: The number of dominating sets of T.

ullet Design a polynomial time algorithm for $\# \mathrm{DOMINATING}$ SETS ON TREES

S. Gaspers (UNSW) Treewidth 6/46

Solution

- ullet Select an arbitrary root r of T
- ullet Bottom-up dynamic programming (starting at the leaves) to compute, for each subtree T_x rooted at x the values
 - #in(x): the number of dominating sets of T_x containing x,
 - #outD(x): the number of dominating sets of T_x not containing x, and
 - $\# \mathsf{outND}(x)$: the number of vertex subsets of T_x dominating $V(T_x) \setminus \{x\}$.
- If x is a leaf, then #in(x) = #outND(x) = 1 and #outD(x) = 0.
- Otherwise,

$$\begin{split} \# \mathsf{in}(x) &= \Pi_{y \in \mathsf{children}(x)} \; (\# \mathsf{in}(y) + \# \mathsf{outD}(y) + \# \mathsf{outND}(y)), \\ \# \mathsf{outD}(x) &= \Pi_{y \in \mathsf{children}(x)} \; (\# \mathsf{in}(y) + \# \mathsf{outD}(y)) \\ &- \Pi_{y \in \mathsf{children}(x)} \; \# \mathsf{outD}(y) \\ \# \mathsf{outND}(x) &= \Pi_{y \in \mathsf{children}(x)} \; \# \mathsf{outD}(y) \end{split}$$

• The final result is #in(r) + #outD(r)

Outline

- Algorithms for trees
- 2 Tree decompositions
- Monadic Second Order Logic
- 4 Dynamic Programming over Tree Decompositions
 - SAT
 - CSP
- 5 Further Reading

Algorithms using graph decompositions

Idea: decompose the problem into subproblems and combine solutions to subproblems to a global solution.

Parameter: overlap between subproblems.

• A graph G

• A graph G

• A tree decomposition of G

• A graph G

• A tree decomposition of G

Conditions:

• A graph G

• A tree decomposition of G

Conditions: covering

• A graph G

• A tree decomposition of G

Conditions: covering and connectedness.

Tree decomposition (more formally)

- Let G be a graph, T a tree, and γ a labeling of the vertices of T by sets of vertices of G.
- ullet We refer to the vertices of T as "nodes", and we call the sets $\gamma(t)$ "bags".
- \bullet The pair (T,γ) is a tree decomposition of G if the following three conditions hold:
 - For every vertex v of G there exists a node t of T such that $v \in \gamma(t)$.
 - ② For every edge vw of G there exists a node t of T such that $v,w \in \gamma(t)$ ("covering").
 - **3** For any three nodes t_1, t_2, t_3 of T, if t_2 lies on the unique path from t_1 to t_3 , then $\gamma(t_1) \cap \gamma(t_3) \subseteq \gamma(t_2)$ ("connectedness").

Treewidth

- The width of a tree decomposition (T,γ) is defined as the maximum $|\gamma(t)|-1$ taken over all nodes t of T.
- ullet The $treewidth\ {\sf tw}(G)$ of a graph G is the minimum width taken over all its tree decompositions.

Basic Facts

- Trees have treewidth 1.
- Cycles have treewidth 2.
- Consider a tree decomposition (T,γ) of a graph G and two adjacent nodes i,j in T. Let T_i and T_j denote the two trees obtained from T by deleting the edge ij, such that T_i contains i and T_j contains j. Then, every vertex contained in both $\bigcup_{a\in V(T_i)}\gamma(a)$ and $\bigcup_{b\in V(T_j)}\gamma(b)$ is also contained in $\gamma(i)\cap\gamma(j)$.
- The complete graph on n vertices has treewidth n-1.
- If a graph G contains a clique K_r , then every tree decomposition of G contains a node t such that $K_r \subseteq \gamma(t)$.

Complexity of Treewidth

Treewidth

Input: Graph G = (V, E), integer k

Parameter: 1

Question: Does G have treewidth at most k?

- TREEWIDTH is NP-complete.
- ullet Treewidth is FPT: there is a $k^{O(k^3)} \cdot |V|$ time algorithm (Bodlaender, 1996)

Easy problems for bounded treewidth

- Many graph problems that are polynomial time solvable on trees are FPT with parameter treewidth.
- Two general methods:
 - Dynamic programming: compute local information in a bottom-up fashion along a tree decomposition
 - Monadic Second Order Logic: express graph problem in some logic formalism and use a meta-algorithm

Outline

- Algorithms for trees
- 2 Tree decompositions
- Monadic Second Order Logic
- 4 Dynamic Programming over Tree Decompositions
 - SAT
 - CSP
- 5 Further Reading

Monadic Second Order Logic

- Monadic Second Order (MSO) Logic is a powerful formalism for expressing graph properties. One can quantify over vertices, edges, vertex sets, and edge sets.
- \bullet Courcelle's theorem (Courcelle, 1990). Checking whether a graph G satisfies an MSO property is FPT parameterized by the treewidth of G plus the length of the MSO expression.
- Arnborg et al.'s generalizations (Arnborg, Lagergren, and Seese, 1991).
 - FPT algorithm for parameter $\operatorname{tw}(G) + |\phi(X)|$ that takes as input a graph G and an MSO sentence $\phi(X)$ where X is a free (non-quantified) vertex set variable, that computes a minimum-sized set of vertices X such that $\phi(X)$ is true in G.
 - Also, the input vertices and edges may be colored and their color can be tested.

Elements of MSO

An MSO formula has

- variables representing vertices (u, v, ...), edges (a, b, ...), vertex subsets (X, Y, ...), or edge subsets (A, B, ...) in the graph
- atomic operations
 - $u \in X$: testing set membership
 - X = Y: testing equality of objects
 - inc(u, a): incidence test "is vertex u an endpoint of the edge a?"
- propositional logic on subformulas: $\phi_1 \wedge \phi_2$, $\phi_1 \vee \phi_2$, $\neg \phi_1$, $\phi_1 \Rightarrow \phi_2$
- Quantifiers: $\forall X \subseteq V$, $\exists A \subseteq E$, $\forall u \in V$, $\exists a \in E$, etc.

Shortcuts in MSO

We can define some shortcuts

- $u \neq v$ is $\neg(u = v)$
- $X \subseteq Y$ is $\forall v \in V$. $(v \in X) \Rightarrow (v \in Y)$
- $\forall v \in X \ \varphi \text{ is } \forall v \in V. \ (v \in X) \Rightarrow \varphi$
- $\bullet \ \exists v \in X \ \varphi \ \text{is} \ \exists v \in V. \ (v \in X) \land \varphi$
- $\bullet \ \operatorname{adj}(u,v) \ \operatorname{is} \ (u \neq v) \wedge \exists a \in E. \ (\operatorname{inc}(u,a) \wedge \operatorname{inc}(v,a))$

Example: 3-COLORING,

• "there are three independent sets in G = (V, E) which form a partition of V"

•

$$\label{eq:3COL} \begin{split} \mathsf{3COL} := \exists \pmb{R} \subseteq V. \ \exists G \subseteq V. \ \exists B \subseteq V. \\ \mathsf{partition}(\pmb{R}, G, B) \\ \land \ \mathsf{independent}(\pmb{R}) \land \ \mathsf{independent}(G) \land \ \mathsf{independent}(B), \end{split}$$

where

$$\mathsf{partition}({\color{red}R},G,B) := \forall v \in V. \; ((v \in {\color{red}R} \wedge v \notin G \wedge v \notin B) \\ \qquad \qquad \vee (v \notin {\color{red}R} \wedge v \in G \wedge v \notin B) \vee (v \notin {\color{red}R} \wedge v \notin G \wedge v \in B))$$

and

$$independent(X) := \neg(\exists u \in X. \exists v \in X. adj(u, v))$$

MSO Logic Example II

By Courcelle's theorem and our 3COL MSO formula, we have:

Theorem 1

3-COLORING is FPT with parameter treewidth.

Treewidth only for graph problems?

Let us use treewidth to solve a Logic Problem

- associate a graph with the instance
- take the tree decomposition of the graph
- most widely used: primal graphs, incidence graphs, and dual graphs of formulas.

Three Treewidth Parameters

CNF Formula
$$F = C \wedge D \wedge E \wedge G \wedge H$$
 where $C = (u \vee v \vee \neg y)$, $D = (\neg u \vee z \vee y)$, $E = (\neg v \vee w)$, $G = (\neg w \vee x)$, $H = (x \vee y \vee \neg z)$.

primal graph

dual graph

incidence graph

This gives rise to parameters primal treewidth, dual treewidth, and incidence treewidth.

Formally

Definition 2

Let F be a CNF formula with variables var(F) and clauses cla(F).

The primal graph of F is the graph with vertex set var(F) where two variables are adjacent if they appear together in a clause of F.

The dual graph of F is the graph with vertex set $\operatorname{cla}(F)$ where two clauses are adjacent if they have a variable in common.

The incidence graph of F is the bipartite graph with vertex set $\text{var}(F) \cup \text{cla}(F)$ where a variable and a clause are adjacent if the variable appears in the clause. The primal treewidth, dual treewidth, and incidence treewidth of F is the treewidth of the primal graph, the dual graph, and the incidence graph of F, respectively.

S. Gaspers (UNSW) Treewidth 24/46

Incidence treewidth is most general

Lemma 3

The incidence treewidth of F is at most the primal treewidth of F plus 1.

Proof.

Start from a tree decomposition (T,γ) of the primal graph with minimum width. For each clause C:

- There is a node t of T with $\text{var}(C) \subseteq \gamma(t)$, since var(C) is a clique in the primal graph.
- Add to t a new neighbor t' with $\gamma(t') = \gamma(t) \cup \{C\}$.

Incidence treewidth is most general II

Lemma 4

The incidence treewidth of F is at most the dual treewidth of F plus 1.

Incidence treewidth is most general II

Lemma 4

The incidence treewidth of F is at most the dual treewidth of F plus 1.

Primal and dual treewidth are incomparable.

- One big clause alone gives large primal treewidth.
- $\{\{x,y_1\},\{x,y_2\},\ldots,\{x,y_n\}\}$ gives large dual treewidth.

SAT parameterized by treewidth

Sat

Input: A CNF formula F

Question: Is there an assignment of truth values to var(F) such that F

evaluates to true?

Note: If SAT is FPT parameterized by incidence treewidth, then SAT is FPT parameterized by primal treewidth and by dual treewidth.

SAT is FPT for parameter incidence treewidth

CNF Formula
$$F=C \land D \land E \land G \land H$$
 where $C=(u \lor v \lor \neg y)$, $D=(\neg u \lor z \lor y)$, $E=(\neg v \lor w)$, $G=(\neg w \lor x)$, $H=(x \lor y \lor \neg z)$
$$\neg u-u \quad \neg v-v \quad \neg w-w \quad \neg x-x \quad \neg y-y \quad \neg z-z$$
 Auxiliary graph:

- MSO Formula: "There exists an independent set of literal vertices that dominates all the clause vertices."
- The treewidth of the auxiliary graph is at most twice the treewidth of the incidence graph plus one.

FPT via MSO

Theorem 5

SAT is FPT for each of the following parameters: primal treewidth, dual treewidth, and incidence treewidth.

Outline

- Algorithms for trees
- 2 Tree decompositions
- Monadic Second Order Logic
- 4 Dynamic Programming over Tree Decompositions
 - SAT
 - CSP
- 5 Further Reading

Coucelle's theorem: discussion

Advantages of Courcelle's theorem:

- general, applies to many problems
- easy to obtain FPT results

Drawback of Courcelle's theorem

• the resulting running time depends non-elementarily on the treewidth t and the length ℓ of the MSO-sentence, i.e., a tower of 2's whose height is $\omega(1)$

$$2^{2^{2^{\cdot \cdot \cdot \cdot t^{t+}}}}$$

Dynamic progamming over tree decompositions

Idea: extend the algorithmic methods that work for trees to tree decompositions.

- Step 1 Compute a minimum width tree decomposition using Bodlaender's algorithm
- Step 2 Transform it into a standard form making computations easier
- Step 3 Bottom-up Dynamic Programming (from the leaves of the tree decomposition to the root)

Nice tree decomposition

A *nice* tree decomposition (T, γ) is rooted and has only 4 kinds of nodes:

- leaf node: leaf t in T and $|\gamma(t)| = 1$
- introduce node: node t with one child t' in T and $\gamma(t) = \gamma(t') \cup \{x\}$
- forget node: node t with one child t' in T and $\gamma(t) = \gamma(t') \setminus \{x\}$
- join node: node t with two children t_1, t_2 in T and $\gamma(t) = \gamma(t_1) = \gamma(t_2)$

Every tree decomposition of width w of a graph G on n vertices can be transformed into a nice tree decomposition of width w and $O(w \cdot n)$ nodes in polynomial time (Kloks, 1994).

Outline

- Algorithms for trees
- 2 Tree decompositions
- Monadic Second Order Logic
- 4 Dynamic Programming over Tree Decompositions
 - SAT
 - CSP
- 5 Further Reading

Dynamic programming: primal treewidth

ullet Compute a nice tree decomposition (T,γ) of F's primal graph with minimum width rooted at some node r (Bodlaender, 1996; Kloks, 1994)

Dynamic programming: primal treewidth

- ullet Compute a nice tree decomposition (T,γ) of F's primal graph with minimum width rooted at some node r (Bodlaender, 1996; Kloks, 1994)
- Notation
 - ullet T_t is the subtree of T rooted at node t
 - ullet $\gamma_{\downarrow}(t)=\{x\in\gamma(t'):t'\in V(T_t)\}$ is the set of vertices/variables in T_t 's bags
 - $F_{\downarrow}(t)=\{C\in {\rm cla}(F): {\rm var}(C)\subseteq \gamma_{\downarrow}(t)\}$ is the set of clauses containing only variables from γ_{\downarrow}
 - For a clause $C\in \mathsf{cla}(F)$ and an assignment $\tau:S\to\{0,1\}$ to a subset of variables $S\subseteq \mathsf{var}(F)$, we can efficiently compute

$$\mathsf{falsifies}(\tau,C) = \begin{cases} 1 & \text{if } \tau \text{ sets each literal of } C \text{ to 0} \\ 0 & \text{otherwise}. \end{cases}$$

Dynamic programming: primal treewidth

- ullet Compute a nice tree decomposition (T,γ) of F's primal graph with minimum width rooted at some node r (Bodlaender, 1996; Kloks, 1994)
- Notation
 - ullet T_t is the subtree of T rooted at node t
 - $\gamma_{\downarrow}(t) = \{x \in \gamma(t') : t' \in V(T_t)\}$ is the set of vertices/variables in T_t 's bags
 - $F_{\downarrow}(t)=\{C\in {\rm cla}(F): {\rm var}(C)\subseteq \gamma_{\downarrow}(t)\}$ is the set of clauses containing only variables from γ_{\perp}
 - For a clause $C \in \mathsf{cla}(F)$ and an assignment $\tau: S \to \{0,1\}$ to a subset of variables $S \subseteq \mathsf{var}(F)$, we can efficiently compute

$$\mathsf{falsifies}(\tau,C) = \begin{cases} 1 & \text{if } \tau \text{ sets each literal of } C \text{ to 0} \\ 0 & \text{otherwise}. \end{cases}$$

• For each node t and each assignment $\tau:\gamma(t)\to\{0,1\}$, our DP algorithm will compute

$$\mathsf{sat}(t,\tau) = \begin{cases} 1 & \text{if } \tau \text{ can be extended to a} \\ & \text{satisfying assignment of } F_{\downarrow}(t) \\ 0 & \text{otherwise}. \end{cases}$$

$$\mathsf{sat}(t,\tau) = \begin{cases} 1 & \text{if } \tau \text{ can be extended to a} \\ & \text{satisfying assignment of } F_{\downarrow}(t) \\ 0 & \text{otherwise}. \end{cases}$$

• leaf node: $|\gamma(t)|=1$

$$\mathsf{sat}(t,\tau) = \begin{cases} 1 & \text{if } \tau \text{ can be extended to a} \\ & \text{satisfying assignment of } F_{\downarrow}(t) \\ 0 & \text{otherwise}. \end{cases}$$

• leaf node: $|\gamma(t)| = 1$

$$\mathsf{sat}(t,\tau) = \begin{cases} 0 & \text{if } \exists C \in \mathsf{cla}(F) \text{ s.t. falsifies}(\tau,C) \\ 1 & \text{otherwise} \end{cases}$$

$$\mathrm{sat}(t,\tau) = \begin{cases} 1 & \text{if } \tau \text{ can be extended to a} \\ & \text{satisfying assignment of } F_{\downarrow}(t) \\ 0 & \text{otherwise.} \end{cases}$$

• leaf node: $|\gamma(t)| = 1$

$$\mathsf{sat}(t,\tau) = \begin{cases} 0 & \text{if } \exists C \in \mathsf{cla}(F) \text{ s.t. falsifies}(\tau,C) \\ 1 & \text{otherwise} \end{cases}$$

 $\bullet \ \ \textit{introduce node} : \ \gamma(t) = \gamma(t') \cup \{x\}.$

$$\mathsf{sat}(t,\tau) = \begin{cases} 1 & \text{if } \tau \text{ can be extended to a} \\ & \text{satisfying assignment of } F_{\downarrow}(t) \\ 0 & \text{otherwise}. \end{cases}$$

• leaf node: $|\gamma(t)| = 1$

$$\mathsf{sat}(t,\tau) = \begin{cases} 0 & \text{if } \exists C \in \mathsf{cla}(F) \text{ s.t. falsifies}(\tau,C) \\ 1 & \text{otherwise} \end{cases}$$

• introduce node: $\gamma(t) = \gamma(t') \cup \{x\}$.

$$\mathsf{sat}(t,\tau) = \mathsf{sat}(t',\tau|_{\gamma(t')}) \ \land \ (\nexists C \in F : \mathsf{falsifies}(\tau,C)).$$

S. Gaspers (UNSW) Treewidth 36/46

• forget node: $\gamma(t) = \gamma(t') \setminus \{x\}$.

• forget node: $\gamma(t) = \gamma(t') \setminus \{x\}$.

$$\operatorname{sat}(t,\tau) = \operatorname{sat}(t',\tau_{x=0}) \vee \operatorname{sat}(t',\tau_{x=1}),$$
 where
$$\tau_{x=a}(y) = \begin{cases} a & \text{if } y = x \\ \tau(y) & \text{otherwise} \end{cases}$$

• forget node: $\gamma(t) = \gamma(t') \setminus \{x\}$.

$$\operatorname{sat}(t,\tau) = \operatorname{sat}(t',\tau_{x=0}) \vee \operatorname{sat}(t',\tau_{x=1}),$$
 where $\tau_{x=a}(y) = \begin{cases} a & \text{if } y = x \\ \tau(y) & \text{otherwise} \end{cases}$

• join node: $\gamma(t) = \gamma(t_1) = \gamma(t_2)$

• forget node: $\gamma(t) = \gamma(t') \setminus \{x\}$.

$$\operatorname{sat}(t,\tau) = \operatorname{sat}(t',\tau_{x=0}) \vee \operatorname{sat}(t',\tau_{x=1}),$$
 where $\tau_{x=a}(y) = \begin{cases} a & \text{if } y = x \\ \tau(y) & \text{otherwise} \end{cases}$

• join node: $\gamma(t) = \gamma(t_1) = \gamma(t_2)$

$$\operatorname{sat}(t,\tau) = \operatorname{sat}(t_1,\tau) \wedge \operatorname{sat}(t_2,\tau).$$

• forget node: $\gamma(t) = \gamma(t') \setminus \{x\}$.

$$\operatorname{sat}(t,\tau) = \operatorname{sat}(t',\tau_{x=0}) \vee \operatorname{sat}(t',\tau_{x=1}),$$
 where $\tau_{x=a}(y) = \begin{cases} a & \text{if } y = x \\ \tau(y) & \text{otherwise} \end{cases}$

• join node: $\gamma(t) = \gamma(t_1) = \gamma(t_2)$

$$\mathsf{sat}(t,\tau) = \mathsf{sat}(t_1,\tau) \wedge \mathsf{sat}(t_2,\tau).$$

- ullet Finally: F is satisfiable iff $\exists \tau: \gamma(r) \to \{0,1\}$ such that $\mathsf{sat}(r,\tau) = 1$
- Running time: $O^*(2^k)$, where k is the primal treewidth of F
- Also extends to computing the number of satisfying assignments

Direct Algorithms

Known treewidth based algorithms for SAT:

$$k=$$
 primal tw $\qquad k=$ dual tw $\qquad k=$ incidence tw $O^*(2^k) \qquad \qquad O^*(2^k) \qquad \qquad O^*(2^k)$

- These algorithms all count the number of satisfying assignments
- The algorithm for incidence treewidth (Slivovsky and Szeider, 2020) uses Fast Subset Convolution

Outline

- Algorithms for trees
- 2 Tree decompositions
- Monadic Second Order Logic
- 4 Dynamic Programming over Tree Decompositions
 - SAT
 - CSP
- 5 Further Reading

Constraint Satisfaction Problem

CSP

Input: A set of variables X, a domain D, and a set of constraints C

Question: Is there an assignment $\tau:X\to D$ satisfying all the constraints

in C?

A constraint has a scope $S=(s_1,\ldots,s_r)$ with $s_i\in X, i\in\{1,\ldots,r\}$, and a constraint relation R consisting of r-tuples of values in D.

An assignment $\tau: X \to D$ satisfies a constraint c = (S,R) if there exists a tuple (d_1,\ldots,d_r) in R such that $\tau(s_i)=d_i$ for each $i\in\{1,\ldots,r\}$.

Bounded Treewidth for Constraint Satisfaction

ullet Primal, dual, and incidence graphs are defined similarly as for $\mathrm{SAT}.$

Theorem 6 ((Gottlob, Scarcello, and Sideri, 2002))

CSP is FPT for parameter primal treewidth if |D| = O(1).

• What if domains are unbounded?

Unbounded domains

Theorem 7

CSP is W[1]-hard for parameter primal treewidth.

Unbounded domains

Theorem 7

CSP is W[1]-hard for parameter primal treewidth.

Proof Sketch.

Parameterized reduction from CLIQUE.

Let (G = (V, E), k) be an instance of CLIQUE.

Take k variables x_1, \ldots, x_k , each with domain V.

Add $\binom{k}{2}$ binary constraints $E_{i,j}$, $1 \le i < j \le k$.

A constraint $E_{i,j}$ has scope (x_i, x_j) and its constraint relation contains the tuple (u, v) if $uv \in E$.

The primal treewidth of this CSP instance is k-1.

Outline

- Algorithms for trees
- 2 Tree decompositions
- Monadic Second Order Logic
- 4 Dynamic Programming over Tree Decompositions
 - SAT
 - CSP
- Further Reading

Further Reading

- Chapter 7, Treewidth in (Cygan et al., 2015)
- Chapter 5, *Treewidth* in (Fomin and Kratsch, 2010)
- Chapter 10, Tree Decompositions of Graphs in (Niedermeier, 2006)
- Chapter 10, *Treewidth and Dynamic Programming* in (Downey and Fellows, 2013)
- Chapter 13, Courcelle's Theorem in (Downey and Fellows, 2013)

References I

- Stefan Arnborg, Jens Lagergren, and Detlef Seese (1991). "Easy problems for tree-decomposable graphs". In: *Journal of Algorithms* 12.2, pp. 308–340.
- Hans L. Bodlaender (1996). "A linear-time algorithm for finding tree-decompositions of small treewidth". In: SIAM Journal on Computing 25.6, pp. 1305–1317.
- Bruno Courcelle (1990). "The monadic second-order logic of graphs. I. Recognizable sets of finite graphs". In: *Information and Computation* 85.1, pp. 12–75.
- Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh (2015). *Parameterized Algorithms*. Springer. DOI: 10.1007/978-3-319-21275-3.
- Rodney G. Downey and Michael R. Fellows (2013). *Fundamentals of Parameterized Complexity*. Springer. DOI: 10.1007/978-1-4471-5559-1.
- Fedor V. Fomin and Dieter Kratsch (2010). *Exact Exponential Algorithms*. Springer. DOI: 10.1007/978-3-642-16533-7.

References II

- Georg Gottlob, Francesco Scarcello, and Martha Sideri (2002). "Fixed-parameter complexity in Al and nonmonotonic reasoning". In: *Journal of Artificial Intelligence* 138.1-2, pp. 55–86.
- Ton Kloks (1994). *Treewidth: Computations and Approximations*. Berlin: Springer. Rolf Niedermeier (2006). *Invitation to Fixed Parameter Algorithms*. Oxford University Press. DOI: 10.1093/ACPROF:0S0/9780198566076.001.0001.
- Friedrich Slivovsky and Stefan Szeider (2020). "A Faster Algorithm for Propositional Model Counting Parameterized by Incidence Treewidth". In: *Proceedings of the 23rd International Conference on Theory and Applications of Satisfiability Testing (SAT 2020)*. Vol. 12178. Lecture Notes in Computer Science. Springer, pp. 267–276.