Parseo y Generación de Código – 2^{do} semestre 2021 Licenciatura en Informática con Orientación en Desarrollo de Software Universidad Nacional de Quilmes

Primer parcial

Nota: este parcial es a libro abierto. Se permite tener cualquier material manuscrito o impreso, pero no se permite el uso de dispositivos electrónicos. El parcial se califica con una nota numérica de 1 a 10. Se requiere ≥ 4 en ambos parciales para aprobar la materia. Para promocionar se requiere nota ≥ 6 en ambos parciales y promedio ≥ 7 .

Ejercicio 1. Dadas dos gramáticas que tienen el mismo conjunto de símbolos terminales, el mismo conjunto de símbolos no terminales y el mismo símbolo inicial, es decir, $G_1 = (\Sigma, N, S, \mathcal{P}_1)$ y $G_2 = (\Sigma, N, S, \mathcal{P}_2)$, escribimos $G_1 \cup G_2$ para denotar la gramática que resulta de unir sus producciones, es decir, $G_1 \cup G_2 = (N, \Sigma, S, \mathcal{P}_1 \cup \mathcal{P}_2)$. Decidir si las siguientes afirmaciones son verdaderas o falsas:

- a. Si G_1 es ambigua, entonces $G_1 \cup G_2$ es ambigua.
- b. Si G_1 y G_2 no son ambiguas, entonces $G_1 \cup G_2$ no es ambigua.
- c. Si G_1 y G_2 son LL(1), entonces $G_1 \cup G_2$ es LL(1).

Si la afirmación es verdadera, justificarla. Si es falsa, exhibir un contraejemplo, justificando por qué se trata de un contraejemplo.

Ejercicio 2. Dada una gramática independiente del contexto $G = (\Sigma, N, S, \mathcal{P})$ con símbolo inicial S, consideramos la gramática $G' = (\Sigma, N \cup \{R\}, R, \mathcal{P} \cup \mathcal{Q})$ que resulta de extender a G con un nuevo símbolo R, que pasa a ser el símbolo inicial, y agregando el siguiente conjunto de producciones \mathcal{Q} :

$$R \to \epsilon \mid SR$$

Exhibir una gramática G que sea LR(0) pero tal que la gramática extendida G' no sea LR(0).

Ejercicio 3. Dado un número natural $n \ge 1$ consideramos la siguiente gramática G_n con n+1 símbolos terminales $\{a_0, a_1, \ldots, a_n\}$ y n+1 símbolos no terminales $\{S_0, S_1, \ldots, S_n\}$, donde S_0 es el símbolo inicial. Las producciones son las siguientes:

$$\begin{array}{ccc} S_0 & \rightarrow & \epsilon \mid S_1 \, a_0 \\ S_1 & \rightarrow & \epsilon \mid S_2 \, a_1 \\ & \vdots & & \\ S_{n-1} & \rightarrow & \epsilon \mid S_n \, a_{n-1} \\ S_n & \rightarrow & \epsilon \mid a_n \end{array}$$

Más precisamente, hay dos producciones para el símbolo S_n , tal como se indica arriba, y cuando $0 \le i \le n-1$ el símbolo S_i tiene dos producciones: una de la forma $S_i \to \epsilon$ y otra de la forma $S_i \to S_{i+1} a_i$. Demostrar que para todo $n \ge 1$ la gramática G_n es LL(1).

Ejercicio 4. Sea R una expresión regular sobre un alfabeto Σ . Escribimos ||R|| para denotar el $tama\~no$ de R, definido de la siguiente manera:

$$\|\emptyset\| = 1 \qquad \|\epsilon\| = 1 \qquad \|RS\| = 1 + \|R\| + \|S\| \qquad \|R|S\| = 1 + \|R\| + \|S\| \qquad \|R^*\| = 1 + \|R\|$$

donde, en la tercera ecuación, $a \in \Sigma$. Demostrar que, si el lenguaje $\mathcal{L}(R)$ es finito, tiene a lo sumo $2^{\|R\|}$ palabras.

Ejercicio 5. Sea $L \subseteq \Sigma^*$ un lenguaje sobre el alfabeto Σ . Dada una palabra $w \in \Sigma^*$, escribimos $\mathbf{D}_w(L)$ para el lenguaje que resulta de seleccionar todas las palabras de L que comienzan con w y eliminarles la w inicial:

$$\mathbf{D}_w(L) = \{ w' \in \Sigma^* \mid w \, w' \in L \}$$

Por ejemplo, si L es el lenguaje denotado por la expresión regular $a(bc^*|de^*)$ se tiene que $\mathbf{D}_{ad}(L)$ es el lenguaje denotado por la expresión regular e^* . Demostrar que si L es regular, entonces $\mathbf{D}_w(L)$ también es regular.

Justificar todas las respuestas.