## INTELIGÊNCIA COMPUTACIONAL

ALGORITMOS DE CLASSIFICAÇÃO

**FELIPE TORRES** 

## CLASSIFICAÇÃO

 Classificação é uma técnica de mineração de dados para classificar objetos em uma determinada estrutura de classes.

- Este tipo de algoritmo tenta predizer a qual classe um determinado objeto pertence;
- Existem três tipos de técnicas de classificações clássicas: Árvores de Classificação, Árvores de Regressão e CART (C&RT – Classification and Regression Tree).

## EXEMPLOS DE CLASSIFICAÇÃO

Classificar tumores em benignos e malignos.

Classificar pacientes em sintomáticos e assintomáticos.

 Classificar pacientes em resistentes ou não a um determinado tratamento ou droga.

Classificar artigos em bons e ruins.

## MODELOS DE CLASSIFICAÇÃO

- Construção do modelo
  - Com base no dataset de treinamento, modelo (regra, árvore de decisão, formula matemática) é construído.
  - Aprendizado supervisionado (atributo classe);

- Uso do modelo
  - O modelo é usado para classificar instâncias (não vistas) do conjunto de teste, estimando a acurácia.
  - A acurácia é o percentual de instâncias corretamente classificadas.

## EXEMPLO MODELO DE REGRESSÃO LINEAR

• Um modelo de regressão linear simples é usado para o caso de regressão com uma variável explicativa.

• Este modelo é utilizado para identificar a função que explica o comportamento de variáveis linear.

$$Y_i = \alpha + \beta X_i + \epsilon_i$$

 $Y_i$ : Variável explicada (dependente); é o valor que se quer atingir;  $\alpha$ : É uma constante, que representa a interceptação da <u>reta</u> com o eixo vertical;  $\beta$ : É outra constante, que representa o declive(coeficiente angular)da reta;  $X_i$ : Variável explicativa (independente), representa o fator explicativo na equação;  $\epsilon$ : Variável que inclui todos os factores residuais mais os possíveis erros de medição.

#### TIPOS DE APRENDIZADO

- Lazy learning (Aprendizado preguiçoso)
  - Simplesmente guarde todos os dados do treino e aguarde um novo teste.

- Eager learning (Aprendizado ancioso)
  - Com base em um dataset de treinamento, construa um modelo de classificação antes de receber uma instância de teste.

#### LAZY VS EAGER

 Lazy gasta menos tempo com o treino e mais tempo com a predição.

## Acurácia

 Métodos lazy efetivamente usam um espaço de hipóteses mais rico já que usa várias funções lineares locais para formar sua aproximação global da função alvo

 Eager: precisa se comprometer com uma única hipótese que cobre todo o espaço de instâncias

## ÁRVORES DE DECISÃO

• Árvore em que nós internos (não-folha) são testes em atributos e cada ramo é um resultado do teste e cada nó terminal (folha) é uma classe.

Testes podem ser binários ou multi-valorados.

• Dada uma instância de teste, seus atributos são testados a partir da raíz até encontrar um nó folha

Pode ser convertida para regras de classificação.

### ÁRVORES DE DECISÃO

• Árvore em que nós internos (não-folha) são testes em atributos e cada ramo é um resultado do teste e cada nó terminal (folha) é uma classe.

Testes podem ser binários ou multi-valorados.

 Dada uma instância de teste, seus atributos são testados a partir da raíz até encontrar um nó folha Pode ser convertida para regras de classificação.

## EXEMPLOS DE ÁRVORES DE DECISÃO



## ESTRUTURA DAS ÁRVORES DE DECISÃO



Note:- A is parent node of B and C.

## ALGORITMO DE ÁRVORE DE DECISÃO GENÉRICO



#### VANTAGENS DAS ÁRVORES DE DECISÃO

• Aprendizado e classificação são rápidos e simples.

• São de fácil interpretação.

Podem lidar com dados multidimensionais.

 Alguns algoritmos mais utilizados são: J48, Decision Stump e o Random Tree

## ALGORITMO J48

 Uma implementação do algoritmo ID3, desenvolvido pela equipe do WEKA.

 Esse algoritmo é rápido e muito acurado para amostras com variáveis contínuas em pequenos intervalos.

 Seguindo a mesma base do C4.5 o J48 possui melhorias enquanto a performance e acurácia.

## ALGORITMO J48 - SELEÇÃO DE ATRIBUTOS

- Seleção de atributo por ganho de informação.
  - Entropia segundo a Teoria da Informação:
    - Medida de pureza ou impureza de um determinado conjunto de dados.
    - O quanto os dados são iguais ou diferentes entre si?

$$entropia = \sum_{i=1}^{n} p(x_i)log2p(x_i)$$

## ALGORITMO J48 - SELEÇÃO DE ATRIBUTOS

- Seleção de atributo por ganho de informação.
  - Após medir a entropia o algoritmo pode medir o índice de ganho de informação e definir o melhor atributo.

$$Gain(S, A) = Entropia(S) - \sum_{v \in valores(A)} p(A_v) * Entropia(A_v)$$

S: Conjunto geral dos dados

A: Valores do atributo.

Av: Frequência de um determinado valor do atributo

## ALGORITMO J48 – EXEMPLO DE SELEÇÃO DE ATRIBUTOS

| Instancias | Expectativa | Temperatura | Humidade | Vento | Jogar tenis |
|------------|-------------|-------------|----------|-------|-------------|
| 1          | Sol         | Quente      | Alta     | Fraco | Não         |
| 2          | S 01        | Quente      | Alta     | Forte | Não         |
| 3          | Nublado     | Quente      | Alta     | Fraco | Sim         |
| 4          | Chuva       | Mo derada   | Alta     | Fraco | Sim         |
| 5          | Chuva       | Fresco      | Norm al  | Fraco | Sim         |
| 6          | Chuva       | Fresco      | Normal   | Forte | Não         |
| 7          | Nublado     | Fresco      | Norm al  | Forte | Sim         |
| 8          | S 01        | Mo derada   | Alta     | Fraco | Não         |
| 9          | Sol         | Fresco      | Normal   | Fraco | Sim         |
| 10         | Chuva       | Mo derada   | Normal   | Fraco | Sim         |
| 11         | Sol         | Mo derada   | Normal   | Forte | Sim         |
| 12         | Nublado     | Moderada    | Alta     | Forte | Sim         |
| 13         | Nublado     | Quente      | Norm al  | Fraco | Sim         |
| 14         | Chuva       | Mo derada   | Alta     | Forte | Não         |

## ALGORITMO J48 – EXEMPLO DE SELEÇÃO DE ATRIBUTOS

#### Cálculo de ganho de informação do atributo S. Espectativa

| Valores | Frequência relativa | Negativos | Positivos |
|---------|---------------------|-----------|-----------|
| Sol     | 5                   | 3         | 2         |
| Nublado | 4                   | 0         | 4         |
| Chuva   | 5                   | 2         | 3         |

#### Então teremos:

$$Gain(S, Expectativa) = \\ 0,939 - \left(\frac{5}{14} * entropia(sol)\right) - \left(\frac{4}{14} * entropia(nublado)\right) - \left(\frac{5}{14} * entropia(chuva)\right)$$

$$= 0,245$$

## ALGORITMO J48 – EXEMPLO DE SELEÇÃO DE ATRIBUTOS

#### Cálculo de ganho de informação do atributo S. Espectativa

| Valores | Frequência relativa | Negativos | Positivos |
|---------|---------------------|-----------|-----------|
| Sol     | 5                   | 3         | 2         |
| Nublado | 4                   | 0         | 4         |
| Chuva   | 5                   | 2         | 3         |

#### Então teremos:

$$Entropia = -\left(\frac{9}{14} * log_2\left(\frac{9}{14}\right)\right) - \left(\frac{5}{14} * log_2\left(\frac{5}{14}\right)\right)$$

$$Entropia = -(0.642 * -0.637) - (0.357 * -1.485) = 0.939$$

## ALGORITMO J48 - EXEMPLO DE SELEÇÃO DE ATRIBUTOS

#### Cálculo de ganho de informação do atributo Espectativa

| Valores | Frequência relativa | Negativos | Positivos |
|---------|---------------------|-----------|-----------|
| Sol     | 5                   | 3         | 2         |
| Nublado | 4                   | 0         | 4         |
| Chuva   | 5                   | 2         | 3         |

#### Replicando o mesmo processo teremos:

Gain(S, Expectativa) = 0.245 Gain(S, Humidade) = 0.151 Gain(S, Vento) = 0.048Gain(S, Temperatura) = 0.029

# Logo usando o J48 para esse dataset o root seria o atributo expectativa.

## ALGORITMO J48



## SELEÇÃO DE ATRIBUTOS

IG tem viés para atributos muitos valores.
 Information Gain Ratio, J48

O J48 Normaliza efeito de atributos multivalorados;

- Existem outras medidas de seleção de atributos:
  - Gini (CART): impuridade entre os nós
  - CHAD: teste chi-quadrado
  - C-SEP, G-statistic, Minimun Description Length (MDL).

## PROBLEMAS NO USO DAS ÁRVORES DE DECISÃO

Super adaptação:

 A árvore construída pode se super ajustar aos dados de treinamento.

• Ramos demais. Alguns desses ramos podem refletir anomalias devido a ruídos e outliers.

• Acurácia ruim para instâncias de teste.

## COMO EVITAR A SUPER ADAPTAÇÃO

Duas abordagens para evitar esse problema:

- Pré-poda: Termine cedo a construção da árvore e não particione um nó se o benefício estiver abaixo de um limiar.
  - Difícil escolher um limiar apropriado.

- Pós-poda: Remover ramos da árvore completamente construída, obtendo uma sequência de árvores progressivamente podadas.
  - Use diversos datasets para validar se a sua árvore está bem podada.

## APLICAR A CLASSIFICAÇÃO USANDO O WEKA



## REGRAS DE CLASSIFICAÇÃO

Training set

| Age | Heart rate | Blood pressure | Heart problem |
|-----|------------|----------------|---------------|
| 65  | 78         | 150/70         | Yes           |
| 37  | 83         | 112/76         | No            |
| 71  | 67         | 108/65         | No            |

#### Prediction set

| Age | Heart rate | Blood pressure | Heart problem |
|-----|------------|----------------|---------------|
| 43  | 98         | 147/89         | ?             |
| 65  | 58         | 106/63         | ?             |
| 84  | 77         | 150/65         | ?             |

TABLE 1 - TRAINING AND PREDICTION SETS FOR MEDICAL DATABASE

## ALGORITMO PART (REGRAS)



#### ALGORITMO NAYVE BAYES

- Classificador estatístico.
  - Previsão
    - Probabilidade de uma instância pertencer a uma determinada classe.
    - Classe de maior probabilidade é escolhida.

- Baseado no teorema de Bayes.
- Cada instância pode aumentar ou diminuir a probabilidade da hipótese estar correta.

#### ALGORITMO NAYVE BAYES – TEOREMA DE BAYES

$$P(H \mid X) = \frac{P(X|H)P(H)}{P(X)} = P(X|H) \times P(H)/P(X)$$

- X é uma instância (evidência) de classe desconhecida
- H é uma hipótese de que X pertence a classe C
- Classificação determina P(H|X) (probabilidade a posteriori): a probabilidade da hipótese H verdadeira se for observada uma instância particular X
- P(H) (probabilidade a priori): a probabilidade inicial de uma instância qualquer ser da classe C
- P(X): probabilidade da instância X ser observada
- P(X|H) (likelihood): probabilidade de observar a amostra X, dado que a hipótese é verdadeira

#### ALGORITMO NAYVE BAYES - EXEMPLOS

- Meningite causa rigidez na nuca em 50% dos casos
- Probabilidade a priori de um paciente ter menigite é 1/50,000
- Probabilidade de um paciente ter rigidez na nuca é 1/20

Se um paciente tem rigidez na nuca, qual a probabilidade de ter meningite?

$$P(M \mid S) = \frac{P(S|M)P(M)}{P(S)} = \frac{0.5 \times 1/50000}{1/20} = 0.0002$$

## ALGORITMO NAYVE BAYES GENÉRICO



## ALGORITMO NAYVE BAYES GENÉRICO





Classe verde



Classes definidas pelo dataset de treinamento

$$P(H \mid X) = \frac{P(X|H)P(H)}{P(X)}$$







Classe laranja



Classe verde



A nova instância é classificada com base nos dados de treinamento e o modelo é reavaliado.

## ALGORITMO NAYVE BAYES - MENSURAR PARÂMETROS

- Gaussian Naive Bayes
  - Indicado para quando os valores associados aquela classe são atributos contínuos.
- Multinomial naive Bayes
  - Quando os eventos avaliados gera um modelo multinominal.
- Bernoulli naive Bayes
  - Quando o modelo é composto por variáveis binárias ou boleanas.
- Semi-supervised parameter estimation
  - Quando o modelo é treinado por um dataset, previamente classificado.

#### VANTAGENS E DESVANTAGENS DO NAYVE BAYES

## Vantagens

- Fácil implementação
- Bons resultados em muitos casos

## Desvantagens

- Pressuposição: independência dos atributos perdendo assim a acurácia.
- Na prática sempre existe uma dependência: Ex:.
   Hospital: pacientes: prontuários, casos: doenças.
- A dependência entre os atributos não podem ser mensuradas no modelo de Bayes.

#### ABORDAGENS USANDO MÚLTIPLOS CLASSIFICADORES

• Classificadores diferentes podem encontrar resultados diferentes para parte das instâncias.

• Ao invés de escolher um único classificador, em alguns casos são utilizados um conjunto de algoritmos.

 A classificação nesses casos virá da combinação dos resultados de todos os classificadores.

## ABORDAGENS USANDO MÚLTIPLOS CLASSIFICADORES



• Classificadores diferentes podem encontrar resultados diferentes para parte das instâncias.

• Ao invés de escolher um único classificador, em alguns casos são utilizados um conjunto de algoritmos.

 A classificação nesses casos virá da combinação dos resultados de todos os classificadores.

 Combine uma série de k modelos de classificação, M1,M2,..., Mk, com o objetivo de criar um modelo melhor M\*

- Abordagens mais comuns
  - Bagging: classificação da maioria
  - Boosting: votos ponderados de classificação

- Bagging (bootstrap aggregating)
  - Treinamento
    - Dado um conjunto D com d instâncias, a cada iteração I, um conjunto conjunto Di com d instância instância é amostrado amostrado com reposição reposição de D (bootstrap)
    - Um modelo de classificador Mi é aprendido de cada Di
  - Classificação
    - Cada classificador Mi retorna sua predição de classe
    - O classificador agregador M\* conta os votos e designa a classe com a maioria dos votos

Bagging (bootstrap aggregating)

- Variações
  - Tamanho do subconjunto
  - Amostragem sem reposição
  - Amostragem de atributos e não de instâncias
  - Modelos com algoritmos diferentes

# Boosting

- Os classificadores posteriores focam em exemplos que foram classificados errado pelos classificadores anteriores
- Pondere as predições dos classificadores pelo seus erros
- Pode ser melhor que bagging, mas pode super adaptar aos exemplos difíceis (classificados errado)

# Boosting

- Os classificadores posteriores focam em exemplos que foram classificados errado pelos classificadores anteriores
- Pondere as predições dos classificadores pelo seus erros
- Pode ser melhor que bagging, mas pode super adaptar aos exemplos difíceis (classificados errado)

Como avaliar um classificador?

• Como obter uma estimativa de avaliação confiável ?

Matriz de confusão



# • Matriz de confusão

|                 |                             | Condition (as determined by "Gold standard")                                                    |                                                                                                                                                    |                                                                                                           |
|-----------------|-----------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
|                 |                             | Condition Positive                                                                              | Condition Negative                                                                                                                                 |                                                                                                           |
| Test<br>Outcome | Test<br>Outcome<br>Positive | True Positive                                                                                   | False Positive<br>(Type I error)                                                                                                                   | Positive predictive value =  Σ True Positive  Σ Test Outcome Positive                                     |
|                 | Test<br>Outcome<br>Negative | False Negative<br>(Type II error)                                                               | True Negative                                                                                                                                      | $\frac{\text{Negative predictive value} =}{\Sigma \text{ True Negative}}$ \$\Sigma Test Outcome Negative} |
|                 |                             | $\frac{\text{Sensitivity} =}{\Sigma \text{ True Positive}}$ $\Sigma \text{ Condition Positive}$ | $\begin{array}{c} \textbf{Specificity} = \\ \underline{\Sigma \text{ True Negative}} \\ \underline{\Sigma \text{ Condition Negative}} \end{array}$ |                                                                                                           |

- Medidas
  - Acurácia= (TP + TN)/All
  - Error rate = I accuracy = (FP + FN)/AII
  - Sensibilidade ou Recall = TP/P
  - Especificidade = TN/N
  - Precisão = TP/P'

### AVALIAÇÃO DOS CLASSIFICADORES - EXEMPLO

| Classe Atual / Predicted class | Cancer = yes | Cancer = no | Total |
|--------------------------------|--------------|-------------|-------|
| Cancer = yes                   | 90           | 210         | 300   |
| Cancer = no                    | 140          | 9560        | 9700  |
| Total                          | 230          | 9770        | 10000 |

- Precisão = 90/230 = 39.13%
- VPP = 90/300 = 30.00%

CUIDADO COM DESBALANÇO DE CLASSES

# MÉTODOS DE AVALIAÇÃO

Holdout

• Validação cruzada (cross validation)

• Amostragem aleatória

## MÉTODOS DE AVALIAÇÃO - HOLDOUT

- Particionamento aleatório em conjuntos independentes
  - Conjunto de treino (ex: 2/3) para construir modelo
  - Conjunto de teste (ex: 1/3) para estimar acurácia

- Amostragem aleatória: variação
  - Repita holdout k vezes, acurácia = média da acurácia

### MÉTODOS DE AVALIAÇÃO - CROSS VALIDATION

- k-fold, valor mais popular k = 10
- Particionar os dados em k subconjuntos mutualmente exclusivos, com aproximadamente mesmo tamanho exclusivos, com aproximadamente mesmo tamanho

- Na iteração i, use Di como teste e demais como treino
  - Leave-one-out: k folds, k = quant. instâncias, para dados de pequeno tamanho
  - Stratified cross-validation: folds mantém a mesma distribuição de classes do conjunto original

## MÉTODOS DE AVALIAÇÃO - HOLDOUT

- Selecionando um classificador
  - Acurácia: predizer a classe
  - Velocidade: tempo de construção do modelo (treino)
    - tempo de construção do modelo (treino)
    - tempo de aplicação do modelo (tempo de classificação/tempo)
  - Robustez: lidar com ruído e valores ausentes
  - Escalabilidade: eficiência em bases de dados em disco
  - Interpretabilidade: compreensão do modelo

#### **DESAFIO**

 Abra o dataset IRIS disponibilizado no WEKA. Explore os seguintes aspectos:

- Descubra do que se trata esse dataset, a semântica dos atributos e os tipos deles.
- Realize o pré-processamento caso necessário.
- Tente classificar as instâncias usando o WEKA.
- Qual foi o melhor classificador?

# INTELIGÊNCIA COMPUTACIONAL

ALGORITMOS DE CLASSIFICAÇÃO

**FELIPE TORRES**