ADS506 Project Australia Rainfall Forecast

Marinela Inguito, Jose Guarneros, Robert Marriott

```
library(dplyr)
library(ggplot2)
library(lubridate)
library(tidyr)
library(tsibble)
library(tseries)
library(feasts)
library(fpp3)
library(corrplot)
library(patchwork)
library(fable)
library(Metrics)
library(xgboost)
library(fastDummies)
library(caret)
library(forecast)
library(kableExtra)
```

Importing the Data

```
weather_data <- read.csv("weatherAUS.csv")
str(weather_data$Date)
## chr [1:145460] "2008-12-01" "2008-12-02" "2008-12-03" "2008-12-04" ...</pre>
```

Preview of Data

```
str(weather_data)
                     # Structure of the dataset
## 'data.frame':
                 145460 obs. of 23 variables:
                : chr "2008-12-01" "2008-12-02" "2008-12-03" "2008-12-04" ...
## $ Date
## $ Location
                : chr
                        "Albury" "Albury" "Albury" "...
## $ MinTemp
                        13.4 7.4 12.9 9.2 17.5 14.6 14.3 7.7 9.7 13.1 ...
                 : num
## $ MaxTemp
                 : num 22.9 25.1 25.7 28 32.3 29.7 25 26.7 31.9 30.1 ...
## $ Rainfall
                 : num 0.6 0 0 0 1 0.2 0 0 0 1.4 ...
## $ Evaporation : num NA ...
## $ Sunshine
                 : num NA NA NA NA NA NA NA NA NA ...
## $ WindGustDir : chr "W" "WNW" "WSW" "NE" ...
## $ WindGustSpeed: int 44 44 46 24 41 56 50 35 80 28 ...
                : chr "W" "NNW" "W" "SE" ...
## $ WindDir9am
## $ WindDir3pm
                 : chr "WNW" "WSW" "WSW" "E" ...
## $ WindSpeed9am : int 20 4 19 11 7 19 20 6 7 15 ...
## $ WindSpeed3pm : int 24 22 26 9 20 24 24 17 28 11 ...
## $ Humidity9am : int 71 44 38 45 82 55 49 48 42 58 ...
```

```
$ Humidity3pm
                   : int
                           22 25 30 16 33 23 19 19 9 27 ...
##
                           1008 1011 1008 1018 1011 ...
    $ Pressure9am
                   : num
##
    $ Pressure3pm
                   : num
                           1007 1008 1009 1013 1006 ...
##
    $ Cloud9am
                           8 NA NA NA 7 NA 1 NA NA NA ...
                    : int
##
    $ Cloud3pm
                    : int
                           NA NA 2 NA 8 NA NA NA NA NA ...
##
                           16.9 17.2 21 18.1 17.8 20.6 18.1 16.3 18.3 20.1 ...
    $ Temp9am
                    : num
                           21.8 24.3 23.2 26.5 29.7 28.9 24.6 25.5 30.2 28.2 ...
##
    $ Temp3pm
                    : num
                           "No" "No" "No" "No" ...
##
    $ RainToday
                    : chr
    $ RainTomorrow : chr
                           "No" "No" "No" "No" ...
summary(weather_data) # Summary statistics for each column
##
                          Location
                                               MinTemp
                                                                MaxTemp
        Date
##
                        Length: 145460
                                                                    :-4.80
    Length: 145460
                                                   :-8.50
                                            Min.
                                                             Min.
##
    Class : character
                        Class : character
                                            1st Qu.: 7.60
                                                             1st Qu.:17.90
##
    Mode :character
                        Mode :character
                                            Median :12.00
                                                             Median :22.60
##
                                            Mean
                                                   :12.19
                                                             Mean
                                                                    :23.22
##
                                            3rd Qu.:16.90
                                                             3rd Qu.:28.20
##
                                                   :33.90
                                            Max.
                                                             Max.
                                                                    :48.10
##
                                            NA's
                                                   :1485
                                                             NA's
                                                                    :1261
##
       Rainfall
                        Evaporation
                                            Sunshine
                                                          WindGustDir
##
    Min.
          : 0.000
                       Min.
                              : 0.00
                                         Min.
                                                : 0.00
                                                          Length: 145460
##
    1st Qu.:
             0.000
                       1st Qu.:
                                 2.60
                                         1st Qu.: 4.80
                                                          Class : character
##
    Median : 0.000
                       Median: 4.80
                                         Median : 8.40
                                                          Mode : character
    Mean
           : 2.361
                       Mean
                              : 5.47
                                         Mean
                                               : 7.61
##
    3rd Qu.: 0.800
                       3rd Qu.: 7.40
                                         3rd Qu.:10.60
##
    Max.
           :371.000
                       Max.
                              :145.00
                                         Max.
                                                :14.50
##
    NA's
           :3261
                       NA's
                              :62790
                                         NA's
                                                :69835
    WindGustSpeed
##
                       WindDir9am
                                           WindDir3pm
                                                               WindSpeed9am
##
    Min.
           : 6.00
                      Length: 145460
                                          Length: 145460
                                                              Min.
                                                                     : 0.00
##
    1st Qu.: 31.00
                      Class : character
                                          Class : character
                                                              1st Qu.: 7.00
    Median: 39.00
                      Mode : character
                                          Mode :character
                                                              Median : 13.00
##
    Mean
          : 40.03
                                                              Mean
                                                                    : 14.04
##
    3rd Qu.: 48.00
                                                              3rd Qu.: 19.00
##
    Max.
           :135.00
                                                              Max.
                                                                     :130.00
                                                              NA's
##
    NA's
           :10263
                                                                     :1767
##
     WindSpeed3pm
                      Humidity9am
                                        Humidity3pm
                                                          Pressure9am
##
    Min.
           : 0.00
                     Min.
                            : 0.00
                                       Min.
                                              : 0.00
                                                        Min.
                                                                : 980.5
##
    1st Qu.:13.00
                     1st Qu.: 57.00
                                       1st Qu.: 37.00
                                                         1st Qu.:1012.9
    Median :19.00
                     Median: 70.00
                                       Median: 52.00
                                                        Median: 1017.6
##
    Mean
           :18.66
                     Mean
                            : 68.88
                                       Mean
                                              : 51.54
                                                        Mean
                                                                :1017.6
##
    3rd Qu.:24.00
                     3rd Qu.: 83.00
                                       3rd Qu.: 66.00
                                                         3rd Qu.:1022.4
           :87.00
                                              :100.00
##
    Max.
                     Max.
                            :100.00
                                       Max.
                                                        Max.
                                                                :1041.0
##
    NA's
           :3062
                     NA's
                            :2654
                                       NA's
                                              :4507
                                                        NA's
                                                                :15065
##
     Pressure3pm
                         Cloud9am
                                          Cloud3pm
                                                           Temp9am
           : 977.1
##
    Min.
                      Min.
                             :0.00
                                       Min.
                                              :0.00
                                                        Min.
                                                               :-7.20
    1st Qu.:1010.4
                      1st Qu.:1.00
                                       1st Qu.:2.00
                                                        1st Qu.:12.30
    Median :1015.2
                      Median:5.00
                                       Median:5.00
                                                        Median :16.70
##
##
    Mean
           :1015.3
                      Mean
                             :4.45
                                       Mean
                                              :4.51
                                                        Mean
                                                               :16.99
##
    3rd Qu.:1020.0
                      3rd Qu.:7.00
                                       3rd Qu.:7.00
                                                        3rd Qu.:21.60
##
    Max.
           :1039.6
                             :9.00
                                       Max.
                                              :9.00
                                                        Max.
                      Max.
                                                               :40.20
    NA's
                                                        NA's
##
           :15028
                      NA's
                             :55888
                                       NA's
                                                               :1767
                                              :59358
##
       Temp3pm
                      RainToday
                                         RainTomorrow
##
    Min.
           :-5.40
                     Length: 145460
                                         Length: 145460
    1st Qu.:16.60
                     Class : character
                                         Class : character
```

```
## Median :21.10
                     Mode :character
                                         Mode :character
## Mean
           :21.68
## 3rd Qu.:26.40
## Max.
            :46.70
  NA's
            :3609
head(weather data)
##
           Date Location MinTemp MaxTemp Rainfall Evaporation Sunshine WindGustDir
## 1 2008-12-01
                   Albury
                              13.4
                                      22.9
                                                 0.6
                                                               NA
                                                                         NA
## 2 2008-12-02
                               7.4
                                      25.1
                                                 0.0
                   Albury
                                                               NΑ
                                                                         NA
                                                                                     WNW
## 3 2008-12-03
                              12.9
                                      25.7
                                                 0.0
                                                                                     WSW
                   Albury
                                                               NA
                                                                         NA
## 4 2008-12-04
                   Albury
                               9.2
                                      28.0
                                                 0.0
                                                               NA
                                                                         NA
                                                                                      NE
## 5 2008-12-05
                   Albury
                              17.5
                                      32.3
                                                 1.0
                                                               NA
                                                                         NA
                                                                                       W
## 6 2008-12-06
                              14.6
                                      29.7
                                                 0.2
                                                                         NA
                                                                                     WNW
                   Albury
                                                               NA
##
     WindGustSpeed WindDir9am WindDir3pm WindSpeed9am WindSpeed3pm Humidity9am
## 1
                 44
                              W
                                       WNW
                                                      20
                                                                    24
## 2
                 44
                           NNW
                                       WSW
                                                       4
                                                                    22
                                                                                 44
## 3
                 46
                              W
                                       WSW
                                                      19
                                                                    26
                                                                                 38
## 4
                 24
                             SE
                                         Ε
                                                      11
                                                                     9
                                                                                 45
## 5
                                        NW
                                                                                 82
                 41
                           ENE
                                                       7
                                                                    20
## 6
                 56
                                         W
                                                      19
                                                                                 55
                              W
                                                                    24
     Humidity3pm Pressure9am Pressure3pm Cloud9am Cloud3pm Temp9am Temp3pm
## 1
              22
                       1007.7
                                    1007.1
                                                   8
                                                            NA
                                                                  16.9
## 2
               25
                       1010.6
                                    1007.8
                                                                  17.2
                                                                           24.3
                                                  NA
                                                            NA
## 3
               30
                       1007.6
                                    1008.7
                                                             2
                                                                  21.0
                                                                           23.2
                                                  NA
## 4
                       1017.6
                                    1012.8
                                                                  18.1
                                                                           26.5
               16
                                                  NA
                                                            NA
## 5
               33
                       1010.8
                                    1006.0
                                                                  17.8
                                                                           29.7
                                                   7
                                                             8
               23
                       1009.2
                                    1005.4
                                                  NA
                                                            NA
                                                                  20.6
                                                                           28.9
##
     RainToday RainTomorrow
## 1
            No
## 2
            No
                          No
## 3
            No
                          No
## 4
            No
                          No
## 5
            Nο
                          No
## 6
            No
                          No
```

Data Preprocessing

Convert Date Column

```
weather_data$Date <- as.Date(weather_data$Date, format = "%Y-%m-%d")
#weather_data <- as_tsibble(weather_data, index = Date)

weather_data_monthly <- weather_data |>
    mutate(
    Date = as.Date(Date), # Convert Date to proper format
    year_month = format(Date, "%Y-%m"), # Extract Year-Month for grouping
    AvgWindSpeed = (WindSpeed9am + WindSpeed3pm) / 2,
    AvgHumidity = (Humidity9am + Humidity3pm) / 2,
    AvgPressure = (Pressure9am + Pressure3pm) / 2,
    AvgCloud = (Cloud9am + Cloud3pm) / 2,
    AvgTemp = (Temp9am + Temp3pm) / 2
    ) |>
    group_by(Location, year_month) |> # Group by Location and year_month
```

```
summarize(
    AvgWindSpeed = mean(AvgWindSpeed, na.rm = TRUE),
   AvgHumidity = mean(AvgHumidity, na.rm = TRUE),
    AvgPressure = mean(AvgPressure, na.rm = TRUE),
    AvgCloud = mean(AvgCloud, na.rm = TRUE),
   AvgTemp = mean(AvgTemp, na.rm = TRUE),
   MinTemp = mean(MinTemp, na.rm = TRUE),
   MaxTemp = mean(MaxTemp, na.rm = TRUE),
   Rainfall = sum(Rainfall, na.rm = TRUE),
    .groups = "drop"
  ) |>
  mutate(
   Rained = ifelse(Rainfall > 0, 1, 0) # Binary column: 1 if Rainfall > 0, else 0
weather_data_monthly$year_month <- yearmonth(weather_data_monthly$year_month)</pre>
class(weather_data_monthly$year_month)
## [1] "yearmonth" "vctrs vctr"
weather_data_ts <- weather_data_monthly |>
  as_tsibble(index = year_month, key = Location)
head(weather_data_ts)
## # A tsibble: 6 x 11 [1M]
## # Key:
                Location [1]
   Location year_month AvgWindSpeed AvgHumidity AvgPressure AvgCloud AvgTemp
                                <dbl>
##
     <chr>>
                   <mth>
                                            <dbl>
                                                         <dbl>
                                                                  <dbl>
                                                                          <dbl>
## 1 Adelaide 2008 Jul
                                 14.6
                                             64.2
                                                         1018.
                                                                    NaN
                                                                           12.3
## 2 Adelaide 2008 Aug
                                 13.4
                                             66.6
                                                        1024.
                                                                    {\tt NaN}
                                                                           12.0
## 3 Adelaide 2008 Sep
                                 16.4
                                             45
                                                         1018.
                                                                    NaN
                                                                           17.3
## 4 Adelaide 2008 Oct
                                             40.2
                                                                           20.1
                                 14.3
                                                         1020.
                                                                    {\tt NaN}
## 5 Adelaide 2008 Nov
                                 15.4
                                             44.2
                                                         1012.
                                                                    NaN
                                                                           20.7
## 6 Adelaide
              2008 Dec
                                 14.3
                                             48.5
                                                         1011.
                                                                    {\tt NaN}
                                                                           21.6
## # i 4 more variables: MinTemp <dbl>, MaxTemp <dbl>, Rainfall <dbl>,
## # Rained <dbl>
# Create the time series plot
weather data ts$Rainfall <- as.numeric(weather data ts$Rainfall)</pre>
rainfall_ts <- ts(weather_data_ts$Rainfall, start = c(2008, 1), end = c(2017, 12), frequency = 12)
# Use autoplot() to plot the time series
autoplot(rainfall_ts) +
  labs(title = "Rainfall Time Series", x = "Year-Month", y = "Rainfall (mm)") +
 theme_minimal()
```

Rainfall Time Series

Correlation matrix

```
# Numeric features
numeric_features <- weather_data_ts[c("AvgWindSpeed", "AvgHumidity", "AvgPressure", "AvgCloud", "MinTem</pre>
# Ensure all selected features are numeric
numeric_features <- sapply(numeric_features, as.numeric)</pre>
# Calculate the correlation matrix for all numeric columns
cor_matrix <- cor(numeric_features, use = "complete.obs")</pre>
# Generate the correlation heatmap
corrplot(cor_matrix,
         method = "color", # Use colors to represent correlation values
         col = colorRampPalette(c("blue", "white", "red"))(200), # Color scale
         title = "Correlation Matrix Heatmap",
         addCoef.col = "black", # Add correlation coefficients on the plot
         number.cex = 0.8, # Size of the coefficients
         diag = FALSE, # Hide diagonal
         tl.col = "black", # Text label color
         tl.cex = 0.8, # Text label size
         mar = c(0, 0, 1, 0)) # Margins around the plot
```


Scatter plot features vs Rainfall

```
# List of features to plot against Rainfall
features <- c("AvgWindSpeed", "AvgHumidity", "AvgPressure", "AvgCloud", "MinTemp", "MaxTemp", "Rainfall
# Check for missing values in these columns and impute the mean if there are any
weather data ts[features] <- suppressWarnings(weather data ts[features] |>
 mutate(across(
   all of (features),
    ~ ifelse(is.na(.), mean(., na.rm = TRUE), .)
 )))
# Verify that missing values have been handled
colSums(is.na(weather_data_ts[features]))
## AvgWindSpeed AvgHumidity
                              AvgPressure
                                               AvgCloud
                                                             MinTemp
                                                                          MaxTemp
##
##
       Rainfall
                     AvgTemp
##
# Create scatter plots for each feature vs Rainfall
for (feature in features) {
  plot <- ggplot(weather_data_ts, aes_string(x = feature, y = "Rainfall")) +</pre>
    geom_point() +
    labs(title = paste("Scatter Plot of", feature, "vs Rainfall"),
         x = feature,
```

```
y = "Rainfall") +
theme_minimal()
print(plot)
}
```

```
## Warning: `aes_string()` was deprecated in ggplot2 3.0.0.
## i Please use tidy evaluation idioms with `aes()`.
## i See also `vignette("ggplot2-in-packages")` for more information.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
```

Scatter Plot of AvgWindSpeed vs Rainfall

Data Cleaning

Handle Missing Values

```
colSums(is.na(weather_data_monthly))
##
                   year_month AvgWindSpeed
                                             AvgHumidity
                                                                             AvgCloud
       Location
                                                           AvgPressure
##
                                                                    476
                                                                                 1459
                                                 Rainfall
##
                      MinTemp
                                    MaxTemp
                                                                 Rained
        AvgTemp
##
```

Impute missing values

```
weather_data_monthly$AvgWindSpeed[is.na(weather_data_monthly$AvgWindSpeed)] <- mean(weather_data_monthl)
weather_data_monthly$MinTemp[is.na(weather_data_monthly$MinTemp)] <- mean(weather_data_monthly$MinTemp,
weather_data_monthly$AvgHumidity[is.na(weather_data_monthly$AvgHumidity)] <- mean(weather_data_monthly$
weather_data_monthly$AvgPressure[is.na(weather_data_monthly$AvgPressure)] <- mean(weather_data_monthly$AvgCloud[is.na(weather_data_monthly$AvgCloud)] <- mean(weather_data_monthly$AvgCloud)
weather_data_monthly$AvgTemp[is.na(weather_data_monthly$AvgTemp)] <- mean(weather_data_monthly$AvgTemp,
weather_data_monthly$MaxTemp[is.na(weather_data_monthly$MaxTemp)] <- mean(weather_data_monthly$MaxTemp,
colSums(is.na(weather_data_monthly))</pre>
```

```
## Location year_month AvgWindSpeed AvgHumidity AvgPressure AvgCloud
## 0 0 0 0 0 0
## AvgTemp MinTemp MaxTemp Rainfall Rained
```

0 0 0 0

Split the data into train and test sets

```
train_data <- weather_data_monthly |>
  filter(year_month >= yearmonth("2007 Nov") & year_month <= yearmonth("2015 Jun"))

test_data <- weather_data_monthly |>
  filter(year_month >= yearmonth("2015 Jul") & year_month <= yearmonth("2017 Jun"))</pre>
```

Time Series Plots for four cities, decompose, differencing

```
# Initialize an empty list to store results for each city
city_results <- list()</pre>
# Split the data into train and test sets
train_data <- weather_data_monthly |>
  filter(year_month >= yearmonth("2007 Nov") & year_month <= yearmonth("2015 Jun"))
test_data <- weather_data_monthly |>
  filter(year month >= yearmonth("2015 Jul") & year month <= yearmonth("2017 Jun"))
# Time Series Plots for four cities, decompose, differencing
cities <- c("Sydney", "Perth", "Darwin", "Melbourne")</pre>
for (city in cities) {
  # Filter data for the current city
  city_train_data <- train_data |> filter(Location == city)
  # Convert to tsibble and create a time series object
  city_train_tsibble <- city_train_data |>
    as_tsibble(index = year_month, key = Location)
  # Ensure Rainfall is a numeric vector and create a time series object
  rainfall_ts <- ts(city_train_tsibble$Rainfall, frequency = 12)</pre>
  # Time Series Plot
  ts plot <- city train tsibble |>
   autoplot(Rainfall) +
    ggtitle(paste("Rainfall Time Series for", city)) +
   theme_minimal()
  print(ts_plot) # Display the time series plot
  # Stationarity check using Augmented Dickey-Fuller Test
  adf_result <- adf.test(rainfall_ts)</pre>
  cat("ADF Test for", city, "\n")
  print(adf_result)
  # If the time series is non-stationary, apply differencing once
 if (adf_result$p.value >= 0.05) {
```

```
cat("Conclusion: The time series for", city, "is non-stationary. Applying differencing.\n\n")
    # Apply differencing to make the series stationary (only once)
    diff_rainfall_ts <- diff(rainfall_ts)</pre>
    # Store differenced series in the results list
    city_results[[city]]$diff_rainfall_ts <- diff_rainfall_ts</pre>
    # Re-perform the ADF Test on the differenced series
    adf_result_diff <- adf.test(diff_rainfall_ts)</pre>
    cat("ADF Test after differencing for", city, "\n")
    print(adf_result_diff)
    if (adf_result_diff$p.value < 0.05) {</pre>
      cat("Conclusion: The differenced series for", city, "is stationary.\n\n")
      # Apply decomposition on the differenced series
      city_decomposition <- stl(diff_rainfall_ts, s.window = "periodic")</pre>
      # Plot decomposition
      decomposition_plot <- autoplot(city_decomposition) +</pre>
        ggtitle(paste("STL Decomposition for", city, "After Differencing")) +
        theme_minimal()
     print(decomposition_plot) # Display the decomposition plot
      cat("Conclusion: The differenced series for", city, "is still non-stationary. Additional differen
  } else {
    cat("Conclusion: The time series for", city, "is stationary.\n\n")
    # If stationary, apply decomposition directly
    city_decomposition <- stl(rainfall_ts, s.window = "periodic")</pre>
    # Plot decomposition
    decomposition_plot <- autoplot(city_decomposition) +</pre>
      ggtitle(paste("STL Decomposition for", city)) +
      theme_minimal()
    print(decomposition_plot) # Display the decomposition plot
  }
  # Store results for the current city
  city_results[[city]] <- list(</pre>
    time_series_plot = ts_plot,
    decomposed = city_decomposition
}
```

Rainfall Time Series for Sydney


```
## ADF Test for Sydney
##
## Augmented Dickey-Fuller Test
##
## data: rainfall_ts
## Dickey-Fuller = -3.901, Lag order = 4, p-value = 0.01801
## alternative hypothesis: stationary
##
## Conclusion: The time series for Sydney is stationary.
```


Warning in adf.test(rainfall_ts): p-value smaller than printed p-value

Rainfall Time Series for Perth


```
## ADF Test for Perth
##
## Augmented Dickey-Fuller Test
##
## data: rainfall_ts
## Dickey-Fuller = -6.2144, Lag order = 4, p-value = 0.01
## alternative hypothesis: stationary
##
## Conclusion: The time series for Perth is stationary.
```


Warning in adf.test(rainfall_ts): p-value smaller than printed p-value

Rainfall Time Series for Darwin


```
## ADF Test for Darwin
##
## Augmented Dickey-Fuller Test
##
## data: rainfall_ts
## Dickey-Fuller = -5.7776, Lag order = 4, p-value = 0.01
## alternative hypothesis: stationary
##
## Conclusion: The time series for Darwin is stationary.
```

STL Decomposition for Darwin


```
## ADF Test for Melbourne
##
## Augmented Dickey-Fuller Test
##
## data: rainfall_ts
## Dickey-Fuller = -3.2429, Lag order = 4, p-value = 0.08686
## alternative hypothesis: stationary
##
## Conclusion: The time series for Melbourne is non-stationary. Applying differencing.
## Warning in adf.test(diff_rainfall_ts): p-value smaller than printed p-value
```

Rainfall Time Series for Melbourne


```
## ADF Test after differencing for Melbourne
##
## Augmented Dickey-Fuller Test
##
## data: diff_rainfall_ts
## Dickey-Fuller = -5.2042, Lag order = 4, p-value = 0.01
## alternative hypothesis: stationary
##
## Conclusion: The differenced series for Melbourne is stationary.
```


ACF and PACF for ARIMA Model Identification

```
# Define the four cities of interest
cities <- c("Sydney", "Perth", "Darwin", "Melbourne")</pre>
# Loop through the four cities to generate ACF and PACF plots
for (city in cities) {
  # Filter data for the current city
  city_train_data <- train_data |> filter(Location == city)
  # Check if data for the city exists
  if (nrow(city_train_data) == 0) {
   message(paste("No data available for", city, "- Skipping."))
   next
 }
  # Convert to tsibble and create a time series object
  city_train_tsibble <- city_train_data |>
    as_tsibble(index = year_month, key = Location)
  # Ensure Rainfall is a numeric vector and create a time series object
  rainfall_ts <- ts(city_train_tsibble Rainfall, frequency = 12)
  # Apply differencing (only once)
  diff_rainfall_ts <- diff(rainfall_ts)</pre>
```

```
# ACF Plot for Differenced Rainfall for the current city
acf(diff_rainfall_ts, lag.max = 20, main = paste("ACF of Differenced Rainfall for", city))
# PACF Plot for Differenced Rainfall for the current city
pacf(diff_rainfall_ts, lag.max = 20, main = paste("PACF of Differenced Rainfall for", city))
}
```

ACF of Differenced Rainfall for Sydney

PACF of Differenced Rainfall for Sydney

Lag
ACF of Differenced Rainfall for Perth

PACF of Differenced Rainfall for Perth

Lag
ACF of Differenced Rainfall for Darwin

PACF of Differenced Rainfall for Darwin

Lag
ACF of Differenced Rainfall for Melbourne

PACF of Differenced Rainfall for Melbourne

ARIMA MODELLING

```
# Ensure knitr package is loaded
library(knitr)
# Initialize an empty list to store ARIMA models for each city
city_results <- list()</pre>
# Create a data frame to store the ARIMA model details for each city
arima_summary_df <- data.frame(</pre>
  City = character(),
  ARIMA_Order = character(),
 AIC = numeric(),
  BIC = numeric(),
  Coefficients = character(),
  stringsAsFactors = FALSE
)
# Loop through the cities to apply ARIMA modeling
cities <- c("Sydney", "Perth", "Darwin", "Melbourne")</pre>
for (city in cities) {
  # Filter data for the current city
  city_train_data <- train_data |> filter(Location == city)
  # Check if data for the city exists
  if (nrow(city_train_data) == 0) {
    message(paste("No data available for", city, "- Skipping."))
```

```
next
  }
  # Convert to tsibble and create a time series object
  city_train_tsibble <- city_train_data |>
    as_tsibble(index = year_month, key = Location)
  # Ensure Rainfall is a numeric vector and create a time series object
  rainfall_ts <- ts(city_train_tsibble$Rainfall, frequency = 12)</pre>
  # Fit an ARIMA model directly to the stationary data
  arima_model <- auto.arima(rainfall_ts)</pre>
  # Extract ARIMA order (p, d, q)
  arima_order <- paste(arima_model$arma[1], arima_model$arma[6], arima_model$arma[2], sep = ",")
  # Extract AIC and BIC
  aic_value <- arima_model$aic</pre>
  bic_value <- arima_model$bic</pre>
  # Extract coefficients and convert to string
  coeffs <- paste(names(arima_model$coef), round(arima_model$coef, 4), collapse = ", ")</pre>
  # Store the ARIMA summary in the data frame
  arima_summary_df <- rbind(arima_summary_df, data.frame(</pre>
    City = city,
    ARIMA_Order = arima_order,
   AIC = aic_value,
    BIC = bic_value,
    Coefficients = coeffs
  ))
  # Store the ARIMA model for the current city
  city_results[[city]] <- list(</pre>
    arima_model = arima_model
  )
}
# Display the ARIMA summary table using kable
kable(arima_summary_df, caption = "ARIMA Model Summary for Each City") |>
  kable_styling(
    bootstrap_options = c("striped", "hover", "condensed", "responsive"),
    full_width = FALSE,
    position = "center"
  column_spec(2, bold = TRUE, border_right = TRUE) |>
  column_spec(3:4, width = "10em") |>
  column_spec(5, width = "20em", extra_css = "word-wrap: break-word;")
```

Table 1: ARIMA Model Summary for Each City

City	ARIMA_Order	AIC	BIC	Coefficients	
Sydney	0,0,0	992.7719	997.6806	intercept 97.4605	

Perth	0,0,2	833.6316	847.9983	ma1 0.3382, ma2 0.4223, sma1 0.3371, s
				0.4999, intercept 58.2675
Darwin	1,0,0	1044.5578	1054.1356	ar1 0.4344, sar1 0.5386, intercept 144.82
Melbourne	2,0,0	770.7475	785.1142	ar1 0.2589, ar2 0.2465, sma1 0.126, sma
				-0.4342, intercept 47.6892

Assess ARIMA Forecast Accuracy on Test Data

```
# List of cities
cities <- c("Sydney", "Perth", "Darwin", "Melbourne")</pre>
# Create a data frame to store forecast accuracy results
forecast_table <- data.frame()</pre>
for (city in cities) {
  # Filter data for the current city
  city_train_data <- train_data |> filter(Location == city)
  city_test_data <- test_data |> filter(Location == city)
  # Ensure data exists for the city
  if (nrow(city_train_data) == 0 || nrow(city_test_data) == 0) {
    message(paste("No data available for", city, "- Skipping."))
    next
  }
  # Convert training data to a time series object
  rainfall_train_ts <- ts(city_train_data$Rainfall, frequency = 12)</pre>
  # Fit an ARIMA model to the training data
  arima_model <- auto.arima(rainfall_train_ts)</pre>
  # Forecast on the test data range
  forecast_steps <- nrow(city_test_data)</pre>
  arima_forecast <- forecast(arima_model, h = forecast_steps)</pre>
  # Calculate forecast accuracy using actual test data
  test_actuals <- city_test_data$Rainfall</pre>
  forecast_accuracy <- accuracy(arima_forecast, test_actuals)</pre>
  # Extract key metrics and add to the table
  forecast_table <- rbind(</pre>
    forecast_table,
    data.frame(
      City = city,
      AIC = round(arima_model$aic, 2),
      BIC = round(arima model$bic, 2),
      RMSE = round(forecast_accuracy["Test set", "RMSE"], 3),
      MAE = round(forecast_accuracy["Test set", "MAE"], 3),
      MAPE = round(forecast_accuracy["Test set", "MAPE"], 2)
    )
 )
}
```

Table 2: Forecast Accuracy Metrics for Each City

City	AIC	BIC	RMSE	MAE	
Sydney	992.77	997.68	89.026	68.760	
Perth	833.63	848.00	31.379	24.475	
Darwin	1044.56	1054.14	163.666	119.949	
Melbourne	770.75	785.11	34.365	31.326	

```
# Create a styled table with wider columns
forecast_table %>%
kbl(
    col.names = c("City", "AIC", "BIC", "RMSE", "MAE", "MAPE (%)"),
    caption = "Forecast Accuracy Metrics for Each City",
    align = "lccccr"
) %>%
kable_styling(
    full_width = FALSE,
    bootstrap_options = c("striped", "hover", "condensed", "responsive"),
    position = "center"
) %>%
column_spec(2, width = "3cm") %>% # Widen AIC column
column_spec(3, width = "3cm") %>% # Widen BIC column
column_spec(4:6, width = "4cm") # Widen RMSE, MAE, columns
```

Perth had best ARIMA results, plot forecasted and actual values

```
# Filter data for Perth
city_train_data <- train_data |> filter(Location == "Perth")
city_test_data <- test_data |> filter(Location == "Perth")
# Convert training data to a time series object
rainfall_train_ts <- ts(city_train_data$Rainfall, frequency = 12)</pre>
# Fit an ARIMA model to the training data
arima_model <- auto.arima(rainfall_train_ts)</pre>
# Forecast on the test data range
forecast_steps <- nrow(city_test_data)</pre>
arima_forecast <- forecast(arima_model, h = forecast_steps)</pre>
# Create a data frame for the forecast and actual values
forecast_df <- data.frame(</pre>
 Date = city_test_data$year_month,
 Forecast = arima_forecast$mean,
 Actual = city_test_data$Rainfall
# Plot the forecasted vs actual values using ggplot2
ggplot(forecast_df, aes(x = Date)) +
  geom_line(aes(y = Forecast, color = "Forecast"), size = 1) +  # Forecast line in blue
  geom_line(aes(y = Actual, color = "Actual"), size = 1) + # Actual data line in red
```

```
labs(title = "ARIMA Forecast vs Actuals for Perth",
     x = "Date", y = "Rainfall (mm)") +
scale_color_manual(values = c("Forecast" = "blue", "Actual" = "red")) + # Set colors
theme minimal() +
theme(legend.title = element_blank(), legend.position = "bottom") # Position legend
```

```
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
```

i Please use `linewidth` instead.

This warning is displayed once every 8 hours.

Call `lifecycle::last_lifecycle_warnings()` to see where this warning was

generated.

Don't know how to automatically pick scale for object of type <ts>. Defaulting ## to continuous.

ARIMA Forecast vs Actuals for Perth

Modelling

XGBoost

```
# Loop through each city to train and assess the model
# List of cities
cities <- c("Sydney", "Perth", "Darwin", "Melbourne")</pre>
# Create a data frame to store forecast accuracy results
forecast_results <- data.frame()</pre>
# Create a list to store predictions for plotting later
predictions_list <- list()</pre>
```

```
# Loop through each city to train and assess the model
for (city in cities) {
  # Filter data for the current city
  city_train_data <- train_data |> filter(Location == city)
  city_test_data <- test_data |> filter(Location == city)
  # Ensure data exists for the city
  if (nrow(city_train_data) == 0 || nrow(city_test_data) == 0) {
   message(paste("No data available for", city, "- Skipping."))
   next
  }
  # Prepare the features (use all columns except 'Rainfall' for features)
  train_features <- city_train_data %>%
    select(-Location, -Rainfall, -year_month) %>%
    as.matrix() # Convert to matrix format for XGBoost
  test_features <- city_test_data %>%
    select(-Location, -Rainfall, -year_month) %>%
    as.matrix() # Convert to matrix format for XGBoost
  # Prepare the target variable (Rainfall)
  train_target <- city_train_data$Rainfall</pre>
  test_target <- city_test_data$Rainfall</pre>
  # Convert data to xqboost-friendly format
  dtrain <- xgb.DMatrix(data = train_features, label = train_target)</pre>
  dtest <- xgb.DMatrix(data = test_features, label = test_target)</pre>
  # Set parameters for XGBoost
  params <- list(</pre>
   booster = "gbtree", # Tree-based model
   objective = "reg:squarederror", # Regression task
   eval_metric = "rmse", # Root mean square error as the evaluation metric
   max_depth = 6, # Maximum depth of the trees
   eta = 0.3, # Learning rate
   nthread = 2 # Number of threads
  )
  # Train the model
  xgboost_model <- xgb.train(</pre>
   params = params,
   data = dtrain,
   nrounds = 100, # Number of boosting rounds
   watchlist = list(train = dtrain, test = dtest), # Watch the performance on both train and test set
   verbose = 0 # Suppress progress during training
  # Make predictions on the test set
  xgboost_predictions <- predict(xgboost_model, newdata = dtest)</pre>
  # Calculate RMSE, MAE, and MAPE for the current city
```

```
rmse_value <- sqrt(mean((test_target - xgboost_predictions)^2))</pre>
  mae_value <- mean(abs(test_target - xgboost_predictions))</pre>
  mape_value <- mean(abs((test_target - xgboost_predictions) / test_target)) * 100</pre>
  # Store the results in the data frame
  forecast_results <- rbind(</pre>
    forecast_results,
    data.frame(
      City = city,
      RMSE = round(rmse_value, 3),
     MAE = round(mae_value, 3),
      MAPE = round(mape_value, 2)
  )
  # Store the predictions for plotting later
  predictions_list[[city]] <- list(</pre>
    actual = test_target,
    predicted = xgboost_predictions,
    date = city_test_data$year_month
}
# Print the forecast accuracy results
print(forecast_results)
##
          City
                 RMSE
                          MAE MAPE
## 1
        Sydney 83.202 52.196 42.83
## 2
        Perth 33.023 24.536
        Darwin 88.583 60.525
                                Inf
## 4 Melbourne 26.023 17.362
                                Inf
```

Melbourne had best results on XGBoost, plot forecasted and actual values

XGBoost Prediction vs Actual Rainfall for Melbourne

Linear Regression

```
# Loop through each city to train and assess the model
# List of cities
cities <- c("Sydney", "Perth", "Darwin", "Melbourne")</pre>
# Create a data frame to store forecast accuracy results
forecast_results <- data.frame()</pre>
# Create a list to store predictions for plotting later
predictions_list <- list()</pre>
# Loop through each city to train and assess the model
for (city in cities) {
  # Filter data for the current city
  city_train_data <- train_data |> filter(Location == city)
  city_test_data <- test_data |> filter(Location == city)
  # Ensure data exists for the city
  if (nrow(city_train_data) == 0 || nrow(city_test_data) == 0) {
    message(paste("No data available for", city, "- Skipping."))
    next
  }
  # Prepare the features (use all columns except 'Rainfall' for features)
  train_features <- city_train_data %>%
```

```
select(-Location, -Rainfall, -year_month) # Remove 'Location' and 'Rainfall' for features
  test_features <- city_test_data %>%
    select(-Location, -Rainfall, -year_month) # Remove 'Location' and 'Rainfall' for features
  # Prepare the target variable (Rainfall)
  train_target <- city_train_data$Rainfall</pre>
  test target <- city test data$Rainfall
  # Train the Linear Regression model
  linear_model <- lm(Rainfall ~ ., data = city_train_data %>% select(-Location, -year_month))
  # Make predictions on the test set
  linear_predictions <- predict(linear_model, newdata = test_features)</pre>
  \# Calculate RMSE, MAE, and MAPE for the current city
  rmse_value <- sqrt(mean((test_target - linear_predictions)^2))</pre>
  mae_value <- mean(abs(test_target - linear_predictions))</pre>
  mape_value <- mean(abs((test_target - linear_predictions) / test_target)) * 100</pre>
  # Store the results in the data frame
  forecast_results <- rbind(</pre>
    forecast_results,
    data.frame(
      City = city,
     RMSE = round(rmse value, 3),
     MAE = round(mae value, 3),
     MAPE = round(mape_value, 2)
    )
  )
  # Store the predictions for plotting later
  predictions_list[[city]] <- list(</pre>
    actual = test_target,
    predicted = linear_predictions,
    date = city_test_data$year_month
}
## Warning in predict.lm(linear_model, newdata = test_features): prediction from
## rank-deficient fit; attr(*, "non-estim") has doubtful cases
# Print the forecast accuracy results
print(forecast results)
##
                  RMSE
                          MAE MAPE
          City
        Sydney 78.779 55.604 61.11
## 1
        Perth 28.942 21.967
## 2
                               Tnf
        Darwin 113.066 91.307
## 4 Melbourne 25.190 18.238 Inf
```

Linear Regression: Melbourne had best result

plot forecasted and actual values

Linear Regression Prediction vs Actual Rainfall for Melbourne

Plot Table Summary of Models