# A survey on node localization

Shuailing Yang

May 10, 2015



### Outline

Classification

2 Summaries



## Localization algorithms classification

We reclassify the localization algorithms based on the mobility:





## Localization algorithms classification in WSNs

localization algorithms are classified into four categories:

- 1. static landmarks, static nodes
- 2. static landmarks, mobile nodes
- 3. mobile landmarks, static nodes
- 4. mobile landmarks, mobile nodes



### 1. static landmarks, static nodes

- 1.1 Range-free localization algorithms
  Range-free algorithms do not need to measure the distance or
  angle information between unknown nodes and landmarks,
  which estimate the distance between two nodes by the
  connectivity information, the energy consuming information,
  or the area information of the superimposed region of the
  landmarks.
  - 1.1.1 Connectivity localization algorithms
  - 1.1.2 Centroid localization algorithms
  - 1.1.3 Energy attenuation localization algorithms
  - 1.1.4 Region overlap localization algorithms



# 1.1.1 Connectivity localization algorithms

- DV-hop
- Formation of the BN tree



DV-hop localization algorithm

Formation of the BN tree



## 1.1.2 Centroid localization algorithms

- Tetrahedron method
- Assumption Based Coordinates (ABC) method
- Three-dimensional centroid algorithm



Tetrahedron method

ABC method

Three-dimensional centroid algorithm



## 1.1.3 Energy attenuation localization algorithms

- Energy grade overlap graph
- Beacon Signal Ring (BSR) localization algorithm



Energy grade overlap graph



Sketch map of target region



# 1.1.4 Region overlap localization algorithms

overlap

- Region overlapping
- Spherical shells overlap
- Voronoi graph



Range-based localization algorithms have highly localization accuracy. But they usually require more hardware in order to measure the distance between sensor nodes. The typical distance measurement techniques include RSSI, TOA, TDOA, AOA, and etc.

- 1.2.1 Bionics localization algorithms
- 1.2.2 Verification localization algorithms
- 1.2.3 Landmark placement localization algorithms
- 1.2.4 Landmark upgrade localization algorithms



• 1.2.1 Bionics localization algorithms

The core idea of bionics localization algorithms is to combine the model of biological motion with the localization process of unknown nodes.



• 1.2.2 Verification localization algorithms

The core idea of these localization algorithms needs to verify the distance value between unknown nodes and landmarks using RSSI value.



• 1.2.3 Landmark placement localization algorithms

Landmark placement has great relationship with the localization error of unknown nodes. Therefore, the geometry relationship of landmarks is used to improve the localization accuracy of unknown nodes.





• 1.2.4 Landmark placement localization algorithms

A novel landmark upgrade localization algorithm , which upgrades a node with high localization precision to a landmark.





### 1. static landmarks, static nodes

We have analyzed the static landmarks and static unknown nodes localization algorithms in the aspect of localization accuracy, node density, landmark density and energy consumption, as shown in Table 1.

| Localization algorithms                    |                             | Localization accuracy | Node<br>density | Landmark<br>density | Energy<br>consumption |
|--------------------------------------------|-----------------------------|-----------------------|-----------------|---------------------|-----------------------|
| Connectivity localization algorithms       | DV-Hop                      | Better                | Greater         | Smaller             | Greater               |
|                                            | LCB                         | Average               | Greater         | Average             | Average               |
| Centroid localization algorithms           | Centroid                    | Average               | Smaller         | Greater             | Greater               |
|                                            | ABC                         | Better                | Smaller         | Average             | Average               |
|                                            | Three-dimensional centroid  | Better                | Smaller         | Smaller             | Greater               |
| Energy attenuation localization algorithms | Source energy attenuation   | Average               | Average         | Average             | Average               |
|                                            | BSR                         | Better                | Average         | Average             | Greater               |
|                                            | Energy intervals            | Better                | Average         | Average             | Greater               |
| Region overlap localization algorithms     | HiRLoc                      | Average               | Smaller         | Average             | Average               |
|                                            | APIS                        | Better                | Smaller         | Greater             | Smaller               |
|                                            | Voronoi                     | Average               | Smaller         | Greater             | Average               |
| Bionics localization algorithms            | Honey bee orientation       | Average               | Average         | Smaller             | Greater               |
| Verification localization algorithms       | weighted centroid algorithm | Average               | Average         | Greater             | Average               |
| Landmark placement localization algorithms | RNST                        | Better                | Smaller         | Average             | Smaller               |
| Landmark upgrade localization algorithms   | Landmark sparse             | Average               | Smaller         | Smaller             | Greater               |



### 2. Static landmarks and mobile nodes

- Historical information localization algorithms
- Cluster-based localization algorithms





Distributed mobile localization algorithm

DTN localization algorithm





### 2. Static landmarks and mobile nodes

Historical information localization algorithms consume a lot of energy due to frequently record problem. Cluster-based localization algorithms can save energy in some extend.

| Localization algorithms |                                 | Localization | Node      | Landmark | Energy      |
|-------------------------|---------------------------------|--------------|-----------|----------|-------------|
|                         |                                 | accuracy     | density   | density  | consumption |
| Historical information  | Distributed mobile localization | Better       | No effect | Smaller  | Average     |
| localization algorithms | algorithm                       | Better       | No effect | Smaller  | Average     |
|                         | DTN                             | Better       | No effect | Average  | Greater     |
| Cluster-based           | Target tracking localization    | Average      | No effect | Greater  | Smaller     |
| localization algorithms | algorithm                       | Average      | No effect | Greater  | Smaller     |



- Geometric localization algorithms
- Path planning localization algorithms



• Geometric localization algorithms





LA localization algorithm

Sphere-based localization algorithm







• Path planning localization algorithms



Three different travelling trajectories



Backtracking greedy algorithm



Spiral trajectory

Breadth-first\_algorithm



We have summarized mobile landmarks and static nodes localization algorithms in the aspect of localization accuracy, node density, landmark density, travelling speed and energy consumption, as shown in Table 3.

| Localization algo | rithms                    | Localization accuracy | Node<br>density | Trajectory<br>length | Travelling speed | Energy<br>consumption |
|-------------------|---------------------------|-----------------------|-----------------|----------------------|------------------|-----------------------|
| Geometric         | LA '                      | Average               | No affect       | Shorter              | Average          | Smaller               |
| localization      | Sphere-based algorithm    | Better                | Average         | Average              | Greater          | Average               |
| algorithms        | Flying landmark algorithm | Better                | Average         | Average              | Greater          | Average               |
| Path Planning     | S shaped trajectory       | Average               | Smaller         | Average              | Average          | Smaller               |
| localization      | SCAN, etc.,               | Better                | Smaller         | Shorter              | Greater          | Average               |
| algorithms        | Gauss-Markov trajectory   | Average               | Average         | Longer               | No affect        | Greater               |
|                   | Spiral trajectory         | Better                | Smaller         | Average              | Average          | Average               |
|                   | Intelligent trajectory    | Average               | Greater         | Longer               | No affect        | Average               |



- Time-based localization algorithms
- Probability distribution localization algorithms



Time-based localization algorithms

The idea of these algorithms is to calculate the positions of unknown nodes in a very short time interval.





Probability distribution localization algorithms

The algorithm contains two stages:

At the prediction stage, the unknown node predicts its estimated location using distributed switching equipment based on the reserved information and the mobile information of the mobile landmark.

At the filtration stage, the unknown node removes the inconsistent information from the estimated location.



We have summarized mobile landmarks and mobile nodes localization algorithms in the aspect of localization accuracy, node density, landmark density, travelling speed and energy consumption, as shown in Table 4.

| Localization algorithms                          |                                        | Localization accuracy | Node<br>density | Landmark<br>density | Travelling speed | Energy<br>consumption |
|--------------------------------------------------|----------------------------------------|-----------------------|-----------------|---------------------|------------------|-----------------------|
| Time-based localization algorithms               | Self-organizing localization algorithm | Average               | Greater         | Greater             | Greater          | Greater               |
| Probability distribution localization algorithms | MCL                                    | Better                | Smaller         | Smaller             | Average          | Greater               |



### Summaries and outlook

We believe that in addition to the existing research issues of localization algorithms, the possible hot research topics are

- Evaluate the performance model of localization algorithms, and improve the landmark selection and filtering mechanisms to reduce the localization time.
- Randomly deploy the nodes on the surface of the actual land-based, and study the localization performance of actual land.
- Find a localization algorithm which is suitable for resource-constrained sensor nodes, and reduce the localization error caused by random distribution of nodes.
- Research a self-adjustment localization algorithm in the mobile network environment, and simulate the localization algorithm performance in the low mobility of sensor nodes.
- Research the optimal path planning in which mobile landmarks can traverse the entire network.