

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Информатика и системы управления

КАФЕДРА Программное обеспечение ЭВМ и информационные технологии

Лабораторная работа №7 по курсу "Моделирование" по теме "Модель информационного центра"

Студент: Уласик Е.А.

Группа: ИУ7-71

Вариант по списку 18

Преподаватель: Рудаков И.В.

Оглавление

1. Задание	3
2. Формализация	4
3. Листинг программы	
4. Результат работы программы	
5. Вывод	

1. Задание

В информационный центр приходят клиенты через интервал времени 10 +- 2 минуты. Если все три имеющихся оператора заняты, клиенту отказывают в обслуживании. Операторы имеют разную производительность и могут обеспечивать обслуживание среднего запроса пользователя за 20 +- 5; 40 +- 10; 40 +- 20. Клиенты стремятся занять свободного оператора с максимальной производительностью. Полученные запросы сдаются в накопитель. Откуда выбираются на обработку. На первый компьютер запросы от 1 и 2-ого операторов, на второй – запросы от 3-его. Время обработки запросов первым и 2-м компьютером равны соответственно 15 и 30 мин. Промоделировать процесс обработки 300 запросов.

Необходимо для этого создать концептуальную модель в терминах СМО, определить эндогенные и экзогенные переменные и уравнения модели. За единицу системного времени выбрать 0,01 минуты.

Рисунок 1. Концептуальная схема

2. Формализация

В процессе взаимодействия клиентов с информационным центром возможно:

- 1) Режим нормального обслуживания, т.е. клиент выбирает одного из свободных операторов, отдавая предпочтение тому у которого меньше номер.
- 2) Режим отказа в обслуживании клиента, когда все операторы заняты Переменные и уравнения имитационной модели.

Эндогенные переменные: время обработки задания і-ым оператором, время решения этого задания ј-ым компьютером.

Экзогенные переменные: число обслуженных клиентов и число клиентов, получивших отказ.

Рисунок 2. Структурная схема

$$P_{om\kappa} = \frac{C_{om\kappa}}{C_{om\kappa} + C_{oбcn}}$$

3. Листинг программы

```
    SIMULATE

2.
       GENERATE 10,2,,300 ; Generate 300 with value 10 +- 2
3.
4. OP1 GATE NU OPR1,OP2; Enter operator 1 if its free else go to operator 2
       SEIZE OPR1 ; Occupy operator 1
       ADVANCE 20,5 ; Work time 20 +- 5
       RELEASE OPR1 ; Free operator 1 \,
7.
8.
       TRANSFER ,COMP1 ; Send request to computer 1
10. OP2 GATE NU OPR2,OP3 ; Enter operator 2 if its free else go to operator 3
       SEIZE OPR2; Occupy operator 2
11.
       ADVANCE 40,10; Work time 40 +- 10
12.
13.
       RELEASE OPR2 ; Free operator 2
14.
       TRANSFER ,COMP1 ; Send request to computer 2
15.
16. OP3 GATE NU OPR3, FAIL ; Enter operator 3 if its free else drop request
17.
       SEIZE OPR3 ; Occupy operator 3
       ADVANCE 40,20 ; Work time 40 +- 20
18.
       RELEASE OPR3 ; Free operator 3
19.
       TRANSFER ,COMP2 ; Send request to computer 2
20.
21.
22. COMP1 QUEUE QUEUE_COMP1 ; Add request to queue
23.
       SEIZE CMP1 ; Occupy computer 1 \,
24.
       DEPART QUEUE_COMP1 ; Take one request from queue
       ADVANCE 15; Work time 15
RELEASE CMP1; Free computer 1
25.
26.
       TRANSFER ,SUCCESS ; Send request to success
27.
28.
29. COMP2 QUEUE QUEUE_COMP2 ; Add request to queue
30. SEIZE CMP2 ; Occupy computer 2
       DEPART QUEUE_COMP2 ; Take one request from queue
31.
       ADVANCE 30 ; Work time 30
32.
       RELEASE CMP2 ; Free computer 2
33.
34.
       TRANSFER ,SUCCESS ; Send request to success
35.
36. SUCCESS TRANSFER ,DENIAL ; Send request to denial
37. FAIL
            TRANSFER ,DENIAL ; Send request to denial
38.
39. DENIAL SAVEVALUE PROCESSED, N$SUCCESS ; Save variable with name processed with value of count of
  entered requests in SUCCESS
40. SAVEVALUE PROB,((N$FAIL)/(N$DENIAL)); Save variable with name prob with value of count of enter
 ed requests in FAIL divided
                                          ; by count of entered requests in DENIAL
41.
42. TERMINATE 1 ; substract 1 from START
                        ; counter of completions when running the model
43.
```

Листинг 1. Код программы на GPSS

4. Результат работы программы

LABEL	LOC	BLOCK TYPE	E ENTE	Y COUNT C	URRENT	COUNT	RETRY	
	1	GENERATE		300		0	0	
OP1	2	GATE		300		0	0	
	3	SEIZE		121		0	0	
	4	ADVANCE		121		0	0	
	5	RELEASE		121		0	0	
	6	TRANSFER		121		0	0	
OP2	7	GATE		179		0	0	
	8	SEIZE		59		0	0	
	9	ADVANCE		59		0	0	
	10	RELEASE		59		0	0	
	11	TRANSFER		59		0	0	
OP3	12	GATE		120		0	0	
	13	SEIZE		51		0	0	
	14	ADVANCE		51		0	0	
	15	RELEASE		51		0	0	
	16	TRANSFER		51		0	0	
COMP1	17	QUEUE		180		0	0	
(Selection (17)	18	SEIZE		180		0	0	
	19	DEPART		180		0	0	
	20	ADVANCE		180		0	0	
	21	RELEASE		180		0	0	
	22	TRANSFER		180		0	0	
COMP2	23	OUEUE		51		0	0	
COLLE	24	SEIZE		51		0	0	
	25	DEPART		51		0	0	
	26	ADVANCE		51		0	0	
	27	RELEASE		51		0	0	
	28	TRANSFER		51		0	0	
SUCCESS	29	TRANSFER		231		0	0	
FAIL	30	TRANSFER		69		0	0	
DENIAL	31	SAVEVALUE		300		0	0	
DENIAL	32	SAVEVALUE		300		0	0	
	33	TERMINATE		300		0	0	
	33	ILMINAIL		300		0	0	
FACILITY	ENTRIES	UTIL.	AVE. TIME	AVAIL. OW	NER PE	ND INTE	R RETRY	DELAY
OPR1	121	0.788	19.924	1	0	0 0	0	0
OPR2	59	0.772	40.036	1	0	0 0	0	0
OPR3	51	0.711	42.640	1	0	0 0	0	0
CMP1		0.883	15.000		0	0 0	0	0
CMP2	51	0.500	30.000	1	0	0 0	0	0
QUEUE		ONT. ENTRY						
QUEUE_COMP1	2		61					
QUEUE_COMP2	1	0 51	48	0.004	0.	212	3.598	0
SAVEVALUE		RETRY	VALUE					
PROCESSED		0	231.000					
PROB		0	0.230					

Рисунок 3. Результат работы

Из рисунка 3 можно сделать вывод, что из 300 заявок: 69 отказов (23% от общего количества) и 231 успешно обработаны.

5. Вывод

Таким образом, была промоделирована работа информационного центра, используя язык GPSS.