Basic concepts 007

Problem has been graded.

Find the power P_1 supplied by the current source and the power P_2 supplied by the voltage source.

Given Variables:

v_s:10 V

i_s:6A

Calculate the following:

P_1 (W):

P_2 (W):

Find the power P_1 supplied by the current source and the power P_2 supplied by the voltage source.

$$Vs = 10 V$$

$$ls = 4A$$

$$i_s \oint \sigma_i \int i$$
 $i_s = \sigma_i \cdot i = 1$

for faring convention

$$f_i = 40$$

$$P_{i} = U_{i} \cdot L = 10 (-4) = -40 \text{ w}$$
 $L = -L_{S} = -4 \text{ A}$

$$P_1 = v_5 \cdot c_2 = 10 \ 4 = 40 \text{ w received}$$

$$P_2 = -40 \text{ w rappled}$$

Basic Concepts 008b

Problem has been graded.

The current source supplies 100 W of power.

What is the current i_1 ?

What is the voltage v_1 ?

What is the value of the voltage source v_s ?

Given Variables:

R:5 ohm i_s:10 A

Calculate the following:

i1 (A):

v1 (V):

vs (V):

The current source supplies 100 W of power.

 $R = 2 \Omega$

What is the current i_1 ?

What is the voltage v_1 ?

What is the value of the voltage source v_s ?

is = 25 A

$$C_1 = -C_S$$

$$C_1 = -25 \text{ A}$$

J. PASSIVE SIGN CONVENTION

$$V_1 = -\frac{100}{25} = -4V$$

$$\sigma_{S} = \sigma_{R} - \sigma_{r} = R \cdot C_{1} - \sigma_{r} = 2(-25) - (-4)$$

$$= -50 + 4 = -46$$

PP - Basic concepts 009

Problem has been graded.

Find the power supplied by the current source and the voltage source.

Given Variables:

: . .

Calculate the following:

P1 (W):

72

P2 (W):

-36

Find the currents i_1 , i_2 , i_3 and i_4 .

Given Variables:

R_1:4 ohm R_2:9 ohm g:6 V/A

Calculate the following:

i_1 (A):

i_2 (A):

i_3 (A):

i_4 (A):

Find the currents i_1, i_2, i_3 and i_4 .

$$R1 = 4 \Omega$$

$$R2 = 3 \Omega$$

$$g = 2 V/A$$

$$\underline{m0}. \quad L_c = \frac{18}{R_1} = 4.5 \, A$$

KVL in right fact.
$$gi_c + V_1 = 0$$

$$\Rightarrow V_2 = -gi_c = -9V$$

$$i_1 = \frac{V_2}{R_1} = \frac{-9}{3} \Rightarrow [i_1 = -3A]$$

<u>mil</u>. ic= 4.5A

$$\frac{\dot{n}(2)}{\dot{c}_{1}} = -45A$$

$$\frac{\dot{c}_{1}}{\dot{c}_{2}} = -9c_{2} = 9V$$

$$\frac{\dot{c}_{2}}{\dot{c}_{2}} = \frac{9}{3}$$

$$\hat{L}_2 = \frac{U_1}{R_2} = \frac{9}{3}$$

$$\hat{L}_2 = 3A$$

$$\hat{L}_2 = 3A$$

$$\frac{m(3)}{S} \cdot i_{c} = 4.5A \qquad \underline{m(9)} \cdot i_{c} = -4.5A$$

$$V_{2} = 9 \cdot c = 9 \cdot V$$

$$i_{3} = \frac{V_{1}}{R_{2}} = \frac{9}{3}$$

$$i_{4} = \frac{V_{3}}{R_{2}} = -\frac{9}{3}$$

$$i_{4} = \frac{V_{3}}{R_{2}} = -\frac{9}{3}$$

$$i_{4} = \frac{V_{3}}{R_{2}} = -\frac{9}{3}$$

$$i_{4} = -\frac{9}{R_{2}}$$

$$i_{4} = -\frac{9}{3}$$

$$i_{4} = -\frac{9}{3}$$

PP - Basic concepts 010

Problem has been graded.

Find the power supplied by each of the elements.

Find the power received by each of the elements.

-30

Basic Analysis 001b

Problem has been graded.

We measure v_1 and v_2 .

Determine the values of resistances R_2 and R_3 .

Given Variables:

R1:12 ohm

R4: 12 ohm

R5:2 ohm

vs : 30 V v1 : 12 V

v2:6 V

Calculate the following:

R2 (ohm):

R3 (ohm):

We measure v_1 and v_2 .

Determine the values of resistances R_2 and R_3 .

R1	=	1	2	Ω

$$R4 = 9 \Omega$$

$$R5 = 2 \Omega$$

$$vs = 24 V$$

$$v2 = 6 V$$

$$+ \bigvee_{\substack{i_{2} \\ \downarrow i_{1} \\ \downarrow i_{1} \\ \downarrow i_{2} \\ \downarrow i_{3} \\ \downarrow i_{1} \\ \downarrow i_{2} \\ \downarrow i_{3} \\ \downarrow i_{3} \\ \downarrow i_{4} \\ \downarrow i_{5} \\$$

$$C_1 = \frac{\sqrt{1}}{R_1} = \frac{12}{12} = 1$$

$$\dot{c}_5 = \frac{v_2}{R_5} = \frac{6}{2} = 3$$

KVL1:
$$V_S = V_{R_4} + V_2 \implies V_{R_4} = V_S - V_2 = 24 - 6 = 18$$

$$L_4 = \frac{V_{R_4}}{R_4} = \frac{13}{9} = 2$$

KVL 2:
$$V_1 = V_{R_3} + V_2 \implies V_{R_3} = V_1 - V_2 = 6$$

$$R_3 = \frac{V_{R_3}}{C_4} = \frac{C}{1} \implies R_3 = 6 - \Omega$$

$$KCLb$$
. $\vec{c_1} + \vec{c_2} + \vec{c_3} = 0 \implies \vec{c_2} = -\vec{c_1} - \vec{c_3} = -1 - 1 = -2$

$$KVL 3: V_1 = V_{R_2} + V_5 \implies V_{R_2} = V_1 - V_5 = 12 - 24 = -12$$

$$R_2 = \frac{V_{R_2}}{G_2} = \frac{-12}{-2} \implies \boxed{R_2 = 6 \text{ s.c.}}$$

Problem has been graded.

This circuit contains an ohmmeter. An ohmmeter is an instrument that measures the equivalent resistance of the circuit connected to its terminals. Note that you can set a multimeter to the ohm-setting to act as an ohmmeter, as you can test in the lab.

Determine the resistance, R, measured by the ohmmeter.

Given Variables:

. : . .

Calculate the following:

R (ohm):

2.6

Problem has been graded.

Find values of v1, i1, v2 and i2.

Given Variables:

:..

Calculate the following:

v1 (V):

4

i1 (A):

5

v2 (V):

-11

i2 (A):

-7

Hint: Use KVL and KCL

Unlimited Attempts.

What is the reading X from the ammeter?

What would be the reading Y if I replaced the ammeter by a volt-meter?

Given Variables:

. : . .

Calculate the following:

X (A):

3

Y (V):

Determine the voltages v_1 , v_2 , v_3 and v_4

Given Variables:

R1:4 ohm R2:6 ohm

Calculate the following:

v1 (V):

v2 (V):

v3 (V):

v4 (V):

Determine the voltages v_1 , v_2 , v_3 and v_4

(a) VOLTAGE DIVIDER

$$R_1 \leq \frac{1}{20V}$$
 $V_a = 20$, $\frac{R_2}{R_1 + R_2} = 20$ $\frac{6}{10} = 12V$
 $V_1 = -V_4$
 $V_1 = -12V$

(b) SAME IDEA:
$$U_1 = -20 \cdot \frac{R_1}{R_1 + R_2} = -20 \cdot \frac{4}{10} = -8$$

(e)
$$R_1 \le + \sigma_3$$
 $\sigma_3 = 20. \frac{R_2}{R_1 + R_2} = 20. \frac{6}{10} = 12$

(1)
$$V_{4} = 20. \frac{R_{1}}{R_{1} + R_{2}} = 20. \frac{4}{10} = 8$$
 $V_{4} = 8V$

Unlimited Attempts.

What is the reading X from the ammeter?

What would be the reading Y if I replaced the ammeter by a volt-meter?

Given Variables:

. : . .

Calculate the following:

X (A):

1.25

Y (V):

Basic analysis 005

Problem has been graded.

Find the power supplied by the dependent source.

Given Variables:

R1:5 ohm

R2:20 ohm

is:5A

Calculate the following:

P (W):

Hint: Use current divider

Find the power supplied by the dependent source.

 $R1 = 14 \Omega$

 $R2 = 7 \Omega$

is = 3 A

$$L_{\alpha} = (-3) \cdot \frac{R_2}{R_1 + R_2} = -3 \cdot \frac{7}{21} = -11$$

$$i_b \downarrow \downarrow \uparrow \qquad \qquad i_b = 5 i_a = -5V$$

$$i_b = -i_s = -3A$$

[PASSIVE SIGN

CONVENTION)

Problem has been graded.

Someone did measurements on this circuit and found that

$$i_1$$
 = 1 A, v_2 = -20 V, i_3 = -2 A and v_4 = -30 V.

Find the values of R1, R2, R3 and R4.

Given Variables:

. : . .

Calculate the following:

R1 (ohm):

40

R2 (ohm):

10

R3 (ohm):

30

R4 (ohm):

Determine the currents i_1 , i_2 , i_3 and i_4

Given Variables:

R1: 25 ohm R2: 50 ohm is: 21 A

Calculate the following:

i1 (A):

i2 (A):

i3 (A):

i4 (A):

Determine the currents i_1 , i_2 , i_3 and i_4

 $R1 = 30 \Omega$

 $R2 = 10 \Omega$

is = 18 A

(a) CURRENT DIVIDER:
$$L_1 = \frac{L_5}{R_1 + R_2} = \frac{18}{40} = 13.5 \text{ A}$$

(b)
$$-\dot{c}_2 = \dot{c}_S \cdot \frac{R_2}{R_1 + R_2} = 18 \frac{10}{40} = 4.5 A \implies \left[\dot{c}_2 = -4.5 A \right]$$

$$\vec{c}_3 = \vec{c}_5 \frac{\vec{R}_2}{\vec{R}_1 + \vec{R}_2} = 18 \frac{10}{40}$$

(1)
$$-i_4 = i_5 \cdot \frac{R_1}{R_1 + R_2} = 18 \cdot \frac{30}{40}$$

Problem has been graded.

Find the values of the missing voltages.

Given Variables:

...

Calculate the following:

v1 (V):

70

v2 (V):

10

v3 (V):

Problem has been graded.

Calculate the voltage V_o .

Given Variables:

. : . .

Calculate the following:

Vo (V):

Basic analysis 008

Find the volt meter reading X.

Given Variables:

v1:20 V

R1: 10 ohm R2: 15 ohm

R3: 10 ohm R4: 20 ohm

Calculate the following:

X (V):

Hint: Mind the direction of the V meter

Find the volt meter reading X.

$$R1 = 10 \Omega$$

$$R2 = 15 \Omega$$

$$R3 = 10 \Omega$$

$$R4 = 10 \Omega$$

$$KCL: \dot{L}_{\alpha} = 0$$

$$R_{\perp}$$

$$R_{3}$$

$$R_{2} \parallel R_{3} = \left(\frac{1}{15} + \frac{1}{10}\right)^{-1}$$

$$= \left(\frac{1}{5} \cdot \left(\frac{1}{3} + \frac{1}{4}\right)\right)^{-1}$$

$$= \left(\frac{1}{5} \cdot \sum_{k=0}^{\infty} \right)^{-1} = 6 \cdot D.$$

$$\hat{L}_b = \frac{V_1}{R_1 + R_2/1R_3} = \frac{10}{10 + 6} = \frac{10}{16}$$

CURRENT DIVIDER.
$$L_1 = \frac{L_3}{R_L + R_3} = \frac{\frac{3}{168}}{\frac{168}{168}} = \frac{\frac{3}{168}}{8}$$

$$\Rightarrow$$

Problem has been graded.

Calculate the voltage V_x .

Given Variables:

. : . .

Calculate the following:

Vx (V):

7.5

Hint: Use KVL

Problem has been graded.

Find the power *P* supplied by the dependent source.

Given Variables:

. : . .

Calculate the following:

P (W):

-400

Problem has been graded.

Find R_{eq} looking into the terminals.

Given Variables:

. : . .

Calculate the following:

Req (ohm):

Unlimited Attempts.

Find R_{eq} looking into the terminals.

Given Variables:

. : . .

Calculate the following:

Req (ohm):

24

Hint: Use series and parallel connections of resistors

Problem has been graded.

Calculate R_{eq} (does not include the 2.5 Ω resistor) and the currents i_o , i_1 , i_2 and i_3 .

Given Variables:

. : . .

Calculate the following:

Req (ohm):

7.5

i0 (A):

4

i1 (A):

2

i2 (A):

0.5

i3 (A):