Deep Learning

Challenges for GAN Optimization

Learning goals

- (no) convergence to fix point
- problems of adversarial setting

ADVERSARIAL TRAINING

Deep Learning models (in general) involve a single player!

- The player tries to maximize its reward (minimize its loss).
- Use SGD (with backprob) to find the optimal parameters.
- SGD has convergence guarantees (under certain conditions).
- However, with non-convexity, we might convert to local minima!

GAN instead involve two players

- Discriminator is trying to maximize its reward.
- Generator is trying to minimize discriminator's reward.
- SGD was not designed to find the Nash equilibrium of a game!
- Therefore, we might not converge to the Nash equilibrium at all!

ADVERSARIAL TRAINING - EXAMPLE

- Consider the function f(x, y) = xy, where x and y are both scalars.
- Player A can control x and Player B can control y.
- The loss:
 - Player A: $L_A(x, y) = xy$
 - Player B: $L_B(x, y) = -xy$
- This can be rewritten as $L(x, y) = \min_{x} \max_{y} xy$
- What we have here is a simple zero-sum game with its characteristic minimax loss.

POSSIBLE BEHAVIOUR #1: CONVERGENCE

The partial derivatives of the losses are:

$$\frac{\partial L_A}{\partial x} = y , \frac{\partial L_B}{\partial y} = -x$$

- In adversarial training, both players perform gradient descent on their respective losses.
- We update x with $x \alpha \cdot y$ and y with $y + \alpha \cdot x$ simultaneously in one iteration, where α is the learning rate.

POSSIBLE BEHAVIOUR #1: CONVERGENCE

- In order for simultaneous gradient descent to converge to a fixed point, both gradients have to be simultaneously 0.
- They are both (simultaneously) zero only for the point (0,0).
- This is a saddle point of the function f(x, y) = xy.
 - The fixed point for a minimax game is typically a saddle point.
 - Such a fixed point is an example of a Nash equilibrium.
- In adversarial training, convergence to a fixed point is not guaranteed.

POSSIBLE BEHAVIOUR #2: CHAOTIC BEHAVIOUR

Figure: A simulation of our example for updating x to minimize xy and updating y to minimize -xy. The learning rate α = 0.1. With more iterations, the oscillation grows more and more unstable.

• Once *x* and *y* have different signs, every following gradient update causes huge oscillation and the instability gets worse in time, as shown in the figure.

POSSIBLE BEHAVIOUR #3: CYCLES

Figure: Simultaneous gradient descent with an infinitesimal step size can result in a circular orbit in the parameter space.

- A discrete example: A never-ending game of Rock-Paper-Scissors where player A chooses 'Rock' \rightarrow player B chooses 'Paper' \rightarrow A chooses 'Scissors' \rightarrow B chooses 'Rock' \rightarrow ...
- **Takeaway:** Adversarial training is highly unpredictable. It can get stuck in cycles or become chaotic.

NON-STATIONARY LOSS SURFACE

- From the perspective of one of the players, the loss surface changes every time the other player makes a move.
- This is in stark contrast to (full batch) gradient descent where the loss surface is stationary no matter how many iterations of gradient descent are performed.

ILLUSTRATION OF CONVERGENCE

ILLUSTRATION OF CONVERGENCE: FINAL STEP

Such convergence is not guaranteed, however.

CHALLENGES FOR GAN TRAINING

- Non-convergence: the model parameters oscillate, destabilize and never converge.
- Mode collapse: the generator collapses which produces limited varieties of samples.
- Diminished gradient: the discriminator gets too successful that the generator gradient vanishes and learns nothing.
- Unbalance between the generator and discriminator causing overfitting.
- Highly sensitive to the hyperparameter selections.

REFERENCES

Ian Goodfellow (2016)

NIPS 2016 Tutorial: Generative Adversarial Networks

https://arxiv.org/abs/1701.00160

Lilian Weng (2017)

From GAN to WGAN

 $https://lilianweng.\ github.\ io/lil-log/2017/08/20/from-GAN-to-WGAN.\ html$

Mark Chang (2016)

Generative Adversarial Networks

https://www.slideshare.net/ckmarkohchang/generative-adversarial-networks