Convexity of the Log-Sum-Exp Function: A Sequential Proof

Statement. Let $f: \mathbb{R}^N \to \mathbb{R}$ be defined by

$$f(x) = \log \left(\sum_{i=1}^{N} e^{x_i} \right).$$

Then f is *convex* everywhere, provided $x_0 = 0$.

Proof .

Let $S(x) = \sum_{j=1}^{N} e^{x_j}$ and define *softmax* weights

$$p_i(x) = \frac{e^{x_i}}{S(x)}, \qquad p_i > 0, \qquad \sum_{i=1}^{N} p_i = 1.$$

We compute the gradient:

$$\frac{\partial f}{\partial x_i}(x) = \frac{e^{x_i}}{\sum_{i=1}^N e^{x_i}} = p_i(x).$$

Hence $\nabla f(x) = (p_1, \dots, p_N)^{\top}$.

Now we compute the Hessian matrix. First, differentiate $p_i = e^{x_i}/S$ with respect to x_k :

$$\frac{\partial p_i}{\partial x_k} = \frac{\delta_{ik} e^{x_i} S - e^{x_i} e^{x_k}}{S^2} = p_i (\delta_{ik} - p_k),$$

where δ_{ik} is the Kronecker delta. Therefore

$$\nabla^2 f(x) = \operatorname{diag}(p) - pp^{\top},$$

with $p = (p_1, \ldots, p_N)^{\top}$.

We now show positive semidefiniteness. For any $v \in \mathbb{R}^N$,

$$v^{\top} \nabla^{2} f(x) v = \sum_{i=1}^{N} p_{i} v_{i}^{2} - \left(\sum_{i=1}^{N} p_{i} v_{i}\right)^{2}$$
$$= \sum_{i=1}^{N} p_{i} \left(v_{i} - \sum_{j=1}^{N} p_{j} v_{j}\right)^{2} \geq 0.$$

Thus $\nabla^2 f(x)$ is positive semidefinite for every x, so f is convex. Since $x_0 = 0$ and we know that $p_i > 0$, it follows that $(v_i - \sum_{j=1}^N p_j v_j) > 0$ for all $i,j \in N$. Thus, the matrix is positive definite and the statement follows.

Results of part 2 exercise 7 are reported below:

Part 2 — Exercise 7 (1-D)

Method	Points	Estimate	Abs. error
True (quadgk tol=1e-14)	adaptive	0.551493272637	0.000000000000
Monte Carlo (n=20)	20	0.569603523713	0.018110251076
Monte Carlo (n=400)	400	0.566812558205	0.015319285568
Gauss-Hermite $(n=4)$	4	0.551313876771	0.000179395865
Gauss-Hermite (n=5)	5	0.551549103736	0.000055831099
Gauss-Hermite (n=11)	11	0.551493432441	0.000000159804
Gauss-Hermite (n=12)	12	0.551493204065	0.000000068571
Part 2 — Exercise 7 (2-D)			
True \approx GH (35x35)	1225	0.714483805394	0.000000000000
Monte Carlo (n=20)	20	0.668660043026	0.045823762368
Monte Carlo (n=400)	400	0.721492812411	0.007009007017
Gauss-Hermite (4x4)	16	0.714371378972	0.000112426422
Gauss-Hermite (5x5)	25	0.714485614767	0.000001809372
Gauss-Hermite (11x11)	121	0.714483811263	0.000000005868
Gauss-Hermite (12x12)	144	0.714483809858	0.000000004464