第五章 半导体存储电路

主要内容:

- 各种半导体存储电路的结构,原理和使用方法。
- 基本存储单元
- 寄存器
- 随机存储器和只读存储器

5.1 概 述

- 数字电路包括运算电路和存储电路
- 存储单元:存储1位数据;
- 寄存器(Register):存储1组数据;
- 存储器(Memory):存储大量数据;

存储单元 (静态 锁存器和触发器 保持,高速 存储单元) 动态 电容存储 刷新,低速,简单

寄存器: 1组触发器构成,每个触发器的输入输出可直接 和周围电路连接,快速的进行数据交换。 存储器(Memory): 计算机系统中的记忆设备,用来存放程序和数据。存储器能存储大量2值信息,是数字系统中不可缺少的部分。

只读存储器(Read-Only Memory ROM) 存储器种类 随机存储器(Random Access Memory RAM)

5. 2-5. 3 SR锁存器、触发器

主要要求:

掌握触发器的逻辑功能及其描述方法。

■ 掌握触发器的不同电路结构及动作特点。

■ 掌握不同触发器逻辑功能的转换。

5.2 概论

触发器

- 一、用于记忆1位二进制信号
 - 1. 有两个能自行保持的状态
 - 2. 根据输入信号可以置成0或1

二、分类

- 1. 按触发方式(电平,脉冲,边沿)
- 2. 按逻辑功能 (RS, JK, D, T)

5.2 SR锁存器(基本SR触发器)

一、电路结构

二、工作原理

图形符号

SR锁存器的特性表

S_{D}	$R_{\rm D}$	Q	Q^*
1	1	0	0
1	1	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
0	0	0	1*
0	0	1	1*

简化特性表

S_{D}	$R_{\rm D}$	Q^*
1	1	Q
0	1	1
1	0	0
0	0	不定

在任何时刻,输入都能直接改变输出的状态

 S_D 和 R_D 同时为 $0 \Rightarrow Q,Q$ 同为1

5.3 电平触发的触发器

(同步SR触发器)

一、电路结构与工作原理

输入控制门+SR锁存器 只有同步信号CLK到达,S和R才起作用

简化特性表

S	R	0*
0	0	$ \tilde{\boldsymbol{\varrho}} $
0	1	0
1	0	1
1	1	不定

同步SR触发器特性表

			1	
CLK	S	R	Q	$oldsymbol{arrho}^*$
0	X	X	0	0
0	X	X	1	1
1	0	0	0	0
1	0	0	1	1
1	1	0	0	1
1	1	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	1	0	1*
1	1	1	1	1*

同步SR触发器特性表

CLK	S	R	Q	$oldsymbol{arrho}^*$
0	X	X	0	0
0	X	X	1	1
1	0	0	0	0
1	0	0	1	1
1	1	0	0	1
1	1	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	1	0	1*
1	1	1	1	1*

特征方程

$$\begin{cases} \boldsymbol{Q}^* = \boldsymbol{S} + \boldsymbol{R'} \boldsymbol{Q} \\ \boldsymbol{S} \boldsymbol{R} = \boldsymbol{0} \end{cases}$$

约束条件,不 能同时为1。

二、动作特点

在CKL=1的全部时间里, S和R的变化都将引起输出状态的变化

在CKL = 1期间,Q和Q'可能随S,R变化多次翻转

5.4 脉冲触发的触发器

主从SR触发器

一、电路结构与工作原理

提高可靠性,要求每 个CLK周期输出状态 只能改变1次

一、电路结构与工作原理

1. 主从SR触发器

(1)CLK = 1时, "主"按S, R翻转, "从"保持(2)CLK下降沿到达时, "主" 保持, "从"根据"主"的状 态翻转 所以每个 CLK周期,输出状态只 能改变一次

CLK	S	R	Q	$oldsymbol{Q}^*$
X	X	X	X	Q
<u>√</u>	0	0	0	0
<u>√</u>	0	0	1	1
Ţ	1	0	0	1 1
Ţ	1	0	1	1
Ţ	0	1	0	0
<u></u>	0	1	1	0
Ţ	1	1	0	1*
Ţ	1	1	1	1*

输入信号还需 要遵守约束条 件SR=0吗?

练习:已知脉冲SR触发器的时钟信号和输入信号如图所示, 试画出Q端的波形,设触发器的初态为Q=0。

CLK=1期间,如果SR变化,通常就需要先画出 主触发器的状态, 然后再画从触发器的状态。

条件:要求CLK 有效期间SR是稳定的, 不能发生改变

二、主从JK触发器

JK触发器

同步RS触发器特性表 主从JK触发器特性表

CLK	S	R	Q	$oldsymbol{Q}^*$
X	X	X	X	Q
7	0	0	0	0
7	0	0	1	1
7	1	0	0	1
7	1	0	1	1
7	0	1	0	0
7	0	1	1	0
Ţ	1	1	0	1*
	1	1	1	1*

	CLI	X J	K	Q	Q^*
	X	X	X	X	Q
_	7	0	0	0	0
	7	0	0	1	1
_	7	1	0	0	1
	7	1	0	1	1
		0	1	0	0
		0	1	1	0
		1	1	0	1
		1	1	1	0

简化JK触发器特性表

\boldsymbol{J}	K	Q^*
0	0	Q
0	1	0
1	0	1
1	1	Q'

计数状态

区别是解除了约束条件 SR=0

三、主从结构触发器的动作特点(书223)

三、主从结构触发器的动作特点

分析图所示的双4选1数据选择器逻辑电路, 写出输出端Y的逻辑表达式(要求写出分析过程)。

两片4一1数据选择器组成的电路,如图所示。

- 1. 写出F的最小项表达式;
- 2. 写出F的最简与或式;
- 3. 试用一片四选一数据选择器(不加门电路)实现该电路。

5.5 边沿触发器

为了提高触发器的抗干扰能力,希望触发器的次态仅仅取决于 CLK 作用沿到达时刻,输入信号的状态。这样的触发器称为边沿触发器。

这里,重点介绍利用 CMOS 传输门构成的 边沿D触发器.

利用CMOS传输门的边沿触发器

列出真值表						
CLK	$LK D Q Q^*$					
X	X	X	Q			
<u></u>	0	X	0			
<u></u>	1	X	1			

动作特点

Q*变化发生在CLK的上升沿(或下降沿),

Q*仅取决于上升沿到达时输入的状态,而与此前、后的状态无关

有异步置1,置0端的D触发器。 异步置1端 高电平有效 C' C'C'

 TG_4

C

 TG_2

 $R_{\rm D}$

异步置**0**端 高电平有效 边沿触发 器的特征

二、边沿触发器的动作特点

二、边沿触发器的动作特点

