PROJECT DOCUMENTATION REPORT

1 INTRODUCTION:

1.1 PROJECT OVERVIEW:

This doucment is provided as a report for the project **Crude Oil Price Prediction.** Crude oil is amongst the most important resources in today's world, it is the chief fuel and its cost has a direct effect on the global habitat, our economy and oil exploration, exploitation and other activities. Prediction of oil prices has become the need of the hour, it is a boon to many large and small industries, individuals, the government. The evaporative nature of crude oil, its price prediction becomes extremely difficult and it is hard to be precise with the same. Several different factors that affect crude oil prices.

1.2. PURPOSE:

The purpose of this document is to provide a clear cut view of the project undertaken and produce a neat and greater understanding of the project.

2. LITERATURE SURVEY:

2.1 EXISTING PROBLEM:

One of the most significant commodities in the world, crude oil is responsible for one-third of the world's energy use. It serves as the foundation for the majority of the items we use on a daily basis, ranging from plastics to transportation fuels. Since changes in the price of crude oil have a significant impact on national economies around the world, price forecasting can help reduce the risks brought on by oil price volatility. For a variety of stakeholders, including governments, public and private organisations, policymakers, and investors, price projections are crucial.

2.2 PROBELM STATEMENT DEFINITION:

It is required to forecast CRUDE OIL PRICE in international market. The input and output should also be shown as charts and/or dashboards in various formats (like day, week, work-week, month, quarter, year, etc.). The models should be built with comprehensive explanation of data (using EDA), trend analysis, assumptions, data cleaning and validation, data augmentation (if required). Performance of various models need to be clearly evaluated and best model needs to be recommended based on some robust evaluation criteria e.g. AIC (Akaike information criterion), Accuracy, RMSE, MSE etc.

3 IDEATION & PROPOSED SOLUTION:

3.1 EMPATHY MAPS:

3.2 BRAINSTORMING:

Prioritize

In the grid of our ideas is move to a prioritize it should be solve in the problem.

() 20 minutes

Importance

in the important affine problem was about the improverba solution.

Feasibility

Begardies of their imperionce, they keep the correct time also no risks of the problem , then using only lox cost,

3.3 PROPOSED SOLUTION:

tions they ices lobal the
ices lobal the
lobal the
the
·d
h
ilizing
ns are
g,
lt in the
iges
into
ıde
ssional
and
ly
ques
ificial
.,
its
utions
ıdden
ınd
,
private
om
this
to
rectly

3.4 PROBLEM SOLUTION FIT:

People who work and rely on Supply chain. Members of OPEC Investors and Banks who invest in small and medium companies.	Spending power Technical constraints Lack of a technical perspective	6. AVAILABLE SOLUTIONS User friendly interface Affordable products Past: Inefficient algorithms Pros/Cons: Makes a prediction, but not accuste enough.
2 JOBS-TO-RE-DONE/PROBLEMS Data collection: An advanced model needs more data Marketing to create awareness about the product. Problem solved: More accurate prediction with less computations	Resources to create and train the model Lack of vision Monopoly over the industry.	7. BEHAVIOUR Settles for less efficient predictions Spends more money on technology This happens often for thoseorganisationsthat can afford the existing solutions
3. TRICCERS Loss of potential revenue Fear of missing out	M. YOUR SOLUTION Building a better algorithm that has a higher reach, more efficiency and is cheaper.	a. CHANNELS of BEHAVIOUR Online- Website/App to run the model
4. EMOTIONS: BEFORE / AFTER Before: Fear, Desire, and despair After: Confident, elated, and rich		Provide revenue

4 REQUIREMENT ANALYSIS:

4.1 FUNCTIONAL REQUIREMENT:

FR No.	Functional Requirements	Sub Requirement (Story/Sub-
	(Epic)	Task)
FR-1	User Application	User Direct Open with Google Play
		Store App
		User Can Download the Crude Oil Price
FR-2	User Products Available	User Using the Application
		There Are So Many Products in Crude
		Oil Price App
		User Update the Energy and Oil Price
		Instant the Application
FR-3	User Additional Features	User Can Read Latest News and View
_		Oil Price Charts
		User View Major Energy Quotes
		User Can Using a Multiple Color Theme
FR-4	User Exception	User Can Exchange Rates and Currency
	_	Converter

$\label{lem:non-Functional Requirements:} \textbf{Non-Functional Requirements:}$

Following are the non-functional requirements of the proposed solution.

FR NO.	Non -Functional Requirement	Description
FR-1	Usability	Used to improve to the Accuracy of
		crude oil price prediction
FR-2	Security	In the rising oil price can even shift
		economically/political
		power from oil importers to oil
		exporters communications will
		be secured
FR-3	Reliability	Reliability of the pointing towards
		high-risk components
FR-4	Performance	Performance of the this project is to
		improve to the accuracy of crude oil
		price prediction
FR-5	Availability	The Availability Solution is
		More Benefit for and the exporters in
		the crude oil price
		prediction
FR-6	Scalability	The scalability are 90%-95%

5 PROJECT DESIGN

5.1 DATA FLOW DIAGRAM:

5.2 SOLUTION AND TECHNICAL ARCHITECTURE:

Context View

This view gives a high level representation of the system, the different user types and interactions with external entities. It describes the boundaries of the solution.

Context View

This view gives a high level representation of the system, the different user types and interactions with external entities. It describes the boundaries of the solution.

Functional View

This section describes the key functional areas of the project. The goal is to provide context around the architecture – all software performs some functionality and the definition of this functional scope is a very important factor to define the architecture.

Process View

The intent of the process view is to show how the various processing steps within the system fit together to implement the overall functional requirements. This is necessary if the system relies on workflow processes, forked or parallel processing mechanisms. The following processes are significant:

Non Functional View

This section describes architecturally significant changes that enable the solution to achieve the agreed non-functional requirements (NFRs). Each change is mapped to the corresponding NFR category, which is based on the ISO/IEC 25010-2011 product quality model.

NFRs are documented and maintained in the Non Functional Requirements Definition and will not be repeated here. In case of duplication, the Non Functional Requirements Definition takes precedence.

Performance Easy tracking of records and updating can be done. All the requirements relating to performance characteristics of the system are specified in the section below. There are two types of requirements.

1.Static Requirements:

These requirements do not impose any constraints on the execution characteristics of the system. They are:

- A) Number of Terminals: The software makes use of an underlying database that will reside at the same system, while the front end will be available to the administrative computer.
- B) Number of Users: The number of users can be administrator only, but this software can be extended to applications for almost all staff members of the organization.

2. Dynamic Requirements:

These specify constraints on the execution characteristics of the system. They typically include response time and throughout of the system. Since these factors are not applicable to the proposed software, it will suffice if the response time is high and the transactions are carried out precisely and quickly. Reliability: The software will not be able to connect to the database in the event of the server being down due to a hardware or software failure.

3. Availability:

The software will be available only to administrator of the organization and the product as well as customer details will be recorded by him. He can add customers, update and delete them as well as add new products and manage them.

4. Security:

The security requirements deal with the primary security. The software should be handled only by the administrator and authorized users. Only the administrator has right to create new accounts and generating inventory. Only authorized users can access the system with username and password of administrator

5. Maintainability:

Backups for database are available.

6. Portability:

The Software is a web-based application and is built in Python and Nosql so it is platform independent and is independent of operating system.

Logical View

Interface View

This section describes the interfaces that will be required to the external system integration touch points

Design View

This section describes and explains any lower-level design concepts arising from the solution if required.

Physical View

Deployment View	
This section describes how code will be deployed in test environments and key consideration for the more complex Production go-live deployment.	ons

Operational View

This section describes how the architecture will support operational processes and activities.

Security View

This section describes how the architecture addresses the different security aspects.

Data View

This section describes the important data model changes required to fulfil the requirements and the associated data flows.

5.3 USER STORIES:

USER TYPE	FUNCTIONAL	USER	USER	ACCEPTANC	PRIORITY	RELEASE
	REQUIREMENT	STORY	STORY /	E CRITERIA		
			TASK			

Customer	Registration	1	Register for the Application through different vendors.	I can access my account / dashboard	High	Sprint-3
	Confirmation	2	Receiving Confirmatio n Mail	I can receive confirmatio n email & click confirm	High	Sprint-4
	Login	3	Log in into the application	Access to the account	High	Sprint-2
	Enquiry	4	Enter the range of dates	Plausible Rnage	High	Sprint-1
	Visualize	5	Visualize the Trend	Accuracy Check	High	Sprint-3
	Endowment	6	See the result	Prediction Check	High	Sprint-1
	Utilizatiojn	7	Log Out	Confirmatio n and Session Closure	High	Sprint-2
Administrat or	Authroity	1	Verify the imbalances	Session Dryness	High	Sprint-3

6 PROJECT PLANNING AND SCHEDULING:

6.1 SPRINT PLANNING AND ESTIMATION:

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Data Collection	USN-1	Collecting the Dataset.	2	High	S. Premkumar
Sprint-1		USN-2	Data Pre-processing.	1	High	R. Sathish Kumar
Sprint-2	Model Building	USN-3	Prepare the model by importing the necessary libraries, adding the layers, and compiling it.	2	Low	E. Chandru
Sprint-2		USN-4	The data classification model is trained using RNNs and other systems.	2	Medium	S. Hariharan
Sprint-3	Training and Testing	USN-5	Testing the model's performance and training it	5	High	E. Chandru
Sprint-4		USN-6	Deploy the model in the IBM cloud and build the system	5	High	S. Hariharan

6.2 SPRINT DELIVERY SCHEDULE:

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

1. CODING & SOLUTIONING (Explain the features added in the project along with code)

- 1. A LSTM Price forecasting machine learning model
- 2. A User Interface for forecasting based on the past 10 days price

2. TESTING

- 1. Test Cases
- 2. User Acceptance Testing

3. RESULTS

1. Performance Metrics – RMSE – 2.78

4. ADVANTAGES & DISADVANTAGES

The model is able to forecasting the price accurately based on the past 10 days data.

But whenever the commodity is affected by external factors which are caused naturally then the predictions are bad. This cannot be predicted by machine learning model

5. CONCLUSION

Therefore the ml was deployed as a web app and the user interface is handy for stakeholders who do not have much knowledge in programming. The predicted value is displayed in the user interface.

6. FUTURE SCOPE

The machine learning model can be improved by converting it from univariate to multi variate model for better understanding the price value. This can result in a great boost in the prediction accuracy.