Discrete logarithm in finite fields of small characteristic

Édouard Rousseau Université de Versailles

June 2, 2017

CONTENTS

INTRODUCTION

The discrete logarithm problem **Terminology** Historical background

INDEX CALCULUS

Overview

An example

QUASI-POLYNOMIAL ALGORITHMS Barbulescu, Gaudry, Joux and Thomé algorithm

Granger, Kleinjung and Zumbrägel algorithm

CONTEXT

- $G = \langle g \rangle$ cyclic group generated by g
- $ightharpoonup N = \operatorname{Card} G$.

We have a bijection

$$\exp_g: \ \mathbb{Z}/N\mathbb{Z} \ \to \ G$$

$$n \ \mapsto \ g^n$$

- $\log_g := \exp_g^{-1}$
- ▶ Compute g^n from n: easy
- \triangleright Compute *n* from g^n : hard (discrete logarithm problem)

DEFINITIONS

Two families of algorithms:

- ▶ The *generic* algorithms (complexity: $O(\sqrt{N})$)
- ▶ The *index calculus* algorithms, using group structure
 - from now on: $G = \mathbb{F}_q^{\times}$

Terminology:

- ▶ *small characteristic*: \mathbb{F}_q with $q = p^k$ and $p \ll q$
- *quasi-polynomial* complexity: $\log q^{O(\log \log q)}$
- ► *Notation:*

$$L_N(\alpha) = \exp((c + o(1))(\log N)^{\alpha}(\log \log N)^{1-\alpha})$$

HISTORICAL BACKGROUND

- ► First appearance in [Diffie, Hellman '76]
- ► First sub-exponential algorithm [Adleman '79]: $L_q(1/2)$
- ▶ Between 1984 and 2006: algorithms in $L_q(1/3)$

And more recently, in finite fields of small characteristic:

- ▶ New algorithm with $L_q(1/4)$ complexity [Joux '13]
- Quasi-polynomial algorithm [Barbulescu, Gaudry, Joux, Thomé '14]
- Second quasi-polynomial algorithm [Granger, Kleinjung, Zumbrägel '14]

OVERVIEW

Goal: find $log_g(h)$

- 0. first choose $F \subset G$ with $\langle F \rangle = G$
- 1. find multiplicative relations between elements in *F*
- 2. solve the associated linear system for $\{\log_g(f) \mid f \in F\}$
- 3. express h as a product of elements in F

Steps 1 and 3 depend on the structure of the finite field, and give different complexities.

Context:

- $G = \mathbb{F}_p^{\times}$ for a prime p and N = |G|
- ▶ $F = \{f \mid f \leq B, f \text{ prime}\}$ for a chosen integer B

Step 1: relations generation

- ▶ randomly choose $e \in \mathbb{Z}/N\mathbb{Z}$
- test if g^e is B-smooth
- ▶ if it is the case, it yields a relation in *G*:

$$g^e = \prod_{f \in F} f^{e_f}, e_f \in \mathbb{N}$$

that can be written

$$e = \sum_{f \in F} e_f \log_g(f).$$

AN EXAMPLE

Step 2: linear algebra: solve the linear system Step 3: express h as a function of the elements in F:

- ▶ randomly choose $e \in \mathbb{Z}/N\mathbb{Z}$
- test if hg^e is B-smooth
- if it is the case, it yields a relation:

$$\log_{g}(h) = \sum_{f \in F} e_f \log_{g}(f) - e$$

Depends on B:

- ▶ *B* large: easier to find relations
- ▶ *B* large: need more relations to solve the system

Complexity: $L_a(1/2)$

Barbulescu, Gaudry, Joux and Thomé

Context:

- ▶ $\mathbb{K} = \mathbb{F}_{q^{2k}} = \mathbb{F}_{q^2}[X]/(I_X)$ with I_X irreducible polynomial of degree k dividing $h_1X^q h_0$, deg $h_i \leq 2$.
 - **heuristic:** existence of h_i
- $ightharpoonup F = \{ degree one polynomials \}$

Idea: descent process:

$$P \rightsquigarrow O(q^2k) P_j$$

with $\deg P_j \leq \left\lceil \frac{1}{2} \deg P \right\rceil$

► Complexity: $(q^2k)^{O(\log k)}$.

Based on the equation:

$$X^{q}Y - XY^{q} = Y \prod_{a \in \mathbb{F}_{q}} (X - aY) = \prod_{\alpha \in \mathbb{P}^{1}(\mathbb{F}_{q})} (X - \alpha Y)$$
 (1)

Substitute X by aP + b and Y by cP + d in (1), with $a, b, c, d \in \mathbb{F}_{q^2}$, use $X^q = \frac{h_0}{h_1} \mod I_X$:

$$\frac{1}{h_1^D} \mathcal{L}_{a,b,c,d} = \lambda \prod_{\alpha \in \mathbb{P}^1(\mathbb{F}_q)} (P - \mu_{\alpha})$$

where $\lambda, \mu_{\alpha} \in \mathbb{F}_{q^2}$ and $\deg \mathcal{L}_{a,b,c,d} = D \leq 3 \deg P$

- ▶ keep only the equations $(E_{a,b,c,d})$ where $\mathcal{L}_{a,b,c,d}$ is $\left\lceil \frac{\deg P}{2} \right\rceil$ -smooth
- ► combine these equations to keep only *P* in the right hand side.
- ▶ left hand side: irreducible polynomials of degree $\leq \left\lceil \frac{\deg P}{2} \right\rceil$
- heuristics:
 - ▶ The existence of the combination
 - ▶ The smoothness of the polynomials $\mathcal{L}_{a,b,c,d}$

GRANGER, KLEINJUNG AND ZUMBRÄGEL

Context:

▶ $\mathbb{K} = \mathbb{F}_{q^k} = \mathbb{F}_q[X]/(I_X)$ with I_X irreducible polynomial of degree k dividing $h_1X^q - h_0$.

Ideas:

- descent process
- "on the fly" elimination

"ON THE FLY" ELIMINATION

Input:

▶ $Q \in \mathbb{F}_{q^m}[X]$ and deg Q = 2

Output:

▶ $Q \rightsquigarrow O(q) \ Q_i$ with deg $Q_i = 1$ and $Q_i \in \mathbb{F}_{q^m}[X]$

Ideas:

▶ $P = X^{q+1} + aX^q + bX + c$ splits completely in $\mathbb{F}_{q^m}[X]$ for $\approx q^{m-3}$ triples (a, b, c).

"ON THE FLY" ELIMINATION

$$P = \frac{1}{h_1}((X+a)h_0 + (bX+c)h_1) \mod I_X$$

▶ if $Q|(X+a)h_0 + (bX+c)h_1$ (degree 3), we have $h_1P = QL \mod I_X$

where *L* is of degree 1 and *P* splits completely.

 $Q \in \mathbb{F}_q[X]$ irreducible of degree 2*d*, we have

$$Q = \prod_{i=0}^{d-1} Q_i = \prod_{i=0}^{d-1} Q_0^{[i]}$$

with

- ▶ Q_i irreducible of degree 2 in $\mathbb{F}_{q^d}[X]$
- $Q_i = Q_0^{[i]}$ conjugate of Q_0

- "on the fly" elimination: $Q_0^{[i]} \rightsquigarrow O(q) P_j^{[i]}$
- $Q \rightsquigarrow O(q) N_j$ with $N_j = \prod_{i=0}^{d-1} P_j^{[i]}$

 $N_j = R_j^{e_j}$ with $R_j \in \mathbb{F}_q[X]$ irreducible of degree f_j and $e_j f_j = d$

- ▶ $Q \rightsquigarrow O(q) R_j$ with deg $R_j \mid d$
- complexity: $q^{O(\log q)}$

FUTURE WORK

Done:

▶ implementation of Barbulescu, Gaudry, Joux, Thomé

Open problems:

- practical improvements
- proofs of heuristics
- polynomial (heuristic) algorithm