Mallet

Mallet

- Machine learning toolkit
 - Developed at UMass Amherst by Andrew McCallum
 - Java implementation, open source
 - Large collection of machine learning algorithms
 - Targeted to language processing
 - Naïve Bayes, MaxEnt, Decision Trees, Winnow, Boosting
 - Also, clustering, topic models, sequence learners
 - Widely used, but
 - Research software: some bugs/gaps; odd documentation

Installation

 Installed on patas already under /NLP_TOOLS/tool_sets/mallet/latest/

- Subdirectories:
 - > bin/: script files
 - > src/: java source code
 - > class/: java classes
 - ➤ lib/: jar files
 - > sample-data/: wikipedia docs for languages id, etc

Environment

- Should be set up on patas
 - \$PATH should include
 /NLP_TOOLS/tool_sets/mallet/latest/bin
 - \$CLASSPATH should include
 /NLP_TOOLS/tool_sets/mallet/latest/lib/mallet-deps.jar
 - Check: type "which text2vectors" or "which mallet"
 The path should be /NLP_TOOLS/tool_sets/mallet/latest/bin/

Mallet Commands

- Mallet command types:
 - Data preparation
 - Data/model inspection
 - > Training
 - > Classification
- Command line scripts
 - > Shell scripts
 - Set up java environment
 - Invoke java programs
 - > --help lists command line parameters for scripts

Mallet Data

- Text format: Users of Mallet create training/test instances in this format
 - > standard format: InstanceName label f1 v1 f2 v2
 - > symlight format: label f1:v1 f2:v2 ...
- Binary format: used by learner and decoder
 - > It stores the mapping from featName to featIdx, from targetLabel to targetIdx, etc.

Mallet has tools to convert between the two formats

Data preparation

Define features

- Create feature vectors for each training/test instance; save them in a text vector format
 - write your own code

Run "Mallet import-file" to convert the text format to binary format.

Convert from standard text format to binary format

- mallet import-file --input file1 --output file2
 - > file1: input file
 - feature vectors in the new text format, one line per instance:

 InstanceName label f1 v1 f2 v2 fn vn
 - Features can strings or indexes
- > file2: output file
 - Feature vectors in the binary format
- If building test data separately from original
 - mallet import-file --input train.vectors.txt --output train.vectors
 - mallet import-file --input test.vectors.txt --output test.vectors --use-pipe-from train.vectors

Convert from symlight format to binary format

- mallet import-symlight --input file1 --output file2
 - > file1: input file
 - feature vectors in the new text format, one line per instance:

```
label f1:v1 f2:v2 ... fn:vn
```

- Features can strings or indexes
- > file2: output file
 - Feature vectors in the binary format
- If building test data separately from original
 - mallet import-symlight --input train.vectors.txt --output train.vectors
 - mallet import-symlight –input test.vectors.txt –output test.vectors --use-pipe-from train.vectors

Convert from binary to text format

- vectors2info --input vectors --print-labels TRUE > labelList
 - Prints list of category labels in data set

- vectors2info --input vectors --print-matrix sic > vectors.txt
 - prints all features and values by string and number
 - Returns original text feature-value list
 - Possibly out of order

Training

 mallet train-classifier --trainer trainerName --input train.vectors --outputclassifier modelName 1>log.stdout 2>log.stderr

- trainerName: MaxEnt, DecisionTree, NaiveBayes, etc
- The code creates the following:
 - > modelName (the model): features and their weights
 - > log.stdout: the report, including training acc, confusion matrix
 - > log.stderr (the training info): iteration values, etc.

Viewing the model

- classifier2info --classifier modelName > model.txt
 Prints out contents of model file
- An example model:

FEATURES FOR CLASS guns

<default> 0.1298

fire 0.3934

firearms 0.4221

government 0.3721

arabic -0.0204

Accuracy and confusion matrix

Confusion Matrix, row=true, column=predicted accuracy=0.97111111111111111

```
label 0 1 2 I total
0 misc 846 27 23 I 896
1 mideast 12 899 2 I 913
2 guns 12 2 877 I 891
```

Train accuracy mean = 0.9711

Testing

- Use new data to test a previously built classifier
- mallet classify-symlight --input testfile --output outputfile --classifier maxent.model
- Prints (class, score) pairs for each test instance in the format of "Inst_id class1 score1 class2 score2"

• An example:

```
array:0
                                0.0046
                   0.995 de
            en
array:1
                                0.0294
                   0.970 de
            en
array:2
                   0.064 de
                                0.935
            en
array:3
                   0.094 de
                                0.905
            en
```


Training + testing + eval

 vectors2classify --training-file train.vectors --testing-file test.vectors -trainer DecisionTree --report test:raw test:accuracy test:confusion train:confusion train:accuracy > de1.stdout 2>de1.stderr

Training and test accuracy at the end of de1.stdout

Summary

- Create feature vectors in the text format
- Convert vectors to the binary format:

```
mallet import-file --input train.vectors.txt --output train.vectors
mallet import-file --input test.vectors.txt --output test.vectors --use-pipe-from train.vectors
```

- mallet train-classifier --input train.vectors --trainer MaxEnt
 - Trains MaxEnt classifier and stores model

--output-classifier ml.model

- mallet classify-file --input test.vectors.txt --output result
 - Tests on the new data and output classification result
 - It does not show test accuracy

--classifier ml.model

Other commands

Viewing the vectors: vectors2info

Viewing the model: classifier2info

vectors2classify: training, test and eval

Other Information

- Website:
 - Download and documentation (as it is)
 - http://mallet.cs.umass.edu

- API tutorial:
 - http://mallet.cs.umass.edu/mallet-tutorial.pdf

Split binary vectors into training and test portions

- vectors2vectors --input input-filename --training-file training-filename -testing-file test-filename --training-portion pct
 - Creates random training/test splits in some ratio, pct
 - Therefore, running the command multiple times will yield different results.