

				S	ubje	ect C	Code	: Kl	EE2	017
Roll No:										

Printed Page: 1 of 3

BTECH (SEM II) THEORY EXAMINATION 2021-22 BASIC ELECTRICAL ENGINEERING

Time: 3 Hours Total Marks: 100

Notes:

- Attempt all Sections and Assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.

SECTI	ION-A	Attempt All of the following Questions in brief	Marks (10*2=20)	CO				
Q1(a)	Q1(a) Draw the V-I characteristics for ideal voltage source and ideal current source.							
Q1(b)	Why is lin	nearity important in circuits?		1				
Q1(c)	Why do w	ve represent A.C. by sinusoidal waveform?		2				
Q1(d)	Why the average power consumed in purely inductive circuit is zero?							
Q1(e)	What is the nature of load for negative voltage regulation in the transformer?							
Q1(f)	Draw the phasor diagram for an ideal transformer on no load.							
Q1(g)	What is th	e generated EMF in D.C. generator?		4				
Q1(h)	Why sync	hronous motor is doubly excited?		4				
Q1(i)	What are	the common problems that occur during electrical install	lations?	5				
Q1(j)	Write any	two battery characteristics. Also, define any one.		5				

Printed Page: 2 of 3
Subject Code: KEE201T
Roll No:

BTECH (SEM II) THEORY EXAMINATION 2021-22 BASIC ELECTRICAL ENGINEERING

Q2(c)	State the significance of the regulation of transformer. A 4kVA, $200/400$ V, 50 Hz, single phase transformer has equivalent resistance referred to primary as 0.15Ω . Calculate, (i) The total copper losses on full load (ii) The efficiency while supplying full load at 0.9 power factor lagging (iii) The efficiency while supplying half load at 0.8 power factor leading. Assume total iron losses equal to 60 W.	3
Q2(d)	What are the factors affecting speed of a DC motor? Compare lap and wave type	4
	armature winding.	
Q2(e)	Draw and explain the characteristics of a battery. Calculate the backup of a battery of	5
	150AH connected to load of 150 watts, and the supply voltage is 12V.	

SECT	SECTION-C Attempt ANY ONE following Question Marks (1*10=10)							
Q4(a)	(a) Derive mathematically dynamic impedance (Z) offered by RLC parallel circuit under							
	resonance. Also, draw its phasor diagram.							
Q4(b)	(b) Two coils having resistance 5 Ω and 10 Ω and inductances 0.04 H and 0.05 H respectively							
	are connected in parallel across a 200 V, 50 Hz supply.							
	Calculate:							
		Conductance, susceptance and admittance of each coil						
	ii. T	otal current drawn by the circuit and its power factor	r.					
	iii. P	ower absorbed by the circuit.						

				S	ubje	ect C	Code	: Kl	EE2	017
Roll No:										

Printed Page: 3 of 3

BTECH (SEM II) THEORY EXAMINATION 2021-22 BASIC ELECTRICAL ENGINEERING

SECT	ION-C	Attempt ANY ONE following Question	Marks (1*10=10)	
Q5(a)	What is	the purpose of an equivalent circuit of a transformer?	Obtain the approximate	3
	equivalent	circuit of a transformer as referred to the primary with all	necessary parameters.	
Q5(b)	A 20kVA	, 2000V/200V, single-phase, 50 Hz transformer has	a primary resistance of	3
	$1.5~\Omega$ and	reactance of 2 Ω . The secondary resistance and reactance	ctance are 0.015Ω and	
	$0.02~\Omega$ re	spectively. The no load current of transformer is 1	A at 0.2 power factor.	
	Determine	e:		
	(i) Equiva	elent resistance, reactance and impedance referred to	primary	
	(ii) Suppl	y current		
	(iii) Total	copper loss		
	Draw app	roximate equivalent circuit.		

SECT	ION-C A	ttempt AN	NY ON	E follov	wing Qu	estion			Marks (1	*10=10)		
Q6(a)	Derive an ex	pression	for to	rque in l	DC mo	tor. A 230	V DC seri	es moto	r draw	s a 50 <i>A</i>	1	4	
	current. Ar	mature	and	series	field	winding	resistano	ces are	0.2	Ω a	and	0.1	Ω ,
	respectively.	Calculat	e (i) b	rush vo	ltage an	ıd (ii) back	EMF.						
Q6(b)	Why is an in	duction r	notor	called a	genera	llized trans	former? (Compare	e the in	duction	1	4	
	motor with th	ne transfo	rmer.										

SECT	ION-C Atte	mpt ANY ONE following Question	Marks (1*10=10)						
Q7(a)	How do you ca	alculate energy consumption per kWh? Calculate	the electricity bill amoun	t 5					
	for a leap year, if the following devices are used as specified.								
	(A) 3 Bulbs of 40W for 6 hours per day								
	(B) 4 Tube lights of 50W for 8 hours per day								
	Given the rate of electricity is Rs. 7.50 per unit.								
Q7(b)	Explain the co	nstruction, rating, specific applications of at le	east two types of wires	5					
	and cables used	l in electrical installations.							