EXERCÍCIO RESOLVIDO

- R. 202 O elevador hidráulico de um posto de serviços automotivos é acionado por meio de um cilindro de área $3\cdot 10^{-5}$ m². O automóvel a ser elevado tem massa $3\cdot 10^3$ kg e está sobre o êmbolo de área $6 \cdot 10^{-3}$ m². Sendo a aceleração da gravidade g = 10 m/s², determine:
 - a) a intensidade mínima da força que deve ser aplicada no êmbolo menor para elevar o automóvel; b) o deslocamento que teoricamente deve ter o êmbolo menor para elevar o automóvel 10 cm.

Solução:

a) As intensidades das forças nos dois êmbolos são diretamente proporcionais às respectivas áreas:

Temos:
$$\begin{cases} F_2 = mg = 3 \cdot 10^3 \cdot 10 & \therefore F_2 = 3 \cdot 10^4 \text{ N} \\ A_1 = 3 \cdot 10^{-5} \text{ m}^2 & \text{e} \quad A_2 = 6 \cdot 10^{-3} \text{ m}^2 \end{cases}$$

Assim:

$$\frac{F_1}{3 \cdot 10^{-5}} = \frac{3 \cdot 10^4}{6 \cdot 10^{-3}} : \boxed{F_1 = 1.5 \cdot 10^2 \,\text{N}}$$

b) São dados:

$$A_1 = 3 \cdot 10^{-5} \,\text{m}^2$$
; $A_2 = 6 \cdot 10^{-3} \,\text{m}^2$; $h_2 = 10 \,\text{cm} = 0.1 \,\text{m}$

Substituindo em $h_1A_1 = h_2A_2$, temos:

$$h_1 \cdot 3 \cdot 10^{-5} = 0.1 \cdot 6 \cdot 10^{-3} : h_1 = 20 \text{ m}$$

Observação

Esse deslocamento teórico que o êmbolo menor deveria sofrer é muito grande. Na prática, como vimos, esse deslocamento é subdividido em vários deslocamentos menores e sucessivos, por meio

Respostas: a) 1,5 · 10² N; b) 20 m

EXERCÍCIO PROPOSTO

P. 510 Numa prensa hidráulica, o êmbolo menor tem raio 10 cm e o êmbolo maior, raio 50 cm. Se aplicarmos no êmbolo menor uma força de intensidade 20 N, deslocando-o 15 cm, quais serão a intensidade