Comparing in-situ, individual bacterial community growth rates in cropped and successional soils using a 16S rRNA internal standard

Cassandra Wattenburger^{1*}, Daniel Buckley¹

(1) Soil and Crops Science Section, Cornell University, Ithaca, NY

* cjw259@cornell.edu 🔰 @CJWattenburger

Department of Energy 2021 GSP Meeting Feb 22-24th 2021

Background

- Soil bacteria drive biogeochemical cycles via their metabolic activities, growth is driven by metabolism
- Growth is a metric that combines evolutionary, ecological, and environmental factors^{1,2}
- Community growth dynamics may inform ecosystem processes, such as carbon cycling³

Hypotheses

- Soil bacterial communities consist of a dynamic spectrum of fast and slow growing species
- 16S rRNA copy number is positively correlated with in-situ growth rate
- Soil habitat and resource availability modify in-situ community growth rates, with faster growth in more disturbed or higher resource environments

Experimental design

Microcosms

Incubation

Sequencing

16S V4 rRNA amplicon sequencing with internal standard

Internal standard

How it works:

In-situ growth rate estimates

Estimated growth rates for 453 taxa in total Generation times (g), min: 0.7; max: 64; mean: 5 days

Growth rates had a weak, positive correlation with 16S rRNA copy number

16S rRNA copy number estimated using PAPRICA6

Land use and resource availability affected growth rate distributions

Conclusions

In-situ growth rates in bacterial communities are altered by soil history and resource availability. They are weakly correlated with 16S rRNA copy number.