ST5215 Advanced Statistical Theory, Lecture 16

HUANG Dongming

National University of Singapore

13 Oct 2020

Overview

Last time

- Convergence modes
- Stochastic orders

Today

- Continuous mapping
- Slutsky's theorem
- \bullet δ -method
- Strong Law of Large Number (SLLN)

Recap: Convergence Modes

- $X_n \stackrel{a.s.}{\to} X$ if $P(X_n \to X) = 1$
- $X_n \stackrel{P}{\to} X$ if $P(|X_n X| > \epsilon) \to 0$, for all $\epsilon > 0$
- $X_n \stackrel{L^p}{\to} X$ if $E|X_n X|^p \to 0$
- $X_n \stackrel{D}{\to} X$ if $F_{X_n}(x) \to F_X(x)$ at every continuity point x of F_X

Relations between different modes of convergence

$$\begin{array}{ccc}
L^p & \Longrightarrow & L^q \\
& & \downarrow \\
& & \downarrow \\
a.s. & \Longrightarrow & P & \Longrightarrow & D
\end{array}$$

- If $X_n \stackrel{D}{\to} c$ for a constant c, then $X_n \stackrel{P}{\to} c$.
- If $X_n \stackrel{\mathcal{P}}{\to} X$ then there is a subsequence s.t. $X_{n_k} \stackrel{a.s.}{\to} X$
- If $X_n \stackrel{D}{\to} X$, then we can find $Y_n \stackrel{\mathcal{D}}{=} X_n$ and $Y \stackrel{\mathcal{D}}{=} X$ s.t. $Y_n \stackrel{a.s.}{\to} Y$

Properties and relations

Theorem (Continuous mapping)

Let $\{X_n\}_{n=1}^{\infty}$ be a sequence of random k-vectors and X is a random k-vector in the same probability space.

Let $g: \mathcal{R}^k \to \mathcal{R}$ be continuous. Then

- if $X_n \stackrel{a.s.}{\to} X$, then $g(X_n) \stackrel{a.s.}{\to} g(X)$;
- if $X_n \stackrel{P}{\to} X$, then $g(X_n) \stackrel{P}{\to} g(X)$;
- if $X_n \stackrel{D}{\to} X$, then $g(X_n) \stackrel{D}{\to} g(X)$.

- Uniqueness of the limit
 - ▶ If $X_n \stackrel{*}{\to} X$ and $X_n \stackrel{*}{\to} Y$, then X = Y a.s., where * could be a.s., P or L^p
 - ▶ If $F_n \Rightarrow F$ and $F_n \Rightarrow G$, and F(t) = G(t) for all t
- Oncatenation:
 - ▶ If $X_n \stackrel{*}{\to} X$ and $Y_n \stackrel{*}{\to} Y$, then $(X_n, Y_n) \stackrel{*}{\to} (X, Y)$ where * is either P or a.s.
 - ▶ If $X_n \xrightarrow{D} X$ and $Y_n \xrightarrow{D} c$, then $(X_n, Y_n) \xrightarrow{D} (X, c)$ for a constant c
 - ▶ This is NOT true: $X_n \stackrel{D}{\to} X$ and $Y_n \stackrel{D}{\to} Y$, then $(X_n, Y_n) \stackrel{D}{\to} (X, Y)$
- Linearity
 - ▶ If $X_n \stackrel{*}{\to} X$ and $Y_n \stackrel{*}{\to} Y$, then $aX_n + bY_n \stackrel{*}{\to} aX + bY$, where * could be a.s., P or L^p , and a and b are real numbers
 - ▶ This statement is NOT true for convergence in distribution
- **1** Cramér-Wold device: $X_n \stackrel{D}{\rightarrow} X$ iff $c^\top X_n \stackrel{D}{\rightarrow} c^\top X$ for every $c \in \mathcal{R}^k$

Theorem (Slutsky's theorem)

If $X_n \stackrel{D}{\to} X$ and $Y_n \stackrel{D}{\to} c$ for a constant c, then

- $X_n + Y_n \stackrel{D}{\rightarrow} X + c$
- $X_n Y_n \stackrel{D}{\to} cX$
- $X_n/Y_n \stackrel{D}{\to} X/c$ if $c \neq 0$
- Slutsky's theorem is a consequence of continuous mapping theorem and concatenation property
- This result is very useful in statistics. For example, for i.i.d. samples X_i 's with finite variance,
 - ▶ By CLT, the sample mean \bar{X}_n satisfies $\sqrt{n}(\bar{X}_n \mu) \stackrel{\mathcal{D}}{\to} N(0, \text{Var}(X))$
 - ▶ By SLLN, $S^2 \xrightarrow{\mathcal{D}} Var(X)$. Therefore,

$$\frac{\sqrt{n}\left(\bar{X}_{n}-\mu\right)}{\sqrt{S^{2}}}\overset{\mathcal{D}}{\to}\textit{N}(0,1)$$

δ -Method

If we have an approximate distribution of $\hat{\theta}$ (often by CLT), what is the approximate distribution of $g(\hat{\theta})$ for a smooth function g?

- Suppose $a_n(\hat{\theta}_n \theta) \stackrel{D}{\rightarrow} Z$, where $a_n \rightarrow \infty$
- When $\hat{\theta}_n \approx \theta$, and since g is differentiable, then by Taylor expansion

$$\frac{g(\hat{\theta}_n) - g(\theta)}{\hat{\theta}_n - \theta} \approx g'(\theta) \tag{1}$$

or

$$\frac{g(\hat{\theta}_n) - g(\theta)}{g'(\theta)} \approx \hat{\theta}_n - \theta \tag{2}$$

and further

$$a_n \frac{g(\hat{\theta}_n) - g(\theta)}{g'(\theta)} \approx a_n(\hat{\theta}_n - \theta) \stackrel{D}{\to} Z$$
 (3)

δ -method, Univariate

Theorem

Let $X_1, X_2, ..., Y$ be random variables, and $\{a_n\}$ is a sequence of positive numbers with $\lim_{n\to\infty} a_n = \infty$ satisfying

$$a_n(X_n-c)\stackrel{D}{\to} Y,$$

where $c \in \mathcal{R}$. Let g be a function from \mathcal{R} to \mathcal{R} . (i) If g is differentiable at c, then

$$a_n[g(X_n)-g(c)] \stackrel{D}{\rightarrow} g'(c)Y$$

where g'(x) is the derivatives of g at x

(ii) Suppose that g has continuous derivatives of order m > 1 in a neighborhood of c, s.t. $g^{(j)}(c) = 0$ for all $1 \le i \le m-1$, and $g^{(m)}(c) \neq 0$. Then

$$a_n^m [g(X_n) - g(c)] \stackrel{D}{\rightarrow} \frac{1}{m!} g^{(m)}(c) Y^m$$

Example

Suppose X_1, \ldots, X_n are i.i.d. sample from P_{λ} with p.d.f.

$$f_X(x) = \lambda e^{-\lambda x}, \qquad x \in [0, \infty),$$
 (4)

where the parameter $\lambda > 0$ is called the rate

- $\mu = EX = 1/\lambda$, or $\lambda = \mu^{-1}$
- $Var(X) = \mu^2$
- Let $\hat{\mu}_n = \bar{X}_n$ and $\hat{\lambda}_n = \hat{\mu}_n^{-1} = 1/\bar{X}_n$
- CLT says that $\sqrt{n}(\hat{\mu}_n \mu) \stackrel{D}{\to} Z \sim N(0, \mu^2)$
- Apply δ -method with $c = \mu$, $g(\mu) = \mu^{-1} = \lambda$
- Since $g'(\mu) = -\mu^{-2} = -\lambda^2$, we have

$$\sqrt{n}(\hat{\lambda}_n - \lambda) \stackrel{D}{\rightarrow} -\lambda^2 Z \sim N(0, \lambda^2)$$

Examples

Suppose X_1,\ldots,X_n IID with $\mathrm{Var}(X_1)=1$, $\overline{X}_n=n^{-1}\sum_{i=1}^n X_i$, $c=EX_1$, $a_n=\sqrt{n}$, and $Z\sim N(0,1)$

- If $g(x) = x^2$,
 - if $c \neq 0$ then $\sqrt{n}(\overline{X}_n^2 c^2) \stackrel{D}{\rightarrow} N(0, 4c^2)$ since g'(c) = 2c;
 - if c=0, then g'(c)=0 but $g''(c)=2\neq 0$, so we have $(\sqrt{n})^2(\overline{X}_n^2-0)\stackrel{D}{\to} Z^2\sim \chi_1^2$
- If $g(x) = x^{-1}$ and $c \neq 0$, then $\sqrt{n}(\overline{X}_n^{-1} c^{-1}) \stackrel{D}{\to} N(0, 1/c^4)$, since $g'(c) = -c^{-2}$.
 - ▶ What if c = 0 in this case? (Left for exercise)

Proof of (i)

Let

$$Z_{n} = a_{n} [g(X_{n}) - g(c)] - a_{n} g'(c) (X_{n} - c)$$
(5)

If we can show that $Z_n = o_p(1)$, then by the convergency of $a_n(X_n - c)$ and Slutsky's theorem, we conclude the proof.

• The differentiability of g at c implies that for any $\epsilon>0$, there is a $\delta_{\epsilon}>0$ such that

$$\left|g(x) - g(c) - g'(c)(x - c)\right| \le \epsilon |x - c| \tag{6}$$

11/25

whenever $|x - c| < \delta_{\epsilon}$

- On the event $\{|X_n-c|<\delta_\epsilon\}$, we have $|Z_n|<\epsilon a_n|X_n-c|$
- Consider any $\eta > 0$. If $\eta < |Z_n|$, then either $|X_n - c| \ge \delta_{\epsilon}$, or $\eta < \epsilon a_n |X_n - c|$

ullet For any $\eta>0$, $\epsilon>0$, we have

$$P(|Z_n| \ge \eta) \le P(|X_n - c| \ge \delta_{\epsilon}) + P(a_n |X_n - c| \ge \eta/\epsilon)$$
 (7)

- Since $a_n \to \infty$, by Slutsky's theorem, $X_n = \frac{1}{a_n} a_n (X c) + c \stackrel{P}{\to} c$
- By continuous mapping, $a_n |X_n c| \stackrel{D}{\rightarrow} |Y|$
- Fixed η . Choose ϵ sufficiently small such that η/ϵ is a continuity point of $F_{|Y|}$ and $P(|Y| \ge \eta/\epsilon)$ is smaller than η
 - ► For a monotone function, its discontinuity points are at most countably many
- From Eq (7), we have

$$\limsup_{n} P(|Z_n| \ge \eta) \le 0 + P(|Y| \ge \eta/\epsilon) < \eta \tag{8}$$

12 / 25

• Since η is arbitrary, we conclude that $Z_n = o_p(1)$

Theorem (δ -method, multivariate)

Let X_1, X_2, \ldots, Y be random k-vectors, and $\{a_n\}$ is a sequence of positive numbers with $\lim_{n\to\infty} a_n = \infty$ satisfying

$$a_n(X_n-c)\stackrel{D}{\to} Y,$$

where $c \in \mathbb{R}^k$. Let g be a function from \mathbb{R}^k to \mathbb{R} . (i) If g is differentiable at c, then

$$a_n [g(X_n) - g(c)] \xrightarrow{D} [\nabla g(c)]^{\tau} Y$$
 where $\nabla g(x)$ is the partial derivatives of g at x

(ii) Suppose that g has continuous partial derivatives of order m > 1 in a neighborhood of c, with all the partial derivatives of order i, 1 < i < m-1, vanishing at c, but with the mth-order partial derivatives not all vanishing at c. Then

$$a_n^m [g(X_n) - g(c)] \xrightarrow{D} \frac{1}{m!} \sum_{i_1=1}^k \cdots \sum_{i_m=1}^k \frac{\partial^m g}{\partial x_{i_1} \cdots \partial x_{i_m}} \bigg|_{x=c} Y_{i_1} \cdots Y_{i_m}$$

13 / 25

Strong Law of Large Numbers

Theorem (SLLN)

Let $X_1, X_2, ...$ be i.i.d. random variables. A necessary and sufficient condition for the existence of a constant c for which

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}\overset{a.s.}{\to}c$$

is that $E|X_1| < \infty$, in which case $c = EX_1$

Remark

- "Strong" refers to the a.s. convergence
- The necessity is simple
- The proof of sufficiency is harder

Lemma (A)

$$E|X| \leq \sum_{n=0}^{\infty} P(|X| \geq n) \leq 1 + E|X|$$

Necessity of SLLN

- Suppose that $\frac{1}{n} \sum_{i=1}^{n} X_i \stackrel{\text{a.s.}}{\rightarrow} c$
- Let $T_n = \sum_{i=1}^n X_i$
- Then

$$\frac{X_n}{n} = \frac{T_n}{n} - c - \frac{n-1}{n} \left(\frac{T_{n-1}}{n-1} - c \right) + \frac{c}{n} \stackrel{a.s.}{\to} 0$$

- Therefore $P(\{|X_n|/n > 1\}i.o.) = 0$
- Since X_n 's are independent, by second Borel-Cantelli lemma, if $\sum_{n=1}^{\infty} P(|X_n| \geq n) = \infty$, then $P(\{|X_n|/n > 1\}i.o.) = 1$, which contradicts the last bullet point
- Therefore

$$\sum_{n=1}^{\infty} P(|X_n| \geq n) = \sum_{n=1}^{\infty} P(|X_1| \geq n) < \infty,$$

which implies $E|X_1| < \infty$ by Lemma A

Proof of Sufficiency

Suppose $E|X_n| < \infty$. Let $Y_n = X_n I_{\{|X_n| \le n\}}, n = 1, 2, \ldots$

• Since $\sum_n P(X_n \neq Y_n) = \sum_n P(|X_n| > n) < \infty$, by the first Borel-Cantelli lemma, $P(X_n \neq Y_n, i.o.) = 0$. That is, with probability 1, $X_n = Y_n$ for all n sufficiently large, and

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}-\frac{1}{n}\sum_{i=1}^{n}Y_{i}\stackrel{a.s.}{\rightarrow}0$$

- By dominated convergence theorem, $EY_n = E\left(X_1I_{|X_1| \leq n}\right) \to EX_1$, and thus $\frac{1}{n}\sum_{i=1}^n EY_i \to EX_1$
- We only need to show $\frac{1}{n} \sum_{i=1}^{n} (Y_i EY_i) \stackrel{a.s.}{\rightarrow} 0$

Lemma (Kronecker's lemma)

Suppose $\{x_n\}$ is a sequence of real numbers, and $a_n \uparrow \infty$ and are nonnegative. If $\sum_{n=1}^{\infty} \frac{x_n}{a_n}$ converges, then $a_n^{-1} \sum_{i=1}^n x_i \to 0$

We only need to show $\sum_{n=1}^{\infty} \frac{(Y_n - EY_n)}{n}$ converges almost surely

17/25

Kolmogorov's inequality

Lemma (B)

Suppose Z_1, Z_2, \ldots are independent and have 0 means and finite variances. Let $S_j = \sum_{i=1}^j Z_i$.

$$P\left(\max_{1\leq j\leq n}|S_j|>t\right)\leq \frac{1}{t^2}\sum_{i=1}^n \operatorname{Var}(Z_i) \tag{9}$$

- Let $S_0 = 0$, $A_k = \{ \max_{1 \le j < k} |S_j| < t \le |S_k| \}$. A_k 's are disjoint
- Note that $S_k I_{A_k}$ is $\sigma(Z_1, \ldots, Z_k)$ -measurable and $S_n S_k$ is $\sigma(Z_{k+1}, \ldots, Z_n)$ -measurable, they are independent

Then

$$\begin{split} \int_{A_k} S_n^2 \mathrm{d}P &= \int_{A_k} \left(S_k + S_n - S_k \right)^2 \mathrm{d}P = \int_{A_k} S_k^2 \mathrm{d}P + \int_{A_k} \left(S_n - S_k \right)^2 \mathrm{d}P \\ &\geqslant \int_{A_k} S_k^2 \mathrm{d}P \geqslant t^2 P\left(A_k \right) \end{split}$$

• Summing over $\hat{k} = 1, \dots, n$, we obtain $ES_n^2 \ge t^2 P(\bigcup_k A_k)$

Prove: $\sum_{n=1}^{\infty} \frac{(Y_n - EY_n)}{n}$ converges a.s.

- Let $Z_n = \frac{(Y_n EY_n)}{n}$. Let $S_n = \sum_{j=1}^n Z_j$
- We later show $\sum_{n=1}^{\infty} \operatorname{Var}(Z_n) < \infty$
- For any $\epsilon > 0$ and any $m \in \mathcal{N}$, we apply Kolmogorov's inequaltity to Z_i for $j = m + 1, \dots, k$, so that

$$P\left(\max_{m+1\leq n\leq k}|S_n-S_m|>\epsilon\right)\leq \frac{1}{\epsilon^2}\sum_{n=m+1}^k \mathrm{Var}(Z_n) \qquad (10)$$

• Take $k \to \infty$, then $m \to \infty$, we have

$$P\left(\lim_{n\leq m,k}|S_n-S_m|>\epsilon\right)=0. \tag{11}$$

19/25

• Since ϵ is arbitrary, we have S_n is a Cauchy sequence (and thus converge) almost surely

H.D. (NUS) ST5215, Lecture 16 13 Oct 2020

Show $\sum_{n=1}^{\infty} \operatorname{Var}(Z_n) < \infty$

$$\begin{split} \sum_{n=1}^{\infty} \operatorname{Var}(Z_n) &\leq \sum_{n=1}^{\infty} \frac{1}{n^2} E X_n^2 I_{|X_n| \leq n} \\ &= \sum_{n=1}^{\infty} \frac{1}{n^2} \sum_{k=1}^{n} E X^2 I_{k-1 < |X| \leq k} \\ &= \sum_{k=1}^{\infty} \sum_{n=k}^{\infty} \frac{1}{n^2} E X^2 I_{k-1 < |X| \leq k} \end{split}$$

Note that
$$\sum_{n=k}^{\infty} \frac{1}{n^2} \le 1/k^2 + \sum_{n=k+1}^{\infty} \frac{1}{n(n-1)} = 1/k^2 + 1/k < 2/k$$
.

$$\begin{split} \sum_{n=1}^{\infty} \operatorname{Var}(Z_n) &\leq \sum_{k=1}^{\infty} \frac{2}{k} E X^2 I_{k-1 < |X| \leq k} \\ &\leq \sum_{k=1}^{\infty} \frac{2}{k} k E |X| I_{k-1 < X \leq k} = 2E|X| < \infty \end{split}$$

Tutorial

Suppose X is a nonnegative random variable. Show that

$$EX \leq \sum_{i=0}^{\infty} P(X \geq n) \leq 1 + EX.$$

Therefore, X is integrable if and only if $\sum_{i=0}^{\infty} P(X \ge n) < \infty$

- 2 If $X_n \stackrel{D}{\to} c$ for a constant c, then $X_n \stackrel{P}{\to} c$.
- **3** Let X_1, X_2, \ldots be a sequence of identically distributed random variables with $E|X_1| < \infty$ and let $Y_n = n^{-1} \max_{1 \le i \le n} |X_i|$. Show that $\lim_n E(Y_n) = 0$ and $\lim_n Y_n = 0$ a.s.
- (Postponed) Suppose that $X_n \stackrel{D}{\rightarrow} X$. Then, for any r > 0

$$\lim_{n\to\infty} E|X_n|^r = E|X|^r < \infty$$

if and only if $\{|X_n|^r\}$ is uniformly integrable in the sense that

$$\lim_{t\to\infty}\sup_{n}E\left(\left|X_{n}\right|^{r}I_{\left\{\left|X_{n}\right|>t\right\}}\right)=0$$

Exercise 1

Suppose X is a nonnegative random variable. Show that

$$EX \leq \sum_{i=0}^{\infty} P(X \geq n) \leq 1 + EX.$$

Therefore, X is integrable if and only if $\sum_{i=0}^{\infty} P(X \geq n) < \infty$

Proof: By Fubini's theorem,

$$EX = E\left(\int_0^\infty I_{X \ge t} \, dm(t)\right)$$

$$= \int_0^\infty P(X \ge t) \, dm(t)$$

$$= \sum_{n=0}^\infty \int_n^{n+1} P(X \ge t) \, dt$$

$$\leq \sum_{n=0}^\infty P(X \ge n)$$

The last step can also be $\geq \sum_{n=0}^{\infty} P(X \geq n+1) = \sum_{n=1}^{\infty} P(X \geq n)$

Exercise 2

If $X_n \stackrel{D}{\to} c$ for a constant c, then $X_n \stackrel{P}{\to} c$.

Proof:

- Note that the cumulative distribution function of X = c has only one discontinuity point c.
- For any $\epsilon > 0$

$$P(|X_n - X| > \epsilon) = P(|X_n - c| > \epsilon)$$

$$\leq P(X_n > c + \epsilon) + P(X_n < c - \epsilon)$$

$$\rightarrow P(X > c + \epsilon) + P(X < c - \epsilon)$$

$$= 0$$

as $n \to \infty$. Thus, $X_n \to_p X$.

Exercise 3

Let X_1, X_2, \ldots be a sequence of identically distributed random variables with $E|X_1| < \infty$ and let $Y_n = n^{-1} \max_{1 \le i \le n} |X_i|$. Show that $\lim_n E(Y_n) = 0$ and $\lim_n Y_n = 0$ a.s.

Proof: Part (i)

- Let $g_n(t) = n^{-1}P(\max_{1 \le i \le n} |X_i| > t)$
- Then $\lim_n g_n(t) = 0$ for any tand

$$0 \le g_n \le \frac{1}{n} \sum_{i=1}^n P(|X_i| > t) = P(|X_1| > t)$$

- Since $E|X_1| < \infty$, $\int_0^\infty P(|X_1| > t) dt < \infty$
- By the dominated convergence theorem,

$$\lim_{n} E(Y_{n}) = \lim_{n} \int_{0}^{\infty} g_{n}(t)dt = \int_{0}^{\infty} \lim_{n} g_{n}(t)dt = 0$$

Part (ii)

• Since $E|X_1| < \infty$

$$\sum_{n=1}^{\infty} P(|X_n|/n > \epsilon) = \sum_{n=1}^{\infty} P(|X_1| > \epsilon n) < \infty,$$

which implies that $\lim_{n} \frac{|X_n|}{n} = 0$ a.s.

- Let $\Omega_0 = \{\omega : \lim_n |X_n(\omega)| / n = 0\}$. Then $P(\Omega_0) = 1$
- Let $\omega \in \Omega_0$. For any $\epsilon > 0$, there exists an $N_{\epsilon,\omega}$ such that if $n \geq N_{\epsilon,\omega}$, then $|X_n(\omega)| < n\epsilon$
- Note that $\max_{1 \leq i \leq N_{c\omega}} |X_i(\omega)|$ is fixed, we can find a sufficiently large integer $M_{\epsilon,\omega} > N_{\epsilon,\omega}$ such that

$$\max_{1 \le i \le N_{c\omega}} |X_i(\omega)| \le n\epsilon$$

whenever $n>M_{\epsilon,\omega}$

• Therefore, if $n > M_{\epsilon,\omega}$, we have

$$\max_{1 \le i \le n} |X_i(\omega)| \le n\epsilon, \text{ i.e. } Y_n(\omega) < \epsilon.$$
 (12)

Hence, $\lim_{n} Y_n(\omega) = 0$

H.D. (NUS)