

Ceng 111 – Fall 2021 Week 13a

Credit: Some slides are from the "Invitation to Computer Science" book by G. M. Schneider, J. L. Gersting and some from the "Digital Design" book by M. M. Mano and M. D. Ciletti.

Other notations for computational complexity: $\Omega()$ Notation

f(n) is $\Omega(g(n))$ if and only if there exists a real constant c > 0, and positive integer n_0 , such that $c|g(n)| \le |f(n)|$ for all $n \ge n_0$

- Lower boundary for f(n).
- \blacksquare 2n = $\Omega(n)$
- $n^2 = \Omega(n^2)$

Other notations for computational complexity: $\Theta()$ notation

■ $f(n) \in \Theta(g(n))$ if and only if there exists positive real constants c_1 and c_2 , and a positive integer n_0 , such that

$$c_1|g(n)| \le |f(n)| \le c_2|g(n)|$$

- Lower and upper boundary for f(n).
- \blacksquare 2n = $\Theta(n)$
- $n^2 = \Theta(n^2)$

Notation	Name	Example	
O(1) $O(1)$	constant	Determining if a number is even or odd; using a constant-size lookup table or hash table	
$O(\log n)$ $O(n^c), \ 0 < c < 1$	logarithmic	Finding an item in a sorted array with a binary search or a balanced search tree as well as all operations in a Binomial heap.	
$O(n^c), \ 0 < c < 1$	fractional power	Searching in a kd-tree	
O(n)	linear	Finding an item in an unsorted list or a malformed tree (worst case) or in an unsorted array; Adding two n-bit integers by ripple carry.	
$O(n\log n) = O(\log n!)$	linearithmic, loglinear, or quasilinear	Performing a Fast Fourier transform; heapsort, quicksort (best and average case), or merge sort	
$O(n^2)$	quadratic	Multiplying two <i>n</i> -digit numbers by a simple algorithm; bubble sort (worst case or naive implementation), shell sort, quicksort (worst case), selection sort or insertion sort	
$O(n^c), c > 1$	polynomial or algebraic	Tree-adjoining grammar parsing; maximum matching for bipartite graphs	
$L_n[\alpha, c], 0 < \alpha < 1 = e^{(c+o(1))(\ln n)^{\alpha}(\ln \ln n)^{1-\alpha}}$	L-notation or sub-exponential	Factoring a number using the quadratic sieve or number field sieve	
$O(c^n), c > 1$	exponential	Finding the (exact) solution to the traveling salesman problem using dynamic programming; determining if two logical statements are equivalent using brute-force search	
O(n!)	factorial S. Kalkan & G.	Solving the traveling salesman problem via brute-force search; finding the determinant with expansion by minors.	

From Wikipedia

Importance of Developing Efficient Algorithms

44	Imp	ortance of Developing Efficient Algorithms				
gineering	erious y on Cette Sequential s	search vs Binary search				
	Array size	No. of comparisons by seq. search	No. of comparisons by bin. search			
SC ED	Array size 128	No. of comparisons by seq. search 128	No. of comparisons by bin. search 8			
uter En	<u>Array size</u> 128 1,048,576	No. of comparisons by seq. search 128 1,048,576				
nouter En	Array size 128 1,048,576 ~4.10 ⁹	No. of comparisons by seq. search 128 1,048,576 ~4.109	8			
METH Compater En	Sequential s Array size 128 1,048,576 ~4.109	No. of comparisons by seq. search 128 1,048,576 ~4.10 ⁹	8 21			

Execution times for algorithms with the given time complexities:

n	f(n)=n	nlgn	n² '	2 ⁿ
20	0.02 μs	0.086 μs	0.4 μs	 1 ms
10^{6}	1μs ·	19.93 ms	16.7 min	31.7 years
10 ⁹	1 s	29.9s	31.7 years	!!! centuries

Anaysis of Algorihms, A.Yazici

METU Computer Engineering

Stacks

LIFO:

- Last In First Out
- We have seen it before (in the Shunting-Yard algorithm)
- Main operations:
 - Push
 - Pop

METH Computer Engineering

CENC111

Stacks (cont'd)

Operations:

- 1. Push
- Pop
- 3. Top/Peek
 - Get the top element without removing it
- 4. Is-Empty
 - Checks whether the stack is empty
- 5. Length
 - # of elements

Stacks: Formal definition are in the state of the state o

push(item, stack)

 $item \odot stack$

- $new() \rightarrow \emptyset$
- $popoff(\xi \odot S) \rightarrow S$
- $top(\xi \odot S) \rightarrow \xi$
- $isempty(\emptyset) \rightarrow TRUE$
- $isempty(\xi \odot S) \rightarrow \mathsf{FALSE}$

mplementing Stacks in Python

```
def CreateStack():
     """Creates an empty stack"""
    return []
def Push (item, Stack):
     """Add item to the top of Stack"""
     Stack.append(item)
def Pop(Stack):
     """Remove and return the item at the top of the Stack"""
     return Stack.pop()
def Top (Stack):
     """Return the value of the item at the top of the
         Stack without removing it"""
    return Stack[-1]
def IsEmpty(Stack):
     """Check whether the Stack is empty"""
    return Stack == []
```


Today

- Abstract data types
 - Stack example
 - Queue
 - Priority queue
 - Tree

Administrative Notes

- THE3:
 - Deadline: 16 January.
- Final:
 - 5 Feb December, Saturday, 13:30

Stacks in Python (Example)

- Implement postfix implementation in Python using stacks.
 - Given a string like "3 4 + 5 7 + *", evaluate and return the result.

Stacks in Python (Example - Solution)

```
def postfix_eval(Exp):
          # Example Exp: "3 4 + 5 6 + *"
          Stack = CreateStack()
          Exp = Exp.split(' ')
          for token in Exp:
                    if token.isdigit(): Push(token, Stack)
                    else:
                               op2 = Pop(Stack)
                               op1 = Pop(Stack)
                               result = str(eval(op1 + token + op2))
                              Push(result, Stack)
          return Pop(Stack)
```


Queues

- FIFO:
 - First In First Out
- The item that was inserted first is removed first.
- Main operations:
 - Add (enqueue)
 - Remove (dequeue)

Queues (cont'd)

Operations:

- 1. Add (enqueue)
- Remove (dequeue)
- 3. Front/Peek
- 4. Is-Empty
- 5. Length

Queues in Python

Queue Operation

- Add (enqueue)
- Remove (dequeue)
- Front/Peek
- Is-Empty
- Length

Corresponding Python Op.

- L.append(item)
- L.pop(0)
- L[0]
- L == []
- len(L)

Implementing Queues in Python

```
def CreateQueue():
          """Creates an empty queue"""
          return []
def Enqueue(item, Queue):
          """Add item to the end of Queue"""
          Queue.append(item)
def Dequeue(Queue):
          """Remove and return the item at the front of the Queue"""
          return Queue.pop(0)
def IsEmpty(Queue):
          """Check whether the Queue is empty"""
          return Queue == []
def Front(Queue):
           "Return the value of the current front item without removing it"""
          return Queue[0]
```


Queues: Formal Definition

add(item, queue)

 $item \boxplus queue$

- $new() \rightarrow \emptyset$
- $front(\xi \boxplus \varnothing) \rightarrow \xi$
- $front(\xi \boxplus Q) \rightarrow front(Q)$
- $remove(\xi \boxplus \varnothing) \rightarrow \varnothing$
- $remove(\xi \boxplus Q) \rightarrow \xi \boxplus remove(Q)$
- $isempty(\emptyset) \rightarrow \mathsf{TRUE}$
- $isempty(\xi \boxplus Q) \rightarrow \mathsf{FALSE}$

Queues in Python (Example)

```
CustomerQueue = CreateQueue()
                                                   should run on two
                                                "threads" that share some
def bank_queue():
                                                   memory together
       while True:
               if NewCustomerArrived() == True:
                       new_customer = GetCustomerInfo()
                       Enqueue(new_customer, CustomerQueue)
def serve_customers():
       while True:
               if CustomerQueue.IsEmpty() == False:
                       customer = Dequeue(CustomerQueue)
                       ServeCustomer(customer)
```

These two functions