FONDAMENTI DI ELETTRONICA – INGEGNERIA BIOMEDICA TEMA TIPO 2

• Il tempo a disposizione è 2 ore e 30 minuti.

PROBLEMA P1

Dato il circuito riportato nella figura sottostante, determinare:

- 1) il valore delle resistenze R_3 e R_4 in modo che le correnti di drain di M_2 e M_5 valgano rispettivamente $I_{D2} = 1$ mA e $I_{D5} = 4$ mA;
- 2) il punto di lavoro dei transistor M₁, M₂, M₃, M₄ e M₅;
- 3) il guadagno di tensione differenziale ai piccoli segnali ac A_{vd}=v_o/v_{id};
- 4) il rapporto di reiezione del modo comune (CMRR) supponendo, solo in questo caso, che il transistor M_4 abbia un parametro di modulazione della lunghezza di canale λ_n =0.02 V^{-1} .

$$\begin{split} \text{Dati: V}_{\text{DD}} = &15 \text{ V}, \text{ V}_{\text{I}1} = \text{V}_{\text{I}2} = 7.5 \text{ V}, \text{ R}_{1} = \text{R}_{2} = 4 \text{ k}\Omega, \text{ R}_{5} = 2 \text{ k}\Omega, \\ M_{1,2,3,4} : \text{ k}_{n} = &8 \text{ mA/V}^{2}, \text{ V}_{tn} = 1 \text{ V}, \lambda_{n} = 0 \text{ V}^{-1}, \text{ M}_{5} : \text{ k}_{p} = 2 \text{ mA/V}^{2}, \text{ V}_{tp} = -1 \text{ V}, \lambda_{p} = 0 \text{ V}^{-1}, \text{ M}_{5} : \text{ k}_{p} = 2 \text{ mA/V}^{2}, \text{ V}_{tp} = -1 \text{ V}, \lambda_{p} = 0 \text{ V}^{-1}, \text{ M}_{5} : \text{ M}_{5} = 2 \text{ mA/V}^{2}, \text{ V}_{tp} = -1 \text{ V}, \lambda_{p} = 0 \text{ V}^{-1}, \text{ M}_{5} : \text{ M}_{5} = 2 \text{ mA/V}^{2}, \text{ V}_{tp} = -1 \text{ V}, \lambda_{p} = 0 \text{ V}^{-1}, \text{ M}_{5} : \text{ M}_{5} = 2 \text{ mA/V}^{2}, \text{ V}_{tp} = -1 \text{ V}, \lambda_{p} = 0 \text{ V}^{-1}, \text{ M}_{5} : \text{ M}_{5} = 2 \text{ mA/V}^{2}, \text{ V}_{tp} = -1 \text{ V}, \lambda_{p} = 0 \text{ V}^{-1}, \text{ M}_{5} : \text{ M}_{5} = 2 \text{ mA/V}^{2}, \text{ V}_{tp} = -1 \text{ V}, \lambda_{p} = 0 \text{ V}^{-1}, \text{ M}_{5} : \text{ M}_{5} = 2 \text{ mA/V}^{2}, \text{ V}_{tp} = -1 \text{ V}, \lambda_{p} = 0 \text{ V}^{-1}, \text{ M}_{5} : \text{ M}_{5} = 2 \text{ mA/V}^{2}, \text{ V}_{tp} = -1 \text{ V}, \lambda_{p} = 0 \text{ V}^{-1}, \text{ M}_{5} : \text{ M}_{5} = 2 \text{ mA/V}^{2}, \text{ V}_{tp} = -1 \text{ V}, \lambda_{p} = 0 \text{ V}^{-1}, \text{ M}_{5} : \text{ M}_{5} = 2 \text{ mA/V}^{2}, \text{ V}_{tp} = -1 \text{ V}, \lambda_{p} = 0 \text{ V}^{-1}, \text{ M}_{5} : \text{ M}_{5} = 2 \text{ M}_{5}$$

PROBLEMA P2

Dato il circuito riportato in figura sottostante, che utilizza un amplificatore operazionale ideale:

- 1) Posto $v_3 = 0$ e posto $v_1 = v_2$, ricavare l'espressione del guadagno di tensione $A_v(s) = v_0/v_1$.
- 2) Tracciare il diagramma di Bode asintotico di ampiezza e fase di $A_{\nu}(s)$.
- 3) Posto $V_1 = 4V$, $V_2 = 3V$, $V_3 = 5V$, calcolare il valore della corrente I_{OA} erogata dall'amplificatore operazionale.

Dati:
$$R = 5 \text{ k}\Omega$$
, $R_a = R_b = 1 \text{ k}\Omega$, $C = 20 \text{ pF}$, $C_1 = 2 \text{ }\mu\text{F}$

PROBLEMA Q1

Dato il circuito riportato nella figura sottostante, si calcoli il valore della corrente I_o , giustificando chiaramente la risposta.

PROBLEMA Q2

Dato il circuito riportato nella figura sottostante, si calcoli il valore della tensione di uscita v_o , sapendo che l'amplificatore operazionale ha una **tensione di offset pari a 10 mV**.

Dati: v_{S1} =0.1 V, v_{S2} =0.2 V, v_{off} =10 mV, R_0 =10 k Ω , R_1 =1 k Ω , R_2 =0.5 k Ω .

