Statistical Methods for High Dimensional Biology STAT/BIOF/GSAT 540

Lecture I – course introduction
Paul Pavlidis
January 4 2016

Today's topics

- What the course is about
- Course mechanics
- A primer on molecular biology (TAs will provide more during lab)
- Introduction to high-dimensional biology

Your instructors

- Dr. Sara Mostafavi Assistant Professor of Statistics / Medical Genetics saram@stat.ubc.ca Course leader
 - Bring administration questions to her
- Dr. Paul Pavlidis Professor of Psychiatry/Michael Smith Labs
 - paul@bioinformatics.ubc.ca
- TAs: Marjan Farahbod (marjan.farahbod@gmail.com), Santina Lin (hello@santina.me)

Course audience

- Researchers who want to know how to analyze large data sets from biological studies
- Genomics-focused, but information is broadly applicable
- Statistics students might find the math parts easy
- Biology students might find the biology easy
- We are counting on you to help make it work: help your peers!

Prerequisites

Officially, none. But:

- **Statistics** You should have already taken university level "Statistics 101". You'll get a refresher, but you should be prepared to get comfortable thinking about things like "probabilities" and "specificity".
- **Biology No requirements**, but you are expected to learn things like the difference between a DNA and RNA and a gene and a genome. We assume you are here because you are interested in biology and will pick it up.
- No R experience required but you must be prepared to do a lot of self-guided learning.
- You'll use your own computer to run R. If you can't install R on your computer, ask us for options.

What you can expect to learn

- Conceptual and practical knowledge you need to handle large biological data sets
 - Generally applicable approaches and principles
 - Specifics about some data types (esp. expression profiling)
 - Limited details on "low-level" processing
- Critically evaluate analyses in the literature
- Implement analyses using the R/Bioconductor statistical computing environment
 - Limited coverage of underlying math & theory
- Use Github for project management and reproducibility of research

Topics covered

Probability foundations

Exploratory data analysis

Data QC and preprocessing

Basic statistical inference ("one gene at a time")

Large-scale inference ("genome-wide") - multiple testing

Count-based data (e.g. RNA-seq) analysis

DNA methylation analysis

Principal Component Analysis

Clustering

Classification

Resampling and bootstrap

Model selection and regularization

Gene sets and gene networks

Course mechanics

Course web site

http://stat540-ubc.github.io/

- Lecture notes
- Lab notes
- Assignments

Much interaction via **Github** (discussions, submission)

e.g. Don't email the instructors a question that would benefit the class – open a Github issue!

TAs will help you get you set up with Github

https://github.com/STAT540-UBC

Lectures

- Two per week, will start promptly at 9:30
- Lectures shared among two professors (and guest lecturers)
- Generally the notes will be provided on web before class, otherwise immediately following.

Sections/Labs

- Wednesdays in room ESB 1042
- Officially from 12-1, but we will start at 11
 - 11-12: Lab available
 - 12-1: TA Office hour (this week: Mol. Bio. Primer)
- Self-guided exercises to help you learn to use R for analysis.
- Using your own computer (other options possible)
- Exercise material will be made available ahead of time
- Towards end of course, more time devoted to working on group projects.

Readings

- No textbook, but we can give suggestions
- Lectures often come with suggested background papers (reviews or primary literature)
- Helpful to access journals online (e.g. via the UBC VPN)
 - https://it.ubc.ca/services/email-voice-internet/myvpn

Evaluation

Homework

One assignment worth 30 points

Group project

- Planning + project + poster session 50 points
- Peer evaluations 10 points

Paper critiques

- Summarize and critique 2 papers - 10 points total

(Note changes from last year!)

Homework assignment

- Involve detailed analysis of real data
- Deliverables include a short report and R code
- Two weeks from assignment to due date
- Lateness penalties

Paper reports

- New for this term
- Meant to develop your skills relating course material to the literature
- Two assignments will be given, 5 pts each
- Select, read, summarize and critique a recent paper from the 'omics literature – write one page max, relating to the course content.
- Details to follow

Group projects

- Starts today start thinking about it
- A few minutes for group project pitches later this month during lecture time, also proposed via github
- Form groups by Fri Jan 22 (4-5 people)
- Friday Jan 29: initial project proposals
- Feedback to groups Feb 12 Proposals finalized by Feb ~15
- Work on projects over rest of term
- Final session of the course is the poster session

Group projects: where do they come from?

- Nearly all projects have been based on a data set provided by a student (i.e., collected in their lab).
- Occasionally using published data.
- If you need help thinking up an idea for a project let us know. But this has never been needed before (beyond refinement). If you are unsure of where you are going to get a project from, wait until you hear the project pitches.

Examples of past group projects

- Genomic copy number alterations for prognosis of prostate cancer
- Learning about proteins from other proteins: Protein Database Prediction
- Conditional epistasis profiling in yeast
- Epigenetic biomarkers for cancer diagnosis
- Comparative metagenomics: metabolic potential
- Epigenome and transcriptome in rice strains
- Analysis of HPV E2 protein on host gene expression
- Effects of mutations in histone modifying enzymes on gene expression profiles
- Methodological considerations in analysis of Illumina Infinium methylation data
- Gene expression in invasive ragweeds
- Modeling time-course expression of SET domain-containing genes in mouse embryos
- Gene expression in blood of humans with asthma challenged with allergen

Molecular biology in 5 slides

Ignoring many exceptions and complications!

- **DNA**: linear arrangement of nucleotides ('bases'), contains information to construct the organism; provides mechanism of heritability
 - Every time a cell divides, the DNA is copied (replicated)
- Gene: a functional stretch of DNA
 - Simplest genomes contain ~1000 genes (e.g.: E.coli has ~4000, yeast has ~6000)
 - Most multicellular organisms have ~15-25k genes (e.g. worms, flies, vertebrates)
- Genome: the full complement of DNA in one cell
 - The sequence of the DNA is the **genotype**; can refer to a specific place ("locus") or overall.
 - The properties of the organism produced is the **phenotype**
- RNA: Immediate read-out of a gene, also made of nucleotides ("transcript")
 - Complication: Splicing. Primary transcript is of exon and intron regions, latter are removed;
 "exome" is the set of all exons. A single processed transcript is a messenger or mRNA.
- **Protein**: Major working parts of cells, encoded by genes (via RNA) and made ("translated") by the ribosome (a big molecular machine)
 - Proteins are strings of amino acids ("polypeptides"); 3 nucleotides code one AA
- DNA, RNA and protein (plus many other types of molecules used by cells) are
 produced using chemicals (from air and food) and energy from sunlight (directly or
 indirectly via food) = "metabolism", a process which involves the function of (at least)
 hundreds of genes.

The human genome

(a typical mammalian genome)

- ~3 billion bases of DNA over 23 pairs of chromosomes
- Of the total 46 chromosomes, you got 23 from mom and 23 from dad
- ~10-15% of the human genome is functional the rest is "junk"
 - 10-15% includes exons of genes and regulatory elements
 - Balance includes bulk of introns and intergenic regions
- About 20,000 protein-coding genes +some RNA-only genes

Molecular regulation

- Not all genes are active in any given cell
 - Many organisms are made of different types of cells the differences are established by changing which genes are active
 - All organisms regulate which genes are active depending on the environment
- Regulation happens at multiple levels (transcription, translation, post-translation)
- System of signals, receptors, switches = complex "wiring" of genes with each other and with the environment goal of "systems biology" is to understand this in full detail.

Genetic variation

- Differences in DNA sequence between two individuals of the same species (different genotypes) — humans: millions of differences
- Most are inherited from mom and dad, but also acquired during your life.
 - Depending on when acquired, will affect all or part of your body.
- Most variation has no effect on phenotype ("neutral" or nearly)
 - Occurs in a junk region, is silent (degeneracy of amino acid code), or affects an unimportant gene
- Some variation is "deleterious"
 - Slightly deleterious: increases your risk of disease; can be hard to detect
 - Highly deleterious: mutations "cause" disease; e.g. Fragile X
- Even more rarely variation can be "beneficial"
- In population genetics "deleterious" and "beneficial" are defined by effects on reproductive success (how many descendants you have), but we can also talk about it in terms of the effect on the gene's biochemical function.

Focus on one human gene

- CFTR: Gene "for" Cystic fibrosis encodes a protein involved in regulating cell fluid levels
- Most common mutation is deletion of 3 bases ("delF508") causing an unstable protein
 - One copy: probably beneficial (in population genetics terms; retained in the population)
 - Two copies (no "good" copy) associated with CF risk
- http://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&position=chr7%3A117475813-117672093&hgsid=466552281_9bE3Vr]Y4rVhIAbe4NUU7CvQSmxV
- http://www.cfmedicine.com/htmldocs/cftext/genetics.htm
- https://en.wikipedia.org/wiki/Cystic fibrosis transmembrane conductance regulator
- http://www.genet.sickkids.on.ca/CftrDomainPage.html?domainName=NBD1
- http://www.rcsb.org/pdb/explore/explore.do?structureId=I XMI

Key points...

- Thousands of "moving parts" (e.g. genes)
- Hugely complex interactions and regulation poorly understood
- Many genes have poorly understood function
- Genetic variation and environment interact in complex ways
- Many diseases have a genetic component still to be understood.
 - Same applies to non-humans (plant disease resistance, etc.)
- Reductionist paradigm: conceptually works backwards from the phenotype to the genotype, attempting to resolve the steps in between

High-dimensional biology

- I. What, why and how
- 2. Overview methods are used to analyze it

Collecting data the lowdimensional way

- Pick one variable (e.g. "activity of a protein") and study it under various conditions.
- Repeat this for another variable
- Usually "hypothesis-driven"
 - CFTR is a classic example of this in operation for a genetic disease
- Powerful, but knowledge accumulates slowly and synthesis is difficult

The move to "systems biology"

- Limitations of the "one thing at a time approach" –
 how do the parts work together?
- Technology enabling increasingly detailed analyses measure many things in parallel

- Drawbacks/cautions
 - Still far underpowered to reverse engineer everything
 - Fishing expeditions
 - Looking under the technological streetlamp

Defining "high dimensional"

- Large number of features measured in each sample/subject/individual ("high content")
 - Genes, proteins, DNA sites, brain regions, etc.
- Not usually talking about huge numbers of samples (e.g. individuals studied) –
 - often 10s, but can be 1000s (some genetics studies)

Example of a question answered with a high-dimensional approach

- Tumor type A is deadly and type B is more easily treatable (but still bad)
- Telling A from B is difficult
 - Cells look the same, etc. we only find out by seeing what happens to the patients.
- We know that cancer is a "gene" disease

Questions:

- Where is the difference?
- Can we find new targets for drugs or for diagnosis?
 - (Drug targets are usually proteins, encoded by genes)

Looking for insight from genomics

- Since cancer is a disease of genes, let's look at the genes not just one, but all of them
- We are hypothesizing that there is some difference in genes between the two types, if only we could find it
- But we're not starting with a specific hypothesis. We're going to test thousands of hypotheses
- In this example, we're going to look at "gene expression levels" a measure of "how active" is each gene.
 - This example is only partly realistic: DNA sequencing lets us look at tumor genomes directly. Looking at transcripts (RNA) is still a useful adjunct to examining the DNA

Example experiment

A partial list of things to assay

- DNA/Chromatin
 - Genotypes, copy numbers ("mutations" and variants)
 - DNA methylation
 - Chromatin state (histone marks, transcription factors ...)
- RNA
 - Quantification of transcripts (protein coding, non-coding)
 - Transcript variants (splicing, editing)
- Proteins
 - Detection, Quantification
 - Binding and complexes
- Metabolites and other small molecules
- Phenotypic screens
 - RNAi (etc.)
 - Genetic interactions
- Cellular composition of a sample (cell types)

Alternative representation

virtaneva-	data.txt																	
A	В	С	D	Е	F	G	н		J	К	L	M	N	0	P	Q	R	S
1 Probe	dm-134702	ami-ami8_5	ami-ami8_6	ami-ami8_8	emi-ami8_8	ami-ami8_1	ami-ami8_1	ami-ami8_6	ami-ami8_6	ami-ami8_4 a	eni8-ami8_	ami8-ami8_	ami8-ami8_	ami8-ami8_	ami8-ami8_	ami8-ami8_	ami8-ami8_	aml-aml8
76 AJ000099	2983	591	5122	4292	4388	5591	4136	6125	4262	3386	5390	1990	6009	3110	4708	3296	4708	542
77 AJ000480		5464	4346	9274	2982	4194	2814	6095	1328	2207	1805	4268	2637	2526	2188	2279	3452	506
78 AJ001047		-1211	-311	-1717	-127	-306	-1	-54	-200	-763	-558	-62	-1590	-610	-385	-866	-210	-60
79 AJ001421		5196	3982		4090	4652	2204	6793	3362	642	6702	5282	1849	6332	6444	7305	4820	737
80 AJ001487		-43	-344	-637	-101	-287	-169	-208	22	-86	-584	-1146	-1236	-1200	-680	-243	-1472	-44
81 D00003 at		-40	-044		0	-201	-100	-200	0	-00	-004	0	-1230	-1200	0	0		
82 D00003 s		-546	-478		-398	-713	-753	-316	-549	-958	-441	-13	-1610	-208	-384	-97	-99	-37
83 D00017 at		11537	17141	26201	17466	3119	4418	15828	983	-133	13146	37585	12531	27152	1167	28136	11473	-33
84 D00097 s		-411	-236		32	-210	-370	262	.73	-257	-206	13	26	161	-255	-250	.73	
85 D00408 at		0	-250		0	-2.0	-0.0	0	-,0	-231	-200		. n	n	-233	-230	- 0	
86 D00408_s		-72	526		373	540	617	257	297	63	355	424	1146	451	704	350	662	83
87 D00591 at		565	779		2208	1314	1587	2983	756	1825	2977	303	747	948	1200	321	1528	77
88 D00596 at		0	0		0	0	0	0	0	0	0	0	0	0	0	0.00		
89 D00632 at		808	371	367	1041	1256	1288	1259	723	1201	1233	40	-228	773	659	623	521	35
190 D00654 at		-621	161	36	66	-101	-436	-220	-25	-42	-33	-121	-192	76	31	-265	-670	
91 D00723 et		572	543		504	1043	382	1079	584	567	1243	681	643	443	660	377	195	91
92 D00726 of		0.2	0.0		0.01	0	0.02	0	0	0	0	0	0,0	0	0	0.11		-
93 D00749 s		2873	2013		1330	5184	11781	2598	1615	24858	6390	6708	8996	2571	2378	2210	3267	389
94 D00760 at		4396	4335	164	4203	6350	2870	7651	8453	2676	3774	4363	1441	2222	2818	1839	1686	494
95 D00761 at		9144	12256	556	19285	16698	8142	20264	22157	10376	11366	11584	7204	8787	6794	7868	7378	1169
96 D00762 at		2842	3360	1554	3680	5398	2211	5340	10773	1917	1580	2055	213	1813	1955	2304	2205	506
197 D00763 at		11023	10492	3424	4005	11263	3633	12294	8054	5816	10472	12509	4428	8605	9622	10917	7445	1253
98 D00860 at		2006	706	507	347	1118	362	611	1463	1068	1149	446	1008	410	768	340	975	135
99 D10040 at		2202	759	3907	2024	388	678	889	2123	219	79	1377	423	2164	1375	7737	1725	50
200 D10202 at		-1238	-574	113	-293	-750	-193	-603	-141	-490	86	-231	-1021	840	-81	1993	128	-112
01 D10326 s		-15794	-6406	-12098	-9594	-7946	-10468	-6843	-6224	-9046	-5769	-9548	-8189	-6363	-6549	-6108	-9970	-278
02 D10495 at		-1135	2953	5339	3247	4748	3827	2817	693	1951	5470	6583	4167	5317	5242	5527	5075	866
03 D10511 at		504	2913		2038	1553	738	4225	969	673	4270	1776	1371	1318	738	1361	902	106
04 D10522 at		314	257	6854	157	4216	2039	340	558	93	1143	3533	389	6891	600	4075	306	79
05 D10523 at		792	1910	-16	903	1298	2050	1833	835	573	2723	1348	1707	1610	376	1475	1231	229
06 D10537 s		1680	1547	2194	1228	751	1457	1042	2337	1069	78	2822	1086	2009	913	870	1047	123
207 D10656 at		10	531	141	3737	536	862	432	372	600	351	521	-702	344	441	12	96	96
08 D10667 s		-442	-274	-417	-290	-261	-167	-285	-167	-240	-245	-88	-634	-34	-176	-248	4	-21
00 D10007_s		870	1178		1460	2152	1673	1719	566	3448	1311	1204	-833	651	2056	923	-978	-41
210 D10922_s		-104	-100	-730	37	-148	20	-24	-48	-230	-32	130	-41	-95	41	901	229	-41
211 D10923 of		769	-269	6468	332	1206	109	-8	-145	-73	98	1022	2726	1814	97	791	636	113
212 D10925 at		-1264	33	2513	-102	-445	-433	-306	-307	-302	-173	470	-1092	5681	-113	5899	100	-6
213 D10995 at		2944	890	1299	1438	1626	1102	1362	1202	850	871	1183	1211	1134	398	958	1289	214
214 D11086 at		2591	5936	6380	2741	11963	32285	2541	5178	23904	946	12603	9414	5143	2090	1389	8379	1021
215 D11094 at		1225	2212		3319	3589	1437	354	3693	2330	410	1138	2683	1145	2073	2372	3965	330
216 D11139 at		1225	2212		3319	3305	0	0	3033	2330	410	1130	2003	1145	2073	2372		330
217 D11151 at		-5	202		89	233	438	-38	110	408	50	504	448	-105	565	241	315	16
18 D11327 s		140	1698		271	2831	1289	1573	478	1697	1035	958	782	1446	2536	1004	3221	481
19 D11428 at		29	93		202	1155	-770	1302	613	-844	815	-1325	1054	50	619	-585	226	-102
220 D12485_st		199	106	400	-44	7	-165	33	16	.74	66	-1323 80	-174	.162	-16	38	-58	-102
221 D12620 s		373	494	-333	.98	41	697	-1	17	327	16	31	167	184	-241	.94	-50	
221 D12625_st		119	494		-90 44	19	-84	35	9	-56	47	-77	-351	117	-241	-94	63	
222 D12625_8 223 D12676 at		87	-24	-01	-29	-116	164	330	-21	-185	-54	143	-1653	-319	-261	12		16
224 D12686 at		-8218	-2089	-8747	-6129	-6574	-6041	-2805	-6568	-4988	-639	-4176	-8071	-3074	-2485	-1623	-1514	-86
224 D12000_8		958	174	-999	-314	-05/4	-6041	-169	-439	-4900	-51	-4176	-139	-3074	-2405	-1623	-1514 88	-00
																		124
226 D12775_s	907	876	525	559	249	497	278	459	427	380	496	305	482	738	900	652	1187	

Lighter colours mean higher levels of gene expression ("activity") Only show part of the data!

Profile for a gene

Profile for a sample

One type of analysis

- I've ranked the genes by how different they are between types A and B (tstatistic)
- Mostly "underexpressed" in Type B
- Only the first few genes are shown
- Though it can be a lot more complicated, most "high-dimensional" studies boil down to something like this, at least in part

What's the big deal?

Pitfalls and challenges

- Signals can be small relative to non-signal: data are noisy with finite sensitivity. False negatives are often a given, and false positives are a major danger.
- Need to address outliers, batch effects and other confounds
- Dealing with and exploiting biological and statistical dependencies – e.g. genes are not independent
- Getting just a list of "hits" isn't enough can we understand something more about the "system"
- Data sets (and questions) can be much more complex than my simple example; perhaps most interestingly when you have multiple data types for the same samples (e.g. DNA sequence, DNA methylation and RNA levels)

High-dimensional technologies

- DNA & RNA sequencing
 - Transcriptomes, exomes, full genomes
- Complex gene library construction
 - Expression vectors, protein tags, knockdowns
- Microarrays and other robotic/parallel tech.
 - Screens, high-content assays ...
- Mass spectroscopy
- Flow cytometry
- ... and many others outside of genomics (e.g. imaging)

Microarrays

Agilent SurePrint

Illumina Beadarray

Affymetrix Genechip

Sequencing-based assays

- Instead of using hybridization to a designed probe, determine the DNA sequence of the sample
- Several competing platforms
- Genotyping: Compare to a reference
- RNA: quantify how many times you see a sequence (~mRNA molecule)

Up to eight samples can be loaded onto the flow cell for simultaneous analysis on the Illumina Genome Analyzer.

Analysis modes

- What is the general toolkit available for the analysis of data?
- How are these specialized for highdimensional data?

Exploratory analysis

- The first thing you do with your data
- Graphs and other visualizations, often combined with data reduction
- Use to spot problems, formulate hypotheses
- Often rely on power of human brain
- Data reduction essential to make exploration tractable for large data sets, even then it can be a challenge
- Follow up with more formal analysis

Model fitting and hypothesis testing

- Formally test a specific question about the data
- Is what I see "statistically significant"?
- False positives are a major risk in large data sets
- Can exploit repeating structure of the data to improve ability to find true positives

Unsupervised learning

- "Learn" undiscovered groupings in the data
- Clustering -- how do my samples or features group together?
- Useful as an exploratory technique as well as "data mining" when backed with quantitative analyses
- Example: Finding previously unknown groups of subjects based on a gene profile

Supervised learning

- Can I predict an unmeasured feature of a sample from a measured one?
- Less common than unsupervised learning, most used in clinically-oriented settings – development of **biomarkers**
- Example: predicting tumour drug response based on gene profiles

Other methods

- Many analyses just give a list of genes
- "Downstream" analysis needed to make sense of it "biological interpretation"
 - Overlay/combine/compare with other data
 - Transform one data set into another type of data at a different granularity
 - Genes → pathways
- Usually these end up returning to exploratory etc. modes

Enjoy the course!