

Universidad Simón Bolívar

Departamento de Cómputo Científico y Estadística

Estadística Para Ingenieros CO-3321

Prof. Desiree Villalta

Informe de Laboratorio: Laboratorio 3. Pruebas de hipótesis y pruebas Chi-Cuadrado

Estudiantes:

Carlos Sivira 15-11377

José Barrera 15-10123

1. <u>Pregunta 1: Probar si el método actual es mejor que el método nuevo para la realización de una tarea, a un 93% de nivel de confianza:</u>

- a. <u>Realice una prueba de varianzas:</u> Para ello usamos la función *var.test()* de R sobre los datos. Obtenemos el intervalo: (0.2378836, 2.8704428) el cual contiene al 1. Concluimos que las varianzas pueden ser iguales.
- b. Realice una prueba de medias: Realizamos una prueba de hipótesis donde Ho = $\mu 1 \mu 2 = 0$ y Ha = $\mu 1 \mu 2 > 0$. Para ello usamos la función *t.test()* de R sobre los datos, indicando que las varianzas son iguales y que el nivel de confianza es de 93% ($\alpha = 0.07$). Obtenemos un p-valor = 0.02116, con lo que se rechaza la hipótesis de que las medias sean iguales para el nivel de significancia dado. Vale la pena destacar que para $\alpha = 0.01$, no hay suficiente evidencia para rechazar la hipótesis nula. Se concluye entonces que el método actual es mejor para la tarea.

2. En la siguiente tabla se presenta el número de anotaciones de 6 puntos en un partido de rugby americano en la temporada de 1979:

a. Con base en los resultados se ajusta una distribución Poisson de parámetro muestral (media) λ = 2, 435.¿Existe alguna razón para creer que a un nivel de 0.05 el número de anotaciones es una variable de Poisson?

Se define la prueba de hipótesis con

Ho: Los resultados se ajustan a una distribución Poisson de parámetro muestral $\lambda = 2.435$.

Ha: Los resultados no se ajustan a una distribución Poisson de parámetro muestral $\lambda = 2.435$.

Para el cálculo del estadístico chi-cuadrado, no fue necesario calcular parámetros desde la muestra. Por lo tanto, los grados de libertad no se ven alterados. Se realizaron los siguiente pasos para obtener el estadístico:

- En pi se calcula la probabilidad Poisson para cada ni con λ .
- En *en* se calcula el valor esperado para cada *ni*.
- En chi square es almacenado el valor del estadístico.

Se tiene que *chi_square* = 6.05173. Luego, mediante la función *qchisq(1 - alpha, k - 1 - r)* se obtiene que el valor para chi-cuadrado con *alpha* = 0.05 y *k-1-r* grados de libertad es 12.59159. Así mismo, se obtiene un p-valor mediante la función *pchisq(chi_square, k - 1 - r)* con resultado igual a 0.5825797

En conclusión, como el resultado del estadístico no es mayor al resultado de chi-cuadrado, es decir, 6.05173 < 12.59159, no se rechaza la hipótesis nula Ho. Además, para el p-valor obtenido (0.5825797) no existe suficiente evidencia para rechazar la hipótesis nula para cualquier nivel de significancia.

3. <u>Se realiza un estudio para establecer la relación entre el empleo de las personas y el tipo de cerveza preferida (oscura, clara o ligera).</u>

a. ¿Cuál es su conclusión con un nivel de significancia del 1%?

El objetivo de este estudio es determinar si existe alguna relación entre la variables cualitativas dadas. Para realizar la prueba de hipótesis, se propone Ho: existe independencia entre el empleo de las personas y el tipo de cerveza preferida, y Ha: existe relación entre el empleo de las personas y el tipo de cerveza preferida.

Utilizamos el comando *chisq.test()* sobre la matriz de los datos y obtenemos un p-valor = 0.01059. Con lo cual no hay suficiente evidencia para rechazar Ho con α = 0.01 (99%). Por lo tanto existe independencia entre el empleo de las personas y el tipo de cerveza preferida.