

Básicos

Nome	Símbolo Gráfico	Função Algébrica	Tabela Verdade
E (AND)	A S=A.B	S=A.B S=AB	A B S=A.B 0 0 0 0 1 0 1 0 0 1 1 1 1
OU (OR)	A S=A+B	S=A+B	A B S=A+B 0 0 0 0 1 1 1 0 1 1 1 1
NÃO (NOT) Inversor	A ● S=Ā	S=Ā S=A' S= ¬ A	A S=Ā 0 1 1 0
NE (NAND)	$A \longrightarrow S = \overline{A.B}$	S= <u>A.B</u> S=(A.B)' S= ¬(A.B)	A B S=AB 0 0 1 0 1 1 1 0 1 1 1 0
NOU (NOR)	$A \longrightarrow S = \overline{A + B}$	S= A+B S=(A+B)' S= ¬(A+B)	A B S=A+B 0 0 1 0 1 0 1 0 1 0 1 1 0
XOR	$A \longrightarrow B \longrightarrow S = A \oplus B$	S=A⊕B	A B S=A⊕B 0 0 0 0 1 1 1 0 1 1 1 0

Circuito Lógico

Todo o circuito lógico executa uma função booleana e, por mais complexo que seja, é formado pela interligação das portas lógicas básicas. Assim, pode-se obter a expressão booleana que é executada por um circuito lógico qualquer.

Para exemplificar, será obtida a expressão que o circuito abaixo executa:

Como ficaria a expressão booleana?

Circuito Lógico (AND / E)

Analisa-se a porta lógica, observando a expressão booleana que se realiza, conforme ilustra o exemplo1:

O nº de saídas possíveis. Resposta 2⁶= **64**

Circuito Lógico (OR/OU)

Analisa-se a porta lógica, observando a expressão booleana que se realiza, conforme ilustra o exemplo2:

O nº de saídas possíveis. Resposta 2⁴= **16**

Circuito Lógico (OR/OU)

Representação Gráfica do circuito lógico

Expressão Booleana

$$Y = A + B + C + D$$

O nº de saídas possíveis Resposta 2⁴= **16**

Função Lógica

Assume "0" quando todas as variáveis forem "0" ou "1" nos outros casos.

A	В	С	D	A + B + C + D = "X"
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

Exercícios1:

Obtenha a expressão booleana que é executada pelos circuitos lógicos e sua tabela verdade...

Respostas exercícios1

1 porta lógica "AND/E" e 1 NOT (inversora)

$$X = \overline{(A.B.C)}$$

Α	В	С	A . B. C	X = (A . B . C)′
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	0	1
1	0	0	0	1
1	0	1	0	1
1	1	0	0	1
1	1	1	1	0

FUNÇÃO AND (E) → ASSUME 1 QUANDO TODAS AS VARIÁVEIS FOREM 1 E ASSUME 0 EM OUTROS CASOS

1 porta NOT (inversora) e 1 porta "AND/E"

$$Y = (\overline{A} \cdot B \cdot C)$$

A	A	В	С	Y = (A)' . B . C
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0

FUNÇÃO AND (E) → ASSUME 1 QUANDO TODAS AS VARIÁVEIS FOREM 1 E ASSUME 0 EM OUTROS CASOS

4 funções NOT (inversora)

	:	
Ζ	=	A

Α	A	A´	A´	A´	Α΄΄΄
0	1	0	1	0	0
1	0	1	0	1	1

1 função OR e 1 NOT (inversora)

$$W = \overline{(A + B + C)}$$

Α	В	С	A + B + C	W = (A + B + C)'
0	0	0	0	1
0	0	1	1	0
0	1	0	1	0
0	1	1	1	0
1	0	0	1	0
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

FUNÇÃO OR (OU) -> ASSUME 0 QUANDO TODAS AS VARIÁVEIS FOREM 0 E ASSUME 1 NOUTROS CASOS

1 função NOR e 1 NOT (inversora)

$$V = \overline{(A + B + C)}$$

Α	В	С	(A + B + C)'	$W = (A + B + C)^{\prime\prime}$
0	0	0	1	0
0	0	1	0	1
0	1	0	0	1
0	1	1	0	1
1	0	0	0	1
1	0	1	0	1
1	1	0	0	1
1	1	1	0	1

FUNÇÃO NOR (NOU) → ASSUME 1 QUANDO TODAS AS VARIÁVEIS FOREM 1 E ASSUME 0 NOUTROS CASOS

Exercício2

Exercícios2:

Obtenha a expressão booleana que é executada pelos circuitos lógicos e sua tabela verdade...

Circuito Lógico (AND / E)

Para facilitar, analisa-se cada porta lógica separadamente, observando a expressão booleana que cada uma realiza, conforme ilustra o exemplo:

$$X = (A . B) . C$$

Circuito Lógico (AND / E)

Para facilitar, analisa-se cada porta lógica separadamente, observando a expressão booleana que cada uma realiza, conforme ilustra o exemplo:

Representação Gráfica do circuito lógico

Expressão Booleana

$$X = (A . B) . C$$

TABELA VERDADE

Α	В	С	(A . B)	(A.B).C
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	0	0
1	0	0	0	0
1	0	1	0	0
1	1	0	1	0
1	1	1	1	1

Função Lógica

Assume 1 quando todas as variáveis forem "1" e "0" nos outros casos.

Exercício2:
Obtenha a expressão
booleana que é
executada pelos
circuitos lógicos,
calcular o nº de
saídas possíveis e sua
tabela verdade...

https://www.malavida.com/br/soft/logisim/

