

Figure 1

	10	20	30	40	50	
	---	---	---	---	---	
XYN2_TRIRE	MVSFTSLLAASPP	-SRASCRPAAEV	--ESVAVEKRQTIQ	-----P		
XYN1_HUMAN	---MVSLSKSVLAAATAVSSAIAAP	FDVPRDNSTALQARQVTP	-----N			
XYNA_BACST	-----MKLKKKMLTLLL	TASMSFGLF	-----G			
XYN1_TRIRE	---MVAFSSLICALTSIASTLAMPTGLEPESSVNTERGMYDFVLGAHND					
XYN1_ASPAW	-----MKVTAFAFAGLLVTAFAAFAPVPEPVLS					
XYN2_BACST	MCSSIPSILREVFANDFRIGAAVNPTLEAQQSLLIRHVNNSLTAENHMKE					
	60	70	80	90	100	
	---	---	---	---	---	
XYN2_TRIRE	GTGYNNGYFYSYWNDGHGGVTYTNGPGGQFSVNWS	--NSG	-NFVGGKGWQ			
XYN1_HUMAN	AEGWHNGYFYSWSDGGGQVQYTINLEGSRYQVRWR	--NTG	-NFVGGKGWN			
XYNA_BACST	ATSSAATDYWQYWTDDGGMVNAVNGPGGNYSVTWQ	--NTG	-NFVVGKGWT			
XYN1_TRIRE	HRRRASINYDQNYQTG	-GQVSYSNTG	-FSVNWN	--TQD	-DFVVGVGWT	
XYN1_ASPAW	--RSAGINYVQNYNGNLGDFTYDESGAT	-FSMYWEDGVSS	-DFVVGGLGWT			
XYN2_BACST	HLQPEEGRFTFDIAIKSSTPFSHVGRGHTLVWHNQTPSWVFQDSQGHF					
	110	120	130	140	150	
	---	---	---	---	---	
XYN2_TRIRE	PGTKNKVJNFS	-GSYNPNNGNSYLSVYGVSRNPLIEYYIVENF	--GTYNP			
XYN1_HUMAN	PGT-GRTINYG	-GYFNPQGNGYLAVYGVTRNPLVEYYVIESY	--GTYNP			
XYNA_BACST	VGSPNRVINYNA	GWIPESGNGYLTYGVTRNALIEYYVVDSW	--GTYRP			
XYN1_TRIRE	TGS-SAPINFGGSFVNSGNTG	LLSIVYGVSTNPLVEYYIMED	--NHNY			
XYN1_ASPAW	TGS-SNATYSAEYASGSSSYLAVYGVWNPQAEYYIVEDY	--GDYNP				
XYN2_BACST	VGRDVLLERMKSHISTVVQRYKGKVYCWDVINEAVADEGSEWLRSSTWRQ					
	160	170	180	190	200	
	---	---	---	---	---	
XYN2_TRIRE	STGATKLGEVTSDGSVYDIYRTQRVNQPSI	IGTATFYQYWSVRRNHRSSG				
XYN1_HUMAN	GSQAQYKGT	FYTDGDQYDIFVSTRYNQPSIDGTRTFQQYWSIRKRNKRVGG				
XYNA_BACST	T	-GNYKGT	VNSDGGTYDIYTTMRYNAPSIDGTQTFQQFWVRQSKRPTG			
XYN1_TRIRE	PAQGTVKGT	VTSDGATYTIWENTRVNEPSIQGTATFNQYISVRNSPRTSG				
XYN1_ASPAW	CSSATSLGTVYSDG	STYQVCTDRTNEPSITGTSTFTQYFSVRESTRTSG				
XYN2_BACST	IIIGDDFIQQAF	LYAHEADPEALLFYNDYNECFPEKREKIYTLVKSLSRDKG				
	210	220	230	240	250	
	---	---	---	---	---	
XYN2_TRIRE	S	----VNTANHFNAWA	-QQGLTLGTM	-YQIVAVEGYFSSGSASITVS	--	
XYN1_HUMAN	S	----VNMQNHFNAWQ	-QHGMPLGQHY	-YQVVATEGYQSSGESDIYVQTH		
XYNA_BACST	SNV	SITFSNHVN	AWR	-SKGMNLGSWAYQV	LATEGYQSSGRSNVTW	--
XYN1_TRIRE	T	----VTVQNFNAWA	-SLGLHLGQMN	-YQVVAVEGWGGSGSASQSVN	-	
XYN1_ASPAW	T	----VTVANHFNFWA	-QHGFGNDFN	-YQVMAVEAWSGAGSASVTI	SS-	
XYN2_BACST	IPIHIGM	QAHWSLN	RPTLDEIRAAIERYASLG	VILHITELDISM	FEFDD	
	260	270	280	290	300	
	---	---	---	---	---	
XYN2_TRIRE	-----	-----	-----	-----	-----	

Figure 1

Figure 1

XYN1_HUMAN
XYN1_BACST
XYN1_TRIRE
XYN1_ASPOW
XYN2_BACST HRKDLAAPTNEMVERQAERYEQIFSLFKEYRDVIQNVTFWGIADDHTWLD

310 320 330
| | |
XYN2_TRIRE
XYN1_HUMAN
XYN1_BACST
XYN1_TRIRE
XYN1_ASPOW
XYN2_BACST HFPVQGRKNWPLLFDQHNPKPWFWRVVNI

FIGURE 2

Figure 3

H22K	5'- GAACGATGGCAAGGGCGGCGTGACG -3'
S65C	5'- CTTCTCGGG <u>CTG</u> CTACAACCCAAACGG -3'
N92C	5'- ACATCGTCGAG <u>TG</u> TTGGCACCTAC -3'
F93W	5'- CATCGTCGAGAA <u>CTGGGG</u> CACCTACAACC -3'
N97R	5'- GGCACCT <u>ACCG</u> ACCGTCCACG -3'
V108H	5'- CAAGCTGGGCG <u>AG</u> CACACCTCCGAC -3'
H144C	5'- CGCCGCA <u>ACTG</u> TCGCTCGAGC -3'
F180Q	5'- GTGGAGGGT <u>TACCAA</u> AGCTCTGGCTCTGC -3'
S186C	5'- TCTGGCTCT <u>GCTT</u> GCATCACC <u>GT</u> CAGC -3'
T2C	5'-GAGAAGCGCC <u>AGT</u> GCATT <u>CAGCCC</u> GGC-3'
T28C	5'-GTGACGT <u>ACTG</u> CAATGGTCCC <u>GGCGGG</u> -3'
K58R	5'-GGCACCAAGAAC <u>AGGG</u> TCATCAACTTCTGGGC-3'
191D	5'-TCCATCACCGTCAG <u>CGATT</u> AAAGGGGGCTCTC-3'
P5C	5'-CCCAGACGATT <u>CA</u> GT <u>CGGG</u> CACGGGCTACAAC-3'
N19C	5'-CTTCTACTCGTACT <u>GGT</u> <u>CG</u> ATGGCCACGGCG-3'
T7C	5'-CGATT <u>CAGCCC</u> GGCT <u>CG</u> GGCTACAACAA <u>ACGG</u> -3'
S16C	5'-CAACGGCTACTT <u>CTACTG</u> CTACTGGAAC <u>CG</u> ATGGCC-3'
N10C	5'-CCGGCACGGG <u>CTACTG</u> CAACGGCTACTT <u>CTACTC</u> -3'
N29C	5'-GGCGT <u>GACGT</u> ACAC <u>CTG</u> CGGTCCC <u>GGCGGG</u> -3'
L105C	5'-GGCGCCACCA <u>AGT</u> GC <u>GG</u> CGAGGT <u>CACC</u> -3'
Q162C	5'-GCGTGGG <u>CTCAGT</u> GC <u>GG</u> CTGAC <u>CGCTCG</u> -3'

Figure 4.

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Figure 14.

Figure 15.

Figure 16.

Figure 17

Figure 18
 Trichoderma reesei Xyl II protein (high pl xylanase)
 the full sequence, including signal and pro sequence

MWSFTSLAGVAAISGVLAAPAAEVESVAAVEKROQTIOPGTGYNNYFYSYWNDGHGGVYTNGPQQFSVNWSNSGNFVG
 GKGWQWPQGTTKVNFSGSYNNPSYNSVYGSWRNPLIEYYIVENFGTYPNSTGATKLGEVTSDGSVYDVTQRVNQPS
 IIGTATFYQYWVSVRRNHRSSGSVNTANHFNAAWAQQGLTLGTMIDYQIVAVEGYFSSGSASITVS (SEQ. ID NO: 1)

Trichoderma reesei XynII gene (high pl xylanase)
 DNA from start codon to stop codon (includes a single intron)

ATGGTCTCCCTCACCTCCCTCGCCGGCGTGCAGACGATTCAAGCCCGGGCAGGGCTACAACAAACGGCTACTCTACTCGTACTGGAAACGATG
 GCCACGGCGGGCGTGAACGTACACCAATGGTCCCGGGCGAGTTCTCGTCAACTGGTCCAACTCGGGCAACTTTGTGGC
 GGCAAGGGGATGGCAGGCCGGCACCAAGAACAGTAAGACTACCTACTCTAACCCCTTTGACCAACACAGCACAAACAA
 TACAACACATGTGACTTACCAATCATGGATGGATCTAACAGCTGTGTTTCAAAAAAAAGGGTCACTCAACTCTCGGGC
 AGCTACACACCCCAACGGCAACAGCTACCTCTCGTGTACGGCTGGTCCCGCAACCCCCCTGATCGAGTACTACATCGTGA
 GAACCTGGCACCTACAACCCGTCCACGGGCGGCCAACAGCTGGGGAGGTCAACCTCCGACGGCAGCGTCTACGACATT
 ACCGCACGAGCGGGCTCCGTCAACACAGGGGAACCACTCAACGGCGTGGCTCAGCAAGGGCCTGACGCTGGGACGATGGATT
 CGCTCGAGCGGGCTCCGTCAACACAGGGGAACCACTCAACGGCGTGGCTCAGCAAGGGCCTGACGCTGGGACGATGGATT
 CCAGATTGTTGCCGTGGGGTTACTTTAGCTCTGGCTCTGGCTCATCACCGTCAGCTAA

(SEQ. ID NO: 2)

Figure 19

Trichoderma reesei EGL III protein (endoglucanase III)
the full sequence, including signal sequence

MKFLQVLPAALAQTLSCDQWATFTGNGYTVSNNLWAGSGSGFGCVTAVLGGASWHADWQWSGGQNNVKSQNSA
IAIPQKRTVNSISSMPTTASWSYSGSNIFANVAYDLFTAANPNHVTYSGDDYELMIWLGYDIPGSSQGTVNNGGQSW
TLYYGYNGAMQVYSFVAQTNNTNYSGDVKNNFFNYLRDNKGYNAAGQYVLSYQFGETPFTGSGTLNVASWTASIN
(SEQ. ID NO: 3)

Trichoderma reesei EG III gene (endoglucanase III)
DNA from start codon to stop codon (includes two introns)

ATGAAGTTCCCTCAAGTCCCTGCCCTCATACCGGGCCCTGCTGGGAAACACAGCTGGCTGACGGGGGTATCGC
TGGCAACGGCTACACAGTCAGCAACACCTTGGGAGGCATCAGCTGGCTGGGGGGCTCCGGCAGACTGGCAGTGGCTAAC
TCAGCGGGGGGGCTCCGGCAGCAGACTGGCAGTGGCTGGGGGGCTCCGGCAGACTGGCAGTGGCTGGGGGGCTCCGGCAG
ATTGCCATTCCCCAGAAGGGACCGTCAACGGCATCAGCAGGATCAAGGGAACTGGCAGGCTGGGGGGCTCCGGCAG
CATCCGGCTAATGTTGCGTATGACTGTTCACCGCAGCCAAACCCGAATCATGTCACGTACTCGGGAGACTAGAAGCTCA
TGATCTGGTAAGCCAATAAGAAGTGCACCTCCTGATAGTTGACTACAACAGTGTCTTGAAGCTTGGCAAAATAGGGGA
TATTGGGCCGATTGGTCCCTCACAGGGAAACAGTCACGTGGGGGGAGGCTGGGACGCTCTACTATGGCTAACGGAG
CCATGCAAGTCTAATTCCCTTGTGGCCAGACCAACTACAGGGAGATGTCAGAACACTTCTCAATTATCTC
CGAGACAATAAGGATAACAACGCTGCAAGGGCCAATATGTTCTAGTAAGTCACCCCTCACTGTGACTGGCTGAGTTGTTG
CAACGTTTGTCAACAAAACCTTCGTATAGGCTACCAATTGGTACCGAGGCCCTCACGGCAGTGGAACTCTGAACGTCG
CATCCTGGACCGCATCTAAACTAA (SEQ. ID NO: 4)

Figure 20

Xylanase I Amino Acid sequence

MVAFFSLICLTSIASTLAMPTGLEPESSVNVTERGMYDFVLGAHNDHRRRASINYDQNYQTGGQVSYSPSNTGFSVNW
N
TQDDDFVVGWGTGSSA.EDSSSFCCTLKASSDQKLLLVPSTLAALLVSTAELACFPSMAGAPTHWLSTTSWRRTTTQHR
VPSREPSATEPLTPSGRIPVTSIPLSRAQRPSTSTFPCGTRGPAAELLCRTSMLGPRLACTLGR.TRLSLSKAGVV
VVLPHRVSAT