# **Unbiased estimators**

#### Recap: Cramer-Rao lower bound

Let  $X_1, \ldots, X_n$  be a sample from a distribution with probability function  $f(x|\theta)$ , and let  $\hat{\theta}$  be an unbiased estimator of  $\theta \in \mathbb{R}$ . Then, under regularity conditions,

$$Var(\hat{ heta}) \geq rac{1}{\mathcal{I}( heta)} 
brace ext{Cramer-Reso lower}$$

#### **Example**

Suppose that  $X_1,\ldots,X_n \stackrel{iid}{\sim} N(\mu,\sigma^2)$ .

Calculate the Cramer-Rao lower bound for the variance of an unbiased estimator of  $\sigma^2$ . Does the sample variance  $s^2=\frac{1}{n-1}\sum_i (X_i-\overline{X})^2$  attain the Cramer-Rao lower bound?

$$L(\mu, \sigma^2) = \log\left(\left(\frac{1}{120\sigma^2}\right)^2 \exp\left(\frac{1}{2} - \frac{1}{2\sigma^2} \frac{2}{2\sigma} \left(\frac{1}{2\sigma} - \frac{1}{2\sigma^2} \frac{2}{2\sigma^2} \right) \right)\right)\right)$$

or

$$\frac{2^2 q}{2^2 q} = \frac{2}{2\sigma^2} - \frac{1}{2\sigma^2} \frac{2}{2\sigma^2} \left(\frac{1}{2\sigma} - \frac{1}{2\sigma^2} \frac{2}{2\sigma^2} \left(\frac{1}{2\sigma} - \frac{1}{2\sigma^2} \frac{2}{2\sigma^2} \left(\frac{1}{2\sigma} - \frac{1}{2\sigma^2} \frac{2}{2\sigma^2} \left(\frac{1}{2\sigma} - \frac{1}{2\sigma^2} \frac{2}{2\sigma^2} \right)\right)\right)\right)$$

$$\frac{2^2 q}{2\sigma^2} = \frac{2}{2\sigma^2} - \frac{1}{2\sigma^2} \frac{2}{2\sigma^2} \left(\frac{1}{2\sigma} - \frac{1}{2\sigma^2} \frac{2}{2\sigma^2} \left(\frac{1}{2\sigma} - \frac{1}{2\sigma^2} \frac{2}{2\sigma^2} \left(\frac{1}{2\sigma} - \frac{1}{2\sigma^2} \frac{2}{2\sigma^2} \right)\right)\right)$$

$$\frac{2^2 q}{2\sigma^2} = \frac{1}{2\sigma^2} - \frac{1}{2\sigma^2} \frac{2}{2\sigma^2} \left(\frac{1}{2\sigma^2} - \frac{1}{2\sigma^2} \frac{2}{2\sigma^2} \left(\frac{1}{2\sigma} - \frac{1}{2\sigma^2} \frac{2}{2\sigma^2} \right)\right)\right)$$

$$\frac{2^2 q}{2\sigma^2} = \frac{1}{2\sigma^2} - \frac{1}{2\sigma^2} \frac{2}{2\sigma^2} \left(\frac{1}{2\sigma^2} - \frac{1}{2\sigma^2} \frac{2}{2\sigma^2} \frac{2}{2\sigma^2} \left(\frac{1}{2\sigma^2} - \frac{1}{2\sigma^2} \frac{2}{2\sigma^2} \right)\right)$$

$$\frac{2^2 q}{2\sigma^2} = \frac{1}{2\sigma^2} - \frac{1}{2\sigma^2} \frac{2}{2\sigma^2} \left(\frac{1}{2\sigma^2} - \frac{1}{2\sigma^2} \frac{2}{2\sigma^2} + \frac{1}{2\sigma^2} \frac{2}{2\sigma^2} \right)$$

$$\frac{2^2 q}{2\sigma^2} = \frac{1}{2\sigma^2} - \frac{1}{2\sigma^2} \frac{2}{2\sigma^2} \left(\frac{1}{2\sigma^2} - \frac{1}{2\sigma^2} \frac{2}{2\sigma^2} + \frac{1}{2\sigma^2} \frac{2}{2\sigma^2} \right)\right)$$

 $\frac{\partial^2 \mathcal{L}}{\partial \sigma'} = \frac{1}{2\sigma'} - \frac{1}{\sigma^6} \underbrace{\mathcal{L}(\chi_i - \chi_i)^2}_{\mathcal{L}(\chi_i - \chi_i)^2}$  $-\left(\frac{\gamma}{2\sigma^{\mu}}-\frac{\gamma}{\sigma^{\mu}}\right)$ 

 $= \mathcal{I}(\sigma^2)$ 

### Attaining the CRLB

Let Xin..., Xn be iid with probability function  $f(x|\theta)$ , and suppose the regularity conditions for the CRLB hold. Let  $\hat{\theta}$  be an unbiased estimator of  $\theta$ . Then  $\hat{\theta}$  attains the CRLB if and only if

 $u(\theta) = a(\theta) \left[ \hat{\theta} - \theta \right]$ 

(for some function a(0)).

If; Proof of the CRLB uses the fact that

[COV(Ô, U(O))] & Var(Ô) Var(U(O))

The CRUB is attached when this inequality is an equality, i.e.  $[(\alpha(\hat{\theta}, u(\theta))]^2 = Var(\hat{\theta}) Var(u(\theta))$ 

Themma: (con(X,Y)) = Ver(X) Var(Y) (i.e. (corr(X,Y) (= 1))

if and only if X-E[X] = c (Y-E[Y])

So,  $[(cv(\hat{\theta},u(\theta))]^2 = vcr(\hat{\theta}) vcr(u(\theta))$  if and only if  $u(\theta) - E[u(\theta)] = a(\theta)[\hat{\theta} - E[\hat{\theta}]] = a(\theta)[\hat{\theta} - E[\hat{\theta}]] = a(\theta)[\hat{\theta} - E[\hat{\theta}]]$ 

Example: 
$$X_{1}$$
,  $X_{n}$   $\stackrel{\text{iid}}{\sim}$   $N(u_{1}\sigma^{2})$ 

$$u(\sigma^{2}) = -\frac{n}{2\sigma^{2}} + \frac{1}{2\sigma^{4}} \stackrel{\text{form}}{\sim} (X_{1}-u)^{2}$$

$$= \frac{-n}{2\sigma^2} + \frac{1}{2\sigma^4} \left( \frac{2}{2\sigma^4} \left( \frac{2}{2\sigma^4} \left( \frac{2}{2\sigma^4} \right)^2 - \sigma^2 \right) \right)$$

$$= \frac{n}{2\sigma^4} \left( \frac{2}{2\sigma^4} \left( \frac{2}{2\sigma^4} \left( \frac{2}{2\sigma^4} \right)^2 - \sigma^2 \right) \right)$$



If  $\hat{\sigma}^2 = \frac{1}{2} \hat{\mathcal{L}} (\hat{x} - \omega)^2$  then  $\mathbb{E}(\hat{\sigma}^2) = \sigma^2$ 

and  $\alpha(\sigma^2) = \frac{\eta}{2\sigma^2}$  then  $U(\sigma^2) = \alpha(\sigma^2)(\hat{\sigma}^2 - \sigma^2)$ 

If is is unknown, then CRLB cannot be attained

=> 1 2 1xi-w)2 attains the CRIB if m is known

#### **Sufficient statistics**

Given an unbiased estimator, can I improve its variance?

Def: Let 
$$X_1, \dots, X_n$$
 be a sample from a distribution  $f(x|\theta)$ . Let  $T = T(X_1, \dots, X_n)$  be a statistic. If the conditional distribution of  $X_1, \dots, X_n \mid T$  does not depend on  $\theta$ , then  $T$  is a sufficient statistic for  $\theta$ 

EA: Suppose  $X_1, \dots, X_n \stackrel{\text{ind}}{\longrightarrow} Poisson(\lambda)$ . Let  $T = \stackrel{\text{of}}{\longrightarrow} X_i$ 
 $T \sim Poisson(\Lambda \lambda)$ 
 $F(X_1, \dots, X_n \mid T, \lambda) = \frac{f(X_1, \dots, X_n, T \mid \lambda)}{f(T \mid \lambda)} = \frac{f(X_1, \dots, X_n, T \mid \lambda)}{f(T \mid \lambda)} = \frac{f(X_1, \dots, X_n, T \mid \lambda)}{f(T \mid \lambda)}$ 
 $= \frac{T!}{0!} \stackrel{\text{of}}{\longrightarrow} \frac{f(X_1, \dots, X_n, T \mid \lambda)}{f(X_1, \dots, X_n, T \mid \lambda)} = \frac{f(X_1, \dots, X_n, T \mid \lambda)}{f(T \mid \lambda)} = \frac{f(X_1, \dots, X_n, T \mid \lambda)}{f(T \mid \lambda)} = \frac{T!}{1!} \stackrel{\text{of}}{\longrightarrow} \frac{f(X_1, \dots, X_n, T \mid \lambda)}{f(X_1, \dots, X_n, T \mid \lambda)} = \frac{f(X_1, \dots, X_n, T \mid \lambda)}{f(T \mid \lambda)} = \frac{f(X_1, \dots, X_n, T \mid \lambda)}{f(T \mid \lambda)} = \frac{T!}{1!} \stackrel{\text{of}}{\longrightarrow} \frac{f(X_1, \dots, X_n, T \mid \lambda)}{f(X_1, \dots, X_n, T \mid \lambda)} = \frac{f(X_1, \dots, X_n, T \mid \lambda)}{f(T \mid \lambda)} = \frac{f(X_1, \dots, X_n, T \mid \lambda)}{f(T \mid \lambda)} = \frac{f(X_1, \dots, X_n, T \mid \lambda)}{f(T \mid \lambda)} = \frac{f(X_1, \dots, X_n, T \mid \lambda)}{f(T \mid \lambda)} = \frac{f(X_1, \dots, X_n, T \mid \lambda)}{f(T \mid \lambda)} = \frac{f(X_1, \dots, X_n, T \mid \lambda)}{f(T \mid \lambda)} = \frac{f(X_1, \dots, X_n, T \mid \lambda)}{f(T \mid \lambda)} = \frac{f(X_1, \dots, X_n, T \mid \lambda)}{f(T \mid \lambda)} = \frac{f(X_1, \dots, X_n, T \mid \lambda)}{f(T \mid \lambda)} = \frac{f(X_1, \dots, X_n, T \mid \lambda)}{f(T \mid \lambda)} = \frac{f(X_1, \dots, X_n, T \mid \lambda)}{f(T \mid \lambda)} = \frac{f(X_1, \dots, X_n, T \mid \lambda)}{f(T \mid \lambda)} = \frac{f(X_1, \dots, X_n, T \mid \lambda)}{f(T \mid \lambda)} = \frac{f(X_1, \dots, X_n, T \mid \lambda)}{f(T \mid \lambda)} = \frac{f(X_1, \dots, X_n, T \mid \lambda)}{f(T \mid \lambda)} = \frac{f(X_1, \dots, X_n, T \mid \lambda)}{f(X_1, \dots, X_n, T \mid \lambda)} = \frac{f(X_1, \dots, X_n, T \mid \lambda)}{f(X_1, \dots, X_n, T \mid \lambda)} = \frac{f(X_1, \dots, X_n, T \mid \lambda)}{f(X_1, \dots, X_n, T \mid \lambda)} = \frac{f(X_1, \dots, X_n, T \mid \lambda)}{f(X_1, \dots, X_n, T \mid \lambda)} = \frac{f(X_1, \dots, X_n, T \mid \lambda)}{f(X_1, \dots, X_n, T \mid \lambda)} = \frac{f(X_1, \dots, X_n, T \mid \lambda)}{f(X_1, \dots, X_n, T \mid \lambda)} = \frac{f(X_1, \dots, X_n, T \mid \lambda)}{f(X_1, \dots, X_n, T \mid \lambda)} = \frac{f(X_1, \dots, X_n, T \mid \lambda)}{f(X_1, \dots, X_n, T \mid \lambda)} = \frac{f(X_1, \dots, X_n, T \mid \lambda)}{f(X_1, \dots, X_n, T \mid \lambda)} = \frac{f(X_1, \dots, X_n, T \mid \lambda)}{f(X_1, \dots, X_n, T \mid \lambda)} = \frac{f(X_1, \dots, X_n, T \mid \lambda)}{f(X_1, \dots, X_n, T \mid \lambda)} = \frac{f(X_1, \dots, X_n, T \mid \lambda)}{f(X_1, \dots, X_n, T \mid \lambda)} = \frac{f(X_1, \dots, X_n, T \mid \lambda)}{f(X_1, \dots, X_n, T \mid \lambda)} = \frac{f(X_1, \dots,$ 

#### Rao-Blackwell

Let  $\theta$  be a parameter of interest, and  $\tau(\theta)$  some function of  $\theta$ . Let  $\hat{\tau}$  be some unbiased estimator of  $\tau(\theta)$  and  $\tau$  a sufficient statistic for  $\theta$ .

Let  $\tau^* = \mathbb{E}[\hat{\tau}] = \tau$  (unbiased)

(2)  $Var(\tau^*) \leq Var(\hat{\tau})$ 

## **Example**

Let 
$$X_1, \ldots, X_n \stackrel{iid}{\sim} Poisson(\lambda)$$
.