A DEMOGRAPHIC MODEL OF SIMCOE COUNTY, ONTARIO FOR THE PURPOSES OF PROJECTING DEMAND FOR POST-SECONDARY EDUCATION

Prepared for

The Simcoe County Joint Post-Secondary
Planning Committee

September 1978

250 revised and updated July 1979

> D.E. Coates, Ph.D. York University Toronto, Ontario

TABLE OF CONTENTS

- 0 Note
- 1 Introduction
- 2 Population Model
- 3 Census Subdivisions
- 4 First Projection
- 5 Post-secondary Enrolment
 Universities
 Colleges
- 6 Summary and Conclusions
- 7 References and Sources
- 8 Appendices
 - I Simcoe County total population projection case with zero net migration
 - II Enrolments by Simcoe County Students in schools, universities, and CAATS
 - III Program Listings

Note

This study was performed at York University under a contract between the Simcoe County Joint Post-Secondary Planning Committee and the Government of Ontario. Funding was provided by the Ministry of Treasury, Economics, and Intergovernmental Affairs; and administered by the Ministry of Colleges and Universities. Much appreciated advice, assistance, and information were supplied by a number of agencies, listed in the Appendices. Special thanks are due to Margaret R. Stephenson, for computer programming and research assistance; and to Kathy Turner, for very capable typing. Nevertheless, all views and opinions expressed herein are those of the author and do not necessarily reflect those of York University, the Planning Committee, nor any governmental agency.

1. Introduction

This study had three basic aims. Its first was to collect demographic data about constituent areas within Simcoe County, appropriate to a methodology for projecting population changes into the future under various assumptions. The second was to collect data about the impact of those populations on full-time enrolment in Ontario post-secondary institutions, so that population projections could be interpreted in terms of future enrolments. Thirdly, a computer program was to be developed for use by those interested in exploring possible scenarios of demographic change and program participation; and the program was to be adaptable for use in forecasting demand for school enrolments and others social services.

We have spent about sixty percent of the money budgeted and have realized about seventy percent of the objectives. Devising the computer programs was easy compared to the difficulty of collecting reliable data needed to make the projections 'realistic'. We had hoped to obtain much information locally in the County but did not find it. Almost all data was found in Toronto or Ottawa; and under pressure of time we have settled for data which is adequate but not in the form or detail we would have wished. However, as time goes on the desired formats may become available and the programs can be appropriately updated.

The differences between population projections produced in this study and those already available from provincial and federal authorities are, first, that

the level is extended from county level to the level of township, town, village and city within the county; and second, that annual net migration is distributed to each such census subdivision according to its stage of development at the start of the projection. The population is calculated by single year of age and by sex for each census subdivision. The user may specify any desired level of net migration for the county in any year from 1977 to 2016. The distribution by age and sex of shares of county net migration is accomplished within the model. Thus each geographical unit generates its own projection based on its individual characteristics, and the county projection is the sum of the components. The user may adjust area characteristics as desired. A limited (but expandable) facility is built in to utilize geographic co-ordinates for mappings and other calculations based on spatial distribution of population.

We would have preferred to have incorporated a 'feedback' into the computation, by which net migration and fertility rates might be made responsive to land use pressures and perhaps other factors. It was decided to leave this for later development.

Projections of post-secondary enrolment are produced by applying age- and sex-dependent participation rates to populations. In the present version, participation rates are assumed constant and so the variation in enrolment is strictly determined by changes in age and sex distribution within the population. Variations in participation rates can be studied independently for any given population projection; and by appropriately defining participation data for other services (e.g. elementary and secondary schools, health services, etc.), the impact of population on such services can be projected.

This study report contains a summary of statistical data collected, a description of the computational method, program listings, and output from a sample run. Additional reference materials, including contents of 1971 Census Enumeration Records in printed and tape form are available from the author.

This report was prepared in draft in September 1978. In the meantime, figures for 1978 Fall entry to universities and CAATs have become available, and the tables and figures have been updated where possible.

2. Population Model

It is in the nature of statistical estimates that the larger the aggregate being estimated, the smaller the probable percentage error. Consequently demographers feel the ground becoming increasingly slippery as they move population estimates down from federal to provincial level; and they generally stop at county level. On the other hand, educational and municipal planners are forced to work from neighbourhood level upward; and the two directions do not necessarily meet.

The model in this study is aimed at bringing the two directions closer together: populations are projected at the level of census subdivision and aggregated to county level where the result may be compared to projections produced on a federal and provincial level. At the same time county-wide average figures for fertility rates (births per 1,000 females by age per year) and mortality rates (deaths per 1,000 persons by age and sex per year) are used for all subdivisions; and total annual net migration is specified at the county level. The result is necessarily a compromise - migration within the county is ignored, as well as any local variations in fertility and mortality. Most important, the age and sex distribution of net migration, and the share of county net migration going to each subdivision, is allocated by a rule whose basis is empirical but whose application may seem arbitrary. We would argue that the result is more useful than anything yet available; but not that it is perfect. More important, the computations are mechanized so that those who wish may explore the consequences of different sets of assumptions.

2.1 Fertility and Mortality

In principle, population models are simple applications of the law of conservation of mass: the number of people at time T is the number at time O, plus births and in-migration minus deaths and out-migration in the interval O-T. One can observe, with Malthus, that the number of births and of deaths is proportional to the existing population; and hence derive 'fertility rates' and 'mortality rates' which are helpful in estimating numbers of births and deaths in future intervals of the same length. Given a starting population, and birth, death, and net migration rates over time, the calculation is straightforward.

In practice the dependence of fertility and mortality on age and sex, and their variation in time, are too important to ignore; and time intervals greater than one year introduce intolerable inaccuracies. The demographer is constantly struggling to ensure that data collected over time is consistent and accurate.

Migration across county boundaries is not subject to record-keeping as are births and deaths; and in practice net migration is derived from the difference between actual and natural increase, after the actual increase is known. Census counts of population are made only every five years, and it follows that all population figures after one census are estimates until

the next one is taken and interpolations performed. (This can lead to much confusion: published 'historical' population data for non-census years should be viewed with scepticism.)

The fuzziness of migration data means that fertility and mortality <u>rates</u> for non-census years are also suspect, and consequently recent 'trends' in such figures may be misleading.

Nevertheless, to perform a calculation one must begin with numbers. Data on births and deaths in Simcoe County are given in Tables 2-1 and 2-2, respectively. (Figures for 1971 include the Townships of Rama and Mara.) Table 2-3 gives census population figures for Simcoe County by age and sex. To derive fertility and mortality rates births and deaths were divided by the same-year population of appropriate age and sex.

Because so much has been written about changes in fertility and birth rates in Ontario, a brief comment is appropriate. In figure 2-1, the fertility rates for Simcoe County in 1971 are compared with the fertility rates for Ontario in 1976 and the figures used in population projections 0 and 1 included here. There was a drop in Simcoe County in age ranges from 1971 to 1976, but 1976 was somewhat above the level for Ontario in 1976. Figures for 'Ontario 1975' were used in the computer program because they were given for smaller age groups.

The drop in birth rates since about 1960 has been extensively discussed by demographers. The difficulty with these discussions is that they usually assume a leveling off two to five years in the future after the date of the report, a horizon which continually recedes. A convincing basis for choosing likely values is absent; and in any case, net migration is expected to be the dominant factor and major source of uncertainty in Simcoe County's future.

2.2 Net Migration

Population projections were among the earliest examples of the uses of calculus: integration of a process where the rate of growth is proportional to the existing population yields an exponentially rising population. Ecologists testing this Malthusian simplification discovered that for many populations, growth departs from the exponential, becomes linear for a time, and then bends over to become asymptotic to an upper limit determined mainly by food supply. The curve traced out is the classic 'S' curve, or logistic curve. Apparently such populations sense an upper limit of numbers some time before they actually reach it.*

^{*} The report 'Limits to Growth' by the Club of Rome might be regarded as such a warning to humans, by suggesting that if current global population and resource comsumption growth is not curbed, the inevitable and rather early result will be penetration of the upper limit, followed by catastrophic population collapse due to famine and/or resource exhaustion and/or toxic human and industrial waste accumulation.

The long life span and generation time of humans slows down the response of population numbers to environmental stimuli. A 'zero net migration' calculation for Simcoe County shows that population would continue to coast upwards, reaching a maximum about 2011 and then beginning to decline. If the gross reproductive rate (number of children born per female during her lifetime) is at or above the replacement value (about 2), there will exist some age distribution where deaths per unit time continuously equals births, and population would stabilize.

Nevertheless, it has been suggested that the 'S' curve is a reasonably good approximation to the population growth in a given area, because migration is sensitive to upper limits on population density, and fairly quickly responsive. The same authors suggested that the age and sex distribution of net migration are characteristic of the 'location' of the area on the S-curve, and produced empirical graphs (see appendix IV figures 1-5) corresponding to five segments of the Scurve. The assignment of an area in Simcoe County to a specific segment required two counts for the area plus a figure for its upper limit capacity, available from the Simcoe-Georgian Task Force study. The counts were census populations of 1971 and 1976, and the areas were thereby defined as census subdivisions (see tables 5A and 5B).

Computation using assumed future migration scenarios requires assigning a share of total county net migration

to each census subdivision. The procedure followed was to calculate the net migration received by each area and the county in the five-year intercensal period 1971-1976.

The model therefore assumes that each area's age and sex distribution and share of net migration does not change during the time of the projection. It also assumes that area boundaries remain constant. These assumptions make the model cheap and workable if not wholly satisfactory. They become less realistic the longer the horizon is extended. Both 'The Limits to Growth' and 'Mankind at the Turning Point' provided elaborate systems describing the influence of social, economic, and natural factors on fertility, mortality, and net migration; but so far such models have not been developed for areas as small as a county despite some efforts in that direction.

LIVE BIRTHS BY AGE OF MOTHER AND SEX OF CHILD SIMCOE COUNTY

Table 2-1

	f +	0	385	1,128	1,196	0. 7	113	15	1 -	··	1	3,290	
3267	Ĺ40	0	198	589	589	232	26	00		O	8 0 6	1,672	1
	Z,	м	187	539	607	217	.57	_		7	8 8	1,618	
	E+		293	1,113	1,244	404	66		16		-	3,275	
1975	E4												
	Σ												
	64	7	430	1,112	1,130	427	107	25			-	3,234	
1974	fiz,	-	207	539	541	236	4 4	15			1	1,584	
	Σ	н	223	573	589	191	63	10		0		1,650	
*	H	н	426	968	1,028	358	110	27	н			2,919	
1973	E4	7	207	468	961:	172	4.5	ω	п	-	1	1,398	
	Σ	-	213	200	532	186	65	19	!	-	8 9 9	1,521	
·k	13	m	464	1,029	958	351	132	40	1	!	e e	2,980	
1972	E4	7	200	509	467	173	09	19	1	-	H	1,431	
	Σ	н	264	520	491	178	72	21	1	-	7	1,549	
	F	2	377	1,019	006	370	142	29	п	-		2,842	
1971	ßų.	-	178	488	429	175	74	13	2	1	\$ 8 8	1,360	
	E	п	199	531	471	195	89	16	٦	1	1	1,482	
	AGE OF MOTHER	Under 15	15 - 29	20 - 24	25 - 29	30 - 34	35 - 39	40 - 44	.55 ~ 49	+ 09	Not Stated	Jotal	

DEATHS BY AGE AND SEX SIMCOE COUNTY

Table 2-2 Page 1 of 3

200	13/0	24	18	m et «	# 600 cc) 4.04	20 2 2 9 2 9 2 9 9 9 9 9 9 9 9 9 9 9 9 9	122	13 8 21	9 6 9 1 5 6
1.075		30	5 24	045	4 60 8	L 7 6	21 7 2 8 2 8	17 6 23	16	13 15 15
1974		8 6	41	4 0.4	10 H 0	10 m o	17	19	11 11 15	o n 4
1973		28	39	158	ичю	0 N 00	27 36	7 4 8 8 6 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	10	14
1972		27	20	W 4-1	6101	w 67 rV	19 4 19	17 7 24	13	10 M 20
1971		28	47	0 4 5	4.00 /	ω N ω	13	8 6 2	L 10 0	12 4
SEX		ΣH	H	対立は	ZHH	Z H H	ZHE	ZAH	Z E E	MRE
AGE		-T		1 - 4	ر ا و	10 - 14	15 - 19	20 - 24	25 - 29	30 - 34

Tables produced for the Registrar-General of Ontario by Statistics Canada Source:

DEATHS BY AGE AND SEX

Table 2-2 Page 2 of 3

SIMCOE COUNTY

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	AGE	SEX	1971	1972	1973	1974	1975	1976
-44 M 15 21 26 20 18 -49 M. 28 29 34 33 28 - 49 M. 28 29 29 34 33 28 - 54 M. 45 37 53 48 55 20 - 59 M. 45 37 53 48 55 20 - 64 M. 84 74 99 99 93 40 - 69 M. 107 133 127 109 128 - 74 M. 107 133 127 109 128 - 74 M. 101 134 115 126 144 - 74 M. 101 134 115 129 144 - 69 M. 107 133 127 109 128 - 74 M. 101 134 183 165 202 <	1	ጀፋቲ	13 8 21	14 6 20	11 10 21	14 10 24	17 4 21	13
- 49 M 28 29 29 34 33 - 54 M 45 13 15 22 20 20 - 54 M 45 37 53 48 55 53 48 55 - 59 M 68 63 57 76 70 76 - 59 M 68 63 55 72 83 40 - 64 M 84 74 99 44 28 40 - 64 M 84 74 42 47 47 - 64 M 84 74 99 93 93 90 - 64 M 84 74 42 47 47 - 65 M 107 133 127 140 133 165 - 74 M 101 134 155 56 56 56 202 - 74 M		ΣhH	15 11 26	21 9 30	26 34	20	18 10 28	17 8 25
- 54 M 45 26 20 23 22 22 21 - 59 M 68 63 63 44 28 55 - 64 M 84 74 99 99 93 90 - 64 M 107 133 127 109 - 74 M 101 134 115 - 74 M 65 57 191 134 115 - 74 M 101 134 115 - 75 M 101	1 50	Z.H H	28 15 43	29 13	29	34 52 56	33 20 53	38 53
- 59 M 68 63 55 72 83 - 64 M 84 74 99 100 123 - 64 M 84 74 99 99 93 90 123 - 69 M 107 133 127 169 165 202 - 74 M 101 134 115 130 144 - 74 M 101 134 115 174 201 235	1	Σh	45 26 71	37 20 57	53 76	48 22 70	55 21 76	44 27 71
- 64 M 84 74 99 93 93 90 - 69 M 107 133 127 109 128 - 74 M 101 134 115 130 144 - 74 M 101 134 115 130 144 - 74 M 101 134 115 130 144 - 75 E5 57 56 56 56 56 74 574 188 183 165 202	1	MHH	9 S 8 9 6	63 39 102	77 4 0 72 4 0	72 28 100	83 40 123	68 32 100
5 - 69 M 107 133 127 109 128 F 57 55 56 56 74 74 164 188 183 165 202 0 - 74 M 101 134 115 130 144 F 65 57 59 71 91 T 166 191 174 201 235	1	ZHH	84 41 125	74 53 127	99 42 141	93 47 140	90 47 137	116 61 177
- 74 M 101 134 115 130 144 65 57 59 71 91 T 166 191 174 201 235	I I	ጀኒቲ	107 57 164	133 55 188	127 56 183	109 56 165	128 74 202	106 63 169
	1	ጀቱቲ	101 65 166	134 57 191	115 59 174	130 71 201	144 91 235	162 81 243

DEATHS BY AGE AND SEX SIMCOE COUNTY

1976	125 91 216	92 132 224	101 184 285	000	973 743 1,716	
1975	121 97 218	110 95 205	110 171 281	000	1,019 717 1,736	
1974	120 90 210	100 102 202	128 178 306	000	957 683 1,640	
1973	124 99 223	87 127 214	96 153 249	000	935 085 1,620	
1972	108 113 221	100 97 197	111 160 271	000	917 675 1,592	
1971	96 79 175	91 99 190	95 145 240	000	837 621 1,458	
SEX	ZFF	ZHH	MFF	ጀμμ	MHH	
AGE	75 - 79	80 - 84	+ + + + + + + + + + + + + + + + + + + +	Not Stated	TOTAL	

CENSUS POPULATIONS BY AGE GROUP AND SEX SIMCOE COUNTY

	1976		Š14	295,475 607,265					i i i i i i i i i i i i i i i i i i i	-					
1100	0/61	ži.		295,475	325,850	295,475 325,850 389,475	295,475 325,850 389,475 395,325	295,475 325,850 389,475 395,325 376,695	295,475 325,850 389,475 395,325 376,095 1,1	295,475 325,850 389,475 395,325 376,095 650,255 1,	295,475 325,850 389,475 395,325 376,095 650,255 1,	295,475 325,850 389,475 395,325 376,095 650,255 964,540 470,830 359,190	285,475 325,850 389,475 395,325 376,035 650,235 964,540 470,830 359,190	295,475 335,850 389,475 395,325 376,695 650,255 1,000 470,830 259,190 140,390	295,475 325,850 389,475 389,475 396,225 376,095 650,255 140,390 140,390 288,215
				300 311,730											9
71		E4		000 637,300					ri e	Ä	rì .	Ř	Ä	Ä	
1971		F	311,000		382,300										n
		E	3 325,300		401,200										m
		E	16,643	_											N
1976		[14	8,115		8,515	8,515	8,515 10,140 10,125	8,515 10,140 10,125 8,680	8,515 10,140 10,125 8,680 15,965	8,515 10,140 10,125 8,680 15,965	8,515 10,140 10,125 8,680 15,965 10,990	8,515 10,140 10,125 8,680 15,965 10,990 10,590	8,515 10,140 10,125 8,680 15,965 10,990 10,590 9,810 4,040	8,515 10,140 10,125 8,680 15,965 10,990 10,590 9,810 4,040	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
		×	8,530		8,945	10,955	10,955	10,955 11,470 8,905	10,955 11,470 8,905 16,370	10,955 11,470 8,905 16,370	10,955 11,470 8,905 16,370 11,780	8,945 10,955 11,470 8,905 11,780 10,470 8,880	8,945 11,470 8,905 11,780 10,470 9,880 3,885	10,955 11,780 11,780 10,470 10,470 10,470 10,880 10,880 10,880	8,945 10,955 10,470 8,905 11,780 10,470 10,470 3,886 5,785
		H	14,065	18,240		19,405	19,405	19,405	19,405 17,960 13,980 21,170	19,405 17,960 13,980 21,170 19,250	19,405 17,960 13,980 21,170 19,250 18,540	19,405 17,960 13,980 21,170 19,250 18,540 15,395	19,405 17,960 13,980 21,170 19,250 18,540 15,395 6,270	19,405 17,960 13,980 21,170 19,250 18,540 15,395 6,270	19,405 17,960 13,980 21,170 19,250 18,540 11,395 6,270 11,305
1971	G	4	6,910	8,805	200	2001	8,500	8,500	8,500 6,675 10,400	8,500 6,675 10,400	8,500 10,400 9,330	8,500 6,675 10,400 9,330 7,835	8,500 6,675 10,400 9,330 9,495 7,835 3,210	9,500 6,675 10,400 9,495 7,835 3,210 6,440	8,500 6,675 10,400 9,330 7,835 3,210 6,440
	-	M	7,155	9,435	10.020	20000	9,450	9,450	9,450	9,450 7,305 10,770 9,920	9,450 7,305 10,770 9,920	9,450 7,305 10,770 9,920 9,045	9,450 7,305 10,770 9,920 9,045 7,560 3,060	9,460 17,305 10,770 9,920 9,045 7,560 3,060 4,865	9,450 10,710 10,710 1,007 1,000 1,000 1,000 1,000 1,000 1,000
AGE GROUP			0 - 4	6 - 5		10 - 14	10 - 14	10 - 14 15 - 19 20 - 24	1 1 1 1	1 1 1 1 1	1 1 1 1 1 1	1 1 1 6 1 1 1			

3. The Geography of Simcoe County

The word 'demography' implies study of the spatial distribution of population and of its characteristics. The distributions are hypothetically determined by geographical features, natural or man-made, such as land quality, water supply, roads, and schools. Changes in distributions are believed to be partially controllable, for example by the control of land use, siting of roads and facilities, and provision of water, sewer and other public utilities; and are partially the result of complex economic and social forces.

It follows that mapping is essential in demography and any planning connected with it. Both population statistics and physical features must be related to a common grid system. For convenience in analysis, the grid and the numbers should be computer-readable (providing the requisite computer programs and plotting facilities exist).

The process of converting Simcoe County geography and demography into computerized form was somewhat furthered in this project, although much remains to be done. The City of Toronto Planning Board has an advanced system which is an example of what can be done.

In the 1971 Census, Statistics Canada made provision for creating computerized spatial population information. The smallest unit of population counted is called an Enumeration Area, averaging about 400 persons*. Each

^{*} The average may be 400, but the range in Simcoe County was from 60 to 1815 persons; which made our early computer maps look rather strange.

province, county, township, and each incorporated city, town, and village with local government is divided into an appropriate number of EA's; and the centroid of each EA has been located in the Universal Transverse Mercator grid system. This is a 'metric' system - the grid is numbered off in kilometres; and the newer series of maps (1: 25,000, 1: 50,000, etc.) from the federal and provincial governments are marked with this grid. Consequently it is possible to relate physical and population characteristics to each other, by translating features from maps to computer-readable form (and by plotting overlays onto physical maps).

With the help of the Geography Department, Faculty of Arts, York University, the outer boundaries and township boundaries within Simcoe County were 'digitized' from maps and expressed in the UTM grid system. Also, the locations of high schools in the county were recorded in the same system. For further development as a planning tool, the conversion to computer records could be continued: rails and roads; land values and uses; geological features; agricultural land quality; and so on and on. Figure 3-1 is a computer-plotted map showing township boundaries.

It was decided to use the census subdivisions as the basis for spatial distribution of population in the projections. On the one hand, computing costs increase as the number of subunits increases; on the other, larger units mean a coarser representation of the true distribution. The census subdivisions enjoy the advantage of appearing in published tabulations of births, deaths, population,

area, and other characteristics necessary to add them to the model.

Table 3-1 gives selected characteristics of each census subdivision.

3.1 Assignment to Stage-of-development status

Land use areas in part 1 were calculated by using the concession and lot-line grid in each township to divide the township into rectangles of about 0.4 sq. km. Each rectangle was assigned a land use according to a map prepared for the Toronto-Centered Region Study in 1971. We were primarily interested in comparing population densities between urban and rural areas, leaving out of rural areas land uses considered unlikely to attract housing. The comparison is still very rough: non-residential areas in urban places are not allowed for. The population density was one factor used in assigning a subdivision to an S-curve segment: the higher the density, the higher up the S-curve.

The figure below shows the S-curve schematically and the segments corresponding to five stages of development:

- A: rural: small, aging, population; negative net migration as farmers retire to towns
- B: rural: small population; in earliest stage of development (commutershed); positive net migration

- C: rural-suburban: rapid growth; positive net migration, young families
- D: suburban-urban: slower growth, development reaching saturation, land prices increasing and incoming migration older
- E: urban: land nearly filled up; small net migration; population stable and aging.

The S-curve

The S-curve has the equation $P_{t,+\theta} = \frac{K}{1 + e^{a + b\theta}}$

where P is population

t, is starting year

θ is number of years past starting year

K is capacity.

Rearranging and taking logs of both sides the equation is seen to be in the form of a straight line

in
$$\ln(\frac{K-P}{P})$$
 versus θ : $\ln(\frac{K-P}{P})$ = $b\theta$ + a.

The slope b and vertical-axis-intercept a can be calculated from the 1971 population, the 1976 population, and the capacity, for each subdivision. If the 1976 population is greater than the 1971 population, and both are less than the capacity, the slope will be negative; and, as time passes and the population becomes closer to the capacity, the log will become more negative. The number of years required to reach a given negative value is thus a measure of the subdivision's rate of progress along its own S-curve; and the rate is a clue to its location on the curve. Figure 3-2 shows log versus time lines for townships in Simcoe County.

Each census subdivision was assigned to a stage-of-development category based on the number of years required to reach 1% of capacity at the growth rate 1971 to 1976; and the population density of its total residential and agricultural areas in 1976. The assignments are shown in Table 3-1, part 1.

3.2 Share of Net Migration 1971-1976

As mentioned earlier, net migration is not directly recorded* and is estimated by subtracting natural increase (births minus deaths) from population change.

^{*} Good estimates can be made from changes in Family Allowance and Canada Pension address changes; and from changes in Municipal Enumeration data.

Net migration may be either positive or negative. To calculate share of county net migration for each census subdivision, the populations in 1971 and 1976 and births and deaths in that interval, were used. Some figures were estimated where tables were incomplete.

3.3 Population Centroid

The centroid is the 'center of gravity' or 'balance point' of the county's population. The centroid is the point at which the airline travel distance to provide a service to the population from a single facility is a minimum.

The co-ordinates of the center of each census subdivision are multiplied by the population of that subdivision, and divided by the whole population: $\overline{X} = (\underline{\mathcal{I}}^T P_i \ X_i) \ \dot{\cdot} \ \underline{\mathcal{L}} \ P_i.$ The smaller the subdivision, the more accurate the centroid calculations.

The 1976 centroid for Simcoe County was about $0.894\ km$. west and $0.457\ km$. south of Midhurst. The movement of the centroid is calculated with the population projection.

3.4 Population Characteristics - 1971 Census

A computer file of 1971 Census data for each EA was selected from files in the library of the Institute for Behavioural Research, York University. Each record contains 987 data elements covering education, housing,

occupations, income, and other matters. Some information is derived from a 100% survey (every person in the EA was queried); and the remainder is extrapolated from a 30% survey using a longer and more detailed questionnaire.

A listing of the contents of those records is available from the author, as are copies of the computer file on tape. There are three ways this data can be aggregated and/or plotted: selecting by identification number (e.g. naming and adding all the EA's in a given Township); second, by range of coordinates (e.g. selecting all the EA's in the southern half of the county); and third, by selecting all EA's having a given characteristic, and plotting their location (e.g. location of EA's where mother tongue is French for more than X% of the population).

CHARACTERISTICS OF SIMCOE COUNTY SUBAREAS IN POPULATION

PROJECTION MODEL

				1076 20201 144100	Jation	Share or	estimated #	253233550
	Population	19/1 population	utation	13 / 0 Dob	ITALTON	1971 - 1976	years to	stage-of-
SUBDIVISIONS	Capacity	- Obs	density	.46	density	county net migration	reach capa- city	dereloptent- category
Adjala	6,000	2,278	12.2	3,386	18.1	.0351	34.0	Ų
Alliston	15,000	3,176	1,095.2	4,155	1,432.8	.0290	86.3	U
Barrie	125,000	27,676	954.3	34,389	1,185.8	.1944	101.5	U
Beeton	3,500	1,061	589.4	1,604	891.1	.0175	40.5	۵
Bradford	12,000	3,401	459.6	5,080	6.989	.0473	44.6	Ω
Coldwater	2,000	759	533.8	803	617.7	.0011	262.5	щ
Collingwood	35,000	9,775	461.1	11,114	524.2	.0441	150.0	μQ
Cookstown	3,000	847	564.7	874	582.7	.0012	601.4	n
Cresmore	3,000	978	444.5	1,089	495.0	.6042	168.5	ø.
Elmvale	3,000	1,103	459.6	1,176	490.0	.0018	252.0	m m
E SS SS	25,600	12,078	42.6	14,369	50.7	.0550	0.59	o
CO CO	4,000	2,950	11.4	2,429	9.4	.0003	196.0	4
Gwillimbury, West	5,600	3,272	16.0	3,974	19.4	.0156	38.7	٥.
Indistil	30,000	10,500	36.9	14,839	52.2	.1315	43.7	υ
e ra	10,000	3,071		3,654	14.2	.0190	103.3	В
Matchedash	1,000	428	2.2	462	2.3	*000*	222.3	*
Medente	5,500	2,895	10.1	3,736	13.0	.0270	35.0	U
Midland	46,400	10,992	955.8	11,568	1,005.9	.0063	424.3	۵
Nottawasaga	6,500	5,458	14.3	65675	13.0	.0051	62.2	U
Orillia, City of	80,000	24,040	1,063.7	24,412	1,066.0	0061	1,003.3	M
Orillia, Township of	10,000	5,032	16.6	6,399	21.1	.0431	41.0	v
Oro	11,000	5,190	16.3	6,221	19.5	.0308	62.7	υ
Pentanguishene	21,600	5,497	631.8	5,460	627.6	0036	nor possible	ш
Port McNicoll	6,400	1,450	604.2	1,522	634.2	0002	441.5	es;
No.:12	2,400	11,000		1,287	7.7	.0061	77.1	ф
Stayner	6,500	1,937	379.8	2,454	481.2	.0190	77.1	Ų
Sumnidale	4,000	2,349	11.7	2,265	11.3	.0015	343.5	<
Tay	8,000	4,321	22.4	6,379	33.1	0.0676	18.4	v
Tecumseth	7,300	4,158	14.0	5,803	20.6	.0538	20.3	U
Tiny	8,000	5,519	15.0	6,682	18.2	.0317	23.0	O
Tosorontio	4,500	2,963	16.0	3,017	16.3	0012	379.2	ĸ
2011	5,200	1,616	950.1	2,747	1,615.9	.0301	29.6	Ω
Vespra	10,000	4,183	15.9	5,265	20.0	.0267	56.5	U
Victoria Harbour	5,600	1,243	318.7	1,310	335.9	.0317	487.5	U
Wasaqa Beach	15,000	1,923	36.3	4,985	93.9	.0507	62.5	Ω
Simcoe Indian Reserves	2,000	435	10.3	823	19.5	.0135	31.7	U
County Total	549,600	175,604	35.4	210,691	43.5	1.0000		

CHARACTERISTICS OF SIMCOE COUNTY SUBAREAS IN AREAS

PROJECTION MODEL

SNOTSIAIGENS	total area square km.	Residential	Agricultural industry	commercial &	woodland	park	extractive	institutional	water
hdja!a	136.6	11.32	126.81	1.56	42.14	3.12	1.95	00.0	0.00
Alliston	2.9								
Sarrie	29.0								
Beeton	1.8								
Bradford	7.4								
Coldwater	1.3								
Collingwood	21.2								
Cockstown	1.5								
Creenore	2.2								
Elmvale	2.4								
100 SO 173	283.5	8.90	173.50	1.21	66.73	6.07	0.81	26.29	0.00
to 0.1	258.5	10,32	153.55	2.15	69.25	19.36	2.15	00.00	1.72
Gwillimbury, West	205.1	17.60	141.24	2.05	31.93	11.46	0.82	00.00	00.0
Innisfil	284.4	40.81	168.99	4.95	62.65	4.12	2.89	0.00	0.00
Na	257.1	19.15	138.71	3.52	76.19	13.68	0.39	0.00	5.47
Matchedash	198.4	18.18	16.16	05.0	121.63	28.69	0.40	0.00	12.53
Nedonte	286.4	18.41	141.70	4.28	104.88	15.41	0.86	0.00	0.86
Midland	11.5								
.crtawasaga	381.6	11.05	280.89	4.25	76.91	6.37	1.70	0.00	0.42
Orillia, City of	22.6								
Orillia, Township of	303.4	33.90	90.81	5.86	161.95	3,35	3.77	00.00	3.77
Oro	318.5	30.48	146.80	9.87	108.17	17.60	1.72	00.00	3.66
Pentanguishene	8.7								
Port McNicoll	2.4								
Pana	167.0	4.91	31.93	0.41	108.06	2.87	0.41	10.64	7.78
Starner	5.1								
Sunnidale	200.5	2.03	140.43	0.41	45.86	6.49	3.25	1.62	0.41
Tay	193.0	20.80	71.54	2.91	77.37	11.23	1.66	0.00	7.49
Tecumseth	281.6	13.63	230.40	3.30	31.79	1.24	1.24	00.00	00.0
Tiny	367.8	32.23	122.75	3.53	157.19	45.48	3.53	0.00	3.09
Tosorontie	184.8	5.61	84.58	0.80	32.47	8.42	00.00	52.91	0.03
Tottenham	1.7								
Vasora	263.1	11.82	118.20	3.94	101.12	22,33	3.50	0.00	2.15
Victoria Harbour	3.9								
wasaya Beach	53.1								
Simcoe Indian Reserves	42.3								
	(21.11	000000000000000000000000000000000000000	2	00 354	227.29	3) 05	97 70	40 50
County Total	4,842.5	311.15	2,378.99	55.40	1,4/6.29	67.177	31.05	94.46	44.04

CHARACTERISTICS OF SIMCOE COUNTY SUBAREAS IN EA'S PROJECTION MODEL

NUMBER OF EA's	~	יו וח	24	8	*	CI	14	1	2	2	17	W	Ŋ	16	10	п	ហ	18	12	40	10	10	89	2	e	е	so	6	7	10	9	m	9	7	m	rt	293	
ENUMERATION AREAS INCLUDED	269 - 271	- 1	1 - 25, 51 - 69, 319	222, 223	208 - 211	266, 267	101 - 114	302	71, 72	6, 7	301 - 308, 309 - 311, 321, 323, 342 - 345	1 - 5	204 - 207, 301	303 - 318	160 - 165	260	261 - 265	352 - 367, 369, 370	56 - 67	151 - 171, 201 - 219	251 - 259, 268	101 - 109, 116	311 - 318	309, 310	166 - 168	68 - 70	51 - 55	301 - 306, 319, 351, 368	212 - 218	8 - 17	317 - 320, 322, 346	219 - 221	110 - 115	307, 308	18 - 20	21		
ELECTORAL DISTRICTS ENU	7,77) m	586	586	586	567	517	586	517	517	533	517	586	586	575	567	567	567	517	567	567	567	567	567	575	517	517	567	586	517	553	586	567	567	517	517		
CENSUS SUBDIVISIONS	s [eibz	Alliston	Barrie	Beeton	Bradford	Coldwater	Collingwood	Cookstown	Creemore	Elmvale	្តិ ប្រទន្ធន	Flos	Gwillimbury, West	Innisfil	Mara	Matchedash	Medonte	Midland	Nottawasaga	Orillia, City of	Orillia, Township of	Oro	Pentanguishene	Port McNicoll	Rama	Stayner	Sunnidale	Tay	Tecumseth	Tiny	Tosorontio	Tottenham	Vespra	Victoria Harbour	Wasaga Beach	Simcoe Indian Reserves	County Total	*******

4. First Projection

As an example of the workings of the model, a projection was computed assuming a constant county net migration of 3,000 per annum. That figure is about half the average annual net migration from 1971 to 1976, calculated from census figures; and it is about twice the net migration in 1976-1977 calculated from enumeration (property tax) populations. It produces a county population in 1981 very close to the CODE estimate; and a population in 1991 about 90,000 less than the Simcoe-Georgian Task Force target for that year. In brief, an assumption of 3,000 p.a. net migration lies somewhere in the mid-range of values expected by some knowledgeable people. The resulting county population is plotted in figure 4-1.

Details of the results are given in the appendix: a set of projections for each of the census subdivisions and for the county, by age group and sex, with shares of births, deaths, and net migration.

Graphs of the population of each subdivision are given here in figures 4-2 through 4-7*. In these graphs are shown the consequences of assumptions concerning assignment of each area to a segment of the S-curve (which determines the flow direction by age and sex of its net migration) and fixed share of county net migration, which was based on shares of 1971-1976 net migration. It will be observed that there are several subdivisions in which the SGTF - defined capacity is exceeded (in Tiny as early as 1986) and others never

^{*} Please note that the scales of these graphs are different.

reach their capacity. In part this is because the SGTF capacities envisioned future changes in boundaries which would keep rural areas separate from urban areas: for example, Tiny's excess would be annexed to Midland or Penetang. Nevertheless it strongly suggests that development trends in 1971-1976, if allowed to continue, would sooner or later create undesireable contradictions between land use plans and realities. The computer program is designed to facilitate exploring alternatives.

Another effect of the choice of S-curve assignments may be seen in the changes in age distribution shown in figure 4.8. In this figure, the age distributions from the 1971 and 1976 censuses are compared with the calculated 1986 age distribution from cases 0 (zero net migration) and 1 (3,000 p.a. N.M.). Age groups are plotted at their midpoint, and 10-year groups have been divided in half to facilitate comparison.

The 1976 and 1971 graphs show general features similar to Ontario as a whole, as reported in the CODE report*: an increasing dip in ages up to 10, a plateau about 30, an increasing overall downward slope towards the higher ages. Since only deaths and migration affect the membership of cohorts above 1 year old, the displacement of a point over five years (see arrow) is the net result of these flows. Evidently the bulk of 1971-1977 net migration was in the age ranges from about 20-30, 5-15, and 35-40 in that order of significance.

With zero net migration, in 1976-1986 all cohorts

^{*} see chart 2.9, CODE report.

get ten years older and a little smaller, while birth rates keep the 0-4 age group almost constant. With 3,000 p.a., the choice of S-curve segment assignments has produced substantial increases in the 20-40 age groups, and because these include the ages of greatest fertility, the number of children up to 10 has increased. Nevertheless the number of children in elementary, secondary, and post-secondary age groups shows a decline from 1976 levels. The changes in age group sizes over the whole projection period are shown in figure 4-9 to 4-13. Clearly the age and sex distribution of net migration is at least as important as total numbers, and bears further study (see conclusion).

Table 4-1 Page 1 of 2

CENSUS POPULATION OF CENSUS SUBDIVISIONS SIMCOE COUNTY

	,																				
PROJECTED	2001	7,103	7,237	57,69;	3,615	16,546	36.1	16,350	995	1,495	1,348	23,044	2,622	6,125	28,075	5,811	482	6,6,7	13,871	5,691	26,967
→ PROJ	1661	5,541	5,960	48,566	2,801	8,369	838	14,328	947	1,316	1,269	19,718	2,707	5,246	22,401	4,894	475	5,439	13,162	4,377	26,507
	1981	4,070	4,742	35,071	1,976	6,136	767	12,107	897	1,156	1,198	16,079	2,511	4,369	17,217	4,031	462	4,286	12,091	5,042	25,130
	1976	3,386	4,155	34,389	1,604	5,080	803	11,114	874	1,089	1,176	14,369	2,429	3,974	14,839	3,654	462	3,736	11,568	4,959	24,412
ACTUAL <	1971	2,278	3,176	27,676	1,061	3,401	759	9,775	847	978	1,103	12,028	2,950	3,272	10,500	3,071	428	2,895	10,992	5,458	24,040
AC	1966	1,707	3,149	24,016	866	2,529	720	8,471	717	878	1,031	14,455	2,342	2,629	7,853	2,651	342	2,396	10,129	4,334	15,295
	1961	1,628	2,884	21,169	810	2,342	726	8,385	1	850	957	13,753	2,500	2,642	6,987	2,495	381	2,362	8,656	4,271	15,345
	1956	1,626	2,426	16,851	675	2,010	693	7,978	8 8	838	897	12,658	2,315	2,455	6,021	2,357	365	2,388	8,250	3,970	13,857
	1951	1,392	1,987	12,514	613	1,483	583	7,413	1	869	808	10,176	2,020	2,294	4,238	2,143	397	2,201	7,206	3,609	12,110
	1941	1,384	1,733	9,725	594	1,033	549	6,270	i	629	!	2,999	2,816	1,842	3,397	2,059	442	2,274	6,800	3,675	9,798
	1931	1,574	1,355	7,776	563	972	628	5,809	!	591	-	3,631	3,929	1,815	3,162	2,301	480	2,533	6,920	3,759	8,183
	1921	1,613	1,376	6,936	582	961	658	5,882	!	653	# !	2,910	3,034	1,994	3,330	2,458	507	2,723	7,016	4,110	7,631
	SUBDIVISIONS	Adjala	Alliston	Barrie	Beeton	Bradford	Coldwater	Collingwood	Cookstown	Creemore	Elmvale	E338	Flos	Gwillimbury, West	Innisfil	Mara	Matchedash	Medonte	Midland	Nottawasaga	Orillia, City of

CENSUS POPULATION OF CENSUS SUBDIVISIONS SIMCOE COUNTY

								ACTUAL	-	1	PROJECTED	ED
sublivisions	1921	1931	1941	1951	1956	1961	1966	1971	1976	1981	1991	2001
Orillia, Township of	4,561	4,979	5,335	6,705	8,645	10,054	11,052	5,032	6,399	7,259	9,147	11,069
010	3,098	2,842	2,819	2,923	3,880	4,284	3,956	5,190	6,221	6,887	8,278	9,616
Fentanguishene	4,037	4,035	4,521	4,949	5,420	5,340	5,349	5,497	5,460	5,568	5,809	5,825
Port McNicoll	1,074	964	973	884	932	1,053	1,208	1,450	1,522	1,562	1,676	1,772
Rama	1,229	1,027	832	797	818	916	926	1,100	1,287	1,390	1,636	1,917
Stayner	972	1,019	1,085	1,280	1,429	1,671	1,772	1,937	2,454	2,740	3,397	4,146
Sunnidale	2,070	2,013	2,009	2,034	2,633	2,866	2,149	2,349	2,265	2,351	2,586	2,739
Тау	3,159	2,770	2,649	2,793	3,105	3,670	3,187	4,321	6,379	7,617	10,301	13,114
Tecumsoth	2,942	2,838	2,596	2,566	2,911	3,209	3,106	4,158	5,803	6,881	9,219	11,640
Tiny	4,026	3,693	3,554	3,970	4,071	4,430	4,621	5,519	5,582	7,378	8,967	10,531
Tesorontio	1,672	1,395	1,346	1,444	1,806	1,886	1,884	2,963	3,017	3,144	3,452	3,666
To: tenham	494	266	561	165	702	778	781	1,616	2,747	3,419	4,861	6,372
Vegora	2,281	2,486	2,364	2,999	3,314	3,489	3,185	4,183	5,265	5,915	7,329	8,708
Victoria Harbour	1,463	1,128	1,026	953	1,012	1,066	1,114	1,243	1,310	1,357	1,432	1,486
Masada Beach	1 1	1	1	387	529	431	1,382	1,923	4,985	5,902	7,912	9,864
Sincoc Indian Reserve	267	259	286	262	354	396	395	435	823	1,091	1,662	2,274
County Total	83,762	86,996	89,948	109,422	130,191	144,682	152,739	175,604	210,691	233,778	283,528	331,548
Not including Mara	80,065	83,667	87,057	106,482	127,271	141,132	149,132	171,433	205,750	228,357	276,998	323,820

 NUMBER OF PERSONS

0 \$

-20 09

Pigure 4-6
Case 1: 3,000/year constant net
migration
Population Projections for cities
forms, villages, townships and
Indian Reserves of Simcoe County

Figure 4-7
Case 1: 3,000/year constant net migration

Population Projections for cities towns, villages, townships and Indian Reserves of Simcoe County

										A1 G	
SQ KM	43.51	48.28	53.38 88.95	58.55 97.56	63,58	68.47	73.30	78.10	82.73	87.02 144.99	
DENSITY PER	ID LAND	1D L AND	1D L AND	1D LAND	1D LAND	4D.	4D L AND	VD YD	ND S L AND	ND S LAND	
POP. DENS	ALL LAND AGR/RES LA	ALE LAND AGR/RES LAND	ALL LAND AGR/RES LA	ALL LAND AGR/RES LAND	ALL LAND AGR/RES LAND	ALL LAND AGR/RES LA	ALL LAND AGR/RES L	ALL LAND AGR/RES L	ALL LAND AGR/RES L	ALL LAND AGR/RES L	
TOTAL	105975 104710 210665	116512 117266 233778	127988 130525 258513	139720 143809 283528	151163 156703 307866	162261 169287 331548	173161 181814 354975	183852 194356 378208	193995 206611 400607	203193 218191 421384	211402
70+	5795 7745 13540	6471 9774 16244	6880 11836 18717	6939 13352 20290	7344 14818 22162	7682 16116 23799	8467 17603 26070	9020 18926 27946	10783 22061 32844	12449 25313 37763	14539
69-59	3875 4055 7930	3874 4607 8481	3612 4490 8102	4110 4816 8926	4230 4987 9217	5012 5532 10545	5130 5723 10853	7047 8155 15202	7853 9076 16929	9322 10903 20225	11380
55-64	8885 9810 18695	9206 10048 19254	9924 10586 20510	11039 11377 22416	12087	14621 15093 29714	17824 18719 36542	20589 21741 42330	24864 25702 50566	26771 27783 54554	25106
45-54	10450 10595 21045	11678 11427 23104	12881 12278 25158	15663 15340 71004	19298 19233 38531	22379 22393 44772	27170 26595 53765	29409 78928 58237	27556 27933 55539	27546 27546 54340	27874
35-44	11795 10980 22775	14672 14134 28775	1848i 18070 36551	21586 21332 43017	25679 25639 52318	29058 27939 56997	27132 27079 54211	26312 26621 52933	27438 27794 55232	29273 29665 58939	31106
25-34	16365 15970 32335	19622 19259 38881	24700 23605 48305	27131 25932 53063	25175 25066 50242	24335 24601 48936	25479 25785 51263	27343 27672 55015	29211 29501 58712	29934 30181 60036	3 246
20-24	8915 8679 17585	11912 10836 22749	11381 11008 22389	9940 9969 19909	10526 10539 21045	11095 11158 22253	12406 12432 24839	12984 12995 25970	13108 13116 26224	13328 13328 26656	1 1863
15-19	11495 10120 21605	10293 21242	9498 9251 16748	10088 9823 19911	10662 10442 21104	11982 11720 23702	12564 12283 24847	12689 12604 25093	12910 12617 25527	13450 13138 26599	14148
10-14	10950 19125 21075	9493 5781 18574	10086 c654 19741	10274 20936	11987 11554 23542	12572 12118 24690	12698 12239 24937	12919 12453 25372	13460 12975 26436	14161 13651 27813	14727
6-5	8045 E520 17465	9540 9094 18634	13116 9715 19832	11445 10°07 22441	12030 11561 2 45.91	12156 11633 23839	12378 11897 24275	12°20 12420 25341	13623 13658 26721	14189 13644 27334	14550
4-0	8515 9120 16635	9096 8746 17840	10430 10031 20461	11018 10597 21515	11144	11.568 10934 22.302	11913 11459 23373	12620 12140 24759	13189 12689 25878	12651 13037 26599	13154
SFX	3 4 ⊢	2	2 4 1	2 4 +	rur	Συ⊢	Σ μ. ⊢	3 11. ⊢	2 4 F	Σ 4, ⊢	2.
Y E. A D	1576	1981	1986	1991	1996	2001	2008	2011	2016	2021	2026

- CAR						-									
1977	BIRTHS BY AGE	₹. г	0.0	20	0	183	528	818	78	0	0	0	0	1612	
	17 3C BRK	~ 1	00	00	00	37.0	507	1603	152	00	00	00	00	3161	
	DEATHS	¥	27	4	4	14	14	2.1	29	69	1:53	127	587	1050	
		_ -	51	~ 33	m r-	18	18	30	15	38	81 234	195	385	1631	
	NET WISPATION	Σ	196	186	57	-10	226	479	129	139	33	4	29	1469	
		L -	192	354	173	35	265	458	133	126	33	111	45	1531	
985	BIRTHS BY AGE	≱ u	00	00	0 0	187	622	1014	1.06	0	0	0	0	1929	
		- - -	0	00	00	366	1.220	1588	209	00	00	00	00	3783	
	CEATHS	Σ	3.0	4	4	13	17	26	34	7.7	157	126	652	1160	
		L F	23	m	6	4	2	11	19	4 3	83	75	484	751	
			53	7	7	1.1	22	3.7	53	11.8	240	201	1136	1881	
	NET MISRATION	×	196	186	57	-10	226	479	129	139	33	4	29	1 46 9	
		LL F	182	178	99	35	265	458	133	126	33	11	45	1531	
		-	200	364	123	24	064	937	262	265	99	15	14	3 00 0	
186	BIRTHS BY ACE	Σ	0	C	C	176	414	1107	137	ė	c		(
	CF MCTHER	۷.	0	0	0	167	5.92	1150	122	00	0 0	o c	00	2021	
		+-	0	C	0	341	1207	2348	248	0	0	0	0	4 144	
	DEATHS	Σ.	34	5	4	12	16	31	77	8.7	172	121	6.80	1 21 4	
		<u>-</u> +	26	n	(m)	4	5	1.4	24	45	888	75	582	868	
		-	29	8	_	1.5	12	45	68	132	260	196	1271	2 0 8 2	
	WET WIGSATION	>	196	185	57	-10	226	619	129	139	8	7	20	1 669	
		LL.	182	178	99	35	265	458	133	126	1 60	· -	6.7	1521	
		_	378	364	123	24	4 90	93.7	262	265	99	15	74	3000	
1992	STRIMS BY AGE	Σ	0	0	0	184	576	1264	15.5	C	c	c	<		
	OF MOTHER	L	0	0	C	177	554	1105	271	0 0	0 0	0	0	6512	
		-	C	С	0	361	1130	2433	303	00	00	0	00	4233	
	DEATHS	5 1	25	2	4	1.2	15	33	52	102	190	136	869	1 28 1	
		ا بيا	26.	4	3	4	5	1.5	5.6	55	46	79	656	016	
		-	18	6	œ	16	19	4.8	91	157	284	215	1354	2251	
	NET MISPATIFU	۶.	190	186	57	-10	226	672	129	139	33	3	29	1469	
		⊥ F	132	173	99	3.5	565	453	133	126	133	100	45	1531	
		-	273	36.4	123										

YEAR		SEX	9-6	6-6	10-14	15-19	20-24	25-34	35-44	45-54	55-64	69-59	704	TOTAL
1691	BIRTHS BY AGE CF MCTHEF	ĭ u	000	000	coc	200	6.08 5.84 1.193	1195 1148 2343	177	000	000	000	000	2180 2095 4275
	DEATHS	≥ 4 1-	35 27 61	240	ww.cc	13	15 5 20	31 14 45	63 34 97	128 69 197	212 103 315	143 83 227	737 727 1463	1388 1074 2462
	VET MIGRATION	5 u. H	106 182 378	186 178 364	57 66 123	35	226 245 490	479 458 937	129 133 262	139 126 265	33	111	29 45 74	1469
2002	PIRTHS BY AGE OF MOTHER	Σ 4 F	000	000	000	221 213 434	656 630 1287	1209 1161 2370	180 173 352	000	000	000	000	2266 2177 4443
	DEATHS	2 4 +	2.6 2.7 6.3	いそひ	W40	15	17 5 22	30 14 45	37	149 81 230	250 125 375	167 92 259	774 790 1565	1517 1184 2701
	NET MIGRATION	Z I H	1966 1182 378	184 178 364	57 66 123	-10 35 24	226 265 490	479 458 537	129 133 262	139 126 265	33	111	29 45 74	1 531
2007	BIRTHS BY AGE CF MOTHER	Σ h. h-	000	000	000	220 220 450	722 594 1416	1282 1231 2513	172	000	000	000	000	2405 2311 4716
	DEATHS	Σ ⊢	38 20 67	240	740	15 20	118 6 24	32 15 47	64 36 101	178 95 273	309 156 465	178 99 277	852 863 1715	1695 1312 3008
	NET MIGRATION	5 ± 1	196 1183 378	186 178 364	57 66 123	-10 35 24	226 265 490	479 458 937	129	139 126 265	33	4 11 12	29 45 74	1531
2012	BIRTHS BY AGE Ch ycther	≥ 4. ⊢	000	000	000	231 222 453	747 717 11464	1384 1330 2714	176 170 346	000	000	000	000	2538 2439 4977
	DEATHS	74-	4.0 2.1 7.1	6 4 10	240	15	119 6 25	35	62 36 98	193 102 296	359 182 541	236 136 372	916 934 1850	1456
	NET MISSATION	; <u>-</u> -	15.6	186 173 364	57 66	-10 35 24	276	458	129	139	33	111	29 45 74	1469

BIRTHS, DEATHS AND NET 41GRATION FOR SIMCOE COUNTY

YFAR		SF X	0-4	6-5	10-14	15-19	20-24	25-34	35-44	45-54	55-64	69-59	10+	TOTAL
							-							
2017	BIRTHS BY AGE	Σ	0	0	0	236	752	1450	187	0	0	0	0	2625
	CF MOTHER	Les.	0	C	0	227	723	1393	179	0	0	0	0	2522
		H	С	0	0	463	1475	2842	366	0	0	0	0	5147
	DEATHS	×	42	ۍ	2	16	19	37	69	183	426	267	1001	2157
		ш	32	4	4	5	9	17	37	100	213	154	1086	1659
		-	47	10	6	20	25	54	103	283	639	421	2177	3817
	NET MIGRATICN	ž	196	186	57	-10	226	479	129	139	33	4	59	1469
		ų.	182	173	99	35	265	458	133	126	33	11	45	1531
		-	378	364	123	54	4 90	93.7	262	265	99	75 and	74	3 000
202	BIRIPS BY AGE	Σ	0	0	0	247	768	1470	201	0	0	0	0	2686
	CF MOTHER	خا	0	0	0	23.7	738	1413	193	0	0	0	0	2581
		 	0	0	0	484	1506	2883	394	Ö	0	0	0	5 26 7
	DEATHS	×	43	9	9	16	20	37	70	177	457	321	1261	2414
		L	33	C	4	5	9	1 7	40	66	229	186	1248	1871
		-	7.6	1.1	10	12	26	52	109	276	686	506	2509	4285
	NET MIGRATION	Σ	196	186	57	-10	226	479	123	139	33	4	53	1469
		LL.	182	178	99	35	265	458	133	126	33	11	45	1531
		⊢	378	364	123	24	490	937	262	265	99	15	74	3000

SIMCCE CRUNTY POPULATION CENTROLO

PEPULATION CENTPOID IS LOCATED:

		a							•
916	1981	1986	1991	1995	2001	2006	2011	2016	2021
IN	Z	Z	Z	Z	Z	Z	2	Z	Z
MIDHURSI	MIDHURST	MIDHURST	MIDHURST	MIDHURST	MIDHURST	MIDHURST	MIDHURST	MIDHURST	MIDHURST
10	40	J.F	90	10	P.	E	20	C.	9
SOUTH	SDUTH	SOUTH	SOUTH OF	SOUTH	SOUTH	SOUTH	SOUTH	SOUTH	SBUTH
KMS	K W S	X. S.	X M X	S X	KMS	X & S	KMS	KMS	X S
0.45	1.13	1.69	2.20	2.67	3.09	3.43	3.72	3.96	4.19
AND	AND	AND	AND	AND	AND	AND	AND	AND	AND
WEST	WEST	WEST	WE ST	F S H	WEST	NEST	WEST	WEST	WE ST
X × S	K w S	K Y S	X ×	X ≥. N	× > ∨	× ×	Z Z	× ≥	× × S
0.39	0.89	0.91	0.03	0.95	96°0	0.96	96*0	96.0	0.96

0.94 KMS WEST AND 4.41 KMS SOUTH OF MIDHURST IN 2026.

5. Forecasts of Post-Secondary Enrolment

From the projected populations we can derive enrolment forecasts by assuming 'participation rates'* appropriate to each program or group of programs. Because we calculated population by single year of age and sex, we were able to utilize participation rates defined at that level of detail; whereas most published rates are referenced to the 18-24 age group.

For university programs, Statistics Canada supplied us with tabulations from the University Student Information System (USIS) for the years 1972 through 1977. The USIS files contain all students registered in Canadian universities as of a common Fall date: December 1 in years 1972 - 1975; November 1 thereafter. However the student's home county is recorded only by universities in the same province, so that the tables supplied to us include only students in Ontario universities. The student's home county is recorded by the Ontario Universities' Application Centre (OUAC) for applicants entering full-time undergraduate study; and by the university for all other students, and the universities have not always been as diligent as might be desireable. Consequently the participation rates for part-time studies may be somewhat understated.

For full-time programs of the Colleges of Applied Arts and Technology, the College Affairs Branch of the Ministry of Colleges and Universities maintains an every-student file of data collected by each College.

^{* &#}x27;participation rate' is dimensionally the same as fertility or mortality rates, i.e. persons participating per 1,000 persons in a group.

Tabulations are produced each year where students are grouped by high school attended and College attended. Rather than figures for age of student, we obtained details of the last grade attended in high school and whether the transition to a CAAT program was direct or delayed. Consequently the 'participation rates' are currently here defined in terms of new entrants to CAAT programs.

We obtained equivalent data from OUAC for applicants and registrants entering Ontario universities from Simcoe County high schools. Consequently we were able to compare flows from those high schools to full-time study in CAATs and in universities, for the past few years.

The flows from the high schools can be compared to flows within the school grades using enrolment data supplied by the Ministry of Education. Projecting enrolments at the county and provincial level by the 'cohort ratio' method of projecting educational program enrolments is a standard procedure. It assumes that the change in group size as students move from one year level to the next is nearly constant (or at least that its trend is predictable), so that the size of a group N years in the future can be estimated from a current group size.

5.1 Short-term forecasts

Figure 5-1 shows how cohort ratios in Simcoe County high schools have behaved since 1969. Each horizontal

line is a grade level, and the top line (100%0 is the group in grade 9. The next line down is the fraction which the following year's grade 10 is of grade 9, and so on. The lines for the 1975 grade 9 are incomplete because that cohort had only reached grade 11 by 1977, the last year for which we have enrolment data. It is clear that, although there has been some variation in the ratios of Grades 12, 11 and 10 to grade 9, the ratio of grade 13 and of year 1 university have remained fairly stable (but the latter has trended downward since 1975). Consequently we can make a rough estimate of university intake for up to five years from 1977 from our knowledge of the grade 9 enrolment to that date: the range (see figure 5-2) appears to be 400-500 per year (about 5% of the 19-year age group).*

Students enter CAATs from both grades 12 and 13, so the flows from each level must be separately calculated. The total of the two components appears (figure 5-4) to be in the range 450-550 per year.

Extending the horizon by looking further down the grade levels, we find a warning of future reductions. Figures 5-3 and 5-4 are enrolments plotted by grade level in 1971 and 1977 respectively. In 1971, enrolment was relatively flat in the elementary grades, peaked in grade 9, and declined rapidly to grade 13. In 1977, a pronounced dip is observed in the middle elementary grades, (about 400 students below 1971 levels in grade 4), a dip which will reach the universities and colleges in the mid-1980's.

^{*} graphs for comparison of other countries with Simcoe County are to be found in Appendix V

As shown in figure 5-2 the total flow of students to Ontario universities and CAATs has been stable at around 850-880 since 1974, but the proportion attending each type of institution has varied. Attendance at CAAT's has increased since 1975, matched by a decrease in university attendance; and in 1977, CAAT entrants exceeded university entrants for the first time. In 1978, flows to both types of programs increased and exceeded one thousand for the first time.

5-2 Long-term Forecasts for Simcoe County participation in Ontario Post-secondary Programs

The computer program which prints out a population projection on paper also writes on magnetic tape a record for each fifth projection-year of the calculated values of population in each subdivision and the county total, by age and sex. This tape then becomes part of the input data, along with participation rates (by age and sex) for the activity in question, to the program which computes enrolment forecasts. Thus it is not necessary to recompute a population projection for each trial of a set of participation rates.*

The participation rates used in this initial example were based on 1976 figures, assumed constant throughout the forecast period so that forecasts strictly follow changes in age and sex distributions in the population projection.

For purposes of studying spatial distribution of

^{*} copies of the types are available at cost of reproduction, for those who wish to try their own forecasts.

demand, the calculation of enrolments in post-secondary programs was applied to each census subdivision and the results printed out at five-year intervals. Tables 5-6 and 5-7 give the county summaries for enrolment in universities, and new CAAT entrants from Simcoe County high schools, respectively. The detail of age and sex distribution reflects the differences in data available for estimating participation rates.

As plotted in figure 5-6, the total university enrolment shows an increase to a plateau at 1981-1986, then a continous rise to the end of the period. However the age mix, and mix of program enrolments, changes substantially over 28, mostly in part-time study, rises to become almost one-third of the total enrolment in 2011. Full-time enrolments are sensitive to the dip in the 18-24 age groups in the 1980's and early 1990's.

In figure 5-8, which shows the projected intake to Ontario CAATs from Simcoe County high schools, the projected drop-off of 18 and 19 year-olds in the 1980's is shown more clearly. This pattern agrees generally with Statistics Canada and CODE projections, in the sense that all project a peak to be followed by a hollow. However, the timing of the maxima and minima in each projection depends on the initial population and assumptions about the size, age and sex distribution of net migration. Because diploma programs are of somewhat shorter duration than degree programs (one, two and three years compared to three, four or five years), CAAT total enrolment tends to follow the intake pattern fairly closely. Consequently, figure 5-8 indicates that Simcoe

County's contribution to CAAT enrolment may bottom sometime in the late 1980's, and begin to recover while the university enrolment continues to decline (slightly) until the early 1990's.

5.3 Potential Enrolment in a full-time degree program in Simcoe County

Currently, persons wishing to study for a university degree full-time must go outside the county. Part-time study in the county is possible through programs offered by Wilfrid Laurier University, mainly in a six-week summer day session but also in Fall/Winter session evening courses at various locations. Also, Glendon College of York University has offered an average of two courses in summer and Fall/Winter sessions to the francophone community in and around Penetang. The two institutions accept each other's credits and co-operate through the committee which initiated this study. A proposal to develop a full-time day program in Orillia, to be called Simcoe College, has been actively supported there for more than ten years; and Wilfrid Laurier University sought and was awarded in 1978 the responsibility for its development. An objective of this study has been to estimate the potential enrolment, and hence the viability, of a full-time degree program.

In these times of financial stringency in postsecondary education, brought about in part by general economic conditions, and in part by shifts in government priorities which in turn are influenced by popular desires and by population forecasts, the prior question is whether existing post-secondary programs serve the people of Simcoe County as well as other parts of our province are served. The answer appears to be a qualified affirmative on an 'average basis', but negative for many individuals.

On the affirmative side, the fraction of high school students entering university (see figure 5-1, 5-2 and Appendix V) are in the same range as other similar jurisdictions: 'similar' in the sense of fraction of urban middle class and present convenient access to university campuses. These are really two parts of a feedback loop: generally, post-secondary students are drawn from the upper middle and upwardly-mobile lower classes, and those groups tend to move themselves to places where their children will have access to desired programs. (The same phenomenon is observed at elementary and secondary levels.) However the time delays in changing social mixes are measured in decades, and other economic conditions must also be satisfied. We hope to study such feedback effects later.

The reaction of a population to readier access to a university campus may be measured in years and the magnitude of the immediate effect is, roughly, indicated by the last graph in Appendix V: the fraction of Simcoe County students leaving high school and entering university might rise from about 32% to about 42% (Regional Municipality of York), or in absolute numbers (1976) about 150 per year. This figure would be subject to the same kind of fluctuation as shown in figure 5-8: it is already on a decline which will hit bottom in 1986. Proportionately, the 150 in 1976

would drop to about 120 in 1978.

There are, of course, other factors to be considered: the attraction of additional students from Muskoka, Parry Sound, Victoria County and so on; as against the 'counter-attraction' of CAAT programs and of other universities. For example, Georgian College draws only about 30% of its enrolment from Simcoe County, and only about half of the total Simcoe County enrolment in CAATs. As we have already remarked in section 5-2, flows to CAATs are about the same as flows to universities.

Let us suppose, on the basis of Georgian College experience, that the factors tending to increase intake to an Orillia program were to balance those tending to decrease it. Our conclusion, then, is that academic program planners should be basing their planning on a 'worst case' intake of between 125 and 150 per year for the next ten years at least, to a full-time degree program offered in Simcoe County.

PROJECTED ENPOLMENT IN ONTARIO UNIVERSITIES FROM SI 2 COUNTY

		SF X	UNDEP 18	18	19	20	21	22	.23	24	25	26	27	28	OVER 28	Z	¥
2016	FULL -T IME	25	and	m en	236	333	3 15	278	125	7.6	37	26	17	14	87	5~4	2
		ш	C	25	325	349	286	154	8.0	24	30	16	10	17	55	-1	n.i
		<u></u>	-	113	5.61	632	6 0 1	432	205	121	19	42	23	31	141	24	
	PART-TIME	2	0	0	0	m	16	16	13	60	34	33	ult- prof	30	393	9	
		La.		0	0	10	16	2.5	2.1	19	40	53	43	53	813	29	
		-		C	0	13	32	42	35	56	14	86	63	83	1206	35	
	TOTAL	Σ	1	33	236	336	331	294	139	105	7.1	58	31	44	480	17	
		L	1	75	325	359	3 02	180	101	42	7.0	69	54	10	868	41	
		_	m	113	561	569	633	474	240	147	141	128	88	114	1347	58	
2021	FULL-TIME	Σ	1	39	244	342	322	282	127	9.8	37	26	13	14	92	12	
		u.	0	7.8	335	359	291	157	81	24	30	16	10	17	58	13	
		\$	and	117	573	701	613	623	201	122	19	45	23	31	150	25	
	PART-THE	Σ	C	0	0	**	16	10	14	00	34	33	15	30	416	9	
		LL.	end	0	0	10	16	26	22	61	40	54	643	54	871	30	
		-	2***	0	0	13	33	24	35	2.7	14	86	63	84	1286	36	
	TOTAL	Σ	good	3.9	244	345	338	290	140	106	7.1	59	32	45	508	18	
		ι.	pred	7 8	335	369	3 08	183	102	43	20	7.0	55	7.0	929	43	
		h	23	117	519	114	646	482	243	148	141	128	83,	115	1436	62	
2026	FUL (-TIME	N	2	14	257	359	337	566	131	101	38	26	13	4	96	13	
		щ	0	8.2	352	376	3 0 5	163	E 1	24	30	9 !	S 1	17	29	51	
		-	2	123	609	736	249	457	215	125	69	43	23	31	158	92	
	PAPT-TIME	5	0	0	0	27	17	17	14	80	35	33	st i	3.1	435	9	
		LL.	-	0	0	11	11	27	22	20	41	52	53	54	922	32	
		-	1	0	0	4	34	44	3.7	27	16	80	\$9	32	1356	38	
	TOTAL	7	c	6.1	257	36.2	3 54	311	145	109	73	60	32	45	531	19	
		· u		0	352	387	322	193	106	44	72	7.1	53	7.1	986	46	
		, j	i m	123	609	749	676	501	251	153	145	131	87	116	1514	49	

AGE	SEX	1976	1981	1986	1661	1996	2001	2006	2011	9102	2021	2026
18	T	124	117	100	105	110	126	134	136	137	143	150
	ш	196	197	175	185	195	222	235	239	242	251	264
	-	320	314	275	290	305	348	369	374	379	394	414
61	Σ	30	28	24	25	26	30	32	33	33	34	36
	ě.	73	73	64	19	20	81	8 7	89	06	6.6	97
	-	103	1 02	88	26	96	111	120	122	123	127	133
LOTAL	Σ	154	145	123	130	136	156	166	168	170	1.7.7	186
	u.	569	271	239	252	265	303	323	327	331	343	361
	—	423	416	362	383	402	459	489	965	502	520	547

6.0 Conclusions

The results of this project are preliminary and demonstrative, rather than conclusive. We have shown what may happen in Simcoe County if trends during the period 1971-1976 were to continue for fifty years. On the one hand, no one really expects such constancy; but on the other hand, we now have a 'base line' against which to compare the effects of such changes as may be postulated. It appears quite clear that many changes, levered by government control over land use and services, will indeed be necessary to distribute growth to those municipalities which can absorb it and away from those who are likely to be 'saturated' if the trends continue.

The computer programming is 'general' in the sense that other counties, or indeed the province as a whole, could be treated by it with appropriate redefinition of input data - that is, of geographical divisions and their characteristics, and of participation rates for social services.

The projections indicate that enrolments in postsecondary programs will, if participation rates do not change, grow slowly in the next five years and then drop for a further five years. The lowest year, taking account of the length of degree and diploma programs, will probably be 1987-88. There should be ample advance warning from high school enrolments.

Participation rates for Simcoe County, somewhat lower than other jurisdictions with higher numbers of urban middle class or handier access to a campus, but nevertheless 'about average', are not constant. Like the weather, there is more discussion than understanding of the forces which alter such rates. One may speculate, however, that the increasing variety of programs will bring a mutual reinforcement, and in turn strengthen offerings in the County.

6.1 Loose Ends

Further work on this project would help to make the projections and forecasts more 'realistic', particularly in the 1-10 year and 25-50 year ranges, and for individual subdivisions:

- The 1976 starting population figures should be single-year of age, by sex, instead of fiveyear groups. (Unfortunately, Statistics Canada rounds all such figures to the nearest 5 so that the totals do not agree with published totals. We chose to stick with five-year groups.)
- 2) Fertility rates should be time dependent. Single-year of age fertility and mortality rates could be used.
- 3) A number of scenarios of net migration should be attempted until a development plan is formulated in which capacities of individual census subdivisions are not exceeded. The practicality of such a plan may then be assessed.
- 4) More use of USIS and OCIS should be made to

improve our definitions of participation rates for various kinds of post-secondary programs. Provision should be made for time-dependent participation rates.

- 5) More comparisions should be drawn between Simcoe County and other areas, in matters such as high school cohort ratios and flows to CAATs and Universities. (See Appendix V)
- 6) The age-and sex-distributions of net migrations and in each of the S-curve segments should be based on local data. (This requires single-year-of-age populations interpolated for intercensal years at the county level.)

Other steps could make the Program more useful:

- Further development of computer-mapping and of programs to compute distance/time quantities to support siting choices, services routing, etc.
- 2) Definition of participation rates for community services, perhaps responsive to rates of growth or other indicators of social stress (15).
- The population-projection program could be revised to redistribute shares of net migration and stage-of-development status when subdivisions approach their capacity. This could be arranged either 'interactively' (the user could enter changes during the process of a calculation) or by a built-in algorithm.

References & Bibliography

- (1) Jackson, R.W. B.
 'The Missing Pupils in the Schools of Ontario Today and Tommorrow A Statement of Conditions, Causes, and Issues'
 - Interim report, Commission on Declining School Enrolments in Ontario ('CODE'); February 28, 1978.
- (2) Tatham, Elaine L. and Finch, Harold L. 'A Computer Model for Demographic Projections in Educational Planning' Johnson County Community College, Overland Park, Kansas - presented to Conference on Population Projections and Related Futures, OISE, November 19, 1974.
- (3) ----, 'Demographic Planning Workshop, October 11 - 13, 1973; conducted at Sheridan College of Applied Arts and Technology, Oakville, Ontario.
- (4) Ontario Statistics 1977, Volume 1, Social Series.
- (5) Simcoe Georgian Task Force 'Simcoe Georgian Development Strategy' Ministry of Treasury, Economics, and Intergovernmental Affairs, Ontario, February 1976.
- (6) Central Statistical Services, TEIGA 'Ontario Population Estimates by Planning Regions and Counties, June 1972 to June 1976'
- (7) Central Statistical Services, TEIGA 'Ontario Short-Term Population Projections 1975-1986' September 1976.
- (8) Central Statistical Services, TEIGA 'Ontario Population Trends, A Review of Implications' December 1976.
- (9) Statistics Canada Cat #81-229 Annual 'Education in Canada'
- (10) Statistics Canada 'GRDSR: Facts by Small Areas - The Geographically Referenced Data Storage and Retrieval System -An Introcution' June 1972.

- (11) Statistics Canada #81-220 Annual 'Advance Statistics of Education'.
- (12) Statistics Canada #92-830 '1976 Census of Canada: Supplementary Bulletins: Geographic and Demographic - Population of Unincorporated Places - Canada' May 1978.
- (13) Statistics Canada #92-831 '1976 Census of Canada: Population, Land Use, and Population Density for Census Divisions and Subdivisions'.
- (14) Statistics Canada #96-806
 '1976 Census of Canada Agriculture, Ontario'
- (15) Olyan, Sydney, and Pennock, Michael
 'The South Simcoe Study' (mimeo), 1977(?).
- (16) SYMAP users Reference Manual Harvard University (with additions and amendments Institute for Behavioural Research, York University).
- (17) Tiny-Tay Peninsula Planning Board 'The Peninsula Plan' March 1978 Draft.
- (18) Coates, D.E. and Couchman, J. 'A Review of Tiny and Tay Townships, Simcoe County, Ontario with Special Emphasis on Franco-Ontarians' prepared for Georgian College of Applied Arts & Technology, August 1977.

Other Data Sources

Computer-readable

- S-1 University Student Information System Statistics Canada (1 record per student in Fall Term; new file each year)
- S-2 Ontario Colleges Information System Ministry of Colleges and Universities, Ontario (1 record per student in Fall Term; new each year)
- S-3 School Enrolment History File Ministry of Education, Ontario (1 record per school; 1 record for each year; accumulative)
- S-4 Applications and Registrations by Ontario secondary school students in Ontario universities (1 record per school per year, 1973-1977) (created for this study by Ontario Universities Application Centre)
- S-5 1971 Census Enumeration Area in Simcoe County
 (1 record per EA; selected from files assembled by
 Institute for Behavioural Research, York University,
 from Statistics Canada files)
- S-6 County and Township boundaries of Simcoe County in UTM grid (for SYMAP input)

Printed

- S-7 New entrants to full-time study at Ontario CAATs by latest activity and pervious level of education, by secondary school
- S-8 Contents of 1971 EA records (see 5 above)
- S-9 Enrolment in Grade 13, Applications and Registrations in Year 1 FT study in Ontario Universities, by secondary school (see 3 and 4 above) 1973-1977.
- S-10 Enrolments by grade level and sex, 1969-1977, each school in Simcoe County (and total) - (see 3 above).

Maps

M-l Department of Energy, Mines, and Resources Series A-501

41A 1:250,000 : Bruce (Edition 3)

31D 1:250,000 : Lake Simcoe (Edition 5)

30M 1:250,000 : Toronto (Edition 2)

M-2 Ministry of Transportation and Communications, Ontario

MTC30701 1:250,000 Simcoe County

1:63,360 Simcoe County, North-west portion

1:63,360 Simcoe County, North-east portion

1:63,360 Simcoe County, South Portion

M-3 Ministry of Treasury, Economics, and Intergovernmental Affairs, Ontario

1:253,440 Toronto-Centred Region Predominant Land Use 1971 1:253,440 Georgian Bay Development Region Predominant Land Use 1971

M-4 TEIGA: Southern Ontario - Semiannual

1:1,506,880 - Zoning

- Official Plans

- Planning Areas

- Minister's Orders

- Committees

M-5 Ontario Geological Survey

Map 1976-6 Ontario Mineral Potential - Lake Simcoe Sheet

- M-6 1971 Census Enumeration Area Boundaries Statistics Canada
- M-7 Ministry of Natural Resources, Ontario
 31D 1:250,000 Land classification Lake Simcoe

Interviews and Personal Communications

- I-l Joe McReynolds, Regional Director, Ministry of Community and Social Services, Barrie, Ontario.
- I-2 Miss B. Livingstone, Office of the Registrar-General, Queen's Park, Ontario.
- I-3 John Perry, Economic Development Branch, TEIGA.
- I-4 Mike Ufford, Tiny-Tay Pehisula Planning Board
 (by telephone).

APPENDIX I

POPULATION PROJECTION FOR SIMCOE COUNTY:

CASE WITH ZERO NET MIGRATION

SQ KM	43.51 72.49	44.96	46.50	47.93	49.06 81.75	49.87 83.09	50°44 84°04	50.85 84.73	51.04 85.04	50.90 84.81	50.44 84.04
POP. DENSITY PER	ALL LAND AGR/RES LAND	ALL LAND AGR/RES LAND	ALL LAND AGR/RES LAND	ALL LAND AGR/RES LAND	ALL LAND AGR/RES LAND	ALL LAND AGR/RES LAND	ALL LAND AGR/RES LAND	ALL LAND AGR/RES LAND	ALL LAND AGR/RES LAND	ALL LAND AGR/PFS LAND	ALL LAND AGR/RES LAND
TOTAL	105975 104710 210685	108651 109091 217742	111643 113535 225178	114513 117587 232100	116748 120840 237587	118211 123263 241474	119102 125135 244237	119569 126672 246241	119433 127726 247159	118451 128036 246486	116675 127579 244254
70+	5795 1 7745 1 13540 2	6340 1 9545 1 15885 2	6666 1 11405 1 18072 2	6620 1 12694 1 19314 2	6884 1 13889 1 20773 2	6944 1 14748 1 21692 2	7279 1 15512 1 22790 2	7440 1 16079 1 23519 2	8697 1 18298 1 26994 2	9424 1 20013 1 29437 2	10204 1 21831 1 32035 2
65-69	3875 4055 7930	3866 4580 8446	3534 4384 7918	3926 4601 8527	3791 4512 8303	4193 4618 8811	4139 4583 8721	5703 6644 12347	5665 6621 12285	6128 7173 13391	7845 8355 16200
55-64	9885 9810 18695	8994 9842 18835	9273 9974 19247	9621 9998 19619	10014	11912 12334 24247	13659 14514 28173	14196 15105 29301	16889 17016 33897	18348 18245 26614	16152 14769 32001
45-54	10595 21045	10821 10617 21439	1,1280 1,0697 2,1977	13353 13068 26421	15375 15407 30783	15961 16025 31986	18932 18041 36974	20661 19374. 40044	18228 . 17794 ·*	15939	15055 15033 30038
35-44	11795 10990 227755	13935 13394 27329	16070 15905 31875	16673 16433 33136	19754 13494 38249	21592 19877 41469	19057 18259 37326	16662 16234 32395	15738 15422 31140	15315 15574 31330	16375 14130 32504
25-34	16365 15970 32325	16977 16601 33578	20106 18679 38786	21983 29978 42062	19420 18449 37869	16969 16402 33371	15028 15583 34611	16103 15734 31837	16675 16297 32971	16256 15889 32145	15302 14957 30259
20- 24	8915 8670 17585	11399	10820 10076 20896	8814 8461 17275	8339 8022 16361	7864 7638 15502	8412 8173 16585	8443 8203 16646	7991 7764 15755	7480 7267 14748	7236 7030 14266
15-19	11485 10120 21605	10902 10103 21005	8882 8484 17366	8494 8044 16448	7925 7660 15585	8477 8195 15673	8509 8226 16735	8053 7796 15839	7539 7289 14828	7294 7950 14344	7207
10-14	10950 10125 21075	8923 8503 17476	8442 8063 16505	7961 7477 15639	8516 8714 16730	8548 8245 16793	8090 7805 15895	7574 7306 14881	7327 7057 14395	7324 7062 14365	7289 7329 14318
2-0	8945 8520 17465	2454 8081 16545	7932 7694 15676	8537 8231 16759	8570 8752 16832	8112 7821 15933	7595 7323 14917	7247 7093 14430	7343 7078 14420	7308 7045 14353	7073 5678 13031
3-4	8515 8120 16635	8030 7733 15763	8588 8272 14363	9850 8307 16922	8159 7859 16018	7640	7391	7387 7113 14530	7351 7050 14432	7135 6872 14007	13417
X o X	FEF	Σu⊢	7 L F	± u ⊢	7 U H	5 4 F	>: U ←	2 II. In	2 u. ←	ਝਾਦ ⊢	† u +
VF 10	1976	1981	1986	loci	1006	2001	2006	2911	2016	2021	5002

	4 +72		Net + 15th	4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4 4 5 6 7 8
TOTAL	1571 1510 3081 1050	631 1681 0 0 0 0 0 1709 1642	3351 1108 729 1837 0	1770 1701 3471 1148 822 1971	1706 1639 3345 1171 895 2066
402	0 0 0 587	385 973 0 0	639 473 1112 0	668 562 1230 0	666 524 1290
69-59	0 0 0	195	125 75 200	0 0 0 118 131 0 0	129 76 204
55-64	0 0 0 153	234	153 811 235 0	160 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	165
45-54	0 0 69	38 107 0 0	711 338 109 0	. 766 . 399 . 115	887 133
35-44	177 74 151 29	15 44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	101 101 205 205 21 200 00	111 109 273 273 62 62 62 62
2:-34	793 762 1555	30 0 0 0 30 850	1000 110 332 0	950 913 1854 26 11 37 0	956 8 29 3 3 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
20-24	513 493 1006 14	188 00 00 00 578	17 . 22	557 1095 15 20 0	480 461 941 13 4 17
15-19	188 181 369	18 10 0 0 0 132 175	113	156 150 307 11 11 0	141 289 200 13
10-14	000 4	mr 000 00	3 4 M C 0 0 0	000 800	000 MN4 000
6-6	000 4	rr 000 cc	. 4 4 4 0 0 0	000 444 000	000 4mr 000
4-0	22 000	12 500 000	600	225	000 810
X	Σ 11. μ > 1	ин жин жин	- хин хин	ደጠ ኮ ደ ጠኮ	ጀயዙ ፖレዙ ፓሀ⊢
	PIPIHS BY AGE CE MCTHER DEATHS	VET MIGRATION A PROPERTY OF THE STATE CF MOTHER	DEATHS	DE VOTHER DEATHS VET VIGRATION	GE VOTHER DEATHS OFATHS NET VIGRATION
YEAR	1077	1982		1987	1092

70+ TOTAL

20-24 25-34 35-44 45-54 55-64 65-69

5-0 13-14 15-19

0-4

SFX

YFAR

	426=1,00	-								met = 671								1 d	20 1 1 2							- 2 347		
1589	3115	1220	963	0	00	,	1513	1453	1272	1024	0	C	0		8641	2938	1353			0	00	1502	1443	6442	1440	1158 2598 At	c	0 0
00	00	690	1371	0	00	>	0	00	669	1251	0	С	0	(0 0	00	731	759	1489	0	00	0	0	0	756	1549	c	0 0
00	00	127	202	0	00	,	0	00	138	76	0	0	0	(0 0	00	144	80	677	0	00	0	0	D	188	110 298	c	0 0
00	0	176	85	0	00		0	00	2 03	304	0	C	0	(0 0	00	236	121	220	0	00	0	0	0	247	374	c	0 0
00	0	102	55	0	0 0)	С	00	101	58	0	0	0	(0 0	00	123	49	181	0	00	0	00	0	136	69	C	
128	250	94	25	С	00)	126	122	51	7.7	0	C	0	:	111	218	. 45	25	2	0	00	103	66	707	39	22	c	
865	1696	24	≓ K.	.0	O C	,	737	1544	2.1	31	0	0	0	ì	104	1498	2.0	0 0	6	0	00	73.0	750	1 24 4	2.1	30.0	c	0 6
451	885	12	18	C	c 0	,	4 45	872	. 15	4 16	0	0	0		4 (1	924	13	4 7	10	0	00	466	443	416	12	14	c	0 0
145	284	1.0	m m	0	00	,	154	301	10	133	0	0	0		761	298		 	6.1	0	00	143	137	002	1.0	123	c	0 0
00	0	In.	2 9	0	00		0	00	E	. 6	O	0	0	C	0 0	00	2	. 2	0	0	00	С	c	>	3	₩ K	C	· c
00	0	4	~ ~	0	00	,	0	90	4	6 3	.0	0	0	(0 0	0	6	2	С	0	00	C	00		6	N <	С	
00	0	26	45	С	00		c	o c	24	18	0	0	0	¢	ے د	00	5.4	200	24	0	00	0	c	>	24	18	c	· c
₹ 4.	. - -	E.	Ŀ ►	2	L F		Σ	≟ ⊢	7	u	æ	L	-	:	Fu	L F-	S	шь	-	Σ	L. 1	E	u r	-	>	u ⊢	7	ш
BIRTHS BY AGE	3	NEATHS		NET MISSATION				OF WITHER	DFATHS		NET WIGSATION				CE WOTHER		DEATHS .			NET MISRATION		app THS 3Y ASE	CF WOTHER		DEATHS		NULLY ablantan	
1661							2002							6000	1007							2012						

SIRTHS, DEATHS AND NET MICRATION FOR SINGNE COUNTY ZECO NET MISZATION

0 0 134 438 803 100 0 0 0 1415 0 263 859 1558 196 0 0 0 0 1415 2 2 3 4 9 177 121 287 189 878 1585 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 134 438 873 100 0 0 0 0 1473 0 263 859 156 1 956 0 0 0 0 0 1415 0 263 879 157 100 0 0 0 0 0 1415 2 3 4 12 21 37 121 287 189 878 1585 5 12 15 15 31 58 185 428 300 1777 2858 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		SEX	0-4 2-0	10-14	15-19	20-24	25-34	35-44	45-54	55-64	69-69	70+	TOTAL	
129 421 753 956 9 0 0 1415 2	129 421 753 956 9 0 0 0 1415 3	0	C	0	0	134	438	60.0	100	0	0	0	0	1473	
3 9 12 21 37 121 287 189 878 1585 2 3 4 9 21 37 121 287 189 878 1585 2 3 4 9 21 64 140 110 899 1273 ************************************	3 9 15 21 37 121 287 189 878 1585 2 12 21 37 121 287 189 878 1585 2 12 31 31 58 185 428 300 1777 2858 ************************************	F 0	0	0	0	129	421	763	96	0	0	0	0	1415	
3 9 12 21 37 121 287 189 878 1585 44a 1585 5 1273 5 1273 5 12 1 5 4 140 110 899 1273 4 4 9 21 6 4 140 110 899 1273 4 4 9 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	3 9 12 21 37 121 287 189 878 1585 2 3 4 9 9 12 21 64 140 110 899 1777 2858 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0	C	0	263	859	1558	197	0	0	0	0	2888	
2 3 4 9 21 64 140 110 899 1273 Attachments 5 112 115 31 58 185 428 300 1777 2858 Attachment 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 3 4 9 1273 A-4 5 12 15 31 56 185 428 300 1777 2858 A-4- 0 0 0 0 0 0 0 0 0 0 0 0 0 131 412 765 105 0 0 0 0 0 0 135 396 1550 206 0 0 0 0 1413 2 5 11 20 38 105 312 211 951 1686 2 5 3 3 3 9 51 55 165 165 165 150 121 951 1686 2 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M 24	24	50	-10	6	12	2.1	37	121	287	189	878	1585	
5 12 15 31 58 185 428 300 1777 2858 A-4-3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 131 412 765 105 0 0 0 0 0 0 1358 0 1257 808 1550 206 0 0 0 0 0 1358 3 3 1 20 21 56 150 121 951 1686 5 11 14 33 59 162 462 332 1934 3054	5 12 15 31 58 185 428 300 1777 2858	18	1.8	2	2	e	4	6	21	64	140	110	899	1273	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	T 42	2 5	9	-52	12	15	3.1	58	185	428	300	1777	2858	NE +370
0 131 412 765 105 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 131 412 765 105 0 0 0 0 0 1413 0 1257 808 1550 206 0 0 0 0 1358 3 9 11 20 38 105 150 211 951 1686 5 11 14 30 59 162 462 332 1934 3054	0	0	0	0	0	0	0	0	0	0	0	0	0	
0 131 412 765 1105 0 0 0 0 0 1413 0 1257 808 1250 206 0 0 0 0 1358 0 257 808 1250 206 0 0 0 2771 3 9 11 20 38 105 312 211 951 1686 5 11 14 37 59 162 462 332 1934 3054	0 131 412 765 105 0 0 0 0 1413 0 1267 808 1550 206 0 0 0 0 1413 2 3 9 11 20 38 105 312 211 951 1686 1473 5 11 14 30 59 162 462 332 1934 3054	٦.	0	0	0	0	0	0	0	0	0	0	0	0	
0 131 412 765 105 0 0 0 0 1413 0 1257 808 1550 206 0 0 0 0 1571 3 9 11 20 38 105 216 50 121 951 1686 5 11 14 30 59 162 462 332 1934 3054	0 131 412 765 105 0 0 0 0 1413 0 1257 808 1590 206 0 0 0 0 1358 3 9 11 20 38 105 312 211 951 1686 152 2 11 14 30 59 162 462 332 1934 3054	1	0	С	0	0	0	0 .	0	0	0	0	C	0	
0 1257 808 1550 206 0 0 0 0 1358 3 9 11 20 38 165 150 121 951 186	0 1257 808 1550 206 0 0 0 0 1358 3 9 11 20 38 105 150 211 951 1686 150 5 11 14 30 59 162 462 332 1934 3054	0	0	0	0	131	412	765	105	0	0	0	0	1413	
0 257 808 150 206 0 0 0 271 3 9 11 20 38 105 312 211 951 1686 AA** 2 3 9 21 56 150 121 983 1368 5 11 14 30 59 162 462 332 1934 3054	3 9 11 20 38 105 312 211 951 1686 152 2	F 0	0	0	0	126	396	735	101	0	0	0	0	1358	
9 11 20 38 105 312 211 951 1686 147 3 9 21 56 150 121 983 1368 11 14 30 59 162 462 332 1934 3054	3 9 11 20 38 105 312 211 951 1686 157 2 2 2 3 3 3 9 11 14 3.0 59 162 462 332 1934 3054	7	0	0	C	257	808	1500	206	0	0	0	0	2771	
3 3 9 21 56 150 121 983 11 14 30 59 162 462 332 1934	2 3 3 9 21 56 150 121 983 5 1 1 14 30 59 162 462 332 1934 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M 23	23	6	m	6	11	20	30	105	312	211	951	1686	
11 14 30 59 162 462 332 1934	5 11 14 37 59 162 462 332 1934 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	F 17	11	.2	2	6	60	6	21	56	150	121	983	1363	
		T 40	0 %	9	U1	and and	14	3.0	65	162	4.62	332	1934	3054	
		F. 0	0	С	0	O	0	C	0	Ö	0	0	0	0	

36	
6	
ent.	
_	
Z	
-	
N.	
5	
DHURS	
E E	
2:	
90	
0	
I	
CUTH	
600	
40	
KMS	
×	
45	
4	
0	
5	
V	
5	
ىلى ئىد	
25	
7	
60	
0	

POPULATION CENTROID IS LOCATED:

0.56 KMS SCUTH OF MIDHUPST IN 1991. 0.85 KMS VEST AND

0.64 KMS SHUTH OF WIDHUPST IN 1986. 0.82 KMS WEST AND 0.75 KMS SCUTH OF MIDHURST IN 1991. D. 82 KMS WEST AND

0.89 KMS SCUTH OF MIDHURST IN 1996. 0.93 KMS WEST AND

1.00 KMS STUTH OF MIDHURST IN 2001. 1.07 KMS SCUTH OF MIDHURST IN 2006. 0.84 KWS WEST AND 0.84 KMS MEST AND 1.09 KMS SCUTH OF MIDHURST IN 2011. 0.83 KMS WEST AND

1.09 KMS SCUTH OF MIDHUKST IN 2016. 0.84 KWS WEST AND

1.10 KMS SCUTH OF MIDHUPST IN 2021. 0.85 KWS WEST AND

0.86 KMS WEST AND . 1.12 KMS SCUTH OF MIDHUPST IN 2026.

APPENDIX II

ENROLMENTS BY SIMCOE COUNTY RESIDENTS

IN SCHOOLS, UNIVERSITIES, AND CAATS

TOTAL OF ENROLMENTS FOR ALL STHOOLS IN THE FOLLOWING AREAS: SINCOE COUNTY (H.CTY_NUM=CO)074)

		25+22	52971	EN927349 25268	52317	ENA 26596 24913	51509	ENA 26393 24484	50877	ENR 25841 23801	49642	ENA 25509 23488	16687	ENR 25171 23186	48357	EN4 7897 7228	15125	ENR 23577 22370	45747
40	TOTAL	27156	52490	707AL 27549 25422	52971 52971	10TAL 27049 25268	52317	TCTAL 26582 24892	51474	TDTAL 25925 24079	50004	TDTAL 25841 23801	49642	TDTAL 25509 23488	48997	TOTAL 25478 2349\$	48573	TCTAL 24982 22693	47718
	Apple of the	27156 25334	52490	18 27549 25422	52971	18 27049 25268	52317	18 26644 24930	51574	18 25925 24079	50004	18 25641 23801	49642	18 25509 23488	48997	18 25478 23495	48973	18 24825 22893	47718
	40.	553	808	17 6 29 292	921	17	00	17	65	17 552 321	873	17 574 322	896	17 246 160	406	17 428 259	687	17 980 421	1244
	34	00	00	16	00	16 572 290	862	16	00	16	00	900	00	900	00	900	00	900	00
	5	681	1304	635	1232	15 653 585	1238	15 639 591	1230	15	1194	15 656 524	1180	15 702 638	1340	15 648 579	227	536	033
	12	1435	2856	14 1508 1396	2904	1423 1329	2752	14 2209 1308	2517	14 1257 1294	2551	14 1266 1252	2518	14 1374 1198	2572	14 1347 1198	2545 1	1275	2462
		1837	3693	13 1609 1731	3340	13 1643 1659	3302	13 1632 1582	3214	1555	3096	13 1539 1588	3127	1485 1485	2973	13 1473 1420	2893	1398	2749
	10	2284	4396	12 2387 2159	4546	12 2105 2065	4170	12 2047 1968	4015	12 1982 1855	3837	12 1951 1859	3810	1991	3863	1947	3781	1717	3312
4		2314	4763	11 2504 2322	4826	11 2497 2363	4860	11 2366 2243	4609	11 2350 2158	4508	11 22291 1975	4266	2228 1989	4217	11 2200 2015	4215	2006	3851
0	1 A T E	2270	4399	10 2213 2111	4324	10 2194 2098	4292	10 2409 2228	4637	10 2042 1942	3984	10 2010 1865	3875	10 1863 1757	3620	10	3631	10081	3586
-NOM-	_	2126	4130	9 2403 2149	4552	9 2274 2140	4414	23 02 20 90	4392	21.74	4247	9 2052 1919	3971	9 2040 1895	3935	1922	3700	1900	3695
, CT	0225	1956	3772	2 180 1 96 7	4147	8 2302 2106	4408	8 2255 2126	4381	2165 2053	4218 4218	2 15 5 2 00 1	4156	1998 1836	3834	1927 1824	3751	1850 1783	3633
× 1.7	SER* 5	1850	3623	1877	3646	7 2094 1954	4048	7 2392 2124	4516	7 2108 1960	4068	2120	4082	7 2045 1927	3972	1925	3730	1903	3721
OE COUN	*, VOL=	1815	3536	1826 1758	3584	6 1868 1737	3605	6 2078 1915	3993	2170 1928	4098	2045 1889	3934	2077	3986	2001	3870	1909	3679
SINC	6	1843	3599	5 1842 1669	3511	\$ 1772 1752	3524	1800 1732	3532	1947	3761	2115	3983	2000	3842	2021	3896	2054	3933
	ES.YR6	2016	3911	1907 1738	3645	1822 1659	3481	1782 1690	3472	1729	3354	1936	3709	2096	3926	2 0 2 6 1 8 5 4	3880	2039	3950
	COATE	2049	3936	3 2090 1939	4029	1919	3636	3 1635 1635	3520	3 1684 1566	3250	3 1662 1564	3226	1923	3672	3 2098	3925	2146	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	eyku. Z	1931	3647	1865	3644	1863	3614	1682 1581	3263	1557	2965	1469	2910	1441	2839	1662	3239	1469	2785
	NS0 17 ==	61 56	117	142	120	1 48	111	1 56 62	118	-00	00		00	-00	0 9	40 M	mm	-00	00
1	E DF DATA:	MALE	TOTAL . FEMALE	76 MALE FEMALE	TOTAL .	75 MALE FEMALE	TOTAL .	74 MALE FEMALE	TCTAL + FEMALE	73 MALE FEMALE	TOTAL + FEMALE	WALE FEMALE	TOTAL + FEMALE	71 MAIE FEMALE	TCTAL . FEMALE	MALE FEMALE	TOTAL + FEHALE	MALE FEMALE	TOTAL FEMALE
	YEAR#7	ENRL	ENRL	YEAR- ENRL ENKL	ENRL	YEAR. ENPL ENRL	ENRL	YEAP = ENRL ENRL	ENRL	YEAR- ENRL ENRL	ENRL	YEAR- ENRL FNPL	FNRL	YEAR ENPL	ENRL	YEAR=7 ENRL ENPL	ENRL MALE	YEAR 6' FNFL ENKL	E NRL E

15/07/78 ONTARIO 74 9	99 ENRCL	ENRCLMENT BY	AGE	COUNTY	OF RESID	RESIDENCE. S	SEX AND	REGISTRATION		STATUS, F	FALL 19	1972.		PAGE	end	١.,
	CNDER				and the same of th				Manha	-		۵	DVER			-
	18	18	9 8	2.0	21	22	23	24	2.55	26	27	ξ2 (2)	28	ž	TOTAL	!
The state of the s			į	:			-	6	. 6		G					3,
SST M.D. SIDENTS CULATIME CULAR KILLY KHILSPUR	2800	2.507s1	90 1,049 1,497 1,65 1,65 1,65 1,65 1,65 1,65 1,65 1,65	8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ed 232.22	62/197	45 25 25 0 CE	6/ 125.20 175.22 10000	1475 CA 2475 C	737118	37 22 2 2 4 1 2	37. 20. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37	# 04401W	S 7 1/2	Me 1000	1 300 100
TOTAL FOR	.099 2	2.952 589	130 203	7.947 183	7030143	5,900120	3.343 68	2.999612	311 47	1.72/39;	073 22 1.	22925.7.	7.358,170	343 8	1145	56.29
FEMALE ACLICITINE CU-OP (OFF CAMPUS) REGULAR FULL-TIME 19 ATT-TIME OFF-CAMPUS, CENTRES, CONTRESPONDENCE: NUTT-NEUIA	0491	2.666 53	7.300179 147 4	275150 275150 246 5	049 1 049 1 197 4 . OSB 2	049 049 049 042 042	1.180 2.490 4.450 4.500 4.450 4.450 4.450 4.450 4.450 4.450 4.450 4.450 4.450 4.450	.197 4	792 2 79210	242	246 5	4.750	627 14 5004115	1473	6133 207 -	50 10 W
TOTAL FOR	. 840.	2.6% 53	70951BS 17691	58	6.490132	3.935 78	2.114 &3	1.426 29	,644 1a	.618 14	836 17	++2 9 7.	7.473152	.47 3	688	43.70
TOTAL FOR	197 8	5.457111	19.006388 14.75341	4.25.341	13.520275	B.52275 9.7341986	4571111	4.425902.	94901	2 739291.	917301.	1.67230 15	5 131322	547.8.8	2034	100 001
POS AND WEEKERTED ROLL THE	26	357	1519	2073	2123	1646	1160	489	2 2 2 711	14 2 525	318	64 to 60	1000	15 55 56 58	# # # # # # # # # # # # # # # # # # #	
18 PATTINE OFF-CAMPUS CENTRES TEGENT TEGENT TEGENT TO THE GUPHES PONUENCE: MULTI-MEDIA			3 2	708	163	323	430	3.4	756	715	369	5 4 7	356 4107 2	5537	620 8789	
TOTAL FOR	26	364	1552	2152	2293	1961	1613	1443	1504	1292	927	6 18	5306	772	22043	
FEMALE PUST M.D. (NIERNS RESIDENTS (MLDICAL) FULL-TIME OFF-CAMPUS CENTRES	1		. •					ev)	==	N	prof	84	4 Ø		୭ ୯୮୩	
15/07/78 ONTARIO 74 9	99 ENROL	ENROLMENT BY	AGE.	COUNTY	OF RESIL	RESIDENCE,	SEX AND	REGISTRATIO	z	STATUS	FALL 1	1972.		D A G E	N	
A COLUMN TO THE PROPERTY OF TH	LNDER.	89	10	50	21	. 22	23	24	25	2.6	27	28	0VER 28	ď	TOTAL	
FEMALE - CONTINUED FEMALE - CONTINUED REGULAR FULL-TIME PART-TIME DFF-CAMPUS CENTRES REGULAR PART-TIME CUMMESPUNGENCE, MULTI-MEDIA	33	533	20 E	1560	1207	671 66 286 286	3 3 4 4 60	M 4 9 9 0 P M 4 9	4 51	10.9 388	74 43 311	270	4 AU CO NU NU CO ₩ W W W W W W W W W W W W W W W W W W W	4000	71 1024 1024 10	

Э

1348 38414

1889 1396 1215

6 4

GRAND TOTAL

56.5

TUTAL FOR -TOTAL FOR

 .. 3144 ...3532

0.0

PA	
973	
84	
ALL	
M.	
US	
FAT	
S	-
ION	
MAT	
STR	-
REGI	
B	_
ANE	
SEX	
	_
RESIDENCE,	
EN	
SIE	,
RE	
10	
Lλ	
COUNTY	
AGE,	
ВΥ	•
ENT	
Z M	-
NROL	
ш	
66	Ī
74	
3 20	
TAR	
DNT	

	GROWIT	NOED -	e U 2	-	- RESTORICES		35.A ANG		KEGISTKATION S	STATUS,	FALL 1	1973.	-	PAGE -	E .	
	1.8	18	67	50	21	22	23	24	10.05	26	27	28	28	£	TOTAL	
MALE MODE COUNTY	1891	ed1	1231	1291	601	23/1	100	20/1	20/1	19	29/1	6311	13/1	153		9/2
REGIDENTS THE CO-OP (OFF CAMPUS) REGGLAR FULL-TIME CO-OP (OFF CAMPUS) PART-TIME OFF-CAMPUS CENTRES REGULAR PART-TIME	.054 1	313 6	.054 1 450157 8 400 26	223 6 7073 507	484 9 7,643142 646 182	5,274.98 1054.20 2054.20	200 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	11422 W	756327	1. 20.00 to 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	100 man	215 4 1474 9 154 1	542 11 4360 81	25.00	705 454	2 7 7 7 6
TOTAL FOR	8 450°	17/633	7.957185 9	9.150170 F	T.887165	5,974111	3 606677	1. 93436	7.63749	1. Y3 J34	12232	75314 7	7/158133	7777	1037	61839
FEALE THE CO-P (OF CAMPUS) FOLL-TIME CO-P (OF CAMPUS) 18 T-TIME OF CAMPUS CENTRES FEGULAR PART-TIME OF CAMPUS CONTRES CORTESPONDERCE, MILTI-MEDIA		354 1 2422 457.	054 132	7,754	5,544103	ing Qr mit 44, U/I	1,50728 1,733 14.		254 1. 27 2 2. 130 21. 254 2.			16/3	2777 255140 275	m 0 m		16 200
FEMALE		7.530 47	2,530 47,7,57 133	1277154 6.34316	34316	306/572	475467.	730 21	1.453 27	1. 13021	37319	.592118.	11/160	67:4	821	1
TOTAL FOR	,054 B	4.3% 80 /	4.35.80 17.115 318 17.438324	7.43/324/	15.04281 9.	94,2168	6.082133	306857	4 09076	7,940 55274531		134,25 %	2,293	15/16	1658	• :
99. CT REPOS MALET POST WAS PROJECTED RESIDENTS (MEDICAL) RESULAR PLIL TIME PERCULATION OF PARTITURE OF CAMPUS CENTRES REQUIRED PRATITURE OF CAMPUS CENTRES CREES PARTITURE OF CAMPUS CENTRES PROJECTED WAS PARTITURED TO PRESENT OF THE PROPERTY OF THE PROPE	0 P)	1022	3195	3687	3762	438	2282 2282 635	32 1745 233 782	47 40 1320 26 866	22 1048 1048	794 794 35	510 517 713	408 1911 406 6722	2047		1
OTAL FOR	96	1038	3267	3883	4.082	3621	2931	2583	2200	2223	1990	50 45 60	9473	500	39684	
FEMALE POST W.D. INTERNS RESIDENTS (MEDICAL) RESUCAR PULL TIME FART-TIME OFF-CAMPUS CENTRES RECULAR PART-TIME	P• ≈4 ©	1024	10 10 10 10 10 10 10 10 10 10 10 10 10 1	2145	2603 20 424	1731	100 200 200 200 200 200 200 200 200 200	N 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	# 12 # 000 826	323	237 234 708	1625 1625 1625 1625 1635 1635 1635 1635 1635 1635 1635 163	1102	5 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15462 15462 15784	
7/07/78 ONTARIO 74 99	9 ENRCLMENT	MENT BY	AGE	COUNTY OF	RESIDENCE.		SEX AND F	REGISTRATION		STATUS	FALL 1	1973.		PAGE	M	
	8 8	1.8	10	20	21	22	100	. 24	10	50	27	28	28 28	Œ	TOTAL	
FEMALE - CONTINUED CORRESPONDENCE, MULTI-MEDIA					-		The state of the s					:	ad		64	
	80	1047	3033	3382	3 05 8	2370	1798	1490	1288	1250	666	813	8081	684	29361	
TOTAL FOR	162	2085	6300	7265	7140	1668	4729	4073	3587	3473	2989	2161	17554	1536	69045	
GRAND TOTAL	163	Z1 65 55	6618	7589	7421	6159	4842	4130	3663	3528	3040	2186	17847	1552	70903	

ţ.	1	alta ista	64 66.2	2000 00 00 00 00 00 00 00 00 00 00 00 00	15. 437					()		.,))
ň H	TOTAL	Q == = E Q D 4 4 8 == =	187	750 281 281 1255	4			11389	2642 655 6103	E 44	T OT AL	9401	20790	23332
, —	α Z	151.	4,0	157	477,3	C)C3	2272	3033	1487	PAGE	Ž	2003	5038	5059
OVER	28	7.023 26 3.27 86 3.27 86	(5242 7(7)195	.472.12 5.86249 2331.59	X13 224	1048410	337	3631	151	2	. 28 28	3669	7300	7719
	28	279 2 47312 43311	1.6242	1118 3	C188 05081.150 08	13272	84 508	609	M 7 10 40	1974.	2.8	409	1018	1090
-	27	354 91	22(31		305.23	174543	120	665	228 26.	FALL 1	27	88	1148	1202
	56	343222	1.928 45	4 00	1.14/20	3064782174542.83272	138	583	M B N P	STATUS	26	4 0 9	1043	1121
	25	70% 13	1.298 33		1.160 30	47863		557	3 73		25	473	1030	1093
	24	279 22 1,416 36 275 7 43311	24257		1.810 46 1.	4,052103 2	232	564	39	REGISTRATION	24	4 06	970	1073
	23	27.5772	3.344852.		1.388 48 1.	2321334	50 50 50 70 50 70 50 74	516	255	O Z W	23	379	895	1028
	22	275 275 275 275 275 275 275 275 275	1,491165 3	3.75 \$ 79 /. 27 9 72 /. 39 3 2 10 43 3 3 1 1	40/3102/	.50% 67 S.	266 3 208	477	105	NCE, SEX	22	398	875	1142
	21	3/5 B 69168 672168	92193 6	5.822148 3 0339 1 2.7575	616.294160 4	0/ 88733	248 3	337	211	RESIDENCE.	21	327	664	1017
	20	393 10 116 233 6.	3462647.7	6.74157 5.	341616.	11942513.	192	224	163	CDUNTY OF	20	211	435	860
	1.9	7381881 7381881 7079 22	9.537217 10.342264 7.592193	107201 6. 157 4 114 3 1197 5 ,039 1	8.419214 6.3348	10955431 14.719425 13.887353 10.501/2012 15.232133	129	138	105	AGE, CD	9	124	262	693
	18	7,534 397	169243 9	118 72	291174 8	4.603117 16.	30	4	70 RJ	BY	1.8	20	4	211
UNCER	1.8	079.2	157.4 7	2 5 600.	0192 2	,236 6 40	٥	Ç»	8	ENRCLMENT	1 8	O1	1.8	24
		CAMDTY ME CO-OP (OFF. CAMPUS) PATT-TAMPUS CENTRES DAULTI-ME DAULTI-ME DAULTI-ME DAULTI-ME DAULTI-ME DAULTI-ME DAULTI-MEDIA		WE CO-OP (OFF. CAMPUS) FULL-TIME WE OFF-CAMPUS CENTRES PARTTIME UNDENCE: WULTI-WEDIA	OTAL FOR	TOTAL FOP	MAGE OF A CONTRES. MAGE THE OFF CAMPUS, CENTRES. PROCLAT PULL TIME OFF CAMPUS CENTRES FROM THE OFF CAMPUS CENTRES FOUND THE OFF CEN	TOTAL FOR	FEMALE FOLL-TIME DEPORTED CENTRES PART-TIME DF-CAMPUS CENTRES CURKES PROUDENCE, MULTI-MEDIA	5/07/76 DNIARID 74 99		99 - CONTINUED TOTAL FOR FEMALE	99 AL FOR	GRAND TOTAL

	S STATE OF	2 35.00					-	-				-	D VICE			
THE RESERVE THE PROPERTY OF TH	18	3.8	19	20	23	22	23	24	25	26	27	26	28	ğ	TUTAL	1
											1 12 10 10 10	-				
74-SURGE COUNTY WALL-TIME COOP (UF_CAMPUS) FOLLAT TOLL-TIME TOLL-TIME SEVAR SE	1. 560.	7.40740 .376111	5.175 S 5.179168 98128	3/5 9	5.175 5 .375 9.594 17 5.174 68 7.532509.735 209 .981 28 .732 2.324 2.22 .035 .1 .345 7 .210 6	2,250 2,250 2,40 1,40	8 2720 8 .035 1 .035 1 .035 1 .035 1 .075 2	035 035 035 575 575 575 575	56/ 10 49/ 14	.49/14 2457 280.8	1507 2007 2007 2007 2007 2007 2007 2007 2	4/912 35/10 4 35/10 4	4/412 /666 19 35/10 4 83/138 35/10 4 83/138	7755	202 205 153	al street
TOTAL FUR	.0351	1.823 52	7.050202	1.03248	1.03248 9.798251 6,064173	064173	3.785108 /.	6/246	1.22735	1.016 29	1.48248)	1.682487.15733 8.48242	.482.42	.42/12	1480	51875
FEMALE FULL-TIME CO-OP (UFF CAMPUS) RECOLLAR FULL-TIME PART-TIME OFF-CAMPUS CENTRES RECOLAR PART-TIME CORRESPUNDENCE, MULTI-MEDIA	140 4	27.37 61	7.781222 1.40 4 .070 2	2,940198 4 2,370 8 1,40 4 1,75 5	105	3,230 95	1,035 1,2741 2,00 6	596 17	386 11	310 6	245 7	35/103	.105 3 ,94627 .35/102.9/285	(43) 18 (07)02	636 177 3455 170 170	18 500 82 40.23
TOTAL FOR FEMALE	# O#1.	2.24364	7.99228	7.536215	7,532,155,433,155,3	396/113/	1.96356/	.33,2 38	1,577061.34739	1.36739	112232	33 /	11.46327	.84/24	1373	
TOTAL FOR	1755	400116	15072430	16.239463	16.77946314,231 406:0.025286	0.025286	5. W/164	2.94484	2.804	80 2.383682.	2.804.80	8	11,94569:1.26256	1,36256	2853	103 101
99-AND REPORTED REGARA FULL-TIME FAXT-TIME OFF-CAMPUS CENTRES RECULAR PART-TIME CURRESPONDENCE, MULTI-MEDIA	1.4	130	468	463	53.4	492	460	351	345	182	122 398	116	343	255	50 50 50 50 50 50 50 50 50 50 50 50 50 5	
TOTAL FUR	14	134	504	523	614	099	737.	999		579	52.22	562	2084	1004	10171	
FENALE RECUTATION OFF-CAM-US CENTRES - RECUTAR PARTITES CURRESPONDING. HULTI-MEDIA	40	3 3	25	427	342	1:0	177	121	270	297	334	348	2652	133	23 80 80 80 80 80 80 80 80 80 80 80 80 80	
FEMALE FOR	89	165	579	470	80.4	440	200	385	354	362	368	390	2826	765	7960	
15/07/78 ONTARID	74 99 E	ENROLMENT	BY	AGE. COUNTY	70	RESIDENCE.	SEX	AND	REGISTRATION		STATUS. 75.		DVER	PAGE	N III	
	18	28	10	50	2.3	22.52	23	9	25	26	27	28	28	<u>c</u>	TOTAL	
99	22	299	1083	993	1049	1100	1130	1051	922	941	910	9 52	5910	1769	18131	
GRAND TOTAL	27	415	1513	1456	1455	1386	1294	1135	1002	1009	056	1018	6479	1805	20964	

C		С	4 2 - 11 3 4 3	283	22-1-63	517	00	. 1				. ;		J	1	1	i .
~4	-	TOTAL	39 1238 1016 54 54 1343 4 54 54 1343 4 54 135 4 54 135 4 54	1421 48.383	973 55.233 973 55.233 355 77 751 155 5.370	1516 51,517	2937 .08.000	34 Flo	5537	7677	1186 225 5533	-	23	TOTAL	6745	34422	17359
PAGE	1	9	0 01	3					90 5				PAGE		145	-	311
ā		ğ			et .	21	30	54/0.		136	121	210,685	4	ž		82	
-	DVER	28	MN-04/E	210	23 23 42 42 52 52 52 52 52 52 52 52 52 52 52 52 52	352	562		3113	3506	180 19 3274	310	OVER	28	3474	6980	7542
_	Ī	20 00	35 5 c	25	9 60	38	63		366	967	325	1		89	371	867	930
US. 76.		27	0 ms	18	21.3	30	48		399	540	54 5 2 4 5 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5	3	STATUS. 76.	27	401	950	866
N STATUS.	İ	56	9 00	34	23 7	39	73		353	519	28 28 28 28	Courty		56	354	873	946
RECHSTRATION		.0	22	42	1 40	90	82		330	54.4	307		STRATI	64 63	384	928	1010
AND REGIT	ĺ	24	24 A 4	69	in orm	27	96		310	929	270	dis coe	AND REGISTRATION	2.4	377	953	1049
:4 iii		23	20040	93	80 9a	99	159		239	453	215	976	SEX	53	324	777	936
RESIDENCE.	+	22	9 10 10 10	201	103	120	321		166	346	122		RESIDENCE.	64 64	320	999	786
		23	87 M O 10 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	231	00000 E	206	437		137	211	103		0F	21	221	432	869
COUNTY OF	-	20	502	239	084M4	251	490		151	194	179		. COUNTY	50	242	436	926
BY AGE .	+	0,	0.10	215	20.00	264	479		106	119	3.2		BY AGE ,	9 6	102	221	700
OLMENT		18	in to	34	200	03	95		25	27	12 23		SOLME NT	18	27	\$	349
74 99 ENROLMENT	UNDER	18	7	1		==	rsi .		ri	1	n		74 99 ENROLMENT	18	m	4	٠
14/07/78 ONTARIO 74			NACE COURTY NACE THE CO-OP (OFF CAMPUS) FULL-TIME CO-OP (OFF CAMPUS) 18 FULL FULL TO PROPER OF THE COMPANY 18 FULL FULL TO PROPER OF THE COMPANY 18 FULL FULL TO PROPER OF THE COMPANY CONSESSION OF THE COMPANY 28 FULL FULL FULL COOP (OFF CAMPUS)	TOTAL FOR	S CENTRE	TOTAL FOR	TOTAL FCR	99-UCT REPORTED	REGULAR FULL_TIME PART-TIME UFF-CAMPUS CENTRES REGULAR PART-TIME CORRESPONDENCE, MULTI-MEDIA	TOTAL FOR	FRALL-TINE DEPCAMPUS CENTRES RECALAR PART-TINE CORRES CORRESPONDENCE, MULTI-MEDIA		14/07/76 ONTARIO 7		99 - CONTINUED TGTAL FOR	TOTAL FOR	GRAND TOTAL

(

(

OVER	28 NR TOTAL			175	263 14 1424	-	27 4 6	116 3 177		404		26. 2698	3426. 1526	671 ES 1131 18 2 25			256 31 558		PAGE	NCR.
	28		80	15	24	-	2	100	1	O d		r a	92	100	192	19	D 01 (1)			M
UNDER	27		00	1	20	-	7	24	F	75	0	70	119	77	196		1 M		100	-
1	5 6		2 5	c N	27	-	5	18		d m		40	138	72	211	1	100		0 0	
+	25		n =	100	44		12	100	ri	2.9	7.4	, , , , , , , , , , , , , , , , , , ,	177	8 4	202	7.2	2 6 =	PA AGE. CHINATA OR DECENTRALE CENTRAL PROPERTY.	OT LEAN OF	
	2.4		74	N ==	55		24	K) K)	н	800	0		170	55	227	90	n n	- 0	NO REGI	
	m N	-	000	14	127		51	10.0	-	99	201		181	31	213	001	am m	η 	<	
	22	a	144	10	189	0	200	325	m=	133	. 80		96	16	112	7.4	12			
+	64 64	0	172	m =	202	4	196	41	٦	214	416		96	10	106	1111	37	u d		
+	50	0	196	-	222	4	213	N4		. 228	000		4.8	**	6.0	E S	60	i ali		
	19	-	153	PO	187		192	4		206	39.51		49	04	51	40	ריו	HA AGE		The same of the same of the same of
	8		35		- Q		4 N	-		40	91		1		11	25	rt	- Indian		-
UNDER	18	4					C)				N				ed	01		00 F	UNDER	
		HALE COUNTY OFF CAMPUS)	REGULAR FULL TIME (0-0P (OU PAMPUS)	CURRESPONDENCE . MULTI-MEDIA	TOTAL FOR	FEMALE FULL-TIME CD-DP (GFF_CAMPUS)	HELLAR FULL-TIME	PART-TIME DFF-CAMPUS CENTRES REGULAR PART-TIME	CORRESPONDENCE MULTI-MEDIA	TUTAL FOR FEMALE	TOTAL FUR	99-NOT REPORTED	MALE REGULAR FULL -TIME PART-TIME OFF-CAMPUS CENTORS	REGULAR PART-TIME CURRESPONDENCE, MULTI-MEDIA	TOTAL FOR	REGULAR FULL -TIME	PARI-TIME OFF-CAMPUS CENTHES REGULAR PART-TIME CURRESPONDENCE MULTI-MEDIA	14/07/78 DNTARIO 74 00 FNDO MENT		

39 1488

c)

99 - CUNTINUED TOTAL FOR FLMALE

K)

GRAND TOTAL

2.6 0.0

FULL-TIME COLLEGE ENROLMENT
BY SEX AND PREVIOUS LEVEL
OF EDUCATION BY LATEST INSTITUTION
FOR NEW ENTRANTS ONLY

1		62	L	ρò	m	9	Ŋ	8	K	1	-	0
		SSHGD	3	~	7	η	-	_	m	7	4)	_
	177.	55634	L	0	14	· 8	0	~	7	0	2	~
	- 2	SS	â	a	7	4	0	*		M	. ~	0
	-	33	T	27	_	00	20	9	0/	#	~	0 :
		5567	E	6	11	, 00	7	10	7	7	7	0 :
· ·	. ;	4	U	6	0.	7.	. m	- 20 10 1	20	η.	7	0
j- j		SSGD+ SSHGD	m	3	7	0	67	-		.J	. 0	0
	76	+ A	Ц	m	n	b-	7	,0	~	າ	. 0	0
-	1971	SSG	0	<u>"</u>	2	n	0			٩	9	٥
-	- 196	A	F	2	=	0	00	٩	0-	*	· /a	0
		SSGD	m	6	. 20	8	9		3	2	-	0
-		9	L	>	6	8	, 5 -	0	06	8	*	0
		C3HSS	e C	10	*	*	9	0	<u> </u>	- =	0	0
-	75	+	Ĩ.	7		· 00	0	~				0
	19	SSGD+	3	a		8		7	~	~		0
-			ũ.	0	9	\o	. 7		.6.	2	-7	0
		SSGD	- W	2	0-	ف	0	*	ف	3 :-	9	0
-		0.5	ľ	m	· m	h		1	2		-	0-
	1	SSHGD	3	0	62	*	- m	*	4	*		0
	7.		1	1	_>	0	0	M	- m	٦.	-	0
	4661	\$560+	3	0	0	7	7		~	3	7	0
		A	L	22	4	4	10	7	=	#	2	0
-		SS63	3	00	0.7	0	S	10	2	9	<i>e</i> J	0
				Carting Memorial digt School (Alleston) 893064	Corrie District Contral C. Ju.	barrie Morth Cellegiate In.	Care Borden Collegiate And	Brafford Dittuct High Jed.	Cellingued Collinge In.	Easter ew decordang stehert.	Elmoale District High Al.	middlewet Callege 983

FULL-TIME COLLEGE ENROLMENT

BY SEX AND PREVIOUS LEVEL

OF EDUCATION BY LATEST INSTITUTION

FOR NEW ENTRANTS ONLY

1 -	_				1						
	COHSS	F	(J)	1	7	4	_	ار،	~		
	S	3	И	7	~	4	0	7	d		:
4	40000	Ŀ	٨	4	18	0	. 0	7		,	: '
1	356	E	М	0	,	78	: ` :	, h	_	,	:
	SSGD	Ĺ	7#	. >-	` \	>	~	. 3	0		
	S	ω	31	77	6	Drg.	. 0	0	m		1 1 -
	SSHGD	L	N	20	1	1	: 4	7	0,		1 1
	SS A	ω I	7	3	7		0		0	4	: :
1976	+ 0	T	7.	7			0	4	. 0 ,	· j	
	+ Q5 SS	3	w)	1-7-1-	12		0	-4	0		· - -
	5.0	L	7-	0	*	*	0	- 12	#	 	
h :-	530	w	81	1	20	.6		8		i-1:	- -
	2.P	U	٥	·/v	~	- K	9-	<i>></i>			-+ -;
- :-	SSH	m	7	0	. 7	7	0	1-1-	i	; !-	
3	+0	U	*	0 .	3	7	0			1-1-1-	1-1 1
19.	SS620+	a	4	~	(1)	7	0	0	0		1-1-1-
	A	U	#_	*	00	3	0	20	6	1-1-1-	+1-1-
	5563	3	*	7	10		0				1-1-1
- ;	P	U	9 7		7	6	0	9	· 06		
- !	SSHG	M	3	0	R	7	0	0	0	1	1-1-1-
11	+	1	~	9			0	9	1-1-1-	-	
461	SSGJ	J W	K	7	*	7	0	0	0		
-	9	L)	<u> </u>	7.1	.00	*	0	4	1		
	556	m 1	#/	0	\n	2	0		.i__1.	ļ	i - i
		- !			19	1	1		90.		
	-		3	20.7	* A	16h.	1cha 819	196	30	÷ 4	
		;	345	28.6	legia (827	30	288	siche 945	Lec. 3488	111	
		;	encla.	trict 9	32	Le	1/4	alle	7	1 1 1	
		:	Alea	Die	nt	wich	ya'a	2	Jake		
1.			Midland decortain (midland) 22634	Drillia District (Pak Street College (Sorielia) 9336	Perstanguisten ;	M. Herraa's Mil	Stayner Callegich	Turn Jakes de		
			30	800	Sol	En la	(Z)	12	35		

APPENDIX III

PROGRAM LISTINGS

SOURCE LISTING

STHT LEV HT

```
D MARG: PROC OPTIONS (MAIN);
                                          /* POPULATION PROJECTION PROGRAM FOR SINCOE COJETY */
/* AUGUST 1978
 2
            1 0 DCL INFIL FILE RECORD IMPOT: /* CARD IMPOT */
 3 1 0 DCL GUTFIL FILE RECORD OUTPUT; /* OUTPUT FILE */
             1 0 DCL 1 IN1 STATIC, /* WARE OF CITY, TOWN, VILLAGE */
2 TITLE CHAR(80); /* OB TOWNSHIP */
            1 0
                                DCL 1 IN2 STATIC,
                                                                                         PIC'9999*99',
                                                                                                                                                    /* LAND AREA (SQ KMS) */
                                                     FILL1
AREA2
                                                                                           CHAR(1),
PIC'9999499',
CHAR(1),
PIC'S99V99',
CHAR(1),
PIC'S99V99',
                                                                                                                                                 /* RES/AGR LAND AREA (SQ KMS) */
                                                     FILL2
XCOORD
FILL3
YCOORD
FILL4
                                                                                            CHAR(1),
PIC'S9V9999',
                                                 2 NMG
2 FILL5
                                                                                                                                                   /* WET HIG/TOTAL WET HIG */
                                                                                            CHAR (1) ,
CHAB (1) ,
CHAR (46) ;
                                                                                                                                                    /* A,B,C,D,E ON S-CUBVE */
                                                 2 FILL6
                                                                                            PIC'99999', /* BALE POPULATION - 11 AGE GROUPS */
             1 0 DCL 1 IW3 STATIC,
2 HPOP(11)
2 FIL2
                                                                                         PIC'99999', /* FEMALE POPULATION - 11 AGE GROUPS */ CMAR(25);
            1 0 DCL 1 IN4 STATIC,
2 FPOP(11)
2 FIL3
            1 0 DCL 1 IN5 STATIC, /* COUNTY NET HIGRATION 1977 TO 1996 */ 2 CNNG1(20) PIC*9999';
              1 0 DCL 1 IN6 STATIC, /* COUNTY NET MIGRATION 1997 TO 2016 */ 2 CMMG2(20) PIC'9999';
             10
              1 0 DCL 1 OUT1 STATIC, /* MAME OF CITI, YOWM, VILLAGE OR TOWMSHIP */
2 OTITLE CHAR(80);
CHAR(204);
             1 0 DCL 1 OUT2 STATIC, /* POPULATIONS OF ALL AGES */
2 OFIELD(71) FIED(7);
            1 0 DCL PF(71,51) FIXED(9,2) STATIC, DF(71,51) FIXED(9,2) STATIC, DR(71,51) FIXED(9,2) STATIC, DR(71,51) FIXED(9,2) STATIC, BR(71,51) FIXED(9,2) STATIC, BR(71,51) FIXED(9,2) STATIC, GROTT (12,11) FIXED(9,2) STATIC, GROTT (12,11) FIXED(9,2) STATIC, GROTT (12,11) FIXED(9,2) STATIC, DR(12,11) FIXED(9,2) FIXED(
                                                                                                                                                DF(71) FIXED(5,4) STATIC,
DH(71) FIXED(5,4) STATIC,
B (71) FIXED(5,4) STATIC,
HGE(71) FIXED(9,4) STATIC,
HGF(71) FIXED(9,4) STATIC,
            1 0 DCL AGEGRPM (71,5) FIXED (7,6) STATIC, AGEGRPF (71,5) FIXED (7,6) STATIC;
15
            1 0 DCL CMM(50) FIXED(5) STATIC;
16
               1 0 DCL CX(11) FIXED(11,2) STATIC,
CY(11) FIXED(11,2) STATIC,
CTOT(11) FIXED(11,2) STATIC;
                                                                                                                                         TEEP FIXED (11, 2) STATIC,
TERP2 FIXED (11, 2) STATIC,
           1 0 DCL BIRTHS9(71,10) FIED(9,4) STATIC, TOTBN(12,10) FIED(9,4) STATIC,
BIRTHSF(71,10) FIED(9,4) STATIC, TOTBN(12,10) FIED(9,4) STATIC,
DFAIRS(61),10) FIED(9,4) STATIC, DTOTR(12,10) FIED(9,4) STATIC,
WITHOUT STATIC, DTOTR(12,10) FIED(9,4) STATIC,
WITHOUT STATIC, DTOTR(12,10) FIED(9,4) STATIC,
BIRTHSOR(71,10) FIED(9,4) STATIC, TOTR(12,10) FIED(9,4) STATIC,
TOTBT (12,1) FIED(9,4) STATIC, TOTDT(12,10) FIED(9,4) STATIC,
TOTBT (12,10) FIED(9,4) STATIC, TOTDT(12,10) FIED(9,4) STATIC,
TOTBT (12,10) FIED(9,4) STATIC, TOTDT(12,10) FIED(9,4) STATIC,
             1 0 DCL GTOTBS(12,10) FIRED(11,4) STATIC, GTOTDS(12,10) FIRED(11,4) STATIC,
GTOTBF(12,10) FIRED(11,4) STATIC, GTOTDF(12,10) FIRED(11,4) STATIC,
GTOTEF(12,10) FIRED(11,4) STATIC, GTOTT(12,10) FIRED(11,4) STATIC,
GTOTBF(12,10) FIRED(11,4) STATIC, GTOTBF(12,10) FIRED(11,4) STATIC,
GTOTEF(12,10) FIRED(11,4) STATIC;
            1 0 DCL TITL(11) CRAR(4) STATIC INIT ('1976','1981','1986','1991','1996',
'2001','2006','2011','2016','2016','2021','2026');
 19
```

1 0 DCL TIT(10) CHAR(4) STATIC INIT('1977','1982','1987','1992','1997','200 2','2007','2012','2017','2022');

21 1 0 DCL OCOUNT FIXED(5) STATIC INIT (0);

/ SET TO ZERO */

STRT LEV NT

```
DASH(*) = *_*; EOF = '0'; CX(*) = 0; CY(*) = 0; GTOTH(*)=0; GTOTH(*)=0; GTOTBH(*)=0; GTOTDH(*)=0; GTOTBT(*)=0; GTOTDT(*)=0; GTOTBT(*)=0; GTOTDT(*)=0; GTOTBT(*)=0; GTOTDT(*)=0; GTOTBT(*)=0; GTOTDT(*)=0; GTOTBT(*)=0; GTOTBT(*)=0
                                                      1 0
1 0
1 0
1 0
1 0
1 0
          22
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             CTOT(*) = 0;

GTOTT(*) = 0;

GTOTEM(*) = 0;

GTOTEM(*) = 0;

GTOTEM(*) = 0;
          36
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          /* INITIALIZE BIRTH BATES */
                                                                                                                                                                                        DO I = 1 TO 15;

DO I = 16 TO 20;

DO I = 21 TO 25;

DO I = 26 TO 30;

DO I = 31 TO 35;

DO I = 36 TO 40;

DO I = 41 TO 45;

DO I = 46 TO 71;
                                                                                                                                                                                                                                                                                                                                                                                                             B(I) = 0;
B(I) = 0,0365;
B(I) = 0,1123;
B(I) = 0,1282;
B(I) = 0,0645;
B(I) = 0,0212;
B(I) = 0,0044;
B(I) = 0;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           END;
END;
END;
END;
END;
END;
                                                                    1 0
1 0
1 0
1 0
1 0
1 0
1 0
          42
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               EN D:
          6.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              /* INITIALIZE DEATH RATES */
                                                                                                                                                                                        DH (1) = 0.0143;
DF (1) = 0.0112;
                                                         1 0
                                                                                                                                                                                        DF(1)=0.0112;

DO I = 2 TO 5;

DO I = 6 TO 13;

DO I = 10 TO 13;

DO I = 10 TO 23;

DO I = 21 TO 25;

DO I = 21 TO 25;

DO I = 21 TO 30;

DO I = 31 TO 35;

DO I = 36 TO 40;

DO I = 35 TO 40;

DO I = 56 TO 50;

DO I = 55 TO 60;

DO I = 66 TO 70;
                                                                                                                                                                                                                                                                                                                                                                                               DF(7) = 0.0479;
DR(7) = 0.0005; DF(1) = 0.0005; EMS;
DR(1) = 0.0004; DF(1) = 0.0005; EMS;
DR(1) = 0.0004; DF(1) = 0.0003; EMS;
DR(1) = 0.0004; DF(1) = 0.0003; EMS;
DR(1) = 0.0014; DF(1) = 0.0004; EMS;
DR(1) = 0.0015; DF(1) = 0.0005; EMS;
DR(1) = 0.0015; DF(1) = 0.0005; EMS;
DR(1) = 0.0000; DF(1) = 0.0007; EMS;
DR(1) = 0.0001; DF(1) = 0.0001; EMS;
DR(1) = 0.0003; DF(1) = 0.0011; EMS;
DR(1) = 0.0033; DF(1) = 0.0034; EMS;
DR(1) = 0.0033; DF(1) = 0.0036; EMS;
DR(1) = 0.0033; DF(1) = 0.0036; EMS;
DR(1) = 0.0034; DF(1) = 0.0036; EMS;
DR(1) = 0.00346; DF(1) = 0.0077; EMS;
          67
                                                                    1 0
99
103
107
111
115
119
                                                         1 0 1 0 1 0
                                                                                                                                                                                                                                                                                                                                                                  /* INITIALIZE AGE 6 SEX DISTRIBUTION RATES FOR */
/* HIGRATION (A,B,C,D,E ON S-CURVE) */
                                                  1 0 1 1 1 1 1 1 1 1 1 1 1
                                                                                                                                                                                            DO I = 1 TO 5:

AGEGRPH(I, 1) = 0.0000;

AGEGRPH(I, 2) = 0.1319;

AGEGRPH(I, 3) = 0.0926;

AGEGRPH(I, 4) = 0.0926;

AGEGRPH(I, 4) = 0.09197;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     AGEGRPF(I,1) = 0.0000;
AGEGRPF(I,2) = 0.0998;
AGEGRPF(I,3) = 0.0869;
AGEGRPP(I,4) = 0.0242;
AGEGRPF(I,5) =-0.0112;
124
126
128
130
   132
134
135
136
138
140
                                                                                                                                                                                            AGEGRAM (I, 5) =-0.0197;

END;

DO I = 6 TO 1);

AGEGRAM (I, 2) = 0.0269;

AGEGRAM (I, 2) = 0.0559;

AGEGRAM (I, 3) = 0.0554;

AGEGRAM (I, 5) = 0.0976;

END;
                                                                    AGEGRPF(I,1) = 0.0269;
AGEGRPF(I,2) = 0.0706;
AGEGRPF(I,3) = 0.0628;
AGEGRPF(I,4) = 0.0252;
AGEGRPF(I,5) = 0.1186;
   140
142
144
146
147
148
                                                                                                                                                                                 ACCORPG 15;

IND: 1 = 11 TO 15;

ACCORPG (T, 1) = 0.0223;

ACCORPG (T, 2) = 0.0104;

ACCORPG (T, 4) = -0.306;

ACCORPG (T, 4) = -0.0641;

ACCORPG (T, 5) = 0.2212;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     AGEGRPF(1,1) = 0.0223;
AGEGRPF(1,2) = 0.0415;
AGEGRPF(1,3) = 0.0344;
AGEGRPF(1,4) =-0.0641;
AGEGRPF(1,5) = 0.1972;
                                                                                                                                                                                            AGEGRAM (I, 5) = 0.2212;

END;

DO I =16 TO 2);

AGEGRAM (I, 1) = 0.0761;

AGEGRAM (I, 2) = 0.0323;

AGEGRAM (I, 3) = 0.0122;

AGEGRAM (I, 5) = 0.2115;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         AGEGRPF(I,1) = 0.0761;
AGEGRPF(I,2) = 0.0609;
AGEGRPF(I,3) = 0.0326;
AGEGRPF(I,4) =-0.0777;
AGEGRPF(I,5) = 0.1358;
                                                                                                                                                                                            END: 21 TO 2; 1, 3) = 0.2175; 100 I = 21 TO 2; 100 I = 21
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         AGEGRPF (I, 1)
AGEGRPF (I, 2)
AGEGRPF (I, 3)
AGEGRPF (I, 4)
AGEGRPF (I, 5)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    = 0.1163;
= 0.0942;
= 0.0673;
= 0.2539;
=-0.2082;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         AGEGRPF(I,1) = 0.0390;
AGEGRPF(I,2) = 0.0638;
AGEGRPF(I,3) = 0.0601;
AGEGRPF(I,4) = 0.2252;
AGEGRPF(I,5) =-0.1893;
```

END:

STHT LEV BT

```
DO I = 31 TO 35;

AGECRPH (I, 1) = 0.0649;

AGECRPH (I, 2) = 0.0310;

AGECRPH (I, 3) = 0.0382;

AGECRPH (I, 4) = 0.1124;

AGECRPH (I, 5) = -0.074;
                                  AGEG RPF (I, 1) = 0.0649;
AGEG RPF (I, 2) = 0.0043;
AGEG RPF (I, 3) = 0.0311;
AGEG RPF (I, 4) = 0.1124;
AGEG RPF (I, 5) = 0.0666;
  196
198
200
202
204
206
207
208
210
212
214
218
219
220
222
224
226
                                                                                                                                                                                                                                                                                                                                                                 AGEGRPF(I,1) = 0.0682;
AGEGRPF(I,2) = 0.0085;
AGEGRPF(I,3) = 0.0306;
AGEGRPF(I,4) =-0.0306;
AGEGRPF(I,5) = 0.1734;
                                                                                                             ACEGRPA (I, 5) = 0.0136;
BO I = 41 TO 6;
ACEGRPA (I, 1) = 0.0186;
ACEGRPA (I, 2) = 0.0322;
ACECRPA (I, 3) = 0.0333;
ACECRPA (I, 4) = 0.0544;
ACEGRPA (I, 5) = 0.0554;
                                                                                                                                                                                                                                                                                                                                                                    AGEGRPF(I,1) = 0.0186;
AGEGRPF(I,2) = 0.0375;
AGEGRPF(I,3) = 0.0344;
AGEGRPF(I,4) = 0.0544;
AGEGRPF(I,5) = 0.0473;
AGEGRPH (I, 5) = 0.055%;

END;

DO I =46 TO 5);

AGEGRPH (I, 1) =-0.0060;

AGEGRPH (I, 2) = 0.0186;

AGEGRPH (I, 3) = 0.0311;

AGEGRPH (I, 4) = 0.0385;

AGEGRPH (I, 5) = 0.0398;
                                                                                                                                                                                                                                                                                                                                                                      AGEGRPF(I,1) =-0.0060;

AGEGRPF(I,2) = 0.0080;

AGEGRPF(I,3) = 0.0269;

AGEGRPF(I,4) = 0.0385;

AGEGRPF(I,5) = 0.0432;
                                            | 1 | ALCORPTIAN | 1 | 
                                                                                                                                                                                                                                                                                                                                                                      AGEGRPF(I,1) = 0.0148;
AGEGRPF(I,2) = 0.0061;
AGEGRPF(I,3) = 0.0163;
AGEGRPF(I,4) = -0.0265;
AGEGRPF(I,5) = 0.0282;
                                                                                                                                                                                                                                                                                                                                                                      AGEGRPP(I,1) = 0.0172;

AGEGRPP(I,2) = 0.0093;

AGEGRPP(I,3) = 0.0078;

AGEGRPP(I,4) = 0.0154;

AGEGRPP(I,5) = 0.0014;
                                                                                                                         END;
                                                                                                               DO I =61 TO 6;

AGECAPR(I, 1) =-0.0107;

AGECAPR(I, 2) = 0.0022;

AGECAPR(I, 3) = 0.0046;

AGECAPR(I, 4) =-0.0195;

AGECAPR(I, 5) = 0.0185;
    267
                                                   1 0
                                                                                                                                                                                                                                                                                                                                                                        AGEGRPF(I,1) =-0.0107;
AGEGRPF(I,2) = 0.0002;
AGEGRPF(I,3) = 0.0053;
AGEGRPF(I,4) =-0.0195;
AGEGRPP(I,5) = 0.0218;
    268
270
272
                                                   274
276
278
279
280
282
284
286
291
291
292
293
294
295
297
299
301
                                                                                                                                                                                                                                                                                                                                                                        AGEGRPF(I,1) = 0.0153;
AGEGRPF(I,2) = 0.0036;
AGEGRPF(I,3) = 0.0050;
AGEGRPF(I,4) = 0.0027;
AGEGRPF(I,5) = 0.0129;
                                                                                                                             EMD;
EMD;
aGZGRPH(71,1) = 0.0371;
AGZGRPH(71,2) =-0.0011;
AGZGRPH(71,3) = 0.0051;
AGZGRPH(71,4) = 0.0272;
AGZGRPH(71,5) =-0.0081;
                                                                                                                                                                                                                                                                                                                                                 AGEGRPF (71,1) = 0.0371;
AGEGRPF (71,2) = 0.0105;
AGEGRPF (71,3) = 0.0108;
AGEGRPF (71,4) = 0.0272;
AGEGRPF (71,4) = 0.0006;
    303
```

```
STRT LEV NT
                                                             PRIOR FILE (OUFFIL) OUTFUT: /* READ IN COUNTY HET BIGRATION FOR */
READ FILE (INFIL) INTO (ING); /* 1977 TO 2026 */
BEAD FILE (INFIL) INTO (ING);
DO I = 1 TO 25;
CMM (1+20) = CHAGI(I);
IND:
CMM (1+20) = CHAGI(I);
IND:
CMM (1+20) = CHAGI(I);
ENG:
CMM (1+0) = CMAGI(I);
ENG:
                                                                OPEN FILE (IMPIL) IMPUT;
OPEN FILE (OUTFIL) OUTFUT;
    309
    311
312
313
314
315
316
317
                          1 0
1 1
1 1
1 0
1 1
1 1
                                                                OR EMDFILE (IfFIL) BEGIN;

PUT PACE DIT (*TOTAL POPULATION PROJECTION FOR SISCOE COUNTY)

(X(25), A(45);

EOF - '1';

GOTO HEAD;
   319
320
    321
322
323
                        2 0
2 0
2 0
                          1 0 READ:
                                                                                                                                                                                                       /* SET TOTALS TO ZERO */
                                                           PF(*)=0;
PH(*)=0;
DENS=0;
                                                                                                           FOTF(*) = 0;
FOTM(*) = 0;
FOTT(*) = 0;
    328
                                                                 BIRTHSM(*) = 0;
BIRTHSF(*) = 0;
TOTBH (*) = 0;
TOTBF (*) = 0;
TOTBF (*) = 0;
                                                                                                                          DEATHSM (*) =0;

DEATHSP (*) =0;

TOTDR (*) =0;

TOTDP (*) =0;

TOTDT (*) =0;
                                                                                                                                                                                             WE THIGH (*) = 0;
WE THIGH (*) = 0;
TO THH (*) = 0;
TO THF (*) = 0;
TO THT (*) = 0;
    3 3 0
                                      0 0 0
   333
336
339
342
                                                                                                                                                                                 /* READ IN & CARDS FOR EACH CITY, */
/* TOWN, VILLAGE OR TOWNSHIP */
                                                                  BEAD FILE (INFIL) INTO (IN1);
READ FILE (INFIL) INTO (IN2);
READ FILE (INFIL) INTO (IN3);
READ FILE (INFIL) INTO (IN4);
                                                                                                                 /* DIVIDE 5 AND 10 YEAR AGE GROUPS INTO SINGLE AGES */
                                                                 DO I * 1 TO 5: Pf(I, 1)*FDO(I) /5: Pf(I, 1)*FDO(I) /5:
DO I * 6 TO 10: Pf(I, 1)*FDO(I) /5: Pf(I, 1)*FDO(I) /5:
DO I * 10 TO 11: Pf(I, 1)*FDO(I) /5: Pf(I, 1)*FDO(I) /5:
DO I * 11 TO 13: Pf(I, 1)*FDO(I) /5: Pf(I, 1)*FDO(I) /5:
DO I * 12 TO 23: Pf(I, 1)*FDO(I) /6: Pf(I, 1)*FDO(I) /6:
DO I * 26 TO 33: Pf(I, 1)*FDO(I) /6: Pf(I, 1)*FDO(I) /6:
DO I * 26 TO 35: Pf(I, 1)*FDO(I) /6: Pf(I, 1)*FDO(I) /6:
DO I * 26 TO 35: Pf(I, 1)*FDO(I) /6: Pf(I, 1)*FDO(I) /6:
DO I * 26 TO 35: Pf(I, 1)*FDO(I) /6: Pf(I, 1)*FDO(I) /6:
DO I * 26 TO 37: Pf(I, 1)*FDO(I) /6: Pf(I, 1)*FDO(I) /6:
DO I * 27: Pf(I, 1)*FDO(I) /6: Pf(I, 1)
    349
353
357
361
365
369
373
377
381
                                                                                                                                                                                                                                                                                                  END;
END;
END;
END;
END;
                                                                                                                                                                                                                                                                                                   END
    389
                                                                  PF (71,1) = FPOP(11); PE (71,1) = EPOP(11);
                                                                 IF S = "A" THEN S = "1";

IF S = "B" THEN S = "2";

IF S = "C" THEN S = "3";

IF S = "C" THEN S = "4";

IF S = "E" THEN S = "5";
    391
                                                                                                              / CALCULATE POPULATION FOR 50 YEARS */
                                                                                DO I = 2 TO 51;
DO J = 1 TO 71;
RGM(J) = CMM(I-1) *BMG*AGEGRPM(J,S);
RGF(J) = CMM (I-1) *BMG*AGEGRPM(J,S);
    396
397
398
399
800
401
802
803
                                                                                            404
405
407
408
                                                                                             PR(),;) = PR(J-1,;1-1) - (PR(J-1,;1-1)

END;

SURM=0; SURF=0;

DO K = 10 TO 60;

SURF=SURF+(B(K)*PF(K,;1)*0-49);

SURF=SURF+(B(K)*PF(K,;1)*0-51);
                                                                                             810
811
813
     414
     415
                                                                                  EWD;
     416
                             1 0
                                                                                    PUT PAGE EDIT('POPULATION PROJECTION FOR ',TITLE) (X(25), A(26), A(80));
     917
                            1 0 BEAD:
                                                                                  POT SKIP(2) EDIT((DASE(I) DO I = 1 TO 118)) ((118)A(1));
POT SKIP(1) EDIT('YEAR SET 0-4 5-9 10-14 15-19 20-2
4 35-44 5-54 55-66 65-69 70+ TOTAL POP. DERSYIT PER SQ
     818
                                                   4 25-34
EM')
                                                                                  (&(118));
PUT SKIP(1) EDIT((DASE(I) DO I = 1 TO 118)) ((118)&(1));
IF EOF='1' THEM GOTO EOJ;
                        1 0
       420
                                                                                                           OTIFLE = TITLE;
                                                                                                           FILLS = ° °;
WRITE FILE (OUTPIL) PROM (OUT1);
OCCOUNT = OCCOUNT + 1;
       922
923
829
```

STRT LEV RT

```
/* GROUP SINGLE AGES BACK INTO 5 AND 10 TEAR AGE GROUPS */
                        8256794933357794949494955757913366670
471
472
473
474
475
                                 END;

DO K = 1 TO 12;

FOTT(K,I) = TOTH(K,I) + TOTF(K,I);

END;
                          /* PRINT CALCULATED POPULATION FOR 50 YEARS */
                                 976
       1 1
477
 979
        1 1
880
 481
        1 1
482
483
484
485
486
                                  END;
                          /* WRITE SUTPUT RECORDS FOR POPULATION FOR 50 THARS */
687
                                 DO K = 1 TO 71;
OFIELD(K) = PM(K,J);
488
                                 DFIELD(N)
END;
END;
END; DCOUNT + 1;
DC K = 1 TO 71;
DFIELD(K) = PF(K,J);
489
491
492
493
495
496
                                 Print File (OUTFIL) FROM (OUT2);
OCOUNT = OCOUNT + 1;
                                 /* CALCULATION NEEDED TO CALCULATE POPULATION CENTROID */
497
499
501
502
                                 TEHP = TOTT(12,I) * ICOORD; CX(I) = CX(I) + TEHP; TEMP = TOTT(12,I) * TCOORD; <math>CY(I) = CY(I) + TEMP; CTOY(I) = CTOY(I) + TOTT(12,I);
                          FHn.
```

STRT LEV NT

```
/* KEEP TOTALS OF BIRTHS, DEATHS, AND WET HIGRATION */
                                                                                                                                                                                                                                /* KEEP 777au>

DO K = 1 TO 10;

I = (K+1) + (4*(K-1));

D J = 2 TO 70;

PP (J-1,I-1) * DP (J-1);

DD J = 2 TO 70;

PP (J-1,I-1) * DP (J-1);

DD J = 2 TO 70;

PP (J-1,I-1) * DP (J-1);

DD J = 2 TO 70;

PP (J-1,I-1) * DP (J-1);

DD J = 2 TO 70;

PP (J-1,I-1) * CR (I-1) * RACK-ACCERP (J-1,S);

PETRIOR (J-1,K) * PP (J-1,I-1) * DP (J-1);

DD J = 1 TO 70;

PP (J-1,K) * PP (J-1,I-1) * DP (J-1,I-1) * DP (J-1,I-1) * DP (J-1);

DD J = 1 TO 70;

PP (J-1,I-1) * DP (J-1,I-1) * D
504
505
506
507
508
509
        514
                                                                                                                                                                                                                                                                                                                + CNH(1-1) WRNGWAGEGRY (7:

DO L = 10 TO 60:

BIRTSSF(L,K) = PF(L,I) * B(L) * 0.49;

BIRTHSN(L,K) = PF(L,I) * B(L) * 0.51;
    515
516
517
518
                                                                                                                                                                                                                                                                                                        BIRRADALMANN LEAD LEVEL TO LEAD LANGE LLK): DO L = 1 TO 5: TOTBY (1,K) + BIRTHSY(L,K): TOTBY (1,K) + DIRTHSY(L,K): TOTBY (1,K) + TOTBY (1,K) + BIRTHSY(L,K): TOTBY (1,K) + TOTBY (1,K) + BIRTHSY(L,K): TOTBY (1,K) + TOTBY (1,K) + BIRTHSY(L,K): TOTBY (1,K) + BIRTHSY (1,K)
                                                                                                                                                                                                            TOTAR (1,R)

BUD:

DO L = 6 TO 10:

TOTAR (2,K) = TOTAR (2,K) + STEPHER(L,K):

TOTAR (2,K) = TOTAR (2,K) + BERTHSF(L,K):

TOTAR (2,K) = TOTAR (2,K) + BERTHSF(L,K):

TOTAR (2,K) = TOTAR (2,K) + BERTHSF(L,K):

TOTAR (2,K) = TOTAR (2,K) + BETHSF(L,K):

TOTAR (2,K) = TOTAR (2,K) + BETHSF(L,K):

FOTAR (2,K) = TOTAR (2,K) + BETHSF(L,K):

FOTAR (2,K) = TOTAR (2,K) + BETHSF(L,K):
            526
527
528
529
530
531
                                                                                                                                                                                                                                                                                                                    TOTAR (LARY EAR)
ERD: 10 L = 10 15; TOTAR (3,K) + BIRTNSF(L,K); TOTAR (3,K) + BIRTNSF(L,K); TOTAR (3,K) + BIRTNSF(L,K); TOTAR (3,K) + DEATHSF(L,K); TOTAR (3,K) - TOTAR (3,K) + DEATHSF(L,K); TOTAR (3,K) - TOTAR (3,K) + BIRTNSF(L,K);                                                                                                                                                                                                                                                                                                                 TOTAR (4,K) = TOTAR (4,K) +
TOTAR (4,K) = TOTAR (4,K) +
TOTAR (4,K) = TOTAR (4,K) +
TOTAR (4,K) = TOTAR (4,K) +
TOTAR (4,K) = TOTAR (4,K) +
TOTAR (4,K) = TOTAR (4,K) +
TOTAR (4,K) = TOTAR (4,K) +
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        BIRTHSF(L,K);
BIRTHSM(L,K);
DEATHSF(L,K);
DEATHSM(L,K);
METHIGF(L,K);
SETHIGR(L,K);
                                                                                                                                                                                                                                                                                                                            TOTE (4,5) = TOTE (5,K)

TOTE (5,K) = TOTE (5,K)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    + BIRTHSF(L,K):
+ BIRTHSH(L,K):
+ DEATRSF(L,K):
+ DEATRSH(L,K):
+ HETHIGF(L,K):
+ HETHIGH(L,K):
                                                                                                                                                                                                                                                                                                                                    TOTHM (S,K) = TOTHM (S,K) + BIRTHSF(L,K); SOUTH (S,K) + BIRTHSF(L,K); SOUTH (S,K) + BIRTHSF(L,K); SOUTH (S,K) + SOUTH (S,K) + BIRTHSF(L,K); SOUTH (S,K) = TOTHM (S,K) + BIRTHSF(L,K); SOUTH (S,K) = TOTHM (S,K) + BIRTHSF(L,K); SOUTHM (S,K) = TOTHM (S,K) + BIRTHSF(L,K); SOUTHM (S,K) = TOTHM (S,K) + BIRTHSF(L,K); SOUTHM (S,K) = TOTHM (S,K) + BIRTHSF(L,K);
                                                                                                                                                                                                                                                                                                                                            TOTR (6,K) = TOTRE (6,K) = BETRINGLON;

DD1 = 50 - 05;

DD1 = 70 - 50;

TOTRE (7,K) = TOTRE (7,K) + BITRING(1,K);

                               569
570
571
572
573
574
575
577
576
577
578
579
580
581
582
583
584
585
                                                                                                                                                                                                                                                                                                                                            TOTER (4.87) \times EDD: (0,K) + BIPTNSF(L,K); \times DO L = 86 TO 55; \times TOTEP (8.5) \times BIPTNSF(L,K); \times TOTER (8.5) \times SOTEP (8.5) \times BIPTNSF(L,K); \times TOTEP (8.5) \times DODD (8.5) \times DEATHSF(L,K); \times TOTEP (8.7) \times BIPTNSF(L,K); \times TOTEP (8.7) \times TOTEP (8.7) \times BIPTNSF(L,K); \times TOTEP (8.7) \times BIPTNSF(L,K); \times BIPTNSF
                                                                                                                                                                                                                                                                                                                                                TOTHS (8,K) = TOTHS (8,K) + RETRIGGL(.K);

DO = 50 - 55;

DO = 50 - 55;

TOTHS (9,K) = TOTHS (9,K) + RETRISGL(.K);

TOTHS (9,K) = TOTHS (9,K) + RETRISGL(.K);

TOTHS (9,K) = TOTHS (9,K) + DEATHSFL(.K);

TOTHS (9,K) = TOTHS (9,K) + DEATHSFL(.K);

TOTHS (9,K) = TOTHS (9,K) + RETRIGGL(.K);

TOTHS (9,K) = TOTHS (9,K) + RETRIGGL(.K);
                                                                                                                                                                                                                                                                                                                                                        TOTAL (1, K) = BIRTHSP (71, K);
TOTBF (11, K) = DEATHSP (71, K);
TOTBF (11, K) = DEATHSP (71, K);
TOTRF (11, K) = FETBIGF (71, K);
                                                        597
598
599
601
603
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    TOTBE (11, K) = BIRTHSE (71, K);
TOTDE (11, K) = DEATHSE (71, K);
TOTBE (11, K) = BETHIGE (71, K);
```

```
PL/I OPTIMIZING COMPILER
                                                                                                                            BARG: PROC OPTIONS (MAIN);
                 STHT LEV NT
                                                                                                                           609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
                                                                                                                        TOTER(L,K) = TOTER(L,K) + TOTER(L,K); TOTER(L,K) = TOTER(L,K) + TOTER(L,K) + TOTER(L,K) + TOTER(L,K) = TOTER(L,K) + TOTER(L,K); TOTER(L,K) + TOTER(L,K);
                                                                                                                       TOTAT (L,K) * TOTAT (L,K);

PM:

DO L = 1 TO 12;

COTOTA (L,K) = GTOTAT (L,K) + TOTAT (L,K);

COTOTA (L,K) = GTOTAT (L,K) + TOTAT (L,K);

COTOTA (L,K) = GTOTAT (L,K) + TOTAT (L,K);

GTOTAT (L,K) = GTOTAT (L,K) + TOTAT (L,K);

COTOTAT (L,K) = GTOTAT (L,K) + TOTAT (L,K);

FMO:
                                                                                                       /* PRINT TOTALS OF BIRTHS, DEATHS AND MET HIGHATION */
                                                                                                                       629
630
631
632
                      633
                                                1 1
                      634
                      635
                      636
                      637
                      638
                      640
                                            1 1
                                             1 1
                                                                                                          END;
GOTO READ:
                      642
                    643
                                                1 0 BOJ:
                                                                                           /* PRINT CALCILATED POPULATION FOR 50 YEARS FOR SINCOR COUNTY */
                                                                                                                                       TITLE = "SINCOE COUNTY
                                                                                                                        DO I = 1 TO 11;
PUT SKIP(3) EDIT (TITL(I), '8', (GTOT8(L,I) DO L=1 TO 12))
(A(4), X(3), A(1), X(3), (12)F(7));
DESS = GTOTT(12,I) / 8842.5;
PUT SKIP(1) EDIT (**F', (GTOTF(L,I) D) L=1 TO 12),
'ALL LABD', DESS)
'ALL LABD', DESS)
'DESS (TATA), (1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2
                                               1 0
                      648
                      650
                                                                            /* PRINT TOTALS OF BIRTHS, DEATHS & NET HIGRATION FOR SINCOZ COUNTY */
                                                                                                          651
652
653
654
655
                      656
                                           1 1
```

STAT LEV NT

1 0

END MARG:

```
/* PRINT POPULATION CENTROID FOR COUNTY FOR 50 YEARS */
665
        1
            0
                                     PUT PAGE EDIT ('SINCOE COUNTY POPULATION CENTROID')
                                     (X(13), \lambda(33));
PUT SKIP(1) EDIT ((DASH(I) DO I = 1 TO 33)) (X(13),
666
        1
            0
                                         (33) A(1)):
667
        1
            0
                                     PUT SKIP (4) EDIT ('POPULATION CENTROID IS LOCATED: ')
                                         (A(31));
668
        1
                                         I = 1 TO 11:
                  TEMP = CX(I) / CTOT(I); TEMP2 = CY(I) / CTOT(I);
PUT SKIP(3) EDIT (TEMP, 'KMS WEST AND', TEMP2, 'KMS SOUTH
OF MIDHURST IN', TITL(I),'.') (X(2), F(6,2), X(1), A(12), X(1), F(6,2),
669
        1
671
        1
                                        X(1), A(24), X(1), A(4), A(1));
672
        1
673
        1
            0
                            GOTO DONE:
                       HEADING: PROCEDURE:
674
        1
            0
575
                            PUT PAGE EDIT ('BIRTHS, DEATHS AND NET MIGRATION FOR', TITLE)
        2
                        (X(26), A(36), X(1), A(80));

PUT SKIP(2) EDIT ((DASH(I) DO I = 1 TO 112)) ((110) A(1));

PUT SKIP(1) PDIT ('YEAR SEX 0-4 5-9

15-19 20-24 25-34 35-44 45-54 55-64 65-69 70+ TOTAL')
876
        2
            0
677
        2
            0
                 -14
                            (A(110)):
PUT SKIP(1) EDIT ((DASH(I) DO I = 1 TO 110)) {(110)A(1)}:
678
            0
679
                            END HEADING;
        2
            Ω
680
            0
                       DONE:
                            FUT PAGE EDIT ('TOTAL RECORDS WRITTEN', OCCUMT)
                                (A(21), X(2), P(5)):
```

PL/I OPTIMIZING COMPILER M.PG: PROC OPTIONS (HAIN):

COMPILER DIAGNOSTIC MESSAGES

BRROR ID L STHT HPSSAGE DESCRIPTION

COMPILER IMPORMATORY MESSAGES

IEL05331 I BO 'DECLARE' STATEBERT(S) FOR 'SYSPRIRT', 'I', 'J', 'K', 'L'. IBL0906T I 398, 399, 508, 509, 513, 513, 514, 514 DATA CONVERSION WILL BE DONE BY SUBROUTINE SALL.

PRO OF COMPTLER DISCHOSTIC RESSACES

CORPILE TIME 0.85 BIRS SPILL FILE: 107 BECORDS, SIZE 4051

SOURCE LISTING

STHT LEV NT

O MARG: PROC OPTIONS (MAIN);

/* PROGRAM TO CALCULATE PROJECTED EMPOLSENT IN ONTARIO UNIVERSITIES FROM SINCOE COUNTY. AUGUST 1978.

/* (1976 PERCENTAGES ARE USED) */

1 0 DCL INFIL FILE RECORD IMPUT; /* INPUT FILE */

1 0 DCL 1 IN1 STATIC, 2 POPM(71) FIXED(7); /* MALE POPULATION */ 3

1 0 DCL 1 IN2 STATIC, 2 POPP(71) FIXED(7); /* FEMALE POPULATION */

1 0 DCL 1 IN3 STATIC, 2 TITLE CHAR(50), /* MARE OF CITY, TOWN, WILLAGE, OR */ 2 FILL CHAR(234); /* TOWNSHIP */

Z FILL CHAR (230), /* 1
Z FILL CHAR (230)
UNDER 197 FIRFO (5)
OVER 298 FIRFO (5)
OVER 298 FIRFO (5)
OVER 298 FIRFO (5)
OVER 298 FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7)
FIRED (7 STATIC, STATIC, STATIC, STATIC, STATIC, STATIC, STATIC, STATIC, 1 0 DCL TINDER1AR UNDER1AR OVER 2AN OVER 2AR STATIC,
STAT LEV MT

```
1 0 DCL DASH (127) CHAR (1) STATIC;
         8
                                                                                                                      TPECTATA () STATIC;

PRECTATA () = 0.0003;

PRECTATA () = 0.0188;

PRECENTA () = 0.0188;

PRECENTA () = 0.0373;

PRECENTA () = 0.0373;

PRECENTA () = 0.0373;

PRECENTA () = 0.0353;

PRECENTA () = 0.0353;

PRECENTA () = 0.0353;

PRECENTA () = 0.0353;

PRECENTA () = 0.00561;

PRECENTA () = 0.00561;

PRECENTA () = 0.00061;

PRECENTA () = 0.00061;

PRECENTA () = 0.00061;

PRECENTA () = 0.00061;
                                                                                                                                                                                                                                                                                                          PPRICENTY (1)=0.0000;
PPRICENTY (2)=0.03012;
PPRICENTY (2)=0.03012;
PPRICENTY (3)=0.13037;
PPRICENTY (4)=0.12035;
PPRICENTY (7)=0.02195;
PPRICENTY (7)=0.02195;
PPRICENTY (3)=0.0068;
PPRICENTY (1)=0.0058;
PPRICENTY (1)=0.0058;
PPRICENTY (1)=0.0068;
PPRICENTY (1)=0.0068;
PPRICENTY (1)=0.0068;
                                                                                                                                                                                                                                                                                                    PRECENT(14)-0.00006;

PRECENTA (1)-0.00000;

PRECENTA (2)-0.00000;

PRECENTA (3)-0.00000;

PRECENTA (4)-0.00112;

PRECENTA (5)-0.00616;

PRECENTA (7)-0.00505;

PRECENTA (7)-0.00505;

PRECENTA (7)-0.00505;

PRECENTA (7)-0.00161;

PRECENTA (7)-0.00161;

PRECENTA (7)-0.00161;

PRECENTA (1)-0.00161;

PRECENTA (1)-0.00161;

PRECENTA (1)-0.00161;

PRECENTA (1)-0.00161;

PRECENTA (1)-0.00161;

PRECENTA (1)-0.00161;
                                                                                                                        PGTOTM(*)=0; PGTOTM(*)=0; TITOTM(*)=0; FGTOTM(*)=0; TGTOTM(*)=0; TGTOT
                                    1 0
1 0
1 0
       74
                                                  0
                                                                                                                        DASH(*) = * *:
                                    1
                                                                                                                        OPEN FILE (INFIL) IMPUT;
ON ENDFILE (INFIL) BEGIN;
TITLE = 'SIBCOE COUNTY
GOTO E3J;
     80
                                    1 0 READ1:
                                                                                                                        READ FILE (IMPIL) IMTO (IM3);
J = 0;
                                    1 0
1 0 READ2:
       82
                                                                                                                         READ FILE (IMFIL) INTO (IM1);
READ FILE (IMFIL) INTO (IM2);
J = J + 1;
FMERGLA (*) = 0;
FERRGLA (*) = 0;
FERRGLE (*) = 0;
FERRGLE (*) = 0;
FERRGLE (*) = 0;
                                                                                                                                                                                                                                                                                                                                                           TENROLM(*) = 0;
TENROLM(*) = 0;
TENROLT(*) = 0;
       88
                                      1 0
                                                                                                                    UNDER19#=):
UNDER18F=0;
                                                                                                                                                                                                                                                                                                                                                                  ALLE=0;
ALLE=0:
     9 q
9 7
                                  1 0
                                                                                                                                                                                                                                          OVER28F=0:
                                                                                                                      DO I = 1 FO 18;

UNDER138 = UNDER188 + POPR(I);

UNDER13F = UNDER18F + POPR(I);

FMD:

DO I = 30 TO 71;

OVER231 = OVER238 + POPR(I);

OVER278 = OVER238 + POPR(I);
 100
                                                                                                                        END:

DO I = 1 PO 71;

ALL" = ALLD + POPE(I);

ALLF = ALLF + POPF(I);
                                                                                                                    END;
                                                                                                                        FERROLM(1: = UNDER18H * FPERCENTM(1);
FERROLP(1) = UNDER18F * FPERCENTF(1);
PERROLP(1) = UNDER18H * PPERCENTR(1);
PERROLP(1: = UNDER18F * PPERCENTF(1);
                                                  0
                                                                                                                      DO I = 2 TO 12;

FENROLY(I)=POPH(I+17) * PPERCENTH(I);

FENROLY(I)=POPP(I+17) * PPERCENTY(I);

PENROLR(I)=POPP(I+17) * PPERCENTH(I);

PENROLP(I)=POPP(I+17) * PPERCENTY(I);
116
                                                    0
                                                                                                                         EMD;
                                                                                                                        Frmkolm (13) = Over28# * Ppercenth (13);
Frmrolf (13) = Over28# * Ppercentf (13);
Prmkolm (13) = Over28# * Ppercentm (13);
Prmkolm (13) = Over28# * Ppercentf (13);
                                                                                                                        FENROLH(13) = ALLH * FPERCENTH(14);

FENROLF(14) = ALLH * FPERCENTF(14);

PENROLF(14) = ALLH * PPERCENTH(14);

FENROLF(13) = ALLH * PPERCENTF(14);
 126
                                                                                                              DO I = 1 TO 14;
FERROLY(15) = FERROLF(15) + FERROLF(I);
FERROLY(15) = FERROLF(15) + FERROLF(I);
PERROLY(15) = PERROLF(I);
PERROLY(15) = PERROLF(I);
   130
 131
132
133
134
135
                                                                                                                        END;
   136
                                                 0
                                                                                                                         DO I = 1 FO 15;
                                                                                                                             DO J = 1 FO 15;

PERROLT(I) = PERROLM(I) + PERROLP(I);

PERROLT(I) = PERROLM(I) + PERROLP(I);

TERROLT(I) = FERROLT(I) + PERROLP(I);

TERROLT(I) = FERROLT(I) + PERROLT(I);
   137
138
139
140
141
                                                                                                     END;
   142
 143 1 0
                                                                                                                  IF J=1 THEB CALL BEADING:
```

```
STAT LEV HT
                                                                                                       IF J=5 THEN CALL HEADING;
IF J=9 THEN CALL HEADING;
     144
                                                                                                     146
                               1 0
     147
                               1 0
     148
                                                                                                     249
                               1 0
     150
                               1 0
     151
                                                                                                     152
                               1 0
     153
                               1 0
                                                                                                     DO I = 1 TO 15;

FOTOTR(I,J) = FOTOTR(I,J)

FOTOTR(I,J) = FOTOTR(I,J)

FOTOTR(I,J) = FOTOTR(I,J)

FOTOTR(I,J) = FOTOTR(I,J)

POTOTR(I,J) = FOTOTR(I,J)

FOTOTR(I,J) = FOTOTR(I,J)

TOTOTR(I,J) = TOTOTR(I,J)

FOTOTR(I,J) = TOTOTR(I,J)

FOTOTR(I,J) = TOTOTR(I,J)

FOTOTR(I,J) = TOTOTR(I,J)
       155
156
157
159
160
161
162
163
                                                                                                       END;
       166
167
                                                                                                       IF J=11 TiPN GOTO READ1:
ELSE GOTO READ2;
                                 1 0 EO.I:
       168
                                                                                                       DO J = 1 TO 11;
                                                                                                                  IF J=1 THEN CALL HEADING;
IF J=5 THEN CALL HEADING;
IF J=9 THEN CALL HEADING;
                                                                                                     POT SKIP() RDIT (ITL(3), *PILL-TIRE*, *R*, (PCTOTR(K, 5) DO K = 1 PO | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1
        172
                                    1 1
                                  1 1
                                  1 1
                                                                                                        PUT SKIP(2) EDIT ("PART-TIME", "H", (PGTOTE(K, J) DO K
        175
                                                                                                     =1 F0 15) {K(6), A(9), X(3), A(1), X(3), (15) F(7));
PDT SKTP(1) EDIT (*F*, F0000TF(K, 3) DO N=1 T0 15)1
(X(14), A(1), X(3), (15) F(7));
PDT SKTP(1) EDIT (*T*, F0000TF(K, 3) DO N=1 T0 15)1
(X(18), A(1), X(3), (15) F(7));
     176
                                                                                                    PUT SKIP(2) EDIT ("TOTAL", '5', (TOTOTA(R,J) DO R=1 TO 15))

(K(6),A(5),A(7),A(1),X(3),(15)P(7));

PUT SKIP(1) EDIT ("P", (TOTOTP(R,J) DO K=1 TO 15))

(K(16),A(1),X(3),(15)P(7));

PUT SKIP(1) EDIT ("T", (TOTOTP(R,J) DO K=1 TO 15))

EXC.
(A(16),A(1),X(3),(15)P(7));

EXC.
(GOTO DOKE;
     178
                                 1 1
     170
     183
                                 1 O HEADING+
                                                             READING:

PROCEDRE:
PTT PAGE EDIT ('PROJECTED EMBOLHEMT IM OWEARIO UNIVERSITIES FRO
R',TITLE) ((20),4(48),2(1),4(50));
PTT SKIP(1) EDIT ('UNDER', 'SYEE') (X(24),4(5),X(80),A(4));
PTT SKIP(1) EDIT ('UNDER', 'SYEE') (X(24),4(5),X(80),A(4));
PUT SKIP(1) EDIT ('TEAM 1998)
20 2 2 2 23 24 25 26 27 28 28
WIR TOTAL) (A(127));
PTT SKIP(1) EDIT ((DASR(1) DO I=1 TO 127)) ((127),4(1));
EDU BELDITG;
EDU BELDITG;
EDU BELDITG;
     184
                                 2 0
     185
                                 2 0
2 0
2 0
     187
     188
                               2 0 2 0
```

190 1 0 DONE: END HARG:

CROSS-REFERENCE TABLE (FULL)

DCL HO.	IDENTIFIER	
BCL BU.	IDENTIFIER	BEFERENCES
6	BLLP-	99,110,110,127,129
6	ALLS	96,109,109,126,128
0	DASH	74,185,188
190	DONE	182
168	ECJ	78
6	PERROLP	88,113,118,123,127,132,132,132,137,140,147,157
6	PERFOLR	85,112,117,122,126,131,131,131,137,139,146,156
6	PERROLT	91,137,101,148,158
6	PGTOTF	68,157,157,173
6	PGTOTH	65,156,156,172
	PGTOTT	71, 158, 158, 179
5	PPERCENTF	10 17 14 16 18 20 22 24 24 20 20 20 20 20 20 20 20 20 20 20 20 20
6	PPERCENTY	10,12,14,16,18,20,22,24,26,28,30,32,34,36,113,118,123,127 9,11,13,15,17,19,21,23,25,27,29,31,33,35,112,117,122,126
183	MEADING	143,144,145,169,170,171
*******	7	
		100,100,101,105,104,104,105,106,108,108,108,109,110,116,116,117,117,117,117,118,118,118,118,119,119,119,1120,120,120,120,130,130,131,132,133,134,136,136,137,137,137,138,136,136,137,137,137,138,136,136,139,137,137,138,136,136,139,137,137,137,138,136,136,136,136,136,136,136,136,136,136
2	INPIL	75,76,80,82,83
3	X H1	82
4	IN2	83
5	IN3	#3
	J	01,84,84,143,144,145,146,156,156,157,157,158,158,159,159,150,160,160,161,161, 162,162,463,463,164,164,166,168,168,169,170,171,172,172,172,173,178,175,176,177, 178,179,478
	ж .	146, 146, 146, 147, 147, 147, 148, 148, 148, 148, 149, 149, 149, 150, 150, 150, 150, 151, 151, 151, 151
1 1	MARG	
6	OVER28P ·	98,106,106,123,125
6	O VER 25 R	95,105,105,122,124
6	PERROLF	89,115,120,125,129,134,134,134,138,140,150,160
6	PERROLM	86,114,119,124,128,133,133,138,139,149,159
6	PERROLT	92,138,1%1,151,161
6	PGTOTF	69,160,160,176
6	PGTOTH	66,159,159,175
6	PGTOTT	72,161,161,177
3	POPF	102,106,110,118,120
6	PPERCENTY	101,105,109,117,119 38,40,42,44,46,48,50,52,54,56,58,60,62,64,115,120,125,129
6	PPERCENTS	37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 114, 119, 124, 128
80	READI	166
82	READ2	167
******	SYSPRIRT	186,187,188,189,150,151,152,153,158,172,173,174,175,176,177,178,179,180,184, 185,186,187,188
6	TENROLF	90,140,153,163
6	TENROLS .	87,139,152,162
6	TENROLY	93,141,154,164
6	TGTOTF	.70,163,163,179
6	TGTOTA	67,162,162,178
6	TGTOTT	73,164,164,180
7	TITL	186,172
5	FITTI	77, 184
6	UNDER 18P	97,102,102,113,115
	********	74, 191, 191, 112, 116

PL/I OPTIMIZING COMPILER HARG: PROC OPTIONS (MAIN):

AGGREGATE LENGTH TABLE

DCL NO.	IDENTIPIER	LVL	DIMS	OFFSET	ELEMENT LENGTH.	TOTAL LENGTH.
8 .	DASH		1		1	127
6	PENROLP		1		6	90
6	PENROLM .		1		6	90
6	FENROLT		1		6	90
6	FGTOTF	4	. 2		6	990
6	PGTOTM		2		6	990
6	FGTOTT		2		6	990
6	PP ERC ENTP		1		4	56
6	FP ERC ENTM		1		4	56
3	IN1 POPN	1 2	1		284 4	284 284
t)	IN2 POPF	1 2	1		284 4	284 284
5	IN 3 TITLE FILL	1 2 2		50	284 50 234	284
6	PENROLF		1		6	90
6	PENROLM		1		6	90
6	PENROLT .		1		6	90
6	PGTOTF		2		6	990
6	PGTOTM		2		6	990
6	PGTOTT		2	,	6	990
6	PPERCENTF		1		4	56
6	PPERCENTM		1		ė,	56
6	TENROLF		1		6	90
6	TENROLM		1		6	90
6	TENROLT		1		6.	90
6	IGTOTF		2		6	990
6	TGTOTM		2		6	990
6	TGTOTT		2		6	990
7 .	TITL		1		4	44
				SUM OF CONST	ANT LENGTHS	10967

PL/I OPTIMIZING COMPILER MARG: PROC OPTIONS (MAIN);

COMPILER DIAGNOSTIC MESSAGES

ERROR ID L STHT MESSAGE DESCRIPTION

COMPILER INFORMATORY MESSAGES

IELO5331 I NO 'DECLARE' STATEMENT(S) FOR 'SYSPRINT', 'J', 'I', 'K'.

END OF COMPILER DIAGNOSTIC MESSAGES

COMPILE TIME 0.33 MINS SPILL FILE: 42 RECORDS, SIZE 4051

APPENDIX IV

AGE AND SEX DISTRIBUTION

OF NET MIGRATION

BY

STAGE OF DEVELOPMENT

(from reference 3)

APPENDIX V

FLOWS DIRECT FROM

HIGH SCHOOLS

TO

POST-SECONDARY PROGRAMS'*

FOR

SELECTED COUNTIES

AND YEARS

^{*} actually universities - because the CAAT data was not available except in a form requiring more effort than was available. We're sorry.

