MATH 4500 - Homework 3

Daniel Alonso Vicuna

March 8, 2019

Exercise 1. Check that $u_4\overline{u_3}u_2\overline{u_1}=i$ and $\overline{u_1}u_2\overline{u_3}u_4=1$, so the product of the four reections is indeed $q\mapsto \mathbf{i}\,q$.

Answer: From the previous exercises on the book, the values of u_i are as follows:

$$u_1 = \mathbf{i}$$
 $u_2 = \frac{\mathbf{i} - 1}{\sqrt{2}}$ $u_3 = \mathbf{k}$ $u_4 = \frac{\mathbf{k} - \mathbf{j}}{\sqrt{2}}$ $\implies \overline{u_1} = -\mathbf{i}$ $\overline{u_3} = -\mathbf{k}$

So we can compute the quantities above using associativity:

$$\begin{aligned} u_4 \overline{u_3} u_2 \overline{u_1} &= u_4 \overline{u_3} u_2 \overline{u_1} \\ &= (u_4 \overline{u_3}) (u_2 \overline{u_1}) \\ &= (\frac{\mathbf{k} - \mathbf{j}}{\sqrt{2}} \, \mathbf{k}) (\frac{\mathbf{i} - 1}{\sqrt{2}} \, \mathbf{i}) \\ &= \frac{1}{2} (-1 - \mathbf{i}) (-1 - \mathbf{i}) \\ &= \frac{1}{2} 2 \, \mathbf{i} = \mathbf{i} \end{aligned}$$

Similarly,

$$\overline{u_1}u_2\overline{u_3}u_4 = (\overline{u_1}u_2)(\overline{u_3}u_4)
= (\mathbf{i}\,\frac{\mathbf{i}-1}{\sqrt{2}})(\mathbf{k}\,\frac{\mathbf{k}-\mathbf{j}}{\sqrt{2}})
= \frac{1}{2}(-1-\mathbf{i})(-1+\mathbf{i})
= 1$$

Exercise 2. Check that $q \mapsto u^{-1} qu$ is an automorphism of \mathbb{H} for any unit quaternion u.

Answer: We check that $\varphi(q) = u^{-1} qu$ indeed defines an automosphism.

• Injectivity. Suppose that $\varphi(q_1) = \varphi(q_2)$. We show that this implies $q_1 = q_2$:

$$arphi(q_1) = arphi(q_2) \ u^{-1} \, q_1 u = u^{-1} \, q_2 u \ u(u^{-1} \, q_1 u) u^{-1} = u(u^{-1} \, q_2 u) u^{-1} \quad ext{Multiply on the left and right} \ (uu^{-1}) q_1 (uu^{-1}) = (uu^{-1}) q_2 (uu^{-1}) \quad ext{Associative} \ q_1 = q_2$$

• Surjectivity. For any $q' \in \mathbb{H}$, there exists $q \in \mathbb{H}$ such that $u^{-1}qu = q'$. Clearly,

$$u^{-1} qu = q' \ u(u^{-1} qu)u^{-1} = uq'u^{-1} \ q = uq'u^{-1}$$

Note that such a $q \in \mathbb{H}$ since $u, u^{-1} \in \mathbb{S}^3$ so $uq' \in \mathbb{H}$ and $uq'u^{-1} \in \mathbb{H}$.

• Homomorphism. For all $q_1, q_2 \in \mathbb{H}$, we have that

$$egin{aligned} arphi(q_1q_2) &= u^{-1} \, q_1q_2u \ &= u^{-1} \, q_1(1)q_2u \ &= u^{-1} \, q_1(uu^{-1})q_2u \ &= (u^{-1} \, q_1u)(u^{-1} \, q_2u) \ &= arphi(q_1)arphi(q_2) \end{aligned}$$

Exercise 3. Give an example of a matrix in O(3) that is not in SO(3), and interpret it geometrically.

Answer: An example of such a matrix is a single reflection, which is by definition not orientation preserving and does not have determinant 1. For example, a reflection across the plane passing throught \mathcal{O} , perpendicular to the x axis:

$$R_x \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Clearly, this matrix satisfies $R_x^T R_x = 1$ since its a diagonal matrix with diagonals ± 1 and consequently $R_x \in O(3)$, but $det(R_x) = -1$ so $R_x \notin SO(3)$.

Exercise 4. Bearing in mind that matrix multiplication is a continuous operation, show that if there are continuous paths in G from 1 to $A \in G$ and to $B \in G$ then there is a continuous path in G from A to AB.

Answer: First consider the continuous path $\phi: I \to G$, where i = [0,1] such that $\phi(0) = 1$ and $\phi(1) = B$ such as the one given in the problem. Now we construct another continuous map $\tilde{\phi}: I \to G$ by composition of continuous maps, defined by $\tilde{\phi} = A \circ \phi$ (since matrix multiplication is a continuous operation). Clearly, $\tilde{\phi}(0) = A1 = A$, while $\tilde{\phi}(1) = AB$. This shows that, if there is a continuous map from 1 to B in G, then there is also a continuous map from A to AB.

Exercise 5. Similarly, show that if there is a continuous path in G from 1 to A, then there is also a continuous path from A^{-1} to 1.

Answer: We construct a $\tilde{\phi}: I \to G$ as in the last problem but using A^{-1} instead of A. That is, $\tilde{\phi} = A^{-1} \circ \phi$ where $\phi(0) = 1$ and $\phi(1) = A$. Clearly, this is also a composition of continuous maps, which is itself continuous, and $\tilde{\phi}(0) = A^{-1} 1 = A^{-1}$ while $\tilde{\phi}(1) = A^{-1} A = 1$ as desired. Notice that $A^{-1} \in G$ since G is a group.