Eigen values, eigenvecks, eigenspaces

: A is a metrix, the transformation matrix.

$$T(\vec{v}) = \lambda \cdot \vec{v}$$
 : λ is a constant, the eigenvalue.

* This vectors among the K-axis.

 \star \vec{V}_3 is an eigenvector because $T(\vec{v}_3)$ and \vec{v}_3 are on the

save line. λ in $T(\vec{v_3}) = \lambda \cdot \vec{V_3}$

is the eigenvalue.

$$T(\overrightarrow{v_3}) = A \cdot \overrightarrow{v_3}$$

$$T(\overrightarrow{v_3}) = \lambda \cdot \overrightarrow{v_3}$$

$$= \lambda \cdot \overrightarrow{v_3} = \lambda \cdot \overrightarrow{v_3}$$

A.J = λ . I # Our general formula for λ

3 = x.J-A.J # Just rearranging.

3 = x.InJ-A.J 4 Adding In

o = (x. In - A) 7 # Factoring out 7.

0 = 8.7 # A. In-A is a makin. Let's coll it B

B. J = 3 # Now this looks New the null space

S we wont to find equation.

non-zero vectors for V,

because zero vector don't give us now information.

* The set of eigenvectors of a matrix is a special set of input vectors for which the action of the matrix is described as a sample scaling by a Scalor (eigenvalue) * $A \cdot \vec{e}_{\lambda} = \lambda \vec{e}_{\lambda}$ \Rightarrow $|\lambda I - A| = 0 <math>\Rightarrow$ $\begin{vmatrix} \lambda - A_{1,1} & (-1)A_{1,12} \\ (-1)A_{2,1} & \lambda - A_{2,11} \end{vmatrix} = 0$

B.
$$\overrightarrow{J} = \overrightarrow{O}$$

If we have non-zero \overrightarrow{J} , it

means B will have linearly dependent

columns (because N(B) = $\{\overrightarrow{O}\}$ won't

be true), which means B is not invertible

which means $|B| = 0$,

Because $B = \lambda \cdot I_0 - A$. Now this

is the formula to find eigenvalues.

Trace: Sum of the values

on the main diagonal.

Trace = $\widehat{\Sigma} \cdot \lambda_1$; (lest #1)

Trace (4) = $2 - 1 = 1$;

 $\lambda_1 + \lambda_2 = 3 - 2 = 1$

Det(A) = $\lambda_1 - \lambda_2 - \lambda_1$; (Rule #2)

= $2 - 4 = -6$;

1. 12 = 3.(-2) = -6

* when we find the eigenvalue we con verify then in two vays:

1 Trace* (A) = $\sum_{i=1}^{n} \lambda_i$ 2 Det (A) = λ_1 . λ_2 ... λ_n

$$\begin{bmatrix} \lambda + 3 & 0 \\ -1 & \lambda - 4 \end{bmatrix} = 0$$

$$(\lambda+3)(\lambda-4)-0=0 \Rightarrow \lambda_1=-3$$

$$\lambda = -3 \Rightarrow \begin{bmatrix} 0 & 0 & 0 \\ -1 & -7 & 0 \end{bmatrix}$$

$$V_1 = -7V_2$$

$$E_{-3} = Spon\left(\begin{bmatrix} -7\\1 \end{bmatrix}\right)$$

$$\lambda = 4 \Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0$$

3 Find the eigenvectors of
$$A = \begin{bmatrix} 2 & -3 \\ 0 & 5 \end{bmatrix}$$

$$\begin{vmatrix} \lambda-2 & 3 \\ 0 & \lambda-5 \end{vmatrix} = 0 \Rightarrow (\lambda-2)(\lambda-5) = 0$$

$$\lambda_1=2 \quad \lambda_2=5$$

$$E_{2} = \begin{bmatrix} 0 & 3 & | & 0 \\ 0 & -3 & | & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix} \Rightarrow V_{2} = 0$$

$$V_{1} = -V_{2}$$

$$\begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$T(\vec{y}) = \begin{bmatrix} 4 & 0 & 1 \\ -1 & -6 & -2 \\ 5 & 0 & 0 \end{bmatrix} \Rightarrow$$

$$\begin{vmatrix} \lambda \cdot I - A \end{vmatrix} = \begin{vmatrix} \lambda \cdot 4 & 0 & -1 \\ 1 & \lambda + \hat{b} & 2 \end{vmatrix} = 0$$

=
$$(\lambda+6)$$
 $[\lambda^2-4\lambda-5]$ = $(\lambda+6)(\lambda-5)(\lambda+1)$

$$E_{-6} = \begin{bmatrix} -10 & 0 & -1 & | & 0 & |$$

$$E_{5} = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 1 & 11 & 2 & 0 \\ -5 & 0 & 5 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 3/11 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \cdot Spen \begin{pmatrix} \begin{bmatrix} 1 \\ -3/11 \\ 1 \end{bmatrix}$$

Out 0 Find the eigenvectors of
$$A = \begin{bmatrix} 1 & 4 & 2 & 1 \\ 0 & 4 & -3 & 1 \\ 0 & 0 & -2 & 1 \end{bmatrix}$$

$$\begin{vmatrix} \lambda - 1 & 4 & -2 & 1 \\ 0 & \lambda - 4 & 3 & 1 \\ 0 & 0 & \lambda + 2 & 1 \end{vmatrix} = 0$$

$$\Rightarrow (\lambda - 1) \begin{bmatrix} (\lambda - 4)(\lambda + 2) - 0 \end{bmatrix} = 0$$

$$\Rightarrow (\lambda - 1) \begin{bmatrix} (\lambda - 4)(\lambda + 2) - 0 \end{bmatrix} = 0$$

$$\Rightarrow \begin{bmatrix} \lambda_1 = 1 & \lambda_2 = 4 & \lambda_3 = -2 \\ 0 & 0 & 3 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 4/3 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} -4/3 & 2/3 & 0 \\ 0 & 1 & -1/2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} -3 & 4 & -2 & 0 \\ 0 & -6 & 3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & -4/3 & 2/3 & 0 \\ 0 & 1 & -1/2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} -3 & 4 & -2 & 0 \\ 0 & -6 & 3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & -4/3 & 2/3 & 0 \\ 0 & 1 & -1/2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} -3 & 4 & -2 & 0 \\ 0 & -6 & 3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & -4/3 & 2/3 & 0 \\ 0 & 1 & -1/2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} -3 & 4 & -2 & 0 \\ 0 & 1 & -1/2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & -4/3 & 2/3 & 0 \\ 0 & 1 & -1/2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} -3 & 4 & -2 & 0 \\ 0 & 1 & -1/2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} -3 & 4 & -2 & 0 \\ 0 & 1 & -1/2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} -3 & 4 & -2 & 0 \\ 0 & 1 & -1/2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} -3 & 4 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & -4/3 & 2/3 & 0 \\ 0 & 1 & -1/2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} -3 & 4 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -1/2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1/2 \\ 1/2 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 2 & \text{Find He eigenvectors} & \text{for } A = \begin{bmatrix} -1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & -3 & 1 \end{bmatrix}$$

$$\begin{vmatrix} \lambda_{1} + 2 & 0 & 0 \\ -1 & \lambda_{2} & 0 & 0 \\ 0 & 3 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 5 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 5 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 &$$