ČASOPIS PRO PRAKTICKOU ELEKTRONIKU

ROČNÍK LXXI 1993 ● ČÍSLO 1

V TOMTO SEŠITĚ Náš interview 1 Výsledky konkursu AR 1992 5 AR seznamuje (automobilový přijímač s přehrávačem PHILIPS DC 524)6 Modul koncového nf zesilovače 200 W . 9 Jednoduché omezení špiček zapínacich proudů 13 Zajímavá zapojení ze světa 14 IO rady HCMOS-74HC/HCT 15 Bezpečnostní zařízení 20 Malý katalog výkonových polem řízených tranzistorů POWER, MOS, DMOS, SIPMOS, VMOS, HEXFET 22 Inzerce l až XXVIII, 38, 43 Computer hobby 25 CB report 36 Rádio "Nostalgie" 37 Zradioamatérského světa 39 Mládež a radiokluby 42

AMATÉRSKÉ RADIO ŘADA A

Vydavatel: Vydavatelství MAGNET-PRESS, s. p. 113 66 Praha 1, Vladislavova 26, tel. 26 06 51, fax 235 3271.

3. p. 113 do Praha 1, Viaosiavova 26, tel. 26 06 51, fax 235 3271.

Redakce: 113 66 Praha 1, Jungmannova 24, tel. 26 06 51. Šéfredaktor: Luboš Kalousek, OK1FAC, I. 354. Redaktoři: Ing. J. Kellner, (zást. šéfred.), Petr Havliš, OK1PFM, I. 348, Ing. Přemysl Engel, ing. Jan Klabal I. 353. Sekretariát Tamara Trnková, I. 355.

Tiskne: Naše vojsko, tiskárna, závod 08, 160 05 Praha 6, Vlastina ul. č. 889/23. Ročné vychází 12 čísel. Cena výtisku 9,80 Kčs, poleletní předplatné 58,80 Kčs, celoroční předplatné 117,60 Kčs. Rozšíruje Poštovní novinová služba a Vyda-

Rozšířuje Poštovní novinová služba a Vydavatelství MAGNET-PRESS. Objednávky přijímá každá administrace PNS, pošta, doručovatel, předplatitelská střediska a administrace MAGNET-PRESS. Velkoobjednatelé a prodejci si mohou AR objednat v oddělení velkoobchodu vydavatelství MAGNET-PRESS. Objednávky do zahraničí vyřizuje ARTIA, a. s., Ve smečkách 30, 111 27 Praha 1. Inzerci přijímá inzertní oddělení Vydavatelství MAGNET-PRESS. Jugomanovy 24 113 66

Inzerci přijímá inzertní oddělení Vydavatelství MAGNET-PRESS, Jungmannova 24, 113 66 Praha 1, telefon 26 06 51, linka 342 nebo telefon a fax 23 62 439, odbomou inzerci lze dohodnout s kterýmkoli redaktorem AR.

Za původnost a správnost příspěvku odpovídá autor. Nevyžádané rukopisy nevracíme. Návštěvy v redakci a telefonické dotazy po 14. hodině.

ISSN 0322-9572, číslo indexu 46 043.

Rukopisy čísla odevzdány tiskárně 18. 11. 1992. Číslo má vyjít podle harmonogramu výroby 7. 1. 1993.

© Vydavatelství **MAGNET-PRESS s. p.** Praha

NÁŠ INTERVIEW

s Ing. Františkem Jandou, OK1HH, a Ing. Jaroslavem Zítkem, pracovníky společnosti *EuroTel* Praha, o veřejné datové síti na území bývalého Československa.

O firmě EuroTel jame informovali naše čtenáře v AR-A č. 3/92 v souvislosti s veřejnou radiotelefonní sítí v Československu. EuroTel však u nás buduje a provozuje dvě sítě: kromě radiotelefonní také síť pro přenos dat. Je to služba u nás nová, proto vysvětlete, o co přesně jde a k čemu síť slouží.

Ing. Zítek: Nejprve něco jako definice: Veřejná datová síť (VDS) EuroTel zajišťuje vzájemný zabezpečený přenos dat mezi jednotlivými účastníky této sítě. Samozřejmě VDS zajišťuje zabezpečený přenos mezi účastníky vlastními a účastníky veřejných datových sítí v zahraničí. Uživatelé VDS EuroTel mohou využívat poměrně široké nabídky přenosových rychlostí a komunikačních protokolů. VDS EuroTel umí přizpůsobit rychlosti mezi koncovými zařízeními uživatelů, pokud pracují různými přenosovými rychlostmi. Důležitou službou, snižující náklady uživatelů, je transformace protokolů (např. uživatel připojený protokolem asynchronním – podle doporučení CCITT X.3/X.28/X.29 může komunikovat třeba s hlavním, hostitelským počítačem připojeným k VDS EuroTel protokolem synchronním podle CCITT X.25).

Služby VDS EuroTel je navíc možno přizpůsobit individuálním potřebám uživatelů díky volitelným službám podle doporučení CCITT X.2. Tyto služby mohou být poskytovány na smluvené období anebo pouze pro konkrétní navázání spojení. A jako doplňkovou službu pro potencionální uživatele poskytují společnosti EuroTel Praha a EuroTel Bratislava konzultace o připojení k VDS. Pro uživatele s předpokládaným větším počtem přípojek nebo velkým objemem přenášených dat ještě vypracováváme studie optimálního připojení k VDS EuroTel – a to z technického i ekonomického hlediska.

Jak probíhal vývoj přenosu dat ve světě? A jak u nás?

ing. Janda: Upřímně řečeno, poněkud rozdílně. Kromě technického zaostávání hrála větší roli než jinde velmi nízká spolehlivost prostředků, vyráběných v rámci bývalé RVHP, stav naší telefonní sítě a embargo (přísnější než v jiných oblastech) na pokročilé telekomunikační produkty. Řada podniků ale přenos dat skutečně nutně potřebovala. Vznikla proto celá řada i dost originálních řešení, více či méně se vzdalujících od mezinárodně přijatých norem. Dokonce i experimentální paketová veřejná datová síť (EPVDS) u nás byla vyvíjena a v omezeném rozsahu provozována, leč bohužel bez šance přiblížit se jak reálným potřebám československých zákazníků, tak úrovni stejných prostředků v zahraničí. Nicméně v každém případě bylo užitečné, že nás současný vývoj zastihl do značné míry připravené.

Jaká byla krítéria výběru technologie a dodavatelů pro Československo? Ing. Zítek: Po uvolnění platného embarga na prostředky přenosu dat (zejména technolgie paketových sítí) v září 1991 byla ve velmi krátké době zprovozněna i paketová veřejná datová síť na celém území Československa (celkem 14 uzlů již v listopadu 1991, další uzly postupně přibývají podle potřeb zákazníků rostoucím tempem).

Ing. František Janda, OK1HH

Ing. Jaroslav Zítek

Úspěšné a rychlé vybudování sítě bylo mj. umožněno i připraveností na naší straně. V MTTÚ (mezinárodní telefonní a telegrafní ústředna) Praha existoval útvar rozvoje JTS (jednotná telekomunikační soustava), jehož pracovníci se systematicky zabývali problematikou VDS. Takže dokázali nejen kvalifikovaně vyhodnotit nabídky od různých dodavatelů a připravit podmínky pro instalaci uzlů sítě, ale vytvořit i jádro nově vzniklého podniku.

Výstavba VDS je postupná a je do značné míry ulehčena i vhodným výběrem dodava-tele sítě. Je jím kanadská firma Northern Telecom se svým systémem DPN-100. Její výrobky představují již řadu let světovou špičku. Kromě toho, že vyhovuje všem doporučením CCITT včetně nejnovějších a vykazuje velkou provozní spolehlivost, skýtá značnou výhodu i její modularita. V řadě modelů najdeme uzly sítě o kapacitě od osmi do 5000 portů, u největšího modelu DPN-100/ 500 dokonce až 30 000 portů, při toku dat až 30 000 paketů/s. Jde o distribuovaný multiprocesorový systém, jehož technické a programové vybavení tvoří harmonický celek. Systém DPN-100 je řízen z dohledového centra, které je vybaveno nástroji pro monitorování okamžitého stavu sítě a řízení sítě. Součástí řídicího centra jsou i subsystémy pro sběr statistických a tanfikačních údajů, testování sítě, pro analýzu činnosti a plánování provozu a rozvoje sítě.

Ing. Janda: Světovým unikátem je v našem případě její propojení s řídicím a dohledovým systémem modemové sítě NMS 9800 od firmy Motorola Codex. Výsledkem je dokonalá možnost případné problémy nejen okamžitě lokalizovat, ale v řadě situací jim i předcházet.

Zde bychom rádi poznamenali jeden dosti základní fakt, kterým se náš přístup k věci stále ještě liší od některých názorů, přežívajících z let nedávno minulých: není naším prvořadým cílem dovážet, instalovat a pro-

vozovat špičkovou technologii, ale poskytovat spolehlivé služby dobré úrovně a tudíž za tím účelem zmíněnou špičkovou technologii využíváme – což vůbec není totéž.

O tom, že jsme se ve výběru nezmýlili, svědčí jak naše dosavadní roční provozní zkušenosti, tak i třeba skutečnost, že stejná technologie byla vybrána pro probíhající modernizaci mezinárodní mezibankovní sítě S.W.I.F.T. (Society for Worldwide Interbank Financial Telecommunication S.C.). Mimochodem EuroTel Praha je mimo VDS Euro-Tel rovněž provozovatelem přístupového bodu S.W.I.F.T. v Praze. Technologie DPN-100 je využívána rovněž ve veřejných datových sítích v Rakousku, Německu, Švýcarsku, Švédsku, Finsku, Portugalsku a Turecku, v mnoha privátních sítích a též v mezinárodní rezervační síti leteckých společností SITA

l při výběru modemů pro VDS byly respektovány požadavky spolehlivosti, výkonnosti a ovladatelnosti. Dodavatelem je firma Motorola Codex se svými modely modemů řad 2170, 3260 a 3380, včetně dohledového systému modemové sítě NMS 9800.

ing. Zítek: Nejčastěji se v síti vyskytují modely z řady 3260, konstruované pro rychlosti do 14.4 kbit/s - dvoudrátově v plném duplexu (jako poslední novinka je právě v naší VDS testována poslední modernizovaná verze téhož modemu, která dokáže telefonním vedením přenášet data rychlostteleforním vedením prenaseť data rychlost-mi až do 24 kbit/s). Tyto multifunkční mode-my umožňují asynchronní i synchronní pře-nos v široké škále rychlostí již od 300 bit/s podle příslušných doporučení CCITT (V.21, V.22, V.22bis, V.32, V.32bis). Obsahují ob-vody pro korekci chyb podle doporučení V.42 i podle MNP 4 (norma firmy Microcom, Inc.) a obvody komprese dat podle doporučení V.42bis i podle MNP5. Dále tyto modemy obsahují obvody pro automatické adaptivní řízení rychlosti podle kvality přípojného vedení. Je možno je ovládat (doporučení V.25, V.25bis) i standardními příkazy "AT" podle normy firmy HAYES. K přednostem modemů Motorola Codex patří i možnost jejich řízení a sledování stavu, jakož i kvality přípojných vedení systérnem Motorola Codex NMS 9800.

Pro přenosovou rychlost 19,2 kbit/s byly vybrány moderny Motorola Codex 3385, pro přenosovou rychlost 64 kbit/s moderny Motorola Codex 2174 pracující v základním pásmu (baseband modem).

Jaká je struktura naší VDS a co tvoří tyzické propojení mezi jednotlivými uziv?

Ing. Janda: Stejně jako u jiných veřejných datových sítí je struktura naší VDS polygonální. Základem sítě je trojúhelník - při poruše nebo přetížení jednoho spoje je automaticky využita obchozí cesta. Umístění uzlů je dáno především ekonomickými hledisky – budovány jsou tam, kde je zájem o přenos dat. Od samého počátku jsou uzly ve všech bývalých krajských městech, nyní přibývají v ostatních větších městech a dokonce i přímo v některých podnicích. Jak jejich připojení k JTS, tak i například napájení je řešeno s ohledem na nutnost prakticky stoprocentní spolehlivosti. A také se během dosavadního ročního provozu nestalo, že by kterýkoli z uzlů zůstal, byť jen na okamžik, neplánovaně bez spojení se sítí (plánovaně se to ovšem stát může – např. při záměně programového vybavení uzlu na novou vyšší verzi, nebo při hardwarovém rozšíření na větší kapacitu; konkrétně třeba zásah do zapojení společné sběrnice si asi těžko lze představit pod proudem).

Vzhledem k současné kapacitě naší sítě je nejčastějším modulem tzv. přístupový modul o kapacitě desítek až stovek portů (co port, to vedení k zákazníkovi nebo k dalšímu uzlu, případně k sousední datové síti). Přistupové

moduly využívají pro některé funkce (především při sestavování spojení) procesů, které běží v tzv. zdrojových modulech, jež musí být v síti minimálně dva (ostatně veškeré prostředky vlastní sítě, vyjma účastnického portu a vedení, jsou ve VDS EuroTel přítomny více než jednou - redundantně nebo zálohovány. A v případě větších nároků ze strany uživatele jsou zálohovány dokonce i ty - například rádiově).

Pronaiaté datové okruhy pro spojení uzlů VDS mezi sebou a pro připojení uživatelů k síti jsou naprosto převážně pronajímány od jejich stávajících provozovatelů, tj. od Správ pošt a telekomunikací, případně Správ radiokomunikací. Jde tedy o prostředky ze stávající JTS se známými neduhy; přirozeně o to větší nároky jsou kladeny na návrh sítě, její řízení i na racionalizaci postupů při hledá-

ní a odstraňování závad. Mezi síťovým portem a vedením k účastníkovi, stejně jako u koncového zařízení účastníka je ovšem modem. O používaných typech modemů jsme již hovořili. Zde bych rád zdůraznil nepřetržitý dohled nad účastnickými přímými přípojkami prostřednictvím dohledového systému Motorola Codex NMS 9800. Díky tomuto systému má obsluha VDS možnost dálkově měnit nastavené parametry modemů (např. rychlost a druh přenosu) a i během přenosu dat měřit řadu kvalitativních parametrů přípojných vedení. Konkrétně napříkad přijímanou úroveň signálu, po-měr signálu k šumu, harmonické zkreslení, fázové chvění, výskyt amplitudových i fázových skoků a přerušení, kmitočtový offset přijímaného signálu i vlastního echa, zpoždění echa a ovšem chybovost. To vše i dálkově za plného provozu sítě bez jeho přeru-šení v kterémkoli jejím místě včetně zásuvky

> Jaká je struktura paketu ve VDS? Jak je zajištěna univerzalita vzhledem k ostatním systémům ve světě

Ing. Janda: Univerzalita a kompatibilita je zajištěna plným uplatněním doporučení CCITT. Takže při připojení libovolného sy stému již vyhovujícího se jedná v zásadě pouze o správné určení a oboustranné nastavení volitelných parametrů.

u účastníka.

Pakety, či správněji rámce, jimiž probíhá komunikace na nejnižších úrovních (ve vrstvách 1 a 2) OSI, vždy mají na začátku a kopci cem biti (754 tru, flor poho též a konci osm bitů (7EH, tzv. flag nebo též křídelní značka), sloužících pro synchronizaci i signalizaci počátku dat, za nimi jsou tři až čtyři pole: adresní, řídicí, u informačních rámců informační a nakonec kontrolní pro ziištění případné chyby při příjmu (pak následuje automaticky opakování). Pakety na úrovni třetí – síľové vrstvy obsahují záhlaví, v němž nejdůležitější je číslo logického kanálu, přiděleného konkrétnímu virtuálnímu spoji v konkrétním úseku, dále řadu bytů s řídicími inrofmacemi a za nimi uživatelská

Struktura rámce je celkem důvěrně známa těm našim radioamatérům, kteří pracují provozem paket radio (kde se ale liší delším adresním polem, obsahujícím volací znaky propojených stanic). O struktuře paketu pak mají ponětí spíše jen SysOpové sítě ROSE (R.A.T.S. Open Systems Environment), která má jako první amatérská síť na světě takto řešeno spojení mezi svými uzly. Pro výhody, které z toho plynou, je síť ROSE preferována zejména v Čechách. (Nikoli náhodou zejména těmi radioamatéry, kteří jsou současně odborníky v přenosu dat.)

Co má zákazník udělat, aby se mohl připojit k VDS? Pro koho jsou vaše služby vhodné?

ing. Zítek: EuroTel Praha spol. s r. o. a EuroTel Bratislava spol. s r. o. umožňují svým zákazníkům využívat služeb VDS EuroTel na celém území České a Slovenské republiky. Dnes mohou naši uživatelé komu-

nikovat s účastníky asi 80 veřejných datových sítí ve 40 státech světa (a tento počet je neustále rozšiřován).

Zákazníci mohou přistupovat k VDS Euro-Tel dvěma způsoby:

přímým připojením,

komunikovat připojením prostřednictvím veřejné telefonní sítě.

V případě přímého připojení je koncové zařízení uživatele propojeno pronajatým okruhem s nejbližším přístupovým bodem VDS EuroTel. Naše firma zajisti v tomto případě objednání přípojného vedení (pronajatého datového okruhu) od nejbližšího přístupového bodu sítě (portu) k prvnímu připojovacímu bodu v budově uživatele, proměření přípojného vedení, instalaci datové zásuvky, pronájem a instalaci modemu na straně uživatele, prověření účastnické přípojky, nastavení rychlosti přenosu, protokolu a hodnot parametrů tohoto protokolu podle specifikace uživatele.

Při komutovaném připojení mají naši uživatelé možnost prostřednictvím veřejné telefonní sítě přistupovat k tzv. veřejným portům (veřejným přechodům mezi VDS EuroTel a veřeinou telefonní sítí), umístěným v místech uzlů VDS EuroTel (nyní ve všech bývalých krajských městech). Zde je pak dovoleno používat i vlastní modemy uživatelů. Tyto moderny musí být u nás homologovány, nainstalovány osobou k této činnosti oprávnámstakovany osobou k leto chritosti opráv-něnou a splňovat některá doporučení CCITT: V.32bis, V.32, V.22bis, V.22, V.21. Zařízení uživatelů přímo připojených k VDS *Euro Tel* mohou pracovat podle těchto

doporučení CCITT a firemních norem IBM: CCITT: X.25, X.3/X.28/X.29;

IBM: SNA SDLC, 3270 DSP (protokol

Zařízení uživatelů s komutovaným připojením k VDS EuroTel mohou pracovat podle těchto doporučení CCITT:

X.32, X.3/X.28/X.29

Přenosové rychlosti závisejí na typu připojení a komunikačním standardu. V případě přímého připojení uživatele k VDS EuroTel a využití podle doporučení X.25 je možná rychlost až 64 kbit/s. Délka připojení vedení je v tomto případě vymezena technickými možnostmi použitých modemů a kvalitou přípojného vedení (do 10 až 15 km). Přenosová rychlost 64 kbit/s (X.25) je proto poskytována pouze v místech uzlů VDS EuroTel.

Naše siť je vnodná pro přenosy dat mezi výpočetními systémy (přenosy souborů), pro sdílený přístup k výpočetním systémům (připojení vzdálených terminálů, využívání ka-pacit velkých výpočetních systémů vzdálených uživatelů), pro sdílený přístup k výpočetním systémům i datům (propojení jistého okruhu uživatelů v reálném čase v souvislosti se vzájemným sdílením dat, výpočetních kapacit i periferních zařízení). Do poslední zmíněné kategorie patří hlavně propojení lokálních sítí prostřednictvím veřejné datové

Ochrana dat VDS EuroTel je na takové úrovni, že při využití prostředků, jako jsou identifikace uživatele NUI – uzavřená uživatelská skupina, CUG – virtuální permanentní okruhy a další, je možné bezpečně přenášet i důvěrné informace. V posledních letech jsou využívány veřejné datové sítě jako součást systémů pro bezhotovostní placení výrobků a služeb, výdej peněz (bankomaty), prodej pohonných hmot a zároveň jsou ideálním prostředím pro služby s přidanou hodnotou (value added services) jako je např. elektronická pošta (EMAIL - Electronic Mail service), EDI (Electronic Data Interchange) a EDIFACT (Electronic Data Interchange For Administration, Commerce and Transport).

Veřejnou datovou síť může využívat široký okruh uživatelů, např.:

Peněžní ústavy, jako banky a pojišťovny·

k propojení centrálních výpočetních středisek s jednotlivými pobočkami, ostatními bankovními nebo i jiným peněžními ústavy (i zahraničními), velkými zákazníky, bankomaty atd.

Orgány státní správy pro přístup k centrál-ním databázím (registry obyvatel, daňové

systémy atd.).

Podniky s rozvinutou sítí poboček v jednom nebo i více státech využívají VDS jako komunikační prostředí pro vnitropodnikové informační systémy. Do této kate-gorie uživatelů například patří různé rezervační systémy (letecké společnosti, cestovní kanceláře, autodoprava, dráhy apod.), sázkové kanceláře, velké průmyslové podniky, velkoobchodní organizace atd

Veřejnou datovou síť mohou rovněž využívat rozsáhlé technologické systémy jako kvalitní komunikační prostředí pro jejich řízení a sběr technologických dat v reálném čase (elektrorozvodné sítě, plynovody, ropovody, systémy sběru ekologických informací atd.).

Tento přehled oblastí a okruhů využití veřejné datové sítě nemůže být samozřejmě úplný, pouze naznačuje široké možnosti použití této moderní komunikační techniky.

Jaké jsou ceny služeb VDS EuroTel?

Ing. Zítek: Cena za využití veřejné datové sítě *EuroTel* se skládá z: 1. jednorázového poplatku za zřízení účast-

nické přípojky, 2. pravidelného měsíčního poplatku,

3. měsíčních poplatků za provoz datové

4. měsíčních poplatků za zřízení, resp. využívání volitelných služeb.

Jednorázový zřizovací poplatek pro přímé připojení k VDS EuroTel činí 6000 korun. Pro přístup přes veřejnou telefonní síť závisí výše zřizovacího poplatku na tom, zda účastník používá vlastní modem nebo požaduje pronájem modemu od provozovatele VDS EuroTel. Zřizovací poplatek s pronájmem modemu činí 3000 korun, v případě použití modemu účastníka pouze 1000 ko-

Pravidelný měsíční poplatek závisí na způsobu připojení (přímý – komutovaný přes telefonní síť), zvoleném protokolu a zvolené

přenosové rychlosti. V případě přímého připojení protokolem X.25 (nebo X.3/X.28/X.29) přenosovou rychlostí 4800 bit/s je pravidelný měsíční popla-tek 3000 korun. Měsíční poplatek při shodné rychlosti a protokolu SNA SDLC je o 300 korun větší.

K pravidelnému poplatku se přičítají skutečné náklady za pronájem datového okruhu k nejbližšímu uzlu sítě podle Sazebníku pře-nosu dat ve spojích (VC-21/83/83). Tento sazebník rozlišuje datové místní a meziměstské okruhy. Místní okruhy mají cenu od 1250 do 3310 korun. Meziměstské podle telefonních hovorových pásem 9275 až 18 750 korun měsíčně (plus mistní vedení). Snahou EuroTel bude vybudovat přístupové body VDS podle zájmu uživatelů v bývalých okresních a ostatních větších městech, aby přístupová vedení byla pro uživatele co mož-

ná nejlevnější.

V případě komutovaného přístupu prostřednictvím veřejné telefonní sítě s vlastním modemem účastníka činí pravidelný měsíční poplatek pouze 500 korun (samozřejmě je nutné hradit i pravidelné telefonní poplatky telefonní účastnické stanice provozovateli veřejné telefonní sítě). Pokud má účastník VDS EuroTel pronajatý modem, je pravidelný měsíční poplatek 800 nebo 1000 korun (podle přístupové rychlosti).

Poplatek za provoz datové stanice se

skládá z těchto poplatků:

1. Poplatku za sestavení spojení. (Pouze u přímého připojení 1 koruna za každé spojení.) Neúčtuje se u pevného virtuálního spojení.

2. Poplatku za dobu spojení. V rámci České a Slovenské republiky za každou započa-tou minutu spojení účastníka připojeného přímo 50 haléřů, připojeného dial-in 1,50 korun. Neúčtuje se u pevného virtuálního spojení.

 Poplatku za přenesený objem dat. V rám-ci České a Slovenské republiky 3 haléře (nebo 2 haléře v době slabého provozu) za jeden přenesený segment (64 bytů).

Pro velké objemy přenášených dat je poskytována sleva až 50 %.

Poplatky za využívání volitelných uživatelských služeb se platí pravidelně měsíčně. Např. poplatek za pevné virtuální spojení je 1500 korun, poplatek za každého člena uzavřené uživatelské skupiny je 200 korun atd.

Samozřejmě není možné zde uvádět podrobnosti týkající se našich tarifů. Případní zájemci o podrobnější informace o cenách mohou získat "Sazebník poplatků za využití VDS EuroTel* na adrese prodejních odděle-ní společnosti EuroTel Praha: Olšanská 6, 130 88 Praha 3, telefon (02) 714 30 44, resp. *EuroTel* Bratislava: Jarošova 1, 810 05 Bratislava, tel. (07) 279 28 17.

Děkujeme za rozhovor.

Připravil P. Havilš, OK1PFM

Tektronix Analog Scopes

V hybridním obvodu s plochou 75 x 55 mm se skrývá většina elektronických funkcí univerzálního dvoukanálového analogového osciloskopu Tektronix nové řady TAS 455/465 určené pro 90. léta:

- šířka pásma 60/100 MHz
- citlivost 2 mV až 5 V
- dvojnásobná časová základna 0.5 s až 2 ns
- jednoduchá intuitivní obsluha
- autoset, paměť nastavení, kurzory
- nové, mechanicky velmi odolné sondy
- vysoká spolehlivost
- 🗖 záruka 5 let
- výhodné ceny

ZENIT

zastoupení Tektronix

110 00 Praha 1 Bartolomějská 13

Tel: (02) 22 32 63 Fax: (02) 23 61 346

Telex: 121 801

Vážení čtenáři.

především bych chtěl vám všem popřát do nového roku mnoho úspěchů v osobním životě a zdraví i co nejméně problémů v zaměstnání, škole či podnikání, neboť, jak se domnívám, nikdo neočekává, že by rok 1993 mohl být jednoduchý – spíše naopak.

Pokud jde o náš časopis, zaiímavé pro čtenáře by mohlo být především to, že nepředpokládáme zvýšení ceny, pokud se nějakým enormním způsobem nezvýší ceny tiskárenských prací nebo papíru - na což zatím žádné signály. neukazují. Předpokladem udržení ceny časopisu je ovšem také, aby se udržel dosavadní zájem o časopis, tj. stejný počet čtenářů i inzerentů. V této souvislosti bych se chtěl zmínit i o jednom jevu, který provázel náš časopis i před "revolucí" – jsou místa v obou republikách, v nichž je AR (obou řad) nedostatkovým zbožím ("podpultovým"), či v nichž ho nelze vůbec sehnat. Čím déle, tím častěji dostáváme do redakce dotazy, jak by bylo možné tento jev odstranit. Možné jsou pouze dvě cesty: buď si AR předplatit (na poště nebo administraci MAGNET-PRESS), nebo požadovat v nejbližší prodejně (u soukromníka nebo PNS), aby její majitel či prodejce AR objednal. Redakce dostává pro svoji potřebu jen několik výtisků, takže vyžadovat zaslání AR na redakci není reálné.

Pokud jde o inzerci - dostáváme stížnosti na to, že je jí v časopise věnováno příliš mnoho místa na úkor technických článků. Stížnost není oprávněná, protože pečlivě dbáme na to, aby počet stránek, věnovaných technice, se proti stavu před dvěma či třemi lety neměnil. Pro inzerci proto, podle jejího množství, přidáváme stránky navíc, např. poslední číslo AR v loňském roce mělo celkem 80 stran za stejnou cenu. Inzerci navíc soustřeďujeme uprostřed časopisu tak, aby ji bylo možno celou nebo téměř celou vyjmout bez poškození časopisu a bez narušení technických článků (např. pro vazbu jednotlivých čísel do ročníkové "knihy").

Jiná je ovšem situace ve skladbě technických článků – jako celosvětový jev je zřejmý úbytek tzv. návodových

článků s jednoduchými konstrukcemi, popisů stavby přístrojů a zařízení. Pro redakci je stále větším problémem zajistit články tohoto typu s vhodnými a praktickými náměty. Máte-li proto takové konstrukce k dispozici, nabídněte je redakci k uveřejnění.

Totéž platí o novinkách – ať již jde o součástky, nová řešení obvodů, nové přístroje apod. - těch se objevuje tolik, že redakce při největší snaze není schopna sama všechny nové informace zaregistrovat a uveřejnit. Opět tedy: máte-li přístup k jakýmkoli informacím ze všech oblastí elektroniky, přispějte do časopisu, bude to přínosem nejen pro AR, ale i pro podnikatele, průmyslové podniky, vývojáře i většinu čtenářů. Přitom je samozřejmé, že všechny příspěvky budeme tisknout jako v minulosti v tom jazyce, který je autorovi vlastní, tj. jak ve slovenštině, tak v češtině. Příspěvky je možné posílat do redakce jak v klasické formě (tj. na stroji), tak i např. na disketě.

Co připravujeme na tento rok: Především budou postupně uveřejňovány všechny konstrukce, odměněné v Konkursu AR '92. Konkurs připravujeme i na příští rok (podmínky budou uveřejněny v příštím čísle). Kromě zvýšených finančních odměn za vybrané konstrukce budou ty nejúspěšnější odměněny (stejně jako v loňském roce) i výrobky, které poskytnou sponzorské firmy. Pro zájemce o výpočetní techniku a počítače připravujeme kromě zhruba stejné tematiky jako v loňském roce i podrobnější informace o novém směru v zájmové počítačové technice - o multimédiích (viz AR A12/92). Další změny v obsahu AR budou minimální, skladbá článků, testy, rubniky atd. bude prakticky shodná.

Na září připravujeme vydání přílohy ELECTUS (již třetí v pořadí) a na listopad přílohu pro konstruktéry Katalog polovodičových součástek (pravděpodobně integrované stabilizátory napětí a výkonové operační zesilovače).

Chtěli bychom také rozšířit rubriku Čtenáři nám píší o vaše zkušenosti se službami soukromých firem, které inzerují v AR, ať již dobrými, nebo špatnými, aby všichni, kteří budou mít zájem o jejich služby, mohli využít vašich zkušeností. To by byl, podle našeho názoru, velký přínos pro čtenáře.

Rád bych se ještě vrátil k inzerátům - naši čtenáři si občas stěžují na špatnou úroveň v nich používané technické terminologie a na jazykové chyby. K tomu bych chtěl podotknout pouze jedno - redakce nemá právo bez dohody s inzerentem zasahovat do textu inzerátu a někdy (dodá-li inzerent text na poslední chvíli) nemá ani možnost. Proto prosíme inzerenty, kteří si nejsou jisti, že je po uvedených stránkách jejich inzerát v pořádku, aby text inzerátu předem konsultovali s redakcí. Typickými prohřešky proti jazyku je např. slovo výjimečný (nesprávně vyjímečný), pasívní (nesprávně pasivní), impuls, kurs, konkurs (nesprávně impulz - v češtině, kurz, konkurz) atd.; proti technické terminologii (a technickým normám) je nejčastějším prohřeškem používání termínu patice ve smyslu zásuvky, do níž se vkládá integrovaný obvod. Správný termín pro tuto součást je objímka, patice je podle normalizovaného názvosloví souhrnný název pro uspořádání vývodů IO, popř. tranzistoru nebo elektronky (ale i žárovky).

Všem čtenářům a inzerentům přeje ještě jednou mnoho zdaru v novém roce a na shledanou na stránkách AR se těší

Luboš Kalousek

Termíny vycházení AR A a AR B v letošním roce

AR A	
č. 1 - 7. ledna	č. 7 – 7. července
č. 2 - 3. února	č. 8 – 4. srpna
č. 3 - 3. března	č. 9 – 8. září
č. 4 – 7. dubna	č. 10 – 6. října
č. 5 - 5. května	č. 11 - 3. listopadu
č. 6 - 2. června	č. 12 – 1. prosince

Příloha Electus III vyjde v září, příloha Katalog v listopadu

AR B

č. 1 – 22. ledna
č. 2 – 26. března
č. 3 – 21. května
č. 6 – 26. listopadu

INFORMACE, INFORMACE...

Dalším z časopisů, které si lze předplatit nebo vypůjčit v knihovně STARMAN Bohemia v Konviktské ul. 5, Praha 1 Staré město, tel. (02) 26 63 41, je časopis RadioElectronics, kombinovaný s titulem Electronics now (viz snímek titulní strany). Jde o časopis typu Amatérského radia pro všeobecnou elektroniku. Časopis má čtyři základní tematické okruhy:

1. Stavební návody na jednoduché i složitější elektronické přístroje a zařízení (v listopadovém čísle 1992 jsou např. návody na stavbu zařízení pro fotografické snímky mžikových jevů, na "přídržné tlačítko" k telefonnímu přístroji, které umožňuje přejít při telefonním hovoru od jednoho přístroje k jinému např. ve vedlejší místnosti, na univerzální modul infračerveného dálkového ovládání, na výkonový kontrolér pro zařízení v motorových vozidlech).

2. V části pod názvem Technology je popsán v tomto čísle návrh modulárního nf zesilovače (v nejjednodušší sestavě 10 W, v můstkovém uspořádání 33 W) a jsou probrány všechny možné druhy oscilátorů s integrovaným časovačem typu 555.

3. Třetí částí obsahu jsou nejrůznější rubriky: novinky v oblasti video, nové přístroje (např. digital designer), otázky kolem dálkového příjmu VKV FM, aktuální informace z nf techniky, novinky z oboru osobních počítačů (např. gigabytové paměti).

4. Další "netechnické" rubriky: novinky na trhu, dopisy čtenářů, nové knihy, předmluva vydavatele atd.

Časopis je formátu A4, měsíčník, je tištěn barevně na hlazeném papíru, má 98 stran a 88stránkovou inzertní přílohu. Roční předplatné (mimo USA) je 29 dolarů, jedno číslo stojí 2,95 \$.

Proporcionální termostat

Externí napájecí zdroj vn

Loňský, 24. ročník konkursu AR byl podle vyhlášených podmínek (vyšty v AR A4/92) uzavřen dne 4. 9. 1992. Do uzávěrky konkursu přihlásili své konstrukce k ohodnocení celkem 23 konstruktéři. Konstrukce podle zadaných kritéřií posuzovala komise z redaktorů AR a přizvaných odborníků. Kromě jediné vyhověly podmínkám konkursu všechny přihlášené konstrukce.

Komise rozhodla takto:

Nejvyšší ohodnocení získala konstrukce Zabezpečovací zařízení Stanislava Kubína z Prahy. Autor této konstrukce obdrží hotovost 5000 Kčs a jako prémii od sponzora GM Electronic osciloskop Hung Chang 3502 v hodnotě 13 900 Kčs.

Dvě další konstrukce byty ohodnoceny stejnou částkou, **3500 Kčs.** Jsou to: **Telefónna ústredna Milana Removčíka** z Dolného Kubína, autor získal dále **prémil** věnovanou firmou FAN RADIO (majitel F. Andrlík z Plzně), a to vozidlovou občanskou radiostanici Albrecht AE4200 v ceně 3500 Kčs.

Audiomodul ing. Pavia Pouchy z Prahy, k ceně v hotovosti obdrží autor konstrukce od sponzora FAN RADIO jako prémil pár kapesních občanských radiostanic Albrecht AE2001 v ceně 1400 Kčs,

Cenou 3000 Kčs byly ohodnoceny konstrukce:

Obousměrný regulátor otáček Zdeňka Budínského z Prahy, k ceně v hotovosti obdrží autor konstrukce od sponzora FAN RADIO jako prémil pár občanských radiostanic Albrecht AE2001 v ceně 1400 Kčs.

indikátor plynu Zdeňka Richtra z Doks.

Další ceny, 2000 Kčs v hotovosti, byty uděleny za tyto konstrukce:

Digitální síťový wattmetr a elektroměr ing. Miroslava Věříše z Lázní Bohdaneč,

Externý napájací zdroj vn Filipa Kuzmana z Trnavy,

Dvojitý proporcionální termostat Martina Petery z Hradce Králové,

částkou 1000 Kčs v hotovosti byly odměněny konstrukce:
Denní programátor, autor ing. Miroslav Sýkora z Mořkova,
Zabezpečovací zařízení, autor Petr Kovář z Jablonce n. N.,
Nť stereofonní ekvalizér, autor ing. Jiří Štefan z Prahy,
Jednoduché poplašné zariadenie, autor ing. Jaroslav Macko z Košic;

částkou 500 Kčs v hotovosti byty odměněny konstrukce:

Měřič síly úderu Josefa Šmída z Prahy, Bezdotykový adaptér k elektronickému zapalování Karla Hyngara z Ústí n. L., Generátor tvarových kmitů Samuela Pilaře z Podhradí u Aše, Zabezpečovací zařízení Františka Hlavatého z Tábora, Bezpečnostní zařízení Miloše Pavla z Plzně.

Komise dále udělila **zvláštní cenu redakce,** transceiver CW/SSB Racom R2CW v ceně 12 990 Kčs, ing. Martinu Šenfeldovi, OK1DXQ, z Turnova, za konstrukci Měřič kmitočtu-čítač do 1,3 GHz.

Autorům odměněných konstrukcí blahopřejeme, všem soutěžícím děkujeme za účast a těšíme se na nové konstrukce v příštím, jubilejním 25. ročníku Konkursu, jehož podmínky budou uveřejněny v příštím čísle. Již dnes můžeme sdělit, že se podmínky nebudou přiliš lišit od minulých a opět přislíbilo několik sponzorů zajímavé dodatkové ceny (nejrůznější přístroje).

Indikátor plynu

AUDIOmodul

Měřič kmitočtu-čítač do 1.3 GHz

All amatérites AD 10

AMATÉRSKÉ RADIO SEZNAMUJE

Automobilový přijímač s přehrávačem

PHILIPS DC 524

Celkový popis

Tento přístroj je kombinací stereofonního rozhlasového přijímače a stereofonního kazetového přehrávače k vestavění do automobilu. Přijímač má tři základní vlnové rozsahy (DV, SV a VKV) a je doplněn dekodérem dopravního vysílání, který umožňuje přijímat dopravní informace. K přístroji lze připojit čtyři reproduktory. Stereofonní přehrávač umožňuje reprodukci v obou směrech posuvu pásku s automatickým (případně ručním) obracením chodu.

Přijímač, který má ladění kmitočtovou syntézou s PLL, má jeden rozsah DV, dva rozsahy SV a tři rozsahy VKV. Zdvojené či ztrojené rozsahy jsou zcela identické a toto řešení bylo zvoleno pouze proto, aby bylo možno zvětšit počet vysílačů, které lze uložit do paměti. V praxi to znamená, že v rozsahu DV lze do paměti uložit 6 vysílačů, v rozsahu SV 12 vysílačů a v rozsahu VKV 18 vysílačů. Celkem tedy 36 vysílačů. Tyto vysílačů lze pak z paměti vyvolat stisknutím jednoho z šesti tlačítek předvolby ve spojení s tlačítkem volby vlnových rozsahů.

Vysílače lze naladit buď ručně, nebo automaticky, kdy stiskem jednoho tlačítka se do paměti uloží šest vysílačů v rozsahu VKV a šest vysílačů v rozsahu SV. Lze též využít automatické postupné ladění, které se zapojí stisknutím knoflíku regulace hlasitosti. Tím se automaticky vyhledá v nastaveném vlnovém rozsahu kmitočtově nejbližší další vysílač

Přijímač je vybaven dekodérem dopravního vysílání v systému s komerčním označením "INFO" (což je systém funkčně shodný s naším ARI). Po stisknutí tlačítka INFO přijímač automaticky vyhledá vysílač, který dopravní informace vysílá a naladí ho. Pokud se vozidlo vzdálí z dosahu kvalitního příjmu tohoto vysílače, přijímač automaticky naladí jiný, silnější vysílač, který tyto informace také vysílá. Řidič se proto o tento problém nemusí starat. Dopravní informace (pokud je přístroj v pozici INFO) jsou řidiči sděleny i v případě, že poslouchá pořad z magnetofonu. Posuv pásku se v tom okamžiku zastaví, je odvysílána dopravní informace, a posuv pásku se obnoví. Nepřeje-li si řídič být rušen poslechem rozhlasu, ale chce mít k dispozici dopravní informace, stačí stáhnout regulátor hlasitosti na nulu (přijímač však ponechá naladěn na vysílač, který dopravní informace vysílá). Při příchodu informace se automaticky nastaví vyhovující hlasitost reprodukce,

Stereofonní přehrávač, jak jsem se již zmínil, umožňuje reprodukci v libovolném směru posuvu pásku a pokud dojde pásek

AUTO COUENESS

AUTO C

po přehrání jedné stopy na konec, automaticky se směr posuvu pásku změní. Pásek lze též převíjet v obou směrech.

Přístroj je vybaven čtyřmi koncovými stupni, což umožňuje připojit dva reproduktory v přední a dva v zadní části vozu. Poměr jejich vzájemné hlasitosti lze regulovat, nastavit lze i poměr hlasitosti levých a pravých reproduktorů.

Přístroj, který je normalizovaných rozměrů, je dodáván spolu se zásuvkou. Zásuvku lze bezproblémově upevnit do (rovněž normalizovaných) prostorů moderních automobilů a pomocí kabelových vývodů ji trvale připojit k napájení, anténě i reproduktorům. Přijímač i zásuvka jsou opatřeny konektory, takže přijímač lze do zásuvky kdykoli zasunout nebo ho z ní opět vysunout. To má tu výhodu, že například během nočního parkování můžeme přístroj zcela jednodušše vyjmout a odnést domů a tím ho dokonale zabezpečit proti případné krádeži.

Všechny ovládací prvky jsou pochopitelně na čelní straně přístroje. Na levé straně jsou dva knoflíky. Dolním zapínáme přijímač a regulujeme hlasitost reprodukce. Stlačením tohoto knoflíku zapojujeme automatické přeladění na kmitočtově nejbližší další vysílač. Páčkou pod knoflíkem řídíme vyvážení levých a pravých kanálů. Horním knoflíkem regulujeme úroveň výšek, po stlačení pak úroveň hloubek. Páčkou pod tímto knoflíkem řídíme vyvážení mezi předními a zadními reproduktory.

V dolní řadě je šest tlačítek pro volbu vysílačů uložených v paměti. Nad nimi jsou čtyři tlačítka: pro přepínání vlnových rozsahů, pro automatické ladění vysílačů a jejich ukládání do paměti, pro volbu citlivosti ladění (místní nebo vzdálené vysílače) a pro zapoiení funkce INFO. Krátkým stisknutím druhého tlačítka (s označením APS.AST) zapojíme funkci SCAN, což znamená, že přijímač automaticky reprodukuje krátké ukázky okamžitého programu všech vysílačů, vložených do paměti v nastaveném vlnovém rozsahu. Pokud nám některý z programů vyhovuje, postačí stisknout tlačítko APS.AST ještě jednou a vysílač, jehož program je právě reprodukován, zůstane nastaven.

Na pravé straně je rozměrný displej, na němž jsou indikovány téměř všechny zařazené funkce jak přijímače, tak i magnetofonu, kmitočet naladěného vysílače a nastavené programové místo. Pod displejem jsou dvě tlačítka ručního ladění. Tlačítkem vlevo vedle otvoru pro zasunutí kazety se vypíná magnetofon a vysouvá kazeta, dvě tlačítka vpravo pak slouží k převíjení vpřed nebo vzad; stlačením obou těchto tlačítek současně se mění ručně směr posuvu pásku. Mag-

netofon se zapíná automaticky vložením kazety

Ťechnické údaje výrobce v návodu neuvádí

Funkce přístroje

Tento přístroj jsem měl možnost velmi podrobně vyzkoušet a jeho funkce mě plně uspokojila. Citlivost přijímače je velice dobrá a výstupní výkon, který sice výrobce v návodu neuvádí, ale který, vzhledem k stanovené zatěžovací impedanci reproduktorů 4 Ω, nemůže být zákonitě větší než 4 × 5 W (koncové stupně jsou v základním zapojení), plně postačuje až k nadbytečné hlasitosti v automobilu. Jde tu spíše o to, jaké reproduktory či soustavy použijeme a zda malé reproduktory nezačnou zkreslovat již před dosaženým plným výkonem.

S tím souvisí i možnost odděleně regulovat v reprodukci výšky i hloubky. To je v praxi jistě velice výhodné, ale opět záleží na použitých reproduktorech, zda zdůraznění hloubek při větším výkonu vůbec snesou. Této otázce je vždy třeba věnovat velkou pozornost, neboť právě v automobilech jsou mnohdy používány málo vyhovující reproduktorky v málo vyhovujících skříňkách.

Jako velice praktický považuji jednoduchý způsob přeladění vysílačů pouhým stiskem jediného ovládacího prvku, případně funkci automatického uložení vysílačů do paměti. Příjemná je i možnost reprodukce pásku v kazetě v obou směrech posuvu, aniž by bylo třeba kazetu vyjímat a obracet.

Také dekodér dopravního vysílání pracuje dobře, horší to již je s jeho praktickým využitím u nás. V oblasti Prahy totiž zachytíme pouze jediný vysílač, který tímto způsobem dopravní informace vysílá a to je vysílač Československo na 102,5 MHz. Mimo oblast Prahy je to vůbec s příjmem v rozsahu VKV někdy velmi problematické, protože naše území není ani zdaleka pokryto vyhovujícím signálem.

Kvalitu přístroje však zjistíme v okamžiku, kdy se přiblížíme k hranicím SRN nebo Rakouska, případně, když týto země navštívíme. Zjistíme, jak perfektně přijímač vysílače s dopravními informacemi sleduje a bezpečně je vyhledává. Oceníme též příjem dopravních informací při poslechu hudby z magnetofonu nebo při staženém zvuku.

Vnější provedení přístroje

Vnější provedení je přehledné a ovládací prvky jsou snadno ovladatelné, protože jsou dostatečně velké. Orientaci při nočních jízdách usnadňuje tzv. "nightdesign", což

AMATÉRSKÉ RADIO MLÁDEŽI

ZAČÍNÁME S ELEKTRONIKOU

Ing. Jaroslav Winkler, OK1AOU

Všechny začátky bývají těžké. Toto staré přísloví platí i pro začátky v elektronice.

Ne všude je možnost navštěvovat radioklub nebo dům dětí a mládeže, kde je i kroužek elektroniky. Aby noví zájemci o elektroniku věděli jak a čím začít, budeme v této rubrice uvádět postupně (na pokračování) návody "jak na to". Chce to podle našich zkušeností jen jedno: vytrvat – a uvidíte, že to zase tak těžké není a nebude.

Pro ty, kteří vytrvají až do konce, bude na závěr připraven test, a ti, kteří správně odpoví na testové otázky, budou odměněni věcnými cenami.

Pájení

První činností, kterou se musíme naučit, je pájení. Dobře připájet součástku vyžaduje především určitý cvik. Pájení proto budeme věnovat dostatečný čas a teprve až se naučíme pájet, budeme pokračovat dál.

Co pro pájení potřebujeme?

a. Páječku. Pro náš účel jsou nevhodné běžné elektrické páječky o výkonech 50 až 250 W, které jsou pro pájení drobných radiotechnických součástek příliš velké a těžké. Mnohem vhodnější je buď "odporová" páječka (obvykle ji lze napájet 12 V), určená přímo pro elektroniku, nebo páječka transformátorová, u níž se používá k pájení smyč-

ka měděného drátu, vyhřívaného proudem z transformátoru, umístěného v páječce.

b. Pájku, tedy kov, kterým se pájí. Pájka je slitina cínu a olova (případně i dalších kovů), tavící se asi při teplotě 200 °C. Doporučujeme pájku trubičkovou, ve které je uvnitř trubičky kalafuna.

c. Kalafunu, která svými čisticími účinky pomáhá vytvářet jakostní a vzhledné spoje. Množství kalafuny na jednotlivých spojích nesmíme přehnat, protože přebytečná kalafuna vytváří na spojích nehezké "koláče" – vždy ovšem platí: raději více, než vůbec žádnou.

Jak budeme při pájení postupovat?

Předem pocínujeme vývody součástky, kterou chceme připájet. Použijeme k tomu pájku a kalafunu. Vývody starších součástek je vhodné předem očistit i mechanicky (oškrábáním nebo jemným smirkovým papírem).

Rovněž fólii plošných spojů musíme před pájením upravit. Místa, do nichž chceme součástký připájet, nejprve očistíme tvrdou mazací pryží (nebo jemným smirkovým papírem). Pak celou destičku přetřeme roztokem kalafuny v lihu a necháme zaschnout. Na povrchu destičky tedy vznikne tenká vrstva kalafuny, která usnadňuje pájení a současně ochrání povrch fólie a destičky

před znečištěním. Vyleptané desky s plošnými spoji, které koupíme hotové, bývají již tímto způsobem pro pájení připraveny. Kalafunu lze zakoupit v obchodech s hudebními potřebami a nástroji (potírají se s ní smyčce).

Potom zapneme páječku, na jejím hrotu roztavíme trochu pájky, součástku umístíme do takové polohy, ve které chceme, aby trvale zůstala a připájíme ji. K přidržení součástky použijeme pinzetu nebo malé kleštičky. Když součástka drží, můžeme na spoj nanést ještě trochu kalafuny pro zlepšení jakosti a vzhlednosti spoje (podle potřeby).

Páječku přidržujeme u spoje tak dlouho, až se pájka kolem vývodu součástky rozteče a vytvoří se na ní hladký a lesklý povrch. Spoj však nesmíme přehřát. Přehřátím by se mohly jednotlivé pájecí body plošných spojů odlepit od podložky. Nedostatečným prohřátím zase pájka získává zrnitou strukturu – spoj sice drží "pohromadě", jeho elektrická vodivost a mechanická pevnost je však špatná. Takovému spoji se říká "studený"; vyskytne-li se v obvodu, obtížně se hledá a obvykle způsobí poruchu, nepravidelnost činnosti atd.

Pokud by smyčka pistolové páječky nedosahovala dostatečné teploty, pájka by se špatně tavila – pak obvykle stačí očistit dosedací plochy konců pájecí smyčky nebo dotáhnout šroubky, jimiž se pájecí smyčka připevňuje k páječce.

Pro dokonalé pájení je třeba dodržet několik zásad:

electronica 92

15. Internationale Fachmesse für Bauelemente und Baugruppen der Elektronik

München, 10.-14. November 1992

Mezinárodní veletrh elektronických součástek a zařízení v Mnichově, probíhající na sklonku minulého roku, byl již patnáctý ve své historii. Jeho náplň lze ozdělit do tří částí. První z nich tvoří elektronické součástky (aktivní, pasívní), do druhé lze zařadit elektromechanické součástky (mikrovinná zařízení, spínače, ovládací prvky, relé, spojovací matenál, neosazené desky s plošnými spoji). Třetí částí veletržního sortimentu jsou výrobky a technologie, potřebné pro vývoj a zajištění kvality součástek (testery, kontrolní systémy, senzory, systémy pro návrh obvodů apod.).

Účast vystavovatelů byla tak velká, že pořadatelé museli doplnit výstavní plochu stálých pavilonů provizorními halami, vytvořenými z prostorných stanových konstrukcí. Z mateřské země bylo přihlášeno více než 1000 vystavovatelů, více než 900 ze zahraničí. Dalších 500 firem bylo zastoupeno svými obchodními partnery. Zřeteně se projevila účast bývalých "východoevropských" zemí, zajímajících se o navazování spolupráce se západoevropskými účastníky.

Electronica je svým rozsahem při poměrně úzké specializaci vedoucí akcí ve svém oboru. Pro toho, jehož zájem je soustředěn jen na velmi úzkou oblast sortimentu elektronických součástek, je pět dní jejího trvání dostačující. Obsáhnout celou šíři je však prakticky nemožné.

Pro druhou polovinu devadesátých let se připravuje vybudování nového, moderního výstavního areálu v místech starého letiště v Reimu na východním okraji Mnichova.

znamená, že všechny ovládací prvky jsou buď prosvětleny, nebo jsou osvětleny jejich obrysy. V tomto případě jsou jak displej, tak i ovládací prvky prosvětleny v načervenalé barvě světla.

Popisovaný přístroj představuje vyšší střední třídu obdobných výrobků, čemuž též odovídá jeho prodejní cena, která u firmy Philips v Praze 8, V mezihoří 2, činí 7490 Kčs. Uživatel však získá velice kvalitní přístroj, který ho ve všech funkcích plně uspokojí. Bylo by jen žádoucí, aby se tak užitečná věc, jako je vysílání dopravních informací, rozšířilo natolik, aby to nebylo především spíše příležitostnou záležitostí pátečního a nedělního odpoledne.

Aktivní rozbočovač televizního signálu ARTS 01-69

Jako dodatek k dnešnímu testu bych rád připojil informaci, která může mnohé čtenáře zajímat. Podnik TESLA Kolín vyrábí a prodává aktivní rozbočovač pro všechna televizní pásma (kanály 1 až 69) s jedním vstupem a dvěma výstupy.

Rozbočovač, připomínající svou konstrukcí síťové zástrčky, má na své čelní stěně jednu vstupní a dvě výstupní souosé anténní zásuvky. Celkové provedení je tak jednoduché, že je není třeba podrobněji popisovat. Spotřeba připojeného rozbočovače je přitom zcela zanedbatelná.

Kmitočtový rozsah:

47 až 860 MHz. 6 dB.

Zisk: .

Vstupní i výstupní impedance:

75 Ω.

Napájení a příkon:

í a příkon: 220 V, 1,5 W.

Pro informace případným zájemcům sděluji, že výrobek nabízí TESLA Kolín, Divize strojní výroby, Havlíčkova 260, 280 00 Kolín za 349 Kčs. Zde je též zásilková služba a výrobek lze objednat i na dobírku (telefon 0321 517 linka 410).

Hofhans

- 1. Používáme pouze vhodnou páječku, kterou udržujeme v dobrém stavu.
- 2. Místa, která chceme vzájemně pájet, musí být dokonale čistá. Čistíme je pryží, jehlovým pilníkem, popř. smirkem.
- 3. Obě místa předem ocínujeme, tj. pokryjeme tenkou vrstvou pájky při dokonalém prohřátí.
- 4. Zásadně nepoužíváme různé druhy pájecích past, zejména ty, které obsahují kyselinu. Ty jsou vhodné pouze pro klempířské práce. Používáme pouze kalafunu nebo její roztok v lihu.

Jak již bylo uvedeno, dobré pájení vyžaduje především zkušenost a cvik při zachování uvedených pravidel. Je proto vhodné vyzkoušet si na začátku pájení cvičně na odřezcích desky s plošnými spoji a nepotřebných součástkách. Pro základní seznámení s páječkou a s technikou pájení je vhodné i zkusit odpájet součástky z desky s plošnými spoji z nějakého vyřazeného přístroje (např. ze starého rozhlasového přijímače apod.).

Co jsou to plošné spoje

Plošné spoje nahrazují klasické spojování součástek dráty. Jsou vytvořeny z tenké měděné fólie, přilepené na desce ze sklolaminátu, příp. z jiného izolantu. Materiál na zhotovování desek s plošnými spoji se nazývá kuprextit.

Kuprextit je vyráběn ve dvou základních provedeních:

- jednostranný, u něhož je měděná fólie pouze na jedné straně destičky a
- oboustranný, u něhož je měděná fólie z obou stran.

Oboustranný kuprextit se používá pro složitější obvody. Pro naše účely zatím zcela postačí kuprextit jednostranný.

Pájení slouží jednak k mechanickému připevnění součástek k desce a jednak k jejich vzájemnému vodivému spojení. Součástky lze na destičku s plošnými spoji umístit dvojím způsobem:

a. V destičce vyvrtáme díry o průměru 0,8 až 1,5 mm, kterými procházejí vývody součástek. Součástky jsou umístěny na horní straně destičky, říkáme jí strana součástek. Připájeny jsou však na spodní straně, které říkáme strana spojů.

Obr. 1. Pájení součástek ze strany spojů

Nevýhodou tohoto způsobu je pro začátečníka určitá nepřehlednost, protože ze strany spojů není jasné, jaké součástky jsou na který spoj připájeny, a ze strany součástek nejsou patrné spoje.

b. Součástky pájíme na destičku ze strany spojů. Můžeme tak snadno sledovat, která součástka je se kterou spojena, snadno tyto součástky vyměňovat, měřit napětí v obvodech apod. Nevýhodou tohoto způsobu je horší vzhled.

Pro přehlednost se tohoto způsobu používá při zkoušení různých zapojení, kdy jednotlivé součástky a někdy i celou část zapojení je třeba často měnit. Způsob pájení je zřejmý z obr. 2.

Obrazec plošných spojů na destičce musí být navržen podle způsobu umístění sou-

Obr. 2. Pájení součástek ze strany součástek

částek. U hotové destičky nelze obvykle oba způsoby umístění součástek zaměňovat.

Pro naše zkušební zapojování zvolíme způsob, kdy jsou součástky umístěny na straně spojů a to především nejen pro větší přehlednost, ale i proto, že se vyhneme potížím s vyvrtáváním množství malých děr. Pro zkušební zapojení budeme používat univerzální zkušební destičku.

Aby bylo možno zkoušet různá zapojení, je zkušební destička rozdělena na jednotlivé pravidelné plošky, na které se pájejí součástky. Pokud některá z plošek nestačí pro všechny přípoje, použijeme i sousední plošku. Plošky, které mají být spolu spojeny, propojíme kouskem vodiče. Tato propojení jsou v obrázcích zapojení součástek znázorněna plnou černou čarou. Při zkoušení rozsáhlejšího zapojení můžeme použít univerzálních zkušebních destiček několik a propojit je vodiči.

Po okrajích destičky jsou vedeny přívody napájecího napětí. Je dobré zvyknout si tato napájecí napětí zapojovat vždy stejně, např. kladný pól zdroje na horní přívod.

Jednotlivé součástky na destičku připojujeme podle následujících zásad:

Při zapojování na univerzální destičku vývody součástek nezkracujeme. Při zhotovování přístrojů v konečné podobě zkrátíme vývody např. rezistorů tak, aby rezistory neležely přímo na destičce, ale 2 až 5 mm nad ní. Vhodný je proužek z tuhého kartonu nebo zbytku kuprextitu, kterým každý rezistor při pájení podložíme. Po připájení proužek vytáhneme a použijeme při pájení dalšího rezistoru. Dosáhneme tak toho, že všechny rezistory jsou nad destičkou stejně vysoko.

Obdobný způsob můžeme použít při pájení kondenzátorů. Vývody součástek nikdy nezkracujeme pod 10 mm. Při jejich přílišném zkrácení by se teplem při pájení mohly změnit elektrické vlastnosti součástek. Všechny součástky umísťujeme tak, aby označení odporu, kapacity, příp. typu bylo po připájení čitelné.

Polovodičové součástky, tj. diody, tranzistory či integrované obvody pájíme do desky až naposled, jejich vývody zbytečně nezkracujeme. Na vývody je vhodné navléci kousek barevné bužírky (např. z drátu), abychom

zamezili náhodnému zkratu. Podle barvy bužírky rovněž rozlišíme, o jaký vývod součástky se jedná (např. červená bužírka – katoda diody, kolektor tranzistoru atd.).

Delší vývody (např. u diod), které by nám překážely, můžeme vhodně ohnout (obr. 4).

Obr. 4. Úprava vývodů diody

V textu jsme se již setkalj s názvy některých součástek používaných v elektronice. Před další činností si proto vysvětlíme jejich funkci. Začneme však u zdroje elektrické energie.

Zdroje elektrické energie

Zcela určitě znáte řadu zdrojů elektrické energie, např. elektrickou síť, akumulátor automobilu, plochou baterii, "monočlánek" a další.

V elektronice se pro přenosné přístroje (např. rozhlasové přijímače) používá některý z chemických článků, které přeměňují na elektrickou energii energii získanou vzájemným působením chemických látek. Pro naše zapojení budeme používat takový zdroj a to plochou batenii.

(Pokračování)

RADIOKLUB

Institutu dětí a mládeže Havlíčkovy sady 58 120 28 Praha 2

upozorňuje, že na vyžádání zdarma zasílá tyto náměty pro technické kroužky a jednotlivce:

EKU – Elektronická kvarteta ("karetní" hra)

ROB - Radiový orientační běh

RXL - Přijímač bez cívek

TST – Technická štafeta (pouze 5. lekce – plošné spoje)

UFO - Létající talíř (vystřihovánka)

Dále je možné při **osobní návštěvě** zdarma získat tyto materiály:

PPR – Putování Prahou radiotechnickou (hra a návod na tyristorovou házecí kostku)

MVK – Monitor VKV (skládačka a návod na stavbu monitoru)

Modul koncového nf zesilovače 200 W

Ing. Jiří Štefan

V článku je popsána konstrukce jednoduchého univerzálního modulu výkonového zesilovače, vhodného pro domácí zvukové aparatury a zesilovače zvuku, určené pro hudebníky.

Základní vlastnosti

Výstupní výkon (do zátěže 4 Ω):

200 W.

Kmitočtový rozsah (výst. výkon –10 dB, měřeno bez vstupního filtru):

0 Hz až 100 kHz.

Odstup rušivých napětí (měřeno lineárně v pásmu 10 Hz až 3 MHz, vstupnakrátko): >80 dB.

Vstupní citlivost (U_{ef}; f = 1 kHz): 0,7 V. Rozměry: 116×132×42 mm. Hmotnost: 275 g.

Úvod

Na stránkách nejen tohoto časopisu již bylo popsáno obrovské množství nejrůznějších konstrukcí nf zesilovačů, takže by se mohlo zdát, že každý další příspěvek na toto téma, pokud nepřijde s nějakou revoluční myšlenkou, je jen dalším nošením dříví do velkého lesa. Protože se problematikou nízkofrekvenčních zesilovačů výkonu zabývám již řadu let, pokusil jsem se o pohled z trochu jiného úhlu. Jde o konstrukci, která neobsahuje žádné záludnosti a přitom vychází ze snadno dosažitelné součástkové základny.

Popis konstrukce je poněkud širší, aby umožnil pokročilejšímu amatéru samostatně určit případnou náhradu použitých součástek a aby při oživování byla možnost zničení nějaké součástky omezena na co nejmenší míru.

Konstrukce vychází ze zkušeností, získaných při ozvučování velkého množství nejrůznějších akcí, zejména veřejných vystoupení kapel, hrajících hudbu, uhlazeně řečeno, "založenou na elektrickém zesilování veškerých zvuků". Kdo se touto činností někdy vážněji zabýval, tak jistě připustí, že existují rozdíly v kvalitě přenosu níz-kých kmitočtů v závislosti na typech používaných koncových zesilovačů. Sám jsem byl zarputilým odpůrcem tohoto subjektivního hodnocení a horlivě prosazoval názor "měřit znamená vědět" – tedy, nebude-li rozdílů v kmitočtových charakteristikách zesilovačů, změřených v laboratorních podmín-kách, potom je každé tvrzení typu "tento zesilovač hraje basy a tento ne" značně pochybené a možná slouží i k tomu, aby si skupina hodnotitelů – v drtivé většině hudebníků – mohla kompenzovat své nedostatky v technické odbornosti; lidově řečeno "mluvit zvukařům do řemesla". (O příčinách a důsledcích zkreslení signálu nazývaných SID a TIM byla před několika lety napsána řada podrobných článků a mnozí si na jejich základě opravili třeba svůj názor na to, jaký je TEXAN skvělý zesilovač. V případě přenosu kmitočtů v pásmu zhruba 40 až 250 Hz se však zjevně jedná o jinou problematiku.) Postupem času a pod vlivem řady nabytých zkušeností s množstvím různých koncových zesilovačů jsem byl nucen sám sobě připustit, že "něco" na tvrzení druhé skupiny skutečně je. Ovšem při hledání odpovědi na otázku "co" nedávalo měření kmitočtové charakteristiky zesilovače sinusovým signálem nebo hodnocení s použitím obdélníkových signálů [1] žádné rozhodující poznatky. Postupně byl vyloučen např. i vliv vazebních či filtračních kapacit.

Proto jsem si rozdělil zesilovače (amatérské i profesionální, ale osazené výhradně bipolárními tranzistory) do dvou skupin. Z první, jakostnější skupiny, uvádím např. zesilovače firmy AC-ES 2 × 300 W a amatérský výrobek zn. EXALL; ze druhé, poněkud horší ve zmíněné oblasti zvukového spektra, typ DYNACORD BS 412 a domácí konstrukci PHINSON. Při porovnávání schémat zapojení obvodových řešení isem hledal společné znaky. Jeden z nich se zdál být typický – skoro na 100 % rozlišoval tyto dvě skupiny: přístroje první – kvalitnější skupiny měly výstupní obvody navrženy a spočítány s velmi značnou proudovou rezervou. V klásickém blokovém schématu koncového zesilovače, skládajícího se z budiče a výkonového stupně, byl jakoby přidán jeden pár emitorových sledovačů, komplementárních či stejné vodivosti, ve výkonovém stupni. Zesilovače druhé skupiny počítaly s daleko menší proudovou rezervou, řádově asi desetinásobnou. Toto obvodové řešení bylo zkušebně uplatněno u dále popisovaného zesilovače a výsledky poslechových testů při různých aplikacích potvrdily správnost tohoto poznatku. Na základě subjektivních poslechových testů byl zařazen do první skupiny, reprodukující "měkké" či "sameťové" basy. Upozorňuji, že charakter tohoto přenosu lze jen zčásti simulovat např. nastavením vícepásmových korektorů, což by se na první pohled mohlo zdát jako jednoduché a dostatečné řešení. pro pochybující nabízím jediné – zkuste si tento jev sami ověřit. Ťeoretické zdůvodnění by se jistě našlo, jeho hledání však už přesahuje rámec tohoto článku.

Návrh zapojení

Vycházel jsem z tohoto pořadí základních požadavků:

- "měkký přenos signálů nízkých kmitočtů;
- výkon 200 W na zátěži 4 Ω a dimenzování součástek takové, aby se výkon mohl zvýšit můstkovým zapojením modulů;
- použití tuzemských součástek i za cenu jejich výběru pro klíčová místa;
- co možná největší rychlost přeběhu (SR) zesilovače při vybuzení na plný výkon;
- jednoduchost konstrukčního provedení, minimalizace rozměrů, omezení drátových spojů na minimum;
- 6) dobře pracující zkratová pojistka.

Pro požadovaný výkon 200 W na zátěži 4 Ω je maximální hodnota st napětí na zátěži 41 V. Připočítáme-li k tomu saturační napětí koncových tranzistorů, přibližné úbytky na jejich emitorových odporech a hlavně pokles napájecího napětí použitého nestabilizovaného zdroje, vychází napájecí napětí ± 53 V, měřeno při provozu naprázdno. Při použití čs. součástek jsou dvě možnosti, jak řešit koncový stupeň:

- a) kvazikomplementární zapojení s paralelním řazením koncových tranzistorů,
- kaskádní řazení paralelně zapojených komplementárních koncových tranzistorů.

Zvolil jsem variantu a), pro níž je větší výběr vhodných tranzistorů - např. KD3442, KD3773, KD4348. Máme-li možnost vybírat z většího množství tranzistorů a hlavně měřit jejich odolnost vůči druhému průrazu, vyhoví i některé starší typy, jako KD503. Paralelní řazení koncových tranzistorů je v zahraničí hodně využíváno zejména pro větší spolehlivost a větší linearitu, neboť při proudech kolem osmi ampérů, tekoucích přes jeden tranzistor, se jeho stejnosměrný zesilovací činitel zmenší u uvažovaných typů zhruba na polovinu. Oproti variantě b) se také více využije napájecí napětí. Výkon 200 W pro danou zátěž je asi hranice, do níž je s naší součástkovou základnou výhodnější konstrukční varianta a). Pro větší výkony již výhody varianty b) převažují a zájemce odkazují např. na podrobně zpracovaný starší stavební návod ve 2 nebo na Konstrukční přílohu AR 3.

Obr. 1. Blokové schéma zesilovače

Obr. 2. Principiální schéma elektronické po jistky

Dokonce i kvazikomplementární kaskáda je v nf koncovém zesilovači realizovatelná [4].

Blokové schéma zesilovače je na obr. 1. Tranzistory T1 a T2 tvoří vstupní diferenční zesilovač, napájený ze zdroje konstantního proudu. Za ním je stupeň, tvořený řízeným zdrojem proudu, zapojeným v sérii se zdrojem konstantního proudu. Tento stupeň má vel-

SNIMACI ODPOR= 0.1 ZATEZ= 4 R1= 100 R2= 2200 U/KON NA ZATEZI 100

Uyst.U 0
UHEL OTEURENI 0
UYSTUPNI NAPETI 0
NAPETI Ube= 3.043478261E-02

Ugst.U 2.320508076 UHEL OTEURENI 15 UYSTUPNI NAPETI 2.320508076 NAPETI Ube=-0.112792549

Uyst.U 14.14213563 UHEL OTEURENI 30 UYSTUPNI NAPETI 14.14213563 NAPETI Ube=-0.24625918

Uyst.U 20. UHEL OTEURENI 45 UYSTUPNI NAPETI 20 NAPETI Ube=-0.36086952

Uyst.U 24.49489743 UHEL OTEURENI 60 UYSTUPNI NAPETI 24.49489743 NAPETI Ube=-0.44881321

Vyst.U 27.32050808 UHEL OTEURENI 75 UYSTUPNI NAPETI 27.32050808 NAPETI UDE=-0.5040365

Uyst.U 28.28427125 UHEL OTEVRENI 90 UYSTUPNI NAPETI 28.28427125 NAPETI Ube=-0.52295313

ké napěťové zesílení a umožňuje proto zavést silnou zápornou zpětnou vazbu. Protože je napěťové zesílení soustředěno do malého počtu stupňů, zajistí se snáze stabilita celého zesilovače. neboť nedochází k tak velkému fázovému posuvu v závislosti na kmitočtu. Proudové zdroje také zmenšují citlivost na změny napájecího napětí. S výhodou využijeme výstupních charakteristik, typických pro proudové zdroje, při návrhu elektronické pojistky. Jak je patrno ze schématu, "spodní" zdroj konstantního proudu je nastaven na proud I_p a horní je řiditelný v rozsahu 0 až 2 I_p . Tento zdroj je realizován kaskádním zapojením dvou tranzistorů, které dosahují velké rychlosti přeběhu především vyloučením Millerova jevu (viz základní zapojení tranzistoru - zapojení SB). Při měření samotného budiče, nezatíženého koncovým stupněm, jsem změřil rychlost přeběhu SR=70 V/μs při vybuzení na U_{mv}=±40 V. Vyloučení Millerova jevu je také důležité pro zmenšení zkreslení, vyplývajícího z nelineární kapacity přechodu kolektor - báze. Tato nelinearita se uplatňuje u stupňů, pracujících s velkým rozkmitem výstupního signálu (to je právě případ napěťového budicího stupně). Zapojení tranzistoru se společnou bází je výhodné při používání vyšších napájecích napětí (viz rozdíl mezi údaji U_{ce0} a U_{CER} . Na tento obvod, určující minimální napěťový roz-

SNIMACI ODPOR= 0.12 ZATEZ= 4 R1= 100 R2= 2200 UYKON NA ZATEZI 100

Uyst.U 0 UHEL OTEURENI 0 UYSTUPNI NAPETI 0 NAPETI Ube= 3.043478261E-02

Uyst.U 7.320508076 UHEL OTEURENI 15 UYSTUPNI NAPETI 7.320508076 NAPETI Ube=-0.077781424

Uyst.U 14.14213563 UHEL OTEURENI 30 UYSTUPNI NAPETI 14.14213563 NAPETI Ube=-0.17862287

Uyst.U 20 UHEL OTEURENI 45 UYSTUPNI NAPETI 20 NAPETI Ube=-0.26521739

Uyst.U 24.49489243 UHEL OTEURENI 60 UYSTUPNI NAPETI 24.49489243 NAPETI Ube=-0.3316632

Uyst.U 27.32050808 UHEL OTEURENI 75 UYSTUPNI NAPETI 27.32050808 NAPETI Ube=-0.3234336

Ugst.U 28.28427125 UHEL OTEVRENI 90 UYSTUPNI_NAPETI 28.28427125 NAPETI Ube=-0.38768053

Obr. 3. Výpisy z tiskárny počítače – příklad výpočtu

kmit zesilovače, navazuje dvojice komplementárních tranzistorů, budící koncové stupně z tranzistorů stejné vodivosti.

SNIMACI ODPOR= 0.35 ZATEZ= 4 R1= 100 R2= 2200 UYKON NA ZATEZI 100 Vyst.U 0 UHEL OTEURENI 0 UYSTUPNI NAPETI Ø NAPETI Ube= 3.043478261E-02 Uyst.U 2.320588076 UHEL OTEURENI 15 UYSTUPNI NAPETI 7.320508076 NAPETI Ube= 0.32484652 Uyst.U 14.14213563 UHEL OTEVRENI 38 UYSTUPNI NAPETI 14.14213563 NAPETI Ube= 0.59919459 Uyst.U 20 UHEL DIEURENI 45 UYSTUPNI NAPETI 20 NAPETI Ube= 0.83478261 Uust.U 24.49489743 UHEL OTEURENI 60 UYSTUPNI NAPETI 24,49489243 NAPETI Ube= 1.01555566 Vyst. U 27.32050808 UHEL OTEURENI 25 UYSTUPNI NAPETI 22.32050808 NAPETI Ube= 1.12919435 Uyst.U 28.28427125 UHEL DIEURENI 90 UYSTUPNI NAPETI 28.28427125 NAPETI Ube= 1.16795439 SNIMACI ODPOR= 0.5 ZATEZ= 4 R1= 100 R2= 2200 UYKON NA ZATEZI 100

Vyst.U 0 UHEL OTEVRENI 0 VYSTUPNI NAPETI 0 NAPETI Ube= 3.043478261E-02

Ugst.U 7.320508076 UHEL OTEURENI 15 UYSTUPNI NAPETI 7.320508076 NAPETI Ube= 0.587429962

Ugst.U 14.14213563 UMEL OTEURENI 30 UYSTUPNI NAPETI 14.14213563 NAPETI Ube= 1.10646684

Uyst.U 20 UHEL OTEURENI 45 UYSTUPNI NAPETI 20 NAPETI Ube= 1.5521/391

tyst.Ü 24.49489743 UHEL OTEURENI 60 UYSTUPNI NAPETI 24.49489743 NAPETI Ube= 1.89417698

Uyst.U 27.32050808 UHEL OTEURENI 25 UYSTUPNI NAPETI 27.32050808 NAPETI Ube= 2.10916909

Uyst.U 28.28427125 UHEL OTEURENI 90 UYSTUPNI NAPETI 28.28427125 NAPETI Ube= 2.1824989

Obr. 4. Montáž výkonových tranzistorů

Koncový stupeň pracuje v Darlingtonově zapojení, přičemž první tranzistor budí dvojici paralelně zapojených koncových tranzistorů. Rezistory s malým odporem, zapojené u emitorů koncových tranzistorů, zajišťují mj. rovnoměrné rozdělení signálu na oba koncové tranzistory.

Kmitočťová stabilita zesilovače je zajištěna těmito prvky:

- a) tlumicí Boucherotův člen na výstupu zesilovače (R26 a C10),
- b) kmitočtová kompenzace v obvodu vstupního diferenčního zesilovače (R29 a C19),
- c) kompenzace v tzv. "malé smyčce" (C5),
- d) celková kmitočtová kompenzace zesilovače (C11).
- Při použití uvedených součástek přenese samotný koncový stupeň pásmo 10 Hz až 100 kHz (při vybuzení –10 dB pod jmenovitou úroveň, toleranční pole 3 dB). Na první pohled by se tak široké přenášené pásmo zdálo zbytečně široké, ale čím je horní kmitočet přenášeného pásma vyšší, tím se zlepšuje přenos přechodových jevů a tedy i omezuje možnost vzniku zkreslení TIM. Pokud by se na vstup zesilovače s takto vysokým mezním kmitočtem dostal silný déletrvající vf signál (např. nosný kmitočet

Obr. 5. Rozložení součástek

středovlnné rozhlasové stanice nebo signál hudebního nástroje, pracujícího na principu kmitočtové syntézy), mohly by být zničeny koncové tranzistory nebo vysokotónové reproduktory soustavy. Z tohoto důvodu je na vstupu zesilovače zapojen vf filtr (R1, R2 a C1) s mezním kmitočtem asi 40 kHz.

Zesílení zesilovače v pracovní oblasti je dáno poměrem rezistorů R24 a R25, v našem případě je 40 (32 dB).

Elektronická pojistka (obr. 2) má charakteristiku "Z". Znamená to, že při zkratu na výstupu zesilovače je výstupní proud menší než při zátěži 4Ω. Je to tím, že na bázi tranzistoru elektronické pojistky se sečítají dvě napětí – první je vytvořeno výstupním proudem, protékajícím přes snímací odpor, a druhé

výstupním napětím, zmenšeným v odporovém děliči. Tato dvě napětí se odčítají. Průběh výsledného napětí je možno jednoduše simulovat na počítači (viz dodatek). Příklady výpočtů jsou na obr. 3.

Teplotní kompenzaci celého zesilovače zajišťuje termistor, zapojený v obvodu budiče a zašroubovaný do chladicího profilu. Uvedený typ s odpořem $100~\Omega$ (při $20~^{\circ}\text{C}$) vyhovuje pro rozsah provozních teplot $20~^{\circ}\text{Z}$ 80 $^{\circ}\text{C}$.

<u> Linchardrité provadent</u>

Snažil jsem se o co nejjednodušší konstrukci s minimálními rozměry celého modulu, zapojeného na jedné desce s plošnými spoji. Do ní jsou zapojeny i vývody výkonových tranzistorů, připevněných přes dvojdílný chladicí hliníkový profil. Pod pouzdra výkonových tranzistorů je nutno před montáží vložit izolační slídové podložky, dobře potřené silikonovou vazelínou. Při montáži je rovněž nutno použít izolační tvarové pertinaxové podložky (tzv. "hříbečky"), v nouzi vystačíme i s plochými podložkami, kombinovanými s izolační "bužírkou". Montáž je znázorněna na obr. 4. Je samozřejmé, že i při zkoušení musíme zajistit dostatečný odvod tepla z celého profilu upevněním na patřičně dimenzovaný chladič. V běžném provozu, kdy zesilovač zpracovává hudební signál, vystačíme i s menšími chladiči (případně kombinovanými s nuceným chlazením), než při měření maximálního výkonu pomocí sinusového signálu. Je spočítáno, že nejpříznivější režim pro zesilovač nastává při vybuzení pod hranici imenovitého výkonu, přesně na (2/v) P_{max}, tj. asi 0,8 P_{max}

Rozložení součástek je dobře patrné obr. 5.

Obr. 6. Celkové schéma zesilovače

Osvědčená metoda je postupně oživovat zařízení po částech. Osadíme nejprve část desky - tranzistory T1 až T6 se všemi součástkami, zabezpečujícími jejich funkci. Na celkovém schématu (obr. 6) to vypadá tak, že obvody, ležící napravo od D7 a D8, nejsou zapoieny. Poté propojíme bod C (nebo D) s výstupem zesilovače F. Takto propojený modul připojíme na symetrický napájecí zdroj s elektronickou po-jistkou, v nouzi na jakýkoliv značně "měkký" zdroj, realizovaný např. oblí-beným rozptylovým transformátorem 24 V/2 VA. Takový zdroj nám zaručí, že případnou závadu zjistíme voltmetrem a ne zpozorováním dýmových či plamenných efektů. Není-li nikde závada, naměříme na výstupu zesilovače nulové napětí (max. 0,1 V). Pootáčením běžce trimru P1 lze nastavit napětí mezi kolektory tranzistorů T4 a T6 zhruba na 1,6 V. Je-li vše v pořádku, můžeme zapojit obvody tranzistorů T7, T8, rezistory R10, R11, R15, zrušit spoj bodů C-Faznovu opakovat měření. Výstupní napětí musí být zhruba stejné a trimrem P1 tentokrát nastavíme napěťový úbytek na rezistoru R10 (nebo R15) na 0,5 V. Až pak zapojíme zbývající součástky. částky.

Při měření a montáži zesilovače je samozřejmě nutné dodržovat zásady zemnění – zvolit hlavní zemnicí bod celého zařízení (obvykle kontakt filtračního kondenzátoru) a k němu vést patřičně dimenzovanými vodiči samostatně všechna uzemnění; uzemnit vstup zesilovače a vyhnout se zemnicím smyčkám. Má-li zesilovač přesto sklony k nestabilitě, lze zvětšit kapacitu kondenzátoru C18 kmitočtové kompenzace.

- 1] Endstufentest. Fachiblatt 8/1977, s. 18 až 25.
- 2] Tigerosaurus, Radio Electronics, prosinec 1973, s. 43 až 46.
- 3] Dudek, P.: Kvalitní reprodukce v automobilu. Příloha AR, červenec 1990, s. 14 až 20.
- 4] Čs. autorské osvědčení č. 253 503 a PV 17 973.

Obr. 7. Deska s plošnými spoji a rozložení součástek

	RDA	2240	C10 100 mF	
Saznam söučástek	ROS	58 kg	Coll SOP	.
Factority	R05	1100	C12 1036785.V C13 660.0P	
RI ING	R26	4,7 Q, TR 102		
R2 180 R3 860 D	P27	15 0	The second second	
PC 100 D	R26 R29	15 Q 270 Q**	The state of the s	
As (g 100Ω -	RSO .	820.C	T1 T2 T3 KC607	
PA 7 270.0	R91	3040	TA . KF504	
87 300 0 88 350 0	PAGE	NAME TO THE	76 86178	
R6 620 Q 42 3 1 4 2 1 3 1	PGS	10 kg, 77 kgg	TB, TB ROSED T7 8F257	
R16	1400	vingy odporovým dolaní 23 Oda	Te KC297	a de la companya de
H11 100 9			T10 - KGS07	
RIS 018 0	Rendenzikon		T11 103837	
R13 0.18 0 R14 0.18 0	<u>C1</u>	LATEY	712 KIGN	
Prin 200 D	CE .	No aska V, regul	TIG TIG KDDDD	
PIG 100.D	ā	220 mests V, 1F 011		
R17 0.12.0	C6	100 df	Diedy	
810 812-0 810 0.100	(74	83 M	year possity university type for	e, writerer
R00 100 D	65 T	10 F/04	XXXXX appli	
P21 100 ti	CS	ion F	R. Monthour 190 Ct, Se	14R - 82
PZ2 1210 4				CARL SOLD SOR THE

Program pro Sharp 1500, simulující průběh výsledného napětí v obvodu pojistky. Program vychází ze schématu na obr. 2. Že zadaných vstupních hodnot součástek R1, R2, Rs, Rz a požadovaného výstupního

1005:COLOR 2:CSIZE 1:DEGREE

1010:REM VYPOCET NAPETI

1011:REM NA BAZI TRANZISTORU

1012:REM EL. POJISTKY

1013:REM NF ZESILOVACE

1014:REM CHARAKTERU " Z'"

1015:PRINT "SNIMACI ODPOR [Ohm]"

1016: INPUT RS

1017:LPRINT "SNIMACI ODPOR = ":RS

1020:PRINT "ZATEZ [Ohm]"

1021:INPUT RZ

1022:LPRINT "ZATEZ =";RZ

1025:PRINT "ODPOR R1"

1026: INPUT R1

1027:LPRINT "R1 =";R1

1030:PRINT "ODPOR R2"

1031: INPUT R2

1032:LPRINT "R2 =";R2

výkonu tento program počítá napětí na bázi tranzistoru elektronické pojistky. Výpočty probíhají v intervalu vybuzení 0 až 90 stupňů po 15 stupních. Tento cykl je definován na řádce 1060. Při běžném provozu (při nominální zátěži a výkonu) by toto napětí nemělo překročit hodnotu 0,3 V, jinak je nebezpečí

zkreslení signálu vlivem spínání této elektronické pojistky při určitém způsobu vybuzení zesilovače. Obvyklá hodnota při maximálním výkonu do jmenovité zátěže se pohybuje kolem 0,2 až 0,25 V.

1035:PRINT "VYKON NA ZATEZI"

1036:INPUT PS

1037:LPRINT "VYKON NA ZATEZI";PS:LPRINT

1050:BEEP 5

1051:UV=SQR 2*SQR {PS*RZ}

1060:FOR I=1 TO 90 STEP 15

1065:U1=RS*UA/RZ

1070:U2={UA+U1-.7}*{R2/{R1+R2}}+.7

1075:U3=U2-UA

1077:IF U3<.56GOTO 1100

1078:COLOR 3

1080:BEEP 1,56,400:BEEP 1,47,570:BEEP 1,80,220

1100:LPRINT "UHEL OTEVRENI"; I

1102:LPRINT "VYSTUPNI NAPETI";UA

1105:LPRINT "NAPETI Ube =";U3:LPRINT

1150:NEXT I

1170:BEEP 1,100,1000:BEEP 1,50,500

2000:STOP

Jednoduché omezení špiček zapínacích proudů

Řada elektronických zařízení má v okamžiku připojování k síti podstatně menší impedanci než v ustáleném provozu. To má za následek vznik proudového impulsu, který se negativně projevuje jak v energetické síti, tak ve vlastním zařízení. U mnohých zařízení má tento impuls podstatný vliv na jeho životnost. Příkladem jsou žárovky, zvláště výkonové nebo stejnosměrné motory. V síti tyto impulsy způsobují v koncových větvích krátkodobé poklesy napětí, které ani síťové stabilizátory nejsou schopny vyrovnat. Zapínací impuls je také příčinou vypínání předřadných ochran při připojení zařízení k síti. V praxi se tento problém řeší obvykle zpožděním nebo předimenzováním jistících prvků. V zařízeních, kde je tento způsob nepoužitelný, se využívá sériového rezistoru, který nežádoucí impuls potlačí na přijatelnou úroveň. V ustáleném provozu se musí tento rezistor vyřadit, neboť na něm vzniká značná výkonová ztráta. Nejčastěji se přemosťuje kontaktem relé nebo tyristorem či triakem.

V konstrukci spínaných zdrojů se začalo využívat elegantní omezení zapínacího

proudu, u nás známé ze sériového žhavení elektronek, sériově zapojeným termistorem.

Tato aplikace vyžaduje výkonový termistor, který byl na našem trhu nedostupný. Nejbližšími výrobci byty firmy Siemens a Philips. V současné době Pramet Šumperk, výrobce termistorů u nás, začal vyrábět výkonové termistory řady NR 380, určené pro spínané zdroje. Termistor omezuje proud při nabíjení vstupní kapacity spínaného zdroje. Funkce vychází ze základní vlastnosti termistorů, tj. s rostoucí teplotou termistoru se snižuje jeho odpor.

Klidový odpor termistoru je základním parametrem a vyrábí se v rozsahu jednotek a desítek ohmů. Při průchodu proudu, který může být trvale i několik ampér, se zmenší odpor termistoru až stokrát.

Praktické zkoušky s těmito termistory ukazují, že jsou schopné omezit zapínací proud nejen u spínaných zdrojů, ale i v mnoha dalších případech. Při sériovém zapojení lze omezit zapínací proud např. u žárovek, výbojek, toroidních transformátorů, vysavačových i jiných stejnosměrných motorků. Důležité je dodržet, aby efektivní hodnota proudu trvale protékající termistorem po odeznění přechodového děje nepřekračovala udávaný proud I_{max} .

Na obr. 1 a 2 jsou příklady zapojení termistoru pro omezení zapínacích proudů. V tab. 1 je přehled vyráběných termistorů.

Obr. 1. Omezení proudu projekční žárovky

Obr. 2. Omezení proudu komutátorového motoru

Tab. 1

Označení termistoru	R ₂₅	/ _{max}
NR 380 10RE	10 Ω	5,0 A
NR 380 15RE	15 Ω	4,1 A
NR 380 22RE	22 Ω	3,8 A
NR 380 33RE	33 Ω	3,1 A
NR 380 47RE	47 Ω	3,6 A
NR 380 68RE	68 Ω	3,0 A
NR 380 100RE	100 Ω	2,5 A

Zajímavá zapojení ze světa

Revoluční polovodičový proces nabízí efektivní řešení vysokonapěťových výkonových aplikací

UVÁDÍ REVOLUČNÍ SOUČÁSTKY

V posledních letech se mnoho vývojových prací v oblasti SMART-POWER (programovatelný výkon) zabývalo řešením integrovaných obvodů v kombinaci s výkonovými polovodičovými součástkami a ochranou monolitického obvodu. Nejvýznamnější a doslova revoluční proces, SMARTPOWER, byl vyvinut firmou Power Integrations, založenou v Kalifornii v USA. Tento proces, který je chráněn patenty na celém světě, dovoluje integraci vysokonapěťových spínačů MOS s nízkonapěťovými SMOS a bipolárními řídicími obvody.

Vysokonapěťová schopnost je rozšířena až na:

1200 V – výkonový MOS s kanálem n, 800 V – výkonový MOS s kanálem p.

Zmíněný proces je jedinečný především v porovnání s konkurenčními technologiemi, které umožňují používat napětí jen okolo 600 V. V porovnání s konkurenčními technologiemi pracujícími s napětím menším než 600 V využívá Power Intergrations pro své výkonové součástky MOS pouze 1/3 křemíkové oblasti, což vychází cenově efektivní. Dalším činitelem, který způsobuje, že součástky Power Integrations jsou schopné obstát v jakékoli konkurenci, je fakt, že integrované obvody jsou vyráběny na tzv. třímikronovém technologickém zařízení CMOS, u něhož je možné dosáhnout výtěžnosti 90 % a více. Možná, že nejlépe osvětlí význam tohoto polovodičového procesu zpráva, že velké polovodičové firmy např. AT&T v USA a Matsushita (Panasonic Semiconductors) v Japonsku se rozhodly používat tento proces a pro výrobu svých IO zakoupili od Power Intergrations licenci.

Firma Power Integrations zaměřila působnost hned zpočátku do tří hlavních odvětví:

- Zdroje měniče AC/DC.
- Zdroje pro ovládání motorů.
- 3. Energeticky účinná elektronická osvětle-

Obr. 1. Schéma zdroje pro řízení zpětného běhu paprsku při použití PWR-SMP 260

1. Zdroje - měnič AC/DC

V nedávných letech bylo populární redukovat velikost a hmotnost zdrojů a zdokonalovat jejich účinnost při použití tradičních měničů s objemnými síťovými transformátory 50 (60) Hz.

Zdroje se spínacími obvody vyžadují, aby se výkonové součástky MOSFET mohly používat bez nebezpečí poruch alespoň do 700 V. Díky zvládnutému polovodičovému procesu může Power Integrations vyrábět regulátory, obsahující výkonové spínače v jednom integrovaném obvodu. Na obr. 1 je

schématický nákres použití IO PWR-SMP 260, který pracuje jako výkonový zdroj ve spínaném režimu. Tento obvod je zaměřen na použití jako 60 W převodník zpětného běhu paprsku a ovládá sérii komplikovaných řídicích funkcí spolu s výkonovými spínači MOS 700 W/3 Ω. Tento výrobek má mnoho výhod oproti alternativním řešením, nabízeným společnostmi jako je UNITRODE (UC3842) a Siliconix (Sl9120), které vyžadují dodatečné diskrétní výkonové MOSFET. Tyto výhody jsou:

- 1. Méně součástek větší spolehlivost,
- redukované výrobní náklady.
- Zdokonalený obvodový návrh menší deska s plošnými spoji,
 - žádné uvažování nad řízením hradel (všechny obvody pro řízení hradel jsou integrovány).
- Zdokonalená ochrana integrace výkonových spínačů MOS znamená, že teplotní ochrana je smyslem tohoto zapojení.
- Cena menší prostor na desce s plošnými spoji,
 - proces Power Integrations znamená, že integrovaná řešení jsou cenově velmi konkurenčně schopná.

Typické aplikace pro PWR-SMP 260 jsou: výkonový napáječ pro laptopy, lehké bateriové nabíječky, TV výkonové zdroje, abychom jmenovali alespoň některé. PWR-SMP 260 je navržen s několika charakteristickými rysy, které jej dělají ideálním pro bateriové nabíjení. Obr. 2 ukazuje schématický návrh pro aplikace, při nichž je sekundární zpětná vazba použita pro regulaci výstupního nabíjecího napětí. Připojení na vstup SYNC dovoluje nabíječce ukončit činnost, když je baterie plně nabitá. Připojení zpětné vazby optočlenem na vývod FEED-FORWARD přivádí konstantní proud do tohoto vstupu a dává část výkonu pro "kapkové" dobíjení akumulátoru.

PWR-SMP 260 je jedním z výrobků pro aplikace spínání výkonu, jiné součástky jsou zaměřeny na aplikace 10, 20 a 40 W. Firma Power Integrations také doporučuje výrobcům transformátorů, aby se s ní spojili a tak pomohli vyvinout kompletní obvod. Úplné detaily jsou k dispozici u zástupce MACRO GROUP v Praze a Žilině.

Obr. 2. PWR-SMP 260 pro aplikace nabíjení baterií s třístavovým řízením výkonu (plné, "kapkovité", nulové nabíjení) (charger – nabíječ. load – zátěž)

Obr. 3. Typická aplikace PWR-INT 200 a PWR-INT 201, zapojených do můstku (polovičního) pro řízení motoru

2. Řízení motoru

Elektronické řízení motoru se navrhuje tak, aby se ve stále větším rozsahu zdokonalovala jeho účinnost. Nedávný vývoj v této oblasti byl určován cenou procesorů a řídicích obvodů, což způsobilo, že výkonová část se stala nejdražší částí řízení. Firma Power Integrations vyvinula proto verzi cenově velmi výhodných řídicích hradel MOS-FET pro jednofázové napájení se zapojením výstupů do polovičního můstku. Obr. 3 ukazuje PWR-INT 200 a PWR-INT 201 v takové aplikaci. PWR-INT 200 akceptuje logické signály CMOS (5 V) z rozhraní, která umožňují řídit PWR-INT 201 přes vstupy 5 a 6.

Tyto vstupy jsou určeny pro napětí alespoň 600 V. Malá spotřeba proudu PWR-INT 201 znamená, že může být užíván ve většině případů s jednoduchým zesilovacím obvodem (součástky D1 a D2 na obr. 3). PWR-INT 200 a PWR-INT 201 jsou určeny pro řízení motorů do výstupního výkonu 2 kW.

Vývojové práce firmy jsou zaměřeny na součástky použitelné až do výstupního výkonu 5 kW a optimalizované pro řízení IGBT. V porovnání s konkurenčními integrovanými obvody (jako např. IR2110 od International Rectifier) nabízí Power Integrations své zapojení v polovičním můstku za cenu nižší o 40 %.

V prodejnách elektrosoučástek jsem se několikrát setkal s problémy při nákupu integrovaných obvodů řady HCMOS. Tyto problémy pramenily z neznalosti vlastností a možností použití těchto obvodů. I když byla problematika obvodů CMOS podrobně popsána v [1] a [2] a problematika HCMOS v /3/, rozhodl jsem se napsat svůj příspěvek do Amatérského radia, které čte převážná většina radioamatérů a zaměřit ho do oblasti praktického použití obvodů řady HCMOS.

Při výrobě obvodů HCMOS byla použita technologie samotvorby polykrystalického 3 µm silného křemíkového hradla, kombinovaná s technologií místní oxidace křemíku (LOCOS). Tato technologie umožnila podstatné zkvalitnění parametrů proti obvodům CMOS s kovovým hradlem. Obvody HCMOS jsou vyráběny od roku 1980, slučují vlastnosti obvodů CMOS – nízká spotřeba, velká šumová imunita, široký teplotní rozsah a vlastnosti obvodů LS TTL – vysoký pracovní kmitočet, velké výstupní proudy.

Podle provedení a určení jsou obvody HCMOS členěny do třech skupin:

74HCxxxx - CMOS vstupní spínací úrovně (30 % U_{∞} a 70 % U_{∞}), napájecí napětí 2 až V,

74HCTxxxx - TTL vstupní spínací úrovně (0,8 V a 2 V), napájecí napětí 4,5 až 5,5 V,

74HCUxxxx – CMOS vstupní spínací úrovně (20 % U_{cc} a 70 % U_{cc}), tyto obvody umožňují činnost v lineárním režimu, napájecí napětí 2 až 6 V.

Jediným představitelem skupiny HCU je obvod 74HCU04, je to šestice invertorů,

které je možno použít u krystalem řízených oscilátorů, nebo jako lineární zesilovače.

Uvedené tabulky představují pouze malou část širokého sortimentu obvodů vyráběných technologií HCMOS. Bližší informace je možno získat v katalozích firem, např. VALVO.

Obvody HCMOS se vyrábějí v řadě 74 a 54, řada 54 má některé parametry horší proti řadě 74, viz [3].

Tabulka 1 srovnává vlastnosti číslicových obvodů vyráběných různou technologii.

Povolený rozsah pracovních teplot obvodů 74HC/HCT/HCU je $-40~^{\circ}$ C až $+125~^{\circ}$ C, přičemž při teplotě nad $+85~^{\circ}$ C se zvětšuje průchozí zpoždění, např. u obvodu 74HC//HCT10 z 24 ns $(+85~^{\circ}$ C) na 36 ns $(+125~^{\circ}$ C).

K praktickému použití obvodů HCMOS slouží následující dvě převodní tabulky, kde jsou uvedeny u nás vyráběné obvody CMOS řady MHBxxxx a obvody řady ALSxxxx. K těmto obvodům jsou pak přířazeny odpovídající ekvivalenty řady HCMOS. U nás se nevyrábí řada LSxxxx, pouze ALSxxxx, avšak rozložení vývodů a funkce jsou u obou řad kompatibilní.

3. Energeticky účinná elektronika v osvětlení

Jak vzrůstají požadavky na účinnost a dobu života zářivek, potýká se mnoho výrobců s problémy vysokofrekvenčního elektronického předřadníku.

Power Integrations byla úspěšná ve vývoji této součástky a přišla se zákaznickými IO pro specifické použití. Tyto integrované obvody pracují se standardní elektronikou a budou dostupné ve 4. čtvrtletí 1993.

Integrované obvody PWR-INT 200 a PWR-INT 201 však mohou být efektivně použity svým zapojením v polovičním můstku i v aplikaci jako elektronický předřadník. Obr. 4 ukazuje základní řešení obvodu. Tak jako v aplikaci pro řízení motorů nabízí Power Integrations i v tomto případě celkovou úsporu 40 % oproti konkurenčním řešením.

Power Integrations (Europe) Ltd. byla založena v Anglii na jeden rok, aby nabízela aplikační podporu po celé Evropě. Všechny podrobnosti o výrobcích Power Integrations a jejich použití můžete získat v zastoupení MACRO GROUP v Praze a v Žilině na adresách:

MACRO WEIL, spol. s r.o., Bechyňova 3, 160 00 Praha 6,

tel./iax (02) 311 34 54, tel. (02) 311 21 82; MACRO COMPONENTS, spol s r.o., Vysokoškolákov 6, 010 01 Žilina, tel. (89) 341 81, tax (89) 341 09.

Náhrada obvodů MHBxxxx obvody 74HCxxxx

V zařízeních, kde jsou použity obvody MHBxxxx, je možno použít obvody řady 74HCxxxx (viz tab. 2), pokud napájecí napětí nepřekročí jejich povolenou velikost $U_{\text{max}} = 6 \text{ V. Obvody řady MHBxxxx mají povolené max. napětí <math>U_{\text{max}} = 15 \text{ V. Při výměně obvodu u hotových zařízení se musí napájecí napětí upravit, u nových konstrukcí se s tím musí počítat.$

Přínosem náhrady je: – zvětšení teplotního rozsahu činnosti za-

řízení,

 zvýšení pracovního kmitočtu,

– částečné snížení příkonu.

Náhrada obvodů TTL MH54/74/84xxx obvody 74HCTxxxx

V zařízeních, kde jsou použity standardní obvody řady TTL, můžeme tyto obvody přímo nahradit obvody 74HCTxxxx.

Přínosem náhrady je: – podstatné snížení příkonu zařízení,

- zvětšení teplotního rozsahu při náhradě obvodů řady MH74xxxx a MH84xxxx.
- zvýšení pracovního kmitočtu.

Nevýhody: - zmenšení povoleného zatížení výstupů (menší logický zisk, viz. tab. 1). U hotových zařízení musíme před náhradou zkontrolovat, zda povolený počet připojených obvodů, nebo výstupní proud nebude překročen.

Tab. 1. Porovnávací tabulka ($U_{\rm cc}=5$ V, $\vartheta_{\rm a}=25\,^{\circ}{\rm C}$, $C_{\rm L}=15$ pF)

Technologie	HCMOS	CMOS s kovovým hradlem	Standardní TTL	Schottky TTL s malým příkonem	Schottky TTL	Zdokonalené Schottky TTL s malým příkonem	Zdokonalené Schottky TTL	Rychlé obvody
Parametr	74HC	4000 CD HE	74	low-power Schottky 74LS	74S	advanced low-power Schottky 74ALS	74AS	FAST 74F
Výkonová ztráta, typ.(mW) statická hradlo	0,0000025	0,001	10	2	19	1,2	8,5	5,5
dynamická (100 kHz)	0,075	0,1	10	2	19	1,2	8,5	5,5
statická čítač	0,000005	0,001	300	100	500	60	_	190
dynamická (100 kHz)	0,125	0,120	300	100	500	60	_	190
Průchozí zpoždění (ns) typické hradlo	8	94 40	10	9,5	3	. 4	1,5	3
maximální	14	190 80	20	15	5	7	2,5	4
Max. frekvence hodin (MHz) typická klopný obvod typu D	55	4 12	25	33	100	60	160	125
minimální typická	30 45	2 6 2 6	15 32	25 32	75 70	40 45	-	100 125
čítač minimální	25	1 3	25	25	40	_	-	100
Výstupní proud (mA) standardní výstup sběrnicový výstup	4 6	0,51 0,8 1,6	16 48	8 24	20 64	8 24	20 48	20 64
Logický zisk (TTL LS zátěž) standardní výstup sběrnicový výstup	10 15	1 2 4	40 120	20 60	50 160	20 60	50 120	50 160

Náhrada obvodů SN54LSxxxx, SN74LSxxxx obvody 74HCTxxxx

V zařízeních, kde jsou použity obvody řady LS TTL můžeme tyto obvody přímo nahradit obvody řady 74HCTxxxx. Přínosem náhrady je:

- snížení příkonu zařízení,
- zvětšení teplotního rozsahu u obvodů řady 74LSxxxx,
- zvýšení pracovního kmitočtu.

Tab. 2. Převodní tabulka

CMOS	HCMOS	
MHB4002	74HC4002	dvojice čtyřvstupových hradel NOR
MHB4015	74HC4015	dvojice čtyřbitových statických posuvných
		registrů s paralelními vstupy
MHB4020	74HC4020	čtrnáctibitový binární čítač
MHB4024	74HC4024	sedmibitový binární čítač
MHB4046	74HC4046	fázový závěs
MHB4049	74HC4049	šestice invertujících budičů
MHB4050	74HC4050	šestice neinvertujících budičů
MHB4051	74HC4051/4351	osmikanálový analogový multiplexer
MHB4052	74HC4052/4352	dvojitý čtyřkanálový analogový multiplexer
MHB4053	74HC4053/4353	trojice analogových přepínačů
MHB4066	74HC4066	čtveřice obousměrných analogových spínačů
MHB4076	74HC173 .	čtveřice registrů typu D
MHB4503	74HC367	šestice budičů sběrnice s 3stavovými výstupy
MHB4518	74HC4518	dvojice desítkových čítačů BCD
MHB4543	74HC4543	budič 7 segmentového displeje
		s dekodérem
MHB4555	74HC139	dvojice dekodérů/demultiplexerů 1 ze 4

TTLLS	HCMÒS	
74LS00	74HCT00	čtveřice dvouvstupových hradel NAND
74LS02	74HCT02	čtveřice dvouvstupových hradel NOR
74LS03	74HCT03	čtveřice dvouvstupových hradel NAND s otevřeným kolektorem
74LS04	74HCT04	šestice invertorů
74LS08	74HCT08	čtveřice dvouvstupových hradel AND
74LS10	74HCT10	trojice třívstupových hradel NAND
74LS20	74HCT20	dvojice čtyřvstupových hradel NAND
74LS30	74HCT30	osmivstupové hradlo NAND
74LS32	74HCT32	čtveřice dvouvstupových hradel OR
74LS74	74HCT74	dvojitý klopný obvod typu D
74LS86	74HCT86	čtveřice dvouvstupových hradel
		EXCLUSIVE-OR
74LS112	74HCT112	dvojitý klopný obvod J-K
74LS138	74HCT138	dekodér/demultiplexer 1 z 8 ·
74LS151	74HCT151	osmikanálový multiplexer
74LS153	74HCT153	dvojice čtyřkanálových multiplexerů
74LS174	74HCT174	šestice klopných obvodů typu D
74LS175	74HCT175	čtveřice klopných obvodů typu D
74LS192	74HCT192	dekadický synchronní vratný čítač
74LS193	74HCT193	binární synchronní vratný čítač
74LS241	74HCT241	osm neinvertujících budičů s 3stavovými výstupy
74LS245	74HCT245	osm neinvertujících vysílačů s 3stavovými výstupy
74LS373	74HCT373	osm klopných obvodů typu LATCH s 3stavovými výstupy
74LS374	74HCT374	osm klopných obvodů typu LATCH s 3stavovými výstupy

JAK NA TO

Některé vlastnosti závěrně pôlovaného přechodu BE

Pro realizaci elektronických spínačů není vždy ekonomické používat tranzistory J-FET, nebo MOS-FET. Pro mnohé aplikace postačí běžný bipolární tranzistor. Při jeho zavírání se někdy nelze vyhnout závěrnému pólování přechodu BE. Katalogové údaje se pro tento případ omezují pouze na velikost napětí $U_{\rm BE}$. Typicky udávaná hodnota je 5 V. Proud, který může přes tento přechod téci, se neuvádí. Proto jsem provedl základní měření, která jsou shrnuta do následujících tabulek. Zapojení pro měření je podle obr. 1. Pro tranzistory p-n-p ,je pouze zaměněna poloha E za B+K.

Obr. 1. Schéma měření

Tab. 1. Naměřené hodnoty závěrných napětí tranzistorů n-p-n

Тур	10mA	1 mA	100 μΑ	10μΑ
KC148	7,72	7,62	7,59	7,58
KC239F	7,38	7,27	7,23	7,21
BC237B	10,42	10,14	10,09	10,05
KC635	9,40	9,35	9,32	9,31
KC637	9,74	9,64	9,58	9,57
KC639	8,20	8,15	8,10	8,00
KF125 .	6,59	6,51	6,48	6,40
KSY34D	6,69	6,63	6,28	6,08

Tranzistor BC237B "přežil" i proud 30 mA přes závěrně pólovaný přechod BE, což při průrazném napětí přes 10 V odpovídá ztrátovému výkonu 300 mW.

Tab. 2. Rozptyl průrazných napětí tranzistorů BC237B (současně zakoupených)

_							
I	Proud			Napě	tí [V]		
	1 mA	10,22	10,39	10,15	9,39	10,30	10,39
-							

Tab. 3. Naměřené hodnoty závěrných napětí tranzistorů p-n-p

Pou	ti ti iziot	oru p	<u> </u>	
Тур	10 mA	1 mA	100 μΑ	10 μΑ
KC308	11,56	11,42	11,37	11,36
BC159	9,36	9,18	9,14	9,12
KSY82	9,46	9,21	9,07	8,98
KF517A	9,66	9,56	9,51	9,48
KD138	8,37	8,30	8,23	8,21
KD140	10,10	10,05	10,03	10,01
KZ260/8V2	8,20	7,80	7,49	7,35
KZ260/10V	9,84	9,70	9,60	9,58

Na závěr tab. 3 jsem ještě uvedl napětím srovnatelné Zenerovy diody. Pro případné použití jako mikropříkonových zdrojů stabilizovaného napětí, bych upozornil na značný širokopásmový šum, a to jak diod, tak závěrně pólovaných přechodů BE. Je třeba také upozornit, že závěrná napětí přechodů BE se mohou v různých výrobních sériích lišit i o větší hodnoty, než udává tab. 2.

Milan Morávek

Rozhodl jsem se vybavit BTVP Color 425 vstupem AV (dle AR A 9/89). Ocitl jsem se tak ale před otázkou, jak přepínat televizor do režimu "monitor", protože videomagnetofon, který vlastním, nemá vyvedené přepínací napětí. Mechanický přepínač, ať už na zadní straně televizoru nebo vyvedený kabelem vedle televizoru, případně zrušené tlačítko vypínání reproduktoru se mi nejevilo jako vhodné a pohodlné. Rozhodl jsem se proto pro tuto funkci vyčlenit předvolbu č. 8 televizoru. Zapojení z AR-A č. 4/91, určené pro Color 423, se mi zdálo pro Color 425 nevhodné a zbytečně složité. Hledal jsem proto jednodušší řešení. Na schématu televizoru jsem

Závěr

Obvody řady 74HC/HCTxxxx poskytují konstruktérovi řadu výhod, především snížení příkonu, jsou snadno dostupné u různých prodejců polovodičových součástek a jsou poměrně levné, proto doporučuji všem radioamatérům jejich praktické použití při konstrukci nových moderních zařízení.

Použitá literatura

- [1] Amatérské rádio B3/85.
- [2] Amatérské rádio B2/85.
- [3] Sdělovací technika 9/91.
- [4] Integrierte Logikschaltungen High Speed CMOS PC 74HC/HCT... Datenbuch 1986, VALVO

⁺ = přidané součástky

Obr. 1. Schéma zapojení (Konektor Z61 je umístěn na desce volby 6 PN 054 06, špička 1 je při pohledu zezadu zcela vlevo. Vodič, který byl na ni původně připojen, a který vede k jednotce předvolby 6 PN 386 91, zůstane nezapojen. Tuto úpravu lze provést snadno bez jakékoliv demontáže modulů.)

zjistil, že na svorce 1 konektoru Z61 se při zapnuté osmé předvolbě objevuje ladicí napětí asi 30 V. Toto napětí jsem přes rezistor 18 kΩ a diodu přivedl na vstup blokovacího napětí. Do série se vstupem vnějšího blokovacího napětí jsem zapojil další diodu, která má za úkol zamezit nepříznivému vzájemnému ovlivňování blokovacích napětí. Pokud se rozhodneme nevyvádět blokovací napětí na konektor vstupu AV, je možno obě diody vynechat a pouze přerušíme přívod ke konektoru. Upravené schéma je na obr. 1. Principielně je možno tuto metodu aplikovat na všechny televizory stejné koncepce, jako je Color 425, ať už mají modul AV zabudovaný přímo od výrobce nebo se rozhodneme pro jeho dodatečnou montáž.

Ing. Vladlmír Rýpar

Kresilcî pere 2darma

Souřadnicové zapisovače obvykle využívají ke kreslení několika prostředků, jako vláknová pera, kuličková pera nebo technická pera. Zvláště ta poslední kreslí velmi kvalitně: nevýhodou je značná cena a obtíže s čištěním, zejména pokud používáme agresívnější kapaliny než je inkoust nebo tuš.

Pro kreslení plošných spojů přímo na měděnou fólii laminátu používám souřadnicový zapisovač Laboratorních přístrojů XY 4150, jehož držák je přizpůsoben pro technická pera Centrograf 1070. Jejich vnitřní závit je šťastnou náhodou volen tak, že skoro přesně odpovídá průměru velmi rozšířených jednorázových injekčních stříkaček objemu 1 ml (pro insulin). Stačí jehlu zkrátit na asi 5 až 7 mm, na jemném smirkovém papíře zabrousit a pero je hotové. Protože těleso stříkačky je z poddajné plastické hmoty, dá se docela dobře našroubovat do vnitřního závitu vložky držáku pera.

Průměr jehly je okolo 0,4 mm, což je rozměr velmi vhodný jak pro kreslení plošných spojů, tak i pro rysování grafů.

Stříkačka je z chemicky velmi odolné plastické hmoty, takže snáší všechna běžná rozpouštědla. Na rozdíl od běžných per se velmi snadno čistí. Stačí původním pístem vytlačit zbytek kreslicí tekutiny a nasát ředidlo.

Rozdíl Kčs 38,50 mezi cenou vložky technického pera a injekční stříkačky (zdarma od postiženého cukrovkou) stojí za několik minut práce.

Ing. Jiří Sokolíček

Nevýhody: – snížení povoleného zatížení výstupů (menší logický zisk, viz tab. 1).

Náhrada obvodů MH54ALSxxxx, MH74ALSxxxx obvody 74HCTxxxx

V zařízeních, kde jsou použity obvody řady 54ALSxxxx, 74ALSxxxx, můžeme tyto obvody nahradit obvody řady 74HCTxxxx pouze v případě, že postačuje nižší pracovní kmitočet

Přínosem náhrady je: - snížení příkonu,

 zvětšení teplotního rozsahu u řady
 74ALSxxxx.

Nevýhody: - snížený pracovní kmitočet,

 – snížení povoleného zatížení výstupů (menší logický zisk, viz tab. 1).

LOGIK 1

Programovatelný logický automat

Ing. Vladimír Růžička, CSc.

(Dokončení)

Bezadresové logické instrukce

Tyto instrukce řeší závorkové výrazy logických rovnic.

 A - logický součin vrcholu zásobníku LO s hodnotou o 1 úroveň níže (LO-1), výsledek je v LO;

 oglcký součet vrcholu zásobníku LO s hodnotou o 1 úroveň níže (LO-1), výsledek je v LO.

Zásobník iogického operátoru má 8 úrovní (LO, LO-1,.., LO-7). Při vykonání instrukce LD nebo LC se posouvá jeho obsah o jednu úroveň níže a hodnota nejnížší úrovně LO-7 se ztrácí. Po vykonání Instrukce A nebo O se naopak obsahy úrovní LO-2 až LO-7 posunou o 1 úroveň výše a do pozice LO-7 se zapíše 0.

Jako příklad použití bezadresové instrukce logického součtu lze uvést ovládání reié Ře1, které je sepnuto při současném sepnutí kontaktů K1 a K2

nebo kontaktů K3 a K4:

LD 000	Přepis stavu K1 (vstup 000) do LO;
AD 001	Log. součin K2 (vstup 001) s LO, výsledek je v LO;
LD 002	Přesun původního obsahu LO do LO-1, přepis stavu K3 (vstup 002) do LO;
AD 003	Log. součin K4 (vstup 003) s LO, výsledek v LO;
0	Log. součet LO s LO-1, vý- sledek v LO;
=D 040	Ovládání Re1 (výstup 040) na základě stavu LO.

Skokové instrukce

Tyto instrukce umožňují větvení uživatelského programu.

 JP - nepodmíněný skok na adresu danou operandem,

 BR - podmíněný skok, který se provede pouze při LO=1.

Při vykonávání skokových instrukcí se přesune hodnota jejich operandu, která se zadává dekadickým číslem v rozmezí 000 - 255, do čítače instrukcí. To umožňuje provádět skoky v celém rozsahu adres uživatelského programu.

Používání skokových instrukcí při sestavování uživatelského programu je zřejmé z příkladu uvedeného v následující ka-

pitole.

Instrukce předvolby čítačů/časovačů a prázdná instrukce

C- - dekadický operand této instrukce v rozsahu 000 - 255 slouží jako předvojba rozsahu čítání čítače,

NO - prázdná instrukce.

instrukce C- musí následovat bezprostředně za instrukcí inicializace čítače (=D nebo =C s operandem v rozsahu 270 - 277). Při výskytu na jiném místě programu se považuje za prázdnou Instrukci. Naopak, pokud se instrukce C- vynechá, pak předvolbou čítače je stav osmice bitů, jejíž adresa je dána 2 nejvyššími číslicemi v operandu instrukce, která bezprostředně následuje za instrukcí =D nebo =C s operandem 279 - 277.

Např. =D 270 inicializace čítače 1 LD 035 předvolba čítače je dána stavem osmice bitů na adresách 030

-037 (vstupy). Vlastní vykonání instrukce LD se neprovede!

Při normálním vykonávání instrukce NO se pouze posune čítač adres o 1 na další instrukci. Instrukce NO se při programování používá pro rezervování míst v paměti, která se mohou později přepsat jinými Instrukcemi při úpravách programu. Při vynulování paměti se všechna její místa naplní instrukcí NO s operandem 000.

Postup vytváření uživatelského programu

Při použití logického automatu pro konkrétní aplikaci je nutno vykonat následující operace:

 -stanovení požadovaného průběhu činnosti zařízení (algoritmu řízení) nejlépe v podobě vývojového diagramu;

 přířazení adres z vnitřní paměti RAM automatu vstupním, výstupním a vnitřním logickým proměnným, které budou používány;

 vytvoření užívatelského programu, tj. zápis požadovaného algoritmu řízení v instrukcích automatu;

 zapsání uživateiského programu do paměti automatu, jeho odladění a odzkoušení ve spojení s ovládaným zafízením.

Konkrétní realizace výše uvedených kroků bude zřejmá z násiedujícího jednoduchého ilustračního příkladu:

Model kolejiště

Modei kolejiště (viz obr.5) tvoří jednoduchý železniční okruh se stanicí S2 a s odstavnou kolejí s depem S1. Nájezd z odstavné koleje na okruh se uskutečňuje přes výhybku V1, která se do

Obr.5. Schéma modelu kolejiště

Obr.6. Vývojový diagram ovládání kolejiště

poiohy 1 nastavuje signálem Y11 a do poiohy 2 signálem Y12. Stav výhybky signalizují koncové spínače V11 (poloha 1) a V12 (poloha 2). informaci o přítomnosti viaku ve stanicích udávají koncové spínače S1 a S2. Směr pohybu viaku vpřed řídí signál Y1 a zpět signál Y2. Vlakový provoz na kolejišti má probíhat tak, aby po stisknutí tlačítka START vyjel vlak z depa S1 na okruh a jezdii po něm se zastávkou ve stanici S2 (10 s) až do stlsknutí tlačítka STOP, kdy dojede do stanice S2 (pokud v ní již nestojí), na dobu 10 s zastaví a pak se vrátí zpět do depa S1.

Algoritmus řízení

Algoritmus řízení vyjadřuje, např. v podobě vývojového diagramu, požadované reakce automatu na změny určených slgnálů v jednotlivých dosažitelných stavech ovládaného zařízení. Při sestavování vývojového diagramu logického automatu se nesmí zapomenout na nutnost neustálého vykonávání programu od nulové adresy. Uzavřením čekací smyčky mlmo počátek programu vznikne chyba cyklu a činnost automatu se přeruší.

Obr. 6 znázorňuje vývojový dlagram uživatelského programu pro model kolejiště. Algoritmus ovládání kolejiště je velmi jednoduchý. Nejdříve se testuje stav tiačítek START a STOP. Při stisknutí některého z nich se daným způsobem nastaví vnitřní proměnná BEH. Pak se zjišťuje poloha vlaku. Při vjezdu do stanice se pohyb vlaku vždy zastaví a s ohiedem na stav signálu BEH se přestavuje výhybka. Ve stanici S2 se zároveň začne odměřovat čas zastavení. Další pohyb vlaku se spustí až po přestavení výhybky a splnění dodatečných podmínek (uplynutí času) ve směru daném stavem proměnné BEH. Při poloze vlaku mimo stanici se jen nuluje čítač odměřování času v S2, stav výstupních signálů se nemění (\ značí negaci a * logický součin).

Přiřazení adres vstupním, výstupním a vnitřním proměnným

Adresa signálu ovládaného zařízení je určena vstupní resp. výstupní svorkou automatu, na kterou se uvažovaný signál připojí. Vstupní a výstupní svorky jsou

** Základní smyčka **

* Vyhodnocení stavu tlačítek * 000 LD 004 Test ti. START 001 ST 100 START=1 -> BEH=1 002 LD 005 Test tl. STOP 003 RS 100 STOP=1 -> BEH=0

* Volba obsluhy stanice 1 * 004 LD 000 Test S1 005 BR 020 Obsluha stanice 1 (při S1=1)

* Volba obsluhy stanice 2 * 006 LD 001 Test S2 007 BR 030 Obsluha stanice 2 (při S2=1)

* Nulování čítače 1 * 008 LC 001 Stav S2 (S2=0) 009 RS 270 S2=0 -> CIT1=0

010 JP 000 Skok na začátek programu

** Obsluha stanice S1 **

* Zastavení pohybů * 020 RS 040 S1=1 -> Y1=0 021 RS 041 S1=1 -> Y2=0

* Nastavení výhybky - poloha 2 * 022 LC 003 Stay V12 023 AD 100 Stav BEH 024 =D 043 Y12=V12*BEH

* Spuštění pohybu vpřed * 025 LD 003 Stav V12 026 AD 100 Stav BEH 027 =D 041 V12*BEH=1 -> Y2=1

028 JP 000 Skok na začátek programu

** Obsluha stanice S2 **

* Zastavení pohybu * 030 RS 040 Y1=0 031 RS 041 Y2=0

* Nastavení výhybky - poloha 1 * 032 LD 100 Test BEH 033 AC 002 Test V11 034 =D 042 Y11=BEH*V11\

* Nastavení výhybky - poloha 2 * 035 LC 100 Test BEH 036 AC 003 Test V12 037 =D 043 Y12=BEH*V12\

* Spuštění časovače * 038 LD 260 Stav HOD (0,1s) 039 =D 270 Čítač 1 040 C- 100 Předvolba 10s

* Spuštění pohybu vpřed * 041 LD 002 Stav V11 042 AD 100 Stav BEH 043 AD 270 Stav CIT1 044 =D 040 Y1=V11*BEH*CIT1

* Spuštění pohybu vzad * 045 LD 003 Stav V12 046 AC 100 Stav BEH 047 AD 270 Stay CIT1 048 =D 041 Y2=V12*BEH*CIT1 049 JP 000 Skok na začátek programu číslovány v souladu s přiřazenými adresami vnitřní paměti RAM automatu násle-

Vstupy: 000 - 007, 010 - 017, 020 -027, 030 - 037;

Výstupy: 040 - 047, 050 - 057, 060 -067 a 070 - 077.

Také při používání zápisníku, speciálních registrů a čítačů lze pro větší přehlednost jednotlivé vnitřní signály a čítače označit symbolicky a přířadit jim odpovídající adresu vnitřní paměti. Při adresování čítačů se používají adresy jejich logických výstupů (čítač 1 má adresu 270, čítač 2 - 271 atd.).

Přířazení adres logickým proměnným je vhodné psát ve tvaru tabulky (zvlášť vstupy, výstupy, záplsník atd.), kde na jednom řádku je symbolické označení signálu, odpovídající adresa vnitřní paměti a vysvětlující komentář.

Pro model kolejiště může být přiřazení

adres následující:

S)	mbol	F	dresa	Komentář
Vstupy:	S1		000	Vlak ve stanici 1
•	S2		001	Vlak ve stanici 2
	V11		002	Výhybka v poloze 1
	V12		003	Výhybka v poloze 2
	START		004	Tlačítko START
	STOP		005	Tlačítko STOP
Výstupy:	Υı	040	Po	hyb vpřed
	Y2	041	Pol	nyb vzad
	Y11	042	Výh	ybka do polohy 1
	Y12	043	Výř	ybka do polohy 2
Zápisník:				
	BEH	100	Pa	měť ovládání
Spec. reg	gistry:			
	HOD	260	Vni	třní hod, signál 10 Hz
Čítače:				
	CIT1	270	Casos	rač 1 - zastavení v S2

Uživatelský program

V uživatelském programu je vyjádřen algoritmus řízení instrukcemi automatu. Každý jeho řádek obsahuje adresu instrukce,na které je v paměti uložena, její operační kód a operand. Pro lepší přehlednost jsou do programu zapsány i komentáře. Program ovládání kolejiště je

Je zřejmé, že přehlednost programu (členění do bloků, možnost sledování stavu jednotlivých výstupů při určitém vývoji atd.) úzce souvisí se zápisem vývojového diagramu. Vhodné sestavení vývojového diagramu a následné vytvoření uživatelského programu závisí především na zkušenostech programátora i na požadavcích konkrétní aplikace.

Z výše uvedeného příkladu vyplývají výhody programovatelného logického automatu. Každou změnu činnosti ovládaného modelu lze snadno dosáhnout úpravou programu. Např. je možno provést návrat do depa po vykonání určitého počtu okruhů (v bloku obsluhy stanice 2 se zařadí čítač počítající průjezdy touto stanicí; po dosažení předvolby se vynuluje signál BEH) nebo po uplynutí nastavené doby (do bloku vyhodnocení stavu tlačítek se zařadí časovač, který je aktivní při BEH = 1 a který po dosažení předvoleného času vynuluje signál BEH). Další varianty a úpravy vlakového provozu i na takto jednoduchém kolejišti závisí jen na fantazii modeláře. Kolejiště lze také samozřejmě rozšířit o další stanice, výhybky atd. až do využití max. počtu vstupů a výstupů automatu. Tím vznikne nepřebemé množství variant možného řízení provozu.

Zápis a ladění programu

Uživatelský program se zapisuje do paměti CMOS RAM automatu pomocí programovacího panelu v režimu "Programování". Instrukční kód l operand se zadává tlačítky panelu a každá instrukce se nejprve zobrazí na displeji včetně adresy, na kterou se po stisku tlačítka ENTER uloží do paměti. Před zápisem nového programu je vhodné celou paměť vynulovat (režim "Nulování paměť!").

Přepnutím programovacího panelu do režimu "Ladění programu" začne vykonávání uživatelského programu. V jeho průběhu lze pro každou instrukci programu při jejím zobrazení na displeji zjistit, je-li právě vykonávána (opakovaně) a jaký je stav logického operátoru LO po jejím vykonání. Sledováním reakcí automatu na změnu různých vstupních signálů lze ověřit správnost sestavení a záplsu

uživatelského programu.

Při vykonávání programu také lze programovací panel přepnout do režimu "Testování vnitřní paměti RAM" a po zadání tzv.řídicího slova displeje zobrazovat stav libovolné osmlce z vnltřní pamětl automatu v blnámím, oktalovém nebo dekadickém tvaru nebo stav 3 po sobě následujících osmic v dekadickém tvaru. Tím je možno ověřit správnou funkci vstupů a výstupů automatu a sledovat stav vnitřních proměnných zápisníku i jednotlivých speciálních registrů a především čítačů. V tomto režimu lze programovací panel velmi výhodně používat i jako panel ovládací, protože 14 ze 16 tlačítek panelu je uživateli volně k dispozici a jejich stav je možno programově testovat na adresách 220 - 237 vnitřní paměti. Dále lze k panelu připojit dalších 16 tlačítek, jejichž stav se přepisuje na adresy 200 - 217. Všechny normální vstupy automatu je pak možno vyhradit pouze pro signály od ovládaného zařízení. Uživatelským programem lze ovlivňovat i zobrazení údajů na displeji, protože řídicí slovo displeje je také uloženo ve vnitřní paměti na adresách 240 - 247. Jeho přepisováním lze na displeji podle vývoje uživatelského programu zobrazovat různé údaje vztahující se k ovládanému zařízení (např. dobu zastavení ve stanici, počet absolvovaných okruhů atd.). Tímto způsobem je možné rychle získat poměrně komfortní ovládací a indikační panel bez nároků na další technické vybavení.

Závěr

Programovatelné logické automaty jsou v současné době široce využívány v oblasti průmyslové automatizace. V odborné literature se uvádí, že 60-70 % průmyslových řídicích systémů pracuje na jejich principu. Lze předpokládat, že stej-nou oblibu získají i v zájmové oblasti, především mezi modeláři a domácíml kutily. Vzhledem k omezenému rozsahu článku nebylo možno uvést podrobný popis všech funkcí automatu LOGIK 1 a jeho programovacího panelu.

Další informace o automatu a možnostech jeho realizace (EPROM se systémovým programem, deska s plošnými spoji) mohou získat zájemci písemným nebo telefonickým dotazem u autora na adrese:

Ing. Vladimír Růžička, CSc. Tesaříkova 11 102 00 Praha 10, tel. (02) 7951384 (po 17. hod.).

V článku je popsáno univerzální jednoduché hlídací poplašné zařízení, které umožňuje indikovat vnik nežádoucí osoby do auta, chaty, stanu, bytu atp. Při vniku nežádoucí osoby do chráněného objektu je vyvolán poplach (opticky nebo akusticky – klaksonem, zvonkem, elektronickou sirénou), který je pro vyšší účinek přerušovaný. Tento poplach je časově omezen a po další iniciaci se opět opakuje.

Zařízení je doplněno optickou Indikací stavu napájecí baterie (akumulátoru) pod kritickou mez – dloda LED (D2) zhasne. Součástí zařízení je i otřesový spínač S1, který citilvě reaguje na pohyb chráněného zařízení (automobilu, dveří bytu, stanu, motocyklu atp.). Dále je možné připojit neomezený počet paralelně spojených kontaktů S2, S3, umístěných na dveřích, oknech, okenicích, které při změně základní polohy vyvolají poplach.

Technické údaje

Napájecí napětí: 12 V stejnosměrné. Napájecí proud: klidový: 11 mA, pracovní:

max. 8 A (podle sirény).

Proud tekoucí spínači S: 4,5 mA. Max. odpor spínače včetně vedení: 500 Ω . Rozměry: 90 × 162 × 50 mm.

Hmotnost: 0,3 kg.

Popis zapojení

Jak je patrné z obr. 1, zapojení není příliš složité. Skládá se ze čtyř částí. Z indikace stavu baterie (akumulátoru), z časového obvodu, multivibrátoru a výkonového spínače.

V uvedeném zapojení je indikace stavu baterie realizována hradlem A, které je svými vstupy připojeno na referenční napětí získané diodou D1. Při poklesu napájecího napětí pod nastavenou mez dioda LED D2 zhasne. Po zvětšení napětí (výměna baterie, nabití akumulátoru) se dioda D2 opět rozsvítí. Bezpečnostní zařízení spíná při změně stavu kteréhokoli spínače S1, S2 nebo S3. Sepnutím spínače je sepnut tranzistor T1 a následně i monostabilní klopný obvod tvořený hradly B, C a členem C2, R5. Hodnoty tohoto členu RC určují dobu signalizace poplachu. Rezistor R5 je přemostěn tranzistorem T2, který zde splňuje funkci zpožďovacího obvodu. Monostabilní klopný obvod je při sepnutí vypínače V na krátký okamžik tranzistorem T2 zablokován a tím nenastane falešný poplach. Po nabití kondenzátoru C3 se uzavře tranzistor T2 (R5 již není zkratován) a monostabilní klopný obvod je připraven. Výstup hradla D je přiveden na multivibrátor (tranzistory T3, T4), který cykluje v režimu 1 s zapnuto/1 s vypnuto. Řídicí napětí z multivibrátoru je zesíleno tranzistory T5. T6 a je přivedeno na výkonový tranzistor T7,

který již spíná vlastní poplašné zařízení (světlomet, klakson, zvonek, relé atp.). Zenerovy diody D5, D6 tvoří přepěťovou ochranu výkonového tranzistoru. Tuto kombinaci diod je nutné použít tehdy, pokud bude jako akustický měnič použit klakson přímo v automobilu. Jak vyplývá z obr. 1, nebylo by možné při použití jedné diody bezpečnostní zařízení vypínačem V vypnout.

Mechanické provedení

Mechanické provedení je patrné z titulní fotografie. Na desce s plošnými spoji (obr. 2) je dostatek místa i na otřesový spínač, jehož možné provedení je také na obr. 2. Použitá planžeta má tloušíku 0,15 mm. Olověná zátěž je z rybářských závažíček. Citlivost spínače lze nastavit vzdáleností obou hrotů vymezujících pohyb planžety.

Napájecí vodiče se připojují prostřednictvím svorkovnice 1 až 5. Díky přerušovanému režimu není třeba výkonový tranzistor opatřovat chladičem. Bez výrazného oteplení snese i spínací proud 8 A – dva klaksony u automobilů zn. VAZ.

Příklady použití

Toto bezpečnostní zařízení je téměř univerzální a lze je využít k hlídání automobilu, motocyklu, rod. domku, bytu, chaty, stanu atd. Může být napájeno z 12 V akumulátoru, baterie nebo i ze síťového zdroje. Vhodné dimenzování napájecího zdroje je závislé od použitého signalizačního prvku. Např. stejnosměrné zvonky vyžadují proud okolo 1 A, autoklakson 3 až 4 A!l pozor – v některých automobilech je jich zapojeno i několik paralelně, elektronická siréna okolo 200 mA.

Příklad zapojení zabezpečovacího zařízení v automobilu je uveden na obr. 3. Nao-

pak na obr. 4 je příklad použití tohoto zařízení pro hlídání bytu, rod. domku nebo chaty.

Uvedení do chodu

Zařízení je díky své poměrné jednoduchosti velice snadno reprodukovatelné. Při použití změřených součástek a pečlivém pájení musí pracovat naprosto spolehlivě již na první pokus. Při oživování je vhodné připojit zařízení na zdroj proměnného napětí 0 až 13 V a překontrolovat napětí, při kterém zhasíná dioda LED. Pokud toto napětí není 11,5 V, lze je nastavit výměnou diody D1 popř. změnou R1.

Sepnutím spínače S1 překontrolujeme dobu spínání monostabilního klopného obvodu a periodu cyklování multivibrátoru. Při oživování je vhodné jako signalizační prvek použít autožárovku např. 12 V/21 W. Je-li třeba změnit celkovou dobu signalizace, musíme změnit R5 (větší odpor – delší časy a naopak). Periodu cyklování lze upravit změnou R8, R9. Kondenzátory C6, C7, je nutné použít jen při spínání signalizačního prvku s indukčností (klakson, zvonek).

Závěr

Autor tohoto článku přeje všem zájemcům o stavbu tohoto bezpečnostního zařízení, aby vždy sloužilo pouze jako pojistka přispívající pouze ke klidu majitele a aby nemuselo být nikdy skutečně v praxi vyzkoušeno. Zprávy v černých kronikách však hovoří dost pesimisticky.

Obr. 1. Schéma zapojení

Obr. 2. Otřesový spínač a deska s plošnými spoji. (Deska je opravena, pouze na podkladu rozložení součástek chyba zůstala.)

Seznam součástek

Rezistory (TR 212) 10 kΩ 1.8 kΩ R3, R4 . 2,7 kΩ R5* 120 kΩ R6 33 kΩ R7, R10, R11 4.7 kΩ R8. R9 100 kΩ R12 560 Ω R13 $68~\Omega,\,\text{TR }224$ vybrat podle požadované doby signalizace Kondenzátory C1 68 nF, TK 744 C2, C3, C6 $220 \, \mu F$, TF 00947 μF, TF 009 10 nF, TK 744 C4, C5 **C7** Polovodičové součástky D1 KZ241/6V8 D2 LQ1401 D3, D4 KA261 D5, D6 KZ260/15 T1, T3, T4, T5 KC508 T2 KC307 T6 KF506 **T7** KD605 CD4011 Ostatní součástky Lámací svorkovnice ("čokoláda")

V – Tahový vypínač používaný v nákladních auto-

mobilech

Obr. 4. Příklad zapojení zabezpečovacího zařízení pro hlídání bytů, chat a rod. domků. (Napájecí napětí stačí odvodit z běžného zvonkového transformátoru, popř. zálohovat baterií. Jako vypínač V je vhodné použít hlavici D se zámkem (+ spínací jednotku) - výrobce Elektropřístroj Písek a umístit jej vně bytu např. ve skříni rozvaděče atp.)

pečovacího zařízení v auto-mobilu. (Vypínač V umístit pokud možno nenápadně např. v masce motorového prostoru. Krabičku ZZ při-šroubovat (ve svislé poloze) v prostoru pro cestující – nejlépe pod palubní deskou. Svorkovnice musí být nahoře.)

kontakty na oknech a dveřích

zab zařízení

výkonových polem řízených trenzistovů VER, MOS, DWOS, SIPMOS, VMOS, HEX

vrcholový proud kolektoru Výkonové polem řízené tranzistory jsou velmi **I**DМ

moderní mikroelektronické součástky, určené především pro spínání velkých zátěží v průmyslové i spotřební elektronice. Pro tato použití se do konce sedmdesátých let používaly výhradně bipolární výkonové polovodičové součástky. Polem řízené tranzistory MOS (MOSFET) nebyly v uvedeném období schopny řídit a spínat velké zatěžovací proudy. V roce 1978 vznikly první použitelné výkonové tranzistory MOSFE, které v krátké době doznaly velkého pokroku v elektrických vlastnostech a rozšířily se do všech oborů elektroniky.

Výkonové polem řízené tranzistory se pro své přednosti používají v zapojeních s pracovním napětím od 25 do 1000 V a pracovními proudy od 1 do 100 A jako zcela standardní součástky a postupně stále více vytlačují bipolární tranzistory. Jejich další předností je skutečnost, že se jejich použitím zjednodušuje konstrukce a snižují se náklady na ně. Výrobci dodávají výkonové polem řízené tranzistory pod různým označením, které je zpravidla odvozeno od použité technologie, chráněné řadou patentů přihlášených v mnoha vyspělých státech.

Vysvětlivky použitých znaků a zkratek

vstupní kapacita napětí kolektoru vůči řídicí elektrodě U_{DG} napětí kolektoru vůči řídicí elektrodě **U**DGR při daném odporu mezi řídicí elektrodou a emitorem (zpravidla 20 kΩ); ve sloupci je údaj označen R napětí kolektoru vůči emitoru Uns napětí řídicí elektrody vůči kolektoru UGD napětí řídicí elektrody vůči emitoru Ucs napětí řídicí elektrody 1 vůči emitoru U_{GS1} napětí řídicí elektrody 2 vůči emitoru U_{GS2} prahové napětí řídicí elektrody vůči U_{GS(TO)} emitoru (zpravidla se udává při $U_{DS} = U_{GS}$; $I_D = 1 \text{ mA}$) závěrné napětí řídicí elektrody (např. Up u tranzistorů s vodivostí p v daném $-U_{\rm DS} = 15 \, \rm V$ pracovním bodu -I_D = 10 nA, u tranzistorů s vodivostí v daném pracovním bodu $U_{\rm DS} = 10 \, \rm V, \, I_{\rm D} = 10 \, \rm nA.$ napětí emitoru vůči řídicí elektrodě U_{SG} proud kolektoru

proud kolektor-emitor l_{os} proud řídicí elektrody I_{G} proud řídicí elektrody-emitor lgs ztrátový výkon celkový P_{tot} vnitřní odpor tranzistorů v propustném Ins(ON) směru (v Ω) tepelný odpor mezi přechodem a oko- R_{thja} přechodem R_{thjc} tepelný odpor mezi a pouzdrem doba zpoždění zapnutí doba zpoždění vypnutí údaj ton a toff je uváděn při daném proudu (uváděn v závorce) strmost v propustném směru (transmi*y*_{21S} tance) v emitorovém zapojení teplota okolí teplota pouzdra θc teplota přechodu teplota kanálu

Ve sloupci "D" (druh-kanál): asymetrický

a	adymothety
av	zkoušen na průrazovou pevnost (lavino-
	vá pevnost)
de	ochuzovací typ
en	obohacovací typ
DM	vertikální DMOS
FRDF	s integrovanou diodou s krátkou dobou zotavení mezi kolektorem a emitorem
FRED	s integrovanou superrychlou inverzn diodou mezi kolektorem a emitorem
LL	s logickou úrovní
LLF	s logickou výstupní úrovní
LLS	s logickou úrovní integrovaného senzo
	ru
M	tranzistor MOS
n	vodivost (kanál) n
р	vodivost (kanál) p
Ś	křemíkový
SF	senzor FET
sym	symetrický

Ve sloupci "U" (použití): nízkofrekvenční NE CH střídač (chopper) spinaci SP

SSZ

Označení elektrod:

kolektor (drain) D emitor (source) S

řídicí elektroda (hradlo, gate) G

Ve sloupci "P" (pouzdro):

Uvádí se typové označení pouzdra podle mezinárodně platných norem, popříp. vnitropodnikových norem příslušného výrobce.

Ve sloupci "V" (výrobce):

Ferranti Ltd., nyní Zetex plc, Velká Británie FΕ Harris Semiconductors, SRN, USA н International Rectifier, Velká Británie IR ABB-IXYS Semiconductors, SRN IX Philips Components, Holandsko a SRN Р Siemens AG, SRN s SGS-Thomson Microelectronics, Francie, ST Itálie, SRN Valvo GmbH, nyní Philips Components, ٧ SRN

Ve sloupci "Z" (zapojení vývodů):

Zetex plc, Velká Británie

Zapojení vývodů jsou očíslována, v druhém řádku je případně uvedeno číslo vnitřního elektrického zapojení tranzistoru (pokud je to nutné).

Poznámky v jednotlivých sloupcích

Ve sloupci "/p":

71

 Proud pomocného emitoru I_{S(A)M} – impulsní nebo vrcholový. **Ve sloupci "P_{tot}" a "R_{thle}".** 1. Na keramickém substrátu 250 mm², tloušťka

0.6 mm.

- 2. Na epoxidové podložce $40 \times 40 \times 1,5 \text{ mm}$ s měděnou plochou 6 cm², připojenou k vývodu kolektoru (D).
- 3. Na keramickém substrátu 2,5 cm², tloušíka 0,7 mm.
- Na keramickém substrátu 8×10 mm, tloušťka
- 5. Na keramickém substrátu 7 × 5 mm, tloušťka 0,5 mm.

Upozornění:

Pro urychlení a k lepšímu přehledu vyhledávaných údajů není u jednotlivých tranzistorů uváděna u údajů napětí a proudů polarita. Zásadně platí: u tranzistorů s vodivostí n polarita napětí kolektoru a řídící elektrody kladná, u tranzistorů s vodlvostí p záporná.

pro spínané napájecí zdroje

COMPUTER

Rubriku připravuje ing. Alek Myslík. Kontakt pouze písemně na adrese: INSPIRACE, pošt. přihr. 6, 100 05 Praha 105

ŘÍDICÍ MIKROPOČÍTAČ CUB51

Richard Kos, M. Majerové 683, 584 01 Ledeč n. Sázavou

CUB51 (Control Unit Board) je univerzální mikropočítač vhodný pro řízení, regulaci, sběr dat a řadu dalších automatizačních aplikací. Integrované sériové rozhraní RS232 umožňuje jeho přímé spojení a spolupráci např. s osobním počítačem. Možnost galvanického oddělení všech signálů, z nichž každý může být zapojen jako vstupní nebo výstupní, jej předurčuje pro širokou škálu průmyslových aplikací i pro laboratorní a pedagogické účely.

Při návrhu elektronického zařízení vyvstává v podstatě vždy otázka, zda vyvinout celé zapojení vlastními silami, nebo se snažit využít vhodné, již vyřešené standardní díly. Jedním z hlavních kritérií při tomto rozhodování je uvažovaná sériovost výroby daného zařízení. Čím menší je předpokládané množství výrobků, tím větší je zpravidla snaha konstruktéra sestavit elektroniku zařízení z již vymyšlených a pokud možno sériově vyráběných dílů. Ve většině případů se neobejde bez nějaké té pomocné vlastní uživatelské desky plošného spoje, kterou bude muset sám vyvinout. Pokud však má být součástí vyvíjené elektroniky například mikropočítač, nabízí se možnost použít standardní modul. V případě, že konstruktér

uvažuje o využití takového modulu, stačí se pouze seznámit s jeho vlastnostmi. Pokud se jeví jako vyhovující, je pak třeba už jen vyřešit jeho mechanické upevnění a elektrické připojení k uživatelské

Dále popsaný modul CUB51 je navržen s důrazem na jednoduchost. Je však schopen poskytnout takové základní služby, jako jsou sériová komunikace s okolím, informace o reálném čase a zálohovaná RAM. Přitom se snaží vycházet konstruktérovi vstříc např. možností galvanického oddělení vstupněvýstupních linek.

Jádrem modulu je klasický jednočipový mikrokontrolér typu 8051.

Schéma zapojení mudulu CUB51 je na obr.1.

Vstupy a výstupy

Pro připojení modulu CUB51 k vnějšímu prostředí slouží 3 konektory - XC1 pro brány P1, P3 mikrokontroléru a napájení, XC2 pro brány P0, P2, napájení a pomocné řídicí signály sběmice, a XC4 nebo XC3 pro sériovou komunikaci. CUB51 lze vybavit sériovým interfejsem RS232, stačí na desku modulu osadit obvod typu MAX232 (pozice AA1) s přilehlými kondenzátory a konektor XC3 (CANON 9).

V případě využívání signálu /RTS při sériové komunikaci je nutno zvolit konkrétní výstupní bit některé z bran, na němž bude funkce /RTS programem zajišťována, a propojkou spojit zvolený bit s obvodem sériového kanálu.

ТҮР	0	U	ჭ _с ჭ _а	P _{tot}	U _{DGR}	Į.	±U _{GS} U _{SG+}	I _{DM+}	ϑ _K ντ _{j+}	R _{thjc} R _{thja+}	u _{os}	U _{GS} U _{G2S+}	I _{OS}	y _{21S} [S] r _{OS(ON)+} [Ω]	^{–U} GS(ТО)	c.	^t ON+	Р	٧	Ž
			[°c]	max [W]	U _{GD} o max [v]	max [V]	max [V]	I _G o max [A]	max [°C]	max [K/W]	[v]	U _{G1S} o [v]	[mA]	[]	[v]	max [pF]	max [ms]			
8UK427-500 8UK427- 600A	8 ∳ P SMn en		25 100 25	45	600R	600	30	19,2+ 4,3 2,7 17,2+	150	2,8 35+	500 25 600	0 10 0	<0,02 6,5A 6,5A <0,02	8 > 5 0,8 < 1+	2,1-4	1800	(2,8A) 0,04+ 0,25- (2,8A)	S0T 199		199 T1N
8UK427- 6008	SMn en	SSZ SP	25 100 25	45	600R.	60'0	30		150	2,8 35+	25 600	10 0	6,5A 6,5A < 0,02	8 > 5 1 < 1,2+	2,1-4	1800	0,04+ 0,25- (2,8A)			199 T1N
8UK428- 500A	SMn en	SSZ SP	25 100	45	500R	500	30		150	2,8 35+	25 500	10 0	8A 8A < 0,02	14 > 9 350< 400m+	2,1-4	2800	,	SOT 199		199 T1N
8UK428- 5008	SMn en	SSZ SP	25 25 100	45	500R	500	30	6,1 3,8	150	2,8 35+	25	10	8A 8A	14 > 9 400~500m+	2,1-4	2800		S0T 199		199 T1N
8UK428- 800A	SMn en	SP	25 25 100	45	800R	800	30	2,2	150	2,8 35+	500 25	10	< 0,02 4A 4A	6 > 3 1,3<1,5+	2,1-4	3500	0,09+ 0,43-			199 T1N
8UK428- 8008	SMn en	SP	25 25 100	45	800R	800		14+ 3 1,9 12+	150	2,8 35+	800 25	10	<0,05 4A 4A	6 >3 1,7 < 2+	2,1-4	3500	(2,6A) 0,09+ 0,43-		Р	199 T1N
8UK428- 1000A	SMn en	SP	25 25 100	45	1000R	1000		2,9 1,9	150	2,8 35+	800 25	10	3,5A 3,5A	5 > 2,5 1,8 < 2+	2,1-4	3500	0,43-			199 T1N
BUK428- 1000B	SMn en	SP	25 25 100	45	1000R	1000	30	12+ 2,6 1,6	150	2,8 35+	1000 25	10	3,5A 3,5A	5 > 2,5 2,2<2,6+	2,1-4	3500	(2,5A) 0,09+ 0,43- (2,5A)			199 T1N
8UK436- 50A	SMn en	SSZ SP	25 25 100	125	50R	50	30	32	150	1 45+	1000 25	10	<0,05 29A 29A	22 > 17 25 < 28m+	2,1-4	2n	0,03+ 0,22- (3A)			199A T1N
BUK436- 508	SMn en	SSZ SP	25 25 100	125	50R	50	30	29	150	1 45+	50 25	10	7 0,01 29A 29A	22 > 17 30 < 33m+	2,1-4	2n	0,03+ 0,22- (3A)		Р	199A T1N
BUK436- 60A	SMn en	SSZ SP	25 25 100	125	60R	60	30	184+ 50 32	150	1 45+	50 25	10	< 0,01 29A 29A	22 > 17 25 < 28m+	2,1-4	2n	0,03+ 0,22- (3A)		Р	199A T1N
BUK436- 60B	SMn en	SSZ SP	25 25 100	125	60R	60	30	200+ 46 29	150	1 45+	60 25	10	<0,01 29A 29A	22 > 17 30 < 33m+	2,1-4	2n	0,03+ 0,22- (3A)		Р	199A TIN
BUK436- 100A	SMn en	SSZ SP	25 25 100	125	100R	100	30	184+ 33 20	150	1 45+	60 25	10	<0,01 15A 15A < 0,01	16 > 12 52< 57m+	2,1-4	2n	0,03+ 0,2- (3A)	S0T 93	Р	199A TIN
. 8UK436- 1008	SMn en	SSZ SP	25 25 100	125	100R	100	30	132+ 31 19	150	1 45+	100 25 100	10	15A 15A < 0,01	16 >12 60 < 65m+	2,1-4	2n	0,03+ 0,2- (3A)	S0T 93	Р	199A T1N
BUK436- 200A	SMn en	SSZ SP	25 25 100		200R	200	30	124+ 19 12 76+	150	1 45+	25 200	10	10A 10A ~0,01	16 > 8,5 150<160m+	2,1-4	2n	0,03+ 0,18- (3A)			199A T1N
BUK436- 2008	SMn en	SSZ SP	25 100	125	200R	200	30	17 11	150	1 45+	25 200	10	10A 10A <0,01	16 ≻8,5 170~200m+	2,1-4	2n	0,03+ 0,18- (3A)		Р	199A T1N
BUK436- 800A	SMn en	SSZ SP	25 25 100	125	800R	800	30	68+	150	1 45+	25 800	10	1,5A 1,5A	4,3 > 3 2,7 < 3+	2,1-4	1250	1	93	P	199A T1N
8UK436~ 8008	SMn en	SSZ SP	25 25 100	125	BOOR	800	30	3,5 2,2	150	1 45+	25 800	10	1,5A 1,5A	4,3 > 3 3,5 < 4+	2,1-4	1250	1	S0T 93	Р	199A T1N
8UK436- 1000A	SMn en	SSZ SP	25 25 100 25	125	1000F	1000	30	3,5 2,2 14+	150	1 45+	25 1000	10	1,5A 1,5A <0,02	4,3 > 3 3,5 < 4+	2,1-4	1250	1	SOT 93	Р	199A T1N
8UK436- 10008	SMn en	SSZ SP	25 100 25	125	10006	1000	30	3,1 2 12+	150	1 45+	25	10	1,5A 1,5A ~0,02	4,3 > 3 4,5 < 5+	2,1-4	1250	1	SOT 93	Р	199A T1N
BUK437- 400A	SMn en	SSZ SP	25 100 25	180	400R	400	30	14 8,8 56+	150	0,69	25	10	6,5A 6,5A <0,02	8 > 5 350<400m+	2,1-4	1800	0,04- 0,25- (2,8A)	SOT 93	Р	199A T1N
8UK437- 400B	SMn en	SSZ SP	25 100	180	400R	400	30	12 7,6 48+	150	0,69	25 400	10	6,5A 6,5A < 0,02	8 >5 450<500m+	2,1-4	1800	1	S0T	P	199A T1N
8UK437- 4508	SMn en	SSZ SP	25 25 100	180	450R	450	30	11 7 44+	150	0,69	25 450	10	6,5A 6,5A <0,02	8 > 5 550 < 600 m+	2,1-4	1800	0,04- 0,25- (2,8A	+ SOT - 93	Р.	199A T1N
8UK437- 500A	SMn en	SSZ SP	25 25 100 25	180	500R	500	30	11 7 44+	150	0,69	25 500	10	6,5A 6,5A < 0,02	8 > 5 550~600m+	2,1-4	1800	1	+ 501 - 93	Р	199A T1N
8UK437- 500B	SMn en	SSZ SP	25 100 25	180	500R	500	30	10 6,3 40+	150	0,69	25	10	6,5A 6,5A <0,02	8 > 5 700 < 800m+	2,1-4	1800		+ S01 - 93	Р	199A T1N
BUK437- 600A	SMn en	SSZ SP	25 10 25	180	600R	600	30	9 5,7 36+	150	0,69	25	10	6,5A 6,5A < 0,02	8 > 5 0,85< 1+	2,1-4	180	1	+ S01 - 93	Р	199A T1N

ſ	TYP	D	U	₽ _C	P _{tot}	u _{og}	U _{DS}	±U _{GS}	I _D	ϑ_{K}	R _{thjc}	u _{os}	n ^{GS}	I _{OS}	y _{21S} [S]	-U _{GS(10)}	C,	t _{ON+}	Р	v l	Z
				ه ا	101	U _{DGR}			I _{DM+}		R _{thja+}		u _{G2S+}	I _{GS+}	r _{DS(ON)+}	63(10)	1	t _{OFF} -			
				r0-1	max	max O ^{CO} o	max	max	I _G o max	max [°C]	max		U _{G1S} o	F -3	[Ω]	61	max	max			
\vdash	8UK416-	SMn	SSZ	[^O C]	[W] 310	[v] 100R	[V] 100	[v] 30	[A] 110		[K/W]	[v] 10	[V]	[mA] 55A	70 ~50	[V] 2,1-4	[pF] 10n	(ms) 0,08+	SOT	Р	2278
	100AE	en	SP	100 25					70 440+ 5		ŕ	100 0	0 +30	< 0,05 200n				0,2- (110A)	2278		TIN
	8UK416-	SMn	SSZ		310	100R	100		100	150	0,4	10	10	55A 55A	11 < 13m+ 70 ·> 50	2,1-4	10n	0,08+			22 7B
	1008E •	en	SP	100 25 25					60 400+ 5			10 100	0	55A - 0,05	14 ~ 16m+			0,2- (110A)	227B		TIN
	8UK416-	SMn	SSZ	25	310	200R	200	30	63	150	0,4	15		32A	55 > 30	2,1-4	10n	0,08+			2278
	200AE	en	SP	100 25 25					40 250+ 5			200	10 0	32A <0.05	30 ≤ 35m+			0,2- (63A)	2278		T1N
	8UK416- 2008E	SMn en	SSZ SP	1	310	200R	2 00		55 3 5	150	0,4	15	10	32A 32A	55 > 30 35 ~ 45m+	2,1-4	10n	0,08+ 0,2-	SOT 2278		2278 T1N
	20002	CIT	J.	25 · 25					220+ 5)			200	0	~0,05	33 43			(63A)	22.0		1111
	8UK416- 1000AE	SMn en	SP	25 100	310	1000R	1000	30	7,8	150	0,04	2 5	10	7,5A 7,5A	20 > 10 0,7 < 0,8+	2,1-4	6250		S0T 2278		2278 T1N
	8UK416-	SMn	SP	25 25	310	1000R	1000	30	49+ 10,9	150	0,04	1000 25	0	< 0,1 7,5A	20 > 10	2,1-4	6250	(3A) 0,12+	SOT	Р	2278
	1000BE	en		100 25					6,9 44+		,	1000	10 0	7,5A < 0,1	0,9< 1+	ŕ		0,8- (3A)	2278		T1N
	BUK417- 500AE	SMn en	SSZ SP	100	310	500R	500		20	150	0,4	25	10	16A 16A	30 >15 110<130m+	2,1-4	9n	0,08+ 0,35-			2278 T1N
				25 25					128+ 5 1)			500	0	< 0,1	•			(32A)			
	8UK417 500BE	SMn en	SSZ SP	100	310	500R	500		28 18	150	0,4	25	10	16A 16A	30 >15 140<160m+	2,1-4	9n	0,0B+ 0,35-			227B T1N
	S			25 25		500			112+ 5 1)			500	0	< 0,1				(32A)			
	BUK426- 50A	SMn en	SSZ SP	25 100 25	45	50R	50	30	30 19 120+	150	2,B 35+	25 50	10 0	29A 29A < 0,1	22 > 17 24 < 28m+	2,1-4	2n	0,03+ 0,22- (3A)		Ρ.	199 T1N
	BUK426- 50B	SMn en	SSZ SP		45	50R	50	30	30 19	150	2,B 35+	25	10	29A 29A	22 > 17 27 < 30m+	2,1-4	2n	0,03+ 0,22-		Р	199 T1N
	BUK426-		SSZ	25	45	COB	۲0	30	120+	150		50 25	0	< 0,1 29A		214	2-	(3Á)		Р	199
	60A	SMn en	SP	25 100 25		60R	60	30	30 19 120+	150	2,8 35+	60	10 0	29A 29A <0,1	22 > 17 24 ≤ 28m+	2,1-4	2n	0,03+ 0,22- (3A)		r	T1N
	BUK426- 60B	SMn	SSZ SP	25 100	45	60R	60	30	30 19	150	2,B 35+	25	10	29A 29A	22 > 17 27 < 30m+	2,1-4	2n	0,03+ 0,22-		Р	199 T1N
ļ	8UK426-	SMn	SSZ	25 25	45	100R	100	30	120+ 20	150		60 25	0	< 0,1 15A	16 > 12	2,1-4	2n	(3Á) 0,03+		P	199
	100A	en	SP	100 25					12 80+		35+	100	10 0	15A < 0,01	52 ≤ 57m+	_,-		0,2- (3A)			TIN
	8UK426- 1008	SMn en	SSZ SP	100	45	100R	100	30	19 12	150	2,B 35+	2 5	10	15A 15A	16 > 12 60 < 65m+	2,1-4	2n	0,03+ 0,2-	1	Р	199 T1N
	BUK426-	SMn	SSZ		45	200R	200	30	76+ 11	150	2,8	100 25	0	< 0,01 10A	16>8,5	2,1-4	2n	(3A) 0,03+		Р	199
	200A	en	SP	100 25					7 44+		35+	200	10 0	10A ~0,01	150 ~1 60m+			0,18- (3A)	199		TIN
	BUK426- 2008	SMn en	SSZ SP	100	45	200R	200	30	6,3	150	2,8 35+	25 200	10 0	10A 10A	16> 8,5 170~200m+	2,1-4	2n	0,03+		P	199 T1N
	8UK426-	SMn	SSZ	25	1	800R	800	30		150		25 25		<0,01 1,5A	4,3 > 3	2,1-4	1250	(3A) 0,025+		Р	199 T1N
1	800A	en	SP	100 25	•	noon	000		1,5	150	35+	B00	10 0	1,5A <0,02	2,7 < 3+	2.1.4	1050	0,15- (2,3A)			
	8UK426- 8008	SMn en	SSZ SP	25 100 25	45	800R	800	30	2,1 1,3 8,4+	150	2,8 35+	25 800	10 0	1,5A 1,5A < 0,02	4,3 > 3 3,5 < 4+	2,1-4	1250	0,025 0,15- (2,3A)			199 T1N
	8UK426- 1000A	SMn en	SSZ SP	1	45	1000R	1000	30	1	150	2,8 35+	25	10	1,5A 1,5A	4,3 > 3 3,5 < 4+	2,1-4	1250	· ·		Р	199 T1N
	8UK426-	SMn	SSZ	25 25	İ	1000R	1000	30	8,4+	150		1000 25		< 0,02 1,5A	4,3>3	2,1-4	1250	(2,3A)		Р	199
	10008	en	SP	100 25					1,2 B+		35+	1000	10 0	1,5A < 0,02	3,5 < 4+	-,- ,		0,15- (2,3A)		ľ	TÍŃ
	BUK427- 400A	SMn en	SSZ SP	25 100	45	400R	400	30	6,9 4,3	150	2,8 35+	25	10	6,5A 6,5A	8 > 5 350<400m+	2,1-4	1800	0,04+ 0,25-		Р	199 T1N
	8UK427-	SMn	SSZ	25 25	45	400R	400	30	28+	150		400 25	0	<0,02 6,5A	8 ~5	2,1-4	1800		SOT	Р	199
	4008	en	SP	100 25		٠.			3,9 25+		35+	400	10 0	6,5A <0,02	450<500m+			0,25- (2,8A)			T1N
	8UK427- 4508	SMn en	SSZ SP	25 100		450R	4 50	3υ	5,6 3,5	150	2,8 35+	25 450	10	6,5A 6,5A	8 >5 550<600m+	2,1-4	1800	0,25-		P	199 T1N
1	8UK427-	SMn	SSZ	25 25	45	500R	500	30	5,6	150	2,8	45 0 2 5	0	6,5A	8 > 5	2,1-4	1800			Р	199 T1N
	500A	en	SP	100 25				,,	3,5 22+	,	35+	5 0 0	10 0	6,5A <0,02	550<600m+		1000	0,25- (2,8A)			
	8UK427- 500B	SMn en	SSZ SP	25 100	45	500R	500	30	4,B 3	150	2,8 35+	25	10	6,5A 6,5A	8 > 5 700<800m+	2,1-4	1800	0,04+ 0,25-		Р	199 T1N

Obr. 1. Schéma zapojení řídicího mikropočítače CUB51

Tab. 1. Vývody konektorů XC1 a XC2

vývod	XC1	XC2
1	-Vcc	RSB1
2	GNA	RSB2
3	+Vcc	RSB3
4	RWB4	RSB4
5	RWB3	RSB5
6	RWB2	ALE
7	RWB1	P3_6
8	/ISRES	P3_7
9	ISP3_7	ISP0_0
10	ISP3_6	ISP0_1
11	ISP3_5	ISP0_2
12	ISP3_4	ISP0_3
13	ISP3_3	ISP0_4
14	ISP3_2	ISP0_5
15	ISP3_1	ISP0_6
16	ISP3_0	ISP0_7
17	ISP1_7	ISP2_7
18	ISP1_6	ISP2_6
19	ISP1_5	ISP2_5
20	ISP1_4	ISP2_4
21	ISP1_3	ISP2_3
22	ISP1_2	ISP2_2
23	ISP1_1	ISP2_1
24	ISP1_0	ISP2_0
25	FWB1	FSB8
26	FWB2	FSB7
27	FWB3	FSB6
28	FWB4	FSB5
29	FWB5	FSB4
30	FWB6	FSB3
31	GND	FSB2
32	Vcc	FSB1
33	GND	GND
34	Vcc	Vcc
1		ı

Obr. 2. Uspořádání desky řídicího mikropočítače CUB51

Všech 32 bitů bran mikrokontroléru lze buď přímo připojit drátovými propojkami na konektory XC1 a XC2, nebo je od nich galvanicky oddělit optočleny UF1 až UF32. V druhém případě je třeba vhodnou orientací pouzdra a příslušné propojky určit směr signálu (může být u každého bitu individuální). Vstupní optočleny pak mají na konektor XC1 popř. XC2 přímo připojeny katody a výstupní optočleny kolektory. Druhé póly lze propojkami nebo rezistory připojit na libovolný plovoucí potenciál nebo na číslicovou zem (obr. 3). Proud protékající diodou výstupně orientovaného optočlenu je asi 1,4 mA. Proto je výhodné použít pro výstupy optočleny s darlingtonem, jak je naznačeno ve schématu. K dispozici jsou dva spínače DIL, které v zapnutém stavu spojují bity P1_6 a P1_7 (brány P1) mikrokontroléru s potenciálem GND. Mohou být později použity např. pro nastavení módu činnosti zařízení.

Vývody konektorů XC1 a XC2 jsou popsány v Tab. 1. FWB1 až FWB6 isou plovoucí potenciálové signály pracovní sběrnice. Signály ISPX_Y jsou jednot-livé bity bran mikrokontroléru, které jsou od něj v případě osazení optočleny galvanicky odděleny. /ISRES je obdobně oddělený signál pro nulování mikrokontroléru. RWB1 až RWB4 a RSB1 až RSB5 jsou rezervní vodiče sběrnice. +Vcc, -Vcca GNA (analogová zem) jsou pozice vyhrazené na sběrnici pro případné napájení operačních zesilovačů a na desce modulu nejsou využity. Signály P3_6 a P3_7 jsou přímo spojeny s příslušnými bity brány P3 a mají zde funkci signálů /WR a /RD.

Oscilátor

Kmitočet oscilátoru mikrokontroléru je 11,059 MHz. Může být libovolně nižší, použijeme-li jiný krystal a kapacity C1, C2. U většiný typů, nabízených na našem trhu, jsou však vnitřní registry dynamické a minimální povolený kmitočet oscilátoru bývá 3,5 MHz, popř. 0,5 MHz.

RESET

Nulování mikrokontroléru (RESET) je vyvoláno vždy při náběhu napájecího napětí. Je ho možné způsobit i tlačítkem, umístěným na desce modulu, nebo externím signálem přes optočlen UF33.

Organizace paměti

Modul CUB51 umožňuje připojení vnější paměti programu i dat. Mechanickou propojkou X4 se volí vnější (8031)

nebo vnitřní (8751) paměť programu podle Tab. 2. Vnější paměť programu se osazuje na pozici DS2. Mohou to být EPROMo kapacitě 64 kB, 32kB, 16 kB nebo 8 kB. Adresové umístění vnější paměti programu je vždy od adresy 0000H. Vnější paměť dat se osazuje na pozici DS1 obvodem 2 kB, např. 61 16. Stejnou funkcí splní MK48Z02, který máv pouzdře integrovaný záložní elektrochemický zdroj pro celou kapacitu paměti s životností asi 11 let. Lze použít i obvod MK48T02, který má navíc přesný oscilátor a na nejvyšších osmi adresách RAM (07F8H až 07FFH) je řídicí registr a aktuální informace o sekundě, minutě, hodině, dni, měsíci a roku.

Mechanické propojky X5, X6 a X7 umožňují omezit využívanou kapacitu vnější paměti RAM na pouhých 256 bajtů. To je aktuální v případě, kdy uvedených 256 bajtů postačuje a přitom není možné zatěžovat bránu P2 mikrokontroléru adresační funkcí.

Konfigurace

Minimální funkční konfigurace sestává z čipu 8751, obvodu oscilátoru a obvodu nulování. Je-li použita vnější paměť dat, je nutné osadit i DD1 (latch 74HC573), DD2 (generátor /CS pro RAM 74HC00) a DS1 (RAM). Při použití mikrokontroléru 8031 a vnější paměti programu je nutné osadit DS2 a DD1.

Optočleny se osadí pouze na linky, které je třeba galvanicky oddělit. Z ekonomického hlediska může být výhodné používat dvojnásobné nebo čtyřnásobné optočleny v jednom pouzdře. Lze je osazovat na brány PO, P1 a P2. Mohou to být například PC827 a PC847 (s jednoduchým tranzistorem na výstupu) nebo PC825 a PC845 (s darlingtonem).

Konstrukce a napájení

Deska s plošnými spoji, na které je modul CUB51 sestaven, je dvoustranná s prokovenými otvory. Všechna přípojná místa pro drátové propojky jsou na plošném spoji odlišena od ostatních čtvercovým tvarem plošky. Obrazce desky s plošnými spoji nezveřejňujeme vzhledem k nereálnosti její domácí výroby. O hotovou prokovenou desku si můžete napsat firmě MITE, Veverkova 1343, 500 02 Hradec Králové.

Modul CUB51 vyžaduje připojení stabilizovaného napájecího napětí +5 V ±0,5 V na konektoru XC1 nebo XC2. Jeho přítomnost je indikována LED HL1. Proud odebíraný modulem CUB51 ze zdroje je výrazně závislý na konfiguraci. Nepřesahuje 80 mA, jsou-li všechny obvody CMOS.

Práce s CUB51

Vývojovými prostředky pro práci s CUB51 jsou obvodový emulátor konkrétního mikrokontroléru a jeho ovladač, kterým bývá nejčastěji osobní počítač. Potřeba obvodového emulátoru se může na první pohled jevit jako překážka. Náš trh je však těmito zařízeními nasy-

Propojka	Funkce
X1 X2 X3	Typ čipu EPROM
2-3 2-3 2-3	27C64
1-2 2-3 2-3	27C128
1-2 1-2 2-3	27C256
1-2 1-2 1-2	27C512
X4	Paměť programu
1-2	vnější (80C31)
2-3	vnltřní(87C51)
X5 X6 X7	Vnější RAM
1-2 1-2 1-2	256 bajtů
2-3 2-3 2-3	` 2 kB

Tab. 2. Funkce mechanických propojek (X1 může být namísto 2-3 rozpojena)

cen a tomuto stavu odpovídají i ceny. Pro běžné uživatele i pedagogická pracoviště by nemělo být pořízení přiměřeného typu výrazným problémem.

Literatura

[1] Zdeněk, J.,ing.: Monolitické mikropočítače řady '51. MBE - Praha 1990.
[2] Die 8bit-Mikrocontroller-Familie

8051. VALVO 1984.

[3] Olšovský, J.: Univerzální rozhraní RS-232. Amatérské radio A2/1988.

[4] Netuka, J., ing.: Integrovaný obvod MAX232 a jeho použití. Amatérské radio A2/1992.

[5] Static RAM's Databook. SGS - Thomson 1989.

[6] High Speed CMOS Databook. SGS -Thomson 1989.

Život šel dál, a najednou pak velmi rychle. Rychlým vývojem počítačů postupně vymizely grafické adaptéry CGA, převládly VGA, tím se usnadnila implementace jiných (českých) znaků a pročeské psaní se začaly používat bohatě vybavené textové editoryjako Word, WordPerfect, AmiPro. A tak jak se postupně všíchni stěhují "pod Windows", Windows umějí česky, a pohoda je dokonalá.

Dlouho se čekalo na to, zda i T602 přejde pod Windows. Rozhodnutí padlo dost dávno, ale napsat dobrý textový editor asi není jen tak jednoduché. A tak se WinText602 objevil až loni na podzim. V beta verzi ho krátce předtím dostala k vyzkoušení i redakce AR.

Moje první zkušenost nebyla zrovna pozitivní. Řekl jsem si - hlavní výhodou Wlntextu pro mě by mělo být, že umí automaticky zacházet s texty napsanými pod T602, bez jakýchkoli konverzí a úprav. A tak jsem spustil editor a rozhodl se "natáhnout" soubor pod označením dopis.602. V nabídce (poměmě

chudé) na otevření souborů je i formát T602, zvolil jsem ho, a ouha - automaticky mi naskočila přípona .txt a můj dopis.602 z okénka zmizel. Inu nevadí napsal jsem celý název souboru - dopis.602 - a pak znovu zvolil formát - T602. Přípona mého "dopisu" se změnila na .txt. Takový soubor ovšem v adresáři nebyl. Ještě chvíli jsme si takhle hráli - a nakonec jsem musel přejmenovat soubor na dopis.txt, a pak už bylo všechno v pořádku. Je tohle možné, řekl jsem si, když .602 byla implicitní přípona souborů v T602 ...

Jinak žádné výhrady. Textový editor, který umí vše, co musí modemí textový editor umět (těžko vymyslet něco nového), v uniformním prostředí Windows se všemi jejich výhodami. Navíc - má přímo v sobě tabulkový kalkulátor Tab602 (spreadsheet), s dokonalým propojením, což je velmi šikovné.

Čo jsem velmi ocenil, i kdyžto s funkcí editoru přímo nesouvisí, je důsledné a velmi pěkně vymyšlené české názvosloví v manuálu i v programu. A.M.

MULTIMÉDIA

PRAVIDELNÁ ČÁST COMPUTER HOBBY, PŘIPRAVOVANÁ VE SPOLUPRÁCI S FIRMOU OPTOMEDIA

V mlnulém čísle jste si snad se zájmem přečetil článek s názvem MULTIMEDIA upgrade kit. Byl takovým prvním seznámením s "dalšími" možnostmi počítače a dal impuls k tomu, že jsme se rozhodil věnovat této problematice od nového roku pravidelnou rubriku. Možná se vám bude zdát, že je to zatím drahý koníček, ale věřte, že během několika let to bude tak běžná záležitost jako magnetofon a způsobí revoluci ve vzdělávání a v přístupu k informacím. Proto bychom chtěli být tak trochu v předstihu.

Ještě jednou tedy stručně, co to vlastně jsou "multimédia". Z filozofického hlediska je to spojení zvuku, obrazu, informace a interaktivního přístupu k nim. Z technického hlediska je to rozšíření běžného osobního počítače tak, aby mohl s výše uvedenými komponenty zacházet. Poměmě rychle došlo k určité mezinárodní standardizaci, shrnuté stručně pod pojem Multimedia PC, MPC.

Multimedia PC má pět základních komponentů - počítač PC, přehrávač CD-ROM, přídavnou akustickou kartu (SoundBlaster ap.), Microsoft Windows s Multimedia Extension (tj. verze 3.1) a stereofonní sluchátka nebo reproduktory se zesilovačem.

Počítač by měl mít procesor alespoň 386SX, 2 MB RAM, pevný disk 40 MB a VGA displej. Čím bude rychlejší, čím bude mít víc paměti (RAM i na disku), čím kvalitnější zobrazení bude umožňovat, tím lépe a efektněji bude pro multimédia využitelný.

V naší rubrice MULTIMÉDIA, kterou připravujeme ve spolupráci s firmou OPTOMEDIA (divize PLUS, s. r. o.), vás chceme seznamovat rovnoměrně se všemi "aspekty" multimédií - s technickými principy a technickým vybavením, s programovým vybavením, s filozofií a využitím i s aplikacemi pro uživatele na CD-ROM.

Prvním nepostradatelným doplňkem počítače je přehrávač CD-ROM.

CD-ROM

Proč CD-ROM? Multimédia pracují s obrázky, zvuky, velkým množstvím informací, a to vše si vyžaduje velké množství paměti. Sebevětší pevný disk počítače by byl za chvíli plný, a hlavně nejde přenášet. Výrazně větší kapacitu mají optické paměti.

CD, compact disk, nesoucí hudební nahrávky, je již známý pojem. Postupně vytlačuje klasické gramofonové desky. Patmě jako čtenáři AR víte, že na něm nahrávka není v analogové, spojité formě, jako na gramofonové desce nebo magnetofonovém pásku, ale ve formě digitální, jako série čísel. A tak se hned nabídla možnost - když se dá na CD ve formě čísel šířit hudba, proč by se stejně nedaly šířit i jiné informace. Médium bylo, výrobci také, a proto se CD-ROM,

DIVIZE PLUS SPOL. S R.O.
Letenské náměstí 5, 170 00 Praha 7
tel.: (02) 37 49 69, (02) 37 54 69

první využitelný
blok (00 min., 02 s,
blok č. 00)

poslední využitelný blok (60 min., 01 s. blok č. 74)

Obr. 1. Záznamová stopa na CD-ROM je spirálová

Obr. 2. Způsob záznamu informace na CD-ROM

jak se začalo "kompaktu" s daty říkat (ROM znamená read only memory, paměť jen ke čtení), rošířil ze všech optických pamětí nejrychleji.

Nejrůznější optické paměti mají jedno společné - způsob čtení záznamu.
Laserový paprsek se odráží (nebo neodráží) od povrchu nosiče informace
a je zachycován optickým čidlem. Protože nedochází k žádnému mechanickému kontaktu mezi diskem a čtecím zařízením, neopotřebovává se ani disk, ani
zařízení, a obojí má tedy dlouhou životnost. Navíc záznam na disku je chráněn
průhlednou ochrannou vrstvou a nemůže být snadno poškozen ani zničen.

Úspořádání záznamu na hudebním CD a na CD-ROM je prakticky stejné. Na disku (který má standardní průměr 12 nebo 8 cm) je jedna spirálová stopa (dlouhá asi 5 km). Je 0,6 µm široká, mezera je 1 µm široká (viz obr. 1). Stopa má cca 20 000 "závitů" (dlouhohrající standardní gramofonová deska jich má asi 800 - 900). Disk má čtyři vrstvy - potisk, základní podložku, odrazovou (reflexní) vrstvu a ochrannou průhlednou vrstvu. K záznamu se používá pulsně kódová modulace, PCM. Každému bitu neodpovídá jedna jamka či dírka (hluboká max. 0,13 µm), to by se na něj vešlo mnohem méně informací. Ke změně profilu stopy dochází vždy při změně signálu z 0 na 1 nebo naopak. Protože by se špatně rozlišovalo, zda nepřerušená stopa znamená souvislou řadu nul nebo jedniček, je zvolen takový způsob kódování, který souvislou řadu jedniček vylučuje. Osmibitový základní signál se přemění na čtrnáctibitový, kde

není nikde víc jedniček za sebou (kódování EFM).

CD-RÓM převzal od hudebního CD i organizační uspořádání záznamu na disku. Každá minuta záznamu se dělí na 60 sekund, každá sekunda na 75 bloků číslovaných 0 až 74. Každý blok má 2352 bajtů. Zatímco u hudebního CD je celá tato kapacita věnována datům, tj. hudbě (rozdělená mezi pravý a levý kanál), u CD-ROM je více než 10% kapacity - přesně 304 bajtů - věnováno na synchronizaci a systém opravy chyb. "Vypadne-li" totiž několik i desítek bitů u hudební nahrávky, lidské ucho to nepostřehne, ale chybí-li jediný bit v programu ...

Disk se otáčí proti směru hodinových ručiček tak, že rychlost snímání je konstantní, 1,2 až 1,4 m/s. Otáčky se proto mění podle toho, čte-li se blíže středu nebo blíže okraji, mezi 200 až 530 otáčkami za minutu.

Díky stejnému formátu zápisu lze na každém přehrávači CD-ROM přehrávat i hudební CD.

V současné době je na našem trhu výběr z alespoň deseti typů přehrávačů CD-ROM (viz tabulka). Liší se provedením a připojením, jinak odpovídají všechny přijatým mezinárodním standardům.

Z hlediska provedení jsou přehrávače vnější a vnitřní. Vnitřní mají obvykle formát disketové jednotky 5,25" a upevňují se standardním způsobem do skřině počítače. Propojí se normalizovaným konektorem se zdrojem a dodávaným kabelem s ovládací deskou (řadičem). Vnější přehrávače jsou v samostatné skříňce a připojují se asi metrovým kabelem na vnější konektor ovládací desky (je jím zajištěno i jejich napájení).

Z hlediska připojení jsou tři možnosti. Zatím nejrozšířenější je připojení prostřednictvím ovládací desky (řadiče), zasunuté do některé z volných pozic základní desky (motherboardu) počítače. Poněkud dražší ale perspektivnější je připojení ke standardnímu univerzálnímu rozhraní SCSI (jeho princip popíšeme v některém z dalších čísel). Konečně třetí možnost je připojení přes paralelní port počítače. Komunikace je pak ale velmi pomalá a umožňuje prakticky pouze výběr dat z CD-ROM, nikoli "živé" multimediální aplikace. Tyto CD-ROM lze připojit i k notebookům a laptopům (viz v tabulce Sanye ROM PD1)

Software potřebný k ovládání CD-ROM je k němu vždy přiložen. Jeho instalace je bezproblémová a většinou automatická instalačním programem. Protože operační systém MS-DOS vznikl dávno před optickými pamětmi, neumí sám s CD-ROM zacházet a potřebuje (standardní) ovládač MCSDEX.EXE. U každého přehrávače bývá obvykle i další software, alespoň program pro jeho využívání k přehrávání hudebních kompaktů. Na obrazovce se zobrazí jakoby přední panel CD přehrávače a volbou "tlačítek" ovládáte jednotlivé funkce. Takovýto softwarový přehrávač je i součástí Windows 3.1.

Přehled přehrávačů CD-ROM fy Procom Technology (mechanika Sony)

Тур .		prov.	cena	cena s DP1
PICDL	375 ms, ovi. karta	interní	9425,-	14 355,-
PXCDL	dtto	externí	11 455,-	16 350,-
PICD650S	340 ms, ovi. karta	interní	11 970,-	17 970,-
PXCD650S	dtto	externí	14 370,-	20 370,-
SICDS	380 ms, SCSi	Interní	16 950	
SICDS-C8	380 ms, 8 blt karta SGSi	interní	20 850,-	25 350,-
SXCDS-C8	dtto	externí	22 950,-	27 450,-
SICDS-MC	380 ms, karta SCSi MC	interní	21 000,-	27 450,-
SXCDS-MC	dtto	externí	25 650,-	29 850,-
MCD-ROM 650/E	380 ms, SGSi, bez karty	externí	21 000,-	

Údaj v ms je střední přístupová doba k datům. Poslední sloupec, cena s DP1, je cena včetně souboru 4 disků CD-ROM - National Geographic Mammals (víc než 200 savců jako živých i se zvuky), Reference Library (soubor 8 velkých slovníků a encyklopedil), Illustrated Encyclopedia (33000 článků a 1000 barevných obrázků), United States & World Atlas (mapy a množství informací o celém světě). Ceny jsou v Kčs.

Firma OPTOMEDIA, která u nás prodává přehrávače Procom Technology, nabízí také

Sanyo ROM PD1	připojení přes paraleiní port, kabel, sťový adaptér,			·
	český manuál	externí	11 900,-	

Multimedia Audubon's Birds

V každém čísle popíšeme podrobněji alespoň jeden z disků CD-ROM, které jsou v současné době u nás již k dostání. Nebude to žádné hodnocení, ostatně nemůže být člověk odbomíkem na všechna témata, prezentovaná na CD-ROM. Půjde spíše o neustálé přibližování pojmu multimédia, poznávání co všechno umožňuií.

Kdo umí trochu anglicky, poznal že Audubon's Birds bude něco o ptácích. Je to klasický atlas ptáků, převedený do elektronické podoby John James Audubon ho pod názvem Birds of America sestavil před více než sto lety. Obsahuje podrobný popis vzhledu, výskytu a života více než 500 ptáků Ameriky rozčleněný podle řádů a čeledí. K popisu si stiskem příslušného tlačítka můžete vyvolat barevný obrázek přes celou obrazovku a k mnoha z nich se Vám zároveň ozve asi desetivteřinová stereofonní nahrávka zvuků, které pták vydává (je to velmi působivé). V celém atlasu můžete vyhledávat podle libovolných hesel. Obrázky jsou (vzhledem k době vzniku atlasu) kreslené.

Je to krásné jako inspirace, bylo by velmi užitečné, kdyby někdo zpracoval podobný atlas našich ptáků. Výuka přírodopisu (ve škole i doma) by byla mnohem atraktivnější.

Black-and-yellow Wood-Warbler (jakýsi černožiutý lesní zpěváček) má jasný, příjemně modulovaný zpěv, předčicí mnoho jiných ptáků stejného druhu. Zpívá v nizkých lesích, kterým dává jako zivotnímu prostředí zřetelně přednost. Jeho pohyby jsou extrémně půvabné a ladné ...

VOLNĚ ŠÍŘENÉ PROGRAMY

ČÁST COMPUTER HOBBY PŘIPRAVOVANÁ VE SPOLUPRÁCI S FIRMAMI FCC FOLPRECHT A JIMAZ

InContext

Autor: Ram's Island Software, 7644 Lakecliff, Parker, CO 80134-5904, USA. HW/SW požadavky: PC/AT 386, alespoň 512 kB RAM, DOS 3.0 a vyšší.

Autoři nazývají tento program manažérem pracovního prostředí.

Program vám pomůže velmi zefektivnit Vaši práci s počítačem. Je sestaven na principech lidského přístupu k práci. Organizuje počítač na základě Vašich návyků, nikoliv naopak.

Pro začátečníky je snadno ovladatelným rámcem jejich práce, pro pokročilé uživatele skýtá nespočet možností k ra-

cionalizaci jejich práce.

Je to neobvyklé, ale velmi zajímavé spojení unikátního objektově orientovaného shellu pro práci se soubory s prostředím pro plánování úkolů, schůzek, časových programů. Ukážete na soubor nebo na úlohu, pak ukážete na činnost, která se má s daným objektem udělat. Funguje to velmi rychle a přirozeně. Program používá velmi mocné a rychlé techniky přechodů mezi adresáři, volby souborů a spouštění aplikací. Pracuje i se všemi známými typy archivů (kom-

Úvodní obrazovka programu FLEKI

CHRONOS

Autor: Steve Estvanik, Cascoly Software, 4528 36th NE, Seattle, WA 98105, USA.

HW/SW požadavky: nic mimořádného, hodí se myš a barevný monitor.

Další neobvyklá aplikace. Program, jak jeho název napovídá, pracuje s chronologií, a to sice historických událostí a osobností. Graficky zobrazuje vzájemné časové vztahy mezi životy významných osobností a daty důležitých událostí a umoňuje tak ujasnit si a mnohdy i objevit všechny souvislosti v chronologii historických událostí. Všechny

Chronos

FLEK!

Autor: J. Pivoňka, Božanovská 2080, 193 00 Praha 9, tel. (02) 860269. HW/SW požadavky: VGA.

Jestli hrajete rádi karty, tento program Vás určitě uspokojí. Tedy vlastně pozor - volně šířená je pouze jeho demo verze, která záměrně inteligencí příliš neoplývá. Je to pěkně graficky vyřešený mariáš, jako byste měli karty před sebou na stole. Umí poměrně obstojně všechny základní typy hry, flekuje a občas se i "točí". Automaticky Vám "radí" označením karty, která by se mohla použít. Nedá se švindlovat a ne-

InContext

Sandra Butticalli

Tunzo de Medici

Leonardo da Vinci

Savonoroli

Machiavelli

Michelangelo

Sir Thomas More

Suphael

Sorry VIII

Cosin

Cantinopia falls

- 1492 New World

- 1519 Agress destroyed

- 1521 Reference

- 1524 Reac

- 1532 Inca

- 1534 Bea

presí). Své adresáře nebo jejich části si můžete označit smysluplnými názvy a jimi je pak kdykoli vyvolávat. Pro rychlé vyhledávání můžete mít definováno libovolné množství vlastních filtrů, vázaných třeba k různým úlohám. I časové funkce jsou velmi mocné, umožňují řadit a hlídat úlohy nejen podle termínů ale i podle stanovených priorit.

Program InContext se dá ovládat stejně dobře klávesnicí jako myší. Obsahuje rozsáhlý hypertextový help a tutoriál a podrobný stostránkový manuál.

Program pracuje pod MS-DOS v textovém režimu a lze jej bez problémů spustit i v okně Windows.

InContext je na CD-ROM Bonanza ve dvou souborech pod označením INCX101D.ZIP a INCX101P.ZIP. potřebné datové soubory si můžete vytvářet sami a naplňovat je nejrůznějšími údaji podle vlastní potřeby. Obsah každého ze dvou základních datasetů, tj. osobností a událostí, lze pak podle vybraných hesel třídit, vybírat z něj, jednotlivé položky barevně odlišovat. Lze tak velmi rychle dávat do souvislostí určité typy nebo skupiny osobností s určitými druhy historických událostí.

Jsou přiloženy dva ukázkové soubory, jeden z období renezance v Evropě (od roku 1500 do roku 1648), druhý z období americké a francouzské revoluce a Napoleónovy éry.

Program je z CD-ROM Bonanza/2 pod označením CHRNOS.ZIP.

lze také doufat v "lidské" chyby (jako je přehlédnutí, omyl ap.). Přesto není těžké vyhrávat, umíte-li mariáš dobře.

Za plnou verzi chce autor 293 Kčs, přičemž slibuje 50% slevu za další verze (na jaře má být i licitovaný mariáš).

POZOR! ZMĚNA ADRESY

Programy od FCC Folprecht si můžeté objednat na adrese

FCC Folprecht, s. r. o. Velká hradební 48 400 01 Ústí nad Labem

C_WNDW TOOLKIT

Autor: Marietta Systems, Inc., P.O. Box 71506, Marietta, GA 30007, USA. HW/SW požadavky: Turbo C nebo Quick C.

Toolkit pro Turbo C a Quick C. obsahující všechny prostředky pro tvorbu oken, menu, formátovaných vstupů, práci se soubory. Umožňuje psát v jazyce C programy s profesionálním vzhledem, kvalitou a rychlostí. Výstupní okna používají mapování paměti pro okamžitou obrazovku, plně využívají barevný monitor. Pull-down a pop-up menu, help obrazovky a přes sebe pokládaná okna umožňují vytvořit velmi sofistikované uživatelské prostředí. Toolkit obsahuje rutiny pro UNDO, HELP, ovládání kurzoru, automatickou změnu barvy mezi okny, práci s funkčními klávesami, status line, různé formáty pro datum a čísla, ošetření chyb atd.

C_WNDW Toolkit je praktickou pomůckou pro programátory v "céčku". Je z CD-ROM Bonanza/2 pod označením

C_WNDW.ZIP.

Vzhledem k organizačním změnám v edici Public FCC Folprecht bylo zatím na neurčito odloženo vydání katalogů volně šířených programů. Adresy všech, kteří si o katalog napsali, jsou zaevidovány, a pokud FCC nějaký katalog vydá, bude Vám poslán. Budeme na Vás myslet i v případě, že se nám podaří získat katalog z jiných zdrojů.

KUPÓN FCC - AR

leden 1993

příložíte-li tento vystřížený kupón k vaší objednávce volně šřených programů od FCC Folprecht, dostanete slevu 10%.

PUBLIC DOMAIN

SHAREWARE NA CD-ROM

Z rozvojem optických pamětí a jejich zievňováním se l na našem trhu objevilo množství CD-ROM disků s volně šířenými programy. Čerpáme z některých l pro naši rubriku. Vzhledem k obrovskému množství programů na discích není snadné udělat si představu o kvalitě a použitelnosti jejich obsahu a proto si ji netroufáme zatím posuzovat. Přehled CD-ROM se stručnou charakteristikou je od firmy OPTOMEDIA, kde si je také můžete objednat (Letenské nám. 5. 170 00 Praha 7, tel: 02/374969, 02/375469).

Shareware Bonanza

Sada tří disků CD-ROM, které obsahují programy ze všech možných oblastí. Je na nich více než 20 000 programů o celkovém rozsahu téměř 3 GBI (4900 Kčs)

Shareware Carousel

Disk obsahuje tisíce komprimovaných programů (605 MB) z oblasti DTP, programování, vzdělávání, her, textových procesorů a financí. Pomocí jednoduchého obslužného programu je lze rychle přesunout na pevný disk počítače. (7830 Kčs)

Shareware Gold II

Nejlepší shareware od výrobců ButtonWare, Magee Enterprises, Medlin Accounting, Quicksoft, Mustang, Formalsoft, PKware, Vem Buerg aj. (4350 Kčs)

Shareware Grab Bag

Více než 6000 shareware a PD programů pro PC/XT/AT a PS/2. (2807 Kčs)

Software Du Jour

365 programů vybraných z nabídky Alde Publishing. Jednotlivé adresáře obsahují programy ze školství, domácnosti, obchodu, hry, utility ap. (1900 Kčs).

Winware Volume 1+2

Programy, tisíce ikon, fonty, drivery, to vše pro Windows 3.0 a 3.1. (1357 Kčs)

CD-ROM Collection & CIA World Faktbook

Kromě velkého množství shareware obsahuje také aktuální informace o všech zemích celého světa včetně map. (2100 Kčs)

PC SIG

Obsah 2400 disket shareware známé knihovny PC-SIG.

(2900 Kčs)

Phoenix PD Disc

Několik tisíc velmi kvalitních shareware programů ze všech oborů. (2900 Kčs)

RBBS-In-A-Box

Téměř 15 000 programů pro MS-DOS na jednom disku, uspořádáno jako plně funkční BBS (ale i jako standardní archiv). (6090 Kčs)

Shareware Solutions

Opět tisíce programů z DTP, programování, her, vzdělávání atd.

(5185 Kčs)

VYBRANÉ PROGRAMY

BGI TOOLKIT

Autor: Borland International. HW/SW požadavky: Microsoft kompatibilní myš, adaptér alespoň EGA, některý Turbo překladač firmy Borland.

BGI Toolkit verze 1.0 je sada vynikajících nástrojů pro práci s "borlandský-mi™soubory BGI a CHR. Komplet tvoří BGI Font Editor (plus kolekce deviti fontů), BGI Driver Toolkit, BGI ovladač pro režim VGA 320x200 (256 barev) a kombinovaný BGI ovladač pro Hercules Monochrome a InColor Card. Firma Borland používá ve svých produktech tzv. stroke, neboli vektorové fonty. V základní dodávce jsou čtyři, BGI Toolkit jich obsahuje devět (EÚRO, GOTH, LCOM, LITT, SANS, SCRI, SIMP, TRIP a TSCR), navíc představují pouze doprovod k programu BGI Font Editor, pomocí kterého můžete tyto fonty upravovat, nebo vytvářet fonty úplně nové. V toolkitu najdete kompletní podrobnou dokumentaci k BGI ovladačům fy Borland (včetně popisu vnitřní architektury). Součástí je ukázkový zdrojový kód, podle kterého snadno napíšete a přeložíte BGI ovladač vlastní. Patříte-li mezi ty, kdo touží vytvářet "dokonalé" aplikace využívající dvousetpadesátišestibarevnou VGA paletu v režimu 320x200, uvítáte zajisté ovladač VGA256.BGI. HERC.BGI integruje ovládání karet Hercules Monochrome a Hercules InColor do jediného ovladače (karta InColor se detekuje automaticky)

BGI Toolkit nepatří mezi klasické volně šířené programy. Je určen pouze uživatelům legálně získaných produktů firmy Borland (Turbo Pascal, Turbo C, Borland C++ ap.). Jeho použití je vázáno stejnými podmínkami, jako použití standardních komerčních produktů firmy Borland (podrobněji viz Borland No-Nonsense License Statement, který je součástí každého programu od firmy Borland).

Kompletní rozbalený systém zabírá na disku asi 580 kB. Spoluse sadou devíti českých fontů firmy OC Software najdete Borland BGI Toolkit na disketě číslo 5,25DD-0044 fy JIMAZ. Ukázka pracovní obrazovky programu BGI Font Editor. Největší okno se zvětšenínou editovaného znaku, napravo tabulka všech znaků, které už jsou definovány, a konečně na spodním okraj je editovaný znak ve skutečné velikosti.

České fonty pro BGI TOOLKIT

Autor: OC Software, RNDr. Ondřej Čada, Pernerova 61, 186 00 Praha 8. HW/SW požadavky: některý překla-

dac fy Borland.

V českých fontech pro překladače firmy Borland jsou obsaženy všechny fonty, které jsou součástí BGI Toolkit. Je to freeware, registrační poplatek dobrovolný (25 Kčs). Rozbalené soubory zaberou asi 120 kB. Fonty jsou na disketě číslo 5,25DD-0044 fy JIMAZ.

F. Mravenec, verze 3.50

Autor: ing. Petr Horský, KFPo MFF UK, Ke Karlovu 5, 121 16 Praha 2.

HW/SW požadavky: grafická karta EGA nebo VGA (máte-li kartu osazenou čipem Trident, můžete využívat i rozlišení 800x600 nebo 1024x768).

F. Mravenec (volně šířená) verze 3.50 je systém pro interaktivní navrhování dvou, případně jednovrstvých plošných spojů v první až páté konstrukční třídě. Systém dovoluje pracovat se seznamy spojů a s jejich využitím navrhovat propojení automaticky; autorouter je založen na Leeově algoritmu. Volně šiřitelná verze má oproti úplnému systému tři omezení. Velikost desky je max. 60x40 modulů (tzn. 150x100 mm v ra-

JIMAZ spol. s r. o. prodejna a zásliková skužba Heřmanova 37,170 00 Praha 7 stru 2,5 mm, nebo např. 75x50 mm v rastru 1,25 mm), celkový počet vývodů pojmenovaných obvodů je nejvýše 120 a z výstupních generátorů a podpůrných programů je volně poskytován pouze výstup na maticovou tiskárnu. Oproti předcházející verzi (3.20) přináší zejména podporu pro součástky SMD, novou a věrnější grafiku (věrnější ve smyslu WYSIWYG - obraz na monitoru se více podobá výsledné vytištěné předloze), možnost vyplňování ploch a kontrolu návrhových pravidel (tj. izolačních vlastnosti). Formát vektorových souborů se liší od v3.20, ale zachovává kompatibilitu v tom smyslu, že soubory z verze 3.20 je možné použít ve v3.50 (ale ne naopak).

Vzhledem k tomu, že verze 3.50 již nepodporuje grafickou kartu Hercules, je šířena nadále i verze předcházející (3.20), která sice postrádá některé funkce v3.50, ale zato funguje i s adaptérem Hercules.

F. Mravenec je freeware, za používání programu nemusite nic platit. Po rozbalení zaberou soubory na disku 730 kB. Verzi 3.50 najdete na disketě číslo 5,25DD-0024, verzi 3.20 na disketě číslo 5,25DD-0042 fy JIMAZ.

GC-PREVUE

Autor: GraphiCode Inc., 19101 36th Avenue, West. Suite 204, Lynnwood, WA 98036, USA.

HW/SW požadavky: grafická karta HGC/CGA+.

Program na prohlížení souborů, které obsahují data pro fotoplotter nebo NC

Process any large to continue

Traces any large to continue

The state of the stat

Ukázky českých fontů z kolekce firmy OC Software (pro zobrazení byl použít program BGI Font Editor).

vrtačku (formáty Gerber, Marconi Quest - Emma HPGL Excellon, Sieb&Meyer). Program zvládá WYSIWYG zobrazení až 35 vrstev (12 volitelných barev). Umožňuje definovat vlastní clonkové kotouče (několik základních je předdefinováno), clonkám lze přiřazovat otvory. S prohlíženým obrázkem je možné provádět iednoduché operace, např. zrcadlení a posouvání. Podrobná dokumentace pečlivě popisuje všechny funkce, součástí je tutorial, který předvádí program v akci. Program se dá úspěšně využít např. jako doplněk k úplné verzi programu F. Mravenec. Program je sice autorem označován jako sňareware, nicméně nikde není uveden registrační popla-

Anglická verze programu je na disketě č. 5,25DD-0013, německou verzi najdete na disketě číslo 5,25DD-0014. údaje až o 30 000 družicích a 1800 hvězdách (definice vlastních družic nebo hvězd můžete do datových souborů přidávat manuálně).

TrakSat je shareware, registrační poplatek činí \$25, zkušební lhůta třicet dní. Po rozbalení zabírají soubory na disku přibližně 770 kB. Program najdete na disketě číslo 5,25DD-0037 fy JIMAZ.

Sinclair ZX Spectrum EMULATOR

Autor: G. A. Lunter, Aweg 11a, 9718 CT Groningen, THE NETHER-LANDS.

HW/SW pożadavky: HGC/CGA+. Sinclair ZX Spectrum Emulator verze 1.45 je emulátor ZX Spectra pro PC. Program emuluje ZX Spectrum 48K

JPF

Autor: Arnt Gulbrandsen, Kometv. 8, N-7036 Trondheim, Norway.

HW/SW požadavky: počítač s procesorem 80386SX a lepším, VGA+.

Program JPP verze 1.0 je emulátor osmibitového počítače Sinclair ZX Spectrum 48k pro IBM kompatibilní počítače s procesorem 80386SX/80386/ 80486 a VGA kartou. Emulátor téměř dokonale emuluje ZX grafiku v režimu 320x240x16 (včetně tzv. borderu, blikání a speciální efekty však emuluje pouze verze určená zvlášť rychlým počítačům), emulaci klávesnice Spectra (s několika vylepšeními), emulaci Kempston joysticku (pomocí PC joysticku) a zvuku (s určitými omezeními danými rozdílným taktem a architekturou počítačů). Zatím není implementován interfejs ke kazetovému magnetofonu; autor ovšem popisuje zajímavý způsob, jaktoto omezení obejít např. pomocí karty Sound-Blaster. Émulátor vyžaduje kopii ROM Spectra, která z důvodu autorských

TrakSat

Autor: Paul E. Traufler, 111 Emerald Drive, Harvest, AL 35749, USA.

HW/SW pożadavky: 460 kB RAM, 750 kB místa na disku, DOS alespoň 3.0, grafický adaptér HGC/CGA+, program automaticky využívá matematický koprocesor, je-li k dispozici.

TrakSat verze 2.80 je program pro určování a sledování polohy umělých družic Země. Sledovaná družice je specifikována pomocí dráhových prvků NO-RAD, NASA 2-Line (datový soubor, který je součástí šířeného kompletu, obsahuje údaje o více než šesti stech družicích, včetně nejznámějších družic radioamatérských). Výstupy poskytuje Trak-Sat jednak textové, jednak vynikající grafické. Družici (nebo několik družic najednou) lze sledovat v několika různých projekcích na mapách světa (glóbus, plošná mapa světa) či "na obloze" (na pozadí jsou nejznámější hvězdy, které slouží jako orientační body při určování polohy družice na obloze prostým okem; volitelně lze zobrazovat jména těchto hvězd). Družici lze sledovat také v "reálném" čase, případně nastavit časový inkrement, se kterým se má pozice družice upravovat. Výstupy dokáže program vytisknout na HP LaserJet, EPSON FX, EPSON LQ a kompatibilních tiskámách. Teoreticky zvládne program TrakSat Pohyb družice Ize sledovat na mapě světa I na globusu (program TrakSat)

model 2 nebo 3's Interface 1. Kompletně emuluje mikroprocesor Z80, výstup na obrazovku, vstup z klávesnice, zvuk, nahrávání z/na kazetu (i speedload) plus další speciality (např. interfejs RS232 připojitelný k paralelnímu/sériovému portu, nebo k souboru, řada joystick interfejsů Spectra ovladatelných kurzorovými klávesami atd.). Doprovodné utility umožňují snímat obrazovky v módu Spectrum do obrázků ve formátu GIF a konvertovat programy Spectra do souborů PC i naopak. Volně šiřitelná verze je plně funkční, vyjma podpory vstupu a výstupu na magnetofon a možnosti zpomalit emulátor. Tyto funkce mají k dispozici pouze registrovaní uživatelé. Kompletní dokumentace ie sice v holandštině, ale podstatný výtah je přeložen do angličtiny (včetně popisu jak převádět programy ze Spectra do PC). Jako ukázka je přiložen program popisující dva druhy interfejsů pro nahrávání z magnetofonu do PC (a naopak).

Registrační poplatek je 35 guldenů (\$20), zkušební doba jeden měsíc. Rozbalené soubory zaberou na disku asi 350 kB. Program je na disketě číslo 5,25DD-0039 fy JIMAZ.

práv není součástí programu, takže je nutné ji získat někde jinde. Dokumentace však popisuje několik způsobů, jak kopii ROM získat, autor navíc těm, kteří prokáží, že ZX Spectrum vlastní, na požádání kopii poskytne. Rovněž je ochoten poskytnout zdrojové kódy k programu. Programy se do emulátoru nahrávají ze speciálního "SNA" formátu, který je shodný s formátem generovaným příkazem Dump Mirage Microdriveru (popis tohoto formátu je v dokumentaci k programu; formát není složitý). V dokumentaci uvádí autor příklady programů (hlavně her), které s emulátorem fungují (je jich přes 200). Autor přiložil pro majitele zvláště rychlých počítačů speciální verzi, která se snaží napodobovat ZX Spectrum ještě věrněji (především kvalitnějším zvukem a častěiším obnovování obrazu). Přiloženy jsou utility CONVERT (převádí soubory z formátu .SP do .SNA) a SPECDISK (dokáže načíst soubort ypu .SNP z MGT

Za používání programu se nemusí nic platit (freeware). Soubory zaberou na disku asi 150 kB. Program je na disketě číslo 5,25DD-0039 fy JIMAZ.

MĚŘENÍ, ŘÍZENÍ A OVLÁDÁNÍ POČÍTAČEM

Už není asi zapotřebí opakovat, že počítač není jen k počítání, naopak, že se k počítání vlastně ani moc nepoužívá. A k čemu tedy je? Ono se to těžko řekne - když se řekne např. k řízení, tak si asi neumí každý představit, co to vlastně znamená. Řízení čeho? Řízení znamená dát událostem správný "spád". Seřadit je tak, aby byl co nejefektivněji, nejrychieji a nejkvalitněji splněn požadovaný úkol. Aby se na nic nezapomnělo, aby se nic nepodcenilo, aby bylo všechno zdokumentováno a snadno se hledaly a odstraňovaly případné chyby.

Zatím nejčastěji je počítač, osobní počítač, zapojen v řízení administrativy. Na stole v kanceláři se stará o evidování, připomínání, sestavování zpráv a hlášení, statistik, finančních rozborů a plánů ap. Stejně šikovný může ale být třeba i v elektronické laboratoři. Nejen k "papírové" části práce - to je vlastně jenom jiný druh kanceláře. S různými doplňky můžeme s počítačem měřit vše, co je měřit zapotřebí, vyhodnocovat, zobrazovat, nastavovat ... Může sloužit jako voltmetr. čítač, osciloskop, snímač charakteristik ... a může hned také podle naměřených hodnot ovládat nastavení přislušného přístroje nebo zařízení.

Chtěli bychom se v letošním roce v COMPUTER HOBBY hodně věnovat této problematice. Má přece bezprostřední vztah k amatérské elektronice, k měření, k pořádné práci místo "bastlení". Pravda, i když počítače jsou stále levnější, ještě pořád to není zanedbatelná položka, a asi bychom nedoporučili nikomu, aby si pořizoval počítač jenom kvůli měření napětí. Ale hodně z Vás ho již má - ať už na psaní, výpočty, učení nebo jen hraní her. A v tom připadě je možné ho využít. A v případě, že v oboru elektroniky podnikáte, třeba jen v malém, je to už velmi výhodné.

V oboru měřicích přístrojů najdete voltmetry za stovky i za tisíce, nebo si ho sami uděláte ze starého měřidla a nějakých dalších součástek, a přijde vás ještě levněji. Stejné je to s doplňky k počítači. Profesionální výrobky pro průmyslové účely budou samozřejmě dražší, než univerzální doplňky nebo vlastní konstrukce. Principy ale zůstávají stejné, stejně jako způsob programového ovládání. Budeme se snažit přinášet i popisy prodávaných zařízení (třeba jen jako inspiraci k tomu jak si něco podobného udělat sám), i konstrukční popisy doplňků vlastnoručně zhotovitelných. Samozřejmě není to jako stavět krystalku, ale každý je snad soudný a dovede odhadnout svoje schopnosti.

Články budeme připravovat ve spolupráci s firmou FCC Folprecht, která kromě dodávání výpočetní techniky je i výhradním distributorem měřicích a řídicích karet pro PC známé americké fy

FORCHS

Advantech, sensorů fy Pepperl + Fuchs, a vyvíjí programy pro řízení technologických procesů. Obrazovka
programu
PC-scope
vhodného
k většině
měřicích
karet
Advantech

Co všechno je zapotřebí ktomu, aby počítač mohl něco měřit?

Veličinu "reálného světa" - ať už to je teplota, tlak, napětí, pohyb, dotyk, vzdálenost či cokoliv jiného - je nejdříve nutné nějak "sejmout". K tomu se používají čidla, senzory, snímače. Na základě různých fyzikálních principů snímají požadované veličiny nebo jejich změny a převádějí je na elektrický signál - napětí, proud, kmitočet nebo impulsy. Mezi známá čidla patří např. termistory, fotodiody, čidlem je ale i kontakt na dveřích, který se rozpojí jejich otevřením. V průmyslu se používají většinou čidla induktivní, kapacitní, optická, ultrazvuková. Jejich princip je obvykle velmi jednoduchý, složitější bývá řešení jejich stabilnosti a odolnosti v prostředí, kde mají pracovat.

Výstupní signál z čidla (senzoru) bývá často velmi "slabý". Je ho zapotřebí nějak upravit - zesílit, zeslabit, filtrovat, linearizovat ap. K tomu se používají obvody a zařízení umístěná obvykle v blízkosti sensorů. Jejich výstupem je již dostatečně "robustní" elektrický signál, který lze přenést na větší vzdálenost, až

Tady - u počítače - je nutné ho přeměnit na něco, s čím umí počítač zacházet - digitální údaje, množství čísel. To udělají měřicí (a řídicí) karty, doplňky k počítači pro měření. K měření základních elektrických veličin nepotřebujeme samozřejmě žádná čidla, a i jejich úprava spočívá většinou pouze v zesílení nebo zeslabení, v přizpůsobení vstupu měřicí karty. Karta obsahuje téměř vždy převodník A/D, převádějící plynutý vstupní analogový signál na sérii Číselně vyjádřených údajů. Má obvykle i digitální vstupy, které rozlišují vypnuto/zapnuto a ve volitelných logických kombinacích umožňují logické podmiňování určitých činností počítače. Často obsahuje i časovač

Zbytek udělá programové vybavení počítače - software. Programové vybavení slouží k tomu, abychom se údaje z počítače nějak dozvěděli. Zpracuje údaje, přepočítá je do požadovaných rozsahů, zobrazí je libovolným způsobem na obrazovce, vytiskne je.

Celý právě popsaný proces může probíhat obousměrně. Popsaný směr lze zjednodušeně nazvat měřením, ten opačný řízením. Hodnoty vypočítané počítačem (třeba na základě naměřených údajů) převede měřicí a řídicí karta na vhodný elektrický signál, ten je pak zesílen (nebo jinak upraven) a přiveden až k určitému zařízení, kde se (opačně, než tomu bylo u čidla) převede na požadovaný, často mechanický úkon. K tomu může sloužit elektromagnet, motorek, spínač, ap.

Spolu s FCC Folprecht vás během roku seznámíme s některými univerzálními kartami fy Advantech, s principem a zapojeními sensorů, přineseme konstrukční návody na velmi jednoduchý interfejs přes RS232 a na A/D převodník, informace o software pro měření, a další materiály, které vám pomohou využít váš počítač i ve vaší laboratoři.

CB report

"2× 5/8 λ"

Anténa, kterou jsme v předcházejícím pokračování našeho seriálu pojmenovali **maximálním dlpólem**, je vlastně dvojicí půlvlnných zářičů, jejichž středy jsou od sebe vzdáleny 0,75 λ – obr. 1a. Tato dvojice soufázově napájených zářičů je nejjednodušší anténní soustavou – přesněji, kolineární anténní řadou napájenou jediným, spo-

Obr. 1. Proudové rozložení podél symetricky napájeného dipólu o celkové délce 1,25 λ (a) vytvoří prakticky shodné směrové účinky jako dvojice kolineárních soufázově napájených dipólů λ/2 (b). Shodnou fázi značí shodný směr šipek

lečným napáječem. **Dipólem** jsme ji nazvali proto, že jde o anténu konstrukčně shodnouse symetricky (uprostřed) napájeným půlvinným dipólem – **maximálním** pak proto, že v této dipólové úpravě má maximální směrovost, danou optimální vzdáleností obou zářičů. Střední část antény, dlouhá $\lambda /4$, resp. její dva úseky $\lambda /8$, jsou sice také aktivní částí vlastní antény, anténní proudy tam však mají opačnou fázi, proto je můžeme považovat spíše za část napájecího obvodu, která zároveň transformuje velkou impedanci konců zářičů na menší.

Lze dokázat, že prakticky stejné směrové vlastnosti má dvojice samostatných, symetnicky napájených dipólů 1/2, připojených ke společnému napáječi dvojící napáječů dílčích – viz obr. 1b. Na první pohled je zřejmé, že zhotovení této soustavvy je konstrukčně obtížnější. Nenarazíme zde však na žádné problémy "elektrické". Maximální směrovost v rovině kolmé na podélnou osu obou dipólů závisí pouze na shodnosti obou dílčích napáječů, což znamená, že je bez obtíží zaručena.

zardcena.

Obraťme však pozornost zpět k anténě, která se především v radioamatérských kruzích těší větší pozornosti, i když je co do optimalizace elektrických parametrů problematičtější či choulostivější, než právě zmíněná dvojice dipólů.

Jde o "maximální dipól" napájený na konci, pro jehož různé konstrukční modifikace se spíše ujala katalogová jména profesionálních výrobců. Principiálně jsou to však vždy dvě sfázované "pětiosminy". Stručné označení "2× 5/8λ", použité i v nadpisu dnešního příspěvku, charakterizuje typ a uspořádání antény asi nejvýstižněji.

Pozomí čtenáři CB rubriky si jistě pamatují, že jsme o dvojí možnosti napájení již referovali: V AR 5/92 to bylo napájení s ma-

lou impedancí, proudové napájení uprostřed dipólu λ/2, v AR 7/92 to bylo napájení s velkou impedancí, napěťové buzení téhož dipólu na konci, a to hned několika způsoby paralelním rezonančním obvodem LC, různými typy čtvrvlnných vedení, reaktančními články aj. V zásadě stejnými způsoby je možné na konci napěťově budit i dipól maximální, resp. dvě sfázované "pětiosminy" nad sebou. Navíc však musíme do antény zařadit obvod, který ono sfázování způsobí. Jinými slovy – podél celé antény je nutné vyvolat stejné proudové rozložení jako při napájení symetrickém, protože jen za těchto okolností dojde k soufázovému napájení obou půlvinných úseků, tzn. ke zvětšení směrovosti v rovině kolmé k ose antény. Pokud bychom tento obvod vynechali, bude směrový diagram naprosto nevyhovující viz obr. 2

Na obr. 3 jsou schematicky znázorněny tři z používaných způsobů fázování – a) zkratované symetrické vedení $\lambda/8$, b) dvoudílné zkratované vedení souosé, c) cívka. Všechny působí shodně. Jejich rozměry nejsou až tak kritické, aby byly příčinou nefunkční antény. Rovněž přizpůsobení antény významně neovlivňují.

Obr. 2. Směrový diagram antény 1,25 λ, napájené na konci bez fázovacího obvodu (a) a s fázovacím obvodem (b). Prostorový diagram vznikne rotací kolem osy 0

Obr. 3. Tři způsoby fázování dvojice kolineárních antén 5/8 λ: a) symetrickým vedením, b) dvojicí zkratovaných souosých úseků, c) cívkou

Obr. 4. Vychýlením antény ze svislé osy směrem k vysílači (od vysílače) lze kontrolovat maximum směrového diagramu ve svislé rovině. Předpokladem pro objektivní posouzení směru maxima je dostatečná homogenita elmag. pole přijímaného signálu v prostorovém válci o průměru AB

Fázovací obvod vytvořený zkratovaným symetrickým vedením se používá u antény Ringo Ranger. Cívka u antény SM7DVH. V obou případech je nutné mechanicky roz-dělit anténu vhodným izolátorem, což činí konstrukci složitější. U profesionálních několikaprvkových kolineárních řad se využívá téměř výhradně souosých zkratovaných úseků podle obr. 3c. Odpadají izolátory, anténa, tzn. i nosný systém není nutné mechanicky dělit. Takové řešení je samozřejmě velmi výhodné především na kmitočtově vyšších pásmech, kde jsou fázovací "ruká-" relativně krátké. V pásmu 145 MHz stejně jako v pásmu CB můžeme vybavit fázovacími obvody, zhotovenými se souosých kabelů, antény závěsné. Symetrické proudové rozložení, podmiňující maximální směrové účinky v rovině honzontu, však ovlivňuje nesymetrické napájení i upevnění antény na konci. (Transformační obvody pro napájení antén s velkou impedancí byly popsány v CB

reportu AR 7/92.) Dobré impedanční přizpůsobení, signalizované např. reflektometrem, ještě neznamená, že anténa je "v pořádku". Toto nesymetrické buzení, ale i vyzařování transformačních (přizpůsobovacích) obvodů, resp. záření vnějšího povrchu napájecího kabelu může směrový dlagram zdeformovat tak výrazně, že i dobře přizpůsobená anténa se jeví jako horší, než stejně dobře přizpůsobená anténa "nezisková", např. J-anténa nebo anténa GP, v tomtéž místě. Proto by se u tohoto typu antény mělo kontrolovat nejen přizpůsobení, ale i elevace maximálního příjmu (záření). Není to obtížné. Je-II maximum směrové Neni to oblizne. Je-li maximum sine-ove-ho diagramu antény orientováno směrem k horizontu (nulová elevace), pak při od-klonění i přiklonění antenního stožáru směrem k přijímané stanici se úroveň přijímaných signálů snižuje (viz obr. 4). Nežádoucí vychýlení maxima směrového diagramu, způsobené nesprávným fázováním, resp. nevhodným proudovým oblože-ním podél antény, se projeví tím, že se přijímaný signál při vychýlení antenního stožáru naopak zvyšuje. Výsledek pokusu však může být zkreslen nehomogenitou elmag. pole v místě příjmu. Proto by se mělo vždy udělat několik pokusů s protistanicemi v různých směrech. Závěry by měly být přibližně shodné. Jsou-li měření z různých směrů nesouhlasná až chaotická, je v místě instalované antény elmag. pole tak nehomogenní,

RÁDIO "Nostalgie"

Řekne-li se Collins . . .

... vybaví se zejména starším radioamatérům vzpomínka na zařízení stejnojmenné americké firmy, jejíž inzeráty vévodily v mnoha radioamatérských časopisech let 50. a 60. V letech poválečných, a vlastně až do nástupu japonských výrobců, všem dobře známým za posledních dvacet roků, neměla zařízení značky Collins rovnocennou konkurenci. Collins byl a dosud je předním dodavatelem elektroniky a komunikační techniky pro americkou armádu, zejména letectvo. V dlouhé řadě typů vyráběných pro amatéry byl posledním transceiver KWM-380, od jehož uvedení na trh uplynulo možná 12 let.

Není divu, že v zemi svého vzniku se těší tyto vždy na svou dobu vynikající přístroje zájmu a pozornosti. Nyní však převážně sběratelů a staromilů, i když například správně fungující transceiver KWM-2A z počátku let šedesátých by každého příjemně překvapil tím, co dokáže. Musíte si ovšem umět odříci to hejno pamětí a jiných vymožeností dnes samozřejmých. Různých typů byla celá řada. Za všechny alespoň nejznámější, dnes už klasický přijímač 75A-4, jeho protějšek vysílač KWS-1, transceiver KWM-1 pro pásma 14, 21 a 28 MHz, který použili před více než třiceti lety cestovatelé Hanzelka,

OK7HZ, a Zikmund, OK7ZH, na své asijské cestě ve vozech Tatra 805, S-line, jak v USA operátoři nazývají přijímače řady 75S-3 a k provozu s nimi určené vysílače řady 32S-3, populární a snad nejvíce rozšířený všepásmový transceiver KWM-2A a poslední již zmíněný KWM-380.

Časopis Collins Collector's Magazine vycházející měsíčně v USA je určen právě sběratelům a milovníkům těchto přístrojů. Je velmi dobré úrovně (bohužel i jeho roční předplatné, které pro nás Evropany činí 75 dolarů) a obsahuje informace a zajímavosti technické, výrobní, historické, příspěvky se sběratelskou tematikou až po inzertní část. Samozřejmě vše pouze týkající se značky Collins. Vydavatelem je Jay Roman, KBOATQ, adresa 2465 W. Chicago Street, Rapid City, SD 57702, USA. Takže najdete-li doma potřebné peníze a k nim náhodou nezbytný Collins...

OK1DXZ

Collins KWM-1, zařízení, které provázelo cestovatele Hanzelku a Zikmunda při jejich cestách

QSL-lístek Johna Romana, KB0FTH, syna vydavatele časopisu Collins Collector's Magazine. Na obrázku souprava 75A-4 a KWS-1

Obr. 5. Tři vananty antén typu 2×5/8/, při nesymetrickém napájení v místě s velkou impedancí, tj. na konci antény: a) Ringo Ranger; b) SM7DVH; c) OK1ZN/KHL

že neumožňuje efektivně využít směrových vlastností měřené, resp. tak rozměrné antény. Obecně totiž platí, – čím je anténa rozměrnější, tím náročnější jsou požadavky na její umístění, resp. na "eimag. kvalitu" prostoru, který anténa zaujímá.

Optimalizace maximálního vyzařování do horizontální roviny je u napěřově a nesymetricky buzených svislých antén do značné míry pracnou experimentální záležitostí, která může přinést uspokojivé výsledky jen v úzkém kmitočtovém pásmu. Proto se v profesionánich komunikačních službách antény tohoto typu prakticky neužívají. Popularitu si získaly zejména na amatérském pásmu 145 MHz, kde se s nimi nejčastěji setkáváme v trojím uspořádání, které se liší právě způsobem napájení – buzení

Na obr. 5a je u antény Ringo Ranger

- původem z USA – budicím obvodem **boč**níkově napájený (tzv. gama-match) čtvrtvlnný unipól, stočený do smyčky a přecházející v krátký svislý záříc, k kterému je v místě N připojena vlastní anténa 2× 5/8 λ s fázovacím vedením L. Délku, resp. naladění budicího obvodu však kriticky ovlivňuje paralelní kapacita C Izolátoru v místě, kde je vlastní anténa izolovaně vetknuta do stožárové trubky. Krátký přímý úsek až k bodu N, vyzařující v protifázi, kompenzuje nepříznivý vliv nesymetnického napájení celé antény na tvar směrového diagramu. Vodorovná část smyčky však na druhé straně přijímá (a vyzařuje) i horizontální složku elmag. pole. Je to elektricky komplikované a konstrukčně nepříliš zdařilé řešení, přežívající až do dnešní doby. Na jeho původu se patrně podílela i hlediska patentoNapěťové buzení reaktančním L-článkem (sestaveným ze dvou úseků souosého kabelu – viz též AR A7/92 – umístěným v silnější nosné trubce), realizované pod patronací OK1ZN v klubu OK1KHL, je velmi zdařilou modifikací původní antény Ringo (obr. 5 c). Je zde důsledně oddělena činnost přizpůsobovacího obvodu od vlastního anténního systému, takže impedanční vlastnosti Ize optimalizovat nezávisle. Optimalní poloha křížové protiváhy na nosné trubce omezuje vybuzení povrchových proudů, tzn. vliv nesymetrického buzení na deformaci směrového diagramu.

Neobvyklý způsob napěťového buzení je na obr. 5b. Jde b tzv. "švédku" podle SM7DVH. Nulová elevace maximálního vyzařování je příznivě ovlivňována protifázovým zářením zkrácené čtvrtvlnné antény GP s protiváhou, jejíž horní konec napřově budí dvojici 2× 5/8λ až v bodě N. Na rozdíl od antén předchozích není u antény SM7DVM zářič uzemněn.

Na správnou činnost antény má rozhodující vliv indukčnost \mathcal{L}_k spolu s délkou svislé přímé části budicí antény GP.

Jak již bylo řečeno, používá se tento typ antény převážně v pásmu 145 MHz, i když někdy uspokojení nepřináší. Proto jsme mu také věnovali větší pozornost. Pro pásmo CB je zhotovení samonosné antény tohoto typu nepravděpodobné. S konstarukčně nenáročnou závěsnou modifikací však experimentovat lze, ovšem v dostatečných prostorových podmínkách.

GES - Electronic s.r.o.

Dodáváme úpiný sortiment rezistorů DRALORIC

Typ		3	toznár	y (=	n)	
	D	ı	اده س	ь	đ	•
SMA0204	1,8 -0,25	3,6 4.0	4.0	53 .1	0,5	5.0
SMA0207	2,5-6.2	6,3 44	7,2	53 21	0,6	7,5

Typ	P _{max} W/70 ^O C	U max	TK ppe/°C	Tol.	2-fada	Pozn.	Cene Kćs/ks bez DPN
SMA0207 SMA0207	0,6	300	50 50	1	24 24-96	skladem,min.odběr a 5ks min. karton a 2000ka	0,64 0,33
SMA0204 SMA0204	0,5	200 200	50 50	1	6 24-96	skladem,min.odbår å 5ka min. karton å 2000ka	1,14 0,41

HITANICA

HITANICA

HITANICA

HITANICA

HITANICA

 vyžádejte si ceník (obj. číslo 2000 192 GOS, vrstvové rezistory, cena 25 Kčs).

NiCd akumulátory HITACHI

Tak to tu ještě nebylo! 2990 korun za 1 kus (bez daně)

(2830 korun při odběru 10 kusů, 2680 korun při odběru 100 kusů)

Digitální multimetr 700T AMREL:

- TRUE RMS měří skutečné efektivní napětí bez ohledu na tvar signálu;
- 4½místný displej, přesnost 0,05 % na základním rozsahu;
- měřič kmitočtu do 200 kHz;
- zvuková indikace zkratu;
- paměť;
- měří proud AC, DC do 20 A.

	Cena (bez daně)						
Тур	Кар.	1 ks	10 ks	100 ks			
N500AA mignon	0.5 Ah	37,95	36,05	34,25			
N600AA mignon	0.6 Ah	39,95	37,95	35,95			
N700AA mignon	0,7 Ah	49,95	47,45	44,95			
N1200C baby	1,2 Ah	96,05	91,25	86,45			
N1800C baby	1,8 Ah	124,20	117,95	111,75			
N2000C baby	2 Ah	135,05	128,25	121,55			
N1200D mono	1.2 Ah	101,55	96,45	91,45			
N4000D mono	4 Ah	197,35	187,45	177,60			

Souosé kabely nejlepší kvality ze SRN

Pro průmysi i pro radioamatéry dodáváme libovolné typy kabelů – vyžádejte si ceník.

	Cena za 1 m při odběru (bez daně)							
Тур	1 m	10 m	100 m	1000 m				
RG 58/C/U	13,20	12.55	11,90	11,20				
RG 59/B/U	12.60	11,95	11,35	10,70				
RG 8/U	26,95	25,60	24,25	22,90				

Typ (obj. č.)	Vlnová impedance [Ω]	Vnější průměr [mm]	Útlum 50 MHz [dB/100 m]	Útlum 450 MHz [dB/100 m]
RG 58C/U	50	4,95	11	36,2
RG 59/B/U	75	6,2	7,5	27,4
RG 8/U	50	9,5	4,8	14,7

Dále nabízíme: můstky, klešťové ampérmetry. čítače, speciální měřiče, osciloskopy, analyzátory atd. Vyžádejte si náš ceník měřicích přístrojů a vysílacích zařízení.

GES Electronic s.r.o.

Zásilková služba: pošt. schr. 102, 324 48 Plzeň, tel. (019) 533 131, fax (019) 533 161

Naše prodejny: ● Masarykova 18, 312 12 Plzeň-Doubravka, tel./fax (019) 633 40;

Mikulášské nám. 7, 307 00 Plzeň-Slovany (od února 1993);

Gočárova 514, 500 10 Hradec Králové, tel. (049) 269 78, fax: (049) 261 32

Základní ceník zásilkové služby stojí 30 Kčs + poštovné (240 stran, 20 000 položek).

Pro konečné odběratele nutno k cenám připočítat daň z přidané hodnoty (23 %). Ceny při kursu 1 DM = 18,20 Kčs.

Z RADIOAMATÉRSKÉHO SVĚTA

VKV

Nové přírůstky v historických tabulkách

První spojení mezi Československem a souostrovím Baleáry v pásmu 70 cm navázali operátoři radioklubu **OK1KIR** dne 27. 7. 1992 se stanicí EA6/DF5JJ. 22. 8. 1992 navázala stanice OK1KIR v tomtéž pásmu první spojení OK – Portugalsko, a sice se stanicí CS1EME.

Radioklub OK1KIR se rovněž postaral o první spojení OK – Řecko v pásmu 23 cm, a síce 26. 7. 1992 spojením se stanicí SV1OE.

Všechna tři uvedená spojení byla navázána provozem EME (odrazem signálů od povrchu Měsíce).

OK1VAM

Naše recenze

První praktická knížka u nás o technice UHF a SHF na amatérských pásmech

Pavel Šír, OK1AIY: Radioamatérské konstrukce pro mikrovlnná pásma. 177 stránek, 150 obrázků. Vydalo nakladatelství AMA, Třebíč 1992.

Koncesionářů přibývá – radioamatérů ubývá. Tak jednoduše lze charakterizovat dnešní poměry na amatérských pásmech. Údajně již není s čím experimentovat. Vše se vyrábí továrně. Doma zhotovená zařízení nemohou konkurovat výrobkům továrním a to aní pro metrová a decimetrová pásma, která byla poslední doménou experimentální čínnosti a konstruktérské dovednosti čs. VKV amatérů. Černobílým dokladem jsou historické tabulky rekordních a prvních spojení s jinými zeměmi a kontinenty. Všechna byla navázána vlastnoručně zhotovenými přijímači, vysílači i anténamí. Na řadě byla pásma/centimetrová a milimetrová. Odlišná technologie, minimální zkušenosti a úplný nedostatek přístupných a pochopitelných informací a publikací většinu případných zájemců odradily.

Poslední z uvedených důvodů však již dnes neplatí. Pavel Šír, úspěšný experimentátor a neúnavný propagátor technické a provozní činnosti na centimetrových a milimetrových vlnách vydal útlou, užitečnou a inspírujíci publikaci, kam vtělil velmi přístupným a názorným způsobem své mnohaleté zkušenosti získané v podmínkách popravdě zcela amatérských.

Kupte si ji a dozvite se, že:

Zhotovit amatérsky přijímací a vysílaci zařízení pro pásma 23 cm (1 296 MHz), 13 cm (2 320 MHz), 6 cm (5 760 MHz), 3 cm (10 368 MHz) a 1,25 cm !!! (241 420 MHz) není lehké, dokonce lze říci, že je to poměrně obtížné a s každým vyšším pásmem řada problémů přibývá. Není to však nezvládnutelné. Je zde tedy velká přiležitost pro všechny, kteří nejsou spokojení se stálým soutěžením nebo povídáním na převáděčích, a při tom neodmítají trpělivou práci, která přináší i jistý druh dobrodružství. Výsledkem tohoto snažení jsou unikátní zařízení a nakonec neočekávaná neobvyklá rádiová spojení. A právě tato průkopnická práce dělá dnes z techniky mikrovin ještě ten nefalšovaný

První diplom WAS na VKV v ČSFR

Na snímku je první diplom WAS (Worked All States - rozuměj státy USA) na VKV nás a sedmý v Evropě v∠pásmu 144 MHz (provozem EME). První spojení pro tento diplom navázal jeho držitel Standa Blažka. OK1MS, z Nové Paky 21. 11. 1980 se stanicí WA1JXN a poslední se stanicí W7XU 28. 9. 1991. Byla to záležitost vlastně jedenácti let usilovného hlídání pásma, dopisování a dojednávání skedů.

OK1MS používá zaňzení kompletně vyrobené amatérsky doma: anténa 8×15 prvků Yagi podle DJ7UD (získ 22 dBd), příjímač S GaAs 2SK571 (0,4 dB nf), výkonu vvsílač 0 1 kW.

"radioamatérský sport", přinášející správnou radost, kus romantiky a uspokojení.

Vše, co je v publikaci popsáno a podrobně nakresleno – a není toho málo, bylo prakticky vyzkoušeno a zhotoveno. Konstrukce jsou provedeny s ohledem na skromné možnosti i minimální zkušenosti, které většina zájemců bude mít. Popisují se zařízení jednoduchá ale plně funkční – včetně antén. V jednotlivých statích jsou postupně rozvedeny základní myšlenky i pro návrhy složitějších konstrukcí. Popisuje se jejich realizace včetně praktického nastavení. To pak umožňuje řada vtipně navržených přípravků a pomůcek, kterými tze obejít nedostatek speciálních měřicích příprstojů. Publikací doplňují užitečné tabulky vlnovodů a tranzistorů.

Dlouhé zimní večery jsou tou nejlepší dobou pro první kroky na mikrovlnách. Dejte si knížku P. Šíra k vánocům. Bude to užitečný dárek. I pro ty, kteří si o mikrovlnách chtějí jen povídat – třeba na převáděčích.

Tuto knihu si můžete objednat (cena 120 korun) na adresách:

> AMA nakladatelství, Ing. K. Karmasin, Gen. Svobody 636, 674 01 Třebíč. Ben – technická literatura, Věšínova 5, 100 00 Praha 10; Pavel Šír, OK1AIY, Mrklov 76, 512 37 Benecko.

Svatá Lucie (J6) přes Oscara 13

Mezinárodní radioamatérský spolek LARC (Lambda Amateur Radio Club, box 24810, Philadelphia, PA 19130, USA) oznamuje, že připravuje velkou expedici na ostrov St. Lucia v Kanbském moři, která se bude věnovat především provozu přes radioamatérské satelitv.

Expedice bude aktivní ve dnech 9. až 14. března 1993, operátoři budou Jim, KK3K, Don, WB6LYI, Nick, KA1MQX, Eric, N6ZSU, Mark, KC3XC, a Philip, WD4IJV. Podle informací z LARC St. Lucia dosud nebyla přes radioamatérské satelity aktivována. Komu se podaří během expedice navázat spojení se všemi členy expedice, dostane památeč-

ní diplom. QSL lístky zasilejte pouze přímo na adresy jednotlivých operátorů podle Call Booku.

Před rokem, v březnu 1992, uspořádal LARC expedici na ostrovy Anguilla (VP2E) a Tortola (VP2V) a během sedmi dní navázali tehdy jen dva operátoří přes 900 spojení "přes Oscara".

Kalendář KV závodů na leden a únor 1993

Důležité upozornění všem radioamatérům Vzhledem k rozdělení ČSFR je předpoklad, že během tohoto roku vzniknou dvě nové země DXCC a dojde pravděpodobně k jinému územnímu uspořádání (okresy ap.). Aby nebyla přerušena kontinuita závodů a soutěží vnitrostátního charakteru, dohodlo se předsednictvo ČSRK na tom, že v průběhu roku 1993 budou zachovány závody a soutěže podle dosavadních pod-mínek a k event. vyhlášení nových přistoupí nové organizace až po vyjasnění problémů, které s rozdělením souvisí (přidělení volacích značek, vstup do IARU, regionální rozdělení aj.), nejdříve od roku 1994. Obdobné to bude s československými diplomy, o které bude možné žádat za stávajících podmínek do konce

roku 1993, ale jen za spojení navázaná do konce roku

-1993-	Worldradio DXathlon		celoročně
-1993	UBA SWL competition		celoročně
17. 1.		CW	00.00-24.00
29. 1.	TEST 160 m	CW	20.00-21.00
2931. 1.	CQ WW 160 m DX contest	CW	22.00-16.00
3031. 1.	French DX (REF contest)	CW	06.00-18.00
3031. 1.	European Community (UBA)	SSB	13.00-13.00
3031. 1.	YL-ISSB QSO party	CW	00.00-24.00
	Low Frequency SSB	SSB	15.00-09.00
6. 2.	AGCW Straight Key - HTP80	CW	16.00-19.00
	YU DX contest	CW	21.00-21.00
7. 2.	Provozní aktiv KV	CW	04.00-06.00
1314. 2.	PACC ·	MIX	12.00-12.00
1314. 2.	EA RTTY contest	RTTY	16.00-16.00
1315. 2.	YL - OM International	SSB	14.00-02.00
1314. 2.	First RSGB 1.8 MHz	CW	21.00-01.00
17. 2.	AGCW Semi-Automatic		
	Key Party	CW	19.00-20.30
2021. 2.	ARRIL DX contest	CW	00.00-24.30
2021. 2.	RSGB 7 MHz	CW	12.00-09.00
25. 2.	Kuwait National Day	MIX	00.00-24.00
26. 2.	TEST 160 m	CW	20.00-21.00
2728. 2.	CQ WW 160 m DX contest	SSB	22.00-16.00
2728. 2.	French DX (REF contest)	SSB	06.00-18.00
2728. 2.	European Community (UBA)	CW	13.00-13.00
	3.YL - OM International	CW	14.00-02.00

Ve dřívěiších ročnících AR naleznete podmínky jednotlivých závodů uvedených v kalendáň takto: TEST 160 m AR 1/90 a REF contest AR 1/91, UBA SWL AR 1/92 stejně jako World radio DXathlon a YU DX contest, o jehož dalším pokračování vzhledem k situaci neni jasno. CQ WW 160 mm a ARRL DX AR 2/90, European Community AR 1/89, VFDB-Z AR 10/91, RSGB 7 MHz a Semi Automatic Key Party AR 2/92.

Stručné podmínky některých závodů

PACC contest se pořádá každý druhý celý víkend v únoru, od soboty 12.00 UTC do neděle 12.00 UTC. Závodí se v kategoriích a) stanice s jedním operátorem, b) stanice s více operátory, c) posluchači. Závod je na všech KV pásmech vyjma WARC, a to CW i SSB provozem v úsecích pásem doporučených IARU pro závodní provoz, na 1,8 MHz jen CW v úseku 1825-1835 kHz. Vyměňuje se kód složený z RS nebo RST a pořadového čísla spojení počínaje 001, holandské stanice dávají RS nebo RST a zkratku provincie, odkud vysílají. Jednotlivé provincie mají zkratky: GR – FR – DR – OV – GD – UT – NH – ZH – FL – ZL – NB – LB. Bodují se pouze spojení se stanicemi prefixů PA, PB a PI, za každé úplné spojení je 1 bod. S každou stanicí je možné na každém pásmu navázat jen jedno spojení, bez ohledu na druh provozu. Násobiči jsou jednotlivé provincie na každém pásmu zvlášť. Deníky s vyznačením každého nového násobiče

zašlete nejpozději 30 dnů po závodě na adresu: F. Th. Oosthoek, PAOINA, P.O. Box 499, 4600 AL Bergen op Zoom, The Netherlands. Diplomy obdrží vítězná stanice každé země v každé kategorii, další podle počtu účastníků.

🗷 pozor, od loňského roku nové podmínky! 🖘

ARRL International DX contest probíhá ve dvou samostatně hodnocených částech, CW vždy třetí celý víkend v únoru, SSB prvý celý víkend v březnu, a to v sobotu od 00.00 UTC do 24.00 UTC v neděli. Závodí se v kategoriích:

A - jeden operátor, kdy se závodu účastní jedna osoba, bez použití informací o provozu, stanicích ap. ze sítí DX, PR ap. Může být vysílán v jednom okamžiku pouze jeden signál. Nelze předložit deník ze dvou pásem na jednu značku pro kategorii jeden op. jedno pásmo.

(1) Všechna pásma;

(2) jedno pásmo, z jiných pásem může stej-ná stanice zaslat jen deník ke kontrole. (3) QRP - všechna pásma, výkon max. 5.W.

B – jeden operátor s asistencí, kdy jedna osoba zajišťuje veškerý provoz včetně monitorování a vedení deníku. Je však možné použít informací z DX či PR sítí ap.

C - více operátorů, kdy se na vysílání podílí více osob třeba jen vedením deníku,

sledováním násobičů ap.

(1) jeden vysílač – v každém okamžiku může být vysílán jen jeden signál, z pásma na pásmo je možný přechod po 10 minutách (poslech se hodnotí jako provoz). Deník musí být veden jeden, chronologicky.

(2) dva vysílače, kdy mohou být současně vysílány dva signály, ale na různých pás-mech. Pro přechod jedné stanice na jiné pásmo platí rovněž desetiminutové pravidlo. Obě stanice mohou navazovat spojení se všemi stanicemi; práce druhé stanice není vázána jen na práci s novými násobiči.

(3) bez omezení, s jedním signálem na každém pásmu. Deník z každého pásma se vede zvlášť, ale chronologicky na každém

Závodí se v pásmech 1,8-28 MHz mimo WARC. Kód se skládá z RS nebo RST a použitého příkonu. Spojení se navazují pouze se stanicemi USA a Kanady, které předávají místo příkonu zkratku státu nebo provincie. Každé spojení se hodnotí třemi body, násobiči jsou jednotlivé americké státy + DC a kanadské distrikty. U kat. C musí být jednotlivé vysílače v kruhu o průměru 500 m a musí mít přímo připojeny anténní vyzařo-vací systém. U kat. B a C nesmí být k získávání informací používán jiný jak amatérský prostředek (např. telefonické upozornění je zakázáno). Z jedné lokality nesmí být navazována spojení pod více značkami. Deník může být i ve formě ASCII souborů na disketách 5,25 nebo 3,5 palce pro IBM kompatibil-ní počítače a musí být odeslán letecky nejpozději do 30 dnů po ukončení závodu na adresu: ARRL, 225 Main Street, Newington, Ct 06111, USA. Diplom obdrží vítězové jednotlivých kategorií v každé zemi a dále každá stanice, která naváže alespoň 500 spoje-

Vvměňovat radioamatérskou literaturu

s československými radioamatéry má zájem čtenář AR z Ukrajiny, který nyní ztratil možnost časopis AR odebírat za předplatné. Jeho zájmy: příjem rozhlasu, audiotechnika, opravy přístrojů a průmyslová automatizace. Jeho adresa:

Petr O. Bratuchin post box 13 252 040 Kiev 40 Ukraine

Počet potvrdených zemí podľa zoznamu DXCC československých staníc k 10. 9. 1992

(značka stanice, počet potvrdených zemí platných v dobe hlásenia, počet potvrdených zemí celkom)

HONOR ROLL		pásmo 3,5 M	pásmo 3,5 MHz	
OK3DG	323/358	OK3EY	285	
OK1MP	323/356	OK1ADM	265	
OK1ADM	323/356	OK3CGP	260	
OK1MG		OK1DDS	241	
	323/352	•		
OK1TA	323/344	OK1MP	238	
OK1ACT	323/344	OK3DG	220	
OK3JW	323/336			
OK3EY	323/336	pásmo 7 MHz	?	
OK2DB	322/337	OK3EY	306	
OK2JS	322/335	OK1ADM	299	
		OK3YX	293	
FONE		0.10		
		OK1DDS	286	
OK1ADM	323/351	OK3CGP	277	
OK1MP	323/351	OK1XN	266	
OK1TA	323/340	pásmo 10,1 N	ALI-	
OK3EY	323/335	pasino 10,1 n	11 HZ.	
OK3JW	323/329	OK1MP	110	
OK2JS	322/332	OK3EY	95	
OK1DDS	321/325	OK3DG	86	
•		OK3CQR	79	
OK1ACT	319/321	OK3CGP	77	
OK2DB	318/326			
OK2RU	318/323	OK3CSA	65	
CW		pásmo 14 MF	pásmo 14 MHz	
		OK1ADM	323	
OK3JW	323/329	OK1TA	323	
OK1ACT	321/326	OK3JW	323	
OK1MG	321/326	OK3EY	323	
OK1MP	321/326	OK1MP	321	
OK1TA	320/327	OK2DB		
OK2SG	320/324	UNZUB	320	
OK3EY	319/325	pásmo 18 Mi	pásmo 18 MHz	
OK3DG	318/322	OK1MP	143	
OK3YX	315/320	-		
OK2DB	314/316	OK3EY	105	
		OK3DG	104	
RTTY		OK3CQR	97	
		OK3CGP	70	
OK1JKM	282/284	OK3CSA	64	
OK1MP	237/240			
OK1KSL	126/127	pásmo 21 Mi	Hz	
OK1AWQ	86/86	OK1ADM	322	
OK1AJN	19/19	OKJW	321	
SSTV		OK3EY	321	
		OK1TA	319	
OK2BKY	8/8	OK1MP	313	
		OK1DDS	312	
		pásmo 24 M	Hz	
MIX-SWL		OK1MP	138	
OK1-1198	317/318	OK3DG	95	
OK1-11861	312/329	OK3EY	86	
OK1-30598	280/281	OK3CQR	78	
OK2-4649	222/226	OK3CGP	78	
OK2-9329	219/224	OK2PCL	68	
		O/LI OL	~	
pásmo 1,8 MHz		pásmo 28 M	Hz	
OK3EY	183	OK1ADM	314	
OK3CGP	159	OK1TA	313	
OK3CQD	146	OK3EY	311	
OK3CQR	143	OKSJW	308	
OK1MG	140			
OK3DG	138	OK1MP	301	
OWOOG	130	OK1DDS	296	

Súčet zemí zo všetkých pásiem

2 015	OK1ADM	1 611
1 901	OK1DDS	1 564
1 816	OK2DB	1 561
1 797	OK3YX	1 473
1 628	OK3JW	1 454
	1 901 1 816 1 797	1 901 OK1DDS 1 816 OK2DB 1 797 OK3YX

Váš OK3IQ

Předpověď podmínek šíření KV na leden 1993

Netoliko, že sluneční aktivita bude menší než v minulých letech, ona bude navíc výrazně menší, než byla na podzim. To povede ještě ke zdůraznění zimního charakteru podminek šíření krátkých vln. Stále ještě dostatečná intenzita ionizujícího záření (především ve vyšších zeměpisných šířkách včetně jeho korpuskulární složky) bude příčinou dostatečně vysokých nejvyšších použitelných kmitočtů. To se týká v plné míře spojení do vzdáleností dvou až tří skoků prostorové vlny, na jih více, na sever méně. Navíc můžeme počítat s většinou malým útlumem, což se ale nepravídelně nemusí týkat některých nocí a dolních pásem.

Pásmo ticha najdeme téměř denně i v osmdesátimetrovém pásmu, zcela výjimečně i na stošedesátce. Tam bude ale těžko rozpoznatelné vzhledem k více současně existujícím druhům šíření. Na čtyficítce se v něm bude nalézat před východem Slunce značná část Evropy a na třicítce mirno okrajové části prakticky celý náš kontinent. Na dvacítce pak celá Evropa s okolím a pokámí a subpokámí oblastí, na patnáctce celá zeměkoule a pro desítku bude toto konstatování platit ještě poměrně dlouho po východu Slunce.

Pozorované číslo skvm R v srpnu 1992 bylo po dalším poklesu pouze 64,4 a klouzavý průměr za únor 1992 vychází na skrovné $R_{12}=114,8$. Srpnová denní měření skunečního toku (vždy v 20.00 UTC, kdy mají místní poledne na 120. stupni západní délky v Pentictonu, B.C. – opravte si prosím chybný údaj z minulé předpovědí, který platil jen do kéta loňského roku) dopadla takto: 110, 125, 131, 131, 138, 141, 144, 137, 133, 130, 128, 129, 129, 131, 137, 134, 130, 135, 156, 125, 122, 111, 102, 98, 93, 94, 96, 95, 95 a 97, průměr byl 122,2. Proti červenci (132,3) můžeme pozorovat pokles po pětiměsíčním maximu. Denní indexy A_k z Wingstu v červenci byly: 12, 6, 6, 20, 28, 18, 22, 16, 17, 12, 18, 7, 15, 15, 12, 12, 5, 11, 12, 23, 29, 37, 63, 16, 8, 13, 19, 7, 17, 6 a 5.

Úroveň podmínek šíření krátkých vln výrazně utrpěla výskytem delších poruch a pomalejším zotavováním z nich, což při celkovém poklesu sluneční radiace pozorujeme běžně. Velmi dobré byty první tři až čtyři dny, zakončené kladnou fází poruchy. Pěkné bylo otevření dvacítky 3.8. do Mexika a do oblasti Tichomoří. Blížící se podzim avizovala další dvě zlepšení s vrcholy 17.-18.8. a 30.8.-2.9. přesto, že se kritické kmitočty 6_0F_2 pohybovaly nervýše okolo 7 MHz. Protipólem byly narušené dny 5.8. a 23.8., kdy stěží překročily pouhých 5.8 a ve druhém připadě 4 MHz. Sezóna E_4 skončila bez překvapení, na chudší výskyt jsme si v posledních letech již víceméně zvykli.

Vypočtené předpovědí vycházejí z R_{12} okolo 100, resp. ze skunečního toku pod 150. Na horních pásmech KV se sice nesetkáme se stanicemi DX denně, ale vyplatí se je sledovat. V následujícím výpočtu intervalů otevření na jednotlivých pásmech najdeme tentokrát spíše optimistické údaje, platící v poněkud lepších dnech. Údaj v závorce je čas s minimem útlumu nebo maximální pravděpodobnosti otevření.

1,8 MHz: UA0K 23.00-04.00 (01.00) a 15.00, W3 03.00-06.00 a 23.00 (05.00), VE3 21.00-08.00 (23.00 a 05.30).

3,5 MHz: 3D 14.00–18.00 (14.30), JA 15.00–23.30 (17.30), YB 15.30–23.30, OA 01.00–08.00 (06.30), W3 21.00–08.00 (04.00), W5 01.00–08.00 (03.30), W6 02.00–08.00 (03.30), FO8 08.00.

7 MHz: A3 12.00–17.00 (14.00), JA 13.00–23.30 (17.00), 3B 17.00–02.30 (19.30), 4K1 18.00–22.00 (19.30), PY 21.00–07.20 (07.00), W3 22.00–05.00 a 08.00–09.00 (03.30), W5 00.00–05.00 a 07.00–09.00 (03.30), W6 00.00–05.00, 07.00–09.00 a 15.00 (03.00 a 08.00), FO8 08.00–10.00 a 15.00.

10 MHz: JA 17.00, VK6 15.00-18.00 (17.00), 4K1 18.00-22.00 (19.00), PY 20.00-04.00 a 06.00-07.30, OA 07.00-08.15, W4 03.00 a 08.00-09.00, VE3 11.00, 18.00-21.00 a 00.00-04.00, W5 08.00-09.00, W6 15.00, VE7 00.00-03.00, 08.00-09.00 a 15.00-17.00 (16.00), FO8 09.00-10.00 a 15.00.

14 MHz: UAOK 07.30-09.30 a 12.00-16.40 (15.00), YJ 11.00-14.00 (12.30), FB8X 16.00-18.00 (17.00), CE0 08.00, PY 07.00 a 20.00, W3 około 11.00 a 19.00, FO6 10.00-11.00.

18 MHz: A3 12.00, P29 13.00, YB 12.40–14.40, VK6 14.00, W3 12.00–18.30 (18.00), VE3 12.00–18.00 (17.30). 21 MHz: VK9 13.00–14.00, 3B 15.00, W3 12.00–17.30

(17.00). **24 MHz:** BY1 07.00–10.00 (09.00), KP4 12.00, W3 12.40–17.00 (15.30).

28 MHz: UA1P 09.00–13.00 (11.30), BY1 08.00–09.00, ZD716.00–17.00, W4 13.30, W3 13.00–16.00 (14.30), VE3 13.00–17.00 (14.30),

OK1HH

Zajímavosti

- Již dříve jsme přinesli zprávu o tom, že diplom IOTA, který vydává RSGB, se těší stále vzrůstající popularitě. V posledním zveřejněném seznamu "Honor Roll" suverénně vede F9RM se 647 potvrzenými ostrovy!! Števo, OK3JW, se svými 500 ostrovy je asi na 50. místě tohoto žebříčku jiné OK stanice nejsou vůbec uvedeny. Na největší výstavě elektroniky ve Skotsku NEPCON'92 měla RSGB působivou expozici pod názvem "RSGB včera, dnes a zítra" kterou si během tří dnů výstavy prohlédlo více jak 1000 návštěvníků. Většinou se živě zajímali o problematiku radioamatérského provozu. Zastoupení firmy ICOM ve Vel. Británii poskytlo KV zařízení, které pracovalo pod značkou GB2NEI (že by NEI report měl až tak daleko vliv?), a to převážně telegrafním provozem, který se kupodivu pro přihlížející ukázal zajímavějším jako
- Lloyd a Iris Colvinovi během své poslední šestiměsíční cesty po Asii byli aktivní jako HS0ZAP a zdánlivě nižši aktivita byla způsobena rozložením provozu na všechna pásma s cílem navázat ne nejvíce spojení, ale s co největším počtem zemí. Z této lokality navázali spojení se 120 zeměmi, u ostatních viz čísla v závorkách: XU8KG (105), XW1QL (115). V85KGP (140) a XX9TQL (112) takže ze všech lokalit se podařilo navázat spojení pro diplom DXCC. Celkový počet navázaných spojení nebyl v dostupných pramenech zveřejněn.

provoz fonický!

- V muzeu RSGB je umístěn skutečně unikátní exponát – údajně nejstarší dochovaný radioamatérský QSL lístek z ledna 1922, který potvrzuje spojení stanice 2UV. Může se někdo pochlubit starším?
- Astronauté pro druhý let D2 jsou již jmenováni DG1KIM a DG1KIH se vydají v lednu 1993 do kosmu v laboratoři SPACELAB, kde mají plánováno 90 experimentů. Ve dnech 20.–24. března 1992 jste mohli slyšet Klause Fladeho, který byl aktivní ze stanice MIR s vysílačem FM.
- ◆ V časopise International Herald Tribune byla zveřejněna zpráva o dohodě mezi Vietnamem a Malajsií. Tyto státy se dohodly o dosud sporných ostrovech Spratly, aby mohly začít s těžbou nafty a plynu. Na jednom z ostrovů – Terumbu Layang buduje Malajsie odpočinkové centrum, takže v budoucnu bude práce z těchto ostrovů snadná. Proslýchá se však, že jejich statut DXCC bude zrušen.
- Za sponzorství "Moscow Boston International Ltd." vychází letos již třetím rokem měsíčník Radioljubitěl, který má svou redakci v Minsku. Materiály tam zveřejněné je možné volně přetiskovat s uvedením pramene. V 1. čísle loňského ročníku jsou např. informace o kabelových sítích TV, více stran je věnováno výpočetní technice, podrobně je popsán transvertor pro všechna amatérská pásma k přijímači TEST včetně desek s plošnými spoji a 7 stran je věnováno problematice vztahující se k radioamatérskému provozu.
- V Holandsku se nyní pro obě třídy koncesí
 CEPT používá prefix PA/vlastní značka
 (dříve bylo pro 2. třídu PE/vlastní značka).

OK2QX

MLÁDEŽ A RADIOKLUBY

Tísňové volání – SOS

Zvláštním druhem spojení, která lze ve výjimečných případech zachytit i na radioamaterských pásmech, jsou tísňová volání a nouzová spojení. Většina lidí, ačkoliv nikdy nepřišla do styku s telegrafním provozem. zná význam varovného signálu SOS z ústního podání.

Tísňové volání SOS (Save Our Souls spaste naše duše) je původně signálem potápějících se lodí, volajících radiostanicí o pomoc. Do mobilního spojení (původně do spojení lodního) bylo toto tísňové volání zavedeno již v počátcích rádiového spojení počátkem tohoto století. Málokdo však ví, že signál SOS nikdy "spaste naše duše" neznamenal.

Když asi před devadesáti roky zaváděla Marconiho společnost své mezinárodní signály a zkratky, určila původně pro tísňové volání písmena CQ, z důvodů čistě technických. Q bylo písmeno nejméně používané a jeho telegrafní značka je velmi zřetelná. CQ bylo mimo to již v pozemním provozu signálem telegrafním, který vyjadřoval, že telegrafista chce učinit sdělení všem stanicím současně.

V běžné praxi se však ukázalo, že lépe vyhovuje používání písmen tň, než písmen dvou. Proto Marconi od 1. února 1904 zavedl signál CQD, který zvolil pouze z ohledu na vhodnost použitých značek v signálu. Mnemotechnici však ihned tento signál CQD vysvětlili jako "COME - QUICK DANGER" (přijďte, rychle, nebezpečí).

V roce 1908 však mezinárodní konference žádala, aby tento nejdůležitější signál byl složen ze značek jednodušších a co nejnápadnějších. Proto vybrala kombinaci tří teček, tří čárek a tří teček. Že tato znaménka znamenají písmena SOS, bylo vlastně vedlejší. Signál SOS však mnemotechnici opět dodatečně vysvětlili jako SAVE OUR SOULS - spaste naše duše, ačkoliv to, o co potápějící se loď prostřednictvím radiotelegrafisty volá, je především záchrana lidských životů.

V současné době používá letecká i lodní doprava ke spojení i k volání v tísni kmitočty, ležící mimo radioamaterská pásma. V pásmech lodní dopravy jsou vyhraženy kmitočty a časy, kdy veškerá spojení umlkaji a kmitočty jsou uvolněny pouze pro tísňové vo-

Někdy se však stává, že z nejrůznějších příčin není možné se na těchto kmitočtech dovolat pomoci a pak jako poslední možnost a naděje zbývají pásma radioamatérská. Tak například tísňové volání Nobilovy výpravy po ztroskotání vzducholodi ITALIA zachytil v radioamatérských pásmech radioamatér. Papaninova výprava rovněž nouzově vysílala tísňové volání v radioamatérských pásmech a dovolala se pomoci.

Radioamatérská pásma používají v tísni i malá plavidla pro volání o pomoc při ztroskotání, při neopravitelných poruchách, při nebezpečí života a podobně. Takováto vo-

lání nutně obsahují údaje o volajícím, jméno plavidla, zeměpisnou polohu a důvod volání o pomoc.

Podobně i pozemní služby používají v případě přírodních katastrof, nebezpečí života a při mimořádných událostech tísňové volání - QRR. Toto volání používají v případě, kdy jiné spojení je přerušeno, také radioamatéři. Budují nouzová spojení při zátopách, tajfunech a při podobných mimořádných událostech. Naši radioamatéři udržovali spojení v akci CPO - civilní protiletecké ochrany - při mobilizaci v roce 1938 a v prvních měsících po skončení války v roce 1945, kdy ještě nebylo obnoveno poštovní spojení.

Volání QRR nebo fonické volání "MÉ DÉ" - z francouzského "M'AIDEZ - pomozte mi", je možné zachytit také v případech, kdy se operátor snaží rychle obstarat naléhavou lékařskou pomoc nebo potřebné léky k záchraně lidského života.

Jak máme postupovat, zachytíme-li volání o pomoc?

Především přesně zaznamenáme zprávu. Pokud můžeme, nahrajeme zprávu na magnetofonový pásek. Nemůžete-li se stanicí, která volá výzvu o pomoc, navázat spojení nebo přímo pomoci, okamžitě informujte nejbližší policejní stanici a požádejte, aby zachycená zpráva byla předána příslušným službám. Po zachycení tísňového volání zůstaňte na kmitočtu volající stanice a pokud můžete, zaznamenávejte všechna spojení, reaquiící na tísňové volání.

Radioamatéři si pokládají za čest, pokud po zaslechnutí tísňového volání se mohou svým vysíláním podílet na záchranných akcích. Všichni si však především přejeme. aby tísňové volání raději nemuselo být vůbec použito.

73! Josef, OK2 - 4857

Ohlas (aneb Horký brambor)

V AR-A č. 8/92 na s. 398 je v rubrice "Mládež a radiokluby" informace o OK-maratónu pod patronací CLC.

Vzhledem k tomu, že v článku jsou některé nepřesnosti, chci je poopravit. Skutečnost je ta, že v únoru 1991 se při jednání u kulatého stolu Československý radioklub (ČSRK) dohodl s CLC, že již nehodlá organizovat OK-maratón a že jeho organizaci zcela přebírá CLC. Na základě toho jsme předpokládali, že další sdělení pořadatelskému radioklubu OK2KMB není nutné.

Pokud se týče diplomů za OK-maratón 1989, 1990 a další závody, které pořadatelský radioklub OK2KMB zaslal ČSRK, byly tyto diplomy pracovnicemi QSL služby řádně rozeslány. Pokud je někdo nedostal a bude je urgovat, požádáme pořadatele, aby je znovu vypsal a budou znovu zaslány. Případné urgence posílejte na OK1MP. (Pozn. red.: K tomuto problému se již nebudeme v AR vracet.)

Ing. Miloš Prostecký, OK1MP vice-prezident ČSRK

V poslední době je velice činná radioamatérská stanice HF0POL, která vysílá z jižních Shetlandských ostrovů. Na ostrově Krále Jiřího v tomto souostroví je vybudována polská antarktická výzkumná základna pojmenovaná po Henryku Arctowskim. Tato základna byla zřízena v roce 1977 polskou Akademii věd. Od toho roku se na základně střídají v ročních pobytech výzkumníci biologové, meteorologové, geofyzikové, seismologové. Pokud je mezi těmito účastníky radioamatér, má možnost využívat stanici HF0POL, která je umístěna na základně. V současné době je pod značkou HF0POL velice činný Zbigniew Kulczak, SP9DWT. Pracuje na všech pásmech KV s velice dobrými signály v Evropě. Velice rád odpoví na zavolání českých i slovenských stanic, taktéž se na požádání rád přeladí na požadované pásmo. QSL se posílají na jeho domácí adresu (SP9DWT).

INZERCE

Inzerci přijímá osobně a poštou Vydavatelství Mag-net-Press, inzertní oddělení (inzerce ARA), Vladislavova 26, 113 66 Praha 1, tel. 26 06 51–9 linka 342, fax 23 53 271 nebo 23 62 439. Uzávěrka tohoto čísla byla 10. 11. 1992, do kdy jsme museli obdržet úhradu za inzerát. Text pište čitelně, hůlkovým písmem nebo na stroji, aby se předešlo chybám vznikajícím z nečitelnosti předlohy. Cena za první řádek činí 50 Kč a za každý další (i započatý) 25 Kč. Platby přijímáme výhradně na složence, kterou Vám obratem zašleme i s udanou cenou za uveřejnění inzerátu.

PRODEJ

Širokopásm, zosilňovače 40-800 MHz 76/75 Ω: BFG65 + BFR91, 24 dB (240), 2× BFR91, 22 dB (170) pre slabé TV sign. (OK3), BFR91 + BFR96, 23 dB pre napaj. viac TV prijím. (180). zosilň, pre ROCK FM 3 dB (190). F. Ridarčik, Karpatská 1, 040 01 Košice.

Nízkošomové ant. zesilovače UHF s BFG65 + BFR91A (220), pásmové (130–160), K1-K60, 2× BFR (220) s měř. protokoly, kanál. a pásmové slučovače, rozbočovače a další díly na objednávku, nabídku na požádání, slevy. TEROZ, 789 83 Loštice, tel. 0648/522 55.

Večné hroty do pišt. trafo pájkovačky (à 6), na dobierku min. 5 ks, od 14 ks bez poštovného, od 25 ks na faktúru. Ing. L. Melíšek, Eisnerova 8,841 07 Bratislava.

Jedinečný Pascal a jiné programy pro Commodore 16, 116, Plus 4. Kazety Emgeton C45 ks (à 10) od 4 ks. Dr. Vašíček, Nádražní 82, 530 00 Pardubi-

Ant. zes. pro IV-V TVP s BFG + BFR (250), 2× BFR (150). s konektory 75 Ω (+30). Stavebnice zes. s BFG + BFR (160), s 2× BFR (95), s konektory (+25). J. Jelinek, Lipová alej 1603, 397 01

Osciloskop C1-94, 10 MHz, příslušenství, dokumentace, nový. N. Kratěnová, Žalovská 2, 180 00 Praha 8, tel. 02/855 63 20.

OK3 - TA3 kvalitní zes. do ant. krabice. Pásmo-V6: AZP 21–60–S, 30–22/2 dB (239); AZP 21–60, 20/3 dB; AZP 49–52 17/3 dB; AZP 6–12, 20/2 dB; AZP 1–60 20/6 dB. Kanálové: AZK . . . (VHF 25/1,5 dB, UHF 17/3 dB) vše (179). AZK . . . -S, 35-25/2 dB (279). Od 10 ks sleva 10%. Záruka rok. Na zakázku zádrže, slučovače atd. Přísl.: sym. člen, nap. výhybka (+35). Vývod – šroubovací uchycení – nejrychlejší, nejspolehlivější. Dobírkou: AZ, P.O. Box 18, 763 14 Zlin, tel. 067/91 82 21

Univerzálne dosky pre IBM PC XT/AT, navrtané, prekovené s rozmerom 19 × 10 cm (345). P. Kojda, I. Bukovčana 24/64, 841 07 Devinska Nová Ves, tel. 07/77 54 26 po 16 hod.

LORÁLKA PARDUBICE

Modem: 040/516 721 Tel. : 040/517 487) (Tel.

 tisíce programů (hry) - elektronická pošta informace

zdarma pro Váš počítač!

Dvoukanálový osciloskop C1-137, 2× 25 MHz, zpoždění č. z., nový. C1-94, 10 MHz, nový. C1-112, 10 MHz, kombinovaný s multim. levně. Tel. Praha 859 17 78.

Anténní rotátor Hirschman HIT-RO 250, anténní zesilovač BV1-21F se zdrojem a anténu UKV - nové nepoužité. Tel. 02/39 37 26 večer.

SMD: R čip 0805: 270 (1,50), 1206: 680 (2), mini MELF kov. 1%: 1k, 47k5, 205k, 976k (3), C: 33k (4), M1 (5), BC817-40 (7), AY-3-8600 (500). J. Pacholik, Písecká 12, 130 00 Praha 3

Rada ARA 1982-87, avomety PU 140 a C4312, Sony WA-8000, FM, AM, SW, 9 pásem. Tel. 02/ 77 56 06.

1000 ks součástek na desk. (96), trafa pro reprodukt. rozvod tenkým vedením (48), síť. trafo 9 V/08 A (68). J. Foreit, Nad úpadem 439, 149 00 Praha 4. Televizní generátor s multimetrem Laspi TT-01, barevný i černobílý (2500) a osciloskop s multimetrem S1-112A do 10 MHz (à 4300). Oba nepoužité, nové. Košut, tel. 02/32 19 542 po 18 hod.

SL1452, µA 733, MC10116, BFQ69, (575, 32, 68, SL1452, µA 733, MC10116, BFQ69, (575, 32, 68, 79), BFG65, GT3468, GT346V, BB405 (78, 20, 22, 9), AY-3-8500, AY-3-8910, TDA1510, A2005 (275, 358, 53, 32), LA4445, LA4461, HA13001, TA7270 (84, 98, 115, 109), BA5406, KA2206, TY-KT119A (79, 58, 26) a ďalšie súč. Ponukový list zdarma. M. Rezniček, Alexandrova 6, 010 01 Žilina Kompl. roč. AR 70-91. Tel. zam. 038/40 490, P. Lukeš

Sov. IO K-174AF1A, GF1 (à 25). Při odběru 10 až 20 ks IO sleva 10 až 20%. Násobiče UN 8,5/ 25-1,2 (à 150) sleva stejná. A. Podhorná, U nádra-ží 25, 736 01 Havířov-Šumbark.

6 ks nových elektro. čas. relé TG 100 se slevou, čas. rozsah od 0,10 sec. do 39,6 Ω. Cena 1 ks 950 Kčs. J. Hrbáčková, Louka 234, 696 72 Lipov.

Atari XL/EX hardware cartridge (150 - 550), ROM disk 320 kB (899) a iné. Info za známku. P. Radványi, 925 05 Vozokany 284

Radványi, 925 05 Vozokany 284.

Infra KRX81, WK16421-2, VQ125 (4, 5, 6), U807, A244, TDA1670A (90, 8, 69), KC148, 238, 238C, 308B (0,8 až 1), KA206T, 136 (0,5), TK676/500 V, kvalita 4p7 – 56p (0,3), GT3465, GF505, KF508, 517 (2), KU611, GD607, 617, KD136 (3), 3KB105A, 4KB109G (4,5), RC gen. GF21, DDR, nový (1500), TR191, 212, 214, TP040. Na dobierku, zoznam zdarma. PROMA elektronik, 027 54 Veličná 1, tel. 0845/5185, 5557

Velicna 1, tel. 0845/5185, 5557.

A/D převodník CS20D, nový (59), 3 a více ks (49).

J. Zítka, Kunětická 106, 530 09 Pardubice.

Osciloskop (do 5 MHz) ako nový (1650). P. Sedláček, tel. 0864/2133.

400 ks kostriček QA26145 s krytmi QA69158 (pardubické) + ferit. jadra NO1 (11/ks), ďalej ferit. jadra M4: 200 ks N02 (1/ks), 150 ks N05 (1/ks), 100 ks N01P (2/ks), ferit. toroidy: 300 ks Ø 4 N1 (1,30/ ks), 100 ks Ø 6,3 N1 (1,50/ks), tyčinky: 200 ks Ø 1,6 × 16/N1 (2/ks). Zašlem ihneď aj jednotlivo. J. Dobda, kpt. Nálepku 437/10, 069 01 Medzilaborce. KT501 (3), MAA503 (4), MHB5902 (20), KA261 (1), a iné polovodiče, zoznam zašlem proti známke. V. Halabuk, sídl. Lúky 1130, 952 01 Vráble.

Osciloskop BM 430-dvoukanál., dvě čas. zákl., veškeré jednotky a přísl., výtorný stav, levně. Klub elektroniky, Čoupkových 22. 624 00 Bmo. Programátor 16-tl funkcí (den/týd.), elektroventily

(topeni), satelit Ø 1,5 otoč., telef. záznamník, vys. hbatec, alarmic, equalizér, vstup d. VKV CCIR, trafa (nab.), (900, 390, 5900, 2200, 680, 390, 280, 190, 90). Tel. 0433/23 994 po 16 hod.

PC Sharp MZ 821 + liter. + kaz. (5000). V. Janovic, Na Sihoti 1170/14, 026 01 D. Kubin. RX Grundig Satelit 3000, LW, MW, SW, VKV, 1,6 až 30 MHz, AM, FM, LSB, USB, BFO. Digital display, hodiny (10 000). K. Herčík, 17. listopadu 1167, 293 01 Ml. Boleslav.

Univerzální konvertor pro převod VKV OIRT do CCIR nebo naopak bez zásahu do přijímače (150), kovertor jednosměrný OIRT do CCIR (140), kovertor pro autorádio OIRT do CCIR nebo naopak (130). Ing. V. Pantlik, Karnikova 14, 621 00 Brno.

(130). Ing. V. Partilik, Karrilkova 14, 621 00 Bmo. 2764A, 87C51, (40), 27C256 (80), 43256 (90), 8086 (30), 41256-10, -15, -20 (40, 30, 20). L. Slováček, Závadská 16, 831 06 Bratislava. D8039, MC6805, MC68705™, Z80 (80, 90, 120, 50), 2716, 2732, 2764, 27128, 6264 (50, 50, 50, 95, 80), BUZ76, BU508, BC558 (10, 50, 5), 3,000 MHz, 8,000, CD4066, CD4511 (30, 10, 10, 15), TSC232, L387, C271, ULN2003 (30, 10, 10, 15), NC5532, Triprin 10K/N25 (15, 10), 1 ED zelepá dioda 4148 Trimin 10K/N25 (15, 10). LED zelená, dioda 4148 (3 ks za 1 Kčs) a jiné součástky, seznam zašlu. B. Mořická, Veletržní 15, 603 00 Brno.

Dokumentaci k programátoru GAL pro ZX Spec-

trum a PC vč. SW (200). Info za známku. J. Drexier,

Jahodová 2889, 106 00 Praha 10.

Osciloskop S1-94 nový, 10 MHz, dokumentace
75 stránek, sonda. Tel. 02/36 78 12.

Pro TV opraváře náhr. díly: univerzální násobiče

UN 9/27-1,3 (180), UN 8,5/25-1,2 (150), KT838 (60), IO pro dálk. ovládání KR1506CHL1 a CHL2 (100), servisní generátor barev. obrazců PAL-SE-CAM Laspi TT-03 (4900), výstupy: video, UHF, VHF, synchr. s oscil., 5,5 a 6,5 MHz. T. Ardan, Pivovar 2889, 276 01 Mělník, tel. 0206/67 07 59. ARZ 4608 2ks (110), ARV 3608 2× (125), ARN 6608 2× (110), minizesilovač osazen (cca 1080), mikropáječka (150). Písek, Horáčkova 926, 140 00

OPTOELEKTRONICKÉ SPÍNAČE:

- závory, reflexní, difuzní,speciální zakázkové optosnímače,
- pomocné obvody ke spínačům: napájecí, zpožďovač, časovací.
- Stmívače k reklamám a výkladům.
- Ovládače otevírání dveří.

Post box 12 335 44 Kasejovice

Za výhodné ceny AKUMULÁTORY PANASONIC

- bezúdržbové
- plynotěsné
- norma VdS
- homologace pro ČSFR od 6 V/1,3 Ah do 12 V/65 Ah ceník a veškeré informace FULGUR, spol. s r.o. Slovákova 6, 602 00 Brno

tel. a fax (05) 74 82 53

Firma KOTLIN

podnik pro výrobu prvků automatizační techniky nabízí:

velký sortiment INDUKČNÍCH SNÍMA-ČŮ (obdoba výrobků firem BALLUFF, PEPPERL + FUCHS)

vysoká životnost a spolehlivost Vám zajistí bezporuchový chod strojů a automatických linek

možnost použití ve stejposměrných i stří-davých obvodech (220 V, 50 Hz)

ověřeno v EZÚ Praha

zajímavé ceny!

Informace na adrese: Firma KOTLIN Ke křížku 677

272 03 Kladno tel. 0312/81 242 fax 0312/87 132

KOUPĚ

Staré německé radiostanice "Wehrmacht" i nefunkční na náhradní díly. E. End, Finkenstieg 1, W-8688 Markleuthen BRD.

Staré německé radlozařízení "Wehrmacht", též radarová a anténní příslušenství. B. Frölich, Nelkenweg 4, W-7153 Weisenbach i Tol, BRD. 10 TDA2652 pro snímkový rozklad nebo BTV ITT

na náhrad. díly. M. Kašpar, Spojařů 1223, 386 01 Strakonice.

RX R312, TX Třinec, FB stav, příslušenství, schéma. I. Vávra, Pejevové 3121, 143 00 Praha 4.

ZX Spectrum, Delta, Didaktik Gama, Didaktik M

vstupenku do světa prolesionálních počítačů představovanou novou verzí osvědčeného řadíče disketových jednotek

ZX DISKFACE PLUS

Zařízení umožňuje jednoduchou a elegantní práci s disketovou jednotkou a převedení všech programů z kazety na disketu. Vyznačuje se těmito parametry :

- možnost připojení až čtyř disketových jednotek 5.25" nebo 3.5"
 kapacita až 720 kB na jednu disketu, tedy celkem může být k dispozici 3MB údajů
 vysoká rychlosí vyhledávání programů na disketě a přenosu do pamětí počítače
 standardní vybavení dréma operačními systěmy:

 DPDOS určen ke zpracování programů doposud uložených na kazetě
 štroká štála mocných přítazř zajščtujících všechny potřebné operace
 možnost ovládání z Basicu i ze strojového kódu (bohatě skužby)
 kompatibita s přítazy Basicu pro ZX MicROORINE a DISCIPLE

 CP/M uznávaný standard ve světě profesionálních osmibitových počítačů
 umožniuje užtvatel přístup k bohatému programovému vybavení, jehož
 vyšší verze jsou provozovány na PC (DBase, Wordstar, TurboPascai, ...)
 příjemná užtvaletská nadstavba ve stytů Nofon Commander, PCTools, na PC
 zajštěn přenos textových souborů mezi operačními systémy MSDOS, CP/M a DPDOS
 můzost přojení stakámy přes vritřiní paraletí rozhvání
 důsledná podpora českého a slovenského prostředl v naprosté většině aplikací

Dále nabízime disketové jednotky 5.25" nebo 3.5", značkové diskety, bohaté programové vybavení na disketách pro DPDOS i CPM (systémové programy, e-databáze, překladače, programy pro vedení účetnictví soukromých podnikatelů), provádíme rozšíření paměli počítače na kapacitu 80 kB nejen pro potřeby CP/M

ce, objednávky : - plsemné : D A TA P U T E R, PS 6, 620 00 Brno 20 - Tufstry - telefon : 57 11 87; ogobné : DATAPUTER, Dukelská 60 jedná - úřední hodiny : Po, Ct. 15 30 - 18 30 hod., St. 9 - 13 10 0

Firma ELEKTROSONIC Plzeň	
nabízí radioamatérům nedostatkové zboží:	
Plastový knoflík kulatý na tlač. ISOSTAT	2,-Kčs/1 ks
Plastový knoflík na potenc. otočný Ø 4 mm	4,-Kčs/1 ks
Plastový knoflík na potenc. otočný Ø 6 mm	4,-Kčs/1 ks
Plastový knoflík na potenc. tahový	4,-Kčs/1 ks
Plastový roh ochranný (na reproboxy ap.)	4,-Kčs/1 ks
Plastová krabička SONDA s průhledným okénkem	39,-Kčs/1 ks
Plastová krabička MONTÁŽNÍ 75×125×50 mm	39,-Kčs/1 ks
Plastová krabička FAVORIT 110×115×40 mm	49,-Kčs/1 ks
Měřicí hrot pro elektroniku	27,-Kčs/
Všechny výrobky dodáváme v 9 až 10 pastelových barvác	h.
Objednávky vyřizujeme do 14 dnů, prodejcům s živno	stenským listem
poskytujeme slevy. Využijte naší zásilkové služby.	•
TATO NABÍDKA PLATÍ STÁLE!!!	
ELEKTROSONIC, Železničářská 59, 312 00 Plzeň-Doubl	ravka

SEZNAM INZERÁTŮ V TOMTO ČÍSLE

AGB – součástky, náhradní díly XI
ASIX – programová hradlová pole XXVI
Commotronic – počítače Comodore a Amiga XXVI
Commotronic – osazování a pájení desek pl. spojů
Dataputer – příslušenství Sinclair, Didaktik
Dataria – elektronické součástky XXV
ECOM – elektronické součástky XII
Elektro Brož – multimetr VI
Elektroservis-ruční navíječka IV
Elfa – optoelektronické snímače
Elix – satelitní a komunikační technika XX
Elko-telefónny tarifikátor
Elnec – programátor, simulátor
Elpo – kartotéka článků v AR, ST ajXXIV
Elpol – teletext, konvertory do TV
EMPOS – měřicí přístroje VII
ESCOM – příjem schopných lidí XXVII
FK technics – multimetry, melodic. IO X
FROG systems – čtecí programy VII
Fulgur – akumulátory Panasonic
GEŠ-baterie, kabely, součástky
GHV – dodavatel měřicí technikyXVII
GM electronic – piezoelementy, měř. přístroje VIII–IX
Grundig – kamery CCD
Henner – měřicí přístroje XIX
Hewlett Packard – laserové tiskárny
Jablotron – jednočipové mikropočítače
J.J.J. Sat – satelitní technika
JV a RS Elko – měřicí přístroje V
KERR elektronik – servisní návody, náhr. díly XXV
Kotlin – indukční snímače
KTE – elektronické součástky XIII–XVI
Lokálka – programy (modem)
Marmot - cínové pájky, tavidla XXIV
Micronix – přístroje, zdroje XXIII
A

Inzerentům

Je nesporné, že dosavadní, téměř devadesátitisícový náklad časopisu má zásluhou inzerce nemalý podíl na seznamování odborné elektronické veřejnosti s Vaší nabídkou. Vědomi si této skutečnosti, zůstáváme s cenou za inzerci i přes řadu nepříznivých ekonomických vlivů na úrovní r. 1992 (víz tabulka). Věříme, že budete využívat našich inzertních služeb, k čemuž Vám dáváme co největší prostor. K dosažení optimálního stavu ve vzájemné spolupráci mezi Vámi a redakcí inzertní části časopisu uvádíme několik

opodklady pro plošnou inzerci dodávejte do redakce AR buď ve strojopisu (k vysázení), nebo jako hotový podklad pro tisk (kresba, foto, výtisk z laserové tiskárny),

 strojopisné podklady musí být dodány před odevzdáním redakčních podkladů daného čísla do tiskárny, tj. zhruba 8 týdnů před vyjitím čísla,

hotové podklady (např. z laserové tiskárny nebo na filmu) lze

- notove podklady (napr. z laserove tiskarny nebo na ilimu) ize dodat zhruba 6 týdnů před vyjitím čísla, nelze je však poslat faxem, protože přenos podstatně snižuje jejich kvalitu,
 za zvláštní umístění v čísle na přání inzerenta se účtuje 20% přirážka, u celoročně objednané inzerce (nad 10 čísel) se cena snižuje o 20 %, nad šest čísel je to 15 % a u více než tří čísel je sleva 10 %
- po předběžné dohodě s tiskárnou bude možné vkládat barevné či černobílé dvojlisty, cena stanovena dohodou,
- požadavky na dodatečnou úpravu, změny či spěšné umístění inzerátu je třeba dohodnout s redaktorem ing. Janem Klabalem (tel. 26 06 51, l. 353),
- problematice jazykové a názvoslovné správnosti v inzerátech věnuje několik vět v úvodníku tohoto čísla šéfredaktor časopisu. Do nového roku 1993 Vám přejeme hodně úspěchů v podnikatelské činnosti a doufáme, že Vaše inzerce se stane i v tomto roce pravidelnou součástí inzertních stránek v časopise. Redakce

umístění inzerátu		AR-A (červené) Kčs	AR-B (modré) Přílohy Kčs
	1 cm²	44,	18,–
	celá stránka (172 × 259 mm)	19 600,–	8 300,–
	½ stránky	9 800,–	4 150,–
	1/4 stránky	4 900,-	2 070,–
	1 barva celá stránka	25 480,–	
	černobílá + 1 barva II. a III. str. ob.	35 280,-	12 450,-
	barevná IV. str. ob.	53 900,–	

MITE - systém UCB, programování	V
MITE – simulační program	111
MORGEN Elektronics – otevření prodejny	11
MULTIPROG – programování EPROM	IV
NEON – elektronické součástky	
Oborný rabat – nabídkový katalog	XXVII
OMEGA – elektronické součástky	
Opravna TESLA – oprava měřicích přístrojů	
OrCAD - PCB, návrh plošných spojů	
Paradise – videoadaptéry	11
Ploskon – induktivní snímače	
Prold – pancéřový bezpečnostní kryt	
Přijímací technika – komplety SAT	
RaC – elektronické součástky	
Racom – radiové moderny, radiostanice	
Recom – převodníky DC-AC-DC	XXIV
Rochelt – reproduktory	
Samer – polovodičové paměti	XXVIII
Samo – převodníky analogických signálů	
Sapeko – TV sat. komplety, díly	
Semitech – elektronické prvky	
Software 602 – software, hardware	
Solutron – konvertory zvuku	
S Power – baterie Panasonic	
Starmans – speciální elektronické součástky	
Silhánek – koupě inkurantů	
TEGAN electronic – elektronické součástky	
Tektronix – měřicí přístroje.	
TES – konvertory, dekodéry	
TESLA Hr. Králové – piezokrystaly	
Thorn hobby – otáčkoměry, cyklovače	
VillaCom – modul sériového rozhraní	
ZETKA-stavebnice AR	
3Q servis – axiální ventilátory	XXVIII
od servis – axiairii verillialory	WAIII